
NAG Library Manual, Mark 26

Contents

Copyright Statement

Foreword

Introduction

How to Use the NAG Library and its Documentation

Mark 26 NAG Fortran Library News

Implementation-specific Details for Users

Advice on Replacement Calls for Withdrawn/Superseded Routines

Code Contributors

Support from NAG

Index

Chapters of the Library

A00 – Library Identification

A02 – Complex Arithmetic

C02 – Zeros of Polynomials

C05 – Roots of One or More Transcendental Equations

C06 – Summation of Series

C09 – Wavelet Transforms

D01 – Quadrature

D02 – Ordinary Differential Equations

D03 – Partial Differential Equations

D04 – Numerical Differentiation

D05 – Integral Equations

D06 – Mesh Generation

E01 – Interpolation

E02 – Curve and Surface Fitting

E04 – Minimizing or Maximizing a Function

E05 – Global Optimization of a Function

F – Linear Algebra

F01 – Matrix Operations, Including Inversion

F02 – Eigenvalues and Eigenvectors

F03 – Determinants

F04 – Simultaneous Linear Equations

F05 – Orthogonalization

F06 – Linear Algebra Support Routines

NAG Library Manual Manual Contents

Mark 26 MANCONTS.1



F07 – Linear Equations (LAPACK)

F08 – Least Squares and Eigenvalue Problems (LAPACK)

F11 – Large Scale Linear Systems

F12 – Large Scale Eigenproblems

F16 – Further Linear Algebra Support Routines

G01 – Simple Calculations on Statistical Data

G02 – Correlation and Regression Analysis

G03 – Multivariate Methods

G04 – Analysis of Variance

G05 – Random Number Generators

G07 – Univariate Estimation

G08 – Nonparametric Statistics

G10 – Smoothing in Statistics

G11 – Contingency Table Analysis

G12 – Survival Analysis

G13 – Time Series Analysis

H – Operations Research

M01 – Sorting and Searching

S – Approximations of Special Functions

X01 – Mathematical Constants

X02 – Machine Constants

X03 – Inner Products

X04 – Input/Output Utilities

X05 – Date and Time Utilities

X06 – OpenMP Utilities

X07 – IEEE Arithmetic

Manual Contents Manual

MANCONTS.2 (last) Mark 26



NAG Library

Copyright Statement

# The Numerical Algorithms Group Limited, 2016

All rights reserved. Duplication of this Manual in printed form or by electronic means for the private
and sole use of the software licensee is permitted provided that the individual copying the document is
not

– selling or reselling the documentation;

– distributing the documentation to others, who have not licensed the software for professional use;

– using it for the purpose of critical review, publication in printed form or any electronic publication
including the Internet without the prior written permission of the copyright owner.

The copyright owner gives no warranties and makes no representations about the contents of this
Manual and specifically disclaims any implied warranties or merchantability or fitness for any purpose.

The copyright owner reserves the right to revise this Manual and to make changes from time to time in
its contents without notifying any person of such revisions or changes.

Produced by NAG.

Mark 26 released August 2016

ISBN 978-1-85206-216-3

NAG is a registered trademark of:

The Numerical Algorithms Group Limited

The Numerical Algorithms Group Inc

Nihon Numerical Algorithms Group KK

NAG Library Manual Copyright Statement

Mark 26 COPYRIGHT.1 (last)





NAG Library

Foreword

The following Foreword to the NAG Fortran Library Manual, which was released in 1975, was
contributed by the late Professor Fox and the late Dr Wilkinson.

Those who have organised computing services are well aware of the two main problems which face the
users of computing machines in scientific computation. First, considerable experience is needed before
the user can transform a given algorithm into a very efficient program, and there are many examples in
which relatively small amendments to a few instructions can transform a modest program into one
considerably more economical in time and storage space. Second, our user needs knowledge of the
principles and techniques of numerical analysis, however efficient he might be at program construction,
before he can reasonably guarantee to have an efficient algorithm which is as free as possible from
numerical instability and which gives good results in economic time. Both the cost of computation and
the ever-present desire for quick results make obligatory at least a partial solution to these two
problems.

Many computing laboratories and computing services have made some attempts at solution by
constructing libraries of computer programs, but only in the last few years has it been possible to
develop really comprehensive schemes based on two or more decades of research into methods and
their error analysis by numerical mathematicians, and on the development of a new breed of expert in
‘numerical software’. This NAG Fortran Library was in fact initiated by a small mixed university band
of numerical analysts and their software counterparts, but has increasingly received encouragement,
support and material from many ‘extramural’ organisations.

The compilers of this library have used, as main criteria for the selection of their programs, the
concepts of (i) usefulness, (ii) robustness, (iii) numerical stability, (iv) accuracy and (v) speed. But
within these criteria several rather difficult decisions have to be made. First, how many different
routines are needed in each particular subject area, such as linear equations, optimization, ordinary
differential equations, partial differential equations and so on? What is relevant here is the number of
‘parameters’ of the particular subject area. With linear equations, for example, the matrix might be
‘dense’ or have some particular ‘sparse’ structure, it might be symmetric and, if so, possibly positive-
definite, it might be too large for the high-speed store of some particular computer, it might be one for
which an iterative method is known to converge, or the problem might involve the same matrix but
have many different right-hand sides, and so on. Each of these sub-groups may require quite different
routines for best efficiency, but within each sub-group there may also be several computing techniques
requiring a further selection decision.

A second question which has to be answered is the nature and amount of material to be provided for the
‘answer’ to problems. If the data of the problem are exact, and if the problem has a unique solution,
then it is meaningful to ask for results accurate to a specified number of figures. Whether one can get
them easily, say with single-precision arithmetic, will depend on the sensitivity of the answers to small
changes in the data. For even the storage of exact numbers cannot usually be performed exactly, so that
from the outset our problem differs slightly from the one we hoped to solve. Moreover inevitable
computer rounding errors will produce solutions which are the exact solutions of a perturbation of the
original problem, the amount of the perturbation depending on the degree of stability of the numerical
method. With so-called ‘ill-conditioned’ problems small perturbations from any of those sources
produce large changes in the answers, so that ‘exact’ or very accurate solutions can be difficult to
obtain even if they are meaningful.

But the data may not be known exactly. Some of them may be measured by physical apparatus or
involve physical constants known with certainty only to a few figures. In that case the answers are
meaningful only to a few figures and perhaps even to no figures, and whether the precision of the
answers is larger or smaller than that of the data again depends on the degree of ill-conditioning of the
problem. How much of this sort of information should the routines provide?

A third decision is the amount of explanation to be included with the programs. It is clearly desirable to
include elements of ‘why’ something is done as well as ‘what’ is done, but the desirable amount of such
information is rather delicate. If there is too much the expert may be too bored to read all of it and may
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herefore miss something important, while the amateur may find the discussion rather involved,
appearing to him rather like an introductory text in numerical analysis, and again may skip most of it
but now on the grounds of indigestibility. Too little, on the other hand, may detract from the value of
the routines by giving the amateur too little guidance in the choice which he also always has to make.

This NAG Fortran Library deals with these problems about as well as could be expected in the present
state of knowledge of numerical analysts, software and library compilers, and the majority of the users.
With regard to the number of routines to be provided it usually gives just the best available within each
sub-group, and selects the particular sub-groups which at present seem to be the most needed and for
which good techniques are available.

With regard to sensitivity and accuracy it achieves rather less, but this is a problem so far not well
treated even by numerical analysts. Information is provided in a fairly economical way for the solution
of linear equations, in which the so-called ‘iterative refinement’ involving a little double precision
arithmetic gives valuable information on the sensitivity and a more accurate answer when this is
meaningful. For many other problems the user can only obtain this sort of information by his own
efforts, for example by deliberately introducing small perturbations and observing their effects on his
solutions. This whole area is one in which one hopes for continual improvements in the library routines
when better ways to implement them are discovered.

With regard to annotation, the routines do include a fair but not prohibitive amount of ‘why’ as well as
‘what’, and there is no doubt that a mastery of this material will enable the user not only to increase the
value he gets from this library but also to improve his performance in the inevitable writing of his own
routines for problems not directly treated here.

Two other topics are worth mentioning. First, the routines which appear in this library are the result of
years of detailed study by numerical analysts and software experts, and it is dangerous in varying
degrees to tamper with them and to try to modify them for ‘local needs’. In the solution of linear
equations, for example, one could without great peril omit the iterative refinement and still get useful
results. One loses here just the extra but often extremely valuable knowledge about the ‘condition’ of
the problem which iterative refinement gives comparatively economically. A far greater danger would
arise from an attempt to ‘speed-up’ the routine by, for example, omitting the row interchanges. which
are essentially unnecessary with exact arithmetic. Computer arithmetic is not exact, and this fact could
cause complete rubbish in the solutions obtained by neglecting interchanges, which in this context ruins
the stability of the numerical method.

Second, the library cannot help the user in the proper formulation of his problem. Given, for example,
the problem of computing

Ir ¼ e�1
Z 1

0
exxrdx; for r ¼ 0; 1; 2; . . . ; 20

the library will have routines for evaluating this integral by numerical quadrature, to whatever accuracy
is required, for each value of r. But nothing in the library can tell the user that a very much faster
method would use the recurrence relation (in the ‘backwards direction’)

Ir�1 ¼
1� Ir
r

; with IN ¼ 0;

where N (> 20) depends on the accuracy required but is determinable by simple and very rapid
numerical experiment (and even, in this simple case, by elementary analysis). Nor could the library tell
him that the perhaps more obvious use of the forward recurrence

Ir ¼ 1� rIr�1; with I0 ¼ 1� e� 1;

would fail to produce accurate results beyond the first few values of r with only single-precision
arithmetic: that this formulation, in fact, gives a very ill-conditioned problem.

In summary, then, this NAG Fortran Library represents a timely and very important aid to the computer
user in scientific computation. Here, and in future extensions, it provides the best available routines for
a wide variety of numerical subject areas, backed by a non-prohibitive amount of sensible explanation
of both what is being done and why it is being done. But the user must realise that the library can
provide no more than it claims in its annotation, that it cannot except where explicitly stated determine
for him the degree of ill-conditioning of his problem, nor help him in general to cast his problem into a
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better form. For such information he should study some numerical analysis or ask the advice of a
colleague reasonably experienced in this field. It may happen that in future editions of the library it will
be possible to give more assistance of this kind to the general user, and it is our hope, in welcoming
warmly this edition, that future productions will have some useful expansions of this kind, in addition
to the obvious need for new routines in the subject areas which in this first venture are not touched
upon or treated only sparsely. The research involved will be both exciting and fruitful!

Professor L Fox (Oxford University)

Dr J H Wilkinson, FRS (National Physical Laboratory, England)
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1 Library Identification

Periodically a new Mark of the NAG Library is released: new routines are added, corrections and/or
improvements are made to existing routines; and, occasionally, routines are withdrawn if they have been
superseded by improved routines.

You must know which implementation, which precision and which mark and revision of the Library
you are using or intend to use. To find out these Library details, you can run a program which calls the
NAG Library routine A00AAF.

The program could be:

USE nag_library, ONLY: a00aaf
CALL a00aaf
END

Alternatively, the example program for A00AAF can be run using the nag_example scripts supplied
with your implementation (see the Users' Note for details).

An example of the output is:

*** Start of NAG Library implementation details ***

Implementation title: Linux, 64-bit, NAG Fortran (32-bit integers)
Precision: FORTRAN double precision

Product Code: FLL6A25D9L
Mark: 25.0 (self-contained)

*** End of NAG Library implementation details ***

2 How to Find a NAG Library Routine

All users both familiar or unfamiliar with this Library who are thinking of using a routine from it, are
asked to please follow these instructions:

(a) read How to Use the NAG Library and its Documentation as it provides valuable background
information;

(b) select an appropriate chapter or routine by using the online Keyword and GAMS Search;

(c) read the relevant Chapter Introduction;

(d) choose a routine, and read the routine document. If the routine does not after all meet your needs,
return to step (b);

(e) read the Users' Note for your implementation (this contains instructions on how to compile and
run a program);

(f) consult local documentation, which should be provided by your local support staff, about access to
the Library on your computing system;

(g) obtain a copy of the example program (see Section 4.5) for the particular routine of interest and
experiment with it.

You should now be in a position to include a call to the routine in a program, and to attempt to compile
and run it. You may of course need to refer back to the relevant documentation in the case of
difficulties, for advice on assessment of results, and so on.

As you become familiar with the Library, some of steps (a) to (g) can be omitted, but it is useful to
keep up to date with the following documents as they are subject to change:

How to Use the NAG Library and its Documentation;

the Chapter Introduction;

the routine document;

the Users' Note for your implementation.
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3 How to Use the NAG Library

3.1 Structure of the Library

The NAG Library is a comprehensive collection of routines for the solution of numerical and statistical
problems.

The Library is divided into chapters, each devoted to a branch of numerical analysis or statistics. Each
chapter has a three-character name and a title, e.g.,

Chapter D01 – Quadrature

Exceptionally, Chapters H and S have one-character names. The chapters and their names are based on
the ACM modified SHARE classification index (see ACM (1960–1976)).

All documented routines in the Library have six-character names, beginning with the characters of the
chapter name, e.g.,

C06PCF

Note that the second and third characters are digits, not letters; e.g., 0 is the digit zero, not the letter O.
The last letter of each routine name almost always appears as ‘F’ in the documentation. Chapters D03
and E04 have some routines whose last letter is ‘A’ rather than ‘F’. An ‘A’ version is always paired
with an ‘F’ routine, the ‘A’ version being safe to use in a multithreaded environment, but otherwise
having identical functionality to the ‘F’ version.

Chapter F06 (Linear Algebra Support Routines) contains all the Basic Linear Algebra Subprograms,
BLAS (Dongarra et al. (1988) and Dongarra et al. (1990)), with NAG-style names as well as the actual
BLAS names, e.g., F06PAF (DGEMV). The name in brackets is the equivalent double precision BLAS
name. Chapter F16 contains some of the routines specified in the BLAS Technical Form (The BLAS
Technical Forum Standard (2001) and Blackford et al. (2002)) and also some additional routines for
integer valued vectors that are not in the standard. Some of the routines in Chapter F16 have both
NAG-style names and BLAS names. Chapter F07 (Linear Equations (LAPACK)) and Chapter F08
(Least Squares and Eigenvalue Problems (LAPACK)) contain routines derived from the LAPACK
project (Anderson et al. (1999)); also, Chapter F01 (Matrix Operations, Including Inversion) contains
storage conversion routines derived from the LAPACK project. Like the BLAS, these routines have
NAG-style names as well as LAPACK names, e.g., F07ADF (DGETRF). Details regarding these
alternate names can be found in the relevant Chapter Introductions.

In order to take full advantage of machine-specific versions of BLAS and LAPACK routines provided
by some computer hardware vendors, you are encouraged to use the BLAS and LAPACK names (e.g.,
DGEMV and DGETRF) rather than the corresponding NAG-style names (e.g., F06PAF (DGEMV) and
F07ADF (DGETRF)) wherever possible in your programs.

3.1.1 Long Names for Library Routines

Each documented routine has, in addition to its short six-character name, a long name beginning with
the root nagf_ and consisting of an underscore separated list of words. The long-name naming scheme
has been chosen so that the long names group like routines together and group routines within a suite
together.

The long name for each routine in a chapter is listed in the respective Chapter Contents page. The
second word in the long name is fixed for each chapter, e.g., routines in Chapter D01 (Quadrature) all
have long names that begin nagf_quad_.

Each chapter has a unique second word in its set of long names with the exception of Chapters F07 and
F08 which share the same second word (lapack).

Note that the long names of BLAS and LAPACK routines, such as nagf_blas_dgemm, will not take
advantage of machine-specific versions of BLAS and LAPACK. As mentioned in Section 3.1 you are
recommended to use the plain BLAS or LAPACK name (in this case DGEMM) for performance
reasons.

Routines that are marked for withdrawal have long names that have the third word withdraw. At
subsequent marks of the library, any routine that becomes marked for withdrawal will have the third
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word withdraw inserted into its long name; the original long name will no longer be available for the
given routine at that stage.

For those chapters that have both A and F versions of a routine, the long name for the F version is the
same as that of the A version, but with an additional last word (old – signifying that the F version
predates the A version).

It should be noted that the long names are implemented by the use of aliasing in the NAG Library
interface block modules, and so long names are only accessible when calling the NAG Library from a
Fortran program that USEs nag_library.mod.

Please refer to Section 3.3.1 for advice on supplying alternative routine names and, possibly, simplified
routine interfaces.

3.2 General Advice

A NAG Library routine cannot be guaranteed to return meaningful results irrespective of the data
supplied to it. Care and thought must be exercised in:

(a) formulating the problem;

(b) programming the use of Library routines;

(c) assessing the significance of the results.

The Foreword to the Manual provides some further discussion of points (a) and (c); the remainder of
this document is concerned with (b) and (c).

3.3 Programming Advice

The Library and its documentation are designed with the assumption that you will write a calling
program in Fortran (although it may be called from other languages – see Section 3.10).

When programming a call to a routine, read the routine document carefully, especially the description
of the arguments. This states clearly which arguments must have values assigned to them on entry to
the routine, and which return useful values on exit. See Section 4.3 for further guidance.

The most common types of programming error in using the Library are:

incorrect arguments in a call to a Library routine;

calling the Library from a single precision program.

The USE of the nag_library MODULE will help detect or prevent some of these errors. For
example, when using this, incorrect parameter types will be caught at compile time and using
KIND=nag_wp in the type of real and complex variables will maintain consistency with the Library.

Therefore, if a call to a Library routine results in an unexpected error message from the system (or
possibly from within the Library), check the following:

Have some actual array arguments been passed as different dummy arguments (i.e., an
array appears more than once in the argument list with different INTENTs)?

Have all array arguments been dimensioned correctly?

Avoid the use of NAG-type names for your own program units or COMMON blocks: in general, do not
use names which contain a three-character NAG chapter name embedded in them; they may clash with
the names of an auxiliary routine or COMMON block used by the NAG Library.

3.3.1 Alternative Routine Names

If the Library is called from a Fortran program then it is possible to use alternative names for user-
callable routines. This can be done via the ‘USE nag_library’ statement at the start of the (sub)program
in which the Library routine is called. For example, you wish to use the name ‘BesselJ0’ instead of the
Library name S17AEF. In this case the line

USE nag_library, ONLY: s17aef
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would be replaced by

USE nag_library, ONLY: BesselJ0 => s17aef

The (sub)program would then use the name ‘BesselJ0’ in place of S17AEF and call it with the identical
interface.

If Library routines are called from other environments then many such environments offer ways of
‘aliasing’ a routine name by a preferred alternative name.

For many of the Library routines with more complex interfaces it is likely that only a subset of the
functionality is required and that some parameter values will always remain unchanged or will not be
referenced. In such cases it may be preferable to write your own wrapper to the Library routine with a
much simpler interface and with a preferred alternative name. For example, if you wish to integrate a
system of stiff ordinary differential equations without root finding or intermediate output, you could
create the simple interface wrapper to the more complicated D02EJF interface.

SUBROUTINE BDFsolve(xend,y)
USE nag_library, ONLY: nag_wp, d02ejf, d02ejw, d02ejx, d02ejy
REAL(kind=nag_wp) :: xend, y(:)
REAL(kind=nag_wp) :: tol, xstart
INTEGER :: ifail, iw, n
CHARACTER :: relabs
REAL(kind=nag_wp), ALLOCATABLE :: w(:)

n = SIZE(y)
tol = 1.0e-3_nag_wp
relabs = ’M’
iw = (12+n)*n + 50
ALLOCATE(w(iw))
ifail = 0
xstart = 0.0_nag_wp
CALL d02ejf(xstart,xend,n,y,fcn,d02ejy,tol,relabs,d02ejx, &

d02ejw,w,iw,ifail)
RETURN
END SUBROUTINE BDFsolve

The above example of a user-defined wrapper would be compiled and linked with a main program that
would include the simple call:

CALL BDFsolve(xend,y)

3.3.2 The NAG Fortran Environment

The environment for the NAG Library is defined by the nag_library MODULE. Certain routines
require you to USE this to access named constants (e.g., nag_wp). It is recommended that you also USE
the MODULE to enable checking of INTERFACEs in the Library.

The exact location of nag_library.mod is installation dependent; please see the Users' Note for your
implementation.

3.3.3 Direct and Reverse Communication Routines

Routines in the Library that require a user-supplied function may be classified as either direct
communication or reverse communication.

Direct communication routines require a user-supplied subroutine to be provided as an actual argument
to the NAG Library routine. You must write this subroutine using a very rigid interface as specified in
the relevant routine document. For the majority of applications this is the simplest and most convenient
usage. Sometimes however this approach can be restrictive:

(i) when the required format of the subroutine does not allow useful information to be passed
conveniently to and from your calling program;

(ii) when the direct communication routine is being called from another computer language which does
not fully support procedure arguments in a way that is compatible with the Library.

These restrictions can be removed by using a reverse communication routine. Instead of obtaining the
solution in one call, reverse communication routines perform one step of the solution process before
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returning to the calling program with an appropriate flag (irevcm) set. The value of irevcm determines
whether the process has finished or whether fresh information is required. In the latter case the required
information must be calculated before re-entering the reverse communication routine. Thus you have
the responsibility for providing an iterative loop. Although reverse communication routines will
typically be more complicated to use than direct communication equivalents they do provide greater
flexibility for the evaluation of the function.

3.4 Error Handling and the Argument IFAIL

3.4.1 Errors, Failure and Warning Conditions

The error, failure or warning conditions considered here are those that can be detected by explicit
coding in a Library routine. Such conditions must be anticipated by the author of the routine. They
should not be confused with run-time errors detected by the compilation system, e.g., detection of
overflow or failure to assign an initial value to a variable.

In the rest of this document we use the word ‘error’ to cover all types of error, failure or warning
conditions detected by the routine. They fall roughly into three classes.

(i) On entry to the routine the value of an argument is out of range. This means that it is not useful, or
perhaps even meaningful, to begin computation.

(ii) During computation the routine decides that it cannot yield the desired results, and indicates a
failure condition. For example, a matrix inversion routine will indicate a failure condition if it
considers that the matrix is singular and so cannot be inverted.

(iii) Although the routine completes the computation and returns results, it cannot guarantee that the
results are completely reliable; it therefore returns a warning. For example, an optimization routine
may return a warning if it cannot guarantee that it has found a local minimum.

All three classes of errors are handled in the same way by the Library.

Each error which can be detected by a Library routine is associated with a number. Some numbers such
as those associated with a failure in dynamic memory allocation (see Section 3.7) or detecting a valid
licence (Section 3.8) are the same for all Library routines and may not be listed in individual routine
documents. Recently added routines have standardized on using the same number for unexpected error
exits (Section 3.9). All other numbers, with explanations of the errors, are listed in Section 6 (Error
Indicators and Warnings) in the routine document. Unless the document specifically states to the
contrary, you should not assume that the routine necessarily tests for the occurrence of the errors in
their order of error number, i.e., the detection of an error does not imply that other errors have or have
not been detected.

3.4.2 The IFAIL Argument

Most of the NAG Library routines which can be called directly by you have an argument called IFAIL.
This argument is concerned with the NAG Library error trapping mechanism (and, for some routines,
with controlling the output of error messages and advisory messages).

IFAIL has two purposes:

(i) to allow you to specify what action the Library routine should take if an error is detected;

(ii) to inform you of the outcome of the call of the routine.

For purpose (i), you must assign a value to IFAIL before the call to the Library routine. Since IFAIL is
reset by the routine for purpose (ii), the argument must be the name of a variable, not a literal or
constant.

The value assigned to IFAIL before entry should be either 0 (hard fail option), or 1 or �1 (soft fail
option). If after completing its computation the routine has not detected an error, IFAIL is reset to 0 to
indicate a successful call. Control returns to the calling program in the normal way. If the routine does
detect an error, its action depends on whether the hard or soft fail option was chosen. If IFAIL is set to
any value other than �1, 0 or 1 before calling the Library routine, a default of IFAIL ¼ 1 is assumed.
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3.4.3 Hard Fail Option

If you set IFAIL to 0 before calling the Library routine, execution of the program will terminate if the
routine detects an error. Before the program is stopped, this error message is output:

** ABNORMAL EXIT from NAG Library routine XXXXXX: IFAIL = n
** NAG hard failure - execution terminated

where XXXXXX is the routine name, and n is the number associated with the detected error. An
explanation of error number n is given in Section 6 of the routine document XXXXXX.

In addition, most routines output explanatory error messages immediately before the standard
termination message shown above.

The hard fail option should be selected if you are in any doubt about continuing the execution of the
program after an unsuccessful call to a NAG Library routine. For environments where it might be
inappropriate to halt program execution when an error is detected it is recommended that the hard fail
option is not used.

3.4.4 Soft Fail Option

To select this option, you must set IFAIL to 1 or �1 before calling the Library routine. Note that
IFAIL ¼ 1 is assumed when IFAIL is set to an invalid value before calling the Library routine.

If the routine detects an error, IFAIL is reset to the associated error number; further computation within
the routine is suspended and control returns to the calling program.

If you set IFAIL to 1, then no error message is output (silent exit). If the output of error messages is
undesirable, then silent exit is recommended.

If you set IFAIL to �1 (noisy exit), then before control is returned to the calling program, the following
error message is output:

** ABNORMAL EXIT from NAG Library routine XXXXXX: IFAIL = n
** NAG soft failure - control returned

In addition, most routines output explanatory error messages immediately before the above standard
message.

It is most important to test the value of IFAIL on exit if the soft fail option is selected. A nonzero
exit value of IFAIL implies that the call was not successful so it is imperative that your program be
coded to take appropriate action. That action may simply be to print IFAIL with an explanatory caption
and then terminate the program. Many of the example programs in Section 9 of the routine documents
have IFAIL-exit tests of this form. In the more ambitious case, where you wish your program to
continue, it is essential that the program can branch to a point at which it is sensible to resume
computation.

The soft fail option puts the onus on you to handle any errors detected by the Library routine. With the
proviso that you are able to implement it properly, it is clearly more flexible than the hard fail option
since it allows computation to continue in the case of errors. In particular there are at least two cases
where its flexibility is useful:

(i) where additional information about the error or the progress of computation is returned via some of
the other arguments;

(ii) in some routines, ‘partial’ success can be achieved, e.g., a probable solution found but not all
conditions fully satisfied, so the routine returns a warning. On the basis of the advice in Section 6
and elsewhere in the routine document, you may decide that this partially successful call is
adequate for certain purposes.

3.4.5 Structure of the NAG Error Messages

The notation valueh i appearing in the documented error message is a place holder that will be populated
by the value of a variable, argument name or some other piece of information when that error message
is displayed.
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3.4.6 Legacy Error Handling

A few routines (introduced mainly at Marks 7 and 8) use IFAIL in a nonstandard way to control the
output of error messages, and also of advisory messages (see Chapter X04). In those routines IFAIL is
regarded as an integer of the form 100cþ 10bþ a, where a and b are either 0 or 1 and have the
following significance:

a ¼ 0: hard failure a ¼ 1: soft failure
b ¼ 0: silent exit b ¼ 1: noisy exit

Details are given in the documents of the relevant routines; for those routines this alternative use of
IFAIL remains valid.

3.5 Input/output in the Library

Most NAG Library routines perform no output to an external file, except possibly to output an error
message. All error messages are written to a logical error message unit. This unit number (which is set
by default to 6 in most implementations) can be changed by calling the Library routine X04AAF.

Some NAG Library routines may optionally output their final results, or intermediate results to monitor
the course of computation. In general, output other than error messages is written to a logical advisory
message unit. This unit number (which is also set by default to 6 in most implementations) can be
changed by calling the Library routine X04ABF. Although it is logically distinct from the error message
unit, in practice the two unit numbers may be the same. Suites of routines with an option setting facility
usually allow this unit number to be specified directly as an option.

All output from the Library is appropriately formatted.

There are only a few Library routines which perform input from an external file. These examples occur
in Chapters E04, E05 and H. The unit number of the external file is an argument to the routine, and all
input is formatted.

You must ensure that the relevant Fortran unit numbers are associated with the desired external files,
either by an OPEN statement in your calling program, or by operating system commands.

3.6 Auxiliary Routines as External Procedure Arguments

In addition to those Library routines which are documented and are intended to be called by you
directly, the Library also contains many auxiliary routines.

In general, you need not be concerned with them at all, although you may be made aware of their
existence if, for example, you examine a memory map of an executable program which calls NAG
routines. The only exception is that when calling some NAG Library routines you may be required or
allowed to supply the name of an auxiliary routine from the NAG Library as an external procedure
argument. The routine documents give the necessary details. In such cases, you only need to supply the
name of the routine; you never need to know details of its argument list.

NAG auxiliary routines have names which are similar to the name of the documented routine(s) to
which they are related, but with last letter ‘Z’, ‘Y’, and so on, e.g.,

G13AFZ is an auxiliary routine called by G13AFF.

A few chapters contain auxiliary routines whose names are obtained by adding 50 to the second and
third characters of the chapter name. For instance, Chapter E04 has an auxiliary routine with the name
E54NFU which is normally used as the actual argument for the QPHESS argument of E04NFA; the
corresponding name to be used with E04NFF is E04NFU.

3.7 Dynamic Memory Allocation

Some NAG Library routines perform dynamic memory allocation to simplify their interfaces. Where
possible, the amount of memory allocated by a routine will be given in the routine document (usually as
a function of routine arguments). All memory allocated by NAG routines is deallocated before exit.
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In the case where a routine detects a failure to dynamically allocate sufficient memory, the routine will
set an error condition, by setting IFAIL ¼ �999, and exit with an appropriate error message.

3.8 License Management

If your implementation is license managed then your local site will have details on how the license
management is implemented; please contact your site installer for details. To determine whether a valid
license is available on your machine run the example program for A00ACF.

Should a valid license not be found when calling license managed routines from the Library then the
routine will set an error condition, by setting IFAIL ¼ �399, and exit with an appropriate error
message. On Unix based systems, the appropriate environment variables should then be checked (e.g.,
NAG_KUSARI_FILE) to make sure this points to the licence file containing a valid licence, and the
licence file should be checked for any obvious errors (e.g., the licence refers to a different
implementation). If everything appears to be correct then please contact NAG (see Support from NAG
for details).

3.9 Unexpected Errors

Internal calls to Library routines are checked for error exits even when these exits are not to be
expected. Should an unexpected error exit occur the routine will set an error condition by setting IFAIL
and exit with an appropriate error message. Historically, the number returned in IFAIL was particular to
that routine and differing numbers could be used for this purpose. However, recently added routines
have standardized by setting IFAIL ¼ �99 for unexpected error detection.

3.10 Calling the Library from Other Languages

In general the NAG Library can be called from other computer languages (such as C and Visual Basic)
provided that appropriate mappings exist between their data types).

NAG has produced C Header Files which comprise of a set of header files, indicating the match
between C and Fortran data types for various compilers, documentation and examples. The
documentation, examples and C Header Files are available from the NAG Web sites (see Support
from NAG).

The Dynamic Link Library (DLL) implementation can be called in a straightforward manner from a
number of languages and environments, e.g., Visual Basic, Visual Basic for Applications (Excel),
Fortran, C and C++. Guidance on this is provided in the Users' Note for the NAG Library DLLs.
Further details can be found on the NAG Web sites.

3.11 Arithmetic Considerations and Reproducibility of Results

The results obtained when calling a NAG Library routine depend not only on the algorithm used to
solve the problem, but also on the compiler used to build the library, compiler run-time libraries and
also the arithmetic properties of the machine on which the code is run.

Historically, different kinds of computer hardware tended to have different kinds of arithmetic. Some
machines would store floating-point numbers using a base 16 significand and exponent system, others
would use base 2, and some even used base 8 or 10. Such differences caused major headaches for
software library providers because code that worked well on one arithmetic system might not behave in
exactly the same way on another. This meant that great care had to be taken to make the library code
portable.

In addition, it was not unheard of for machine arithmetic to have flaws or errors where basic operations
such as multiplication or division could sometimes give incorrect results, especially on numbers that
were in some way ‘extreme’, such as being very large or small.

After the first of the IEEE standards for floating-point arithmetic (ANSI/IEEE (1985)) was introduced in
the 1980s, the situation improved greatly. Nowadays most significant hardware, and certainly most
hardware that NAG libraries run on, will use IEEE-style base 2 arithmetic. This makes production of
portable code easier, but there are still problems, partly due to the latitude allowed by the IEEE
standards. For example, hardware which uses extra-precise 80-bit internal registers for arithmetic, as
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originally introduced in the Intel 8087 coprocessor in the 1980s, behaves slightly differently from
hardware that uses 64-bit registers, particularly if a compiler generates optimized code which holds
arithmetic subexpressions in the extra-precise registers.

Since, for performance reasons, computer arithmetic is generally finite precision (as is certainly the case
for IEEE standard arithmetic) most of the numerical methods implemented by NAG Library routines
can only return an approximation to the true solution, simply due to accumulation of rounding errors.

It should therefore be clear that running a program which calls a NAG Library routine with the same
data on two different machines can give different results, due to compiler, hardware and run-time
library considerations. Usually these differences are small – it may be that a result computed on one
machine differs only in the last few significant bits from the same result computed on another machine
– for example, when solving a well-conditioned set of linear equations on two different machines.
Occasionally small differences may be magnified, for example if a conditional test depends on an
imprecise result. A routine that searches for a mininum of an optimization problem may converge to a
different local minimum, but in general, so long as the routine's documentation doesn't claim that the
same local minimum will always be obtained, this should be acceptable. Even if an algorithm
converges to the same local minimum, arithmetic differences may mean that a different number of
iterations is taken to get there.

Modern hardware and optimizing compilers have introduced further scope for arithmetic quirks. An
example is in the use of Streaming SIMD Extension (SSE) instructions. These low-level machine
instructions allow hardware to operate on more than one number in parallel, if your compiler is smart
enough to generate and use them correctly, or if you hand-code your own assembly language routines.

SSE instructions enable low-level parallelism of floating-point arithmetic operations. For example, a
128-bit SSE register can hold two 64-bit double precision (or four 32-bit single precision) numbers at
the same time, and operate on them all simultaneously. This can lead to big time savings when working
on large amounts of data.

But this may come at a price. Efficient use of SSE instructions can sometimes depend on exactly how
the memory used to store data is aligned. Some SSE instructions for moving data to and from memory
need memory to be aligned on a 16-byte boundary. If it happens that the memory (for example, a
pointer to an array of numbers) that a NAG routine uses is not aligned nicely, then it may not be
possible to use those SSE instructions. An optimizing compiler might well generate two instruction
streams, one for when it detects that memory is aligned and one for when it is not.

An example should serve to make things clearer. Suppose we wish to compute the inner product of two
vectors, X and Y, each of length N. The inner product (or dot product) of two vectors is computed by
multiplying together corresponding elements of the two vectors, and summing the individual products to
get the result. A routine compiled by a good optimizing compiler would load numbers two or four at a
time, multiply them together two or four at a time, and accumulate the results into the final result.

But if the memory is not nicely aligned – and it may well not be – the compiler needs to generate a
different code path to deal with the situation. Here the result will take longer to get because the
products must be computed and accumulated one at a time. At run-time, the code checks whether it can
take the fast path or not, and works appropriately.

The problem is that by altering the order of the accumulations, we are quite possibly changing the final
result, simply due to rounding differences when working with finite precision computer arithmetic.
Instead of getting the inner product

s ¼ x1 � y1 þ x2 � y2 þ x3 � y3 þ � � � þ xn � yn
we may get

s ¼ x1 � y1 þ x3 � y3ð Þ þ x2 � y2 þ x4 � y4ð Þ þ � � � :
It is likely that the result will be just as accurate either way – neither result will be precise due to finite
arithmetic – but they may differ by a tiny amount. And if that tiny difference leads to a different
decision being made by the code that called the inner product routine, the difference may be magnified.

Furthermore, it is possible that the same program running with bitwise identical data on the same
machine may give different results when run twice in a row simply because, when the program is
loaded, by chance some piece of memory may or may not be aligned on a particular boundary. Such
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non-deterministic results can be frustrating if you depend on always getting identical results for the
same data.

On even newer hardware, AVX instructions use 256-bit and 512-bit registers, and can therefore operate
on more numbers at a time. For AVX instructions, memory may need to be 32-byte aligned.

Some memory used by NAG Library routines is allocated inside the NAG Library. In order to minimize
differences due to effects like that described above, we can try to make sure the memory is always
aligned nicely – for example, by use of more controllable memory allocation routines where available –
but that is not always possible since it partly depends on the support of the compiler.

Of course, no Library routine has control over memory you have allocated before being passed to the
routine. If you do observe non-deterministic results which you suspect are due to memory
considerations, and you are unable to accept this variation, then you are advised to make sure that
any memory you allocate is aligned nicely; unfortunately, precisely how you do this is dependent on
your system, but you may be able to get advice through NAG's usual support channels (see Support
from NAG).

Parallelism, coming from a multithreaded implementation of the NAG Library and/or a multithreaded
vendor library is another potential source of non-determinism in numerical results. Some routines may
give different results when run on different numbers of cores, or even different results when a
calculation is repeated on the same number of cores. Where reproducibility of results is vital, a purely
serial NAG library, without parallelism in either NAG routines or calls to parallel vendor library
routines will generally be available in an appropriate implementation, and may be the best choice. You
are advised to consult NAG (see Support from NAG) for advice.

3.11.1 Bit-wise Reproducibility (BWR)

Mathematical operations on fixed-length floating point numbers (e.g., 32-bit floats or 64-bit doubles) are
not associative. This means that a computer may produce different results for aþ bþ cð Þ and
aþ bð Þ þ c. For example, an IEEE 754 32-bit floating point number has a mantissa of 23 bits. Therefore
in this number format 224 þ 1 ¼ 224, which means that for instance 224 þ 1

� �
� 224 ¼ 0 while

224 þ 1� 224
� �

¼ 1. BWR is a term which refers to the case in which a given computer program (e.g., a
set of source codes) produces bit-for-bit the exact same answer in different computing environments
such as

1. Different operating systems (e.g., answers produced on Windows vs answers produced on Linux).

2. Different CPU architectures (e.g., Intel vs AMD or Intel Sandy Bridge vs Intel Ivy Bridge etc.).

3. Different compiler versions.

4. Different numbers of threads.

Users often desire BWR however it is extremely difficult to achieve. Typically you should ensure that:

(a) Instructions are always executed in exactly the same order.

(b) No advanced CPU features are used which may not be available on other processors (e.g., SSE3,
SSE4, AVX).

(c) A fixed number of threads is always used.

Often condition (a) is equivalent to compiling with no (or very limited) compiler optimizations, since
newer versions of compilers typically improve their code optimization algorithms, which means one
version of a compiler may optimize a set of operations one way while the next version may optimize it
a different way. Condition (b) typically means that only basic SSE instructions are allowed, such as are
supported across the widest range of processors and the enhanced SIMD instructions present in newer
processors are not exploited.

The result is that to achieve BWR across a wide range of computing environments one often has to
sacrifice a lot of performance.
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3.11.1.1 Vendor Math Libraries and Conditional Bitwise Reproducibility (CBWR)

An implementation of the NAG Library that is not self-contained will make calls to an appropriate
vendor library containing, in particular, high performance linear algebra routines. The NAG Library has
no direct control over BWR with respect to results obtained from calls to the vendor library. However,
for at least one such vendor library, CBWR has been introduced such that if an environment variable is
set and a set of conditions adhered to in the code calling the vendor library then BWR can be forced.
Where CBWR is available for a vendor library used by an implementation of the NAG Library, details
will be given in the Users' Note for that implementation.

It should be noted that many NAG routines do not adhere to the conditions set out by vendor library
CBWR and so it may not be possible to ensure BWR for all NAG Library routines across different CPU
architectures for implementations that are not self-contained.

3.12 Multithreading

3.12.1Thread Safety

In multithreaded applications, each thread in a team processes instructions independently while sharing
the same memory address space. For these applications to operate correctly any routines called from
them must be thread safe. That is, any global variables they contain are guaranteed not to be accessed
simultaneously by different threads, as this can compromise results. This can be ensured through
appropriate synchronization, such as that found in OpenMP.

When a routine is described as thread safe we are considering its behaviour when it is called by
multiple threads. It is worth noting that a thread unsafe routine can still, itself, be multithreaded. A team
of threads can be created inside the routine to share the workload as described in Section 3.12.2.

Most routines in the NAG Fortran Library are thread safe, however there are some routines that are not
thread safe as they use unsynchronised global variables (such as module variables, common blocks or
variables with the SAVE attribute). These routines should not be called by multiple threads in a user
program. Please consult Section 8 of each routine document for further information. A table available in
the HTML documentation lists which routines are threadunsafe.

In the NAG Fortran Library there are some pairs of routines which share the same five character root
name, for example, the routines E04UCF/E04UCA. Each routine in the pair has exactly the same
functionality, except that one of them has additional parameters in order to make it thread safe. The
thread safe routine has a different last character in the name in place of the usual character (typically
‘A’ instead of ‘F’). Such pairs are documented in a single routine document and are listed in the
individual Chapter Contents.

3.12.1.1 Routines with Routine Arguments

Some Library routines require you to supply a routine and to pass the name of the routine as an actual
argument in the call to the Library routine. For many of these Library routines, the supplied routine
interface includes array parameters (called IUSER and RUSER) specifically for you to pass information
to the supplied routine without the need for global variables.

In the Fortran Library if the interfaces of a pair of thread safe (ending ‘A’) and non-thread safe (ending
‘F’) routines contain a user-supplied routine argument then the ‘A’ routine will contain the additional
array arguments IUSER and RUSER (possibly plus others for internal use). In some cases the ‘A’
routine may need to be initialized by a separate initialization routine; this requirement will be clearly
documented.

If you need to provide your supplied routine with more information than can be given via the interface
argument list, then you are advised to check, in the relevant Chapter Introduction, whether the Library
routine you intend to call has an equivalent reverse communication interface. These have been designed
specifically for problems where user-supplied routine interfaces are not flexible enough for a given
problem, and their use should eliminate the need to provide data through global variables. Where
reverse communication interfaces are not available, it is usual to use global variables containing the
required data that is accessible from both the supplied routine and from the calling program. It is thread
safe to do this only if any global data referenced is made threadprivate by OpenMP or is updated using
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appropriate synchronisation, thus avoiding the possibility of simultaneous modification by different
threads.

Thread safety of user-supplied routines is also an issue with a number of routines in multi-threaded
implementations of the NAG Library, which may internally parallelize around the calls to the user-
supplied routines. This issue affects not just global variables but also how the IUSER and RUSER
arrays may be used. In these cases, synchronisation may be needed to ensure thread safety. Chapter X06
provides routines which can be used in your supplied routine to determine whether it is being called
from within an OpenMP parallel region. If you are in doubt over the thread safety of your program you
are advised to contact NAG for assistance.

3.12.1.2 Input/Output

The Library contains routines for setting the current error and advisory message unit numbers (X04AAF
and X04ABF). These routines use the SAVE statement to retain the values of the current unit numbers
between calls. It is therefore not advisable for different threads of a multithreaded program to set the
message unit numbers to different values. A consequence of this is that error or advisory messages
output simultaneously may become garbled, and in any event there is no indication of which thread
produces which message. You are therefore advised always to select the ‘soft failure’ mechanism
without any error message (IFAIL ¼ þ1, see Section 3.4) on entry to each NAG Library routine called
from a multithreaded application; it is then essential that the value of IFAIL be tested on return to the
application.

3.12.1.3 Implementation Issues

In very rare cases we are unable to guarantee the thread safety of a particular specific implementation.
Note also that in some implementations, the Library is linked with one or more vendor libraries to
provide, for example, efficient BLAS functions. NAG cannot guarantee that any such vendor library is
thread safe. Please consult the Users' Note for your implementation for any additional implementation-
specific information.

3.12.2 Parallelism

3.12.2.1 Introduction

The time taken to execute a routine from the NAG Library has traditionally depended, to a large degree,
on the serial performance capabilities of the processor being used. In an effort to go beyond the
performance limitations of a single core processor, multithreaded implementations of the NAG Library
are available. These implementations divide the computational workload of some routines between
multiple cores and executes these tasks in parallel. Traditionally, such systems consisted of a small
number of processors each with a single core. Improvements in the performance capabilities of these
processors happened in line with increases in clock frequencies. However, this increase reached a limit
which meant that processor designers had to find another way in which to improve performance; this
led to the development of multicore processors, which are now ubiquitous. Instead of consisting of a
single compute core, multicore processors consist of two or more, which typically comprise at least a
Central Processing Unit and a small cache. Thus making effective use of parallelism, wherever possible,
has become imperative in order to maximize the performance potential of modern hardware resources,
and the multithreaded implementations.

The effectiveness of parallelism can be measured by how much faster a parallel program is compared to
an equivalent serial program. This is called the parallel speedup. If a serial program has been
parallelized then the speedup of the parallel implementation of the program is defined by dividing the
time taken by the original serial program on a given problem by the time taken by the parallel program
using n cores to compute the same problem. Ideal speedup is obtained when this value is n (i.e., when
the parallel program takes 1

nth the time of the original serial program). If speedup of the parallel
program is close to ideal for increasing values of n then we say the program has good scalability.

The scalability of a parallel program may be less than the ideal value because of two factors:

(a) the overheads introduced as part of the parallel implementation, and

(b) inherently serial parts of the program.
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Overheads include communication and synchronisation as well as any extra setup required to allow
parallelism. Such overheads depend on the efficiency of the compiler and operating system libraries and
the underlying hardware. The impact on performance of inherently serial fractions of a program is
explained theoretically (i.e., assuming an idealised system in which overheads are zero) by Amdahl's
law. Amdahl's law places an upper bound on the speedup of a parallel program with a given inherently
serial fraction. If r is the parallelizable fraction of a program and s ¼ 1� r is the inherently serial
fraction then the speedup using n sub-tasks, Sn, satisfies the following:

Sn �
1

sþ r
n

� �
Thus, for example, this says that a program with a serial fraction of one quarter can only ever achieve a
speedup of 4 since as n!1, Sn � 4.

Parallelism may be utilised on two classes of systems: shared memory and distributed memory
machines, which require different programming techniques. Distributed memory machines are
composed of processors located in multiple components which each have their own memory space
and are connected by a network. Communication and synchronisation between these components is
explicit. Shared memory machines have multiple processors (or a single multicore processor) which can
all access the same memory space, and this shared memory is used for communication and
synchronisation. The NAG Library makes use of shared memory parallelism using OpenMP as
described in Section 3.12.2.2.

Parallel programs which use OpenMP create (or "fork") a number of threads from a single process
when required at run-time. (Programs which make use of shared memory parallelism are also called
multithreaded programs.) The threads form a team comprising of a single master thread and a number
of slave threads. These threads are capable of executing program instructions independently of one
another in parallel. Once the parallel work has been completed the slave threads return control to the
master thread and become inactive (or "join") until the next parallel region of work. The threads share
the same memory address space, i.e., that of the parent process, and this shared memory is used for
communication and synchronisation. OpenMP provides some mechanisms for access control so that, as
well as allowing all threads to access shared variables, it is possible for each thread to have private
copies of other variables that only it can access. Threads in a team can create their own parallel regions
within the current parallel region. At this next level of parallelism, the thread creating the new team
becomes the master thread of that team. We call this nested parallelism.

Something to be aware of for multithreaded programs, compared to serial ones, is that identical results
cannot be guaranteed, nor should be expected. Identical results are often impossible in a parallel
program since using different numbers of threads may cause floating-point arithmetic to be evaluated in
a different (but equally valid) order, thus changing the accumulation of rounding errors. For a more in-
depth discussion of reproducibility of results see Section 3.11.

3.12.2.2 How is Parallelism Used in the NAG Library?

The multithreaded implementations differ from the serial implementations of the NAG Library in that it
makes use of multithreading through use of OpenMP, which is a portable specification for shared
memory programming that is available in many different compilers on a wide range of different
hardware platforms (see OpenMP).

Note that not all routines are parallelized; you should check Section 8 of the routine documents to find
details about parallelism and performance of routines of interest.

There are two situations in which a call to a routine in the NAG Library makes use of multithreading:

1. The routine being called is a NAG-specific routine that has been threaded using OpenMP, or that
internally calls another NAG-specific routine that is threaded. This applies to multithreaded
implementations of the NAG Library only.

2. The routine being called calls through to BLAS or LAPACK routines. The vendor library
recommended for use with your implementation of the NAG Library (whether the NAG Library is
threaded or not) may be threaded. Please consult the Users' Note for further information.

A complete list of all the routines in the NAG Library, and their threaded status is given in
Section 3.12.3.
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It is useful to understand how OpenMP is used within the Library in order to avoid the potential pitfalls
which lead to making inefficient use of the Library.

A call to a threaded NAG-specific routine may, depending on input and at one or more points during
execution, use OpenMP to create a team of threads for a parallel region of work. The team of threads
will fork at the start of the parallel region before joining at the end of the parallel region. Both the fork
and the join will happen internally within the routine call. However, there are situations in which the
teams of threads may be made available to OpenMP directives in your code via user-supplied
subprograms, we refer to directives not contained within a parallel region as orphaned directives. (See
Section 8 of the routine documents for further information.) Furthermore, OpenMP constructs within
NAG routines are executed by teams of threads created within the NAG code, that is, there are no
orphaned directives in the Library itself. Throughout this documentation we assume the use of the
recommended compiler as given in the Users' Note, and in particular the use of a single OpenMP run-
time library. Thus all OpenMP environment variables will apply to your own code and to NAG
routines. However, they may not be respected by vendor libraries that have a mechanism for overriding
them. NAG provides routines in Chapter X06 to control threads for your whole program, including any
specific to a vendor library being called by NAG. You should take care when calling these NAG
routines from within your own parallel regions, since if nested parallelism is enabled (it is disabled by
default) the NAG routine will fork-and-join a team of threads for each calling thread, which may lead
to contention on system resources and very poor performance. Poor performance due to contention can
also occur if the number of threads requested exceeds the number of physical cores in your machine, or
if some hardware resources are busy executing other processes (which may belong to other users in a
shared system). For these reasons you should be aware of the number of physical cores available to
your program on your machine, and use this information in selecting a number of threads which
minimizes contention on resources. Please read the Users' Note for advice about setting the number of
threads to use, or contact NAG (see Support from NAG) for advice.

If you are calling multithreaded NAG routines from within another threading mechanism you need to be
aware of whether or not this threading mechanism is compatible with the OpenMP compiler runtime
used to build the multithreaded implementation of the NAG Library on your platform(s) of choice. The
Users' Note document for each of the implementations in question will include some guidance on this,
and you should contact NAG for further advice if required.

Parallelism is used in many places throughout the NAG Library since, although many routines have not
been the focus of parallel development by NAG, they may benefit by calling routines that have, and/or
by calling parallel vendor routines (e.g., BLAS, LAPACK). Thus, the performance improvement due to
multithreading, if any, will vary depending upon which routine is called, problem sizes and other
parameters, system design and operating system configuration. If you frequently call a routine with
similar data sizes and other parameters, it may be worthwhile to experiment with different numbers of
threads to determine the choice that gives optimal performance. Please contact NAG for further advice
if required.

As a general guide, many key routines in the following areas are known to benefit from shared memory
parallelism:

Dense and Sparse Linear Algebra

FFTs

Random Number Generators

Quadrature

Partial Differential Equations

Interpolation

Curve and Surface Fitting

Correlation and Regression Analysis

Multivariate Methods

Time Series Analysis

Financial Option Pricing
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Global Optimization

Wavelets

3.12.3Multithreaded Routines

Many routines are threaded using OpenMP in multithreaded implementations of the NAG Library.
These implementations are denoted by having a product code of the form 'FS_______', rather than
'FL_______' for serial NAG Library implementations. Please consult Section 8 of each routine
document for further information. A table available in the HTML documentation lists which routines
have been threaded by NAG. The list also includes routines which internally call BLAS or LAPACK
routines, which may be threaded within the vendor library used by both serial and multithreaded NAG
Library implementations. You are advised to consult the documentation for the vendor library for
further information. Please consult the Users' Note for your implementation for any additional
implementation-specific information.

4 How to Use NAG Documentation

4.1 Using the Manual

The Manual is designed to serve the following functions for the NAG Library:

to give background information about different areas of numerical and statistical computation;

to advise on the choice of the most suitable NAG Library routine or routines to solve a particular
problem;

to give all the information needed to call a NAG Library routine correctly from a Fortran
program, and to assess the results.

At the beginning of the Manual are some general introductory documents which provide some
background and additional information.

The document entitled ‘Mark 26 NAG Fortran Library News’ provides details of new routines added,
details of routines scheduled for withdrawal and details of routines withdrawn at this mark.

The document entitled ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’ provides
advice on how to modify your program.

The online documentation includes a Keyword and GAMS Search which provides you with a form to
search the Library for keywords.

Having found a likely chapter or routine, you should read the corresponding Chapter Introduction,
which gives background information about that area of numerical computation, and recommendations
on the choice of a routine, including indexes, tables and decision trees.

When you have chosen a routine, you must consult the routine document. Each routine document is
essentially self-contained (it may, however, contain references to related documents). It includes a
description of the method, detailed specifications of each argument, explanations of each error exit,
remarks on accuracy, and (in most cases) an example program to illustrate the use of the routine.

4.2 Structure of the Documentation

The NAG Library Manual is the principal documentation for the NAG Library. It has the same chapter
structure as the Library: each chapter of routines in the Library has a corresponding chapter (of the
same name) in the Manual. The chapters occur in alphanumeric order. General introductory documents
appear at the beginning of the Manual.

Each chapter consists of the following documents:

Chapter Contents, e.g., Chapter D01;

Chapter Introduction, e.g., the D01 Chapter Introduction;

Routine Documents, one for each documented routine in the chapter.
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A routine document has the same name as the routine which it describes. Within each chapter, routine
documents occur in alphanumeric order of short names. For those chapters that have both ‘A’ and ‘F’
versions of a routine, the routine descriptions are combined into one routine document.

All routine documents have the same structure consisting of ten numbered sections:

1. Purpose

2. Specification

3. Description

4. References

5. Arguments (see Section 4.3)

6. Error Indicators and Warnings

7. Accuracy

8. Parallelism and Performance

9. Further Comments

10. Example (see Section 4.5)

In some documents (notably Chapters E04, E05 and H) there are a further three sections:

11. Algorithmic Details

12. Optional Parameters

13. Description of Monitoring Information

The sections numbered 11. and 13. above are optional; thus, the section titled Optional Parameters
may appear as (the possibly final) Section 11.

4.3 Specification of Arguments

Section 5 of each routine document contains the specification of the arguments, in the order of their
appearance in the argument list.

4.3.1 Classification of Arguments (Intents)

Arguments are classified as follows.

Input: you must assign values to these arguments on or before entry to the routine, and these values are
unchanged on exit from the routine.

Output: you need not assign values to these arguments before entry to the routine; the routine may
assign values to them.

Input/Output: you must assign values to these arguments before entry to the routine, and the routine
may then change these values.

Workspace: array arguments which are used as workspace by the routine. You must supply arrays of the
correct type and dimension. In general, you need not be concerned with their contents.

Communication Array: arguments which are used to communicate data from one routine call to another.

External Procedure: a routine which must be supplied (e.g., to evaluate an integrand or to print
intermediate output). Usually it must be supplied as part of your calling program, in which case its
specification includes full details of its argument list and specifications of its arguments (all enclosed in
a box). Its arguments are classified in the same way as those of the Library routine, but because you
must write the procedure rather than call it, the significance of the classification is different.

Input: values may be supplied on entry, which your procedure must not change.

Output: you may or must assign values to these arguments before exit from your procedure.

Input/Output: values may be supplied on entry, and you may or must assign values to them
before exit from your procedure.
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Occasionally, as mentioned in Section 3.6, the procedure can be supplied from the NAG Library, and
then you only need to know its name.

User Workspace: array arguments which are passed by the Library routine to an external procedure
argument. They are not used by the routine, but you may use them to pass information between your
calling program and the external procedure.

Dummy: a simple variable which is not used by the routine. A variable or constant of the correct type
must be supplied, but its value need not be set. (A dummy argument is usually an argument which was
required by an earlier version of the routine and is retained in the argument list for compatibility.)

4.3.2 Constraints and suggested values

The word ‘Constraint:’ or ‘Constraints:’ in the specification of an Input argument introduces a
statement of the range of valid values for that argument, e.g.,

Constraint: N > 0.

If the routine is called with an invalid value for the argument (e.g., N ¼ 0), the routine will usually take
an error exit, returning a nonzero value of IFAIL (see Section 3.4).

Constraints on arguments of type CHARACTER only list upper case alphabetic characters, e.g.,

Constraint: CHECK ¼ N .

In practice, all routines with CHARACTER arguments will permit the use of lower case characters.

Occasionally, an enhancement of an existing routine at a given Mark may weaken some constraints on
some arguments, this will not change the behaviour of existing code that calls the routine, but will
allow new code to take advantage of enhanced functionality.

The phrase ‘Suggested value:’ introduces a suggestion for a reasonable initial setting for an Input
argument (e.g., accuracy or maximum number of iterations) in case you are unsure what value to use;
you should be prepared to use a different setting if the suggested value turns out to be unsuitable for
your problem.

4.3.3 Array Arguments

Most array arguments have dimensions which depend on the size of the problem. In Fortran
terminology they have ‘adjustable dimensions’: the dimensions occurring in their declarations are
integer variables which are also arguments of the Library routine.

For example, a Library routine might have the specification:

SUBROUTINE <name> (M, N, A, B, LDB)
INTEGER M, N, A(N), B(LDB,N), LDB

For a one-dimensional array argument, such as A in this example, the specification would begin

A(N) – INTEGER array

You must ensure that the dimension of the array, as declared in your calling (sub)program, is at least as
large as the value you supply for N. It may be larger, but the routine uses only the first N elements.

For a two-dimensional array argument, such as B in the example, the specification might be

B(LDB,N) – INTEGER array

On entry: the m by n matrix B.

and the argument LDB might be described as follows:

LDB – INTEGER

On entry: the first dimension of the array B as declared in the (sub)program from which <name>
is called.

Constraint: LDB � M.
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You must supply the first dimension of the array B, as declared in your calling (sub)program, through
the argument LDB, even though the number of rows actually used by the routine is determined by the
argument M. You must ensure that the first dimension of the array is at least as large as the value you
supply for M. The extra argument LDB is needed to allow the routine to act on subarrays of a larger
two-dimensional array, e.g., factorizing a diagonal submatrix of a larger matrix.

You must also ensure that the second dimension of the array, as declared in your calling (sub)program,
is at least as large as the value you supply for N. It may be larger, but the routine uses only the first N
columns.

A program to call the hypothetical routine used as an example in this section might include the
statements:

INTEGER AA(100), BB(100,50)
LDB = 100
.
.
.
M = 80
N = 20
CALL <name>(M,N,AA,BB,LDB)

or INTEGER ALLOCATABLE :: AA(:), BB(:,:)
INTEGER :: M, N, LDB
.
.
.
READ(5,*) M, N
LDB = M
ALLOCATE (AA(M),BB(LDB,N))
CALL <name>(M,N,AA,BB,LDB)

Many NAG routines contain array arguments declared with the ‘assumed size’ array dimension, and
would be given as

INTEGER A(*), B(LDB,*)

However, the original declaration of an array in your calling program must always have dimensions,
greater than or equal to the minimum value documented. The advantage of using allocatable arrays is
that they can be dynamically allocated to be of a correct size not known at compile time.

Consult an expert or a textbook on Fortran if you have difficulty in calling NAG routines with array
arguments.

4.4 Implementation-dependent Information

In order to support all implementations of the Library, the Manual has adopted a convention of using
bold italics to distinguish terms which have different interpretations in different implementations.

One bold italicised term is machine precision, which denotes the relative precision to which real
floating-point numbers are stored in the computer, e.g., in an implementation with approximately 16
decimal digits of precision, machine precision has a value of approximately 10�16.

The precise value of machine precision is given by the routine X02AJF. Other routines in Chapter X02
return the values of other implementation-dependent constants, such as the overflow threshold, or the
largest representable integer. Refer to the X02 Chapter Introduction for more details.

The bold italicised term block size is used only in Chapters F07 and F08. It denotes the block size used
by block algorithms in these chapters. You only need to be aware of its value when it affects the
amount of workspace to be supplied – see the arguments WORK and LWORK of the relevant routine
documents and the appropriate Chapter Introduction.

For each implementation of the Library, a separate Users' Note is published. This is a short document,
revised at each mark. At most installations it is available in machine-readable form. It gives any
necessary additional information which applies specifically to that implementation, in particular:

the values returned by Chapter X02 routines;

the default unit numbers for output (see Section 3.5);

the meanings of the precision arguments nag_rp (reduced precision), nag_wp (basic precision)
and nag_hp (additional precision).
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4.5 Example Programs and Results

The example program in Section 10 of most routine documents illustrates a simple call of the routine.
The programs are designed so that they can be fairly easily modified, and so serve as the basis for a
simple program to solve your problem.

For each implementation of the Library, NAG distributes the example programs in machine-readable
form, with all necessary modifications already applied. Many sites make the programs accessible to you
in this form. Generic forms of the programs, without implementation-specific modifications, may be
obtained directly from the NAG web site. The Users' Note for your implementation will mention any
special changes which need to be made to the example programs.

Note that the results obtained from running the example programs may not be identical in all
implementations and may not agree exactly with the results in the Manual.

For many routine documents, a plot of the example program results is also provided. In some cases the
example program has been modified slightly to produce larger sets of results to give a more
representative plot of the solution profile produced.

4.6 Online Documentation

The complete NAG Library Manual, Mark 26 can be viewed online in the following formats:

HTML, a fully linked version of the manual using HTML, SVG and MathML (recommended for
browsing) and providing links to the PDF version of each document (recommended for printing);

PDF, a full PDF manual browsed using the PDF bookmarks, or via HTML index files;

Single file PDF, the manual as a single PDF file;

Windows HTML help, Windows HTML help version as a single file.

The two single file formats are more compact than the formats that use one file per routine and, for
example, allow text searches across the entire manual, but of course the larger files may not be so
convenient if you only need to view the documentation for a few routines.

The following sections describe how to obtain the software required to view the documentation and
advises you how best to navigate the files with or without a browser.

4.6.1 HTML Format

4.6.1.1 Viewing HTML5 Files

These files do not use any proprietary browser specific features, and conform to relevant W3C
Recommendations (HTML, MathML, SVG, CSS).

Support for these languages may require that your browser be updated and/or the installation of
additional fonts. This information is restricted to the more widely used browsers. If you require
information for additional browsers please contact NAG.

4.6.1.2 Firefox (and other Mozilla based browsers)

Versions of Firefox from Firefox 4 onwards should display MathML in HTML files by default.

Rendering of the mathematics is improved if you install the STIX or other OpenType math fonts if they
are not already included on your system (as is the case with OS X and some Linux distributions). Full
details of the installers available for these fonts on all the major platforms are included in the Firefox
MathML fonts page:
http://www.mozilla.org/projects/mathml/fonts/

4.6.1.3 Other Browsers

If Firefox is not being used, then the javascript on the page loads the MathJax javascript library ( http://
www.mathjax.org) to enable MathML rendering. By default this is loaded from the web using the
MathJax Content Distribution Network. If you require the documentation to work without an Internet
connection then you may either use Firefox as described in the previous section or you may download a
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local copy of MathJax ( http://docs.mathjax.org/en/latest/installation.html) which needs to be unpacked
on to your local fileserver or file system, and then edit the file ../styles/nagmathml.js changing the line
http://cdn.mathjax.org/mathjax/latest/ to refer to your local installation.

4.6.1.4 Navigating HTML5 Files

A main index file has been provided (html/frontmatter/manconts.html) which links to individual Chapter
Contents documents, which in turn link to a complete set of HTML files. Use your browser to navigate
from this main index file. For each routine document in HTML format you are provided with a link to
its equivalent PDF file, this file has been provided primarily for printing purposes.

Each library document contains a number of hyperlinks to particular elements, e.g., arguments, sections,
chapter contents, etc. The following key identifies the colour used for each element:

CSS colour CSS name
black NAG type
green appendix, chap, chapter introduction, decision tree, general introduction, section
grey withdrawn document
pale blue equation, figure, item in a list, note, bibliographic reference, table, url, verbatim item,

website
navy blue ifail value
red parameter name
pink member
purple optional parameter
royal blue html table of contents, example plot, routine document, link to a routine example from a

table of contents

4.6.1.5 Printing HTML5 Files

It is possible to print your HTML5 files from the browser, however support for printing from browsers,
especially support for printing mathematics, varies considerably between versions of browsers and
platforms and printer drivers in use. You are recommended to use the PDF version of the document for
printing and suitable links are provided at the top and bottom of the HTML document.

4.6.1.6 Windows HTML Help

The Windows HTML Help version of the manual is essentially a compressed version of the HTML5
help, customised for the Windows HTML Help viewer (with a bundled copy of MathJax). This format
can be very convenient as it is a small compressed single file version allowing full text search over the
entire library. You may find this useful if you have a Microsoft Windows desktop, even if you have the
NAG Library installed on a different platform.

4.6.2 PDF Format

4.6.2.1 Viewing and Printing PDF Files

If you do not already have a copy of Adobe Acrobat Reader, a free copy can be downloaded from
http://www.adobe.com/reader. Please check this site for availability of a reader for your platform. While
we recommend the use of Acrobat Reader, there are alternative PDF viewers available which can also
be used, such as xpdf or ghostview.

If Acrobat is not running as a plug-in then the bookmark links will not work correctly if you are
browsing the PDF files via http rather than the local filesystem. You are advised to reinstall Adobe
Acrobat which should rectify the problem.

We recommend that you use the PDF format when printing library documentation.

4.6.2.2 Navigating the PDF Files

The manual is supplied as a set of individual PDF files, one for each routine document, chapter
introduction, etc.. Each PDF file contains bookmarks that can be used to navigate between the files.
Alternatively, and often more conveniently, HTML tables of contents are supplied which allow you to
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navigate to the desired file using a browser, and then using Acrobat as a browser plugin to read or print
the document.

Alternatively the single file version of the PDF may be used. In this case the bookmarks will provide
links to every routine in the Library, and text search may be used to search the entire Library contents.

5 NAG Library Design and Development

Various aspects of the design and development of the NAG Library, and NAG's technical policies and
organization are given in Ford (1982), Ford et al. (1979), Ford and Pool (1984), and Hague et al.
(1982).

6 NAG Library Standards

NAG Library development adheres to a number of international standards, see ISO Fortran 95 (1997),
ANSI (1966), ANSI (1978), ANSI/IEEE POSIX (1995), Basic Linear Algebra Subprograms Technical
(BLAST) Forum (2001).
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NAG Library

Mark 26 NAG Fortran Library News

1 Introduction

At Mark 26 of the NAG Library new functionality has been introduced in addition to improvements in
existing areas. The Library now contains 1855 user-callable routines, all of which are documented, of
which 37 are new at this mark.

Chapter D01 (Quadrature) has two new routines to calculate weights and abscissae for use in Gaussian
quadrature and a new routine to solve a specific Gaussian quadrature problem.

Chapter D02 (Ordinary Differential Equations) has reverse communication versions of the Runge–Kutta
step and interpolation routines. The interpolation routine has extended the functionality to include the
high-order method.

Chapter E04 (Minimizing or Maximizing a Function) has a new suite of routines, NAG Modelling
Optimization Suite for quadratic programming (QP), linear semidefinite programming (SDP),
semidefinite programming with bilinear matrix inequalities (BMI-SDP), and general nonlinear
programming (NLP). This suite can, for example, solve the nearest correlation matrix problem with
individually weighted elements or minimize the maximum eigenvalue of a matrix. The suite introduces
a novel interface, allowing the gradual build up of a problem definition and avoiding the long parameter
lists of earlier interfaces. The SDP solver is based upon a generalized augmented Lagrangian method
and as such complements existing solvers in the optimization chapters. The QP/NLP solver of this suite
is based upon IPOPT, an interior-point method optimization package, suitable for large-scale problems,
that complements the active-set sequential quadratic programming (SQP) solvers already present.

Chapter F08 (Least Squares and Eigenvalue Problems (LAPACK)) has additional blocked (BLAS-3)
variants of routines for computing the generalized SVD, or generalized eigenvalues of real or complex
matrix pairs.

Chapter G02 (Correlation and Regression Analysis) has another nearest correlation routine.

Chapter X06 (OpenMP Utilities has a new routine to identify, at runtime, whether you are using a
threaded Library or not.

At this release we have made changes to the introductory documentation supporting the Library. The
document previously called the 'Essential Introduction' has been revised so that relevant information
and advice on how to use the Library and its documentation can be found quickly. The document has
been renamed to How to Use the NAG Library and its Documentation.

We have also provided clarification of the term 'Direct and Reverse Communication Routines', see
Section 3.3.3 in How to Use the NAG Library and its Documentation, and taken the decision to
document a number of error conditions, i.e., Dynamic Memory Allocation, License Management and
Unexpected Errors (see Sections 3.7, 3.8 and 3.9 in How to Use the NAG Library and its
Documentation).

You will also notice that on every HTML page there is now a Keyword Search box.

2 New Routines

The 37 new user-callable routines included in the NAG Library at Mark 26 are as follows.

Routine
Name Purpose

D01TDF Calculation of weights and abscissae for Gaussian quadrature rules, method of Golub
and Welsch

D01TEF Generates recursion coefficients needed by D01TDF to calculate a Gaussian quadrature
rule
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D01UBF
Non-automatic routine to evaluate

Z 1
0

exp �x2
� �

f xð Þ dx

D02PGF Ordinary differential equations, initial value problem, Runge–Kutta method, integration
by reverse communication

D02PHF Set up interpolant by reverse communication for solution and derivative evaluations at
points within the range of the last integration step taken by D02PGF

D02PJF Evaluate interpolant, set up using D02PQF, to approximate solution and/or solution
derivatives at a point within the range of the last integration step taken by D02PGF

E04MWF Write MPS data file defining LP, QP, MILP or MIQP problem

E04RAF Initialization of a handle for the NAG optimization modelling suite for problems, such
as, quadratic programming (QP), nonlinear programming (NLP), linear semidefinite
programming (SDP) or SDP with bilinear matrix inequalities (BMI-SDP)

E04RDF A reader of sparse SDPA data files for linear SDP problems

E04REF Define a linear objective function to a problem initialized by E04RAF

E04RFF Define a linear or a quadratic objective function to a problem initialized by E04RAF

E04RGF Define a nonlinear objective function to a problem initialized by E04RAF

E04RHF Define bounds of variables of a problem initialized by E04RAF

E04RJF Define a block of linear constraints to a problem initialized by E04RAF

E04RKF Define a block of nonlinear constraints to a problem initialized by E04RAF

E04RLF Define a structure of Hessian of the objective, constraints or the Lagrangian to a
problem initialized by E04RAF

E04RNF Add one or more linear matrix inequality constraints to a problem initialized by
E04RAF

E04RPF Define bilinear matrix terms to a problem initialized by E04RAF

E04RYF Print information about a problem handle initialized by E04RAF

E04RZF Destroy the problem handle initialized by E04RAF and deallocate all the memory used

E04STF Run an interior point solver on a sparse nonlinear programming problem (NLP)
initialized by E04RAF and defined by other routines from the suite

E04SVF Run the Pennon solver on a compatible problem initialized by E04RAF and defined by
other routines from the suite, such as, semidefinite programming (SDP) and SDP with
bilinear matrix inequalities (BMI)

E04ZMF Option setting routine for the solvers from the NAG optimization modelling suite

E04ZNF Option getting routine for the solvers from the NAG optimization modelling suite

E04ZPF Option setting routine for the solvers from the NAG optimization modelling suite from
external file

F08VCF Computes, using BLAS-3, the generalized singular value decomposition of a real matrix
pair

F08VGF Produces orthogonal matrices, using BLAS-3, that simultaneously reduce the m by n
matrix A and the p by n matrix B to upper triangular form

F08VQF Computes, using BLAS-3, the generalized singular value decomposition of a complex
matrix pair

F08VUF Produces unitary matrices, using BLAS-3, that simultaneously reduce the complex, m
by n, matrix A and the complex, p by n, matrix B to upper triangular form

F08WCF Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized
eigenvalues, and optionally, the left and/or right generalized eigenvectors
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F08WFF Performs, using BLAS-3, an orthogonal reduction of a pair of real general matrices to
generalized upper Hessenberg form

F08WQF Computes, for a complex nonsymmetric matrix pair, using BLAS-3, the generalized
eigenvalues, and optionally, the left and/or right generalized eigenvectors

F08WTF Performs, using BLAS-3, a unitary reduction of a pair of complex general matrices to
generalized upper Hessenberg form

F08XCF Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized
eigenvalues, the generalized real Schur form and, optionally, the left and/or right
matrices of Schur vectors

F08XQF Computes, for a complex nonsymmetric matrix pair, using BLAS-3, the generalized
eigenvalues, the generalized complex Schur form and, optionally, the left and/or right
matrices of Schur vectors

G02APF Computes a correlation matrix from an approximate one using a specified target matrix

X06XAF Tests whether a threaded NAG Library is being used

3 Internal Changes Affecting Users

There have been no internal changes at this mark.

4 Withdrawn Routines

The following routines have been withdrawn from the NAG Library at Mark 26. Warning of their
withdrawal was included in the NAG Library Manual at Mark 25, together with advice on which
routines to use instead. See the document ‘Advice on Replacement Calls for Withdrawn/Superseded
Routines’ for more detailed guidance.

Withdrawn
Routine Replacement Routine(s)

C06EAF C06PAF

C06EBF C06PAF

C06ECF C06PCF

C06EKF C06FKF

C06FRF C06PSF

C06FUF C06PUF

C06GBF No replacement required

C06GCF No replacement required

C06GQF No replacement required

C06GSF No replacement required

C06HAF C06REF

C06HBF C06RFF

C06HCF C06RGF

C06HDF C06RHF

D01BAF D01UAF

D01BBF D01TBF

D02PCF D02PEF and associated D02P routines

D02PDF D02PFF or D02PGF and associated D02P routines
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D02PVF D02PQF

D02PWF D02PRF

D02PXF D02PSF

D02PYF D02PTF

D02PZF D02PUF

F04YCF F04YDF

F04ZCF F04ZDF

G01AAF G01ATF

5 Routines Scheduled for Withdrawal

The routines listed below are scheduled for withdrawal from the NAG Library, because improved
routines have now been included in the Library. You are advised to stop using routines which are
scheduled for withdrawal and to use recommended replacement routines instead. See the document
‘Advice on Replacement Calls for Withdrawn/Superseded Routines’ for more detailed guidance,
including advice on how to change a call to the old routine into a call to its recommended replacement.

The following routines will be withdrawn at Mark 27.

Routines
Scheduled
for
Withdrawal

Replacement Routine(s)

D01RBF No replacement required

D02TKF D02TLF

E02ACF E02ALF

F02SDF F12AGF and F12FGF

F02WDF F02WUF and F08AEF (DGEQRF)

G10BAF G10BBF

The following routines have been superseded, but will not be withdrawn from the Library until Mark 28
at the earliest.

Superseded
Routine Replacement Routine(s)

C06FPF C06PQF

C06FQF C06PQF

F04ABF F07FBF (DPOSVX)

F04AEF F07ABF (DGESVX)

F04ASF F07FBF (DPOSVX)

F04ATF F07ABF (DGESVX)
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NAG Library

Implementation-specific Details for Users

The Library is available on many different computer systems. For each distinct system, an
implementation of the Library is prepared by NAG, e.g., the Linux 64 (Intel1 64 / AMD64), GNU
gfortran implementation. The implementation is distributed to sites as a tested compiled library.

An implementation is usually specific to a range of machines/operating systems (e.g., x86–64
architectures); it may also be specific to a particular Fortran compiler, or compiler option (such as for
calling convention).

Essentially the same facilities are provided in all implementations of the Library, but, because of
differences in arithmetic behaviour and in the compilation system, routines cannot be expected to give
identical results on different systems, especially for sensitive numerical problems.

The documentation supports all implementations of the Library, with the help of a few simple
conventions, and a small amount of implementation-dependent information, which is published in a
separate Users' Note for each implementation (see Section 4.4 in How to Use the NAG Library and its
Documentation).

Each implementation of the NAG Library is generally specific to a particular computing environment
on which its operation has been tested and verified. In contrast, the NAG Library Manual is appropriate
for all implementations of the Library at that Mark.

Any information that applies solely to a specific implementation is provided, together with the software,
on the distribution medium. The Users' Note for your implementation is also available on the NAG web
site.
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NAG Library

Advice on Replacement Calls for Withdrawn/Superseded Routines

The following list gives the names of routines that are suitable replacements for routines that have
either been withdrawn or superseded since Mark 19.

The list indicates the minimum change necessary, but many of the replacement routines have additional
flexibility and you may wish to take advantage of new features. It is strongly recommended that you
consult the routine documents.

C05 – Roots of One or More Transcendental Equations

C05ADF

Withdrawn at Mark 25.
Replaced by C05AYF.

Old: FUNCTION F(XX)
...

END FUNCTION F
...
CALL C05ADF(A,B,EPS,ETA,F,X,IFAIL)

New: FUNCTION F(XX,IUSER,RUSER)
...
INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
...

END FUNCTION F
...
INTEGER :: IUSER(1)
REAL (KIND=nag_wp) :: RUSER(1)
...
CALL C05AYF(A,B,EPS,ETA,F,X,IUSER,RUSER,IFAIL)

C05AGF

Withdrawn at Mark 25.
Replaced by C05AUF.

Old: FUNCTION F(XX)
...

END FUNCTION F
...
CALL C05AGF(X,H,EPS,ETA,F,A,B,IFAIL)

New: FUNCTION F(XX,IUSER,RUSER)
...
INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
...

END FUNCTION F
...
INTEGER :: IUSER(1)
REAL (KIND=nag_wp) :: RUSER(1)
...
CALL C05AUF(X,H,EPS,ETA,F,A,B,IUSER,RUSER,IFAIL)
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C05AJF

Withdrawn at Mark 25.
Replaced by C05AWF.

Old: FUNCTION F(XX)
...

END FUNCTION F
...
CALL C05AJF(X,EPS,ETA,F,NFMAX,IFAIL)

New: FUNCTION F(XX,IUSER,RUSER)
...
INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
...

END FUNCTION F
...
INTEGER :: IUSER(1)
REAL (KIND=nag_wp) :: RUSER(1)
...
CALL C05AWF(X,EPS,ETA,F,NFMAX,IUSER,RUSER,IFAIL)

C05NBF

Withdrawn at Mark 25.
Replaced by C05QBF.

Old: SUBROUTINE FCN(N,X,FVEC,IFLAG)
...

END SUBROUTINE FCN
...
CALL C05NBF(FCN,N,X,FVEC,XTOL,WA,LWA,IFAIL)

New: SUBROUTINE FCN(N,X,FVEC,IUSER,RUSER,IFLAG)
...
INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
...

END FUNCTION FCN
...
INTEGER :: IUSER(1)
REAL (KIND=nag_wp) :: RUSER(1)
...
CALL C05QBF(FCN,N,X,FVEC,XTOL,IUSER,RUSER,IFAIL)

C05NCF

Withdrawn at Mark 25.
Replaced by C05QCF.

Old: SUBROUTINE FCN(N,X,FVEC,IFLAG)
...

END SUBROUTINE FCN
...
REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)
...
CALL C05NCF(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,DIAG,MODE,FACTOR, &

NPRINT,NFEV,FJAC,LDFJAC,R,LR,QTF,W,IFAIL)
New: SUBROUTINE FCN(N,X,FVEC,IUSER,RUSER,IFLAG)

...
INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
...

END FUNCTION FCN
...
INTEGER :: IUSER(1)
REAL (KIND=nag_wp) :: FJAC(N,N), RUSER(1)
...
CALL C05QCF(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,MODE,DIAG,FACTOR, &

NPRINT,NFEV,FJAC,R,QTF,IUSER,RUSER,IFAIL)
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C05NDF

Withdrawn at Mark 25.
Replaced by C05QDF.

Old: REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)
...
CALL C05NDF(IREVCM,N,X,FVEC,XTOL,ML,MU,EPSFCN,DIAG,MODE,FACTOR, &

FJAC,LDFJAC,R,LR,QTF,W,IFAIL)
New: REAL (KIND=nag_wp) :: FJAC(N,N), RWSAV(4*N+20)

INTEGER :: IWSAV(17)
...
CALL C05QDF(IREVCM,N,X,FVEC,XTOL,ML,MU,EPSFCN,MODE,DIAG,FACTOR, &

FJAC,R,QTF,IWSAV,RWSAV,IFAIL)

C05PBF/C05PBA

Withdrawn at Mark 25.
Replaced by C05RBF.

Old: SUBROUTINE FCN_C05PBF(N,X,FVEC,FJAC,LDFJAC,IFLAG)
...

END SUBROUTINE FCN_C05PBF
...
REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)
...
CALL C05PBF(FCN_C05PBF,N,X,FVEC,FJAC,LDFJAC,XTOL,WA,LWA,IFAIL)

or
SUBROUTINE FCN_C05PBA(N,X,FVEC,FJAC,LDFJAC,IFLAG,IUSER,RUSER)

...
END SUBROUTINE FCN_C05PBA
...
REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)
...
CALL C05PBA(FCN_C05PBA,N,X,FVEC,FJAC,LDFJAC,XTOL,WA,LWA,IUSER,RUSER,IFAIL)

New: SUBROUTINE FCN(N,X,FVEC,FJAC,IUSER,RUSER,IFLAG)
...

END SUBROUTINE FCN
...
REAL (KIND=nag_wp) :: FJAC(N,N)
...
CALL C05RBF(FCN,N,X,FVEC,FJAC,XTOL,IUSER,RUSER,IFAIL)
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C05PCF/C05PCA

Withdrawn at Mark 25.
Replaced by C05RCF.

Old: SUBROUTINE FCN_C05PCF(N,X,FVEC,FJAC,LDFJAC,IFLAG)
...

END SUBROUTINE FCN_C05PCF
...
REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)
...
CALL C05PCF(FCN_C05PCF,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,MODE,FACTOR, &

NPRINT,NFEV,NJEV,R,LR,QTF,W,IFAIL)
or

SUBROUTINE FCN_C05PCA(N,X,FVEC,FJAC,LDFJAC,IFLAG,IUSER,RUSER)
...

END SUBROUTINE FCN_C05PCA
...
REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)
...
CALL C05PCA(FCN_C05PCA,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,MODE,FACTOR, &

NPRINT,NFEV,NJEV,R,LR,QTF,W,IUSER,RUSER,IFAIL)
New: SUBROUTINE FCN(N,X,FVEC,FJAC,IUSER,RUSER,IFLAG)

...
INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
...

END FUNCTION FCN
...
REAL (KIND=nag_wp) :: FJAC(N,N)
...
CALL C05RCF(FCN,N,X,FVEC,FJAC,XTOL,MAXFEV,MODE,DIAG,FACTOR, &

NPRINT,NFEV,NJEV,R,QTF,IUSER,RUSER,IFAIL)

C05PDF/C05PDA

Withdrawn at Mark 25.
Replaced by C05RDF.

Old: REAL (KIND=nag_wp) :: FJAC(LDFJAC,N), RWSAV(10)
INTEGER :: IWSAV(15)
...
CALL C05PDF(IREVCM,N,X,FVEC,FJAC,LDFJAC,XTOL,DIAG,MODE,FACTOR, &

R,LR,QTF,W,IFAIL)
or

CALL C05PDA(IREVCM,N,X,FVEC,FJAC,LDFJAC,XTOL,DIAG,MODE,FACTOR, &
R,LR,QTF,W,LWSAV,IWSAV,RWSAV,IFAIL)

New: REAL (KIND=nag_wp) :: FJAC(N,N), RWSAV(4*N+10)
INTEGER :: IWSAV(17)
...
CALL C05RDF(IREVCM,N,X,FVEC,FJAC,XTOL,MODE,DIAG,FACTOR, &

R,QTF,IWSAV,RWSAV,IFAIL)

C05ZAF

Withdrawn at Mark 25.
Replaced by C05ZDF.

Old: CALL C05ZAF(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
New: IFAIL = 0

CALL C05ZDF(MODE,M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,ERR,IFAIL)

The array XP must now have dimension N regardless of the value of MODE, and likewise ERR must
now have dimension M regardless. The argument IFAIL is the standard NAG argument for error
trapping. If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the
NAG Library and its Documentation for details.
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C06 – Summation of Series

C06DBF

Withdrawn at Mark 25.
Replaced by C06DCF.

Old: DO I = 1, LX
RES(I) = C06DBF(X(I),C,N,S)

END DO
New: XMIN = -1.0D0

XMAX = 1.0D0

SELECT CASE (S)
CASE (1,2,3)

S_USE = S
CASE DEFAULT

S_USE = 2
END SELECT

IFAIL = 0
CALL C06DCF(X,LX,XMIN,XMAX,C,N,S_USE,RES,IFAIL)

The old routine C06DBF returns a single sum at a time, whereas the new routine C06DCF returns a
vector of LX values at once. The values supplied in X to C06DCF are un-normalized original variable
values in the range XMIN;XMAX½ �. The argument IFAIL is the standard NAG argument for error
trapping. If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the
NAG Library and its Documentation for details.

C06EAF

Withdrawn at Mark 26.
Replaced by C06PAF.

C06PAF removes restrictions on sequence length and combines transform directions.

Old: CALL C06EAF(X,N,IFAIL)
New: CALL C06PAF(’F’,X,N,WORK,IFAIL)

where WORK is a real array of length 3� Nþ 100 and the dimension of the array X has been extended
from the original N to Nþ 2. The output values X are stored in a different order with real and
imaginary parts stored contiguously. The mapping of output elements is as follows:

Xð2� iÞ  XðiÞ, for i ¼ 0; 1; . . . ;N=2 and
Xð2� i þ 1Þ  XðN� iÞ, for i ¼ 1; 2; . . . ; Nþ 1ð Þ=2.

C06EBF

Withdrawn at Mark 26.
Replaced by C06PAF.

C06PAF removes restrictions on sequence length and combines transform directions.

Old: CALL C06EBF(X,N,IFAIL)
New: CALL C06PAF(’B’,X,N,WORK,IFAIL)

where WORK is a real array of length 3� Nþ 100 and the dimension of the array X has been extended
from the original N to Nþ 2. The input values of X are stored in a different order with real and
imaginary parts stored contiguously. Also C06PAF performs the inverse transform without the need to
first conjugate. If prior conjugation of original array X is assumed then the mapping of input elements
is:

Xð2� iÞ  XðiÞ, for i ¼ 0; 1; . . . ;N=2 and
Xð2� i þ 1Þ  XðN� iÞ, for i ¼ 1; 2; . . . ; N� 1ð Þ=2.
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C06ECF

Withdrawn at Mark 26.
Replaced by C06PCF.

C06PCF removes restrictions on sequence length, combines transform directions and uses complex
types.

Old: CALL C06ECF(X,Y,N,IFAIL)
New: CALL C06PCF(’F’,Z,N,WORK,IFAIL)

where WORK is a complex array of length 2� Nþ 15 and Z is a complex array of length N such that
Z ið Þ ¼ CMPLX X ið Þ;Y ið Þð Þ , for i ¼ 0; 1; . . .N� 1 on input and output.

C06EKF

Withdrawn at Mark 26.
Replaced by C06FKF.

C06FKF removes restrictions on sequence length.

Old: CALL C06EKF(IJOB,X,Y,N,IFAIL)
New: CALL C06FKF(IJOB,X,Y,N,WORK,IFAIL)

where WORK is a real array of length N.

C06FPF

Scheduled for withdrawal at Mark 28.
Replaced by C06PQF.

C06PQF provides a simpler interface for both forward and backward transforms.

Old: CALL C06FPF(M,N,X,INIT,TRIG,WORK,IFAIL)
New: CALL C06PQF(’F’,N,M,X,WORK,IFAIL)

where the dimension of WORK has been extended from M� N to M� Nþ 2� N (to include TRIG)
and the dimension of the array X has been extended from the original N�M to Nþ 2ð Þ �M. The input
values are stored stored slightly differently to allow for two extra storage spaces at the end of each
sequence.

The mapping of input elements is as follows:

for j ¼ 1; 2; . . . ;M

J1 ¼ j� 1ð Þ � N; J2 ¼ j� 1ð Þ � Nþ 2ð Þ;
XðJ2 þ 2� iÞ  XðJ1 þ iÞ, for i ¼ 0; 1; . . . ;N;

XðJ2 þ NÞ and XðJ2 þ Nþ 1Þ need not be set.

The output values X are stored in a different order with real and imaginary parts of each Hermitian
sequence stored contiguously.

The mapping of output elements is as follows:

(Here X begins at element zero Xð0Þ.)
For j ¼ 1; 2; . . . ;M

J1 ¼ j� 1ð Þ � N; J2 ¼ j� 1ð Þ � Nþ 2ð Þ;
XðJ2 þ 2� iÞ  XðJ1 þ iÞ, for i ¼ 0; 1; . . . ;N=2 [real parts];

XðJ2 þ 2� i þ 1Þ  XðJ1 þ N� iÞ, for i ¼ 1; 2; . . . ;Nþ 1=2 [imaginary parts];

XðJ2 þ 1Þ is set to zero;

XðJ2 þ Nþ 1Þ is set to zero when N is even.
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C06FQF

Scheduled for withdrawal at Mark 28.
Replaced by C06PQF.

C06PQF provides a simpler interface for both forward and backward transforms.

Old: CALL C06FQF(M,N,X,INIT,TRIG,WORK,IFAIL)
New: CALL C06PQF(’B’,N,M,X,WORK,IFAIL)

where the dimension of WORK has been extended from M� N to M� Nþ 2� N (to include TRIG)
and the dimension of the array X has been extended from the original N�M to Nþ 2ð Þ �M.

The input values X are stored in a different order with real and imaginary parts of each Hermitian
sequence stored contiguously.

The mapping of input elements is as follows:

(Here X begins at element zero Xð0Þ.)
For j ¼ 1; 2; . . . ;M

J1 ¼ j� 1ð Þ � N; J2 ¼ j� 1ð Þ � Nþ 2ð Þ;
XðJ2 þ 2� iÞ  XðJ1 þ iÞ, for i ¼ 0; 1; . . . ;N=2 [real parts];

XðJ2 þ 2� i þ 1Þ  XðJ1 þ N� iÞ, for i ¼ 1; 2; . . . ;Nþ 1=2 [imaginary parts];

XðJ2 þ 1Þ must be zero;

XðJ2 þ Nþ 1Þ must zero when N is even.

The output values are stored stored slightly differently to allow for two extra storage spaces at the end
of each sequence.

The mapping of output elements is as follows:

For j ¼ 1; 2; . . . ;M

J1 ¼ j� 1ð Þ � N; J2 ¼ j� 1ð Þ � Nþ 2ð Þ;
XðJ2 þ 2� iÞ  XðJ1 þ iÞ, for i ¼ 0; 1; . . . ;N;

XðJ2 þ NÞ and XðJ2 þ Nþ 1Þ will be set to zero.

C06FRF

Withdrawn at Mark 26.
Replaced by C06PSF.

C06PSF provides a simpler interface for both forward and backward transforms.

Old: call C06FRF(M,N,X,Y,INIT,TRIG,WORK,IFAIL)
New: Do j = 1, m*n

cx(j) = cmplx(x(j),y(j),kind=nag_wp)
End Do
Call C06PSF(’F’,M,N,CX,CWORK,IFAIL)
x(1:m*n) = real(cx(1:m*n))
y(1:m*n) = aimag(cx(1:m*n))

where cx and cwork are complex array of length m� n and n�mþ 2� nþ 15 respectively.

C06FUF

Withdrawn at Mark 26.
Replaced by C06PUF.
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C06PUF provides a simpler interface for both forward and backward transforms.

Old: Call C06FUF(M,N,X,Y,INIT,TRIGM,TRIGN,WORK,IFAIL)
New: Do j = 1, m*n

cx(j) = cmplx(x(j),y(j),kind=nag_wp)
End Do
Call C06PUF(’F’,M,N,CX,CWORK,IFAIL)
x(1:m*n) = real(cx(1:m*n))
y(1:m*n) = aimag(cx(1:m*n))

where cx and cwork are complex arrays of lengths m� n and n�mþ 2� nþ 2�mþ 30 respectively.

C06GBF

Withdrawn at Mark 26.
There is no replacement for this routine.

C06GCF

Withdrawn at Mark 26.
There is no replacement for this routine.

C06GQF

Withdrawn at Mark 26.
There is no replacement for this routine.

C06GSF

Withdrawn at Mark 26.
There is no replacement for this routine.

C06HAF

Withdrawn at Mark 26.
Replaced by C06REF.

C06REF has a simpler interface, storing sequences by column.

Old: Call C06HAF(M,N,X,INIT,TRIG,WORK,IFAIL)
New: Call C06REF(M,N,Y,IFAIL)

w h e r e y 1 : n� 1 : mð Þ i s a t w o - d i m e n s i o n a l r e a l a r r a y s u c h t h a t
y 1 : n� 1; jð Þ ¼ x j : m� n� 1ð Þ : mð Þ.

C06HBF

Withdrawn at Mark 26.
Replaced by C06RFF.

C06RFF has a simpler interface, storing sequences by column.

Old: Call C06HBF(M,N,X,INIT,TRIG,WORK,IFAIL)
New: Call C06RFF(M,N,Y,IFAIL)

where y 0 : n : mð Þ is a two-dimensional real array such that y 0 : n; jð Þ ¼ x j : m� nþ 1ð Þ : mð Þ.

C06HCF

Withdrawn at Mark 26.
Replaced by C06RGF.

C06RGF has a simpler interface, storing sequences by column.

Old: Call C06HCF(DIRECT,M,N,X,INIT,TRIG,WORK,IFAIL)
New: Call C06RGF(IDIR,M,N,Y,IFAIL)
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where y 1 : n : mð Þ is a two-dimensional real array such that y 1 : n; jð Þ ¼ x j : m� n : mð Þ; IDIR ¼ 1 or
�1 for forward and inverse transforms respectively.

C06HDF

Withdrawn at Mark 26.
Replaced by C06RHF.

C06RHF has a simpler interface, storing sequences by column.

Old: Call C06HDF(DIRECT,M,N,X,INIT,TRIG,WORK,IFAIL)
New: Call C06RHF(IDIR,M,N,Y,IFAIL)

where y 0 : n� 1 : mð Þ is a two-dimensional real array such that y 0 : n� 1; jð Þ ¼ x j : m� n : mð Þ;
IDIR ¼ 1 or �1 for forward and inverse transforms respectively.

D01 – Quadrature

D01BAF

Withdrawn at Mark 26.
Replaced by D01UAF.

Withdrawn to provide thread safety in passing of data to user supplied function and a simpler interface
to select the quadrature rule.

Old : FUNCTION FUN(x)

...
real(kind=nag_wp) :: FUN
real(kind=nag_wp), intent(in) :: X
FUN = ...
END FUNCTION

DINEST = D01BAF(D01XXX,A,B,N,FUN,IFAIL)

New : SUBROUTINE F(X,NX,FV,IFLAG,IUSER,RUSER)
...

! see example below
...

END SUBROUTINE F
...
integer :: key
integer, allocatable :: iuser(:)
real(kind=nag_wp), allocatable :: ruser(:)

! set KEY according to quadrature formula
! KEY = 0 : (D01XXX=D01BAZ)
! KEY = -3 : (D01XXX=D01BAY)
! KEY = -4 : (D01XXX=D01BAW)
! KEY = -5 : (D01XXX=D01BAX)
! KEY = ABS(KEY) for normal weights
KEY = 0

allocate(iuser(liuser), ruser(lruser))

CALL D01UAF(KEY,A,B,N,F,DINEST,IUSER,RUSER,IFAIL)

IUSER and RUSER are arrays available to allow you to pass information to the user-supplied
subroutine F.

IFLAG is an integer which you may use to force an immediate exit from D01UAF in case of an error in
the user-supplied subroutine F.
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F may be used to call the original FUN as follows, although it may be more efficient to recode the
integrand.

SUBROUTINE F(X,NX,FV,IFLAG,IUSER,RUSER)
...
integer, intent(in) :: NX
integer, intent(inout) :: iflag
real(kind=nag_wp), intent(in) :: X(NX)
real(kind=nag_wp), intent(out) :: fv(nx)
real(kind=wp), intent(inout) :: ruser(*)
integer, intent(inout) :: iuser(*)
integer :: j
external FUN

do j=1,nx
FV(j) = FUN(x(j))

enddo

END SUBROUTINE F

D01BBF

Withdrawn at Mark 26.
Replaced by D01TBF.

Withdrawn to provide thread safety in passing of data to the user-supplied routine and a simpler
interface to select the quadrature rule.

Old : CALL D01BBF(D01XXX,A,B,ITYPE,N,WEIGHT,ABSCIS,IFAIL)
New : Integer :: key

CALL D01TBF(KEY,A,B,N,WEIGHT,ABSICS,IFAIL)

The supplied subroutines D01XXX and the argument ITYPE have been combined into a single
argument KEY. KEY < 0 is equivalent to ITYPE ¼ 1 (adjusted weights). KEY > 0 is equivalent to
ITYPE ¼ 0 (normal weights). KEYj j indicates the quadrature rule.

KEYj j ¼ 0 : Gauss–Legendre (D01XXX ¼ D01BAZ)

KEYj j ¼ 3 : Gauss–Laguerre (D01XXX ¼ D01BAX)

KEYj j ¼ 4 : Gauss–Hermite (D01XXX ¼ D01BAW)

KEYj j ¼ 5 : Rational Gauss (D01XXX ¼ D01BAY)

D01RBF

Scheduled for withdrawal at Mark 27.
There is no replacement for this routine.

Withdrawn as a separate diagnostic routine is not required. The details of the computation, as stored in
the parameters ICOM and COM, are specified in Section 10.1 in D01RAF.

See Section 10 in D01RAF for further details.

D02 – Ordinary Differential Equations

D02PCF

Withdrawn at Mark 26.
Replaced by D02PEF and associated D02P routines.
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These replacements were made primarily for reasons of threadsafety.

Old: CALL D02PVF(N,TSTART,YINIT,TEND,TOL,THRESH,METHOD,’U’,ERRASS, &
HSTART,W,LW,IFAIL)

...
CALL D02PCF(F,TWANT,T,Y,YP,YMAX,W,IFAIL)

New: IF (.Not. ERRASS) METHOD = -METHOD
CALL D02PQF(N,TSTART,TEND,YINIT,TOL,THRESH,METHOD,HSTART,IWSAV, &

RWSAV,IFAIL)
...
CALL D02PEF(F2,N,TWANT,T,Y,YP,YMAX,IUSER,RUSER,IWSAV,RWSAV,IFAIL)

IWSAV is an integer array of length 130 and RWSAV is a real array of length 350þ 32� N.

IUSER and RUSER are arrays available to allow you to pass information to the user defined routine F2
(see F in D02PEF).

The definition of F2 (see F in D02PEF) can use the original routine F as follows:

SUBROUTINE F2(T,N,Y,YP,IUSER,RUSER)
! .. Scalar Arguments ..

Real (Kind=wp), Intent (In) :: t
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=wp), Intent (Inout) :: ruser(1)
Real (Kind=wp), Intent (In) :: y(n)
Real (Kind=wp), Intent (Out) :: yp(n)
Integer, Intent (Inout) :: iuser(1)

! .. Procedure Arguments ..
External :: f

! .. Executable Statements ..
Continue

Call f(t,y,yp)

Return
End Subroutine F2

D02PDF

Withdrawn at Mark 26.
Replaced by D02PFF or D02PGF and associated D02P routines.

These replacements were made primarily for reasons of threadsafety. D02PGF also offers a reverse
communication approach.

Old: CALL D02PVF(N,TSTART,YINIT,TEND,TOL,THRESH,METHOD,’U’,ERRASS, &
HSTART,W,LW,IFAIL)

...
CALL D02PDF(F,T,Y,YP,WORK,IFAIL)

New: IF (.Not. ERRASS) METHOD = -METHOD
CALL D02PQF(N,TSTART,TEND,YINIT,TOL,THRESH,METHOD,HSTART,IWSAV, &

RWSAV,IFAIL)
...
CALL D02PFF(F2,N,T,Y,YP,IUSER,RUSER,IWSAV,RWSAV,IFAIL)

IWSAV is an integer array of length 130 and RWSAV is a real array of length 350þ 32� N.

IUSER and RUSER are arrays available to allow you to pass information to the user defined routine F2
(see F in D02PEF).
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The definition of F2 (see F in D02PEF) can use the original routine F as follows:

SUBROUTINE F2(T,N,Y,YP,IUSER,RUSER)
! .. Scalar Arguments ..

Real (Kind=wp), Intent (In) :: t
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=wp), Intent (Inout) :: ruser(1)
Real (Kind=wp), Intent (In) :: y(n)
Real (Kind=wp), Intent (Out) :: yp(n)
Integer, Intent (Inout) :: iuser(1)

! .. Procedure Arguments ..
External :: f

! .. Executable Statements ..
Continue

Call f(t,y,yp)

Return
End Subroutine F2

D02PVF

Withdrawn at Mark 26.
Replaced by D02PQF.

This replacement was made primarily for reasons of threadsafety.

See D02PCF and D02PDF for further information.

D02PWF

Withdrawn at Mark 26.
Replaced by D02PRF.

This replacement was made primarily for reasons of threadsafety.

Old: CALL D02PWF(TENDNU,IFAIL)
New: CALL D02PRF(TENDNU,IWSAV,RWSAV,IFAIL)

IWSAV is an integer array of length 130 and RWSAV is a real array of length 350.

D02PXF

Withdrawn at Mark 26.
Replaced by D02PSF.

This replacement was made primarily for reasons of threadsafety.

Old: CALL D02PXF(TWANT,REQEST,NWANT,YWANT,YPWANT,F,WORK,WRKINT, &
LENINT,IFAIL)

New:
If (REQEST==’S’ .or. REQEST==’s’) Then

IDERIV = 0
Else if (REQEST==’D’ .or. REQEST==’d’) Then

IDERIV = 1
Else

IDERIV = 2
End If
CALL D02PSF(TWANT,IDERIV,NWANT,YWANT,YPWANT,F2,WORKINT, &

LENINT,IUSER,RUSER,IWSAV,RWSAV,IFAIL)

IWSAV is an integer array of length 130 and RWSAV is a real array of length 350þ 32� N.

IUSER and RUSER are arrays available to allow you to pass information to the user defined routine F2
(see F in D02PSF).
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WCOMM is a real array of length LWCOMM. See the routine document for D02PSF for further
information.

The definition of F2 (see F in D02PSF) can use the original routine F as follows:

SUBROUTINE F2(T,N,Y,YP,IUSER,RUSER)
! .. Scalar Arguments ..

Real (Kind=wp), Intent (In) :: t
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=wp), Intent (Inout) :: ruser(1)
Real (Kind=wp), Intent (In) :: y(n)
Real (Kind=wp), Intent (Out) :: yp(n)
Integer, Intent (Inout) :: iuser(1)

! .. Procedure Arguments ..
External :: f

! .. Executable Statements ..
Continue

Call f(t,y,yp)

Return
End Subroutine F2

D02PYF

Withdrawn at Mark 26.
Replaced by D02PTF.

This replacement was made primarily for reasons of threadsafety.

Old: Call D02PYF(TOTFCN,STPCST,WASTE,STPSOK,HNEXT,IFAIL)
New: Call D02PTF(TOTFCN,STPCST,WASTE,STPSOK,HNEXT,IWSAV, &

RWSAV,IFAIL)

D02PZF

Withdrawn at Mark 26.
Replaced by D02PUF.

This replacement was made primarily for reasons of threadsafety.

Old: Call D02PZF(RMSERR,ERRMAX,TERRMX,WORK,IFAIL)
New: Call D02PUF(N,RMSERR,ERRMAX,TERRMX,IWSAV,RWSAV,IFAIL)

N must be unchanged from that passed to D02PQF.

IWSAV is an integer array of length 130 and RWSAV is a real array of length 350þ 32� N.

D02TKF

Scheduled for withdrawal at Mark 27.
Replaced by D02TLF.

This replacement was made primarily for reasons of threadsafety.

Old: Call D02TKF(FFUN,FJAC,GAFUN,GBFUN,GAJAC,GBJAC,GUESS,RCOMM,ICOMM,IFAIL)
New: Call D02TLF(FFUN,FJAC,GAFUN,GBFUN,GAJAC,GBJAC,GUESS,RCOMM,ICOMM,IUSER, &

RUSER,IFAIL)

The arrays IUSER and RUSER are also supplied as an additional two arguments to the seven user-
supplied routines. These arrays are free to use to supply information to the seven routine arguments.
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E01 – Interpolation

E01SEF

Withdrawn at Mark 20.
Replaced by E01SGF.

Old: CALL E01SEF(M,X,Y,F,RNW,RNQ,NW,NQ,FNODES,MINNQ,WRK,IFAIL)
New: CALL E01SGF(M,X,Y,F,NW,NQ,IQ,LIQ,RQ,LRQ,IFAIL)

E01SEF has been superseded by E01SGF which gives improved accuracy, facilities for obtaining
gradient values and a consistent interface with E01TGF for interpolation of scattered data in three
dimensions.

The interpolant generated by the two routines will not be identical, but similar results may be obtained
by using the same values of NW and NQ. Details of the interpolant are passed to the evaluator through
the arrays IQ and RQ rather than FNODES and RNW.

E01SFF

Withdrawn at Mark 20.
Replaced by E01SHF.

Old: CALL E01SFF(M,X,Y,F,RNW,FNODES,PX,PY,PF,IFAIL)
New: CALL E01SHF(M,X,Y,F,IQ,LIQ,RQ,LRQ,1,PX,PY,PF,QX,QY,IFAIL)

The two calls will not produce identical results due to differences in the generation routines E01SEF
and E01SGF. Details of the interpolant are passed from E01SGF through the arrays IQ and RQ rather
than FNODES and RNW.

E01SHF also returns gradient values in QX and QY and allows evaluation at arrays of points rather than
just single points.

E02 – Curve and Surface Fitting

E02ACF

Scheduled for withdrawal at Mark 27.
Replaced by E02ALF.

Old: CALL E02ACF(X, Y, N, A, M1, REF)
New: CALL E02ALF(N, X, Y, M1, A, REF, IFAIL)

E04 – Minimizing or Maximizing a Function

E04CCF/E04CCA

Withdrawn at Mark 24.
Replaced by E04CBF.

Old: CALL E04CCF(N,X,F,TOL,IW,W1,W2,W3,W4,W5,W6,FUNCT,MONIT,MAXCAL, &
IFAIL)

or
CALL E04CCA(N,X,F,TOL,IW,W1,W2,W3,W4,W5,W6,FUNCT2,MONIT2,MAXCAL, &

IUSER,RUSER,IFAIL)
New: CALL E04CBF(N,X,F,TOLF,TOLX,FUNCT2,MONIT3,MAXCAL,IUSER,RUSER, &

IFAIL)

SUBROUTINE MONIT3(FMIN,FMAX,SIM,N,NCALL,SERROR,VRATIO,IUSER,
RUSER)

INTEGER N, NCALL, IUSER(*)
REAL (KIND=nag_wp) FMIN, FMAX, SIM(N+1,N), SERROR, VRATIO, RUSER(*)

CALL MONIT2(FMIN,FMAX,SIM,N,N+1,NCALL,IUSER,RUSER)
! Add code here to monitor the values of SERROR and VRATIO, if necessary

RETURN
END
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E04FDF

Withdrawn at Mark 19.
Replaced by E04FYF.

Old: CALL E04FDF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL E04FYF(M,N,LSFUN,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)

LSFUN appears in the argument list instead of the fixed-name subroutine LSFUN1 of E04FDF. LSFUN
must be declared as EXTERNAL or be a module subprogram USEd in the calling (sub)program. In
addition it has an extra two arguments, IUSER and USER, over and above those of LSFUN1. It may be
derived from LSFUN1 as follows:

SUBROUTINE LSFUN(M,N,XC,FVECC,IUSER,USER)
INTEGER M, N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVECC(M), USER(*)

CALL LSFUN1(M,N,XC,FVECC)

RETURN
END

In general the extra arguments, IUSER and USER, should be declared in the calling program as
IUSER 1ð Þ and USER 1ð Þ, but will not need initializing. If however, a COMMON block was used to pass
information into LSFUN1, or get information from LSFUN1, then the arrays IUSER and USER should
be declared appropriately and used for this purpose.

E04GCF

Withdrawn at Mark 19.
Replaced by E04GYF.

Old: CALL E04GCF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL E04GYF(M,N,LSFUN,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)

LSFUN appears in the argument list instead of the fixed-name subroutine LSFUN2 of E04GCF. LSFUN
must be declared as EXTERNAL or be a module subprogram USEd in the calling (sub)program. In
addition it has an extra two arguments, IUSER and USER, over and above those of LSFUN2. It may be
derived from LSFUN2 as follows:

SUBROUTINE LSFUN(M,N,XC,FVECC,FJACC,LJC,IUSER,USER)
INTEGER M, N, LJC, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVECC(M), FJACC(LJC,N), USER(*)

CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)

RETURN
END

In general the extra arguments, IUSER and USER, should be declared in the calling program as
IUSER 1ð Þ and USER 1ð Þ, but will not need initializing. If however, a COMMON block was used to pass
information through E04GCF into LSFUN2, or get information from LSFUN2, then the arrays IUSER
and USER should be declared appropriately and used for this purpose.

E04GEF

Withdrawn at Mark 19.
Replaced by E04GZF.

Old: CALL E04GEF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL E04GZF(M,N,LSFUN,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)

LSFUN appears in the argument list instead of the fixed-name subroutine LSFUN2 of E04GEF. LSFUN
must be declared as EXTERNAL or be a module subprogram USEd in the calling (sub)program. In
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addition it has an extra two arguments, IUSER and USER, over and above those of LSFUN2. It may be
derived from LSFUN2 as follows:

SUBROUTINE LSFUN(M,N,X,FVECC,FJACC,LJC,IUSER,USER)
INTEGER M, N, LJC, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVECC(M), FJACC(LJC,N), USER(*)

CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)

RETURN
END

In general the extra arguments, IUSER and USER, should be declared in the calling program as
IUSER 1ð Þ and USER 1ð Þ, but will not need initializing. If however, a COMMON block was used to pass
information through E04GEF into LSFUN2, or get information from LSFUN2, then the arrays IUSER
and USER should be declared appropriately and used for this purpose.

E04HFF

Withdrawn at Mark 19.
Replaced by E04HYF.

Old: CALL E04HFF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL E04HYF(M,N,LSFUN,LSHES,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)

LSFUN and LSHES appear in the argument list instead of the fixed-name subroutines LSFUN2 and
LSHES2 of E04HFF. LSFUN and LSHES must be declared as EXTERNAL or be a module subprogram
USEd in the calling (sub)program. In addition they have an extra two arguments, IUSER and USER,
over and above those of LSFUN2 and LSHES2. They may be derived from LSFUN2 and LSHES2 as
follows:

SUBROUTINE LSFUN(M,N,XC,FVECC,FJACC,LJC,IUSER,USER)
INTEGER M, N, LJC, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVECC(M), FJACC(LJC,N), USER(*)

CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)

RETURN
END

SUBROUTINE LSHES(M,N,FVECC,XC,B,LB,IUSER,USER)
INTEGER M, N, LB, IUSER(*)
REAL (KIND=nag_wp) FVECC(M), XC(N), B(LB), USER(*)

CALL LSHES2(M,N,FVECC,XC,B,LB)

RETURN
END

In general, the extra arguments, IUSER and USER, should be declared in the calling program as
IUSER 1ð Þ and USER 1ð Þ, but will not need initializing. If, however, a COMMON block was used to
pass information through E04HFF into LSFUN2 or LSHES2, or to get information from LSFUN2 or
LSHES2, then the arrays IUSER and RUSER should be declared appropriately and used for this
purpose.

E04JAF

Withdrawn at Mark 19.
Replaced by E04JYF.

Old: CALL E04JAF(N,IBOUND,BL,BU,X,F,IW,LIW,LW,IFAIL)
New: CALL E04JYF(N,IBOUND,FUNCT,BL,BU,X,F,IW,LIW,W,LW,IUSER,USER,IFAIL)

FUNCT appears in the argument list instead of the fixed-name subroutine FUNCT1 of E04JAF. FUNCT
must be declared as EXTERNAL or be a module subprogram USEd in the calling (sub)program. In
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addition it has an extra two arguments, IUSER and USER, over and above those of FUNCT1. It may be
derived from FUNCT1 as follows:

SUBROUTINE FUNCT(N,XC,FC,IUSER,USER)
INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, USER(*)

CALL FUNCT1(N,XC,FC)

RETURN
END

The extra arguments, IUSER and USER, should be declared in the calling program as IUSER 1ð Þ and
USER 1ð Þ, but will not need initializing.

E04KAF

Withdrawn at Mark 19.
Replaced by E04KYF.

Old: CALL E04KAF(N,IBOUND,BL,BU,X,F,G,IW,LIW,W,LW,IFAIL)
New: CALL E04KYF(N,IBOUND,FUNCT,BL,BU,X,F,G,IW,LIW,W,LW,IUSER,USER,IFAIL)

FUNCT appears in the argument list instead of the fixed-name subroutine FUNCT2 of E04KAF.
FUNCT must be declared as EXTERNAL or be a module subprogram USEd in the calling (sub)
program. In addition it has an extra two arguments, IUSER and USER, over and above those of
FUNCT2. It may be derived from FUNCT2 as follows:

SUBROUTINE FUNCT(N,XC,FC,GC,IUSER,USER)
INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, GC(N), USER(*)

CALL FUNCT2(N,XC,FC,GC)

RETURN
END

The extra arguments, IUSER and USER, should be declared in the calling program as IUSER 1ð Þ and
USER 1ð Þ, but will not need initializing.

E04KCF

Withdrawn at Mark 19.
Replaced by E04KZF.

Old: CALL E04KCF(N,IBOUND,BL,BU,X,F,G,IW,LIW,W,LW,IFAIL)
New: CALL E04KZF(N,IBOUND,FUNCT,BL,BU,X,F,G,IW,LIW,W,LW,IUSER,USER,IFAIL)

FUNCT appears in the argument list instead of the fixed-name subroutine FUNCT2 of E04KCF.
FUNCT must be declared as EXTERNAL or be a module subprogram USEd in the calling (sub)
program. In addition it has an extra two arguments, IUSER and USER, over and above those of
FUNCT2. It may be derived from FUNCT2 as follows:

SUBROUTINE FUNCT(N,XC,FC,GC,IUSER,USER)
INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, GC(N), USER(*)

CALL FUNCT2(N,XC,FC,GC)

RETURN
END

The extra arguments, IUSER and USER, should be declared in the calling program as IUSER 1ð Þ and
USER 1ð Þ, but will not need initializing.
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E04LAF

Withdrawn at Mark 19.
Replaced by E04LYF.

Old: CALL E04LAF(N,IBOUND,BL,BU,X,F,G,IW,LIW,W,LW,IFAIL)
New: CALL E04LYF(N,IBOUND,FUNCT,HESS,BL,BU,X,F,G,IW,LIW,W,LW,IUSER,USER, &

IFAIL)

FUNCT and HESS appear in the argument list instead of the fixed-name subroutines FUNCT2 and
HESS2 of E04LAF. FUNCT and HESS must be declared as EXTERNAL or be a module subprogram
USEd in the calling (sub)program. In addition they have an extra two arguments, IUSER and USER,
over and above those of FUNCT2 and HESS2. They may be derived from FUNCT2 and HESS2 as
follows:

SUBROUTINE FUNCT(N,XC,FC,GC,IUSER,USER)
INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, GC(N), USER(*)

CALL FUNCT2(N,XC,FC,GC)

RETURN
END

SUBROUTINE HESS(N,XC,HESLC,LH,HESDC,IUSER,USER)
INTEGER N, LH, IUSER(*)
REAL (KIND=nag_wp) XC(N), HESLC(LH), HESDC(N), USER(*)

CALL HESS2(N,XC,HESLC,LH,HESDC)

RETURN
END

In general, the extra arguments, IUSER and USER, should be declared in the calling program as
IUSER 1ð Þ and USER 1ð Þ, but will not need initializing.

E04UNF

Withdrawn at Mark 22.
Replaced by E04USF/E04USA.

Old: CALL E04UNF(M,N,NCLIN,NCNLN,LDA,LDCJ,LDFJ, &
LDR,A,BL,BU,Y,CONFUN,OBJFUN,ITER, &
ISTATE,C,CJAC,F,FJAC,CLAMDA,OBJF, &
R,X,IWORK,LIWORK,WORK,LWORK,IUSER, &
RUSER,IFAIL)

New: CALL E04USF(M,N,NCLIN,NCNLN,LDA,LDCJ,LDFJ, &
LDR,A,BL,BU,Y,CONFUN,OBJFUN,ITER, &
ISTATE,C,CJAC,F,FJAC,CLAMDA,OBJF, &
R,X,IWORK,LIWORK,WORK,LWORK,IUSER, &
RUSER,IFAIL)

The specification of the subroutine OBJFUN must also be changed as follows:

Old: SUBROUTINE OBJFUN(MODE,M,N,LDFJ,X,F,FJAC,NSTATE,IUSER,RUSER)
INTEGER MODE,M,N,LDFJ,NSTATE,IUSER(*)
REAL (KIND=nag_wp) X(N),F(*),FJAC(LDFJ,*),RUSER(*)

New: SUBROUTINE OBJFUN(MODE,M,N,LDFJ,NEEDFI,X,F,FJAC,NSTATE, &
IUSER,RUSER)

INTEGER MODE,M,N,LDFJ,NEEDFI,NSTATE,IUSER(*)
REAL (KIND=nag_wp) X(N),F(*),FJAC(LDFJ,*),RUSER(*)

See the routine documents for further information.
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E04UPF

Withdrawn at Mark 19.
Replaced by E04USF/E04USA.

Old: CALL E04UPF(M,N,NCLIN,NCNLN,LDA,LDCJ,LDFJ,LDR,A,BL,BU, &
CONFUN,OBJFUN,ITER,ISTATE,C,CJAC,F,FJAC, &
CLAMDA,OBJF,R,X,IWORK,LIWORK,WORK,LWORK, &
IUSER,USER,IFAIL)

New: CALL E04USF(M,N,NCLIN,NCNLN,LDA,LDCJ,LDFJ,LDR,A,BL,BU, &
Y,CONFUN,OBJFUN,ITER,ISTATE,C,CJAC,F,FJAC, &
CLAMDA,OBJF, R,X,IWORK,LIWORK,WORK,LWORK, &
IUSER,USER,IFAIL)

E04USF/E04USA contains one additional argument as follows:

Y Mð Þ – real array.

Note that a call to E04UPF is the same as a call to E04USF/E04USA with Y ið Þ ¼ 0:0, for
i ¼ 1; 2; . . . ;M.

The specification of the subroutine OBJFUN must also be changed as follows:

Old: SUBROUTINE OBJFUN(MODE,M,N,LDFJ,X,F,FJAC,NSTATE,IUSER,USER)
INTEGER MODE,M,N,LDFJ,NSTATE,IUSER(*)
REAL (KIND=nag_wp) X(N),F(*),FJAC(LDFJ,*),USER(*)

New: SUBROUTINE OBJFUN(MODE,M,N,LDFJ,NEEDFI,X,F,FJAC,NSTATE, &
IUSER,USER)

INTEGER MODE,M,N,NEEFI,NSTATE,IUSER(*)
REAL (KIND=nag_wp) X(N),F(*),FJAC(LDFJ,*),USER(*)

See the routine documents for further information.

E04ZCF/E04ZCA

Withdrawn at Mark 24.
There is no replacement for this routine.

F01 – Matrix Operations, Including Inversion

F01MAF

Withdrawn at Mark 19.
Replaced by F11JAF.

Existing programs should be modified to call F11JAF. The interfaces are significantly different and
therefore precise details of a replacement call cannot be given. Please consult the appropriate routine
document.

F02 – Eigenvalues and Eigenvectors

F02BBF

Withdrawn at Mark 19.
Replaced by F08FBF (DSYEVX).

Old: CALL F02BBF(A,LDA,N,RLB,RUB,M,MM,R,V,LDV,D,E,E2,X,G,C, &
ICOUNT,IFAIL)

New: CALL DSYEVX(‘V’,‘V’,‘L’,N,A,LDA,RLB,RUB, &
0,0,2*X02AMF(),MM,R,V,LDV,WORK,LWORK,IWORK, &
JFAIL,INFO)

where R must have dimension at least max 1;Nð Þ, WORK is a real array of length at least 4� Nð Þ,
LWORK is its actual length, JFAIL is an integer array of length at least max 1;Nð Þ, and IWORK is an
integer array of length at least 5� Nð Þ. Note that in the call to F02BBF R needs only to be of
dimension (M). Larger values of LWORK, up to some optimal value, may improve performance.
Arguments C, ICOUNT, X, G, E2, E and D are not used.
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F02BCF

Withdrawn at Mark 19.
Replaced by F02ECF.

Old: CALL F02BCF(A,IA,N,ALB,UB,M,MM,RR,RI,VR,IVR,VI,IVI, &
INTGER,ICNT,C,B,IB,U,V,IFAIL)

New: CALL F02ECF(‘Moduli’,N,A,IA,ALB,UB,M,MM,RR,RI,VR,IVR, &
VI,IVI,WORK,LWORK,ICNT,C,IFAIL)

where WORK is a real array of length at least (N� Nþ 4ð Þ) and LWORK is its actual length.

F02BDF

Withdrawn at Mark 19.
Replaced by F02GCF.

Old: CALL F02BDF(AR,IAR,AI,IAI,N,ALB,UB,M,MM,RR,RI,VR,IVR, &
VI,IVI,INTGER,C,BR,IBR,BI,IBI,U,V,IFAIL)

New: DO 20 J = 1, N
DO 10 I = 1, N

A(I,J) = CMPLX(AR(I,J),AI(I,J),KIND=nag_wp)
10 CONTINUE
20 CONTINUE

CALL F02GCF(‘Moduli’,N,A,IA,ALB,UB,M,MM,R,V,IV,WORK, &
LWORK,RWORK,INTGER,C,IFAIL)

DO 30 I = 1, N
RR(I) = REAL(R(I))
RI(I) = AIMAG(R(I))

30 CONTINUE
DO 50 J = 1, MM

DO 40 I = 1, N
VR(I,J) = REAL(V(I,J))
VI(I,J) = AIMAG(V(I,J))

40 CONTINUE
50 CONTINUE

where A is a complex array of dimension IA;Nð Þ, R is a complex array of dimension (N), V is a
complex array of dimension IV;Mð Þ, WORK is a complex array of length at least N� Nþ 2ð Þð Þ,
LWORK is its actual length, and RWORK is a real array of length at least 2� Nð Þ.

F02BJF

Withdrawn at Mark 23.
Replaced by F08WAF (DGGEV).

Old: CALL F02BJF(N,A,LDA,B,LDB,EPS1,ALFR,ALFI,BETA,MATV,V,LDV,ITER,IFAIL)
New: IF (MATV) THEN

JOBVR = ‘V’
ELSE

JOBVR = ‘N’
ENDIF
CALL DGGEV(‘N’,JOBVR,N,A,LDA,B,LDB,ALFR,ALFI,BETA,VL,LDVL, &

VR,LDVL,WORK,LWORK,INFO)
IF (INFO.EQ.0) THEN

...
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F02EAF

Withdrawn at Mark 23.
Replaced by F08PAF (DGEES).

Old: CALL F02EAF(JOB,N,A,LDA,WR,WI,Z,LDZ,WORK,LWORK,IFAIL)
New: LOGICAL SELECT

EXTERNAL SELECT
...
IF (JOB.EQ.‘N’) THEN

JOBVS = ‘N’
ELSE

JOBVS = ‘V’
END IF
CALL DGEES(JOBVS,‘N’,SELECT,N,A,LDA,0,WR,WI,Z,LDZ,WORK, &

LWORK,BWORK,INFO)
IF (INFO.EQ.0) THEN

....
LOGICAL FUNCTION SELECT(AR,AI)
REAL (KIND=nag_wp) :: AR, AI
SELECT = .TRUE.
RETURN
ENDK

F02EBF

Withdrawn at Mark 23.
Replaced by F08NAF (DGEEV).

Old: CALL F02EBF(JOB,N,A,LDA,WR,WI,VR,LDVR,VI,LDVI,WORK,LWORK, &
IFAIL)

New: IF (JOB.EQ.‘N’) THEN
JOBVR = ‘N’

ELSE
JOBVR = ‘V’

END IF
CALL DGEEV(‘N’,JOBVR,N,A,LDA,WR,WI,VL,LDVL,VR1,LDVR1, &

WORK,LWORK,INFO)
IF (INFO.EQ.0) THEN

! Eigenvector information is stored differently.
! For complex conjugate pairs (that is, corresponding
! to the j-th eigenvector such that WI(j) is nonzero,
! and WI(j) = -WI(j+1)), the real and imaginary parts
! of the first of the pair of eigenvectors are stored
! as consecutive columns of VR1: VR1(:,j), VR1(:,j+1).
! The second in the pair is just the conjugate of the
! first, so can be constructed by negating the
! elements in VR1(:,j+1).
! If the j-th eigenvector is real (WI(j)=0), the
! corresponding real eigenvector is stored in the
! j-th column of VR1, VR1(1:N,j).

F02FAF

Withdrawn at Mark 23.
Replaced by F08FAF (DSYEV).

Old: CALL F02FAF(JOB,UPLO,N,A,LDA,W,WORK,LWORK,IFAIL)
New: CALL DSYEV(JOB,UPLO,N,A,LDA,W,WORK,LWORK,INFO)

IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance
might be different. The workspace query mechanism (LWORK ¼ �1) should be used to determine the
requirement for optimal performance.
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F02FCF

Withdrawn at Mark 23.
Replaced by F08FBF (DSYEVX).

Old: CALL F02FCF(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IU,MEST,M, &
W,Z,LDZ,WORK,LWORK,IWORK,IFAIL)

New: CALL DSYEVX(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IU,ABSTOL,M, &
W,Z,LDZ,WORK,LWORK,IWORK,JFAIL,INFO)

IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance
might be different. The workspace query mechanism (LWORK ¼ �1) should be used to determine the
requirement for optimal performance.

F02FDF

Withdrawn at Mark 23.
Replaced by F08SAF (DSYGV).

Old: CALL F02FDF(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,WORK,LWORK,IFAIL)
New: CALL DSYGV(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,WORK,LWORK,INFO)

IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance
might be different. The workspace query mechanism (LWORK ¼ �1) should be used to determine the
requirement for optimal performance.

F02FHF

Withdrawn at Mark 23.
Replaced by F08UAF (DSBGV).

Old: CALL F02FHF(N,MA,A,LDA,MB,B,LDB,D,WORK,LWORK,IFAIL)
New: CALL DSBGV(‘N’,‘U’,N,MA,MB,A,LDA,B,LDB,D,Z,LDZ,WORK,INFO)

IF (INFO.EQ.0) THEN
...

The order of eigenvalues in D changes from descending to ascending.

The minimum workspace requirement has changed to become LWORK ¼ 3� N

F02GAF

Withdrawn at Mark 23.
Replaced by F08PNF (ZGEES).

Old: CALL F02GAF(JOB,N,A,LDA,W,Z,LDZ,RWORK,WORK,LWORK,IFAIL)
New: LOGICAL BWORK(1)

LOGICAL SELECT
EXTERNAL SELECT

...
IF (JOB.EQ.’N’) THEN

JOBVS = ’N’
ELSE

JOBVS = ’V’
END IF
CALL ZGEES(JOBVS,’N’,SELECT,N,A,LDA,0,W,Z,LDZ, &

WORK,LWORK,RWORK,BWORK,INFO)
IF (INFO.NE.0) THEN

...
LOGICAL FUNCTION SELECT(C)
COMPLEX*16 C
SELECT = .TRUE.
RETURN
END
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The minimum workspace requirement has not increased but the requirement for optimal performance
might be different. The workspace query mechanism (LWORK ¼ �1) should be used to determine the
requirement for optimal performance.

F02GBF

Withdrawn at Mark 23.
Replaced by F08NNF (ZGEEV).

Old: CALL F02GBF(JOB,N,A,LDA,W,V,LDV,RWORK,WORK,LWORK,IFAIL)
New: CALL ZGEEV(‘N’,JOB,N,A,LDA,W,VL,LDVL,V,LDV, &

WORK,LWORK,RWORK,INFO)
IF (INFO.EQ.0) THEN

...

F02GJF

Withdrawn at Mark 23.
Replaced by F08WNF (ZGGEV).

Old: CALL F02GJF(N,AR,LDAR,AI,LDAI,BR,LDBR,BI,LDBI,EPS1,ALFR, &
ALFI,BETA,MATV,VR,LDVR,VI,LDVI,ITER,IFAIL)

New: IF (MATV) THEN
JOBVR = ‘V’

ELSE
JOBVR = ‘N’

END IF

! Set A=AR + iAI and B = BR+iBI

CALL ZGGEV(‘N’,JOBVR,N,A,LDA,B,LDB,ALPHA,BETA1,VL,LDVL, &
V,LDV,WORK,LWORK,RWORK,INFO)

IF (INFO.EQ.0) THEN
...

Note that the separated real and imaginary parts of input and output data in F02GJF has been replaced
by combined complex types in F08WNF (ZGGEV).

F02HAF

Withdrawn at Mark 23.
Replaced by F08FNF (ZHEEV).

Old: CALL F02HAF(JOB,UPLO,N,A,LDA,W,RWORK,WORK,LWORK,IFAIL)
New: CALL ZHEEV(JOB,UPLO,N,A,LDA,W,WORK,LWORK,RWORK,INFO)

IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance
might be different. The workspace query mechanism (LWORK ¼ �1) should be used to determine the
requirement for optimal performance.

F02HCF

Withdrawn at Mark 23.
Replaced by F08FPF (ZHEEVX).

Old: CALL F02HCF(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IU,MEST,M, &
W,Z,LDZ,WORK,LWORK,RWORK,IWORK,IFAIL)

New: CALL ZHEEVX(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IU,ABSTOL,M, &
W,Z,LDZ,WORK,LWORK,RWORK,IWORK,JFAIL,INFO)

IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance
might be different. The workspace query mechanism (LWORK ¼ �1) should be used to determine the
requirement for optimal performance.
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F02HDF

Withdrawn at Mark 23.
Replaced by F08SNF (ZHEGV).

Old: CALL F02HDF(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,RWORK,WORK, &
LWORK,IFAIL)

New: CALL ZHEGV(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,WORK,LWORK, &
RWORK,INFO)

IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance
might be different. The workspace query mechanism (LWORK ¼ �1) should be used to determine the
requirement for optimal performance.

F02SDF

Scheduled for withdrawal at Mark 27.
Replaced by F12AGF and F12FGF.

The replacement routines F12FGF (symmetric case) and F12AGF (nonsymmetric case) are threaded for
parallel execution in multithreaded implementations. These routines are based on the ARPACK package
and make calls to BLAS/LAPACK routines. These may be threaded within the vendor library used by
the implementation, which provides an additional opportunity for multithreaded performance.

Old: CALL F02SDF(N,MA+1,MB+1,A,LDA,B,LDB,SYM,RELEP,RMU,VEC,D,IWORK,WORK, &
LWORK,IFAIL)

New: LICOMM = 140
LCOMM = 3*N + 3*NCV*NCV + 6*NCV + 60
ALLOCATE (COMM(LCOMM),DR(NCV),DI(NCV),RESID(N),V(N,NCV), &

ICOMM(LICOMM))
! B is symmetric definite:
IF (B_symm_def) THEN

CALL F12AFF(N,1,NCV,ICOMM,LICOMM,COMM,LCOMM,IFAIL)
CALL F12ADF(’Generalized’,ICOMM,COMM,IFAIL)
CALL F12ADF(’Shifted Inverse’,ICOMM,COMM,IFAIL)
CALL F12AGF(KL,KU,A,LDA,B,LDB,RMU,0.0,NCONV,DR,DI,V,N,RESID, &

V,LDV,COMM,ICOMM,IFAIL)
VEC(1:N) = V(1:N,1)

ELSE
CALL F12AAF(N,NEV,NCV,ICOMM,LICOMM,COMM,LCOMM,IFAIL)
ALLOCATE(C(LDA,N),IPIV(N),X(N),MX(N))
C = A - RMU*B
CALL DGBTRF(N,N,KL,KU,C,LDA,IPIV,INFO)
IREVCM = 0
DO WHILE (IREVCM/=5)

CALL F12ABF(IREVCM,RESID,V,LDV,X,MX,NSHIFT,COMM,ICOMM,IFAIL)
IF (IREVCM==-1 .OR. IREVCM==1) THEN

! Perform x <--- OP*x = inv[A-SIGMA*B]*Bx.
CALL DGBMV(’N’,N,N,KL,KU,ONE,B,LDB,X,1,ZERO,MX,1)
X(1:N) = MX(1:N)
CALL DGBTRS(’N’,N,KL,KU,1,C,LDA,IPIV,X,N,INFO)

END IF
END DO

! Post-process using F12ACF to compute eigenvalue.
CALL F12ACF(NCONV,DR,DI,V,LDV,RMU,0.0,RESID,V,N,COMM,ICOMM,IFAIL)
LR = DR(1)/(DR(1)**2+DI(1)**2) + RMU

END IF

F02WDF

Scheduled for withdrawal at Mark 27.
Replaced by F02WUF and F08AEF (DGEQRF).

This routine is replaced for multithreaded performance and ability to benefit from vendor library
performance (BLAS/LAPACK).
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Note: Only the multithreaded implementations of F02WDF were able to benefit from parallelism or
vendor BLAS/LAPACK performance.

The Householder QU factorization part of the functionality can be achieved with F08AEF (DGEQRF).
The action QTb can be computed by a call to F08AGF (DORMQR). The orthogonal matrix Q can be
explicitly constructed, in-place, by a subsequent call to F08AFF (DORGQR).

If the singular value decomposition (SVD) of U is required, the result of F08AEF (DGEQRF) must be
fed to F02WUF, remembering that the first orthogonal matrix of the SVD is called Q in F02WUF and
R in F02WDF

Old: IFAIL = 0
CALL F02WDF(M,N,A,LDA,WANTB,B,TOL,SVD,IRANK,Z,SV,WANTR,R, &

LDR,WANTPT,PT,LDPT,WORK,LWORK,IFAIL)
New: LWORK = -1

CALL DGEQRF(M,N,A,LDA,Z,WORK,LWORK,INFO)
LWORK = ANINT(WORK(1))
DEALLOCATE (WORK)
ALLOCATE (WORK(LWORK))
CALL DGEQRF(M,N,A,LDA,Z,WORK,LWORK,INFO)
NCOLB = 1
IF (WANTB) THEN

CALL DORMQR(’L’,’T’,M,NCOLB,N,A,LDA,Z,B,M,WORK,LWORK,INFO)
END IF
IF (.NOT. SVD) THEN

! construct Q explicitly, overwrites A
CALL DORGQR(M,M,A,LDA,Z,WORK,LWORK,INFO)

ELSE
! SVD factorization, PT overwrites A
DEALLOCATE (WORK)
ALLOCATE (WORK(5*N))
CALL F02WUF(N,A,LDA,NCOLB,B,M,WANTR,R,LDR,SV,WANTPT,WORK,IFAIL)
! compute rank
IRANK = F06KLF(N,SV,1,TOL)

END IF

F02WEF

Withdrawn at Mark 23.
Replaced by F08KBF (DGESVD).

Old: CALL F02WEF(M,N,A,LDA,NCOLB,B,LDB,WANTQ,Q,LDQ,SV,WANTP, &
PT,LDPT,WORK,IFAIL)

New: IF (WANTQ) THEN
JOBU = ’A’

ELSE
JOBU = ’N’

END IF
IF (WANTP) THEN

JOBVT = ’A’
ELSE

JOBVT = ’N’
END IF
LWORK = -1
CALL DGESVD(JOBU,JOBVT,M,N,A,LDA,SV,Q,LDQ,PT,LDPT,WORK,LWORK,INFO)
LWORK = ANINT(WORK(1))
ALLOCATE (W(LWORK))

CALL DGESVD(JOBU,JOBVT,M,N,A,LDA,SV,Q,LDQ,PT,LDPT,W,LWORK,INFO)

DEALLOCATE (W)

WORK must be a one-dimensional real array of length at least lwork given by:
max 1; 3�min M;Nð Þ þmax M;Nð Þ; 5�min M;Nð Þð Þ
Larger values of LWORK, up to some optimal value, may improve performance.
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Please note that the facility to return QTB is not provided so arguments WANTB and B are not
required. Instead, F08KBF (DGESVD) has an option to return the entire M �M orthogonal matrix Q,
referred to as U in its documentation, through its 8th argument.

F02XEF

Withdrawn at Mark 23.
Replaced by F08KPF (ZGESVD).

Old: CALL F02XEF(M,N,A,LDA,NCOLB,B,LDB,WANTQ,Q,LDQ,SV,WANTP, &
PH,LDPH,RWORK,CWORK,IFAIL)

New: IF (WANTQ) THEN
JOBU = ’A’

ELSE
JOBU = ’N’

END IF
IF (WANTP) THEN

JOBVT = ’A’
ELSE

JOBVT = ’N’
END IF
LWORK = -1
CALL ZGESVD(JOBU,JOBVT,M,N,A,LDA,SV,Q,LDQ,PT,LDPT,WORK, &

LWORK,RWORK,INFO)
LWORK = ANINT(WORK(1))
ALLOCATE (W(LWORK))

CALL ZGESVD(JOBU,JOBVT,M,N,A,LDA,SV,Q,LDQ,PT,LDPT,W, &
LWORK,RWORK,INFO)

DEALLOCATE (W)

WORK must be a one-dimensional complex array of length at least lwork given by
max 1; 2�min M;Nð Þ þmax M;Nð Þð Þ
WORK must be a one-dimensional real array of length max 1; 5�min M;Nð Þð Þ.
Larger values of LWORK, up to some optimal value, may improve performance.

Please note that the facility to return QHB is not provided so arguments WANTB and B are not
required. Instead, F08KPF (ZGESVD) has an option to return the entire M �M unitary matrix Q,
referred to as U in its documentation, through its 8th argument.

F03 – Determinants

F03AAF

Withdrawn at Mark 25.
Replaced by F07ADF (DGETRF) and F03BAF.

Old: IFAIL = 0
CALL F03AAF(A,LDA,N,DET,WKSPCE,IFAIL)

New: INTEGER IPIV(N)
...

CALL DGETRF(N,N,A,LDA,IPIV,INFO)
IFAIL = 0
CALL F03BAF(N,A,LDA,IPIV,D,ID,IFAIL)
DET = D*2**ID

Note: the real array WKSPCE has been replaced by the integer array IPIV for holding the pivots of the
factorization.
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F03ABF

Withdrawn at Mark 25.
Replaced by F07FDF (DPOTRF) and F03BFF.

Old: IFAIL = 0
CALL F03ABF(A,LDA,N,DET,WKSPCE,IFAIL)

New: CALL DPOTRF(‘U’,N,A,LDA,INFO)
IFAIL = 0
CALL F03BFF(N,A,LDA,D,ID,IFAIL)
DET = D*2**ID

Note: the real array WKSPCE is no longer required. Also the upper triangular part of A, stored in A,
has been replaced here by its Cholesky factorization; the lower triangular part of A can be used and
overwritten by replacing `U' by `L' in the call to DPOTRF above.

F03ACF

Withdrawn at Mark 25.
Replaced by F07HDF (DPBTRF) and F03BHF.

Old: IFAIL = 0
CALL F03ACF(A,LDA,N,M,DET,RL,LDRL,M1,IFAIL)

New: CALL DPBTRF(’L’,N,M,AB,LDAB,INFO)
IFAIL = 0
CALL F03BHF(’L’,N,KD,AB,LDAB,D,ID,IFAIL)
DET = D*2**ID

Note: the storage of A in arrays A and AB is different. In fact ABði; jÞ ¼ Aðj; iÞ, for i ¼ 1; 2; . . . ;m
and j ¼ max 1; i�mð Þ; . . . ; i which conforms to the LAPACK banded storage scheme. The factorization
is returned in AB rather than in a separate array (RL). The upper part of matrix A can also be stored in
AB on input to DPBTRF.

F03ADF

Withdrawn at Mark 25.
Replaced by F07ARF (ZGETRF) and F03BNF.

Old: IFAIL = 0
CALL F03ADF(A,LDA,N,DETR,DETI,WKSPCE,IFAIL)

New: INTEGER IPIV(N)
...
CALL ZGETRF(N,N,A,LDA,IPIV,INFO)
IFAIL = 0
CALL F03BNF(N,A,LDA,IPIV,D,ID,IFAIL)
DETR = REAL(D)*2**ID(1)
DETI = AIMAG(D)*2**ID(2)

Note: the real array WKSPCE has been replaced by the integer array IPIV for holding the pivots of the
factorization. The real and imaginary parts of the determinant are independently scaled.

F03AEF

Withdrawn at Mark 25.
Replaced by F07FDF (DPOTRF) and F03BFF.

Old: IFAIL = 0
CALL F03AEF(N,A,LDA,P,D1,ID,IFAIL)

New: CALL DPOTRF(‘U’,N,A,LDA,INFO)
IFAIL = 0
CALL F03BFF(N,A,LDA,D1,ID,IFAIL)

Note: the upper triangular part of A, stored in A, has been replaced here by its Cholesky factorization;
the lower triangular part of A can be used and overwritten by replacing UPLO ¼ U by UPLO ¼ L in
the call to F07FDF (DPOTRF) above.
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F03AFF

Withdrawn at Mark 25.
Replaced by F07ADF (DGETRF) and F03BAF.

Old: IFAIL = 0
CALL F03AFF(N,EPS,A,LDA,D1,ID,P,IFAIL)

New: INTEGER IPIV(N)
...
CALL DGETRF(N,N,A,LDA,IPIV,INFO)
IFAIL = 0
CALL F03BAF(N,A,LDA,IPIV,D1,ID,IFAIL)

Note: real array P has been replaced by the integer array IPIV for holding the pivots of the
factorization.

F04 – Simultaneous Linear Equations

F04AAF

Withdrawn at Mark 23.
Replaced by F07AAF (DGESV).

Old: CALL F04AAF(A,LDA,B,LDB,N,M,C,LDC,WKSPCE,IFAIL)
New: CALL DGESV(N,M,A,LDA,IPIV,B,LDB,INFO)

IF (INFO.EQ.0) THEN
! Answer now in B

...

F04ABF

Scheduled for withdrawal at Mark 28.
Replaced by F07FBF (DPOSVX).
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F04ABF and F04ASF have been replaced by F07FBF (DPOSVX) for performance. The replacement
routine is threaded by NAG and may also be threaded in the vendor library (BLAS/LAPACK).

Old: CALL F04ABF(A,LDA,B,LDB,N,M,C,LDC,WKSPCE,BB,LDBB,IFAIL)
New: CALL f04abf_wrap(a,lda,b,ldb,n,m,c,ldc,wkspce,bb,ldbb,ifail)

Subroutine f04abf_wrap(a,lda,b,ldb,n,m,c,ldc,wkspce,bb,ldbb,ifail)
! .. Use Statements ..

Use nag_library, Only: dposvx, dsymm, nag_wp
! .. Scalar Arguments ..

Integer, Intent (In) :: lda, ldb, ldbb, ldc, m, n
Integer, Intent (Inout) :: ifail

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: a(lda,*), b(ldb,*)
Real (Kind=nag_wp), Intent (Out) :: bb(ldbb,m), c(ldc,m), wkspce(1)

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond, alpha, beta
Integer :: info, ldaf
Character (1) :: equed

! .. Local Arrays ..
Real (Kind=nag_wp) :: s(1)
Real (Kind=nag_wp), Allocatable :: af(:,:), work(:), ferr(:), berr(:)
Integer, Allocatable :: iwork(:)

ldaf = n
Allocate (af(ldaf,n),ferr(m),berr(m),work(3*n),iwork(n))

! The NAG name equivalent of dposvx is f07fbf
Call dposvx(’N’,’Upper’,n,m,a,lda,af,ldaf,equed,s,b,ldb, &

c,ldc,rcond,ferr,berr,work,iwork,info)

ifail = info
bb(1:n,1:m) = b(1:n,1:m)
alpha = -1.0_nag_wp
beta = 1.0_nag_wp

! The NAG name equivalent of dgemm is f06yaf
Call dsymm(’L’,’U’,n,m,alpha,a,lda,c,ldc,beta,bb,ldbb)

End Subroutine f04abf_wrap

F04ACF

Withdrawn at Mark 23.
Replaced by F07HAF (DPBSV).

Old: CALL F04ACF(A,LDA,B,LDB,N,M,IR,C,LDC,RL,LDRL,M1,IFAIL)
New: CALL DPBSV(‘U’,N,M,IR,AB,LDAB,B,LDB,INFO)

IF (INFO.EQ.0) THEN
! A and AB are stored differently.
! AB may be regarded as the transpose of A, with the ‘U’ option.
! Thus LDAB might be M+1
! Answer now in B

...

F04ADF

Withdrawn at Mark 23.
Replaced by F07ANF (ZGESV).

Old: CALL F04ADF(A,LDA,B,LDB,N,M,C,LDC,WKSPCE,IFAIL)
New: CALL ZGESV(N,M,A,LDA,IPIV,B,LDB,INFO)

IF (INFO.EQ.0) THEN
! Answer now in B

...

F04AEF

Scheduled for withdrawal at Mark 28.
Replaced by F07ABF (DGESVX).
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F04AEF and F04ATF have been replaced by F07ABF (DGESVX) for performance. The replacement
routine is threaded by NAG and may also be threaded in the vendor library (BLAS/LAPACK).

Old: CALL F04AEF(A,LDA,B,LDB,N,M,C,LDC,WKSPCE,AA,LDAA,BB,LDBB,IFAIL)
New: CALL f04aef_wrap(a,lda,b,ldb,n,m,c,ldc,wkspce,aa,ldaa,bb,ldbb,ifail)

Subroutine f04aef_wrap(a,lda,b,ldb,n,m,c,ldc,wkspce,aa,ldaa,bb,ldbb,ifail)
! .. Use Statements ..

Use nag_library, Only: dgesvx, dgemm, nag_wp
! .. Scalar Arguments ..

Integer, Intent (In) :: lda, ldaa, ldb, ldbb, ldc, m, n
Integer, Intent (Inout) :: ifail

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: a(lda,*), b(ldb,*)
Real (Kind=nag_wp), Intent (Out) :: bb(ldbb,m), c(ldc,m), aa(ldaa,n), &

wkspce(1)
! .. Local Scalars ..

Real (Kind=nag_wp) :: rcond, alpha, beta
Integer :: info
Character (1) :: equed

! .. Local Arrays ..
Real (Kind=nag_wp) :: cscl(1), rscl(1)
Real (Kind=nag_wp), Allocatable :: work(:), ferr(:), berr(:)
Integer, Allocatable :: ipiv(:), iwork(:)

Allocate (berr(m),ferr(m),work(4*n),ipiv(n),iwork(n))
! The NAG name equivalent of dgesvx is f07abf

Call dgesvx(’N’,’N’,n,m,a,lda,aa,ldaa,ipiv,equed,rscl,cscl,b,ldb, &
c,ldc,rcond,ferr,berr,work,iwork,info)

ifail = info
bb(1:n,1:m) = b(1:n,1:m)
alpha = -1.0_nag_wp
beta = 1.0_nag_wp

! The NAG name equivalent of dgemm is f06yaf
Call dgemm(’N’,’N’,n,m,n,alpha,a,lda,c,ldc,beta,bb,ldbb)

End Subroutine f04aef_wrap

F04AFF

Withdrawn at Mark 25.
There is no replacement for this routine.

The factorization and solution of a positive definite linear system can be handled by calls to routines
from Chapter F07, e.g., F07FBF (DPOSVX).

For example:

Old: IFAIL = 0
CALL F03AEF(N,A,LDA,P,D1,ID,IFAIL)
CALL F04AFF(N,NRHS,A,LDA,P,B,LDB,EPS,X,LDX,BB,LDBB,K,IFAIL)

New: CALL DPOSVX(‘equil’,‘upper’,N,NRHS,A,LDA,AF,LDAF,‘Yes’,P,B, &
LDB,X,LDX,RCOND,FERR,BERR,WORK,IWORK,INFO)

IFAIL = 0
CALL F03BFF(N,A,LDA,D1,ID,IFAIL)

F04AGF

Withdrawn at Mark 25.
There is no replacement for this routine.

The factorization and solution of a positive definite linear system can be handled by calls to routines
from Chapter F07, e.g., F07FAF (DPOSV).
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For example:

Old: IFAIL = 0
CALL F03AEF(N,A,LDA,P,D1,ID,IFAIL)
CALL F04AGF(N,NRHS,A,LDA,P,B,LDB,X,LDX)

New: CALL DPOSV(‘upper’,N,NRHS,A,LDA,B,LDB,INFO)
IFAIL = 0
CALL F03BFF(N,A,LDA,D1,ID,IFAIL)

F04AHF

Withdrawn at Mark 25.
There is no replacement for this routine.

The factorization and solution of a real general linear system can be handled by calls to routines from
the Chapter F07, e.g., F07ABF (DGESVX).

For example:

Old: IFAIL = 0
CALL F03AFF(N,EPS,A,LDA,D1,ID,P,IFAIL)
CALL F04AHF(N,NRHS,A,LDA,AA,LDAA,P,B,LDB,EPS,X,LDX,BB, &

LDBB,K,IFAIL)
New: CALL DGESVX(‘Equil’,‘No trans’,N,NRHS,A,LDA,AA,LDAA,IPIV, &

‘Yes’,R,C,B,LDB,X,LDX,RCOND,FERR,BERR,WORK, &
IWORK,INFO)

IFAIL = 0
CALL F03BAF(N,A,LDA,IPIV,D1,ID,IFAIL)

F04AJF

Withdrawn at Mark 25.
There is no replacement for this routine.

The factorization and solution of a real general linear system can be handled by calls to routines from
Chapter F07, e.g., F07AAF (DGESV).

For example:

Old: IFAIL = 0
CALL F03AFF(N,EPS,A,LDA,D1,ID,P,IFAIL)
CALL F04AJF(N,NRHS,A,LDA,P,B,LDB)

New: CALL DGESV(N,NRHS,A,LDA,IPIV,B,LDB,INFO)
IFAIL = 0
CALL F03BAF(N,A,LDA,IPIV,D1,ID,IFAIL)

F04ARF

Withdrawn at Mark 23.
Replaced by F07AAF (DGESV).

Old: CALL F04ARF(A,LDA,B,N,C,WKSPCE,IFAIL)
New: CALL DGESV(N,1,A,LDA,IPIV,B,N,INFO)

IF (INFO.EQ.0) THEN
! Answer now in B

...

F04ASF

Scheduled for withdrawal at Mark 28.
Replaced by F07FBF (DPOSVX).
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F04ABF and F04ASF have been replaced by F07FBF (DPOSVX) for performance. The replacement
routine is threaded by NAG and may also be threaded in the vendor library (BLAS/LAPACK).

Old: CALL F04ASF(A,LDA,B,N,C,WK1,WK2,IFAIL)
New: CALL f04asf_wrap(a,lda,b,n,c,wk1,wk2,ifail)

Subroutine f04asf_wrap(a,lda,b,n,c,wk1,wk2,ifail)
! .. Use Statements ..

Use nag_library, Only: dposvx, nag_wp
! .. Scalar Arguments ..

Integer, Intent (In) :: lda, n
Integer, Intent (Inout) :: ifail

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: a(lda,n), b(n)
Real (Kind=nag_wp), Intent (Out) :: c(n), wk1(1), wk2(1)

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: info, ldaf, m
Character (1) :: equed

! .. Local Arrays ..
Real (Kind=nag_wp) :: s(1), ferr(1), berr(1)
Real (Kind=nag_wp), Allocatable :: af(:,:), work(:)
Integer, Allocatable :: iwork(:)

ldaf = n
m = 1
Allocate (af(ldaf,n),work(3*n),iwork(n))

! The NAG name equivalent of dposvx is f07fbf
Call dposvx(’N’,’Upper’,n,m,a,lda,af,ldaf,equed,s,b,n, &

c,n,rcond,ferr,berr,work,iwork,info)
wk1(1) = rcond
wk2(1) = berr(1)

ifail = info
End Subroutine f04asf_wrap

F04ATF

Scheduled for withdrawal at Mark 28.
Replaced by F07ABF (DGESVX).
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F04AEF and F04ATF have been replaced by F07ABF (DGESVX) for performance. The replacement
routine is threaded by NAG and may also be threaded in the vendor library (BLAS/LAPACK).

Old: Call F04ATF(A,LDA,B,N,C,AA,LDAA,WKS1,WKS2,IFAIL)
New: CALL f04atf_wrap(a,lda,b,n,c,aa,ldaa,wks1,wks2,ifail)

Subroutine f04atf_wrap(a,lda,b,n,c,aa,ldaa,wks1,wks2,ifail)
! .. Use Statements ..

Use nag_library, Only: dgesvx, nag_wp
! .. Scalar Arguments ..

Integer, Intent (In) :: lda, ldaa, n
Integer, Intent (Inout) :: ifail

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: a(lda,*), b(n)
Real (Kind=nag_wp), Intent (Out) :: c(n), aa(ldaa,n), wks1(1),

wks2(1)
! .. Local Scalars ..

Real (Kind=nag_wp) :: rcond
Integer :: info, m
Character (1) :: equed

! .. Local Arrays ..
Real (Kind=nag_wp) :: cscl(1), rscl(1), ferr(1),

berr(1)
Real (Kind=nag_wp), Allocatable :: work(:)
Integer, Allocatable :: ipiv(:), iwork(:)

m = 1
Allocate (work(4*n),ipiv(n),iwork(n))

! The NAG name equivalent of dgesvx is f07abf
Call dgesvx(’N’,’N’,n,m,a,lda,aa,ldaa,ipiv,equed,rscl,cscl,b,n, &

c,n,rcond,ferr,berr,work,iwork,info)

ifail = info
wks1(1) = rcond
wks2(1) = berr(1)

End Subroutine f04atf_wrap

F04EAF

Withdrawn at Mark 23.
Replaced by F07CAF (DGTSV).

Old: CALL F04EAF(N,D,DU,DL,B,IFAIL)
New: CALL DGTSV(N,1,DL(2),D,DU(2),B,N,INFO)

IF (INFO.EQ.0) THEN
! Answer now in B

...

F04FAF

Withdrawn at Mark 23.
Replaced by F07JAF (DPTSV), or F07JDF (DPTTRF) and F07JEF (DPTTRS).

Old: CALL F04FAF(JOB,N,D,E,B,IFAIL)
New: CALL DPTSV(N,1,D,E(2),B,1,INFO)

...

F04JAF

Withdrawn at Mark 23.
Replaced by F08KAF (DGELSS).

Old: CALL F04JAF(M,N,A,LDA,B,TOL,SIGMA,IRANK,WORK,LWORK,IFAIL)
New: CALL DGELSS(M,N,1,A,LDA,B,1,S,RCOND,IRANK,WORK,LWORK,INFO)

IF (INFO.EQ.0) THEN
! Answer now in B
! Singular values now in S, not WORK.
! The standard error is not computed

...
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T h e m i n i m u m w o r k s p a c e r e q u i r e m e n t h a s c h a n g e d f r o m 4 � N t o
3�min N;Mð Þ þmax 2�min N;Mð Þ;max M;Nð Þ; 1ð Þ.

F04JDF

Withdrawn at Mark 23.
Replaced by F08KAF (DGELSS).

Old: CALL F04JDF(M,N,A,LDA,B,TOL,SIGMA,IRANK,WORK,LWORK,IFAIL)
New: CALL DGELSS(M,N,1,A,LDA,B,1,S,RCOND,IRANK,WORK,LWORK,INFO)
! Note workspace requirements are different.

IF (INFO.EQ.0) THEN
! Answer now in B
! Singular values now in S, not WORK.
! The standard error is not computed

...

T h e m i n i m um w o r k s p a c e r e q u i r e m e n t h a s c h a n g e d f r o m N � Mþ 4ð Þ t o
3�min N;Mð Þ þmax 2�min N;Mð Þ;max M;Nð Þ; 1ð Þ.

F04JLF

Withdrawn at Mark 23.
Replaced by F08ZBF (DGGGLM).

Old: CALL F04JLF(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,IFAIL)
New: CALL DGGGLM(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,INFO)

IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance
might be different. The workspace query mechanism (LWORK ¼ �1) should be used to determine the
requirement for optimal performance.

F04JMF

Withdrawn at Mark 23.
Replaced by F08ZAF (DGGLSE).

Old: CALL F04JMF(M,N,P,A,LDA,B,LDB,C,D,X,WORK,LWORK,IFAIL)
New: CALL DGGLSE(M,N,P,A,LDA,B,LDB,C,D,X,WORK,LWORK,INFO)

IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance
might be different. The workspace query mechanism (LWORK ¼ �1) should be used to determine the
requirement for optimal performance.

F04KLF

Withdrawn at Mark 23.
Replaced by F08ZPF (ZGGGLM).

Old: CALL F04KLF(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,IFAIL)
New: CALL ZGGGLM(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,INFO)

IF (INFO.EQ.0) THEN
...

F04KMF

Withdrawn at Mark 23.
Replaced by F08ZNF (ZGGLSE).

Old: CALL F04KMF(M,N,P,A,LDA,B,LDB,C,D,X,WORK,LWORK,IFAIL)
New: CALL ZGGLSE(M,N,P,A,LDA,B,LDB,C,D,X,WORK,LWORK,INFO)

IF (INFO.EQ.0) THEN
...
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F04MAF

Withdrawn at Mark 19.
Replaced by F11JCF.

Existing programs should be modified to call F11JCF. The interfaces are significantly different and
therefore precise details of a replacement call cannot be given. Please consult the appropriate routine
document.

F04MBF

Withdrawn at Mark 19.
Replaced by F11GDF, F11GEF and F11GFF (or F11JCF or F11JEF).

If a user-defined preconditioner is required existing programs should be modified to call F11GDF,
F11GEF and F11GFF. Otherwise F11JCF or F11JEF may be used. The interfaces for these routines are
significantly different from that for F04MBF and therefore precise details of a replacement call cannot
be given. Please consult the appropriate routine document.

F04YCF

Withdrawn at Mark 26.
Replaced by F04YDF.

F04YDF employs a better algorithm (see Higham N J and Tisseur F (2000) A block algorithm for
matrix 1-norm estimation, with an application to 1-norm pseudospectra SIAM J. Matrix. Anal. Appl. 21
1185–1201).

Old: CALL F04YCF(ICASE,N,X,ESTNRM,WORK,IWORK,IFAIL)
New: CALL F04YDF(IREVCM,M,N,X,LDX,Y,LDY,ESTNRM,T,SEED,WORK,IWORK,IFAIL)

F04YDF returns an estimate of the 1-norm of a rectangular M �N matrix, whereas F04YCF only
works with square matrices. The real array X, which was previously used to return matrix–vector
products to F04YCF, has been replaced with two real arrays X LDX; �ð Þ and Y LDY; �ð Þ which are used
to return matrix-matrix products to F04YDF. Here, LDX � N, LDY � M and the second dimensions of
X and Y are at least of size T, where you can choose argument T. The sizes of the workspace arrays
WORK and IWORK have been increased to M� T and 2� Nþ 5� Tþ 20 respectively. The integer
SEED provides a seed for the random number generator used by F04YDF. The integer ICASE has been
replaced by IREVCM, which can take the values 0, 1 or 2. See the routine documentation for F04YDF
further details about the reverse communication interface.

F04ZCF

Withdrawn at Mark 26.
Replaced by F04ZDF.

F04ZDF employs a better algorithm (see Higham N J and Tisseur F (2000) A block algorithm for
matrix 1-norm estimation, with an application to 1-norm pseudospectra SIAM J. Matrix. Anal. Appl. 21
1185–1201).

Old: CALL F04ZCF(ICASE,N,X,ESTNRM,WORK,IFAIL)
New: CALL F04ZDF(IREVCM,M,N,X,LDX,Y,LDY,ESTNRM,T,SEED,WORK,RWORK,IWORK,IFAIL)

F04ZDF returns an estimate of the 1-norm of a rectangular M �N matrix, whereas F04ZCF only
works with square matrices. The complex array X, which was previously used to return matrix–vector
products to F04ZCF, has been replaced with two complex arrays X LDX; �ð Þ and Y LDY; �ð Þ which are
used to return matrix-matrix products to F04ZDF. Here, LDX � N, LDY � M and the second
dimensions of X and Y are at least of size T, where you can choose the argument T. The sizes of the
workspace arrays WORK and IWORK have been increased to M� T and 2� Nþ 5� Tþ 20
respectively and there is an additional real workspace array RWORK of size 2� N. The integer SEED
provides a seed for the random number generator used by F04ZDF. The integer ICASE has been
replaced by IREVCM, which can take the values 0, 1 or 2. See the routine documentation for F04ZDF
for further details about the reverse communication interface.
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F11 – Large Scale Linear Systems

F11BAF

Withdrawn at Mark 21.
Replaced by F11BDF.

Old: CALL F11BAF(METHOD,PRECON,NORM,WEIGHT,ITERM,N,M,TOL,MAXITN, &
ANORM,SIGMAX,MONIT,LWREQ,IFAIL)

New: CALL F11BDF(METHOD,PRECON,NORM,WEIGHT,ITERM,N,M,TOL,MAXITN, &
ANORM,SIGMAX,MONIT,WORK,LWORK,LWREQ,IFAIL)

F11BDF contains two additional arguments as follows:

WORK(LWORK) – real array.

LWORK – integer.

See the routine document for further information.

F11BBF

Withdrawn at Mark 21.
Replaced by F11BEF.

Old: CALL F11BBF(IREVCM,U,V,WORK,LWORK,IFAIL)
New: CALL F11BEF(IREVCM,U,V,WGT,WORK,LWORK,IFAIL)

WGT must be a one-dimensional real array of length at least n (the order of the matrix) if weights are
to be used in the termination criterion, and 1 otherwise. Note that the call to F11BEF requires the
weights to be supplied in WGT 1 : nð Þ rather than WORK 1 : nð Þ. The minimum value of the argument
LWORK may also need to be changed.

F11BCF

Withdrawn at Mark 21.
Replaced by F11BFF.

Old: CALL F11BCF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,IFAIL)
New: CALL F11BFF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,WORK,LWORK,IFAIL)

F11BFF contains two additional arguments as follows:

WORK LWORKð Þ – real array.

LWORK – integer.

See the routine document for further information.

F11GAF

Withdrawn at Mark 22.
Replaced by F11GDF.

Old: CALL F11GAF(METHOD,PRECON,SIGCMP,NORM,WEIGHT,ITERM,N,TOL,MAXITN, &
ANORM,SIGMAX,SIGTOL,MAXITS,MONIT,LWREQ,IFAIL)

New: CALL F11GDF(METHOD,PRECON,SIGCMP,NORM,WEIGHT,ITERM,N,TOL,MAXITN, &
ANORM,SIGMAX,SIGTOL,MAXITS,MONIT,LWREQ,WORK,LWORK,IFAIL)

F11GDF contains two additional arguments as follows:

WORK LWORKð Þ – real array.

LWORK – integer.

See the routine document for further information.
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F11GBF

Withdrawn at Mark 22.
Replaced by F11GEF.

Old: CALL F11GBF(IREVCM,U,V,WORK,LWORK,IFAIL)
New: CALL F11GEF(IREVCM,U,V,WGT,WORK,LWORK,IFAIL)

WGT must be a one-dimensional real array of length at least n (the order of the matrix) if weights are
to be used in the termination criterion, and 1 otherwise. Note that the call to F11GEF requires the
weights to be supplied in WGT 1 : nð Þ rather than WORK 1 : nð Þ. The minimum value of the argument
LWORK may also need to be changed.

F11GCF

Withdrawn at Mark 22.
Replaced by F11GFF.

Old: CALL F11GCF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,ITS,SIGERR,IFAIL)
New: CALL F11GFF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,ITS,SIGERR, &

WORK,LWORK,IFAIL)

F11GFF contains two additional arguments as follows:

WORK LWORKð Þ – real array.

LWORK – integer.

See the routine document for further information.

G01 – Simple Calculations on Statistical Data

G01AAF

Withdrawn at Mark 26.
Replaced by G01ATF.

Withdrawn because on output, additional information was needed to allow large datasets to be
processed in blocks and the results combined through a call to G01AUF. This information is returned in
RCOMM.

Old:
CALL G01AAF(N,X,IWT,WT,XMEAN,S2,S3,S4,XMIN,XMAX,WTSUM,IFAIL)

New:
PN = 0
CALL G01ATF(N,X,IWT,WT,PN,XMEAN,S2,S3,S4,XMIN,XMAX,RCOMM,IFAIL)
IWT = PN
WTSUM = RCOMM(1)

G05 – Random Number Generators

G05CAF

Withdrawn at Mark 22.
Replaced by G05SAF.

Old: DO 20 I = 1, N
X(I) = G05CAF(X(I))

20 CONTINUE
New: CALL G05SAF(N,STATE,X,IFAIL)

The integer array STATE in the call to G05SAF contains information on the base generator being used.
This array must have been initialized prior to calling G05SAF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SAF is
likely to be different from those produced by G05CAF.
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G05CBF

Withdrawn at Mark 22.
Replaced by G05KFF.

Old: CALL G05CBF(I)
New: LSEED = 1

SEED(1) = I
GENID = 1
SUBID = 1
CALL G05KFF(GENID,SUBID,SEED,LSEED,STATE,LSTATE,IFAIL)

The integer array STATE in the call to G05KFF contains information on the base generator being used.
The base generator is chosen via the integer arguments GENID and SUBID. The required length of the
array STATE depends on the base generator chosen. Due to changes in the underlying code a sequence
of values produced by using a random number generator initialized via a call to G05KFF is likely to be
different from a sequence produced by a generator initialized by G05CBF, even if the same value for I
is used.

G05CCF

Withdrawn at Mark 22.
Replaced by G05KGF.

Old: CALL G05CCF
New: GENID = 1

SUBID = 1
CALL G05KGF(GENID,SUBID,STATE,LSTATE,IFAIL)

The integer array STATE in the call to G05KGF contains information on the base generator being used.
The base generator is chosen via the integer arguments GENID and SUBID. The required length of the
array STATE depends on the base generator chosen.

G05CFF

Withdrawn at Mark 22.
Replaced by F06DFF.

Old: CALL G05CFF(IA,NI,XA,NX,IFAIL)
New: LSTATE = STATE(1)

CALL F06DFF(LSTATE,STATE,1,CSTATE,1)

The state of the base generator for the group of routines G05KFF, G05KGF, G05KHF, G05KJF,
G05NCF, G05NDF, G05PDF–G05PZF, G05RCF–G05RZF, G05S and G05T can be saved by simply
creating a local copy of the array STATE. The first element of the STATE array contains the number of
elements that are used by the random number generating routines, therefore either this number of
elements can be copied, or the whole array (as defined in the calling program).

G05CGF

Withdrawn at Mark 22.
Replaced by F06DFF.

Old: CALL G05CGF(IA,NI,XA,NX,IFAIL)
New: LSTATE = CSTATE(1)

CALL F06DFF(LSTATE,CSTATE,1,STATE,1)

The state of the base generator for the group of routines G05KFF, G05KGF, G05KHF, G05KJF,
G05NCF, G05NDF, G05PDF–G05PZF, G05RCF–G05RZF, G05S and G05T can be restored by simply
copying back the previously saved copy of the STATE array. The first element of the STATE array
contains the number of elements that are used by the random number generating routines, therefore
either this number of elements can be copied, or the whole array (as defined in the calling program).
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G05DAF

Withdrawn at Mark 22.
Replaced by G05SQF.

Old: DO 10 I = 1, N
X(I) = G05DAF(AA,BB)

10 CONTINUE
New: A = MIN(AA,BB)

B = MAX(AA,BB)
IFAIL = 0
CALL G05SQF(N,A,B,STATE,X,IFAIL)

The old routine G05DAF returns a single variate at a time, whereas the new routine G05SQF returns a
vector of N values in one go. In G05SQF the minimum value must be held in the argument A and the
maximum in argument B, therefore A < B. This was not the case for the equivalent arguments in
G05DAF.

The integer array STATE in the call to G05SQF contains information on the base generator being used.
This array must have been initialized prior to calling G05SQF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SQF is
likely to be different from those produced by G05DAF.

G05DBF

Withdrawn at Mark 22.
Replaced by G05SFF.

Old: DO 10 I = 1, N
X(I) = G05DBF(AA)

10 CONTINUE
New: A = ABS(AA)

IFAIL = 0
CALL G05SFF(N,A,STATE,X,IFAIL)

The old routine G05DBF returns a single variate at a time, whereas the new routine G05SFF returns a
vector of N values in one go. In G05SFF argument A must be non-negative, this was not the case for
the equivalent argument in G05DBF.

The integer array STATE in the call to G05SFF contains information on the base generator being used.
This array must have been initialized prior to calling G05SFF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.
Due to changes in the underlying code the sequence of values produced by G05SFF is likely to be
different from those produced by G05DBF.

G05DCF

Withdrawn at Mark 22.
Replaced by G05SLF.

Old: DO 10 I = 1, N
X(I) = G05DCF(A,BB)

10 CONTINUE
New: B = ABS(BB)

IFAIL = 0
CALL G05SLF(N,A,B,STATE,X,IFAIL)

The old routine G05DCF returns a single variate at a time, whereas the new routine G05SLF returns a
vector of N values in one go. In G05SLF the spread (argument A) must be positive, this was not the
case for the equivalent arguments in G05DCF.

The integer array STATE in the call to G05SLF contains information on the base generator being used.
This array must have been initialized prior to calling G05SLF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SLF is
likely to be different from those produced by G05DCF.
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G05DDF

Withdrawn at Mark 22.
Replaced by G05SKF.

Old: DO 10 I = 1, N
X(I) = G05DDF(XMU,SD)

10 CONTINUE
New: VAR = SD**2

IFAIL = 0
CALL G05SKF(N,XMU,VAR,STATE,X,IFAIL)

The old routine G05DDF returns a single variate at a time, whereas the new routine G05SKF returns a
vector of N values in one go. G05SKF expects the variance of the Normal distribution (argument VAR),
compared to G05DDF which expected the standard deviation.

The integer array STATE in the call to G05SKF contains information on the base generator being used.
This array must have been initialized prior to calling G05SKF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SKF is
likely to be different from those produced by G05DDF.

G05DEF

Withdrawn at Mark 22.
Replaced by G05SMF.

Old: DO 10 I = 1, N
X(I) = G05DEF(XMU,SD)

10 CONTINUE
New: VAR = SD**2

IFAIL = 0
CALL G05SMF(N,XMU,VAR,STATE,X,IFAIL)

The old routine G05DEF returns a single variate at a time, whereas the new routine G05SMF returns a
vector of N values in one go. G05SMF expects the variance of the corresponding Normal distribution
(argument VAR), compared to G05DEF which expected the standard deviation.

The integer array STATE in the call to G05SMF contains information on the base generator being used.
This array must have been initialized prior to calling G05SMF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SMF is
likely to be different from those produced by G05DEF.

G05DFF

Withdrawn at Mark 22.
Replaced by G05SCF.

Old: DO 10 I = 1, N
X(I) = G05DFF(XMED,B)

10 CONTINUE
New: SEMIQR = ABS(B)

IFAIL = 0
CALL G05SCF(N,XMED,SEMIQR,STATE,X,IFAIL)

The old routine G05DFF returns a single variate at a time, whereas the new routine G05SCF returns a
vector of N values in one go. G05SCF expects the semi-interquartile range (argument SEMIQR) to be
non-negative, this was not the case for the equivalent argument in G05DFF.

The integer array STATE in the call to G05SCF contains information on the base generator being used.
This array must have been initialized prior to calling G05SCF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SCF is
likely to be different from those produced by G05DFF.
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G05DHF

Withdrawn at Mark 22.
Replaced by G05SDF.

Old: DO 10 I = 1, N
X(I) = G05DHF(DF,IFAIL)

10 CONTINUE
New: CALL G05SDF(N,DF,STATE,X,IFAIL)

The old routine G05DHF returns a single variate at a time, whereas the new routine G05SDF returns a
vector of N values in one go.

The integer array STATE in the call to G05SDF contains information on the base generator being used.
This array must have been initialized prior to calling G05SDF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SDF is
likely to be different from those produced by G05DHF.

G05DJF

Withdrawn at Mark 22.
Replaced by G05SNF.

Old: DO 10 I = 1, N
X(I) = G05DJF(DF,IFAIL)

10 CONTINUE
New: CALL G05SNF(N,DF,STATE,X,IFAIL)

The old routine G05DJF returns a single variate at a time, whereas the new routine G05SNF returns a
vector of N values in one go.

The integer array STATE in the call to G05SNF contains information on the base generator being used.
This array must have been initialized prior to calling G05SNF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SNF is
likely to be different from those produced by G05DJF.

G05DKF

Withdrawn at Mark 22.
Replaced by G05SHF.

Old: DO 10 I = 1, N
X(I) = G05DKF(DF1,DF2,IFAIL)

10 CONTINUE
New: CALL G05SHF(N,DF1,DF2,STATE,X,IFAIL)

The old routine G05DKF returns a single variate at a time, whereas the new routine G05SHF returns a
vector of N values in one go.

The integer array STATE in the call to G05SHF contains information on the base generator being used.
This array must have been initialized prior to calling G05SHF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SHF is
likely to be different from those produced by G05DKF.

G05DPF

Withdrawn at Mark 22.
Replaced by G05SSF.

Old: DO 10 I = 1, N
X(I) = G05DPF(A,B,IFAIL)

10 CONTINUE
New: CALL G05SSF(N,A,B,STATE,X,IFAIL)
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The old routine G05DPF returns a single variate at a time, whereas the new routine G05SSF returns a
vector of N values in one go.

The integer array STATE in the call to G05SSF contains information on the base generator being used.
This array must have been initialized prior to calling G05SSF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.
Due to changes in the underlying code the sequence of values produced by G05SSF is likely to be
different from those produced by G05DPF.

G05DRF

Withdrawn at Mark 22.
Replaced by G05TKF.

Old: DO 10 I = 1, N
X(I) = G05DRF(LAMDA,IFAIL)

10 CONTINUE
New: MODE = 3

CALL G05TJF(MODE,N,LAMBDA,R,LR,STATE,X,IFAIL)

The old routine G05DRF returns a single variate at a time, whereas the new routine G05TJF returns a
vector of N values in one go. For efficiency, the new routine can make use of a reference vector, R. If,
as in this case, the integer argument MODE is set to 3, the real reference vector R is not referenced, and
its length, LR, need only be at least one.

The integer array STATE in the call to G05TJF contains information on the base generator being used.
This array must have been initialized prior to calling G05TJF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.
Due to changes in the underlying code the sequence of values produced by G05TJF is likely to be
different from those produced by G05DRF.

G05DYF

Withdrawn at Mark 22.
Replaced by G05TLF.

Old: DO 10 I = 1, N
X(I) = G05DYF(AA,BB)

10 CONTINUE
New: IFAIL = 0

A = MIN(AA,BB)
B = MAX(AA,BB)
CALL G05TLF(N,A,B,STATE,X,IFAIL)

The old routine G05DYF returns a single variate at a time, whereas the new routine G05TLF returns a
vector of N values in one go. In G05TLF the minimum value must be held in the argument A and the
maximum in argument B, therefore A � B. This was not the case for the equivalent arguments in
G05DYF.

The integer array STATE in the call to G05TLF contains information on the base generator being used.
This array must have been initialized prior to calling G05TLF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05TLF is
likely to be different from those produced by G05DYF.

G05DZF

Withdrawn at Mark 22.
Replaced by G05TBF.

Old: DO 20 I = 1, N
X(I) = G05DZF(PP)

20 CONTINUE
New: P = MAX(0.0D0,MIN(PP,1.0D0))

IFAIL = 0
CALL G05TBF(N,P,STATE,X,IFAIL)
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The old routine G05DZF returns a single variate at a time, whereas the new routine G05TBF returns a
vector of N values in one go. The real argument P in G05TBF must not be less than zero or greater than
one, this was not the case for the equivalent argument in G05DZF.

The integer array STATE in the call to G05TBF contains information on the base generator being used.
This array must have been initialized prior to calling G05TBF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05TBF is
likely to be different from those produced by G05DZF.

G05EAF

Withdrawn at Mark 22.
Replaced by G05RZF.

Old: CALL G05EAF(XMU,M,C,LDC,EPS,R1,LR1,IFAIL)
New: MODE = 0

CALL G05RZF(MODE,N,M,XMU,C,LDC,R,LR,STATE,X,LDX,IFAIL)

The old routine G05EAF sets up a reference vector for use by G05EZF. The functionality of both these
routines has been combined into the single new routine G05RZF. Setting MODE ¼ 0 in the call to
G05RZF only sets up the real reference vector R and hence mimics the functionality of G05EAF.

The length of the real reference vector, R, in G05RZF must be at least M� Mþ 1ð Þ þ 1. In contrast to
the equivalent argument in G05EAF, this array must be allocated in the calling program.

G05EBF

Withdrawn at Mark 22.
Replaced by G05TLF.

There is no direct replacement for routine G05EBF. G05EBF sets up a reference vector for use by
G05EYF, this reference vector is no longer required. The replacement routine for G05EYF is G05TLF.

G05ECF

Withdrawn at Mark 22.
Replaced by G05TJF.

Old: CALL G05ECF(LAMBDA,R1,LR1,IFAIL)
DO 10 I = 1, N

X(I) = G05EYF(R1,LR1)
10 CONTINUE

New: MODE = 2
CALL G05TJF(MODE,N,LAMBDA,R,LR,STATE,X,IFAIL)

The old routine G05ECF sets up a reference vector for use by G05EYF. The replacement routine
G05TJF is now used to both set up a reference vector and generate the required variates. Setting
MODE ¼ 0 in the call to G05TJF sets up the real reference vector R and hence mimics the functionality
of G05ECF. Setting MODE ¼ 1 generates a series of variates from a reference vector mimicking the
functionality of G05EYF for this particular distribution. Setting MODE ¼ 2 initializes the reference
vector and generates the variates in one go.

The routine G05EYF returns a single variate at a time, whereas the new routine G05TJF returns a
vector of N values in one go.

The length of the real reference vector, R, in G05TJF, must be allocated in the calling program in
contrast to the equivalent argument in G05ECF, see the documentation for more details.

The integer array STATE in the call to G05TJF contains information on the base generator being used.
This array must have been initialized prior to calling G05TJF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.
Due to changes in the underlying code the sequence of values produced by G05TJF is likely to be
different from those produced by a combination of G05ECF and G05EYF.
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G05EDF

Withdrawn at Mark 22.
Replaced by G05TAF.

Old: CALL G05EDF(M,P,R1,LR1,IFAIL)
DO 10 I = 1, N

X(I) = G05EYF(R1,LR1)
10 CONTINUE

New: MODE = 2
CALL G05TAF(MODE,N,M,P,R,LR,STATE,X,IFAIL)

The old routine G05EDF sets up a reference vector for use by G05EYF. The replacement routine
G05TAF is now used to both set up a reference vector and generate the required variates. Setting
MODE ¼ 0 in the call to G05TAF sets up the real reference vector R and hence mimics the
functionality of G05EDF. Setting MODE ¼ 1 generates a series of variates from a reference vector
mimicking the functionality of G05EYF for this particular distribution. Setting MODE ¼ 2 initializes
the reference vector and generates the variates in one go.

The routine G05EYF returns a single variate at a time, whereas the new routine G05TAF returns a
vector of N values in one go.

The length of the real reference vector, R, in G05TAF, needs to be a different length from the
equivalent argument in G05EDF, see the documentation for more details.

The integer array STATE in the call to G05TAF contains information on the base generator being used.
This array must have been initialized prior to calling G05TAF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05TAF is
likely to be different from those produced by a combination of G05EDF and G05EYF.

G05EEF

Withdrawn at Mark 22.
Replaced by G05THF.

Old: CALL G05EEF(M,P,R1,LR1,IFAIL)
DO 10 I = 1, N

X(I) = G05EYF(R1,LR1)
10 CONTINUE

New: MODE = 2
CALL G05THF(MODE,N,M,P,R,LR,STATE,X,IFAIL)

The old routine G05EEF sets up a reference vector for use by G05EYF. The replacement routine
G05THF is now used to both set up a reference vector and generate the required variates. Setting
MODE ¼ 0 in the call to G05THF sets up the real reference vector R and hence mimics the
functionality of G05EEF. Setting MODE ¼ 1 generates a series of variates from a reference vector
mimicking the functionality of G05EYF for this particular distribution. Setting MODE ¼ 2 initializes
the reference vector and generates the variates in one go.

The routine G05EYF returns a single variate at a time, whereas the new routine G05THF returns a
vector of N values in one go.

The length of the real reference vector, R, in G05THF, needs to be a different length from the
equivalent argument in G05EEF, see the documentation for G05THF for more details.

The integer array STATE in the call to G05THF contains information on the base generator being used.
This array must have been initialized prior to calling G05THF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05THF is
likely to be different from those produced by a combination of G05EEF and G05EYF.
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G05EFF

Withdrawn at Mark 22.
Replaced by G05TEF.

Old: CALL G05EFF(NS,M,NP,R1,LR1,IFAIL)
DO 10 I = 1, N

X(I) = G05EYF(R1,LR1)
10 CONTINUE

New: MODE = 2
CALL G05TEF(MODE,N,NS,NP,M,R,LR,STATE,X,IFAIL)

The old routine G05EFF sets up a reference vector for use by G05EYF. The replacement routine
G05TEF is now used to both set up a reference vector and generate the required variates. Setting
MODE ¼ 0 in the call to G05TEF sets up the real reference vector R and hence mimics the
functionality of G05EFF. Setting MODE ¼ 1 generates a series of variates from a reference vector
mimicking the functionality of G05EYF for this particular distribution. Setting MODE ¼ 2 initializes
the reference vector and generates the variates in one go.

The routine G05EYF returns a single variate at a time, whereas the new routine G05TEF returns a
vector of N values in one go.

The length of the real reference vector, R, in G05TEF, needs to be a different length from the
equivalent argument in G05EFF, see the documentation for more details.

The integer array STATE in the call to G05TEF contains information on the base generator being used.
This array must have been initialized prior to calling G05TEF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05TEF is
likely to be different from those produced by a combination of G05EFF and G05EYF.

G05EGF

Withdrawn at Mark 22.
Replaced by G05PHF.

Old: CALL G05EGF(E,A,NA,B,NB,R,NR,VAR,IFAIL)
New: AVAR = B(1)**2

IQ = NB - 1
IF (AVAR.GT.0.0D0) THEN

DO 10 I = 1, IQ
THETA(I) = -B(I+1)/B(1)

10 CONTINUE
ELSE

DO 20 I = 1, IQ
THETA(I) = 0.0D0

20 CONTINUE
END IF
MODE = 0
CALL G05PHF(MODE,N,E,NA,A,IQ,THETA,AVAR,R,LR,STATE,VAR,X,IFAIL)

The real vector THETA must be of length at least IQ ¼ NB� 1.

The old routine G05EGF sets up a reference vector for use by G05EWF. The replacement routine
G05PHF is now used to both set up a reference vector and generate the required variates. Setting
MODE ¼ 0 in the call to G05PHF sets up the real reference vector R and hence mimics the
functionality of G05EGF. When MODE ¼ 0, the integer array STATE in the call to G05PHF need not
be set.

G05EHF

Withdrawn at Mark 22.
Replaced by G05NCF.

Old: CALL G05EHF(INDEX,N,IFAIL)
New: CALL G05NCF(INDEX,N,STATE,IFAIL)
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The integer array STATE in the call to G05NCF contains information on the base generator being used.
This array must have been initialized prior to calling G05NCF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05NCF is
likely to be different from those produced by G05EHF.

G05EJF

Withdrawn at Mark 22.
Replaced by G05NDF.

Old: CALL G05EJF(IA,N,IZ,M,IFAIL)
New: CALL G05NDF(IA,N,IZ,M,STATE,IFAIL)

The integer array STATE in the call to G05NDF contains information on the base generator being used.
This array must have been initialized prior to calling G05NDF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05NDF is
likely to be different from those produced by G05EJF.

G05EWF

Withdrawn at Mark 22.
Replaced by G05PHF.

Old: CALL G05EGF(E,A,NA,B,NB,R,NR,VAR,IFAIL)
DO 10 I = 1, N

X(I) = G05EWF(R,NR,IFAIL)
10 CONTINUE

New: AVAR = B(1)**2
IQ = NB - 1
IF (AVAR.GT.0.0D0) THEN

DO 10 I = 1, IQ
THETA(I) = -B(I+1)/B(1)

10 CONTINUE
ELSE

DO 20 I = 1, IQ
THETA(I) = 0.0D0

20 CONTINUE
END IF
MODE = 2
CALL G05PHF(MODE,N,E,NA,A,NB-1,THETA,AVAR,VAR,R,LR,STATE,X,IFAIL)

The real vector THETA must be of length at least IQ ¼ NB� 1.

The old routine G05EGF sets up a reference vector for use by G05EWF. The replacement routine
G05PHF is now used to both set up a reference vector and generate the required variates. Setting the
integer argument MODE to 0 in the call to G05PHF sets up the real reference vector R and hence
mimics the functionality of G05EGF. Setting MODE to 1 generates a series of variates from a reference
vector mimicking the functionality of G05EWF. Setting MODE to 2 initializes the reference vector and
generates the variates in one go.

The integer array STATE in the call to G05PHF contains information on the base generator being used.
This array must have been initialized prior to calling G05PHF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05PHF is
likely to be different from those produced by G05EGF.
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G05EXF

Withdrawn at Mark 22.
Replaced by G05TDF.

Old: CALL G05EXF(P,NP,IP1,ITYPE,R1,LR1,IFAIL)
DO 10 I = 1, N

X(I) = G05EYF(R1,LR1)
10 CONTINUE

New: MODE = 2
CALL G05TDF(MODE,N,P,NP,IP1,ITYPE,R,LR,STATE,X,IFAIL)

The old routine G05EXF sets up a reference vector for use by G05EYF. The replacement routine
G05TDF is now used to both set up a reference vector and generate the required variates. Setting
MODE ¼ 0 in the call to G05TDF sets up the real reference vector R and hence mimics the
functionality of G05EXF. Setting MODE ¼ 1 generates a series of variates from a reference vector
mimicking the functionality of G05EYF for this particular distribution. Setting MODE ¼ 2 initializes
the reference vector and generates the variates in one go.

The routine G05EYF returns a single variate at a time, whereas the new routine G05TDF returns a
vector of N values in one go.

The length of the real reference vector, R, in G05TDF must be allocated in the calling program in
contrast to the equivalent argument in G05EXF, see the documentation for more details.

The integer array STATE in the call to G05TDF contains information on the base generator being used.
This array must have been initialized prior to calling G05TDF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05TDF is
likely to be different from those produced by a combination of G05EXF and G05EYF.

G05EYF

Withdrawn at Mark 22.
Replaced by G05TDF.

There is no direct replacement routine for G05EYF.

G05EYF is designed to generate random draws from a distribution defined by a reference vector. These
reference vectors are created by other routines in Chapter G05, for example G05EBF, which have
themselves been superseded. In order to replace a call to G05EYF you must identify which NAG
routine generated the reference vector being used and look up its replacement. For example, to replace a
call to G05EYF preceded by a call to G05EBF, as in:

CALL G05EBF(M,IB,R,NR,IFAIL)
X = G05EYF(R,NR)

you would need to look at the replacement routine for G05EBF.

G05EZF

Withdrawn at Mark 22.
Replaced by G05RZF.

Old: CALL G05EAF(XMU,N,C,LDC,EPS,R1,LR1,IFAIL)
DO 20 I = 1, N

CALL G05EZF(CX,M,R,NR,IFAIL)
DO 30 J = 1, M

X(I,J) = CX(J)
30 CONTINUE
20 CONTINUE

New: MODE = 2
CALL G05RZF(MODE,N,M,XMU,C,LDC,R,LR,STATE,X,LDX,IFAIL)

The old routine G05EAF sets up a reference vector for use by G05EZF. The functionality of both these
routines has been combined into the single new routine G05RZF. Setting MODE ¼ 2 in the call to
G05RZF sets up the real reference vector R and generates the draws from the multivariate Normal
distribution in one go.
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The old routine G05EZF returns a single (M-dimensional vector) draw from the multivariate Normal
distribution at a time, whereas the new routine G05RZF returns an N by M matrix of N draws in one
go.

The integer array STATE in the call to G05RZF contains information on the base generator being used.
This array must have been initialized prior to calling G05RZF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05RZF is
likely to be different from those produced by G05EZF.

G05FAF

Withdrawn at Mark 22.
Replaced by G05SQF.

Old: CALL G05FAF(AA,BB,N,X)
New: A = MIN(AA,BB)

B = MAX(AA,BB)
IFAIL = 0
CALL G05SQF(N,A,B,STATE,X,IFAIL)

In G05SQF the minimum value must be held in the argument A and the maximum in argument B,
therefore A � B. This was not the case for the equivalent arguments in G05FAF.

The integer array STATE in the call to G05SQF contains information on the base generator being used.
This array must have been initialized prior to calling G05SQF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SQF is
likely to be different from those produced by G05FAF.

G05FBF

Withdrawn at Mark 22.
Replaced by G05SFF.

Old: CALL G05FBF(AA,N,X)
New: A = ABS(AA)

IFAIL = 0
CALL G05SFF(N,A,STATE,X,IFAIL)

In G05SFF argument A must be non-negative, this was not the case for the equivalent argument in
G05FBF.

The integer array STATE in the call to G05SFF contains information on the base generator being used.
This array must have been initialized prior to calling G05SFF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.
Due to changes in the underlying code the sequence of values produced by G05SFF is likely to be
different from those produced by G05FBF.

G05FDF

Withdrawn at Mark 22.
Replaced by G05SKF.

Old: CALL G05FDF(XMU,SD,N,X)
New: VAR = SD**2

IFAIL = 0
CALL G05SKF(N,XMU,VAR,STATE,X,IFAIL)

G05SKF expects the variance of the Normal distribution (argument VAR), compared to G05FDF which
expected the standard deviation.

The integer array STATE in the call to G05SKF contains information on the base generator being used.
This array must have been initialized prior to calling G05SKF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
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initialization. Due to changes in the underlying code the sequence of values produced by G05SKF is
likely to be different from those produced by G05FDF.

G05FEF

Withdrawn at Mark 22.
Replaced by G05SBF.

Old: CALL G05FEF(A,B,N,X,IFAIL)
New: CALL G05SBF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SBF contains information on the base generator being used.
This array must have been initialized prior to calling G05SBF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SBF is
likely to be different from those produced by G05FEF.

G05FFF

Withdrawn at Mark 22.
Replaced by G05SJF.

Old: CALL G05FFF(A,B,N,X,IFAIL)
New: CALL G05SJF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SJF contains information on the base generator being used.
This array must have been initialized prior to calling G05SJF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.
Due to changes in the underlying code the sequence of values produced by G05SJF is likely to be
different from those produced by G05FFF.

G05FSF

Withdrawn at Mark 22.
Replaced by G05SRF.

Old: CALL G05FSF(VK,N,X,IFAIL)
New: CALL G05SRF(N,VK,STATE,X,IFAIL)

The integer array STATE in the call to G05SRF contains information on the base generator being used.
This array must have been initialized prior to calling G05SRF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05SRF is
likely to be different from those produced by G05FSF.

G05GAF

Withdrawn at Mark 22.
Replaced by G05PXF.

Old: CALL G05GAF(SIDE,INIT,M,N,A,LDA,WK,IFAIL)
New: CALL G05PXF(SIDE,INIT,M,N,STATE,A,LDA,IFAIL)

The integer array STATE in the call to G05PXF contains information on the base generator being used.
This array must have been initialized prior to calling G05PXF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05PXF is
likely to be different from those produced by G05GAF.

G05GBF

Withdrawn at Mark 22.
Replaced by G05PYF.

Old: CALL G05GBF(N,D,C,LDC,EPS,WK,IFAIL)
New: CALL G05PYF(N,D,EPS,STATE,C,LDC,IFAIL)
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The integer array STATE in the call to G05PYF contains information on the base generator being used.
This array must have been initialized prior to calling G05PYF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05PYF is
likely to be different from those produced by G05GBF.

G05HDF

Withdrawn at Mark 22.
Replaced by G05PJF.

Old: CALL G05HDF(MODE,K,IP,IQ,MEAN,PAR,LPAR,QQ,LDQQ,N,W,REF,LREF, &
IWORK,LIWORK,IFAIL)

New: IF (MODE.EQ.‘S’) THEN
IMODE = 0

ELSE IF (MODE.EQ.‘C’) THEN
IMODE = 1

ELSE IF (MODE.EQ.‘R’) THEN
IMODE = 3

END IF
LL = 0
DO 30 L = 1, IP

DO 20 I = 1, K
DO 10 J = 1, K

LL = LL + 1
PHI(I,J,L) = PAR(LL)

10 CONTINUE
20 CONTINUE
30 CONTINUE

DO 60 L = 1, IQ-1
DO 50 I = 1, K

DO 40 J = 1, K
LL = LL + 1
THETA(I,J,L) = PAR(LL)

40 CONTINUE
50 CONTINUE
60 CONTINUE

IF (MEAN.EQ.‘M’) THEN
DO 70 I = 1, K

LL = LL + 1
XMEAN(I) = PAR(LL)

70 CONTINUE
ELSE

DO 80 I = 1, K
XMEAN(I) = 0.0D0

80 CONTINUE
END IF
LDW = N
CALL G05PJF(IMODE,N,K,XMEAN,IP,PHI,IQ,THETA,QQ,LDQQ,REF,LREF, &

STATE,W,LDW,IWORK,LIWORK,IFAIL)

The integer argument IMODE should be set to 0, 1 or 3 in place of the argument MODE having
settings of `S', `C' or `R' respectively. The real array PHI should have length at least
max 1; IP� K � Kð Þð Þ; if dimensioned as PHI K;K; IPð Þ (as in the above example) then PHI i; j; lð Þ
will contain the element PAR l� 1ð Þ � k� kþ i� 1ð Þ � kþ jð Þ. The real array THETA should have
length at least max 1; IQ� K � Kð Þð Þ; if dimensioned as THETA K;K; IQð Þ (as in the above example)
then THETA i; j; lð Þ will contain the element PAR IP� k� kþ l� 1ð Þ � k� kþ i� 1ð Þ � kþ jð Þ. The
real array XMEAN should have length at least K; if MEAN ¼ M then XMEAN ið Þ will contain the
element PAR IPþ IQ� k� kþ ið Þ, otherwise XMEAN should contain an array of zero values.

The integer array STATE in the call to G05PJF contains information on the base generator being used.
This array must have been initialized prior to calling G05PJF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.
Due to changes in the underlying code the sequence of values produced by G05PJF is likely to be
different from those produced by G05HDF.
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G05HKF

Withdrawn at Mark 24.
Replaced by G05PDF.

Old: CALL G05HKF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,RVEC,IGEN, &
ISEED,RWSAV,IFAIL)

New: CALL G05PDF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,R,LR,STATE, &
IFAIL)

The integer array STATE in the call to G05PDF contains information on the base generator being used.
This array must have been initialized prior to calling G05PDF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05PDF is
likely to be different from those produced by G05HKF.

G05HLF

Withdrawn at Mark 24.
Replaced by G05PEF.

Old: CALL G05HLF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,RVEC,IGEN, &
ISEED,RWSAV,IFAIL)

New: CALL G05PEF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,R,LR,STATE, &
IFAIL)

The integer array STATE in the call to G05PEF contains information on the base generator being used.
This array must have been initialized prior to calling G05PEF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by G05PEF is
likely to be different from those produced by G05HLF.

G05HMF

Withdrawn at Mark 24.
Replaced by G05PFF.

Old: CALL G05HMF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,RVEC,IGEN, &
ISEED,RWSAV,IFAIL)

New: CALL G05PFF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,R,LR,STATE, &
IFAIL)

The integer array STATE in the call to G05PFF contains information on the base generator being used.
This array must have been initialized prior to calling G05PFF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.
Due to changes in the underlying code the sequence of values produced by G05PFF is likely to be
different from those produced by G05HMF.

G05HNF

Withdrawn at Mark 24.
Replaced by G05PGF.

Old: CALL G05HNF(DIST,NUM,IP,IQ,THETA,DF,HT,ET,FCALL,RVEC,IGEN,ISEED, &
RWSAV,IFAIL)

New: CALL G05PGF(DIST,NUM,IP,IQ,THETA,DF,HT,ET,FCALL,RVEC,STATE, &
IFAIL)

The integer array STATE in the call to G05PGF contains information on the base generator being used.
This array must have been initialized prior to calling G05PGF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.
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G05KAF

Withdrawn at Mark 24.
Replaced by G05SAF.

Old: DO 20 I = 1, N
X(I) = G05KAF(IGEN,ISEED)

20 CONTINUE
New: CALL G05SAF(N,STATE,X,IFAIL)

The old routine G05KAF returns a single variate at a time, whereas the new routine G05SAF returns a
vector of N values in one go.

The integer array STATE in the call to G05SAF contains information on the base generator being used.
This array must have been initialized prior to calling G05SAF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05KBF

Withdrawn at Mark 24.
Replaced by G05KFF.

Old: G05KBF(IGEN,ISEED)
New: IF (IGEN.EQ.0) THEN

CALL G05KFF(1,1,ISEED,LSEED,STATE,LSTATE,IFAIL)
ELSE

CALL G05KFF(2,IGEN,ISEED,LSEED,STATE,LSTATE,IFAIL)
END IF

G05KCF

Withdrawn at Mark 24.
Replaced by G05KGF.

Old: CALL G05KCF(IGEN,ISEED)
New: IF (IGEN.EQ.0) THEN

CALL G05KGF(1,1,STATE,LSTATE,IFAIL)
ELSE

CALL G05KGF(2,IGEN,STATE,LSTATE,IFAIL)
END IF

G05KEF

Withdrawn at Mark 24.
Replaced by G05TBF.

Old: DO 20 I = 1, N
X(I) = G05KEF(P,IGEN,ISEED,IFAIL)

20 CONTINUE
New: CALL G05TBF(N,P,STATE,X,IFAIL)

The old routine G05KEF returns a single variate at a time, whereas the new routine G05TBF returns a
vector of N values in one go.

The integer array STATE in the call to G05TBF contains information on the base generator being used.
This array must have been initialized prior to calling G05TBF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LAF

Withdrawn at Mark 24.
Replaced by G05SKF.

Old: CALL G05LAF(XMU,VAR,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SKF(N,XMU,VAR,STATE,X,IFAIL)
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The integer array STATE in the call to G05SKF contains information on the base generator being used.
This array must have been initialized prior to calling G05SKF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LBF

Withdrawn at Mark 24.
Replaced by G05SNF.

Old: CALL G05LBF(DF,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SNF(N,DF,STATE,X,IFAIL)

The integer array STATE in the call to G05SNF contains information on the base generator being used.
This array must have been initialized prior to calling G05SNF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LCF

Withdrawn at Mark 24.
Replaced by G05SDF.

Old: CALL G05LCF(DF,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SDF(N,DF,STATE,X,IFAIL)

The integer array STATE in the call to G05SDF contains information on the base generator being used.
This array must have been initialized prior to calling G05SDF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LDF

Withdrawn at Mark 24.
Replaced by G05SHF.

Old: CALL G05LDF(DF1,DF2,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SHF(N,DF1,DF2,STATE,X,IFAIL)

The integer array STATE in the call to G05SHF contains information on the base generator being used.
This array must have been initialized prior to calling G05SHF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LEF

Withdrawn at Mark 24.
Replaced by G05SBF.

Old: CALL G05LEF(A,B,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SBF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SBF contains information on the base generator being used.
This array must have been initialized prior to calling G05SBF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LFF

Withdrawn at Mark 24.
Replaced by G05SJF.

Old: CALL G05LFF(A,B,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SJF(N,A,B,STATE,X,IFAIL)
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The integer array STATE in the call to G05SJF contains information on the base generator being used.
This array must have been initialized prior to calling G05SJF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.

G05LGF

Withdrawn at Mark 24.
Replaced by G05SQF.

Old: CALL G05LGF(A,B,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SQF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SQF contains information on the base generator being used.
This array must have been initialized prior to calling G05SQF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LHF

Withdrawn at Mark 24.
Replaced by G05SPF.

Old: CALL G05LHF(XMIN,XMAX,XMED,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SPF(N,XMIN,XMED,XMAX,STATE,X,IFAIL)

The integer array STATE in the call to G05SPF contains information on the base generator being used.
This array must have been initialized prior to calling G05SPF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.

G05LJF

Withdrawn at Mark 24.
Replaced by G05SFF.

Old: CALL G05LJF(A,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SFF(N,A,STATE,X,IFAIL)

The integer array STATE in the call to G05SFF contains information on the base generator being used.
This array must have been initialized prior to calling G05SFF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.

G05LKF

Withdrawn at Mark 24.
Replaced by G05SMF.

Old: CALL G05LKF(XMU,VAR,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SMF(N,XMU,VAR,STATE,X,IFAIL)

The integer array STATE in the call to G05SMF contains information on the base generator being used.
This array must have been initialized prior to calling G05SMF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LLF

Withdrawn at Mark 24.
Replaced by G05SJF.

Old: CALL G05LLF(XMED,SEMIQR,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SCF(N,XMED,SEMIQR,STATE,X,IFAIL)

The integer array STATE in the call to G05SCF contains information on the base generator being used.
This array must have been initialized prior to calling G05SCF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.
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G05LMF

Withdrawn at Mark 24.
Replaced by G05SSF.

Old: CALL G05LMF(A,B,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SSF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SSF contains information on the base generator being used.
This array must have been initialized prior to calling G05SSF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.

G05LNF

Withdrawn at Mark 24.
Replaced by G05SLF.

Old: CALL G05LNF(A,B,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SLF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SLF contains information on the base generator being used.
This array must have been initialized prior to calling G05SLF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LPF

Withdrawn at Mark 24.
Replaced by G05SRF.

Old: CALL G05LPF(VK,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SRF(N,VK,STATE,X,IFAIL)

The integer array STATE in the call to G05SRF contains information on the base generator being used.
This array must have been initialized prior to calling G05SRF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LQF

Withdrawn at Mark 24.
Replaced by G05SGF.

Old: CALL G05LQF(NMIX,A,WGT,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SGF(N,NMIX,A,WGT,STATE,X,IFAIL)

The integer array STATE in the call to G05SGF contains information on the base generator being used.
This array must have been initialized prior to calling G05SGF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LXF

Withdrawn at Mark 24.
Replaced by G05RYF.

Old: CALL G05LXF(MODE,DF,M,XMU,C,LDC,N,X,LDX,IGEN,ISEED,R,LR,IFAIL)
New: IF (MODE == 0) THEN

NMODE = 1
ELSE IF (MODE == 1) THEN

NMODE = 0
ELSE

NMODE = MODE
END IF
CALL G05RYF(NMODE,N,DF,M,XMU,C,LDC,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05RYF contains information on the base generator being used.
This array must have been initialized prior to calling G05RYF with a call to either G05KFF or
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G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LYF

Withdrawn at Mark 24.
Replaced by G05RZF.

Old: G05LYF(MODE,M,XMU,C,LDC,N,X,LDX,IGEN,ISEED,R,LR,IFAIL)
New: IF (MODE == 0) THEN

NMODE = 1
ELSE IF (MODE == 1) THEN

NMODE = 0
ELSE

NMODE = MODE
END IF
CALL G05RZF(NMODE,N,M,XMU,C,LDC,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05RZF contains information on the base generator being used.
This array must have been initialized prior to calling G05RZF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05LZF

Withdrawn at Mark 24.
Replaced by G05RZF.

Old: CALL G05LZF(MODE,M,XMU,C,LDC,X,IGEN,ISEED,R,LR,IFAIL)
New: IF (MODE == 0) THEN

NMODE = 1
ELSE IF (MODE == 1) THEN

NMODE = 0
ELSE

NMODE = MODE
END IF
CALL G05RZF(NMODE,N,M,XMU,C,LDC,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05RZF contains information on the base generator being used.
This array must have been initialized prior to calling G05RZF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05MAF

Withdrawn at Mark 24.
Replaced by G05TLF.

Old: CALL G05MAF(A,B,N,X,IGEN,ISEED,IFAIL)
New: CALL G05TLF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05TLF contains information on the base generator being used.
This array must have been initialized prior to calling G05TLF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05MBF

Withdrawn at Mark 24.
Replaced by G05TCF.

Old: CALL G05MBF(MODE,P,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05TCF(MODE,N,P,R,LR,STATE,X,IFAIL)

DO 20 I = 1, N
X(I) = X(I) + 1

20 CONTINUE

Replacement Calls NAG Library Manual

REPLACE.56 Mark 26



G05MBF returned the number of trials required to get the first success, whereas G05TCF returns the
number of failures before the first success, therefore the value returned by G05TCF is one less than the
equivalent value returned from G05MBF.

The integer array STATE in the call to G05TCF contains information on the base generator being used.
This array must have been initialized prior to calling G05TCF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05MCF

Withdrawn at Mark 24.
Replaced by G05THF.

Old: CALL G05MCF(MODE,M,P,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05THF(MODE,N,M,P,R,LR,STATE,X,IFAIL)

The integer array STATE in the call to G05THF contains information on the base generator being used.
This array must have been initialized prior to calling G05THF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05MDF

Withdrawn at Mark 24.
Replaced by G05TFF.

Old: CALL G05MDF(MODE,A,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05TFF(MODE,N,A,R,LR,STATE,X,IFAIL)

The integer array STATE in the call to G05TFF contains information on the base generator being used.
This array must have been initialized prior to calling G05TFF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05MEF

Withdrawn at Mark 24.
Replaced by G05TKF.

Old: CALL G05MEF(M,VLAMDA,X,IGEN,ISEED,IFAIL)
New: CALL G05TKF(M,VLAMDA,STATE,X,IFAIL)

The integer array STATE in the call to G05TKF contains information on the base generator being used.
This array must have been initialized prior to calling G05TKF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05MJF

Withdrawn at Mark 24.
Replaced by G05TAF.

Old: CALL G05MJF(MODE,M,P,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05TAF(MODE,N,M,P,R,LR,STATE,X,IFAIL)

The integer array STATE in the call to G05TAF contains information on the base generator being used.
This array must have been initialized prior to calling G05TAF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.
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G05MKF

Withdrawn at Mark 24.
Replaced by G05TJF.

Old: CALL G05MKF(MODE,LAMBDA,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05TJF(MODE,N,LAMBDA,R,LR,STATE,X,IFAIL)

The integer array STATE in the call to G05TJF contains information on the base generator being used.
This array must have been initialized prior to calling G05TJF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.

G05MLF

Withdrawn at Mark 24.
Replaced by G05TEF.

Old: CALL G05MLF(MODE,NS,NP,M,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05TEF(MODE,N,NS,NP,M,R,LR,STATE,X,IFAIL)

The integer array STATE in the call to G05TEF contains information on the base generator being used.
This array must have been initialized prior to calling G05TEF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05MRF

Withdrawn at Mark 24.
Replaced by G05TGF.

Old: CALL G05MRF(MODE,M,K,P,N,X,LDX,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05TGF(MODE,N,M,K,P,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05TGF contains information on the base generator being used.
This array must have been initialized prior to calling G05TGF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05MZF

Withdrawn at Mark 24.
Replaced by G05TDF.

Old: CALL G05MZF(MODE,P,NP,IP1,ITYPE,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05TDF(MODE,N,P,NP,IP1,ITYPE,R,LR,STATE,X,IFAIL)

The integer array STATE in the call to G05TDF contains information on the base generator being used.
This array must have been initialized prior to calling G05TDF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05NAF

Withdrawn at Mark 24.
Replaced by G05NCF.

Old: CALL G05NAF(INDEX,N,IGEN,ISEED,IFAIL)
New: CALL G05NCF(INDEX,N,STATE,IFAIL)

The integer array STATE in the call to G05NCF contains information on the base generator being used.
This array must have been initialized prior to calling G05NCF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.
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G05NBF

Withdrawn at Mark 24.
Replaced by G05NDF.

Old: CALL G05NBF(IPOP,N,ISAMPL,M,IGEN,ISEED,IFAIL)
New: CALL G05NDF(IPOP,N,ISAMPL,M,STATE,IFAIL)

The integer array STATE in the call to G05NDF contains information on the base generator being used.
This array must have been initialized prior to calling G05NDF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05PAF

Withdrawn at Mark 24.
Replaced by G05PHF.

Old: CALL G05PAF(MODE,XMEAN,IP,PHI,IQ,THETA,AVAR,VAR,N,X,IGEN,ISEED,R, &
NR,IFAIL)

New: CALL G05PHF(MODE,N,XMEAN,IP,PHI,IQ,THETA,AVAR,R,LR,STATE,VAR,X, &
IFAIL)

The integer array STATE in the call to G05PHF contains information on the base generator being used.
This array must have been initialized prior to calling G05PHF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05PCF

Withdrawn at Mark 24.
Replaced by G05PJF.

Old: CALL G05PCF(MODE,K,XMEAN,IP,PHI,IQ,THETA,VAR,LDV,N,X,IGEN,ISEED,R, &
NR,IWORK,LIWORK,IFAIL)

New: CALL G05PJF(MODE,N,K,XMEAN,IP,PHI,IQ,THETA,VAR,LDV,R,LR,STATE,X,LDX, &
IFAIL)

The integer array STATE in the call to G05PJF contains information on the base generator being used.
This array must have been initialized prior to calling G05PJF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.

G05QAF

Withdrawn at Mark 24.
Replaced by G05PXF.

Old: CALL G05QAF(SIDE,INIT,M,N,A,LDA,IGEN,ISEED,WK,IFAIL)
New: CALL G05PXF(SIDE,INIT,M,N,STATE,A,LDA,IFAIL)

The integer array STATE in the call to G05PXF contains information on the base generator being used.
This array must have been initialized prior to calling G05PXF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05QBF

Withdrawn at Mark 24.
Replaced by G05PYF.

Old: CALL G05QBF(N,D,C,LDC,EPS,IGEN,ISEED,WK,IFAIL)
New: CALL G05PYF(N,D,EPS,STATE,C,LDC,IFAIL)

The integer array STATE in the call to G05PYF contains information on the base generator being used.
This array must have been initialized prior to calling G05PYF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.
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G05QDF

Withdrawn at Mark 24.
Replaced by G05PZF.

Old: CALL G05QDF(MODE,NROW,NCOL,TOTR,TOTC,X,LDX,IGEN,ISEED,R,NR,IW,LIW, &
IFAIL)

New: CALL G05PZF(MODE,NROW,NCOL,TOTR,TOTC,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05PZF contains information on the base generator being used.
This array must have been initialized prior to calling G05PZF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05RAF

Withdrawn at Mark 24.
Replaced by G05RDF.

Old: CALL G05RAF(MODE,M,C,LDC,N,X,LDX,IGEN,ISEED,R,LR,IFAIL)
New: IF (MODE == 0) THEN

NMODE = 1
ELSE IF (MODE == 1) THEN

NMODE = 0
ELSE

NMODE = MODE
END IF
CALL CALL G05RDF(NMODE,N,M,C,LDC,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05RDF contains information on the base generator being used.
This array must have been initialized prior to calling G05RDF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05RBF

Withdrawn at Mark 24.
Replaced by G05RCF.

Old: CALL G05RBF(MODE,DF,M,C,LDC,N,X,LDX,IGEN,ISEED,R,LR,IFAIL)
New: IF (MODE == 0) THEN

NMODE = 1
ELSE IF (MODE == 1) THEN

NMODE = 0
ELSE

NMODE = MODE
END IF
CALL CALL G05RCF(NMODE,N,DF,M,C,LDC,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05RCF contains information on the base generator being used.
This array must have been initialized prior to calling G05RCF with a call to either G05KFF or
G05KGF. The required length of the array STATE will depend on the base generator chosen during
initialization.

G05YAF

Withdrawn at Mark 23.
Replaced by G05YLF and G05YMF.
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Faure quasi-random numbers

Old: CALL G05YAF(.TRUE.,‘F’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YLF(4,IDIM,IREF,LIREF,ISKIP,IFAIL)

Old: CALL G05YAF(.FALSE.,‘F’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YMF(1,2,QUAS,LDQUAS,IREF,IFAIL)

Sobol quasi-random numbers

Old: CALL G05YAF(.TRUE.,‘S’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YLF(2,IDIM,IREF,LIREF,ISKIP,IFAIL)

Old: CALL G05YAF(.FALSE.,‘S’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YMF(1,2,QUAS,LDQUAS,IREF,IFAIL)

Neiderreiter quasi-random numbers

Old: CALL G05YAF(.TRUE.,‘N’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YLF(3,IDIM,IREF,LIREF,ISKIP,IFAIL)

Old: CALL G05YAF(.FALSE.,‘N’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YMF(1,2,QUAS,LDQUAS,IREF,IFAIL)

G05YBF

Withdrawn at Mark 23.
Replaced by G05YLF and either G05YJF or G05YKF.

This routine has been replaced by a suite of routines consisting of the relevant initialization routine
followed by one of two possible generator routines.

Faure quasi-random numbers with Gaussian probability:

Old: CALL G05YBF(.TRUE.,‘F’,.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(4,IDIM,IREF,LIREF,ISKIP,IFAIL)

Old: CALL G05YBF(.FALSE.,‘F’,.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YJF(MEAN,STD,N,QUASI,IREF,IFAIL)

Sobol quasi-random numbers with Gaussian probability:

Old: CALL G05YBF(.TRUE.,‘S’,.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(2,IDIM,IREF,LIREF,ISKIP,IFAIL)

Old: CALL G05YBF(.FALSE.,‘S’,.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YJF(MEAN,STD,N,QUASI,IREF,IFAIL)

Neiderreiter quasi-random numbers with Gaussian probability:

Old: CALL G05YBF(.TRUE.,‘N’,.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(3,IDIM,IREF,LIREF,ISKIP,IFAIL)

Old: CALL G05YBF(.FALSE.,‘N’,.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YJF(MEAN,STD,N,QUASI,IREF,IFAIL)

Faure quasi-random numbers with log Normal probability:

Old: CALL G05YBF(.TRUE.,‘F’,.TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(4,IDIM,IREF,LIREF,ISKIP,IFAIL)

Old: CALL G05YBF(.FALSE.,‘F’,.TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YKF(MEAN,STD,N,QUASI,IREF,IFAIL)

Sobol quasi-random numbers with log Normal probability:

Old: CALL G05YBF(.TRUE.,‘S’,.TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(2,IDIM,IREF,LIREF,ISKIP,IFAIL)

Old: CALL G05YBF(.FALSE.,‘S’,.TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YKF(MEAN,STD,N,QUASI,IREF,IFAIL)
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Neiderreiter quasi-random numbers with log Normal probability:

Old: CALL G05YBF(.TRUE.,‘N’,.TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(3,IDIM,IREF,LIREF,ISKIP,IFAIL)

Old: CALL G05YBF(.FALSE.,‘N’,.TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YKF(MEAN,STD,N,QUASI,IREF,IFAIL)

G05YCF

Withdrawn at Mark 24.
Replaced by G05YLF.

Old: CALL G05YCF(IDIM,IREF,IFAIL)
New: GENID = 4

CALL G05YLF(GENID,IDIM,IREF,LIREF,ISKIP,IFAIL)

G05YDF

Withdrawn at Mark 24.
Replaced by G05YMF.

Old: CALL G05YDF(N,QUASI,IREF,IFAIL)
New: CALL G05YMF(N,QUAS,LDQUAS,IREF,IFAIL)

G05YEF

Withdrawn at Mark 24.
Replaced by G05YLF.

Old: CALL G05YEF(IDIM, IREF, ISKIP, IFAIL)
New: GENID = 2

CALL G05YLF(GENID,IDIM,IREF,LIREF,ISKIP,IFAIL)

G05YFF

Withdrawn at Mark 24.
Replaced by G05YMF.

Old: CALL G05YFF(N,QUASI,IREF,IFAIL)
New: CALL G05YMF(N,QUAS,LDQUAS,IREF,IFAIL)

G05YGF

Withdrawn at Mark 24.
Replaced by G05YLF.

Old: CALL G05YGF(IDIM,IREF,ISKIP,IFAIL)
New: GENID = 3

CALL G05YLF(GENID,IDIM,IREF,LIREF,ISKIP,IFAIL)

G05YHF

Withdrawn at Mark 24.
Replaced by G05YMF.

Old: CALL G05YHF(N,QUASI,IREF,IFAIL)
New: CALL G05YMF(N,RCORD,QUAS,LDQUAS,IREF,IFAIL)

G05ZAF

Withdrawn at Mark 22.
There is no replacement for this routine.

G05ZAF was used to select the underlying generator for the old style random number generation
routines. These routines are no longer available and hence no direct replacement routine for G05ZAF is
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required. See G05KFF and G05KGF for details on how to select the underlying generator for the newer
style routines.

G10 – Smoothing in Statistics

G10BAF

Scheduled for withdrawal at Mark 27.
Replaced by G10BBF.

Withdrawn primarily due to threadsafety. The replacement routine alsointroduces new functionality with
respect to the automatic selection of a suitable window width.

Old: CALL G10BAF(N,X,WINDOW,SLO,SHI,NS,SMOOTH,T,USEFFT,FFT,IFAIL)

New: ALLOCATE(RCOMM,NS+20)
CALL G10BBF(N,X,1,WINDOW,SLO,SHI,NS,SMOOTH,T,USEFFT,RCOMM,IFAIL)
! the next step is only required if the information in FFT
! was being used outside another call to G10BAF
FFT(1:NS) = RCOMM(21:NS+20)

G13 – Time Series Analysis

G13DCF

Withdrawn at Mark 24.
Replaced by G13DDF.

Old: CALL G13DCF(K,N,IP,IQ,MEAN,PAR,NPAR,QQ,KMAX,W,PARHLD,EXACT,IPRINT, &
CGETOL,MAXCAL,ISHOW,NITER,RLOGL,V,G,CM,LDCM,WORK,LWORK, &
IW,LIW,IFAIL)

New: CALL G13DDF(K,N,IP,IQ,MEAN,PAR,NPAR,QQ,KMAX,W,PARHLD,EXACT,IPRINT, &
CGETOL,MAXCAL,ISHOW,NITER,RLOGL,V,G,CM,LDCM,IFAIL)

The workspace arguments WORK, LWORK, IW and LIW are no longer required in the call to
G13DDF.

P01 – Error Trapping

P01ABF

Withdrawn at Mark 24.
There is no replacement for this routine.

X02 – Machine Constants

X02DAF

Withdrawn at Mark 24.
There is no replacement for this routine.

X02DJF

Withdrawn at Mark 24.
There is no replacement for this routine.
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NAG Library

Code Contributors

Below we list the names of those people who have made a substantial contribution to the design,
development and validation of software of the Library (in the designated chapters).

The list includes the names of those who have collaborated with NAG specifically to develop software
for the Library; and also the names of the authors of public-domain software that has been adapted for
inclusion in the Library. It gives the institutions at which the individuals were working at the time they
made their contributions, not necessarily their present addresses. It does not include the names of those
– too numerous to mention individually – who have contributed ideas, criticisms, reports of errors, or
suggestions for improvements to the software; nor does it cover work done by NAG full-time staff or
those who are responsible for implementing the Library on different machines.

The routines in Chapter D06 (Mesh Generation) have been derived from material in the MODULEF
package from INRIA (Institut National de Recherche en Informatique et Automatique). NAG is grateful
to INRIA for their agreement to develop this material.

The LAPACK project is the source of all routines in Chapters F07 and F08; we acknowledge by name
the original contributors to the project but also recognize that many other people have been involved in
updating and adding to the Lapack project. We would therefore like to acknowledge the efforts of the
wider LAPACK community for their contributions to Chapters F07 and F08.

Some routines in Chapters E04 and F02 use an implementation of HSL_MA97 from HSL, a collection
of Fortran codes for large-scale scientific computation (see http://www.hsl.rl.ac.uk).
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C Bischof, Argonne National Laboratory (Chapters F07 and F08)
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R W Brankin, University of Manchester (Chapter D02)
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I S Duff, AERE Harwell (Chapters F01, F04 and F06)

B Ford, University of Nottingham (Chapters E01, F01 and F02)

R Franke, Naval Postgraduate School (Chapter E01)

F N Fritsch, Lawrence Livermore National Laboratory (Chapter E01)
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M Giles, University of Oxford (Chapter G01)
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NAG Library

Support from NAG

1 NAG Technical Support Service

The NAG Technical Support Service is available for general enquiries from all users and also for
technical queries from sites that subscribe to the support service.

Please see the Users' Note or support pages available on the NAG for contact details.

2 NAG Web Site

The NAG web site is an information service providing items of interest to users and prospective users
of NAG products and services. The information is regularly updated and reviewed, and includes
implementation availability, descriptions of products, downloadable software and documentation, case
studies, industry articles and technical reports. The NAG web site can be accessed via:

NAG UK at http://www.nag.co.uk

NAG North America at http://www.nag.com

NAG Japan at http://www.nag-j.co.jp
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NAG Library Chapter Contents

A00 – Library Identification

A00 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

A00AAF 18 nagf_info_impl_details
Library identification, details of implementation and mark

A00ACF 21 nagf_info_licence
Check availability of a valid licence key

A00ADF 22 nagf_info_impl_details_separate
Library identification, details of implementation, major and minor marks

A00 – Library Identification Contents – A00
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NAG Library Chapter Introduction

A00 – Library Identification

Contents

1 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background to the Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Recommendations on Choice and Use of Available Routines. . . . . . . . . . . . . . 2

4 Functionality Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

5 Auxiliary Routines Associated with Library Routine Arguments . . . . . . . . . 2

6 Routines Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . . . . . . . . . 2
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1 Scope of the Chapter

The routines in this chapter provide information about the NAG Library.

Information about the precise implementation of the NAG Library in use will be needed when
communicating with the NAG Technical Support Service (see Support from NAG).

2 Background to the Problems

None.

3 Recommendations on Choice and Use of Available Routines

A00AAF enables you to determine the precise Mark and maintenance level of the NAG Library which
is being used, and also details of the implementation.

A00ACF enables you to check if a valid key is available for the library licence management system.

A00ADF is similar to A00AAF but returns different aspects of an implementation, such as the product
code and Mark in separate strings and integers.

4 Functionality Index

Check availability of a valid licence key ............................................................................ A00ACF

Library identification,
print details of implementation and mark ....................................................................... A00AAF
separated details of implementation, and major and minor mark ................................... A00ADF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

A00AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

A00AAF prints information about the version of the NAG Library in use.

2 Specification

SUBROUTINE A00AAF ()

3 Description

The NAG Library is available for use on a number of different computer systems. For each distinct
system an implementation of the library is prepared. This includes tested compiled libraries and any
necessary system-specific support material. A00AAF may be called to print the implementation details
and Mark (i.e., maintenance level) of the NAG Library implementation that is being used.

4 References

None.

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example makes a call of A00AAF sending output to the current advisory message unit.

A00 – Library Identification A00AAF
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10.1 Program Text

Program a00aafe

! A00AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a00aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Executable Statements ..
Write (nout,*) ’A00AAF Example Program Results’

Write (nout,*)
Flush (nout)

Call a00aaf

End Program a00aafe

10.2 Program Data

None.

10.3 Program Results

A00AAF Example Program Results

*** Start of NAG Library implementation details ***

Implementation title: ?OS?, ?x?-bit, ?Fortran compiler? (?y?-bit integers)
Precision: Fortran double precision

Product Code: ?FL?
Mark: ?z? (self-contained)

*** End of NAG Library implementation details ***

A00AAF NAG Library Manual
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NAG Library Routine Document

A00ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

A00ACF provides a convenient means of checking the availability of a valid licence key on licence-
managed implementations before starting computations that will use NAG Library routines. In
particular, the use of this function is highly recommended in programs that call NAG Library routines
within multithreaded sections (e.g., OpenMP parallel regions). The function need only be called once,
before the start of the first multithreaded section.

2 Specification

FUNCTION A00ACF ()
LOGICAL A00ACF

3 Description

A00ACF returns the logical value .TRUE. if a valid licence is found, otherwise .FALSE. is returned.

On non licence-managed implementations, .TRUE. is always returned.

4 References

None.

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example prints an appropriate message depending upon the value returned by A00ACF.

A00 – Library Identification A00ACF
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10.1 Program Text

Program a00acfe

! A00ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a00acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Logical :: lmok

! .. Executable Statements ..
Write (nout,*) ’A00ACF Example Program Results’

Write (nout,*)

lmok = a00acf()

If (lmok) Then
Write (nout,*) ’A valid licence key is available’

Else
Write (nout,*) ’No valid licence key was found’

End If

End Program a00acfe

10.2 Program Data

None.

10.3 Program Results

A00ACF Example Program Results

A valid licence key is available

A00ACF NAG Library Manual
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NAG Library Routine Document

A00ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

A00ADF provides information about the version of the NAG Library in use.

2 Specification

SUBROUTINE A00ADF (IMPL, PREC, PCODE, MKMAJ, MKMIN, HDWARE, OPSYS,
FCOMP, VEND, LICVAL)

&

INTEGER MKMAJ, MKMIN
LOGICAL LICVAL
CHARACTER(*) IMPL, PREC, PCODE, HDWARE, OPSYS, FCOMP, VEND

3 Description

The NAG Library is available for use on a number of different computer systems. For each distinct
system an implementation of the library is prepared and this implementation is given a unique code.
The specifics that define the implementation are: the working precision, the major and minor marks of
the NAG Library, the target hardware and operating system, the compiler used, and the vendor library
(if any) that is also required to be linked. A00ADF may be called to return, in separate arguments, these
specific details of the NAG Library implementation that is being used; it also returns whether a valid
licence has been found for this implementation. This differs from A00AAF which simply outputs the
collected information in a readable form directly to the current advisory message unit (see X04ABF).

4 References

None.

5 Arguments

1: IMPL – CHARACTER(*) Output

Note: it is recommended that IMPL be at least 57 characters in length.

On exit: the implementation title which usually lists the target platform, operating system and
compiler.

2: PREC – CHARACTER(*) Output

Note: it is recommended that PREC be at least 57 characters in length.

On exit: the working or basic precision of the implementation. Some routines may perform
operations in reduced precision or additional precision, but the great majority will perform all
operations in basic precision. See Section 4.4 in How to Use the NAG Library and its
Documentation for definitions of these precisions.

3: PCODE – CHARACTER(*) Output

Note: it is recommended that PCODE be at least 20 characters in length.

On exit: the product code for the NAG Library implementation that is being used. The code has a
discernible structure, but it is not necessary to know the details of this structure. The product
code can be used to differentiate between individual product licence codes.

A00 – Library Identification A00ADF
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4: MKMAJ – INTEGER Output

On exit: the major mark of the NAG Library implementation that is being used.

5: MKMIN – INTEGER Output

On exit: the minor mark of the NAG Library implementation that is being used.

6: HDWARE – CHARACTER(*) Output

Note: it is recommended that HDWARE be at least 64 characters in length.

On exit: the target hardware for the NAG Library implementation that is being used.

7: OPSYS – CHARACTER(*) Output

Note: it is recommended that OPSYS be at least 64 characters in length.

On exit: the target operating system for the NAG Library implementation that is being used.

8: FCOMP – CHARACTER(*) Output

Note: it is recommended that FCOMP be at least 64 characters in length.

On exit: the compiler used to build the NAG Library implementation that is being used.

9: VEND – CHARACTER(*) Output

Note: it is recommended that VEND be at least 64 characters in length.

On exit: the subsidiary library, if any, that must be linked with the NAG Library implementation
that is being used. If the implementation does not require a subsidiary library then the string

’(self-contained)’

will be returned in VEND.

10: LICVAL – LOGICAL Output

On exit: specifies whether or not a valid licence has been found for the NAG Library
implementation that is being used.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example makes a call of A00ADF, collects information on the NAG Library implementation that is
being used and prints it out in a form that is similar to the output obtained by a call to A00AAF.
Additionally the time is also printed in a readable form. The output from running this example program
provides information that is very useful when contacting NAG with a support query.
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10.1 Program Text

Program a00adfe

! A00ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a00adf, x05aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: msglen = 15, nout = 6

! .. Local Scalars ..
Integer :: i, mkmaj, mkmin
Logical :: licval
Character (80) :: fcomp, hdware, impl, opsys, pcode, &

prec, vend
! .. Local Arrays ..

Integer :: itime(7)
Character (102) :: msg(msglen)

! .. Intrinsic Procedures ..
Intrinsic :: trim

! .. Executable Statements ..
Write (nout,*) ’A00ADF Example Program Results’

Call a00adf(impl,prec,pcode,mkmaj,mkmin,hdware,opsys,fcomp,vend,licval)

! Print implementation details.

Write (nout,*)

msg(1) = ’*** Start of NAG Library implementation details ***’
msg(2) = ’’
msg(3) = ’Implementation title: ’ // impl
msg(4) = ’ Precision: ’ // prec
msg(5) = ’ Product Code: ’ // pcode

If (mkmin<10) Then
Write (msg(6),99999) mkmaj, mkmin

Else
Write (msg(6),99998) mkmaj, mkmin

End If

If (vend==’(self-contained)’) Then
msg(7) = ’ Vendor Library: None’

Else
msg(7) = ’ Vendor Library: ’ // vend

End If

msg(8) = ’Applicable to:’
msg(9) = ’ hardware: ’ // hdware
msg(10) = ’ operating system: ’ // opsys
msg(11) = ’ Fortran compiler: ’ // fcomp
msg(12) = ’and compatible systems.’

If (.Not. licval) Then
msg(13) = ’ Licence query: Unsuccessful’

Else
msg(13) = ’ Licence query: Successful’

End If

msg(14) = ’’
msg(15) = ’*** End of NAG Library implementation details ***’

Do i = 1, msglen
Write (nout,’(A)’) trim(msg(i))

End Do

! Print the date.
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Write (nout,*)
Write (nout,*) ’This program was run on the following date:’

Call x05aaf(itime)

Write (nout,99997) itime

Write (nout,*) ’*** ----------------------------------------- ***’

99999 Format (’ Mark: ’,I2,’.’,I1,1X,A)
99998 Format (’ Mark: ’,I2,’.’,I2,1X,A)
99997 Format (3X,I4.4,2I2.2,’-’,3(I2.2,’:’),I3.3)

End Program a00adfe

10.2 Program Data

None.

10.3 Program Results

A00ADF Example Program Results

*** Start of NAG Library implementation details ***

Implementation title: ?OS?, ?x?-bit, ?Fortran compiler? (?y?-bit integers)
Precision: Fortran double precision

Product Code: ?FL?
Mark: ?z?

Vendor Library: ?vendlib?
Applicable to:

hardware: ?hardware?
operating system: ?OS long?
Fortran compiler: ?Fortran compiler long?

and compatible systems.
Licence query: Successful

*** End of NAG Library implementation details ***

This program was run on the following date:
YYYYMMDD-HH:MM:SS:MSS

*** ----------------------------------------- ***

A00ADF NAG Library Manual
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NAG Library Chapter Contents

A02 – Complex Arithmetic

A02 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

A02AAF 2 nagf_complex_sqrt
Square root of complex number

A02ABF 2 nagf_complex_abs
Modulus of complex number

A02ACF 2 nagf_complex_divide
Quotient of two complex numbers

A02 – Complex Arithmetic Contents – A02

Mark 26 a02conts.1 (last)





NAG Library Chapter Introduction

A02 – Complex Arithmetic

Contents
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5 Auxiliary Routines Associated with Library Routine Arguments . . . . . . . . . 2

6 Routines Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . . . . . . . . . 2
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1 Scope of the Chapter

This chapter provides facilities for arithmetic operations involving complex numbers.

2 Background to the Problems

Of the several representations used for complex numbers, perhaps the most common is aþ ib, where a
and b are real numbers, and i represents the imaginary number

ffiffiffiffiffiffiffi
�1
p

. The number a is the real part,
and ib the imaginary part.

For the basic arithmetic operations of addition, subtraction and multiplication, the inclusion of routines
was not considered worthwhile. Their coding would be short and no special techniques need be used.

In complex number operations of a more complicated nature, special precautions may have to be taken
to avoid unnecessary overflow and underflow at intermediate stages of the computation. This has led to
the inclusion of routines in this chapter.

3 Recommendations on Choice and Use of Available Routines

The routines were originally written for use by NAG Library routines which compute eigensystems of
real and complex matrices (see Chapter F02). They may, however, be of general use to programmers
using complex numbers.

Fortran programmers may prefer to use the COMPLEX facilities in that language rather than carrying
the real and imaginary parts of the numbers in different variables.

4 Functionality Index

Complex numbers,
division ........................................................................................................................... A02ACF
modulus........................................................................................................................... A02ABF
square root ...................................................................................................................... A02AAF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

A02AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

A02AAF evaluates the square root of the complex number x ¼ xr; xið Þ.

2 Specification

SUBROUTINE A02AAF (XR, XI, YR, YI)

REAL (KIND=nag_wp) XR, XI, YR, YI

3 Description

The method of evaluating y ¼ ffiffiffi
x
p

depends on the value of xr.

For xr � 0,

yr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

p
2

s
; yi ¼

xi
2yr

:

For xr < 0,

yi ¼ sign xið Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xrj j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

p
2

s
; yr ¼

xi
2yi
:

Overflow is avoided when squaring xi and xr by calling A02ABF to evaluate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

p
.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: XR – REAL (KIND=nag_wp) Input
2: XI – REAL (KIND=nag_wp) Input

On entry: xr and xi, the real and imaginary parts of x, respectively.

3: YR – REAL (KIND=nag_wp) Output
4: YI – REAL (KIND=nag_wp) Output

On exit: yr and yi, the real and imaginary parts of y, respectively.

6 Error Indicators and Warnings

None.

7 Accuracy

The result should be correct to machine precision.
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8 Parallelism and Performance

A02AAF is not threaded in any implementation.

9 Further Comments

The time taken by A02AAF is negligible.

10 Example

This example finds the square root of �1:7þ 2:6i.

10.1 Program Text

Program a02aafe

! A02AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a02aaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xi, xr, yi, yr

! .. Executable Statements ..
Write (nout,*) ’A02AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) xr, xi

! Compute square root of (XR,XI) and return in (YR,YI)

Call a02aaf(xr,xi,yr,yi)

Write (nout,*)
Write (nout,*) ’ XR XI YR YI’
Write (nout,99999) xr, xi, yr, yi

99999 Format (1X,2F6.1,2F9.4)
End Program a02aafe

10.2 Program Data

A02AAF Example Program Data
-1.7 2.6

10.3 Program Results

A02AAF Example Program Results

XR XI YR YI
-1.7 2.6 0.8386 1.5502
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NAG Library Routine Document

A02ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

A02ABF returns the value of the modulus of the complex number x ¼ xr; xið Þ.

2 Specification

FUNCTION A02ABF (XR, XI)
REAL (KIND=nag_wp) A02ABF

REAL (KIND=nag_wp) XR, XI

3 Description

The function evaluates
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ x2i

p
by using a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b

a

� �2q
where a is the larger of xrj j and xij j, and b is

the smaller of xrj j and xij j. This ensures against unnecessary overflow and loss of accuracy when
calculating x2r þ x2i

� �
.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: XR – REAL (KIND=nag_wp) Input
2: XI – REAL (KIND=nag_wp) Input

On entry: xr and xi, the real and imaginary parts of x, respectively.

6 Error Indicators and Warnings

None.

7 Accuracy

The result should be correct to machine precision.

8 Parallelism and Performance

A02ABF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example finds the modulus of �1:7þ 2:6i.
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10.1 Program Text

Program a02abfe

! A02ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a02abf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xi, xr, y

! .. Executable Statements ..
Write (nout,*) ’A02ABF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) xr, xi

! Return absolute value of (XR,XI)

y = a02abf(xr,xi)

Write (nout,*)
Write (nout,*) ’ XR XI Y’
Write (nout,99999) xr, xi, y

99999 Format (1X,2F6.1,F9.4)
End Program a02abfe

10.2 Program Data

A02ABF Example Program Data
-1.7 2.6

10.3 Program Results

A02ABF Example Program Results

XR XI Y
-1.7 2.6 3.1064
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NAG Library Routine Document

A02ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

A02ACF divides one complex number, x ¼ xr; xið Þ, by a second complex number, y ¼ yr; yið Þ,
returning the result in z ¼ zr; zið Þ.

2 Specification

SUBROUTINE A02ACF (XR, XI, YR, YI, ZR, ZI)

REAL (KIND=nag_wp) XR, XI, YR, YI, ZR, ZI

3 Description

The result z is calculated using Smith's algorithm with scaling, from Li et al. (2002), which ensures that
no unnecessary overflow or underflow occurs at intermediate stages of the computation.

4 References

Li X S, Demmel J W, Bailey D H, Henry G, Hida Y, Iskandar J, Kahan W, Kapur A, Martin M C, Tung
T and Yoo D J (2002) Design, implementation and testing of extended and mixed precision BLAS ACM
Trans. Math. Soft. 28(2) 152–205

5 Arguments

1: XR – REAL (KIND=nag_wp) Input
2: XI – REAL (KIND=nag_wp) Input

On entry: xr and xi, the real and imaginary parts of x, respectively.

3: YR – REAL (KIND=nag_wp) Input
4: YI – REAL (KIND=nag_wp) Input

On entry: yr and yi, the real and imaginary parts of y, respectively.

5: ZR – REAL (KIND=nag_wp) Output
6: ZI – REAL (KIND=nag_wp) Output

On exit: zr and zi, the real and imaginary parts of z, respectively.

6 Error Indicators and Warnings

None.

7 Accuracy

The result should be correct to machine precision.

8 Parallelism and Performance

A02ACF is not threaded in any implementation.
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9 Further Comments

The time taken by A02ACF is negligible.

This routine must not be called with YR ¼ 0:0 and YI ¼ 0:0.

10 Example

This example finds the value of �1:7þ 2:6ið Þ= �3:1� 0:9ið Þ.

10.1 Program Text

Program a02acfe

! A02ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a02acf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xi, xr, yi, yr, zi, zr

! .. Executable Statements ..
Write (nout,*) ’A02ACF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) xr, xi, yr, yi

! Compute (XR,XI)/(YR,YI) = (ZR,ZI)

Call a02acf(xr,xi,yr,yi,zr,zi)

Write (nout,*)
Write (nout,*) ’ XR XI YR YI ZR ZI’
Write (nout,99999) xr, xi, yr, yi, zr, zi

99999 Format (1X,4F6.1,2F9.4)
End Program a02acfe

10.2 Program Data

A02ACF Example Program Data
-1.7 2.6 -3.1 -0.9

10.3 Program Results

A02ACF Example Program Results

XR XI YR YI ZR ZI
-1.7 2.6 -3.1 -0.9 0.2812 -0.9203
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NAG Library Chapter Contents

C02 – Zeros of Polynomials

C02 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

C02AFF 14 nagf_zeros_poly_complex
All zeros of complex polynomial, modified Laguerre's method

C02AGF 13 nagf_zeros_poly_real
All zeros of real polynomial, modified Laguerre's method

C02AHF 14 nagf_zeros_quadratic_complex
All zeros of complex quadratic equation

C02AJF 14 nagf_zeros_quadratic_real
All zeros of real quadratic equation

C02AKF 20 nagf_zeros_cubic_real
All zeros of real cubic equation

C02ALF 20 nagf_zeros_quartic_real
All zeros of real quartic equation

C02AMF 20 nagf_zeros_cubic_complex
All zeros of complex cubic equation

C02ANF 20 nagf_zeros_quartic_complex
All zeros of complex quartic equation
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1 Scope of the Chapter

This chapter is concerned with computing the zeros of a polynomial with real or complex coefficients.

2 Background to the Problems

Let f zð Þ be a polynomial of degree n with complex coefficients ai:

f zð Þ 	 a0zn þ a1zn�1 þ a2zn�2 þ � � � þ an�1zþ an; a0 6¼ 0:

A complex number z1 is called a zero of f zð Þ (or equivalently a root of the equation f zð Þ ¼ 0), if

f z1ð Þ ¼ 0:

If z1 is a zero, then f zð Þ can be divided by a factor z� z1ð Þ:
f zð Þ ¼ z� z1ð Þf1 zð Þ ð1Þ

where f1 zð Þ is a polynomial of degree n� 1. By the Fundamental Theorem of Algebra, a polynomial
f zð Þ always has a zero, and so the process of dividing out factors z� zið Þ can be continued until we
have a complete factorization of f zð Þ:

f zð Þ 	 a0 z� z1ð Þ z� z2ð Þ . . . z� znð Þ:

Here the complex numbers z1; z2; . . . ; zn are the zeros of f zð Þ; they may not all be distinct, so it is
sometimes more convenient to write

f zð Þ 	 a0 z� z1ð Þm1 z� z2ð Þm2 . . . z� zkð Þmk; k � n;

with distinct zeros z1; z2; . . . ; zk and multiplicities mi � 1. If mi ¼ 1, zi is called a simple or isolated
zero; if mi > 1, zi is called a multiple or repeated zero; a multiple zero is also a zero of the derivative
of f zð Þ.
If the coefficients of f zð Þ are all real, then the zeros of f zð Þ are either real or else occur as pairs of
conjugate complex numbers xþ iy and x� iy. A pair of complex conjugate zeros are the zeros of a
quadratic factor of f zð Þ, z2 þ rzþ s

� �
, with real coefficients r and s.

Mathematicians are accustomed to thinking of polynomials as pleasantly simple functions to work with.
However, the problem of numerically computing the zeros of an arbitrary polynomial is far from
simple. A great variety of algorithms have been proposed, of which a number have been widely used in
practice; for a fairly comprehensive survey, see Householder (1970). All general algorithms are
iterative. Most converge to one zero at a time; the corresponding factor can then be divided out as in
equation (1) above – this process is called deflation or, loosely, dividing out the zero – and the
algorithm can be applied again to the polynomial f1 zð Þ. A pair of complex conjugate zeros can be
divided out together – this corresponds to dividing f zð Þ by a quadratic factor.

Whatever the theoretical basis of the algorithm, a number of practical problems arise; for a thorough
discussion of some of them see Peters and Wilkinson (1971) and Chapter 2 of Wilkinson (1963). The
most elementary point is that, even if z1 is mathematically an exact zero of f zð Þ, because of the
fundamental limitations of computer arithmetic the computed value of f z1ð Þ will not necessarily be
exactly 0:0. In practice there is usually a small region of values of z about the exact zero at which the
computed value of f zð Þ becomes swamped by rounding errors. Moreover, in many algorithms this
inaccuracy in the computed value of f zð Þ results in a similar inaccuracy in the computed step from one
iterate to the next. This limits the precision with which any zero can be computed. Deflation is another
potential cause of trouble, since, in the notation of equation (1), the computed coefficients of f1 zð Þ will
not be completely accurate, especially if z1 is not an exact zero of f zð Þ; so the zeros of the computed
f1 zð Þ will deviate from the zeros of f zð Þ.
A zero is called ill-conditioned if it is sensitive to small changes in the coefficients of the polynomial.
An ill-conditioned zero is likewise sensitive to the computational inaccuracies just mentioned.
Conversely a zero is called well-conditioned if it is comparatively insensitive to such perturbations.
Roughly speaking a zero which is well separated from other zeros is well-conditioned, while zeros
which are close together are ill-conditioned, but in talking about ‘closeness’ the decisive factor is not
the absolute distance between neighbouring zeros but their ratio: if the ratio is close to one the zeros
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are ill-conditioned. In particular, multiple zeros are ill-conditioned. A multiple zero is usually split into
a cluster of zeros by perturbations in the polynomial or computational inaccuracies.

3 Recommendations on Choice and Use of Available Routines

All zeros of cubic,
complex coefficients........................................................................................................ C02AMF
real coefficients ............................................................................................................... C02AKF

All zeros of polynomial,
complex coefficients,

modified Laguerre's method ....................................................................................... C02AFF
real coefficients,

modified Laguerre's method ....................................................................................... C02AGF

All zeros of quadratic,
complex coefficients........................................................................................................ C02AHF
real coefficients ............................................................................................................... C02AJF

All zeros of quartic,
complex coefficients........................................................................................................ C02ANF
real coefficients ............................................................................................................... C02ALF

4 Auxiliary Routines Associated with Library Routine Arguments

None.

5 Routines Withdrawn or Scheduled for Withdrawal

None.

6 References

Householder A S (1970) The Numerical Treatment of a Single Nonlinear Equation McGraw–Hill

Peters G and Wilkinson J H (1971) Practical problems arising in the solution of polynomial equations J.
Inst. Maths. Applics. 8 16–35

Thompson K W (1991) Error analysis for polynomial solvers Fortran Journal (Volume 3) 3 10–13

Wilkinson J H (1963) Rounding Errors in Algebraic Processes HMSO
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NAG Library Routine Document

C02AFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C02AFF finds all the roots of a complex polynomial equation, using a variant of Laguerre's method.

2 Specification

SUBROUTINE C02AFF (A, N, SCAL, Z, W, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) A(2,N+1), Z(2,N), W(4*(N+1))
LOGICAL SCAL

3 Description

C02AFF attempts to find all the roots of the nth degree complex polynomial equation

P zð Þ ¼ a0zn þ a1zn�1 þ a2zn�2 þ � � � þ an�1zþ an ¼ 0:

The roots are located using a modified form of Laguerre's method, originally proposed by Smith (1967).

The method of Laguerre (see Wilkinson (1965)) can be described by the iterative scheme

L zkð Þ ¼ zkþ1 � zk ¼
�nP zkð Þ

P 0 zkð Þ 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H zkð Þ

p ;

where H zkð Þ ¼ n� 1ð Þ n� 1ð Þ P 0 zkð Þð Þ2 � nP zkð ÞP 00 zkð Þ
h i

and z0 is specified.

The sign in the denominator is chosen so that the modulus of the Laguerre step at zk, viz. L zkð Þj j, is as
small as possible. The method can be shown to be cubically convergent for isolated roots (real or
complex) and linearly convergent for multiple roots.

The routine generates a sequence of iterates z1; z2; z3; . . . , such that P zkþ1ð Þj j < P zkð Þj j and ensures that
zkþ1 þ L zkþ1ð Þ ‘roughly’ lies inside a circular region of radius Fj j about zk known to contain a zero of
P zð Þ; that is, L zkþ1ð Þj j � Fj j, where F denotes the Fejér bound (see Marden (1966)) at the point zk.
Following Smith (1967), F is taken to be min B; 1:445nRð Þ, where B is an upper bound for the
magnitude of the smallest zero given by

B ¼ 1:0001�min
ffiffiffi
n
p

L zkð Þ; r1j j; an=a0j j1=n
� �

;

r1 is the zero X of smaller magnitude of the quadratic equation

P 00 zkð Þ
2n n� 1ð ÞX

2 þ P
0 zkð Þ
n

X þ 1
2P zkð Þ ¼ 0

and the Cauchy lower bound R for the smallest zero is computed (using Newton's Method) as the
positive root of the polynomial equation

a0j jzn þ a1j jzn�1 þ a2j jzn�2 þ � � � þ an�1j jz� anj j ¼ 0:

Starting from the origin, successive iterates are generated according to the rule zkþ1 ¼ zk þ L zkð Þ, for
k ¼ 1; 2; 3; . . . , and L zkð Þ is ‘adjusted’ so that P zkþ1ð Þj j < P zkð Þj j and L zkþ1ð Þj j � Fj j. The iterative
procedure terminates if P zkþ1ð Þ is smaller in absolute value than the bound on the rounding error in
P zkþ1ð Þ and the current iterate zp ¼ zkþ1 is taken to be a zero of P zð Þ. The deflated polynomial
~P zð Þ ¼ P zð Þ= z� zp

� �
of degree n� 1 is then formed, and the above procedure is repeated on the
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deflated polynomial until n < 3, whereupon the remaining roots are obtained via the ‘standard’ closed
formulae for a linear (n ¼ 1) or quadratic (n ¼ 2) equation.

Note that C02AHF, C02AMF and C02ANF can be used to obtain the roots of a quadratic, cubic (n ¼ 3)
and quartic (n ¼ 4) polynomial, respectively.

4 References

Marden M (1966) Geometry of polynomials Mathematical Surveys 3 American Mathematical Society,
Providence, RI

Smith B T (1967) ZERPOL: a zero finding algorithm for polynomials using Laguerre's method
Technical Report Department of Computer Science, University of Toronto, Canada

Thompson K W (1991) Error analysis for polynomial solvers Fortran Journal (Volume 3) 3 10–13

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Arguments

1: Að2;Nþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: if A is declared with bounds 2; 0 : Nð Þ, then Að1; iÞ and Að2; iÞ must contain the real
and imaginary parts of ai (i.e., the coefficient of zn�i), for i ¼ 0; 1; . . . ; n.

Constraint: Að1; 0Þ 6¼ 0:0 or Að2; 0Þ 6¼ 0:0.

2: N – INTEGER Input

On entry: n, the degree of the polynomial.

Constraint: N � 1.

3: SCAL – LOGICAL Input

On entry: indicates whether or not the polynomial is to be scaled. See Section 9 for advice on
when it may be preferable to set SCAL ¼ :FALSE: and for a description of the scaling strategy.

Suggested value: SCAL ¼ :TRUE:.

4: Zð2;NÞ – REAL (KIND=nag_wp) array Output

On exit: the real and imaginary parts of the roots are stored in Zð1; iÞ and Zð2; iÞ respectively, for
i ¼ 1; 2; . . . ; n.

5: Wð4� Nþ 1ð ÞÞ – REAL (KIND=nag_wp) array Workspace

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, Að1; 0Þ ¼ 0:0 and Að2; 0Þ ¼ 0:0,
or N < 1.

IFAIL ¼ 2

The iterative procedure has failed to converge. This error is very unlikely to occur. If it does,
please contact NAG, as some basic assumption for the arithmetic has been violated. See also
Section 9.

IFAIL ¼ 3

Either overflow or underflow prevents the evaluation of P zð Þ near some of its zeros. This error is
very unlikely to occur. If it does, please contact NAG. See also Section 9.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All roots are evaluated as accurately as possible, but because of the inherent nature of the problem
complete accuracy cannot be guaranteed. See also Section 10.

8 Parallelism and Performance

C02AFF is not threaded in any implementation.

9 Further Comments

If SCAL ¼ :TRUE:, then a scaling factor for the coefficients is chosen as a power of the base b of the
machine so that the largest coefficient in magnitude approaches thresh ¼ bemax�p. You should note that
no scaling is performed if the largest coefficient in magnitude exceeds thresh, even if SCAL ¼ :TRUE:.
(b, emax and p are defined in Chapter X02.)

However, with SCAL ¼ :TRUE:, overflow may be encountered when the input coefficients
a0; a1; a2; . . . ; an vary widely in magnitude, particularly on those machines for which b 4pð Þ overflows.
In such cases, SCAL should be set to .FALSE. and the coefficients scaled so that the largest coefficient
in magnitude does not exceed b emax�2pð Þ.

Even so, the scaling strategy used by C02AFF is sometimes insufficient to avoid overflow and/or
underflow conditions. In such cases, you are recommended to scale the independent variable zð Þ so that
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the disparity between the largest and smallest coefficient in magnitude is reduced. That is, use the
routine to locate the zeros of the polynomial dP czð Þ for some suitable values of c and d. For example,
if the original polynomial was P zð Þ ¼ 2�100iþ 2100z20, then choosing c ¼ 2�10 and d ¼ 2100, for
instance, would yield the scaled polynomial iþ z20, which is well-behaved relative to overflow and
underflow and has zeros which are 210 times those of P zð Þ.
If the routine fails with IFAIL ¼ 2 or 3, then the real and imaginary parts of any roots obtained before
the failure occurred are stored in Z in the reverse order in which they were found. Let nR denote the
number of roots found before the failure occurred. Then Zð1; nÞ and Zð2; nÞ contain the real and
imaginary parts of the first root found, Zð1; n� 1Þ and Zð2; n� 1Þ contain the real and imaginary parts
of the second root found, . . . ;Zð1; n� nR þ 1Þ and Zð2; n� nR þ 1Þ contain the real and imaginary
parts of the nRth root found. After the failure has occurred, the remaining 2� n� nRð Þ elements of Z
contain a large negative number (equal to �1= X02AMFðÞ �

ffiffiffi
2
p� �

).

10 Example

For this routine two examples are presented. There is a single example program for C02AFF, with a
main program and the code to solve the two example problems given in the subroutines EX1 and EX2.

Example 1 (EX1)

This example finds the roots of the polynomial

a0z
5 þ a1z4 þ a2z3 þ a3z2 þ a4zþ a5 ¼ 0;

w h e r e a0 ¼ 5:0þ 6:0ið Þ, a1 ¼ 30:0þ 20:0ið Þ, a2 ¼ � 0:2þ 6:0ið Þ, a3 ¼ 50:0þ 100000:0ið Þ,
a4 ¼ � 2:0� 40:0ið Þ and a5 ¼ 10:0þ 1:0ið Þ.
Example 2 (EX2)

This example solves the same problem as subroutine EX1, but in addition attempts to estimate the
accuracy of the computed roots using a perturbation analysis. Further details can be found in Thompson
(1991).

10.1 Program Text

! C02AFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c02affe_mod

! C02AFF Example Program Module:
! Parameters

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6
Logical, Parameter, Public :: scal = .True.

End Module c02affe_mod
Program c02affe

! C02AFF Example Main Program

! .. Use Statements ..
Use c02affe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’C02AFF Example Program Results’

Call ex1

Call ex2
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Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: c02aff, nag_wp
Use c02affe_mod, Only: nin, scal

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), w(:), z(:,:)

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 1’

! Skip heading in data file
Read (nin,*)
Read (nin,*)
Read (nin,*)

Read (nin,*) n
Allocate (a(2,0:n),w(4*(n+1)),z(2,n))

Read (nin,*)(a(1,i),a(2,i),i=0,n)

ifail = 0
Call c02aff(a,n,scal,z,w,ifail)

Write (nout,*)
Write (nout,99999) ’Degree of polynomial = ’, n
Write (nout,*)
Write (nout,*) ’Computed roots of polynomial’
Write (nout,*)

Do i = 1, n
Write (nout,99998) ’z = ’, z(1,i), z(2,i), ’*i’

End Do

99999 Format (1X,A,I4)
99998 Format (1X,A,1P,E12.4,Sp,E12.4,A)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: a02abf, c02aff, nag_wp, x02ajf, x02alf
Use c02affe_mod, Only: nin, scal

! .. Local Scalars ..
Real (Kind=nag_wp) :: deltac, deltai, di, eps, epsbar, f, &

r1, r2, r3, rmax
Integer :: i, ifail, j, jmin, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), abar(:,:), r(:), w(:), &

z(:,:), zbar(:,:)
Integer, Allocatable :: m(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max, min

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 2’

! Skip heading in data file
Read (nin,*)
Read (nin,*)

Read (nin,*) n
Allocate (a(2,0:n),abar(2,0:n),r(n),w(4*(n+1)),z(2,n),zbar(2,n),m(n))

! Read in the coefficients of the original polynomial.
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Read (nin,*)(a(1,i),a(2,i),i=0,n)

! Compute the roots of the original polynomial.

ifail = 0
Call c02aff(a,n,scal,z,w,ifail)

! Form the coefficients of the perturbed polynomial.

eps = x02ajf()
epsbar = 3.0E0_nag_wp*eps

Do i = 0, n

If (a(1,i)/=0.0E0_nag_wp) Then
f = 1.0E0_nag_wp + epsbar
epsbar = -epsbar
abar(1,i) = f*a(1,i)

If (a(2,i)/=0.0E0_nag_wp) Then
abar(2,i) = f*a(2,i)

Else
abar(2,i) = 0.0E0_nag_wp

End If

Else
abar(1,i) = 0.0E0_nag_wp

If (a(2,i)/=0.0E0_nag_wp) Then
f = 1.0E0_nag_wp + epsbar
epsbar = -epsbar
abar(2,i) = f*a(2,i)

Else
abar(2,i) = 0.0E0_nag_wp

End If
End If

End Do

! Compute the roots of the perturbed polynomial.

ifail = 0
Call c02aff(abar,n,scal,zbar,w,ifail)

! Perform error analysis.

! Initialize markers to 0 (unmarked).

m(1:n) = 0

rmax = x02alf()

! Loop over all unperturbed roots (stored in Z).

Do i = 1, n
deltai = rmax
r1 = a02abf(z(1,i),z(2,i))

! Loop over all perturbed roots (stored in ZBAR).

Do j = 1, n

! Compare the current unperturbed root to all unmarked
! perturbed roots.

If (m(j)==0) Then
r2 = a02abf(zbar(1,j),zbar(2,j))
deltac = abs(r1-r2)

If (deltac<deltai) Then
deltai = deltac
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jmin = j
End If

End If

End Do

! Mark the selected perturbed root.

m(jmin) = 1

! Compute the relative error.

If (r1/=0.0E0_nag_wp) Then
r3 = a02abf(zbar(1,jmin),zbar(2,jmin))
di = min(r1,r3)
r(i) = max(deltai/max(di,deltai/rmax),eps)

Else
r(i) = 0.0E0_nag_wp

End If

End Do

Write (nout,*)
Write (nout,99999) ’Degree of polynomial = ’, n
Write (nout,*)
Write (nout,*) ’Computed roots of polynomial ’, ’ Error estimates’
Write (nout,*) ’ ’, &

’ (machine-dependent)’
Write (nout,*)

Do i = 1, n
Write (nout,99998) ’z = ’, z(1,i), z(2,i), ’*i’, r(i)

End Do

99999 Format (1X,A,I4)
99998 Format (1X,A,1P,E12.4,Sp,E12.4,A,5X,Ss,E9.1)

End Subroutine ex2
End Program c02affe

10.2 Program Data

C02AFF Example Program Data

Example 1
5

5.0 6.0
30.0 20.0
-0.2 -6.0
50.0 100000.0
-2.0 40.0
10.0 1.0

Example 2
5

5.0 6.0
30.0 20.0
-0.2 -6.0
50.0 100000.0
-2.0 40.0
10.0 1.0

10.3 Program Results

C02AFF Example Program Results

Example 1

Degree of polynomial = 5
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Computed roots of polynomial

z = -2.4328E+01 -4.8555E+00*i
z = 5.2487E+00 +2.2736E+01*i
z = 1.4653E+01 -1.6569E+01*i
z = -6.9264E-03 -7.4434E-03*i
z = 6.5264E-03 +7.4232E-03*i

Example 2

Degree of polynomial = 5

Computed roots of polynomial Error estimates
(machine-dependent)

z = -2.4328E+01 -4.8555E+00*i 1.1E-16
z = 5.2487E+00 +2.2736E+01*i 3.0E-16
z = 1.4653E+01 -1.6569E+01*i 3.2E-16
z = -6.9264E-03 -7.4434E-03*i 1.7E-16
z = 6.5264E-03 +7.4232E-03*i 1.1E-16
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NAG Library Routine Document

C02AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C02AGF finds all the roots of a real polynomial equation, using a variant of Laguerre's method.

2 Specification

SUBROUTINE C02AGF (A, N, SCAL, Z, W, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) A(N+1), Z(2,N), W(2*(N+1))
LOGICAL SCAL

3 Description

C02AGF attempts to find all the roots of the nth degree real polynomial equation

P zð Þ ¼ a0zn þ a1zn�1 þ a2zn�2 þ � � � þ an�1zþ an ¼ 0:

The roots are located using a modified form of Laguerre's method, originally proposed by Smith (1967).

The method of Laguerre (see Wilkinson (1965)) can be described by the iterative scheme

L zkð Þ ¼ zkþ1 � zk ¼
�nP zkð Þ

P 0 zkð Þ 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H zkð Þ

p ;

where H zkð Þ ¼ n� 1ð Þ n� 1ð Þ P 0 zkð Þð Þ2 � nP zkð ÞP 00 zkð Þ
h i

and z0 is specified.

The sign in the denominator is chosen so that the modulus of the Laguerre step at zk, viz. L zkð Þj j, is as
small as possible. The method can be shown to be cubically convergent for isolated roots (real or
complex) and linearly convergent for multiple roots.

The routine generates a sequence of iterates z1; z2; z3; . . . , such that P zkþ1ð Þj j < P zkð Þj j and ensures that
zkþ1 þ L zkþ1ð Þ ‘roughly’ lies inside a circular region of radius Fj j about zk known to contain a zero of
P zð Þ; that is, L zkþ1ð Þj j � Fj j, where F denotes the Fejér bound (see Marden (1966)) at the point zk.
Following Smith (1967), F is taken to be min B; 1:445nRð Þ, where B is an upper bound for the
magnitude of the smallest zero given by

B ¼ 1:0001�min
ffiffiffi
n
p

L zkð Þ; r1j j; an=a0j j1=n
� �

;

r1 is the zero X of smaller magnitude of the quadratic equation

P 00 zkð Þ
2n n� 1ð ÞX

2 þ P
0 zkð Þ
n

X þ 1
2P zkð Þ ¼ 0

and the Cauchy lower bound R for the smallest zero is computed (using Newton's Method) as the
positive root of the polynomial equation

a0j jzn þ a1j jzn�1 þ a2j jzn�2 þ � � � þ an�1j jz� anj j ¼ 0:

Starting from the origin, successive iterates are generated according to the rule zkþ1 ¼ zk þ L zkð Þ, for
k ¼ 1; 2; 3; . . . , and L zkð Þ is ‘adjusted’ so that P zkþ1ð Þj j < P zkð Þj j and L zkþ1ð Þj j � Fj j. The iterative
procedure terminates if P zkþ1ð Þ is smaller in absolute value than the bound on the rounding error in
P zkþ1ð Þ and the current iterate zp ¼ zkþ1 is taken to be a zero of P zð Þ (as is its conjugate �zp if zp is
complex). The deflated polynomial ~P zð Þ ¼ P zð Þ= z� zp

� �
of degree n� 1 if zp is real
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( ~P zð Þ ¼ P zð Þ= z� zp
� �

z� �zp
� �� �

of degree n� 2 if zp is complex) is then formed, and the above
procedure is repeated on the deflated polynomial until n < 3, whereupon the remaining roots are
obtained via the ‘standard’ closed formulae for a linear (n ¼ 1) or quadratic (n ¼ 2) equation.

Note that C02AJF, C02AKF and C02ALF can be used to obtain the roots of a quadratic, cubic (n ¼ 3)
and quartic (n ¼ 4) polynomial, respectively.

4 References

Marden M (1966) Geometry of polynomials Mathematical Surveys 3 American Mathematical Society,
Providence, RI

Smith B T (1967) ZERPOL: a zero finding algorithm for polynomials using Laguerre's method
Technical Report Department of Computer Science, University of Toronto, Canada

Thompson K W (1991) Error analysis for polynomial solvers Fortran Journal (Volume 3) 3 10–13

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Arguments

1: AðNþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: if A is declared with bounds 0 : Nð Þ, then AðiÞ must contain ai (i.e., the coefficient of
zn�i) , for i ¼ 0; 1; . . . ; n.

Constraint: Að0Þ 6¼ 0:0.

2: N – INTEGER Input

On entry: n, the degree of the polynomial.

Constraint: N � 1.

3: SCAL – LOGICAL Input

On entry: indicates whether or not the polynomial is to be scaled. See Section 9 for advice on
when it may be preferable to set SCAL ¼ :FALSE: and for a description of the scaling strategy.

Suggested value: SCAL ¼ :TRUE:.

4: Zð2;NÞ – REAL (KIND=nag_wp) array Output

On exit: the real and imaginary parts of the roots are stored in Zð1; iÞ and Zð2; iÞ respectively, for
i ¼ 1; 2; . . . ; n. Complex conjugate pairs of roots are stored in consecutive pairs of elements of Z;
that is, Zð1; i þ 1Þ ¼ Zð1; iÞ and Zð2; iþ 1Þ ¼ �Zð2; iÞ.

5: Wð2� Nþ 1ð ÞÞ – REAL (KIND=nag_wp) array Workspace

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, Að0Þ ¼ 0:0,
or N < 1.

IFAIL ¼ 2

The iterative procedure has failed to converge. This error is very unlikely to occur. If it does,
please contact NAG, as some basic assumption for the arithmetic has been violated. See also
Section 9.

IFAIL ¼ 3

Either overflow or underflow prevents the evaluation of P zð Þ near some of its zeros. This error is
very unlikely to occur. If it does, please contact NAG. See also Section 9.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All roots are evaluated as accurately as possible, but because of the inherent nature of the problem
complete accuracy cannot be guaranteed. See also Section 10.

8 Parallelism and Performance

C02AGF is not threaded in any implementation.

9 Further Comments

If SCAL ¼ :TRUE:, then a scaling factor for the coefficients is chosen as a power of the base b of the
machine so that the largest coefficient in magnitude approaches thresh ¼ bemax�p. You should note that
no scaling is performed if the largest coefficient in magnitude exceeds thresh, even if SCAL ¼ :TRUE:.
(b, emax and p are defined in Chapter X02.)

However, with SCAL ¼ :TRUE:, overflow may be encountered when the input coefficients
a0; a1; a2; . . . ; an vary widely in magnitude, particularly on those machines for which b 4pð Þ overflows.
In such cases, SCAL should be set to .FALSE. and the coefficients scaled so that the largest coefficient
in magnitude does not exceed b emax�2pð Þ.

Even so, the scaling strategy used by C02AGF is sometimes insufficient to avoid overflow and/or
underflow conditions. In such cases, you are recommended to scale the independent variable zð Þ so that
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the disparity between the largest and smallest coefficient in magnitude is reduced. That is, use the
routine to locate the zeros of the polynomial dP czð Þ for some suitable values of c and d. For example,
if the original polynomial was P zð Þ ¼ 2�100 þ 2100z20, then choosing c ¼ 2�10 and d ¼ 2100, for
instance, would yield the scaled polynomial 1þ z20, which is well-behaved relative to overflow and
underflow and has zeros which are 210 times those of P zð Þ.
If the routine fails with IFAIL ¼ 2 or 3, then the real and imaginary parts of any roots obtained before
the failure occurred are stored in Z in the reverse order in which they were found. Let nR denote the
number of roots found before the failure occurred. Then Zð1; nÞ and Zð2; nÞ contain the real and
imaginary parts of the first root found, Zð1; n� 1Þ and Zð2; n� 1Þ contain the real and imaginary parts
of the second root found, . . . ;Zð1; n� nR þ 1Þ and Zð2; n� nR þ 1Þ contain the real and imaginary
parts of the nRth root found. After the failure has occurred, the remaining 2� n� nRð Þ elements of Z
contain a large negative number (equal to �1= X02AMFðÞ �

ffiffiffi
2
p� �

).

10 Example

For this routine two examples are presented. There is a single example program for C02AGF, with a
main program and the code to solve the two example problems given in the subroutines EX1 and EX2.

Example 1 (EX1)

This example finds the roots of the fifth degree polynomial

z5 þ 2z4 þ 3z3 þ 4z2 þ 5zþ 6 ¼ 0:

Example 2 (EX2)

This example solves the same problem as subroutine EX1, but in addition attempts to estimate the
accuracy of the computed roots using a perturbation analysis. Further details can be found in Thompson
(1991).

10.1 Program Text

! C02AGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c02agfe_mod

! C02AGF Example Program Module:
! Parameters

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6
Logical, Parameter, Public :: scal = .True.

End Module c02agfe_mod
Program c02agfe

! C02AGF Example Main Program

! .. Use Statements ..
Use c02agfe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’C02AGF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1
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! .. Use Statements ..
Use nag_library, Only: c02agf, nag_wp
Use c02agfe_mod, Only: nin, scal

! .. Local Scalars ..
Real (Kind=nag_wp) :: zi, zr
Integer :: i, ifail, n, nroot

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), w(:), z(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 1’

! Skip heading in data file
Read (nin,*)
Read (nin,*)
Read (nin,*)

Read (nin,*) n
Allocate (a(0:n),w(2*(n+1)),z(2,n))

Read (nin,*)(a(i),i=0,n)

Write (nout,*)
Write (nout,99999) ’Degree of polynomial = ’, n

ifail = 0
Call c02agf(a,n,scal,z,w,ifail)

Write (nout,99998) ’Computed roots of polynomial’

nroot = 1

Do While (nroot<=n)

zr = z(1,nroot)
zi = z(2,nroot)
If (zi==0.0E0_nag_wp) Then

Write (nout,99997) ’z = ’, zr
nroot = nroot + 1

Else
Write (nout,99997) ’z = ’, zr, ’ +/- ’, abs(zi), ’*i’
nroot = nroot + 2

End If

End Do

99999 Format (/,1X,A,I4)
99998 Format (/,1X,A,/)
99997 Format (1X,A,1P,E12.4,A,E12.4,A)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: a02abf, c02agf, nag_wp, x02ajf, x02alf
Use c02agfe_mod, Only: nin, scal

! .. Local Scalars ..
Real (Kind=nag_wp) :: deltac, deltai, di, eps, epsbar, f, &

r1, r2, r3, rmax
Integer :: i, ifail, j, jmin, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), abar(:), r(:), w(:), z(:,:), &

zbar(:,:)
Integer, Allocatable :: m(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max, min

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
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Write (nout,*) ’Example 2’

! Skip heading in data file
Read (nin,*)
Read (nin,*)

Read (nin,*) n
Allocate (a(0:n),abar(0:n),r(n),w(2*(n+1)),z(2,n),zbar(2,n),m(n))

! Read in the coefficients of the original polynomial.

Read (nin,*)(a(i),i=0,n)

! Compute the roots of the original polynomial.

ifail = 0
Call c02agf(a,n,scal,z,w,ifail)

! Form the coefficients of the perturbed polynomial.

eps = x02ajf()
epsbar = 3.0_nag_wp*eps

Do i = 0, n

If (a(i)/=0.0_nag_wp) Then
f = 1.0_nag_wp + epsbar
epsbar = -epsbar
abar(i) = f*a(i)

Else
abar(i) = 0.0E0_nag_wp

End If

End Do

! Compute the roots of the perturbed polynomial.

ifail = 0
Call c02agf(abar,n,scal,zbar,w,ifail)

! Perform error analysis.

! Initialize markers to 0 (unmarked).

m(1:n) = 0

rmax = x02alf()

! Loop over all unperturbed roots (stored in Z).

Do i = 1, n
deltai = rmax
r1 = a02abf(z(1,i),z(2,i))

! Loop over all perturbed roots (stored in ZBAR).

Do j = 1, n

! Compare the current unperturbed root to all unmarked
! perturbed roots.

If (m(j)==0) Then
r2 = a02abf(zbar(1,j),zbar(2,j))
deltac = abs(r1-r2)

If (deltac<deltai) Then
deltai = deltac
jmin = j

End If

End If
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End Do

! Mark the selected perturbed root.

m(jmin) = 1

! Compute the relative error.

If (r1/=0.0E0_nag_wp) Then
r3 = a02abf(zbar(1,jmin),zbar(2,jmin))
di = min(r1,r3)
r(i) = max(deltai/max(di,deltai/rmax),eps)

Else
r(i) = 0.0_nag_wp

End If

End Do

Write (nout,*)
Write (nout,99999) ’Degree of polynomial = ’, n
Write (nout,*)
Write (nout,*) ’Computed roots of polynomial ’, ’ Error estimates’
Write (nout,*) ’ ’, &

’ (machine-dependent)’
Write (nout,*)

Do i = 1, n
Write (nout,99998) ’z = ’, z(1,i), z(2,i), ’*i’, r(i)

End Do

99999 Format (1X,A,I4)
99998 Format (1X,A,1P,E12.4,Sp,E12.4,A,5X,Ss,E9.1)

End Subroutine ex2
End Program c02agfe

10.2 Program Data

C02AGF Example Program Data

Example 1
5

1.0 2.0 3.0 4.0 5.0 6.0

Example 2
5

1.0 2.0 3.0 4.0 5.0 6.0

10.3 Program Results

C02AGF Example Program Results

Example 1

Degree of polynomial = 5

Computed roots of polynomial

z = -1.4918E+00
z = 5.5169E-01 +/- 1.2533E+00*i
z = -8.0579E-01 +/- 1.2229E+00*i

Example 2

Degree of polynomial = 5

Computed roots of polynomial Error estimates
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(machine-dependent)

z = -1.4918E+00 +0.0000E+00*i 1.0E-15
z = 5.5169E-01 +1.2533E+00*i 1.1E-16
z = 5.5169E-01 -1.2533E+00*i 1.1E-16
z = -8.0579E-01 +1.2229E+00*i 1.5E-16
z = -8.0579E-01 -1.2229E+00*i 1.5E-16
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NAG Library Routine Document

C02AHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C02AHF determines the roots of a quadratic equation with complex coefficients.

2 Specification

SUBROUTINE C02AHF (AR, AI, BR, BI, CR, CI, ZSM, ZLG, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) AR, AI, BR, BI, CR, CI, ZSM(2), ZLG(2)

3 Description

C02AHF attempts to find the roots of the quadratic equation az2 þ bzþ c ¼ 0 (where a, b and c are
complex coefficients), by carefully evaluating the ‘standard’ closed formula

z ¼ �b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a
:

It is based on the routine CQDRTC from Smith (1967).

Note: it is not necessary to scale the coefficients prior to calling the routine.

4 References

Smith B T (1967) ZERPOL: a zero finding algorithm for polynomials using Laguerre's method
Technical Report Department of Computer Science, University of Toronto, Canada

5 Arguments

1: AR – REAL (KIND=nag_wp) Input
2: AI – REAL (KIND=nag_wp) Input

On entry: AR and AI must contain the real and imaginary parts respectively of a, the coefficient
of z2.

3: BR – REAL (KIND=nag_wp) Input
4: BI – REAL (KIND=nag_wp) Input

On entry: BR and BI must contain the real and imaginary parts respectively of b, the coefficient
of z.

5: CR – REAL (KIND=nag_wp) Input
6: CI – REAL (KIND=nag_wp) Input

On entry: CR and CI must contain the real and imaginary parts respectively of c, the constant
coefficient.

7: ZSMð2Þ – REAL (KIND=nag_wp) array Output

On exit: the real and imaginary parts of the smallest root in magnitude are stored in ZSMð1Þ and
ZSMð2Þ respectively.

C02 – Zeros of Polynomials C02AHF

Mark 26 C02AHF.1



8: ZLGð2Þ – REAL (KIND=nag_wp) array Output

On exit: the real and imaginary parts of the largest root in magnitude are stored in ZLGð1Þ and
ZLGð2Þ respectively.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, AR;AIð Þ ¼ 0; 0ð Þ. In this case, ZSMð1Þ and ZSMð2Þ contain the real and imaginary
parts respectively of the root �c=b.

IFAIL ¼ 2

On entry, AR;AIð Þ ¼ 0; 0ð Þ and BR;BIð Þ ¼ 0; 0ð Þ. In this case, ZSMð1Þ contains the largest
machine representable number (see X02ALF) and ZSMð2Þ contains zero.

IFAIL ¼ 3

On entry, AR;AIð Þ ¼ 0; 0ð Þ and the root �c=b overflows. In this case, ZSMð1Þ contains the
largest machine representable number (see X02ALF) and ZSMð2Þ contains zero.

IFAIL ¼ 4

On entry, CR;CIð Þ ¼ 0; 0ð Þ and the root �b=a overflows. In this case, both ZSMð1Þ and ZSMð2Þ
contain zero.

IFAIL ¼ 5

On entry, ~b is so large that ~b2 is indistinguishable from ~b2 � 4~a~c and the root �b=a overflows,
where ~b ¼ max BRj j; BIj jð Þ, ~a ¼ max ARj j; AIj jð Þ and ~c ¼ max CRj j; CIj jð Þ. In this case, ZSMð1Þ
and ZSMð2Þ contain the real and imaginary parts respectively of the root �c=b.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL > 0 on exit, then ZLGð1Þ contains the largest machine representable number (see X02ALF)
and ZLGð2Þ contains zero.

7 Accuracy

If IFAIL ¼ 0 on exit, then the computed roots should be accurate to within a small multiple of the
machine precision except when underflow (or overflow) occurs, in which case the true roots are within
a small multiple of the underflow (or overflow) threshold of the machine.

8 Parallelism and Performance

C02AHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example finds the roots of the quadratic equation z2 � 3:0� 1:0ið Þzþ 8:0þ 1:0ið Þ ¼ 0.

10.1 Program Text

Program c02ahfe

! C02AHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c02ahf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: ai, ar, bi, br, ci, cr
Integer :: ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: zlg(2), zsm(2)

! .. Executable Statements ..
Write (nout,*) ’C02AHF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) ar, ai, br, bi, cr, ci

ifail = -1
Call c02ahf(ar,ai,br,bi,cr,ci,zsm,zlg,ifail)

If (ifail==0) Then
Write (nout,*)
Write (nout,*) ’Roots of quadratic equation’
Write (nout,*)
Write (nout,99999) ’z = ’, zsm(1), zsm(2), ’*i’
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Write (nout,99999) ’z = ’, zlg(1), zlg(2), ’*i’
End If

99999 Format (1X,A,1P,E12.4,Sp,E14.4,A)
End Program c02ahfe

10.2 Program Data

C02AHF Example Program Data
1.0 0.0 -3.0 1.0 8.0 1.0 :AR AI BR BI CR CI

10.3 Program Results

C02AHF Example Program Results

Roots of quadratic equation

z = 1.0000E+00 +2.0000E+00*i
z = 2.0000E+00 -3.0000E+00*i
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NAG Library Routine Document

C02AJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C02AJF determines the roots of a quadratic equation with real coefficients.

2 Specification

SUBROUTINE C02AJF (A, B, C, ZSM, ZLG, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) A, B, C, ZSM(2), ZLG(2)

3 Description

C02AJF attempts to find the roots of the quadratic equation az2 þ bzþ c ¼ 0 (where a, b and c are real
coefficients), by carefully evaluating the ‘standard’ closed formula

z ¼ �b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a
:

It is based on the routine QDRTC from Smith (1967).

Note: it is not necessary to scale the coefficients prior to calling the routine.

4 References

Smith B T (1967) ZERPOL: a zero finding algorithm for polynomials using Laguerre's method
Technical Report Department of Computer Science, University of Toronto, Canada

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: must contain a, the coefficient of z2.

2: B – REAL (KIND=nag_wp) Input

On entry: must contain b, the coefficient of z.

3: C – REAL (KIND=nag_wp) Input

On entry: must contain c, the constant coefficient.

4: ZSMð2Þ – REAL (KIND=nag_wp) array Output

On exit: the real and imaginary parts of the smallest root in magnitude are stored in ZSMð1Þ and
ZSMð2Þ respectively.

5: ZLGð2Þ – REAL (KIND=nag_wp) array Output

On exit: the real and imaginary parts of the largest root in magnitude are stored in ZLGð1Þ and
ZLGð2Þ respectively.
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, A ¼ 0:0. In this case, ZSMð1Þ contains the root �c=b and ZSMð2Þ contains zero.

IFAIL ¼ 2

On entry, A ¼ 0:0 and B ¼ 0:0. In this case, ZSMð1Þ contains the largest machine representable
number (see X02ALF) and ZSMð2Þ contains zero.

IFAIL ¼ 3

On entry, A ¼ 0:0 and the root �c=b overflows. In this case, ZSMð1Þ contains the largest
machine representable number (see X02ALF) and ZSMð2Þ contains zero.

IFAIL ¼ 4

On entry, C ¼ 0:0 and the root �b=a overflows. In this case, both ZSMð1Þ and ZSMð2Þ contain
zero.

IFAIL ¼ 5

On entry, b is so large that b2 is indistinguishable from b2 � 4ac and the root �b=a overflows. In
this case, ZSMð1Þ contains the root �c=b and ZSMð2Þ contains zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL > 0 on exit, then ZLGð1Þ contains the largest machine representable number (see X02ALF)
and ZLGð2Þ contains zero.
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7 Accuracy

If IFAIL ¼ 0 on exit, then the computed roots should be accurate to within a small multiple of the
machine precision except when underflow (or overflow) occurs, in which case the true roots are within
a small multiple of the underflow (or overflow) threshold of the machine.

8 Parallelism and Performance

C02AJF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example finds the roots of the quadratic equation z2 þ 3z� 10 ¼ 0.

10.1 Program Text

Program c02ajfe

! C02AJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c02ajf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, c
Integer :: ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: zlg(2), zsm(2)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’C02AJF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) a, b, c

ifail = -1
Call c02ajf(a,b,c,zsm,zlg,ifail)

If (ifail==0) Then
Write (nout,*)
Write (nout,*) ’Roots of quadratic equation’
Write (nout,*)

If (zsm(2)==0.0E0_nag_wp) Then

! 2 real roots.

Write (nout,99999) ’z = ’, zsm(1)
Write (nout,99999) ’z = ’, zlg(1)

Else

! 2 complex roots.

Write (nout,99998) ’z = ’, zsm(1), ’ +/- ’, abs(zsm(2)), ’*i’
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End If

End If

99999 Format (1X,A,1P,E12.4)
99998 Format (1X,A,1P,E12.4,A,E12.4,A)

End Program c02ajfe

10.2 Program Data

C02AJF Example Program Data
1.0 3.0 -10.0 :A B C

10.3 Program Results

C02AJF Example Program Results

Roots of quadratic equation

z = 2.0000E+00
z = -5.0000E+00
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NAG Library Routine Document

C02AKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C02AKF determines the roots of a cubic equation with real coefficients.

2 Specification

SUBROUTINE C02AKF (U, R, S, T, ZEROR, ZEROI, ERREST, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) U, R, S, T, ZEROR(3), ZEROI(3), ERREST(3)

3 Description

C02AKF attempts to find the roots of the cubic equation

uz3 þ rz2 þ szþ t ¼ 0;

where u, r, s and t are real coefficients with u 6¼ 0. The roots are located by finding the eigenvalues of
the associated 3 by 3 (upper Hessenberg) companion matrix H given by

H ¼
0 0 �t=u
1 0 �s=u
0 1 �r=u

0@ 1A:
The eigenvalues are obtained by a call to F08PEF (DHSEQR). Further details can be found in
Section 9.

To obtain the roots of a quartic equation, C02ALF can be used.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: U – REAL (KIND=nag_wp) Input

On entry: u, the coefficient of z3.

Constraint: U 6¼ 0:0.

2: R – REAL (KIND=nag_wp) Input

On entry: r, the coefficient of z2.

3: S – REAL (KIND=nag_wp) Input

On entry: s, the coefficient of z.

4: T – REAL (KIND=nag_wp) Input

On entry: t, the constant coefficient.
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5: ZERORð3Þ – REAL (KIND=nag_wp) array Output
6: ZEROIð3Þ – REAL (KIND=nag_wp) array Output

On exit: ZERORðiÞ and ZEROIðiÞ contain the real and imaginary parts, respectively, of the ith
root.

7: ERRESTð3Þ – REAL (KIND=nag_wp) array Output

On exit: ERRESTðiÞ contains an approximate error estimate for the ith root.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, U ¼ 0:0.

IFAIL ¼ 2

The companion matrix H cannot be formed without overflow.

IFAIL ¼ 3

The iterative procedure used to determine the eigenvalues has failed to converge.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 on exit, then the ith computed root should have approximately log10 ERRESTðiÞð Þj j
correct significant digits.
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8 Parallelism and Performance

C02AKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C02AKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The method used by the routine consists of the following steps, which are performed by routines from
LAPACK in Chapter F08.

(a) Form matrix H.

(b) Apply a diagonal similarity transformation to H (to give H 0).

(c) Calculate the eigenvalues and Schur factorization of H 0.

(d) Calculate the left and right eigenvectors of H 0.

(e) Estimate reciprocal condition numbers for all the eigenvalues of H 0.

(f) Calculate approximate error estimates for all the eigenvalues of H 0 (using the 1-norm).

10 Example

This example finds the roots of the cubic equation

z3 þ 3z2 þ 9z� 13 ¼ 0:

10.1 Program Text

Program c02akfe

! C02AKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c02akf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r, s, t, u
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: errest(3), zeroi(3), zeror(3)

! .. Executable Statements ..
Write (nout,*) ’C02AKF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) u, r, s, t

ifail = 0
Call c02akf(u,r,s,t,zeror,zeroi,errest,ifail)

Write (nout,*)
Write (nout,*) ’ Roots of cubic equation ’, &
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’ Error estimates’
Write (nout,*) ’ ’, &

’ (machine-dependent)’
Write (nout,*)

Do i = 1, 3
Write (nout,99999) ’ z = ’, zeror(i), zeroi(i), ’*i’, errest(i)

End Do

99999 Format (1X,A,1P,E12.4,Sp,E12.4,A,8X,Ss,E9.1)
End Program c02akfe

10.2 Program Data

C02AKF Example Program Data
1.0 3.0 9.0 -13.0 : Values of U, R, S and T

10.3 Program Results

C02AKF Example Program Results

Roots of cubic equation Error estimates
(machine-dependent)

z = 1.0000E+00 +0.0000E+00*i 1.0E-15
z = -2.0000E+00 +3.0000E+00*i 1.0E-15
z = -2.0000E+00 -3.0000E+00*i 1.0E-15
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NAG Library Routine Document

C02ALF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C02ALF determines the roots of a quartic equation with real coefficients.

2 Specification

SUBROUTINE C02ALF (E, A, B, C, D, ZEROR, ZEROI, ERREST, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) E, A, B, C, D, ZEROR(4), ZEROI(4), ERREST(4)

3 Description

C02ALF attempts to find the roots of the quartic equation

ez4 þ az3 þ bz2 þ czþ d ¼ 0;

where e, a, b, c and d are real coefficients with e 6¼ 0. The roots are located by finding the eigenvalues
of the associated 4 by 4 (upper Hessenberg) companion matrix H given by

H ¼
0 0 0 �d=e
1 0 0 �c=e
0 1 0 �b=e
0 0 1 �a=e

0B@
1CA:

The eigenvalues are obtained by a call to F08PEF (DHSEQR). Further details can be found in
Section 9.

To obtain the roots of a cubic equation, C02AKF can be used.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: E – REAL (KIND=nag_wp) Input

On entry: e, the coefficient of z4.

Constraint: E 6¼ 0:0.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the coefficient of z3.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the coefficient of z2.

4: C – REAL (KIND=nag_wp) Input

On entry: c, the coefficient of z.
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5: D – REAL (KIND=nag_wp) Input

On entry: d, the constant coefficient.

6: ZERORð4Þ – REAL (KIND=nag_wp) array Output
7: ZEROIð4Þ – REAL (KIND=nag_wp) array Output

On exit: ZERORðiÞ and ZEROIðiÞ contain the real and imaginary parts, respectively, of the ith
root.

8: ERRESTð4Þ – REAL (KIND=nag_wp) array Output

On exit: ERRESTðiÞ contains an approximate error estimate for the ith root.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, E ¼ 0:0.

IFAIL ¼ 2

The companion matrix H cannot be formed without overflow.

IFAIL ¼ 3

The iterative procedure used to determine the eigenvalues has failed to converge.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

If IFAIL ¼ 0 on exit, then the ith computed root should have approximately log10 ERRESTðiÞð Þj j
correct significant digits.

8 Parallelism and Performance

C02ALF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C02ALF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The method used by the routine consists of the following steps, which are performed by routines from
LAPACK in Chapter F08.

(a) Form matrix H.

(b) Apply a diagonal similarity transformation to H (to give H 0).

(c) Calculate the eigenvalues and Schur factorization of H 0.

(d) Calculate the left and right eigenvectors of H 0.

(e) Estimate reciprocal condition numbers for all the eigenvalues of H 0.

(f) Calculate approximate error estimates for all the eigenvalues of H 0 (using the 1-norm).

10 Example

This example finds the roots of the quartic equation

z4 þ 2z3 þ 6z2 � 8z� 40 ¼ 0:

10.1 Program Text

Program c02alfe

! C02ALF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c02alf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, c, d, e
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: errest(4), zeroi(4), zeror(4)

! .. Executable Statements ..
Write (nout,*) ’C02ALF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) e, a, b, c, d
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ifail = 0
Call c02alf(e,a,b,c,d,zeror,zeroi,errest,ifail)

Write (nout,*)
Write (nout,*) ’ Roots of quartic equation ’, &

’ Error estimates’
Write (nout,*) ’ ’, &

’ (machine-dependent)’
Write (nout,*)

Do i = 1, 4
Write (nout,99999) ’ z = ’, zeror(i), zeroi(i), ’*i’, errest(i)

End Do

99999 Format (1X,A,1P,E12.4,Sp,E12.4,A,8X,Ss,E9.1)
End Program c02alfe

10.2 Program Data

C02ALF Example Program Data
1.0 2.0 6.0 -8.0 -40.0 : Values of E, A, B, C and D

10.3 Program Results

C02ALF Example Program Results

Roots of quartic equation Error estimates
(machine-dependent)

z = 2.0000E+00 +0.0000E+00*i 8.9E-16
z = -2.0000E+00 +0.0000E+00*i 1.1E-15
z = -1.0000E+00 +3.0000E+00*i 1.0E-15
z = -1.0000E+00 -3.0000E+00*i 1.0E-15
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NAG Library Routine Document

C02AMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C02AMF determines the roots of a cubic equation with complex coefficients.

2 Specification

SUBROUTINE C02AMF (U, R, S, T, ZEROR, ZEROI, ERREST, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) ZEROR(3), ZEROI(3), ERREST(3)
COMPLEX (KIND=nag_wp) U, R, S, T

3 Description

C02AMF attempts to find the roots of the cubic equation

uz3 þ rz2 þ szþ t ¼ 0;

where u, r, s and t are complex coefficients with u 6¼ 0. The roots are located by finding the
eigenvalues of the associated 3 by 3 (upper Hessenberg) companion matrix H given by

H ¼
0 0 �t=u
1 0 �s=u
0 1 �r=u

0@ 1A:
The eigenvalues are obtained by a call to F08PSF (ZHSEQR). Further details can be found in Section 9.

To obtain the roots of a quadratic equation, C02AHF can be used.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: U – COMPLEX (KIND=nag_wp) Input

On entry: u, the coefficient of z3.

Constraint: U 6¼ 0:0; 0:0ð Þ.

2: R – COMPLEX (KIND=nag_wp) Input

On entry: r, the coefficient of z2.

3: S – COMPLEX (KIND=nag_wp) Input

On entry: s, the coefficient of z.

4: T – COMPLEX (KIND=nag_wp) Input

On entry: t, the constant coefficient.
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5: ZERORð3Þ – REAL (KIND=nag_wp) array Output
6: ZEROIð3Þ – REAL (KIND=nag_wp) array Output

On exit: ZERORðiÞ and ZEROIðiÞ contain the real and imaginary parts, respectively, of the ith
root.

7: ERRESTð3Þ – REAL (KIND=nag_wp) array Output

On exit: ERRESTðiÞ contains an approximate error estimate for the ith root.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, U ¼ 0:0; 0:0ð Þ.

IFAIL ¼ 2

The companion matrix H cannot be formed without overflow.

IFAIL ¼ 3

The iterative procedure used to determine the eigenvalues has failed to converge.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 on exit, then the ith computed root should have approximately log10 ERRESTðiÞð Þj j
correct significant digits.
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8 Parallelism and Performance

C02AMF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C02AMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The method used by the routine consists of the following steps, which are performed by routines from
LAPACK in Chapter F08.

(a) Form matrix H.

(b) Apply a diagonal similarity transformation to H (to give H 0).

(c) Calculate the eigenvalues and Schur factorization of H 0.

(d) Calculate the left and right eigenvectors of H 0.

(e) Estimate reciprocal condition numbers for all the eigenvalues of H 0.

(f) Calculate approximate error estimates for all the eigenvalues of H 0 (using the 1-norm).

10 Example

This example finds the roots of the cubic equation

z3 � 2� 3ið Þz2 þ 5þ 14ið Þz� 40þ 5ið Þ ¼ 0:

10.1 Program Text

Program c02amfe

! C02AMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c02amf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: r, s, t, u
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: errest(3), zeroi(3), zeror(3)

! .. Executable Statements ..
Write (nout,*) ’C02AMF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) u, r, s, t

ifail = 0
Call c02amf(u,r,s,t,zeror,zeroi,errest,ifail)

Write (nout,*)
Write (nout,*) ’ Roots of cubic equation ’, &
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’ Error estimates’
Write (nout,*) ’ ’, &

’ (machine-dependent)’
Write (nout,*)

Do i = 1, 3
Write (nout,99999) ’ z = ’, zeror(i), zeroi(i), ’*i’, errest(i)

End Do

99999 Format (1X,A,1P,E12.4,Sp,E12.4,A,8X,Ss,E9.1)
End Program c02amfe

10.2 Program Data

C02AMF Example Program Data
( 1.0, 0.0)
( -2.0, 3.0)
( 5.0, 14.0)
(-40.0, -5.0) : Values of U, R, S and T

10.3 Program Results

C02AMF Example Program Results

Roots of cubic equation Error estimates
(machine-dependent)

z = -2.0000E+00 +3.0000E+00*i 1.7E-15
z = 1.0000E+00 -2.0000E+00*i 3.6E-15
z = 3.0000E+00 -4.0000E+00*i 3.7E-15
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NAG Library Routine Document

C02ANF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C02ANF determines the roots of a quartic equation with complex coefficients.

2 Specification

SUBROUTINE C02ANF (E, A, B, C, D, ZEROR, ZEROI, ERREST, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) ZEROR(4), ZEROI(4), ERREST(4)
COMPLEX (KIND=nag_wp) E, A, B, C, D

3 Description

C02ANF attempts to find the roots of the quartic equation

ez4 þ az3 þ bz2 þ czþ d ¼ 0;

where e, a, b, c and d are complex coefficients with e 6¼ 0. The roots are located by finding the
eigenvalues of the associated 4 by 4 (upper Hessenberg) companion matrix H given by

H ¼
0 0 0 �d=e
1 0 0 �c=e
0 1 0 �b=e
0 0 1 �a=e

0B@
1CA:

The eigenvalues are obtained by a call to F08PSF (ZHSEQR). Further details can be found in Section 9.

To obtain the roots of a cubic equation, C02AMF can be used.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: E – COMPLEX (KIND=nag_wp) Input

On entry: e, the coefficient of z4.

Constraint: E 6¼ 0:0; 0:0ð Þ.

2: A – COMPLEX (KIND=nag_wp) Input

On entry: a, the coefficient of z3.

3: B – COMPLEX (KIND=nag_wp) Input

On entry: b, the coefficient of z2.

4: C – COMPLEX (KIND=nag_wp) Input

On entry: c, the coefficient of z.
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5: D – COMPLEX (KIND=nag_wp) Input

On entry: d, the constant coefficient.

6: ZERORð4Þ – REAL (KIND=nag_wp) array Output
7: ZEROIð4Þ – REAL (KIND=nag_wp) array Output

On exit: ZERORðiÞ and ZEROIðiÞ contain the real and imaginary parts, respectively, of the ith
root.

8: ERRESTð4Þ – REAL (KIND=nag_wp) array Output

On exit: ERRESTðiÞ contains an approximate error estimate for the ith root.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, E ¼ 0:0; 0:0ð Þ.

IFAIL ¼ 2

The companion matrix H cannot be formed without overflow.

IFAIL ¼ 3

The iterative procedure used to determine the eigenvalues has failed to converge.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

If IFAIL ¼ 0 on exit, then the ith computed root should have approximately log10 ERRESTðiÞð Þj j
correct significant digits.

8 Parallelism and Performance

C02ANF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C02ANF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The method used by the routine consists of the following steps, which are performed by routines from
LAPACK in Chapter F08.

(a) Form matrix H.

(b) Apply a diagonal similarity transformation to H (to give H 0).

(c) Calculate the eigenvalues and Schur factorization of H 0.

(d) Calculate the left and right eigenvectors of H 0.

(e) Estimate reciprocal condition numbers for all the eigenvalues of H 0.

(f) Calculate approximate error estimates for all the eigenvalues of H 0 (using the 1-norm).

10 Example

This example finds the roots of the quartic equation

z4 þ 16iz2 � 8� 8ið Þz� 65 ¼ 0:

10.1 Program Text

Program c02anfe

! C02ANF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c02anf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: a, b, c, d, e
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: errest(4), zeroi(4), zeror(4)

! .. Executable Statements ..
Write (nout,*) ’C02ANF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) e, a, b, c, d
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ifail = 0
Call c02anf(e,a,b,c,d,zeror,zeroi,errest,ifail)

Write (nout,*)
Write (nout,*) ’ Roots of quartic equation ’, &

’ Error estimates’
Write (nout,*) ’ ’, &

’ (machine-dependent)’
Write (nout,*)

Do i = 1, 4
Write (nout,99999) ’ z = ’, zeror(i), zeroi(i), ’*i’, errest(i)

End Do

99999 Format (1X,A,1P,E12.4,Sp,E12.4,A,8X,Ss,E9.1)
End Program c02anfe

10.2 Program Data

C02ANF Example Program Data
( 1.0, 0.0)
( 0.0, 0.0)
( 0.0, 16.0)
( -8.0, 8.0)
(-65.0, 0.0) : Values of E, A, B, C and D

10.3 Program Results

C02ANF Example Program Results

Roots of quartic equation Error estimates
(machine-dependent)

z = 3.0000E+00 -2.0000E+00*i 3.0E-15
z = 1.0000E+00 -2.0000E+00*i 2.9E-15
z = -2.0000E+00 +1.0000E+00*i 2.9E-15
z = -2.0000E+00 +3.0000E+00*i 3.0E-15
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NAG Library Chapter Contents

C05 – Roots of One or More Transcendental Equations

C05 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

C05AUF 23 nagf_roots_contfn_brent_interval
Zero of continuous function, Brent algorithm, from a given starting value,
binary search for interval

C05AVF 8 nagf_roots_contfn_interval_rcomm
Binary search for interval containing zero of continuous function (reverse
communication)

C05AWF 23 nagf_roots_contfn_cntin
Zero of continuous function, continuation method, from a given starting
value

C05AXF 8 nagf_roots_contfn_cntin_rcomm
Zero of continuous function, continuation method, from a given starting
value (reverse communication)

C05AYF 23 nagf_roots_contfn_brent
Zero of continuous function in a given interval, Brent algorithm

C05AZF 7 nagf_roots_contfn_brent_rcomm
Zero of continuous function in a given interval, Brent algorithm (reverse
communication)

C05BAF 22 nagf_roots_lambertw_real
Real values of Lambert's W function, W xð Þ

C05BBF 23 nagf_roots_lambertw_complex
Values of Lambert's W function, W zð Þ

C05QBF 23 nagf_roots_sys_func_easy
Solution of a system of nonlinear equations using function values only
(easy-to-use)

C05QCF 23 nagf_roots_sys_func_expert
Solution of a system of nonlinear equations using function values only
(comprehensive)

C05QDF 23 nagf_roots_sys_func_rcomm
Solution of a system of nonlinear equations using function values only
(reverse communication)

C05QSF 23 nagf_roots_sparsys_func_expert
Solution of a sparse system of nonlinear equations using function values
only (easy-to-use)

C05RBF 23 nagf_roots_sys_deriv_easy
Solution of a system of nonlinear equations using first derivatives (easy-to-
use)

C05RCF 23 nagf_roots_sys_deriv_expert
Solution of a system of nonlinear equations using first derivatives
(comprehensive)

C05RDF 23 nagf_roots_sys_deriv_rcomm
Solution of a system of nonlinear equations using first derivatives (reverse
communication)

C05ZDF 23 nagf_roots_sys_deriv_check
Check user's routine for calculating first derivatives of a set of nonlinear
functions of several variables
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NAG Library Chapter Introduction

C05 – Roots of One or More Transcendental Equations

Contents
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1 Scope of the Chapter

This chapter is concerned with the calculation of zeros of continuous functions of one or more
variables. The majority of problems considered are for real-valued functions of real variables, in which
case complex equations must be expressed in terms of the equivalent larger system of real equations.

2 Background to the Problems

The chapter divides naturally into two parts.

2.1 A Single Equation

The first deals with the real zeros of a real function of a single variable f xð Þ.
There are three routines with simple calling sequences. The first assumes that you can determine an
initial interval a; b½ � within which the desired zero lies, (that is, where f að Þ � f bð Þ < 0), and outside
which all other zeros lie. The routine then systematically subdivides the interval to produce a final
interval containing the zero. This final interval has a length bounded by your specified error
requirements; the end of the interval where the function has smallest magnitude is returned as the zero.
This routine is guaranteed to converge to a simple zero of the function. (Here we define a simple zero
as a zero corresponding to a sign-change of the function; none of the available routines are capable of
making any finer distinction.) However, as with the other routines described below, a non-simple zero
might be determined and it is left to you to check for this. The algorithm used is due to Brent (1973).

The two other routines are both designed for the case where you are unable to specify an interval
containing the simple zero. One starts from an initial point and performs a search for an interval
containing a simple zero. If such an interval is computed then the method described above is used next
to determine the zero accurately. The other method uses a ‘continuation’ method based on a secant
iteration. A sequence of subproblems is solved; the first of these is trivial and the last is the actual
problem of finding a zero of f xð Þ. The intermediate problems employ the solutions of earlier problems
to provide initial guesses for the secant iterations used to calculate their solutions.

Three other routines are also supplied. They employ reverse communication and use the same core
algorithms as the routines described above.

Finally, two routines are provided to return values of Lambert's W function (sometimes known as the
‘product log’ or ‘Omega’ function), which is the inverse function of

f wð Þ ¼ wew for w 2 C;

that is, if Lambert's W function W xð Þ ¼ a for x; a 2 C, then a is a zero of the function
F wð Þ ¼ wew � x. One routine uses the iterative method described in Barry et al. (1995) to return
values from the real branches of W (restricting x; a 2 R). The second routine enforces no such
restriction, and uses the approach described in Corless et al. (1996).

2.2 Systems of Equations

The routines in the second part of this chapter are designed to solve a set of nonlinear equations in n
unknowns

fi xð Þ ¼ 0; i ¼ 1; 2; . . . ; n; x ¼ x1; x2; . . . ; xnð ÞT; ð1Þ

where T stands for transpose.

It is assumed that the functions are continuous and differentiable so that the matrix of first partial

derivatives of the functions, the Jacobian matrix Jij xð Þ ¼
@fi
@xj

� �
evaluated at the point x, exists,

though it may not be possible to calculate it directly.

The functions fi must be independent, otherwise there will be an infinity of solutions and the methods
will fail. However, even when the functions are independent the solutions may not be unique. Since the
methods are iterative, an initial guess at the solution has to be supplied, and the solution located will
usually be the one closest to this initial guess.
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3 Recommendations on Choice and Use of Available Routines

3.1 Zeros of Functions of One Variable

The routines can be divided into two classes. There are three routines (C05AVF, C05AXF and C05AZF)
all written in reverse communication form and three (C05AUF, C05AWF and C05AYF) written in
direct communication form (see Section 3.3.3 in How to Use the NAG Library and its Documentation
for a description of the difference between these two conventions). The direct communication routines
are designed for inexperienced users and, in particular, for solving problems where the function f xð Þ
whose zero is to be calculated, can be coded as a user-supplied (sub)program. These routines find the
zero by using the same core algorithms as the reverse communication routines. Experienced users are
recommended to use the reverse communication routines directly as they permit you more control of the
calculation. Indeed, if the zero-finding process is embedded in a much larger program then the reverse
communication routines should always be used.

The recommendation as to which routine should be used depends mainly on whether you can supply an
interval a; b½ � containing the zero; that is, where f að Þ � f bð Þ < 0. If the interval can be supplied, then
C05AYF (or, in reverse communication, C05AZF) should be used, in general. This recommendation
should be qualified in the case when the only interval which can be supplied is very long relative to
your error requirements and you can also supply a good approximation to the zero. In this case
C05AWF (or, in reverse communication, C05AXF) may prove more efficient (though these latter
routines will not provide the error bound available from C05AZF).

If an interval containing the zero cannot be supplied then you must choose between C05AUF (or, in
reverse communication, C05AVF followed by C05AZF) and C05AWF (or, in reverse communication,
C05AXF). C05AUF first determines an interval containing the zero, and then proceeds as in C05AYF; it
is particularly recommended when you do not have a good initial approximation to the zero. If a good
initial approximation to the zero is available then C05AWF is to be preferred. Since neither of these
latter routines has guaranteed convergence to the zero, you are recommended to experiment with both
in case of difficulty.

3.2 Solution of Sets of Nonlinear Equations

The solution of a set of nonlinear equations

fi x1; x2; . . . ; xnð Þ ¼ 0; i ¼ 1; 2; . . . ; n ð2Þ

can be regarded as a special case of the problem of finding a minimum of a sum of squares

s xð Þ ¼
Xm
i¼1

fi x1; x2; . . . ; xnð Þ½ �2; m � nð Þ: ð3Þ

So the routines in Chapter E04 are relevant as well as the special nonlinear equations routines.

The routines for solving a set of nonlinear equations can also be divided into classes. There are five
routines (C05QBF, C05QCF, C05QSF, C05RBF and C05RCF) all written in direct communication form
and two (C05QDF and C05RDF) written in reverse communication form. The direct communication
routines are designed for inexperienced users and, in particular, these routines require the fi (and
possibly their derivatives) to be calculated in user-supplied subroutines. These should be set up
carefully so the Library routines can work as efficiently as possible. Experienced users are
recommended to use the reverse communication routines as they permit you more control of the
calculation. Indeed, if the zero-finding process is embedded in a much larger program then the reverse
communication routines should always be used.

The main decision you have to make is whether to supply the derivatives
@fi
@xj

. It is advisable to do so if

possible, since the results obtained by algorithms which use derivatives are generally more reliable than
those obtained by algorithms which do not use derivatives.

C05RBF, C05RCF and C05RDF require you to provide the derivatives, whilst C05QBF, C05QCF,
C05QDF and C05QSF do not. C05QBF, C05QSF and C05RBF are easy-to-use routines; greater
flexibility may be obtained using C05QCF and C05RCF (or, in reverse communication, C05QDF and
C05RDF), but these have longer argument lists.
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C05QSF is an easy-to-use routine specially adapted for sparse problems, that is, problems where each
function depends on a small subset of the n variables so that the Jacobian matrix has many zeros. It
employs sparse linear algebra methods and consequently is expected to take significantly less time to
complete than the other routines, especially if n is large.

C05ZDF is provided for use in conjunction with C05RBF, C05RCF and C05RDF to check the user-
supplied derivatives for consistency with the functions themselves. You are strongly advised to make
use of this routine whenever C05RBF, C05RCF or C05RDF is used.

Firstly, the calculation of the functions and their derivatives should be ordered so that cancellation
errors are avoided. This is particularly important in a routine that uses these quantities to build up
estimates of higher derivatives.

Secondly, scaling of the variables has a considerable effect on the efficiency of a routine. The problem
should be designed so that the elements of x are of similar magnitude. The same comment applies to
the functions, i.e., all the fi should be of comparable size.

The accuracy is usually determined by the accuracy arguments of the routines, but the following points
may be useful.

(i) Greater accuracy in the solution may be requested by choosing smaller input values for the
accuracy arguments. However, if unreasonable accuracy is demanded, rounding errors may become
important and cause a failure.

(ii) Some idea of the accuracies of the xi may be obtained by monitoring the progress of the routine to
see how many figures remain unchanged during the last few iterations.

(iii) An approximation to the error in the solution x is given by e where e is the solution to the set of
linear equations

J xð Þe ¼ �f xð Þ

where f xð Þ ¼ f1 xð Þ; f2 xð Þ; . . . ; fn xð Þð ÞT.
Note that the QR decomposition of J is available from C05QCF and C05RCF (or, in reverse
communication, C05QDF and C05RDF) so that

Re ¼ �QTf

and QTf is also provided by these routines.

(iv) If the functions fi xð Þ are changed by small amounts �i, for i ¼ 1; 2; . . . ; n, then the corresponding
change in the solution x is given approximately by �, where � is the solution of the set of linear
equations

J xð Þ� ¼ ��:

Thus one can estimate the sensitivity of x to any uncertainties in the specification of fi xð Þ, for
i ¼ 1; 2; . . . ; n. As noted above, the sophisticated routines C05QCF and C05RCF (or, in reverse
communication, C05QDF and C05RDF) provide the QR decomposition of J .

3.3 Values of Lambert's W function

If you require purely-real values of W , these will be evaluated marginally more efficiently by C05BAF
than C05BBF owing to the differing iterative procedures used by each routine.
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4 Decision Trees

Tree 1: Functions of One Variable

Is reverse communication required?
yes

Is there available an interval a; b½ �
containing a simple zero, and no others? yes

C05AZF

no

Is a good approximation to the zero
available? yes

C05AXF

no

C05AVF followed by C05AZF

no

Do you wish to compute the values of
Lambert's W function? yes

do you require values from only the real
branches? yes

C05BAF

no

C05BBF

no

Is there available an interval a; b½ �
containing a simple zero, and no others? yes

C05AYF

no

Is a good approximation to the zero
available? yes

C05AWF

no

C05AUF

Tree 2: Functions of several variables

Is the Jacobian matrix sparse?
yes

C05QSF

no

Is reverse communication required?
yes

Is the Jacobian matrix available?
yes

C05RDF and C05ZDF

no

C05QDF

no

Is the Jacobian matrix available?
yes

Is flexibility required?
yes

C05RCF and C05ZDF

no

C05RBF and C05ZDF

no

Is flexibility required?
yes

C05QCF

no

C05QBF

5 Functionality Index

Lambert's W function,
complex values ............................................................................................................... C05BBF
real values....................................................................................................................... C05BAF

Zeros of functions of one variable,
direct communication,

binary search followed by Brent algorithm................................................................ C05AUF
Brent algorithm .......................................................................................................... C05AYF
continuation method................................................................................................... C05AWF

reverse communication,
binary search.............................................................................................................. C05AVF
Brent algorithm .......................................................................................................... C05AZF
continuation method................................................................................................... C05AXF
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Zeros of functions of several variables,
checking routine,

checks user-supplied Jacobian.................................................................................... C05ZDF
direct communication,

easy-to-use,
derivatives required............................................................................................... C05RBF
no derivatives required.......................................................................................... C05QBF
no derivatives required, sparse.............................................................................. C05QSF

sophisticated,
derivatives required............................................................................................... C05RCF
no derivatives required.......................................................................................... C05QCF

reverse communication,
sophisticated,

derivatives required............................................................................................... C05RDF
no derivatives required.......................................................................................... C05QDF

6 Auxiliary Routines Associated with Library Routine Arguments

None.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

C05ADF 25 C05AYF
C05AGF 25 C05AUF
C05AJF 25 C05AWF
C05NBF 25 C05QBF
C05NCF 25 C05QCF
C05NDF 25 C05QDF
C05PBF/C05PBA 25 C05RBF
C05PCF/C05PCA 25 C05RCF
C05PDF/C05PDA 25 C05RDF
C05ZAF 25 C05ZDF
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Gill P E and Murray W (1976) Algorithms for the solution of the nonlinear least squares problem
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NAG Library Routine Document

C05AUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05AUF locates a simple zero of a continuous function from a given starting value. It uses a binary
search to locate an interval containing a zero of the function, then Brent's method, which is a
combination of nonlinear interpolation, linear extrapolation and bisection, to locate the zero precisely.

2 Specification

SUBROUTINE C05AUF (X, H, EPS, ETA, F, A, B, IUSER, RUSER, IFAIL)

INTEGER IUSER(*), IFAIL
REAL (KIND=nag_wp) X, H, EPS, ETA, F, A, B, RUSER(*)
EXTERNAL F

3 Description

C05AUF attempts to locate an interval a; b½ � containing a simple zero of the function f xð Þ by a binary
search starting from the initial point x ¼ X and using repeated calls to C05AVF. If this search succeeds,
then the zero is determined to a user-specified accuracy by a call to C05AYF. The specifications of
routines C05AVF and C05AYF should be consulted for details of the methods used.

The approximation x to the zero � is determined so that at least one of the following criteria is
satisfied:

(i) x� �j j � EPS,

(ii) f xð Þj j � ETA.

4 References

Brent R P (1973) Algorithms for Minimization Without Derivatives Prentice–Hall

5 Arguments

1: X – REAL (KIND=nag_wp) Input/Output

On entry: an initial approximation to the zero.

On exit: if IFAIL ¼ 0 or 4, X is the final approximation to the zero.

If IFAIL ¼ 3, X is likely to be a pole of f xð Þ.
Otherwise, X contains no useful information.

2: H – REAL (KIND=nag_wp) Input

On entry: a step length for use in the binary search for an interval containing the zero. The
maximum interval searched is X� 256:0� H;Xþ 256:0� H½ �.
Constraint: H must be sufficiently large that Xþ H 6¼ X on the computer.

3: EPS – REAL (KIND=nag_wp) Input

On entry: the termination tolerance on x (see Section 3).

Constraint: EPS > 0:0.
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4: ETA – REAL (KIND=nag_wp) Input

On entry: a value such that if f xð Þj j � ETA, x is accepted as the zero. ETA may be specified as
0:0 (see Section 7).

5: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must evaluate the function f whose zero is to be determined.

The specification of F is:

FUNCTION F (X, IUSER, RUSER)
REAL (KIND=nag_wp) F

INTEGER IUSER(*)
REAL (KIND=nag_wp) X, RUSER(*)

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the function must be evaluated.

2: IUSERð�Þ – INTEGER array User Workspace
3: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to C05AUF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which C05AUF is called. Arguments denoted as Input must not be changed by this
procedure.

6: A – REAL (KIND=nag_wp) Output
7: B – REAL (KIND=nag_wp) Output

On exit: the lower and upper bounds respectively of the interval resulting from the binary search.
If the zero is determined exactly such that f xð Þ ¼ 0:0 or is determined so that f xð Þj j � ETA at
any stage in the calculation, then on exit A ¼ B ¼ x.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by C05AUF, but are passed directly to F and should be used to
pass information to this routine.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, EPS ¼ valueh i.
Constraint: EPS > 0:0.

On entry, X ¼ valueh i and H ¼ valueh i.
Constraint: Xþ H 6¼ X (to machine accuracy).

IFAIL ¼ 2

An interval containing the zero could not be found. Increasing H and calling C05AUF again will
increase the range searched for the zero. Decreasing H and calling C05AUF again will refine the
mesh used in the search for the zero.

IFAIL ¼ 3

Solution may be a pole rather than a zero.

IFAIL ¼ 4

The tolerance EPS has been set too small for the problem being solved. However, the value X
returned is a good approximation to the zero. EPS ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The levels of accuracy depend on the values of EPS and ETA. If full machine accuracy is required, they
may be set very small, resulting in an exit with IFAIL ¼ 4, although this may involve many more
iterations than a lesser accuracy. You are recommended to set ETA ¼ 0:0 and to use EPS to control the
accuracy, unless you have considerable knowledge of the size of f xð Þ for values of x near the zero.

8 Parallelism and Performance

C05AUF is not threaded in any implementation.

9 Further Comments

The time taken by C05AUF depends primarily on the time spent evaluating F (see Section 5). The
accuracy of the initial approximation X and the value of H will have a somewhat unpredictable effect
on the timing.
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If it is important to determine an interval of relative length less than 2� EPS containing the zero, or if
F is expensive to evaluate and the number of calls to F is to be restricted, then use of C05AVF followed
by C05AZF is recommended. Use of this combination is also recommended when the structure of the
problem to be solved does not permit a simple F to be written: the reverse communication facilities of
these routines are more flexible than the direct communication of F required by C05AUF.

If the iteration terminates with successful exit and A ¼ B ¼ X there is no guarantee that the value
returned in X corresponds to a simple zero and you should check whether it does.

One way to check this is to compute the derivative of f at the point X, preferably analytically, or, if this
is not possible, numerically, perhaps by using a central difference estimate. If f 0 Xð Þ ¼ 0:0, then X must
correspond to a multiple zero of f rather than a simple zero.

10 Example

This example calculates an approximation to the zero of x� e�x using a tolerance of EPS ¼ 1:0E�5
starting from X ¼ 1:0 and using an initial search step H ¼ 0:1.

10.1 Program Text

! C05AUF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c05aufe_mod

! C05AUF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Function f(x,iuser,ruser)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
f = x - exp(-x)

Return

End Function f
End Module c05aufe_mod
Program c05aufe

! C05AUF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c05auf, nag_wp
Use c05aufe_mod, Only: f, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, eps, eta, h, x
Integer :: ifail
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! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’C05AUF Example Program Results’

x = 1.0E0_nag_wp
h = 0.1E0_nag_wp
eps = 1.0E-5_nag_wp
eta = 0.0E0_nag_wp

ifail = -1
Call c05auf(x,h,eps,eta,f,a,b,iuser,ruser,ifail)

Write (nout,*)

Select Case (ifail)
Case (0)

Write (nout,99999) ’Root is ’, x
Write (nout,99998) ’Interval searched is [’, a, ’,’, b, ’]’

Case (3,4)
Write (nout,99999) ’Final value = ’, x

End Select

99999 Format (1X,A,F13.5)
99998 Format (1X,A,2(F8.5,A))

End Program c05aufe

10.2 Program Data

None.

10.3 Program Results

C05AUF Example Program Results

Root is 0.56714
Interval searched is [ 0.50000, 0.90000]
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NAG Library Routine Document

C05AVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05AVF attempts to locate an interval containing a simple zero of a continuous function using a binary
search. It uses reverse communication for evaluating the function.

2 Specification

SUBROUTINE C05AVF (X, FX, H, BOUNDL, BOUNDU, Y, C, IND, IFAIL)

INTEGER IND, IFAIL
REAL (KIND=nag_wp) X, FX, H, BOUNDL, BOUNDU, Y, C(11)

3 Description

You must supply an initial point X and a step H. C05AVF attempts to locate a short interval
X;Y½ � � BOUNDL;BOUNDU½ � containing a simple zero of f xð Þ.
(On exit we may have X > Y; X is determined as the first point encountered in a binary search where
the sign of f xð Þ differs from the sign of f xð Þ at the initial input point X.) The routine attempts to locate
a zero of f xð Þ using H, 0:1� H, 0:01� H and 0:001� H in turn as its basic step before quitting with
an error exit if unsuccessful.

C05AVF returns to the calling program for each evaluation of f xð Þ. On each return you should set
FX ¼ f Xð Þ and call C05AVF again.

4 References

None.

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IND. Between intermediate exits and re-entries,
all arguments other than FX must remain unchanged.

1: X – REAL (KIND=nag_wp) Input/Output

On initial entry: the best available approximation to the zero.

Constraint: X must lie in the closed interval BOUNDL;BOUNDU½ � (see below).

On intermediate exit: contains the point at which f must be evaluated before re-entry to the
routine.

On final exit: contains one end of an interval containing the zero, the other end being in Y, unless
an error has occurred. If IFAIL ¼ 4, X and Y are the end points of the largest interval searched.
If a zero is located exactly, its value is returned in X (and in Y).

2: FX – REAL (KIND=nag_wp) Input

On initial entry: if IND ¼ 1, FX need not be set.

If IND ¼ �1, FX must contain f Xð Þ for the initial value of X.

On intermediate re-entry: must contain f Xð Þ for the current value of X.
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3: H – REAL (KIND=nag_wp) Input/Output

On initial entry: a basic step size which is used in the binary search for an interval containing a
zero. The basic step sizes H; 0:1� H, 0:01� H and 0:001� H are used in turn when searching
for the zero.

Constraint: either Xþ H or X� H must lie inside the closed interval BOUNDL;BOUNDU½ �.
H must be sufficiently large that Xþ H 6¼ X on the computer.

On final exit: is undefined.

4: BOUNDL – REAL (KIND=nag_wp) Input
5: BOUNDU – REAL (KIND=nag_wp) Input

On initial entry: BOUNDL and BOUNDU must contain respectively lower and upper bounds for
the interval of search for the zero.

Constraint: BOUNDL < BOUNDU.

6: Y – REAL (KIND=nag_wp) Input/Output

On initial entry: need not be set.

On final exit: contains the closest point found to the final value of X, such that
f Xð Þ � f Yð Þ � 0:0. If a value X is found such that f Xð Þ ¼ 0, then Y ¼ X. On final exit with
IFAIL ¼ 4, X and Y are the end points of the largest interval searched.

7: Cð11Þ – REAL (KIND=nag_wp) array Communication Array

On initial entry: need not be set.

On final exit: if IFAIL ¼ 0 or 4, Cð1Þ contains f Yð Þ.

8: IND – INTEGER Input/Output

On initial entry: must be set to 1 or �1.
IND ¼ 1

FX need not be set.

IND ¼ �1
FX must contain f Xð Þ.

On intermediate exit: contains 2 or 3. The calling program must evaluate f at X, storing the
result in FX, and re-enter C05AVF with all other arguments unchanged.

On final exit: contains 0.

Constraint: on entry IND ¼ �1, 1, 2 or 3.

9: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, BOUNDU � BOUNDL,
or X =2 BOUNDL;BOUNDU½ �,
or both Xþ H and X� H =2 BOUNDL;BOUNDU½ �.

IFAIL ¼ 2

On initial entry, H is too small to be used to perturb the initial value of X in the search.

IFAIL ¼ 3

The argument IND is incorrectly set on initial or intermediate entry.

IFAIL ¼ 4

C05AVF has been unable to determine an interval containing a simple zero starting from the
initial value of X and using the step H. If you have prior knowledge that a simple zero lies in the
interval BOUNDL;BOUNDU½ �, you should vary X and H in an attempt to find it. (See also
Section 9.)

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

C05AVF is not intended to be used to obtain accurate approximations to the zero of f xð Þ but rather to
locate an interval containing a zero. This interval can then be used as input to an accurate rootfinder
such as C05AYF or C05AZF. The size of the interval determined depends somewhat unpredictably on
the choice of X and H. The closer X is to the root and the smaller the initial value of H, then, in
general, the smaller (more accurate) the interval determined; however, the accuracy of this statement
depends to some extent on the behaviour of f xð Þ near x ¼ X and on the size of H.

8 Parallelism and Performance

C05AVF is not threaded in any implementation.
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9 Further Comments

For most problems, the time taken on each call to C05AVF will be negligible compared with the time
spent evaluating f xð Þ between calls to C05AVF. However, the initial value of X and H will clearly
affect the timing. The closer X is to the root, and the larger the initial value of H then the less time
taken. (However taking a large H can affect the accuracy and reliability of the routine, see below.)

You are expected to choose BOUNDL and BOUNDU as physically (or mathematically) realistic limits
on the interval of search. For example, it may be known, from physical arguments, that no zero of f xð Þ
of interest will lie outside BOUNDL;BOUNDU½ �. Alternatively, f xð Þ may be more expensive to
evaluate for some values of X than for others and such expensive evaluations can sometimes be avoided
by careful choice of BOUNDL and BOUNDU.

The choice of BOUNDL and BOUNDU affects the search only in that these values provide physical
limitations on the search values and that the search is terminated if it seems, from the available
information about f xð Þ, that the zero lies outside BOUNDL;BOUNDU½ �. In this case (IFAIL ¼ 4 on
exit), only one of f BOUNDLð Þ and f BOUNDUð Þ may have been evaluated and a zero close to the
other end of the interval could be missed. The actual interval searched is returned in the arguments X
and Y and you can call C05AVF again to search the remainder of the original interval.

Though C05AVF is intended primarily for determining an interval containing a zero of f xð Þ, it may be
used to shorten a known interval. This could be useful if, for example, a large interval containing the
zero is known and it is also known that the root lies close to one end of the interval; by setting X to this
end of the interval and H small, a short interval will usually be determined. However, it is worth noting
that once any interval containing a zero has been determined, a call to C05AZF will usually be the most
efficient way to calculate an interval of specified length containing the zero. To assist in this
determination, the information in FX and in X, Y and Cð1Þ on successful exit from C05AVF is in the
correct form for a call to routine C05AZF with IND ¼ �1.
If the calculation terminates because f Xð Þ ¼ 0:0, then on return Y is set to X. (In fact, Y ¼ X on return
only in this case.) In this case, there is no guarantee that the value in X corresponds to a simple zero
and you should check whether it does.

One way to check this is to compute the derivative of f at the point X, preferably analytically, or, if this
is not possible, numerically, perhaps by using a central difference estimate. If f 0 Xð Þ ¼ 0:0, then X must
correspond to a multiple zero of f rather than a simple zero.

10 Example

This example finds a sub-interval of 0:0; 4:0½ � containing a simple zero of x2 � 3xþ 2. The zero nearest
to 3:0 is required and so we set X ¼ 3:0 initially.

10.1 Program Text

Program c05avfe

! C05AVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c05avf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: boundl, boundu, fx, h, x, y
Integer :: ifail, ind

! .. Local Arrays ..
Real (Kind=nag_wp) :: c(11)

! .. Executable Statements ..
Write (nout,*) ’C05AVF Example Program Results’

Write (nout,*)
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x = 3.0E0_nag_wp
h = 0.1E0_nag_wp
boundl = 0.0E0_nag_wp
boundu = 4.0E0_nag_wp
ind = 1
ifail = -1

revcomm: Do

Call c05avf(x,fx,h,boundl,boundu,y,c,ind,ifail)

If (ind==0) Then
Exit revcomm

End If

fx = x*x - 3.0E0_nag_wp*x + 2.0E0_nag_wp
End Do revcomm

If (ifail==0) Then
Write (nout,*) ’Interval containing root is [X,Y], where’
Write (nout,99999) ’X =’, x, ’ Y =’, y
Write (nout,*) ’Values of f at X and Y are’
Write (nout,99999) ’f(X) =’, fx, ’ f(Y) =’, c(1)

End If

99999 Format (1X,2(A,F12.4))
End Program c05avfe

10.2 Program Data

None.

10.3 Program Results

C05AVF Example Program Results

Interval containing root is [X,Y], where
X = 1.7000 Y = 2.5000
Values of f at X and Y are
f(X) = -0.2100 f(Y) = 0.7500
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C05AWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05AWF attempts to locate a zero of a continuous function using a continuation method based on a
secant iteration.

2 Specification

SUBROUTINE C05AWF (X, EPS, ETA, F, NFMAX, IUSER, RUSER, IFAIL)

INTEGER NFMAX, IUSER(*), IFAIL
REAL (KIND=nag_wp) X, EPS, ETA, F, RUSER(*)
EXTERNAL F

3 Description

C05AWF attempts to obtain an approximation to a simple zero � of the function f xð Þ given an initial
approximation x to �. The zero is found by a call to C05AXF whose specification should be consulted
for details of the method used.

The approximation x to the zero � is determined so that at least one of the following criteria is
satisfied:

(i) x� �j j � EPS,

(ii) f xð Þj j < ETA.

4 References

None.

5 Arguments

1: X – REAL (KIND=nag_wp) Input/Output

On entry: an initial approximation to the zero.

On exit: the final approximation to the zero, unless IFAIL ¼ 1, 2 or 5, in which case it contains
no useful information.

2: EPS – REAL (KIND=nag_wp) Input

On entry: an absolute tolerance to control the accuracy to which the zero is determined. In
general, the smaller the value of EPS the more accurate X will be as an approximation to �.
Indeed, for very small positive values of EPS, it is likely that the final approximation will satisfy
X� �j j < EPS. You are advised to call the routine with more than one value for EPS to check
the accuracy obtained.

Constraint: EPS > 0:0.

3: ETA – REAL (KIND=nag_wp) Input

On entry: a value such that if f xð Þj j < ETA, x is accepted as the zero. ETA may be specified as
0:0 (see Section 7).
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4: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must evaluate the function f whose zero is to be determined.

The specification of F is:

FUNCTION F (X, IUSER, RUSER)
REAL (KIND=nag_wp) F

INTEGER IUSER(*)
REAL (KIND=nag_wp) X, RUSER(*)

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the function must be evaluated.

2: IUSERð�Þ – INTEGER array User Workspace
3: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to C05AWF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which C05AWF is called. Arguments denoted as Input must not be changed by
this procedure.

5: NFMAX – INTEGER Input

On entry: the maximum permitted number of calls to F from C05AWF. If F is inexpensive to
evaluate, NFMAX should be given a large value (say > 1000).

Constraint: NFMAX > 0.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by C05AWF, but are passed directly to F and should be used to
pass information to this routine.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, EPS ¼ valueh i.
Constraint: EPS > 0:0.
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On entry, NFMAX ¼ valueh i.
Constraint: NFMAX > 0.

IFAIL ¼ 2

Internal scale factor invalid for this problem. Consider using C05AXF instead and setting SCAL.

IFAIL ¼ 3

Either F has no zero near X or too much accuracy has been requested. Check the coding of F or
increase EPS.

IFAIL ¼ 4

More than NFMAX calls have been made to F.

NFMAX may be too small for the problem (because X is too far away from the zero), or F has no
zero near X, or too much accuracy has been requested in calculating the zero. Increase NFMAX,
check the coding of F or increase EPS.

IFAIL ¼ 5

A serious error occurred in an internal call to an auxiliary routine.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The levels of accuracy depend on the values of EPS and ETA. If full machine accuracy is required, they
may be set very small, resulting in an exit with IFAIL ¼ 3 or 4, although this may involve many more
iterations than a lesser accuracy. You are recommended to set ETA ¼ 0:0 and to use EPS to control the
accuracy, unless you have considerable knowledge of the size of f xð Þ for values of x near the zero.

8 Parallelism and Performance

C05AWF is not threaded in any implementation.

9 Further Comments

The time taken by C05AWF depends primarily on the time spent evaluating the function f (see
Section 5) and on how close the initial value of X is to the zero.

If a more flexible way of specifying the function f is required or if you wish to have closer control of
the calculation, then the reverse communication routine C05AXF is recommended instead of C05AWF.
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10 Example

This example calculates the zero of f xð Þ ¼ e�x � x from a starting value X ¼ 1:0. Two calculations are
made with EPS ¼ 1:0E�3 and 1:0E�4 for comparison purposes, with ETA ¼ 0:0 in both cases.

10.1 Program Text

! C05AWF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c05awfe_mod

! C05AWF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Function f(x,iuser,ruser)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
f = exp(-x) - x

Return

End Function f
End Module c05awfe_mod
Program c05awfe

! C05AWF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c05awf, nag_wp
Use c05awfe_mod, Only: f, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, eta, x
Integer :: ifail, k, nfmax

! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’C05AWF Example Program Results’

Write (nout,*)

! Repeat with tolerance eps set to varying powers of 10:

loop: Do k = 3, 4
eps = 10.0E0_nag_wp**(-k)
x = 1.0E0_nag_wp
eta = 0.0E0_nag_wp
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nfmax = 200

ifail = -1
Call c05awf(x,eps,eta,f,nfmax,iuser,ruser,ifail)

Select Case (ifail)
Case (0)

Write (nout,99999) ’With EPS = ’, eps, ’ root = ’, x
Case (:-1)

Exit loop
Case (3,4)

Write (nout,99999) ’With EPS = ’, eps, ’ final value = ’, x
End Select

End Do loop

99999 Format (1X,A,E10.2,A,F14.5)
End Program c05awfe

10.2 Program Data

None.

10.3 Program Results

C05AWF Example Program Results

With EPS = 0.10E-02 root = 0.56715
With EPS = 0.10E-03 root = 0.56715
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NAG Library Routine Document

C05AXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05AXF attempts to locate a zero of a continuous function using a continuation method based on a
secant iteration. It uses reverse communication for evaluating the function.

2 Specification

SUBROUTINE C05AXF (X, FX, TOL, IR, SCAL, C, IND, IFAIL)

INTEGER IR, IND, IFAIL
REAL (KIND=nag_wp) X, FX, TOL, SCAL, C(26)

3 Description

C05AXF uses a modified version of an algorithm given in Swift and Lindfield (1978) to compute a zero
� of a continuous function f xð Þ. The algorithm used is based on a continuation method in which a
sequence of problems

f xð Þ � �rf x0ð Þ; r ¼ 0; 1; . . . ;m

are solved, where 1 ¼ �0 > �1 > � � � > �m ¼ 0 (the value of m is determined as the algorithm proceeds)
and where x0 is your initial estimate for the zero of f xð Þ. For each �r the current problem is solved by a
robust secant iteration using the solution from earlier problems to compute an initial estimate.

You must supply an error tolerance TOL. TOL is used directly to control the accuracy of solution of the
final problem (�m ¼ 0) in the continuation method, and

ffiffiffiffiffiffiffiffiffiffi
TOL
p

is used to control the accuracy in the
intermediate problems (�1; �2; . . . ; �m�1).

4 References

Swift A and Lindfield G R (1978) Comparison of a continuation method for the numerical solution of a
single nonlinear equation Comput. J. 21 359–362

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IND. Between intermediate exits and re-entries,
all arguments other than FX must remain unchanged.

1: X – REAL (KIND=nag_wp) Input/Output

On initial entry: an initial approximation to the zero.

On intermediate exit: the point at which f must be evaluated before re-entry to the routine.

On final exit: the final approximation to the zero.

2: FX – REAL (KIND=nag_wp) Input

On initial entry: if IND ¼ 1, FX need not be set.

If IND ¼ �1, FX must contain f Xð Þ for the initial value of X.

On intermediate re-entry: must contain f Xð Þ for the current value of X.
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3: TOL – REAL (KIND=nag_wp) Input

On initial entry: a value that controls the accuracy to which the zero is determined. TOL is used
in determining the convergence of the secant iteration used at each stage of the continuation
process. It is used directly when solving the last problem (�m ¼ 0 in Section 3), and

ffiffiffiffiffiffiffiffiffiffi
TOL
p

is
used for the problem defined by �r, r < m. Convergence to the accuracy specified by TOL is not
guaranteed, and so you are recommended to find the zero using at least two values for TOL to
check the accuracy obtained.

Constraint: TOL > 0:0.

4: IR – INTEGER Input

On initial entry: indicates the type of error test required, as follows. Solving the problem defined
by �r, 1 � r � m, involves computing a sequence of secant iterates x0r; x

1
r ; . . . . This sequence will

be considered to have converged only if:

for IR ¼ 0,

x iþ1ð Þ
r � x ið Þ

r

		 		 � eps �max 1:0; x ið Þ
r

		 		� �
;

for IR ¼ 1,

x iþ1ð Þ
r � x ið Þ

r

		 		 � eps;

for IR ¼ 2,

x iþ1ð Þ
r � x ið Þ

r

		 		 � eps � x ið Þ
r

		 		;
for some i > 1; here eps is either TOL or

ffiffiffiffiffiffiffiffiffiffi
TOL
p

as discussed above. Note that there are other
subsidiary conditions (not given here) which must also be satisfied before the secant iteration is
considered to have converged.

Constraint: IR ¼ 0, 1 or 2.

5: SCAL – REAL (KIND=nag_wp) Input

On initial entry: a factor for use in determining a significant approximation to the derivative of
f xð Þ at x ¼ x0, the initial value. A number of difference approximations to f 0 x0ð Þ are calculated
using

f 0 x0ð Þ � f x0 þ hð Þ � f x0ð Þð Þ=h

where hj j < SCALj j and h has the same sign as SCAL. A significance (cancellation) check is
made on each difference approximation and the approximation is rejected if insignificant.

Suggested value:
ffiffi
�
p

, where � is the machine precision returned by X02AJF.

Constraint: SCAL must be sufficiently large that Xþ SCAL 6¼ X on the computer.

6: Cð26Þ – REAL (KIND=nag_wp) array Communication Array

(Cð5Þ contains the current �r, this value may be useful in the event of an error exit.)

7: IND – INTEGER Input/Output

On initial entry: must be set to 1 or �1.
IND ¼ 1

FX need not be set.

IND ¼ �1
FX must contain f Xð Þ.

On intermediate exit: contains 2, 3 or 4. The calling program must evaluate f at X, storing the
result in FX, and re-enter C05AXF with all other arguments unchanged.
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On final exit: contains 0.

Constraint: on entry IND ¼ �1, 1, 2, 3 or 4.

8: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOL � 0:0,
or IR 6¼ 0, 1 or 2.

IFAIL ¼ 2

The argument IND is incorrectly set on initial or intermediate entry.

IFAIL ¼ 3

SCAL is too small, or significant derivatives of f cannot be computed (this can happen when f is
almost constant and nonzero, for any value of SCAL).

IFAIL ¼ 4

The current problem in the continuation sequence cannot be solved, see Cð5Þ for the value of �r.
The most likely explanation is that the current problem has no solution, either because the
original problem had no solution or because the continuation path passes through a set of
insoluble problems. This latter reason for failure should occur rarely, and not at all if the initial
approximation to the zero is sufficiently close. Other possible explanations are that TOL is too
small and hence the accuracy requirement is too stringent, or that TOL is too large and the initial
approximation too poor, leading to successively worse intermediate solutions.

IFAIL ¼ 5

Continuation away from the initial point is not possible. This error exit will usually occur if the
problem has not been properly posed or the error requirement is extremely stringent.

IFAIL ¼ 6

The final problem (with �m ¼ 0) cannot be solved. It is likely that too much accuracy has been
requested, or that the zero is at � ¼ 0 and IR ¼ 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the approximation to the zero depends on TOL and IR. In general decreasing TOL will
give more accurate results. Care must be exercised when using the relative error criterion (IR ¼ 2).

If the zero is at X ¼ 0, or if the initial value of X and the zero bracket the point X ¼ 0, it is likely that
an error exit with IFAIL ¼ 4, 5 or 6 will occur.

It is possible to request too much or too little accuracy. Since it is not possible to achieve more than
machine accuracy, a value of TOL machine precision should not be input and may lead to an error
exit with IFAIL ¼ 4, 5 or 6. For the reasons discussed under IFAIL ¼ 4 in Section 6, TOL should not
be taken too large, say no larger than TOL ¼ 1:0E�3.

8 Parallelism and Performance

C05AXF is not threaded in any implementation.

9 Further Comments

For most problems, the time taken on each call to C05AXF will be negligible compared with the time
spent evaluating f xð Þ between calls to C05AXF. However, the initial value of X and the choice of TOL
will clearly affect the timing. The closer that X is to the root, the less evaluations of f required. The
effect of the choice of TOL will not be large, in general, unless TOL is very small, in which case the
timing will increase.

10 Example

This example calculates a zero of x� e�x with initial approximation x0 ¼ 1:0, and TOL ¼ 1:0E�3 and
1:0E�4.

10.1 Program Text

Program c05axfe

! C05AXF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c05axf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fx, scal, tol, x
Integer :: i, ifail, ind, ir

! .. Local Arrays ..
Real (Kind=nag_wp) :: c(26)

! .. Intrinsic Procedures ..
Intrinsic :: exp, sqrt

! .. Executable Statements ..
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Write (nout,*) ’C05AXF Example Program Results’

scal = sqrt(x02ajf())
ir = 0

loop: Do i = 3, 4
tol = 10.0E0_nag_wp**(-i)
Write (nout,*)
Write (nout,99999) ’TOL =’, tol
Write (nout,*)
x = 1.0E0_nag_wp
ind = 1
ifail = -1

revcomm: Do
Call c05axf(x,fx,tol,ir,scal,c,ind,ifail)

If (ind==0) Then
Exit revcomm

End If

fx = x - exp(-x)
End Do revcomm

Select Case (ifail)
Case (:-1)

Exit loop
Case (4,6)

Write (nout,99998) ’Final value = ’, x, ’ THETA = ’, c(5)
Case (0)

Write (nout,99998) ’Root is ’, x
End Select

End Do loop

99999 Format (1X,A,E11.4)
99998 Format (1X,A,F14.5,A,F10.2)

End Program c05axfe

10.2 Program Data

None.

10.3 Program Results

C05AXF Example Program Results

TOL = 0.1000E-02

Root is 0.56715

TOL = 0.1000E-03

Root is 0.56715
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C05AYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05AYF locates a simple zero of a continuous function in a given interval using Brent's method, which
is a combination of nonlinear interpolation, linear extrapolation and bisection.

2 Specification

SUBROUTINE C05AYF (A, B, EPS, ETA, F, X, IUSER, RUSER, IFAIL)

INTEGER IUSER(*), IFAIL
REAL (KIND=nag_wp) A, B, EPS, ETA, F, X, RUSER(*)
EXTERNAL F

3 Description

C05AYF attempts to obtain an approximation to a simple zero of the function f xð Þ given an initial
interval a; b½ � such that f að Þ � f bð Þ � 0. The same core algorithm is used by C05AZF whose
specification should be consulted for details of the method used.

The approximation x to the zero � is determined so that at least one of the following criteria is
satisfied:

(i) x� �j j � EPS,

(ii) f xð Þj j � ETA.

4 References

Brent R P (1973) Algorithms for Minimization Without Derivatives Prentice–Hall

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: a, the lower bound of the interval.

2: B – REAL (KIND=nag_wp) Input

On entry: b, the upper bound of the interval.

Constraint: B 6¼ A.

3: EPS – REAL (KIND=nag_wp) Input

On entry: the termination tolerance on x (see Section 3).

Constraint: EPS > 0:0.

4: ETA – REAL (KIND=nag_wp) Input

On entry: a value such that if f xð Þj j � ETA, x is accepted as the zero. ETA may be specified as
0:0 (see Section 7).
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5: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must evaluate the function f whose zero is to be determined.

The specification of F is:

FUNCTION F (X, IUSER, RUSER)
REAL (KIND=nag_wp) F

INTEGER IUSER(*)
REAL (KIND=nag_wp) X, RUSER(*)

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the function must be evaluated.

2: IUSERð�Þ – INTEGER array User Workspace
3: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to C05AYF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which C05AYF is called. Arguments denoted as Input must not be changed by this
procedure.

6: X – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or 2, X is the final approximation to the zero. If IFAIL ¼ 3, X is likely to
be a pole of f xð Þ. Otherwise, X contains no useful information.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by C05AYF, but are passed directly to F and should be used to
pass information to this routine.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: A 6¼ B.

On entry, EPS ¼ valueh i.
Constraint: EPS > 0:0.
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On entry, F Að Þ and F Bð Þ have the same sign with neither equalling 0:0: F Að Þ ¼ valueh i and
F Bð Þ ¼ valueh i.

IFAIL ¼ 2

No further improvement in the solution is possible. EPS is too small: EPS ¼ valueh i. The final
value of X returned is an accurate approximation to the zero.

IFAIL ¼ 3

The function values in the interval A;B½ � might contain a pole rather than a zero. Reducing EPS
may help in distinguishing between a pole and a zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The levels of accuracy depend on the values of EPS and ETA. If full machine accuracy is required, they
may be set very small, resulting in an exit with IFAIL ¼ 2, although this may involve many more
iterations than a lesser accuracy. You are recommended to set ETA ¼ 0:0 and to use EPS to control the
accuracy, unless you have considerable knowledge of the size of f xð Þ for values of x near the zero.

8 Parallelism and Performance

C05AYF is not threaded in any implementation.

9 Further Comments

The time taken by C05AYF depends primarily on the time spent evaluating F (see Section 5).

If it is important to determine an interval of relative length less than 2� EPS containing the zero, or if
F is expensive to evaluate and the number of calls to F is to be restricted, then use of C05AZF is
recommended. Use of C05AZF is also recommended when the structure of the problem to be solved
does not permit a simple F to be written: the reverse communication facilities of C05AZF are more
flexible than the direct communication of F required by C05AYF.

10 Example

This example calculates an approximation to the zero of e�x � x within the interval 0; 1½ � using a
tolerance of EPS ¼ 1:0E�5.
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10.1 Program Text

! C05AYF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c05ayfe_mod

! C05AYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Function f(x,iuser,ruser)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
f = exp(-x) - x

Return

End Function f
End Module c05ayfe_mod
Program c05ayfe

! C05AYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c05ayf, nag_wp
Use c05ayfe_mod, Only: f, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, eps, eta, x
Integer :: ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’C05AYF Example Program Results’

a = 0.0E0_nag_wp
b = 1.0E0_nag_wp
eps = 1.0E-5_nag_wp
eta = 0.0E0_nag_wp

ifail = -1
Call c05ayf(a,b,eps,eta,f,x,iuser,ruser,ifail)

Write (nout,*)

Select Case (ifail)
Case (0)

Write (nout,99999) ’Zero at X =’, x
Case (2,3)
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Write (nout,99999) ’Final point = ’, x
End Select

99999 Format (1X,A,F12.5)
End Program c05ayfe

10.2 Program Data

None.

10.3 Program Results

C05AYF Example Program Results

Zero at X = 0.56714
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C05AZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05AZF locates a simple zero of a continuous function in a given interval by using Brent's method,
which is a combination of nonlinear interpolation, linear extrapolation and bisection. It uses reverse
communication for evaluating the function.

2 Specification

SUBROUTINE C05AZF (X, Y, FX, TOLX, IR, C, IND, IFAIL)

INTEGER IR, IND, IFAIL
REAL (KIND=nag_wp) X, Y, FX, TOLX, C(17)

3 Description

You must supply X and Y to define an initial interval a; b½ � containing a simple zero of the function
f xð Þ (the choice of X and Y must be such that f Xð Þ � f Yð Þ � 0:0). The routine combines the methods
of bisection, nonlinear interpolation and linear extrapolation (see Dahlquist and BjÎrck (1974)), to find a
sequence of sub-intervals of the initial interval such that the final interval X;Y½ � contains the zero and
X� Yj j is less than some tolerance specified by TOLX and IR (see Section 5). In fact, since the
intermediate intervals X;Y½ � are determined only so that f Xð Þ � f Yð Þ � 0:0, it is possible that the final
interval may contain a discontinuity or a pole of f (violating the requirement that f be continuous).
C05AZF checks if the sign change is likely to correspond to a pole of f and gives an error return in this
case.

A feature of the algorithm used by this routine is that unlike some other methods it guarantees
convergence within about log2 b� að Þ=�½ �ð Þ2 function evaluations, where � is related to the argument
TOLX. See Brent (1973) for more details.

C05AZF returns to the calling program for each evaluation of f xð Þ. On each return you should set
FX ¼ f Xð Þ and call C05AZF again.

The routine is a modified version of procedure ‘zeroin’ given by Brent (1973).

4 References

Brent R P (1973) Algorithms for Minimization Without Derivatives Prentice–Hall

Bus J C P and Dekker T J (1975) Two efficient algorithms with guaranteed convergence for finding a
zero of a function ACM Trans. Math. Software 1 330–345

Dahlquist G and BjÎrck Ð (1974) Numerical Methods Prentice–Hall

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IND. Between intermediate exits and re-entries,
all arguments other than FX must remain unchanged.
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1: X – REAL (KIND=nag_wp) Input/Output
2: Y – REAL (KIND=nag_wp) Input/Output

On initial entry: X and Y must define an initial interval a; b½ � containing the zero, such that
f Xð Þ � f Yð Þ � 0:0. It is not necessary that X < Y.

On intermediate exit: X contains the point at which f must be evaluated before re-entry to the
routine.

On final exit: X and Y define a smaller interval containing the zero, such that f Xð Þ � f Yð Þ � 0:0,
and X� Yj j satisfies the accuracy specified by TOLX and IR, unless an error has occurred. If
IFAIL ¼ 4, X and Y generally contain very good approximations to a pole; if IFAIL ¼ 5, X and
Y generally contain very good approximations to the zero (see Section 6). If a point X is found
such that f Xð Þ ¼ 0:0, then on final exit X ¼ Y (in this case there is no guarantee that X is a
simple zero). In all cases, the value returned in X is the better approximation to the zero.

3: FX – REAL (KIND=nag_wp) Input

On initial entry: if IND ¼ 1, FX need not be set.

If IND ¼ �1, FX must contain f Xð Þ for the initial value of X.

On intermediate re-entry: must contain f Xð Þ for the current value of X.

4: TOLX – REAL (KIND=nag_wp) Input

On initial entry: the accuracy to which the zero is required. The type of error test is specified by
IR.

Constraint: TOLX > 0:0.

5: IR – INTEGER Input

On initial entry: indicates the type of error test.

IR ¼ 0
The test is: X� Yj j � 2:0� TOLX�max 1:0; Xj jð Þ.

IR ¼ 1
The test is: X� Yj j � 2:0� TOLX.

IR ¼ 2
The test is: X� Yj j � 2:0� TOLX� Xj j.

Suggested value: IR ¼ 0.

Constraint: IR ¼ 0, 1 or 2.

6: Cð17Þ – REAL (KIND=nag_wp) array Input/Output

On initial entry: if IND ¼ 1, no elements of C need be set.

If IND ¼ �1, Cð1Þ must contain f Yð Þ, other elements of C need not be set.

On final exit: is undefined.

7: IND – INTEGER Input/Output

On initial entry: must be set to 1 or �1.
IND ¼ 1

FX and Cð1Þ need not be set.

IND ¼ �1
FX and Cð1Þ must contain f Xð Þ and f Yð Þ respectively.

On intermediate exit: contains 2, 3 or 4. The calling program must evaluate f at X, storing the
result in FX, and re-enter C05AZF with all other arguments unchanged.
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On final exit: contains 0.

Constraint: on entry IND ¼ �1, 1, 2, 3 or 4.

8: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, f Xð Þ and f Yð Þ have the same sign with neither equalling 0:0.

IFAIL ¼ 2

On entry, IND 6¼ �1, 1, 2, 3 or 4.

IFAIL ¼ 3

On entry, TOLX � 0:0,
or IR 6¼ 0, 1 or 2.

IFAIL ¼ 4

An interval X;Y½ � has been determined satisfying the error tolerance specified by TOLX and IR
and such that f Xð Þ � f Yð Þ � 0. However, from observation of the values of f during the
calculation of X;Y½ �, it seems that the interval X;Y½ � contains a pole rather than a zero. Note that
this error exit is not completely reliable: the error exit may be taken in extreme cases when X;Y½ �
contains a zero, or the error exit may not be taken when X;Y½ � contains a pole. Both these cases
occur most frequently when TOLX is large.

IFAIL ¼ 5

The tolerance TOLX is too small for the problem being solved. This indicator is only set when
the interval containing the zero has been reduced to one of relative length at most 2�, where � is
the machine precision, but the exit condition specified by IR is not satisfied. It is unsafe to
continue reducing the interval beyond this point, but the final values of X and Y returned are
accurate approximations to the zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the final value X as an approximation of the zero is determined by TOLX and IR (see
Section 5). A relative accuracy criterion (IR ¼ 2) should not be used when the initial values X and Y
are of different orders of magnitude. In this case a change of origin of the independent variable may be
appropriate. For example, if the initial interval X;Y½ � is transformed linearly to the interval 1; 2½ �, then
the zero can be determined to a precise number of figures using an absolute (IR ¼ 1) or relative
(IR ¼ 2) error test and the effect of the transformation back to the original interval can also be
determined. Except for the accuracy check, such a transformation has no effect on the calculation of the
zero.

8 Parallelism and Performance

C05AZF is not threaded in any implementation.

9 Further Comments

For most problems, the time taken on each call to C05AZF will be negligible compared with the time
spent evaluating f xð Þ between calls to C05AZF.

If the calculation terminates because f Xð Þ ¼ 0:0, then on return Y is set to X. (In fact, Y ¼ X on return
only in this case and, possibly, when IFAIL ¼ 5.) There is no guarantee that the value returned in X
corresponds to a simple root and you should check whether it does. One way to check this is to
compute the derivative of f at the point X, preferably analytically, or, if this is not possible,
numerically, perhaps by using a central difference estimate. If f 0 Xð Þ ¼ 0:0, then X must correspond to a
multiple zero of f rather than a simple zero.

10 Example

This example calculates a zero of e�x � x with an initial interval 0; 1½ �, TOLX ¼ 1:0E�5 and a mixed
error test.

10.1 Program Text

! C05AZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c05azfe_mod

! C05AZF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: tolx = 1.0E-5_nag_wp
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Integer, Parameter, Public :: ir = 0, nout = 6
Contains

Function f(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
f = exp(-x) - x

Return

End Function f
End Module c05azfe_mod
Program c05azfe

! C05AZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c05azf, nag_wp
Use c05azfe_mod, Only: f, ir, nout, tolx

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fx, x, y
Integer :: ifail, ind

! .. Local Arrays ..
Real (Kind=nag_wp) :: c(17)

! .. Executable Statements ..
Write (nout,*) ’C05AZF Example Program Results’

Write (nout,*)
Write (nout,*) ’ Iterations’
Write (nout,*)

! Initial values, root in [0,1].
x = 0.0_nag_wp
y = 1.0_nag_wp
ind = 1
ifail = -1

! Reverse communication loop
revcom: Do

Call c05azf(x,y,fx,tolx,ir,c,ind,ifail)

If (ind==0) Then
Exit revcom

End If

fx = f(x)
Write (nout,99999) ’ X =’, x, ’ FX =’, fx, ’ IND =’, ind

End Do revcom

! Results
Select Case (ifail)
Case (0)

Write (nout,*)
Write (nout,*) ’ Solution’
Write (nout,*)
Write (nout,99998) ’ X =’, x, ’ Y =’, y

Case (4,5)
Write (nout,99998) ’X =’, x, ’ Y =’, y

End Select

99999 Format (1X,A,F8.5,A,E12.4,A,I2)
99998 Format (1X,2(A,F8.5))

End Program c05azfe
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10.2 Program Data

None.

10.3 Program Results

C05AZF Example Program Results

Iterations

X = 0.00000 FX = 0.1000E+01 IND = 2
X = 1.00000 FX = -0.6321E+00 IND = 3
X = 0.61270 FX = -0.7081E-01 IND = 4
X = 0.56707 FX = 0.1154E-03 IND = 4
X = 0.56714 FX = -0.9448E-06 IND = 4
X = 0.56713 FX = 0.1473E-04 IND = 4
X = 0.56714 FX = -0.9448E-06 IND = 4

Solution

X = 0.56714 Y = 0.56713
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NAG Library Routine Document

C05BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05BAF returns the real values of Lambert's W function W xð Þ, via the routine name.

2 Specification

FUNCTION C05BAF (X, BRANCH, OFFSET, IFAIL)
REAL (KIND=nag_wp) C05BAF

INTEGER BRANCH, IFAIL
REAL (KIND=nag_wp) X
LOGICAL OFFSET

3 Description

C05BAF calculates an approximate value for the real branches of Lambert's W function (sometimes
known as the ‘product log’ or ‘Omega’ function), which is the inverse function of

f wð Þ ¼ wew for w 2 C:
The function f is many-to-one, and so, except at 0, W is multivalued. C05BAF restricts W and its
argument x to be real, resulting in a function defined for x � � exp �1ð Þ and which is double valued on
the interval � exp �1ð Þ; 0ð Þ. This double-valued function is split into two real-valued branches according
to the sign of W xð Þ þ 1. We denote by W0 the branch satisfying W0 xð Þ � �1 for all real x, and by W�1
the branch satisfying W�1 xð Þ � �1 for all real x. You may select your branch of interest using the
argument BRANCH.

The precise method used to approximate W is described fully in Barry et al. (1995). For x close to
� exp �1ð Þ greater accuracy comes from evaluating W � exp �1ð Þ þ�xð Þ rather than W xð Þ: by setting
OFFSET ¼ :TRUE: on entry you inform C05BAF that you are providing �x, not x, in X.

4 References

Barry D J, Culligan–Hensley P J, and Barry S J (1995) Real values of the W -function ACM Trans.
Math. Software 21(2) 161–171

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: if OFFSET ¼ :TRUE:, X is the offset �x from � exp �1ð Þ of the intended argument to
W ; that is, W �ð Þ is computed, where � ¼ � exp �1ð Þ þ�x.
If OFFSET ¼ :FALSE:, X is the argument x of the function; that is, W �ð Þ is computed, where
� ¼ x.
Constraints:

if BRANCH ¼ 0, � exp �1ð Þ � �;
if BRANCH ¼ �1, � exp �1ð Þ � � < 0:0.
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2: BRANCH – INTEGER Input

On entry: the real branch required.

BRANCH ¼ 0
The branch W0 is selected.

BRANCH ¼ �1
The branch W�1 is selected.

Constraint: BRANCH ¼ 0 or �1.

3: OFFSET – LOGICAL Input

On entry: controls whether or not X is being specified as an offset from � exp �1ð Þ.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: C05BAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, BRANCH ¼ valueh i.
Constraint: BRANCH ¼ 0 or �1.
On entry, BRANCH ¼ �1, OFFSET ¼ :FALSE: and X ¼ valueh i.
Constraint: if BRANCH ¼ �1 and OFFSET ¼ :FALSE: then X < 0:0.

On entry, BRANCH ¼ �1, OFFSET ¼ :TRUE: and X ¼ valueh i.
Constraint: if BRANCH ¼ �1 and OFFSET ¼ :TRUE: then X < exp �1:0ð Þ.
On entry, OFFSET ¼ :FALSE: and X ¼ valueh i.
Constraint: if OFFSET ¼ :FALSE: then X � � exp �1:0ð Þ.
On entry, OFFSET ¼ :TRUE: and X ¼ valueh i.
Constraint: if OFFSET ¼ :TRUE: then X � 0:0.

IFAIL ¼ 2

For the given offset X, W is negligibly different from �1: X ¼ valueh i.
X is close to � exp �1ð Þ. Enter X as an offset to � exp �1ð Þ for greater accuracy: X ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a high percentage of legal X on input, C05BAF is accurate to the number of decimal digits of
precision on the host machine (see X02BEF). An extra digit may be lost on some implementations and
for a small proportion of such X. This depends on the accuracy of the base-10 logarithm on your
system.

8 Parallelism and Performance

C05BAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads from a file the values of the required branch, whether or not the arguments to W are
to be considered as offsets to � exp �1ð Þ, and the arguments X themselves. It then evaluates the
function for these sets of input data X and prints the results.

10.1 Program Text

Program c05bafe

! C05BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c05baf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: w, x
Integer :: branch, ifail, ioerr
Logical :: offset

! .. Executable Statements ..
Write (nout,*) ’C05BAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) branch
Read (nin,*) offset

Write (nout,*)
Write (nout,99998) ’BRANCH = ’, branch

If (offset) Then
Write (nout,99997) ’OFFSET = .TRUE.’
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Else
Write (nout,99997) ’OFFSET = .FALSE.’

End If

Write (nout,*)
Write (nout,*) ’ X W(X) IFAIL’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
w = c05baf(x,branch,offset,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, w, ifail
End Do data

99999 Format (1X,1P,2(1X,E13.5),1X,I5)
99998 Format (1X,A,I3)
99997 Format (1X,A)

End Program c05bafe

10.2 Program Data

C05BAF Example Program Data
0 : BRANCH
.FALSE. : OFFSET
0.5
1.0
4.5
6.0
7.0D7 : X

10.3 Program Results

C05BAF Example Program Results

BRANCH = 0
OFFSET = .FALSE.

X W(X) IFAIL

5.00000E-01 3.51734E-01 0
1.00000E+00 5.67143E-01 0
4.50000E+00 1.26724E+00 0
6.00000E+00 1.43240E+00 0
7.00000E+07 1.53339E+01 0
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NAG Library Routine Document

C05BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05BBF computes the values of Lambert's W function W zð Þ.

2 Specification

SUBROUTINE C05BBF (BRANCH, OFFSET, Z, W, RESID, IFAIL)

INTEGER BRANCH, IFAIL
REAL (KIND=nag_wp) RESID
COMPLEX (KIND=nag_wp) Z, W
LOGICAL OFFSET

3 Description

C05BBF calculates an approximate value for Lambert's W function (sometimes known as the ‘product
log’ or ‘Omega’ function), which is the inverse function of

f wð Þ ¼ wew for w 2 C:
The function f is many-to-one, and so, except at 0, W is multivalued. C05BBF allows you to specify
the branch of W on which you would like the results to lie by using the argument BRANCH. Our
choice of branch cuts is as in Corless et al. (1996), and the ranges of the branches of W are
summarised in Figure 1.

-3π

-2π

-π

0

π

2π

3π

-10 -5  0  5  10

Branch −3

Branch −2

Branch −1

Principal Branch / Branch 0

Branch 1

Branch 2

Branch 3

Figure 1
Ranges of the branches of W zð Þ

For more information about the closure of each branch, which is not displayed in Figure 1, see Corless
et al. (1996). The dotted lines in the Figure denote the asymptotic boundaries of the branches, at
multiples of 	.
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The precise method used to approximate W is as described in Corless et al. (1996). For z close to
� exp �1ð Þ greater accuracy comes from evaluating W � exp �1ð Þ þ�zð Þ rather than W zð Þ: by setting
OFFSET ¼ :TRUE: on entry you inform C05BBF that you are providing �z, not z, in Z.

4 References

Corless R M, Gonnet G H, Hare D E G, Jeffrey D J and Knuth D E (1996) On the Lambert W function
Advances in Comp. Math. 3 329–359

5 Arguments

1: BRANCH – INTEGER Input

On entry: the branch required.

2: OFFSET – LOGICAL Input

On entry: controls whether or not Z is being specified as an offset from � exp �1ð Þ.

3: Z – COMPLEX (KIND=nag_wp) Input

On entry: if OFFSET ¼ :TRUE:, Z is the offset �z from � exp �1ð Þ of the intended argument to
W ; that is, W �ð Þ is computed, where � ¼ � exp �1ð Þ þ�z.
If OFFSET ¼ :FALSE:, Z is the argument z of the function; that is, W �ð Þ is computed, where
� ¼ z.

4: W – COMPLEX (KIND=nag_wp) Output

On exit: the value W �ð Þ: see also the description of Z.

5: RESID – REAL (KIND=nag_wp) Output

On exit: the residual W �ð Þ exp W �ð Þð Þ � �j j: see also the description of Z.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: C05BBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

For the given offset Z, W is negligibly different from �1: Re Zð Þ ¼ valueh i and Im Zð Þ ¼ valueh i.

C05BBF NAG Library Manual

C05BBF.2 Mark 26



Z is close to � exp �1ð Þ. Enter Z as an offset to � exp �1ð Þ for greater accuracy: Re Zð Þ ¼ valueh i
and Im Zð Þ ¼ valueh i.

IFAIL ¼ 2

The iterative procedure used internally did not converge in valueh i iterations. Check the value of
RESID for the accuracy of W.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a high percentage of Z, C05BBF is accurate to the number of decimal digits of precision on the
host machine (see X02BEF). An extra digit may be lost on some platforms and for a small proportion
of Z. This depends on the accuracy of the base-10 logarithm on your system.

8 Parallelism and Performance

C05BBF is not threaded in any implementation.

9 Further Comments

The following figures show the principal branch of W .
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real W0 zð Þð Þ
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abs W0 zð Þð Þ

10 Example

This example reads from a file the value of the required branch, whether or not the arguments to W are
to be considered as offsets to � exp �1ð Þ, and the arguments Z themselves. It then evaluates the function
for these sets of input data Z and prints the results.

10.1 Program Text

Program c05bbfe

! C05BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c05bbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Complex (Kind=nag_wp) :: w, z
Real (Kind=nag_wp) :: resid
Integer :: branch, ifail, ioerr
Logical :: offset

! .. Executable Statements ..
Write (nout,*) ’C05BBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) branch
Read (nin,*) offset

Write (nout,*)
Write (nout,99997) ’BRANCH = ’, branch

If (offset) Then
Write (nout,99996) ’OFFSET = .TRUE.’

Else
Write (nout,99996) ’OFFSET = .FALSE.’

End If

Write (nout,*)
Write (nout,99999)
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) z

If (ioerr<0) Then
Exit data

End If

ifail = -1
Call c05bbf(branch,offset,z,w,resid,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99998) z, w, resid, ifail
End Do data

99999 Format (1X,14X,’Z’,28X,’W(Z)’,18X,’RESID’,4X,’IFAIL’)
99998 Format (1X,1P,2(’(’,E13.5,’,’,E13.5,’)’,1X),E13.5,1X,I5)
99997 Format (1X,A,I3)
99996 Format (1X,A)

End Program c05bbfe

10.2 Program Data

C05BBF Example Program Data
0 : BRANCH
.FALSE. : OFFSET
(0.5, -1.0)
(1.0, 2.3)
(4.5, -0.1)
(6.0, 6.0) : Z
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10.3 Program Results

C05BBF Example Program Results

BRANCH = 0
OFFSET = .FALSE.

Z W(Z) RESID IFAIL

( 5.00000E-01, -1.00000E+00) ( 5.16511E-01, -4.22053E-01) 5.55112E-17 0
( 1.00000E+00, 2.30000E+00) ( 8.73606E-01, 5.76978E-01) 1.11022E-16 0
( 4.50000E+00, -1.00000E-01) ( 1.26735E+00, -1.24194E-02) 0.00000E+00 0
( 6.00000E+00, 6.00000E+00) ( 1.61492E+00, 4.90515E-01) 1.25607E-15 0
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NAG Library Routine Document

C05QBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05QBF is an easy-to-use routine that finds a solution of a system of nonlinear equations by a
modification of the Powell hybrid method.

2 Specification

SUBROUTINE C05QBF (FCN, N, X, FVEC, XTOL, IUSER, RUSER, IFAIL)

INTEGER N, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), FVEC(N), XTOL, RUSER(*)
EXTERNAL FCN

3 Description

The system of equations is defined as:

fi x1; x2; . . . ; xnð Þ ¼ 0; i ¼ 1; 2; . . . ; n:

C05QBF is based on the MINPACK routine HYBRD1 (see Moré et al. (1980)). It chooses the
correction at each step as a convex combination of the Newton and scaled gradient directions. The
Jacobian is updated by the rank-1 method of Broyden. At the starting point, the Jacobian is
approximated by forward differences, but these are not used again until the rank-1 method fails to
produce satisfactory progress. For more details see Powell (1970).

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-
80-74 Argonne National Laboratory

Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for
Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

5 Arguments

1: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must return the values of the functions fi at a point x.

The specification of FCN is:

SUBROUTINE FCN (N, X, FVEC, IUSER, RUSER, IFLAG)

INTEGER N, IUSER(*), IFLAG
REAL (KIND=nag_wp) X(N), FVEC(N), RUSER(*)

1: N – INTEGER Input

On entry: n, the number of equations.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the components of the point x at which the functions must be evaluated.

C05 – Roots of One or More Transcendental Equations C05QBF

Mark 26 C05QBF.1



3: FVECðNÞ – REAL (KIND=nag_wp) array Output

On exit: the function values fi xð Þ (unless IFLAG is set to a negative value by FCN).

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FCN is called with the arguments IUSER and RUSER as supplied to C05QBF. You
should use the arrays IUSER and RUSER to supply information to FCN.

6: IFLAG – INTEGER Input/Output

On entry: IFLAG > 0.

On exit: in general, IFLAG should not be reset by FCN. If, however, you wish to
terminate execution (perhaps because some illegal point X has been reached), then
IFLAG should be set to a negative integer.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which C05QBF is called. Arguments denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N > 0.

3: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial guess at the solution vector.

On exit: the final estimate of the solution vector.

4: FVECðNÞ – REAL (KIND=nag_wp) array Output

On exit: the function values at the final point returned in X.

5: XTOL – REAL (KIND=nag_wp) Input

On entry: the accuracy in X to which the solution is required.

Suggested value:
ffiffi
�
p

, where � is the machine precision returned by X02AJF.

Constraint: XTOL � 0:0.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by C05QBF, but are passed directly to FCN and should be used
to pass information to this routine.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

There have been at least 200� Nþ 1ð Þ calls to FCN. Consider restarting the calculation from the
point held in X.

IFAIL ¼ 3

No further improvement in the solution is possible. XTOL is too small: XTOL ¼ valueh i.

IFAIL ¼ 4

The iteration is not making good progress. This failure exit may indicate that the system does not
have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning
C05QBF from a different starting point may avoid the region of difficulty.

IFAIL ¼ 5

IFLAG was set negative in FCN. IFLAG ¼ valueh i.

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 12

On entry, XTOL ¼ valueh i.
Constraint: XTOL � 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If x̂ is the true solution, C05QBF tries to ensure that

x� x̂k k2 � XTOL� x̂k k2:

If this condition is satisfied with XTOL ¼ 10�k, then the larger components of x have k significant
decimal digits. There is a danger that the smaller components of x may have large relative errors, but
the fast rate of convergence of C05QBF usually obviates this possibility.

If XTOL is less than machine precision and the above test is satisfied with the machine precision in
place of XTOL, then the routine exits with IFAIL ¼ 3.
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Note: this convergence test is based purely on relative error, and may not indicate convergence if the
solution is very close to the origin.

The convergence test assumes that the functions are reasonably well behaved. If this condition is not
satisfied, then C05QBF may incorrectly indicate convergence. The validity of the answer can be
checked, for example, by rerunning C05QBF with a lower value for XTOL.

8 Parallelism and Performance

C05QBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C05QBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Local workspace arrays of fixed lengths are allocated internally by C05QBF. The total size of these
arrays amounts to n� 3� nþ 13ð Þ=2 real elements.

The time required by C05QBF to solve a given problem depends on n, the behaviour of the functions,
the accuracy requested and the starting point. The number of arithmetic operations executed by
C05QBF to process each evaluation of the functions is approximately 11:5� n2. The timing of C05QBF
is strongly influenced by the time spent evaluating the functions.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable
magnitude.

10 Example

This example determines the values x1; . . . ; x9 which satisfy the tridiagonal equations:

3� 2x1ð Þx1 � 2x2 ¼ �1;
�xi�1 þ 3� 2xið Þxi � 2xiþ1 ¼ �1; i ¼ 2; 3; . . . ; 8

�x8 þ 3� 2x9ð Þx9 ¼ �1:

10.1 Program Text

! C05QBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c05qbfe_mod

! C05QBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Integer, Parameter, Public :: n = 9, nout = 6

Contains
Subroutine fcn(n,x,fvec,iuser,ruser,iflag)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
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Integer, Intent (In) :: n
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (Out) :: fvec(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
fvec(1:n) = (3.0_nag_wp-2.0_nag_wp*x(1:n))*x(1:n) + 1.0_nag_wp
fvec(2:n) = fvec(2:n) - x(1:(n-1))
fvec(1:(n-1)) = fvec(1:(n-1)) - 2.0_nag_wp*x(2:n)

! Set iflag negative to terminate execution for any reason.
iflag = 0
Return

End Subroutine fcn
End Module c05qbfe_mod
Program c05qbfe

! C05QBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c05qbf, dnrm2, nag_wp, x02ajf
Use c05qbfe_mod, Only: fcn, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fnorm, xtol
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fvec(:), x(:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Write (nout,*) ’C05QBF Example Program Results’

Allocate (fvec(n),x(n))

! The following starting values provide a rough solution.

x(1:n) = -1.0E0_nag_wp
xtol = sqrt(x02ajf())

ifail = -1
Call c05qbf(fcn,n,x,fvec,xtol,iuser,ruser,ifail)

If (ifail==0 .Or. ifail==2 .Or. ifail==3 .Or. ifail==4) Then
If (ifail==0) Then

! The NAG name equivalent of dnrm2 is f06ejf
fnorm = dnrm2(n,fvec,1)
Write (nout,*)
Write (nout,99999) ’Final 2-norm of the residuals =’, fnorm
Write (nout,*)
Write (nout,*) ’Final approximate solution’

Else
Write (nout,*)
Write (nout,*) ’Approximate solution’

End If
Write (nout,*)
Write (nout,99998)(x(i),i=1,n)

End If

99999 Format (1X,A,E12.4)
99998 Format (1X,3F12.4)

End Program c05qbfe

10.2 Program Data

None.
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10.3 Program Results

C05QBF Example Program Results

Final 2-norm of the residuals = 0.1193E-07

Final approximate solution

-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164
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NAG Library Routine Document

C05QCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05QCF is a comprehensive routine that finds a solution of a system of nonlinear equations by a
modification of the Powell hybrid method.

2 Specification

SUBROUTINE C05QCF (FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, MODE,
DIAG, FACTOR, NPRINT, NFEV, FJAC, R, QTF, IUSER,
RUSER, IFAIL)

&
&

INTEGER N, MAXFEV, ML, MU, MODE, NPRINT, NFEV, IUSER(*),
IFAIL

&

REAL (KIND=nag_wp) X(N), FVEC(N), XTOL, EPSFCN, DIAG(N), FACTOR,
FJAC(N,N), R(N*(N+1)/2), QTF(N), RUSER(*)

&

EXTERNAL FCN

3 Description

The system of equations is defined as:

fi x1; x2; . . . ; xnð Þ ¼ 0; i ¼ 1; 2; . . . ; n:

C05QCF is based on the MINPACK routine HYBRD (see Moré et al. (1980)). It chooses the correction
at each step as a convex combination of the Newton and scaled gradient directions. The Jacobian is
updated by the rank-1 method of Broyden. At the starting point, the Jacobian is approximated by
forward differences, but these are not used again until the rank-1 method fails to produce satisfactory
progress. For more details see Powell (1970).

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-
80-74 Argonne National Laboratory

Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for
Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

5 Arguments

1: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must return the values of the functions fi at a point x, unless IFLAG ¼ 0 on entry to
C05QCF.

The specification of FCN is:

SUBROUTINE FCN (N, X, FVEC, IUSER, RUSER, IFLAG)

INTEGER N, IUSER(*), IFLAG
REAL (KIND=nag_wp) X(N), FVEC(N), RUSER(*)

1: N – INTEGER Input

On entry: n, the number of equations.
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2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the components of the point x at which the functions must be evaluated.

3: FVECðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IFLAG ¼ 0, FVEC contains the function values fi xð Þ and must not be
changed.

On exit: if IFLAG > 0 on entry, FVEC must contain the function values fi xð Þ (unless
IFLAG is set to a negative value by FCN).

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FCN is called with the arguments IUSER and RUSER as supplied to C05QCF. You
should use the arrays IUSER and RUSER to supply information to FCN.

6: IFLAG – INTEGER Input/Output

On entry: IFLAG � 0.

IFLAG ¼ 0
X and FVEC are available for printing (see NPRINT).

IFLAG > 0
FVEC must be updated.

On exit: in general, IFLAG should not be reset by FCN. If, however, you wish to
terminate execution (perhaps because some illegal point X has been reached), then
IFLAG should be set to a negative integer.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which C05QCF is called. Arguments denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N > 0.

3: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial guess at the solution vector.

On exit: the final estimate of the solution vector.

4: FVECðNÞ – REAL (KIND=nag_wp) array Output

On exit: the function values at the final point returned in X.

5: XTOL – REAL (KIND=nag_wp) Input

On entry: the accuracy in X to which the solution is required.

Suggested value:
ffiffi
�
p

, where � is the machine precision returned by X02AJF.

Constraint: XTOL � 0:0.

6: MAXFEV – INTEGER Input

On entry: the maximum number of calls to FCN with IFLAG 6¼ 0. C05QCF will exit with
IFAIL ¼ 2, if, at the end of an iteration, the number of calls to FCN exceeds MAXFEV.
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Suggested value: MAXFEV ¼ 200� Nþ 1ð Þ.
Constraint: MAXFEV > 0.

7: ML – INTEGER Input

On entry: the number of subdiagonals within the band of the Jacobian matrix. (If the Jacobian is
not banded, or you are unsure, set ML ¼ N� 1.)

Constraint: ML � 0.

8: MU – INTEGER Input

On entry: the number of superdiagonals within the band of the Jacobian matrix. (If the Jacobian
is not banded, or you are unsure, set MU ¼ N� 1.)

Constraint: MU � 0.

9: EPSFCN – REAL (KIND=nag_wp) Input

On entry: a rough estimate of the largest relative error in the functions. It is used in determining
a suitable step for a forward difference approximation to the Jacobian. If EPSFCN is less than
machine precision (returned by X02AJF) then machine precision is used. Consequently a value
of 0:0 will often be suitable.

Suggested value: EPSFCN ¼ 0:0.

10: MODE – INTEGER Input

On entry: indicates whether or not you have provided scaling factors in DIAG.

If MODE ¼ 2 the scaling must have been specified in DIAG.

Otherwise, if MODE ¼ 1, the variables will be scaled internally.

Constraint: MODE ¼ 1 or 2.

11: DIAGðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MODE ¼ 2, DIAG must contain multiplicative scale factors for the variables.

If MODE ¼ 1, DIAG need not be set.

Constraint: if MODE ¼ 2, DIAGðiÞ > 0:0, for i ¼ 1; 2; . . . ; n.

On exit: the scale factors actually used (computed internally if MODE ¼ 1).

12: FACTOR – REAL (KIND=nag_wp) Input

On entry: a quantity to be used in determining the initial step bound. In most cases, FACTOR
should lie between 0:1 and 100:0. (The step bound is FACTOR� DIAG� Xk k2 if this is
nonzero; otherwise the bound is FACTOR.)

Suggested value: FACTOR ¼ 100:0.

Constraint: FACTOR > 0:0.

13: NPRINT – INTEGER Input

On entry: indicates whether (and how often) special calls to FCN, with IFLAG set to 0, are to be
made for printing purposes.

NPRINT � 0
No calls are made.

NPRINT > 0
FCN is called at the beginning of the first iteration, every NPRINT iterations thereafter and
immediately before the return from C05QCF.
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14: NFEV – INTEGER Output

On exit: the number of calls made to FCN with IFLAG > 0.

15: FJACðN;NÞ – REAL (KIND=nag_wp) array Output

On exit: the orthogonal matrix Q produced by the QR factorization of the final approximate
Jacobian.

16: RðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper triangular matrix R produced by the QR factorization of the final approximate
Jacobian, stored row-wise.

17: QTFðNÞ – REAL (KIND=nag_wp) array Output

On exit: the vector QTf.

18: IUSERð�Þ – INTEGER array User Workspace
19: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by C05QCF, but are passed directly to FCN and should be used
to pass information to this routine.

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

There have been at least MAXFEV calls to FCN: MAXFEV ¼ valueh i. Consider restarting the
calculation from the final point held in X.

IFAIL ¼ 3

No further improvement in the solution is possible. XTOL is too small: XTOL ¼ valueh i.

IFAIL ¼ 4

The iteration is not making good progress, as measured by the improvement from the last valueh i
Jacobian evaluations.

IFAIL ¼ 5

The iteration is not making good progress, as measured by the improvement from the last valueh i
iterations.
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IFAIL ¼ 6

IFLAG was set negative in FCN. IFLAG ¼ valueh i.

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 12

On entry, XTOL ¼ valueh i.
Constraint: XTOL � 0:0.

IFAIL ¼ 13

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 1 or 2.

IFAIL ¼ 14

On entry, FACTOR ¼ valueh i.
Constraint: FACTOR > 0:0.

IFAIL ¼ 15

On entry, MODE ¼ 2 and DIAG contained a non-positive element.

IFAIL ¼ 16

On entry, ML ¼ valueh i.
Constraint: ML � 0.

IFAIL ¼ 17

On entry, MU ¼ valueh i.
Constraint: MU � 0.

IFAIL ¼ 18

On entry, MAXFEV ¼ valueh i.
Constraint: MAXFEV > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

A value of IFAIL ¼ 4 or 5 may indicate that the system does not have a zero, or that the solution is
very close to the origin (see Section 7). Otherwise, rerunning C05QCF from a different starting point
may avoid the region of difficulty.
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7 Accuracy

If x̂ is the true solution and D denotes the diagonal matrix whose entries are defined by the array
DIAG, then C05QCF tries to ensure that

D x� x̂ð Þk k2 � XTOL� Dx̂k k2:

If this condition is satisfied with XTOL ¼ 10�k, then the larger components of Dx have k significant
decimal digits. There is a danger that the smaller components of Dx may have large relative errors, but
the fast rate of convergence of C05QCF usually obviates this possibility.

If XTOL is less than machine precision and the above test is satisfied with the machine precision in
place of XTOL, then the routine exits with IFAIL ¼ 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the
solution is very close to the origin.

The convergence test assumes that the functions are reasonably well behaved. If this condition is not
satisfied, then C05QCF may incorrectly indicate convergence. The validity of the answer can be
checked, for example, by rerunning C05QCF with a lower value for XTOL.

8 Parallelism and Performance

C05QCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C05QCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Local workspace arrays of fixed lengths are allocated internally by C05QCF. The total size of these
arrays amounts to 4� n real elements.

The time required by C05QCF to solve a given problem depends on n, the behaviour of the functions,
the accuracy requested and the starting point. The number of arithmetic operations executed by
C05QCF to process each evaluation of the functions is approximately 11:5� n2. The timing of C05QCF
is strongly influenced by the time spent evaluating the functions.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable
magnitude.

The number of function evaluations required to evaluate the Jacobian may be reduced if you can specify
ML and MU accurately.

10 Example

This example determines the values x1; . . . ; x9 which satisfy the tridiagonal equations:

3� 2x1ð Þx1 � 2x2 ¼ �1;
�xi�1 þ 3� 2xið Þxi � 2xiþ1 ¼ �1; i ¼ 2; 3; . . . ; 8

�x8 þ 3� 2x9ð Þx9 ¼ �1:
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10.1 Program Text

! C05QCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c05qcfe_mod

! C05QCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: epsfcn = 0.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: factor = 100.0_nag_wp
Integer, Parameter, Public :: maxfev = 2000, ml = 1, mode = 2, &

mu = 1, n = 9, nout = 6, nprint = 0
Contains

Subroutine fcn(n,x,fvec,iuser,ruser,iflag)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fvec(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
If (iflag==0) Then

If (nprint>0) Then
! Insert print statements here if desired.

Continue
End If

Else
fvec(1:n) = (3.0_nag_wp-2.0_nag_wp*x(1:n))*x(1:n) + 1.0_nag_wp
fvec(2:n) = fvec(2:n) - x(1:(n-1))
fvec(1:(n-1)) = fvec(1:(n-1)) - 2.0_nag_wp*x(2:n)

End If
! Set iflag negative to terminate execution for any reason.

iflag = 0
Return

End Subroutine fcn
End Module c05qcfe_mod
Program c05qcfe

! C05QCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c05qcf, dnrm2, nag_wp, x02ajf
Use c05qcfe_mod, Only: epsfcn, factor, fcn, maxfev, ml, mode, mu, n, &

nout, nprint
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: fnorm, xtol
Integer :: i, ifail, nfev

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: diag(:), fjac(:,:), fvec(:), qtf(:), &

r(:), x(:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Write (nout,*) ’C05QCF Example Program Results’
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Allocate (diag(n),fjac(n,n),fvec(n),qtf(n),r(n*(n+1)/2),x(n))

! The following starting values provide a rough solution.

x(1:n) = -1.0_nag_wp
xtol = sqrt(x02ajf())
diag(1:n) = 1.0_nag_wp

ifail = -1
Call c05qcf(fcn,n,x,fvec,xtol,maxfev,ml,mu,epsfcn,mode,diag,factor, &

nprint,nfev,fjac,r,qtf,iuser,ruser,ifail)

If (ifail==0 .Or. ifail==2 .Or. ifail==3 .Or. ifail==4 .Or. ifail==5) &
Then
If (ifail==0) Then

! The NAG name equivalent of dnrm2 is f06ejf
fnorm = dnrm2(n,fvec,1)
Write (nout,*)
Write (nout,99999) ’Final 2-norm of the residuals =’, fnorm
Write (nout,*)
Write (nout,99998) ’Number of function evaluations =’, nfev
Write (nout,*)
Write (nout,*) ’Final approximate solution’

Else
Write (nout,*)
Write (nout,*) ’Approximate solution’

End If
Write (nout,*)
Write (nout,99997)(x(i),i=1,n)

End If

99999 Format (1X,A,E12.4)
99998 Format (1X,A,I10)
99997 Format (1X,3F12.4)

End Program c05qcfe

10.2 Program Data

None.

10.3 Program Results

C05QCF Example Program Results

Final 2-norm of the residuals = 0.1193E-07

Number of function evaluations = 14

Final approximate solution

-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164
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NAG Library Routine Document

C05QDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05QDF is a comprehensive reverse communication routine that finds a solution of a system of
nonlinear equations by a modification of the Powell hybrid method.

2 Specification

SUBROUTINE C05QDF (IREVCM, N, X, FVEC, XTOL, ML, MU, EPSFCN, MODE, DIAG,
FACTOR, FJAC, R, QTF, IWSAV, RWSAV, IFAIL)

&

INTEGER IREVCM, N, ML, MU, MODE, IWSAV(17), IFAIL
REAL (KIND=nag_wp) X(N), FVEC(N), XTOL, EPSFCN, DIAG(N), FACTOR,

FJAC(N,N), R(N*(N+1)/2), QTF(N), RWSAV(4*N+10)
&

3 Description

The system of equations is defined as:

fi x1; x2; . . . ; xnð Þ ¼ 0; i ¼ 1; 2; . . . ; n:

C05QDF is based on the MINPACK routine HYBRD (see Moré et al. (1980)). It chooses the correction
at each step as a convex combination of the Newton and scaled gradient directions. The Jacobian is
updated by the rank-1 method of Broyden. At the starting point, the Jacobian is approximated by
forward differences, but these are not used again until the rank-1 method fails to produce satisfactory
progress. For more details see Powell (1970).

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-
80-74 Argonne National Laboratory

Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for
Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than FVEC must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: must have the value 0.

On intermediate exit: specifies what action you must take before re-entering C05QDF with
IREVCM unchanged. The value of IREVCM should be interpreted as follows:

IREVCM ¼ 1
Indicates the start of a new iteration. No action is required by you, but X and FVEC are
available for printing.

IREVCM ¼ 2
Indicates that before re-entry to C05QDF, FVEC must contain the function values fi xð Þ.
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On final exit: IREVCM ¼ 0, and the algorithm has terminated.

Constraint: IREVCM ¼ 0, 1 or 2.

2: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N > 0.

3: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: an initial guess at the solution vector.

On intermediate exit: contains the current point.

On final exit: the final estimate of the solution vector.

4: FVECðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 1, FVEC must not be changed.

If IREVCM ¼ 2, FVEC must be set to the values of the functions computed at the current point
X.

On final exit: the function values at the final point, X.

5: XTOL – REAL (KIND=nag_wp) Input

On initial entry: the accuracy in X to which the solution is required.

Suggested value:
ffiffi
�
p

, where � is the machine precision returned by X02AJF.

Constraint: XTOL � 0:0.

6: ML – INTEGER Input

On initial entry: the number of subdiagonals within the band of the Jacobian matrix. (If the
Jacobian is not banded, or you are unsure, set ML ¼ N� 1.)

Constraint: ML � 0.

7: MU – INTEGER Input

On initial entry: the number of superdiagonals within the band of the Jacobian matrix. (If the
Jacobian is not banded, or you are unsure, set MU ¼ N� 1.)

Constraint: MU � 0.

8: EPSFCN – REAL (KIND=nag_wp) Input

On initial entry: the order of the largest relative error in the functions. It is used in determining a
suitable step for a forward difference approximation to the Jacobian. If EPSFCN is less than
machine precision (returned by X02AJF) then machine precision is used. Consequently a value
of 0:0 will often be suitable.

Suggested value: EPSFCN ¼ 0:0.

9: MODE – INTEGER Input

On initial entry: indicates whether or not you have provided scaling factors in DIAG.

If MODE ¼ 2 the scaling must have been supplied in DIAG.

Otherwise, if MODE ¼ 1, the variables will be scaled internally.

Constraint: MODE ¼ 1 or 2.
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10: DIAGðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MODE ¼ 2, DIAG must contain multiplicative scale factors for the variables.

If MODE ¼ 1, DIAG need not be set.

Constraint: if MODE ¼ 2, DIAGðiÞ > 0:0, for i ¼ 1; 2; . . . ; n.

On exit: the scale factors actually used (computed internally if MODE ¼ 1).

11: FACTOR – REAL (KIND=nag_wp) Input

On initial entry: a quantity to be used in determining the initial step bound. In most cases,
FACTOR should lie between 0:1 and 100:0. (The step bound is FACTOR � DIAG� Xk k2 if this
is nonzero; otherwise the bound is FACTOR.)

Suggested value: FACTOR ¼ 100:0.

Constraint: FACTOR > 0:0.

12: FJACðN;NÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate exit: must not be changed.

On final exit: the orthogonal matrix Q produced by the QR factorization of the final approximate
Jacobian.

13: RðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate exit: must not be changed.

On final exit: the upper triangular matrix R produced by the QR factorization of the final
approximate Jacobian, stored row-wise.

14: QTFðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate exit: must not be changed.

On final exit: the vector QTf.

15: IWSAVð17Þ – INTEGER array Communication Array
16: RWSAVð4� Nþ 10Þ – REAL (KIND=nag_wp) array Communication Array

The arrays IWSAV and RWSAV must not be altered between calls to C05QDF.

17: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

On entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0, 1 or 2.

IFAIL ¼ 3

No further improvement in the solution is possible. XTOL is too small: XTOL ¼ valueh i.

IFAIL ¼ 4

The iteration is not making good progress, as measured by the improvement from the last valueh i
Jacobian evaluations.

IFAIL ¼ 5

The iteration is not making good progress, as measured by the improvement from the last valueh i
iterations.

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 12

On entry, XTOL ¼ valueh i.
Constraint: XTOL � 0:0.

IFAIL ¼ 13

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 1 or 2.

IFAIL ¼ 14

On entry, FACTOR ¼ valueh i.
Constraint: FACTOR > 0:0.

IFAIL ¼ 15

On entry, MODE ¼ 2 and DIAG contained a non-positive element.

IFAIL ¼ 16

On entry, ML ¼ valueh i.
Constraint: ML � 0.

IFAIL ¼ 17

On entry, MU ¼ valueh i.
Constraint: MU � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

A value of IFAIL ¼ 4 or 5 may indicate that the system does not have a zero, or that the solution is
very close to the origin (see Section 7). Otherwise, rerunning C05QDF from a different starting point
may avoid the region of difficulty.

7 Accuracy

If x̂ is the true solution and D denotes the diagonal matrix whose entries are defined by the array
DIAG, then C05QDF tries to ensure that

D x� x̂ð Þk k2 � XTOL� Dx̂k k2:

If this condition is satisfied with XTOL ¼ 10�k, then the larger components of Dx have k significant
decimal digits. There is a danger that the smaller components of Dx may have large relative errors, but
the fast rate of convergence of C05QDF usually obviates this possibility.

If XTOL is less than machine precision and the above test is satisfied with the machine precision in
place of XTOL, then the routine exits with IFAIL ¼ 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the
solution is very close to the origin.

The convergence test assumes that the functions are reasonably well behaved. If this condition is not
satisfied, then C05QDF may incorrectly indicate convergence. The validity of the answer can be
checked, for example, by rerunning C05QDF with a lower value for XTOL.

8 Parallelism and Performance

C05QDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C05QDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time required by C05QDF to solve a given problem depends on n, the behaviour of the functions,
the accuracy requested and the starting point. The number of arithmetic operations executed by
C05QDF to process the evaluation of functions in the main program in each exit is approximately
11:5� n2. The timing of C05QDF is strongly influenced by the time spent evaluating the functions.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable
magnitude.

The number of function evaluations required to evaluate the Jacobian may be reduced if you can specify
ML and MU accurately.
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10 Example

This example determines the values x1; . . . ; x9 which satisfy the tridiagonal equations:

3� 2x1ð Þx1 � 2x2 ¼ �1;
�xi�1 þ 3� 2xið Þxi � 2xiþ1 ¼ �1; i ¼ 2; 3; . . . ; 8

�x8 þ 3� 2x9ð Þx9 ¼ �1:

10.1 Program Text

Program c05qdfe

! C05QDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c05qdf, dnrm2, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 9, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: epsfcn, factor, fnorm, xtol
Integer :: i, icount, ifail, irevcm, ml, mode, &

mu
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: diag(:), fjac(:,:), fvec(:), qtf(:), &
r(:), rwsav(:), x(:)

Integer, Allocatable :: iwsav(:)
! .. Intrinsic Procedures ..

Intrinsic :: sqrt
! .. Executable Statements ..

Write (nout,*) ’C05QDF Example Program Results’

Allocate (diag(n),fjac(n,n),fvec(n),qtf(n),r(n*(n+ &
1)/2),rwsav(4*n+10),iwsav(17),x(n))

! The following starting values provide a rough solution.

x(1:n) = -1.0E0_nag_wp
xtol = sqrt(x02ajf())
diag(1:n) = 1.0E0_nag_wp
ml = 1
mu = 1
epsfcn = 0.0E0_nag_wp
mode = 2
factor = 100.0E0_nag_wp
icount = 0
irevcm = 0
ifail = -1

revcomm: Do

Call c05qdf(irevcm,n,x,fvec,xtol,ml,mu,epsfcn,mode,diag,factor,fjac,r, &
qtf,iwsav,rwsav,ifail)

Select Case (irevcm)
Case (1)

icount = icount + 1

! Insert print statements here to monitor progress if desired.

Cycle revcomm
Case (2)

! Evaluate functions at given point

fvec(1:n) = (3.0E0_nag_wp-2.0E0_nag_wp*x(1:n))*x(1:n) + 1.0E0_nag_wp
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fvec(2:n) = fvec(2:n) - x(1:(n-1))
fvec(1:(n-1)) = fvec(1:(n-1)) - 2.0E0_nag_wp*x(2:n)
Cycle revcomm

Case Default
Exit revcomm

End Select

End Do revcomm

If (ifail==0 .Or. ifail==3 .Or. ifail==4 .Or. ifail==5) Then
If (ifail==0) Then

! The NAG name equivalent of dnrm2 is f06ejf
fnorm = dnrm2(n,fvec,1)
Write (nout,*)
Write (nout,99999) ’Final 2-norm of the residuals after’, icount, &

’ iterations is ’, fnorm
Write (nout,*)
Write (nout,*) ’Final approximate solution’

Else
Write (nout,*)
Write (nout,*) ’Approximate solution’

End If
Write (nout,*)
Write (nout,99998)(x(i),i=1,n)

End If

99999 Format (1X,A,I4,A,E12.4)
99998 Format (5X,3F12.4)

End Program c05qdfe

10.2 Program Data

None.

10.3 Program Results

C05QDF Example Program Results

Final 2-norm of the residuals after 11 iterations is 0.1193E-07

Final approximate solution

-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164
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NAG Library Routine Document

C05QSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05QSF is an easy-to-use routine that finds a solution of a sparse system of nonlinear equations by a
modification of the Powell hybrid method.

2 Specification

SUBROUTINE C05QSF (FCN, N, X, FVEC, XTOL, INIT, RCOMM, LRCOMM, ICOMM,
LICOMM, IUSER, RUSER, IFAIL)

&

INTEGER N, LRCOMM, ICOMM(LICOMM), LICOMM, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), FVEC(N), XTOL, RCOMM(LRCOMM), RUSER(*)
LOGICAL INIT
EXTERNAL FCN

3 Description

The system of equations is defined as:

fi x1; x2; . . . ; xnð Þ ¼ 0; i ¼ 1; 2; . . . ; n:

C05QSF is based on the MINPACK routine HYBRD1 (see Moré et al. (1980)). It chooses the
correction at each step as a convex combination of the Newton and scaled gradient directions. The
Jacobian is updated by the sparse rank-1 method of Schubert (see Schubert (1970)). At the starting
point, the sparsity pattern is determined and the Jacobian is approximated by forward differences, but
these are not used again until the rank-1 method fails to produce satisfactory progress. Then, the
sparsity structure is used to recompute an approximation to the Jacobian by forward differences with
the least number of function evaluations. The subroutine you supply must be able to compute only the
requested subset of the function values. The sparse Jacobian linear system is solved at each iteration
with F11MEF computing the Newton step. For more details see Powell (1970) and Broyden (1965).

4 References

Broyden C G (1965) A class of methods for solving nonlinear simultaneous equations Mathematics of
Computation 19(92) 577–593

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-
80-74 Argonne National Laboratory

Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for
Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

Schubert L K (1970) Modification of a quasi-Newton method for nonlinear equations with a sparse
Jacobian Mathematics of Computation 24(109) 27–30

5 Arguments

1: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must return the values of the functions fi at a point x.
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The specification of FCN is:

SUBROUTINE FCN (N, LINDF, INDF, X, FVEC, IUSER, RUSER, IFLAG)

INTEGER N, LINDF, INDF(LINDF), IUSER(*), IFLAG
REAL (KIND=nag_wp) X(N), FVEC(N), RUSER(*)

1: N – INTEGER Input

On entry: n, the number of equations.

2: LINDF – INTEGER Input

On entry: LINDF specifies the number of indices i for which values of fi xð Þ must be
computed.

3: INDFðLINDFÞ – INTEGER array Input

On entry: INDF specifies the indices i for which values of fi xð Þ must be computed. The
indices are specified in strictly ascending order.

4: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the components of the point x at which the functions must be evaluated. XðiÞ
contains the coordinate xi.

5: FVECðNÞ – REAL (KIND=nag_wp) array Output

On exit: FVECðiÞ must contain the function values fi xð Þ, for all indices i in INDF.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FCN is called with the arguments IUSER and RUSER as supplied to C05QSF. You
should use the arrays IUSER and RUSER to supply information to FCN.

8: IFLAG – INTEGER Input/Output

On entry: IFLAG > 0.

On exit: in general, IFLAG should not be reset by FCN. If, however, you wish to
terminate execution (perhaps because some illegal point X has been reached), then
IFLAG should be set to a negative integer.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which C05QSF is called. Arguments denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N > 0.

3: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial guess at the solution vector. XðiÞ must contain the coordinate xi.

On exit: the final estimate of the solution vector.

4: FVECðNÞ – REAL (KIND=nag_wp) array Output

On exit: the function values at the final point returned in X. FVECðiÞ contains the function values
fi.

C05QSF NAG Library Manual

C05QSF.2 Mark 26



5: XTOL – REAL (KIND=nag_wp) Input

On entry: the accuracy in X to which the solution is required.

Suggested value:
ffiffi
�
p

, where � is the machine precision returned by X02AJF.

Constraint: XTOL � 0:0.

6: INIT – LOGICAL Input

On entry: INIT must be set to .TRUE. to indicate that this is the first time C05QSF is called for
this specific problem. C05QSF then computes the dense Jacobian and detects and stores its
sparsity pattern (in RCOMM and ICOMM) before proceeding with the iterations. This is
noticeably time consuming when N is large. If not enough storage has been provided for
RCOMM or ICOMM, C05QSF will fail. On exit with IFAIL ¼ 0, 2, 3 or 4, ICOMMð1Þ contains
nnz, the number of nonzero entries found in the Jacobian. On subsequent calls, INIT can be set
to .FALSE. if the problem has a Jacobian of the same sparsity pattern. In that case, the
computation time required for the detection of the sparsity pattern will be smaller.

7: RCOMMðLRCOMMÞ – REAL (KIND=nag_wp) array Communication Array

RCOMM must not be altered between successive calls to C05QSF.

8: LRCOMM – INTEGER Input

On entry: the dimension of the array RCOMM as declared in the (sub)program from which
C05QSF is called.

Constraint: LRCOMM � 12þ nnz where nnz is the number of nonzero entries in the Jacobian,
as computed by C05QSF.

9: ICOMMðLICOMMÞ – INTEGER array Communication Array

If IFAIL ¼ 0, 2, 3 or 4 on exit, ICOMMð1Þ contains nnz where nnz is the number of nonzero
entries in the Jacobian.

ICOMM must not be altered between successive calls to C05QSF.

10: LICOMM – INTEGER Input

On entry: the dimension of the array ICOMM as declared in the (sub)program from which
C05QSF is called.

Constraint: LICOMM � 8� Nþ 19þ nnz where nnz is the number of nonzero entries in the
Jacobian, as computed by C05QSF.

11: IUSERð�Þ – INTEGER array User Workspace
12: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by C05QSF, but are passed directly to FCN and should be used
to pass information to this routine.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

There have been at least 200� Nþ 1ð Þ calls to FCN. Consider setting INIT ¼ :FALSE: and
restarting the calculation from the point held in X.

IFAIL ¼ 3

No further improvement in the solution is possible. XTOL is too small: XTOL ¼ valueh i.

IFAIL ¼ 4

The iteration is not making good progress. This failure exit may indicate that the system does not
have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning
C05QSF from a different starting point may avoid the region of difficulty. The condition number
of the Jacobian is valueh i.

IFAIL ¼ 5

IFLAG was set negative in FCN. IFLAG ¼ valueh i.

IFAIL ¼ 6

On entry, LRCOMM ¼ valueh i.
Constraint: LRCOMM � valueh i.

IFAIL ¼ 7

On entry, LICOMM ¼ valueh i.
Constraint: LICOMM � valueh i.

IFAIL ¼ 9

An internal error has occurred. Code ¼ valueh i.

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 12

On entry, XTOL ¼ valueh i.
Constraint: XTOL � 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If x̂ is the true solution, C05QSF tries to ensure that

x� x̂k k2 � XTOL� x̂k k2:

If this condition is satisfied with XTOL ¼ 10�k, then the larger components of x have k significant
decimal digits. There is a danger that the smaller components of x may have large relative errors, but
the fast rate of convergence of C05QSF usually obviates this possibility.

If XTOL is less than machine precision and the above test is satisfied with the machine precision in
place of XTOL, then the routine exits with IFAIL ¼ 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the
solution is very close to the origin.

The convergence test assumes that the functions are reasonably well behaved. If this condition is not
satisfied, then C05QSF may incorrectly indicate convergence. The validity of the answer can be
checked, for example, by rerunning C05QSF with a lower value for XTOL.

8 Parallelism and Performance

C05QSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C05QSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Local workspace arrays of fixed lengths are allocated internally by C05QSF. The total size of these
arrays amounts to 8� nþ 2� q real elements and 10� nþ 2� q þ 5 integer elements where the
integer q is bounded by 8� nnz and n2 and depends on the sparsity pattern of the Jacobian.

The time required by C05QSF to solve a given problem depends on n, the behaviour of the functions,
the accuracy requested and the starting point. The number of arithmetic operations executed by C05QSF
to process each evaluation of the functions depends on the number of nonzero entries in the Jacobian.
The timing of C05QSF is strongly influenced by the time spent evaluating the functions.

When INIT is .TRUE., the dense Jacobian is first evaluated and that will take time proportional to n2.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable
magnitude.

10 Example

This example determines the values x1; . . . ; x9 which satisfy the tridiagonal equations:

3� 2x1ð Þx1 � 2x2 ¼ �1;
�xi�1 þ 3� 2xið Þxi � 2xiþ1 ¼ �1; i ¼ 2; 3; . . . ; 8

�x8 þ 3� 2x9ð Þx9 ¼ �1:

It then perturbs the equations by a small amount and solves the new system.
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10.1 Program Text

! C05QSF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c05qsfe_mod

! C05QSF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Integer, Parameter, Public :: n = 9, nout = 6

Contains
Subroutine fcn(n,lindf,indf,x,fvec,iuser,ruser,iflag)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: three = 3.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: alpha = (one/two)**7

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: lindf, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fvec(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (In) :: indf(lindf)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: theta
Integer :: i, ind

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
iflag = 0
theta = real(iuser(1),kind=nag_wp)*alpha
Do ind = 1, lindf

i = indf(ind)
fvec(i) = (three-(two+theta)*x(i))*x(i) + one
If (i>1) Then

fvec(i) = fvec(i) - x(i-1)
End If
If (i<n) Then

fvec(i) = fvec(i) - two*x(i+1)
End If

End Do
Return

End Subroutine fcn
End Module c05qsfe_mod
Program c05qsfe

! .. Use Statements ..
Use nag_library, Only: c05qsf, dnrm2, nag_wp, x02ajf
Use c05qsfe_mod, Only: fcn, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fnorm, xtol
Integer :: i, ifail, j, licomm, lrcomm
Logical :: init

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fvec(:), rcomm(:), x(:)
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Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icomm(:)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Write (nout,*) ’C05QSF Example Program Results’

xtol = sqrt(x02ajf())
lrcomm = 12 + 3*n
licomm = 8*n + 19 + 3*n

Allocate (fvec(n),x(n),rcomm(lrcomm),icomm(licomm))

! The following starting values provide a rough solution.
x(1:n) = -1.0E0_nag_wp

Do i = 0, 1
ifail = -1

! Perturb the system?
iuser(1) = i

init = (i==0)
Call c05qsf(fcn,n,x,fvec,xtol,init,rcomm,lrcomm,icomm,licomm,iuser, &

ruser,ifail)

Select Case (ifail)
Case (0)

! The NAG name equivalent of dnrm2 is f06ejf
fnorm = dnrm2(n,fvec,1)
Write (nout,*)
Write (nout,99999) ’Final 2-norm of the residuals =’, fnorm
Write (nout,*)
Write (nout,*) ’Final approximate solution’
Write (nout,*)
Write (nout,99998)(x(j),j=1,n)

Case (2:4)
Write (nout,*)
Write (nout,*) ’Approximate solution’
Write (nout,*)
Write (nout,99998)(x(j),j=1,n)

End Select
End Do

99999 Format (1X,A,E12.4)
99998 Format (1X,3F12.4)

End Program c05qsfe

10.2 Program Data

None.

10.3 Program Results

C05QSF Example Program Results

Final 2-norm of the residuals = 0.1759E-08

Final approximate solution

-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164

Final 2-norm of the residuals = 0.2633E-12
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Final approximate solution

-0.5697 -0.6804 -0.7004
-0.7029 -0.7000 -0.6906
-0.6646 -0.5951 -0.4159
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NAG Library Routine Document

C05RBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05RBF is an easy-to-use routine that finds a solution of a system of nonlinear equations by a
modification of the Powell hybrid method. You must provide the Jacobian.

2 Specification

SUBROUTINE C05RBF (FCN, N, X, FVEC, FJAC, XTOL, IUSER, RUSER, IFAIL)

INTEGER N, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), FVEC(N), FJAC(N,N), XTOL, RUSER(*)
EXTERNAL FCN

3 Description

The system of equations is defined as:

fi x1; x2; . . . ; xnð Þ ¼ 0; i ¼ 1; 2; . . . ; n:

C05RBF is based on the MINPACK routine HYBRJ1 (see Moré et al. (1980)). It chooses the correction
at each step as a convex combination of the Newton and scaled gradient directions. The Jacobian is
updated by the rank-1 method of Broyden. At the starting point, the Jacobian is requested, but it is not
asked for again until the rank-1 method fails to produce satisfactory progress. For more details see
Powell (1970).

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-
80-74 Argonne National Laboratory

Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for
Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

5 Arguments

1: FCN – SUBROUTINE, supplied by the user. External Procedure

Depending upon the value of IFLAG, FCN must either return the values of the functions fi at a
point x or return the Jacobian at x.

The specification of FCN is:

SUBROUTINE FCN (N, X, FVEC, FJAC, IUSER, RUSER, IFLAG)

INTEGER N, IUSER(*), IFLAG
REAL (KIND=nag_wp) X(N), FVEC(N), FJAC(N,N), RUSER(*)

1: N – INTEGER Input

On entry: n, the number of equations.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the components of the point x at which the functions or the Jacobian must be
evaluated.
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3: FVECðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IFLAG ¼ 2, FVEC contains the function values fi xð Þ and must not be
changed.

On exit: if IFLAG ¼ 1 on entry, FVEC must contain the function values fi xð Þ (unless
IFLAG is set to a negative value by FCN).

4: FJACðN;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IFLAG ¼ 1, FJAC contains the value of
@fi
@xj

at the point x, for

i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n, and must not be changed.

On exit: if IFLAG ¼ 2 on entry, FJACði; jÞ must contain the value of
@fi
@xj

at the point x,

for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n, (unless IFLAG is set to a negative value by
FCN).

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FCN is called with the arguments IUSER and RUSER as supplied to C05RBF. You
should use the arrays IUSER and RUSER to supply information to FCN.

7: IFLAG – INTEGER Input/Output

On entry: IFLAG ¼ 1 or 2.

IFLAG ¼ 1
FVEC is to be updated.

IFLAG ¼ 2
FJAC is to be updated.

On exit: in general, IFLAG should not be reset by FCN. If, however, you wish to
terminate execution (perhaps because some illegal point X has been reached), then
IFLAG should be set to a negative integer.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which C05RBF is called. Arguments denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N > 0.

3: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial guess at the solution vector.

On exit: the final estimate of the solution vector.

4: FVECðNÞ – REAL (KIND=nag_wp) array Output

On exit: the function values at the final point returned in X.

5: FJACðN;NÞ – REAL (KIND=nag_wp) array Output

On exit: the orthogonal matrix Q produced by the QR factorization of the final approximate
Jacobian.
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6: XTOL – REAL (KIND=nag_wp) Input

On entry: the accuracy in X to which the solution is required.

Suggested value:
ffiffi
�
p

, where � is the machine precision returned by X02AJF.

Constraint: XTOL � 0:0.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by C05RBF, but are passed directly to FCN and should be used
to pass information to this routine.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

There have been at least 100� Nþ 1ð Þ calls to FCN. Consider restarting the calculation from the
point held in X.

IFAIL ¼ 3

No further improvement in the solution is possible. XTOL is too small: XTOL ¼ valueh i.

IFAIL ¼ 4

The iteration is not making good progress. This failure exit may indicate that the system does not
have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning
C05RBF from a different starting point may avoid the region of difficulty.

IFAIL ¼ 5

IFLAG was set negative in FCN. IFLAG ¼ valueh i.

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 12

On entry, XTOL ¼ valueh i.
Constraint: XTOL � 0:0.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If x̂ is the true solution, C05RBF tries to ensure that

x� x̂k k2 � XTOL� x̂k k2:

If this condition is satisfied with XTOL ¼ 10�k, then the larger components of x have k significant
decimal digits. There is a danger that the smaller components of x may have large relative errors, but
the fast rate of convergence of C05RBF usually obviates this possibility.

If XTOL is less than machine precision and the above test is satisfied with the machine precision in
place of XTOL, then the routine exits with IFAIL ¼ 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the
solution is very close to the origin.

The convergence test assumes that the functions and the Jacobian are coded consistently and that the
functions are reasonably well behaved. If these conditions are not satisfied, then C05RBF may
incorrectly indicate convergence. The coding of the Jacobian can be checked using C05ZDF. If the
Jacobian is coded correctly, then the validity of the answer can be checked by rerunning C05RBF with
a lower value for XTOL.

8 Parallelism and Performance

C05RBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C05RBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Local workspace arrays of fixed lengths are allocated internally by C05RBF. The total size of these
arrays amounts to n� nþ 13ð Þ=2 real elements.

The time required by C05RBF to solve a given problem depends on n, the behaviour of the functions,
the accuracy requested and the starting point. The number of arithmetic operations executed by
C05RBF is approximately 11:5� n2 to process each evaluation of the functions and approximately
1:3� n3 to process each evaluation of the Jacobian. The timing of C05RBF is strongly influenced by
the time spent evaluating the functions.
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Ideally the problem should be scaled so that, at the solution, the function values are of comparable
magnitude.

10 Example

This example determines the values x1; . . . ; x9 which satisfy the tridiagonal equations:

3� 2x1ð Þx1 � 2x2 ¼ �1;
�xi�1 þ 3� 2xið Þxi � 2xiþ1 ¼ �1; i ¼ 2; 3; . . . ; 8

�x8 þ 3� 2x9ð Þx9 ¼ �1:

10.1 Program Text

! C05RBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c05rbfe_mod

! C05RBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Integer, Parameter, Public :: n = 9, nout = 6

Contains
Subroutine fcn(n,x,fvec,fjac,iuser,ruser,iflag)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: coeff(5) = (/-1.0_nag_wp,3.0_nag_wp, &

-2.0_nag_wp,-2.0_nag_wp, &
-1.0_nag_wp/)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(n,n), fvec(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: k

! .. Executable Statements ..
If (iflag/=2) Then

fvec(1:n) = (coeff(2)+coeff(3)*x(1:n))*x(1:n) - coeff(5)
fvec(2:n) = fvec(2:n) + coeff(1)*x(1:(n-1))
fvec(1:(n-1)) = fvec(1:(n-1)) + coeff(4)*x(2:n)

Else
fjac(1:n,1:n) = 0.0_nag_wp
fjac(1,1) = coeff(2) + 2.0_nag_wp*coeff(3)*x(1)
fjac(1,2) = coeff(4)
Do k = 2, n - 1

fjac(k,k-1) = coeff(1)
fjac(k,k) = coeff(2) + 2.0_nag_wp*coeff(3)*x(k)
fjac(k,k+1) = coeff(4)

End Do
fjac(n,n-1) = coeff(1)
fjac(n,n) = coeff(2) + 2.0_nag_wp*coeff(3)*x(n)

End If
! Set iflag negative to terminate execution for any reason.

iflag = 0
Return

End Subroutine fcn
End Module c05rbfe_mod
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Program c05rbfe

! C05RBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c05rbf, dnrm2, nag_wp, x02ajf
Use c05rbfe_mod, Only: fcn, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fnorm, xtol
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fjac(:,:), fvec(:), x(:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Write (nout,*) ’C05RBF Example Program Results’

Allocate (fjac(n,n),fvec(n),x(n))

! The following starting values provide a rough solution.

x(1:n) = -1.0E0_nag_wp

xtol = sqrt(x02ajf())

ifail = -1
Call c05rbf(fcn,n,x,fvec,fjac,xtol,iuser,ruser,ifail)

If (ifail==0 .Or. ifail==2 .Or. ifail==3 .Or. ifail==4) Then
If (ifail==0) Then

! The NAG name equivalent of dnrm2 is f06ejf
fnorm = dnrm2(n,fvec,1)
Write (nout,*)
Write (nout,99999) ’Final 2-norm of the residuals =’, fnorm
Write (nout,*)
Write (nout,*) ’Final approximate solution’

Else
Write (nout,*)
Write (nout,*) ’Approximate solution’

End If
Write (nout,*)
Write (nout,99998)(x(i),i=1,n)

End If

99999 Format (1X,A,E12.4)
99998 Format (1X,3F12.4)

End Program c05rbfe

10.2 Program Data

None.

10.3 Program Results

C05RBF Example Program Results

Final 2-norm of the residuals = 0.1193E-07

Final approximate solution

-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164
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NAG Library Routine Document

C05RCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05RCF is a comprehensive routine that finds a solution of a system of nonlinear equations by a
modification of the Powell hybrid method. You must provide the Jacobian.

2 Specification

SUBROUTINE C05RCF (FCN, N, X, FVEC, FJAC, XTOL, MAXFEV, MODE, DIAG,
FACTOR, NPRINT, NFEV, NJEV, R, QTF, IUSER, RUSER,
IFAIL)

&
&

INTEGER N, MAXFEV, MODE, NPRINT, NFEV, NJEV, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), FVEC(N), FJAC(N,N), XTOL, DIAG(N), FACTOR,

R(N*(N+1)/2), QTF(N), RUSER(*)
&

EXTERNAL FCN

3 Description

The system of equations is defined as:

fi x1; x2; . . . ; xnð Þ ¼ 0; i ¼ 1; 2; . . . ; n:

C05RCF is based on the MINPACK routine HYBRJ (see Moré et al. (1980)). It chooses the correction
at each step as a convex combination of the Newton and scaled gradient directions. The Jacobian is
updated by the rank-1 method of Broyden. At the starting point, the Jacobian is requested, but it is not
asked for again until the rank-1 method fails to produce satisfactory progress. For more details see
Powell (1970).

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-
80-74 Argonne National Laboratory

Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for
Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

5 Arguments

1: FCN – SUBROUTINE, supplied by the user. External Procedure

Depending upon the value of IFLAG, FCN must either return the values of the functions fi at a
point x or return the Jacobian at x.

The specification of FCN is:

SUBROUTINE FCN (N, X, FVEC, FJAC, IUSER, RUSER, IFLAG)

INTEGER N, IUSER(*), IFLAG
REAL (KIND=nag_wp) X(N), FVEC(N), FJAC(N,N), RUSER(*)

1: N – INTEGER Input

On entry: n, the number of equations.
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2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the components of the point x at which the functions or the Jacobian must be
evaluated.

3: FVECðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IFLAG ¼ 0 or 2, FVEC contains the function values fi xð Þ and must not be
changed.

On exit: if IFLAG ¼ 1 on entry, FVEC must contain the function values fi xð Þ (unless
IFLAG is set to a negative value by FCN).

4: FJACðN;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IFLAG ¼ 0, FJACði; jÞ contains the value of
@fi
@xj

at the point x, for

i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n. When IFLAG ¼ 0 or 1, FJAC must not be changed.

On exit: if IFLAG ¼ 2 on entry, FJACði; jÞ must contain the value of
@fi
@xj

at the point x,

for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n, (unless IFLAG is set to a negative value by
FCN).

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FCN is called with the arguments IUSER and RUSER as supplied to C05RCF. You
should use the arrays IUSER and RUSER to supply information to FCN.

7: IFLAG – INTEGER Input/Output

On entry: IFLAG ¼ 0, 1 or 2.

IFLAG ¼ 0
X, FVEC and FJAC are available for printing (see NPRINT).

IFLAG ¼ 1
FVEC is to be updated.

IFLAG ¼ 2
FJAC is to be updated.

On exit: in general, IFLAG should not be reset by FCN. If, however, you wish to
terminate execution (perhaps because some illegal point X has been reached), then
IFLAG should be set to a negative integer value.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which C05RCF is called. Arguments denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N > 0.

3: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial guess at the solution vector.

On exit: the final estimate of the solution vector.
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4: FVECðNÞ – REAL (KIND=nag_wp) array Output

On exit: the function values at the final point returned in X.

5: FJACðN;NÞ – REAL (KIND=nag_wp) array Output

On exit: the orthogonal matrix Q produced by the QR factorization of the final approximate
Jacobian.

6: XTOL – REAL (KIND=nag_wp) Input

On entry: the accuracy in X to which the solution is required.

Suggested value:
ffiffi
�
p

, where � is the machine precision returned by X02AJF.

Constraint: XTOL � 0:0.

7: MAXFEV – INTEGER Input

On entry: the maximum number of calls to FCN with IFLAG 6¼ 0. C05RCF will exit with
IFAIL ¼ 2, if, at the end of an iteration, the number of calls to FCN exceeds MAXFEV.

Suggested value: MAXFEV ¼ 100� Nþ 1ð Þ.
Constraint: MAXFEV > 0.

8: MODE – INTEGER Input

On entry: indicates whether or not you have provided scaling factors in DIAG.

If MODE ¼ 2 the scaling must have been specified in DIAG.

Otherwise, if MODE ¼ 1, the variables will be scaled internally.

Constraint: MODE ¼ 1 or 2.

9: DIAGðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MODE ¼ 2, DIAG must contain multiplicative scale factors for the variables.

If MODE ¼ 1, DIAG need not be set.

Constraint: if MODE ¼ 2, DIAGðiÞ > 0:0, for i ¼ 1; 2; . . . ; n.

On exit: the scale factors actually used (computed internally if MODE ¼ 1).

10: FACTOR – REAL (KIND=nag_wp) Input

On entry: a quantity to be used in determining the initial step bound. In most cases, FACTOR
should lie between 0:1 and 100:0. (The step bound is FACTOR� DIAG� Xk k2 if this is
nonzero; otherwise the bound is FACTOR.)

Suggested value: FACTOR ¼ 100:0.

Constraint: FACTOR > 0:0.

11: NPRINT – INTEGER Input

On entry: indicates whether (and how often) special calls to FCN, with IFLAG set to 0, are to be
made for printing purposes.

NPRINT � 0
No calls are made.

NPRINT > 0
FCN is called at the beginning of the first iteration, every NPRINT iterations thereafter and
immediately before the return from C05RCF.
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12: NFEV – INTEGER Output

On exit: the number of calls made to FCN to evaluate the functions.

13: NJEV – INTEGER Output

On exit: the number of calls made to FCN to evaluate the Jacobian.

14: RðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper triangular matrix R produced by the QR factorization of the final approximate
Jacobian, stored row-wise.

15: QTFðNÞ – REAL (KIND=nag_wp) array Output

On exit: the vector QTf.

16: IUSERð�Þ – INTEGER array User Workspace
17: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by C05RCF, but are passed directly to FCN and should be used
to pass information to this routine.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

There have been at least MAXFEV calls to FCN: MAXFEV ¼ valueh i. Consider restarting the
calculation from the final point held in X.

IFAIL ¼ 3

No further improvement in the solution is possible. XTOL is too small: XTOL ¼ valueh i.

IFAIL ¼ 4

The iteration is not making good progress, as measured by the improvement from the last valueh i
Jacobian evaluations. This failure exit may indicate that the system does not have a zero, or that
the solution is very close to the origin (see Section 7). Otherwise, rerunning C05RCF from a
different starting point may avoid the region of difficulty.
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IFAIL ¼ 5

The iteration is not making good progress, as measured by the improvement from the last valueh i
iterations. This failure exit may indicate that the system does not have a zero, or that the solution
is very close to the origin (see Section 7). Otherwise, rerunning C05RCF from a different starting
point may avoid the region of difficulty.

IFAIL ¼ 6

IFLAG was set negative in FCN. IFLAG ¼ valueh i.

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 12

On entry, XTOL ¼ valueh i.
Constraint: XTOL � 0:0.

IFAIL ¼ 13

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 1 or 2.

IFAIL ¼ 14

On entry, FACTOR ¼ valueh i.
Constraint: FACTOR > 0:0.

IFAIL ¼ 15

On entry, MODE ¼ 2 and DIAG contained a non-positive element.

IFAIL ¼ 18

On entry, MAXFEV ¼ valueh i.
Constraint: MAXFEV > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If x̂ is the true solution and D denotes the diagonal matrix whose entries are defined by the array
DIAG, then C05RCF tries to ensure that

D x� x̂ð Þk k2 � XTOL� Dx̂k k2:

If this condition is satisfied with XTOL ¼ 10�k, then the larger components of Dx have k significant
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decimal digits. There is a danger that the smaller components of Dx may have large relative errors, but
the fast rate of convergence of C05RCF usually obviates this possibility.

If XTOL is less than machine precision and the above test is satisfied with the machine precision in
place of XTOL, then the routine exits with IFAIL ¼ 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the
solution is very close to the origin.

The convergence test assumes that the functions and the Jacobian are coded consistently and that the
functions are reasonably well behaved. If these conditions are not satisfied, then C05RCF may
incorrectly indicate convergence. The coding of the Jacobian can be checked using C05ZDF. If the
Jacobian is coded correctly, then the validity of the answer can be checked by rerunning C05RCF with
a lower value for XTOL.

8 Parallelism and Performance

C05RCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C05RCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Local workspace arrays of fixed lengths are allocated internally by C05RCF. The total size of these
arrays amounts to 4� n real elements.

The time required by C05RCF to solve a given problem depends on n, the behaviour of the functions,
the accuracy requested and the starting point. The number of arithmetic operations executed by
C05RCF is approximately 11:5� n2 to process each evaluation of the functions and approximately
1:3� n3 to process each evaluation of the Jacobian. The timing of C05RCF is strongly influenced by
the time spent evaluating the functions.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable
magnitude.

10 Example

This example determines the values x1; . . . ; x9 which satisfy the tridiagonal equations:

3� 2x1ð Þx1 � 2x2 ¼ �1;
�xi�1 þ 3� 2xið Þxi � 2xiþ1 ¼ �1; i ¼ 2; 3; . . . ; 8

�x8 þ 3� 2x9ð Þx9 ¼ �1:

10.1 Program Text

! C05RCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c05rcfe_mod

! C05RCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None
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! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: factor = 100.0_nag_wp
Integer, Parameter, Public :: maxfev = 1000, mode = 2, n = 9, &

nout = 6, nprint = 0
Contains

Subroutine fcn(n,x,fvec,fjac,iuser,ruser,iflag)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: coeff(5) = (/-1.0_nag_wp,3.0_nag_wp, &

-2.0_nag_wp,-2.0_nag_wp, &
-1.0_nag_wp/)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(n,n), fvec(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: k

! .. Executable Statements ..
If (iflag==0) Then

If (nprint>0) Then
! Insert print statements here if desired.

Continue
End If

Else If (iflag/=2) Then
fvec(1:n) = (coeff(2)+coeff(3)*x(1:n))*x(1:n) - coeff(5)
fvec(2:n) = fvec(2:n) + coeff(1)*x(1:(n-1))
fvec(1:(n-1)) = fvec(1:(n-1)) + coeff(4)*x(2:n)

Else
fjac(1:n,1:n) = 0.0_nag_wp
fjac(1,1) = coeff(2) + 2.0_nag_wp*coeff(3)*x(1)
fjac(1,2) = coeff(4)
Do k = 2, n - 1

fjac(k,k-1) = coeff(1)
fjac(k,k) = coeff(2) + 2.0_nag_wp*coeff(3)*x(k)
fjac(k,k+1) = coeff(4)

End Do
fjac(n,n-1) = coeff(1)
fjac(n,n) = coeff(2) + 2.0_nag_wp*coeff(3)*x(n)

End If
! Set iflag negative to terminate execution for any reason.

iflag = 0
Return

End Subroutine fcn
End Module c05rcfe_mod
Program c05rcfe

! C05RCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c05rcf, dnrm2, nag_wp, x02ajf
Use c05rcfe_mod, Only: factor, fcn, maxfev, mode, n, nout, nprint

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fnorm, xtol
Integer :: i, ifail, nfev, njev

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: diag(:), fjac(:,:), fvec(:), qtf(:), &

r(:), x(:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Write (nout,*) ’C05RCF Example Program Results’
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Allocate (diag(n),fjac(n,n),fvec(n),qtf(n),r(n*(n+1)/2),x(n))

! The following starting values provide a rough solution.

x(1:n) = -1.0_nag_wp

xtol = sqrt(x02ajf())
diag(1:n) = 1.0_nag_wp

ifail = -1
Call c05rcf(fcn,n,x,fvec,fjac,xtol,maxfev,mode,diag,factor,nprint,nfev, &

njev,r,qtf,iuser,ruser,ifail)

If (ifail==0 .Or. ifail==2 .Or. ifail==3 .Or. ifail==4 .Or. ifail==5) &
Then
If (ifail==0) Then

! The NAG name equivalent of dnrm2 is f06ejf
fnorm = dnrm2(n,fvec,1)
Write (nout,*)
Write (nout,99999) ’Final 2-norm of the residuals =’, fnorm
Write (nout,*)
Write (nout,*) ’Final approximate solution’

Else
Write (nout,*)
Write (nout,*) ’Approximate solution:’

End If
Write (nout,*)
Write (nout,99998)(x(i),i=1,n)

End If

99999 Format (1X,A,E12.4)
99998 Format (1X,3F12.4)

End Program c05rcfe

10.2 Program Data

None.

10.3 Program Results

C05RCF Example Program Results

Final 2-norm of the residuals = 0.1193E-07

Final approximate solution

-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164
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NAG Library Routine Document

C05RDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05RDF is a comprehensive reverse communication routine that finds a solution of a system of
nonlinear equations by a modification of the Powell hybrid method. You must provide the Jacobian.

2 Specification

SUBROUTINE C05RDF (IREVCM, N, X, FVEC, FJAC, XTOL, MODE, DIAG, FACTOR,
R, QTF, IWSAV, RWSAV, IFAIL)

&

INTEGER IREVCM, N, MODE, IWSAV(17), IFAIL
REAL (KIND=nag_wp) X(N), FVEC(N), FJAC(N,N), XTOL, DIAG(N), FACTOR,

R(N*(N+1)/2), QTF(N), RWSAV(4*N+10)
&

3 Description

The system of equations is defined as:

fi x1; x2; . . . ; xnð Þ ¼ 0; i ¼ 1; 2; . . . ; n:

C05RDF is based on the MINPACK routine HYBRJ (see Moré et al. (1980)). It chooses the correction
at each step as a convex combination of the Newton and scaled gradient directions. The Jacobian is
updated by the rank-1 method of Broyden. For more details see Powell (1970).

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-
80-74 Argonne National Laboratory

Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for
Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than FVEC and FJAC must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: must have the value 0.

On intermediate exit: specifies what action you must take before re-entering C05RDF with
IREVCM unchanged. The value of IREVCM should be interpreted as follows:

IREVCM ¼ 1
Indicates the start of a new iteration. No action is required by you, but X and FVEC are
available for printing.

IREVCM ¼ 2
Indicates that before re-entry to C05RDF, FVEC must contain the function values fi xð Þ.
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IREVCM ¼ 3

Indicates that before re-entry to C05RDF, FJACði; jÞ must contain the value of
@fi
@xj

at the

point x, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

On final exit: IREVCM ¼ 0, and the algorithm has terminated.

Constraint: IREVCM ¼ 0, 1, 2 or 3.

2: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N > 0.

3: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: an initial guess at the solution vector.

On intermediate exit: contains the current point.

On final exit: the final estimate of the solution vector.

4: FVECðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate re-entry: if IREVCM 6¼ 2, FVEC must not be changed.

If IREVCM ¼ 2, FVEC must be set to the values of the functions computed at the current point
X.

On final exit: the function values at the final point, X.

5: FJACðN;NÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate re-entry: if IREVCM 6¼ 3, FJAC must not be changed.

If IREVCM ¼ 3, FJACði; jÞ must contain the value of
@fi
@xj

at the point x, for i ¼ 1; 2; . . . ; n and

j ¼ 1; 2; . . . ; n.

On final exit: the orthogonal matrix Q produced by the QR factorization of the final approximate
Jacobian.

6: XTOL – REAL (KIND=nag_wp) Input

On initial entry: the accuracy in X to which the solution is required.

Suggested value:
ffiffi
�
p

, where � is the machine precision returned by X02AJF.

Constraint: XTOL � 0:0.

7: MODE – INTEGER Input

On initial entry: indicates whether or not you have provided scaling factors in DIAG.

If MODE ¼ 2 the scaling must have been supplied in DIAG.

Otherwise, if MODE ¼ 1, the variables will be scaled internally.

Constraint: MODE ¼ 1 or 2.

8: DIAGðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: if MODE ¼ 2, DIAG must contain multiplicative scale factors for the variables.
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If MODE ¼ 1, DIAG need not be set.

Constraint: if MODE ¼ 2, DIAGðiÞ > 0:0, for i ¼ 1; 2; . . . ; n.

On intermediate exit: DIAG must not be changed.

On final exit: the scale factors actually used (computed internally if MODE ¼ 1).

9: FACTOR – REAL (KIND=nag_wp) Input

On initial entry: a quantity to be used in determining the initial step bound. In most cases,
FACTOR should lie between 0:1 and 100:0. (The step bound is FACTOR � DIAG� Xk k2 if this
is nonzero; otherwise the bound is FACTOR.)

Suggested value: FACTOR ¼ 100:0.

Constraint: FACTOR > 0:0.

10: RðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate exit: must not be changed.

On final exit: the upper triangular matrix R produced by the QR factorization of the final
approximate Jacobian, stored row-wise.

11: QTFðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate exit: must not be changed.

On final exit: the vector QTf.

12: IWSAVð17Þ – INTEGER array Communication Array
13: RWSAVð4� Nþ 10Þ – REAL (KIND=nag_wp) array Communication Array

The arrays IWSAV and RWSAV must not be altered between calls to C05RDF.

14: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

On entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0, 1, 2 or 3.
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IFAIL ¼ 3

No further improvement in the solution is possible. XTOL is too small: XTOL ¼ valueh i.

IFAIL ¼ 4

The iteration is not making good progress, as measured by the improvement from the last valueh i
Jacobian evaluations. This failure exit may indicate that the system does not have a zero, or that
the solution is very close to the origin (see Section 7). Otherwise, rerunning C05RDF from a
different starting point may avoid the region of difficulty.

IFAIL ¼ 5

The iteration is not making good progress, as measured by the improvement from the last valueh i
iterations. This failure exit may indicate that the system does not have a zero, or that the solution
is very close to the origin (see Section 7). Otherwise, rerunning C05RDF from a different starting
point may avoid the region of difficulty.

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 12

On entry, XTOL ¼ valueh i.
Constraint: XTOL � 0:0.

IFAIL ¼ 13

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 1 or 2.

IFAIL ¼ 14

On entry, FACTOR ¼ valueh i.
Constraint: FACTOR > 0:0.

IFAIL ¼ 15

On entry, MODE ¼ 2 and DIAG contained a non-positive element.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If x̂ is the true solution and D denotes the diagonal matrix whose entries are defined by the array
DIAG, then C05RDF tries to ensure that

D x� x̂ð Þk k2 � XTOL� Dx̂k k2:
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If this condition is satisfied with XTOL ¼ 10�k, then the larger components of Dx have k significant
decimal digits. There is a danger that the smaller components of Dx may have large relative errors, but
the fast rate of convergence of C05RDF usually obviates this possibility.

If XTOL is less than machine precision and the above test is satisfied with the machine precision in
place of XTOL, then the routine exits with IFAIL ¼ 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the
solution is very close to the origin.

The convergence test assumes that the functions and the Jacobian are coded consistently and that the
functions are reasonably well behaved. If these conditions are not satisfied, then C05RDF may
incorrectly indicate convergence. The coding of the Jacobian can be checked using C05ZDF. If the
Jacobian is coded correctly, then the validity of the answer can be checked by rerunning C05RDF with
a lower value for XTOL.

8 Parallelism and Performance

C05RDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C05RDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time required by C05RDF to solve a given problem depends on n, the behaviour of the functions,
the accuracy requested and the starting point. The number of arithmetic operations executed by
C05RDF is approximately 11:5� n2 to process each evaluation of the functions and approximately
1:3� n3 to process each evaluation of the Jacobian. The timing of C05RDF is strongly influenced by
the time spent evaluating the functions.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable
magnitude.

10 Example

This example determines the values x1; . . . ; x9 which satisfy the tridiagonal equations:

3� 2x1ð Þx1 � 2x2 ¼ �1;
�xi�1 þ 3� 2xið Þxi � 2xiþ1 ¼ �1; i ¼ 2; 3; . . . ; 8

�x8 þ 3� 2x9ð Þx9 ¼ �1:

10.1 Program Text

Program c05rdfe

! C05RDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c05rdf, dnrm2, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 9, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: factor, fnorm, xtol
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Integer :: i, icount, ifail, irevcm, k, mode
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: diag(:), fjac(:,:), fvec(:), qtf(:), &
r(:), rwsav(:), x(:)

Integer, Allocatable :: iwsav(:)
! .. Intrinsic Procedures ..

Intrinsic :: sqrt
! .. Executable Statements ..

Write (nout,*) ’C05RDF Example Program Results’

Allocate (diag(n),fjac(n,n),fvec(n),qtf(n),r(n*(n+ &
1)/2),rwsav(4*n+10),iwsav(17),x(n))

! The following starting values provide a rough solution.

x(1:n) = -1.0E0_nag_wp

xtol = sqrt(x02ajf())
diag(1:n) = 1.0E0_nag_wp
mode = 2
factor = 100.0E0_nag_wp
icount = 0
irevcm = 0
ifail = -1

revcomm: Do

Call c05rdf(irevcm,n,x,fvec,fjac,xtol,mode,diag,factor,r,qtf,iwsav, &
rwsav,ifail)

Select Case (irevcm)
Case (1)

icount = icount + 1

! Insert print statements here to monitor progress if desired.

Cycle revcomm
Case (2)

! Evaluate functions at given point

fvec(1:n) = (3.0E0_nag_wp-2.0E0_nag_wp*x(1:n))*x(1:n) + 1.0E0_nag_wp
fvec(2:n) = fvec(2:n) - x(1:(n-1))
fvec(1:(n-1)) = fvec(1:(n-1)) - 2.0E0_nag_wp*x(2:n)
Cycle revcomm

Case (3)

! Evaluate Jacobian at current point

fjac(1:n,1:n) = 0.0E0_nag_wp

Do k = 1, n
fjac(k,k) = 3.0E0_nag_wp - 4.0E0_nag_wp*x(k)

If (k/=1) Then
fjac(k,k-1) = -1.0E0_nag_wp

End If

If (k/=n) Then
fjac(k,k+1) = -2.0E0_nag_wp

End If

End Do

Cycle revcomm
Case Default

Exit revcomm
End Select

End Do revcomm
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If (ifail==0 .Or. ifail==3 .Or. ifail==4 .Or. ifail==5) Then
If (ifail==0) Then

! The NAG name equivalent of dnrm2 is f06ejf
fnorm = dnrm2(n,fvec,1)
Write (nout,*)
Write (nout,99999) ’Final 2-norm of the residuals after’, icount, &

’ iterations is ’, fnorm
Write (nout,*)
Write (nout,*) ’Final approximate solution’

Else
Write (nout,*)
Write (nout,*) ’Approximate solution’

End If
Write (nout,*)
Write (nout,99998)(x(i),i=1,n)

End If

99999 Format (1X,A,I4,A,E12.4)
99998 Format (5X,3F12.4)

End Program c05rdfe

10.2 Program Data

None.

10.3 Program Results

C05RDF Example Program Results

Final 2-norm of the residuals after 11 iterations is 0.1193E-07

Final approximate solution

-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164
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NAG Library Routine Document

C05ZDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C05ZDF checks the user-supplied gradients of a set of nonlinear functions in several variables, for
consistency with the functions themselves. The routine must be called twice.

2 Specification

SUBROUTINE C05ZDF (MODE, M, N, X, FVEC, FJAC, XP, FVECP, ERR, IFAIL)

INTEGER MODE, M, N, IFAIL
REAL (KIND=nag_wp) X(N), FVEC(M), FJAC(M,N), XP(N), FVECP(M), ERR(M)

3 Description

C05ZDF is based on the MINPACK routine CHKDER (see Moré et al. (1980)). It checks the ith
gradient for consistency with the ith function by computing a forward-difference approximation along a
suitably chosen direction and comparing this approximation with the user-supplied gradient along the
same direction. The principal characteristic of C05ZDF is its invariance under changes in scale of the
variables or functions.

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-
80-74 Argonne National Laboratory

5 Arguments

1: MODE – INTEGER Input

On entry: the value 1 on the first call and the value 2 on the second call of C05ZDF.

Constraint: MODE ¼ 1 or 2.

2: M – INTEGER Input

On entry: m, the number of functions.

Constraint: M � 1.

3: N – INTEGER Input

On entry: n, the number of variables. For use with C05RBF, C05RCF and C05RDF, M ¼ N.

Constraint: N � 1.

4: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the components of a point x, at which the consistency check is to be made. (See
Section 7.)

5: FVECðMÞ – REAL (KIND=nag_wp) array Input

On entry: if MODE ¼ 2, FVEC must contain the value of the functions evaluated at x. If
MODE ¼ 1, FVEC is not referenced.
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6: FJACðM;NÞ – REAL (KIND=nag_wp) array Input

On entry: if MODE ¼ 2, FJAC must contain the value of
@fi
@xj

at the point x, for i ¼ 1; 2; . . . ;m

and j ¼ 1; 2; . . . ; n. If MODE ¼ 1, FJAC is not referenced.

7: XPðNÞ – REAL (KIND=nag_wp) array Output

On exit: if MODE ¼ 1, XP is set to a point neighbouring X. If MODE ¼ 2, XP is undefined.

8: FVECPðMÞ – REAL (KIND=nag_wp) array Input

On entry: if MODE ¼ 2, FVECP must contain the value of the functions evaluated at XP (as
output by a preceding call to C05ZDF with MODE ¼ 1). If MODE ¼ 1, FVECP is not
referenced.

9: ERRðMÞ – REAL (KIND=nag_wp) array Output

On exit: if MODE ¼ 2, ERR contains measures of correctness of the respective gradients. If
MODE ¼ 1, ERR is undefined. If there is no loss of significance (see Section 7), then if ERRðiÞ
is 1:0 the ith user-supplied gradient

@fi
@xj

, for j ¼ 1; 2; . . . ; n is correct, whilst if ERRðiÞ is 0:0 the

ith gradient is incorrect. For values of ERRðiÞ between 0:0 and 1:0 the categorisation is less
certain. In general, a value of ERRðiÞ > 0:5 indicates that the ith gradient is probably correct.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 1 or 2.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

C05ZDF does not perform reliably if cancellation or rounding errors cause a severe loss of significance
in the evaluation of a function. Therefore, none of the components of x should be unusually small (in
particular, zero) or any other value which may cause loss of significance. The relative differences
between corresponding elements of FVECP and FVEC should be at least two orders of magnitude
greater than the machine precision returned by X02AJF.

8 Parallelism and Performance

C05ZDF is not threaded in any implementation.

9 Further Comments

The time required by C05ZDF increases with M and N.

10 Example

This example checks the Jacobian matrix for a problem with 15 functions of 3 variables (sometimes
referred to as the Bard problem).

10.1 Program Text

! C05ZDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c05zdfe_mod

! C05ZDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: get_fjac, get_fvec

! .. Parameters ..
Integer, Parameter, Public :: m = 15, n = 3, nout = 6

Contains
Subroutine get_fvec(x,fvec)

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fvec(:)
Real (Kind=nag_wp), Intent (In) :: x(:)

! .. Local Scalars ..
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Real (Kind=nag_wp) :: u, v, w
Integer :: i

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: y(:)

! .. Intrinsic Procedures ..
Intrinsic :: min, real

! .. Executable Statements ..
Allocate (y(m))

y(1:m) = real((/14,18,22,25,29,32,35,39,47,58,73,96,134,210,439/), &
kind=nag_wp)

y(1:m) = y(1:m)*0.01_nag_wp

Do i = 1, m
u = real(i,kind=nag_wp)
v = real(m+1-i,kind=nag_wp)
w = min(u,v)
fvec(i) = y(i) - (x(1)+u/(v*x(2)+w*x(3)))

End Do

Return
End Subroutine get_fvec
Subroutine get_fjac(x,fjac)

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(:,:)
Real (Kind=nag_wp), Intent (In) :: x(:)

! .. Local Scalars ..
Real (Kind=nag_wp) :: denom, u, v, w
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: min, real

! .. Executable Statements ..
Do i = 1, m

u = real(i,kind=nag_wp)
v = real(m+1-i,kind=nag_wp)
w = min(u,v)
denom = (v*x(2)+w*x(3))**(-2)
fjac(i,1:n) = (/-1.0E0_nag_wp,u*v*denom,u*w*denom/)

End Do

Return
End Subroutine get_fjac

End Module c05zdfe_mod
Program c05zdfe

! C05ZDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c05zdf, nag_wp
Use c05zdfe_mod, Only: get_fjac, get_fvec, m, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ifail, mode

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: err(:), fjac(:,:), fvec(:), &

fvecp(:), x(:), xp(:)
! .. Intrinsic Procedures ..

Intrinsic :: any
! .. Executable Statements ..

Write (nout,*) ’C05ZDF Example Program Results’

Allocate (err(m),fjac(m,n),fvec(m),fvecp(m),x(n),xp(n))

! Point at which to check gradients:

x(1:n) = (/0.92_nag_wp,0.13_nag_wp,0.54_nag_wp/)

mode = 1
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ifail = 0
Call c05zdf(mode,m,n,x,fvec,fjac,xp,fvecp,err,ifail)

Call get_fvec(x,fvec)

Call get_fvec(xp,fvecp)

Call get_fjac(x,fjac)

mode = 2

ifail = 0
Call c05zdf(mode,m,n,x,fvec,fjac,xp,fvecp,err,ifail)

Write (nout,*)
Write (nout,99999) ’At point ’, (x(i),i=1,n), ’,’

If (any(err(1:m)<=0.5_nag_wp)) Then

Do i = 1, m

If (err(i)<=0.5_nag_wp) Then
Write (nout,99998) ’suspicious gradient number ’, i, &

’ with error measure ’, err(i)
End If

End Do

Else
Write (nout,99997) ’gradients appear correct’

End If

99999 Format (1X,A,3F12.4,A)
99998 Format (1X,A,I5,A,F12.4)
99997 Format (1X,A)

End Program c05zdfe

10.2 Program Data

None.

10.3 Program Results

C05ZDF Example Program Results

At point 0.9200 0.1300 0.5400,
gradients appear correct
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NAG Library Chapter Contents

C06 – Summation of Series

C06 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

C06BAF 10 nagf_sum_accelerate
Acceleration of convergence of sequence, Shanks' transformation and
epsilon algorithm

C06DCF 23 nagf_sum_chebyshev
Sum of a Chebyshev series at a set of points

C06FAF 8 nagf_sum_fft_real_1d_rfmt
Single one-dimensional real discrete Fourier transform, extra workspace for
greater speed

C06FBF 8 nagf_sum_fft_hermitian_1d_rfmt
Single one-dimensional Hermitian discrete Fourier transform, extra
workspace for greater speed

C06FCF 8 nagf_sum_fft_complex_1d_sep
Single one-dimensional complex discrete Fourier transform, extra
workspace for greater speed

C06FFF 11 nagf_sum_fft_complex_multid_1d_sep
One-dimensional complex discrete Fourier transform of multidimensional
data

C06FJF 11 nagf_sum_fft_complex_multid_sep
Multidimensional complex discrete Fourier transform of multidimensional
data

C06FKF 11 nagf_sum_convcorr_real
Circular convolution or correlation of two real vectors, no restrictions on n

C06FPF 12 nagf_sum_withdraw_fft_real_1d_multi_rfmt
Multiple one-dimensional real discrete Fourier transforms
Note: this routine is scheduled for withdrawal at Mark 28, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

C06FQF 12 nagf_sum_withdraw_fft_hermitian_1d_multi_rfmt
Multiple one-dimensional Hermitian discrete Fourier transforms
Note: this routine is scheduled for withdrawal at Mark 28, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

C06FXF 17 nagf_sum_fft_complex_3d_sep
Three-dimensional complex discrete Fourier transform

C06LAF 12 nagf_sum_invlaplace_crump
Inverse Laplace transform, Crump's method

C06LBF 14 nagf_sum_invlaplace_weeks
Inverse Laplace transform, modified Weeks' method

C06LCF 14 nagf_sum_invlaplace_weeks_eval
Evaluate inverse Laplace transform as computed by C06LBF

C06PAF 19 nagf_sum_fft_realherm_1d
Single one-dimensional real and Hermitian complex discrete Fourier
transform, using complex storage format for Hermitian sequences

C06PCF 19 nagf_sum_fft_complex_1d
Single one-dimensional complex discrete Fourier transform, complex data
type
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C06PFF 19 nagf_sum_fft_complex_multid_1d
One-dimensional complex discrete Fourier transform of multidimensional
data (using complex data type)

C06PJF 19 nagf_sum_fft_complex_multid
Multidimensional complex discrete Fourier transform of multidimensional
data (using complex data type)

C06PKF 19 nagf_sum_convcorr_complex
Circular convolution or correlation of two complex vectors

C06PPF 19 nagf_sum_fft_realherm_1d_multi_row
Multiple one-dimensional real and Hermitian complex discrete Fourier
transforms, using row ordered complex storage format for Hermitian
sequences

C06PQF 19 nagf_sum_fft_realherm_1d_multi_col
Multiple one-dimensional real and Hermitian complex discrete Fourier
transforms, using column ordered complex storage format for Hermitian
sequences

C06PRF 19 nagf_sum_fft_complex_1d_multi_row
Multiple one-dimensional complex discrete Fourier transforms using
complex data type

C06PSF 19 nagf_sum_fft_complex_1d_multi_col
Multiple one-dimensional complex discrete Fourier transforms, complex
data type

C06PUF 19 nagf_sum_fft_complex_2d
Two-dimensional complex discrete Fourier transform, complex data type

C06PVF 24 nagf_sum_fft_real_2d
Two-dimensional real-to-complex discrete Fourier transform

C06PWF 24 nagf_sum_fft_hermitian_2d
Two-dimensional complex-to-real discrete Fourier transform

C06PXF 19 nagf_sum_fft_complex_3d
Three-dimensional complex discrete Fourier transform, complex data type

C06PYF 24 nagf_sum_fft_real_3d
Three-dimensional real-to-complex discrete Fourier transform

C06PZF 24 nagf_sum_fft_hermitian_3d
Three-dimensional complex-to-real discrete Fourier transform

C06RAF 19 nagf_sum_fft_real_sine_simple
Discrete sine transform (easy-to-use)

C06RBF 19 nagf_sum_fft_real_cosine_simple
Discrete cosine transform (easy-to-use)

C06RCF 19 nagf_sum_fft_real_qtrsine_simple
Discrete quarter-wave sine transform (easy-to-use)

C06RDF 19 nagf_sum_fft_real_qtrcosine_simple
Discrete quarter-wave cosine transform (easy-to-use)

C06REF 25 nagf_sum_fft_sine
Multiple discrete sine transforms, simple

C06RFF 25 nagf_sum_fft_cosine
Multiple discrete cosine transforms, simple

C06RGF 25 nagf_sum_fft_qtrsine
Multiple discrete quarter-wave sine transforms, simple

C06RHF 25 nagf_sum_fft_qtrcosine
Multiple discrete quarter-wave cosine transforms, simple

Contents – C06 NAG Library Manual

c06conts.2 (last) Mark 26



NAG Library Chapter Introduction

C06 – Summation of Series

Contents

1 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background to the Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Discrete Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Complex transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2 Real transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Real symmetric transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 Fourier integral transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.5 Convolutions and correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.6 Applications to solving partial differential equations (PDEs) . . . . . . . . . . . . . . . . . . . 6

2.2 Inverse Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Direct Summation of Orthogonal Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Acceleration of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Recommendations on Choice and Use of Available Routines. . . . . . . . . . . . . . 7

3.1 One-dimensional Fourier Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Real and Hermitian data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Complex data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Half- and Quarter-wave Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Application to Elliptic Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Multidimensional Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5 Convolution and Correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.6 Inverse Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.7 Direct Summation of Orthogonal Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.8 Acceleration of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Functionality Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Auxiliary Routines Associated with Library Routine Arguments . . . . . . . . 12

7 Routines Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . . . . . . . . 12

8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C06 – Summation of Series Introduction – C06

Mark 26 C06.1



1 Scope of the Chapter

This chapter is concerned with the following tasks.

(a) Calculating the discrete Fourier transform of a sequence of real or complex data values.

(b) Calculating the discrete convolution or the discrete correlation of two sequences of real or
complex data values using discrete Fourier transforms.

(c) Calculating the inverse Laplace transform of a user-supplied subroutine.

(d) Direct summation of orthogonal series.

(e) Acceleration of convergence of a seuqnce of real values.

2 Background to the Problems

2.1 Discrete Fourier Transforms

2.1.1 Complex transforms

Most of the routines in this chapter calculate the finite discrete Fourier transform (DFT) of a
sequence of n complex numbers zj , for j ¼ 0; 1; . . . ; n� 1. The direct transform is defined by

ẑk ¼
1ffiffiffi
n
p
Xn�1
j¼0

zj exp �i
2	jk

n

� �
ð1Þ

for k ¼ 0; 1; . . . ; n� 1. Note that equation (1) makes sense for all integral k and with this extension ẑk
is periodic with period n, i.e., ẑk ¼ ẑk
n, and in particular ẑ�k ¼ ẑn�k. Note also that the scale-factor of
1ffiffiffi
n
p may be omitted in the definition of the DFT, and replaced by

1

n
in the definition of the inverse.

If we write zj ¼ xj þ iyj and ẑk ¼ ak þ ibk, then the definition of ẑk may be written in terms of sines
and cosines as

ak ¼
1ffiffiffi
n
p
Xn�1
j¼0

xj cos
2	jk

n

� �
þ yj sin

2	jk

n

� �� �

bk ¼
1ffiffiffi
n
p
Xn�1
j¼0

yj cos
2	jk

n

� �
� xj sin

2	jk

n

� �� �
:

The original data values zj may conversely be recovered from the transform ẑk by an inverse discrete
Fourier transform:

zj ¼
1ffiffiffi
n
p
Xn�1
k¼0

ẑk exp þi
2	jk

n

� �
ð2Þ

for j ¼ 0; 1; . . . ; n� 1. If we take the complex conjugate of (2), we find that the sequence �zj is the DFT
of the sequence �̂zk. Hence the inverse DFT of the sequence ẑk may be obtained by taking the complex
conjugates of the ẑk; performing a DFT, and taking the complex conjugates of the result. (Note that the
terms forward transform and backward transform are also used to mean the direct and inverse
transforms respectively.)

The definition (1) of a one-dimensional transform can easily be extended to multidimensional
transforms. For example, in two dimensions we have

ẑk1k2 ¼
1ffiffiffiffiffiffiffiffiffiffi
n1n2
p

Xn1�1
j1¼0

Xn2�1
j2¼0

zj1j2 exp �i
2	j1k1
n1

� �
exp �i2	j2k2

n2

� �
: ð3Þ

Note: definitions of the discrete Fourier transform vary. Sometimes (2) is used as the definition of the
DFT, and (1) as the definition of the inverse.
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2.1.2 Real transforms

If the original sequence is purely real valued, i.e., zj ¼ xj, then

ẑk ¼ ak þ ibk ¼
1ffiffiffi
n
p
Xn�1
j¼0

xj exp �i
2	jk

n

� �
and ẑn�k is the complex conjugate of ẑk. Thus the DFT of a real sequence is a particular type of
complex sequence, called a Hermitian sequence, or half-complex or conjugate symmetric, with the
properties

an�k ¼ ak bn�k ¼ �bk b0 ¼ 0

and, if n is even, bn=2 ¼ 0.

Thus a Hermitian sequence of n complex data values can be represented by only n, rather than 2n,
independent real values. This can obviously lead to economies in storage, with two schemes being used
in this chapter. In the first (deprecated) scheme, which will be referred to as the real storage format for
Hermitian sequences, the real parts ak for 0 � k � n=2 are stored in normal order in the first n=2þ 1
locations of an array X of length n; the corresponding nonzero imaginary parts are stored in reverse
order in the remaining locations of X. To clarify, if X is declared with bounds 0 : n� 1ð Þ in your
calling subroutine, the following two tables illustrate the storage of the real and imaginary parts of ẑk
for the two cases: n even and n odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of X 0 1 2 . . . n=2 . . . n� 2 n� 1

Sequence a0 a1 þ ib1 a2 þ ib2 . . . an=2 . . . a2 � ib2 a1 � ib1
Stored values a0 a1 a2 . . . an=2 . . . b2 b1

XðkÞ ¼ ak; for k ¼ 0; 1; . . . ; n=2; and
Xðn� kÞ ¼ bk; for k ¼ 1; 2; . . . ; n=2� 1:

If n is odd then the sequence has one purely real element and, letting n ¼ 2sþ 1, is stored as follows:

Index of X 0 1 2 . . . s sþ 1 . . . n� 2 n� 1

Sequence a0 a1 þ ib1 a2 þ ib2 . . . as þ ibs as � ibs . . . a2 � ib2 a1 � ib1
Stored values a0 a1 a2 . . . as bs . . . b2 b1

XðkÞ ¼ ak; for k ¼ 0; 1; . . . ; s; and
Xðn� kÞ ¼ bk; for k ¼ 1; 2; . . . ; s:

The second (recommended) storage scheme, referred to in this chapter as the complex storage format
for Hermitian sequences, stores the real and imaginary parts ak; bk, for 0 � k � n=2, in consecutive
locations of an array X of length nþ 2. If X is declared with bounds 0 : nþ 1ð Þ in your calling
subroutine, the following two tables illustrate the storage of the real and imaginary parts of ẑk for the
two cases: n even and n odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of X 0 1 2 3 . . . n� 2 n� 1 n nþ 1

Stored values a0 b0 ¼ 0 a1 b1 . . . an=2�1 bn=2�1 an=2 bn=2 ¼ 0

Xð2� kÞ ¼ ak; for k ¼ 0; 1; . . . ; n=2; and
Xð2� kþ 1Þ ¼ bk; for k ¼ 0; 1; . . . ; n=2:

If n is odd then the sequence has one purely real element and, letting n ¼ 2sþ 1, is stored as follows:
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Index of X 0 1 2 3 . . . n� 2 n� 1 n nþ 1

Stored values a0 b0 ¼ 0 a1 b1 . . . bs�1 as bs 0

Xð2� kÞ ¼ ak; for k ¼ 0; 1; . . . ; s; and
Xð2� kþ 1Þ ¼ bk; for k ¼ 0; 1; . . . ; s:

Also, given a Hermitian sequence, the inverse (or backward) discrete transform produces a real
sequence. That is,

xj ¼
1ffiffiffi
n
p a0 þ 2

Xn=2�1
k¼1

ak cos
2	jk

n

� �
� bk sin

2	jk

n

� �� �
þ an=2

 !
where an=2 ¼ 0 if n is odd.

For real data that is two-dimensional or higher, the symmetry in the transform persists for the leading
dimension only. So, using the notation of equation (3) for the complex two-dimensional discrete
transform, we have that ẑk1k2 is the complex conjugate of ẑ n1�k1ð Þk2 . It is more convenient for
transformed data of two or more dimensions to be stored as a complex sequence of length
n1=2þ 1ð Þ � n2 � � � � � nd where d is the number of dimensions. The inverse discrete Fourier
transform operating on such a complex sequence (Hermitian in the leading dimension) returns a real
array of full dimension (n1 � n2 � � � � � nd).

2.1.3 Real symmetric transforms

In many applications the sequence xj will not only be real, but may also possess additional symmetries
which we may exploit to reduce further the computing time and storage requirements. For example, if
the sequence xj is odd, xj ¼ �xn�j

� �
, then the discrete Fourier transform of xj contains only sine

terms. Rather than compute the transform of an odd sequence, we define the sine transform of a real
sequence by

x̂k ¼
ffiffiffi
2

n

r Xn�1
j¼1

xj sin
	jk

n

� �
;

which could have been computed using the Fourier transform of a real odd sequence of length 2n. In
this case the xj are arbitrary, and the symmetry only becomes apparent when the sequence is extended.
Similarly we define the cosine transform of a real sequence by

x̂k ¼
ffiffiffi
2

n

r
1
2x0 þ

Xn�1
j¼1

xj cos
	jk

n

� �
þ 1

2 �1ð Þkxn

 !

which could have been computed using the Fourier transform of a real even sequence of length 2n.

In addition to these ‘half-wave’ symmetries described above, sequences arise in practice with ‘quarter-
wave’ symmetries. We define the quarter-wave sine transform by

x̂k ¼
1ffiffiffi
n
p

Xn�1
j¼1

xj sin
	j 2k� 1ð Þ

2n

� �
þ 1

2 �1ð Þk�1xn

 !

which could have been computed using the Fourier transform of a real sequence of length 4n of the
form

0; x1; . . . ; xn; xn�1; . . . ; x1; 0;�x1; . . . ;�xn;�xn�1; . . . ;�x1ð Þ:

Similarly we may define the quarter-wave cosine transform by

x̂k ¼
1ffiffiffi
n
p 1

2x0 þ
Xn�1
j¼1

xj cos
	j 2k� 1ð Þ

2n

� � !
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which could have been computed using the Fourier transform of a real sequence of length 4n of the
form

x0; x1; . . . ; xn�1; 0;�xn�1; . . . ;�x0;�x1; . . . ;�xn�1; 0; xn�1; . . . ; x1ð Þ:

2.1.4 Fourier integral transforms

The usual application of the discrete Fourier transform is that of obtaining an approximation of the
Fourier integral transform

F sð Þ ¼
Z 1
�1
f tð Þ exp �i2	stð Þ dt

when f tð Þ is negligible outside some region 0; cð Þ. Dividing the region into n equal intervals we have

F sð Þ ffi c

n

Xn�1
j¼0

fj exp
�i2	sjc

n

� �
and so

Fk ffi
c

n

Xn�1
j¼0

fj exp
�i2	jk
n

� �
for k ¼ 0; 1; . . . ; n� 1, where fj ¼ f jc=nð Þ and Fk ¼ F k=cð Þ.
Hence the discrete Fourier transform gives an approximation to the Fourier integral transform in the
region s ¼ 0 to s ¼ n=c.
If the function f tð Þ is defined over some more general interval a; bð Þ, then the integral transform can
still be approximated by the discrete transform provided a shift is applied to move the point a to the
origin.

2.1.5 Convolutions and correlations

One of the most important applications of the discrete Fourier transform is to the computation of the
discrete convolution or correlation of two vectors x and y defined (as in Brigham (1974)) by

convolution: zk ¼
Xn�1
j¼0

xjyk�j

correlation: wk ¼
Xn�1
j¼0

�xjykþj

(Here x and y are assumed to be periodic with period n.)

Under certain circumstances (see Brigham (1974)) these can be used as approximations to the
convolution or correlation integrals defined by

z sð Þ ¼
Z 1
�1
x tð Þy s� tð Þ dt

and

w sð Þ ¼
Z 1
�1

�x tð Þy sþ tð Þ dt; �1 < s <1:

For more general advice on the use of Fourier transforms, see Hamming (1962); more detailed
information on the fast Fourier transform algorithm can be found in Gentleman and Sande (1966) and
Brigham (1974).
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2.1.6 Applications to solving partial differential equations (PDEs)

A further application of the fast Fourier transform, and in particular of the Fourier transforms of
symmetric sequences, is in the solution of elliptic PDEs. If an equation is discretized using finite
differences, then it is possible to reduce the problem of solving the resulting large system of linear
equations to that of solving a number of tridiagonal systems of linear equations. This is accomplished
by uncoupling the equations using Fourier transforms, where the nature of the boundary conditions
determines the choice of transforms – see Section 3.3. Full details of the Fourier method for the
solution of PDEs may be found in Swarztrauber (1977) and Swarztrauber (1984).

2.2 Inverse Laplace Transforms

Let f tð Þ be a real function of t, with f tð Þ ¼ 0 for t < 0, and be piecewise continuous and of exponential
order �, i.e.,

f tð Þj j �Me�t

for large t, where � is the minimal such exponent.

The Laplace transform of f tð Þ is given by

F sð Þ ¼
Z 1
0
e�stf tð Þ dt; t > 0

where F sð Þ is defined for Re sð Þ > �.

The inverse transform is defined by the Bromwich integral

f tð Þ ¼ 1

2	i

Z aþi1

a�i1
estF sð Þ ds; t > 0:

The integration is performed along the line s ¼ a in the complex plane, where a > �. This is equivalent
to saying that the line s ¼ a lies to the right of all singularities of F sð Þ. For this reason, the value of �
is crucial to the correct evaluation of the inverse. It is not essential to know � exactly, but an upper
bound must be known.

The problem of determining an inverse Laplace transform may be classified according to whether (a)
F sð Þ is known for real values only, or (b) F sð Þ is known in functional form and can therefore be
calculated for complex values of s. Problem (a) is very ill-defined and no routines are provided. Two
methods are provided for problem (b).

2.3 Direct Summation of Orthogonal Series

For any series of functions 
i which satisfy a recurrence


rþ1 xð Þ þ �r xð Þ
r xð Þ þ �r xð Þ
r�1 xð Þ ¼ 0

the sum Xn
r¼0

ar
r xð Þ

is given by Xn
r¼0

ar
r xð Þ ¼ b0 xð Þ
0 xð Þ þ b1 xð Þ 
1 xð Þ þ �0 xð Þ
0 xð Þð Þ

where

br xð Þ þ �r xð Þbrþ1 xð Þ þ �rþ1 xð Þbrþ2 xð Þ ¼ arbnþ1 xð Þ ¼ bnþ2 xð Þ ¼ 0:

This may be used to compute the sum of the series. For further reading, see Hamming (1962).
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2.4 Acceleration of Convergence

This device has applications in a large number of fields, such as summation of series, calculation of
integrals with oscillatory integrands (including, for example, Hankel transforms), and root-finding. The
mathematical description is as follows. Given a sequence of values snf g, for n ¼ m; . . . ;mþ 2l, then,
except in certain singular cases, arguments, a, bi, ci may be determined such that

sn ¼ aþ
Xl
i¼1
bic

n
i :

If the sequence snf g converges, then a may be taken as an estimate of the limit. The method will also
find a pseudo-limit of certain divergent sequences – see Shanks (1955) for details.

To use the method to sum a series, the terms sn of the sequence should be the partial sums of the series,

e.g., sn ¼
Xn
k¼1

tk, where tk is the kth term of the series. The algorithm can also be used to some

advantage to evaluate integrals with oscillatory integrands; one approach is to write the integral (in this
case over a semi-infinite interval) asZ 1

0
f xð Þ dx ¼

Z a1

0
f xð Þ dxþ

Z a2

a1

f xð Þ dxþ
Z a3

a2

f xð Þ dxþ . . .

and to consider the sequence of values

s1 ¼
Z a1

0
f xð Þ dx; s2 ¼

Z a2

0
f xð Þ dx ¼ s1 þ

Z a2

a1

f xð Þ dx; etc:;

where the integrals are evaluated using standard quadrature methods. In choosing the values of the ak, it
is worth bearing in mind that C06BAF converges much more rapidly for sequences whose values
oscillate about a limit. The ak should thus be chosen to be (close to) the zeros of f xð Þ, so that
successive contributions to the integral are of opposite sign. As an example, consider the case where
f xð Þ ¼M xð Þ sinx and M xð Þ > 0: convergence will be much improved if ak ¼ k	 rather than ak ¼ 2k	.

3 Recommendations on Choice and Use of Available Routines

The fast Fourier transform algorithm ceases to be ‘fast’ if applied to values of n which cannot be
expressed as a product of small prime factors. All the FFT routines in this chapter are particularly
efficient if the only prime factors of n are 2, 3 or 5.

3.1 One-dimensional Fourier Transforms

The choice of routine is determined first of all by whether the data values constitute a real, Hermitian or
general complex sequence. It is wasteful of time and storage to use an inappropriate routine.

3.1.1 Real and Hermitian data

C06PAF transforms a single sequence of real data onto (and in-place) a representation of the
transformed Hermitian sequence using the complex storage scheme described in Section 2.1.2.
C06PAF also performs the inverse transform using the representation of Hermitian data and
transforming back to a real data sequence.

Alternatively, the two-dimensional routine C06PVF can be used (on setting the second dimension to 1)
to transform a sequence of real data onto an Hermitian sequence whose first half is stored in a separate
Complex array. The second half need not be stored since these are the complex conjugate of the first
half in reverse order. C06PWF performs the inverse operation, transforming the the Hermitian sequence
(half-)stored in a Complex array onto a separate real array.
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3.1.2 Complex data

C06PCF transforms a single complex sequence in-place; it also performs the inverse transform. C06PSF
transforms multiple complex sequences, each stored sequentially; it also performs the inverse transform
on multiple complex sequences. This routine is designed to perform several transforms in a single call,
all with the same value of n.

If extensive use is to be made of these routines and you are concerned about efficiency, you are advised
to conduct your own timing tests.

3.2 Half- and Quarter-wave Transforms

Four routines are provided for computing fast Fourier transforms (FFTs) of real symmetric sequences.
C06REF computes multiple Fourier sine transforms, C06RFF computes multiple Fourier cosine
transforms, C06RGF computes multiple quarter-wave Fourier sine transforms, and C06RHF computes
multiple quarter-wave Fourier cosine transforms.

3.3 Application to Elliptic Partial Differential Equations

As described in Section 2.1.6, Fourier transforms may be used in the solution of elliptic PDEs.

C06REF may be used to solve equations where the solution is specified along the boundary.

C06RFF may be used to solve equations where the derivative of the solution is specified along the
boundary.

C06RGF may be used to solve equations where the solution is specified on the lower boundary, and the
derivative of the solution is specified on the upper boundary.

C06RHF may be used to solve equations where the derivative of the solution is specified on the lower
boundary, and the solution is specified on the upper boundary.

For equations with periodic boundary conditions the full-range Fourier transforms computed by
C06PAF are appropriate.

3.4 Multidimensional Fourier Transforms

The following routines compute multidimensional discrete Fourier transforms of real, Hermitian and
complex data stored in complex arrays:

real Hermitian complex
2 dimensions C06PVF C06PWF C06PUF
3 dimensions C06PYF C06PZF C06PXF
any number of dimensions C06PJF

The Hermitian data, either transformed from or being transformed to real data, is compacted (due to
symmetry) along its first dimension when stored in Complex arrays; thus approximately half the full
Hermitian data is stored.

C06PUF and C06PXF should be used in preference to C06PJF for two- and three-dimensional
transforms, as they are easier to use and are likely to be more efficient.

The transform of multidimensional real data is stored as a complex sequence that is Hermitian in its
leading dimension. The inverse transform takes such a complex sequence and computes the real
transformed sequence. Consequently, separate routines are provided for performing forward and inverse
transforms.

C06PVF performs the forward two-dimensionsal transform while C06PWF performs the inverse of this
transform.

C06PYF performs the forward three-dimensional transform while C06PZF performs the inverse of this
transform.

The complex sequences computed by C06PVF and C06PYF contain roughly half of the Fourier
coefficients; the remainder can be reconstructed by conjugation of those computed. For example, the
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Fourier coefficients of the two-dimensional transform ẑ n1�k1ð Þk2 are the complex conjugate of ẑk1k2 for
k1 ¼ 0; 1; . . . ; n1=2, and k2 ¼ 0; 1; . . . ; n2 � 1.

3.5 Convolution and Correlation

C06FKF computes either the discrete convolution or the discrete correlation of two real vectors.

C06PKF computes either the discrete convolution or the discrete correlation of two complex vectors.

3.6 Inverse Laplace Transforms

Two methods are provided: Weeks' method (C06LBF) and Crump's method (C06LAF). Both require the
function F sð Þ to be evaluated for complex values of s. If in doubt which method to use, try Weeks'
method (C06LBF) first; when it is suitable, it is usually much faster.

Typically the inversion of a Laplace transform becomes harder as t increases so that all numerical
methods tend to have a limit on the range of t for which the inverse f tð Þ can be computed. C06LAF is
useful for small and moderate values of t.

It is often convenient or necessary to scale a problem so that � is close to 0. For this purpose it is
useful to remember that the inverse of F sþ kð Þ is exp �ktð Þf tð Þ. The method used by C06LAF is not
so satisfactory when f tð Þ is close to zero, in which case a term may be added to F sð Þ, e.g., k=sþ F sð Þ
has the inverse kþ f tð Þ.
Singularities in the inverse function f tð Þ generally cause numerical methods to perform less well. The
positions of singularities can often be identified by examination of F sð Þ. If F sð Þ contains a term of the
form exp �ksð Þ=s then a finite discontinuity may be expected in the inverse at t ¼ k. C06LAF, for
example, is capable of estimating a discontinuous inverse but, as the approximation used is continuous,
Gibbs' phenomena (overshoots around the discontinuity) result. If possible, such singularities of F sð Þ
should be removed before computing the inverse.

3.7 Direct Summation of Orthogonal Series

The only routine available is C06DCF, which sums a finite Chebyshev seriesXn
j¼0

cjTj xð Þ;
Xn
j¼0

cjT2j xð Þ or
Xn
j¼0

cjT2jþ1 xð Þ

depending on the choice of argument.

3.8 Acceleration of Convergence

The only routine available is C06BAF.
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4 Decision Trees

Tree 1: Fourier Transform of Discrete Complex Data

Is the data one-dimensional?
yes

Multiple vectors?
yes

Stored as rows?
yes

C06PRF

no

Stored as columns?
yes

C06PSF

no

C06PCF

no

Is the data two-dimensional?
yes

C06PUF

no

Is the data three-
dimensional? yes

C06PXF

no

Transform on one dimension
only? yes

C06PFF

no

Transform on all
dimensions? yes

C06PJF

Tree 2: Fourier Transform of Real Data or Data in Complex Hermitian Form Resulting from the
Transform of Real Data

Quarter-wave sine (inverse) transform
yes

C06RGF

no

Quarter-wave cosine (inverse) transform
yes

C06RHF

no

Sine (inverse) transform
yes

C06REF

no

Cosine (inverse) transform
yes

C06RFF

no

Is the data three-dimensional?
yes

Forward transform on real data
yes

C06PYF

no

Inverse transform on Hermitian data
yes

C06PZF

no

Is the data two-dimensional?
yes

Forward transform on real data
yes

C06PVF

no

Inverse transform on Hermitian data
yes

C06PWF

no

Is the data multi one-dimensional?
yes

Sequences stored by row
yes

C06PPF

no

Sequences stored by column
yes

C06PQF

no

C06PAF

5 Functionality Index

Acceleration of convergence ................................................................................................ C06BAF

Convolution or Correlation,
complex vectors .............................................................................................................. C06PKF
real vectors,

time-saving................................................................................................................. C06FKF
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Discrete Fourier Transform,
multidimensional,

complex sequence,
complex storage .................................................................................................... C06PJF
real storage ........................................................................................................... C06FJF

multiple half- and quarter-wave transforms,
Fourier cosine transforms,

simple use ............................................................................................................. C06RBF
Fourier cosine transforms, simple use........................................................................ C06RFF
Fourier sine transforms,

simple use ............................................................................................................. C06RAF
Fourier sine transforms, simple use ........................................................................... C06REF
quarter-wave cosine transforms,

simple use ............................................................................................................. C06RDF
quarter-wave cosine transforms, simple use ............................................................... C06RHF
quarter-wave sine transforms,

simple use ............................................................................................................. C06RCF
quarter-wave sine transforms, simple use .................................................................. C06RGF

one-dimensional,
multiple transforms,

complex sequence,
complex storage by columns............................................................................ C06PSF
complex storage by rows ................................................................................. C06PRF

Hermitian/real sequence,
complex storage by columns............................................................................ C06PQF
complex storage by rows ................................................................................. C06PPF

multi-variable,
complex sequence,

complex storage ............................................................................................... C06PFF
real storage ...................................................................................................... C06FFF

single transforms,
complex sequence,

time-saving,
complex storage .......................................................................................... C06PCF
real storage ................................................................................................. C06FCF

Hermitian/real sequence,
time-saving,

complex storage .......................................................................................... C06PAF
Hermitian sequence,

time-saving,
real storage ................................................................................................. C06FBF

real sequence,
time-saving,

real storage ................................................................................................. C06FAF
three-dimensional,

complex sequence,
complex storage .................................................................................................... C06PXF
real storage ........................................................................................................... C06FXF

Hermitian/real sequence,
complex-to-real ..................................................................................................... C06PZF
real-to-complex ..................................................................................................... C06PYF

two-dimensional,
complex sequence,

complex storage .................................................................................................... C06PUF
Hermitian/real sequence,

complex-to-real ..................................................................................................... C06PWF
real-to-complex ..................................................................................................... C06PVF
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Inverse Laplace Transform,
Crump's method .............................................................................................................. C06LAF
Weeks' method,

compute coefficients of solution ................................................................................ C06LBF
evaluate solution ........................................................................................................ C06LCF

Summation of Chebyshev series .......................................................................................... C06DCF

6 Auxiliary Routines Associated with Library Routine Arguments

None.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

C06DBF 25 C06DCF
C06EAF 26 C06PAF
C06EBF 26 C06PAF
C06ECF 26 C06PCF
C06EKF 26 C06FKF
C06FPF 28 C06PQF
C06FQF 28 C06PQF
C06FRF 26 C06PSF
C06FUF 26 C06PUF
C06GBF 26 No replacement required
C06GCF 26 No replacement required
C06GQF 26 No replacement required
C06GSF 26 No replacement required
C06HAF 26 C06REF
C06HBF 26 C06RFF
C06HCF 26 C06RGF
C06HDF 26 C06RHF
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NAG Library Routine Document

C06BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06BAF accelerates the convergence of a given convergent sequence to its limit.

2 Specification

SUBROUTINE C06BAF (SEQN, NCALL, RESULT, ABSERR, WORK, LWORK, IFAIL)

INTEGER NCALL, LWORK, IFAIL
REAL (KIND=nag_wp) SEQN, RESULT, ABSERR, WORK(LWORK)

3 Description

C06BAF performs Shanks' transformation on a given sequence of real values by means of the Epsilon
algorithm of Wynn (1956). A (possibly unreliable) estimate of the absolute error is also given.

The routine must be called repetitively, once for each new term in the sequence.

4 References

Shanks D (1955) Nonlinear transformations of divergent and slowly convergent sequences J. Math.
Phys. 34 1–42

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10
91–96

5 Arguments

1: SEQN – REAL (KIND=nag_wp) Input

On entry: the next term of the sequence to be considered.

2: NCALL – INTEGER Input/Output

On entry: on the first call NCALL must be set to 0. Thereafter NCALL must not be changed
between calls.

On exit: the number of terms in the sequence that have been considered.

3: RESULT – REAL (KIND=nag_wp) Output

On exit: the estimate of the limit of the sequence. For the first two calls, RESULT ¼ SEQN.

4: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the absolute error in RESULT. For the first three calls, ABSERR is set to
a large machine-dependent constant.

5: WORKðLWORKÞ – REAL (KIND=nag_wp) array Communication Array

Used as workspace, but must not be changed between calls.
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6: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
C06BAF is called.

Suggested value: ðmaximum number of terms in the sequenceÞ þ 6. See Section 9.2.

Constraint: LWORK � 7.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NCALL < 0.

IFAIL ¼ 2

On entry, LWORK < 7.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the absolute error estimate ABSERR varies considerably with the type of sequence to
which the routine is applied. In general it is better when applied to oscillating sequences than to
monotonic sequences where it may be a severe underestimate.

8 Parallelism and Performance

C06BAF is not threaded in any implementation.
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9 Further Comments

9.1 Timing

The time taken is approximately proportional to the final value of NCALL.

9.2 Choice of LWORK

For long sequences, a ‘window’ of the last n values can be used instead of all the terms of the
sequence. Tests on a variety of problems indicate that a suitable value is n ¼ 50; this implies a value
for LWORK of 56. You are advised to experiment with other values for your own specific problems.

9.3 Convergence

C06BAF will induce convergence in some divergent sequences. See Shanks (1955) for more details.

10 Example

This example attempts to sum the infinite seriesX1
n¼1

�1ð Þnþ1

n2
¼ 	2

12

by considering the sequence of partial sumsX1
n¼1

;
X2
n¼1

;
X3
n¼1

; . . . ;
X10
n¼1

10.1 Program Text

Program c06bafe

! C06BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06baf, nag_wp, x01aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lwork = 16, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: abserr, ans, error, pi, r, result, &

seqn, sig
Integer :: i, ifail, ncall

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’C06BAF Example Program Results’
Write (nout,*)

Allocate (work(lwork))

pi = x01aaf(pi)
ans = pi**2/12.0_nag_wp
ncall = 0
sig = 1.0_nag_wp
seqn = 0.0_nag_wp
Write (nout,99999) ’Estimated Actual’
Write (nout,99998) ’I SEQN RESULT’, ’abs error error’
Write (nout,*)
Do i = 1, 10

C06 – Summation of Series C06BAF

Mark 26 C06BAF.3



r = real(i,kind=nag_wp)
seqn = seqn + sig/(r**2)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06baf(seqn,ncall,result,abserr,work,lwork,ifail)

error = result - ans
sig = -sig
If (i<=3) Then

! First three calls of C06BAF return no error estimate
Write (nout,99997) i, seqn, result, error

Else
Write (nout,99996) i, seqn, result, abserr, error

End If
End Do

99999 Format (36X,A)
99998 Format (3X,A25,8X,A)
99997 Format (1X,I4,2F12.4,3X,10X,’- ’,E14.2)
99996 Format (1X,I4,2F12.4,3X,2E14.2)

End Program c06bafe

10.2 Program Data

None.

10.3 Program Results

C06BAF Example Program Results

Estimated Actual
I SEQN RESULT abs error error

1 1.0000 1.0000 - 0.18E+00
2 0.7500 0.7500 - -0.72E-01
3 0.8611 0.8269 - 0.45E-02
4 0.7986 0.8211 0.26E+00 -0.14E-02
5 0.8386 0.8226 0.78E-01 0.12E-03
6 0.8108 0.8224 0.60E-02 -0.33E-04
7 0.8312 0.8225 0.15E-02 0.35E-05
8 0.8156 0.8225 0.16E-03 -0.85E-06
9 0.8280 0.8225 0.37E-04 0.10E-06

10 0.8180 0.8225 0.45E-05 -0.23E-07

C06BAF NAG Library Manual

C06BAF.4 Mark 26



 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1  2  3  4  5  6  7  8  9  10
 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

R
es

ul
t

ab
s(

E
rr

or
)

Number of Terms in Sequence

Example Program
Estimate Sum of Infinite Series by Sequence of Partial Sums

result

actual error

estimated error

C06 – Summation of Series C06BAF

Mark 26 C06BAF.5 (last)





NAG Library Routine Document

C06DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06DCF evaluates a polynomial from its Chebyshev series representation at a set of points.

2 Specification

SUBROUTINE C06DCF (X, LX, XMIN, XMAX, C, N, S, RES, IFAIL)

INTEGER LX, N, S, IFAIL
REAL (KIND=nag_wp) X(LX), XMIN, XMAX, C(N), RES(LX)

3 Description

C06DCF evaluates, at each point in a given set X, the sum of a Chebyshev series of one of three forms
according to the value of the parameter S:

S ¼ 1: 0:5c1 þ
Xn
j¼2
cjTj�1 �xð Þ

S ¼ 2: 0:5c1 þ
Xn
j¼2
cjT2j�2 �xð Þ

S ¼ 3:
Xn
j¼1
cjT2j�1 �xð Þ

where �x lies in the range �1:0 � �x � 1:0. Here Tr xð Þ is the Chebyshev polynomial of order r in �x,
defined by cos ryð Þ where cos y ¼ �x.

It is assumed that the independent variable �x in the interval �1:0;þ1:0½ � was obtained from your
original variable x 2 X, a set of real numbers in the interval xmin ; xmax½ �, by the linear transformation

�x ¼ 2x� xmax þ xminð Þ
xmax � xmin

:

The method used is based upon a three-term recurrence relation; for details see Clenshaw (1962).

The coefficients cj are normally generated by other routines, for example they may be those returned by
the interpolation routine E01AEF (in vector A), by a least squares fitting routine in Chapter E02, or as
the solution of a boundary value problem by D02JAF, D02JBF or D02UEF.

4 References

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO

5 Arguments

1: XðLXÞ – REAL (KIND=nag_wp) array Input

On entry: x 2 X, the set of arguments of the series.

Constraint: XMIN � XðiÞ � XMAX, for i ¼ 1; 2; . . . ;LX.
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2: LX – INTEGER Input

On entry: the number of evaluation points in X.

Constraint: LX � 1.

3: XMIN – REAL (KIND=nag_wp) Input
4: XMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper end points respectively of the interval xmin ; xmax½ �. The Chebyshev
series representation is in terms of the normalized variable �x, where

�x ¼ 2x� xmax þ xminð Þ
xmax � xmin

:

Constraint: XMIN < XMAX.

5: CðNÞ – REAL (KIND=nag_wp) array Input

On entry: CðjÞ must contain the coefficient cj of the Chebyshev series, for j ¼ 1; 2; . . . ; n.

6: N – INTEGER Input

On entry: n, the number of terms in the series.

Constraint: N � 1.

7: S – INTEGER Input

On entry: determines the series (see Section 3).

S ¼ 1
The series is general.

S ¼ 2
The series is even.

S ¼ 3
The series is odd.

Constraint: S ¼ 1, 2 or 3.

8: RESðLXÞ – REAL (KIND=nag_wp) array Output

On exit: the Chebyshev series evaluated at the set of points X.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LX ¼ valueh i.
Constraint: LX � 1.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 3

On entry, S ¼ valueh i.
Constraint: S ¼ 1, 2 or 3.

IFAIL ¼ 4

On entry, XMAX ¼ valueh i and XMIN ¼ valueh i.
Constraint: XMIN < XMAX.

IFAIL ¼ 5

On entry, element Xð valueh iÞ ¼ valueh i, XMIN ¼ valueh i and XMAX ¼ valueh i.
Constraint: XMIN � XðiÞ � XMAX, for all i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

There may be a loss of significant figures due to cancellation between terms. However, provided that n
is not too large, C06DCF yields results which differ little from the best attainable for the available
machine precision.

8 Parallelism and Performance

C06DCF is not threaded in any implementation.

9 Further Comments

The time taken increases with n.
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C06DCF has been prepared in the present form to complement a number of integral equation solving
routines which use Chebyshev series methods, e.g., D05AAF and D05ABF.

10 Example

This example evaluates

0:5þ T1 xð Þ þ 0:5T2 xð Þ þ 0:25T3 xð Þ

at the points X ¼ 0:5; 1:0;�0:2½ �.

10.1 Program Text

Program c06dcfe

! C06DCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06dcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xmax, xmin
Integer :: i, ifail, lx, n, s

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), res(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06DCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, lx
Allocate (c(n),res(lx),x(lx))

Read (nin,*) x(1:lx)
Read (nin,*) xmin, xmax
Read (nin,*) s
Read (nin,*) c(1:n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06dcf(x,lx,xmin,xmax,c,n,s,res,ifail)

Write (nout,*)
Write (nout,*) ’ x sum of series’
Write (nout,*)
Write (nout,99999)(x(i),res(i),i=1,lx)

99999 Format (1X,F8.4,4X,F8.4)
End Program c06dcfe

10.2 Program Data

C06DCF Example Program Data
4 3 : n, lx
0.5 1.0 -0.2 : x
-1.0 1.0 : xmin, xmax
1 : s
1.0 1.0 0.5 0.25 : c
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10.3 Program Results

C06DCF Example Program Results

x sum of series

0.5000 0.5000
1.0000 2.2500

-0.2000 -0.0180
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NAG Library Routine Document

C06FAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06FAF calculates the discrete Fourier transform of a sequence of n real data values (using a work
array for extra speed).

2 Specification

SUBROUTINE C06FAF (X, N, WORK, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), WORK(N)

3 Description

Given a sequence of n real data values xj , for j ¼ 0; 1; . . . ; n� 1, C06FAF calculates their discrete
Fourier transform defined by

ẑk ¼
1ffiffiffi
n
p
Xn�1
j¼0

xj � exp �i2	jk
n

� �
; k ¼ 0; 1; . . . ; n� 1:

(Note the scale factor of 1ffiffi
n
p in this definition.) The transformed values ẑk are complex, but they form a

Hermitian sequence (i.e., ẑn�k is the complex conjugate of ẑk), so they are completely determined by n
real numbers (see also the C06 Chapter Introduction).

To compute the inverse discrete Fourier transform defined by

ŵk ¼
1ffiffiffi
n
p
Xn�1
j¼0

xj � exp þi2	jk
n

� �
;

this routine should be followed by forming the complex conjugates of the ẑk; that is, x kð Þ ¼ �x kð Þ, for
k ¼ n=2þ 2; . . . ; n.

C06FAF uses the fast Fourier transform (FFT) algorithm (see Brigham (1974)). There are some
restrictions on the value of n (see Section 5).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

5 Arguments

1: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if X is declared with bounds 0 : N� 1ð Þ in the subroutine from which C06FAF is
called, then XðjÞ must contain xj , for j ¼ 0; 1; . . . ; n� 1.

On exit: the discrete Fourier transform stored in Hermitian form. If the components of the
transform ẑk are written as ak þ ibk, and if X is declared with bounds 0 : N� 1ð Þ in the
subroutine from which C06FAF is called, then for 0 � k � n=2, ak is contained in XðkÞ, and for
1 � k � n� 1ð Þ=2, bk is contained in Xðn� kÞ. (See also Section 2.1.2 in the C06 Chapter
Introduction and Section 10.)
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2: N – INTEGER Input

On entry: n, the number of data values. The largest prime factor of N must not exceed 19, and
the total number of prime factors of N, counting repetitions, must not exceed 20.

Constraint: N > 1.

3: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

At least one of the prime factors of N is greater than 19.

IFAIL ¼ 2

N has more than 20 prime factors.

IFAIL ¼ 3

On entry, N � 1.

IFAIL ¼ 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06FAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06FAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n� log nð Þ, but also depends on the factorization of n.
C06FAF is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

10 Example

This example reads in a sequence of real data values and prints their discrete Fourier transform (as
computed by C06FAF), after expanding it from Hermitian form into a full complex sequence. It then
performs an inverse transform using C06FBF and conjugation, and prints the sequence so obtained
alongside the original data values.

10.1 Program Text

Program c06fafe

! C06FAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06faf, c06fbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ieof, ifail, j, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:), xx(:)

! .. Intrinsic Procedures ..
Intrinsic :: mod

! .. Executable Statements ..
Write (nout,*) ’C06FAF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) n
If (ieof<0) Then

Exit loop
End If
Allocate (a(0:n-1),b(0:n-1),x(0:n-1),xx(0:n-1),work(n))
Read (nin,*) x(0:n-1)
xx(0:n-1) = x(0:n-1)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
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ifail = 0
Call c06faf(x,n,work,ifail)

Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Write (nout,*)
Write (nout,*) ’ Real Imag’
Write (nout,*)

! Convert x to separated real and imaginary parts for printing.
a(0:n/2) = x(0:n/2)
a(n-1:n/2+1:-1) = x(1:n/2)
b(0) = 0.0_nag_wp
b(1:(n-1)/2) = x(n-1:n-(n-1)/2:-1)
b(n-(n-1)/2:n-1) = -b((n-1)/2:1:-1)
If (mod(n,2)==0) Then

b(n/2) = 0.0_nag_wp
End If

Write (nout,99999)(j,a(j),b(j),j=0,n-1)

x(n/2+1:n-1) = -x(n/2+1:n-1)
Call c06fbf(x,n,work,ifail)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Write (nout,*)
Write (nout,*) ’ Original Restored’
Write (nout,*)
Write (nout,99999)(j,xx(j),x(j),j=0,n-1)
Deallocate (a,b,x,xx,work)

End Do loop

99999 Format (1X,I5,2F10.5)
End Program c06fafe

10.2 Program Data

C06FAF Example Program Data
7 : n

0.34907
0.54890
0.74776
0.94459
1.13850
1.32850
1.51370 : x

10.3 Program Results

C06FAF Example Program Results

Components of discrete Fourier transform

Real Imag

0 2.48361 0.00000
1 -0.26599 0.53090
2 -0.25768 0.20298
3 -0.25636 0.05806
4 -0.25636 -0.05806
5 -0.25768 -0.20298
6 -0.26599 -0.53090

Original sequence as restored by inverse transform

Original Restored

0 0.34907 0.34907
1 0.54890 0.54890
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2 0.74776 0.74776
3 0.94459 0.94459
4 1.13850 1.13850
5 1.32850 1.32850
6 1.51370 1.51370
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NAG Library Routine Document

C06FBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06FBF calculates the discrete Fourier transform of a Hermitian sequence of n complex data values
(using a work array for extra speed).

2 Specification

SUBROUTINE C06FBF (X, N, WORK, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), WORK(N)

3 Description

Given a Hermitian sequence of n complex data values zj (i.e., a sequence such that z0 is real and zn�j is
the complex conjugate of zj , for j ¼ 1; 2; . . . ; n� 1), C06FBF calculates their discrete Fourier transform
defined by

x̂k ¼
1ffiffiffi
n
p
Xn�1
j¼0

zj � exp �i2	jk
n

� �
; k ¼ 0; 1; . . . ; n� 1:

(Note the scale factor of 1ffiffi
n
p in this definition.) The transformed values x̂k are purely real (see also the

C06 Chapter Introduction).

To compute the inverse discrete Fourier transform defined by

ŷk ¼
1ffiffiffi
n
p
Xn�1
j¼0

zj � exp þi2	jk
n

� �
;

this routine should be preceded by forming the complex conjugates of the ẑk; that is, x kð Þ ¼ �x kð Þ, for
k ¼ n=2þ 2; . . . ; n.

C06FBF uses the fast Fourier transform (FFT) algorithm (see Brigham (1974)). There are some
restrictions on the value of n (see Section 5).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

5 Arguments

1: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the sequence to be transformed stored in Hermitian form. If the data values zj are
written as xj þ iyj, and if X is declared with bounds 0 : N� 1ð Þ in the subroutine from which
C06FBF is called, then for 0 � j � n=2, xj is contained in XðjÞ, and for 1 � j � n� 1ð Þ=2, yj is
contained in Xðn� jÞ. (See also Section 2.1.2 in the C06 Chapter Introduction and Section 10.)

On exit: the components of the discrete Fourier transform x̂k. If X is declared with bounds
0 : N� 1ð Þ in the subroutine from which C06FBF is called, then x̂k is stored in XðkÞ, for
k ¼ 0; 1; . . . ; n� 1.
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2: N – INTEGER Input

On entry: n, the number of data values. The largest prime factor of N must not exceed 19, and
the total number of prime factors of N, counting repetitions, must not exceed 20.

Constraint: N > 1.

3: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

At least one of the prime factors of N is greater than 19.

IFAIL ¼ 2

N has more than 20 prime factors.

IFAIL ¼ 3

On entry, N � 1.

IFAIL ¼ 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06FBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06FBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n� log nð Þ, but also depends on the factorization of n.
C06FBF is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

10 Example

This example reads in a sequence of real data values which is assumed to be a Hermitian sequence of
complex data values stored in Hermitian form. The input sequence is expanded into a full complex
sequence and printed alongside the original sequence. The discrete Fourier transform (as computed by
C06FBF) is printed out. It then performs an inverse transform using C06FAF and conjugation, and
prints the sequence so obtained alongside the original data values.

10.1 Program Text

Program c06fbfe

! C06FBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06faf, c06fbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ieof, ifail, j, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: u(:), v(:), work(:), x(:), xx(:)

! .. Intrinsic Procedures ..
Intrinsic :: mod

! .. Executable Statements ..
Write (nout,*) ’C06FBF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) n
If (ieof<0) Then

Exit loop
End If
Allocate (u(0:n-1),v(0:n-1),x(0:n-1),xx(0:n-1),work(n))
Read (nin,*) x(0:n-1)
xx(0:n-1) = x(0:n-1)

! Convert x to separated real and imaginary parts for printing.
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u(0:n/2) = x(0:n/2)
u(n-1:n/2+1:-1) = x(1:n/2)
v(0) = 0.0_nag_wp
v(1:(n-1)/2) = x(n-1:n-(n-1)/2:-1)
v(n-(n-1)/2:n-1) = -v((n-1)/2:1:-1)
If (mod(n,2)==0) Then

v(n/2) = 0.0_nag_wp
End If

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06fbf(x,n,work,ifail)

Write (nout,*)
Write (nout,*) ’Original sequence and corresponding complex sequence’
Write (nout,*)
Write (nout,*) ’ Data Real Imag’
Write (nout,*)
Write (nout,99999)(j,xx(j),’ ’,u(j),v(j),j=0,n-1)
Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Write (nout,*)
Write (nout,99998)(j,x(j),j=0,n-1)

Call c06faf(x,n,work,ifail)
x(n/2+1:n-1) = -x(n/2+1:n-1)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Write (nout,*)
Write (nout,*) ’ Original Restored’
Write (nout,*)
Write (nout,99997)(j,xx(j),x(j),j=0,n-1)
Deallocate (u,v,x,xx,work)

End Do loop

99999 Format (1X,I5,F10.5,A,2F10.5)
99998 Format (1X,I5,F10.5)
99997 Format (1X,I5,2F10.5)

End Program c06fbfe

10.2 Program Data

C06FBF Example Program Data
7 : n

0.34907
0.54890
0.74776
0.94459
1.13850
1.32850
1.51370 : x

10.3 Program Results

C06FBF Example Program Results

Original sequence and corresponding complex sequence

Data Real Imag

0 0.34907 0.34907 0.00000
1 0.54890 0.54890 1.51370
2 0.74776 0.74776 1.32850
3 0.94459 0.94459 1.13850
4 1.13850 0.94459 -1.13850
5 1.32850 0.74776 -1.32850
6 1.51370 0.54890 -1.51370
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Components of discrete Fourier transform

0 1.82616
1 1.86862
2 -0.01750
3 0.50200
4 -0.59873
5 -0.03144
6 -2.62557

Original sequence as restored by inverse transform

Original Restored

0 0.34907 0.34907
1 0.54890 0.54890
2 0.74776 0.74776
3 0.94459 0.94459
4 1.13850 1.13850
5 1.32850 1.32850
6 1.51370 1.51370
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NAG Library Routine Document

C06FCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06FCF calculates the discrete Fourier transform of a sequence of n complex data values (using a work
array for extra speed).

2 Specification

SUBROUTINE C06FCF (X, Y, N, WORK, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), WORK(N)

3 Description

Given a sequence of n complex data values zj , for j ¼ 0; 1; . . . ; n� 1, C06FCF calculates their discrete
Fourier transform defined by

ẑk ¼ ak þ ibk ¼
1ffiffiffi
n
p
Xn�1
j¼0

zj � exp �i2	jk
n

� �
; k ¼ 0; 1; . . . ; n� 1:

(Note the scale factor of 1ffiffi
n
p in this definition.)

To compute the inverse discrete Fourier transform defined by

ŵk ¼
1ffiffiffi
n
p
Xn�1
j¼0

zj � exp þi2	jk
n

� �
;

this routine should be preceded and followed by the complex conjugation of the data values and the
transform (by negating the imaginary parts stored in y).

C06FCF uses the fast Fourier transform (FFT) algorithm (see Brigham (1974)). There are some
restrictions on the value of n (see Section 5).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

5 Arguments

1: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if X is declared with bounds 0 : N� 1ð Þ in the subroutine from which C06FCF is
called, then XðjÞ must contain xj , the real part of zj , for j ¼ 0; 1; . . . ; n� 1.

On exit: the real parts ak of the components of the discrete Fourier transform. If X is declared
with bounds 0 : N� 1ð Þ in the subroutine from which C06FCF is called, then for 0 � k � n� 1,
ak is contained in XðkÞ.

2: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if Y is declared with bounds 0 : N� 1ð Þ in the subroutine from which C06FCF is
called, then YðjÞ must contain yj , the imaginary part of zj , for j ¼ 0; 1; . . . ; n� 1.
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On exit: the imaginary parts bk of the components of the discrete Fourier transform. If Y is
declared with bounds 0 : N� 1ð Þ in the subroutine from which C06FCF is called, then for
0 � k � n� 1, bk is contained in YðkÞ.

3: N – INTEGER Input

On entry: n, the number of data values. The largest prime factor of N must not exceed 19, and
the total number of prime factors of N, counting repetitions, must not exceed 20.

Constraint: N > 1.

4: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

At least one of the prime factors of N is greater than 19.

IFAIL ¼ 2

N has more than 20 prime factors.

IFAIL ¼ 3

On entry, N � 1.

IFAIL ¼ 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06FCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06FCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n� log nð Þ, but also depends on the factorization of n.
C06FCF is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

10 Example

This example reads in a sequence of complex data values and prints their discrete Fourier transform (as
computed by C06FCF). It then performs an inverse transform using C06FCF, and prints the sequence so
obtained alongside the original data values.

10.1 Program Text

Program c06fcfe

! C06FCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06fcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ieof, ifail, j, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), x(:), xx(:), y(:), yy(:)

! .. Executable Statements ..
Write (nout,*) ’C06FCF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) n
If (ieof<0) Then

Exit loop
End If

Allocate (x(0:n-1),xx(0:n-1),y(0:n-1),yy(0:n-1),work(n))
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Read (nin,*)(x(j),y(j),j=0,n-1)
xx(0:n-1) = x(0:n-1)
yy(0:n-1) = y(0:n-1)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06fcf(x,y,n,work,ifail)

Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Write (nout,*)
Write (nout,*) ’ Real Imag’
Write (nout,*)
Write (nout,99999)(j,x(j),y(j),j=0,n-1)

y = -y
Call c06fcf(x,y,n,work,ifail)
y = -y

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Write (nout,*)
Write (nout,*) ’ Original Restored’
Write (nout,*) ’ Real Imag Real Imag’
Write (nout,*)
Write (nout,99998)(j,xx(j),yy(j),x(j),y(j),j=0,n-1)
Deallocate (x,xx,y,yy,work)

End Do loop

99999 Format (1X,I5,2F10.5)
99998 Format (1X,I5,2F10.5,5X,2F10.5)

End Program c06fcfe

10.2 Program Data

C06FCF Example Program Data
7 : n

0.34907 -0.37168
0.54890 -0.35669
0.74776 -0.31175
0.94459 -0.23702
1.13850 -0.13274
1.32850 0.00074
1.51370 0.16298 : x, y

10.3 Program Results

C06FCF Example Program Results

Components of discrete Fourier transform

Real Imag

0 2.48361 -0.47100
1 -0.55180 0.49684
2 -0.36711 0.09756
3 -0.28767 -0.05865
4 -0.22506 -0.17477
5 -0.14825 -0.30840
6 0.01983 -0.56496

Original sequence as restored by inverse transform

Original Restored
Real Imag Real Imag

0 0.34907 -0.37168 0.34907 -0.37168
1 0.54890 -0.35669 0.54890 -0.35669
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2 0.74776 -0.31175 0.74776 -0.31175
3 0.94459 -0.23702 0.94459 -0.23702
4 1.13850 -0.13274 1.13850 -0.13274
5 1.32850 0.00074 1.32850 0.00074
6 1.51370 0.16298 1.51370 0.16298
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NAG Library Routine Document

C06FFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06FFF computes the discrete Fourier transform of one variable in a multivariate sequence of complex
data values.

2 Specification

SUBROUTINE C06FFF (NDIM, L, ND, N, X, Y, WORK, LWORK, IFAIL)

INTEGER NDIM, L, ND(NDIM), N, LWORK, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), WORK(LWORK)

3 Description

C06FFF computes the discrete Fourier transform of one variable (the lth say) in a multivariate sequence
of complex data values zj1j2...jm , for j1 ¼ 0; 1; . . . ; n1 � 1 and j2 ¼ 0; 1; . . . ; n2 � 1, and so on. Thus the
individual dimensions are n1; n2; . . . ; nm, and the total number of data values is
n ¼ n1 � n2 � � � � � nm.
The routine computes n=nl one-dimensional transforms defined by

ẑj1...kl...jm ¼
1ffiffiffiffiffi
nl
p

Xnl�1
jl¼0

zj1...jl...jm � exp �2	ijlkl
nl

� �
;

where kl ¼ 0; 1; . . . ; nl � 1.

(Note the scale factor of 1ffiffiffi
nl
p in this definition.)

To compute the inverse discrete Fourier transforms, defined with exp þ2	ijlkl
nl

� �
in the above formula

instead of exp �2	ijlkl
nl

� �
, this routine should be preceded and followed by the complex conjugation of

the data values and the transform (by negating the imaginary parts stored in y).

The data values must be supplied in a pair of one-dimensional arrays (real and imaginary parts
separately), in accordance with the Fortran convention for storing multidimensional data (i.e., with the
first subscript j1 varying most rapidly).

This routine calls C06FCF to perform one-dimensional discrete Fourier transforms by the fast Fourier
transform (FFT) algorithm in Brigham (1974), and hence there are some restrictions on the values of nl
(see Section 5).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

5 Arguments

1: NDIM – INTEGER Input

On entry: m, the number of dimensions (or variables) in the multivariate data.

Constraint: NDIM � 1.
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2: L – INTEGER Input

On entry: l, the index of the variable (or dimension) on which the discrete Fourier transform is to
be performed.

Constraint: 1 � L � NDIM.

3: NDðNDIMÞ – INTEGER array Input

On entry: NDðiÞ must contain ni (the dimension of the ith variable) , for i ¼ 1; 2; . . . ;m. The
largest prime factor of NDðlÞ must not exceed 19, and the total number of prime factors of
NDðlÞ, counting repetitions, must not exceed 20.

Constraint: NDðiÞ � 1, for i ¼ 1; 2; . . . ;NDIM.

4: N – INTEGER Input

On entry: n, the total number of data values.

Constraint: N ¼ NDð1Þ � NDð2Þ � � � � � NDðNDIMÞ.

5: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: Xð1þ j1 þ n1j2 þ n1n2j3 þ . . .Þ must contain the real part of the complex data value
zj1j2...jm , for 0 � j1 � n1�1; 0 � j2 � n2 � 1; . . . ; i.e., the values are stored in consecutive
elements of the array according to the Fortran convention for storing multidimensional arrays.

On exit: the real parts of the corresponding elements of the computed transform.

6: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the imaginary parts of the complex data values, stored in the same way as the real parts
in the array X.

On exit: the imaginary parts of the corresponding elements of the computed transform.

7: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
C06FFF is called.

Constraint: LWORK � 3� NDðLÞ.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1.

IFAIL ¼ 2

On entry, N 6¼ NDð1Þ � NDð2Þ � � � � � NDðNDIMÞ.

IFAIL ¼ 3

On entry, L < 1 or L > NDIM.

IFAIL ¼ 10� lþ 1

At least one of the prime factors of NDðlÞ is greater than 19.

IFAIL ¼ 10� lþ 2

NDðlÞ has more than 20 prime factors.

IFAIL ¼ 10� lþ 3

On entry, NDðlÞ < 1.

IFAIL ¼ 10� lþ 4

On entry, LWORK < 3� NDðlÞ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06FFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06FFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n� lognl, but also depends on the factorization of nl.
C06FFF is faster if the only prime factors of nl are 2, 3 or 5; and fastest of all if nl is a power of 2.

10 Example

This example reads in a bivariate sequence of complex data values and prints the discrete Fourier
transform of the second variable. It then performs an inverse transform and prints the sequence so
obtained, which may be compared with the original data values.

10.1 Program Text

! C06FFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c06fffe_mod

! C06FFF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: readxy, writxy

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine readxy(nin,x,y,n1,n2)

! Read 2-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nin

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: x(n1,n2), y(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Executable Statements ..
Do i = 1, n1

Read (nin,*)(x(i,j),j=1,n2)
Read (nin,*)(y(i,j),j=1,n2)

End Do
Return

End Subroutine readxy

Subroutine writxy(nout,x,y,n1,n2)
! Print 2-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nout

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(n1,n2), y(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Executable Statements ..
Do i = 1, n1

Write (nout,*)
Write (nout,99999) ’Real ’, (x(i,j),j=1,n2)
Write (nout,99999) ’Imag ’, (y(i,j),j=1,n2)

End Do
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Return

99999 Format (1X,A,7F10.3,/,(6X,7F10.3))
End Subroutine writxy

End Module c06fffe_mod

Program c06fffe

! C06FFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c06fff, nag_wp
Use c06fffe_mod, Only: nin, nout, readxy, writxy

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: ieof, ifail, l, lwork, n, ndim

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), x(:), y(:)
Integer, Allocatable :: nd(:)

! .. Intrinsic Procedures ..
Intrinsic :: product

! .. Executable Statements ..
Write (nout,*) ’C06FFF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) ndim
If (ieof<0) Then

Exit loop
End If

Allocate (nd(ndim))

Read (nin,*) nd(1:ndim), l

n = product(nd(1:ndim))
lwork = 3*nd(l)
Allocate (x(n),y(n),work(lwork))

Call readxy(nin,x,y,nd(1),nd(2))

Write (nout,*)
Write (nout,*) ’Original data’
Call writxy(nout,x,y,nd(1),nd(2))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

! Compute transform
ifail = 0
Call c06fff(ndim,l,nd,n,x,y,work,lwork,ifail)

Write (nout,*)
Write (nout,99999) ’Discrete Fourier transform of variable ’, l
Call writxy(nout,x,y,nd(1),nd(2))

! Compute inverse transform
y(1:n) = -y(1:n)
Call c06fff(ndim,l,nd,n,x,y,work,lwork,ifail)
y(1:n) = -y(1:n)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Call writxy(nout,x,y,nd(1),nd(2))
Deallocate (x,y,work,nd)

End Do loop

99999 Format (1X,A,I1)
End Program c06fffe
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10.2 Program Data

C06FFF Example Program Data
2 : ndim
3 5 2 : nd(1), nd(2), l
1.000 0.999 0.987 0.936 0.802
0.000 -0.040 -0.159 -0.352 -0.597
0.994 0.989 0.963 0.891 0.731

-0.111 -0.151 -0.268 -0.454 -0.682
0.903 0.885 0.823 0.694 0.467

-0.430 -0.466 -0.568 -0.720 -0.884 : x, y

10.3 Program Results

C06FFF Example Program Results

Original data

Real 1.000 0.999 0.987 0.936 0.802
Imag 0.000 -0.040 -0.159 -0.352 -0.597

Real 0.994 0.989 0.963 0.891 0.731
Imag -0.111 -0.151 -0.268 -0.454 -0.682

Real 0.903 0.885 0.823 0.694 0.467
Imag -0.430 -0.466 -0.568 -0.720 -0.884

Discrete Fourier transform of variable 2

Real 2.113 0.288 0.126 -0.003 -0.287
Imag -0.513 -0.000 0.130 0.190 0.194

Real 2.043 0.286 0.139 0.018 -0.263
Imag -0.745 -0.032 0.115 0.189 0.225

Real 1.687 0.260 0.170 0.079 -0.176
Imag -1.372 -0.125 0.063 0.173 0.299

Original sequence as restored by inverse transform

Real 1.000 0.999 0.987 0.936 0.802
Imag -0.000 -0.040 -0.159 -0.352 -0.597

Real 0.994 0.989 0.963 0.891 0.731
Imag -0.111 -0.151 -0.268 -0.454 -0.682

Real 0.903 0.885 0.823 0.694 0.467
Imag -0.430 -0.466 -0.568 -0.720 -0.884
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NAG Library Routine Document

C06FJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06FJF computes the multidimensional discrete Fourier transform of a multivariate sequence of
complex data values.

2 Specification

SUBROUTINE C06FJF (NDIM, ND, N, X, Y, WORK, LWORK, IFAIL)

INTEGER NDIM, ND(NDIM), N, LWORK, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), WORK(LWORK)

3 Description

C06FJF computes the multidimensional discrete Fourier transform of a multidimensional sequence of
complex data values zj1j2...jm , where j1 ¼ 0; 1; . . . ; n1 � 1; j2 ¼ 0; 1; . . . ; n2 � 1, and so on. Thus the
individual dimensions are n1; n2; . . . ; nm, and the total number of data values is
n ¼ n1 � n2 � � � � � nm.
The discrete Fourier transform is here defined (e.g., for m ¼ 2) by:

ẑk1;k2 ¼
1ffiffiffi
n
p
Xn1�1
j1¼0

Xn2�1
j2¼0

zj1j2 � exp �2	i j1k1
n1
þ j2k2

n2

� �� �
;

where k1 ¼ 0; 1; . . . ; n1 � 1, k2 ¼ 0; 1; . . . ; n2 � 1.

The extension to higher dimensions is obvious. (Note the scale factor of 1ffiffi
n
p in this definition.)

To compute the inverse discrete Fourier transform, defined with exp þ2	i . . .ð Þð Þ in the above formula
instead of exp �2	i . . .ð Þð Þ, this routine should be preceded and followed by the complex conjugation of
the data values and the transform (by negating the imaginary parts stored in y).

The data values must be supplied in a pair of one-dimensional arrays (real and imaginary parts
separately), in accordance with the Fortran convention for storing multidimensional data (i.e., with the
first subscript j1 varying most rapidly).

This routine calls C06FCF to perform one-dimensional discrete Fourier transforms by the fast Fourier
transform (FFT) algorithm in Brigham (1974), and hence there are some restrictions on the values of
the ni (see Section 5).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

5 Arguments

1: NDIM – INTEGER Input

On entry: m, the number of dimensions (or variables) in the multivariate data.

Constraint: NDIM � 1.
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2: NDðNDIMÞ – INTEGER array Input

On entry: NDðiÞ must contain ni (the dimension of the ith variable) , for i ¼ 1; 2; . . . ;m. The
largest prime factor of each NDðiÞ must not exceed 19, and the total number of prime factors of
NDðiÞ, counting repetitions, must not exceed 20.

Constraint: NDðiÞ � 1, for i ¼ 1; 2; . . . ;NDIM.

3: N – INTEGER Input

On entry: n, the total number of data values.

Constraint: N ¼ NDð1Þ � NDð2Þ � � � � � NDðNDIMÞ.

4: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: Xð1þ j1 þ n1j2 þ n1n2j3 þ . . .Þ must contain the real part of the complex data value
zj1j2...jm , for 0 � j1 � n1�1; 0 � j2 � n2 � 1; . . . ; i.e., the values are stored in consecutive
elements of the array according to the Fortran convention for storing multidimensional arrays.

On exit: the real parts of the corresponding elements of the computed transform.

5: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the imaginary parts of the complex data values, stored in the same way as the real parts
in the array X.

On exit: the imaginary parts of the corresponding elements of the computed transform.

6: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which C06FJF
is called.

Constraint: LWORK � 3�max NDðiÞf g.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1.

IFAIL ¼ 2

On entry, N 6¼ NDð1Þ � NDð2Þ � � � � � NDðNDIMÞ.
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IFAIL ¼ 10� lþ 1

At least one of the prime factors of NDðlÞ is greater than 19.

IFAIL ¼ 10� lþ 2

NDðlÞ has more than 20 prime factors.

IFAIL ¼ 10� lþ 3

On entry, NDðlÞ < 1.

IFAIL ¼ 10� lþ 4

On entry, LWORK < 3� NDðlÞ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06FJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06FJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n� log nð Þ, but also depends on the factorization of the
individual dimensions NDðiÞ. C06FJF is faster if the only prime factors are 2, 3 or 5; and fastest of all
if they are powers of 2.

10 Example

This example reads in a bivariate sequence of complex data values and prints the two-dimensional
Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which
may be compared to the original data values.
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10.1 Program Text

! C06FJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c06fjfe_mod

! C06FJF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: readxy, writxy

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine readxy(nin,x,y,n1,n2)

! Read 2-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nin

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: x(n1,n2), y(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Executable Statements ..
Do i = 1, n1

Read (nin,*)(x(i,j),j=1,n2)
Read (nin,*)(y(i,j),j=1,n2)

End Do
Return

End Subroutine readxy

Subroutine writxy(nout,x,y,n1,n2)
! Print 2-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nout

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(n1,n2), y(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Executable Statements ..
Do i = 1, n1

Write (nout,*)
Write (nout,99999) ’Real ’, (x(i,j),j=1,n2)
Write (nout,99999) ’Imag ’, (y(i,j),j=1,n2)

End Do
Return

99999 Format (1X,A,7F10.3,/,(6X,7F10.3))
End Subroutine writxy

End Module c06fjfe_mod

Program c06fjfe

! C06FJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c06fjf, nag_wp
Use c06fjfe_mod, Only: nin, nout, readxy, writxy

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: ieof, ifail, lwork, n, ndim

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), x(:), y(:)
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Integer, Allocatable :: nd(:)
! .. Intrinsic Procedures ..

Intrinsic :: maxval, product
! .. Executable Statements ..

Write (nout,*) ’C06FJF Example Program Results’
! Skip heading in data file

Read (nin,*)
loop: Do

Read (nin,*,Iostat=ieof) ndim
If (ieof<0) Then

Exit loop
End If

Allocate (nd(ndim))
Read (nin,*) nd(1:ndim)
n = product(nd(1:ndim))
lwork = 3*maxval(nd(1:ndim))
Allocate (x(n),y(n),work(lwork))

Call readxy(nin,x,y,nd(1),nd(2))
Write (nout,*)
Write (nout,*) ’Original data values’
Call writxy(nout,x,y,nd(1),nd(2))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Compute transform

Call c06fjf(ndim,nd,n,x,y,work,lwork,ifail)

Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Call writxy(nout,x,y,nd(1),nd(2))

! Compute inverse transform
y(1:n) = -y(1:n)
Call c06fjf(ndim,nd,n,x,y,work,lwork,ifail)
y(1:n) = -y(1:n)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Call writxy(nout,x,y,nd(1),nd(2))
Deallocate (x,y,work,nd)

End Do loop

End Program c06fjfe

10.2 Program Data

C06FJF Example Program Data
2 : ndim
3 5 : nd(1), nd(2)
1.000 0.999 0.987 0.936 0.802
0.000 -0.040 -0.159 -0.352 -0.597
0.994 0.989 0.963 0.891 0.731

-0.111 -0.151 -0.268 -0.454 -0.682
0.903 0.885 0.823 0.694 0.467

-0.430 -0.466 -0.568 -0.720 -0.884 : x, y

10.3 Program Results

C06FJF Example Program Results

Original data values

Real 1.000 0.999 0.987 0.936 0.802
Imag 0.000 -0.040 -0.159 -0.352 -0.597

Real 0.994 0.989 0.963 0.891 0.731
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Imag -0.111 -0.151 -0.268 -0.454 -0.682

Real 0.903 0.885 0.823 0.694 0.467
Imag -0.430 -0.466 -0.568 -0.720 -0.884

Components of discrete Fourier transform

Real 3.373 0.481 0.251 0.054 -0.419
Imag -1.519 -0.091 0.178 0.319 0.415

Real 0.457 0.055 0.009 -0.022 -0.076
Imag 0.137 0.032 0.039 0.036 0.004

Real -0.170 -0.037 -0.042 -0.038 -0.002
Imag 0.493 0.058 0.008 -0.025 -0.083

Original sequence as restored by inverse transform

Real 1.000 0.999 0.987 0.936 0.802
Imag -0.000 -0.040 -0.159 -0.352 -0.597

Real 0.994 0.989 0.963 0.891 0.731
Imag -0.111 -0.151 -0.268 -0.454 -0.682

Real 0.903 0.885 0.823 0.694 0.467
Imag -0.430 -0.466 -0.568 -0.720 -0.884
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NAG Library Routine Document

C06FKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06FKF calculates the circular convolution or correlation of two real vectors of period n (using a work
array for extra speed).

2 Specification

SUBROUTINE C06FKF (JOB, X, Y, N, WORK, IFAIL)

INTEGER JOB, N, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), WORK(N)

3 Description

C06FKF computes:

if JOB ¼ 1, the discrete convolution of x and y, defined by

zk ¼
Xn�1
j¼0

xjyk�j ¼
Xn�1
j¼0

xk�jyj;

if JOB ¼ 2, the discrete correlation of x and y defined by

wk ¼
Xn�1
j¼0

xjykþj:

Here x and y are real vectors, assumed to be periodic, with period n, i.e., xj ¼ xj
n ¼ xj
2n ¼ . . . ; z
and w are then also periodic with period n.

Note: this usage of the terms ‘convolution’ and ‘correlation’ is taken from Brigham (1974). The term
‘convolution’ is sometimes used to denote both these computations.

If x̂, ŷ, ẑ and ŵ are the discrete Fourier transforms of these sequences, i.e.,

x̂k ¼
1ffiffiffi
n
p
Xn�1
j¼0

xj � exp �i2	jk
n

� �
; etc:;

then ẑk ¼
ffiffiffi
n
p

:x̂kŷk and ŵk ¼
ffiffiffi
n
p

:�̂xkŷk (the bar denoting complex conjugate).

This routine calls the same auxiliary routines as C06PAF to compute discrete Fourier transforms.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

5 Arguments

1: JOB – INTEGER Input

On entry: the computation to be performed.

JOB ¼ 1

zk ¼
Xn�1
j¼0

xjyk�j (convolution);
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JOB ¼ 2

wk ¼
Xn�1
j¼0

xjykþj (correlation).

Constraint: JOB ¼ 1 or 2.

2: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of one period of the vector x. If X is declared with bounds 0 : N� 1ð Þ in
the subroutine from which C06FKF is called, then XðjÞ must contain xj , for j ¼ 0; 1; . . . ; n� 1.

On exit: the corresponding elements of the discrete convolution or correlation.

3: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of one period of the vector y. If Y is declared with bounds 0 : N� 1ð Þ in
the subroutine from which C06FKF is called, then YðjÞ must contain yj , for j ¼ 0; 1; . . . ; n� 1.

On exit: the discrete Fourier transform of the convolution or correlation returned in the array X;
the transform is stored in Hermitian form; if the components of the transform zk are written as
ak þ ibk, then for 0 � k � n=2, ak is contained in YðkÞ, and for 1 � k � n=2� 1, bk is contained
in Yðn� kÞ. (See also Section 2.1.2 in the C06 Chapter Introduction.)

4: N – INTEGER Input

On entry: n, the number of values in one period of the vectors X and Y.

Constraint: N > 1.

5: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 3

On entry, N � 1.

IFAIL ¼ 4

On entry, JOB 6¼ 1 or 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The results should be accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

C06FKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06FKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n� log nð Þ, but also depends on the factorization of n.
C06FKF is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

10 Example

This example reads in the elements of one period of two real vectors x and y, and prints their discrete
convolution and correlation (as computed by C06FKF). In realistic computations the number of data
values would be much larger.

10.1 Program Text

Program c06fkfe

! C06FKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06fkf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ieof, ifail, j, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), xa(:), xb(:), ya(:), yb(:)

! .. Executable Statements ..
Write (nout,*) ’C06FKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) n
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If (ieof<0) Then
Exit loop

End If

Allocate (work(n),xa(n),xb(n),ya(n),yb(n))
Read (nin,*)(xa(j),ya(j),j=1,n)
xb(1:n) = xa(1:n)
yb(1:n) = ya(1:n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06fkf(1,xa,ya,n,work,ifail)

Call c06fkf(2,xb,yb,n,work,ifail)

Write (nout,*) ’ Convolution Correlation’
Write (nout,*)
Write (nout,99999)(j-1,xa(j),xb(j),j=1,n)
Deallocate (xa,xb,ya,yb,work)

End Do loop

99999 Format (1X,I5,2F13.5)
End Program c06fkfe

10.2 Program Data

C06FKF Example Program Data
9 : n

1.00 0.50
1.00 0.50
1.00 0.50
1.00 0.50
1.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00 : xa, ya

10.3 Program Results

C06FKF Example Program Results

Convolution Correlation

0 0.50000 2.00000
1 1.00000 1.50000
2 1.50000 1.00000
3 2.00000 0.50000
4 2.00000 0.00000
5 1.50000 0.50000
6 1.00000 1.00000
7 0.50000 1.50000
8 0.00000 2.00000
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NAG Library Routine Document

C06FPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06FPF computes the discrete Fourier transforms of m sequences, each containing n real data values.
This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE C06FPF (M, N, X, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(M*N), TRIG(2*N), WORK(M*N)
CHARACTER(1) INIT

3 Description

Given m sequences of n real data values xpj , for j ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, C06FPF
simultaneously calculates the Fourier transforms of all the sequences defined by

ẑpk ¼
1ffiffiffi
n
p
Xn�1
j¼0

xpj � exp �i2	jk
n

� �
; k ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m:

(Note the scale factor 1ffiffi
n
p in this definition.)

The transformed values ẑpk are complex, but for each value of p the ẑpk form a Hermitian sequence (i.e.,
ẑpn�k is the complex conjugate of ẑpk), so they are completely determined by mn real numbers (see also
the C06 Chapter Introduction).

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term:

ẑpk ¼
1ffiffiffi
n
p
Xn�1
j¼0

xpj � exp þi2	jk
n

� �
:

To compute this form, this routine should be followed by forming the complex conjugates of the ẑpk;
that is x kð Þ ¼ �x kð Þ, for k ¼ n=2þ 1ð Þ �mþ 1; . . . ;m� n.
The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, which is described in Temperton (1983). Special coding is
provided for the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector
processors, and it becomes especially fast as m, the number of transforms to be computed in parallel,
increases.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

C06 – Summation of Series C06FPF

Mark 26 C06FPF.1



5 Arguments

1: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.

2: N – INTEGER Input

On entry: n, the number of real values in each sequence.

Constraint: N � 1.

3: XðM� NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension
1 : M; 0 : N� 1ð Þ; each of the m sequences is stored in a row of the array. In other words, if the
data values of the pth sequence to be transformed are denoted by xpj, for j ¼ 0; 1; . . . ; n� 1, then
the mn elements of the array X must contain the values

x10; x
2
0; . . . ; x

m
0 ; x

1
1; x

2
1; . . . ; x

m
1 ; . . . ; x

1
n�1; x

2
n�1; . . . ; x

m
n�1:

On exit: the m discrete Fourier transforms stored as if in a two-dimensional array of dimension
1 : M; 0 : N� 1ð Þ. Each of the m transforms is stored in a row of the array in Hermitian form,
overwriting the corresponding original sequence. If the n components of the discrete Fourier
transform ẑpk are written as apk þ ib

p
k, then for 0 � k � n=2, apk is contained in Xðp; kÞ, and for

1 � k � n� 1ð Þ=2, bpk is contained in Xðp; n� kÞ. (See also Section 2.1.2 in the C06 Chapter
Introduction.)

4: INIT – CHARACTER(1) Input

On entry: indicates whether trigonometric coefficients are to be calculated.

INIT ¼ I
Calculate the required trigonometric coefficients for the given value of n, and store in the
array TRIG.

INIT ¼ S or R
The required trigonometric coefficients are assumed to have been calculated and stored in
the array TRIG in a prior call to one of C06FPF or C06FQF. The routine performs a
simple check that the current value of n is consistent with the values stored in TRIG.

Constraint: INIT ¼ I , S or R .

5: TRIGð2� NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if INIT ¼ S or R , TRIG must contain the required trigonometric coefficients that
have been previously calculated. Otherwise TRIG need not be set.

On exit: contains the required coefficients (computed by the routine if INIT ¼ I ).

6: WORKðM� NÞ – REAL (KIND=nag_wp) array Workspace

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, INIT 6¼ I , S or R .

IFAIL ¼ 4

Not used at this Mark.

IFAIL ¼ 5

On entry, INIT ¼ S or R , but the array TRIG and the current value of N are inconsistent.

IFAIL ¼ 6

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06FPF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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C06FPF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06FPF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06FPF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

10 Example

This example reads in sequences of real data values and prints their discrete Fourier transforms (as
computed by C06FPF). The Fourier transforms are expanded into full complex form using and printed.
Inverse transforms are then calculated by conjugating and calling C06FQF showing that the original
sequences are restored.

10.1 Program Text

Program c06fpfe

! C06FPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06fpf, c06fqf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ieof, ifail, j, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: trig(:), u(:), v(:), work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06FPF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (trig(2*n),u(n),v(n),work(2*m*n),x(m*n))
Do j = 1, m

Read (nin,*)(x(i*m+j),i=0,n-1)
End Do
Write (nout,*)
Write (nout,*) ’Original data values’
Write (nout,*)
Write (nout,99999)(’ ’,(x(i*m+j),i=0,n-1),j=1,m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06fpf(m,n,x,’Initial’,trig,work,ifail)

Write (nout,*)
Write (nout,*) ’Discrete Fourier transforms in Hermitian format’
Write (nout,*)
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Write (nout,99999)(’ ’,(x(i*m+j),i=0,n-1),j=1,m)
Write (nout,*)
Write (nout,*) ’Fourier transforms in full complex form’

Do j = 1, m
u(1:n) = x(j:m*n:m)
v(1:n) = 0.0_nag_wp
v(2:(n+1)/2) = u(n:n-(n-1)/2+1:-1)
u(n:n-(n-1)/2+1:-1) = u(2:(n+1)/2)
v(n-(n-1)/2+1:n) = -v((n+1)/2:2:-1)
Write (nout,*)
Write (nout,99999) ’Real ’, u(1:n)
Write (nout,99999) ’Imag ’, v(1:n)

End Do

x((n/2+1)*m+1:m*n) = -x((n/2+1)*m+1:m*n)
Call c06fqf(m,n,x,’Subsequent’,trig,work,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Write (nout,99999)(’ ’,(x(i*m+j),i=0,n-1),j=1,m)
Deallocate (trig,u,v,work,x)

End Do loop

99999 Format (1X,A,6F10.4)
End Program c06fpfe

10.2 Program Data

C06FPF Example Program Data
3 6 : m, n
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 : x

10.3 Program Results

C06FPF Example Program Results

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Discrete Fourier transforms in Hermitian format

1.0737 -0.1041 0.1126 -0.1467 -0.3738 -0.0044
1.3961 -0.0365 0.0780 -0.1521 -0.0607 0.4666
1.1237 0.0914 0.3936 0.1530 0.3458 -0.0508

Fourier transforms in full complex form

Real 1.0737 -0.1041 0.1126 -0.1467 0.1126 -0.1041
Imag 0.0000 -0.0044 -0.3738 0.0000 0.3738 0.0044

Real 1.3961 -0.0365 0.0780 -0.1521 0.0780 -0.0365
Imag 0.0000 0.4666 -0.0607 0.0000 0.0607 -0.4666

Real 1.1237 0.0914 0.3936 0.1530 0.3936 0.0914
Imag 0.0000 -0.0508 0.3458 0.0000 -0.3458 0.0508

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
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NAG Library Routine Document

C06FQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06FQF computes the discrete Fourier transforms of m Hermitian sequences, each containing n
complex data values. This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE C06FQF (M, N, X, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(M*N), TRIG(2*N), WORK(M*N)
CHARACTER(1) INIT

3 Description

Given m Hermitian sequences of n complex data values zpj , for j ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m,
C06FQF simultaneously calculates the Fourier transforms of all the sequences defined by

x̂pk ¼
1ffiffiffi
n
p
Xn�1
j¼0

zpj � exp �i2	jk
n

� �
; k ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m:

(Note the scale factor 1ffiffi
n
p in this definition.)

The transformed values are purely real (see also the C06 Chapter Introduction).

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term

x̂pk ¼
1ffiffiffi
n
p
Xn�1
j¼0

zpj � exp þi2	jk
n

� �
:

To compute this form, this routine should be preceded by forming the complex conjugates of the ẑpk;
that is x kð Þ ¼ �x kð Þ, for k ¼ n=2þ 1ð Þ �mþ 1; . . . ;m� n.
The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, which is described in Temperton (1983). Special coding is
provided for the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector
processors, and it becomes especially fast as m, the number of transforms to be computed in parallel,
increases.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

5 Arguments

1: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.
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2: N – INTEGER Input

On entry: n, the number of data values in each sequence.

Constraint: N � 1.

3: XðM� NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension
1 : M; 0 : N� 1ð Þ; each of the m sequences is stored in a row of the array in Hermitian form. If
the n data values zpj are written as xpj þ iy

p
j , then for 0 � j � n=2, xpj is contained in Xðp; jÞ, and

for 1 � j � n� 1ð Þ=2, ypj is contained in Xðp; n� jÞ. (See also Section 2.1.2 in the C06 Chapter
Introduction.)

On exit: the components of the m discrete Fourier transforms, stored as if in a two-dimensional
array of dimension 1 : M; 0 : N� 1ð Þ. Each of the m transforms is stored as a row of the array,
overwriting the corresponding original sequence. If the n components of the discrete Fourier
transform are denoted by x̂pk, for k ¼ 0; 1; . . . ; n� 1, then the mn elements of the array X contain
the values

x̂10; x̂
2
0; . . . ; x̂

m
0 ; x̂

1
1; x̂

2
1; . . . ; x̂

m
1 ; . . . ; x̂

1
n�1; x̂

2
n�1; . . . ; x̂

m
n�1:

4: INIT – CHARACTER(1) Input

On entry: indicates whether trigonometric coefficients are to be calculated.

INIT ¼ I
Calculate the required trigonometric coefficients for the given value of n, and store in the
array TRIG.

INIT ¼ S or R
The required trigonometric coefficients are assumed to have been calculated and stored in
the array TRIG in a prior call to one of C06FPF or C06FQF. The routine performs a
simple check that the current value of n is consistent with the values stored in TRIG.

Constraint: INIT ¼ I , S or R .

5: TRIGð2� NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if INIT ¼ S or R , TRIG must contain the required trigonometric coefficients that
have been previously calculated. Otherwise TRIG need not be set.

On exit: contains the required coefficients (computed by the routine if INIT ¼ I ).

6: WORKðM� NÞ – REAL (KIND=nag_wp) array Workspace

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, INIT 6¼ I , S or R .

IFAIL ¼ 4

Not used at this Mark.

IFAIL ¼ 5

On entry, INIT ¼ S or R , but the array TRIG and the current value of N are inconsistent.

IFAIL ¼ 6

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06FQF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06FQF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06FQF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06FQF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

10 Example

This example reads in sequences of real data values which are assumed to be Hermitian sequences of
complex data stored in Hermitian form. The sequences are expanded into full complex form and
printed. The discrete Fourier transforms are then computed (using C06FQF) and printed out. Inverse
transforms are then calculated by conjugating and calling C06FPF showing that the original sequences
are restored.

10.1 Program Text

Program c06fqfe

! C06FQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06fpf, c06fqf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ieof, ifail, j, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: trig(:), u(:), v(:), work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06FQF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (trig(2*n),u(n),v(n),work(2*m*n),x(m*n))
Do j = 1, m

Read (nin,*)(x(i*m+j),i=0,n-1)
End Do
Write (nout,*)
Write (nout,*) ’Original data values’
Write (nout,*)
Write (nout,99999)(’ ’,(x(i*m+j),i=0,n-1),j=1,m)
Write (nout,*)
Write (nout,*) ’Original data written in full complex form’

Do j = 1, m
u(1:n) = x(j:m*n:m)
v(1:n) = 0.0_nag_wp
v(2:(n+1)/2) = u(n:n-(n-1)/2+1:-1)
u(n:n-(n-1)/2+1:-1) = u(2:(n+1)/2)
v(n-(n-1)/2+1:n) = -v((n+1)/2:2:-1)
Write (nout,*)
Write (nout,99999) ’Real ’, u(1:n)
Write (nout,99999) ’Imag ’, v(1:n)
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End Do

ifail = 0
Call c06fqf(m,n,x,’Initial’,trig,work,ifail)

Write (nout,*)
Write (nout,*) ’Discrete Fourier transforms (real values)’
Write (nout,*)
Write (nout,99999)(’ ’,(x(i*m+j),i=0,n-1),j=1,m)

Call c06fpf(m,n,x,’Subsequent’,trig,work,ifail)
x((n/2+1)*m+1:m*n) = -x((n/2+1)*m+1:m*n)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Write (nout,99999)(’ ’,(x(i*m+j),i=0,n-1),j=1,m)
Deallocate (trig,u,v,work,x)

End Do loop

99999 Format (1X,A,6F10.4)
End Program c06fqfe

10.2 Program Data

C06FQF Example Program Data
3 6 : m, n
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 : x

10.3 Program Results

C06FQF Example Program Results

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Original data written in full complex form

Real 0.3854 0.6772 0.1138 0.6751 0.1138 0.6772
Imag 0.0000 0.1424 0.6362 0.0000 -0.6362 -0.1424

Real 0.5417 0.2983 0.1181 0.7255 0.1181 0.2983
Imag 0.0000 0.8723 0.8638 0.0000 -0.8638 -0.8723

Real 0.9172 0.0644 0.6037 0.6430 0.6037 0.0644
Imag 0.0000 0.4815 0.0428 0.0000 -0.0428 -0.4815

Discrete Fourier transforms (real values)

1.0788 0.6623 -0.2391 -0.5783 0.4592 -0.4388
0.8573 1.2261 0.3533 -0.2222 0.3413 -1.2291
1.1825 0.2625 0.6744 0.5523 0.0540 -0.4790

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
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NAG Library Routine Document

C06FXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06FXF computes the three-dimensional discrete Fourier transform of a trivariate sequence of complex
data values. This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE C06FXF (N1, N2, N3, X, Y, INIT, TRIGN1, TRIGN2, TRIGN3, WORK,
IFAIL)

&

INTEGER N1, N2, N3, IFAIL
REAL (KIND=nag_wp) X(N1*N2*N3), Y(N1*N2*N3), TRIGN1(1), TRIGN2(1),

TRIGN3(1), WORK(1)
&

CHARACTER(1) INIT

3 Description

C06FXF computes the three-dimensional discrete Fourier transform of a trivariate sequence of complex
data values zj1j2j3 , for j1 ¼ 0; 1; . . . ; n1 � 1, j2 ¼ 0; 1; . . . ; n2 � 1 and j3 ¼ 0; 1; . . . ; n3 � 1.

The discrete Fourier transform is here defined by

ẑk1k2k3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2n3
p

Xn1�1
j1¼0

Xn2�1
j2¼0

Xn3�1
j3¼0

zj1j2j3 � exp �2	i j1k1
n1
þ j2k2

n2
þ j3k3

n3

� �� �
;

where k1 ¼ 0; 1; . . . ; n1 � 1, k2 ¼ 0; 1; . . . ; n2 � 1, k3 ¼ 0; 1; . . . ; n3 � 1.

(Note the scale factor of 1ffiffiffiffiffiffiffiffiffiffiffi
n1n2n3
p in this definition.)

To compute the inverse discrete Fourier transform, defined with exp þ2	i . . .ð Þð Þ in the above formula
instead of exp �2	i . . .ð Þð Þ, this routine should be preceded and followed by forming the complex
conjugates of the data values and the transform.

This routine performs, for each dimension, multiple one-dimensional discrete Fourier transforms by the
fast Fourier transform (FFT) algorithm (see Brigham (1974)). It is designed to be particularly efficient
on vector processors.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Arguments

1: N1 – INTEGER Input

On entry: n1, the first dimension of the transform.

Constraint: N1 � 1.
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2: N2 – INTEGER Input

On entry: n2, the second dimension of the transform.

Constraint: N2 � 1.

3: N3 – INTEGER Input

On entry: n3, the third dimension of the transform.

Constraint: N3 � 1.

4: XðN1� N2� N3Þ – REAL (KIND=nag_wp) array Input/Output
5: YðN1� N2� N3Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the real and imaginary parts of the complex data values must be stored in arrays X and
Y respectively. If X and Y are regarded as three-dimensional arrays of dimension
0 : N1� 1; 0 : N2� 1; 0 : N3� 1ð Þ, then Xðj1; j2; j3Þ and Yðj1; j2; j3Þ must contain the real and
imaginary parts of zj1j2j3 .

On exit: the real and imaginary parts respectively of the corresponding elements of the computed
transform.

6: INIT – CHARACTER(1) Input
7: TRIGN1ð1Þ – REAL (KIND=nag_wp) array Input/Output
8: TRIGN2ð1Þ – REAL (KIND=nag_wp) array Input/Output
9: TRIGN3ð1Þ – REAL (KIND=nag_wp) array Input/Output
10: WORKð1Þ – REAL (KIND=nag_wp) array Output

These arguments are no longer accessed by C06FXF.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 1.

IFAIL ¼ 2

On entry, N2 < 1.

IFAIL ¼ 3

On entry, N3 < 1.
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IFAIL ¼ 4

Not used at this Mark.

IFAIL ¼ 5

Not used at this Mark.

IFAIL ¼ 6

Not used at this Mark.

IFAIL ¼ 7

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06FXF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06FXF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n1n2n3 � log n1n2n3ð Þ, but also depends on the
factorization of the individual dimensions n1, n2 and n3. C06FXF is faster if the only prime factors are
2, 3 or 5; and fastest of all if they are powers of 2.

10 Example

This example reads in a trivariate sequence of complex data values and prints the three-dimensional
Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which
may be compared to the original data values.
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10.1 Program Text

! C06FXF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c06fxfe_mod

! C06FXF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: readxy, writxy

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine readxy(nin,x,y,n1,n2,n3)

! Read 3-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, n3, nin

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: x(n1,n2,n3), y(n1,n2,n3)

! .. Local Scalars ..
Integer :: i, j, k

! .. Executable Statements ..
Do i = 1, n1

Do j = 1, n2
Read (nin,*)(x(i,j,k),k=1,n3)
Read (nin,*)(y(i,j,k),k=1,n3)

End Do
End Do
Return

End Subroutine readxy

Subroutine writxy(nout,x,y,n1,n2,n3)
! Print 3-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, n3, nout

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(n1,n2,n3), y(n1,n2,n3)

! .. Local Scalars ..
Integer :: i, j, k

! .. Executable Statements ..
Do i = 1, n1

Write (nout,*)
Write (nout,99998) ’z(i,j,k) for i =’, i
Do j = 1, n2

Write (nout,*)
Write (nout,99999) ’Real ’, (x(i,j,k),k=1,n3)
Write (nout,99999) ’Imag ’, (y(i,j,k),k=1,n3)

End Do
End Do
Return

99999 Format (1X,A,7F10.3,/,(6X,7F10.3))
99998 Format (1X,A,I6)

End Subroutine writxy
End Module c06fxfe_mod

Program c06fxfe

! C06FXF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c06fxf, nag_wp
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Use c06fxfe_mod, Only: nin, nout, readxy, writxy
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Integer :: ieof, ifail, n, n1, n2, n3
Character (1) :: cdum

! .. Local Arrays ..
Real (Kind=nag_wp) :: dum(1)
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’C06FXF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) n1, n2, n3
If (ieof<0) Then

Exit loop
End If

n = n1*n2*n3
Allocate (x(n),y(n))

Call readxy(nin,x,y,n1,n2,n3)
Write (nout,*)
Write (nout,*) ’Original data values’
Call writxy(nout,x,y,n1,n2,n3)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06fxf(n1,n2,n3,x,y,cdum,dum,dum,dum,dum,ifail)

Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Call writxy(nout,x,y,n1,n2,n3)

! -- Compute inverse transform
y(1:n) = -y(1:n)
Call c06fxf(n1,n2,n3,x,y,cdum,dum,dum,dum,dum,ifail)
y(1:n) = -y(1:n)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Call writxy(nout,x,y,n1,n2,n3)
Deallocate (x,y)

End Do loop

End Program c06fxfe

10.2 Program Data

C06FXF Example Program Data
2 3 4 : n1, n2, n3

1.000 0.999 0.987 0.936
0.000 -0.040 -0.159 -0.352
0.994 0.989 0.963 0.891

-0.111 -0.151 -0.268 -0.454
0.903 0.885 0.823 0.694

-0.430 -0.466 -0.568 -0.720
0.500 0.499 0.487 0.436
0.500 0.040 0.159 0.352
0.494 0.489 0.463 0.391
0.111 0.151 0.268 0.454
0.403 0.385 0.323 0.194
0.430 0.466 0.568 0.720 : x, y
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10.3 Program Results

C06FXF Example Program Results

Original data values

z(i,j,k) for i = 1

Real 1.000 0.999 0.987 0.936
Imag 0.000 -0.040 -0.159 -0.352

Real 0.994 0.989 0.963 0.891
Imag -0.111 -0.151 -0.268 -0.454

Real 0.903 0.885 0.823 0.694
Imag -0.430 -0.466 -0.568 -0.720

z(i,j,k) for i = 2

Real 0.500 0.499 0.487 0.436
Imag 0.500 0.040 0.159 0.352

Real 0.494 0.489 0.463 0.391
Imag 0.111 0.151 0.268 0.454

Real 0.403 0.385 0.323 0.194
Imag 0.430 0.466 0.568 0.720

Components of discrete Fourier transform

z(i,j,k) for i = 1

Real 3.292 0.051 0.113 0.051
Imag 0.102 -0.042 0.102 0.246

Real 0.143 0.016 -0.024 -0.050
Imag -0.086 0.153 0.127 0.086

Real 0.143 -0.050 -0.024 0.016
Imag 0.290 0.118 0.077 0.051

z(i,j,k) for i = 2

Real 1.225 0.355 -0.000 -0.355
Imag -1.620 0.083 0.162 0.083

Real 0.424 0.020 0.013 -0.007
Imag 0.320 -0.115 -0.091 -0.080

Real -0.424 0.007 -0.013 -0.020
Imag 0.320 -0.080 -0.091 -0.115

Original sequence as restored by inverse transform

z(i,j,k) for i = 1

Real 1.000 0.999 0.987 0.936
Imag 0.000 -0.040 -0.159 -0.352

Real 0.994 0.989 0.963 0.891
Imag -0.111 -0.151 -0.268 -0.454

Real 0.903 0.885 0.823 0.694
Imag -0.430 -0.466 -0.568 -0.720

z(i,j,k) for i = 2

Real 0.500 0.499 0.487 0.436
Imag 0.500 0.040 0.159 0.352

C06FXF NAG Library Manual

C06FXF.6 Mark 26



Real 0.494 0.489 0.463 0.391
Imag 0.111 0.151 0.268 0.454

Real 0.403 0.385 0.323 0.194
Imag 0.430 0.466 0.568 0.720
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NAG Library Routine Document

C06LAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06LAF estimates values of the inverse Laplace transform of a given function using a Fourier series
approximation. Real and imaginary parts of the function, and a bound on the exponential order of the
inverse, are required.

2 Specification

SUBROUTINE C06LAF (FUN, N, T, VALINV, ERREST, RELERR, ALPHAB, TFAC,
MXTERM, NTERMS, NA, ALOW, AHIGH, NFEVAL, WORK, IFAIL)

&

INTEGER N, MXTERM, NTERMS, NA, NFEVAL, IFAIL
REAL (KIND=nag_wp) T(N), VALINV(N), ERREST(N), RELERR, ALPHAB, TFAC,

ALOW, AHIGH, WORK(4*MXTERM+2)
&

EXTERNAL FUN

3 Description

Given a function F pð Þ defined for complex values of p, C06LAF estimates values of its inverse Laplace
transform by Crump's method (see Crump (1976)). (For a definition of the Laplace transform and its
inverse, see the C06 Chapter Introduction.)

Crump's method applies the epsilon algorithm (see Wynn (1956)) to the summation in Durbin's Fourier
series approximation (see Durbin (1974))

f tj
� �
’ e

atj

�
1
2F að Þ �

X1
k¼1

Re F aþ k	i
�

� �� �
cos

k	tj
�
� Im F aþ k	i

�

� �� �
sin

k	tj
�


 �" #
;

for j ¼ 1; 2; . . . ; n, by choosing a such that a prescribed relative error should be achieved. The method
is modified slightly if t ¼ 0:0 so that an estimate of f 0:0ð Þ can be obtained when it has a finite value. �
is calculated as tfac �max 0:01; tj

� �
, where tfac > 0:5. You specify tfac and �b, an upper bound on the

exponential order � of the inverse function f tð Þ. � has two alternative interpretations:

(i) � is the smallest number such that

f tð Þj j � m� exp �tð Þ

for large t,

(ii) � is the real part of the singularity of F pð Þ with largest real part.

The method depends critically on the value of �. See Section 9 for further details. The routine
calculates at least two different values of the argument a, such that a > �b, in an attempt to achieve the
requested relative error and provide error estimates. The values of tj , for j ¼ 1; 2; . . . ; n, must be
supplied in monotonically increasing order. The routine calculates the values of the inverse function
f tj
� �

in decreasing order of j.
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5 Arguments

1: FUN – SUBROUTINE, supplied by the user. External Procedure

FUN must evaluate the real and imaginary parts of the function F pð Þ for a given value of p.

The specification of FUN is:

SUBROUTINE FUN (PR, PI, FR, FI)

REAL (KIND=nag_wp) PR, PI, FR, FI

1: PR – REAL (KIND=nag_wp) Input
2: PI – REAL (KIND=nag_wp) Input

On entry: the real and imaginary parts of the argument p.

3: FR – REAL (KIND=nag_wp) Output
4: FI – REAL (KIND=nag_wp) Output

On exit: the real and imaginary parts of the value F pð Þ.

FUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which C06LAF is called. Arguments denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: n, the number of points at which the value of the inverse Laplace transform is required.

Constraint: N � 1.

3: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: each TðjÞ must specify a point at which the inverse Laplace transform is required , for
j ¼ 1; 2; . . . ; n.

Constraint: 0:0 � Tð1Þ < Tð2Þ < � � � < TðnÞ.

4: VALINVðNÞ – REAL (KIND=nag_wp) array Output

On exit: an estimate of the value of the inverse Laplace transform at t ¼ TðjÞ, for j ¼ 1; 2; . . . ; n.

5: ERRESTðNÞ – REAL (KIND=nag_wp) array Output

On exit: an estimate of the error in VALINVðjÞ. This is usually an estimate of relative error but,
if VALINVðjÞ < RELERR, ERRESTðjÞ estimates the absolute error. ERRESTðjÞ is unreliable
when VALINVðjÞ is small but slightly greater than RELERR.

6: RELERR – REAL (KIND=nag_wp) Input

On entry: the required relative error in the values of the inverse Laplace transform. If the
absolute value of the inverse is less than RELERR, then absolute accuracy is used instead.
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RELERR must be in the range 0:0 � RELERR < 1:0. If RELERR is set too small or to 0:0, then
the routine uses a value sufficiently larger than machine precision.

7: ALPHAB – REAL (KIND=nag_wp) Input

On entry: �b, an upper bound for � (see Section 3). Usually, �b should be specified equal to, or
slightly larger than, the value of �. If �b < � then the prescribed accuracy may not be achieved
or completely incorrect results may be obtained. If �b is too large C06LAF will be inefficient and
convergence may not be achieved.

Note: it is as important to specify �b correctly as it is to specify the correct function for
inversion.

8: TFAC – REAL (KIND=nag_wp) Input

On entry: tfac, a factor to be used in calculating the parameter �. Larger values (e.g., 5:0) may be
specified for difficult problems, but these may require very large values of MXTERM.

Suggested value: TFAC ¼ 0:8.

Constraint: TFAC > 0:5.

9: MXTERM – INTEGER Input

On entry: the maximum number of (complex) terms to be used in the evaluation of the Fourier
series.

Suggested value: MXTERM � 100, except for very simple problems.

Constraint: MXTERM � 1.

10: NTERMS – INTEGER Output

On exit: the number of (complex) terms actually used.

11: NA – INTEGER Output

On exit: the number of values of a used by the routine. See Section 9.

12: ALOW – REAL (KIND=nag_wp) Output

On exit: the smallest value of a used in the algorithm. This may be used for checking the value
of ALPHAB� see Section 9.

13: AHIGH – REAL (KIND=nag_wp) Output

On exit: the largest value of a used in the algorithm. This may be used for checking the value of
ALPHAB� see Section 9.

14: NFEVAL – INTEGER Output

On exit: the number of calls to FUN made by the routine.

15: WORKð4�MXTERMþ 2Þ – REAL (KIND=nag_wp) array Workspace

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: C06LAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or MXTERM < 1,
or RELERR < 0:0,
or RELERR � 1:0,
or TFAC � 0:5.

IFAIL ¼ 2

On entry, Tð1Þ < 0:0,
or Tð1Þ;Tð2Þ; . . . ;TðNÞ are not in strictly increasing order.

IFAIL ¼ 3

TðNÞ is too large for this value of ALPHAB. If necessary, scale the problem as described in
Section 9.

IFAIL ¼ 4

The required accuracy cannot be obtained. It is possible that ALPHAB is less than �.
Alternatively, the problem may be especially difficult. Try increasing TFAC, ALPHAB or both.

IFAIL ¼ 5

Convergence failure in the epsilon algorithm. Some values of VALINVðjÞ may be calculated to
the desired accuracy; this may be determined by examining the values of ERRESTðjÞ. Try
reducing the range of T or increasing MXTERM. If IFAIL ¼ 5 still results, try reducing TFAC.

IFAIL ¼ 6

All values of VALINVðjÞ have been calculated but not all are to the requested accuracy; the
values of ERRESTðjÞ should be examined carefully. Try reducing the range of t, or increasing
TFAC, ALPHAB or both.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The error estimates are often very close to the true error but, because the error control depends on an
asymptotic formula, the required error may not always be met. There are two principal causes of this:
Gibbs' phenomena, and zero or small values of the inverse Laplace transform.

Gibbs' phenomena (see the C06 Chapter Introduction) are exhibited near t ¼ 0:0 (due to the method)
and around discontinuities in the inverse Laplace transform f tð Þ. If there is a discontinuity at t ¼ c then
the method converges such that f cð Þ ! f c�ð Þ þ f cþð Þð Þ=2.
Apparent loss of accuracy, when f tð Þ is small, may not be serious. Crump's method keeps control of
relative error so that good approximations to small function values may appear to be very inaccurate. If
f tð Þj j is estimated to be less than RELERR then this routine switches to absolute error estimation.
However, when f tð Þj j is slightly larger than RELERR the relative error estimates are likely to cause
IFAIL ¼ 6. If this is found inconvenient it can sometimes be avoided by adding k=p to the function
F pð Þ, which shifts the inverse to kþ f tð Þ.
Loss of accuracy may also occur for highly oscillatory functions.

More serious loss of accuracy can occur if � is unknown and is incorrectly estimated. See Section 9.

8 Parallelism and Performance

C06LAF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The value of n is less important in general than the value of NTERMS. Unless FUN is very inexpensive
to compute, the timing is proportional to NA� NTERMS. For simple problems NA ¼ 2 but in difficult
problems NA may be somewhat larger.

9.2 Precautions

You are referred to the C06 Chapter Introduction for advice on simplifying problems with particular
difficulties, e.g., where the inverse is known to be a step function.

The method does not work well for large values of t when � is positive. It is advisable, especially if
IFAIL ¼ 3 is obtained, to scale the problem if �j j is much greater than 1:0. See the C06 Chapter
Introduction.

The range of values of t specified for a particular call should not be greater than about 10 units. This is
because the method uses arguments based on the value TðnÞ and these tend to be less appropriate as t
becomes smaller. However, as the timing of the routine is not especially dependent on n, it is usually
far more efficient to evaluate the inverse for ranges of t than to make separate calls to the routine for
each value of t.

The most important argument to specify correctly is ALPHAB, an upper bound for �. If, on entry,
ALPHAB is sufficiently smaller than � then completely incorrect results will be obtained with
IFAIL ¼ 0. Unless � is known theoretically it is strongly advised that you should test any estimated
value used. This may be done by specifying a single value of t (i.e TðnÞ, n ¼ 1) with two sets of
suitable values of TFAC, RELERR and MXTERM, and examining the resulting values of ALOW and
AHIGH. The value of Tð1Þ should be chosen very carefully and the following points should be borne in
mind:

(i) Tð1Þ should be small but not too close to 0:0 because of Gibbs' phenomenon (see Section 7),

(ii) the larger the value of Tð1Þ, the smaller the range of values of a that will be used in the algorithm,

(iii) Tð1Þ should ideally not be chosen such that f Tð1Þð Þ ¼ 0:0 or a very small value. For suitable
problems Tð1Þ might be chosen as, say, 0:1 or 1:0 depending on these factors. The routine
calculates ALOW from the formula
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ALOW ¼ ALPHAB� ln 0:1� RELERRð Þ
2� � :

Additional values of a are computed by adding 1=� to the previous value. As � ¼ TFAC� TðnÞ, it will
be seen that large values of TFAC and RELERR will test for a close to ALPHAB. Small values of
TFAC and RELERR will test for a large. If the result of both tests is IFAIL ¼ 0, with comparable
values for the inverse, then this gives some credibility to the chosen value of ALPHAB. You should
note that this test could be more computationally expensive than the calculation of the inverse itself.
The example program (see Section 10) illustrates how such a test may be performed.

10 Example

This example estimates the inverse Laplace transform of the function F pð Þ ¼ 1= pþ 1=2ð Þ. The true
inverse of F pð Þ is exp �t=2ð Þ. Two preliminary calls to the routine are made to verify that the chosen
value of ALPHAB is suitable. For these tests the single value Tð1Þ ¼ 1:0 is used. To test values of a
close to ALPHAB, the values TFAC ¼ 5:0 and RELERR ¼ 0:01 are chosen. To test larger a, the values
TFAC ¼ 0:8 and RELERR ¼ 1:0E�3 are used. Because the values of the computed inverse are similar
and IFAIL ¼ 0 in each case, these tests show that there is unlikely to be a singularity of F pð Þ in the
region �0:04 � Re pð Þ � 6:51.

10.1 Program Text

! C06LAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c06lafe_mod

! C06LAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fun

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine fun(pr,pi,fr,fi)

! Function to be inverted

! .. Use Statements ..
Use nag_library, Only: a02acf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fi, fr
Real (Kind=nag_wp), Intent (In) :: pi, pr

! .. Local Scalars ..
Real (Kind=nag_wp) :: xi, xr, yi, yr

! .. Executable Statements ..
xr = 1.0_nag_wp
xi = 0.0_nag_wp
yr = pr + 0.5_nag_wp
yi = pi

Call a02acf(xr,xi,yr,yi,fr,fi)

Return
End Subroutine fun

End Module c06lafe_mod

Program c06lafe

! C06LAF Example Main Program
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! .. Use Statements ..
Use nag_library, Only: c06laf, nag_wp
Use c06lafe_mod, Only: fun, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: ahigh, alow, alphab, relerr, tfac
Integer :: i, ifail, itest, mxterm, n, n1, na, &

nfeval, nterms
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: errest(:), t(:), trurel(:), &
trures(:), valinv(:), work(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, exp, real

! .. Executable Statements ..
Write (nout,*) ’C06LAF Example Program Results’
Write (nout,*)
Write (nout,*) ’(results may be machine-dependent)’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, mxterm
Allocate (errest(n),t(n),trurel(n),trures(n),valinv(n),work(4*mxterm+2))

t(1) = 1.0_nag_wp
alphab = -0.5_nag_wp

tests: Do itest = 1, 3

Select Case (itest)
Case (1)

! Test for values of a close to alphab
relerr = 0.01E0_nag_wp
tfac = 7.5E0_nag_wp
n1 = 1
Write (nout,99997) t(1)

Case (2)
! Test for larger values of a

relerr = 1.0E-3_nag_wp
tfac = 0.8E0_nag_wp
n1 = 1
Write (nout,99997) t(1)

Case (3)
Write (nout,’(/1x,A/)’) ’Compute inverse’
n1 = 5
Do i = 1, n1

t(i) = real(i,kind=nag_wp)
End Do

End Select
Write (nout,99999) mxterm, tfac, alphab, relerr

ifail = -1
Call c06laf(fun,n1,t,valinv,errest,relerr,alphab,tfac,mxterm,nterms, &

na,alow,ahigh,nfeval,work,ifail)

If (ifail==0 .Or. ifail>=5) Then
Write (nout,*)
Write (nout,*) ’ T Result exp(-T/2) ’, &

’Relative error Error estimate’
trures(1:n1) = exp(-0.5_nag_wp*t(1:n1))
trurel(1:n1) = abs((valinv(1:n1)-trures(1:n1))/trures(1:n1))
Write (nout,99998)(t(i),valinv(i),trures(i),trurel(i),errest(i),i=1, &

n1)
Else

Exit tests
End If

End Do tests
If (ifail>=0) Then

Write (nout,99996) nterms, nfeval, alow, ahigh, ifail
End If
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99999 Format (1X,’ MXTERM =’,I4,’ TFAC =’,F6.2,’ ALPHAB =’,F6.2, &
’ RELERR =’,1P,E8.1)

99998 Format (1X,F4.1,7X,F6.3,9X,F6.3,8X,E8.1,8X,E8.1)
99997 Format (/,1X,’Test with T(1) =’,F4.1,/)
99996 Format (/,1X,’ NTERMS =’,I4,’ NFEVAL =’,I4,’ ALOW =’,F7.2,’ AHIGH =’, &

F7.2,’ IFAIL =’,I2)
End Program c06lafe

10.2 Program Data

C06LAF Example Program Data
20 200 : n, mxterm

10.3 Program Results

C06LAF Example Program Results

(results may be machine-dependent)

Test with T(1) = 1.0

MXTERM = 200 TFAC = 7.50 ALPHAB = -0.50 RELERR = 1.0E-02

T Result exp(-T/2) Relative error Error estimate
1.0 0.607 0.607 0.1E-02 0.4E-02

Test with T(1) = 1.0

MXTERM = 200 TFAC = 0.80 ALPHAB = -0.50 RELERR = 1.0E-03

T Result exp(-T/2) Relative error Error estimate
1.0 0.607 0.607 0.2E-04 0.8E-04

Compute inverse

MXTERM = 200 TFAC = 0.80 ALPHAB = -0.50 RELERR = 1.0E-03

T Result exp(-T/2) Relative error Error estimate
1.0 0.607 0.607 0.5E-04 0.3E-03
2.0 0.368 0.368 0.7E-05 0.9E-04
3.0 0.223 0.223 0.2E-04 0.8E-04
4.0 0.135 0.135 0.1E-04 0.8E-04
5.0 0.082 0.082 0.2E-04 0.8E-04

NTERMS = 23 NFEVAL = 43 ALOW = 0.65 AHIGH = 0.90 IFAIL = 0
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NAG Library Routine Document

C06LBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06LBF computes the inverse Laplace transform f tð Þ of a user-supplied function F sð Þ, defined for
complex s. The routine uses a modification of Weeks' method which is suitable when f tð Þ has
continuous derivatives of all orders. The routine returns the coefficients of an expansion which
approximates f tð Þ and can be evaluated for given values of t by subsequent calls of C06LCF.

2 Specification

SUBROUTINE C06LBF (F, SIGMA0, SIGMA, B, EPSTOL, MMAX, M, ACOEF, ERRVEC,
IFAIL)

&

INTEGER MMAX, M, IFAIL
REAL (KIND=nag_wp) SIGMA0, SIGMA, B, EPSTOL, ACOEF(MMAX), ERRVEC(8)
COMPLEX (KIND=nag_wp) F
EXTERNAL F

3 Description

Given a function f tð Þ of a real variable t, its Laplace transform F sð Þ is a function of a complex variable
s, defined by

F sð Þ ¼
Z 1
0
e�stf tð Þ dt; Re sð Þ > �0:

Then f tð Þ is the inverse Laplace transform of F sð Þ. The value �0 is referred to as the abscissa of
convergence of the Laplace transform; it is the rightmost real part of the singularities of F sð Þ.
C06LBF, along with its companion C06LCF, attempts to solve the following problem:

given a function F sð Þ, compute values of its inverse Laplace transform f tð Þ for specified values
of t.

The method is a modification of Weeks' method (see Garbow et al. (1988a)), which approximates f tð Þ
by a truncated Laguerre expansion:

~f tð Þ ¼ e�t
Xm�1
i¼0

aie
�bt=2Li btð Þ; � > �0; b > 0

where Li xð Þ is the Laguerre polynomial of degree i. This routine computes the coefficients ai of the
above Laguerre expansion; the expansion can then be evaluated for specified t by calling C06LCF. You
must supply the value of �0, and also suitable values for � and b: see Section 9 for guidance.

The method is only suitable when f tð Þ has continuous derivatives of all orders. For such functions the
approximation ~f tð Þ is usually good and inexpensive. The routine will fail with an error exit if the
method is not suitable for the supplied function F sð Þ.
The routine is designed to satisfy an accuracy criterion of the form:

f tð Þ � ~f tð Þ
e�t

					
					 < �tol ; for all t

where �tol is a user-supplied bound. The error measure on the left-hand side is referred to as the
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pseudo-relative error, or pseudo-error for short. Note that if � > 0 and t is large, the absolute error in
~f tð Þ may be very large.

C06LBF is derived from the subroutine MODUL1 in Garbow et al. (1988a).

4 References

Garbow B S, Giunta G, Lyness J N and Murli A (1988a) Software for an implementation of Weeks'
method for the inverse laplace transform problem ACM Trans. Math. Software 14 163–170

Garbow B S, Giunta G, Lyness J N and Murli A (1988b) Algorithm 662: A Fortran software package
for the numerical inversion of the Laplace transform based on Weeks' method ACM Trans. Math.
Software 14 171–176

5 Arguments

1: F – COMPLEX (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must return the value of the Laplace transform function F sð Þ for a given complex value of s.

The specification of F is:

FUNCTION F (S)
COMPLEX (KIND=nag_wp) F

COMPLEX (KIND=nag_wp) S

1: S – COMPLEX (KIND=nag_wp) Input

On entry: the value of s for which F sð Þ must be evaluated. The real part of S is greater
than �0.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which C06LBF is called. Arguments denoted as Input must not be changed by this
procedure.

2: SIGMA0 – REAL (KIND=nag_wp) Input

On entry: the abscissa of convergence of the Laplace transform, �0.

3: SIGMA – REAL (KIND=nag_wp) Input/Output

On entry: the parameter � of the Laguerre expansion. If on entry SIGMA � �0, SIGMA is reset
to �0 þ 0:7.

On exit: the value actually used for �, as just described.

4: B – REAL (KIND=nag_wp) Input/Output

On entry: the parameter b of the Laguerre expansion. If on entry B < 2 �� �0ð Þ, B is reset to
2:5 �� �0ð Þ.
On exit: the value actually used for b, as just described.

5: EPSTOL – REAL (KIND=nag_wp) Input

On entry: the required relative pseudo-accuracy, that is, an upper bound on f tð Þ � ~f tð Þ
		 		e��t.

6: MMAX – INTEGER Input

On entry: an upper bound on the number of Laguerre expansion coefficients to be computed. The
number of coefficients actually computed is always a power of 2, so MMAX should be a power
of 2; if MMAX is not a power of 2 then the maximum number of coefficients calculated will be
the largest power of 2 less than MMAX.
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Suggested value: MMAX ¼ 1024 is sufficient for all but a few exceptional cases.

Constraint: MMAX � 8.

7: M – INTEGER Output

On exit: the number of Laguerre expansion coefficients actually computed. The number of calls
to F is M=2þ 2.

8: ACOEFðMMAXÞ – REAL (KIND=nag_wp) array Output

On exit: the first M elements contain the computed Laguerre expansion coefficients, ai.

9: ERRVECð8Þ – REAL (KIND=nag_wp) array Output

On exit: an 8-component vector of diagnostic information.

ERRVECð1Þ
Overall estimate of the pseudo-error
f tð Þ � ~f tð Þ
		 		e��t ¼ ERRVECð2Þ þ ERRVECð3Þ þ ERRVECð4Þ.

ERRVECð2Þ
Estimate of the discretization pseudo-error.

ERRVECð3Þ
Estimate of the truncation pseudo-error.

ERRVECð4Þ
Estimate of the condition pseudo-error on the basis of minimal noise levels in function
values.

ERRVECð5Þ
K, coefficient of a heuristic decay function for the expansion coefficients.

ERRVECð6Þ
R, base of the decay function for the expansion coefficients.

ERRVECð7Þ
Logarithm of the largest expansion coefficient.

ERRVECð8Þ
Logarithm of the smallest nonzero expansion coefficient.

The values K and R returned in ERRVECð5Þ and ERRVECð6Þ define a decay function KR�i

constructed by the routine for the purposes of error estimation. It satisfies

aij j < KR�i; i ¼ 1; 2; . . . ;m:

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: C06LBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MMAX < 8.

IFAIL ¼ 2

The estimated pseudo-error bounds are slightly larger than EPSTOL. Note, however, that the
actual errors in the final results may be smaller than EPSTOL as bounds independent of the value
of t are pessimistic.

IFAIL ¼ 3

Computation was terminated early because the estimate of rounding error was greater than
EPSTOL. Increasing EPSTOL may help.

IFAIL ¼ 4

The decay rate of the coefficients is too small. Increasing MMAX may help.

IFAIL ¼ 5

The decay rate of the coefficients is too small. In addition the rounding error is such that the
required accuracy cannot be obtained. Increasing MMAX or EPSTOL may help.

IFAIL ¼ 6

The behaviour of the coefficients does not enable reasonable prediction of error bounds. Check
the value of SIGMA0. In this case, ERRVECðiÞ is set to �1:0, for i ¼ 1; 2; . . . ; 5.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

When IFAIL � 3, changing SIGMA or B may help. If not, the method should be abandoned.

7 Accuracy

The error estimate returned in ERRVECð1Þ has been found in practice to be a highly reliable bound on
the pseudo-error f tð Þ � ~f tð Þ

		 		e��t.
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8 Parallelism and Performance

C06LBF is not threaded in any implementation.

9 Further Comments

9.1 The Role of �0

Nearly all techniques for inversion of the Laplace transform require you to supply the value of �0, the
convergence abscissa, or else an upper bound on �0. For this routine, one of the reasons for having to
supply �0 is that the argument � must be greater than �0; otherwise the series for ~f tð Þ will not
converge.

If you do not know the value of �0, you must be prepared for significant preliminary effort, either in
experimenting with the method and obtaining chaotic results, or in attempting to locate the rightmost
singularity of F sð Þ.
The value of �0 is also relevant in defining a natural accuracy criterion. For large t, f tð Þ is of uniform
numerical order ke�0t, so a natural measure of relative accuracy of the approximation ~f tð Þ is:

�nat tð Þ ¼ ~f tð Þ � f tð Þ
� �

=e�0t:

C06LBF uses the supplied value of �0 only in determining the values of � and b (see Sections 9.2 and
9.3); thereafter it bases its computation entirely on � and b.

9.2 Choice of �

Even when the value of �0 is known, choosing a value for � is not easy. Briefly, the series for ~f tð Þ
converges slowly when �� �0 is small, and faster when �� �0 is larger. However the natural accuracy
measure satisfies

�nat tð Þj j < �tole
���0ð Þt

and this degrades exponentially with t, the exponential constant being �� �0.
Hence, if you require meaningful results over a large range of values of t, you should choose �� �0
small, in which case the series for ~f tð Þ converges slowly; while for a smaller range of values of t, you
can allow �� �0 to be larger and obtain faster convergence.

The default value for � used by C06LBF is �0 þ 0:7. There is no theoretical justification for this.

9.3 Choice of b

The simplest advice for choosing b is to set b=2 � �� �0. The default value used by the routine is
2:5 �� �0ð Þ. A more refined choice is to set

b=2 � min
j
�� sj
		 		

where sj are the singularities of F sð Þ.

10 Example

This example computes values of the inverse Laplace transform of the function

F sð Þ ¼ 3

s2 � 9
:

The exact answer is

f tð Þ ¼ sinh 3t:

The program first calls C06LBF to compute the coefficients of the Laguerre expansion, and then calls
C06LCF to evaluate the expansion at t ¼ 0, 1, 2, 3, 4, 5.
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10.1 Program Text

! C06LBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c06lbfe_mod

! C06LBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function f(s)

! .. Function Return Value ..
Complex (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Complex (Kind=nag_wp), Intent (In) :: s

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
f = cmplx(3.0E0_nag_wp,kind=nag_wp)/(s**2-cmplx(9.0E0_nag_wp,kind= &

nag_wp))
Return

End Function f
End Module c06lbfe_mod

Program c06lbfe

! C06LBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c06lbf, c06lcf, nag_wp
Use c06lbfe_mod, Only: f, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: b, epstol, exact, finv, pserr, &

sigma, sigma0, t
Integer :: ifail, j, m, mmax

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: acoef(:)
Real (Kind=nag_wp) :: errvec(8)

! .. Intrinsic Procedures ..
Intrinsic :: abs, exp, real, sinh

! .. Executable Statements ..
Write (nout,*) ’C06LBF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) mmax
Allocate (acoef(mmax))
Read (nin,*) sigma0, epstol, sigma, b

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Compute inverse transform

Call c06lbf(f,sigma0,sigma,b,epstol,mmax,m,acoef,errvec,ifail)

Write (nout,*)
Write (nout,99999) ’No. of coefficients returned by C06LBF =’, m
Write (nout,*)
Write (nout,99998) ’ ’, ’Computed’, ’Exact’, ’Pseudo’
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Write (nout,99998) ’T’, ’ f(T)’, ’ f(T)’, ’ error’
Write (nout,*)

! Evaluate inverse transform for different values of t
Do j = 0, 5

t = real(j,kind=nag_wp)

Call c06lcf(t,sigma,b,m,acoef,errvec,finv,ifail)

exact = sinh(3.0E0_nag_wp*t)
pserr = abs(finv-exact)/exp(sigma*t)
Write (nout,99997) t, finv, exact, pserr

End Do

99999 Format (1X,A,I6)
99998 Format (1X,A10,A15,A15,A12)
99997 Format (1X,1P,E10.2,2E15.4,E12.1)

End Program c06lbfe

10.2 Program Data

C06LBF Example Program Data
514 : mmax
3.0 0.00001 0.0 0.0 : sigma0, epstol, sigma, b

10.3 Program Results

C06LBF Example Program Results

No. of coefficients returned by C06LBF = 64

Computed Exact Pseudo
T f(T) f(T) error

0.00E+00 1.5129E-09 0.0000E+00 1.5E-09
1.00E+00 1.0018E+01 1.0018E+01 1.7E-09
2.00E+00 2.0171E+02 2.0171E+02 1.2E-10
3.00E+00 4.0515E+03 4.0515E+03 9.8E-10
4.00E+00 8.1377E+04 8.1377E+04 3.0E-10
5.00E+00 1.6345E+06 1.6345E+06 1.7E-09
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NAG Library Routine Document

C06LCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06LCF evaluates an inverse Laplace transform at a given point, using the expansion coefficients
computed by C06LBF.

2 Specification

SUBROUTINE C06LCF (T, SIGMA, B, M, ACOEF, ERRVEC, FINV, IFAIL)

INTEGER M, IFAIL
REAL (KIND=nag_wp) T, SIGMA, B, ACOEF(M), ERRVEC(8), FINV

3 Description

C06LCF is designed to be used following a call to C06LBF, which computes an inverse Laplace
transform by representing it as a Laguerre expansion of the form:

~f tð Þ ¼ e�t
Xm�1
i¼0

aie
�bt=2Li btð Þ; � > �O; b > 0

where Li xð Þ is the Laguerre polynomial of degree i.

This routine simply evaluates the above expansion for a specified value of t.

C06LCF is derived from the subroutine MODUL2 in Garbow et al. (1988)

4 References

Garbow B S, Giunta G, Lyness J N and Murli A (1988) Algorithm 662: A Fortran software package for
the numerical inversion of the Laplace transform based on Weeks' method ACM Trans. Math. Software
14 171–176

5 Arguments

1: T – REAL (KIND=nag_wp) Input

On entry: the value t for which the inverse Laplace transform f tð Þ must be evaluated.

2: SIGMA – REAL (KIND=nag_wp) Input
3: B – REAL (KIND=nag_wp) Input
4: M – INTEGER Input
5: ACOEFðMÞ – REAL (KIND=nag_wp) array Input
6: ERRVECð8Þ – REAL (KIND=nag_wp) array Input

On entry: SIGMA, B, M, ACOEF and ERRVEC must be unchanged from the previous call of
C06LBF.

7: FINV – REAL (KIND=nag_wp) Output

On exit: the approximation to the inverse Laplace transform at t.
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8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The approximation to f tð Þ is too large to be representable: FINV is set to 0:0.

IFAIL ¼ 2

The approximation to f tð Þ is too small to be representable: FINV is set to 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The error estimate returned by C06LBF in ERRVECð1Þ has been found in practice to be a highly
reliable bound on the pseudo-error f tð Þ � ~f tð Þ

		 		e��t.
8 Parallelism and Performance

C06LCF is not threaded in any implementation.

9 Further Comments

C06LCF is primarily designed to evaluate ~f tð Þ when t > 0. When t � 0, the result approximates the
analytic continuation of f tð Þ; the approximation becomes progressively poorer as t becomes more
negative.
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10 Example

See example for C06LBF.
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NAG Library Routine Document

C06PAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PAF calculates the discrete Fourier transform of a sequence of n real data values or of a Hermitian
sequence of n complex data values stored in compact form in a real array.

2 Specification

SUBROUTINE C06PAF (DIRECT, X, N, WORK, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N+2), WORK(*)
CHARACTER(1) DIRECT

3 Description

Given a sequence of n real data values xj , for j ¼ 0; 1; . . . ; n� 1, C06PAF calculates their discrete
Fourier transform (in the forward direction) defined by

ẑk ¼
1ffiffiffi
n
p
Xn�1
j¼0

xj � exp �i2	jk
n

� �
; k ¼ 0; 1; . . . ; n� 1:

The transformed values ẑk are complex, but they form a Hermitian sequence (i.e., ẑn�k is the complex
conjugate of ẑk), so they are completely determined by n real numbers (since ẑ0 is real, as is ẑn=2 for n
even).

Alternatively, given a Hermitian sequence of n complex data values zj, this routine calculates their
inverse (backward) discrete Fourier transform defined by

x̂k ¼
1ffiffiffi
n
p
Xn�1
j¼0

zj � exp i
2	jk

n

� �
; k ¼ 0; 1; . . . ; n� 1:

The transformed values x̂k are real.

(Note the scale factor of 1ffiffi
n
p in the above definitions.)

A call of C06PAF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

C06PAF uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, which is described in Temperton (1983).

The same functionality is available using the forward and backward transform routine pair: C06PVF
and C06PWF on setting N ¼ 1. This pair use a different storage solution; real data is stored in a real
array, while Hermitian data (the first unconjugated half) is stored in a complex array.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23
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5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.

If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .

2: XðNþ 2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if X is declared with bounds 0 : Nþ 1ð Þ in the subroutine from which C06PAF is
called, then:

if DIRECT ¼ F , XðjÞ must contain xj , for j ¼ 0; 1; . . . ; n� 1;

if DIRECT ¼ B , Xð2� kÞ and Xð2� k þ 1Þ must contain the real and imaginary parts
respectively of zk , for k ¼ 0; 1; . . . ; n=2. (Note that for the sequence zk to be Hermitian, the
imaginary part of z0, and of zn=2 for n even, must be zero.)

On exit:

if DIRECT ¼ F and X is declared with bounds 0 : Nþ 1ð Þ, Xð2� kÞ and Xð2� k þ 1Þ
will contain the real and imaginary parts respectively of ẑk , for k ¼ 0; 1; . . . ; n=2;

if DIRECT ¼ B and X is declared with bounds 0 : Nþ 1ð Þ, XðjÞ will contain x̂j , for
j ¼ 0; 1; . . . ; n� 1.

3: N – INTEGER Input

On entry: n, the number of data values.

Constraint: N � 1.

4: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least 3� Nþ 100.

The workspace requirements as documented for C06PAF may be an overestimate in some
implementations.

On exit: WORKð1Þ contains the minimum workspace required for the current value of N with
this implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 2

valueh i is an invalid value of DIRECT.

IFAIL ¼ 3

An internal error has occurred in this routine. Check the routine call and any array sizes. If the
call is correct then please contact NAG for assistance.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06PAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n� log nð Þ, but also depends on the factorization of n.
C06PAF is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.
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10 Example

This example reads in a sequence of real data values and prints their discrete Fourier transform (as
computed by C06PAF with DIRECT ¼ F ), after expanding it from complex Hermitian form into a full
complex sequence. It then performs an inverse transform using C06PAF with DIRECT ¼ B , and prints
the sequence so obtained alongside the original data values.

10.1 Program Text

Program c06pafe

! C06PAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06paf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ieof, ifail, j, n, nj

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), x(:), xx(:)

! .. Executable Statements ..
Write (nout,*) ’C06PAF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) n
If (ieof<0) Then

Exit loop
End If

Allocate (work(3*n+100),x(0:n+1),xx(0:n-1))
Read (nin,*) x(0:n-1)
xx(0:n-1) = x(0:n-1)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06paf(’F’,x,n,work,ifail)

Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Write (nout,*)
Write (nout,*) ’ Real Imag’
Write (nout,*)
Write (nout,99999)(j,x(2*j),x(2*j+1),j=0,n/2)
Do j = n/2 + 1, n - 1

nj = n - j
Write (nout,99999) j, x(2*nj), -x(2*nj+1)

End Do

Call c06paf(’B’,x,n,work,ifail)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Write (nout,*)
Write (nout,*) ’ Original Restored’
Write (nout,*)
Write (nout,99999)(j,xx(j),x(j),j=0,n-1)
Deallocate (work,x,xx)

End Do loop

99999 Format (1X,I5,2F10.5)
End Program c06pafe
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10.2 Program Data

C06PAF Example Program Data
7 : n

0.34907
0.54890
0.74776
0.94459
1.13850
1.32850
1.51370 : x

10.3 Program Results

C06PAF Example Program Results

Components of discrete Fourier transform

Real Imag

0 2.48361 0.00000
1 -0.26599 0.53090
2 -0.25768 0.20298
3 -0.25636 0.05806
4 -0.25636 -0.05806
5 -0.25768 -0.20298
6 -0.26599 -0.53090

Original sequence as restored by inverse transform

Original Restored

0 0.34907 0.34907
1 0.54890 0.54890
2 0.74776 0.74776
3 0.94459 0.94459
4 1.13850 1.13850
5 1.32850 1.32850
6 1.51370 1.51370
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NAG Library Routine Document

C06PCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PCF calculates the discrete Fourier transform of a sequence of n complex data values (using
complex data type).

2 Specification

SUBROUTINE C06PCF (DIRECT, X, N, WORK, IFAIL)

INTEGER N, IFAIL
COMPLEX (KIND=nag_wp) X(N), WORK(*)
CHARACTER(1) DIRECT

3 Description

Given a sequence of n complex data values zj , for j ¼ 0; 1; . . . ; n� 1, C06PCF calculates their
(forward or backward) discrete Fourier transform (DFT) defined by

ẑk ¼
1ffiffiffi
n
p
Xn�1
j¼0

zj � exp 
i2	jk
n

� �
; k ¼ 0; 1; . . . ; n� 1:

(Note the scale factor of 1ffiffi
n
p in this definition.) The minus sign is taken in the argument of the

exponential within the summation when the forward transform is required, and the plus sign is taken
when the backward transform is required.

A call of C06PCF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

C06PCF uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, which is described in Temperton (1983). If n is a large prime
number or if n contains large prime factors, then the Fourier transform is performed using Bluestein's
algorithm (see Bluestein (1968)), which expresses the DFT as a convolution that in turn can be
efficiently computed using FFTs of highly composite sizes.

4 References

Bluestein L I (1968) A linear filtering approach to the computation of the discrete Fourier transform
Northeast Electronics Research and Engineering Meeting Record 10 218–219

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.

If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .
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2: XðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: if X is declared with bounds 0 : N� 1ð Þ in the subroutine from which C06PCF is
called, then XðjÞ must contain zj , for j ¼ 0; 1; . . . ; n� 1.

On exit: the components of the discrete Fourier transform. If X is declared with bounds
0 : N� 1ð Þ in the subroutine from which C06PCF is called, then ẑk is contained in XðkÞ, for
0 � k � n� 1.

3: N – INTEGER Input

On entry: n, the number of data values.

Constraint: N � 1.

4: WORKð�Þ – COMPLEX (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least 2� Nþ 15.

The workspace requirements as documented for C06PCF may be an overestimate in some
implementations.

On exit: the real part of WORKð1Þ contains the minimum workspace required for the current
value of N with this implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

IFAIL ¼ 2

On entry, DIRECT 6¼ F or B .

IFAIL ¼ 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06PCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n� log nð Þ, but also depends on the factorization of n.
C06PCF is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.
When the Bluestein's FFT algorithm is in use, an additional complex workspace of size approximately
8n is allocated.

10 Example

This example reads in a sequence of complex data values and prints their discrete Fourier transform (as
computed by C06PCF with DIRECT ¼ F ). It then performs an inverse transform using C06PCF with
DIRECT ¼ B , and prints the sequence so obtained alongside the original data values.

10.1 Program Text

Program c06pcfe

! C06PCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06pcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ieof, ifail, j, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: work(:), x(:), xx(:)

! .. Executable Statements ..
Write (nout,*) ’C06PCF Example Program Results’

! Skip heading in data file
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Read (nin,*)
loop: Do

Read (nin,*,Iostat=ieof) n
If (ieof<0) Then

Exit loop
End If

Allocate (work(2*n+15),x(0:n-1),xx(0:n-1))
Read (nin,*) x(0:n-1)
xx(0:n-1) = x(0:n-1)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06pcf(’F’,x,n,work,ifail)

Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Write (nout,*)
Write (nout,*) ’ Real Imag’
Write (nout,*)
Do j = 0, n - 1

Write (nout,99999) j, x(j)
End Do

Call c06pcf(’B’,x,n,work,ifail)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Write (nout,*)
Write (nout,*) ’ Original Restored’
Write (nout,*) ’ Real Imag Real Imag’
Write (nout,*)
Do j = 0, n - 1

Write (nout,99999) j, xx(j), x(j)
End Do
Deallocate (work,x,xx)

End Do loop

99999 Format (1X,I5,2(:,5X,’(’,F8.5,’,’,F8.5,’)’))
End Program c06pcfe

10.2 Program Data

C06PCF Example Program Data
7 : n

(0.34907, -0.37168)
(0.54890, -0.35669)
(0.74776, -0.31175)
(0.94459, -0.23702)
(1.13850, -0.13274)
(1.32850, 0.00074)
(1.51370, 0.16298) : x

10.3 Program Results

C06PCF Example Program Results

Components of discrete Fourier transform

Real Imag

0 ( 2.48361,-0.47100)
1 (-0.55180, 0.49684)
2 (-0.36711, 0.09756)
3 (-0.28767,-0.05865)
4 (-0.22506,-0.17477)
5 (-0.14825,-0.30840)
6 ( 0.01983,-0.56496)
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Original sequence as restored by inverse transform

Original Restored
Real Imag Real Imag

0 ( 0.34907,-0.37168) ( 0.34907,-0.37168)
1 ( 0.54890,-0.35669) ( 0.54890,-0.35669)
2 ( 0.74776,-0.31175) ( 0.74776,-0.31175)
3 ( 0.94459,-0.23702) ( 0.94459,-0.23702)
4 ( 1.13850,-0.13274) ( 1.13850,-0.13274)
5 ( 1.32850, 0.00074) ( 1.32850, 0.00074)
6 ( 1.51370, 0.16298) ( 1.51370, 0.16298)
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NAG Library Routine Document

C06PFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PFF computes the discrete Fourier transform of one variable in a multivariate sequence of complex
data values.

2 Specification

SUBROUTINE C06PFF (DIRECT, NDIM, L, ND, N, X, WORK, LWORK, IFAIL)

INTEGER NDIM, L, ND(NDIM), N, LWORK, IFAIL
COMPLEX (KIND=nag_wp) X(N), WORK(LWORK)
CHARACTER(1) DIRECT

3 Description

C06PFF computes the discrete Fourier transform of one variable (the lth say) in a multivariate sequence
of complex data values zj1j2���jm , where j1 ¼ 0; 1; . . . ; n1 � 1; j2 ¼ 0; 1; . . . ; n2 � 1, and so on. Thus
the individual dimensions are n1; n2; . . . ; nm, and the total number of data values is
n ¼ n1 � n2 � � � � � nm.
The routine computes n=nl one-dimensional transforms defined by

ẑj1...kl...jm ¼
1ffiffiffiffiffi
nl
p

Xnl�1
jl¼0

zj1...jl...jm � exp 
2	ijlkl
nl

� �
;

where kl ¼ 0; 1; . . . ; nl � 1. The plus or minus sign in the argument of the exponential terms in the
above definition determine the direction of the transform: a minus sign defines the forward direction
and a plus sign defines the backward direction.

(Note the scale factor of 1ffiffiffi
nl
p in this definition.)

A call of C06PFF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

The data values must be supplied in a one-dimensional complex array using column-major storage
ordering of multidimensional data (i.e., with the first subscript j1 varying most rapidly).

This routine calls C06PRF to perform one-dimensional discrete Fourier transforms. Hence, the routine
uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as the
Stockham self-sorting algorithm, which is described in Temperton (1983).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.
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If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .

2: NDIM – INTEGER Input

On entry: m, the number of dimensions (or variables) in the multivariate data.

Constraint: NDIM � 1.

3: L – INTEGER Input

On entry: l, the index of the variable (or dimension) on which the discrete Fourier transform is to
be performed.

Constraint: 1 � L � NDIM.

4: NDðNDIMÞ – INTEGER array Input

On entry: the elements of ND must contain the dimensions of the NDIM variables; that is, NDðiÞ
must contain the dimension of the ith variable.

Constraint: NDðiÞ � 1, for i ¼ 1; 2; . . . ;NDIM.

5: N – INTEGER Input

On entry: n, the total number of data values.

Constraint: N must equal the product of the first NDIM elements of the array ND.

6: XðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the complex data values. Data values are stored in X using column-major ordering for
storing multidimensional arrays; that is, zj1j2���jm is stored in Xð1þ j1 þ n1j2 þ n1n2j3 þ � � �Þ.
On exit: the corresponding elements of the computed transform.

7: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Workspace

The workspace requirements as documented for C06PFF may be an overestimate in some
implementations.

On exit: the real part of WORKð1Þ contains the minimum workspace required for the current
value of N with this implementation.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
C06PFF is called.

Suggested value: LWORK � Nþ NDðLÞ þ 15.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1.

IFAIL ¼ 2

On entry, L < 1 or L > NDIM.

IFAIL ¼ 3

On entry, DIRECT 6¼ F or B .

IFAIL ¼ 4

On entry, at least one of the first NDIM elements of ND is less than 1.

IFAIL ¼ 5

On entry, N does not equal the product of the first NDIM elements of ND.

IFAIL ¼ 6

On entry, LWORK is too small. The minimum amount of workspace required is returned in
WORKð1Þ.

IFAIL ¼ 8

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06PFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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C06PFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n� lognl, but also depends on the factorization of nl.
C06PFF is faster if the only prime factors of nl are 2, 3 or 5; and fastest of all if nl is a power of 2.

10 Example

This example reads in a bivariate sequence of complex data values and prints the discrete Fourier
transform of the second variable. It then performs an inverse transform and prints the sequence so
obtained, which may be compared with the original data values.

10.1 Program Text

! C06PFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c06pffe_mod

! C06PFF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: readx, writx

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine readx(nin,x,n1,n2)

! Read 2-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nin

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: x(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Executable Statements ..
Do i = 1, n1

Read (nin,*)(x(i,j),j=1,n2)
End Do
Return

End Subroutine readx

Subroutine writx(nout,x,n1,n2)
! Print 2-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nout

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: x(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Executable Statements ..
Do i = 1, n1
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Write (nout,*)
Write (nout,99999)(x(i,j),j=1,n2)

End Do
Return

99999 Format (1X,7(:,1X,’(’,F6.3,’,’,F6.3,’)’))
End Subroutine writx

End Module c06pffe_mod

Program c06pffe

! C06PFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c06pff, nag_wp
Use c06pffe_mod, Only: nin, nout, readx, writx

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: ieof, ifail, l, lwork, n, ndim

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: work(:), x(:)
Integer, Allocatable :: nd(:)

! .. Intrinsic Procedures ..
Intrinsic :: product

! .. Executable Statements ..
Write (nout,*) ’C06PFF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) ndim
If (ieof<0) Then

Exit loop
End If
Allocate (nd(ndim))
Read (nin,*) nd(1:ndim), l
n = product(nd(1:ndim))
lwork = n + nd(l) + 15
Allocate (x(n),work(lwork))
Call readx(nin,x,nd(1),nd(2))
Write (nout,*)
Write (nout,*) ’Original data’
Call writx(nout,x,nd(1),nd(2))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Compute transform

Call c06pff(’F’,ndim,l,nd,n,x,work,lwork,ifail)

Write (nout,*)
Write (nout,99999) ’Discrete Fourier transform of variable ’, l
Call writx(nout,x,nd(1),nd(2))

! Compute inverse transform
Call c06pff(’B’,ndim,l,nd,n,x,work,lwork,ifail)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Call writx(nout,x,nd(1),nd(2))
Deallocate (nd,x,work)

End Do loop

99999 Format (1X,A,I1)
End Program c06pffe

C06 – Summation of Series C06PFF

Mark 26 C06PFF.5



10.2 Program Data

C06PFF Example Program Data
2 : ndim
3 5 2 : nd(1), nd(2), l
(1.000,0.000)
(0.999,-0.040)
(0.987,-0.159)
(0.936,-0.352)
(0.802,-0.597)
(0.994,-0.111)
(0.989,-0.151)
(0.963,-0.268)
(0.891,-0.454)
(0.731,-0.682)
(0.903,-0.430)
(0.885,-0.466)
(0.823,-0.568)
(0.694,-0.720)
(0.467,-0.884) : x

10.3 Program Results

C06PFF Example Program Results

Original data

( 1.000, 0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352) ( 0.802,-0.597)

( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454) ( 0.731,-0.682)

( 0.903,-0.430) ( 0.885,-0.466) ( 0.823,-0.568) ( 0.694,-0.720) ( 0.467,-0.884)

Discrete Fourier transform of variable 2

( 2.113,-0.513) ( 0.288,-0.000) ( 0.126, 0.130) (-0.003, 0.190) (-0.287, 0.194)

( 2.043,-0.745) ( 0.286,-0.032) ( 0.139, 0.115) ( 0.018, 0.189) (-0.263, 0.225)

( 1.687,-1.372) ( 0.260,-0.125) ( 0.170, 0.063) ( 0.079, 0.173) (-0.176, 0.299)

Original sequence as restored by inverse transform

( 1.000,-0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352) ( 0.802,-0.597)

( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454) ( 0.731,-0.682)

( 0.903,-0.430) ( 0.885,-0.466) ( 0.823,-0.568) ( 0.694,-0.720) ( 0.467,-0.884)
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NAG Library Routine Document

C06PJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PJF computes the multidimensional discrete Fourier transform of a multivariate sequence of
complex data values.

2 Specification

SUBROUTINE C06PJF (DIRECT, NDIM, ND, N, X, WORK, LWORK, IFAIL)

INTEGER NDIM, ND(NDIM), N, LWORK, IFAIL
COMPLEX (KIND=nag_wp) X(N), WORK(LWORK)
CHARACTER(1) DIRECT

3 Description

C06PJF computes the multidimensional discrete Fourier transform of a multidimensional sequence of
complex data values zj1j2...jm , where j1 ¼ 0; 1; . . . ; n1 � 1; j2 ¼ 0; 1; . . . ; n2 � 1, and so on. Thus the
individual dimensions are n1; n2; . . . ; nm, and the total number of data values is
n ¼ n1 � n2 � � � � � nm.
The discrete Fourier transform is here defined (e.g., for m ¼ 2) by:

ẑk1;k2 ¼
1ffiffiffi
n
p
Xn1�1
j1¼0

Xn2�1
j2¼0

zj1j2 � exp 
2	i j1k1
n1
þ j2k2

n2

� �� �
;

where k1 ¼ 0; 1; . . . ; n1 � 1 and k2 ¼ 0; 1; . . . ; n2 � 1. The plus or minus sign in the argument of the
exponential terms in the above definition determine the direction of the transform: a minus sign defines
the forward direction and a plus sign defines the backward direction.

The extension to higher dimensions is obvious. (Note the scale factor of 1ffiffi
n
p in this definition.)

A call of C06PJF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

The data values must be supplied in a one-dimensional array using column-major storage ordering of
multidimensional data (i.e., with the first subscript j1 varying most rapidly).

This routine calls C06PRF to perform one-dimensional discrete Fourier transforms. Hence, the routine
uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as the
Stockham self-sorting algorithm, which is described in Temperton (1983).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.
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If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .

2: NDIM – INTEGER Input

On entry: m, the number of dimensions (or variables) in the multivariate data.

Constraint: NDIM � 1.

3: NDðNDIMÞ – INTEGER array Input

On entry: the elements of ND must contain the dimensions of the NDIM variables; that is, NDðiÞ
must contain the dimension of the ith variable.

Constraint: NDðiÞ � 1, for i ¼ 1; 2; . . . ;NDIM.

4: N – INTEGER Input

On entry: n, the total number of data values.

Constraint: N must equal the product of the first NDIM elements of the array ND.

5: XðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the complex data values. Data values are stored in X using column-major ordering for
storing multidimensional arrays; that is, zj1j2���jm is stored in Xð1þ j1 þ n1j2 þ n1n2j3 þ � � �Þ.
On exit: the corresponding elements of the computed transform.

6: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Workspace

The workspace requirements as documented for C06PJF may be an overestimate in some
implementations.

On exit: the real part of WORKð1Þ contains the minimum workspace required for the current
value of N with this implementation.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which C06PJF
is called.

Suggested value: LWORK � Nþ 3�max NDðiÞð Þ þ 15, where i ¼ 1; 2; . . . ;NDIM.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1.

IFAIL ¼ 2

On entry, DIRECT 6¼ F or B .

IFAIL ¼ 3

On entry, at least one of the first NDIM elements of ND is less than 1.

IFAIL ¼ 4

On entry, N does not equal the product of the first NDIM elements of ND.

IFAIL ¼ 5

On entry, LWORK is too small. The minimum amount of workspace required is returned in
WORKð1Þ.

IFAIL ¼ 7

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06PJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n� log nð Þ, but also depends on the factorization of the
individual dimensions NDðiÞ. C06PJF is faster if the only prime factors are 2, 3 or 5; and fastest of all
if they are powers of 2.

10 Example

This example reads in a bivariate sequence of complex data values and prints the two-dimensional
Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which
may be compared to the original data values.

10.1 Program Text

! C06PJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c06pjfe_mod

! C06PJF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: readx, writx

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine readx(nin,x,n1,n2)

! Read 2-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nin

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: x(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Executable Statements ..
Do i = 1, n1

Read (nin,*)(x(i,j),j=1,n2)
End Do
Return

End Subroutine readx

Subroutine writx(nout,x,n1,n2)
! Print 2-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nout

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: x(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Executable Statements ..
Do i = 1, n1

Write (nout,*)
Write (nout,99999)(x(i,j),j=1,n2)

End Do
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Return

99999 Format (1X,7(:,1X,’(’,F6.3,’,’,F6.3,’)’))
End Subroutine writx

End Module c06pjfe_mod

Program c06pjfe

! C06PJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c06pjf, nag_wp
Use c06pjfe_mod, Only: nin, nout, readx, writx

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: ieof, ifail, lwork, n, ndim

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: work(:), x(:)
Integer, Allocatable :: nd(:)

! .. Intrinsic Procedures ..
Intrinsic :: maxval, product

! .. Executable Statements ..
Write (nout,*) ’C06PJF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) ndim
If (ieof<0) Then

Exit loop
End If
Allocate (nd(ndim))
Read (nin,*) nd(1:ndim)
n = product(nd(1:ndim))
lwork = n + 3*maxval(nd(1:ndim)) + 15
Allocate (x(n),work(lwork))
Call readx(nin,x,nd(1),nd(2))
Write (nout,*)
Write (nout,*) ’Original data values’
Call writx(nout,x,nd(1),nd(2))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Compute transform

Call c06pjf(’F’,ndim,nd,n,x,work,lwork,ifail)

Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Call writx(nout,x,nd(1),nd(2))

! Compute inverse transform
Call c06pjf(’B’,ndim,nd,n,x,work,lwork,ifail)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Call writx(nout,x,nd(1),nd(2))
Deallocate (nd,x,work)

End Do loop

End Program c06pjfe

10.2 Program Data

C06PJF Example Program Data
2 : ndim
3 5 : nd(1), nd(2)
(1.000,0.000)
(0.999,-0.040)
(0.987,-0.159)
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(0.936,-0.352)
(0.802,-0.597)
(0.994,-0.111)
(0.989,-0.151)
(0.963,-0.268)
(0.891,-0.454)
(0.731,-0.682)
(0.903,-0.430)
(0.885,-0.466)
(0.823,-0.568)
(0.694,-0.720)
(0.467,-0.884) : x

10.3 Program Results

C06PJF Example Program Results

Original data values

( 1.000, 0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352) ( 0.802,-0.597)

( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454) ( 0.731,-0.682)

( 0.903,-0.430) ( 0.885,-0.466) ( 0.823,-0.568) ( 0.694,-0.720) ( 0.467,-0.884)

Components of discrete Fourier transform

( 3.373,-1.519) ( 0.481,-0.091) ( 0.251, 0.178) ( 0.054, 0.319) (-0.419, 0.415)

( 0.457, 0.137) ( 0.055, 0.032) ( 0.009, 0.039) (-0.022, 0.036) (-0.076, 0.004)

(-0.170, 0.493) (-0.037, 0.058) (-0.042, 0.008) (-0.038,-0.025) (-0.002,-0.083)

Original sequence as restored by inverse transform

( 1.000, 0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352) ( 0.802,-0.597)

( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454) ( 0.731,-0.682)

( 0.903,-0.430) ( 0.885,-0.466) ( 0.823,-0.568) ( 0.694,-0.720) ( 0.467,-0.884)
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NAG Library Routine Document

C06PKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PKF calculates the circular convolution or correlation of two complex vectors of period n.

2 Specification

SUBROUTINE C06PKF (JOB, X, Y, N, WORK, IFAIL)

INTEGER JOB, N, IFAIL
COMPLEX (KIND=nag_wp) X(N), Y(N), WORK(*)

3 Description

C06PKF computes:

if JOB ¼ 1, the discrete convolution of x and y, defined by

zk ¼
Xn�1
j¼0

xjyk�j ¼
Xn�1
j¼0

xk�jyj;

if JOB ¼ 2, the discrete correlation of x and y defined by

wk ¼
Xn�1
j¼0

�xjykþj:

Here x and y are complex vectors, assumed to be periodic, with period n, i.e., xj ¼ xj
n ¼ xj
2n ¼ . . . ;
z and w are then also periodic with period n.

Note: this usage of the terms ‘convolution’ and ‘correlation’ is taken from Brigham (1974). The term
‘convolution’ is sometimes used to denote both these computations.

If x̂, ŷ, ẑ and ŵ are the discrete Fourier transforms of these sequences, and ~x is the inverse discrete
Fourier transform of the sequence xj, i.e.,

x̂k ¼
1ffiffiffi
n
p
Xn�1
j¼0

xj � exp �i2	jk
n

� �
; etc:;

and

~xk ¼
1ffiffiffi
n
p
Xn�1
j¼0

xj � exp i
2	jk

n

� �
;

then ẑk ¼
ffiffiffi
n
p

:x̂kŷk and ŵk ¼
ffiffiffi
n
p

:�̂xkŷk (the bar denoting complex conjugate).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall
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5 Arguments

1: JOB – INTEGER Input

On entry: the computation to be performed:

JOB ¼ 1

zk ¼
Xn�1
j¼0

xjyk�j (convolution);

JOB ¼ 2

wk ¼
Xn�1
j¼0

�xjykþj (correlation).

Constraint: JOB ¼ 1 or 2.

2: XðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the elements of one period of the vector x. If X is declared with bounds 0 : N� 1ð Þ in
the subroutine from which C06PKF is called, then XðjÞ must contain xj , for j ¼ 0; 1; . . . ; n� 1.

On exit: the corresponding elements of the discrete convolution or correlation.

3: YðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the elements of one period of the vector y. If Y is declared with bounds 0 : N� 1ð Þ in
the subroutine from which C06PKF is called, then YðjÞ must contain yj , for j ¼ 0; 1; . . . ; n� 1.

On exit: the discrete Fourier transform of the convolution or correlation returned in the array X.

4: N – INTEGER Input

On entry: n, the number of values in one period of the vectors X and Y. The total number of
prime factors of N, counting repetitions, must not exceed 30.

Constraint: N � 1.

5: WORKð�Þ – COMPLEX (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least 2� Nþ 15.

The workspace requirements as documented for C06PKF may be an overestimate in some
implementations.

On exit: the real part of WORKð1Þ contains the minimum workspace required for the current
value of N with this implementation.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

IFAIL ¼ 2

On entry, JOB 6¼ 1 or 2.

IFAIL ¼ 3

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ 4

On entry, N has more than 30 prime factors.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The results should be accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

C06PKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n� log nð Þ, but also depends on the factorization of n.
C06PKF is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.
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10 Example

This example reads in the elements of one period of two complex vectors x and y, and prints their
discrete convolution and correlation (as computed by C06PKF). In realistic computations the number of
data values would be much larger.

10.1 Program Text

Program c06pkfe

! C06PKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06pkf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ieof, ifail, j, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: work(:), xa(:), xb(:), ya(:), &

yb(:)
! .. Executable Statements ..

Write (nout,*) ’C06PKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) n
If (ieof<0) Then

Exit loop
End If

Allocate (work(2*n+15),xa(n),xb(n),ya(n),yb(n))
Read (nin,*)(xa(j),ya(j),j=1,n)
xb(1:n) = xa(1:n)
yb(1:n) = ya(1:n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06pkf(1,xa,ya,n,work,ifail)

Call c06pkf(2,xb,yb,n,work,ifail)

Write (nout,*) ’ Convolution Correlation’
Write (nout,*)
Do j = 0, n - 1

Write (nout,99999) j, xa(j+1), xb(j+1)
End Do
Deallocate (work,xa,xb,ya,yb)

End Do loop

99999 Format (1X,I5,2(1X,’(’,F9.5,’,’,F9.5,’)’))
End Program c06pkfe

10.2 Program Data

C06PKF Example Program Data
9 : n

(1.0E0,-0.5E0) (0.5E0,-0.25E0)
(1.0E0,-0.5E0) (0.5E0,-0.25E0)
(1.0E0,-0.5E0) (0.5E0,-0.25E0)
(1.0E0,-0.5E0) (0.5E0,-0.25E0)
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(1.0E0,-0.5E0) (0.0E0,-0.25E0)
(0.0E0,-0.5E0) (0.0E0,-0.25E0)
(0.0E0,-0.5E0) (0.0E0,-0.25E0)
(0.0E0,-0.5E0) (0.0E0,-0.25E0)
(0.0E0,-0.5E0) (0.0E0,-0.25E0) : xa, ya

10.3 Program Results

C06PKF Example Program Results

Convolution Correlation

0 ( -0.62500, -2.25000) ( 3.12500, -0.25000)
1 ( -0.12500, -2.25000) ( 2.62500, -0.25000)
2 ( 0.37500, -2.25000) ( 2.12500, -0.25000)
3 ( 0.87500, -2.25000) ( 1.62500, -0.25000)
4 ( 0.87500, -2.25000) ( 1.12500, -0.25000)
5 ( 0.37500, -2.25000) ( 1.62500, -0.25000)
6 ( -0.12500, -2.25000) ( 2.12500, -0.25000)
7 ( -0.62500, -2.25000) ( 2.62500, -0.25000)
8 ( -1.12500, -2.25000) ( 3.12500, -0.25000)
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NAG Library Routine Document

C06PPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PPF computes the discrete Fourier transforms of m sequences, each containing n real data values or
a Hermitian complex sequence stored in a complex storage format.

2 Specification

SUBROUTINE C06PPF (DIRECT, M, N, X, WORK, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(M*(N+2)), WORK(*)
CHARACTER(1) DIRECT

3 Description

Given m sequences of n real data values xpj , for j ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, C06PPF
simultaneously calculates the Fourier transforms of all the sequences defined by

ẑpk ¼
1ffiffiffi
n
p
Xn�1
j¼0

xpj � exp �i2	jk
n

� �
; k ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m:

The transformed values ẑpk are complex, but for each value of p the ẑpk form a Hermitian sequence (i.e.,
ẑpn�k is the complex conjugate of ẑpk), so they are completely determined by mn real numbers (since ẑp0
is real, as is ẑpn=2 for n even).

Alternatively, given m Hermitian sequences of n complex data values zpj , this routine simultaneously
calculates their inverse (backward) discrete Fourier transforms defined by

x̂pk ¼
1ffiffiffi
n
p
Xn�1
j¼0

zpj � exp i
2	jk

n

� �
; k ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m:

The transformed values x̂pk are real.

(Note the scale factor 1ffiffi
n
p in the above definition.)

A call of C06PPF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, which is described in Temperton (1983). Special coding is
provided for the factors 2, 3, 4 and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350
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5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.

If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .

2: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.

3: N – INTEGER Input

On entry: n, the number of real or complex values in each sequence.

Constraint: N � 1.

4: XðM� Nþ 2ð ÞÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension
1 : M; 0 : N� 1ð Þ; each of the m sequences is stored in a row of the array. In other words, if the
data values of the pth sequence to be transformed are denoted by xpj , for j ¼ 0; 1; . . . ; n� 1, then:

i f DIRECT ¼ F , Xðj �Mþ pÞ must con t a in xpj , fo r j ¼ 0; 1; . . . ; n� 1 and
p ¼ 1; 2; . . . ;m;

if DIRECT ¼ B , Xð2� k �Mþ pÞ and Xð 2� k þ 1ð Þ �Mþ pÞ must contain the real and
imaginary parts respectively of ẑpk, for k ¼ 0; 1; . . . ; n=2 and p ¼ 1; 2; . . . ;m. (Note that for
the sequence ẑpk to be Hermitian, the imaginary part of ẑp0, and of ẑpn=2 for n even, must be

zero.)

On exit:

if DIRECT ¼ F and X is declared with bounds 1 : M; 0 : Nþ 1ð Þ then Xðp; 2� kÞ and
Xðp; 2� k þ 1Þ will contain the real and imaginary parts respectively of ẑpk , for
k ¼ 0; 1; . . . ; n=2 and p ¼ 1; 2; . . . ;m;

if DIRECT ¼ B and X is declared with bounds 1 : M; 0 : Nþ 1ð Þ then Xðp; jÞ will contain
xpj , for j ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m.

5: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least M� Nþ 2� Nþ 2�Mþ 15.

The workspace requirements as documented for C06PPF may be an overestimate in some
implementations.

On exit: WORKð1Þ contains the minimum workspace required for the current values of M and N
with this implementation.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, DIRECT 6¼ F or B .

IFAIL ¼ 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06PPF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PPF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The time taken by C06PPF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06PPF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

10 Example

This example reads in sequences of real data values and prints their discrete Fourier transforms (as
computed by C06PPF with DIRECT ¼ F ), after expanding them from complex Hermitian form into a
full complex sequences. Inverse transforms are then calculated by calling C06PPF with DIRECT ¼ B
showing that the original sequences are restored.

10.1 Program Text

Program c06ppfe

! C06PPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06ppf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ieof, ifail, j, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06PPF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (work((m+2)*(n+2)+11),x(m*(n+2)))
Do j = 1, m

Read (nin,*)(x(i*m+j),i=0,n-1)
End Do
Write (nout,*)
Write (nout,*) ’Original data values’
Write (nout,*)
Do j = 1, m

Write (nout,99999) ’ ’, (x(i*m+j),i=0,n-1)
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06ppf(’F’,m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) &

’Discrete Fourier transforms in complex Hermitian format’
Do j = 1, m

Write (nout,*)
Write (nout,99999) ’Real ’, (x(2*i*m+j),i=0,n/2)
Write (nout,99999) ’Imag ’, (x((2*i+1)*m+j),i=0,n/2)

End Do
Write (nout,*)
Write (nout,*) ’Fourier transforms in full complex form’

C06PPF NAG Library Manual

C06PPF.4 Mark 26



Do j = 1, m
Write (nout,*)
Write (nout,99999) ’Real ’, (x(2*i*m+j),i=0,n/2), &

(x(2*(n-i)*m+j),i=n/2+1,n-1)
Write (nout,99999) ’Imag ’, (x((2*i+1)*m+j),i=0,n/2), &

(-x((2*(n-i)+1)*m+j),i=n/2+1,n-1)
End Do

Call c06ppf(’B’,m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Do j = 1, m

Write (nout,99999) ’ ’, (x(i*m+j),i=0,n-1)
End Do
Deallocate (x,work)

End Do loop

99999 Format (1X,A,9(:,1X,F10.4))
End Program c06ppfe

10.2 Program Data

C06PPF Example Program Data
3 6 : m, n
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 : x

10.3 Program Results

C06PPF Example Program Results

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Discrete Fourier transforms in complex Hermitian format

Real 1.0737 -0.1041 0.1126 -0.1467
Imag 0.0000 -0.0044 -0.3738 0.0000

Real 1.3961 -0.0365 0.0780 -0.1521
Imag 0.0000 0.4666 -0.0607 0.0000

Real 1.1237 0.0914 0.3936 0.1530
Imag 0.0000 -0.0508 0.3458 0.0000

Fourier transforms in full complex form

Real 1.0737 -0.1041 0.1126 -0.1467 0.1126 -0.1041
Imag 0.0000 -0.0044 -0.3738 0.0000 0.3738 0.0044

Real 1.3961 -0.0365 0.0780 -0.1521 0.0780 -0.0365
Imag 0.0000 0.4666 -0.0607 0.0000 0.0607 -0.4666

Real 1.1237 0.0914 0.3936 0.1530 0.3936 0.0914
Imag 0.0000 -0.0508 0.3458 0.0000 -0.3458 0.0508

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

C06 – Summation of Series C06PPF

Mark 26 C06PPF.5 (last)





NAG Library Routine Document

C06PQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PQF computes the discrete Fourier transforms of m sequences, each containing n real data values
or a Hermitian complex sequence stored column-wise in a complex storage format.

2 Specification

SUBROUTINE C06PQF (DIRECT, N, M, X, WORK, IFAIL)

INTEGER N, M, IFAIL
REAL (KIND=nag_wp) X((N+2)*M), WORK(*)
CHARACTER(1) DIRECT

3 Description

Given m sequences of n real data values xpj , for j ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, C06PQF
simultaneously calculates the Fourier transforms of all the sequences defined by

ẑpk ¼
1ffiffiffi
n
p
Xn�1
j¼0

xpj � exp �i2	jk
n

� �
; k0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m:

The transformed values ẑpk are complex, but for each value of p the ẑpk form a Hermitian sequence (i.e.,
ẑpn�k is the complex conjugate of ẑpk), so they are completely determined by mn real numbers (since ẑp0
is real, as is ẑpn=2 for n even).

Alternatively, given m Hermitian sequences of n complex data values zpj , this routine simultaneously
calculates their inverse (backward) discrete Fourier transforms defined by

x̂pk ¼
1ffiffiffi
n
p
Xn�1
j¼0

zpj � exp i
2	jk

n

� �
; k ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m:

The transformed values x̂pk are real.

(Note the scale factor 1ffiffi
n
p in the above definition.)

A call of C06PQF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, which is described in Temperton (1983). Special coding is
provided for the factors 2, 3, 4 and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350
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5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.

If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .

2: N – INTEGER Input

On entry: n, the number of real or complex values in each sequence.

Constraint: N � 1.

3: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.

4: Xð Nþ 2ð Þ �MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension
0 : Nþ 1; 1 : Mð Þ; each of the m sequences is stored in a column of the array. In other words, if
the data values of the pth sequence to be transformed are denoted by xpj , for j ¼ 0; 1; . . . ; n� 1,
then:

if DIRECT ¼ F , Xð p� 1ð Þ � Nþ 2ð Þ þ jÞ must contain xpj , for j ¼ 0; 1; . . . ; n� 1 and
p ¼ 1; 2; . . . ;m;

if DIRECT ¼ B , Xð p� 1ð Þ � Nþ 2ð Þ þ 2� kÞ and Xð p� 1ð Þ � Nþ 2ð Þ þ 2� k þ 1Þ
must contain the real and imaginary parts respectively of ẑpk , for k ¼ 0; 1; . . . ; n=2 and
p ¼ 1; 2; . . . ;m. (Note that for the sequence ẑpk to be Hermitian, the imaginary part of ẑp0,
and of ẑpn=2 for n even, must be zero.)

On exit:

if DIRECT ¼ F and X is declared with bounds 0 : Nþ 1; 1 : Mð Þ then Xð2� k; pÞ and
Xð2� k þ 1; pÞ will contain the real and imaginary parts respectively of ẑpk , for
k ¼ 0; 1; . . . ; n=2 and p ¼ 1; 2; . . . ;m;

if DIRECT ¼ B and X is declared with bounds 0 : Nþ 1; 1 : Mð Þ then Xðj; pÞ will contain
xpj , for j ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m.

5: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least Mþ 2ð Þ � Nþ 15.

The workspace requirements as documented for C06PQF may be an overestimate in some
implementations.

On exit: WORKð1Þ contains the minimum workspace required for the current values of M and N
with this implementation.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, DIRECT 6¼ F or B .

IFAIL ¼ 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06PQF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PQF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The time taken by C06PQF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06PQF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

10 Example

This example reads in sequences of real data values and prints their discrete Fourier transforms (as
computed by C06PQF with DIRECT ¼ F ), after expanding them from complex Hermitian form into a
full complex sequences.

Inverse transforms are then calculated by calling C06PQF with DIRECT ¼ B showing that the original
sequences are restored.

10.1 Program Text

Program c06pqfe

! C06PQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06pqf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ieof, ifail, j, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06PQF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (work((m+2)*n+15),x(m*(n+2)))
Do j = 1, m*(n+2), n + 2

Read (nin,*)(x(j+i),i=0,n-1)
End Do
Write (nout,*)
Write (nout,*) ’Original data values’
Write (nout,*)
Do j = 1, m*(n+2), n + 2

Write (nout,99999) ’ ’, (x(j+i),i=0,n-1)
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06pqf(’F’,n,m,x,work,ifail)

Write (nout,*)
Write (nout,*) &

’Discrete Fourier transforms in complex Hermitian format’
Do j = 1, m*(n+2), n + 2

Write (nout,*)
Write (nout,99999) ’Real ’, (x(j+2*i),i=0,n/2)
Write (nout,99999) ’Imag ’, (x(j+2*i+1),i=0,n/2)

End Do
Write (nout,*)
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Write (nout,*) ’Fourier transforms in full complex form’

Do j = 1, m*(n+2), n + 2
Write (nout,*)
Write (nout,99999) ’Real ’, (x(j+2*i),i=0,n/2), &

(x(j+2*(n-i)),i=n/2+1,n-1)
Write (nout,99999) ’Imag ’, (x(j+2*i+1),i=0,n/2), &

(-x(j+2*(n-i)+1),i=n/2+1,n-1)
End Do

Call c06pqf(’B’,n,m,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Do j = 1, m*(n+2), n + 2

Write (nout,99999) ’ ’, (x(j+i),i=0,n-1)
End Do
Deallocate (x,work)

End Do loop

99999 Format (1X,A,9(:,1X,F10.4))
End Program c06pqfe

10.2 Program Data

C06PQF Example Program Data
3 6 : m, n
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 : x

10.3 Program Results

C06PQF Example Program Results

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Discrete Fourier transforms in complex Hermitian format

Real 1.0737 -0.1041 0.1126 -0.1467
Imag 0.0000 -0.0044 -0.3738 0.0000

Real 1.3961 -0.0365 0.0780 -0.1521
Imag 0.0000 0.4666 -0.0607 0.0000

Real 1.1237 0.0914 0.3936 0.1530
Imag 0.0000 -0.0508 0.3458 0.0000

Fourier transforms in full complex form

Real 1.0737 -0.1041 0.1126 -0.1467 0.1126 -0.1041
Imag 0.0000 -0.0044 -0.3738 0.0000 0.3738 0.0044

Real 1.3961 -0.0365 0.0780 -0.1521 0.0780 -0.0365
Imag 0.0000 0.4666 -0.0607 0.0000 0.0607 -0.4666

Real 1.1237 0.0914 0.3936 0.1530 0.3936 0.0914
Imag 0.0000 -0.0508 0.3458 0.0000 -0.3458 0.0508
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Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
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NAG Library Routine Document

C06PRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PRF computes the discrete Fourier transforms of m sequences, each containing n complex data
values.

2 Specification

SUBROUTINE C06PRF (DIRECT, M, N, X, WORK, IFAIL)

INTEGER M, N, IFAIL
COMPLEX (KIND=nag_wp) X(M*N), WORK(*)
CHARACTER(1) DIRECT

3 Description

Given m sequences of n complex data values zpj , for j ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, C06PRF
simultaneously calculates the (forward or backward) discrete Fourier transforms of all the sequences
defined by

ẑpk ¼
1ffiffiffi
n
p
Xn�1
j¼0

zpj � exp 
i2	jk
n

� �
; k ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m:

(Note the scale factor 1ffiffi
n
p in this definition.) The minus sign is taken in the argument of the exponential

within the summation when the forward transform is required, and the plus sign is taken when the
backward transform is required.

A call of C06PRF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, which is described in Temperton (1983). Special code is provided
for the factors 2, 3, 4 and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.

If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .
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2: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.

3: N – INTEGER Input

On entry: n, the number of complex values in each sequence.

Constraint: N � 1.

4: XðM� NÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the complex data must be stored in X as if in a two-dimensional array of dimension
1 : M; 0 : N� 1ð Þ; each of the m sequences is stored in a row of each array. In other words, if the
elements of the pth sequence to be transformed are denoted by zpj , for j ¼ 0; 1; . . . ; n� 1, then
Xðj�Mþ pÞ must contain zpj .

On exit: is overwritten by the complex transforms.

5: WORKð�Þ – COMPLEX (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least M� Nþ 2� Nþ 15.

The workspace requirements as documented for C06PRF may be an overestimate in some
implementations.

On exit: the real part of WORKð1Þ contains the minimum workspace required for the current
values of M and N with this implementation.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, DIRECT 6¼ F or B .
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IFAIL ¼ 5

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06PRF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PRF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06PRF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06PRF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

10 Example

This example reads in sequences of complex data values and prints their discrete Fourier transforms (as
computed by C06PRF with DIRECT ¼ F ). Inverse transforms are then calculated using C06PRF with
DIRECT ¼ B and printed out, showing that the original sequences are restored.

10.1 Program Text

Program c06prfe

! C06PRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06prf, nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ieof, ifail, j, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: work(:), x(:)
! .. Intrinsic Procedures ..

Intrinsic :: aimag, real
! .. Executable Statements ..

Write (nout,*) ’C06PRF Example Program Results’
! Skip heading in data file

Read (nin,*)
loop: Do

Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (work((m+2)*n+15),x(m*n))
Do j = 1, m

Read (nin,*)(x(i*m+j),i=0,n-1)
End Do
Write (nout,*)
Write (nout,*) ’Original data values’
Do j = 1, m

Write (nout,*)
Write (nout,99999) ’Real ’, (real(x(i*m+j)),i=0,n-1)
Write (nout,99999) ’Imag ’, (aimag(x(i*m+j)),i=0,n-1)

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06prf(’F’,m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Discrete Fourier transforms’
Do j = 1, m

Write (nout,*)
Write (nout,99999) ’Real ’, (real(x(i*m+j)),i=0,n-1)
Write (nout,99999) ’Imag ’, (aimag(x(i*m+j)),i=0,n-1)

End Do

ifail = 0
Call c06prf(’B’,m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Do j = 1, m

Write (nout,*)
Write (nout,99999) ’Real ’, (real(x(i*m+j)),i=0,n-1)
Write (nout,99999) ’Imag ’, (aimag(x(i*m+j)),i=0,n-1)

End Do
Deallocate (x,work)

End Do loop

99999 Format (1X,A,6F10.4)
End Program c06prfe

10.2 Program Data

C06PRF Example Program Data
3 6 : m, n
(0.3854,0.5417)
(0.6772,0.2983)
(0.1138,0.1181)
(0.6751,0.7255)
(0.6362,0.8638)
(0.1424,0.8723)
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(0.9172,0.9089)
(0.0644,0.3118)
(0.6037,0.3465)
(0.6430,0.6198)
(0.0428,0.2668)
(0.4815,0.1614)
(0.1156,0.6214)
(0.0685,0.8681)
(0.2060,0.7060)
(0.8630,0.8652)
(0.6967,0.9190)
(0.2792,0.3355) : x

10.3 Program Results

C06PRF Example Program Results

Original data values

Real 0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
Imag 0.5417 0.2983 0.1181 0.7255 0.8638 0.8723

Real 0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
Imag 0.9089 0.3118 0.3465 0.6198 0.2668 0.1614

Real 0.1156 0.0685 0.2060 0.8630 0.6967 0.2792
Imag 0.6214 0.8681 0.7060 0.8652 0.9190 0.3355

Discrete Fourier transforms

Real 1.0737 -0.5706 0.1733 -0.1467 0.0518 0.3625
Imag 1.3961 -0.0409 -0.2958 -0.1521 0.4517 -0.0321

Real 1.1237 0.1728 0.4185 0.1530 0.3686 0.0101
Imag 1.0677 0.0386 0.7481 0.1752 0.0565 0.1403

Real 0.9100 -0.3054 0.4079 -0.0785 -0.1193 -0.5314
Imag 1.7617 0.0624 -0.0695 0.0725 0.1285 -0.4335

Original data as restored by inverse transform

Real 0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
Imag 0.5417 0.2983 0.1181 0.7255 0.8638 0.8723

Real 0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
Imag 0.9089 0.3118 0.3465 0.6198 0.2668 0.1614

Real 0.1156 0.0685 0.2060 0.8630 0.6967 0.2792
Imag 0.6214 0.8681 0.7060 0.8652 0.9190 0.3355
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NAG Library Routine Document

C06PSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PSF computes the discrete Fourier transforms of m sequences, stored as columns of an array, each
containing n complex data values.

2 Specification

SUBROUTINE C06PSF (DIRECT, N, M, X, WORK, IFAIL)

INTEGER N, M, IFAIL
COMPLEX (KIND=nag_wp) X(N*M), WORK(*)
CHARACTER(1) DIRECT

3 Description

Given m sequences of n complex data values zpj , for j ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, C06PSF
simultaneously calculates the (forward or backward) discrete Fourier transforms of all the sequences
defined by

ẑpk ¼
1ffiffiffi
n
p
Xn�1
j¼0

zpj � exp 
i2	jk
n

� �
; k ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m:

(Note the scale factor 1ffiffi
n
p in this definition.) The minus sign is taken in the argument of the exponential

within the summation when the forward transform is required, and the plus sign is taken when the
backward transform is required.

A call of C06PSF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, which is described in Temperton (1983). Special code is provided
for the factors 2, 3 and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.

If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .
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2: N – INTEGER Input

On entry: n, the number of complex values in each sequence.

Constraint: N � 1.

3: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.

4: XðN�MÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the complex data values zpj stored in Xð p� 1ð Þ � Nþ j þ 1Þ, for j ¼ 0; 1; . . . ;N� 1
and p ¼ 1; 2; . . . ;M.

On exit: is overwritten by the complex transforms.

5: WORKð�Þ – COMPLEX (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least N�Mþ Nþ 15.

The workspace requirements as documented for C06PSF may be an overestimate in some
implementations.

On exit: the real part of WORKð1Þ contains the minimum workspace required for the current
values of M and N with this implementation.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, DIRECT 6¼ F or B .

IFAIL ¼ 5

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06PSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06PSF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06PSF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

10 Example

This example reads in sequences of complex data values and prints their discrete Fourier transforms (as
computed by C06PSF with DIRECT ¼ F ). Inverse transforms are then calculated using C06PSF with
DIRECT ¼ B and printed out, showing that the original sequences are restored.

10.1 Program Text

Program c06psfe

! C06PSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06psf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ieof, ifail, j, m, n
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! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: work(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: aimag, real

! .. Executable Statements ..
Write (nout,*) ’C06PSF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (work(n*m+n+15),x(m*n))
Do j = 1, m*n, n

Read (nin,*)(x(j+i),i=0,n-1)
End Do
Write (nout,*)
Write (nout,*) ’Original data values’
Do j = 1, m*n, n

Write (nout,*)
Write (nout,99999) ’Real ’, (real(x(j+i)),i=0,n-1)
Write (nout,99999) ’Imag ’, (aimag(x(j+i)),i=0,n-1)

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c06psf(’F’,n,m,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Discrete Fourier transforms’
Do j = 1, m*n, n

Write (nout,*)
Write (nout,99999) ’Real ’, (real(x(j+i)),i=0,n-1)
Write (nout,99999) ’Imag ’, (aimag(x(j+i)),i=0,n-1)

End Do

Call c06psf(’B’,n,m,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Do j = 1, m*n, n

Write (nout,*)
Write (nout,99999) ’Real ’, (real(x(j+i)),i=0,n-1)
Write (nout,99999) ’Imag ’, (aimag(x(j+i)),i=0,n-1)

End Do
Deallocate (x,work)

End Do loop

99999 Format (1X,A,6F10.4)
End Program c06psfe

10.2 Program Data

C06PSF Example Program Data
3 6 : m, n
(0.3854,0.5417)
(0.6772,0.2983)
(0.1138,0.1181)
(0.6751,0.7255)
(0.6362,0.8638)
(0.1424,0.8723)
(0.9172,0.9089)
(0.0644,0.3118)
(0.6037,0.3465)
(0.6430,0.6198)
(0.0428,0.2668)
(0.4815,0.1614)
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(0.1156,0.6214)
(0.0685,0.8681)
(0.2060,0.7060)
(0.8630,0.8652)
(0.6967,0.9190)
(0.2792,0.3355) : x

10.3 Program Results

C06PSF Example Program Results

Original data values

Real 0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
Imag 0.5417 0.2983 0.1181 0.7255 0.8638 0.8723

Real 0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
Imag 0.9089 0.3118 0.3465 0.6198 0.2668 0.1614

Real 0.1156 0.0685 0.2060 0.8630 0.6967 0.2792
Imag 0.6214 0.8681 0.7060 0.8652 0.9190 0.3355

Discrete Fourier transforms

Real 1.0737 -0.5706 0.1733 -0.1467 0.0518 0.3625
Imag 1.3961 -0.0409 -0.2958 -0.1521 0.4517 -0.0321

Real 1.1237 0.1728 0.4185 0.1530 0.3686 0.0101
Imag 1.0677 0.0386 0.7481 0.1752 0.0565 0.1403

Real 0.9100 -0.3054 0.4079 -0.0785 -0.1193 -0.5314
Imag 1.7617 0.0624 -0.0695 0.0725 0.1285 -0.4335

Original data as restored by inverse transform

Real 0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
Imag 0.5417 0.2983 0.1181 0.7255 0.8638 0.8723

Real 0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
Imag 0.9089 0.3118 0.3465 0.6198 0.2668 0.1614

Real 0.1156 0.0685 0.2060 0.8630 0.6967 0.2792
Imag 0.6214 0.8681 0.7060 0.8652 0.9190 0.3355
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C06PUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PUF computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex
data values (using complex data type).

2 Specification

SUBROUTINE C06PUF (DIRECT, M, N, X, WORK, IFAIL)

INTEGER M, N, IFAIL
COMPLEX (KIND=nag_wp) X(M*N), WORK(*)
CHARACTER(1) DIRECT

3 Description

C06PUF computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex
data values zj1j2 , for j1 ¼ 0; 1; . . . ;m� 1 and j2 ¼ 0; 1; . . . ; n� 1.

The discrete Fourier transform is here defined by

ẑk1k2 ¼
1ffiffiffiffiffiffiffiffi
mn
p

Xm�1
j1¼0

Xn�1
j2¼0

zj1j2 � exp 
2	i j1k1
m
þ j2k2

n

� �� �
;

where k1 ¼ 0; 1; . . . ;m� 1 and k2 ¼ 0; 1; . . . ; n� 1.

(Note the scale factor of 1ffiffiffiffiffi
mn
p in this definition.) The minus sign is taken in the argument of the

exponential within the summation when the forward transform is required, and the plus sign is taken
when the backward transform is required.

A call of C06PUF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

This routine calls C06PRF to perform multiple one-dimensional discrete Fourier transforms by the fast
Fourier transform (FFT) algorithm in Brigham (1974).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.

If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .

C06 – Summation of Series C06PUF

Mark 26 C06PUF.1



2: M – INTEGER Input

On entry: m, the first dimension of the transform.

Constraint: M � 1.

3: N – INTEGER Input

On entry: n, the second dimension of the transform.

Constraint: N � 1.

4: XðM� NÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the complex data values. XðM� j2 þ j1Þ must contain zj1j2 , for j1 ¼ 1; 2; . . . ;M and
j2 ¼ 1; 2; . . . ;N.

On exit: the corresponding elements of the computed transform.

5: WORKð�Þ – COMPLEX (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least M� Nþ NþMþ 30.

The workspace requirements as documented for C06PUF may be an overestimate in some
implementations.

On exit: the real part of WORKð1Þ contains the minimum workspace required for the current
values of M and N with this implementation.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, DIRECT 6¼ F or B .

IFAIL ¼ 6

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06PUF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PUF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to mn� log mnð Þ, but also depends on the factorization
of the individual dimensions m and n. C06PUF is faster if the only prime factors are 2, 3 or 5; and
fastest of all if they are powers of 2.

10 Example

This example reads in a bivariate sequence of complex data values and prints the two-dimensional
Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which
may be compared to the original data values.

10.1 Program Text

! C06PUF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c06pufe_mod

! C06PUF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
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Public :: readx, writx
! .. Parameters ..

Integer, Parameter, Public :: nin = 5, nout = 6
Contains

Subroutine readx(nin,x,n1,n2)
! Read 2-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nin

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: x(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Executable Statements ..
Do i = 1, n1

Read (nin,*)(x(i,j),j=1,n2)
End Do
Return

End Subroutine readx

Subroutine writx(nout,x,n1,n2)
! Print 2-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nout

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: x(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: aimag, real

! .. Executable Statements ..
Do i = 1, n1

Write (nout,*)
Write (nout,99999) ’Real ’, (real(x(i,j)),j=1,n2)
Write (nout,99999) ’Imag ’, (aimag(x(i,j)),j=1,n2)

End Do
Return

99999 Format (1X,A,7F10.3,/,(6X,7F10.3))
End Subroutine writx

End Module c06pufe_mod

Program c06pufe

! C06PUF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c06puf, nag_wp
Use c06pufe_mod, Only: nin, nout, readx, writx

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: ieof, ifail, m, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06PUF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If
Allocate (work(m*n+n+m+30),x(m*n))
Call readx(nin,x,m,n)
Write (nout,*)
Write (nout,*) ’Original data values’
Call writx(nout,x,m,n)
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! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06puf(’F’,m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Call writx(nout,x,m,n)

! -- Compute inverse transform
Call c06puf(’B’,m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Call writx(nout,x,m,n)
Deallocate (x,work)

End Do loop

End Program c06pufe

10.2 Program Data

C06PUF Example Program Data
3 5 : m, n

( 1.000, 0.000)
( 0.999,-0.040)
( 0.987,-0.159)
( 0.936,-0.352)
( 0.802,-0.597)
( 0.994,-0.111)
( 0.989,-0.151)
( 0.963,-0.268)
( 0.891,-0.454)
( 0.731,-0.682)
( 0.903,-0.430)
( 0.885,-0.466)
( 0.823,-0.568)
( 0.694,-0.720)
( 0.467,-0.884) : x

10.3 Program Results

C06PUF Example Program Results

Original data values

Real 1.000 0.999 0.987 0.936 0.802
Imag 0.000 -0.040 -0.159 -0.352 -0.597

Real 0.994 0.989 0.963 0.891 0.731
Imag -0.111 -0.151 -0.268 -0.454 -0.682

Real 0.903 0.885 0.823 0.694 0.467
Imag -0.430 -0.466 -0.568 -0.720 -0.884

Components of discrete Fourier transform

Real 3.373 0.481 0.251 0.054 -0.419
Imag -1.519 -0.091 0.178 0.319 0.415

Real 0.457 0.055 0.009 -0.022 -0.076
Imag 0.137 0.032 0.039 0.036 0.004

Real -0.170 -0.037 -0.042 -0.038 -0.002
Imag 0.493 0.058 0.008 -0.025 -0.083

Original sequence as restored by inverse transform
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Real 1.000 0.999 0.987 0.936 0.802
Imag 0.000 -0.040 -0.159 -0.352 -0.597

Real 0.994 0.989 0.963 0.891 0.731
Imag -0.111 -0.151 -0.268 -0.454 -0.682

Real 0.903 0.885 0.823 0.694 0.467
Imag -0.430 -0.466 -0.568 -0.720 -0.884
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NAG Library Routine Document

C06PVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PVF computes the two-dimensional discrete Fourier transform of a bivariate sequence of real data
values.

2 Specification

SUBROUTINE C06PVF (M, N, X, Y, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(M*N)
COMPLEX (KIND=nag_wp) Y((M/2+1)*N)

3 Description

C06PVF computes the two-dimensional discrete Fourier transform of a bivariate sequence of real data
values xj1j2 , for j1 ¼ 0; 1; . . . ;m� 1 and j2 ¼ 0; 1; . . . ; n� 1.

The discrete Fourier transform is here defined by

ẑk1k2 ¼
1ffiffiffiffiffiffiffiffi
mn
p

Xm�1
j1¼0

Xn�1
j2¼0

xj1j2 � exp �2	i j1k1
m
þ j2k2

n

� �� �
;

where k1 ¼ 0; 1; . . . ;m� 1 and k2 ¼ 0; 1; . . . ; n� 1. (Note the scale factor of 1ffiffiffiffiffi
mn
p in this definition.)

The transformed values ẑk1k2 are complex. Because of conjugate symmetry (i.e., ẑk1k2 is the complex
conjugate of ẑ m�k1ð Þk2 ), only slightly more than half of the Fourier coefficients need to be stored in the
output.

A call of C06PVF followed by a call of C06PWF will restore the original data.

This routine calls C06PQF and C06PRF to perform multiple one-dimensional discrete Fourier
transforms by the fast Fourier transform (FFT) algorithm in Brigham (1974) and Temperton (1983).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

5 Arguments

1: M – INTEGER Input

On entry: m, the first dimension of the transform.

Constraint: M � 1.

2: N – INTEGER Input

On entry: n, the second dimension of the transform.

Constraint: N � 1.
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3: XðM� NÞ – REAL (KIND=nag_wp) array Input

On entry: the real input dataset x, where xj1j2 is stored in Xðj2 �mþ j1Þ, for j1 ¼ 0; 1; . . . ;m� 1
and j2 ¼ 0; 1; . . . ; n� 1. That is, if X is regarded as a two-dimensional array of dimension
0 : M� 1; 0 : N� 1ð Þ, then Xðj1; j2Þ must contain xj1j2 .

4: Yð M=2þ 1ð Þ � NÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the complex output dataset ẑ, where ẑk1k2 is stored in Yðk2 � m=2þ 1ð Þ þ k1Þ , for
k1 ¼ 0; 1; . . . ;m=2 and k2 ¼ 0; 1; . . . ; n� 1. That is, if Y is regarded as a two-dimensional array
of dimension 0 : M=2; 0 : N� 1ð Þ, then Yðk1; k2Þ contains ẑk1k2 . Note the first dimension is cut
roughly by half to remove the redundant information due to conjugate symmetry.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 3

An internal error has occurred in this routine. Check the routine call and any array sizes. If the
call is correct then please contact NAG for assistance.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Some indication of accuracy can be obtained by performing a forward transform using C06PVF and a
backward transform using C06PWF, and comparing the results with the original sequence (in exact
arithmetic they would be identical).

8 Parallelism and Performance

C06PVF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PVF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06PVF is approximately proportional to mnlog mnð Þ, but also depends on the
factors of m and n. C06PVF is fastest if the only prime factors of m and n are 2, 3 and 5, and is
particularly slow if m or n is a large prime, or has large prime factors.

Workspace is internally allocated by C06PVF. The total size of these arrays is approximately
proportional to mn.

10 Example

This example reads in a bivariate sequence of real data values and prints their discrete Fourier
transforms as computed by C06PVF. Inverse transforms are then calculated by calling C06PWF
showing that the original sequences are restored.

10.1 Program Text

! C06PVF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c06pvfe_mod

! C06PVF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: readx, writx, writy

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine readx(nin,x,n1,n2)

! Read 2-dimensional real data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nin

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: x(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Executable Statements ..
Do i = 1, n1
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Read (nin,*)(x(i,j),j=1,n2)
End Do
Return

End Subroutine readx

Subroutine writx(nout,x,n1,n2)
! Print 2-dimensional real data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nout

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Executable Statements ..
Do i = 1, n1

Write (nout,*)
Write (nout,99999) ’Real ’, (x(i,j),j=1,n2)

End Do
Return

99999 Format (1X,A,3F10.3)
End Subroutine writx

Subroutine writy(nout,y,n1,n2)
! Print 2-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, nout

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: y(n1,n2)

! .. Local Scalars ..
Integer :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: aimag, real

! .. Executable Statements ..
Do i = 1, n1

Write (nout,*)
Write (nout,99999) ’Real ’, (real(y(i,j)),j=1,n2)
Write (nout,99999) ’Imag ’, (aimag(y(i,j)),j=1,n2)

End Do
Return

99999 Format (1X,A,7F10.3,/,(6X,7F10.3))
End Subroutine writy

End Module c06pvfe_mod

Program c06pvfe

! C06PVF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c06pvf, c06pwf, nag_wp
Use c06pvfe_mod, Only: nin, nout, readx, writx, writy

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: ieof, ifail, m, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: y(:)
Real (Kind=nag_wp), Allocatable :: x(:)

! .. Executable Statements ..
Write (nout,*) ’C06PVF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If
Allocate (x(m*n),y((m/2+1)*n))
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Call readx(nin,x,m,n)
Write (nout,*)
Write (nout,*) ’Original data values’
Call writx(nout,x,m,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06pvf(m,n,x,y,ifail)

Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Call writy(nout,y,m/2+1,n)

! -- Compute inverse transform
x = 0._nag_wp
Call c06pwf(m,n,y,x,ifail)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Call writx(nout,x,m,n)
Deallocate (x,y)

End Do loop

End Program c06pvfe

10.2 Program Data

C06PVF Example Program Data
5 2 : m, n

0.010
0.346
1.284
1.960
1.754
0.855
0.089
0.161
1.004
1.844 : x

10.3 Program Results

C06PVF Example Program Results

Original data values

Real 0.010 0.346

Real 1.284 1.960

Real 1.754 0.855

Real 0.089 0.161

Real 1.004 1.844

Components of discrete Fourier transform

Real 2.943 -0.324
Imag 0.000 0.000

Real -0.024 -0.466
Imag -0.558 -0.230

Real -1.167 0.362
Imag 0.636 0.262

C06 – Summation of Series C06PVF

Mark 26 C06PVF.5



Original sequence as restored by inverse transform

Real 0.010 0.346

Real 1.284 1.960

Real 1.754 0.855

Real 0.089 0.161

Real 1.004 1.844
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NAG Library Routine Document

C06PWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PWF computes the two-dimensional inverse discrete Fourier transform of a bivariate Hermitian
sequence of complex data values.

2 Specification

SUBROUTINE C06PWF (M, N, Y, X, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(M*N)
COMPLEX (KIND=nag_wp) Y((M/2+1)*N)

3 Description

C06PWF computes the two-dimensional inverse discrete Fourier transform of a bivariate Hermitian
sequence of complex data values zj1j2 , for j1 ¼ 0; 1; . . . ;m� 1 and j2 ¼ 0; 1; . . . ; n� 1.

The discrete Fourier transform is here defined by

x̂k1k2 ¼
1ffiffiffiffiffiffiffiffi
mn
p

Xm�1
j1¼0

Xn�1
j2¼0

zj1j2 � exp 2	i
j1k1
m
þ j2k2

n

� �� �
;

where k1 ¼ 0; 1; . . . ;m� 1 and k2 ¼ 0; 1; . . . ; n� 1. (Note the scale factor of 1ffiffiffiffiffi
mn
p in this definition.)

Because the input data satisfies conjugate symmetry (i.e., zk1k2 is the complex conjugate of z m�k1ð Þk2 , the
transformed values x̂k1k2 are real.

A call of C06PVF followed by a call of C06PWF will restore the original data.

This routine calls C06PQF and C06PRF to perform multiple one-dimensional discrete Fourier
transforms by the fast Fourier transform (FFT) algorithm in Brigham (1974) and Temperton (1983).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

5 Arguments

1: M – INTEGER Input

On entry: m, the first dimension of the transform.

Constraint: M � 1.

2: N – INTEGER Input

On entry: n, the second dimension of the transform.

Constraint: N � 1.
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3: Yð M=2þ 1ð Þ � NÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the Hermitian sequence of complex input dataset z, where zj1j2 is stored in
Yðj2 � m=2þ 1ð Þ þ j1Þ , for j1 ¼ 0; 1; . . . ;m=2 and j2 ¼ 0; 1; . . . ; n� 1. That is, if Y is regarded
as a two-dimensional array of dimension 0 : M=2; 0 : N� 1ð Þ, then Yðj1; j2Þ must contain zj1j2 .

4: XðM� NÞ – REAL (KIND=nag_wp) array Output

On exit: the real output dataset x̂, where x̂k1k2 is stored in Xðk2 �mþ k1Þ, for
k1 ¼ 0; 1; . . . ;m� 1 and k2 ¼ 0; 1; . . . ; n� 1. That is, if X is regarded as a two-dimensional
array of dimension 0 : M� 1; 0 : N� 1ð Þ, then Xðk1; k2Þ contains x̂k1k2 .

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 3

An internal error has occurred in this routine. Check the routine call and any array sizes. If the
call is correct then please contact NAG for assistance.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Some indication of accuracy can be obtained by performing a forward transform using C06PVF and a
backward transform using C06PWF, and comparing the results with the original sequence (in exact
arithmetic they would be identical).

8 Parallelism and Performance

C06PWF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PWF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06PWF is approximately proportional to mnlog mnð Þ, but also depends on the
factors of m and n. C06PWF is fastest if the only prime factors of m and n are 2, 3 and 5, and is
particularly slow if m or n is a large prime, or has large prime factors.

Workspace is internally allocated by C06PWF. The total size of these arrays is approximately
proportional to mn.

10 Example

See Section 10 in C06PVF.
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NAG Library Routine Document

C06PXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PXF computes the three-dimensional discrete Fourier transform of a trivariate sequence of complex
data values (using complex data type).

2 Specification

SUBROUTINE C06PXF (DIRECT, N1, N2, N3, X, WORK, IFAIL)

INTEGER N1, N2, N3, IFAIL
COMPLEX (KIND=nag_wp) X(N1*N2*N3), WORK(*)
CHARACTER(1) DIRECT

3 Description

C06PXF computes the three-dimensional discrete Fourier transform of a trivariate sequence of complex
data values zj1j2j3 , for j1 ¼ 0; 1; . . . ; n1 � 1, j2 ¼ 0; 1; . . . ; n2 � 1 and j3 ¼ 0; 1; . . . ; n3 � 1.

The discrete Fourier transform is here defined by

ẑk1k2k3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2n3
p

Xn1�1
j1¼0

Xn2�1
j2¼0

Xn3�1
j3¼0

zj1j2j3 � exp 
2	i j1k1
n1
þ j2k2

n2
þ j3k3

n3

� �� �
;

where k1 ¼ 0; 1; . . . ; n1 � 1, k2 ¼ 0; 1; . . . ; n2 � 1 and k3 ¼ 0; 1; . . . ; n3 � 1.

(Note the scale factor of 1ffiffiffiffiffiffiffiffiffiffiffi
n1n2n3
p in this definition.) The minus sign is taken in the argument of the

exponential within the summation when the forward transform is required, and the plus sign is taken
when the backward transform is required.

A call of C06PXF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

This routine performs multiple one-dimensional discrete Fourier transforms by the fast Fourier
transform (FFT) algorithm (see Brigham (1974)).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.

If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .
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2: N1 – INTEGER Input

On entry: n1, the first dimension of the transform.

Constraint: N1 � 1.

3: N2 – INTEGER Input

On entry: n2, the second dimension of the transform.

Constraint: N2 � 1.

4: N3 – INTEGER Input

On entry: n3, the third dimension of the transform.

Constraint: N3 � 1.

5: XðN1� N2� N3Þ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the complex data values. Data values are stored in X using column-major ordering for
storing multidimensional arrays; that is, zj1j2j3 is stored in Xð1þ j1 þ n1j2 þ n1n2j3Þ.
On exit: the corresponding elements of the computed transform.

6: WORKð�Þ – COMPLEX (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least N1� N2� N3þ N1þ N2þ N3þ 45.

The workspace requirements as documented for C06PXF may be an overestimate in some
implementations.

On exit: the real part of WORKð1Þ contains the minimum workspace required for the current
values of N1, N2 and N3 with this implementation.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 1.

IFAIL ¼ 2

On entry, N2 < 1.

IFAIL ¼ 3

On entry, N3 < 1.
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IFAIL ¼ 4

On entry, DIRECT 6¼ F or B .

IFAIL ¼ 8

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06PXF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PXF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n1n2n3 � log n1n2n3ð Þ, but also depends on the
factorization of the individual dimensions n1, n2 and n3. C06PXF is faster if the only prime factors are
2, 3 or 5; and fastest of all if they are powers of 2.

10 Example

This example reads in a trivariate sequence of complex data values and prints the three-dimensional
Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which
may be compared to the original data values.

C06 – Summation of Series C06PXF

Mark 26 C06PXF.3



10.1 Program Text

! C06PXF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c06pxfe_mod

! C06PXF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: readx, writx

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine readx(nin,x,n1,n2,n3)

! Read 3-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, n3, nin

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: x(n1,n2,n3)

! .. Local Scalars ..
Integer :: i, j, k

! .. Executable Statements ..
Do i = 1, n1

Do j = 1, n2
Read (nin,*)(x(i,j,k),k=1,n3)

End Do
End Do
Return

End Subroutine readx

Subroutine writx(nout,x,n1,n2,n3)
! Print 3-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, n3, nout

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: x(n1,n2,n3)

! .. Local Scalars ..
Integer :: i, j, k

! .. Intrinsic Procedures ..
Intrinsic :: aimag, real

! .. Executable Statements ..
Do i = 1, n1

Write (nout,*)
Write (nout,99998) ’z(i,j,k) for i =’, i
Do j = 1, n2

Write (nout,*)
Write (nout,99999) ’Real ’, (real(x(i,j,k)),k=1,n3)
Write (nout,99999) ’Imag ’, (aimag(x(i,j,k)),k=1,n3)

End Do
End Do
Return

99999 Format (1X,A,7F10.3,/,(6X,7F10.3))
99998 Format (1X,A,I6)

End Subroutine writx
End Module c06pxfe_mod

Program c06pxfe

! C06PXF Example Main Program

! .. Use Statements ..
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Use nag_library, Only: c06pxf, nag_wp
Use c06pxfe_mod, Only: nin, nout, readx, writx

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: ieof, ifail, n, n1, n2, n3

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06PXF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) n1, n2, n3
If (ieof<0) Then

Exit loop
End If
n = n1*n2*n3
Allocate (x(n),work(n+n1+n2+n3+45))
Call readx(nin,x,n1,n2,n3)
Write (nout,*)
Write (nout,*) ’Original data values’
Call writx(nout,x,n1,n2,n3)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06pxf(’F’,n1,n2,n3,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Call writx(nout,x,n1,n2,n3)

! -- Compute inverse transform
Call c06pxf(’B’,n1,n2,n3,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Call writx(nout,x,n1,n2,n3)
Deallocate (x,work)

End Do loop

End Program c06pxfe

10.2 Program Data

C06PXF Example Program Data
2 3 4 : n1, n2, n3
( 1.000, 0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352)
( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454)
( 0.903,-0.430) ( 0.885,-0.466) ( 0.823,-0.568) ( 0.694,-0.720)
( 0.500, 0.500) ( 0.499, 0.040) ( 0.487, 0.159) ( 0.436, 0.352)
( 0.494, 0.111) ( 0.489, 0.151) ( 0.463, 0.268) ( 0.391, 0.454)
( 0.403, 0.430) ( 0.385, 0.466) ( 0.323, 0.568) ( 0.194, 0.720) : x

10.3 Program Results

C06PXF Example Program Results

Original data values

z(i,j,k) for i = 1

Real 1.000 0.999 0.987 0.936
Imag 0.000 -0.040 -0.159 -0.352

Real 0.994 0.989 0.963 0.891
Imag -0.111 -0.151 -0.268 -0.454
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Real 0.903 0.885 0.823 0.694
Imag -0.430 -0.466 -0.568 -0.720

z(i,j,k) for i = 2

Real 0.500 0.499 0.487 0.436
Imag 0.500 0.040 0.159 0.352

Real 0.494 0.489 0.463 0.391
Imag 0.111 0.151 0.268 0.454

Real 0.403 0.385 0.323 0.194
Imag 0.430 0.466 0.568 0.720

Components of discrete Fourier transform

z(i,j,k) for i = 1

Real 3.292 0.051 0.113 0.051
Imag 0.102 -0.042 0.102 0.246

Real 0.143 0.016 -0.024 -0.050
Imag -0.086 0.153 0.127 0.086

Real 0.143 -0.050 -0.024 0.016
Imag 0.290 0.118 0.077 0.051

z(i,j,k) for i = 2

Real 1.225 0.355 0.000 -0.355
Imag -1.620 0.083 0.162 0.083

Real 0.424 0.020 0.013 -0.007
Imag 0.320 -0.115 -0.091 -0.080

Real -0.424 0.007 -0.013 -0.020
Imag 0.320 -0.080 -0.091 -0.115

Original sequence as restored by inverse transform

z(i,j,k) for i = 1

Real 1.000 0.999 0.987 0.936
Imag -0.000 -0.040 -0.159 -0.352

Real 0.994 0.989 0.963 0.891
Imag -0.111 -0.151 -0.268 -0.454

Real 0.903 0.885 0.823 0.694
Imag -0.430 -0.466 -0.568 -0.720

z(i,j,k) for i = 2

Real 0.500 0.499 0.487 0.436
Imag 0.500 0.040 0.159 0.352

Real 0.494 0.489 0.463 0.391
Imag 0.111 0.151 0.268 0.454

Real 0.403 0.385 0.323 0.194
Imag 0.430 0.466 0.568 0.720
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NAG Library Routine Document

C06PYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PYF computes the three-dimensional discrete Fourier transform of a trivariate sequence of real data
values.

2 Specification

SUBROUTINE C06PYF (N1, N2, N3, X, Y, IFAIL)

INTEGER N1, N2, N3, IFAIL
REAL (KIND=nag_wp) X(N1*N2*N3)
COMPLEX (KIND=nag_wp) Y((N1/2+1)*N2*N3)

3 Description

C06PYF computes the three-dimensional discrete Fourier transform of a trivariate sequence of real data
values xj1j2j3 , for j1 ¼ 0; 1; . . . ; n1 � 1, j2 ¼ 0; 1; . . . ; n2 � 1 and j3 ¼ 0; 1; . . . ; n3 � 1.

The discrete Fourier transform is here defined by

ẑk1k2k3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2n3
p

Xn1�1
j1¼0

Xn2�1
j2¼0

Xn3�1
j3¼0

xj1j2j3 � exp �2	i j1k1
n1
þ j2k2

n2
þ j3k3

n3

� �� �
;

where k1 ¼ 0; 1; . . . ; n1 � 1, k2 ¼ 0; 1; . . . ; n2 � 1 and k3 ¼ 0; 1; . . . ; n3 � 1. (Note the scale factor of
1ffiffiffiffiffiffiffiffiffiffiffi

n1n2n3
p in this definition.)

The transformed values ẑk1k2k3 are complex. Because of conjugate symmetry (i.e., ẑk1k2k3 is the complex
conjugate of ẑ n1�k1ð Þk2k3 ), only slightly more than half of the Fourier coefficients need to be stored in the
output.

A call of C06PYF followed by a call of C06PZF will restore the original data.

This routine calls C06PQF and C06PRF to perform multiple one-dimensional discrete Fourier
transforms by the fast Fourier transform (FFT) algorithm in Brigham (1974) and Temperton (1983).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

5 Arguments

1: N1 – INTEGER Input

On entry: n1, the first dimension of the transform.

Constraint: N1 � 1.

2: N2 – INTEGER Input

On entry: n2, the second dimension of the transform.

Constraint: N2 � 1.
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3: N3 – INTEGER Input

On entry: n3, the third dimension of the transform.

Constraint: N3 � 1.

4: XðN1� N2� N3Þ – REAL (KIND=nag_wp) array Input

On entry: the real input dataset x, where xj1j2j3 is stored in Xðj3 � n1n2 þ j2 � n1 þ j1 þ 1Þ, for
j1 ¼ 0; 1; . . . ; n1 � 1, j2 ¼ 0; 1; . . . ; n2 � 1 and j3 ¼ 0; 1; . . . ; n3 � 1. That is, if X is regarded as a
three-dimensional array of dimension 0 : N1� 1; 0 : N2� 1; 0 : N3� 1ð Þ, then Xðj1; j2; j3Þ must
contain xj1j2j3 .

5: Yð N1=2þ 1ð Þ � N2� N3Þ – COMPLEX (KIND=nag_wp) array Output

O n e x i t : t h e c om p l e x o u t p u t d a t a s e t ẑ, w h e r e ẑk1k2k3 i s s t o r e d i n
Yðk3 � n1=2þ 1ð Þn2 þ k2 � n1=2þ 1ð Þ þ k1 þ 1Þ, for k1 ¼ 0; 1; . . . ; n1=2, k2 ¼ 0; 1; . . . ; n2 � 1
and k3 ¼ 0; 1; . . . ; n3 � 1. That is, if Y is regarded as a three-dimensional array of dimension
0 : N1=2; 0 : N2� 1; 0 : N3� 1ð Þ, then Yðk1; k2; k3Þ contains ẑk1k2k3 . Note the first dimension is
cut roughly by half to remove the redundant information due to conjugate symmetry.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 ¼ valueh i.
Constraint: N1 � 1.

IFAIL ¼ 2

On entry, N2 ¼ valueh i.
Constraint: N2 � 1.

IFAIL ¼ 3

On entry, N3 ¼ valueh i.
Constraint: N3 � 1.

IFAIL ¼ 4

An internal error has occurred in this routine. Check the routine call and any array sizes. If the
call is correct then please contact NAG for assistance.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a forward transform using C06PYF and a
backward transform using C06PZF, and comparing the results with the original sequence (in exact
arithmetic they would be identical).

8 Parallelism and Performance

C06PYF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06PYF is approximately proportional to n1n2n3log n1n2n3ð Þ, but also depends on
the factors of n1, n2 and n3. C06PYF is fastest if the only prime factors of n1, n2 and n3 are 2, 3 and 5,
and is particularly slow if one of the dimensions is a large prime, or has large prime factors.

Workspace is internally allocated by C06PYF. The total size of these arrays is approximately
proportional to n1n2n3.

10 Example

This example reads in a trivariate sequence of real data values and prints their discrete Fourier
transforms as computed by C06PYF. Inverse transforms are then calculated by calling C06PZF showing
that the original sequences are restored.

10.1 Program Text

! C06PYF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module c06pyfe_mod

! C06PYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp
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! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: readx, writx, writy

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine readx(nin,x,n1,n2,n3)

! Read 3-dimensional real data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, n3, nin

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: x(n1,n2,n3)

! .. Local Scalars ..
Integer :: i, j, k

! .. Executable Statements ..
Do i = 1, n1

Do j = 1, n2
Read (nin,*)(x(i,j,k),k=1,n3)

End Do
End Do
Return

End Subroutine readx

Subroutine writx(nout,x,n1,n2,n3)
! Print 3-dimensional real data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, n3, nout

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(n1,n2,n3)

! .. Local Scalars ..
Integer :: i, j, k

! .. Executable Statements ..
Do i = 1, n1

Write (nout,*)
Write (nout,99998) ’x(i,j,k) for i =’, i
Do j = 1, n2

Write (nout,*)
Write (nout,99999) ’Real ’, (x(i,j,k),k=1,n3)

End Do
End Do
Return

99999 Format (1X,A,4F10.3)
99998 Format (1X,A,I6)

End Subroutine writx

Subroutine writy(nout,y,n1,n2,n3)
! Print 3-dimensional complex data

! .. Scalar Arguments ..
Integer, Intent (In) :: n1, n2, n3, nout

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: y(n1,n2,n3)

! .. Local Scalars ..
Integer :: i, j, k

! .. Intrinsic Procedures ..
Intrinsic :: aimag, real

! .. Executable Statements ..
Do i = 1, n1

Write (nout,*)
Write (nout,99998) ’y(i,j,k) for i =’, i
Do j = 1, n2

Write (nout,*)
Write (nout,99999) ’Real ’, (real(y(i,j,k)),k=1,n3)
Write (nout,99999) ’Imag ’, (aimag(y(i,j,k)),k=1,n3)

End Do
End Do
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Return

99999 Format (1X,A,4F10.3)
99998 Format (1X,A,I6)

End Subroutine writy
End Module c06pyfe_mod

Program c06pyfe

! C06PYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c06pyf, c06pzf, nag_wp
Use c06pyfe_mod, Only: nin, nout, readx, writx, writy

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: ieof, ifail, n1, n2, n3

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: y(:)
Real (Kind=nag_wp), Allocatable :: x(:)

! .. Executable Statements ..
Write (nout,*) ’C06PYF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) n1, n2, n3
If (ieof<0) Then

Exit loop
End If

Allocate (x(n1*n2*n3),y((n1/2+1)*n2*n3))

Call readx(nin,x,n1,n2,n3)
Write (nout,*)
Write (nout,*) ’Original data values’
Call writx(nout,x,n1,n2,n3)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06pyf(n1,n2,n3,x,y,ifail)

Write (nout,*)
Write (nout,*) ’Components of discrete Fourier transform’
Call writy(nout,y,n1/2+1,n2,n3)

! -- Compute inverse transform
x = 0._nag_wp
Call c06pzf(n1,n2,n3,y,x,ifail)

Write (nout,*)
Write (nout,*) ’Original sequence as restored by inverse transform’
Call writx(nout,x,n1,n2,n3)
Deallocate (x,y)

End Do loop

End Program c06pyfe

10.2 Program Data

C06PYF Example Program Data
3 3 4 : n1, n2, n3

1.541 0.161 1.989 0.037
0.346 1.907 0.001 1.915
1.754 0.042 1.991 0.151
0.584 1.004 1.408 0.252
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1.284 1.137 0.467 1.834
0.855 0.725 1.647 0.096
0.010 1.844 0.452 1.154
1.960 0.240 1.424 0.987
0.089 1.660 0.708 0.872 : x

10.3 Program Results

C06PYF Example Program Results

Original data values

x(i,j,k) for i = 1

Real 1.541 0.161 1.989 0.037

Real 0.346 1.907 0.001 1.915

Real 1.754 0.042 1.991 0.151

x(i,j,k) for i = 2

Real 0.584 1.004 1.408 0.252

Real 1.284 1.137 0.467 1.834

Real 0.855 0.725 1.647 0.096

x(i,j,k) for i = 3

Real 0.010 1.844 0.452 1.154

Real 1.960 0.240 1.424 0.987

Real 0.089 1.660 0.708 0.872

Components of discrete Fourier transform

y(i,j,k) for i = 1

Real 5.755 -0.277 0.415 -0.277
Imag 0.000 -0.237 0.000 0.237

Real -0.268 0.109 0.175 -0.688
Imag -0.420 -0.756 0.871 -0.210

Real -0.268 -0.688 0.175 0.109
Imag 0.420 0.210 -0.871 0.756

y(i,j,k) for i = 2

Real 0.081 0.060 0.645 0.047
Imag 0.015 0.156 -0.478 -0.077

Real 0.038 -0.275 1.585 0.201
Imag 0.198 0.295 0.616 0.061

Real 0.067 0.280 -0.113 -0.128
Imag -0.122 0.012 -1.555 -0.117

Original sequence as restored by inverse transform

x(i,j,k) for i = 1

Real 1.541 0.161 1.989 0.037

Real 0.346 1.907 0.001 1.915

Real 1.754 0.042 1.991 0.151
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x(i,j,k) for i = 2

Real 0.584 1.004 1.408 0.252

Real 1.284 1.137 0.467 1.834

Real 0.855 0.725 1.647 0.096

x(i,j,k) for i = 3

Real 0.010 1.844 0.452 1.154

Real 1.960 0.240 1.424 0.987

Real 0.089 1.660 0.708 0.872
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NAG Library Routine Document

C06PZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06PZF computes the three-dimensional inverse discrete Fourier transform of a trivariate Hermitian
sequence of complex data values.

2 Specification

SUBROUTINE C06PZF (N1, N2, N3, Y, X, IFAIL)

INTEGER N1, N2, N3, IFAIL
REAL (KIND=nag_wp) X(N1*N2*N3)
COMPLEX (KIND=nag_wp) Y((N1/2+1)*N2*N3)

3 Description

C06PZF computes the three-dimensional inverse discrete Fourier transform of a trivariate Hermitian
sequence of complex data values zj1j2j3 , for j1 ¼ 0; 1; . . . ; n1 � 1, j2 ¼ 0; 1; . . . ; n2 � 1 and
j3 ¼ 0; 1; . . . ; n3 � 1.

The discrete Fourier transform is here defined by

x̂k1k2k3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2n3
p

Xn1�1
j1¼0

Xn2�1
j2¼0

Xn3�1
j3¼0

zj1j2j3 � exp 2	i
j1k1
n1
þ j2k2

n2
þ j3k3

n3

� �� �
;

where k1 ¼ 0; 1; . . . ; n1 � 1, k2 ¼ 0; 1; . . . ; n2 � 1 and k3 ¼ 0; 1; . . . ; n3 � 1. (Note the scale factor of
1ffiffiffiffiffiffiffiffiffiffiffi

n1n2n3
p in this definition.)

Because the input data satisfies conjugate symmetry (i.e., zk1k2k3 is the complex conjugate of
z n1�k1ð Þk2k3 ), the transformed values x̂k1k2k3 are real.

A call of C06PYF followed by a call of C06PZF will restore the original data.

This routine calls C06PQF and C06PRF to perform multiple one-dimensional discrete Fourier
transforms by the fast Fourier transform (FFT) algorithm in Brigham (1974) and Temperton (1983).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

5 Arguments

1: N1 – INTEGER Input

On entry: n1, the first dimension of the transform.

Constraint: N1 � 1.

2: N2 – INTEGER Input

On entry: n2, the second dimension of the transform.

Constraint: N2 � 1.

C06 – Summation of Series C06PZF

Mark 26 C06PZF.1



3: N3 – INTEGER Input

On entry: n3, the third dimension of the transform.

Constraint: N3 � 1.

4: Yð N1=2þ 1ð Þ � N2� N3Þ – COMPLEX (KIND=nag_wp) array Input

On entry: the Hermitian sequence of complex input dataset z, where zj1j2j3 is stored in
Yðj3 � n1=2þ 1ð Þn2 þ j2 � n1=2þ 1ð Þ þ j1 þ 1Þ, for j1 ¼ 0; 1; . . . ; n1=2, j2 ¼ 0; 1; . . . ; n2 � 1
and j3 ¼ 0; 1; . . . ; n3 � 1. That is, if Y is regarded as a three-dimensional array of dimension
0 : N1=2; 0 : N2� 1; 0 : N3� 1ð Þ, then Yðj1; j2; j3Þ must contain zj1j2j3 .

5: XðN1� N2� N3Þ – REAL (KIND=nag_wp) array Output

On exit: the real output dataset x̂, where x̂k1k2k3 is stored in Xðk3 � n1n2 þ k2 � n1 þ k1 þ 1Þ, for
k1 ¼ 0; 1; . . . ; n1 � 1, k2 ¼ 0; 1; . . . ; n2 � 1 and k3 ¼ 0; 1; . . . ; n3 � 1. That is, if X is regarded as
a three-dimensional array of dimension 0 : N1� 1; 0 : N2� 1; 0 : N3� 1ð Þ, then Xðk1; k2; k3Þ
contains x̂k1k2k3 .

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 ¼ valueh i.
Constraint: N1 � 1.

IFAIL ¼ 2

On entry, N2 ¼ valueh i.
Constraint: N2 � 1.

IFAIL ¼ 3

On entry, N3 ¼ valueh i.
Constraint: N3 � 1.

IFAIL ¼ 4

An internal error has occurred in this routine. Check the routine call and any array sizes. If the
call is correct then please contact NAG for assistance.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a forward transform using C06PYF and a
backward transform using C06PZF, and comparing the results with the original sequence (in exact
arithmetic they would be identical).

8 Parallelism and Performance

C06PZF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06PZF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06PZF is approximately proportional to n1n2n3log n1n2n3ð Þ, but also depends on
the factors of n1, n2 and n3. C06PZF is fastest if the only prime factors of n1, n2 and n3 are 2, 3 and 5,
and is particularly slow if one of the dimensions is a large prime, or has large prime factors.

Workspace is internally allocated by C06PZF. The total size of these arrays is approximately
proportional to n1n2n3.

10 Example

See Section 10 in C06PYF.

C06 – Summation of Series C06PZF

Mark 26 C06PZF.3 (last)





NAG Library Routine Document

C06RAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06RAF computes the discrete Fourier sine transforms of m sequences of real data values.

2 Specification

SUBROUTINE C06RAF (M, N, X, WORK, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(M*(N+2)), WORK(*)

3 Description

Given m sequences of n� 1 real data values xpj , for j ¼ 1; 2; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, C06RAF
simultaneously calculates the Fourier sine transforms of all the sequences defined by

x̂pk ¼
ffiffi
2
n

q Xn�1
j¼1

xpj � sin jk
	

n

� �
; k ¼ 1; 2; . . . ; n� 1 and p ¼ 1; 2; . . . ;m:

(Note the scale factor
ffiffi
2
n

q
in this definition.)

Since the Fourier sine transform defined above is its own inverse, two consecutive calls of this routine
will restore the original data.

The transform calculated by this routine can be used to solve Poisson's equation when the solution is
specified at both left and right boundaries (see Swarztrauber (1977)).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and post-
processing stages described in Swarztrauber (1982). Special coding is provided for the factors 2, 3, 4
and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501

Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51–83
Academic Press

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

5 Arguments

1: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.
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2: N – INTEGER Input

On entry: one more than the number of real values in each sequence, i.e., the number of values in
each sequence is n� 1.

Constraint: N � 1.

3: XðM� Nþ 2ð ÞÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension
1 : M; 1 : Nþ 2ð Þ; each of the m sequences is stored in a row of the array. In other words, if the
n� 1 data values of the pth sequence to be transformed are denoted by xpj , for j ¼ 1; 2; . . . ; n� 1
and p ¼ 1; 2; . . . ;m, then the first m n� 1ð Þ elements of the array X must contain the values

x11; x
2
1; . . . ; x

m
1 ; x

1
2; x

2
2; . . . ; x

m
2 ; . . . ; x

1
n�1; x

2
n�1; . . . ; x

m
n�1:

The nth to nþ 2ð Þth elements of each row xpn; . . . ; x
p
nþ2, for p ¼ 1; 2; . . . ;m, are required as

workspace. These 3m elements may contain arbitrary values as they are set to zero by the
routine.

On exit: the m Fourier sine transforms stored as if in a two-dimensional array of dimension
1 : M; 1 : Nþ 2ð Þ. Each of the m transforms is stored in a row of the array, overwriting the
corresponding original sequence. If the n� 1ð Þ components of the pth Fourier sine transform are
denoted by x̂pk, for k ¼ 1; 2; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, then the m nþ 2ð Þ elements of the
array X contain the values

x̂11; x̂
2
1; . . . ; x̂

m
1 ; x̂

1
2; x̂

2
2; . . . ; x̂

m
2 ; . . . ; x̂

1
n�1; x̂

2
n�1; . . . ; x̂

m
n�1; 0; 0; . . . ; 0 3m timesð Þ:

4: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least M� Nþ 2� Nþ 2�Mþ 15.

The workspace requirements as documented for C06RAF may be an overestimate in some
implementations.

On exit: WORKð1Þ contains the minimum workspace required for the current values of M and N
with this implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.
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IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06RAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06RAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06RAF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06RAF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

10 Example

This example reads in sequences of real data values and prints their Fourier sine transforms (as
computed by C06RAF). It then calls C06RAF again and prints the results which may be compared with
the original sequence.
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10.1 Program Text

Program c06rafe

! C06RAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06raf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ieof, ifail, j, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06RAF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (x(m*(n+2)),work(m*n+2*n+2*m+15))
Do j = 1, m

Read (nin,*)(x((i-1)*m+j),i=1,n-1)
End Do
Write (nout,*)
Write (nout,*) ’Original data values’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x((i-1)*m+j),i=1,n-1)
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06raf(m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Discrete Fourier sine transforms’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x((i-1)*m+j),i=1,n-1)
End Do

! -- Compute inverse transform
Call c06raf(m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x((i-1)*m+j),i=1,n-1)
End Do
Deallocate (x,work)

End Do loop

99999 Format (6X,6F10.4)
End Program c06rafe
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10.2 Program Data

C06RAF Example Program Data
3 6 : m, n
0.6772 0.1138 0.6751 0.6362 0.1424
0.2983 0.1182 0.7255 0.8638 0.8723
0.0644 0.6037 0.6430 0.0428 0.4815 : x

10.3 Program Results

C06RAF Example Program Results

Original data values

0.6772 0.1138 0.6751 0.6362 0.1424
0.2983 0.1182 0.7255 0.8638 0.8723
0.0644 0.6037 0.6430 0.0428 0.4815

Discrete Fourier sine transforms

1.0014 0.0062 0.0834 0.5286 0.2514
1.2478 -0.6598 0.2570 0.0858 0.2658
0.8521 0.0719 -0.0561 -0.4890 0.2056

Original data as restored by inverse transform

0.6772 0.1138 0.6751 0.6362 0.1424
0.2983 0.1182 0.7255 0.8638 0.8723
0.0644 0.6037 0.6430 0.0428 0.4815
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C06RBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06RBF computes the discrete Fourier cosine transforms of m sequences of real data values.

2 Specification

SUBROUTINE C06RBF (M, N, X, WORK, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(M*(N+3)), WORK(*)

3 Description

Given m sequences of nþ 1 real data values xpj , for j ¼ 0; 1; . . . ; n and p ¼ 1; 2; . . . ;m, C06RBF
simultaneously calculates the Fourier cosine transforms of all the sequences defined by

x̂pk ¼
ffiffi
2
n

q
1
2x

p
0 þ

Xn�1
j¼1

xpj � cos jk
	

n

� �
þ 1

2 �1ð Þkxpn

 !
; k ¼ 0; 1; . . . ; n and p ¼ 1; 2; . . . ;m:

(Note the scale factor
ffiffi
2
n

q
in this definition.)

Since the Fourier cosine transform is its own inverse, two consecutive calls of C06RBF will restore the
original data.

The transform calculated by this routine can be used to solve Poisson's equation when the derivative of
the solution is specified at both left and right boundaries (see Swarztrauber (1977)).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and post-
processing stages described in Swarztrauber (1982). Special coding is provided for the factors 2, 3, 4
and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501

Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51–83
Academic Press

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

5 Arguments

1: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.
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2: N – INTEGER Input

On entry: one less than the number of real values in each sequence, i.e., the number of values in
each sequence is nþ 1.

Constraint: N � 1.

3: XðM� Nþ 3ð ÞÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension
1 : M; 0 : Nþ 2ð Þ; each of the m sequences is stored in a row of the array. In other words, if the
nþ 1ð Þ data values of the pth sequence to be transformed are denoted by xpj , for j ¼ 0; 1; . . . ; n
and p ¼ 1; 2; . . . ;m, then the first m nþ 1ð Þ elements of the array X must contain the values

x10; x
2
0; . . . ; x

m
0 ; x

1
1; x

2
1; . . . ; x

m
1 ; . . . ; x

1
n; x

2
n; . . . ; x

m
n :

The nþ 2ð Þth and nþ 3ð Þth elements of each row xpnþ2; x
p
nþ3, for p ¼ 1; 2; . . . ;m, are required as

workspace. These 2m elements may contain arbitrary values as they are set to zero by the
routine.

On exit: the m Fourier cosine transforms stored as if in a two-dimensional array of dimension
1 : M; 0 : Nþ 2ð Þ. Each of the m transforms is stored in a row of the array, overwriting the
corresponding original data. If the nþ 1ð Þ components of the pth Fourier cosine transform are
denoted by x̂pk, for k ¼ 0; 1; . . . ; n and p ¼ 1; 2; . . . ;m, then the m nþ 3ð Þ elements of the array X
contain the values

x̂10; x̂
2
0; . . . ; x̂

m
0 ; x̂

1
1; x̂

2
1; . . . ; x̂

m
1 ; . . . ; x̂

1
n; x̂

2
n; . . . ; x̂

m
n ; 0; 0; . . . ; 0 2m timesð Þ:

4: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least M� Nþ 2� Nþ 2�Mþ 15.

The workspace requirements as documented for C06RBF may be an overestimate in some
implementations.

On exit: WORKð1Þ contains the minimum workspace required for the current values of M and N
with this implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.
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IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06RBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06RBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06RBF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06RBF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

10 Example

This example reads in sequences of real data values and prints their Fourier cosine transforms (as
computed by C06RBF). It then calls the routine again and prints the results which may be compared
with the original sequence.
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10.1 Program Text

Program c06rbfe

! C06RBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06rbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ieof, ifail, j, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06RBF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (x(m*(n+3)),work(m*n+2*n+2*m+15))
Do j = 1, m

Read (nin,*)(x(i*m+j),i=0,n)
End Do
Write (nout,*)
Write (nout,*) ’Original data values’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x(i*m+j),i=0,n)
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06rbf(m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Discrete Fourier cosine transforms’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x(i*m+j),i=0,n)
End Do

! -- Compute inverse transform
Call c06rbf(m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x(i*m+j),i=0,n)
End Do
Deallocate (x,work)

End Do loop

99999 Format (6X,7F10.4)
End Program c06rbfe
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10.2 Program Data

C06RBF Example Program Data
3 6 : m, n
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057 : x

10.3 Program Results

C06RBF Example Program Results

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057

Discrete Fourier cosine transforms

1.6833 -0.0482 0.0176 0.1368 0.3240 -0.5830 -0.0427
1.9605 -0.4884 -0.0655 0.4444 0.0964 0.0856 -0.2289
1.3838 0.1588 -0.0761 -0.1184 0.3512 0.5759 0.0110

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057
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C06RCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06RCF computes the discrete quarter-wave Fourier sine transforms of m sequences of real data
values.

2 Specification

SUBROUTINE C06RCF (DIRECT, M, N, X, WORK, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(M*(N+2)), WORK(*)
CHARACTER(1) DIRECT

3 Description

Given m sequences of n real data values xpj , for j ¼ 1; 2; . . . ; n and p ¼ 1; 2; . . . ;m, C06RCF
simultaneously calculates the quarter-wave Fourier sine transforms of all the sequences defined by

x̂pk ¼
1ffiffiffi
n
p

Xn�1
j¼1

xpj � sin j 2k� 1ð Þ 	
2n

� �
þ 1

2 �1ð Þk�1xpn

 !
; if DIRECT ¼ F ;

or its inverse

xpk ¼
2ffiffiffi
n
p
Xn
j¼1

x̂pj � sin 2j� 1ð Þk 	
2n

� �
; if DIRECT ¼ B ;

where k ¼ 1; 2; . . . ; n and p ¼ 1; 2; . . . ;m.

(Note the scale factor 1ffiffi
n
p in this definition.)

A call of C06RCF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

The transform calculated by this routine can be used to solve Poisson's equation when the solution is
specified at the left boundary, and the derivative of the solution is specified at the right boundary (see
Swarztrauber (1977)).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and post-
processing stages described in Swarztrauber (1982). Special coding is provided for the factors 2, 3, 4
and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501

Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51–83
Academic Press

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350
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5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.

If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .

2: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.

3: N – INTEGER Input

On entry: n, the number of real values in each sequence.

Constraint: N � 1.

4: XðM� Nþ 2ð ÞÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension
1 : M; 1 : Nþ 2ð Þ; each of the m sequences is stored in a row of the array. In other words, if the
data values of the pth sequence to be transformed are denoted by xpj , for j ¼ 1; 2; . . . ; n and
p ¼ 1; 2; . . . ;m, then the first mn elements of the array X must contain the values

x11; x
2
1; . . . ; x

m
1 ; x

1
2; x

2
2; . . . ; x

m
2 ; . . . ; x

1
n; x

2
n; . . . ; x

m
n :

The nþ 1ð Þth and nþ 2ð Þth elements of each row xpnþ1; x
p
nþ2, for p ¼ 1; 2; . . . ;m, are required as

workspace. These 2m elements may contain arbitrary values as they are set to zero by the
routine.

On exit: the m quarter-wave sine transforms stored as if in a two-dimensional array of dimension
1 : M; 1 : Nþ 2ð Þ. Each of the m transforms is stored in a row of the array, overwriting the
corresponding original sequence. If the n components of the pth quarter-wave sine transform are
denoted by x̂pk, for k ¼ 1; 2; . . . ; n and p ¼ 1; 2; . . . ;m, then the m nþ 2ð Þ elements of the array X
contain the values

x̂11; x̂
2
1; . . . ; x̂

m
1 ; x̂

1
2; x̂

2
2; . . . ; x̂

m
2 ; . . . ; x̂

1
n; x̂

2
n; . . . ; x̂

m
n ; 0; 0; . . . ; 0 2m timesð Þ:

5: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least M� Nþ 2� Nþ 2�Mþ 15.

The workspace requirements as documented for C06RCF may be an overestimate in some
implementations.

On exit: WORKð1Þ contains the minimum workspace required for the current values of M and N
with this implementation.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, DIRECT 6¼ F or B .

IFAIL ¼ 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06RCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06RCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The time taken by C06RCF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06RCF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

10 Example

This example reads in sequences of real data values and prints their quarter-wave sine transforms as
computed by C06RCF with DIRECT ¼ F . It then calls the routine again with DIRECT ¼ B and prints
the results which may be compared with the original data.

10.1 Program Text

Program c06rcfe

! C06RCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06rcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ieof, ifail, j, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06RCF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (x(m*(n+2)),work(m*n+2*n+2*m+15))
Do j = 1, m

Read (nin,*)(x(i*m+j),i=0,n-1)
End Do
Write (nout,*)
Write (nout,*) ’Original data values’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x(i*m+j),i=0,n-1)
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06rcf(’Forward’,m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Discrete quarter-wave Fourier sine transforms’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x(i*m+j),i=0,n-1)
End Do

! -- Compute inverse transform
Call c06rcf(’Backward’,m,n,x,work,ifail)

Write (nout,*)
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Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x(i*m+j),i=0,n-1)
End Do
Deallocate (x,work)

End Do loop

99999 Format (6X,7F10.4)
End Program c06rcfe

10.2 Program Data

C06RCF Example Program Data
3 6 : m, n
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 : x

10.3 Program Results

C06RCF Example Program Results

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Discrete quarter-wave Fourier sine transforms

0.7304 0.2078 0.1150 0.2577 -0.2869 -0.0815
0.9274 -0.1152 0.2532 0.2883 -0.0026 -0.0635
0.6268 0.3547 0.0760 0.3078 0.4987 -0.0507

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
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NAG Library Routine Document

C06RDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06RDF computes the discrete quarter-wave Fourier cosine transforms of m sequences of real data
values.

2 Specification

SUBROUTINE C06RDF (DIRECT, M, N, X, WORK, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(M*(N+2)), WORK(*)
CHARACTER(1) DIRECT

3 Description

Given m sequences of n real data values xpj , for j ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, C06RDF
simultaneously calculates the quarter-wave Fourier cosine transforms of all the sequences defined by

x̂pk ¼
1ffiffiffi
n
p 1

2x
p
0 þ

Xn�1
j¼1

xpj � cos j 2k� 1ð Þ 	
2n

� � !
; if DIRECT ¼ F ;

or its inverse

xpk ¼
2ffiffiffi
n
p
Xn�1
j¼0

x̂pj � cos 2j� 1ð Þk 	
2n

� �
; if DIRECT ¼ B ;

where k ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m.

(Note the scale factor 1ffiffi
n
p in this definition.)

A call of C06RDF with DIRECT ¼ F followed by a call with DIRECT ¼ B will restore the original
data.

The transform calculated by this routine can be used to solve Poisson's equation when the derivative of
the solution is specified at the left boundary, and the solution is specified at the right boundary (see
Swarztrauber (1977)).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and post-
processing stages described in Swarztrauber (1982). Special coding is provided for the factors 2, 3, 4
and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501

Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51–83
Academic Press

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350
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5 Arguments

1: DIRECT – CHARACTER(1) Input

On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must
be set equal to `F'.

If the backward transform is to be computed then DIRECT must be set equal to `B'.

Constraint: DIRECT ¼ F or B .

2: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.

3: N – INTEGER Input

On entry: n, the number of real values in each sequence.

Constraint: N � 1.

4: XðM� Nþ 2ð ÞÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension
1 : M; 0 : Nþ 1ð Þ; each of the m sequences is stored in a row of the array. In other words, if the
data values of the pth sequence to be transformed are denoted by xpj , for j ¼ 0; 1; . . . ; n� 1 and
p ¼ 1; 2; . . . ;m, then the first mn elements of the array X must contain the values

x10; x
2
0; . . . ; x

m
0 ; x

1
1; x

2
1; . . . ; x

m
1 ; . . . ; x

1
n�1; x

2
n�1; . . . ; x

m
n�1:

The nþ 1ð Þth and nþ 2ð Þth elements of each row xpn; x
p
nþ1, for p ¼ 1; 2; . . . ;m, are required as

workspace. These 2m elements may contain arbitrary values as they are set to zero by the
routine.

On exit: the m quarter-wave cosine transforms stored as if in a two-dimensional array of
dimension 1 : M; 0 : Nþ 1ð Þ. Each of the m transforms is stored in a row of the array,
overwriting the corresponding original sequence. If the n components of the pth quarter-wave
cosine transform are denoted by x̂pk, for k ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, then the
m nþ 2ð Þ elements of the array X contain the values

x̂10; x̂
2
0; . . . ; x̂

m
0 ; x̂

1
1; x̂

2
1; . . . ; x̂

m
1 ; . . . ; x̂

1
n�1; x̂

2
n�1; . . . ; x̂

m
n�1; 0; 0; . . . ; 0 2m timesð Þ:

5: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least M� Nþ 2� Nþ 2�Mþ 15.

The workspace requirements as documented for C06RDF may be an overestimate in some
implementations.

On exit: WORKð1Þ contains the minimum workspace required for the current values of M and N
with this implementation.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, DIRECT 6¼ F or B .

IFAIL ¼ 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06RDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06RDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The time taken by C06RDF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06RDF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

10 Example

This example reads in sequences of real data values and prints their quarter-wave cosine transforms as
computed by C06RDF with DIRECT ¼ F . It then calls the routine again with DIRECT ¼ B and prints
the results which may be compared with the original data.

10.1 Program Text

Program c06rdfe

! C06RDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06rdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ieof, ifail, j, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06RDF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (x(m*(n+2)),work(m*n+2*n+2*m+15))
Do j = 1, m

Read (nin,*)(x(i*m+j),i=0,n-1)
End Do
Write (nout,*)
Write (nout,*) ’Original data values’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x(i*m+j),i=0,n-1)
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06rdf(’Forward’,m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) ’Discrete quarter-wave Fourier cosine transforms’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x(i*m+j),i=0,n-1)
End Do

! -- Compute inverse transform
Call c06rdf(’Backward’,m,n,x,work,ifail)

Write (nout,*)
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Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x(i*m+j),i=0,n-1)
End Do
Deallocate (x,work)

End Do loop

99999 Format (6X,7F10.4)
End Program c06rdfe

10.2 Program Data

C06RDF Example Program Data
3 6 : m, n
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 : x

10.3 Program Results

C06RDF Example Program Results

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Discrete quarter-wave Fourier cosine transforms

0.7257 -0.2216 0.1011 0.2355 -0.1406 -0.2282
0.7479 -0.6172 0.4112 0.0791 0.1331 -0.0906
0.6713 -0.1363 -0.0064 -0.0285 0.4758 0.1475

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
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NAG Library Routine Document

C06REF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06REF computes the discrete Fourier sine transforms of m sequences of real data values. The
elements of each sequence and its transform are stored contiguously.

2 Specification

SUBROUTINE C06REF (M, N, X, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(N-1,M)

3 Description

Given m sequences of n� 1 real data values xpj , for j ¼ 1; 2; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, C06REF
simultaneously calculates the Fourier sine transforms of all the sequences defined by

x̂pk ¼
ffiffi
2
n

q Xn�1
j¼1

xpj � sin jk
	

n

� �
; k ¼ 1; 2; . . . ; n� 1 and p ¼ 1; 2; . . . ;m:

(Note the scale factor
ffiffi
2
n

q
in this definition.)

This transform is also known as type-I DST.

Since the Fourier sine transform defined above is its own inverse, two consecutive calls of C06REF will
restore the original data.

The transform calculated by this routine can be used to solve Poisson's equation when the solution is
specified at both left and right boundaries (see Swarztrauber (1977)).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and post-
processing stages described in Swarztrauber (1982). Special coding is provided for the factors 2, 3, 4
and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501

Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51–83
Academic Press

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

5 Arguments

1: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.
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2: N – INTEGER Input

On entry: one more than the number of real values in each sequence, i.e., the number of values in
each sequence is n� 1.

Constraint: N � 1.

3: XðN� 1;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data values of the pth sequence to be transformed, denoted by xpj , for
j ¼ 1; 2; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, must be stored in Xðj; pÞ.
On exit: the n� 1ð Þ components of the pth Fourier sine transform, denoted by x̂pk, for
k ¼ 1; 2; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, are stored in Xðk; pÞ, overwriting the corresponding
original values.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 3

An internal error has occurred in this routine. Check the routine call and any array sizes. If the
call is correct then please contact NAG for assistance.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06REF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06REF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06REF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors. Workspace of order O nð Þ is internally allocated by this routine.

10 Example

This example reads in sequences of real data values and prints their Fourier sine transforms (as
computed by C06REF). It then calls C06REF again and prints the results which may be compared with
the original sequence.

10.1 Program Text

Program c06refe

! C06REF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06ref, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ieof, ifail, j, m, n, n1

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:,:)

! .. Executable Statements ..
Write (nout,*) ’C06REF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n1
n = n1 + 1
If (ieof<0) Then

Exit loop
End If

Allocate (x(n1,m))
Read (nin,*)(x(1:n1,j),j=1,m)
Write (nout,*)

C06 – Summation of Series C06REF

Mark 26 C06REF.3



Write (nout,*) ’Original data values’
Write (nout,*)
Write (nout,99999)(x(1:n1,j),j=1,m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06ref(m,n,x,ifail)

Write (nout,*)
Write (nout,*) ’Discrete Fourier sine transforms’
Write (nout,*)
Write (nout,99999)(x(1:n1,j),j=1,m)

! -- Compute inverse transform
Call c06ref(m,n,x,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Write (nout,99999)(x(1:n1,j),j=1,m)
Deallocate (x)

End Do loop

99999 Format (1X,5F10.4)
End Program c06refe

10.2 Program Data

C06REF Example Program Data
3 5 : m, n-1
0.6772 0.1138 0.6751 0.6362 0.1424
0.2983 0.1182 0.7255 0.8638 0.8723
0.0644 0.6037 0.6430 0.0428 0.4815 : x

10.3 Program Results

C06REF Example Program Results

Original data values

0.6772 0.1138 0.6751 0.6362 0.1424
0.2983 0.1182 0.7255 0.8638 0.8723
0.0644 0.6037 0.6430 0.0428 0.4815

Discrete Fourier sine transforms

1.0014 0.0062 0.0834 0.5286 0.2514
1.2478 -0.6598 0.2570 0.0858 0.2658
0.8521 0.0719 -0.0561 -0.4890 0.2056

Original data as restored by inverse transform

0.6772 0.1138 0.6751 0.6362 0.1424
0.2983 0.1182 0.7255 0.8638 0.8723
0.0644 0.6037 0.6430 0.0428 0.4815
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NAG Library Routine Document

C06RFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06RFF computes the discrete Fourier cosine transforms of m sequences of real data values. The
elements of each sequence and its transform are stored contiguously.

2 Specification

SUBROUTINE C06RFF (M, N, X, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(0:N,M)

3 Description

Given m sequences of nþ 1 real data values xpj , for j ¼ 0; 1; . . . ; n and p ¼ 1; 2; . . . ;m, C06RFF
simultaneously calculates the Fourier cosine transforms of all the sequences defined by

x̂pk ¼
ffiffi
2
n

q
1
2x

p
0 þ

Xn�1
j¼1

xpj � cos jk
	

n

� �
þ 1

2 �1ð Þkxpn

 !
; k ¼ 0; 1; . . . ; n and p ¼ 1; 2; . . . ;m:

(Note the scale factor
ffiffi
2
n

q
in this definition.)

This transform is also known as type-I DCT.

Since the Fourier cosine transform defined above is its own inverse, two consecutive calls of C06RFF
will restore the original data.

The transform calculated by this routine can be used to solve Poisson's equation when the derivative of
the solution is specified at both left and right boundaries (see Swarztrauber (1977)).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and post-
processing stages described in Swarztrauber (1982). Special coding is provided for the factors 2, 3, 4
and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501

Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51–83
Academic Press

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

5 Arguments

1: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.
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2: N – INTEGER Input

On entry: one less than the number of real values in each sequence, i.e., the number of values in
each sequence is nþ 1.

Constraint: N � 1.

3: Xð0 : N;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data values of the pth sequence to be transformed, denoted by xpj , for
j ¼ 0; 1; . . . ; n and p ¼ 1; 2; . . . ;m, must be stored in Xðj; pÞ.
On exit: the nþ 1ð Þ components of the pth Fourier cosine transform, denoted by x̂pk, for
k ¼ 0; 1; . . . ; n and p ¼ 1; 2; . . . ;m, are stored in Xðk; pÞ, overwriting the corresponding original
values.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 3

An internal error has occurred in this routine. Check the routine call and any array sizes. If the
call is correct then please contact NAG for assistance.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06RFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06RFF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06RFF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors. Workspace of order O nð Þ is internally allocated by this routine.

10 Example

This example reads in sequences of real data values and prints their Fourier cosine transforms (as
computed by C06RFF). It then calls C06RFF again and prints the results which may be compared with
the original sequence.

10.1 Program Text

Program c06rffe

! C06RFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06rff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ieof, ifail, j, m, n, n1

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:,:)

! .. Executable Statements ..
Write (nout,*) ’C06RFF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n1
n = n1 - 1
If (ieof<0) Then

Exit loop
End If

Allocate (x(n1,m))
Read (nin,*)(x(1:n1,j),j=1,m)
Write (nout,*)

C06 – Summation of Series C06RFF

Mark 26 C06RFF.3



Write (nout,*) ’Original data values’
Write (nout,*)
Write (nout,99999)(x(1:n1,j),j=1,m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06rff(m,n,x,ifail)

Write (nout,*)
Write (nout,*) ’Discrete Fourier cosine transforms’
Write (nout,*)
Write (nout,99999)(x(1:n1,j),j=1,m)

! -- Compute inverse transform
Call c06rff(m,n,x,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Write (nout,99999)(x(1:n1,j),j=1,m)
Deallocate (x)

End Do loop

99999 Format (1X,7F10.4)
End Program c06rffe

10.2 Program Data

C06RFF Example Program Data
3 7 : m, n+1
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057 : x

10.3 Program Results

C06RFF Example Program Results

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057

Discrete Fourier cosine transforms

1.6833 -0.0482 0.0176 0.1368 0.3240 -0.5830 -0.0427
1.9605 -0.4884 -0.0655 0.4444 0.0964 0.0856 -0.2289
1.3838 0.1588 -0.0761 -0.1184 0.3512 0.5759 0.0110

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057
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NAG Library Routine Document

C06RGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06RGF computes the discrete quarter-wave Fourier sine transforms of m sequences of real data
values. The elements of each sequence and its transform are stored contiguously.

2 Specification

SUBROUTINE C06RGF (IDIR, M, N, X, IFAIL)

INTEGER IDIR, M, N, IFAIL
REAL (KIND=nag_wp) X(N,M)

3 Description

Given m sequences of n real data values xpj , for j ¼ 1; 2; . . . ; n and p ¼ 1; 2; . . . ;m, C06RGF
simultaneously calculates the quarter-wave Fourier sine transforms of all the sequences defined by

x̂pk ¼
1ffiffiffi
n
p

Xn�1
j¼1

xpj � sin j 2k� 1ð Þ 	
2n

� �
þ 1

2 �1ð Þk�1xpn

 !
; if IDIR ¼ 1;

or its inverse

xpk ¼
2ffiffiffi
n
p
Xn
j¼1

x̂pj � sin 2j� 1ð Þk 	
2n

� �
; if IDIR ¼ �1;

where k ¼ 1; 2; . . . ; n and p ¼ 1; 2; . . . ;m.

(Note the scale factor 1ffiffi
n
p in this definition.)

A call of C06RGF with IDIR ¼ 1 followed by a call with IDIR ¼ �1 will restore the original data.

The two transforms are also known as type-III DST and type-II DST, respectively.

The transform calculated by this routine can be used to solve Poisson's equation when the solution is
specified at the left boundary, and the derivative of the solution is specified at the right boundary (see
Swarztrauber (1977)).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and post-
processing stages described in Swarztrauber (1982). Special coding is provided for the factors 2, 3, 4
and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501

Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51–83
Academic Press

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350
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5 Arguments

1: IDIR – INTEGER Input

On entry: indicates the transform, as defined in Section 3, to be computed.

IDIR ¼ 1
Forward transform.

IDIR ¼ �1
Inverse transform.

Constraint: IDIR ¼ 1 or �1.

2: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.

3: N – INTEGER Input

On entry: n, the number of real values in each sequence.

Constraint: N � 1.

4: XðN;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data values of the pth sequence to be transformed, denoted by xpj , for
j ¼ 1; 2; . . . ; n and p ¼ 1; 2; . . . ;m, must be stored in Xðj; pÞ.
On exit: the n components of the pth quarter-wave sine transform, denoted by x̂pk, for
k ¼ 1; 2; . . . ; n and p ¼ 1; 2; . . . ;m, are stored in Xðk; pÞ, overwriting the corresponding original
values.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 1.
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IFAIL ¼ 3

On entry, IDIR ¼ valueh i.
Constraint: IDIR ¼ �1 or 1.

IFAIL ¼ 4

An internal error has occurred in this routine. Check the routine call and any array sizes. If the
call is correct then please contact NAG for assistance.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06RGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06RGF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06RGF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors. Workspace of order O nð Þ is internally allocated by this routine.

10 Example

This example reads in sequences of real data values and prints their quarter-wave sine transforms as
computed by C06RGF with IDIR ¼ 1. It then calls the routine again with IDIR ¼ �1 and prints the
results which may be compared with the original data.

10.1 Program Text

Program c06rgfe

! C06RGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06rgf, nag_wp
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: idir, ieof, ifail, j, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:,:)

! .. Executable Statements ..
Write (nout,*) ’C06RGF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (x(n,m))
Read (nin,*)(x(1:n,j),j=1,m)
Write (nout,*)
Write (nout,*) ’Original data values’
Write (nout,*)
Write (nout,99999)(x(1:n,j),j=1,m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

idir = 1
Call c06rgf(idir,m,n,x,ifail)

Write (nout,*)
Write (nout,*) ’Discrete quarter-wave Fourier sine transforms’
Write (nout,*)
Write (nout,99999)(x(1:n,j),j=1,m)

! -- Compute inverse transform
idir = -1
Call c06rgf(idir,m,n,x,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Write (nout,99999)(x(1:n,j),j=1,m)
Deallocate (x)

End Do loop

99999 Format (1X,6F10.4)
End Program c06rgfe

10.2 Program Data

C06RGF Example Program Data
3 6 : m, n
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 : x

10.3 Program Results

C06RGF Example Program Results

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Discrete quarter-wave Fourier sine transforms
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0.7304 0.2078 0.1150 0.2577 -0.2869 -0.0815
0.9274 -0.1152 0.2532 0.2883 -0.0026 -0.0635
0.6268 0.3547 0.0760 0.3078 0.4987 -0.0507

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
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NAG Library Routine Document

C06RHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06RHF computes the discrete quarter-wave Fourier cosine transforms of m sequences of real data
values. The elements of each sequence and its transform are stored contiguously.

2 Specification

SUBROUTINE C06RHF (IDIR, M, N, X, IFAIL)

INTEGER IDIR, M, N, IFAIL
REAL (KIND=nag_wp) X(0:N-1,M)

3 Description

Given m sequences of n real data values xpj , for j ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, C06RHF
simultaneously calculates the quarter-wave Fourier cosine transforms of all the sequences defined by

x̂pk ¼
1ffiffiffi
n
p 1

2x
p
0 þ

Xn�1
j¼1

xpj � cos j 2kþ 1ð Þ 	
2n

� � !
; if IDIR ¼ 1;

or its inverse

xpk ¼
2ffiffiffi
n
p
Xn�1
j¼0

x̂pj � cos 2jþ 1ð Þk 	
2n

� �
; if IDIR ¼ �1;

where k ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m.

(Note the scale factor 1ffiffi
n
p in this definition.)

A call of C06RHF with IDIR ¼ 1 followed by a call with IDIR ¼ �1 will restore the original data.

The two transforms are also known as type-III DCT and type-II DCT, respectively.

The transform calculated by this routine can be used to solve Poisson's equation when the derivative of
the solution is specified at the left boundary, and the solution is specified at the right boundary (see
Swarztrauber (1977)).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and post-
processing stages described in Swarztrauber (1982). Special coding is provided for the factors 2, 3, 4
and 5.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501

Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51–83
Academic Press

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350
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5 Arguments

1: IDIR – INTEGER Input

On entry: indicates the transform, as defined in Section 3, to be computed.

IDIR ¼ 1
Forward transform.

IDIR ¼ �1
Inverse transform.

Constraint: IDIR ¼ 1 or �1.

2: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.

3: N – INTEGER Input

On entry: n, the number of real values in each sequence.

Constraint: N � 1.

4: Xð0 : N� 1;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data values of the pth sequence to be transformed, denoted by xpj , for
j ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, must be stored in Xðj; pÞ.
On exit: the n components of the pth quarter-wave cosine transform, denoted by x̂pk, for
k ¼ 0; 1; . . . ; n� 1 and p ¼ 1; 2; . . . ;m, are stored in Xðk; pÞ, overwriting the corresponding
original values.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 1.
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IFAIL ¼ 3

On entry, IDIR ¼ valueh i.
Constraint: IDIR ¼ �1 or 1.

IFAIL ¼ 4

An internal error has occurred in this routine. Check the routine call and any array sizes. If the
call is correct then please contact NAG for assistance.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06RHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06RHF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06RHF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors. Workspace is internally allocated by this routine. The total
amount of memory allocated is O nð Þ.

10 Example

This example reads in sequences of real data values and prints their quarter-wave cosine transforms as
computed by C06RHF with IDIR ¼ 1. It then calls the routine again with IDIR ¼ �1 and prints the
results which may be compared with the original data.
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10.1 Program Text

Program c06rhfe

! C06RHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c06rhf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: idir, ieof, ifail, j, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:,:)

! .. Executable Statements ..
Write (nout,*) ’C06RHF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Then

Exit loop
End If

Allocate (x(0:n-1,m))
Read (nin,*)(x(0:n-1,j),j=1,m)
Write (nout,*)
Write (nout,*) ’Original data values’
Write (nout,*)
Write (nout,99999)(x(0:n-1,j),j=1,m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

idir = 1
Call c06rhf(idir,m,n,x,ifail)

Write (nout,*)
Write (nout,*) ’Discrete quarter-wave Fourier cosine transforms’
Write (nout,*)
Write (nout,99999)(x(0:n-1,j),j=1,m)

! -- Compute inverse transform
idir = -1
Call c06rhf(idir,m,n,x,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Write (nout,99999)(x(0:n-1,j),j=1,m)
Deallocate (x)

End Do loop

99999 Format (1X,6F10.4)
End Program c06rhfe

10.2 Program Data

C06RHF Example Program Data
3 6 : m, n
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 : x
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10.3 Program Results

C06RHF Example Program Results

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Discrete quarter-wave Fourier cosine transforms

0.7257 -0.2216 0.1011 0.2355 -0.1406 -0.2282
0.7479 -0.6172 0.4112 0.0791 0.1331 -0.0906
0.6713 -0.1363 -0.0064 -0.0285 0.4758 0.1475

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
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NAG Library Chapter Contents

C09 – Wavelet Transforms

C09 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

C09AAF 22 nagf_wav_1d_init
One-dimensional wavelet filter initialization

C09ABF 23 nagf_wav_2d_init
Two-dimensional wavelet filter initialization

C09ACF 24 nagf_wav_3d_init
Three-dimensional wavelet filter initialization

C09BAF 23 nagf_wav_1d_cont
One-dimensional real continuous wavelet transform

C09CAF 22 nagf_wav_1d_sngl_fwd
One-dimensional discrete wavelet transform

C09CBF 22 nagf_wav_1d_sngl_inv
One-dimensional inverse discrete wavelet transform

C09CCF 22 nagf_wav_1d_multi_fwd
One-dimensional multi-level discrete wavelet transform

C09CDF 22 nagf_wav_1d_multi_inv
One-dimensional inverse multi-level discrete wavelet transform

C09DAF 25 nagf_wav_1d_mxolap_fwd
One-dimensional maximal overlap discrete wavelet transform (MODWT)

C09DBF 25 nagf_wav_1d_mxolap_inv
One-dimensional inverse maximal overlap discrete wavelet transform
(IMODWT)

C09DCF 25 nagf_wav_1d_mxolap_multi_fwd
One-dimensional multi-level maximal overlap discrete wavelet transform
(MODWT)

C09DDF 25 nagf_wav_1d_mxolap_multi_inv
One-dimensional inverse multi-level maximal overlap discrete wavelet
transform (IMODWT)

C09EAF 23 nagf_wav_2d_sngl_fwd
Two-dimensional discrete wavelet transform

C09EBF 23 nagf_wav_2d_sngl_inv
Two-dimensional inverse discrete wavelet transform

C09ECF 23 nagf_wav_2d_multi_fwd
Two-dimensional multi-level discrete wavelet transform

C09EDF 23 nagf_wav_2d_multi_inv
Two-dimensional inverse multi-level discrete wavelet transform

C09EYF 25 nagf_wav_2d_coeff_ext
Two-dimensional discrete wavelet transform coefficient extraction

C09EZF 25 nagf_wav_2d_coeff_ins
Two-dimensional discrete wavelet transform coefficient insertion

C09FAF 24 nagf_wav_3d_sngl_fwd
Three-dimensional discrete wavelet transform

C09FBF 24 nagf_wav_3d_sngl_inv
Three-dimensional inverse discrete wavelet transform

C09FCF 24 nagf_wav_3d_multi_fwd
Three-dimensional multi-level discrete wavelet transform

C09FDF 24 nagf_wav_3d_mxolap_multi_inv
Three-dimensional inverse multi-level discrete wavelet transform
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C09FYF 25 nagf_wav_3d_coeff_ext
Three-dimensional discrete wavelet transform coefficient extraction

C09FZF 25 nagf_wav_3d_coeff_ins
Three-dimensional discrete wavelet transform coefficient insertion
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1 Scope of the Chapter

This chapter is concerned with the analysis of datasets (or functions or operators) in terms of frequency
and scale components using wavelet transforms. Wavelet transforms have been applied in many fields
from time series analysis to image processing and the localization in either frequency or scale that they
provide is useful for data compression or denoising. In general the standard wavelet transform uses
dilation and scaling of a chosen function,  tð Þ, (called the mother wavelet) such that

 a;b tð Þ ¼
1ffiffiffi
a
p  

t� b
a

� �
where a gives the scaling and b determines the translation. Wavelet methods can be divided into
continuous transforms and discrete transforms. In the continuous case, the pair a and b are real numbers
with a > 0. For the discrete transform, a and b can be chosen as a ¼ 2�j, b ¼ k2�j for integers j, k

 j;k tð Þ ¼ 2j=2 2jt� k
� �

:

The continuous real valued, one-dimensional wavelet transform (CWT) is included in this chapter. The
discrete wavelet transform (DWT) at a single level together with its inverse and the multi-level DWT
with inverse are also provided for one, two and three dimensions. The Maximal Overlap DWT
(MODWT) together with its inverse and the multi-level MODWT with inverse are provided for one
dimension. The choice of wavelet for CWT includes the Morlet wavelet and derivatives of a Gaussian
while the DWT and MODWT offer the orthogonal wavelets of Daubechies and a selection of
biorthogonal wavelets.

2 Background to the Problems

The CWT computes a time-frequency analysis of a signal, x tð Þ, which can yield high localization in
time of the high frequency features present. It is defined as

C a; bð Þ ¼
Z þ1
�1

1ffiffiffi
a
p  �

t� b
a

� �
x tð Þdt

where  � denotes the complex conjugate of the wavelet function, a is the dilation parameter and b is the
localization parameter. (Currently only the real valued transform is offered.)

The discrete wavelet transform (DWT) is defined by a mother wavelet function  tð Þ, and a related
scaling function, 
 tð Þ, where


 tð Þ ¼
P
k

gk
ffiffiffi
2
p


 2t� kð Þ:

 tð Þ ¼
P
k

hk
ffiffiffi
2
p


 2t� kð Þ:

These in turn are represented as a pair of filters with finite support. They can be viewed as a high pass
filter, hkf g, for k ¼ 1; 2; . . . ;m, paired with a low pass filter, gkf g, for k ¼ 1; 2; . . . ; n. The DWT at a
single level is carried out by convolution of the filter with the input data, followed by downsampling by
two. The MODWT at a single level is carried out by convolution of the filter with the input data only;
no downsampling is used in the MODWT. In order to obtain exact reconstruction of the original input
these filters must satisfy certain conditions. For orthogonal wavelets, n ¼ m, these are,Xm

k¼1
hk ¼ 0;

Xm
k¼1

h2k ¼ 1;
X1
k¼�1

hkhkþ2l ¼ 0;Xm
k¼1

gk ¼
ffiffiffi
2
p

;
Xm
k¼1

g2k ¼ 1;
X1
k¼�1

gkgkþ2l ¼ 0:

for all nonzero integers, l.

The DWT reconstruction algorithm convolves the inverse filters with the wavelet coefficients previously
computed together with upsampling and summation to return to the original input. The MODWT
reconstructs in the same way, except without upsampling. For orthogonal wavelets the inverse filters are
the same as those for the forward DWT.
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In the simplest case, the Haar wavelet, the nonzero filter coefficients are

hf g ¼ �1ffiffi
2
p ; 1ffiffi

2
p

n o
gf g ¼ 1ffiffi

2
p ; 1ffiffi

2
p

n o
while for the Daubechies wavelet with two vanishing moments and four nonzero coefficients, the filter
coefficients are

hf g ¼ � 1þ
ffiffi
3
pð Þ

4
ffiffi
2
p ; 3þ

ffiffi
3
p

4
ffiffi
2
p ; �3þ

ffiffi
3
p

4
ffiffi
2
p ; 1�

ffiffi
3
p

4
ffiffi
2
p


 �
gf g ¼ 1�

ffiffi
3
p

4
ffiffi
2
p ; 3�

ffiffi
3
p

4
ffiffi
2
p ; 3þ

ffiffi
3
p

4
ffiffi
2
p ; 1þ

ffiffi
3
p

4
ffiffi
2
p

n o
In the orthogonal case the same filters are used for both decomposition and reconstruction.

Relaxing the orthogonality requirement allows for biorthogonal wavelets which consist of two dual
wavelet bases. For example, the biorthogonal 2.2 filters are,

hf g ¼
ffiffiffi
2
p

1
4;�1

2;
1
4

� 
;

gf g ¼
ffiffiffi
2
p
�1

8;
1
4;

3
4;

1
4;�1

8

� 
h0f g ¼

ffiffiffi
2
p

1
8;

1
4;�3

4;
1
4;

1
8

� 
g0f g ¼

ffiffiffi
2
p

1
4;

1
2;

1
4

� 
:

Note that there are several possible interpretations of orthogonal and biorthorgonal wavelet filters which
satisfy the requirements. These differ in the sign of the coefficients and the ordering of the filters.

In order to obtain exact reconstruction when applying the DWT or MODWT and its inverse to a finite
dataset, say xtf g, for t ¼ 1; 2; . . . ; N, some method of extending the input at its end is required. Several
methods which are in general use are: periodic extension, half-point symmetric extension, whole-point
symmetric extension and zero end extension where the added data points are taken to be zero. The two
types of symmetric end extension reflect the given data values from the end points for whole-point
extension or else by repeating the end points and reflecting from points halfway between the end point
and its repeat for half-point extension. Each of these end extension methods are available for the DWT.
Only the periodic end extension is currently available for the MODWT.

2.1 Multiresolution and higher dimensional DWT

Rather than simply applying the wavelet transform at a single level the process is commonly repeated to
give a multiresolution analysis. For the DWT, multiresolution is implemented as the pyramid (or
cascade) algorithm. Applying the DWT at a given level, L, the detail coefficients (which are the output
from the high pass filter) are stored while the approximation coefficients resulting from convolution
with the low pass filter are passed to the next level and the processs is repeated. When the length of the
initial data input is an array of length N ¼ 2J , for some integer J (and assuming that the dataset is
extended by periodic repetition) this can be continued until, at level J , there is a single detail coefficient
from the high pass filter. The final coefficient from the action of the low pass filter is also stored. The
result is an array of coefficients of the same length, N , as the input.

For the multi-level MODWT it is, in theory, possible to continue for any number of levels. However, in
practice it is common to not exceed log2 Nð Þ levels in order to avoid scales that exceed the length of the
input data, N . This restriction is enforced for the one-dimensional mutli-level MODWT routine in this
chapter.

For two-dimensional data sets the DWT is computed as a series of one-dimensional DWTs, first over
columns of the input data, and then over rows of the intermediate result. This produces four types of
output coefficients: one set of approximation coefficients and three types of detail coefficients,
containing information about the horizontal, vertical and diagonal components of the input data. The
approximation coefficients are the result of applying convolution and downsampling with the low pass
filter over both columns and rows; the horizontal detail coefficients are the result of applying
convolution and downsampling with the high pass filter over columns and then the low pass filter over
rows; the vertical detail coefficients are the result of applying convolution and downsampling with the
low pass filter over columns and the high pass filter over rows; and the diagonal detail coefficients are
the result of applying convolution and downsampling with the high pass filter over both columns and
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rows. An example of the single level decomposition of an image performed using C09EAF is given in
Figure 1.

Figure 1
The original image (top, 996� 1332 pixels) is transformed using routine C09EAF into the four

coefficient (approximation, horizontal, vertical and diagonal) matrices (501� 669) displayed below the
original. The transformation was performed using the Daubechies wavelet with four vanishing moments
and half-point end extension. Note that the approximation coefficients are a very close representation of
the original image, while the horizontal, vertical and diagonal features of the image are visible in the

respective coefficient matrices.

Similarly, for three-dimensional data sets the DWT is also computed as a series of three one-
dimensional DWTs, first over columns of the input data, and then over rows of the intermediate result
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and finally over frames of the second intermediate result. This produces eight types of output
coefficients: one set of approximation coefficients (labelled LLL since the low pass filter is applied over
columns, rows and frames) and seven types of detail coefficients, labelled similarly according to
whether the low pass (L) or high pass filter (H) is applied in each of the three dimensions. For the
three-dimensional DWT this process is represented by Figure 2.

As in the one-dimensional case, the multi-level DWT in two and three dimensions is also implemented
as the pyramid (or cascade) algorithm, where at a given level, L, all detail coefficients are stored, while
the approximation coefficients are passed as input to the next level.

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3D Input Data

HLL

LLL

H

L

LL

LH

HL

HH

HHH

HHL

HLH

LHL

LHH

LLH

Columns

Rows

Frames

Detail 6

Detail 5

Detail 4

Detail 3

Detail 2

Detail 1

Approximation

Detail 7

Figure 2
The three-dimensional DWT filter bank. The original input is downsampled by 2 and the high pass (H)
and low pass (L) filters are applied along columns. This process is repeated along the rows and then
frames to produce 8 sets of output coefficients – one set of approximation coefficients and 7 sets of

detail coefficients.
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3 Recommendations on Choice and Use of Available Routines

The one-dimensional real valued continuous wavelet transform is provided by C09BAF. It is useful for
resolving discontinuities and high frequency features in a signal. It is a redundant representation of the
input data containing repeated information and the set of coefficients produced as output is larger than
the input data set.

The one-dimensional discrete wavelet transform at a single level is performed by C09CAF. The inverse
or reconstruction is carried out by C09CBF.

The one-dimensional multi-level discrete wavelet transform is computed by C09CCF and the inverse or
reconstruction is given by C09CDF. The discrete wavelet transform is widely used for image processing
and data compression.

The one-dimensional maximal overlap discrete wavelet transform at a single level is performed by
C09DAF. The inverse or reconstruction is carried out by C09DBF.

The one-dimensional multi-level maximal overlap discrete wavelet transform is performed by C09DCF.
The inverse or reconstruction routine is C09DDF. The maximal overlap discrete wavelet transform
overcomes the lack of translation invariance inherent in the DWT, and thus there are advantages to
using the MODWT when carrying out multiresolution analysis.

C09AAF is provided to determine some of the input arguments for the one-dimensional discrete
wavelet transform and maximal overlap discrete wavelet transform routines and must be called before
the one-dimensional transform routines.

The two-dimensional discrete wavelet transform at a single level is performed by C09EAF. The inverse
or reconstruction is carried out by C09EBF.

The two-dimensional multi-level discrete wavelet transform is computed by C09ECF and the inverse or
reconstruction is given by C09EDF.

C09ECF and C09EDF use a one-dimensional array to store the discrete wavelet transform coefficients.
These may be extracted into two-dimensional arrays using C09EYF. A complementary routine C09EZF
allows for the insertion of coefficients held in a two-dimensional array back into the one-dimensional
array.

C09ABF is provided to determine some of the input arguments for the two-dimensional discrete
wavelet transform routines and must be called before the two-dimensional transform routines.

The three-dimensional multi-level discrete wavelet transform is computed by C09FCF and the inverse
or reconstruction is given by C09FDF.

C09FAF, C09FBF, C09FCF and C09FDF use a one-dimensional array to store the discrete wavelet
transform coefficients. These may be extracted into three-dimensional arrays using C09FYF. A
complementary routine C09FZF allows for the insertion of coefficients held in a three-dimensional
array back into the one-dimensional array.

C09ACF is provided to determine some of the input arguments for the three-dimensional discrete
wavelet transform routines and must be called before the three-dimensional transform routines.

4 Functionality Index

One-dimensional
continuous

real wavelet transform ................................................................................................ C09BAF
discrete

multi-level
inverse wavelet transform ...................................................................................... C09CDF
wavelet transform................................................................................................... C09CCF

single level
inverse wavelet transform ...................................................................................... C09CBF
wavelet transform................................................................................................... C09CAF
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maximal overlap discrete
multi-level

inverse wavelet transform ...................................................................................... C09DDF
wavelet transform................................................................................................... C09DCF

single level
inverse wavelet transform ...................................................................................... C09DBF
wavelet transform................................................................................................... C09DAF

wavelet filter details......................................................................................................... C09AAF

Three-dimensional
coefficient extraction ........................................................................................................ C09FYF
coefficient insertion.......................................................................................................... C09FZF
discrete

multi-level
inverse wavelet transform ...................................................................................... C09FDF
wavelet transform................................................................................................... C09FCF

single level
inverse wavelet transform ...................................................................................... C09FBF
wavelet transform................................................................................................... C09FAF

wavelet filter details......................................................................................................... C09ACF

Two-dimensional
coefficient extraction ........................................................................................................ C09EYF
coefficient insertion.......................................................................................................... C09EZF
discrete

multi-level
inverse wavelet transform ...................................................................................... C09EDF
wavelet transform................................................................................................... C09ECF

single level
inverse wavelet transform ...................................................................................... C09EBF
wavelet transform................................................................................................... C09EAF

wavelet filter details......................................................................................................... C09ABF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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Daubechies I (1992) Ten Lectures on Wavelets SIAM, Philadelphia

Mallat S G (1998) A Wavelet Tour of Signal Processing Academic Press

Percival D B and Walden A T (2000) Wavelet Methods for Time Series Analysis Cambridge University
Press

Strang G and Nguyen T (1996) Wavelets and Filter Banks Wellesley-Cambridge Press

Vidakovic B (1999) Statistical Modeling by Wavelets John Wiley and Sons Inc.
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NAG Library Routine Document

C09AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09AAF returns the details of the chosen one-dimensional discrete wavelet filter. For a chosen mother
wavelet, discrete wavelet transform type (single-level or multi-level DWT or MODWT) and end
extension method, this routine returns the maximum number of levels of resolution (appropriate to a
multi-level transform), the filter length, and the number of approximation coefficients (equal to the
number of detail coefficients) for a single-level DWT or MODWT or the total number of coefficients for
a multi-level DWT or MODWT. This routine must be called before any of the one-dimensional discrete
transform routines in this chapter.

2 Specification

SUBROUTINE C09AAF (WAVNAM, WTRANS, MODE, N, NWLMAX, NF, NWC, ICOMM,
IFAIL)

&

INTEGER N, NWLMAX, NF, NWC, ICOMM(100), IFAIL
CHARACTER(*) WAVNAM
CHARACTER(1) WTRANS, MODE

3 Description

One-dimensional discrete wavelet transforms (DWT) or maximum overlap wavelet transforms
(MODWT) are characterised by the mother wavelet, the end extension method and whether
multiresolution analysis is to be performed. For the selected combination of choices for these three
characteristics, and for a given length, n, of the input data array, x, C09AAF returns the dimension
details for the transform determined by this combination. The dimension details are: lmax , the maximum
number of levels of resolution that that could be computed were a multi-level DWT/MODWT applied;
nf , the filter length; nc the number of approximation (or detail) coefficients for a single-level DWT/
MODWT or the total number of coefficients generated by a multi-level DWT/MODWT over lmax levels.
These values are also stored in the communication array ICOMM, as are the input choices, so that they
may be conveniently communicated to the one-dimensional transform routines in this chapter.

4 References

None.

5 Arguments

1: WAVNAM – CHARACTER(*) Input

On entry: the name of the mother wavelet. See the C09 Chapter Introduction for details.

WAVNAM ¼ HAAR
Haar wavelet.

WAVNAM ¼ 0DBn0, where n ¼ 2; 3; . . . ; 10
Daubechies wavelet with n vanishing moments (2n coefficients). For example,
WAVNAM ¼ DB4 is the name for the Daubechies wavelet with 4 vanishing moments
(8 coefficients).
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WAVNAM ¼ 0BIORx.y0, where x.y can be one of 1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5 or
3.7

Biorthogonal wavelet of order x.y. For example WAVNAM ¼ BIOR3:1 is the name for
the biorthogonal wavelet of order 3:1.

Constraint: WAVNAM ¼ HAAR , DB2 , DB3 , DB4 , DB5 , DB6 , DB7 , DB8 , DB9 ,
DB10 , BIOR1:1 , BIOR1:3 , BIOR1:5 , BIOR2:2 , BIOR2:4 , BIOR2:6 , BIOR2:8 , BIOR3:1 ,
BIOR3:3 , BIOR3:5 or BIOR3:7 .

2: WTRANS – CHARACTER(1) Input

On entry: the type of discrete wavelet transform that is to be applied.

WTRANS ¼ S
Single-level decomposition or reconstruction by discrete wavelet transform.

WTRANS ¼ M
Multiresolution, by a multi-level DWT or its inverse.

WTRANS ¼ T
Single-level decomposition or reconstruction by maximal overlap discrete wavelet
transform.

WTRANS ¼ U
Multi-level resolution by a maximal overlap discrete wavelet transform or its inverse.

Constraint: WTRANS ¼ S , M , T or U .

3: MODE – CHARACTER(1) Input

On entry: the end extension method. Note that only periodic end extension is currently available
for the MODWT.

MODE ¼ P
Periodic end extension.

MODE ¼ H
Half-point symmetric end extension.

MODE ¼ W
Whole-point symmetric end extension.

MODE ¼ Z
Zero end extension.

Constraints:

MODE ¼ P , H , W or Z for DWT;
MODE ¼ P for MODWT.

4: N – INTEGER Input

On entry: the number of elements, n, in the input data array, x.

Constraint: N � 2.

5: NWLMAX – INTEGER Output

On exit: the maximum number of levels of resolution, lmax , that can be computed when a multi-
level discrete wavelet transform is applied. It is such that 2lmax � n < 2lmaxþ1, for lmax an integer.

6: NF – INTEGER Output

On exit: the filter length, nf , for the supplied mother wavelet. This is used to determine the
number of coefficients to be generated by the chosen transform.
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7: NWC – INTEGER Output

On exit: for a single-level transform (WTRANS ¼ S or T ), the number of approximation
coefficients that would be generated for the given problem size, mother wavelet, extension
method and type of transform; this is also the corresponding number of detail coefficients. For a
multi-level transform (WTRANS ¼ M or U ) the total number of coefficients that would be
generated over lmax levels and with KEEPA ¼ A for MODWT.

8: ICOMMð100Þ – INTEGER array Communication Array

On exit: contains details of the wavelet transform and the problem dimension which is to be
communicated to the one-dimensional discrete transform routines in this chapter.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, WAVNAM ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, WTRANS ¼ valueh i was an illegal value.

IFAIL ¼ 3

On entry, MODE ¼ valueh i was an illegal value.

On entry, WTRANS ¼ T or U and MODE 6¼ P .
Constraint: MODE ¼ P when WTRANS ¼ T or U .

IFAIL ¼ 4

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

C09AAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the one-dimensional multi-level resolution for 8 values by a discrete wavelet
transform using the Haar wavelet with zero end extensions. The length of the wavelet filter, the number
of levels of resolution, the number of approximation coefficients at each level and the total number of
wavelet coefficients are printed.

10.1 Program Text

Program c09aafe

! C09AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09aaf, c09ccf, c09cdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, lenc, n, nf, nnz, nwc, &

nwlmax, ny
Character (10) :: mode, wavnam, wtrans

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), x(:), y(:)
Integer, Allocatable :: dwtlev(:)
Integer :: icomm(100)

! .. Intrinsic Procedures ..
Intrinsic :: sum

! .. Executable Statements ..
Write (nout,*) ’C09AAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read problem parameters
Read (nin,*) n
Read (nin,*) wavnam, mode
Allocate (x(n),y(n))

Write (nout,99999) wavnam, mode, n

! Read data array and write it out

Read (nin,*) x(1:n)
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Write (nout,*) ’ Input Data X :’
Write (nout,99998) x(1:n)

! Query wavelet filter dimensions
! For Multi-Resolution Analysis, decomposition, wtrans = ’M’

wtrans = ’Multilevel’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c09aaf(wavnam,wtrans,mode,n,nwlmax,nf,nwc,icomm,ifail)

lenc = nwc
Allocate (c(lenc),dwtlev(nwlmax+1))

! Perform Discrete Wavelet transform
ifail = 0
Call c09ccf(n,x,lenc,c,nwlmax,dwtlev,icomm,ifail)

Write (nout,*)
Write (nout,99997) nf
Write (nout,99996) nwlmax
Write (nout,99995)
Write (nout,99994) dwtlev(1:nwlmax+1)
Write (nout,99993) nwc
nnz = sum(dwtlev(1:nwlmax+1))
Write (nout,*)
Write (nout,99992)
Write (nout,99998) c(1:nnz)

! Reconstruct original data
ny = n

ifail = 0
Call c09cdf(nwlmax,lenc,c,ny,y,icomm,ifail)

Write (nout,*)
Write (nout,99991)
Write (nout,99998) y(1:ny)

99999 Format (1X,’ Parameters read from file :: ’,/,’ Wavelet : ’,A10, &
’ End mode : ’,A10,’ N = ’,I10)

99998 Format (8(F8.3,1X),:)
99997 Format (1X,’ Length of wavelet filter : ’,I10)
99996 Format (1X,’ Number of Levels : ’,I10)
99995 Format (1X,’ Number of coefficients in each level : ’)
99994 Format (16X,8(I8,1X),:)
99993 Format (1X,’ Total number of wavelet coefficients : ’,I10)
99992 Format (1X,’ Wavelet coefficients C : ’)
99991 Format (1X,’ Reconstruction Y : ’)

End Program c09aafe

10.2 Program Data

C09AAF Example Program Data
8 : n
Haar Zero : wavnam, mode
2.0
5.0
8.0
9.0
7.0
4.0

-1.0
1.0 : x(1:n)
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10.3 Program Results

C09AAF Example Program Results

Parameters read from file ::
Wavelet : Haar End mode : Zero N = 8

Input Data X :
2.000 5.000 8.000 9.000 7.000 4.000 -1.000 1.000

Length of wavelet filter : 2
Number of Levels : 3
Number of coefficients in each level :

1 1 2 4
Total number of wavelet coefficients : 8

Wavelet coefficients C :
12.374 4.596 -5.000 5.500 -2.121 -0.707 2.121 -1.414

Reconstruction Y :
2.000 5.000 8.000 9.000 7.000 4.000 -1.000 1.000
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NAG Library Routine Document

C09ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09ABF returns the details of the chosen two-dimensional discrete wavelet filter. For a chosen mother
wavelet, discrete wavelet transform type (single-level or multi-level DWT) and end extension method,
this routine returns the maximum number of levels of resolution (appropriate to a multi-level
transform), the filter length, the total number of approximation, horizontal, vertical and diagonal
coefficients and the number of coefficients in the second dimension for the single-level case. This
routine must be called before any of the two-dimensional transform routines in this chapter.

2 Specification

SUBROUTINE C09ABF (WAVNAM, WTRANS, MODE, M, N, NWLMAX, NF, NWCT, NWCN,
ICOMM, IFAIL)

&

INTEGER M, N, NWLMAX, NF, NWCT, NWCN, ICOMM(180), IFAIL
CHARACTER(*) WAVNAM
CHARACTER(1) WTRANS, MODE

3 Description

Two-dimensional discrete wavelet transforms (DWT) are characterised by the mother wavelet, the end
extension method and whether multiresolution analysis is to be performed. For the selected combination
of choices for these three characteristics, and for given dimensions (m� n) of data matrix A, C09ABF
returns the dimension details for the transform determined by this combination. The dimension details
are: lmax , the maximum number of levels of resolution that would be computed were a multi-level DWT
applied; nf , the filter length; nct the total number of approximation, horizontal, vertical and diagonal
coefficients (over all levels in the multi-level DWT case); and ncn, the number of coefficients in the
second dimension for a single-level DWT. These values are also stored in the communication array
ICOMM, as are the input choices, so that they may be conveniently communicated to the two-
dimensional transform routines in this chapter.

4 References

None.

5 Arguments

1: WAVNAM – CHARACTER(*) Input

On entry: the name of the mother wavelet. See the C09 Chapter Introduction for details.

WAVNAM ¼ HAAR
Haar wavelet.

WAVNAM ¼ 0DBn0, where n ¼ 2; 3; . . . ; 10
Daubechies wavelet with n vanishing moments (2n coefficients). For example,
WAVNAM ¼ DB4 is the name for the Daubechies wavelet with 4 vanishing moments
(8 coefficients).
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WAVNAM ¼ 0BIORx.y0, where x.y can be one of 1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5 or
3.7

Biorthogonal wavelet of order x.y. For example WAVNAM ¼ BIOR3:1 is the name for
the biorthogonal wavelet of order 3:1.

Constraint: WAVNAM ¼ HAAR , DB2 , DB3 , DB4 , DB5 , DB6 , DB7 , DB8 , DB9 ,
DB10 , BIOR1:1 , BIOR1:3 , BIOR1:5 , BIOR2:2 , BIOR2:4 , BIOR2:6 , BIOR2:8 , BIOR3:1 ,
BIOR3:3 , BIOR3:5 or BIOR3:7 .

2: WTRANS – CHARACTER(1) Input

On entry: the type of discrete wavelet transform that is to be applied.

WTRANS ¼ S
Single-level decomposition or reconstruction by discrete wavelet transform.

WTRANS ¼ M
Multiresolution, by a multi-level DWT or its inverse.

Constraint: WTRANS ¼ S or M.

3: MODE – CHARACTER(1) Input

On entry: the end extension method.

MODE ¼ P
Periodic end extension.

MODE ¼ H
Half-point symmetric end extension.

MODE ¼ W
Whole-point symmetric end extension.

MODE ¼ Z
Zero end extension.

Constraint: MODE ¼ P , H , W or Z .

4: M – INTEGER Input

On entry: the number of elements, m, in the first dimension (number of rows of data matrix A) of
the input data.

Constraint: M � 2.

5: N – INTEGER Input

On entry: the number of elements, n, in the second dimension (number of columns of data matrix
A) of the input data.

Constraint: N � 2.

6: NWLMAX – INTEGER Output

On exit: the maximum number of levels of resolution, lmax , that can be computed if a multi-level
d i s c r e t e wav e l e t t r a n s f o rm i s a pp l i e d (WTRANS ¼ M ) . I t i s s u c h t h a t
2lmax � min m;nð Þ < 2lmaxþ1, for lmax an integer.

If WTRANS ¼ S , NWLMAX is not set.

7: NF – INTEGER Output

On exit: the filter length, nf , for the supplied mother wavelet. This is used to determine the
number of coefficients to be generated by the chosen transform.
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8: NWCT – INTEGER Output

On exit: the total number of wavelet coefficients, nct, that will be generated. When
WTRANS ¼ S the number of rows required in each of the output coefficient matrices can be
calculated as ncm ¼ nct= 4ncnð Þ. When WTRANS ¼ M the length of the array used to store all of
the coefficient matrices must be at least nct.

9: NWCN – INTEGER Output

On exit: for a single-level transform (WTRANS ¼ S ), the number of coefficients that would be
generated in the second dimension, ncn, for each coefficient type. For a multi-level transform
(WTRANS ¼ M ) this is set to 1.

10: ICOMMð180Þ – INTEGER array Communication Array

On exit: contains details of the wavelet transform and the problem dimension which is to be
communicated to the two-dimensional discrete transform routines in this chapter.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, WAVNAM ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, WTRANS ¼ valueh i was an illegal value.

IFAIL ¼ 3

On entry, MODE ¼ valueh i was an illegal value.

IFAIL ¼ 4

On entry, M ¼ valueh i.
Constraint: M � 2.

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

C09ABF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the two-dimensional multi-level resolution for a 6� 6 matrix by a discrete
wavelet transform using the Haar wavelet with whole-point symmetric end extensions. The number of
levels of transformation actually performed is one less than the maximum possible. This number of
levels, the length of the wavelet filter, the total number of coefficients and the number of coefficients in
each dimension for each level are printed along with the vertical detail coefficients from the first level,
before a reconstruction is performed.

10.1 Program Text

Program c09abfe

! C09ABF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09abf, c09ecf, c09edf, c09eyf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, ldb, lenc, m, n, nf, &

nwcm, nwcn, nwct, nwl, nwlmax, &
want_coeffs, want_level

Character (10) :: mode, wavnam, wtrans
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:), d(:,:)
Integer, Allocatable :: dwtlevm(:), dwtlevn(:)
Integer :: icomm(180)

! .. Intrinsic Procedures ..
Intrinsic :: sum

! .. Executable Statements ..
Continue
Write (nout,*) ’C09ABF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read problem parameters
Read (nin,*) m, n
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lda = m
ldb = m
Read (nin,*) wavnam, mode
Allocate (a(lda,n),b(ldb,n))

Write (nout,99999) wavnam, mode, m, n

! Read data array and write it out
Do i = 1, m

Read (nin,*) a(i,1:n)
End Do

Write (nout,*) ’ Input Data A :’
Do i = 1, m

Write (nout,99998) a(i,1:n)
End Do

! Query wavelet filter dimensions
! For Multi-Resolution Analysis, decomposition, wtrans = ’M’

wtrans = ’Multilevel’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c09abf(wavnam,wtrans,mode,m,n,nwlmax,nf,nwct,nwcn,icomm,ifail)

lenc = nwct
Allocate (c(lenc),dwtlevm(nwlmax),dwtlevn(nwlmax))

! Calculate one less than the max possible number of levels
nwl = nwlmax - 1

! Perform Discrete Wavelet transform
ifail = 0
Call c09ecf(m,n,a,lda,lenc,c,nwl,dwtlevm,dwtlevn,icomm,ifail)

! c09abf returns nwct based on max levels, so recalculate.
nwct = sum(3*dwtlevm(1:nwl)*dwtlevn(1:nwl))
nwct = nwct + dwtlevm(1)*dwtlevn(1)

! Print the details of the transform.
Write (nout,*)
Write (nout,99997) nf
Write (nout,99996) nwl
Write (nout,99995)
Write (nout,99994) dwtlevm(1:nwl)
Write (nout,99993)
Write (nout,99994) dwtlevn(1:nwl)
Write (nout,99992) nwct
Write (nout,*)
Write (nout,99991)
Write (nout,99998) c(1:nwct)

! Now select a nominated matrix of coefficients at a nominated level.
! Remember that level 0 is input data, 1 first coeffs and so on up to nwl,
! which is the deepest level and contains approx. coefficients.

want_level = nwl - 1
! Print only vertical detail coeffs at selected level.

want_coeffs = 1
nwcm = dwtlevm(nwl-want_level+1)
nwcn = dwtlevn(nwl-want_level+1)
Allocate (d(nwcm,nwcn))

! Extract the selected set of coefficients.
Call c09eyf(want_level,want_coeffs,lenc,c,d,nwcm,icomm,ifail)

! Print out the selected coefficients
Write (nout,*)
Write (nout,99989) want_coeffs, want_level
Do i = 1, nwcm

Write (nout,99998) d(i,1:nwcn)
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End Do

! Reconstruct original data
ifail = 0
Call c09edf(nwl,lenc,c,m,n,b,ldb,icomm,ifail)

Write (nout,*)
Write (nout,99990)
Do i = 1, m

Write (nout,99998) b(i,1:n)
End Do

99999 Format (1X,’ Parameters read from file :: ’,/,’ Wavelet : ’,A10, &
’ End mode : ’,A10,’ M = ’,I10,’ N = ’,I10)

99998 Format (8(F8.4,1X),:)
99997 Format (1X,’ Length of wavelet filter : ’,I10)
99996 Format (1X,’ Number of Levels : ’,I10)
99995 Format (1X, &

’ Number of coefficients in first dimension for each level : ’)
99994 Format (16X,8(I8,1X),:)
99993 Format (1X, &

’ Number of coefficients in second dimension for each level : ’)
99992 Format (1X,’ Total number of wavelet coefficients : ’,I10)
99991 Format (1X,’ All Wavelet coefficients C : ’)
99990 Format (1X,’ Reconstruction B : ’)
99989 Format (1X,’ Type ’,I1,’ coefficients at selected wavelet level, ’,I4, &

’: ’)
End Program c09abfe

10.2 Program Data

C09ABF Example Program Data
8, 8 : m, n
Haar Whole : wavnam, mode
6.0000 7.0000 8.0000 0.0000 1.0000 9.0000 7.0000 8.0000
9.0000 1.0000 9.0000 9.0000 2.0000 8.0000 1.0000 9.0000
3.0000 0.0000 4.0000 1.0000 3.0000 1.0000 0.0000 4.0000
2.0000 5.0000 9.0000 4.0000 4.0000 2.0000 5.0000 9.0000
1.0000 8.0000 3.0000 3.0000 5.0000 3.0000 8.0000 3.0000
8.0000 1.0000 6.0000 4.0000 6.0000 1.0000 1.0000 6.0000
8.0000 1.0000 1.0000 1.0000 2.0000 3.0000 1.0000 6.0000
9.0000 2.0000 2.0000 4.0000 6.0000 1.0000 2.0000 9.0000

10.3 Program Results

C09ABF Example Program Results

Parameters read from file ::
Wavelet : Haar End mode : Whole M = 8 N = 8

Input Data A :
6.0000 7.0000 8.0000 0.0000 1.0000 9.0000 7.0000 8.0000
9.0000 1.0000 9.0000 9.0000 2.0000 8.0000 1.0000 9.0000
3.0000 0.0000 4.0000 1.0000 3.0000 1.0000 0.0000 4.0000
2.0000 5.0000 9.0000 4.0000 4.0000 2.0000 5.0000 9.0000
1.0000 8.0000 3.0000 3.0000 5.0000 3.0000 8.0000 3.0000
8.0000 1.0000 6.0000 4.0000 6.0000 1.0000 1.0000 6.0000
8.0000 1.0000 1.0000 1.0000 2.0000 3.0000 1.0000 6.0000
9.0000 2.0000 2.0000 4.0000 6.0000 1.0000 2.0000 9.0000

Length of wavelet filter : 2
Number of Levels : 2
Number of coefficients in first dimension for each level :

2 4
Number of coefficients in second dimension for each level :

2 4
Total number of wavelet coefficients : 64

All Wavelet coefficients C :
19.2500 15.5000 18.2500 15.7500 -2.7500 3.5000 -3.2500 -2.2500
5.2500 1.5000 4.2500 0.7500 1.2500 -2.5000 0.7500 0.7500
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3.5000 0.0000 0.0000 7.0000 4.0000 4.0000 1.0000 -1.0000
-7.0000 2.0000 3.5000 2.0000 -4.5000 -4.0000 0.0000 -6.0000
1.5000 -2.0000 0.0000 -1.0000 -5.0000 -4.0000 -2.0000 -2.0000
0.0000 -1.0000 0.5000 -1.0000 2.5000 -5.0000 2.0000 -2.0000

-4.5000 3.0000 -7.0000 -0.0000 4.0000 -1.0000 -1.0000 1.0000
-1.0000 0.0000 -1.5000 -3.0000 3.5000 0.0000 5.0000 1.0000

Type 1 coefficients at selected wavelet level, 1:
3.5000 4.0000 -7.0000 -4.5000
0.0000 4.0000 2.0000 -4.0000
0.0000 1.0000 3.5000 0.0000
7.0000 -1.0000 2.0000 -6.0000

Reconstruction B :
6.0000 7.0000 8.0000 0.0000 1.0000 9.0000 7.0000 8.0000
9.0000 1.0000 9.0000 9.0000 2.0000 8.0000 1.0000 9.0000
3.0000 0.0000 4.0000 1.0000 3.0000 1.0000 0.0000 4.0000
2.0000 5.0000 9.0000 4.0000 4.0000 2.0000 5.0000 9.0000
1.0000 8.0000 3.0000 3.0000 5.0000 3.0000 8.0000 3.0000
8.0000 1.0000 6.0000 4.0000 6.0000 1.0000 1.0000 6.0000
8.0000 1.0000 1.0000 1.0000 2.0000 3.0000 1.0000 6.0000
9.0000 2.0000 2.0000 4.0000 6.0000 1.0000 2.0000 9.0000
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NAG Library Routine Document

C09ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09ACF returns the details of the chosen three-dimensional discrete wavelet filter. For a chosen mother
wavelet, discrete wavelet transform type (single-level or multi-level DWT) and end extension method,
this routine returns the maximum number of levels of resolution (appropriate to a multi-level
transform), the filter length, the total number of coefficients and the number of wavelet coefficients in
the second and third dimensions for the single-level case. This routine must be called before any of the
three-dimensional transform routines in this chapter.

2 Specification

SUBROUTINE C09ACF (WAVNAM, WTRANS, MODE, M, N, FR, NWLMAX, NF, NWCT,
NWCN, NWCFR, ICOMM, IFAIL)

&

INTEGER M, N, FR, NWLMAX, NF, NWCT, NWCN, NWCFR, ICOMM(260), IFAIL
CHARACTER(*) WAVNAM
CHARACTER(1) WTRANS, MODE

3 Description

Three-dimensional discrete wavelet transforms (DWT) are characterised by the mother wavelet, the end
extension method and whether multiresolution analysis is to be performed. For the selected combination
of choices for these three characteristics, and for given dimensions (m� n� fr) of data array A,
C09ACF returns the dimension details for the transform determined by this combination. The dimension
details are: lmax , the maximum number of levels of resolution that would be computed were a multi-
level DWT applied; nf , the filter length; nct the total number of wavelet coefficients (over all levels in
the multi-level DWT case); ncn, the number of coefficients in the second dimension for a single-level
DWT; and ncfr, the number of coefficients in the third dimension for a single-level DWT. These values
are also stored in the communication array ICOMM, as are the input choices, so that they may be
conveniently communicated to the three-dimensional transform routines in this chapter.

4 References

None.

5 Arguments

1: WAVNAM – CHARACTER(*) Input

On entry: the name of the mother wavelet. See the C09 Chapter Introduction for details.

WAVNAM ¼ HAAR
Haar wavelet.

WAVNAM ¼ 0DBn0, where n ¼ 2; 3; . . . ; 10
Daubechies wavelet with n vanishing moments (2n coefficients). For example,
WAVNAM ¼ DB4 is the name for the Daubechies wavelet with 4 vanishing moments
(8 coefficients).
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WAVNAM ¼ 0BIORx.y0, where x.y can be one of 1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5 or
3.7

Biorthogonal wavelet of order x.y. For example WAVNAM ¼ BIOR3:1 is the name for
the biorthogonal wavelet of order 3:1.

Constraint: WAVNAM ¼ HAAR , DB2 , DB3 , DB4 , DB5 , DB6 , DB7 , DB8 , DB9 ,
DB10 , BIOR1:1 , BIOR1:3 , BIOR1:5 , BIOR2:2 , BIOR2:4 , BIOR2:6 , BIOR2:8 , BIOR3:1 ,
BIOR3:3 , BIOR3:5 or BIOR3:7 .

2: WTRANS – CHARACTER(1) Input

On entry: the type of discrete wavelet transform that is to be applied.

WTRANS ¼ S
Single-level decomposition or reconstruction by discrete wavelet transform.

WTRANS ¼ M
Multiresolution, by a multi-level DWT or its inverse.

Constraint: WTRANS ¼ S or M.

3: MODE – CHARACTER(1) Input

On entry: the end extension method.

MODE ¼ P
Periodic end extension.

MODE ¼ H
Half-point symmetric end extension.

MODE ¼ W
Whole-point symmetric end extension.

MODE ¼ Z
Zero end extension.

Constraint: MODE ¼ P , H , W or Z .

4: M – INTEGER Input

On entry: the number of elements, m, in the first dimension (number of rows of each two-
dimensional frame) of the input data, A.

Constraint: M � 2.

5: N – INTEGER Input

On entry: the number of elements, n, in the second dimension (number of columns of each two-
dimensional frame) of the input data, A.

Constraint: N � 2.

6: FR – INTEGER Input

On entry: the number of elements, fr , in the third dimension (number of frames) of the input
data, A.

Constraint: FR � 2.

7: NWLMAX – INTEGER Output

On exit: the maximum number of levels of resolution, lmax , that can be computed if a multi-level
d i s c r e t e wav e l e t t r a n s f o rm i s a pp l i e d (WTRANS ¼ M ) . I t i s s u c h t h a t
2lmax � min m;n; frð Þ < 2lmaxþ1, for lmax an integer.

If WTRANS ¼ S , NWLMAX is not set.

C09ACF NAG Library Manual

C09ACF.2 Mark 26



8: NF – INTEGER Output

On exit: the filter length, nf , for the supplied mother wavelet. This is used to determine the
number of coefficients to be generated by the chosen transform.

9: NWCT – INTEGER Output

On exit: the total number of wavelet coefficients, nct, that will be generated. When
WTRANS ¼ S the number of rows required (i.e., the first dimension of each two-dimensional
frame) in each of the output coefficient arrays can be calculated as ncm ¼ nct= 8� ncn � ncfrð Þ.
When WTRANS ¼ M the length of the array used to store all of the coefficient matrices must be
at least nct.

10: NWCN – INTEGER Output

On exit: for a single-level transform (WTRANS ¼ S ), the number of coefficients that would be
generated in the second dimension, ncn, for each coefficient type. For a multi-level transform
(WTRANS ¼ M ) this is set to 1.

11: NWCFR – INTEGER Output

On exit: for a single-level transform (WTRANS ¼ S ), the number of coefficients that would be
generated in the third dimension, ncfr, for each coefficient type. For a multi-level transform
(WTRANS ¼ M ) this is set to 1.

12: ICOMMð260Þ – INTEGER array Communication Array

On exit: contains details of the wavelet transform and the problem dimension which is to be
communicated to the two-dimensional discrete transform routines in this chapter.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, WAVNAM ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, WTRANS ¼ valueh i was an illegal value.

IFAIL ¼ 3

On entry, MODE ¼ valueh i was an illegal value.
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IFAIL ¼ 4

On entry, FR ¼ valueh i.
Constraint: FR � 2.

On entry, M ¼ valueh i.
Constraint: M � 2.

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

C09ACF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the three-dimensional multi-level resolution for 8� 8� 8 input data by a
discrete wavelet transform using the Daubechies wavelet with four vanishing moments (see
WAVNAM ¼ DB4 in C09ACF) and zero end extension. The number of levels of transformation
actually performed is one less than the maximum possible. This number of levels, the length of the
wavelet filter, the total number of coefficients and the number of coefficients in each dimension for each
level are printed along with the approximation coefficients before a reconstruction is performed. This
example also demonstrates in general how to access any set of coefficients at any level following a
multi-level transform.

10.1 Program Text

Program c09acfe

! C09ACF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09acf, c09fcf, c09fdf, c09fyf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: eps, esq, frob
Integer :: fr, i, ifail, j, k, lda, ldb, ldd, &

lenc, m, n, nf, nwcfr, nwcm, nwcn, &
nwct, nwl, nwlmax, sda, sdb, sdd, &
want_coeffs, want_level

Character (10) :: mode, wavnam, wtrans
Character (33) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:,:), b(:,:,:), c(:), d(:,:,:), &

e(:,:,:)
Integer, Allocatable :: dwtlvfr(:), dwtlvm(:), dwtlvn(:)
Integer :: icomm(260)
Character (3) :: cpass(0:7)

! .. Intrinsic Procedures ..
Intrinsic :: max, real, sqrt, sum

! .. Executable Statements ..
Continue
Write (nout,*) ’C09ACF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read problem parameters
Read (nin,*) m, n, fr
Read (nin,*) wavnam, mode
lda = m
sda = n
ldb = m
sdb = n
Allocate (a(lda,sda,fr),b(ldb,sdb,fr),e(ldb,sdb,fr))

Write (nout,99999) wavnam, mode, m, n, fr

! Read data array and write it out

Do j = 1, fr
Do i = 1, m

Read (nin,*) a(i,1:n,j)
End Do
If (j<fr) Then

Read (nin,*)
End If

End Do

Write (nout,*) ’ Input Data A :’
Do j = 1, fr

Do i = 1, m
Write (nout,99998) a(i,1:n,j)

End Do
Write (nout,*)

End Do

! Query wavelet filter dimensions
! For Multi-Resolution Analysis, decomposition, wtrans = ’M’

wtrans = ’Multilevel’
ifail = 0
Call c09acf(wavnam,wtrans,mode,m,n,fr,nwlmax,nf,nwct,nwcn,nwcfr,icomm, &

ifail)

! Transform one less than the max possible number of levels.
nwl = nwlmax - 1

lenc = nwct
Allocate (c(lenc),dwtlvm(nwl),dwtlvn(nwl),dwtlvfr(nwl))

! Perform Discrete Wavelet transform
ifail = 0
Call c09fcf(m,n,fr,a,lda,sda,lenc,c,nwl,dwtlvm,dwtlvn,dwtlvfr,icomm, &

ifail)
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! c09acf returns nwct based on max levels, so recalculate.
nwct = sum(7*dwtlvm(1:nwl)*dwtlvn(1:nwl)*dwtlvfr(1:nwl))
nwct = nwct + dwtlvm(1)*dwtlvn(1)*dwtlvfr(1)

Write (nout,99997) nwl
Write (nout,99988) nf
Write (nout,99987) nwct
Write (nout,99996)
Write (nout,99995) dwtlvm(1:nwl)
Write (nout,99994)
Write (nout,99995) dwtlvn(1:nwl)
Write (nout,99993)
Write (nout,99995) dwtlvfr(1:nwl)

! Select the deepest level.
want_level = nwl

! Select the approximation coefficients.
want_coeffs = 0

nwcm = dwtlvm(nwl-want_level+1)
nwcn = dwtlvn(nwl-want_level+1)
nwcfr = dwtlvfr(nwl-want_level+1)

! Allocate space to store the coefficients
ldd = nwcm
sdd = nwcn
Allocate (d(ldd,sdd,nwcfr))

Write (nout,99986) want_level, nwcm, nwcn, nwcfr

cpass(0:7) = (/’LLL’,’LLH’,’LHL’,’LHH’,’HLL’,’HLH’,’HHL’,’HHH’/)
If (want_coeffs==0) Then

title = ’Approximation coefficients (LLL) ’
Else

title = ’Detail coefficients (’ // cpass(want_coeffs) // ’) ’
End If

! Extract the required coefficients
Call c09fyf(want_level,want_coeffs,lenc,c,d,ldd,sdd,icomm,ifail)

! Print out the selected set of coefficients
Write (nout,99985) title
Write (nout,99989) want_level, want_coeffs
Do k = 1, nwcfr

Write (nout,99990) k
Do i = 1, nwcm

Write (nout,99991) d(i,1:nwcn,k)
End Do

End Do

Deallocate (d)

! Reconstruct original data
ifail = 0
Call c09fdf(nwl,lenc,c,m,n,fr,b,ldb,sdb,icomm,ifail)

! Check reconstruction matches original
eps = 10.0_nag_wp*real(m,kind=nag_wp)*real(n,kind=nag_wp)* &

real(fr,kind=nag_wp)*x02ajf()

e(1:m,1:n,1:fr) = b(1:m,1:n,1:fr) - a(1:m,1:n,1:fr)
frob = 0.0_nag_wp
Do k = 1, fr

esq = 0.0_nag_wp
Do j = 1, n

Do i = 1, m
esq = esq + e(i,j,k)**2

End Do
End Do
frob = max(frob,sqrt(esq))

End Do
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If (frob>eps) Then
Write (nout,99992)

Else
Write (nout,99992)

End If

99999 Format (1X,’ MLDWT :: Wavelet : ’,A,/,1X,’ End mode : ’,A,/, &
1X,’ M : ’,I4,/,1X,’ N : ’,I4,/,1X, &
’ FR : ’,I4,/)

99998 Format (8(F8.4,1X),:)
99997 Format (/,1X,’ Number of Levels : ’,I10)
99996 Format (1X,’ Number of coefficients in 1st dimension for each level :’)
99995 Format (8(I8,1X),:)
99994 Format (1X,’ Number of coefficients in 2nd dimension for each level :’)
99993 Format (1X,’ Number of coefficients in 3rd dimension for each level :’)
99992 Format (/,1X,’ Success: the reconstruction matches the original.’)
99991 Format (1X,8(F8.4,1X),:)
99990 Format (1X,’ Frame ’,I2,’ : ’)
99989 Format (1X,’ Level ’,I2,’, Coefficients ’,I2,’ : ’)
99988 Format (1X,’ Length of wavelet filter : ’,I10)
99987 Format (1X,’ Total number of wavelet coefficients : ’,I10)
99986 Format (/,1X,70(’-’),/,1X,’Level : ’,I10,’; output is ’,I10,’ by ’,I10, &

’ by ’,I10,/,1X,70(’-’))
99985 Format (/,1X,A)

End Program c09acfe

10.2 Program Data

C09ACF Example Program Data
8, 8, 8 : m, n, fr
DB4 zero : wavnam, mode
10.000 31.000 04.000 10.000 13.000 15.000 04.000 06.000
26.000 24.000 03.000 18.000 17.000 22.000 20.000 05.000
06.000 05.000 06.000 11.000 22.000 23.000 23.000 01.000
09.000 15.000 18.000 01.000 30.000 24.000 08.000 01.000
18.000 04.000 26.000 20.000 31.000 21.000 04.000 06.000
25.000 23.000 25.000 14.000 13.000 03.000 03.000 29.000
22.000 29.000 07.000 29.000 13.000 31.000 03.000 12.000
22.000 03.000 30.000 05.000 10.000 04.000 01.000 19.000

01.000 02.000 14.000 31.000 19.000 28.000 06.000 15.000
26.000 25.000 25.000 04.000 05.000 15.000 24.000 05.000
01.000 29.000 08.000 18.000 22.000 18.000 31.000 23.000
08.000 04.000 16.000 21.000 14.000 02.000 02.000 21.000
10.000 03.000 14.000 03.000 25.000 10.000 24.000 15.000
03.000 16.000 26.000 21.000 16.000 19.000 25.000 27.000
28.000 29.000 01.000 20.000 03.000 24.000 31.000 28.000
31.000 28.000 14.000 30.000 13.000 29.000 20.000 04.000

31.000 26.000 23.000 05.000 22.000 01.000 16.000 08.000
21.000 01.000 29.000 10.000 23.000 14.000 09.000 03.000
20.000 10.000 11.000 22.000 26.000 31.000 03.000 21.000
09.000 24.000 19.000 03.000 04.000 01.000 13.000 29.000
18.000 16.000 05.000 06.000 09.000 16.000 08.000 16.000
32.000 19.000 32.000 01.000 06.000 04.000 01.000 17.000
29.000 29.000 02.000 29.000 27.000 25.000 31.000 06.000
28.000 15.000 15.000 22.000 18.000 01.000 18.000 14.000

15.000 09.000 04.000 14.000 26.000 10.000 03.000 28.000
21.000 24.000 32.000 27.000 01.000 27.000 08.000 16.000
10.000 27.000 29.000 15.000 13.000 01.000 05.000 16.000
04.000 01.000 08.000 31.000 14.000 06.000 05.000 27.000
01.000 19.000 11.000 31.000 12.000 31.000 17.000 26.000
27.000 01.000 16.000 06.000 18.000 02.000 17.000 17.000
30.000 09.000 15.000 32.000 32.000 29.000 16.000 02.000
03.000 11.000 26.000 02.000 23.000 08.000 10.000 31.000

12.000 07.000 06.000 12.000 01.000 13.000 30.000 26.000
27.000 27.000 20.000 16.000 30.000 28.000 13.000 30.000

C09 – Wavelet Transforms C09ACF

Mark 26 C09ACF.7



29.000 15.000 15.000 05.000 01.000 13.000 31.000 02.000
31.000 21.000 27.000 30.000 08.000 07.000 11.000 03.000
17.000 04.000 06.000 01.000 09.000 25.000 03.000 15.000
12.000 18.000 16.000 05.000 09.000 16.000 06.000 13.000
03.000 05.000 26.000 30.000 19.000 11.000 32.000 24.000
06.000 16.000 07.000 15.000 31.000 10.000 20.000 14.000

20.000 07.000 17.000 11.000 04.000 21.000 25.000 17.000
18.000 22.000 22.000 06.000 01.000 05.000 15.000 17.000
25.000 24.000 16.000 13.000 19.000 16.000 23.000 10.000
01.000 31.000 05.000 13.000 11.000 12.000 01.000 18.000
01.000 27.000 09.000 05.000 29.000 26.000 23.000 13.000
02.000 17.000 17.000 14.000 31.000 21.000 16.000 05.000
26.000 21.000 10.000 21.000 09.000 11.000 01.000 15.000
08.000 15.000 18.000 04.000 16.000 09.000 03.000 29.000

26.000 02.000 30.000 26.000 07.000 04.000 09.000 01.000
15.000 02.000 10.000 22.000 16.000 15.000 04.000 03.000
04.000 07.000 32.000 27.000 07.000 05.000 17.000 04.000
22.000 30.000 06.000 18.000 32.000 02.000 01.000 31.000
15.000 19.000 20.000 12.000 10.000 28.000 27.000 03.000
26.000 31.000 21.000 02.000 27.000 10.000 22.000 13.000
32.000 03.000 27.000 23.000 01.000 11.000 04.000 26.000
03.000 01.000 31.000 21.000 27.000 21.000 14.000 09.000

02.000 16.000 16.000 23.000 23.000 09.000 27.000 12.000
15.000 17.000 20.000 27.000 05.000 04.000 18.000 16.000
29.000 32.000 20.000 08.000 14.000 32.000 11.000 04.000
28.000 01.000 15.000 19.000 14.000 09.000 30.000 18.000
20.000 02.000 08.000 11.000 20.000 24.000 14.000 03.000
18.000 15.000 16.000 03.000 23.000 01.000 19.000 31.000
32.000 27.000 28.000 09.000 15.000 23.000 09.000 13.000
01.000 24.000 30.000 04.000 18.000 11.000 01.000 22.000

10.3 Program Results

C09ACF Example Program Results

MLDWT :: Wavelet : DB4
End mode : zero
M : 8
N : 8
FR : 8

Input Data A :
10.0000 31.0000 4.0000 10.0000 13.0000 15.0000 4.0000 6.0000
26.0000 24.0000 3.0000 18.0000 17.0000 22.0000 20.0000 5.0000
6.0000 5.0000 6.0000 11.0000 22.0000 23.0000 23.0000 1.0000
9.0000 15.0000 18.0000 1.0000 30.0000 24.0000 8.0000 1.0000

18.0000 4.0000 26.0000 20.0000 31.0000 21.0000 4.0000 6.0000
25.0000 23.0000 25.0000 14.0000 13.0000 3.0000 3.0000 29.0000
22.0000 29.0000 7.0000 29.0000 13.0000 31.0000 3.0000 12.0000
22.0000 3.0000 30.0000 5.0000 10.0000 4.0000 1.0000 19.0000

1.0000 2.0000 14.0000 31.0000 19.0000 28.0000 6.0000 15.0000
26.0000 25.0000 25.0000 4.0000 5.0000 15.0000 24.0000 5.0000
1.0000 29.0000 8.0000 18.0000 22.0000 18.0000 31.0000 23.0000
8.0000 4.0000 16.0000 21.0000 14.0000 2.0000 2.0000 21.0000

10.0000 3.0000 14.0000 3.0000 25.0000 10.0000 24.0000 15.0000
3.0000 16.0000 26.0000 21.0000 16.0000 19.0000 25.0000 27.0000

28.0000 29.0000 1.0000 20.0000 3.0000 24.0000 31.0000 28.0000
31.0000 28.0000 14.0000 30.0000 13.0000 29.0000 20.0000 4.0000

31.0000 26.0000 23.0000 5.0000 22.0000 1.0000 16.0000 8.0000
21.0000 1.0000 29.0000 10.0000 23.0000 14.0000 9.0000 3.0000
20.0000 10.0000 11.0000 22.0000 26.0000 31.0000 3.0000 21.0000
9.0000 24.0000 19.0000 3.0000 4.0000 1.0000 13.0000 29.0000

18.0000 16.0000 5.0000 6.0000 9.0000 16.0000 8.0000 16.0000
32.0000 19.0000 32.0000 1.0000 6.0000 4.0000 1.0000 17.0000
29.0000 29.0000 2.0000 29.0000 27.0000 25.0000 31.0000 6.0000
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28.0000 15.0000 15.0000 22.0000 18.0000 1.0000 18.0000 14.0000

15.0000 9.0000 4.0000 14.0000 26.0000 10.0000 3.0000 28.0000
21.0000 24.0000 32.0000 27.0000 1.0000 27.0000 8.0000 16.0000
10.0000 27.0000 29.0000 15.0000 13.0000 1.0000 5.0000 16.0000
4.0000 1.0000 8.0000 31.0000 14.0000 6.0000 5.0000 27.0000
1.0000 19.0000 11.0000 31.0000 12.0000 31.0000 17.0000 26.0000

27.0000 1.0000 16.0000 6.0000 18.0000 2.0000 17.0000 17.0000
30.0000 9.0000 15.0000 32.0000 32.0000 29.0000 16.0000 2.0000
3.0000 11.0000 26.0000 2.0000 23.0000 8.0000 10.0000 31.0000

12.0000 7.0000 6.0000 12.0000 1.0000 13.0000 30.0000 26.0000
27.0000 27.0000 20.0000 16.0000 30.0000 28.0000 13.0000 30.0000
29.0000 15.0000 15.0000 5.0000 1.0000 13.0000 31.0000 2.0000
31.0000 21.0000 27.0000 30.0000 8.0000 7.0000 11.0000 3.0000
17.0000 4.0000 6.0000 1.0000 9.0000 25.0000 3.0000 15.0000
12.0000 18.0000 16.0000 5.0000 9.0000 16.0000 6.0000 13.0000
3.0000 5.0000 26.0000 30.0000 19.0000 11.0000 32.0000 24.0000
6.0000 16.0000 7.0000 15.0000 31.0000 10.0000 20.0000 14.0000

20.0000 7.0000 17.0000 11.0000 4.0000 21.0000 25.0000 17.0000
18.0000 22.0000 22.0000 6.0000 1.0000 5.0000 15.0000 17.0000
25.0000 24.0000 16.0000 13.0000 19.0000 16.0000 23.0000 10.0000
1.0000 31.0000 5.0000 13.0000 11.0000 12.0000 1.0000 18.0000
1.0000 27.0000 9.0000 5.0000 29.0000 26.0000 23.0000 13.0000
2.0000 17.0000 17.0000 14.0000 31.0000 21.0000 16.0000 5.0000

26.0000 21.0000 10.0000 21.0000 9.0000 11.0000 1.0000 15.0000
8.0000 15.0000 18.0000 4.0000 16.0000 9.0000 3.0000 29.0000

26.0000 2.0000 30.0000 26.0000 7.0000 4.0000 9.0000 1.0000
15.0000 2.0000 10.0000 22.0000 16.0000 15.0000 4.0000 3.0000
4.0000 7.0000 32.0000 27.0000 7.0000 5.0000 17.0000 4.0000

22.0000 30.0000 6.0000 18.0000 32.0000 2.0000 1.0000 31.0000
15.0000 19.0000 20.0000 12.0000 10.0000 28.0000 27.0000 3.0000
26.0000 31.0000 21.0000 2.0000 27.0000 10.0000 22.0000 13.0000
32.0000 3.0000 27.0000 23.0000 1.0000 11.0000 4.0000 26.0000
3.0000 1.0000 31.0000 21.0000 27.0000 21.0000 14.0000 9.0000

2.0000 16.0000 16.0000 23.0000 23.0000 9.0000 27.0000 12.0000
15.0000 17.0000 20.0000 27.0000 5.0000 4.0000 18.0000 16.0000
29.0000 32.0000 20.0000 8.0000 14.0000 32.0000 11.0000 4.0000
28.0000 1.0000 15.0000 19.0000 14.0000 9.0000 30.0000 18.0000
20.0000 2.0000 8.0000 11.0000 20.0000 24.0000 14.0000 3.0000
18.0000 15.0000 16.0000 3.0000 23.0000 1.0000 19.0000 31.0000
32.0000 27.0000 28.0000 9.0000 15.0000 23.0000 9.0000 13.0000
1.0000 24.0000 30.0000 4.0000 18.0000 11.0000 1.0000 22.0000

Number of Levels : 2
Length of wavelet filter : 8
Total number of wavelet coefficients : 5145
Number of coefficients in 1st dimension for each level :

7 7
Number of coefficients in 2nd dimension for each level :

7 7
Number of coefficients in 3rd dimension for each level :

7 7

----------------------------------------------------------------------
Level : 2; output is 7 by 7 by 7
----------------------------------------------------------------------

Approximation coefficients (LLL)
Level 2, Coefficients 0 :
Frame 1 :
-0.0000 -0.0000 0.0000 0.0000 0.0001 0.0000 0.0000
-0.0000 -0.0000 0.0000 -0.0001 0.0000 -0.0007 -0.0000
0.0000 0.0000 -0.0001 -0.0002 -0.0020 0.0036 -0.0002

-0.0000 -0.0000 -0.0002 0.0021 0.0025 -0.0124 0.0010
0.0001 -0.0000 -0.0017 0.0009 0.0928 0.1155 0.0004
0.0002 -0.0007 0.0013 -0.0063 0.1584 0.0931 0.0096
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0.0000 -0.0001 0.0003 -0.0006 0.0123 0.0061 0.0014
Frame 2 :
-0.0000 0.0000 0.0000 -0.0000 -0.0010 -0.0005 -0.0000
0.0000 -0.0000 0.0001 -0.0006 0.0026 0.0035 0.0004
0.0001 -0.0000 -0.0008 0.0027 0.0133 -0.0064 -0.0032

-0.0002 0.0000 0.0032 -0.0067 -0.0708 0.0073 0.0148
-0.0003 0.0035 -0.0155 0.0406 -0.3676 -0.3434 -0.0682
-0.0011 0.0004 0.0241 -0.0866 -0.4993 -0.5807 -0.0674
-0.0002 -0.0003 0.0048 -0.0128 -0.0800 -0.0731 -0.0045
Frame 3 :
0.0000 0.0000 -0.0002 0.0005 0.0006 0.0027 0.0005

-0.0000 0.0002 -0.0012 0.0037 -0.0224 0.0005 -0.0006
-0.0002 -0.0011 0.0067 -0.0126 0.0447 -0.0734 0.0068
0.0008 0.0025 -0.0141 -0.0008 0.0872 0.3261 -0.0494
0.0012 -0.0173 0.0687 -0.0681 0.5915 -0.1717 0.3943
0.0016 0.0123 -0.1221 0.4190 -0.5269 1.2295 0.1617
0.0003 0.0028 -0.0182 0.0396 0.1154 0.2823 0.0102

Frame 4 :
-0.0000 -0.0002 0.0011 -0.0030 0.0059 -0.0102 -0.0026
0.0000 -0.0010 0.0042 -0.0106 0.0948 -0.0180 -0.0005
0.0004 0.0061 -0.0296 0.0586 -0.3921 0.3650 0.0134

-0.0018 -0.0155 0.0684 -0.0636 0.5365 -1.4566 0.0298
-0.0070 0.0592 -0.1486 -0.1055 -2.9693 0.1109 -1.4193
-0.0017 -0.0424 0.2595 -0.7280 2.4682 -4.1771 -0.5119
0.0003 -0.0079 0.0273 -0.0205 -0.1224 -0.9982 -0.0710

Frame 5 :
0.0001 -0.0000 -0.0005 -0.0015 0.0804 0.1009 0.0139

-0.0006 0.0033 -0.0017 -0.0019 -0.5303 -0.5712 -0.0438
-0.0014 -0.0157 0.0800 -0.1856 0.4182 0.4931 0.0090
0.0099 0.0522 -0.4140 1.1260 0.6111 -0.0042 -0.1288
0.0831 -0.4718 0.9591 -2.9510 84.8494 91.3686 10.1751
0.1599 -0.3194 -0.8962 1.8546 106.1903 117.2751 12.9904
0.0213 -0.0211 -0.2179 0.4955 12.5323 12.9746 1.3422

Frame 6 :
0.0002 -0.0004 -0.0006 0.0005 0.0945 0.1342 0.0157

-0.0008 0.0048 -0.0052 0.0013 -0.7012 -0.3668 -0.0231
-0.0006 -0.0125 0.0347 -0.0396 1.3945 -0.2227 -0.1395
0.0034 0.0166 -0.0246 -0.0495 -3.2417 -0.3508 0.3284
0.1373 -0.4804 -0.1436 0.6068 105.5811 101.7766 10.0719
0.1359 -0.6132 0.8736 -2.8616 121.1074 124.4215 13.7050
0.0068 -0.0939 0.4312 -1.4152 12.9366 13.1259 1.6024

Frame 7 :
0.0000 -0.0001 0.0006 -0.0024 0.0134 0.0160 0.0014

-0.0001 0.0006 0.0003 -0.0044 -0.0813 -0.0377 -0.0021
0.0006 0.0002 -0.0206 0.0816 0.0851 -0.0274 -0.0148

-0.0028 -0.0074 0.1035 -0.3488 0.0136 -0.1313 0.0288
0.0177 -0.0358 -0.0968 0.1416 11.4442 11.6279 0.9779
0.0187 -0.0759 0.0227 0.1041 13.7268 13.3069 1.5629
0.0002 -0.0164 0.0748 -0.2042 1.6290 1.2827 0.1547

Success: the reconstruction matches the original.
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NAG Library Routine Document

C09BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09BAF computes the real, continuous wavelet transform in one dimension.

2 Specification

SUBROUTINE C09BAF (WAVNAM, WPARAM, N, X, NSCAL, SCALES, C, IFAIL)

INTEGER WPARAM, N, NSCAL, SCALES(NSCAL), IFAIL
REAL (KIND=nag_wp) X(N), C(NSCAL,N)
CHARACTER(*) WAVNAM

3 Description

C09BAF computes the real part of the one-dimensional, continuous wavelet transform

Cs;k ¼
Z
R

x tð Þ 1ffiffiffi
s
p  �

t� k
s

� �
dt;

of a signal x tð Þ at scale s and position k, where the signal is sampled discretely at n equidistant points
xi, for i ¼ 1; 2; . . . ; n.  is the wavelet function, which can be chosen to be the Morlet wavelet, the
derivatives of a Gaussian or the Mexican hat wavelet (� denotes the complex conjugate). The integrals
of the scaled, shifted wavelet function are approximated and the convolution is then computed.

The mother wavelets supplied for use with this routine are defined as follows.

1. The Morlet wavelet (real part) with nondimensional wave number � is

 xð Þ ¼ 1

	1=4
cos �xð Þ � e��2=2
� �

e�x
2=2;

where the correction term, e��
2=2 (required to satisfy the admissibility condition) is included.

2. The derivatives of a Gaussian are obtained from

 ̂ mð Þ xð Þ ¼
dm e�x

2
� �
dxm

;

taking m ¼ 1; . . . ; 8. These are the Hermite polynomials multiplied by the Gaussian. The sign is
then adjusted to give  ̂ mð Þ 0ð Þ > 0 when m is even while the sign of the succeeding odd derivative,
 ̂ mþ1ð Þ, is made consistent with the preceding even numbered derivative. They are normalized by
the L2-norm,

pm ¼
Z 1
�1

 ̂ mð Þ xð Þ
h i2

dx

� �1=2

The resulting normalized derivatives can be written in terms of the Hermite polynomials, Hm xð Þ,
as

 mð Þ xð Þ ¼ �Hm xð Þe�x2

pm
;

where

C09 – Wavelet Transforms C09BAF

Mark 26 C09BAF.1



� ¼ 1; when m ¼ 0; 3 mod 4;
�1; when m ¼ 1; 2 mod 4:



Thus, the derivatives of a Gaussian provided here are,

 1ð Þ xð Þ ¼ � 2

	

� �1=4

2xe�x
2
;

 2ð Þ xð Þ ¼ � 2

	

� �1=4 1ffiffiffi
3
p 4x2 � 2
� �

e�x
2
;

 3ð Þ xð Þ ¼ 2

	

� �1=4 1ffiffiffiffiffi
15
p 8x3 � 12x

� �
e�x

2
;

 4ð Þ xð Þ ¼ 2

	

� �1=4 1ffiffiffiffiffiffiffiffi
105
p 16x4 � 48x2 þ 12

� �
e�x

2
;

 5ð Þ xð Þ ¼ � 2

	

� �1=4 1

3
ffiffiffiffiffiffiffiffi
105
p 32x5 � 160x3 þ 120x

� �
e�x

2
;

 6ð Þ xð Þ ¼ � 2

	

� �1=4 1

3
ffiffiffiffiffiffiffiffiffiffi
1155
p 64x6 � 480x4 þ 720x2 � 120

� �
e�x

2
;

 7ð Þ xð Þ ¼ 2

	

� �1=4 1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
15015
p 128x7 � 1344x5 þ 3360x3 � 1680x

� �
e�x

2
;

 8ð Þ xð Þ ¼ 2

	

� �1=4 1

45
ffiffiffiffiffiffiffiffiffiffi
1001
p 256x8 � 3584x6 þ 13440x4 � 13440x2 þ 1680

� �
e�x

2
:

3. The second derivative of a Gaussian is known as the Mexican hat wavelet and is supplied as an
additional function in the form

 xð Þ ¼ 2ffiffiffi
3
p

	1=4
� � 1� x2

� �
e�x

2=2:

The remaining normalized derivatives of a Gaussian can be expressed as multiples of the
exponential e�t

2=2 by applying the substitution x ¼ t=
ffiffiffi
2
p

followed by multiplication with the
scaling factor, 1=

ffiffiffi
24
p

.

4 References

Daubechies I (1992) Ten Lectures on Wavelets SIAM, Philadelphia

5 Arguments

1: WAVNAM – CHARACTER(*) Input

On entry: the name of the mother wavelet. See the C09 Chapter Introduction for details.

WAVNAM ¼ MORLET
Morlet wavelet.

WAVNAM ¼ DGAUSS
Derivative of a Gaussian wavelet.

WAVNAM ¼ MEXHAT
Mexican hat wavelet.

Constraint: WAVNAM ¼ MORLET , DGAUSS or MEXHAT.
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2: WPARAM – INTEGER Input

On entry: the nondimensional wave number for the Morlet wavelet or the order of the derivative
for the Gaussian wavelet. It is not referenced when WAVNAM ¼ MEXHAT .

Constraints:

if WAVNAM ¼ MORLET , 5 �WPARAM � 20;
if WAVNAM ¼ DGAUSS , 1 �WPARAM � 8.

3: N – INTEGER Input

On entry: the size, n, of the input dataset x.

Constraint: N � 2.

4: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: X contains the input dataset XðjÞ ¼ xj , for j ¼ 1; 2; . . . ; n.

5: NSCAL – INTEGER Input

On entry: the dimension of the array SCALES and the first dimension of the array C as declared
in the (sub)program from which C09BAF is called. The number of scales to be computed.

Constraint: NSCAL � 1.

6: SCALESðNSCALÞ – INTEGER array Input

On entry: the scales at which the transform is to be computed.

Constraint: SCALESðiÞ � 1, for i ¼ 1; 2; . . . ;NSCAL.

7: CðNSCAL;NÞ – REAL (KIND=nag_wp) array Output

On exit: the transform coefficients at the requested scales, where Cði; jÞ is the transform
coefficient Ci;j at scale i and position j.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, WAVNAM ¼ valueh i was an illegal value.
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IFAIL ¼ 2

On entry, WAVNAM ¼ MORLET and WPARAM ¼ valueh i.
Constraint: if WAVNAM ¼ MORLET , 5 �WPARAM � 20.

On entry, WAVNAM ¼ DGAUSS and WPARAM ¼ valueh i.
Constraint: if WAVNAM ¼ DGAUSS , 1 �WPARAM � 8.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ 5

On entry, NSCAL ¼ valueh i.
Constraint: NSCAL � 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of C09BAF is determined by the fact that the convolution must be computed as a discrete
approximation to the continuous form. The input signal, x, is taken to be piecewise constant using the
supplied discrete values.

8 Parallelism and Performance

C09BAF is not threaded in any implementation.

9 Further Comments

Workspace is internally allocated by C09BAF. The total size of these arrays is 213 þ Nþ nk � 1ð Þ real
elements and nk integer elements, where nk ¼ k�max SCALESðiÞð Þ and k ¼ 17 when
WAVNAM ¼ MORLET or DGAUSS and k ¼ 11 when WAVNAM ¼ MEXHAT .

10 Example

This example computes the continuous wavelet transform of a dataset containing a single nonzero value
representing an impulse. The Morlet wavelet is used with wave number � ¼ 5 and scales 1, 2, 3, 4.
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10.1 Program Text

Program c09bafe

! C09BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09baf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, j, n, nscal, wparam
Character (10) :: wavnam

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:,:), x(:)
Integer, Allocatable :: scales(:)

! .. Intrinsic Procedures ..
Intrinsic :: trim

! .. Executable Statements ..
Write (nout,*) ’C09BAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read problem parameters
Read (nin,*) n, nscal
Allocate (c(nscal,n),scales(nscal),x(n))
Read (nin,*) wavnam, wparam
Write (nout,99999) trim(wavnam), wparam, n, nscal

! Read data array and write it out

Read (nin,*) scales(1:nscal)
Read (nin,*) x(1:n)

Write (nout,99998) scales(1:nscal)
Write (nout,99997) x(1:n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c09baf(wavnam,wparam,n,x,nscal,scales,c,ifail)

Write (nout,99996) nscal
Write (nout,99995) scales(1:nscal)
Do j = 1, n

Write (nout,99994) c(1:nscal,j)
End Do

99999 Format (2X,’Parameters read from file ::’,/,4X,’Wavelet : ’,A, &
’, wparam : ’,I6,/,10X,’n : ’,I6,’, nscal : ’,I6)

99998 Format (/,2X,’Input Data ::’,/,4X,’ Scales :’,5(I8,1X),:)
99997 Format (5X,’ x :’,5(F8.3,1X),(/,13X,5(F8.3,1X)),:)
99996 Format (/,2X,’Number of Scales : ’,I10)
99995 Format (2X,’Wavelet coefficients C ::’,/,4X,’Scale :’,I7,3I13)
99994 Format (10X,4(1P,E11.4,2X),:)

End Program c09bafe

10.2 Program Data

C09BAF Example Program Data
10 4 : n, nscal
MORLET 5 : wavnam
1 2 3 4 : scales(1:nscal)
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 : x(1:n)
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10.3 Program Results

C09BAF Example Program Results

Parameters read from file ::
Wavelet : MORLET, wparam : 5

n : 10, nscal : 4

Input Data ::
Scales : 1 2 3 4

x : 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000

Number of Scales : 4
Wavelet coefficients C ::

Scale : 1 2 3 4
-1.7651E-05 1.5012E-04 5.2331E-02 1.4454E-01
-1.3643E-03 -5.8141E-02 1.7057E-01 -8.4364E-02
4.6511E-03 1.8442E-01 -1.4891E-01 -2.8870E-01
8.9294E-02 -2.6380E-01 -2.6822E-01 -9.4993E-02

-9.2563E-02 1.3289E-01 2.5680E-01 2.8293E-01
-9.2563E-02 1.3289E-01 2.5680E-01 2.8293E-01
8.9294E-02 -2.6380E-01 -2.6822E-01 -9.4993E-02
4.6511E-03 1.8442E-01 -1.4891E-01 -2.8870E-01

-1.3643E-03 -5.8141E-02 1.7057E-01 -8.4364E-02
-1.7651E-05 1.5012E-04 5.2331E-02 1.4454E-01
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NAG Library Routine Document

C09CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09CAF computes the one-dimensional discrete wavelet transform (DWT) at a single level. The
initialization routine C09AAF must be called first to set up the DWT options.

2 Specification

SUBROUTINE C09CAF (N, X, LENC, CA, CD, ICOMM, IFAIL)

INTEGER N, LENC, ICOMM(100), IFAIL
REAL (KIND=nag_wp) X(N), CA(LENC), CD(LENC)

3 Description

C09CAF computes the one-dimensional DWT of a given input data array, xi, for i ¼ 1; 2; . . . ; n, at a
single level. For a chosen wavelet filter pair, the output coefficients are obtained by applying
convolution and downsampling by two to the input, x. The approximation (or smooth) coefficients, Ca,
are produced by the low pass filter and the detail coefficients, Cd, by the high pass filter. To reduce
distortion effects at the ends of the data array, several end extension methods are commonly used.
Those provided are: periodic or circular convolution end extension, half-point symmetric end extension,
whole-point symmetric end extension or zero end extension. The number nc, of coefficients Ca or Cd is
returned by the initialization routine C09AAF.

4 References

Daubechies I (1992) Ten Lectures on Wavelets SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: the number of elements, n, in the data array x.

Constraint: this must be the same as the value N passed to the initialization routine C09AAF.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: X contains the input dataset xi, for i ¼ 1; 2; . . . ; n.

3: LENC – INTEGER Input

On entry: the dimension of the arrays CA and CD as declared in the (sub)program from which
C09CAF is called. This must be at least the number, nc, of approximation coefficients, Ca, and
detail coefficients, Cd, of the discrete wavelet transform as returned in NWC by the call to the
initialization routine C09AAF.

Constraint: LENC � nc, where nc is the value returned in NWC by the call to the initialization
routine C09AAF.

4: CAðLENCÞ – REAL (KIND=nag_wp) array Output

On exit: CAðiÞ contains the ith approximation coefficient, Ca ið Þ, for i ¼ 1; 2; . . . ; nc.
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5: CDðLENCÞ – REAL (KIND=nag_wp) array Output

On exit: CDðiÞ contains the ith detail coefficient, Cd ið Þ, for i ¼ 1; 2; . . . ; nc.

6: ICOMMð100Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09AAF.

On exit: contains additional information on the computed transform.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N is inconsistent with the value passed to the initialization routine: N ¼ valueh i, N
should be valueh i.

IFAIL ¼ 3

On entry, array dimension LENC not large enough: LENC ¼ valueh i but must be at least valueh i.

IFAIL ¼ 6

Either the initialization routine has not been called first or array ICOMM has been corrupted.

Either the initialization routine was called with WTRANS ¼ M or array ICOMM has been
corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09CAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the one-dimensional discrete wavelet decomposition for 8 values using the
Daubechies wavelet, WAVNAM ¼ DB4 , with zero end extension.

10.1 Program Text

Program c09cafe

! C09CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09aaf, c09caf, c09cbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, n, nf, nwc, nwl, ny
Character (12) :: mode, wavnam, wtrans

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ca(:), cd(:), x(:), y(:)
Integer :: icomm(100)

! .. Executable Statements ..
Write (nout,*) ’C09CAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read problem parameters.
Read (nin,*) n
Read (nin,*) wavnam, mode
Allocate (x(n),y(n))

Write (nout,99999) wavnam, mode
! Read array

Read (nin,*) x(1:n)
Write (nout,*) ’Input Data X :’
Write (nout,99997) x(1:n)

! Query wavelet filter dimensions
wtrans = ’Single Level’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c09aaf(wavnam,wtrans,mode,n,nwl,nf,nwc,icomm,ifail)

Allocate (ca(nwc),cd(nwc))

ifail = 0
Call c09caf(n,x,nwc,ca,cd,icomm,ifail)

Write (nout,99998)
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Write (nout,99997) ca(1:nwc)
Write (nout,99996)
Write (nout,99997) cd(1:nwc)

ny = n

ifail = 0
Call c09cbf(nwc,ca,cd,ny,y,icomm,ifail)

Write (nout,99995)
Write (nout,99997) y(1:ny)

99999 Format (1X,’DWT :: Wavelet: ’,A,’, End mode: ’,A)
99998 Format (1X,’Approximation coefficients CA : ’)
99997 Format (1X,8(F8.4,1X),:)
99996 Format (1X,’Detail coefficients CD : ’)
99995 Format (1X,’Reconstruction Y : ’)

End Program c09cafe

10.2 Program Data

C09CAF Example Program Data
8 : n
DB4 Zero : wavnam, mode
1.0
3.0
5.0
7.0
6.0
4.0
5.0
2.0 : x(1:n)

10.3 Program Results

C09CAF Example Program Results
DWT :: Wavelet: DB4 , End mode: Zero
Input Data X :

1.0000 3.0000 5.0000 7.0000 6.0000 4.0000 5.0000 2.0000
Approximation coefficients CA :

0.0011 -0.0043 -0.0174 4.4778 8.9557 7.3401 2.5816
Detail coefficients CD :

0.0237 0.0410 -0.5966 1.7763 -0.7517 0.3332 -0.1188
Reconstruction Y :

1.0000 3.0000 5.0000 7.0000 6.0000 4.0000 5.0000 2.0000
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NAG Library Routine Document

C09CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09CBF computes the inverse one-dimensional discrete wavelet transform (DWT) at a single level. The
initialization routine C09AAF must be called first to set up the DWT options.

2 Specification

SUBROUTINE C09CBF (LENC, CA, CD, N, Y, ICOMM, IFAIL)

INTEGER LENC, N, ICOMM(100), IFAIL
REAL (KIND=nag_wp) CA(LENC), CD(LENC), Y(N)

3 Description

C09CBF performs the inverse operation of C09CAF. That is, given sets of nc approximation
coefficients and detail coefficients, computed by C09CAF using a DWT as set up by the initialization
routine C09AAF, on a real data array of length n, C09CBF will reconstruct the data array yi, for
i ¼ 1; 2; . . . ; n, from which the coefficients were derived.

4 References

None.

5 Arguments

1: LENC – INTEGER Input

On entry: the dimension of the arrays CA and CD as declared in the (sub)program from which
C09CBF is called.

Constraint: LENC � nc, where nc is the value returned in NWC by the call to the initialization
routine C09AAF.

2: CAðLENCÞ – REAL (KIND=nag_wp) array Input

On entry: the nc approximation coefficients, Ca. These will normally be the result of some
transformation on the coefficients computed by C09CAF.

3: CDðLENCÞ – REAL (KIND=nag_wp) array Input

On entry: the nc detail coefficients, Cd. These will normally be the result of some transformation
on the coefficients computed by C09CAF.

4: N – INTEGER Input

On entry: n, the length of the original data array from which the wavelet coefficients were
computed by C09CAF and the length of the data array Y that is to be reconstructed by this
routine.

Constraint: This must be the same as the value N passed to the initialization routine C09AAF.
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5: YðNÞ – REAL (KIND=nag_wp) array Output

On exit: the reconstructed data based on approximation and detail coefficients Ca and Cd and the
transform options supplied to the initialization routine C09AAF.

6: ICOMMð100Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension and,
possibly, additional information on the previously computed forward transform.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, array dimension LENC not large enough: LENC ¼ valueh i but must be at least valueh i.

IFAIL ¼ 4

On entry, N is inconsistent with the value passed to the initialization routine: N ¼ valueh i, N
should be valueh i.

IFAIL ¼ 6

Either the initialization routine has not been called first or array ICOMM has been corrupted.

Either the initialization routine was called with WTRANS ¼ M or array ICOMM has been
corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09CBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in C09CAF.
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NAG Library Routine Document

C09CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09CCF computes the one-dimensional multi-level discrete wavelet transform (DWT). The
initialization routine C09AAF must be called first to set up the DWT options.

2 Specification

SUBROUTINE C09CCF (N, X, LENC, C, NWL, DWTLEV, ICOMM, IFAIL)

INTEGER N, LENC, NWL, DWTLEV(NWL+1), ICOMM(100), IFAIL
REAL (KIND=nag_wp) X(N), C(LENC)

3 Description

C09CCF computes the multi-level DWT of one-dimensional data. For a given wavelet and end
extension method, C09CCF will compute a multi-level transform of a data array, xi, for i ¼ 1; 2; . . . ; n,
using a specified number, nfwd, of levels. The number of levels specified, nfwd, must be no more than
the value lmax returned in NWLMAX by the initialization routine C09AAF for the given problem. The
transform is returned as a set of coefficients for the different levels (packed into a single array) and a
representation of the multi-level structure.

The notation used here assigns level 0 to the input dataset, x, with level 1 being the first set of
coefficients computed, with the detail coefficients, d1, being stored while the approximation coefficients,
a1, are used as the input to a repeat of the wavelet transform. This process is continued until, at level
nfwd, both the detail coefficients, dnfwd , and the approximation coefficients, anfwd are retained. The output
array, C, stores these sets of coefficients in reverse order, starting with anfwd followed by
dnfwd ; dnfwd�1; . . . ; d1.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: the number of elements, n, in the data array x.

Constraint: this must be the same as the value N passed to the initialization routine C09AAF.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: X contains the one-dimensional input dataset xi, for i ¼ 1; 2; . . . ; n.

3: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09CCF is
called. C must be large enough to contain the number, nc, of wavelet coefficients. The maximum
value of nc is returned in NWC by the call to the initialization routine C09AAF and corresponds
to the DWT being continued for the maximum number of levels possible for the given data set.
When the number of levels, nfwd, is chosen to be less than the maximum, then nc is
correspondingly smaller and LENC can be reduced by noting that the number of coefficients at
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each level is given by �n=2d e for MODE ¼ P in C09AAF and �nþ nf � 1
� �

=2
� �

for
MODE ¼ H , W or Z , where �n is the number of input data at that level and nf is the filter
length provided by the call to C09AAF. At the final level the storage is doubled to contain the set
of approximation coefficients.

Constraint: LENC � nc, where nc is the number of approximation and detail coefficients that
correspond to a transform with NWLMAX levels.

4: CðLENCÞ – REAL (KIND=nag_wp) array Output

On exit: let q ið Þ denote the number of coefficients (of each type) produced by the wavelet
transform at level i, for i ¼ nfwd; nfwd � 1; . . . ; 1. These values are returned in DWTLEV. Setting
k1 ¼ q nfwdð Þ and kjþ1 ¼ kj þ q nfwd � j þ 1ð Þ, for j ¼ 1; 2; . . . ; nfwd, the coefficients are stored as
follows:

CðiÞ, for i ¼ 1; 2; . . . ; k1
Contains the level nfwd approximation coefficients, anfwd .

CðiÞ, for i ¼ k1 þ 1; . . . ; k2
Contains the level nfwd detail coefficients dnfwd .

CðiÞ, for i ¼ kj þ 1; . . . ; kjþ1
Contains the level nfwd � j þ 1 detail coefficients, for j ¼ 2; 3; . . . ; nfwd.

5: NWL – INTEGER Input

On entry: the number of levels, nfwd, in the multi-level resolution to be performed.

Constraint: 1 � NWL � lmax , where lmax is the value returned in NWLMAX (the maximum
number of levels) by the call to the initialization routine C09AAF.

6: DWTLEVðNWLþ 1Þ – INTEGER array Output

On exit: the number of transform coefficients at each level. DWTLEVð1Þ and DWTLEVð2Þ
contain the number, q nfwdð Þ, of approximation and detail coefficients respectively, for the final
level of resolution (these are equal); DWTLEVðiÞ contains the number of detail coefficients,
q nfwd � i þ 2ð Þ, for the (nfwd � i þ 2)th level, for i ¼ 3; 4; . . . ; nfwd þ 1.

7: ICOMMð100Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09AAF.

On exit: contains additional information on the computed transform.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

C09CCF NAG Library Manual

C09CCF.2 Mark 26



6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N is inconsistent with the value passed to the initialization routine: N ¼ valueh i, N
should be valueh i.

IFAIL ¼ 3

On entry, LENC is set too small: LENC ¼ valueh i.
Constraint: LENC � valueh i.

IFAIL ¼ 5

On entry, NWL ¼ valueh i.
Constraint: NWL � 1.

On entry, NWL is larger than the maximum number of levels returned by the initialization
routine: NWL ¼ valueh i, maximum ¼ valueh i.

IFAIL ¼ 7

Either the initialization routine has not been called first or array ICOMM has been corrupted.

Either the initialization routine was called with WTRANS ¼ S or array ICOMM has been
corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09CCF is not threaded in any implementation.

9 Further Comments

The wavelet coefficients at each level can be extracted from the output array C using the information
contained in DWTLEV on exit (see the descriptions of C and DWTLEV in Section 5). For example,
given an input data set, x, denoising can be carried out by applying a thresholding operation to the
detail coefficients at every level. The elements CðiÞ, for i ¼ k1 þ 1; . . . ; knfwd þ 1, as described in
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Section 5, contain the detail coefficients, d̂ij , for i ¼ nfwd; nfwd � 1; . . . ; 1 and j ¼ 1; 2; . . . ; q ið Þ, where
d̂ij ¼ dij þ ��ij and ��ij is the transformed noise term. If some threshold parameter � is chosen, a
simple hard thresholding rule can be applied as

�dij ¼ 0; if d̂ij
		 		 � �

d̂ij; if d̂ij
		 		 > �;



taking �dij to be an approximation to the required detail coefficient without noise, dij. The resulting
coefficients can then be used as input to C09CDF in order to reconstruct the denoised signal.

See the references given in the introduction to this chapter for a more complete account of wavelet
denoising and other applications.

10 Example

This example performs a multi-level resolution of a dataset using the Daubechies wavelet (see
WAVNAM ¼ DB4 in C09AAF) using zero end extensions, the number of levels of resolution, the
number of coefficients in each level and the coefficients themselves are reused. The original dataset is
then reconstructed using C09CDF.

10.1 Program Text

Program c09ccfe

! C09CCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09aaf, c09ccf, c09cdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, lenc, n, nf, nnz, nwc, nwl, &

nwlinv, nwlmax
Character (10) :: mode, wavnam, wtrans

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), x(:), y(:)
Integer, Allocatable :: dwtlev(:)
Integer :: icomm(100)

! .. Intrinsic Procedures ..
Intrinsic :: sum

! .. Executable Statements ..
Write (nout,*) ’C09CCF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read problem parameters
Read (nin,*) n
Read (nin,*) wavnam, mode
Allocate (x(n),y(n))

Write (nout,99999) wavnam, mode, n

! Read data array and write it out

Read (nin,*) x(1:n)

Write (nout,*) ’ Input Data X :’
Write (nout,99998) x(1:n)

! Query wavelet filter dimensions
! For Multi-Resolution Analysis, decomposition, wtrans = ’M’

wtrans = ’Multilevel’

! ifail: behaviour on error exit
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! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call c09aaf(wavnam,wtrans,mode,n,nwlmax,nf,nwc,icomm,ifail)

lenc = nwc
Allocate (c(lenc),dwtlev(nwlmax+1))

nwl = nwlmax

! Perform Discrete Wavelet transform
ifail = 0
Call c09ccf(n,x,lenc,c,nwl,dwtlev,icomm,ifail)

Write (nout,99997) nwl
Write (nout,99996)
Write (nout,99995) dwtlev(1:nwl+1)
nnz = sum(dwtlev(1:nwl+1))
Write (nout,99994)
Write (nout,99998) c(1:nnz)

! Reconstruct original data
nwlinv = nwl

ifail = 0
Call c09cdf(nwlinv,lenc,c,n,y,icomm,ifail)

Write (nout,99993)
Write (nout,99998) y(1:n)

99999 Format (1X,’ MLDWT :: Wavelet : ’,A10,’, End mode : ’,A10,’ N = ’,I10)
99998 Format (8(F8.4,1X),:)
99997 Format (1X,’ Number of Levels : ’,I10)
99996 Format (1X,’ Number of coefficients in each level : ’)
99995 Format (8(I8,1X),:)
99994 Format (1X,’ Wavelet coefficients C : ’)
99993 Format (1X,’ Reconstruction Y : ’)

End Program c09ccfe

10.2 Program Data

C09CCF Example Program Data
64 : n
DB4 Zero : wavnam, mode
6.5271 6.512 6.5016 6.5237 6.4625
6.3496 6.4025 6.4035 6.4407 6.4746
6.5095 6.6551 6.61 6.5969 6.6083
6.652 6.7113 6.7227 6.7196 6.7649
6.7794 6.8037 6.8308 6.7712 6.7067
6.769 6.7068 6.7024 6.6463 6.6098
6.59 6.596 6.5457 6.547 6.5797
6.5895 6.6275 6.6795 6.6598 6.6925
6.6873 6.7223 6.7205 6.6843 6.703
6.647 6.6008 6.6061 6.6097 6.6485
6.6394 6.6571 6.6357 6.6224 6.6073
6.6075 6.6379 6.6294 6.5906 6.6258
6.6369 6.6515 6.6826 6.7042 : x(1:n)

10.3 Program Results

C09CCF Example Program Results
MLDWT :: Wavelet : DB4 , End mode : Zero N = 64
Input Data X :
6.5271 6.5120 6.5016 6.5237 6.4625 6.3496 6.4025 6.4035
6.4407 6.4746 6.5095 6.6551 6.6100 6.5969 6.6083 6.6520
6.7113 6.7227 6.7196 6.7649 6.7794 6.8037 6.8308 6.7712
6.7067 6.7690 6.7068 6.7024 6.6463 6.6098 6.5900 6.5960
6.5457 6.5470 6.5797 6.5895 6.6275 6.6795 6.6598 6.6925
6.6873 6.7223 6.7205 6.6843 6.7030 6.6470 6.6008 6.6061
6.6097 6.6485 6.6394 6.6571 6.6357 6.6224 6.6073 6.6075
6.6379 6.6294 6.5906 6.6258 6.6369 6.6515 6.6826 6.7042
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Number of Levels : 6
Number of coefficients in each level :

7 7 8 10 14 21 35
Wavelet coefficients C :
0.0000 -0.0227 -0.3446 2.7574 -10.1970 44.8800 15.9443 0.0010

-0.4881 -10.2673 11.3258 -1.7469 2.0785 -0.7334 -0.0054 -0.1402
-5.8980 -1.1527 5.5613 2.1352 0.3203 -0.4004 0.0010 0.5229
0.5055 -2.7274 -0.0911 -0.2806 -0.3669 2.9467 -0.3799 -0.1552
0.0218 0.0922 5.4626 -2.1620 0.5196 -0.0287 -0.0199 0.0920

-0.0134 -0.1298 -5.5168 2.3105 -0.5383 -0.0155 0.3057 0.6186
-1.5542 0.2682 0.1566 0.0030 -0.0152 -0.0589 0.0126 0.0063
0.0171 -0.0268 0.0077 -0.0189 0.0207 0.0104 -0.3207 -0.6062
1.6288 -0.2414 -0.0671 3.1657 -1.1462 0.2785 0.0523 -0.0030

-0.0270 -0.0442 0.0090 0.0171 -0.0230 -0.0015 0.0213 -0.0402
-0.0263 -0.0099 0.0021 -0.0250 0.0210 -0.0028 -0.0298 -0.0095
0.0034 0.0281 -0.0188 -0.0002 -0.0173 -0.0076 -0.0014 0.0184

-0.0318 0.0048 0.0047 -3.2555 1.1710 -0.2913
Reconstruction Y :
6.5271 6.5120 6.5016 6.5237 6.4625 6.3496 6.4025 6.4035
6.4407 6.4746 6.5095 6.6551 6.6100 6.5969 6.6083 6.6520
6.7113 6.7227 6.7196 6.7649 6.7794 6.8037 6.8308 6.7712
6.7067 6.7690 6.7068 6.7024 6.6463 6.6098 6.5900 6.5960
6.5457 6.5470 6.5797 6.5895 6.6275 6.6795 6.6598 6.6925
6.6873 6.7223 6.7205 6.6843 6.7030 6.6470 6.6008 6.6061
6.6097 6.6485 6.6394 6.6571 6.6357 6.6224 6.6073 6.6075
6.6379 6.6294 6.5906 6.6258 6.6369 6.6515 6.6826 6.7042
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NAG Library Routine Document

C09CDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09CDF computes the inverse one-dimensional multi-level discrete wavelet transform (DWT). This
routine reconstructs data from (possibly filtered or otherwise manipulated) wavelet transform
coefficients calculated by C09CCF from an original set of data. The initialization routine C09AAF
must be called first to set up the DWT options.

2 Specification

SUBROUTINE C09CDF (NWLINV, LENC, C, N, Y, ICOMM, IFAIL)

INTEGER NWLINV, LENC, N, ICOMM(100), IFAIL
REAL (KIND=nag_wp) C(LENC), Y(N)

3 Description

C09CDF performs the inverse operation of C09CCF. That is, given a set of wavelet coefficients,
computed up to level nfwd by C09CCF using a DWT as set up by the initialization routine C09AAF, on
a real data array of length n, C09CDF will reconstruct the data array yi, for i ¼ 1; 2; . . . ; n, from which
the coefficients were derived. If the original input dataset is level 0, then it is possible to terminate
reconstruction at a higher level by specifying fewer than the number of levels used in the call to
C09CCF. This results in a partial reconstruction.

4 References

None.

5 Arguments

1: NWLINV – INTEGER Input

On entry: the number of levels to be used in the inverse multi-level transform. The number of
levels must be less than or equal to nfwd, which has the value of argument NWL as used in the
computation of the wavelet coefficients using C09CCF. The data will be reconstructed to level
NWL� NWLINVð Þ, where level 0 is the original input dataset provided to C09CCF.

Constraint: 1 � NWLINV � NWL, where NWL is the value used in a preceding call to C09CCF.

2: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09CDF is
called.

Constraint: LENC � nc, where nc is the total number of coefficients that correspond to a
transform with NWLINV levels and is unchanged from the preceding call to C09CCF.

3: CðLENCÞ – REAL (KIND=nag_wp) array Input

On entry: the coefficients of a multi-level wavelet transform of the dataset.
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Let q ið Þ be the number of coefficients (of each type) at level i, for i ¼ nfwd; nfwd � 1; . . . ; 1. Then,
setting k1 ¼ q nfwdð Þ and kjþ1 ¼ kj þ q nfwd � j þ 1ð Þ, for j ¼ 1; 2; . . . ; nfwd, the coefficients are
stored in C as follows:

CðiÞ, for i ¼ 1; 2; . . . ; k1
Contains the level nfwd approximation coefficients, anfwd .

CðiÞ, for i ¼ k1 þ 1; . . . ; k2
Contains the level nfwd detail coefficients dnfwd .

CðiÞ, for i ¼ kj þ 1; . . . ; kjþ1
Contains the level nfwd � j þ 1 detail coefficients, for j ¼ 2; 3; . . . ; nfwd.

The values q ið Þ, for i ¼ nfwd; nfwd � 1; . . . ; 1, are contained in DWTLEV which is produced as
output by a preceding call to C09CCF. See C09CCF for details.

4: N – INTEGER Input

On entry: n, the length of the data array, y, to be reconstructed. For a full reconstruction of NWL
levels, where NWL is as supplied to C09CCF, this must be the same as argument N used in the
call to C09CCF. For a partial reconstruction of NWLINV < NWL, this must be equal to
DWTLEVðNWLINVþ 2Þ, as returned from C09CCF.

5: YðNÞ – REAL (KIND=nag_wp) array Output

On exit: the dataset reconstructed from the multi-level wavelet transform coefficients and the
transformation options supplied to the initialization routine C09AAF.

6: ICOMMð100Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension for the
forward transform previously computed by C09CCF.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NWLINV ¼ valueh i.
Constraint: NWLINV � 1.

On entry, NWLINV is larger than the number of levels computed by the preceding call to
C09CCF: NWLINV ¼ valueh i, expected ¼ valueh i.
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IFAIL ¼ 2

On entry, LENC is set too small: LENC ¼ valueh i.
Constraint: LENC � valueh i.

IFAIL ¼ 4

On entry, N is inconsistent with the value passed to the initialization routine: N ¼ valueh i, N
should be valueh i.

IFAIL ¼ 6

Either the initialization routine has not been called first or array ICOMM has been corrupted.

Either the initialization routine was called with WTRANS ¼ S or array ICOMM has been
corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09CDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in C09CCF.
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NAG Library Routine Document

C09DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09DAF computes the one-dimensional maximal overlap discrete wavelet transform (MODWT) at a
single level. The initialization routine C09AAF must be called first to set up the MODWT options.

2 Specification

SUBROUTINE C09DAF (N, X, LENC, CA, CD, ICOMM, IFAIL)

INTEGER N, LENC, ICOMM(100), IFAIL
REAL (KIND=nag_wp) X(N), CA(LENC), CD(LENC)

3 Description

C09DAF computes the one-dimensional MODWT of a given input data array, xi, for i ¼ 1; 2; . . . ; n, at
a single level. For a chosen wavelet filter pair, the output coefficients are obtained by applying
convolution to the input, x. The approximation (or smooth) coefficients, Ca, are produced by the low
pass filter and the detail coefficients, Cd, by the high pass filter. Periodic (circular) convolution is
available as an end extension method for application to finite data sets. The number nc, of coefficients
Ca or Cd is returned by the initialization routine C09AAF.

4 References

Percival D B and Walden A T (2000) Wavelet Methods for Time Series Analysis Cambridge University
Press

5 Arguments

1: N – INTEGER Input

On entry: the number of elements, n, in the data array x.

Constraint: this must be the same as the value N passed to the initialization routine C09AAF.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: X contains the input dataset xi, for i ¼ 1; 2; . . . ; n.

3: LENC – INTEGER Input

On entry: the dimension of the arrays CA and CD as declared in the (sub)program from which
C09DAF is called. This must be at least the number, nc, of approximation coefficients, Ca, and
detail coefficients, Cd, of the discrete wavelet transform as returned in NWC by the call to the
initialization routine C09AAF. Note that nc ¼ n for periodic end extension, but this is not the
case for other end extension methods which will be available in future releases.

Constraint: LENC � nc, where nc is the value returned in NWC by the call to the initialization
routine C09AAF.

4: CAðLENCÞ – REAL (KIND=nag_wp) array Output

On exit: CAðiÞ contains the ith approximation coefficient, Ca ið Þ, for i ¼ 1; 2; . . . ; nc.
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5: CDðLENCÞ – REAL (KIND=nag_wp) array Output

On exit: CDðiÞ contains the ith detail coefficient, Cd ið Þ, for i ¼ 1; 2; . . . ; nc.

6: ICOMMð100Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09AAF.

On exit: contains additional information on the computed transform.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N is inconsistent with the value passed to the initialization routine: N ¼ valueh i, N
should be valueh i.

IFAIL ¼ 3

On entry, array dimension LENC not large enough: LENC ¼ valueh i but must be at least valueh i.

IFAIL ¼ 6

On entry, the initialization routine C09AAF has not been called first or it has not been called with
WTRANS ¼ T , or the communication array ICOMM has become corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09DAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the one-dimensional maximal overlap discrete wavelet decomposition for 8
values using the Daubechies wavelet, WAVNAM ¼ DB4 .

10.1 Program Text

Program c09dafe

! C09DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09aaf, c09daf, c09dbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, n, nf, nwc, nwl, ny
Character (14) :: mode, wavnam, wtrans

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ca(:), cd(:), x(:), y(:)
Integer :: icomm(100)

! .. Executable Statements ..

! .. Executable Statements ..
Write (nout,*) ’C09DAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read problem parameters.
Read (nin,*) n
Read (nin,*) wavnam, mode
Allocate (x(n),y(n))

Write (nout,99999) wavnam, mode
! Read array

Read (nin,*) x(1:n)
Write (nout,*) ’Input Data X :’
Write (nout,99997) x(1:n)

! Query wavelet filter dimensions
wtrans = ’Time invariant’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c09aaf(wavnam,wtrans,mode,n,nwl,nf,nwc,icomm,ifail)

Allocate (ca(nwc),cd(nwc))

ifail = 0
Call c09daf(n,x,nwc,ca,cd,icomm,ifail)
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Write (nout,99998)
Write (nout,99997) ca(1:nwc)
Write (nout,99996)
Write (nout,99997) cd(1:nwc)

ny = n

ifail = 0
Call c09dbf(nwc,ca,cd,ny,y,icomm,ifail)

Write (nout,99995)
Write (nout,99997) y(1:ny)

99999 Format (1X,’MODWT :: Wavelet: ’,A,’, End mode: ’,A)
99998 Format (1X,’Approximation coefficients CA : ’)
99997 Format (1X,8(F8.4,1X),:)
99996 Format (1X,’Detail coefficients CD : ’)
99995 Format (1X,’Reconstruction Y : ’)

End Program c09dafe

10.2 Program Data

C09DAF Example Program Data
8 : n
DB4 Periodic : wavnam, mode
1.0
3.0
5.0
7.0
6.0
4.0
5.0
2.0 : x(1:n)

10.3 Program Results

C09DAF Example Program Results
MODWT :: Wavelet: DB4 , End mode: Periodic
Input Data X :

1.0000 3.0000 5.0000 7.0000 6.0000 4.0000 5.0000 2.0000
Approximation coefficients CA :

2.7781 1.5146 2.2505 4.8788 6.6845 6.3423 4.7869 3.7644
Detail coefficients CD :
-0.6187 0.6272 0.1883 -1.1966 1.2618 0.3354 -0.3314 -0.2660

Reconstruction Y :
1.0000 3.0000 5.0000 7.0000 6.0000 4.0000 5.0000 2.0000
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NAG Library Routine Document

C09DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09DBF computes the inverse one-dimensional maximal overlap discrete wavelet transform (MODWT)
at a single level. The initialization routine C09AAF must be called first to set up the MODWT options.

2 Specification

SUBROUTINE C09DBF (LENC, CA, CD, N, Y, ICOMM, IFAIL)

INTEGER LENC, N, ICOMM(100), IFAIL
REAL (KIND=nag_wp) CA(LENC), CD(LENC), Y(N)

3 Description

C09DBF performs the inverse operation of C09DAF. That is, given sets of nc approximation
coefficients and detail coefficients, computed by C09DAF using a MODWT as set up by the
initialization routine C09AAF, on a real data array of length n, C09DBF will reconstruct the data array
yi, for i ¼ 1; 2; . . . ; n, from which the coefficients were derived.

4 References

Percival D B and Walden A T (2000) Wavelet Methods for Time Series Analysis Cambridge University
Press

5 Arguments

1: LENC – INTEGER Input

On entry: the dimension of the arrays CA and CD as declared in the (sub)program from which
C09DBF is called.

Constraint: LENC � nc, where nc is the value returned in NWC by the call to the initialization
routine C09AAF.

2: CAðLENCÞ – REAL (KIND=nag_wp) array Input

On entry: the nc approximation coefficients, Ca. These will normally be the result of some
transformation on the coefficients computed by C09DAF.

3: CDðLENCÞ – REAL (KIND=nag_wp) array Input

On entry: the nc detail coefficients, Cd. These will normally be the result of some transformation
on the coefficients computed by C09DAF.

4: N – INTEGER Input

On entry: n, the length of the original data array from which the wavelet coefficients were
computed by C09DAF and the length of the data array Y that is to be reconstructed by this
routine.

Constraint: This must be the same as the value N passed to the initialization routine C09AAF.
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5: YðNÞ – REAL (KIND=nag_wp) array Output

On exit: the reconstructed data based on approximation and detail coefficients Ca and Cd and the
transform options supplied to the initialization routine C09AAF.

6: ICOMMð100Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension and,
possibly, additional information on the previously computed forward transform.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, array dimension LENC not large enough: LENC ¼ valueh i but must be at least valueh i.

IFAIL ¼ 4

On entry, N is inconsistent with the value passed to the initialization routine: N ¼ valueh i, N
should be valueh i.

IFAIL ¼ 6

On entry, the initialization routine C09AAF has not been called first or it has not been called with
WTRANS ¼ T , or the communication array ICOMM has become corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09DBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in C09DAF.
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NAG Library Routine Document

C09DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09DCF computes the one-dimensional multi-level maximal overlap discrete wavelet transform
(MODWT). The initialization routine C09AAF must be called first to set up the MODWT options.

2 Specification

SUBROUTINE C09DCF (N, X, KEEPA, LENC, C, NWL, NA, ICOMM, IFAIL)

INTEGER N, LENC, NWL, NA, ICOMM(100), IFAIL
REAL (KIND=nag_wp) X(N), C(LENC)
CHARACTER(1) KEEPA

3 Description

C09DCF computes the multi-level MODWT for a data set, xi, for i ¼ 1; 2; . . . ; n, in one dimension. For
a chosen number of levels, nl, with nl � lmax , where lmax is returned by the initialization routine
C09AAF in NWLMAX, the transform is returned as a set of coefficients for the different levels stored
in a single array. Periodic reflection is currently the only available end extension method to reduce the
edge effects caused by finite data sets.

The argument KEEPA can be set to retain both approximation and detail coefficients at each level
resulting in nl � na þ ndð Þ coefficients being returned in the output array, C, where na is the number of
approximation coefficients and nd is the number of detail coefficients. Otherwise, only the detail
coefficients are stored for each level along with the approximation coefficients for the final level, in
which case the length of the output array, C, is na þ nl � nd. In the present implementation, for
simplicity, na and nd are chosen to be equal by adding zero padding to the wavelet filters where
necessary.

4 References

Percival D B and Walden A T (2000) Wavelet Methods for Time Series Analysis Cambridge University
Press

5 Arguments

1: N – INTEGER Input

On entry: the number of elements, n, in the data array x.

Constraint: this must be the same as the value N passed to the initialization routine C09AAF.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: X contains the input dataset xi, for i ¼ 1; 2; . . . ; n.
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3: KEEPA – CHARACTER(1) Input

On entry: determines whether the approximation coefficients are stored in array C for every level
of the computed transform or else only for the final level. In both cases, the detail coefficients are
stored in C for every level computed.

KEEPA ¼ A
Retain approximation coefficients for all levels computed.

KEEPA ¼ F
Retain approximation coefficients for only the final level computed.

Constraint: KEEPA ¼ A or F .

4: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09DCF is
called. C must be large enough to contain the number of wavelet coefficients.

If KEEPA ¼ F , the total number of coefficients, nc, is returned in NWC by the call to the
initialization routine C09AAF and corresponds to the MODWT being continued for the
maximum number of levels possible for the given data set. When the number of levels, nl, is
chosen to be less than the maximum, then the number of stored coefficients is correspondingly
smaller and LENC can be reduced by noting that nd detail coefficients are stored at each level,
with the storage increased at the final level to contain the na approximation coefficients.

If KEEPA ¼ A , nd detail coefficients and na approximation coefficients are stored for each level
computed, requiring LENC � nl � na þ ndð Þ ¼ 2� nl � na, since the numbers of stored
approximation and detail coefficients are equal. The number of approximation (or detail)
coefficients at each level, na, is returned in NA.

Constraints:

if KEEPA ¼ F , LENC � nl þ 1ð Þ � na;
if KEEPA ¼ A , LENC � 2� nl � na.

5: CðLENCÞ – REAL (KIND=nag_wp) array Output

On exit: the coefficients of a multi-level wavelet transform of the dataset.

The coefficients are stored in C as follows:

If KEEPA ¼ F ,

Cð1 : naÞ
Contains the level nl approximation coefficients;

Cðna þ i� 1ð Þ � nd þ 1 : na þ i� ndÞ
Contains the level nl � i þ 1ð Þ detail coefficients, for i ¼ 1; 2; . . . ; nl;

If KEEPA ¼ A ,

Cð i� 1ð Þ � na þ 1 : i� naÞ
Contains the level nl � i þ 1ð Þ approximation coefficients, for i ¼ 1; 2; . . . ; nl;

Cðnl � na þ i� 1ð Þ � nd þ 1 : nl � na þ i� ndÞ
Contains the level i detail coefficients, for i ¼ 1; 2; . . . ; nl;

The values na and nd denote the numbers of approximation and detail coefficients respectively,
which are equal and returned in NA.

6: NWL – INTEGER Input

On entry: the number of levels, nl, in the multi-level resolution to be performed.

Constraint: 1 � NWL � lmax , where lmax is the value returned in NWLMAX (the maximum
number of levels) by the call to the initialization routine C09AAF.
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7: NA – INTEGER Output

On exit: NA contains the number of approximation coefficients, na, at each level which is equal
to the number of detail coefficients, nd. With periodic end extension (MODE ¼ P in C09AAF)
this is the same as the length, N, of the data array, X.

8: ICOMMð100Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09AAF.

On exit: contains additional information on the computed transform.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N is inconsistent with the value passed to the initialization routine: N ¼ valueh i, N
should be valueh i.

IFAIL ¼ 2

On entry, KEEPA ¼ valueh i was an illegal value.

IFAIL ¼ 4

On entry, LENC is set too small: LENC ¼ valueh i.
Constraint: LENC � valueh i.

IFAIL ¼ 6

On entry, NWL ¼ valueh i.
Constraint: NWL � 1.

On entry, NWL is larger than the maximum number of levels returned by the initialization
function: NWL ¼ valueh i, maximum = valueh i.

IFAIL ¼ 8

On entry, the initialization routine C09AAF has not been called first or it has not been called with
WTRANS ¼ U , or the communication array ICOMM has become corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09DCF is not threaded in any implementation.

9 Further Comments

The wavelet coefficients at each level can be extracted from the output array C using the information
contained in NA on exit.

10 Example

A set of data values (N ¼ 64) is decomposed using the MODWT over two levels and then the inverse
(C09DDF) is applied to restore the original data set.

10.1 Program Text

Program c09dcfe

! C09DCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09aaf, c09dcf, c09ddf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, lenc, n, na, nf, nwc, nwl, ny
Character (10) :: keepa, mode, wavnam, wtrans

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), x(:), y(:)
Integer :: icomm(100)

! .. Executable Statements ..
Write (nout,*) ’C09DCF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read problem parameters
Read (nin,*) n
Read (nin,*) wavnam, mode, keepa
Allocate (x(n),y(n))

Write (nout,99999) wavnam, mode, n
Write (nout,99998) keepa

! Read data array and write it out
Read (nin,*) x(1:n)
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Write (nout,*) ’ Input Data X :’
Write (nout,99997) x(1:n)

! Query wavelet filter dimensions
! For Multi-Resolution Analysis, decomposition, wtrans = ’U’

wtrans = ’U’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c09aaf(wavnam,wtrans,mode,n,nwl,nf,nwc,icomm,ifail)

! Choose to decompose over two levels
nwl = 2
nwc = (nwl+1)*n
If (keepa==’Final’) Then

lenc = nwc
Else

lenc = 2*n*nwl
End If

Allocate (c(lenc))

! Perform Discrete Wavelet transform
ifail = 0
Call c09dcf(n,x,keepa,lenc,c,nwl,na,icomm,ifail)

Write (nout,99996) nwl
Write (nout,99995) na
Write (nout,99994)
Write (nout,99997) c(1:lenc)

! Reconstruct original data
ny = n

ifail = 0
Call c09ddf(nwl,keepa,lenc,c,ny,y,icomm,ifail)

Write (nout,99993)
Write (nout,99997) y(1:ny)

99999 Format (1X,’ MLMODWT :: Wavelet : ’,A10,’, End mode : ’,A10,’ N = ’,I10)
99998 Format (1X,’ :: Keepa : ’,A10)
99997 Format (8(F8.4,1X),:)
99996 Format (1X,’ Number of Levels : ’,I10)
99995 Format (1X,’ Number of coefficients in each level : ’,I10)
99994 Format (1X,’ Wavelet coefficients C : ’)
99993 Format (1X,’ Reconstruction Y : ’)

End Program c09dcfe

10.2 Program Data

C09DCF Example Program Data
64 : n
DB4 Periodic All : wavnam, mode, keepa
6.5271 6.512 6.5016 6.5237 6.4625
6.3496 6.4025 6.4035 6.4407 6.4746
6.5095 6.6551 6.61 6.5969 6.6083
6.652 6.7113 6.7227 6.7196 6.7649
6.7794 6.8037 6.8308 6.7712 6.7067
6.769 6.7068 6.7024 6.6463 6.6098
6.59 6.596 6.5457 6.547 6.5797
6.5895 6.6275 6.6795 6.6598 6.6925
6.6873 6.7223 6.7205 6.6843 6.703
6.647 6.6008 6.6061 6.6097 6.6485
6.6394 6.6571 6.6357 6.6224 6.6073
6.6075 6.6379 6.6294 6.5906 6.6258
6.6369 6.6515 6.6826 6.7042 : x(1:n)
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10.3 Program Results

C09DCF Example Program Results
MLMODWT :: Wavelet : DB4 , End mode : Periodic N = 64

:: Keepa : All
Input Data X :
6.5271 6.5120 6.5016 6.5237 6.4625 6.3496 6.4025 6.4035
6.4407 6.4746 6.5095 6.6551 6.6100 6.5969 6.6083 6.6520
6.7113 6.7227 6.7196 6.7649 6.7794 6.8037 6.8308 6.7712
6.7067 6.7690 6.7068 6.7024 6.6463 6.6098 6.5900 6.5960
6.5457 6.5470 6.5797 6.5895 6.6275 6.6795 6.6598 6.6925
6.6873 6.7223 6.7205 6.6843 6.7030 6.6470 6.6008 6.6061
6.6097 6.6485 6.6394 6.6571 6.6357 6.6224 6.6073 6.6075
6.6379 6.6294 6.5906 6.6258 6.6369 6.6515 6.6826 6.7042
Number of Levels : 2
Number of coefficients in each level : 64
Wavelet coefficients C :
6.6448 6.6505 6.6415 6.6090 6.5631 6.5119 6.4657 6.4371
6.4162 6.4041 6.4062 6.4235 6.4652 6.5191 6.5744 6.6170
6.6375 6.6496 6.6575 6.6741 6.7038 6.7335 6.7633 6.7849
6.7939 6.7970 6.7868 6.7649 6.7407 6.7102 6.6814 6.6571
6.6269 6.5993 6.5773 6.5598 6.5574 6.5688 6.5881 6.6173
6.6492 6.6741 6.6941 6.7052 6.7078 6.7083 6.7001 6.6842
6.6616 6.6338 6.6146 6.6072 6.6139 6.6306 6.6428 6.6459
6.6384 6.6252 6.6147 6.6113 6.6143 6.6189 6.6264 6.6361
6.6719 6.5883 6.4958 6.4890 6.5103 6.4695 6.3900 6.3656
6.4065 6.4444 6.4727 6.5273 6.6057 6.6409 6.6102 6.6001
6.6469 6.7019 6.7288 6.7330 6.7501 6.7824 6.8064 6.8147
6.7846 6.7332 6.7239 6.7297 6.6971 6.6508 6.6127 6.5897
6.5818 6.5636 6.5476 6.5657 6.5980 6.6284 6.6627 6.6803
6.6821 6.6941 6.7131 6.7182 6.7020 6.6824 6.6562 6.6140
6.5942 6.6126 6.6378 6.6502 6.6498 6.6403 6.6233 6.6086
6.6099 6.6260 6.6300 6.6112 6.6094 6.6358 6.6581 6.6778
0.0107 0.0084 0.0003 -0.0065 -0.0000 0.0196 0.0191 -0.0152

-0.0369 -0.0291 -0.0131 0.0227 0.0461 0.0005 -0.0488 -0.0145
0.0518 0.0503 -0.0038 -0.0243 -0.0087 -0.0111 -0.0316 -0.0191
0.0323 0.0461 -0.0001 -0.0300 -0.0107 0.0164 0.0112 -0.0156

-0.0225 -0.0091 0.0090 0.0244 0.0050 -0.0281 -0.0150 0.0146
0.0145 0.0034 -0.0019 0.0058 0.0188 0.0074 -0.0133 -0.0127

-0.0062 -0.0008 0.0077 0.0022 -0.0151 -0.0192 -0.0041 0.0091
0.0136 0.0230 0.0203 -0.0081 -0.0274 -0.0179 -0.0013 0.0074

-0.0150 0.0126 0.0048 -0.0276 -0.0227 0.0639 -0.0184 -0.0048
-0.0303 0.0180 0.0327 -0.0343 0.0119 -0.0046 0.0167 0.0025
-0.0524 0.0369 0.0029 0.0055 -0.0070 -0.0134 0.0099 0.0088
-0.0095 0.0103 -0.0114 -0.0181 0.0269 0.0132 -0.0371 0.0250
-0.0186 0.0138 0.0022 -0.0058 -0.0112 0.0207 -0.0058 -0.0054
0.0115 -0.0089 -0.0106 0.0180 -0.0096 0.0107 -0.0156 0.0068
0.0074 -0.0242 0.0169 0.0075 -0.0045 0.0031 -0.0108 0.0092

-0.0115 0.0061 -0.0002 0.0078 -0.0012 -0.0168 0.0074 0.0157
Reconstruction Y :
6.5271 6.5120 6.5016 6.5237 6.4625 6.3496 6.4025 6.4035
6.4407 6.4746 6.5095 6.6551 6.6100 6.5969 6.6083 6.6520
6.7113 6.7227 6.7196 6.7649 6.7794 6.8037 6.8308 6.7712
6.7067 6.7690 6.7068 6.7024 6.6463 6.6098 6.5900 6.5960
6.5457 6.5470 6.5797 6.5895 6.6275 6.6795 6.6598 6.6925
6.6873 6.7223 6.7205 6.6843 6.7030 6.6470 6.6008 6.6061
6.6097 6.6485 6.6394 6.6571 6.6357 6.6224 6.6073 6.6075
6.6379 6.6294 6.5906 6.6258 6.6369 6.6515 6.6826 6.7042
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NAG Library Routine Document

C09DDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09DDF computes the inverse one-dimensional multi-level maximal overlap discrete wavelet transform
(MODWT). This routine reconstructs data from (possibly filtered or otherwise manipulated) wavelet
transform coefficients calculated by C09DCF from an original set of data. The initialization routine
C09AAF must be called first to set up the MODWT options.

2 Specification

SUBROUTINE C09DDF (NWLINV, KEEPA, LENC, C, N, Y, ICOMM, IFAIL)

INTEGER NWLINV, LENC, N, ICOMM(100), IFAIL
REAL (KIND=nag_wp) C(LENC), Y(N)
CHARACTER(1) KEEPA

3 Description

C09DDF performs the inverse operation of C09DCF. That is, given a set of wavelet coefficients
computed by C09DCF using a MODWT as set up by the initialization routine C09AAF on a real array
of length n, C09DDF will reconstruct the data array yi, for i ¼ 1; 2; . . . ; n, from which the coefficients
were derived.

4 References

Percival D B and Walden A T (2000) Wavelet Methods for Time Series Analysis Cambridge University
Press

5 Arguments

1: NWLINV – INTEGER Input

On entry: the number of levels to be used in the inverse multi-level transform. The number of
levels must be less than or equal to nfwd, which has the value of argument NWL as used in the
computation of the wavelet coefficients using C09DCF. The data will be reconstructed to level
NWL� NWLINVð Þ, where level 0 is the original input dataset provided to C09DCF.

Constraint: 1 � NWLINV � NWL, where NWL is the value used in a preceding call to C09DCF.

2: KEEPA – CHARACTER(1) Input

On entry: determines whether the approximation coefficients are stored in array C for every level
of the computed transform or else only for the final level. In both cases, the detail coefficients are
stored in C for every level computed.

KEEPA ¼ A
Retain approximation coefficients for all levels computed.

KEEPA ¼ F
Retain approximation coefficients for only the final level computed.

Constraint: KEEPA ¼ A or F .
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3: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09DDF is
called.

Constraints:

if KEEPA ¼ F , LENC � nl þ 1ð Þ � na;
if KEEPA ¼ A , LENC � 2� nl � na, where na is the number of approximation or detail
coefficients at each level and is unchanged from the preceding call to C09DCF.

4: CðLENCÞ – REAL (KIND=nag_wp) array Input

On entry: the coefficients of a multi-level wavelet transform of the dataset.

The coefficients are stored in C as follows:

If KEEPA ¼ F ,

Cð1 : naÞ
Contains the level nl approximation coefficients;

Cðna þ i� 1ð Þ � nd þ 1 : na þ i� ndÞ
Contains the level nl � i þ 1ð Þ detail coefficients, for i ¼ 1; 2; . . . ; nl;

If KEEPA ¼ A ,

Cð i� 1ð Þ � na þ 1 : i� naÞ
Contains the level nl � i þ 1ð Þ approximation coefficients, for i ¼ 1; 2; . . . ; nl;

Cðnl � na þ i� 1ð Þ � nd þ 1 : nl � na þ i� ndÞ
Contains the level i detail coefficients, for i ¼ 1; 2; . . . ; nl.

The values na and nd denote the numbers of approximation and detail coefficients respectively,
which are equal. This number is returned as output in NA from a preceding call to C09DCF. See
C09DCF for details.

5: N – INTEGER Input

On entry: n, the length of the data array, y, to be reconstructed.

Constraint: This must be the same as the value N passed to the initialization routine C09AAF.

6: YðNÞ – REAL (KIND=nag_wp) array Output

On exit: the dataset reconstructed from the multi-level wavelet transform coefficients and the
transformation options supplied to the initialization routine C09AAF.

7: ICOMMð100Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension for the
forward transform previously computed by C09DCF.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NWLINV ¼ valueh i.
Constraint: NWLINV � 1.

On entry, NWLINV is larger than the number of levels computed by the preceding call to
C09DCF: NWLINV ¼ valueh i, expected valueh i.

IFAIL ¼ 2

On entry, KEEPA ¼ valueh i was an illegal value.

IFAIL ¼ 3

On entry, LENC is set too small: LENC ¼ valueh i.
Constraint: LENC � valueh i.

IFAIL ¼ 5

On entry, N is inconsistent with the value passed to the initialization routine: N ¼ valueh i, N
should be valueh i.

IFAIL ¼ 7

On entry, the initialization routine C09AAF has not been called first or it has not been called with
WTRANS ¼ U , or the communication array ICOMM has become corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09DDF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

See Section 10 in C09DCF.
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NAG Library Routine Document

C09EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09EAF computes the two-dimensional discrete wavelet transform (DWT) at a single level. The
initialization routine C09ABF must be called first to set up the DWT options.

2 Specification

SUBROUTINE C09EAF (M, N, A, LDA, CA, LDCA, CH, LDCH, CV, LDCV, CD, LDCD,
ICOMM, IFAIL)

&

INTEGER M, N, LDA, LDCA, LDCH, LDCV, LDCD, ICOMM(180), IFAIL
REAL (KIND=nag_wp) A(LDA,N), CA(LDCA,*), CH(LDCH,*), CV(LDCV,*),

CD(LDCD,*)
&

3 Description

C09EAF computes the two-dimensional DWT of a given input data array, considered as a matrix A, at a
single level. For a chosen wavelet filter pair, the output coefficients are obtained by applying
convolution and downsampling by two to the input, A, first over columns and then to the result over
rows. The matrix of approximation (or smooth) coefficients, Ca, is produced by the low pass filter over
columns and rows; the matrix of horizontal coefficients, Ch, is produced by the high pass filter over
columns and the low pass filter over rows; the matrix of vertical coefficients, Cv, is produced by the
low pass filter over columns and the high pass filter over rows; and the matrix of diagonal coefficients,
Cd, is produced by the high pass filter over columns and rows. To reduce distortion effects at the ends
of the data array, several end extension methods are commonly used. Those provided are: periodic or
circular convolution end extension, half-point symmetric end extension, whole-point symmetric end
extension and zero end extension. The total number, nct, of coefficients computed for Ca, Ch, Cv, and
Cd together and the number of columns of each coefficients matrix, ncn, are returned by the
initialization routine C09ABF. These values can be used to calculate the number of rows of each
coefficients matrix, ncm, using the formula ncm ¼ nct= 4ncnð Þ.

4 References

Daubechies I (1992) Ten Lectures on Wavelets SIAM, Philadelphia

5 Arguments

1: M – INTEGER Input

On entry: number of rows, m, of data matrix A.

Constraint: this must be the same as the value M passed to the initialization routine C09ABF.

2: N – INTEGER Input

On entry: number of columns, n, of data matrix A.

Constraint: this must be the same as the value N passed to the initialization routine C09ABF.

3: AðLDA;NÞ – REAL (KIND=nag_wp) array Input

On entry: the m by n data matrix A.
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4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which C09EAF
is called.

Constraint: LDA � M.

5: CAðLDCA; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CA must be at least ncn where ncn is the argument
NWCN returned by routine C09ABF.

On exit: contains the ncm by ncn matrix of approximation coefficients, Ca.

6: LDCA – INTEGER Input

On entry: the first dimension of the array CA as declared in the (sub)program from which
C09EAF is called.

Constraint: LDCA � ncm where ncm ¼ nct= 4ncnð Þ and ncn, nct are returned by the initialization
routine C09ABF.

7: CHðLDCH; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CH must be at least ncn where ncn is the argument
NWCN returned by routine C09ABF.

On exit: contains the ncm by ncn matrix of horizontal coefficients, Ch.

8: LDCH – INTEGER Input

On entry: the first dimension of the array CH as declared in the (sub)program from which
C09EAF is called.

Constraint: LDCH � ncm where ncm ¼ nct= 4ncnð Þ and ncn, nct are returned by the initialization
routine C09ABF.

9: CVðLDCV; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CV must be at least ncn where ncn is the argument
NWCN returned by routine C09ABF.

On exit: contains the ncm by ncn matrix of vertical coefficients, Cv.

10: LDCV – INTEGER Input

On entry: the first dimension of the array CV as declared in the (sub)program from which
C09EAF is called.

Constraint: LDCV � ncm where ncm ¼ nct= 4ncnð Þ and ncn, nct are returned by the initialization
routine C09ABF.

11: CDðLDCD; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CD must be at least ncn where ncn is the argument
NWCN returned by routine C09ABF.

On exit: contains the ncm by ncn matrix of diagonal coefficients, Cd.

12: LDCD – INTEGER Input

On entry: the first dimension of the array CD as declared in the (sub)program from which
C09EAF is called.

Constraint: LDCD � ncm where ncm ¼ nct= 4ncnð Þ and ncn, nct are returned by the initialization
routine C09ABF.
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13: ICOMMð180Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ABF.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M ¼ valueh i, the value of M on initialization (see C09ABF).

On entry, N ¼ valueh i.
Constraint: N ¼ valueh i, the value of N on initialization (see C09ABF).

IFAIL ¼ 2

On entry, LDA ¼ valueh i and M ¼ valueh i.
Constraint: LDA � M.

IFAIL ¼ 3

On entry, LDCA ¼ valueh i.
Constraint: LDCA � valueh i, the number of wavelet coefficients in the first dimension.

On entry, LDCD ¼ valueh i.
Constraint: LDCD � valueh i, the number of wavelet coefficients in the first dimension.

On entry, LDCH ¼ valueh i.
Constraint: LDCH � valueh i, the number of wavelet coefficients in the first dimension.

On entry, LDCV ¼ valueh i.
Constraint: LDCV � valueh i, the number of wavelet coefficients in the first dimension.

IFAIL ¼ 6

Either the initialization routine has not been called first or ICOMM has been corrupted.

Either the initialization routine was called with WTRANS ¼ M or ICOMM has been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

C09 – Wavelet Transforms C09EAF

Mark 26 C09EAF.3



IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09EAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the two-dimensional discrete wavelet decomposition for a 6� 6 input matrix
using the Daubechies wavelet, WAVNAM ¼ DB4 , with half point symmetric end extension.

10.1 Program Text

Program c09eafe

! C09EAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09abf, c09eaf, c09ebf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, ldb, ldca, ldcd, &

ldch, ldcv, m, n, nf, nwcm, nwcn, &
nwct, nwl

Character (12) :: mode, wavnam, wtrans
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), ca(:,:), cd(:,:), &
ch(:,:), cv(:,:)

Integer :: icomm(180)
! .. Executable Statements ..

Write (nout,*) ’C09EAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read problem parameters.
Read (nin,*) m, n
Read (nin,*) wavnam, mode
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Write (nout,99999) wavnam, mode

lda = m
ldb = m
Allocate (a(lda,n),b(ldb,n))

! Read data array
Do i = 1, m

Read (nin,*) a(i,1:n)
End Do

Write (nout,99998) ’Input Data A’
Do i = 1, m

Write (nout,99997) a(i,1:n)
End Do

! Query wavelet filter dimensions
wtrans = ’Single Level’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c09abf(wavnam,wtrans,mode,m,n,nwl,nf,nwct,nwcn,icomm,ifail)
nwcm = nwct/(4*nwcn)

Allocate (ca(nwcm,nwcn),cd(nwcm,nwcn),cv(nwcm,nwcn),ch(nwcm,nwcn))
ldca = nwcm
ldch = nwcm
ldcv = nwcm
ldcd = nwcm

ifail = 0
Call c09eaf(m,n,a,lda,ca,ldca,ch,ldch,cv,ldcv,cd,ldcd,icomm,ifail)

Write (nout,99998) ’Approximation coefficients CA’
Do i = 1, nwcm

Write (nout,99997) ca(i,1:nwcn)
End Do
Write (nout,99998) ’Diagonal coefficients CD’
Do i = 1, nwcm

Write (nout,99997) cd(i,1:nwcn)
End Do
Write (nout,99998) ’Horizontal coefficients CH’
Do i = 1, nwcm

Write (nout,99997) ch(i,1:nwcn)
End Do
Write (nout,99998) ’Vertical coefficients CV’
Do i = 1, nwcm

Write (nout,99997) cv(i,1:nwcn)
End Do

ifail = 0
Call c09ebf(m,n,ca,ldca,ch,ldch,cv,ldcv,cd,ldcd,b,ldb,icomm,ifail)

Write (nout,99998) ’Reconstruction B’
Do i = 1, m

Write (nout,99997) b(i,1:n)
End Do

99999 Format (/,1X,’DWT ::’,/,1X,’ Wavelet : ’,A,/,1X, &
’ End mode: ’,A)

99998 Format (/,1X,A,’ : ’)
99997 Format (1X,8(F8.4,1X),:)

End Program c09eafe
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10.2 Program Data

C09EAF Example Program Data
6, 6 : m,n
DB4 Half : wavnam, mode
8.0000 7.0000 3.0000 3.0000 1.0000 1.0000
4.0000 6.0000 1.0000 5.0000 2.0000 9.0000
8.0000 1.0000 4.0000 9.0000 3.0000 7.0000
9.0000 3.0000 8.0000 2.0000 4.0000 3.0000
1.0000 3.0000 7.0000 1.0000 5.0000 2.0000
4.0000 3.0000 7.0000 7.0000 6.0000 1.0000

10.3 Program Results

C09EAF Example Program Results

DWT ::
Wavelet : DB4
End mode: Half

Input Data A :
8.0000 7.0000 3.0000 3.0000 1.0000 1.0000
4.0000 6.0000 1.0000 5.0000 2.0000 9.0000
8.0000 1.0000 4.0000 9.0000 3.0000 7.0000
9.0000 3.0000 8.0000 2.0000 4.0000 3.0000
1.0000 3.0000 7.0000 1.0000 5.0000 2.0000
4.0000 3.0000 7.0000 7.0000 6.0000 1.0000

Approximation coefficients CA :
6.3591 10.3477 8.0995 10.3210 8.7587 3.5783

11.5754 6.3762 12.1704 7.4521 8.6977 14.8535
2.0630 8.4499 15.4726 12.1764 3.8920 2.7112

10.2143 6.2445 13.8571 8.1060 7.7701 13.2127
6.3353 8.7805 10.2727 10.0472 6.8614 7.5814

11.7141 11.1018 5.2923 8.1272 14.5540 2.5729

Diagonal coefficients CD :
0.4777 1.0230 -0.3147 0.0625 0.0831 -1.3316
1.0689 1.5671 -2.1422 0.5565 1.7593 -2.8097

-0.9555 -1.9276 0.9195 -0.2228 -0.5125 2.6989
0.2899 0.4453 -0.5695 0.1541 0.4749 -0.7946
0.4944 1.4145 0.3488 -0.1187 -0.6212 -1.5177

-1.3753 -2.5224 1.7581 -0.4316 -1.1835 3.7547

Horizontal coefficients CH :
0.4100 -0.1827 1.5354 0.0784 0.8101 -1.3594
2.3496 -0.9422 2.3780 -1.0540 2.7743 -2.2648

-1.2690 0.0152 -6.9338 -1.7435 -1.6917 1.2388
0.6317 -0.0969 2.3300 0.4637 0.6365 -0.1162

-0.2343 0.3923 5.5457 2.1818 0.2103 -0.8573
-1.8880 0.8142 -4.8552 0.0736 -2.7395 3.3590

Vertical coefficients CV :
1.5365 5.9678 3.4309 -1.0585 -5.0275 -4.8492
0.6779 -0.0294 -5.3274 1.6483 4.8689 -1.8383

-1.1065 -2.8791 0.1535 0.0982 0.8417 2.8923
-0.1359 -2.6633 -5.8549 1.8440 6.2403 0.5697
1.4244 5.2140 1.6410 -0.4669 -3.2369 -4.5757
1.0288 2.2521 0.0574 -0.1359 -0.5170 -2.6854

Reconstruction B :
8.0000 7.0000 3.0000 3.0000 1.0000 1.0000
4.0000 6.0000 1.0000 5.0000 2.0000 9.0000
8.0000 1.0000 4.0000 9.0000 3.0000 7.0000
9.0000 3.0000 8.0000 2.0000 4.0000 3.0000
1.0000 3.0000 7.0000 1.0000 5.0000 2.0000
4.0000 3.0000 7.0000 7.0000 6.0000 1.0000
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NAG Library Routine Document

C09EBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09EBF computes the inverse two-dimensional discrete wavelet transform (DWT) at a single level. The
initialization routine C09ABF must be called first to set up the DWT options.

2 Specification

SUBROUTINE C09EBF (M, N, CA, LDCA, CH, LDCH, CV, LDCV, CD, LDCD, B, LDB,
ICOMM, IFAIL)

&

INTEGER M, N, LDCA, LDCH, LDCV, LDCD, LDB, ICOMM(180), IFAIL
REAL (KIND=nag_wp) CA(LDCA,*), CH(LDCH,*), CV(LDCV,*), CD(LDCD,*),

B(LDB,N)
&

3 Description

C09EBF performs the inverse operation of routine C09EAF. That is, given sets of approximation,
horizontal, vertical and diagonal coefficients computed by routine C09EAF using a DWT as set up by
the initialization routine C09ABF, on a real matrix, B, C09EBF will reconstruct B.

4 References

None.

5 Arguments

1: M – INTEGER Input

On entry: number of rows, m, of data matrix B.

Constraint: this must be the same as the value M passed to the initialization routine C09ABF.

2: N – INTEGER Input

On entry: number of columns, n, of data matrix B.

Constraint: this must be the same as the value N passed to the initialization routine C09ABF.

3: CAðLDCA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array CA must be at least ncn where ncn is the argument
NWCN returned by routine C09ABF.

On entry: contains the ncm by ncn matrix of approximation coefficients, Ca. This array will
normally be the result of some transformation on the coefficients computed by routine C09EAF.

4: LDCA – INTEGER Input

On entry: the first dimension of the array CA as declared in the (sub)program from which
C09EBF is called.

Constraint: LDCA � ncm where ncm ¼ nct= 4ncnð Þ and ncn, nct are returned by the initialization
routine C09ABF.
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5: CHðLDCH; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array CH must be at least ncn where ncn is the argument
NWCN returned by routine C09ABF.

On entry: contains the ncm by ncn matrix of horizontal coefficients, Ch. This array will normally
be the result of some transformation on the coefficients computed by routine C09EAF.

6: LDCH – INTEGER Input

On entry: the first dimension of the array CH as declared in the (sub)program from which
C09EBF is called.

Constraint: LDCH � ncm where ncm ¼ nct= 4ncnð Þ and ncn, nct are returned by the initialization
routine C09ABF.

7: CVðLDCV; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array CV must be at least ncn where ncn is the argument
NWCN returned by routine C09ABF.

On entry: contains the ncm by ncn matrix of vertical coefficients, Cv. This array will normally be
the result of some transformation on the coefficients computed by routine C09EAF.

8: LDCV – INTEGER Input

On entry: the first dimension of the array CV as declared in the (sub)program from which
C09EBF is called.

Constraint: LDCV � ncm where ncm ¼ nct= 4ncnð Þ and ncn, nct are returned by the initialization
routine C09ABF.

9: CDðLDCD; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array CD must be at least ncn where ncn is the argument
NWCN returned by routine C09ABF.

On entry: contains the ncm by ncn matrix of diagonal coefficients, Cd. This array will normally be
the result of some transformation on the coefficients computed by routine C09EAF.

10: LDCD – INTEGER Input

On entry: the first dimension of the array CD as declared in the (sub)program from which
C09EBF is called.

Constraint: LDCD � ncm where ncm ¼ nct= 4ncnð Þ and ncn, nct are returned by the initialization
routine C09ABF.

11: BðLDB;NÞ – REAL (KIND=nag_wp) array Output

On exit: the m by n reconstructed matrix, B, based on the input approximation, horizontal,
vertical and diagonal coefficients and the transform options supplied to the initialization routine
C09ABF.

12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which C09EBF
is called.

Constraint: LDB � M.

13: ICOMMð180Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ABF.
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14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDCA ¼ valueh i.
Constraint: LDCA � valueh i, the number of wavelet coefficients in the first dimension.

On entry, LDCD ¼ valueh i.
Constraint: LDCD � valueh i, the number of wavelet coefficients in the first dimension.

On entry, LDCH ¼ valueh i.
Constraint: LDCH � valueh i, the number of wavelet coefficients in the first dimension.

On entry, LDCV ¼ valueh i.
Constraint: LDCV � valueh i, the number of wavelet coefficients in the first dimension.

IFAIL ¼ 2

On entry, LDB ¼ valueh i and M ¼ valueh i.
Constraint: LDB � M.

IFAIL ¼ 4

On entry, M ¼ valueh i.
Constraint: M ¼ valueh i, the value of M on initialization (see C09ABF).

On entry, N ¼ valueh i.
Constraint: N ¼ valueh i, the value of N on initialization (see C09ABF).

IFAIL ¼ 6

Either the initialization routine has not been called first or ICOMM has been corrupted.

Either the initialization routine was called with WTRANS ¼ M or ICOMM has been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09EBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

See Section 10 in C09EAF.
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NAG Library Routine Document

C09ECF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09ECF computes the two-dimensional multi-level discrete wavelet transform (DWT). The
initialization routine C09ABF must be called first to set up the DWT options.

2 Specification

SUBROUTINE C09ECF (M, N, A, LDA, LENC, C, NWL, DWTLVM, DWTLVN, ICOMM,
IFAIL)

&

INTEGER M, N, LDA, LENC, NWL, DWTLVM(NWL), DWTLVN(NWL),
ICOMM(180), IFAIL

&

REAL (KIND=nag_wp) A(LDA,N), C(LENC)

3 Description

C09ECF computes the multi-level DWT of two-dimensional data. For a given wavelet and end
extension method, C09ECF will compute a multi-level transform of a matrix A, using a specified
number, nfwd, of levels. The number of levels specified, nfwd, must be no more than the value lmax

returned in NWLMAX by the initialization routine C09ABF for the given problem. The transform is
returned as a set of coefficients for the different levels (packed into a single array) and a representation
of the multi-level structure.

The notation used here assigns level 0 to the input matrix, A. Level 1 consists of the first set of
coefficients computed: the vertical (v1), horizontal (h1) and diagonal (d1) coefficients are stored at this
level while the approximation (a1) coefficients are used as the input to a repeat of the wavelet transform
at the next level. This process is continued until, at level nfwd, all four types of coefficients are stored.
The output array, C, stores these sets of coefficients in reverse order, starting with anfwd followed by
vnfwd ; hnfwd ; dnfwd ; vnfwd�1; hnfwd�1; dnfwd�1; . . . ; v1; h1; d1.

4 References

None.

5 Arguments

1: M – INTEGER Input

On entry: number of rows, m, of data matrix A.

Constraint: this must be the same as the value M passed to the initialization routine C09ABF.

2: N – INTEGER Input

On entry: number of columns, n, of data matrix A.

Constraint: this must be the same as the value N passed to the initialization routine C09ABF.

3: AðLDA;NÞ – REAL (KIND=nag_wp) array Input

On entry: the m by n data matrix A.
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4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which C09ECF
is called.

Constraint: LDA � M.

5: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09ECF is
called. C must be large enough to contain, nct, wavelet coefficients. The maximum value of nct is
returned in NWCT by the call to the initialization routine C09ABF and corresponds to the DWT
being continued for the maximum number of levels possible for the given data set. When the
number of levels, nfwd, is chosen to be less than the maximum, lmax , then nct is correspondingly
smaller and LENC can be reduced by noting that the vertical, horizontal and diagonal coefficients
are stored at every level and that in addition the approximation coefficients are stored for the
final level only. The number of coefficients stored at each level is given by 3� �m=2d e � �n=2d e
for MODE ¼ P in C09ABF and 3� �mþ nf � 1

� �
=2

� �
� �nþ nf � 1
� �

=2
� �

for MODE ¼ H ,
W or Z , where the input data is of dimension �m� �n at that level and nf is the filter length NF
provided by the call to C09ABF. At the final level the storage is 4=3 times this value to contain
the set of approximation coefficients.

Constraint: LENC � nct, where nct is the total number of coefficients that correspond to a
transform with NWL levels.

6: CðLENCÞ – REAL (KIND=nag_wp) array Output

On exit: the coefficients of the discrete wavelet transform. If you need to access or modify the
approximation coefficients or any specific set of detail coefficients then the use of C09EYF or
C09EZF is recommended. For completeness the following description provides details of
precisely how the coefficient are stored in C but this information should only be required in rare
cases.

Let q ið Þ denote the number of coefficients (of each type) at level i, for i ¼ 1; 2; . . . ; nfwd, such
that q ið Þ ¼ DWTLVMðnfwd � iþ 1Þ � DWTLVNðnfwd � iþ 1Þ. Then, letting k1 ¼ q nfwdð Þ and
kjþ1 ¼ kj þ q nfwd � j=3d e þ 1ð Þ, for j ¼ 1; 2; . . . ; 3nfwd, the coefficients are stored in C as
follows:

CðiÞ, for i ¼ 1; 2; . . . ; k1
Contains the level nfwd approximation coefficients, anfwd .

CðiÞ, for i ¼ kj þ 1; . . . ; kjþ1
Contains the level nfwd � j=3d e þ 1 vertical, horizontal and diagonal coefficients. These
are:

vertical coefficients if j mod 3 ¼ 1;

horizontal coefficients if j mod 3 ¼ 2;

diagonal coefficients if j mod 3 ¼ 0,

for j ¼ 1; . . . ; 3nfwd.

7: NWL – INTEGER Input

On entry: the number of levels, nfwd, in the multi-level resolution to be performed.

Constraint: 1 � NWL � lmax , where lmax is the value returned in NWLMAX (the maximum
number of levels) by the call to the initialization routine C09ABF.

8: DWTLVMðNWLÞ – INTEGER array Output

On exit: the number of coefficients in the first dimension for each coefficient type at each level.
DWTLVMðiÞ contains the number of coefficients in the first dimension (for each coefficient type
computed) at the (nfwd � i þ 1)th level of resolution, for i ¼ 1; 2; . . . ; nfwd. Thus for the first
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nfwd � 1 levels of resolution, DWTLVMðnfwd � i þ 1Þ is the size of the first dimension of the
matrices of vertical, horizontal and diagonal coefficients computed at this level; for the final level
of resolution, DWTLVMð1Þ is the size of the first dimension of the matrices of approximation,
vertical, horizontal and diagonal coefficients computed.

9: DWTLVNðNWLÞ – INTEGER array Output

On exit: the number of coefficients in the second dimension for each coefficient type at each
level. DWTLVNðiÞ contains the number of coefficients in the second dimension (for each
coefficient type computed) at the (nfwd � i þ 1)th level of resolution, for i ¼ 1; 2; . . . ; nfwd. Thus
for the first nfwd � 1 levels of resolution, DWTLVNðnfwd � i þ 1Þ is the size of the second
dimension of the matrices of vertical, horizontal and diagonal coefficients computed at this level;
for the final level of resolution, DWTLVNð1Þ is the size of the second dimension of the matrices
of approximation, vertical, horizontal and diagonal coefficients computed.

10: ICOMMð180Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ABF.

On exit: contains additional information on the computed transform.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M ¼ valueh i, the value of M on initialization (see C09ABF).

On entry, N ¼ valueh i.
Constraint: N ¼ valueh i, the value of N on initialization (see C09ABF).

IFAIL ¼ 2

On entry, LDA ¼ valueh i and M ¼ valueh i.
Constraint: LDA � M.

IFAIL ¼ 3

On entry, LENC ¼ valueh i.
Constraint: LENC � valueh i, the total number of coefficents to be generated.
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IFAIL ¼ 5

On entry, NWL ¼ valueh i.
Constraint: NWL � 1.

On entry, NWL ¼ valueh i and NWLMAX ¼ valueh i in C09ABF.
Constraint: NWL � NWLMAX in C09ABF.

IFAIL ¼ 7

Either the initialization routine has not been called first or ICOMM has been corrupted.

Either the initialization routine was called with WTRANS ¼ S or ICOMM has been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09ECF is not threaded in any implementation.

9 Further Comments

The wavelet coefficients at each level can be extracted from the output array C using the information
contained in DWTLVM and DWTLVN on exit (see the descriptions of C, DWTLVM and DWTLVN in
Section 5). For example, given an input data set, A, denoising can be carried out by applying a
thresholding operation to the detail (vertical, horizontal and diagonal) coefficients at every level. The
elements Cðk1 þ 1Þ to Cðknfwdþ1Þ, as described in Section 5, contain the detail coefficients, ĉij, for
i ¼ nfwd; nfwd � 1; . . . ; 1 and j ¼ 1; 2; . . . ; 3q ið Þ, where q ið Þ is the number of each type of coefficient at
level i and ĉij ¼ cij þ ��ij and ��ij is the transformed noise term. If some threshold parameter � is
chosen, a simple hard thresholding rule can be applied as

�cij ¼ 0; if ĉij
		 		 � �

ĉij; if ĉij
		 		 > �;



taking �cij to be an approximation to the required detail coefficient without noise, cij. The resulting
coefficients can then be used as input to C09EDF in order to reconstruct the denoised signal. See
Section 10 in C09EZF for a simple example of denoising.

See the references given in the introduction to this chapter for a more complete account of wavelet
denoising and other applications.
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10 Example

This example performs a multi-level resolution transform of a dataset using the Daubechies wavelet
(see WAVNAM ¼ DB2 in C09ABF) using half-point symmetric end extensions, the maximum
possible number of levels of resolution, where the number of coefficients in each level and the
coefficients themselves are not changed. The original dataset is then reconstructed using C09EDF.

10.1 Program Text

Program c09ecfe

! C09ECF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09abf, c09ecf, c09edf, c09eyf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, i1, ifail, ilevel, itype_coeffs, &

j1, lda, ldb, ldcoefs, lenc, m, n, &
nf, nwcn, nwct, nwl, nwlinv, nwlmax

Character (10) :: mode, wavnam, wtrans
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:), coefs(:,:)
Integer, Allocatable :: dwtlvm(:), dwtlvn(:)
Integer :: icomm(180)

! .. Executable Statements ..
Write (nout,*) ’C09ECF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read problem parameters
Read (nin,*) m, n
Read (nin,*) wavnam, mode
lda = m
ldb = m
Allocate (a(lda,n),b(ldb,n))

Write (nout,99999) wavnam, mode, m, n

! Read data array and write it out

Do i = 1, m
Read (nin,*) a(i,1:n)

End Do

Write (nout,*) ’ Input Data A :’
Do i = 1, m

Write (nout,99998) a(i,1:n)
End Do

! Query wavelet filter dimensions
! For Multi-Resolution Analysis, decomposition, wtrans = ’M’

wtrans = ’Multilevel’
ifail = 0
Call c09abf(wavnam,wtrans,mode,m,n,nwlmax,nf,nwct,nwcn,icomm,ifail)

lenc = nwct
Allocate (c(lenc),dwtlvm(nwlmax),dwtlvn(nwlmax))

nwl = nwlmax

! Perform Discrete Wavelet transform
ifail = 0
Call c09ecf(m,n,a,lda,lenc,c,nwl,dwtlvm,dwtlvn,icomm,ifail)
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Write (nout,99997) nwl
Write (nout,99996)
Write (nout,99995) dwtlvm(1:nwl)
Write (nout,99994)
Write (nout,99995) dwtlvn(1:nwl)

! Allocate an array in which to extract coefficients
ldcoefs = dwtlvm(nwl)
Allocate (coefs(ldcoefs,dwtlvn(nwl)))

! Extract each set of coefficients, working from the deepest level
Write (nout,99993)
Do ilevel = nwl, 1, -1

Write (nout,99992) ilevel, dwtlvm(nwl-ilevel+1), dwtlvn(nwl-ilevel+1)

Do itype_coeffs = 0, 3
Select Case (itype_coeffs)
Case (0)

If (ilevel==nwl) Then
Write (nout,99991) ’Approximation coefficients ’

End If
Case (1)

Write (nout,99991) ’Vertical coefficients ’
Case (2)

Write (nout,99991) ’Horizontal coefficients ’
Case (3)

Write (nout,99991) ’Diagonal coefficients ’
End Select
If (itype_coeffs>0 .Or. ilevel==nwl) Then

! Call the 2D extraction routine c09eaf
Call c09eyf(ilevel,itype_coeffs,lenc,c,coefs,ldcoefs,icomm,ifail)
Do i1 = 1, dwtlvm(nwl-ilevel+1)

Write (nout,99989)(coefs(i1,j1),j1=1,dwtlvn(nwl-ilevel+1))
End Do

End If
End Do

End Do

nwlinv = nwl

! Reconstruct original data
ifail = 0
Call c09edf(nwlinv,lenc,c,m,n,b,ldb,icomm,ifail)

Write (nout,99990)
Do i = 1, m

Write (nout,99998) b(i,1:n)
End Do

99999 Format (1X,’ MLDWT :: Wavelet : ’,A,/,1X,’ End mode : ’,A,/, &
1X,’ M : ’,I4,/,1X,’ N : ’,I4,/)

99998 Format (8(F8.4,1X),:)
99997 Format (/,1X,’ Number of Levels : ’,I10)
99996 Format (1X,’ Number of coefficients in 1st dimension for each level :’)
99995 Format (8(I8,1X),:)
99994 Format (1X,’ Number of coefficients in 2nd dimension for each level :’)
99993 Format (/,1X,’ Wavelet coefficients C : ’)
99992 Format (1X,55(’-’),/,1X,’ Level : ’,I10,’; output is ’,I10,’ by ’,I10,/, &

1X,55(’-’))
99991 Format (1X,A28,’: ’)
99990 Format (/,1X,’ Reconstruction B : ’)
99989 Format (4X,5(F8.4,1X),:)

End Program c09ecfe
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10.2 Program Data

C09ECF Example Program Data
7, 8 : m, n
DB2 Half : wavnam, mode
3.0000 7.0000 9.0000 1.0000 9.0000 9.0000 1.0000 0.0000
9.0000 9.0000 3.0000 3.0000 4.0000 1.0000 2.0000 4.0000
7.0000 8.0000 1.0000 3.0000 8.0000 9.0000 3.0000 3.0000
1.0000 1.0000 1.0000 1.0000 2.0000 8.0000 4.0000 0.0000
1.0000 2.0000 4.0000 6.0000 5.0000 6.0000 5.0000 4.0000
2.0000 2.0000 5.0000 7.0000 3.0000 6.0000 6.0000 8.0000
7.0000 9.0000 3.0000 1.0000 3.0000 4.0000 7.0000 2.0000

10.3 Program Results

C09ECF Example Program Results

MLDWT :: Wavelet : DB2
End mode : Half
M : 7
N : 8

Input Data A :
3.0000 7.0000 9.0000 1.0000 9.0000 9.0000 1.0000 0.0000
9.0000 9.0000 3.0000 3.0000 4.0000 1.0000 2.0000 4.0000
7.0000 8.0000 1.0000 3.0000 8.0000 9.0000 3.0000 3.0000
1.0000 1.0000 1.0000 1.0000 2.0000 8.0000 4.0000 0.0000
1.0000 2.0000 4.0000 6.0000 5.0000 6.0000 5.0000 4.0000
2.0000 2.0000 5.0000 7.0000 3.0000 6.0000 6.0000 8.0000
7.0000 9.0000 3.0000 1.0000 3.0000 4.0000 7.0000 2.0000

Number of Levels : 2
Number of coefficients in 1st dimension for each level :

4 5
Number of coefficients in 2nd dimension for each level :

4 5

Wavelet coefficients C :
-------------------------------------------------------
Level : 2; output is 4 by 4

-------------------------------------------------------
Approximation coefficients :

24.9724 25.6017 20.8900 7.9280
27.6100 27.0955 18.7941 8.2804
11.2663 11.0273 19.6410 18.6651
27.6050 26.6443 14.5913 18.0835

Vertical coefficients :
-2.5552 -6.1078 -4.0629 8.2136
-1.6061 -7.2355 -3.3633 7.6075
-0.2225 -1.6283 -0.5301 3.7415
-0.9052 -6.5810 0.8023 1.8591

Horizontal coefficients :
-3.8069 -3.0730 2.1121 -1.8525
-2.7548 -4.5949 -0.8321 -4.8155
4.8398 4.5104 -1.5308 -0.6456

-6.4332 -4.5381 2.4753 6.8224
Diagonal coefficients :

-0.8978 -0.2326 -1.2515 2.6346
0.5708 -4.9783 -1.5309 6.4569

-0.1854 -1.8430 0.2426 -0.0754
0.0345 7.1864 1.5938 -5.9745

-------------------------------------------------------
Level : 1; output is 5 by 5

-------------------------------------------------------
Vertical coefficients :

-2.5981 4.6471 2.5392 -2.8415 -0.2165
-1.3203 -0.0592 3.0490 -2.5837 1.0458
-0.4330 -1.6405 -1.1752 0.2533 -2.3448
-0.4118 -0.0682 -2.4608 -0.0167 0.4387
-1.5368 -1.1450 -0.5547 4.5936 -3.6863

C09 – Wavelet Transforms C09ECF

Mark 26 C09ECF.7



Horizontal coefficients :
-4.3301 -1.8170 0.8023 5.7566 -2.8146
4.3089 3.6908 0.8349 3.4653 1.7108

-1.5311 -1.0736 1.5257 0.0212 -0.9608
2.8873 3.1148 -1.9118 -0.4007 -1.5302

-2.2377 -2.7611 2.4453 -0.3705 4.3448
Diagonal coefficients :

-1.5000 4.4151 -0.0057 -0.8236 -1.1250
-0.1953 -2.9530 1.8840 -1.7635 0.9877
-0.4330 0.2745 1.1450 0.4632 -0.5547
-0.3538 -0.3215 0.6462 1.3705 -1.2778
0.7288 0.4587 -1.8873 -1.8828 2.4028

Reconstruction B :
3.0000 7.0000 9.0000 1.0000 9.0000 9.0000 1.0000 0.0000
9.0000 9.0000 3.0000 3.0000 4.0000 1.0000 2.0000 4.0000
7.0000 8.0000 1.0000 3.0000 8.0000 9.0000 3.0000 3.0000
1.0000 1.0000 1.0000 1.0000 2.0000 8.0000 4.0000 0.0000
1.0000 2.0000 4.0000 6.0000 5.0000 6.0000 5.0000 4.0000
2.0000 2.0000 5.0000 7.0000 3.0000 6.0000 6.0000 8.0000
7.0000 9.0000 3.0000 1.0000 3.0000 4.0000 7.0000 2.0000
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NAG Library Routine Document

C09EDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09EDF computes the inverse two-dimensional multi-level discrete wavelet transform (DWT). This
routine reconstructs data from (possibly filtered or otherwise manipulated) wavelet transform
coefficients calculated by C09ECF from an original input matrix. The initialization routine C09ABF
must be called first to set up the DWT options.

2 Specification

SUBROUTINE C09EDF (NWLINV, LENC, C, M, N, B, LDB, ICOMM, IFAIL)

INTEGER NWLINV, LENC, M, N, LDB, ICOMM(180), IFAIL
REAL (KIND=nag_wp) C(LENC), B(LDB,N)

3 Description

C09EDF performs the inverse operation of C09ECF. That is, given a set of wavelet coefficients,
computed up to level nfwd by C09ECF using a DWT as set up by the initialization routine C09ABF, on
a real matrix, A, C09EDF will reconstruct A. The reconstructed matrix is referred to as B in the
following since it will not be identical to A when the DWT coefficients have been filtered or otherwise
manipulated prior to reconstruction. If the original input matrix is level 0, then it is possible to
terminate reconstruction at a higher level by specifying fewer than the number of levels used in the call
to C09ECF. This results in a partial reconstruction.

4 References

None.

5 Arguments

1: NWLINV – INTEGER Input

On entry: the number of levels to be used in the inverse multi-level transform. The number of
levels must be less than or equal to nfwd, which has the value of argument NWL as used in the
computation of the wavelet coefficients using C09ECF. The data will be reconstructed to level
NWL� NWLINVð Þ, where level 0 is the original input dataset provided to C09ECF.

Constraint: 1 � NWLINV � NWL, where NWL is the value used in a preceding call to C09ECF.

2: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09EDF is
called.

Constraint: LENC � nct, where nct is the total number of coefficients that correspond to a
transform with NWLINV levels and is unchanged from the preceding call to C09ECF.

3: CðLENCÞ – REAL (KIND=nag_wp) array Input

On entry: the coefficients of a multi-level wavelet transform of the original matrix, A, which may
have been filtered or otherwise manipulated.
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Let q ið Þ be the number of coefficients (of each type) at level i, for i ¼ nfwd; nfwd � 1; . . . ; 1. Then,
setting k1 ¼ q nfwdð Þ and kjþ1 ¼ kj þ q nfwd � j=3d e þ 1ð Þ, for j ¼ 1; 2; . . . ; 3nfwd, the coefficients
are stored in C as follows:

CðiÞ, for i ¼ 1; 2; . . . ; k1
Contains the level nfwd approximation coefficients, anfwd .

CðiÞ, for i ¼ kj þ 1; . . . ; kjþ1
Contains the level nfwd � j=3d e þ 1 vertical, horizontal and diagonal coefficients. These
are:

vertical coefficients if j mod 3 ¼ 1;

horizontal coefficients if j mod 3 ¼ 2;

diagonal coefficients if j mod 3 ¼ 0,

for j ¼ 1; . . . ; 3nfwd.

Note that the coefficients in C may be extracted according to level and type into two-dimensional
arrays using C09EYF, and inserted using C09EZF.

4: M – INTEGER Input

On entry: the number of elements, m, in the first dimension of the reconstructed matrix B. For a
full reconstruction of NWL levels, where NWL is as supplied to C09ECF, this must be the same
as argument M used in the call to C09ECF. For a partial reconstruction of NWLINV < NWL
levels, this must be equal to DWTLVMðNWLINVþ 1Þ, as returned from C09ECF.

5: N – INTEGER Input

On entry: the number of elements, n, in the second dimension of the reconstructed matrix B. For
a full reconstruction of NWL levels, where NWL is as supplied to C09FCF, this must be the
same as argument N used in the call to C09ECF. For a partial reconstruction of
NWLINV < NWL, this must be equal to DWTLVNðNWLINVþ 1Þ, as returned from C09ECF.

6: BðLDB;NÞ – REAL (KIND=nag_wp) array Output

On exit: the m by n reconstructed matrix, B, based on the input multi-level wavelet transform
coefficients and the transform options supplied to the initialization routine C09ABF.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which C09EDF
is called.

Constraint: LDB � M.

8: ICOMMð180Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ABF.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NWLINV ¼ valueh i.
Constraint: NWLINV � 1.

On entry, NWLINV ¼ valueh i and nfwd ¼ valueh i.
Constraint: NWLINV � nfwd.

IFAIL ¼ 2

On entry, LDB ¼ valueh i and M ¼ valueh i.
Constraint: LDB � M.

IFAIL ¼ 3

On entry, LENC ¼ valueh i.
Constraint: LENC � valueh i, the total number of coefficients generated by the preceding call to
C09ECF.

IFAIL ¼ 4

On entry, M ¼ valueh i.
Constraint: M � valueh i, the number of coefficients in the first dimension at the required level of
reconstruction.

On entry, N ¼ valueh i.
Constraint: N � valueh i, the number of coefficients in the second dimension at the required level
of reconstruction.

IFAIL ¼ 6

Either the initialization routine has not been called first or ICOMM has been corrupted.

Either the initialization routine was called with WTRANS ¼ S or ICOMM has been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.
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8 Parallelism and Performance

C09EDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in C09ECF.
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NAG Library Routine Document

C09EYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09EYF extracts a selected set of discrete wavelet transform (DWT) coefficients from the full set of
coefficients stored in compact form, as computed by C09ECF (two-dimensional DWT).

2 Specification

SUBROUTINE C09EYF (ILEV, CINDEX, LENC, C, D, LDD, ICOMM, IFAIL)

INTEGER ILEV, CINDEX, LENC, LDD, ICOMM(180), IFAIL
REAL (KIND=nag_wp) C(LENC), D(LDD,*)

3 Description

C09EYF is intended to be used after a call to C09ECF (two-dimensional DWT), which in turn should
be preceded by a call to C09ABF (two-dimensional wavelet filter initialization). Given an initial two-
dimensional data set A, a prior call to C09ECF computes the approximation coefficients (at the highest
requested level) and three sets of detail coeficients at all levels and stores these in compact form in a
one-dimensional array C. C09EYF can then extract either the approximation coefficients or one of the
sets of detail coefficients at one of the levels into a matrix D. The dimensions of D depend on the level
extracted and are available from the arrays DWTLVM and DWTLVN as returned by C09ECF which
contain the first and second dimensions respectively. See Section 2.1 in the C09 Chapter Introduction
for a discussion of the two-dimensional DWT.

4 References

None.

5 Arguments

Note: the following notation is used in this section:

ncm is the number of wavelet coefficients in the first dimension, which, at level ILEV, is equal to
DWTLVMðNWL� ILEVþ 1Þ as returned by a call to C09ECF transforming NWL levels.

ncn is the number of wavelet coefficients in the second dimension, which, at level ILEV, is equal
to DWTLVNðNWL� ILEVþ 1Þ as returned by a call to C09ECF transforming NWL levels..

1: ILEV – INTEGER Input

On entry: the level at which coefficients are to be extracted.

Constraints:

1 � ILEV � NWL, where NWL is as used in a preceding call to C09ECF;
if CINDEX ¼ 0, ILEV ¼ NWL.
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2: CINDEX – INTEGER Input

On entry: identifies which coefficients to extract. The coefficients are identified as follows:

CINDEX ¼ 0
The approximation coefficients, produced by application of the low pass filter over
columns and rows of the original matrix (LL). The approximation coefficients are available
only for ILEV ¼ NWL, where NWL is the value used in a preceding call to C09ECF.

CINDEX ¼ 1
The vertical detail coefficients produced by applying the low pass filter over columns of
the original matrix and the high pass filter over rows (LH).

CINDEX ¼ 2
The horizontal detail coefficients produced by applying the high pass filter over columns of
the original matrix and the low pass filter over rows (HL).

CINDEX ¼ 3
The diagonal detail coefficients produced by applying the high pass filter over columns and
rows of the original matrix (HH).

Constraint: 0 � CINDEX � 3 when ILEV ¼ NWL as used in C09ECF, otherwise
1 � CINDEX � 3.

3: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09EYF is
called.

Constraint: LENC must be unchanged from the value used in the preceding call to C09ECF..

4: CðLENCÞ – REAL (KIND=nag_wp) array Input

On entry: DWT coefficients, as computed by a preceding call to C09ECF.

5: DðLDD; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array D must be at least ncn.

On exit: the requested coefficients.

If ILEV ¼ NWL (as used in C09ECF) and CINDEX ¼ 0, the ncm by ncn approximation
coefficients aij are stored in Dði; jÞ, for i ¼ 1; 2; . . . ; ncm and j ¼ 1; 2; . . . ; ncn .

Otherwise the ncm by ncn level ILEV detail coefficients (of type specified by CINDEX) dij are
stored in Dði; jÞ, for i ¼ 1; 2; . . . ; ncm and j ¼ 1; 2; . . . ; ncn.

6: LDD – INTEGER Input

On entry: the first dimension of the array D as declared in the (sub)program from which C09EYF
is called.

Constraint: LDD � ncm.

7: ICOMMð180Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ABF.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ILEV ¼ valueh i.
Constraint: ILEV � 1.

On entry, ILEV ¼ valueh i and NWL ¼ valueh i.
Constraint: ILEV � NWL, where NWL is the number of levels used in the call to C09ECF.

IFAIL ¼ 2

On entry, CINDEX ¼ valueh i.
Constraint: CINDEX � 3.

On entry, CINDEX ¼ valueh i.
Constraint: CINDEX � 0.

IFAIL ¼ 3

On entry, LENC ¼ valueh i and nct ¼ valueh i.
Constraint: LENC � nct, where nct is the number of DWT coefficients computed in a previous
call to C09ECF.

IFAIL ¼ 4

On entry, LDD ¼ valueh i and ncm ¼ valueh i.
Constraint: LDD � ncm, where ncm is the number of DWT coefficients in the first dimension at
the selected level ILEV.

IFAIL ¼ 5

On entry, ILEV ¼ valueh i and NWL ¼ valueh i, but CINDEX ¼ 0.
Constraint: CINDEX > 0 when ILEV < NWL in the preceding call to C09ECF.

IFAIL ¼ 6

Either the initialization routine has not been called first or ICOMM has been corrupted.

Either the initialization routine was called with WTRANS ¼ S or ICOMM has been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

C09EYF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in C09ABF, C09ECF and C09EZF.
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NAG Library Routine Document

C09EZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09EZF inserts a selected set of two-dimensional discrete wavelet transform (DWT) coefficients into
the full set of coefficients stored in compact form, which may be later used as input to the multi-level
reconstruction routine C09EDF.

2 Specification

SUBROUTINE C09EZF (ILEV, CINDEX, LENC, C, D, LDD, ICOMM, IFAIL)

INTEGER ILEV, CINDEX, LENC, LDD, ICOMM(180), IFAIL
REAL (KIND=nag_wp) C(LENC), D(LDD,*)

3 Description

C09EZF inserts a selected set of two-dimensional DWT coefficients into the full set of coefficients
stored in compact form in a one-dimensional array C. It is required that C09EZF is preceded by a call
to the initialization routine C09ABF and the forward multi-level transform routine C09ECF.

Given an initial two-dimensional data set A, a prior call to C09ECF computes the approximation
coefficients (at the highest requested level) and three sets of detail coeficients at all levels and stores
these in compact form in a one-dimensional array C. C09EYF can then extract either the approximation
coefficients or one of the sets of detail coefficients at one of the levels into a two-dimensional array, D.
Following some calculation on this set of coefficients (for example, denoising), the updated coefficients
in D are inserted back into the full set C using C09EZF. Several extractions and insertions may be
performed at different levels. C09EDF can then be used to reconstruct a manipulated data set ~A. The
dimensions of D depend on the level extracted and are available from the arrays DWTLVM and
DWTLVN as returned by C09ECF which contain the first and second dimensions respectively. See
Section 2.1 in the C09 Chapter Introduction for a discussion of the multi-level two-dimensional DWT.

4 References

None.

5 Arguments

Note: the following notation is used in this section:

ncm is the number of wavelet coefficients in the first dimension, which, at level ILEV, is equal to
DWTLVMðNWL� ILEVþ 1Þ as returned by a call to C09ECF transforming NWL levels.

ncn is the number of wavelet coefficients in the second dimension, which, at level ILEV, is equal
to DWTLVNðNWL� ILEVþ 1Þ as returned by a call to C09ECF transforming NWL levels.

1: ILEV – INTEGER Input

On entry: the level at which coefficients are to be inserted.

Constraints:

1 � ILEV � NWL, where NWL is as used in a preceding call to C09ECF;
if CINDEX ¼ 0, ILEV ¼ NWL.

C09 – Wavelet Transforms C09EZF

Mark 26 C09EZF.1



2: CINDEX – INTEGER Input

On entry: identifies which coefficients to insert. The coefficients are identified as follows:

CINDEX ¼ 0
The approximation coefficients, produced by application of the low pass filter over
columns and rows of the original matrix (LL). The approximation coefficients are present
only for ILEV ¼ NWL, where NWL is the value used in a preceding call to C09ECF.

CINDEX ¼ 1
The vertical detail coefficients produced by applying the low pass filter over columns of
the original matrix and the high pass filter over rows (LH).

CINDEX ¼ 2
The horizontal detail coefficients produced by applying the high pass filter over columns of
the original matrix and the low pass filter over rows (HL).

CINDEX ¼ 3
The diagonal detail coefficients produced by applying the high pass filter over columns and
rows of the original matrix (HH).

Constraint: 0 � CINDEX � 3 when ILEV ¼ NWL as used in C09ECF, otherwise
1 � CINDEX � 3.

3: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09EZF is
called.

Constraint: LENC must be unchanged from the value used in the preceding call to C09ECF..

4: CðLENCÞ – REAL (KIND=nag_wp) array Input/Output

On entry: contains the DWT coefficients inserted by previous calls to C09EZF, or computed by a
previous call to C09ECF.

On exit: contains the same DWT coefficients provided on entry except for those identified by
ILEV and CINDEX, which are updated with the values supplied in D, inserted into the correct
locations as expected by the reconstruction routine C09EDF.

5: DðLDD; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array D must be at least ncn.

On entry: the coefficients to be inserted.

If ILEV ¼ NWL (as used in C09ECF) and CINDEX ¼ 0, the ncm by ncn manipulated
approximation coefficients aij must be stored in Dði; jÞ, for i ¼ 1; 2; . . . ; ncm and i ¼ 1; 2; . . . ; ncn.

Otherwise the ncm by ncn manipulated level ILEV detail coefficients (of type specified by
CINDEX) dij must be stored in Dði; jÞ, for i ¼ 1; 2; . . . ; ncm and j ¼ 1; 2; . . . ; ncn.

6: LDD – INTEGER Input

On entry: the first dimension of the array D as declared in the (sub)program from which C09EZF
is called.

Constraint: LDD � ncm.

7: ICOMMð180Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ABF.
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8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ILEV ¼ valueh i.
Constraint: ILEV � 1.

On entry, ILEV ¼ valueh i and NWL ¼ valueh i.
Constraint: ILEV � NWL, where NWL is the number of levels used in the call to C09ECF.

IFAIL ¼ 2

On entry, CINDEX ¼ valueh i.
Constraint: CINDEX � 3.

On entry, CINDEX ¼ valueh i.
Constraint: CINDEX � 0.

IFAIL ¼ 3

On entry, LENC ¼ valueh i and nct ¼ valueh i.
Constraint: LENC � nct, where nct is the number of DWT coefficients computed in a previous
call to C09ECF.

IFAIL ¼ 4

On entry, LDD ¼ valueh i and ncm ¼ valueh i.
Constraint: LDD � ncm, where ncm is the number of DWT coefficients in the first dimension at
the selected level ILEV.

IFAIL ¼ 5

On entry, ILEV ¼ valueh i and NWL ¼ valueh i, but CINDEX ¼ 0.
Constraint: CINDEX > 0 when ILEV < NWL in the preceding call to C09ECF.

IFAIL ¼ 6

Either the initialization routine has not been called first or ICOMM has been corrupted.

Either the initialization routine was called with WTRANS ¼ S or ICOMM has been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

C09EZF is not threaded in any implementation.

9 Further Comments

None.

10 Example

The following example demonstrates using the coefficient extraction and insertion routines in order to
apply denoising using a thresholding operation. The original input data, which is horizontally striped,
has artificial noise introduced to it, taken from a normal random number distribution. Reconstruction
then takes place on both the noisy data and denoised data. The Mean Square Errors (MSE) of the two
reconstructions are printed along with the reconstruction of the denoised data. The MSE of the denoised
reconstruction is less than that of the noisy reconstruction.

10.1 Program Text

Program c09ezfe

! C09EZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09abf, c09ecf, c09edf, c09eyf, c09ezf, dnrm2, &

nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: mse, thresh
Integer :: cindex, denoised, i, ifail, ilev, j, &

lda, ldb, ldd, lenc, m, n, nf, nwcn, &
nwct, nwl

Character (10) :: mode, wavnam, wtrans
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), an(:,:), b(:,:), c(:), &
d(:,:), e(:,:)

Integer, Allocatable :: dwtlvm(:), dwtlvn(:)
Integer :: icomm(180)

! .. Intrinsic Procedures ..
Intrinsic :: abs, log, real, sqrt

! .. Executable Statements ..
Write (nout,*) ’C09EZF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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! Read problem parameters
Read (nin,*) m, n
Read (nin,*) wavnam, mode
Write (nout,99999) wavnam, mode, m, n

! Allocate arrays to hold the original data, A, original data plus noise,
! AN, reconstruction using denoised coefficients, B, and randomly
! generated noise, X.

lda = m
ldb = m
Allocate (a(lda,n),an(lda,n),b(ldb,n),e(m,n))

! Read in the original data
Do i = 1, m

Read (nin,*) a(i,1:n)
End Do

! Output the original data
Write (nout,99997)
Do i = 1, m

Write (nout,99998) a(i,1:n)
End Do

! Fill the array AN with the original data in A plus some noise
! and return a VisuShrink denoising threshold, thresh.

Call create_noise(a,an,lda,m,n,thresh)

! Output the noisy data
Write (nout,99996)
Do i = 1, m

Write (nout,99998) an(i,1:n)
End Do

! Query wavelet filter dimensions
! For Multi-Resolution Analysis, decomposition, wtrans = ’M’

wtrans = ’Multilevel’
ifail = 0
Call c09abf(wavnam,wtrans,mode,m,n,nwl,nf,nwct,nwcn,icomm,ifail)

! Allocate arrays to hold the coefficients, C, and the dimensions
! of the coefficients at each level, DWTLVM, DWTLVN

lenc = nwct
Allocate (c(lenc),dwtlvm(nwl),dwtlvn(nwl))

! Perform a forwards multi-level transform on the noisy data
ifail = 0
Call c09ecf(m,n,an,lda,lenc,c,nwl,dwtlvm,dwtlvn,icomm,ifail)

! Reconstruct without thresholding of detail coefficients
ifail = 0
Call c09edf(nwl,lenc,c,m,n,b,ldb,icomm,ifail)

! Calculate the Mean Square Error of the noisy reconstruction
e(:,:) = a(:,:) - b(:,:)
mse = dnrm2(m*n,e,1)
mse = mse**2
mse = mse/real(m*n,kind=nag_wp)
Write (nout,99995) mse

! Now perform the denoising by extracting each of the detail
! coefficients at each level and applying hard thresholding

! Allocate a 2D array to hold the detail coefficients
ldd = dwtlvm(nwl)
Allocate (d(ldd,dwtlvn(nwl)))

denoised = 0
! For each level

Do ilev = nwl, 1, -1

! Select detail coefficients

C09 – Wavelet Transforms C09EZF

Mark 26 C09EZF.5



Do cindex = 1, 3

! Extract coefficients into the 2D array D
ifail = 0
Call c09eyf(ilev,cindex,lenc,c,d,ldd,icomm,ifail)

! Perform the hard thresholding operation
Do j = 1, dwtlvn(nwl-ilev+1)

Do i = 1, dwtlvm(nwl-ilev+1)
If (abs(d(i,j))<thresh) Then

d(i,j) = 0.0_nag_wp
denoised = denoised + 1

End If
End Do

End Do

! Insert the denoised coefficients back into C
ifail = 0
Call c09ezf(ilev,cindex,lenc,c,d,ldd,icomm,ifail)

End Do

End Do

! Output the number of coefficients that were set to zero
Write (nout,99994) denoised, nwct - dwtlvm(1)*dwtlvn(1)

! Reconstruct original data following thresholding of detail coefficients
ifail = 0
Call c09edf(nwl,lenc,c,m,n,b,ldb,icomm,ifail)

! Calculate the Mean Square Error of the denoised reconstruction
e(:,:) = a(:,:) - b(:,:)
mse = dnrm2(m*n,e,1)
mse = mse**2
mse = mse/real(m*n,kind=nag_wp)
Write (nout,99993) mse

! Output the denoised reconstruction
Write (nout,99992)
Do i = 1, m

Write (nout,99998) b(i,1:n)
End Do

99999 Format (1X,’ MLDWT :: Wavelet : ’,A,/,1X,’ End mode : ’,A,/, &
1X,’ M : ’,I4,/,1X,’ N : ’,I4)

99998 Format (8(F8.4,1X),:)
99997 Format (/,1X,’ Original data A : ’)
99996 Format (/,1X,’ Original data plus noise AN : ’)
99995 Format (/,1X,’ Without denoising Mean Square Error is ’,F9.6)
99994 Format (/,1X,’ Number of coefficients denoised is ’,I3,’ out of ’,I3)
99993 Format (/,1X,’ With denoising Mean Square Error is ’,F9.6)
99992 Format (/,1X,’ Reconstruction of denoised input D : ’)

Contains

! Subroutine fills the output array AN with the data in A
! plus some noise taken from a normal distribution, and
! returns the VisuShrink denoising threshold, thresh.

Subroutine create_noise(a,an,lda,m,n,thresh)

! .. Use Statements ..
Use nag_library, Only: g05kff, g05skf

! .. Parameters ..
Integer, Parameter :: lseed = 1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: thresh
Integer, Intent (In) :: lda, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: a(lda,n)
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Real (Kind=nag_wp), Intent (Out) :: an(lda,n)
! .. Local Scalars ..

Real (Kind=nag_wp) :: var, xmu
Integer :: genid, i, ifail, lstate, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..

! Set up call to g05skf in order to create some random noise from
! a normal distribution to add to the original data.
! Initial call to RNG initializer to get size of STATE array

seed(1) = 642521
genid = 3
subid = 0
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Set the distribution parameters for the random noise.
xmu = 0.0_nag_wp
var = 0.1E-3_nag_wp

Allocate (x(m,n))

! Generate the noise variates
ifail = 0
Do i = 1, n

Call g05skf(m,xmu,var,state,x(1,i),ifail)
End Do

! Add the noise to the original input and save in AN
an(:,:) = a(:,:) + x(:,:)

! Calculate the threshold based on VisuShrink denoising
thresh = sqrt(var)*sqrt(2._nag_wp*log(real(m*n,kind=nag_wp)))

End Subroutine create_noise

End Program c09ezfe

10.2 Program Data

C09EZF Example Program Data
7, 6 : m, n
DB6 Period : wavnam, mode

0.01 0.01 0.01 0.01 0.01 0.01
1.00 1.00 1.00 1.00 1.00 1.00
0.01 0.01 0.01 0.01 0.01 0.01
1.00 1.00 1.00 1.00 1.00 1.00
0.01 0.01 0.01 0.01 0.01 0.01
1.00 1.00 1.00 1.00 1.00 1.00
0.01 0.01 0.01 0.01 0.01 0.01
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10.3 Program Results

C09EZF Example Program Results

MLDWT :: Wavelet : DB6
End mode : Period
M : 7
N : 6

Original data A :
0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

Original data plus noise AN :
0.0135 0.0170 -0.0049 -0.0009 0.0002 0.0123
1.0015 0.9896 0.9983 1.0044 1.0097 0.9847

-0.0017 0.0107 0.0194 -0.0084 0.0114 -0.0006
0.9899 1.0038 1.0005 0.9921 0.9923 0.9982

-0.0093 0.0149 0.0094 0.0160 0.0058 0.0257
0.9842 1.0278 0.9991 0.9956 1.0113 0.9911
0.0139 -0.0011 0.0180 0.0187 0.0106 0.0118

Without denoising Mean Square Error is 0.000098

Number of coefficients denoised is 32 out of 48

With denoising Mean Square Error is 0.000018

Reconstruction of denoised input D :
0.0127 0.0094 0.0030 0.0007 0.0009 0.0065
0.9913 0.9940 1.0000 1.0027 1.0032 0.9976
0.0084 0.0086 0.0072 0.0048 0.0028 0.0050
1.0009 0.9998 0.9966 0.9942 0.9930 0.9965
0.0061 0.0070 0.0103 0.0134 0.0154 0.0114
1.0034 1.0036 1.0028 1.0011 0.9996 1.0011
0.0135 0.0113 0.0093 0.0114 0.0147 0.0148
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NAG Library Routine Document

C09FAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09FAF computes the three-dimensional discrete wavelet transform (DWT) at a single level. The
initialization routine C09ACF must be called first to set up the DWT options.

2 Specification

SUBROUTINE C09FAF (M, N, FR, A, LDA, SDA, LENC, C, ICOMM, IFAIL)

INTEGER M, N, FR, LDA, SDA, LENC, ICOMM(260), IFAIL
REAL (KIND=nag_wp) A(LDA,SDA,FR), C(LENC)

3 Description

C09FAF computes the three-dimensional DWT of some given three-dimensional input data, considered
as a number of two-dimensional frames, at a single level. For a chosen wavelet filter pair, the output
coefficients are obtained by applying convolution and downsampling by two to the input data, A, first
over columns, next over rows and finally across frames. The three-dimensional approximation
coefficients are produced by the low pass filter over columns, rows and frames. In addition there are 7
sets of three-dimensional detail coefficients, each corresponding to a different order of low pass and
high pass filters (see the C09 Chapter Introduction). All coefficients are packed into a single array. To
reduce distortion effects at the ends of the data array, several end extension methods are commonly
used. Those provided are: periodic or circular convolution end extension, half-point symmetric end
extension, whole-point symmetric end extension and zero end extension. The total number, nct, of
coefficients computed is returned by the initialization routine C09ACF.

4 References

Daubechies I (1992) Ten Lectures on Wavelets SIAM, Philadelphia

5 Arguments

1: M – INTEGER Input

On entry: the number of rows of each two-dimensional frame.

Constraint: this must be the same as the value M passed to the initialization routine C09ACF.

2: N – INTEGER Input

On entry: the number of columns of each two-dimensional frame.

Constraint: this must be the same as the value N passed to the initialization routine C09ACF.

3: FR – INTEGER Input

On entry: the number of two-dimensional frames.

Constraint: this must be the same as the value FR passed to the initialization routine C09ACF.

4: AðLDA; SDA;FRÞ – REAL (KIND=nag_wp) array Input

On entry: the m by n by fr three-dimensional input data A, where Aijk is stored in Aði; j; kÞ.
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5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which C09FAF
is called.

Constraint: LDA � M.

6: SDA – INTEGER Input

On entry: the second dimension of the array A as declared in the (sub)program from which
C09FAF is called.

Constraint: SDA � N.

7: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09FAF is
called.

Constraint: LENC � nct, where nct is the total number of wavelet coefficients, as returned by
C09ACF.

8: CðLENCÞ – REAL (KIND=nag_wp) array Output

On exit: the coefficients of the discrete wavelet transform. If you need to access or modify the
approximation coefficients or any specific set of detail coefficients then the use of C09FYF or
C09FZF is recommended. For completeness the following description provides details of
precisely how the coefficients are stored in C but this information should only be required in rare
cases.

The 8 sets of coefficients are stored in the following order: approximation coefficients (LLL)
first, followed by 7 sets of detail coefficients: LLH, LHL, LHH, HLL, HLH, HHL, HHH, where
L indicates the low pass filter, and H the high pass filter being applied to, respectively, the
columns of length M, the rows of length N and then the frames of length FR. Note that for
computational efficiency reasons each set of coefficients is stored in the order ncfr � ncm � ncn
(see output arguments NWCFR, NWCT and NWCN in C09ACF). See Section 10 for details of
how to access each set of coefficients in order to perform extraction from C following a call to
this routine, or insertion into C before a call to the three-dimensional inverse routine C09FBF.

9: ICOMMð260Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ACF.

On exit: contains additional information on the computed transform.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, FR ¼ valueh i.
Constraint: FR ¼ valueh i, the value of FR on initialization (see C09ACF).

On entry, M ¼ valueh i.
Constraint: M ¼ valueh i, the value of M on initialization (see C09ACF).

On entry, N ¼ valueh i.
Constraint: N ¼ valueh i, the value of N on initialization (see C09ACF).

IFAIL ¼ 2

On entry, LDA ¼ valueh i and M ¼ valueh i.
Constraint: LDA � M.

On entry, SDA ¼ valueh i and N ¼ valueh i.
Constraint: SDA � N.

IFAIL ¼ 3

On entry, LENC ¼ valueh i and nct ¼ valueh i.
Constraint: LENC � nct, where nct is the number of DWT coefficients returned by C09ACF in
argument NWCT.

IFAIL ¼ 6

Either the communication array ICOMM has been corrupted or there has not been a prior call to
the initialization routine C09ACF.

The initialization routine was called with WTRANS ¼ M .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09FAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the three-dimensional discrete wavelet decomposition for 5� 4� 3 input data
using the Haar wavelet, WAVNAM ¼ HAAR , with half point end extension, prints the wavelet
coefficients and then reconstructs the original data using C09FBF. This example also demonstrates in
general how to access any set of coefficients following a single level transform.

10.1 Program Text

Program c09fafe

! C09FAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09acf, c09faf, c09fbf, c09fyf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: cindex, fr, i, ifail, j, lda, ldb, &

ldd, lenc, m, n, nf, nwcfr, nwcm, &
nwcn, nwct, nwl, sda, sdb, sdd

Character (12) :: mode, wavnam, wtrans
Character (33) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:,:), b(:,:,:), c(:), d(:,:,:)
Integer :: icomm(260)
Character (3) :: cpass(0:7)

! .. Executable Statements ..
Continue
Write (nout,*) ’C09FAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read problem parameters.
Read (nin,*) m, n, fr
Read (nin,*) wavnam, mode
Write (nout,99999) wavnam, mode

lda = m
sda = n
Allocate (a(lda,sda,fr))
ldb = m
sdb = n
Allocate (b(ldb,sdb,fr))

! Read data array
Do j = 1, fr

Read (nin,*)
Read (nin,*)(a(i,1:n,j),i=1,m)

End Do

Write (nout,99998) ’Input Data A’
Do j = 1, fr

Write (nout,99996) j
Do i = 1, m

Write (nout,99997) a(i,1:n,j)

C09FAF NAG Library Manual

C09FAF.4 Mark 26



End Do
End Do

! Query wavelet filter dimensions
wtrans = ’Single Level’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call c09acf(wavnam,wtrans,mode,m,n,fr,nwl,nf,nwct,nwcn,nwcfr,icomm, &

ifail)
nwcm = nwct/(8*nwcn*nwcfr)
lenc = nwct
Allocate (c(lenc))

! 3D DWT decomposition
ifail = 0
Call c09faf(m,n,fr,a,lda,sda,lenc,c,icomm,ifail)

ldd = nwcm
sdd = nwcn
Allocate (d(ldd,sdd,nwcfr))

! Loop over low/high passes from LLL to HHH
cpass(0:7) = (/’LLL’,’LLH’,’LHL’,’LHH’,’HLL’,’HLH’,’HHL’,’HHH’/)
Do cindex = 0, 7

If (cindex==0) Then
title = ’Approximation coefficients (LLL)’

Else
title = ’Detail coefficients (’ // cpass(cindex) // ’)’

End If

! Extract coefficients
Call c09fyf(0,cindex,lenc,c,d,ldd,sdd,icomm,ifail)

Write (nout,99992) title
Write (nout,99995)(’Frame ’,j,j=1,nwcfr)
Write (nout,99994) cindex, (d(1,1:nwcn,j),j=1,nwcfr)
Do i = 2, nwcm

Write (nout,99993)(d(i,1:nwcn,j),j=1,nwcfr)
End Do

End Do

! 3D DWT reconstruction
ifail = 0
Call c09fbf(m,n,fr,lenc,c,b,ldb,sdb,icomm,ifail)

Write (nout,99998) ’Output Data B’
Do j = 1, fr

Write (nout,99996) j
Do i = 1, m

Write (nout,99997) b(i,1:n,j)
End Do

End Do

99999 Format (/,1X,’DWT ::’,/,1X,’ Wavelet : ’,A,/,1X, &
’ End mode: ’,A)

99998 Format (/,1X,A,’ : ’)
99997 Format (1X,8(F8.4,1X),:)
99996 Format (1X,’Frame ’,I2,’ : ’)
99995 Format (11X,6(10X,A,I2))
99994 Format (4X,I4,6X,8(1X,F8.4))
99993 Format (14X,8(1X,F8.4))
99992 Format (/,1X,A)

End Program c09fafe
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10.2 Program Data

C09FAF Example Program Data
5 4 3 : m, n, fr
Haar half : wavnam, mode

3.0000 2.0000 2.0000 2.0000
2.0000 9.0000 1.0000 2.0000
2.0000 5.0000 1.0000 2.0000
1.0000 6.0000 2.0000 2.0000
5.0000 3.0000 2.0000 2.0000 : Frame 1

2.0000 1.0000 5.0000 1.0000
2.0000 9.0000 5.0000 2.0000
2.0000 3.0000 2.0000 7.0000
2.0000 1.0000 1.0000 2.0000
2.0000 1.0000 2.0000 8.0000 : Frame 2

3.0000 1.0000 4.0000 1.0000
1.0000 1.0000 2.0000 1.0000
4.0000 1.0000 7.0000 2.0000
3.0000 2.0000 1.0000 5.0000
1.0000 1.0000 2.0000 2.0000 : Frame 3

10.3 Program Results

C09FAF Example Program Results

DWT ::
Wavelet : Haar
End mode: half

Input Data A :
Frame 1 :

3.0000 2.0000 2.0000 2.0000
2.0000 9.0000 1.0000 2.0000
2.0000 5.0000 1.0000 2.0000
1.0000 6.0000 2.0000 2.0000
5.0000 3.0000 2.0000 2.0000

Frame 2 :
2.0000 1.0000 5.0000 1.0000
2.0000 9.0000 5.0000 2.0000
2.0000 3.0000 2.0000 7.0000
2.0000 1.0000 1.0000 2.0000
2.0000 1.0000 2.0000 8.0000

Frame 3 :
3.0000 1.0000 4.0000 1.0000
1.0000 1.0000 2.0000 1.0000
4.0000 1.0000 7.0000 2.0000
3.0000 2.0000 1.0000 5.0000
1.0000 1.0000 2.0000 2.0000

Approximation coefficients (LLL)
Frame 1 Frame 2

0 10.6066 7.0711 4.2426 5.6569
7.7782 6.7175 7.0711 10.6066
7.7782 9.8995 2.8284 5.6569

Detail coefficients (LLH)
Frame 1 Frame 2

1 0.7071 -2.1213 0.0000 0.0000
2.1213 -1.7678 0.0000 0.0000
3.5355 -4.2426 0.0000 0.0000

Detail coefficients (LHL)
Frame 1 Frame 2

2 -4.2426 2.1213 1.4142 2.8284
-2.8284 -2.4749 2.8284 0.7071
2.1213 -4.2426 0.0000 0.0000
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Detail coefficients (LHH)
Frame 1 Frame 2

3 0.0000 -2.8284 0.0000 0.0000
-2.8284 1.7678 0.0000 0.0000
0.7071 4.2426 0.0000 0.0000

Detail coefficients (HLL)
Frame 1 Frame 2

4 -4.9497 0.0000 1.4142 1.4142
0.7071 1.7678 -0.0000 2.1213
0.0000 0.0000 0.0000 0.0000

Detail coefficients (HLH)
Frame 1 Frame 2

5 0.7071 0.7071 0.0000 0.0000
-0.7071 -2.4749 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

Detail coefficients (HHL)
Frame 1 Frame 2

6 5.6569 0.7071 1.4142 1.4142
0.0000 -1.7678 1.4142 6.3640
0.0000 0.0000 0.0000 0.0000

Detail coefficients (HHH)
Frame 1 Frame 2

7 0.0000 0.0000 0.0000 0.0000
1.4142 1.0607 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

Output Data B :
Frame 1 :

3.0000 2.0000 2.0000 2.0000
2.0000 9.0000 1.0000 2.0000
2.0000 5.0000 1.0000 2.0000
1.0000 6.0000 2.0000 2.0000
5.0000 3.0000 2.0000 2.0000

Frame 2 :
2.0000 1.0000 5.0000 1.0000
2.0000 9.0000 5.0000 2.0000
2.0000 3.0000 2.0000 7.0000
2.0000 1.0000 1.0000 2.0000
2.0000 1.0000 2.0000 8.0000

Frame 3 :
3.0000 1.0000 4.0000 1.0000
1.0000 1.0000 2.0000 1.0000
4.0000 1.0000 7.0000 2.0000
3.0000 2.0000 1.0000 5.0000
1.0000 1.0000 2.0000 2.0000

C09 – Wavelet Transforms C09FAF

Mark 26 C09FAF.7 (last)





NAG Library Routine Document

C09FBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09FBF computes the three-dimensional inverse discrete wavelet transform (IDWT) at a single level.
The initialization routine C09ACF must be called first to set up the DWT options.

2 Specification

SUBROUTINE C09FBF (M, N, FR, LENC, C, B, LDB, SDB, ICOMM, IFAIL)

INTEGER M, N, FR, LENC, LDB, SDB, ICOMM(260), IFAIL
REAL (KIND=nag_wp) C(LENC), B(LDB,SDB,FR)

3 Description

C09FBF performs the inverse operation of routine C09FAF. That is, given sets of wavelet coefficients
computed by routine C09FAF using a DWT as set up by the initialization routine C09ACF, on a real
data array, B, C09FBF will reconstruct B.

4 References

None.

5 Arguments

1: M – INTEGER Input

On entry: the number of rows of each two-dimensional frame.

Constraint: this must be the same as the value M passed to the initialization routine C09ACF.

2: N – INTEGER Input

On entry: the number of columns of each two-dimensional frame.

Constraint: this must be the same as the value N passed to the initialization routine C09ACF.

3: FR – INTEGER Input

On entry: the number two-dimensional frames.

Constraint: this must be the same as the value FR passed to the initialization routine C09ACF.

4: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09FBF is
called.

Constraint: LENC � nct, where nct is the total number of wavelet coefficients, as returned by
C09ACF.

5: CðLENCÞ – REAL (KIND=nag_wp) array Input

On entry: the coefficients of the discrete wavelet transform. This will normally be the result of
some transformation on the coefficients computed by routine C09FAF.
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Note that the coefficients in C may be extracted according to type into three-dimensional arrays
using C09FYF, and inserted using C09FZF.

6: BðLDB; SDB; FRÞ – REAL (KIND=nag_wp) array Output

On exit: the m by n by fr reconstructed array, B, with Bijk stored in Bði; j; kÞ. The reconstruction
is based on the input wavelet coefficients and the transform options supplied to the initialization
routine C09ACF.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which C09FBF
is called.

Constraint: LDB � M.

8: SDB – INTEGER Input

On entry: the second dimension of the array B as declared in the (sub)program from which
C09FBF is called.

Constraint: SDB � N.

9: ICOMMð260Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ACF.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, FR ¼ valueh i.
Constraint: FR ¼ valueh i, the value of FR on initialization (see C09ACF).

On entry, M ¼ valueh i.
Constraint: M ¼ valueh i, the value of M on initialization (see C09ACF).

On entry, N ¼ valueh i.
Constraint: N ¼ valueh i, the value of N on initialization (see C09ACF).

IFAIL ¼ 2

On entry, LDB ¼ valueh i and M ¼ valueh i.
Constraint: LDB � M.
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On entry, SDB ¼ valueh i and N ¼ valueh i.
Constraint: SDB � N.

IFAIL ¼ 3

On entry, LENC ¼ valueh i and nct ¼ valueh i.
Constraint: LENC � nct, where nct is the number of DWT coefficients returned by C09ACF in
argument NWCT.

IFAIL ¼ 6

Either the communication array ICOMM has been corrupted or there has not been a prior call to
the initialization routine C09ACF.

The initialization routine was called with WTRANS ¼ M .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09FBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

See Section 10 in C09FAF.
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NAG Library Routine Document

C09FCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09FCF computes the three-dimensional multi-level discrete wavelet transform (DWT). The
initialization routine C09ACF must be called first to set up the DWT options.

2 Specification

SUBROUTINE C09FCF (M, N, FR, A, LDA, SDA, LENC, C, NWL, DWTLVM, DWTLVN,
DWTLVFR, ICOMM, IFAIL)

&

INTEGER M, N, FR, LDA, SDA, LENC, NWL, DWTLVM(NWL),
DWTLVN(NWL), DWTLVFR(NWL), ICOMM(260), IFAIL

&

REAL (KIND=nag_wp) A(LDA,SDA,FR), C(LENC)

3 Description

C09FCF computes the multi-level DWT of three-dimensional data. For a given wavelet and end
extension method, C09FCF will compute a multi-level transform of a three-dimensional array A, using
a specified number, nfwd, of levels. The number of levels specified, nfwd, must be no more than the
value lmax returned in NWLMAX by the initialization routine C09ACF for the given problem. The
transform is returned as a set of coefficients for the different levels (packed into a single array) and a
representation of the multi-level structure.

The notation used here assigns level 0 to the input data, A. Level 1 consists of the first set of
coefficients computed: the seven sets of detail coefficients are stored at this level while the
approximation coefficients are used as the input to a repeat of the wavelet transform at the next level.
This process is continued until, at level nfwd, all eight types of coefficients are stored. All coefficients
are packed into a single array.

4 References

Wang Y, Che X and Ma S (2012) Nonlinear filtering based on 3D wavelet transform for MRI denoising
URASIP Journal on Advances in Signal Processing 2012:40

5 Arguments

1: M – INTEGER Input

On entry: the number of rows of each two-dimensional frame.

Constraint: this must be the same as the value M passed to the initialization routine C09ACF.

2: N – INTEGER Input

On entry: the number of columns of each two-dimensional frame.

Constraint: this must be the same as the value N passed to the initialization routine C09ACF.

3: FR – INTEGER Input

On entry: the number of two-dimensional frames.

Constraint: this must be the same as the value FR passed to the initialization routine C09ACF.
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4: AðLDA; SDA;FRÞ – REAL (KIND=nag_wp) array Input

On entry: the m by n by fr three-dimensional input data A, where with Aijk stored in Aði; j; kÞ.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which C09FCF
is called.

Constraint: LDA � M.

6: SDA – INTEGER Input

On entry: the second dimension of the array A as declared in the (sub)program from which
C09FCF is called.

Constraint: SDA � N.

7: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09FCF is
called.

Constraint: LENC � nct, where nct is the total number of wavelet coefficients that correspond to
a transform with NWL levels.

8: CðLENCÞ – REAL (KIND=nag_wp) array Output

On exit: the coefficients of the discrete wavelet transform. If you need to access or modify the
approximation coefficients or any specific set of detail coefficients then the use of C09FYF or
C09FZF is recommended. For completeness the following description provides details of
precisely how the coefficients are stored in C but this information should only be required in rare
cases.

Let q ið Þ denote the number of coefficients of each type at level i, for i ¼ 1; 2; . . . ; nfwd, such that
q ið Þ ¼ DWTLVMðnfwd � iþ 1Þ � DWTLVNðnfwd � iþ 1Þ � DWTLVFRðnfwd � iþ 1Þ. Th en ,
letting k1 ¼ q nfwdð Þ and kjþ1 ¼ kj þ q nfwd � j=7d e þ 1ð Þ, for j ¼ 1; 2; . . . ; 7nfwd, the coefficients
are stored in C as follows:

CðiÞ, for i ¼ 1; 2; . . . ; k1
Contains the level nfwd approximation coefficients, anfwd . Note that for computational
e f fi c i e n c y r e a s o n s t h e s e c o e f fi c i e n t s a r e s t o r e d a s
DWTLVMð1Þ � DWTLVNð1Þ � DWTLVFRð1Þ in C.

CðiÞ, for i ¼ kj þ 1; . . . ; kjþ1
Contains the level nfwd � j=7d e þ 1 detail coefficients. These are:

LLH coefficients if j mod 7 ¼ 1;

LHL coefficients if j mod 7 ¼ 2;

LHH coefficients if j mod 7 ¼ 3;

HLL coefficients if j mod 7 ¼ 4;

HLH coefficients if j mod 7 ¼ 5;

HHL coefficients if j mod 7 ¼ 6;

HHH coefficients if j mod 7 ¼ 0,

for j ¼ 1; . . . ; 7nfwd. See Section 2.1 in the C09 Chapter Introduction for a description of
how these coefficients are produced.

Note that for computational efficiency reasons these coefficients are stored as
DWTLVFRð j=7d eÞ � DWTLVMð j=7d eÞ � DWTLVNð j=7d eÞ in C.
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9: NWL – INTEGER Input

On entry: the number of levels, nfwd, in the multi-level resolution to be performed.

Constraint: 1 � NWL � lmax , where lmax is the value returned in NWLMAX (the maximum
number of levels) by the call to the initialization routine C09ACF.

10: DWTLVMðNWLÞ – INTEGER array Output

On exit: the number of coefficients in the first dimension for each coefficient type at each level.
DWTLVMðiÞ contains the number of coefficients in the first dimension (for each coefficient type
computed) at the (nfwd � i þ 1)th level of resolution, for i ¼ 1; 2; . . . ; nfwd.

11: DWTLVNðNWLÞ – INTEGER array Output

On exit: the number of coefficients in the second dimension for each coefficient type at each
level. DWTLVNðiÞ contains the number of coefficients in the second dimension (for each
coefficient type computed) at the (nfwd � i þ 1)th level of resolution, for i ¼ 1; 2; . . . ; nfwd.

12: DWTLVFRðNWLÞ – INTEGER array Output

On exit: the number of coefficients in the third dimension for each coefficient type at each level.
DWTLVFRðiÞ contains the number of coefficients in the third dimension (for each coefficient
type computed) at the (nfwd � i þ 1)th level of resolution, for i ¼ 1; 2; . . . ; nfwd.

13: ICOMMð260Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ACF.

On exit: contains additional information on the computed transform.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, FR ¼ valueh i.
Constraint: FR ¼ valueh i, the value of FR on initialization (see C09ACF).

On entry, M ¼ valueh i.
Constraint: M ¼ valueh i, the value of M on initialization (see C09ACF).

On entry, N ¼ valueh i.
Constraint: N ¼ valueh i, the value of N on initialization (see C09ACF).
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IFAIL ¼ 2

On entry, LDA ¼ valueh i and M ¼ valueh i.
Constraint: LDA � M.

On entry, SDA ¼ valueh i and N ¼ valueh i.
Constraint: SDA � N.

IFAIL ¼ 3

On entry, LENC ¼ valueh i.
Constraint: LENC � valueh i, the total number of coefficents to be generated.

IFAIL ¼ 5

On entry, NWL ¼ valueh i.
Constraint: NWL � 1.

On entry, NWL ¼ valueh i and NWLMAX ¼ valueh i in C09ACF.
Constraint: NWL � NWLMAX in C09ACF.

IFAIL ¼ 6

Either the communication array ICOMM has been corrupted or there has not been a prior call to
the initialization routine C09ACF.

The initialization routine was called with WTRANS ¼ S .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09FCF is not threaded in any implementation.

9 Further Comments

The example program shows how the wavelet coefficients at each level can be extracted from the output
array C. Denoising can be carried out by applying a thresholding operation to the detail coefficients at
every level. If cij is a detail coefficient then ĉij ¼ cij þ ��ij and ��ij is the transformed noise term. If
some threshold parameter � is chosen, a simple hard thresholding rule can be applied as

�cij ¼ 0; if ĉij
		 		 � �

ĉij; if ĉij
		 		 > �;
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taking �cij to be an approximation to the required detail coefficient without noise, cij. The resulting
coefficients can then be used as input to C09FDF in order to reconstruct the denoised signal. See
Section 10 in C09FZF for a simple example of denoising.

See the references given in the introduction to this chapter for a more complete account of wavelet
denoising and other applications.

10 Example

This example computes the three-dimensional multi-level discrete wavelet decomposition for 7� 6� 5
input data using the biorthogonal wavelet of order 1:1 (set WAVNAM ¼ BIOR1:1 in C09ACF) with
periodic end extension, prints a selected set of wavelet coefficients and then reconstructs and verifies
that the reconstruction matches the original data.

10.1 Program Text

Program c09fcfe

! C09FCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09acf, c09fcf, c09fdf, c09fyf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, esq, frob
Integer :: fr, i, ifail, j, k, lda, ldb, ldd, &

lenc, m, n, nf, nwcfr, nwcm, nwcn, &
nwct, nwl, nwlinv, nwlmax, sda, sdb, &
sdd, want_coeffs, want_level

Character (10) :: mode, wavnam, wtrans
Character (33) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:,:), b(:,:,:), c(:), d(:,:,:), &

e(:,:,:)
Integer, Allocatable :: dwtlvfr(:), dwtlvm(:), dwtlvn(:)
Integer :: icomm(260)
Character (3) :: cpass(0:7)

! .. Intrinsic Procedures ..
Intrinsic :: max, real, sqrt

! .. Executable Statements ..
Continue
Write (nout,*) ’C09FCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read problem parameters
Read (nin,*) m, n, fr
Read (nin,*) wavnam, mode
lda = m
sda = n
ldb = m
sdb = n
Allocate (a(lda,sda,fr),b(ldb,sdb,fr),e(m,n,fr))

Write (nout,99999) wavnam, mode, m, n, fr

! Read data array and write it out

Do j = 1, fr
Do i = 1, m

Read (nin,*) a(i,1:n,j)
End Do
If (j<fr) Then

Read (nin,*)
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End If
End Do

Write (nout,*) ’ Input Data A :’
Do j = 1, fr

Write (nout,99997) j
Do i = 1, m

Write (nout,99998) a(i,1:n,j)
End Do

End Do

! Query wavelet filter dimensions
! For Multi-Resolution Analysis, decomposition, wtrans = ’M’

wtrans = ’Multilevel’
ifail = 0
Call c09acf(wavnam,wtrans,mode,m,n,fr,nwlmax,nf,nwct,nwcn,nwcfr,icomm, &

ifail)

lenc = nwct
Allocate (c(lenc),dwtlvm(nwlmax),dwtlvn(nwlmax),dwtlvfr(nwlmax))

nwl = nwlmax

! Perform Discrete Wavelet transform
ifail = 0
Call c09fcf(m,n,fr,a,lda,sda,lenc,c,nwl,dwtlvm,dwtlvn,dwtlvfr,icomm, &

ifail)

Write (nout,99996) nwl
Write (nout,99995)
Write (nout,99992) dwtlvm(1:nwl)
Write (nout,99994)
Write (nout,99992) dwtlvn(1:nwl)
Write (nout,99993)
Write (nout,99992) dwtlvfr(1:nwl)

! Print the first level HLL coefficients
want_level = 1
want_coeffs = 4

nwcm = dwtlvm(nwl-want_level+1)
nwcn = dwtlvn(nwl-want_level+1)
nwcfr = dwtlvfr(nwl-want_level+1)

! Allocate space to store the selected coefficients
ldd = nwcm
sdd = nwcn
Allocate (d(ldd,sdd,nwcfr))

Write (nout,99987) want_level, nwcm, nwcn, nwcfr

cpass(0:7) = (/’LLL’,’LLH’,’LHL’,’LHH’,’HLL’,’HLH’,’HHL’,’HHH’/)
If (want_coeffs==0) Then

title = ’Approximation coefficients (LLL)’
Else

title = ’Detail coefficients (’ // cpass(want_coeffs) // ’)’
End If

! Extract coefficients
Call c09fyf(want_level,want_coeffs,lenc,c,d,ldd,sdd,icomm,ifail)

! Print out the selected set of coefficients
Write (nout,99986) title
Write (nout,99989) want_level, want_coeffs
Do k = 1, nwcfr

Write (nout,99988) k
Do i = 1, nwcm

Write (nout,99998) d(i,1:nwcn,k)
End Do

End Do
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nwlinv = nwl

! Reconstruct original data
ifail = 0
Call c09fdf(nwlinv,lenc,c,m,n,fr,b,ldb,sdb,icomm,ifail)

! Check reconstruction matches original
eps = 10.0_nag_wp*real(m,kind=nag_wp)*real(n,kind=nag_wp)* &

real(fr,kind=nag_wp)*x02ajf()

e(1:m,1:n,1:fr) = b(1:m,1:n,1:fr) - a(1:m,1:n,1:fr)
frob = 0.0_nag_wp
Do k = 1, fr

esq = 0.0_nag_wp
Do j = 1, n

Do i = 1, m
esq = esq + e(i,j,k)**2

End Do
End Do
frob = max(frob,sqrt(esq))

End Do

If (frob>eps) Then
Write (nout,99991)

Else
Write (nout,99990)

End If

99999 Format (1X,’ MLDWT :: Wavelet : ’,A,/,1X,’ End mode : ’,A,/, &
1X,’ M : ’,I4,/,1X,’ N : ’,I4,/,1X, &
’ FR : ’,I4,/)

99998 Format (8(F8.4,1X),:)
99997 Format (1X,’ Frame ’,I2,’ : ’)
99996 Format (/,1X,’ Number of Levels : ’,I10)
99995 Format (1X,’ Number of coefficients in 1st dimension for each level :’)
99994 Format (1X,’ Number of coefficients in 2nd dimension for each level :’)
99993 Format (1X,’ Number of coefficients in 3rd dimension for each level :’)
99992 Format (8(I8,1X),:)
99991 Format (/,1X,’ Fail: Frobenius norm of B-A, where A is the original ’,/, &

1X,’ data and B is the reconstrucion, is too large.’)
99990 Format (/,1X,’ Success: the reconstruction matches the original.’)
99989 Format (1X,’ Level ’,I2,’, Coefficients ’,I2,’ : ’)
99988 Format (1X,’ Frame ’,I2,’ : ’)
99987 Format (/,1X,70(’-’),/,1X,’Level : ’,I10,’; output is ’,I10,’ by ’,I10, &

’ by ’,I10,/,1X,70(’-’))
99986 Format (/,1X,A)

End Program c09fcfe

10.2 Program Data

C09FCF Example Program Data
7, 6, 5 : m, n, fr
Bior1.1 period : wavnam, mode
3.0000 2.0000 2.0000 2.0000 1.0000 1.0000
2.0000 9.0000 1.0000 2.0000 1.0000 3.0000
2.0000 5.0000 1.0000 2.0000 1.0000 1.0000
1.0000 6.0000 2.0000 2.0000 7.0000 2.0000
5.0000 3.0000 2.0000 2.0000 4.0000 7.0000
2.0000 2.0000 1.0000 1.0000 2.0000 1.0000
6.0000 2.0000 1.0000 3.0000 6.0000 9.0000

2.0000 1.0000 5.0000 1.0000 2.0000 3.0000
2.0000 9.0000 5.0000 2.0000 1.0000 2.0000
2.0000 3.0000 2.0000 7.0000 1.0000 1.0000
2.0000 1.0000 1.0000 2.0000 3.0000 1.0000
2.0000 1.0000 2.0000 8.0000 3.0000 3.0000
1.0000 4.0000 5.0000 1.0000 2.0000 7.0000
8.0000 1.0000 3.0000 9.0000 1.0000 2.0000

3.0000 1.0000 4.0000 1.0000 1.0000 1.0000
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1.0000 1.0000 2.0000 1.0000 2.0000 6.0000
4.0000 1.0000 7.0000 2.0000 5.0000 6.0000
3.0000 2.0000 1.0000 5.0000 9.0000 5.0000
1.0000 1.0000 2.0000 2.0000 2.0000 1.0000
2.0000 6.0000 3.0000 9.0000 5.0000 1.0000
1.0000 1.0000 8.0000 2.0000 1.0000 3.0000

5.0000 8.0000 1.0000 2.0000 2.0000 1.0000
1.0000 2.0000 2.0000 9.0000 2.0000 9.0000
2.0000 2.0000 2.0000 1.0000 1.0000 3.0000
1.0000 1.0000 1.0000 5.0000 1.0000 2.0000
3.0000 2.0000 8.0000 1.0000 9.0000 2.0000
2.0000 1.0000 9.0000 1.0000 2.0000 2.0000
3.0000 6.0000 5.0000 3.0000 2.0000 2.0000

5.0000 2.0000 1.0000 2.0000 1.0000 1.0000
3.0000 1.0000 9.0000 1.0000 2.0000 1.0000
2.0000 3.0000 1.0000 1.0000 7.0000 2.0000
7.0000 2.0000 2.0000 6.0000 1.0000 1.0000
5.0000 1.0000 7.0000 2.0000 1.0000 1.0000
2.0000 1.0000 3.0000 2.0000 2.0000 1.0000
5.0000 3.0000 9.0000 1.0000 4.0000 1.0000

10.3 Program Results

C09FCF Example Program Results

MLDWT :: Wavelet : Bior1.1
End mode : period
M : 7
N : 6
FR : 5

Input Data A :
Frame 1 :
3.0000 2.0000 2.0000 2.0000 1.0000 1.0000
2.0000 9.0000 1.0000 2.0000 1.0000 3.0000
2.0000 5.0000 1.0000 2.0000 1.0000 1.0000
1.0000 6.0000 2.0000 2.0000 7.0000 2.0000
5.0000 3.0000 2.0000 2.0000 4.0000 7.0000
2.0000 2.0000 1.0000 1.0000 2.0000 1.0000
6.0000 2.0000 1.0000 3.0000 6.0000 9.0000
Frame 2 :
2.0000 1.0000 5.0000 1.0000 2.0000 3.0000
2.0000 9.0000 5.0000 2.0000 1.0000 2.0000
2.0000 3.0000 2.0000 7.0000 1.0000 1.0000
2.0000 1.0000 1.0000 2.0000 3.0000 1.0000
2.0000 1.0000 2.0000 8.0000 3.0000 3.0000
1.0000 4.0000 5.0000 1.0000 2.0000 7.0000
8.0000 1.0000 3.0000 9.0000 1.0000 2.0000
Frame 3 :
3.0000 1.0000 4.0000 1.0000 1.0000 1.0000
1.0000 1.0000 2.0000 1.0000 2.0000 6.0000
4.0000 1.0000 7.0000 2.0000 5.0000 6.0000
3.0000 2.0000 1.0000 5.0000 9.0000 5.0000
1.0000 1.0000 2.0000 2.0000 2.0000 1.0000
2.0000 6.0000 3.0000 9.0000 5.0000 1.0000
1.0000 1.0000 8.0000 2.0000 1.0000 3.0000
Frame 4 :
5.0000 8.0000 1.0000 2.0000 2.0000 1.0000
1.0000 2.0000 2.0000 9.0000 2.0000 9.0000
2.0000 2.0000 2.0000 1.0000 1.0000 3.0000
1.0000 1.0000 1.0000 5.0000 1.0000 2.0000
3.0000 2.0000 8.0000 1.0000 9.0000 2.0000
2.0000 1.0000 9.0000 1.0000 2.0000 2.0000
3.0000 6.0000 5.0000 3.0000 2.0000 2.0000
Frame 5 :
5.0000 2.0000 1.0000 2.0000 1.0000 1.0000
3.0000 1.0000 9.0000 1.0000 2.0000 1.0000
2.0000 3.0000 1.0000 1.0000 7.0000 2.0000
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7.0000 2.0000 2.0000 6.0000 1.0000 1.0000
5.0000 1.0000 7.0000 2.0000 1.0000 1.0000
2.0000 1.0000 3.0000 2.0000 2.0000 1.0000
5.0000 3.0000 9.0000 1.0000 4.0000 1.0000

Number of Levels : 2
Number of coefficients in 1st dimension for each level :

2 4
Number of coefficients in 2nd dimension for each level :

2 3
Number of coefficients in 3rd dimension for each level :

2 3

----------------------------------------------------------------------
Level : 1; output is 4 by 3 by 3
----------------------------------------------------------------------

Detail coefficients (HLL)
Level 1, Coefficients 4 :
Frame 1 :

-4.9497 0.0000 0.0000
0.7071 1.7678 -3.1820
0.7071 2.1213 1.7678
0.0000 0.0000 0.0000
Frame 2 :
4.2426 -2.1213 -4.9497
0.7071 -0.0000 -0.7071

-1.4142 -3.1820 1.4142
0.0000 0.0000 0.0000
Frame 3 :
2.1213 -4.9497 -0.7071

-2.8284 -4.2426 4.9497
2.1213 2.8284 -0.7071
0.0000 0.0000 0.0000

Success: the reconstruction matches the original.
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NAG Library Routine Document

C09FDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09FDF computes the inverse three-dimensional multi-level discrete wavelet transform (IDWT). This
routine reconstructs data from (possibly filtered or otherwise manipulated) wavelet transform
coefficients calculated by C09FCF from an original input array. The initialization routine C09ACF
must be called first to set up the IDWT options.

2 Specification

SUBROUTINE C09FDF (NWLINV, LENC, C, M, N, FR, B, LDB, SDB, ICOMM, IFAIL)

INTEGER NWLINV, LENC, M, N, FR, LDB, SDB, ICOMM(260), IFAIL
REAL (KIND=nag_wp) C(LENC), B(LDB,SDB,FR)

3 Description

C09FDF performs the inverse operation of C09FCF. That is, given a set of wavelet coefficients,
computed up to level nfwd by C09FCF using a DWT as set up by the initialization routine C09ACF, on
a real three-dimensional array, A, C09FDF will reconstruct A. The reconstructed array is referred to as
B in the following since it will not be identical to A when the DWT coefficients have been filtered or
otherwise manipulated prior to reconstruction. If the original input array is level 0, then it is possible to
terminate reconstruction at a higher level by specifying fewer than the number of levels used in the call
to C09FCF. This results in a partial reconstruction.

4 References

Wang Y, Che X and Ma S (2012) Nonlinear filtering based on 3D wavelet transform for MRI denoising
URASIP Journal on Advances in Signal Processing 2012:40

5 Arguments

1: NWLINV – INTEGER Input

On entry: the number of levels to be used in the inverse multi-level transform. The number of
levels must be less than or equal to nfwd, which has the value of argument NWL as used in the
computation of the wavelet coefficients using C09FCF. The data will be reconstructed to level
NWL� NWLINVð Þ, where level 0 is the original input dataset provided to C09FCF.

Constraint: 1 � NWLINV � NWL, where NWL is the value used in a preceding call to C09FCF.

2: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09FDF is
called.

Constraint: LENC � nct, where nct is the total number of wavelet coefficients that correspond to
a transform with NWLINV levels.

3: CðLENCÞ – REAL (KIND=nag_wp) array Input

On entry: the coefficients of the multi-level discrete wavelet transform. This will normally be the
result of some transformation on the coefficients computed by routine C09FCF.
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Note that the coefficients in C may be extracted according to level and type into three-
dimensional arrays using C09FYF, and inserted using C09FZF.

4: M – INTEGER Input

On entry: the number of elements, m, in the first dimension of the reconstructed array B. For a
full reconstruction of NWL levels, where NWL is as supplied to C09FCF, this must be the same
as argument M used in a preceding call to C09FCF. For a partial reconstruction of
NWLINV < NWL levels, this must be equal to DWTLVMðNWLINVþ 1Þ, as returned from
C09FCF

5: N – INTEGER Input

On entry: the number of elements, n, in the second dimension of the reconstructed array B. For a
full reconstruction of NWL, levels, where NWL is as supplied to C09FCF, this must be the same
as argument N used in a preceding call to C09FCF. For a partial reconstruction of
NWLINV < NWL levels, this must be equal to DWTLVNðNWLINVþ 1Þ, as returned from
C09FCF.

6: FR – INTEGER Input

On entry: the number of elements, fr , in the third dimension of the reconstructed array B. For a
full reconstruction of NWL levels, where NWL is as supplied to C09FCF, this must be the same
as argument FR used in a preceding call to C09FCF. For a partial reconstruction of
NWLINV < NWL levels, this must be equal to DWTLVFRðNWLINVþ 1Þ, as returned from
C09FCF.

7: BðLDB; SDB; FRÞ – REAL (KIND=nag_wp) array Output

On exit: the m by n by fr reconstructed array, B, with Bijk stored in Bði; j; kÞ. The reconstruction
is based on the input multi-level wavelet transform coefficients and the transform options
supplied to the initialization routine C09ACF.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which C09FDF
is called.

Constraint: LDB � M.

9: SDB – INTEGER Input

On entry: the second dimension of the array B as declared in the (sub)program from which
C09FDF is called.

Constraint: SDB � N.

10: ICOMMð260Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ACF.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NWLINV ¼ valueh i.
Constraint: NWLINV � 1.

On entry, NWLINV ¼ valueh i and NWL ¼ valueh i where NWL is as used in the computation of
the wavelet coefficients by a call to C09FCF.
Constraint: NWLINV � NWL as used in the call to C09FCF.

IFAIL ¼ 2

On entry, LDB ¼ valueh i and M ¼ valueh i.
Constraint: LDB � M.

On entry, SDB ¼ valueh i and N ¼ valueh i.
Constraint: SDB � N.

IFAIL ¼ 3

On entry, LENC ¼ valueh i.
Constraint: LENC � valueh i, the number of wavelet coefficients required for a transform
operating on NWLINV levels. If NWLINV ¼ NWLMAX, the maximum number of levels as
returned by the initial call to C09ACF, then LENC must be at least nct, the value returned in
NWCT by the same call to C09ACF.

IFAIL ¼ 4

On entry, FR ¼ valueh i.
Constraint: FR � valueh i, the number of coefficients in the third dimension at the required level
of reconstruction.

On entry, M ¼ valueh i.
Constraint: M � valueh i, the number of coefficients in the first dimension at the required level of
reconstruction.

On entry, N ¼ valueh i.
Constraint: N � valueh i, the number of coefficients in the second dimension at the required level
of reconstruction.

IFAIL ¼ 6

Either the communication array ICOMM has been corrupted or there has not been a prior call to
the initialization routine C09ACF.

The initialization routine was called with WTRANS ¼ S .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the
convolution and downsampling and should thus be close to machine precision.

8 Parallelism and Performance

C09FDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in C09FCF.
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NAG Library Routine Document

C09FYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09FYF extracts a selected set of discrete wavelet transform (DWT) coefficients from the full set of
coefficients stored in compact form, as computed by C09FAF (single level three-dimensional DWT) or
C09FCF (multi-level three-dimensional DWT).

2 Specification

SUBROUTINE C09FYF (ILEV, CINDEX, LENC, C, D, LDD, SDD, ICOMM, IFAIL)

INTEGER ILEV, CINDEX, LENC, LDD, SDD, ICOMM(260), IFAIL
REAL (KIND=nag_wp) C(LENC), D(LDD,SDD,*)

3 Description

C09FYF is intended to be used after a call to either C09FAF (single level three-dimensional DWT) or
C09FCF (multi-level three-dimensional DWT), either of which must be preceded by a call to C09ACF
(three-dimensional wavelet filter initialization). Given an initial three-dimensional data set A, a prior
call to C09FAF or C09FCF computes the approximation coefficients (at the highest requested level in
the case of C09FCF) and seven sets of detail coefficients (at all levels in the case of C09FCF) and
stores these in compact form in a one-dimensional array C. C09FYF can then extract either the
approximation coefficients or one of the sets of detail coefficients (at one of the levels following
C09FCF) into a three-dimensional data set stored in D.

If a multi-level DWT was performed by a prior call to C09FCF then the dimensions of the three-
dimensional data stored in D depend on the level extracted and are available from the arrays
DWTLVM, DWTLVN and DWTLVFR as returned by C09FCF which contain the first, second and third
dimensions respectively.

If a single level DWT was performed by a prior call to C09FAF then the dimensions of the three-
dimensional data stored in D can be determined from NWCT, NWCN and NWCFR as returned by the
setup routine C09ACF.

See Section 2.1 in the C09 Chapter Introduction for a discussion of the three-dimensional DWT.

4 References

None.

5 Arguments

Note: the following notation is used in this section:

ncm is the number of wavelet coefficients in the first dimension. Following a call to C09FAF (i.e.,
when ILEV ¼ 0) this is equal to NWCT= 8� NWCN� NWCFRð Þ as returned by C09ACF.
Following a call to C09FCF transforming NWL levels, and when extracting at level ILEV > 0,
this is equal to DWTLVMðNWL� ILEVþ 1Þ.
ncn is the number of wavelet coefficients in the second dimension. Following a call to C09FAF (i.
e., when ILEV ¼ 0) this is equal to NWCN as returned by C09ACF. Following a call to C09FCF
transforming NWL levels, and when extracting at level ILEV > 0, this is equal to
DWTLVNðNWL� ILEVþ 1Þ.
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ncfr is the number of wavelet coefficients in the third dimension. Following a call to C09FAF (i.
e., when ILEV ¼ 0) this is equal to NWCFR as returned by C09ACF. Following a call to
C09FCF transforming NWL levels, and when extracting at level ILEV > 0, this is equal to
DWTLVFRðNWL� ILEVþ 1Þ.

1: ILEV – INTEGER Input

On entry: the level at which coefficients are to be extracted.

If ILEV ¼ 0, it is assumed that the coefficient array C was produced by a preceding call to the
single level routine C09FAF.

If ILEV > 0, it is assumed that the coefficient array C was produced by a preceding call to the
multi-level routine C09FCF.

Constraints:

ILEV ¼ 0 (following a call to C09FAF);
0 � ILEV � NWL, where NWL is as used in a preceding call to C09FCF;
if CINDEX ¼ 0, ILEV ¼ NWL (following a call to C09FCF).

2: CINDEX – INTEGER Input

On entry: identifies which coefficients to extract. The coefficients are identified as follows:

CINDEX ¼ 0
The approximation coefficients, produced by application of the low pass filter over
columns, rows and frames of A (LLL). After a call to the multi-level transform routine
C09FCF (which implies that ILEV > 0) the approximation coefficients are available only
for ILEV ¼ NWL, where NWL is the value used in a preceding call to C09FCF.

CINDEX ¼ 1
The detail coefficients produced by applying the low pass filter over columns and rows of
A and the high pass filter over frames (LLH).

CINDEX ¼ 2
The detail coefficients produced by applying the low pass filter over columns, high pass
filter over rows and low pass filter over frames of A (LHL).

CINDEX ¼ 3
The detail coefficients produced by applying the low pass filter over columns of A and
high pass filter over rows and frames (LHH).

CINDEX ¼ 4
The detail coefficients produced by applying the high pass filter over columns of A and
low pass filter over rows and frames (HLL).

CINDEX ¼ 5
The detail coefficients produced by applying the high pass filter over columns, low pass
filter over rows and high pass filter over frames of A (HLH).

CINDEX ¼ 6
The detail coefficients produced by applying the high pass filter over columns and rows of
A and the low pass filter over frames (HHL).

CINDEX ¼ 7
The detail coefficients produced by applying the high pass filter over columns, rows and
frames of A (HHH).

Constraints:

if ILEV ¼ 0, 0 � CINDEX � 7;
if ILEV ¼ NWL, following a call to C09FCF transforming NWL levels,
0 � CINDEX � 7;
otherwise 1 � CINDEX � 7.
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3: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09FYF is
called.

Constraint: LENC must be unchanged from the value used in the preceding call to either
C09FAF or C09FCF..

4: CðLENCÞ – REAL (KIND=nag_wp) array Input

On entry: DWT coefficients, as computed by C09FAF or C09FCF.

5: DðLDD; SDD; �Þ – REAL (KIND=nag_wp) array Output

Note: the last dimension of the array D must be at least ncfr.

On exit: the requested coefficients.

If the DWT coefficients were computed by C09FAF then

if CINDEX ¼ 0, the approximation coefficients are stored in Dði; j; kÞ, for
i ¼ 1; 2; . . . ; ncm, j ¼ 1; 2; . . . ; ncn and k ¼ 1; 2; . . . ; ncfr;

if 1 � CINDEX � 7, the detail coefficients, as indicated by CINDEX, are stored in
Dði; j; kÞ, for i ¼ 1; 2; . . . ; ncm, j ¼ 1; 2; . . . ; ncn and k ¼ 1; 2; . . . ; ncfr.

If the DWT coefficients were computed by C09FCF then

if CINDEX ¼ 0 and ILEV ¼ NWL, the approximation coefficients are stored in Dði; j; kÞ,
for i ¼ 1; 2; . . . ; ncm, j ¼ 1; 2; . . . ; ncn and k ¼ 1; 2; . . . ; ncfr;

if 1 � CINDEX � 7, the detail coefficients, as indicated by CINDEX, for level ILEV are
stored in Dði; j; kÞ, for i ¼ 1; 2; . . . ; ncm, j ¼ 1; 2; . . . ; ncn and k ¼ 1; 2; . . . ; ncfr.

6: LDD – INTEGER Input

On entry: the first dimension of the array D as declared in the (sub)program from which C09FYF
is called.

Constraint: LDD � ncm.

7: SDD – INTEGER Input

On entry: the second dimension of the array D as declared in the (sub)program from which
C09FYF is called.

Constraint: SDD � ncn.

8: ICOMMð260Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ACF.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ILEV ¼ valueh i.
Constraint: ILEV ¼ 0 following a call to the single level routine C09FAF.

On entry, ILEV ¼ valueh i.
Constraint: ILEV > 0 following a call to the multi-level routine C09FCF.

On entry, ILEV ¼ valueh i and NWL ¼ valueh i.
Constraint: ILEV � NWL, where NWL is the number of levels used in the call to C09FCF.

IFAIL ¼ 2

On entry, CINDEX ¼ valueh i.
Constraint: CINDEX � 7.

On entry, CINDEX ¼ valueh i.
Constraint: CINDEX � 0.

IFAIL ¼ 3

On entry, LENC ¼ valueh i and nct ¼ valueh i.
Constraint: LENC � nct, where nct is the number of DWT coefficients computed in the preceding
call to C09FAF.

On entry, LENC ¼ valueh i and nct ¼ valueh i.
Constraint: LENC � nct, where nct is the number of DWT coefficients computed in the preceding
call to C09FCF.

IFAIL ¼ 4

On entry, LDD ¼ valueh i and ncm ¼ valueh i.
Constraint: LDD � ncm, where ncm is the number of DWT coefficients in the first dimension at
the selected level ILEV.

On entry, LDD ¼ valueh i and ncm ¼ valueh i.
Constraint: LDD � ncm, where ncm is the number of DWT coefficients in the first dimension
following the single level transform.

On entry, SDD ¼ valueh i and ncn ¼ valueh i.
Constraint: SDD � ncn, where ncn is the number of DWT coefficients in the second dimension at
the selected level ILEV.

On entry, SDD ¼ valueh i and ncn ¼ valueh i.
Constraint: SDD � ncn, where ncn is the number of DWT coefficients in the second dimension
following the single level transform.

IFAIL ¼ 5

On entry, ILEV ¼ valueh i and NWL ¼ valueh i, but CINDEX ¼ 0.
Constraint: CINDEX > 0 when ILEV < NWL in the preceding call to C09FCF.

IFAIL ¼ 6

Either the initialization routine has not been called first or ICOMM has been corrupted.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

C09FYF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in C09ACF, C09FAF, C09FCF and C09FZF.
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NAG Library Routine Document

C09FZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C09FZF inserts a selected set of three-dimensional discrete wavelet transform (DWT) coefficients into
the full set of coefficients stored in compact form, which may be later used as input to the
reconstruction routines C09FBF or C09FDF.

2 Specification

SUBROUTINE C09FZF (ILEV, CINDEX, LENC, C, D, LDD, SDD, ICOMM, IFAIL)

INTEGER ILEV, CINDEX, LENC, LDD, SDD, ICOMM(260), IFAIL
REAL (KIND=nag_wp) C(LENC), D(LDD,SDD,*)

3 Description

C09FZF inserts a selected set of three-dimensional DWT coefficients into the full set of coefficients
stored in compact form in a one-dimensional array C. It is required that C09FZF is preceded by a call
to the initialization routine C09ACF and either the forwards transform routine C09FAF or multi-level
forwards transform routine C09FCF.

Given an initial three-dimensional data set A, a prior call to C09FAF or C09FCF computes the
approximation coefficients (at the highest requested level in the case of C09FCF) and, seven sets of
detail coefficients (at all levels in the case of C09FCF) and stores these in compact form in a one-
dimensional array C. C09FYF can then extract either the approximation coefficients or one of the sets
of detail coefficients (at one of the levels following C09FCF) into a three-dimensional array, D.
Following some calculation on this set of coefficients (for example, denoising), the updated coefficients
in D are inserted back into the full set C using C09FZF. Several extractions and insertions may be
performed. C09FBF or C09FDF can then be used to reconstruct a manipulated data set ~A. The
dimensions of D depend on the level extracted and are available from either: the arrays DWTLVM,
DWTLVN and DWTLVFR as returned by C09FCF if this was called first; or, otherwise from NWCT,
NWCN and NWCFR as returned by C09ACF. See Section 2.1 in the C09 Chapter Introduction for a
discussion of the three-dimensional DWT.

4 References

None.

5 Arguments

Note: the following notation is used in this section:

ncm is the number of wavelet coefficients in the first dimension. Following a call to C09FAF (i.e.,
when ILEV ¼ 0) this is equal to NWCT= 8� NWCN� NWCFRð Þ as returned by C09ACF.
Following a call to C09FCF transforming NWL levels, and when inserting at level ILEV > 0,
this is equal to DWTLVMðNWL� ILEVþ 1Þ.
ncn is the number of wavelet coefficients in the second dimension. Following a call to C09FAF (i.
e., when ILEV ¼ 0) this is equal to NWCN as returned by C09ACF. Following a call to C09FCF
transforming NWL levels, and when inserting at level ILEV > 0, this is equal to
DWTLVNðNWL� ILEVþ 1Þ.
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ncfr is the number of wavelet coefficients in the third dimension. Following a call to C09FAF (i.
e., when ILEV ¼ 0) this is equal to NWCFR as returned by C09ACF. Following a call to
C09FCF transforming NWL levels, and when inserting at level ILEV > 0, this is equal to
DWTLVFRðNWL� ILEVþ 1Þ.

1: ILEV – INTEGER Input

On entry: the level at which coefficients are to be inserted.

If ILEV ¼ 0, it is assumed that the coefficient array C was produced by a preceding call to the
single level routine C09FAF.

If ILEV > 0, it is assumed that the coefficient array C was produced by a preceding call to the
multi-level routine C09FCF.

Constraints:

ILEV ¼ 0 (following a call to C09FAF);
0 � ILEV � NWL, where NWL is as used in a preceding call to C09FCF;
if CINDEX ¼ 0, ILEV ¼ NWL (following a call to C09FCF).

2: CINDEX – INTEGER Input

On entry: identifies which coefficients to insert. The coefficients are identified as follows:

CINDEX ¼ 0
The approximation coefficients, produced by application of the low pass filter over
columns, rows and frames of A (LLL). After a call to the multi-level transform routine
C09FCF (which implies that ILEV > 0) the approximation coefficients are present only for
ILEV ¼ NWL, where NWL is the value used in a preceding call to C09FCF.

CINDEX ¼ 1
The detail coefficients produced by applying the low pass filter over columns and rows of
A and the high pass filter over frames (LLH).

CINDEX ¼ 2
The detail coefficients produced by applying the low pass filter over columns, high pass
filter over rows and low pass filter over frames of A (LHL).

CINDEX ¼ 3
The detail coefficients produced by applying the low pass filter over columns of A and
high pass filter over rows and frames (LHH).

CINDEX ¼ 4
The detail coefficients produced by applying the high pass filter over columns of A and
low pass filter over rows and frames (HLL).

CINDEX ¼ 5
The detail coefficients produced by applying the high pass filter over columns, low pass
filter over rows and high pass filter over frames of A (HLH).

CINDEX ¼ 6
The detail coefficients produced by applying the high pass filter over columns and rows of
A and the low pass filter over frames (HHL).

CINDEX ¼ 7
The detail coefficients produced by applying the high pass filter over columns, rows and
frames of A (HHH).

Constraints:

if ILEV ¼ 0, 0 � CINDEX � 7;
if ILEV ¼ NWL, following a call to C09FCF transforming NWL levels,
0 � CINDEX � 7;
otherwise 1 � CINDEX � 7.
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3: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which C09FZF is
called.

Constraint: LENC must be unchanged from the value used in the preceding call to either
C09FAF or C09FCF..

4: CðLENCÞ – REAL (KIND=nag_wp) array Input/Output

On entry: contains the DWT coefficients inserted by previous calls to C09FZF, or computed by a
previous call to either C09FAF or C09FCF.

On exit: contains the same DWT coefficients provided on entry except for those identified by
ILEV and CINDEX, which are updated with the values supplied in D, inserted into the correct
locations as expected by one of the reconstruction routines C09FBF (if C09FAF was called
previously) or C09FDF (if C09FCF was called previously).

5: DðLDD; SDD; �Þ – REAL (KIND=nag_wp) array Input

Note: the last dimension of the array D must be at least ncfr.

On entry: the coefficients to be inserted.

If the DWT coefficients were computed by C09FAF then

if CINDEX ¼ 0, the approximation coefficients must be stored in Dði; j; kÞ, for
i ¼ 1; 2; . . . ; ncm, j ¼ 1; 2; . . . ; ncn and k ¼ 1; 2; . . . ; ncfr;

if 1 � CINDEX � 7, the detail coefficients, as indicated by CINDEX, must be stored in
Dði; j; kÞ, for i ¼ 1; 2; . . . ; ncm, j ¼ 1; 2; . . . ; ncn and k ¼ 1; 2; . . . ; ncfr.

If the DWT coefficients were computed by C09FCF then

if CINDEX ¼ 0 and ILEV ¼ NWL, the approximation coefficients must be stored in
Dði; j; kÞ, for i ¼ 1; 2; . . . ; ncm, j ¼ 1; 2; . . . ; ncn and k ¼ 1; 2; . . . ; ncfr;

if 1 � CINDEX � 7, the detail coefficients, as indicated by CINDEX, for level ILEV must
be stored in Dði; j; kÞ, for i ¼ 1; 2; . . . ; ncm, j ¼ 1; 2; . . . ; ncn and k ¼ 1; 2; . . . ; ncfr.

6: LDD – INTEGER Input

On entry: the first dimension of the array D as declared in the (sub)program from which C09FZF
is called.

Constraint: LDD > ncm.

7: SDD – INTEGER Input

On entry: the second dimension of the array D as declared in the (sub)program from which
C09FZF is called.

Constraint: SDD > ncn.

8: ICOMMð260Þ – INTEGER array Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension as setup
in the call to the initialization routine C09ACF.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ILEV ¼ valueh i.
Constraint: ILEV ¼ 0 following a call to the single level routine C09FAF.

On entry, ILEV ¼ valueh i.
Constraint: ILEV > 0 following a call to the multi-level routine C09FCF.

On entry, ILEV ¼ valueh i and NWL ¼ valueh i.
Constraint: ILEV � NWL, where NWL is the number of levels used in the call to C09FCF.

IFAIL ¼ 2

On entry, CINDEX ¼ valueh i.
Constraint: CINDEX � 7.

On entry, CINDEX ¼ valueh i.
Constraint: CINDEX � 0.

IFAIL ¼ 3

On entry, LENC ¼ valueh i and nct ¼ valueh i.
Constraint: LENC � nct, where nct is the number of DWT coefficients computed in a previous
call to C09FAF.

On entry, LENC ¼ valueh i and nct ¼ valueh i.
Constraint: LENC � nct, where nct is the number of DWT coefficients computed in a previous
call to C09FCF.

IFAIL ¼ 4

On entry, LDD ¼ valueh i and ncm ¼ valueh i.
Constraint: LDD � ncm, where ncm is the number of DWT coefficients in the first dimension at
the selected level ILEV.

On entry, LDD ¼ valueh i and ncm ¼ valueh i.
Constraint: LDD � ncm, where ncm is the number of DWT coefficients in the first dimension
following the single level transform.

On entry, SDD ¼ valueh i and ncn ¼ valueh i.
Constraint: SDD � ncn, where ncn is the number of DWT coefficients in the second dimension at
the selected level ILEV.

On entry, SDD ¼ valueh i and ncn ¼ valueh i.
Constraint: SDD � ncn, where ncn is the number of DWT coefficients in the second dimension
following the single level transform.

IFAIL ¼ 5

On entry, ILEV ¼ valueh i and NWL ¼ valueh i, but CINDEX ¼ 0.
Constraint: CINDEX > 0 when ILEV < NWL in the preceding call to C09FCF.
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IFAIL ¼ 6

Either the initialization routine has not been called first or ICOMM has been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

C09FZF is not threaded in any implementation.

9 Further Comments

None.

10 Example

The following example demonstrates using the coefficient extraction and insertion routines in order to
apply denoising using a thresholding operation. The original input data has artificial noise introduced to
it, taken from a normal random number distribution. Reconstruction then takes place on both the noisy
data and denoised data. The Mean Square Errors (MSE) of the two reconstructions are printed along
with the reconstruction of the denoised data. The MSE of the denoised reconstruction is less than that
of the noisy reconstruction.

10.1 Program Text

Program c09fzfe

! C09FZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c09acf, c09fcf, c09fdf, c09fyf, c09fzf, dnrm2, &

nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: mse, thresh
Integer :: cindex, denoised, fr, i, ifail, &

ilev, j, k, lda, ldb, ldd, lenc, m, &
n, nf, nwcfr, nwcn, nwct, nwl, sda, &
sdb, sdd

Character (10) :: mode, wavnam, wtrans
! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: a(:,:,:), an(:,:,:), b(:,:,:), c(:), &
d(:,:,:), e(:,:,:)

Integer, Allocatable :: dwtlvfr(:), dwtlvm(:), dwtlvn(:)
Integer :: icomm(260)

! .. Intrinsic Procedures ..
Intrinsic :: abs, log, real, sqrt

! .. Executable Statements ..
Write (nout,*) ’C09FZF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read problem parameters
Read (nin,*) m, n, fr
Read (nin,*) wavnam, mode
Write (nout,99999) wavnam, mode, m, n, fr

! Allocate arrays to hold the original data, A, original data plus noise,
! AN, reconstruction using denoised coefficients, B, and randomly
! generated noise, X.

lda = m
ldb = m
sda = n
sdb = n
Allocate (a(lda,lda,fr),an(lda,lda,fr),b(ldb,ldb,fr),e(m,n,fr))

! Read in the original data
Do k = 1, fr

Do i = 1, m
Read (nin,*) a(i,1:n,k)

End Do
If (k<fr) Then

Read (nin,*)
End If

End Do

! Output the original data
Write (nout,99997)
Do k = 1, fr

Write (nout,99991) k
Do i = 1, m

Write (nout,99998) a(i,1:n,k)
End Do

End Do

! Fill the array AN with the original data in A plus some noise
! and return a VisuShrink denoising threshold, thresh.

Call create_noise(a,an,lda,sda,m,n,fr,thresh)

! Output the noisy data
Write (nout,99996)
Do k = 1, fr

Write (nout,99991) k
Do i = 1, m

Write (nout,99998) an(i,1:n,k)
End Do

End Do

! Query wavelet filter dimensions
! For Multi-Resolution Analysis, decomposition, wtrans = ’M’

wtrans = ’Multilevel’
ifail = 0
Call c09acf(wavnam,wtrans,mode,m,n,fr,nwl,nf,nwct,nwcn,nwcfr,icomm, &

ifail)

! Allocate arrays to hold the coefficients, C, and the dimensions
! of the coefficients at each level, DWTLVM, DWTLVN, DWTLVFR

lenc = nwct
Allocate (c(lenc),dwtlvm(nwl),dwtlvn(nwl),dwtlvfr(nwl))

! Perform a forwards multi-level transform on the noisy data
ifail = 0
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Call c09fcf(m,n,fr,an,lda,sda,lenc,c,nwl,dwtlvm,dwtlvn,dwtlvfr,icomm, &
ifail)

! Reconstruct without thresholding of detail coefficients
ifail = 0
Call c09fdf(nwl,lenc,c,m,n,fr,b,ldb,sdb,icomm,ifail)

! Calculate the Mean Square Error of the noisy reconstruction
e(:,:,:) = a(:,:,:) - b(:,:,:)
mse = dnrm2(m*n*fr,e,1)
mse = mse**2
mse = mse/real(m*n*fr,kind=nag_wp)
Write (nout,99995) mse

! Now perform the denoising by extracting each of the detail
! coefficients at each level and applying hard thresholding

! Allocate a 3D array to hold the detail coefficients
ldd = dwtlvm(nwl)
sdd = dwtlvn(nwl)
Allocate (d(ldd,sdd,dwtlvn(nwl)))

denoised = 0
! For each level

Do ilev = nwl, 1, -1

! Select detail coefficients
Do cindex = 1, 7

! Extract coefficients into the 3D array D
ifail = 0
Call c09fyf(ilev,cindex,lenc,c,d,ldd,sdd,icomm,ifail)

! Perform the hard thresholding operation
Do k = 1, dwtlvfr(nwl-ilev+1)

Do j = 1, dwtlvn(nwl-ilev+1)
Do i = 1, dwtlvm(nwl-ilev+1)

If (abs(d(i,j,k))<thresh) Then
d(i,j,k) = 0.0_nag_wp
denoised = denoised + 1

End If
End Do

End Do
End Do

! Insert the denoised coefficients back into C
ifail = 0
Call c09fzf(ilev,cindex,lenc,c,d,ldd,sdd,icomm,ifail)

End Do

End Do

! Output the number of coefficients that were set to zero
Write (nout,99994) denoised, nwct - dwtlvm(1)*dwtlvn(1)*dwtlvfr(1)

! Reconstruct original data following thresholding of detail coefficients
ifail = 0
Call c09fdf(nwl,lenc,c,m,n,fr,b,ldb,sdb,icomm,ifail)

! Calculate the Mean Square Error of the denoised reconstruction
e(:,:,:) = a(:,:,:) - b(:,:,:)
mse = dnrm2(m*n*fr,e,1)
mse = mse**2
mse = mse/real(m*n*fr,kind=nag_wp)
Write (nout,99993) mse

! Output the denoised reconstruction
Write (nout,99992)
Do k = 1, fr

Write (nout,99991) k
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Do i = 1, m
Write (nout,99998) b(i,1:n,k)

End Do
End Do

99999 Format (1X,’ MLDWT :: Wavelet : ’,A,/,1X,’ End mode : ’,A,/, &
1X,’ M : ’,I4,/,1X,’ N : ’,I4,/,1X, &
’ FR : ’,I4)

99998 Format (8(F8.4,1X),:)
99997 Format (/,1X,’ Original data A : ’)
99996 Format (/,1X,’ Original data plus noise AN : ’)
99995 Format (/,1X,’ Without denoising Mean Square Error is ’,F9.6)
99994 Format (/,1X,’ Number of coefficients denoised is ’,I3,’ out of ’,I3)
99993 Format (/,1X,’ With denoising Mean Square Error is ’,F9.6)
99992 Format (/,1X,’ Reconstruction of denoised input D : ’)
99991 Format (1X,’ Frame ’,I2,’ : ’)

Contains

! Subroutine fills the output array AN with the data in A
! plus some noise taken from a normal distribution, and
! returns the VisuShrink denoising threshold, thresh.

Subroutine create_noise(a,an,lda,sda,m,n,fr,thresh)

! .. Use Statements ..
Use nag_library, Only: g05kff, g05skf

! .. Parameters ..
Integer, Parameter :: lseed = 1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: thresh
Integer, Intent (In) :: fr, lda, m, n, sda

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: a(lda,sda,fr)
Real (Kind=nag_wp), Intent (Out) :: an(lda,sda,fr)

! .. Local Scalars ..
Real (Kind=nag_wp) :: var, xmu
Integer :: genid, i, ifail, j, lstate, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:,:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..

! Set up call to g05skf in order to create some random noise from
! a normal distribution to add to the original data.
! Initial call to RNG initializer to get size of STATE array

seed(1) = 642521
genid = 3
subid = 0
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Set the distribution parameters for the random noise.
xmu = 0.0_nag_wp
var = 0.1E-3_nag_wp

Allocate (x(m,n,fr))

! Generate the noise variates
ifail = 0
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Do j = 1, fr
Do i = 1, n

Call g05skf(m,xmu,var,state,x(1,i,j),ifail)
End Do

End Do

! Add the noise to the original input and save in AN
an(:,:,:) = a(:,:,:) + x(:,:,:)

! Calculate the threshold based on VisuShrink denoising
thresh = sqrt(var)*sqrt(2._nag_wp*log(real(m*n*fr,kind=nag_wp)))

End Subroutine create_noise

End Program c09fzfe

10.2 Program Data

C09FZF Example Program Data
4, 4, 4 : m, n, fr
Haar Period : wavnam, mode

0.01 0.01 0.01 0.01
1.00 1.00 1.00 1.00
0.01 0.01 0.01 0.01
1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00
0.01 0.01 0.01 0.01
1.00 1.00 1.00 1.00
0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01
1.00 1.00 1.00 1.00
0.01 0.01 0.01 0.01
1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00
0.01 0.01 0.01 0.01
1.00 1.00 1.00 1.00
0.01 0.01 0.01 0.01

10.3 Program Results

C09FZF Example Program Results

MLDWT :: Wavelet : Haar
End mode : Period
M : 4
N : 4
FR : 4

Original data A :
Frame 1 :
0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000
Frame 2 :
1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100
Frame 3 :
0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000
Frame 4 :
1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100
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1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100

Original data plus noise AN :
Frame 1 :
0.0135 -0.0093 -0.0004 0.0378
1.0015 0.9842 1.0007 0.9889

-0.0017 0.0139 0.0138 -0.0049
0.9899 1.0070 1.0049 0.9983
Frame 2 :
1.0094 1.0080 0.9921 0.9902
0.0105 -0.0009 0.0160 0.0197
0.9994 1.0044 0.9956 1.0014
0.0091 -0.0084 0.0187 0.0023
Frame 3 :
0.0058 -0.0053 0.0011 0.0159
1.0113 0.9894 1.0018 0.9992
0.0106 0.0082 0.0093 0.0153
1.0023 1.0157 1.0084 0.9834
Frame 4 :
0.9969 1.0010 0.9904 0.9968
0.0227 0.0022 0.0062 0.0214
0.9948 0.9981 0.9951 0.9968
0.0121 0.0103 0.0114 0.0206

Without denoising Mean Square Error is 0.000081

Number of coefficients denoised is 55 out of 63

With denoising Mean Square Error is 0.000015

Reconstruction of denoised input D :
Frame 1 :
0.0053 0.0053 0.0166 0.0166
1.0026 1.0026 0.9913 0.9913
0.0055 0.0055 0.0077 0.0077
1.0025 1.0025 1.0003 1.0003
Frame 2 :
1.0026 1.0026 0.9913 0.9913
0.0053 0.0053 0.0166 0.0166
1.0025 1.0025 1.0003 1.0003
0.0055 0.0055 0.0077 0.0077
Frame 3 :
0.0073 0.0073 0.0110 0.0110
1.0006 1.0006 0.9969 0.9969
0.0078 0.0078 0.0131 0.0131
1.0002 1.0002 0.9949 0.9949
Frame 4 :
1.0006 1.0006 0.9969 0.9969
0.0073 0.0073 0.0110 0.0110
1.0002 1.0002 0.9949 0.9949
0.0078 0.0078 0.0131 0.0131
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NAG Library Chapter Contents

D01 – Quadrature

D01 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

D01AHF 8 nagf_quad_1d_fin_well
One-dimensional quadrature, adaptive, finite interval, strategy due to
Patterson, suitable for well-behaved integrands

D01AJF 8 nagf_quad_1d_fin_bad
One-dimensional quadrature, adaptive, finite interval, strategy due to
Piessens and de Doncker, allowing for badly behaved integrands

D01AKF 8 nagf_quad_1d_fin_osc
One-dimensional quadrature, adaptive, finite interval, method suitable for
oscillating functions

D01ALF 8 nagf_quad_1d_fin_sing
One-dimensional quadrature, adaptive, finite interval, allowing for
singularities at user-specified break-points

D01AMF 8 nagf_quad_1d_inf
One-dimensional quadrature, adaptive, infinite or semi-infinite interval

D01ANF 8 nagf_quad_1d_fin_wtrig
One-dimensional quadrature, adaptive, finite interval, weight function
cos !xð Þ or sin !xð Þ

D01APF 8 nagf_quad_1d_fin_wsing
One-dimensional quadrature, adaptive, finite interval, weight function with
end-point singularities of algebraico-logarithmic type

D01AQF 8 nagf_quad_1d_fin_wcauchy
One-dimensional quadrature, adaptive, finite interval, weight function
1= x� cð Þ, Cauchy principal value (Hilbert transform)

D01ARF 10 nagf_quad_1d_indef
One-dimensional quadrature, non-adaptive, finite interval with provision for
indefinite integrals

D01ASF 13 nagf_quad_1d_inf_wtrig
One-dimensional quadrature, adaptive, semi-infinite interval, weight
function cos !xð Þ or sin !xð Þ

D01ATF 13 nagf_quad_1d_fin_bad_vec
One-dimensional quadrature, adaptive, finite interval, variant of D01AJF
efficient on vector machines

D01AUF 13 nagf_quad_1d_fin_osc_vec
One-dimensional quadrature, adaptive, finite interval, variant of D01AKF
efficient on vector machines

D01BCF 8 nagf_quad_1d_gauss_wgen
Calculation of weights and abscissae for Gaussian quadrature rules, general
choice of rule

D01BDF 8 nagf_quad_1d_fin_smooth
One-dimensional quadrature, non-adaptive, finite interval

D01DAF 5 nagf_quad_2d_fin
Two-dimensional quadrature, finite region

D01EAF 12 nagf_quad_md_adapt_multi
Multidimensional adaptive quadrature over hyper-rectangle, multiple
integrands

D01ESF 25 nagf_quad_md_sgq_multi_vec
Multi-dimensional quadrature using sparse grids
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D01FBF 8 nagf_quad_md_gauss
Multidimensional Gaussian quadrature over hyper-rectangle

D01FCF 8 nagf_quad_md_adapt
Multidimensional adaptive quadrature over hyper-rectangle

D01FDF 10 nagf_quad_md_sphere
Multidimensional quadrature, Sag–Szekeres method, general product region
or n-sphere

D01GAF 5 nagf_quad_1d_data
One-dimensional quadrature, integration of function defined by data values,
Gill–Miller method

D01GBF 10 nagf_quad_md_mcarlo
Multidimensional quadrature over hyper-rectangle, Monte–Carlo method

D01GCF 10 nagf_quad_md_numth
Multidimensional quadrature, general product region, number-theoretic
method

D01GDF 14 nagf_quad_md_numth_vec
Multidimensional quadrature, general product region, number-theoretic
method, variant of D01GCF efficient on vector machines

D01GYF 10 nagf_quad_md_numth_coeff_prime
Korobov optimal coefficients for use in D01GCF or D01GDF, when
number of points is prime

D01GZF 10 nagf_quad_md_numth_coeff_2prime
Korobov optimal coefficients for use in D01GCF or D01GDF, when
number of points is product of two primes

D01JAF 10 nagf_quad_md_sphere_bad
Multidimensional quadrature over an n-sphere, allowing for badly behaved
integrands

D01PAF 10 nagf_quad_md_simplex
Multidimensional quadrature over an n-simplex

D01RAF 24 nagf_quad_1d_gen_vec_multi_rcomm
One-dimensional quadrature, adaptive, finite interval, multiple integrands,
vectorized abscissae, reverse communication

D01RBF 24 nagf_quad_withdraw_1d_gen_vec_multi_diagnostic
Diagnostic routine for D01RAF
Note: this routine is scheduled for withdrawal at Mark 27, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

D01RCF 24 nagf_quad_1d_gen_vec_multi_dimreq
Determine required array dimensions for D01RAF

D01RGF 24 nagf_quad_1d_fin_gonnet_vec
One-dimensional quadrature, adaptive, finite interval, strategy due to
Gonnet, allowing for badly behaved integrands

D01TBF 24 nagf_quad_1d_gauss_wres
Pre-computed weights and abscissae for Gaussian quadrature rules,
restricted choice of rule

D01TDF 26 nagf_quad_1d_gauss_wrec
Calculation of weights and abscissae for Gaussian quadrature rules, method
of Golub and Welsch

D01TEF 26 nagf_quad_1d_gauss_recm
Generates recursion coefficients needed by D01TDF to calculate a Gaussian
quadrature rule

D01UAF 24 nagf_quad_1d_gauss_vec
One-dimensional Gaussian quadrature, choice of weight functions
(vectorized)

D01UBF 26 nagf_quad_1d_inf_exp_wt

Non-automatic routine to evaluate
Z 1
0

exp �x2
� �

f xð Þ dx
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D01ZKF 24 nagf_quad_opt_set
Option setting routine

D01ZLF 24 nagf_quad_opt_get
Option getting routine
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1 Scope of the Chapter

This chapter provides routines for the numerical evaluation of definite integrals in one or more
dimensions and for evaluating weights and abscissae of integration rules.

2 Background to the Problems

The routines in this chapter are designed to estimate:

(a) the value of a one-dimensional definite integral of the formZ b

a

f xð Þ dx ð1Þ

where f xð Þ is defined by you, either at a set of points xi; f xið Þð Þ, for i ¼ 1; 2; . . . ; n, where
a ¼ x1 < x2 < � � � < xn ¼ b, or in the form of a function; and the limits of integration a; b may be
finite or infinite.

Some methods are specially designed for integrands of the form

f xð Þ ¼ w xð Þg xð Þ ð2Þ

which contain a factor w xð Þ, called the weight-function, of a specific form. These methods take full
account of any peculiar behaviour attributable to the w xð Þ factor.

(b) the values of the one-dimensional indefinite integrals arising from (1) where the ranges of
integration are interior to the interval a; b½ �.

(c) the value of a multidimensional definite integral of the formZ
Rn

f x1; x2; . . . ; xnð Þ dxn � � � dx2dx1 ð3Þ

where f x1; x2; . . . ; xnð Þ is a function defined by you and Rn is some region of n-dimensional
space.

The simplest form of Rn is the n-rectangle defined by

ai � xi � bi; i ¼ 1; 2; . . . ; n ð4Þ

where ai and bi are constants. When ai and bi are functions of xj (j < i), the region can easily be
transformed to the rectangular form (see page 266 of Davis and Rabinowitz (1975)). Some of the
methods described incorporate the transformation procedure.

2.1 One-dimensional Integrals

To estimate the value of a one-dimensional integral, a quadrature rule uses an approximation in the
form of a weighted sum of integrand values, i.e.,Z b

a

f xð Þ dx ’
XN
i¼1
wif xið Þ: ð5Þ

The points xi within the interval a; b½ � are known as the abscissae, and the wi are known as the weights.

More generally, if the integrand has the form (2), the corresponding formula isZ b

a

w xð Þg xð Þ dx ’
XN
i¼1
wig xið Þ: ð6Þ

If the integrand is known only at a fixed set of points, these points must be used as the abscissae, and
the weighted sum is calculated using finite difference methods. However, if the functional form of the
integrand is known, so that its value at any abscissa is easily obtained, then a wide variety of quadrature
rules are available, each characterised by its choice of abscissae and the corresponding weights.
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The appropriate rule to use will depend on the interval a; b½ � – whether finite or otherwise – and on the
form of any w xð Þ factor in the integrand. A suitable value of N depends on the general behaviour of
f xð Þ; or of g xð Þ, if there is a w xð Þ factor present.
Among possible rules, we mention particularly the Gaussian formulae, which employ a distribution of
abscissae which is optimal for f xð Þ or g xð Þ of polynomial form.

The choice of basic rules constitutes one of the principles on which methods for one-dimensional
integrals may be classified. The other major basis of classification is the implementation strategy, of
which some types are now presented.

(a) Single rule evaluation procedures

A fixed number of abscissae, N , is used. This number and the particular rule chosen uniquely
determine the weights and abscissae. No estimate is made of the accuracy of the result.

(b) Automatic procedures

The number of abscissae, N , within a; b½ � is gradually increased until consistency is achieved to
within a level of accuracy (absolute or relative) you requested. There are essentially two ways of
doing this; hybrid forms of these two methods are also possible:

(i) whole interval procedures (non-adaptive)

A series of rules using increasing values of N are successively applied over the whole interval
a; b½ �. It is clearly more economical if abscissae already used for a lower value of N can be
used again as part of a higher-order formula. This principle is known as optimal extension.
There is no overlap between the abscissae used in Gaussian formulae of different orders.
However, the Kronrod formulae are designed to give an optimal 2N þ 1ð Þ-point formula by
adding N þ 1ð Þ points to an N-point Gauss formula. Further extensions have been developed
by Patterson.

(ii) adaptive procedures

The interval a; b½ � is repeatedly divided into a number of sub-intervals, and integration rules
are applied separately to each sub-interval. Typically, the subdivision process will be carried
further in the neighbourhood of a sharp peak in the integrand than where the curve is smooth.
Thus, the distribution of abscissae is adapted to the shape of the integrand.

Subdivision raises the problem of what constitutes an acceptable accuracy in each sub-interval.
The usual global acceptability criterion demands that the sum of the absolute values of the
error estimates in the sub-intervals should meet the conditions required of the error over the
whole interval. Automatic extrapolation over several levels of subdivision may eliminate the
effects of some types of singularities.

An ideal general-purpose method would be an automatic method which could be used for a wide variety
of integrands, was efficient (i.e., required the use of as few abscissae as possible), and was reliable (i.e.,
always gave results to within the requested accuracy). Complete reliability is unobtainable, and
generally higher reliability is obtained at the expense of efficiency, and vice versa. It must therefore be
emphasized that the automatic routines in this chapter cannot be assumed to be 100% reliable. In
general, however, the reliability is very high.

2.2 Multidimensional Integrals

A distinction must be made between cases of moderately low dimensionality (say, up to 4 or 5
dimensions), and those of higher dimensionality. Where the number of dimensions is limited, a one-
dimensional method may be applied to each dimension, according to some suitable strategy, and high
accuracy may be obtainable (using product rules). However, the number of integrand evaluations rises
very rapidly with the number of dimensions, so that the accuracy obtainable with an acceptable amount
of computational labour is limited; for example a product of 3-point rules in 20 dimensions would
require more than 109 integrand evaluations. Special techniques such as the Monte–Carlo methods can
be used to deal with high dimensions.
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(a) Products of one-dimensional rules

Using a two-dimensional integral as an example, we haveZ b1

a1

Z b2

a2

f x; yð Þ dy dx ’
XN
i¼1
wi

Z b2

a2

f xi; yð Þ dy
� �

ð7Þ

Z b1

a1

Z b2

a2

f x; yð Þ dy dx ’
XN
i¼1

XN
j¼1

wivjf xi; yj
� �

ð8Þ

where wi; xið Þ and vi; yið Þ are the weights and abscissae of the rules used in the respective
dimensions.

A different one-dimensional rule may be used for each dimension, as appropriate to the range and
any weight function present, and a different strategy may be used, as appropriate to the integrand
behaviour as a function of each independent variable.

For a rule-evaluation strategy in all dimensions, the formula (8) is applied in a straightforward
manner. For automatic strategies (i.e., attempting to attain a requested accuracy), there is a problem
in deciding what accuracy must be requested in the inner integral(s). Reference to formula (7)
shows that the presence of a limited but random error in the y-integration for different values of xi
can produce a ‘jagged’ function of x, which may be difficult to integrate to the desired accuracy
and for this reason products of automatic one-dimensional routines should be used with caution
(see Lyness (1983)).

(b) Monte–Carlo methods

These are based on estimating the mean value of the integrand sampled at points chosen from an
appropriate statistical distribution function. Usually a variance reducing procedure is incorporated
to combat the fundamentally slow rate of convergence of the rudimentary form of the technique.
These methods can be effective by comparison with alternative methods when the integrand
contains singularities or is erratic in some way, but they are of quite limited accuracy.

(c) Number theoretic methods

These are based on the work of Korobov and Conroy and operate by exploiting implicitly the
properties of the Fourier expansion of the integrand. Special rules, constructed from so-called
optimal coefficients, give a particularly uniform distribution of the points throughout n-dimensional
space and from their number theoretic properties minimize the error on a prescribed class of
integrals. The method can be combined with the Monte–Carlo procedure.

(d) Sag–Szekeres method

By transformation this method seeks to induce properties into the integrand which make it
accurately integrable by the trapezoidal rule. The transformation also allows effective control over
the number of integrand evaluations.

(e) Sparse grid methods

Given a set of one-dimensional quadrature rules of increasing levels of accuracy, the sparse grid
method constructs an approximation to a multidimensional integral using d-dimensional tensor
products of the differences between rules of adjacent levels. This provides a lower theoretical
accuracy than the methods in (a), the full grid approach, which is nonetheless still sufficient for
various classes of sufficiently smooth integrands. Furthermore, it requries substantially fewer
evaluations than the full grid approach. Specifically, if a one-dimensional quadrature rule has
N � O 2‘

� �
points, the full grid will require O 2ld

� �
function evaluations, whereas the sparse grid of

level ‘ will require O 2‘d‘�1
� �

. Hence a sparse grid approach is computationally feasible even for
integrals over d � O 100ð Þ.
Sparse grid methods are deterministic, and may be viewed as automatic whole domain procedures
if their level ‘ is allowed to increase.
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(f) Automatic adaptive procedures

An automatic adaptive strategy in several dimensions normally involves division of the region into
subregions, concentrating the divisions in those parts of the region where the integrand is worst
behaved. It is difficult to arrange with any generality for variable limits in the inner integral(s). For
this reason, some methods use a region where all the limits are constants; this is called a hyper-
rectangle. Integrals over regions defined by variable or infinite limits may be handled by
transformation to a hyper-rectangle. Integrals over regions so irregular that such a transformation is
not feasible may be handled by surrounding the region by an appropriate hyper-rectangle and
defining the integrand to be zero outside the desired region. Such a technique should always be
followed by a Monte–Carlo method for integration.

The method used locally in each subregion produced by the adaptive subdivision process is usually
one of three types: Monte–Carlo, number theoretic or deterministic. Deterministic methods are
usually the most rapidly convergent but are often expensive to use for high dimensionality and not
as robust as the other techniques.

3 Recommendations on Choice and Use of Available Routines

This section is divided into five subsections. The first subsection illustrates the difference between
direct and reverse communication routines. The second subsection highlights the different levels of
vectorization provided by different interfaces.

Sections 3.3, 3.4 and 3.5 consider in turn routines for: one-dimensional integrals over a finite interval,
and over a semi-infinite or an infinite interval; and multidimensional integrals. Within each sub-section,
routines are classified by the type of method, which ranges from simple rule evaluation to automatic
adaptive algorithms. The recommendations apply particularly when the primary objective is simply to
compute the value of one or more integrals, and in these cases the automatic adaptive routines are
generally the most convenient and reliable, although also the most expensive in computing time.

Note however that in some circumstances it may be counter-productive to use an automatic routine. If
the results of the quadrature are to be used in turn as input to a further computation (e.g., an ‘outer’
quadrature or an optimization problem), then this further computation may be adversely affected by the
‘jagged performance profile’ of an automatic routine; a simple rule-evaluation routine may provide
much better overall performance. For further guidance, the article by Lyness (1983) is recommended.

3.1 Direct and Reverse Communication

Routines in this chapter which evaluate an integral value may be classified as either direct
communication or reverse communication. See Section 3.3.3 in How to Use the NAG Library and its
Documentation for a description of these terms.

Currently in this chapter the only routine explicitly using reverse communication is D01RAF.

3.2 Choice of Interface

This section concerns the design of the interface for the provision of abscissae, and the subsequent
collection of calculated information, typically integrand evaluations. Vectorized interfaces typically
allow for more efficient operation.

(a) Single abscissa interfaces

The algorithm will provide a single abscissa at which information is required. These are typically
the most simple to use, although they may be significantly less efficient than a vectorized
equivalent. Most of the algorithms in this chapter are of this type.

Examples of this include D01AJF and D01FBF.

(b) Vectorized abscissae interfaces

The algorithm will return a set of abscissae, at all of which information is required. While these are
more complicated to use, they are typically more efficient than a non-vectorized equivalent. They
reduce the overhead of function calls, allow the avoidance of repetition of computations common
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to each of the integrand evaluations, and offer greater scope for vectorization and parallelization of
your code.

Examples include D01RGF, D01UAF, and the routines D01ATF and D01AUF, which are
vectorized equivalents of D01AJF and D01AKF.

(c) Multiple integral interfaces

These are routines which allow for multiple integrals to be estimated simultaneously. As with (b)
above, these are more complicated to use than single integral routines, however they can provide
higher efficiency, particularly if several integrals require the same subcalculations at the same
abscissae. They are most efficient if integrals which are supplied together are expected to have
similar behaviour over the domain, particularly when the algorithm is adaptive.

Examples include D01EAF and D01RAF.

3.3 One-dimensional Integrals over a Finite Interval

(a) Integrand defined at a set of points

If f xð Þ is defined numerically at four or more points, then the Gill–Miller finite difference method
(D01GAF) should be used. The interval of integration is taken to coincide with the range of x
values of the points supplied. It is in the nature of this problem that any routine may be unreliable.
In order to check results independently and so as to provide an alternative technique you may fit
the integrand by Chebyshev series using E02ADF and then use routine E02AJF to evaluate its
integral (which need not be restricted to the range of the integration points, as is the case for
D01GAF). A further alternative is to fit a cubic spline to the data using E02BAF and then to
evaluate its integral using E02BDF.

(b) Integrand defined as a function

If the functional form of f xð Þ is known, then one of the following approaches should be taken.
They are arranged in the order from most specific to most general, hence the first applicable
procedure in the list will be the most efficient. However, if you do not wish to make any
assumptions about the integrand, the most reliable routines to use will be D01ATF (or
D01AJF), D01AUF (or D01AKF), D01ALF, D01RGF or D01RAF, although these will in
general be less efficient for simple integrals.

(i) Rule-evaluation routines

If f xð Þ is known to be sufficiently well behaved (more precisely, can be closely approximated
by a polynomial of moderate degree), a Gaussian routine with a suitable number of abscissae
may be used.

D01BCF or D01TBF with D01FBF may be used if it is required to examine the weights and
abscissae.

D01TBF is faster and more accurate, whereas D01BCF is more general. D01UAF uses the
same quadrature rules as D01TBF, and may be used if you do not explicitly require the
weights and abscissae.

If f xð Þ is well behaved, apart from a weight-function of the form

x� aþ b
2

				 				c or b� xð Þc x� að Þd;

D01BCF with D01FBF may be used.

D01BCF and D01TBF generate weights and abscissae for specific Gauss rules. Weights and
abscissae for other quadrature formulae may be computed using routines D01TDF or D01TEF.
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Wherever possible use D01TDF in preference to D01TEF. The former however requires
information that may not be readily available.

(ii) Automatic whole-interval routines

If f xð Þ is reasonably smooth, and the required accuracy is not too high, the automatic whole
interval routines D01ARF and D01BDF may be used. Additionally, D01ESF with d ¼ 1 may
be used with an appropriate transformation from the unit interval.

D01BDF uses the Gauss 10-point rule, with the 21 point Kronrod extension, and the
subsequent 43 and 87 point Patterson extensions if required.

D01ESF supports multiple simultaneous integrals, and has a vectorized interface. Either high
order Gauss–Patterson rules (of size 2‘ � 1, for ‘ ¼ 1; . . . ; 9), or high order Clenshaw-Curtis
rules (of size 2‘�1 þ 1, for ‘ ¼ 2; . . . ; 12). Gauss–Patterson rules possess greater polynomial
accuracy, whereas Clenshaw–Curtis rules are often well suited to oscillatory integrals.

D01ARF incorporates the same high order Gauss–Patterson rules as D01ESF, and is the only
routine that may be used for indefinite integration.

(iii) Automatic adaptive routines

Firstly, several routines are available for integrands of the form w xð Þg xð Þ where g xð Þ is a
‘smooth’ function (i.e., has no singularities, sharp peaks or violent oscillations in the interval
of integration) and w xð Þ is a weight function of one of the following forms.

1. if w xð Þ ¼ b� xð Þ� x� að Þ� log b� xð Þð Þk log x� að Þð Þl, where k; l ¼ 0 or 1, �; � > �1: use
D01APF;

2. if w xð Þ ¼ 1
x�c : use D01AQF (this integral is called the Hilbert transform of g);

3. if w xð Þ ¼ cos !xð Þ or sin !xð Þ: use D01ANF (this routine can also handle certain types of
singularities in g xð Þ).

Secondly, there are multiple routines for general f xð Þ, using different strategies.

D01ATF (and D01AJF), and D01AUF (and D01AKF) use the strategy of Piessens et al.
(1983), using repeated bisection of the interval, and in the first case the �-algorithm (Wynn
(1956)), to improve the integral estimate. This can cope with singularities away from the end
points, provided singular points do not occur as abscissae, D01AUF tends to perform better
than D01ATF on more oscillatory integrals.

D01ALF uses the same subdivision strategy as D01ATF over a set of initial interval segments
determined by supplied break-points. It is hence suitable for integrals with discontinuities
(including switches in definition) or sharp peaks occuring at known points. Such integrals may
also be approximated using other routines which do not allow break-points, although such
integrals should be evaluated over each of the sub-intervals seperately.

D01RAF again uses the strategy of Piessens et al. (1983), and provides the functionality of
D01ALF, D01ATF and D01AUF in a reverse communication framework. It also supports
multiple integrals and uses a vectorized interface for the abscissae. Hence it is likely to be
more efficient if several similar integrals are required to be evaluated over the same domain.
Furthermore, its behaviour can be tailored through the use of optional parameters.

D01AHF uses the strategy of Patterson (1968) and the �-algorithm to adaptively evaluate the
integral in question. It tends to be more efficient than the bisection based algorithms, although
these tend to be more robust when singularities occur away from the end points.

D01RGF uses another adaptive scheme due to Gonnet (2010). This attempts to match the
quadrature rule to the underlying integrand as well as subdividing the domain. Further, it can
explicitly deal with singular points at abscissae, should NaN's or 1 be returned by the user-
supplied (sub)routine, provided the generation of these does not cause the program to halt (see
Chapter X07).
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3.4 One-dimensional Integrals over a Semi-infinite or Infinite Interval

(a) Integrand defined at a set of points

If f xð Þ is defined numerically at four or more points, and the portion of the integral lying outside
the range of the points supplied may be neglected, then the Gill–Miller finite difference method,
D01GAF, should be used.

(b) Integrand defined as a function

(i) Rule evaluation routines

If f xð Þ behaves approximately like a polynomial in x, apart from a weight function of the
form:

1. e��x; � > 0 (semi-infinite interval, lower limit finite); or

2. e��x; � < 0 (semi-infinite interval, upper limit finite); or

3. e�� x��ð Þ2 ; � > 0 (infinite interval),

or if f xð Þ behaves approximately like a polynomial in xþ bð Þ�1 (semi-infinite range), then the
Gaussian routines may be used.

D01UAF may be used if it is not required to examine the weights and abscissae.

D01BCF or D01TBF with D01FBF may be used if it is required to examine the weights and
abscissae.

D01TBF is faster and more accurate, whereas D01BCF is more general.

D01UBF returns an approximation to the specific problem
Z 1
0

exp �x2
� �

g xð Þ dx.

(ii) Automatic adaptive routines

D01AMF may be used, except for integrands which decay slowly towards an infinite end
point, and oscillate in sign over the entire range. For this class, it may be possible to calculate
the integral by integrating between the zeros and invoking some extrapolation process (see
C06BAF).

D01ASF may be used for integrals involving weight functions of the form cos !xð Þ and
sin !xð Þ over a semi-infinite interval (lower limit finite).

The following alternative procedures are mentioned for completeness, though their use will
rarely be necessary.

1. If the integrand decays rapidly towards an infinite end point, a finite cut-off may be
chosen, and the finite range methods applied.

2. If the only irregularities occur in the finite part (apart from a singularity at the finite limit,
with which D01AMF can cope), the range may be divided, with D01AMF used on the
infinite part.

3. A transformation to finite range may be employed, e.g.,

x ¼ 1� t
t

or x ¼ �loge t

will transform 0;1ð Þ to 1; 0ð Þ while for infinite ranges we haveZ 1
�1
f xð Þ dx ¼

Z 1
0

f xð Þ þ f �xð Þð Þ dx:

If the integrand behaves badly on �1; 0ð Þ and well on 0;1ð Þ or vice versa it is better to

compute it as
Z 0

�1
f xð Þ dxþ

Z 1
0
f xð Þ dx. This saves computing unnecessary function

values in the semi-infinite range where the function is well behaved.
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3.5 Multidimensional Integrals

A number of techniques are available in this area and the choice depends to a large extent on the
dimension and the required accuracy. It can be advantageous to use more than one technique as a
confirmation of accuracy, particularly for high-dimensional integrations. Several routines include a
transformation procedure, using a user-supplied subroutine, which allows general product regions to be
easily dealt with in terms of conversion to the standard n-cube region.

(a) Products of one-dimensional rules (suitable for up to about 5 dimensions)

If f x1; x2; . . . ; xnð Þ is known to be a sufficiently well behaved function of each variable xi, apart
possibly from weight functions of the types provided, a product of Gaussian rules may be used.
These are provided by D01BCF or D01TBF with D01FBF. Rules for finite, semi-infinite and
infinite ranges are included.

For two-dimensional integrals only, unless the integrand is very badly behaved, the automatic
whole-interval product procedure of D01DAF may be used. The limits of the inner integral may be
user-specified functions of the outer variable. Infinite limits may be handled by transformation (see
Section 3.4); end point singularities introduced by transformation should not be troublesome, as the
integrand value will not be required on the boundary of the region.

If none of these routines proves suitable and convenient, the one-dimensional routines may be used
recursively. For example, the two-dimensional integral

I ¼
Z b1

a1

Z b2

a2

f x; yð Þ dy dx

may be expressed as

I ¼
Z b1

a1

F xð Þ dx; where F xð Þ ¼
Z b2

a2

f x; yð Þ dy:

The user-supplied code to evaluate F xð Þ will call the integration routine for the y-integration,
which will call more user-supplied code for f x; yð Þ as a function of y (x being effectively a
constant).

From Mark 24 onwards, all direct communication routines may be called recursively. As such,
you may use any routine, including the same routine, for each dimension. Note however, in
previous releases, direct communication routines were not defined as recursive, and thus a
different library integration routine must be used for each dimension if you are using an
older product. Apart from this restriction, the following combinations were not permitted:
D01AJF and D01ALF, D01ANF and D01APF, D01APF and D01AQF, D01ANF and D01AQF,
D01ANF and D01ASF, D01AMF and D01ASF, D01ATF and D01AUF. Otherwise the full range of
one-dimensional routines are available, for finite/infinite intervals, constant/variable limits, rule
evaluation/automatic strategies etc.

The reverse communication routine D01RAF may be used by itself in a pseudo-recursive manner,
in that it may be called to evaluate an inner integral for the integrand value of an outer integral also
being calculated by D01RAF.

(b) Sag–Szekeres method

Two routines are based on this method.

D01FDF is particularly suitable for integrals of very large dimension although the accuracy is
generally not high. It allows integration over either the general product region (with built-in
transformation to the n-cube) or the n-sphere. Although no error estimate is provided, two
adjustable arguments may be varied for checking purposes or may be used to tune the algorithm to
particular integrals.

D01JAF is also based on the Sag–Szekeres method and integrates over the n-sphere. It uses
improved transformations which may be varied according to the behaviour of the integrand.
Although it can yield very accurate results it can only practically be employed for dimensions not
exceeding 4.
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(c) Number Theoretic method

Two subroutines are based on this method, D01GCF and a vectorized equivalent D01GDF.

Algorithms of this type carry out multidimensional integration using the Korobov–Conroy method
over a product region with built-in transformation to the n-cube. A stochastic modification of this
method is incorporated into the routines in this library, hybridising the technique with the Monte–
Carlo procedure. An error estimate is provided in terms of the statistical standard error. A number
of pre-computed optimal coefficient rules for up to 20 dimensions are provided; others can be
computed using D01GYF and D01GZF. Like the Sag–Szekeres method it is suitable for large
dimensional integrals although the accuracy is not high.

D01GCF requires a function to be provided to evaluate the value of the integrand at a single
abscissa, and a subroutine to return the upper and lower limits of integration in a given dimension.

D01GDF has a vectorized interface which can result in faster execution, especially on vector-
processing machines. You are required to provide two subroutines, the first to return an array of
values of the integrand at each of an array of points, and the second to evaluate the limits of
integration at each of an array of points. This reduces the overhead of function calls, avoids
repetitions of computations common to each of the evaluations of the integral and limits of
integration, and offers greater scope for vectorization of your code.

(d) A combinatorial extrapolation method

D01PAF computes a sequence of approximations and an error estimate to the integral of a function
over a multidimensional simplex using a combinatorial method with extrapolation.

(e) Sparse Grid method

D01ESF implements a sparse grid quadrature scheme for the integration of a vector of
multidimensional integrals over the unit hypercube,

F �
Z
0;1½ �d

f xð Þdx:

The routine uses a vectorized interface, which returns a set of points at which the integrands must
be evaluated in a sparse storage format for efficiency.

Other domains can be readily integrated over by using an appropriate mapping inside the provided
subroutine for evaluating the integrands. It is suitable for d up to O 100ð Þ, although no upper bound
on the number of dimensions is enforced. It will also evaluate one-dimensional integrals, although
in this case the sparse grid used is in fact the full grid.

The routine uses optional parameters, set and queried using the routines D01ZKF and D01ZLF
respectively. Amongst other options, these allow the parallelization of the routine to be controlled.

(f) Automatic routines (D01FCF and D01GBF)

Both routines are for integrals of the formZ b1

a1

Z b2

a2

� � �
Z bn

an

f x1; x2; . . . ; xnð Þ dxndxn�1 � � � dx1:

D01GBF is an adaptive Monte–Carlo routine. This routine is usually slow and not recommended
for high-accuracy work. It is a robust routine that can often be used for low-accuracy results with
highly irregular integrands or when n is large.

D01FCF is an adaptive deterministic routine. Convergence is fast for well behaved integrands.
Highly accurate results can often be obtained for n between 2 and 5, using significantly fewer
integrand evaluations than would be required by D01GBF. The routine will usually work when the
integrand is mildly singular and for n � 10 should be used before D01GBF. If it is known in
advance that the integrand is highly irregular, it is best to compare results from at least two
different routines.

There are many problems for which one or both of the routines will require large amounts of
computing time to obtain even moderately accurate results. The amount of computing time is
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controlled by the number of integrand evaluations you have allowed, and you should set this
argument carefully, with reference to the time available and the accuracy desired.

D01EAF extends the technique of D01FCF to integrate adaptively more than one integrand, that is
to calculate the set of integralsZ b1

a1

Z b2

a2

� � �
Z bn

an

f1; f2; . . . ; fmð Þ dxndxn�1 � � � dx1

for a set of similar integrands f1; f2; . . . ; fm where fi ¼ fi x1; x2; . . . ; xnð Þ.
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4 Decision Trees

Tree 1: One-dimensional integrals over a finite interval

Is the functional form of the
integrand known? yes

Is indefinite integration
required? yes

D01ARF

no

Do you require reverse
communication? yes

D01RAF

no

Are you concerned with
efficiency for simple
integrals?

yes

Is the integrand smooth
(polynomial-like) apart from
weight function
x� aþ bð Þ=2j jc or
b� xð Þc x� að Þd?

yes

D01ARF, D01UAF,
D01TBF or D01BCF and
D01FBF, or D01GCF

no

Is the integrand reasonably
smooth and the required
accuracy not too great?

yes
D01ARF, D01BDF, D01ESF

or D01UAF

no

Are multiple integrands to
be integrated
simultaneously?

yes
D01ESF or D01RAF

no

Has the integrand
discontinuities, sharp peaks
or singularities at known
points other than the end
points?

yes

Split the range and begin
again; or use D01ALF or

D01RGF

no

Is the integrand free of
singularities, sharp peaks
and violent oscillations apart
from weight
function b� xð Þ� x� að Þ�

log b� xð Þð Þk log x� að Þð Þl?

yes
D01APF

no

Is the integrand free of
singularities, sharp peaks
and violent oscillations apart
from weight function
x� cð Þ�1?

yes
D01AQF

no

Is the integrand free of
violent oscillations apart
from weight function
cos !xð Þ or sin !xð Þ?

yes
D01ANF

no

Is the integrand free of
singularities? yes

D01AJF, D01AKF, D01AUF
or D01ESF

no

Is the integrand free of
discontinuities and of
singularities except possibly
at the end points?

yes
D01AHF

no

D01AJF, D01ATF, D01RAF
or D01RGF

no

D01AHF, D01AJF, D01ATF,
D01RAF or D01RGF

no

D01GAF
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Note: D01ATF, D01AUF, D01RAF and D01RGF are likely to be more efficient due to their vectorized
interfaces than D01AJF and D01AKF, which use a more conventional user-interface, consistent with
other routines in the chapter.

Tree 2: One-dimensional integrals over a semi-infinite or infinite interval

Is the functional form
of the integrand
known?

yes

Are you concerned
with efficiency for
simple integrands?

yes

Is the integrand
smooth (polynomial-
like) with no
exceptions?

yes

D01UAF, D01BDF,
D01ARF or D01ESF
with transformation.
See Section 3.4 (b)

(ii).

no

Is the integrand of
the formZ 1
0

exp �x2
� �

g xð Þ dx?
yes

D01UBF

no

Is the integrand
smooth (polynomial-
like) apart from
weight function
e�� xð Þ (semi-infinite

range) or e�� x�að Þ2

(infinite range) or is
the integrand
polynomial-like in
1
xþb? (semi-infinite
range)?

yes

D01UAF, or
D01BCF and
D01FBF, or,
D01TBF and
D01FBF, or
D01TDF and
D01FBF

(D01TDF may
require use of

D01TEF)

no

Has integrand
discontinuities, sharp
peaks or singularities
at known points other
than a finite limit?

yes

Split range; begin
again using finite or
infinite range trees

no

Does the integrand
oscillate over the
entire range?

yes

Does the integrand
decay rapidly
towards an infinite
limit?

yes

Use D01AMF; or set
cutoff and use finite

range tree

no

Is the integrand free
of violent oscillations
apart from weight
function cos !xð Þ or
sin !xð Þ (semi-infinite
range)?

yes
D01ASF

no

Use finite-range
integration between

the zeros and
extrapolate (see

C06BAF)

no

D01AMF

no

D01AMF

no

D01GAF (integrates
over the range of the

points supplied)

D01 – Quadrature Introduction – D01

Mark 26 D01.13



Tree 3: Multidimensional integrals

Is dimension ¼ 2 and product region?
yes

D01DAF

no

Is dimension � 4
yes

Is region an n-sphere?
yes

D01FBF with user transformation or
D01JAF

no

Is region a Simplex?
yes

D01FBF with user transformation or
D01PAF

no

Is the integrand smooth (polynomial-
like) in each dimension apart from
weight function?

yes
D01TBF or D01BCF with D01FBF

no

Is integrand free of extremely bad
behaviour? yes

D01ESF, D01FCF, D01FDF or D01GCF

no

Is bad behaviour on the boundary?
yes

D01FCF or D01FDF

no

Compare results from at least two of
D01FCF, D01FDF, D01GBF and

D01GCF, D01ESF and one-dimensional
recursive application

no

Is region an n-sphere?
yes

D01FDF

no

Is region a Simplex?
yes

D01PAF

no

Is high accuracy required?
yes

D01FDF with argument tuning

no

Is dimension high?
yes

D01FDF, D01GCF or D01GDF,
D01ESF

no

D01FCF

Note: in the case where there are many integrals to be evaluated D01EAF should be preferred to
D01FCF.

D01GDF is likely to be more efficient than D01GCF, which uses a more conventional user-interface,
consistent with other routines in the chapter.

5 Functionality Index

Korobov optimal coefficients for use in D01GCF and D01GDF:
when number of points is a product of 2 primes ........................................................... D01GZF
when number of points is prime..................................................................................... D01GYF

Multidimensional quadrature,
over a finite two-dimensional region .............................................................................. D01DAF
over a general product region,

Korobov–Conroy number-theoretic method ............................................................... D01GCF
Sag–Szekeres method (also over n-sphere) ............................................................... D01FDF
variant of D01GCF especially efficient on vector machines...................................... D01GDF

over a hyper-rectangle,
adaptive method ......................................................................................................... D01FCF
adaptive method,

multiple integrands................................................................................................ D01EAF
Gaussian quadrature rule-evaluation........................................................................... D01FBF
Monte–Carlo method ................................................................................................. D01GBF
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sparse grid method (with user transformation),
muliple integrands, vectorized interface ................................................................ D01ESF

over an n-simplex ........................................................................................................... D01PAF
over an n-sphere n � 4ð Þ,

allowing for badly behaved integrands ...................................................................... D01JAF

One-dimensional quadrature,
adaptive integration of a function over a finite interval,

strategy due to Gonnet,
suitable for badly behaved integrals,

vectorized interface .......................................................................................... D01RGF
strategy due to Patterson,

suitable for well-behaved integrands, except possibly at end-points ..................... D01AHF
strategy due to Piessens and de Doncker,

allowing for singularities at user-specified break-points ....................................... D01ALF
suitable for badly behaved integrands,

single abscissa interface ................................................................................... D01AJF
vectorized interface .......................................................................................... D01ATF

suitable for highly oscillatory integrals,
single abscissa interface ................................................................................... D01AKF
vectorized interface .......................................................................................... D01AUF

weight function 1= x� cð Þ Cauchy principal value (Hilbert transform)...................... D01AQF
weight function cos !xð Þ or sin !xð Þ ........................................................................... D01ANF
weight function with end-point singularities of algebraico-logarithmic type.............. D01APF

adaptive integration of a function over an infinite interval or semi-infinite interval,
no weight function ..................................................................................................... D01AMF
weight function cos !xð Þ or sin !xð Þ ........................................................................... D01ASF

integration of a function defined by data values only,
Gill–Miller method .................................................................................................... D01GAF

non-adaptive integration over a finite, semi-infinite or infinite interval,
using pre-computed weights and abscissae

specific integral with weight exp �x2
� �

over semi-infinite interval....................... D01UBF
vectorized interface ............................................................................................... D01UAF

non-adaptive integration over a finite interval ................................................................ D01BDF
non-adaptive integration over a finite interval,

with provision for indefinite integrals also ................................................................ D01ARF
reverse communication,

adaptive integration over a finite interval,
multiple integrands,

efficient on vector machines ............................................................................ D01RAF

Service routines,
array size query for D01RAF ......................................................................................... D01RCF
general option getting ..................................................................................................... D01ZLF
general option setting and initialization .......................................................................... D01ZKF

Weights and abscissae for Gaussian quadrature rules,
method of Golub and Welsch,

calculating the weights and abscissae ........................................................................ D01TDF
generate recursive coefficients.................................................................................... D01TEF

more general choice of rule,
calculating the weights and abscissae ........................................................................ D01BCF

restricted choice of rule,
using pre-computed weights and abscissae ................................................................ D01TBF
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6 Auxiliary Routines Associated with Library Routine Arguments

D01FDV nagf_quad_md_sphere_dummy_region
See the description of the argument REGION in D01FDF.

D01RBM nagf_quad_d01rb_dummy
See the description of the argument MONIT in D01RBF.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

D01BAF 26 D01UAF
D01BBF 26 D01TBF
D01RBF 27 No replacement required
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NAG Library Routine Document

D01AHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01AHF computes a definite integral over a finite range to a specified relative accuracy using a method
described by Patterson.

2 Specification

FUNCTION D01AHF (A, B, EPSR, NPTS, RELERR, F, NLIMIT, IFAIL)
REAL (KIND=nag_wp) D01AHF

INTEGER NPTS, NLIMIT, IFAIL
REAL (KIND=nag_wp) A, B, EPSR, RELERR, F
EXTERNAL F

3 Description

D01AHF computes a definite integral of the formZ b

a

f xð Þ dx:

The method uses as its basis a family of interlacing high precision rules (see Patterson (1968)) using 1,
3, 7, 15, 31, 63, 127 and 255 nodes. Initially the family is applied in sequence to the integrand. When
two successive rules differ relatively by less than the required relative accuracy, the last rule used is
taken as the value of the integral and the operation is regarded as successful. If all rules in the family
have been applied unsuccessfully, subdivision is invoked. The subdivision strategy is as follows. The
interval under scrutiny is divided into two sub-intervals (not always equal). The basic family is then
applied to the first sub-interval. If the required accuracy is not obtained, the interval is stored for future
examination (see IFAIL ¼ 2) and the second sub-interval is examined. Should the basic family again be
unsuccessful, then the sub-interval is further subdivided and the whole process repeated. Successful
integrations are accumulated as the partial value of the integral. When all possible successful
integrations have been completed, those previously unsuccessful sub-intervals placed in store are
examined.

A large number of refinements are incorporated to improve the performance. Some of these are:

(a) The rate of convergence of the basic family is monitored and used to make a decision to abort and
subdivide before the full sequence has been applied.

(b) The �-algorithm is applied to the basic results in an attempt to increase the convergence rate. See
Wynn (1956).

(c) An attempt is made to detect sharp end point peaks and singularities in each sub-interval and to
apply appropriate transformations to smooth the integrand. This consideration is also used to select
interval sizes in the subdivision process.

(d) The relative accuracy sought in each sub-interval is adjusted in accordance with its likely
contribution to the total integral.

(e) Random transformations of the integrand are applied to improve reliability in some instances.

D01 – Quadrature D01AHF

Mark 26 D01AHF.1



4 References

Patterson T N L (1968) The Optimum addition of points to quadrature formulae Math. Comput. 22
847–856

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10
91–96

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

2: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration. It is not necessary that a < b.

3: EPSR – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required.

Constraint: EPSR > 0:0.

4: NPTS – INTEGER Output

On exit: the number of function evaluations used in the calculation of the integral.

5: RELERR – REAL (KIND=nag_wp) Output

On exit: a rough estimate of the relative error achieved.

6: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

The specification of F is:

FUNCTION F (X)
REAL (KIND=nag_wp) F

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the integrand f must be evaluated.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01AHF is called. Arguments denoted as Input must not be changed by
this procedure.

7: NLIMIT – INTEGER Input

On entry: a limit to the number of function evaluations. If NLIMIT � 0, the routine uses a
default limit of 10000.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
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arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01AHF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The integral has not converged to the accuracy requested. It may be worthwhile to try increasing
NLIMIT.

IFAIL ¼ 2

Too many unsuccessful levels of subdivision have been invoked.

IFAIL ¼ 3

On entry, EPSR � 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

When IFAIL ¼ 1 or 2 a result may be obtained by continuing without further subdivision, but this is
likely to be inaccurate.

7 Accuracy

The relative accuracy required is specified by you in the variable EPSR. The routine will terminate
whenever the relative accuracy specified by EPSR is judged to have been reached.

If on exit, IFAIL ¼ 0, then it is most likely that the result is correct to the specified accuracy. If, on
exit, IFAIL ¼ 1 or 2, then it is likely that the specified accuracy has not been reached.

RELERR is a rough estimate of the relative error achieved. It is a by-product of the computation and is
not used to effect the termination of the routine. The outcome of the integration must be judged by the
value of IFAIL.

8 Parallelism and Performance

D01AHF is not threaded in any implementation.
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9 Further Comments

The time taken by D01AHF depends on the complexity of the integrand and the accuracy required.

10 Example

This example evaluates the integral to a requested relative accuracy of 10�5Z 1

0

4

1þ x2 dx ¼ 	:

10.1 Program Text

! D01AHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01ahfe_mod

! D01AHF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function f(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Executable Statements ..
f = 4.0E0_nag_wp/(1.0E0_nag_wp+x*x)

Return

End Function f
End Module d01ahfe_mod
Program d01ahfe

! D01AHF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01ahf, nag_wp
Use d01ahfe_mod, Only: f, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, ans, b, epsr, relerr
Integer :: ifail, nlimit, npts

! .. Executable Statements ..
Write (nout,*) ’D01AHF Example Program Results’

Read (nin,*)
Read (nin,*) a, b
Read (nin,*) nlimit
Read (nin,*) epsr

ifail = -1
ans = d01ahf(a,b,epsr,npts,relerr,f,nlimit,ifail)

Select Case (ifail)
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Case (0:2)
Write (nout,*)
Write (nout,99999) ’Integral = ’, ans
Write (nout,*)
Write (nout,99998) ’Estimated relative error = ’, relerr
Write (nout,*)
Write (nout,99997) ’Number of function evaluations = ’, npts

End Select

99999 Format (1X,A,F8.5)
99998 Format (1X,A,E10.2)
99997 Format (1X,A,I5)

End Program d01ahfe

10.2 Program Data

D01AHF Example Program Data
0.0 1.0 : a, b
0 : nlimit
0.00001 : epsr

10.3 Program Results

D01AHF Example Program Results

Integral = 3.14159

Estimated relative error = 0.58E-08

Number of function evaluations = 15
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NAG Library Routine Document

D01AJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01AJF is a general purpose integrator which calculates an approximation to the integral of a function
f xð Þ over a finite interval a; b½ �:

I ¼
Z b

a

f xð Þ dx:

2 Specification

SUBROUTINE D01AJF (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, W, LW, IW,
LIW, IFAIL)

&

INTEGER LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) F, A, B, EPSABS, EPSREL, RESULT, ABSERR, W(LW)
EXTERNAL F

3 Description

D01AJF is based on the QUADPACK routine QAGS (see Piessens et al. (1983)). It is an adaptive
routine, using the Gauss 10-point and Kronrod 21-point rules. The algorithm, described in de Doncker
(1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976)) together
with the �-algorithm (see Wynn (1956)) to perform extrapolation. The local error estimation is described
in Piessens et al. (1983).

The routine is suitable as a general purpose integrator, and can be used when the integrand has
singularities, especially when these are of algebraic or logarithmic type.

D01AJF requires you to supply a function to evaluate the integrand at a single point.

The routine D01ATF uses an identical algorithm but requires you to supply a subroutine to evaluate the
integrand at an array of points. Therefore D01ATF may be more efficient for some problem types and
some machine architectures.

4 References

de Doncker E (1978) An adaptive extrapolation algorithm for automatic integration ACM SIGNUM
Newsl. 13(2) 12–18

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10
91–96

5 Arguments

1: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

D01 – Quadrature D01AJF

Mark 26 D01AJF.1



The specification of F is:

FUNCTION F (X)
REAL (KIND=nag_wp) F

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the integrand f must be evaluated.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01AJF is called. Arguments denoted as Input must not be changed by this
procedure.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration. It is not necessary that a < b.

4: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

5: EPSREL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

6: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

7: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � RESULTj j.

8: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: details of the computation see Section 9 for more information.

9: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01AJF is
called. The value of LW (together with that of LIW) imposes a bound on the number of sub-
intervals into which the interval of integration may be divided by the routine. The number of sub-
intervals cannot exceed LW=4. The more difficult the integrand, the larger LW should be.

Suggested value: LW ¼ 800 to 2000 is adequate for most problems.

Constraint: LW � 4.

10: IWðLIWÞ – INTEGER array Output

On exit: IWð1Þ contains the actual number of sub-intervals used. The rest of the array is used as
workspace.
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11: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01AJF is
called. The number of sub-intervals into which the interval of integration may be divided cannot
exceed LIW.

Suggested value: LIW ¼ LW=4.

Constraint: LIW � 1.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01AJF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to determine
the integration difficulties. If the position of a local difficulty within the interval can be
determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you
will probably gain from splitting up the interval at this point and calling the integrator on the
subranges. If necessary, another integrator, which is designed for handling the type of difficulty
involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by
EPSABS and EPSREL, or increasing the amount of workspace.

IFAIL ¼ 2

Round-off error prevents the requested tolerance from being achieved. Consider requesting less
accuracy.

IFAIL ¼ 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 4

The requested tolerance cannot be achieved because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best which can be obtained. The same advice
applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 5

The integral is probably divergent, or slowly convergent. Please note that divergence can occur
with any nonzero value of IFAIL.
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IFAIL ¼ 6

On entry, LW < 4,
or LIW < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D01AJF cannot guarantee, but in practice usually achieves, the following accuracy:

I � RESULTj j � tol;

where

tol ¼ max EPSABSj j; EPSRELj j � Ij jf g;

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover, it returns
the quantity ABSERR which, in normal circumstances, satisfies

I � RESULTj j � ABSERR � tol:

8 Parallelism and Performance

D01AJF is not threaded in any implementation.

9 Further Comments

The time taken by D01AJF depends on the integrand and the accuracy required.

If IFAIL 6¼ 0 on exit, then you may wish to examine the contents of the array W, which contains the
end points of the sub-intervals used by D01AJF along with the integral contributions and error
estimates over the sub-intervals.

Specifically, for i ¼ 1; 2; . . . ; n, let ri denote the approximation to the value of the integral over the sub-
interval ai; bi½ � in the partition of a; b½ � and ei be the corresponding absolute error estimate. Then,Z bi

ai

f xð Þ dx ’ ri and RESULT ¼
Xn
i¼1
ri, unless D01AJF terminates while testing for divergence of the

integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, RESULT (and ABSERR) are taken to
be the values returned from the extrapolation process. The value of n is returned in IWð1Þ, and the
values ai, bi, ei and ri are stored consecutively in the array W, that is:

ai ¼WðiÞ,
bi ¼Wðnþ iÞ,
ei ¼Wð2nþ iÞ and
ri ¼Wð3nþ iÞ.
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10 Example

This example computes Z 2	

0

x sin 30xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x=2	ð Þ2

q dx:

10.1 Program Text

! D01AJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01ajfe_mod

! D01AJF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: lw = 800, nout = 6
Integer, Parameter, Public :: liw = lw/4

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: pi

Contains
Function f(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: sin, sqrt

! .. Executable Statements ..
f = x*sin(30.0E0_nag_wp*x)/sqrt(1.0E0_nag_wp-x**2/(4.0E0_nag_wp*pi**2) &

)

Return

End Function f
End Module d01ajfe_mod
Program d01ajfe

! D01AJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01ajf, nag_wp, x01aaf
Use d01ajfe_mod, Only: f, liw, lw, nout, pi

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, abserr, b, epsabs, epsrel, result
Integer :: ifail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:)
Integer, Allocatable :: iw(:)

! .. Executable Statements ..
Write (nout,*) ’D01AJF Example Program Results’

Allocate (w(lw),iw(liw))

pi = x01aaf(pi)
epsabs = 0.0E0_nag_wp
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epsrel = 1.0E-04_nag_wp
a = 0.0E0_nag_wp
b = 2.0E0_nag_wp*pi

ifail = -1
Call d01ajf(f,a,b,epsabs,epsrel,result,abserr,w,lw,iw,liw,ifail)

If (ifail>=0) Then
Write (nout,*)
Write (nout,99999) ’A ’, ’lower limit of integration’, a
Write (nout,99999) ’B ’, ’upper limit of integration’, b
Write (nout,99998) ’EPSABS’, ’absolute accuracy requested’, epsabs
Write (nout,99998) ’EPSREL’, ’relative accuracy requested’, epsrel

End If

If (ifail>=0 .And. ifail<=5) Then
Write (nout,*)
Write (nout,99997) ’RESULT’, ’approximation to the integral’, result
Write (nout,99998) ’ABSERR’, ’estimate of the absolute error’, abserr
Write (nout,99996) ’IW(1) ’, ’number of subintervals used’, iw(1)

End If

99999 Format (1X,A6,’ - ’,A32,’ = ’,F10.4)
99998 Format (1X,A6,’ - ’,A32,’ = ’,E9.2)
99997 Format (1X,A6,’ - ’,A32,’ = ’,F9.5)
99996 Format (1X,A6,’ - ’,A32,’ = ’,I4)

End Program d01ajfe

10.2 Program Data

None.

10.3 Program Results

D01AJF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 6.2832
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03

RESULT - approximation to the integral = -2.54326
ABSERR - estimate of the absolute error = 0.13E-04
IW(1) - number of subintervals used = 19
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NAG Library Routine Document

D01AKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01AKF is an adaptive integrator, especially suited to oscillating, nonsingular integrands, which
calculates an approximation to the integral of a function f xð Þ over a finite interval a; b½ �:

I ¼
Z b

a

f xð Þ dx:

2 Specification

SUBROUTINE D01AKF (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, W, LW, IW,
LIW, IFAIL)

&

INTEGER LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) F, A, B, EPSABS, EPSREL, RESULT, ABSERR, W(LW)
EXTERNAL F

3 Description

D01AKF is based on the QUADPACK routine QAG (see Piessens et al. (1983)). It is an adaptive
routine, using the Gauss 30-point and Kronrod 61-point rules. A ‘global’ acceptance criterion (as
defined by Malcolm and Simpson (1976)) is used. The local error estimation is described in Piessens et
al. (1983).

Because D01AKF is based on integration rules of high order, it is especially suitable for nonsingular
oscillating integrands.

D01AKF requires you to supply a function to evaluate the integrand at a single point.

The routine D01AUF uses an identical algorithm but requires you to supply a subroutine to evaluate the
integrand at an array of points. Therefore D01AUF will be more efficient if the evaluation can be
performed in vector mode on a vector-processing machine.

4 References

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R (1973) An algorithm for automatic integration Angew. Inf. 15 399–401

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

5 Arguments

1: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

The specification of F is:

FUNCTION F (X)
REAL (KIND=nag_wp) F

REAL (KIND=nag_wp) X
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1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the integrand f must be evaluated.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01AKF is called. Arguments denoted as Input must not be changed by
this procedure.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration. It is not necessary that a < b.

4: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

5: EPSREL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

6: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

7: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � RESULTj j.

8: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: details of the computation see Section 9 for more information.

9: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01AKF is
called. The value of LW (together with that of LIW) imposes a bound on the number of sub-
intervals into which the interval of integration may be divided by the routine. The number of sub-
intervals cannot exceed LW=4. The more difficult the integrand, the larger LW should be.

Suggested value: LW ¼ 800 to 2000 is adequate for most problems.

Constraint: LW � 4.

10: IWðLIWÞ – INTEGER array Output

On exit: IWð1Þ contains the actual number of sub-intervals used. The rest of the array is used as
workspace.

11: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01AKF is
called. The number of sub-intervals into which the interval of integration may be divided cannot
exceed LIW.

Suggested value: LIW ¼ LW=4.

Constraint: LIW � 1.

D01AKF NAG Library Manual

D01AKF.2 Mark 26



12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to determine
the integration difficulties. If necessary, another integrator, which is designed for handling the
type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy
requirements specified by EPSABS and EPSREL, or increasing the amount of workspace.

IFAIL ¼ 2

Round-off error prevents the requested tolerance from being achieved. Consider requesting less
accuracy.

IFAIL ¼ 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 4

On entry, LW < 4,
or LIW < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

D01AKF cannot guarantee, but in practice usually achieves, the following accuracy:

I � RESULTj j � tol;

where

tol ¼ max EPSABSj j; EPSRELj j � Ij jf g;

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover, it returns
the quantity ABSERR which, in normal circumstances, satisfies

I � RESULTj j � ABSERR � tol:

8 Parallelism and Performance

D01AKF is not threaded in any implementation.

9 Further Comments

The time taken by D01AKF depends on the integrand and the accuracy required.

If IFAIL 6¼ 0 on exit, then you may wish to examine the contents of the array W, which contains the
end points of the sub-intervals used by D01AKF along with the integral contributions and error
estimates over these sub-intervals.

Specifically, for i ¼ 1; 2; . . . ; n, let ri denote the approximation to the value of the integral over the sub-
interval ai; bi½ � in the partition of a; b½ � and ei be the corresponding absolute error estimate. Then,Z bi

ai

f xð Þ dx ’ ri and RESULT ¼
Xn
i¼1
ri. The value of n is returned in IWð1Þ, and the values ai, bi, ei

and ri are stored consecutively in the array W, that is:

ai ¼WðiÞ,
bi ¼Wðnþ iÞ,
ei ¼Wð2nþ iÞ and
ri ¼Wð3nþ iÞ.

10 Example

This example computes Z 2	

0
x sin 30xð Þ cos x dx:

10.1 Program Text

! D01AKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01akfe_mod

! D01AKF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..

D01AKF NAG Library Manual

D01AKF.4 Mark 26



Integer, Parameter, Public :: lw = 800, nout = 6
Integer, Parameter, Public :: liw = lw/4

Contains
Function f(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
f = x*(sin(30.0E0_nag_wp*x))*cos(x)

Return

End Function f
End Module d01akfe_mod
Program d01akfe

! D01AKF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01akf, nag_wp, x01aaf
Use d01akfe_mod, Only: f, liw, lw, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, abserr, b, epsabs, epsrel, pi, &

result
Integer :: ifail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:)
Integer, Allocatable :: iw(:)

! .. Executable Statements ..
Write (nout,*) ’D01AKF Example Program Results’

Allocate (w(lw),iw(liw))

pi = x01aaf(pi)
epsabs = 0.0E0_nag_wp
epsrel = 1.0E-03_nag_wp
a = 0.0E0_nag_wp
b = 2.0E0_nag_wp*pi

ifail = -1
Call d01akf(f,a,b,epsabs,epsrel,result,abserr,w,lw,iw,liw,ifail)

If (ifail>=0) Then
Write (nout,*)
Write (nout,99999) ’A ’, ’lower limit of integration’, a
Write (nout,99999) ’B ’, ’upper limit of integration’, b
Write (nout,99998) ’EPSABS’, ’absolute accuracy requested’, epsabs
Write (nout,99998) ’EPSREL’, ’relative accuracy requested’, epsrel

End If

If (ifail>=0 .And. ifail<=3) Then
Write (nout,*)
Write (nout,99997) ’RESULT’, ’approximation to the integral’, result
Write (nout,99998) ’ABSERR’, ’estimate of the absolute error’, abserr
Write (nout,99996) ’IW(1) ’, ’number of subintervals used’, iw(1)

End If

99999 Format (1X,A6,’ - ’,A32,’ = ’,F10.4)
99998 Format (1X,A6,’ - ’,A32,’ = ’,E9.2)
99997 Format (1X,A6,’ - ’,A32,’ = ’,F9.5)
99996 Format (1X,A6,’ - ’,A32,’ = ’,I4)

End Program d01akfe
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10.2 Program Data

None.

10.3 Program Results

D01AKF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 6.2832
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-02

RESULT - approximation to the integral = -0.20967
ABSERR - estimate of the absolute error = 0.45E-13
IW(1) - number of subintervals used = 4
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NAG Library Routine Document

D01ALF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01ALF is a general purpose integrator which calculates an approximation to the integral of a function
f xð Þ over a finite interval a; b½ �:

I ¼
Z b

a

f xð Þ dx

where the integrand may have local singular behaviour at a finite number of points within the
integration interval.

2 Specification

SUBROUTINE D01ALF (F, A, B, NPTS, POINTS, EPSABS, EPSREL, RESULT,
ABSERR, W, LW, IW, LIW, IFAIL)

&

INTEGER NPTS, LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) F, A, B, POINTS(*), EPSABS, EPSREL, RESULT, ABSERR,

W(LW)
&

EXTERNAL F

3 Description

D01ALF is based on the QUADPACK routine QAGP (see Piessens et al. (1983)). It is very similar to
D01AJF, but allows you to supply ‘break-points’, points at which the integrand is known to be difficult.
It employs an adaptive algorithm, using the Gauss 10-point and Kronrod 21-point rules. The algorithm,
described in de Doncker (1978), incorporates a global acceptance criterion (as defined by Malcolm and
Simpson (1976)) together with the �-algorithm (see Wynn (1956)) to perform extrapolation. The user-
supplied ‘break-points’ always occur as the end points of some sub-interval during the adaptive process.
The local error estimation is described in Piessens et al. (1983).

4 References

de Doncker E (1978) An adaptive extrapolation algorithm for automatic integration ACM SIGNUM
Newsl. 13(2) 12–18

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10
91–96

5 Arguments

1: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

D01 – Quadrature D01ALF

Mark 26 D01ALF.1



The specification of F is:

FUNCTION F (X)
REAL (KIND=nag_wp) F

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the integrand f must be evaluated.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01ALF is called. Arguments denoted as Input must not be changed by this
procedure.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration. It is not necessary that a < b.

4: NPTS – INTEGER Input

On entry: the number of user-supplied break-points within the integration interval.

Constraint: NPTS � 0 and NPTS < min LW� 2� NPTS� 4ð Þ=4; LIW� NPTS� 2ð Þ=2ð Þ.

5: POINTSð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array POINTS must be at least max 1;NPTSð Þ.
On entry: the user-specified break-points.

Constraint: the break-points must all lie within the interval of integration (but may be supplied in
any order).

6: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

7: EPSREL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

8: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

9: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � RESULTj j.

10: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: details of the computation see Section 9 for more information.

11: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01ALF is
called. The value of LW (together with that of LIW) imposes a bound on the number of sub-
intervals into which the interval of integration may be divided by the routine. The number of sub-
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intervals cannot exceed LW� 2� NPTS� 4ð Þ=4. The more difficult the integrand, the larger LW
should be.

Suggested value: a value in the range 800 to 2000 is adequate for most problems.

Constraint: LW � 2� NPTSþ 8.

12: IWðLIWÞ – INTEGER array Output

On exit: IWð1Þ contains the actual number of sub-intervals used. The rest of the array is used as
workspace.

13: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01ALF is
called. The number of sub-intervals into which the interval of integration may be divided cannot
exceed LIW� NPTS� 2ð Þ=2.
Suggested value: LIW ¼ LW=2.

Constraint: LIW � NPTSþ 4.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01ALF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to determine
the integration difficulties. If the position of a local difficulty within the interval can be
determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) it
should be supplied to the routine as an element of the vector POINTS. If necessary, another
integrator, which is designed for handling the type of difficulty involved, must be used.
Alternatively, consider relaxing the accuracy requirements specified by EPSABS and EPSREL, or
increasing the amount of workspace.

IFAIL ¼ 2

Round-off error prevents the requested tolerance from being achieved. Consider requesting less
accuracy.
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IFAIL ¼ 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 4

The requested tolerance cannot be achieved because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best which can be obtained. The same advice
applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 5

The integral is probably divergent, or slowly convergent. Please note that divergence can occur
with any nonzero value of IFAIL.

IFAIL ¼ 6

The input is invalid: break-points are specified outside the integration range,
NPTS > min LW� 2� NPTS� 4ð Þ=4; LIW� NPTS� 2ð Þ=2ð Þ or NPTS < 0. RESULT and
ABSERR are set to zero.

IFAIL ¼ 7

On entry, LW < 2� NPTSþ 8,
or LIW < NPTSþ 4.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D01ALF cannot guarantee, but in practice usually achieves, the following accuracy:

I � RESULTj j � tol;

where

tol ¼ max EPSABSj j; EPSRELj j � Ij jf g;

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover, it returns
the quantity ABSERR which, in normal circumstances, satisfies

I � RESULTj j � ABSERR � tol:

8 Parallelism and Performance

D01ALF is not threaded in any implementation.
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9 Further Comments

The time taken by D01ALF depends on the integrand and the accuracy required.

If IFAIL 6¼ 0 on exit, then you may wish to examine the contents of the array W, which contains the
end points of the sub-intervals used by D01ALF along with the integral contributions and error
estimates over these sub-intervals.

Specifically, for i ¼ 1; 2; . . . ; n, let ri denote the approximation to the value of the integral over the sub-
interval ai; bi½ � in the partition of a; b½ � and ei be the corresponding absolute error estimate. Then,Z bi

ai

f xð Þ dx ’ ri and RESULT ¼
Xn
i¼1
ri unless D01ALF terminates while testing for divergence of the

integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, RESULT (and ABSERR) are taken to
be the values returned from the extrapolation process. The value of n is returned in IWð1Þ, and the
values ai, bi, ei and ri are stored consecutively in the array W, that is:

ai ¼WðiÞ,
bi ¼Wðnþ iÞ,
ei ¼Wð2nþ iÞ and
ri ¼Wð3nþ iÞ.

10 Example

This example computes Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� 1=7j j

p dx:

A break-point is specified at x ¼ 1=7, at which point the integrand is infinite. (For definiteness the
function FST returns the value 0:0 at this point.)

10.1 Program Text

! D01ALF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01alfe_mod

! D01ALF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: lw = 800, nout = 6, npts = 1
Integer, Parameter, Public :: liw = lw/2

Contains
Function f(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Local Scalars ..
Real (Kind=nag_wp) :: a

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
a = abs(x-1.0E0_nag_wp/7.0E0_nag_wp)
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If (a/=0.0E0_nag_wp) Then
f = a**(-0.5E0_nag_wp)

Else
f = 0.0E0_nag_wp

End If

Return

End Function f
End Module d01alfe_mod
Program d01alfe

! D01ALF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01alf, nag_wp
Use d01alfe_mod, Only: f, liw, lw, nout, npts

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, abserr, b, epsabs, epsrel, result
Integer :: ifail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: points(:), w(:)
Integer, Allocatable :: iw(:)

! .. Executable Statements ..
Write (nout,*) ’D01ALF Example Program Results’

Allocate (points(npts),w(lw),iw(liw))

epsabs = 0.0E0_nag_wp
epsrel = 1.0E-03_nag_wp
a = 0.0E0_nag_wp
b = 1.0E0_nag_wp
points(1) = 1.0E0_nag_wp/7.0E0_nag_wp

ifail = -1
Call d01alf(f,a,b,npts,points,epsabs,epsrel,result,abserr,w,lw,iw,liw, &

ifail)

If (ifail>=0) Then
Write (nout,*)
Write (nout,99999) ’A ’, ’lower limit of integration’, a
Write (nout,99999) ’B ’, ’upper limit of integration’, b
Write (nout,99998) ’EPSABS’, ’absolute accuracy requested’, epsabs
Write (nout,99998) ’EPSREL’, ’relative accuracy requested’, epsrel
Write (nout,99995) ’POINTS(1)’, ’given break-point’, points(1)

End If

If (ifail>=0 .And. ifail<=5) Then
Write (nout,*)
Write (nout,99997) ’RESULT’, ’approximation to the integral’, result
Write (nout,99998) ’ABSERR’, ’estimate of the absolute error’, abserr
Write (nout,99996) ’IW(1) ’, ’number of subintervals used’, iw(1)

End If

99999 Format (1X,A6,’ - ’,A32,’ = ’,F10.4)
99998 Format (1X,A6,’ - ’,A32,’ = ’,E9.2)
99997 Format (1X,A6,’ - ’,A32,’ = ’,F9.5)
99996 Format (1X,A6,’ - ’,A32,’ = ’,I4)
99995 Format (1X,A9,’ - ’,A32,’ = ’,F10.4)

End Program d01alfe

10.2 Program Data

None.
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10.3 Program Results

D01ALF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-02
POINTS(1) - given break-point = 0.1429

RESULT - approximation to the integral = 2.60757
ABSERR - estimate of the absolute error = 0.62E-13
IW(1) - number of subintervals used = 12
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NAG Library Routine Document

D01AMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01AMF calculates an approximation to the integral of a function f xð Þ over an infinite or semi-infinite
interval a; b½ �:

I ¼
Z b

a

f xð Þ dx:

2 Specification

SUBROUTINE D01AMF (F, BOUND, INF, EPSABS, EPSREL, RESULT, ABSERR, W, LW,
IW, LIW, IFAIL)

&

INTEGER INF, LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) F, BOUND, EPSABS, EPSREL, RESULT, ABSERR, W(LW)
EXTERNAL F

3 Description

D01AMF is based on the QUADPACK routine QAGI (see Piessens et al. (1983)). The entire infinite
integration range is first transformed to 0; 1½ � using one of the identities:Z a

�1
f xð Þ dx ¼

Z 1

0
f a� 1� t

t

� �
1

t2
dt

Z 1
a

f xð Þ dx ¼
Z 1

0
f aþ 1� t

t

� �
1

t2
dt

Z 1
�1
f xð Þ dx ¼

Z 1
0

f xð Þ þ f �xð Þð Þ dx ¼
Z 1

0
f

1� t
t

� �
þ f �1þ t

t

� �� �
1

t2
dt

where a represents a finite integration limit. An adaptive procedure, based on the Gauss 7-point and
Kronrod 15-point rules, is then employed on the transformed integral. The algorithm, described in de
Doncker (1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson
(1976)) together with the �-algorithm (see Wynn (1956)) to perform extrapolation. The local error
estimation is described in Piessens et al. (1983).

4 References

de Doncker E (1978) An adaptive extrapolation algorithm for automatic integration ACM SIGNUM
Newsl. 13(2) 12–18

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10
91–96
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5 Arguments

1: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

The specification of F is:

FUNCTION F (X)
REAL (KIND=nag_wp) F

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the integrand f must be evaluated.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01AMF is called. Arguments denoted as Input must not be changed by
this procedure.

2: BOUND – REAL (KIND=nag_wp) Input

On entry: the finite limit of the integration range (if present). BOUND is not used if the interval
is doubly infinite.

3: INF – INTEGER Input

On entry: indicates the kind of integration range.

INF ¼ 1
The range is BOUND;þ1½ Þ.

INF ¼ �1
The range is �1;BOUNDð �.

INF ¼ 2
The range is �1;þ1ð Þ.

Constraint: INF ¼ �1, 1 or 2.

4: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

5: EPSREL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

6: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

7: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � RESULTj j.

8: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: details of the computation see Section 9 for more information.
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9: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01AMF is
called. The value of LW (together with that of LIW) imposes a bound on the number of sub-
intervals into which the interval of integration may be divided by the routine. The number of sub-
intervals cannot exceed LW=4. The more difficult the integrand, the larger LW should be.

Suggested value: LW ¼ 800 to 2000 is adequate for most problems.

Constraint: LW � 4.

10: IWðLIWÞ – INTEGER array Output

On exit: IWð1Þ contains the actual number of sub-intervals used. The rest of the array is used as
workspace.

11: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01AMF is
called. The number of sub-intervals into which the interval of integration may be divided cannot
exceed LIW.

Suggested value: LIW ¼ LW=4.

Constraint: LIW � 1.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01AMF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to determine
the integration difficulties. If the position of a local difficulty within the interval can be
determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you
will probably gain from splitting up the interval at this point and calling D01AMF on the infinite
subrange and an appropriate integrator on the finite subrange. Alternatively, consider relaxing the
accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of
workspace.

IFAIL ¼ 2

Round-off error prevents the requested tolerance from being achieved. Consider requesting less
accuracy.
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IFAIL ¼ 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 4

The requested tolerance cannot be achieved because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best which can be obtained. The same advice
applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 5

The integral is probably divergent, or slowly convergent. Please note that divergence can occur
with any nonzero value of IFAIL.

IFAIL ¼ 6

On entry, LW < 4,
or LIW < 1,
or INF 6¼ �1, 1 or 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D01AMF cannot guarantee, but in practice usually achieves, the following accuracy:

I � RESULTj j � tol;

where

tol ¼ max EPSABSj j; EPSRELj j � Ij jf g;

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover, it returns
the quantity ABSERR which, in normal circumstances, satisfies

I � RESULTj j � ABSERR � tol:

8 Parallelism and Performance

D01AMF is not threaded in any implementation.

9 Further Comments

The time taken by D01AMF depends on the integrand and the accuracy required.
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If IFAIL 6¼ 0 on exit, then you may wish to examine the contents of the array W, which contains the
end points of the sub-intervals used by D01AMF along with the integral contributions and error
estimates over these sub-intervals.

Specifically, for i ¼ 1; 2; . . . ; n, let ri denote the approximation to the value of the integral over the sub-
interval ai; bi½ � in the partition of a; b½ � and ei be the corresponding absolute error estimate. Then,Z bi

ai

f xð Þ dx ’ ri and RESULT ¼
Xn
i¼1
ri, unless D01AMF terminates while testing for divergence of the

integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, RESULT (and ABSERR) are taken to
be the values returned from the extrapolation process. The value of n is returned in IWð1Þ, and the
values ai, bi, ei and ri are stored consecutively in the array W, that is:

ai ¼WðiÞ,
bi ¼Wðnþ iÞ,
ei ¼Wð2nþ iÞ and
ri ¼Wð3nþ iÞ.

Note: this information applies to the integral transformed to 0; 1½ � as described in Section 3, not to the
original integral.

10 Example

This example computes Z 1
0

1

xþ 1ð Þ ffiffiffixp dx:

The exact answer is 	.

10.1 Program Text

! D01AMF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01amfe_mod

! D01AMF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: lw = 800, nout = 6
Integer, Parameter, Public :: liw = lw/4

Contains
Function f(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
f = 1.0E0_nag_wp/((x+1.0E0_nag_wp)*sqrt(x))

Return

End Function f
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End Module d01amfe_mod
Program d01amfe

! D01AMF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01amf, nag_wp
Use d01amfe_mod, Only: f, liw, lw, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: abserr, bound, epsabs, epsrel, &

result
Integer :: ifail, inf

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:)
Integer, Allocatable :: iw(:)

! .. Executable Statements ..
Write (nout,*) ’D01AMF Example Program Results’

Allocate (w(lw),iw(liw))

epsabs = 0.0E0_nag_wp
epsrel = 1.0E-04_nag_wp
bound = 0.0E0_nag_wp
inf = 1

ifail = -1
Call d01amf(f,bound,inf,epsabs,epsrel,result,abserr,w,lw,iw,liw,ifail)

If (ifail>=0) Then
Write (nout,*)
Write (nout,99999) ’A ’, ’lower limit of integration’, bound
Write (nout,99995) ’B ’, ’upper limit of integration’, ’infinity’
Write (nout,99998) ’EPSABS’, ’absolute accuracy requested’, epsabs
Write (nout,99998) ’EPSREL’, ’relative accuracy requested’, epsrel

End If

If (ifail>=0 .And. ifail<=5) Then
Write (nout,*)
Write (nout,99997) ’RESULT’, ’approximation to the integral’, result
Write (nout,99998) ’ABSERR’, ’estimate of the absolute error’, abserr
Write (nout,99996) ’IW(1) ’, ’number of subintervals used’, iw(1)

End If

99999 Format (1X,A6,’ - ’,A32,’ = ’,F10.4)
99998 Format (1X,A6,’ - ’,A32,’ = ’,E9.2)
99997 Format (1X,A6,’ - ’,A32,’ = ’,F9.5)
99996 Format (1X,A6,’ - ’,A32,’ = ’,I4)
99995 Format (1X,A6,’ - ’,A32,’ = ’,A8)

End Program d01amfe

10.2 Program Data

None.

10.3 Program Results

D01AMF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = infinity
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03

RESULT - approximation to the integral = 3.14159
ABSERR - estimate of the absolute error = 0.27E-04
IW(1) - number of subintervals used = 10
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NAG Library Routine Document

D01ANF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01ANF calculates an approximation to the sine or the cosine transform of a function g over a; b½ �:

I ¼
Z b

a

g xð Þ sin !xð Þ dx or I ¼
Z b

a

g xð Þ cos !xð Þ dx

(for a user-specified value of !).

2 Specification

SUBROUTINE D01ANF (G, A, B, OMEGA, KEY, EPSABS, EPSREL, RESULT, ABSERR,
W, LW, IW, LIW, IFAIL)

&

INTEGER KEY, LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) G, A, B, OMEGA, EPSABS, EPSREL, RESULT, ABSERR,

W(LW)
&

EXTERNAL G

3 Description

D01ANF is based on the QUADPACK routine QFOUR (see Piessens et al. (1983)). It is an adaptive
routine, designed to integrate a function of the form g xð Þw xð Þ, where w xð Þ is either sin !xð Þ or cos !xð Þ.
If a sub-interval has length

L ¼ b� aj j2�l

then the integration over this sub-interval is performed by means of a modified Clenshaw–Curtis
procedure (see Piessens and Branders (1975)) if L! > 4 and l � 20: In this case a Chebyshev series
approximation of degree 24 is used to approximate g xð Þ, while an error estimate is computed from this
approximation together with that obtained using Chebyshev series of degree 12. If the above conditions
do not hold then Gauss 7-point and Kronrod 15-point rules are used. The algorithm, described in
Piessens et al. (1983), incorporates a global acceptance criterion (as defined in Malcolm and Simpson
(1976)) together with the
�-algorithm (see Wynn (1956)) to perform extrapolation. The local error estimation is described in
Piessens et al. (1983).

4 References

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R and Branders M (1975) Algorithm 002: computation of oscillating integrals J. Comput.
Appl. Math. 1 153–164

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10
91–96
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5 Arguments

1: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must return the value of the function g at a given point X.

The specification of G is:

FUNCTION G (X)
REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the function g must be evaluated.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01ANF is called. Arguments denoted as Input must not be changed by
this procedure.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration. It is not necessary that a < b.

4: OMEGA – REAL (KIND=nag_wp) Input

On entry: the argument ! in the weight function of the transform.

5: KEY – INTEGER Input

On entry: indicates which integral is to be computed.

KEY ¼ 1
w xð Þ ¼ cos !xð Þ.

KEY ¼ 2
w xð Þ ¼ sin !xð Þ.

Constraint: KEY ¼ 1 or 2.

6: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

7: EPSREL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

8: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

9: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � RESULTj j.
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10: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: details of the computation see Section 9 for more information.

11: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01ANF is
called. The value of LW (together with that of LIW) imposes a bound on the number of sub-
intervals into which the interval of integration may be divided by the routine. The number of sub-
intervals cannot exceed LW=4. The more difficult the integrand, the larger LW should be.

Suggested value: LW ¼ 800 to 2000 is adequate for most problems.

Constraint: LW � 4.

12: IWðLIWÞ – INTEGER array Output

On exit: IWð1Þ contains the actual number of sub-intervals used. The rest of the array is used as
workspace.

13: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01ANF is
called. The number of sub-intervals into which the interval of integration may be divided cannot
exceed LIW=2.

Suggested value: LIW ¼ LW=2.

Constraint: LIW � 2.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01ANF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to determine
the integration difficulties. If the position of a local difficulty within the interval can be
determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you
will probably gain from splitting up the interval at this point and calling the integrator on the
subranges. If necessary, another integrator, which is designed for handling the type of difficulty
involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by
EPSABS and EPSREL, or increasing the amount of workspace.
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IFAIL ¼ 2

Round-off error prevents the requested tolerance from being achieved. Consider requesting less
accuracy.

IFAIL ¼ 3

Extremely bad local behaviour of g xð Þ causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 4

The requested tolerance cannot be achieved because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best which can be obtained. The same advice
applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 5

The integral is probably divergent, or slowly convergent. Please note that divergence can occur
with any nonzero value of IFAIL.

IFAIL ¼ 6

On entry, KEY 6¼ 1 or 2.

IFAIL ¼ 7

On entry, LW < 4,
or LIW < 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D01ANF cannot guarantee, but in practice usually achieves, the following accuracy:

I � RESULTj j � tol;

where

tol ¼ max EPSABSj j; EPSRELj j � Ij jf g;

and EPSABS and EPSREL are user-specified absolute and relative tolerances. Moreover, it returns the
quantity ABSERR which in normal circumstances, satisfies

I � RESULTj j � ABSERR � tol:

8 Parallelism and Performance

D01ANF is not threaded in any implementation.
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9 Further Comments

The time taken by D01ANF depends on the integrand and the accuracy required.

If IFAIL 6¼ 0 on exit, then you may wish to examine the contents of the array W, which contains the
end points of the sub-intervals used by D01ANF along with the integral contributions and error
estimates over these sub-intervals.

Specifically, for i ¼ 1; 2; . . . ; n, let ri denote the approximation to the value of the integral over the sub-
interval ai; bi½ � in the partition of a; b½ � and ei be the corresponding absolute error estimate. Then,Z bi

ai

g xð Þw xð Þ dx ’ ri and RESULT ¼
Xn
i¼1
ri unless D01ANF terminates while testing for divergence of

the integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, RESULT (and ABSERR) are
taken to be the values returned from the extrapolation process. The value of n is returned in IWð1Þ, and
the values ai, bi, ei and ri are stored consecutively in the array W, that is:

ai ¼WðiÞ,
bi ¼Wðnþ iÞ,
ei ¼Wð2nþ iÞ and
ri ¼Wð3nþ iÞ.

10 Example

This example computes Z 1

0
lnx sin 10	xð Þ dx:

10.1 Program Text

! D01ANF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01anfe_mod

! D01ANF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: g

! .. Parameters ..
Integer, Parameter, Public :: lw = 800, nout = 6
Integer, Parameter, Public :: liw = lw/2

Contains
Function g(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: log

! .. Executable Statements ..
If (x>0.0E0_nag_wp) Then

g = log(x)
Else

g = 0.0E0_nag_wp
End If
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Return

End Function g
End Module d01anfe_mod
Program d01anfe

! D01ANF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01anf, nag_wp, x01aaf
Use d01anfe_mod, Only: g, liw, lw, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, abserr, b, epsabs, epsrel, omega, &

pi, result
Integer :: ifail, key

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:)
Integer, Allocatable :: iw(:)

! .. Executable Statements ..
Write (nout,*) ’D01ANF Example Program Results’

Allocate (w(lw),iw(liw))

epsrel = 1.0E-04_nag_wp
epsabs = 0.0E+00_nag_wp
a = 0.0E0_nag_wp
b = 1.0E0_nag_wp
omega = 10.0E0_nag_wp*x01aaf(pi)
key = 2

ifail = -1
Call d01anf(g,a,b,omega,key,epsabs,epsrel,result,abserr,w,lw,iw,liw, &

ifail)

If (ifail>=0) Then
Write (nout,*)
Write (nout,99999) ’A ’, ’lower limit of integration’, a
Write (nout,99999) ’B ’, ’upper limit of integration’, b
Write (nout,99998) ’EPSABS’, ’absolute accuracy requested’, epsabs
Write (nout,99998) ’EPSREL’, ’relative accuracy requested’, epsrel

End If

If (ifail>=0 .And. ifail<=5) Then
Write (nout,*)
Write (nout,99997) ’RESULT’, ’approximation to the integral’, result
Write (nout,99998) ’ABSERR’, ’estimate of the absolute error’, abserr
Write (nout,99996) ’IW(1) ’, ’number of subintervals used’, iw(1)

End If

99999 Format (1X,A6,’ - ’,A32,’ = ’,F10.4)
99998 Format (1X,A6,’ - ’,A32,’ = ’,E9.2)
99997 Format (1X,A6,’ - ’,A32,’ = ’,F9.5)
99996 Format (1X,A6,’ - ’,A32,’ = ’,I4)

End Program d01anfe

10.2 Program Data

None.
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10.3 Program Results

D01ANF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03

RESULT - approximation to the integral = -0.12814
ABSERR - estimate of the absolute error = 0.36E-05
IW(1) - number of subintervals used = 8
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NAG Library Routine Document

D01APF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01APF is an adaptive integrator which calculates an approximation to the integral of a function
g xð Þw xð Þ over a finite interval a; b½ �:

I ¼
Z b

a

g xð Þw xð Þ dx

where the weight function w has end point singularities of algebraico-logarithmic type.

2 Specification

SUBROUTINE D01APF (G, A, B, ALFA, BETA, KEY, EPSABS, EPSREL, RESULT,
ABSERR, W, LW, IW, LIW, IFAIL)

&

INTEGER KEY, LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) G, A, B, ALFA, BETA, EPSABS, EPSREL, RESULT, ABSERR,

W(LW)
&

EXTERNAL G

3 Description

D01APF is based on the QUADPACK routine QAWSE (see Piessens et al. (1983)) and integrates a
function of the form g xð Þw xð Þ, where the weight function w xð Þ may have algebraico-logarithmic
singularities at the end points a and/or b. The strategy is a modification of that in D01AKF. We start by
bisecting the original interval and applying modified Clenshaw–Curtis integration of orders 12 and 24
to both halves. Clenshaw–Curtis integration is then used on all sub-intervals which have a or b as one
of their end points (see Piessens et al. (1974)). On the other sub-intervals Gauss–Kronrod (7–15 point)
integration is carried out.

A ‘global’ acceptance criterion (as defined by Malcolm and Simpson (1976)) is used. The local error
estimation control is described in Piessens et al. (1983).

4 References

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

Piessens R, Mertens I and Branders M (1974) Integration of functions having end-point singularities
Angew. Inf. 16 65–68

5 Arguments

1: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must return the value of the function g at a given point X.

The specification of G is:

FUNCTION G (X)
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REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the function g must be evaluated.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01APF is called. Arguments denoted as Input must not be changed by this
procedure.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration.

Constraint: B > A.

4: ALFA – REAL (KIND=nag_wp) Input

On entry: the argument � in the weight function.

Constraint: ALFA > �1:0.

5: BETA – REAL (KIND=nag_wp) Input

On entry: the argument � in the weight function.

Constraint: BETA > �1:0.

6: KEY – INTEGER Input

On entry: indicates which weight function is to be used.

KEY ¼ 1
w xð Þ ¼ x� að Þ� b� xð Þ�.

KEY ¼ 2
w xð Þ ¼ x� að Þ� b� xð Þ� ln x� að Þ.

KEY ¼ 3
w xð Þ ¼ x� að Þ� b� xð Þ� ln b� xð Þ.

KEY ¼ 4
w xð Þ ¼ x� að Þ� b� xð Þ� ln x� að Þ ln b� xð Þ.

Constraint: KEY ¼ 1, 2, 3 or 4.

7: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

8: EPSREL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

9: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.
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10: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � RESULTj j.

11: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: details of the computation see Section 9 for more information.

12: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01APF is
called. The value of LW (together with that of LIW) imposes a bound on the number of sub-
intervals into which the interval of integration may be divided by the routine. The number of sub-
intervals cannot exceed LW=4. The more difficult the integrand, the larger LW should be.

Suggested value: LW ¼ 800 to 2000 is adequate for most problems.

Constraint: LW � 8.

13: IWðLIWÞ – INTEGER array Output

On exit: IWð1Þ contains the actual number of sub-intervals used. The rest of the array is used as
workspace.

14: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01APF is
called. The number of sub-intervals into which the interval of integration may be divided cannot
exceed LIW.

Suggested value: LIW ¼ LW=4.

Constraint: LIW � 2.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01APF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to determine
the integration difficulties. If the position of a discontinuity or a singularity of algebraico-
logarithmic type within the interval can be determined, the interval must be split up at this point
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and the integrator called on the subranges. If necessary, another integrator, which is designed for
handling the type of difficulty involved, must be used. Alternatively, consider relaxing the
accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of
workspace.

IFAIL ¼ 2

Round-off error prevents the requested tolerance from being achieved. Consider requesting less
accuracy.

IFAIL ¼ 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 4

On entry, B � A,
or ALFA � �1:0,
or BETA � �1:0,
or KEY 6¼ 1, 2, 3 or 4.

IFAIL ¼ 5

On entry, LW < 8,
or LIW < 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D01APF cannot guarantee, but in practice usually achieves, the following accuracy:

I � RESULTj j � tol;

where

tol ¼ max EPSABSj j; EPSRELj j � Ij jf g;

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover, it returns
the quantity ABSERR which, in normal circumstances, satisfies

I � RESULTj j � ABSERR � tol:

8 Parallelism and Performance

D01APF is not threaded in any implementation.
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9 Further Comments

The time taken by D01APF depends on the integrand and the accuracy required.

If IFAIL 6¼ 0 on exit, then you may wish to examine the contents of the array W, which contains the
end points of the sub-intervals used by D01APF along with the integral contributions and error
estimates over these sub-intervals.

Specifically, for i ¼ 1; 2; . . . ; n, let ri denote the approximation to the value of the integral over the sub-
interval ai; bi½ � in the partition of a; b½ � and ei be the corresponding absolute error estimate. Then,Z bi

ai

f xð Þw xð Þ dx ’ ri and RESULT ¼
Xn
i¼1
ri. The value of n is returned in IWð1Þ, and the values ai, bi,

ei and ri are stored consecutively in the array W, that is:

ai ¼WðiÞ,
bi ¼Wðnþ iÞ,
ei ¼Wð2nþ iÞ and
ri ¼Wð3nþ iÞ.

10 Example

This example computes Z 1

0
lnx cos 10	xð Þ dx and

Z 1

0

sin 10xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1� xð Þ

p dx:

10.1 Program Text

! D01APF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01apfe_mod

! D01APF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: g1, g2

! .. Parameters ..
Integer, Parameter, Public :: lw = 800, nout = 6
Integer, Parameter, Public :: liw = lw/4

Contains
Function g1(x)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Function Return Value ..
Real (Kind=nag_wp) :: g1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, pi

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
pi = x01aaf(pi)
a = 10.0E0_nag_wp*pi
g1 = cos(a*x)
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Return

End Function g1
Function g2(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g2

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Local Scalars ..
Real (Kind=nag_wp) :: omega

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
omega = 10.0E0_nag_wp
g2 = sin(omega*x)

Return

End Function g2
End Module d01apfe_mod
Program d01apfe

! D01APF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01apf, nag_wp
Use d01apfe_mod, Only: g1, g2, liw, lw, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, abserr, alpha, b, beta, epsabs, &

epsrel, result
Integer :: ifail, key, nof

! .. Local Arrays ..
Real (Kind=nag_wp) :: alpha_a(2), beta_a(2)
Real (Kind=nag_wp), Allocatable :: w(:)
Integer, Allocatable :: iw(:)
Integer :: key_a(2)

! .. Executable Statements ..
Write (nout,*) ’D01APF Example Program Results’

Allocate (w(lw),iw(liw))

alpha_a = (/0.0_nag_wp,-0.5_nag_wp/)
beta_a = (/0.0_nag_wp,-0.5_nag_wp/)
key_a = (/2,1/)

epsabs = 0.0_nag_wp
epsrel = 1.0E-04_nag_wp
a = 0.0_nag_wp
b = 1.0_nag_wp

funs: Do nof = 1, 2

alpha = alpha_a(nof)
beta = beta_a(nof)
key = key_a(nof)

ifail = -1
If (nof==1) Then

Call d01apf(g1,a,b,alpha,beta,key,epsabs,epsrel,result,abserr,w,lw, &
iw,liw,ifail)

Else
Call d01apf(g2,a,b,alpha,beta,key,epsabs,epsrel,result,abserr,w,lw, &

iw,liw,ifail)
End If

If (ifail<0) Then
Exit funs

End If
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Write (nout,*)
Write (nout,99999) ’A ’, ’lower limit of integration’, a
Write (nout,99999) ’B ’, ’upper limit of integration’, b
Write (nout,99998) ’EPSABS’, ’absolute accuracy requested’, epsabs
Write (nout,99998) ’EPSREL’, ’relative accuracy requested’, epsrel
Write (nout,*)
Write (nout,99998) ’ALPHA ’, ’parameter in the weight function’, alpha
Write (nout,99998) ’BETA ’, ’parameter in the weight function’, beta
Write (nout,99997) ’KEY ’, ’which weight function is used’, key

If (ifail>3) Then
Cycle funs

End If
Write (nout,*)
Write (nout,99996) ’RESULT’, ’approximation to the integral’, result
Write (nout,99998) ’ABSERR’, ’estimate of the absolute error’, abserr
Write (nout,99997) ’IW(1)’, ’number of subintervals used ’, iw(1)

End Do funs

99999 Format (1X,A6,’ - ’,A32,’ = ’,F10.4)
99998 Format (1X,A6,’ - ’,A32,’ = ’,E9.2)
99997 Format (1X,A6,’ - ’,A32,’ = ’,I4)
99996 Format (1X,A6,’ - ’,A32,’ = ’,F9.5)

End Program d01apfe

10.2 Program Data

None.

10.3 Program Results

D01APF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03

ALPHA - parameter in the weight function = 0.00E+00
BETA - parameter in the weight function = 0.00E+00
KEY - which weight function is used = 2

RESULT - approximation to the integral = -0.04899
ABSERR - estimate of the absolute error = 0.11E-06
IW(1) - number of subintervals used = 4

A - lower limit of integration = 0.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03

ALPHA - parameter in the weight function = -0.50E+00
BETA - parameter in the weight function = -0.50E+00
KEY - which weight function is used = 1

RESULT - approximation to the integral = 0.53502
ABSERR - estimate of the absolute error = 0.19E-11
IW(1) - number of subintervals used = 2
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NAG Library Routine Document

D01AQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01AQF calculates an approximation to the Hilbert transform of a function g xð Þ over a; b½ �:

I ¼
Z b

a

g xð Þ
x� c dx

for user-specified values of a, b and c.

2 Specification

SUBROUTINE D01AQF (G, A, B, C, EPSABS, EPSREL, RESULT, ABSERR, W, LW,
IW, LIW, IFAIL)

&

INTEGER LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) G, A, B, C, EPSABS, EPSREL, RESULT, ABSERR, W(LW)
EXTERNAL G

3 Description

D01AQF is based on the QUADPACK routine QAWC (see Piessens et al. (1983)) and integrates a
function of the form g xð Þw xð Þ, where the weight function

w xð Þ ¼ 1

x� c
is that of the Hilbert transform. (If a < c < b the integral has to be interpreted in the sense of a Cauchy
principal value.) It is an adaptive routine which employs a ‘global’ acceptance criterion (as defined by
Malcolm and Simpson (1976)). Special care is taken to ensure that c is never the end point of a sub-
interval (see Piessens et al. (1976)). On each sub-interval c1; c2ð Þ modified Clenshaw–Curtis integration
of orders 12 and 24 is performed if c1 � d � c � c2 þ d where d ¼ c2 � c1ð Þ=20. Otherwise the Gauss
7-point and Kronrod 15-point rules are used. The local error estimation is described by
Piessens et al. (1983).

4 References

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

Piessens R, van Roy–Branders M and Mertens I (1976) The automatic evaluation of Cauchy principal
value integrals Angew. Inf. 18 31–35

5 Arguments

1: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must return the value of the function g at a given point X.
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The specification of G is:

FUNCTION G (X)
REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the function g must be evaluated.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01AQF is called. Arguments denoted as Input must not be changed by
this procedure.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration. It is not necessary that a < b.

4: C – REAL (KIND=nag_wp) Input

On entry: the argument c in the weight function.

Constraint: C must not equal A or B.

5: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

6: EPSREL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

7: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

8: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � RESULTj j.

9: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: details of the computation see Section 9 for more information.

10: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01AQF is
called. The value of LW (together with that of LIW) imposes a bound on the number of sub-
intervals into which the interval of integration may be divided by the routine. The number of sub-
intervals cannot exceed LW=4. The more difficult the integrand, the larger LW should be.

Suggested value: LW ¼ 800 to 2000 is adequate for most problems.

Constraint: LW � 4.
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11: IWðLIWÞ – INTEGER array Output

On exit: IWð1Þ contains the actual number of sub-intervals used. The rest of the array is used as
workspace.

12: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01AQF is
called. The number of sub-intervals into which the interval of integration may be divided cannot
exceed LIW.

Suggested value: LIW ¼ LW=4.

Constraint: LIW � 1.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01AQF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to determine
the integration difficulties. If necessary, another integrator, which is designed for handling the
type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy
requirements specified by EPSABS and EPSREL, or increasing the amount of workspace.

IFAIL ¼ 2

Round-off error prevents the requested tolerance from being achieved. Consider requesting less
accuracy.

IFAIL ¼ 3

Extremely bad local behaviour of g xð Þ causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 4

On entry, C ¼ A or C ¼ B.

IFAIL ¼ 5

On entry, LW < 4,
or LIW < 1.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D01AQF cannot guarantee, but in practice usually achieves, the following accuracy:

I � RESULTj j � tol;

where

tol ¼ max EPSABSj j; EPSRELj j � Ij jf g;

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover, it returns
the quantity ABSERR which, in normal circumstances satisfies:

I � RESULTj j � ABSERR � tol:

8 Parallelism and Performance

D01AQF is not threaded in any implementation.

9 Further Comments

The time taken by D01AQF depends on the integrand and the accuracy required.

If IFAIL 6¼ 0 on exit, then you may wish to examine the contents of the array W, which contains the
end points of the sub-intervals used by D01AQF along with the integral contributions and error
estimates over these sub-intervals.

Specifically, for i ¼ 1; 2; . . . ; n, let ri denote the approximation to the value of the integral over the sub-
interval [ai; bi] in the partition of a; b½ � and ei be the corresponding absolute error estimate. Then,Z bi

ai

g xð Þw xð Þ dx ’ ri and RESULT ¼
Xn
i¼1
ri. The value of n is returned in IWð1Þ, and the values ai, bi,

ei and ri are stored consecutively in the array W, that is:

ai ¼WðiÞ,
bi ¼Wðnþ iÞ,
ei ¼Wð2nþ iÞ and
ri ¼Wð3nþ iÞ.

10 Example

This example computes the Cauchy principal value ofZ 1

�1

dx

x2 þ 0:012
� �

x� 1
2

� �:

D01AQF NAG Library Manual

D01AQF.4 Mark 26



10.1 Program Text

! D01AQF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01aqfe_mod

! D01AQF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: g

! .. Parameters ..
Integer, Parameter, Public :: lw = 800, nout = 6
Integer, Parameter, Public :: liw = lw/4

Contains
Function g(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Local Scalars ..
Real (Kind=nag_wp) :: aa

! .. Executable Statements ..
aa = 0.01E0_nag_wp
g = 1.0E0_nag_wp/(x**2+aa**2)

Return

End Function g
End Module d01aqfe_mod
Program d01aqfe

! D01AQF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01aqf, nag_wp
Use d01aqfe_mod, Only: g, liw, lw, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, abserr, b, c, epsabs, epsrel, &

result
Integer :: ifail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:)
Integer, Allocatable :: iw(:)

! .. Executable Statements ..
Write (nout,*) ’D01AQF Example Program Results’

Allocate (w(lw),iw(liw))

epsabs = 0.0E0_nag_wp
epsrel = 1.0E-04_nag_wp
a = -1.0E0_nag_wp
b = 1.0E0_nag_wp
c = 0.5E0_nag_wp

ifail = -1
Call d01aqf(g,a,b,c,epsabs,epsrel,result,abserr,w,lw,iw,liw,ifail)

If (ifail>=0) Then
Write (nout,*)
Write (nout,99999) ’A ’, ’lower limit of integration’, a
Write (nout,99999) ’B ’, ’upper limit of integration’, b
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Write (nout,99998) ’EPSABS’, ’absolute accuracy requested’, epsabs
Write (nout,99998) ’EPSREL’, ’relative accuracy requested’, epsrel
Write (nout,99998) ’C ’, ’weight function parameter’, c

End If

If (ifail>=0 .And. ifail<=3) Then
Write (nout,*)
Write (nout,99997) ’RESULT’, ’approximation to the integral’, result
Write (nout,99998) ’ABSERR’, ’estimate of the absolute error’, abserr
Write (nout,99996) ’IW(1) ’, ’number of subintervals used’, iw(1)

End If

99999 Format (1X,A6,’ - ’,A32,’ = ’,F10.4)
99998 Format (1X,A6,’ - ’,A32,’ = ’,E9.2)
99997 Format (1X,A6,’ - ’,A32,’ = ’,F9.2)
99996 Format (1X,A6,’ - ’,A32,’ = ’,I4)

End Program d01aqfe

10.2 Program Data

None.

10.3 Program Results

D01AQF Example Program Results

A - lower limit of integration = -1.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03
C - weight function parameter = 0.50E+00

RESULT - approximation to the integral = -628.46
ABSERR - estimate of the absolute error = 0.13E-01
IW(1) - number of subintervals used = 8
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NAG Library Routine Document

D01ARF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01ARF computes definite and indefinite integrals over a finite range to a specified relative or absolute
accuracy, using the method described in Patterson (1968).

2 Specification

SUBROUTINE D01ARF (A, B, FUN, RELACC, ABSACC, MAXRUL, IPARM, ACC, ANS,
N, ALPHA, IFAIL)

&

INTEGER MAXRUL, IPARM, N, IFAIL
REAL (KIND=nag_wp) A, B, FUN, RELACC, ABSACC, ACC, ANS, ALPHA(390)
EXTERNAL FUN

3 Description

D01ARF evaluates definite and indefinite integrals of the form:Z b

a

f tð Þ dt

using the method described in Patterson (1968).

3.1 Definite Integrals

In this case D01ARF must be called with IPARM ¼ 0. By linear transformation the integral is changed
to

I ¼
Z þ1
�1

F xð Þ dx

where

F xð Þ ¼ b� a
2

f
bþ aþ b� að Þx

2

� �
and is then approximated by an n-point quadrature rule

I ¼
Xn
k¼1

wkF xkð Þ

where wk are the weights and xk are the abscissae.

The routine uses a family of nine interlacing rules based on the optimal extension of the three-point
Gauss rule. These rules use 1, 3, 7, 15, 31, 63, 127, 255 and 511 points and have respective polynomial
integrating degrees 1, 5, 11, 23, 47, 95, 191, 383 and 767. Each rule has the property that the next in
sequence includes all the points of its predecessor and has the greatest possible increase in integrating
degree.

The integration method is based on the successive application of these rules until the absolute value of
the difference of two successive results differs by not more than ABSACC, or relatively by not more
than RELACC. The result of the last rule used is taken as the value of the integral (ANS), and the
absolute difference of the results of the last two rules used is taken as an estimate of the absolute error
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(ACC). Due to their interlacing form no integrand evaluations are wasted in passing from one rule to
the next.

3.2 Indefinite Integrals

Suppose the value of the integral Z d

c

f tð Þ dt

is required for a number of sub-intervals c; d½ �, all of which lie in an interval a; b½ �.
In this case D01ARF should first be called with the argument IPARM ¼ 1 and the interval set to a; b½ �.
The routine then calculates the integral over a; b½ � and the Legendre expansion of the integrand, using
the same integrand values. If the routine is subsequently called with IPARM ¼ 2 and the interval set to
c; d½ �, the integral over c; d½ � is calculated by analytical integration of the Legendre expansion, without
further evaluations of the integrand.

For the interval �1; 1½ � the expansion takes the form

F xð Þ ¼
X1
i¼0
�iPi xð Þ

where Pi xð Þ is the order i Legendre polynomial. Assuming that the integral over the full range �1; 1½ �
was evaluated to the required accuracy using an n-point rule, then the coefficients

�i ¼ 1
2 2i� 1ð Þ

Z þ1
�1

Pi xð ÞF xð Þ dx; i ¼ 0; 1; . . . ;m

are evaluated by that same rule, up to

m ¼ 3n� 1ð Þ=4:

The accuracy for indefinite integration should be of the same order as that obtained for the definite
integral over the full range. The indefinite integrals will be exact when F xð Þ is a polynomial of degree
� m.

4 References

Patterson T N L (1968) The Optimum addition of points to quadrature formulae Math. Comput. 22
847–856

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

2: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration. It is not necessary that a < b.

3: FUN – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

FUN must return the value of the integrand f at a specified point.

The specification of FUN is:

FUNCTION FUN (X)
REAL (KIND=nag_wp) FUN

REAL (KIND=nag_wp) X
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1: X – REAL (KIND=nag_wp) Input

On entry: the point in a; b½ � at which the integrand f must be evaluated.

FUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01ARF is called. Arguments denoted as Input must not be changed by this
procedure.

If IPARM ¼ 2, FUN is not called.

4: RELACC – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required. If convergence according to absolute accuracy is
required, RELACC should be set to zero (but see also Section 7). If RELACC < 0:0, its absolute
value is used.

If IPARM ¼ 2, RELACC is not used.

5: ABSACC – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If convergence according to relative accuracy is
required, ABSACC should be set to zero (but see also Section 7). If ABSACC < 0:0, its absolute
value is used.

If IPARM ¼ 2, ABSACC is not used.

6: MAXRUL – INTEGER Input

On entry: the maximum number of successive rules that may be used.

Constraint: 1 � MAXRUL � 9. If MAXRUL is outside these limits, the value 9 is assumed.

If IPARM ¼ 2, MAXRUL is not used.

7: IPARM – INTEGER Input

On entry: indicates the task to be performed by the routine.

IPARM ¼ 0
Only the definite integral over a; b½ � is evaluated.

IPARM ¼ 1
As well as the definite integral, the expansion of the integrand in Legendre polynomials
over a; b½ � is calculated, using the same values of the integrand as used to compute the
integral. The expansion coefficients, and some other quantities, are returned in ALPHA for
later use in computing indefinite integrals.

IPARM ¼ 2
f tð Þ is integrated analytically over a; b½ � using the previously computed expansion, stored
in ALPHA. No further evaluations of the integrand are required. The routine must
previously have been called with IPARM ¼ 1 and the interval a; b½ � must lie within that
specified for the previous call. In this case only the arguments A, B, IPARM, ANS,
ALPHA and IFAIL are used.

Constraint: IPARM ¼ 0, 1 or 2.

8: ACC – REAL (KIND=nag_wp) Output

On exit: if IPARM ¼ 0 or 1, ACC contains the absolute value of the difference between the last
two successive estimates of the integral. This may be used as a measure of the accuracy actually
achieved.

If IPARM ¼ 2, ACC is not used.
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9: ANS – REAL (KIND=nag_wp) Output

On exit: the estimated value of the integral.

10: N – INTEGER Output

On exit: when IPARM ¼ 0 or 1, N contains the number of integrand evaluations used in the
calculation of the integral.

If IPARM ¼ 2, N is not used.

11: ALPHAð390Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if IPARM ¼ 2, ALPHA must contain the coefficients of the Legendre expansions of
the integrand, as returned by a previous call of D01ARF with IPARM ¼ 1 and a range containing
the present range.

If IPARM ¼ 0 or 1, ALPHA need not be set on entry.

On exit: if IPARM ¼ 1, the first m elements of ALPHA hold the coefficients of the Legendre
expansion of the integrand, and the value of m is stored in ALPHAð390Þ. ALPHA must not be
changed between a call with IPARM ¼ 1 and subsequent calls with IPARM ¼ 2.

If IPARM ¼ 2, the first m elements of ALPHA are unchanged on exit.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01ARF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

If IPARM ¼ 0 or 1, this indicates that all MAXRUL rules have been used and the integral has
not converged to the accuracy requested. In this case ANS contains the last approximation to the
integral, and ACC contains the difference between the last two approximations. To check this
estimate of the integral, D01ARF could be called again to evaluateZ b

a

f tð Þ dt as
Z c

a

f tð Þ dtþ
Z b

c

f tð Þ dt for some a < c < b:

If IPARM ¼ 2, this indicates failure of convergence during the run with IPARM ¼ 1 in which
the Legendre expansion was created.

IFAIL ¼ 2

On entry, IPARM 6¼ 0, 1 or 2
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IFAIL ¼ 3

The routine is called with IPARM ¼ 2 but a previous call with IPARM ¼ 1 has been omitted or
was invoked with an integration interval of length zero.

IFAIL ¼ 4

On entry, with IPARM ¼ 2, the interval for indefinite integration is not contained within the
interval specified when D01ARF was previously called with IPARM ¼ 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative or absolute accuracy required is specified by you in the variables RELACC or ABSACC.
D01ARF will terminate whenever either the relative accuracy specified by RELACC or the absolute
accuracy specified by ABSACC is reached. One or other of these criteria may be ‘forced’ by setting the
argument for the other to zero. If both RELACC and ABSACC are specified as zero, then the routine
uses the value 10:0� machine precisionð Þ for RELACC.
If on exit IFAIL ¼ 0, then it is likely that the result is correct to one or other of these accuracies. If on
exit IFAIL ¼ 1, then it is likely that neither of the requested accuracies has been reached.

When you have no prior idea of the magnitude of the integral, it is possible that an unreasonable
accuracy may be requested, e.g., a relative accuracy for an integral which turns out to be zero, or a
small absolute accuracy for an integral which turns out to be very large. Even if failure is reported in
such a case, the value of the integral may still be satisfactory. The device of setting the other ‘unused’
accuracy argument to a small positive value (e.g., 10�9 for an implementation of 11-digit precision)
rather than zero, may prevent excessive calculation in such a situation.

To avoid spurious convergence, it is recommended that relative accuracies larger than about 10�3 be
avoided.

8 Parallelism and Performance

D01ARF is not threaded in any implementation.

9 Further Comments

The time taken by D01ARF depends on the complexity of the integrand and the accuracy required.

This routine uses the Patterson method over the whole integration interval and should therefore be
suitable for well behaved functions. However, for very irregular functions it would be more efficient to
submit the differently behaved regions separately for integration.
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10 Example

This example evaluates the following integrals

(i) Definite integral only IPARM ¼ 0ð Þ forZ 1

0

4

1þ x2 dx ABSACC ¼ 10�5
� �

:

(ii) Definite integral together with expansion coefficients IPARM ¼ 1ð Þ forZ 2

1

ffiffiffi
x8
p

dx ABSACC ¼ 10�5
� �

:

(iii) Indefinite integral using previous expansion IPARM ¼ 2ð Þ forZ 1:8

1:2

ffiffiffi
x8
p

dx ABSACC ¼ 10�5
� �

:

10.1 Program Text

! D01ARF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01arfe_mod

! D01ARF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f1, f2

! .. Parameters ..
Integer, Parameter, Public :: maxrul = 0, nout = 6

Contains
Function f1(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Executable Statements ..
f1 = 4.0E0_nag_wp/(1.0E0_nag_wp+x*x)

Return

End Function f1
Function f2(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f2

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Executable Statements ..
f2 = x**0.125E0_nag_wp

Return

End Function f2
End Module d01arfe_mod
Program d01arfe

! D01ARF Example Main Program

! .. Use Statements ..
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Use nag_library, Only: d01arf, nag_wp
Use d01arfe_mod, Only: f1, f2, maxrul, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, absacc, acc, ans, b, relacc
Integer :: ifail, iparm, n

! .. Local Arrays ..
Real (Kind=nag_wp) :: alpha(390)

! .. Executable Statements ..
Write (nout,*) ’D01ARF Example Program Results’

relacc = 0.0E0_nag_wp
absacc = 1.0E-5_nag_wp

! Definite integral of F1(x) - no expansion

iparm = 0
a = 0.0E0_nag_wp
b = 1.0E0_nag_wp

Write (nout,*)
Write (nout,*) ’Definite integral of 4/(1+x*x) over (0,1)’

ifail = -1
Call d01arf(a,b,f1,relacc,absacc,maxrul,iparm,acc,ans,n,alpha,ifail)

Select Case (ifail)
Case (:-1)

Go To 100
Case (0,1)

Write (nout,99999) ’Estimated value of the integral =’, ans
Write (nout,99998) ’Estimated absolute error =’, acc
Write (nout,99997) ’Number of points used =’, n

End Select

! Definite integral of F2(x) - with expansion

iparm = 1
a = 1.0E0_nag_wp
b = 2.0E0_nag_wp

Write (nout,*)
Write (nout,*) ’Definite integral of x**(1/8) over (1,2)’

ifail = -1
Call d01arf(a,b,f2,relacc,absacc,maxrul,iparm,acc,ans,n,alpha,ifail)

Select Case (ifail)
Case (:-1)

Go To 100
Case (0,1)

Write (nout,99999) ’Estimated value of the integral =’, ans
Write (nout,99998) ’Estimated absolute error =’, acc
Write (nout,99997) ’Number of points used =’, n

End Select

! Indefinite integral of F2(x)

iparm = 2
a = 1.2E0_nag_wp
b = 1.8E0_nag_wp

Write (nout,*)
Write (nout,*) ’Indefinite integral of x**(1/8) over (1.2,1.8)’

ifail = 0
Call d01arf(a,b,f2,relacc,absacc,maxrul,iparm,acc,ans,n,alpha,ifail)

Write (nout,99999) ’Estimated value of the integral =’, ans
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100 Continue

99999 Format (1X,A,F9.5)
99998 Format (1X,A,E10.2)
99997 Format (1X,A,I4)

End Program d01arfe

10.2 Program Data

None.

10.3 Program Results

D01ARF Example Program Results

Definite integral of 4/(1+x*x) over (0,1)
Estimated value of the integral = 3.14159
Estimated absolute error = 0.18E-07
Number of points used = 15

Definite integral of x**(1/8) over (1,2)
Estimated value of the integral = 1.04979
Estimated absolute error = 0.59E-06
Number of points used = 7

Indefinite integral of x**(1/8) over (1.2,1.8)
Estimated value of the integral = 0.63073
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NAG Library Routine Document

D01ASF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01ASF calculates an approximation to the sine or the cosine transform of a function g over a;1½ Þ:

I ¼
Z 1
a

g xð Þ sin !xð Þ dx or I ¼
Z 1
a

g xð Þ cos !xð Þ dx

(for a user-specified value of !).

2 Specification

SUBROUTINE D01ASF (G, A, OMEGA, KEY, EPSABS, RESULT, ABSERR, LIMLST,
LST, ERLST, RSLST, IERLST, W, LW, IW, LIW, IFAIL)

&

INTEGER KEY, LIMLST, LST, IERLST(LIMLST), LW, IW(LIW), LIW,
IFAIL

&

REAL (KIND=nag_wp) G, A, OMEGA, EPSABS, RESULT, ABSERR, ERLST(LIMLST),
RSLST(LIMLST), W(LW)

&

EXTERNAL G

3 Description

D01ASF is based on the QUADPACK routine QAWFE (see Piessens et al. (1983)). It is an adaptive
routine, designed to integrate a function of the form g xð Þw xð Þ over a semi-infinite interval, where w xð Þ
is either sin !xð Þ or cos !xð Þ.
Over successive intervals

Ck ¼ aþ k� 1ð Þc; aþ kc½ �; k ¼ 1; 2; . . . ;LST

integration is performed by the same algorithm as is used by D01ANF. The intervals Ck are of constant
length

c ¼ 2 !j j½ � þ 1f g	= !j j; ! 6¼ 0;

where !j j½ � represents the largest integer less than or equal to !j j. Since c equals an odd number of half
periods, the integral contributions over succeeding intervals will alternate in sign when the function g is
positive and monotonically decreasing over a;1½ Þ. The algorithm, described in Piessens et al. (1983),
incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976)) together with
the �-algorithm (see Wynn (1956)) to perform extrapolation. The local error estimation is described by
Piessens et al. (1983).

If ! ¼ 0 and KEY ¼ 1, the routine uses the same algorithm as D01AMF (with EPSREL ¼ 0:0).

In contrast to the other routines in Chapter D01, D01ASF works only with an absolute error tolerance
(EPSABS). Over the interval Ck it attempts to satisfy the absolute accuracy requirement

EPSAk ¼ Uk � EPSABS;

where Uk ¼ 1� pð Þpk�1, for k ¼ 1; 2; . . . and p ¼ 0:9.

However, when difficulties occur during the integration over the kth sub-interval Ck such that the error
flag IERLSTðkÞ is nonzero, the accuracy requirement over subsequent intervals is relaxed. See Piessens
et al. (1983) for more details.
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4 References

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10
91–96

5 Arguments

1: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must return the value of the function g at a given point X.

The specification of G is:

FUNCTION G (X)
REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the function g must be evaluated.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01ASF is called. Arguments denoted as Input must not be changed by this
procedure.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

3: OMEGA – REAL (KIND=nag_wp) Input

On entry: the argument ! in the weight function of the transform.

4: KEY – INTEGER Input

On entry: indicates which integral is to be computed.

KEY ¼ 1
w xð Þ ¼ cos !xð Þ.

KEY ¼ 2
w xð Þ ¼ sin !xð Þ.

Constraint: KEY ¼ 1 or 2.

5: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

6: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

7: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � RESULTj j.
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8: LIMLST – INTEGER Input

On entry: an upper bound on the number of intervals Ck needed for the integration.

Suggested value: LIMLST ¼ 50 is adequate for most problems.

Constraint: LIMLST � 3.

9: LST – INTEGER Output

On exit: the number of intervals Ck actually used for the integration.

10: ERLSTðLIMLSTÞ – REAL (KIND=nag_wp) array Output

On exit: ERLSTðkÞ contains the error estimate corresponding to the integral contribution over the
interval Ck , for k ¼ 1; 2; . . . ;LST.

11: RSLSTðLIMLSTÞ – REAL (KIND=nag_wp) array Output

On exit: RSLSTðkÞ contains the integral contribution over the interval Ck , for k ¼ 1; 2; . . . ;LST.

12: IERLSTðLIMLSTÞ – INTEGER array Output

On exit: IERLSTðkÞ contains the error flag corresponding to RSLSTðkÞ, for k ¼ 1; 2; . . . ;LST.
See Section 6.

13: WðLWÞ – REAL (KIND=nag_wp) array Workspace
14: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01ASF is
called. The value of LW (together with that of LIW) imposes a bound on the number of sub-
intervals into which each interval Ck may be divided by the routine. The number of sub-intervals
cannot exceed LW=4. The more difficult the integrand, the larger LW should be.

Suggested value: a value in the range 800 to 2000 is adequate for most problems.

Constraint: LW � 4.

15: IWðLIWÞ – INTEGER array Output

On exit: IWð1Þ contains the maximum number of sub-intervals actually used for integrating over
any of the intervals Ck. The rest of the array is used as workspace.

16: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01ASF is
called. The number of sub-intervals into which each interval Ck may be divided cannot exceed
LIW=2.

Suggested value: LIW ¼ LW=2.

Constraint: LIW � 2.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01ASF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to determine
the integration difficulties. If the position of a local difficulty within the interval can be
determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you
will probably gain from splitting up the interval at this point and calling D01ASF on the infinite
subrange and an appropriate integrator on the finite subrange. Alternatively, consider relaxing the
accuracy requirements specified by EPSABS or increasing the amount of workspace.

IFAIL ¼ 2

Round-off error prevents the requested tolerance from being achieved. Consider requesting less
accuracy.

IFAIL ¼ 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 4

The requested tolerance cannot be achieved because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best which can be obtained. The same advice
applies as in the case of IFAIL ¼ 1.

Look at the integrand in order to determine the integration difficulties. If the position of a local
difficulty within the interval can be determined (e.g., a singularity of the integrand or its
derivative, a peak, a discontinuity etc.) you will probably gain from splitting up the interval at
this point and calling D01ASF on the infinite subrange and an appropriate integrator on the finite
subrange. Alternatively, consider relaxing the accuracy requirements specified by EPSABS or
increasing the amount of workspace.

Please note that divergence can occur with any nonzero value of IFAIL.

IFAIL ¼ 5

The integral is probably divergent, or slowly convergent. Please note that divergence can occur
with any nonzero value of IFAIL.

IFAIL ¼ 6

On entry, KEY 6¼ 1 or 2,
or LIMLST < 3.

IFAIL ¼ 7

Bad integration behaviour occurs within one or more of the intervals Ck. Location and type of
the difficulty involved can be determined from the vector IERLST.

IFAIL ¼ 8

Maximum number of intervals Ck ( ¼ LIMLST) allowed has been achieved. Increase the value of
LIMLST to allow more cycles.
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IFAIL ¼ 9

The extrapolation table constructed for convergence acceleration of the series formed by the
integral contribution over the intervals Ck, does not converge to the required accuracy.

IFAIL ¼ 10

On entry, LW < 4,
or LIW < 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

In the cases IFAIL ¼ 7, 8 or 9, additional information about the cause of the error can be obtained from
the array IERLST, as follows:

IERLSTðkÞ ¼ 1
The maximum number of subdivisions ¼ min LW=4;LIW=2ð Þ has been achieved on the kth
interval.

IERLSTðkÞ ¼ 2
Occurrence of round-off error is detected and prevents the tolerance imposed on the kth interval
from being achieved.

IERLSTðkÞ ¼ 3
Extremely bad integrand behaviour occurs at some points of the kth interval.

IERLSTðkÞ ¼ 4
The integration procedure over the kth interval does not converge (to within the required
accuracy) due to round-off in the extrapolation procedure invoked on this interval. It is assumed
that the result on this interval is the best which can be obtained.

IERLSTðkÞ ¼ 5
The integral over the kth interval is probably divergent or slowly convergent. It must be noted
that divergence can occur with any other value of IERLSTðkÞ.

7 Accuracy

D01ASF cannot guarantee, but in practice usually achieves, the following accuracy:

I � RESULTj j � EPSABSj j;

where EPSABS is the user-specified absolute error tolerance. Moreover, it returns the quantity
ABSERR, which, in normal circumstances, satisfies

I � RESULTj j � ABSERR � EPSABSj j:

8 Parallelism and Performance

D01ASF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example computes Z 1
0

1ffiffiffi
x
p cos 	x=2ð Þ dx:

10.1 Program Text

! D01ASF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01asfe_mod

! D01ASF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: g

! .. Parameters ..
Integer, Parameter, Public :: limlst = 50, lw = 800, nout = 6
Integer, Parameter, Public :: liw = lw/2

Contains
Function g(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
If (x>0.0E0_nag_wp) Then

g = 1.0E0_nag_wp/sqrt(x)
Else

g = 0.0E0_nag_wp
End If

Return

End Function g
End Module d01asfe_mod
Program d01asfe

! D01ASF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01asf, nag_wp, x01aaf
Use d01asfe_mod, Only: g, limlst, liw, lw, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, abserr, epsabs, omega, result
Integer :: ifail, key, lst

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: erlst(:), rslst(:), w(:)
Integer, Allocatable :: ierlst(:), iw(:)

! .. Executable Statements ..
Write (nout,*) ’D01ASF Example Program Results’
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Allocate (erlst(limlst),rslst(limlst),w(lw),ierlst(limlst),iw(liw))

epsabs = 1.0E-03_nag_wp
a = 0.0E0_nag_wp
omega = 0.5E0_nag_wp*x01aaf(omega)
key = 1

ifail = -1
Call d01asf(g,a,omega,key,epsabs,result,abserr,limlst,lst,erlst,rslst, &

ierlst,w,lw,iw,liw,ifail)

If (ifail>=0) Then
Write (nout,*)
Write (nout,99999) ’A - lower limit of integration = ’, a
Write (nout,*) ’B - upper limit of integration = infinity’
Write (nout,99998) ’EPSABS - absolute accuracy requested = ’, epsabs

If (ifail/=6 .And. ifail/=10) Then
Write (nout,*)
Write (nout,99997) ’RESULT - approximation to the integral = ’, &

result
Write (nout,99998) ’ABSERR - estimate of the absolute error = ’, &

abserr
Write (nout,99996) ’LST - number of intervals used = ’, lst
Write (nout,99996) &

’IW(1) - max. no. of subintervals used in any one interval = ’, &
iw(1)

End If

End If

99999 Format (1X,A,F10.4)
99998 Format (1X,A,E9.2)
99997 Format (1X,A,F9.5)
99996 Format (1X,A,I4)

End Program d01asfe

10.2 Program Data

None.

10.3 Program Results

D01ASF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = infinity
EPSABS - absolute accuracy requested = 0.10E-02

RESULT - approximation to the integral = 1.00000
ABSERR - estimate of the absolute error = 0.59E-03
LST - number of intervals used = 6
IW(1) - max. no. of subintervals used in any one interval = 8
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NAG Library Routine Document

D01ATF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01ATF is a general purpose integrator which calculates an approximation to the integral of a function
f xð Þ over a finite interval a; b½ �:

I ¼
Z b

a

f xð Þ dx:

2 Specification

SUBROUTINE D01ATF (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, W, LW, IW,
LIW, IFAIL)

&

INTEGER LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) A, B, EPSABS, EPSREL, RESULT, ABSERR, W(LW)
EXTERNAL F

3 Description

D01ATF is based on the QUADPACK routine QAGS (see Piessens et al. (1983)). It is an adaptive
routine, using the Gauss 10-point and Kronrod 21-point rules. The algorithm, described in de Doncker
(1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976)) together
with the �-algorithm (see Wynn (1956)) to perform extrapolation. The local error estimation is described
in Piessens et al. (1983).

The routine is suitable as a general purpose integrator, and can be used when the integrand has
singularities, especially when these are of algebraic or logarithmic type.

D01ATF requires a subroutine to evaluate the integrand at an array of different points and is therefore
amenable to parallel execution. Otherwise the algorithm is identical to that used by D01AJF.

4 References

de Doncker E (1978) An adaptive extrapolation algorithm for automatic integration ACM SIGNUM
Newsl. 13(2) 12–18

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10
91–96

5 Arguments

1: F – SUBROUTINE, supplied by the user. External Procedure

F must return the values of the integrand f at a set of points.

The specification of F is:

SUBROUTINE F (X, FV, N)
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INTEGER N
REAL (KIND=nag_wp) X(N), FV(N)

1: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the points at which the integrand f must be evaluated.

2: FVðNÞ – REAL (KIND=nag_wp) array Output

On exit: FVðjÞ must contain the value of f at the point XðjÞ, for j ¼ 1; 2; . . . ;N.

3: N – INTEGER Input

On entry: the number of points at which the integrand is to be evaluated. The actual
value of N is always 21.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01ATF is called. Arguments denoted as Input must not be changed by this
procedure.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration. It is not necessary that a < b.

4: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

5: EPSREL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

6: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

7: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � RESULTj j.

8: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: details of the computation see Section 9 for more information.

9: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01ATF is
called. The value of LW (together with that of LIW) imposes a bound on the number of sub-
intervals into which the interval of integration may be divided by the routine. The number of sub-
intervals cannot exceed LW=4. The more difficult the integrand, the larger LW should be.

Suggested value: LW ¼ 800 to 2000 is adequate for most problems.

Constraint: LW � 4.
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10: IWðLIWÞ – INTEGER array Output

On exit: IWð1Þ contains the actual number of sub-intervals used. The rest of the array is used as
workspace.

11: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01ATF is
called. The number of sub-intervals into which the interval of integration may be divided cannot
exceed LIW.

Suggested value: LIW ¼ LW=4.

Constraint: LIW � 1.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01ATF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to determine
the integration difficulties. If the position of a local difficulty within the interval can be
determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you
will probably gain from splitting up the interval at this point and calling the integrator on the
subranges. If necessary, another integrator, which is designed for handling the type of difficulty
involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by
EPSABS and EPSREL, or increasing the amount of workspace.

IFAIL ¼ 2

Round-off error prevents the requested tolerance from being achieved. Consider requesting less
accuracy.

IFAIL ¼ 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 4

The requested tolerance cannot be achieved because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best which can be obtained. The same advice
applies as in the case of IFAIL ¼ 1.
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IFAIL ¼ 5

The integral is probably divergent, or slowly convergent. Please note that divergence can occur
with any nonzero value of IFAIL.

IFAIL ¼ 6

On entry, LW < 4,
or LIW < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D01ATF cannot guarantee, but in practice usually achieves, the following accuracy:

I � RESULTj j � tol;

where

tol ¼ max EPSABSj j; EPSRELj j � Ij jf g;

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover, it returns
the quantity ABSERR which, in normal circumstances, satisfies

I � RESULTj j � ABSERR � tol:

8 Parallelism and Performance

D01ATF is not threaded in any implementation.

9 Further Comments

If IFAIL 6¼ 0 on exit, then you may wish to examine the contents of the array W, which contains the
end points of the sub-intervals used by D01ATF along with the integral contributions and error
estimates over the sub-intervals.

Specifically, for i ¼ 1; 2; . . . ; n, let ri denote the approximation to the value of the integral over the sub-
interval ai; bi½ � in the partition of a; b½ � and ei be the corresponding absolute error estimate. Then,Z bi

ai

f xð Þ dx ’ ri and RESULT ¼
Xn
i¼1
ri, unless D01ATF terminates while testing for divergence of the

integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, RESULT (and ABSERR) are taken to
be the values returned from the extrapolation process. The value of n is returned in IWð1Þ, and the
values ai, bi, ei and ri are stored consecutively in the array W, that is:

ai ¼WðiÞ,
bi ¼Wðnþ iÞ,
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ei ¼Wð2nþ iÞ and
ri ¼Wð3nþ iÞ.

10 Example

This example computes Z 2	

0

x sin 30xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x=2	ð Þ2

q dx:

10.1 Program Text

! D01ATF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01atfe_mod

! D01ATF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: lw = 800, nout = 6
Integer, Parameter, Public :: liw = lw/4

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: pi

Contains
Subroutine f(x,fv,n)

! .. Scalar Arguments ..
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fv(n)
Real (Kind=nag_wp), Intent (In) :: x(n)

! .. Intrinsic Procedures ..
Intrinsic :: sin, sqrt

! .. Executable Statements ..
fv(1:n) = x(1:n)*sin(30.0E0_nag_wp*x(1:n))/sqrt(1.0E0_nag_wp-x(1:n)**2 &

/(4.0E0_nag_wp*pi**2))

Return

End Subroutine f
End Module d01atfe_mod
Program d01atfe

! D01ATF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01atf, nag_wp, x01aaf
Use d01atfe_mod, Only: f, liw, lw, nout, pi

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, abserr, b, epsabs, epsrel, result
Integer :: ifail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:)
Integer, Allocatable :: iw(:)

! .. Executable Statements ..
Write (nout,*) ’D01ATF Example Program Results’
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Allocate (w(lw),iw(liw))

pi = x01aaf(pi)
epsabs = 0.0_nag_wp
epsrel = 1.0E-04_nag_wp
a = 0.0_nag_wp
b = 2.0_nag_wp*pi

ifail = -1
Call d01atf(f,a,b,epsabs,epsrel,result,abserr,w,lw,iw,liw,ifail)

If (ifail>=0) Then
Write (nout,*)
Write (nout,99999) ’A ’, ’lower limit of integration’, a
Write (nout,99999) ’B ’, ’upper limit of integration’, b
Write (nout,99998) ’EPSABS’, ’absolute accuracy requested’, epsabs
Write (nout,99998) ’EPSREL’, ’relative accuracy requested’, epsrel

End If
If (ifail>=0 .And. ifail<=5) Then

Write (nout,*)
Write (nout,99997) ’RESULT’, ’approximation to the integral’, result
Write (nout,99998) ’ABSERR’, ’estimate of the absolute error’, abserr
Write (nout,99996) ’IW(1) ’, ’number of subintervals used’, iw(1)

End If

99999 Format (1X,A6,’ - ’,A30,’ = ’,F10.4)
99998 Format (1X,A6,’ - ’,A30,’ = ’,E9.2)
99997 Format (1X,A6,’ - ’,A30,’ = ’,F9.5)
99996 Format (1X,A6,’ - ’,A30,’ = ’,I4)

End Program d01atfe

10.2 Program Data

None.

10.3 Program Results

D01ATF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 6.2832
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03

RESULT - approximation to the integral = -2.54326
ABSERR - estimate of the absolute error = 0.13E-04
IW(1) - number of subintervals used = 19
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NAG Library Routine Document

D01AUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01AUF is an adaptive integrator, especially suited to oscillating, nonsingular integrands, which
calculates an approximation to the integral of a function f xð Þ over a finite interval a; b½ �:

I ¼
Z b

a

f xð Þ dx:

2 Specification

SUBROUTINE D01AUF (F, A, B, KEY, EPSABS, EPSREL, RESULT, ABSERR, W, LW,
IW, LIW, IFAIL)

&

INTEGER KEY, LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) A, B, EPSABS, EPSREL, RESULT, ABSERR, W(LW)
EXTERNAL F

3 Description

D01AUF is based on the QUADPACK routine QAG (see Piessens et al. (1983)). It is an adaptive
routine, offering a choice of six Gauss–Kronrod rules. A global acceptance criterion (as defined by
Malcolm and Simpson (1976)) is used. The local error estimation is described in Piessens et al. (1983).

Because D01AUF is based on integration rules of high order, it is especially suitable for nonsingular
oscillating integrands.

D01AUF requires a subroutine to evaluate the integrand at an array of different points and is therefore
amenable to parallel execution. Otherwise this algorithm with KEY ¼ 6 is identical to that used by
D01AKF.

4 References

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R (1973) An algorithm for automatic integration Angew. Inf. 15 399–401

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

5 Arguments

1: F – SUBROUTINE, supplied by the user. External Procedure

F must return the values of the integrand f at a set of points.

The specification of F is:

SUBROUTINE F (X, FV, N)

INTEGER N
REAL (KIND=nag_wp) X(N), FV(N)
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1: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the points at which the integrand f must be evaluated.

2: FVðNÞ – REAL (KIND=nag_wp) array Output

On exit: FVðjÞ must contain the value of f at the point XðjÞ, for j ¼ 1; 2; . . . ;N.

3: N – INTEGER Input

On entry: the number of points at which the integrand is to be evaluated. The actual
value of N is equal to the number of points in the Kronrod rule (see specification of
KEY).

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01AUF is called. Arguments denoted as Input must not be changed by
this procedure.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration. It is not necessary that a < b.

4: KEY – INTEGER Input

On entry: indicates which integration rule is to be used.

KEY ¼ 1
For the Gauss 7-point and Kronrod 15-point rule.

KEY ¼ 2
For the Gauss 10-point and Kronrod 21-point rule.

KEY ¼ 3
For the Gauss 15-point and Kronrod 31-point rule.

KEY ¼ 4
For the Gauss 20-point and Kronrod 41-point rule.

KEY ¼ 5
For the Gauss 25-point and Kronrod 51-point rule.

KEY ¼ 6
For the Gauss 30-point and Kronrod 61-point rule.

Suggested value: KEY ¼ 6.

Constraint: KEY ¼ 1, 2, 3, 4, 5 or 6.

5: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

6: EPSREL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

7: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.
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8: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � RESULTj j.

9: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: details of the computation see Section 9 for more information.

10: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01AUF is
called. The value of LW (together with that of LIW) imposes a bound on the number of sub-
intervals into which the interval of integration may be divided by the routine. The number of sub-
intervals cannot exceed LW=4. The more difficult the integrand, the larger LW should be.

Suggested value: LW ¼ 800 to 2000 is adequate for most problems.

Constraint: LW � 4.

11: IWðLIWÞ – INTEGER array Output

On exit: IWð1Þ contains the actual number of sub-intervals used. The rest of the array is used as
workspace.

12: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01AUF is
called.

The number of sub-intervals into which the interval of integration may be divided cannot exceed
LIW.

Suggested value: LIW ¼ LW=4.

Constraint: LIW � 1.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01AUF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to determine
the integration difficulties. If necessary, another integrator, which is designed for handling the
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type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy
requirements specified by EPSABS and EPSREL, or increasing the amount of workspace.

IFAIL ¼ 2

Round-off error prevents the requested tolerance from being achieved. Consider requesting less
accuracy.

IFAIL ¼ 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 4

On entry, KEY 6¼ 1, 2, 3, 4, 5 or 6.

IFAIL ¼ 5

On entry, LW < 4,
or LIW < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D01AUF cannot guarantee, but in practice usually achieves, the following accuracy:

I � RESULTj j � tol;

where

tol ¼ max EPSABSj j; EPSRELj j � Ij jf g;

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover, it returns
the quantity ABSERR which, in normal circumstances, satisfies

I � RESULTj j � ABSERR � tol:

8 Parallelism and Performance

D01AUF is not threaded in any implementation.

9 Further Comments

If IFAIL 6¼ 0 on exit, then you may wish to examine the contents of the array W, which contains the
end points of the sub-intervals used by D01AUF along with the integral contributions and error
estimates over these sub-intervals.
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Specifically, for i ¼ 1; 2; . . . ; n, let ri denote the approximation to the value of the integral over the sub-
interval ai; bi½ � in the partition of a; b½ � and ei be the corresponding absolute error estimate. Then,Z bi

ai

f xð Þ dx ’ ri and RESULT ¼
Xn
i¼1
ri. The value of n is returned in IWð1Þ, and the values ai, bi, ei

and ri are stored consecutively in the array W, that is:

ai ¼WðiÞ,
bi ¼Wðnþ iÞ,
ei ¼Wð2nþ iÞ and
ri ¼Wð3nþ iÞ.

10 Example

This example computes Z 2	

0
x sin 30xð Þ cos x dx:

10.1 Program Text

! D01AUF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01aufe_mod

! D01AUF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: lw = 800, nout = 6
Integer, Parameter, Public :: liw = lw/4

Contains
Subroutine f(x,fv,n)

! .. Scalar Arguments ..
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fv(n)
Real (Kind=nag_wp), Intent (In) :: x(n)

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
fv(1:n) = x(1:n)*(sin(30.0E0_nag_wp*x(1:n)))*cos(x(1:n))

Return

End Subroutine f
End Module d01aufe_mod
Program d01aufe

! D01AUF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01auf, nag_wp, x01aaf
Use d01aufe_mod, Only: f, liw, lw, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..

D01 – Quadrature D01AUF

Mark 26 D01AUF.5



Real (Kind=nag_wp) :: a, abserr, b, epsabs, epsrel, pi, &
result

Integer :: ifail, key
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: w(:)
Integer, Allocatable :: iw(:)

! .. Executable Statements ..
Write (nout,*) ’D01AUF Example Program Results’

Allocate (w(lw),iw(liw))

pi = x01aaf(pi)
epsabs = 0.0E0_nag_wp
epsrel = 1.0E-03_nag_wp
a = 0.0E0_nag_wp
b = 2.0E0_nag_wp*pi
key = 6

ifail = -1
Call d01auf(f,a,b,key,epsabs,epsrel,result,abserr,w,lw,iw,liw,ifail)

If (ifail>=0) Then
Write (nout,*)
Write (nout,99999) ’A ’, ’lower limit of integration’, a
Write (nout,99999) ’B ’, ’upper limit of integration’, b
Write (nout,99998) ’EPSABS’, ’absolute accuracy requested’, epsabs
Write (nout,99998) ’EPSREL’, ’relative accuracy requested’, epsrel

End If
If (ifail>=0 .And. ifail<=3) Then

Write (nout,*)
Write (nout,99997) ’RESULT’, ’approximation to the integral’, result
Write (nout,99998) ’ABSERR’, ’estimate of the absolute error’, abserr
Write (nout,99996) ’IW(1) ’, ’number of subintervals used’, iw(1)

End If

99999 Format (1X,A6,’ - ’,A30,’ = ’,F10.4)
99998 Format (1X,A6,’ - ’,A30,’ = ’,E9.2)
99997 Format (1X,A6,’ - ’,A30,’ = ’,F9.5)
99996 Format (1X,A6,’ - ’,A30,’ = ’,I4)

End Program d01aufe

10.2 Program Data

None.

10.3 Program Results

D01AUF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 6.2832
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-02

RESULT - approximation to the integral = -0.20967
ABSERR - estimate of the absolute error = 0.45E-13
IW(1) - number of subintervals used = 4
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NAG Library Routine Document

D01BCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01BCF returns the weights (normal or adjusted) and abscissae for a Gaussian integration rule with a
specified number of abscissae. Six different types of Gauss rule are allowed.

2 Specification

SUBROUTINE D01BCF (ITYPE, A, B, C, D, N, WEIGHT, ABSCIS, IFAIL)

INTEGER ITYPE, N, IFAIL
REAL (KIND=nag_wp) A, B, C, D, WEIGHT(N), ABSCIS(N)

3 Description

D01BCF returns the weights wi and abscissae xi for use in the summation

S ¼
Xn
i¼1
wif xið Þ

which approximates a definite integral (see Davis and Rabinowitz (1975) or Stroud and Secrest (1966)).
The following types are provided:

(a) Gauss–Legendre

S ’
Z b

a

f xð Þ dx; exact for f xð Þ ¼ P2n�1 xð Þ:

Constraint: b > a.

(b) Gauss–Jacobi

normal weights:

S ’
Z b

a

b� xð Þc x� að Þdf xð Þ dx; exact for f xð Þ ¼ P2n�1 xð Þ;

adjusted weights:

S ’
Z b

a

f xð Þ dx; exact for f xð Þ ¼ b� xð Þc x� að ÞdP2n�1 xð Þ:

Constraint: c > �1, d > �1, b > a.

(c) Exponential Gauss

normal weights:

S ’
Z b

a

x� aþ b
2

				 				cf xð Þ dx; exact for f xð Þ ¼ P2n�1 xð Þ;

adjusted weights:

S ’
Z b

a

f xð Þ dx; exact for f xð Þ ¼ x� aþ b
2

				 				cP2n�1 xð Þ:

Constraint: c > �1, b > a.
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(d) Gauss–Laguerre

normal weights:

S ’
Z 1
a

x� aj jce�bxf xð Þ dx b > 0ð Þ;

’
Z a

�1
x� aj jce�bxf xð Þ dx b < 0ð Þ; exact for f xð Þ ¼ P2n�1 xð Þ;

adjusted weights:

S ’
Z 1
a

f xð Þ dx b > 0ð Þ;

’
Z a

�1
f xð Þ dx b < 0ð Þ; exact for f xð Þ ¼ x� aj jce�bxP2n�1 xð Þ:

Constraint: c > �1, b 6¼ 0.

(e) Gauss–Hermite

normal weights:

S ’
Z þ1
�1

x� aj jce�b x�að Þ2f xð Þ dx; exact for f xð Þ ¼ P2n�1 xð Þ;

adjusted weights:

S ’
Z þ1
�1

f xð Þ dx; exact for f xð Þ ¼ x� aj jce�b x�að Þ2P2n�1 xð Þ:

Constraint: c > �1, b > 0.

(f) Rational Gauss

normal weights:

S ’
Z 1
a

x�aj jc

xþbj jdf xð Þ dx aþ b > 0ð Þ;

’
Z a

�1

x�aj jc

xþbj jdf xð Þ dx aþ b < 0ð Þ; exact for f xð Þ ¼ P2n�1
1
xþb

� �
;

adjusted weights:

S ’
Z 1
a

f xð Þ dx aþ b > 0ð Þ;

’
Z a

�1
f xð Þ dx aþ b < 0ð Þ; exact for f xð Þ ¼ x�aj jc

xþbj jdP2n�1
1
xþb

� �
:

Constraint: c > �1, d > cþ 1, aþ b 6¼ 0.

In the above formulae, P2n�1 xð Þ stands for any polynomial of degree 2n� 1 or less in x.

The method used to calculate the abscissae involves finding the eigenvalues of the appropriate
tridiagonal matrix (see Golub and Welsch (1969)). The weights are then determined by the formula

wi ¼
Xn�1
j¼0

P �j xið Þ
2

( )�1
where P �j xð Þ is the jth orthogonal polynomial with respect to the weight function over the appropriate
interval.
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The weights and abscissae produced by D01BCF may be passed to D01FBF, which will evaluate the
summations in one or more dimensions.

4 References

Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press

Golub G H and Welsch J H (1969) Calculation of Gauss quadrature rules Math. Comput. 23 221–230

Stroud A H and Secrest D (1966) Gaussian Quadrature Formulas Prentice–Hall

5 Arguments

1: ITYPE – INTEGER Input

On entry: indicates the type of quadrature rule.

ITYPE ¼ 0
Gauss–Legendre, with normal weights.

ITYPE ¼ 1
Gauss–Jacobi, with normal weights.

ITYPE ¼ �1
Gauss–Jacobi, with adjusted weights.

ITYPE ¼ 2
Exponential Gauss, with normal weights.

ITYPE ¼ �2
Exponential Gauss, with adjusted weights.

ITYPE ¼ 3
Gauss–Laguerre, with normal weights.

ITYPE ¼ �3
Gauss–Laguerre, with adjusted weights.

ITYPE ¼ 4
Gauss–Hermite, with normal weights.

ITYPE ¼ �4
Gauss–Hermite, with adjusted weights.

ITYPE ¼ 5
Rational Gauss, with normal weights.

ITYPE ¼ �5
Rational Gauss, with adjusted weights.

Constraint: ITYPE ¼ 0, 1, �1, 2, �2, 3, �3, 4, �4, 5 or �5.

2: A – REAL (KIND=nag_wp) Input
3: B – REAL (KIND=nag_wp) Input
4: C – REAL (KIND=nag_wp) Input
5: D – REAL (KIND=nag_wp) Input

On entry: the parameters a, b, c and d which occur in the quadrature formulae. C is not used if
ITYPE ¼ 0; D is not used unless ITYPE ¼ 1, �1, 5 or �5. For some rules C and D must not be
too large (see Section 6).

6: N – INTEGER Input

On entry: n, the number of weights and abscissae to be returned. If ITYPE ¼ �2 or �4 and
C 6¼ 0:0, an odd value of N may raise problems (see IFAIL ¼ 6).

Constraint: N > 0.
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7: WEIGHTðNÞ – REAL (KIND=nag_wp) array Output

On exit: the N weights.

8: ABSCISðNÞ – REAL (KIND=nag_wp) array Output

On exit: the N abscissae.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The algorithm for computing eigenvalues of a tridiagonal matrix has failed to obtain
convergence. If the soft fail option is used, the values of the weights and abscissae on return
are indeterminate.

IFAIL ¼ 2

On entry, N < 1,
or ITYPE < �5,
or ITYPE > 5.

If the soft fail option is used, weights and abscissae are returned as zero.

IFAIL ¼ 3

A, B, C or D is not in the allowed range:

if ITYPE ¼ 0, A � B;

if ITYPE ¼ 
1, A � B or C � �1:0 or D � �1:0 or Cþ Dþ 2:0 > gmax;

if ITYPE ¼ 
2, A � B or C � �1:0;
if ITYPE ¼ 
3, B ¼ 0:0 or C � �1:0 or Cþ 1:0 > gmax;

if ITYPE ¼ 
4, B � 0:0 or C � �1:0 or Cþ 1:0=2:0ð Þ > gmax;

if ITYPE ¼ 
5, Aþ B ¼ 0:0 or C � �1:0 or D � Cþ 1:0.

Here gmax is the (machine-dependent) largest integer value such that  gmaxð Þ can be computed
without overflow (see the Users' Note for your implementation for S14AAF).

If the soft fail option is used, weights and abscissae are returned as zero.

IFAIL ¼ 4

One or more of the weights are larger than rmax, the largest floating-point number on this
machine. rmax is given by the function X02ALF. If the soft fail option is used, the overflowing
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weights are returned as rmax. Possible solutions are to use a smaller value of N; or, if using
adjusted weights, to change to normal weights.

IFAIL ¼ 5

One or more of the weights are too small to be distinguished from zero on this machine. If the
soft fail option is used, the underflowing weights are returned as zero, which may be a usable
approximation. Possible solutions are to use a smaller value of N; or, if using normal weights, to
change to adjusted weights.

IFAIL ¼ 6

Exponential Gauss or Gauss–Hermite adjusted weights with N odd and C 6¼ 0:0. Theoretically, in
these cases:

for C > 0:0, the central adjusted weight is infinite, and the exact function f xð Þ is zero at
the central abscissa.

for C < 0:0, the central adjusted weight is zero, and the exact function f xð Þ is infinite at
the central abscissa.

In either case, the contribution of the central abscissa to the summation is indeterminate.

In practice, the central weight may not have overflowed or underflowed, if there is sufficient
rounding error in the value of the central abscissa.

If the soft fail option is used, the weights and abscissa returned may be usable; you must be
particularly careful not to ‘round’ the central abscissa to its true value without simultaneously
‘rounding’ the central weight to zero or 1 as appropriate, or the summation will suffer. It would
be preferable to use normal weights, if possible.

Note: remember that, when switching from normal weights to adjusted weights or vice versa,
redefinition of f xð Þ is involved.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy depends mainly on n, with increasing loss of accuracy for larger values of n. Typically,
one or two decimal digits may be lost from machine accuracy with n ’ 20, and three or four decimal
digits may be lost for n ’ 100.

8 Parallelism and Performance

D01BCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The major portion of the time is taken up during the calculation of the eigenvalues of the appropriate
tridiagonal matrix, where the time is roughly proportional to n3.

10 Example

This example returns the abscissae and (adjusted) weights for the seven-point Gauss–Laguerre formula.

10.1 Program Text

Program d01bcfe

! D01BCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d01bcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 7, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, c, d
Integer :: ifail, itype, j

! .. Local Arrays ..
Real (Kind=nag_wp) :: abscis(n), weight(n)

! .. Executable Statements ..
Write (nout,*) ’D01BCF Example Program Results’

a = 0.0E0_nag_wp
b = 1.0E0_nag_wp
c = 0.0E0_nag_wp
d = 0.0E0_nag_wp
itype = -3

ifail = 0
Call d01bcf(itype,a,b,c,d,n,weight,abscis,ifail)

Write (nout,*)
Write (nout,99999) ’Laguerre formula,’, n, ’ points’
Write (nout,*)
Write (nout,*) ’ Abscissae Weights’
Write (nout,*)
Write (nout,99998)(abscis(j),weight(j),j=1,n)

99999 Format (1X,A,I3,A)
99998 Format (1X,E15.5,5X,E15.5)

End Program d01bcfe

10.2 Program Data

None.
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10.3 Program Results

D01BCF Example Program Results

Laguerre formula, 7 points

Abscissae Weights

0.19304E+00 0.49648E+00
0.10267E+01 0.11776E+01
0.25679E+01 0.19182E+01
0.49004E+01 0.27718E+01
0.81822E+01 0.38412E+01
0.12734E+02 0.53807E+01
0.19396E+02 0.84054E+01
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Example Program
Abscissae and Weights for the 7-point Gauss-Laguerre Formula (a=0, b=1)
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NAG Library Routine Document

D01BDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01BDF calculates an approximation to the integral of a function over a finite interval a; b½ �:

I ¼
Z b

a

f xð Þ dx:

It is non-adaptive and as such is recommended for the integration of ‘smooth’ functions. These exclude
integrands with singularities, derivative singularities or high peaks on a; b½ �, or which oscillate too
strongly on a; b½ �.

2 Specification

SUBROUTINE D01BDF (F, A, B, EPSABS, EPSREL, RESULT, ABSERR)

REAL (KIND=nag_wp) F, A, B, EPSABS, EPSREL, RESULT, ABSERR
EXTERNAL F

3 Description

D01BDF is based on the QUADPACK routine QNG (see Piessens et al. (1983)). It is a non-adaptive
routine which uses as its basic rules, the Gauss 10-point and 21-point formulae. If the accuracy criterion
is not met, formulae using 43 and 87 points are used successively, stopping whenever the accuracy
criterion is satisfied.

This routine is designed for smooth integrands only.

4 References

Patterson T N L (1968) The Optimum addition of points to quadrature formulae Math. Comput. 22
847–856

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

5 Arguments

1: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

The specification of F is:

FUNCTION F (X)
REAL (KIND=nag_wp) F

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the point at which the integrand f must be evaluated.
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F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01BDF is called. Arguments denoted as Input must not be changed by this
procedure.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration. It is not necessary that a < b.

4: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

5: EPSREL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

6: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

7: ABSERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
I � RESULTj j.

6 Error Indicators and Warnings

There are no specific errors detected by D01BDF. However, if ABSERR is greater than

max EPSABS;EPSREL� RESULTj jf g

this indicates that the routine has probably failed to achieve the requested accuracy within 87 function
evaluations.

7 Accuracy

D01BDF attempts to compute an approximation, RESULT, such that:

I � RESULTj j � tol;

where

tol ¼ max EPSABSj j; EPSRELj j � Ij jf g;

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. There can be no
guarantee that this is achieved, and you are advised to subdivide the interval if you have any doubts
about the accuracy obtained. Note that ABSERR contains an estimated bound on I � RESULTj j.

8 Parallelism and Performance

D01BDF is not threaded in any implementation.

9 Further Comments

The time taken by D01BDF depends on the integrand and the accuracy required.

D01BDF NAG Library Manual

D01BDF.2 Mark 26



10 Example

This example computes Z 1

0
x2 sin 10	xð Þ dx:

10.1 Program Text

! D01BDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01bdfe_mod

! D01BDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Function f(x)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
f = (x**2)*sin(10.0E0_nag_wp*x01aaf(f)*x)

Return

End Function f
End Module d01bdfe_mod
Program d01bdfe

! D01BDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01bdf, nag_wp
Use d01bdfe_mod, Only: f, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, abserr, b, epsabs, epsrel, result

! .. Intrinsic Procedures ..
Intrinsic :: abs, max

! .. Executable Statements ..
Write (nout,*) ’D01BDF Example Program Results’

epsabs = 0.0E0_nag_wp
epsrel = 1.0E-04_nag_wp
a = 0.0E0_nag_wp
b = 1.0E0_nag_wp

Call d01bdf(f,a,b,epsabs,epsrel,result,abserr)

Write (nout,*)
Write (nout,99999) ’A - lower limit of integration = ’, a
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Write (nout,99999) ’B - upper limit of integration = ’, b
Write (nout,99998) ’EPSABS - absolute accuracy requested = ’, epsabs
Write (nout,99998) ’EPSREL - relative accuracy requested = ’, epsrel
Write (nout,*)
Write (nout,99997) ’RESULT - approximation to the integral = ’, result
Write (nout,99998) ’ABSERR - estimate to the absolute error = ’, abserr
Write (nout,*)

If (abserr>max(epsabs,epsrel*abs(result))) Then
Write (nout,*) &

’Warning - requested accuracy may not have been achieved’
End If

99999 Format (1X,A,F10.4)
99998 Format (1X,A,E9.2)
99997 Format (1X,A,F9.5)

End Program d01bdfe

10.2 Program Data

None.

10.3 Program Results

D01BDF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03

RESULT - approximation to the integral = -0.03183
ABSERR - estimate to the absolute error = 0.13E-10
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NAG Library Routine Document

D01DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01DAF attempts to evaluate a double integral to a specified absolute accuracy by repeated
applications of the method described by Patterson (1968) and Patterson (1969).

2 Specification

SUBROUTINE D01DAF (YA, YB, PHI1, PHI2, F, ABSACC, ANS, NPTS, IFAIL)

INTEGER NPTS, IFAIL
REAL (KIND=nag_wp) YA, YB, PHI1, PHI2, F, ABSACC, ANS
EXTERNAL PHI1, PHI2, F

3 Description

D01DAF attempts to evaluate a definite integral of the form

I ¼
Z b

a

Z 
2 yð Þ


1 yð Þ
f x; yð Þ dx dy

where a and b are constants and 
1 yð Þ and 
2 yð Þ are functions of the variable y.

The integral is evaluated by expressing it as

I ¼
Z b

a

F yð Þ dy; where F yð Þ ¼
Z 
2 yð Þ


1 yð Þ
f x; yð Þ dx:

Both the outer integral I and the inner integrals F yð Þ are evaluated by the method, described by
Patterson (1968) and Patterson (1969), of the optimum addition of points to Gauss quadrature formulae.

This method uses a family of interlacing common point formulae. Beginning with the 3-point Gauss
rule, formulae using 7, 15, 31, 63, 127 and finally 255 points are derived. Each new formula contains all
the points of the earlier formulae so that no function evaluations are wasted. Each integral is evaluated
by applying these formulae successively until two results are obtained which differ by less than the
specified absolute accuracy.

4 References

Patterson T N L (1968) On some Gauss and Lobatto based integration formulae Math. Comput. 22
877–881

Patterson T N L (1969) The optimum addition of points to quadrature formulae, errata Math. Comput.
23 892

5 Arguments

1: YA – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of the integral.

2: YB – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of the integral. It is not necessary that a < b.
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3: PHI1 – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

PHI1 must return the lower limit of the inner integral for a given value of y.

The specification of PHI1 is:

FUNCTION PHI1 (Y)
REAL (KIND=nag_wp) PHI1

REAL (KIND=nag_wp) Y

1: Y – REAL (KIND=nag_wp) Input

On entry: the value of y for which the lower limit must be evaluated.

PHI1 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01DAF is called. Arguments denoted as Input must not be changed by
this procedure.

4: PHI2 – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

PHI2 must return the upper limit of the inner integral for a given value of y.

The specification of PHI2 is:

FUNCTION PHI2 (Y)
REAL (KIND=nag_wp) PHI2

REAL (KIND=nag_wp) Y

1: Y – REAL (KIND=nag_wp) Input

On entry: the value of y for which the upper limit must be evaluated.

PHI2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01DAF is called. Arguments denoted as Input must not be changed by
this procedure.

5: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

The specification of F is:

FUNCTION F (X, Y)
REAL (KIND=nag_wp) F

REAL (KIND=nag_wp) X, Y

1: X – REAL (KIND=nag_wp) Input
2: Y – REAL (KIND=nag_wp) Input

On entry: the coordinates of the point x; yð Þ at which the integrand f must be evaluated.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01DAF is called. Arguments denoted as Input must not be changed by
this procedure.

6: ABSACC – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy requested.

7: ANS – REAL (KIND=nag_wp) Output

On exit: the estimated value of the integral.
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8: NPTS – INTEGER Output

On exit: the total number of function evaluations.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01DAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

This indicates that 255 points have been used in the outer integral and convergence has not been
obtained. All the inner integrals have, however, converged. In this case ANS may still contain an
approximate estimate of the integral.

IFAIL ¼ 10� n
This indicates that the outer integral has converged but n inner integrals have failed to converge
with the use of 255 points. In this case ANS may still contain an approximate estimate of the
integral, but its reliability will decrease as n increases.

IFAIL ¼ 10� nþ 1

This indicates that both the outer integral and n of the inner integrals have not converged. ANS
may still contain an approximate estimate of the integral, but its reliability will decrease as n
increases.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The absolute accuracy is specified by the variable ABSACC. If, on exit, IFAIL ¼ 0 then the result is
most likely correct to this accuracy. Even if IFAIL is nonzero on exit, it is still possible that the
calculated result could differ from the true value by less than the given accuracy.

8 Parallelism and Performance

D01DAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D01DAF depends upon the complexity of the integrand and the accuracy requested.

With Patterson's method accidental convergence may occasionally occur, when two estimates of an
integral agree to within the requested accuracy, but both estimates differ considerably from the true
result. This could occur in either the outer integral or in one or more of the inner integrals.

If it occurs in the outer integral then apparent convergence is likely to be obtained with considerably
fewer integrand evaluations than may be expected. If it occurs in an inner integral, the incorrect value
could make the function F yð Þ appear to be badly behaved, in which case a very large number of pivots
may be needed for the overall evaluation of the integral. Thus both unexpectedly small and
unexpectedly large numbers of integrand evaluations should be considered as indicating possible
trouble. If accidental convergence is suspected, the integral may be recomputed, requesting better
accuracy; if the new request is more stringent than the degree of accidental agreement (which is of
course unknown), improved results should be obtained. This is only possible when the accidental
agreement is not better than machine accuracy. It should be noted that the routine requests the same
accuracy for the inner integrals as for the outer integral. In practice it has been found that in the vast
majority of cases this has proved to be adequate for the overall result of the double integral to be
accurate to within the specified value.

The routine is not well-suited to non-smooth integrands, i.e., integrands having some kind of analytic
discontinuity (such as a discontinuous or infinite partial derivative of some low-order) in, on the
boundary of, or near, the region of integration. Warning: such singularities may be induced by
incautiously presenting an apparently smooth interval over the positive quadrant of the unit circle, R

I ¼
Z
R

xþ yð Þ dx dy:

This may be presented to D01DAF as

I ¼
Z 1

0
dy

Z ffiffiffiffiffiffiffiffi
1�y2
p

0
xþ yð Þ dx ¼

Z 1

0

1
2 1� y2
� �

þ y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p� �
dy

but here the outer integral has an induced square-root singularity stemming from the way the region has
been presented to D01DAF. This situation should be avoided by re-casting the problem. For the
example given, the use of polar coordinates would avoid the difficulty:

I ¼
Z 1

0
dr

Z 	
2

0
r2 cos �þ sin �ð Þ d�:
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10 Example

This example evaluates the integral discussed in Section 9, presenting it to D01DAF first asZ 1

0

Z ffiffiffiffiffiffiffiffi
1�y2
p

0
xþ yð Þ dx dy

and then as Z 1

0

Z 	
2

0
r2 cos �þ sin �ð Þ d� dr:

Note the difference in the number of function evaluations.

10.1 Program Text

! D01DAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01dafe_mod

! D01DAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fa, fb, phi1, phi2a, phi2b

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Function phi1(y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: phi1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: y

! .. Executable Statements ..
phi1 = 0.0E0_nag_wp

Return

End Function phi1
Function phi2a(y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: phi2a

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: y

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
phi2a = sqrt(1.0E0_nag_wp-y*y)

Return

End Function phi2a
Function fa(x,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: fa

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x, y

! .. Executable Statements ..
fa = x + y
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Return

End Function fa
Function phi2b(y)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Function Return Value ..
Real (Kind=nag_wp) :: phi2b

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: y

! .. Executable Statements ..
phi2b = 0.5E0_nag_wp*x01aaf(y)

Return

End Function phi2b
Function fb(x,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: fb

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x, y

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
fb = y*y*(cos(x)+sin(x))

Return

End Function fb
End Module d01dafe_mod
Program d01dafe

! D01DAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01daf, nag_wp
Use d01dafe_mod, Only: fa, fb, nout, phi1, phi2a, phi2b

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: absacc, ans, ya, yb
Integer :: ifail, npts

! .. Executable Statements ..
Write (nout,*) ’D01DAF Example Program Results’

ya = 0.0E0_nag_wp
yb = 1.0E0_nag_wp
absacc = 1.0E-6_nag_wp

ifail = 0
Call d01daf(ya,yb,phi1,phi2a,fa,absacc,ans,npts,ifail)

Write (nout,*)
Write (nout,*) ’First formulation’
Write (nout,99999) ’Integral =’, ans
Write (nout,99998) ’Number of function evaluations =’, npts

ifail = 0
Call d01daf(ya,yb,phi1,phi2b,fb,absacc,ans,npts,ifail)

Write (nout,*)
Write (nout,*) ’Second formulation’
Write (nout,99999) ’Integral =’, ans
Write (nout,99998) ’Number of function evaluations =’, npts

99999 Format (1X,A,F9.4)
99998 Format (1X,A,I5)

End Program d01dafe

D01DAF NAG Library Manual

D01DAF.6 Mark 26



10.2 Program Data

None.

10.3 Program Results

D01DAF Example Program Results

First formulation
Integral = 0.6667
Number of function evaluations = 189

Second formulation
Integral = 0.6667
Number of function evaluations = 89
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NAG Library Routine Document

D01EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01EAF computes approximations to the integrals of a vector of similar functions, each defined over
the same multidimensional hyper-rectangular region. The routine uses an adaptive subdivision strategy,
and also computes absolute error estimates.

2 Specification

SUBROUTINE D01EAF (NDIM, A, B, MINCLS, MAXCLS, NFUN, FUNSUB, ABSREQ,
RELREQ, LENWRK, WRKSTR, FINEST, ABSEST, IFAIL)

&

INTEGER NDIM, MINCLS, MAXCLS, NFUN, LENWRK, IFAIL
REAL (KIND=nag_wp) A(NDIM), B(NDIM), ABSREQ, RELREQ, WRKSTR(LENWRK),

FINEST(NFUN), ABSEST(NFUN)
&

EXTERNAL FUNSUB

3 Description

D01EAF uses a globally adaptive method based on the algorithm described by van Dooren and de
Ridder (1976) and Genz and Malik (1980). It is implemented for integrals in the form:Z b1

a1

Z b2

a2

. . .

Z bn

an

f1; f2; . . . ; fmð Þ dxn . . . dx2dx1;

where fi ¼ fi x1; x2; . . . ; xnð Þ, for i ¼ 1; 2; . . . ;m.

Upon entry, unless MINCLS has been set to a value less than or equal to 0, D01EAF divides the
integration region into a number of subregions with randomly selected volumes. Inside each subregion
the integrals and their errors are estimated. The initial number of subregions is chosen to be as large as
possible without using more than MINCLS calls to FUNSUB. The results are stored in a partially
ordered list (a heap). The routine then proceeds in stages. At each stage the subregion with the largest
error (measured using the maximum norm) is halved along the coordinate axis where the integrands
have largest absolute fourth differences. The basic rule is applied to each half of this subregion and the
results are stored in the list. The results from the two halves are used to update the global integral and
e r r o r e s t im a t e s ( F INEST a n d ABSEST ) a n d t h e r o u t i n e c o n t i n u e s u n l e s s
ABSESTk k � max ABSREQ; FINESTk k � RELREQð Þ where the norm :k k is the maximum norm, or
further subdivision would use more than MAXCLS calls to FUNSUB. If at some stage there is
insufficient working storage to keep the results for the next subdivision, the routine switches to a less
efficient mode; only if this mode of operation breaks down is insufficient storage reported.

4 References

Genz A C and Malik A A (1980) An adaptive algorithm for numerical integration over an N-
dimensional rectangular region J. Comput. Appl. Math. 6 295–302

van Dooren P and de Ridder L (1976) An adaptive algorithm for numerical integration over an N-
dimensional cube J. Comput. Appl. Math. 2 207–217
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5 Arguments

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integrals.

Constraint: NDIM � 1.

2: AðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the lower limits of integration, ai, for i ¼ 1; 2; . . . ; n.

3: BðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the upper limits of integration, bi, for i ¼ 1; 2; . . . ; n.

4: MINCLS – INTEGER Input/Output

On entry: must be set either to the minimum number of FUNSUB calls to be allowed, in which
case MINCLS � 0 or to a negative value. In this case, the routine continues the calculation
started in a previous call with the same integrands and integration limits: no arguments other than
MINCLS, MAXCLS, ABSREQ, RELREQ or IFAIL must be changed between the calls.

On exit: gives the number of FUNSUB calls actually used by D01EAF. For the continuation case
(MINCLS < 0 on entry) this is the number of new FUNSUB calls on the current call to D01EAF.

5: MAXCLS – INTEGER Input

On entry: the maximum number of FUNSUB calls to be allowed. In the continuation case this is
the number of new FUNSUB calls to be allowed.

Constraints:

MAXCLS � MINCLS;
MAXCLS � r;
where r ¼ 2n þ 2n2 þ 2nþ 1; if n < 11; or r ¼ 1þ n 4n2 � 6nþ 14

� �
=3; if n � 11.

6: NFUN – INTEGER Input

On entry: m, the number of integrands.

Constraint: NFUN � 1.

7: FUNSUB – SUBROUTINE, supplied by the user. External Procedure

FUNSUB must evaluate the integrands fi at a given point.

The specification of FUNSUB is:

SUBROUTINE FUNSUB (NDIM, Z, NFUN, F)

INTEGER NDIM, NFUN
REAL (KIND=nag_wp) Z(NDIM), F(NFUN)

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integrals.

2: ZðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the point at which the integrands must be evaluated.

3: NFUN – INTEGER Input

On entry: m, the number of integrands.
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4: FðNFUNÞ – REAL (KIND=nag_wp) array Output

On exit: the value of the ith integrand at the given point.

FUNSUB must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D01EAF is called. Arguments denoted as Input must not be changed
by this procedure.

8: ABSREQ – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required by you.

Constraint: ABSREQ � 0:0.

9: RELREQ – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required by you.

Constraint: RELREQ � 0:0.

10: LENWRK – INTEGER Input

On entry: the dimension of the array WRKSTR as declared in the (sub)program from which
D01EAF is called.

Suggested value: LENWRK � 6nþ 9mþ nþmþ 2ð Þ 1þ p=rð Þ, where p is the value of
MAXCLS and r is defined under MAXCLS. If LENWRK is significantly smaller than this,
the routine will not work as efficiently and may even fail.

Constraint: LENWRK � 8� NDIMþ 11� NFUNþ 3.

11: WRKSTRðLENWRKÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MINCLS < 0, WRKSTR must be unchanged from the previous call of D01EAF.

On exit: contains information about the current subdivision which could be used in a continuation
call.

12: FINESTðNFUNÞ – REAL (KIND=nag_wp) array Output

On exit: FINESTðiÞ specifies the best estimate obtained from the ith integral, for i ¼ 1; 2; . . . ;m.

13: ABSESTðNFUNÞ – REAL (KIND=nag_wp) array Output

On exit: ABSESTðiÞ specifies the estimated absolute accuracy of FINESTðiÞ, for i ¼ 1; 2; . . . ;m.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

MAXCLS was too small for D01EAF to obtain the required accuracy. The arrays FINEST and
ABSEST respectively contain current estimates for the integrals and errors.

IFAIL ¼ 2

LENWRK is too small for the routine to continue. The arrays FINEST and ABSEST respectively
contain current estimates for the integrals and errors.

IFAIL ¼ 3

On a continuation call, MAXCLS was set too small to make any progress. Increase MAXCLS
before calling D01EAF again.

IFAIL ¼ 4

On entry, NDIM < 1,
or NFUN < 1,
or MAXCLS < MINCLS,
or MAXCLS < r (see MAXCLS),
or ABSREQ < 0:0,
or RELREQ < 0:0,
or LENWRK < 8� NDIMþ 11� NFUNþ 3.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

An absolute error estimate for each integrand is output in the array ABSEST. The routine exits with
IFAIL ¼ 0 if

max
i

ABSESTðiÞð Þ � max ABSREQ;RELREQ�max
i

FINESTðiÞj j
� �

:

8 Parallelism and Performance

D01EAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Usually the running time for D01EAF will be dominated by the time in FUNSUB, so the maximum
time that could be used by D01EAF will be proportional to MAXCLS multiplied by the cost of a call to
FUNSUB.

On a normal call, you should set MINCLS ¼ 0 on entry.

For some integrands, particularly those that are poorly behaved in a small part of the integration region,
D01EAF may terminate prematurely with values of ABSEST that are significantly smaller than the
actual absolute errors. This behaviour should be suspected if the returned value of MINCLS is small
relative to the expected difficulty of the integrals. When this occurs D01EAF should be called again,
but with an entry value of MINCLS � 2r, (see specification of MAXCLS) and the results compared
with those from the previous call.

If the routine is called with MINCLS � 2r, the exact values of FINEST and ABSEST on return will
depend (within statistical limits) on the sequence of random numbers generated internally within
D01EAF by calls to G05SAF. Separate runs will produce identical answers unless the part of the
program executed prior to calling D01EAF also calls (directly or indirectly) routines from Chapter G05,
and, in addition, the series of such calls differs between runs.

Because of moderate instability in the application of the basic integration rule, approximately the last
1þ log10 n3

� �
decimal digits may be inaccurate when using D01EAF for large values of n.

10 Example

This example computes Z 1

0

Z 1

0

Z 1

0

Z 1

0
f1; f2; . . . ; f10ð Þ dx4 dx3 dx2 dx1;

where j ¼ 1; 2; . . . ; 10, fj ¼ ln x1 þ 2x2 þ 3x3 þ 4x4ð Þ sin jþ x1 þ 2x2 þ 3x3 þ 4x4ð Þ. The program is
intended to show how to exploit the continuation facility provided with D01EAF: the routine exits with
IFAIL ¼ 1 (printing an explanatory error message) and is re-entered with MAXCLS reset to a larger
value. The program can be used with any values of NDIM and NFUN, except that the expression for r
must be changed if NDIM > 10 (see specification of MAXCLS).

10.1 Program Text

! D01EAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01eafe_mod

! D01EAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funsub

! .. Parameters ..
Integer, Parameter :: mulcls = 1
Integer, Parameter, Public :: ndim = 4, nfun = 10, nout = 6
Integer, Parameter :: ircls = 2**ndim + 2*ndim*(ndim+1) + &

1
Integer, Parameter, Public :: lenwrk = (ndim+nfun+2)*(10+mulcls)
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Integer, Parameter, Public :: mxcls = mulcls*ircls
Contains

Subroutine funsub(ndim,z,nfun,f)

! .. Scalar Arguments ..
Integer, Intent (In) :: ndim, nfun

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(nfun)
Real (Kind=nag_wp), Intent (In) :: z(ndim)

! .. Local Scalars ..
Real (Kind=nag_wp) :: sum
Integer :: i, n

! .. Intrinsic Procedures ..
Intrinsic :: log, real, sin

! .. Executable Statements ..
sum = 0.0E0_nag_wp

Do n = 1, ndim
sum = sum + real(n,kind=nag_wp)*z(n)

End Do

Do i = 1, nfun
f(i) = log(sum)*sin(real(i,kind=nag_wp)+sum)

End Do

Return

End Subroutine funsub
End Module d01eafe_mod
Program d01eafe

! D01EAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01eaf, nag_wp
Use d01eafe_mod, Only: funsub, lenwrk, mxcls, ndim, nfun, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: absreq, relreq
Integer :: i, ifail, maxcls, mincls, mulfac

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), absest(:), b(:), finest(:), &

wrkstr(:)
! .. Executable Statements ..

Write (nout,*) ’D01EAF Example Program Results’
Flush (nout)

Allocate (a(ndim),absest(nfun),b(ndim),finest(nfun),wrkstr(lenwrk))

a(1:ndim) = 0.0_nag_wp
b(1:ndim) = 1.0_nag_wp
mincls = 0
maxcls = mxcls
absreq = 0.0_nag_wp
relreq = 1.0E-3_nag_wp

If (ndim<=10) Then
mulfac = 2**ndim

Else
mulfac = 2*ndim**3

End If

loop: Do

ifail = -1
Call d01eaf(ndim,a,b,mincls,maxcls,nfun,funsub,absreq,relreq,lenwrk, &

wrkstr,finest,absest,ifail)

Select Case (ifail)
Case (1,3)
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Write (nout,*)
Write (nout,99999) mincls
Write (nout,99998)

Do i = 1, nfun
Write (nout,99997) i, finest(i), absest(i)

End Do

Write (nout,*)
Flush (nout)
mincls = -1
maxcls = maxcls*mulfac

Case (0)
Write (nout,*)
Write (nout,99996) mincls
Write (nout,99998)

Do i = 1, nfun
Write (nout,99997) i, finest(i), absest(i)

End Do

Exit loop
Case Default

Exit loop
End Select

End Do loop

99999 Format (1X,’Results so far (’,I7,’ FUNSUB calls in last call of D01EAF)’ &
)

99998 Format (/,1X,’ I Integral Estimated error’)
99997 Format (1X,I4,2F14.4)
99996 Format (1X,’Final Results (’,I7,’ FUNSUB calls in last call of D01EAF)’)

End Program d01eafe

10.2 Program Data

None.

10.3 Program Results

D01EAF Example Program Results
** MAXCLS too small to obtain required accuracy.
** MAXCLS = 57.
** ABNORMAL EXIT from NAG Library routine D01EAF: IFAIL = 1
** NAG soft failure - control returned

Results so far ( 57 FUNSUB calls in last call of D01EAF)

I Integral Estimated error
1 0.0422 0.0086
2 0.3998 0.0038
3 0.3898 0.0127
4 0.0214 0.0099
5 -0.3666 0.0020
6 -0.4176 0.0120
7 -0.0846 0.0110
8 0.3261 0.0001
9 0.4371 0.0112

10 0.1461 0.0119

** MAXCLS too small to obtain required accuracy.
** MAXCLS = 912.
** ABNORMAL EXIT from NAG Library routine D01EAF: IFAIL = 1
** NAG soft failure - control returned

Results so far ( 798 FUNSUB calls in last call of D01EAF)

I Integral Estimated error
1 0.0384 0.0006
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2 0.4012 0.0006
3 0.3952 0.0006
4 0.0258 0.0006
5 -0.3673 0.0006
6 -0.4227 0.0006
7 -0.0895 0.0006
8 0.3260 0.0006
9 0.4417 0.0006

10 0.1514 0.0006

Final Results ( 912 FUNSUB calls in last call of D01EAF)

I Integral Estimated error
1 0.0384 0.0004
2 0.4012 0.0003
3 0.3952 0.0003
4 0.0258 0.0003
5 -0.3672 0.0003
6 -0.4227 0.0003
7 -0.0895 0.0003
8 0.3260 0.0003
9 0.4417 0.0003

10 0.1514 0.0003
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NAG Library Routine Document

D01ESF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01ESF approximates a vector of definite integrals F over the unit hypercube � ¼ 0; 1½ �d, given the
vector of integrands f xð Þ.

F ¼
Z
�

f xð Þdx ¼
Z 1

0

Z 1

0
. . .

Z 1

0
f x1; x2; . . . ; xdð Þdx1dx2 . . . dxd :

The routine uses a sparse grid discretisation, allowing for computationally feasible estimations of
integrals of high dimension (d � O 100ð Þ).

2 Specification

SUBROUTINE D01ESF (NI, NDIM, F, MAXDLV, DINEST, ERREST, IVALID, IOPTS,
OPTS, IUSER, RUSER, IFAIL)

&

INTEGER NI, NDIM, MAXDLV(NDIM), IVALID(NI), IOPTS(100),
IUSER(*), IFAIL

&

REAL (KIND=nag_wp) DINEST(NI), ERREST(NI), OPTS(100), RUSER(*)
EXTERNAL F

3 Description

D01ESF uses a sparse grid to generate a vector of approximations F̂ to a vector of integrals F over the
unit hypercube � ¼ 0; 1½ �d, that is,

F̂ � F ¼
Z

0;1½ �d
f xð Þdx:

3.1 Comparing Quadrature Over Full and Sparse Grids

Before illustrating the sparse grid construction, it is worth comparing integration over a sparse grid to
integration over a full grid.

Given a one-dimensional quadrature rule with N abscissae, which accurately evaluates a polynomial of
order PN, a full tensor product over d dimensions, a full grid, may be constructed with Nd

multidimensional abscissae. Such a product will accurately integrate a polynomial where the maximum
power of any dimension is PN . For example if d ¼ 2 and PN ¼ 3, such a rule will accurately integrate
any polynomial whose highest order term is x31x

3
2. Such a polynomial may be said to have a maximum

combined order of Pd
N , provided no individual dimension contributes a power greater than PN .

However, the number of multidimensional abscissae, or points, required increases exponentially with
the dimension, rapidly making such a construction unusable.

The sparse grid technique was developed by Smolyak (Smolyak (1963)). In this, multiple one-
dimensional quadrature rules of increasing accuracy are combined in such a way as to provide a
multidimensional quadrature rule which will accurately evaluate the integral of a polynomial whose
maximum order appears as a monomial. Hence a sparse grid construction whose highest level
quadrature rule has polynomial order PN will accurately integrate a polynomial whose maximum
combined order is also PN . Again taking PN ¼ 3, one may, theoretically, accurately integrate a
polynomial such as x3 þ x2yþ y3, but not a polynomial such as x3y3 þ xy. Whilst this has a lower
maximum combined order than the full tensor product, the number of abscissae required increases
significantly slower than the equivalent full grid, making some classes of integrals of dimension
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d � O 100ð Þ tractable. Specifically, if a one-dimensional quadrature rule of level ‘ has N � O 2‘
� �

abscissae, the corresponding full grid will have O 2‘
� �d� �

multidimensional abscissae, whereas the

sparse grid will have O 2‘d‘�1
� �

. Figure 1 demonstrates this using a Gauss–Patterson rule with 15 points
in 3 dimensions. The full grid requires 3375 points, whereas the sparse grid only requires 111.
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Figure 1
Three-dimensional full (left) and sparse (right) grids, constructed from the 15 point Gauss–Patterson

rule

3.2 Sparse Grid Quadrature

We now include a brief description of the sparse grid construction, sufficient for the understanding of
the use of this routine. For a more detailed analysis, see Gerstner and Griebel (1998).

Consider a one-dimensional n‘-point quadrature rule of level ‘, Q‘. The action of this rule on a
integrand f is to approximate its definite one-dimensional integral 1F as,

1F ¼
Z 1

0
f xð Þdx � Q‘ fð Þ ¼

Xn‘
i¼1
w‘;i � f x‘;i

� �
;

using weights w‘;i and abscissae x‘;i, for i ¼ 1; 2; . . . ; n‘.

Now construct a set of one-dimensional quadrature rules, Q‘ j ‘ ¼ 1; . . . ; Lf g, such that the accuracy of
the quadrature rule increases with the level number. In this routine we exclusively use quadrature rules
which are completely nested, implying that if an abscissae x‘;k is in level ‘, it is also in level ‘þ 1. The
quantity L denotes some maximum level appropriate to the rules that have been selected.

Now define the action of the tensor product of d rules as,

Q‘1 � � � � �Q‘dð Þ fð Þ ¼
Xn‘1
i1¼1
� � �
Xn‘d
id¼1

w‘1;i1 � � �w‘d;idf x‘1;i1 ; . . . ; x‘d;id
� �

;

where the individual level indices ‘j are not necessarily ordered or unique. Each tensor product of d
rules defines an action of the quadrature rules Ql, l ¼ ‘1; ‘2; . . . ; ‘dð Þ over a subspace, which is given a

level lj j ¼
Xd
j¼1
‘j. If all rule levels are equal, this is the full tensor product of that level.

The sparse grid construction of level ‘ can then be declared as the sum of all actions of the quadrature
differences �k ¼ Qk �Qk�1ð Þ, over all subspaces having a level at most ‘� dþ 1,
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dF � Qd
‘ fð Þ ¼

X
level at most ‘�dþ1

�k1 � � � � ��kdð Þ fð Þ: ð1Þ

By definition, all subspaces used for level ‘� 1 must also be used for level ‘, and as such the difference
between the result of all actions over subsequent sparse grid constructions may be used as an error
estimate.

Let L be the maximum level allowable in a sparse grid construction. The classical sparse grid
construction of ‘ ¼ L allows each dimension to support a one-dimensional quadrature rule of level at
most L, with such a quadrature rule being used in every dimension at least once. Such a construction
lends equal weight to each dimension of the integration, and is termed here ‘isotropic’.

Define the set m ¼ mj; j ¼ 1; 2; . . . ; d
� �

, where mj is the maximum quadrature rule allowed in the jth
dimension, and mq to be the maximum quadrature rule used by any dimension. Let a subspace be
identified by its quadrature difference levels, k ¼ k1; k2; . . . ; kdð Þ.
The classical construction may be extended by allowing different dimensions to have different values
mj, and by allowing mq � L. This creates non-isotropic constructions. These are especially useful in
higher dimensions, where some dimensions contribute more than others to the result, as they can
drastically reduce the number of function evaluations required.

For example, consider the two-dimensional construction with L ¼ 4. The classical isotropic
construction would have the following subspaces.

Subspaces generated by a classical sparse grid with L ¼ 4.

Level Subspaces
1 1; 1ð Þ
2 2; 1ð Þ, 1; 2ð Þ
3 3; 1ð Þ, 2; 2ð Þ, 1; 3ð Þ
4 4; 1ð Þ, 3; 2ð Þ, 2; 3ð Þ, 1; 4ð Þ

If the variation in the second dimension is sufficiently accurately described by a quadrature rule of level
2, the contributions of the subspaces 1; 3ð Þ and 1; 4ð Þ are probably negligible. Similarly, if the variation
in the first dimension is sufficiently accurately described by a quadrature rule of level 3, the subspace
4; 1ð Þ is probably negligible. Furthermore the subspace 2; 3ð Þ would also probably have negligible
impact, whereas the subspaces 2; 2ð Þ and 3; 2ð Þ would not. Hence restricting the first dimension to a
maximum level of 3, and the second dimension to a maximum level of 2 would probably give a
sufficiently acceptable estimate, and would generate the following subspaces.

Subspaces generated by a non-isotropic sparse grid with L ¼ 4, mq ¼ 3 and m ¼ 3; 2ð Þ.

Level Subspaces
1 1; 1ð Þ
2 2; 1ð Þ, 1; 2ð Þ
3 3; 1ð Þ, 2; 2ð Þ
4 4; 1ð Þ, 3; 2ð Þ

Taking this to the extreme, if the variation in the first and second dimensions are sufficiently accurately
described by a level 2 quadrature rule, restricting the maximum level of both dimensions to 2 would
generate the following subspaces.

Subspaces generated by a sparse grid construction with L ¼ 4, mq ¼ 2 and m ¼ 2; 2ð Þ.

Level Subspaces
1 1; 1ð Þ
2 2; 1ð Þ, 1; 2ð Þ
3 2; 2ð Þ
4 None
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Hence one subspace is generated at level 3, and no subspaces are generated at level 4. The level 3
subspace 2; 2ð Þ actually indicates that this is the full grid of level 2.

3.3 Using D01ESF

D01ESF uses optional parameters, supplied in the option arrays IOPTS and OPTS. Before calling
D01ESF, these option arrays must be initialized using D01ZKF. Once initialized, the required options
may be set and queried using D01ZKF and D01ZLF respectively. A complete list of the options
available may be found in Section 11.

You may control the maximum level required, L, using the optional parameter Maximum Level.
Furthermore, you may control the first level at which the error comparison will take place using the
optional parameter Minimum Level, allowing for the forced evaluation of a predetermined number of
levels before the routine attempts to complete. Completion is flagged when the error estimate is
sufficiently small:

F̂ k
d � F̂ k�1

d

		 		 � max �a; �r � F̂ k
d

� �
;

where �a and �r are the absolute and relative error tolerances, respectively, and k � L is the highest
level at which computation was performed. The tolerances �a and �r can be controlled by setting the
optional parameters Absolute Tolerance and Relative Tolerance.

Owing to the interlacing nature of the quadrature rules used herein, abscissae x required in lower level
subspaces will also appear in higher-level subspaces. This allows for calculations which will be
repeated later to be stored and re-used. However, this is naturally at the expense of memory. It may also
be at the expense of computational time, depending on the complexity of the integrands, as the lookup
time for a given value is (at worst) O dð Þ. Furthermore, as the sparse grid level increases, fewer
subsequent levels will require values from the current level. You may control the number of levels for
which values are stored by setting the optional parameter Index Level.

Two different sets of interlacing quadrature rules are selectable using the optional parameter
Quadrature Rule: Gauss–Patterson and Clenshaw–Curtis. Gauss–Patterson rules offer greater
polynomial accuracy, whereas Clenshaw–Curtis rules are often effective for oscillatory integrands.
Clenshaw–Curtis rules require function values to be evaluated on the boundary of the hypercube,
whereas Gauss–Patterson rules do not. Both of these rules use precomputed weights, and as such there
is an effective limit on mq; see the description of the optional parameter Quadrature Rule. The value
of mq is returned by the queriable optional parameter Maximum Quadrature Level.

D01ESF also allows for non-isotropic sparse grids to be constructed. This is done by appropriately
setting the array MAXDLV. It should be emphasised that a non-isometric construction should only be
used if the integrands behave in a suitable way. For example, they may decay toward zero as the lesser
dimensions approach their bounds of �. It should also be noted that setting MAXDLVðkÞ ¼ 1 will not
reduce the dimension of the integrals, it will simply indicate that only one point in dimension k should
be used. It is also advisable to approximate the integrals several times, once with an isometric
construction of some level, and then with a non-isometric construction with higher levels in various
dimensions. If the difference between the solutions is significantly more than the returned error
estimates, the assumptions of dimensional importance are probably incorrect.

The abscissae in each subspace are generally expressible in a sparse manner, because many of the
elements of each abscissa will in fact be the centre point of the dimension, which is termed here the
‘trivial’ element. In this routine the trivial element is always returned as 0:5 owing to the restriction to
the 0; 1½ � hypercube. As such, the subroutine F returns the abscissae in Compressed Column Storage
(CCS) format (see the F11 Chapter Introduction). This has particular advantages when using accelerator
hardware to evaluate the required functions, as much less data must be forwarded. It also, potentially,
allows for calculations to be computed faster, as any sub-calculations dependent upon the trivial value
may be potentially re-used. See the example in Section 10.
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5 Arguments

1: NI – INTEGER Input

On entry: ni, the number of integrands.

Constraint: NI � 1.

2: NDIM – INTEGER Input

On entry: d, the number of dimensions.

Constraint: NDIM � 1.

3: F – SUBROUTINE, supplied by the user. External Procedure

F must return the value of the integrands fj at a set of nx d-dimensional points xi, implicitly
supplied as columns of a matrix X d; nxð Þ. If X was supplied explicitly you would find that most
of the elements attain the same value, xtr; the larger the number of dimensions, the greater the
proportion of elements of X would be equal to xtr. So, X is effectively a sparse matrix, except
that the ‘zero’ elements are replaced by elements that are all equal to the value xtr. For this
reason X is supplied, as though it were a sparse matrix, in compressed column storage (CCS)
format (see the F11 Chapter Introduction).

Individual entries xk;i of X, for k ¼ 1; 2; . . . ; d, are either trivially valued, in which case
xk;i ¼ xtr, or are non-trivially valued. For point i, the non-trivial row indices and corresponding
abscissae values are supplied in elements c ið Þ ¼ ICOLZPðiÞ; . . . ; ICOLZPði þ 1Þ � 1, for
i ¼ 1; 2; . . . ; nx, of the arrays IROWIX and XS, respectively. Hence the ith column of the
matrix X is retrievable as

X IROWIXðc ið ÞÞ; ið Þ ¼ XSðc ið ÞÞ;

X k =2 IROWIXðc ið ÞÞ; ið Þ ¼ xtr:
An equivalent integer valued matrix Q is also implicitly provided. This contains the unique
indices qk;i of the underlying one-dimensional quadrature rule corresponding to the individual
abscissae xk;i. For trivial abscissae, the implicit index qk;i ¼ 1. Q is supplied in the same CCS
format as X, with the non-trivial values supplied in QS.

The specification of F is:

SUBROUTINE F (NI, NDIM, NX, XTR, NNTR, ICOLZP, IROWIX, XS, QS,
FM, IFLAG, IUSER, RUSER)

&

INTEGER NI, NDIM, NX, NNTR, ICOLZP(NX+1),
IROWIX(NNTR), QS(NNTR), IFLAG, IUSER(*)

&

REAL (KIND=nag_wp) XTR, XS(NNTR), FM(NI,NX), RUSER(*)

1: NI – INTEGER Input

On entry: ni, the number of integrands.

2: NDIM – INTEGER Input

On entry: d, the number of dimensions.
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3: NX – INTEGER Input

On entry: nx, the number of points xi, corresponding to the number of columns of X, at
which the set of integrands must be evaluated.

4: XTR – REAL (KIND=nag_wp) Input

On entry: xtr, the value of the trivial elements of X.

5: NNTR – INTEGER Input

On entry: if IFLAG > 0, the number of non-trivial elements of X.

If IFLAG ¼ 0, the total number of abscissae from the underlying one-dimensional
quadrature.

6: ICOLZPðNXþ 1Þ – INTEGER array Input

On entry: the set ICOLZPðiÞ; . . . ; ICOLZPði þ 1Þ � 1f g contains the indices of
IROWIX and XS corresponding to the non-trivial elements of column i of X and
hence of the point xi, for i ¼ 1; 2; . . . ; nx.

7: IROWIXðNNTRÞ – INTEGER array Input

On entry: the row indices corresponding to the non-trivial elements of X.

8: XSðNNTRÞ – REAL (KIND=nag_wp) array Input

On entry: xk;i 6¼ xtr, the non-trivial entries of X.

9: QSðNNTRÞ – INTEGER array Input

On entry: qk;i 6¼ 1, the indices of the underlying quadrature rules corresponding to
xk;i 6¼ xtr.

10: FMðNI;NXÞ – REAL (KIND=nag_wp) array Output

On exit: FMðp; iÞ ¼ fp xið Þ, for i ¼ 1; 2; . . . ; nx and p ¼ 1; 2; . . . ; ni.

11: IFLAG – INTEGER Input/Output

On entry: if IFLAG ¼ 0, this is the first call to F. nx ¼ 1, and the entire point x1 will
satisfy xk;1 ¼ xtr, for k ¼ 1; 2; . . . ; d. In addition, NNTR contains the total number of
abscissae from the underlying one-dimensional quadrature; XS contains the complete
set of abscissae and QS contains the corresponding quadrature indices, with XSð1Þ ¼ xtr
and QSð1Þ ¼ 1. This will always be called in serial.

In subsequent calls to F, IFLAG ¼ 1. Subsequent calls may be made from within an
OpenMP parallel region. See Section 8 for details.

On exit: set IFLAG < 0 if you wish to force an immediate exit from D01ESF with
IFAIL ¼ �1.

12: IUSERð�Þ – INTEGER array User Workspace
13: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace
14: PUSER – TYPE (C_PTR) Communication Array

F is called with the arguments IUSER, RUSER and PUSER as supplied to D01ESF.
You should use the arrays IUSER, RUSER and PUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01ESF is called. Arguments denoted as Input must not be changed by this
procedure.
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4: MAXDLVðNDIMÞ – INTEGER array Input

On entry: m, the array of maximum levels for each dimension. MAXDLVðjÞ, for j ¼ 1; 2; . . . ; d,
contains mj , the maximum level of quadrature rule dimension j will support.

Th e d e f a u l t v a l u e , min mq; L
� �

wi l l b e u s e d i f e i t h e r MAXDLVðjÞ � 0 o r
MAXDLVðjÞ � min mq; L

� �
(for details on the default values for mq and L and on how to

change these values see the options Maximum Level, Maximum Quadrature Level and
Quadrature Rule).

If MAXDLVðjÞ ¼ 1 for all j, only one evaluation will be performed, and as such no error
estimation will be possible.

Suggested value: MAXDLVðjÞ ¼ 0 for all j ¼ 1; 2; . . . ; d.

Note: setting non-default values for some dimensions makes the assumption that the contribution
from the omitted subspaces is 0. The integral and error estimates will only be based on included
subspaces, which if the 0 contribution assumption is not valid will be erroneous.

5: DINESTðNIÞ – REAL (KIND=nag_wp) array Output

On exit: DINESTðpÞ contains the final estimate F̂p of the definite integral Fp, for p ¼ 1; 2; . . . ; ni.

6: ERRESTðNIÞ – REAL (KIND=nag_wp) array Output

On exit: ERRESTðpÞ contains the final error estimate Ep of the definite integral Fp, for
p ¼ 1; 2; . . . ; ni.

7: IVALIDðNIÞ – INTEGER array Output

On exit: IVALIDðpÞ indicates the final state of integral p, for p ¼ 1; 2; . . . ; ni.

IVALIDðpÞ ¼ 0
The error estimate for integral p was below the requested tolerance.

IVALIDðpÞ ¼ 1
The error estimate for integral p was below the requested tolerance. The final level used
was non-isotropic.

IVALIDðpÞ ¼ 2
The error estimate for integral p was above the requested tolerance.

IVALIDðpÞ ¼ 3
The error estimate for integral p was above max 0:1 F̂p

		 		; 0:01� �
.

IVALIDðpÞ < 0
You aborted the evaluation before an error estimate could be made.

8: IOPTSð100Þ – INTEGER array Communication Array
9: OPTSð100Þ – REAL (KIND=nag_wp) array Communication Array

The arrays IOPTS and OPTS must not be altered between calls to any of the routines D01ESF,
D01ZKF and D01ZLF.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace
12: PUSER – TYPE (C_PTR) Communication Array

IUSER, RUSER and PUSER are not used by D01ESF, but are passed directly to F and should be
used to pass information to this routine.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01ESF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The requested accuracy was not achieved for at least one integral.

IFAIL ¼ 2

No accuracy was achieved for at least one integral.

IFAIL ¼ 11

On entry, NI ¼ valueh i.
Constraint: NI � 1.

IFAIL ¼ 21

On entry, NDIM ¼ valueh i.
Constraint: NDIM � 1.

IFAIL ¼ 1001

Either the option arrays IOPTS and OPTS have not been initialized for D01ESF, or they have
become corrupted.

IFAIL ¼ �1
Exit requested from F with IFLAG ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

For each integral p, an error estimate Ep is returned, where,

Ep ¼ F̂ k
p � F̂ k�1

p

			 			 � F̂p � Fp
		 		;

where k � L is the highest level at which computation was performed.

8 Parallelism and Performance

8.1 Direct Threading

D01ESF is directly threaded for parallel execution. For each level, at most nt threads will evaluate the
integrands over independent subspaces of the construction, and will construct a partial sum of the
level's contribution. Once all subspaces from a given level have been processed, the partial sums are
combined to give the total contribution of the level, which is in turn added to the total solution. For a
given number of threads, the division of subspaces between the threads, and the order in which a single
thread operates over its assigned subspaces, is fixed. However, the order in which all subspaces are
combined will necessarily be different to the single threaded case, which may result in some
discrepency in the results between parallel and serial execution.

To mitigate this discrepency, it is recommended that D01ESF be instructed to use higher-than-working
precision to accumulate the actions over the subspaces. This is done by setting the option
Summation Precision ¼ HIGHER, which is the default behaviour. This has some computational cost,
although this is typically negligible in comparison to the overall runtime, particularly for non-trivial
integrands.

If Summation Precision ¼WORKING, then the accumulation will be performed using working
precision, which may provide some increase in performance. Again, this is probably negligible in
comparison to the overall runtime.

For some problems, typically of lower dimension, there may be insufficient work to warrant direct
threading at lower levels. For example, a three-dimensional problem will require at most 3 subspaces to
be evaluated at level 2, and at most 6 subspaces at level 3. Furthermore, level 2 subspaces typically
contain only 2 new multidimensional abscissae, while level 3 subspaces typically contain 2 or 4 new
multidimensional abscissae depending on the Quadrature Rule. If there are more threads than the
number of available subspaces at a given level, or the amount of work in each subspace is outweighed
by the amount of work required to generate the parallel region, parallel efficiency will be decreased.
This may be mitigated to some extent by evaluating the first sl levels in serial. The value of sl may be
altered using the optional parameter Serial Levels. If sl � L, then all levels will be evaluated in serial
and no direct threading will be utilized.

If you use direct threading in the manner just described, you must ensure any access to the user arrays
IUSER and RUSER is done in a thread-safe manner. These are classed as OpenMP SHARED, and are
passed directly to the subroutine F for every thread.

8.2 Parallelization of F

The vectorized interface also allows for parallelization inside the subroutine F by evaluating the
required integrands in parallel. Provided the values returned by F match those that would be returned
without parallelizing F, the final result should match the serial result, barring any discrepencies in
accumulation. If you wish to parallelize F, it is advisable to set a large value for Maximum Nx,
although be aware that increasing Maximum Nx will increase the memory requirement of the routine.
In general, parallelization of F should not be necessary, as the higher-level parallelism over different
subspaces scales well for many problems.

9 Further Comments

Not applicable.
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10 Example

The example program evaluates an estimate to the set of integrals

F ¼
Z
�

sin 1þ xj jð Þ
..
.

sin ni þ xj jð Þ

0B@
1CAlog xj jdx

where xj j ¼
Xd
j¼1
jxj. It also demonstrates a simple method to safely use IUSER and RUSER as

workspace for sub-calculations when running in parallel.

10.1 Program Text

! D01ESF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01esfe_mod

! D01ESF Example Program Module:
! User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

Contains
Subroutine f(ni,ndim,nx,xtr,nntr,icolzp,irowix,xs,qs,fm,iflag,iuser, &

ruser)

! .. Use Statements ..
Use nag_library, Only: x06adf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: xtr
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: ndim, ni, nntr, nx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fm(ni,nx)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xs(nntr)
Integer, Intent (In) :: icolzp(nx+1), irowix(nntr), qs(nntr)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: s_ntr, s_tr
Integer :: i, j, logs_hi, logs_lo, s_hi, s_lo, &

tid
! .. Intrinsic Procedures ..

Intrinsic :: log, real, sin, sum
! .. Executable Statements ..

! For each evaluation point x_i, i = 1, ..., nx, return in fm the
! computed values of the ni integrands f_j, j = 1, ..., ni defined by

! fm(j,i) = f_j(x_i)
! ndim
! = sin(j + S(i))*log(S(i)), where S(i) = Sum k*x_i(k).
! k=1

! Split the S expression into two components, one involving only the
! ’trivial’ value xtr:

! ndim ndim
! S(i) = Sum (k*xtr) + Sum (k*(x_i(k)-xtr))
! k=1 k=1
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! ndim*(ndim+1) ndim
! = xtr * ------------- + Sum (k*(x_i(k)-xtr))
! 2 k=1

! := s_tr + s_ntr(i)

! By definition the summands in the s_ntr(i) term on the right-hand side
! are zero for those k outside the range of indices defined in irowix.

! As a demonstration of safely operating with the user arrays iuser and
! ruser when running in parallel, ’partition’ these based on the current
! thread number. Store some of the s_tr and s_ntr computations in these
! array sections.

! The thread number, converted to 1-based numbering.
tid = x06adf() + 1

s_lo = iuser(tid)
s_hi = s_lo + nx - 1
logs_lo = s_hi + 1
logs_hi = logs_lo + nx - 1

If (iflag==0) Then
! First call: nx=1, no non-trivial dimensions.
! The constant s_tr can be reused by all subsequent calculations.

s_tr = 0.5E0_nag_wp*xtr*real(ndim*(ndim+1),kind=nag_wp)
ruser(1) = s_tr
ruser(s_lo) = s_tr
ruser(logs_lo) = log(s_tr)

Else
! Calculate S(i) = s_tr + s_ntr(i).

s_tr = ruser(1)
Do i = 1, nx

s_ntr = sum(real(irowix(icolzp(i):icolzp(i+1)- &
1),kind=nag_wp)*(xs(icolzp(i):icolzp(i+1)-1)-xtr))

ruser(s_lo+i-1) = s_ntr + s_tr
ruser(logs_lo+i-1) = log(s_ntr+s_tr)

End Do
End If

! Finally we obtain fm(j,:) = sin(j+S(:))*log(S(:))
Do j = 1, ni

fm(j,:) = sin(real(j,kind=nag_wp)+ruser(s_lo:s_hi))* &
ruser(logs_lo:logs_hi)

End Do

Return
End Subroutine f

End Module d01esfe_mod
Program d01esfe

! .. Use Statements ..
Use nag_library, Only: d01esf, d01zkf, d01zlf, nag_wp, x06acf
Use d01esfe_mod, Only: f

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rvalue
Integer :: ifail, j, liuser, lruser, maxnx, &

ndim, ni, optype, smpthd
Character (16) :: cvalue

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: dinest(:), errest(:), opts(:), &

ruser(:)
Integer, Allocatable :: iopts(:), iuser(:), ivalid(:), &

maxdlv(:)
! .. Executable Statements ..

Write (nout,*) ’D01ESF Example Program Results’
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Write (nout,*)
ni = 10
ndim = 4

Allocate (iopts(100),opts(100),ivalid(ni),dinest(ni),errest(ni), &
maxdlv(ndim))

! Initialize option arrays.
ifail = 0
Call d01zkf(’Initialize = D01ESF’,iopts,100,opts,100,ifail)

! Set any required options.
Call d01zkf(’Absolute Tolerance = 0.0’,iopts,100,opts,100,ifail)
Call d01zkf(’Relative Tolerance = 1.0e-3’,iopts,100,opts,100,ifail)
Call d01zkf(’Maximum Level = 6’,iopts,100,opts,100,ifail)
Call d01zkf(’Index Level = 5’,iopts,100,opts,100,ifail)

! Set any required maximum dimension levels.
maxdlv(:) = 0

! As a demonstration of safely operating with the user arrays iuser and
! ruser when running in parallel, we will ’partition’ these in the user-
! supplied function f based on the current thread number.
! The size of these arrays is a function of Maximum Nx and the maximum
! allowed number of OpenMP threads.

ifail = 0
Call d01zlf(’Maximum Nx’,maxnx,rvalue,cvalue,optype,iopts,opts,ifail)

smpthd = x06acf()

lruser = 1 + 2*maxnx*smpthd
liuser = smpthd
Allocate (iuser(liuser),ruser(lruser))

! iuser stores the partition indices for ruser:
iuser(1) = 2
Do j = 2, smpthd

iuser(j) = iuser(j-1) + 2*maxnx
End Do

! Approximate the integrals.
ifail = -1
Call d01esf(ni,ndim,f,maxdlv,dinest,errest,ivalid,iopts,opts,iuser, &

ruser,ifail)
Select Case (ifail)
Case (0,1,2,-1)

! 0: The result returned satisfies the requested accuracy requirements.
! 1, 2: The result returned is inaccurate for at least one integral.
! -1: Exit was requested by setting iflag negative in f.
! A result will be returned if at least one call to f was
! successful.

Write (nout,99999)
Do j = 1, ni

Write (nout,99998) j, dinest(j), errest(j), ivalid(j)
End Do

Case Default
! If internal memory allocation failed consider reducing the options
! ’Maximum Nx’ and ’Index Level’, or run with fewer threads.

Write (nout,99997) ifail
End Select

99999 Format (1X,’Integral # | Estimated value | Error estimate | ’, &
’Final state of integral’)

99998 Format (1X,I11,’|’,Es17.5,’|’,Es16.5,’|’,I8)
99997 Format (1X,’D01ESF exited with IFAIL = ’,I8)

End Program d01esfe
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10.2 Program Data

None.

10.3 Program Results

D01ESF Example Program Results

Integral # | Estimated value | Error estimate | Final state of integral
1| 3.83522E-02| 2.39770E-05| 0
2| 4.01177E-01| 1.69503E-05| 0
3| 3.95161E-01| 5.66045E-06| 0
4| 2.58363E-02| 2.30670E-05| 0
5| -3.67242E-01| 1.92659E-05| 0
6| -4.22680E-01| 2.24822E-06| 0
7| -8.95077E-02| 2.16953E-05| 0
8| 3.25958E-01| 2.11959E-05| 0
9| 4.41739E-01| 1.20901E-06| 0

10| 1.51388E-01| 1.98894E-05| 0

11 Optional Parameters

Several optional parameters in D01ESF control aspects of the algorithm, methodology used, logic or
output. Their values are contained in the arrays IOPTS and OPTS; these must be initialized before
calling D01ESF by first calling D01ZKF with OPTSTR set to "IInniittiiaalliizzee = D01ESF".

Each optional parameter has an associated default value; to set any of them to a non-default value, or to
reset any of them to the default value, use D01ZKF. The current value of an optional parameter can be
queried using D01ZLF.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 11.1.

Absolute Tolerance

Index Level

Maximum Level

Maximum Nx

Maximum Quadrature Level

Minimum Level

Quadrature Rule

Relative Tolerance

Serial Levels

Summation Precision

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively.

the default value.

The following symbol represent various machine constants:

� represents the machine precision (see X02AJF).
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All options accept the value ‘DEFAULT’ in order to return single options to their default states.

Keywords and character values are case insensitive, however they must be separated by at least one
space.

Queriable options will return the appropriate value when queried by calling D01ZLF. They will have no
effect if passed to D01ZKF.

For D01ESF the maximum length of the argument CVALUE used by D01ZLF is 15.

Absolute Tolerance r Default ¼
ffiffi
�
p

r ¼ �a, the absolute tolerance required.

Index Level i Default ¼ 4

The maximum level at which function values are stored for later use. Larger values use increasingly
more memory, and require more time to access specific elements. Lower levels result in more repeated
computation. The Maximum Quadrature Level, mq is the effective upper limit on Index Level. If
i � mq, D01ESF will use mq as the value of Index Level.

Constraint: i � 1.

Maximum Level i Default ¼ 5

i ¼ L, the maximum number of levels to evaluate.

Constraint: 1 < i � 20.

Note: the maximum allowable level in any single dimension, mq, is governed by the Quadrature Rule
selected. If a value greater than mq is set, only a subset of subspaces from higher levels will be used.
Should this subset be empty for a given level, computation will consider the preceding level to be the
maximum level and will terminate.

Maximum Nx i Default ¼ 128

i ¼ max nx, the maximum number of points to evaluate in a single call to F.

Constraint: 1 � i � 16384.

Maximum Quadrature Level i Queriable only

i ¼ mq, the maximum level of the underlying one-dimensional quadrature rule (see Quadrature Rule).

Minimum Level i Default ¼ 2

The minimum number of levels which must be evaluated before an error estimate is used to determine
convergence.

Constraint: i > 1.

Note: if the minimum level is greater than the maximum computable level, the maximum level will be
used.

Quadrature Rule a Default ¼ Gauss�Patterson

The underlying one-dimensional quadrature rule to be used in the construction. Open rules do not
require evaluations at boundaries.

Quadrature Rule ¼ Gauss�Patterson or GP
The interlacing Gauss–Patterson rules. Level ‘ uses 2‘ � 1 abscissae. All levels are open. These
rules provide high order accuracy. mq ¼ 9.

Quadrature Rule ¼ Clenshaw�Curtis or CC
The interlacing Clenshaw–Curtis rules. Level ‘ uses 2‘�1 þ 1 abscissae. All levels above level 1
are closed. mq ¼ 12.
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Relative Tolerance r Default ¼
ffiffi
�
p

r ¼ �a, the relative tolerance required.

Summation Precision a Default ¼ HIGHER

Determines whether D01ESF uses working precision or higher-than-working precision to accumulate
the actions over subspaces.

Summation Precision ¼ HIGHER or H
Higher-than-working precision is used to accumulate the action over a subspace, and for the
accumulation of all such actions. This is more expensive computationally, although this is
probably negligible in comparison to the cost of evaluating the integrands and the overall
runtime. This significantly reduces variation in the result when changing the number of threads.

Summation Precision ¼WORKING or W
Working precision is used to accumulate the actions over subspaces. This may provide some
speedup, particularly if ni or nt is large. The results of parallel simulations will however be more
prone to variation.

Note: the following option is relevant only to multithreaded implementations of the NAG Library.

Serial Levels i Default ¼ 1

i ¼ sl, the number of levels to be evaluated in serial before initializing parallelization. For relatively
trivial integrands, this may need to be set greater than the default to reduce parallel overhead.
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NAG Library Routine Document

D01FBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01FBF computes an estimate of a multidimensional integral (from 1 to 20 dimensions), given the
analytic form of the integrand and suitable Gaussian weights and abscissae.

2 Specification

FUNCTION D01FBF (NDIM, NPTVEC, LWA, WEIGHT, ABSCIS, FUN, IFAIL)
REAL (KIND=nag_wp) D01FBF

INTEGER NDIM, NPTVEC(NDIM), LWA, IFAIL
REAL (KIND=nag_wp) WEIGHT(LWA), ABSCIS(LWA), FUN
EXTERNAL FUN

3 Description

D01FBF approximates a multidimensional integral by evaluating the summationXl1
i1¼1

w1;i1

Xl2
i2¼1

w2;i2 � � �
Xln
in¼1

wn;inf x1;i1 ; x2;i2 ; . . . ; xn;in
� �

given the weights wj;ij and abscissae xj;ij for a multidimensional product integration rule (see Davis and
Rabinowitz (1975)). The number of dimensions may be anything from 1 to 20.

The weights and abscissae for each dimension must have been placed in successive segments of the
arrays WEIGHT and ABSCIS; for example, by calling D01BCF or D01TBF once for each dimension
using a quadrature formula and number of abscissae appropriate to the range of each xj and to the
functional dependence of f on xj.

If normal weights are used, the summation will approximate the integralZ
w1 x1ð Þ

Z
w2 x2ð Þ � � �

Z
wn xnð Þf x1; x2; . . . ; xnð Þdxn � � � dx2dx1

where wj xð Þ is the weight function associated with the quadrature formula chosen for the jth
dimension; while if adjusted weights are used, the summation will approximate the integralZ Z

� � �
Z
f x1; x2; . . . ; xnð Þdxn � � � dx2dx1:

You must supply a subroutine to evaluate

f x1; x2; . . . ; xnð Þ

at any values of x1; x2; . . . ; xn within the range of integration.

4 References

Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press
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5 Arguments

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

Constraint: 1 � NDIM � 20.

2: NPTVECðNDIMÞ – INTEGER array Input

On entry: NPTVECðjÞ must specify the number of points in the jth dimension of the summation,
for j ¼ 1; 2; . . . ; n.

3: LWA – INTEGER Input

On entry: the dimension of the arrays WEIGHT and ABSCIS as declared in the (sub)program
from which D01FBF is called.

Constraint: LWA � NPTVECð1Þ þ NPTVECð2Þ þ � � � þ NPTVECðNDIMÞ.

4: WEIGHTðLWAÞ – REAL (KIND=nag_wp) array Input

On entry: must contain in succession the weights for the various dimensions, i.e., WEIGHTðkÞ
contains the ith weight for the jth dimension, with

k ¼ NPTVECð1Þ þ NPTVECð2Þ þ � � � þ NPTVECðj� 1Þ þ i:

5: ABSCISðLWAÞ – REAL (KIND=nag_wp) array Input

On entry: must contain in succession the abscissae for the various dimensions, i.e., ABSCISðkÞ
contains the ith abscissa for the jth dimension, with

k ¼ NPTVECð1Þ þ NPTVECð2Þ þ � � � þ NPTVECðj� 1Þ þ i:

6: FUN – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

FUN must return the value of the integrand f at a specified point.

The specification of FUN is:

FUNCTION FUN (NDIM, X)
REAL (KIND=nag_wp) FUN

INTEGER NDIM
REAL (KIND=nag_wp) X(NDIM)

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

2: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the point at which the integrand f must be evaluated.

FUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01FBF is called. Arguments denoted as Input must not be changed by this
procedure.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1,
or NDIM > 20,
or LWA < NPTVECð1Þ þ NPTVECð2Þ þ � � � þ NPTVECðNDIMÞ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the computed multidimensional sum depends on the weights and the integrand values
at the abscissae. If these numbers vary significantly in size and sign then considerable accuracy could
be lost. If these numbers are all positive, then little accuracy will be lost in computing the sum.

8 Parallelism and Performance

D01FBF is not threaded in any implementation.

9 Further Comments

The total time taken by D01FBF will be proportional to

T � NPTVECð1Þ � NPTVECð2Þ � � � � � NPTVECðNDIMÞ;

where T is the time taken for one evaluation of FUN.

10 Example

This example evaluates the integralZ 2

1

Z 1
0

Z 1
�1

Z 1
1

x1x2x3ð Þ6

x4 þ 2ð Þ8
e�2x2e�0:5x

2
3dx4dx3dx2dx1

using adjusted weights. The quadrature formulae chosen are:
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x1: Gauss–Legendre, a ¼ 1:0, b ¼ 2:0,

x2: Gauss–Laguerre, a ¼ 0:0, b ¼ 2:0,

x3: Gauss–Hermite, a ¼ 0:0, b ¼ 0:5,

x4: rational Gauss, a ¼ 1:0, b ¼ 2:0.

Four points are sufficient in each dimension, as this integral is in fact a product of four one-dimensional
integrals, for each of which the chosen four-point formula is exact.

10.1 Program Text

! D01FBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01fbfe_mod

! D01FBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fun

! .. Parameters ..
Integer, Parameter, Public :: ndim = 4, nout = 6

Contains
Function fun(ndim,x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: fun

! .. Scalar Arguments ..
Integer, Intent (In) :: ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(ndim)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
fun = (x(1)*x(2)*x(3))**6/(x(4)+2.0E0_nag_wp)**8* &

exp(-2.0E0_nag_wp*x(2)-0.5E0_nag_wp*x(3)*x(3))

Return

End Function fun
End Module d01fbfe_mod
Program d01fbfe

! D01FBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01fbf, d01tbf, nag_wp
Use d01fbfe_mod, Only: fun, ndim, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, ans, b
Integer :: i, ifail, j, lwa

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: abscis(:), weight(:)
Integer :: nptvec(ndim)

! .. Intrinsic Procedures ..
Intrinsic :: sum

! .. Executable Statements ..
Write (nout,*) ’D01FBF Example Program Results’

nptvec(1:ndim) = (/4,4,4,4/)
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lwa = sum(nptvec(1:ndim))
Allocate (abscis(lwa),weight(lwa))

j = 1

Do i = 1, 4

ifail = 0
Select Case (i)
Case (1)

a = 1.0E0_nag_wp
b = 2.0E0_nag_wp
Call d01tbf(0,a,b,nptvec(i),weight(j),abscis(j),ifail)

Case (2)
a = 0.0E0_nag_wp
b = 2.0E0_nag_wp
Call d01tbf(-3,a,b,nptvec(i),weight(j),abscis(j),ifail)

Case (3)
a = 0.0E0_nag_wp
b = 0.5E0_nag_wp
Call d01tbf(-4,a,b,nptvec(i),weight(j),abscis(j),ifail)

Case (4)
a = 1.0E0_nag_wp
b = 2.0E0_nag_wp
Call d01tbf(-5,a,b,nptvec(i),weight(j),abscis(j),ifail)

End Select

j = j + nptvec(i)
End Do

ifail = 0
ans = d01fbf(ndim,nptvec,lwa,weight,abscis,fun,ifail)

Write (nout,*)
Write (nout,99999) ’Answer = ’, ans

99999 Format (1X,A,F10.5)
End Program d01fbfe

10.2 Program Data

None.

10.3 Program Results

D01FBF Example Program Results

Answer = 0.25065
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NAG Library Routine Document

D01FCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01FCF attempts to evaluate a multidimensional integral (up to 15 dimensions), with constant and
finite limits, to a specified relative accuracy, using an adaptive subdivision strategy.

2 Specification

SUBROUTINE D01FCF (NDIM, A, B, MINPTS, MAXPTS, FUNCTN, EPS, ACC, LENWRK,
WRKSTR, FINVAL, IFAIL)

&

INTEGER NDIM, MINPTS, MAXPTS, LENWRK, IFAIL
REAL (KIND=nag_wp) A(NDIM), B(NDIM), FUNCTN, EPS, ACC, WRKSTR(LENWRK),

FINVAL
&

EXTERNAL FUNCTN

3 Description

D01FCF returns an estimate of a multidimensional integral over a hyper-rectangle (i.e., with constant
limits), and also an estimate of the relative error. You set the relative accuracy required, return values
for the integrand via a routine argument FUNCTN, and also set the minimum and maximum acceptable
number of calls to FUNCTN (in MINPTS and MAXPTS).

The routine operates by repeated subdivision of the hyper-rectangular region into smaller hyper-
rectangles. In each subregion, the integral is estimated using a seventh-degree rule, and an error
estimate is obtained by comparison with a fifth-degree rule which uses a subset of the same points. The
fourth differences of the integrand along each coordinate axis are evaluated, and the subregion is
marked for possible future subdivision in half along that coordinate axis which has the largest absolute
fourth difference.

If the estimated errors, totalled over the subregions, exceed the requested relative error (or if fewer than
MINPTS calls to FUNCTN have been made), further subdivision is necessary, and is performed on the
subregion with the largest estimated error, that subregion being halved along the appropriate coordinate
axis.

The routine will fail if the requested relative error level has not been attained by the time MAXPTS
calls to FUNCTN have been made; or, if the amount LENWRK of working storage is insufficient. A
formula for the recommended value of LENWRK is given in Section 5. If a smaller value is used, and
is exhausted in the course of execution, the routine switches to a less efficient mode of operation; only
if this mode also breaks down is insufficient storage reported.

D01FCF is based on the HALF subroutine developed by van Dooren and de Ridder (1976). It uses a
different basic rule, described in Genz and Malik (1980).

4 References

Genz A C and Malik A A (1980) An adaptive algorithm for numerical integration over an N-
dimensional rectangular region J. Comput. Appl. Math. 6 295–302

van Dooren P and de Ridder L (1976) An adaptive algorithm for numerical integration over an N-
dimensional cube J. Comput. Appl. Math. 2 207–217
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5 Arguments

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

Constraint: 2 � NDIM � 15.

2: AðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the lower limits of integration, ai, for i ¼ 1; 2; . . . ; n.

3: BðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the upper limits of integration, bi, for i ¼ 1; 2; . . . ; n.

4: MINPTS – INTEGER Input/Output

On entry: must be set to the minimum number of integrand evaluations to be allowed.

On exit: contains the actual number of integrand evaluations used by D01FCF.

5: MAXPTS – INTEGER Input

On entry: the maximum number of integrand evaluations to be allowed.

Constraints:

MAXPTS � MINPTS;
MAXPTS � �, where � ¼ 2NDIM þ 2� NDIM2 þ 2� NDIMþ 1.

6: FUNCTN – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

FUNCTN must return the value of the integrand f at a given point.

The specification of FUNCTN is:

FUNCTION FUNCTN (NDIM, Z)
REAL (KIND=nag_wp) FUNCTN

INTEGER NDIM
REAL (KIND=nag_wp) Z(NDIM)

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

2: ZðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the point at which the integrand f must be evaluated.

FUNCTN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D01FCF is called. Arguments denoted as Input must not be changed
by this procedure.

7: EPS – REAL (KIND=nag_wp) Input

On entry: the relative error acceptable to you. When the solution is zero or very small relative
accuracy may not be achievable but you may still set EPS to a reasonable value and check for the
error exit IFAIL ¼ 2.

Constraint: EPS > 0:0.

8: ACC – REAL (KIND=nag_wp) Output

On exit: the estimated relative error in FINVAL.
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9: LENWRK – INTEGER Input

On entry: the dimension of the array WRKSTR as declared in the (sub)program from which
D01FCF is called.

Suggested value: for maximum efficiency, LENWRK � NDIMþ 2ð Þ � 1þMAXPTS=�ð Þ (see
argument MAXPTS for �).

If LENWRK is less than this, D01FCF will usually run less efficiently and may fail.

Constraint: LENWRK � 2� NDIMþ 4.

10: WRKSTRðLENWRKÞ – REAL (KIND=nag_wp) array Workspace

11: FINVAL – REAL (KIND=nag_wp) Output

On exit: the best estimate obtained for the integral.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01FCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 2,
or NDIM > 15,
or MAXPTS is too small,
or LENWRK < 2� NDIMþ 4,
or EPS � 0:0.

IFAIL ¼ 2

MAXPTS was too small to obtain the required relative accuracy EPS. On soft failure, FINVAL
and ACC contain estimates of the integral and the relative error, but ACC will be greater than
EPS.

IFAIL ¼ 3

LENWRK was too small. On soft failure, FINVAL and ACC contain estimates of the integral and
the relative error, but ACC will be greater than EPS.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

A relative error estimate is output through the argument ACC.

8 Parallelism and Performance

D01FCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D01FCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Execution time will usually be dominated by the time taken to evaluate FUNCTN, and hence the
maximum time that could be taken will be proportional to MAXPTS.

10 Example

This example estimates the integralZ 1

0

Z 1

0

Z 1

0

Z 1

0

4z1z23 exp 2z1z3ð Þ
1þ z2 þ z4ð Þ2

dz4dz3dz2dz1 ¼ 0:575364:

The accuracy requested is one part in 10000.

10.1 Program Text

! D01FCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01fcfe_mod

! D01FCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: functn

! .. Parameters ..
Integer, Parameter, Public :: ndim = 4, nout = 6
Integer, Parameter, Public :: maxpts = 1000*ndim
Integer, Parameter, Public :: lenwrk = (ndim+2)*(1+maxpts/(2**ndim &

+2*ndim*ndim+2*ndim+1))
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Contains
Function functn(ndim,z)

! .. Function Return Value ..
Real (Kind=nag_wp) :: functn

! .. Scalar Arguments ..
Integer, Intent (In) :: ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: z(ndim)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
functn = 4.0E0_nag_wp*z(1)*z(3)*z(3)*exp(2.0E0_nag_wp*z(1)*z(3))/ &

(1.0E0_nag_wp+z(2)+z(4))**2

Return

End Function functn
End Module d01fcfe_mod
Program d01fcfe

! D01FCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01fcf, nag_wp
Use d01fcfe_mod, Only: functn, lenwrk, maxpts, ndim, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: acc, eps, finval
Integer :: ifail, minpts

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), wrkstr(:)

! .. Executable Statements ..
Write (nout,*) ’D01FCF Example Program Results’

Allocate (a(ndim),b(ndim),wrkstr(lenwrk))

a(1:ndim) = 0.0E0_nag_wp
b(1:ndim) = 1.0E0_nag_wp
eps = 0.0001E0_nag_wp
minpts = 0

ifail = -1
Call d01fcf(ndim,a,b,minpts,maxpts,functn,eps,acc,lenwrk,wrkstr,finval, &

ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’Requested accuracy = ’, eps
Write (nout,99998) ’Estimated value = ’, finval
Write (nout,99999) ’Estimated accuracy = ’, acc

End Select

99999 Format (1X,A,E12.2)
99998 Format (1X,A,F12.4)

End Program d01fcfe

10.2 Program Data

None.
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10.3 Program Results

D01FCF Example Program Results

Requested accuracy = 0.10E-03
Estimated value = 0.5754
Estimated accuracy = 0.99E-04
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NAG Library Routine Document

D01FDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01FDF calculates an approximation to a definite integral in up to 30 dimensions, using the method of
Sag and Szekeres (see Sag and Szekeres (1964)). The region of integration is an n-sphere, or by built-in
transformation via the unit n-cube, any product region.

2 Specification

SUBROUTINE D01FDF (NDIM, F, SIGMA, REGION, LIMIT, R0, U, RESULT, NCALLS,
IFAIL)

&

INTEGER NDIM, LIMIT, NCALLS, IFAIL
REAL (KIND=nag_wp) F, SIGMA, R0, U, RESULT
EXTERNAL F, REGION

3 Description

D01FDF calculates an approximation toZ
n-sphere of radius �

f x1; x2; . . . ; xnð Þdx1dx2 � � � dxn ð1Þ

or, more generally, Z d1

c1

dx1 � � �
Z dn

cn

dxnf x1; . . . ; xnð Þ ð2Þ

where each ci and di may be functions of xj j < ið Þ.
The routine uses the method of Sag and Szekeres (1964), which exploits a property of the shifted
p-point trapezoidal rule, namely, that it integrates exactly all polynomials of degree < p (see Krylov
(1962)). An attempt is made to induce periodicity in the integrand by making a parameterised
transformation to the unit n-sphere. The Jacobian of the transformation and all its direct derivatives
vanish rapidly towards the surface of the unit n-sphere, so that, except for functions which have strong
singularities on the boundary, the resulting integrand will be pseudo-periodic. In addition, the variation
in the integrand can be considerably reduced, causing the trapezoidal rule to perform well.

Integrals of the form (1) are transformed to the unit n-sphere by the change of variables:

xi ¼ yi
�

r
tanh

ur

1� r2
� �

where r2 ¼
Xn
i¼1
y2i and u is an adjustable parameter.

Integrals of the form (2) are first of all transformed to the n-cube �1; 1½ �n by a linear change of
variables

xi ¼ di þ cið Þ þ di � cið Þyið Þ=2

and then to the unit sphere by a further change of variables
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yi ¼ tanh
uzi
1� r

� �
where r2 ¼

Xn
i¼1
z2i and u is again an adjustable parameter.

The parameter u in these transformations determines how the transformed integrand is distributed
between the origin and the surface of the unit n-sphere. A typical value of u is 1:5. For larger u, the
integrand is concentrated toward the centre of the unit n-sphere, while for smaller u it is concentrated
toward the perimeter.

In performing the integration over the unit n-sphere by the trapezoidal rule, a displaced equidistant grid
of size h is constructed. The points of the mesh lie on concentric layers of radius

ri ¼
h

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 8 i� 1ð Þ

p
; i ¼ 1; 2; 3; . . . :

The routine requires you to specify an approximate maximum number of points to be used, and then
computes the largest number of whole layers to be used, subject to an upper limit of 400 layers.

In practice, the rapidly-decreasing Jacobian makes it unnecessary to include the whole unit n-sphere
and the integration region is limited by a user-specified cut-off radius r0 < 1. The grid-spacing h is
determined by r0 and the number of layers to be used. A typical value of r0 is 0:8.

Some experimentation may be required with the choice of r0 (which determines how much of the unit
n-sphere is included) and u (which determines how the transformed integrand is distributed between the
origin and surface of the unit n-sphere), to obtain best results for particular families of integrals. This
matter is discussed further in Section 9.

4 References

Krylov V I (1962) Approximate Calculation of Integrals (trans A H Stroud) Macmillan

Sag T W and Szekeres G (1964) Numerical evaluation of high-dimensional integrals Math. Comput. 18
245–253

5 Arguments

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

Constraint: 1 � NDIM � 30.

2: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

The specification of F is:

FUNCTION F (NDIM, X)
REAL (KIND=nag_wp) F

INTEGER NDIM
REAL (KIND=nag_wp) X(NDIM)

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

2: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the point at which the integrand f must be evaluated.

D01FDF NAG Library Manual

D01FDF.2 Mark 26



F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01FDF is called. Arguments denoted as Input must not be changed by this
procedure.

3: SIGMA – REAL (KIND=nag_wp) Input

On entry: indicates the region of integration.

SIGMA � 0:0
The integration is carried out over the n-sphere of radius SIGMA, centred at the origin.

SIGMA < 0:0
The integration is carried out over the product region described by REGION.

4: REGION – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

If SIGMA < 0:0, REGION must evaluate the limits of integration in any dimension.

The specification of REGION is:

SUBROUTINE REGION (NDIM, X, J, C, D)

INTEGER NDIM, J
REAL (KIND=nag_wp) X(NDIM), C, D

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

2: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: Xð1Þ; . . . ;Xðj� 1Þ contain the current values of the first j� 1ð Þ variables,
which may be used if necessary in calculating cj and dj.

3: J – INTEGER Input

On entry: the index j for which the limits of the range of integration are required.

4: C – REAL (KIND=nag_wp) Output

On exit: the lower limit cj of the range of xj.

5: D – REAL (KIND=nag_wp) Output

On exit: the upper limit dj of the range of xj.

REGION must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01FDF is called. Arguments denoted as Input must not be changed by this
procedure.

If SIGMA � 0:0, REGION is not called by D01FDF, but a dummy routine must be supplied
(D01FDV may be used).

5: LIMIT – INTEGER Input

On entry: the approximate maximum number of integrand evaluations to be used.

Constraint: LIMIT � 100.

6: R0 – REAL (KIND=nag_wp) Input

On entry: the cut-off radius on the unit n-sphere, which may be regarded as an adjustable
parameter of the method.

Suggested value: a typical value is R0 ¼ 0:8. (See also Section 9.)

Constraint: 0:0 < R0 < 1:0.
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7: U – REAL (KIND=nag_wp) Input

On entry: must specify an adjustable parameter of the transformation to the unit n-sphere.

Suggested value: a typical value is U ¼ 1:5. (See also Section 9.)

Constraint: U > 0:0.

8: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

9: NCALLS – INTEGER Output

On exit: the actual number of integrand evaluations used. (See also Section 9.)

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1,
or NDIM > 30.

IFAIL ¼ 2

On entry, LIMIT < 100.

IFAIL ¼ 3

On entry, R0 � 0:0,
or R0 � 1:0.

IFAIL ¼ 4

On entry, U � 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

No error estimate is returned, but results may be verified by repeating with an increased value of LIMIT
(provided that this causes an increase in the returned value of NCALLS).

8 Parallelism and Performance

D01FDF is not threaded in any implementation.

9 Further Comments

The time taken by D01FDF will be approximately proportional to the returned value of NCALLS,
which, except in the circumstances outlined in (b) below, will be close to the given value of LIMIT.

(a) Choice of r0 and u

If the chosen combination of r0 and u is too large in relation to the machine accuracy it is possible
that some of the points generated in the original region of integration may transform into points in
the unit n-sphere which lie too close to the boundary surface to be distinguished from it to machine
accuracy (despite the fact that r0 < 1). To be specific, the combination of r0 and u is too large if

ur0

1� r20
> 0:3465 t� 1ð Þ; if SIGMA � 0:0;

or

ur0
1� r0

> 0:3465 t� 1ð Þ; if SIGMA < 0:0;

where t is the number of bits in the mantissa of a real number.

The contribution of such points to the integral is neglected. This may be justified by appeal to the
fact that the Jacobian of the transformation rapidly approaches zero towards the surface. Neglect of
these points avoids the occurrence of overflow with integrands which are infinite on the boundary.

(b) Values of LIMIT and NCALLS

LIMIT is an approximate upper limit to the number of integrand evaluations, and may not be
chosen less than 100. There are two circumstances when the returned value of NCALLS (the actual
number of evaluations used) may be significantly less than LIMIT.

Firstly, as explained in (a), an unsuitably large combination of r0 and u may result in some of the
points being unusable. Such points are not included in the returned value of NCALLS.

Secondly, no more than 400 layers will ever be used, no matter how high LIMIT is set. This places
an effective upper limit on NCALLS as follows:

n ¼ 1 : 56
n ¼ 2 : 1252
n ¼ 3 : 23690
n ¼ 4 : 394528
n ¼ 5 : 5956906
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10 Example

This example calculates the integralZ Z Z
s

dx1dx2dx3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � r2
p ¼ 22:2066

where s is the 3-sphere of radius �, r2 ¼ x21 þ x22 þ x23 and � ¼ 1:5. Both sphere-to-sphere and general
product region transformations are used. For the former, we use r0 ¼ 0:9 and u ¼ 1:5; for the latter,
r0 ¼ 0:8 and u ¼ 1:5.

10.1 Program Text

! D01FDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01fdfe_mod

! D01FDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f, region

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Function f(ndim,x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Integer, Intent (In) :: ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(ndim)

! .. Intrinsic Procedures ..
Intrinsic :: abs, sqrt, sum

! .. Executable Statements ..
f = 1.0E0_nag_wp/sqrt(abs(2.25E0_nag_wp-sum(x(1:ndim)**2)))

Return

End Function f
Subroutine region(ndim,x,j,c,d)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c, d
Integer, Intent (In) :: j, ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(ndim)

! .. Intrinsic Procedures ..
Intrinsic :: abs, sqrt, sum

! .. Executable Statements ..
If (j>1) Then

d = sqrt(abs(2.25E0_nag_wp-sum(x(1:(j-1))**2)))
c = -d

Else
c = -1.5E0_nag_wp
d = 1.5E0_nag_wp

End If

Return

End Subroutine region
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End Module d01fdfe_mod
Program d01fdfe

! D01FDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01fdf, d01fdv, nag_wp
Use d01fdfe_mod, Only: f, nout, region

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: r0, result, sigma, u
Integer :: ifail, limit, ncalls, ndim

! .. Executable Statements ..
Write (nout,*) ’D01FDF Example Program Results’

ndim = 3
limit = 8000
u = 1.5E0_nag_wp
sigma = 1.5E0_nag_wp
r0 = 0.9E0_nag_wp

ifail = 0
Call d01fdf(ndim,f,sigma,d01fdv,limit,r0,u,result,ncalls,ifail)

Write (nout,*)
Write (nout,*) ’Sphere-to-sphere transformation’
Write (nout,*)
Write (nout,99999) ’Estimated value of the integral = ’, result
Write (nout,99998) ’Number of integrand evaluations = ’, ncalls
Write (nout,*)
Write (nout,*) ’Product region transformation’

sigma = -1.0E0_nag_wp
r0 = 0.8E0_nag_wp

ifail = 0
Call d01fdf(ndim,f,sigma,region,limit,r0,u,result,ncalls,ifail)

Write (nout,*)
Write (nout,99999) ’Estimated value of the integral = ’, result
Write (nout,99998) ’Number of integrand evaluations = ’, ncalls

99999 Format (1X,A,F9.3)
99998 Format (1X,A,I5)

End Program d01fdfe

10.2 Program Data

None.

10.3 Program Results

D01FDF Example Program Results

Sphere-to-sphere transformation

Estimated value of the integral = 22.168
Number of integrand evaluations = 8026

Product region transformation

Estimated value of the integral = 22.137
Number of integrand evaluations = 8026
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NAG Library Routine Document

D01GAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01GAF integrates a function which is specified numerically at four or more points, over the whole of
its specified range, using third-order finite difference formulae with error estimates, according to a
method due to Gill and Miller (1972).

2 Specification

SUBROUTINE D01GAF (X, Y, N, ANS, ER, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), ANS, ER

3 Description

D01GAF evaluates the definite integral

I ¼
Z xn

x1

y xð Þ dx;

where the function y is specified at the n-points x1; x2; . . . ; xn, which should be all distinct, and in
either ascending or descending order. The integral between successive points is calculated by a four-
point finite difference formula centred on the interval concerned, except in the case of the first and last
intervals, where four-point forward and backward difference formulae respectively are employed. If n is
less than 4, the routine fails. An approximation to the truncation error is integrated and added to the
result. It is also returned separately to give an estimate of the uncertainty in the result. The method is
due to Gill and Miller (1972).

4 References

Gill P E and Miller G F (1972) An algorithm for the integration of unequally spaced data Comput. J. 15
80–83

5 Arguments

1: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the independent variable, i.e., the x1; x2; . . . ; xn.

Constraint: either Xð1Þ < Xð2Þ < � � � < XðNÞ or Xð1Þ > Xð2Þ > � � � > XðNÞ.

2: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the dependent variable yi at the points xi, for i ¼ 1; 2; . . . ; n.

3: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 4.

4: ANS – REAL (KIND=nag_wp) Output

On exit: the estimated value of the integral.
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5: ER – REAL (KIND=nag_wp) Output

On exit: an estimate of the uncertainty in ANS.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Indicates that fewer than four points have been supplied to D01GAF.

IFAIL ¼ 2

Values of X are neither strictly increasing nor strictly decreasing.

IFAIL ¼ 3

Two points have the same X-value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

No error is reported arising from the relative magnitudes of ANS and ER on return, due to the difficulty
when the true answer is zero.

7 Accuracy

No accuracy level is specified by you before calling D01GAF but on return the absolute value of ER is
an approximation to, but not necessarily a bound for, I � ANSj j. If on exit IFAIL > 0, both ANS and
ER are returned as zero.
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8 Parallelism and Performance

D01GAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D01GAF depends on the number of points supplied, n.

In their paper, Gill and Miller (1972) do not add the quantity ER to ANS before return. However,
extensive tests have shown that a dramatic reduction in the error often results from such addition. In
other cases, it does not make an improvement, but these tend to be cases of low accuracy in which the
modified answer is not significantly inferior to the unmodified one. You have the option of recovering
the Gill–Miller answer by subtracting ER from ANS on return from the routine.

10 Example

This example evaluates the integral Z 1

0

4

1þ x2 dx ¼ 	

reading in the function values at 21 unequally spaced points.

10.1 Program Text

Program d01gafe

! D01GAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d01gaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: ans, er
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’D01GAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Allocate (x(n),y(n))

Read (nin,*)(x(i),y(i),i=1,n)

ifail = -1
Call d01gaf(x,y,n,ans,er,ifail)

Select Case (ifail)
Case (0)

Write (nout,*)
Write (nout,99999) ’Integral = ’, ans, ’ Estimated error = ’, er

Case (1)
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Write (nout,*)
Write (nout,*) ’Less than 4 points supplied’

Case (2)
Write (nout,*)
Write (nout,*) ’Points not in increasing or decreasing order’

Case (3)
Write (nout,*)
Write (nout,*) ’Points not all distinct’

End Select

99999 Format (1X,A,F7.4,A,F7.4)
End Program d01gafe

10.2 Program Data

D01GAF Example Program Data
21
0.00 4.0000
0.04 3.9936
0.08 3.9746
0.12 3.9432
0.22 3.8153
0.26 3.7467
0.30 3.6697
0.38 3.4943
0.39 3.4719
0.42 3.4002
0.45 3.3264
0.46 3.3014
0.60 2.9412
0.68 2.7352
0.72 2.6344
0.73 2.6094
0.83 2.3684
0.85 2.3222
0.88 2.2543
0.90 2.2099
1.00 2.0000

10.3 Program Results

D01GAF Example Program Results

Integral = 3.1414 Estimated error = -0.0001
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NAG Library Routine Document

D01GBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01GBF returns an approximation to the integral of a function over a hyper-rectangular region, using a
Monte–Carlo method. An approximate relative error estimate is also returned. This routine is suitable
for low accuracy work.

2 Specification

SUBROUTINE D01GBF (NDIM, A, B, MINCLS, MAXCLS, FUNCTN, EPS, ACC, LENWRK,
WRKSTR, FINEST, IFAIL)

&

INTEGER NDIM, MINCLS, MAXCLS, LENWRK, IFAIL
REAL (KIND=nag_wp) A(NDIM), B(NDIM), FUNCTN, EPS, ACC, WRKSTR(LENWRK),

FINEST
&

EXTERNAL FUNCTN

3 Description

D01GBF uses an adaptive Monte–Carlo method based on the algorithm described in Lautrup (1971). It
is implemented for integrals of the form:Z b1

a1

Z b2

a2

� � �
Z bn

an

f x1; x2; . . . ; xnð Þ dxn � � � dx2dx1:

Upon entry, unless LENWRK has been set to the minimum value 10� NDIM, the routine subdivides
the integration region into a number of equal volume subregions. Inside each subregion the integral and
the variance are estimated by means of pseudorandom sampling. All contributions are added together to
produce an estimate for the whole integral and total variance. The variance along each coordinate axis
is determined and the routine uses this information to increase the density and change the widths of the
sub-intervals along each axis, so as to reduce the total variance. The total number of subregions is then
increased by a factor of two and the program recycles for another iteration. The program stops when a
desired accuracy has been reached or too many integral evaluations are needed for the next cycle.

4 References

Lautrup B (1971) An adaptive multi-dimensional integration procedure Proc. 2nd Coll. Advanced
Methods in Theoretical Physics, Marseille

5 Arguments

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

Constraint: NDIM � 1.

2: AðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the lower limits of integration, ai, for i ¼ 1; 2; . . . ; n.

3: BðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the upper limits of integration, bi, for i ¼ 1; 2; . . . ; n.
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4: MINCLS – INTEGER Input/Output

On entry: must be set

either to the minimum number of integrand evaluations to be allowed, in which case
MINCLS � 0;

or to a negative value. In this case, the routine assumes that a previous call had been made
with the same arguments NDIM, A and B and with either the same integrand (in which
case D01GBF continues calculation) or a similar integrand (in which case D01GBF begins
the calculation with the subdivision used in the last iteration of the previous call). See also
WRKSTR.

On exit: contains the number of integrand evaluations actually used by D01GBF.

5: MAXCLS – INTEGER Input

On entry: the maximum number of integrand evaluations to be allowed. In the continuation case
this is the number of new integrand evaluations to be allowed. These counts do not include zero
integrand values.

Constraints:

MAXCLS > MINCLS;
MAXCLS � 4� NDIMþ 1ð Þ.

6: FUNCTN – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

FUNCTN must return the value of the integrand f at a given point.

The specification of FUNCTN is:

FUNCTION FUNCTN (NDIM, X)
REAL (KIND=nag_wp) FUNCTN

INTEGER NDIM
REAL (KIND=nag_wp) X(NDIM)

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

2: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the point at which the integrand f must be evaluated.

FUNCTN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D01GBF is called. Arguments denoted as Input must not be changed
by this procedure.

7: EPS – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required.

Constraint: EPS � 0:0.

8: ACC – REAL (KIND=nag_wp) Output

On exit: the estimated relative accuracy of FINEST.

9: LENWRK – INTEGER Input

On entry: the dimension of the array WRKSTR as declared in the (sub)program from which
D01GBF is called.
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For maximum efficiency, LENWRK should be about

3� NDIM� MAXCLS=4ð Þ1=NDIM þ 7� NDIM:

If LENWRK is given the value 10� NDIM then the subroutine uses only one iteration of a crude
Monte–Carlo method with MAXCLS sample points.

Constraint: LENWRK � 10� NDIM.

10: WRKSTRðLENWRKÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MINCLS < 0, WRKSTR must be unchanged from the previous call of D01GBF –
except that for a new integrand WRKSTRðLENWRKÞ must be set to 0:0. See also MINCLS.

On exit: contains information about the current sub-interval structure which could be used in later
calls of D01GBF. In particular, WRKSTRðjÞ gives the number of sub-intervals used along the jth
coordinate axis.

11: FINEST – REAL (KIND=nag_wp) Input/Output

On entry: must be unchanged from a previous call to D01GBF.

On exit: the best estimate obtained for the integral.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1,
or MINCLS � MAXCLS,
or LENWRK < 10� NDIM,
or MAXCLS < 4� NDIMþ 1ð Þ,
or EPS < 0:0.

IFAIL ¼ 2

MAXCLS was too small for D01GBF to obtain the required relative accuracy EPS. In this case
D01GBF returns a value of FINEST with estimated relative error ACC, but ACC will be greater
than EPS. This error exit may be taken before MAXCLS nonzero integrand evaluations have
actually occurred, if the routine calculates that the current estimates could not be improved
before MAXCLS was exceeded.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

A relative error estimate is output through the argument ACC. The confidence factor is set so that the
actual error should be less than ACC 90% of the time. If you want a higher confidence level then a
smaller value of EPS should be used.

8 Parallelism and Performance

D01GBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The running time for D01GBF will usually be dominated by the time used to evaluate the integrand f ,
so the maximum time that could be used is approximately proportional to MAXCLS.

For some integrands, particularly those that are poorly behaved in a small part of the integration region,
D01GBF may terminate with a value of ACC which is significantly smaller than the actual relative
error. This should be suspected if the returned value of MINCLS is small relative to the expected
difficulty of the integral. Where this occurs, D01GBF should be called again, but with a higher entry
value of MINCLS (e.g., twice the returned value) and the results compared with those from the
previous call.

9.1 Additional Information

The exact values of FINEST and ACC on return will depend (within statistical limits) on the sequence
of random numbers generated within this routine.

10 Example

This example calculates the integralZ 1

0

Z 1

0

Z 1

0

Z 1

0

4x1x3 exp 2x1x3ð Þ
1þ x2 þ x4ð Þ2

dx1dx2dx3dx4 ¼ 0:575364:
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10.1 Program Text

! D01GBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01gbfe_mod

! D01GBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: functn

! .. Parameters ..
Integer, Parameter, Public :: lenwrk = 500, maxcls = 20000, &

ndim = 4, nout = 6
Contains

Function functn(ndim,x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: functn

! .. Scalar Arguments ..
Integer, Intent (In) :: ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(ndim)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
functn = 4.0E0_nag_wp*x(1)*x(3)**2*exp(2.0E0_nag_wp*x(1)*x(3))/ &

(1.0E0_nag_wp+x(2)+x(4))**2

Return

End Function functn
End Module d01gbfe_mod
Program d01gbfe

! D01GBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01gbf, nag_wp
Use d01gbfe_mod, Only: functn, lenwrk, maxcls, ndim, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: acc, eps, finest
Integer :: ifail, mincls

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), wrkstr(:)

! .. Executable Statements ..
Write (nout,*) ’D01GBF Example Program Results’

Allocate (a(ndim),b(ndim),wrkstr(lenwrk))

a(1:ndim) = 0.0E0_nag_wp
b(1:ndim) = 1.0E0_nag_wp
eps = 0.01E0_nag_wp
mincls = 1000

ifail = -1
Call d01gbf(ndim,a,b,mincls,maxcls,functn,eps,acc,lenwrk,wrkstr,finest, &

ifail)

Select Case (ifail)
Case (0,2)

Write (nout,*)
Write (nout,99998) ’Requested accuracy = ’, eps
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Write (nout,99997) ’Estimated value = ’, finest
Write (nout,99998) ’Estimated accuracy = ’, acc
Write (nout,99999) ’Number of evaluations = ’, mincls

End Select

99999 Format (1X,A,I5)
99998 Format (1X,A,E13.2)
99997 Format (1X,A,F13.5)

End Program d01gbfe

10.2 Program Data

None.

10.3 Program Results

D01GBF Example Program Results

Requested accuracy = 0.10E-01
Estimated value = 0.57572
Estimated accuracy = 0.92E-02
Number of evaluations = 1728
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NAG Library Routine Document

D01GCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01GCF calculates an approximation to a definite integral in up to 20 dimensions, using the Korobov–
Conroy number theoretic method.

2 Specification

SUBROUTINE D01GCF (NDIM, F, REGION, NPTS, VK, NRAND, ITRANS, RES, ERR,
IFAIL)

&

INTEGER NDIM, NPTS, NRAND, ITRANS, IFAIL
REAL (KIND=nag_wp) F, VK(NDIM), RES, ERR
EXTERNAL F, REGION

3 Description

D01GCF calculates an approximation to the integral

I ¼
Z d1

c1

dx1; . . . ;

Z dn

cn

dxn f x1; x2; . . . ; xnð Þ ð1Þ

using the Korobov–Conroy number theoretic method (see Korobov (1957), Korobov (1963) and Conroy
(1967)). The region of integration defined in (1) is such that generally ci and di may be functions of
x1; x2; . . . ; xi�1, for i ¼ 2; 3; . . . ; n, with c1 and d1 constants. The integral is first of all transformed to
an integral over the n-cube 0; 1½ �n by the change of variables

xi ¼ ci þ di � cið Þyi; i ¼ 1; 2; . . . ; n:

The method then uses as its basis the number theoretic formula for the n-cube, 0; 1½ �n:Z 1

0
dx1 � � �

Z 1

0
dxng x1; x2; . . . ; xnð Þ ¼ 1

p

Xp
k¼1

g k
a1
p


 �
; . . . ; k

an
p


 �� �
� E ð2Þ

where xf g denotes the fractional part of x, a1; a2; . . . ; an are the so-called optimal coefficients, E is the
error, and p is a prime integer. (It is strictly only necessary that p be relatively prime to all a1; a2; . . . ; an
and is in fact chosen to be even for some cases in Conroy (1967).) The method makes use of properties
of the Fourier expansion of g x1; x2; . . . ; xnð Þ which is assumed to have some degree of periodicity.
Depending on the choice of a1; a2; . . . ; an the contributions from certain groups of Fourier coefficients
are eliminated from the error, E. Korobov shows that a1; a2; . . . ; an can be chosen so that the error
satisfies

E � CKp��ln�� p ð3Þ

where � and C are real numbers depending on the convergence rate of the Fourier series, � is a
constant depending on n, and K is a constant depending on � and n. There are a number of procedures
for calculating these optimal coefficients. Korobov imposes the constraint that

a1 ¼ 1 and ai ¼ ai�1 mod pð Þ ð4Þ

and gives a procedure for calculating the argument, a, to satisfy the optimal conditions.

In this routine the periodisation is achieved by the simple transformation

xi ¼ y2i 3� 2yið Þ; i ¼ 1; 2; . . . ; n:
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More sophisticated periodisation procedures are available but in practice the degree of periodisation
does not appear to be a critical requirement of the method.

An easily calculable error estimate is not available apart from repetition with an increasing sequence of
values of p which can yield erratic results. The difficulties have been studied by Cranley and Patterson
(1976) who have proposed a Monte–Carlo error estimate arising from converting (2) into a stochastic
integration rule by the inclusion of a random origin shift which leaves the form of the error (3)

unchanged; i.e., in the formula (2), k
ai
p


 �
is replaced by �i þ k

ai
p


 �
, for i ¼ 1; 2; . . . ; n, where each

�i, is uniformly distributed over 0; 1½ �. Computing the integral for each of a sequence of random vectors
� allows a ‘standard error’ to be estimated.

This routine provides built-in sets of optimal coefficients, corresponding to six different values of p.
Alternatively, the optimal coefficients may be supplied by you. Routines D01GYF and D01GZF
compute the optimal coefficients for the cases where p is a prime number or p is a product of two
primes, respectively.

4 References

Conroy H (1967) Molecular Shroedinger equation VIII. A new method for evaluting multi-dimensional
integrals J. Chem. Phys. 47 5307–5318

Cranley R and Patterson T N L (1976) Randomisation of number theoretic methods for mulitple
integration SIAM J. Numer. Anal. 13 904–914

Korobov N M (1957) The approximate calculation of multiple integrals using number theoretic methods
Dokl. Acad. Nauk SSSR 115 1062–1065

Korobov N M (1963) Number Theoretic Methods in Approximate Analysis Fizmatgiz, Moscow

5 Arguments

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

Constraint: 1 � NDIM � 20.

2: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

The specification of F is:

FUNCTION F (NDIM, X)
REAL (KIND=nag_wp) F

INTEGER NDIM
REAL (KIND=nag_wp) X(NDIM)

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

2: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the point at which the integrand f must be evaluated.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01GCF is called. Arguments denoted as Input must not be changed by this
procedure.

3: REGION – SUBROUTINE, supplied by the user. External Procedure

REGION must evaluate the limits of integration in any dimension.
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The specification of REGION is:

SUBROUTINE REGION (NDIM, X, J, C, D)

INTEGER NDIM, J
REAL (KIND=nag_wp) X(NDIM), C, D

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

2: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: Xð1Þ; . . . ;Xðj� 1Þ contain the current values of the first j� 1ð Þ variables,
which may be used if necessary in calculating cj and dj.

3: J – INTEGER Input

On entry: the index j for which the limits of the range of integration are required.

4: C – REAL (KIND=nag_wp) Output

On exit: the lower limit cj of the range of xj.

5: D – REAL (KIND=nag_wp) Output

On exit: the upper limit dj of the range of xj.

REGION must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01GCF is called. Arguments denoted as Input must not be changed by this
procedure.

4: NPTS – INTEGER Input

On entry: the Korobov rule to be used. There are two alternatives depending on the value of
NPTS.

(i) 1 � NPTS � 6.

In this case one of six preset rules is chosen using 2129, 5003, 10007, 20011, 40009 or
80021 points depending on the respective value of NPTS being 1, 2, 3, 4, 5 or 6.

(ii) NPTS > 6.

NPTS is the number of actual points to be used with corresponding optimal coefficients
supplied in the array VK.

Constraint: NPTS � 1.

5: VKðNDIMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if NPTS > 6, VK must contain the n optimal coefficients (which may be calculated
using D01GYF or D01GZF).

If NPTS � 6, VK need not be set.

On exit: if NPTS > 6, VK is unchanged.

If NPTS � 6, VK contains the n optimal coefficients used by the preset rule.

6: NRAND – INTEGER Input

On entry: the number of random samples to be generated in the error estimation (generally a
small value, say 3 to 5, is sufficient). The total number of integrand evaluations will be
NRAND� NPTS.

Constraint: NRAND � 1.
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7: ITRANS – INTEGER Input

On entry: indicates whether the periodising transformation is to be used.

ITRANS ¼ 0
The transformation is to be used.

ITRANS 6¼ 0
The transformation is to be suppressed (to cover cases where the integrand may already be
periodic or where you want to specify a particular transformation in the definition of F).

Suggested value: ITRANS ¼ 0 .

8: RES – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

9: ERR – REAL (KIND=nag_wp) Output

On exit: the standard error as computed from NRAND sample values. If NRAND ¼ 1, then ERR
contains zero.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1,
or NDIM > 20.

IFAIL ¼ 2

On entry, NPTS < 1.

IFAIL ¼ 3

On entry, NRAND < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

An estimate of the absolute standard error is given by the value, on exit, of ERR.

8 Parallelism and Performance

D01GCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D01GCF will be approximately proportional to NRAND� p, where p is the number
of points used.

The exact values of RES and ERR on return will depend (within statistical limits) on the sequence of
random numbers generated within D01GCF by calls to G05SAF. Separate runs will produce identical
answers.

10 Example

This example calculates the integralZ 1

0

Z 1

0

Z 1

0

Z 1

0
cos 0:5þ 2 x1 þ x2 þ x3 þ x4ð Þ � 4ð Þ dx1 dx2 dx3 dx4:

10.1 Program Text

! D01GCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01gcfe_mod

! D01GCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f, region

! .. Parameters ..
Integer, Parameter, Public :: ndim = 4, nout = 6

Contains
Subroutine region(ndim,x,j,c,d)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c, d
Integer, Intent (In) :: j, ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(ndim)

! .. Executable Statements ..
c = 0.0E0_nag_wp
d = 1.0E0_nag_wp
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Return

End Subroutine region
Function f(ndim,x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Integer, Intent (In) :: ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(ndim)

! .. Intrinsic Procedures ..
Intrinsic :: cos, real, sum

! .. Executable Statements ..
f = cos(0.5E0_nag_wp+2.0E0_nag_wp*sum(x(1:ndim))-real(ndim,kind=nag_wp &

))

Return

End Function f
End Module d01gcfe_mod
Program d01gcfe

! D01GCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01gcf, nag_wp
Use d01gcfe_mod, Only: f, ndim, nout, region

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: err, res
Integer :: ifail, itrans, npts, nrand

! .. Local Arrays ..
Real (Kind=nag_wp) :: vk(ndim)

! .. Executable Statements ..
Write (nout,*) ’D01GCF Example Program Results’

npts = 2
itrans = 0
nrand = 4

ifail = 0
Call d01gcf(ndim,f,region,npts,vk,nrand,itrans,res,err,ifail)

Write (nout,*)
Write (nout,99999) ’Result =’, res, ’ Standard error =’, err

99999 Format (1X,A,F13.5,A,E10.2)
End Program d01gcfe

10.2 Program Data

None.

10.3 Program Results

D01GCF Example Program Results

Result = 0.43999 Standard error = 0.19E-05
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NAG Library Routine Document

D01GDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01GDF calculates an approximation to a definite integral in up to 20 dimensions, using the Korobov–
Conroy number theoretic method. This routine is designed to be particularly efficient on vector
processors.

2 Specification

SUBROUTINE D01GDF (NDIM, VECFUN, VECREG, NPTS, VK, NRAND, ITRANS, RES,
ERR, IFAIL)

&

INTEGER NDIM, NPTS, NRAND, ITRANS, IFAIL
REAL (KIND=nag_wp) VK(NDIM), RES, ERR
EXTERNAL VECFUN, VECREG

3 Description

D01GDF calculates an approximation to the integral

I ¼
Z d1

c1

� � �
Z dn

cn

f x1; . . . ; xnð Þ dxn . . . dx1 ð1Þ

using the Korobov–Conroy number theoretic method (see Korobov (1957), Korobov (1963) and Conroy
(1967)). The region of integration defined in (1) is such that generally ci and di may be functions of
x1; x2; . . . ; xi�1, for i ¼ 2; 3; . . . ; n, with c1 and d1 constants. The integral is first of all transformed to
an integral over the n-cube 0; 1½ �n by the change of variables

xi ¼ ci þ di � cið Þyi; i ¼ 1; 2; . . . ; n:

The method then uses as its basis the number theoretic formula for the n-cube, 0; 1½ �n:Z 1

0
� � �
Z 1

0
g x1; . . . ; xnð Þ dxn � � � dx1 ¼ 1

p

Xp
k¼1

g k
a1
p


 �
; . . . ; k

an
p


 �� �
� E ð2Þ

where xf g denotes the fractional part of x, a1; . . . ; an are the so-called optimal coefficients, E is the
error, and p is a prime integer. (It is strictly only necessary that p be relatively prime to all a1; . . . ; an
and is in fact chosen to be even for some cases in Conroy (1967).) The method makes use of properties
of the Fourier expansion of g x1; . . . ; xnð Þ which is assumed to have some degree of periodicity.
Depending on the choice of a1; . . . ; an the contributions from certain groups of Fourier coefficients are
eliminated from the error, E. Korobov shows that a1; . . . ; an can be chosen so that the error satisfies

E � CKp��ln�� p ð3Þ

where � and C are real numbers depending on the convergence rate of the Fourier series, � is a
constant depending on n, and K is a constant depending on � and n. There are a number of procedures
for calculating these optimal coefficients. Korobov imposes the constraint that

a1 ¼ 1 and ai ¼ ai�1 mod pð Þ ð4Þ

and gives a procedure for calculating the argument, a, to satisfy the optimal conditions.

In this routine the periodisation is achieved by the simple transformation

xi ¼ y2i 3� 2yið Þ; i ¼ 1; 2; . . . ; n:
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More sophisticated periodisation procedures are available but in practice the degree of periodisation
does not appear to be a critical requirement of the method.

An easily calculable error estimate is not available apart from repetition with an increasing sequence of
values of p which can yield erratic results. The difficulties have been studied by Cranley and Patterson
(1976) who have proposed a Monte–Carlo error estimate arising from converting (2) into a stochastic
integration rule by the inclusion of a random origin shift which leaves the form of the error (3)

unchanged; i.e., in the formula (2), k
ai
p


 �
is replaced by �i þ k

ai
p


 �
, for i ¼ 1; 2; . . . ; n, where each

�i, is uniformly distributed over 0; 1½ �. Computing the integral for each of a sequence of random vectors
� allows a ‘standard error’ to be estimated.

This routine provides built-in sets of optimal coefficients, corresponding to six different values of p.
Alternatively, the optimal coefficients may be supplied by you. Routines D01GYF and D01GZF
compute the optimal coefficients for the cases where p is a prime number or p is a product of two
primes, respectively.

This routine is designed to be particularly efficient on vector processors, although it is very important
that you also code VECFUN and VECREG efficiently.

4 References

Conroy H (1967) Molecular Shroedinger equation VIII. A new method for evaluting multi-dimensional
integrals J. Chem. Phys. 47 5307–5318

Cranley R and Patterson T N L (1976) Randomisation of number theoretic methods for mulitple
integration SIAM J. Numer. Anal. 13 904–914

Korobov N M (1957) The approximate calculation of multiple integrals using number theoretic methods
Dokl. Acad. Nauk SSSR 115 1062–1065

Korobov N M (1963) Number Theoretic Methods in Approximate Analysis Fizmatgiz, Moscow

5 Arguments

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

Constraint: 1 � NDIM � 20.

2: VECFUN – SUBROUTINE, supplied by the user. External Procedure

VECFUN must evaluate the integrand at a specified set of points.

The specification of VECFUN is:

SUBROUTINE VECFUN (NDIM, X, FV, M)

INTEGER NDIM, M
REAL (KIND=nag_wp) X(M,NDIM), FV(M)

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

2: XðM;NDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the m points at which the integrand must be evaluated.
Xði; jÞ contains the jth coordinate of the ith point.

3: FVðMÞ – REAL (KIND=nag_wp) array Output

On exit: FVðiÞ must contain the value of the integrand of the ith point, i.e.,
FVðiÞ ¼ f Xði; 1Þ;Xði; 2Þ; . . . ;Xði;NDIMÞð Þ, for i ¼ 1; 2; . . . ;M.
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4: M – INTEGER Input

On entry: the number of points m at which the integrand is to be evaluated.

VECFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D01GDF is called. Arguments denoted as Input must not be changed
by this procedure.

3: VECREG – SUBROUTINE, supplied by the user. External Procedure

VECREG must evaluate the limits of integration in any dimension for a set of points.

The specification of VECREG is:

SUBROUTINE VECREG (NDIM, X, J, C, D, M)

INTEGER NDIM, J, M
REAL (KIND=nag_wp) X(M,NDIM), C(M), D(M)

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

2: XðM;NDIMÞ – REAL (KIND=nag_wp) array Input

On entry: for i ¼ 1; 2; . . . ;m, Xði; 1Þ, Xði; 2Þ; . . . ;Xði; j� 1Þ contain the current values
of the first j� 1ð Þ coordinates of the ith point, which may be used if necessary in
calculating the m values of cj and dj.

3: J – INTEGER Input

On entry: the index j for which the limits of the range of integration are required.

4: CðMÞ – REAL (KIND=nag_wp) array Output

On exit: CðiÞ must be set to the lower limit of the range for Xði; jÞ, for i ¼ 1; 2; . . . ;m.

5: DðMÞ – REAL (KIND=nag_wp) array Output

On exit: DðiÞ must be set to the upper limit of the range for Xði; jÞ, for i ¼ 1; 2; . . . ;m.

6: M – INTEGER Input

On entry: the number of points m at which the limits of integration must be specified.

VECREG must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D01GDF is called. Arguments denoted as Input must not be changed
by this procedure.

4: NPTS – INTEGER Input

On entry: the Korobov rule to be used. There are two alternatives depending on the value of
NPTS.

(i) 1 � NPTS � 6.

In this case one of six preset rules is chosen using 2129, 5003, 10007, 20011, 40009 or
80021 points depending on the respective value of NPTS being 1, 2, 3, 4, 5 or 6.

(ii) NPTS > 6.

NPTS is the number of actual points to be used with corresponding optimal coefficients
supplied in the array VK.

Constraint: NPTS � 1.

D01 – Quadrature D01GDF

Mark 26 D01GDF.3



5: VKðNDIMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if NPTS > 6, VK must contain the n optimal coefficients (which may be calculated
using D01GYF or D01GZF).

If NPTS � 6, VK need not be set.

On exit: if NPTS > 6, VK is unchanged.

If NPTS � 6, VK contains the n optimal coefficients used by the preset rule.

6: NRAND – INTEGER Input

On entry: the number of random samples to be generated (generally a small value, say 3 to 5, is
sufficient). The estimate, RES, of the value of the integral returned by the routine is then the
average of NRAND calculations with different random origin shifts. If NPTS > 6, the total
number of integrand evaluations will be NRAND� NPTS. If 1 � NPTS � 6, then the number of
integrand evaluations will be NRAND� p, where p is the number of points corresponding to the
six preset rules. For reasons of efficiency, these values are calculated a number at a time in
VECFUN.

Constraint: NRAND � 1.

7: ITRANS – INTEGER Input

On entry: indicates whether the periodising transformation is to be used.

ITRANS ¼ 0
The transformation is to be used.

ITRANS 6¼ 0
The transformation is to be suppressed (to cover cases where the integrand may already be
periodic or where you want to specify a particular transformation in the definition of
VECFUN).

Suggested value: ITRANS ¼ 0.

8: RES – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

9: ERR – REAL (KIND=nag_wp) Output

On exit: the standard error as computed from NRAND sample values. If NRAND ¼ 1, then ERR
contains zero.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1,
or NDIM > 20.

IFAIL ¼ 2

On entry, NPTS < 1.

IFAIL ¼ 3

On entry, NRAND < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If NRAND > 1, an estimate of the absolute standard error is given by the value, on exit, of ERR.

8 Parallelism and Performance

D01GDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

D01GDF performs the same computation as D01GCF. However, the interface has been modified so that
it can perform more efficiently on machines with vector processing capabilities. In particular, VECFUN
and VECREG must calculate the integrand and limits of integration at a set of points. For some
problems the amount of time spent in these two subroutines, which must be supplied by you, may
account for a significant part of the total computation time. For this reason it is vital that you consider
the possibilities for vectorization in the code supplied for these two subroutines.

The time taken will be approximately proportional to NRAND� p, where p is the number of points
used, but may depend significantly on the efficiency of the code provided by you in VECFUN and
VECREG.
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The exact values of RES and ERR on return will depend (within statistical limits) on the sequence of
random numbers generated within D01GDF by calls to G05SAF. Separate runs will produce identical
answers.

10 Example

This example calculates the integralZ 1

0

Z 1

0

Z 1

0

Z 1

0
cos 0:5þ 2 x1 þ x2 þ x3 þ x4ð Þ � 4ð Þ dx1 dx2 dx3 dx4:

10.1 Program Text

! D01GDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01gdfe_mod

! D01GDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: vecfun, vecreg

! .. Parameters ..
Integer, Parameter, Public :: ndim = 4, nout = 6

Contains
Subroutine vecfun(ndim,x,fv,m)

! .. Scalar Arguments ..
Integer, Intent (In) :: m, ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fv(m)
Real (Kind=nag_wp), Intent (In) :: x(m,ndim)

! .. Local Scalars ..
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: cos, real, sum

! .. Executable Statements ..
Do i = 1, m

fv(i) = cos(0.5E0_nag_wp+2.0E0_nag_wp*sum(x(i, &
1:ndim))-real(ndim,kind=nag_wp))

End Do

Return

End Subroutine vecfun
Subroutine vecreg(ndim,x,j,c,d,m)

! .. Scalar Arguments ..
Integer, Intent (In) :: j, m, ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(m), d(m)
Real (Kind=nag_wp), Intent (In) :: x(m,ndim)

! .. Executable Statements ..
c(1:m) = 0.0E0_nag_wp
d(1:m) = 1.0E0_nag_wp

Return

End Subroutine vecreg
End Module d01gdfe_mod
Program d01gdfe
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! D01GDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01gdf, nag_wp
Use d01gdfe_mod, Only: ndim, nout, vecfun, vecreg

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: err, res
Integer :: ifail, itrans, npts, nrand

! .. Local Arrays ..
Real (Kind=nag_wp) :: vk(ndim)

! .. Executable Statements ..
Write (nout,*) ’D01GDF Example Program Results’

npts = 2
itrans = 0
nrand = 4

ifail = 0
Call d01gdf(ndim,vecfun,vecreg,npts,vk,nrand,itrans,res,err,ifail)

Write (nout,*)
Write (nout,99999) ’Result = ’, res, ’, standard error = ’, err

99999 Format (1X,A,F13.5,A,E10.2)
End Program d01gdfe

10.2 Program Data

None.

10.3 Program Results

D01GDF Example Program Results

Result = 0.43999, standard error = 0.19E-05
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NAG Library Routine Document

D01GYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01GYF calculates the optimal coefficients for use by D01GCF and D01GDF, for prime numbers of
points.

2 Specification

SUBROUTINE D01GYF (NDIM, NPTS, VK, IFAIL)

INTEGER NDIM, NPTS, IFAIL
REAL (KIND=nag_wp) VK(NDIM)

3 Description

The Korobov (1963) procedure for calculating the optimal coefficients a1; a2; . . . ; an for p-point
integration over the n-cube 0; 1½ �n imposes the constraint that

a1 ¼ 1 and ai ¼ ai�1 mod pð Þ; i ¼ 1; 2; . . . ; n ð1Þ

where p is a prime number and a is an adjustable argument. This argument is computed to minimize the
error in the integral

3n
Z 1

0
dx1 � � �

Z 1

0
dxn
Yn
i¼1

1� 2xið Þ2; ð2Þ

when computed using the number theoretic rule, and the resulting coefficients can be shown to fit the
Korobov definition of optimality.

The computation for large values of p is extremely time consuming (the number of elementary
operations varying as p2) and there is a practical upper limit to the number of points that can be used.
Routine D01GZF is computationally more economical in this respect but the associated error is likely to
be larger.

4 References

Korobov N M (1963) Number Theoretic Methods in Approximate Analysis Fizmatgiz, Moscow

5 Arguments

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

Constraint: NDIM � 1.

2: NPTS – INTEGER Input

On entry: p, the number of points to be used.

Constraint: NPTS must be a prime number � 5.

3: VKðNDIMÞ – REAL (KIND=nag_wp) array Output

On exit: the n optimal coefficients.
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4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1.

IFAIL ¼ 2

On entry, NPTS < 5.

IFAIL ¼ 3

On entry, NPTS is not a prime number.

IFAIL ¼ 4

The precision of the machine is insufficient to perform the computation exactly. Try a smaller
value of NPTS, or use an implementation of higher precision.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The optimal coefficients are returned as exact integers (though stored in a real array).

8 Parallelism and Performance

D01GYF is not threaded in any implementation.
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9 Further Comments

The time taken is approximately proportional to p2 (see Section 3).

10 Example

This example calculates the Korobov optimal coefficients where the number of dimensions is 4 and the
number of points is 631.

10.1 Program Text

Program d01gyfe

! D01GYF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d01gyf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: ndim = 4, nout = 6

! .. Local Scalars ..
Integer :: ifail, npts

! .. Local Arrays ..
Real (Kind=nag_wp) :: vk(20)

! .. Executable Statements ..
Write (nout,*) ’D01GYF Example Program Results’

npts = 631

ifail = 0
Call d01gyf(ndim,npts,vk,ifail)

Write (nout,*)
Write (nout,99999) ’NDIM =’, ndim, ’ NPTS =’, npts
Write (nout,*)
Write (nout,99998) ’Coefficients =’, vk(1:ndim)

99999 Format (1X,A,I3,A,I6)
99998 Format (1X,A,4F6.0)

End Program d01gyfe

10.2 Program Data

None.

10.3 Program Results

D01GYF Example Program Results

NDIM = 4 NPTS = 631

Coefficients = 1. 198. 82. 461.
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NAG Library Routine Document

D01GZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01GZF calculates the optimal coefficients for use by D01GCF and D01GDF, when the number of
points is the product of two primes.

2 Specification

SUBROUTINE D01GZF (NDIM, NP1, NP2, VK, IFAIL)

INTEGER NDIM, NP1, NP2, IFAIL
REAL (KIND=nag_wp) VK(NDIM)

3 Description

Korobov (1963) gives a procedure for calculating optimal coefficients for p-point integration over the
n-cube 0; 1½ �n, when the number of points is

p ¼ p1p2 ð1Þ

where p1 and p2 are distinct prime numbers.

The advantage of this procedure is that if p1 is chosen to be the nearest prime integer to p22, then the
number of elementary operations required to compute the rule is of the order of p4=3 which grows less
rapidly than the number of operations required by D01GYF. The associated error is likely to be larger
although it may be the only practical alternative for high values of p.

4 References

Korobov N M (1963) Number Theoretic Methods in Approximate Analysis Fizmatgiz, Moscow

5 Arguments

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

Constraint: NDIM � 1.

2: NP1 – INTEGER Input

On entry: the larger prime factor p1 of the number of points in the integration rule.

Constraint: NP1 must be a prime number � 5.

3: NP2 – INTEGER Input

On entry: the smaller prime factor p2 of the number of points in the integration rule. For
maximum efficiency, p22 should be close to p1.

Constraint: NP2 must be a prime number such that NP1 > NP2 � 2.

4: VKðNDIMÞ – REAL (KIND=nag_wp) array Output

On exit: the n optimal coefficients.
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5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1.

IFAIL ¼ 2

On entry, NP1 < 5,
or NP2 < 2,
or NP1 � NP2.

IFAIL ¼ 3

The value NP1� NP2 exceeds the largest integer representable on the machine, and hence the
optimal coefficients could not be used in a valid call of D01GCF or D01GDF.

IFAIL ¼ 4

On entry, NP1 is not a prime number.

IFAIL ¼ 5

On entry, NP2 is not a prime number.

IFAIL ¼ 6

The precision of the machine is insufficient to perform the computation exactly. Try smaller
values of NP1 or NP2, or use an implementation with higher precision.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The optimal coefficients are returned as exact integers (though stored in a real array).

8 Parallelism and Performance

D01GZF is not threaded in any implementation.

9 Further Comments

The time taken by D01GZF grows at least as fast as p1p2ð Þ4=3. (See Section 3.)

10 Example

This example calculates the Korobov optimal coefficients where the number of dimensons is 4 and the
number of points is the product of the two prime numbers, 89 and 11.

10.1 Program Text

Program d01gzfe

! D01GZF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d01gzf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: ndim = 4, nout = 6

! .. Local Scalars ..
Integer :: ifail, np1, np2

! .. Local Arrays ..
Real (Kind=nag_wp) :: vk(ndim)

! .. Executable Statements ..
Write (nout,*) ’D01GZF Example Program Results’

np1 = 89
np2 = 11

ifail = 0
Call d01gzf(ndim,np1,np2,vk,ifail)

Write (nout,*)
Write (nout,99999) ’NDIM =’, ndim, ’ NP1 =’, np1, ’ NP2 =’, np2
Write (nout,*)
Write (nout,99998) ’Coefficients =’, vk(1:ndim)

99999 Format (1X,A,I3,A,I6,A,I6)
99998 Format (1X,A,4F6.0)

End Program d01gzfe

10.2 Program Data

None.
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10.3 Program Results

D01GZF Example Program Results

NDIM = 4 NP1 = 89 NP2 = 11

Coefficients = 1. 102. 614. 951.
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NAG Library Routine Document

D01JAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01JAF attempts to evaluate an integral over an n-dimensional sphere (n ¼ 2, 3, or 4), to a user-
specified absolute or relative accuracy, by means of a modified Sag–Szekeres method. The routine can
handle singularities on the surface or at the centre of the sphere, and returns an error estimate.

2 Specification

SUBROUTINE D01JAF (F, NDIM, RADIUS, EPSA, EPSR, METHOD, ICOORD, RESULT,
ESTERR, NEVALS, IFAIL)

&

INTEGER NDIM, METHOD, ICOORD, NEVALS, IFAIL
REAL (KIND=nag_wp) F, RADIUS, EPSA, EPSR, RESULT, ESTERR
EXTERNAL F

3 Description

D01JAF calculates an approximation to the n-dimensional integral

I ¼
Z
� � �
Z
S

F x1; . . . ; xnð Þ dx1 � � � dxn; 2 � n � 4;

where S is the hypersphere ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ � � � þ x2n
� �q

� � <1

(the integrand function may also be defined in spherical coordinates). The algorithm is based on the
Sag–Szekeres method (see Sag and Szekeres (1964)), applying the product trapezoidal formula after a
suitable radial transformation. An improved transformation technique is developed: depending on the
behaviour of the function and on the required accuracy, different transformations can be used, some of
which are ‘double exponential’, as defined by Takahasi and Mori (1974). The resulting technique allows
the routine to deal with integrand singularities on the surface or at the centre of the sphere. When the
estimated error of the approximation with mesh size h is larger than the tolerated error, the trapezoidal
formula with mesh size h=2 is calculated. A drawback of this method is the exponential growth of the
number of function evaluations in the successive approximations (this number grows with a factor
� 2n). This introduces the restriction n � 4. Because the convergence rate of the successive
approximations is normally better than linear, the error estimate is based on the linear extrapolation of
the difference between the successive approximations (see Robinson and de Doncker (1981) and Roose
and de Doncker (1981)). For further details of the algorithm, see Roose and de Doncker (1981).

4 References

Robinson I and de Doncker E (1981) Automatic computation of improper integrals over a bounded or
unbounded planar region Computing 27 89–284

Roose D and de Doncker E (1981) Automatic integration over a sphere J. Comput. Appl. Math. 7 203–
224

Sag T W and Szekeres G (1964) Numerical evaluation of high-dimensional integrals Math. Comput. 18
245–253

Takahasi H and Mori M (1974) Double Exponential Formulas for Numerical Integration 9 Publ. RIMS,
Kyoto University 721–741
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5 Arguments

1: F – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

The specification of F is:

FUNCTION F (NDIM, X)
REAL (KIND=nag_wp) F

INTEGER NDIM
REAL (KIND=nag_wp) X(NDIM)

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

2: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the point at which the integrand f must be evaluated.
These coordinates are given in Cartesian or spherical polar form according to the value
of ICOORD.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01JAF is called. Arguments denoted as Input must not be changed by this
procedure.

See also Section 9.

2: NDIM – INTEGER Input

On entry: n, the dimension of the sphere.

Constraint: 2 � NDIM � 4.

3: RADIUS – REAL (KIND=nag_wp) Input

On entry: �, the radius of the sphere.

Constraint: RADIUS � 0:0.

4: EPSA – REAL (KIND=nag_wp) Input

On entry: the requested absolute tolerance. If EPSA < 0:0, its absolute value is used. See
Section 7.

5: EPSR – REAL (KIND=nag_wp) Input

On entry: the requested relative tolerance.

EPSR < 0:0
Its absolute value is used.

EPSR < 10� machine precisionð Þ
The latter value is used as EPSR by the routine. See Section 7.

6: METHOD – INTEGER Input

On entry: must specify the transformation to be used by the routine. The choice depends on the
behaviour of the integrand and on the required accuracy.

For well-behaved functions and functions with mild singularities on the surface of the sphere
only:

METHOD ¼ 1
Low accuracy required.
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METHOD ¼ 2
High accuracy required.

For functions with severe singularities on the surface of the sphere only:

METHOD ¼ 3
Low accuracy required.

METHOD ¼ 4
High accuracy required.

(in this case ICOORD must be set to ICOORD ¼ 2, and the function defined in special spherical
coordinates).

For functions with a singularity at the centre of the sphere (and possibly with singularities on the
surface as well):

METHOD ¼ 5
Low accuracy required.

METHOD ¼ 6
High accuracy required.

METHOD ¼ 0 can be used as a default value and is equivalent to:

METHOD ¼ 1 if EPSR > 10�6, and

METHOD ¼ 2 if EPSR � 10�6.

The distinction between low and high required accuracies, as mentioned above, depends also on
the behaviour of the function. Roughly one may assume the critical value of EPSA and EPSR to
be 10�6, but the critical value will be smaller for a well-behaved integrand and larger for an
integrand with severe singularities.

Suggested value: METHOD ¼ 0.

Constraint: METHOD ¼ 0, 1, 2, 3, 4, 5 or 6.

If ICOORD ¼ 2, METHOD ¼ 3 or 4

7: ICOORD – INTEGER Input

On entry: must specify which kind of coordinates are used in F.

ICOORD ¼ 0
Cartesian coordinates xi, for i ¼ 1; 2; . . . ; n.

ICOORD ¼ 1
Spherical coordinates (see Section 9.2): Xð1Þ ¼ �; XðiÞ ¼ �i�1, for i ¼ 2; 3; . . . ; n.

ICOORD ¼ 2,
Special spherical polar coordinates (see Section 9.3), with the additional transformation
� ¼ �� �: Xð1Þ ¼ � ¼ �� �; XðiÞ ¼ �i�1, for i ¼ 2; 3; . . . ; n.

Constraint: ICOORD ¼ 0, 1 or 2.

If METHOD ¼ 3 or 4, ICOORD ¼ 2

8: RESULT – REAL (KIND=nag_wp) Output

On exit: the approximation to the integral I.

9: ESTERR – REAL (KIND=nag_wp) Output

On exit: an estimate of the modulus of the absolute error.

10: NEVALS – INTEGER Output

On exit: the number of function evaluations used.
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11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01JAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The required accuracy cannot be achieved within a limiting number of function evaluations
(which is set by the routine).

IFAIL ¼ 2

The required accuracy cannot be achieved because of round-off error.

IFAIL ¼ 3

The required accuracy cannot be achieved because the maximum accuracy with respect to the
machine constants X02AJF and X02AMF has been attained. If this maximum accuracy is rather
low (compared with X02AJF), the cause of the problem is a severe singularity on the boundary
or at the centre of the sphere. If METHOD ¼ 0, 1 or 2, then setting METHOD ¼ 3 or 4 may
help.

IFAIL ¼ 4

On entry, NDIM < 2 or NDIM > 4,
or RADIUS < 0:0,
or METHOD 6¼ 0, 1, 2, 3, 4, 5 or 6,
or ICOORD 6¼ 0, 1 or 2,
or ICOORD ¼ 2 and METHOD 6¼ 3 or 4,
or METHOD ¼ 3 or 4 and ICOORD 6¼ 2.

No calculations have been performed. RESULT and ESTERR are set to 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

You can specify an absolute and/or a relative tolerance, setting EPSA and EPSR. The routine attempts
to calculate an approximation RESULT such that

I � RESULTj j � max EPSA;EPSR � Ij jf g:
If 0 � IFAIL � 3, ESTERR returns an estimate of, but not necessarily a bound for, I � RESULTj j.

8 Parallelism and Performance

D01JAF is not threaded in any implementation.

9 Further Comments

9.1 Timing

Timing depends on the integrand and the accuracy required.

9.2 Spherical Polar Coordinates

Cartesian coordinates are related to the spherical polar coordinates by:

x1 ¼ �: sin �1 � � � sin �n�2: sin �n�1
x2 ¼ �: sin �1 � � � sin �n�2: cos �n�1
x3 ¼ �: sin �1 � � � cos �n�2
..
.

xn ¼ �: cos �1

where 0 < �i < 	, for i ¼ 1; 2; . . . ; n� 2 and 0 < �n�1 < 2	.

9.3 Machine Dependencies

As a consequence of the transformation technique, the severity of the singularities which can be
handled by D01JAF depends on the precision and range of real numbers on the machine.
METHOD ¼ 3 or 4 must be used when the singularity on the surface is ‘severe’ in view of the
requested accuracy and machine precision. In practice one has to set METHOD ¼ 3 or 4 if D01JAF
terminates with IFAIL ¼ 3 when called with METHOD ¼ 0, 1 or 2.

When integrating a function with a severe singular behaviour on the surface of the sphere, the
additional transformation � ¼ �� � helps to avoid the loss of significant figures due to round-off error
in the calculation of the integration nodes which are very close to the surface. For these points, the
value of � can be computed more accurately than the value of �. Naturally, care must be taken that the
function subprogram does not contain expressions of the form �� �, which could cause a large round-
off error in the calculation of the integrand at the boundary of the sphere.

Care should be taken to avoid underflow and/or overflow problems in the function subprogram, because
some of the integration nodes used by D01JAF may be very close to the surface or to the centre of the
sphere.

Example:

suppose the function

f �ð Þ ¼ 1� �2
� ��0:7

D01 – Quadrature D01JAF

Mark 26 D01JAF.5



is to be integrated over the unit sphere, with METHOD ¼ 3 or 4. Then ICOORD should be set to

2; the transformation � ¼ 1� � gives f �ð Þ ¼ 2�� �2
� ��0:7

; and F could be coded thus:

F = 1.0
A = X(1)
IF (A.GT.0.0) F = 1.0/(A*(2.0-A))**0.7
RETURN

Note that D01JAF ensures that � ¼ Xð1Þ > X02AMF, but underflow could occur in the computation of
�2.

10 Example

This example evaluates the integrals Z
� � �
Z
S

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p dx1 � � � dxn

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
x2i

s
, and S is the unit sphere of dimension n ¼ 2 or 4.

The exact values (to 12 decimal places) are 6:28318530718 and 13:1594725348.

10.1 Program Text

! D01JAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01jafe_mod

! D01JAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Function f(ndim,x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Integer, Intent (In) :: ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(ndim)

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, rho

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
rho = x(1)
a = (1.0E0_nag_wp-rho)*(1.0E0_nag_wp+rho)

If (a/=0.0E0_nag_wp) Then
f = 1.0E0_nag_wp/sqrt(a)

Else
f = 0.0E0_nag_wp

End If

Return
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End Function f
End Module d01jafe_mod
Program d01jafe

! D01JAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01jaf, nag_wp
Use d01jafe_mod, Only: f, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: epsa, epsr, esterr, radius, relest, &

result
Integer :: icoord, ifail, method, ndim, nevals

! .. Executable Statements ..
Write (nout,*) ’D01JAF Example Program Results’

radius = 1.0E0_nag_wp
method = 0
icoord = 1
epsa = 0.0E0_nag_wp
epsr = 0.5E-4_nag_wp

test: Do ndim = 2, 4, 2

ifail = -1
Call d01jaf(f,ndim,radius,epsa,epsr,method,icoord,result,esterr, &

nevals,ifail)

Select Case (ifail)
Case (:-1)

Exit test
Case (0:3)

relest = esterr/result
Write (nout,*)
Write (nout,99999) ’Dimension of the sphere =’, ndim
Write (nout,99998) ’Requested relative tolerance =’, epsr
Write (nout,99997) ’Approximation to the integral =’, result
Write (nout,99999) ’No. of function evaluations =’, nevals
Write (nout,99998) ’Estimated relative error =’, relest

End Select

End Do test

99999 Format (1X,A,I5)
99998 Format (1X,A,E9.2)
99997 Format (1X,A,F9.5)

End Program d01jafe

10.2 Program Data

None.

10.3 Program Results

D01JAF Example Program Results

Dimension of the sphere = 2
Requested relative tolerance = 0.50E-04
Approximation to the integral = 6.28319
No. of function evaluations = 193
Estimated relative error = 0.31E-04
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Dimension of the sphere = 4
Requested relative tolerance = 0.50E-04
Approximation to the integral = 13.16004
No. of function evaluations = 2873
Estimated relative error = 0.40E-04
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NAG Library Routine Document

D01PAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01PAF returns a sequence of approximations to the integral of a function over a multidimensional
simplex, together with an error estimate for the last approximation.

2 Specification

SUBROUTINE D01PAF (NDIM, VERT, LDVERT, SDVERT, FUNCTN, MINORD, MAXORD,
FINVLS, ESTERR, IFAIL)

&

INTEGER NDIM, LDVERT, SDVERT, MINORD, MAXORD, IFAIL
REAL (KIND=nag_wp) VERT(LDVERT,SDVERT), FUNCTN, FINVLS(MAXORD), ESTERR
EXTERNAL FUNCTN

3 Description

D01PAF computes a sequence of approximations FINVLSðjÞ, for j ¼ MINORDþ 1; . . . ;MAXORD, to
an integral Z

S

f x1; x2; . . . ; xnð Þ dx1dx2 � � � dxn

where S is an n-dimensional simplex defined in terms of its nþ 1 vertices. FINVLSðjÞ is an
approximation which will be exact (except for rounding errors) whenever the integrand is a polynomial
of total degree 2j� 1 or less.

The type of method used has been described in Grundmann and Moller (1978), and is implemented in
an extrapolated form using the theory from de Doncker (1979).

4 References

de Doncker E (1979) New Euler–Maclaurin Expansions and their application to quadrature over the
s-dimensional simplex Math. Comput. 33 1003–1018

Grundmann A and Moller H M (1978) Invariant integration formulas for the n-simplex by
combinatorial methods SIAM J. Numer. Anal. 15 282–290

5 Arguments

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

Constraint: NDIM � 2.

2: VERTðLDVERT; SDVERTÞ – REAL (KIND=nag_wp) array Input/Output

On entry: VERTði; jÞ must be set to the jth component of the ith vertex for the simplex
integration region, for i ¼ 1; 2; . . . ; nþ 1 and j ¼ 1; 2; . . . ; n. If MINORD > 0, VERT must be
unchanged since the previous call of D01PAF.

On exit: these values are unchanged. The rest of the array VERT is used for workspace and
contains information to be used if another call of D01PAF is made with MINORD > 0. In
particular VERTðnþ 1; 2nþ 2Þ contains the volume of the simplex.
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3: LDVERT – INTEGER Input

On entry: the first dimension of the array VERT as declared in the (sub)program from which
D01PAF is called.

Constraint: LDVERT � NDIMþ 1.

4: SDVERT – INTEGER Input

On entry: the second dimension of the array VERT as declared in the (sub)program from which
D01PAF is called.

Constraint: SDVERT � 2� NDIMþ 1ð Þ.

5: FUNCTN – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

FUNCTN must return the value of the integrand f at a given point.

The specification of FUNCTN is:

FUNCTION FUNCTN (NDIM, X)
REAL (KIND=nag_wp) FUNCTN

INTEGER NDIM
REAL (KIND=nag_wp) X(NDIM)

1: NDIM – INTEGER Input

On entry: n, the number of dimensions of the integral.

2: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the point at which the integrand f must be evaluated.

FUNCTN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D01PAF is called. Arguments denoted as Input must not be changed
by this procedure.

6: MINORD – INTEGER Input/Output

On entry: must specify the highest order of the approximations currently available in the array
FINVLS. MINORD ¼ 0 indica tes an in i t i a l ca l l ; MINORD > 0 ind ica tes tha t
FINVLSð1Þ; FINVLSð2Þ; . . . ; FINVLSðMINORDÞ have already been computed in a previous
call of D01PAF.

Constraint: MINORD � 0.

On exit: MINORD ¼ MAXORD.

7: MAXORD – INTEGER Input

On entry: the highest order of approximation to the integral to be computed.

Constraint: MAXORD > MINORD.

8: FINVLSðMAXORDÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MINORD > 0, FINVLSð1Þ; FINVLSð2Þ; . . . ; FINVLSðMINORDÞ must contain
approximations to the integral previously computed by D01PAF.

On exit : contains these values unchanged, and the newly computed values
FINVLSðMINORD þ 1Þ; FINVLSðMINORDþ 2Þ; . . . ; FINVLSðMAXORDÞ. FINVLSðjÞ is an
approximation to the integral of polynomial degree 2j� 1.

9: ESTERR – REAL (KIND=nag_wp) Output

On exit: an absolute error estimate for FINVLSðMAXORDÞ.
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10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDVERT ¼ valueh i and NDIM ¼ valueh i.
Constraint: LDVERT � NDIMþ 1.

On entry, MAXORD ¼ valueh i and MINORD ¼ valueh i.
Constraint: MAXORD > MINORD.

On entry, MINORD ¼ valueh i.
Constraint: MINORD � 0.

On entry, NDIM ¼ valueh i.
Constraint: NDIM � 2.

On entry, SDVERT ¼ valueh i and NDIM ¼ valueh i.
Constraint: SDVERT � 2� NDIMþ 1ð Þ.

IFAIL ¼ 2

The volume of the simplex integration region is too large or too small to be represented on the
machine.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

An absolute error estimate is output through the argument ESTERR.

D01 – Quadrature D01PAF

Mark 26 D01PAF.3



8 Parallelism and Performance

D01PAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D01PAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The running time for D01PAF will usually be dominated by the time used to evaluate the integrand
FUNCTN. The maximum time that could be used by D01PAF will be approximately given by

T � MAXORDþ NDIMð Þ!
MAXORD� 1ð Þ! NDIMþ 1ð Þ!

where T is the time needed for one call of FUNCTN.

10 Example

This example demonstrates the use of the subroutine with the integralZ 1

0

Z 1�x

0

Z 1�x�y

0
exp xþ yþ zð Þ cos xþ yþ zð Þ dz dy dx ¼ 1

4:

10.1 Program Text

! D01PAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01pafe_mod

! D01PAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: functn

! .. Parameters ..
Integer, Parameter, Public :: mxord = 5, ndim = 3, nout = 6
Integer, Parameter, Public :: sdvert = 2*(ndim+1)
Integer, Parameter, Public :: ldvert = ndim + 1

Contains
Function functn(ndim,x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: functn

! .. Scalar Arguments ..
Integer, Intent (In) :: ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(ndim)

! .. Intrinsic Procedures ..
Intrinsic :: cos, exp

! .. Executable Statements ..
functn = exp(x(1)+x(2)+x(3))*cos(x(1)+x(2)+x(3))

Return
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End Function functn
End Module d01pafe_mod
Program d01pafe

! D01PAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01paf, nag_wp
Use d01pafe_mod, Only: functn, ldvert, mxord, ndim, nout, sdvert

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: esterr
Integer :: ifail, j, maxord, minord, nevals

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: finvls(:), vert(:,:)

! .. Executable Statements ..
Write (nout,*) ’D01PAF Example Program Results’

Allocate (finvls(mxord),vert(ldvert,sdvert))

vert(1:ldvert,1:ndim) = 0.0_nag_wp
Do j = 2, ldvert

vert(j,j-1) = 1.0_nag_wp
End Do

minord = 0
nevals = 1

Do maxord = 1, mxord

ifail = 0
Call d01paf(ndim,vert,ldvert,sdvert,functn,minord,maxord,finvls, &

esterr,ifail)

If (maxord==1) Then
Write (nout,99999)

End If
Write (nout,99998) maxord, finvls(maxord), esterr, nevals

nevals = (nevals*(maxord+ndim+1))/maxord
End Do

99999 Format (/,1X,’MAXORD Estimated Estimated Integrand’,/,1X, &
’ value accuracy evaluations’)

99998 Format (1X,I4,F13.5,E16.3,I15)
End Program d01pafe

10.2 Program Data

None.

10.3 Program Results

D01PAF Example Program Results

MAXORD Estimated Estimated Integrand
value accuracy evaluations

1 0.25816 0.258E+00 1
2 0.25011 0.806E-02 5
3 0.25000 0.107E-03 15
4 0.25000 0.410E-06 35
5 0.25000 0.173E-08 70
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NAG Library Routine Document

D01RAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the specification of the optional parameters.

1 Purpose

D01RAF is a general purpose adaptive integrator which calculates an approximation to a vector of
definite integrals F over a finite range a; b½ �, given the vector of integrands f xð Þ.

F ¼
Z b

a

f xð Þdx

If the same subdivisions of the range are equally good for functions f1 xð Þ and f2 xð Þ, because f1 xð Þ and
f2 xð Þ have common areas of the range where they vary slowly and where they vary quickly, then we
say that f1 xð Þ and f2 xð Þ are ‘similar’. D01RAF is particularly effective for the integration of a vector of
similar functions.

2 Specification

SUBROUTINE D01RAF (IREVCM, NI, A, B, SID, NEEDI, X, LENX, NX, FM, LDFM,
DINEST, ERREST, IOPTS, OPTS, ICOM, LICOM, COM, LCOM,
IFAIL)

&
&

INTEGER IREVCM, NI, SID, NEEDI(NI), LENX, NX, LDFM,
IOPTS(100), ICOM(LICOM), LICOM, LCOM, IFAIL

&

REAL (KIND=nag_wp) A, B, X(LENX), FM(LDFM,*), DINEST(NI), ERREST(NI),
OPTS(100), COM(LCOM)

&

3 Description

D01RAF is an extension to various QUADPACK routines, including QAG, QAGS and QAGP. The
extensions made allow multiple integrands to be evaluated simultaneously, using a vectorized interface
and reverse communication.

The quadrature scheme employed by D01RAF can be chosen by you. Six Gauss–Kronrod schemes are
available. The algorithm incorporates a global acceptance criterion (as defined by Malcolm and
Simpson (1976)), optionally together with the �-algorithm (see Wynn (1956)) to perform extrapolation.
The local error estimation is described in Piessens et al. (1983).

D01RAF is the integration routine in the suite of routines D01RAF and D01RCF. It also uses optional
parameters, which can be set and queried using the routines D01ZKF and D01ZLF respectively. The
options available are described in Section 11.

First, the option arrays IOPTS and OPTS must be initialized using D01ZKF. Thereafter any required
options must be set before calling D01RAF, or the routine D01RCF.

A typical usage of this suite of routines is (in pseudo-code for clarity),

Setup phase

liopts = 100
lopts = 100
allocate(iopts(liopts),opts(lopts))
call D01ZKF(’initialize = d01raf’,iopts,liopts,opts,lopts,ifail)
call D01ZKF(’option = value’,iopts,liopts,opts,lopts,ifail)
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...
call D01RCF(ni,lenxrq,ldfmrq,sdfmrq,licmin,licmax,lcmin,lcmax, &

iopts,opts,ifail)
lenx = lenxrq
ldfm = ldfmrq
sdfm = sdfmrq
licom = licmax
lcom = lcmax
allocate(icom(licom),com(lcom),x(lenx),fm(ldfm,sdfm),needi(ni), &

dinest(ni),errest(ni))

Solve phase

irevcm = 1
while irevcm 6¼0

call D01RAF(irevcm,ni,a,b,sid,needi,x,lenx,nx,fm,ldfm, &
dinest,errest,iopts,opts,icom,licom,com, &
lcom,ifail)

select case(irevcm)
case(11)

Initial solve phase
evaluate fm(1:ni,1:nx)

case(12)
Adaptive solve phase
evaluate fm(needi(1:ni)=1,1:nx)

case(0)
investigate ifail

end select
end while

Diagnostic phase

call D01ZLF(’option’,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)
...

During the initial solve phase, the first estimation of the definite integral and error estimate is
constructed over the interval a; b½ �. This will have been divided into spri level 1 segments, where spri is
the number of Primary Divis ions , and wi l l use any provided break-points i f
Primary Division Mode ¼ MANUAL.

Once a complete integral estimate over a; b½ � is available, i.e., after all the estimates for the level 1
segments have been evaluated, the routine enters the adaptive phase. The estimated errors are tested
against the requested tolerances �a and �r, corresponding to the Absolute Tolerance and Relative
Tolerance respectively. Should this test fail, and additional subdivision be allowed, a segment is
selected for subdivision, and is subsequently replaced by two new segments at the next level of
refinement. How this segment is chosen may be altered by setting Prioritize Error to either favour the
segment with the maximum error, or the segment with the lowest level supporting an unacceptable
(although potentially non-maximal) error. Up to max sdiv subdivisions are allowed if sufficient memory
is provided, where max sdiv is the value of Maximum Subdivisions.

Once a sufficient number of error estimates have been constructed for a particular integral, the routine
may optionally use Extrapolation to attempt to accelerate convergence. This may significantly lower
the amount of work required for a given integration. To minimize the risk of premature convergence
from extrapolation, a safeguard �safe can be set using Extrapolation Safeguard, and the extrapolated
solution will only be considered if �safe�q � �ex , where �q and �ex are the estimated error directly from
the quadrature and from the extrapolation respectively. If extrapolation is successful for the computation
of integral j, the extrapolated solution will be returned in DINESTðjÞ on completion of D01RAF.
Otherwise the direct solution will be returned in DINESTðjÞ. This is indicated by the value of
NEEDIðjÞ on completion.
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5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than IREVCM, NEEDI and FM must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: IREVCM ¼ 1.

IREVCM ¼ 1
Sets up data structures in ICOM and COM and starts a new integration.

Constraint: IREVCM ¼ 1 on initial entry.

On intermediate exit: IREVCM ¼ 11 or 12.

IREVCM requests the integrands fj xið Þ be evaluated for all required j 2 1; . . . ; ni as indicated by
NEEDI, and at all the points xi, for i ¼ 1; 2; . . . ; nx. Abscissae xi are provided in XðiÞ and fj xið Þ
must be returned in FMðj; iÞ.
During the initial solve phase:

IREVCM ¼ 11
Function values are required to construct the initial estimates of the definite integrals.

If NEEDIðjÞ ¼ 1, fj xið Þ must be supplied in FMðj; iÞ. This will be the case unless you have
abandoned the evaluation of specific integrals on a previous call.

If NEEDIðjÞ ¼ 0, you have previously abandoned the evaluation of integral j, and hence should
not supply the value of fj xið Þ.
DINEST and ERREST contain incomplete information during this phase. As such you should not
abandon the evaluation of any integrals during this phase unless you do not require their
estimate.

If IREVCM is set to a negative value during this phase, NEEDIðjÞ, for j ¼ 1; 2; . . . ; ni, will be
set to this negative value and IFAIL ¼ �1 will be returned.

During the adaptive solve phase:

IREVCM ¼ 12
Function values are required to improve the estimates of the definite integrals.

If NEEDIðjÞ ¼ 0, any evaluation of fj xið Þ will be discarded, so there is no need to provide them.

If NEEDIðjÞ ¼ 1, fj xið Þ must be provided in FMðj; iÞ.
If NEEDIðjÞ ¼ 2, 3 or 4, the current error estimate of integral j does not require integrand j to be
evaluated and provided in FMðj; iÞ. Should you choose to, integrand j can be evaluated in which
case NEEDIðjÞ must be set to 1.

DINEST and ERREST contain complete information during this phase.

If IREVCM is set to a negative value during this phase IFAIL ¼ 1, 2 or 3 will be returned and
the elements of NEEDI will reflect the current state of the adaptive process.
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On intermediate re-entry: IREVCM should normally be left unchanged. However, if IREVCM is
set to a negative value, D01RAF will terminate, (see IREVCM ¼ 11 and IREVCM ¼ 12 above).

On final exit: IREVCM ¼ 0.

IREVCM ¼ 0
Indicates the algorithm has completed.

2: NI – INTEGER Input

On entry: ni, the number of integrands.

3: A – REAL (KIND=nag_wp) Input

On entry: a, the lower bound of the domain.

4: B – REAL (KIND=nag_wp) Input

On entry: b, the upper bound of the domain.

If b� aj j < 10�, where � is the machine precision (see X02AJF), then D01RAF will return
DINESTðjÞ ¼ ERRESTðjÞ ¼ 0:0, for j ¼ 1; 2; . . . ; ni.

5: SID – INTEGER Output

For advanced users.

On intermediate exit: SID identifies a specific set of abscissae, x, returned during the integration
process. When a new set of abscissae are generated the value of SID is incremented by 1.
Advanced users may store calculations required for an identified set x, and reuse them should
D01RAF return the same value of SID, i.e., the same set of abscissae was used.

6: NEEDIðNIÞ – INTEGER array Input/Output

On initial entry: need not be set.

On intermediate exit: NEEDIðjÞ indicates what action must be taken for integral j ¼ 1; 2; . . .ni
(see IREVCM).

NEEDIðjÞ ¼ 0
Do not provide fj xið Þ. Any provided values will be ignored.

NEEDIðjÞ ¼ 1
The values fj xið Þ must be provided in FMðj; iÞ, for i ¼ 1; 2; . . . ; nx.

NEEDIðjÞ ¼ 2
The values fj xið Þ are not required, however the error estimate for integral j is still above
the requested tolerance. If you wish to provide values for the evaluation of integral j, set
NEEDIðjÞ ¼ 1, and supply fj xið Þ in FMðj; iÞ, for i ¼ 1; 2; . . . ; nx.

NEEDIðjÞ ¼ 3
The error estimate for integral j cannot be improved to below the requested tolerance
directly, either because no more new splits may be performed due to exhaustion, or due to
the detection of extremely bad integrand behaviour. However, providing the values fj xið Þ
may still lead to some improvement, and may lead to an acceptable error estimate
indirectly using Wynn's epsilon algorithm. If you wish to provide values for the evaluation
of integral j, set NEEDIðjÞ ¼ 1, and supply fj xið Þ in FMðj; iÞ, for i ¼ 1; 2; . . . ; nx.

NEEDIðjÞ ¼ 4
The error estimate of integral j is below the requested tolerance. If you believe this to be
false, if for example the result in DINESTðjÞ is greatly different to what you may expect,
you may force the algorithm to re-evaluate this conclusion by including the evaluations of
integrand j at xi, for i ¼ 1; 2; . . . ; nx, and setting NEEDIðjÞ ¼ 1. Integral and error
estimation will be performed again during the next iteration.
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On intermediate re-entry: NEEDIðjÞ may be used to indicate what action you have taken for
integral j.

NEEDIðjÞ ¼ 1
You have provided the values fj xið Þ in FMðj; iÞ, for i ¼ 1; 2; . . . ; nx.

NEEDIðjÞ < 0
You are abandoning the evaluation of integral j. The current values of DINESTðjÞ and
ERRESTðjÞ will be returned on final completion.

Otherwise you have not provided the value fj xið Þ.
On final exit: NEEDIðjÞ indicates the final state of integral j.

NEEDIðjÞ ¼ 0
The error estimate for Fj is below the requested tolerance.

NEEDIðjÞ ¼ 1
The error estimate for Fj is below the requested tolerance after extrapolation.

NEEDIðjÞ ¼ 2
The error estimate for Fj is above the requested tolerance.

NEEDIðjÞ ¼ 3
The error estimate for Fj is above the requested tolerance, and extremely bad behaviour of
integral j has been detected.

NEEDIðjÞ < 0
You prohibited further evaluation of integral j.

7: XðLENXÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: if Primary Division Mode ¼ AUTOMATIC, X need not be set. This is the
default behaviour.

If Primary Division Mode ¼ MANUAL, X is used to supply a set of initial ‘break-points’ inside
the domain of integration. Specifically, XðiÞ must contain a break-point x0i , for
i ¼ 1; 2; . . . ; spri � 1

� �
, where spri is the number of Primary Divisions.

Constraint: if break-points are supplied, x0i 2 a; bð Þ, x0i � a
		 		 > 10:0�, x0i � b

		 		 > 10:0�, for
i ¼ 1; 2; . . . ; spri � 1

� �
.

On intermediate exit: XðiÞ is the abscissa xi, for i ¼ 1; 2; . . . ; nx, at which the appropriate
integrals must be evaluated.

8: LENX – INTEGER Input

On entry: the dimension of the array X as declared in the (sub)program from which D01RAF is
called. Currently LENX ¼ max 122; spri � 1

� �
will be sufficient for all cases.

Constraint: LENX � lenxrq, where lenxrq is dependent upon the options currently set (see
Section 11). lenxrq is returned as LENXRQ from D01RCF.

9: NX – INTEGER Input/Output

On initial entry: need not be set.

On intermediate exit: nx, the number of abscissae at which integrands are required.

On intermediate re-entry: must not be changed.
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10: FMðLDFM; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array FM must be at least sdfmrq, where sdfmrq is dependent
upon ni and the options currently set. sdfmrq is returned as SDFMRQ from D01RCF. If default
options are chosen, sdfmrq ¼ lenxrq.

On initial entry: need not be set.

On intermediate re-entry: if indicated by NEEDIðjÞ you must supply the values fj xið Þ in
FMðj; iÞ, for i ¼ 1; 2; . . . ; nx and j ¼ 1; 2; . . . ; ni.

11: LDFM – INTEGER Input

On entry: the first dimension of the array FM as declared in the (sub)program from which
D01RAF is called.

Constraint: LDFM � ldfmrq, where ldfmrq is dependent upon ni and the options currently set.
ldfmrq is returned as LDFMRQ from D01RCF. If default options are chosen, ldfmrq ¼ ni,
implying LDFM � NI.

12: DINESTðNIÞ – REAL (KIND=nag_wp) array Input/Output

DINESTðjÞ contains the current estimate of the definite integral Fj.

On initial entry: need not be set.

On intermediate re-entry: must not be altered.

On exit: contains the current estimates of the NI integrals. If IREVCM ¼ 0, this will be the final
solution.

13: ERRESTðNIÞ – REAL (KIND=nag_wp) array Input/Output

ERRESTðjÞ contains the current error estimate of the definite integral Fj.

On initial entry: need not be set.

On intermediate re-entry: must not be altered.

On exit: contains the current error estimates for the NI integrals. If IREVCM ¼ 0, ERREST
contains the final error estimates of the NI integrals.

14: IOPTSð100Þ – INTEGER array Communication Array
15: OPTSð100Þ – REAL (KIND=nag_wp) array Communication Array

The arrays IOPTS and OPTS must not be altered between calls to any of the routines D01RAF,
D01RCF, D01ZKF and D01ZLF.

16: ICOMðLICOMÞ – INTEGER array Communication Array

ICOM contains details of the integration procedure, including information on the integration of
the ni integrals over individual segments. This data is stored sequentially in the order that
segments are created. For further information see Section 9.1.

17: LICOM – INTEGER Input

On entry: the dimension of the array ICOM.

Constraint: LICOM � licmin, where licmin is dependent upon NI and the current options set.
licmin is returned as LICMIN from D01RCF. If the default options are set, then
licmin ¼ 55þ 6� NI. Larger values than licmin are recommended if you anticipate that any
integrals will require the domain to be further subdivided.

The maximum value that may be required, licmax, is returned as LICMAX from D01RCF. If
default options are chosen, except for possibly increasing the value of spri, then
licmax ¼ 50þ 5� NIþ spri þ 100

� �
� 5þ NIð Þ.
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18: COMðLCOMÞ – REAL (KIND=nag_wp) array Communication Array

COM contains details of the integration procedure, including information on the integration of
the ni integrals over individual segments. This data is stored sequentially in the order that
segments are created. For further information see Section 9.1.

19: LCOM – INTEGER Input

On entry: the dimension of the array COM.

Constraint: LCOM > lcmin, where lcmin is dependent upon NI, spri and the current options set.
lcmin is returned as LCMIN from D01RCF. If default options are set, then
lcmin ¼ 96þ 12� NI. Larger values are recommended if you anticipate that any integrals will
require the domain to be further subdivided.

Given the current options and arguments, the maximum value, lcmax, of LCOM that may be
required, is returned as LCMAX from D01RCF. If default options are chosen,
lcmax ¼ 94þ 9� NIþ NI=2d e þ spri þ 100

� �
� 2þ NI=2d e þ 2� NIð Þ.

20: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01RAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

At least one error estimate exceeded the requested tolerances.

IFAIL ¼ 2

Extremely bad behaviour was detected for at least one integral.

IFAIL ¼ 3

Extremely bad behaviour was detected for at least one integral. At least one other integral error
estimate was above the requested tolerance.

IFAIL ¼ 11

IREVCM had an illegal value.
On entry, IREVCM ¼ valueh i.

IFAIL ¼ 21

On entry, NI ¼ valueh i.
Constraint: NI � 1.
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IFAIL ¼ 71

On entry, Primary Division Mode ¼ MANUAL and at least one supplied break-point in X is
outside of the domain of integration.

IFAIL ¼ 81

LENX is insufficient for the chosen options.
On entry, LENX ¼ valueh i.
Constraint: LENX � valueh i.

IFAIL ¼ 111

LDFM < ldfmrq. If default options are chosen, this implies LDFM < NI.
On entry, LDFM ¼ valueh i.
Constraint: LDFM � valueh i.

IFAIL ¼ 171

LICOM is insufficient for additional subdivision.
On entry, LICOM ¼ valueh i.
Constraint: LICOM � valueh i.

IFAIL ¼ 191

LCOM is insufficient for additional subdivision.
On entry, LCOM ¼ valueh i.
Constraint: LCOM � valueh i.

IFAIL ¼ 1001

Either the option arrays IOPTS and OPTS have not been initialized for D01RAF, or they have
become corrupted.

IFAIL ¼ 1101

On entry, one of ICOM and COM has become corrupted.

IFAIL ¼ �1
Evaluation of all integrals has been stopped during the initial phase.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

D01RAF NAG Library Manual

D01RAF.8 Mark 26



7 Accuracy

D01RAF cannot guarantee, but in practice usually achieves, the following accuracy for each integral Fj:

Fj � DINESTðjÞ
		 		 � tol

where

tol ¼ max �a; �r � Fj
		 		� �

�a and �r are the error tolerances Absolute Tolerance and Relative Tolerance respectively. Moreover, it
returns ERREST, the entries of which in normal circumstances satisfy,

Fj � DINESTðjÞ
		 		 � ERRESTðjÞ � tol:

8 Parallelism and Performance

D01RAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D01RAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time required by D01RAF is usually dominated by the time required to evaluate the values of the
integrands fj.

D01RAF will be most efficient if any badly behaved integrands provided have irregularities over similar
subsections of the domain. For example, evaluation of the integrals,Z 1

0

log xð Þ
x�

1
2

x2

0@ 1Adx
will be quite efficient, as the irregular behaviour of the first two integrands is at x ¼ 0. On the contrary,
the evaluation of the integrals, Z 1

0

log xð Þ
log 1� xð Þ

� �
dx

will be less efficient, as the two integrands have singularities at opposite ends of the domain, which will
result in subdivisions which are only of use to one integrand. In such cases, it will be more efficient to
use two sets of calls to D01RAF.

D01RAF will flag extremely bad behaviour if a sub-interval �k with bounds a�k ; b�k½ � satisfying
b�k � a�kj j < max �a; �r � b� aj jð Þ has a local error estimate greater than the requested tolerance for at
least one integral. The values �a and �r can be set through the optional parameters Absolute Interval
Minimum and Relative Interval Minimum respectively.

9.1 Details of the Computation

This section is recommended for expert users only. It describes the contents of the arrays COM and
ICOM upon exit from D01RAF with IFAIL ¼ 0, 1, 2 or 3, and provided at least one iteration
completed, failure due to insufficient LICOM or LCOM.

The arrays ICOM and COM contain details of the integration, including various scalars, one-
dimensional arrays, and (effectively) two-dimensional arrays. The dimensions of these arrays vary
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depending on the arguments and options used and the progress of the algorithm. Here we describe some
of these details, including how and where they are stored in ICOM and COM.

Scalar quantities:

The indices in ICOM including the following scalars are available via query only options, see
Section 11.2. For example, Ildi is the integer value returned by the option Index LDI.

ldi The leading dimension of the two-dimensional integer arrays stored in ICOM detailed below.
ldi ¼ ICOMðIldiÞ.

ldr The leading dimension of the two-dimensional real arrays stored in COM detailed below.
ldr ¼ ICOMðIldrÞ.

nsdiv The number of segments that have been subdivided during the adaptive process.
nsdiv ¼ ICOMðInsdivÞ.

nseg The total number of segments formed.
nseg ¼ 2nsdiv þ spri.
nseg ¼ ICOMðInsegÞ.

dsp The reference of the first element of the array ds stored in COM.
dsp ¼ ICOMðIdspÞ.

esp The reference of the first element of the array es stored in COM.
esp ¼ ICOMðIespÞ.

evalsp The reference of the first element of the array evals stored in ICOM.
evalsp ¼ ICOMðIevalspÞ.

fcp The reference of the first element of the array fcount stored in ICOM.
fcp ¼ ICOMðIfcpÞ.

sinforp The reference of the first element of the array sinfor stored in COM.
sinforp ¼ ICOMðIsinforpÞ.

sinfoip The reference of the first element of the array sinfoi stored in ICOM.
sinfoip ¼ ICOMðIsinfoipÞ.

One-dimensional arrays:

fcountðniÞ
fcountð1Þ ¼ ICOMðfcpÞ.

fcountðjÞ contains the number of different approximations of integral j calculated, for j ¼ 1; 2; . . . ; ni.

Two-dimensional arrays:

sinfoið5; nsegÞ
sinfoið1; 1Þ ¼ ICOMðsinfoipÞ.
sinfoi contains information about the hierarchy of splitting.

sinfoið1; kÞ contains the split identifier for segment k, for k ¼ 1; 2; . . . ; nseg.

sinfoið2; kÞ contains the parent segment number of segment k (i.e., the segment was split to create
segment k), for k ¼ 1; 2; . . . ; nseg.

sinfoið3; kÞ and sinfoið4; kÞ contain the segment numbers of the two child segments formed from
segment k, if segment k has been split. If segment k has not been split, these will be negative.

sinfoið5; kÞ contains the level at which the segment exists, corresponding to na þ 1, where na is the
number of ancestor segments of segment k, for k ¼ 1; 2; . . . ; nseg. A negative level indicates that
segment k will not be split further, the level is then given by the absolute value of sinfoið5; kÞ.
sinforð2;nsegÞ

sinforð1; 1Þ ¼ COMðsinforpÞ.
sinfor contains the bounds of each segment.

sinforð1; kÞ contains the lower bound of segment k, for k ¼ 1; 2; . . . ; nseg.

D01RAF NAG Library Manual

D01RAF.10 Mark 26



sinforð2; kÞ contains the upper bound of segment k, for k ¼ 1; 2; . . . ; nseg.

evalsðni; nsegÞ
evalsð1; 1Þ ¼ ICOMðevalspÞ.

evals contains information to indicate whether an estimate of the integral j has been obtained over
segment k, and if so whether this evaluation still contributes to the direct estimate of Fj , for
j ¼ 1; 2; . . . ; ni and k ¼ 1; 2; . . . ; nseg.

evalsðj; kÞ ¼ 0 indicates that integral j has not been evaluated over segment k.

evalsðj; kÞ ¼ 1 indicates that integral j has been evaluated over segment k, and that this evaluation
contributes to the direct estimate of Fj.

evalsðj; kÞ ¼ 2 indicates that integral j has been evaluated over segment k, that this evaluation
contributes to the direct estimate of Fj, and that you have requested no further evaluation of this
integral at this segment by setting NEEDIðjÞ < 0.

evalsðj; kÞ ¼ 3 indicates that integral j has been evaluated over segment k, and this evaluation no longer
contributes to the direct estimate of Fj.

evalsðj; kÞ ¼ 4 indicates that integral j has been evaluated over segment k, that this evaluation
contributes to the direct estimate of Fj, and that this segment is too small for any further splitting to be
performed. Integral j also has a local error estimate over this segment above the requested tolerance.
Such segments cause D01RAF to return IFAIL ¼ 2 or 3, indicating extremely bad behaviour.

evalsðj; kÞ ¼ 5 indicates that integral j has been evaluated over segment k, that this evaluation
contributes to the direct estimate of Fj, and that this segment is too small for any further splitting to be
performed. The local error estimate is however below the requested tolerance.

dsðni; nsegÞ
dsð1; 1Þ ¼ COMðdspÞ.

dsðj; kÞ contains the definite integral estimate of the jth integral over the kth segment, dsj;k , provided it
has been evaluated, for j ¼ 1; 2; . . . ; ni and k ¼ 1; 2; . . . ; nseg.

esðni;nsegÞ
esð1; 1Þ ¼ COMðespÞ.

esðj; kÞ contains the definite integral error estimate of the jth integral over the kth segment, esj;k ,
provided it has been evaluated, for j ¼ 1; 2; . . . ; ni and k ¼ 1; 2; . . . ; nseg.

For each integral j, the direct approximation Dj of Fj, and its error estimate Ej, may be constructed as,

Fj � Dj ¼
P
Kj

dsj;k;

Fj �Dj

		 		 � Ej ¼
P
Kj

esj;k ;

where Kj is the set of all contributing segments, Kj ¼ k j evalsðj; kÞ ¼ 1; 2; 4 or 5; 1 � k � nsegf g.
Dj will have been returned in DINESTðjÞ, unless extrapolation was successful, as indicated by
NEEDIðjÞ.
Similarly, Ej will have been returned in ERRESTðjÞ unless extrapolation was successful, in which case
the error estimate from the extrapolation will have been returned. If for a given integral j one or more
contributing segments have unacceptable error estimates, it may be possible to improve the direct
approximation by replacing the contributions from these segments with more accurate estimates should
these be calculable by some means. Indeed for any segment �k 2 k, with lower bound a�k ¼ sinfor 1; �k

� �
and upper bound b�k ¼ sinfor 2; �k

� �
, one may alter the direct approximation Dj by the following,

dsnewj;�k �
R b�k
a�k
fj xð Þ dx

Dj ¼
P
Kj

dsj;k � dsj;�k þ dsnewj;�k :

The error estimate Ej may be altered similarly.
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10 Example

This example integrates

F ¼
Z 	

0

x sin 2xð Þ cos 15xð Þ
x2 sin 2xð Þ cos 50xð Þ

� �
dx:

10.1 Program Text

! D01RAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01rafe_mod

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: display_integration_details, &

display_option
! .. Parameters ..

Integer, Parameter, Public :: nout = 6
Logical, Parameter, Public :: disp_integration_info = .True.

Contains
Subroutine display_integration_details(ni,iopts,opts,icom,licom,com, &

lcom)

! .. Use Statements ..
Use nag_library, Only: d01zlf

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: lcom, licom, ni

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: com(lcom), opts(100)
Integer, Intent (In) :: icom(licom), iopts(100)

! .. Local Scalars ..
Real (Kind=nag_wp) :: rvalue
Integer :: dsp, esp, evalsp, fcp, ifail, index, &

ldi, ldr, nsdiv, nseg, optype, &
sinfoip, sinforp

Character (16) :: cvalue
! .. Executable Statements ..

! Request communication array indices.
ifail = 0
Call d01zlf(’Index nseg’,index,rvalue,cvalue,optype,iopts,opts,ifail)
nseg = icom(index)
Call d01zlf(’Index nsdiv’,index,rvalue,cvalue,optype,iopts,opts,ifail)
nsdiv = icom(index)
Call d01zlf(’Index ldi’,index,rvalue,cvalue,optype,iopts,opts,ifail)
ldi = icom(index)
Call d01zlf(’Index ldr’,index,rvalue,cvalue,optype,iopts,opts,ifail)
ldr = icom(index)
Call d01zlf(’Index fcp’,index,rvalue,cvalue,optype,iopts,opts,ifail)
fcp = icom(index)
Call d01zlf(’Index evalsp’,index,rvalue,cvalue,optype,iopts,opts, &

ifail)
evalsp = icom(index)
Call d01zlf(’Index sinfoip’,index,rvalue,cvalue,optype,iopts,opts, &

ifail)
sinfoip = icom(index)
Call d01zlf(’Index dsp’,index,rvalue,cvalue,optype,iopts,opts,ifail)
dsp = icom(index)
Call d01zlf(’Index esp’,index,rvalue,cvalue,optype,iopts,opts,ifail)
esp = icom(index)
Call d01zlf(’Index sinforp’,index,rvalue,cvalue,optype,iopts,opts, &

ifail)
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sinforp = icom(index)

Write (nout,*)
Write (nout,99999)
Write (nout,99998) ni, nseg, nsdiv
Call display_subdivision_strategy(ni,nseg,icom(fcp),icom(sinfoip), &

icom(evalsp),ldi,com(sinforp),com(dsp),com(esp),ldr)

Return
99999 Format (’ Information on integration: ’)
99998 Format (’ NI = ’,I3,’, nseg = ’,I3,’, nsdiv = ’,I3,’.’)

End Subroutine display_integration_details
Subroutine display_subdivision_strategy(ni,nseg,fcount,sinfoi,evals,ldi, &

sinfor,ds,es,ldr)

! .. Scalar Arguments ..
Integer, Intent (In) :: ldi, ldr, ni, nseg

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: ds(ldr,*), es(ldr,*), sinfor(ldr,*)
Integer, Intent (In) :: evals(ldi,*), fcount(ni), &

sinfoi(ldi,*)
! .. Local Scalars ..

Real (Kind=nag_wp) :: lbnd, ubnd
Integer :: child1, child2, j, k, level, parent, &

sid
! .. Executable Statements ..

! Display information on individual segments.
Do j = 1, ni

Write (nout,99991) j, fcount(j)
End Do
Write (nout,*)
Write (nout,99992)
Do k = 1, nseg

Write (nout,*)
sid = sinfoi(1,k)
parent = sinfoi(2,k)
child1 = sinfoi(3,k)
child2 = sinfoi(4,k)
level = sinfoi(5,k)
lbnd = sinfor(1,k)
ubnd = sinfor(2,k)
Write (nout,99999) k
Write (nout,99998) sid, parent, level
If (child1>0) Then

Write (nout,99997) child1, child2
End If
Write (nout,99996) lbnd, ubnd
Do j = 1, ni

If (evals(j,k)/=0) Then
Write (nout,99995) j, ds(j,k)
Write (nout,99994) j, es(j,k)
If (evals(j,k)==3) Then

Write (nout,99993) j
End If

End If
End Do

End Do
Return

99999 Format (’ Segment ’,I3,’.’)
99998 Format (’ Sid = ’,I3,’, Parent = ’,I3,’, Level = ’,I3,’.’)
99997 Format (’ Children = (’,I3,’,’,I3,’).’)
99996 Format (’ Bounds (’,Es11.4,’,’,Es11.4,’).’)
99995 Format (’ Integral ’,I2,’ approximation :’,1X,Es11.4,’.’)
99994 Format (’ Integral ’,I2,’ error estimate:’,1X,Es11.4,’.’)
99993 Format (’ Integral ’,I2, &

’ evaluation has been superseded by descendants.’)
99992 Format (’ Information on subdivision and evaluations over segments.’)
99991 Format (’ Integral ’,I2,’ total approximations: ’,I3,’.’)

End Subroutine display_subdivision_strategy
Subroutine display_option(optstr,optype,ivalue,rvalue,cvalue)
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! Subroutine to query optype and print the appropriate option values

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rvalue
Integer, Intent (In) :: ivalue, optype
Character (*), Intent (In) :: cvalue, optstr

! .. Executable Statements ..

Select Case (optype)
Case (1)

Write (nout,99999) optstr, ivalue
Case (2)

Write (nout,99998) optstr, rvalue
Case (3)

Write (nout,99997) optstr, cvalue
Case (4)

Write (nout,99996) optstr, ivalue, cvalue
Case (5)

Write (nout,99995) optstr, rvalue, cvalue
Case Default
End Select

Flush (nout)

Return
99999 Format (3X,A30,’ : ’,I16)
99998 Format (3X,A30,’ : ’,Es16.4)
99997 Format (3X,A30,’ : ’,12X,A16)
99996 Format (3X,A30,’ : ’,I16,3X,A16)
99995 Format (3X,A30,’ : ’,Es16.4,3X,A16)

End Subroutine display_option
End Module d01rafe_mod

Program d01rafe

! .. Use Statements ..
Use nag_library, Only: d01raf, d01rcf, d01zkf, d01zlf, nag_wp, x01aaf
Use d01rafe_mod, Only: display_integration_details, display_option, &

disp_integration_info, nout
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: a, b, pi, rvalue
Integer :: ifail, irevcm, ivalue, j, lcmax, &

lcmin, lcom, ldfm, ldfmrq, lenx, &
lenxrq, licmax, licmin, licom, ni, &
nx, optype, sdfm, sdfmrq, sid

Character (16) :: cvalue
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: com(:), dinest(:), errest(:), &
fm(:,:), opts(:), x(:)

Integer, Allocatable :: icom(:), iopts(:), needi(:)
! .. Intrinsic Procedures ..

Intrinsic :: cos, sin
! .. Executable Statements ..

Continue
Write (nout,*) ’D01RAF Example Program Results’
Write (nout,*)

pi = x01aaf(pi)

! Setup phase.

! Set problem parameters
ni = 2

! Lower (a) and upper (b) bounds
a = 0.0E0_nag_wp
b = pi
Allocate (opts(100),iopts(100))

! Initialize option arrays
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ifail = 0
Call d01zkf(’Initialize = d01raf’,iopts,100,opts,100,ifail)

! Set any non-default options required
Call d01zkf(’Quadrature Rule = gk41’,iopts,100,opts,100,ifail)
Call d01zkf(’Absolute Tolerance = 1.0e-7’,iopts,100,opts,100,ifail)
Call d01zkf(’Relative Tolerance = 1.0e-7’,iopts,100,opts,100,ifail)

! Determine maximum required array lengths
ifail = -1
Call d01rcf(ni,lenxrq,ldfmrq,sdfmrq,licmin,licmax,lcmin,lcmax,iopts, &

opts,ifail)
ldfm = ldfmrq
sdfm = sdfmrq
lenx = lenxrq
licom = licmax
lcom = lcmax

! Allocate remaining arrays
Allocate (icom(licom),needi(ni),com(lcom),fm(ldfm,sdfm),dinest(ni), &

errest(ni),x(lenx))

! Solve phase.
! Use D01RAF to evaluate the definite integrals of:
! f_1 = (x*sin(2*x))*cos(15*x)
! f_2 = (x*sin(2*x))*(x*cos(50*x))

! Set initial irevcm
irevcm = 1
ifail = -1

Do While (irevcm/=0)

Call d01raf(irevcm,ni,a,b,sid,needi,x,lenx,nx,fm,ldfm,dinest,errest, &
iopts,opts,icom,licom,com,lcom,ifail)

Select Case (irevcm)
Case (11)

! Initial returns.
! These will occur during the non-adaptive phase.
! All values must be supplied.
! DINEST and ERREST do not contain approximations
! over the complete interval at this stage.

! Calculate x*sin(2*x), storing the result in fm(2,1:nx) for re-use.
fm(2,1:nx) = x(1:nx)*sin(2.0E0_nag_wp*x(1:nx))

! Calculate f1
fm(1,1:nx) = fm(2,1:nx)*cos(15.0E0_nag_wp*x(1:nx))

! Complete f2 calculation.
fm(2,1:nx) = fm(2,1:nx)*x(1:nx)*cos(50.0E0_nag_wp*x(1:nx))

Case (12)
! Intermediate returns.
! These will occur during the adaptive phase.
! All requested values must be supplied.
! DINEST and ERREST do not contain approximations
! over the complete interval at this stage.

! Calculate x*sin(2*x).
fm(2,1:nx) = x(1:nx)*sin(2.0E0_nag_wp*x(1:nx))

! Calculate f1 if required.
If (needi(1)==1) Then

fm(1,1:nx) = fm(2,1:nx)*cos(15.0E0_nag_wp*x(1:nx))
End If

! Complete f2 calculation if required.
If (needi(2)==1) Then

fm(2,1:nx) = fm(2,1:nx)*x(1:nx)*cos(50.0E0_nag_wp*x(1:nx))
End If
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Case (0)
! Final return. Test IFAIL.

Select Case (ifail)
Case (0:3)

! Useful information has been returned.
Case Default

! An unrecoverable error has been detected.
Go To 100

End Select
End Select

End Do

! Query some currently set options and statistics.
ifail = 0
Call d01zlf(’Quadrature rule’,ivalue,rvalue,cvalue,optype,iopts,opts, &

ifail)
Call display_option(’Quadrature rule’,optype,ivalue,rvalue,cvalue)

Call d01zlf(’Maximum Subdivisions’,ivalue,rvalue,cvalue,optype,iopts, &
opts,ifail)

Call display_option(’Maximum Subdivisions’,optype,ivalue,rvalue,cvalue)

Call d01zlf(’Extrapolation’,ivalue,rvalue,cvalue,optype,iopts,opts, &
ifail)

Call display_option(’Extrapolation’,optype,ivalue,rvalue,cvalue)

Call d01zlf(’Extrapolation Safeguard’,ivalue,rvalue,cvalue,optype,iopts, &
opts,ifail)

Call display_option(’Extrapolation safeguard’,optype,ivalue,rvalue, &
cvalue)

! Print solution
Write (nout,*)
Write (nout,99999)
Do j = 1, ni

Write (nout,99998) j, needi(j), dinest(j), errest(j)
End Do

! Investigate integration strategy
If (disp_integration_info) Then

Call display_integration_details(ni,iopts,opts,icom,licom,com,lcom)
End If

100 Continue

99999 Format (’ Integral | NEEDI | DINEST | ERREST ’)
99998 Format (2(1X,I9),2(1X,Es12.4))

End Program d01rafe

10.2 Program Data

None.

10.3 Program Results

D01RAF Example Program Results

Quadrature rule : GK41
Maximum Subdivisions : 50

Extrapolation : ON
Extrapolation safeguard : 1.0000E-12

Integral | NEEDI | DINEST | ERREST
1 0 -2.8431E-02 1.1234E-14
2 0 7.9083E-03 2.6600E-09

Information on integration:
NI = 2, nseg = 7, nsdiv = 3.
Integral 1 total approximations: 2.
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Integral 2 total approximations: 4.

Information on subdivision and evaluations over segments.

Segment 1.
Sid = 1, Parent = 0, Level = 1.
Children = ( 2, 3).
Bounds ( 0.0000E+00, 3.1416E+00).
Integral 1 approximation : -2.8431E-02.
Integral 1 error estimate: 8.0372E-04.
Integral 1 evaluation has been superseded by descendants.
Integral 2 approximation : -3.6050E-01.
Integral 2 error estimate: 4.2596E+00.
Integral 2 evaluation has been superseded by descendants.

Segment 2.
Sid = 2, Parent = 1, Level = 2.
Children = ( 6, 7).
Bounds ( 0.0000E+00, 1.5708E+00).
Integral 1 approximation : -1.2285E-03.
Integral 1 error estimate: 2.8161E-15.
Integral 2 approximation : 1.9771E-03.
Integral 2 error estimate: 4.0437E-01.
Integral 2 evaluation has been superseded by descendants.

Segment 3.
Sid = 2, Parent = 1, Level = 2.
Children = ( 4, 5).
Bounds ( 1.5708E+00, 3.1416E+00).
Integral 1 approximation : -2.7202E-02.
Integral 1 error estimate: 8.4182E-15.
Integral 2 approximation : 5.9313E-03.
Integral 2 error estimate: 3.0259E+00.
Integral 2 evaluation has been superseded by descendants.

Segment 4.
Sid = 3, Parent = 3, Level = 3.
Bounds ( 1.5708E+00, 2.3562E+00).
Integral 2 approximation : 1.0922E-01.
Integral 2 error estimate: 7.9151E-10.

Segment 5.
Sid = 3, Parent = 3, Level = 3.
Bounds ( 2.3562E+00, 3.1416E+00).
Integral 2 approximation : -1.0329E-01.
Integral 2 error estimate: 1.6413E-09.

Segment 6.
Sid = 4, Parent = 2, Level = 3.
Bounds ( 0.0000E+00, 7.8540E-01).
Integral 2 approximation : 1.2343E-02.
Integral 2 error estimate: 5.2456E-11.

Segment 7.
Sid = 4, Parent = 2, Level = 3.
Bounds ( 7.8540E-01, 1.5708E+00).
Integral 2 approximation : -1.0365E-02.
Integral 2 error estimate: 1.7467E-10.

11 Optional Parameters

This section can be skipped if you wish to use the default values for all optional parameters, otherwise,
the following is a list of the optional parameters available. A full description of each optional parameter
is provided in Section 11.1.

Absolute Interval Minimum

Absolute Tolerance

Extrapolation
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Extrapolation Safeguard

Maximum Subdivisions

Primary Division Mode

Primary Divisions

Prioritize Error

Quadrature Rule

Relative Interval Minimum

Relative Tolerance

The following optional parameters, see Section 11.2, may be utilized by expert users in conjunction
with the information provided in Section 9.1.

Index LDI

Index LDR

Index NSDIV

Index NSEG

Index FCP

Index EVALSP

Index DSP

Index ESP

Index SINFOIP

Index SINFORP

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value.

The following symbol represents various machine constants:

� represents the machine precision (see X02AJF).

All options accept the value ‘DEFAULT’ in order to return single options to their default states.

Keywords and character values are case insensitive, however they must be separated by at least one
space.

Unsetable options will return the appropriate value when calling D01ZLF. They will have no effect if
passed to D01ZKF.

For D01RAF the maximum length of the argument CVALUE used by D01ZLF is 15.

Absolute Interval Minimum r Default ¼ 128:0�

r ¼ �a, the absolute lower limit for a segment to be considered for subdivision. See also Relative
Interval Minimum and Section 9.

Constraint: r � 128�.

Absolute Tolerance r Default ¼ 1024�

r ¼ �a, the absolute tolerance required. See also Relative Tolerance and Section 3.

Constraint: r � 0:0.
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Extrapolation a Default ¼ ON

Activate or deactivate the use of the � algorithm (Wynn (1956)). Extrapolation often reduces the
number of iterations required to achieve the desired solution, but it can occasionally lead to premature
convergence towards an incorrect answer.

ON
Use extrapolation.

OFF
Disable extrapolation.

Extrapolation Safeguard r Default ¼ 1:0E�12

r ¼ �safe. If �q is the estimated error from the quadrature evaluation alone, and �ex is the error estimate
determined using extrapolation, then the extrapolated solution will only be accepted if �safe�q � �ex .

Maximum Subdivisions i Default ¼ 50

i ¼ max sdiv, the maximum number of subdivisions the algorithm may use in the adaptive phase,
forming at most an additional 2�max sdivð Þ segments.

Primary Divisions i Default ¼ 1

i ¼ spri, the number of initial segments of the domain a; b½ �. By default the initial segment is the entire
domain.

Constraint: 0 < i < 1000000.

Primary Division Mode a Default ¼ AUTOMATIC

Determines how the initial set of spri segments will be generated.

AUTOMATIC
D01RAF will automatically generate spri segments of equal size covering the interval a; b½ �.

MANUAL
D01RAF will use the break-points x0i , for i ¼ 1; 2; . . . ; spri � 1, supplied in X on initial entry to
generate the initial segments covering a; b½ �. These may be supplied in any order, however it will
be more efficient to supply them in ascending (or descending if a > b) order. Repeated break-
points are allowed, although this will generate fewer initial segments.

Note: an absolute bound on the size of an initial segment of 10:0� is automatically applied in all cases,
and will result in fewer initial subdivisions being generated if automatically generated or supplied
break-points result in segments smaller than this.

Prioritize Error a Default ¼ LEVEL

Indicates how new subdivisions of segments sustaining unacceptable local errors for integrals should be
prioritized.

LEVEL
Segments with lower level with unsatisfactory error estimates will be chosen over segments with
greater error on higher levels. This will probably lead to more integrals being improved in earlier
iterations of the algorithm, and hence will probably lead to fewer repeated returns (see argument
SID), and to more integrals being satisfactorily estimated if computational exhaustion occurs.

MAXERR
The segment with the worst overall error will be split, regardless of level. This will more rapidly
improve the worst integral estimates, although it will probably result in the fewest integrals being
improved in earlier iterations, and may hence lead to more repeated returns (see argument SID),
and potentially fewer integrals satisfying the requested tolerances if computational exhaustion
occurs.
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Quadrature Rule a Default ¼ GK15

The basic quadrature rule to be used during the integration. Currently 6 Gauss–Kronrod rules are
available, all identifiable by the letters GK followed by the number of points required by the Kronrod
rule. Higher order rules generally provide higher accuracy with fewer subdivisons. However, for
integrands with sharp singularities, lower order rules may be more efficient, particularly if the integrand
away from the singularity is well behaved. With higher order rules, you may need to increase the
Absolute Interval Minimum and the Relative Interval Minimum to maintain numerical difference
between the abscissae and the segment bounds.

GK15
The Gauss–Kronrod rule based on 7 Gauss points and 15 Kronrod points.

GK21
The Gauss–Kronrod rule based on 10 Gauss points and 21 Kronrod points. This is the rule used
by D01ATF

GK31
The Gauss–Kronrod rule based on 15 Gauss points and 31 Kronrod points.

GK41
The Gauss–Kronrod rule based on 20 Gauss points and 41 Kronrod points.

GK51
The Gauss–Kronrod rule based on 25 Gauss points and 51 Kronrod points.

GK61
The Gauss–Kronrod rule based on 30 Gauss points and 61 Kronrod points. This is the highest
order rule, most suitable for highly oscilliatory integrals.

Relative Interval Minimum r Default ¼ 1:0E�6
r ¼ �r, the relative factor in the lower limit, �r b� aj j, for a segment to be considered for subdivision.
See also Absolute Interval Minimum and Section 9.

Constraint: r � 0:0.

Relative Tolerance r Default ¼
ffiffi
�
p

r ¼ �r, the required relative tolerance. See also Absolute Tolerance and Section 3.

Constraint: r � 0:0.

Note: setting both �r ¼ �a ¼ 0:0 is possible, although it will most likely result in an excessive amount
of computational effort.

11.2 Diagnostic Options

These options are provided for expert users who wish to examine and modify the precise details of the
computation. They should only be used after D01RAF returns, as opposed to the options listed in
Section 11.1 which must be used before the first call to D01RAF.

Index LDI i query only

Ildi, the index of ICOM required for obtaining ldi. See Section 9.1.

Index LDR i query only

Ildr , the index of ICOM required for obtaining ldr . See Section 9.1.

Index NSDIV i query only

Insdiv , the index of ICOM required for obtaining nsdiv. See Section 9.1.

Index NSEG i query only

Inseg, the index of ICOM required for obtaining nseg. See Section 9.1.
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Index FCP i query only

Ifcp, the index of ICOM required for obtaining fcp. See Section 9.1.

Index EVALSP i query only

Ievalsp, the index of ICOM required for obtaining evalsp. See Section 9.1.

Index DSP i query only

Idsp, the index of ICOM required for obtaining dsp. See Section 9.1.

Index ESP i query only

Iesp, the index of ICOM required for obtaining esp. See Section 9.1.

Index SINFOIP i query only

Isinfoip, the index of ICOM required for obtaining sinfoip. See Section 9.1.

Index SINFORP i query only

Isinforp, the index of ICOM required for obtaining sinforp. See Section 9.1.
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NAG Library Routine Document

D01RBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: please be advised that D01RBF has been deprecated. You are advised to follow the directions in
Section 9.1 in D01RAF to replicate its functionality. Furthermore, any future diagnostic enhancements
for D01RAF will only be available in this manner.

1 Purpose

D01RBF is an expert diagnostic routine associated with D01RAF to allow the arrays ICOM and COM
to be examined. These arrays contain details of the adaptive process. Facilities are provided, via the
argument MONIT, to refine the final answer by adjusting the contribution made by specific segments.

2 Specification

SUBROUTINE D01RBF (MONIT, NI, DINEST, ERREST, ICOM, LICOM, LICUSD, COM,
LCOM, LCUSD, IUSER, RUSER, IFAIL)

&

INTEGER NI, ICOM(LICOM), LICOM, LICUSD, LCOM, LCUSD,
IUSER(*), IFAIL

&

REAL (KIND=nag_wp) DINEST(NI), ERREST(NI), COM(LCOM), RUSER(*)
EXTERNAL MONIT

3 Description

The principal role of D01RBF is to take information about the adaptive process that is stored in COM
and ICOM and present it in more intelligible arguments. A monitor routine, MONIT, allows you to
report the progress of the adaptive process back to the calling program between those calls of D01RAF
which have returned IREVCM ¼ 11 or 12.

A secondary role, useful only if you are an expert, is to utilize MONIT in such a way that it can
override aspects of that information. Specifically, you may choose to remove the contributions of one or
more individual segments from the estimates for individual integrals contained in DINEST and
ERREST, and replace such information with a more accurate approximation you have calculated by
some other means. Clearly this facility should only be used with care. We recommend that it be used
only after D01RAF has returned with IREVCM ¼ 0, i.e., it has completed the computation of the
approximations of the integrals.

4 References

None.

5 Arguments

1: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT allows you to examine details of the adaptive process after a call of D01RAF returning
IREVCM ¼ 11 or 12. Additionally, after a call of D01RAF returning IREVCM ¼ 0, MONIT may
enhance the computed solution.

If no monitoring is required, MONIT may be the dummy monitoring routine D01RBM.
(D01RBM is included in the NAG Library.)
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The specification of MONIT is:

SUBROUTINE MONIT (NI, NS, DINEST, ERREST, FCOUNT, SINFOI, EVALS,
LDI, SINFOR, FS, ES, LDR, IUSER, RUSER)

&

INTEGER NI, NS, FCOUNT(NI), SINFOI(LDI,*),
EVALS(LDI,*), LDI, LDR, IUSER(*)

&

REAL (KIND=nag_wp) DINEST(NI), ERREST(NI), SINFOR(LDR,*),
FS(LDR,*), ES(LDR,*), RUSER(*)

&

1: NI – INTEGER Input

On entry: ni, the number of integrands specified in D01RAF.

2: NS – INTEGER Input

On entry: ns, the number of segments formed during the adaptive procedure that can
currently be examined. ns ¼ 2nsdiv þ spri, where nsdiv is the number of segments that
have been subdivided (the number of subdivisions).

3: DINESTðNIÞ – REAL (KIND=nag_wp) array Input/Output

On entry: DINESTðjÞ contains the current estimate of the definite integral of integrand
j, for j ¼ 1; 2; . . . ; ni.

On exit: you may refine the estimates in DINEST. This should only be done after
D01RAF has returned IREVCM ¼ 0.

4: ERRESTðNIÞ – REAL (KIND=nag_wp) array Input/Output

On entry: ERRESTðjÞ contains the current error estimate associated with integral j, for
j ¼ 1; 2; . . . ; ni.

On exit: you may refine the estimates in ERREST. This should only be done after
D01RAF has returned IREVCM ¼ 0.

5: FCOUNTðNIÞ – INTEGER array Input

On entry: FCOUNTðjÞ contains the number of different approximations of integral j
calculated so far, for j ¼ 1; 2; . . . ; ni.

6: SINFOIðLDI; �Þ – INTEGER array Input

On entry: SINFOIðl; kÞ contains information about the hierarchy of splitting, for
l ¼ 1; 2; . . . ; 5 and k ¼ 1; 2; . . . ; ns.

SINFOIð1; kÞ
Contains a unique identifier, the SID, related to segment k.

SINFOIð2; kÞ
Contains the parent segment number of segment k, the reference to the segment
that was split to create segment k.

SINFOIð3; kÞ and SINFOIð4; kÞ
Contain the segment numbers of the two child segments formed from segment k,
if segment k has been split. If segment k has not been split, these will be
negative.

SINFOIð5; kÞ
Contains the level at which the segment exists, corresponding to na þ 1, where
na is the number of ancestor segments of segment k.

If SINFOIð5; kÞ < 0, this segment is considered too small for further splitting, and its
level is SINFOIð5; kÞj j.
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7: EVALSðLDI; �Þ – INTEGER array Input

On entry: contains information to indicate whether an estimate of the integral j has been
obtained over segment k, and if so whether this evaluation still contributes to the
approximation in DINESTðjÞ, for j ¼ 1; 2; . . . ; ni and k ¼ 1; 2; . . . ; ns.

EVALSðj; kÞ ¼ 0
Indicates that integral j has not been evaluated over segment k.

EVALSðj; kÞ ¼ 1
Indicates that integral j has been evaluated over segment k, and that this
evaluation contributes to the total approximation DINESTðjÞ.

EVALSðj; kÞ ¼ 2
Indicates that integral j has been evaluated over segment k, that this evaluation
contributes to the total approximation DINESTðjÞ, and that you have requested
no further evaluation of this integral at this segment by setting NEEDIðjÞ < 0.

EVALSðj; kÞ ¼ 3
Indicates that integral j has been evaluated over segment k, and this evaluation
no longer contributes to DINESTðjÞ.

EVALSðj; kÞ ¼ 4
Indicates that integral j has been evaluated over segment k, that this evaluation
contributes to the total approximation DINESTðjÞ, and that this segment is too
small for any further splitting to be performed. Integral j also has a local error
estimate over this segment above the requested tolerance. Such segments cause
D01RAF to return IFAIL ¼ 2 or 3, indicating extremely bad behaviour.

EVALSðj; kÞ ¼ 5
Indicates that integral j has been evaluated over segment k, that this evaluation
contributes to the total approximation of DINESTðjÞ, and that this segment is too
small for any further splitting to be performed. The local error estimate is
however below the requested tolerance.

8: LDI – INTEGER Input

On entry: the leading dimension of arrays SINFOI and EVALS.

9: SINFORðLDR; �Þ – REAL (KIND=nag_wp) array Input

On entry: SINFOR contains the bounds of each segment k, for k ¼ 1; 2; . . . ; ns.

SINFORð1; kÞ
Contains the lower bound of segment k.

SINFORð2; kÞ
Contains the upper bound of segment k.

10: FSðLDR; �Þ – REAL (KIND=nag_wp) array Input

On entry: FSðj; kÞ contains the definite integral estimate of the jth integral over the kth
segment, for j ¼ 1; 2; . . . ; ni and k ¼ 1; 2; . . . ; ns.

11: ESðLDR; �Þ – REAL (KIND=nag_wp) array Input

On entry: ESðj; kÞ contains the definite integral error estimate of the jth integral over
the kth segment, for j ¼ 1; 2; . . . ; ni and k ¼ 1; 2; . . . ; ns.

12: LDR – INTEGER Input

On entry: the leading dimension of arrays SINFOR, FS and ES.
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13: IUSERð�Þ – INTEGER array User Workspace
14: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONIT is called with the arguments IUSER and RUSER as supplied to D01RBF. You
should use the arrays IUSER and RUSER to supply information to MONIT.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01RBF is called. Arguments denoted as Input must not be changed by this
procedure.

2: NI – INTEGER Input

On entry: ni, the number of integrals.

3: DINESTðNIÞ – REAL (KIND=nag_wp) array Input/Output

On entry: DINESTðjÞ contains the current estimate of the definite integral of integrand j, for
j ¼ 1; 2; . . . ; ni.

On exit: DINEST is not altered by D01RBF directly. It may be changed by MONIT.

4: ERRESTðNIÞ – REAL (KIND=nag_wp) array Input/Output

On entry: ERRESTðjÞ contains the current error estimate associated with integral j, for
j ¼ 1; 2; . . . ; ni.

On exit: ERREST is not altered by D01RBF directly. It may be changed by MONIT.

5: ICOMðLICOMÞ – INTEGER array Communication Array

On entry: the elements of this array must not be changed since the call of D01RAF.

6: LICOM – INTEGER Input

On entry: the dimension of the array ICOM as declared in the (sub)program from which D01RBF
is called. Normally this will be the same value LICOM passed to D01RAF.

Constraint: LICOM � 50.

Note: if LICOM < LICUSD, (i.e., LICOM is less than the value passed to D01RAF) not all
segments may be investigated using MONIT (see argument NS) and D01RBF will return
IFAIL ¼ 1.

7: LICUSD – INTEGER Output

On exit: the number of elements of the array ICOM, passed to D01RAF, actually used.

8: COMðLCOMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: the elements of this array must not be changed since the call of D01RAF.

9: LCOM – INTEGER Input

On entry: the dimension of the array COM as declared in the (sub)program from which D01RBF
is called. Normally this will be the same value LCOM passed to D01RAF.

Constraint: LCOM � 50.

Note: if LCOM < LCUSD, (i.e., LCOM is less than the value passed to D01RAF) not all
segments may be investigated using MONIT (see argument NS) and D01RBF will return
IFAIL ¼ 1.

10: LCUSD – INTEGER Output

On exit: the number of elements of COM used by D01RAF.
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11: IUSERð�Þ – INTEGER array User Workspace
12: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D01RBF, but are passed directly to MONIT and should be
used to pass information to this routine.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01RBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LICOM ¼ valueh i, LCOM ¼ valueh i.
LICOM or LCOM is insufficient for a complete examination of the communication arrays. A
maximum valueh i segments out of valueh i are examinable.
Constraint: LICOM � valueh i and LCOM � valueh i.

IFAIL ¼ 21

On entry, NI is not consistent with that used to construct the communication arrays.
On entry, NI ¼ valueh i.
Constraint: NI ¼ valueh i.

IFAIL ¼ 61

On entry, LICOM < 50.

IFAIL ¼ 91

On entry, LCOM < 50.

IFAIL ¼ 1101

Either the communication arrays have not been created by D01RAF, or they have become
corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D01RBF is not threaded in any implementation.

9 Further Comments

When called after D01RAF has returned IREVCM ¼ 0, D01RBF may be used to modify DINEST and
ERREST. For example if EVALSðj; �kÞ ¼ 4 for some j 2 1; . . . ; ni, �k 2 1; . . . ; ns, indicating integral j
was badly behaved over segment �k, then one may potentially modify DINESTðjÞ as follows:

a�k ¼ SINFORðl; kÞ
b�k ¼ SINFORðl; kÞ

F new
�k
¼
R b�k
a�k
fj xð Þdx: performed using accurate technique for specific function.

DINESTðjÞ ¼ DINESTðjÞ � FSðj; �kÞ þ F new
�k

ERREST may be similarly updated if required.

Note: if integral j has been approximated successfully due to extrapolation, indicated by NEEDIðjÞ ¼ 1
after D01RAF has completed, DINESTðjÞ will not be the direct sum of the contributing segments. You
may however reconstruct the unextrapolated integral estimate as,

DINESTðjÞ ¼
X
K

FSðj; kÞ þ
X
�K

FSðj; �kÞ;

where K ¼ k j EVALSðLDI� kð Þ þ jÞ ¼ 1; 2; 5f g and �K ¼ �k j EVALSðLDI� �k
� �
þ jÞ ¼ 4

� 
, the sets

of all contributing segements where integral j has been evaluated accurately and inaccurately
respectively. Some or all of the terms in the summation over �K may be replaced with more accurate
approximations F new

�k
if available.

10 Example

See Section 10 in D01RAF.
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NAG Library Routine Document

D01RCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

The dimension of the arrays that must be passed as actual arguments to D01RAF are dependent upon a
number of factors. D01RCF returns the correct size of these arrays enabling D01RAF to be called
successfully.

2 Specification

SUBROUTINE D01RCF (NI, LENXRQ, LDFMRQ, SDFMRQ, LICMIN, LICMAX, LCMIN,
LCMAX, IOPTS, OPTS, IFAIL)

&

INTEGER NI, LENXRQ, LDFMRQ, SDFMRQ, LICMIN, LICMAX, LCMIN,
LCMAX, IOPTS(*), IFAIL

&

REAL (KIND=nag_wp) OPTS(*)

3 Description

D01RCF returns the minimum dimension of the arrays X (lenxrq), FM (ldfmrq � sdfmrq), ICOM
(licmin) and COM (lcmin) that must be passed to D01RAF to enable the integration to commence
given options currently set for the NI integrands. D01RCF also returns the upper bounds licmax and
lcmax for the dimension of the arrays ICOM and COM, that could possibly be required with the chosen
options.

All the minimum values lenxrq, ldfmrq, sdfmrq, licmin and lcmin, and subsequently all the maximum
values licmax and lcmax may be affected if different options are set, and hence D01RCF should be
called after any options are set, and before the first call to D01RAF.

A segment is here defined as a (possibly maximal) subset of the domain of integration. During
subdivision, a segment is bisected into two new segments.

4 References

None.

5 Arguments

1: NI – INTEGER Input

On entry: ni, the number of integrals which will be approximated in the subsequent call to
D01RAF.

Constraint: NI > 0.

2: LENXRQ – INTEGER Output

On exit: lenxrq, the minimum dimension of the array X that can be used in a subsequent call to
D01RAF.

3: LDFMRQ – INTEGER Output

On exit: ldfmrq, the minimum leading dimension of the array FM that can be used in a
subsequent call to D01RAF.
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4: SDFMRQ – INTEGER Output

On exit: sdfmrq, the minimum second dimension of the array FM that can be used in a
subsequent call to D01RAF.

Note: the minimum dimension of the array FM is ldfmrq � sdfmrq.

5: LICMIN – INTEGER Output

On exit: licmin, the minimum dimension of the array ICOM that must be passed to D01RAF to
enable it to calculate a single approximation to all the ni integrals over the interval a; b½ � with spri
initial segments.

6: LICMAX – INTEGER Output

On exit: licmax the dimension of the array ICOM that must be passed to D01RAF to enable it to
exhaust the adaptive process controlled by the currently set options for the ni integrals over the
interval a; b½ � with spri initial segments.

7: LCMIN – INTEGER Output

On exit: lcmin, the minimum dimension of the array COM that must be passed to D01RAF to
enable it to calculate a single approximation to all the ni integrals over the interval a; b½ � with spri
initial segments.

8: LCMAX – INTEGER Output

On exit: lcmax, the dimension of the array COM that must be passed to D01RAF to enable it to
exhaust the adaptive process controlled by the currently set options for the ni integrals over the
interval a; b½ � with spri initial segments.

9: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to D01ZKF.

On entry: the integer option array as returned by D01ZKF.

Constraint: IOPTS must not be changed between calls to D01ZKF, D01ZLF, D01RCF and
D01RAF.

10: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to D01ZKF.

On entry: the real option array as returned by D01ZKF.

Constraint: OPTS must not be changed between calls to D01ZKF, D01ZLF, D01RCF and
D01RAF.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 21

On entry, NI ¼ valueh i.
Constraint: NI > 0.

IFAIL ¼ 1001

One of the option arrays IOPTS or OPTS has become corrupted. Re-initialize the arrays using
D01ZKF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D01RCF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D01RAF for examples of the usage of D01RCF.
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NAG Library Routine Document

D01RGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01RGF is a general purpose integrator which calculates an approximation to the integral of a function
f xð Þ over a finite interval a; b½ �:

I ¼
Z b

a

f xð Þ dx:

The routine is suitable as a general purpose integrator, and can be used when the integrand has
singularities and infinities. In particular, the routine can continue if the subroutine F explicitly returns a
quiet or signalling NaN or a signed infinity.

2 Specification

SUBROUTINE D01RGF (A, B, F, EPSABS, EPSREL, DINEST, ERREST, NEVALS,
IUSER, RUSER, IFAIL)

&

INTEGER NEVALS, IUSER(*), IFAIL
REAL (KIND=nag_wp) A, B, EPSABS, EPSREL, DINEST, ERREST, RUSER(*)
EXTERNAL F

3 Description

D01RGF uses the algorithm described in Gonnet (2010). It is an adaptive algorithm, similar to the
QUADPACK routine QAGS (see Piessens et al. (1983), see also D01RAF) but includes significant
differences regarding how the integrand is represented, how the integration error is estimated and how
singularities and divergent integrals are treated. The local error estimation is described in Gonnet
(2010).

D01RGF requires a subroutine to evaluate the integrand at an array of different points and is therefore
amenable to parallel execution.

4 References

Gonnet P (2010) Increasing the reliability of adaptive quadrature using explicit interpolants ACM Trans.
Math. software 37 26

Piessens R, de Doncker–Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

2: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration. It is not necessary that a < b.

Note: if A ¼ B, the routine will immediately return DINEST ¼ 0:0, ERREST ¼ 0:0 and
NEVALS ¼ 0.
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3: F – SUBROUTINE, supplied by the user. External Procedure

F must return the value of the integrand f at a set of points.

The specification of F is:

SUBROUTINE F (X, NX, FV, IFLAG, IUSER, RUSER)

INTEGER NX, IFLAG, IUSER(*)
REAL (KIND=nag_wp) X(NX), FV(NX), RUSER(*)

1: XðNXÞ – REAL (KIND=nag_wp) array Input

On entry: the abscissae, xi, for i ¼ 1; 2; . . . ;NX, at which function values are required.

2: NX – INTEGER Input

On entry: the number of abscissae at which a function value is required.

3: FVðNXÞ – REAL (KIND=nag_wp) array Output

On exit: FV must contain the values of the integrand f . FVðiÞ ¼ f xið Þ for all
i ¼ 1; 2; . . . ;NX.

4: IFLAG – INTEGER Input/Output

On entry: IFLAG ¼ 0.

On exit: set IFLAG < 0 to force an immediate exit with IFAIL ¼ �1.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to D01RGF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01RGF is called. Arguments denoted as Input must not be changed by this
procedure.

4: EPSABS – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required.

If EPSABS is negative, EPSABSj j is used. See Section 7.

If EPSABS ¼ 0:0, only the relative error will be used.

5: EPSREL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required.

If EPSREL is negative, EPSRELj j is used. See Section 7.

If EPSREL ¼ 0:0, only the absolute error will be used otherwise the actual value of EPSREL
used by D01RGF is max machine precision; EPSRELj jð Þ.
Constraint: at least one of EPSABS and EPSREL must be nonzero.

6: DINEST – REAL (KIND=nag_wp) Output

On exit: the estimate of the definite integral F.

7: ERREST – REAL (KIND=nag_wp) Output

On exit: the error estimate of the definite integral F.
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8: NEVALS – INTEGER Output

On exit: the total number of points at which the integrand, f , has been evaluated.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D01RGF, but are passed directly to F and should be used to
pass information to this routine.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01RGF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The requested accuracy was not achieved. Consider using larger values of EPSABS and
EPSREL.

IFAIL ¼ 2

The integral is probably divergent or slowly convergent.

IFAIL ¼ 14

Both EPSABS ¼ 0:0 and EPSREL ¼ 0:0.

IFAIL ¼ �1
Exit requested from F with IFLAG ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D01RGF cannot guarantee, but in practice usually achieves, the following accuracy:

I � DINESTj j � tol;

where

tol ¼ max EPSABSj j; EPSRELj j � Ij jf g;

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover, it returns
the quantity ERREST which, in normal circumstances, satisfies

I � DINESTj j � ERREST � tol:

8 Parallelism and Performance

D01RGF is currently neither directly nor indirectly threaded. In particular, the user-supplied subroutine
F is not called from within a parallel region initialized inside D01RGF.

The user-supplied subroutine F uses a vectorized interface, allowing for the required vector of function
values to be evaluated in parallel; for example by placing appropriate OpenMP directives in the code
for the user-supplied subroutine F.

9 Further Comments

The time taken by D01RGF depends on the integrand and the accuracy required.

D01RGF is suitable for evaluating integrals that have singularities within the requested interval.

In particular, D01RGF accepts non-finite values on return from the user-supplied subroutine F, and will
adapt the integration rule accordingly to eliminate such points. Non-finite values include NaNs and
infinities.

10 Example

This example computes Z 1

�1

sin xð Þ
x

ln 10 1� xð Þð Þ:

10.1 Program Text

! D01RGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01rgfe_mod

! D01ATF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
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Integer, Parameter, Public :: nout = 6
Contains

Subroutine f(x,nx,fv,iflag,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: nx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fv(nx)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(nx)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: log, sin

! .. Executable Statements ..
fv = sin(x)/x*log(10.0_nag_wp*(1.0_nag_wp-x))
Return

End Subroutine f
End Module d01rgfe_mod
Program d01rgfe

! D01RGF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01rgf, nag_wp, x07caf, x07cbf
Use d01rgfe_mod, Only: f, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, dinest, epsabs, epsrel, errest
Integer :: ifail, nevals

! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(1)
Integer :: exmode(3), exmode_old(3), iuser(1)

! .. Executable Statements ..
Write (nout,*) ’D01RGF Example Program Results’

! The example function can raise various exceptions - it contains
! a division by zero and a log singularity - although its integral
! is well behaved.

! Save the original halting mode
Call x07caf(exmode_old)

! Turn exception halting mode off for the three common exceptions
! overflow, division-by-zero, and invalid operation.

exmode = (/0,0,0/)
Call x07cbf(exmode)

epsabs = 0.0_nag_wp
epsrel = 1.0E-04_nag_wp
a = -1.0_nag_wp
b = 1.0_nag_wp

! Evaluate the integral
ifail = -1
Call d01rgf(a,b,f,epsabs,epsrel,dinest,errest,nevals,iuser,ruser,ifail)

Write (nout,*)
Write (nout,99999) ’A ’, ’lower limit of integration’, a
Write (nout,99999) ’B ’, ’upper limit of integration’, b
Write (nout,99998) ’EPSABS’, ’absolute accuracy requested’, epsabs
Write (nout,99998) ’EPSREL’, ’relative accuracy requested’, epsrel
Write (nout,*)
If (ifail>=0) Then

Write (nout,99997) ’DINEST’, ’approximation to the integral’, dinest
Write (nout,99998) ’ERREST’, ’estimate of the absolute error’, errest
Write (nout,99996) ’NEVALS’, ’number of function evaluations’, nevals

End If

! Restore the original halting mode
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Call x07cbf(exmode_old)

99999 Format (1X,A6,’ - ’,A30,’ = ’,F10.4)
99998 Format (1X,A6,’ - ’,A30,’ = ’,E10.2)
99997 Format (1X,A6,’ - ’,A30,’ = ’,F10.5)
99996 Format (1X,A6,’ - ’,A30,’ = ’,I10)

End Program d01rgfe

10.2 Program Data

None.

10.3 Program Results

D01RGF Example Program Results

A - lower limit of integration = -1.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03

DINEST - approximation to the integral = 3.81155
ERREST - estimate of the absolute error = 0.34E-03
NEVALS - number of function evaluations = 593
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NAG Library Routine Document

D01TBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01TBF returns the weights and abscissae appropriate to a Gaussian quadrature formula with a
specified number of abscissae. The formulae provided are for Gauss–Legendre, rational Gauss, Gauss–
Laguerre and Gauss–Hermite.

2 Specification

SUBROUTINE D01TBF (KEY, A, B, N, WEIGHT, ABSCIS, IFAIL)

INTEGER KEY, N, IFAIL
REAL (KIND=nag_wp) A, B, WEIGHT(N), ABSCIS(N)

3 Description

D01TBF returns the weights and abscissae for use in the Gaussian quadrature of a function f xð Þ. The
quadrature takes the form

S ¼
Xn
i¼1
wif xið Þ

where wi are the weights and xi are the abscissae (see Davis and Rabinowitz (1975), FrÎberg (1970),
Ralston (1965) or Stroud and Secrest (1966)).

Weights and abscissae are available for Gauss–Legendre, rational Gauss, Gauss–Laguerre and Gauss–
Hermite quadrature, and for a selection of values of n (see Section 5).

(a) Gauss–Legendre Quadrature:

S ’
Z b

a

f xð Þ dx

where a and b are finite and it will be exact for any function of the form

f xð Þ ¼
X2n�1
i¼0

cix
i:

(b) Rational Gauss quadrature, adjusted weights:

S ’
Z 1
a

f xð Þ dx aþ b > 0ð Þ or S ’
Z a

�1
f xð Þ dx aþ b < 0ð Þ

and will be exact for any function of the form

f xð Þ ¼
X2nþ1
i¼2

ci

xþ bð Þi
¼

X2n�1
i¼0

c2nþ1�i xþ bð Þi

xþ bð Þ2nþ1
:

(c) Gauss–Laguerre quadrature, adjusted weights:

S ’
Z 1
a

f xð Þ dx b > 0ð Þ or S ’
Z a

�1
f xð Þ dx b < 0ð Þ

and will be exact for any function of the form
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f xð Þ ¼ e�bx
X2n�1
i¼0

cix
i:

(d) Gauss–Hermite quadrature, adjusted weights:

S ’
Z þ1
�1

f xð Þ dx

and will be exact for any function of the form

f xð Þ ¼ e�b x�að Þ2
X2n�1
i¼0

cix
i b > 0ð Þ:

(e) Gauss–Laguerre quadrature, normal weights:

S ’
Z 1
a

e�bxf xð Þ dx b > 0ð Þ or S ’
Z a

�1
e�bxf xð Þ dx b < 0ð Þ

and will be exact for any function of the form

f xð Þ ¼
X2n�1
i¼0

cix
i:

(f) Gauss–Hermite quadrature, normal weights:

S ’
Z þ1
�1

e�b x�að Þ2f xð Þ dx

and will be exact for any function of the form

f xð Þ ¼
X2n�1
i¼0

cix
i:

Note: the Gauss–Legendre abscissae, with a ¼ �1, b ¼ þ1, are the zeros of the Legendre polynomials;
the Gauss–Laguerre abscissae, with a ¼ 0, b ¼ 1, are the zeros of the Laguerre polynomials; and the
Gauss–Hermite abscissae, with a ¼ 0, b ¼ 1, are the zeros of the Hermite polynomials.

4 References

Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press

FrÎberg C E (1970) Introduction to Numerical Analysis Addison–Wesley

Ralston A (1965) A First Course in Numerical Analysis pp. 87–90 McGraw–Hill

Stroud A H and Secrest D (1966) Gaussian Quadrature Formulas Prentice–Hall

5 Arguments

1: KEY – INTEGER Input

On entry: indicates the quadrature formula.

KEY ¼ 0
Gauss–Legendre quadrature on a finite interval, using normal weights.

KEY ¼ 3
Gauss–Laguerre quadrature on a semi-infinite interval, using normal weights.

KEY ¼ �3
Gauss–Laguerre quadrature on a semi-infinite interval, using adjusted weights.
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KEY ¼ 4
Gauss–Hermite quadrature on an infinite interval, using normal weights.

KEY ¼ �4
Gauss–Hermite quadrature on an infinite interval, using adjusted weights.

KEY ¼ �5
Rational Gauss quadrature on a semi-infinite interval, using adjusted weights.

Constraint: KEY ¼ 0, 3, �3, 4, �4 or �5.

2: A – REAL (KIND=nag_wp) Input
3: B – REAL (KIND=nag_wp) Input

On entry: the quantities a and b as described in the appropriate sub-section of Section 3.

Constraints:

Rational Gauss: Aþ B 6¼ 0:0;
Gauss–Laguerre: B 6¼ 0:0;
Gauss–Hermite: B > 0.

4: N – INTEGER Input

On entry: n, the number of weights and abscissae to be returned.

Constraint: N ¼ 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 48 or 64.

Note: if n > 0 and is not a member of the above list, the maxmium value of n stored below n
will be used, and all subsequent elements of ABSCIS and WEIGHT will be returned as zero.

5: WEIGHTðNÞ – REAL (KIND=nag_wp) array Output

On exit: the N weights.

6: ABSCISðNÞ – REAL (KIND=nag_wp) array Output

On exit: the N abscissae.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The N-point rule is not among those stored.
On entry: N ¼ valueh i.
N-rule used: N ¼ valueh i.
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IFAIL ¼ 2

Underflow occurred in calculation of normal weights.
Reduce N or use adjusted weights: N ¼ valueh i.

IFAIL ¼ 3

No nonzero weights were generated for the provided parameters.

IFAIL ¼ 11

On entry, KEY ¼ valueh i.
Constraint: KEY ¼ 0, 3, �3, 4, �4 or �5.

IFAIL ¼ 12

The value of A and/or B is invalid for the chosen KEY. Either:

The value of A and/or B is invalid for Gauss-Hermite quadrature.
On entry, KEY ¼ valueh i.
On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: B > 0:0.

The value of A and/or B is invalid for Gauss-Laguerre quadrature.
On entry, KEY ¼ valueh i.
On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: Bj j > 0:0.

The value of A and/or B is invalid for rational Gauss quadrature.
On entry, KEY ¼ valueh i.
On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: Aþ Bj j > 0:0.

IFAIL ¼ 14

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The weights and abscissae are stored for standard values of A and B to full machine accuracy.

8 Parallelism and Performance

D01TBF is not threaded in any implementation.
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9 Further Comments

Timing is negligible.

10 Example

This example returns the abscissae and (adjusted) weights for the six-point Gauss–Laguerre formula.

10.1 Program Text

Program d01tbfe

! D01TBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d01tbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 6, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b
Integer :: ifail, j, key

! .. Local Arrays ..
Real (Kind=nag_wp) :: abscis(n), weight(n)

! .. Executable Statements ..
Write (nout,*) ’D01TBF Example Program Results’

a = 0.0E0_nag_wp
b = 1.0E0_nag_wp

key = -3
ifail = 0
Call d01tbf(key,a,b,n,weight,abscis,ifail)

Write (nout,*)
Write (nout,99998) ’Laguerre formula,’, n, ’ points’
Write (nout,*)
Write (nout,*) ’ Abscissae Weights’
Write (nout,*)
Write (nout,99999)(abscis(j),weight(j),j=1,n)

99999 Format (1X,2E15.6)
99998 Format (1X,A,I3,A)

End Program d01tbfe

10.2 Program Data

None.

10.3 Program Results

D01TBF Example Program Results

Laguerre formula, 6 points

Abscissae Weights

0.222847E+00 0.573536E+00
0.118893E+01 0.136925E+01
0.299274E+01 0.226068E+01
0.577514E+01 0.335052E+01
0.983747E+01 0.488683E+01
0.159829E+02 0.784902E+01
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NAG Library Routine Document

D01TDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01TDF computes the weights and abscissae of a Gaussian quadrature rule using the method of Golub
and Welsch.

2 Specification

SUBROUTINE D01TDF (N, A, B, C, MUZERO, WEIGHT, ABSCIS, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) A(N), B(N), C(N), MUZERO, WEIGHT(N), ABSCIS(N)

3 Description

A tri-diagonal system of equations is formed from the coefficients of an underlying three-term
recurrence formula:

p jð Þ xð Þ ¼ a jð Þxþ b jð Þð Þp j� 1ð Þ xð Þ � c jð Þp j� 2ð Þ xð Þ

for a set of othogonal polynomials p jð Þ induced by the quadrature. This is described in greater detail in
the D01 Chapter Introduction. The user is required to specify the three-term recurrence and the value of
the integral of the chosen weight function over the chosen interval.

As described in Golub and Welsch (1969) the abscissae are computed from the eigenvalues of this
matrix and the weights from the first component of the eigenvectors.

LAPACK routines are used for the linear algebra to speed up computation.

4 References

Golub G H and Welsch J H (1969) Calculation of Gauss quadrature rules Math. Comput. 23 221–230

5 Arguments

1: N – INTEGER Input

On entry: n, the number of Gauss points required. The resulting quadrature rule will be exact for
all polynomials of degree 2n� 1.

Constraint: N > 0.

2: AðNÞ – REAL (KIND=nag_wp) array Input

On entry: A contains the coefficients a jð Þ.

3: BðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: B contains the coefficients b jð Þ.
On exit: elements of B are altered to make the underlying eigenvalue problem symmetric.

4: CðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: C contains the coefficients c jð Þ.
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On exit: elements of C are altered to make the underlying eigenvalue problem symmetric.

5: MUZERO – REAL (KIND=nag_wp) Input

On entry: MUZERO contains the definite integral of the weight function for the interval of
interest.

6: WEIGHTðNÞ – REAL (KIND=nag_wp) array Output

On exit: WEIGHT jð Þ contains the weight corresponding to the jth abscissa.

7: ABSCISðNÞ – REAL (KIND=nag_wp) array Output

On exit: ABSCIS jð Þ the jth abscissa.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The number of weights and abscissae requested (N) is less than 1: N ¼ valueh i.

IFAIL ¼ 4

Unexpected failure in eigenvalue computation. Please contact NAG.

IFAIL ¼ 5

The algorithm failed to converge. The ith diagonal was not zero: i ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

In general the computed weights and abscissae are accurate to a reasonable multiple of machine
precision.

8 Parallelism and Performance

D01TDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D01TDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The weight function must be non-negative to obtain sensible results. This and the validity of MUZERO
are not something that the routine can check, so please be particularly careful. If possible check the
computed weights and abscissae by integrating a function with a function for which you already know
the integral.

10 Example

This example program generates the weights and abscissae for the 4-point Gauss rules: Legendre,
Chebyshev1, Chebyshev2, Jacobi, Laguerre and Hermite.

10.1 Program Text

! D01TDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01tdfe_mod

! D01TDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: basic_types

! .. Parameters ..
Integer, Parameter, Public :: chebyshev1 = 2, chebyshev2 = 3, &

hermite = 6, jacobi = 4, &
laguerre = 5, legendre = 1

Contains
Subroutine basic_types(rulekind,alpha,beta,n,a,b,c,muzero)

! This procedure supplies the coefficients of the three term
! recurrence relationship for various classical orthogonal
! polynomials.

! .. Use Statements ..
Use nag_library, Only: s14aaf, x01aaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: alpha, beta
Real (Kind=nag_wp), Intent (Out) :: muzero
Integer, Intent (In) :: n, rulekind

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: a(1:n), b(1:n), c(1:n)

! .. Local Scalars ..
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Real (Kind=nag_wp) :: abl, mypi
Integer :: i, ifail

! .. Intrinsic Procedures ..
Intrinsic :: real, sqrt

! .. Executable Statements ..
mypi = x01aaf(mypi)

Select Case (rulekind)

Case (legendre)
muzero = 2.0_nag_wp

! P(x) in [-1, 1), w(x) = 1.0
Do i = 1, n

a(i) = (real(2*i-1,kind=nag_wp))/real(i,kind=nag_wp)
b(i) = 0.0_nag_wp
c(i) = real(i-1,kind=nag_wp)/real(i,kind=nag_wp)

End Do

Case (chebyshev1)

muzero = mypi
! c(i)= (i-1)/i
! T (x) in [-1,1], w(x) = (1-x**2)**(-0.5)

Do i = 1, n
a(i) = 2.0_nag_wp
b(i) = 0.0_nag_wp
c(i) = 1.0_nag_wp

End Do
If (n>0) Then

a(1) = 1.0_nag_wp
End If

Case (chebyshev2)

muzero = mypi/2.0_nag_wp
! u(x) in [-1, 11, W(x) = (1-x**2)** 0.5;

Do i = 1, n
a(i) = 2.0_nag_wp
b(i) = 0.0_nag_wp
c(i) = 1.0_nag_wp

End Do

Case (jacobi)
ifail = 0
muzero = 2**(alpha+beta+1)*s14aaf(alpha+1,ifail)* &

s14aaf(beta+1,ifail)/s14aaf(alpha+beta+2,ifail)
! P(alpha,beta)(x) in [-1, 11, w(x) = (1-x)**alpha*(l+x)**beta
! alpha> -1 and beta > -1

If (n>0) Then
a(1) = 0.5_nag_wp*(alpha+beta+2)
b(1) = 0.5_nag_wp*(alpha-beta)
c(1) = 0.0_nag_wp

End If
Do i = 2, n

abl = 2.0_nag_wp*real(i,kind=nag_wp)*(real(i,kind=nag_wp)+alpha+ &
beta)

a(i) = (2.0_nag_wp*real(i,kind=nag_wp)+alpha+beta-1.0_nag_wp)* &
(2.0_nag_wp*real(i,kind=nag_wp)+alpha+beta)/abl

abl = (2.0_nag_wp*real(i,kind=nag_wp)+alpha+beta-2.0_nag_wp)*abl
b(i) = (2.0_nag_wp*real(i,kind=nag_wp)+alpha+beta-1.0_nag_wp)* &

(alpha**2-beta**2)/abl
c(i) = 2.0_nag_wp*(real(i,kind=nag_wp)-1.0_nag_wp+alpha)* &

(real(i,kind=nag_wp)-1.0_nag_wp+beta)* &
(2.0_nag_wp*real(i,kind=nag_wp)+alpha+beta)/abl

End Do

Case (laguerre)
ifail = 0
muzero = s14aaf(alpha+1.0_nag_wp,ifail)

! L(alpha)(x) in [0, infinity), w(x) = exp(-x)*x**alpha,
! alpha > -1
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Do i = 1, n
a(i) = -1.0_nag_wp/real(i,kind=nag_wp)
b(i) = (2.0_nag_wp*real(i,kind=nag_wp)-1.0_nag_wp+alpha)/ &

real(i,kind=nag_wp)
c(i) = (real(i,kind=nag_wp)-1.0_nag_wp+alpha)/real(i,kind=nag_wp)

End Do

Case (hermite)
muzero = sqrt(mypi)

! H(x) in (-infinity,+infinity), w(x) = exp(-x**2)
Do i = 1, n

a(i) = 2.0_nag_wp
b(i) = 0.0_nag_wp
c(i) = 2.0_nag_wp*real(i-1,kind=nag_wp)

End Do

End Select
End Subroutine basic_types

End Module d01tdfe_mod

Program d01tdfe
! D01TDF Example Program Text

! .. Use Statements ..
Use nag_library, Only: d01tdf, nag_wp
Use d01tdfe_mod, Only: basic_types, chebyshev1, chebyshev2, hermite, &

jacobi, laguerre, legendre
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: n = 4, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: alpha, beta, muzero
Integer :: ifail, j, rule

! .. Local Arrays ..
Real (Kind=nag_wp) :: a(1:n), b(1:n), c(1:n), t(1:n), &

w(1:n)
! .. Executable Statements ..

Write (nout,*) ’D01TDF Example Program Results ’
Write (6,*)
rule = legendre
Do rule = 1, 6

ifail = -1

Select Case (rule)

Case (legendre)
Call basic_types(rule,alpha,beta,n,a,b,c,muzero)
Write (nout,*) ’Using the Gauss-Legendre Rule’
Call d01tdf(n,a,b,c,muzero,w,t,ifail)
If (ifail==0) Then

Write (nout,99998)
Write (nout,99997)(j,t(j),w(j),j=1,n)
Write (6,*)

End If

Case (chebyshev1)
Call basic_types(rule,alpha,beta,n,a,b,c,muzero)
Write (nout,*) ’Using the Chebyshev Rule 1’
Call d01tdf(n,a,b,c,muzero,w,t,ifail)
If (ifail==0) Then

Write (nout,99998)
Write (nout,99997)(j,t(j),w(j),j=1,n)
Write (6,*)

End If

Case (chebyshev2)
Call basic_types(rule,alpha,beta,n,a,b,c,muzero)
Write (nout,*) ’Using the Chebyshev Rule 2’
Call d01tdf(n,a,b,c,muzero,w,t,ifail)
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If (ifail==0) Then
Write (nout,99998)
Write (nout,99997)(j,t(j),w(j),j=1,n)
Write (6,*)

End If

Case (jacobi)
alpha = 0.5_nag_wp
beta = 0.5_nag_wp
Call basic_types(rule,alpha,beta,n,a,b,c,muzero)
Write (nout,99999) alpha, beta
Call d01tdf(n,a,b,c,muzero,w,t,ifail)
If (ifail==0) Then

Write (nout,99998)
Write (nout,99997)(j,t(j),w(j),j=1,n)
Write (6,*)

End If

Case (laguerre)
Call basic_types(rule,alpha,beta,n,a,b,c,muzero)
Write (nout,*) ’Using the Laguerre Rule’
Call d01tdf(n,a,b,c,muzero,w,t,ifail)
If (ifail==0) Then

Write (nout,99998)
Write (nout,99997)(j,t(j),w(j),j=1,n)
Write (6,*)

End If

Case (hermite)
Call basic_types(rule,alpha,beta,n,a,b,c,muzero)
Write (nout,*) ’Using the Hermite Rule’
Call d01tdf(n,a,b,c,muzero,w,t,ifail)
If (ifail==0) Then

Write (nout,99998)
Write (nout,99997)(j,t(j),w(j),j=1,n)
Write (6,*)

End If

End Select

End Do
99999 Format (’ Using the Jacobi Rule: alpha = ’,F10.5,’ beta = ’,F10.5)

99998 Format (/,’ j ’,’ Abscissa ’,’ Weight’)
99997 Format (I8,D25.15,D25.15)

End Program d01tdfe

10.2 Program Data

None.

10.3 Program Results

D01TDF Example Program Results

Using the Gauss-Legendre Rule

j Abscissa Weight
1 -0.861136311594053D+00 0.347854845137454D+00
2 -0.339981043584856D+00 0.652145154862546D+00
3 0.339981043584856D+00 0.652145154862546D+00
4 0.861136311594052D+00 0.347854845137454D+00

Using the Chebyshev Rule 1

j Abscissa Weight
1 -0.923879532511287D+00 0.785398163397449D+00
2 -0.382683432365090D+00 0.785398163397447D+00
3 0.382683432365090D+00 0.785398163397449D+00
4 0.923879532511287D+00 0.785398163397450D+00
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Using the Chebyshev Rule 2

j Abscissa Weight
1 -0.809016994374947D+00 0.217078713422706D+00
2 -0.309016994374947D+00 0.568319449974742D+00
3 0.309016994374948D+00 0.568319449974742D+00
4 0.809016994374947D+00 0.217078713422706D+00

Using the Jacobi Rule: alpha = 0.50000 beta = 0.50000

j Abscissa Weight
1 -0.809016994374947D+00 0.217078713422706D+00
2 -0.309016994374947D+00 0.568319449974742D+00
3 0.309016994374947D+00 0.568319449974742D+00
4 0.809016994374947D+00 0.217078713422706D+00

Using the Laguerre Rule

j Abscissa Weight
1 0.523526076738269D+00 0.453008746558608D+00
2 0.215664876326909D+01 0.381616960171800D+00
3 0.513738754617671D+01 0.507946275722408D-01
4 0.101824376138159D+02 0.806591150110031D-03

Using the Hermite Rule

j Abscissa Weight
1 -0.165068012388578D+01 0.813128354472451D-01
2 -0.524647623275290D+00 0.804914090005513D+00
3 0.524647623275290D+00 0.804914090005512D+00
4 0.165068012388578D+01 0.813128354472453D-01
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NAG Library Routine Document

D01TEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

Given the 2nþ l moments of the weight function, D01TEF generates the recursion coefficients needed
by D01TDF to calculate a Gaussian quadrature rule.

2 Specification

SUBROUTINE D01TEF (N, MU, A, B, C, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) MU(0:2*N), A(N), B(N), C(N)

3 Description

D01TEF should only be used if the three-term recurrence cannot be determined analytically. A system
of equations are formed, using the moments provided. This set of equations becomes ill-conditioned for
moderate values of n, the number of abscissae and weights required. In most implementations
quadruple precision calculation is used to maintain as much accuracy as possible.

4 References

Golub G H and Welsch J H (1969) Calculation of Gauss quadrature rules Math. Comput. 23 221–230

5 Arguments

1: N – INTEGER Input

On entry: n, the number of weights and abscissae required.

Constraint: N > 0.

2: MUð0 : 2 � NÞ – REAL (KIND=nag_wp) array Input

On entry: MU ið Þ must contain the value of the moment with respect to xi i.e.,
R
w xð Þxi dx, for

i ¼ 0; 1; . . . ; 2n.

3: AðNÞ – REAL (KIND=nag_wp) array Output

On exit: values helping define the three term recurrence used by D01TDF.

4: BðNÞ – REAL (KIND=nag_wp) array Output

On exit: values helping define the three term recurrence used by D01TDF.

5: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: values helping define the three term recurrence used by D01TDF.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The number of weights and abscissae requested (N) is less than 1: N ¼ valueh i.

IFAIL ¼ 2

The problem is too ill conditioned, it breaks down at row valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Internally quadruple precision is used to minimize loss of accuracy as much as possible.

8 Parallelism and Performance

D01TEF is not threaded in any implementation.

9 Further Comments

Because the routine cannot check the validity of all the data presented, the user is advised to
independently check the result, perhaps by integrating a function whose integral is known, using
D01TEF and subsequently D01TDF, to compare answers.

10 Example

This example program uses D01TEF and moments to calculate a three-term recurrence relationship
appropriate for Gauss–Legendre quadrature. It then uses the recurrence relationship to derive the
weights and abscissae by calling D01TDF.
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10.1 Program Text

Program d01tefe
! D01TEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d01tdf, d01tef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 4, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: muzero
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: a(1:n), abscissae(1:n), b(1:n), &

c(1:n), mu(0:2*n), weights(1:n)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Write (nout,*) ’D01TEF Example Program Results’
Do i = 0, 2*n

mu(i) = 0.0_nag_wp
End Do
Do i = 0, 2*n, 2

mu(i) = 2.0_nag_wp/real(i+1,kind=nag_wp)
End Do

ifail = 0
Call d01tef(n,mu,a,b,c,ifail)
muzero = mu(0)
Write (nout,*)
Write (nout,*) ’ a b c’
Write (nout,99999)(a(i),b(i),c(i),i=1,n)

99999 Format (1X,3F10.5)

ifail = 0
Call d01tdf(n,a,b,c,muzero,weights,abscissae,ifail)
Write (nout,*)
Write (6,*) ’ weights abscissae ’
Write (6,99998)(weights(i),abscissae(i),i=1,4)
Write (nout,*)

99998 Format (1X,F10.5,5X,F10.5)
End Program d01tefe

10.2 Program Data

None.

10.3 Program Results

D01TEF Example Program Results

a b c
-1.73205 0.00000 1.73205
-1.93649 0.00000 1.11803
-1.97203 0.00000 1.01835
-1.00000 0.00000 0.50709

weights abscissae
0.34785 -0.86114
0.65215 -0.33998
0.65215 0.33998
0.34785 0.86114
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NAG Library Routine Document

D01UAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01UAF computes an estimate of the definite integral of a function of known analytical form, using a
Gaussian quadrature formula with a specified number of abscissae. Formulae are provided for a finite
interval (Gauss–Legendre), a semi-infinite interval (Gauss–Laguerre, rational Gauss), and an infinite
interval (Gauss–Hermite).

2 Specification

SUBROUTINE D01UAF (KEY, A, B, N, F, DINEST, IUSER, RUSER, IFAIL)

INTEGER KEY, N, IUSER(*), IFAIL
REAL (KIND=nag_wp) A, B, DINEST, RUSER(*)
EXTERNAL F

3 Description

3.1 General

D01UAF evaluates an estimate of the definite integral of a function f xð Þ, over a finite or infinite range,
by n-point Gaussian quadrature (see Davis and Rabinowitz (1975), FrÎberg (1970), Ralston (1965) or
Stroud and Secrest (1966)). The integral is approximated by a summation of the product of a set of
weights and a set of function evaluations at a corresponding set of abscissae xi. For adjusted weights,
the function values correspond to the values of the integrand f , and hence the sum will beXn

i¼1
wif xið Þ

where the wi are called the weights, and the xi the abscissae. A selection of values of n is available.
(See Section 5.)

Where applicable, normal weights may instead be used, in which case the corresponding weight
function ! is factored out of the integrand as f xð Þ ¼ ! xð Þg xð Þ and hence the sum will beXn

i¼�1
�wig xð Þ;

where the normal weights �wi ¼ wi! xið Þ are computed internally.

D01UAF uses a vectorized F to evaluate the integrand or normalized integrand at a set of abscissae, xi,
for i ¼ 1; 2; . . . ; nx. If adjusted weights are used, the integrand f xið Þ must be evaluated otherwise the
normalized integrand g xið Þ must be evaluated.

3.2 Both Limits Finite Z b

a

f xð Þ dx:

The Gauss–Legendre weights and abscissae are used, and the formula is exact for any function of the
form:
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f xð Þ ¼
X2n�1
i¼0

cix
i:

The formula is appropriate for functions which can be well approximated by such a polynomial over
a; b½ �. It is inappropriate for functions with algebraic singularities at one or both ends of the interval,

such as 1þ xð Þ�1=2 on �1; 1½ �.

3.3 One Limit Infinite Z 1
a

f xð Þ dx or
Z a

�1
f xð Þ dx:

Two quadrature formulae are available for these integrals.

(a) The Gauss–Laguerre formula is exact for any function of the form:

f xð Þ ¼ e�bx
X2n�1
i¼0

cix
i:

This formula is appropriate for functions decaying exponentially at infinity; the argument b should
be chosen if possible to match the decay rate of the function.

If the adjusted weights are selected, the complete integrand f xð Þ should be provided through F.

If the normal form is selected, the contribution of e�bx is accounted for internally, and F should
only return g xð Þ, where f xð Þ ¼ e�bxg xð Þ.
If b < 0 is supplied, the interval of integration will be a;1½ Þ. Otherwise if b > 0 is supplied, the
interval of integration will be �1; að �.

(b) The rational Gauss formula is exact for any function of the form:

f xð Þ ¼
X2nþ1
i¼2

ci

xþ bð Þi
¼

X2n�1
i¼0

c2nþ1�i xþ bð Þi

xþ bð Þ2nþ1
:

This formula is likely to be more accurate for functions having only an inverse power rate of decay
for large x. Here the choice of a suitable value of b may be more difficult; unfortunately a poor
choice of b can make a large difference to the accuracy of the computed integral.

Only the adjusted form of the rational Gauss formula is available, and as such, the complete
integrand f xð Þ must be supplied in F.

If aþ b < 0, the interval of integration will be a;1½ Þ. Otherwise if aþ b > 0, the interval of
integration will be �1; að �.

3.4 Both Limits Infinite Z þ1
�1

f xð Þ dx:

The Gauss–Hermite weights and abscissae are used, and the formula is exact for any function of the
form:

f xð Þ ¼ e�b x�að Þ2
X2n�1
i¼0

cix
i;
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where b > 0. Again, for general functions not of this exact form, the argument b should be chosen to
match if possible the decay rate at 
1.

If the adjusted weights are selected, the complete integrand f xð Þ should be provided through F.

If the normal form is selected, the contribution of e�b x�að Þ2 is accounted for internally, and F should

only return g xð Þ, where f xð Þ ¼ e�b x�að Þ2g xð Þ.

4 References

Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press

FrÎberg C E (1970) Introduction to Numerical Analysis Addison–Wesley

Ralston A (1965) A First Course in Numerical Analysis pp. 87–90 McGraw–Hill

Stroud A H and Secrest D (1966) Gaussian Quadrature Formulas Prentice–Hall

5 Arguments

1: KEY – INTEGER Input

On entry: indicates the quadrature formula.

KEY ¼ 0
Gauss–Legendre quadrature on a finite interval, using normal weights.

KEY ¼ 3
Gauss–Laguerre quadrature on a semi-infinite interval, using normal weights.

KEY ¼ �3
Gauss–Laguerre quadrature on a semi-infinite interval, using adjusted weights.

KEY ¼ 4
Gauss–Hermite quadrature on an infinite interval, using normal weights.

KEY ¼ �4
Gauss–Hermite quadrature on an infinite interval, using adjusted weights.

KEY ¼ �5
Rational Gauss quadrature on a semi-infinite interval, using adjusted weights.

Constraint: KEY ¼ 0, 3, �3, 4, �4 or �5.

2: A – REAL (KIND=nag_wp) Input
3: B – REAL (KIND=nag_wp) Input

On entry: the quantities a and b as described in the appropriate subsection of Section 3.

Constraints:

Rational Gauss: Aþ B 6¼ 0:0;
Gauss–Laguerre: B 6¼ 0:0;
Gauss–Hermite: B > 0.

4: N – INTEGER Input

On entry: n, the number of abscissae to be used.

Constraint: N ¼ 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 48 or 64.

If the soft fail option is used, the answer is evaluated for the largest valid value of N less than the
requested value.

5: F – SUBROUTINE, supplied by the user. External Procedure

F must return the value of the integrand f , or the normalized integrand g, at a specified point.
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The specification of F is:

SUBROUTINE F (X, NX, FV, IFLAG, IUSER, RUSER)

INTEGER NX, IFLAG, IUSER(*)
REAL (KIND=nag_wp) X(NX), FV(NX), RUSER(*)

1: XðNXÞ – REAL (KIND=nag_wp) array Input

On entry: the abscissae, xi, for i ¼ 1; 2; . . . ; nx at which function values are required.

2: NX – INTEGER Input

On entry: nx, the number of abscissae.

3: FVðNXÞ – REAL (KIND=nag_wp) array Output

On exit: if adjusted weights are used, the values of the integrand f . FVðiÞ ¼ f xið Þ, for
i ¼ 1; 2; . . . ; nx.

Otherwise the values of the normalized integrand g. FVðiÞ ¼ g xið Þ, for i ¼ 1; 2; . . . ; nx.

4: IFLAG – INTEGER Input/Output

On entry: IFLAG ¼ 0.

On exit: set IFLAG < 0 if you wish to force an immediate exit from D01UAF with
IFAIL ¼ �1.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to D01UAF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01UAF is called. Arguments denoted as Input must not be changed by
this procedure.

Some points to bear in mind when coding F are mentioned in Section 7.

6: DINEST – REAL (KIND=nag_wp) Output

On exit: the estimate of the definite integral.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D01UAF, but are passed directly to F and should be used to
pass information to this routine.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D01UAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The n-point rule is not among those stored.
On entry: N ¼ valueh i.
n-point rule used: N ¼ valueh i.

IFAIL ¼ 2

Underflow occurred in calculation of normal weights.
Reduce N or use adjusted weights: N ¼ valueh i.

IFAIL ¼ 3

No nonzero weights were generated for the provided parameters.

IFAIL ¼ 11

On entry, KEY ¼ valueh i.
Constraint: KEY ¼ 0, 3, �3, 4, �4 or �5.

IFAIL ¼ 12

The value of A and/or B is invalid for the chosen KEY. Either:

The value of A and/or B is invalid.
On entry, KEY ¼ valueh i.
On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: Aþ Bj j > 0:0.

The value of A and/or B is invalid.
On entry, KEY ¼ valueh i.
On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: Bj j > 0:0.

The value of A and/or B is invalid.
On entry, KEY ¼ valueh i.
On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: B > 0:0.

IFAIL ¼ 14

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ �1
Exit requested from F with IFLAG ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

D01 – Quadrature D01UAF

Mark 26 D01UAF.5



IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy depends on the behaviour of the integrand, and on the number of abscissae used. No tests
are carried out in D01UAF to estimate the accuracy of the result. If such an estimate is required, the
routine may be called more than once, with a different number of abscissae each time, and the answers
compared. It is to be expected that for sufficiently smooth functions a larger number of abscissae will
give improved accuracy.

Alternatively, the range of integration may be subdivided, the integral estimated separately for each
sub-interval, and the sum of these estimates compared with the estimate over the whole range.

The coding of F may also have a bearing on the accuracy. For example, if a high-order Gauss–Laguerre
formula is used, and the integrand is of the form

f xð Þ ¼ e�bxg xð Þ

it is possible that the exponential term may underflow for some large abscissae. Depending on the
machine, this may produce an error, or simply be assumed to be zero. In any case, it would be better to
evaluate the expression with

f xð Þ ¼ sgn g xð Þð Þ � exp �bxþ ln g xð Þj jð Þ

Another situation requiring care is exemplified byZ þ1
�1

e�x
2
xm dx ¼ 0; m odd:

The integrand here assumes very large values; for example, when m ¼ 63, the peak value exceeds
3� 1033. Now, if the machine holds floating-point numbers to an accuracy of k significant decimal
digits, we could not expect such terms to cancel in the summation leaving an answer of much less than
1033�k (the weights being of order unity); that is, instead of zero we obtain a rather large answer
through rounding error. Such situations are characterised by great variability in the answers returned by
formulae with different values of n.

In general, you should be aware of the order of magnitude of the integrand, and should judge the
answer in that light.

8 Parallelism and Performance

D01UAF is currently neither directly nor indirectly threaded. In particular, the user-supplied argument F
is not called from within a parallel region initialized inside D01UAF.

The user-supplied argument F uses a vectorized interface, allowing for the required vector of function
values to be evaluated in parallel; for example by placing appropriate OpenMP directives in the code
for the user-supplied argument F.

9 Further Comments

The time taken by D01UAF depends on the complexity of the expression for the integrand and on the
number of abscissae required.
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10 Example

This example evaluates the integrals Z 1

0

4

1þ x2 dx ¼ 	

by Gauss–Legendre quadrature; Z 1
2

1

x2 lnx
dx ¼ 0:378671

by rational Gauss quadrature with b ¼ 0;Z 1
2

e�x

x
dx ¼ 0:048901

by Gauss–Laguerre quadrature with b ¼ 1; andZ þ1
�1

e�3x
2�4x�1 dx ¼

Z þ1
�1

e�3 xþ1ð Þ2e2xþ2dx ¼ 1:428167

by Gauss–Hermite quadrature with a ¼ �1 and b ¼ 3.

The formulae with n ¼ 2; 4; 8; 16; 32 and 64 are used in each case. Both adjusted and normal weights
are used for Gauss–Laguerre and Gauss–Hermite quadrature.

10.1 Program Text

! D01UAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d01uafe_mod

! D01UAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: d01uaf_f

! .. Parameters ..
Integer, Parameter, Public :: i_funid = 1
Integer, Parameter, Public :: liuser = i_funid
Integer, Parameter, Public :: lruser = 1

Contains
Subroutine d01uaf_f(x,nx,fv,iflag,iuser,ruser)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: nx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fv(nx)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(nx)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: exp, log

! .. Executable Statements ..
Select Case (iuser(i_funid))
Case (1)

fv = 4.0E0_nag_wp/(1.0E0_nag_wp+x*x)
Case (2)

fv = 1.0E0_nag_wp/(x*x*log(x))
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Case (3)
fv = exp(-x)/x

Case (4)
fv = 1.0E0_nag_wp/x

Case (5)
fv = exp(-3.0E0_nag_wp*x*x-4.0E0_nag_wp*x-1.0E0_nag_wp)

Case (6)
fv = exp(2.0E0_nag_wp*x+2.0E0_nag_wp)

Case Default
iflag = -1

End Select
End Subroutine d01uaf_f

End Module d01uafe_mod
Program d01uafe

! D01UAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d01uaf, nag_wp
Use d01uafe_mod, Only: d01uaf_f, i_funid, liuser, lruser

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, dinest
Integer :: funid, i, ifail, key, nstor

! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(lruser)
Integer :: iuser(liuser)

! .. Executable Statements ..
Write (nout,*) ’D01UAF Example Program Results’

cases: Do funid = 1, 6
Write (nout,*)
Select Case (funid)
Case (1)

Write (nout,*) ’Gauss-Legendre example’
a = 0.0_nag_wp
b = 1.0_nag_wp
key = 0

Case (2)
Write (nout,*) ’Rational Gauss example’
a = 2.0_nag_wp
b = 0.0_nag_wp
key = -5

Case (3)
Write (nout,*) ’Gauss-Laguerre example (adjusted weights)’
a = 2.0_nag_wp
b = 1.0_nag_wp
key = -3

Case (4)
Write (nout,*) ’Gauss-Laguerre example (normal weights)’
a = 2.0_nag_wp
b = 1.0_nag_wp
key = 3

Case (5)
Write (nout,*) ’Gauss-Hermite example (adjusted weights)’
a = -1.0_nag_wp
b = 3.0_nag_wp
key = -4

Case (6)
Write (nout,*) ’Gauss-Hermite example (normal weights)’
a = -1.0_nag_wp
b = 3.0_nag_wp
key = 4

End Select
iuser(i_funid) = funid

Do i = 1, 6
nstor = 2**(i)
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ifail = -1
Call d01uaf(key,a,b,nstor,d01uaf_f,dinest,iuser,ruser,ifail)
Select Case (ifail)
Case (:-1)

! Error flag returned by d01uaf_f
Exit cases

Case (0,1)
! The definite integral has been estimated.

Write (nout,99999) nstor, dinest
Case Default

! Illegal parameters on entry to d01uaf
Exit cases

End Select
End Do
Write (nout,*)

End Do cases

99999 Format (1X,I5,’ Points Answer = ’,F10.5)
End Program d01uafe

10.2 Program Data

None.

10.3 Program Results

D01UAF Example Program Results

Gauss-Legendre example
2 Points Answer = 3.14754
4 Points Answer = 3.14161
8 Points Answer = 3.14159

16 Points Answer = 3.14159
32 Points Answer = 3.14159
64 Points Answer = 3.14159

Rational Gauss example
2 Points Answer = 0.37989
4 Points Answer = 0.37910
8 Points Answer = 0.37876

16 Points Answer = 0.37869
32 Points Answer = 0.37867
64 Points Answer = 0.37867

Gauss-Laguerre example (adjusted weights)
2 Points Answer = 0.04833
4 Points Answer = 0.04887
8 Points Answer = 0.04890

16 Points Answer = 0.04890
32 Points Answer = 0.04890
64 Points Answer = 0.04890

Gauss-Laguerre example (normal weights)
2 Points Answer = 0.04833
4 Points Answer = 0.04887
8 Points Answer = 0.04890

16 Points Answer = 0.04890
32 Points Answer = 0.04890
64 Points Answer = 0.04890

Gauss-Hermite example (adjusted weights)
2 Points Answer = 1.38381
4 Points Answer = 1.42803
8 Points Answer = 1.42817

16 Points Answer = 1.42817
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32 Points Answer = 1.42817
64 Points Answer = 1.42817

Gauss-Hermite example (normal weights)
2 Points Answer = 1.38381
4 Points Answer = 1.42803
8 Points Answer = 1.42817

16 Points Answer = 1.42817
32 Points Answer = 1.42817
64 Points Answer = 1.42817

D01UAF NAG Library Manual

D01UAF.10 (last) Mark 26



NAG Library Routine Document

D01UBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01UBF returns the Gaussian quadrature approximation for the specific problemZ 1
0

exp �x2
� �

f xð Þ dx. The degrees of precision catered for are: 1, 3, 5, 7, 9, 19, 29, 39 and 49,

corresponding to values of n ¼ 1, 2, 3, 4, 5, 10, 15, 20 and 25, where n is the number of weights.

2 Specification

SUBROUTINE D01UBF (FUN, N, ANS, IUSER, RUSER, IFAIL)

INTEGER N, IUSER(*), IFAIL
REAL (KIND=nag_wp) ANS, RUSER(*)
EXTERNAL FUN

3 Description

D01UBF uses the weights wi and the abscissae xi such that
Z 1
0

exp �x2
� �

f xð Þ is approximated byXn
i¼1
wif xið Þ to maximum precision i.e., it is exact when f xð Þ is a polynomial of degree 2n� 1.

4 References

Golub G H and Welsch J H (1969) Calculation of Gauss quadrature rules Math. Comput. 23 221–230

5 Arguments

1: FUN – SUBROUTINE, supplied by the user. External Procedure

FUN must return the integrands f xið Þ in F ið Þ for each xi in X ið Þ, for i ¼ 1; 2; . . . ;N at a given
point.

The specification of FUN is:

SUBROUTINE FUN (X, F, N, IUSER, RUSER, ISTOP)

INTEGER N, IUSER(*), ISTOP
REAL (KIND=nag_wp) X(N), F(N), RUSER(*)

1: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the points at which the integrand function f must be evaluated.

2: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: F ið Þ must contain the value of the integrand f xið Þ evaluated at the point X ið Þ,
for i ¼ 1; 2; . . . ;N.

3: N – INTEGER Input

On entry: N specifies the number of weights and abscissae to be used.
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4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FUN is called with the arguments IUSER and RUSER as supplied to D01UBF. You
should use the arrays IUSER and RUSER to supply information to FUN.

6: ISTOP – INTEGER Input/Output

On entry: ISTOP ¼ 0.

On exit: you may set ISTOP to a negative number if at any time it is impossible to
evaluate the function f xð Þ. In this case D01UBF halts with IFAIL set to the value of
ISTOP and the value returned in ANS will be that of a non-signalling NaN.

FUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D01UBF is called. Arguments denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: N specifies the number of weights and abscissae to be used.

Constraint: N ¼ 1, 2, 3, 4, 5, 10, 15, 20 or 25.

3: ANS – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0, ANS contains an approximation to the integral. Otherwise, ANS will be a
non-signalling NaN.

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D01UBF, but are passed directly to FUN and should be used
to pass information to this routine.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0

The user has halted the calculation.

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: 1 � N � 25.
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IFAIL ¼ 2

On entry, N ¼ valueh i.
N is not one of the allowed values.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The weights and abscissae have been calculated using quadruple precision arithmetic.

8 Parallelism and Performance

D01UBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes an approximation to
Z 1
0

exp �x2
� �

x dx.

10.1 Program Text

! Mark 26 Release. NAG Copyright 2016.

Module d01ubfe_mod
! D01UBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fun

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Subroutine fun(x,f,n,iuser,ruser,ifail)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: ifail
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(n)
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Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
f = x

End Subroutine fun

End Module d01ubfe_mod

Program d01ubfe

! .. Use Statements ..
Use nag_library, Only: d01ubf, nag_wp
Use d01ubfe_mod, Only: fun, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: ans
Integer :: ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’D01UBF Example Program Results’
n = 10
ifail = 0
Call d01ubf(fun,n,ans,iuser,ruser,ifail)
Write (nout,*)
Write (nout,99999) ’Approximation to the integral = ’, ans

99999 Format (1X,A,F12.5)
End Program d01ubfe

10.2 Program Data

None.

10.3 Program Results

D01UBF Example Program Results

Approximation to the integral = 0.50000
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NAG Library Routine Document

D01ZKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01ZKF either initializes or resets the optional parameter arrays or sets a single optional parameter for
supported problem solving routines in Chapter D01.

2 Specification

SUBROUTINE D01ZKF (OPTSTR, IOPTS, LIOPTS, OPTS, LOPTS, IFAIL)

INTEGER IOPTS(LIOPTS), LIOPTS, LOPTS, IFAIL
REAL (KIND=nag_wp) OPTS(LOPTS)
CHARACTER(*) OPTSTR

3 Description

D01ZKF has three purposes: to initialize optional parameter arrays; to reset all optional parameters to
their default values; or to set a single optional parameter to a user-supplied value.

Optional parameters and their values are, in general, presented as a character string, OPTSTR, of the
form ‘option ¼ optval’; alphabetic characters can be supplied in either upper or lower case. Both
option and optval may consist of one or more tokens separated by white space. The tokens that
comprise optval will normally be either an integer, real or character value as defined in the description
of the specific optional argument. In addition all optional parameters can take an optval DEFAULT
which resets the optional parameter to its default value.

It is imperative that optional parameter arrays are initialized before any options are set, before the
relevant problem solving routine is called and before any options are queried using D01ZLF. To
initialize the optional parameter arrays IOPTS and OPTS for a specific problem solving routine, the
option Initialize is used with optval identifying the problem solving routine to be called, via its short
name. For example, to initialize the optional parameter arrays to be passed to D01RAF and its
associated routine D01RCF, D01ZKF is called as follows:

call D01ZKF(’Initialize = d01raf’, IOPTS, LIOPTS, OPTS, LOPTS, IFAIL)

The available option names and their corresponding valid values are given in Section 11 in D01ESF and
D01RAF.

4 References

None.
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5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option to be set.

Initialize ¼ routine name
Initialize the optional parameter arrays IOPTS and OPTS for use with routine
routine name, where routine name is the short name associated with the routine of
interest.

Defaults
Resets all options to their default values.

option ¼ optval
See Section 11 in D01ESF and D01RAF for details of valid values for option and optval.
The equals sign (¼) delimiter must be used to separate the option from its optval value.

OPTSTR is case insensitive. Each token in the option and optval component must be separated
by at least one space.

2: IOPTSðLIOPTSÞ – INTEGER array Communication Array

On entry: optional parameter array.

If OPTSTR has the form Initialize ¼ routine name, the contents of IOPTS need not be set.

Otherwise, IOPTS must not have been altered since the last call to D01ZKF, D01ZLF or the
selected problem solving routine.

On exit: dependent on the contents of OPTSTR, either an initialized, reset or updated version of
the optional parameter array.

3: LIOPTS – INTEGER Input

On entry: the length of the array IOPTS.

Constraint: unless otherwise stated in the documentation for a specific, supported, problem
solving routine, LIOPTS � 100.

4: OPTSðLOPTSÞ – REAL (KIND=nag_wp) array Communication Array

On entry: optional parameter array.

If OPTSTR has the form Initialize ¼ routine name, the contents of OPTS need not be set.

Otherwise, OPTS must not have been altered since the last call to D01ZKF, D01ZLF or the
selected problem solving routine.

On exit: dependent on the contents of OPTSTR, either an initialized, reset or updated version of
the optional parameter array.

5: LOPTS – INTEGER Input

On entry: the length of the array OPTS.

Constraint: unless otherwise stated in the documentation for a specific, supported, problem
solving routine, LOPTS � 100.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, the optional parameter in OPTSTR was not recognized: OPTSTR ¼ valueh i.

IFAIL ¼ 12

On entry, the expected delimiter ‘¼’ was not found in OPTSTR: OPTSTR ¼ valueh i.

IFAIL ¼ 13

On entry, could not convert the specified optval to an integer: OPTSTR ¼ valueh i.
On entry, could not convert the specified optval to a real: OPTSTR ¼ valueh i.

IFAIL ¼ 14

On entry, attempting to initialize the optional parameter arrays but specified routine name was
not valid: name ¼ valueh i.

IFAIL ¼ 15

On entry, the optval supplied for the integer optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 16

On entry, the optval supplied for the real optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 17

On entry, the optval supplied for the character optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 21

On entry, either the option arrays have not been initialized or they have been corrupted.

IFAIL ¼ 31

On entry, LIOPTS ¼ valueh i.
Constraint: LIOPTS � valueh i.

IFAIL ¼ 51

On entry, LOPTS ¼ valueh i.
Constraint: LOPTS � valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D01ZKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For suites of routines that share the same option arrays, the option arrays must be initialized using the
primary (driver) routine name. For example for routines D01RAF and D01RCF, the option arrays must
be initialized for D01RAF.

When encoding integer valued options in OPTSTR, the integer optval must be written as an explicit
integer. For example, "Maximum Subdivisions = 12" is acceptable, whereas "Maximum Subdivi-

sions = 12.0" and "Maximum Subdivisions = 0.12E2" are not.

When encoding real valued options in OPTSTR, the optval may be integral if appropriate. For example,
"Absolute Tolerance = 10", "Absolute Tolerance = 10.0" and "Absolute Tolerance =

1.0E1" are all acceptable.

10 Example

See the example programs associated with the problem solving routine you wish to use for a
demonstration of how to use D01ZKF to initialize option arrays and set options.
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NAG Library Routine Document

D01ZLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D01ZLF is used to query the current value associated with an optional parameter for D01ESF and
D01RAF.

2 Specification

SUBROUTINE D01ZLF (OPTSTR, IVALUE, RVALUE, CVALUE, OPTYPE, IOPTS, OPTS,
IFAIL)

&

INTEGER IVALUE, OPTYPE, IOPTS(*), IFAIL
REAL (KIND=nag_wp) RVALUE, OPTS(*)
CHARACTER(*) OPTSTR, CVALUE

3 Description

D01ZLF is used to query the current value associated with optional parameters. It is necessary to
initialize optional parameter arrays, IOPTS and OPTS, using D01ZKF before any optional parameters
are queried.

D01ZLF will normally return either an integer, real or character value dependent upon the type
associated with the optional parameter being queried. Some real and integer optional parameters also
return additional information in CVALUE. Whether the optional parameter queried is of integer, real or
character type, and whether additional information is returned in CVALUE, is indicated by the returned
value of OPTYPE.

Information on optional parameter names and whether these options are real, integer or character can be
found in Section 11 in D01ESF and D01RAF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option whose current value is required. See Section 11 in
D01ESF and D01RAF for information on valid optional parameters. In addition, the following is
a valid option:

Identify
In which case D01ZLF returns in CVALUE the 6 character routine name supplied to
D01ZKF when the optional parameter arrays IOPTS and OPTS were initialized.

2: IVALUE – INTEGER Output

On exit: if the optional parameter supplied in OPTSTR is an integer valued argument, IVALUE
will hold that value.
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3: RVALUE – REAL (KIND=nag_wp) Output

On exit: if the optional parameter supplied in OPTSTR is a real valued argument, RVALUE will
hold that value.

4: CVALUE – CHARACTER(*) Output

Note: the string returned in CVALUE will never exceed 40 characters in length.

On exit: if the optional parameter supplied in OPTSTR is a character valued argument, CVALUE
will hold that value. CVALUE will also contain additional information for some integer and real
valued arguments, as indicated by OPTYPE.

5: OPTYPE – INTEGER Output

On exit: indicates whether the optional parameter supplied in OPTSTR is an integer, real or
character valued argument and hence which of IVALUE, RVALUE or CVALUE holds the current
value.

OPTYPE ¼ 1
OPTSTR is an integer valued optional parameter; its current value has been returned in
IVALUE.

OPTYPE ¼ 2
OPTSTR is a real valued optional parameter; its current value has been returned in
RVALUE.

OPTYPE ¼ 3
OPTSTR is a character valued optional parameter; its current value has been returned in
CVALUE.

OPTYPE ¼ 4
OPTSTR is an integer valued optional parameter; its current value has been returned in
IVALUE. Additional information has been returned in CVALUE.

OPTYPE ¼ 5
OPTSTR is a real valued optional parameter; its current value has been returned in
RVALUE. Additional information has been returned in CVALUE.

6: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to D01ZKF.

7: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to D01ZKF.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, the optional parameter in OPTSTR was not recognized: OPTSTR ¼ valueh i.

IFAIL ¼ 41

On entry, OPTSTR indicates a character optional parameter, but CVALUE is too short to hold the
stored value. The returned value will be truncated.

IFAIL ¼ 61

The arrays IOPTS and OPTS have either not been initialized, have become corrupted, or are not
compatible with this option setting routine.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D01ZLF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See the example programs associated with the problem solving routine you wish to use for a
demonstration of how to use D01ZLF.
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D02M–N Sub-chapter Introduction

Routine
Name

Mark of
Introduction Purpose

D02AGF 2 nagf_ode_bvp_shoot_genpar_intern
Ordinary differential equations, boundary value problem, shooting and
matching technique, allowing interior matching point, general parameters
to be determined

D02BGF 7 nagf_ode_ivp_rkm_val_simple
Ordinary differential equations, initial value problem, Runge–Kutta–
Merson method, until a component attains given value (simple driver)

D02BHF 7 nagf_ode_ivp_rkm_zero_simple
Ordinary differential equations, initial value problem, Runge–Kutta–
Merson method, until function of solution is zero (simple driver)

D02BJF 18 nagf_ode_ivp_rk_zero_simple
Ordinary differential equations, initial value problem, Runge–Kutta
method, until function of solution is zero, integration over range with
intermediate output (simple driver)

D02CJF 13 nagf_ode_ivp_adams_zero_simple
Ordinary differential equations, initial value problem, Adams' method,
until function of solution is zero, intermediate output (simple driver)

D02EJF 12 nagf_ode_ivp_bdf_zero_simple
Ordinary differential equations, stiff initial value problem, backward
differentiation formulae method, until function of solution is zero,
intermediate output (simple driver)

D02GAF 8 nagf_ode_bvp_fd_nonlin_fixedbc
Ordinary differential equations, boundary value problem, finite difference
technique with deferred correction, simple nonlinear problem

D02GBF 8 nagf_ode_bvp_fd_lin_gen
Ordinary differential equations, boundary value problem, finite difference
technique with deferred correction, general linear problem

D02HAF 8 nagf_ode_bvp_shoot_bval
Ordinary differential equations, boundary value problem, shooting and
matching, boundary values to be determined

D02HBF 8 nagf_ode_bvp_shoot_genpar
Ordinary differential equations, boundary value problem, shooting and
matching, general parameters to be determined

D02JAF 8 nagf_ode_bvp_coll_nth
Ordinary differential equations, boundary value problem, collocation and
least squares, single nth-order linear equation

D02JBF 8 nagf_ode_bvp_coll_sys
Ordinary differential equations, boundary value problem, collocation and
least squares, system of first-order linear equations

D02KAF 7 nagf_ode_sl2_reg_finite
Second-order Sturm–Liouville problem, regular system, finite range,
eigenvalue only

D02KDF 7 nagf_ode_sl2_breaks_vals
Second-order Sturm–Liouville problem, regular/singular system, finite/
infinite range, eigenvalue only, user-specified break-points
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D02KEF 8 nagf_ode_sl2_breaks_funs
Second-order Sturm–Liouville problem, regular/singular system, finite/
infinite range, eigenvalue and eigenfunction, user-specified break-points

D02LAF 13 nagf_ode_ivp_2nd_rkn
Second-order ordinary differential equations, initial value problem,
Runge–Kutta–Nystrom method

D02LXF 13 nagf_ode_ivp_2nd_rkn_setup
Second-order ordinary differential equations, initial value problem, setup
for D02LAF

D02LYF 13 nagf_ode_ivp_2nd_rkn_diag
Second-order ordinary differential equations, initial value problem,
diagnostics for D02LAF

D02LZF 13 nagf_ode_ivp_2nd_rkn_interp
Second-order ordinary differential equations, initial value problem,
interpolation for D02LAF

D02MCF 22 nagf_ode_dae_dassl_cont
Implicit ordinary differential equations/DAEs, initial value problem,
DASSL method continuation for D02NEF

D02MVF 14 nagf_ode_ivp_stiff_dassl
Ordinary differential equations, initial value problem, DASSL method,
setup for D02M–N routines

D02MWF 22 nagf_ode_dae_dassl_setup
Implicit ordinary differential equations/DAEs, initial value problem, setup
for D02NEF

D02MZF 14 nagf_ode_ivp_stiff_interp
Ordinary differential equations, initial value problem, interpolation for
D02M–N routines (all integration methods), natural interpolant

D02NBF 12 nagf_ode_ivp_stiff_exp_fulljac
Explicit ordinary differential equations, stiff initial value problem, full
Jacobian (comprehensive)

D02NCF 12 nagf_ode_ivp_stiff_exp_bandjac
Explicit ordinary differential equations, stiff initial value problem, banded
Jacobian (comprehensive)

D02NDF 12 nagf_ode_ivp_stiff_exp_sparjac
Explicit ordinary differential equations, stiff initial value problem, sparse
Jacobian (comprehensive)

D02NEF 22 nagf_ode_dae_dassl_gen
Implicit ordinary differential equations/DAEs, initial value problem,
DASSL method integrator

D02NGF 12 nagf_ode_ivp_stiff_imp_fulljac
Implicit/algebraic ordinary differential equations, stiff initial value
problem, full Jacobian (comprehensive)

D02NHF 12 nagf_ode_ivp_stiff_imp_bandjac
Implicit/algebraic ordinary differential equations, stiff initial value
problem, banded Jacobian (comprehensive)

D02NJF 12 nagf_ode_ivp_stiff_imp_sparjac
Implicit/algebraic ordinary differential equations, stiff initial value
problem, sparse Jacobian (comprehensive)

D02NMF 12 nagf_ode_ivp_stiff_exp_revcom
Explicit ordinary differential equations, stiff initial value problem (reverse
communication, comprehensive)

D02NNF 12 nagf_ode_ivp_stiff_imp_revcom
Implicit/algebraic ordinary differential equations, stiff initial value problem
(reverse communication, comprehensive)

D02NPF 22 nagf_ode_dae_dassl_linalg
Implicit ordinary differential equations/DAEs, initial value problem linear
algebra setup routine for D02NEF
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D02NRF 12 nagf_ode_ivp_stiff_sparjac_enq
Ordinary differential equations, initial value problem, for use with D02M–
N routines, sparse Jacobian, enquiry routine

D02NSF 12 nagf_ode_ivp_stiff_fulljac_setup
Ordinary differential equations, initial value problem, for use with D02M–
N routines, full Jacobian, linear algebra set up

D02NTF 12 nagf_ode_ivp_stiff_bandjac_setup
Ordinary differential equations, initial value problem, for use with D02M–
N routines, banded Jacobian, linear algebra set up

D02NUF 12 nagf_ode_ivp_stiff_sparjac_setup
Ordinary differential equations, initial value problem, for use with D02M–
N routines, sparse Jacobian, linear algebra set up

D02NVF 12 nagf_ode_ivp_stiff_bdf
Ordinary differential equations, initial value problem, backward
differentiation formulae method, setup for D02M–N routines

D02NWF 12 nagf_ode_ivp_stiff_blend
Ordinary differential equations, initial value problem, Blend method, setup
for D02M–N routines

D02NXF 12 nagf_ode_ivp_stiff_sparjac_diag
Ordinary differential equations, initial value problem, sparse Jacobian,
linear algebra diagnostics, for use with D02M–N routines

D02NYF 12 nagf_ode_ivp_stiff_integ_diag
Ordinary differential equations, initial value problem, integrator
diagnostics, for use with D02M–N routines

D02NZF 12 nagf_ode_ivp_stiff_contin
Ordinary differential equations, initial value problem, setup for
continuation calls to integrator, for use with D02M–N routines

D02PEF 24 nagf_ode_ivp_rkts_range
Ordinary differential equations, initial value problem, Runge–Kutta
method, integration over range with output

D02PFF 24 nagf_ode_ivp_rkts_onestep
Ordinary differential equations, initial value problem, Runge–Kutta
method, integration over one step

D02PGF 26 nagf_ode_ivp_rk_step_revcomm
Ordinary differential equations, initial value problem, Runge–Kutta
method, integration by reverse communication

D02PHF 26 nagf_ode_ivp_rk_interp_setup
Set up interpolant by reverse communication for solution and derivative
evaluations at points within the range of the last integration step taken by
D02PGF

D02PJF 26 nagf_ode_ivp_rk_interp_eval
Evaluate interpolant, set up using D02PQF, to approximate solution and/or
solution derivatives at a point within the range of the last integration step
taken by D02PGF

D02PQF 24 nagf_ode_ivp_rkts_setup
Ordinary differential equations, initial value problem, setup for D02PEF
and D02PFF

D02PRF 24 nagf_ode_ivp_rkts_reset_tend
Ordinary differential equations, initial value problem, resets end of range
for D02PFF

D02PSF 24 nagf_ode_ivp_rkts_interp
Ordinary differential equations, initial value problem, interpolation for
D02PFF

D02PTF 24 nagf_ode_ivp_rkts_diag
Ordinary differential equations, initial value problem, integration
diagnostics for D02PEF and D02PFF

D02PUF 24 nagf_ode_ivp_rkts_errass
Ordinary differential equations, initial value problem, error assessment
diagnostics for D02PEF and D02PFF
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D02QFF 13 nagf_ode_ivp_adams_roots
Ordinary differential equations, initial value problem, Adams' method with
root-finding (direct communication, comprehensive)

D02QGF 13 nagf_ode_ivp_adams_roots_revcom
Ordinary differential equations, initial value problem, Adams' method with
root-finding (reverse communication, comprehensive)

D02QWF 13 nagf_ode_ivp_adams_setup
Ordinary differential equations, initial value problem, setup for D02QFF
and D02QGF

D02QXF 13 nagf_ode_ivp_adams_diag
Ordinary differential equations, initial value problem, diagnostics for
D02QFF and D02QGF

D02QYF 13 nagf_ode_ivp_adams_rootdiag
Ordinary differential equations, initial value problem, root-finding
diagnostics for D02QFF and D02QGF

D02QZF 13 nagf_ode_ivp_adams_interp
Ordinary differential equations, initial value problem, interpolation for
D02QFF or D02QGF

D02RAF 8 nagf_ode_bvp_fd_nonlin_gen
Ordinary differential equations, general nonlinear boundary value problem,
finite difference technique with deferred correction, continuation facility

D02SAF 8 nagf_ode_bvp_shoot_genpar_algeq
Ordinary differential equations, boundary value problem, shooting and
matching technique, subject to extra algebraic equations, general
parameters to be determined

D02TGF 8 nagf_ode_bvp_coll_nth_comp
nth-order linear ordinary differential equations, boundary value problem,
collocation and least squares

D02TKF 17 nagf_ode_withdraw_bvp_coll_nlin
Ordinary differential equations, general nonlinear boundary value problem,
collocation technique
Note: this routine is scheduled for withdrawal at Mark 27, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

D02TLF 25 nagf_ode_bvp_coll_nlin_solve
Ordinary differential equations, general nonlinear boundary value problem,
collocation technique (thread safe)

D02TVF 17 nagf_ode_bvp_coll_nlin_setup
Ordinary differential equations, general nonlinear boundary value problem,
setup for D02TLF

D02TXF 17 nagf_ode_bvp_coll_nlin_contin
Ordinary differential equations, general nonlinear boundary value problem,
continuation facility for D02TLF

D02TYF 17 nagf_ode_bvp_coll_nlin_interp
Ordinary differential equations, general nonlinear boundary value problem,
interpolation for D02TLF

D02TZF 17 nagf_ode_bvp_coll_nlin_diag
Ordinary differential equations, general nonlinear boundary value problem,
diagnostics for D02TLF

D02UAF 23 nagf_ode_bvp_ps_lin_coeffs
Coefficients of Chebyshev interpolating polynomial from function values
on Chebyshev grid

D02UBF 23 nagf_ode_bvp_ps_lin_cgl_vals
Function or low-order-derivative values on Chebyshev grid from
coefficients of Chebyshev interpolating polynomial

D02UCF 23 nagf_ode_bvp_ps_lin_cgl_grid
Chebyshev Gauss–Lobatto grid generation
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D02UDF 23 nagf_ode_bvp_ps_lin_cgl_deriv
Differentiate a function by the FFT using function values on Chebyshev
grid

D02UEF 23 nagf_ode_bvp_ps_lin_solve
Solve linear constant coefficient boundary value problem on Chebyshev
grid, Integral formulation

D02UWF 23 nagf_ode_bvp_ps_lin_grid_vals
Interpolate a function from Chebyshev grid to uniform grid using
barycentric Lagrange interpolation

D02UYF 23 nagf_ode_bvp_ps_lin_quad_weights
Clenshaw–Curtis quadrature weights for integration using computed
Chebyshev coefficients

D02UZF 23 nagf_ode_bvp_ps_lin_cheb_eval
Chebyshev polynomial evaluation, Tk xð Þ

D02XJF 12 nagf_ode_ivp_stiff_nat_interp
Ordinary differential equations, initial value problem, interpolation for
D02M–N routines (BLEND and BDF methods only), natural interpolant

D02XKF 12 nagf_ode_ivp_stiff_c1_interp
Ordinary differential equations, initial value problem, interpolation for
D02M–N routines, C1 interpolant

D02ZAF 12 nagf_ode_ivp_stiff_errest
Ordinary differential equations, initial value problem, weighted norm of
local error estimate for D02M–N routines
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1 Scope of the Chapter

This chapter is concerned with the numerical solution of ordinary differential equations. There are two
main types of problem: those in which all boundary conditions are specified at one point (initial value
problems), and those in which the boundary conditions are distributed between two or more points
(boundary value problems and eigenvalue problems). Routines are available for initial value problems,
two-point boundary value problems and Sturm–Liouville eigenvalue problems.

2 Background to the Problems

For most of the routines in this chapter a system of ordinary differential equations must be written in
the form

y01 ¼ f1 x; y1; y2; . . . ; ynð Þ;

y02 ¼ f2 x; y1; y2; . . . ; ynð Þ;
..
.

y0n ¼ fn x; y1; y2; . . . ; ynð Þ;

that is the system must be given in first-order form. The n dependent variables (also, the solution)
y1; y2; . . . ; yn are functions of the independent variable x, and the differential equations give expressions
for the first derivatives y0i ¼

dyi
dx in terms of x and y1; y2; . . . ; yn. For a system of n first-order equations,

n associated boundary conditions are usually required to define the solution.

A more general system may contain derivatives of higher order, but such systems can almost always be
reduced to the first-order form by introducing new variables. For example, suppose we have the third-
order equation

z000 þ zz00 þ k l� z02
� �

¼ 0:

We write y1 ¼ z, y2 ¼ z0, y3 ¼ z00, and the third-order equation may then be written as the system of
first-order equations

y01 ¼ y2

y02 ¼ y3

y03 ¼ �y1y3 � k l� y22
� �

:

For this system n ¼ 3 and we require 3 boundary conditions in order to define the solution. These
conditions must specify values of the dependent variables at certain points. For example, we have an
initial value problem if the conditions are

y1 ¼ 0 at x ¼ 0
y2 ¼ 0 at x ¼ 0
y3 ¼ 0:1 at x ¼ 0:

These conditions would enable us to integrate the equations numerically from the point x ¼ 0 to some
specified end point. We have a boundary value problem if the conditions are

y1 ¼ 0 at x ¼ 0
y2 ¼ 0 at x ¼ 0
y2 ¼ 1 at x ¼ 10:

These conditions would be sufficient to define a solution in the range 0 � x � 10, but the problem
could not be solved by direct integration (see Section 2.2). More general boundary conditions are
permitted in the boundary value case.

It is sometimes advantageous to solve higher-order systems directly. In particular, there is an initial
value routine to solve a system of second-order ordinary differential equations of the special form
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y001 ¼ f1 x; y1; y2; . . . ; ynð Þ;

y002 ¼ f2 x; y1; y2; . . . ; ynð Þ;
..
.

y00n ¼ fn x; y1; y2; . . . ; ynð Þ:

For this second-order system initial values of the derivatives of the dependent variables, y0i, for
i ¼ 1; 2; . . . ; n, are required.

There is also a boundary value routine that can treat directly a mixed order system of ordinary
differential equations.

There is a broader class of initial value problems known as differential algebraic systems which can be
treated. Such a system may be defined as

y0 ¼ f x; y; zð Þ
0 ¼ g x; y; zð Þ

where y and f are vectors of length n and g and z are vectors of length m. The functions g represent the
algebraic part of the system.

In addition implicit systems can also be solved, that is systems of the form

A x; yð Þy0 ¼ f x; yð Þ

where A is a matrix of functions; such a definition can also incorporate algebraic equations. Note that
general systems of this form may contain higher-order derivatives and that they can usually be
transformed to first-order form, as above.

2.1 Initial Value Problems

To solve first-order systems, initial values of the dependent variables yi, for i ¼ 1; 2; . . . ; n, must be
supplied at a given point, a. Also a point, b, at which the values of the dependent variables are required,
must be specified. The numerical solution is then obtained by a step-by-step calculation which
approximates values of the variables yi, for i ¼ 1; 2; . . . ; n, at finite intervals over the required range
a; b½ �. The routines in this chapter adjust the step length automatically to meet specified accuracy
tolerances. Although the accuracy tests used are reliable over each step individually, in general an
accuracy requirement cannot be guaranteed over a long range. For many problems there may be no
serious accumulation of error, but for unstable systems small perturbations of the solution will often
lead to rapid divergence of the calculated values from the true values. A simple check for stability is to
carry out trial calculations with different tolerances; if the results differ appreciably the system is
probably unstable. Over a short range, the difficulty may possibly be overcome by taking sufficiently
small tolerances, but over a long range it may be better to try to reformulate the problem.

A special class of initial value problems are those for which the solutions contain rapidly decaying
transient terms. Such problems are called stiff; an alternative way of describing them is to say that

certain eigenvalues of the Jacobian matrix
@fi
@yj

� �
have large negative real parts when compared to

others. These problems require special methods for efficient numerical solution; the methods designed
for non-stiff problems when applied to stiff problems tend to be very slow, because they need small step
lengths to avoid numerical instability. A full discussion is given in Hall and Watt (1976) and a
discussion of the methods for stiff problems is given in Berzins et al. (1988).

2.2 Boundary Value Problems

In general, a system of nonlinear differential equations with boundary conditions at two or more points
cannot be guaranteed to have a solution. The solution, if it exists, has to be determined iteratively. A
comprehensive treatment of the numerical solution of boundary value problems can be found in Ascher
et al. (1988) and Keller (1992). The methods for this chapter are discussed in Ascher et al. (1979),
Ascher and Bader (1987) and Gladwell (1987).
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2.2.1 Collocation methods

In the collocation method, the solution components are approximated by piecewise polynomials on a
mesh. The coefficients of the polynomials form the unknowns to be computed. The approximation to
the solution must satisfy the boundary conditions and the differential equations at collocation points in
each mesh sub-interval. A modified Newton method is used to solve the nonlinear equations. The mesh
is refined by trying to equidistribute the estimated error over the whole interval. An initial estimate of
the solution across the mesh is required.

2.2.2 Shooting methods

In the shooting method, the unknown boundary values at the initial point are estimated to form an
initial value problem, and the equations are then integrated to the final point. At the final point the
computed solution and the known boundary conditions should be equal. The condition for equality
gives a set of nonlinear equations for the estimated values, which can be solved by Newton's method or
one of its variants. The iteration cannot be guaranteed to converge, but it is usually successful if

the system has a solution,

the system is not seriously unstable or very stiff for step-by-step solution, and

good initial estimates can be found for the unknown boundary conditions.

It may be necessary to simplify the problem and carry out some preliminary calculations, in order to
obtain suitable starting values. A fuller discussion is given in Chapters 16, 17 and 18 of Hall and Watt
(1976), Chapter 11 of Gladwell and Sayers (1980) and Chapter 8 of Gladwell (1979a).

2.2.3 Finite difference methods

If a boundary value problem seems insoluble by the above method and a good estimate for the solution
of the problem is known at all points of the range then a finite difference method may be used. Finite
difference equations are set up on a mesh of points and estimated values for the solution at the grid
points are chosen. Using these estimated values as starting values a Newton iteration is used to solve
the finite difference equations. The accuracy of the solution is then improved by deferred corrections or
the addition of points to the mesh or a combination of both. The method does not suffer from the
difficulties associated with the shooting method but good initial estimates of the solution may be
required in some cases and the method is unlikely to be successful when the solution varies very rapidly
over short ranges. A discussion is given in Chapters 9 and 11 of Gladwell and Sayers (1980) and
Chapter 4 of Gladwell (1979a).

2.3 Chebyshev Collocation for Linear Differential Equations

The collocation method gives a different approach to the solution of ordinary differential equations. It
can be applied to problems of either initial value or boundary value type. Suppose the approximate
solution is represented in polynomial form, say as a series of Chebyshev polynomials. The coefficients
may be determined by matching the series to the boundary conditions, and making it satisfy the
differential equation at a number of selected points in the range. The calculation is straightforward for
linear differential equations (nonlinear equations may also be solved by an iterative technique based on
linearization). The result is a set of Chebyshev coefficients, from which the solution may be evaluated
at any point using E02AKF. A fuller discussion is given in Chapter 24 of Gladwell (1979a) and Chapter
11 of Gladwell and Sayers (1980).

This method can be useful for obtaining approximations to standard mathematical functions. For
example, suppose we require values of the Bessel function J1

3
xð Þ over the range 0; 5ð Þ, for use in

another calculation. We solve the Bessel differential equation by collocation and obtain the Chebyshev
coefficients of the solution, which we can use to construct a function for J1

3
xð Þ . (Note that routines for

many common standard functions are already available in Chapter S.)
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2.4 Eigenvalue Problems

Sturm–Liouville problems of the form

p xð Þy0ð Þ0 þ q x; �ð Þy ¼ 0

with appropriate boundary conditions given at two points, can be solved by a Scaled PrÏfer method. In
this method the differential equation is transformed to another which can be solved for a specified
eigenvalue by a shooting method. A discussion is given in Chapter 11 of Gladwell and Sayers (1980)
and a complete description is given in Pryce (1986). Some more general eigenvalue problems can be
solved by the methods described in Section 2.2.

3 Recommendations on Choice and Use of Available Routines

There are no routines which deal directly with complex equations. These may however be transformed
to larger systems of real equations of the required form. Split each equation into its real and imaginary
parts and solve for the real and imaginary parts of each component of the solution. Whilst this process
doubles the size of the system and may not always be appropriate it does make available for use the full
range of routines provided presently.

3.1 Initial Value Problems

In general, for non-stiff first-order systems, Runge–Kutta (RK) routines should be used. For the usual
requirement of integrating across a range the appropriate routines are D02PEF and D02PQF; D02PQF
is a setup routine for D02PEF. For more complex tasks there are forward and reverse communication
variants (Section 3.3.3 in How to Use the NAG Library and its Documentation) of single step routines
with corresponding interpolator; for direct communication these are D02PFF and D02PSF, while for
reverse communication these are D02PGF, D02PHF and D02PJF. There are also related utility routines
D02PRF, D02PTF and D02PUF. When a system is to be integrated over a long range or with relatively
high accuracy requirements the variable-order, variable-step Adams' codes may be more efficient. The
appropriate routine in this case is D02CJF. For more complex tasks using an Adams' code there are a
further six related routines: D02QFF, D02QGF, D02QWF, D02QXF, D02QYF and D02QZF.

For stiff systems, that is those which usually contain rapidly decaying transient components, the
Backward Differentiation Formula (BDF) variable-order, variable-step codes should be used. The
appropriate routine in this case is D02EJF. For more complex tasks where the system residual is
difficult to evaluate in direct communication, or is coupled with algebraic equations, there are a
collection of routines in Sub-chapter D02M–N. These routines can treat implicit differential algebraic
systems, they also contain additional methods (beyond BDF techniques) which may be appropriate in
some circumstances.

If you are not sure how to classify a problem, you are advised to perform some preliminary calculations
with D02PEF, which can indicate whether the system is stiff. We also advise performing some trial
calculations with D02PEF (RK), D02CJF (Adams) and D02EJF (BDF) so as to determine which type of
routine is best applied to the problem. The conclusions should be based on the computer time used and
the number of evaluations of the derivative function fi. See Gladwell (1979b) for more details.

For second-order systems of the special form described in Section 2 the Runge–Kutta–Nystrom (RKN)
routine D02LAF should be used.

3.1.1 Runge–Kutta routines

The basic RK routines are D02PFF (direct communication) and D02PGF (reverse communication)
which take one integration step at a time. An alternative to D02PFF is D02PEF, which provides output
at user-specified points. The initialization of D02PEF, D02PFF or D02PGF and the setting of optional
inputs, including choice of method, is made by a call to the setup routine D02PQF. Optional output
information about the integration and about error assessment, if selected, can be obtained by calls to the
diagnostic routines D02PTF and D02PUF respectively. D02PSF may be used to interpolate on
information produced by D02PFF to give solution and derivative values between the integration points.
Similarly D02PHF may be used to setup an interpolator on information produced by D02PGF, and
D02PJF can evaluate that interpolator to give solution and derivative values between integration points;
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these routines are recommended when a high-order RK method is specified in the setup routine.
D02PRF may be used to reset the end of the integration range whilst integrating using D02PFF or
D02PGF.

There is a simple driving routine D02BJF, which integrates a system over a range and, optionally,
computes intermediate output and/or determines the position where a specified function of the solution
is zero.

For well-behaved systems with no difficulties such as stiffness or singularities, the Merson form of the
RK method, as used by D02BGF, works well for low accuracy calculations. D02BHF also uses the
Merson form and can additionally find a root of a supplied equation involving solution components.

3.1.2 Adams' routines

The general Adams' variable-order variable-step routine is D02QFF, which provides a choice of
automatic error control and the option of a sophisticated root-finding technique. Reverse communication
for both the differential equation and root definition function is provided in D02QGF, which otherwise
has the same facilities as D02QFF. A reverse communication routine makes a return to the calling
subroutine for evaluations of equations rather than calling a user-supplied procedure. The initialization
of either of D02QFF and D02QGF and the setting of optional inputs is made by a call to the setup
routine D02QWF. Optional output information about the integration and any roots detected can be
obtained by calls to the diagnostic routines D02QXF and D02QYF respectively. D02QZF may be used
to interpolate on information produced by D02QFF or D02QGF to give solution and derivative values
between the integration points.

There is a simple driving routine D02CJF, which integrates a system over a range and, optionally,
computes intermediate output and/or determines the position where a specified function of the solution
is zero.

3.1.3 BDF routines

General routines for explicit and implicit ordinary differential equations with a wide range of options
for integrator choice and special forms of numerical linear algebra are provided in Sub-chapter D02M–
N. A separate document describing the use of this sub-chapter is given immediately before the routines
of the sub-chapter.

There are three utility routines available for use with Sub-chapter D02M–N routines. D02XJF and
D02XKF can be used to interpolate to a solution at a given point using the natural and C1 interpolants
respectively. D02ZAF can be used to return the weighted norm of the local error estimate calculated by
Sub-chapter D02M–N routines.

There is a simple driving routine D02EJF, which integrates a system over a range and, optionally,
computes intermediate output and/or determines the position where a specified function of the solution
is zero. It has a specification similar to the Adams' routine D02CJF except that to solve the equations

arising in the BDF method an approximation to the Jacobian
@fi
@yj

� �
is required. This approximation can

be calculated internally but you may supply an analytic expression. In most cases supplying a correct
analytic expression will reduce the amount of computer time used.

3.1.4 Runge–Kutta–Nystrom routines

The Runge–Kutta–Nystrom routine D02LAF uses either a low- or high-order method (chosen by you).
The choice of method and error control and the setting of optional inputs is made by a call to the setup
routine D02LXF. Optional output information about the integration can be obtained by a call to the
diagnostic routine D02LYF. When the low-order method has been employed D02LZF may be used to
interpolate on information produced by D02LAF to give the solution and derivative values between the
integration points.
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3.2 Boundary Value Problems

In general, for a nonlinear system of mixed order with separated boundary conditions, the collocation
method (D02TLF and its associated routines) can be used. Problems of a more general nature can often
be transformed into a suitable form for treatment by D02TLF, for example nonseparated boundary
conditions or problems with unknown parameters (see Section 9 in D02TVF for details).

For simple boundary value problems with assigned boundary values you may prefer to use a code based
on the shooting method or finite difference method for which there are routines with simple calling
sequences (D02HAF and D02GAF).

For difficult boundary value problems, where you need to exercise some control over the calculation,
and where the collocation method proves unsuccessful, you may wish to try the alternative methods of
shooting (D02SAF) or finite differences (D02RAF).

Note that it is not possible to make a fully automatic boundary value routine, and you should be
prepared to experiment with different starting values or a different routine if the problem is at all
difficult.

3.2.1 Collocation methods

The collocation routine D02TLF solves a nonlinear system of mixed order boundary value problems
with separated boundary conditions. The initial mesh and accuracy requirements must be specified by a
call to the setup routine D02TVF. Optional output information about the final mesh and estimated
maximum error can be obtained by a call to the diagnostic routine D02TZF. The solution anywhere on
the mesh can be computed by a call to the interpolation routine D02TYF. If D02TLF is being used to
solve a sequence of related problems then the continuation routine D02TXF should also be used.

3.2.2 Shooting methods

D02HAF may be used for simple boundary value problems, where the unknown arguments are the
missing boundary conditions. More general boundary value problems may be handled by using
D02HBF. This routine allows for a generalized argument structure, and is fairly complicated. The older
routine D02AGF has been retained for use when an interior matching-point is essential; otherwise the
newer routine D02HBF should be preferred.

For particularly complicated problems where, for example, the arguments must be constrained or the
range of integration must be split to enable the shooting method to succeed, the recommended routine is
D02SAF, which extends the facilities provided by D02HBF. If you are an experienced user D02SAF
permits you much more control over the calculation than does D02HBF; in particular you are permitted
precise control of solution output and intermediate monitoring information.

3.2.3 Finite difference methods

D02GAF may be used for simple boundary value problems with assigned boundary values. The calling
sequence of D02GAF is very similar to that for D02HAF discussed above.

You may find that convergence is difficult to achieve using D02GAF since only specifying the unknown
boundary values and the position of the finite difference mesh is permitted. In such cases you may use
D02RAF, which permits specification of an initial estimate for the solution at all mesh points and
allows the calculation to be influenced in other ways too. D02RAF is designed to solve a general
nonlinear two-point boundary value problem with nonlinear boundary conditions.

A routine, D02GBF, is also supplied specifically for the general linear two-point boundary value
problem written in a standard ‘textbook’ form.

You are advised to use interpolation routines from Chapter E01 to obtain solution values at points not
on the final mesh.

3.2.4 Chebyshev integration method

The Chebyshev integration method is an implementation of the Chebyshev collocation method (see
Section 3.3) which is fully described and compared against other implementations in Muite (2010).
D02UEF solves a linear constant coefficient boundary value problem using the Chebyshev integration
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formulation on a Chebyshev Gauss–Lobatto grid and solving in the coefficient space. The required
Chebyshev Gauss–Lobatto grid points on a given arbitrary interval a; b½ � can first be generated using
D02UCF. Then D02UAF obtains the Chebyshev coefficients for the right-hand side (of system) function
discretized on the obtained Chebyshev Gauss–Lobatto grid. D02UEF then solves the problem in
Chebyshev coefficient space using the integration formulation. Finally D02UBF evaluates the solution
(or one of its lower order derivatives) from the set of Chebyshev coefficients returned by D02UEF on
the Chebyshev Gauss–Lobatto grid on a; b½ �. The set of routines can be used to solve up to fourth order
boundary value problems.

3.3 Chebyshev Collocation Method

D02TGF may be used to obtain the approximate solution of a system of differential equations in the
form of a Chebyshev series. The routine treats linear differential equations directly, and makes no
distinction between initial value and boundary value problems. This routine is appropriate for problems
where it is known that the solution is smooth and well-behaved over the range, so that each component
can be represented by a single polynomial. Singular problems can be solved using D02TGF as long as
their polynomial-like solutions are required.

D02TGF permits the differential equations to be specified in higher order form; that is without
conversion to a first-order system. This type of specification leads to a complicated calling sequence. If
you are an inexperienced user two simpler routines are supplied. D02JAF solves a single regular linear
differential equation of any order whereas D02JBF solves a system of regular linear first-order
differential equations.

3.4 Eigenvalue Problems

Two routines, D02KAF and D02KDF, may be used to find the eigenvalues of second-order Sturm–
Liouville problems. D02KAF is designed to solve simple problems with regular boundary conditions.
D02KAF calls D02KDF, which is designed to solve more difficult problems, for example with singular
boundary conditions or on infinite ranges or with discontinuous coefficients.

If the eigenfunctions of the Sturm–Liouville problem are also required, D02KEF should be used.
(D02KEF solves the same types of problem as D02KDF.)

3.5 Summary of Recommended Routines

Problem Routine

RK Method Adams' Method BDF Method

Initial Value Problems
Driver Routines

Integration over a range with optional intermediate output and optional
determination of position where a function of the solution becomes
zero

D02BJF D02CJF D02EJF

Integration of a range with intermediate output D02BJF D02CJF D02EJF

Integration of a range until function of solution becomes zero D02BJF D02CJF D02EJF

Comprehensive Integration Routines D02PEF, D02PFF,
D02PGF, D02PHF,
D02PJF, D02PQF,
D02PRF, D02PSF,

D02PTF and
D02PUF

D02QFF, D02QGF,
D02QWF,

D02QXF, D02QYF
and D02QZF

Sub-chapter
D02M–N routines,
D02XJF, D02XKF

and D02ZAF

Package for Solving Stiff Equations Sub-chapter D02M–N routines

Package for Solving Second-order Systems of Special Form D02L routines

Boundary Value Problems
Collocation Method, Mixed Order

D02TLF, D02TVF, D02TXF, D02TYF and D02TZF

Boundary Value Problems
Shooting Method

simple argument D02HAF

generalized arguments D02AGF and D02HBF
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additional facilities D02SAF

Boundary Value Problems
Finite Difference Method

simple argument D02GAF

linear problem D02GBF

full nonlinear problem D02RAF

Boundary Value Problems
Chebyshev Collocation, Integration Formulation

single linear equation D02UEF with D02UAF, D02UBF, D02UCF

Chebyshev Collocation, Linear Problems

single equation D02JAF

first-order system D02JBF

general system D02TGF

Sturm–Liouville Eigenvalue Problems

regular problems D02KAF

general problems D02KDF

eigenfunction calculation D02KEF
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4 Decision Trees

Tree 1: Initial Value Problems

Is the problem first order?
yes

Is the problem known to be stiff?
yes

Use routines described in the D02M–N
Sub-chapter Introduction, or their simple

driver .

no

Backward Differentiation Formula: Use
routines described in the D02M–N Sub-
chapter Introduction, or their simple

driver D02EJF.
Adams' method with driver routine:

D02CJF
Adams' method with comprehensive
suite: D02QFF, D02QGF, D02QWF,
D02QXF, D02QYF and D02QZF
Runge–Kutta method with driver

routine: D02BJF
Runge–Kutta method with

comprehensive suite: D02PEF, D02PFF,
D02PGF, D02PHF, D02PJF, D02PQF,

D02PRF, D02PSF, D02PTF and
D02PUF

no

Is the problem of the form: y00 ¼ f x; yð Þ
yes

Use the D02L routines

no

Convert to first order problem: is the
problem known to be stiff? yes

Use routines described in the D02M–N
Sub-chapter Introduction, or their simple

driver D02EJF.
no

Backward Differentiation Formula: use
routines described in the D02M–N Sub-
chapter Introduction, or their simple

driver D02EJF.
Adams' method with driver routine:

D02CJF
Adams' method with comprehensive
suite: D02QFF, D02QGF, D02QWF,
D02QXF, D02QYF and D02QZF
Runge–Kutta method with driver

routine: D02BJF
Runge–Kutta method with

comprehensive suite: D02PEF, D02PFF,
D02PGF, D02PHF, D02PJF, D02PQF,

D02PRF, D02PSF, D02PTF and
D02PUF

Tree 2: Boundary Value Problems

Is the problem simply of the form
y
0 ¼ f x; yð Þ? yes

Are only boundary values to be
determined? yes

Shooting method: D02HAF
Finite differences: D02GAF

Collocation: D02TLF

no

Shooting method: D02HBF
Finite differences: D02GBF

Collocation, piecewise polynomials:
D02TLF

Collocation, Chebyshev polynomials:
D02JAF, D02JBF or D02UEF

no

Shooting method: D02SAF
Finite differences: D02RAF

Collocation, piecewise polynomials:
D02TLF

Collocation, Chebyshev polynomials:
D02JAF, D02JBF or D02UEF
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5 Functionality Index

Differentiation of a function discretized on Chebyshev Gauss–Lobatto points .................. D02UDF

Linear constant coefficient boundary value problem,
Chebyshev spectral integration method,

Chebyshev coefficients generator for a function discretized on Chebyshev Gauss–
Lobatto grid ..............................................................................................................

D02UAF

Chebyshev coefficients to function values on Chebyshev Gauss–Lobatto grid......... D02UBF
Chebyshev Gauss–Lobatto grid generator................................................................. D02UCF
Chebyshev integration solver for linear constant coefficient boundary value problem D02UEF
Clenshaw–Curtis quadrature weights generator at Chebyshev Gauss–Lobatto points D02UYF
Evaluation on uniform grid of function by Barycentric Lagrange interpolation ....... D02UWF
value of kth Chebyshev polynomial.......................................................................... D02UZF

Second-order Sturm–Liouville problems,
regular/singular system, finite/infinite range,

eigenvalue and eigenfunction .................................................................................... D02KEF
eigenvalue only ......................................................................................................... D02KDF

regular system, finite range, user-specified break-points,
eigenvalue only ......................................................................................................... D02KAF

System of first-order ordinary differential equations, initial value problems,
C1-interpolant................................................................................................................. D02XKF
comprehensive integrator routines for stiff systems,

continuation to call D02NEF .................................................................................... D02MCF
explicit ordinary differential equations,

banded Jacobian ................................................................................................... D02NCF
full Jacobian......................................................................................................... D02NBF
sparse Jacobian .................................................................................................... D02NDF

explicit ordinary differential equations (reverse communication):
full Jacobian......................................................................................................... D02NMF

implicit ordinary differential equations coupled with algebraic equations,
banded Jacobian ................................................................................................... D02NHF
banded Jacobian selector for DASSL integrator .................................................. D02NPF
DASSL integrator ................................................................................................ D02NEF
full Jacobian......................................................................................................... D02NGF
integrator setup for DASSL ................................................................................. D02MWF
sparse Jacobian .................................................................................................... D02NJF

implicit ordinary differential equations coupled with algebraic equations (reverse
communication).........................................................................................................

D02NNF

comprehensive integrator routines using Adams' method with root-finding option,
diagnostic routine...................................................................................................... D02QXF
diagnostic routine for root-finding ............................................................................ D02QYF
direct communication ................................................................................................ D02QFF
interpolant ................................................................................................................. D02QZF
reverse communication.............................................................................................. D02QGF
setup routine ............................................................................................................. D02QWF

comprehensive integrator routines using Runge–Kutta methods,
diagnostic routine...................................................................................................... D02PTF
diagnostic routine for global error assessment .......................................................... D02PUF
interpolant, reverse communication ........................................................................... D02PHF
interpolant and interpolation, direct communication ................................................. D02PSF
interpolation, reverse communication ........................................................................ D02PJF
over a range with intermediate output ...................................................................... D02PEF
over a step, direct communication ............................................................................ D02PFF
over a step, reverse communication.......................................................................... D02PGF
reset end of range ..................................................................................................... D02PRF
setup routine ............................................................................................................. D02PQF

compute weighted norm of local error estimate............................................................. D02ZAF
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enquiry routine for use with sparse Jacobian................................................................. D02NRF
integrator diagnostic routine........................................................................................... D02NYF
integrator setup for backward differentiation formulae method for SPRINT integrator . D02NVF
integrator setup for Blend method for SPRINT integrator ............................................. D02NWF
integrator setup for DASSL method for SPRINT integrator .......................................... D02MVF
linear algebra diagnostic routine for sparse Jacobians ................................................... D02NXF
linear algebra setup for banded Jacobians ..................................................................... D02NTF
linear algebra setup for full Jacobians ........................................................................... D02NSF
linear algebra setup for sparse Jacobians ....................................................................... D02NUF
natural interpolant .......................................................................................................... D02MZF
natural interpolant (for use by MONITR subroutine) .................................................... D02XJF
setup routine for continuation calls to integrator ........................................................... D02NZF
simple driver routines,

Runge–Kutta–Merson method,
until a function of the solution is zero ................................................................ D02BHF
until a specified component attains a given value ............................................... D02BGF

Runge–Kutta method,
until (optionally) a function of the solution is zero, with optional intermediate
output ...................................................................................................................

D02BJF

variable-order variable-step Adams' method,
until (optionally) a function of the solution is zero, with optional intermediate
output ...................................................................................................................

D02CJF

variable-order variable-step backward differentiation formulae method for stiff
systems,

until (optionally) a function of the solution is zero, with optional intermediate
output ...................................................................................................................

D02EJF

System of ordinary differential equations, boundary value problems,
collocation and least squares,

single nth-order linear equation ................................................................................ D02JAF
system of first-order linear equations........................................................................ D02JBF
system of nth-order linear equations......................................................................... D02TGF

comprehensive routines using a collocation technique,
continuation routine .................................................................................................. D02TXF
diagnostic routine...................................................................................................... D02TZF
general nonlinear problem solver (thread safe) ......................................................... D02TLF
interpolation routine .................................................................................................. D02TYF
setup routine ............................................................................................................. D02TVF

finite difference technique with deferred correction,
general linear problem .............................................................................................. D02GBF
general nonlinear problem, with continuation facility ............................................... D02RAF
simple nonlinear problem.......................................................................................... D02GAF

shooting and matching technique,
boundary values to be determined ............................................................................ D02HAF
general parameters to be determined ........................................................................ D02HBF
general parameters to be determined, allowing interior matching-point.................... D02AGF
general parameters to be determined, subject to extra algebraic equations............... D02SAF

System of second-order ordinary differential equations,
Runge–Kutta–Nystrom method,

diagnostic routine...................................................................................................... D02LYF
integrator................................................................................................................... D02LAF
interpolating solutions ............................................................................................... D02LZF
setup routine ............................................................................................................. D02LXF
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6 Auxiliary Routines Associated with Library Routine Arguments

D02BJW nagf_ode_ivp_rk_zero_simple_dummy_g
See the description of the argument G in D02BJF.

D02BJX nagf_ode_ivp_rk_zero_simple_dummy_output
See the description of the argument OUTPUT in D02BJF.

D02CJW nagf_ode_ivp_adams_zero_simple_dummy_g
See the description of the argument G in D02CJF.

D02CJX nagf_ode_ivp_adams_zero_simple_dummy_output
See the description of the argument OUTPUT in D02CJF.

D02EJW nagf_ode_ivp_bdf_zero_simple_dummy_g
See the description of the argument G in D02EJF.

D02EJX nagf_ode_ivp_bdf_zero_simple_dummy_output
See the description of the argument OUTPUT in D02EJF.

D02EJY nagf_ode_ivp_bdf_zero_simple_dummy_pederv
See the description of the argument PEDERV in D02EJF.

D02GAW nagf_ode_bvp_fd_nonlin_gen_dummy_jacobf
See the description of the argument JACEPS in D02RAF.

D02GAX nagf_ode_bvp_fd_nonlin_gen_dummy_jacobg
See the description of the argument JACGEP in D02RAF.

D02GAY nagf_ode_bvp_fd_nonlin_gen_dummy_jaceps
See the description of the argument JACOBG in D02RAF.

D02GAZ nagf_ode_bvp_fd_nonlin_gen_dummy_jacgep
See the description of the argument JACOBF in D02RAF.

D02HBW nagf_ode_bvp_shoot_genpar_algeq_dummy_prsol
See the description of the argument PRSOL in D02SAF.

D02HBX nagf_ode_bvp_shoot_genpar_algeq_sample_monit
See the description of the argument MONIT in D02SAF.

D02HBY nagf_ode_bvp_shoot_genpar_algeq_dummy_constr
See the description of the argument CONSTR in D02SAF.

D02HBZ nagf_ode_bvp_shoot_genpar_algeq_dummy_eqn
See the description of the argument EQN in D02SAF.

D02KAY nagf_ode_sl2_reg_finite_dummy_monit
See the description of the argument MONIT in D02KAF, D02KDF and D02KEF.

D02NBY nagf_ode_ivp_stiff_exp_fulljac_dummy_monit
See the description of the argument MONITR in D02NBF, D02NCF, D02NDF, D02NGF,
D02NHF and D02NJF.

D02NBZ nagf_ode_ivp_stiff_exp_fulljac_dummy_jac
See the description of the argument JAC in D02NBF.

D02NCZ nagf_ode_ivp_stiff_exp_bandjac_dummy_jac
See the description of the argument JAC in D02NCF.

D02NDZ nagf_ode_ivp_stiff_exp_sparjac_dummy_jac
See the description of the argument JAC in D02NDF.

D02NEZ nagf_ode_dae_dassl_gen_dummy_jac
See the description of the argument JAC in D02NEF.

D02NGZ nagf_ode_ivp_stiff_imp_fulljac_dummy_jac
See the description of the argument JAC in D02NGF.

D02NHZ nagf_ode_ivp_stiff_imp_bandjac_dummy_jac
See the description of the argument JAC in D02NHF.

D02NJZ nagf_ode_ivp_stiff_imp_sparjac_dummy_jac
See the description of the argument JAC in D02NJF.

D02QFZ nagf_ode_ivp_adams_roots_dummy_g
See the description of the argument G in D02QFF.

D02SAS nagf_ode_bvp_shoot_genpar_algeq_dummy_monit
See the description of the argument MONIT in D02SAF.
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7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

D02PCF 26 D02PEF and associated D02P routines
D02PDF 26 D02PFF or D02PGF and associated D02P routines
D02PVF 26 D02PQF
D02PWF 26 D02PRF
D02PXF 26 D02PSF
D02PYF 26 D02PTF
D02PZF 26 D02PUF
D02TKF 27 D02TLF
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1 Introduction

This sub-chapter contains the specifications of the integrators, the setup routines and diagnostic routines
which have been developed from the SPRINT package, Berzins and Furzeland (1985), and from the
DASSL package, Brenan et al. (1996).

The SPRINT explicit integrators D02NBF, D02NCF and D02NDF are designed for solving stiff systems
of explicitly defined ordinary differential equations,

y0 ¼ g t; yð Þ:
The SPRINT implicit integrators D02NGF, D02NHF and D02NJF are designed for solving stiff systems
of implicitly defined ordinary differential equations,

A t; yð Þy0 ¼ g t; yð Þ:
The DASSL integrator D02NEF is designed for solving systems of the form, F t; y; y0ð Þ ¼ 0. These
formulations permit solution of differential/algebraic systems (DAEs). The facilities provided are
essentially those of the explicit solvers.

The SPRINT integrator routines have almost identical calling sequences but each is designed to solve a
problem where the Jacobian is of a particular structure: full matrix (D02NBF and D02NGF), banded
matrix (D02NCF and D02NHF) or sparse matrix (D02NDF and D02NJF). Each of these structures has
associated with it a linear algebra setup routine: D02NSF, D02NTF and D02NUF respectively. A linear
algebra setup routine must be called before the first call to the appropriate integrator. These linear
algebra setup routines check various arguments of the corresponding integrator routine and set certain
arguments for the linear algebra computations. A routine, D02NXF, is supplied which permits
extraction of diagnostic information after a call to either of the sparse linear algebra solvers D02NDF
and D02NJF.

With the SPRINT integrators are also associated three integrator setup routines D02MVF, D02NVF and
D02NWF, one of which must be called before the first call to any integrator routine. They provide input
to the Backward Differentiation Formulae (BDF), the Blend Formulae and the special fixed leading
coefficient BDF codes respectively. On return from an integrator, if it is feasible to continue the
integration, D02NZF may be called to reset various integration arguments. It is often of considerable
interest to determine statistics concerning the integration process. D02NYF is provided with this aim in
mind. It should prove especially useful to those who wish to integrate many similar problems as it
provides suitable values for many of the input arguments and indications of the difficulties encountered
when solving the problem.

Hence, the general form of a program calling one of the integrator routines D02NBF, D02NCF,
D02NDF, D02NGF, D02NHF or D02NJF will be

declarations
.
.

call linear algebra setup routine
call integrator setup routine
call integrator
call integrator diagnostic routine (if required)
call linear algebra diagnostic routine (if appropriate and if required)

.

.
STOP
END

The DASSL integrator, D02NEF, has an associated setup routine D02MWF which must be called first.
On return from the integrator, if it is feasible to continue the integration, the associated continuation call
routine is D02MCF may be called to rest various integration parameters. The structure of the Jacobian
is assumed to be full unless D02NPF is called following a call to the setup routine to specify that the
Jacobian is banded and to supply its bandwidths.

The required calling sequence for different Jacobian structures and system types is represented
diagrammatically in Figure 1.
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D02NSF

Method
D02NVF or D02NWF or D02MVF

bandedfull sparse

D02NUFD02NTF

(Jacobian Structure)

D02NZF (Continuation resetting)

D02NYF (Integration statistics)

D02NXF
(Lin. alg. statistics)

D02NBF D02NGF D02NCF D02NHF D02NDF D02NJF

explicit explicit explicit implicitimplicitimplicit(System Type)

Figure 1
Schema for SPRINT direct communication routine calling sequences

The integrators D02NMF and D02NNF are reverse communication routines designed for solving
explicit and implicit stiff ordinary differential systems respectively. You are warned that you should use
these routines only when the integrators mentioned above are inadequate for their application. For
example, if it is difficult to write one or more of the user-supplied routine FCN (RESID) or JAC (or
MONITR) or if the integrators are to be embedded in a package, it may be advisable to consider these
routines.

Since these routines use reverse communication you do not need to define any routines with a
prescribed argument list. This makes them especially suitable for large scale computations where
encapsulation of the definition of the differential system or its Jacobian matrix in a prescribed routine
form may be particularly difficult to achieve.

D02NMF is the reverse communication counterpart of the direct communication routines D02NBF,
D02NCF and D02NDF whereas D02NNF is the reverse communication counterpart of the direct
communication routines D02NGF, D02NHF and D02NJF. When using these reverse communication
routines it is necessary to call the same linear algebra and integrator setup routines as for the direct
communication counterpart. All the other continuation and interrogation routines available for use with
the direct communication routines are also available to you when calling the reverse communication
routines.

There is also a routine, D02NRF, to tell you how to supply the Jacobian when the sparse linear algebra
option is being employed with either of D02NMF and D02NNF. Hence, the general form of a program
calling one of the integrator routines D02NMF or D02NNF will be

declarations
call linear algebra setup routine
call integrator setup routine
IREVCM = 0

1000 call integrator( ..., IREVCM, ...)
IF (IREVCM.GT.0) THEN

evaluate residual and Jacobian (including a call to D02NRF if
sparse linear algebra is being used), call the MONITR routine etc.

GO TO 1000
ENDIF

call integrator diagnostic routine (if required)
call linear algebra diagnostic routine (if appropriate and if required)
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STOP
END

The required calling sequence in the case of reverse communication, is represented diagramatically in
Figure 2.

In the example programs for the eight SPRINT integrators D02NBF, D02NCF, D02NDF, D02NGF,
D02NHF, D02NJF, D02NMF and D02NNF we attempt to illustrate the various options available. Many
of these options are available in all the routines and you are invited to scan all the example programs
for illustrations of their use. In each case we use as an example the stiff Robertson problem

a0 ¼ �0:04a þ 104bc

b0 ¼ 0:04a � 104bc � 3� 107b2

c0 ¼ 3� 107b2

despite the fact that it is not a sensible choice to use either the banded or the sparse linear algebra for
this problem. Their use here serves for illustration of the techniques involved. For the implicit
integrators D02NGF, D02NHF and D02NJF we write the Robertson problem in residual form, as an
implicit differential system and as a differential/algebraic system respectively. Here we are exploiting
the fact that aþ bþ c is constant and hence one of the equations may be replaced by aþ bþ cð Þ0 ¼ 0:0
or aþ bþ c ¼ 1:0 (for our particular choice of initial conditions). For the reverse communication
routines D02NMF and D02NNF our examples are intended only to illustrate the reverse communication
technique.

D02NSF

Method
D02NVF or D02NWF or D02MVF

banded sparse

D02NUF

D02NMF D02NNF

explicit implicit

D02NTF

(Jacobian Structure)

(System Type)

D02NRF

Function or Jacobian evaluations

D02NZF (Continuation resetting)

D02NYF (Integration statistics)

sparsefull or

banded

D02NXF
(Lin. alg. statistics)

(Jacobian Structure)

full

Figure 2
Schema for SPRINT reverse communication routine calling sequences
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The DASSL integrator D02NEF can solve DAEs of the fully implicit form F t; y; y0ð Þ ¼ 0 and therefore
has increased functionality over the SPRINT integrators. Additionally D02NEF can be used to solve
difficult algebraic problems by continuation; for example, the nonlinear algebraic problem

f xð Þ ¼ 0

can be solved by integrating solutions of

f xð Þ þ 1� tð Þg xð Þ ¼ 0

where the solution to f xð Þ þ g xð Þ ¼ 0 is known. The solution of this type of problem is illustrated in
Section 10 in D02NEF.

2 References

Berzins M and Furzeland R M (1985) A user's manual for SPRINT – A versatile software package for
solving systems of algebraic, ordinary and partial differential equations: Part 1 – Algebraic and
ordinary differential equations Report TNER.85.085 Shell Research Limited

Brenan K, Campbell S and Petzold L (1996) Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations SIAM, Philadelphia
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NAG Library Routine Document

D02AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02AGF solves a two-point boundary value problem for a system of ordinary differential equations,
using initial value techniques and Newton iteration; it generalizes D02HAF to include the case where
parameters other than boundary values are to be determined.

2 Specification

SUBROUTINE D02AGF (H, E, PARERR, PARAM, C, N, N1, M1, AUX, BCAUX, RAAUX,
PRSOL, MAT, COPY, WSPACE, WSPAC1, WSPAC2, IFAIL)

&

INTEGER N, N1, M1, IFAIL
REAL (KIND=nag_wp) H, E(N), PARERR(N1), PARAM(N1), C(M1,N),

MAT(N1,N1), COPY(1,1), WSPACE(N,9), WSPAC1(N),
WSPAC2(N)

&
&

EXTERNAL AUX, BCAUX, RAAUX, PRSOL

3 Description

D02AGF solves a two-point boundary value problem by determining the unknown parameters
p1; p2; . . . ; pn1 of the problem. These parameters may be, but need not be, boundary values (as they are
in D02HAF); they may include eigenvalue parameters in the coefficients of the differential equations,
length of the range of integration, etc. The notation and methods used are similar to those of D02HAF
and you are advised to study this first. (There the parameters p1; p2; . . . ; pn1 correspond to the unknown
boundary conditions.) It is assumed that we have a system of n first-order ordinary differential
equations of the form

dyi
dx
¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ; n;

and that derivatives fi are evaluated by AUX. The system, including the boundary conditions given by
BCAUX, and the range of integration and matching point, r, given by RAAUX, involves the n1

unknown parameters p1; p2; . . . ; pn1 which are to be determined, and for which initial estimates must be
supplied. The number of unknown parameters n1 must not exceed the number of equations n. If n1 < n,
we assume that n � n1ð Þ equations of the system are not involved in the matching process. These are
usually referred to as ‘driving equations’; they are independent of the parameters and of the solutions of
the other n1 equations. In numbering the equations for AUX, the driving equations must be put last.

The estimated values of the parameters are corrected by a form of Newton iteration. The Newton
correction on each iteration is calculated using a matrix whose i; jð Þth element depends on the
derivative of the ith component of the solution, yi, with respect to the jth parameter, pj. This matrix is
calculated by a simple numerical differentiation technique which requires n1 evaluations of the
differential system.

4 References

None.

5 Arguments

You are strongly recommended to read Sections 3 and 9 in conjunction with this section.
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1: H – REAL (KIND=nag_wp) Input/Output

On entry: H must be set to an estimate of the step size, h, needed for integration.

On exit: the last step length used.

2: EðNÞ – REAL (KIND=nag_wp) array Input

On entry: EðiÞ must be set to a small quantity to control the ith solution component. The element
EðiÞ is used:

(i) in the bound on the local error in the ith component of the solution yi during integration,

(ii) in the convergence test on the ith component of the solution yi at the matching point in the
Newton iteration.

The elements EðiÞ should not be chosen too small. They should usually be several orders of
magnitude larger than machine precision.

3: PARERRðN1Þ – REAL (KIND=nag_wp) array Input

On entry: PARERRðiÞ must be set to a small quantity to control the ith parameter component.
The element PARERRðiÞ is used:

(i) in the convergence test on the ith parameter in the Newton iteration,

(ii) in perturbing the ith parameter when approximating the derivatives of the components of the
solution with respect to the ith parameter, for use in the Newton iteration.

The elements PARERRðiÞ should not be chosen too small. They should usually be several orders
of magnitude larger than machine precision.

4: PARAMðN1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: PARAMðiÞ must be set to an estimate for the ith parameter, pi, for i ¼ 1; 2; . . . ;N1.

On exit: the corrected value for the ith parameter, unless an error has occurred, when it contains
t h e l a s t c a l c u l a t e d v a l u e o f t h e p a r am e t e r ( p o s s i b l y p e r t u r b e d b y
PARERRðiÞ � 1þ PARAMðiÞj jð Þ if the error occurred when calculating the approximate
derivatives).

5: CðM1;NÞ – REAL (KIND=nag_wp) array Output

On exit: the solution when M1 > 1 (see M1).

If M1 ¼ 1, the elements of C are not used.

6: N – INTEGER Input

On entry: n, the total number of differential equations.

7: N1 – INTEGER Input

On entry: n1, the number of parameters.

If N1 < N, the last N� N1 differential equations (in AUX) are driving equations (see Section 3).

Constraint: N1 � N.

8: M1 – INTEGER Input

On entry: determines whether or not the final solution is computed as well as the parameter
values.

M1 ¼ 1
The final solution is not calculated;
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M1 > 1
The final values of the solution at interval (length of range)/ M1� 1ð Þ are calculated and
stored sequentially in the array C starting with the values of yi evaluated at the first end
point (see RAAUX) stored in Cð1; iÞ.

9: AUX – SUBROUTINE, supplied by the user. External Procedure

AUX must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments,
x; y1; . . . ; yn , p1; . . . ; pn1 :

The specification of AUX is:

SUBROUTINE AUX (F, Y, X, PARAM)

REAL (KIND=nag_wp) F(*), Y(*), X, PARAM(*)

In the description of the arguments of D02AGF below, n and n1 denote the numerical values
of N and N1 in the call of D02AGF.

1: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the argument.

3: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

4: PARAMð�Þ – REAL (KIND=nag_wp) array Input

On entry: pi, for i ¼ 1; 2; . . . ; n1, the value of the parameters.

AUX must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02AGF is called. Arguments denoted as Input must not be changed by
this procedure.

10: BCAUX – SUBROUTINE, supplied by the user. External Procedure

BCAUX must evaluate the values of yi at the end points of the range given the values of
p1; . . . ; pn1 .

The specification of BCAUX is:

SUBROUTINE BCAUX (G0, G1, PARAM)

REAL (KIND=nag_wp) G0(*), G1(*), PARAM(*)

In the description of the arguments of D02AGF below, n and n1 denote the numerical values
of N and N1 in the call of D02AGF.

1: G0ð�Þ – REAL (KIND=nag_wp) array Output

On exit: the values yi, for i ¼ 1; 2; . . . ;n, at the boundary point x0 (see RAAUX).

2: G1ð�Þ – REAL (KIND=nag_wp) array Output

On exit: the values yi, for i ¼ 1; 2; . . . ;n, at the boundary point x1 (see RAAUX).

3: PARAMð�Þ – REAL (KIND=nag_wp) array Input

On entry: pi, for i ¼ 1; 2; . . . ; n, the value of the parameters.
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BCAUX must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02AGF is called. Arguments denoted as Input must not be changed by
this procedure.

11: RAAUX – SUBROUTINE, supplied by the user. External Procedure

RAAUX must evaluate the end points, x0 and x1, of the range and the matching point, r, given
the values p1; p2; . . . ; pn1 .

The specification of RAAUX is:

SUBROUTINE RAAUX (X0, X1, R, PARAM)

REAL (KIND=nag_wp) X0, X1, R, PARAM(*)

In the description of the arguments of D02AGF below, n1 denotes the numerical value of N1
in the call of D02AGF.

1: X0 – REAL (KIND=nag_wp) Output

On exit: must contain the left-hand end of the range, x0.

2: X1 – REAL (KIND=nag_wp) Output

On exit: must contain the right-hand end of the range x1.

3: R – REAL (KIND=nag_wp) Output

On exit: must contain the matching point, r.

4: PARAMð�Þ – REAL (KIND=nag_wp) array Input

On entry: pi, for i ¼ 1; 2; . . . ; n1, the value of the parameters.

RAAUX must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02AGF is called. Arguments denoted as Input must not be changed by
this procedure.

12: PRSOL – SUBROUTINE, supplied by the user. External Procedure

PRSOL is called at each iteration of the Newton method and can be used to print the current
values of the parameters pi, for i ¼ 1; 2; . . . ;n1, their errors, ei, and the sum of squares of the
errors at the matching point, r.

The specification of PRSOL is:

SUBROUTINE PRSOL (PARAM, RES, N1, ERR)

INTEGER N1
REAL (KIND=nag_wp) PARAM(N1), RES, ERR(N1)

1: PARAMðN1Þ – REAL (KIND=nag_wp) array Input

On entry: pi, for i ¼ 1; 2; . . . ; n1, the current value of the parameters.

2: RES – REAL (KIND=nag_wp) Input

On entry: the sum of squares of the errors in the arguments,
Xn1

i¼1
e2i .

3: N1 – INTEGER Input

On entry: n1, the number of parameters.
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4: ERRðN1Þ – REAL (KIND=nag_wp) array Input

On entry: the errors in the parameters, ei, for i ¼ 1; 2; . . . ; n1.

PRSOL must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02AGF is called. Arguments denoted as Input must not be changed by
this procedure.

13: MATðN1;N1Þ – REAL (KIND=nag_wp) array Workspace
14: COPYð1; 1Þ – REAL (KIND=nag_wp) array Input
15: WSPACEðN; 9Þ – REAL (KIND=nag_wp) array Workspace
16: WSPAC1ðNÞ – REAL (KIND=nag_wp) array Workspace
17: WSPAC2ðNÞ – REAL (KIND=nag_wp) array Workspace

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

This indicates that N1 > N on entry, that is the number of parameters is greater than the number
of differential equations.

IFAIL ¼ 2

As for IFAIL ¼ 4 except that the integration failed while calculating the matrix for use in the
Newton iteration.

IFAIL ¼ 3

The current matching point r does not lie between the current end points x0 and x1. If the values
x0, x1 and r depend on the parameters pi, this may occur at any time in the Newton iteration if
care is not taken to avoid it when coding RAAUX.

IFAIL ¼ 4

The step length for integration H has halved more than 13 times (or too many steps were needed
to reach the end of the range of integration) in attempting to control the local truncation error
whilst integrating to obtain the solution corresponding to the current values pi. If, on failure, H
has the sign of r� x0 then failure has occurred whilst integrating from x0 to r, otherwise it has
occurred whilst integrating from x1 to r.

IFAIL ¼ 5

The matrix of the equations to be solved for corrections to the variable parameters in the Newton
method is singular (as determined by F07ADF (DGETRF)).
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IFAIL ¼ 6

A satisfactory correction to the parameters was not obtained on the last Newton iteration
employed. A Newton iteration is deemed to be unsatisfactory if the sum of the squares of the
residuals (which can be printed using PRSOL) has not been reduced after three iterations using a
new Newton correction.

IFAIL ¼ 7

Convergence has not been obtained after 12 satisfactory iterations of the Newton method.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

A further discussion of these errors and the steps which might be taken to correct them is given in
Section 9.

7 Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is usually close
to that specified by you; and the solution, if requested, is usually determined to the accuracy specified.

8 Parallelism and Performance

D02AGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02AGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D02AGF depends on the complexity of the system, and on the number of iterations
required. In practice, integration of the differential equations is by far the most costly process involved.

There may be particular difficulty in integrating the differential equations in one direction (indicated by
IFAIL ¼ 2 or 4). The value of r should be adjusted to avoid such difficulties.

If the matching point r is at one of the end points x0 or x1 and some of the parameters are used only to
determine the boundary values at this point, then good initial estimates for these parameters are not
required, since they are completely determined by the routine (for example, see p2 in EX1 of
Section 10).

Wherever they occur in the procedure, the error parameters contained in the arrays E and PARERR are
used in ‘mixed’ form; that is EðiÞ always occurs in expressions of the form EðiÞ � 1þ yij jð Þ, and

D02AGF NAG Library Manual

D02AGF.6 Mark 26



PARERRðiÞ always occurs in expressions of the form PARERRðiÞ � 1þ pij jð Þ. Though not ideal for
every application, it is expected that this mixture of absolute and relative error testing will be adequate
for most purposes.

Note that convergence is not guaranteed. You are strongly advised to provide an output PRSOL, as
shown in EX1 of Section 10, in order to monitor the progress of the iteration. Failure of the Newton
iteration to converge (see IFAIL ¼ 6 or 7) usually results from poor starting approximations to the
parameters, though occasionally such failures occur because the elements of one or both of the arrays
PARERR or E are too small. (It should be possible to distinguish these cases by studying the output
from PRSOL.) Poor starting approximations can also result in the failure described under IFAIL ¼ 4
and 5 in Section 6 (especially if these errors occur after some Newton iterations have been completed,
that is, after two or more calls of PRSOL). More frequently, a singular matrix in the Newton method
(monitored as IFAIL ¼ 5) occurs because the mathematical problem has been posed incorrectly. The
case IFAIL ¼ 4 usually occurs because h or r has been poorly estimated, so these values should be
checked first. If IFAIL ¼ 2 is monitored, the solution y1; y2; . . . ; yn is sensitive to perturbations in the
parameters pi. Reduce the size of one or more values PARERRðiÞ to reduce the perturbations. Since
only one value pi is perturbed at any time when forming the matrix, the perturbation which is too large
can be located by studying the final output from PRSOL and the values of the parameters returned by
D02AGF. If this change leads to other types of failure improve the initial values of pi by other means.

The computing time for integrating the differential equations can sometimes depend critically on the
quality of the initial estimates for the parameters pi. If it seems that too much computing time is
required and, in particular, if the values ERRðiÞ (available on each call of PRSOL) are much larger than
the expected values of the solution at the matching point r, then the coding of AUX, BCAUX and
RAAUX should be checked for errors. If no errors can be found, an independent attempt should be
made to improve the initial estimates for PARAMðiÞ.
The subroutine can be used to solve a very wide range of problems, for example:

(a) eigenvalue problems, including problems where the eigenvalue occurs in the boundary conditions;

(b) problems where the differential equations depend on some parameters which are to be determined
so as to satisfy certain boundary conditions (see EX1 in Section 10);

(c) problems where one of the end points of the range of integration is to be determined as the point
where a variable yi takes a particular value (see EX2 in Section 10);

(d) singular problems and problems on infinite ranges of integration where the values of the solution at
x0 or x1 or both are determined by a power series or an asymptotic expansion (or a more
complicated expression) and where some of the coefficients in the expression are to be determined
(see EX1 in Section 10); and

(e) differential equations with certain terms defined by other independent (driving) differential
equations.

10 Example

For this routine two examples are presented. There is a single example program for D02AGF, with a
main program and the code to solve the two example problems given in Example 1 (EX1) and Example
2 (EX2).

Example 1 (EX1)

This example finds the solution of the differential equation

y00 ¼ y
3 � y0
2x

on the range 0 � x � 16, with boundary conditions y 0ð Þ ¼ 0:1 and y 16ð Þ ¼ 1=6.

We cannot use the differential equation at x ¼ 0 because it is singular, so we take the truncated series
expansion

y xð Þ ¼ 1
10þ p1

ffiffiffi
x
p

10
þ x

100
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near the origin (which is correct to the number of terms given in this case). Here p1 is one of the
parameters to be determined. We choose the range as 0:1; 16½ � and setting p2 ¼ y0 16ð Þ, we can determine
all the boundary conditions. We take the matching point to be 16, the end of the range, and so a good
init ial guess for p2 is not necessary. We write y ¼ Yð1Þ, y0 ¼ Yð2Þ, and estimate
p1 ¼ PARAMð1Þ ¼ 0:2, p2 ¼ PARAMð2Þ ¼ 0:0.

Example 2 (EX2)

This example finds the gravitational constant p1 and the range p2 over which a projectile must be fired
to hit the target with a given velocity. The differential equations are

y0 ¼ tan


v0 ¼
� p1 sin
þ 0:00002v2
� �

v cos



0 ¼ �p1
v2
k

on the range 0 < x < p2 with boundary conditions

y ¼ 0; v ¼ 500; 
 ¼ 0:5 at x ¼ 0
y ¼ 0; v ¼ 450; 
 ¼ p3 at x ¼ p2:

We write y ¼ Yð1Þ, v ¼ Yð2Þ, 
 ¼ Yð3Þ, and we take the matching point r ¼ p2. We estimate
p1 ¼ PARAMð1Þ ¼ 32, p2 ¼ PARAMð2Þ ¼ 6000 and p3 ¼ PARAMð3Þ ¼ 0:54 (though this estimate is
not important).

10.1 Program Text

! D02AGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02agfe_mod

! D02AGF Example Program Module:
! Parameters and User-defined Routines

! iprint: set iprint = 1 for output at each Newton iteration.
! nin: the input channel number
! nout: the output channel number

! For Example 1:
! n_ex1 : number of differential equations,
! n1_ex1: number of parameters.

! For Example 2:
! n_ex2 : number of differential equations,
! n1_ex2: number of parameters.

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: aux1, aux2, bcaux1, bcaux2, prsol1, &

prsol2, raaux1, raaux2
! .. Parameters ..

Integer, Parameter :: iprint = 0
Integer, Parameter, Public :: n1_ex1 = 2, n1_ex2 = 3, nin = 5, &

nout = 6, n_ex1 = 2, n_ex2 = 3
Contains

Subroutine aux1(f,y,x,param)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
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Real (Kind=nag_wp), Intent (In) :: param(*), y(*)
! .. Executable Statements ..

f(1) = y(2)
f(2) = (y(1)**3-y(2))/(2.0_nag_wp*x)
Return

End Subroutine aux1
Subroutine raaux1(x0,x1,r,param)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r, x0, x1

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: param(*)

! .. Executable Statements ..
x0 = 0.1_nag_wp
x1 = 16.0_nag_wp
r = 16.0_nag_wp
Return

End Subroutine raaux1
Subroutine bcaux1(g0,g1,param)

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g0(*), g1(*)
Real (Kind=nag_wp), Intent (In) :: param(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: z

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
z = 0.1_nag_wp
g0(1) = 0.1_nag_wp + param(1)*sqrt(z)*0.1_nag_wp + 0.01_nag_wp*z
g0(2) = param(1)*0.05_nag_wp/sqrt(z) + 0.01_nag_wp
g1(1) = 1.0_nag_wp/6.0_nag_wp
g1(2) = param(2)
Return

End Subroutine bcaux1
Subroutine prsol1(param,res,n1,err)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: res
Integer, Intent (In) :: n1

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: err(n1), param(n1)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
If (iprint/=0) Then

Write (nout,99999) ’Current parameters ’, (param(i),i=1,n1)
Write (nout,99998) ’Residuals ’, (err(i),i=1,n1)
Write (nout,99998) ’Sum of residuals squared ’, res
Write (nout,*)

End If
Return

99999 Format (1X,A,6(E14.6,2X))
99998 Format (1X,A,6(E12.4,1X))

End Subroutine prsol1
Subroutine aux2(f,y,x,param)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: eps = 2.0E-5_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: param(*), y(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, s

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
c = cos(y(3))
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s = sin(y(3))
f(1) = s/c
f(2) = -(param(1)*s+eps*y(2)*y(2))/(y(2)*c)
f(3) = -param(1)/(y(2)*y(2))
Return

End Subroutine aux2
Subroutine raaux2(x0,x1,r,param)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r, x0, x1

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: param(*)

! .. Executable Statements ..
x0 = 0.0_nag_wp
x1 = param(2)
r = param(2)
Return

End Subroutine raaux2
Subroutine bcaux2(g0,g1,param)

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g0(*), g1(*)
Real (Kind=nag_wp), Intent (In) :: param(*)

! .. Executable Statements ..
g0(1) = 0.0E0_nag_wp
g0(2) = 500.0E0_nag_wp
g0(3) = 0.5E0_nag_wp
g1(1) = 0.0E0_nag_wp
g1(2) = 450.0E0_nag_wp
g1(3) = param(3)
Return

End Subroutine bcaux2
Subroutine prsol2(param,res,n1,err)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: res
Integer, Intent (In) :: n1

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: err(n1), param(n1)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
If (iprint/=0) Then

Write (nout,99999) ’Current parameters ’, (param(i),i=1,n1)
Write (nout,99998) ’Residuals ’, (err(i),i=1,n1)
Write (nout,99998) ’Sum of residuals squared ’, res
Write (nout,*)

End If
Return

99999 Format (1X,A,6(E14.6,2X))
99998 Format (1X,A,6(E12.4,1X))

End Subroutine prsol2
End Module d02agfe_mod
Program d02agfe

! D02AGF Example Main Program

! .. Use Statements ..
Use d02agfe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’D02AGF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1
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! .. Use Statements ..
Use nag_library, Only: d02agf, nag_wp
Use d02agfe_mod, Only: aux1, bcaux1, n1_ex1, nin, n_ex1, prsol1, &

raaux1
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, r, soler, x, x1, xx
Integer :: i, ifail, j, m1

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:,:), e(:), mat(:,:), param(:), &

parerr(:), wspac1(:), wspac2(:), &
wspace(:,:)

Real (Kind=nag_wp) :: dummy(1,1)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)
! m1: final solution calculated at m1 points in range including
! end points.

Read (nin,*) m1
Allocate (c(m1,n_ex1),e(n_ex1),mat(n_ex1,n_ex1),param(n_ex1), &

parerr(n_ex1),wspac1(n_ex1),wspac2(n_ex1),wspace(n_ex1,9))
! h: step size estimate,
! param: initial parameter estimates,
! parerr: Newton iteration tolerances,
! soler: bound on the local error.

Read (nin,*) h
Read (nin,*) param(1:n1_ex1)
Read (nin,*) parerr(1:n1_ex1)
Read (nin,*) soler
e(1:n_ex1) = soler
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Case 1’
Write (nout,*)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02agf(h,e,parerr,param,c,n_ex1,n1_ex1,m1,aux1,bcaux1,raaux1, &

prsol1,mat,dummy,wspace,wspac1,wspac2,ifail)

Write (nout,*) ’Final parameters’
Write (nout,99999)(param(i),i=1,n1_ex1)
Write (nout,*)
Write (nout,*) ’Final solution’
Write (nout,*) ’X-value Components of solution’
Call raaux1(x,x1,r,param)
h = (x1-x)/real(m1-1,kind=nag_wp)
xx = x
Do i = 1, m1

Write (nout,99998) xx, (c(i,j),j=1,n_ex1)
xx = xx + h

End Do

Return

99999 Format (1X,3E16.6)
99998 Format (1X,F7.2,3E13.4)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d02agf, nag_wp
Use d02agfe_mod, Only: aux2, bcaux2, n1_ex2, nin, n_ex2, prsol2, &

raaux2
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, r, soler, x, x1, xx
Integer :: i, ifail, j, m1

! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: c(:,:), e(:), mat(:,:), param(:), &
parerr(:), wspac1(:), wspac2(:), &
wspace(:,:)

Real (Kind=nag_wp) :: dummy(1,1)
! .. Executable Statements ..

Read (nin,*)
! Read in problem parameters
! m1: final solution calculated at m1 points in range including
! end points.

Read (nin,*) m1
Allocate (c(m1,n_ex2),e(n_ex2),mat(n_ex2,n_ex2),param(n_ex2), &

parerr(n_ex2),wspac1(n_ex2),wspac2(n_ex2),wspace(n_ex2,9))
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Case 2’
Write (nout,*)

! h: step size estimate,
! param: initial parameter estimates,
! parerr: Newton iteration tolerances,
! soler: bound on the local error.

Read (nin,*) h
Read (nin,*) param(1:n1_ex2)
Read (nin,*) parerr(1:n1_ex2)
Read (nin,*) soler
e(1:n_ex2) = soler

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02agf(h,e,parerr,param,c,n_ex2,n1_ex2,m1,aux2,bcaux2,raaux2, &

prsol2,mat,dummy,wspace,wspac1,wspac2,ifail)

Write (nout,*) ’Final parameters’
Write (nout,99999)(param(i),i=1,n_ex2)
Write (nout,*)
Write (nout,*) ’Final solution’
Write (nout,*) ’X-value Components of solution’
Call raaux2(x,x1,r,param)
h = (x1-x)/5.0E0_nag_wp
xx = x
Do i = 1, 6

Write (nout,99998) xx, (c(i,j),j=1,n_ex2)
xx = xx + h

End Do

Return

99999 Format (1X,3E16.6)
99998 Format (1X,F7.0,3E13.4)

End Subroutine ex2
End Program d02agfe

10.2 Program Data

D02AGF Example Program Data
6 : m1
0.1 : h
0.2 0.0 : param
1.0E-5 1.0E-3 : parer
1.0E-4 : soler

6 : m1, n, n1
1.0E1 : h
3.2E1 6.0E3 5.4E-1 : param
1.0E-5 1.0E-4 1.0E-4 : parer
1.0E-2 : soler
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10.3 Program Results

D02AGF Example Program Results

Case 1

Final parameters
0.464269E-01 0.349429E-02

Final solution
X-value Components of solution

0.10 0.1025E+00 0.1734E-01
3.28 0.1217E+00 0.4180E-02
6.46 0.1338E+00 0.3576E-02
9.64 0.1449E+00 0.3418E-02

12.82 0.1557E+00 0.3414E-02
16.00 0.1667E+00 0.3494E-02

Case 2

Final parameters
0.323729E+02 0.596317E+04 -0.535231E+00

Final solution
X-value Components of solution

0. 0.0000E+00 0.5000E+03 0.5000E+00
1193. 0.5298E+03 0.4516E+03 0.3281E+00
2385. 0.8076E+03 0.4203E+03 0.1231E+00
3578. 0.8208E+03 0.4094E+03 -0.1032E+00
4771. 0.5563E+03 0.4200E+03 -0.3296E+00
5963. 0.0000E+00 0.4500E+03 -0.5352E+00
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NAG Library Routine Document

D02BGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02BGF integrates a system of first-order ordinary differential equations over an interval with suitable
initial conditions, using a Runge–Kutta–Merson method, until a specified component attains a given
value.

2 Specification

SUBROUTINE D02BGF (X, XEND, N, Y, TOL, HMAX, M, VAL, FCN, W, IFAIL)

INTEGER N, M, IFAIL
REAL (KIND=nag_wp) X, XEND, Y(N), TOL, HMAX, VAL, W(N,10)
EXTERNAL FCN

3 Description

D02BGF advances the solution of a system of ordinary differential equations

y0i ¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ; n;

from x ¼ X towards x ¼ XEND using a Merson form of the Runge–Kutta method. The system is
defined by FCN, which evaluates fi in terms of x and y1; y2; . . . ; yn (see Section 5), and the values of
y1; y2; . . . ; yn must be given at x ¼ X.

As the integration proceeds, a check is made on the specified component ym of the solution to
determine an interval where it attains a given value �. The position where this value is attained is then
determined accurately by interpolation on the solution and its derivative. It is assumed that the solution
of ym ¼ � can be determined by searching for a change in sign in the function ym � �.
The accuracy of the integration and, indirectly, of the determination of the position where ym ¼ � is
controlled by the argument TOL.

For a description of Runge–Kutta methods and their practical implementation see Hall and Watt (1976).

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Arguments

1: X – REAL (KIND=nag_wp) Input/Output

On entry: must be set to the initial value of the independent variable x.

On exit: the point where the component ym attains the value � unless an error has occurred, when
it contains the value of x at the error. In particular, if ym 6¼ � anywhere on the range x ¼ X to
x ¼ XEND, it will contain XEND on exit.

2: XEND – REAL (KIND=nag_wp) Input

On entry: the final value of the independent variable x.

If XEND < X on entry integration will proceed in the negative direction.
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3: N – INTEGER Input

On entry: n, the number of differential equations.

Constraint: N > 0.

4: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yn.

On exit: the computed values of the solution at a point near the solution X, unless an error has
occurred when they contain the computed values at the final value of X.

5: TOL – REAL (KIND=nag_wp) Input/Output

On entry: must be set to a positive tolerance for controlling the error in the integration and in the
determination of the position where ym ¼ �.
D02BGF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution obtained in the integration. The
relation between changes in TOL and the error in the determination of the position where ym ¼ �
is less clear, but for TOL small enough the error should be approximately proportional to TOL.
However, the actual relation between TOL and the accuracy cannot be guaranteed. You are
strongly recommended to call D02BGF with more than one value for TOL and to compare the
results obtained to estimate their accuracy. In the absence of any prior knowledge you might
compare results obtained by calling D02BGF with TOL ¼ 10:0�p and TOL ¼ 10:0�p�1 if p
correct decimal digits in the solution are required.

Constraint: TOL > 0:0.

On exit: normally unchanged. However if the range from X to the position where ym ¼ � (or to
the final value of X if an error occurs) is so short that a small change in TOL is unlikely to make
any change in the computed solution then, on return, TOL has its sign changed. To check results
returned with TOL < 0:0, D02BGF should be called again with a positive value of TOL whose
magnitude is considerably smaller than that of the previous call.

6: HMAX – REAL (KIND=nag_wp) Input

On entry: controls how the sign of ym � � is checked.

HMAX ¼ 0:0
ym � � is checked at every internal integration step.

HMAX 6¼ 0:0
The computed solution is checked for a change in sign of ym � � at steps of not greater
than HMAXj j. This facility should be used if there is any chance of ‘missing’ the change
in sign by checking too infrequently. For example, if two changes of sign of ym � � are
expected within a distance h, say, of each other then a suitable value for HMAX might be
HMAX ¼ h=2. If only one change of sign in ym � � is expected on the range X to XEND
then HMAX ¼ 0:0 is most appropriate.

7: M – INTEGER Input

On entry: the index m of the component of the solution whose value is to be checked.

Constraint: 1 � M � N.

8: VAL – REAL (KIND=nag_wp) Input

On entry: the value of � in the equation ym ¼ � to be solved for X.

9: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments
x; y1; . . . ; yn .
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The specification of FCN is:

SUBROUTINE FCN (X, Y, F)

REAL (KIND=nag_wp) X, Y(*), F(*)

In the description of the arguments of D02BGF below, n denotes the actual value of N in the
call of D02BGF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the argument.

3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02BGF is called. Arguments denoted as Input must not be changed by this
procedure.

10: WðN; 10Þ – REAL (KIND=nag_wp) array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOL � 0:0,
or N � 0,
or M � 0,
or M > N.

IFAIL ¼ 2

With the given value of TOL, no further progress can be made across the integration range from
the current point x ¼ X, or dependence of the error on TOL would be lost if further progress
across the integration range were attempted (see Section 9 for a discussion of this error exit). The
components Yð1Þ;Yð2Þ; . . . ;YðnÞ contain the computed values of the solution at the current point
x ¼ X. No point at which ym � � changes sign has been located up to the point x ¼ X.
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IFAIL ¼ 3

TOL is too small for the routine to take an initial step (see Section 9). X and
Yð1Þ;Yð2Þ; . . . ;YðnÞ retain their initial values.

IFAIL ¼ 4

At no point in the range X to XEND did the function ym � � change sign. It is assumed that
ym � � has no solution.

IFAIL ¼ 5 (C05AZF)

A serious error has occurred in an internal call to the specified routine. Check all subroutine calls
and array dimensions. Seek expert help.

IFAIL ¼ 6

A serious error has occurred in an internal call to an integration routine. Check all subroutine
calls and array dimensions. Seek expert help.

IFAIL ¼ 7

A serious error has occurred in an internal call to an interpolation routine. Check all (sub)
program calls and array dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy depends on TOL, on the mathematical properties of the differential system, on the
position where ym ¼ � and on the method. It can be controlled by varying TOL but the approximate
proportionality of the error to TOL holds only for a restricted range of values of TOL. For TOL too
large, the underlying theory may break down and the result of varying TOL may be unpredictable. For
TOL too small, rounding error may affect the solution significantly and an error exit with IFAIL ¼ 2 or
3 is possible.

8 Parallelism and Performance

D02BGF is not threaded in any implementation.

9 Further Comments

The time taken by D02BGF depends on the complexity and mathematical properties of the system of
differential equations defined by FCN, on the range, the position of solution and the tolerance. There is
also an overhead of the form aþ b� n where a and b are machine-dependent computing times.

For some problems it is possible that D02BGF will exit with IFAIL ¼ 4 due to inaccuracy of the
computed value ym. For example, consider a case where the component ym has a maximum in the
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integration range and � is close to the maximum value. If TOL is too large, it is possible that the
maximum might be estimated as less than �, or even that the integration step length chosen might be so
long that the maximum of ym and the (two) positions where ym ¼ � are all in the same step and so the
position where ym ¼ � remains undetected. Both these difficulties can be overcome by reducing TOL
sufficiently and, if necessary, by choosing HMAX sufficiently small. For similar reasons, care should be
taken when choosing XEND. If possible, you should choose XEND well beyond the point where ym is
expected to equal �, for example XEND� Xj j should be made about 50% longer than the expected
range. As a simple check, if, with XEND fixed, a change in TOL does not lead to a significant change
in ym at XEND, then inaccuracy is not a likely source of error.

If D02BGF fails with IFAIL ¼ 3, then it could be called again with a larger value of TOL if this has
not already been tried. If the accuracy requested is really needed and cannot be obtained with this
routine, the system may be very stiff (see below) or so badly scaled that it cannot be solved to the
required accuracy.

If D02BGF fails with IFAIL ¼ 2, it is likely that it has been called with a value of TOL which is so
small that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved
systems and very small values of TOL. You should, however, consider whether there is a more
fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with
IFAIL ¼ 2, unless overflow occurs first. If overflow occurs using D02BGF, routine D02PFF can be
used instead to detect the increasing solution before overflow occurs. In any case, numerical
integration cannot be continued through a singularity, and analytical treatment should be
considered;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components the routine will use
very small steps in x (internally to D02BGF) to preserve stability. This will usually exhibit itself by
making the computing time excessively long, or occasionally by an exit with IFAIL ¼ 2. Merson's
method is not efficient in such cases, and you should try the method D02EJF which uses a
Backward Differentiation Formula. To determine whether a problem is stiff, D02PEF may be used.

For well-behaved systems with no difficulties such as stiffness or singularities, the Merson method
should work well for low accuracy calculations (three or four figures). For high accuracy calculations or
where FCN is costly to evaluate, Merson's method may not be appropriate and a computationally less
expensive method may be D02CJF which uses an Adams' method.

For problems for which D02BGF is not sufficiently general, you should consider the routines D02BHF
and D02PFF. Routine D02BHF can be used to solve an equation involving the components
y1; y2; . . . ; yn and their derivatives (for example, to find where a component passes through zero or to
find the maximum value of a component). It also permits a more general form of error control and may
be preferred to D02BGF if the component whose value is to be determined is very small in modulus on
the integration range. D02BHF can always be used in place of D02BGF, but will usually be
computationally more expensive for solving the same problem. D02PFF is a more general routine with
many facilities including a more general error control criterion. D02PFF can be combined with the root-
finder C05AZF and the interpolation routine D02PSF to solve equations involving y1; y2; . . . ; yn and
their derivatives.

This routine is only intended to be used to locate the first zero of the function ym � �. If later zeros are
required you are strongly advised to construct your own more general root-finding routines as discussed
above.
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10 Example

This example finds the value X > 0:0 where y ¼ 0:0, where y, v, 
, are defined by

y0 ¼ tan


v0 ¼ �0:032 tan

v

� 0:02v

cos



0 ¼ �0:032
v2

and where at X ¼ 0:0 we are given y ¼ 0:5, v ¼ 0:5 and 
 ¼ 	=5. We write y ¼ Yð1Þ, v ¼ Yð2Þ and

 ¼ Yð3Þ and we set TOL ¼ 1:0E�4 and TOL ¼ 1:0E�5 in turn so that we can compare the solutions
obtained. We expect the solution X ’ 7:3 and we set XEND ¼ 10:0 so that the point where y ¼ 0:0 is
not too near the end of the range of integration. The initial values and range are read from a data file.

10.1 Program Text

! D02BGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02bgfe_mod

! D02BGF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Integer, Parameter, Public :: n = 3, nin = 5, nout = 6

! n: number of differential equations
Contains

Subroutine fcn(x,y,f)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..
f(1) = tan(y(3))
f(2) = -0.032E0_nag_wp*tan(y(3))/y(2) - 0.02E0_nag_wp*y(2)/cos(y(3))
f(3) = -0.032E0_nag_wp/y(2)**2
Return

End Subroutine fcn
End Module d02bgfe_mod

Program d02bgfe

! D02BGF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02bgf, nag_wp
Use d02bgfe_mod, Only: fcn, n, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, hmax, tol, val, x, xend, &

xinit
Integer :: i, ifail, m
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:,:), y(:), yinit(:)

! .. Executable Statements ..
Write (nout,*) ’D02BGF Example Program Results’

! Skip heading in data file
Read (nin,*)

! m: index of mode of solution to attain value alpha
Read (nin,*) m
Allocate (w(n,10),y(n),yinit(n))

! xinit: initial x value, xend : final x value.
! alpha: attain y(m) = alpha, yinit: initial solution values.

Read (nin,*) alpha
Read (nin,*) xinit
Read (nin,*) xend
Read (nin,*) yinit(1:n)
hmax = 0.0E0_nag_wp
val = alpha
Do i = 4, 5

tol = 10.0E0_nag_wp**(-i)
x = xinit
y(1:n) = yinit(1:n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02bgf(x,xend,n,y,tol,hmax,m,val,fcn,w,ifail)

Write (nout,*)
Write (nout,99999) ’Calculation with TOL =’, tol
Write (nout,99998) ’ Y(M) changes sign at X = ’, x
If (tol<0.0E0_nag_wp) Then

Write (nout,*) ’ Over one-third steps controlled by HMAX’
End If

End Do

99999 Format (1X,A,E8.1)
99998 Format (1X,A,F7.4)

End Program d02bgfe

10.2 Program Data

D02BGF Example Program Data
1 : m
0.0 : alpha
0.0 : xinit

10.0 : xend
0.5 0.5 6.28318530717958647692E-1 : yinit

10.3 Program Results

D02BGF Example Program Results

Calculation with TOL = 0.1E-03
Y(M) changes sign at X = 7.2884

Calculation with TOL = 0.1E-04
Y(M) changes sign at X = 7.2883
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NAG Library Routine Document

D02BHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02BHF integrates a system of first-order ordinary differential equations over an interval with suitable
initial conditions, using a Runge–Kutta–Merson method, until a user-specified function of the solution
is zero.

2 Specification

SUBROUTINE D02BHF (X, XEND, N, Y, TOL, IRELAB, HMAX, FCN, G, W, IFAIL)

INTEGER N, IRELAB, IFAIL
REAL (KIND=nag_wp) X, XEND, Y(N), TOL, HMAX, G, W(N,7)
EXTERNAL FCN, G

3 Description

D02BHF advances the solution of a system of ordinary differential equations

y0i ¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ; n;

from x ¼ X towards x ¼ XEND using a Merson form of the Runge–Kutta method. The system is
defined by FCN, which evaluates fi in terms of x and y1; y2; . . . ; yn (see Section 5), and the values of
y1; y2; . . . ; yn must be given at x ¼ X.

As the integration proceeds, a check is made on the function g x; yð Þ specified by you, to determine an
interval where it changes sign. The position of this sign change is then determined accurately by
interpolating for the solution and its derivative. It is assumed that g x; yð Þ is a continuous function of the
variables, so that a solution of g x; yð Þ ¼ 0 can be determined by searching for a change in sign in
g x; yð Þ.
The accuracy of the integration and, indirectly, of the determination of the position where g x; yð Þ ¼ 0, is
controlled by TOL.

For a description of Runge–Kutta methods and their practical implementation see Hall and Watt (1976).

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Arguments

1: X – REAL (KIND=nag_wp) Input/Output

On entry: must be set to the initial value of the independent variable x.

On exit: the point where g x; yð Þ ¼ 0:0 unless an error has occurred, when it contains the value of
x at the error. In particular, if g x; yð Þ 6¼ 0:0 anywhere on the range X to XEND, it will contain
XEND on exit.

2: XEND – REAL (KIND=nag_wp) Input

On entry: the final value of the independent variable x.

If XEND < X on entry, integration proceeds in a negative direction.
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3: N – INTEGER Input

On entry: n, the number of differential equations.

Constraint: N > 0.

4: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yn.

On exit: the computed values of the solution at the final point x ¼ X.

5: TOL – REAL (KIND=nag_wp) Input/Output

On entry: must be set to a positive tolerance for controlling the error in the integration and in the
determination of the position where g x; yð Þ ¼ 0:0.

D02BHF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution obtained in the integration. The
relation between changes in TOL and the error in the determination of the position where
g x; yð Þ ¼ 0:0 is less clear, but for TOL small enough the error should be approximately
proportional to TOL. However, the actual relation between TOL and the accuracy cannot be
guaranteed. You are strongly recommended to call D02BHF with more than one value for TOL
and to compare the results obtained to estimate their accuracy. In the absence of any prior
knowledge you might compare results obtained by calling D02BHF with TOL ¼ 10:0�p and
TOL ¼ 10:0�p�1 if p correct decimal digits in the solution are required.

Constraint: TOL > 0:0.

On exit: normally unchanged. However if the range from x ¼ X to the position where
g x; yð Þ ¼ 0:0 (or to the final value of x if an error occurs) is so short that a small change in TOL
is unlikely to make any change in the computed solution, then TOL is returned with its sign
changed. To check results returned with TOL < 0:0, D02BHF should be called again with a
positive value of TOL whose magnitude is considerably smaller than that of the previous call.

6: IRELAB – INTEGER Input

On entry: determines the type of error control. At each step in the numerical solution an estimate
of the local error, est, is made. For the current step to be accepted the following condition must
be satisfied:

IRELAB ¼ 0
est � TOL�max 1:0; y1j j; y2j j; . . . ; ynj jf g;

IRELAB ¼ 1
est � TOL;

IRELAB ¼ 2
est � TOL�max �; y1j j; y2j j; . . . ; ynj jf g, where � is machine precision.

If the appropriate condition is not satisfied, the step size is reduced and the solution recomputed
on the current step.

If you wish to measure the error in the computed solution in terms of the number of correct
decimal places, then set IRELAB ¼ 1 on entry, whereas if the error requirement is in terms of the
number of correct significant digits, then set IRELAB ¼ 2. Where there is no preference in the
choice of error test, IRELAB ¼ 0 will result in a mixed error test. It should be borne in mind that
the computed solution will be used in evaluating g x; yð Þ.
Constraint: IRELAB ¼ 0, 1 or 2.

7: HMAX – REAL (KIND=nag_wp) Input

On entry: if HMAX ¼ 0:0, no special action is taken.

If HMAX 6¼ 0:0, a check is made for a change in sign of g x; yð Þ at steps not greater than
HMAXj j. This facility should be used if there is any chance of ‘missing’ the change in sign by
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checking too infrequently. For example, if two changes of sign of g x; yð Þ are expected within a
distance h, say, of each other, then a suitable value for HMAX might be HMAX ¼ h=2. If only
one change of sign in g x; yð Þ is expected on the range X to XEND, then the choice HMAX ¼ 0:0
is most appropriate.

8: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments
x; y1; . . . ; yn .

The specification of FCN is:

SUBROUTINE FCN (X, Y, F)

REAL (KIND=nag_wp) X, Y(*), F(*)

In the description of the arguments of D02BHF below, n denotes the value of N in the call of
D02BHF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the argument.

3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02BHF is called. Arguments denoted as Input must not be changed by this
procedure.

9: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must evaluate the function g x; yð Þ at a specified point.

The specification of G is:

FUNCTION G (X, Y)
REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X, Y(*)

In the description of the arguments of D02BHF below, n denotes the value of N in the call of
D02BHF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: the value of yi, for i ¼ 1; 2; . . . ; n.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02BHF is called. Arguments denoted as Input must not be changed by this
procedure.
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10: WðN; 7Þ – REAL (KIND=nag_wp) array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOL � 0:0,
or N � 0,
or IRELAB 6¼ 0, 1 or 2.

IFAIL ¼ 2

With the given value of TOL, no further progress can be made across the integration range from
the current point x ¼ X, or dependence of the error on TOL would be lost if further progress
across the integration range were attempted (see Section 9 for a discussion of this error exit). The
components Yð1Þ;Yð2Þ; . . . ;YðnÞ contain the computed values of the solution at the current point
x ¼ X. No point at which g x; yð Þ changes sign has been located up to the point x ¼ X.

IFAIL ¼ 3

TOL is too small for D02BHF to take an initial step (see Section 9). X and Yð1Þ;Yð2Þ; . . . ;YðnÞ
retain their initial values.

IFAIL ¼ 4

At no point in the range X to XEND did the function g x; yð Þ change sign. It is assumed that
g x; yð Þ ¼ 0:0 has no solution.

IFAIL ¼ 5 (C05AZF)

A serious error has occurred in an internal call to the specified routine. Check all subroutine calls
and array dimensions. Seek expert help.

IFAIL ¼ 6

A serious error has occurred in an internal call to an integration routine. Check all subroutine
calls and array dimensions. Seek expert help.

IFAIL ¼ 7

A serious error has occurred in an internal call to an interpolation routine. Check all (sub)
program calls and array dimensions. Seek expert help.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy depends on TOL, on the mathematical properties of the differential system, on the
position where g x; yð Þ ¼ 0:0 and on the method. It can be controlled by varying TOL but the
approximate proportionality of the error to TOL holds only for a restricted range of values of TOL. For
TOL too large, the underlying theory may break down and the result of varying TOL may be
unpredictable. For TOL too small, rounding error may affect the solution significantly and an error exit
with IFAIL ¼ 2 or 3 is possible.

The accuracy may also be restricted by the properties of g x; yð Þ. You should try to code G without
introducing any unnecessary cancellation errors.

8 Parallelism and Performance

D02BHF is not threaded in any implementation.

9 Further Comments

The time taken by D02BHF depends on the complexity and mathematical properties of the system of
differential equations defined by FCN, the complexity of G, on the range, the position of the solution
and the tolerance. There is also an overhead of the form aþ b� n where a and b are machine-
dependent computing times.

For some problems it is possible that D02BHF will return IFAIL ¼ 4 because of inaccuracy of the
computed values Y, leading to inaccuracy in the computed values of g x; yð Þ used in the search for the
solution of g x; yð Þ ¼ 0:0. This difficulty can be overcome by reducing TOL sufficiently, and if
necessary, by choosing HMAX sufficiently small. If possible, you should choose XEND well beyond
the expected point where g x; yð Þ ¼ 0:0; for example make XEND� Xj j about 50% larger than the
expected range. As a simple check, if, with XEND fixed, a change in TOL does not lead to a significant
change in Y at XEND, then inaccuracy is not a likely source of error.

If D02BHF fails with IFAIL ¼ 3, then it could be called again with a larger value of TOL if this has
not already been tried. If the accuracy requested is really needed and cannot be obtained with this
routine, the system may be very stiff (see below) or so badly scaled that it cannot be solved to the
required accuracy.

If D02BHF fails with IFAIL ¼ 2, it is likely that it has been called with a value of TOL which is so
small that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved
systems and very small values of TOL. You should, however, consider whether there is a more
fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with
IFAIL ¼ 2, unless overflow occurs first. If overflow occurs using D02BHF, D02PFF can be used
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instead to detect the increasing solution, before overflow occurs. In any case, numerical integration
cannot be continued through a singularity, and analytical treatment should be considered;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the routine will
compute in very small steps in x (internally to D02BHF) to preserve stability. This will usually
exhibit itself by making the computing time excessively long, or occasionally by an exit with
IFAIL ¼ 2. Merson's method is not efficient in such cases, and you should try D02EJF which uses
a Backward Differentiation Formula method. To determine whether a problem is stiff, D02PEF
may be used.

For well-behaved systems with no difficulties such as stiffness or singularities, the Merson method
should work well for low accuracy calculations (three or four figures). For high accuracy calculations or
where FCN is costly to evaluate, Merson's method may not be appropriate and a computationally less
expensive method may be D02CJF which uses an Adams' method.

For problems for which D02BHF is not sufficiently general, you should consider D02PFF. D02PFF is a
more general routine with many facilities including a more general error control criterion. D02PFF can
be combined with the rootfinder C05AZF and the interpolation routine D02PSF to solve equations
involving y1; y2; . . . ; yn and their derivatives.

D02BHF can also be used to solve an equation involving x, y1; y2; . . . ; yn and the derivatives of
y1; y2; . . . ; yn . For example in Section 10, D02BHF is used to find a value of X > 0:0 where Yð1Þ ¼ 0:0.
It could instead be used to find a turning-point of y1 by replacing the function g x; yð Þ in the program by:

REAL (kind=nag_wp) FUNCTION G(X,Y)
REAL (kind=nag_wp) X,Y(3),F(3)
CALL FCN(X,Y,F)
G = F(1)
RETURN
END

This routine is only intended to locate the first zero of g x; yð Þ. If later zeros are required, you are
strongly advised to construct your own more general root-finding routines as discussed above.

10 Example

This example finds the value X > 0:0 at which y ¼ 0:0, where y, v, 
 are defined by

y0 ¼ tan


v0 ¼ �0:032 tan

v

� 0:02v

cos



0 ¼ �0:032
v2

and where at X ¼ 0:0 we are given y ¼ 0:5, v ¼ 0:5 and 
 ¼ 	=5. We write y ¼ Yð1Þ, v ¼ Yð2Þ and

 ¼ Yð3Þ and we set TOL ¼ 1:0E�4 and TOL ¼ 1:0E�5 in turn so that we can compare the solutions.
We expect the solution X ’ 7:3 and so we set XEND ¼ 10:0 to avoid determining the solution of
y ¼ 0:0 too near the end of the range of integration. The initial values and range are read from a data
file.

10.1 Program Text

! D02BHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02bhfe_mod

! D02BHF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Accessibility Statements ..

Private
Public :: fcn, g

! .. Parameters ..
Integer, Parameter, Public :: n = 3, nin = 5, nout = 6

! n: number of differential equations
Contains

Subroutine fcn(x,y,f)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = -0.032E0_nag_wp
Real (Kind=nag_wp), Parameter :: beta = -0.02E0_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..
f(1) = tan(y(3))
f(2) = alpha*tan(y(3))/y(2) + beta*y(2)/cos(y(3))
f(3) = alpha/y(2)**2
Return

End Subroutine fcn

Function g(x,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Executable Statements ..
g = y(1)
Return

End Function g
End Module d02bhfe_mod

Program d02bhfe

! D02BHF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02bhf, nag_wp
Use d02bhfe_mod, Only: fcn, g, n, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: hmax, tol, x, xend, xinit
Integer :: i, ifail, irelab, j

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:,:), y(:), yinit(:)

! .. Executable Statements ..
Write (nout,*) ’D02BHF Example Program Results’
Allocate (w(n,7),y(n),yinit(n))

! Skip heading in data file
Read (nin,*)

! xinit: initial x value, xend : final x value.
! yinit: initial solution values, irelab: type of error control.

Read (nin,*) xinit
Read (nin,*) xend
Read (nin,*) yinit(1:n)
Read (nin,*) irelab
hmax = 0.0E0_nag_wp
Do i = 4, 5

tol = 10.0E0_nag_wp**(-i)
x = xinit
y(1:n) = yinit(1:n)
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! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02bhf(x,xend,n,y,tol,irelab,hmax,fcn,g,w,ifail)

Write (nout,*)
Write (nout,99999) ’Calculation with TOL =’, tol
Write (nout,99998) ’ Root of Y(1) at’, x
Write (nout,99997) ’ Solution is’, (y(j),j=1,n)
If (tol<0.0E0_nag_wp) Then

Write (nout,*) ’ Over one-third steps controlled by HMAX’
End If

End Do

99999 Format (1X,A,E8.1)
99998 Format (1X,A,F7.4)
99997 Format (1X,A,3F13.5)

End Program d02bhfe

10.2 Program Data

D02BHF Example Program Data
0.0 : xinit

10.0 : xend
0.5 0.5 6.28318530717958647692E-1 : yinit
0 : irelab

10.3 Program Results

D02BHF Example Program Results

Calculation with TOL = 0.1E-03
Root of Y(1) at 7.2884
Solution is 0.00000 0.47485 -0.76010

Calculation with TOL = 0.1E-04
Root of Y(1) at 7.2883
Solution is -0.00000 0.47486 -0.76011
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NAG Library Routine Document

D02BJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02BJF integrates a system of first-order ordinary differential equations over an interval with suitable
initial conditions, using a fixed order Runge–Kutta method, until a user-specified function, if supplied,
of the solution is zero, and returns the solution at points specified by you, if desired.

2 Specification

SUBROUTINE D02BJF (X, XEND, N, Y, FCN, TOL, RELABS, OUTPUT, G, W, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X, XEND, Y(N), TOL, G, W(20*N)
CHARACTER(1) RELABS
EXTERNAL FCN, OUTPUT, G

3 Description

D02BJF advances the solution of a system of ordinary differential equations

y0i ¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ; n;

from x ¼ X to x ¼ XEND using a fixed order Runge–Kutta method. The system is defined by FCN,
which evaluates fi in terms of x and y ¼ y1; y2; . . . ; ynð Þ. The initial values of y ¼ y1; y2; . . . ; ynð Þ must
be given at x ¼ X.

The solution is returned via the OUTPUT supplied by you and at points specified by you, if desired:
this solution is obtained by C1 interpolation on solution values produced by the method. As the
integration proceeds a check can be made on the user-specified function g x; yð Þ to determine an interval
where it changes sign. The position of this sign change is then determined accurately by C1

interpolation to the solution. It is assumed that g x; yð Þ is a continuous function of the variables, so that a
solution of g x; yð Þ ¼ 0 can be determined by searching for a change in sign in g x; yð Þ. The accuracy of
the integration, the interpolation and, indirectly, of the determination of the position where g x; yð Þ ¼ 0,
is controlled by the arguments TOL and RELABS.

4 References

Shampine L F (1994) Numerical solution of ordinary differential equations Chapman and Hall

5 Arguments

1: X – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable x.

On exit: if g is supplied by you, it contains the point where g x; yð Þ ¼ 0, unless g x; yð Þ 6¼ 0
anywhere on the range X to XEND, in which case, X will contain XEND (and the error indicator
IFAIL ¼ 6 is set); if g is not supplied by you it contains XEND. However, if an error has
occurred, it contains the value of x at which the error occurred.
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2: XEND – REAL (KIND=nag_wp) Input

On entry: the final value of the independent variable. If XEND < X, integration will proceed in
the negative direction.

Constraint: XEND 6¼ X.

3: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N > 0.

4: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yn at x ¼ X.

On exit: the computed values of the solution at the final point x ¼ X.

5: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments
x; y1; . . . ; yn .

The specification of FCN is:

SUBROUTINE FCN (X, Y, F)

REAL (KIND=nag_wp) X, Y(*), F(*)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the variable.

3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02BJF is called. Arguments denoted as Input must not be changed by this
procedure.

6: TOL – REAL (KIND=nag_wp) Input

On entry: a positive tolerance for controlling the error in the integration. Hence TOL affects the
determination of the position where g x; yð Þ ¼ 0, if g is supplied.

D02BJF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution. However, the actual relation
between TOL and the accuracy achieved cannot be guaranteed. You are strongly recommended to
call D02BJF with more than one value for TOL and to compare the results obtained to estimate
their accuracy. In the absence of any prior knowledge, you might compare the results obtained by
calling D02BJF with RELABS ¼ D and with each of TOL ¼ 10:0�p and TOL ¼ 10:0�p�1 where
p correct significant digits are required in the solution, y. The accuracy of the value x such that
g x; yð Þ ¼ 0 is indirectly controlled by varying TOL. You should experiment to determine this
accuracy.

Constraint: 10:0�machine precision < TOL < 0:01.
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7: RELABS – CHARACTER(1) Input

On entry: the type of error control. At each step in the numerical solution an estimate of the local
error, est, is made. For the current step to be accepted the following condition must be satisfied:

est ¼ max ei= �r �max yij j; �að Þð Þð Þ � 1:0

where �r and �a are defined by

RELABS �r �a

`M' TOL 1.0
`A' �r TOL=�r
`R' TOL �a
`D' TOL �a

where �r and �a are small machine-dependent numbers and ei is an estimate of the local error at
yi, computed internally. If the condition is not satisfied, the step size is reduced and the solution
is recomputed on the current step. If you wish to measure the error in the computed solution in
terms of the number of correct decimal places, then RELABS should be set to `A' on entry,
whereas if the error requirement is in terms of the number of correct significant digits, then
RELABS should be set to `R'. If you prefer a mixed error test, then RELABS should be set to
`M', otherwise if you have no preference, RELABS should be set to the default `D'. Note that in
this case `D' is taken to be `R'.

Constraint: RELABS ¼ M , A , R or D .

8: OUTPUT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

OUTPUT permits access to intermediate values of the computed solution (for example to print or
plot them), at successive user-specified points. It is initially called by D02BJF with XSOL ¼ X
(the initial value of x). You must reset XSOL to the next point (between the current XSOL and
XEND) where OUTPUT is to be called, and so on at each call to OUTPUT. If, after a call to
OUTPUT, the reset point XSOL is beyond XEND, D02BJF will integrate to XEND with no
further calls to OUTPUT; if a call to OUTPUT is required at the point XSOL ¼ XEND, then
XSOL must be given precisely the value XEND.

The specification of OUTPUT is:

SUBROUTINE OUTPUT (XSOL, Y)

REAL (KIND=nag_wp) XSOL, Y(*)

1: XSOL – REAL (KIND=nag_wp) Input/Output

On entry: the output value of the independent variable x.

On exit: you must set XSOL to the next value of x at which OUTPUT is to be called.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: the computed solution at the point XSOL.

OUTPUT must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02BJF is called. Arguments denoted as Input must not be changed by
this procedure.

If you do not wish to access intermediate output, the actual argument OUTPUT must be the
dummy routine D02BJX. (D02BJX is included in the NAG Library.)

9: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must evaluate the function g x; yð Þ for specified values x; y. It specifies the function g for which
the first position x where g x; yð Þ ¼ 0 is to be found.
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The specification of G is:

FUNCTION G (X, Y)
REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X, Y(*)

where n is the value of N in the call of D02BJF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the variable.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02BJF is called. Arguments denoted as Input must not be changed by this
procedure.

If you do not require the root-finding option, the actual argument G must be the dummy routine
D02BJW. (D02BJW is included in the NAG Library.)

10: Wð20� NÞ – REAL (KIND=nag_wp) array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOL � 0:01,
or TOL is too small
or N � 0,
or RELABS 6¼ M , A , R or D ,
or X ¼ XEND.

IFAIL ¼ 2

With the given value of TOL, no further progress can be made across the integration range from
the current point x ¼ X. (See Section 9 for a discussion of this error exit.) The components
Yð1Þ;Yð2Þ; . . . ;YðNÞ contain the computed values of the solution at the current point x ¼ X. If
you have supplied g, then no point at which g x; yð Þ changes sign has been located up to the point
x ¼ X.
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IFAIL ¼ 3

TOL is too small for D02BJF to take an initial step. X and Yð1Þ;Yð2Þ; . . . ;YðNÞ retain their
initial values.

IFAIL ¼ 4

XSOL has not been reset or XSOL lies behind X in the direction of integration, after the initial
call to OUTPUT, if the OUTPUT option was selected.

IFAIL ¼ 5

A value of XSOL returned by the OUTPUT has not been reset or lies behind the last value of
XSOL in the direction of integration, if the OUTPUT option was selected.

IFAIL ¼ 6

At no point in the range X to XEND did the function g x; yð Þ change sign, if g was supplied. It is
assumed that g x; yð Þ ¼ 0 has no solution.

IFAIL ¼ 7

A serious error has occurred in an internal call to an interpolation routine. Check all (sub)
program calls and array dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the computation of the solution vector Y may be controlled by varying the local error
tolerance TOL. In general, a decrease in local error tolerance should lead to an increase in accuracy.
You are advised to choose RELABS ¼ D unless you have a good reason for a different choice.

If the problem is a root-finding one, then the accuracy of the root determined will depend on the
properties of g x; yð Þ and on the values of TOL and RELABS. You should try to code G without
introducing any unnecessary cancellation errors.

8 Parallelism and Performance

D02BJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

If more than one root is required, then to determine the second and later roots D02BJF may be called
again starting a short distance past the previously determined roots. Alternatively you may construct
your own root-finding code using C05AZF, D02PFF and D02PSF.

If D02BJF fails with IFAIL ¼ 3, then it can be called again with a larger value of TOL if this has not
already been tried. If the accuracy requested is really needed and cannot be obtained with this routine,
the system may be very stiff (see below) or so badly scaled that it cannot be solved to the required
accuracy.

If D02BJF fails with IFAIL ¼ 2, it is probable that it has been called with a value of TOL which is so
small that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved
systems and very small values of TOL. You should, however, consider whether there is a more
fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with
IFAIL ¼ 2, unless overflow occurs first. Numerical integration cannot be continued through a
singularity, and analytic treatment should be considered;

(b) for ‘stiff’ equations where the solution contains rapidly decaying components, the routine will use
very small steps in x (internally to D02BJF) to preserve stability. This will exhibit itself by making
the computing time excessively long, or occasionally by an exit with IFAIL ¼ 2. Runge–Kutta
methods are not efficient in such cases, and you should try D02EJF.

10 Example

This example illustrates the solution of four different problems. In each case the differential system (for
a projectile) is

y0 ¼ tan


v0 ¼ �0:032 tan

v

� 0:02v

cos



0 ¼ �0:032
v2

over an interval X ¼ 0:0 to XEND ¼ 10:0 starting with values y ¼ 0:5, v ¼ 0:5 and 
 ¼ 	=5. We solve
each of the following problems with local error tolerances 1:0E�4 and 1:0E�5.
(i) To integrate to x ¼ 10:0 producing intermediate output at intervals of 2:0 until a root is

encountered where y ¼ 0:0.

(ii) As (i) but with no intermediate output.

(iii) As (i) but with no termination on a root-finding condition.

(iv) As (i) but with no intermediate output and no root-finding termination condition.

10.1 Program Text

! D02BJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02bjfe_mod

! Data for D02BJF example program

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn, g, output
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! .. Parameters ..
Integer, Parameter, Public :: n = 3, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: h, xend

! n: number of differential equations
Contains

Subroutine output(xsol,y)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: xsol

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Local Scalars ..
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,99999) xsol, (y(j),j=1,n)
xsol = xsol + h

! Make sure we exactly hit xsol = xend
If (abs(xsol-xend)<h/4.0E0_nag_wp) Then

xsol = xend
End If
Return

99999 Format (1X,F8.2,3F13.4)
End Subroutine output
Subroutine fcn(x,y,f)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = -0.032E0_nag_wp
Real (Kind=nag_wp), Parameter :: beta = -0.02E0_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..
f(1) = tan(y(3))
f(2) = alpha*tan(y(3))/y(2) + beta*y(2)/cos(y(3))
f(3) = alpha/y(2)**2
Return

End Subroutine fcn
Function g(x,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Executable Statements ..
g = y(1)
Return

End Function g
End Module d02bjfe_mod
Program d02bjfe

! D02BJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02bjf, d02bjw, d02bjx, nag_wp
Use d02bjfe_mod, Only: fcn, g, h, n, nin, nout, output, xend

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol, x, xinit
Integer :: i, icase, ifail, iw, j, kinit

! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: w(:), y(:), yinit(:)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Write (nout,*) ’D02BJF Example Program Results’
iw = 20*n
Allocate (w(iw),y(n),yinit(n))

! Skip heading in data file
Read (nin,*)

! xinit: initial x value, xend: final x value.
! yinit: initial solution values

Read (nin,*) xinit, xend
Read (nin,*) yinit(1:n)
Read (nin,*) kinit
Do icase = 1, 4

Write (nout,*)
Select Case (icase)
Case (1)

Write (nout,99995) icase, ’intermediate output, root-finding’
Case (2)

Write (nout,99995) icase, ’no intermediate output, root-finding’
Case (3)

Write (nout,99995) icase, ’intermediate output, no root-finding’
Case (4)

Write (nout,99995) icase, &
’no intermediate output, no root-finding ( integrate to XEND)’

End Select
Do j = 4, 5

tol = 10.0E0_nag_wp**(-j)
Write (nout,*)
Write (nout,99999) ’ Calculation with TOL =’, tol
x = xinit
y(1:n) = yinit(1:n)
If (icase/=2) Then

Write (nout,*) ’ X Y(1) Y(2) Y(3)’
h = (xend-x)/real(kinit+1,kind=nag_wp)

End If
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Select Case (icase)
Case (1)

Call d02bjf(x,xend,n,y,fcn,tol,’Default’,output,g,w,ifail)
Write (nout,99998) ’ Root of Y(1) = 0.0 at’, x
Write (nout,99997) ’ Solution is’, (y(i),i=1,n)

Case (2)
Call d02bjf(x,xend,n,y,fcn,tol,’Default’,d02bjx,g,w,ifail)
Write (nout,99998) ’ Root of Y(1) = 0.0 at’, x
Write (nout,99997) ’ Solution is’, (y(i),i=1,n)

Case (3)
Call d02bjf(x,xend,n,y,fcn,tol,’Default’,output,d02bjw,w,ifail)

Case (4)
Write (nout,99996) x, (y(i),i=1,n)
Call d02bjf(x,xend,n,y,fcn,tol,’Default’,d02bjx,d02bjw,w,ifail)
Write (nout,99996) x, (y(i),i=1,n)

End Select
End Do
If (icase<4) Then

Write (nout,*)
End If

End Do

99999 Format (1X,A,E8.1)
99998 Format (1X,A,F7.3)
99997 Format (1X,A,3F13.4)
99996 Format (1X,F8.2,3F13.4)
99995 Format (1X,’Case ’,I1,’: ’,A)

End Program d02bjfe
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10.2 Program Data

D02BJF Example Program Data
0.0 10.0 : xinit
0.5 0.5 6.28318530717958647692E-1 : yinit
4 : kinit

10.3 Program Results

D02BJF Example Program Results

Case 1: intermediate output, root-finding

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
2.00 1.5493 0.4055 0.3066
4.00 1.7423 0.3743 -0.1289
6.00 1.0055 0.4173 -0.5507

Root of Y(1) = 0.0 at 7.288
Solution is -0.0000 0.4749 -0.7601

Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
2.00 1.5493 0.4055 0.3066
4.00 1.7423 0.3743 -0.1289
6.00 1.0055 0.4173 -0.5507

Root of Y(1) = 0.0 at 7.288
Solution is 0.0000 0.4749 -0.7601

Case 2: no intermediate output, root-finding

Calculation with TOL = 0.1E-03
Root of Y(1) = 0.0 at 7.288
Solution is -0.0000 0.4749 -0.7601

Calculation with TOL = 0.1E-04
Root of Y(1) = 0.0 at 7.288
Solution is 0.0000 0.4749 -0.7601

Case 3: intermediate output, no root-finding

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
2.00 1.5493 0.4055 0.3066
4.00 1.7423 0.3743 -0.1289
6.00 1.0055 0.4173 -0.5507
8.00 -0.7460 0.5130 -0.8537

10.00 -3.6283 0.6333 -1.0515

Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
2.00 1.5493 0.4055 0.3066
4.00 1.7423 0.3743 -0.1289
6.00 1.0055 0.4173 -0.5507
8.00 -0.7459 0.5130 -0.8537

10.00 -3.6282 0.6333 -1.0515

Case 4: no intermediate output, no root-finding ( integrate to XEND)

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
10.00 -3.6283 0.6333 -1.0515
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Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
10.00 -3.6282 0.6333 -1.0515
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NAG Library Routine Document

D02CJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02CJF integrates a system of first-order ordinary differential equations over a range with suitable
initial conditions, using a variable-order, variable-step Adams' method until a user-specified function, if
supplied, of the solution is zero, and returns the solution at points specified by you, if desired.

2 Specification

SUBROUTINE D02CJF (X, XEND, N, Y, FCN, TOL, RELABS, OUTPUT, G, W, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X, XEND, Y(N), TOL, G, W(28+21*N)
CHARACTER(1) RELABS
EXTERNAL FCN, OUTPUT, G

3 Description

D02CJF advances the solution of a system of ordinary differential equations

y0i ¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ; n;

from x ¼ X to x ¼ XEND using a variable-order, variable-step Adams' method. The system is defined
by FCN, which evaluates fi in terms of x and y1; y2; . . . ; yn. The initial values of y1; y2; . . . ; yn must be
given at x ¼ X.

The solution is returned via OUTPUT at points specified by you, if desired: this solution is obtained by
C1 interpolation on solution values produced by the method. As the integration proceeds a check can be
made on the user-specified function g x; yð Þ to determine an interval where it changes sign. The position
of this sign change is then determined accurately by C1 interpolation to the solution. It is assumed that
g x; yð Þ is a continuous function of the variables, so that a solution of g x; yð Þ ¼ 0:0 can be determined by
searching for a change in sign in g x; yð Þ. The accuracy of the integration, the interpolation and,
indirectly, of the determination of the position where g x; yð Þ ¼ 0:0, is controlled by the arguments TOL
and RELABS.

For a description of Adams' methods and their practical implementation see Hall and Watt (1976).

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Arguments

1: X – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable x.

Constraint: X 6¼ XEND.

On exit: if g is supplied by you, it contains the point where g x; yð Þ ¼ 0:0, unless g x; yð Þ 6¼ 0:0
anywhere on the range X to XEND, in which case, X will contain XEND. If g is not supplied by
you it contains XEND, unless an error has occurred, when it contains the value of x at the error.
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2: XEND – REAL (KIND=nag_wp) Input

On entry: the final value of the independent variable. If XEND < X, integration will proceed in
the negative direction.

Constraint: XEND 6¼ X.

3: N – INTEGER Input

On entry: n, the number of differential equations.

Constraint: N � 1.

4: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yn at x ¼ X.

On exit: the computed values of the solution at the final point x ¼ X.

5: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments
x; y1; . . . ; yn .

The specification of FCN is:

SUBROUTINE FCN (X, Y, F)

REAL (KIND=nag_wp) X, Y(*), F(*)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the variable.

3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02CJF is called. Arguments denoted as Input must not be changed by this
procedure.

6: TOL – REAL (KIND=nag_wp) Input

On entry: a positive tolerance for controlling the error in the integration. Hence TOL affects the
determination of the position where g x; yð Þ ¼ 0:0, if g is supplied.

D02CJF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution. However, the actual relation
between TOL and the accuracy achieved cannot be guaranteed. You are strongly recommended to
call D02CJF with more than one value for TOL and to compare the results obtained to estimate
their accuracy. In the absence of any prior knowledge, you might compare the results obtained by
calling D02CJF with TOL ¼ 10:0�p and TOL ¼ 10:0�p�1 where p correct decimal digits are
required in the solution.

Constraint: TOL > 0:0.

7: RELABS – CHARACTER(1) Input

On entry: the type of error control. At each step in the numerical solution an estimate of the local
error, est, is made. For the current step to be accepted the following condition must be satisfied:
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est ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ei= �r � yij j þ �að Þð Þ2
s

� 1:0

where �r and �a are defined by

RELABS �r �a
`M' TOL TOL
`A' 0:0 TOL
`R' TOL �
`D' TOL TOL

where � is a small machine-dependent number and ei is an estimate of the local error at yi,
computed internally. If the appropriate condition is not satisfied, the step size is reduced and the
solution is recomputed on the current step. If you wish to measure the error in the computed
solution in terms of the number of correct decimal places, then RELABS should be set to `A' on
entry, whereas if the error requirement is in terms of the number of correct significant digits, then
RELABS should be set to `R'. If you prefer a mixed error test, then RELABS should be set to
`M', otherwise if you have no preference, RELABS should be set to the default `D'. Note that in
this case `D' is taken to be `M'.

Constraint: RELABS ¼ M , A , R or D .

8: OUTPUT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

OUTPUT permits access to intermediate values of the computed solution (for example to print or
plot them), at successive user-specified points. It is initially called by D02CJF with XSOL ¼ X
(the initial value of x). You must reset XSOL to the next point (between the current XSOL and
XEND) where OUTPUT is to be called, and so on at each call to OUTPUT. If, after a call to
OUTPUT, the reset point XSOL is beyond XEND, D02CJF will integrate to XEND with no
further calls to OUTPUT; if a call to OUTPUT is required at the point XSOL ¼ XEND, then
XSOL must be given precisely the value XEND.

The specification of OUTPUT is:

SUBROUTINE OUTPUT (XSOL, Y)

REAL (KIND=nag_wp) XSOL, Y(*)

1: XSOL – REAL (KIND=nag_wp) Input/Output

On entry: the output value of the independent variable x.

On exit: you must set XSOL to the next value of x at which OUTPUT is to be called.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: the computed solution at the point XSOL.

OUTPUT must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02CJF is called. Arguments denoted as Input must not be changed by
this procedure.

If you do not wish to access intermediate output, the actual argument OUTPUT must be the
dummy routine D02CJX. (D02CJX is included in the NAG Library.)

9: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must evaluate the function g x; yð Þ for specified values x; y. It specifies the function g for which
the first position x where g x; yð Þ ¼ 0 is to be found.
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The specification of G is:

FUNCTION G (X, Y)
REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X, Y(*)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the variable.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02CJF is called. Arguments denoted as Input must not be changed by this
procedure.

If you do not require the root-finding option, the actual argument G must be the dummy routine
D02CJW. (D02CJW is included in the NAG Library.)

10: Wð28þ 21� NÞ – REAL (KIND=nag_wp) array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOL � 0:0,
or N � 0,
or RELABS 6¼ M , A , R or D ,
or X ¼ XEND.

IFAIL ¼ 2

With the given value of TOL, no further progress can be made across the integration range from
the current point x ¼ X. (See Section 9 for a discussion of this error exit.) The components
Yð1Þ;Yð2Þ; . . . ;YðNÞ contain the computed values of the solution at the current point x ¼ X. If
you have supplied g, then no point at which g x; yð Þ changes sign has been located up to the point
x ¼ X.

IFAIL ¼ 3

TOL is too small for D02CJF to take an initial step. X and Yð1Þ;Yð2Þ; . . . ;YðNÞ retain their
initial values.
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IFAIL ¼ 4

XSOL has not been reset or XSOL lies behind X in the direction of integration, after the initial
call to OUTPUT, if the OUTPUT option was selected.

IFAIL ¼ 5

A value of XSOL returned by the OUTPUT has not been reset or lies behind the last value of
XSOL in the direction of integration, if the OUTPUT option was selected.

IFAIL ¼ 6

At no point in the range X to XEND did the function g x; yð Þ change sign, if g was supplied. It is
assumed that g x; yð Þ ¼ 0 has no solution.

IFAIL ¼ 7

A serious error has occurred in an internal call. Check all subroutine calls and array sizes. Seek
expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the computation of the solution vector Y may be controlled by varying the local error
tolerance TOL. In general, a decrease in local error tolerance should lead to an increase in accuracy.
You are advised to choose RELABS ¼ M unless you have a good reason for a different choice.

If the problem is a root-finding one, then the accuracy of the root determined will depend on the
properties of g x; yð Þ. You should try to code G without introducing any unnecessary cancellation errors.

8 Parallelism and Performance

D02CJF is not threaded in any implementation.

9 Further Comments

If more than one root is required then D02QFF should be used.

If D02CJF fails with IFAIL ¼ 3, then it can be called again with a larger value of TOL if this has not
already been tried. If the accuracy requested is really needed and cannot be obtained with this routine,
the system may be very stiff (see below) or so badly scaled that it cannot be solved to the required
accuracy.

If D02CJF fails with IFAIL ¼ 2, it is probable that it has been called with a value of TOL which is so
small that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved
systems and very small values of TOL. You should, however, consider whether there is a more
fundamental difficulty. For example:
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(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with
IFAIL ¼ 2, unless overflow occurs first. Numerical integration cannot be continued through a
singularity, and analytic treatment should be considered;

(b) for ‘stiff’ equations where the solution contains rapidly decaying components, the routine will use
very small steps in x (internally to D02CJF) to preserve stability. This will exhibit itself by making
the computing time excessively long, or occasionally by an exit with IFAIL ¼ 2. Adams' methods
are not efficient in such cases, and you should try D02EJF.

10 Example

This example illustrates the solution of four different problems. In each case the differential system (for
a projectile) is

y0 ¼ tan


v0 ¼ �0:032 tan

v � 0:02v

cos



0 ¼ �0:032
v2

over an interval X ¼ 0:0 to XEND ¼ 10:0 starting with values y ¼ 0:5, v ¼ 0:5 and 
 ¼ 	=5. We solve
each of the following problems with local error tolerances 1:0E�4 and 1:0E�5.
(i) To integrate to x ¼ 10:0 producing output at intervals of 2:0 until a point is encountered where

y ¼ 0:0.

(ii) As (i) but with no intermediate output.

(iii) As (i) but with no termination on a root-finding condition.

(iv) As (i) but with no intermediate output and no root-finding termination condition.

10.1 Program Text

! D02CJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02cjfe_mod

! Data for D02CJF example program

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn, g, output

! .. Parameters ..
Integer, Parameter, Public :: n = 3, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: h, xend

! n: number of differential equations
Contains

Subroutine output(xsol,y)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: xsol

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Local Scalars ..
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,99999) xsol, (y(j),j=1,n)
xsol = xsol + h
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! Make sure we exactly hit xsol = xend
If (abs(xsol-xend)<h/4.0E0_nag_wp) Then

xsol = xend
End If
Return

99999 Format (1X,F8.2,3F13.5)
End Subroutine output
Subroutine fcn(x,y,f)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = -0.032E0_nag_wp
Real (Kind=nag_wp), Parameter :: beta = -0.02E0_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..
f(1) = tan(y(3))
f(2) = alpha*tan(y(3))/y(2) + beta*y(2)/cos(y(3))
f(3) = alpha/y(2)**2
Return

End Subroutine fcn
Function g(x,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Executable Statements ..
g = y(1)
Return

End Function g
End Module d02cjfe_mod
Program d02cjfe

! D02CJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02cjf, d02cjw, d02cjx, nag_wp
Use d02cjfe_mod, Only: fcn, g, h, n, nin, nout, output, xend

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol, x, xinit
Integer :: i, icase, ifail, iw, j, kinit

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:), y(:), yinit(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02CJF Example Program Results’
iw = 21*n + 28
Allocate (w(iw),y(n),yinit(n))

! Skip heading in data file
Read (nin,*)

! xinit: initial x value, xend: final x value.
Read (nin,*) xinit
Read (nin,*) xend
Read (nin,*) yinit(1:n)
Read (nin,*) kinit
Do icase = 1, 4

Write (nout,*)
Select Case (icase)
Case (1)

Write (nout,99995) icase, ’intermediate output, root-finding’
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Case (2)
Write (nout,99995) icase, ’no intermediate output, root-finding’

Case (3)
Write (nout,99995) icase, ’intermediate output, no root-finding’

Case (4)
Write (nout,99995) icase, &

’no intermediate output, no root-finding ( integrate to XEND)’
End Select
Do j = 4, 5

tol = 10.0E0_nag_wp**(-j)
Write (nout,*)
Write (nout,99999) ’ Calculation with TOL =’, tol
x = xinit
y(1:n) = yinit(1:n)
If (icase/=2) Then

Write (nout,*) ’ X Y(1) Y(2) Y(3)’
h = (xend-x)/real(kinit+1,kind=nag_wp)

End If
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Select Case (icase)
Case (1)

Call d02cjf(x,xend,n,y,fcn,tol,’Default’,output,g,w,ifail)
Write (nout,99998) ’ Root of Y(1) = 0.0 at’, x
Write (nout,99997) ’ Solution is’, (y(i),i=1,n)

Case (2)
Call d02cjf(x,xend,n,y,fcn,tol,’Default’,d02cjx,g,w,ifail)
Write (nout,99998) ’ Root of Y(1) = 0.0 at’, x
Write (nout,99997) ’ Solution is’, (y(i),i=1,n)

Case (3)
Call d02cjf(x,xend,n,y,fcn,tol,’Default’,output,d02cjw,w,ifail)

Case (4)
Write (nout,99996) x, (y(i),i=1,n)
Call d02cjf(x,xend,n,y,fcn,tol,’Default’,d02cjx,d02cjw,w,ifail)
Write (nout,99996) x, (y(i),i=1,n)

End Select
End Do
If (icase<4) Then

Write (nout,*)
End If

End Do

99999 Format (1X,A,E8.1)
99998 Format (1X,A,F7.3)
99997 Format (1X,A,3F13.5)
99996 Format (1X,F8.2,3F13.5)
99995 Format (1X,’Case ’,I1,’: ’,A)

End Program d02cjfe

10.2 Program Data

D02CJF Example Program Data
0.0 : xinit

10.0 : xend
0.5 0.5 6.28318530717958647692E-1 : yinit
4 : kinit

10.3 Program Results

D02CJF Example Program Results

Case 1: intermediate output, root-finding

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
2.00 1.54931 0.40548 0.30662
4.00 1.74229 0.37433 -0.12890
6.00 1.00554 0.41731 -0.55068
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Root of Y(1) = 0.0 at 7.288
Solution is -0.00000 0.47486 -0.76011

Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
2.00 1.54933 0.40548 0.30662
4.00 1.74232 0.37433 -0.12891
6.00 1.00552 0.41731 -0.55069

Root of Y(1) = 0.0 at 7.288
Solution is -0.00000 0.47486 -0.76010

Case 2: no intermediate output, root-finding

Calculation with TOL = 0.1E-03
Root of Y(1) = 0.0 at 7.288
Solution is -0.00000 0.47486 -0.76011

Calculation with TOL = 0.1E-04
Root of Y(1) = 0.0 at 7.288
Solution is -0.00000 0.47486 -0.76010

Case 3: intermediate output, no root-finding

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
2.00 1.54931 0.40548 0.30662
4.00 1.74229 0.37433 -0.12890
6.00 1.00554 0.41731 -0.55068
8.00 -0.74589 0.51299 -0.85371

10.00 -3.62813 0.63325 -1.05152

Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
2.00 1.54933 0.40548 0.30662
4.00 1.74232 0.37433 -0.12891
6.00 1.00552 0.41731 -0.55069
8.00 -0.74601 0.51299 -0.85372

10.00 -3.62829 0.63326 -1.05153

Case 4: no intermediate output, no root-finding ( integrate to XEND)

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
10.00 -3.62813 0.63325 -1.05152

Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
10.00 -3.62829 0.63326 -1.05153
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NAG Library Routine Document

D02EJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02EJF integrates a stiff system of first-order ordinary differential equations over an interval with
suitable initial conditions, using a variable-order, variable-step method implementing the Backward
Differentiation Formulae (BDF), until a user-specified function, if supplied, of the solution is zero, and
returns the solution at points specified by you, if desired.

2 Specification

SUBROUTINE D02EJF (X, XEND, N, Y, FCN, PEDERV, TOL, RELABS, OUTPUT, G,
W, IW, IFAIL)

&

INTEGER N, IW, IFAIL
REAL (KIND=nag_wp) X, XEND, Y(N), TOL, G, W(IW)
CHARACTER(1) RELABS
EXTERNAL FCN, PEDERV, OUTPUT, G

3 Description

D02EJF advances the solution of a system of ordinary differential equations

y0i ¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ; n;

from x ¼ X to x ¼ XEND using a variable-order, variable-step method implementing the BDF. The
system is defined by FCN, which evaluates fi in terms of x and y1; y2; . . . ; yn (see Section 5). The
initial values of y1; y2; . . . ; yn must be given at x ¼ X.

The solution is returned via the OUTPUT at points specified by you, if desired: this solution is obtained
by C1 interpolation on solution values produced by the method. As the integration proceeds a check can
be made on the user-specified function g x; yð Þ to determine an interval where it changes sign. The
position of this sign change is then determined accurately by C1 interpolation to the solution. It is
assumed that g x; yð Þ is a continuous function of the variables, so that a solution of g x; yð Þ ¼ 0:0 can be
determined by searching for a change in sign in g x; yð Þ. The accuracy of the integration, the
interpolation and, indirectly, of the determination of the position where g x; yð Þ ¼ 0:0, is controlled by
the arguments TOL and RELABS. The Jacobian of the system y0 ¼ f x; yð Þ may be supplied in
PEDERV, if it is available.

For a description of BDF and their practical implementation see Hall and Watt (1976).

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Arguments

1: X – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable x.

Constraint: X 6¼ XEND.
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On exit: if G is supplied by you, X contains the point where g x; yð Þ ¼ 0:0, unless g x; yð Þ 6¼ 0:0
anywhere on the range X to XEND, in which case, X will contain XEND. If G is not supplied X
contains XEND, unless an error has occurred, when it contains the value of x at the error.

2: XEND – REAL (KIND=nag_wp) Input

On entry: the final value of the independent variable. If XEND < X, integration will proceed in
the negative direction.

Constraint: XEND 6¼ X.

3: N – INTEGER Input

On entry: n, the number of differential equations.

Constraint: N � 1.

4: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yn at x ¼ X.

On exit: the computed values of the solution at the final point x ¼ X.

5: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments
x; y1; . . . ; yn .

The specification of FCN is:

SUBROUTINE FCN (X, Y, F)

REAL (KIND=nag_wp) X, Y(n), F(n)

where n is the value of N in the call of D02EJF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: YðnÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the variable.

3: FðnÞ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02EJF is called. Arguments denoted as Input must not be changed by this
procedure.

6: PEDERV – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

PEDERV must evaluate the Jacobian of the system (that is, the partial derivatives
@fi
@yj

) for given

values of the variables x; y1; y2; . . . ; yn .

The specification of PEDERV is:

SUBROUTINE PEDERV (X, Y, PW)

REAL (KIND=nag_wp) X, Y(n), PW(*)

where n is the value of N in the call of D02EJF.
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1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: YðnÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the variable.

3: PWð�Þ – REAL (KIND=nag_wp) array Output

On exit: PWðn � i � 1ð Þ þ jÞ must contain the value of
@fi
@yj

, for i ¼ 1; 2; . . . ; n and

j ¼ 1; 2; . . . ;n.

PEDERV must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02EJF is called. Arguments denoted as Input must not be changed by this
procedure.

If you do not wish to supply the Jacobian, the actual argument PEDERV must be the dummy
routine D02EJY. (D02EJY is included in the NAG Library.)

7: TOL – REAL (KIND=nag_wp) Input/Output

On entry: must be set to a positive tolerance for controlling the error in the integration. Hence
TOL affects the determination of the position where g x; yð Þ ¼ 0:0, if G is supplied.

D02EJF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution. However, the actual relation
between TOL and the accuracy achieved cannot be guaranteed. You are strongly recommended to
call D02EJF with more than one value for TOL and to compare the results obtained to estimate
their accuracy. In the absence of any prior knowledge, you might compare the results obtained by
calling D02EJF with TOL ¼ 10�p and TOL ¼ 10�p�1 if p correct decimal digits are required in
the solution.

Constraint: TOL > 0:0.

On exit: normally unchanged. However if the range X to XEND is so short that a small change in
TOL is unlikely to make any change in the computed solution, then, on return, TOL has its sign
changed.

8: RELABS – CHARACTER(1) Input

On entry: the type of error control. At each step in the numerical solution an estimate of the local
error, est, is made. For the current step to be accepted the following condition must be satisfied:

est ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ei= �r � yij j þ �að Þð Þ2
s

� 1:0

where �r and �a are defined by

RELABS �r �a

`M' TOL TOL
`A' 0.0 TOL
`R' TOL �
`D' TOL �

where � is a small machine-dependent number and ei is an estimate of the local error at yi,
computed internally. If the appropriate condition is not satisfied, the step size is reduced and the
solution is recomputed on the current step. If you wish to measure the error in the computed
solution in terms of the number of correct decimal places, then RELABS should be set to `A' on
entry, whereas if the error requirement is in terms of the number of correct significant digits, then
RELABS should be set to `R'. If you prefer a mixed error test, then RELABS should be set to
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`M', otherwise if you have no preference, RELABS should be set to the default `D'. Note that in
this case `D' is taken to be `R'.

Constraint: RELABS ¼ A , M , R or D .

9: OUTPUT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

OUTPUT permits access to intermediate values of the computed solution (for example to print or
plot them), at successive user-specified points. It is initially called by D02EJF with XSOL ¼ X
(the initial value of x). You must reset XSOL to the next point (between the current XSOL and
XEND) where OUTPUT is to be called, and so on at each call to OUTPUT. If, after a call to
OUTPUT, the reset point XSOL is beyond XEND, D02EJF will integrate to XEND with no
further calls to OUTPUT; if a call to OUTPUT is required at the point XSOL ¼ XEND, then
XSOL must be given precisely the value XEND.

The specification of OUTPUT is:

SUBROUTINE OUTPUT (XSOL, Y)

REAL (KIND=nag_wp) XSOL, Y(n)

where n is the value of N in the call of D02EJF.

1: XSOL – REAL (KIND=nag_wp) Input/Output

On entry: x, the value of the independent variable.

On exit: you must set XSOL to the next value of x at which OUTPUT is to be called.

2: YðnÞ – REAL (KIND=nag_wp) array Input

On entry: the computed solution at the point XSOL.

OUTPUT must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02EJF is called. Arguments denoted as Input must not be changed by
this procedure.

If you do not wish to access intermediate output, the actual argument OUTPUT must be the
dummy routine D02EJX. (D02EJX is included in the NAG Library.)

10: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must evaluate the function g x; yð Þ for specified values x; y. It specifies the function g for which
the first position x where g x; yð Þ ¼ 0 is to be found.

The specification of G is:

FUNCTION G (X, Y)
REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X, Y(n)

where n is the value of N in the call of D02EJF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: YðnÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the variable.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02EJF is called. Arguments denoted as Input must not be changed by this
procedure.
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If you do not require the root-finding option, the actual argument G must be the dummy routine
D02EJW. (D02EJW is included in the NAG Library.)

11: WðIWÞ – REAL (KIND=nag_wp) array Workspace
12: IW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D02EJF is
called.

Constraint: IW � 12þ Nð Þ � Nþ 50.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOL � 0:0,
or X ¼ XEND,
or N � 0,
or RELABS 6¼ M ; A ; R ; D ,
or IW < 12þ Nð Þ � Nþ 50.

IFAIL ¼ 2

With the given value of TOL, no further progress can be made across the integration range from
the current point x ¼ X. (See Section 5 for a discussion of this error test.) The components
Yð1Þ;Yð2Þ; . . . ;YðNÞ contain the computed values of the solution at the current point x ¼ X. If
you have supplied G, then no point at which g x; yð Þ changes sign has been located up to the point
x ¼ X.

IFAIL ¼ 3

TOL is too small for D02EJF to take an initial step. X and Yð1Þ;Yð2Þ; . . . ;YðNÞ retain their
initial values.

IFAIL ¼ 4

XSOL lies behind X in the direction of integration, after the initial call to OUTPUT, if the
OUTPUT option was selected.

IFAIL ¼ 5

A value of XSOL returned by the OUTPUT lies behind the last value of XSOL in the direction of
integration, if the OUTPUT option was selected.
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IFAIL ¼ 6

At no point in the range X to XEND did the function g x; yð Þ change sign, if g was supplied. It is
assumed that g x; yð Þ ¼ 0 has no solution.

IFAIL ¼ 7 (C05AZF)

A serious error has occurred in an internal call to the specified routine. Check all subroutine calls
and array dimensions. Seek expert help.

IFAIL ¼ 8 (D02XKF)

A serious error has occurred in an internal call to the specified routine. Check all subroutine calls
and array dimensions. Seek expert help.

IFAIL ¼ 9

A serious error has occurred in an internal call to an interpolation routine. Check all (sub)
program calls and array dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the computation of the solution vector Y may be controlled by varying the local error
tolerance TOL. In general, a decrease in local error tolerance should lead to an increase in accuracy.
You are advised to choose RELABS ¼ R unless you have a good reason for a different choice. It is
particularly appropriate if the solution decays.

If the problem is a root-finding one, then the accuracy of the root determined will depend strongly on
@g

@x
and

@g

@yi
, for i ¼ 1; 2; . . . ; n. Large values for these quantities may imply large errors in the root.

8 Parallelism and Performance

D02EJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02EJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

If more than one root is required, then to determine the second and later roots D02EJF may be called
again starting a short distance past the previously determined roots. Alternatively you may construct
your own root-finding code using D02NBF (and other routines in Sub-chapter D02M–N), C05AZF and
D02XKF.

If it is easy to code, you should supply PEDERV. However, it is important to be aware that if PEDERV
is coded incorrectly, a very inefficient integration may result and possibly even a failure to complete the
integration (see IFAIL ¼ 2).

10 Example

We illustrate the solution of five different problems. In each case the differential system is the well-
known stiff Robertson problem.

a0 ¼ �0:04aþ 104bc
b0 ¼ 0:04a� 104bc �3� 107b2

c0 ¼ 3� 107b2

with initial conditions a ¼ 1:0, b ¼ c ¼ 0:0 at x ¼ 0:0. We solve each of the following problems with
local error tolerances 1:0E�3 and 1:0E�4.
(i) To integrate to x ¼ 10:0 producing output at intervals of 2:0 until a point is encountered where

a ¼ 0:9. The Jacobian is calculated numerically.

(ii) As (i) but with the Jacobian calculated analytically.

(iii) As (i) but with no intermediate output.

(iv) As (i) but with no termination on a root-finding condition.

(v) Integrating the equations as in (i) but with no intermediate output and no root-finding termination
condition.

10.1 Program Text

! D02EJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02ejfe_mod

! Data for D02EJF example program

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn, g, output, pederv

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter, Public :: n = 3, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: h, xend

Contains
Subroutine fcn(x,y,f)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: f(*)
Real (Kind=nag_wp), Intent (In) :: y(*)
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! .. Executable Statements ..
f(1) = -alpha*y(1) + beta*y(2)*y(3)
f(2) = alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2)
f(3) = gamma*y(2)*y(2)
Return

End Subroutine fcn
Subroutine pederv(x,y,pw)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: pw(*)
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Executable Statements ..
pw(1) = -alpha
pw(2) = alpha
pw(3) = zero
pw(4) = beta*y(3)
pw(5) = -beta*y(3) - 2.0_nag_wp*gamma*y(2)
pw(6) = 2.0_nag_wp*gamma*y(2)
pw(7) = beta*y(2)
pw(8) = -beta*y(2)
pw(9) = zero
Return

End Subroutine pederv
Function g(x,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Executable Statements ..
g = y(1) - 0.9E0_nag_wp
Return

End Function g
Subroutine output(xsol,y)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: xsol

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Local Scalars ..
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,99999) xsol, (y(j),j=1,n)
xsol = xsol + h

! Make sure we exactly hit xsol = xend
If (abs(xsol-xend)<h/4.0E0_nag_wp) Then

xsol = xend
End If
Return

99999 Format (1X,F8.2,3F13.5)
End Subroutine output

End Module d02ejfe_mod
Program d02ejfe

! D02EJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02ejf, d02ejw, d02ejx, d02ejy, nag_wp
Use d02ejfe_mod, Only: fcn, g, h, n, nin, nout, output, pederv, xend

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol, x, xinit
Integer :: i, icase, ifail, iw, j, kinit
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:), y(:), yinit(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02EJF Example Program Results’
iw = (12+n)*n + 50
Allocate (w(iw),y(n),yinit(n))

! Skip heading in data file
Read (nin,*)

! xinit: initial x value, xend: final x value
! y: initial solution values

Read (nin,*) xinit, xend
Read (nin,*) yinit(1:n)
Read (nin,*) kinit
Do icase = 1, 5

If (icase/=2) Then
Write (nout,99995) icase, ’Jacobian internally’

Else
Write (nout,99995) icase, ’Jacobian by PEDERV’

End If
Select Case (icase)
Case (1,2)

Write (nout,99994) ’intermediate output, root-finding’
Case (3)

Write (nout,99994) ’no intermediate output, root-finding’
Case (4)

Write (nout,99994) ’intermediate output, no root-finding’
Case (5)

Write (nout,99994) &
’no intermediate output, no root-finding (integrate to XEND)’

End Select
Do j = 3, 4

tol = 10.0E0_nag_wp**(-j)
Write (nout,99999) ’ Calculation with TOL =’, tol
x = xinit
y(1:n) = yinit(1:n)
If (icase/=3) Then

Write (nout,*) ’ X Y(1) Y(2) Y(3)’
h = (xend-x)/real(kinit+1,kind=nag_wp)

End If
ifail = 0
Select Case (icase)
Case (1)

Call d02ejf(x,xend,n,y,fcn,d02ejy,tol,’Default’,output,g,w,iw, &
ifail)

Write (nout,99998) ’ Root of Y(1)-0.9 at’, x
Write (nout,99997) ’ Solution is’, (y(i),i=1,n)

Case (2)
Call d02ejf(x,xend,n,y,fcn,pederv,tol,’Default’,output,g,w,iw, &

ifail)
Write (nout,99998) ’ Root of Y(1)-0.9 at’, x
Write (nout,99997) ’ Solution is’, (y(i),i=1,n)

Case (3)
Call d02ejf(x,xend,n,y,fcn,d02ejy,tol,’Default’,d02ejx,g,w,iw, &

ifail)
Write (nout,99998) ’ Root of Y(1)-0.9 at’, x
Write (nout,99997) ’ Solution is’, (y(i),i=1,n)

Case (4)
ifail = 0
Call d02ejf(x,xend,n,y,fcn,d02ejy,tol,’Default’,output,d02ejw,w, &

iw,ifail)
Case (5)

Write (nout,99996) x, (y(i),i=1,n)
Call d02ejf(x,xend,n,y,fcn,d02ejy,tol,’Default’,d02ejx,d02ejw,w, &

iw,ifail)
Write (nout,99996) x, (y(i),i=1,n)

End Select
If (tol<0.0E0_nag_wp) Then

Write (nout,*) ’ Range too short for TOL’
End If
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End Do
If (icase<5) Then

Write (nout,*)
End If

End Do

99999 Format (/,1X,A,E8.1)
99998 Format (1X,A,F7.3)
99997 Format (1X,A,3F13.5)
99996 Format (1X,F8.2,3F13.5)
99995 Format (/,1X,’Case ’,I1,’: calculating ’,A,’,’)
99994 Format (8X,A)

End Program d02ejfe

10.2 Program Data

D02EJF Example Program Data
0.0 10.0 : xinit, xend
1.0, 0.0, 0.0 : yinit
4 : kinit

10.3 Program Results

D02EJF Example Program Results

Case 1: calculating Jacobian internally,
intermediate output, root-finding

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09447

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 2: calculating Jacobian by PEDERV,
intermediate output, root-finding

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09447

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 3: calculating Jacobian internally,
no intermediate output, root-finding

Calculation with TOL = 0.1E-02
Root of Y(1)-0.9 at 4.377
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Solution is 0.90000 0.00002 0.09998

Calculation with TOL = 0.1E-03
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 4: calculating Jacobian internally,
intermediate output, no root-finding

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09447
6.00 0.87930 0.00002 0.12068
8.00 0.85858 0.00002 0.14140

10.00 0.84136 0.00002 0.15862

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446
6.00 0.87926 0.00002 0.12072
8.00 0.85854 0.00002 0.14145

10.00 0.84136 0.00002 0.15863

Case 5: calculating Jacobian internally,
no intermediate output, no root-finding (integrate to XEND)

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
10.00 0.84136 0.00002 0.15862

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
10.00 0.84136 0.00002 0.15863
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NAG Library Routine Document

D02GAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02GAF solves a two-point boundary value problem with assigned boundary values for a system of
ordinary differential equations, using a deferred correction technique and a Newton iteration.

2 Specification

SUBROUTINE D02GAF (U, V, N, A, B, TOL, FCN, MNP, X, Y, NP, W, LW, IW,
LIW, IFAIL)

&

INTEGER N, MNP, NP, LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) U(N,2), V(N,2), A, B, TOL, X(MNP), Y(N,MNP), W(LW)
EXTERNAL FCN

3 Description

D02GAF solves a two-point boundary value problem for a system of n differential equations in the
interval [a; b]. The system is written in the form:

y0i ¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ; n ð1Þ

and the derivatives fi are evaluated by FCN. Initially, n boundary values of the variables yi must be
specified, some at a and some at b. You must supply estimates of the remaining n boundary values and
all the boundary values are used in constructing an initial approximation to the solution. This
approximate solution is corrected by a finite difference technique with deferred correction allied with a
Newton iteration to solve the finite difference equations. The technique used is described fully in

Pereyra (1979). The Newton iteration requires a Jacobian matrix
@fi
@yj

and this is calculated by numerical

differentiation using an algorithm described in Curtis et al. (1974).

You supply an absolute error tolerance and may also supply an initial mesh for the construction of the
finite difference equations (alternatively a default mesh is used). The algorithm constructs a solution on
a mesh defined by adding points to the initial mesh. This solution is chosen so that the error is
everywhere less than your tolerance and so that the error is approximately equidistributed on the final
mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If on
the other hand the solution is required at several specific points then you should use the interpolation
routines provided in Chapter E01 if these points do not themselves form a convenient mesh.

4 References

Curtis A R, Powell M J D and Reid J K (1974) On the estimation of sparse Jacobian matrices J. Inst.
Maths. Applics. 13 117–119

Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear,
ordinary boundary problems Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science (eds B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76
Springer–Verlag
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5 Arguments

1: UðN; 2Þ – REAL (KIND=nag_wp) array Input

On entry: Uði; 1Þ must be set to the known or estimated value of yi at a and Uði; 2Þ must be set to
the known or estimated value of yi at b, for i ¼ 1; 2; . . . ;n.

2: VðN; 2Þ – REAL (KIND=nag_wp) array Input

On entry: Vði; jÞ must be set to 0:0 if Uði; jÞ is a known value and to 1:0 if Uði; jÞ is an estimated
value, for i ¼ 1; 2; . . . ;n and j ¼ 1; 2.

Constraint: precisely n of the Vði; jÞ must be set to 0:0, i.e., precisely n of the Uði; jÞ must be
known values, and these must not be all at a or all at b.

3: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N � 2.

4: A – REAL (KIND=nag_wp) Input

On entry: a, the left-hand boundary point.

5: B – REAL (KIND=nag_wp) Input

On entry: b, the right-hand boundary point.

Constraint: B > A.

6: TOL – REAL (KIND=nag_wp) Input

On entry: a positive absolute error tolerance. If

a ¼ x1 < x2 < � � � < xNP ¼ b

is the final mesh, zj xið Þ is the jth component of the approximate solution at xi, and yj xð Þ is the
jth component of the true solution of equation (1) (see Section 3) and the boundary conditions,
then, except in extreme cases, it is expected that

zj xið Þ � yj xið Þ
		 		 � TOL; i ¼ 1; 2; . . . ;NP and j ¼ 1; 2; . . . ;n: ð2Þ

Constraint: TOL > 0:0.

7: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i), for i ¼ 1; 2; . . . ; n, at a general point
x.

The specification of FCN is:

SUBROUTINE FCN (X, Y, F)

REAL (KIND=nag_wp) X, Y(*), F(*)

In the description of the arguments of D02GAF below, n denotes the actual value of N in the
call of D02GAF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the argument.
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3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the values of fi, for i ¼ 1; 2; . . . ; n.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02GAF is called. Arguments denoted as Input must not be changed by
this procedure.

8: MNP – INTEGER Input

On entry: the maximum permitted number of mesh points.

Constraint: MNP � 32.

9: XðMNPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if NP � 4 (see NP), the first NP elements must define an initial mesh. Otherwise the
elements of X need not be set.

Constraint:

A ¼ Xð1Þ < Xð2Þ < � � � < XðNPÞ ¼ B; NP � 4: ð3Þ
On exit: Xð1Þ;Xð2Þ; . . . ;XðNPÞ define the final mesh (with the returned value of NP) satisfying
the relation (3).

10: YðN;MNPÞ – REAL (KIND=nag_wp) array Output

On exit: the approximate solution zj xið Þ satisfying (2), on the final mesh, that is

Yðj; iÞ ¼ zj xið Þ; i ¼ 1; 2; . . . ;NP and j ¼ 1; 2; . . . ; n;

where NP is the number of points in the final mesh.

The remaining columns of Y are not used.

11: NP – INTEGER Input/Output

On entry: determines whether a default or user-supplied mesh is used.

NP ¼ 0
A default value of 4 for NP and a corresponding equispaced mesh Xð1Þ;Xð2Þ; . . . ;XðNPÞ
are used.

NP � 4
You must define an initial mesh using the array X as described.

Constraint: NP ¼ 0 or 4 � NP � MNP.

On exit: the number of points in the final (returned) mesh.

12: WðLWÞ – REAL (KIND=nag_wp) array Workspace
13: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D02GAF is
called.

Constraint: LW � MNP� 3N2 þ 6Nþ 2
� �

þ 4N2 þ 4N.

14: IWðLIWÞ – INTEGER array Workspace
15: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D02GAF is
called.

Constraint: LIW � MNP� 2Nþ 1ð Þ þ N2 þ 4Nþ 2.
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16: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Section 3.4 in How to Use the NAG
Library and its Documentation).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the
decimal digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages
printed).

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the arguments N, TOL, NP, MNP, LW or LIW has been incorrectly set, or B � A,
or the condition (3) on X is not satisfied, or the number of known boundary values (specified by
V) is not N.

IFAIL ¼ 2

The Newton iteration has failed to converge. This could be due to there being too few points in
the initial mesh or to the initial approximate solution being too inaccurate. If this latter reason is
suspected you should use D02RAF instead. If the warning ‘Jacobian matrix is singular’ is printed
this could be due to specifying zero estimated boundary values and these should be varied. This
warning could also be printed in the unlikely event of the Jacobian matrix being calculated
inaccurately. If you cannot make changes to prevent the warning then D02RAF should be used.

IFAIL ¼ 3

The Newton iteration has reached round-off level. It could be, however, that the answer returned
is satisfactory. This error might occur if too much accuracy is requested.

IFAIL ¼ 4

A finer mesh is required for the accuracy requested; that is MNP is not large enough.

IFAIL ¼ 5

A serious error has occurred in a call to D02GAF. Check all array subscripts and subroutine
argument lists in calls to D02GAF. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The solution returned by the routine will be accurate to your tolerance as defined by the relation (2)
except in extreme circumstances. If too many points are specified in the initial mesh, the solution may
be more accurate than requested and the error may not be approximately equidistributed.

8 Parallelism and Performance

D02GAF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02GAF is not threaded in any implementation.

9 Further Comments

The time taken by D02GAF depends on the difficulty of the problem, the number of mesh points (and
meshes) used, the number of Newton iterations and the number of deferred corrections.

You are strongly recommended to set IFAIL to obtain self-explanatory error messages, and also
monitoring information about the course of the computation. You may select the unit numbers on which
this output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring
information) – see Section 10 for an example. Otherwise the default unit numbers will be used, as
specified in the Users' Note.

A common cause of convergence problems in the Newton iteration is that you have specified too few
points in the initial mesh. Although the routine adds points to the mesh to improve accuracy it is unable
to do so until the solution on the initial mesh has been calculated in the Newton iteration.

If you specify zero known and estimated boundary values, the routine constructs a zero initial
approximation and in many cases the Jacobian is singular when evaluated for this approximation,
leading to the breakdown of the Newton iteration.

You may be unable to provide a sufficiently good choice of initial mesh and estimated boundary values,
and hence the Newton iteration may never converge. In this case the continuation facility provided in
D02RAF is recommended.

In the case where you wish to solve a sequence of similar problems, the final mesh from solving one
case is strongly recommended as the initial mesh for the next.

10 Example

This example solves the differential equation

y000 ¼ �yy00 � � 1� y02
� �

with boundary conditions

y 0ð Þ ¼ y0 0ð Þ ¼ 0; y0 10ð Þ ¼ 1

for � ¼ 0:0 and � ¼ 0:2 to an accuracy specified by TOL ¼ 1:0E�3. We solve first the simpler problem
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with � ¼ 0:0 using an equispaced mesh of 26 points and then we solve the problem with � ¼ 0:2 using
the final mesh from the first problem.

Note the call to X04ABF prior to the call to D02GAF.

10.1 Program Text

! D02GAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02gafe_mod

! Data for D02GAF example program

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: iset = 1, n = 4, nin = 5, nout = 6

Contains
Subroutine fcn(x,y,f)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Executable Statements ..
f(1) = y(2)
f(2) = y(3)
f(3) = -y(1)*y(3) - y(4)*(1.0E0_nag_wp-y(2)*y(2))
f(4) = 0.0_nag_wp
Return

End Subroutine fcn
End Module d02gafe_mod
Program d02gafe

! D02GAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02gaf, nag_wp, x04abf
Use d02gafe_mod, Only: fcn, iset, n, nin, nout, one, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, beta, h, tol
Integer :: i, ifail, j, k, liw, lw, mnp, np, &

outchn
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: u(:,:), v(:,:), w(:), x(:), y(:,:)
Integer, Allocatable :: iw(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02GAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! n: number of differential equations
! mnp: maximum permitted number of mesh points.

Read (nin,*) mnp
liw = mnp*(2*n+1) + n*n + 4*n + 2
lw = mnp*(3*n*n+6*n+2) + 4*n*n + 4*n
Allocate (iw(liw),u(n,2),v(n,2),w(lw),x(mnp),y(n,mnp))

! tol: positive absolute error tolerance
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! np : determines whether a default or user-supplied mesh is used.
! a : left-hand boundary point, b: right-hand boundary point.

Read (nin,*) tol
Read (nin,*) np
Read (nin,*) a, b
outchn = nout
Call x04abf(iset,outchn)
beta = zero
u(1:n,1:2) = zero
v(1:n,1:2) = zero
v(1,2) = one
v(3,1) = one
v(3,2) = one
v(4,2) = one
u(2,2) = one
u(1,2) = b
x(1) = a
h = (b-a)/real(np-1,kind=nag_wp)
Do i = 2, np - 1

x(i) = x(i-1) + h
End Do
x(np) = b
beta = zero

loop: Do k = 1, 2
u(4,1) = beta
u(4,2) = beta

! ifail: behaviour on error exit
! =1 for quiet-soft exit
! * Set ifail to 111 to obtain monitoring information *

ifail = 1
Call d02gaf(u,v,n,a,b,tol,fcn,mnp,x,y,np,w,lw,iw,liw,ifail)

If (ifail>=0) Then
Write (nout,99999) ’Problem with BETA = ’, beta

End If
If (ifail==0 .Or. ifail==3) Then

Write (nout,*)
If (ifail==3) Then

Write (nout,*) ’ IFAIL = 3’
End If
Write (nout,99998) np
Write (nout,99997)
Write (nout,99996)(x(i),(y(j,i),j=1,3),i=1,np)
beta = beta + 0.2E0_nag_wp

Else
Write (nout,99995) ifail
Exit loop

End If
End Do loop

99999 Format (/,1X,A,F7.2)
99998 Format (1X,’Solution on final mesh of ’,I2,’ points’)
99997 Format (1X,’ X(I) Y1(I) Y2(I) Y3(I)’)
99996 Format (1X,F11.3,3F13.4)
99995 Format (1X,/,1X,’ ** D02GAF returned with IFAIL = ’,I5)

End Program d02gafe

10.2 Program Data

D02GAF Example Program Data
40 : mnp
1.0E-3 : tol
26 : np
0.0 10.0 : a, b
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10.3 Program Results

D02GAF Example Program Results

Problem with BETA = 0.00

Solution on final mesh of 26 points
X(I) Y1(I) Y2(I) Y3(I)
0.000 0.0000 0.0000 0.4695
0.400 0.0375 0.1876 0.4673
0.800 0.1497 0.3719 0.4511
1.200 0.3336 0.5450 0.4104
1.600 0.5828 0.6963 0.3424
2.000 0.8864 0.8163 0.2558
2.400 1.2309 0.9009 0.1678
2.800 1.6026 0.9529 0.0953
3.200 1.9900 0.9805 0.0464
3.600 2.3851 0.9930 0.0193
4.000 2.7834 0.9978 0.0069
4.400 3.1829 0.9994 0.0021
4.800 3.5828 0.9999 0.0006
5.200 3.9828 1.0000 0.0001
5.600 4.3828 1.0000 0.0000
6.000 4.7828 1.0000 0.0000
6.400 5.1828 1.0000 0.0000
6.800 5.5828 1.0000 0.0000
7.200 5.9828 1.0000 -0.0000
7.600 6.3828 1.0000 0.0000
8.000 6.7828 1.0000 -0.0000
8.400 7.1828 1.0000 0.0000
8.800 7.5828 1.0000 -0.0000
9.200 7.9828 1.0000 0.0000
9.600 8.3828 1.0000 -0.0000

10.000 8.7828 1.0000 -0.0000

Problem with BETA = 0.20

Solution on final mesh of 26 points
X(I) Y1(I) Y2(I) Y3(I)
0.000 0.0000 0.0000 0.6865
0.400 0.0528 0.2584 0.6040
0.800 0.2020 0.4814 0.5091
1.200 0.4324 0.6636 0.4001
1.600 0.7268 0.8007 0.2860
2.000 1.0670 0.8939 0.1821
2.400 1.4368 0.9498 0.1017
2.800 1.8233 0.9791 0.0492
3.200 2.2180 0.9924 0.0206
3.600 2.6162 0.9976 0.0074
4.000 3.0157 0.9993 0.0023
4.400 3.4156 0.9998 0.0006
4.800 3.8155 1.0000 0.0001
5.200 4.2155 1.0000 0.0000
5.600 4.6155 1.0000 0.0000
6.000 5.0155 1.0000 0.0000
6.400 5.4155 1.0000 -0.0000
6.800 5.8155 1.0000 -0.0000
7.200 6.2155 1.0000 -0.0000
7.600 6.6155 1.0000 -0.0000
8.000 7.0155 1.0000 -0.0000
8.400 7.4155 1.0000 -0.0000
8.800 7.8155 1.0000 -0.0000
9.200 8.2155 1.0000 -0.0000
9.600 8.6155 1.0000 -0.0000

10.000 9.0155 1.0000 -0.0000
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NAG Library Routine Document

D02GBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02GBF solves a general linear two-point boundary value problem for a system of ordinary differential
equations, using a deferred correction technique.

2 Specification

SUBROUTINE D02GBF (A, B, N, TOL, FCNF, FCNG, C, D, GAM, MNP, X, Y, NP, W,
LW, IW, LIW, IFAIL)

&

INTEGER N, MNP, NP, LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) A, B, TOL, C(N,N), D(N,N), GAM(N), X(MNP), Y(N,MNP),

W(LW)
&

EXTERNAL FCNF, FCNG

3 Description

D02GBF solves a linear two-point boundary value problem for a system of n ordinary differential
equations in the interval [a; b]. The system is written in the form

y0 ¼ F xð Þyþ g xð Þ ð1Þ

and the boundary conditions are written in the form

Cy að Þ þDy bð Þ ¼ �: ð2Þ

Here F xð Þ, C and D are n by n matrices, and g xð Þ and � are n-component vectors. The approximate
solution to (1) and (2) is found using a finite difference method with deferred correction. The algorithm
is a specialization of that used in subroutine D02RAF which solves a nonlinear version of (1) and (2).
The nonlinear version of the algorithm is described fully in Pereyra (1979).

You supply an absolute error tolerance and may also supply an initial mesh for the construction of the
finite difference equations (alternatively a default mesh is used). The algorithm constructs a solution on
a mesh defined by adding points to the initial mesh. This solution is chosen so that the error is
everywhere less than your tolerance and so that the error is approximately equidistributed on the final
mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If,
on the other hand, the solution is required at several specific points, then you should use the
interpolation routines provided in Chapter E01 if these points do not themselves form a convenient
mesh.

4 References

Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear,
ordinary boundary problems Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science (eds B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76
Springer–Verlag

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: a, the left-hand boundary point.
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2: B – REAL (KIND=nag_wp) Input

On entry: b, the right-hand boundary point.

Constraint: B > A.

3: N – INTEGER Input

On entry: the number of equations; that is n is the order of system (1).

Constraint: N � 2.

4: TOL – REAL (KIND=nag_wp) Input

On entry: a positive absolute error tolerance. If

a ¼ x1 < x2 < � � � < xNP ¼ b

is the final mesh, z xð Þ is the approximate solution from D02GBF and y xð Þ is the true solution of
equations (1) and (2) then, except in extreme cases, it is expected that

z� yk k � TOL ð3Þ

where

uk k ¼ max
1�i�N

max
1�j�NP

ui xj
� �		 		:

Constraint: TOL > 0:0.

5: FCNF – SUBROUTINE, supplied by the user. External Procedure

FCNF must evaluate the matrix F xð Þ in (1) at a general point x.

The specification of FCNF is:

SUBROUTINE FCNF (X, F)

REAL (KIND=nag_wp) X, F(*)

In the description of the arguments of D02GBF below, n denotes the actual value of N in the
call of D02GBF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: Fðn � i � 1ð Þ þ jÞ must contain the i; jð Þth element of the matrix F xð Þ, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n. (See Section 10 for an example.)

FCNF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02GBF is called. Arguments denoted as Input must not be changed by this
procedure.

6: FCNG – SUBROUTINE, supplied by the user. External Procedure

FCNG must evaluate the vector g xð Þ in (1) at a general point x.

The specification of FCNG is:

SUBROUTINE FCNG (X, G)

REAL (KIND=nag_wp) X, G(*)

In the description of the arguments of D02GBF below, n denotes the actual value of N in the
call of D02GBF.
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1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Gð�Þ – REAL (KIND=nag_wp) array Output

On exit: the ith element of the vector g xð Þ, for i ¼ 1; 2; . . . ; n. (See Section 10 for an
example.)

FCNG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02GBF is called. Arguments denoted as Input must not be changed by this
procedure.

7: CðN;NÞ – REAL (KIND=nag_wp) array Input/Output
8: DðN;NÞ – REAL (KIND=nag_wp) array Input/Output
9: GAMðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the arrays C and D must be set to the matrices C and D in (2)). GAM must be set to
the vector � in (2).

On exit: the rows of C and D and the components of GAM are reordered so that the boundary
conditions are in the order:

(i) conditions on y að Þ only;
(ii) condition involving y að Þ and y bð Þ; and
(iii) conditions on y bð Þ only.
The routine will be slightly more efficient if the arrays C, D and GAM are ordered in this way
before entry, and in this event they will be unchanged on exit.

Note that the problems (1) and (2) must be of boundary value type, that is neither C nor D may
be identically zero. Note also that the rank of the matrix C;D½ � must be n for the problem to be
properly posed. Any violation of these conditions will lead to an error exit.

10: MNP – INTEGER Input

On entry: the maximum permitted number of mesh points.

Constraint: MNP � 32.

11: XðMNPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if NP � 4 (see NP), the first NP elements must define an initial mesh. Otherwise the
elements of x need not be set.

Constraint:

A ¼ Xð1Þ < Xð2Þ < � � � < XðNPÞ ¼ B; NP � 4: ð4Þ
On exit: Xð1Þ;Xð2Þ; . . . ;XðNPÞ define the final mesh (with the returned value of NP) satisfying
the relation (4).

12: YðN;MNPÞ – REAL (KIND=nag_wp) array Output

On exit: the approximate solution z xð Þ satisfying (3), on the final mesh, that is

Yðj; iÞ ¼ zj xið Þ; i ¼ 1; 2; . . . ;NP and j ¼ 1; 2; . . . ; n

where NP is the number of points in the final mesh.

The remaining columns of Y are not used.
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13: NP – INTEGER Input/Output

On entry: determines whether a default mesh or user-supplied mesh is used.

NP ¼ 0
A default value of 4 for NP and a corresponding equispaced mesh Xð1Þ;Xð2Þ; . . . ;XðNPÞ
are used.

NP � 4
You must define an initial mesh X as in (4).

On exit: the number of points in the final (returned) mesh.

14: WðLWÞ – REAL (KIND=nag_wp) array Workspace
15: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D02GBF is
called.

Constraint: LW � MNP� 3N2 þ 5Nþ 2
� �

þ 3N2 þ 5N.

16: IWðLIWÞ – INTEGER array Workspace
17: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D02GBF is
called.

Constraint: LIW � MNP� 2Nþ 1ð Þ þ N.

18: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Section 3.4 in How to Use the NAG
Library and its Documentation).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the
decimal digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages
printed).

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the arguments N, TOL, NP, MNP, LW or LIW is incorrectly set, B � A or the
condition (4) on X is not satisfied.

IFAIL ¼ 2

There are three possible reasons for this error exit to be taken:
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(i) one of the matrices C or D is identically zero (that is, the problem is of initial value and not
boundary value type). In this case, IWð1Þ ¼ 0 on exit;

(ii) a row of C and the corresponding row of D are identically zero (that is, the boundary
conditions are rank deficient). In this case, on exit IWð1Þ contains the index of the first such
row encountered; and

(iii) more than n of the columns of the n by 2n matrix C;D½ � are identically zero (that is, the
boundary conditions are rank deficient). In this case, on exit IWð1Þ contains minus the
number of non-identically zero columns.

IFAIL ¼ 3

The routine has failed to find a solution to the specified accuracy. There are a variety of possible
reasons including:

(i) the boundary conditions are rank deficient, which may be indicated by the message that the
Jacobian is singular. However this is an unlikely explanation for the error exit as all rank
deficient boundary conditions should lead instead to error exits with either IFAIL ¼ 2 or 5;
see also (iv);

(ii) not enough mesh points are permitted in order to attain the required accuracy. This is
indicated by NP ¼ MNP on return from a call to D02GBF. This difficulty may be aggravated
by a poor initial choice of mesh points;

(iii) the accuracy requested cannot be attained on the computer being used; and

(iv) an unlikely combination of values of Fx has led to a singular Jacobian. The error should not
persist if more mesh points are allowed.

IFAIL ¼ 4

A serious error has occurred in a call to D02GBF. Check all array subscripts and subroutine
argument lists in calls to D02GBF. Seek expert help.

IFAIL ¼ 5

There are two possible reasons for this error exit which occurs when checking the rank of the
boundary conditions by reduction to a row echelon form:

(i) at least one row of the n by 2n matrix C;D½ � is a linear combination of the other rows and
hence the boundary conditions are rank deficient. The index of the first such row
encountered is given by IWð1Þ on exit; and

(ii) as (i) but the rank deficiency implied by this error exit has only been determined up to a
numerical tolerance. Minus the index of the first such row encountered is given by IWð1Þ on
exit.

In case (ii) there is some doubt as to the rank deficiency of the boundary conditions. However
even if the boundary conditions are not rank deficient they are not posed in a suitable form for
use with this routine.

For example, if

C ¼ 1 0
1 �

� �
; D ¼ 1 0

1 0

� �
; � ¼ �1

�2

� �
and � is small enough, this error exit is likely to be taken. A better form for the boundary
conditions in this case would be

C ¼ 1 0
0 1

� �
; D ¼ 1 0

0 0

� �
; � ¼ �1

��1 �2 � �1ð Þ

� �
:
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The solution returned by the routine will be accurate to your tolerance as defined by the relation (3)
except in extreme circumstances. If too many points are specified in the initial mesh, the solution may
be more accurate than requested and the error may not be approximately equidistributed.

8 Parallelism and Performance

D02GBF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02GBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D02GBF depends on the difficulty of the problem, the number of mesh points (and
meshes) used and the number of deferred corrections.

You are strongly recommended to set IFAIL to obtain self-explanatory error messages, and also
monitoring information about the course of the computation. You may select the unit numbers on which
this output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring
information) – see Section 10 for an example. Otherwise the default unit numbers will be used, as
specified in the Users' Note.

In the case where you wish to solve a sequence of similar problems, the final mesh from solving one
case is strongly recommended as the initial mesh for the next.

10 Example

This example solves the problem (written as a first-order system)

�y00 þ y0 ¼ 0

with boundary conditions

y 0ð Þ ¼ 0; y 1ð Þ ¼ 1

for the cases � ¼ 10�1 and � ¼ 10�2 using the default initial mesh in the first case, and the final mesh of

D02GBF NAG Library Manual

D02GBF.6 Mark 26



the first case as initial mesh for the second (more difficult) case. We give the solution and the error at
each mesh point to illustrate the accuracy of the method given the accuracy request TOL ¼ 1:0E�3.
Note the call to X04ABF prior to the call to D02GBF.

10.1 Program Text

! D02GBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02gbfe_mod

! Data for D02GBF example program

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcnf, fcng

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: iset = 1, n = 2, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: eps

Contains
Subroutine fcnf(x,f)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)

! .. Executable Statements ..
f(1:2) = 0.0E0_nag_wp
f(3) = 1.0E0_nag_wp
f(4) = -1.0E0_nag_wp/eps
Return

End Subroutine fcnf
Subroutine fcng(x,g)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g(*)

! .. Executable Statements ..
g(1:2) = 0.0E0_nag_wp
Return

End Subroutine fcng
End Module d02gbfe_mod
Program d02gbfe

! D02GBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02gbf, nag_wp, x04abf
Use d02gbfe_mod, Only: eps, fcnf, fcng, iset, n, nin, nout, one, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, tol
Integer :: i, ifail, j, liw, lw, mnp, np, &

outchn
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), d(:,:), gam(:), w(:), x(:), &
y(:,:)

Integer, Allocatable :: iw(:)
! .. Executable Statements ..

Write (nout,*) ’D02GBF Example Program Results’
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! Skip heading in data file
Read (nin,*)

! mnp: maximum permitted number of mesh points.
Read (nin,*) mnp
liw = mnp*(2*n+1) + n
lw = mnp*(3*n*n+5*n+2) + 3*n*n + 5*n
Allocate (iw(liw),c(n,n),d(n,n),gam(n),w(lw),x(mnp),y(n,mnp))

! tol: positive absolute error tolerance
! np : determines whether a default or user-supplied mesh is used.
! a : left-hand boundary point, b: right-hand boundary point.

Read (nin,*) tol
Read (nin,*) np
Read (nin,*) a, b
outchn = nout
Call x04abf(iset,outchn)
gam(1:n) = zero
c(1:n,1:n) = zero
d(1:n,1:n) = zero
c(1,1) = one
d(2,1) = one
gam(2) = one

loop: Do i = 1, 2
eps = 10.0E0_nag_wp**(-i)
Write (nout,*)

! ifail: behaviour on error exit
! =1 for quiet-soft exit
! * Set ifail to 111 to obtain monitoring information *

ifail = 1
Call d02gbf(a,b,n,tol,fcnf,fcng,c,d,gam,mnp,x,y,np,w,lw,iw,liw,ifail)

If (ifail>=0) Then
Write (nout,99999) ’Problem with epsilon = ’, eps

End If
If (ifail==0) Then

Write (nout,99998) np
Write (nout,*) ’ X(I) Y(1,I)’
Write (nout,99997)(x(j),y(1,j),j=1,np)

Else
Write (nout,99996) ifail
Exit loop

End If
End Do loop

99999 Format (1X,A,E10.2)
99998 Format (/,1X,’Approximate solution on final mesh of ’,I2,’ points’)
99997 Format (1X,2F11.4)
99996 Format (1X,/,1X,’ ** D02GBF returned with IFAIL = ’,I5)

End Program d02gbfe

10.2 Program Data

D02GBF Example Program Data
70 : mnp
1.0E-3 : tol
0 : np
0.0 1.0 : a, b

10.3 Program Results

D02GBF Example Program Results

Problem with epsilon = 0.10E+00

Approximate solution on final mesh of 15 points
X(I) Y(1,I)

0.0000 0.0000
0.0278 0.2425
0.0556 0.4263
0.1111 0.6708
0.1667 0.8112
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0.2222 0.8917
0.2778 0.9379
0.3333 0.9644
0.4444 0.9883
0.5556 0.9962
0.6667 0.9988
0.7500 0.9995
0.8333 0.9998
0.9167 0.9999
1.0000 1.0000

Problem with epsilon = 0.10E-01

Approximate solution on final mesh of 49 points
X(I) Y(1,I)

0.0000 0.0000
0.0009 0.0884
0.0019 0.1690
0.0028 0.2425
0.0037 0.3095
0.0046 0.3706
0.0056 0.4262
0.0065 0.4770
0.0074 0.5232
0.0083 0.5654
0.0093 0.6038
0.0111 0.6708
0.0130 0.7265
0.0148 0.7727
0.0167 0.8111
0.0185 0.8431
0.0204 0.8696
0.0222 0.8916
0.0241 0.9100
0.0259 0.9252
0.0278 0.9378
0.0306 0.9529
0.0333 0.9643
0.0361 0.9730
0.0389 0.9795
0.0417 0.9845
0.0444 0.9883
0.0472 0.9911
0.0500 0.9933
0.0528 0.9949
0.0556 0.9961
0.0648 0.9985
0.0741 0.9994
0.0833 0.9998
0.0926 0.9999
0.1019 1.0000
0.1111 1.0000
0.1389 1.0000
0.1667 1.0000
0.2222 1.0000
0.2778 1.0000
0.3333 1.0000
0.4444 1.0000
0.5556 1.0000
0.6667 1.0000
0.7500 1.0000
0.8333 1.0000
0.9167 1.0000
1.0000 1.0000
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NAG Library Routine Document

D02HAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02HAF solves a two-point boundary value problem for a system of ordinary differential equations,
using a Runge–Kutta–Merson method and a Newton iteration in a shooting and matching technique.

2 Specification

SUBROUTINE D02HAF (U, V, N, A, B, TOL, FCN, SOLN, M1, W, SDW, IFAIL)

INTEGER N, M1, SDW, IFAIL
REAL (KIND=nag_wp) U(N,2), V(N,2), A, B, TOL, SOLN(N,M1), W(N,SDW)
EXTERNAL FCN

3 Description

D02HAF solves a two-point boundary value problem for a system of n ordinary differential equations
in the range a; b. The system is written in the form:

y0i ¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ; n ð1Þ

and the derivatives fi are evaluated by FCN. Initially, n boundary values of the variables yi must be
specified, some at a and some at b. You must supply estimates of the remaining n boundary values
(called parameters below); the subroutine corrects these by a form of Newton iteration. It also calculates
the complete solution on an equispaced mesh if required.

Starting from the known and estimated values of yi at a, the subroutine integrates the equations from a
to b (using a Runge–Kutta–Merson method). The differences between the values of yi at b from
integration and those specified initially should be zero for the true solution. (These differences are
called residuals below.) The subroutine uses a generalized Newton method to reduce the residuals to
zero, by calculating corrections to the estimated boundary values. This process is repeated iteratively
until convergence is obtained, or until the routine can no longer reduce the residuals. See Hall and Watt
(1976) for a simple discussion of shooting and matching techniques.

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Arguments

1: UðN; 2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Uði; 1Þ must be set to the known or estimated value of yi at a and Uði; 2Þ must be set to
the known or estimated value of yi at b, for i ¼ 1; 2; . . . ;n.

On exit: the known values unaltered, and corrected values of the estimates, unless an error has
occurred. If an error has occurred, U contains the known values and the latest values of the
estimates.
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2: VðN; 2Þ – REAL (KIND=nag_wp) array Input

On entry: Vði; jÞ must be set to 0:0 if Uði; jÞ is a known value and to 1:0 if Uði; jÞ is an estimated
value, for i ¼ 1; 2; . . . ;n and j ¼ 1; 2.

Constraint: precisely n of the Vði; jÞ must be set to 0:0, i.e., precisely n of the Uði; jÞ must be
known values, and these must not be all at a or all at b.

3: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N � 1.

4: A – REAL (KIND=nag_wp) Input

On entry: a, the initial point of the interval of integration.

5: B – REAL (KIND=nag_wp) Input

On entry: b, the final point of the interval of integration.

6: TOL – REAL (KIND=nag_wp) Input

On entry: must be set to a small quantity suitable for:

(a) testing the local error in yi during integration,

(b) testing for the convergence of yi at b,

(c) calculating the perturbation in estimated boundary values for yi, which are used to obtain the
approximate derivatives of the residuals for use in the Newton iteration.

You are advised to check your results by varying TOL.

Constraint: TOL > 0:0.

7: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i), for i ¼ 1; 2; . . . ; n, at a general point
x.

The specification of FCN is:

SUBROUTINE FCN (X, Y, F)

REAL (KIND=nag_wp) X, Y(*), F(*)

In the description of the arguments of D02HAF below, n denotes the actual value of N in the
call of D02HAF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the argument.

3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the values of fi xð Þ, for i ¼ 1; 2; . . . ; n.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02HAF is called. Arguments denoted as Input must not be changed by
this procedure.
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8: SOLNðN;M1Þ – REAL (KIND=nag_wp) array Output

On exit: the solution when M1 > 1.

9: M1 – INTEGER Input

On entry: a value which controls output.

M1 ¼ 1
The final solution is not evaluated.

M1 > 1
The final values of yi at interval b� að Þ= M1� 1ð Þ are calculated and stored in the array
SOLN by columns, starting with values yi at a stored in SOLNði; 1Þ, for i ¼ 1; 2; . . . ; n.

Constraint: M1 � 1.

10: WðN; SDWÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 2, 3, 4 or 5, Wði; 1Þ, for i ¼ 1; 2; . . . ; n, contains the solution at the point
where the integration fails and the point of failure is returned in Wð1; 2Þ.

11: SDW – INTEGER Input

On entry: the second dimension of the array W as declared in the (sub)program from which
D02HAF is called.

Constraint: SDW � 3Nþ 17þmax 11;Nð Þ.

12: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Section 3.4 in How to Use the NAG
Library and its Documentation).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the
decimal digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages
printed).

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the arguments V, N, M1, SDW, or TOL is incorrectly set.

IFAIL ¼ 2

The step length for the integration is too short whilst calculating the residual (see Section 9).

IFAIL ¼ 3

No initial step length could be chosen for the integration whilst calculating the residual.
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Note: IFAIL ¼ 2 or 3 can occur due to choosing too small a value for TOL or due to choosing the
wrong direction of integration. Try varying TOL and interchanging a and b. These error exits can also
occur for very poor initial estimates of the unknown initial values and, in extreme cases, because
D02HAF cannot be used to solve the problem posed.

IFAIL ¼ 4

As for IFAIL ¼ 2 but the error occurred when calculating the Jacobian of the derivatives of the
residuals with respect to the parameters.

IFAIL ¼ 5

As for IFAIL ¼ 3 but the error occurred when calculating the derivatives of the residuals with
respect to the parameters.

IFAIL ¼ 6

The calculated Jacobian has an insignificant column.

Note: IFAIL ¼ 4, 5 or 6 usually indicate a badly scaled problem. You may vary the size of TOL or
change to one of the more general routines D02HBF or D02SAF which afford more control over the
calculations.

IFAIL ¼ 7

The linear algebra routine (F08KBF (DGESVD)) used has failed. This error exit should not occur
and can be avoided by changing the estimated initial values.

IFAIL ¼ 8

The Newton iteration has failed to converge.

Note: IFAIL ¼ 8 can indicate poor initial estimates or a very difficult problem. Consider varying TOL
if the residuals are small in the monitoring output. If the residuals are large try varying the initial
estimates.

IFAIL ¼ 9
IFAIL ¼ 10
IFAIL ¼ 11
IFAIL ¼ 12
IFAIL ¼ 13

Indicates that a serious error has occurred in an internal call. Check all array subscripts and
subroutine argument lists in calls to D02HAF. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is usually close
to that specified by you; the solution, if requested, may be determined to a required accuracy by varying
TOL.

8 Parallelism and Performance

D02HAF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02HAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D02HAF depends on the complexity of the system, and on the number of iterations
required. In practice, integration of the differential equations is by far the most costly process involved.

Wherever it occurs in the routine, the error argument TOL is used in ‘mixed’ form; that is TOL always
occurs in expressions of the form TOL� 1þ yij jð Þ. Though not ideal for every application, it is
expected that this mixture of absolute and relative error testing will be adequate for most purposes.

You are strongly recommended to set IFAIL to obtain self-explanatory error messages, and also
monitoring information about the course of the computation. You may select the unit numbers on which
this output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring
information) – see Section 10 for an example. Otherwise the default unit numbers will be used, as
specified in the Users' Note. The monitoring information produced at each iteration includes the current
parameter values, the residuals and 2-norms: a basic norm and a current norm. At each iteration the aim
is to find parameter values which make the current norm less than the basic norm. Both these norms
should tend to zero as should the residuals. (They would all be zero if the exact parameters were used
as input.) For more details, you may consult the specification of D02SAF, and especially the description
of the argument MONIT there.

The computing time for integrating the differential equations can sometimes depend critically on the
quality of the initial estimates. If it seems that too much computing time is required and, in particular, if
the values of the residuals printed by the monitoring routine are much larger than the expected values of
the solution at b, then the coding of FCN should be checked for errors. If no errors can be found, an
independent attempt should be made to improve the initial estimates. In practical problems it is not
uncommon for the differential equation to have a singular point at one or both ends of the range.
Suppose a is a singular point; then the derivatives y0i in (1) (in Section 3) cannot be evaluated at a,
usually because one or more of the expressions for fi give overflow. In such a case it is necessary for
you to take a a short distance away from the singularity, and to find values for yi at the new value of a
(e.g., use the first one or two terms of an analytical (power series) solution). You should experiment
with the new position of a; if it is taken too close to the singular point, the derivatives fi will be
inaccurate, and the routine may sometimes fail with IFAIL ¼ 2 or 3 or, in extreme cases, with an
overflow condition. A more general treatment of singular solutions is provided by the subroutine
D02HBF.

Another difficulty which often arises in practice is the case when one end of the range, b say, is at
infinity. You must approximate the end point by taking a finite value for b, which is obtained by
estimating where the solution will reach its asymptotic state. The estimate can be checked by repeating
the calculation with a larger value of b. If b is very large, and if the matching point is also at b, the
numerical solution may suffer a considerable loss of accuracy in integrating across the range, and the
program may fail with IFAIL ¼ 6 or 8. (In the former case, solutions from all initial values at a are
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tending to the same curve at infinity.) The simplest remedy is to try to solve the equations with a
smaller value of b, and then to increase b in stages, using each solution to give boundary value
estimates for the next calculation. For problems where some terms in the asymptotic form of the
solution are known, D02HBF will be more successful.

If the unknown quantities are not boundary values, but are eigenvalues or the length of the range or
some other parameters occurring in the differential equations, D02HBF may be used.

10 Example

This example finds the angle at which a projectile must be fired for a given range.

The differential equations are:

y0 ¼ tan


v0 ¼ �0:032 tan

v

� 0:02v

cos



0 ¼ �0:032
v2

;

with the following boundary conditions:

y ¼ 0; v ¼ 0:5 at x ¼ 0;

y ¼ 0 at x ¼ 5:

The remaining boundary conditions are estimated as:


 ¼ 1:15 at x ¼ 0;


 ¼ 1:2; v ¼ 0:46 at x ¼ 5:

We write y ¼ Z 1ð Þ, v ¼ Z 2ð Þ, 
 ¼ Z 3ð Þ. To check the accuracy of the results the problem is solved
twice with TOL ¼ 5.0E�3 and 5:0E�4 respectively. Note the call to X04ABF before the call to
D02HAF.

10.1 Program Text

! D02HAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02hafe_mod

! D02HAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: iset = 1, n = 3, nin = 5, nout = 6
Integer, Parameter, Public :: sdw = 3*n + 17 + max(11,n)

! .. Intrinsic Procedures ..
Intrinsic :: max

Contains
Subroutine fcn(x,y,f)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
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Real (Kind=nag_wp), Intent (In) :: y(*)
! .. Intrinsic Procedures ..

Intrinsic :: cos, tan
! .. Executable Statements ..

f(1) = tan(y(3))
f(2) = -0.032_nag_wp*tan(y(3))/y(2) - 0.02_nag_wp*y(2)/cos(y(3))
f(3) = -0.032_nag_wp/y(2)**2
Return

End Subroutine fcn
End Module d02hafe_mod

Program d02hafe

! D02HAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02haf, nag_wp, x04abf
Use d02hafe_mod, Only: fcn, iset, n, nin, nout, one, sdw, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, dx, tol
Integer :: i, ifail, l, m1, outchn

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: soln(:,:), x(:)
Real (Kind=nag_wp) :: u(n,2), v(n,2), w(n,sdw)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02HAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! m1: solution is returned and printed for m1-1 grid points on [a, b].
Read (nin,*) m1
Allocate (soln(n,m1),x(m1))

! a: left-hand boundary point, b: right-hand boundary point.
Read (nin,*) a, b

! Evaluate solution points x.
x(1) = a
dx = (b-a)/real(m1-1,kind=nag_wp)
Do i = 2, m1 - 1

x(i) = x(i-1) + dx
End Do
x(m1) = b

! Set output channel for monitoring information.
outchn = nout
Call x04abf(iset,outchn)

! Flag known (zero) and estimated (one) values in u
v(1:2,1:2) = zero
v(2,2) = one
v(3,1:2) = one

! Set known values of u
u(1,1:2) = zero
u(2,1) = 0.5_nag_wp

loop: Do l = 4, 5
tol = 5.0_nag_wp*10.0_nag_wp**(-l)
Write (nout,*)

! Set estimates of u
u(2,2) = 0.46_nag_wp
u(3,1) = 1.15_nag_wp
u(3,2) = -1.2_nag_wp

! ifail: behaviour on error exit
! =1 for quiet-soft exit
! * Set ifail to 111 to obtain monitoring information *

ifail = 1
Call d02haf(u,v,n,a,b,tol,fcn,soln,m1,w,sdw,ifail)
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If (ifail>=0) Then
Write (nout,99999) ’Results with TOL = ’, tol
Write (nout,*)
If (ifail==0) Then

Write (nout,*) ’ X-value and final solution’
Do i = 1, m1

If (l==4) Then
Write (nout,99998) x(i), soln(1:n,i)

Else
Write (nout,99997) x(i), soln(1:n,i)

End If
End Do

Else
Write (nout,99996) ’ IFAIL =’, ifail

End If
Else

Write (nout,99995) ifail
Exit loop

End If
End Do loop

99999 Format (1X,A,E10.3)
99998 Format (1X,F4.1,3(1X,F9.3))
99997 Format (1X,F4.1,1X,3F10.4)
99996 Format (1X,A,I4)
99995 Format (1X,/,1X,’ ** D02HAF returned with IFAIL = ’,I5)

End Program d02hafe

10.2 Program Data

D02HAF Example Program Data
6 : m1
0.0 5.0 : a, b

10.3 Program Results

D02HAF Example Program Results

Results with TOL = 0.500E-03

X-value and final solution
0.0 0.000 0.500 1.168
1.0 1.918 0.334 0.975
2.0 2.928 0.207 0.493
3.0 2.977 0.196 -0.419
4.0 2.021 0.310 -0.975
5.0 -0.000 0.460 -1.201

Results with TOL = 0.500E-04

X-value and final solution
0.0 0.0000 0.5000 1.1681
1.0 1.9176 0.3343 0.9749
2.0 2.9281 0.2070 0.4929
3.0 2.9771 0.1955 -0.4195
4.0 2.0210 0.3095 -0.9752
5.0 -0.0000 0.4597 -1.2014
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NAG Library Routine Document

D02HBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02HBF solves a two-point boundary value problem for a system of ordinary differential equations,
using initial value techniques and Newton iteration; it generalizes subroutine D02HAF to include the
case where parameters other than boundary values are to be determined.

2 Specification

SUBROUTINE D02HBF (P, N1, PE, E, N, SOLN, M1, FCN, BC, RANGE, W, SDW,
IFAIL)

&

INTEGER N1, N, M1, SDW, IFAIL
REAL (KIND=nag_wp) P(N1), PE(N1), E(N), SOLN(N,M1), W(N,SDW)
EXTERNAL FCN, BC, RANGE

3 Description

D02HBF solves a two-point boundary value problem by determining the unknown parameters
p1; p2; . . . ; pn1 of the problem. These parameters may be, but need not be, boundary values; they may
include eigenvalue parameters in the coefficients of the differential equations, length of the range of
integration, etc. The notation and methods used are similar to those of D02HAF and you are advised to
study this first. (The parameters p1; p2; . . . ; pn1 correspond precisely to the unknown boundary
conditions in D02HAF.) It is assumed that we have a system of n first-order ordinary differential
equations of the form:

dyi
dx
¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ; n;

and that the derivatives fi are evaluated by FCN. The system, including the boundary conditions given
by BC and the range of integration given by RANGE, involves the n1 unknown parameters
p1; p2; . . . ; pn1 which are to be determined, and for which initial estimates must be supplied. The number
of unknown parameters n1 must not exceed the number of equations n. If n1 < n, we assume that
n � n1ð Þ equations of the system are not involved in the matching process. These are usually referred to
as ‘driving equations’; they are independent of the parameters and of the solutions of the other n1

equations. In numbering the equations for FCN, the driving equations must be put first.

The estimated values of the parameters are corrected by a form of Newton iteration. The Newton
correction on each iteration is calculated using a Jacobian matrix whose i; jð Þth element depends on the
derivative of the ith component of the solution, yi, with respect to the jth parameter, pj. This matrix is
calculated by a simple numerical differentiation technique which requires n1 evaluations of the
differential system.

If the argument IFAIL is set appropriately, the routine automatically prints messages to inform you of
the flow of the calculation. These messages are discussed in detail in Section 9.

D02HBF is a simplified version of D02SAF which is described in detail in Gladwell (1979).

4 References

Gladwell I (1979) The development of the boundary value codes in the ordinary differential equations
chapter of the NAG Library Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science (eds B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76
Springer–Verlag
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5 Arguments

You are strongly recommended to read Sections 3 and 9 in conjunction with this section.

1: PðN1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: an estimate for the ith argument, pi, for i ¼ 1; 2; . . . ; n1.

On exit: the corrected value for the ith argument, unless an error has occurred, when it contains
the last calculated value of the argument.

2: N1 – INTEGER Input

On entry: n1, the number of arguments.

Constraint: 1 � N1 � N.

3: PEðN1Þ – REAL (KIND=nag_wp) array Input

On entry: the elements of PE must be given small positive values. The element PEðiÞ is used

(i) in the convergence test on the ith argument in the Newton iteration, and

(ii) in perturbing the ith argument when approximating the derivatives of the components of the
solution with respect to this argument for use in the Newton iteration.

The elements PEðiÞ should not be chosen too small. They should usually be several orders of
magnitude larger than machine precision.

Constraint: PEðiÞ > 0:0, for i ¼ 1; 2; . . . ;N1.

4: EðNÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of E must be given positive values. The element EðiÞ is used in the bound
on the local error in the ith component of the solution yi during integration.

The elements EðiÞ should not be chosen too small. They should usually be several orders of
magnitude larger than machine precision.

Constraint: EðiÞ > 0:0, for i ¼ 1; 2; . . . ;N.

5: N – INTEGER Input

On entry: n, the total number of differential equations.

Constraint: N � N1.

6: SOLNðN;M1Þ – REAL (KIND=nag_wp) array Output

On exit: the solution when M1 > 1.

7: M1 – INTEGER Input

On entry: a value which controls exit values.

M1 ¼ 1
The final solution is not calculated.

M1 > 1
The final values of the solution at interval (length of range)/ M1� 1ð Þ are calculated and
stored sequentially in the array SOLN starting with the values of the solutions evaluated at
the first end point (see RANGE) stored in the first column of SOLN.

Constraint: M1 � 1.

8: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i), for i ¼ 1; 2; . . . ; n, at a general point
x.
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The specification of FCN is:

SUBROUTINE FCN (X, Y, F, P)

REAL (KIND=nag_wp) X, Y(*), F(*), P(*)

In the description of the arguments of D02HBF below, n and n1 denote the numerical values
of N and N1 in the call of D02HBF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the argument.

3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ;n. The fi may depend upon the parameters pj ,
for j ¼ 1; 2; . . . ;n1. If there are any driving equations (see Section 3) then these must be
numbered first in the ordering of the components of F in FCN.

4: Pð�Þ – REAL (KIND=nag_wp) array Input

On entry: the current estimate of the argument pi, for i ¼ 1; 2; . . . ; n1.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02HBF is called. Arguments denoted as Input must not be changed by this
procedure.

9: BC – SUBROUTINE, supplied by the user. External Procedure

BC must place in G1 and G2 the boundary conditions at a and b respectively (see RANGE).

The specification of BC is:

SUBROUTINE BC (G1, G2, P)

REAL (KIND=nag_wp) G1(*), G2(*), P(*)

In the description of the arguments of D02HBF below, n and n1 denote the numerical values
of N and N1 in the call of D02HBF.

1: G1ð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of yi að Þ, (where this may be a known value or a function of the
parameters pj , for i ¼ 1; 2; . . . ;n and j ¼ 1; 2; . . . ;n1).

2: G2ð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of yi bð Þ, for i ¼ 1; 2; . . . ; n, (where these may be known values or
functions of the parameters pj , for j ¼ 1; 2; . . . ;n1). If n > n1, so that there are some
driving equations, then the first n � n1 values of G2 need not be set since they are
never used.

3: Pð�Þ – REAL (KIND=nag_wp) array Input

On entry: an estimate of the argument pi, for i ¼ 1; 2; . . . ;n1.

BC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02HBF is called. Arguments denoted as Input must not be changed by this
procedure.
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10: RANGE – SUBROUTINE, supplied by the user. External Procedure

RANGE must evaluate the boundary points a and b, each of which may depend on the arguments
p1; p2; . . . ; pn1 . The integrations in the shooting method are always from a to b.

The specification of RANGE is:

SUBROUTINE RANGE (A, B, P)

REAL (KIND=nag_wp) A, B, P(*)

In the description of the arguments of D02HBF below, n1 denotes the actual value of N1 in
the call of D02HBF.

1: A – REAL (KIND=nag_wp) Output

On exit: a, one of the boundary points.

2: B – REAL (KIND=nag_wp) Output

On exit: the second boundary point, b. Note that B > A forces the direction of
integration to be that of increasing x. If A and B are interchanged the direction of
integration is reversed.

3: Pð�Þ – REAL (KIND=nag_wp) array Input

On entry: the current estimate of the ith argument, pi, for i ¼ 1; 2; . . . ;n1.

RANGE must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02HBF is called. Arguments denoted as Input must not be changed by this
procedure.

11: WðN; SDWÞ – REAL (KIND=nag_wp) array Output

Used mainly for workspace.

On exit: with IFAIL ¼ 2, 3, 4 or 5 (see Section 6), Wði; 1Þ, for i ¼ 1; 2; . . . ; n, contains the
solution at the point x when the error occurred. Wð1; 2Þ contains x.

12: SDW – INTEGER Input

On entry: the second dimension of the array W as declared in the (sub)program from which
D02HBF is called.

Constraint: SDW � 3Nþ 14þmax 11;Nð Þ.

13: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Section 3.4 in How to Use the NAG
Library and its Documentation).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the
decimal digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages
printed).

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the arguments N, N1, M1, SDW, E or PE is incorrectly set.

IFAIL ¼ 2

The step length for the integration became too short whilst calculating the residual (see
Section 9).

IFAIL ¼ 3

No initial step length could be chosen for the integration whilst calculating the residual.

Note: IFAIL ¼ 2 or 3 can occur due to choosing too small a value for E or due to choosing the wrong
direction of integration. Try varying E and interchanging a and b. These error exits can also occur for
very poor initial choices of the parameters in the array P and, in extreme cases, because D02HBF
cannot be used to solve the problem posed.

IFAIL ¼ 4

As for IFAIL ¼ 2 but the error occurred when calculating the Jacobian.

IFAIL ¼ 5

As for IFAIL ¼ 3 but the error occurred when calculating the Jacobian.

IFAIL ¼ 6

The calculated Jacobian has an insignificant column. This can occur because a parameter pi is
incorrectly entered when posing the problem.

Note: IFAIL ¼ 4, 5 or 6 usually indicate a badly scaled problem. You may vary the size of PE.
Otherwise the use of the more general D02SAF which affords more control over the calculations is
advised.

IFAIL ¼ 7

The linear algebra routine used (F08KBF (DGESVD)) has failed. This error exit should not occur
and can be avoided by changing the initial estimates pi.

IFAIL ¼ 8

The Newton iteration has failed to converge. This can indicate a poor initial choice of parameters
pi or a very difficult problem. Consider varying the elements PEðiÞ if the residuals are small in
the monitoring output. If the residuals are large, try varying the initial parameters pi.

IFAIL ¼ 9
IFAIL ¼ 10
IFAIL ¼ 11
IFAIL ¼ 12
IFAIL ¼ 13

Indicates that a serious error has occurred in an internal call. Check all array subscripts and
subroutine argument lists in the call to D02HBF. Seek expert help.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is usually close
to that specified by you; the solution, if requested, may be determined to a required accuracy by varying
E.

8 Parallelism and Performance

D02HBF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02HBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D02HBF depends on the complexity of the system, and on the number of iterations
required. In practice, integration of the differential equations is by far the most costly process involved.

Wherever they occur in the routine, the error arguments contained in the arrays E and PE are used in
‘mixed’ form; that is EðiÞ always occurs in expressions of the form

EðiÞ � 1þ yij jð Þ

and PEðiÞ always occurs in expressions of the form

PEðiÞ � 1þ pij jð Þ:

Though not ideal for every application, it is expected that this mixture of absolute and relative error
testing will be adequate for most purposes.

You may determine a suitable direction of integration a to b and suitable values for EðiÞ by integrations
with D02PEF. The best direction of integration is usually the direction of decreasing solutions.

You are strongly recommended to set IFAIL to obtain self-explanatory error messages, and also
monitoring information about the course of the computation. You may select the unit numbers on which
this output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring
information) – see Section 10 for an example. Otherwise the default unit numbers will be used, as
specified in the Users' Note. The monitoring information produced at each iteration includes the current
parameter values, the residuals and 2-norms: a basic norm and a current norm. At each iteration the aim
is to find parameter values which make the current norm less than the basic norm. Both these norms
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should tend to zero as should the residuals. (They would all be zero if the exact parameters were used
as input.) For more details, in particular about the other monitoring information printed, you are advised
to consult the specification of D02SAF, and especially the description of the argument MONIT there.

The computing time for integrating the differential equations can sometimes depend critically on the
quality of the initial estimates for the parameters pi. If it seems that too much computing time is
required and, in particular, if the values of the residuals printed by the monitoring routine are much
larger than the expected values of the solution at b, then the coding of FCN, BC and RANGE should be
checked for errors. If no errors can be found, an independent attempt should be made to improve the
initial estimates for pi.

The subroutine can be used to solve a very wide range of problems, for example:

(a) eigenvalue problems, including problems where the eigenvalue occurs in the boundary conditions;

(b) problems where the differential equations depend on some parameters which are to be determined
so as to satisfy certain boundary conditions (see Example 2 in Section 10);

(c) problems where one of the end points of the range of integration is to be determined as the point
where a variable yi takes a particular value (see Example 2 in Section 10);

(d) singular problems and problems on infinite ranges of integration where the values of the solution at
a or b or both are determined by a power series or an asymptotic expansion (or a more complicated
expression) and where some of the coefficients in the expression are to be determined (see
Example 1 in Section 10); and

(e) differential equations with certain terms defined by other independent (driving) differential
equations.

10 Example

For this routine two examples are presented. There is a single example program for D02HBF, with a
main program and the code to solve the two example problems given in Example 1 (EX1) and Example
2 (EX2).

Example 1 (EX1)

This example finds the solution of the differential equation

y00 ¼ y3 � y0
� �

=2x

on the range 0 � x � 16, with boundary conditions y 0ð Þ ¼ 0:1 and y 16ð Þ ¼ 1=6. We cannot use the
differential equation at x ¼ 0 because it is singular, so we take a truncated power series expansion

y xð Þ ¼ 1=10þ p1 �
ffiffiffi
x
p

=10þ x=100

near the origin where p1 is one of the parameters to be determined. We choose the interval as 0:1; 16½ �
and setting p2 ¼ y0 16ð Þ, we can determine all the boundary conditions. We take X1 ¼ 16. We write
y ¼ Yð1Þ, y0 ¼ Yð2Þ, and estimate PARAM 1ð Þ ¼ 0:2, PARAM 2ð Þ ¼ 0:0. Note the call to X04ABF
before the call to D02HBF.

Example 2 (EX2)

This example finds the gravitational constant p1 and the range p2 over which a projectile must be fired
to hit the target with a given velocity.

The differential equations are

y0 ¼ tan


v0 ¼
� p1 sin
þ 0:00002v2
� �

v cos


0 ¼ �p1

v2

on the range 0 < x < p2, with boundary conditions
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y ¼ 0; v ¼ 500; 
 ¼ 0:5 at x ¼ 0;
y ¼ 0; v ¼ 450; 
 ¼ p3 at x ¼ p2:

We write y ¼ Yð1Þ, v ¼ Yð2Þ, 
 ¼ Yð3Þ. We estimate p1 ¼ PARAM 1ð Þ ¼ 32, p2 ¼ PARAM 2ð Þ ¼ 6000
and p3 ¼ PARAM 3ð Þ ¼ 0:54 (though this last estimate is not important).

10.1 Program Text

! D02HBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02hbfe_mod

! Data for D02HBF example programs

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bc1, bc2, fcn1, fcn2, range1, range2

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, nin = 5, nout = 6

Contains
Subroutine fcn1(x,y,f,p)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: p(*), y(*)

! .. Executable Statements ..
f(1) = y(2)
f(2) = (y(1)**3-y(2))/(2.0E0_nag_wp*x)
Return

End Subroutine fcn1
Subroutine range1(a,b,p)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: a, b

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: p(*)

! .. Executable Statements ..
a = 0.1E0_nag_wp
b = 16.0E0_nag_wp
Return

End Subroutine range1
Subroutine bc1(g1,g2,p)

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g1(*), g2(*)
Real (Kind=nag_wp), Intent (In) :: p(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: z

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
z = 0.1E0_nag_wp
g1(1) = 0.1E0_nag_wp + p(1)*sqrt(z)*0.1E0_nag_wp + 0.01E0_nag_wp*z
g1(2) = p(1)*0.05E0_nag_wp/sqrt(z) + 0.01E0_nag_wp
g2(1) = 1.0E0_nag_wp/6.0E0_nag_wp
g2(2) = p(2)
Return

End Subroutine bc1
Subroutine fcn2(x,y,f,p)

! .. Scalar Arguments ..
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Real (Kind=nag_wp), Intent (In) :: x
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: p(*), y(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..
f(1) = tan(y(3))
f(2) = -p(1)*tan(y(3))/y(2) - 0.00002E0_nag_wp*y(2)/cos(y(3))
f(3) = -p(1)/y(2)**2
Return

End Subroutine fcn2
Subroutine range2(a,b,p)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: a, b

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: p(*)

! .. Executable Statements ..
a = 0.0E0_nag_wp
b = p(2)
Return

End Subroutine range2
Subroutine bc2(g1,g2,p)

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g1(*), g2(*)
Real (Kind=nag_wp), Intent (In) :: p(*)

! .. Executable Statements ..
g1(1) = 0.0E0_nag_wp
g1(2) = 500.0E0_nag_wp
g1(3) = 0.5E0_nag_wp
g2(1) = 0.0E0_nag_wp
g2(2) = 450.0E0_nag_wp
g2(3) = p(3)
Return

End Subroutine bc2
End Module d02hbfe_mod
Program d02hbfe

! D02HBF Example Main Program

! .. Use Statements ..
Use d02hbfe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’D02HBF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: d02hbf, nag_wp, x04abf
Use d02hbfe_mod, Only: bc1, fcn1, iset, nin, range1

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, x, x1, xh
Integer :: i, ifail, m1, n, n1, outchn, sdw

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: e(:), p(:), pe(:), soln(:,:), &

w(:,:)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)
! m1: controls exit values, n: number of differential equations,
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! n1: number of parameters.
Read (nin,*) m1, n, n1
sdw = 3*n + 14 + 11
Allocate (e(n),p(n1),pe(n1),soln(n,m1),w(n,sdw))
Write (nout,*)
outchn = nout
Write (nout,*)
Call x04abf(iset,outchn)

! p: estimates for the parameters p, e: bound on the local error.
Read (nin,*) p(1:n1)
Read (nin,*) pe(1:n1)
Read (nin,*) e(1:n)

Write (nout,*) ’Case 1’
Write (nout,*)

! ifail: behaviour on error exit
! =1 for quiet-soft exit
! * Set ifail to 111 to obtain monitoring information *

ifail = 1
Call d02hbf(p,n1,pe,e,n,soln,m1,fcn1,bc1,range1,w,sdw,ifail)

If (ifail==0) Then
Write (nout,*) ’Final parameters’
Write (nout,99999)(p(i),i=1,n1)
Write (nout,*)
Write (nout,*) ’Final solution’
Write (nout,*) ’X-value Components of solution’
Call range1(x,x1,p)
h = (x1-x)/real(m1-1,kind=nag_wp)
xh = x
Do i = 1, m1

Write (nout,99998) xh, soln(1:n,i)
xh = xh + h

End Do
Else

Write (nout,99996) ifail
If (ifail>1 .And. ifail<=5) Then

Write (nout,99997) w(1,2), (w(i,1),i=1,n)
End If

End If

Return

99999 Format (1X,1P,3E15.3)
99998 Format (1X,F7.2,2F13.4)
99997 Format (/,1X,’W(1,2) = ’,F9.4,’ W(.,1) = ’,10E10.3)
99996 Format (1X,/,1X,’ ** D02HBF returned with IFAIL = ’,I5)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d02hbf, nag_wp, x04abf
Use d02hbfe_mod, Only: bc2, fcn2, iset, nin, range2

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, x, x1, xh
Integer :: i, ifail, m1, n, n1, outchn, sdw

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: e(:), p(:), pe(:), soln(:,:), &

w(:,:)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Read (nin,*)
! m1: controls exit values, n: number of differential equations,
! n1: number of parameters.

Read (nin,*) m1, n, n1
sdw = 3*n + 14 + 11
Allocate (e(n),p(n1),pe(n1),soln(n,m1),w(n,sdw))
outchn = nout
Call x04abf(iset,outchn)

! p: estimates for the parameters p, e: bound on the local error.
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Read (nin,*) p(1:n1)
Read (nin,*) pe(1:n1)
Read (nin,*) e(1:n)

Write (nout,*)
Write (nout,*)
Write (nout,*) ’Case 2’
Write (nout,*)

! ifail: behaviour on error exit
! =1 for quiet-soft exit
! * Set ifail to 111 to obtain monitoring information *

ifail = 1
Call d02hbf(p,n1,pe,e,n,soln,m1,fcn2,bc2,range2,w,sdw,ifail)

If (ifail==0) Then
Write (nout,*) ’Final parameters’
Write (nout,99999)(p(i),i=1,n1)
Write (nout,*)
Write (nout,*) ’Final solution’
Write (nout,*) ’X-value Components of solution’
Call range2(x,x1,p)
h = (x1-x)/real(m1-1,kind=nag_wp)
xh = x
Do i = 1, m1

Write (nout,99998) xh, soln(1:n,i)
xh = xh + h

End Do
Else

Write (nout,99996) ifail
If (ifail>1 .And. ifail<=5) Then

Write (nout,99997) w(1,2), (w(i,1),i=1,n)
End If

End If

Return

99999 Format (1X,1P,3E15.3)
99998 Format (1X,F7.0,2F13.1,F13.3)
99997 Format (/,1X,’W(1,2) = ’,F9.4,’ W(.,1) = ’,10E10.3)
99996 Format (1X,/,1X,’ ** D02HBF returned with IFAIL = ’,I5)

End Subroutine ex2
End Program d02hbfe

10.2 Program Data

D02HBF Example Program Data
6 2 2 : m1, n, n1
0.2 0.0 : p
1.0E-5 1.0E-3 : pe
1.0E-4 1.0E-4 : e

6 3 3 : m1, n, n1
32.0 6000.0 0.54 : p
1.0E-5 1.0E-4 1.0E-4 : pe
1.0E-2 1.0E-2 1.0E-2 : e

10.3 Program Results

D02HBF Example Program Results

Case 1

Final parameters
4.629E-02 3.494E-03

Final solution
X-value Components of solution

0.10 0.1025 0.0173
3.28 0.1217 0.0042
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6.46 0.1338 0.0036
9.64 0.1449 0.0034

12.82 0.1557 0.0034
16.00 0.1667 0.0035

Case 2

Final parameters
3.239E+01 5.962E+03 -5.353E-01

Final solution
X-value Components of solution

0. 0.0 500.0 0.500
1192. 529.6 451.6 0.328
2385. 807.2 420.3 0.123
3577. 820.4 409.4 -0.103
4769. 556.1 420.0 -0.330
5962. -0.0 450.0 -0.535
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NAG Library Routine Document

D02JAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02JAF solves a regular linear two-point boundary value problem for a single nth-order ordinary
differential equation by Chebyshev series using collocation and least squares.

2 Specification

SUBROUTINE D02JAF (N, CF, BC, X0, X1, K1, KP, C, W, LW, IW, IFAIL)

INTEGER N, K1, KP, LW, IW(K1), IFAIL
REAL (KIND=nag_wp) CF, X0, X1, C(K1), W(LW)
EXTERNAL CF, BC

3 Description

D02JAF calculates the solution of a regular two-point boundary value problem for a single nth-order
linear ordinary differential equation as a Chebyshev series in the interval x0; x1ð Þ. The differential
equation

fnþ1 xð Þy nð Þ xð Þ þ fn xð Þy n�1ð Þ xð Þ þ � � � þ f1 xð Þy xð Þ ¼ f0 xð Þ

is defined by CF, and the boundary conditions at the points x0 and x1 are defined by BC.

You specify the degree of Chebyshev series required, K1� 1, and the number of collocation points, KP.
The routine sets up a system of linear equations for the Chebyshev coefficients, one equation for each
collocation point and one for each boundary condition. The boundary conditions are solved exactly, and
the remaining equations are then solved by a least squares method. The result produced is a set of
coefficients for a Chebyshev series solution of the differential equation on an interval normalized to
�1; 1ð Þ.
E02AKF can be used to evaluate the solution at any point on the interval x0; x1ð Þ – see Section 10 for
an example. E02AHF followed by E02AKF can be used to evaluate its derivatives.

4 References

Picken S M (1970) Algorithms for the solution of differential equations in Chebyshev-series by the
selected points method Report Math. 94 National Physical Laboratory

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the differential equation.

Constraint: N � 1.

2: CF – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CF defines the differential equation (see Section 3). It must return the value of a function fj xð Þ at
a given point x, where, for 1 � j � nþ 1, fj xð Þ is the coefficient of y j�1ð Þ xð Þ in the equation, and
f0 xð Þ is the right-hand side.
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The specification of CF is:

FUNCTION CF (J, X)
REAL (KIND=nag_wp) CF

INTEGER J
REAL (KIND=nag_wp) X

1: J – INTEGER Input

On entry: the index of the function fj to be evaluated.

2: X – REAL (KIND=nag_wp) Input

On entry: the point at which fj is to be evaluated.

CF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02JAF is called. Arguments denoted as Input must not be changed by this
procedure.

3: BC – SUBROUTINE, supplied by the user. External Procedure

BC defines the boundary conditions, each of which has the form y k�1ð Þ x1ð Þ ¼ sk or
y k�1ð Þ x0ð Þ ¼ sk. The boundary conditions may be specified in any order.

The specification of BC is:

SUBROUTINE BC (I, J, RHS)

INTEGER I, J
REAL (KIND=nag_wp) RHS

1: I – INTEGER Input

On entry: the index of the boundary condition to be defined.

2: J – INTEGER Output

On exit: must be set to �k if the boundary condition is y k�1ð Þ x0ð Þ ¼ sk, and to þk if it
is y k�1ð Þ x1ð Þ ¼ sk.
J must not be set to the same value k for two different values of I.

3: RHS – REAL (KIND=nag_wp) Output

On exit: must be set to the value sk.

BC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02JAF is called. Arguments denoted as Input must not be changed by this
procedure.

4: X0 – REAL (KIND=nag_wp) Input
5: X1 – REAL (KIND=nag_wp) Input

On entry: the left- and right-hand boundaries, x0 and x1, respectively.

Constraint: X1 > X0.

6: K1 – INTEGER Input

On entry: the number of coefficients to be returned in the Chebyshev series representation of the
solution (hence the degree of the polynomial approximation is K1 � 1).

Constraint: K1 � Nþ 1.
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7: KP – INTEGER Input

On entry: the number of collocation points to be used.

Constraint: KP � K1� N.

8: CðK1Þ – REAL (KIND=nag_wp) array Output

On exit: the computed Chebyshev coefficients; that is, the computed solution is:XK1
i¼1

CðiÞTi�1 xð Þ

where Ti xð Þ is the ith Chebyshev polynomial of the first kind, and
P

denotes that the first
coefficient, Cð1Þ, is halved.

9: WðLWÞ – REAL (KIND=nag_wp) array Workspace
10: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D02JAF is
called.

Constraint: LW � 2� KPþ Nð Þ � K1þ 1ð Þ þ 7� K1.

11: IWðK1Þ – INTEGER array Workspace

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or X0 � X1,
or K1 < Nþ 1,
or KP < K1� N.

IFAIL ¼ 2

On entry, LW < 2� KPþ Nð Þ � K1þ 1ð Þ þ 7� K1 (insufficient workspace).

IFAIL ¼ 3

Either the boundary conditions are not linearly independent (that is, in BC the variable J is set to
the same value k for two different values of I), or the rank of the matrix of equations for the
coefficients is less than the number of unknowns. Increasing KP may overcome this latter
problem.
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IFAIL ¼ 4

The least squares routine F04AMF has failed to correct the first approximate solution (see
F04AMF).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The Chebyshev coefficients are determined by a stable numerical method. The accuracy of the
approximate solution may be checked by varying the degree of the polynomial and the number of
collocation points (see Section 9).

8 Parallelism and Performance

D02JAF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02JAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D02JAF depends on the complexity of the differential equation, the degree of the
polynomial solution, and the number of matching points.

The collocation points in the interval x0; x1ð Þ are chosen to be the extrema of the appropriate shifted
Chebyshev polynomial. If KP ¼ K1� N, then the least squares solution reduces to the solution of a
system of linear equations, and true collocation results.

The accuracy of the solution may be checked by repeating the calculation with different values of K1
and with KP fixed but KP� K1� N. If the Chebyshev coefficients decrease rapidly (and consistently
for various K1 and KP), the size of the last two or three gives an indication of the error. If the
Chebyshev coefficients do not decay rapidly, it is likely that the solution cannot be well-represented by
Chebyshev series. Note that the Chebyshev coefficients are calculated for the interval �1; 1ð Þ.
Systems of regular linear differential equations can be solved using D02JBF. It is necessary before
using D02JBF to write the differential equations as a first-order system. Linear systems of high-order
equations in their original form, singular problems, and, indirectly, nonlinear problems can be solved
using D02TGF.
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10 Example

This example solves the equation

y00 þ y ¼ 1

with boundary conditions

y �1ð Þ ¼ y 1ð Þ ¼ 0:

We use K1 ¼ 4, 6 and 8, and KP ¼ 10 and 15, so that the different Chebyshev series may be compared.
The solution for K1 ¼ 8 and KP ¼ 15 is evaluated by E02AKF at nine equally spaced points over the
interval �1; 1ð Þ.

10.1 Program Text

! D02JAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02jafe_mod

! D02JAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bc, cf

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function cf(j,x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: cf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: j

! .. Executable Statements ..
If (j==2) Then

cf = 0.0E0_nag_wp
Else

cf = 1.0E0_nag_wp
End If
Return

End Function cf

Subroutine bc(i,j,rhs)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: rhs
Integer, Intent (In) :: i
Integer, Intent (Out) :: j

! .. Executable Statements ..
rhs = 0.0E0_nag_wp
If (i==1) Then

j = 1
Else

j = -1
End If
Return

End Subroutine bc
End Module d02jafe_mod

Program d02jafe

! D02JAF Example Main Program
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! .. Use Statements ..
Use nag_library, Only: d02jaf, e02akf, nag_wp
Use d02jafe_mod, Only: bc, cf, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: dx, x, x0, x1, y
Integer :: i, ia1, ifail, k1, k1max, kp, kpmax, &

lw, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:), w(:)
Integer, Allocatable :: iw(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02JAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! n: order of the differential equation
! k1: number of coefficients to be returned
! kp: number of collocation points

Read (nin,*) n, k1max, kpmax
lw = 2*(kpmax+n)*(k1max+1) + 7*k1max
Allocate (iw(k1max),c(k1max),w(lw))

! x0: left-hand boundary, x1: right-hand boundary.
Read (nin,*) x0, x1
Write (nout,*)
Write (nout,*) ’ KP K1 Chebyshev coefficients’
Do kp = 10, kpmax, 5

Do k1 = 4, k1max, 2

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02jaf(n,cf,bc,x0,x1,k1,kp,c,w,lw,iw,ifail)

Write (nout,99999) kp, k1, c(1:k1)
End Do

End Do
k1 = 8
m = 9
ia1 = 1
Write (nout,*)
Write (nout,99998) ’Last computed solution evaluated at’, m, &

’ equally spaced points’
Write (nout,*)
Write (nout,*) ’ X Y’
dx = (x1-x0)/real(m-1,kind=nag_wp)
x = x0
Do i = 1, m

ifail = 0
Call e02akf(k1,x0,x1,c,ia1,k1max,x,y,ifail)

Write (nout,99997) x, y
x = x + dx

End Do

99999 Format (1X,2(I3,1X),8F8.4)
99998 Format (1X,A,I5,A)
99997 Format (1X,2F10.4)

End Program d02jafe

10.2 Program Data

D02JAF Example Program Data
2 8 15 : n, k1max, kpmax
-1.0 1.0 : x0, x1
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10.3 Program Results

D02JAF Example Program Results

KP K1 Chebyshev coefficients
10 4 -0.6108 -0.0000 0.3054 0.0000
10 6 -0.8316 -0.0000 0.4246 0.0000 -0.0088 -0.0000
10 8 -0.8325 -0.0000 0.4253 0.0000 -0.0092 0.0000 0.0001 -0.0000
15 4 -0.6174 -0.0000 0.3087 0.0000
15 6 -0.8316 -0.0000 0.4246 0.0000 -0.0088 -0.0000
15 8 -0.8325 -0.0000 0.4253 0.0000 -0.0092 -0.0000 0.0001 -0.0000

Last computed solution evaluated at 9 equally spaced points

X Y
-1.0000 0.0000
-0.7500 -0.3542
-0.5000 -0.6242
-0.2500 -0.7933
0.0000 -0.8508
0.2500 -0.7933
0.5000 -0.6242
0.7500 -0.3542
1.0000 0.0000
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NAG Library Routine Document

D02JBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02JBF solves a regular linear two-point boundary value problem for a system of ordinary differential
equations by Chebyshev series using collocation and least squares.

2 Specification

SUBROUTINE D02JBF (N, CF, BC, X0, X1, K1, KP, C, LDC, W, LW, IW, LIW,
IFAIL)

&

INTEGER N, K1, KP, LDC, LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) CF, X0, X1, C(LDC,N), W(LW)
EXTERNAL CF, BC

3 Description

D02JBF calculates the solution of a regular two-point boundary value problem for a regular linear nth-
order system of first-order ordinary differential equations as a Chebyshev series in the interval x0; x1ð Þ.
The differential equation

y0 ¼ A xð Þyþ r xð Þ

is defined by CF, and the boundary conditions at the points x0 and x1 are defined by BC.

You specify the degree of Chebyshev series required, K1� 1, and the number of collocation points, KP.
The routine sets up a system of linear equations for the Chebyshev coefficients, n equations for each
collocation point and one for each boundary condition. The boundary conditions are solved exactly, and
the remaining equations are then solved by a least squares method. The result produced is a set of
coefficients for a Chebyshev series solution for each component of the solution of the system of
differential equations on an interval normalized to �1; 1ð Þ.
E02AKF can be used to evaluate the components of the solution at any point on the interval x0; x1ð Þ –
see Section 10 for an example. E02AHF followed by E02AKF can be used to evaluate their derivatives.

4 References

Picken S M (1970) Algorithms for the solution of differential equations in Chebyshev-series by the
selected points method Report Math. 94 National Physical Laboratory

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the system of differential equations.

Constraint: N � 1.

2: CF – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CF defines the system of differential equations (see Section 3). It must return the value of a
coefficient function ai;j xð Þ, of A, at a given point x, or of a right-hand side function ri xð Þ if
J ¼ 0.
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The specification of CF is:

FUNCTION CF (I, J, X)
REAL (KIND=nag_wp) CF

INTEGER I, J
REAL (KIND=nag_wp) X

1: I – INTEGER Input
2: J – INTEGER Input

On entry: indicate the function to be evaluated, namely ai;j xð Þ if 1 � J � n, or ri xð Þ if
J ¼ 0.
1 � I � n, 0 � J � n.

3: X – REAL (KIND=nag_wp) Input

On entry: the point at which the function is to be evaluated.

CF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02JBF is called. Arguments denoted as Input must not be changed by this
procedure.

3: BC – SUBROUTINE, supplied by the user. External Procedure

BC defines the n boundary conditions, which have the form yk x0ð Þ ¼ s or yk x1ð Þ ¼ s. The
boundary conditions may be specified in any order.

The specification of BC is:

SUBROUTINE BC (I, J, RHS)

INTEGER I, J
REAL (KIND=nag_wp) RHS

1: I – INTEGER Input

On entry: the index of the boundary condition to be defined.

2: J – INTEGER Output

On exit: must be set to �k if the ith boundary condition is yk x0ð Þ ¼ s, or to þk if it is
yk x1ð Þ ¼ s.
J must not be set to the same value k for two different values of I.

3: RHS – REAL (KIND=nag_wp) Output

On exit: the value s.

BC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02JBF is called. Arguments denoted as Input must not be changed by this
procedure.

4: X0 – REAL (KIND=nag_wp) Input
5: X1 – REAL (KIND=nag_wp) Input

On entry: the left- and right-hand boundaries, x0 and x1, respectively.

Constraint: X1 > X0.
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6: K1 – INTEGER Input

On entry: the number of coefficients to be returned in the Chebyshev series representation of the
components of the solution (hence the degree of the polynomial approximation is K1� 1).

Constraint: K1 � 2.

7: KP – INTEGER Input

On entry: the number of collocation points to be used.

Constraint: KP � K1� 1.

8: CðLDC;NÞ – REAL (KIND=nag_wp) array Output

On exit: the computed Chebyshev coefficients of the kth component of the solution, yk; that is,
the computed solution is:

yk ¼
XK1
i¼1

Cði; kÞTi�1 xð Þ; 1 � k � n

where Ti xð Þ is the ith Chebyshev polynomial of the first kind, and
P

denotes that the first
coefficient, Cð1; kÞ, is halved.

9: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which D02JBF
is called.

Constraint: LDC � K1.

10: WðLWÞ – REAL (KIND=nag_wp) array Workspace
11: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D02JBF is
called.

Constraint: LW � 2� N� KPþ 1ð Þ � N� K1þ 1ð Þ þ 7� N� K1.

12: IWðLIWÞ – INTEGER array Workspace
13: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D02JBF is
called.

Constraint: LIW � N� K1þ 2ð Þ.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or X0 � X1,
or K1 < 2,
or KP < K1� 1,
or LDC < K1.

IFAIL ¼ 2

On entry, LW < 2� N� KPþ 1ð Þ � N� K1þ 1ð Þ þ 7� N� K1,
or LIW < N� K1þ 2ð Þ (i.e., insufficient workspace).

IFAIL ¼ 3

Either the boundary conditions are not linearly independent (that is, in BC the variable J is set to
the same value k for two different values of I), or the rank of the matrix of equations for the
coefficients is less than the number of unknowns. Increasing KP may overcome this latter
problem.

IFAIL ¼ 4

The least squares routine F04AMF has failed to correct the first approximate solution (see
F04AMF).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The Chebyshev coefficients are determined by a stable numerical method. The accuracy of the
approximate solution may be checked by varying the degree of the polynomials and the number of
collocation points (see Section 9).

8 Parallelism and Performance

D02JBF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.
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D02JBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D02JBF depends on the size and complexity of the differential system, the degree of
the polynomial solution, and the number of matching points.

The collocation points in the interval x0; x1ð Þ are chosen to be the extrema of the appropriate shifted
Chebyshev polynomial. If KP ¼ K1� 1, then the least squares solution reduces to the solution of a
system of linear equations, and true collocation results.

The accuracy of the solution may be checked by repeating the calculation with different values of K1
and with KP fixed but KP� K1� 1. If the Chebyshev coefficients decrease rapidly for each
component (and consistently for various K1 and KP), the size of the last two or three gives an
indication of the error. If the Chebyshev coefficients do not decay rapidly, it is likely that the solution
cannot be well-represented by Chebyshev series. Note that the Chebyshev coefficients are calculated for
the interval �1; 1ð Þ.
Linear systems of high-order equations in their original form, singular problems, and, indirectly,
nonlinear problems can be solved using D02TGF.

10 Example

This example solves the equation

y00 þ y ¼ 1

with boundary conditions

y �1ð Þ ¼ y 1ð Þ ¼ 0:

The equation is written as the first-order system

y01
y02

� �
¼ 0 1
�1 0

� �
y1
y2

� �
þ 0

1

� �
for solution by D02JBF and the boundary conditions are written

y1 �1ð Þ ¼ y1 1ð Þ ¼ 0:

We use K1 ¼ 4, 6 and 8, and KP ¼ 10 and 15, so that the different Chebyshev series may be compared.
The solution for K1 ¼ 8 and KP ¼ 15 is evaluated by E02AKF at nine equally spaced points over the
interval �1; 1ð Þ.

10.1 Program Text

! D02JBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02jbfe_mod

! D02JBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
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Public :: bc, cf
! .. Parameters ..

Integer, Parameter, Public :: nin = 5, nout = 6
Contains

Function cf(i,j,x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: cf

! .. Parameters ..
Integer, Parameter :: n = 2
Real (Kind=nag_wp), Parameter :: a(n,n) = reshape((/0.0E0_nag_wp, &

-1.0E0_nag_wp,1.0E0_nag_wp, &
0.0E0_nag_wp/),(/n,n/))

Real (Kind=nag_wp), Parameter :: r(n) = (/0.0E0_nag_wp,1.0E0_nag_wp/)
! .. Scalar Arguments ..

Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: reshape

! .. Executable Statements ..
If (j>0) Then

cf = a(i,j)
End If
If (j==0) Then

cf = r(i)
End If
Return

End Function cf

Subroutine bc(i,j,rhs)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: rhs
Integer, Intent (In) :: i
Integer, Intent (Out) :: j

! .. Executable Statements ..
rhs = 0.0E0_nag_wp
If (i>1) Then

j = -1
Else

j = 1
End If
Return

End Subroutine bc
End Module d02jbfe_mod

Program d02jbfe

! D02JBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02jbf, e02akf, nag_wp
Use d02jbfe_mod, Only: bc, cf, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: dx, x, x0, x1
Integer :: i, ia1, ifail, j, k1, k1max, kp, &

kpmax, ldc, liw, lw, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), w(:), y(:)
Integer, Allocatable :: iw(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02JBF Example Program Results’

! Skip heading in data file
Read (nin,*)

! n: order of the system of differential equations
! k1: number of coefficients to be returned
! kp: number of collocation points
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Read (nin,*) n, k1max, kpmax
ldc = k1max
liw = n*(k1max+2)
lw = 2*n*(kpmax+1)*(n*k1max+1) + 7*n*k1max
Allocate (iw(liw),c(ldc,n),w(lw),y(n))

! x0: left-hand boundary, x1: right-hand boundary.
Read (nin,*) x0, x1
Write (nout,*)
Write (nout,*) ’ KP K1 Chebyshev coefficients’
Do kp = 10, kpmax, 5

Do k1 = 4, k1max, 2

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02jbf(n,cf,bc,x0,x1,k1,kp,c,ldc,w,lw,iw,liw,ifail)

Write (nout,99999) kp, k1, c(1:k1,1)
Write (nout,99998)(c(1:k1,j),j=2,n)
Write (nout,*)

End Do
End Do
k1 = 8
m = 9
ia1 = 1
Write (nout,99997) ’Last computed solution evaluated at’, m, &

’ equally spaced points’
Write (nout,*)
Write (nout,99996) ’ X ’, (j,j=1,n)
dx = (x1-x0)/real(m-1,kind=nag_wp)
x = x0
Do i = 1, m

Do j = 1, n

ifail = 0
Call e02akf(k1,x0,x1,c(1,j),ia1,ldc,x,y(j),ifail)

End Do
Write (nout,99995) x, y(1:n)
x = x + dx

End Do

99999 Format (1X,2(I3,1X),8F8.4)
99998 Format (9X,8F8.4)
99997 Format (1X,A,I5,A)
99996 Format (1X,A,2(’ Y(’,I1,’)’))
99995 Format (1X,3F10.4)

End Program d02jbfe

10.2 Program Data

D02JBF Example Program Data
2 8 15 : n, k1max, kpmax
-1.0 1.0 : x0, x1

10.3 Program Results

D02JBF Example Program Results

KP K1 Chebyshev coefficients
10 4 -0.7798 0.0000 0.3899 -0.0000

0.0000 1.5751 0.0000 -0.0629

10 6 -0.8326 -0.0000 0.4253 0.0000 -0.0090 -0.0000
-0.0000 1.6290 0.0000 -0.0724 -0.0000 0.0009

10 8 -0.8325 -0.0000 0.4253 0.0000 -0.0092 -0.0000 0.0001 0.0000
-0.0000 1.6289 0.0000 -0.0724 -0.0000 0.0009 0.0000 -0.0000

15 4 -0.7829 0.0000 0.3914 -0.0000
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0.0000 1.5778 -0.0000 -0.0631

15 6 -0.8326 -0.0000 0.4253 0.0000 -0.0090 0.0000
0.0000 1.6290 0.0000 -0.0724 -0.0000 0.0009

15 8 -0.8325 -0.0000 0.4253 0.0000 -0.0092 0.0000 0.0001 -0.0000
0.0000 1.6289 0.0000 -0.0724 -0.0000 0.0009 0.0000 -0.0000

Last computed solution evaluated at 9 equally spaced points

X Y(1) Y(2)
-1.0000 0.0000 -1.5574
-0.7500 -0.3542 -1.2616
-0.5000 -0.6242 -0.8873
-0.2500 -0.7933 -0.4579
0.0000 -0.8508 0.0000
0.2500 -0.7933 0.4579
0.5000 -0.6242 0.8873
0.7500 -0.3542 1.2616
1.0000 0.0000 1.5574
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NAG Library Routine Document

D02KAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02KAF finds a specified eigenvalue of a regular second-order Sturm–Liouville system defined on a
finite range, using a Pruefer transformation and a shooting method.

2 Specification

SUBROUTINE D02KAF (XL, XR, COEFFN, BCOND, K, TOL, ELAM, DELAM, MONIT,
IFAIL)

&

INTEGER K, IFAIL
REAL (KIND=nag_wp) XL, XR, BCOND(3,2), TOL, ELAM, DELAM
EXTERNAL COEFFN, MONIT

3 Description

D02KAF finds a specified eigenvalue ~� of a Sturm–Liouville system defined by a self-adjoint
differential equation of the second-order

p xð Þy0ð Þ0 þ q x;�ð Þy ¼ 0; a < x < b;

together with boundary conditions of the form

a2y að Þ ¼ a1p að Þy0 að Þ

b2y bð Þ ¼ b1p bð Þy0 bð Þ

at the two, finite, end points a and b. The functions p and q, which are real-valued, are defined by
COEFFN.

For the theoretical basis of the numerical method to be valid, the following conditions should hold on
the coefficient functions:

(a) p xð Þ must be nonzero and must not change sign throughout the closed interval a; b½ �;

(b)
@q

@�
must not change sign and must be nonzero throughout the open interval a; bð Þ and for all

relevant values of �, and must not be identically zero as x varies, for any relevant value �; and,

(c) p and q should (as functions of x) have continuous derivatives, preferably up to the fourth-order, on
a; b½ �. The differential equation code used will integrate through mild discontinuities, but probably
with severely reduced efficiency. Therefore, if p and q violate this condition, D02KDF should be
used.

The eigenvalue ~� is determined by a shooting method based on a Pruefer transformation of the
differential equations. Providing certain assumptions are met, the computed value of ~� will be correct to
within a mixed absolute/relative error specified by TOL. D02KAF is a driver routine for the more
complicated routine D02KDF whose specification provides more details of the techniques used.

A good account of the theory of Sturm–Liouville systems, with some description of Pruefer
transformations, is given in Chapter X of Birkhoff and Rota (1962). An introduction to the use of
Pruefer transformations for the numerical solution of eigenvalue problems arising from physics and
chemistry is given in Bailey (1966).
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4 References

Bailey P B (1966) Sturm–Liouville eigenvalues via a phase function SIAM J. Appl. Math. 14 242–249

Birkhoff G and Rota G C (1962) Ordinary Differential Equations Ginn & Co., Boston and New York

5 Arguments

1: XL – REAL (KIND=nag_wp) Input
2: XR – REAL (KIND=nag_wp) Input

On entry: the left- and right-hand end points a and b respectively, of the interval of definition of
the problem.

Constraint: XL < XR.

3: COEFFN – SUBROUTINE, supplied by the user. External Procedure

COEFFN must compute the values of the coefficient functions p xð Þ and q x;�ð Þ for given values
of x and �. Section 3 states the conditions which p and q must satisfy.

The specification of COEFFN is:

SUBROUTINE COEFFN (P, Q, DQDL, X, ELAM, JINT)

INTEGER JINT
REAL (KIND=nag_wp) P, Q, DQDL, X, ELAM

1: P – REAL (KIND=nag_wp) Output

On exit: the value of p xð Þ for the current value of x.

2: Q – REAL (KIND=nag_wp) Output

On exit: the value of q x;�ð Þ for the current value of x and the current trial value of �.

3: DQDL – REAL (KIND=nag_wp) Output

On exit: the value of
@q

@�
x;�ð Þ for the current value of x and the current trial value of �.

However DQDL is only used in error estimation and, in the rare cases where it may be
difficult to evaluate, an approximation (say to within 20%) will suffice.

4: X – REAL (KIND=nag_wp) Input

On entry: the current value of x.

5: ELAM – REAL (KIND=nag_wp) Input

On entry: the current trial value of the eigenvalue argument �.

6: JINT – INTEGER Input

This argument is included for compatibility with the more complex routine D02KDF
(which is called by D02KAF).

On entry: need not be set.

COEFFN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02KAF is called. Arguments denoted as Input must not be changed
by this procedure.
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4: BCONDð3; 2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: BCONDð1; 1Þ and BCONDð2; 1Þ must contain the numbers a1, a2 specifying the left-
hand boundary condition in the form

a2y að Þ ¼ a1p að Þy0 að Þ

where a2j j þ a1p að Þj j 6¼ 0.

BCONDð1; 2Þ and BCONDð2; 2Þ must contain b1, b2 such that

b2y bð Þ ¼ b1p bð Þy0 bð Þ

where b2j j þ b1p bð Þj j 6¼ 0.

Note the occurrence of p að Þ, p bð Þ in these formulae.

On exit: BCONDð3; 1Þ and BCONDð3; 2Þ hold values �l; �r estimating the sensitivity of the
computed eigenvalue to changes in the boundary conditions. These values should only be of
interest if the boundary conditions are, in some sense, an approximation to some ‘true’ boundary
conditions. For example, if the range [XL, XR] should really be 0;1½ � but instead XR has been
given a large value and the boundary conditions at infinity applied at XR, then the sensitivity
argument �r may be of interest. Refer to Section 9.5 in D02KDF, for the actual meaning of �r
and �l.

5: K – INTEGER Input

On entry: k, the index of the required eigenvalue when the eigenvalues are ordered

�0 < �1 < �2 < � � � < �k < � � � :
Constraint: K � 0.

6: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance argument which determines the accuracy of the computed eigenvalue. The
error estimate held in DELAM on exit satisfies the mixed absolute/relative error test

DELAM � TOL�max 1:0; ELAMj jð Þ; ð1Þ

where ELAM is the final estimate of the eigenvalue. DELAM is usually somewhat smaller than
the right-hand side of (1) but not several orders of magnitude smaller.

Constraint: TOL > 0:0.

7: ELAM – REAL (KIND=nag_wp) Input/Output

On entry: an initial estimate of the eigenvalue ~�.

On exit: the final computed estimate, whether or not an error occurred.

8: DELAM – REAL (KIND=nag_wp) Input/Output

On entry: an indication of the scale of the problem in the �-direction. DELAM holds the initial
‘search step’ (positive or negative). Its value is not critical, but the first two trial evaluations are
made at ELAM and ELAMþ DELAM, so the routine will work most efficiently if the eigenvalue
lies between these values. A reasonable choice (if a closer bound is not known) is about half the
distance between adjacent eigenvalues in the neighbourhood of the one sought. In practice, there
will often be a problem, similar to the one in hand but with known eigenvalues, which will help
one to choose initial values for ELAM and DELAM.

If DELAM ¼ 0:0 on entry, it is given the default value of 0:25�max 1:0; ELAMj jð Þ.
On exit: if IFAIL ¼ 0, DELAM holds an estimate of the absolute error in the computed
eigenvalue, that is ~�� ELAM

		 		 ’ DELAM, where ~� is the true eigenvalue.

If IFAIL 6¼ 0, DELAM may hold an estimate of the error, or its initial value, depending on the
value of IFAIL. See Section 6 for further details.
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9: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT is called by D02KAF at the end of each iteration for � and allows you to monitor the
course of the computation by printing out the arguments (see Section 10 for an example).

If no monitoring is required, the dummy (sub)program D02KAY may be used. (D02KAY is
included in the NAG Library.)

The specification of MONIT is:

SUBROUTINE MONIT (NIT, IFLAG, ELAM, FINFO)

INTEGER NIT, IFLAG
REAL (KIND=nag_wp) ELAM, FINFO(15)

1: NIT – INTEGER Input

On entry: 15 minus the number of iterations used so far in the search for ~�. (Up to 15
iterations are permitted.)

2: IFLAG – INTEGER Input

On entry: describes what phase the computation is in.

IFLAG < 0
An error occurred in the computation at this iteration; an error exit from
D02KAF will follow.

IFLAG ¼ 1
The routine is trying to bracket the eigenvalue ~�.

IFLAG ¼ 2
The routine is converging to the eigenvalue ~� (having already bracketed it).

Normally, the iteration will terminate after a sequence of iterates with IFLAG ¼ 2, but
occasionally the bracket on ~� thus determined will not be sufficiently small and the
iteration will be repeated with tighter accuracy control.

3: ELAM – REAL (KIND=nag_wp) Input

On entry: the current trial value of ~�.

4: FINFOð15Þ – REAL (KIND=nag_wp) array Input

On entry: information about the behaviour of the shooting method, and diagnostic
information in the case of errors. It should not normally be printed in full if no error has
occurred (that is, if IFLAG � 0), though the first few components may be of interest to
you. In case of an error (IFLAG < 0) all the components of FINFO should be printed.

The contents of FINFO are as follows:

FINFOð1Þ
The current value of the ‘miss-distance’ or ‘residual’ function f �ð Þ on which the
shooting method is based. f ~�

� �
¼ 0 in theory. This is set to zero if IFLAG < 0.

FINFOð2Þ
An estimate of the quantity @� defined as follows. Consider the perturbation in
the miss-distance f �ð Þ that would result if the local error in the solution of the
differential equation were always positive and equal to its maximum permitted
value. Then @� is the perturbation in � that would have the same effect on f �ð Þ.
Thus, at the zero of f �ð Þ; @�j j is an approximate bound on the perturbation of the
zero (that is the eigenvalue) caused by errors in numerical solution. If @� is very
large then it is possible that there has been a programming error in COEFFN
such that q is independent of �. If this is the case, an error exit with IFAIL ¼ 5
should follow. FINFOð2Þ is set to zero if IFLAG < 0.
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FINFOð3Þ
The number of internal iterations, using the same value of � and tighter accuracy
tolerances, needed to bring the accuracy (that is, the value of @�) to an
acceptable value. Its value should normally be 1:0, and should almost never
exceed 2:0.

FINFOð4Þ
The number of calls to COEFFN at this iteration.

FINFOð5Þ
The number of successful steps taken by the internal differential equation solver
at this iteration. A step is successful if it is used to advance the integration.

FINFOð6Þ
The number of unsuccessful steps used by the internal integrator at this iteration.

FINFOð7Þ
The number of successful steps at the maximum step size taken by the internal
integrator at this iteration.

FINFOð8Þ
Not used.

FINFOð9Þ to FINFOð15Þ
Set to zero, unless IFLAG < 0 in which case they hold the following values
describing the point of failure:

FINFOð9Þ
1 or 2 depending on whether integration was in a forward or backward
direction at the time of failure.

FINFOð10Þ
The value of the independent variable, x, the point at which the error
occurred.

FINFOð11Þ, FINFOð12Þ, FINFOð13Þ
The current values of the Pruefer dependent variables �, 
 and �
respectively. See Section 3 in D02KEF for a description of these variables.

FINFOð14Þ
The local-error tolerance being used by the internal integrator at the point
of failure.

FINFOð15Þ
The last integration mesh point.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02KAF is called. Arguments denoted as Input must not be changed by
this procedure.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 0,
or TOL � 0:0.

IFAIL ¼ 2

On entry, a1 ¼ p að Þa2 ¼ 0,
or b1 ¼ p bð Þb2 ¼ 0,

(the array BCOND has been set up incorrectly).

IFAIL ¼ 3

At some point between XL and XR the value of p xð Þ computed by COEFFN became zero or
changed sign. See the last call of MONIT for details.

IFAIL ¼ 4

After 15 iterations the eigenvalue had not been found to the required accuracy.

IFAIL ¼ 5

The ‘bracketing’ phase (with IFLAG of the MONIT equal to 1) failed to bracket the eigenvalue
within ten iterations. This is caused by an error in formulating the problem (for example, q is
independent of �), or by very poor initial estimates of ELAM and DELAM.

On exit, ELAM and ELAMþ DELAM give the end points of the interval within which no
eigenvalue was located by the routine.

IFAIL ¼ 6

To obtain the desired accuracy the local error tolerance was set so small at the start of some sub-
interval that the differential equation solver could not choose an initial step size large enough to
make significant progress. See the last call of MONIT for diagnostics.

IFAIL ¼ 7

At some point the step size in the differential equation solver was reduced to a value too small to
make significant progress (for the same reasons as with IFAIL ¼ 6). This could be due to
pathological behaviour of p xð Þ and q x;�ð Þ or to an unreasonable accuracy requirement or to the
current value of � making the equations ‘stiff’. See the last call of MONIT for details.

IFAIL ¼ 8

TOL is too small for the problem being solved and the machine precision being used. The local
value of ELAM should be a very good approximation to the eigenvalue ~�.

IFAIL ¼ 9

C05AZF, called by D02KAF, has terminated with the error exit corresponding to a pole of the
matching function. This error exit should not occur, but if it does, try solving the problem again
with a smaller value for TOL.

Note: error exits with IFAIL ¼ 2, 3, 6, 7 or 9 are caused by the inability to set up or solve the
differential equation at some iteration and will be immediately preceded by a call of MONIT giving
diagnostic information.
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IFAIL ¼ 10
IFAIL ¼ 11
IFAIL ¼ 12

A serious error has occurred in an internal call to an interpolation routine. Check all (sub)
program calls and array dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The absolute accuracy of the computed eigenvalue is usually within a mixed absolute/relative bound
defined by TOL (as defined above).

8 Parallelism and Performance

D02KAF is not threaded in any implementation.

9 Further Comments

The time taken by D02KAF depends on the complexity of the coefficient functions, whether they or
their derivatives are rapidly changing, the tolerance demanded, and how many iterations are needed to
obtain convergence. The amount of work per iteration is roughly doubled when TOL is divided by 16.
To make the most economical use of the routine, one should try to obtain good initial values for ELAM
and DELAM.

See Section 9 in D02KDF for a discussion of the technique used.

10 Example

This example finds the fourth eigenvalue of Mathieu's equations

y00 þ �� 2q cos 2xð Þy ¼ 0

with boundary conditions

y0 0ð Þ ¼ y0 	ð Þ ¼ 0

and q ¼ 5. We use a starting value ELAM ¼ 15:0 and a step DELAM ¼ 4:0. We illustrate the effect of
varying TOL by choosing TOL ¼ 1:0E�5 and 1:0E�6 (note the change in the output value of the error
estimate DELAM). The range of integration and initial estimates are read from a data file.
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10.1 Program Text

! D02KAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02kafe_mod

! Data for D02KAF example program

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: coeffn, monit

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6, qq = 5

Contains
Subroutine coeffn(p,q,dqdl,x,elam,jint)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: dqdl, p, q
Real (Kind=nag_wp), Intent (In) :: elam, x
Integer, Intent (In) :: jint

! .. Intrinsic Procedures ..
Intrinsic :: cos, real

! .. Executable Statements ..
p = one
dqdl = one
q = elam - two*real(qq,kind=nag_wp)*cos(two*x)
Return

End Subroutine coeffn
Subroutine monit(nit,iflag,elam,finfo)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: elam
Integer, Intent (In) :: iflag, nit

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: finfo(15)

! .. Executable Statements ..
If (nit==14) Then

Write (nout,*)
Write (nout,*) ’Output from MONIT’

End If
Write (nout,99999) nit, iflag, elam, finfo(1:4)
Return

99999 Format (1X,2I4,F10.3,2E12.2,2F8.1)
End Subroutine monit

End Module d02kafe_mod
Program d02kafe

! D02KAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02kaf, nag_wp
Use d02kafe_mod, Only: coeffn, monit, nin, nout, one, qq, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: delam, delam1, elam, elam1, tol, xl, &

xr
Integer :: i, ifail, k

! .. Local Arrays ..
Real (Kind=nag_wp) :: bcond(3,2)

! .. Executable Statements ..
Write (nout,*) ’D02KAF Example Program Results’
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! Skip heading in data file
Read (nin,*)

! xl: left-hand end point, xr: right-hand end point,
! k: index of the required eigenvalue
! elam1: initial estimate of the eigenvalue
! delam1: initial search step

Read (nin,*) xl, xr
Read (nin,*) k
Read (nin,*) elam1, delam1
bcond(1,1:2) = one
bcond(2,1:2) = zero
Do i = 5, 6

tol = 10.0_nag_wp**(-i)
elam = elam1
delam = delam1

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02kaf(xl,xr,coeffn,bcond,k,tol,elam,delam,monit,ifail)

Write (nout,*)
Write (nout,99999) ’Calculation with TOL =’, tol
Write (nout,*)
Write (nout,*) ’ Final results’
Write (nout,*)
Write (nout,99998) k, qq, elam, delam
Write (nout,99997) bcond(3,1), bcond(3,2)
Write (nout,*)

End Do

99999 Format (1X,A,E16.4)
99998 Format (1X,’ K =’,I3,’ QQ =’,I3,’ ELAM =’,F12.3,’ DELAM =’,E12.2)
99997 Format (1X,’ BCOND(3,1) =’,E12.4,’ BCOND(3,2) =’,E12.4)

End Program d02kafe

10.2 Program Data

D02KAF Example Program Data
0.0 3.14159265358979323846 : xl, xr
4 : k
15.0 4.0 : elam1, delam1

10.3 Program Results

D02KAF Example Program Results

Output from MONIT
14 1 15.000 -0.32E+00 -0.11E-03 1.0 206.0
13 1 15.000 -0.32E+00 -0.57E-04 2.0 234.0
12 1 19.000 0.26E+00 -0.67E-04 1.0 226.0
11 2 17.225 0.18E-01 -0.68E-04 1.0 226.0
10 2 17.097 0.67E-05 -0.64E-04 1.0 226.0
9 2 17.097 -0.55E-05 -0.64E-04 1.0 226.0
8 2 17.097 -0.55E-05 -0.64E-04 1.0 226.0

Calculation with TOL = 0.1000E-04

Final results

K = 4 QQ = 5 ELAM = 17.097 DELAM = 0.15E-03
BCOND(3,1) = -0.9064E+00 BCOND(3,2) = 0.9064E+00

Output from MONIT
14 1 15.000 -0.32E+00 -0.11E-03 1.0 206.0
13 1 15.000 -0.32E+00 -0.56E-05 2.0 410.0
12 1 19.000 0.26E+00 -0.68E-05 1.0 406.0
11 2 17.225 0.18E-01 -0.67E-05 1.0 394.0
10 2 17.097 0.69E-05 -0.64E-05 1.0 394.0
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9 2 17.097 0.89E-08 -0.64E-05 1.0 394.0
8 2 17.097 -0.12E-05 -0.64E-05 1.0 394.0
7 2 17.097 0.90E-08 -0.64E-05 1.0 394.0

Calculation with TOL = 0.1000E-05

Final results

K = 4 QQ = 5 ELAM = 17.097 DELAM = 0.15E-04
BCOND(3,1) = -0.9075E+00 BCOND(3,2) = 0.9075E+00
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NAG Library Routine Document

D02KDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02KDF finds a specified eigenvalue of a regular or singular second-order Sturm–Liouville system on
a finite or infinite interval, using a Pruefer transformation and a shooting method. Provision is made for
discontinuities in the coefficient functions or their derivatives.

2 Specification

SUBROUTINE D02KDF (XPOINT, M, COEFFN, BDYVAL, K, TOL, ELAM, DELAM, HMAX,
MAXIT, MAXFUN, MONIT, IFAIL)

&

INTEGER M, K, MAXIT, MAXFUN, IFAIL
REAL (KIND=nag_wp) XPOINT(M), TOL, ELAM, DELAM, HMAX(2,M)
EXTERNAL COEFFN, BDYVAL, MONIT

3 Description

D02KDF finds a specified eigenvalue ~� of a Sturm–Liouville system defined by a self-adjoint
differential equation of the second-order

p xð Þy0ð Þ0 þ q x;�ð Þy ¼ 0; a < x < b;

together with appropriate boundary conditions at the two, finite or infinite, end points a and b. The
functions p and q, which are real-valued, are defined by COEFFN. The boundary conditions must be
defined by BDYVAL, and, in the case of a singularity at a or b, take the form of an asymptotic formula
for the solution near the relevant end point.

For the theoretical basis of the numerical method to be valid, the following conditions should hold on
the coefficient functions:

(a) p xð Þ must be nonzero and must not change sign throughout the interval a; bð Þ; and,

(b)
@q

@�
must not change sign throughout the interval a; bð Þ for all relevant values of �, and must not be

identically zero as x varies, for any �.

Points of discontinuity in the functions p and q or their derivatives are allowed, and should be included
as ‘break-points’ in the array XPOINT.

The eigenvalue ~� is determined by a shooting method based on the Scaled Pruefer form of the
differential equation as described in Pryce (1981), with certain modifications. The Pruefer equations are
integrated by a special internal routine using Merson's Runge–Kutta formula with automatic control of
local error. Providing certain assumptions (see Section 9.1) are met, the computed value of ~� will be
correct to within a mixed absolute/relative error specified by TOL.

A good account of the theory of Sturm–Liouville systems, with some description of Pruefer
transformations, is given in Chapter X of Birkhoff and Rota (1962). An introduction to the use of
Pruefer transformations for the numerical solution of eigenvalue problems arising from physics and
chemistry is given in Bailey (1966).

The scaled Pruefer method is described in a short note by Pryce and Hargrave (1977) and in some detail
in the technical report by Pryce (1981).
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5 Arguments

1: XPOINTðMÞ – REAL (KIND=nag_wp) array Input

On entry: the points where the boundary conditions computed by BDYVAL are to be imposed,
and also any break-points, i.e., XPOINTð1Þ to XPOINTðmÞ must contain values x1; . . . ; xm such
that

x1 � x2 < x3 < � � � < xm�1 � xm
with the following meanings:

(a) x1 and xm are the left- and right-hand end points, a and b, of the domain of definition of the
Sturm–Liouville system if these are finite. If either a or b is infinite, the corresponding value
x1 or xm may be a more-or-less arbitrarily ‘large’ number of appropriate sign.

(b) x2 and xm�1 are the Boundary Matching Points (BMPs), that is the points at which the left
and right boundary conditions computed in BDYVAL are imposed.

If the left-hand end point is a regular point then you should set x2 ¼ x1 ¼ að Þ, while if it is a
singular point you must set x2 > x1. Similarly xm�1 ¼ xm ( ¼ b) if the right-hand end point
is regular, and xm�1 < xm if it is singular.

(c) The remaining m� 4 points x3; . . . ; xm�2, if any, define ‘break-points’ which divide the
interval x2; xm�1½ � into m� 3 sub-intervals

i1 ¼ x2; x3½ �; . . . ; im�3 ¼ xm�2; xm�1½ �:

Numerical integration of the differential equation is stopped and restarted at each break-
point. In simple cases no break-points are needed. However, if p xð Þ or q x;�ð Þ are given by
different formulae in different parts of the interval, then integration is more efficient if the
range is broken up by break-points in the appropriate way. Similarly points where any jumps
occur in p xð Þ or q x;�ð Þ, or in their derivatives up to the fifth-order, should appear as break-
points.

Examples are given in Sections 9 and 10. XPOINT determines the position of the Shooting
Matching Point (SMP), as explained in Section 9.3.

Constraint: XPOINTð1Þ � XPOINTð2Þ < � � � < XPOINTðM� 1Þ � XPOINTðMÞ.

2: M – INTEGER Input

On entry: the number of points in the array XPOINT.

Constraint: M � 4.
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3: COEFFN – SUBROUTINE, supplied by the user. External Procedure

COEFFN must compute the values of the coefficient functions p xð Þ and q x;�ð Þ for given values
of x and �. Section 3 states the conditions which p and q must satisfy. See Sections 9.4 and 10
for examples.

The specification of COEFFN is:

SUBROUTINE COEFFN (P, Q, DQDL, X, ELAM, JINT)

INTEGER JINT
REAL (KIND=nag_wp) P, Q, DQDL, X, ELAM

1: P – REAL (KIND=nag_wp) Output

On exit: the value of p xð Þ for the current value of x.

2: Q – REAL (KIND=nag_wp) Output

On exit: the value of q x;�ð Þ for the current value of x and the current trial value of �.

3: DQDL – REAL (KIND=nag_wp) Output

On exit: the value of
@q

@�
x;�ð Þ for the current value of x and the current trial value of �.

However DQDL is only used in error estimation and, in the rare cases where it may be
difficult to evaluate, an approximation (say to within 20%) will suffice.

4: X – REAL (KIND=nag_wp) Input

On entry: the current value of x.

5: ELAM – REAL (KIND=nag_wp) Input

On entry: the current trial value of the eigenvalue argument �.

6: JINT – INTEGER Input

On entry: the index j of the sub-interval ij (see specification of XPOINT) in which x
lies.

COEFFN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02KDF is called. Arguments denoted as Input must not be changed
by this procedure.

4: BDYVAL – SUBROUTINE, supplied by the user. External Procedure

BDYVAL must define the boundary conditions. For each end point, BDYVAL must return (in YL
or YR) values of y xð Þ and p xð Þy0 xð Þ which are consistent with the boundary conditions at the end
points; only the ratio of the values matters. Here x is a given point (XL or XR) equal to, or close
to, the end point.

For a regular end point (a, say), x ¼ a, a boundary condition of the form

c1y að Þ þ c2y0 að Þ ¼ 0

can be handled by returning constant values in YL, e.g., YLð1Þ ¼ c2 and YLð2Þ ¼ �c1p að Þ.
For a singular end point however, YLð1Þ and YLð2Þ will in general be functions of XL and
ELAM, and YRð1Þ and YRð2Þ functions of XR and ELAM, usually derived analytically from a
power-series or asymptotic expansion. Examples are given in Sections 9.5 and 10.

The specification of BDYVAL is:

SUBROUTINE BDYVAL (XL, XR, ELAM, YL, YR)
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REAL (KIND=nag_wp) XL, XR, ELAM, YL(3), YR(3)

1: XL – REAL (KIND=nag_wp) Input

On entry: if a is a regular end point of the system (so that a ¼ x1 ¼ x2), then XL
contains a. If a is a singular point (so that a � x1 < x2), then XL contains a point x
such that x1 < x � x2.

2: XR – REAL (KIND=nag_wp) Input

On entry: if b is a regular end point of the system (so that xm�1 ¼ xm ¼ b), then XR
contains b. If b is a singular point (so that xm�1 < xm � b), then XR contains a point x
such that xm�1 � x < xm.

3: ELAM – REAL (KIND=nag_wp) Input

On entry: the current trial value of �.

4: YLð3Þ – REAL (KIND=nag_wp) array Output

On exit: YLð1Þ and YLð2Þ should contain values of y xð Þ and p xð Þy0 xð Þ respectively (not
both zero) which are consistent with the boundary condition at the left-hand end point,
given by x ¼ XL. YLð3Þ should not be set.

5: YRð3Þ – REAL (KIND=nag_wp) array Output

On exit: YRð1Þ and YRð2Þ should contain values of y xð Þ and p xð Þy0 xð Þ respectively
(not both zero) which are consistent with the boundary condition at the right-hand end
point, given by x ¼ XR. YRð3Þ should not be set.

BDYVAL must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02KDF is called. Arguments denoted as Input must not be changed
by this procedure.

5: K – INTEGER Input

On entry: k, the index of the required eigenvalue when the eigenvalues are ordered

�0 < �1 < �2 < � � � < �k < � � � :
Constraint: K � 0.

6: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance argument which determines the accuracy of the computed eigenvalue. The
error estimate held in DELAM on exit satisfies the mixed absolute/relative error test

DELAM � TOL�max 1:0; ELAMj jð Þ; ð1Þ

where ELAM is the final estimate of the eigenvalue. DELAM is usually somewhat smaller than
the right-hand side of (1) but not several orders of magnitude smaller.

Constraint: TOL > 0:0.

7: ELAM – REAL (KIND=nag_wp) Input/Output

On entry: an initial estimate of the eigenvalue ~�.

On exit: the final computed estimate, whether or not an error occurred.

8: DELAM – REAL (KIND=nag_wp) Input/Output

On entry: an indication of the scale of the problem in the �-direction. DELAM holds the initial
‘search step’ (positive or negative). Its value is not critical, but the first two trial evaluations are
made at ELAM and ELAMþ DELAM, so the routine will work most efficiently if the eigenvalue
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lies between these values. A reasonable choice (if a closer bound is not known) is half the
distance between adjacent eigenvalues in the neighbourhood of the one sought. In practice, there
will often be a problem, similar to the one in hand but with known eigenvalues, which will help
one to choose initial values for ELAM and DELAM.

If DELAM ¼ 0:0 on entry, it is given the default value of 0:25�max 1:0; ELAMj jð Þ.
On exit: if IFAIL ¼ 0, DELAM holds an estimate of the absolute error in the computed
eigenvalue, that is ~�� ELAM

		 		 ’ DELAM. (In Section 9.2 we discuss the assumptions under
which this is true.) The true error is rarely more than twice, or less than a tenth, of the estimated
error.

If IFAIL 6¼ 0, DELAM may hold an estimate of the error, or its initial value, depending on the
value of IFAIL. See Section 6 for further details.

9: HMAXð2;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: HMAXð1; jÞ should contain a maximum step size to be used by the differential
equation code in the jth sub-interval ij (as described in the specification of argument XPOINT),
for j ¼ 1; 2; . . . ;m� 3. If it is zero the routine generates a maximum step size internally.

It is recommended that HMAXð1; jÞ be set to zero unless the coefficient functions p and q have
features (such as a narrow peak) within the jth sub-interval that could be ‘missed’ if a long step
were taken. In such a case HMAXð1; jÞ should be set to about half the distance over which the
feature should be observed. Too small a value will increase the computing time for the routine.
See Section 9 for further suggestions.

The rest of the array is used as workspace.

On exit: HMAXð1;m� 1Þ and HMAXð1;mÞ contain the sensitivity coefficients �l; �r, described
in Section 9.6. Other entries contain diagnostic output in the case of an error exit (see Section 6).

10: MAXIT – INTEGER Input/Output

On entry: a bound on nr, the number of root-finding iterations allowed, that is the number of trial
values of � that are used. If MAXIT � 0, no such bound is assumed. (See also MAXFUN.)

Suggested value: MAXIT ¼ 0.

On exit: will have been decreased by the number of iterations actually performed, whether or not
it was positive on entry.

11: MAXFUN – INTEGER Input

On entry: a bound on nf , the number of calls to COEFFN made in any one root-finding iteration.
If MAXFUN � 0, no such bound is assumed.

Suggested value: MAXFUN ¼ 0.

MAXFUN and MAXIT may be used to limit the computational cost of a call to D02KDF, which
is roughly proportional to nr � nf .

12: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT is called by D02KDF at the end of each root-finding iteration and allows you to monitor
the course of the computation by printing out the arguments (see Section 10 for an example).

If no monitoring is required, the dummy (sub)program D02KAY may be used. (D02KAY is
included in the NAG Library.)

The specification of MONIT is:

SUBROUTINE MONIT (NIT, IFLAG, ELAM, FINFO)

INTEGER NIT, IFLAG
REAL (KIND=nag_wp) ELAM, FINFO(15)
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1: NIT – INTEGER Input

On entry: the current value of the argument MAXIT of D02KDF, this is decreased by
one at each iteration.

2: IFLAG – INTEGER Input

On entry: describes what phase the computation is in.

IFLAG < 0
An error occurred in the computation at this iteration; an error exit from
D02KDF with IFAIL ¼ �IFLAG will follow.

IFLAG ¼ 1
The routine is trying to bracket the eigenvalue ~�.

IFLAG ¼ 2
The routine is converging to the eigenvalue ~� (having already bracketed it).

3: ELAM – REAL (KIND=nag_wp) Input

On entry: the current trial value of �.

4: FINFOð15Þ – REAL (KIND=nag_wp) array Input

On entry: information about the behaviour of the shooting method, and diagnostic
information in the case of errors. It should not normally be printed in full if no error has
occurred (that is, if IFLAG > 0), though the first few components may be of interest to
you. In case of an error (IFLAG < 0) all the components of FINFO should be printed.

The contents of FINFO are as follows:

FINFOð1Þ
The current value of the ‘miss-distance’ or ‘residual’ function f �ð Þ on which the
shooting method is based. (See Section 9.2 for further information.) FINFOð1Þ is
set to zero if IFLAG < 0.

FINFOð2Þ
An estimate of the quantity @� defined as follows. Consider the perturbation in
the miss-distance f �ð Þ that would result if the local error in the solution of the
differential equation were always positive and equal to its maximum permitted
value. Then @� is the perturbation in � that would have the same effect on f �ð Þ.
Thus, at the zero of f �ð Þ; @�j j is an approximate bound on the perturbation of the
zero (that is the eigenvalue) caused by errors in numerical solution. If @� is very
large then it is possible that there has been a programming error in COEFFN
such that q is independent of �. If this is the case, an error exit with IFAIL ¼ 5
should follow. FINFOð2Þ is set to zero if IFLAG < 0.

FINFOð3Þ
The number of internal iterations, using the same value of � and tighter accuracy
tolerances, needed to bring the accuracy (that is, the value of @�) to an
acceptable value. Its value should normally be 1:0, and should almost never
exceed 2:0.

FINFOð4Þ
The number of calls to COEFFN at this iteration.

FINFOð5Þ
The number of successful steps taken by the internal differential equation solver
at this iteration. A step is successful if it is used to advance the integration.

FINFOð6Þ
The number of unsuccessful steps used by the internal integrator at this iteration.
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FINFOð7Þ
The number of successful steps at the maximum step size taken by the internal
integrator at this iteration.

FINFOð8Þ
Not used.

FINFOð9Þ to FINFOð15Þ
Set to zero, unless IFLAG < 0 in which case they hold the following values
describing the point of failure:

FINFOð9Þ
The index of the sub-interval where failure occurred, in the range 1 to
m� 3. In case of an error in BDYVAL, it is set to 0 or m� 2 depending
on whether the left or right boundary condition caused the error.

FINFOð10Þ
The value of the independent variable, x, the point at which the error
occurred. In case of an error in BDYVAL, it is set to the value of XL or
XR as appropriate (see the specification of BDYVAL).

FINFOð11Þ, FINFOð12Þ, FINFOð13Þ
The current values of the Pruefer dependent variables �, 
 and �
respectively. These are set to zero in case of an error in BDYVAL. (See
D02KEF for a description of these variables.)

FINFOð14Þ
The local-error tolerance being used by the internal integrator at the point
of failure. This is set to zero in the case of an error in BDYVAL.

FINFOð15Þ
The last integration mesh point. This is set to zero in the case of an error
in BDYVAL.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02KDF is called. Arguments denoted as Input must not be changed by
this procedure.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A argument error. All arguments (except IFAIL) are left unchanged. The reason for the error is
shown by the value of HMAXð2; 1Þ as follows:
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HMAXð2; 1Þ ¼ 1: M < 4;

HMAXð2; 1Þ ¼ 2: K < 0;

HMAXð2; 1Þ ¼ 3: TOL � 0:0;

HMAXð2; 1Þ ¼ 4: XPOINTð1Þ to XPOINTðmÞ are not in ascending order. HMAXð2; 2Þ gives
the position i in XPOINT where this was detected.

IFAIL ¼ 2

At some call to BDYVAL, invalid values were returned, that is, either YLð1Þ ¼ YLð2Þ ¼ 0:0, or
YRð1Þ ¼ YRð2Þ ¼ 0:0 (a programming error in BDYVAL). See the last call of MONIT for
details.

This error exit will also occur if p xð Þ is zero at the point where the boundary condition is
imposed. Probably BDYVAL was called with XL equal to a singular end point a or with XR
equal to a singular end point b.

IFAIL ¼ 3

At some point between XL and XR the value of p xð Þ computed by COEFFN became zero or
changed sign. See the last call of MONIT for details.

IFAIL ¼ 4

MAXIT > 0 on entry, and after MAXIT iterations the eigenvalue had not been found to the
required accuracy.

IFAIL ¼ 5

The ‘bracketing’ phase (with argument IFLAG of the MONIT equal to 1) failed to bracket the
eigenvalue within ten iterations. This is caused by an error in formulating the problem (for
example, q is independent of �), or by very poor initial estimates of ELAM and DELAM.

On exit, ELAM and ELAMþ DELAM give the end points of the interval within which no
eigenvalue was located by the routine.

IFAIL ¼ 6

MAXFUN > 0 on entry, and the last iteration was terminated because more than MAXFUN calls
to COEFFN were used. See the last call of MONIT for details.

IFAIL ¼ 7

To obtain the desired accuracy the local error tolerance was set so small at the start of some sub-
interval that the differential equation solver could not choose an initial step size large enough to
make significant progress. See the last call of MONIT for diagnostics.

IFAIL ¼ 8

At some point inside a sub-interval the step size in the differential equation solver was reduced to
a value too small to make significant progress (for the same reasons as with IFAIL ¼ 7). This
could be due to pathological behaviour of p xð Þ and q x;�ð Þ or to an unreasonable accuracy
requirement or to the current value of � making the equations ‘stiff’. See the last call of MONIT
for details.

IFAIL ¼ 9

TOL is too small for the problem being solved and the machine precision is being used. The
final value of ELAM should be a very good approximation to the eigenvalue.
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IFAIL ¼ 10

C05AZF, called by D02KDF, has terminated with the error exit corresponding to a pole of the
residual function f �ð Þ. This error exit should not occur, but if it does, try solving the problem
again with a smaller value for TOL.

IFAIL ¼ 11
IFAIL ¼ 12

A serious error has occurred in an internal call. Check all (sub)program calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

Note: error exits with IFAIL ¼ 2, 3, 6, 7, 8 or 11 are caused by being unable to set up or solve the
differential equation at some iteration and will be immediately preceded by a call of MONIT giving
diagnostic information. For other errors, diagnostic information is contained in HMAXð2; jÞ, for
j ¼ 1; 2; . . . ;m, where appropriate.

7 Accuracy

See the discussion in Section 9.2.

8 Parallelism and Performance

D02KDF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken by D02KDF depends on the complexity of the coefficient functions, whether they or
their derivatives are rapidly changing, the tolerance demanded, and how many iterations are needed to
obtain convergence. The amount of work per iteration is roughly doubled when TOL is divided by 16.
To make the most economical use of the routine, one should try to obtain good initial values for ELAM
and DELAM, and, where appropriate, good asymptotic formulae. Also the boundary matching points
should not be set unnecessarily close to singular points.

9.2 General Description of the Algorithm

A shooting method, for differential equation problems containing unknown parameters, relies on the
construction of a ‘miss-distance function’, which for given trial values of the parameters measures how
far the conditions of the problem are from being met. The problem is then reduced to one of finding the
values of the parameters for which the miss-distance function is zero, that is to a root-finding process.
Shooting methods differ mainly in how the miss-distance is defined.
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D02KDF defines a miss-distance f �ð Þ based on the rotation about the origin of the point
PðxÞ ¼ p xð Þy0 xð Þ; y xð Þð Þ in the Phase Plane as the solution proceeds from a to b. The boundary
conditions define the ray (i.e., two-sided line through the origin) on which p xð Þ should start, and the
ray on which it should finish. The eigenvalue k defines the total number of half-turns it should make.
Numerical solution is actually done by ‘shooting forward’ from x ¼ a and ‘shooting backward’ from
x ¼ b to a matching point x ¼ c. Then f �ð Þ is taken as the angle between the rays to the two resulting
points Pa cð Þ and Pb cð Þ. A relative scaling of the py0 and y axes, based on the behaviour of the
coefficient functions p and q, is used to improve the numerical behaviour.

P(a)

P(b)

Pb(c)

Pa(c)

py’

y

Figure 1

The resulting function f �ð Þ is monotonic over �1 < � <1, increasing if
@q

@�
> 0 and decreasing if

@q

@�
< 0 , with a unique zero at the desired eigenvalue ~�. The routine measures f �ð Þ in units of a half-

turn. This means that as � increases, f �ð Þ varies by about 1 as each eigenvalue is passed. (This feature
implies that the values of f �ð Þ at successive iterations – especially in the early stages of the iterative
process – can be used with suitable extrapolation or interpolation to help the choice of initial estimates
for eigenvalues near to the one currently being found.)

The routine actually computes a value for f �ð Þ with errors, arising from the local errors of the
differential equation code and from the asymptotic formulae provided by you if singular points are
involved. However, the error estimate output in DELAM is usually fairly realistic, in that the actual
error ~�� ELAM

		 		 is within an order of magnitude of DELAM.

9.3 The Position of the Shooting Matching Point c

This point is always one of the values xi in array XPOINT. It is chosen to be the value of that xi,
2 � i � m� 1, that lies closest to the middle of the interval x2; xm�1½ �. If there is a tie, the rightmost
candidate is chosen. In particular if there are no break-points, then c ¼ xm�1 ( ¼ x3); that is, the
shooting is from left to right in this case. A break-point may be inserted purely to move c to an interior
point of the interval, even though the form of the equations does not require it. This often speeds up
convergence especially with singular problems.

9.4 Examples of Coding the COEFFN

Coding COEFFN is straightforward except when break-points are needed. The examples below show:

(a) a simple case,

(b) a case in which discontinuities in the coefficient functions or their derivatives necessitate break-
points, and

(c) a case where break-points together with the HMAX argument are an efficient way to deal with a
coefficient function that is well-behaved except over one short interval.

(Some of these cases are among the examples in Section 10.)

D02KDF NAG Library Manual

D02KDF.10 Mark 26



Example A

The modified Bessel equation

x xy0ð Þ0 þ �x2 � �2
� �

y ¼ 0:

Assuming the interval of solution does not contain the origin and dividing through by x, we have
p xð Þ ¼ x and q x;�ð Þ ¼ �x� �2=x. The code could be

SUBROUTINE COEFFN (P,Q,DQDL,X,ELAM,JINT)
...
P = X
Q = ELAM*X - NU*NU/X
DQDL = X
RETURN
END

where NU (standing for �) is a real variable that might be defined in a DATA statement, or might be in
user-declared COMMON so that its value could be set in the main program.

Example B

The Schroedinger equation

y00 þ �þ q xð Þð Þy ¼ 0;

where

q xð Þ ¼
x2 � 10 xj j � 4ð Þ;

6

xj j xj j > 4ð Þ;

8><>:
over some interval ‘approximating to �1;1ð Þ’, say �20; 20½ �. Here we need break-points at 
4,
forming three sub-intervals i1 ¼ �20;�4½ �, i2 ¼ �4; 4½ �, i3 ¼ 4; 20½ �. The code could be

SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)
...
IF (JINT.EQ.2) THEN

Q = ELAM + X*X - 10.0E0
ELSE

Q = ELAM + 6.0E0/ABS(X)
ENDIF
P = 1.0E0
DQDL = 1.0E0
RETURN
END

The array XPOINT would contain the values x1, �20:0, �4:0, þ4:0, þ20:0, x6 and m would be 6. The
choice of appropriate values for x1 and x6 depends on the form of the asymptotic formula computed by
BDYVAL and the technique is discussed in Section 9.5.

Example C

y00 þ � 1� 2e�100x
2

� �
y ¼ 0; � 10 � x � 10:

Here q x;�ð Þ is nearly constant over the range except for a sharp inverted spike over approximately
�0:1 � x � 0:1. There is a danger that the routine will build up to a large step size and ‘step over’ the
spike without noticing it. By using break-points – say at 
0:5 – one can restrict the step size near the
spike without impairing the efficiency elsewhere.

The code for COEFFN could be

SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)
...
P = 1.0E0
DQDL = 1.0E0 - 2.0E0*EXP(-100.0E0*X*X)
Q = ELAM*DQDL
RETURN
END
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XPOINT might contain �10:0, �10:0, �0:5, 0:5, 10:0, 10:0 (assuming 
10 are regular points) and m
would be 6. HMAXð1; jÞ, for j ¼ 1; 2; 3, might contain 0:0, 0:1 and 0:0.

9.5 Examples of Boundary Conditions at Singular Points

Quoting from page 243 of Bailey (1966): ‘Usually ... the differential equation has two essentially
different types of solution near a singular point, and the boundary condition there merely serves to
distinguish one kind from the other. This is the case in all the standard examples of mathematical
physics.’

In most cases the behaviour of the ratio p xð Þy0=y near the point is quite different for the two types of
solution. Essentially what you provide through the BDYVAL is an approximation to this ratio, valid as
x tends to the singular point (SP).

You must decide (a) how accurate to make this approximation or asymptotic formula, for example how
many terms of a series to use, and (b) where to place the boundary matching point (BMP) at which the
numerical solution of the differential equation takes over from the asymptotic formula. Taking the BMP
closer to the SP will generally improve the accuracy of the asymptotic formula, but will make the
computation more expensive as the Pruefer differential equations generally become progressively more
ill-behaved as the SP is approached. You are strongly recommended to experiment with placing the
BMPs. In many singular problems quite crude asymptotic formulae will do. To help you avoid
needlessly accurate formulae, D02KDF outputs two ‘sensitivity coefficients’ �l; �r which estimate how
much the errors at the BMPs affect the computed eigenvalue. They are described in detail in
Section 9.6.

Example of coding BDYVAL:

The example below illustrates typical situations:

y00 þ �� x� 2

x2

� �
y ¼ 0; 0 < x <1

the boundary conditions being that y should remain bounded as x tends to 0 and x tends to 1.

At the end x ¼ 0 there is one solution that behaves like x2 and another that behaves like x�1. For the
first of these solutions p xð Þy0=y is asymptotically 2=x while for the second it is asymptotically �1=x.
Thus the desired ratio is specified by setting

YLð1Þ ¼ x and YLð2Þ ¼ 2:0:

At the end x ¼ 1 the equation behaves like Airy's equation shifted through �, i.e., like y00 � ty ¼ 0
where t ¼ x� �, so again there are two types of solution. The solution we require behaves as

exp �2
3
t
3
2

� �
=
ffiffi
t4
p

and the other as

exp þ2
3
t
3
2

� �
=
ffiffi
t4
p
:

Hence, the desired solution has p xð Þy0=y � �
ffiffi
t
p

so that we could set YRð1Þ ¼ 1:0 and
YRð2Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
x� �
p

. The complete subroutine might thus be

SUBROUTINE BDYVAL (XL,XR,ELAM,YL,YR)
real XL, XR, ELAM, YL(3), YR(3)
YL(1) = XL
YL(2) = 2.0E0
YR(1) = 1.0E0
YR(2) = -SQRT(XR-ELAM)
RETURN
END

Clearly for this problem it is essential that any value given by D02KDF to XR is well to the right of the
value of ELAM, so that you must vary the right-hand BMP with the eigenvalue index k. One would
expect �k to be near the kth zero of the Airy function Ai xð Þ, so there is no problem estimating ELAM.
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More accurate asymptotic formulae are easily found: near x ¼ 0 by the standard Frobenius method, and
near x ¼ 1 by using standard asymptotics for Ai xð Þ, Ai0 xð Þ, (see page 448 of Abramowitz and Stegun
(1972)).

For example, by the Frobenius method the solution near x ¼ 0 has the expansion

y ¼ x2 c0 þ c1xþ c2x2 þ � � �
� �

with

c0 ¼ 1; c1 ¼ 0; c2 ¼
��
10
; c3 ¼ 1

18; � � � ; cn ¼
cn�3 � �cn�2
n nþ 3ð Þ :

This yields

p xð Þy0
y
¼

2� 2
5�x

2 þ � � �
x 1� �

10x
2 þ � � �

� �:
9.6 The Sensitivity Parameters �l and �r

The sensitivity parameters �l, �r (held in HMAXð1;m� 1Þ and HMAXð1;mÞ on output) estimate the
effect of errors in the boundary conditions. For sufficiently small errors �y, �py0 in y and py0

respectively, the relations

�� ’ y:�py0 � py0:�yð Þl�l
�� ’ y:�py0 � py0:�yð Þr�r

are satisfied, where the subscripts l, r denote errors committed at the left- and right-hand BMPs
respectively, and �� denotes the consequent error in the computed eigenvalue.

9.7 ‘Missed Zeros’

This is a pitfall to beware of at a singular point. If the BMP is chosen so far from the SP that a zero of
the desired eigenfunction lies in between them, then the routine will fail to ‘notice’ this zero. Since the
index of k of an eigenvalue is the number of zeros of its eigenfunction, the result will be that

(a) the wrong eigenvalue will be computed for the given index k – in fact some �kþk0 will be found
where k0 � 1;

(b) the same index k can cause convergence to any of several eigenvalues depending on the initial
values of ELAM and DELAM.

It is up to you to take suitable precautions – for instance by varying the position of the BMPs in the
light of knowledge of the asymptotic behaviour of the eigenfunction at different eigenvalues.

10 Example

This example finds the 11th eigenvalue of the example of Section 9.5, using the simple asymptotic
formulae for the boundary conditions. The results exhibit slow convergence, mainly because XPOINT is
set so that the shooting matching point c is at the right-hand end x ¼ 30:0. The example results for
D02KEF show that much faster convergence is obtained if XPOINT is set to contain an additional
break-point at or near the maximum of the coefficient function q x;�ð Þ, which in this case is at x ¼

ffiffiffi
43
p

.

10.1 Program Text

! D02KDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02kdfe_mod

! Data for D02KDF example program

! .. Use Statements ..
Use nag_library, Only: nag_wp
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! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bdyval, coeffn, monit

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine coeffn(p,q,dqdl,x,elam,jint)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: dqdl, p, q
Real (Kind=nag_wp), Intent (In) :: elam, x
Integer, Intent (In) :: jint

! .. Executable Statements ..
p = one
q = elam - x - two/(x*x)
dqdl = one
Return

End Subroutine coeffn
Subroutine bdyval(xl,xr,elam,yl,yr)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: elam, xl, xr

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: yl(3), yr(3)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
yl(1) = xl
yl(2) = two
yr(1) = one
yr(2) = -sqrt(xr-elam)
Return

End Subroutine bdyval
Subroutine monit(nit,iflag,elam,finfo)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: elam
Integer, Intent (In) :: iflag, nit

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: finfo(15)

! .. Executable Statements ..
If (nit==-1) Then

Write (nout,*)
Write (nout,*) ’Output from MONIT’

End If
Write (nout,99999) nit, iflag, elam, finfo(1:4)
Return

99999 Format (1X,2I4,F10.3,2E12.2,2F8.1)
End Subroutine monit

End Module d02kdfe_mod
Program d02kdfe

! D02KDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02kdf, nag_wp
Use d02kdfe_mod, Only: bdyval, coeffn, monit, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: delam, elam, tol
Integer :: ifail, k, m, maxfun, maxit

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: hmax(:,:), xpoint(:)

! .. Executable Statements ..
Write (nout,*) ’D02KDF Example Program Results’
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Write (nout,*)
! Skip heading in data file

Read (nin,*)
! m: number of points in xpoint

Read (nin,*) m
Allocate (hmax(2,m),xpoint(m))

! xpoint: points where the boundary conditions are to be imposed
! and any break points,
! tol: tolerance parameter which determines the accuracy of the
! computed eigenvalue,
! k: index of the required eigenvalue, hmax: maximum step size,
! elam: initial estimate of the eigenvalue, delam: initial search step,
! maxit: number of root-finding iterations allowed,
! maxfun: number of calls to coeffn in any one root-finding iteration.

Read (nin,*) xpoint(1:m)
Read (nin,*) tol
Read (nin,*) k
Read (nin,*) elam, delam
Read (nin,*) hmax(1,1:m-3)
Read (nin,*) maxit, maxfun

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02kdf(xpoint,m,coeffn,bdyval,k,tol,elam,delam,hmax,maxit,maxfun, &

monit,ifail)

Write (nout,*) ’A singular problem’
Write (nout,*)
Write (nout,*) ’Final results’
Write (nout,*)
Write (nout,99999) k, elam, delam
Write (nout,99998) hmax(1,m-1), hmax(1,m)

99999 Format (1X,’K =’,I3,’ ELAM =’,F12.3,’ DELAM =’,E12.2)
99998 Format (1X,’HMAX(1,M-1) =’,F10.3,’ HMAX(1,M) =’,F10.3)

End Program d02kdfe

10.2 Program Data

D02KDF Example Program Data
4 : m
0.0 0.1 30.0 30.0 : xpoint
1.0E-4 : tol
11 : k
14.0 1.0 : elam, delam
0.0 : hmax
0 0 : maxit, maxfun

10.3 Program Results

D02KDF Example Program Results

Output from MONIT
-1 1 14.000 -0.15E+01 -0.20E-03 1.0 679.0
-2 1 15.000 0.50E+00 -0.36E-03 1.0 627.0
-3 2 14.750 -0.50E+00 -0.49E-03 1.0 632.0
-4 2 14.875 -0.50E+00 -0.24E-03 1.0 570.0
-5 2 14.937 -0.50E+00 -0.66E-03 1.0 471.0
-6 2 14.969 0.50E+00 -0.27E-03 1.0 441.0
-7 2 14.953 0.50E+00 -0.41E-03 1.0 431.0
-8 2 14.945 -0.50E+00 -0.41E-03 1.0 431.0
-9 2 14.949 0.50E+00 -0.21E-03 1.0 421.0

-10 2 14.947 0.50E+00 -0.41E-03 1.0 417.0
-11 2 14.946 -0.50E+00 -0.67E-03 1.0 413.0
-12 2 14.946 -0.50E+00 -0.37E-03 1.0 421.0

A singular problem
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Final results

K = 11 ELAM = 14.946 DELAM = 0.13E-02
HMAX(1,M-1) = -0.000 HMAX(1,M) = 5.863
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NAG Library Routine Document

D02KEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02KEF finds a specified eigenvalue of a regular or singular second-order Sturm–Liouville system on a
finite or infinite interval, using a Pruefer transformation and a shooting method. It also reports values of
the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or
their derivatives.

2 Specification

SUBROUTINE D02KEF (XPOINT, M, MATCH, COEFFN, BDYVAL, K, TOL, ELAM,
DELAM, HMAX, MAXIT, MAXFUN, MONIT, REPORT, IFAIL)

&

INTEGER M, MATCH, K, MAXIT, MAXFUN, IFAIL
REAL (KIND=nag_wp) XPOINT(M), TOL, ELAM, DELAM, HMAX(2,M)
EXTERNAL COEFFN, BDYVAL, MONIT, REPORT

3 Description

D02KEF has essentially the same purpose as D02KDF with minor modifications to enable values of the
eigenfunction to be obtained after convergence to the eigenvalue has been achieved.

It first finds a specified eigenvalue ~� of a Sturm–Liouville system defined by a self-adjoint differential
equation of the second-order

p xð Þy0ð Þ0 þ q x;�ð Þy ¼ 0; a < x < b;

together with appropriate boundary conditions at the two, finite or infinite, end points a and b. The
functions p and q, which are real-valued, are defined by COEFFN. The boundary conditions must be
defined by BDYVAL, and, in the case of a singularity at a or b, take the form of an asymptotic formula
for the solution near the relevant end point.

When the final estimate � ¼ ~� of the eigenvalue has been found, the routine integrates the differential
equation once more with that value of �, and with initial conditions chosen so that the integral

S ¼
Z b

a

y xð Þ2@q
@�

x;�ð Þ dx

is approximately one. When q x;�ð Þ is of the form �w xð Þ þ q xð Þ, which is the most common case, S
represents the square of the norm of y induced by the inner product

f; gh i ¼
Z b

a

f xð Þg xð Þw xð Þ dx;

with respect to which the eigenfunctions are mutually orthogonal. This normalization of y is only
approximate, but experience shows that S generally differs from unity by only one or two per cent.

During this final integration the REPORT is called at each integration mesh point x. Sufficient
information is returned to permit you to compute y xð Þ and y0 xð Þ for printing or plotting. For reasons
described in Section 9.2, D02KEF passes across to REPORT, not y and y0, but the Pruefer variables �,

 and � on which the numerical method is based. Their relationship to y and y0 is given by the
equations

p xð Þy0 ¼
ffiffiffi
�

p
exp

�

2

� �
cos




2

� �
; y ¼ 1ffiffiffi

�
p exp

�

2

� �
sin




2

� �
:
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A specimen REPORT is given in Section 10 below.

For the theoretical basis of the numerical method to be valid, the following conditions should hold on
the coefficient functions:

(a) p xð Þ must be nonzero and must not change sign throughout the interval a; bð Þ; and,

(b)
@q

@�
must not change sign throughout the interval a; bð Þ for all relevant values of �, and must not be

identically zero as x varies, for any �.

Points of discontinuity in the functions p and q or their derivatives are allowed, and should be included
as ‘break-points’ in the array XPOINT.

A good account of the theory of Sturm–Liouville systems, with some description of Pruefer
transformations, is given in Chapter X of Birkhoff and Rota (1962). An introduction to the use of
Pruefer transformations for the numerical solution of eigenvalue problems arising from physics and
chemistry is given in Bailey (1966).

The scaled Pruefer method is described in a short note by Pryce and Hargrave (1977) and in some detail
in the technical report by Pryce (1981).
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5 Arguments

1: XPOINTðMÞ – REAL (KIND=nag_wp) array Input

On entry: the points where the boundary conditions computed by BDYVAL are to be imposed,
and also any break-points, i.e., XPOINTð1Þ to XPOINTðmÞ must contain values x1; . . . ; xm such
that

x1 � x2 < x3 < � � � < xm�1 � xm
with the following meanings:

(a) x1 and xm are the left- and right-hand end points, a and b, of the domain of definition of the
Sturm–Liouville system if these are finite. If either a or b is infinite, the corresponding value
x1 or xm may be a more-or-less arbitrarily ‘large’ number of appropriate sign.

(b) x2 and xm�1 are the Boundary Matching Points (BMPs), that is the points at which the left
and right boundary conditions computed in BDYVAL are imposed.

If the left-hand end point is a regular point then you should set x2 ¼ x1 ¼ að Þ, while if it is a
singular point you must set x2 > x1. Similarly xm�1 ¼ xm ( ¼ b) if the right-hand end point
is regular, and xm�1 < xm if it is singular.

(c) The remaining m� 4 points x3; . . . ; xm�2, if any, define ‘break-points’ which divide the
interval x2; xm�1½ � into m� 3 sub-intervals

i1 ¼ x2; x3½ �; . . . ; im�3 ¼ xm�2; xm�1½ �:
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Numerical integration of the differential equation is stopped and restarted at each break-
point. In simple cases no break-points are needed. However, if p xð Þ or q x;�ð Þ are given by
different formulae in different parts of the interval, then integration is more efficient if the
range is broken up by break-points in the appropriate way. Similarly points where any jumps
occur in p xð Þ or q x;�ð Þ, or in their derivatives up to the fifth-order, should appear as break-
points.

Examples are given in Sections 9 and 10. XPOINT determines the position of the Shooting
Matching Point (SMP), as explained in Section 9.3.

Constraint: XPOINTð1Þ � XPOINTð2Þ < � � � < XPOINTðM� 1Þ � XPOINTðMÞ.

2: M – INTEGER Input

On entry: the number of points in the array XPOINT.

Constraint: M � 4.

3: MATCH – INTEGER Input/Output

On entry: must be set to the index of the ‘break-point’ to be used as the matching point (see
Section 9.3). If MATCH is set to a value outside the range 2;m� 1½ � then a default value is
taken, corresponding to the break-point nearest the centre of the interval
XPOINTð2Þ;XPOINTðm� 1Þ½ �.
On exit: the index of the break-point actually used as the matching point.

4: COEFFN – SUBROUTINE, supplied by the user. External Procedure

COEFFN must compute the values of the coefficient functions p xð Þ and q x;�ð Þ for given values
of x and �. Section 3 states the conditions which p and q must satisfy. See Sections 9.4 and 10
for examples.

The specification of COEFFN is:

SUBROUTINE COEFFN (P, Q, DQDL, X, ELAM, JINT)

INTEGER JINT
REAL (KIND=nag_wp) P, Q, DQDL, X, ELAM

1: P – REAL (KIND=nag_wp) Output

On exit: the value of p xð Þ for the current value of x.

2: Q – REAL (KIND=nag_wp) Output

On exit: the value of q x;�ð Þ for the current value of x and the current trial value of �.

3: DQDL – REAL (KIND=nag_wp) Output

On exit: the value of
@q

@�
x;�ð Þ for the current value of x and the current trial value of �.

However DQDL is only used in error estimation and, in the rare cases where it may be
difficult to evaluate, an approximation (say to within 20%) will suffice.

4: X – REAL (KIND=nag_wp) Input

On entry: the current value of x.

5: ELAM – REAL (KIND=nag_wp) Input

On entry: the current trial value of the eigenvalue argument �.
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6: JINT – INTEGER Input

On entry: the index j of the sub-interval ij (see specification of XPOINT) in which x
lies.

COEFFN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02KEF is called. Arguments denoted as Input must not be changed
by this procedure.

5: BDYVAL – SUBROUTINE, supplied by the user. External Procedure

BDYVAL must define the boundary conditions. For each end point, BDYVAL must return (in YL
or YR) values of y xð Þ and p xð Þy0 xð Þ which are consistent with the boundary conditions at the end
points; only the ratio of the values matters. Here x is a given point (XL or XR) equal to, or close
to, the end point.

For a regular end point (a, say), x ¼ a, a boundary condition of the form

c1y að Þ þ c2y0 að Þ ¼ 0

can be handled by returning constant values in YL, e.g., YLð1Þ ¼ c2 and YLð2Þ ¼ �c1p að Þ.
For a singular end point however, YLð1Þ and YLð2Þ will in general be functions of XL and
ELAM, and YRð1Þ and YRð2Þ functions of XR and ELAM, usually derived analytically from a
power-series or asymptotic expansion. Examples are given in Sections 9.5 and 10.

The specification of BDYVAL is:

SUBROUTINE BDYVAL (XL, XR, ELAM, YL, YR)

REAL (KIND=nag_wp) XL, XR, ELAM, YL(3), YR(3)

1: XL – REAL (KIND=nag_wp) Input

On entry: if a is a regular end point of the system (so that a ¼ x1 ¼ x2), then XL
contains a. If a is a singular point (so that a � x1 < x2), then XL contains a point x
such that x1 < x � x2.

2: XR – REAL (KIND=nag_wp) Input

On entry: if b is a regular end point of the system (so that xm�1 ¼ xm ¼ b), then XR
contains b. If b is a singular point (so that xm�1 < xm � b), then XR contains a point x
such that xm�1 � x < xm.

3: ELAM – REAL (KIND=nag_wp) Input

On entry: the current trial value of �.

4: YLð3Þ – REAL (KIND=nag_wp) array Output

On exit: YLð1Þ and YLð2Þ should contain values of y xð Þ and p xð Þy0 xð Þ respectively (not
both zero) which are consistent with the boundary condition at the left-hand end point,
given by x ¼ XL. YLð3Þ should not be set.

5: YRð3Þ – REAL (KIND=nag_wp) array Output

On exit: YRð1Þ and YRð2Þ should contain values of y xð Þ and p xð Þy0 xð Þ respectively
(not both zero) which are consistent with the boundary condition at the right-hand end
point, given by x ¼ XR. YRð3Þ should not be set.

BDYVAL must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02KEF is called. Arguments denoted as Input must not be changed
by this procedure.
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6: K – INTEGER Input

On entry: k, the index of the required eigenvalue when the eigenvalues are ordered

�0 < �1 < �2 < � � � < �k < � � � :
Constraint: K � 0.

7: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance argument which determines the accuracy of the computed eigenvalue. The
error estimate held in DELAM on exit satisfies the mixed absolute/relative error test

DELAM � TOL�max 1:0; ELAMj jð Þ; ð1Þ

where ELAM is the final estimate of the eigenvalue. DELAM is usually somewhat smaller than
the right-hand side of (1) but not several orders of magnitude smaller.

Constraint: TOL > 0:0.

8: ELAM – REAL (KIND=nag_wp) Input/Output

On entry: an initial estimate of the eigenvalue ~�.

On exit: the final computed estimate, whether or not an error occurred.

9: DELAM – REAL (KIND=nag_wp) Input/Output

On entry: an indication of the scale of the problem in the �-direction. DELAM holds the initial
‘search step’ (positive or negative). Its value is not critical, but the first two trial evaluations are
made at ELAM and ELAMþ DELAM, so the routine will work most efficiently if the eigenvalue
lies between these values. A reasonable choice (if a closer bound is not known) is half the
distance between adjacent eigenvalues in the neighbourhood of the one sought. In practice, there
will often be a problem, similar to the one in hand but with known eigenvalues, which will help
one to choose initial values for ELAM and DELAM.

If DELAM ¼ 0:0 on entry, it is given the default value of 0:25�max 1:0; ELAMj jð Þ.
On exit: if IFAIL ¼ 0, DELAM holds an estimate of the absolute error in the computed
eigenvalue, that is ~�� ELAM

		 		 ’ DELAM. (In Section 9.2 we discuss the assumptions under
which this is true.) The true error is rarely more than twice, or less than a tenth, of the estimated
error.

If IFAIL 6¼ 0, DELAM may hold an estimate of the error, or its initial value, depending on the
value of IFAIL. See Section 6 for further details.

10: HMAXð2;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: HMAXð1; jÞ should contain a maximum step size to be used by the differential
equation code in the jth sub-interval ij (as described in the specification of argument XPOINT),
for j ¼ 1; 2; . . . ;m� 3. If it is zero the routine generates a maximum step size internally.

It is recommended that HMAXð1; jÞ be set to zero unless the coefficient functions p and q have
features (such as a narrow peak) within the jth sub-interval that could be ‘missed’ if a long step
were taken. In such a case HMAXð1; jÞ should be set to about half the distance over which the
feature should be observed. Too small a value will increase the computing time for the routine.
See Section 9 for further suggestions.

The rest of the array is used as workspace.

On exit: HMAXð1;m� 1Þ and HMAXð1;mÞ contain the sensitivity coefficients �l; �r, described
in Section 9.6. Other entries contain diagnostic output in the case of an error exit (see Section 6).

11: MAXIT – INTEGER Input/Output

On entry: a bound on nr, the number of root-finding iterations allowed, that is the number of trial
values of � that are used. If MAXIT � 0, no such bound is assumed. (See also MAXFUN.)
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Suggested value: MAXIT ¼ 0.

On exit: will have been decreased by the number of iterations actually performed, whether or not
it was positive on entry.

12: MAXFUN – INTEGER Input

On entry: a bound on nf , the number of calls to COEFFN made in any one root-finding iteration.
If MAXFUN � 0, no such bound is assumed.

Suggested value: MAXFUN ¼ 0.

MAXFUN and MAXIT may be used to limit the computational cost of a call to D02KEF, which
is roughly proportional to nr � nf .

13: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT is called by D02KEF at the end of each root-finding iteration and allows you to monitor
the course of the computation by printing out the arguments (see Section 10 for an example).

If no monitoring is required, the dummy (sub)program D02KAY may be used. (D02KAY is
included in the NAG Library.)

The specification of MONIT is:

SUBROUTINE MONIT (NIT, IFLAG, ELAM, FINFO)

INTEGER NIT, IFLAG
REAL (KIND=nag_wp) ELAM, FINFO(15)

1: NIT – INTEGER Input

On entry: the current value of the argument MAXIT of D02KEF, this is decreased by
one at each iteration.

2: IFLAG – INTEGER Input

On entry: describes what phase the computation is in.

IFLAG < 0
An error occurred in the computation at this iteration; an error exit from D02KEF
with IFAIL ¼ �IFLAG will follow.

IFLAG ¼ 1
The routine is trying to bracket the eigenvalue ~�.

IFLAG ¼ 2
The routine is converging to the eigenvalue ~� (having already bracketed it).

3: ELAM – REAL (KIND=nag_wp) Input

On entry: the current trial value of �.

4: FINFOð15Þ – REAL (KIND=nag_wp) array Input

On entry: information about the behaviour of the shooting method, and diagnostic
information in the case of errors. It should not normally be printed in full if no error has
occurred (that is, if IFLAG > 0), though the first few components may be of interest to
you. In case of an error (IFLAG < 0) all the components of FINFO should be printed.

The contents of FINFO are as follows:

FINFOð1Þ
The current value of the ‘miss-distance’ or ‘residual’ function f �ð Þ on which the
shooting method is based. (See Section 9.2 for further information.) FINFOð1Þ is
set to zero if IFLAG < 0.
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FINFOð2Þ
An estimate of the quantity @� defined as follows. Consider the perturbation in
the miss-distance f �ð Þ that would result if the local error in the solution of the
differential equation were always positive and equal to its maximum permitted
value. Then @� is the perturbation in � that would have the same effect on f �ð Þ.
Thus, at the zero of f �ð Þ; @�j j is an approximate bound on the perturbation of the
zero (that is the eigenvalue) caused by errors in numerical solution. If @� is very
large then it is possible that there has been a programming error in COEFFN
such that q is independent of �. If this is the case, an error exit with IFAIL ¼ 5
should follow. FINFOð2Þ is set to zero if IFLAG < 0.

FINFOð3Þ
The number of internal iterations, using the same value of � and tighter accuracy
tolerances, needed to bring the accuracy (that is, the value of @�) to an
acceptable value. Its value should normally be 1:0, and should almost never
exceed 2:0.

FINFOð4Þ
The number of calls to COEFFN at this iteration.

FINFOð5Þ
The number of successful steps taken by the internal differential equation solver
at this iteration. A step is successful if it is used to advance the integration.

FINFOð6Þ
The number of unsuccessful steps used by the internal integrator at this iteration.

FINFOð7Þ
The number of successful steps at the maximum step size taken by the internal
integrator at this iteration.

FINFOð8Þ
Not used.

FINFOð9Þ to FINFOð15Þ
Set to zero, unless IFLAG < 0 in which case they hold the following values
describing the point of failure:

FINFOð9Þ
The index of the sub-interval where failure occurred, in the range 1 to
m� 3. In case of an error in BDYVAL, it is set to 0 or m� 2 depending
on whether the left or right boundary condition caused the error.

FINFOð10Þ
The value of the independent variable, x, the point at which the error
occurred. In case of an error in BDYVAL, it is set to the value of XL or
XR as appropriate (see the specification of BDYVAL).

FINFOð11Þ, FINFOð12Þ, FINFOð13Þ
The current values of the Pruefer dependent variables �, 
 and �
respectively. These are set to zero in case of an error in BDYVAL.

FINFOð14Þ
The local-error tolerance being used by the internal integrator at the point
of failure. This is set to zero in the case of an error in BDYVAL.

FINFOð15Þ
The last integration mesh point. This is set to zero in the case of an error
in BDYVAL.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02KEF is called. Arguments denoted as Input must not be changed by this
procedure.
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14: REPORT – SUBROUTINE, supplied by the user. External Procedure

REPORT provides the means by which you may compute the eigenfunction y xð Þ and its
derivative at each integration mesh point x. (See Section 9 for an example.)

The specification of REPORT is:

SUBROUTINE REPORT (X, V, JINT)

INTEGER JINT
REAL (KIND=nag_wp) X, V(3)

1: X – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable x. See Section 9.3 for the order
in which values of x are supplied.

2: Vð3Þ – REAL (KIND=nag_wp) array Input

On entry: Vð1Þ, Vð2Þ, Vð3Þ hold the current values of the Pruefer variables �, 
, �
respectively.

3: JINT – INTEGER Input

On entry: indicates the sub-interval between break-points in which X lies exactly as for
COEFFN, except that at the extreme left-hand end point (when x ¼ XPOINTð2Þ) JINT
is set to 0 and at the extreme right-hand end point (when x ¼ xr ¼ XPOINTðm� 1Þ)
JINT is set to m� 2.

REPORT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02KEF is called. Arguments denoted as Input must not be changed by this
procedure.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A argument error. All arguments (except IFAIL) are left unchanged. The reason for the error is
shown by the value of HMAXð2; 1Þ as follows:

HMAXð2; 1Þ ¼ 1: M < 4;

HMAXð2; 1Þ ¼ 2: K < 0;

HMAXð2; 1Þ ¼ 3: TOL � 0:0;
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HMAXð2; 1Þ ¼ 4: XPOINTð1Þ to XPOINTðmÞ are not in ascending order. HMAXð2; 2Þ gives
the position i in XPOINT where this was detected.

IFAIL ¼ 2

At some call to BDYVAL, invalid values were returned, that is, either YLð1Þ ¼ YLð2Þ ¼ 0:0, or
YRð1Þ ¼ YRð2Þ ¼ 0:0 (a programming error in BDYVAL). See the last call of MONIT for
details.

This error exit will also occur if p xð Þ is zero at the point where the boundary condition is
imposed. Probably BDYVAL was called with XL equal to a singular end point a or with XR
equal to a singular end point b.

IFAIL ¼ 3

At some point between XL and XR the value of p xð Þ computed by COEFFN became zero or
changed sign. See the last call of MONIT for details.

IFAIL ¼ 4

MAXIT > 0 on entry, and after MAXIT iterations the eigenvalue had not been found to the
required accuracy.

IFAIL ¼ 5

The ‘bracketing’ phase (with argument IFLAG of the MONIT equal to 1) failed to bracket the
eigenvalue within ten iterations. This is caused by an error in formulating the problem (for
example, q is independent of �), or by very poor initial estimates of ELAM and DELAM.

On exit, ELAM and ELAMþ DELAM give the end points of the interval within which no
eigenvalue was located by the routine.

IFAIL ¼ 6

MAXFUN > 0 on entry, and the last iteration was terminated because more than MAXFUN calls
to COEFFN were used. See the last call of MONIT for details.

IFAIL ¼ 7

To obtain the desired accuracy the local error tolerance was set so small at the start of some sub-
interval that the differential equation solver could not choose an initial step size large enough to
make significant progress. See the last call of MONIT for diagnostics.

IFAIL ¼ 8

At some point inside a sub-interval the step size in the differential equation solver was reduced to
a value too small to make significant progress (for the same reasons as with IFAIL ¼ 7). This
could be due to pathological behaviour of p xð Þ and q x;�ð Þ or to an unreasonable accuracy
requirement or to the current value of � making the equations ‘stiff’. See the last call of MONIT
for details.

IFAIL ¼ 9

TOL is too small for the problem being solved and the machine precision is being used. The
final value of ELAM should be a very good approximation to the eigenvalue.

IFAIL ¼ 10

C05AZF, called by D02KEF, has terminated with the error exit corresponding to a pole of the
residual function f �ð Þ. This error exit should not occur, but if it does, try solving the problem
again with a smaller value for TOL.
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IFAIL ¼ 11
IFAIL ¼ 12

A serious error has occurred in an internal call. Check all (sub)program calls and array
dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

Note: error exits with IFAIL ¼ 2, 3, 6, 7, 8 or 11 are caused by being unable to set up or solve the
differential equation at some iteration and will be immediately preceded by a call of MONIT giving
diagnostic information. For other errors, diagnostic information is contained in HMAXð2; jÞ, for
j ¼ 1; 2; . . . ;m, where appropriate.

7 Accuracy

See the discussion in Section 9.2.

8 Parallelism and Performance

D02KEF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken by D02KEF depends on the complexity of the coefficient functions, whether they or
their derivatives are rapidly changing, the tolerance demanded, and how many iterations are needed to
obtain convergence. The amount of work per iteration is roughly doubled when TOL is divided by 16.
To make the most economical use of the routine, one should try to obtain good initial values for ELAM
and DELAM, and, where appropriate, good asymptotic formulae. Also the boundary matching points
should not be set unnecessarily close to singular points. The extra time needed to compute the
eigenfunction is principally the cost of one additional integration once the eigenvalue has been found.

9.2 General Description of the Algorithm

A shooting method, for differential equation problems containing unknown parameters, relies on the
construction of a ‘miss-distance function’, which for given trial values of the parameters measures how
far the conditions of the problem are from being met. The problem is then reduced to one of finding the
values of the parameters for which the miss-distance function is zero, that is to a root-finding process.
Shooting methods differ mainly in how the miss-distance is defined.

D02KEF defines a miss-distance f �ð Þ based on the rotation about the origin of the point
PðxÞ ¼ p xð Þy0 xð Þ; y xð Þð Þ in the Phase Plane as the solution proceeds from a to b. The boundary
conditions define the ray (i.e., two-sided line through the origin) on which p xð Þ should start, and the
ray on which it should finish. The eigenvalue k defines the total number of half-turns it should make.
Numerical solution is actually done by ‘shooting forward’ from x ¼ a and ‘shooting backward’ from
x ¼ b to a matching point x ¼ c. Then f �ð Þ is taken as the angle between the rays to the two resulting
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points Pa cð Þ and Pb cð Þ. A relative scaling of the py0 and y axes, based on the behaviour of the
coefficient functions p and q, is used to improve the numerical behaviour.

Pa(c)
P(a)

P(b)

Pb(c)

y

py'

Figure 1

The resulting function f �ð Þ is monotonic over �1 < � <1, increasing if
@q

@�
> 0 and decreasing if

@q

@�
< 0 , with a unique zero at the desired eigenvalue ~�. The routine measures f �ð Þ in units of a half-

turn. This means that as � increases, f �ð Þ varies by about 1 as each eigenvalue is passed. (This feature
implies that the values of f �ð Þ at successive iterations – especially in the early stages of the iterative
process – can be used with suitable extrapolation or interpolation to help the choice of initial estimates
for eigenvalues near to the one currently being found.)

The routine actually computes a value for f �ð Þ with errors, arising from the local errors of the
differential equation code and from the asymptotic formulae provided by you if singular points are
involved. However, the error estimate output in DELAM is usually fairly realistic, in that the actual
error ~�� ELAM

		 		 is within an order of magnitude of DELAM.

We pass the values of �, 
, � across through REPORT rather than converting them to values of y, y0

inside D02KEF, for the following reasons. First, there may be cases where auxiliary quantities can be
more accurately computed from the Pruefer variables than from y and y0. Second, in singular problems
on an infinite interval y and y0 may underflow towards the end of the range, whereas the Pruefer
variables remain well-behaved. Third, with high-order eigenvalues (and therefore highly oscillatory
eigenfunctions) the eigenfunction may have a complete oscillation (or more than one oscillation)
between two mesh points, so that values of y and y0 at mesh points give a very poor representation of
the curve. The probable behaviour of the Pruefer variables in this case is that � and � vary slowly
whilst 
 increases quickly: for all three Pruefer variables linear interpolation between the values at
adjacent mesh points is probably sufficiently accurate to yield acceptable intermediate values of �, 
, �
(and hence of y; y0) for graphical purposes.

Similar considerations apply to the exponentially decaying ‘tails’ of the eigenfunctions that often occur
in singular problems. Here 
 has approximately constant value whilst � increases rapidly in the
direction of integration, though the step length is generally fairly small over such a range.

If the solution is output through REPORT at x values which are too widely spaced, the step length can
be controlled by choosing HMAX suitably, or, preferably, by reducing TOL. Both these choices will
lead to more accurate eigenvalues and eigenfunctions but at some computational cost.
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9.3 The Position of the Shooting Matching Point c

This point is always one of the values xi in array XPOINT. It may be specified using the argument
MATCH. The default value is chosen to be the value of that xi, 2 � i � m� 1, that lies closest to the
middle of the interval x2; xm�1½ �. If there is a tie, the rightmost candidate is chosen. In particular if there
are no break-points, then c ¼ xm�1 ( ¼ x3); that is, the shooting is from left to right in this case. A
break-point may be inserted purely to move c to an interior point of the interval, even though the form
of the equations does not require it. This often speeds up convergence especially with singular
problems.

Note that the shooting method used by the code integrates first from the left-hand end xl, then from the
right-hand end xr, to meet at the matching point c in the middle. This will of course be reflected in
printed or graphical output. The diagram shows a possible sequence of nine mesh points �1 through �9
in the order in which they appear, assuming there are just two sub-intervals (so m ¼ 5).
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3
x

4
= x

5
= x

r

i
1

i
2

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
7

τ
8

τ
9

Figure 2

Since the shooting method usually fails to match up the two ‘legs’ of the curve exactly, there is bound
to be a jump in y, or in p xð Þy0 or both, at the matching point c. The code in fact ‘shares’ the
discrepancy out so that both y and p xð Þy0 have a jump. A large jump does not imply an inaccurate
eigenvalue, but implies either

(a) a badly chosen matching point: if q x;�ð Þ has a ‘humped’ shape, c should be chosen near the
maximum value of q, especially if q is negative at the ends of the interval;

(b) an inherently ill-conditioned problem, typically one where another eigenvalue is pathologically
close to the one being sought. In this case it is extremely difficult to obtain an accurate
eigenfunction.

In Section 10, we find the 11th eigenvalue and corresponding eigenfunction of the equation

y00 þ �� x� 2=x2
� �

y ¼ 0 on 0 < x <1;

the boundary conditions being that y should remain bounded as x tends to 0 and x tends to 1. The
coding of this problem is discussed in detail in Section 9.5.

The choice of matching point c is open. If we choose c ¼ 30:0 as in D02KDF example program we find
that the exponentially increasing component of the solution dominates and we get extremely inaccurate
values for the eigenfunction (though the eigenvalue is determined accurately). The values of the
eigenfunction calculated with c ¼ 30:0 are given schematically in Figure 3.
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If we choose c as the maximum of the hump in q x;�ð Þ (see item (a) above) we instead obtain the
accurate results given in Figure 4

c

Figure 4

9.4 Examples of Coding the COEFFN

Coding COEFFN is straightforward except when break-points are needed. The examples below show:

(a) a simple case,

(b) a case in which discontinuities in the coefficient functions or their derivatives necessitate break-
points, and

(c) a case where break-points together with the HMAX argument are an efficient way to deal with a
coefficient function that is well-behaved except over one short interval.

(Some of these cases are among the examples in Section 10.)

Example A

The modified Bessel equation

x xy0ð Þ0 þ �x2 � �2
� �

y ¼ 0:

Assuming the interval of solution does not contain the origin and dividing through by x, we have
p xð Þ ¼ x and q x;�ð Þ ¼ �x� �2=x. The code could be

SUBROUTINE COEFFN (P,Q,DQDL,X,ELAM,JINT)
...
P = X
Q = ELAM*X - NU*NU/X
DQDL = X
RETURN
END

where NU (standing for �) is a real variable that might be defined in a DATA statement, or might be in
user-declared COMMON so that its value could be set in the main program.
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Example B

The Schroedinger equation

y00 þ �þ q xð Þð Þy ¼ 0;

where

q xð Þ ¼
x2 � 10 xj j � 4ð Þ;

6

xj j xj j > 4ð Þ;

8><>:
over some interval ‘approximating to �1;1ð Þ’, say �20; 20½ �. Here we need break-points at 
4,
forming three sub-intervals i1 ¼ �20;�4½ �, i2 ¼ �4; 4½ �, i3 ¼ 4; 20½ �. The code could be

SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)
...
IF (JINT.EQ.2) THEN

Q = ELAM + X*X - 10.0E0
ELSE

Q = ELAM + 6.0E0/ABS(X)
ENDIF
P = 1.0E0
DQDL = 1.0E0
RETURN
END

The array XPOINT would contain the values x1, �20:0, �4:0, þ4:0, þ20:0, x6 and m would be 6. The
choice of appropriate values for x1 and x6 depends on the form of the asymptotic formula computed by
BDYVAL and the technique is discussed in Section 9.5.

Example C

y00 þ � 1� 2e�100x
2

� �
y ¼ 0; � 10 � x � 10:

Here q x;�ð Þ is nearly constant over the range except for a sharp inverted spike over approximately
�0:1 � x � 0:1. There is a danger that the routine will build up to a large step size and ‘step over’ the
spike without noticing it. By using break-points – say at 
0:5 – one can restrict the step size near the
spike without impairing the efficiency elsewhere.

The code for COEFFN could be

SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)
...
P = 1.0E0
DQDL = 1.0E0 - 2.0E0*EXP(-100.0E0*X*X)
Q = ELAM*DQDL
RETURN
END

XPOINT might contain �10:0, �10:0, �0:5, 0:5, 10:0, 10:0 (assuming 
10 are regular points) and m
would be 6. HMAXð1; jÞ, for j ¼ 1; 2; 3, might contain 0:0, 0:1 and 0:0.

9.5 Examples of Boundary Conditions at Singular Points

Quoting from page 243 of Bailey (1966): ‘Usually ... the differential equation has two essentially
different types of solution near a singular point, and the boundary condition there merely serves to
distinguish one kind from the other. This is the case in all the standard examples of mathematical
physics.’

In most cases the behaviour of the ratio p xð Þy0=y near the point is quite different for the two types of
solution. Essentially what you provide through the BDYVAL is an approximation to this ratio, valid as
x tends to the singular point (SP).

You must decide (a) how accurate to make this approximation or asymptotic formula, for example how
many terms of a series to use, and (b) where to place the boundary matching point (BMP) at which the
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numerical solution of the differential equation takes over from the asymptotic formula. Taking the BMP
closer to the SP will generally improve the accuracy of the asymptotic formula, but will make the
computation more expensive as the Pruefer differential equations generally become progressively more
ill-behaved as the SP is approached. You are strongly recommended to experiment with placing the
BMPs. In many singular problems quite crude asymptotic formulae will do. To help you avoid
needlessly accurate formulae, D02KEF outputs two ‘sensitivity coefficients’ �l; �r which estimate how
much the errors at the BMPs affect the computed eigenvalue. They are described in detail in
Section 9.6.

Example of coding BDYVAL:

The example below illustrates typical situations:

y00 þ �� x� 2

x2

� �
y ¼ 0; 0 < x <1

the boundary conditions being that y should remain bounded as x tends to 0 and x tends to 1.

At the end x ¼ 0 there is one solution that behaves like x2 and another that behaves like x�1. For the
first of these solutions p xð Þy0=y is asymptotically 2=x while for the second it is asymptotically �1=x.
Thus the desired ratio is specified by setting

YLð1Þ ¼ x and YLð2Þ ¼ 2:0:

At the end x ¼ 1 the equation behaves like Airy's equation shifted through �, i.e., like y00 � ty ¼ 0
where t ¼ x� �, so again there are two types of solution. The solution we require behaves as

exp �2
3
t
3
2

� �
=
ffiffi
t4
p

and the other as

exp þ2
3
t
3
2

� �
=
ffiffi
t4
p
:

Hence, the desired solution has p xð Þy0=y � �
ffiffi
t
p

so that we could set YRð1Þ ¼ 1:0 and
YRð2Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
x� �
p

. The complete subroutine might thus be

SUBROUTINE BDYVAL (XL,XR,ELAM,YL,YR)
real XL, XR, ELAM, YL(3), YR(3)
YL(1) = XL
YL(2) = 2.0E0
YR(1) = 1.0E0
YR(2) = -SQRT(XR-ELAM)
RETURN
END

Clearly for this problem it is essential that any value given by D02KEF to XR is well to the right of the
value of ELAM, so that you must vary the right-hand BMP with the eigenvalue index k. One would
expect �k to be near the kth zero of the Airy function Ai xð Þ, so there is no problem estimating ELAM.

More accurate asymptotic formulae are easily found: near x ¼ 0 by the standard Frobenius method, and
near x ¼ 1 by using standard asymptotics for Ai xð Þ, Ai0 xð Þ, (see page 448 of Abramowitz and Stegun
(1972)).

For example, by the Frobenius method the solution near x ¼ 0 has the expansion

y ¼ x2 c0 þ c1xþ c2x2 þ � � �
� �

with

c0 ¼ 1; c1 ¼ 0; c2 ¼
��
10
; c3 ¼ 1

18; � � � ; cn ¼
cn�3 � �cn�2
n nþ 3ð Þ :

This yields
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p xð Þy0
y
¼

2� 2
5�x

2 þ � � �
x 1� �

10x
2 þ � � �

� �:
9.6 The Sensitivity Parameters �l and �r

The sensitivity parameters �l, �r (held in HMAXð1;m� 1Þ and HMAXð1;mÞ on output) estimate the
effect of errors in the boundary conditions. For sufficiently small errors �y, �py0 in y and py0

respectively, the relations

�� ’ y:�py0 � py0:�yð Þl�l
�� ’ y:�py0 � py0:�yð Þr�r

are satisfied, where the subscripts l, r denote errors committed at the left- and right-hand BMPs
respectively, and �� denotes the consequent error in the computed eigenvalue.

9.7 ‘Missed Zeros’

This is a pitfall to beware of at a singular point. If the BMP is chosen so far from the SP that a zero of
the desired eigenfunction lies in between them, then the routine will fail to ‘notice’ this zero. Since the
index of k of an eigenvalue is the number of zeros of its eigenfunction, the result will be that

(a) the wrong eigenvalue will be computed for the given index k – in fact some �kþk0 will be found
where k0 � 1;

(b) the same index k can cause convergence to any of several eigenvalues depending on the initial
values of ELAM and DELAM.

It is up to you to take suitable precautions – for instance by varying the position of the BMPs in the
light of knowledge of the asymptotic behaviour of the eigenfunction at different eigenvalues.

10 Example

This example finds the 11th eigenvalue and eigenfunction of the example of Section 9.5, using the
simple asymptotic formulae for the boundary conditions.

Comparison of the results from this example program with the corresponding results from D02KDF
example program shows that similar output is produced from MONIT, followed by the eigenfunction
values from REPORT, and then a further line of information from MONIT (corresponding to the
integration to find the eigenfunction). Final information is printed within the example program exactly
as with D02KDF.

Note the discrepancy at the matching point c ( ¼
ffiffiffi
43
p

, the maximum of q x;�ð Þ, in this case) between the
solutions obtained by integrations from left- and right-hand end points.

10.1 Program Text

! D02KEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02kefe_mod

! Data for D02KEF example program

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bdyval, coeffn, monit, report

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
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Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine coeffn(p,q,dqdl,x,elam,jint)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: dqdl, p, q
Real (Kind=nag_wp), Intent (In) :: elam, x
Integer, Intent (In) :: jint

! .. Executable Statements ..
p = one
q = elam - x - two/(x*x)
dqdl = one
Return

End Subroutine coeffn
Subroutine bdyval(xl,xr,elam,yl,yr)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: elam, xl, xr

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: yl(3), yr(3)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
yl(1) = xl
yl(2) = two
yr(1) = one
yr(2) = -sqrt(xr-elam)
Return

End Subroutine bdyval
Subroutine report(x,v,jint)

! .. Use Statements ..
Use nag_library, Only: x02amf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: jint

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: v(3)

! .. Local Scalars ..
Real (Kind=nag_wp) :: pyp, r, sqrtb, y

! .. Intrinsic Procedures ..
Intrinsic :: cos, exp, log, sin, sqrt

! .. Executable Statements ..
If (jint==0) Then

Write (nout,*)
Write (nout,*) ’ Eigenfunction values’
Write (nout,*) ’ X Y PYP’

End If
sqrtb = sqrt(v(1))

! Avoid underflow in call of EXP
If (0.5_nag_wp*v(3)>=log(x02amf())) Then

r = exp(0.5_nag_wp*v(3))
Else

r = zero
End If
pyp = r*sqrtb*cos(0.5_nag_wp*v(2))
y = r/sqrtb*sin(0.5_nag_wp*v(2))
Write (nout,99999) x, y, pyp
Return

99999 Format (1X,F10.3,1P,2F12.4)
End Subroutine report
Subroutine monit(nit,iflag,elam,finfo)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: elam
Integer, Intent (In) :: iflag, nit

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: finfo(15)

! .. Executable Statements ..
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If (nit==-1) Then
Write (nout,*)
Write (nout,*) ’Output from MONIT’

End If
Write (nout,99999) nit, iflag, elam, finfo(1:4)
Return

99999 Format (1X,2I4,F10.3,2E12.2,2F8.1)
End Subroutine monit

End Module d02kefe_mod
Program d02kefe

! D02KEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02kef, nag_wp
Use d02kefe_mod, Only: bdyval, coeffn, monit, nin, nout, report

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: delam, elam, tol
Integer :: ifail, k, m, match, maxfun, maxit

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: hmax(:,:), xpoint(:)

! .. Executable Statements ..
Write (nout,*) ’D02KEF Example Program Results’
Write (nout,*)
Write (nout,*) ’A singular problem’

! Skip heading in data file
Read (nin,*)

! m: number of points in xpoint
Read (nin,*) m
Allocate (hmax(2,m),xpoint(m))

! xpoint: points where the boundary conditions are to be imposed
! and any break points,
! tol: tolerance parameter which determines the accuracy of the
! computed eigenvalue,
! k: index of the required eigenvalue, hmax: maximum step size,
! elam: initial estimate of the eigenvalue, delam: initial search step,
! maxit: number of root-finding iterations allowed,
! maxfun: number of calls to coeffn in any one root-finding iteration,
! match: index of the break point.

Read (nin,*) xpoint(1:m)
Read (nin,*) tol
Read (nin,*) k
Read (nin,*) elam, delam
Read (nin,*) hmax(1,1:m-3)
Read (nin,*) maxit, maxfun, match

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02kef(xpoint,m,match,coeffn,bdyval,k,tol,elam,delam,hmax,maxit, &

maxfun,monit,report,ifail)

Write (nout,*)
Write (nout,*) ’Final results’
Write (nout,*)
Write (nout,99999) k, elam, delam
Write (nout,99998) hmax(1,m-1), hmax(1,m)

99999 Format (1X,’K =’,I3,’ ELAM =’,F12.3,’ DELAM =’,E12.2)
99998 Format (1X,’HMAX(1,M-1) =’,F10.3,’ HMAX(1,M) =’,F10.3)

End Program d02kefe
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10.2 Program Data

D02KEF Example Program Data
5 : m
0.0 0.1 1.58740105196819947475 30.0 30.0 : xpoint
1.0E-4 : tol
11 : k
14.0 1.0 : elam, delam
0.0 0.0 : hmax
0 0 0 : maxit, maxfun, match

10.3 Program Results

D02KEF Example Program Results

A singular problem

Output from MONIT
-1 1 14.000 -0.11E+01 -0.18E-03 1.0 644.0
-2 1 15.000 0.66E-01 -0.21E-03 1.0 582.0
-3 2 14.946 -0.91E-03 -0.25E-03 1.0 549.0
-4 2 14.946 -0.12E-03 -0.47E-03 1.0 555.0
-5 2 14.947 0.77E-03 -0.24E-03 1.0 536.0
-6 2 14.946 0.40E-04 -0.42E-03 1.0 508.0

Eigenfunction values
X Y PYP

0.100 0.1233 2.4656
0.168 0.3413 3.9058
0.216 0.5500 4.7425
0.312 1.0652 5.8104
0.407 1.6307 5.9191
0.578 2.4933 3.7209
0.724 2.7787 -0.0262
0.909 2.2745 -5.3609
1.137 0.5046 -9.3563
1.453 -2.1525 -5.7225
1.587 -2.6541 -1.5714

30.000 -0.0000 0.0000
29.096 -0.0000 0.0000
28.629 -0.0000 0.0000
28.356 -0.0000 0.0000
28.062 -0.0000 0.0000
27.713 -0.0000 0.0000
27.262 -0.0000 0.0000
26.855 -0.0000 0.0000
26.432 -0.0000 0.0000
26.062 -0.0000 0.0000
25.686 -0.0000 0.0000
25.301 -0.0000 0.0000
24.891 -0.0000 0.0000
24.574 -0.0000 0.0000
24.249 -0.0000 0.0000
23.855 -0.0000 0.0000
23.530 -0.0000 0.0000
23.157 -0.0000 0.0000
22.843 -0.0000 0.0000
22.467 -0.0000 0.0000
22.140 -0.0000 0.0000
21.743 -0.0000 0.0000
21.397 -0.0000 0.0001
20.979 -0.0001 0.0002
20.614 -0.0002 0.0005
20.173 -0.0006 0.0013
19.786 -0.0014 0.0031
19.453 -0.0029 0.0063
19.016 -0.0073 0.0151
18.601 -0.0169 0.0334
18.224 -0.0349 0.0658
17.865 -0.0676 0.1208
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17.503 -0.1268 0.2139
17.124 -0.2352 0.3708
16.716 -0.4367 0.6328
16.248 -0.8293 1.0702
15.732 -1.5356 1.6814
15.411 -2.1372 2.0482
15.079 -2.8634 2.2954
14.785 -3.5418 2.2855
14.484 -4.1869 1.9267
14.237 -4.5916 1.2983
13.895 -4.8116 -0.1128
13.519 -4.3778 -2.2666
13.124 -3.0023 -4.6509
12.559 0.2491 -6.2859
12.070 2.9403 -4.0725
11.605 3.7229 1.0225
11.133 1.9542 6.0941
10.652 -1.3713 6.6399
10.199 -3.3599 1.3740
9.773 -2.4822 -5.2726
9.325 0.6805 -7.6006
8.860 3.1382 -1.7426
8.441 2.1843 5.9550
8.005 -1.1293 7.6227
7.569 -3.0761 0.1991
7.157 -1.3896 -7.5651
6.721 2.0523 -6.1828
6.313 2.7637 3.1900
5.891 -0.1324 8.7656
5.480 -2.7833 2.3579
5.072 -1.5819 -7.5149
4.649 1.9381 -6.5648
4.248 2.4987 4.2347
3.837 -0.6976 8.9149
3.418 -2.7508 -0.8295
3.016 -0.3336 -9.3122
2.607 2.6120 -2.5897
2.173 0.8858 8.9896
1.722 -2.5601 2.9245
1.587 -2.6533 -1.5665

-7 2 14.946 -0.15E-03 -0.21E-03 1.0 516.0

Final results

K = 11 ELAM = 14.946 DELAM = 0.96E-03
HMAX(1,M-1) = -0.015 HMAX(1,M) = 0.000
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NAG Library Routine Document

D02LAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02LAF is a routine for integrating a non-stiff system of second-order ordinary differential equations
using Runge–Kutta–Nystrom techniques.

2 Specification

SUBROUTINE D02LAF (FCN, NEQ, T, TEND, Y, YP, YDP, RWORK, LRWORK, IFAIL)

INTEGER NEQ, LRWORK, IFAIL
REAL (KIND=nag_wp) T, TEND, Y(NEQ), YP(NEQ), YDP(NEQ), RWORK(LRWORK)
EXTERNAL FCN

3 Description

Given the initial values x; y1; y2; . . . ; yNEQ; y01; y
0
2; . . . ; y

0
NEQ D02LAF integrates a non-stiff system of

second-order differential equations of the type

y00i ¼ fi x; y1; y2; . . . ; yNEQ
� �

; i ¼ 1; 2; . . . ;NEQ;

from x ¼ T to x ¼ TEND using a Runge–Kutta–Nystrom formula pair. The system is defined by FCN,
which evaluates fi in terms of x and y1; y2; . . . ; yNEQ, where y1; y2; . . . ; yNEQ are supplied at x.

There are two Runge–Kutta–Nystrom formula pairs implemented in this routine. The lower order
method is intended if you have moderate accuracy requirements and may be used in conjunction with
the interpolation routine D02LZF to produce solutions and derivatives at user-specified points. The
higher order method is intended if you have high accuracy requirements.

In one-step mode the routine returns approximations to the solution, derivative and fi at each
integration point. In interval mode these values are returned at the end of the integration range. You
select the order of the method, the mode of operation, the error control and various optional inputs by a
prior call to D02LXF.

For a description of the Runge–Kutta–Nystrom formula pairs see Dormand et al. (1986a) and Dormand
et al. (1986b) and for a description of their practical implementation see Brankin et al. (1989).

4 References

Brankin R W, Dormand J R, Gladwell I, Prince P J and Seward W L (1989) Algorithm 670: A Runge–
Kutta–Nystrom Code ACM Trans. Math. Software 15 31–40

Dormand J R, El–Mikkawy M E A and Prince P J (1986a) Families of Runge–Kutta–Nystrom
formulae Mathematical Report TPMR 86-1 Teesside Polytechnic

Dormand J R, El–Mikkawy M E A and Prince P J (1986b) High order embedded Runge–Kutta–
Nystrom formulae Mathematical Report TPMR 86-2 Teesside Polytechnic

5 Arguments

1: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (that is the second derivatives y00i ) for given values of its
arguments x, y1; y2; . . . ; yNEQ.
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The specification of FCN is:

SUBROUTINE FCN (NEQ, T, Y, F)

INTEGER NEQ
REAL (KIND=nag_wp) T, Y(NEQ), F(NEQ)

1: NEQ – INTEGER Input

On entry: the number of differential equations.

2: T – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the value of the argument.

4: FðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ;NEQ.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02LAF is called. Arguments denoted as Input must not be changed by this
procedure.

2: NEQ – INTEGER Input

On entry: the number of second-order ordinary differential equations to be solved by D02LAF. It
must contain the same value as the argument NEQ used in a prior call to D02LXF.

Constraint: NEQ � 1.

3: T – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable x.

Constraint: T 6¼ TEND.

On exit: the value of the independent variable, which is usually TEND, unless an error has
occurred or the code is operating in one-step mode. If the integration is to be continued, possibly
with a new value for TEND, T must not be changed.

4: TEND – REAL (KIND=nag_wp) Input

On entry: the end point of the range of integration. If TEND < T on initial entry, integration will
proceed in the negative direction. TEND may be reset, in the direction of integration, before any
continuation call.

5: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yNEQ.

On exit: the computed values of the solution at the exit value of T. If the integration is to be
continued, possibly with a new value for TEND, these values must not be changed.

6: YPðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the derivatives y01; y
0
2; . . . ; y

0
NEQ.

On exit: the computed values of the derivatives at the exit value of T. If the integration is to be
continued, possibly with a new value for TEND, these values must not be changed.
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7: YDPðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: must be unchanged from a previous call to D02LAF.

On exit: the computed values of the second derivative at the exit value of T, unless illegal input
is detected, in which case the elements of YDP may not have been initialized. If the integration is
to be continued, possibly with a new value for TEND, these values must not be changed.

8: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same argument RWORK as supplied to D02LXF. It is used to pass information
from D02LXF to D02LAF, and from D02LAF to both D02LYF and D02LZF. Therefore the
contents of this array must not be changed before the call to D02LAF or calling either of the
routines D02LYF and D02LZF.

9: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D02LAF is called.

This must be the same argument LRWORK as supplied to D02LXF.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Illegal input detected, i.e., one of the following conditions:

on any call, T ¼ TEND, or the value of NEQ or LRWORK has been altered;

on a continuation call, the direction of integration has been changed;

D02LXF had not been called previously, or the previous call to D02LXF resulted in an
error exit.

This error exit can be caused if elements of RWORK have been overwritten.

IFAIL ¼ 2

The maximum number of steps has been attempted. (See argument MAXSTP in D02LXF.) If
integration is to be continued then you need only reset IFAIL and call the routine again and a
further MAXSTP steps will be attempted.

IFAIL ¼ 3

In order to satisfy the error requirements, the step size needed is too small for the machine
precision being used.
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IFAIL ¼ 4

The code has detected two successive error exits at the current value of x and cannot proceed.
Check all input variables.

IFAIL ¼ 5

The code has detected inefficient use of the integration method. The step size has been reduced
by a significant amount too often in order to hit the output points specified by TEND. (Of the last
100 or more successful steps more than 10% are steps with sizes that have had to be reduced by a
factor of greater than a half.)

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of integration is determined by the arguments TOL, THRES and THRESP in a prior call
to D02LXF. Note that only the local error at each step is controlled by these arguments. The error
estimates obtained are not strict bounds but are usually reliable over one step. Over a number of steps
the overall error may accumulate in various ways, depending on the system. The code is designed so
that a reduction in TOL should lead to an approximately proportional reduction in the error. You are
strongly recommended to call D02LAF with more than one value for TOL and to compare the results
obtained to estimate their accuracy.

The accuracy obtained depends on the type of error test used. If the solution oscillates around zero a
relative error test should be avoided, whereas if the solution is exponentially increasing an absolute
error test should not be used. For a description of the error test see the specifications of the arguments
TOL, THRES and THRESP in routine document D02LXF.

8 Parallelism and Performance

D02LAF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02LAF is not threaded in any implementation.

9 Further Comments

If D02LAF fails with IFAIL ¼ 3 then the value of TOL may be so small that a solution cannot be
obtained, in which case the routine should be called again with a larger value for TOL. If the accuracy
requested is really needed then you should consider whether there is a more fundamental difficulty. For
example:

(a) in the region of a singularity the solution components will usually be of a large magnitude.
D02LAF could be used in one-step mode to monitor the size of the solution with the aim of
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trapping the solution before the singularity. In any case numerical integration cannot be continued
through a singularity, and analytical treatment may be necessary;

(b) if the solution contains fast oscillatory components, the routine will require a very small step size
to preserve stability. This will usually be exhibited by excessive computing time and sometimes an
error exit with IFAIL ¼ 3. The Runge–Kutta–Nystrom methods are not efficient in such cases and
you should consider reposing your problem as a system of first-order ordinary differential equations
and then using a routine from Sub-chapter D02M–N with the Blend formulae (see D02MVF).

D02LAF can be used for producing results at short intervals (for example, for tabulation), in two ways.
By far the less efficient is to call D02LAF successively over short intervals, tþ i� 1ð Þ � h to tþ i� h,
although this is the only way if the higher order method has been selected and precisely not what it is
intended for. A more efficient way, only for use when the lower order method has been selected, is to
use D02LAF in one-step mode. The output values of arguments Y, YP, YDP, T and RWORK are set
correctly for a call to D02LZF to compute the solution and derivative at the required points.

10 Example

This example solves the following system (the two body problem)

y001 ¼ �y1= y21 þ y22
� �3=2

y002 ¼ �y2= y21 þ y22
� �3=2

over the range 0; 20½ � with initial conditions y1 ¼ 1:0� �, y2 ¼ 0:0, y01 ¼ 0:0 and y02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �
1� �

� �s
where

�, the eccentricity, is 0:5. The system is solved using the lower order method with relative local error
tolerances 1:0E�4 and 1:0E�5 and default threshold tolerances. D02LAF is used in one-step mode
(ONESTP ¼ :TRUE:) and D02LZF provides solution values at intervals of 2:0.

10.1 Program Text

! D02LAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02lafe_mod

! D02LAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: neq = 2, nin = 5, nout = 6
Integer, Parameter, Public :: lrwork = 16 + 20*neq

Contains
Subroutine fcn(neq,t,y,f)

! Derivatives for two body problem in y’’ = f(t,y) form

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: r

! .. Intrinsic Procedures ..
Intrinsic :: sqrt
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! .. Executable Statements ..
r = sqrt(y(1)**2+y(2)**2)**3
f(1) = -y(1)/r
f(2) = -y(2)/r
Return

End Subroutine fcn
End Module d02lafe_mod

Program d02lafe

! D02LAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02laf, d02lxf, d02lyf, d02lzf, nag_wp
Use d02lafe_mod, Only: fcn, lrwork, neq, nin, nout, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, hnext, hstart, hused, t, tend, &

tinc, tnext, tol, tstart
Integer :: i, ifail, itol, maxstp, natt, nfail, &

nsucc, nwant
Logical :: high, onestp, start

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rwork(:), thres(:), thresp(:), y(:), &

ydp(:), yinit(:), yp(:), ypinit(:), &
ypwant(:), ywant(:)

! .. Executable Statements ..
Write (nout,*) ’D02LAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! neq: number of second-order ordinary differential equations
Read (nin,*) nwant
Allocate (rwork(lrwork),thres(neq),thresp(neq),y(neq),ydp(neq), &

yinit(neq),yp(neq),ypinit(neq),ypwant(nwant),ywant(nwant))
Read (nin,*) high, onestp
Read (nin,*) tinc

! Initial conditions
Read (nin,*) tstart, tend
Read (nin,*) yinit(1:neq)
Read (nin,*) ypinit(1:neq)

loop1: Do itol = 4, 5
tol = 10.0_nag_wp**(-itol)
Write (nout,*)

! Call D02LXF with default THRES,THRESP,MAXSTP and H

thres(1) = zero
thresp(1) = zero
h = zero
maxstp = 0
start = .True.

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02lxf(neq,h,tol,thres,thresp,maxstp,start,onestp,high,rwork, &

lrwork,ifail)

Write (nout,99999) ’Calculation with TOL = ’, tol
Write (nout,99995)(i,i=1,neq)

! Set initial values

y(1:neq) = yinit(1:neq)
yp(1:neq) = ypinit(1:neq)
t = tstart
tnext = t + tinc
Write (nout,99998) t, y(1:neq)
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! Loop point for one-step mode
loop2: Do

ifail = -1
Call d02laf(fcn,neq,t,tend,y,yp,ydp,rwork,lrwork,ifail)

If (ifail>0) Then
Write (nout,99997) ifail, t
Exit loop1

End If

! Loop point for interpolation
Do While (tnext<=t)

ifail = 0
Call d02lzf(neq,t,y,yp,neq,tnext,ywant,ypwant,rwork,lrwork,ifail)

Write (nout,99998) tnext, ywant(1:neq)
tnext = tnext + tinc

End Do

If (t>=tend) Then
Exit loop2

End If

End Do loop2

ifail = 0
Call d02lyf(neq,hnext,hused,hstart,nsucc,nfail,natt,thres,thresp, &

rwork,lrwork,ifail)

Write (nout,*)
Write (nout,99996) ’ Number of successful steps = ’, nsucc
Write (nout,99996) ’ Number of failed steps = ’, nfail

End Do loop1

99999 Format (1X,A,1P,E9.1)
99998 Format (1X,F5.1,2(2X,F9.5))
99997 Format (/,1X,’D02LAF returned with IFAIL = ’,I2,’ at T = ’,1P,E10.3)
99996 Format (1X,A,I5)
99995 Format (/,’ T ’,2(’ Y(’,I1,’) ’))

End Program d02lafe

10.2 Program Data

D02LAF Example Program Data
2 : nwant
.FALSE. .TRUE. : high, onestp
2.0 : tinc
0.0 20.0 : tstart, tend
0.5 0.0 : yinit
0.0 1.73205080756887729352 : ypinit

10.3 Program Results

D02LAF Example Program Results

Calculation with TOL = 1.0E-04

T Y(1) Y(2)
0.0 0.50000 0.00000
2.0 -1.20573 0.61357
4.0 -1.33476 -0.47685
6.0 0.35748 -0.44558
8.0 -1.03762 0.73022

10.0 -1.42617 -0.32658
12.0 0.05515 -0.72032
14.0 -0.82880 0.81788
16.0 -1.48103 -0.16788
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18.0 -0.26719 -0.84223
20.0 -0.57803 0.86339

Number of successful steps = 108
Number of failed steps = 16

Calculation with TOL = 1.0E-05

T Y(1) Y(2)
0.0 0.50000 0.00000
2.0 -1.20573 0.61357
4.0 -1.33476 -0.47685
6.0 0.35748 -0.44558
8.0 -1.03762 0.73022

10.0 -1.42617 -0.32658
12.0 0.05516 -0.72031
14.0 -0.82880 0.81787
16.0 -1.48103 -0.16789
18.0 -0.26718 -0.84223
20.0 -0.57804 0.86338

Number of successful steps = 169
Number of failed steps = 15
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NAG Library Routine Document

D02LXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02LXF is a setup routine which must be called prior to the first call of the integrator D02LAF and
may be called prior to any continuation call to D02LAF.

2 Specification

SUBROUTINE D02LXF (NEQ, H, TOL, THRES, THRESP, MAXSTP, START, ONESTP,
HIGH, RWORK, LRWORK, IFAIL)

&

INTEGER NEQ, MAXSTP, LRWORK, IFAIL
REAL (KIND=nag_wp) H, TOL, THRES(NEQ), THRESP(NEQ), RWORK(LRWORK)
LOGICAL START, ONESTP, HIGH

3 Description

D02LXF permits you to set optional inputs prior to any call of D02LAF. It must be called before the
first call of routine D02LAF and it may be called before any continuation call of routine D02LAF.

4 References

None.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of second-order ordinary differential equations to be solved by D02LAF.

Constraint: NEQ � 1.

2: H – REAL (KIND=nag_wp) Input

On entry: if START ¼ :TRUE:, H may specify an initial step size to be attempted in D02LAF.

If START ¼ :FALSE:, H may specify a step size to override the choice of next step attempted
made internally to D02LAF.

The sign of H is not important, as the absolute value of H is chosen and the appropriate sign is
selected by D02LAF.

If this option is not required then you must set H ¼ 0:0.

3: TOL – REAL (KIND=nag_wp) Input

On entry: must be set to a relative tolerance for controlling the error in the integration by
D02LAF. D02LAF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution. However the actual relation
between TOL and the accuracy of the solution cannot be guaranteed. You are strongly
recommended to repeat the integration with a smaller value of TOL and compare the results. See
the description of THRES and THRESP for further details of how TOL is used.

Constraint: 10� � � TOL � 1:0 (� is the machine precision, see X02AJF).
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4: THRESðNEQÞ – REAL (KIND=nag_wp) array Input
5: THRESPðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: THRES and THRESP may be set to thresholds for use in the error control of D02LAF.
At each step in the numerical integration estimates of the local errors E1 ið Þ and E2 ið Þ in the
solution, yi, and its derivative, y0i, respectively are computed, for i ¼ 1; 2; . . . ;NEQ. For the step
to be accepted conditions of the following type must be satisfied:

max
1�i�NEQ

E1 ið Þ
max THRESðiÞ; yij jð Þ

� �
� TOL;

max
1�i�NEQ

E2 ið Þ
max THRESPðiÞ; y0i

		 		� � !
� TOL:

If one or both of these is not satisfied then the step size is reduced and the solution is
recomputed.

If THRESð1Þ � 0:0 on entry, then a value of 50:0� � is used for THRESðiÞ, for
i ¼ 1; 2; . . . ;NEQ, where � is machine precision. Similarly for THRESP.

Constraints:

THRESð1Þ � 0:0 or THRESðiÞ > 0:0, for i ¼ 1; 2; . . . ;NEQ;
THRESPð1Þ � 0:0 or THRESPðiÞ > 0:0, for i ¼ 1; 2; . . . ;NEQ.

6: MAXSTP – INTEGER Input

On entry: a bound on the number of steps attempted in any one call of D02LAF.

If MAXSTP � 0 on entry, a value of 1000 is used.

7: START – LOGICAL Input/Output

On entry: specifies whether or not the call of D02LAF is for a new problem. START ¼ :TRUE:
indicates that a new problem is to be solved. START ¼ :FALSE: indicates the call of D02LXF is
prior to a continuation call of D02LAF.

On exit: START ¼ :FALSE:.

8: ONESTP – LOGICAL Input

On entry: the mode of operation for D02LAF.

ONESTP ¼ :TRUE:
D02LAF will operate in one-step mode, that is it will return after each successful step.

ONESTP ¼ :FALSE:
D02LAF will operate in interval mode, that is it will return at the end of the integration
interval.

9: HIGH – LOGICAL Input

On entry: if HIGH ¼ :TRUE:, a high-order method will be used, whereas if HIGH ¼ :FALSE:, a
low-order method will be used. (See the specification of D02LAF for further details.)

10: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same argument RWORK supplied to D02LAF. It is used to pass information to
D02LAF and therefore the contents of this array must not be changed before calling D02LAF.

11: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D02LXF is called.
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Constraints:

if HIGH ¼ :TRUE:, LRWORK � 16þ 20� NEQ;
if HIGH ¼ :FALSE:, LRWORK � 16þ 11� NEQ.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

THRESð1Þ > 0:0 and for some i THRESðiÞ � 0:0, 1 � i � NEQ, and/or, THRESPð1Þ > 0:0 and
for some i THRESPðiÞ � 0:0, 1 � i � NEQ.

IFAIL ¼ 2

LRWORK is too small.

IFAIL ¼ 3

TOL does not satisfy 10� � � TOL � 1:0 (� is the machine precision, see X02AJF)

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

D02LXF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02LXF is not threaded in any implementation.

9 Further Comments

Prior to a continuation call of D02LAF, you may reset any of the optional parameters by calling
D02LXF with START ¼ :FALSE:. You may reset:

H to override the internal step size selection;

TOL, THRES, THRESP to change the error requirements;

MAXSTP to increase or decrease the number of steps attempted before an error exit is
returned;

ONESTP to change the mode of operation of D02LAF;

HIGH to change the order of the method being used.

10 Example

See Section 10 in D02LAF.
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NAG Library Routine Document

D02LYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02LYF is a diagnostic routine which may be called after a call of the integrator D02LAF.

2 Specification

SUBROUTINE D02LYF (NEQ, HNEXT, HUSED, HSTART, NSUCC, NFAIL, NATT, THRES,
THRESP, RWORK, LRWORK, IFAIL)

&

INTEGER NEQ, NSUCC, NFAIL, NATT, LRWORK, IFAIL
REAL (KIND=nag_wp) HNEXT, HUSED, HSTART, THRES(NEQ), THRESP(NEQ),

RWORK(LRWORK)
&

3 Description

D02LYF permits you to extract information about the performance of D02LAF and the setting of some
optional parameters. It may be called only after a call of D02LAF.

4 References

None.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of second-order ordinary differential equations solved by D02LAF. It must
be the same as the argument NEQ supplied to D02LAF and D02LXF.

2: HNEXT – REAL (KIND=nag_wp) Output

On exit: the next step size which D02LAF, if called, would attempt.

3: HUSED – REAL (KIND=nag_wp) Output

On exit: the last successful step size used by D02LAF.

4: HSTART – REAL (KIND=nag_wp) Output

On exit: the initial step size used on the current integration problem by D02LAF.

5: NSUCC – INTEGER Output

On exit: the number of steps attempted by D02LAF that have been successful since the start of
the current problem.

6: NFAIL – INTEGER Output

On exit: the number of steps attempted by D02LAF that have failed since the start of the current
problem.
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7: NATT – INTEGER Output

On exit: the number of steps attempted before the initial step was successful. Over a large
number of problems the cost of an attempted step of this type is approximately half that of a
normal attempted step.

8: THRESðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: the ith solution threshold value used in the error control strategy. (See D02LXF.)

9: THRESPðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: the ith derivative threshold value used in the error control strategy. (See D02LXF.)

10: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

On entry: this must be the same argument RWORK as supplied to D02LAF. It is used to pass
information from D02LAF to D02LYF and therefore the contents of this array must not be
changed before calling D02LYF.

11: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D02LYF is called.

This must be the same argument LRWORK as supplied to D02LXF.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

D02LAF has not been called, or one or both of the arguments NEQ and LRWORK does not
match the corresponding argument supplied to D02LXF.

This error exit can be caused if elements of RWORK have been overwritten.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02LYF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02LYF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D02LAF.
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NAG Library Routine Document

D02LZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02LZF interpolates components of the solution of a non-stiff system of second-order differential
equations from information provided by the integrator D02LAF, when the low-order method has been
used.

2 Specification

SUBROUTINE D02LZF (NEQ, T, Y, YP, NWANT, TWANT, YWANT, YPWANT, RWORK,
LRWORK, IFAIL)

&

INTEGER NEQ, NWANT, LRWORK, IFAIL
REAL (KIND=nag_wp) T, Y(NEQ), YP(NEQ), TWANT, YWANT(NWANT),

YPWANT(NWANT), RWORK(LRWORK)
&

3 Description

D02LZF evaluates the first NWANT ( � NEQ) components of the solution of a non-stiff system of
second-order ordinary differential equations at any point using a special Runge–Kutta–Nystrom
formula (see Dormand and Prince (1986)) and information generated by D02LAF when the low-order
method has been used. This information must be presented unchanged to D02LZF. D02LZF should not
normally be used to extrapolate outside the range of the values from D02LAF.

4 References

Dormand J R and Prince P J (1986) Runge–Kutta–Nystrom triples Mathematical Report TP-CS-86-05
Teesside Polytechnic

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of second-order ordinary differential equations being solved by D02LAF. It
must contain the same value as the argument NEQ in a prior call to D02LAF.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value at which the solution and its derivative have been computed (as
returned in argument T on output from D02LAF).

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the ith component of the solution at t, for i ¼ 1; 2; . . . ;NEQ, as returned from
D02LAF.

4: YPðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the ith component of the derivative at t, for i ¼ 1; 2; . . . ;NEQ, as returned from
D02LAF.
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5: NWANT – INTEGER Input

On entry: the number of components of the solution and derivative whose values at TWANT are
required. The first NWANT components are evaluated.

Constraint: 1 � NWANT � NEQ.

6: TWANT – REAL (KIND=nag_wp) Input

On entry: the point at which components of the solution and derivative are to be evaluated.
TWANT should not normally be an extrapolation point, that is TWANT should satisfy

told � TWANT � T;

or if integration is proceeding in the negative direction

told � TWANT � T;

where told is the previous integration point which is held in an element of the array RWORK and
is, to within rounding, T� HUSED. (HUSED is given by D02LYF.) Extrapolation is permitted
but not recommended, and IFAIL ¼ 2 is returned whenever extrapolation is attempted.

7: YWANTðNWANTÞ – REAL (KIND=nag_wp) array Output

On exit: the calculated value of the ith component of the solution at t ¼ TWANT, for
i ¼ 1; 2; . . . ;NWANT.

8: YPWANTðNWANTÞ – REAL (KIND=nag_wp) array Output

On exit: the calculated value of the ith component of the derivative at t ¼ TWANT, for
i ¼ 1; 2; . . . ;NWANT.

9: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

On entry: this must be the same argument RWORK as supplied to D02LAF. It is used to pass
information from D02LAF to D02LZF and therefore the contents of this array must not be
changed before calling D02LZF.

10: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D02LZF is called.

This must be the same argument LRWORK as supplied to the setup routine D02LXF.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

If D02LZF is to be used for extrapolation at TWANT, IFAIL should be set to 1 before entry. It is
then essential to test the value of IFAIL on exit.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Illegal input detected, i.e., one of the following conditions:

– D02LAF has not been called;

– one or both of the arguments NEQ and LRWORK does not match the corresponding argument
supplied to the setup routine D02LXF;

– no integration steps have been taken since the last call to D02LXF with START ¼ :TRUE:;
– NWANT < 1 or NWANT > NEQ.

This error exit can be caused if elements of RWORK have been overwritten.

IFAIL ¼ 2

D02LZF has been called for extrapolation. The values of the solution and its derivative at
TWANT have been calculated and placed in YWANT and YPWANT before returning with this
error number (see Section 7).

IFAIL ¼ 3

D02LAF last used the high order method to integrate the system of differential equations.
Interpolation is not permitted with this method.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The error in interpolation is of a similar order to the error arising from the integration using D02LAF
with the lower order method.

The same order of accuracy can be expected when extrapolating using D02LZF. However, the actual
error in extrapolation will, in general, be much larger than for interpolation.

8 Parallelism and Performance

D02LZF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02LZF is not threaded in any implementation.
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9 Further Comments

When interpolation for only a few components is required then it is more efficient to order the
components of interest so that they are numbered first.

10 Example

See Section 10 in D02LAF.
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NAG Library Routine Document

D02MCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02MCF is a setup routine which must be called prior to a continuation call to D02NEF.

2 Specification

SUBROUTINE D02MCF (ICOM)

INTEGER ICOM(15)

3 Description

D02MCF is provided to permit you to signal that the next call to D02NEF is a continuation call. In
particular, if D02NEF exits because the maximum number of integration steps has been exceeded, then
a call to D02MCF resets the step counter allowing the integration to proceed.

4 References

See Section 3 in D02NEF.

5 Arguments

1: ICOMð15Þ – INTEGER array Communication Array

This must be the same array ICOM as passed to the integration routine D02NEF; D02MCF does
not require access to all of that array, hence the smaller dimension given here.

On entry: contains details of the current state of integration as returned by D02NEF.

On exit: one or more of the values is changed to signal to the integrator that a continuation call is
being made. This will reset the step counter to zero.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02MCF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

See Section 10 in D02NEF.
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NAG Library Routine Document

D02MVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02MVF is an integration method specific setup routine which must be called prior to linear algebra
setup routines and integrators from the SPRINT suite of routines, if the DASSL implementation of
Backward Differentiation Formulae (BDF) is to be used. Note that this method is also available,
independent from the SPRINT suite, using D02NEF

2 Specification

SUBROUTINE D02MVF (NEQMAX, SDYSAV, MAXORD, CON, TCRIT, HMIN, HMAX, H0,
MAXSTP, MXHNIL, NORM, RWORK, IFAIL)

&

INTEGER NEQMAX, SDYSAV, MAXORD, MAXSTP, MXHNIL, IFAIL
REAL (KIND=nag_wp) CON(3), TCRIT, HMIN, HMAX, H0, RWORK(50+4*NEQMAX)
CHARACTER(1) NORM

3 Description

An integrator setup routine must be called before the call to any linear algebra setup routine or
integrator from the SPRINT suite of routines in this sub-chapter. This setup routine, D02MVF, makes
the choice of the DASSL integrator and permits you to define options appropriate to this choice.
Alternative choices of integrator from this suite are the BDF method and the BLEND method which can
be chosen by initial calls to D02NVF or D02NWF respectively.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQMAX – INTEGER Input

On entry: a bound on the maximum number of differential equations to be solved.

Constraint: NEQMAX � 1.

2: SDYSAV – INTEGER Input

On entry: the second dimension of the array YSAV that will be supplied to the integrator, as
declared in the (sub)program from which the integrator is called (e.g., see D02NBF).

Constraint: SDYSAV � MAXORDþ 3.

3: MAXORD – INTEGER Input

On entry: the maximum order to be used for the BDF method. If MAXORD ¼ 0 or
MAXORD > 5 then MAXORD ¼ 5 is assumed.

Constraint: MAXORD � 0.
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4: CONð3Þ – REAL (KIND=nag_wp) array Input/Output

On entry: values to be used to control step size choice during integration. If any CONðiÞ ¼ 0:0
on entry, it is replaced by its default value described below. In most cases this is the
recommended setting.

CONð1Þ, CONð2Þ, and CONð3Þ are factors used to bound step size changes. If the current step
size h fails, then the modulus of the next step size is bounded by CONð1Þ � hj j. The default
value of CONð1Þ is 2:0. Note that the new step size may be used with a method of different order
to the failed step. If the initial step size is h, then the modulus of the step size on the second step
is bounded by CONð3Þ � hj j. At any other stage in the integration, if the current step size is h,
then the modulus of the next step size is bounded by CONð2Þ � hj j. The default values are 10:0
for CONð2Þ and 1000:0 for CONð3Þ.
Constraints:

These constraints must be satisfied after any zero values have been replaced by default values.

0:0 < CONð1Þ < CONð2Þ < CONð3Þ;
CONð2Þ > 1:0;
CONð3Þ > 1:0.

On exit: the values actually to be used by the integration routine.

5: TCRIT – REAL (KIND=nag_wp) Input

On entry: a point beyond which integration must not be attempted. The use of TCRIT is
described under the argument ITASK in the specification for the integrator (e.g., see D02NBF). A
value, 0:0 say, must be specified even if ITASK subsequently specifies that TCRIT will not be
used.

6: HMIN – REAL (KIND=nag_wp) Input

On entry: the minimum absolute step size to be allowed. Set HMIN ¼ 0:0 if this option is not
required.

7: HMAX – REAL (KIND=nag_wp) Input

On entry: the maximum absolute step size to be allowed. Set HMAX ¼ 0:0 if this option is not
required.

8: H0 – REAL (KIND=nag_wp) Input

On entry: the step size to be attempted on the first step. Set H0 ¼ 0:0 if the initial step size is
calculated internally.

9: MAXSTP – INTEGER Input

On entry: the maximum number of steps to be attempted during one call to the integrator after
which it will return with IFAIL ¼ 2 (e.g., see D02NBF). Set MAXSTP ¼ 0 if no limit is to be
imposed.

10: MXHNIL – INTEGER Input

On entry: the maximum number of warnings printed (if ITRACE � 0, e.g., see D02NBF) per
problem when tþ h ¼ t on a step (h ¼ current step size). If MXHNIL � 0, a default value of 10
is assumed.

11: NORM – CHARACTER(1) Input

On entry: indicates the type of norm to be used.

NORM ¼ M
Maximum norm.
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NORM ¼ A
Averaged L2 norm.

NORM ¼ D
Is the same as `A'.

If vnorm denotes the norm of the vector v of length n, then for the averaged L2 norm

vnormB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

vi
wi

� �2
vuut ;

while for the maximum norm

vnorm ¼ max
1�i�n

vi
wi

				 				:
If you wish to weight the maximum norm or the L2 norm, then RTOL and ATOL should be
scaled appropriately on input to the integrator (see under ITOL in the specification of the
integrator for the formulation of the weight vector wi from RTOL and ATOL, e.g., see D02NBF).

Only the first character to the actual argument NORM is passed to D02MVF; hence it is
permissible for the actual argument to be more descriptive, e.g., ‘Maximum’, ‘Average L2’ or
‘Default’ in a call to D02MVF.

Constraint: NORM ¼ M , A or D .

12: RWORKð50þ 4� NEQMAXÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same workspace array as the array RWORK supplied to the integrator. It is used
to pass information from the setup routine to the integrator and therefore the contents of this
array must not be changed before calling the integrator.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NEQMAX < 1,
or SDYSAV < MAXORDþ 3,
or MAXORD < 0,
or MAXORD > 5,
or invalid value for element of the array CON,
or NORM 6¼ M , A or D .
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02MVF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example solves the plane pendulum problem defined by the equations:

x0 ¼ u
y0 ¼ v
u0 ¼ ��x
v0 ¼ ��y� 1

x2 þ y2 ¼ 1

The additional algebraic constraint xuþ yv ¼ 0 can be derived, and after appropriate substitution and
manipulation to avoid a singular Jacobian solves the equations:

y01 ¼ y3 � y6y1
y02 ¼ y4 � y6y2
y03 ¼ �y5y1
y04 ¼ �y5y2 � 1
0 ¼ y1y3 þ y2y4
0 ¼ y21 þ y22 � 1

with given initial conditions and derivatives.

10.1 Program Text

! D02MVF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02mvfe_mod

! D02MVF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Accessibility Statements ..

Private
Public :: jac, resid

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter, Public :: iset = 1, neq = 6, nin = 5, nout = 6
Integer, Parameter, Public :: nrw = 50 + 4*neq
Integer, Parameter, Public :: nwkjac = neq*(neq+1)
Integer, Parameter, Public :: sdysav = 8
Integer, Parameter, Public :: ldysav = neq

Contains
Subroutine resid(neq,t,y,ydot,r,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)

! .. Executable Statements ..
If (ires==-1) Then

r(1) = -ydot(1)
r(2) = -ydot(2)
r(3) = -ydot(3)
r(4) = -ydot(4)
r(5:6) = 0.0E0_nag_wp

Else
r(1) = y(3) - y(6)*y(1) - ydot(1)
r(2) = y(4) - y(6)*y(2) - ydot(2)
r(3) = -y(5)*y(1) - ydot(3)
r(4) = -y(5)*y(2) - one - ydot(4)
r(5) = y(1)*y(3) + y(2)*y(4)
r(6) = y(1)**2 + y(2)**2 - one

End If
Return

End Subroutine resid

Subroutine jac(neq,t,y,ydot,h,d,p)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: d, h, t
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: p(neq,neq)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: hxd

! .. Executable Statements ..
hxd = h*d
p(1,1) = (one+hxd*y(6))
p(1,3) = -hxd
p(1,6) = hxd*y(1)
p(2,2) = (one+hxd*y(6))
p(2,4) = -hxd
p(2,6) = hxd*y(2)
p(3,1) = hxd*y(5)
p(3,3) = one
p(3,5) = hxd*y(1)
p(4,2) = hxd*y(5)
p(4,4) = one
p(4,5) = hxd*y(2)
p(5,1) = -hxd*y(3)
p(5,2) = -hxd*y(4)
p(5,3) = -hxd*y(1)
p(5,4) = -hxd*y(2)
p(6,1) = -two*hxd*y(1)
p(6,2) = -two*hxd*y(2)
Return
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End Subroutine jac
End Module d02mvfe_mod

Program d02mvfe

! D02MVF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02mvf, d02nby, d02ngf, d02nsf, nag_wp, x04abf
Use d02mvfe_mod, Only: iset, jac, ldysav, neq, nin, nout, nrw, nwkjac, &

one, resid, sdysav
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: h0, hmax, hmin, t, tcrit, tout
Integer :: i, ifail, itask, itol, itrace, &

maxord, maxstp, mxhnil, outchn
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), &
wkjac(:), y(:), ydot(:), ysav(:,:)

Real (Kind=nag_wp) :: con(3)
Integer :: inform(23)
Logical :: lderiv(2)

! .. Executable Statements ..
Write (nout,*) ’D02MVF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Allocations based on number of differential equations (neq)

Allocate (atol(neq),rtol(neq),rwork(nrw),wkjac(nwkjac),y(neq),ydot(neq), &
ysav(ldysav,sdysav))

! Read algorithmic parameters
Read (nin,*) maxord, maxstp, mxhnil
Read (nin,*) hmin, hmax, h0
Read (nin,*) rtol(1), atol(1)
Read (nin,*) itrace, itol
Read (nin,*) t, tout
Read (nin,*) y(1:neq)
Read (nin,*) itask

! Set initial derivatives and other values
outchn = nout
Call x04abf(iset,outchn)
con(1:3) = 0.0_nag_wp
ydot(1) = y(3) - y(6)*y(1)
ydot(2) = y(4) - y(6)*y(2)
ydot(3) = -y(5)*y(1)
ydot(4) = -y(5)*y(2) - one
ydot(5) = -3.0_nag_wp*y(4)
ydot(6) = 0.0_nag_wp
tcrit = tout

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02mvf(neq,sdysav,maxord,con,tcrit,hmin,hmax,h0,maxstp,mxhnil, &

’AVERAGE-L2’,rwork,ifail)

Write (nout,*)
Write (nout,99999) ’Pendulum problem with relative tolerance’, rtol(1)
Write (nout,99999) ’ and absolute tolerance’, atol(1)
Write (nout,99998)(i,i=1,neq)
Write (nout,99997) t, y(1:neq)

ifail = 0
Call d02nsf(neq,neq,’ANALYTIC’,nwkjac,rwork,ifail)

lderiv(1) = .True.
lderiv(2) = .True.
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ifail = 0
Call d02ngf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform,resid, &

ysav,sdysav,jac,wkjac,nwkjac,d02nby,lderiv,itask,itrace,ifail)

Write (nout,99997) t, y(1:neq)

99999 Format (1X,A40,’ =’,1P,E8.1)
99998 Format (/,1X,’ t ’,3X,6(’ y’,I1))
99997 Format (1X,F7.4,2X,6(F8.4))

End Program d02mvfe

10.2 Program Data

D02MVF Example Program Data
5 5000 5 : maxord, maxstp, mxhnil
1.0E-10 0.0 0.0 : hmin, hmax, h0
1.0E-3 1.0E-6 : rtol, atol
0 1 : itrace, itol
0.0 3.14159265358979323846 : t, tout
1.0 0.0 0.0 0.0 0.0 0.0 : initial y
4 : itask

10.3 Program Results

D02MVF Example Program Results

Pendulum problem with relative tolerance = 1.0E-03
and absolute tolerance = 1.0E-06

t y1 y2 y3 y4 y5 y6
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.1416 -0.9856 -0.1694 -0.0986 0.5736 0.5080 0.0000
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NAG Library Routine Document

D02MWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02MWF is a setup routine which must be called prior to the integrator D02NEF, if the DASSL
implementation of Backward Differentiation Formulae (BDF) is to be used.

2 Specification

SUBROUTINE D02MWF (NEQ, MAXORD, JCEVAL, HMAX, H0, ITOL, ICOM, LICOM,
COM, LCOM, IFAIL)

&

INTEGER NEQ, MAXORD, ITOL, ICOM(LICOM), LICOM, LCOM, IFAIL
REAL (KIND=nag_wp) HMAX, H0, COM(LCOM)
CHARACTER(1) JCEVAL

3 Description

This integrator setup routine must be called before the first call to the integrator D02NEF. This setup
routine D02MWF permits you to define options for the DASSL integrator, such as: whether the
Jacobian is to be provided or is to be approximated numerically by the integrator; the initial and
maximum step-sizes for the integration; whether relative and absolute tolerances are system wide or per
system equation; and the maximum order of BDF method permitted.

4 References

None.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential-algebraic equations to be solved.

Constraint: NEQ � 1.

2: MAXORD – INTEGER Input

On entry: the maximum order to be used for the BDF method. Orders up to 5th order are
available; setting MAXORD > 5 means that the maximum order used will be 5.

Constraint: 1 � MAXORD.

3: JCEVAL – CHARACTER(1) Input

On entry: specifies the technique to be used to compute the Jacobian.

JCEVAL ¼ N
The Jacobian is to be evaluated numerically by the integrator.

JCEVAL ¼ A
You must supply a subroutine to evaluate the Jacobian on a call to the integrator.
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Only the first character of the actual paramater JCEVAL is passed to D02MWF; hence it is
permissible for the actual argument to be more descriptive, e.g., ‘Numerical’ or ‘Analytical’, on a
call to D02MWF.

Constraint: JCEVAL ¼ N or A .

4: HMAX – REAL (KIND=nag_wp) Input

On entry: the maximum absolute step size to be allowed. Set HMAX ¼ 0:0 if this option is not
required.

Constraint: HMAX � 0:0.

5: H0 – REAL (KIND=nag_wp) Input

On entry: the step size to be attempted on the first step. Set H0 ¼ 0:0 if the initial step size is
calculated internally.

6: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test.

ITOL ¼ 0
RTOL and ATOL are single element vectors.

ITOL ¼ 1
RTOL and ATOL are vectors. This should be chosen if you want to apply different
tolerances to each equation in the system.

See D02NEF.

Note: the tolerances must either both be single element vectors or both be vectors of length NEQ.

Constraint: ITOL ¼ 0 or 1.

7: ICOMðLICOMÞ – INTEGER array Communication Array

On exit: used to communicate details of the task to be carried out to the integration routine
D02NEF.

8: LICOM – INTEGER Input

On entry: the dimension of the array ICOM as declared in the (sub)program from which
D02MWF is called.

Constraint: LICOM � NEQþ 50.

9: COMðLCOMÞ – REAL (KIND=nag_wp) array Communication Array

On exit: used to communicate problem parameters to the integration routine D02NEF. This must
be the same communication array as the array COM supplied to D02NEF. In particular, the
values of HMAX and H0 are contained in COM.

10: LCOM – INTEGER Input

On entry: the dimension of the array COM as declared in the (sub)program from which
D02MWF is called.

Constraints:

the array COM must be large enough for the requirements of D02NEF. That is:

if the system Jacobian is dense, LCOM � 40þ MAXORDþ 4ð Þ � NEQþ NEQ2;
if the system Jacobian is banded,
LCOM � 40þ MAXORDþ 4ð Þ � NEQþ 2�MLþMU þ 1ð Þ � NEQþ 2�
NEQ= MLþMUþ 1ð Þ þ 1ð Þ.
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Here ML and MU are the lower and upper bandwidths respectively that are to be specified in a
subsequent call to D02NPF.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NEQ ¼ valueh i.
Constraint: NEQ � 1.

IFAIL ¼ 2

On entry, MAXORD ¼ valueh i.
Constraint: MAXORD � 1.

IFAIL ¼ 3

On entry, JCEVAL has an illegal value: JCEVAL ¼ valueh i.
Constraint: JCEVAL ¼ N or A .

IFAIL ¼ 4

On entry, HMAX ¼ valueh i.
Constraint: HMAX � 0:0.

IFAIL ¼ 6

On entry, ITOL ¼ valueh i.
Constraint: ITOL ¼ 0 or 1.

IFAIL ¼ 8

On entry, LICOM ¼ valueh i and NEQ ¼ valueh i.
Constraint: LICOM � 50þ NEQ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02MWF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example solves the plane pendulum problem, defined by the following equations:

x0 ¼ u
y0 ¼ v
u0 ¼ ��x
v0 ¼ ��y� 1

x2 þ y2 ¼ 1:

Differentiating the algebraic constraint once, a new algebraic constraint is obtained

xuþ yv ¼ 0:

Differentiating the algebraic constraint one more time, substituting for x0, y0, u0, v0 and using
x2 þ y2 � 1 ¼ 0, the corresponding DAE system includes the differential equations and the algebraic
equation in �:

u2 þ v2 � �� y ¼ 0:

We solve the reformulated DAE system

y01 ¼ y3
y02 ¼ y4
y03 ¼ �y5 � y1
y04 ¼ �y5 � y2 � 1

y23 þ y24 � y5 � y2 ¼ 0:

For our experiments, we take consistent initial values

y1 0ð Þ ¼ 1; y2 0ð Þ ¼ 0; y3 0ð Þ ¼ 0; y4 0ð Þ ¼ 1 and y5 0ð Þ ¼ 1

at t ¼ 0.

10.1 Program Text

! D02MWF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02mwfe_mod

! D02MWF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
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Private
Public :: jac, res

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, neq = 5, nin = 5, nout = 6
Integer, Parameter, Public :: licom = 50 + neq

Contains
Subroutine res(neq,t,y,ydot,r,ires,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
r(1) = y(3) - ydot(1)
r(2) = y(4) - ydot(2)
r(3) = -y(5)*y(1) - ydot(3)
r(4) = -y(5)*y(2) - 1.0_nag_wp - ydot(4)
r(5) = y(3)**2 + y(4)**2 - y(5) - y(2)
Return

End Subroutine res

Subroutine jac(neq,t,y,ydot,pd,cj,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: cj, t
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: pd(*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
pd(1) = -cj
pd(3) = -y(5)
pd(7) = -cj
pd(9) = -y(5)
pd(10) = -1.0_nag_wp
pd(11) = 1.0_nag_wp
pd(13) = -cj
pd(15) = 2.0_nag_wp*y(3)
pd(17) = 1.0_nag_wp
pd(19) = -cj
pd(20) = 2.0_nag_wp*y(4)
pd(23) = -y(1)
pd(24) = -y(2)
pd(25) = -1.0_nag_wp
Return

End Subroutine jac
End Module d02mwfe_mod

Program d02mwfe

! D02MWF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02mwf, d02nef, nag_wp, x04abf
Use d02mwfe_mod, Only: iset, jac, licom, neq, nin, nout, res

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: g1, g2, h0, hmax, t, tout
Integer :: i, ifail, ijac, itask, itol, lcom, &

maxord, nadv
Character (8) :: jceval

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: atol(:), com(:), rtol(:), y(:), &

ydot(:)
Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icom(:)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’D02MWF Example Program Results’
Write (nout,*)

! Skip heading in data file
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Read (nin,*)
! neq: number of differential-algebraic equations

Read (nin,*) maxord
lcom = 40 + (maxord+4)*neq + neq**2
Allocate (atol(neq),com(lcom),rtol(neq),y(neq),ydot(neq),icom(licom))
nadv = nout
Call x04abf(iset,nadv)
Read (nin,*) t, tout
Read (nin,*) itol, itask
Read (nin,*) rtol(1:neq)
Read (nin,*) atol(1:neq)

! Set initial values
Read (nin,*) y(1:neq)
Read (nin,*) hmax, h0
Read (nin,*) ijac
If (ijac==1) Then

jceval = ’Analytic’
Else

jceval = ’Numeric’
End If

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02mwf(neq,maxord,jceval,hmax,h0,itol,icom,licom,com,lcom,ifail)

Write (nout,99995)(i,i=1,neq)
Write (nout,99998) t, y(1:neq)
ydot(1:neq) = 0.0_nag_wp

loop: Do
Call d02nef(neq,t,tout,y,ydot,rtol,atol,itask,res,jac,icom,com,lcom, &

iuser,ruser,ifail)

Write (nout,99998) t, y(1:neq)
Write (nout,99999) itask
If ((itask>=0) .And. (itask<=3)) Then

If (t>=tout) Then
g1 = y(1)**2 + y(2)**2 - 1.0_nag_wp
g2 = y(1)*y(3) + y(2)*y(4)
Write (nout,99997) g1
Write (nout,99996) g2
Exit loop

End If
Else

Exit loop
End If

End Do loop

99999 Format (/,’ D02NEF returned with ITASK = ’,I4,/)
99998 Format (1X,F7.4,2X,5(F11.6))
99997 Format (1X,’The position-level constraint G1 = ’,E12.4)
99996 Format (1X,’The velocity-level constraint G2 = ’,E12.4)
99995 Format (/,1X,’ t ’,3X,5(’ y(’,I1,’)’))

End Program d02mwfe

10.2 Program Data

D02MWF Example Program Data
5 : maxord
0.0 1.0 : t, tout
1 0 : itol, itask
1.0E-8 1.0E-8 1.0E-8 1.0E-8 1.0E-8 : rtol
1.0E-8 1.0E-8 1.0E-8 1.0E-8 1.0E-8 : atol
1.0 0.0 0.0 1.0 1.0 : y
0.0 0.0 : hmax, h0
1 : ijac
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10.3 Program Results

D02MWF Example Program Results

t y(1) y(2) y(3) y(4) y(5)
0.0000 1.000000 0.000000 0.000000 1.000000 1.000000
1.0000 0.867349 0.497701 -0.033748 0.058813 -0.493103

D02NEF returned with ITASK = 3

The position-level constraint G1 = -0.8580E-08
The velocity-level constraint G2 = -0.3005E-07
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D02MZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02MZF interpolates components of the solution of a system of first-order differential equations from
information provided by those integrators in Sub-chapter D02M–N using methods set up by calls to
D02MVF, D02NVF or D02NWF.

2 Specification

SUBROUTINE D02MZF (TSOL, SOL, M, LDYSAV, NEQ, YSAV, SDYSAV, RWORK,
IFAIL)

&

INTEGER M, LDYSAV, NEQ, SDYSAV, IFAIL
REAL (KIND=nag_wp) TSOL, SOL(M), YSAV(LDYSAV,SDYSAV), RWORK(50+4*NEQ)

3 Description

D02MZF evaluates the first M components of the solution of a system of ordinary differential equations
at any point using natural polynomial interpolation based on information generated by the integrator.
This information must be passed unchanged to D02MZF. D02MZF should not normally be used to
extrapolate outside the range of values obtained from the above routine.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: TSOL – REAL (KIND=nag_wp) Input

On entry: the point at which the first M components of the solution are to be evaluated. TSOL
should not normally be an extrapolation point. Extrapolation is permitted but not recommended.

2: SOLðMÞ – REAL (KIND=nag_wp) array Output

On exit: the calculated value of the solution at TSOL.

3: M – INTEGER Input

On entry: the number of components of the solution whose values are required.

Constraint: 1 � M � NEQ.

4: LDYSAV – INTEGER Input

On entry: the value used for the argument LDYSAV when calling the integrator.

Constraint: LDYSAV � 1.

5: NEQ – INTEGER Input

On entry: the value used for the argument NEQ when calling the integrator.

Constraint: 1 � NEQ � LDYSAV.
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6: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Input

On entry: the values provided in the array YSAV on return from the integrator.

7: SDYSAV – INTEGER Input

On entry: the value used for the argument SDYSAV when calling the integrator.

8: RWORKð50þ 4� NEQÞ – REAL (KIND=nag_wp) array Input

On entry: the values provided in the array RWORK on return from the integrator.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or LDYSAV < 1,
or NEQ < 1,
or M > NEQ,
or NEQ > LDYSAV.

IFAIL ¼ 2

On entry, when accessing an element of the array RWORK an unexpected quantity was found.
You have not passed the correct array to D02MZF or has overwritten elements of this array.

IFAIL ¼ 3

On entry, D02MZF has been called for extrapolation. Before returning with this error exit, the
value of the solution at TSOL is calculated and placed in SOL.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The solution values returned will be of a similar accuracy to those computed by the integrator.

8 Parallelism and Performance

D02MZF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02MZF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example solves the well-known stiff Robertson problem written in implicit form

r1 ¼ �0:04a þ 1:0E4bc � a0

r2 ¼ 0:04a � 1:0E4bc � 3:0E7b2 � b0

r3 ¼ 3:0E7b2 � c0

with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 over the range 0; 0:1½ � with vector error control
(ITOL ¼ 4), the BDF method (setup routine D02NVF) and functional iteration. The Jacobian is
calculated numerically if the functional iteration encounters difficulty and the integration is in one-step
mode (ITASK ¼ 2), with natural interpolation to calculate the solution at intervals of 0:02 using
D02MZF externally. D02NBY is used for MONITR.

10.1 Program Text

! D02MZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02mzfe_mod

! D02MZF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: resid

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: tstep = 0.02_nag_wp
Integer, Parameter, Public :: iset = 1, neq = 3, nin = 5, nout = 6
Integer, Parameter, Public :: nrw = 50 + 4*neq
Integer, Parameter, Public :: nwkjac = neq*(neq+1)
Integer, Parameter, Public :: sdysav = 6
Integer, Parameter, Public :: ldysav = neq

Contains
Subroutine resid(neq,t,y,ydot,r,ires)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp
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Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)

! .. Executable Statements ..
r(1:3) = -ydot(1:3)
If (ires==1) Then

r(1) = -alpha*y(1) + beta*y(2)*y(3) + r(1)
r(2) = alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2) + r(2)
r(3) = gamma*y(2)*y(2) + r(3)

End If
Return

End Subroutine resid
End Module d02mzfe_mod

Program d02mzfe

! D02MZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02mzf, d02nby, d02ngf, d02ngz, d02nsf, d02nvf, &

d02nyf, nag_wp, x04abf
Use d02mzfe_mod, Only: iset, ldysav, neq, nin, nout, nrw, nwkjac, resid, &

sdysav, tstep
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, h0, hmax, hmin, hu, t, tcrit, &
tcur, tolsf, tout, xout

Integer :: i, ifail, imxer, iout, itask, itol, &
itrace, maxord, maxstp, mxhnil, &
niter, nje, nq, nqu, nre, nst, &
outchn, pstat

Logical :: petzld
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), sol(:), &
wkjac(:), y(:), ydot(:), ysav(:,:)

Real (Kind=nag_wp) :: con(6)
Integer :: inform(23)
Logical, Allocatable :: algequ(:)
Logical :: lderiv(2)

! .. Executable Statements ..
Write (nout,*) ’D02MZF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Allocations based on number of differential equations (neq)
Allocate (atol(neq),rtol(neq),rwork(nrw),sol(neq),wkjac(nwkjac),y(neq), &

ydot(neq),ysav(ldysav,sdysav),algequ(neq))

! Read algorithmic parameters
Read (nin,*) maxord, maxstp, mxhnil, pstat
Read (nin,*) petzld
Read (nin,*) hmin, hmax, h0, tcrit
Read (nin,*) t, tout
Read (nin,*) itol
Read (nin,*) y(1:neq)
Read (nin,*) lderiv(1:2)
Read (nin,*) rtol(1:neq)
Read (nin,*) atol(1:neq)

outchn = nout
Call x04abf(iset,outchn)
con(1:6) = 0.0_nag_wp
itask = 2
itrace = 0
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! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02nvf(neq,sdysav,maxord,’Functional-iteration’,petzld,con,tcrit, &

hmin,hmax,h0,maxstp,mxhnil,’Average-L2’,rwork,ifail)

! Linear algebra setup.
ifail = 0
Call d02nsf(neq,neq,’Numerical’,nwkjac,rwork,ifail)

Write (nout,99994)(i,i=1,neq)
Write (nout,99999) t, y(1:neq)

! First value of t to interpolate and print solution at.
iout = 1
xout = tstep

! Integrate one step at a time and overshoot tout (itask=2).
steps: Do

ifail = 0
Call d02ngf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform, &

resid,ysav,sdysav,d02ngz,wkjac,nwkjac,d02nby,lderiv,itask,itrace, &
ifail)

! Get Current value of t (tcur) and last step used (hu)
Call d02nyf(neq,neq,hu,h,tcur,tolsf,rwork,nst,nre,nje,nqu,nq,niter, &

imxer,algequ,inform,ifail)

interp: Do
If (tcur-hu<xout .And. xout<=tcur) Then

! xout is in interval of last step, so interpolate.
ifail = 0
Call d02mzf(xout,sol,neq,ldysav,neq,ysav,sdysav,rwork,ifail)

Write (nout,99999) xout, sol(1:neq)
iout = iout + 1
If (iout>=6) Then

! Final solution point printed. Print stats if required.
If (pstat==1) Then

Write (nout,*)
Write (nout,99998) hu, h, tcur
Write (nout,99997) nst, nre, nje
Write (nout,99996) nqu, nq, niter
Write (nout,99995) ’ Max err comp = ’, imxer

End If
Exit steps

End If
! Set next xout. This might also be in last step, so keep
! looping for interpolation.

xout = xout + tstep
Cycle interp

Else
! Take another step.

Cycle steps
End If

End Do interp
End Do steps

99999 Format (1X,F8.3,3(F13.5,2X))
99998 Format (1X,’ HUSED = ’,E12.5,’ HNEXT = ’,E12.5,’ TCUR = ’,E12.5)
99997 Format (1X,’ NST = ’,I6,’ NRE = ’,I6,’ NJE = ’,I6)
99996 Format (1X,’ NQU = ’,I6,’ NQ = ’,I6,’ NITER = ’,I6)
99995 Format (1X,A,I4)
99994 Format (/,1X,’ X ’,3(’ Y(’,I1,’) ’))

End Program d02mzfe
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10.2 Program Data

D02MZF Example Program Data
5 200 5 0 : maxord, maxstp, mxhnil, pstat
.FALSE. : petzld
1.0E-10 10.0 0.0 0.0 : hmin, hmax, h0, tcrit
0.0 0.1 : t, tout
4 : itol
1.0 0.0 0.0 : y
.FALSE. .FALSE. : lderiv
1.0E-4 1.0E-3 1.0E-4 : rtol
1.0E-7 1.0E-8 1.0E-7 : atol

10.3 Program Results

D02MZF Example Program Results

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000
0.020 0.99920 0.00004 0.00076
0.040 0.99841 0.00004 0.00155
0.060 0.99763 0.00004 0.00234
0.080 0.99685 0.00004 0.00311
0.100 0.99608 0.00004 0.00389
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NAG Library Routine Document

D02NBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NBF is a direct communication routine for integrating stiff systems of explicit ordinary differential
equations when the Jacobian is a full matrix.

2 Specification

SUBROUTINE D02NBF (NEQ, LDYSAV, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
ITOL, INFORM, FCN, YSAV, SDYSAV, JAC, WKJAC, NWKJAC,
MONITR, ITASK, ITRACE, IFAIL)

&
&

INTEGER NEQ, LDYSAV, ITOL, INFORM(23), SDYSAV, NWKJAC,
ITASK, ITRACE, IFAIL

&

REAL (KIND=nag_wp) T, TOUT, Y(NEQ), YDOT(NEQ), RWORK(50+4*NEQ),
RTOL(*), ATOL(*), YSAV(LDYSAV,SDYSAV),
WKJAC(NWKJAC)

&
&

EXTERNAL FCN, JAC, MONITR

3 Description

D02NBF is a general purpose routine for integrating the initial value problem for a stiff system of
explicit ordinary differential equations,

y0 ¼ g t; yð Þ:

It is designed specifically for the case where the Jacobian
@g

@y
is a full matrix.

Both interval and step oriented modes of operation are available and also modes designed to permit
intermediate output within an interval oriented mode.

An outline of a typical calling program for D02NBF is given below. It calls the full matrix linear
algebra setup routine D02NSF, the Backward Differentiation Formula (BDF) integrator setup routine
D02NVF, and its diagnostic counterpart D02NYF.

! Declarations

EXTERNAL FCN, JAC, MONITR
.
.
.

IFAIL = 0
CALL D02NVF(...,IFAIL)
CALL D02NSF(NEQ, LDYSAV, JCEVAL, NWKJAC, RWORK, IFAIL)
IFAIL = -1
CALL D02NBF(NEQ, LDYSAV, T, TOUT, Y, YDOT, RWORK, RTOL, &

ATOL, ITOL, INFORM, FCN, YSAVE, SDYSAV, JAC, WKJAC, NWKJAC, &
MONITR, ITASK, ITRACE, IFAIL)

IF (IFAIL.EQ.1 .OR. IFAIL.GE.14) STOP
IFAIL = 0
CALL D02NYF(...)

.

.

.
STOP
END
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The linear algebra setup routine D02NSF and one of the integrator setup routines, D02NVF or
D02NWF, must be called prior to the call of D02NBF. The integrator diagnostic routine D02NYF may
be called after the call to D02NBF. There is also a routine, D02NZF, designed to permit you to change
step size on a continuation call to D02NBF without restarting the integration process.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential equations to be solved.

Constraint: NEQ � 1.

2: LDYSAV – INTEGER Input

On entry: a bound on the maximum number of differential equations to be solved during the
integration.

Constraint: LDYSAV � NEQ.

3: T – REAL (KIND=nag_wp) Input/Output

On entry: t, the value of the independent variable. The input value of T is used only on the first
call as the initial point of the integration.

On exit: the value at which the computed solution y is returned (usually at TOUT).

4: TOUT – REAL (KIND=nag_wp) Input

On entry: the next value of t at which a computed solution is desired. For the initial t, the input
value of TOUT is used to determine the direction of integration. Integration is permitted in either
direction (see also ITASK).

Constraint: TOUT 6¼ T.

5: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the values of the dependent variables (solution). On the first call the first NEQ
elements of Y must contain the vector of initial values.

On exit: the computed solution vector, evaluated at T (usually T ¼ TOUT).

6: YDOTðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: the time derivatives y0 of the vector y at the last integration point.

7: RWORKð50þ 4� NEQÞ – REAL (KIND=nag_wp) array Communication Array

8: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2, and at least NEQ
otherwise.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).
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9: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3, and at least NEQ
otherwise.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D02NBF whether
to interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be satisfied
is ei=wik k < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � yij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � yij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � yij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � yij j þ ATOLðiÞ

ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: ITOL ¼ 1, 2, 3 or 4.

11: INFORMð23Þ – INTEGER array Communication Array

12: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the derivative vector for the explicit ordinary differential equation system,
defined by y0 ¼ g t; yð Þ.

The specification of FCN is:

SUBROUTINE FCN (NEQ, T, Y, F, IRES)

INTEGER NEQ, IRES
REAL (KIND=nag_wp) T, Y(NEQ), F(NEQ)

1: NEQ – INTEGER Input

On entry: the number of differential equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the value of yi, for i ¼ 1; 2; . . . ;NEQ.

4: FðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: the value y0i, given by y0i ¼ gi t; yð Þ, for i ¼ 1; 2; . . . ;NEQ.

5: IRES – INTEGER Input/Output

On entry: IRES ¼ 1.
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On exit: you may set IRES as follows to indicate certain conditions in FCN to the
integrator:

IRES ¼ 1
Indicates a normal return from FCN, that is IRES has not been altered by you
and integration continues.

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3
Indicates to the integrator that an error condition has occurred in the solution
vector, its time derivative or in the value of t. The integrator will use a smaller
time step to try to avoid this condition. If this is not possible the integrator
returns to the calling (sub)program with the error indicator set to IFAIL ¼ 7.

IRES ¼ 4
Indicates to the integrator to stop its current operation and to enter MONITR
immediately with argument IMON ¼ �2.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NBF is called. Arguments denoted as Input must not be changed by this
procedure.

13: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Communication Array
14: SDYSAV – INTEGER Input

On entry: the second dimension of the array YSAV as declared in the (sub)program from which
D02NBF is called. An appropriate value for SDYSAV is described in the specification of the
integrator setup routines D02NVF and D02NWF. This value must be the same as that supplied to
the integrator setup routine.

15: JAC – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JAC must evaluate the Jacobian of the system. If this option is not required, the actual argument
for JAC must be the dummy routine D02NBZ. (D02NBZ is included in the NAG Library.) You
must indicate to the integrator whether this option is to be used by setting the argument JCEVAL
appropriately in a call to the full linear algebra setup routine D02NSF.

First we must define the system of nonlinear equations which is solved internally by the
integrator. The time derivative, y0, generated internally, has the form

y0 ¼ y� zð Þ= hdð Þ;

where h is the current step size and d is an argument that depends on the integration method in
use. The vector y is the current solution and the vector z depends on information from previous
time steps. This means that d

dy0ð Þ ¼ hdð Þ ddyð Þ . The system of nonlinear equations that is solved

has the form

y0 � g t; yð Þ ¼ 0

but it is solved in the form

r t; yð Þ ¼ 0;

where r is the function defined by

r t; yð Þ ¼ hdð Þ y� zð Þ= hdð Þ � g t; yð Þð Þ:

It is the Jacobian matrix
@r

@y
that you must supply in JAC as follows:
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@ri
@yj
¼ 1� hdð Þ@gi

@yj
; if i ¼ j;

@ri
@yj
¼ � hdð Þ@gi

@yj
; otherwise:

The specification of JAC is:

SUBROUTINE JAC (NEQ, T, Y, H, D, P)

INTEGER NEQ
REAL (KIND=nag_wp) T, Y(NEQ), H, D, P(NEQ,NEQ)

1: NEQ – INTEGER Input

On entry: the number of differential equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the current solution component.

4: H – REAL (KIND=nag_wp) Input

On entry: the current step size.

5: D – REAL (KIND=nag_wp) Input

On entry: the argument d which depends on the integration method.

6: PðNEQ;NEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: is set to zero.

On exit: Pði; jÞ must contain
@ri
@yj

, for i ¼ 1; 2; . . . ;NEQ and j ¼ 1; 2; . . . ;NEQ.

Only the nonzero elements of this array need be set, since it is preset to zero before the
call to JAC.

JAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NBF is called. Arguments denoted as Input must not be changed by this
procedure.

16: WKJACðNWKJACÞ – REAL (KIND=nag_wp) array Communication Array
17: NWKJAC – INTEGER Input

On entry: the dimension of the array WKJAC as declared in the (sub)program from which
D02NBF is called. This value must be the same as that supplied to the linear algebra setup
routine D02NSF.

Constraint: NWKJAC � LDYSAV� LDYSAVþ 1ð Þ.

18: MONITR – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONITR performs tasks requested by you. If this option is not required, then the actual
argument for MONITR must be the dummy routine D02NBY. (D02NBY is included in the NAG
Library.)
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The specification of MONITR is:

SUBROUTINE MONITR (NEQ, LDYSAV, T, HLAST, HNEXT, Y, YDOT, YSAV,
R, ACOR, IMON, INLN, HMIN, HMAX, NQU)

&

INTEGER NEQ, LDYSAV, IMON, INLN, NQU
REAL (KIND=nag_wp) T, HLAST, HNEXT, Y(NEQ), YDOT(NEQ),

YSAV(LDYSAV,sdysav), R(NEQ), ACOR(NEQ,2), HMIN,
HMAX

&
&

where sdysav is the numerical value of SDYSAV in the call of D02NBF.

1: NEQ – INTEGER Input

On entry: the number of differential equations being solved.

2: LDYSAV – INTEGER Input

On entry: an upper bound on the number of differential equations to be solved.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable.

4: HLAST – REAL (KIND=nag_wp) Input

On entry: the last step size successfully used by the integrator.

5: HNEXT – REAL (KIND=nag_wp) Input/Output

On entry: the step size that the integrator proposes to take on the next step.

On exit: the next step size to be used. If this is different from the input value, then
IMON must be set to 4.

6: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: y, the values of the dependent variables evaluated at t.

On exit: these values must not be changed unless IMON is set to 2.

7: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the time derivatives y0 of the vector y.

8: YSAVðLDYSAV; sdysavÞ – REAL (KIND=nag_wp) array Input

On entry: workspace to enable you to carry out interpolation using either of the routines
D02XJF or D02XKF.

9: RðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: if IMON ¼ 0 and INLN ¼ 3, the first NEQ elements contain the residual
vector, y0 � g t; yð Þ.

10: ACORðNEQ; 2Þ – REAL (KIND=nag_wp) array Input

On entry: with IMON ¼ 1, ACORði; 1Þ contains the weight used for the ith equation
when the norm is evaluated, and ACORði; 2Þ contains the estimated local error for the
ith equation. The scaled local error at the end of a timestep may be obtained by calling
the real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ, ACOR(1,2), ACOR(1,1), IFAIL)
! CHECK IFAIL BEFORE PROCEEDING
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11: IMON – INTEGER Input/Output

On entry: a flag indicating under what circumstances MONITR was called:

IMON ¼ �2
Entry from the integrator after IRES ¼ 4 (set in FCN) caused an early
termination (this facility could be used to locate discontinuities).

IMON ¼ �1
The current step failed repeatedly.

IMON ¼ 0
Entry after a call to the internal nonlinear equation solver (see INLN).

IMON ¼ 1
The current step was successful.

On exit: may be reset to determine subsequent action in D02NBF.

IMON ¼ �2
Integration is to be halted. A return will be made from the integrator to the
calling (sub)program with IFAIL ¼ 12.

IMON ¼ �1
Allow the integrator to continue with its own internal strategy. The integrator will
try up to three restarts unless IMON is set 6¼ �1 on exit.

IMON ¼ 0
Return to the internal nonlinear equation solver, where the action taken is
determined by the value of INLN (see INLN).

IMON ¼ 1
Normal exit to the integrator to continue integration.

IMON ¼ 2
Restart the integration at the current time point. The integrator will restart from
order 1 when this option is used. The solution Y, provided by MONITR, will be
used for the initial conditions.

IMON ¼ 3
Try to continue with the same step size and order as was to be used before the
call to MONITR. HMIN and HMAX may be altered if desired.

IMON ¼ 4
Continue the integration but using a new value of HNEXT and possibly new
values of HMIN and HMAX.

12: INLN – INTEGER Output

On exit: the action to be taken by the internal nonlinear equation solver when MONITR
is exited with IMON ¼ 0. By setting INLN ¼ 3 and returning to the integrator, the
residual vector is evaluated and placed in the array R, and then MONITR is called
again. At present this is the only option available: INLN must not be set to any other
value.

13: HMIN – REAL (KIND=nag_wp) Input/Output

On entry: the minimum step size to be taken on the next step.

On exit: the minimum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4.

14: HMAX – REAL (KIND=nag_wp) Input/Output

On entry: the maximum step size to be taken on the next step.
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On exit: the maximum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4. If HMAX is set to zero, no limit is assumed.

15: NQU – INTEGER Input

On entry: the order of the integrator used on the last step. This is supplied to enable you
to carry out interpolation using either of the routines D02XJF or D02XKF.

MONITR must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02NBF is called. Arguments denoted as Input must not be changed
by this procedure.

19: ITASK – INTEGER Input

On entry: the task to be performed by the integrator.

ITASK ¼ 1
Normal computation of output values of y tð Þ at t ¼ TOUT (by overshooting and
interpolating).

ITASK ¼ 2
Take one step only and return.

ITASK ¼ 3
Stop at the first internal integration point at or beyond t ¼ TOUT and return.

ITASK ¼ 4
Normal computation of output values of y tð Þ at t ¼ TOUT but without overshooting
t ¼ TCRIT (e.g., see D02MVF). TCRIT must be specified as an option in one of the
integrator setup routines before the first call to the integrator, or specified in the optional
input routine before a continuation call. TCRIT may be equal to or beyond TOUT, but not
before it, in the direction of integration.

ITASK ¼ 5
Take one step only and return, without passing TCRIT (e.g., see D02MVF). TCRIT must
be specified as under ITASK ¼ 4.

Constraint: ITASK ¼ 1, 2, 3, 4 or 5.

20: ITRACE – INTEGER Input

On entry: the level of output that is printed by the integrator. ITRACE may take the value �1, 0,
1, 2 or 3.

ITRACE < �1
�1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages are printed on the current error message unit (see X04AAF).

ITRACE > 0
Warning messages are printed as above, and on the current advisory message unit (see
X04ABF) output is generated which details Jacobian entries, the nonlinear iteration and
the time integration. The advisory messages are given in greater detail the larger the value
of ITRACE.

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An illegal input was detected on entry, or after an internal call to MONITR. If ITRACE > �1,
then the form of the error will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. The problem may have a singularity, or the
local error requirements may be inappropriate.

IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the
requested task, but the integration was successful as far as T. This may be caused by an
inaccurate Jacobian matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see the description of ITOL). Pure
relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has now
vanished. The integration was successful as far as T.

IFAIL ¼ 7

FCN set its error flag (IRES ¼ 3) continually despite repeated attempts by the integrator to avoid
this.

IFAIL ¼ 8

Not used for this integrator.

IFAIL ¼ 9

A singular Jacobian
@r

@y
has been encountered. This error exit is unlikely to be taken when solving

explicit ordinary differential equations. You should check the problem formulation and Jacobian
calculation.
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IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 11

FCN signalled the integrator to halt the integration and return (IRES ¼ 2). Integration was
successful as far as T.

IFAIL ¼ 12

MONITR set IMON ¼ �2 and so forced a return but the integration was successful as far as T.

IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and
ATOL is unlikely to produce any change in the computed solution. (Only applies when you are
not operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that D02NBF is unable to start the integration.

IFAIL ¼ 15

The linear algebra setup routine D02NSF was not called prior to calling D02NBF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the arguments RTOL
and ATOL, and to a much lesser extent by the choice of norm. You are advised to use scalar error
control unless the components of the solution are expected to be poorly scaled. For the type of decaying
solution typical of many stiff problems, relative error control with a small absolute error threshold will
be most appropriate (that is, you are advised to choose ITOL ¼ 1 with ATOLð1Þ small but positive).

8 Parallelism and Performance

D02NBF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02NBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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D02NBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem. For D02NBF the cost is proportional to NEQ3, though
for problems which are only mildly nonlinear the cost may be dominated by factors proportional to
NEQ2 except for very large problems.

In general, you are advised to choose the Backward Differentiation Formula option (setup routine

D02NVF) but if efficiency is of great importance and especially if it is suspected that
@g

@y
has complex

eigenvalues near the imaginary axis for some part of the integration, you should try the BLEND option
(setup routine D02NWF).

10 Example

This example solves the well-known stiff Robertson problem

a0 ¼ �0:04a þ 1:0E4bc
b0 ¼ 0:04a � 1:0E4bc � 3:0E7b2

c0 ¼ 3:0E7b2

over the range 0; 10½ � with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 using scalar error control
(ITOL ¼ 1) and computation of the solution at TOUT ¼ 10:0 with TCRIT (e.g., see D02MVF) set to
10:0 (ITASK ¼ 4). D02NBY is used for MONITR, a BDF integrator (setup routine D02NVF) is used
and a modified Newton method is selected. This example illustrates the use of both a numerical and an
analytical Jacobian.

10.1 Program Text

! D02NBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02nbfe_mod

! D02NBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn, jac

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter, Public :: iset = 1, itrace = 0, neq = 3, &

nin = 5, nout = 6
Integer, Parameter, Public :: nrw = 50 + 4*neq
Integer, Parameter, Public :: nwkjac = neq*(neq+1)
Integer, Parameter, Public :: ldysav = neq

Contains
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Subroutine fcn(neq,t,y,f,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq)

! .. Executable Statements ..
f(1) = -alpha*y(1) + beta*y(2)*y(3)
f(2) = alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2)
f(3) = gamma*y(2)*y(2)
Return

End Subroutine fcn

Subroutine jac(neq,t,y,h,d,p)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: d, h, t
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: p(neq,neq)
Real (Kind=nag_wp), Intent (In) :: y(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: hxd

! .. Executable Statements ..
hxd = h*d
p(1,1) = one - hxd*(-alpha)
p(1,2) = -hxd*(beta*y(3))
p(1,3) = -hxd*(beta*y(2))
p(2,1) = -hxd*(alpha)
p(2,2) = one - hxd*(-beta*y(3)-two*gamma*y(2))
p(2,3) = -hxd*(-beta*y(2))

! Do not need to set P(3,1) since Jacobian preset to zero
! P(3,1) = - HXD*(0.0E0)

p(3,2) = -hxd*(two*gamma*y(2))
p(3,3) = one - hxd*(0.0_nag_wp)
Return

End Subroutine jac
End Module d02nbfe_mod

Program d02nbfe

! D02NBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02nbf, d02nby, d02nbz, d02nsf, d02nvf, d02nyf, &

nag_wp, x04abf
Use d02nbfe_mod, Only: fcn, iset, itrace, jac, ldysav, neq, nin, nout, &

nrw, nwkjac
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, h0, hmax, hmin, hu, t, tcrit, &
tcur, tinit, tolsf, tout

Integer :: i, icase, ifail, imxer, itask, itol, &
maxord, maxstp, mxhnil, niter, nje, &
nq, nqu, nre, nst, outchn, sdysav

Logical :: petzld
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), &
wkjac(:), y(:), ydot(:), yinit(:), &
ysav(:,:)

Real (Kind=nag_wp) :: con(6)
Integer :: inform(23)
Logical, Allocatable :: algequ(:)

! .. Executable Statements ..
Write (nout,*) ’D02NBF Example Program Results’

! Skip heading in data file
Read (nin,*)
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Read (nin,*) maxord, maxstp, mxhnil
sdysav = maxord + 1
Allocate (atol(neq),rtol(neq),rwork(nrw),wkjac(nwkjac),y(neq), &

yinit(neq),ydot(neq),ysav(ldysav,sdysav),algequ(neq))
outchn = nout
Call x04abf(iset,outchn)

Read (nin,*) petzld
Read (nin,*) hmin, hmax, h0
Read (nin,*) tinit, tout
Read (nin,*) itol
Read (nin,*) yinit(1:neq)
Read (nin,*) rtol(1), atol(1)

! Two cases. In both cases:
! integrate to tout without passing tout;
! use B.D.F formulae with a Newton method;
! use default values for the array con;
! use scalar tolerances;
! use NAG dummy routine D02NBY in place of MONITR subroutine.

con(1:6) = 0.0_nag_wp
tcrit = tout
itask = 4

cases: Do icase = 1, 2

t = tinit
y(1:neq) = yinit(1:neq)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02nvf(neq,sdysav,maxord,’Newton’,petzld,con,tcrit,hmin,hmax,h0, &

maxstp,mxhnil,’Average-L2’,rwork,ifail)

Write (nout,*)
ifail = 0
Select Case (icase)
Case (1)

! First case. The Jacobian is evaluated internally.
Call d02nsf(neq,neq,’Numerical’,nwkjac,rwork,ifail)

Write (nout,*) ’ Numerical Jacobian’
Case (2)

! Second case. The Jacobian is evaluated by jac.
Call d02nsf(neq,neq,’Analytical’,nwkjac,rwork,ifail)

Write (nout,*) ’ Analytic Jacobian’
End Select

Write (nout,99993)(i,i=1,neq)
Write (nout,99999) t, y(1:neq)

! Soft fail and error messages only

ifail = -1
Select Case (icase)
Case (1)

Call d02nbf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform, &
fcn,ysav,sdysav,d02nbz,wkjac,nwkjac,d02nby,itask,itrace,ifail)

Case (2)
Call d02nbf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform, &

fcn,ysav,sdysav,jac,wkjac,nwkjac,d02nby,itask,itrace,ifail)
End Select

If (ifail==0) Then
Write (nout,99999) t, y(1:neq)

ifail = 0
Call d02nyf(neq,neq,hu,h,tcur,tolsf,rwork,nst,nre,nje,nqu,nq,niter, &

imxer,algequ,inform,ifail)
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Write (nout,*)
Write (nout,99997) hu, h, tcur
Write (nout,99996) nst, nre, nje
Write (nout,99995) nqu, nq, niter
Write (nout,99994) ’ Max Err Comp = ’, imxer
Write (nout,*)

Else
Write (nout,*)
Write (nout,99998) ’Exit D02NBF with IFAIL = ’, ifail, ’ and T = ’, &

t
End If

End Do cases

99999 Format (1X,F8.3,3(F13.5,2X))
99998 Format (1X,A,I2,A,E12.5)
99997 Format (1X,’ HUSED = ’,E12.5,’ HNEXT = ’,E12.5,’ TCUR = ’,E12.5)
99996 Format (1X,’ NST = ’,I6,’ NRE = ’,I6,’ NJE = ’,I6)
99995 Format (1X,’ NQU = ’,I6,’ NQ = ’,I6,’ NITER = ’,I6)
99994 Format (1X,A,I4)
99993 Format (/,1X,’ X ’,3(’ Y(’,I1,’) ’))

End Program d02nbfe

10.2 Program Data

D02NBF Example Program Data
5 200 5 : maxord, maxstp, mxhnil
.FALSE. : petzld
1.0E-10 10.0 0.0 : hmin, hmax, h0
0.0 10.0 : t, tout
1 : itol
1.0 0.0 0.0 : y
1.0E-4 1.0E-7 : rtol, atol

10.3 Program Results

D02NBF Example Program Results

Numerical Jacobian

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000

10.000 0.84136 0.00002 0.15863

HUSED = 0.51867E+00 HNEXT = 0.51867E+00 TCUR = 0.10000E+02
NST = 55 NRE = 132 NJE = 17
NQU = 3 NQ = 3 NITER = 79
Max Err Comp = 3

Analytic Jacobian

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000

10.000 0.84136 0.00002 0.15863

HUSED = 0.51867E+00 HNEXT = 0.51867E+00 TCUR = 0.10000E+02
NST = 55 NRE = 81 NJE = 17
NQU = 3 NQ = 3 NITER = 79
Max Err Comp = 3
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NAG Library Routine Document

D02NCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NCF is a direct communication routine for integrating stiff systems of explicit ordinary differential
equations when the Jacobian is a banded matrix.

2 Specification

SUBROUTINE D02NCF (NEQ, LDYSAV, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
ITOL, INFORM, FCN, YSAV, SDYSAV, JAC, WKJAC, NWKJAC,
JACPVT, NJCPVT, MONITR, ITASK, ITRACE, IFAIL)

&
&

INTEGER NEQ, LDYSAV, ITOL, INFORM(23), SDYSAV, NWKJAC,
JACPVT(NJCPVT), NJCPVT, ITASK, ITRACE, IFAIL

&

REAL (KIND=nag_wp) T, TOUT, Y(NEQ), YDOT(NEQ), RWORK(50+4*NEQ),
RTOL(*), ATOL(*), YSAV(LDYSAV,SDYSAV),
WKJAC(NWKJAC)

&
&

EXTERNAL FCN, JAC, MONITR

3 Description

D02NCF is a general purpose routine for integrating the initial value problem for a stiff system of
explicit ordinary differential equations,

y0 ¼ g t; yð Þ:

It is designed specifically for the case where the Jacobian
@g

@y
is a banded matrix.

Both interval and step oriented modes of operation are available and also modes designed to permit
intermediate output within an interval oriented mode.

An outline of a typical calling program for D02NCF is given below. It calls the banded matrix linear
algebra setup routine D02NTF, the Backward Differentiation Formula (BDF) integrator setup routine
D02NVF, and its diagnostic counterpart D02NYF.

! Declarations

EXTERNAL FCN, JAC, MONITR
.
.
.

IFAIL = 0
CALL D02NVF(...,IFAIL)
CALL D02NTF(NEQ, NEQMAX, JCEVAL, ML, MU, NWKJAC, NJCPVT, &

RWORK, IFAIL)
IFAIL = -1
CALL D02NCF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL, &

ATOL, ITOL, INFORM, FCN, YSAVE, NY2DIM, JAC, &
WKJAC, NWKJAC,JACPVT, NJCPVT, MONITR, ITASK, &

ITRACE, IFAIL)
IF (IFAIL.EQ.1 .OR. IFAIL.GE.14) STOP
IFAIL = 0
CALL D02NYF(...)

.

.

.
STOP
END

D02 – Ordinary Differential D02NCF

Mark 26 D02NCF.1



The linear algebra setup routine D02NTF and one of the integrator setup routines, D02NVF or
D02NWF, must be called prior to the call of D02NCF. The integrator diagnostic routine D02NYF may
be called after the call to D02NCF. There is also a routine, D02NZF, designed to permit you to change
step size on a continuation call to D02NCF without restarting the integration process.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential equations to be solved.

Constraint: NEQ � 1.

2: LDYSAV – INTEGER Input

On entry: a bound on the maximum number of differential equations to be solved during the
integration.

Constraint: LDYSAV � NEQ.

3: T – REAL (KIND=nag_wp) Input/Output

On entry: t, the value of the independent variable. The input value of T is used only on the first
call as the initial point of the integration.

On exit: the value at which the computed solution y is returned (usually at TOUT).

4: TOUT – REAL (KIND=nag_wp) Input

On entry: the next value of t at which a computed solution is desired. For the initial t, the input
value of TOUT is used to determine the direction of integration. Integration is permitted in either
direction (see also ITASK).

Constraint: TOUT 6¼ T.

5: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the values of the dependent variables (solution). On the first call the first NEQ
elements of Y must contain the vector of initial values.

On exit: the computed solution vector, evaluated at T (usually T ¼ TOUT).

6: YDOTðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: the time derivatives y0 of the vector y at the last integration point.

7: RWORKð50þ 4� NEQÞ – REAL (KIND=nag_wp) array Communication Array

8: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2, and at least NEQ
otherwise.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).
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9: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3, and at least NEQ
otherwise.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D02NCF whether
to interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be satisfied
is ei=wik k < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � yij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � yij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � yij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � yij j þ ATOLðiÞ

ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: ITOL ¼ 1, 2, 3 or 4.

11: INFORMð23Þ – INTEGER array Communication Array

12: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the derivative vector for the explicit ordinary differential equation system,
defined by y0 ¼ g t; yð Þ.

The specification of FCN is:

SUBROUTINE FCN (NEQ, T, Y, F, IRES)

INTEGER NEQ, IRES
REAL (KIND=nag_wp) T, Y(NEQ), F(NEQ)

1: NEQ – INTEGER Input

On entry: the number of differential equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the value of yi, for i ¼ 1; 2; . . . ;NEQ.

4: FðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: the value y0i, given by y0i ¼ gi t; yð Þ, for i ¼ 1; 2; . . . ;NEQ.

5: IRES – INTEGER Input/Output

On entry: IRES ¼ 1.
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On exit: you may set IRES as follows to indicate certain conditions in FCN to the
integrator:

IRES ¼ 1
Indicates a normal return from FCN, that is IRES has not been altered by you
and integration continues.

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3
Indicates to the integrator that an error condition has occurred in the solution
vector, its time derivative or in the value of t. The integrator will use a smaller
time step to try to avoid this condition. If this is not possible the integrator
returns to the calling (sub)program with the error indicator set to IFAIL ¼ 7.

IRES ¼ 4
Indicates to the integrator to stop its current operation and to enter MONITR
immediately with argument IMON ¼ �2.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NCF is called. Arguments denoted as Input must not be changed by this
procedure.

13: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Communication Array
14: SDYSAV – INTEGER Input

On entry: the second dimension of the array YSAV as declared in the (sub)program from which
D02NCF is called. An appropriate value for SDYSAV is described in the specification of the
integrator setup routines D02NVF and D02NWF. This value must be the same as that supplied to
the integrator setup routine.

15: JAC – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JAC must evaluate the Jacobian of the system. If this option is not required, the actual argument
for JAC must be the dummy routine D02NCZ. (D02NCZ is included in the NAG Library.) You
must indicate to the integrator whether this option is to be used by setting the argument JCEVAL
appropriately in a call to the banded linear algebra setup routine D02NTF.

First we must define the system of nonlinear equations which is solved internally by the
integrator. The time derivative, y0, generated internally, has the form

y0 ¼ y� zð Þ= hdð Þ;

where h is the current step size and d is an argument that depends on the integration method in
use. The vector y is the current solution and the vector z depends on information from previous
time steps. This means that d

dy0ð Þ ¼ hdð Þ ddyð Þ . The system of nonlinear equations that is solved

has the form

y0 � g t; yð Þ ¼ 0

but it is solved in the form

r t; yð Þ ¼ 0;

where r is the function defined by

r t; yð Þ ¼ hdð Þ y� zð Þ= hdð Þ � g t; yð Þð Þ:

It is the Jacobian matrix
@r

@y
that you must supply in JAC as follows:
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@ri
@yj
¼ 1� hdð Þ@gi

@yj
; if i ¼ j;

@ri
@yj
¼ � hdð Þ@gi

@yj
; otherwise:

The specification of JAC is:

SUBROUTINE JAC (NEQ, T, Y, H, D, ML, MU, P)

INTEGER NEQ, ML, MU
REAL (KIND=nag_wp) T, Y(NEQ), H, D, P(ML+MU+1,NEQ)

1: NEQ – INTEGER Input

On entry: the number of differential equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the current solution component.

4: H – REAL (KIND=nag_wp) Input

On entry: the current step size.

5: D – REAL (KIND=nag_wp) Input

On entry: the argument d which depends on the integration method.

6: ML – INTEGER Input
7: MU – INTEGER Input

On entry: the number of subdiagonals and superdiagonals respectively in the band.

8: PðMLþMUþ 1;NEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: is set to zero.

On exit: elements of the Jacobian matrix
@r

@y
stored as specified by the following

pseudocode:

DO 20 I = 1, NEQ
J1 = MAX(I-ML,1)
J2 = MIN(I+MU,NEQ)
DO 10 J = J1, J2
K = MIN(ML+1-I,0)+J
P(K,I) = �R/�Y(I,J)
10 CONTINUE
20 CONTINUE

See also F07BDF (DGBTRF).

Only nonzero elements of this array need be set, since it is preset to zero before the call
to JAC.

JAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NCF is called. Arguments denoted as Input must not be changed by this
procedure.
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16: WKJACðNWKJACÞ – REAL (KIND=nag_wp) array Communication Array
17: NWKJAC – INTEGER Input

On entry: the dimension of the array WKJAC as declared in the (sub)program from which
D02NCF is called. This value must be the same as that supplied to the linear algebra setup
routine D02NTF.

Constraint: NWKJAC � 2mL þmU þ 1ð Þ � NEQ, where mL and mU are the number of
subdiagonals and superdiagonals respectively in the band, defined by a call to D02NTF.

18: JACPVTðNJCPVTÞ – INTEGER array Communication Array
19: NJCPVT – INTEGER Input

On entry: the dimension of the array JACPVT as declared in the (sub)program from which
D02NCF is called. This value must be the same as that supplied to the linear algebra setup
routine D02NTF.

Constraint: NJCPVT � LDYSAV.

20: MONITR – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONITR performs tasks requested by you. If this option is not required, then the actual
argument for MONITR must be the dummy routine D02NBY. (D02NBY is included in the NAG
Library.)

The specification of MONITR is:

SUBROUTINE MONITR (NEQ, LDYSAV, T, HLAST, HNEXT, Y, YDOT, YSAV,
R, ACOR, IMON, INLN, HMIN, HMAX, NQU)

&

INTEGER NEQ, LDYSAV, IMON, INLN, NQU
REAL (KIND=nag_wp) T, HLAST, HNEXT, Y(NEQ), YDOT(NEQ),

YSAV(LDYSAV,sdysav), R(NEQ), ACOR(NEQ,2), HMIN,
HMAX

&
&

where sdysav is the numerical value of SDYSAV in the call of D02NCF.

1: NEQ – INTEGER Input

On entry: the number of differential equations being solved.

2: LDYSAV – INTEGER Input

On entry: an upper bound on the number of differential equations to be solved.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable.

4: HLAST – REAL (KIND=nag_wp) Input

On entry: the last step size successfully used by the integrator.

5: HNEXT – REAL (KIND=nag_wp) Input/Output

On entry: the step size that the integrator proposes to take on the next step.

On exit: the next step size to be used. If this is different from the input value, then
IMON must be set to 4.

6: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: y, the values of the dependent variables evaluated at t.

On exit: these values must not be changed unless IMON is set to 2.
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7: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the time derivatives y0 of the vector y.

8: YSAVðLDYSAV; sdysavÞ – REAL (KIND=nag_wp) array Input

On entry: workspace to enable you to carry out interpolation using either of the routines
D02XJF or D02XKF.

9: RðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: if IMON ¼ 0 and INLN ¼ 3, the first NEQ elements contain the residual
vector, y0 � g t; yð Þ.

10: ACORðNEQ; 2Þ – REAL (KIND=nag_wp) array Input

On entry: with IMON ¼ 1, ACORði; 1Þ contains the weight used for the ith equation
when the norm is evaluated, and ACORði; 2Þ contains the estimated local error for the
ith equation. The scaled local error at the end of a timestep may be obtained by calling
the real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ, ACOR(1,2), ACOR(1,1), IFAIL)
! CHECK IFAIL BEFORE PROCEEDING

11: IMON – INTEGER Input/Output

On entry: a flag indicating under what circumstances MONITR was called:

IMON ¼ �2
Entry from the integrator after IRES ¼ 4 (set in FCN) caused an early
termination (this facility could be used to locate discontinuities).

IMON ¼ �1
The current step failed repeatedly.

IMON ¼ 0
Entry after a call to the internal nonlinear equation solver (see INLN).

IMON ¼ 1
The current step was successful.

On exit: may be reset to determine subsequent action in D02NCF.

IMON ¼ �2
Integration is to be halted. A return will be made from the integrator to the
calling (sub)program with IFAIL ¼ 12.

IMON ¼ �1
Allow the integrator to continue with its own internal strategy. The integrator will
try up to three restarts unless IMON is set 6¼ �1 on exit.

IMON ¼ 0
Return to the internal nonlinear equation solver, where the action taken is
determined by the value of INLN (see INLN).

IMON ¼ 1
Normal exit to the integrator to continue integration.

IMON ¼ 2
Restart the integration at the current time point. The integrator will restart from
order 1 when this option is used. The solution Y, provided by MONITR, will be
used for the initial conditions.

IMON ¼ 3
Try to continue with the same step size and order as was to be used before the
call to MONITR. HMIN and HMAX may be altered if desired.
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IMON ¼ 4
Continue the integration but using a new value of HNEXT and possibly new
values of HMIN and HMAX.

12: INLN – INTEGER Output

On exit: the action to be taken by the internal nonlinear equation solver when MONITR
is exited with IMON ¼ 0. By setting INLN ¼ 3 and returning to the integrator, the
residual vector is evaluated and placed in the array R, and then MONITR is called
again. At present this is the only option available: INLN must not be set to any other
value.

13: HMIN – REAL (KIND=nag_wp) Input/Output

On entry: the minimum step size to be taken on the next step.

On exit: the minimum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4.

14: HMAX – REAL (KIND=nag_wp) Input/Output

On entry: the maximum step size to be taken on the next step.

On exit: the maximum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4. If HMAX is set to zero, no limit is assumed.

15: NQU – INTEGER Input

On entry: the order of the integrator used on the last step. This is supplied to enable you
to carry out interpolation using either of the routines D02XJF or D02XKF.

MONITR must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02NCF is called. Arguments denoted as Input must not be changed
by this procedure.

21: ITASK – INTEGER Input

On entry: the task to be performed by the integrator.

ITASK ¼ 1
Normal computation of output values of y tð Þ at t ¼ TOUT (by overshooting and
interpolating).

ITASK ¼ 2
Take one step only and return.

ITASK ¼ 3
Stop at the first internal integration point at or beyond t ¼ TOUT and return.

ITASK ¼ 4
Normal computation of output values of y tð Þ at t ¼ TOUT but without overshooting
t ¼ TCRIT. TCRIT must be specified as an option in one of the integrator setup routines
before the first call to the integrator, or specified in the optional input routine before a
continuation call. TCRIT may be equal to or beyond TOUT, but not before it, in the
direction of integration.

ITASK ¼ 5
Take one step only and return, without passing TCRIT. TCRIT must be specified as under
ITASK ¼ 4.

Constraint: ITASK ¼ 1, 2, 3, 4 or 5.
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22: ITRACE – INTEGER Input

On entry: the level of output that is printed by the integrator. ITRACE may take the value �1, 0,
1, 2 or 3.

ITRACE < �1
�1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages are printed on the current error message unit (see X04AAF).

ITRACE > 0
Warning messages are printed as above, and on the current advisory message unit (see
X04ABF) output is generated which details Jacobian entries, the nonlinear iteration and
the time integration. The advisory messages are given in greater detail the larger the value
of ITRACE.

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An illegal input was detected on entry, or after an internal call to MONITR. If ITRACE > �1,
then the form of the error will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. The problem may have a singularity, or the
local error requirements may be inappropriate.
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IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the
requested task, but the integration was successful as far as T. This may be caused by an
inaccurate Jacobian matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see the description of ITOL). Pure
relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has now
vanished. The integration was successful as far as T.

IFAIL ¼ 7

FCN set its error flag (IRES ¼ 3) continually despite repeated attempts by the integrator to avoid
this.

IFAIL ¼ 8

Not used for this integrator.

IFAIL ¼ 9

A singular Jacobian
@r

@y
has been encountered. This error exit is unlikely to be taken when solving

explicit ordinary differential equations. You should check the problem formulation and Jacobian
calculation.

IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 11

FCN signalled the integrator to halt the integration and return (IRES ¼ 2). Integration was
successful as far as T.

IFAIL ¼ 12

MONITR set IMON ¼ �2 and so forced a return but the integration was successful as far as T.

IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and
ATOL is unlikely to produce any change in the computed solution. (Only applies when you are
not operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that D02NCF is unable to start the integration.

IFAIL ¼ 15

The linear algebra setup routine D02NTF was not called prior to calling D02NCF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the arguments RTOL
and ATOL, and to a much lesser extent by the choice of norm. You are advised to use scalar error
control unless the components of the solution are expected to be poorly scaled. For the type of decaying
solution typical of many stiff problems, relative error control with a small absolute error threshold will
be most appropriate (that is, you are advised to choose ITOL ¼ 1 with ATOLð1Þ small but positive).

8 Parallelism and Performance

D02NCF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02NCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02NCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem. For D02NCF the cost is proportional to
NEQ� MLþMUþ 1ð Þ2 though for problems which are only mildly nonlinear the cost may be
dominated by factors proportional to NEQ� MLþMUþ 1ð Þ except for very large problems.

In general, you are advised to choose the Backward Differentiation Formula option (setup routine

D02NVF) but if efficiency is of great importance and especially if it is suspected that
@g

@y
has complex

eigenvalues near the imaginary axis for some part of the integration, you should try the BLEND option
(setup routine D02NWF).

10 Example

This example solves the well-known stiff Robertson problem

a0 ¼ �0:04a þ 1:0E4bc
b0 ¼ 0:04a � 1:0E4bc � 3:0E7b2

c0 ¼ 3:0E7b2

over the range 0; 10½ � with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 using scalar relative error control
and vector absolute error control ITOL ¼ 2ð Þ. The solution is obtained at TOUT ¼ 5:0 and
TOUT ¼ 10:0 by overshooting and internal C0 interpolation ITASK ¼ 1ð Þ. D02NBY is used for
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MONITR, the BLEND integrator (setup routine D02NWF) is used and the option of an analytical
Jacobian is chosen.

10.1 Program Text

! D02NCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02ncfe_mod

! D02NCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn, jac

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter, Public :: iset = 1, itrace = 0, ml = 1, &

mu = 2, neq = 3, nin = 5
Integer, Parameter, Public :: njcpvt = neq
Integer, Parameter, Public :: nout = 6
Integer, Parameter, Public :: nrw = 50 + 4*neq
Integer, Parameter, Public :: nwkjac = neq*(2*ml+mu+1)
Integer, Parameter, Public :: ldysav = neq

Contains
Subroutine fcn(neq,t,y,f,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq)

! .. Executable Statements ..
f(1) = -alpha*y(1) + beta*y(2)*y(3)
f(2) = alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2)
f(3) = gamma*y(2)*y(2)
Return

End Subroutine fcn

Subroutine jac(neq,t,y,h,d,ml,mu,p)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: d, h, t
Integer, Intent (In) :: ml, mu, neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: p(ml+mu+1,neq)
Real (Kind=nag_wp), Intent (In) :: y(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: hxd

! .. Executable Statements ..
hxd = h*d

p(1,1) = one - hxd*(-alpha)
p(2,1) = -hxd*(beta*y(3))
p(3,1) = -hxd*(beta*y(2))

p(1,2) = -hxd*(alpha)
p(2,2) = one - hxd*(-beta*y(3)-two*gamma*y(2))
p(3,2) = -hxd*(-beta*y(2))
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p(1,3) = -hxd*(two*gamma*y(2))
p(2,3) = one - hxd*(0.0_nag_wp)
Return

End Subroutine jac
End Module d02ncfe_mod

Program d02ncfe

! D02NCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02nby, d02ncf, d02ntf, d02nwf, d02nyf, d02nzf, &

nag_wp, x04abf
Use d02ncfe_mod, Only: fcn, iset, itrace, jac, ldysav, ml, mu, neq, nin, &

njcpvt, nout, nrw, nwkjac
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, h0, hmax, hmin, hu, t, tcrit, &
tcur, tolsf, tout

Integer :: i, ifail, imxer, itask, itol, &
maxord, maxstp, mxhnil, niter, nje, &
nq, nqu, nre, nst, outchn, sdysav

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), &

wkjac(:), y(:), ydot(:), ysav(:,:)
Real (Kind=nag_wp) :: con(6)
Integer :: inform(23)
Integer, Allocatable :: jacpvt(:)
Logical, Allocatable :: algequ(:)

! .. Executable Statements ..
Write (nout,*) ’D02NCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) maxord, maxstp, mxhnil
sdysav = maxord + 3
Allocate (atol(neq),rtol(neq),rwork(nrw),wkjac(nwkjac),y(neq),ydot(neq), &

ysav(ldysav,sdysav),jacpvt(njcpvt),algequ(neq))
outchn = nout
Call x04abf(iset,outchn)

! Integrate to tout (itask=1 i.e. overshooting and internal interpolation)
! using the blend method. Default values for the array con are used.
! Employ scalar relative tolerance and vector absolute tolerance.
! The Jacobian is evaluated by jac.
! monitr subroutine replaced by NAG dummy routine D02NBY.

Read (nin,*) hmin, hmax, h0, tcrit
Read (nin,*) t, tout
Read (nin,*) itol
Read (nin,*) y(1:neq)
Read (nin,*) rtol(1)
Read (nin,*) atol(1:neq)
con(1:6) = 0.0_nag_wp
itask = 1

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02nwf(neq,sdysav,maxord,con,tcrit,hmin,hmax,h0,maxstp,mxhnil, &

’Average-L2’,rwork,ifail)

ifail = 0
Call d02ntf(neq,neq,’Analytical’,ml,mu,nwkjac,njcpvt,rwork,ifail)

Write (nout,99993)(i,i=1,neq)
Write (nout,99999) t, (y(i),i=1,neq)

! Soft fail and error messages only
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ifail = -1
Call d02ncf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform,fcn, &

ysav,sdysav,jac,wkjac,nwkjac,jacpvt,njcpvt,d02nby,itask,itrace,ifail)

If (ifail==0) Then
Write (nout,99999) t, (y(i),i=1,neq)

Else
Write (nout,*)
Write (nout,99998) ’Exit D02NCF with IFAIL = ’, ifail, ’ and T = ’, t

End If
! Reset tout and call D02NZF to override internal choice for step size.
! No changes to other parameters.

h = 0.7_nag_wp

ifail = 0
Call d02nzf(neq,tcrit,h,hmin,hmax,maxstp,mxhnil,rwork,ifail)

tout = 10.0_nag_wp

ifail = -1
Call d02ncf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform,fcn, &

ysav,sdysav,jac,wkjac,nwkjac,jacpvt,njcpvt,d02nby,itask,itrace,ifail)

If (ifail==0) Then
Write (nout,99999) t, (y(i),i=1,neq)

ifail = 0
Call d02nyf(neq,neq,hu,h,tcur,tolsf,rwork,nst,nre,nje,nqu,nq,niter, &

imxer,algequ,inform,ifail)

Write (nout,*)
Write (nout,99997) hu, h, tcur
Write (nout,99996) nst, nre, nje
Write (nout,99995) nqu, nq, niter
Write (nout,99994) ’ Max Err Comp = ’, imxer
Write (nout,*)

Else
Write (nout,*)
Write (nout,99998) ’Exit D02NCF with IFAIL = ’, ifail, ’ and T = ’, t

End If

99999 Format (1X,F8.3,3(F13.5,2X))
99998 Format (1X,A,I2,A,E12.5)
99997 Format (1X,’ HUSED = ’,E12.5,’ HNEXT = ’,E12.5,’ TCUR = ’,E12.5)
99996 Format (1X,’ NST = ’,I6,’ NRE = ’,I6,’ NJE = ’,I6)
99995 Format (1X,’ NQU = ’,I6,’ NQ = ’,I6,’ NITER = ’,I6)
99994 Format (1X,A,I4)
99993 Format (/,1X,’ X ’,3(’ Y(’,I1,’) ’))

End Program d02ncfe

10.2 Program Data

D02NCF Example Program Data
11 200 5 : maxord, maxstp, mxhnil
1.0E-10 10.0 0.0 0.0 : hmin, hmax, h0, tcrit
0.0 5.0 : t, tout
2 : itol
1.0 0.0 0.0 : y
1.0E-4 : rtol
1.0E-7 1.0E-8 1.0E-7 : atol

10.3 Program Results

D02NCF Example Program Results

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000
5.000 0.89152 0.00002 0.10846

10.000 0.84137 0.00002 0.15861
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HUSED = 0.11280E+01 HNEXT = 0.11280E+01 TCUR = 0.10034E+02
NST = 63 NRE = 274 NJE = 14
NQU = 4 NQ = 4 NITER = 272
Max Err Comp = 3
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NAG Library Routine Document

D02NDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NDF is a direct communication routine for integrating stiff systems of explicit ordinary differential
equations when the Jacobian is a sparse matrix.

2 Specification

SUBROUTINE D02NDF (NEQ, LDYSAV, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
ITOL, INFORM, FCN, YSAV, SDYSAV, JAC, WKJAC, NWKJAC,
JACPVT, NJCPVT, MONITR, ITASK, ITRACE, IFAIL)

&
&

INTEGER NEQ, LDYSAV, ITOL, INFORM(23), SDYSAV, NWKJAC,
JACPVT(NJCPVT), NJCPVT, ITASK, ITRACE, IFAIL

&

REAL (KIND=nag_wp) T, TOUT, Y(NEQ), YDOT(NEQ), RWORK(50+4*NEQ),
RTOL(*), ATOL(*), YSAV(LDYSAV,SDYSAV),
WKJAC(NWKJAC)

&
&

EXTERNAL FCN, JAC, MONITR

3 Description

D02NDF is a general purpose routine for integrating the initial value problem for a stiff system of
explicit ordinary differential equations,

y0 ¼ g t; yð Þ:

It is designed specifically for the case where the Jacobian
@g

@y
is a sparse matrix.

Both interval and step oriented modes of operation are available and also modes designed to permit
intermediate output within an interval oriented mode.

An outline of a typical calling program for D02NDF is given below. It calls the sparse matrix linear
algebra setup routine D02NUF, the Backward Differentiation Formula (BDF) integrator setup routine
D02NVF, its diagnostic counterpart D02NYF, and the sparse linear algebra diagnostic routine D02NXF.

! Declarations

EXTERNAL FCN, JAC, MONITR
.
.
.

IFAIL = 0
CALL D02NVF(...,IFAIL)
CALL D02NUF(NEQ, NEQMAX, JCEVAL, NWKJAC, IA, NIA, JA, NJA, &

JACPVT, NJCPVT, SENS, U, ETA, LBLOCK, ISPLIT, &
RWORK,IFAIL)

IFAIL = -1
CALL D02NDF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL, &

ATOL, ITOL, INFORM, FCN, YSAVE, NY2DIM, JAC, &
WKJAC,NWKJAC, JACPVT, NJCPVT, MONITR, ITASK, &
ITRACE, IFAIL)

IF(IFAIL.EQ.1 .OR. IFAIL.GE.14) STOP
IFAIL = 0
CALL D02NXF(...)
CALL D02NYF(...)

.

.

.
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STOP
END

The linear algebra setup routine D02NUF and one of the integrator setup routines, D02NVF or
D02NWF, must be called prior to the call of D02NDF. Either or both of the integrator diagnostic
routine D02NYF, or the sparse matrix linear algebra diagnostic routine D02NXF, may be called after
the call to D02NDF. There is also a routine, D02NZF, designed to permit you to change step size on a
continuation call to D02NDF without restarting the integration process.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential equations to be solved.

Constraint: NEQ � 1.

2: LDYSAV – INTEGER Input

On entry: a bound on the maximum number of differential equations to be solved during the
integration.

Constraint: LDYSAV � NEQ.

3: T – REAL (KIND=nag_wp) Input/Output

On entry: t, the value of the independent variable. The input value of T is used only on the first
call as the initial point of the integration.

On exit: the value at which the computed solution y is returned (usually at TOUT).

4: TOUT – REAL (KIND=nag_wp) Input

On entry: the next value of t at which a computed solution is desired. For the initial t, the input
value of TOUT is used to determine the direction of integration. Integration is permitted in either
direction (see also ITASK).

Constraint: TOUT 6¼ T.

5: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the values of the dependent variables (solution). On the first call the first NEQ
elements of Y must contain the vector of initial values.

On exit: the computed solution vector, evaluated at T (usually T ¼ TOUT).

6: YDOTðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: the time derivatives y0 of the vector y at the last integration point.

7: RWORKð50þ 4� NEQÞ – REAL (KIND=nag_wp) array Communication Array

8: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2, and at least NEQ
otherwise.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).
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9: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3, and at least NEQ
otherwise.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D02NDF whether
to interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be satisfied
is ei=wik k < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � yij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � yij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � yij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � yij j þ ATOLðiÞ

ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: ITOL ¼ 1, 2, 3 or 4.

11: INFORMð23Þ – INTEGER array Communication Array

12: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the derivative vector for the explicit ordinary differential equation system,
defined by y0 ¼ g t; yð Þ.

The specification of FCN is:

SUBROUTINE FCN (NEQ, T, Y, F, IRES)

INTEGER NEQ, IRES
REAL (KIND=nag_wp) T, Y(NEQ), F(NEQ)

1: NEQ – INTEGER Input

On entry: the number of differential equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the value of yi, for i ¼ 1; 2; . . . ;NEQ.

4: FðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: the value y0i, given by y0i ¼ gi t; yð Þ, for i ¼ 1; 2; . . . ;NEQ.

5: IRES – INTEGER Input/Output

On entry: IRES ¼ 1.
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On exit: you may set IRES as follows to indicate certain conditions in FCN to the
integrator:

IRES ¼ 1
Indicates a normal return from FCN, that is IRES has not been altered by you
and integration continues.

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3
Indicates to the integrator that an error condition has occurred in the solution
vector, its time derivative or in the value of t. The integrator will use a smaller
time step to try to avoid this condition. If this is not possible the integrator
returns to the calling (sub)program with the error indicator set to IFAIL ¼ 7.

IRES ¼ 4
Indicates to the integrator to stop its current operation and to enter MONITR
immediately with argument IMON ¼ �2.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NDF is called. Arguments denoted as Input must not be changed by
this procedure.

13: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Communication Array
14: SDYSAV – INTEGER Input

On entry: the second dimension of the array YSAV as declared in the (sub)program from which
D02NDF is called. An appropriate value for SDYSAV is described in the specification of the
integrator setup routines D02NVF and D02NWF. This value must be the same as that supplied to
the integrator setup routine.

15: JAC – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JAC must evaluate the Jacobian of the system. If this option is not required, the actual argument
for JAC must be the dummy routine D02NDZ. (D02NDZ is included in the NAG Library.) You
must indicate to the integrator whether this option is to be used by setting the argument JCEVAL
appropriately in a call to the sparse linear algebra setup routine D02NUF.

First we must define the system of nonlinear equations which is solved internally by the
integrator. The time derivative, y0, generated internally, has the form

y0 ¼ y� zð Þ= hdð Þ;

where h is the current step size and d is an argument that depends on the integration method in
use. The vector y is the current solution and the vector z depends on information from previous
time steps. This means that d

dy0ð Þ ¼ hdð Þ ddyð Þ . The system of nonlinear equations that is solved

has the form

y0 � g t; yð Þ ¼ 0

but it is solved in the form

r t; yð Þ ¼ 0;

where r is the function defined by

r t; yð Þ ¼ hdð Þ y� zð Þ= hdð Þ � g t; yð Þð Þ:

It is the Jacobian matrix
@r

@y
that you must supply in JAC as follows:

D02NDF NAG Library Manual

D02NDF.4 Mark 26



@ri
@yj
¼ 1� hdð Þ@gi

@yj
; if i ¼ j;

@ri
@yj
¼ � hdð Þ@gi

@yj
; otherwise:

The specification of JAC is:

SUBROUTINE JAC (NEQ, T, Y, H, D, J, PDJ)

INTEGER NEQ, J
REAL (KIND=nag_wp) T, Y(NEQ), H, D, PDJ(NEQ)

1: NEQ – INTEGER Input

On entry: the number of differential equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the current solution component.

4: H – REAL (KIND=nag_wp) Input

On entry: the current step size.

5: D – REAL (KIND=nag_wp) Input

On entry: the argument d which depends on the integration method.

6: J – INTEGER Input

On entry: the column of the Jacobian that JAC must return in the array PDJ.

7: PDJðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: is set to zero.

On exit: PDJðiÞ should be set to the i; jð Þth element of the Jacobian, where j is given by
J. Only nonzero elements of this array need be set, since it is preset to zero before the
call to JAC.

JAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NDF is called. Arguments denoted as Input must not be changed by
this procedure.

16: WKJACðNWKJACÞ – REAL (KIND=nag_wp) array Communication Array
17: NWKJAC – INTEGER Input

On entry: the dimension of the array WKJAC as declared in the (sub)program from which
D02NDF is called. The actual size depends on whether the sparsity structure is supplied or
whether it is to be estimated. An appropriate value for NWKJAC is described in the specification
of the linear algebra setup routine D02NUF. This value must be the same as that supplied to
D02NUF.

18: JACPVTðNJCPVTÞ – INTEGER array Communication Array
19: NJCPVT – INTEGER Input

On entry: the dimension of the array JACPVT as declared in the (sub)program from which
D02NDF is called. The actual size depends on whether the sparsity structure is supplied or
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whether it is to be estimated. An appropriate value for NJCPVT is described in the specification
of the linear algebra setup routine D02NUF. This value must be the same as that supplied to
D02NUF.

20: MONITR – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONITR performs tasks requested by you. If this option is not required, then the actual
argument for MONITR must be the dummy routine D02NBY. (D02NBY is included in the NAG
Library.)

The specification of MONITR is:

SUBROUTINE MONITR (NEQ, LDYSAV, T, HLAST, HNEXT, Y, YDOT, YSAV,
R, ACOR, IMON, INLN, HMIN, HMAX, NQU)

&

INTEGER NEQ, LDYSAV, IMON, INLN, NQU
REAL (KIND=nag_wp) T, HLAST, HNEXT, Y(NEQ), YDOT(NEQ),

YSAV(LDYSAV,sdysav), R(NEQ), ACOR(NEQ,2), HMIN,
HMAX

&
&

where sdysav is the numerical value of SDYSAV in the call of D02NDF.

1: NEQ – INTEGER Input

On entry: the number of differential equations being solved.

2: LDYSAV – INTEGER Input

On entry: an upper bound on the number of differential equations to be solved.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable.

4: HLAST – REAL (KIND=nag_wp) Input

On entry: the last step size successfully used by the integrator.

5: HNEXT – REAL (KIND=nag_wp) Input/Output

On entry: the step size that the integrator proposes to take on the next step.

On exit: the next step size to be used. If this is different from the input value, then
IMON must be set to 4.

6: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: y, the values of the dependent variables evaluated at t.

On exit: these values must not be changed unless IMON is set to 2.

7: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the time derivatives y0 of the vector y.

8: YSAVðLDYSAV; sdysavÞ – REAL (KIND=nag_wp) array Input

On entry: workspace to enable you to carry out interpolation using either of the routines
D02XJF or D02XKF.

9: RðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: if IMON ¼ 0 and INLN ¼ 3, the first NEQ elements contain the residual
vector, y0 � g t; yð Þ.
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10: ACORðNEQ; 2Þ – REAL (KIND=nag_wp) array Input

On entry: with IMON ¼ 1, ACORði; 1Þ contains the weight used for the ith equation
when the norm is evaluated, and ACORði; 2Þ contains the estimated local error for the
ith equation. The scaled local error at the end of a timestep may be obtained by calling
the real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ, ACOR(1,2), ACOR(1,1), IFAIL)
! CHECK IFAIL BEFORE PROCEEDING

11: IMON – INTEGER Input/Output

On entry: a flag indicating under what circumstances MONITR was called:

IMON ¼ �2
Entry from the integrator after IRES ¼ 4 (set in FCN) caused an early
termination (this facility could be used to locate discontinuities).

IMON ¼ �1
The current step failed repeatedly.

IMON ¼ 0
Entry after a call to the internal nonlinear equation solver (see INLN).

IMON ¼ 1
The current step was successful.

On exit: may be reset to determine subsequent action in D02NDF.

IMON ¼ �2
Integration is to be halted. A return will be made from the integrator to the
calling (sub)program with IFAIL ¼ 12.

IMON ¼ �1
Allow the integrator to continue with its own internal strategy. The integrator will
try up to three restarts unless IMON is set 6¼ �1 on exit.

IMON ¼ 0
Return to the internal nonlinear equation solver, where the action taken is
determined by the value of INLN (see INLN).

IMON ¼ 1
Normal exit to the integrator to continue integration.

IMON ¼ 2
Restart the integration at the current time point. The integrator will restart from
order 1 when this option is used. The solution Y, provided by MONITR, will be
used for the initial conditions.

IMON ¼ 3
Try to continue with the same step size and order as was to be used before the
call to MONITR. HMIN and HMAX may be altered if desired.

IMON ¼ 4
Continue the integration but using a new value of HNEXT and possibly new
values of HMIN and HMAX.

12: INLN – INTEGER Output

On exit: the action to be taken by the internal nonlinear equation solver when MONITR
is exited with IMON ¼ 0. By setting INLN ¼ 3 and returning to the integrator, the
residual vector is evaluated and placed in the array R, and then MONITR is called
again. At present this is the only option available: INLN must not be set to any other
value.
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13: HMIN – REAL (KIND=nag_wp) Input/Output

On entry: the minimum step size to be taken on the next step.

On exit: the minimum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4.

14: HMAX – REAL (KIND=nag_wp) Input/Output

On entry: the maximum step size to be taken on the next step.

On exit: the maximum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4. If HMAX is set to zero, no limit is assumed.

15: NQU – INTEGER Input

On entry: the order of the integrator used on the last step. This is supplied to enable you
to carry out interpolation using either of the routines D02XJF or D02XKF.

MONITR must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02NDF is called. Arguments denoted as Input must not be changed
by this procedure.

21: ITASK – INTEGER Input

On entry: the task to be performed by the integrator.

ITASK ¼ 1
Normal computation of output values of y tð Þ at t ¼ TOUT (by overshooting and
interpolating).

ITASK ¼ 2
Take one step only and return.

ITASK ¼ 3
Stop at the first internal integration point at or beyond t ¼ TOUT and return.

ITASK ¼ 4
Normal computation of output values of y tð Þ at t ¼ TOUT but without overshooting
t ¼ TCRIT (e.g., see D02MVF). TCRIT must be specified as an option in one of the
integrator setup routines before the first call to the integrator, or specified in the optional
input routine before a continuation call. TCRIT may be equal to or beyond TOUT, but not
before it, in the direction of integration.

ITASK ¼ 5
Take one step only and return, without passing TCRIT (e.g., see D02MVF). TCRIT must
be specified as under ITASK ¼ 4.

Constraint: ITASK ¼ 1, 2, 3, 4 or 5.

22: ITRACE – INTEGER Input

On entry: the level of output that is printed by the integrator. ITRACE may take the value �1, 0,
1, 2 or 3.

ITRACE < �1
�1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages are printed on the current error message unit (see X04AAF).

ITRACE > 0
Warning messages are printed as above, and on the current advisory message unit (see
X04ABF) output is generated which details Jacobian entries, the nonlinear iteration and
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the time integration. The advisory messages are given in greater detail the larger the value
of ITRACE.

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An illegal input was detected on entry, or after an internal call to MONITR. If ITRACE > �1,
then the form of the error will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. The problem may have a singularity, or the
local error requirements may be inappropriate.

IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the
requested task, but the integration was successful as far as T. This may be caused by an
inaccurate Jacobian matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see the description of ITOL). Pure
relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has now
vanished. The integration was successful as far as T.

IFAIL ¼ 7

FCN set its error flag (IRES ¼ 3) continually despite repeated attempts by the integrator to avoid
this.
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IFAIL ¼ 8

Not used for the integrator.

IFAIL ¼ 9

A singular Jacobian
@r

@y
has been encountered. This error exit is unlikely to be taken when solving

explicit ordinary differential equations. You should check the problem formulation and Jacobian
calculation.

IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 11

FCN signalled the integrator to halt the integration and return (IRES ¼ 2). Integration was
successful as far as T.

IFAIL ¼ 12

MONITR set IMON ¼ �2 and so forced a return but the integration was successful as far as T.

IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and
ATOL is unlikely to produce any change in the computed solution. (Only applies when you are
not operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that D02NDF is unable to start the integration.

IFAIL ¼ 15

The linear algebra setup routine D02NUF was not called prior to calling D02NDF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the arguments RTOL
and ATOL, and to a much lesser extent by the choice of norm. You are advised to use scalar error
control unless the components of the solution are expected to be poorly scaled. For the type of decaying
solution typical of many stiff problems, relative error control with a small absolute error threshold will
be most appropriate (that is, you are advised to choose ITOL ¼ 1 with ATOLð1Þ small but positive).
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8 Parallelism and Performance

D02NDF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02NDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02NDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Since numerical stability and memory are often conflicting requirements when solving ordinary
differential systems where the Jacobian matrix is sparse, we provide a diagnostic routine, D02NXF,
whose aim is to inform you how much memory is required to solve the problem and to give you some
indication of numerical stability.

In general, you are advised to choose the Backward Differentiation Formula option (setup routine

D02NVF) but if efficiency is of great importance and especially if it is suspected that
@g

@y
has complex

eigenvalues near the imaginary axis for some part of the integration, you should try the BLEND option
(setup routine D02NWF).

10 Example

This example solves the well-known stiff Robertson problem

a0 ¼ �0:04aþ 1:0E4bc
b0 ¼ 0:04a� 1:0E4bc �3:0E7b2
c0 ¼ 3:0E7b2

over the range 0; 10:0½ � with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 using scalar error control
(ITOL ¼ 1). The solution is computed up to 10:0 by overshooting and interpolating (ITASK ¼ 1) and
the intermediate solution computed on an equispaced mesh through MONITR. The integration
algorithm used is the BDF method (setup routine D02NVF) and a modified Newton method is also
used. The use of the `N' (Numerical) and `S' (Structural) options are illustrated in turn for calculating
the Jacobian.

10.1 Program Text

! D02NDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02ndfe_mod

! D02NDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn, monitr

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, neq = 3
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Integer, Parameter, Public :: nia = neq + 1
Integer, Parameter, Public :: nin = 5
Integer, Parameter, Public :: njcpvt = 20*neq + 100
Integer, Parameter, Public :: nout = 6
Integer, Parameter, Public :: nrw = 50 + 4*neq
Integer, Parameter, Public :: nwkjac = 4*neq + 100
Integer, Parameter, Public :: sdysav = 6
Integer, Parameter, Public :: ldysav = neq

Contains
Subroutine fcn(neq,t,y,f,ires)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq)

! .. Executable Statements ..
f(1) = -alpha*y(1) + beta*y(2)*y(3)
f(2) = alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2)
f(3) = gamma*y(2)*y(2)
Return

End Subroutine fcn
Subroutine monitr(neq,ldysav,t,hlast,hnext,y,ydot,ysav,r,acor,imon,inln, &

hmin,hmax,nqu)

! .. Use Statements ..
Use nag_library, Only: d02xkf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: hlast, t
Real (Kind=nag_wp), Intent (Inout) :: hmax, hmin, hnext
Integer, Intent (Inout) :: imon
Integer, Intent (Out) :: inln
Integer, Intent (In) :: ldysav, neq, nqu

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: acor(neq,2), r(neq), ydot(neq), &

ysav(ldysav,*)
Real (Kind=nag_wp), Intent (Inout) :: y(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: xout
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: z(:)

! .. Executable Statements ..
inln = 3

If (imon==1) Then
Allocate (z(neq))

! Interpolate at multiples of 2.0 between t-hlast and t
xout = 2.0E0_nag_wp
Do While (xout<=t-hlast)

xout = xout + 2.0E0_nag_wp
End Do

loop: Do While (t-hlast<xout .And. xout<=t)

! C1 interpolation

ifail = 1
Call d02xkf(xout,z,neq,ysav,ldysav,sdysav,acor(1,2),neq,t,nqu, &

hlast,hnext,ifail)

If (ifail/=0) Then
imon = -2
Exit loop

End If
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Write (nout,99999) xout, (z(i),i=1,neq)
xout = xout + 2.0E0_nag_wp

If (xout>=10.0E0_nag_wp) Then
Exit loop

End If

End Do loop

End If

Deallocate (z)
Return

99999 Format (1X,F8.3,3(F13.5,2X))
End Subroutine monitr

End Module d02ndfe_mod

Program d02ndfe

! D02NDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02ndf, d02ndz, d02nuf, d02nvf, d02nxf, d02nyf, &

nag_wp, x04abf
Use d02ndfe_mod, Only: fcn, iset, ldysav, monitr, neq, nia, nin, njcpvt, &

nout, nrw, nwkjac, sdysav
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: eta, h, h0, hmax, hmin, hu, sens, t, &
tcrit, tcur, tinit, tolsf, tout, u

Integer :: i, icall, icase, ifail, igrow, &
imxer, isplit, isplt, itask, itol, &
itrace, liwreq, liwusd, lrwreq, &
lrwusd, maxord, maxstp, mxhnil, &
nblock, ngp, niter, nja, nje, nlu, &
nnz, nq, nqu, nre, nst, outchn

Logical :: lblock, petzld
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), &
wkjac(:), y(:), ydot(:), yinit(:), &
ysav(:,:)

Real (Kind=nag_wp) :: con(6)
Integer, Allocatable :: ia(:), ja(:), jacpvt(:)
Integer :: inform(23)
Logical, Allocatable :: algequ(:)

! .. Executable Statements ..
Write (nout,*) ’D02NDF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Allocations based on number of differential equations (neq)
Allocate (atol(neq),rtol(neq),rwork(nrw),wkjac(nwkjac),y(neq), &

yinit(neq),ydot(neq),ysav(ldysav,sdysav),ia(nia),jacpvt(njcpvt), &
algequ(neq))

Read (nin,*) maxord, maxstp, mxhnil
Read (nin,*) ia(1:nia)

nja = ia(nia) - 1
Allocate (ja(nja))
Read (nin,*) ja(1:nja)

! Read algorithmic parameters
Read (nin,*) hmin, hmax, h0, tcrit
Read (nin,*) eta, sens, u
Read (nin,*) lblock, petzld
Read (nin,*) tinit, tout
Read (nin,*) itol, isplt
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Read (nin,*) yinit(1:neq)
Read (nin,*) rtol(1), atol(1)

outchn = nout
Call x04abf(iset,outchn)

Do icase = 1, 2
t = tinit
isplit = isplt
y(1:neq) = yinit(1:neq)

! In both cases: integrate to tout by overshooting (itask=1) using BDF
! with Newton; use default con values, scalar tolerances and numerical
! Jacobian; interpolate using MONITR and D02XKF.

con(1:6) = 0.0_nag_wp
itask = 1
ifail = 0
Call d02nvf(neq,sdysav,maxord,’Newton’,petzld,con,tcrit,hmin,hmax,h0, &

maxstp,mxhnil,’Average-L2’,rwork,ifail)
Write (nout,*)

Select Case (icase)
Case (1)

! No Jacobian Structure Supplied.
ifail = 0
Call d02nuf(neq,neq,’Numerical’,nwkjac,ia,nia,ja,nja,jacpvt,njcpvt, &

sens,u,eta,lblock,isplit,rwork,ifail)
Write (nout,*) ’ Numerical Jacobian, structure not supplied’

Case (2)
! Jacobian Structure Supplied.

ifail = 0
Call d02nuf(neq,neq,’Structural’,nwkjac,ia,nia,ja,nja,jacpvt,njcpvt, &

sens,u,eta,lblock,isplit,rwork,ifail)
Write (nout,*) ’ Numerical Jacobian, structure supplied’

End Select

Write (nout,99988)(i,i=1,neq)
Write (nout,99999) t, (y(i),i=1,neq)

! Soft fail and error messages only
itrace = 0

ifail = -1
Call d02ndf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform,fcn, &

ysav,sdysav,d02ndz,wkjac,nwkjac,jacpvt,njcpvt,monitr,itask,itrace, &
ifail)

If (ifail==0) Then

ifail = 0
Call d02nyf(neq,neq,hu,h,tcur,tolsf,rwork,nst,nre,nje,nqu,nq,niter, &

imxer,algequ,inform,ifail)

Write (nout,*)
Write (nout,99997) hu, h, tcur
Write (nout,99996) nst, nre, nje
Write (nout,99995) nqu, nq, niter
Write (nout,99994) ’ Max err comp = ’, imxer
Write (nout,*)

icall = 0
Call d02nxf(icall,liwreq,liwusd,lrwreq,lrwusd,nlu,nnz,ngp,isplit, &

igrow,lblock,nblock,inform)

Write (nout,*)
Write (nout,99993) liwreq, liwusd
Write (nout,99992) lrwreq, lrwusd
Write (nout,99991) nlu, nnz
Write (nout,99990) ngp, isplit
Write (nout,99989) igrow, nblock
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Else If (ifail==10) Then
Write (nout,*)
Write (nout,99998) ’Exit D02NDF with IFAIL = ’, ifail, ’ and T = ’, &

t

icall = 1
Call d02nxf(icall,liwreq,liwusd,lrwreq,lrwusd,nlu,nnz,ngp,isplit, &

igrow,lblock,nblock,inform)

Write (nout,*)
Write (nout,99993) liwreq, liwusd
Write (nout,99992) lrwreq, lrwusd

Else
Write (nout,*)
Write (nout,99998) ’Exit D02NDF with IFAIL = ’, ifail, ’ and T = ’, &

t
End If

End Do

99999 Format (1X,F8.3,3(F13.5,2X))
99998 Format (1X,A,I5,A,E12.5)
99997 Format (1X,’ HUSED = ’,E12.5,’ HNEXT = ’,E12.5,’ TCUR = ’,E12.5)
99996 Format (1X,’ NST = ’,I6,’ NRE = ’,I6,’ NJE = ’,I6)
99995 Format (1X,’ NQU = ’,I6,’ NQ = ’,I6,’ NITER = ’,I6)
99994 Format (1X,A,I4)
99993 Format (1X,’ NJCPVT (required ’,I4,’ used ’,I8,’)’)
99992 Format (1X,’ NWKJAC (required ’,I4,’ used ’,I8,’)’)
99991 Format (1X,’ No. of LU-decomps ’,I4,’ No. of nonzeros ’,I8)
99990 Format (1X,’ No. of FCN calls to form Jacobian ’,I4,’ Try ISPLIT ’,I4)
99989 Format (1X,’ Growth est ’,I8,’ No. of blocks on diagonal ’,I4)
99988 Format (/,1X,’ X ’,3(’ Y(’,I1,’) ’))

End Program d02ndfe

10.2 Program Data

D02NDF Example Program Data
5 200 5 : maxord, maxstp, mxhnil
1 3 6 9 : ia
1 2 1 2 3 1 2 3 : ja
1.0E-10 10.0 0.0 0.0 : hmin, hmax, h0, tcrit
1.0E-4 0.0 0.1 : eta, sens, u
.TRUE. .FALSE. : lblock, petzld
0.0 10.0 : t, tout
1 0 : itol, isplit
1.0 0.0 0.0 : y
1.0E-4 1.0E-7 : rtol, atol

10.3 Program Results

D02NDF Example Program Results

Numerical Jacobian, structure not supplied

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000
2.000 0.94161 0.00003 0.05836
4.000 0.90552 0.00002 0.09446
6.000 0.87927 0.00002 0.12072
8.000 0.85855 0.00002 0.14144

10.000 0.84137 0.00002 0.15863

HUSED = 0.90236E+00 HNEXT = 0.90236E+00 TCUR = 0.10769E+02
NST = 55 NRE = 136 NJE = 16
NQU = 4 NQ = 4 NITER = 78
Max err comp = 3

NJCPVT (required 100 used 160)
NWKJAC (required 29 used 78)
No. of LU-decomps 16 No. of nonzeros 7
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No. of FCN calls to form Jacobian 3 Try ISPLIT 73
Growth est 1108 No. of blocks on diagonal 1

Numerical Jacobian, structure supplied

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000
2.000 0.94161 0.00003 0.05836
4.000 0.90551 0.00002 0.09446
6.000 0.87926 0.00002 0.12072
8.000 0.85854 0.00002 0.14144

10.000 0.84135 0.00002 0.15863

HUSED = 0.90178E+00 HNEXT = 0.90178E+00 TCUR = 0.10766E+02
NST = 55 NRE = 129 NJE = 16
NQU = 4 NQ = 4 NITER = 78
Max err comp = 3

NJCPVT (required 106 used 160)
NWKJAC (required 31 used 77)
No. of LU-decomps 16 No. of nonzeros 8
No. of FCN calls to form Jacobian 3 Try ISPLIT 73
Growth est 277504 No. of blocks on diagonal 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10
 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

So
lu

ti
on

 (
a,

c)

So
lu

ti
on

 (
b)

x

Example Program
Stiff Robertson Problem

BDF Method, Sparse Numerical Jacobian with Structure Supplied

a

b

c

D02NDF NAG Library Manual

D02NDF.16 (last) Mark 26



NAG Library Routine Document

D02NEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NEF is a routine for integrating stiff systems of implicit ordinary differential equations coupled
with algebraic equations.

2 Specification

SUBROUTINE D02NEF (NEQ, T, TOUT, Y, YDOT, RTOL, ATOL, ITASK, RES, JAC,
ICOM, COM, LCOM, IUSER, RUSER, IFAIL)

&

INTEGER NEQ, ITASK, ICOM(50+NEQ), LCOM, IUSER(*), IFAIL
REAL (KIND=nag_wp) T, TOUT, Y(NEQ), YDOT(NEQ), RTOL(*), ATOL(*),

COM(LCOM), RUSER(*)
&

EXTERNAL RES, JAC

3 Description

D02NEF is a general purpose routine for integrating the initial value problem for a stiff system of
implicit ordinary differential equations with coupled algebraic equations written in the form

F t; y; y0ð Þ ¼ 0:

D02NEF uses the DASSL implementation of the Backward Differentiation Formulae (BDF) of orders
one to five to solve a system of the above form for y (Y) and y0 (YDOT). Values for Y and YDOT at the
initial time must be given as input. These values must be consistent, (i.e., if T, Y, YDOT are the given
initial values, they must satisfy F T;Y;YDOTð Þ ¼ 0). The routine solves the system from t ¼ T to
t ¼ TOUT.

An outline of a typical calling program for D02NEF is given below. It calls the DASSL implementation
of the BDF integrator setup routine D02MWF and the banded matrix setup routine D02NPF (if
required), and, if the integration needs to proceed, calls D02MCF before continuing the integration.

! Declarations

EXTERNAL RES, JAC
.
.
.

! Initialize the integrator
CALL D02MWF(...)

! Is the Jacobian matrix banded?
IF (BANDED) CALL D02NPF(...)

! Set DT to the required temporal resolution
! Set TEND to the final time
! Call the integrator for each temporal value:
1000 CALL D02NEF(...,RES,JAC,...)
! Continue integration?

IF (TOUT.LT.TEND .AND. ITASK.GE.0) THEN
IF (ITASK.NE.1) TOUT = MIN(TOUT+DT,TEND)

! Print solution
CALL D02MCF(...)
GO TO 1000

ENDIF
.
.
.
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4 References

None.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential-algebraic equations to be solved.

Constraint: NEQ � 1.

2: T – REAL (KIND=nag_wp) Input/Output

On initial entry: the initial value of the independent variable, t.

On intermediate exit: t, the current value of the independent variable.

On final exit: the value of the independent variable at which the computed solution y is returned
(usually at TOUT).

3: TOUT – REAL (KIND=nag_wp) Input

On entry: the next value of t at which a computed solution is desired.

On initial entry: TOUT is used to determine the direction of integration. Integration is permitted
in either direction (see also ITASK).

Constraint: TOUT 6¼ T.

4: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: the vector of initial values of the dependent variables y.

On intermediate exit: the computed solution vector, y, evaluated at t ¼ T .
On final exit: the computed solution vector, evaluated at t (usually t ¼ TOUT).

5: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: YDOT must contain approximations to the time derivatives y0 of the vector y
evaluated at the initial value of the independent variable.

On exit: the time derivatives y0 of the vector y at the last integration point.

6: RTOLð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array RTOL depends on the value of ITOL as set in D02MWF; it
must be at least NEQ if ITOL ¼ :TRUE: and at least 1 if ITOL ¼ :FALSE:.
On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0, for i ¼ 1; 2; . . . ; n

where n ¼ NEQ when ITOL ¼ :TRUE: and n ¼ 1 otherwise.

On exit: RTOL remains unchanged unless D02NEF exits with IFAIL ¼ 16 in which case the
values may have been increased to values estimated to be appropriate for continuing the
integration.

7: ATOLð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array ATOL depends on the value of ITOL as set in D02MWF; it
must be at least NEQ if ITOL ¼ :TRUE: and at least 1 if ITOL ¼ :FALSE:.
On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0, for i ¼ 1; 2; . . . ; n
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where n ¼ NEQ when ITOL ¼ :TRUE: and n ¼ 1 otherwise.

On exit: ATOL remains unchanged unless D02NEF exits with IFAIL ¼ 16 in which case the
values may have been increased to values estimated to be appropriate for continuing the
integration.

8: ITASK – INTEGER Input/Output

On initial entry: need not be set.

On exit: the task performed by the integrator on successful completion or an indicator that a
problem occurred during integration.

ITASK ¼ 2
The integration to TOUT was successfully completed (T ¼ TOUT) by stepping exactly to
TOUT.

ITASK ¼ 3
The integration to TOUT was successfully completed (T ¼ TOUT) by stepping past TOUT.
Y and YDOT are obtained by interpolation.

ITASK < 0
Different negative values of ITASK returned correspond to different failure exits. IFAIL
should always be checked in such cases and the corrective action taken where appropriate.

ITASK must remain unchanged between calls to D02NEF.

9: RES – SUBROUTINE, supplied by the user. External Procedure

RES must evaluate the residual

R ¼ F t; y; y0ð Þ:

The specification of RES is:

SUBROUTINE RES (NEQ, T, Y, YDOT, R, IRES, IUSER, RUSER)

INTEGER NEQ, IRES, IUSER(*)
REAL (KIND=nag_wp) T, Y(NEQ), YDOT(NEQ), R(NEQ), RUSER(*)

1: NEQ – INTEGER Input

On entry: the number of differential-algebraic equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the current solution component.

4: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the derivative of the solution at the current point t.

5: RðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: RðiÞ must contain the ith component of R, for i ¼ 1; 2; . . . ;NEQ where

R ¼ F T;Y;YDOTð Þ:

6: IRES – INTEGER Input/Output

On entry: is always equal to zero.

On exit: IRES should normally be left unchanged. However, if an illegal value of Y is
encountered, IRES should be set to �1; D02NEF will then attempt to resolve the
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problem so that illegal values of Y are not encountered. IRES should be set to �2 if you
wish to return control to the calling (sub)routine; this will cause D02NEF to exit with
IFAIL ¼ 23.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

RES is called with the arguments IUSER and RUSER as supplied to D02NEF. You
should use the arrays IUSER and RUSER to supply information to RES.

RES must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NEF is called. Arguments denoted as Input must not be changed by this
procedure.

10: JAC – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

Evaluates the matrix of partial derivatives, J , where

Jij ¼
@Fi
@yj
þ CJ� @Fi

@y0j
; i; j ¼ 1; 2; . . . ;NEQ:

If this option is not required, the actual argument for JAC must be the dummy routine D02NEZ.
(D02NEZ is included in the NAG Library.) You must indicate to the integrator whether this
option is to be used by setting the argument JCEVAL appropriately in a call to the setup routine
D02MWF.

The specification of JAC is:

SUBROUTINE JAC (NEQ, T, Y, YDOT, PD, CJ, IUSER, RUSER)

INTEGER NEQ, IUSER(*)
REAL (KIND=nag_wp) T, Y(NEQ), YDOT(NEQ), PD(*), CJ, RUSER(*)

1: NEQ – INTEGER Input

On entry: the number of differential-algebraic equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the current solution component.

4: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the derivative of the solution at the current point t.

5: PDð�Þ – REAL (KIND=nag_wp) array Input/Output

On entry: PD is preset to zero before the call to JAC.

On exit: if the Jacobian is full then PDð j � 1ð Þ � NEQþ iÞ ¼ Jij , for i ¼ 1; 2; . . . ;NEQ
a n d j ¼ 1; 2; . . . ;NEQ; i f t h e J a c o b i a n i s b a n d e d t h e n
PDð j� 1ð Þ � 2MLþMUþ 1ð Þ þMLþMUþ i� jþ 1Þ ¼ Jij, f o r
max 1; j�MUð Þ � i � min n; jþMLð Þ; (see also in F07BDF (DGBTRF)).

6: CJ – REAL (KIND=nag_wp) Input

On entry: CJ is a scalar constant which will be defined in D02NEF.
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7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

JAC is called with the arguments IUSER and RUSER as supplied to D02NEF. You
should use the arrays IUSER and RUSER to supply information to JAC.

JAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NEF is called. Arguments denoted as Input must not be changed by this
procedure.

11: ICOMð50þ NEQÞ – INTEGER array Communication Array

ICOM contains information which is usually of no interest, but is necessary for subsequent calls.
However you may find the following useful:

ICOMð22Þ
The order of the method to be attempted on the next step.

ICOMð23Þ
The order of the method used on the last step.

ICOMð26Þ
The number of steps taken so far.

ICOMð27Þ
The number of calls to RES so far.

ICOMð28Þ
The number of evaluations of the matrix of partial derivatives needed so far.

ICOMð29Þ
The total number of error test failures so far.

ICOMð30Þ
The total number of convergence test failures so far.

12: COMðLCOMÞ – REAL (KIND=nag_wp) array Communication Array

COM contains information which is usually of no interest, but is necessary for subsequent calls.
However you may find the following useful:

COMð3Þ
The step size to be attempted on the next step.

COMð4Þ
The current value of the independent variable, i.e., the farthest point integration has
reached. This will be different from T only when interpolation has been performed
(ITASK ¼ 3).

13: LCOM – INTEGER Input

On entry: the dimension of the array COM as declared in the (sub)program from which D02NEF
is called.

Constraint: LCOM � 40þ maxorder þ 4ð Þ � NEQþ NEQ� pþ q where maxorder is the
maximum order that can be used by the integration method (see MAXORD in D02MWF);
p ¼ NEQ when the Jacobian is full and p ¼ 2�MLþMUþ 1ð Þ when the Jacobian is banded;
and, q ¼ NEQ= MLþMUþ 1ð Þð Þ þ 1 when the Jacobian is to be evaluated numerically and
q ¼ 0 otherwise.

14: IUSERð�Þ – INTEGER array User Workspace
15: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D02NEF, but are passed directly to RES and JAC and
should be used to pass information to these routines.
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16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D02NEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NEQ ¼ valueh i.
Constraint: NEQ � 1.

IFAIL ¼ 3

On entry, T ¼ valueh i.
Constraint: TOUT 6¼ T.

TOUT is behind T in the direction of h: TOUT� T ¼ valueh i, h ¼ valueh i.
TOUT is too close to T to start integration: TOUT� T ¼ valueh i: hmin ¼ valueh i.

IFAIL ¼ 6

Some element of RTOL is less than zero.

IFAIL ¼ 7

Some element of ATOL is less than zero.

IFAIL ¼ 8

A previous call to this routine returned with ITASK ¼ valueh i and no appropriate action was
taken.

IFAIL ¼ 11

Either the initialization routine has not been called prior to the first call of this routine or a
communication array has become corrupted.

IFAIL ¼ 12

Either the initialization routine has not been called prior to the first call of this routine or a
communication array has become corrupted.

IFAIL ¼ 13

COM array is of insufficient length; length required ¼ valueh i; actual length LCOM ¼ valueh i.
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IFAIL ¼ 14

All elements of RTOL and ATOL are zero.

IFAIL ¼ 15

Maximum number of steps taken on this call before reaching TOUT: T ¼ valueh i, maximum
number of steps ¼ valueh i.

IFAIL ¼ 16

Too much accuracy requested for precision of machine. RTOL and ATOL were increased by
scale factor R. Try running again with these scaled tolerances. T ¼ valueh i, R ¼ valueh i.

IFAIL ¼ 17

A solution component has become zero when a purely relative tolerance (zero absolute tolerance)
was selected for that component. T ¼ valueh i, YðI Þ ¼ valueh i for component I ¼ valueh i.

IFAIL ¼ 18

The error test failed repeatedly with hj j ¼ hmin. T ¼ valueh i. Stepsize h ¼ valueh i.

IFAIL ¼ 19

The corrector repeatedly failed to converge with hj j ¼ hmin. T ¼ valueh i. Stepsize h ¼ valueh i.

IFAIL ¼ 20

The iteration matrix is singular. T ¼ valueh i. Stepsize h ¼ valueh i.

IFAIL ¼ 21

The corrector could not converge and the error test failed repeatedly. T ¼ valueh i. Stepsize
h ¼ valueh i.

IFAIL ¼ 22

IRES was set to �1 during a call to RES and could not be resolved. T ¼ valueh i. Stepsize
h ¼ valueh i.

IFAIL ¼ 23

IRES was set to �2 during a call to RES. T ¼ valueh i. Stepsize ¼ valueh i.

IFAIL ¼ 24

The initial YDOT could not be computed. T ¼ valueh i. Stepsize h ¼ valueh i.

IFAIL ¼ 25

Repeated occurrences of input constraint violations have been detected. This could result in a
potential infinite loop: ITASK ¼ valueh i. Current violation corresponds to exit with
IFAIL ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the arguments RTOL
and ATOL. You are advised to use scalar error control unless the components of the solution are
expected to be poorly scaled. For the type of decaying solution typical of many stiff problems, relative
error control with a small absolute error threshold will be most appropriate (that is, you are advised to
choose ITOL ¼ 0 with ATOLð1Þ small but positive).

8 Parallelism and Performance

D02NEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02NEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem. For banded systems the cost is proportional to
NEQ� MLþMUþ 1ð Þ2, while for full systems the cost is proportional to NEQ3. Note however that
for moderately sized problems which are only mildly nonlinear the cost may be dominated by factors
proportional to NEQ� MLþMUþ 1ð Þ and NEQ2 respectively.

10 Example

For this routine two examples are presented. There is a single example program for D02NEF, with a
main program and the code to solve the two example problems given in Example 1 (EX1) and Example
2 (EX2).

Example 1 (EX1)

This example solves the well-known stiff Robertson problem written in implicit form

r1 ¼ �0:04a þ 1:0E4bc � a0

r2 ¼ 0:04a � 1:0E4bc � 3:0E7b2 � b0

r3 ¼ 3:0E7b2 � c0

with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 over the range 0; 0:1½ � the BDF method (setup routine
D02MWF and D02NPF).

Example 2 (EX2)

This example illustrates the use of D02NEF to solve a simple algebraic problem by continuation. The
equation 4� 2yþ 0:1eyt ¼ 0 from t ¼ 0 (where y ¼ 2) to t ¼ 1.
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10.1 Program Text

! D02NEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02nefe_mod

! D02NEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: jac1, jac2, res1, res2

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter, Public :: ml = 1, mu = 2, neq1 = 3, neq2 = 1, &

nin = 5, nout = 6
Contains

Subroutine myjac1(neq,ml,mu,t,y,ydot,pd,cj)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: cj, t
Integer, Intent (In) :: ml, mu, neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: pd(2*ml+mu+1,neq)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)

! .. Local Scalars ..
Integer :: md, ms

! .. Executable Statements ..
! Main diagonal pdfull(i,i), i=1,neq

md = mu + ml + 1
pd(md,1) = -alpha - cj
pd(md,2) = -beta*y(3) - two*gamma*y(2) - cj
pd(md,3) = -cj

! 1 Subdiagonal pdfull(i+1:i), i=1,neq-1
ms = md + 1
pd(ms,1) = alpha
pd(ms,2) = two*gamma*y(2)

! First superdiagonal pdfull(i-1,i), i=2, neq
ms = md - 1
pd(ms,2) = beta*y(3)
pd(ms,3) = -beta*y(2)

! Second superdiagonal pdfull(i-2,i), i=3, neq
ms = md - 2
pd(ms,3) = beta*y(2)

Return
End Subroutine myjac1
Subroutine myjac2(neq,t,y,ydot,pd,cj)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: cj, t
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: pd(neq*neq)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
pd(1) = -two*y(1) + 0.1E0_nag_wp*t*y(1)*exp(y(1))

Return
End Subroutine myjac2
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Subroutine res1(neq,t,y,ydot,r,ires,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
r(1) = -alpha*y(1) + beta*y(2)*y(3) - ydot(1)
r(2) = alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2) - ydot(2)
r(3) = gamma*y(2)*y(2) - ydot(3)
Return

End Subroutine res1
Subroutine jac1(neq,t,y,ydot,pd,cj,iuser,ruser)

! .. Use Statements ..
Use nag_library, Only: d02nez

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: cj, t
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: pd(*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: ijac, ml, mu

! .. Executable Statements ..
ml = iuser(1)
mu = iuser(2)
ijac = iuser(3)

If (ijac==1) Then
Call myjac1(neq,ml,mu,t,y,ydot,pd,cj)

Else
Call d02nez(neq,t,y,ydot,pd,cj,iuser,ruser)

End If

Return
End Subroutine jac1
Subroutine res2(neq,t,y,ydot,r,ires,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
r(1) = 4.0_nag_wp - y(1)**2 + t*0.1E0_nag_wp*exp(y(1))
Return

End Subroutine res2
Subroutine jac2(neq,t,y,ydot,pd,cj,iuser,ruser)

! .. Use Statements ..
Use nag_library, Only: d02nez

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: cj, t
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: pd(*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)
Integer, Intent (Inout) :: iuser(*)
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! .. Local Scalars ..
Integer :: ijac

! .. Executable Statements ..
ijac = iuser(1)

If (ijac==1) Then
Call myjac2(neq,t,y,ydot,pd,cj)

Else
Call d02nez(neq,t,y,ydot,pd,cj,iuser,ruser)

End If

Return
End Subroutine jac2

End Module d02nefe_mod
Program d02nefe

! D02NEF Example Main Program

! .. Use Statements ..
Use d02nefe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’D02NEF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: d02mcf, d02mwf, d02nef, d02npf, nag_wp
Use d02nefe_mod, Only: jac1, ml, mu, neq1, nin, res1

! .. Local Scalars ..
Real (Kind=nag_wp) :: h0, hmax, t, tout
Integer :: i, ifail, ijac, itask, itol, j, &

lcom, licom, maxord, neq
Character (8) :: jceval

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: atol(:), com(:), rtol(:), y(:), &

ydot(:)
Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icom(:)
Integer :: iuser(3)

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’D02NEF Example 1’

! Skip heading in data file
Read (nin,*)
Read (nin,*) maxord
neq = neq1
lcom = 40 + (maxord+4)*neq + (2*ml+mu+1)*neq + 2*(neq/(ml+mu+1)+1)
licom = 50 + neq
Allocate (atol(neq),com(lcom),rtol(neq),y(neq),ydot(neq),icom(licom))
Read (nin,*) ijac, itol
Read (nin,*) rtol(1:neq)
Read (nin,*) atol(1:neq)
Read (nin,*) ydot(1:neq)
If (ijac==1) Then

jceval = ’Analytic’
Else

jceval = ’Numeric’
End If

! Set initial values
Read (nin,*) y(1:neq)

! Initialize the problem, specifying that the Jacobian is to be
! evaluated analytically using the provided routine jac.
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Read (nin,*) hmax, h0
Read (nin,*) t, tout

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02mwf(neq,maxord,jceval,hmax,h0,itol,icom,licom,com,lcom,ifail)

! Specify that the Jacobian is banded.

ifail = 0
Call d02npf(neq,ml,mu,icom,licom,ifail)

! Use the iuser array to pass the band dimensions through to jac.
! An alternative would be to hard code values for ml and mu in jac.

iuser(1) = ml
iuser(2) = mu
iuser(3) = ijac

Write (nout,99999)(i,i=1,neq)
Write (nout,99998) t, (y(i),i=1,neq)
itask = 0

! Obtain the solution at 5 equally spaced values of T.

loop: Do j = 1, 5
ifail = -1
Call d02nef(neq,t,tout,y,ydot,rtol,atol,itask,res1,jac1,icom,com, &

lcom,iuser,ruser,ifail)
Write (nout,99998) t, (y(i),i=1,neq)
If (ifail/=0) Then

Write (nout,99997) ifail
Exit loop

End If
tout = tout + 0.02_nag_wp
Call d02mcf(icom)

End Do loop

Write (nout,*)
Write (nout,99996) itask

99999 Format (/,1X,’ t ’,5X,3(’ Y(’,I1,’) ’))
99998 Format (1X,F8.4,3X,3(F12.6))
99997 Format (1X,’ ** D02NEF returned with IFAIL = ’,I5)
99996 Format (1X,’The integrator completed task, ITASK = ’,I4)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d02mcf, d02mwf, d02nef, nag_wp
Use d02nefe_mod, Only: jac2, neq2, nin, res2

! .. Local Scalars ..
Real (Kind=nag_wp) :: h0, hmax, t, tout
Integer :: i, ifail, ijac, itask, itol, j, &

lcom, licom, maxord, neq
Character (8) :: jceval

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: atol(:), com(:), rtol(:), y(:), &

ydot(:)
Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icom(:)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’D02NEF Example 2’
Write (nout,*)
Read (nin,*)
Read (nin,*) maxord
neq = neq2
lcom = 40 + (maxord+4)*neq + neq*neq
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licom = 50 + neq
Allocate (atol(neq),com(lcom),rtol(neq),y(neq),ydot(neq),icom(licom))
Read (nin,*) ijac, itol
Read (nin,*) rtol(1:neq)
Read (nin,*) atol(1:neq)
Read (nin,*) ydot(1:neq)
If (ijac==1) Then

jceval = ’Analytic’
Else

jceval = ’Numeric’
End If

! Initialize the problem, specifying that the Jacobian is to be
! evaluated analytically using the provided routine jac.

Read (nin,*) y(1:neq)
Read (nin,*) hmax, h0
Read (nin,*) t, tout

ifail = 0
Call d02mwf(neq,maxord,jceval,hmax,h0,itol,icom,licom,com,lcom,ifail)

! Use the iuser array to pass whether numerical or analytic Jacobian
! is to be used.

iuser(1) = ijac

Write (nout,99999)(i,i=1,neq)
Write (nout,99998) t, y(1:neq)
itask = 0

! Obtain the solution at 5 equally spaced values of t.

loop: Do j = 1, 5

ifail = -1
Call d02nef(neq,t,tout,y,ydot,rtol,atol,itask,res2,jac2,icom,com, &

lcom,iuser,ruser,ifail)

Write (nout,99998) t, y(1:neq)
If (ifail/=0) Then

Write (nout,99997) ifail
Exit loop

End If
tout = tout + 0.2_nag_wp
Call d02mcf(icom)

End Do loop

Write (nout,*)
Write (nout,99996) itask

99999 Format (/,1X,’ t y(’,I1,’)’)
99998 Format (1X,F8.4,3X,3(F12.6))
99997 Format (1X,’ ** D02NEF returned with IFAIL = ’,I5)
99996 Format (1X,’The integrator completed task, ITASK = ’,I4)

End Subroutine ex2
End Program d02nefe

10.2 Program Data

D02NEF Example Program Data
5 : ex1 : maxord
1 1 : ijac, itol
1.0E-3 1.0E-3 1.0E-3 : rtol
1.0E-6 1.0E-6 1.0E-6 : atol
0.0 0.0 0.0 : ydot
1.0 0.0 0.0 : y
0.0 0.0 : hmax, h0
0.0 0.02 : t, tout
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5 : ex2 : maxord
1 1 : ijac, itol
0.0 : rtol
1.0E-8 : atol
0.0 : ydot
2.0 : y
0.0 0.0 : hmax, h0
0.0 0.2 : t, tout

10.3 Program Results

D02NEF Example Program Results

D02NEF Example 1

t Y(1) Y(2) Y(3)
0.0000 1.000000 0.000000 0.000000
0.0200 0.999204 0.000036 0.000760
0.0400 0.998415 0.000036 0.001549
0.0600 0.997631 0.000036 0.002333
0.0800 0.996852 0.000036 0.003112
0.1000 0.996080 0.000036 0.003884

The integrator completed task, ITASK = 3

D02NEF Example 2

t y(1)
0.0000 2.000000
0.2000 2.038016
0.4000 2.078379
0.6000 2.121462
0.8000 2.167736
1.0000 2.217821

The integrator completed task, ITASK = 3
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NAG Library Routine Document

D02NGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NGF is a direct communication routine for integrating stiff systems of implicit ordinary differential
equations coupled with algebraic equations when the Jacobian is a full matrix.

2 Specification

SUBROUTINE D02NGF (NEQ, LDYSAV, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
ITOL, INFORM, RESID, YSAV, SDYSAV, JAC, WKJAC,
NWKJAC, MONITR, LDERIV, ITASK, ITRACE, IFAIL)

&
&

INTEGER NEQ, LDYSAV, ITOL, INFORM(23), SDYSAV, NWKJAC,
ITASK, ITRACE, IFAIL

&

REAL (KIND=nag_wp) T, TOUT, Y(NEQ), YDOT(NEQ), RWORK(50+4*NEQ),
RTOL(*), ATOL(*), YSAV(LDYSAV,SDYSAV),
WKJAC(NWKJAC)

&
&

LOGICAL LDERIV(2)
EXTERNAL RESID, JAC, MONITR

3 Description

D02NGF is a general purpose routine for integrating the initial value problem for a stiff system of
implicit ordinary differential equations coupled with algebraic equations, written in the form

A t; yð Þy0 ¼ g t; yð Þ:

It is designed specifically for the case where the resulting Jacobian is a full matrix (see the description
of JAC).

Both interval and step oriented modes of operation are available and also modes designed to permit
intermediate output within an interval oriented mode.

An outline of a typical calling program for D02NGF is given below. It calls the full matrix linear
algebra setup routine D02NSF, the Backward Differentiation Formula (BDF) integrator setup routine
D02NVF, and its diagnostic counterpart D02NYF.

! Declarations

EXTERNAL RESID, JAC, MONITR
.
.
.

IFAIL = 0
CALL D02NVF(...,IFAIL)
CALL D02NSF(NEQ, NEQMAX, JCEVAL, NWKJAC, RWORK, IFAIL)
IFAIL = -1
CALL D02NGF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL, &

ATOL, ITOL, INFORM, RESID, YSAVE, NY2DIM, &
JAC, WKJAC, NWKJAC, MONITR, LDERIV, ITASK, & ITRACE, IFAIL)

IF (IFAIL.EQ.1 .OR. IFAIL.GE.14) STOP
IFAIL = 0
CALL D02NYF(...)

.

.

.
STOP
END
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The linear algebra setup routine D02NSF and one of the integrator setup routines, D02MVF, D02NVF
or D02NWF, must be called prior to the call of D02NGF. The integrator diagnostic routine D02NYF
may be called after the call to D02NGF. There is also a routine, D02NZF, designed to permit you to
change step size on a continuation call to D02NGF without restarting the integration process.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential equations to be solved.

Constraint: NEQ � 1.

2: LDYSAV – INTEGER Input

On entry: a bound on the maximum number of equations to be solved during the integration.

Constraint: LDYSAV � NEQ.

3: T – REAL (KIND=nag_wp) Input/Output

On entry: t, the value of the independent variable. The input value of T is used only on the first
call as the initial point of the integration.

On exit: the value at which the computed solution y is returned (usually at TOUT).

4: TOUT – REAL (KIND=nag_wp) Input/Output

On entry: the next value of t at which a computed solution is desired. For the initial t, the input
value of TOUT is used to determine the direction of integration. Integration is permitted in either
direction (see also ITASK).

Constraint: TOUT 6¼ T.

On exit: normally unchanged. However, when ITASK ¼ 6, then TOUT contains the value of T at
which initial values have been computed without performing any integration. See descriptions of
ITASK and LDERIV.

5: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the values of the dependent variables (solution). On the first call the first NEQ
elements of Y must contain the vector of initial values.

On exit: the computed solution vector, evaluated at T (usually T ¼ TOUT).

6: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if LDERIVð1Þ ¼ :TRUE:, YDOT must contain approximations to the time derivatives
y0 of the vector y.

If LDERIVð1Þ ¼ :FALSE:, YDOT need not be set on entry.

On exit: the time derivatives y0 of the vector y at the last integration point.
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7: RWORKð50þ 4� NEQÞ – REAL (KIND=nag_wp) array Communication Array

8: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2, and at least NEQ
otherwise.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).

9: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3, and at least NEQ
otherwise.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D02NGF whether
to interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be satisfied
is ei=wik k < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � yij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � yij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � yij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � yij j þ ATOLðiÞ

ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: ITOL ¼ 1, 2, 3 or 4.

11: INFORMð23Þ – INTEGER array Communication Array

12: RESID – SUBROUTINE, supplied by the user. External Procedure

RESID must evaluate the residual

r ¼ g t; yð Þ �A t; yð Þy0

in one case and

r ¼ �A t; yð Þy0

in another.

The specification of RESID is:

SUBROUTINE RESID (NEQ, T, Y, YDOT, R, IRES)

INTEGER NEQ, IRES
REAL (KIND=nag_wp) T, Y(NEQ), YDOT(NEQ), R(NEQ)

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.
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3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the value of yi, for i ¼ 1; 2; . . . ;NEQ.

4: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the value of y0i, for i ¼ 1; 2; . . . ;NEQ, at t.

5: RðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: RðiÞ must contain the ith component of r, for i ¼ 1; 2; . . . ;NEQ, where

r ¼ g t; yð Þ �A t; yð Þy0 ð1Þ

or

r ¼ �A t; yð Þy0 ð2Þ

and where the definition of r is determined by the input value of IRES.

6: IRES – INTEGER Input/Output

On entry: the form of the residual that must be returned in array R.

IRES ¼ �1
The residual defined in equation (2) must be returned.

IRES ¼ 1
The residual defined in equation (1) must be returned.

On exit: should be unchanged unless one of the following actions is required of the
integrator, in which case IRES should be set accordingly.

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3
Indicates to the integrator that an error condition has occurred in the solution
vector, its time derivative or in the value of t. The integrator will use a smaller
time step to try to avoid this condition. If this is not possible, the integrator
returns to the calling (sub)program with the error indicator set to IFAIL ¼ 7.

IRES ¼ 4
Indicates to the integrator to stop its current operation and to enter MONITR
immediately with argument IMON ¼ �2.

RESID must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NGF is called. Arguments denoted as Input must not be changed by
this procedure.

13: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Communication Array
14: SDYSAV – INTEGER Input

On entry: the second dimension of the array YSAV as declared in the (sub)program from which
D02NGF is called. An appropriate value for SDYSAV is described in the specifications of the
integrator setup routines D02MVF, D02NVF and D02NWF. This value must be the same as that
supplied to the integrator setup routine.

15: JAC – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JAC must evaluate the Jacobian of the system. If this option is not required, the actual argument
for JAC must be the dummy routine D02NGZ. (D02NGZ is included in the NAG Library.) You
must indicate to the integrator whether this option is to be used by setting the argument JCEVAL
appropriately in a call to the full linear algebra setup routine D02NSF.
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First we must define the system of nonlinear equations which is solved internally by the
integrator. The time derivative, y0, generated internally, has the form

y0 ¼ y� zð Þ= hdð Þ;

where h is the current step size and d is an argument that depends on the integration method in
use. The vector y is the current solution and the vector z depends on information from previous
time steps. This means that d

dy0ð Þ ¼ hdð Þ ddyð Þ . The system of nonlinear equations that is solved

has the form

A t; yð Þy0 � g t; yð Þ ¼ 0

but it is solved in the form

r t; yð Þ ¼ 0;

where r is the function defined by

r t; yð Þ ¼ hdð Þ A t; yð Þ y� zð Þ= hdð Þ � g t; yð Þð Þ:

It is the Jacobian matrix
@r

@y
that you must supply in JAC as follows:

@ri
@yj
¼ aij t; yð Þ þ hdð Þ @

@yj

XNEQ
k¼1

aik t; yð Þy0k � gi t; yð Þ
 !

:

The specification of JAC is:

SUBROUTINE JAC (NEQ, T, Y, YDOT, H, D, P)

INTEGER NEQ
REAL (KIND=nag_wp) T, Y(NEQ), YDOT(NEQ), H, D, P(NEQ,NEQ)

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the current solution component.

4: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the derivative of the solution at the current point t.

5: H – REAL (KIND=nag_wp) Input

On entry: the current step size.

6: D – REAL (KIND=nag_wp) Input

On entry: the argument d which depends on the integration method.

7: PðNEQ;NEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: is set to zero.

On exit: Pði; jÞ must contain
@ri
@yj

, for i ¼ 1; 2; . . . ;NEQ and j ¼ 1; 2; . . . ;NEQ.

Only the nonzero elements of this array need be set, since it is preset to zero before the
call to JAC.
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JAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NGF is called. Arguments denoted as Input must not be changed by
this procedure.

16: WKJACðNWKJACÞ – REAL (KIND=nag_wp) array Communication Array
17: NWKJAC – INTEGER Input

On entry: the dimension of the array WKJAC as declared in the (sub)program from which
D02NGF is called. This value must be the same as that supplied to the linear algebra setup
routine D02NSF.

Constraint: NWKJAC � LDYSAV� LDYSAVþ 1ð Þ.

18: MONITR – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONITR performs tasks requested by you. If this option is not required, then the actual
argument for MONITR must be the dummy routine D02NBY. (D02NBY is included in the NAG
Library.)

The specification of MONITR is:

SUBROUTINE MONITR (NEQ, LDYSAV, T, HLAST, HNEXT, Y, YDOT, YSAV,
R, ACOR, IMON, INLN, HMIN, HMAX, NQU)

&

INTEGER NEQ, LDYSAV, IMON, INLN, NQU
REAL (KIND=nag_wp) T, HLAST, HNEXT, Y(NEQ), YDOT(NEQ),

YSAV(LDYSAV,sdysav), R(NEQ), ACOR(NEQ,2), HMIN,
HMAX

&
&

where sdysav is the numerical value of SDYSAV in the call of D02NGF.

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: LDYSAV – INTEGER Input

On entry: an upper bound on the number of equations to be solved.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable.

4: HLAST – REAL (KIND=nag_wp) Input

On entry: the last step size successfully used by the integrator.

5: HNEXT – REAL (KIND=nag_wp) Input/Output

On entry: the step size that the integrator proposes to take on the next step.

On exit: the next step size to be used. If this is different from the input value, then
IMON must be set to 4.

6: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: y, the values of the dependent variables evaluated at t.

On exit: these values must not be changed unless IMON is set to 2.

7: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the time derivatives y0 of the vector y.
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8: YSAVðLDYSAV; sdysavÞ – REAL (KIND=nag_wp) array Input

On entry: workspace to enable you to carry out interpolation using either of the routines
D02XJF or D02XKF.

9: RðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: if IMON ¼ 0 and INLN ¼ 3, then the first NEQ elements contain the residual
vector A t; yð Þy0 � g t; yð Þ.

10: ACORðNEQ; 2Þ – REAL (KIND=nag_wp) array Input

On entry: with IMON ¼ 1, ACORði; 1Þ contains the weight used for the ith equation
when the norm is evaluated, and ACORði; 2Þ contains the estimated local error for the
ith equation. The scaled local error at the end of a timestep may be obtained by calling
the real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ, ACOR(1,2), ACOR(1,1), IFAIL)
! CHECK IFAIL BEFORE PROCEEDING

11: IMON – INTEGER Input/Output

On entry: a flag indicating under what circumstances MONITR was called:

IMON ¼ �2
Entry from the integrator after IRES ¼ 4 (set in RESID) caused an early
termination (this facility could be used to locate discontinuities).

IMON ¼ �1
The current step failed repeatedly.

IMON ¼ 0
Entry after a call to the internal nonlinear equation solver (see INLN).

IMON ¼ 1
The current step was successful.

On exit: may be reset to determine subsequent action in D02NGF.

IMON ¼ �2
Integration is to be halted. A return will be made from the integrator to the
calling (sub)program with IFAIL ¼ 12.

IMON ¼ �1
Allow the integrator to continue with its own internal strategy. The integrator will
try up to three restarts unless IMON 6¼ �1 on exit.

IMON ¼ 0
Return to the internal nonlinear equation solver, where the action taken is
determined by the value of INLN (see INLN).

IMON ¼ 1
Normal exit to the integrator to continue integration.

IMON ¼ 2
Restart the integration at the current time point. The integrator will restart from
order 1 when this option is used. The solution Y, provided by MONITR, will be
used for the initial conditions.

IMON ¼ 3
Try to continue with the same step size and order as was to be used before the
call to MONITR. HMIN and HMAX may be altered if desired.

IMON ¼ 4
Continue the integration but using a new value of HNEXT and possibly new
values of HMIN and HMAX.
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12: INLN – INTEGER Output

On exit: the action to be taken by the internal nonlinear equation solver when MONITR
is exited with IMON ¼ 0. By setting INLN ¼ 3 and returning to the integrator, the
residual vector is evaluated and placed in the array R, and then MONITR is called
again. At present this is the only option available: INLN must not be set to any other
value.

13: HMIN – REAL (KIND=nag_wp) Input/Output

On entry: the minimum step size to be taken on the next step.

On exit: the minimum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4.

14: HMAX – REAL (KIND=nag_wp) Input/Output

On entry: the maximum step size to be taken on the next step.

On exit: the maximum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4. If HMAX is set to zero, no limit is assumed.

15: NQU – INTEGER Input

On entry: the order of the integrator used on the last step. This is supplied to enable you
to carry out interpolation using either of the routines D02XJF or D02XKF.

MONITR must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02NGF is called. Arguments denoted as Input must not be changed
by this procedure.

19: LDERIVð2Þ – LOGICAL array Input/Output

On entry: LDERIVð1Þ must be set to .TRUE. if you have supplied both an initial y and an initial
y0. LDERIVð1Þ must be set to .FALSE. if only the initial y has been supplied.

LDERIVð2Þ must be set to .TRUE. if the integrator is to use a modified Newton method to
evaluate the initial y and y0. Note that y and y0, if supplied, are used as initial estimates. This
method involves taking a small step at the start of the integration, and if ITASK ¼ 6 on entry, T
and TOUT will be set to the result of taking this small step. LDERIVð2Þ must be set to .FALSE.
if the integrator is to use functional iteration to evaluate the initial y and y0, and if this fails a
modified Newton method will then be attempted. LDERIVð2Þ ¼ :TRUE: is recommended if there
are implicit equations or the initial y and y0 are zero.

On exit: LDERIVð1Þ is normally unchanged. However if ITASK ¼ 6 and internal initialization
was successful then LDERIVð1Þ ¼ :TRUE:.
LDERIVð2Þ ¼ :TRUE:, if implicit equations were detected. Otherwise LDERIVð2Þ ¼ :FALSE:.

20: ITASK – INTEGER Input

On entry: the task to be performed by the integrator.

ITASK ¼ 1
Normal computation of output values of y tð Þ at t ¼ TOUT (by overshooting and
interpolating).

ITASK ¼ 2
Take one step only and return.

ITASK ¼ 3
Stop at the first internal integration point at or beyond t ¼ TOUT and return.
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ITASK ¼ 4
Normal computation of output values of y tð Þ at t ¼ TOUT but without overshooting
t ¼ TCRIT. TCRIT must be specified as an option in one of the integrator setup routines
before the first call to the integrator, or specified in the optional input routine before a
continuation call. TCRIT may be equal to or beyond TOUT, but not before it, in the
direction of integration.

ITASK ¼ 5
Take one step only and return, without passing TCRIT. TCRIT must be specified as under
ITASK ¼ 4.

ITASK ¼ 6
The integrator will solve for the initial values of y and y0 only and then return to the
calling (sub)program without doing the integration. This option can be used to check the
initial values of y and y0. Functional iteration or a ‘small’ backward Euler method used in
conjunction with a damped Newton iteration is used to calculate these values (see
LDERIV). Note that if a backward Euler step is used then the value of t will have been
advanced a short distance from the initial point.

Note: if D02NGF is recalled with a different value of ITASK (and TOUT altered), then the
initialization procedure is repeated, possibly leading to different initial conditions.

Constraint: 1 � ITASK � 6.

21: ITRACE – INTEGER Input

On entry: the level of output that is printed by the integrator. ITRACE may take the value �1, 0,
1, 2 or 3.

ITRACE < �1
�1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages are printed on the current error message unit (see X04AAF).

ITRACE > 0
Warning messages are printed as above, and on the current advisory message unit (see
X04ABF) output is generated which details Jacobian entries, the nonlinear iteration and
the time integration. The advisory messages are given in greater detail the larger the value
of ITRACE.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An illegal input was detected on entry, or after an internal call to MONITR. If ITRACE > �1,
then the form of the error will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. The problem may have a singularity, or the
local error requirements may be inappropriate.

IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the
requested task, but the integration was successful as far as T. This may be caused by an
inaccurate Jacobian matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see the description of ITOL). Pure
relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has now
vanished. The integration was successful as far as T.

IFAIL ¼ 7

RESID set its error flag (IRES ¼ 3) continually despite repeated attempts by the integrator to
avoid this.

IFAIL ¼ 8

LDERIVð1Þ ¼ :FALSE: on entry but the internal initialization routine was unable to initialize y0

(more detailed information may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 9

A singular Jacobian
@r

@y
has been encountered. You should check the problem formulation and

Jacobian calculation.

IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).
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IFAIL ¼ 11

RESID signalled the integrator to halt the integration and return (IRES ¼ 2). Integration was
successful as far as T.

IFAIL ¼ 12

MONITR set IMON ¼ �2 and so forced a return but the integration was successful as far as T.

IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and
ATOL is unlikely to produce any change in the computed solution. (Only applies when you are
not operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that D02NGF is unable to start the integration.

IFAIL ¼ 15

The linear algebra setup routine D02NSF was not called before the call to D02NGF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the arguments RTOL
and ATOL, and to a much lesser extent by the choice of norm. You are advised to use scalar error
control unless the components of the solution are expected to be poorly scaled. For the type of decaying
solution typical of many stiff problems, relative error control with a small absolute error threshold will
be most appropriate (that is, you are advised to choose ITOL ¼ 1 with ATOLð1Þ small but positive).

8 Parallelism and Performance

D02NGF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02NGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02NGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

D02 – Ordinary Differential D02NGF

Mark 26 D02NGF.11



9 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem. For D02NGF the cost is proportional to NEQ3, though
for problems which are only mildly nonlinear the cost may be dominated by factors proportional to
NEQ2 except for very large problems.

In general, you are advised to choose the BDF option (setup routine D02NVF) but if efficiency is of

great importance and especially if it is suspected that
@

@y
A�1gð Þ has complex eigenvalues near the

imaginary axis for some part of the integration, you should try the BLEND option (setup routine
D02NWF).

10 Example

This example solves the well-known stiff Robertson problem written in implicit form

r1 ¼ �0:04a þ 1:0E4bc � a0

r2 ¼ 0:04a � 1:0E4bc � 3:0E7b2 � b0

r3 ¼ 3:0E7b2 � c0

with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 over the range 0; 0:1½ � with vector error control
(ITOL ¼ 4), the BDF method (setup routine D02NVF) and functional iteration. The Jacobian is
calculated numerically if the functional iteration encounters difficulty and the integration is in one-step
mode (ITASK ¼ 2), with C0 interpolation to calculate the solution at intervals of 0:02 using D02XJF
externally. D02NBY is used for MONITR.

10.1 Program Text

! D02NGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02ngfe_mod

! D02NGF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: resid

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp
Integer, Parameter, Public :: iset = 1, itrace = 0, neq = 3, &

nin = 5, nout = 6
Integer, Parameter, Public :: nrw = 50 + 4*neq
Integer, Parameter, Public :: nwkjac = neq*(neq+1)
Integer, Parameter, Public :: ldysav = neq

Contains
Subroutine resid(neq,t,y,ydot,r,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)

! .. Executable Statements ..
r(1) = -ydot(1)
r(2) = -ydot(2)
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r(3) = -ydot(3)

If (ires==1) Then
r(1) = -alpha*y(1) + beta*y(2)*y(3) + r(1)
r(2) = alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2) + r(2)
r(3) = gamma*y(2)*y(2) + r(3)

End If
Return

End Subroutine resid
End Module d02ngfe_mod

Program d02ngfe

! D02NGF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02nby, d02ngf, d02ngz, d02nsf, d02nvf, d02nyf, &

d02xjf, nag_wp, x04abf
Use d02ngfe_mod, Only: iset, itrace, ldysav, neq, nin, nout, nrw, &

nwkjac, resid
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, h0, hmax, hmin, hu, t, tcrit, &
tcur, tolsf, tout, xout

Integer :: i, ifail, imxer, iout, itask, itol, &
maxord, maxstp, mxhnil, niter, nje, &
nq, nqu, nre, nst, outchn, sdysav

Logical :: petzld
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), sol(:), &
wkjac(:), y(:), ydot(:), ysav(:,:)

Real (Kind=nag_wp) :: con(6)
Integer :: inform(23)
Logical, Allocatable :: algequ(:)
Logical :: lderiv(2)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02NGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) maxord, maxstp, mxhnil
sdysav = maxord + 1
Allocate (atol(neq),rtol(neq),rwork(nrw),sol(neq),wkjac(nwkjac),y(neq), &

ydot(neq),ysav(ldysav,sdysav),algequ(neq))
outchn = nout
Call x04abf(iset,outchn)

! Integrate to tout by overshooting tout in one step mode (itask=2)
! using B.D.F formulae with a functional iteration method.
! Default values for the array con are used. Employ vector
! tolerances and the Jacobian is evaluated internally, if necessary.
! monitr subroutine replaced by NAG dummy routine D02NBY.
! Interpolation outside D02NGF using D02XJF.

itask = 2
Read (nin,*) petzld
Read (nin,*) hmin, hmax, h0, tcrit
Read (nin,*) t, tout
Read (nin,*) y(1:neq)
Read (nin,*) lderiv(1:2)
Read (nin,*) itol
Read (nin,*) rtol(1:neq)
Read (nin,*) atol(1:neq)
con(1:6) = 0.0_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02nvf(neq,sdysav,maxord,’Functional-iteration’,petzld,con,tcrit, &
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hmin,hmax,h0,maxstp,mxhnil,’Average-L2’,rwork,ifail)

! Linear algebra setup required (in case functional iteration
! encounters any difficulty).

ifail = 0
Call d02nsf(neq,neq,’Numerical’,nwkjac,rwork,ifail)

xout = 0.02E0_nag_wp
iout = 1

Write (nout,99993)(i,i=1,neq)
Write (nout,99999) t, (y(i),i=1,neq)

! Soft fail and error messages only

loop1: Do
ifail = -1
Call d02ngf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform, &

resid,ysav,sdysav,d02ngz,wkjac,nwkjac,d02nby,lderiv,itask,itrace, &
ifail)

If (ifail==0) Then

ifail = 0
Call d02nyf(neq,neq,hu,h,tcur,tolsf,rwork,nst,nre,nje,nqu,nq,niter, &

imxer,algequ,inform,ifail)

loop2: Do
If (tcur-hu<xout .And. xout<=tcur) Then

! C0 interpolation
ifail = 0
Call d02xjf(xout,sol,neq,ysav,ldysav,sdysav,neq,tcur,nqu,hu,h, &

ifail)

Write (nout,99999) xout, (sol(i),i=1,neq)
iout = iout + 1
xout = real(iout,kind=nag_wp)*0.02E0_nag_wp
If (iout>=6) Then

Write (nout,*)
Write (nout,99997) hu, h, tcur
Write (nout,99996) nst, nre, nje
Write (nout,99995) nqu, nq, niter
Write (nout,99994) ’ Max err comp = ’, imxer
Exit loop1

End If
Else

Exit loop2
End If

End Do loop2
Else

Write (nout,*)
Write (nout,99998) ’Exit D02NGF with IFAIL = ’, ifail, ’ and T = ’, &

t
End If

End Do loop1

99999 Format (1X,F8.3,3(F13.5,2X))
99998 Format (1X,A,I2,A,E12.5)
99997 Format (1X,’ HUSED = ’,E12.5,’ HNEXT = ’,E12.5,’ TCUR = ’,E12.5)
99996 Format (1X,’ NST = ’,I6,’ NRE = ’,I6,’ NJE = ’,I6)
99995 Format (1X,’ NQU = ’,I6,’ NQ = ’,I6,’ NITER = ’,I6)
99994 Format (1X,A,I4)
99993 Format (/,1X,’ X ’,3(’ Y(’,I1,’) ’))

End Program d02ngfe
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10.2 Program Data

D02NGF Example Program Data
5 200 5 : maxord, maxstp, mxhnil
.FALSE. : petzld
1.0E-10 10.0 0.0 0.0 : hmin, hmax, h0, tcrit
0.0 0.1 : t, tout
1.0 0.0 0.0 : y
.FALSE. .FALSE. : lderiv
4 : itol
1.0E-4 1.0E-3 1.0E-4 : rtol
1.0E-7 1.0E-8 1.0E-7 : atol

10.3 Program Results

D02NGF Example Program Results

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000
0.020 0.99920 0.00004 0.00076
0.040 0.99841 0.00004 0.00155
0.060 0.99763 0.00004 0.00234
0.080 0.99685 0.00004 0.00311
0.100 0.99608 0.00004 0.00389

HUSED = 0.26516E-03 HNEXT = 0.53032E-03 TCUR = 0.10016E+00
NST = 244 NRE = 809 NJE = 0
NQU = 1 NQ = 1 NITER = 0
Max err comp = 2
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NAG Library Routine Document

D02NHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NHF is a direct communication routine for integrating stiff systems of implicit ordinary differential
equations coupled with algebraic equations when the Jacobian is a banded matrix.

2 Specification

SUBROUTINE D02NHF (NEQ, LDYSAV, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
ITOL, INFORM, RESID, YSAV, SDYSAV, JAC, WKJAC,
NWKJAC, JACPVT, NJCPVT, MONITR, LDERIV, ITASK,
ITRACE, IFAIL)

&
&
&

INTEGER NEQ, LDYSAV, ITOL, INFORM(23), SDYSAV, NWKJAC,
JACPVT(NJCPVT), NJCPVT, ITASK, ITRACE, IFAIL

&

REAL (KIND=nag_wp) T, TOUT, Y(NEQ), YDOT(NEQ), RWORK(50+4*NEQ),
RTOL(*), ATOL(*), YSAV(LDYSAV,SDYSAV),
WKJAC(NWKJAC)

&
&

LOGICAL LDERIV(2)
EXTERNAL RESID, JAC, MONITR

3 Description

D02NHF is a general purpose routine for integrating the initial value problem for a stiff system of
implicit ordinary differential equations coupled with algebraic equations, written in the form

A t; yð Þy0 ¼ g t; yð Þ:

It is designed specifically for the case where the resulting Jacobian is a banded matrix (see the
description of JAC).

Both interval and step oriented modes of operation are available and also modes designed to permit
intermediate output within an interval oriented mode.

An outline of a typical calling program for D02NHF is given below. It calls the banded matrix linear
algebra setup routine D02NTF, the Backward Differentiation Formula (BDF) integrator setup routine
D02NVF, and its diagnostic counterpart D02NYF.

! Declarations

EXTERNAL RESID, JAC, MONITR
.
.
.

IFAIL = 0
CALL D02NVF(...,IFAIL)
CALL D02NTF(NEQ, NEQMAX, JCEVAL, ML, MU, NWKJAC, NJCPVT, &

RWORK, IFAIL)
IFAIL = -1
CALL D02NHF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL, &

ATOL, ITOL, INFORM, RESID, YSAVE, NY2DIM, &
JAC, WKJAC, NWKJAC, JACPVT, NJCPVT, MONITR, &
LDERIV, ITASK, ITRACE, IFAIL)

IF (IFAIL.EQ.1 .OR. IFAIL.GE.14) STOP
IFAIL = 0
CALL D02NYF(...)

.

.

.
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STOP
END

The linear algebra setup routine D02NTF and one of the integrator setup routines, D02MVF, D02NVF
or D02NWF, must be called prior to the call of D02NHF. The integrator diagnostic routine D02NYF
may be called after the call to D02NHF. There is also a routine, D02NZF, designed to permit you to
change step size on a continuation call to D02NHF without restarting the integration process.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential equations to be solved.

Constraint: NEQ � 1.

2: LDYSAV – INTEGER Input

On entry: a bound on the maximum number of equations to be solved during the integration.

Constraint: LDYSAV � NEQ.

3: T – REAL (KIND=nag_wp) Input/Output

On entry: t, the value of the independent variable. The input value of T is used only on the first
call as the initial point of the integration.

On exit: the value at which the computed solution y is returned (usually at TOUT).

4: TOUT – REAL (KIND=nag_wp) Input/Output

On entry: the next value of t at which a computed solution is desired. For the initial t, the input
value of TOUT is used to determine the direction of integration. Integration is permitted in either
direction (see also ITASK).

Constraint: TOUT 6¼ T.

On exit: normally unchanged. However, when ITASK ¼ 6, then TOUT contains the value of T at
which initial values have been computed without performing any integration. See descriptions of
ITASK and LDERIV.

5: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the values of the dependent variables (solution). On the first call the first NEQ
elements of Y must contain the vector of initial values.

On exit: the computed solution vector, evaluated at T (usually T ¼ TOUT).

6: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if LDERIVð1Þ ¼ :TRUE:, YDOT must contain approximations to the time derivatives
y0 of the vector y.

If LDERIVð1Þ ¼ :FALSE:, YDOT need not be set on entry.

On exit: the time derivatives y0 of the vector y at the last integration point.
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7: RWORKð50þ 4� NEQÞ – REAL (KIND=nag_wp) array Communication Array

8: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2, and at least NEQ
otherwise.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).

9: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3, and at least NEQ
otherwise.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D02NHF whether
to interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be satisfied
is ei=wik k < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � yij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � yij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � yij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � yij j þ ATOLðiÞ

ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: ITOL ¼ 1, 2, 3 or 4.

11: INFORMð23Þ – INTEGER array Communication Array

12: RESID – SUBROUTINE, supplied by the user. External Procedure

RESID must evaluate the residual

r ¼ g t; yð Þ �A t; yð Þy0

in one case and

r ¼ �A t; yð Þy0

in another.

The specification of RESID is:

SUBROUTINE RESID (NEQ, T, Y, YDOT, R, IRES)

INTEGER NEQ, IRES
REAL (KIND=nag_wp) T, Y(NEQ), YDOT(NEQ), R(NEQ)

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.
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3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the value of yi, for i ¼ 1; 2; . . . ;NEQ.

4: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the value of y0i, for i ¼ 1; 2; . . . ;NEQ, at t.

5: RðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: RðiÞ must contain the ith component of r, for i ¼ 1; 2; . . . ;NEQ, where

r ¼ g t; yð Þ �A t; yð Þy0 ð1Þ

or

r ¼ �A t; yð Þy0 ð2Þ

and where the definition of r is determined by the input value of IRES.

6: IRES – INTEGER Input/Output

On entry: the form of the residual that must be returned in array R.

IRES ¼ �1
The residual defined in equation (2) must be returned.

IRES ¼ 1
The residual defined in equation (1) must be returned.

On exit: should be unchanged unless one of the following actions is required of the
integrator, in which case IRES should be set accordingly.

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3
Indicates to the integrator that an error condition has occurred in the solution
vector, its time derivative or in the value of t. The integrator will use a smaller
time step to try to avoid this condition. If this is not possible, the integrator
returns to the calling (sub)program with the error indicator set to IFAIL ¼ 7.

IRES ¼ 4
Indicates to the integrator to stop its current operation and to enter MONITR
immediately with argument IMON ¼ �2.

RESID must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NHF is called. Arguments denoted as Input must not be changed by
this procedure.

13: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Communication Array
14: SDYSAV – INTEGER Input

On entry: an appropriate value for SDYSAV is described in the specifications of the integrator
setup routines D02MVF, D02NVF and D02NWF. This value must be the same as that supplied to
the integrator setup routine.

15: JAC – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JAC must evaluate the Jacobian of the system. If this option is not required, the actual argument
for JAC must be the dummy routine D02NHZ. (D02NHZ is included in the NAG Library.) You
must indicate to the integrator whether this option is to be used by setting the argument JCEVAL
appropriately in a call to the banded linear algebra setup routine D02NTF.

D02NHF NAG Library Manual

D02NHF.4 Mark 26



First we must define the system of nonlinear equations which is solved internally by the
integrator. The time derivative, y0, generated internally, has the form

y0 ¼ y� zð Þ= hdð Þ;

where h is the current step size and d is an argument that depends on the integration method in
use. The vector y is the current solution and the vector z depends on information from previous
time steps. This means that d

dy0ð Þ ¼ hdð Þ ddyð Þ . The system of nonlinear equations that is solved

has the form

A t; yð Þy0 � g t; yð Þ ¼ 0

but it is solved in the form

r t; yð Þ ¼ 0;

where r is the function defined by

r t; yð Þ ¼ hdð Þ A t; yð Þ y� zð Þ= hdð Þ � g t; yð Þð Þ:

It is the Jacobian matrix
@r

@y
that you must supply in JAC as follows:

@ri
@yj
¼ aij t; yð Þ þ hdð Þ @

@yj

XNEQ
k¼1

aik t; yð Þy0k � gi t; yð Þ
 !

:

The specification of JAC is:

SUBROUTINE JAC (NEQ, T, Y, YDOT, H, D, ML, MU, P)

INTEGER NEQ, ML, MU
REAL (KIND=nag_wp) T, Y(NEQ), YDOT(NEQ), H, D, P(ML+MU+1,NEQ)

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the current solution component.

4: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the derivative of the solution at the current point t.

5: H – REAL (KIND=nag_wp) Input

On entry: the current step size.

6: D – REAL (KIND=nag_wp) Input

On entry: the argument d which depends on the integration method.

7: ML – INTEGER Input
8: MU – INTEGER Input

On entry: the number of subdiagonals and superdiagonals respectively in the band.

9: PðMLþMUþ 1;NEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: is set to zero.
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On exit: elements of the Jacobian matrix
@r

@y
stored as specified by the following

pseudocode

DO 20 I = 1, NEQ
J1 = MAX(I-ML,1)
J2 = MIN(I+MU,NEQ)
DO 10 J = J1, J2
K = MIN(ML+1-I,0)+J
P(K,I) = �R/�Y(I,J)
10 CONTINUE
20 CONTINUE

See also the routine document for F07BDF (DGBTRF).

Only nonzero elements of this array need be set, since it is preset to zero before the call
to JAC.

JAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NHF is called. Arguments denoted as Input must not be changed by
this procedure.

16: WKJACðNWKJACÞ – REAL (KIND=nag_wp) array Communication Array
17: NWKJAC – INTEGER Input

On entry: the dimension of the array WKJAC as declared in the (sub)program from which
D02NHF is called. This value must be the same as that supplied to the linear algebra setup
routine D02NTF.

Constraint: NWKJAC � 2mL þmU þ 1ð Þ � NEQ, where mL and mU are the number of
subdiagonals and superdiagonals respectively in the band, defined by a call to D02NTF.

18: JACPVTðNJCPVTÞ – INTEGER array Communication Array
19: NJCPVT – INTEGER Input

On entry: the size of the array JACPVT. This value must be the same as that supplied to the
linear algebra setup routine D02NTF.

Constraint: NJCPVT � NEQ.

20: MONITR – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONITR performs tasks requested by you. If this option is not required, then the actual
argument for MONITR must be the dummy routine D02NBY. (D02NBY is included in the NAG
Library.)

The specification of MONITR is:

SUBROUTINE MONITR (NEQ, LDYSAV, T, HLAST, HNEXT, Y, YDOT, YSAV,
R, ACOR, IMON, INLN, HMIN, HMAX, NQU)

&

INTEGER NEQ, LDYSAV, IMON, INLN, NQU
REAL (KIND=nag_wp) T, HLAST, HNEXT, Y(NEQ), YDOT(NEQ),

YSAV(LDYSAV,sdysav), R(NEQ), ACOR(NEQ,2), HMIN,
HMAX

&
&

where sdysav is the numerical value of SDYSAV in the call of D02NHF.

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: LDYSAV – INTEGER Input

On entry: an upper bound on the number of equations to be solved.
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3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable.

4: HLAST – REAL (KIND=nag_wp) Input

On entry: the last step size successfully used by the integrator.

5: HNEXT – REAL (KIND=nag_wp) Input/Output

On entry: the step size that the integrator proposes to take on the next step.

On exit: the next step size to be used. If this is different from the input value, then
IMON must be set to 4.

6: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: y, the values of the dependent variables evaluated at t.

On exit: these values must not be changed unless IMON is set to 2.

7: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the time derivatives y0 of the vector y.

8: YSAVðLDYSAV; sdysavÞ – REAL (KIND=nag_wp) array Input

On entry: workspace to enable you to carry out interpolation using either of the routines
D02XJF or D02XKF.

9: RðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: if IMON ¼ 0 and INLN ¼ 3, then the first NEQ elements contain the residual
vector A t; yð Þy0 � g t; yð Þ.

10: ACORðNEQ; 2Þ – REAL (KIND=nag_wp) array Input

On entry: with IMON ¼ 1, ACORði; 1Þ contains the weight used for the ith equation
when the norm is evaluated, and ACORði; 2Þ contains the estimated local error for the
ith equation. The scaled local error at the end of a timestep may be obtained by calling
the real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ, ACOR(1,2), ACOR(1,1), IFAIL)
! CHECK IFAIL BEFORE PROCEEDING

11: IMON – INTEGER Input/Output

On entry: a flag indicating under what circumstances MONITR was called:

IMON ¼ �2
Entry from the integrator after IRES ¼ 4 (set in RESID) caused an early
termination (this facility could be used to locate discontinuities).

IMON ¼ �1
The current step failed repeatedly.

IMON ¼ 0
Entry after a call to the internal nonlinear equation solver (see INLN).

IMON ¼ 1
The current step was successful.
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On exit: may be reset to determine subsequent action in D02NHF.

IMON ¼ �2
Integration is to be halted. A return will be made from the integrator to the
calling (sub)program with IFAIL ¼ 12.

IMON ¼ �1
Allow the integrator to continue with its own internal strategy. The integrator will
try up to three restarts unless IMON 6¼ �1 on exit.

IMON ¼ 0
Return to the internal nonlinear equation solver, where the action taken is
determined by the value of INLN (see INLN).

IMON ¼ 1
Normal exit to the integrator to continue integration.

IMON ¼ 2
Restart the integration at the current time point. The integrator will restart from
order 1 when this option is used. The solution Y, provided by MONITR, will be
used for the initial conditions.

IMON ¼ 3
Try to continue with the same step size and order as was to be used before the
call to MONITR. HMIN and HMAX may be altered if desired.

IMON ¼ 4
Continue the integration but using a new value of HNEXT and possibly new
values of HMIN and HMAX.

12: INLN – INTEGER Output

On exit: the action to be taken by the internal nonlinear equation solver when MONITR
is exited with IMON ¼ 0. By setting INLN ¼ 3 and returning to the integrator, the
residual vector is evaluated and placed in the array R, and then MONITR is called
again. At present this is the only option available: INLN must not be set to any other
value.

13: HMIN – REAL (KIND=nag_wp) Input/Output

On entry: the minimum step size to be taken on the next step.

On exit: the minimum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4.

14: HMAX – REAL (KIND=nag_wp) Input/Output

On entry: the maximum step size to be taken on the next step.

On exit: the maximum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4. If HMAX is set to zero, no limit is assumed.

15: NQU – INTEGER Input

On entry: the order of the integrator used on the last step. This is supplied to enable you
to carry out interpolation using either of the routines D02XJF or D02XKF.

MONITR must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02NHF is called. Arguments denoted as Input must not be changed
by this procedure.

21: LDERIVð2Þ – LOGICAL array Input/Output

On entry: LDERIVð1Þ must be set to .TRUE. if you have supplied both an initial y and an initial
y0. LDERIVð1Þ must be set to .FALSE. if only the initial y has been supplied.
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LDERIVð2Þ must be set to .TRUE. if the integrator is to use a modified Newton method to
evaluate the initial y and y0. Note that y and y0, if supplied, are used as initial estimates. This
method involves taking a small step at the start of the integration, and if ITASK ¼ 6 on entry, T
and TOUT will be set to the result of taking this small step. LDERIVð2Þ must be set to .FALSE.
if the integrator is to use functional iteration to evaluate the initial y and y0, and if this fails a
modified Newton method will then be attempted. LDERIVð2Þ ¼ :TRUE: is recommended if there
are implicit equations or the initial y and y0 are zero.

On exit: LDERIVð1Þ is normally unchanged. However if ITASK ¼ 6 and internal initialization
was successful then LDERIVð1Þ ¼ :TRUE:.
LDERIVð2Þ ¼ :TRUE:, if implicit equations were detected. Otherwise LDERIVð2Þ ¼ :FALSE:.

22: ITASK – INTEGER Input

On entry: the task to be performed by the integrator.

ITASK ¼ 1
Normal computation of output values of y tð Þ at t ¼ TOUT (by overshooting and
interpolating).

ITASK ¼ 2
Take one step only and return.

ITASK ¼ 3
Stop at the first internal integration point at or beyond t ¼ TOUT and return.

ITASK ¼ 4
Normal computation of output values of y tð Þ at t ¼ TOUT but without overshooting
t ¼ TCRIT. TCRIT must be specified as an option in one of the integrator setup routines
before the first call to the integrator, or specified in the optional input routine before a
continuation call. TCRIT may be equal to or beyond TOUT, but not before it, in the
direction of integration.

ITASK ¼ 5
Take one step only and return, without passing TCRIT. TCRIT must be specified as under
ITASK ¼ 4.

ITASK ¼ 6
The integrator will solve for the initial values of y and y0 only and then return to the
calling (sub)program without doing the integration. This option can be used to check the
initial values of y and y0. Functional iteration or a ‘small’ backward Euler method used in
conjunction with a damped Newton iteration is used to calculate these values (see
LDERIV). Note that if a backward Euler step is used then the value of t will have been
advanced a short distance from the initial point.

Note: if D02NHF is recalled with a different value of ITASK (and TOUT altered), then the
initialization procedure is repeated, possibly leading to different initial conditions.

Constraint: 1 � ITASK � 6.

23: ITRACE – INTEGER Input

On entry: the level of output that is printed by the integrator. ITRACE may take the value �1, 0,
1, 2 or 3.

ITRACE < �1
�1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages are printed on the current error message unit (see X04AAF).
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ITRACE > 0
Warning messages are printed as above, and on the current advisory message unit (see
X04ABF) output is generated which details Jacobian entries, the nonlinear iteration and
the time integration. The advisory messages are given in greater detail the larger the value
of ITRACE.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An illegal input was detected on entry, or after an internal call to MONITR. If ITRACE > �1,
then the form of the error will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. The problem may have a singularity, or the
local error requirements may be inappropriate.

IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the
requested task, but the integration was successful as far as T. This may be caused by an
inaccurate Jacobian matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see the description of ITOL). Pure
relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has now
vanished. The integration was successful as far as T.
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IFAIL ¼ 7

RESID set its error flag (IRES ¼ 3) continually despite repeated attempts by the integrator to
avoid this.

IFAIL ¼ 8

LDERIVð1Þ ¼ :FALSE: on entry but the internal initialization routine was unable to initialize y0

(more detailed information may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 9

A singular Jacobian
@r

@y
has been encountered. You should check the problem formulation and

Jacobian calculation.

IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 11

RESID signalled the integrator to halt the integration and return (IRES ¼ 2). Integration was
successful as far as T.

IFAIL ¼ 12

MONITR set IMON ¼ �2 and so forced a return but the integration was successful as far as T.

IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and
ATOL is unlikely to produce any change in the computed solution. (Only applies when you are
not operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that D02NHF is unable to start the integration.

IFAIL ¼ 15

The linear algebra setup routine D02NTF was not called before the call to D02NHF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the arguments RTOL
and ATOL, and to a much lesser extent by the choice of norm. You are advised to use scalar error
control unless the components of the solution are expected to be poorly scaled. For the type of decaying
solution typical of many stiff problems, relative error control with a small absolute error threshold will
be most appropriate (that is, you are advised to choose ITOL ¼ 1 with ATOLð1Þ small but positive).

8 Parallelism and Performance

D02NHF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02NHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02NHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem. For D02NHF the cost is proportional to
NEQ� MLþMUþ 1ð Þ2, though for problems which are only mildly nonlinear the cost may be
dominated by factors proportional to NEQ� MLþMUþ 1ð Þ except for very large problems.

In general, you are advised to choose the BDF option (setup routine D02NVF) but if efficiency is of

great importance and especially if it is suspected that
@

@y
A�1gð Þ has complex eigenvalues near the

imaginary axis for some part of the integration, you should try the BLEND option (setup routine
D02NWF).

10 Example

This example solves the well-known stiff Robertson problem written as an implicit differential system
and in implicit form

r1 ¼ a0 þ b0 þ c0

r2 ¼ 0:04a � 1:0E4bc � 3:0E7b2 � b0

r3 ¼ 3:0E7b2 � c0

exploiting the fact that we can show that aþ bþ cð Þ0 ¼ 0 for all time. Integration is over the range
0; 10:0½ � with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 using scalar relative error control and vector
absolute error control (ITOL ¼ 2). We integrate using a BDF method (setup routine D02NVF) and a
modified Newton method. The Jacobian is calculated numerically and we employ a default monitor,
dummy routine D02NBY. We perform a normal integration (ITASK ¼ 1) to obtain the value at
TOUT ¼ 10:0 by integrating past TOUT and interpolating. We also illustrate the use of ITASK ¼ 6 to
calculate initial values of y and y0 and then return without integrating further.

D02NHF NAG Library Manual

D02NHF.12 Mark 26



10.1 Program Text

! D02NHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02nhfe_mod

! D02NHF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: resid

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp
Integer, Parameter, Public :: iset = 1, itrace = 0, ml = 1, &

mu = 2, neq = 3, nin = 5
Integer, Parameter, Public :: njcpvt = neq
Integer, Parameter, Public :: nout = 6
Integer, Parameter, Public :: nrw = 50 + 4*neq
Integer, Parameter, Public :: nwkjac = neq*(2*ml+mu+1)
Integer, Parameter, Public :: ldysav = neq

Contains
Subroutine resid(neq,t,y,ydot,r,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)

! .. Executable Statements ..
r(1) = -ydot(1) - ydot(2) - ydot(3)
r(2) = -ydot(2)
r(3) = -ydot(3)
If (ires==1) Then

r(1) = r(1)
r(2) = alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2) + r(2)
r(3) = gamma*y(2)*y(2) + r(3)

End If
Return

End Subroutine resid
End Module d02nhfe_mod

Program d02nhfe

! D02NHF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02nby, d02nhf, d02nhz, d02ntf, d02nvf, d02nyf, &

nag_wp, x04abf
Use d02nhfe_mod, Only: iset, itrace, ldysav, ml, mu, neq, nin, njcpvt, &

nout, nrw, nwkjac, resid
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, h0, hmax, hmin, hu, t, tcrit, &
tcur, tolsf, tout, tout1

Integer :: i, ifail, imxer, itask, itol, &
maxord, maxstp, mxhnil, niter, nje, &
nq, nqu, nre, nst, outchn, sdysav

Logical :: petzld
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), &
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wkjac(:), y(:), ydot(:), ysav(:,:)
Real (Kind=nag_wp) :: con(6)
Integer :: inform(23)
Integer, Allocatable :: jacpvt(:)
Logical, Allocatable :: algequ(:)
Logical :: lderiv(2)

! .. Executable Statements ..
Write (nout,*) ’D02NHF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) maxord, maxstp, mxhnil
sdysav = maxord + 1
Allocate (atol(neq),rtol(neq),rwork(nrw),wkjac(nwkjac),y(neq),ydot(neq), &

ysav(ldysav,sdysav),jacpvt(njcpvt),algequ(neq))

outchn = nout
Call x04abf(iset,outchn)

! Set itask=6 to provide initial estimates of solution and its
! time derivative. Default values for the array con are used.
! Use the B.D.F. formulae with a Newton method.
! Employ scalar relative tolerance and vector absolute tolerance.
! The Jacobian is evaluated internally.
! monitr subroutine replaced by NAG dummy routine D02NBY.

Read (nin,*) hmin, hmax, h0, tcrit
Read (nin,*) petzld
Read (nin,*) t, tout1
Read (nin,*) y(1:neq)
Read (nin,*) lderiv(1:2)
Read (nin,*) itol
Read (nin,*) rtol(1)
Read (nin,*) atol(1:neq)
itask = 6
tout = tout1
con(1:6) = 0.0_nag_wp

ifail = 0
Call d02nvf(neq,sdysav,maxord,’Newton’,petzld,con,tcrit,hmin,hmax,h0, &

maxstp,mxhnil,’Average-L2’,rwork,ifail)

ifail = 0
Call d02ntf(neq,neq,’Numerical’,ml,mu,nwkjac,njcpvt,rwork,ifail)

! Hard fail on initial and subsequent tasks.
ifail = 0
Call d02nhf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform,resid, &

ysav,sdysav,d02nhz,wkjac,nwkjac,jacpvt,njcpvt,d02nby,lderiv,itask, &
itrace,ifail)

Write (nout,*)
Write (nout,99999) ’ Initial Y : ’, y(1:neq)
Write (nout,99999) ’ Initial YDOT : ’, ydot(1:neq)
Flush (nout)

! Use these initial estimates and integrate to tout (overshoot and
! interpolate)

itask = 1
tout = tout1

ifail = 0
Call d02nhf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform,resid, &

ysav,sdysav,d02nhz,wkjac,nwkjac,jacpvt,njcpvt,d02nby,lderiv,itask, &
itrace,ifail)

Write (nout,99993)(i,i=1,neq)
Write (nout,99998) tout, y(1:neq)

ifail = 0
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Call d02nyf(neq,neq,hu,h,tcur,tolsf,rwork,nst,nre,nje,nqu,nq,niter, &
imxer,algequ,inform,ifail)

Write (nout,*)
Write (nout,99997) hu, h, tcur
Write (nout,99996) nst, nre, nje
Write (nout,99995) nqu, nq, niter
Write (nout,99994) ’ Max err comp = ’, imxer

99999 Format (1X,A,3(F11.4,2X))
99998 Format (1X,F8.3,3(F13.5,2X))
99997 Format (1X,’ HUSED = ’,E12.5,’ HNEXT = ’,E12.5,’ TCUR = ’,E12.5)
99996 Format (1X,’ NST = ’,I6,’ NRE = ’,I6,’ NJE = ’,I6)
99995 Format (1X,’ NQU = ’,I6,’ NQ = ’,I6,’ NITER = ’,I6)
99994 Format (1X,A,I4)
99993 Format (/,1X,’ X ’,3(’ Y(’,I1,’) ’))

End Program d02nhfe

10.2 Program Data

D02NHF Example Program Data
5 200 5 : maxord, maxstp, mxhnil
1.0E-10 10.0 1.0E-4 0.0 : hmin, hmax, h0, tcrit
.FALSE. : petzld
0.0 10.0 : t, tout
1.0 0.0 0.0 : y
.FALSE. .FALSE. : lderiv
2 : itol
1.0E-4 : rtol
1.0E-6 1.0E-7 1.0E-6 : atol

10.3 Program Results

D02NHF Example Program Results
Warning: Equation(=i1) and possibly other equations are
implicit and in calculating the initial values the
equations will be treated as implicit.
In above message i1 = 1

Initial Y : 1.0000 0.0000 0.0000
Initial YDOT : -0.0400 0.0400 0.0000

Warning: Equation(=i1) and possibly other equations are
implicit and in calculating the initial values the
equations will be treated as implicit.
In above message i1 = 1

X Y(1) Y(2) Y(3)
10.000 0.84135 0.00002 0.15863

HUSED = 0.91752E+00 HNEXT = 0.91752E+00 TCUR = 0.10885E+02
NST = 51 NRE = 118 NJE = 14
NQU = 4 NQ = 4 NITER = 68
Max err comp = 3

D02 – Ordinary Differential D02NHF

Mark 26 D02NHF.15 (last)





NAG Library Routine Document

D02NJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NJF is a direct communication routine for integrating stiff systems of implicit ordinary differential
equations coupled with algebraic equations when the Jacobian is a sparse matrix.

2 Specification

SUBROUTINE D02NJF (NEQ, LDYSAV, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
ITOL, INFORM, RESID, YSAV, SDYSAV, JAC, WKJAC,
NWKJAC, JACPVT, NJCPVT, MONITR, LDERIV, ITASK,
ITRACE, IFAIL)

&
&
&

INTEGER NEQ, LDYSAV, ITOL, INFORM(23), SDYSAV, NWKJAC,
JACPVT(NJCPVT), NJCPVT, ITASK, ITRACE, IFAIL

&

REAL (KIND=nag_wp) T, TOUT, Y(NEQ), YDOT(NEQ), RWORK(50+4*NEQ),
RTOL(*), ATOL(*), YSAV(LDYSAV,SDYSAV),
WKJAC(NWKJAC)

&
&

LOGICAL LDERIV(2)
EXTERNAL RESID, JAC, MONITR

3 Description

D02NJF is a general purpose routine for integrating the initial value problem for a stiff system of
implicit ordinary differential equations coupled with algebraic equations, written in the form

A t; yð Þy0 ¼ g t; yð Þ:

It is designed specifically for the case where the resulting Jacobian is a sparse matrix (see the
description of JAC).

Both interval and step oriented modes of operation are available and also modes designed to permit
intermediate output within an interval oriented mode.

An outline of a typical calling program for D02NJF is given below. It calls the sparse matrix linear
algebra setup routine D02NUF, the Backward Differentiation Formula (BDF) integrator setup routine
D02NVF, its diagnostic counterpart D02NYF, and the sparse matrix linear algebra diagnostic routine
D02NXF.

! Declarations

EXTERNAL RESID, JAC, MONITR
.
.
.

IFAIL = 0
CALL D02NVF(...,IFAIL)
CALL D02NUF(NEQ, NEQMAX, JCEVAL, NWKJAC, IA, NIA, JA, NJA, &

JACPVT, NJCPVT, SENS, U, ETA, LBLOCK, ISPLIT, &
RWORK, IFAIL)

IFAIL = -1
CALL D02NJF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL, &

ATOL, ITOL, INFORM, RESID, YSAVE, NY2DIM, JAC, &
WKJAC, NWKJAC, JACPVT, NJCPVT, MONITR, LDERIV, &
ITASK, ITRACE, IFAIL)

IF(IFAIL.EQ.1 .OR. IFAIL.GE.14) STOP
IFAIL = 0
CALL D02NXF(...)
CALL D02NYF(...)
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.

.

.
STOP
END

The linear algebra setup routine D02NUF and one of the integrator setup routines, D02MVF, D02NVF
or D02NWF, must be called prior to the call of D02NJF. Either or both of the integrator diagnostic
routine D02NYF, or the sparse matrix linear algebra diagnostic routine D02NXF, may be called after
the call to D02NJF. There is also a routine, D02NZF, designed to permit you to change step size on a
continuation call to D02NJF without restarting the integration process.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential equations to be solved.

Constraint: NEQ � 1.

2: LDYSAV – INTEGER Input

On entry: a bound on the maximum number of equations to be solved during the integration.

Constraint: LDYSAV � NEQ.

3: T – REAL (KIND=nag_wp) Input/Output

On entry: t, the value of the independent variable. The input value of T is used only on the first
call as the initial point of the integration.

On exit: the value at which the computed solution y is returned (usually at TOUT).

4: TOUT – REAL (KIND=nag_wp) Input/Output

On entry: the next value of t at which a computed solution is desired. For the initial t, the input
value of TOUT is used to determine the direction of integration. Integration is permitted in either
direction (see also ITASK).

On exit: normally unchanged. However, when ITASK ¼ 6, then TOUT contains the value of T at
which initial values have been computed without performing any integration. See descriptions of
ITASK and LDERIV.

5: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the values of the dependent variables (solution). On the first call the first NEQ
elements of Y must contain the vector of initial values.

On exit: the computed solution vector, evaluated at T (usually T ¼ TOUT).

6: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if LDERIVð1Þ ¼ :TRUE:, YDOT must contain approximations to the time derivatives
y0 of the vector y.

If LDERIVð1Þ ¼ :FALSE:, YDOT need not be set on entry.

On exit: the time derivatives y0 of the vector y at the last integration point.
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7: RWORKð50þ 4� NEQÞ – REAL (KIND=nag_wp) array Communication Array

8: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2, and at least NEQ
otherwise.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).

9: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3, and at least NEQ
otherwise.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D02NJF whether
to interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be satisfied
is ei=wik k < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � yij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � yij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � yij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � yij j þ ATOLðiÞ

ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: ITOL ¼ 1, 2, 3 or 4.

11: INFORMð23Þ – INTEGER array Communication Array

12: RESID – SUBROUTINE, supplied by the user. External Procedure

RESID must evaluate the residual

r ¼ g t; yð Þ �A t; yð Þy0

in one case and

r ¼ �A t; yð Þy0

in another.

The specification of RESID is:

SUBROUTINE RESID (NEQ, T, Y, YDOT, R, IRES)

INTEGER NEQ, IRES
REAL (KIND=nag_wp) T, Y(NEQ), YDOT(NEQ), R(NEQ)

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.
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3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the value of yi, for i ¼ 1; 2; . . . ;NEQ.

4: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the value of y0i, for i ¼ 1; 2; . . . ;NEQ, at t.

5: RðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: RðiÞ must contain the ith component of r, for i ¼ 1; 2; . . . ;NEQ, where

r ¼ g t; yð Þ �A t; yð Þy0 ð1Þ

or

r ¼ �A t; yð Þy0 ð2Þ

and where the definition of r is determined by the input value of IRES.

6: IRES – INTEGER Input/Output

On entry: the form of the residual that must be returned in array R.

IRES ¼ �1
The residual defined in equation (2) must be returned.

IRES ¼ 1
The residual defined in equation (1) must be returned.

On exit: should be unchanged unless one of the following actions is required of the
integrator, in which case IRES should be set accordingly.

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3
Indicates to the integrator that an error condition has occurred in the solution
vector, its time derivative or in the value of t. The integrator will use a smaller
time step to try to avoid this condition. If this is not possible, the integrator
returns to the calling (sub)program with the error indicator set to IFAIL ¼ 7.

IRES ¼ 4
Indicates to the integrator to stop its current operation and to enter MONITR
immediately with argument IMON ¼ �2.

RESID must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NJF is called. Arguments denoted as Input must not be changed by this
procedure.

13: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Communication Array

14: SDYSAV – INTEGER Input

On entry: the second dimension of the array YSAV as declared in the (sub)program from which
D02NJF is called. An appropriate value for SDYSAV is described in the specifications of the
integrator setup routines D02MVF, D02NVF and D02NWF. This value must be the same as that
supplied to the integrator setup routine.

15: JAC – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JAC must evaluate the Jacobian of the system. If this option is not required, the actual argument
for JAC must be the dummy routine D02NJZ. (D02NJZ is included in the NAG Library.) You
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must indicate to the integrator whether this option is to be used by setting the argument JCEVAL
appropriately in a call to the sparse linear algebra setup routine D02NUF.

First we must define the system of nonlinear equations which is solved internally by the
integrator. The time derivative, y0, generated internally, has the form

y0 ¼ y� zð Þ= hdð Þ;

where h is the current step size and d is an argument that depends on the integration method in
use. The vector y is the current solution and the vector z depends on information from previous
time steps. This means that d

dy0ð Þ ¼ hdð Þ ddyð Þ . The system of nonlinear equations that is solved

has the form

A t; yð Þy0 � g t; yð Þ ¼ 0

but it is solved in the form

r t; yð Þ ¼ 0;

where r is the function defined by

r t; yð Þ ¼ hdð Þ A t; yð Þ y� zð Þ= hdð Þ � g t; yð Þð Þ:

It is the Jacobian matrix
@r

@y
that you must supply in JAC as follows:

@ri
@yj
¼ aij t; yð Þ þ hdð Þ @

@yj

XNEQ
k¼1

aik t; yð Þy0k � gi t; yð Þ
 !

:

The specification of JAC is:

SUBROUTINE JAC (NEQ, T, Y, YDOT, H, D, J, PDJ)

INTEGER NEQ, J
REAL (KIND=nag_wp) T, Y(NEQ), YDOT(NEQ), H, D, PDJ(NEQ)

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the current solution component.

4: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the derivative of the solution at the current point t.

5: H – REAL (KIND=nag_wp) Input

On entry: the current step size.

6: D – REAL (KIND=nag_wp) Input

On entry: the argument d which depends on the integration method.

7: J – INTEGER Input

On entry: the column of the Jacobian that JAC must return in the array PDJ.
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8: PDJðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: is set to zero.

On exit: PDJðiÞ should be set to the i; jð Þth element of the Jacobian, where j is given by
J. Only nonzero elements of this array need be set, since it is preset to zero before the
call to JAC.

JAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02NJF is called. Arguments denoted as Input must not be changed by this
procedure.

16: WKJACðNWKJACÞ – REAL (KIND=nag_wp) array Communication Array
17: NWKJAC – INTEGER Input

On entry: the dimension of the array WKJAC as declared in the (sub)program from which
D02NJF is called. The actual size depends on whether the sparsity structure is supplied or
whether it is to be estimated. An appropriate value for NWKJAC is described in the specification
of the linear algebra setup routine D02NUF. This value must be the same as that supplied to
D02NUF.

18: JACPVTðNJCPVTÞ – INTEGER array Communication Array
19: NJCPVT – INTEGER Input

On entry: the dimension of the array JACPVT as declared in the (sub)program from which
D02NJF is called. The actual size depends on whether the sparsity structure is supplied or
whether it is to be estimated. An appropriate value for NJCPVT is described in the specification
for the linear algebra setup routine D02NUF. This value must be same as that supplied to
D02NUF.

20: MONITR – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONITR performs tasks requested by you. If this option is not required, then the actual
argument for MONITR must be the dummy routine D02NBY. (D02NBY is included in the NAG
Library.)

The specification of MONITR is:

SUBROUTINE MONITR (NEQ, LDYSAV, T, HLAST, HNEXT, Y, YDOT, YSAV,
R, ACOR, IMON, INLN, HMIN, HMAX, NQU)

&

INTEGER NEQ, LDYSAV, IMON, INLN, NQU
REAL (KIND=nag_wp) T, HLAST, HNEXT, Y(NEQ), YDOT(NEQ),

YSAV(LDYSAV,sdysav), R(NEQ), ACOR(NEQ,2), HMIN,
HMAX

&
&

where sdysav is the numerical value of SDYSAV in the call of D02NJF.

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: LDYSAV – INTEGER Input

On entry: an upper bound on the number of equations to be solved.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable.

4: HLAST – REAL (KIND=nag_wp) Input

On entry: the last step size successfully used by the integrator.
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5: HNEXT – REAL (KIND=nag_wp) Input/Output

On entry: the step size that the integrator proposes to take on the next step.

On exit: the next step size to be used. If this is different from the input value, then
IMON must be set to 4.

6: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: y, the values of the dependent variables evaluated at t.

On exit: these values must not be changed unless IMON is set to 2.

7: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the time derivatives y0 of the vector y.

8: YSAVðLDYSAV; sdysavÞ – REAL (KIND=nag_wp) array Input

On entry: workspace to enable you to carry out interpolation using either of the routines
D02XJF or D02XKF.

9: RðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: if IMON ¼ 0 and INLN ¼ 3, then the first NEQ elements contain the residual
vector A t; yð Þy0 � g t; yð Þ.

10: ACORðNEQ; 2Þ – REAL (KIND=nag_wp) array Input

On entry: with IMON ¼ 1, ACORði; 1Þ contains the weight used for the ith equation
when the norm is evaluated, and ACORði; 2Þ contains the estimated local error for the
ith equation. The scaled local error at the end of a timestep may be obtained by calling
the real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ, ACOR(1,2), ACOR(1,1), IFAIL)
! CHECK IFAIL BEFORE PROCEEDING

11: IMON – INTEGER Input/Output

On entry: a flag indicating under what circumstances MONITR was called:

IMON ¼ �2
Entry from the integrator after IRES ¼ 4 (set in RESID) caused an early
termination (this facility could be used to locate discontinuities).

IMON ¼ �1
The current step failed repeatedly.

IMON ¼ 0
Entry after a call to the internal nonlinear equation solver (see INLN).

IMON ¼ 1
The current step was successful.

On exit: may be reset to determine subsequent action in D02NJF.

IMON ¼ �2
Integration is to be halted. A return will be made from the integrator to the
calling (sub)program with IFAIL ¼ 12.

IMON ¼ �1
Allow the integrator to continue with its own internal strategy. The integrator will
try up to three restarts unless IMON 6¼ �1 on exit.
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IMON ¼ 0
Return to the internal nonlinear equation solver, where the action taken is
determined by the value of INLN (see INLN).

IMON ¼ 1
Normal exit to the integrator to continue integration.

IMON ¼ 2
Restart the integration at the current time point. The integrator will restart from
order 1 when this option is used. The solution Y, provided by MONITR, will be
used for the initial conditions.

IMON ¼ 3
Try to continue with the same step size and order as was to be used before the
call to MONITR. HMIN and HMAX may be altered if desired.

IMON ¼ 4
Continue the integration but using a new value of HNEXT and possibly new
values of HMIN and HMAX.

12: INLN – INTEGER Output

On exit: the action to be taken by the internal nonlinear equation solver when MONITR
is exited with IMON ¼ 0. By setting INLN ¼ 3 and returning to the integrator, the
residual vector is evaluated and placed in the array R, and then MONITR is called
again. At present this is the only option available: INLN must not be set to any other
value.

13: HMIN – REAL (KIND=nag_wp) Input/Output

On entry: the minimum step size to be taken on the next step.

On exit: the minimum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4.

14: HMAX – REAL (KIND=nag_wp) Input/Output

On entry: the maximum step size to be taken on the next step.

On exit: the maximum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4. If HMAX is set to zero, no limit is assumed.

15: NQU – INTEGER Input

On entry: the order of the integrator used on the last step. This is supplied to enable you
to carry out interpolation using either of the routines D02XJF or D02XKF.

MONITR must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02NJF is called. Arguments denoted as Input must not be changed by
this procedure.

21: LDERIVð2Þ – LOGICAL array Input/Output

On entry: LDERIVð1Þ must be set to .TRUE. if you have supplied both an initial y and an initial
y0. LDERIVð1Þ must be set to .FALSE. if only the initial y has been supplied.

LDERIVð2Þ must be set to .TRUE. if the integrator is to use a modified Newton method to
evaluate the initial y and y0. Note that y and y0, if supplied, are used as initial estimates. This
method involves taking a small step at the start of the integration, and if ITASK ¼ 6 on entry, T
and TOUT will be set to the result of taking this small step. LDERIVð2Þ must be set to .FALSE.
if the integrator is to use functional iteration to evaluate the initial y and y0, and if this fails a
modified Newton method will then be attempted. LDERIVð2Þ ¼ :TRUE: is recommended if there
are implicit equations or the initial y and y0 are zero.
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On exit: LDERIVð1Þ is normally unchanged. However if ITASK ¼ 6 and internal initialization
was successful then LDERIVð1Þ ¼ :TRUE:.
LDERIVð2Þ ¼ :TRUE:, if implicit equations were detected. Otherwise LDERIVð2Þ ¼ :FALSE:.

22: ITASK – INTEGER Input

On entry: the task to be performed by the integrator.

ITASK ¼ 1
Normal computation of output values of y tð Þ at t ¼ TOUT (by overshooting and
interpolating).

ITASK ¼ 2
Take one step only and return.

ITASK ¼ 3
Stop at the first internal integration point at or beyond t ¼ TOUT and return.

ITASK ¼ 4
Normal computation of output values of y tð Þ at t ¼ TOUT but without overshooting
t ¼ TCRIT. TCRIT must be specified as an option in one of the integrator setup routines
before the first call to the integrator, or specified in the optional input routine before a
continuation call. TCRIT may be equal to or beyond TOUT, but not before it, in the
direction of integration.

ITASK ¼ 5
Take one step only and return, without passing TCRIT. TCRIT must be specified as under
ITASK ¼ 4.

ITASK ¼ 6
The integrator will solve for the initial values of y and y0 only and then return to the
calling (sub)program without doing the integration. This option can be used to check the
initial values of y and y0. Functional iteration or a ‘small’ backward Euler method used in
conjunction with a damped Newton iteration is used to calculate these values (see
LDERIV). Note that if a backward Euler step is used then the value of t will have been
advanced a short distance from the initial point.

Note: if D02NJF is recalled with a different value of ITASK (and TOUT altered), then the
initialization procedure is repeated, possibly leading to different initial conditions.

Constraint: 1 � ITASK � 6.

23: ITRACE – INTEGER Input

On entry: the level of output that is printed by the integrator. ITRACE may take the value �1, 0,
1, 2 or 3.

ITRACE < �1
�1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages are printed on the current error message unit (see X04AAF).

ITRACE > 0
Warning messages are printed as above, and on the current advisory message unit (see
X04ABF) output is generated which details Jacobian entries, the nonlinear iteration and
the time integration. The advisory messages are given in greater detail the larger the value
of ITRACE.
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24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An illegal input was detected on entry, or after an internal call to MONITR. If ITRACE > �1,
then the form of the error will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. The problem may have a singularity, or the
local error requirements may be inappropriate.

IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the
requested task, but the integration was successful as far as T. This may be caused by an
inaccurate Jacobian matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see the description of ITOL). Pure
relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has now
vanished. The integration was successful as far as T.

IFAIL ¼ 7

RESID set its error flag (IRES ¼ 3) continually despite repeated attempts by the integrator to
avoid this.

IFAIL ¼ 8

LDERIVð1Þ ¼ :FALSE: on entry but the internal initialization routine was unable to initialize y0

(more detailed information may be directed to the current error message unit, see X04AAF).
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IFAIL ¼ 9

A singular Jacobian
@r

@y
has been encountered. You should check the problem formulation and

Jacobian calculation.

IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 11

RESID signalled the integrator to halt the integration and return (IRES ¼ 2). Integration was
successful as far as T.

IFAIL ¼ 12

MONITR set IMON ¼ �2 and so forced a return but the integration was successful as far as T.

IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and
ATOL is unlikely to produce any change in the computed solution. (Only applies when you are
not operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that D02NJF is unable to start the integration.

IFAIL ¼ 15

The linear algebra setup routine D02NUF was not called before the call to D02NJF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the arguments RTOL
and ATOL, and to a much lesser extent by the choice of norm. You are advised to use scalar error
control unless the components of the solution are expected to be poorly scaled. For the type of decaying
solution typical of many stiff problems, relative error control with a small absolute error threshold will
be most appropriate (that is, you are advised to choose ITOL ¼ 1 with ATOLð1Þ small but positive).

8 Parallelism and Performance

D02NJF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.
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D02NJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02NJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Since numerical stability and memory are often conflicting requirements when solving ordinary
differential systems where the Jacobian matrix is sparse we provide a diagnostic routine, D02NXF,
whose aim is to inform you how much memory is required to solve the problem and to give you some
indicators of numerical stability.

In general, you are advised to choose the BDF option (setup routine D02NVF) but if efficiency is of

great importance and especially if it is suspected that
@

@y
A�1gð Þ has complex eigenvalues near the

imaginary axis for some part of the integration, you should try the BLEND option (setup routine
D02NWF).

10 Example

This example solves the well-known stiff Robertson problem written as a mixed differential/algebraic
system in implicit form

r1 ¼ aþ bþ c� 1:0

r2 ¼ 0:04a� 1:0E4bc� 3:0E7b2 � b0

r3 ¼ 3:0E7b2 � c0

exploiting the fact that, from the initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0, we know that aþ bþ c ¼ 1
for all time. We integrate over the range 0; 10:0½ � with vector relative error control and scalar absolute
error control (ITOL ¼ 3) and using the BDF integrator (setup routine D02NVF) and a modified Newton
method. The Jacobian is evaluated, in turn, using the `A' (Analytical) and `F' (Full information) options.
We provide a monitor routine to terminate the integration when the value of the component a falls
below 0:9.

10.1 Program Text

! D02NJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02njfe_mod

! D02NJF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: jac, monitr, resid

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
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Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter, Public :: iset = 1, itrace = 0, neq = 3
Integer, Parameter, Public :: nia = neq + 1
Integer, Parameter, Public :: nin = 5, nout = 6
Integer, Parameter, Public :: nrw = 50 + 4*neq
Integer, Parameter, Public :: ldysav = neq
Integer, Parameter :: nelts = 8
Integer, Parameter, Public :: nja = nelts
Integer, Parameter, Public :: njcpvt = 20*neq + 12*nelts
Integer, Parameter, Public :: nwkjac = 4*neq + 12*nelts

Contains
Subroutine resid(neq,t,y,ydot,r,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)

! .. Executable Statements ..
r(1) = zero
r(2) = -ydot(2)
r(3) = -ydot(3)
If (ires==1) Then

r(1) = y(1) + y(2) + y(3) - one + r(1)
r(2) = alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2) + r(2)
r(3) = gamma*y(2)*y(2) + r(3)

End If
Return

End Subroutine resid

Subroutine jac(neq,t,y,ydot,h,d,j,pdj)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: d, h, t
Integer, Intent (In) :: j, neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: pdj(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq), ydot(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: hxd

! .. Executable Statements ..
! 8 nonzero elements in total

hxd = h*d
If (j==1) Then

pdj(1) = zero - hxd*(one)
pdj(2) = zero - hxd*(alpha)

! note: pdj(3) is zero
Else If (j==2) Then

pdj(1) = zero - hxd*(one)
pdj(2) = one - hxd*(-beta*y(3)-two*gamma*y(2))
pdj(3) = zero - hxd*(two*gamma*y(2))

Else If (j==3) Then
pdj(1) = zero - hxd*(one)
pdj(2) = zero - hxd*(-beta*y(2))
pdj(3) = one - hxd*(zero)

End If
Return

End Subroutine jac

Subroutine monitr(neq,ldysav,t,hlast,hnext,y,ydot,ysav,r,acor,imon,inln, &
hmin,hmax,nqu)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: hlast, t
Real (Kind=nag_wp), Intent (Inout) :: hmax, hmin, hnext
Integer, Intent (Inout) :: imon
Integer, Intent (Out) :: inln
Integer, Intent (In) :: ldysav, neq, nqu
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! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: acor(neq,2), r(neq), ydot(neq), &

ysav(ldysav,*)
Real (Kind=nag_wp), Intent (Inout) :: y(neq)

! .. Executable Statements ..
inln = 3
If (y(1)<=0.9_nag_wp) Then

imon = -2
End If
Return

End Subroutine monitr
End Module d02njfe_mod

Program d02njfe

! D02NJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02njf, d02nuf, d02nvf, d02nxf, d02nyf, nag_wp, &

x04abf
Use d02njfe_mod, Only: iset, itrace, jac, ldysav, monitr, neq, nia, nin, &

nja, njcpvt, nout, nrw, nwkjac, resid
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: eta, h, h0, hmax, hmin, hu, sens, t, &
tcrit, tcur, tinit, tolsf, tout, u

Integer :: i, icall, icase, ifail, igrow, &
imxer, isplit, isplt, itask, itol, &
liwreq, liwusd, lrwreq, lrwusd, &
maxord, maxstp, mxhnil, nblock, ngp, &
niter, nje, nlu, nnz, nq, nqu, nre, &
nst, outchn, sdysav

Logical :: lblock, petzld
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), &
wkjac(:), y(:), ydot(:), yinit(:), &
ysav(:,:)

Real (Kind=nag_wp) :: con(6)
Integer, Allocatable :: ia(:), ja(:), jacpvt(:)
Integer :: inform(23)
Logical, Allocatable :: algequ(:)
Logical :: lderiv(2)

! .. Executable Statements ..
Write (nout,*) ’D02NJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) maxord, maxstp, mxhnil
sdysav = maxord + 1
Allocate (atol(neq),rtol(neq),rwork(nrw),wkjac(nwkjac),y(neq), &

yinit(neq),ydot(neq),ysav(ldysav,sdysav),ia(nia),ja(nja), &
jacpvt(njcpvt),algequ(neq))

Read (nin,*) ia(1:nia)
Read (nin,*) ja(1:nja)

outchn = nout
Call x04abf(iset,outchn)

! Two cases. In both cases:
! integrate to tout by overshooting (itask=1);
! use B.D.F formulae with a Newton method;
! use the Petzold error test (differential algebraic system);
! use default values for the array con;
! employ vector relative tolerance and scalar absolute tolerance.
! the Jacobian is supplied by jac;
! the monitr routine is used to force a return when y(1) < 0.9.

Read (nin,*) hmin, hmax, h0, tcrit
Read (nin,*) eta, sens, u
Read (nin,*) lblock
Read (nin,*) tinit, tout
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Read (nin,*) itol, isplt
Read (nin,*) yinit(1:neq)
Read (nin,*) rtol(1:neq)
Read (nin,*) atol(1)

con(1:6) = 0.0_nag_wp
itask = 1
petzld = .True.

cases: Do icase = 1, 2

! Initialize
t = tinit
isplit = isplt
y(1:neq) = yinit(1:neq)
lderiv(1:2) = .False.

ifail = 0
Call d02nvf(neq,sdysav,maxord,’Newton’,petzld,con,tcrit,hmin,hmax,h0, &

maxstp,mxhnil,’Average-L2’,rwork,ifail)
Write (nout,*)

Select Case (icase)
Case (1)

! First case. The Jacobian structure is determined internally by
! calls to jac.

ifail = 0
Call d02nuf(neq,neq,’Analytical’,nwkjac,ia,nia,ja,nja,jacpvt,njcpvt, &

sens,u,eta,lblock,isplit,rwork,ifail)
Write (nout,*) ’ Analytic Jacobian, structure not supplied’

Case (2)
! Second case. The Jacobian structure is supplied.

ifail = 0
Call d02nuf(neq,neq,’Full info’,nwkjac,ia,nia,ja,nja,jacpvt,njcpvt, &

sens,u,eta,lblock,isplit,rwork,ifail)
Write (nout,*) ’ Analytic Jacobian, structure supplied’

End Select

Write (nout,99988)(i,i=1,neq)
Write (nout,99999) t, (y(i),i=1,neq)

! Soft fail and error messages only

ifail = 1
Call d02njf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform, &

resid,ysav,sdysav,jac,wkjac,nwkjac,jacpvt,njcpvt,monitr,lderiv, &
itask,itrace,ifail)

If (ifail==0 .Or. ifail==12) Then
Write (nout,99999) t, (y(i),i=1,neq)

ifail = 0
Call d02nyf(neq,neq,hu,h,tcur,tolsf,rwork,nst,nre,nje,nqu,nq,niter, &

imxer,algequ,inform,ifail)

Write (nout,*)
Write (nout,99997) hu, h, tcur
Write (nout,99996) nst, nre, nje
Write (nout,99995) nqu, nq, niter
Write (nout,99994) ’ Max err comp = ’, imxer
icall = 0

Call d02nxf(icall,liwreq,liwusd,lrwreq,lrwusd,nlu,nnz,ngp,isplit, &
igrow,lblock,nblock,inform)

Write (nout,*)
Write (nout,99993) liwreq, liwusd
Write (nout,99992) lrwreq, lrwusd
Write (nout,99991) nlu, nnz
Write (nout,99990) ngp, isplit
Write (nout,99989) igrow, nblock
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Else If (ifail==10) Then
icall = 1

Call d02nxf(icall,liwreq,liwusd,lrwreq,lrwusd,nlu,nnz,ngp,isplit, &
igrow,lblock,nblock,inform)

Write (nout,*)
Write (nout,99993) liwreq, liwusd
Write (nout,99992) lrwreq, lrwusd

Else
Write (nout,*)
Write (nout,99998) ’Exit D02NJF with IFAIL = ’, ifail, ’ and T = ’, &

t
End If

End Do cases

99999 Format (1X,F8.3,3(F13.5,2X))
99998 Format (1X,A,I5,A,E12.5)
99997 Format (1X,’ HUSED = ’,E12.5,’ HNEXT = ’,E12.5,’ TCUR = ’,E12.5)
99996 Format (1X,’ NST = ’,I6,’ NRE = ’,I6,’ NJE = ’,I6)
99995 Format (1X,’ NQU = ’,I6,’ NQ = ’,I6,’ NITER = ’,I6)
99994 Format (1X,A,I4)
99993 Format (1X,’ NJCPVT (required ’,I4,’ used ’,I8,’)’)
99992 Format (1X,’ NWKJAC (required ’,I4,’ used ’,I8,’)’)
99991 Format (1X,’ No. of LU-decomps ’,I4,’ No. of nonzeros ’,I8)
99990 Format (1X,’ No. of FCN calls to form Jacobian ’,I4,’ Try ISPLIT ’,I4)
99989 Format (1X,’ Growth est ’,I8,’ No. of blocks on diagonal ’,I4)
99988 Format (/,1X,’ X ’,3(’ Y(’,I1,’) ’))

End Program d02njfe

10.2 Program Data

D02NJF Example Program Data
5 200 5 : maxord, maxstp, mxhnil
1 3 6 9 : ia
1 2 1 2 3 1 2 3 : ja
1.0E-10 10.0 0.0 0.0 : hmin, hmax, h0, tcrit
1.0E-4 1.0E-6 0.1 : eta, sens, u
.TRUE. : lblock
0.0 10.0 : t, tout
3 0 : itol, isplit
1.0 0.0 0.0 : y
1.0E-4 1.0E-3 1.0E-4 : rtol
1.0E-7 : atol

10.3 Program Results

D02NJF Example Program Results

Analytic Jacobian, structure not supplied

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000
4.957 0.89208 0.00002 0.10790

HUSED = 0.59971E+00 HNEXT = 0.59971E+00 TCUR = 0.49566E+01
NST = 52 NRE = 132 NJE = 12
NQU = 4 NQ = 4 NITER = 117
Max err comp = 3

NJCPVT (required 105 used 156)
NWKJAC (required 34 used 79)
No. of LU-decomps 12 No. of nonzeros 9
No. of FCN calls to form Jacobian 0 Try ISPLIT 73
Growth est 1034 No. of blocks on diagonal 1

Analytic Jacobian, structure supplied

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000

D02NJF NAG Library Manual

D02NJF.16 Mark 26



4.957 0.89208 0.00002 0.10790

HUSED = 0.59971E+00 HNEXT = 0.59971E+00 TCUR = 0.49566E+01
NST = 52 NRE = 131 NJE = 12
NQU = 4 NQ = 4 NITER = 117
Max err comp = 3

NJCPVT (required 99 used 156)
NWKJAC (required 31 used 79)
No. of LU-decomps 12 No. of nonzeros 8
No. of FCN calls to form Jacobian 0 Try ISPLIT 72
Growth est 1034 No. of blocks on diagonal 1
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NAG Library Routine Document

D02NMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NMF is a reverse communication routine for integrating stiff systems of explicit ordinary
differential equations.

2 Specification

SUBROUTINE D02NMF (NEQ, LDYSAV, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
ITOL, INFORM, YSAV, SDYSAV, WKJAC, NWKJAC, JACPVT,
NJCPVT, IMON, INLN, IRES, IREVCM, ITASK, ITRACE,
IFAIL)

&
&
&

INTEGER NEQ, LDYSAV, ITOL, INFORM(23), SDYSAV, NWKJAC,
JACPVT(NJCPVT), NJCPVT, IMON, INLN, IRES, IREVCM,
ITASK, ITRACE, IFAIL

&
&

REAL (KIND=nag_wp) T, TOUT, Y(NEQ), YDOT(NEQ), RWORK(50+4*NEQ),
RTOL(*), ATOL(*), YSAV(LDYSAV,SDYSAV),
WKJAC(NWKJAC)

&
&

3 Description

D02NMF is a general purpose routine for integrating the initial value problem for a stiff system of
explicit ordinary differential equations,

y0 ¼ g t; yð Þ:

An outline of a typical calling program is given below:

! Declarations

call linear algebra setup routine
call integrator setup routine
IREVCM=0

1000 CALL D02NMF(NEQ, LDYSAV, T, TOUT, Y, YDOT, RWORK, RTOL, &
ATOL, ITOL, INFORM, YSAVE, SDYSAV, WKJAC, NWKJAC, &

JACPVT, NJCPVT, IMON, INLN, IRES, IREVCM, ITASK, &
ITRACE, IFAIL)

IF (IREVCM.GT.0) THEN
IF (IREVCM. EQ. 8) THEN

supply the Jacobian matrix (i)
ELSE IF(IREVCM.EQ.9) THEN

perform monitoring tasks requested by the user (ii)
ELSE IF(IRECVM.EQ.1.OR.IREVCM.GE.3.AND.IREVCM.LE.5) THEN

evaluate the derivative (iii)
ELSE IF(IREVCM.EQ.10) THEN

indicates an unsuccessful step
ENDIF
GO TO 1000

ENDIF

! post processing (optional linear algebra diagnostic call
! (sparse case only), optional integrator diagnostic call)

STOP
END

There are three major operations that may be required of the calling (sub)program on an intermeditate
return (IREVCM 6¼ 0) from D02NMF; these are denoted (i), (ii) and (iii) above.
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The following sections describe in greater detail exactly what is required of each of these operations.

(i) Supply the Jacobian Matrix

You need only provide this facility if the argument JCEVAL ¼ A (or JCEVAL ¼ F if using sparse
matrix linear algebra) in a call to the linear algebra setup routine (see JCEVAL in D02NSF). If the
Jacobian matrix is to be evaluated numerically by the integrator, then the remainder of section (i) can be
ignored.

We must define the system of nonlinear equations which is solved internally by the integrator. The time
derivative, y0, has the form

y0 ¼ y� zð Þ= hdð Þ;

where h is the current step size and d is an argument that depends on the integration method in use. The
vector y is the current solution and the vector z depends on information from previous time steps. This
means that d

dy0ð Þ ¼ hdð Þ ddyð Þ .

The system of nonlinear equations that is solved has the form

y0 � g t; yð Þ ¼ 0

but is solved in the form

r t; yð Þ ¼ 0;

where the function r is defined by

r t; yð Þ ¼ hdð Þ y� zð Þ= hdð Þ � g t; yð Þð Þ:

It is the Jacobian matrix
@r

@y
that you must supply as follows:

@ri
@yj
¼ 1� hdð Þ@gi

@yj
if i ¼ j;

@ri
@yj
¼ � hdð Þ@gi

@yj
otherwise;

where t, h and d are located in RWORKð19Þ, RWORKð16Þ and RWORKð20Þ respectively and the array
Y contains the current values of the dependent variables. Only the nonzero elements of the Jacobian
need be set, since the locations where it is to be stored are preset to zero.

Hereafter in this document this operation will be referred to as JAC.

(ii) Perform Tasks Requested by You

This operation is essentially a monitoring function and additionally provides the opportunity of
changing the current values of Y, HNEXT (the step size that the integrator proposes to take on the next
step), HMIN (the minimum step size to be taken on the next step), and HMAX (the maximum step size
to be taken on the next step). The scaled local error at the end of a timestep may be obtained by calling
real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ,RWORK(51+NEQ),RWORK(51),IFAIL)

! CHECK IFAIL BEFORE PROCEEDING

The following gives details of the location within the array RWORK of variables that may be of interest
to you:

Variable Specification Location

TCURR the current value of the independent variable RWORKð19Þ
HLAST last step size successfully used by the integrator RWORKð15Þ
HNEXT step size that the integrator proposes to take on the next step RWORKð16Þ
HMIN minimum step size to be taken on the next step RWORKð17Þ
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HMAX maximum step size to be taken on the next step RWORKð18Þ
NQU the order of the integrator used on the last step RWORKð10Þ

You are advised to consult the description of MONITR in D02NBF for details on what optional input
can be made.

If Y is changed, then IMON must be set to 2 before return to D02NMF. If either of the values of HMIN
or HMAX are changed, then IMON must be set � 3 before return to D02NMF. If HNEXT is changed,
then IMON must be set to 4 before return to D02NMF.

In addition you can force D02NMF to evaluate the residual vector

y0 � g t; yð Þ

by setting IMON ¼ 0 and INLN ¼ 3 and then returning to D02NMF; on return to this monitoring
operation the residual vector will be stored in RWORKð50þ 2� NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

Hereafter in this document this operation will be referred to as MONITR.

(iii) Evaluate the Derivative

This operation must evaluate the derivative vector for the explicit ordinary differential equation system
defined by

y0 ¼ g t; yð Þ;

where t is located in RWORKð19Þ.
Hereafter in this document this operation will be referred to as FCN.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than YDOT, RWORK, WKJAC, IMON, INLN and IRES must remain
unchanged.

1: NEQ – INTEGER Input

On initial entry: the number of differential equations to be solved.

Constraint: NEQ � 1.

2: LDYSAV – INTEGER Input

On initial entry: an upper bound on the maximum number of differential equations to be solved
during the integration.

Constraint: LDYSAV � NEQ.

3: T – REAL (KIND=nag_wp) Input/Output

On initial entry: t, the value of the independent variable. The input value of T is used only on the
first call as the initial point of the integration.

On final exit: the value at which the computed solution y is returned (usually at TOUT).
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4: TOUT – REAL (KIND=nag_wp) Input

On initial entry: the next value of t at which a computed solution is desired. For the initial t, the
input value of TOUT is used to determine the direction of integration. Integration is permitted in
either direction (see also ITASK).

Constraint: TOUT 6¼ T.

5: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: the values of the dependent variables (solution). On the first call the first NEQ
elements of y must contain the vector of initial values.

On final exit: the computed solution vector evaluated at T (usually t ¼ TOUT).

6: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On intermediate re-entry: must be set to the derivatives as defined under the description of
IREVCM.

On final exit: the time derivatives y0 of the vector y at the last integration point.

7: RWORKð50þ 4� NEQÞ – REAL (KIND=nag_wp) array Communication Array

On initial entry: must be the same array as used by one of the method setup routines D02MVF,
D02NVF or D02NWF, and by one of the storage setup routines D02NTF, D02NUF or D02NVF.
The contents of RWORK must not be changed between any call to a setup routine and the first
call to D02NMF.

On intermediate re-entry: elements of RWORK must be set to quantities as defined under the
description of IREVCM.

On intermediate exit: contains information for JAC, FCN and MONITR operations as described
in Section 3 and the argument IREVCM.

8: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2, and at least NEQ
otherwise.

On initial entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).

9: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3, and at least NEQ
otherwise.

On initial entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On initial entry: a value to indicate the form of the local error test. ITOL indicates to D02NMF
whether to interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be
satisfied is ei=wik k < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � yij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � yij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � yij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � yij j þ ATOLðiÞ
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ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: ITOL ¼ 1, 2, 3 or 4.

11: INFORMð23Þ – INTEGER array Communication Array

12: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Communication Array
13: SDYSAV – INTEGER Input

On initial entry: the second dimension of the array YSAV as declared in the (sub)program from
which D02NMF is called. An appropriate value for SDYSAV is described in the specifications of
the integrator setup routines D02NVF and D02NWF. This value must be the same as that
supplied to the integrator setup routine.

14: WKJACðNWKJACÞ – REAL (KIND=nag_wp) array Input/Output

On intermediate re-entry: elements of the Jacobian as defined under the description of IREVCM.
If a numerical Jacobian was requested then WKJAC is used for workspace.

On intermediate exit: the Jacobian is overwritten.

15: NWKJAC – INTEGER Input

On initial entry: the dimension of the array WKJAC as declared in the (sub)program from which
D02NMF is called. The actual size depends on the linear algebra method used. An appropriate
value for NWKJAC is described in the specifications of the linear algebra setup routines
D02NSF, D02NTF and D02NUF for full, banded and sparse matrix linear algebra respectively.
This value must be the same as that supplied to the linear algebra setup routine.

16: JACPVTðNJCPVTÞ – INTEGER array Communication Array
17: NJCPVT – INTEGER Input

On initial entry: the dimension of the array JACPVT as declared in the (sub)program from which
D02NMF is called. The actual size depends on the linear algebra method used. An appropriate
value for NJCPVT is described in the specifications of the linear algebra setup routines D02NTF
and D02NUF for banded and sparse matrix linear algebra respectively. This value must be the
same as that supplied to the linear algebra setup routine. When full matrix linear algebra is
chosen, the array JACPVT is not used and hence NJCPVT should be set to 1.

18: IMON – INTEGER Input/Output

On intermediate exit: used to pass information between D02NMF and the MONITR operation
(see Section 3). With IREVCM ¼ 9, IMON contains a flag indicating under what circumstances
the return from D02NMF occurred:

IMON ¼ �2
Exit from D02NMF after IRES ¼ 4 caused an early termination (this facility could be used
to locate discontinuities).

IMON ¼ �1
The current step failed repeatedly.

IMON ¼ 0
Exit from D02NMF after a call to the internal nonlinear equation solver.

IMON ¼ 1
The current step was successful.

On intermediate re-entry: may be reset to determine subsequent action in D02NMF.

IMON ¼ �2
Integration is to be halted. A return will be made from D02NMF to the calling (sub)
program with IFAIL ¼ 12.
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IMON ¼ �1
Allow D02NMF to continue with its own internal strategy. The integrator will try up to
three restarts unless IMON 6¼ �1.

IMON ¼ 0
Return to the internal nonlinear equation solver, where the action taken is determined by
the value of INLN.

IMON ¼ 1
Normal exit to D02NMF to continue integration.

IMON ¼ 2
Restart the integration at the current time point. The integrator will restart from order 1
when this option is used. The solution Y, provided by the MONITR operation (see
Section 3), will be used for the initial conditions.

IMON ¼ 3
Try to continue with the same step size and order as was to be used before entering the
MONITR operation (see Section 3). HMIN and HMAX may be altered if desired.

IMON ¼ 4
Continue the integration but using a new value of HNEXT and possibly new values of
HMIN and HMAX.

19: INLN – INTEGER Input/Output

On intermediate re-entry: with IMON ¼ 0 and IREVCM ¼ 9, INLN specifies the action to be
taken by the internal nonlinear equation solver. By setting INLN ¼ 3 and returning to D02NMF,
the residual vector is evaluated and placed in RWORKð50þ 2� NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ
and then the MONITR operation (see Section 3) is invoked again. At present this is the only
option available: INLN must not be set to any other value.

On intermediate exit: contains a flag indicating the action to be taken, if any, by the internal
nonlinear equation solver.

20: IRES – INTEGER Input/Output

On intermediate exit: with IREVCM ¼ 1, 2, 3, 4 or 5, IRES contains the value 1.

On intermediate re-entry: should be unchanged unless one of the following actions is required of
D02NMF in which case IRES should be set accordingly.

IRES ¼ 2
Indicates to D02NMF that control should be passed back immediately to the calling (sub)
program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3
Indicates to D02NMF that an error condition has occurred in the solution vector, its time
derivative or in the value of t. The integrator will use a smaller time step to try to avoid
this condition. If this is not possible D02NMF returns to the calling (sub)program with the
error indicator set to IFAIL ¼ 7.

IRES ¼ 4
Indicates to D02NMF to stop its current operation and to enter the MONITR operation
(see Section 3) immediately.

21: IREVCM – INTEGER Input/Output

On initial entry: must contain 0.

On intermediate re-entry: should remain unchanged.
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On intermediate exit: indicates what action you must take before re-entering. The possible exit
values of IREVCM are 1, 3, 4, 5, 8, 9 or 10, which should be interpreted as follows:

IREVCM ¼ 1, 3, 4 and 5
Indicates that an FCN operation (see Section 3) is required: y0 ¼ g t; yð Þ must be supplied,
where YðiÞ is located in yi, for i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 1 or 3, y0i should be placed in location RWORKð50þ 2� NEQþ iÞ, for
i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 4, y0i should be placed in locat ion RWORKð50þ NEQþ iÞ, for
i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 5, y0i should be placed in location YDOTðiÞ, for i ¼ 1; 2; . . . ;NEQ.

IREVCM ¼ 8
Indicates that a JAC operation (see Section 3) is required: the Jacobian matrix must be
supplied.

If full matrix linear algebra is being used, then the i; jð Þth element of the Jacobian must be stored
in WKJACð j� 1ð Þ � NEQþ iÞ.
If banded matrix linear algebra is being used then the i; jð Þth element of the Jacobian
m u s t b e s t o r e d i n WKJACð i� 1ð Þ �mB þ kÞ, w h e r e mB ¼ mL þmU þ 1 a n d
k ¼ min mL � iþ 1; 0ð Þ þ j; here mL and mU are the number of subdiagonals and super-
diagonals, respectively, in the band.

If sparse matrix linear algebra is being used then D02NRF must be called to determine which
column of the Jacobian is required and where it should be stored.

CALL D02NRF(J, IPLACE, INFORM)

will return in J the number of the column of the Jacobian that is required and will set
IPLACE ¼ 1 or 2. If IPLACE ¼ 1, then the i; jð Þth element of the Jacobian must be stored
in RWORKð50þ 2� NEQþ iÞ; otherwise it must be stored in RWORKð50þ NEQþ iÞ.

IREVCM ¼ 9
Indicates that a MONITR operation (see Section 3) can be performed.

IREVCM ¼ 10
Indicates that the current step was not successful, due to error test failure or convergence
test failure. The only information supplied to you on this return is the current value of the
independent variable t, located in RWORKð19Þ. No values must be changed before re-
entering D02NMF; this facility enables you to determine the number of unsuccessful steps.

On final exit: IREVCM ¼ 0 indicated the user-specified task has been completed or an error has
been encountered (see the descriptions for ITASK and IFAIL).

Constraint: IREVCM ¼ 0, 1, 3, 4, 5, 8, 9 or 10.

22: ITASK – INTEGER Input

On initial entry: the task to be performed by the integrator.

ITASK ¼ 1
Normal computation of output values of y tð Þ at t ¼ TOUT (by overshooting and
interpolating).

ITASK ¼ 2
Take one step only and return.

ITASK ¼ 3
Stop at the first internal integration point at or beyond t ¼ TOUT and return.

ITASK ¼ 4
Normal computation of output values of y tð Þ at t ¼ TOUT but without overshooting
t ¼ TCRIT. TCRIT must be specified as an option in one of the integrator setup routines
before the first call to the integrator, or specified in the optional input routine before a
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continuation call. TCRIT (e.g., see D02NVF) may be equal to or beyond TOUT, but not
before it in the direction of integration.

ITASK ¼ 5
Take one step only and return, without passing TCRIT (e.g., see D02NVF). TCRIT must
be specified under ITASK ¼ 4.

Constraint: 1 � ITASK � 5.

23: ITRACE – INTEGER Input

On initial entry: the level of output that is printed by the integrator. ITRACE may take the value
�1, 0, 1, 2 or 3.

ITRACE < �1
�1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages are printed on the current error message unit (see X04AAF).

ITRACE > 0
Warning messages are printed as above, and on the current advisory message unit (see
X04ABF) output is generated which details Jacobian entries, the nonlinear iteration and
the time integration. The advisory messages are given in greater detail the larger the value
of ITRACE.

24: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, the integrator detected an illegal input, or that a linear algebra and/or integrator setup
routine has not been called prior to the call to the integrator. If ITRACE � 0, the form of the
error will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).
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IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. The problem may have a singularity, or the
local error requirements may be inappropriate.

IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the
requested task, but the integration was successful as far as T. This may be caused by an
inaccurate Jacobian matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see the description of ITOL). Pure
relative error control ATOLðiÞ ¼ 0:0ð Þ was requested on a variable (the ith) which has now
vanished. The integration was successful as far as T.

IFAIL ¼ 7

The FCN operation (see Section 3) set the error flag IRES ¼ 3 continually despite repeated
attempts by the integrator to avoid this.

IFAIL ¼ 8

Not used for this integrator.

IFAIL ¼ 9

A singular Jacobian
@r

@y
has been encountered. This error exit is unlikely to be taken when solving

explicit ordinary differential equations. You should check the problem formulation and Jacobian
calculation.

IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 11

The FCN operation (see Section 3) signalled the integrator to halt the integration and return by
setting IRES ¼ 2. Integration was successful as far as T.

IFAIL ¼ 12

The MONITR operation (see Section 3) set IMON ¼ �2 and so forced a return but the
integration was successful as far as T.

IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and
ATOL is unlikely to produce any change in the computed solution. (Only applies when you are
not operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that D02NMF is unable to start the integration.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the arguments RTOL
and ATOL, and to a much lesser extent by the choice of norm. You are advised to use scalar error
control unless the components of the solution are expected to be poorly scaled. For the type of decaying
solution typical of many stiff problems, relative error control with a small absolute error threshold will
be most appropriate (that is, you are advised to choose ITOL ¼ 1 with ATOLð1Þ small but positive).

8 Parallelism and Performance

D02NMF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02NMF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02NMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem; also on the type of linear algebra being used. For
further details see Section 9 of the documents for D02NBF (full matrix), D02NCF (banded matrix) or
D02NDF (sparse matrix).

In general, you are advised to choose the backward differentiation formula option (setup routine

D02NVF) but if efficiency is of great importance and especially if it is suspected that
@g

@y
has complex

eigenvalues near the imaginary axis for some part of the integration, you should try the BLEND option
(setup routine D02NWF).
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10 Example

This example solves the well-known stiff Robertson problem

a0 ¼ �0:04aþ 1:0E4bc
b0 ¼ 0:04a� 1:0E4bc� 3:0E7b2

c0 ¼ 3:0E7b2

over the range 0; 10½ � with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 and with scalar error control
(ITOL ¼ 1). The integration proceeds until TOUT ¼ 10:0 is passed, providing C1 interpolation at
intervals of 2:0 through a MONITR operation. The integration method used is the BDF method (setup
routine D02NVF) with a modified Newton method. The Jacobian is a full matrix, which is specified
using the setup routine D02NSF; this Jacobian is to be calculated numerically.

10.1 Program Text

Program d02nmfe

! D02NMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d02nmf, d02nsf, d02nvf, d02nyf, d02xkf, nag_wp, &

x04abf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: tstep = 2.0E0_nag_wp
Integer, Parameter :: iset = 1, neq = 3, nin = 5, &

njcpvt = 1, nout = 6
Integer, Parameter :: nrw = 50 + 4*neq
Integer, Parameter :: nwkjac = neq*(neq+1)
Integer, Parameter :: sdysav = 6
Integer, Parameter :: ldysav = neq

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, h0, hlast, hmax, hmin, hnext, hu, &

t, tc, tcrit, tcur, tolsf, tout, &
xout

Integer :: i, ifail, iflag, imon, imxer, inln, &
ires, irevcm, itask, itol, itrace, &
lacor1, lacor2, lacor3, lacorb, &
lsavr1, lsavr2, lsavr3, lsavrb, &
maxord, maxstp, mxhnil, niter, nje, &
nq, nqu, nre, nst, outchn

Logical :: petzld
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), &
wkjac(:), y(:), ydot(:), ysav(:,:)

Real (Kind=nag_wp) :: con(6)
Integer :: inform(23)
Integer, Allocatable :: jacpvt(:)
Logical, Allocatable :: algequ(:)

! .. Intrinsic Procedures ..
Intrinsic :: int

! .. Executable Statements ..
Write (nout,*) ’D02NMF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! neq: number of differential equations
Allocate (atol(neq),rtol(neq),rwork(nrw),wkjac(nwkjac),y(neq),ydot(neq), &

ysav(ldysav,sdysav),jacpvt(njcpvt),algequ(neq))

! Integrate to tout by overshooting tout (itask=1) using B.D.F.
! formulae with a Newton method. Default values for the array con
! are used. Employ scalar tolerances and the Jacobian is evaluated
! internally. On the reverse communication call equivalent to the
! monitr call in forward communication routines carry out
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! interpolation using D02XKF.

Read (nin,*) maxord, maxstp, mxhnil
Read (nin,*) hmin, hmax, h0, tcrit
Read (nin,*) petzld
Read (nin,*) t, tout
Read (nin,*) itol
Read (nin,*) y(1:neq)
Read (nin,*) rtol(1), atol(1)

outchn = nout
Call x04abf(iset,outchn)
itask = 1
xout = tstep
con(1:6) = 0.0E0_nag_wp

ifail = 0
Call d02nvf(neq,sdysav,maxord,’Newton’,petzld,con,tcrit,hmin,hmax,h0, &

maxstp,mxhnil,’Average-L2’,rwork,ifail)

ifail = 0
Call d02nsf(neq,neq,’Numerical’,nwkjac,rwork,ifail)

lacorb = 50 + neq
lacor1 = lacorb + 1
lacor2 = lacorb + 2
lacor3 = lacorb + 3
lsavrb = lacorb + neq
lsavr1 = lsavrb + 1
lsavr2 = lsavrb + 2
lsavr3 = lsavrb + 3
Write (nout,*) ’ X Y(1) Y(2) Y(3)’
Write (nout,99999) t, (y(i),i=1,neq)

! Soft fail and error messages only
irevcm = 0
itrace = 0

steps: Do
ifail = 1
Call d02nmf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform,ysav, &

sdysav,wkjac,nwkjac,jacpvt,njcpvt,imon,inln,ires,irevcm,itask, &
itrace,ifail)

Select Case (irevcm)
Case (0)

Exit steps
Case (1,3)

! Equivalent to fcn evaluation in forward communication
! routines

rwork(lsavr1) = -0.04E0_nag_wp*y(1) + 1.0E4_nag_wp*y(2)*y(3)
rwork(lsavr2) = 0.04E0_nag_wp*y(1) - 1.0E4_nag_wp*y(2)*y(3) - &

3.0E7_nag_wp*y(2)*y(2)
rwork(lsavr3) = 3.0E7_nag_wp*y(2)*y(2)

Case (4)
! Equivalent to fcn evaluation in forward communication
! routines

rwork(lacor1) = -0.04E0_nag_wp*y(1) + 1.0E4_nag_wp*y(2)*y(3)
rwork(lacor2) = 0.04E0_nag_wp*y(1) - 1.0E4_nag_wp*y(2)*y(3) - &

3.0E7_nag_wp*y(2)*y(2)
rwork(lacor3) = 3.0E7_nag_wp*y(2)*y(2)

Case (5)
! Equivalent to fcn evaluation in forward communication
! routines

ydot(1) = -0.04E0_nag_wp*y(1) + 1.0E4_nag_wp*y(2)*y(3)
ydot(2) = 0.04E0_nag_wp*y(1) - 1.0E4_nag_wp*y(2)*y(3) - &

3.0E7_nag_wp*y(2)*y(2)
ydot(3) = 3.0E7_nag_wp*y(2)*y(2)

Case (9)
! Equivalent to monitr call in forward communication routines

If (imon==1) Then
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tc = rwork(19)
hlast = rwork(15)
hnext = rwork(16)
nqu = int(rwork(10))

interp: Do
If (tc-hlast<xout .And. xout<=tc) Then

iflag = 1

Call d02xkf(xout,rwork(lsavr1),neq,ysav,ldysav,sdysav, &
rwork(lacor1),neq,tc,nqu,hlast,hnext,iflag)

If (iflag/=0) Then
imon = -2
Exit interp

Else
Write (nout,99999) xout, (rwork(lsavrb+i),i=1,neq)
xout = xout + tstep
If (xout>tout) Then

Exit interp
End If

End If
Else

Exit interp
End If

End Do interp
End If

Case (2,6:8)
Write (nout,*)
Write (nout,99994) ’Illegal value of IREVCM = ’, irevcm
Exit steps

End Select
End Do steps
If (ifail==0) Then

iflag = 0
Call d02nyf(neq,neq,hu,h,tcur,tolsf,rwork,nst,nre,nje,nqu,nq,niter, &

imxer,algequ,inform,iflag)

Write (nout,*)
Write (nout,99997) hu, h, tcur
Write (nout,99996) nst, nre, nje
Write (nout,99995) nqu, nq, niter
Write (nout,99994) ’ Max err comp = ’, imxer
Write (nout,*)

Else
Write (nout,*)
Write (nout,99998) ’Exit D02NMF with IFAIL = ’, ifail, ’ and T = ’, t

End If

99999 Format (1X,F8.3,3(F13.5,2X))
99998 Format (1X,A,I2,A,E12.5)
99997 Format (1X,’ HUSED = ’,E12.5,’ HNEXT = ’,E12.5,’ TCUR = ’,E12.5)
99996 Format (1X,’ NST = ’,I6,’ NRE = ’,I6,’ NJE = ’,I6)
99995 Format (1X,’ NQU = ’,I6,’ NQ = ’,I6,’ NITER = ’,I6)
99994 Format (1X,A,I4)

End Program d02nmfe

10.2 Program Data

D02NMF Example Program Data
5 200 5 : maxord, maxstp, mxhnil
1.0E-10 10.0 0.0 0.0 : hmin, hmax, h0, tcrit
.FALSE. : petzld
0.0 10.0 : t, tout
1 : itol
1.0 0.0 0.0 : y
1.0E-4 1.0E-7 : rtol, atol
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10.3 Program Results

D02NMF Example Program Results

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000
2.000 0.94161 0.00003 0.05836
4.000 0.90551 0.00002 0.09446
6.000 0.87926 0.00002 0.12072
8.000 0.85854 0.00002 0.14144

10.000 0.84135 0.00002 0.15863

HUSED = 0.90178E+00 HNEXT = 0.90178E+00 TCUR = 0.10766E+02
NST = 55 NRE = 128 NJE = 16
NQU = 4 NQ = 4 NITER = 78
Max err comp = 3
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NAG Library Routine Document

D02NNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NNF is a reverse communication routine for integrating stiff systems of implicit ordinary
differential equations coupled with algebraic equations.

2 Specification

SUBROUTINE D02NNF (NEQ, LDYSAV, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
ITOL, INFORM, YSAV, SDYSAV, WKJAC, NWKJAC, JACPVT,
NJCPVT, IMON, INLN, IRES, IREVCM, LDERIV, ITASK,
ITRACE, IFAIL)

&
&
&

INTEGER NEQ, LDYSAV, ITOL, INFORM(23), SDYSAV, NWKJAC,
JACPVT(NJCPVT), NJCPVT, IMON, INLN, IRES, IREVCM,
ITASK, ITRACE, IFAIL

&
&

REAL (KIND=nag_wp) T, TOUT, Y(NEQ), YDOT(NEQ), RWORK(50+4*NEQ),
RTOL(*), ATOL(*), YSAV(LDYSAV,SDYSAV),
WKJAC(NWKJAC)

&
&

LOGICAL LDERIV(2)

3 Description

D02NNF is a general purpose routine for integrating the initial value problem for a stiff system of
implicit ordinary differential equations coupled with algebraic equations, written in the form

A t; yð Þy0 ¼ g t; yð Þ:

An outline of a typical calling program is given below:

! Declarations

call linear algebra setup routine
call integrator setup routine
IREVCM=0

1000 CALL D02NNF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL,
ATOL, ITOL, INFORM, YSAVE, NY2DIM, WKJAC, NWKJAC, JACPVT,
NJCPVT, IMON, INLN, IRES, IREVCM, LDERIV,
ITASK, ITRACE, IFAIL)

IF (IREVCM.GT.0) THEN
IF (IREVCM.GT.7 .AND. IREVCM.LT.11) THEN

IF (IREVCM.EQ.8) THEN
supply the Jacobian matrix (i)

ELSE IF (IREVCM.EQ.9) THEN
perform monitoring tasks requested by the user (ii)

ELSE IF (IREVCM.EQ.10) THEN
indicates an unsuccessful step

END IF
ELSE

evaluate the residual (iii)
ENDIF
GO TO 1000

END IF

! post processing (optional linear algebra diagnostic call
! (sparse case only), optional integrator diagnostic call)
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STOP
END

There are three major operations that may be required of the calling subroutine on an intermediate
return (IREVCM 6¼ 0) from D02NNF; these are denoted (i), (ii) and (iii).

The following sections describe in greater detail exactly what is required of each of these operations.

(i) Supply the Jacobian matrix

You need only provide this facility if the argument JCEVAL ¼ A (or JCEVAL ¼ F if using
sparse matrix linear algebra) in a call to the linear algebra setup routine (see JCEVAL in D02NUF).
If the Jacobian matrix is to be evaluated numerically by the integrator, then the remainder of
section (i) can be ignored.

We must define the system of nonlinear equations which is solved internally by the integrator. The
time derivative, y0, has the form

y0 ¼ y� zð Þ= hdð Þ;

where h is the current step size and d is an argument that depends on the integration method in use.
The vector y is the current solution and the vector z depends on information from previous time
steps. This means that d

dy0ð Þ ¼ hdð Þ ddyð Þ .

The system of nonlinear equations that is solved has the form

A t; yð Þy0 � g t; yð Þ ¼ 0

but is solved in the form

f t; yð Þ ¼ 0;

where f is the function defined by

f t; yð Þ ¼ hdð Þ A t; yð Þ y� zð Þ= hdð Þ � g t; yð Þð Þ:

It is the Jacobian matrix
@r

@y
that you must supply as follows:

@fi
@yj
¼ aij t; yð Þ þ hd @

@yj

XNEQ
k¼1

aik t; yð Þy0k � gi t; yð Þ
 !

;

where t, h and d are located in RWORKð19Þ, RWORKð16Þ and RWORKð20Þ respectively and the
arrays Y and YDOT contain the current solution and time derivatives respectively. Only the
nonzero elements of the Jacobian need be set, since the locations where it is to be stored are preset
to zero.

Hereafter in this document this operation will be referred to as JAC.

(ii) Perform tasks requested by you

This operation is essentially a monitoring function and additionally provides the opportunity of
changing the current values of Y, YDOT, HNEXT (the step size that the integrator proposes to take
on the next step), HMIN (the minimum step size to be taken on the next step), and HMAX (the
maximum step size to be taken on the next step). The scaled local error at the end of a time step
may be obtained by calling the real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ,ROWK(51+NEQMAX),RWORK(51),IFAIL)

! CHECK IFAIL BEFORE PROCEEDING

The following gives details of the location within the array RWORK of variables that may be of
interest to you:

Variable Specification Location

TCURR the current value of the independent variable RWORKð19Þ
HLAST last step size successfully used by the integrator RWORKð15Þ
HNEXT step size that the integrator proposes to take on the next step RWORKð16Þ
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HMIN minimum step size to be taken on the next step RWORKð17Þ
HMAX maximum step size to be taken on the next step RWORKð18Þ
NQU the order of the integrator used on the last step RWORKð10Þ

You are advised to consult the description of MONITR in D02NGF for details on what optional
input can be made.

If either Y or YDOT are changed, then IMON must be set to 2 before return to D02NNF. If either
of the values HMIN or HMAX are changed, then IMON must be set � 3 before return to
D02NNF. If HNEXT is changed, then IMON must be set to 4 before return to D02NNF.

In addition you can force D02NNF to evaluate the residual vector

A t; yð Þy0 � g t; yð Þ

by setting IMON ¼ 0 and INLN ¼ 3 and then returning to D02NNF; on return to this monitoring
operation the residual vector will be stored in RWORKð50þ 2� NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

Hereafter in this document this operation will be referred to as MONITR.

(iii) Evaluate the residual

This operation must evaluate the residual

�r ¼ g t; yð Þ �A t; yð Þy0 ð1Þ

in one case and the reduced residual

�r̂ ¼ �A t; yð Þy0 ð2Þ

in another, where t is located in RWORKð19Þ. The form of the residual that is returned is
determined by the value of IRES returned by D02NNF. If IRES ¼ �1, then the residual defined by
equation (2) above must be returned; if IRES ¼ 1, then the residual returned by equation (1) above
must be returned.

Hereafter in this document this operation will be referred to as RESID.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than YDOT, RWORK, WKJAC, IMON, INLN and IRES must remain
unchanged.

1: NEQ – INTEGER Input

On initial entry: the number of equations to be solved.

Constraint: NEQ � 1.

2: LDYSAV – INTEGER Input

On initial entry: a bound on the maximum number of equations to be solved during the
integration.

Constraint: LDYSAV � NEQ.

3: T – REAL (KIND=nag_wp) Input/Output

On initial entry: t, the value of the independent variable. The input value of T is used only on the
first call as the initial point of the integration.

On final exit: the value at which the computed solution y is returned (usually at TOUT).
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4: TOUT – REAL (KIND=nag_wp) Input/Output

On initial entry: the next value of t at which a computed solution is desired. For the initial t, the
input value of TOUT is used to determine the direction of integration. Integration is permitted in
either direction (see also ITASK).

Constraint: TOUT 6¼ T.

On exit: is unaltered unless ITASK ¼ 6 and LDERIVð2Þ ¼ :TRUE: on entry (see also ITASK and
LDERIV) in which case TOUT will be set to the result of taking a small step at the start of the
integration.

5: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: the values of the dependent variables (solution). On the first call the first NEQ
elements of y must contain the vector of initial values.

On final exit: the computed solution vector evaluated at T (usually t ¼ TOUT).

6: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: if LDERIVð1Þ ¼ :TRUE:, YDOT must contain approximations to the time
derivatives y0 of the vector y. If LDERIVð1Þ ¼ :FALSE:, then YDOT need not be set on entry.

On final exit: contains the time derivatives y0 of the vector y at the last integration point.

7: RWORKð50þ 4� NEQÞ – REAL (KIND=nag_wp) array Communication Array

On initial entry: must be the same array as used by one of the method setup routines D02MVF,
D02NVF or D02NWF, and by one of the storage setup routines D02NSF, D02NTF or D02NUF.
The contents of RWORK must not be changed between any call to a setup routine and the first
call to D02NNF.

On intermediate re-entry: must contain residual evaluations as described under the argument
IREVCM.

On intermediate exit: contains information for JAC, RESID and MONITR operations as
described under Section 3 and the argument IREVCM.

8: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2, and at least NEQ
otherwise.

On initial entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).

9: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3, and at least NEQ
otherwise.

On initial entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On initial entry: a value to indicate the form of the local error test. ITOL indicates to D02NNF
whether to interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be
satisfied is ei=wik k < 1:0, where wi is defined as follows:
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ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � yij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � yij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � yij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � yij j þ ATOLðiÞ

ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: ITOL ¼ 1, 2, 3 or 4.

11: INFORMð23Þ – INTEGER array Communication Array

12: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Communication Array

13: SDYSAV – INTEGER Input

On initial entry: the second dimension of the array YSAV as declared in the (sub)program from
which D02NNF is called. An appropriate value for SDYSAV is described in the specifications of
the integrator setup routines D02MVF, D02NVF and D02NWF. This value must be the same as
that supplied to the integrator setup routine.

14: WKJACðNWKJACÞ – REAL (KIND=nag_wp) array Input/Output

On intermediate re-entry: elements of the Jacobian as defined under the description of IREVCM.
If a numerical Jacobian was requested then WKJAC is used for workspace.

On intermediate exit: the Jacobian is overwritten.

15: NWKJAC – INTEGER Input

On initial entry: the dimension of the array WKJAC as declared in the (sub)program from which
D02NNF is called. The actual size depends on the linear algebra method used. An appropriate
value for NWKJAC is described in the specifications of the linear algebra setup routines
D02NSF, D02NTF and D02NUF for full, banded and sparse matrix linear algebra respectively.
This value must be the same as that supplied to the linear algebra setup routine.

16: JACPVTðNJCPVTÞ – INTEGER array Communication Array
17: NJCPVT – INTEGER Input

On initial entry: the dimension of the array JACPVT as declared in the (sub)program from which
D02NNF is called. The actual size depends on the linear algebra method used. An appropriate
value for NJCPVT is described in the specifications of the linear algebra setup routines D02NTF
and D02NUF for banded and sparse matrix linear algebra respectively. This value must be the
same as that supplied to the linear algebra setup routine. When full matrix linear algebra is
chosen, the array JACPVT is not used and hence NJCPVT should be set to 1.

18: IMON – INTEGER Input/Output

On intermediate exit: used to pass information between D02NNF and the MONITR operation
(see Section 3). With IREVCM ¼ 9, IMON contains a flag indicating under what circumstances
the return from D02NNF occurred:

IMON ¼ �2
Exit from D02NNF after IRES ¼ 4 (set in the RESID operation (see Section 3) caused an
early termination (this facility could be used to locate discontinuities).

IMON ¼ �1
The current step failed repeatedly.

IMON ¼ 0
Exit from D02NNF after a call to the internal nonlinear equation solver.
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IMON ¼ 1
The current step was successful.

On intermediate re-entry: may be reset to determine subsequent action in D02NNF.

IMON ¼ �2
Integration is to be halted. A return will be made from D02NNF to the calling (sub)
program with IFAIL ¼ 12.

IMON ¼ �1
Allow D02NNF to continue with its own internal strategy. The integrator will try up to
three restarts unless IMON 6¼ �1.

IMON ¼ 0
Return to the internal nonlinear equation solver, where the action taken is determined by
the value of INLN.

IMON ¼ 1
Normal exit to D02NNF to continue integration.

IMON ¼ 2
Restart the integration at the current time point. The integrator will restart from order 1
when this option is used. The internal initialization module solves for new values of y and
y0 by using the values supplied in Y and YDOT by the MONITR operation (see Section 3)
as initial estimates.

IMON ¼ 3
Try to continue with the same step size and order as was to be used before entering the
MONITR operation (see Section 3). HMIN and HMAX may be altered if desired.

IMON ¼ 4
Continue the integration but using a new value of HNEXT and possibly new values of
HMIN and HMAX.

19: INLN – INTEGER Input/Output

On intermediate re-entry: with IMON ¼ 0 and IREVCM ¼ 9, INLN specifies the action to be
taken by the internal nonlinear equation solver. By setting INLN ¼ 3 and returning to D02NNF,
the residual vector is evaluated and placed in RWORKð50þ 2� NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ
and then the MONITR operation (see Section 3) is invoked again. At present this is the only
option available: INLN must not be set to any other value.

On intermediate exit: contains a flag indicating the action to be taken, if any, by the internal
nonlinear equation solver.

20: IRES – INTEGER Input/Output

On intermediate exit: with IREVCM ¼ 1, 2, 3, 4, 5, 6, 7 or 11, IRES specifies the form of the
residual to be returned by the RESID operation (see Section 3).

If IRES ¼ 1, then �r ¼ g t; yð Þ �A t; yð Þy0 must be returned.

If IRES ¼ �1, then �r̂ ¼ �A t; yð Þy0 must be returned.

On intermediate re-entry: should be unchanged unless one of the following actions is required of
D02NNF in which case IRES should be set accordingly.

IRES ¼ 2
Indicates to D02NNF that control should be passed back immediately to the calling (sub)
program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3
Indicates to D02NNF that an error condition has occurred in the solution vector, its time
derivative or in the value of t. The integrator will use a smaller time step to try to avoid
this condition. If this is not possible D02NNF returns to the calling (sub)program with the
error indicator set to IFAIL ¼ 7.
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IRES ¼ 4
Indicates to D02NNF to stop its current operation and to enter the MONITR operation (see
Section 3) immediately.

21: IREVCM – INTEGER Input/Output

On initial entry: must contain 0.

On intermediate re-entry: should remain unchanged.

On intermediate exit: indicates what action you must take before re-entering D02NNF. The
possible exit values of IREVCM are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 which should be interpreted
as follows:

IREVCM ¼ 1, 2, 3, 4, 5, 6, 7 or 11
Indicates that a RESID operation (see Section 3) is required: you must supply the residual
of the system. For each of these values of IREVCM, yi is located in YðiÞ, for
i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 1, 3, 6 or 11, y0i is located in YDOTðiÞ and ri should be stored in
RWORKð50þ 2� NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 2, y0i is located in RWORKð50þ NEQþ iÞ and ri should be stored in
RWORKð50þ 2� NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 4 or 7, y0i is located in YDOTðiÞ and ri should be stored in
RWORKð50þ NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 5, y0i is located in RWORKð50þ 2� NEQþ iÞ and ri should be stored in
YDOTðiÞ, for i ¼ 1; 2; . . . ;NEQ.

IREVCM ¼ 8
Indicates that a JAC operation (see Section 3) is required: you must supply the Jacobian
matrix.

If full matrix linear algebra is being used, then the i; jð Þth element of the Jacobian must be stored
in WKJACð j� 1ð Þ � NEQþ iÞ.
If banded matrix linear algebra is being used, then the i; jð Þth element of the Jacobian
m u s t b e s t o r e d i n WKJACð i� 1ð Þ �mB þ kÞ, w h e r e mB ¼ mL þmU þ 1 a n d
k ¼ min mL � iþ 1; 0ð Þ þ j; here mL and mU are the number of subdiagonals and super-
diagonals, respectively, in the band.

If sparse matrix linear algebra is being used, then D02NRF must be called to determine which
column of the Jacobian is required and where it should be stored.

CALL D02NRF(J, IPLACE, INFORM)

will return in J the number of the column of the Jacobian that is required and will set
IPLACE ¼ 1 or 2 (see D02NRF). If IPLACE ¼ 1, you must store the nonzero element
i; jð Þ of the Jacobian in RWORKð50þ 2� NEQþ iÞ; otherwise it must be stored in
RWORKð50þ NEQþ iÞ.

IREVCM ¼ 9
Indicates that a MONITR operation (see Section 3) can be performed.

IREVCM ¼ 10
Indicates that the current step was not successful, due to error test failure or convergence
test failure. The only information supplied to you on this return is the current value of the
variable t, located in RWORKð19Þ. No values must be changed before re-entering
D02NNF; this facility enables you to determine the number of unsuccessful steps.

On final exit: IREVCM ¼ 0 indicating that the user-specified task has been completed or an error
has been encountered (see the descriptions for ITASK and IFAIL).

Constraint: 0 � IREVCM � 11.
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22: LDERIVð2Þ – LOGICAL array Input/Output

On initial entry: LDERIVð1Þ must be set to .TRUE. if you have supplied both an initial y and an
initial y0. LDERIVð1Þ must be set to .FALSE. if only the initial y has been supplied.

LDERIVð2Þ must be set to .TRUE. if the integrator is to use a modified Newton method to
evaluate the initial y and y0. Note that y and y0, if supplied, are used as initial estimates. This
method involves taking a small step at the start of the integration, and if ITASK ¼ 6 on entry, T
and TOUT will be set to the result of taking this small step. LDERIVð2Þ must be set to .FALSE.
if the integrator is to use functional iteration to evaluate the initial y and y0, and if this fails a
modified Newton method will then be attempted. LDERIVð2Þ ¼ :TRUE: is recommended if there
are implicit equations or the initial y and y0 are zero.

On final exit: LDERIVð1Þ is normally unchanged. However if ITASK ¼ 6 and internal
initialization was successful then LDERIVð1Þ ¼ :TRUE:.
LDERIVð2Þ ¼ :TRUE:, if implicit equations were detected. Otherwise LDERIVð2Þ ¼ :FALSE:.

23: ITASK – INTEGER Input

On initial entry: the task to be performed by the integrator.

ITASK ¼ 1
Normal computation of output values of y tð Þ at t ¼ TOUT (by overshooting and
interpolating).

ITASK ¼ 2
Take one step only and return.

ITASK ¼ 3
Stop at the first internal integration point at or beyond t ¼ TOUT and return.

ITASK ¼ 4
Normal computation of output values of y tð Þ at t ¼ TOUT but without overshooting
t ¼ TCRIT. TCRIT must be specified as an option in one of the integrator setup routines
before the first call to the integrator, or specified in the optional input routine before a
continuation call. TCRIT (e.g., see D02NVF) may be equal to or beyond TOUT, but not
before it in the direction of integration.

ITASK ¼ 5
Take one step only and return, without passing TCRIT (e.g., see D02NVF). TCRIT must
be specified under ITASK ¼ 4.

ITASK ¼ 6
The integrator will solve for the initial values of y and y0 only and then return to the
calling (sub)program without doing the integration. This option can be used to check the
initial values of y and y0. Functional iteration or a ‘small’ backward Euler method used in
conjunction with a damped Newton iteration is used to calculate these values (see
LDERIV). Note that if a backward Euler step is used then the value of t will have been
advanced a short distance from the initial point.

Note: if D02NNF is recalled with a different value of ITASK (and TOUT altered) then the
initialization procedure is repeated, possibly leading to different initial conditions.

Constraint: 1 � ITASK � 6.

24: ITRACE – INTEGER Input

On initial entry: the level of output that is printed by the integrator. ITRACE may take the value
�1, 0, 1, 2 or 3.

ITRACE < �1
�1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

ITRACE ¼ �1
No output is generated.
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ITRACE ¼ 0
Only warning messages are printed on the current error message unit (see X04AAF).

ITRACE > 0
Warning messages are printed as above, and on the current advisory message unit (see
X04ABF) output is generated which details Jacobian entries, the nonlinear iteration and
the time integration. The advisory messages are given in greater detail the larger the value
of ITRACE.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, the integrator detected an illegal input, or that a linear algebra and/or integrator setup
routine has not been called prior to the call to the integrator. If ITRACE � 0, the form of the
error will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. The problem may have a singularity, or the
local error requirements may be inappropriate.

IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the
requested task, but the integration was successful as far as T. This may be caused by an
inaccurate Jacobian matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see the description of ITOL). Pure
relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has now
vanished. The integration was successful as far as T.

D02 – Ordinary Differential D02NNF

Mark 26 D02NNF.9



IFAIL ¼ 7

The RESID operation (see Section 3) set the error flag IRES ¼ 3 continually despite repeated
attempts by the integrator to avoid this.

IFAIL ¼ 8

LDERIVð1Þ ¼ :FALSE: on entry but the internal initialization routine was unable to initialize y0

(more detailed information may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 9

A singular Jacobian
@r

@y
has been encountered. You should check the problem formulation and

Jacobian calculation.

IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 11

The RESID operation (see Section 3) signalled the integrator to halt the integration and return by
setting IRES ¼ 2. Integration was successful as far as T.

IFAIL ¼ 12

The MONITR operation (see Section 3) set IMON ¼ �2 and so forced a return but the
integration was successful as far as T.

IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and
ATOL is unlikely to produce any change in the computed solution. (Only applies when you are
not operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that D02NNF is unable to start the integration.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the arguments RTOL
and ATOL, and to a much lesser extent by the choice of norm. You are advised to use scalar error
control unless the components of the solution are expected to be poorly scaled. For the type of decaying
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solution typical of many stiff problems, relative error control with a small absolute error threshold will
be most appropriate (that is, you are advised to choose ITOL ¼ 1 with ATOLð1Þ small but positive).

8 Parallelism and Performance

D02NNF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02NNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02NNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem; also on the type of linear algebra being used. For
further details see Section 9 in D02NGF, D02NHF and D02NJF of the documents for D02NGF (full
matrix), D02NHF (banded matrix) or D02NJF (sparse matrix).

In general, you are advised to choose the Backward Differentiation Formula option (setup routine

D02NVF) but if efficiency is of great importance and especially if it is suspected that
@

@y
A�1gð Þ has

complex eigenvalues near the imaginary axis for some part of the integration, you should try the
BLEND option (setup routine D02NWF).

10 Example

We solve the well-known stiff Robertson problem written as a differential system in implicit form

r1 ¼ a0 þ b0 þ c0ð Þ
r2 ¼ 0:04a� 1:0E4bc� 3:0E7b2 � b0
r3 ¼ 3:0E7b2 � c0

over the range 0; 10½ � with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 and with scalar error control
(ITOL ¼ 1). We integrate to the first internal integration point past TOUT ¼ 10:0 (ITASK ¼ 3), using a
BDF method (setup routine D02MVF) and a modified Newton method. We treat the Jacobian as sparse
(setup routine D02NUF) and we calculate it analytically. In this program we also illustrate the
monitoring of step failures (IREVCM ¼ 10) and the forcing of a return when the component falls below
0:9 in the evaluation of the residual by setting IRES ¼ 2.

10.1 Program Text

Program d02nnfe

! D02NNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d02mzf, d02nnf, d02nrf, d02nuf, d02nvf, d02nxf, &

d02nyf, nag_wp, x04abf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp
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Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Real (Kind=nag_wp), Parameter :: gamm2 = 2.0_nag_wp*gamma
Integer, Parameter :: iset = 1, itrace = 0, nelts = 8, &

neq = 3, nia = 1, nin = 5, nja = 1
Integer, Parameter :: njcpvt = 20*neq + 12*nelts
Integer, Parameter :: nout = 6
Integer, Parameter :: nrw = 50 + 4*neq
Integer, Parameter :: nwkjac = 4*neq + 12*nelts
Integer, Parameter :: ldysav = neq

! .. Local Scalars ..
Real (Kind=nag_wp) :: eta, h, h0, hmax, hmin, hu, hxd, &

sens, t, tcrit, tcur, tolsf, tout, u
Integer :: i, icall, ifail, igrow, imon, imxer, &

indd, indr, inln, iplace, ires, &
irevcm, isplit, itask, itol, j, &
liwreq, liwusd, lrwreq, lrwusd, &
maxord, maxstp, mxhnil, nblock, &
nfails, ngp, niter, nje, nlu, nnz, &
nq, nqu, nre, nst, outchn, sdysav

Logical :: lblock, petzld
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), &
wkjac(:), y(:), ydot(:), ysav(:,:)

Real (Kind=nag_wp) :: con(6)
Integer :: ia(nia), inform(23), ja(nja)
Integer, Allocatable :: jacpvt(:)
Logical, Allocatable :: algequ(:)
Logical :: lderiv(2)

! .. Executable Statements ..
Write (nout,*) ’D02NNF Example Program Results’

! Skip heading in data file
Read (nin,*)

! neq: number of differential equations
Read (nin,*) maxord, maxstp, mxhnil
sdysav = maxord + 1
Allocate (atol(neq),rtol(neq),rwork(nrw),wkjac(nwkjac),y(neq),ydot(neq), &

ysav(ldysav,sdysav),jacpvt(njcpvt),algequ(neq))

outchn = nout
Write (nout,*)
Call x04abf(iset,outchn)

! Integrate towards tout stopping at the first mesh point beyond
! tout (itask=3) using the B.D.F. formulae with a Newton method.
! Employ scalar tolerances and the Jacobian is supplied, but its
! structure is evaluated internally by calls to the Jacobian
! forming part of the program (irevcm=8). Default values for the
! array con are used. Also count the number of step failures
! (irevcm=10). The solution is interpolated using D02MZF to give
! the solution at tout.

Read (nin,*) hmin, hmax, h0, tcrit
Read (nin,*) eta, sens, u
Read (nin,*) lblock, petzld
Read (nin,*) t, tout
Read (nin,*) itol, isplit
Read (nin,*) y(1:neq)
Select Case (itol)
Case (1)

Read (nin,*) rtol(1), atol(1)
Case (2)

Read (nin,*) rtol(1), atol(1:neq)
Case (3)

Read (nin,*) rtol(1:neq), atol(1)
Case (4)

Read (nin,*) rtol(1:neq), atol(1:neq)
End Select
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itask = 3
lderiv(1:2) = .False.
con(1:6) = zero
nfails = 0

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02nvf(neq,sdysav,maxord,’Newton’,petzld,con,tcrit,hmin,hmax,h0, &

maxstp,mxhnil,’Average-l2’,rwork,ifail)

ifail = 0
Call d02nuf(neq,neq,’Analytical’,nwkjac,ia,nia,ja,nja,jacpvt,njcpvt, &

sens,u,eta,lblock,isplit,rwork,ifail)

irevcm = 0
Write (nout,*) ’ X Y(1) Y(2) Y(3)’
Write (nout,99999) t, (y(i),i=1,neq)
Flush (nout)

revcm: Do
ifail = -1
Call d02nnf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform,ysav, &

sdysav,wkjac,nwkjac,jacpvt,njcpvt,imon,inln,ires,irevcm,lderiv, &
itask,itrace,ifail)

Select Case (irevcm)
Case (0)

! Final exit.
Exit revcm

Case (1,3,4,6,7,11)
If (irevcm==4 .Or. irevcm==7) Then

indr = 50 + neq
Else

indr = 50 + 2*neq
End If

! Return residual in rwork(indr+1:indr+neq) using y’ in ydot.
rwork(indr+1) = -ydot(1) - ydot(2) - ydot(3)
rwork(indr+2) = -ydot(2)
rwork(indr+3) = -ydot(3)
If (ires==1) Then

rwork(indr+1) = rwork(indr+1) + zero
rwork(indr+2) = rwork(indr+2) + alpha*y(1) - beta*y(2)*y(3) - &

gamma*y(2)*y(2)
rwork(indr+3) = rwork(indr+3) + gamma*y(2)*y(2)

End If
Case (2)

! Return residual in rwork(51+2*neq:) using y’ in rwork(51+neq:).
indd = 50 + neq
indr = 50 + 2*neq
rwork(indr+1) = -rwork(indd+1) - rwork(indd+2) - rwork(indd+3)
rwork(indr+2) = -rwork(indd+2)
rwork(indr+3) = -rwork(indd+3)

Case (5)
! Return residual in ydot, using y’ in rwork(51+2*neq:).

indd = 50 + 2*neq
ydot(1) = -rwork(indd+1) - rwork(indd+2) - rwork(indd+3)
ydot(2) = -rwork(indd+2)
ydot(3) = -rwork(indd+3)
ydot(1) = ydot(1) + zero
ydot(2) = ydot(2) + alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2)
ydot(3) = ydot(3) + gamma*y(2)*y(2)

Case (8)
! Return Jacobian in rwork(51+neq:) or rwork(51+2*neq:).

! Get index J for Jacoban evaluation.
Call d02nrf(j,iplace,inform)

hxd = rwork(16)*rwork(20)
If (iplace<2) Then

! return Jacobian in rwork(51+2*neq:).
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indr = 50 + 2*neq
Else

! return Jacobian in rwork(51+neq:).
indr = 50 + neq

End If
! 8 nonzero elements in Jacobian.

If (j<2) Then
rwork(indr+1) = one - hxd*(zero)
rwork(indr+2) = zero - hxd*(alpha)

! rwork(indr+3) = zero - hxd*(zero)
Else If (j==2) Then

rwork(indr+1) = one - hxd*(zero)
rwork(indr+2) = one - hxd*(-beta*y(3)-gamm2*y(2))
rwork(indr+3) = zero - hxd*(gamm2*y(2))

Else If (j>2) Then
rwork(indr+1) = one - hxd*(zero)
rwork(indr+2) = zero - hxd*(-beta*y(2))
rwork(indr+3) = one - hxd*(zero)

End If
Case (10)

! Step failure
nfails = nfails + 1

End Select
End Do revcm

! Print solution and statistics.
If (ifail==0) Then

Call d02nyf(neq,neq,hu,h,tcur,tolsf,rwork,nst,nre,nje,nqu,nq,niter, &
imxer,algequ,inform,ifail)

ifail = 0
Call d02mzf(tout,y,neq,ldysav,neq,ysav,sdysav,rwork,ifail)

Write (nout,99999) tout, (y(i),i=1,neq)
Write (nout,99997) hu, h, tcur
Write (nout,99996) nst, nre, nje
Write (nout,99995) nqu, nq, niter
Write (nout,99994) imxer, nfails
icall = 0

Call d02nxf(icall,liwreq,liwusd,lrwreq,lrwusd,nlu,nnz,ngp,isplit, &
igrow,lblock,nblock,inform)

Write (nout,99993) liwreq, liwusd
Write (nout,99992) lrwreq, lrwusd
Write (nout,99991) nlu, nnz
Write (nout,99990) ngp, isplit
Write (nout,99989) igrow, nblock

Else If (ifail==10) Then
icall = 1

Call d02nxf(icall,liwreq,liwusd,lrwreq,lrwusd,nlu,nnz,ngp,isplit, &
igrow,lblock,nblock,inform)

Write (nout,99993) liwreq, liwusd
Write (nout,99992) lrwreq, lrwusd

Else
Write (nout,99998) ifail, t

End If

99999 Format (1X,F8.3,3(F13.5,2X))
99998 Format (/,1X,’Exit D02NNF with IFAIL = ’,I5,’ and T = ’,E12.5)
99997 Format (/,1X,’ HUSED = ’,E12.5,’ HNEXT = ’,E12.5,’ TCUR = ’,E12.5)
99996 Format (1X,’ NST = ’,I6,’ NRE = ’,I6,’ NJE = ’,I6)
99995 Format (1X,’ NQU = ’,I6,’ NQ = ’,I6,’ NITER = ’,I6)
99994 Format (1X,’ Max err comp = ’,I4,’ No. of failed steps = ’,I4)
99993 Format (/,1X,’ NJCPVT (required ’,I4,’ used ’,I8,’)’)
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99992 Format (1X,’ NWKJAC (required ’,I4,’ used ’,I8,’)’)
99991 Format (1X,’ No. of LU-decomps ’,I4,’ No. of nonzeros ’,I8)
99990 Format (1X,’ No. of FCN calls to form Jacobian ’,I4,’ Try ISPLIT ’,I4)
99989 Format (1X,’ Growth est ’,I8,’ No. of blocks on diagonal ’,I4)

End Program d02nnfe

10.2 Program Data

D02NNF Example Program Data
5 200 5 : maxord, maxstp, mxhnil
1.0E-10 10.0 1.0E-4 0.0 : hmin, hmax, h0, tcrit
1.0E-4 1.0E-6 0.1 : eta, sens, u
.TRUE. .TRUE. : lblock, petzld
0.0 10.0 : t, tout
1 0 : itol, isplit
1.0 0.0 0.0 : y(1:neq)
1.0E-4 1.0E-7 : rtol(1), atol(1)

10.3 Program Results

D02NNF Example Program Results

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000

Warning: Equation(=i1) and possibly other equations are
implicit and in calculating the initial values the
equations will be treated as implicit.
In above message i1 = 1

10.000 0.84136 0.00002 0.15863

HUSED = 0.81503E+00 HNEXT = 0.12467E+01 TCUR = 0.10409E+02
NST = 51 NRE = 130 NJE = 14
NQU = 4 NQ = 4 NITER = 121
Max err comp = 3 No. of failed steps = 0

NJCPVT (required 105 used 156)
NWKJAC (required 34 used 79)
No. of LU-decomps 14 No. of nonzeros 9
No. of FCN calls to form Jacobian 0 Try ISPLIT 73
Growth est 1386 No. of blocks on diagonal 1
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NAG Library Routine Document

D02NPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NPF is a setup routine which you must call prior to D02NEF and after a call to D02MWF, if the
Jacobian is to be considered as having a banded structure.

2 Specification

SUBROUTINE D02NPF (NEQ, ML, MU, ICOM, LICOM, IFAIL)

INTEGER NEQ, ML, MU, ICOM(LICOM), LICOM, IFAIL

3 Description

A call to D02NPF specifies that the Jacobian to be used is banded in structure. If D02NPF is not called
before a call to D02NEF then the Jacobian is assumed to be full.

4 References

None.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential-algebraic equations to be solved.

Constraint: 1 � NEQ.

2: ML – INTEGER Input

On entry: mL, the number of subdiagonals in the band.

Constraint: 0 � ML � NEQ� 1.

3: MU – INTEGER Input

On entry: mU , the number of superdiagonals in the band.

Constraint: 0 � MU � NEQ� 1.

4: ICOMðLICOMÞ – INTEGER array Communication Array

ICOM is used to communicate details of the integration from D02MWF and details of the banded
structure of the Jacobian to D02NEF.

5: LICOM – INTEGER Input

On entry: the dimension of the array ICOM as declared in the (sub)program from which D02NPF
is called.

Constraint: LICOM � 50þ NEQ.
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NEQ ¼ valueh i.
Constraint: NEQ � 1.

IFAIL ¼ 2

On entry, ML ¼ valueh i.
Constraint: ML � 0.

On entry, ML ¼ valueh i and NEQ ¼ valueh i.
Constraint: ML � NEQ� 1.

IFAIL ¼ 3

On entry, MU ¼ valueh i.
Constraint: MU � 0.

On entry, MU ¼ valueh i and NEQ ¼ valueh i.
Constraint: MU � NEQ� 1.

IFAIL ¼ 4

Either the initialization routine has not been called prior to the first call of this routine or the
communication array has become corrupted.

IFAIL ¼ 5

On entry, LICOM is too small: LICOM ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02NPF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D02NEF and D02MWF.
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NAG Library Routine Document

D02NRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NRF is an enquiry routine for communicating with D02NMF or D02NNF when supplying columns
of a sparse Jacobian matrix.

2 Specification

SUBROUTINE D02NRF (J, IPLACE, INFORM)

INTEGER J, IPLACE, INFORM(23)

3 Description

D02NRF is required when D02NMF or D02NNF is being used with sparse matrix linear algebra. After
an exit from D02NMF or D02NNF with IREVCM ¼ 8, D02NRF must be called to determine which
column of the Jacobian is required and where it is to be placed in the array RWORK (a argument of
D02NMF or D02NNF).

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: J – INTEGER Output

On exit: the index j of the column of the Jacobian which is required.

2: IPLACE – INTEGER Output

On exit: indicates which locations in the array RWORK to fill with the jth column.

I f IPLACE ¼ 1, t h e i; jð Þt h e l emen t o f t h e J a c ob i a n mu s t b e p l a c e d i n
RWORKð50þ 2� LDYSAVþ iÞ, otherwise the i; jð Þth element must be placed in
RWORKð50þ LDYSAVþ iÞ.
If JCEVAL ¼ F , in the previous call to D02NUF, then IPLACE ¼ 2 always, hence the jth
column of the Jacobian must be placed in RWORKð50þ LDYSAVþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

RWORK, NEQ and LDYSAV are arguments of D02NMF and D02NNF.

3: INFORMð23Þ – INTEGER array Communication Array

On entry: contains information supplied by the integrator.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

D02NRF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D02NNF.
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NAG Library Routine Document

D02NSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NSF is a setup routine which must be called prior to an integrator in Sub-chapter D02M–N, if full
matrix linear algebra is required.

2 Specification

SUBROUTINE D02NSF (NEQ, NEQMAX, JCEVAL, NWKJAC, RWORK, IFAIL)

INTEGER NEQ, NEQMAX, NWKJAC, IFAIL
REAL (KIND=nag_wp) RWORK(50+4*NEQMAX)
CHARACTER(1) JCEVAL

3 Description

D02NSF defines the linear algebra to be used as full matrix linear algebra, permits you to specify the
method for calculating the Jacobian and checks the validity of certain input values.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential equations.

Constraint: 1 � NEQ � NEQMAX.

2: NEQMAX – INTEGER Input

On entry: a bound on the maximum number of differential equations to be solved during the
integration.

Constraint: NEQMAX � NEQ.

3: JCEVAL – CHARACTER(1) Input

On entry: specifies the technique to be used to compute the Jacobian.

JCEVAL ¼ N
The Jacobian is to be evaluated numerically by the integrator. If this option is used, then
the actual argument corresponding to JAC in the call to D02NBF or D02NGF must be
either D02NBZ or D02NGZ respectively.

JCEVAL ¼ A
You must supply a (sub)program to evaluate the Jacobian on a call to the integrator.

JCEVAL ¼ D
The default choice is to be made. In this case `D' is interpreted as `N'.
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Only the first character of the actual argument JCEVAL is passed to D02NSF; hence it is
permissible for the actual argument to be more descriptive ‘Numerical’, ‘Analytical’ or ‘Default’
on a call to D02NSF.

Constraint: JCEVAL ¼ N , A or D .

4: NWKJAC – INTEGER Input

On entry: the size of the workspace array WKJAC, which you are supplying to the integrator, as
declared in the (sub)program from which D02NSF is called.

Constraint: NWKJAC � NEQMAX� NEQMAXþ 1ð Þ.

5: RWORKð50þ 4� NEQMAXÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same workspace array as the array RWORK supplied to the integrator. It is used
to pass information from the setup routine to the integrator and therefore the contents of this
array must not be changed before calling the integrator.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NEQ < 1,
or NEQ > NEQMAX,
or NWKJAC < NEQMAX� NEQMAXþ 1ð Þ,
or JCEVAL 6¼ N , A or D .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

D02NSF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02NSF is not threaded in any implementation.

9 Further Comments

D02NSF must be called as a setup routine before a call to either D02NBF or D02NGF and may be
called as the linear algebra setup routine before a call to either D02NMF or D02NNF.

10 Example

See Section 10 in D02NBF, D02NGF and D02NMF.
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NAG Library Routine Document

D02NTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NTF is a setup routine which you must call prior to an integrator in Sub-chapter D02M–N, if
banded matrix linear algebra is required.

2 Specification

SUBROUTINE D02NTF (NEQ, NEQMAX, JCEVAL, ML, MU, NWKJAC, NJCPVT, RWORK,
IFAIL)

&

INTEGER NEQ, NEQMAX, ML, MU, NWKJAC, NJCPVT, IFAIL
REAL (KIND=nag_wp) RWORK(50+4*NEQMAX)
CHARACTER(1) JCEVAL

3 Description

D02NTF defines the linear algebra to be used as banded matrix linear algebra, permits you to specify
the method for calculating the Jacobian and checks the validity of certain input values.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential equations.

Constraint: 1 � NEQ � NEQMAX.

2: NEQMAX – INTEGER Input

On entry: a bound on the maximum number of differential equations to be solved during the
integration.

Constraint: NEQMAX � NEQ.

3: JCEVAL – CHARACTER(1) Input

On entry: specifies the technique to be used to compute the Jacobian as follows:

JCEVAL ¼ N
The Jacobian is to be evaluated numerically by the integrator. If this option is used, then
the actual argument corresponding to JAC in the call to D02NCF or D02NHF must be
either D02NCZ or D02NHZ respectively.

JCEVAL ¼ A
You must supply a (sub)program to evaluate the Jacobian on a call to the integrator.

JCEVAL ¼ D
The default choice is to be made. In this case `D' is interpreted as `N'.
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Only the first character of the actual argument JCEVAL is passed to D02NTF; hence it is
permissible for the actual argument to be more descriptive, e.g., ‘Numerical’, ‘Analytical’ or
‘Default’, on a call to D02NTF.

Constraint: JCEVAL ¼ N , A or D .

4: ML – INTEGER Input

On entry: mL, the number of subdiagonals in the band.

Constraint: 0 � ML � NEQ� 1.

5: MU – INTEGER Input

On entry: mU , the number of superdiagonals in the band.

Constraint: 0 � MU � NEQ� 1.

6: NWKJAC – INTEGER Input

On entry: the size of the workspace array WKJAC, which you are supplying to the integrator, as
declared in the (sub)program from which D02NTF is called.

Constraint: NWKJAC � 2�MLþMU þ 1ð Þ � NEQMAX.

7: NJCPVT – INTEGER Input

On entry: the size of the workspace array JACPVT, which you are supplying to the integrator, as
declared in the (sub)program from which D02NTF is called.

Constraint: NJCPVT � NEQMAX.

8: RWORKð50þ 4� NEQMAXÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same workspace array as the array RWORK supplied to the integrator. It is used
to pass information from the setup routine to the integrator and therefore the contents of this
array must not be changed before calling the integrator.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, JCEVAL 6¼ N , A or D ,
or NEQ < 1,
or ML < 0 or ML > NEQ� 1,
or MU < 0 or MU > NEQ� 1,
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or NEQ > NEQMAX,
or NJCPVT < NEQMAX,
or NWKJAC < 2�MLþMUþ 1ð Þ � NEQMAX.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02NTF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02NTF is not threaded in any implementation.

9 Further Comments

D02NTF must be called as a setup routine before a call to either D02NCF or D02NHF and may be
called as the linear algebra setup routine before a call to either D02NMF or D02NNF.

10 Example

See Section 10 in D02NCF and D02NHF.
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NAG Library Routine Document

D02NUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NUF is a setup routine which must be called prior to an integrator in Sub-chapter D02M–N, if
sparse matrix linear algebra is required.

2 Specification

SUBROUTINE D02NUF (NEQ, NEQMAX, JCEVAL, NWKJAC, IA, NIA, JA, NJA,
JACPVT, NJCPVT, SENS, U, ETA, LBLOCK, ISPLIT, RWORK,
IFAIL)

&
&

INTEGER NEQ, NEQMAX, NWKJAC, IA(NIA), NIA, JA(NJA), NJA,
JACPVT(NJCPVT), NJCPVT, ISPLIT, IFAIL

&

REAL (KIND=nag_wp) SENS, U, ETA, RWORK(50+4*NEQMAX)
LOGICAL LBLOCK
CHARACTER(1) JCEVAL

3 Description

D02NUF defines the linear algebra to be used as sparse matrix linear algebra, permits you to specify the
method for calculating the Jacobian and its structure, and checks the validity of certain input values.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential equations.

Constraint: 1 � NEQ � NEQMAX.

2: NEQMAX – INTEGER Input

On entry: a bound on the maximum number of differential equations to be solved during the
integration.

Constraint: NEQMAX � NEQ.

3: JCEVAL – CHARACTER(1) Input

On entry: specifies the technique to be used to compute the Jacobian.

JCEVAL ¼ N
The sparsity structure and the value of the Jacobian are to be determined numerically by
the integrator.

JCEVAL ¼ S
The sparsity structure of the Jacobian is supplied in the arrays IA and JA but its value is to
be determined numerically. This is the recommended mode of operation unless it is a
simple matter to supply the Jacobian.
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JCEVAL ¼ A
The Jacobian will be evaluated by calls to JAC. The sparsity structure will be estimated by
calls to JAC; that is, no explicit sparsity structure need be supplied in the arrays IA and
JA.

JCEVAL ¼ F
The sparsity structure of the Jacobian is supplied in IA and JA, and its value will be
determined by calls to JAC. This is the recommended mode of operation if the JAC is
simple to form.

JCEVAL ¼ D
The default choice is to be made. In this case `D' is interpreted as `S'.

If the sparsity structure is supplied in arrays IA and JA, then any evidence from the numerical or
analytical formation of the Jacobian that this structure is not correct, is ignored.

Only the first character of the actual argument JCEVAL is passed to D02NUF; hence it is
permissible for the actual argument to be more descriptive, e.g., ‘Numerical’, ‘Structural’,
‘Analytical’, ‘Full information’ or ‘Default’ in a call to D02NUF.

If the option JCEVAL ¼ N , S or D is used then the actual argument corresponding to JAC in
the call to D02NDF or D02NJF must be either D02NDZ or D02NJZ respectively.

If integration is to be performed by reverse communication (D02NMF or D02NNF) then
JCEVAL should be set to either `N' or `A'. In this case IA and JA are not used and their lengths
may be set to 1.

Constraint: JCEVAL ¼ N , S , A , F or D .

4: NWKJAC – INTEGER Input

On entry: the size of the array WKJAC, which you are supplying to the integrator, as declared in
the (sub)program from which D02NUF is called.

Suggested value: NWKJAC ¼ 4� NEQMAX if JCEVAL ¼ N or A . If NWKJAC is less than
this estimate, then a message is printed on the current advisory message unit (see X04ABF), and
execution continues.

Constraint: if JCEVAL ¼ S , F or D , NWKJAC � nelement þ 2� NEQ, where nelement is
the total number of nonzeros.

5: IAðNIAÞ – INTEGER array Input

On entry: if JCEVAL ¼ S , F or D , IA must contain details of the sparsity pattern to be used
for the Jacobian. See JA.

IA is not used if JCEVAL ¼ N or A .

6: NIA – INTEGER Input

On entry: the dimension of the array IA as declared in the (sub)program from which D02NUF is
called.

Constraints:

if JCEVAL ¼ S , F or D , NIA � NEQþ 1;
otherwise NIA � 1.

7: JAðNJAÞ – INTEGER array Input

On entry: if JCEVAL ¼ S , F or D , JA must contain details of the sparsity pattern to be used
for the Jacobian. JA contains the row indices where nonzero elements occur, reading in column-
wise order, and IA contains the starting locations in JA of the descriptions of columns
1; 2; . . . ;NEQ in that order, with IAð1Þ ¼ 1. Thus for each column index j ¼ 1; 2; . . . ;NEQ, the
values of the row index i in column j where a nonzero element may occur are given by
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i ¼ JAðkÞ

where IAðjÞ � k < IAðjþ 1Þ.
Thus the total number of nonzeros, nelement, must be IAðNEQþ 1Þ � 1. For example, for the
following matrix

x 0 x 0 0
0 x x x 0
x x x 0 0
x 0 0 x x
0 0 0 x x

0BBB@
1CCCA

where x represents nonzero elements (13 in all) the arrays IA and JA should be

IAðkÞ 1 4 6 9 12 14
JAðkÞ 1 3 4 2 3 1 2 3 2 4 5 4 5

JA is not used if JCEVAL ¼ N or A .

8: NJA – INTEGER Input

On entry: the dimension of the array JA as declared in the (sub)program from which D02NUF is
called.

Constraints:

if JCEVAL ¼ S , F or D , NJA � IAðNEQþ 1Þ � 1;
otherwise NJA � 1.

9: JACPVTðNJCPVTÞ – INTEGER array Communication Array

On exit: data relating to the Jacobian sparsity structure.

10: NJCPVT – INTEGER Input

On entry: the length of the array JACPVT, which you are supplying to the integrator, as
dimensioned in the sub(program) from which D02NUF is called.

Suggested value: NJCPVT ¼ 20� NEQMAX if JCEVAL ¼ N or A . If NJCPVT is less than
this estimate, then a message is printed on the current advisory message unit (see X04ABF), and
execution continues.

Constraint: if JCEVAL ¼ S , F or D , NJCPVT � 3� nelement þ 14� NEQ, where nelement
is the total number of nonzeros.

11: SENS – REAL (KIND=nag_wp) Input

On entry: a threshold argument used to determine whether or not a matrix element is zero; when
SENS is set to 0:0 on entry, the routine will use SENS ¼ 100:0�machine precision. Otherwise
the absolute value of SENS is used.

12: U – REAL (KIND=nag_wp) Input

On entry: should have a value between 0:0 and 0:9999. Otherwise a default value of 0:1 is used.
When the sparsity pattern has been evaluated, the first Jacobian computed is decomposed with U
governing the choice of pivots; subsequent Jacobian decompositions use the same pattern of
decomposition until the sparsity pattern is re-evaluated. When searching a row for a pivot, any
element is excluded from the search which is less than U times the largest of those elements in
the row available as pivots. Thus decreasing U biases the algorithm towards maintaining sparsity
at the expense of numerical stability.
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13: ETA – REAL (KIND=nag_wp) Input

On entry: a relative pivot threshold, below which on subsequent decompositions (as described
under U), an internal error is provoked.

ETA > 1:0
No check on pivot size is made.

ETA � 0:0
The default value ETA ¼ 1:0E�4 is used.

14: LBLOCK – LOGICAL Input

On entry: indicates if preordering is used before decomposition.

If LBLOCK ¼ :TRUE:, on entry, the Jacobian matrix is preordered to block lower triangular
form before a decomposition is performed (this is the recommended mode). If you know the
structure of the Jacobian to be irreducible, that is not permutable to block lower triangular form,
then you should set LBLOCK ¼ :FALSE:. For example, a Jacobian arising from using the
method of lines for parabolic partial differential equations would normally be irreducible. (See
the specification of D02NXF for optional output concerning LBLOCK.)

15: ISPLIT – INTEGER Input

On entry: this argument is used for splitting the integer workspace JACPVT to effect an efficient
decomposition. It must satisfy 1 � ISPLIT � 99. If ISPLIT lies outside this range on entry, a
default value of 73 is used. An appropriate value for ISPLIT for subsequent runs on similar
problems is available via the optional output D02NXF.

Suggested value: ISPLIT ¼ 73, unless you have information from a previous run of a similar
problem.

16: RWORKð50þ 4� NEQMAXÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same workspace array as the array RWORK supplied to the integrator. It is used
to pass information from the setup routine to the integrator and therefore the contents of this
array must not be changed before calling the integrator.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, an illegal input was detected.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02NUF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02NUF is not threaded in any implementation.

9 Further Comments

D02NUF must be called as a setup routine before a call to either D02NDF or D02NJF and may be
called as the linear algebra setup routine before a call to D02NMF or D02NNF.

10 Example

See Section 10 in D02NDF, D02NJF and D02NNF.
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NAG Library Routine Document

D02NVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NVF is a setup routine which must be called prior to linear algebra setup routines and integrators
from the SPRINT suite of routines, if Backward Differentiation Formulae (BDF) are to be used.

2 Specification

SUBROUTINE D02NVF (NEQMAX, SDYSAV, MAXORD, METHOD, PETZLD, CON, TCRIT,
HMIN, HMAX, H0, MAXSTP, MXHNIL, NORM, RWORK, IFAIL)

&

INTEGER NEQMAX, SDYSAV, MAXORD, MAXSTP, MXHNIL, IFAIL
REAL (KIND=nag_wp) CON(6), TCRIT, HMIN, HMAX, H0, RWORK(50+4*NEQMAX)
LOGICAL PETZLD
CHARACTER(1) METHOD, NORM

3 Description

An integrator setup routine must be called before the call to any linear algebra setup routine or
integrator from the SPRINT suite of routines in this sub-chapter. This setup routine, D02NVF, makes
the choice of the BDF integrator and permits you to define options appropriate to this choice.
Alternative choices of integrator from this suite are the BLEND method and the DASSL
implementation of the BDF method which can be chosen by initial calls to D02NWF or D02MVF
respectively.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQMAX – INTEGER Input

On entry: a bound on the maximum number of differential equations to be solved.

Constraint: NEQMAX � 1.

2: SDYSAV – INTEGER Input

On entry: the second dimension of the array YSAV that will be supplied to the integrator, as
declared in the (sub)program from which the integrator is called.

Constraint: SDYSAV � MAXORDþ 1.

3: MAXORD – INTEGER Input

On entry: the maximum order to be used for the BDF method.

Constraint: 0 < MAXORD � 5.
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4: METHOD – CHARACTER(1) Input

On entry: specifies the method to be used to solve the system of nonlinear equations arising on
each step of the BDF code.

METHOD ¼ N
A modified Newton iteration is used.

METHOD ¼ F
Functional iteration is used.

METHOD ¼ D
A modified Newton iteration is used.

Note: a linear algebra setup routine must be called even when using functional iteration, since if
difficulty is encountered a switch is made to a modified Newton method.

Only the first character of the actual argument METHOD is passed to D02NVF; hence it is
permissible for the actual argument to be more descriptive e.g., ‘Newton’, ‘Functional iteration’
or ‘Default’ in a call to D02NVF.

Constraint: METHOD ¼ N , F or D .

5: PETZLD – LOGICAL Input

On entry: specifies whether the Petzold local error test is to be used. If PETZLD is set to .TRUE.
on entry, then the Petzold local error test is used, otherwise a conventional test is used. The
Petzold test results in extra overhead cost but is more stable and reliable for differential/algebraic
equations.

6: CONð6Þ – REAL (KIND=nag_wp) array Input/Output

On entry: values to be used to control step size choice during integration. If any CONðiÞ ¼ 0:0
on entry, it is replaced by its default value described below. In most cases this is the
recommended setting.

CONð1Þ, CONð2Þ, and CONð3Þ are factors used to bound step size changes. If the current step
size h fails, then the modulus of the next step size is bounded by CONð1Þ � hj j. The default
value of CONð1Þ is 2:0. Note that the new step size may be used with a method of different order
to the failed step. If the initial step size is h, then the modulus of the step size on the second step
is bounded by CONð3Þ � hj j. At any other stage in the integration, if the current step size is h,
then the modulus of the next step size is bounded by CONð2Þ � hj j. The default values are 10:0
for CONð2Þ and 1000:0 for CONð3Þ.
CONð4Þ, CONð5Þ and CONð6Þ are ‘tuning’ constants used in determining the next order and step
size. They are used to scale the error estimates used in determining whether to keep the same
order of the BDF method, decrease the order or increase the order respectively. The larger the
value of CONðiÞ, for i ¼ 4; 5; 6, the less likely the choice of the corresponding order. The default
values are: CONð4Þ ¼ 1:2, CONð5Þ ¼ 1:3, CONð6Þ ¼ 1:4.

Constraints:

These constraints must be satisfied after any zero values have been replaced by their default
values.

0:0 < CONð1Þ � CONð2Þ � CONð3Þ;
CONðiÞ � 1:0, for i ¼ 2; 3; . . . ; 6.

On exit: the values actually used by D02NVF.

7: TCRIT – REAL (KIND=nag_wp) Input

On entry: a point beyond which integration must not be attempted. The use of TCRIT is
described under the argument ITASK in the specification for the integrator (e.g., see D02NBF). A
value, 0:0 say, must be specified even if ITASK subsequently specifies that TCRIT will not be
used.
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8: HMIN – REAL (KIND=nag_wp) Input

On entry: the minimum absolute step size to be allowed. Set HMIN ¼ 0:0 if this option is not
required.

9: HMAX – REAL (KIND=nag_wp) Input

On entry: the maximum absolute step size to be allowed. Set HMAX ¼ 0:0 if this option is not
required.

10: H0 – REAL (KIND=nag_wp) Input

On entry: the step size to be attempted on the first step. Set H0 ¼ 0:0 if the initial step size is
calculated internally.

11: MAXSTP – INTEGER Input

On entry: the maximum number of steps to be attempted during one call to the integrator after
which it will return with IFAIL ¼ 2. Set MAXSTP ¼ 0 if no limit is to be imposed.

12: MXHNIL – INTEGER Input

On entry: the maximum number of warnings printed (if ITRACE � 0) per problem when
tþ h ¼ t on a step (h ¼ current step size). If MXHNIL � 0, a default value of 10 is assumed.

13: NORM – CHARACTER(1) Input

On entry: indicates the type of norm to be used.

NORM ¼ M
Maximum norm.

NORM ¼ A
Averaged L2 norm.

NORM ¼ D
Is the same as NORM ¼ A .

If vnorm denotes the norm of the vector v of length n, then for the averaged L2 norm

vnorm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

vi=wið Þ2
s

;

while for the maximum norm

vnorm ¼ max
i
vi=wij j:

If you wish to weight the maximum norm or the L2 norm, then RTOL and ATOL should be
scaled appropriately on input to the integrator (see under ITOL in the specification of the
integrator for the formulation of the weight vector wi from RTOL and ATOL, e.g., see D02NBF).

Only the first character to the actual argument NORM is passed to D02NVF; hence it is
permissible for the actual argument to be more descriptive e.g., ‘Maximum’, ‘Average L2’ or
‘Default’ in a call to D02NVF.

Constraint: NORM ¼ M , A or D .

14: RWORKð50þ 4� NEQMAXÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same workspace array as the array RWORK supplied to the integrator. It is used
to pass information from the setup routine to the integrator and therefore the contents of this
array must not be changed before calling the integrator.

D02 – Ordinary Differential D02NVF

Mark 26 D02NVF.3



15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, an illegal input was detected.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02NVF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D02NBF.
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NAG Library Routine Document

D02NWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NWF is a setup routine which must be called prior to linear algebra setup routines and integrators
from the SPRINT suite of routines, if the BLEND formulae are to be used.

2 Specification

SUBROUTINE D02NWF (NEQMAX, SDYSAV, MAXORD, CON, TCRIT, HMIN, HMAX, H0,
MAXSTP, MXHNIL, NORM, RWORK, IFAIL)

&

INTEGER NEQMAX, SDYSAV, MAXORD, MAXSTP, MXHNIL, IFAIL
REAL (KIND=nag_wp) CON(6), TCRIT, HMIN, HMAX, H0, RWORK(50+4*NEQMAX)
CHARACTER(1) NORM

3 Description

An integrator setup routine must be called before the call to any linear algebra setup routine or
integrator from the SPRINT suite of routines in this sub-chapter. This setup routine, D02NWF, makes
the choice of the BLEND integrator and permits you to define options appropriate to this choice.
Alternative choices of integrator from this suite are the BDF method and the DASSL implementation of
the BDF method which can be chosen by initial calls to D02NVF or D02MVF respectively.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQMAX – INTEGER Input

On entry: a bound on the maximum number of differential equations to be solved.

Constraint: NEQMAX � 1.

2: SDYSAV – INTEGER Input

On entry: the second dimension of the array YSAV that will be supplied to the integrator, as
declared in the (sub)program from which the integrator is called (e.g., see D02NBF).

Constraint: SDYSAV � MAXORDþ 3.

3: MAXORD – INTEGER Input

On entry: the maximum order to be used for the BLEND method.

Constraint: 0 < MAXORD � 11.

4: CONð6Þ – REAL (KIND=nag_wp) array Input/Output

On entry: values to be used to control step size choice during integration. If any CONðiÞ ¼ 0:0
on entry, it is replaced by its default value described below. In most cases this is the
recommended setting.
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CONð1Þ, CONð2Þ, and CONð3Þ are factors used to bound step size changes. If the current step
size h fails, then the modulus of the next step size is bounded by CONð1Þ � hj j. The default
value of CONð1Þ is 2:0. Note that the new step size may be used with a method of different order
to the failed step. If the initial step size is h, then the modulus of the step size on the second step
is bounded by CONð3Þ � hj j. At any other stage in the integration, if the current step size is h,
then the modulus of the next step size is bounded by CONð2Þ � hj j. The default values are 10:0
for CONð2Þ and 1000:0 for CONð3Þ.
CONð4Þ, CONð5Þ and CONð6Þ are ‘tuning’ constants used in determining the next order and step
size. They are used to scale the error estimates used in determining whether to keep the same
order of the BLEND method, decrease the order or increase the order respectively. The larger the
value of CONðiÞ, for i ¼ 4; 5; 6, the less likely the choice of the corresponding order. The default
values are: CONð4Þ ¼ 1:2, CONð5Þ ¼ 1:3, CONð6Þ ¼ 1:4.

Constraints:

These constraints must be satisfied after any zero values have been replaced by their default
values.

0:0 < CONð1Þ � CONð2Þ � CONð3Þ;
CONðiÞ � 1:0, for i ¼ 2; 3; . . . ; 6.

On exit: the values actually used by D02NWF.

5: TCRIT – REAL (KIND=nag_wp) Input

On entry: a point beyond which integration must not be attempted. The use of TCRIT is
described under the argument ITASK in the specification for the integrator (e.g., see D02NBF). A
value, 0:0 say, must be specified even if ITASK subsequently specifies that TCRIT will not be
used.

6: HMIN – REAL (KIND=nag_wp) Input

On entry: the minimum absolute step size to be allowed. Set HMIN ¼ 0:0 if this option is not
required.

7: HMAX – REAL (KIND=nag_wp) Input

On entry: the maximum absolute step size to be allowed. Set HMAX ¼ 0:0 if this option is not
required.

8: H0 – REAL (KIND=nag_wp) Input

On entry: the step size to be attempted on the first step. Set H0 ¼ 0:0 if the initial step size is
calculated internally.

9: MAXSTP – INTEGER Input

On entry: the maximum number of steps to be attempted during one call to the integrator after
which it will return with IFAIL ¼ 2. Set MAXSTP ¼ 0 if no limit is to be imposed.

10: MXHNIL – INTEGER Input

On entry: the maximum number of warnings printed (if ITRACE � 0, e.g., see D02NBF) per
problem when tþ h ¼ t on a step (h ¼ current step size). If MXHNIL � 0, a default value of 10
is assumed.

11: NORM – CHARACTER(1) Input

On entry: indicates the type of norm to be used.

NORM ¼ M
Maximum norm.
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NORM ¼ A
Averaged L2 norm.

NORM ¼ D
Is the same as `A'.

If vnorm denotes the norm of the vector v of length n, then for the averaged L2 norm

vnorm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

vi=wið Þ2
s

;

while for the maximum norm

vnorm ¼ max
i
vi=wij j:

If you wish to weight the maximum norm or the L2 norm, then RTOL and ATOL should be
scaled appropriately on input to the integrator (see under ITOL in the specification of the
integrator for the formulation of the weight vector wi from RTOL and ATOL, e.g., D02NBF).

Only the first character of the actual argument NORM is passed to D02NWF; hence it is
permissible for the actual argument to be more descriptive e.g., ‘Maximum’, ‘Average L2’ or
‘Default’ in a call to D02NWF.

Constraint: NORM ¼ M , A or D .

12: RWORKð50þ 4� NEQMAXÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same workspace array as the array RWORK supplied to the integrator. It is used
to pass information from the setup routine to the integrator and therefore the contents of this
array must not be changed before calling the integrator.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, an illegal input was detected.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02NWF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D02NCF.

D02NWF NAG Library Manual

D02NWF.4 (last) Mark 26



NAG Library Routine Document

D02NXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NXF is an optional output routine which you may call, on exit from an integrator in Sub-chapter
D02M–N, if sparse matrix linear algebra has been selected.

2 Specification

SUBROUTINE D02NXF (ICALL, LIWREQ, LIWUSD, LRWREQ, LRWUSD, NLU, NNZ, NGP,
ISPLIT, IGROW, LBLOCK, NBLOCK, INFORM)

&

INTEGER ICALL, LIWREQ, LIWUSD, LRWREQ, LRWUSD, NLU, NNZ, NGP, ISPLIT,
IGROW, NBLOCK, INFORM(23)

&

LOGICAL LBLOCK

3 Description

D02NXF permits you to examine the various outputs from the sparse linear algebra routines called by
the integrator.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: ICALL – INTEGER Input

On entry: indicates whether or not all output arguments have been set during the call to the
integrator. If so, that is, if the integrator returned with IFAIL ¼ 0 or 12, then ICALL must be set
to 0. Otherwise ICALL must be set to 1, indicating that integration did not take place due to lack
of space in arrays WKJAC and JACPVT, and only LIWREQ, LIWUSD, LRWREQ, LRWUSD
have been set.

2: LIWREQ – INTEGER Output

On exit: the length of the integer workspace JACPVT reserved for the sparse matrix routines.

3: LIWUSD – INTEGER Output

On exit: the length of the integer workspace JACPVT actually used by the sparse matrix routines.

4: LRWREQ – INTEGER Output

On exit: the length of the real workspace WKJAC reserved for the sparse matrix routines.

5: LRWUSD – INTEGER Output

On exit: the length of the real workspace WKJAC actually used by the sparse matrix routines.

6: NLU – INTEGER Output

On exit: the number of LU decompositions done during the integration.
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7: NNZ – INTEGER Output

On exit: the number of nonzeros in the Jacobian.

8: NGP – INTEGER Output

On exit: the number of FCN or RESID calls needed to form the Jacobian.

9: ISPLIT – INTEGER Output

On exit: an appropriate value for the argument ISPLIT when calling D02NUF for subsequent runs
of similar problems.

10: IGROW – INTEGER Output

On exit: an estimate of the growth of the elements encountered during the last LU decomposition
performed. If the actual estimate exceeds the largest possible integer value for the machine being
used (see X02BBF) IGROW is set to the value returned by X02BBF.

11: LBLOCK – LOGICAL Input

On entry: the value used for the argument LBLOCK when calling D02NUF.

12: NBLOCK – INTEGER Output

On exit: if LBLOCK ¼ :TRUE:, NBLOCK contains the number of diagonal blocks in the
Jacobian matrix permuted to block lower triangular form. If NBLOCK ¼ 1 then on subsequent
runs of a similar problem LBLOCK should be set to .FALSE. in the call to D02NUF.

If LBLOCK ¼ :FALSE:, NBLOCK ¼ 1.

13: INFORMð23Þ – INTEGER array Communication Array

On entry: contains information supplied by the integrator.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02NXF is not threaded in any implementation.

9 Further Comments

The output from D02NXF, in particular the values of LIWREQ, LIWUSD, LRWREQ, LRWUSD,
ISPLIT and IGROW, should be used to determine appropriate values for the arguments of the setup
routine D02NUF on further calls to the integrator for the same or similar problems.

10 Example

See Section 10 in D02NDF, D02NJF and D02NNF.
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NAG Library Routine Document

D02NYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NYF is a diagnostic routine which you may call either after any user-specified exit or after a mid-
integration error exit from any of those integrators in Sub-chapter D02M–N that use methods set up by
calls to D02MVF, D02NVF or D02NWF.

2 Specification

SUBROUTINE D02NYF (NEQ, NEQMAX, HU, H, TCUR, TOLSF, RWORK, NST, NRE,
NJE, NQU, NQ, NITER, IMXER, ALGEQU, INFORM, IFAIL)

&

INTEGER NEQ, NEQMAX, NST, NRE, NJE, NQU, NQ, NITER, IMXER,
INFORM(23), IFAIL

&

REAL (KIND=nag_wp) HU, H, TCUR, TOLSF, RWORK(50+4*NEQ)
LOGICAL ALGEQU(NEQ)

3 Description

D02NYF permits you to inspect statistics produced by any integrator in this sub-chapter that has been
set up a call to one of D02MVF, D02NVF or D02NWF. These statistics concern the integration only.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQ – INTEGER Input

On entry: the value used for the argument NEQ when calling the integrator.

Constraint: NEQ � 1.

2: NEQMAX – INTEGER Input

On entry: the value used for the argument NEQMAX when calling the integrator.

Constraint: NEQMAX � NEQ.

3: HU – REAL (KIND=nag_wp) Output

On exit: the last successful step size.

4: H – REAL (KIND=nag_wp) Output

On exit: the proposed next step size for continuing the integration.

5: TCUR – REAL (KIND=nag_wp) Output

On exit: t, the value of the independent variable which the integrator has actually reached. TCUR
will always be at least as far as the output value of the argument t in the direction of integration,
but may be further (if overshooting and interpolation at TOUT was specified, e.g., see D02NBF).
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6: TOLSF – REAL (KIND=nag_wp) Output

On exit: a tolerance scale factor, TOLSF � 1:0, which is computed when a request for too much
accuracy is detected by the integrator (indicated by a return with IFAIL ¼ 3 or 14). If ITOL is
left unaltered but RTOL and ATOL are uniformly scaled up by a factor of TOLSF the next call to
the integrator is deemed likely to succeed.

7: RWORKð50þ 4� NEQÞ – REAL (KIND=nag_wp) array Communication Array

On entry: contains information supplied by the integrator.

8: NST – INTEGER Output

On exit: the number of steps taken in the integration so far.

9: NRE – INTEGER Output

On exit: the number of function or residual evaluations (FCN (e.g., see D02NBF) or RESID (e.g.,
see D02NGF) calls) used in the integration so far.

10: NJE – INTEGER Output

On exit: the number of Jacobian evaluations used in the integration so far. This equals the
number of matrix LU decompositions.

11: NQU – INTEGER Output

On exit: the order of the method last used (successfully) in the integration.

12: NQ – INTEGER Output

On exit: the proposed order of the method for continuing the integration.

13: NITER – INTEGER Output

On exit: the number of iterations performed in the integration so far by the nonlinear equation
solver.

14: IMXER – INTEGER Output

On exit: the index of the component of largest magnitude in the weighted local error vector
ei=wið Þ, for i ¼ 1; 2; . . . ;NEQ.

15: ALGEQUðNEQÞ – LOGICAL array Output

On exit: ALGEQUðiÞ ¼ :TRUE: if the ith equation integrated was detected to be algebraic,
otherwise ALGEQUðiÞ ¼ :FALSE:. Note that when the integrators for explicit equations are
being used, then ALGEQUðiÞ ¼ :FALSE:, for i ¼ 1; 2; . . . ;NEQ.

16: INFORMð23Þ – INTEGER array Communication Array

On entry: contains information supplied by the integrator.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NEQ < 1,
or NEQMAX < 1,
or NEQ > NEQMAX.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02NYF is not threaded in any implementation.

9 Further Comments

Statistics for sparse matrix linear algebra calls (if appropriate) may be determined by a call to D02NXF.

10 Example

See Section 10 in D02NBF.

D02 – Ordinary Differential D02NYF

Mark 26 D02NYF.3 (last)





NAG Library Routine Document

D02NZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NZF is a setup routine which must be called, if optional inputs need resetting, prior to a
continuation call to any of those integrators in Sub-chapter D02M–N that use methods set up by calls to
D02MVF, D02NVF or D02NWF.

2 Specification

SUBROUTINE D02NZF (NEQMAX, TCRIT, H, HMIN, HMAX, MAXSTP, MXHNIL, RWORK,
IFAIL)

&

INTEGER NEQMAX, MAXSTP, MXHNIL, IFAIL
REAL (KIND=nag_wp) TCRIT, H, HMIN, HMAX, RWORK(50+4*NEQMAX)

3 Description

D02NZF is provided to permit you to reset many of the arguments which control the integration ‘on the
fly’, that is in conjunction with the interrupt facility permitted through the argument ITASK of the
integrator (e.g., see D02NBF). In addition to a number of arguments which you can set initially through
one of the integrator setup routines, the step size to be attempted on the next step may be changed.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

1: NEQMAX – INTEGER Input

On entry: the value used for the argument NEQMAX when calling the integrator.

Constraint: NEQMAX � 1.

2: TCRIT – REAL (KIND=nag_wp) Input

On entry: a point beyond which integration must not be attempted. The use of TCRIT is
described under the argument ITASK in the specification for the integrator (e.g., see D02NBF). A
value, 0:0 say, must be specified even if ITASK subsequently specifies that TCRIT will not be
used.

3: H – REAL (KIND=nag_wp) Input

On entry: the next step size to be attempted. Set H ¼ 0:0 if the current value of H is not to be
changed.

4: HMIN – REAL (KIND=nag_wp) Input

On entry: the minimum absolute step size to be allowed. Set HMIN ¼ 0:0 if this option is not
required. Set HMIN < 0:0 if the current value of HMIN is not to be changed.
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5: HMAX – REAL (KIND=nag_wp) Input

On entry: the maximum absolute step size to be allowed. Set HMAX ¼ 0:0 if this option is not
required. Set HMAX < 0:0 if the current value of HMAX is not to be changed.

6: MAXSTP – INTEGER Input

On entry: the maximum number of steps to be attempted during one call to the integrator after
which it will return with IFAIL ¼ 2 (see D02NCF). Set MAXSTP ¼ 0 if this option is not
required. Set MAXSTP < 0 if the current value of MAXSTP is not to be changed.

7: MXHNIL – INTEGER Input

On entry: the maximum number of warnings printed (if ITRACE � 0, e.g., see D02NBF) per
problem when tþ h ¼ t on a step (h ¼ current step size). If MXHNIL � 0, a default value of 10
is assumed.

8: RWORKð50þ 4� NEQMAXÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same workspace array as the array RWORK supplied to the integrator. It is used
to pass information from the integrator to D02NZF and therefore its contents must not be
changed before calling D02NZF.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

NEQMAX < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

D02NZF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D02NCF.
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NAG Library Routine Document

D02PEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PEF solves an initial value problem for a first-order system of ordinary differential equations using
Runge–Kutta methods.

2 Specification

SUBROUTINE D02PEF (F, N, TWANT, TGOT, YGOT, YPGOT, YMAX, IUSER, RUSER,
IWSAV, RWSAV, IFAIL)

&

INTEGER N, IUSER(*), IWSAV(130), IFAIL
REAL (KIND=nag_wp) TWANT, TGOT, YGOT(N), YPGOT(N), YMAX(N), RUSER(*),

RWSAV(32*N+350)
&

EXTERNAL F

3 Description

D02PEF and its associated routines (D02PQF, D02PTF and D02PUF) solve an initial value problem for
a first-order system of ordinary differential equations. The routines, based on Runge–Kutta methods and
derived from RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0
where y is the vector of n solution components and t is the independent variable.

D02PEF is designed for the usual task, namely to compute an approximate solution at a sequence of
points. You must first call D02PQF to specify the problem and how it is to be solved. Thereafter you
call D02PEF repeatedly with successive values of TWANT, the points at which you require the solution,
in the range from TSTART to TEND (as specified in D02PQF). In this manner D02PEF returns the
point at which it has computed a solution TGOT (usually TWANT), the solution there (YGOT) and its
derivative (YPGOT). If D02PEF encounters some difficulty in taking a step toward TWANT, then it
returns the point of difficulty (TGOT) and the solution and derivative computed there (YGOT and
YPGOT, respectively).

In the call to D02PQF you can specify either the first step size for D02PEF to attempt or that it
computes automatically an appropriate value. Thereafter D02PEF estimates an appropriate step size for
its next step. This value and other details of the integration can be obtained after any call to D02PEF by
a call to D02PTF. The local error is controlled at every step as specified in D02PQF. If you wish to
assess the true error, you must set METHOD to a positive value in the call to D02PQF. This assessment
can be obtained after any call to D02PEF by a call to D02PUF.

For more complicated tasks, you are referred to routines D02PFF, D02PRF and D02PSF, all of which
are used by D02PEF.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University
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5 Arguments

1: F – SUBROUTINE, supplied by the user. External Procedure

F must evaluate the functions fi (that is the first derivatives y0i) for given values of the arguments
t, yi.

The specification of F is:

SUBROUTINE F (T, N, Y, YP, IUSER, RUSER)

INTEGER N, IUSER(*)
REAL (KIND=nag_wp) T, Y(N), YP(N), RUSER(*)

1: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

2: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the current values of the dependent variables, yi, for i ¼ 1; 2; . . . ;n.

4: YPðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values of fi, for i ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to D02PEF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02PEF is called. Arguments denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved.

Constraint: N � 1.

3: TWANT – REAL (KIND=nag_wp) Input

On entry: t, the next value of the independent variable where a solution is desired.

Constraint: TWANT must be closer to TEND than the previous value of TGOT (or TSTART on
the first call to D02PEF); see D02PQF for a description of TSTART and TEND. TWANT must
not lie beyond TEND in the direction of integration.

4: TGOT – REAL (KIND=nag_wp) Output

On exit: t, the value of the independent variable at which a solution has been computed. On
successful exit with IFAIL ¼ 0, TGOT will equal TWANT. On exit with IFAIL > 1, a solution
has still been computed at the value of TGOT but in general TGOT will not equal TWANT.

5: YGOTðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: on the first call to D02PEF, YGOT need not be set. On all subsequent calls YGOT
must remain unchanged.
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On exit: an approximation to the true solution at the value of TGOT. At each step of the
integration to TGOT, the local error has been controlled as specified in D02PQF. The local error
has still been controlled even when TGOT 6¼ TWANT, that is after a return with IFAIL > 1.

6: YPGOTðNÞ – REAL (KIND=nag_wp) array Output

On exit: an approximation to the first derivative of the true solution at TGOT.

7: YMAXðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: on the first call to D02PEF, YMAX need not be set. On all subsequent calls YMAX
must remain unchanged.

On exit: YMAXðiÞ contains the largest value of yij j computed at any step in the integration so
far.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D02PEF, but are passed directly to F and should be used to
pass information to this routine.

10: IWSAVð130Þ – INTEGER array Communication Array
11: RWSAVð32� Nþ 350Þ – REAL (KIND=nag_wp) array Communication Array

On entry: these must be the same arrays supplied in a previous call to D02PQF. They must
remain unchanged between calls.

On exit: information about the integration for use on subsequent calls to D02PEF or other
associated routines.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, a previous call to the setup routine has not been made or the communication arrays
have become corrupted.

On entry, N ¼ valueh i, but the value passed to the setup routine was N ¼ valueh i.
On entry, the communication arrays have become corrupted, or a catastrophic error has already
been detected elsewhere. You cannot continue integrating the problem.

TEND (setup) had already been reached in a previous call.
To start a new problem, you will need to call the setup routine.

D02 – Ordinary Differential D02PEF

Mark 26 D02PEF.3



TWANT does not lie in the direction of integration. TWANT ¼ valueh i.
TWANT is too close to the last value of TGOT (TSTART on setup).
When using the method of order 8 at setup, these must differ by at least valueh i. Their absolute
difference is valueh i.
TWANT lies beyond TEND (setup) in the direction of integration, but is very close to TEND.
You may have intended TWANT ¼ TEND.
TWANT� TENDj j ¼ valueh i.
TWANT lies beyond TEND (setup) in the direction of integration.
TWANT ¼ valueh i and TEND ¼ valueh i.
You cannot call this routine after it has returned an error.
You must call the setup routine to start another problem.

You cannot call this routine when you have specified, in the setup routine, that the step integrator
will be used.

IFAIL ¼ 2

This routine is being used inefficiently because the step size has been reduced drastically many
times to obtain answers at many points. Using the order 4 and 5 pair method at setup is more
appropriate here. You can continue integrating this problem.

IFAIL ¼ 3

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. However, you can continue integrating
the problem.

IFAIL ¼ 4

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. Your problem has been diagnosed as
stiff. If the situation persists, it will cost roughly valueh i times as much to reach TEND (setup) as
it has cost to reach the current time. You should probably call routines intended for stiff
problems. However, you can continue integrating the problem.

IFAIL ¼ 5

In order to satisfy your error requirements the solver has to use a step size of valueh i at the
current time, valueh i. This step size is too small for the machine precision, and is smaller than
valueh i.

IFAIL ¼ 6

The global error assessment algorithm failed at start of integration.
The integration is being terminated.

The global error assessment may not be reliable for times beyond valueh i.
The integration is being terminated.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of integration is determined by the arguments TOL and THRESH in a prior call to
D02PQF (see the routine document for D02PQF for further details and advice). Note that only the local
error at each step is controlled by these arguments. The error estimates obtained are not strict bounds
but are usually reliable over one step. Over a number of steps the overall error may accumulate in
various ways, depending on the properties of the differential system.

8 Parallelism and Performance

D02PEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If D02PEF returns with IFAIL ¼ 5 and the accuracy specified by TOL and THRESH is really required
then you should consider whether there is a more fundamental difficulty. For example, the solution may
contain a singularity. In such a region the solution components will usually be large in magnitude.
Successive output values of YGOT and YMAX should be monitored (or D02PFF should be used since
this takes one integration step at a time) with the aim of trapping the solution before the singularity. In
any case numerical integration cannot be continued through a singularity, and analytical treatment may
be necessary.

Performance statistics are available after any return from D02PEF by a call to D02PTF. If
METHOD > 0 in the call to D02PQF, global error assessment is available after a return from D02PEF
with IFAIL ¼ 0, 2, 3, 4, 5 or 6 by a call to D02PUF.

After a failure with IFAIL ¼ 5 or 6 each of the diagnostic routines D02PTF and D02PUF may be called
only once.

If D02PEF returns with IFAIL ¼ 4 then it is advisable to change to another code more suited to the
solution of stiff problems. D02PEF will not return with IFAIL ¼ 4 if the problem is actually stiff but it
is estimated that integration can be completed using less function evaluations than already computed.

10 Example

This example solves the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2
y02 ¼ �y1

over the range 0; 2	½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0. Relative error control is used with
threshold values of 1:0E�8 for each solution component and compute the solution at intervals of length
	=4 across the range. A low-order Runge–Kutta method (see D02PQF) is also used with tolerances
TOL ¼ 1:0E�3 and TOL ¼ 1:0E�4 in turn so that the solutions can be compared.

See also Section 10 in D02PUF.
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10.1 Program Text

! D02PEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02pefe_mod

! D02PEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: tol0 = 1.0E-3_nag_wp
Integer, Parameter, Public :: liwsav = 130, n = 2, nin = 5, &

nout = 6, npts = 8
Integer, Parameter, Public :: lrwsav = 350 + 32*n

Contains

Subroutine f(t,n,y,yp,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(n)
Real (Kind=nag_wp), Intent (Out) :: yp(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
yp(1) = y(2)
yp(2) = -y(1)
Return

End Subroutine f
End Module d02pefe_mod

Program d02pefe

! D02PEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02pef, d02pqf, d02ptf, nag_wp
Use d02pefe_mod, Only: f, liwsav, lrwsav, n, nin, nout, npts, tol0

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: hnext, hstart, tend, tgot, tinc, &

tol, tstart, twant, waste
Integer :: fevals, i, ifail, j, method, &

stepcost, stepsok
! .. Local Arrays ..

Real (Kind=nag_wp) :: ruser(1), thresh(n), ygot(n), &
yinit(n), ymax(n), ypgot(n)

Real (Kind=nag_wp), Allocatable :: rwsav(:)
Integer :: iuser(1)
Integer, Allocatable :: iwsav(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02PEF Example Program Results’

Allocate (iwsav(liwsav),rwsav(lrwsav))

! Set initial conditions and input for D02PQF

! Skip heading in data file
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Read (nin,*)
Read (nin,*) method
Read (nin,*) tstart, tend
Read (nin,*) yinit(1:n)
Read (nin,*) hstart
Read (nin,*) thresh(1:n)

! Set control for output

tinc = (tend-tstart)/real(npts,kind=nag_wp)

tol = 10.0_nag_wp*tol0

loop: Do i = 1, 2
tol = tol*0.1_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02pqf(n,tstart,tend,yinit,tol,thresh,method,hstart,iwsav,rwsav, &

ifail)

Write (nout,99999) tol
Write (nout,99998)
Write (nout,99997) tstart, yinit(1:n)
twant = tstart
Do j = 1, npts

twant = twant + tinc

ifail = 0
Call d02pef(f,n,twant,tgot,ygot,ypgot,ymax,iuser,ruser,iwsav,rwsav, &

ifail)

Write (nout,99997) tgot, ygot(1:n)
End Do

ifail = 0
Call d02ptf(fevals,stepcost,waste,stepsok,hnext,iwsav,rwsav,ifail)
Write (nout,99996) fevals

End Do loop

99999 Format (/,’ Calculation with TOL = ’,1P,E8.1)
99998 Format (/,’ t y1 y2’,/)
99997 Format (1X,F6.3,2(3X,F7.3))
99996 Format (/,’ Cost of the integration in evaluations of F is’,I6)

End Program d02pefe

10.2 Program Data

D02PEF Example Program Data
1 : method
0.0 6.28318530717958647692 : tstart, tend
0.0 1.0 : yinit(1:n)
0.0 : hstart
1.0E-8 1.0E-8 : thresh(1:n)

10.3 Program Results

D02PEF Example Program Results

Calculation with TOL = 1.0E-03

t y1 y2

0.000 0.000 1.000
0.785 0.707 0.707
1.571 0.999 -0.000
2.356 0.706 -0.706
3.142 -0.000 -0.999
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3.927 -0.706 -0.706
4.712 -0.998 0.000
5.498 -0.705 0.706
6.283 0.001 0.997

Cost of the integration in evaluations of F is 430

Calculation with TOL = 1.0E-04

t y1 y2

0.000 0.000 1.000
0.785 0.707 0.707
1.571 1.000 -0.000
2.356 0.707 -0.707
3.142 -0.000 -1.000
3.927 -0.707 -0.707
4.712 -1.000 0.000
5.498 -0.707 0.707
6.283 0.000 1.000

Cost of the integration in evaluations of F is 892
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NAG Library Routine Document

D02PFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PFF is a one-step routine for solving an initial value problem for a first-order system of ordinary
differential equations using Runge–Kutta methods.

2 Specification

SUBROUTINE D02PFF (F, N, TNOW, YNOW, YPNOW, IUSER, RUSER, IWSAV, RWSAV,
IFAIL)

&

INTEGER N, IUSER(*), IWSAV(130), IFAIL
REAL (KIND=nag_wp) TNOW, YNOW(N), YPNOW(N), RUSER(*), RWSAV(32*N+350)
EXTERNAL F

3 Description

D02PFF and its associated routines (D02PQF, D02PRF, D02PSF, D02PTF and D02PUF) solve an initial
value problem for a first-order system of ordinary differential equations. The routines, based on Runge–
Kutta methods and derived from RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0
where y is the vector of n solution components and t is the independent variable.

D02PFF is designed to be used in complicated tasks when solving systems of ordinary differential
equations. You must first call D02PQF to specify the problem and how it is to be solved. Thereafter you
(repeatedly) call D02PFF to take one integration step at a time from TSTART in the direction of TEND
(as specified in D02PQF). In this manner D02PFF returns an approximation to the solution YNOW and
its derivative YPNOW at successive points TNOW. If D02PFF encounters some difficulty in taking a
step, the integration is not advanced and the routine returns with the same values of TNOW, YNOW
and YPNOW as returned on the previous successful step. D02PFF tries to advance the integration as far
as possible subject to passing the test on the local error and not going past TEND.

In the call to D02PQF you can specify either the first step size for D02PFF to attempt or that it
computes automatically an appropriate value. Thereafter D02PFF estimates an appropriate step size for
its next step. This value and other details of the integration can be obtained after any call to D02PFF by
a call to D02PTF. The local error is controlled at every step as specified in D02PQF. If you wish to
assess the true error, you must set METHOD to a positive value in the call to D02PQF. This assessment
can be obtained after any call to D02PFF by a call to D02PUF.

If you want answers at specific points there are two ways to proceed:

(i) The more efficient way is to step past the point where a solution is desired, and then call D02PSF
to get an answer there. Within the span of the current step, you can get all the answers you want at
very little cost by repeated calls to D02PSF. This is very valuable when you want to find where
something happens, e.g., where a particular solution component vanishes. You cannot proceed in
this way with METHOD ¼ 3 or �3.

(ii) The other way to get an answer at a specific point is to set TEND to this value and integrate to
TEND. D02PFF will not step past TEND, so when a step would carry it past, it will reduce the step
size so as to produce an answer at TEND exactly. After getting an answer there (TNOW ¼ TEND),
you can reset TEND to the next point where you want an answer, and repeat. TEND could be reset
by a call to D02PQF, but you should not do this. You should use D02PRF instead because it is both
easier to use and much more efficient. This way of getting answers at specific points can be used
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with any of the available methods, but it is the only way with METHOD ¼ 3 or �3. It can be
inefficient. Should this be the case, the code will bring the matter to your attention.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

1: F – SUBROUTINE, supplied by the user. External Procedure

F must evaluate the functions fi (that is the first derivatives y0i) for given values of the arguments
t, yi.

The specification of F is:

SUBROUTINE F (T, N, Y, YP, IUSER, RUSER)

INTEGER N, IUSER(*)
REAL (KIND=nag_wp) T, Y(N), YP(N), RUSER(*)

1: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

2: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the current values of the dependent variables, yi, for i ¼ 1; 2; . . . ;n.

4: YPðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values of fi, for i ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to D02PFF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02PFF is called. Arguments denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved.

Constraint: N � 1.

3: TNOW – REAL (KIND=nag_wp) Output

On exit: t, the value of the independent variable at which a solution has been computed.

4: YNOWðNÞ – REAL (KIND=nag_wp) array Output

On exit: an approximation to the solution at TNOW. The local error of the step to TNOW was no
greater than permitted by the specified tolerances (see D02PQF).
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5: YPNOWðNÞ – REAL (KIND=nag_wp) array Output

On exit: an approximation to the first derivative of the solution at TNOW.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D02PFF, but are passed directly to F and should be used to
pass information to this routine.

8: IWSAVð130Þ – INTEGER array Communication Array
9: RWSAVð32� Nþ 350Þ – REAL (KIND=nag_wp) array Communication Array

On entry: these must be the same arrays supplied in a previous call to D02PQF. They must
remain unchanged between calls.

On exit: information about the integration for use on subsequent calls to D02PFF or other
associated routines.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A call to this routine cannot be made after it has returned an error.
The setup routine must be called to start another problem.

On entry, N ¼ valueh i, but the value passed to the setup routine was N ¼ valueh i.
On entry, the communication arrays have become corrupted, or a catastrophic error has already
been detected elsewhere. You cannot continue integrating the problem.

TEND, as specified in the setup routine, has already been reached. To start a new problem, you
will need to call the setup routine. To continue integration beyond TEND then D02PRF must first
be called to reset TEND to a new end value.

IFAIL ¼ 2

More than 100 output points have been obtained by integrating to TEND (as specified in the
setup routine). They have been so clustered that it would probably be (much) more efficient to
use the interpolation routine (if METHODj j ¼ 3, switch to METHODj j ¼ 2 at setup). However,
you can continue integrating the problem.
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IFAIL ¼ 3

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. However, you can continue integrating
the problem.

IFAIL ¼ 4

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. Your problem has been diagnosed as
stiff. If the situation persists, it will cost roughly valueh i times as much to reach TEND (setup) as
it has cost to reach the current time. You should probably call routines intended for stiff
problems. However, you can continue integrating the problem.

IFAIL ¼ 5

In order to satisfy your error requirements the solver has to use a step size of valueh i at the
current time, valueh i. This step size is too small for the machine precision, and is smaller than
valueh i.

IFAIL ¼ 6

The global error assessment algorithm failed at start of integration.
The integration is being terminated.

The global error assessment may not be reliable for times beyond valueh i.
The integration is being terminated.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of integration is determined by the arguments TOL and THRESH in a prior call to
D02PQF (see the routine document for D02PQF for further details and advice). Note that only the local
error at each step is controlled by these arguments. The error estimates obtained are not strict bounds
but are usually reliable over one step. Over a number of steps the overall error may accumulate in
various ways, depending on the properties of the differential system.

8 Parallelism and Performance

D02PFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

If D02PFF returns with IFAIL ¼ 5 and the accuracy specified by TOL and THRESH is really required
then you should consider whether there is a more fundamental difficulty. For example, the solution may
contain a singularity. In such a region the solution components will usually be large in magnitude.
Successive output values of YNOW should be monitored with the aim of trapping the solution before
the singularity. In any case numerical integration cannot be continued through a singularity, and
analytical treatment may be necessary.

Performance statistics are available after any return from D02PFF (except when IFAIL ¼ 1) by a call to
D02PTF. If METHOD > 0 in the call to D02PQF, global error assessment is available after any return
from D02PFF (except when IFAIL ¼ 1) by a call to D02PUF.

After a failure with IFAIL ¼ 5 or 6 each of the diagnostic routines D02PTF and D02PUF may be called
only once.

If D02PFF returns with IFAIL ¼ 4 then it is advisable to change to another code more suited to the
solution of stiff problems. D02PFF will not return with IFAIL ¼ 4 if the problem is actually stiff but it
is estimated that integration can be completed using less function evaluations than already computed.

10 Example

This example solves the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2
y02 ¼ �y1

over the range 0; 2	½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0. We use relative error control with
threshold values of 1:0E�8 for each solution component and print the solution at each integration step
across the range. We use a medium order Runge–Kutta method (METHOD ¼ 2) with tolerances
TOL ¼ 1:0E�4 and TOL ¼ 1:0E�5 in turn so that we may compare the solutions.

10.1 Program Text

! D02PFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02pffe_mod

! D02PFF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: tol1 = 1.0E-4_nag_wp
Real (Kind=nag_wp), Parameter, Public :: tol2 = 1.0E-5_nag_wp
Integer, Parameter, Public :: liwsav = 130, n = 2, nin = 5, &

nout = 6
Integer, Parameter, Public :: lrwsav = 350 + 32*n

Contains
Subroutine f(t,n,y,yp,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: n

! .. Array Arguments ..
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Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(n)
Real (Kind=nag_wp), Intent (Out) :: yp(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
yp(1) = y(2)
yp(2) = -y(1)
Return

End Subroutine f
End Module d02pffe_mod

Program d02pffe

! D02PFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02pff, d02pqf, d02ptf, nag_wp
Use d02pffe_mod, Only: f, liwsav, lrwsav, n, nin, nout, tol1, tol2

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: hnext, hstart, tend, tnow, tol, &

tstart, waste
Integer :: i, ifail, method, stpcst, stpsok, &

totf
! .. Local Arrays ..

Real (Kind=nag_wp) :: ruser(1)
Real (Kind=nag_wp), Allocatable :: rwsav(:), thres(:), ynow(:), &

ypnow(:), ystart(:)
Integer :: iuser(1)
Integer, Allocatable :: iwsav(:)

! .. Executable Statements ..
Write (nout,*) ’D02PFF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) method
Allocate (thres(n),iwsav(liwsav),rwsav(lrwsav),ynow(n),ypnow(n), &

ystart(n))

! Set initial conditions and input for D02PQF

Read (nin,*) tstart, tend
Read (nin,*) ystart(1:n)
Read (nin,*) hstart
Read (nin,*) thres(1:n)

Do i = 1, 2
If (i==1) Then

tol = tol1
End If
If (i==2) Then

tol = tol2
End If

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02pqf(n,tstart,tend,ystart,tol,thres,method,hstart,iwsav,rwsav, &

ifail)

Write (nout,99999) tol
Write (nout,99998)
Write (nout,99997) tstart, ystart(1:n)

loop: Do
ifail = 0
Call d02pff(f,n,tnow,ynow,ypnow,iuser,ruser,iwsav,rwsav,ifail)

If (ifail==0) Then
Write (nout,99997) tnow, ynow(1:n)
If (tnow>=tend) Then
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Exit loop
End If

Else
Exit loop

End If

End Do loop

ifail = 0
Call d02ptf(totf,stpcst,waste,stpsok,hnext,iwsav,rwsav,ifail)
Write (nout,99996) totf

End Do

99999 Format (/,’ Calculation with TOL = ’,E8.1)
99998 Format (/,’ t y1 y2’,/)
99997 Format (1X,F6.3,2(3X,F8.4))
99996 Format (/,’ Cost of the integration in evaluations of F is’,I6)

End Program d02pffe

10.2 Program Data

D02PFF Example Program Data
2 : method
0.0 6.28318530717958647692 : tstart, tend
0.0 1.0 : ystart(1:n)
0.0 : hstart
1.0E-8 1.0E-8 : thres(1:n)

10.3 Program Results

D02PFF Example Program Results

Calculation with TOL = 0.1E-03

t y1 y2

0.000 0.0000 1.0000
0.785 0.7071 0.7071
1.519 0.9987 0.0513
2.282 0.7573 -0.6531
2.911 0.2285 -0.9735
3.706 -0.5348 -0.8450
4.364 -0.9399 -0.3414
5.320 -0.8209 0.5710
5.802 -0.4631 0.8863
6.283 0.0000 1.0000

Cost of the integration in evaluations of F is 204

Calculation with TOL = 0.1E-04

t y1 y2

0.000 0.0000 1.0000
0.393 0.3827 0.9239
0.785 0.7071 0.7071
1.416 0.9881 0.1538
1.870 0.9557 -0.2943
2.204 0.8062 -0.5916
2.761 0.3711 -0.9286
3.230 -0.0880 -0.9961
3.587 -0.4304 -0.9026
4.022 -0.7710 -0.6368
4.641 -0.9974 -0.0717
5.152 -0.9049 0.4256
5.521 -0.6903 0.7235
5.902 -0.3718 0.9283
6.283 0.0000 1.0000

Cost of the integration in evaluations of F is 314
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NAG Library Routine Document

D02PGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PGF is a reverse communication one-step routine for solving an initial value problem for a first-
order system of ordinary differential equations using Runge–Kutta methods. The direct communication
version of this routine is D02PFF. See Section 3.3.3 in How to Use the NAG Library and its
Documentation for the difference between forward and reverse communication.

2 Specification

SUBROUTINE D02PGF (IREVCM, N, T, Y, YP, IWSAV, RWSAV, IFAIL)

INTEGER IREVCM, N, IWSAV(130), IFAIL
REAL (KIND=nag_wp) T, Y(N), YP(N), RWSAV(32*N+350)

3 Description

D02PGF and its associated routines (D02PHF, D02PJF, D02PQF, D02PRF, D02PTF and D02PUF)
solve an initial value problem for a first-order system of ordinary differential equations. The routines,
based on Runge–Kutta methods and derived from RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0
where y is the vector of n solution components and t is the independent variable.

D02PGF is designed to be used in complicated tasks when solving systems of ordinary differential
equations. You must first call D02PQF to specify the problem and how it is to be solved. Thereafter you
(repeatedly) call D02PGF in reverse communication loops to take one integration step at a time from
TSTART in the direction of TEND (as specified in D02PQF). In this manner D02PGF returns an
approximation to the solution Y and its derivative YP at successive points T. If D02PGF encounters
some difficulty in taking a step, the integration is not advanced and the routine returns with the same
values of T, Y and YP as returned on the previous successful step. D02PGF tries to advance the
integration as far as possible subject to passing the test on the local error and not going past TEND.

In the call to D02PQF you can specify either the first step size for D02PGF to attempt or it computes
automatically an appropriate value. Thereafter D02PGF estimates an appropriate step size for its next
step. This value and other details of the integration can be obtained after a completed step by D02PGF
by a call to D02PTF. The local error is controlled at every step as specified in D02PQF. If you wish to
assess the true error, you must set METHOD to a positive value in the call to D02PQF. This assessment
can be obtained after any call to D02PGF by a call to D02PUF.

If you want answers at specific points there are two ways to proceed:

(i) The more efficient way is to step past the point where a solution is desired, and then call D02PHF
and D02PJF to get an answer there. Within the span of the current step, you can get all the answers
you want at very little cost by repeated calls to D02PJF. This is very valuable when you want to
find where something happens, e.g., where a particular solution component vanishes.

(ii) Alternatively, set TEND to the desired value and integrate to TEND. D02PGF will not step past
TEND, so when a step would carry it past, it will reduce the step size so as to produce an answer at
TEND exactly. After getting an answer there (T ¼ TEND), you can reset TEND to the next point
where you want an answer, and repeat. TEND could be reset by a call to D02PQF, but you should
not do this. You should use D02PRF instead because it is both easier to use and much more
efficient. This way of getting answers at specific points can be used with any of the available
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methods, but it can be inefficient. Should this be the case, the code will bring the matter to your
attention.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than those specified by the value of IREVCM must remain
unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: IREVCM must be set to zero to indicate that a new step is being taken.

On intermediate re-entry: IREVCM should remain unchanged.

On intermediate exit: IREVCM returns a value > 0 to indicate that a function evaluation is
required prior to re-entry; the value of the derivatives y0 ¼ f t; yð Þ must be returned in YP where
the value of t is supplied in T and the values y tð Þ are supplied in the array Y. The value of
IREVCM indicates the reason for the function evaluation as follows:

IREVCM ¼ 1
For initial entry values of T and Y.

IREVCM ¼ 2
To determine stiffness of system.

IREVCM ¼ 3
For the stages of the primary step.

IREVCM ¼ 4
A final stage of the primary step.

IREVCM ¼ 5
For the stages of a secondary step (if global error assessment is required).

On final exit:

IREVCM ¼ �1
Successful exit; T, Y and YP contain the solution at the end of a successful integration
step.

IREVCM ¼ �2
Error exit; IFAIL should be interrogated to determine the nature of the error.

2: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved.

Constraint: N � 1. This must be the same value as supplied in a previous call to D02PQF.

3: T – REAL (KIND=nag_wp) Output

On intermediate exit: T contains the value of the independent variable t at which the derivatives
y0 are to be evaluated.

On final exit: the value of t at which a solution has been computed following a successful step.
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4: YðNÞ – REAL (KIND=nag_wp) array Output

On intermediate exit: Y contains the value of the solution y at which the derivatives y0 are to be
evaluated.

On final exit: the approximation to the solution computed following a successful step.

5: YPðNÞ – REAL (KIND=nag_wp) array Input

On initial entry: YP need not be set.

On intermediate re-entry: YP must contain the value of the derivatives y0 ¼ f t; yð Þ where t is
supplied in T and y is supplied in the array Y.

6: IWSAVð130Þ – INTEGER array Communication Array
7: RWSAVð32� Nþ 350Þ – REAL (KIND=nag_wp) array Communication Array

On entry: these must be the same arrays supplied in a previous call to D02PQF. They must
remain unchanged between calls.

On exit: information about the integration for use on subsequent calls to D02PGF or other
associated routines.

8: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A call to this routine cannot be made after it has returned an error.
The setup routine must be called to start another problem.

IREVCM < 0 on entry.

On entry, a previous call to the setup routine has not been made or the communication arrays
have become corrupted.

On entry, N ¼ valueh i, but the value passed to the setup routine was N ¼ valueh i.
On entry, the communication arrays have become corrupted, or a catastrophic error has already
been detected elsewhere. You cannot continue integrating the problem.

TEND, as specified in the setup routine, has already been reached. To start a new problem, you
will need to call the setup routine. To continue integration beyond TEND then D02PRF must first
be called to reset TEND to a new end value.
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IFAIL ¼ 2

More than 100 output points have been obtained by integrating to TEND (as specified in the
setup routine). They have been so clustered that it would probably be (much) more efficient to
use the interpolation routine. However, you can continue integrating the problem.

IFAIL ¼ 3

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. However, you can continue integrating
the problem.

IFAIL ¼ 4

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. Your problem has been diagnosed as
stiff. If the situation persists, it will cost roughly valueh i times as much to reach TEND (setup) as
it has cost to reach the current time. You should probably call routines intended for stiff
problems. However, you can continue integrating the problem.

IFAIL ¼ 5

In order to satisfy your error requirements the solver has to use a step size of valueh i at the
current time, valueh i. This step size is too small for the machine precision, and is smaller than
valueh i.

IFAIL ¼ 6

The global error assessment algorithm failed at start of integration.
The integration is being terminated.

The global error assessment may not be reliable for times beyond valueh i.
The integration is being terminated.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of integration is determined by the arguments TOL and THRESH in a prior call to
D02PQF (see the routine document for D02PQF for further details and advice). Note that only the local
error at each step is controlled by these arguments. The error estimates obtained are not strict bounds
but are usually reliable over one step. Over a number of steps the overall error may accumulate in
various ways, depending on the properties of the differential system.
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8 Parallelism and Performance

D02PGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If D02PGF returns with IFAIL > 1 then the values returned in T and Y are for the last successful step,
or the initial conditions supplied if no successful step has been taken.

If D02PGF returns with IFAIL ¼ 5 and the accuracy specified by TOL and THRESH is really required
then you should consider whether there is a more fundamental difficulty. For example, the solution may
contain a singularity. In such a region the solution components will usually be large in magnitude.
Successive output values of Y should be monitored with the aim of trapping the solution before the
singularity. In any case, numerical integration cannot be continued through a singularity and analytical
treatment may be necessary.

Performance statistics are available after any return from D02PGF (except when IFAIL ¼ 1) by a call to
D02PTF. If METHOD > 0 in the call to D02PQF, global error assessment is available after any return
from D02PGF (except when IFAIL ¼ 1) by a call to D02PUF.

After a failure with IFAIL ¼ 5 or 6 each of the diagnostic routines D02PTF and D02PUF may be called
only once.

If D02PGF returns with IFAIL ¼ 4 then it is advisable to change to another code more suited to the
solution of stiff problems. D02PGF will not return with IFAIL ¼ 4 if the problem is actually stiff but it
is estimated that integration can be completed using less function evaluations than already computed.

10 Example

This example solves the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2
y02 ¼ �y1

over the range 0; 2	½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0. We use relative error control with
threshold values of 1:0E�8 for each solution component and print the solution at regular intervals using
the interpolation routines D02PHF and D02PJF within integration steps across the range; points on the
range at which y1 or y2 change sign are also evaluated using a combination of the root finding routine
C05AZF and the interpolation routines. We use a medium order Runge–Kutta method (METHOD ¼ 2)
with tolerance TOL ¼ 1:0E�5.

10.1 Program Text

! D02PGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02pgfe_mod

! D02PGF Example Program Module:
! Parameters

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Accessibility Statements ..

Private
! .. Parameters ..

Real (Kind=nag_wp), Parameter, Public :: tol = 1.0E-5_nag_wp
Integer, Parameter, Public :: liwsav = 130, n = 2, nin = 5, &

nout = 6
Integer, Parameter, Public :: lrwsav = 350 + 32*n
Integer, Parameter, Public :: lwcomm = 6*n

End Module d02pgfe_mod

Program d02pgfe

! D02PGF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c05azf, d02pgf, d02phf, d02pjf, d02pqf, d02ptf, &

nag_wp
Use d02pgfe_mod, Only: liwsav, lrwsav, lwcomm, n, nin, nout, tol

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: hnext, hstart, t, t1, t2, tend, &

tnow, tout, tprev, waste
Integer :: i, icheck, ifail, ind, irevcm, j, &

method, nchange, stpcst, stpsok, &
totf

! .. Local Arrays ..
Real (Kind=nag_wp) :: c(17)
Real (Kind=nag_wp), Allocatable :: rwsav(:), thres(:), troot(:), &

wcomm(:), y(:), ynow(:), yout(:), &
yp(:), ypnow(:), yprev(:)

Integer, Allocatable :: iroot(:), iwsav(:)
! .. Executable Statements ..

Write (nout,*) ’D02PGF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) method
Allocate (thres(n),iwsav(liwsav),rwsav(lrwsav),ynow(n),ypnow(n), &

yprev(n),wcomm(lwcomm),yout(n),iroot(n),y(n),yp(n),troot(n))

! Set initial conditions and input for D02PQF

Read (nin,*) t, tend
Read (nin,*) ynow(1:n)
Read (nin,*) hstart
Read (nin,*) thres(1:n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02pqf(n,t,tend,ynow,tol,thres,method,hstart,iwsav,rwsav,ifail)

Write (nout,99999) tol
Write (nout,99998)
Write (nout,99997) t, ynow(1:n)

tout = 0.1_nag_wp
tnow = t
Do While (tnow<tend)

! Integrate by one time step using reverse communication
tprev = tnow
yprev(1:n) = ynow(1:n)
ifail = 1
irevcm = 0
Do While (irevcm>=0)

Call d02pgf(irevcm,n,tnow,ynow,ypnow,iwsav,rwsav,ifail)
If (irevcm>0) Then

ypnow(1) = ynow(2)
ypnow(2) = -ynow(1)

End If
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End Do
If (ifail==1 .Or. ifail>4) Then

Write (6,99996) ifail, tnow
Go To 100

End If

! Detect sign changes in last step
iroot(1:n) = 0
nchange = 0
Do i = 1, n

If (ynow(i)*yprev(i)<0.0_nag_wp) Then
nchange = nchange + 1
iroot(nchange) = i

End If
End Do

! Interpolate for values of t at increments of 0.1 within step and
! find roots of components of y.

If (tnow>=tout .Or. nchange>0) Then
! Set up interpolation by reverse communication

ifail = 0
irevcm = 0
Do While (irevcm>=0)

ifail = 0
Call d02phf(irevcm,n,n,t,y,yp,wcomm,lwcomm,iwsav,rwsav,ifail)
If (irevcm>0) Then

yp(1) = y(2)
yp(2) = -y(1)

End If
End Do

icheck = 1
! If there are sign changes: find roots

Do i = 1, nchange
j = iroot(i)
t1 = tprev
t2 = tnow
ind = 1
ifail = 0
Do While (ind/=0)

Call c05azf(t1,t2,y(j),tol,1,c,ind,ifail)
If (ind>1) Then

ifail = 0
Call d02pjf(icheck,n,n,t1,0,y,wcomm,lwcomm,iwsav,rwsav,ifail)
icheck = 0

End If
End Do
troot(i) = t1

End Do
! Evaluate Interpolant at increments and print any contained roots

ifail = 0
Do While (tnow>=tout)

Do i = 1, nchange
If (troot(i)<tout .And. iroot(i)>0) Then

Write (nout,99995) iroot(i), troot(i)
iroot(i) = -iroot(i)

End If
End Do
Call d02pjf(icheck,n,n,tout,0,yout,wcomm,lwcomm,iwsav,rwsav,ifail)
icheck = 0
Write (nout,99997) tout, yout(1:n)
tout = tout + 0.1_nag_wp

End Do
! Print any remaining roots up to current time

Do i = 1, nchange
If (iroot(i)>0) Then

Write (nout,99995) iroot(i), troot(i)
End If

End Do
End If

End Do
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! Print some integration statistics
ifail = 0
Call d02ptf(totf,stpcst,waste,stpsok,hnext,iwsav,rwsav,ifail)
Write (nout,99994) totf

100 Continue

99999 Format (/,’ Calculation with TOL = ’,E8.1)
99998 Format (/,’ t y1 y2’,/)
99997 Format (1X,F6.3,2(3X,F8.4))
99996 Format (/,’D02PGF returned with ifail = ’,I3,’ at t = ’,E12.5,’.’)
99995 Format (’Component ’,I2,’ has a root at t = ’,F7.4)
99994 Format (/,’ Cost of the integration in evaluations of F is’,I6)

End Program d02pgfe

10.2 Program Data

D02PGF Example Program Data
2 : method
0.0 6.28318530717958647692 : tstart, tend
0.0 1.0 : ystart(1:n)
0.0 : hstart
1.0E-8 1.0E-8 : thres(1:n)

10.3 Program Results

D02PGF Example Program Results

Calculation with TOL = 0.1E-04

t y1 y2

0.000 0.0000 1.0000
0.100 0.0998 0.9950
0.200 0.1987 0.9801
0.300 0.2955 0.9553
0.400 0.3894 0.9211
0.500 0.4794 0.8776
0.600 0.5646 0.8253
0.700 0.6442 0.7648
0.800 0.7174 0.6967
0.900 0.7833 0.6216
1.000 0.8415 0.5403
1.100 0.8912 0.4536
1.200 0.9320 0.3624
1.300 0.9636 0.2675
1.400 0.9854 0.1700
1.500 0.9975 0.0707

Component 2 has a root at t = 1.5708
1.600 0.9996 -0.0292
1.700 0.9917 -0.1288
1.800 0.9738 -0.2272
1.900 0.9463 -0.3233
2.000 0.9093 -0.4161
2.100 0.8632 -0.5048
2.200 0.8085 -0.5885
2.300 0.7457 -0.6663
2.400 0.6755 -0.7374
2.500 0.5985 -0.8011
2.600 0.5155 -0.8569
2.700 0.4274 -0.9041
2.800 0.3350 -0.9422
2.900 0.2392 -0.9710
3.000 0.1411 -0.9900
3.100 0.0416 -0.9991

Component 1 has a root at t = 3.1416
3.200 -0.0584 -0.9983
3.300 -0.1577 -0.9875
3.400 -0.2555 -0.9668
3.500 -0.3508 -0.9365
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3.600 -0.4425 -0.8968
3.700 -0.5298 -0.8481
3.800 -0.6119 -0.7910
3.900 -0.6878 -0.7259
4.000 -0.7568 -0.6536
4.100 -0.8183 -0.5748
4.200 -0.8716 -0.4903
4.300 -0.9162 -0.4008
4.400 -0.9516 -0.3073
4.500 -0.9775 -0.2108
4.600 -0.9937 -0.1122
4.700 -0.9999 -0.0124

Component 2 has a root at t = 4.7124
4.800 -0.9962 0.0875
4.900 -0.9825 0.1865
5.000 -0.9589 0.2837
5.100 -0.9258 0.3780
5.200 -0.8835 0.4685
5.300 -0.8323 0.5544
5.400 -0.7728 0.6347
5.500 -0.7055 0.7087
5.600 -0.6313 0.7756
5.700 -0.5507 0.8347
5.800 -0.4646 0.8855
5.900 -0.3739 0.9275
6.000 -0.2794 0.9602
6.100 -0.1822 0.9833
6.200 -0.0831 0.9965

Component 1 has a root at t = 6.2832

Cost of the integration in evaluations of F is 356
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NAG Library Routine Document

D02PHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PHF is a reverse communication routine that computes the interpolant for evaluation by D02PJF
anywhere on an integration step taken by D02PGF. The direct communication version of the D02PHF
and D02PJF pair is D02PSF. A significant difference in functionality between the forward and reverse
communication versions is that D02PHF and D02PJF can interpolate for the high-order Runge–Kutta
method.

2 Specification

SUBROUTINE D02PHF (IREVCM, N, NWANT, T, Y, YP, WCOMM, LWCOMM, IWSAV,
RWSAV, IFAIL)

&

INTEGER IREVCM, N, NWANT, LWCOMM, IWSAV(130), IFAIL
REAL (KIND=nag_wp) T, Y(N), YP(N), WCOMM(LWCOMM), RWSAV(32*N+350)

3 Description

D02PHF and its associated routines (D02PGF, D02PJF, D02PQF, D02PRF, D02PTF and D02PUF)
solve the initial value problem for a first-order system of ordinary differential equations. The routines,
based on Runge–Kutta methods and derived from RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0
where y is the vector of n solution components and t is the independent variable.

D02PGF computes the solution at the end of an integration step. Using the information computed on
that step D02PHF computes the interpolant which can be evaluated at any point on that step by D02PJF.
If METHOD ¼ 1 or �1 then there is enough information available from the stages of the last step to
provide an interpolant of sufficient order of accuracy; no further derivative evaluations will therefore be
requested. If METHOD ¼ 2 or �2 then the interpolant is an order 8 continuous Runge–Kutta process
that requires a further 3 stages of derivative evaluations that will be requested in turn before a final exit.
If METHOD ¼ 3 or �3 was specified in the call to setup routine D02PQF then the interpolant is a
continuous Runge–Kutta process requiring a further 7 stages of derivative evaluations that will be
requested in turn.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than those specified by the value of IREVCM must remain
unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: IREVCM must be set to zero to indicate that the interpolant for a new step is
being taken.
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On intermediate re-entry: IREVCM should remain unchanged.

On intermediate exit: IREVCM returns a value 1 to indicate that a function evaluation is required
prior to re-entry; the value of the derivatives must be returned in YP where the value of t is
supplied in T and the values y tð Þ are supplied in the array Y.

On final exit:

IREVCM ¼ �1
Successful exit; RWSAV and WCOMM contain details of the interpolant.

IREVCM ¼ �2
Error exit; IFAIL should be interrogated to determine the nature of the error.

2: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved by the
integration routine.

Constraint: N � 1. This must be the same value as supplied in a previous call to D02PQF.

3: NWANT – INTEGER Input

On entry: the number of components of the solution to be computed. The first NWANT
components are evaluated.

Constraint: 1 � NWANT � N.

4: T – REAL (KIND=nag_wp) Output

On intermediate exit: T contains the value of the independent variable t at which the derivatives
y0 are to be evaluated.

On final exit: contains no useful information.

5: YðNÞ – REAL (KIND=nag_wp) array Output

On intermediate exit: Y contains the value of the solution y at which the derivatives y0 are to be
evaluated.

On final exit: contains no useful information.

6: YPðNÞ – REAL (KIND=nag_wp) array Input

On initial entry: need not be set.

On intermediate re-entry: YP must contain the values of the derivatives y0i for the given values of
the arguments t, yi.

7: WCOMMðLWCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: WCOMM need not be set.

On intermediate re-entry: WCOMM contains the partial computation of the polynomial
coefficients corresponding to a continuous Runge–Kutta process for interpolating medium and
high order Runge–Kutta methods.

On final exit: if METHOD ¼ 2, �2, 3 or �3, WCOMM contains details of the interpolant which
must be passed unchanged to D02PJF for evaluation of the interpolant.

8: LWCOMM – INTEGER Input

On entry: length of WCOMM.

If in a previous call to D02PQF:
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METHOD ¼ 1 or �1, LWCOMM must be at least 1.

METHOD ¼ 2 or �2, LWCOMM must be at least Nþmax N; 5� NWANTð Þ.
METHOD ¼ 3 or �3, LWCOMM must be at least 8� NWANT.

9: IWSAVð130Þ – INTEGER array Communication Array
10: RWSAVð32� Nþ 350Þ – REAL (KIND=nag_wp) array Communication Array

On entry: these must be the same arrays supplied in a previous call D02PGF. They must remain
unchanged between calls.

On exit: information about the integration for use on subsequent calls to D02PGF, D02PJF or
other associated routines.

11: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, a previous call to the setup routine has not been made or the communication arrays
have become corrupted, or a catastrophic error has already been detected elsewhere.
You cannot continue integrating the problem.

On entry, LWCOMM ¼ valueh i, N ¼ valueh i and NWANT ¼ valueh i.
Constraint: for METHOD ¼ �2 or 2, LWCOMM � Nþmax N; 5� NWANTð Þ.
On entry, LWCOMM ¼ valueh i.
Constraint: for METHOD ¼ �1 or 1, LWCOMM � 1.

On entry, LWCOMM ¼ valueh i and NWANT ¼ valueh i.
Constraint: for METHOD ¼ �3 or 3, LWCOMM � 8� NWANT.

On entry, N ¼ valueh i, but the value passed to the setup routine was N ¼ valueh i.
On entry, NWANT ¼ valueh i and N ¼ valueh i.
Constraint: 1 � NWANT � N.

You cannot call this routine after the integrator has returned an error.

You cannot call this routine after the range integrator has been called.

You cannot call this routine before you have called the step integrator.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

D02 – Ordinary Differential D02PHF

Mark 26 D02PHF.3



IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed values will be of a similar accuracy to that computed by D02PGF.

8 Parallelism and Performance

D02PHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

See Section 10 in D02PGF.
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NAG Library Routine Document

D02PJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PJF evaluates the interpolant calculated by D02PHF, following an integration step performed by
D02PGF to solve an initial value problem.

2 Specification

SUBROUTINE D02PJF (ICHECK, N, NWANT, T, IDERIV, SOL, WCOMM, LWCOMM,
IWSAV, RWSAV, IFAIL)

&

INTEGER ICHECK, N, NWANT, IDERIV, LWCOMM, IWSAV(130), IFAIL
REAL (KIND=nag_wp) T, SOL(NWANT), WCOMM(LWCOMM), RWSAV(32*N+350)

3 Description

When integrating using the reverse communication Runge–Kutta integrator D02PGF, the solution or its
derivatives can be obtained inexpensively between steps by interpolation. D02PHF is called after a step
by D02PGF from a previous value of t (¼ tk�1) to its current value, t ¼ tk (i.e., a kth successful time-
step has been taken). D02PJF can then be called to evaluate interpolated approximations of the function
or its derivatives at any value of t in the interval tk�1; tkð Þ.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

1: ICHECK – INTEGER Input

On entry: indicates whether consistency checks on input arguments should be performed

ICHECK 6¼ 1
Don't perform checks on input arguments.

ICHECK ¼ 1
Perform consistency checks on input arguments.

It is recommended to use ICHECK ¼ 1 on the first call following a call to D02PHF and to set
ICHECK 6¼ 1 on subsequent calls within the last step to avoid the overhead of argument
checking.

2: N – INTEGER Input

On entry: n, the dimension of the system of ODEs being integrated.

Constraint: this must be the same value as supplied in a previous call to D02PQF.

3: NWANT – INTEGER Input

On entry: only the first NWANT system components to be computed. This should be the same
value as passed to D02PHF when computing the interpolant.

Constraint: NWANT ¼ NWANT passed to D02PHF.
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4: T – REAL (KIND=nag_wp) Input

On entry: t, the value of the independent variable where a solution is desired. Although any value
of t can be supplied, accurate solutions can only be obtained for values in the range of the last
time-step taken by D02PGF.

5: IDERIV – INTEGER Input

On entry:

IDERIV ¼ 0
Compute approximations to the first NWANT components of the solution y tð Þ.

IDERIV ¼ 1
Compute approximations to the first NWANT components of the first derivatives of the
solution y0 tð Þ.

Constraint: IDERIV ¼ 0 or 1.

6: SOLðNWANTÞ – REAL (KIND=nag_wp) array Output

On exit:

IDERIV ¼ 0
The first NWANT components of the solution y tð Þ.

IDERIV ¼ 1
The first NWANT components of the first derivatives of the solution y0 tð Þ.

7: WCOMMðLWCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: this must be the same array supplied in a previous call to D02PHF. It must remain
unchanged between calls.

8: LWCOMM – INTEGER Input

On entry: length of WCOMM. This should be the same value as supplied in a previous call to
D02PHF.

If in a previous call to D02PQF:

METHOD ¼ 1 or �1, LWCOMM must be at least 1.

METHOD ¼ 2 or �2, LWCOMM must be at least Nþmax N; 5� NWANTð Þ.
METHOD ¼ 3 or �3, LWCOMM � 8� NWANT.

9: IWSAVð130Þ – INTEGER array Communication Array
10: RWSAVð32� Nþ 350Þ – REAL (KIND=nag_wp) array Communication Array

On entry: these must be the same arrays supplied in a previous call D02PGF. They must remain
unchanged between calls.

On exit: information about the integration for use on subsequent calls to D02PGF, D02PHF or
other associated routines.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, a previous call to the setup routine has not been made or the communication arrays
have become corrupted, or a catastrophic error has already been detected elsewhere.
You cannot continue integrating the problem.

On entry, IDERIV ¼ valueh i.
Constraint: IDERIV ¼ 0 or 1.

On entry, LWCOMM ¼ valueh i, N ¼ valueh i and NWANT ¼ valueh i.
Constraint: for METHOD ¼ �2 or 2, LWCOMM � Nþmax N; 5� NWANTð Þ.
On entry, LWCOMM ¼ valueh i.
Constraint: for METHOD ¼ �1 or 1, LWCOMM � 1.

On entry, LWCOMM ¼ valueh i and NWANT ¼ valueh i.
Constraint: for METHOD ¼ �3 or 3, LWCOMM � 8� NWANT.

On entry, N ¼ valueh i, but the value passed to the setup routine was N ¼ valueh i.
On entry, NWANT ¼ valueh i, but on interpolation setup NWANT ¼ valueh i.
Constraint: NWANT must be unchanged from setup.

The previous call to the interpolation setup routine returned an error.

You cannot call this routine before you have called the interpolation setup.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed values will be of a similar accuracy to that computed by D02PGF.

8 Parallelism and Performance

D02PJF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

See Section 10 in D02PGF.
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NAG Library Routine Document

D02PQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PQF is a setup routine which must be called prior to the first call of either of the integration
routines D02PEF, D02PFF and D02PGF.

2 Specification

SUBROUTINE D02PQF (N, TSTART, TEND, YINIT, TOL, THRESH, METHOD, HSTART,
IWSAV, RWSAV, IFAIL)

&

INTEGER N, METHOD, IWSAV(130), IFAIL
REAL (KIND=nag_wp) TSTART, TEND, YINIT(N), TOL, THRESH(N), HSTART,

RWSAV(32*N+350)
&

3 Description

D02PQF and its associated routines (D02PEF, D02PFF, D02PGF, D02PHF, D02PJF, D02PRF, D02PSF,
D02PTF and D02PUF) solve the initial value problem for a first-order system of ordinary differential
equations. The routines, based on Runge–Kutta methods and derived from RKSUITE (see Brankin et
al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0
where y is the vector of n solution components and t is the independent variable.

The integration proceeds by steps from the initial point t0 towards the final point tf . An approximate
solution y is computed at each step. For each component yi, for i ¼ 1; 2; . . . ; n, the error made in the
step, i.e., the local error, is estimated. The step size is chosen automatically so that the integration will
proceed efficiently while keeping this local error estimate smaller than a tolerance that you specify by
means of arguments TOL and THRESH.

D02PEF can be used to solve the ‘usual task’, namely integrating the system of differential equations to
obtain answers at points you specify. D02PFF is used for more ‘complicated’ tasks where f t; yð Þ can
readily be coded within a routine argument and high-order interpolation is not required. D02PGF is
used for the most ‘complicated’ tasks where f t; yð Þ is best evaluated outside the integrator or where
high-order interpolation is required.

You should consider carefully how you want the local error to be controlled. Essentially the code uses
relative local error control, with TOL being the desired relative accuracy. For reliable computation, the
code must work with approximate solutions that have some correct digits, so there is an upper bound on
the value used for TOL. It is impossible to compute a numerical solution that is more accurate than the
correctly rounded value of the true solution, so you are not allowed to specify TOL too small for the
precision you are using. The magnitude of the local error in yi on any step will not be greater than
TOL�max �i;THRESHðiÞð Þ where �i is an average magnitude of yi over the step. If THRESHðiÞ is
smaller than the current value of �i, this is a relative error test and TOL indicates how many significant
digits you want in yi. If THRESHðiÞ is larger than the current value of �i, this is an absolute error test
with tolerance TOL� THRESHðiÞ. Relative error control is the recommended mode of operation, but
pure relative error control, THRESHðiÞ ¼ 0:0, is not permitted. See Section 9 for further information
about error control.

D02PEF, D02PFF and D02PGF control local error rather than the true (global) error, the difference
between the numerical and true solution. Control of the local error controls the true error indirectly.
Roughly speaking, the code produces a solution that satisfies the differential equation with a
discrepancy bounded in magnitude by the error tolerance. What this implies about how close the
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numerical solution is to the true solution depends on the stability of the problem. Most practical
problems are at least moderately stable, and the true error is then comparable to the error tolerance. To
judge the accuracy of the numerical solution, you could reduce TOL substantially, e.g., use 0:1� TOL,
and solve the problem again. This will usually result in a rather more accurate solution, and the true
error of the first integration can be estimated by comparison. Alternatively, a global error assessment
can be computed automatically using the argument METHOD. Because indirect control of the true error
by controlling the local error is generally satisfactory and because both ways of assessing true errors
cost twice, or more, the cost of the integration itself, such assessments are used mostly for spot checks,
selecting appropriate tolerances for local error control, and exploratory computations.

D02PEF, D02PFF and D02PGF each implement three Runge–Kutta formula pairs, and you must select
one for the integration. The best choice for METHOD depends on the problem. The order of accuracy is
3, 5 and 8 respectively. As a rule, the smaller TOL is, the larger you should take the order of the
METHOD. If the components THRESH are small enough that you are effectively specifying relative
error control, experience suggests

TOL efficient METHOD

10�2 � 10�4 order 2 and 3 pair

10�3 � 10�6 order 4 and 5 pair

10�5 � order 7 and 8 pair

The overlap in the ranges of tolerances appropriate for a given METHOD merely reflects the
dependence of efficiency on the problem being solved. Making TOL smaller will normally make the
integration more expensive. However, in the range of tolerances appropriate to a METHOD, the
increase in cost is modest. There are situations for which one METHOD, or even this kind of code, is a
poor choice. You should not specify a very small value for THRESHðiÞ, when the ith solution
component might vanish. In particular, you should not do this when yi ¼ 0:0. If you do, the code will
have to work hard with any value for METHOD to compute significant digits, but the lowest order
method is a particularly poor choice in this situation. All three methods are inefficient when the
problem is ‘stiff’. If it is only mildly stiff, you can solve it with acceptable efficiency with the order 2
and 3 pair, but if it is moderately or very stiff, a code designed specifically for such problems will be
much more efficient. The higher the order the more smoothness is required of the solution in order for
the method to be efficient.

When assessment of the true (global) error is requested, this error assessment is updated at each step.
Its value can be obtained at any time by a call to D02PUF. The code monitors the computation of the
global error assessment and reports any doubts it has about the reliability of the results. The assessment
scheme requires some smoothness of f t; yð Þ, and it can be deceived if f is insufficiently smooth. At
very crude tolerances the numerical solution can become so inaccurate that it is impossible to continue
assessing the accuracy reliably. At very stringent tolerances the effects of finite precision arithmetic can
make it impossible to assess the accuracy reliably. The cost of this is roughly twice the cost of the
integration itself with the 5th and 8th order methods, and three times with the 3rd order method.

The first step of the integration is critical because it sets the scale of the problem. The integrator will
find a starting step size automatically if you set the argument HSTART to 0:0. Automatic selection of
the first step is so effective that you should normally use it. Nevertheless, you might want to specify a
trial value for the first step to be certain that the code recognizes the scale on which phenomena occur
near the initial point. Also, automatic computation of the first step size involves some cost, so supplying
a good value for this step size will result in a less expensive start. If you are confident that you have a
good value, provide it via the argument HSTART.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved by the
integration routine.

Constraint: N � 1.

2: TSTART – REAL (KIND=nag_wp) Input

On entry: the initial value of the independent variable, t0.

3: TEND – REAL (KIND=nag_wp) Input

On entry: the final value of the independent variable, tf , at which the solution is required.
TSTART and TEND together determine the direction of integration.

Constraint: TEND must be distinguishable from TSTART for the method and the precision of the
machine being used.

4: YINITðNÞ – REAL (KIND=nag_wp) array Input

On entry: y0, the initial values of the solution, yi, for i ¼ 1; 2; . . . ; n.

5: TOL – REAL (KIND=nag_wp) Input

O n e n t r y : a r e l a t i v e e r r o r t o l e r a n c e . T h e a c t u a l t o l e r a n c e u s e d i s
max 10�machine precision;min TOL; 0:01ð Þð Þ; that is, the minimum tolerance is set at 10 times
machine precision and the maximum tolerance is set at 0:01.

6: THRESHðNÞ – REAL (KIND=nag_wp) array Input

On entry: a vector of thresholds. For the ith component, the actual threshold used is
max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
saferange
p

;THRESHðiÞ
� �

, where saferange is the value returned by X02AMF.

7: METHOD – INTEGER Input

On entry: the Runge–Kutta method to be used.

METHOD ¼ 1 or �1
A 2 3ð Þ pair is used.

METHOD ¼ 2 or �2
A 4 5ð Þ pair is used.

METHOD ¼ 3 or �3
A 7 8ð Þ pair is used.

Constraint: METHOD ¼ 1, �1, 2, �2, 3 or �3. Note: if METHOD > 0 then global error
assessment is to be computed with the main integration; if METHOD < 0 then global error
assessment will not be computed.

8: HSTART – REAL (KIND=nag_wp) Input

On entry: a value for the size of the first step in the integration to be attempted. The absolute
value of HSTART is used with the direction being determined by TSTART and TEND. The actual
first step taken by the integrator may be different to HSTART if the underlying algorithm
determines that HSTART is unsuitable. If HSTART ¼ 0:0 then the size of the first step is
computed automatically.

Suggested value: HSTART ¼ 0:0.
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9: IWSAVð130Þ – INTEGER array Communication Array

10: RWSAVð32� Nþ 350Þ – REAL (KIND=nag_wp) array Communication Array

On exit: the contents of the communication arrays must not be changed prior to calling one of the
integration routines.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD ¼ valueh i.
Constraint: METHOD ¼ �3, �2, �1, 1, 2 or 3.

On entry, N ¼ valueh i.
Constraint: N � 1.

On entry, too much workspace required.
Workspace provided was valueh i, workspace required is valueh i.
On entry, TSTART ¼ valueh i.
Constraint: TSTART 6¼ TEND.

On entry, TSTART is too close to TEND.
TSTART� TENDj j ¼ valueh i, but this quantity should be at least valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

D02PQF NAG Library Manual

D02PQF.4 Mark 26



8 Parallelism and Performance

D02PQF is not threaded in any implementation.

9 Further Comments

If D02PFF and D02PGF is to be used for the integration then the value of the argument TEND may be
reset during the integration without the overhead associated with a complete restart; this can be
achieved by a call to D02PRF.

It is often the case that a solution component (the ith, say) is of no interest when it is smaller in
magnitude than a certain threshold. You can inform the code of this by setting the ith component of
THRESH to this threshold. In this way you avoid the cost of computing significant digits in the ith
component of y when it is smaller than the threshold of interest. This matter is important when a
component of y vanishes, and in particular, when the initial value is zero. An appropriate threshold
depends on the general size of y in the course of the integration. Physical reasoning may help you select
suitable threshold values. If you do not know what to expect of y, you can find out by a preliminary
integration using D02PEF with nominal values of THRESH. As D02PEF integrates by steps in time, it
stores, for each component, the largest magnitude of solution computed so far; these values are output
in the array YMAX. This can help determine more appropriate values for THRESH for an accurate
integration. For example, the values in THRESH could be set to 10�machine precision times the final
value of YMAX.

10 Example

See Section 10 in D02PEF, D02PFF, D02PRF, D02PSF and D02PUF.
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NAG Library Routine Document

D02PRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PRF resets the end point in an integration performed by D02PFF and D02PGF.

2 Specification

SUBROUTINE D02PRF (TENDNU, IWSAV, RWSAV, IFAIL)

INTEGER IWSAV(130), IFAIL
REAL (KIND=nag_wp) TENDNU, RWSAV(350)

3 Description

D02PRF and its associated routines (D02PFF, D02PGF, D02PHF, D02PJF, D02PQF, D02PSF, D02PTF
and D02PUF) solve the initial value problem for a first-order system of ordinary differential equations.
The routines, based on Runge–Kutta methods and derived from RKSUITE (see Brankin et al. (1991)),
integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0
where y is the vector of n solution components and t is the independent variable.

D02PRF is used to reset the final value of the independent variable, tf , when the integration is already
underway. It can be used to extend or reduce the range of integration. The new value must be beyond
the current value of the independent variable (as returned in TNOW by D02PFF or D02PGF) in the
current direction of integration. It is much more efficient to use D02PRF for this purpose than to use
D02PQF which involves the overhead of a complete restart of the integration.

If you want to change the direction of integration then you must restart by a call to D02PQF.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

1: TENDNU – REAL (KIND=nag_wp) Input

On entry: the new value for tf.

Constraint: sign TENDNU� TNOWð Þ ¼ sign TEND� TSTARTð Þ, where TSTART and TEND
are as supplied in the previous call to D02PQF and TNOW is returned by the preceding call to
D02PFF or D02PGF (i.e., integration must proceed in the same direction as before). TENDNU
must be distinguishable from TNOW for the method and the machine precision being used.

2: IWSAVð130Þ – INTEGER array Communication Array
3: RWSAVð350Þ – REAL (KIND=nag_wp) array Communication Array

Note: the communication array RWSAV used by the other routines in the suite must be used here
however, only the first 350 elements will be referenced.

On entry: these must be the same arrays supplied in a previous call to D02PFF or D02PGF. They
must remain unchanged between calls.
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On exit: information about the integration for use on subsequent calls to D02PFF or D02PGF or
other associated routines.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, a previous call to the setup routine has not been made or the communication arrays
have become corrupted, or a catastrophic error has already been detected elsewhere. You cannot
continue integrating the problem.

On entry, TENDNU is not beyond TNOW (step integrator) in the direction of integration.
The direction is negative, TENDNU ¼ valueh i and TNOW ¼ valueh i.
On entry, TENDNU is not beyond TNOW (step integrator) in the direction of integration.
The direction is positive, TENDNU ¼ valueh i and TNOW ¼ valueh i.
On entry, TENDNU is too close to TNOW (step integrator). Their difference is valueh i, but this
quantity must be at least valueh i.
You cannot call this routine after the integrator has returned an error.

You cannot call this routine before you have called the setup routine.

You cannot call this routine before you have called the step integrator.

You cannot call this routine when the range integrator has been used.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

D02PRF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example integrates a two body problem. The equations for the coordinates x tð Þ; y tð Þð Þ of one body
as functions of time t in a suitable frame of reference are

x00 ¼ �x
r3

y00 ¼ � y
r3
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
:

The initial conditions

x 0ð Þ ¼ 1� �; x0 0ð Þ ¼ 0

y 0ð Þ ¼ 0; y0 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ �
1� �

r
lead to elliptic motion with 0 < � < 1. � ¼ 0:7 is selected and the system of ODEs is reposed as

y01 ¼ y3

y02 ¼ y4

y03 ¼ �
y1
r3

y04 ¼ �
y2
r3

over the range 0; 6	½ �. Relative error control is used with threshold values of 1:0E�10 for each solution
component and compute the solution at intervals of length 	 across the range using D02PRF to reset the
end of the integration range. A high-order Runge–Kutta method (METHOD ¼ �3) is also used with
tolerances TOL ¼ 1:0E�4 and TOL ¼ 1:0E�5 in turn so that the solutions may be compared.

10.1 Program Text

! D02PRF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02prfe_mod

! D02PRF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: tol0 = 1.0E-4_nag_wp
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Integer, Parameter, Public :: n = 4, nin = 5, nout = 6, npts = 6
Integer, Parameter, Public :: lrwsav = 350 + 32*n

Contains
Subroutine f(t,n,y,yp,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(n)
Real (Kind=nag_wp), Intent (Out) :: yp(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: r

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
r = sqrt(y(1)**2+y(2)**2)
yp(1) = y(3)
yp(2) = y(4)
yp(3) = -y(1)/r**3
yp(4) = -y(2)/r**3
Return

End Subroutine f
End Module d02prfe_mod

Program d02prfe

! D02PRF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02pff, d02pqf, d02prf, d02ptf, nag_wp
Use d02prfe_mod, Only: f, lrwsav, n, nin, nout, npts, tol0

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: hnext, hstart, tendnu, tfinal, tinc, &

tnow, tol, tstart, waste
Integer :: fevals, i, ifail, method, stepcost, &

stepsok
! .. Local Arrays ..

Real (Kind=nag_wp) :: ruser(1)
Real (Kind=nag_wp), Allocatable :: rwsav(:), thresh(:), yinit(:), &

ynow(:), ypnow(:)
Integer :: iuser(1)
Integer, Allocatable :: iwsav(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02PRF Example Program Results’

! Skip heading in data file
Read (nin,*)

! n: number of differential equations
Allocate (thresh(n),iwsav(130),rwsav(lrwsav),ynow(n),ypnow(n),yinit(n))

! Set initial conditions and input for D02PQF

Read (nin,*) method
Read (nin,*) tstart, tfinal
Read (nin,*) yinit(1:n)
Read (nin,*) hstart
Read (nin,*) thresh(1:n)

! Set output control

tinc = (tfinal-tstart)/real(npts,kind=nag_wp)

tol = 10.0_nag_wp*tol0
Do i = 1, 2

tol = tol*0.1_nag_wp
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tendnu = tstart + tinc

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02pqf(n,tstart,tendnu,yinit,tol,thresh,method,hstart,iwsav, &

rwsav,ifail)

Write (nout,99999) tol
Write (nout,99998)
Write (nout,99997) tstart, yinit(1:n)

tstep: Do
ifail = 0
Call d02pff(f,n,tnow,ynow,ypnow,iuser,ruser,iwsav,rwsav,ifail)

If (tnow==tendnu) Then
Write (nout,99997) tnow, ynow(1:n)

If (tnow>=tfinal) Then
Exit tstep

End If
tendnu = tendnu + tinc
Call d02prf(tendnu,iwsav,rwsav,ifail)

End If

End Do tstep

ifail = 0
Call d02ptf(fevals,stepcost,waste,stepsok,hnext,iwsav,rwsav,ifail)
Write (nout,99996) fevals

End Do

99999 Format (/,’ Calculation with TOL = ’,1P,E8.1)
99998 Format (/,’ t y1 y2 y3 y4’,/)
99997 Format (1X,F6.3,4(3X,F8.4))
99996 Format (/,’ Cost of the integration in evaluations of F is’,I6)

End Program d02prfe

10.2 Program Data

D02PRF Example Program Data
-3 : method
0.0 18.8495559215387594307 : tstart, tfinal
0.3 0.0 0.0 2.38047614284761666599 : yinit
0.0 : hstart
1.0E-10 1.0E-10 1.0E-10 1.0E-10 : thresh

10.3 Program Results

D02PRF Example Program Results

Calculation with TOL = 1.0E-04

t y1 y2 y3 y4

0.000 0.3000 0.0000 0.0000 2.3805
3.142 -1.7000 0.0000 -0.0000 -0.4201
6.283 0.3000 -0.0000 0.0001 2.3805
9.425 -1.7000 0.0000 -0.0000 -0.4201

12.566 0.3000 -0.0003 0.0016 2.3805
15.708 -1.7001 0.0001 -0.0001 -0.4201
18.850 0.3000 -0.0010 0.0045 2.3805

Cost of the integration in evaluations of F is 571

Calculation with TOL = 1.0E-05
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t y1 y2 y3 y4

0.000 0.3000 0.0000 0.0000 2.3805
3.142 -1.7000 -0.0000 0.0000 -0.4201
6.283 0.3000 0.0000 -0.0000 2.3805
9.425 -1.7000 0.0000 -0.0000 -0.4201

12.566 0.3000 -0.0001 0.0004 2.3805
15.708 -1.7000 0.0000 -0.0000 -0.4201
18.850 0.3000 -0.0003 0.0012 2.3805

Cost of the integration in evaluations of F is 748
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NAG Library Routine Document

D02PSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PSF computes the solution of a system of ordinary differential equations using interpolation
anywhere on an integration step taken by D02PFF.

2 Specification

SUBROUTINE D02PSF (N, TWANT, IDERIV, NWANT, YWANT, YPWANT, F, WCOMM,
LWCOMM, IUSER, RUSER, IWSAV, RWSAV, IFAIL)

&

INTEGER N, IDERIV, NWANT, LWCOMM, IUSER(*), IWSAV(130),
IFAIL

&

REAL (KIND=nag_wp) TWANT, YWANT(NWANT), YPWANT(NWANT), WCOMM(LWCOMM),
RUSER(*), RWSAV(32*N+350)

&

EXTERNAL F

3 Description

D02PSF and its associated routines (D02PFF, D02PQF, D02PRF, D02PTF and D02PUF) solve the
initial value problem for a first-order system of ordinary differential equations. The routines, based on
Runge–Kutta methods and derived from RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0
where y is the vector of n solution components and t is the independent variable.

D02PFF computes the solution at the end of an integration step. Using the information computed on
that step D02PSF computes the solution by interpolation at any point on that step. It cannot be used if
METHOD ¼ 3 or �3 was specified in the call to setup routine D02PQF.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

1: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved by the
integration routine.

Constraint: N � 1.

2: TWANT – REAL (KIND=nag_wp) Input

On entry: t, the value of the independent variable where a solution is desired.

3: IDERIV – INTEGER Input

On entry: determines whether the solution and/or its first derivative are to be computed

IDERIV ¼ 0
compute approximate solution.
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IDERIV ¼ 1
compute approximate first derivative.

IDERIV ¼ 2
compute approximate solution and first derivative.

Constraint: IDERIV ¼ 0, 1 or 2.

4: NWANT – INTEGER Input

On entry: the number of components of the solution to be computed. The first NWANT
components are evaluated.

Constraint: 1 � NWANT � N.

5: YWANTðNWANTÞ – REAL (KIND=nag_wp) array Output

On exit: an approximation to the first NWANT components of the solution at TWANT if
IDERIV ¼ 0 or 2. Otherwise YWANT is not defined.

6: YPWANTðNWANTÞ – REAL (KIND=nag_wp) array Output

On exit: an approximation to the first NWANT components of the first derivative at TWANT if
IDERIV ¼ 1 or 2. Otherwise YPWANT is not defined.

7: F – SUBROUTINE, supplied by the user. External Procedure

F must evaluate the functions fi (that is the first derivatives y0i) for given values of the arguments
t; yi. It must be the same procedure as supplied to D02PFF.

The specification of F is:

SUBROUTINE F (T, N, Y, YP, IUSER, RUSER)

INTEGER N, IUSER(*)
REAL (KIND=nag_wp) T, Y(N), YP(N), RUSER(*)

1: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

2: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the current values of the dependent variables, yi, for i ¼ 1; 2; . . . ;n.

4: YPðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values of fi, for i ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to D02PSF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02PSF is called. Arguments denoted as Input must not be changed by this
procedure.

8: WCOMMðLWCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: this array stores information that can be utilized on subsequent calls to D02PSF.
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9: LWCOMM – INTEGER Input

On entry: length of WCOMM.

If in a previous call to D02PQF:

METHOD ¼ 1 or �1 then LWCOMM must be at least 1.

METHOD ¼ 2 or �2 then LWCOMM must be at least Nþmax N; 5� NWANTð Þ.
METHOD ¼ 3 or �3 then WCOMM and LWCOMM are not referenced.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D02PSF, but are passed directly to F and should be used to
pass information to this routine.

12: IWSAVð130Þ – INTEGER array Communication Array
13: RWSAVð32� Nþ 350Þ – REAL (KIND=nag_wp) array Communication Array

On entry: these must be the same arrays supplied in a previous call D02PFF. They must remain
unchanged between calls.

On exit: information about the integration for use on subsequent calls to D02PFF, D02PSF or
other associated routines.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

METHOD ¼ �3 or 3 in setup, but interpolation is not available for this method. Either use
METHOD ¼ �2 or 2 in setup or use reset routine to force the integrator to step to particular
points.

On entry, a previous call to the setup routine has not been made or the communication arrays
have become corrupted, or a catastrophic error has already been detected elsewhere.
You cannot continue integrating the problem.

On entry, IDERIV ¼ valueh i.
Constraint: IDERIV ¼ 0, 1 or 2.

On entry, LWCOMM ¼ valueh i, N ¼ valueh i and NWANT ¼ valueh i.
Constraint: for METHOD ¼ �2 or 2, LWCOMM � Nþmax N; 5� NWANTð Þ.
On entry, LWCOMM ¼ valueh i.
Constraint: for METHOD ¼ �1 or 1, LWCOMM � 1.
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On entry, N ¼ valueh i, but the value passed to the setup routine was N ¼ valueh i.
On entry, NWANT ¼ valueh i and N ¼ valueh i.
Constraint: 1 � NWANT � N.

You cannot call this routine after the integrator has returned an error.

You cannot call this routine before you have called the step integrator.

You cannot call this routine when you have specified, in the setup routine, that the range
integrator will be used.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed values will be of a similar accuracy to that computed by D02PFF.

8 Parallelism and Performance

D02PSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example solves the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2
y02 ¼ �y1

over the range 0; 2	½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0. Relative error control is used with
threshold values of 1:0E�8 for each solution component. D02PFF is used to integrate the problem one
step at a time and D02PSF is used to compute the first component of the solution and its derivative at
intervals of length 	=8 across the range whenever these points lie in one of those integration steps. A
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low order Runge–Kutta method (METHOD ¼ �1) is also used with tolerances TOL ¼ 1:0E�4 and
TOL ¼ 1:0E�5 in turn so that solutions may be compared.

10.1 Program Text

! D02PSF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02psfe_mod

! D02PSF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: tol0 = 1.0E-3_nag_wp
Integer, Parameter, Public :: n = 2, nin = 5, nout = 6, npts = 16, &

nwant = 1
Integer, Parameter, Public :: lrwsav = 350 + 32*n

Contains
Subroutine f(t,n,y,yp,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(n)
Real (Kind=nag_wp), Intent (Out) :: yp(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
yp(1) = y(2)
yp(2) = -y(1)
Return

End Subroutine f
End Module d02psfe_mod

Program d02psfe

! D02PSF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02pff, d02pqf, d02psf, d02ptf, nag_wp
Use d02psfe_mod, Only: f, lrwsav, n, nin, nout, npts, nwant, tol0

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: hnext, hstart, tend, tinc, tnow, &

tol, tstart, twant, waste
Integer :: fevals, i, ideriv, ifail, lwcomm, &

method, stepcost, stepsok
! .. Local Arrays ..

Real (Kind=nag_wp) :: ruser(1), thresh(n), yinit(n), &
ynow(n), ypnow(n), ypwant(nwant), &
ywant(nwant)

Real (Kind=nag_wp), Allocatable :: rwsav(:), wcomm(:)
Integer :: iuser(1), iwsav(130)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02PSF Example Program Results’

! Skip heading in data file
Read (nin,*)
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lwcomm = n + 5*nwant
Allocate (rwsav(lrwsav),wcomm(lwcomm))

wcomm(1:lwcomm) = 0.0_nag_wp

! Set initial conditions and input for D02PQF

Read (nin,*) method
Read (nin,*) tstart, tend
Read (nin,*) yinit(1:n)
Read (nin,*) hstart
Read (nin,*) thresh(1:n)

! Set output control

tinc = (tend-tstart)/real(npts,kind=nag_wp)

tol = tol0*10.0_nag_wp
Do i = 1, 2

tol = tol*0.1_nag_wp

! Set up integration.
ifail = 0
Call d02pqf(n,tstart,tend,yinit,tol,thresh,method,hstart,iwsav,rwsav, &

ifail)

Write (nout,99999) tol
Write (nout,99998)
Write (nout,99997) tstart, yinit(1:n)

! Set up first point at which solution is desired.
twant = tstart + tinc
tnow = tstart

! Integrate by steps until tend is reached or error is encountered.

integ: Do While (tnow<tend)

! Integrate one step to tnow.
ifail = 0
Call d02pff(f,n,tnow,ynow,ypnow,iuser,ruser,iwsav,rwsav,ifail)

! Interpolate at required additional points up to tnow.
interp: Do While (twant<=tnow)

! Interpolate and print solution at t = twant.

ideriv = 2
ifail = 0
Call d02psf(n,twant,ideriv,nwant,ywant,ypwant,f,wcomm,lwcomm, &

iuser,ruser,iwsav,rwsav,ifail)
Write (nout,99997) twant, ywant(1), ypwant(1)

! Set next required solution point
twant = twant + tinc

End Do interp

End Do integ

! Get integration statistics.
ifail = 0
Call d02ptf(fevals,stepcost,waste,stepsok,hnext,iwsav,rwsav,ifail)

Write (nout,99996) fevals

End Do
99999 Format (/,’ Calculation with TOL = ’,1P,E8.1)
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99998 Format (/,’ t y1 y1’’’,/)
99997 Format (1X,F6.3,2(3X,F8.4))
99996 Format (/,’ Cost of the integration in evaluations of F is’,I6)

End Program d02psfe

10.2 Program Data

D02PSF Example Program Data
2 -1 : n, method
0.0 6.28318530717958647692 : tstart, tend
0.0 1.0 : yinit(1:n)
0.0 : hstart
1.0E-8 1.0E-8 : thresh(1:n)

10.3 Program Results

D02PSF Example Program Results

Calculation with TOL = 1.0E-03

t y1 y1’

0.000 0.0000 1.0000
0.393 0.3827 0.9239
0.785 0.7071 0.7071
1.178 0.9239 0.3826
1.571 1.0000 -0.0001
1.963 0.9238 -0.3828
2.356 0.7070 -0.7073
2.749 0.3825 -0.9240
3.142 -0.0002 -0.9999
3.534 -0.3829 -0.9238
3.927 -0.7072 -0.7069
4.320 -0.9239 -0.3823
4.712 -0.9999 0.0004
5.105 -0.9236 0.3830
5.498 -0.7068 0.7073
5.890 -0.3823 0.9239

Cost of the integration in evaluations of F is 152

Calculation with TOL = 1.0E-04

t y1 y1’

0.000 0.0000 1.0000
0.393 0.3827 0.9239
0.785 0.7071 0.7071
1.178 0.9239 0.3827
1.571 1.0000 -0.0000
1.963 0.9239 -0.3827
2.356 0.7071 -0.7071
2.749 0.3827 -0.9239
3.142 -0.0000 -1.0000
3.534 -0.3827 -0.9239
3.927 -0.7071 -0.7071
4.320 -0.9239 -0.3827
4.712 -1.0000 0.0000
5.105 -0.9238 0.3827
5.498 -0.7071 0.7071
5.890 -0.3826 0.9239

Cost of the integration in evaluations of F is 231
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NAG Library Routine Document

D02PTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PTF provides details about an integration performed by either D02PEF, D02PFF or D02PGF.

2 Specification

SUBROUTINE D02PTF (FEVALS, STEPCOST, WASTE, STEPSOK, HNEXT, IWSAV,
RWSAV, IFAIL)

&

INTEGER FEVALS, STEPCOST, STEPSOK, IWSAV(130), IFAIL
REAL (KIND=nag_wp) WASTE, HNEXT, RWSAV(350)

3 Description

D02PTF and its associated routines (D02PEF, D02PFF, D02PGF, D02PHF, D02PJF, D02PQF, D02PRF,
D02PSF and D02PUF) solve the initial value problem for a first-order system of ordinary differential
equations. The routines, based on Runge–Kutta methods and derived from RKSUITE (see Brankin et
al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0
where y is the vector of n solution components and t is the independent variable.

After a call to D02PEF, D02PFF or D02PGF, D02PTF can be called to obtain information about the
cost of the integration and the size of the next step.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

1: FEVALS – INTEGER Output

On exit: the total number of evaluations of f used in the integration so far; this includes
evaluations of f required for the secondary integration necessary if D02PQF had previously been
called with METHOD > 0.

2: STEPCOST – INTEGER Output

On exit: the cost in terms of number of evaluations of f of a typical step with the method being
used for the integration. The method is specified by the argument METHOD in a prior call to
D02PQF.

3: WASTE – REAL (KIND=nag_wp) Output

On exit: the number of attempted steps that failed to meet the local error requirement divided by
the total number of steps attempted so far in the integration. A ‘large’ fraction indicates that the
integrator is having trouble with the problem being solved. This can happen when the problem is
‘stiff’ and also when the solution has discontinuities in a low-order derivative.

D02 – Ordinary Differential D02PTF
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4: STEPSOK – INTEGER Output

On exit: the number of accepted steps.

5: HNEXT – REAL (KIND=nag_wp) Output

On exit: the step size the integrator will attempt to use for the next step.

6: IWSAVð130Þ – INTEGER array Communication Array
7: RWSAVð350Þ – REAL (KIND=nag_wp) array Communication Array

Note: the communication RWSAV used by the other routines in the suite must be used here
however, only the first 350 elements will be referenced.

On entry: these must be the same arrays supplied in a previous call to D02PEF, D02PFF or
D02PGF. They must remain unchanged between calls.

On exit: information about the integration for use on subsequent calls to D02PEF, D02PFF or
D02PGF or other associated routines.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, a previous call to the setup routine has not been made or the communication arrays
have become corrupted, or a catastrophic error has already been detected elsewhere.
You cannot continue integrating the problem.

You cannot call this routine before you have called the integrator.

You have already made one call to this routine after the integrator could not achieve specified
accuracy.
You cannot call this routine again.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02PTF is not threaded in any implementation.

9 Further Comments

When a secondary integration has taken place, that is when global error assessment has been specified
using METHOD > 0 in a prior call to D02PQF, then the approximate number of evaluations of f used
in this secondary integration is given by 2� STEPSOK� STEPCOST for METHOD ¼ 2 or 3 and
3� STEPSOK� STEPCOST for METHOD ¼ 1.

10 Example

See Section 10 in D02PEF, D02PFF, D02PRF, D02PSF and D02PUF.
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NAG Library Routine Document

D02PUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PUF provides details about global error assessment computed during an integration with either
D02PEF, D02PFF or D02PGF.

2 Specification

SUBROUTINE D02PUF (N, RMSERR, ERRMAX, TERRMX, IWSAV, RWSAV, IFAIL)

INTEGER N, IWSAV(130), IFAIL
REAL (KIND=nag_wp) RMSERR(N), ERRMAX, TERRMX, RWSAV(32*N+350)

3 Description

D02PUF and its associated routines (D02PEF, D02PFF, D02PGF, D02PHF, D02PJF, D02PQF, D02PRF,
D02PSF and D02PTF) solve the initial value problem for a first-order system of ordinary differential
equations. The routines, based on Runge–Kutta methods and derived from RKSUITE (see Brankin et
al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0
where y is the vector of n solution components and t is the independent variable.

After a call to D02PEF, D02PFF or D02PGF, D02PUF can be called for information about error
assessment, if this assessment was specified in the setup routine D02PQF. A more accurate ‘true’
solution ŷ is computed in a secondary integration. The error is measured as specified in D02PQF for
local error control. At each step in the primary integration, an average magnitude �i of component yi is
computed, and the error in the component is

yi � ŷij j
max �i;THRESHðiÞð Þ:

It is difficult to estimate reliably the true error at a single point. For this reason the RMS (root-mean-
square) average of the estimated global error in each solution component is computed. This average is
taken over all steps from the beginning of the integration through to the current integration point. If all
has gone well, the average errors reported will be comparable to TOL (see D02PQF). The maximum
error seen in any component in the integration so far and the point where the maximum error first
occurred are also reported.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

1: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved by the
integration routine.

Constraint: N � 1.
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2: RMSERRðNÞ – REAL (KIND=nag_wp) array Output

On exit: RMSERRðiÞ approximates the RMS average of the true error of the numerical solution
for the ith solution component, for i ¼ 1; 2; . . . ; n. The average is taken over all steps from the
beginning of the integration to the current integration point.

3: ERRMAX – REAL (KIND=nag_wp) Output

On exit: the maximum weighted approximate true error taken over all solution components and
all steps.

4: TERRMX – REAL (KIND=nag_wp) Output

On exit: the first value of the independent variable where an approximate true error attains the
maximum value, ERRMAX.

5: IWSAVð130Þ – INTEGER array Communication Array
6: RWSAVð32� Nþ 350Þ – REAL (KIND=nag_wp) array Communication Array

On entry: these must be the same arrays supplied in a previous call to D02PEF, D02PFF or
D02PGF. They must remain unchanged between calls.

On exit: information about the integration for use on subsequent calls to D02PEF, D02PFF or
D02PGF or other associated routines.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

No error assessment is available since the integrator has not actually taken any successful steps.

No error assessment is available since you did not ask for it in your call to the setup routine.

On entry, a previous call to the setup routine has not been made or the communication arrays
have become corrupted, or a catastrophic error has already been detected elsewhere.
You cannot continue integrating the problem.

On entry, N ¼ valueh i, but the value passed to the setup routine was N ¼ valueh i.
You cannot call this routine before you have called the integrator.

You have already made one call to this routine after the integrator could not achieve specified
accuracy.
You cannot call this routine again.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02PUF is not threaded in any implementation.

9 Further Comments

If the integration has proceeded ‘well’ and the problem is smooth enough, stable and not too difficult
then the values returned in the arguments RMSERR and ERRMAX should be comparable to the value
of TOL specified in the prior call to D02PQF.

10 Example

This example integrates a two body problem. The equations for the coordinates x tð Þ; y tð Þð Þ of one body
as functions of time t in a suitable frame of reference are

x00 ¼ �x
r3

y00 ¼ � y
r3
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
:

The initial conditions

x 0ð Þ ¼ 1� �; x0 0ð Þ ¼ 0

y 0ð Þ ¼ 0; y0 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ �
1� �

r
lead to elliptic motion with 0 < � < 1. � ¼ 0:7 is selected and the system of ODEs is reposed as

y01 ¼ y3

y02 ¼ y4

y03 ¼ �
y1
r3

y04 ¼ �
y2
r3

over the range 0; 3	½ �. Relative error control is used with threshold values of 1:0E�10 for each solution
component and a high-order Runge–Kutta method (METHOD ¼ 3) with tolerance TOL ¼ 1:0E�6.
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Note that for illustration purposes since it is not necessary for this problem, this example integrates to
the end of the range regardless of efficiency concerns (i.e., returns from D02PEF with IFAIL ¼ 2, 3 or
4).

10.1 Program Text

! D02PUF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02pufe_mod

! D02PUF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: liwsav = 130, n = 4, nin = 5, &

nout = 6
Integer, Parameter, Public :: lrwsav = 350 + 32*n

Contains
Subroutine f(t,n,y,yp,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(n)
Real (Kind=nag_wp), Intent (Out) :: yp(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: r

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
r = sqrt(y(1)**2+y(2)**2)
yp(1) = y(3)
yp(2) = y(4)
yp(3) = -y(1)/r**3
yp(4) = -y(2)/r**3
Return

End Subroutine f
End Module d02pufe_mod

Program d02pufe

! D02PUF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02pef, d02pqf, d02ptf, d02puf, nag_wp
Use d02pufe_mod, Only: f, liwsav, lrwsav, n, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: errmax, hnext, hstart, tend, terrmx, &

tgot, tol, tstart, twant, waste
Integer :: fevals, ifail, method, stepcost, &

stepsok
! .. Local Arrays ..

Real (Kind=nag_wp) :: rmserr(n), ruser(1), thresh(n), &
ygot(n), yinit(n), ymax(n), ypgot(n)

Real (Kind=nag_wp), Allocatable :: rwsav(:)
Integer :: iuser(1)

D02PUF NAG Library Manual

D02PUF.4 Mark 26



Integer, Allocatable :: iwsav(:)
! .. Executable Statements ..

Write (nout,*) ’D02PUF Example Program Results’

Allocate (rwsav(lrwsav),iwsav(liwsav))

! Set initial conditions and input for D02PQF

! Skip heading in data file
Read (nin,*)
Read (nin,*) method
Read (nin,*) tstart, tend
Read (nin,*) yinit(1:n)
Read (nin,*) hstart, tol
Read (nin,*) thresh(1:n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02pqf(n,tstart,tend,yinit,tol,thresh,method,hstart,iwsav,rwsav, &

ifail)

Write (nout,99999) tol
Write (nout,99998)
Write (nout,99997) tstart, yinit(1:n)

twant = tend

integ: Do
ifail = -1
Call d02pef(f,n,twant,tgot,ygot,ypgot,ymax,iuser,ruser,iwsav,rwsav, &

ifail)

If (ifail<2 .Or. ifail>4) Then
Exit integ

End If

End Do integ

If (ifail==0) Then

! Print solution.
Write (nout,99997) tgot, ygot(1:n)

! Compute and print error estimates.
ifail = 0
Call d02puf(n,rmserr,errmax,terrmx,iwsav,rwsav,ifail)

Write (nout,99996) rmserr(1:n)
Write (nout,99995) errmax, terrmx

ifail = 0
Call d02ptf(fevals,stepcost,waste,stepsok,hnext,iwsav,rwsav,ifail)

Write (nout,99994) fevals
End If

99999 Format (/,’ Calculation with TOL = ’,E8.1)
99998 Format (/,’ t y1 y2 y3 y4’,/)
99997 Format (1X,F6.3,4(3X,F8.4))
99996 Format (/,’ Componentwise error assessment’,/,9X,4(2X,E9.2))
99995 Format (/,’ Worst global error observed was ’,E9.2, &

’ - it occurred at T = ’,F6.3)
99994 Format (/,’ Cost of the integration in evaluations of F is’,I6)

End Program d02pufe
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10.2 Program Data

D02PUF Example Program Data
3 : method
0.0 9.42477796076937971538 : tstart, tend
0.3 0.0 0.0 2.38047614284761666599 : yinit(1:n)
0.0 1.0E-6 : hstart, tol
1.0E-10 1.0E-10 1.0E-10 1.0E-10 : thresh(1:n)

10.3 Program Results

D02PUF Example Program Results

Calculation with TOL = 0.1E-05

t y1 y2 y3 y4

0.000 0.3000 0.0000 0.0000 2.3805
9.425 -1.7000 0.0000 -0.0000 -0.4201

Componentwise error assessment
0.38E-05 0.71E-05 0.69E-05 0.21E-05

Worst global error observed was 0.34E-04 - it occurred at T = 6.302

Cost of the integration in evaluations of F is 1361
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NAG Library Routine Document

D02QFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02QFF is a routine for integrating a non-stiff system of first-order ordinary differential equations
using a variable-order variable-step Adams' method. A root-finding facility is provided.

2 Specification

SUBROUTINE D02QFF (FCN, NEQF, T, Y, TOUT, G, NEQG, ROOT, RWORK, LRWORK,
IWORK, LIWORK, IFAIL)

&

INTEGER NEQF, NEQG, LRWORK, IWORK(LIWORK), LIWORK, IFAIL
REAL (KIND=nag_wp) T, Y(NEQF), TOUT, G, RWORK(LRWORK)
LOGICAL ROOT
EXTERNAL FCN, G

3 Description

Given the initial values x; y1; y2; . . . ; yNEQF D02QFF integrates a non-stiff system of first-order
differential equations of the type

y0i ¼ fi x; y1; y2; . . . ; yNEQF
� �

; i ¼ 1; 2; . . . ;NEQF;

from x ¼ T to x ¼ TOUT using a variable-order variable-step Adams' method. The system is defined by
FCN, which evaluates fi in terms of x and y1; y2; . . . ; yNEQF, and y1; y2; . . . ; yNEQF are supplied at x ¼ T.
The routine is capable of finding roots (values of x) of prescribed event functions of the form

gj x; y; y
0ð Þ ¼ 0; j ¼ 1; 2; . . . ;NEQG:

(See D02QWF for the specification of NEQG.)

Each gj is considered to be independent of the others so that roots are sought of each gj individually.
The root reported by the routine will be the first root encountered by any gj. Two techniques for
determining the presence of a root in an integration step are available: the sophisticated method
described in Watts (1985) and a simplified method whereby sign changes in each gj are looked for at
the ends of each integration step. The event functions are defined by G supplied by you which evaluates
gj in terms of x; y1; . . . ; yNEQF and y01; . . . ; y

0
NEQF. In one-step mode the routine returns an approximation

to the solution at each integration point. In interval mode this value is returned at the end of the
integration range. If a root is detected this approximation is given at the root. You select the mode of
operation, the error control, the root-finding technique and various optional inputs by a prior call to the
setup routine D02QWF.

For a description of the practical implementation of an Adams' formula see Shampine and Gordon
(1975) and Shampine and Watts (1979).

4 References

Shampine L F and Gordon M K (1975) Computer Solution of Ordinary Differential Equations – The
Initial Value Problem W H Freeman & Co., San Francisco

Shampine L F and Watts H A (1979) DEPAC – design of a user oriented package of ODE solvers
Report SAND79-2374 Sandia National Laboratory

Watts H A (1985) RDEAM – An Adams ODE code with root solving capability Report SAND85-1595
Sandia National Laboratory
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5 Arguments

1: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (that is the first derivatives y0i) for given values of its
arguments x, y1; y2; . . . ; yNEQF.

The specification of FCN is:

SUBROUTINE FCN (NEQF, X, Y, F)

INTEGER NEQF
REAL (KIND=nag_wp) X, Y(NEQF), F(NEQF)

1: NEQF – INTEGER Input

On entry: the number of differential equations.

2: X – REAL (KIND=nag_wp) Input

On entry: the current value of the argument x.

3: YðNEQFÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQF, the current value of the argument.

4: FðNEQFÞ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ;NEQF.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02QFF is called. Arguments denoted as Input must not be changed by this
procedure.

2: NEQF – INTEGER Input

On entry: the number of first-order ordinary differential equations to be solved by D02QFF. It
must contain the same value as the argument NEQF used in a prior call to D02QWF.

Constraint: NEQF � 1.

3: T – REAL (KIND=nag_wp) Input/Output

On entry: after a call to D02QWF with STATEF ¼ S (i.e., an initial entry), T must be set to the
initial value of the independent variable x.

On exit: the value of x at which y has been computed. This may be an intermediate output point,
a root, TOUT or a point at which an error has occurred. If the integration is to be continued,
possibly with a new value for TOUT, T must not be changed.

4: YðNEQFÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yNEQF.

On exit: the computed values of the solution at the exit value of T. If the integration is to be
continued, possibly with a new value for TOUT, these values must not be changed.

5: TOUT – REAL (KIND=nag_wp) Input

On entry: the next value of x at which a computed solution is required. For the initial T, the input
value of TOUT is used to determine the direction of integration. Integration is permitted in either
direction. If TOUT ¼ T on exit, TOUT must be reset beyond T in the direction of integration,
before any continuation call.
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6: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must evaluate a given component of g x; y; y0ð Þ at a specified point.

If root-finding is not required the actual argument for G must be the dummy routine D02QFZ.
(D02QFZ is included in the NAG Library.)

The specification of G is:

FUNCTION G (NEQF, X, Y, YP, K)
REAL (KIND=nag_wp) G

INTEGER NEQF, K
REAL (KIND=nag_wp) X, Y(NEQF), YP(NEQF)

1: NEQF – INTEGER Input

On entry: the number of differential equations being solved.

2: X – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable.

3: YðNEQFÞ – REAL (KIND=nag_wp) array Input

On entry: the current values of the dependent variables.

4: YPðNEQFÞ – REAL (KIND=nag_wp) array Input

On entry: the current values of the derivatives of the dependent variables.

5: K – INTEGER Input

On entry: the component of g which must be evaluated.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02QFF is called. Arguments denoted as Input must not be changed by this
procedure.

7: NEQG – INTEGER Input

On entry: the number of event functions which you are defining for root-finding. If root-finding is
not required the value for NEQG must be � 0. Otherwise it must be the same argument NEQG
used in the prior call to D02QWF.

8: ROOT – LOGICAL Output

On exit: if root-finding was required (NEQG > 0 on entry), then ROOT specifies whether or not
the output value of the argument T is a root of one of the event functions. If ROOT ¼ :FALSE:,
then no root was detected, whereas ROOT ¼ :TRUE: indicates a root and you should make a call
to D02QYF for further information.

If root-finding was not required (NEQG ¼ 0 on entry), then on exit ROOT ¼ :FALSE:.

9: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same argument RWORK as supplied to D02QWF. It is used to pass information
from D02QWF to D02QFF, and from D02QFF to D02QXF, D02QYF and D02QZF. Therefore
the contents of this array must not be changed before the call to D02QFF or calling any of the
routines D02QXF, D02QYF and D02QZF.

10: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D02QFF is called.

D02 – Ordinary Differential D02QFF

Mark 26 D02QFF.3



This must be the same argument LRWORK as supplied to D02QWF.

11: IWORKðLIWORKÞ – INTEGER array Communication Array

This must be the same argument IWORK as supplied to D02QWF. It is used to pass information
from D02QWF to D02QFF, and from D02QFF to D02QXF, D02QYF and D02QZF. Therefore
the contents of this array must not be changed before the call to D02QFF or calling any of the
routines D02QXF, D02QYF and D02QZF.

12: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D02QFF is called.

This must be the same argument LIWORK as supplied to D02QWF.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, the integrator detected an illegal input, or D02QWF has not been called before the call
to the integrator.

This error may be caused by overwriting elements of RWORK and IWORK.

IFAIL ¼ 2

The maximum number of steps has been attempted (at a cost of about 2 calls to FCN per step).
(See argument MAXSTP in D02QWF.) If integration is to be continued then you need only reset
IFAIL and call the routine again and a further MAXSTP steps will be attempted.

IFAIL ¼ 3

The step size needed to satisfy the error requirements is too small for the machine precision
being used. (See argument TOLFAC in D02QXF.)

IFAIL ¼ 4

Some error weight wi became zero during the integration (see arguments VECTOL, RTOL and
ATOL in D02QWF.) Pure relative error control (ATOL ¼ 0:0) was requested on a variable (the
ith) which has now become zero. (See argument BADCMP in D02QXF.) The integration was
successful as far as T.
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IFAIL ¼ 5

The problem appears to be stiff (see the D02 Chapter Introduction for a discussion of the term
‘stiff’). Although it is inefficient to use this integrator to solve stiff problems, integration may be
continued by resetting IFAIL and calling the routine again.

IFAIL ¼ 6

A change in sign of an event function has been detected but the root-finding process appears to
have converged to a singular point T rather than a root. Integration may be continued by resetting
IFAIL and calling the routine again.

IFAIL ¼ 7

The code has detected two successive error exits at the current value of T and cannot proceed.
Check all input variables.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of integration is determined by the arguments VECTOL, RTOL and ATOL in a prior call
to D02QWF. Note that only the local error at each step is controlled by these arguments. The error
estimates obtained are not strict bounds but are usually reliable over one step. Over a number of steps
the overall error may accumulate in various ways, depending on the properties of the differential
equation system. The code is designed so that a reduction in the tolerances should lead to an
approximately proportional reduction in the error. You are strongly recommended to call D02QFF with
more than one set of tolerances and to compare the results obtained to estimate their accuracy.

The accuracy obtained depends on the type of error test used. If the solution oscillates around zero a
relative error test should be avoided, whereas if the solution is exponentially increasing an absolute
error test should not be used. If different accuracies are required for different components of the
solution then a component-wise error test should be used. For a description of the error test see the
specifications of the arguments VECTOL, ATOL and RTOL in the routine document for D02QWF.

The accuracy of any roots located will depend on the accuracy of integration and may also be restricted
by the numerical properties of g x; y; y0ð Þ. When evaluating g you should try to write the code so that
unnecessary cancellation errors will be avoided.

8 Parallelism and Performance

D02QFF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02QFF is not threaded in any implementation.
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9 Further Comments

If D02QFF fails with IFAIL ¼ 3 then the combination of ATOL and RTOL may be so small that a
solution cannot be obtained, in which case the routine should be called again with larger values for
RTOL and/or ATOL (see D02QWF). If the accuracy requested is really needed then you should
consider whether there is a more fundamental difficulty. For example:

(a) in the region of a singularity the solution components will usually be of a large magnitude.
D02QFF could be used in one-step mode to monitor the size of the solution with the aim of
trapping the solution before the singularity. In any case numerical integration cannot be continued
through a singularity, and analytical treatment may be necessary;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the routine will
require a very small step size to preserve stability. This will usually be exhibited by excessive
computing time and sometimes an error exit with IFAIL ¼ 3, but usually an error exit with
IFAIL ¼ 2 or 5. The Adams' methods are not efficient in such cases and you should consider using
a routine from the Sub-chapter D02M–N. A high proportion of failed steps (see argument NFAIL)
may indicate stiffness but there may be other reasons for this phenomenon.

D02QFF can be used for producing results at short intervals (for example, for graph plotting); you
should set CRIT ¼ :TRUE: and TCRIT to the last output point required in a prior call to D02QWF and
then set TOUT appropriately for each output point in turn in the call to D02QFF.

10 Example

This example solves the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2

y02 ¼ �y1
over the range 0; 10:0½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0 using vector error control
(VECTOL ¼ :TRUE:) and computation of the solution at TOUT ¼ 10:0 with TCRIT ¼ 10:0
(CRIT ¼ :TRUE:). Also, we use D02QFF to locate the positions where y1 ¼ 0:0 or where the first
component has a turning-point, that is y01 ¼ 0:0.

10.1 Program Text

! D02QFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02qffe_mod

! D02QFF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn, g

! .. Parameters ..
Integer, Parameter, Public :: neqf = 2, neqg = 2, nin = 5, &

nout = 6
Integer, Parameter, Public :: latol = neqf
Integer, Parameter, Public :: liwork = 21 + 4*neqg
Integer, Parameter, Public :: lrtol = neqf
Integer, Parameter, Public :: lrwork = 23 + 23*neqf + 14*neqg

Contains
Subroutine fcn(neqf,x,y,f)
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! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neqf

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neqf)
Real (Kind=nag_wp), Intent (In) :: y(neqf)

! .. Executable Statements ..
f(1) = y(2)
f(2) = -y(1)
Return

End Subroutine fcn

Function g(neqf,x,y,yp,k)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: k, neqf

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(neqf), yp(neqf)

! .. Executable Statements ..
If (k==1) Then

g = yp(1)
Else

g = y(1)
End If
Return

End Function g
End Module d02qffe_mod

Program d02qffe

! D02QFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02qff, d02qwf, d02qxf, d02qyf, nag_wp
Use d02qffe_mod, Only: fcn, g, latol, liwork, lrtol, lrwork, neqf, neqg, &

nin, nout
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: hlast, hmax, hnext, t, tcrit, tcurr, &
tolfac, tout, tstart

Integer :: badcmp, i, ifail, index, maxstp, &
nfail, nsucc, odlast, odnext, type

Logical :: alterg, crit, onestp, root, sophst, &
vectol

Character (1) :: statef
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), resids(:), rtol(:), &
rwork(:), y(:), yp(:)

Integer, Allocatable :: events(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’D02QFF Example Program Results’
! Skip heading in data file

Read (nin,*)
Allocate (atol(latol),resids(neqg),rtol(lrtol),rwork(lrwork),y(neqf), &

yp(neqf),events(neqg),iwork(liwork))
Read (nin,*) hmax, tstart, tcrit
Read (nin,*) statef
Read (nin,*) vectol, onestp, crit, sophst
Read (nin,*) maxstp
Read (nin,*) rtol(1:neqf)
Read (nin,*) atol(1:neqf)

! Initialize
ifail = 0
Call d02qwf(statef,neqf,vectol,atol,latol,rtol,lrtol,onestp,crit,tcrit, &

hmax,maxstp,neqg,alterg,sophst,rwork,lrwork,iwork,liwork,ifail)
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t = tstart
tout = tcrit
Read (nin,*) y(1:neqf)

! Cycle through roots and print info when encountered.
findr: Do

ifail = -1
Call d02qff(fcn,neqf,t,y,tout,g,neqg,root,rwork,lrwork,iwork,liwork, &

ifail)

If (ifail/=0) Then
Exit findr

End If

ifail = 0
Call d02qxf(neqf,yp,tcurr,hlast,hnext,odlast,odnext,nsucc,nfail, &

tolfac,badcmp,rwork,lrwork,iwork,liwork,ifail)

If (.Not. root) Then
Exit findr

End If

ifail = 0
Call d02qyf(neqg,index,type,events,resids,rwork,lrwork,iwork,liwork, &

ifail)

Write (nout,99999) t
Write (nout,99998) index, type, resids(index)
Write (nout,99997) y(1), yp(1)

Do i = 1, neqg
If (i/=index) Then

If (events(i)/=0) Then
Write (nout,99996) i, events(i), resids(i)

End If
End If

End Do

If (tcurr>=tout) Then
Exit findr

End If

End Do findr

99999 Format (/,1X,’Root at ’,1P,E13.5)
99998 Format (1X,’for event equation ’,I2,’ with type’,I3,’ and residual ’,1P, &

E13.5)
99997 Format (1X,’ Y(1) = ’,1P,E13.5,’ Y’’(1) = ’,1P,E13.5)
99996 Format (1X,’and also for event equation ’,I2,’ with type’,I3, &

’ and residual ’,1P,E13.5)
End Program d02qffe

10.2 Program Data

D02QFF Example Program Data
0.0 0.0 10.0 : hmax, tstart, tcrit
S : statef
.TRUE. .FALSE. .TRUE. .TRUE. : vectol, onestp, crit, sophst
0 : maxstp
1.0E-4 1.0E-4 : rtol
1.0E-6 1.0E-6 : atol
0.0 1.0 : y
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10.3 Program Results

D02QFF Example Program Results

Root at 0.00000E+00
for event equation 2 with type 1 and residual 0.00000E+00
Y(1) = 0.00000E+00 Y’(1) = 1.00000E+00

Root at 1.57076E+00
for event equation 1 with type 1 and residual -5.20417E-17
Y(1) = 1.00003E+00 Y’(1) = -5.20417E-17

Root at 3.14151E+00
for event equation 2 with type 1 and residual -1.27676E-15
Y(1) = -1.27676E-15 Y’(1) = -1.00012E+00

Root at 4.71228E+00
for event equation 1 with type 1 and residual 1.67921E-15
Y(1) = -1.00010E+00 Y’(1) = 1.67921E-15

Root at 6.28306E+00
for event equation 2 with type 1 and residual 2.65066E-15
Y(1) = 2.65066E-15 Y’(1) = 9.99979E-01

Root at 7.85379E+00
for event equation 1 with type 4 and residual -7.63278E-17
Y(1) = 9.99970E-01 Y’(1) = -7.63278E-17

Root at 9.42469E+00
for event equation 2 with type 4 and residual -6.86950E-16
Y(1) = -6.86950E-16 Y’(1) = -9.99854E-01
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NAG Library Routine Document

D02QGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02QGF is a reverse communication routine for integrating a non-stiff system of first-order ordinary
differential equations using a variable-order variable-step Adams' method. A root-finding facility is
provided.

2 Specification

SUBROUTINE D02QGF (NEQF, T, Y, TOUT, NEQG, ROOT, IREVCM, TRVCM, YRVCM,
YPRVCM, GRVCM, KGRVCM, RWORK, LRWORK, IWORK, LIWORK,
IFAIL)

&
&

INTEGER NEQF, NEQG, IREVCM, YRVCM, YPRVCM, KGRVCM, LRWORK,
IWORK(LIWORK), LIWORK, IFAIL

&

REAL (KIND=nag_wp) T, Y(NEQF), TOUT, TRVCM, GRVCM, RWORK(LRWORK)
LOGICAL ROOT

3 Description

Given the initial values x; y1; y2; . . . ; yNEQF D02QGF integrates a non-stiff system of first-order
differential equations of the type

y0i ¼ fi x; y1; y2; . . . ; yNEQF
� �

; i ¼ 1; 2; . . . ;NEQF;

from x ¼ T to x ¼ TOUT using a variable-order variable-step Adams' method. You define the system
by reverse communication, evaluating fi in terms of x and y1; y2; . . . ; yNEQF, and y1; y2; . . . ; yNEQF are
supplied at x ¼ T by D02QGF. The routine is capable of finding roots (values of x) of prescribed event
functions of the form

gj x; y; y
0ð Þ ¼ 0; j ¼ 1; 2; . . . ;NEQG:

Each gj is considered to be independent of the others so that roots are sought of each gj individually.
The root reported by the routine will be the first root encountered by any gj. Two techniques for
determining the presence of a root in an integration step are available: the sophisticated method
described in Watts (1985) and a simplified method whereby sign changes in each gj are looked for at
the ends of each integration step. You also define each gj by reverse communication. In one-step mode
the routine returns an approximation to the solution at each integration point. In interval mode this
value is returned at the end of the integration range. If a root is detected this approximation is given at
the root. You select the mode of operation, the error control, the root-finding technique and various
optional inputs by a prior call to the setup routine D02QWF.

For a description of the practical implementation of an Adams' formula see Shampine and Gordon
(1975).

4 References

Shampine L F and Gordon M K (1975) Computer Solution of Ordinary Differential Equations – The
Initial Value Problem W H Freeman & Co., San Francisco

Shampine L F and Watts H A (1979) DEPAC – design of a user oriented package of ODE solvers
Report SAND79-2374 Sandia National Laboratory

Watts H A (1985) RDEAM – An Adams ODE code with root solving capability Report SAND85-1595
Sandia National Laboratory

D02 – Ordinary Differential D02QGF

Mark 26 D02QGF.1



5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than GRVCM and RWORK must remain unchanged.

1: NEQF – INTEGER Input

On initial entry: the number of first-order ordinary differential equations to be solved by
D02QGF. It must contain the same value as the argument NEQF used in the prior call to
D02QWF.

Constraint: NEQF � 1.

2: T – REAL (KIND=nag_wp) Input/Output

On initial entry: that is after a call to D02QWF with STATEF ¼ S , T must be set to the initial
value of the independent variable x.

On final exit: the value of x at which y has been computed. This may be an intermediate output
point, a root, TOUT or a point at which an error has occurred. If the integration is to be
continued, possibly with a new value for TOUT, T must not be changed.

3: YðNEQFÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: the initial values of the solution y1; y2; . . . ; yNEQF.

On final exit: the computed values of the solution at the exit value of T. If the integration is to be
continued, possibly with a new value for TOUT, these values must not be changed.

4: TOUT – REAL (KIND=nag_wp) Input

On initial entry: the next value of x at which a computed solution is required. For the initial T,
the input value of TOUT is used to determine the direction of integration. Integration is permitted
in either direction. If TOUT ¼ T on exit, TOUT must be reset beyond T in the direction of
integration, before any continuation call.

5: NEQG – INTEGER Input

On initial entry: the number of event functions which you are defining for root-finding. If root-
finding is not required the value for NEQG must be � 0. Otherwise it must be the same value as
the argument NEQG used in the prior call to D02QWF.

6: ROOT – LOGICAL Output

On final exit: if root-finding was required (NEQG > 0 on entry), then ROOT specifies whether or
not the output value of the argument T is a root of one of the event functions. If
ROOT ¼ :FALSE:, then no root was detected, whereas ROOT ¼ :TRUE: indicates a root and
you should make a call to D02QYF for further information.

If root-finding was not required (NEQG ¼ 0 on entry), then ROOT ¼ :FALSE:.

7: IREVCM – INTEGER Input/Output

On initial entry: must have the value 0.

On intermediate exit: specifies what action you must take before re-entering D02QGF with
IREVCM unchanged.

IREVCM ¼ 1, 2, 3, 4, 5, 6 or 7
Indicates that you must supply y0 ¼ f x; yð Þ, where x is given by TRVCM and yi is
r e t u r n e d i n YðiÞ, f o r i ¼ 1; 2; . . . ;NEQF w h e n YRVCM ¼ 0 a n d
RWORKðYRVCMþ i � 1Þ, for i ¼ 1; 2; . . . ;NEQF when YRVCM 6¼ 0. y0i should be
placed in location RWORKðYPRVCM þ i � 1Þ, for i ¼ 1; 2; . . . ;NEQF.

D02QGF NAG Library Manual

D02QGF.2 Mark 26



IREVCM ¼ 8
Indicates that the current step was not successful due to error test failure. The only
information supplied to you on this return is the current value of the independent variable
T, as given by TRVCM. No values must be changed before re-entering D02QGF. This
facility enables you to determine the number of unsuccessful steps.

IREVCM ¼ 9, 10, 11 or 12
Indicates that you must supply gk x; y; y0ð Þ, where k is given by KGRVCM, x is given by
TRVCM, yi is given by YðiÞ and y0i is given by RWORKðYPRVCM� 1þ iÞ. The result gk
should be placed in the variable GRVCM.

On final exit: has the value 0, which indicates that an output point or root has been reached or an
error has occurred (see IFAIL).

8: TRVCM – REAL (KIND=nag_wp) Output

On intermediate exit: the current value of the independent variable.

9: YRVCM – INTEGER Output

On intermediate exit: with IREVCM ¼ 1, 2, 3, 4, 5, 6, 7, 9, 10, 11 or 12, YRVCM specifies the
locations of the dependent variables y for use in evaluating the differential system or the event
functions.

YRVCM ¼ 0
yi is given by YðiÞ, for i ¼ 1; 2; . . . ;NEQF.

YRVCM 6¼ 0
yi is given by RWORKðYRVCMþ i � 1Þ, for i ¼ 1; 2; . . . ;NEQF.

10: YPRVCM – INTEGER Output

On intermediate exit: with IREVCM ¼ 1, 2, 3, 4, 5, 6 or 7, YPRVCM specifies the positions in
RWORK at which you should place the derivatives y0. y0i should be placed in location
RWORKðYPRVCMþ i � 1Þ, for i ¼ 1; 2; . . . ;NEQF.

With IREVCM ¼ 9, 10, 11 or 12, YPRVCM specifies the locations of the derivatives y0 for use in
evaluating the event functions. y0i is given by RWORKðYPRVCMþ i � 1Þ, for
i ¼ 1; 2; . . . ;NEQF.

11: GRVCM – REAL (KIND=nag_wp) Input

On initial entry: need not be set.

On intermediate re-entry: with IREVCM ¼ 9, 10, 11 or 12, GRVCM must contain the value of
gk x; y; y

0ð Þ, where k is given by KGRVCM.

12: KGRVCM – INTEGER Input/Output

On intermediate re-entry: with IREVCM ¼ 9, 10, 11 or 12, KGRVCM must remain unchanged
from a previous call to D02QGF.

On intermediate exit: with IREVCM ¼ 9, 10, 11 or 12, KGRVCM specifies which event function
gk x; y; y

0ð Þ you must evaluate.

13: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same argument RWORK as supplied to D02QWF. It is used to pass information
from D02QWF to D02QGF, and from D02QGF to D02QXF, D02QYF and D02QZF. Therefore
the contents of this array must not be changed before the call to D02QGF or calling any of the
routines D02QXF, D02QYF and D02QZF.
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14: LRWORK – INTEGER Input

On initial entry: the dimension of the array RWORK as declared in the (sub)program from which
D02QGF is called.

This must be the same argument LRWORK as supplied to D02QWF.

15: IWORKðLIWORKÞ – INTEGER array Communication Array

This must be the same argument IWORK as supplied to D02QWF. It is used to pass information
from D02QWF to D02QGF, and from D02QGF to D02QXF, D02QYF and D02QZF. Therefore
the contents of this array must not be changed before the call to D02QGF or calling any of the
routines D02QXF, D02QYF and D02QZF.

16: LIWORK – INTEGER Input

On initial entry: the dimension of the array IWORK as declared in the (sub)program from which
D02QGF is called.

This must be the same argument LIWORK as supplied to D02QWF.

17: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, the integrator detected an illegal input, or D02QWF has not been called before the call
to the integrator.

This error may be caused by overwriting elements of RWORK and IWORK.

IFAIL ¼ 2

The maximum number of steps has been attempted (at a cost of about 2 derivative evaluations
per step). (See argument MAXSTP in D02QWF.) If integration is to be continued then you need
only reset IFAIL and call the routine again and a further MAXSTP steps will be attempted.

IFAIL ¼ 3

The step size needed to satisfy the error requirements is too small for the machine precision
being used. (See argument TOLFAC in D02QXF.)

IFAIL ¼ 4

Some error weight wi became zero during the integration (see arguments VECTOL, RTOL and
ATOL in D02QWF.) Pure relative error control (ATOL ¼ 0:0) was requested on a variable (the
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ith) which has now become zero. (See argument BADCMP in D02QXF.) The integration was
successful as far as T.

IFAIL ¼ 5

The problem appears to be stiff (see the D02 Chapter Introduction for a discussion of the term
‘stiff’). Although it is inefficient to use this integrator to solve stiff problems, integration may be
continued by resetting IFAIL and calling the routine again.

IFAIL ¼ 6

A change in sign of an event function has been detected but the root-finding process appears to
have converged to a singular point T rather than a root. Integration may be continued by resetting
IFAIL and calling the routine again.

IFAIL ¼ 7

The code has detected two successive error exits at the current value of T and cannot proceed.
Check all input variables.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of integration is determined by the arguments VECTOL, RTOL and ATOL in a prior call
to D02QWF. Note that only the local error at each step is controlled by these arguments. The error
estimates obtained are not strict bounds but are usually reliable over one step. Over a number of steps
the overall error may accumulate in various ways, depending on the properties of the differential
equation system. The code is designed so that a reduction in the tolerances should lead to an
approximately proportional reduction in the error. You are strongly recommended to call D02QGF with
more than one set of tolerances and to compare the results obtained to estimate their accuracy.

The accuracy obtained depends on the type of error test used. If the solution oscillates around zero a
relative error test should be avoided, whereas if the solution is exponentially increasing an absolute
error test should not be used. If different accuracies are required for different components of the
solution then a component-wise error test should be used. For a description of the error test see the
specifications of the arguments VECTOL, RTOL and ATOL in the routine document for D02QWF.

The accuracy of any roots located will depend on the accuracy of integration and may also be restricted
by the numerical properties of g x; y; y0ð Þ. When evaluating g you should try to write the code so that
unnecessary cancellation errors will be avoided.

8 Parallelism and Performance

D02QGF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.
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D02QGF is not threaded in any implementation.

9 Further Comments

If D02QGF fails with IFAIL ¼ 3 then the combination of ATOL and RTOL may be so small that a
solution cannot be obtained, in which case the routine should be called again with larger values for
RTOL and/or ATOL (see D02QWF). If the accuracy requested is really needed then you should
consider whether there is a more fundamental difficulty. For example:

(a) in the region of a singularity the solution components will usually be of a large magnitude.
D02QGF could be used in one-step mode to monitor the size of the solution with the aim of
trapping the solution before the singularity. In any case numerical integration cannot be continued
through a singularity, and analytical treatment may be necessary;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the routine will
require a very small step size to preserve stability. This will usually be exhibited by excessive
computing time and sometimes an error exit with IFAIL ¼ 3, but usually an error exit with
IFAIL ¼ 2 or 5. The Adams' methods are not efficient in such cases and you should consider using
a routine from the Sub-chapter D02M–N. A high proportion of failed steps (see argument NFAIL
in D02QXF) may indicate stiffness but there may be other reasons for this phenomenon.

D02QGF can be used for producing results at short intervals (for example, for graph plotting); you
should set CRIT ¼ :TRUE: and TCRIT to the last output point required in a prior call to D02QWF and
then set TOUT appropriately for each output point in turn in the call to D02QGF.

10 Example

This example solves the following system (for a projectile)

y0 ¼ tan


v0 ¼ �0:032 tan

v

� 0:02v

cos



0 ¼ �0:032
v2

over an interval 0:0; 10:0½ � starting with values y ¼ 0:5, v ¼ 0:5 and 
 ¼ 	=5 using scalar error control
(VECTOL ¼ :FALSE:) until the first point where y ¼ 0:0 is encountered.

Also, D02QGF is used to produce output at intervals of 2:0.

10.1 Program Text

Program d02qgfe

! D02QGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d02qgf, d02qwf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = -0.032_nag_wp
Real (Kind=nag_wp), Parameter :: beta = -0.02_nag_wp
Integer, Parameter :: neqf = 3, neqg = 1, nin = 5, &

nout = 6
Integer, Parameter :: liwork = 21 + 4*neqg
Integer, Parameter :: lrwork = 23 + 23*neqf + 14*neqg

! .. Local Scalars ..
Real (Kind=nag_wp) :: grvcm, hmax, t, tcrit, tinc, tout, &

trvcm, tstart
Integer :: i, ifail, irevcm, j, kgrvcm, latol, &

lrtol, maxstp, yprvcm, yrvcm
Logical :: alterg, crit, onestp, root, sophst, &
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vectol
Character (1) :: statef

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), y(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..
Write (nout,*) ’D02QGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) latol, lrtol

Allocate (atol(latol),rtol(lrtol),rwork(lrwork),y(neqf),iwork(liwork))

Read (nin,*) hmax, tstart, tcrit, tinc
Read (nin,*) statef
Read (nin,*) vectol, onestp, crit, sophst
Read (nin,*) maxstp
Read (nin,*) rtol(1:lrtol), atol(1:latol)
Read (nin,*) y(1:neqf)

t = tstart

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02qwf(statef,neqf,vectol,atol,latol,rtol,lrtol,onestp,crit,tcrit, &

hmax,maxstp,neqg,alterg,sophst,rwork,lrwork,iwork,liwork,ifail)

Write (nout,*)
Write (nout,*) ’ T Y(1) Y(2) Y(3)’
Write (nout,99999) t, (y(i),i=1,neqf)
j = 1
tout = tinc
irevcm = 0

revcm: Do
ifail = -1
Call d02qgf(neqf,t,y,tout,neqg,root,irevcm,trvcm,yrvcm,yprvcm,grvcm, &

kgrvcm,rwork,lrwork,iwork,liwork,ifail)

Select Case (irevcm)
Case (0)

If (ifail==0) Then
! Print solution at current t

Write (nout,99999) t, (y(i),i=1,neqf)
If (t==tout .And. j<5) Then

! Increment tout and cycle to find solution at this new time.
j = j + 1
tout = tout + tinc
Cycle revcm

End If
End If
Exit revcm

Case (1:7)
If (yrvcm==0) Then

rwork(yprvcm) = tan(y(3))
rwork(yprvcm+1) = alpha*tan(y(3))/y(2) + beta*y(2)/cos(y(3))
rwork(yprvcm+2) = alpha/y(2)**2

Else
rwork(yprvcm) = tan(rwork(yrvcm+2))
rwork(yprvcm+1) = alpha*tan(rwork(yrvcm+2))/rwork(yrvcm+1) + &

beta*rwork(yrvcm+1)/cos(rwork(yrvcm+2))
rwork(yprvcm+2) = alpha/rwork(yrvcm+1)**2

End If
Case (9:)

grvcm = y(1)
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End Select
End Do revcm

99999 Format (1X,F7.4,2X,3(F7.4,2X))
End Program d02qgfe

10.2 Program Data

D02QGF Example Program Data
1 1 : latol, lrtol
2.0 0.0 10.0 2.0 : hmax, tstart, tcrit, tinc
S : statef
.FALSE. .FALSE. .TRUE. .TRUE. : vectol, onestp, crit, sophst
500 : maxstp
1.0E-4 1.0E-7 : rtol, atol
0.5 0.5 6.28318530717958647692E-1 : y

10.3 Program Results

D02QGF Example Program Results

T Y(1) Y(2) Y(3)
0.0000 0.5000 0.5000 0.6283
2.0000 1.5493 0.4055 0.3066
4.0000 1.7423 0.3743 -0.1289
6.0000 1.0055 0.4173 -0.5507
7.2883 -0.0000 0.4749 -0.7601
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NAG Library Routine Document

D02QWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02QWF is a setup routine which must be called prior to the first call of either of the integrators
D02QFF and D02QGF and may be called prior to any continuation call to these routines.

2 Specification

SUBROUTINE D02QWF (STATEF, NEQF, VECTOL, ATOL, LATOL, RTOL, LRTOL,
ONESTP, CRIT, TCRIT, HMAX, MAXSTP, NEQG, ALTERG,
SOPHST, RWORK, LRWORK, IWORK, LIWORK, IFAIL)

&
&

INTEGER NEQF, LATOL, LRTOL, MAXSTP, NEQG, LRWORK,
IWORK(LIWORK), LIWORK, IFAIL

&

REAL (KIND=nag_wp) ATOL(LATOL), RTOL(LRTOL), TCRIT, HMAX,
RWORK(LRWORK)

&

LOGICAL VECTOL, ONESTP, CRIT, ALTERG, SOPHST
CHARACTER(1) STATEF

3 Description

D02QWF permits initialization of the integration method and setting of optional inputs prior to any call
of D02QFF or D02QGF. It must be called before the first call of either of the routines D02QFF or
D02QGF and it may be called before any continuation call of either of the routines D02QFF or
D02QGF.

4 References

None.

5 Arguments

1: STATEF – CHARACTER(1) Input/Output

On entry: specifies whether the integration routine (D02QFF or D02QGF) is to start a new
system of ordinary differential equations, restart a system or continue with a system.

STATEF ¼ S
Start integration with a new differential system.

STATEF ¼ R
Restart integration with the current differential system.

STATEF ¼ C
Continue integration with the current differential system.

Constraint: STATEF ¼ S , R or C .

On exit: is set to `C', except that if an error is detected, STATEF is unchanged.

2: NEQF – INTEGER Input

On entry: the number of ordinary differential equations to be solved by the integration routine.
NEQF must remain unchanged on subsequent calls to D02QWF with STATEF ¼ C or R .

Constraint: NEQF � 1.
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3: VECTOL – LOGICAL Input

On entry: specifies whether vector or scalar error control is to be employed for the local error test
in the integration.

If VECTOL ¼ :TRUE:, then vector error control will be used and you must specify values of
RTOLðiÞ and ATOLðiÞ, for i ¼ 1; 2; . . . ;NEQF.

Otherwise scalar error control will be used and you must specify values of just RTOLð1Þ and
ATOLð1Þ.
The error test to be satisfied is of the formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNEQF

i¼1

ei
wi

� �2
vuut � 1:0:

where wi is defined as follows:

VECTOL wi

.TRUE. RTOLðiÞ � yij j þ ATOLðiÞ

.FALSE. RTOLð1Þ � yij j þ ATOLð1Þ

and ei is an estimate of the local error in yi, computed internally. VECTOL must remain
unchanged on subsequent calls to D02QWF with STATEF ¼ C or R .

4: ATOLðLATOLÞ – REAL (KIND=nag_wp) array Input

On entry: the absolute local error tolerance (see VECTOL).

Constraint: ATOLðiÞ � 0:0.

5: LATOL – INTEGER Input

On entry: the dimension of the array ATOL as declared in the (sub)program from which
D02QWF is called.

Constraints:

if VECTOL ¼ :TRUE:, LATOL � NEQF;
if VECTOL ¼ :FALSE:, LATOL � 1.

6: RTOLðLRTOLÞ – REAL (KIND=nag_wp) array Input

On entry: the relative local error tolerance (see VECTOL).

Constraints:

RTOLðiÞ � 0:0;
if ATOLðiÞ ¼ 0:0, RTOLðiÞ � 4:0�machine precision.

7: LRTOL – INTEGER Input

On entry: the dimension of the array RTOL as declared in the (sub)program from which
D02QWF is called.

Constraints:

if VECTOL ¼ :TRUE:, LRTOL � NEQF;
if VECTOL ¼ :FALSE:, LRTOL � 1.

8: ONESTP – LOGICAL Input

On entry: the mode of operation of the integration routine. If ONESTP ¼ :TRUE:, the integration
routine will operate in one-step mode, that is it will return after each successful step. Otherwise
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the integration routine will operate in interval mode, that is it will return at the end of the
integration interval.

9: CRIT – LOGICAL Input

On entry: specifies whether or not there is a value for the independent variable beyond which
integration is not to be attempted. Setting CRIT ¼ :TRUE: indicates that there is such a point,
whereas CRIT ¼ :FALSE: indicates that there is no such restriction.

10: TCRIT – REAL (KIND=nag_wp) Input

On entry: with CRIT ¼ :TRUE:, TCRIT must be set to a value of the independent variable
beyond which integration is not to be attempted. Otherwise TCRIT is not referenced.

11: HMAX – REAL (KIND=nag_wp) Input

On entry: if HMAX 6¼ 0:0, a bound on the absolute step size during the integration is taken to be
HMAXj j.
If HMAX ¼ 0:0, no bound is assumed on the step size during the integration.

A bound may be required if there are features of the solution on very short ranges of integration
which may be missed. You should try HMAX ¼ 0:0 first.

Note: this argument only affects the step size if the option CRIT ¼ :TRUE: is being used.

12: MAXSTP – INTEGER Input

On entry: a bound on the number of attempted steps in any one call to the integration routine. If
MAXSTP � 0 on entry, a value of 1000 is used.

13: NEQG – INTEGER Input

On entry: specifies whether or not root-finding is required in D02QFF or D02QGF.

NEQG � 0
No root-finding is attempted.

NEQG > 0
Root-finding is required and NEQG event functions will be specified for the integration
routine.

14: ALTERG – LOGICAL Input/Output

On entry: specifies whether or not the event functions have been redefined. ALTERG need not be
set if STATEF ¼ S . On subsequent calls to D02QWF, if NEQG has been set positive, then
ALTERG ¼ :FALSE: specifies that the event functions remain unchanged, whereas
ALTERG ¼ :TRUE: specifies that the event functions have changed. Because of the expense
in reinitializing the root searching procedure, ALTERG should be set to .TRUE. only if the event
functions really have been altered. ALTERG need not be set if the root-finding option is not used.

On exit: is set to .FALSE..

15: SOPHST – LOGICAL Input

On entry: the type of search technique to be used in the root-finding. If SOPHST ¼ :TRUE: then
a sophisticated and reliable but expensive technique will be used, whereas for
SOPHST ¼ :FALSE: a simple but less reliable technique will be used. If NEQG � 0, SOPHST
is not referenced.

16: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same argument RWORK supplied to the integration routine. It is used to pass
information to the integration routine and therefore the contents of this array must not be
changed before calling the integration routine.
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17: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D02QWF is called.

Constraint: LRWORK � 21� 1þ NEQFð Þ þ 2� J þK � NEQGþ 2, where

J ¼ NEQF if VECTOL ¼ :TRUE:
1 if VECTOL ¼ :FALSE:



and

K ¼ 14 if SOPHST ¼ :TRUE:
5 if SOPHST ¼ :FALSE:



.

18: IWORKðLIWORKÞ – INTEGER array Communication Array

This must be the same argument IWORK supplied to the integration routine. It is used to pass
information to the integration routine and therefore the contents of this array must not be
changed before calling the integration routine.

19: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D02QWF is called.

Constraints:

if SOPHST ¼ :TRUE:, LIWORK � 21þ 4� NEQG;
if SOPHST ¼ :FALSE:, LIWORK � 21þ NEQG.

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Illegal input detected.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02QWF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02QWF is not threaded in any implementation.

9 Further Comments

Prior to a continuation call of the integration routine, you may reset any of the optional parameters by
calling D02QWF with STATEF ¼ C . You may reset:

HMAX to alter the maximum step size selection;

RTOL, ATOL to change the error requirements;

MAXSTP to increase or decrease the number of attempted steps before an error exit
is returned;

ONESTP to change the operation mode of the integration routine;

CRIT, TCRIT to alter the point beyond which integration must not be attempted; and

NEQG, ALTERG, SOPHST to alter the number and type of event functions, and also the search
method.

If the behaviour of the system of differential equations has altered and you wish to restart the
integration method from the value of T output from the integration routine (see D02QFF and D02QGF),
then STATEF should be set to STATEF ¼ R and any of the optional parameters may be reset also. If
you want to redefine the system of differential equations or start a new integration problem, then
STATEF should be set to STATEF ¼ S . Resetting STATEF ¼ R or S on normal continuation calls
causes a restart in the integration process, which is very inefficient when not needed.

10 Example

See Section 10 in D02QFF and D02QGF.
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NAG Library Routine Document

D02QXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02QXF is a diagnostic routine which may be called after a call to either of the integration routines
D02QFF and D02QGF.

2 Specification

SUBROUTINE D02QXF (NEQF, YP, TCURR, HLAST, HNEXT, ODLAST, ODNEXT, NSUCC,
NFAIL, TOLFAC, BADCMP, RWORK, LRWORK, IWORK, LIWORK,
IFAIL)

&
&

INTEGER NEQF, ODLAST, ODNEXT, NSUCC, NFAIL, BADCMP, LRWORK,
IWORK(LIWORK), LIWORK, IFAIL

&

REAL (KIND=nag_wp) YP(NEQF), TCURR, HLAST, HNEXT, TOLFAC,
RWORK(LRWORK)

&

3 Description

D02QXF permits you to extract information about the performance of D02QFF or D02QGF. It may
only be called after a call to D02QFF or D02QGF.

4 References

None.

5 Arguments

1: NEQF – INTEGER Input

On entry: the number of first-order ordinary differential equations solved by the integration
routine. It must be the same argument NEQF supplied to the setup routine D02QWF and the
integration routines D02QFF or D02QGF.

2: YPðNEQFÞ – REAL (KIND=nag_wp) array Output

On exit: the approximate derivative of the solution component yi, as supplied in yi on output
from the integration routine at the output value of T. These values are obtained by the evaluation
of y0 ¼ f x; yð Þ except when the output value of the argument T in the call to the integration
routine is TOUT and TCURR 6¼ TOUT, in which case they are obtained by interpolation.

3: TCURR – REAL (KIND=nag_wp) Output

On exit: the value of the independent variable which the integrator has actually reached. TCURR
will always be at least as far as the output value of the argument T (from the integration routine)
in the direction of integration, but may be further.

4: HLAST – REAL (KIND=nag_wp) Output

On exit: the last successful step size used by the integrator.

5: HNEXT – REAL (KIND=nag_wp) Output

On exit: the next step size which the integration routine would attempt.
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6: ODLAST – INTEGER Output

On exit: the order of the method last used (successfully) by the integration routine.

7: ODNEXT – INTEGER Output

On exit: the order of the method which the integration routine would attempt on the next step.

8: NSUCC – INTEGER Output

On exit: the number of steps attempted by the integration routine that have been successful since
the start of the current problem.

9: NFAIL – INTEGER Output

On exit: the number of steps attempted by the integration routine that have failed since the start
of the current problem.

10: TOLFAC – REAL (KIND=nag_wp) Output

On exit: a tolerance scale factor, TOLFAC � 1:0, returned when the integration routine exits with
IFAIL ¼ 3. If RTOL and ATOL are uniformly scaled up by a factor of TOLFAC and D02QWF is
called, the next call to the integration routine is deemed likely to succeed.

11: BADCMP – INTEGER Output

On exit: if the integration routine returned with IFAIL ¼ 4, then BADCMP specifies the index of
the component which forced the error exit. Otherwise BADCMP is 0.

12: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

On entry: this must be the same argument RWORK as supplied to D02QFF or D02QGF. It is
used to pass information from the integration routine to D02QXF and therefore the contents of
this array must not be changed before calling D02QXF.

13: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D02QXF is called.

This must be the same argument LRWORK as supplied to D02QWF.

14: IWORKðLIWORKÞ – INTEGER array Communication Array

On entry: this must be the same argument IWORK as supplied to D02QFF or D02QGF. It is
used to pass information from the integration routine to D02QXF and therefore the contents of
this array must not be changed before calling D02QXF.

15: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D02QXF is called.

This must be the same argument LIWORK as supplied to D02QWF.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

D02QXF NAG Library Manual

D02QXF.2 Mark 26



On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An integration routine (D02QFF or D02QGF) has not been called or one or more of the
arguments LRWORK, LIWORK and NEQF does not match the corresponding argument supplied
to D02QWF.

This error exit may be caused by overwriting elements of RWORK.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02QXF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02QXF is not threaded in any implementation.

9 Further Comments

You should call D02QYF for information about any roots detected by D02QFF or D02QGF.

10 Example

See Section 10 in D02QFF.
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NAG Library Routine Document

D02QYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02QYF is a diagnostic routine which may be called after a call to the integrator routines D02QFF or
D02QGF.

2 Specification

SUBROUTINE D02QYF (NEQG, INDEX, ITYPE, EVENTS, RESIDS, RWORK, LRWORK,
IWORK, LIWORK, IFAIL)

&

INTEGER NEQG, INDEX, ITYPE, EVENTS(NEQG), LRWORK,
IWORK(LIWORK), LIWORK, IFAIL

&

REAL (KIND=nag_wp) RESIDS(NEQG), RWORK(LRWORK)

3 Description

D02QYF should be called only after a call to D02QFF or D02QGF results in the output value
ROOT ¼ :TRUE:, indicating that a root has been detected. D02QYF permits you to examine
information about the root detected, such as the indices of the event equations for which there is a root,
the type of root (odd or even) and the residuals of the event equations.

4 References

None.

5 Arguments

1: NEQG – INTEGER Input

On entry: the number of event functions defined for the integration routine. It must be the same
argument NEQG supplied to the setup routine D02QWF and to the integration routine (D02QFF
or D02QGF).

2: INDEX – INTEGER Output

On exit: the index k of the event equation gk x; y; y0ð Þ ¼ 0 for which the root has been detected.

3: ITYPE – INTEGER Output

On exit: information about the root detected for the event equation defined by INDEX. The
possible values of ITYPE with their interpretations are as follows:

ITYPE ¼ 1
A simple root, or lack of distinguishing information available.

ITYPE ¼ 2
A root of even multiplicity is believed to have been detected, that is no change in sign of
the event function was found.

ITYPE ¼ 3
A high-order root of odd multiplicity.
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ITYPE ¼ 4
A possible root, but due to high multiplicity or a clustering of roots accurate evaluation of
the event function was prohibited by round-off error and/or cancellation.

In general, the accuracy of the root is less reliable for values of ITYPE > 1.

4: EVENTSðNEQGÞ – INTEGER array Output

On exit: information about the kth event function on a very small interval containing the root, T
(see D02QFF and D02QGF), as output from the integration routine. All roots lying in this
interval are considered indistinguishable numerically and therefore should be regarded as defining
a root at T. The possible values of EVENTSðkÞ with their interpretations are as follows:

EVENTSðkÞ ¼ 0
The kth event function did not have a root.

EVENTSðkÞ ¼ �1
The kth event function changed sign from positive to negative about a root, in the
direction of integration.

EVENTSðkÞ ¼ 1
The kth event function changed sign from negative to positive about a root, in the
direction of integration.

EVENTSðkÞ ¼ 2
A root was identified, but no change in sign was observed.

5: RESIDSðNEQGÞ – REAL (KIND=nag_wp) array Output

On exit: the value of the kth event function computed at the root, T (see D02QFF and D02QGF).

6: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

On entry: this must be the same argument RWORK as supplied to D02QFF or D02QGF. It is
used to pass information from the integration routine to D02QYF and therefore the contents of
this array must not be changed before calling D02QYF.

7: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D02QYF is called.

This must be the same argument LRWORK as supplied to D02QWF.

8: IWORKðLIWORKÞ – INTEGER array Communication Array

On entry: this must be the same argument IWORK as supplied to D02QFF or D02QGF. It is
used to pass information from the integration routine to D02QYF and therefore the contents of
this array must not be changed before calling D02QYF.

9: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D02QYF is called.

This must be the same argument LIWORK as supplied to D02QWF.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An integration routine (D02QFF or D02QGF) has not been called, no root was detected or one or
more of the arguments LRWORK, LIWORK and NEQG does not match the corresponding
values supplied to D02QWF. Values for the arguments INDEX, ITYPE, EVENTS and RESIDS
will not have been set.

This error exit may be caused by overwriting elements of IWORK.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02QYF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02QYF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D02QFF.
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NAG Library Routine Document

D02QZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02QZF interpolates components of the solution of a non-stiff system of first-order differential
equations from information provided by the integrator routines D02QFF or D02QGF.

2 Specification

SUBROUTINE D02QZF (NEQF, TWANT, NWANT, YWANT, YPWANT, RWORK, LRWORK,
IWORK, LIWORK, IFAIL)

&

INTEGER NEQF, NWANT, LRWORK, IWORK(LIWORK), LIWORK, IFAIL
REAL (KIND=nag_wp) TWANT, YWANT(NWANT), YPWANT(NWANT), RWORK(LRWORK)

3 Description

D02QZF evaluates the first NWANT components of the solution of a non-stiff system of first-order
ordinary differential equations at any point using the method of Watts and Shampine (1986) and
information generated by D02QFF or D02QGF. D02QZF should not normally be used to extrapolate
outside the current range of the values produced by the integration routine.

4 References

Watts H A and Shampine L F (1986) Smoother interpolants for Adams codes SIAM J. Sci. Statist.
Comput. 7 334–345

5 Arguments

1: NEQF – INTEGER Input

On entry: the number of first-order ordinary differential equations being solved by the integration
routine. It must contain the same value as the argument NEQF in a prior call to the setup routine
D02QWF.

2: TWANT – REAL (KIND=nag_wp) Input

On entry: the point at which components of the solution and derivative are to be evaluated.
TWANT should not normally be an extrapolation point, that is TWANT should satisfy

told � TWANT � T,

or if integration is proceeding in the negative direction

told � TWANT � T,

where told is the previous integration point and is, to within rounding, TCURR – HLAST (see
D02QXF). Extrapolation is permitted but not recommended and IFAIL ¼ 2 is returned whenever
extrapolation is attempted.

3: NWANT – INTEGER Input

On entry: the number of components of the solution and derivative whose values at TWANT are
required. The first NWANT components are evaluated.

Constraint: 1 � NWANT � NEQF.
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4: YWANTðNWANTÞ – REAL (KIND=nag_wp) array Output

On exit: the calculated value of the ith component of the solution at TWANT, for
i ¼ 1; 2; . . . ;NWANT.

5: YPWANTðNWANTÞ – REAL (KIND=nag_wp) array Output

On exit: the calculated value of the ith component of the derivative at TWANT, for
i ¼ 1; 2; . . . ;NWANT.

6: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

On entry: this must be the same argument RWORK as supplied to D02QWF and to D02QFF or
D02QGF. It is used to pass information from these routines to D02QZF. Therefore its contents
must not be changed before a call to D02QZF.

7: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D02QZF is called.

This must be the same argument LRWORK as supplied to D02QWF.

8: IWORKðLIWORKÞ – INTEGER array Communication Array

On entry: this must be the same argument IWORK as supplied to D02QWF and to D02QFF or
D02QGF. It is used to pass information from these routines to D02QZF. Therefore its contents
must not be changed before a call to D02QZF.

9: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D02QZF is called.

This must be the same argument LIWORK as supplied to D02QWF.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An integration routine (D02QFF or D02QGF) has not been called, no integration steps have been
taken since the last call to D02QWF with STATEF ¼ S , one or more of the arguments
LRWORK, LIWORK and NEQF does not match the same argument supplied to D02QWF, or
NWANT does not satisfy 1 � NWANT � NEQF.
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IFAIL ¼ 2

D02QZF has been called for extrapolation. The values of the solution and its derivative at
TWANT have been calculated and placed in YWANT and YPWANT before returning with this
warning (see Section 7).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

These error exits may be caused by overwriting elements of RWORK and IWORK.

7 Accuracy

The error in interpolation is of a similar order to the error arising from the integration. The same order
of accuracy can be expected when extrapolating using D02QZF. However, the actual error in
extrapolation will, in general, be much larger than for interpolation.

8 Parallelism and Performance

D02QZF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02QZF is not threaded in any implementation.

9 Further Comments

When interpolation for only a few components is required then it is more efficient to order the
components of interest so that they are numbered first.

10 Example

This example solves the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2
y02 ¼ �y1

over the range 0; 	=2½ � with initial conditions y1 ¼ 0 and y2 ¼ 1 using vector error control
(VECTOL ¼ :TRUE:) and D02QFF in one-step mode (ONESTP ¼ :TRUE:). D02QZF is used to
provide solution values at intervals of 	=16.
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10.1 Program Text

! D02QZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02qzfe_mod

! D02QZF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Integer, Parameter, Public :: neqf = 2, neqg = 0, nin = 5, &

nout = 6
Integer, Parameter, Public :: latol = neqf
Integer, Parameter, Public :: liwork = 21 + 4*neqg
Integer, Parameter, Public :: lrtol = neqf
Integer, Parameter, Public :: lrwork = 23 + 23*neqf + 14*neqg

Contains
Subroutine fcn(neqf,x,y,f)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neqf

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neqf)
Real (Kind=nag_wp), Intent (In) :: y(neqf)

! .. Executable Statements ..
f(1) = y(2)
f(2) = -y(1)
Return

End Subroutine fcn
End Module d02qzfe_mod

Program d02qzfe

! D02QZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02qff, d02qfz, d02qwf, d02qzf, nag_wp
Use d02qzfe_mod, Only: fcn, latol, liwork, lrtol, lrwork, neqf, neqg, &

nin, nout
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: hmax, t, tcrit, tinc, tout, tstart, &
twant

Integer :: ifail, maxstp, nwant
Logical :: alterg, crit, onestp, root, sophst, &

vectol
Character (1) :: statef

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), y(:), &

ypwant(:), ywant(:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’D02QZF Example Program Results’

! Skip heading in data file
Read (nin,*)
Allocate (atol(latol),rtol(lrtol),rwork(lrwork),y(neqf),ypwant(neqf), &

ywant(neqf),iwork(liwork))

Read (nin,*) hmax, tstart
Read (nin,*) tcrit, tinc
Read (nin,*) statef
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Read (nin,*) vectol, onestp, crit
Read (nin,*) maxstp
Read (nin,*) rtol(1:neqf)
Read (nin,*) atol(1:neqf)
Read (nin,*) y(1:neqf)
tout = tcrit
t = tstart
twant = tstart + tinc
nwant = neqf

! Set up integration.
ifail = 0
Call d02qwf(statef,neqf,vectol,atol,latol,rtol,lrtol,onestp,crit,tcrit, &

hmax,maxstp,neqg,alterg,sophst,rwork,lrwork,iwork,liwork,ifail)

Write (nout,*)
Write (nout,*) ’ T Y(1) Y(2)’
Write (nout,99999) t, y(1), y(2)

integ: Do While (t<tout)
ifail = -1
Call d02qff(fcn,neqf,t,y,tout,d02qfz,neqg,root,rwork,lrwork,iwork, &

liwork,ifail)

If (ifail/=0) Then
Exit integ

End If

! Interpolate at wanted time values up to time = t.
Do While (twant<=t)

ifail = 0
Call d02qzf(neqf,twant,nwant,ywant,ypwant,rwork,lrwork,iwork,liwork, &

ifail)
Write (nout,99999) twant, ywant(1), ywant(2)
twant = twant + tinc

End Do
End Do integ

99999 Format (1X,F7.4,2X,2(F7.4,2X))
End Program d02qzfe

10.2 Program Data

D02QZF Example Program Data
2.0 0.0 : hmax, tstart
1.57079632679489661923 1.96349540849362077403E-1 : tcrit, tinc
S : statef
.TRUE. .TRUE. .TRUE. : vectol, onestp, crit
500 : maxstp
1.0E-4 1.0E-4 : rtol
1.0E-8 1.0E-8 : atol
0.0 1.0 : y

10.3 Program Results

D02QZF Example Program Results

T Y(1) Y(2)
0.0000 0.0000 1.0000
0.1963 0.1951 0.9808
0.3927 0.3827 0.9239
0.5890 0.5556 0.8315
0.7854 0.7071 0.7071
0.9817 0.8315 0.5556
1.1781 0.9239 0.3827
1.3744 0.9808 0.1951
1.5708 1.0000 -0.0000
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NAG Library Routine Document

D02RAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02RAF solves a two-point boundary value problem with general boundary conditions for a system of
ordinary differential equations, using a deferred correction technique and Newton iteration.

2 Specification

SUBROUTINE D02RAF (N, MNP, NP, NUMBEG, NUMMIX, TOL, INIT, X, Y, LDY,
ABT, FCN, G, IJAC, JACOBF, JACOBG, DELEPS, JACEPS,
JACGEP, WORK, LWORK, IWORK, LIWORK, IFAIL)

&
&

INTEGER N, MNP, NP, NUMBEG, NUMMIX, INIT, LDY, IJAC, LWORK,
IWORK(LIWORK), LIWORK, IFAIL

&

REAL (KIND=nag_wp) TOL, X(MNP), Y(LDY,MNP), ABT(N), DELEPS,
WORK(LWORK)

&

EXTERNAL FCN, G, JACOBF, JACOBG, JACEPS, JACGEP

3 Description

D02RAF solves a two-point boundary value problem for a system of n ordinary differential equations
in the interval a; b½ � with b > a. The system is written in the form

y0i ¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ; n ð1Þ

and the derivatives fi are evaluated by FCN. With the differential equations (1) must be given a system
of n (nonlinear) boundary conditions

gi y að Þ; y bð Þð Þ ¼ 0; i ¼ 1; 2; . . . ; n;

where

y xð Þ ¼ y1 xð Þ; y2 xð Þ; . . . ; yn xð Þ½ �T: ð2Þ
The functions gi are evaluated by G. The solution is computed using a finite difference technique with
deferred correction allied to a Newton iteration to solve the finite difference equations. The technique
used is described fully in Pereyra (1979).

You must supply an absolute error tolerance and may also supply an initial mesh for the finite
difference equations and an initial approximate solution (alternatively a default mesh and approximation
are used). The approximate solution is corrected using Newton iteration and deferred correction. Then,
additional points are added to the mesh and the solution is recomputed with the aim of making the error
everywhere less than your tolerance and of approximately equidistributing the error on the final mesh.
The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If,
on the other hand, the solution is required at several specific points then you should use the
interpolation routines provided in Chapter E01 if these points do not themselves form a convenient
mesh.

The Newton iteration requires Jacobian matrices

@fi
@yj

� �
;

@gi
@yj að Þ

� �
and

@gi
@yj bð Þ

� �
:
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These may be supplied through JACOBF for
@fi
@yj

� �
and JACOBG for the others. Alternatively the

Jacobians may be calculated by numerical differentiation using the algorithm described in Curtis et al.
(1974).

For problems of the type (1) and (2) for which it is difficult to determine an initial approximation from
which the Newton iteration will converge, a continuation facility is provided. You must set up a family
of problems

y0 ¼ f x; y; �ð Þ; g y að Þ; y bð Þ; �ð Þ ¼ 0; ð3Þ

where f ¼ f1; f2; . . . ; fn½ �T etc., and where � is a continuation parameter. The choice � ¼ 0 must give a
problem (3) which is easy to solve and � ¼ 1 must define the problem whose solution is actually
required. The routine solves a sequence of problems with � values

0 ¼ �1 < �2 < � � � < �p ¼ 1: ð4Þ
The number p and the values �i are chosen by the routine so that each problem can be solved using the

solution of its predecessor as a starting approximation. Jacobians
@f

@�
and

@g

@�
are required and they may

be supplied by you via JACEPS and JACGEP respectively or may be computed by numerical
differentiation.

4 References

Curtis A R, Powell M J D and Reid J K (1974) On the estimation of sparse Jacobian matrices J. Inst.
Maths. Applics. 13 117–119

Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear,
ordinary boundary problems Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science (eds B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76
Springer–Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the number of differential equations.

Constraint: N > 0.

2: MNP – INTEGER Input

On entry: MNP must be set to the maximum permitted number of points in the finite difference
mesh. If LWORK or LIWORK are too small then internally MNP will be replaced by the
maximum permitted by these values. (A warning message will be output if on entry IFAIL is set
to obtain monitoring information.)

Constraint: MNP � 32.

3: NP – INTEGER Input/Output

On entry: must be set to the number of points to be used in the initial mesh.

Constraint: 4 � NP � MNP.

On exit: the number of points in the final mesh.

4: NUMBEG – INTEGER Input

On entry: the number of left-hand boundary conditions (that is the number involving y að Þ only).
Constraint: 0 � NUMBEG < N.
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5: NUMMIX – INTEGER Input

On entry: the number of coupled boundary conditions (that is the number involving both y að Þ and
y bð Þ).
Constraint: 0 � NUMMIX � N� NUMBEG.

6: TOL – REAL (KIND=nag_wp) Input

On entry: a positive absolute error tolerance. If

a ¼ x1 < x2 < � � � < xNP ¼ b

is the final mesh, zj xið Þ is the jth component of the approximate solution at xi, and yj xð Þ is the
jth component of the true solution of (1) and (2), then, except in extreme circumstances, it is
expected that

zj xið Þ � yj xið Þ
		 		 � TOL; i ¼ 1; 2; . . . ;NP and j ¼ 1; 2; . . . ; n: ð5Þ

Constraint: TOL > 0:0.

7: INIT – INTEGER Input

On entry: indicates whether you wish to supply an initial mesh and approximate solution
(INIT ¼ 1) or whether default values are to be used, (INIT ¼ 0).

Constraint: INIT ¼ 0 or 1.

8: XðMNPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: you must set Xð1Þ ¼ a and XðNPÞ ¼ b. If INIT ¼ 0 on entry a default equispaced mesh
will be used, otherwise you must specify a mesh by setting XðiÞ ¼ xi, for i ¼ 2; 3; . . . ;NP� 1.

Constraints:

if INIT ¼ 0, Xð1Þ < XðNPÞ;
if INIT ¼ 1, Xð1Þ < Xð2Þ < � � � < XðNPÞ.

On exit: Xð1Þ;Xð2Þ; . . . ;XðNPÞ define the final mesh (with the returned value of NP) and
Xð1Þ ¼ a and XðNPÞ ¼ b.

9: YðLDY;MNPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if INIT ¼ 0, then Y need not be set.

If INIT ¼ 1, then the array Y must contain an initial approximation to the solution such that
Yðj; iÞ contains an approximation to

yj xið Þ; i ¼ 1; 2; . . . ;NP and j ¼ 1; 2; . . . ; n:

On exit: the approximate solution zj xið Þ satisfying (5) on the final mesh, that is

Yðj; iÞ ¼ zj xið Þ; i ¼ 1; 2; . . . ;NP and j ¼ 1; 2; . . . ; n;

where NP is the number of points in the final mesh. If an error has occurred then Y contains the
latest approximation to the solution. The remaining columns of Y are not used.

10: LDY – INTEGER Input

On entry: the first dimension of the array Y as declared in the (sub)program from which D02RAF
is called.

Constraint: LDY � N.

11: ABTðNÞ – REAL (KIND=nag_wp) array Output

On exit: ABTðiÞ, for i ¼ 1; 2; . . . ; n, holds the largest estimated error (in magnitude) of the ith
component of the solution over all mesh points.
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12: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) at a general point x for a given value
of �, the continuation parameter (see Section 3).

The specification of FCN is:

SUBROUTINE FCN (X, EPS, Y, F, N)

INTEGER N
REAL (KIND=nag_wp) X, EPS, Y(N), F(N)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter. This is 1 if continuation is not
being used.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the values of the dependent variables at x.

4: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the derivatives fi evaluated at x given �, for i ¼ 1; 2; . . . ;n.

5: N – INTEGER Input

On entry: n, the number of equations.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02RAF is called. Arguments denoted as Input must not be changed by this
procedure.

13: G – SUBROUTINE, supplied by the user. External Procedure

G must evaluate the boundary conditions in equation (3) and place them in the array BC.

The specification of G is:

SUBROUTINE G (EPS, YA, YB, BC, N)

INTEGER N
REAL (KIND=nag_wp) EPS, YA(N), YB(N), BC(N)

1: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter. This is 1 if continuation is not
being used.

2: YAðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value yi að Þ, for i ¼ 1; 2; . . . ; n.

3: YBðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value yi bð Þ, for i ¼ 1; 2; . . . ; n.

4: BCðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values gi y að Þ; y bð Þ; �ð Þ, for i ¼ 1; 2; . . . ; n. These must be ordered as
follows:
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(i) first, the conditions involving only y að Þ (see NUMBEG);

(ii) next, the NUMMIX coupled conditions involving both y að Þ and y bð Þ (see
NUMMIX); and,

(iii) finally, the conditions involving only y bð Þ (N� NUMBEG� NUMMIX).

5: N – INTEGER Input

On entry: n, the number of equations.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02RAF is called. Arguments denoted as Input must not be changed by this
procedure.

14: IJAC – INTEGER Input

On entry: indicates whether or not you are supplying Jacobian evaluation routines.

IJAC 6¼ 0
You must supply JACOBF and JACOBG and also, when continuation is used, JACEPS
and JACGEP.

IJAC ¼ 0
Numerical differentiation is used to calculate the Jacobian and the routines D02GAW,
D02GAX, D02GAY and D02GAZ respectively may be used as the dummy arguments.

15: JACOBF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JACOBF evaluates the Jacobian
@fi
@yj

� �
, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n, given x and yj ,

for j ¼ 1; 2; . . . ; n.

If IJAC ¼ 0, then numerical differentiation is used to calculate the Jacobian and the routine
D02GAZ may be substituted for this argument.

The specification of JACOBF is:

SUBROUTINE JACOBF (X, EPS, Y, F, N)

INTEGER N
REAL (KIND=nag_wp) X, EPS, Y(N), F(N,N)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter. This is 1 if continuation is not
being used.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the values of the dependent variables at x.

4: FðN;NÞ – REAL (KIND=nag_wp) array Output

On exit: Fðj; iÞ must be set to the value of
@fi
@yj

, evaluated at the point x; yð Þ, for

i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

5: N – INTEGER Input

On entry: n, the number of equations.
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JACOBF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02RAF is called. Arguments denoted as Input must not be changed by this
procedure.

16: JACOBG – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JACOBG evaluates the Jacobians
@gi

@yj að Þ

� �
and

@gi
@yj bð Þ

� �
. The ordering of the rows of AJ and

BJ must correspond to the ordering of the boundary conditions described in the specification of
G.

If IJAC ¼ 0, then numerical differentiation is used to calculate the Jacobian and the routine
D02GAY may be substituted for this argument.

The specification of JACOBG is:

SUBROUTINE JACOBG (EPS, YA, YB, AJ, BJ, N)

INTEGER N
REAL (KIND=nag_wp) EPS, YA(N), YB(N), AJ(N,N), BJ(N,N)

1: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter. This is 1 if continuation is not
being used.

2: YAðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value yi að Þ, for i ¼ 1; 2; . . . ; n.

3: YBðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value yi bð Þ, for i ¼ 1; 2; . . . ; n.

4: AJðN;NÞ – REAL (KIND=nag_wp) array Output

On exit: AJði; jÞ must be set to the value
@gi

@yj að Þ
, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

5: BJðN;NÞ – REAL (KIND=nag_wp) array Output

On exit: BJði; jÞ must be set to the value
@gi
@yj bð Þ

, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

6: N – INTEGER Input

On entry: n, the number of equations.

JACOBG must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02RAF is called. Arguments denoted as Input must not be changed
by this procedure.

17: DELEPS – REAL (KIND=nag_wp) Input/Output

On entry: must be given a value which specifies whether continuation is required. If
DELEPS � 0:0 or DELEPS � 1:0 then it is assumed that continuation is not required. If
0:0 < DELEPS < 1:0 then i t i s assumed that cont inuat ion is requi red unless
DELEPS <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

when an error exit is taken. DELEPS is used as the increment
�2 � �1 (see (4)) and the choice DELEPS ¼ 0:1 is recommended.

On exit: an overestimate of the increment �p � �p�1 (in fact the value of the increment which
would have been tried if the restriction �p ¼ 1 had not been imposed). If continuation was not
requested then DELEPS ¼ 0:0.
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If continuation is not requested then JACEPS and JACGEP may each be replaced by dummy
actual arguments in the call to D02RAF. (D02GAW and D02GAX respectively may be used as
the dummy arguments.)

18: JACEPS – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JACEPS evaluates the derivative
@fi
@�

given x and y if continuation is being used.

If all Jacobians (derivatives) are to be approximated internally by numerical differentiation, or
continuation is not being used, the routine D02GAW may be substituted for this argument.

The specification of JACEPS is:

SUBROUTINE JACEPS (X, EPS, Y, F, N)

INTEGER N
REAL (KIND=nag_wp) X, EPS, Y(N), F(N)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the solution values yi, for i ¼ 1; 2; . . . ; n, at the point x.

4: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: FðiÞ must contain the value
@fi
@�

at the point x; yð Þ, for i ¼ 1; 2; . . . ; n.

5: N – INTEGER Input

On entry: n, the number of equations.

JACEPS must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02RAF is called. Arguments denoted as Input must not be changed by this
procedure.

19: JACGEP – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JACGEP evaluates the derivatives
@gi
@�

if continuation is being used.

If all Jacobians (derivatives) are to be approximated internally by numerical differentiation, or
continuation is not being used, the routine D02GAX may be substituted for this argument.

The specification of JACGEP is:

SUBROUTINE JACGEP (EPS, YA, YB, BCEP, N)

INTEGER N
REAL (KIND=nag_wp) EPS, YA(N), YB(N), BCEP(N)

1: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter.

2: YAðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value of yi að Þ, for i ¼ 1; 2; . . . ; n.
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3: YBðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value of yi bð Þ, for i ¼ 1; 2; . . . ; n.

4: BCEPðNÞ – REAL (KIND=nag_wp) array Output

On exit: BCEPðiÞ must contain the value of
@gi
@�

, for i ¼ 1; 2; . . . ; n.

5: N – INTEGER Input

On entry: n, the number of equations.

JACGEP must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02RAF is called. Arguments denoted as Input must not be changed by this
procedure.

20: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
21: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
D02RAF is called.

Constraint: LWORK � MNP� 3N2 þ 6Nþ 2
� �

þ 4N2 þ 3N.

22: IWORKðLIWORKÞ – INTEGER array Workspace
23: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D02RAF is called.

Constraints:

if IJAC 6¼ 0, LIWORK � MNP� 2� Nþ 1ð Þ þ N;
if IJAC ¼ 0, LIWORK � MNP� 2� Nþ 1ð Þ þ N2 þ 4� Nþ 2.

24: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Section 3.4 in How to Use the NAG
Library and its Documentation).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the
decimal digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages
printed).

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the arguments N, MNP, NP, NUMBEG, NUMMIX, TOL, DELEPS, LWORK or
LIWORK is incorrectly set, or Xð1Þ � XðNPÞ or the mesh points XðiÞ are not in strictly
ascending order.

IFAIL ¼ 2

A finer mesh is required for the accuracy requested; that is MNP is not large enough. This error
exit normally occurs when the problem being solved is difficult (for example, there is a boundary
layer) and high accuracy is requested. A poor initial choice of mesh points will make this error
exit more likely.

IFAIL ¼ 3

The Newton iteration has failed to converge. There are several possible causes for this error:

(i) faulty coding in one of the Jacobian calculation routines;

(ii) if IJAC ¼ 0 then inaccurate Jacobians may have been calculated numerically (this is a very
unlikely cause); or,

(iii) a poor initial mesh or initial approximate solution has been selected either by you or by
default or there are not enough points in the initial mesh. Possibly, you should try the
continuation facility.

IFAIL ¼ 4

The Newton iteration has reached round-off error level. It could be however that the answer
returned is satisfactory. The error is likely to occur if too high an accuracy is requested.

IFAIL ¼ 5

The Jacobian calculated by JACOBG (or the equivalent matrix calculated by numerical
differentiation) is singular. This may occur due to faulty coding of JACOBG or, in some
circumstances, to a zero initial choice of approximate solution (such as is chosen when
INIT ¼ 0).

IFAIL ¼ 6

There is no dependence on � when continuation is being used. This can be due to faulty coding of
JACEPS or JACGEP or, in some circumstances, to a zero initial choice of approximate solution
(such as is chosen when INIT ¼ 0).

IFAIL ¼ 7

DELEPS is required to be less than machine precision for continuation to proceed. It is likely
that either the problem (3) has no solution for some value near the current value of � (see the
advisory print out from D02RAF) or that the problem is so difficult that even with continuation it
is unlikely to be solved using this routine. If the latter cause is suspected then using more mesh
points initially may help.

IFAIL ¼ 8
IFAIL ¼ 9

A serious error has occurred in an internal call. Check all array subscripts and subroutine
argument lists in calls to D02RAF. Seek expert help.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The solution returned by the routine will be accurate to your tolerance as defined by the relation (5)
except in extreme circumstances. The final error estimate over the whole mesh for each component is
given in the array ABT. If too many points are specified in the initial mesh, the solution may be more
accurate than requested and the error may not be approximately equidistributed.

8 Parallelism and Performance

D02RAF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02RAF is not threaded in any implementation.

9 Further Comments

There are too many factors present to quantify the timing. The time taken by D02RAF is negligible
only on very simple problems.

You are strongly recommended to set IFAIL to obtain self-explanatory error messages, and also
monitoring information about the course of the computation. Monitoring information is written to a
logical advisory message unit which normally default to the same unit number as the error message unit
(see Section 3.5 in How to Use the NAG Library and its Documentation for details); the advisory
message unit number can be changed by calling X04ABF.

In the case where you wish to solve a sequence of similar problems, the use of the final mesh and
solution from one case as the initial mesh is strongly recommended for the next.

10 Example

This example solves the differential equation

y000 ¼ �yy00 � 2� 1� y02
� �

with � ¼ 1 and boundary conditions

y 0ð Þ ¼ y0 0ð Þ ¼ 0; y0 10ð Þ ¼ 1

to an accuracy specified by TOL ¼ 1:0E�4. The continuation facility is used with the continuation
parameter � introduced as in the differential equation above and with DELEPS ¼ 0:1 initially. (The
continuation facility is not needed for this problem and is used here for illustration.)
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10.1 Program Text

! D02RAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02rafe_mod

! D02RAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn, g, jaceps, jacgep, jacobf, &

jacobg
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter, Public :: iset = 1, n = 3, nin = 5, nout = 6

Contains
Subroutine fcn(x,eps,y,f,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: eps, x
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(n)
Real (Kind=nag_wp), Intent (In) :: y(n)

! .. Executable Statements ..
f(1) = y(2)
f(2) = y(3)
f(3) = -y(1)*y(3) - two*(one-y(2)*y(2))*eps
Return

End Subroutine fcn

Subroutine g(eps,ya,yb,bc,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: eps
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: bc(n)
Real (Kind=nag_wp), Intent (In) :: ya(n), yb(n)

! .. Executable Statements ..
bc(1) = ya(1)
bc(2) = ya(2)
bc(3) = yb(2) - one
Return

End Subroutine g

Subroutine jaceps(x,eps,y,f,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: eps, x
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(n)
Real (Kind=nag_wp), Intent (In) :: y(n)

! .. Executable Statements ..
f(1:2) = zero
f(3) = -two*(one-y(2)*y(2))
Return

End Subroutine jaceps

Subroutine jacgep(eps,ya,yb,bcep,n)

! .. Scalar Arguments ..
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Real (Kind=nag_wp), Intent (In) :: eps
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: bcep(n)
Real (Kind=nag_wp), Intent (In) :: ya(n), yb(n)

! .. Executable Statements ..
bcep(1:n) = zero
Return

End Subroutine jacgep

Subroutine jacobf(x,eps,y,f,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: eps, x
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(n,n)
Real (Kind=nag_wp), Intent (In) :: y(n)

! .. Executable Statements ..
f(1:n,1:n) = zero
f(1,2) = one
f(2,3) = one
f(3,1) = -y(3)
f(3,2) = two*two*y(2)*eps
f(3,3) = -y(1)
Return

End Subroutine jacobf

Subroutine jacobg(eps,ya,yb,aj,bj,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: eps
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: aj(n,n), bj(n,n)
Real (Kind=nag_wp), Intent (In) :: ya(n), yb(n)

! .. Executable Statements ..
aj(1:n,1:n) = zero
bj(1:n,1:n) = zero
aj(1,1) = one
aj(2,2) = one
bj(3,2) = one
Return

End Subroutine jacobg
End Module d02rafe_mod

Program d02rafe

! D02RAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02raf, nag_wp, x04abf
Use d02rafe_mod, Only: fcn, g, iset, jaceps, jacgep, jacobf, jacobg, n, &

nin, nout
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: deleps, tol
Integer :: ifail, ijac, init, j, ldy, liwork, &

lwork, mnp, np, numbeg, nummix, &
outchn

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: abt(:), work(:), x(:), y(:,:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’D02RAF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) mnp, np
ldy = n
liwork = mnp*(2*n+1) + n
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lwork = mnp*(3*n*n+6*n+2) + 4*n*n + 3*n
Allocate (abt(n),work(lwork),x(mnp),y(ldy,mnp),iwork(liwork))

outchn = nout
Write (nout,*)
Call x04abf(iset,outchn)
Read (nin,*) tol, deleps
Read (nin,*) init, ijac, numbeg, nummix
Read (nin,*) x(1), x(np)

! ifail: behaviour on error exit
! =1 for quiet-soft exit
! * Set IFAIL to 111 to obtain monitoring information *

ifail = 1
Call d02raf(n,mnp,np,numbeg,nummix,tol,init,x,y,ldy,abt,fcn,g,ijac, &

jacobf,jacobg,deleps,jaceps,jacgep,work,lwork,iwork,liwork,ifail)

If (ifail==0 .Or. ifail==4) Then
Write (nout,*) ’Calculation using analytic Jacobians’
If (ifail==4) Then

Write (nout,99996) ’On exit from D02RAF IFAIL = 4’
End If
Write (nout,*)
Write (nout,99999) ’Solution on final mesh of ’, np, ’ points’
Write (nout,*) ’ X(I) Y1(I) Y2(I) Y3(I)’
Write (nout,99998)(x(j),y(1:n,j),j=1,np)
Write (nout,*)
Write (nout,*) ’Maximum estimated error by components’
Write (nout,99997) abt(1:n)

Else
Write (nout,99996) ’ ** D02RAF returned with IFAIL = ’, ifail

End If

99999 Format (1X,A,I2,A)
99998 Format (1X,F10.6,3F13.4)
99997 Format (11X,1P,3E13.2)
99996 Format (1X,A,I5)

End Program d02rafe

10.2 Program Data

D02RAF Example Program Data
40 17 : max mesh size, initial mesh size
1.0E-4 1.0E-1 : tol, deleps
0 1 2 0 : init, ijac, numbeg, nummix
0.0 10.0 : domain end-points

10.3 Program Results

D02RAF Example Program Results

Calculation using analytic Jacobians

Solution on final mesh of 33 points
X(I) Y1(I) Y2(I) Y3(I)

0.000000 0.0000 0.0000 1.6872
0.062500 0.0032 0.1016 1.5626
0.125000 0.0125 0.1954 1.4398
0.187500 0.0275 0.2816 1.3203
0.250000 0.0476 0.3605 1.2054
0.375000 0.1015 0.4976 0.9924
0.500000 0.1709 0.6097 0.8048
0.625000 0.2530 0.6999 0.6438
0.703125 0.3095 0.7467 0.5563
0.781250 0.3695 0.7871 0.4784
0.937500 0.4978 0.8513 0.3490
1.093750 0.6346 0.8977 0.2502
1.250000 0.7776 0.9308 0.1763
1.458333 0.9748 0.9598 0.1077
1.666667 1.1768 0.9773 0.0639
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1.875000 1.3815 0.9876 0.0367
2.031250 1.5362 0.9922 0.0238
2.187500 1.6915 0.9952 0.0151
2.500000 2.0031 0.9983 0.0058
2.656250 2.1591 0.9990 0.0035
2.812500 2.3153 0.9994 0.0021
3.125000 2.6277 0.9998 0.0007
3.750000 3.2526 1.0000 0.0001
4.375000 3.8776 1.0000 0.0000
5.000000 4.5026 1.0000 0.0000
5.625000 5.1276 1.0000 -0.0000
6.250000 5.7526 1.0000 0.0000
6.875000 6.3776 1.0000 -0.0000
7.500000 7.0026 1.0000 0.0000
8.125000 7.6276 1.0000 -0.0000
8.750000 8.2526 1.0000 0.0000
9.375000 8.8776 1.0000 -0.0000

10.000000 9.5026 1.0000 0.0000

Maximum estimated error by components
6.92E-05 1.81E-05 6.42E-05
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NAG Library Routine Document

D02SAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02SAF solves a two-point boundary value problem for a system of first-order ordinary differential
equations with boundary conditions, combined with additional algebraic equations. It uses initial value
techniques and a modified Newton iteration in a shooting and matching method.

2 Specification

SUBROUTINE D02SAF (P, M, N, N1, PE, PF, E, DP, NPOINT, SWP, LDSWP,
ICOUNT, RANGE, BC, FCN, EQN, CONSTR, YMAX, MONIT,
PRSOL, W, LDW, SDW, IFAIL)

&
&

INTEGER M, N, N1, NPOINT, LDSWP, ICOUNT, LDW, SDW, IFAIL
REAL (KIND=nag_wp) P(M), PE(M), PF(M), E(N), DP(M), SWP(LDSWP,6), YMAX,

W(LDW,SDW)
&

LOGICAL CONSTR
EXTERNAL RANGE, BC, FCN, EQN, CONSTR, MONIT, PRSOL

3 Description

D02SAF solves a two-point boundary value problem for a system of n first-order ordinary differential
equations with separated boundary conditions by determining certain unknown arguments
p1; p2; . . . ; pm. (There may also be additional algebraic equations to be solved in the determination of
the arguments and, if so, these equations are defined by EQN.) The arguments may be, but need not be,
boundary values; they may include eigenvalues, arguments in the coefficients of the differential
equations, coefficients in series expansions or asymptotic expansions for boundary values, the length of
the range of definition of the system of differential equations, etc.

It is assumed that we have a system of n differential equations of the form

y0 ¼ f x; y; pð Þ; ð1Þ

where p ¼ p1; p2; . . . ; pmð ÞT is the vector of arguments, and that the derivative f is evaluated by FCN.
Also, n1 of the equations are assumed to depend on p. For n1 < n the n� n1 equations of the system
are not involved in the matching process. These are the driving equations; they should be independent
of p and of the solution of the other n1 equations. In numbering the equations in FCN and BC the
driving equations must be put first (as they naturally occur in most applications). The range of
definition [a; b] of the differential equations is defined by RANGE and may depend on the arguments
p1; p2; . . . ; pm (that is, on p). RANGE must define the points x1; x2; . . . ; xNPOINT, NPOINT � 2, which
must satisfy

a ¼ x1 < x2 < � � � < xNPOINT ¼ b ð2Þ

(or a similar relationship with all the inequalities reversed).

If NPOINT > 2 the points x1; x2; . . . ; xNPOINT can be used to break up the range of definition.
Integration is restarted at each of these points. This means that the differential equations (1) can be
defined differently in each sub-interval xi; xiþ1½ �, for i ¼ 1; 2; . . . ;NPOINT� 1. Also, since initial and
maximum integration step sizes can be supplied on each sub-interval (via the array SWP), you can
indicate parts of the range a; b½ � where the solution y xð Þ may be difficult to obtain accurately and can
take appropriate action.

The boundary conditions may also depend on the arguments and are applied at a ¼ x1 and b ¼ xNPOINT.
They are defined (in BC) in the form
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y að Þ ¼ g1 pð Þ; > y bð Þ ¼ g2 pð Þ: ð3Þ

The boundary value problem is solved by determining the unknown arguments p by a shooting and
matching technique. The differential equations are always integrated from a to b with initial values
y að Þ ¼ g1 pð Þ. The solution vector thus obtained at x ¼ b is subtracted from the vector g2 pð Þ to give the
n1 residuals r1 pð Þ, ignoring the first n� n1, driving equations. Because the direction of integration is
always from a to b, it is unnecessary, in BC, to supply values for the first n� n1 boundary values at b,
that is the first n� n1 components of g2 in (3). For n1 < m then r1 pð Þ. Together with the m� n1
equations defined by EQN,

r2 pð Þ ¼ 0; ð4Þ

these give a vector of residuals r, which at the solution, p, must satisfy

r1 pð Þ
r2 pð Þ

� �
¼ 0: ð5Þ

These equations are solved by a pseudo-Newton iteration which uses a modified singular value

decomposition of J ¼ @r

@p
when solving the linear equations which arise. The Jacobian J used in

Newton's method is obtained by numerical differentiation. The arguments at each Newton iteration are
accepted only if the norm D�1 ~Jþr

�� ��
2
is much reduced from its previous value. Here ~Jþ is the pseudo-

inverse, calculated from the singular value decomposition, of a modified version of the Jacobian J (Jþ

is actually the inverse of the Jacobian in well-conditioned cases). D is a diagonal matrix with

dii ¼ max pij j;PFðiÞð Þ ð6Þ

where PF is an array of floor values.

See Deuflhard (1974) for further details of the variants of Newton's method used, Gay (1976) for the
modification of the singular value decomposition and Gladwell (1979) for an overview of the method
used.

Two facilities are provided to prevent the pseudo-Newton iteration running into difficulty. First, you are
permitted to specify constraints on the values of the arguments p via a CONSTR. These constraints are
only used to prevent the Newton iteration using values for p which would violate them; that is, they are
not used to determine the values of p. Secondly, you are permitted to specify a maximum value ymax for
y xð Þk k1 at all points in the range a; b½ �. It is intended that this facility be used to prevent machine
‘overflow’ in the integrations of equation (1) due to poor choices of the arguments p which might arise
during the Newton iteration. When using this facility, it is presumed that you have an estimate of the
likely size of y xð Þk k1 at all points x 2 a; b½ �. ymax should then be chosen rather larger (say by a factor
of 10) than this estimate.

You are strongly advised to supply a MONIT (or to call the ‘default’ routine D02HBX, see MONIT) to
monitor the progress of the pseudo-Newton iteration. You can output the solution of the problem y xð Þ
by supplying a suitable PRSOL (an example is given in Section 10 of a routine designed to output the
solution at equally spaced points).

D02SAF is designed to try all possible options before admitting failure and returning to you. Provided
the routine can start the Newton iteration from the initial point p it will exhaust all the options available
to it (though you can override this by specifying a maximum number of iterations to be taken). The fact
that all its options have been exhausted is the only error exit from the iteration. Other error exits are
possible, however, whilst setting up the Newton iteration and when computing the final solution.

If you require more background information about the solution of boundary value problems by shooting
methods you are recommended to read the appropriate chapters of Hall and Watt (1976), and for a
detailed description of D02SAF Gladwell (1979) is recommended.
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5 Arguments

1: PðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: PðiÞ must be set to an estimate of the ith argument, pi, for i ¼ 1; 2; . . . ;m.

On exit: the corrected value for the ith argument, unless an error has occurred, when it contains
the last calculated value of the argument.

2: M – INTEGER Input

On entry: m, the number of arguments.

Constraint: M > 0.

3: N – INTEGER Input

On entry: n, the total number of differential equations.

Constraint: N > 0.

4: N1 – INTEGER Input

On entry: n1, the number of differential equations active in the matching process. The active
equations must be placed last in the numbering in FCN and BC. The first N� N1 equations are
used as the driving equations.

Constraint: N1 � N, N1 � M and N1 > 0.

5: PEðMÞ – REAL (KIND=nag_wp) array Input

On entry: PEðiÞ, for i ¼ 1; 2; . . . ;m, must be set to a positive value for use in the convergence
test in the ith argument pi. See the description of PF for further details.

Constraint: PEðiÞ > 0:0, for i ¼ 1; 2; . . . ;m.

6: PFðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: PFðiÞ, for i ¼ 1; 2; . . . ;m, should be set to a ‘floor’ value in the convergence test on
the ith argument pi. If PFðiÞ � 0:0 on entry then it is set to the small positive value

ffiffi
�
p

(where �
may in most cases be considered to be machine precision); otherwise it is used unchanged.

The Newton iteration is presumed to have converged if a full Newton step is taken (ISTATE ¼ 1
in the specification of MONIT), the singular values of the Jacobian are not being significantly
perturbed (also see MONIT) and if the Newton correction Ci satisfies

Cij j � PEðiÞ �max pij j; PFðiÞð Þ; i ¼ 1; 2; . . . ;m;
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where pi is the current value of the ith argument. The values PFðiÞ are also used in determining
the Newton iterates as discussed in Section 3, see equation (6).

On exit: the values actually used.

7: EðNÞ – REAL (KIND=nag_wp) array Input

On entry: values for use in controlling the local error in the integration of the differential
equations. If erri is an estimate of the local error in yi, for i ¼ 1; 2; . . . ; n, then

err ij j � EðiÞ �max
ffiffi
�
p
; yij j

� 
;

where � may in most cases be considered to be machine precision.

Suggested value: EðiÞ ¼ 10�5.

Constraint: EðiÞ > 0:0, for i ¼ 1; 2; . . . ;N.

8: DPðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: a value to be used in perturbing the argument pi in the numerical differentiation to
estimate the Jacobian used in Newton's method. If DPðiÞ ¼ 0:0 on entry, an estimate is made
internally by setting

DPðiÞ ¼
ffiffi
�
p
�max PFðiÞ; pij jð Þ; ð7Þ

where pi is the initial value of the argument supplied by you and � may in most cases be
considered to be machine precision. The estimate of the Jacobian, J , is made using forward
differences, that is for each i, for i ¼ 1; 2; . . . ;m, pi is perturbed to pi þ DPðiÞ and the ith column
of J is estimated as

r pi þ DPðiÞð Þ � r pið Þð Þ=DPðiÞ

where the other components of p are unchanged (see (3) for the notation used). If this fails to
produce a Jacobian with significant columns, backward differences are tried by perturbing pi to
pi � DPðiÞ and if this also fails then central differences are used with pi perturbed to
pi þ 10:0� DPðiÞ. If this also fails then the calculation of the Jacobian is abandoned. If the
Jacobian has not previously been calculated then an error exit is taken. If an earlier estimate of
the Jacobian is available then the current argument set, pi, for i ¼ 1; 2; . . . ;m, is abandoned in
favour of the last argument set from which useful progress was made and the singular values of
the Jacobian used at the point are modified before proceeding with the Newton iteration. You are
recommended to use the default value DPðiÞ ¼ 0:0 unless you have prior knowledge of a better
choice. If any of the perturbations described are likely to lead to an unfortunate set of argument
values then you should use the LOGICAL FUNCTION CONSTR to prevent such perturbations
(all changes of arguments are checked by a call to CONSTR).

On exit: the values actually used.

9: NPOINT – INTEGER Input

On entry: 2 plus the number of break-points in the range of definition of the system of
differential equations (1).

Constraint: NPOINT � 2.

10: SWPðLDSWP; 6Þ – REAL (KIND=nag_wp) array Input/Output

On entry: SWPði; 1Þ must contain an estimate for an initial step size for integration across the ith
sub-interval XðiÞ;Xði þ 1Þ½ �, for i ¼ 1; 2; . . . ;NPOINT� 1, (see RANGE). SWPði; 1Þ should have
the same sign as Xðiþ 1Þ � XðiÞ if it is nonzero. If SWPði; 1Þ ¼ 0:0, on entry, a default value for
the initial step size is calculated internally. This is the recommended mode of entry.

SWPði; 3Þ must contain a lower bound for the modulus of the step size on the ith sub-interval
XðiÞ;Xði þ 1Þ½ �, for i ¼ 1; 2; . . . ;NPOINT� 1. If SWPði; 3Þ ¼ 0:0 on entry, a very small default
value is used. By setting SWPði; 3Þ > 0:0 but smaller than the expected step sizes (assuming you
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have some insight into the likely step sizes) expensive integrations with arguments p far from the
solution can be avoided.

SWPði; 2Þ must contain an upper bound on the modulus of the step size to be used in the
integration on XðiÞ;Xði þ 1Þ½ �, for i ¼ 1; 2; . . . ;NPOINT� 1. If SWPði; 2Þ ¼ 0:0 on entry no
bound is assumed. This is the recommended mode of entry unless the solution is expected to
have important features which might be ‘missed’ in the integration if the step size were permitted
to be chosen freely.

On exit: SWPði; 1Þ contains the initial step size used on the last integration on XðiÞ;Xði þ 1Þ½ �,
for i ¼ 1; 2; . . . ;NPOINT� 1, (excluding integrations during the calculation of the Jacobian).

SWPði; 2Þ, for i ¼ 1; 2; . . . ;NPOINT� 1, is usually unchanged. If the maximum step size
SWPði; 2Þ is so small or the length of the range XðiÞ;Xðiþ 1Þ½ � is so short that on the last
integration the step size was not controlled in the main by the size of the error tolerances EðiÞ but
by these other factors, then SWPðNPOINT; 2Þ is set to the floating-point value of i if the problem
last occurred in XðiÞ;Xðiþ 1Þ½ �. Any results obtained when this value is returned as nonzero
should be viewed with caution.

SWPði; 3Þ, for i ¼ 1; 2; . . . ;NPOINT� 1, are unchanged.

If an error exit with IFAIL ¼ 4, 5 or 6 (see Section 6) occurs on the integration made from XðiÞ
to Xðiþ 1Þ the floating-point value of i is returned in SWPðNPOINT; 1Þ. The actual point
x 2 XðiÞ;Xðiþ 1Þ½ � where the error occurred is returned in SWPð1; 5Þ (see also the specification
of W). The floating-point value of NPOINT is returned in SWPðNPOINT; 1Þ if the error exit is
caused by a call to BC.

If an error exit occurs when estimating the Jacobian matrix (IFAIL ¼ 7, 8, 9, 10, 11 or 12, see
Section 6) and if argument pi was the cause of the failure then on exit SWPðNPOINT; 1Þ contains
the floating-point value of i.

SWPði; 4Þ contains the point XðiÞ, for i ¼ 1; 2; . . . ;NPOINT, used at the solution p or at the final
values of p if an error occurred.

SWP is also partly used as workspace.

11: LDSWP – INTEGER Input

On entry: the first dimension of the array SWP as declared in the (sub)program from which
D02SAF is called.

Constraint: LDSWP � NPOINT.

12: ICOUNT – INTEGER Input

On entry: an upper bound on the number of Newton iterations. If ICOUNT ¼ 0 on entry, no
check on the number of iterations is made (this is the recommended mode of entry).

Constraint: ICOUNT � 0.

13: RANGE – SUBROUTINE, supplied by the user. External Procedure

RANGE must specify the break-points xi, for i ¼ 1; 2; . . . ;NPOINT, which may depend on the
arguments pj , for j ¼ 1; 2; . . . ;m.

The specification of RANGE is:

SUBROUTINE RANGE (X, NPOINT, P, M)

INTEGER NPOINT, M
REAL (KIND=nag_wp) X(NPOINT), P(M)

1: XðNPOINTÞ – REAL (KIND=nag_wp) array Output

On exit: the ith break-point, for i ¼ 1; 2; . . . ;NPOINT. The sequence XðiÞð Þ must be
strictly monotonic, that is either
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a ¼ Xð1Þ < Xð2Þ < � � � < XðNPOINTÞ ¼ b

or

a ¼ Xð1Þ > Xð2Þ > � � � > XðNPOINTÞ ¼ b:

2: NPOINT – INTEGER Input

On entry: 2 plus the number of break-points in a; bð Þ.

3: PðMÞ – REAL (KIND=nag_wp) array Input

On entry: the current estimate of the ith argument, for i ¼ 1; 2; . . . ;m.

4: M – INTEGER Input

On entry: m, the number of arguments.

RANGE must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02SAF is called. Arguments denoted as Input must not be changed by this
procedure.

14: BC – SUBROUTINE, supplied by the user. External Procedure

BC must place in G1 and G2 the boundary conditions at a and b respectively.

The specification of BC is:

SUBROUTINE BC (G1, G2, P, M, N)

INTEGER M, N
REAL (KIND=nag_wp) G1(N), G2(N), P(M)

1: G1ðNÞ – REAL (KIND=nag_wp) array Output

On exit: the value of yi að Þ, for i ¼ 1; 2; . . . ; n, (where this may be a known value or a
function of the parameters pj , for j ¼ 1; 2; . . . ;m).

2: G2ðNÞ – REAL (KIND=nag_wp) array Output

On exit: the value of yi bð Þ, for i ¼ 1; 2; . . . ; n, (where these may be known values or
functions of the parameters pj , for j ¼ 1; 2; . . . ;m). If n > n1, so that there are some
driving equations, then the first n� n1 values of G2 need not be set since they are
never used.

3: PðMÞ – REAL (KIND=nag_wp) array Input

On entry: an estimate of the ith argument, pi, for i ¼ 1; 2; . . . ;m.

4: M – INTEGER Input

On entry: m, the number of arguments.

5: N – INTEGER Input

On entry: n, the number of differential equations.

BC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02SAF is called. Arguments denoted as Input must not be changed by this
procedure.

15: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i), for i ¼ 1; 2; . . . ; n.
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The specification of FCN is:

SUBROUTINE FCN (X, Y, F, N, P, M, I)

INTEGER N, M, I
REAL (KIND=nag_wp) X, Y(N), F(N), P(M)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

2: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the argument.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: the derivative of yi, for i ¼ 1; 2; . . . ; n, evaluated at x. FðiÞ may depend upon
the parameters pj , for j ¼ 1; 2; . . . ;m. If there are any driving equations (see Section 3)
then these must be numbered first in the ordering of the components of F.

4: N – INTEGER Input

On entry: n, the number of equations.

5: PðMÞ – REAL (KIND=nag_wp) array Input

On entry: the current estimate of the ith argument pi, for i ¼ 1; 2; . . . ;m.

6: M – INTEGER Input

On entry: m, the number of arguments.

7: I – INTEGER Input

On entry: specifies the sub-interval xi; xiþ1½ � on which the derivatives are to be
evaluated.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02SAF is called. Arguments denoted as Input must not be changed by this
procedure.

16: EQN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

EQN is used to describe the additional algebraic equations to be solved in the determination of
the parameters, pi, for i ¼ 1; 2; . . . ;m. If there are no additional algebraic equations (i.e.,
m ¼ n1) then EQN is never called and the dummy routine D02HBZ should be used as the actual
argument.

The specification of EQN is:

SUBROUTINE EQN (E, Q, P, M)

INTEGER Q, M
REAL (KIND=nag_wp) E(Q), P(M)

1: EðQÞ – REAL (KIND=nag_wp) array Output

On exit: the vector of residuals, r2 pð Þ, that is the amount by which the current estimates
of the arguments fail to satisfy the algebraic equations.

2: Q – INTEGER Input

On entry: the number of algebraic equations, m� n1.
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3: PðMÞ – REAL (KIND=nag_wp) array Input

On entry: the current estimate of the ith argument pi, for i ¼ 1; 2; . . . ;m.

4: M – INTEGER Input

On entry: m, the number of arguments.

EQN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02SAF is called. Arguments denoted as Input must not be changed by this
procedure.

17: CONSTR – LOGICAL FUNCTION, supplied by the user. External Procedure

CONSTR is used to prevent the pseudo-Newton iteration running into difficulty. CONSTR should
return the value .TRUE. if the constraints are satisfied by the parameters p1; p2; . . . ; pm.
Otherwise CONSTR should return the value .FALSE.. Usually the dummy function D02HBY,
which returns the value .TRUE. at all times, will suffice and in the first instance this is
recommended as the actual argument.

The specification of CONSTR is:

FUNCTION CONSTR (P, M)
LOGICAL CONSTR

INTEGER M
REAL (KIND=nag_wp) P(M)

1: PðMÞ – REAL (KIND=nag_wp) array Input

On entry: an estimate of the ith argument, pi, for i ¼ 1; 2; . . . ;m.

2: M – INTEGER Input

On entry: m, the number of arguments.

CONSTR must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02SAF is called. Arguments denoted as Input must not be changed
by this procedure.

18: YMAX – REAL (KIND=nag_wp) Input

On entry: a non-negative value which is used as a bound on all values y xð Þk k1 where y xð Þ is the
solution at any point x between Xð1Þ and XðNPOINTÞ for the current arguments p1; p2; . . . ; pm. If
this bound is exceeded the integration is terminated and the current arguments are rejected. Such
a rejection will result in an error exit if it prevents the initial residual or Jacobian, or the final
solution, being calculated. If YMAX ¼ 0 on entry, no bound on the solution y is used; that is the
integrations proceed without any checking on the size of yk k1.

19: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT enables you to monitor the values of various quantities during the calculation. It is called
by D02SAF after every calculation of the norm D�1 ~Jþr

�� ��
2
which determines the strategy of the

Newton method, every time there is an internal error exit leading to a change of strategy, and
before an error exit when calculating the initial Jacobian. Usually the routine D02HBX will be
adequate and you are advised to use this as the actual argument for MONIT in the first instance.
(In this case a call to X04ABF must be made before the call of D02SAF.) If no monitoring is
required, the dummy routine D02SAS may be used.

The specification of MONIT is:

SUBROUTINE MONIT (ISTATE, IFLAG, IFAIL1, P, M, F, PNORM, PNORM1,
EPS, D)

&
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INTEGER ISTATE, IFLAG, IFAIL1, M
REAL (KIND=nag_wp) P(M), F(M), PNORM, PNORM1, EPS, D(M)

1: ISTATE – INTEGER Input

On entry: the state of the Newton iteration.

ISTATE ¼ 0
The calculation of the residual, Jacobian and D�1 ~Jþr

�� ��
2
are taking place.

ISTATE ¼ 1 to 5
During the Newton iteration a factor of 2 �ISTATEþ1ð Þ of the Newton step is being
used to try to reduce the norm.

ISTATE ¼ 6
The current Newton step has been rejected and the Jacobian is being re-
calculated.

ISTATE ¼ �6 to �1
An internal error exit has caused the rejection of the current set of argument
values, p. �ISTATE is the value which ISTATE would have taken if the error
had not occurred.

ISTATE ¼ �7
An internal error exit has occurred when calculating the initial Jacobian.

2: IFLAG – INTEGER Input

On entry: whether or not the Jacobian being used has been calculated at the beginning
of the current iteration. If the Jacobian has been updated then IFLAG ¼ 1; otherwise
IFLAG ¼ 2. The Jacobian is only calculated when convergence to the current argument
values has been slow.

3: IFAIL1 – INTEGER Input

On entry: if �6 � ISTATE � �1, IFAIL1 specifies the IFAIL error number that would
be produced were control returned to you. IFAIL1 is unspecified for values of ISTATE
outside this range.

4: PðMÞ – REAL (KIND=nag_wp) array Input

On entry: the current estimate of the ith argument pi, for i ¼ 1; 2; . . . ;m.

5: M – INTEGER Input

On entry: m, the number of arguments.

6: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: r, the residual corresponding to the current argument values, provided
1 � ISTATE � 5 or ISTATE ¼ �7. F is unspecified for other values of ISTATE.

7: PNORM – REAL (KIND=nag_wp) Input

On entry: a quantity against which all reductions in norm are currently measured.

8: PNORM1 – REAL (KIND=nag_wp) Input

On entry: p, the norm of the current arguments. It is set for 1 � ISTATE � 5 and is
undefined for other values of ISTATE.

9: EPS – REAL (KIND=nag_wp) Input

On entry: gives some indication of the convergence rate. It is the current singular value
modification factor (see Gay (1976)). It is zero initially and whenever convergence is
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proceeding steadily. EPS is �3=8 or greater (where � may in most cases be considered
machine precision) when the singular values of J are approximately zero or when
convergence is not being achieved. The larger the value of EPS the worse the
convergence rate. When EPS becomes too large the Newton iteration is terminated.

10: DðMÞ – REAL (KIND=nag_wp) array Input

On entry: J , the singular values of the current modified Jacobian matrix. If DðmÞ is
small relative to Dð1Þ for a number of Jacobians corresponding to different argument
values then the computed results should be viewed with suspicion. It could be that the
matching equations do not depend significantly on some argument (which could be due
to a programming error in FCN, BC, RANGE or EQN). Alternatively, the system of
differential equations may be very ill-conditioned when viewed as an initial value
problem, in which case D02SAF is unsuitable. This may also be indicated by some
singular values being very large. These values of DðiÞ, for i ¼ 1; 2; . . . ;m, should not
be changed.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02SAF is called. Arguments denoted as Input must not be changed by this
procedure.

20: PRSOL – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

PRSOL can be used to obtain values of the solution y at a selected point z by integration across
the final range Xð1Þ;XðNPOINTÞ½ �. If no output is required D02HBW can be used as the actual
argument.

The specification of PRSOL is:

SUBROUTINE PRSOL (Z, Y, N)

INTEGER N
REAL (KIND=nag_wp) Z, Y(N)

1: Z – REAL (KIND=nag_wp) Input/Output

On entry: contains x1 on the first call. On subsequent calls Z contains its previous
output value.

On exit: the next point at which output is required. The new point must be nearer
XðNPOINTÞ than the old.

If Z is set to a point outside Xð1Þ;XðNPOINTÞ½ � the process stops and control returns
from D02SAF to the (sub)program from which D02SAF is called. Otherwise the next
call to PRSOL is made by D02SAF at the point Z, with solution values y1; y2; . . . ; yn at
Z contained in Y. If Z is set to XðNPOINTÞ exactly, the final call to PRSOL is made
with y1; y2; . . . ; yn as values of the solution at XðNPOINTÞ produced by the integration.
In general the solution values obtained at XðNPOINTÞ from PRSOL will differ from the
values obtained at this point by a call to BC. The difference between the two solutions
is the residual r. You are reminded that the points Xð1Þ;Xð2Þ; . . . ;XðNPOINTÞ are
available in the locations SWPð1; 4Þ; SWPð2; 4Þ; . . . ;SWPðNPOINT; 4Þ at all times.

2: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the solution value yi, for i ¼ 1; 2; . . . ; n, at z.

3: N – INTEGER Input

On entry: n, the total number of differential equations.

PRSOL must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02SAF is called. Arguments denoted as Input must not be changed by this
procedure.
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21: WðLDW; SDWÞ – REAL (KIND=nag_wp) array Output

On exit: in the case of an error exit of the type where the point of failure is returned in
SWPð1; 5Þ, the solution at this point of failure is returned in Wði; 1Þ, for i ¼ 1; 2; . . . ; n.

Otherwise W is used for workspace.

22: LDW – INTEGER Input

On entry: the first dimension of the array W as declared in the (sub)program from which D02SAF
is called.

Constraint: LDW � max N;Mð Þ.

23: SDW – INTEGER Input

On entry: the second dimension of the array W as declared in the (sub)program from which
D02SAF is called.

Constraint: SDW � 3�Mþ 12þmax 11;Mð Þ.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the arguments N, N1, M, LDSWP, NPOINT, ICOUNT, LDW, SDW, E, PE or
YMAX is incorrectly set.

IFAIL ¼ 2

The constraints have been violated by the initial arguments.

IFAIL ¼ 3

The condition Xð1Þ < Xð2Þ < � � � < XðNPOINTÞ (or Xð1Þ > Xð2Þ > � � � > XðNPOINTÞ) has
been violated on a call to RANGE with the initial arguments.

IFAIL ¼ 4

In the integration from Xð1Þ to XðNPOINTÞ with the initial or the final arguments, the step size
was reduced too far for the integration to proceed. Consider reversing the order of the points
Xð1Þ;Xð2Þ; . . . ;XðNPOINTÞ. If this error exit still results, it is likely that D02SAF is not a
suitable method for solving the problem, or the initial choice of arguments is very poor, or the
accuracy requirement specified by EðiÞ, for i ¼ 1; 2; . . . ; n, is too stringent.
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IFAIL ¼ 5

In the integration from Xð1Þ to XðNPOINTÞ with the initial or final arguments, an initial step
could not be found to start the integration on one of the intervals XðiÞ to Xðiþ 1Þ. Consider
reversing the order of the points. If this error exit still results it is likely that D02SAF is not a
suitable routine for solving the problem, or the initial choice of arguments is very poor, or the
accuracy requirement specified by EðiÞ, for i ¼ 1; 2; . . . ; n, is much too stringent.

IFAIL ¼ 6

In the integration from Xð1Þ to XðNPOINTÞ with the initial or final arguments, the solution
exceeded YMAX in magnitude (when YMAX > 0:0). It is likely that the initial choice of
arguments was very poor or YMAX was incorrectly set.

Note: on an error with IFAIL ¼ 4, 5 or 6 with the initial arguments, the interval in which failure occurs
is contained in SWPðNPOINT; 1Þ. If a MONIT similar to the one in Section 10 is being used then it is a
simple matter to distinguish between errors using the initial and final arguments. None of the error exits
IFAIL ¼ 4, 5 or 6 should occur on the final integration (when computing the solution) as this
integration has already been performed previously with exactly the same arguments pi, for
i ¼ 1; 2; . . . ;m. Seek expert help if this error occurs.

IFAIL ¼ 7

On calculating the initial approximation to the Jacobian, the constraints were violated.

IFAIL ¼ 8

On perturbing the arguments when calculating the initial approximation to the Jacobian, the
condition Xð1Þ < Xð2Þ < � � � < XðNPOINTÞ (or Xð1Þ > Xð2Þ > � � � > XðNPOINTÞ) is violated.

IFAIL ¼ 9

On calculating the initial approximation to the Jacobian, the integration step size was reduced too
far to make further progress (see IFAIL ¼ 4).

IFAIL ¼ 10

On calculating the initial approximation to the Jacobian, the initial integration step size on some
interval was too small (see IFAIL ¼ 5).

IFAIL ¼ 11

On calculating the initial approximation to the Jacobian, the solution of the system of differential
equations exceeded YMAX in magnitude (when YMAX > 0:0).

Note: all the error exits IFAIL ¼ 7, 8, 9, 10 and 11 can be treated by reducing the size of some or all
the elements of DP.

IFAIL ¼ 12

On calculating the initial approximation to the Jacobian, a column of the Jacobian is found to be
insignificant. This could be due to an element DPðiÞ being too small (but nonzero) or the solution
having no dependence on one of the arguments (a programming error).

Note: on an error exit with IFAIL ¼ 7, 8, 9, 10, 11 or 12, if a perturbation of the argument pi is the
cause of the error then SWPðNPOINT; 1Þ will contain the floating-point value of i.

IFAIL ¼ 13

After calculating the initial approximation to the Jacobian, the calculation of its singular value
decomposition failed. It is likely that the error will never occur as it is usually associated with the
Jacobian having multiple singular values. To remedy the error it should only be necessary to
change the initial arguments. If the error persists it is likely that the problem has not been
correctly formulated.
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IFAIL ¼ 14

The Newton iteration has failed to converge after exercising all its options. You are strongly
recommended to monitor the progress of the iteration via MONIT. There are many possible
reasons for the iteration not converging. Amongst the most likely are:

(a) there is no solution;

(b) the initial arguments are too far away from the correct arguments;

(c) the problem is too ill-conditioned as an initial value problem for Newton's method to choose
suitable corrections;

(d) the accuracy requirements for convergence are too restrictive, that is some of the
components of PE (and maybe PF) are too small – in this case the final value of this norm
output via MONIT will usually be very small; or

(e) the initial arguments are so close to the solution arguments p that the Newton iteration
cannot find improved arguments. The norm output by MONIT should be very small.

IFAIL ¼ 15

The number of iterations permitted by ICOUNT has been exceeded (in the case when
ICOUNT > 0 on entry).

IFAIL ¼ 16
IFAIL ¼ 17
IFAIL ¼ 18
IFAIL ¼ 19

These indicate that there has been a serious error in an internal call. Check all subroutine calls
and array dimensions. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If the iteration converges, the accuracy to which the unknown arguments are determined is usually close
to that specified by you. The accuracy of the solution (output via PRSOL) depends on the error
tolerances EðiÞ, for i ¼ 1; 2; . . . ; n. You are strongly recommended to vary all tolerances to check the
accuracy of the arguments p and the solution y.

8 Parallelism and Performance

D02SAF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.
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D02SAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D02SAF depends on the complexity of the system of differential equations and on
the number of iterations required. In practice, the integration of the differential system (1) is usually by
far the most costly process involved. The computing time for integrating the differential equations can
sometimes depend critically on the quality of the initial estimates for the arguments p. If it seems that
too much computing time is required and, in particular, if the values of the residuals (output in MONIT)
are much larger than expected given your knowledge of the expected solution, then the coding of FCN,
EQN, RANGE and BC should be checked for errors. If no errors can be found then an independent
attempt should be made to improve the initial estimates p.

In the case of an error exit in the integration of the differential system indicated by IFAIL ¼ 4, 5, 9 or
10 you are strongly recommended to perform trial integrations with D02PFF to determine the effects of
changes of the local error tolerances and of changes to the initial choice of the arguments pi, for
i ¼ 1; 2; . . . ;m, (that is the initial choice of p).

It is possible that by following the advice given in Section 6 an error exit with IFAIL ¼ 7, 8, 9, 10 or
11 might be followed by one with IFAIL ¼ 12 (or vice-versa) where the advice given is the opposite. If
you are unable to refine the choice of DPðiÞ, for i ¼ 1; 2; . . . ; n, such that both these types of exits are
avoided then the problem should be rescaled if possible or the method must be abandoned.

The choice of the ‘floor’ values PFðiÞ, for i ¼ 1; 2; . . . ;m, may be critical in the convergence of the
Newton iteration. For each value i, the initial choice of pi and the choice of PFðiÞ should not both be
very small unless it is expected that the final argument pi will be very small and that it should be
determined accurately in a relative sense.

For many problems it is critical that a good initial estimate be found for the arguments p or the iteration
will not converge or may even break down with an error exit. There are many mathematical techniques
which obtain good initial estimates for p in simple cases but which may fail to produce useful estimates
in harder cases. If no such technique is available it is recommended that you try a continuation
(homotopy) technique preferably based on a physical argument (e.g., the Reynolds or Prandtl number is
often a suitable continuation argument). In a continuation method a sequence of problems is solved, one
for each choice of the continuation argument, starting with the problem of interest. At each stage the
arguments p calculated at earlier stages are used to compute a good initial estimate for the arguments at
the current stage (see Hall and Watt (1976) for more details).

10 Example

This example intends to illustrate the use of the break-point and equation solving facilities of D02SAF.
Most of the facilities which are common to D02SAF and D02HBF are illustrated in the example in the
specification of D02HBF (which should also be consulted).

The program solves a projectile problem in two media determining the position of change of media, p3,
and the gravity and viscosity in the second medium (p2 represents gravity and p4 represents viscosity).

10.1 Program Text

! D02SAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02safe_mod

! D02SAF Example Program Module:
! Parameters and User-defined Routines
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! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bc, constr, eqn, fcn, prsol, range

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 0.032_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 0.02_nag_wp
Real (Kind=nag_wp), Parameter :: xend = 5.0_nag_wp
Integer, Parameter, Public :: iset = 1, m = 4, n = 3, nin = 5, &

nout = 6
Contains

Subroutine eqn(e,q,p,m)

! .. Scalar Arguments ..
Integer, Intent (In) :: m, q

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: e(q)
Real (Kind=nag_wp), Intent (In) :: p(m)

! .. Executable Statements ..
e(1) = 0.02_nag_wp - p(4) - 1.0E-5_nag_wp*p(3)
Return

End Subroutine eqn
Subroutine fcn(x,y,f,n,p,m,i)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: i, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(n)
Real (Kind=nag_wp), Intent (In) :: p(m), y(n)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..
f(1) = tan(y(3))
If (i==1) Then

f(2) = -alpha*tan(y(3))/y(2) - beta*y(2)/cos(y(3))
f(3) = -alpha/y(2)**2

Else
f(2) = -p(2)*tan(y(3))/y(2) - p(4)*y(2)/cos(y(3))
f(3) = -p(2)/y(2)**2

End If
Return

End Subroutine fcn
Subroutine bc(g1,g2,p,m,n)

! .. Scalar Arguments ..
Integer, Intent (In) :: m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g1(n), g2(n)
Real (Kind=nag_wp), Intent (In) :: p(m)

! .. Executable Statements ..
g1(1) = 0.0_nag_wp
g1(2) = 0.5_nag_wp
g1(3) = p(1)
g2(1) = 0.0_nag_wp
g2(2) = 0.45_nag_wp
g2(3) = -1.2_nag_wp
Return

End Subroutine bc
Subroutine range(x,npoint,p,m)

! .. Scalar Arguments ..
Integer, Intent (In) :: m, npoint

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: p(m)
Real (Kind=nag_wp), Intent (Out) :: x(npoint)

! .. Executable Statements ..
x(1) = 0.0_nag_wp
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x(2) = p(3)
x(3) = xend
Return

End Subroutine range
Subroutine prsol(z,y,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: z
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(n)

! .. Local Scalars ..
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
If (z==0.0E0_nag_wp) Then

Write (nout,*)
Write (nout,*) ’ Z Y(1) Y(2) Y(3)’

End If
Write (nout,99999) z, (y(i),i=1,n)
z = z + 0.5_nag_wp
If (abs(z-xend)<0.25_nag_wp) Then

z = xend
End If
Return

99999 Format (1X,F9.3,3F10.4)
End Subroutine prsol
Function constr(p,m)

! .. Function Return Value ..
Logical :: constr

! .. Scalar Arguments ..
Integer, Intent (In) :: m

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: p(m)

! .. Intrinsic Procedures ..
Intrinsic :: any

! .. Executable Statements ..
If (any(p(1:m)<0.0_nag_wp) .Or. p(3)>5.0_nag_wp) Then

constr = .False.
Else

constr = .True.
End If
Return

End Function constr
End Module d02safe_mod
Program d02safe

! D02SAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02saf, d02sas, nag_wp, x04abf
Use d02safe_mod, Only: bc, constr, eqn, fcn, iset, m, n, nin, nout, &

prsol, range
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: ymax
Integer :: i, icount, ifail, ldswp, ldw, n1, &

npoint, outchn, sdw
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: dp(:), e(:), p(:), pe(:), pf(:), &
swp(:,:), w(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’D02SAF Example Program Results’

! Skip heading in data file
Read (nin,*)
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Read (nin,*) npoint
n1 = n
sdw = 3*m + 23
ldswp = npoint
ldw = max(m,n)
Allocate (dp(m),e(n),p(m),pe(m),pf(m),swp(ldswp,6),w(ldw,sdw))

outchn = nout
Read (nin,*) icount
Read (nin,*) ymax
Read (nin,*) pe(1:m)
Read (nin,*) pf(1:m)
Read (nin,*) dp(1:m)
Read (nin,*) e(1:n)
Call x04abf(iset,outchn)
swp(1:npoint-1,1:3) = 0.0_nag_wp
Read (nin,*) p(1:m)

! * To obtain monitoring information, replace the name d02sas by d02hbx
! in the next statement and USE nag_library : d02hbx

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call d02saf(p,m,n,n1,pe,pf,e,dp,npoint,swp,ldswp,icount,range,bc,fcn, &

eqn,constr,ymax,d02sas,prsol,w,ldw,sdw,ifail)

If (ifail/=0) Then
Write (nout,99999) ifail

End If
If (ifail>=4 .And. ifail<=12) Then

Write (nout,99998) ’SWP(NPOINT,1) = ’, swp(npoint,1)
If (ifail<=6) Then

Write (nout,99998) ’SWP(1,5) = ’, swp(1,5)
Write (nout,*) ’ i W(i,1) ’
Write (nout,99997)(i,w(i,1),i=1,n)

End If
End If

99999 Format (1X,/,1X,’ ** D02SAF returned with IFAIL = ’,I5)
99998 Format (1X,A,F10.4)
99997 Format (1X,I4,1X,E10.3)

End Program d02safe

10.2 Program Data

D02SAF Example Program Data
3 : npoint
0 : icount
0.0 : ymax
1.0E-3 1.0E-3 1.0E-3 1.0E-3 : pe(1:m)
1.0E-6 1.0E-6 1.0E-6 1.0E-6 : pf(1:m)
0.0 0.0 0.0 0.0 : dp(1:m)
1.0E-5 1.0E-5 1.0E-5 : e (1:n)
1.2 0.032 2.5 0.02 : p (1:m)

10.3 Program Results

D02SAF Example Program Results

Z Y(1) Y(2) Y(3)
0.000 0.0000 0.5000 1.1753
0.500 1.0881 0.4127 1.0977
1.000 1.9501 0.3310 0.9802
1.500 2.5768 0.2582 0.7918
2.000 2.9606 0.2019 0.4796
2.500 3.0958 0.1773 0.0245
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3.000 2.9861 0.1935 -0.4353
3.500 2.6289 0.2409 -0.7679
4.000 2.0181 0.3047 -0.9767
4.500 1.1454 0.3759 -1.1099
5.000 0.0000 0.4500 -1.2000
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NAG Library Routine Document

D02TGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02TGF solves a system of linear ordinary differential equations by least squares fitting of a series of
Chebyshev polynomials using collocation.

2 Specification

SUBROUTINE D02TGF (N, M, L, X0, X1, K1, KP, C, LDC, COEFF, BDYC, W, LW,
IW, LIW, IFAIL)

&

INTEGER N, M(N), L(N), K1, KP, LDC, LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) X0, X1, C(LDC,N), W(LW)
EXTERNAL COEFF, BDYC

3 Description

D02TGF calculates an approximate solution of a linear or linearized system of ordinary differential
equations as a Chebyshev series. Suppose there are n differential equations for n variables
y1; y2; . . . ; yn, over the range x0; x1ð Þ. Let the ith equation beXmiþ1

j¼1

Xn
k¼1

fikj xð Þy
j�1ð Þ
k xð Þ ¼ ri xð Þ

where y jð Þ
k xð Þ ¼ djyk xð Þ

dxj . COEFF evaluates the coefficients fikj xð Þ and the right-hand side ri xð Þ for each i,
1 � i � n, at any point x. The boundary conditions may be applied either at the end points or at
intermediate points; they are written in the same form as the differential equations, and specified by
BDYC. For example the jth boundary condition out of those associated with the ith differential
equation takes the form Xliþ1

j¼1

Xn
k¼1

fijkj x
ij

� �
y
j�1ð Þ
k xij

� �
¼ rij xij

� �
;

where xij lies between x0 and x1. It is assumed in this routine that certain of the boundary conditions
are associated with each differential equation. This is for your convenience; the grouping does not
affect the results.

The degree of the polynomial solution must be the same for all variables. You specify the degree
required, k1 � 1, and the number of collocation points, kp, in the range. The routine sets up a system of
linear equations for the Chebyshev coefficients, with n equations for each collocation point and one for
each boundary condition. The collocation points are chosen at the extrema of a shifted Chebyshev
polynomial of degree kp � 1. The boundary conditions are satisfied exactly, and the remaining equations
are solved by a least squares method. The result produced is a set of Chebyshev coefficients for the n
functions y1; y2; . . . ; yn, with the range normalized to �1; 1½ �.
E02AKF can be used to evaluate the components of the solution at any point on the range x0; x1½ � (see
Section 10 for an example). E02AHF and E02AJF may be used to obtain Chebyshev series
representations of derivatives and integrals (respectively) of the components of the solution.
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4 References

Picken S M (1970) Algorithms for the solution of differential equations in Chebyshev-series by the
selected points method Report Math. 94 National Physical Laboratory

5 Arguments

1: N – INTEGER Input

On entry: n, the number of differential equations in the system.

Constraint: N � 1.

2: MðNÞ – INTEGER array Input

On entry: MðiÞ must be set to the highest order derivative occurring in the ith equation, for
i ¼ 1; 2; . . . ; n.

Constraint: MðiÞ � 1, for i ¼ 1; 2; . . . ; n.

3: LðNÞ – INTEGER array Input

On entry: LðiÞ must be set to the number of boundary conditions associated with the ith equation,
for i ¼ 1; 2; . . . ; n.

Constraint: LðiÞ � 0, for i ¼ 1; 2; . . . ; n.

4: X0 – REAL (KIND=nag_wp) Input

On entry: the left-hand boundary, x0.

5: X1 – REAL (KIND=nag_wp) Input

On entry: the right-hand boundary, x1.

Constraint: X1 > X0.

6: K1 – INTEGER Input

On entry: the number of coefficients, k1, to be returned in the Chebyshev series representation of
the solution (hence, the degree of the polynomial approximation is K1� 1).

Constraint: K1 � 1þ max
1�i�N

MðiÞ.

7: KP – INTEGER Input

On entry: the number of collocation points to be used, kp.

Constraint: N� KP � N� K1þ
XN
i¼1

LðiÞ.

8: CðLDC;NÞ – REAL (KIND=nag_wp) array Output

On exit: the kth column of C contains the computed Chebyshev coefficients of the kth component
of the solution, yk; that is, the computed solution is:

yk ¼
Xk1
i¼1

Cði; kÞTi�1 xð Þ; 1 � k � n;

where Ti xð Þ is the Chebyshev polynomial of the first kind and
P

denotes that the first
coefficient, Cð1; kÞ, is halved.
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9: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which D02TGF
is called.

Constraint: LDC � K1.

10: COEFF – SUBROUTINE, supplied by the user. External Procedure

COEFF defines the system of differential equations (see Section 3). It must evaluate the
coefficient functions fikj xð Þ and the right-hand side function ri xð Þ of the ith equation at a given
point. Only nonzero entries of the array A and RHS need be specifically assigned, since all
elements are set to zero by D02TGF before calling COEFF.

The specification of COEFF is:

SUBROUTINE COEFF (X, I, A, IA, IA1, RHS)

INTEGER I, IA, IA1
REAL (KIND=nag_wp) X, A(IA,IA1), RHS

Important: the dimension declaration for A must contain the variable IA, not an integer
constant.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the point at which the functions must be evaluated.

2: I – INTEGER Input

On entry: the equation for which the coefficients and right-hand side are to be
evaluated.

3: AðIA; IA1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: all elements of A are set to zero.

On exit: Aðk; jÞ must contain the value fikj xð Þ, for 1 � k � n, 1 � j � mi þ 1.

4: IA – INTEGER Input
5: IA1 – INTEGER Input

On entry: the first dimension of the array A and the second dimension of the array A as
declared in the (sub)program from which D02TGF is called.

6: RHS – REAL (KIND=nag_wp) Input/Output

On entry: is set to zero.

On exit: it must contain the value ri xð Þ.

COEFF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TGF is called. Arguments denoted as Input must not be changed by this
procedure.

11: BDYC – SUBROUTINE, supplied by the user. External Procedure

BDYC defines the boundary conditions (see Section 3). It must evaluate the coefficient functions
fijkj and right-hand side function rij in the jth boundary condition associated with the ith

equation, at the point xij at which the boundary condition is applied. Only nonzero entries of the
array A and RHS need be specifically assigned, since all elements are set to zero by D02TGF
before calling BDYC.
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The specification of BDYC is:

SUBROUTINE BDYC (X, I, J, A, IA, IA1, RHS)

INTEGER I, J, IA, IA1
REAL (KIND=nag_wp) X, A(IA,IA1), RHS

Important: the dimension declaration for A must contain the variable IA, not an integer
constant.

1: X – REAL (KIND=nag_wp) Output

On exit: xij, the value at which the boundary condition is applied.

2: I – INTEGER Input

On entry: the differential equation with which the condition is associated.

3: J – INTEGER Input

On entry: the boundary condition for which the coefficients and right-hand side are to
be evaluated.

4: AðIA; IA1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: all elements of A are set to zero.

On exit: the value fijkj x
ijð Þ, for 1 � k � n, 1 � j � mi þ 1.

5: IA – INTEGER Input
6: IA1 – INTEGER Input

On entry: the first dimension of the array A and the second dimension of the array A as
declared in the (sub)program from which D02TGF is called.

7: RHS – REAL (KIND=nag_wp) Input/Output

On entry: is set to zero.

On exit: the value rij xijð Þ.

BDYC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TGF is called. Arguments denoted as Input must not be changed by this
procedure.

12: WðLWÞ – REAL (KIND=nag_wp) array Workspace
13: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D02TGF is
called.

Constraint: LW � 2� N� KPþ NLð Þ � N� K1þ 1ð Þ þ 7� N� K1, where NL ¼
Xn
i¼1

LðiÞ .

14: IWðLIWÞ – INTEGER array Workspace
15: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D02TGF is
called.

Constraint: LIW � N� K1þ 1.
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16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or MðiÞ < 1 for some i,
or LðiÞ < 0 for some i,
or X0 � X1,
or K1 < 1þMðiÞ for some i,

or N� KP < N� K1þ
Xn
i¼1

LðiÞ,

or LDC < K1.

IFAIL ¼ 2

On entry, LW is too small (see Section 5),
or LIW < N� K1.

IFAIL ¼ 3

Either the boundary conditions are not linearly independent, or the rank of the matrix of
equations for the coefficients is less than the number of unknowns. Increasing KP may overcome
this latter problem.

IFAIL ¼ 4

The least squares routine F04AMF has failed to correct the first approximate solution (see
F04AMF). Increasing KP may remove this difficulty.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Estimates of the accuracy of the solution may be obtained by using the checks described in Section 9.
The Chebyshev coefficients are calculated by a stable numerical method.

8 Parallelism and Performance

D02TGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D02TGF depends on the complexity of the system of differential equations, the
degree of the polynomial solution and the number of matching points.

If the number of matching points kp is equal to the number of coefficients k1 minus the average number

of boundary conditions 1
n

Xn
i¼1
li , then the least squares solution reduces to simple solution of linear

equations and true collocation results. The accuracy of the solution may be checked by repeating the
calculation with different values of k1. If the Chebyshev coefficients decrease rapidly, the size of the
last two or three gives an indication of the error. If they do not decrease rapidly, it may be desirable to
use a different method. Note that the Chebyshev coefficients are calculated for the range normalized to
�1; 1½ �.
Generally the number of boundary conditions required is equal to the sum of the orders of the n
differential equations. However, in some cases fewer boundary conditions are needed, because the
assumption of a polynomial solution is equivalent to one or more boundary conditions (since it excludes
singular solutions).

A system of nonlinear differential equations must be linearized before using the routine. The
calculation is repeated iteratively. On each iteration the linearized equation is used. In the example in
Section 10, the y variables are to be determined at the current iteration whilst the z variables correspond
to the solution determined at the previous iteration, (or the initial approximation on the first iteration).
For a starting approximation, we may take, say, a linear function, and set up the appropriate Chebyshev
coefficients before starting the iteration. For example, if y1 ¼ axþ b in the range x0; x1ð Þ, we set B, the
array of coefficients,

B 1; 1ð Þ ¼ a� x0 þ x1ð Þ þ 2� b,
B 1; 2ð Þ ¼ a� x1 � x0ð Þ=2,
and the remainder of the entries to zero.

In some cases a better initial approximation may be needed and can be obtained by using E02ADF or
E02AFF to obtain a Chebyshev series for an approximate solution. The coefficients of the current
iterate must be communicated to COEFF and BDYC, for example using global variables. (See
Section 10.) The convergence of the (Newton) iteration cannot be guaranteed in general, though it is
usually satisfactory from a good starting approximation.
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10 Example

This example solves the nonlinear system

2y01 þ y22 � 1
� �

y1 þ y2 ¼ 0;

2y002 � y01 ¼ 0;

in the range �1; 1ð Þ, with y1 ¼ 0, y2 ¼ 3, y02 ¼ 0 at x ¼ �1.
Suppose an approximate solution is z1, z2 such that y1 � z1, y2 � z2: then the first equation gives, on
linearizing,

2y01 þ z22 � 1
� �

y1 þ 2z1z2 þ 1ð Þy2 ¼ 2z1z
2
2:

The starting approximation is taken to be z1 ¼ 0, z2 ¼ 3. In the program below, the array B is used to
hold the coefficients of the previous iterate (or of the starting approximation). We iterate until the
Chebyshev coefficients converge to five figures. E02AKF is used to calculate the solution from its
Chebyshev coefficients.

10.1 Program Text

! D02TGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02tgfe_mod

! D02TGF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bdyc, coeff

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: coeff_tol = 1.0E-5_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter, Public :: n = 2, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: x0, x1
Integer, Public, Save :: k1

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable, Public, Save :: b(:,:)
Integer, Public, Save :: l(n) = (/1,2/)
Integer, Public, Save :: m(n) = (/1,2/)

Contains
Subroutine coeff(x,i,a,ia,ia1,rhs)

! .. Use Statements ..
Use nag_library, Only: e02akf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: rhs
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: i, ia, ia1

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: a(ia,ia1)

! .. Local Scalars ..
Real (Kind=nag_wp) :: z1, z2
Integer :: ifail

! .. Executable Statements ..
If (i<=1) Then

! Evaluate z1, z2 at x using previous coeffs b.
ifail = 0
Call e02akf(k1,x0,x1,b(1,1),1,k1,x,z1,ifail)
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Call e02akf(k1,x0,x1,b(1,2),1,k1,x,z2,ifail)

a(1,1) = z2*z2 - one
a(1,2) = two
a(2,1) = two*z1*z2 + one
rhs = two*z1*z2*z2

Else
a(1,2) = -one
a(2,3) = two

End If
Return

End Subroutine coeff
Subroutine bdyc(x,i,j,a,ia,ia1,rhs)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: rhs
Real (Kind=nag_wp), Intent (Out) :: x
Integer, Intent (In) :: i, ia, ia1, j

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: a(ia,ia1)

! .. Executable Statements ..
x = -one
a(i,j) = one
If (i==2 .And. j==1) Then

rhs = 3.0_nag_wp
End If
Return

End Subroutine bdyc
End Module d02tgfe_mod
Program d02tgfe

! D02TGF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02tgf, e02akf, nag_wp
Use d02tgfe_mod, Only: b, bdyc, coeff, coeff_tol, k1, l, m, n, nin, &

nout, x0, x1
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: emax, x, xinc
Integer :: i, ia1, ifail, iter, j, k, kp, ldc, &

liw, lsum, lw, mimax
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), w(:), y(:)
Integer, Allocatable :: iw(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max, real, sum

! .. Executable Statements ..
Write (nout,*) ’D02TGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) mimax, kp
Read (nin,*) x0, x1

lsum = sum(l(1:n))
k1 = mimax + 1
ldc = k1
liw = n*k1
lw = 2*(n*kp+lsum)*(n*k1+1) + 7*n*k1
Allocate (b(k1,n),c(ldc,n),w(lw),y(n),iw(liw))

! Initialize coefficients b(:,:) such that z1 = 0 and z2 = 3.
b(1:k1,1:n) = 0.0_nag_wp
b(1,2) = 6.0_nag_wp

! Iterate until coefficients of linearized systems converge.
iter = 0
emax = 1.0_nag_wp

iters: Do While (emax>=coeff_tol)
iter = iter + 1
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Write (nout,*)
Write (nout,99999) ’ Iteration’, iter, ’ Chebyshev coefficients are’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02tgf(n,m,l,x0,x1,k1,kp,c,ldc,coeff,bdyc,w,lw,iw,liw,ifail)

Write (nout,99998)(c(1:k1,j),j=1,n)
emax = 0.0_nag_wp
Do j = 1, n

Do i = 1, k1
emax = max(emax,abs(c(i,j)-b(i,j)))

End Do
End Do
b(1:k1,1:n) = c(1:k1,1:n)

End Do iters

Deallocate (b)

! Print solution on uniform mesh.
k = 9
ia1 = 1
Write (nout,*)
Write (nout,99999) ’Solution evaluated at’, k, ’ equally spaced points’
Write (nout,*)
Write (nout,99997) ’ X ’, (j,j=1,n)
xinc = (x1-x0)/real(k-1,kind=nag_wp)
x = x0
Do i = 1, k

Do j = 1, n
ifail = 0
Call e02akf(k1,x0,x1,c(1,j),ia1,k1,x,y(j),ifail)

End Do
Write (nout,99996) x, (y(j),j=1,n)
x = x + xinc

End Do

99999 Format (1X,A,I3,A)
99998 Format (1X,9F8.4)
99997 Format (1X,A,2(’ Y(’,I1,’)’))
99996 Format (1X,3F10.4)

End Program d02tgfe

10.2 Program Data

D02TGF Example Program Data
8 15 : mimax, kp
-1.0 1.0 : x0, x1

10.3 Program Results

D02TGF Example Program Results

Iteration 1 Chebyshev coefficients are
-0.5659 -0.1162 0.0906 -0.0468 0.0196 -0.0069 0.0021 -0.0006 0.0001
5.7083 -0.1642 -0.0087 0.0059 -0.0025 0.0009 -0.0003 0.0001 -0.0000

Iteration 2 Chebyshev coefficients are
-0.6338 -0.1599 0.0831 -0.0445 0.0193 -0.0071 0.0023 -0.0006 0.0001
5.6881 -0.1792 -0.0144 0.0053 -0.0023 0.0008 -0.0003 0.0001 -0.0000

Iteration 3 Chebyshev coefficients are
-0.6344 -0.1604 0.0828 -0.0446 0.0193 -0.0071 0.0023 -0.0006 0.0001
5.6880 -0.1793 -0.0145 0.0053 -0.0023 0.0008 -0.0003 0.0001 -0.0000

Iteration 4 Chebyshev coefficients are
-0.6344 -0.1604 0.0828 -0.0446 0.0193 -0.0071 0.0023 -0.0006 0.0001
5.6880 -0.1793 -0.0145 0.0053 -0.0023 0.0008 -0.0003 0.0001 -0.0000
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Solution evaluated at 9 equally spaced points

X Y(1) Y(2)
-1.0000 0.0000 3.0000
-0.7500 -0.2372 2.9827
-0.5000 -0.3266 2.9466
-0.2500 -0.3640 2.9032
0.0000 -0.3828 2.8564
0.2500 -0.3951 2.8077
0.5000 -0.4055 2.7577
0.7500 -0.4154 2.7064
1.0000 -0.4255 2.6538
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NAG Library Routine Document

D02TKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02TKF solves a general two-point boundary value problem for a nonlinear mixed order system of
ordinary differential equations.

2 Specification

SUBROUTINE D02TKF (FFUN, FJAC, GAFUN, GBFUN, GAJAC, GBJAC, GUESS, RCOMM,
ICOMM, IFAIL)

&

INTEGER ICOMM(*), IFAIL
REAL (KIND=nag_wp) RCOMM(*)
EXTERNAL FFUN, FJAC, GAFUN, GBFUN, GAJAC, GBJAC, GUESS

3 Description

D02TKF and its associated routines (D02TVF, D02TXF, D02TYF and D02TZF) solve the two-point
boundary value problem for a nonlinear mixed order system of ordinary differential equations

y
m1ð Þ
1 xð Þ ¼ f1 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
y
m2ð Þ
2 xð Þ ¼ f2 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
..
.

y mnð Þ
n xð Þ ¼ fn x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
over an interval a; b½ � subject to p ( > 0) nonlinear boundary conditions at a and q ( > 0) nonlinear

boundary conditions at b, where pþ q ¼
Xn
i¼1
mi. Note that y mð Þ

i xð Þ is the mth derivative of the ith

solution component. Hence y 0ð Þ
i xð Þ ¼ yi xð Þ. The left boundary conditions at a are defined as

gi z y að Þð Þð Þ ¼ 0; i ¼ 1; 2; . . . ; p;

and the right boundary conditions at b as

�gj z y bð Þð Þð Þ ¼ 0; j ¼ 1; 2; . . . ; q;

where y ¼ y1; y2; . . . ; ynð Þ and

z y xð Þð Þ ¼ y1 xð Þ; y 1ð Þ
1 xð Þ; . . . ; y m1�1ð Þ

1 xð Þ; y2 xð Þ; . . . ; y mn�1ð Þ
n xð Þ

� �
:

First, D02TVF must be called to specify the initial mesh, error requirements and other details. Note that
the error requirements apply only to the solution components y1; y2; . . . ; yn and that no error control is
applied to derivatives of solution components. (If error control is required on derivatives then the
system must be reduced in order by introducing the derivatives whose error is to be controlled as new
variables. See Section 9 in D02TVF.) Then, D02TKF can be used to solve the boundary value problem.
After successful computation, D02TZF can be used to ascertain details about the final mesh and other
details of the solution procedure, and D02TYF can be used to compute the approximate solution
anywhere on the interval a; b½ �.
A description of the numerical technique used in D02TKF is given in Section 3 in D02TVF.

D02TKF can also be used in the solution of a series of problems, for example in performing
continuation, when the mesh used to compute the solution of one problem is to be used as the initial
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mesh for the solution of the next related problem. D02TXF should be used in between calls to D02TKF
in this context.

See Section 9 in D02TVF for details of how to solve boundary value problems of a more general
nature.

The routines are based on modified versions of the codes COLSYS and COLNEW (see Ascher et al.
(1979) and Ascher and Bader (1987)). A comprehensive treatment of the numerical solution of
boundary value problems can be found in Ascher et al. (1988) and Keller (1992).

4 References

Ascher U M and Bader G (1987) A new basis implementation for a mixed order boundary value ODE
solver SIAM J. Sci. Stat. Comput. 8 483–500

Ascher U M, Christiansen J and Russell R D (1979) A collocation solver for mixed order systems of
boundary value problems Math. Comput. 33 659–679

Ascher U M, Mattheij R M M and Russell R D (1988) Numerical Solution of Boundary Value Problems
for Ordinary Differential Equations Prentice–Hall

Keller H B (1992) Numerical Methods for Two-point Boundary-value Problems Dover, New York

5 Arguments

1: FFUN – SUBROUTINE, supplied by the user. External Procedure

FFUN must evaluate the functions fi for given values x; z y xð Þð Þ.

The specification of FFUN is:

SUBROUTINE FFUN (X, Y, NEQ, M, F)

INTEGER NEQ, M(NEQ)
REAL (KIND=nag_wp) X, Y(NEQ,*), F(NEQ)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the independent variable.

2: YðNEQ; �Þ – REAL (KIND=nag_wp) array Input

On entry: Yði; jÞ contains y jð Þ
i xð Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i xð Þ ¼ yi xð Þ.

3: NEQ – INTEGER Input

On entry: the number of differential equations.

4: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

5: FðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: FðiÞ must contain fi, for i ¼ 1; 2; . . . ;NEQ.

FFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TKF is called. Arguments denoted as Input must not be changed by this
procedure.
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2: FJAC – SUBROUTINE, supplied by the user. External Procedure

FJAC must evaluate the partial derivatives of fi with respect to the elements of

z y xð Þð Þ ¼ y1 xð Þ; y11 xð Þ; . . . ; y
m1�1ð Þ
1 xð Þ; y2 xð Þ; . . . ; y mn�1ð Þ

n xð Þ
� �

.

The specification of FJAC is:

SUBROUTINE FJAC (X, Y, NEQ, M, DFDY)

INTEGER NEQ, M(NEQ)
REAL (KIND=nag_wp) X, Y(NEQ,*), DFDY(NEQ,NEQ,*)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the independent variable.

2: YðNEQ; �Þ – REAL (KIND=nag_wp) array Input

On entry: Yði; jÞ contains y jð Þ
i xð Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i xð Þ ¼ yi xð Þ.

3: NEQ – INTEGER Input

On entry: the number of differential equations.

4: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

5: DFDYðNEQ;NEQ; �Þ – REAL (KIND=nag_wp) array Output

On exit: DFDYði; j; kÞ must contain the partial derivative of fi with respect to y kð Þ
j , for

i ¼ 1; 2; . . . ;NEQ, j ¼ 1; 2; . . . ;NEQ and k ¼ 0; 1; . . . ;MðjÞ � 1. Only nonzero partial
derivatives need be set.

FJAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TKF is called. Arguments denoted as Input must not be changed by this
procedure.

3: GAFUN – SUBROUTINE, supplied by the user. External Procedure

GAFUN must evaluate the boundary conditions at the left-hand end of the range, that is functions
gi z y að Þð Þð Þ for given values of z y að Þð Þ.

The specification of GAFUN is:

SUBROUTINE GAFUN (YA, NEQ, M, NLBC, GA)

INTEGER NEQ, M(NEQ), NLBC
REAL (KIND=nag_wp) YA(NEQ,*), GA(NLBC)

1: YAðNEQ; �Þ – REAL (KIND=nag_wp) array Input

On entry: YAði; jÞ contains y jð Þ
i að Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i að Þ ¼ yi að Þ.

2: NEQ – INTEGER Input

On entry: the number of differential equations.
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3: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

4: NLBC – INTEGER Input

On entry: the number of boundary conditions at a.

5: GAðNLBCÞ – REAL (KIND=nag_wp) array Output

On exit: GAðiÞ must contain gi z y að Þð Þð Þ, for i ¼ 1; 2; . . . ;NLBC.

GAFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TKF is called. Arguments denoted as Input must not be changed by this
procedure.

4: GBFUN – SUBROUTINE, supplied by the user. External Procedure

GBFUN must evaluate the boundary conditions at the right-hand end of the range, that is
functions �gi z y bð Þð Þð Þ for given values of z y bð Þð Þ.

The specification of GBFUN is:

SUBROUTINE GBFUN (YB, NEQ, M, NRBC, GB)

INTEGER NEQ, M(NEQ), NRBC
REAL (KIND=nag_wp) YB(NEQ,*), GB(NRBC)

1: YBðNEQ; �Þ – REAL (KIND=nag_wp) array Input

On entry: YBði; jÞ contains y jð Þ
i bð Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i bð Þ ¼ yi bð Þ.

2: NEQ – INTEGER Input

On entry: the number of differential equations.

3: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

4: NRBC – INTEGER Input

On entry: the number of boundary conditions at b.

5: GBðNRBCÞ – REAL (KIND=nag_wp) array Output

On exit: GBðiÞ must contain �gi z y bð Þð Þð Þ, for i ¼ 1; 2; . . . ;NRBC.

GBFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TKF is called. Arguments denoted as Input must not be changed by this
procedure.

5: GAJAC – SUBROUTINE, supplied by the user. External Procedure

GAJAC must evaluate the partial derivatives of gi z y að Þð Þð Þ with respect to the elements of

z y að Þð Þ ¼ y1 að Þ; y11 að Þ; . . . ; y
m1�1ð Þ
1 að Þ; y2 að Þ; . . . ; y mn�1ð Þ

n að Þ
� �

.

The specification of GAJAC is:

SUBROUTINE GAJAC (YA, NEQ, M, NLBC, DGADY)
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INTEGER NEQ, M(NEQ), NLBC
REAL (KIND=nag_wp) YA(NEQ,*), DGADY(NLBC,NEQ,*)

1: YAðNEQ; �Þ – REAL (KIND=nag_wp) array Input

On entry: YAði; jÞ contains y jð Þ
i að Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i að Þ ¼ yi að Þ.

2: NEQ – INTEGER Input

On entry: the number of differential equations.

3: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

4: NLBC – INTEGER Input

On entry: the number of boundary conditions at a.

5: DGADYðNLBC;NEQ; �Þ – REAL (KIND=nag_wp) array Output

On exit: DGADYði; j; kÞ must contain the partial derivative of gi z y að Þð Þð Þ with respect

to y
kð Þ
j að Þ, for i ¼ 1; 2; . . . ;NLBC, j ¼ 1; 2; . . . ;NEQ and k ¼ 0; 1; . . . ;MðjÞ � 1. Only

nonzero partial derivatives need be set.

GAJAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TKF is called. Arguments denoted as Input must not be changed by this
procedure.

6: GBJAC – SUBROUTINE, supplied by the user. External Procedure

GBJAC must evaluate the partial derivatives of �gi z y bð Þð Þð Þ with respect to the elements of

z y bð Þð Þ ¼ y1 bð Þ; y11 bð Þ; . . . ; y
m1�1ð Þ
1 bð Þ; y2 bð Þ; . . . ; y mn�1ð Þ

n bð Þ
� �

.

The specification of GBJAC is:

SUBROUTINE GBJAC (YB, NEQ, M, NRBC, DGBDY)

INTEGER NEQ, M(NEQ), NRBC
REAL (KIND=nag_wp) YB(NEQ,*), DGBDY(NRBC,NEQ,*)

1: YBðNEQ; �Þ – REAL (KIND=nag_wp) array Input

On entry: YBði; jÞ contains y jð Þ
i bð Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i bð Þ ¼ yi bð Þ.

2: NEQ – INTEGER Input

On entry: the number of differential equations.

3: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

4: NRBC – INTEGER Input

On entry: the number of boundary conditions at b.
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5: DGBDYðNRBC;NEQ; �Þ – REAL (KIND=nag_wp) array Output

On exit: DGBDYði; j; kÞ must contain the partial derivative of �gi z y bð Þð Þð Þ with respect

to y
kð Þ
j bð Þ, for i ¼ 1; 2; . . . ;NRBC, j ¼ 1; 2; . . . ;NEQ and k ¼ 0; 1; . . . ;MðjÞ � 1. Only

nonzero partial derivatives need be set.

GBJAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TKF is called. Arguments denoted as Input must not be changed by this
procedure.

7: GUESS – SUBROUTINE, supplied by the user. External Procedure

GUESS must return initial approximations for the solution components y jð Þ
i and the derivatives

y
mið Þ
i , for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1. Try to compute each derivative y mið Þ

i such

that it corresponds to your approximations to y jð Þ
i , for j ¼ 0; 1; . . . ;MðiÞ � 1. You should not call

FFUN to compute y mið Þ
i .

If D02TKF is being used in conjunction with D02TXF as part of a continuation process, then
GUESS is not called by D02TKF after the call to D02TXF.

The specification of GUESS is:

SUBROUTINE GUESS (X, NEQ, M, Y, DYM)

INTEGER NEQ, M(NEQ)
REAL (KIND=nag_wp) X, Y(NEQ,*), DYM(NEQ)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the independent variable; x 2 a; b½ �.

2: NEQ – INTEGER Input

On entry: the number of differential equations.

3: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

4: YðNEQ; �Þ – REAL (KIND=nag_wp) array Output

On exit: Yði; jÞ must contain y jð Þ
i xð Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i xð Þ ¼ yi xð Þ.

5: DYMðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: DYMðiÞ must contain y mið Þ
i xð Þ, for i ¼ 1; 2; . . . ;NEQ.

GUESS must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TKF is called. Arguments denoted as Input must not be changed by this
procedure.

8: RCOMMð�Þ – REAL (KIND=nag_wp) array Communication Array

On entry: this must be the same array as supplied to D02TVF and must remain unchanged
between calls.

On exit: contains information about the solution for use on subsequent calls to associated
routines.
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9: ICOMMð�Þ – INTEGER array Communication Array

On entry: this must be the same array as supplied to D02TVF and must remain unchanged
between calls.

On exit: contains information about the solution for use on subsequent calls to associated
routines.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D02TKF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, an invalid call was made to D02TKF, for example, without a previous call to the setup
routine D02TVF.

IFAIL ¼ 2

Numerical singularity has been detected in the Jacobian used in the underlying Newton iteration.
No meaningful results have been computed. You should check carefully how you have coded
FJAC, GAJAC and GBJAC. If the user-supplied routines have been coded correctly then
supplying a different initial approximation to the solution in GUESS might be appropriate. See
also Section 9.

IFAIL ¼ 3

The nonlinear iteration has failed to converge. At no time during the computation was
convergence obtained and no meaningful results have been computed. You should check carefully
how you have coded procedures FJAC, GAJAC and GBJAC. If the procedures have been coded
correctly then supplying a better initial approximation to the solution in GUESS might be
appropriate. See also Section 9.

IFAIL ¼ 4

The nonlinear iteration has failed to converge. At some earlier time during the computation
convergence was obtained and the corresponding results have been returned for diagnostic
purposes and may be inspected by a call to D02TZF. Nothing can be said regarding the suitability
of these results for use in any subsequent computation for the same problem. You should try to
provide a better mesh and initial approximation to the solution in GUESS. See also Section 9.

D02 – Ordinary Differential D02TKF

Mark 26 D02TKF.7



IFAIL ¼ 5

The expected number of sub-intervals required exceeds the maximum number specified by the
argument MXMESH in the setup routine D02TVF. Results for the last mesh on which
convergence was obtained have been returned. Nothing can be said regarding the suitability of
these results for use in any subsequent computation for the same problem. An indication of the
error in the solution on the last mesh where convergence was obtained can be obtained by calling
D02TZF. The error requirements may need to be relaxed and/or the maximum number of mesh
points may need to be increased. See also Section 9.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the solution is determined by the argument TOLS in the prior call to D02TVF (see
Sections 3 and 9 in D02TVF for details and advice). Note that error control is applied only to solution
components (variables) and not to any derivatives of the solution. An estimate of the maximum error in
the computed solution is available by calling D02TZF.

8 Parallelism and Performance

D02TKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02TKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If D02TKF returns with IFAIL ¼ 2, 3, 4 or 5 and the call to D02TKF was a part of some continuation
procedure for which successful calls to D02TKF have already been made, then it is possible that the
adjustment(s) to the continuation argument(s) between calls to D02TKF is (are) too large for the
problem under consideration. More conservative adjustment(s) to the continuation argument(s) might be
appropriate.

10 Example

The following example is used to illustrate the treatment of a high-order system, control of the error in
a derivative of a component of the original system, and the use of continuation. See also D02TVF,
D02TXF, D02TYF and D02TZF, for the illustration of other facilities.
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Consider the steady flow of an incompressible viscous fluid between two infinite coaxial rotating discs.
See Ascher et al. (1979) and the references therein. The governing equations are

1ffiffiffi
R
p f 000 þ ff 000 þ gg0 ¼ 0

1ffiffiffi
R
p g00 þ fg0 � f 0g ¼ 0

subject to the boundary conditions

f 0ð Þ ¼ f 0 0ð Þ ¼ 0; g 0ð Þ ¼ �0; f 1ð Þ ¼ f 0 1ð Þ ¼ 0; g 1ð Þ ¼ �1;

where R is the Reynolds number and �0; �1 are the angular velocities of the disks.

We consider the case of counter-rotation and a symmetric solution, that is �0 ¼ 1; �1 ¼ �1. This
problem is more difficult to solve, the larger the value of R. For illustration, we use simple continuation
to compute the solution for three different values of R ( ¼ 106; 108; 1010). However, this problem can be
addressed directly for the largest value of R considered here. Instead of the values suggested in
Section 5 in D02TXF for NMESH, IPMESH and MESH in the call to D02TXF prior to a continuation
call, we use every point of the final mesh for the solution of the first value of R, that is we must modify
the contents of IPMESH. For illustrative purposes we wish to control the computed error in f 0 and so
recast the equations as

y01 ¼ y2
y0002 ¼ �

ffiffiffiffi
R
p

y1y
00
2 þ y3y03

� �
y003 ¼

ffiffiffiffi
R
p

y2y3 � y1y03
� �

subject to the boundary conditions

y1 0ð Þ ¼ y2 0ð Þ ¼ 0; y3 0ð Þ ¼ �; y1 1ð Þ ¼ y2 1ð Þ ¼ 0; y3 1ð Þ ¼ ��; � ¼ 1:

For the symmetric boundary conditions considered, there exists an odd solution about x ¼ 0:5. Hence,
to satisfy the boundary conditions, we use the following initial approximations to the solution in
GUESS:

y1 xð Þ ¼ �x2 x� 1
2

� �
x� 1ð Þ2

y2 xð Þ ¼ �x x� 1ð Þ 5x2 � 5xþ 1
� �

y3 xð Þ ¼ �8� x� 1
2

� �3
:

10.1 Program Text

! D02TKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02tkfe_mod

! D02TKF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: ffun, fjac, gafun, gajac, gbfun, &

gbjac, guess
! .. Parameters ..

Integer, Parameter, Public :: mmax = 3, neq = 3, nin = 5, &
nlbc = 3, nout = 6, nrbc = 3

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: omega
Real (Kind=nag_wp), Public, Save :: one = 1.0_nag_wp
Real (Kind=nag_wp), Public, Save :: sqrofr

! .. Local Arrays ..
Integer, Public, Save :: m(neq) = (/1,3,2/)

Contains
Subroutine ffun(x,y,neq,m,f)
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! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
f(1) = y(2,0)
f(2) = -(y(1,0)*y(2,2)+y(3,0)*y(3,1))*sqrofr
f(3) = (y(2,0)*y(3,0)-y(1,0)*y(3,1))*sqrofr
Return

End Subroutine ffun
Subroutine fjac(x,y,neq,m,dfdy)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dfdy(neq,neq,0:*)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dfdy(1,2,0) = one
dfdy(2,1,0) = -y(2,2)*sqrofr
dfdy(2,2,2) = -y(1,0)*sqrofr
dfdy(2,3,0) = -y(3,1)*sqrofr
dfdy(2,3,1) = -y(3,0)*sqrofr
dfdy(3,1,0) = -y(3,1)*sqrofr
dfdy(3,2,0) = y(3,0)*sqrofr
dfdy(3,3,0) = y(2,0)*sqrofr
dfdy(3,3,1) = -y(1,0)*sqrofr
Return

End Subroutine fjac
Subroutine gafun(ya,neq,m,nlbc,ga)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: ga(nlbc)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
ga(1) = ya(1,0)
ga(2) = ya(2,0)
ga(3) = ya(3,0) - omega
Return

End Subroutine gafun
Subroutine gbfun(yb,neq,m,nrbc,gb)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gb(nrbc)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
gb(1) = yb(1,0)
gb(2) = yb(2,0)
gb(3) = yb(3,0) + omega
Return

End Subroutine gbfun
Subroutine gajac(ya,neq,m,nlbc,dgady)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgady(nlbc,neq,0:*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (In) :: m(neq)
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! .. Executable Statements ..
dgady(1,1,0) = one
dgady(2,2,0) = one
dgady(3,3,0) = one
Return

End Subroutine gajac
Subroutine gbjac(yb,neq,m,nrbc,dgbdy)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgbdy(nrbc,neq,0:*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgbdy(1,1,0) = one
dgbdy(2,2,0) = one
dgbdy(3,3,0) = one
Return

End Subroutine gbjac
Subroutine guess(x,neq,m,y,dym)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: dym(neq)
Real (Kind=nag_wp), Intent (Inout) :: y(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
y(1,0) = -(x-0.5_nag_wp)*(x*(x-one))**2
y(2,0) = -x*(x-one)*(5._nag_wp*x*(x-one)+one)
y(2,1) = -(2._nag_wp*x-one)*(10._nag_wp*x*(x-one)+one)
y(2,2) = -12.0_nag_wp*(5._nag_wp*x*(x-one)+x)
y(3,0) = -8.0_nag_wp*omega*(x-0.5_nag_wp)**3
y(3,1) = -24.0_nag_wp*omega*(x-0.5_nag_wp)**2
dym(1) = y(2,0)
dym(2) = -120.0_nag_wp*(x-0.5_nag_wp)
dym(3) = -56.0_nag_wp*omega*(x-0.5_nag_wp)
Return

End Subroutine guess
End Module d02tkfe_mod
Program d02tkfe

! D02TKF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02tkf, d02tvf, d02txf, d02tyf, d02tzf, nag_wp
Use d02tkfe_mod, Only: ffun, fjac, gafun, gajac, gbfun, gbjac, guess, m, &

mmax, neq, nin, nlbc, nout, nrbc, omega, one, &
sqrofr

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: dx, ermx, r
Integer :: i, iermx, ifail, ijermx, j, licomm, &

lrcomm, mxmesh, ncol, ncont, nmesh
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: mesh(:), tol(:), work(:), y(:,:)
Integer, Allocatable :: icomm(:), ipmesh(:)

! .. Intrinsic Procedures ..
Intrinsic :: real, sqrt

! .. Executable Statements ..
Write (nout,*) ’D02TKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) ncol, nmesh, mxmesh

licomm = 23 + neq + mxmesh
lrcomm = mxmesh*(109*neq**2+78*neq+7)
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Allocate (mesh(mxmesh),tol(neq),work(lrcomm),y(neq,0:mmax-1), &
ipmesh(mxmesh),icomm(licomm))

Read (nin,*) omega
Read (nin,*) tol(1:neq)

dx = one/real(nmesh-1,kind=nag_wp)
mesh(1) = 0.0_nag_wp
Do i = 2, nmesh - 1

mesh(i) = mesh(i-1) + dx
End Do
mesh(nmesh) = one

ipmesh(1) = 1
ipmesh(2:nmesh-1) = 2
ipmesh(nmesh) = 1

! Initial integrator for given problem.
ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tol,mxmesh,nmesh,mesh,ipmesh,work, &

lrcomm,icomm,licomm,ifail)

! Number of continuation steps (last r=100**ncont, sqrofr=10**ncont)
Read (nin,*) ncont

! Initialize problem continuation parameter.
Read (nin,*) r
sqrofr = sqrt(r)

contn: Do j = 1, ncont
Write (nout,99999) tol(1), r

! Solve problem.
ifail = -1
Call d02tkf(ffun,fjac,gafun,gbfun,gajac,gbjac,guess,work,icomm,ifail)

! Extract mesh
ifail = -1
Call d02tzf(mxmesh,nmesh,mesh,ipmesh,ermx,iermx,ijermx,work,icomm, &

ifail)
If (ifail==1) Then

Exit contn
End If

! Print mesh and error statistics.
Write (nout,99998) nmesh, ermx, iermx, ijermx
Write (nout,99997)(i,ipmesh(i),mesh(i),i=1,nmesh)

! Print solution components on mesh.
Write (nout,99996)
Do i = 1, nmesh

ifail = 0
Call d02tyf(mesh(i),y,neq,mmax,work,icomm,ifail)
Write (nout,99995) mesh(i), y(1:neq,0)

End Do

If (j==ncont) Then
Exit contn

End If

! Modify continuation parameter.
r = 100.0_nag_wp*r
sqrofr = sqrt(r)

! Select mesh for continuation and call continuation primer routine.
ipmesh(2:nmesh-1) = 2
ifail = 0
Call d02txf(mxmesh,nmesh,mesh,ipmesh,work,icomm,ifail)

End Do contn

99999 Format (/,’ Tolerance = ’,1P,E8.1,’ R = ’,E10.3)
99998 Format (/,’ Used a mesh of ’,I4,’ points’,/,’ Maximum error = ’,1P, &
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E10.2,’ in interval ’,I4,’ for component ’,I4,/)
99997 Format (/,’ Mesh points:’,/,4(I4,’(’,I1,’)’,1P,E10.3))
99996 Format (/,’ x f f’’ g’)
99995 Format (’ ’,F8.3,1X,3F9.4)

End Program d02tkfe

10.2 Program Data

D02TKF Example Program Data
7 11 51 : ncol, nmesh, mxmesh
1.0 : omega
1.0E-4 1.0E-4 1.0E-4 : tol(1:neq)
3 : ncount
1.0E+6 : r

10.3 Program Results

D02TKF Example Program Results

Tolerance = 1.0E-04 R = 1.000E+06

Used a mesh of 21 points
Maximum error = 6.16E-10 in interval 20 for component 3

Mesh points:
1(1) 0.000E+00 2(3) 5.000E-02 3(2) 1.000E-01 4(3) 1.500E-01
5(2) 2.000E-01 6(3) 2.500E-01 7(2) 3.000E-01 8(3) 3.500E-01
9(2) 4.000E-01 10(3) 4.500E-01 11(2) 5.000E-01 12(3) 5.500E-01

13(2) 6.000E-01 14(3) 6.500E-01 15(2) 7.000E-01 16(3) 7.500E-01
17(2) 8.000E-01 18(3) 8.500E-01 19(2) 9.000E-01 20(3) 9.500E-01
21(1) 1.000E+00

x f f’ g
0.000 0.0000 0.0000 1.0000
0.050 0.0070 0.1805 0.4416
0.100 0.0141 0.0977 0.1886
0.150 0.0171 0.0252 0.0952
0.200 0.0172 -0.0165 0.0595
0.250 0.0157 -0.0400 0.0427
0.300 0.0133 -0.0540 0.0322
0.350 0.0104 -0.0628 0.0236
0.400 0.0071 -0.0683 0.0156
0.450 0.0036 -0.0714 0.0078
0.500 0.0000 -0.0724 0.0000
0.550 -0.0036 -0.0714 -0.0078
0.600 -0.0071 -0.0683 -0.0156
0.650 -0.0104 -0.0628 -0.0236
0.700 -0.0133 -0.0540 -0.0322
0.750 -0.0157 -0.0400 -0.0427
0.800 -0.0172 -0.0165 -0.0595
0.850 -0.0171 0.0252 -0.0952
0.900 -0.0141 0.0977 -0.1886
0.950 -0.0070 0.1805 -0.4416
1.000 0.0000 0.0000 -1.0000

Tolerance = 1.0E-04 R = 1.000E+08

Used a mesh of 21 points
Maximum error = 4.49E-09 in interval 6 for component 3

Mesh points:
1(1) 0.000E+00 2(3) 1.757E-02 3(2) 3.515E-02 4(3) 5.203E-02
5(2) 6.891E-02 6(3) 8.593E-02 7(2) 1.030E-01 8(3) 1.351E-01
9(2) 1.672E-01 10(3) 2.306E-01 11(2) 2.939E-01 12(3) 4.713E-01

13(2) 6.486E-01 14(3) 7.455E-01 15(2) 8.423E-01 16(3) 8.824E-01
17(2) 9.225E-01 18(3) 9.449E-01 19(2) 9.673E-01 20(3) 9.836E-01
21(1) 1.000E+00
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x f f’ g
0.000 0.0000 0.0000 1.0000
0.018 0.0025 0.1713 0.3923
0.035 0.0047 0.0824 0.1381
0.052 0.0056 0.0267 0.0521
0.069 0.0058 0.0025 0.0213
0.086 0.0057 -0.0073 0.0097
0.103 0.0056 -0.0113 0.0053
0.135 0.0052 -0.0135 0.0027
0.167 0.0047 -0.0140 0.0020
0.231 0.0038 -0.0142 0.0015
0.294 0.0029 -0.0142 0.0012
0.471 0.0004 -0.0143 0.0002
0.649 -0.0021 -0.0143 -0.0008
0.745 -0.0035 -0.0142 -0.0014
0.842 -0.0049 -0.0139 -0.0022
0.882 -0.0054 -0.0127 -0.0036
0.922 -0.0058 -0.0036 -0.0141
0.945 -0.0057 0.0205 -0.0439
0.967 -0.0045 0.0937 -0.1592
0.984 -0.0023 0.1753 -0.4208
1.000 0.0000 -0.0000 -1.0000

Tolerance = 1.0E-04 R = 1.000E+10

Used a mesh of 21 points
Maximum error = 3.13E-06 in interval 7 for component 3

Mesh points:
1(1) 0.000E+00 2(3) 6.256E-03 3(2) 1.251E-02 4(3) 1.851E-02
5(2) 2.450E-02 6(3) 3.076E-02 7(2) 3.702E-02 8(3) 4.997E-02
9(2) 6.292E-02 10(3) 9.424E-02 11(2) 1.256E-01 12(3) 4.190E-01

13(2) 7.125E-01 14(3) 8.246E-01 15(2) 9.368E-01 16(3) 9.544E-01
17(2) 9.719E-01 18(3) 9.803E-01 19(2) 9.886E-01 20(3) 9.943E-01
21(1) 1.000E+00

x f f’ g
0.000 0.0000 0.0000 1.0000
0.006 0.0009 0.1623 0.3422
0.013 0.0016 0.0665 0.1021
0.019 0.0018 0.0204 0.0318
0.025 0.0019 0.0041 0.0099
0.031 0.0019 -0.0014 0.0028
0.037 0.0019 -0.0031 0.0007
0.050 0.0019 -0.0038 -0.0002
0.063 0.0018 -0.0038 -0.0003
0.094 0.0017 -0.0039 -0.0003
0.126 0.0016 -0.0039 -0.0002
0.419 0.0004 -0.0041 -0.0001
0.712 -0.0008 -0.0042 0.0001
0.825 -0.0013 -0.0043 0.0002
0.937 -0.0018 -0.0043 0.0003
0.954 -0.0019 -0.0042 0.0001
0.972 -0.0019 -0.0003 -0.0049
0.980 -0.0019 0.0152 -0.0252
0.989 -0.0015 0.0809 -0.1279
0.994 -0.0008 0.1699 -0.3814
1.000 0.0000 0.0000 -1.0000
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NAG Library Routine Document

D02TLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02TLF solves a general two-point boundary value problem for a nonlinear mixed order system of
ordinary differential equations.

2 Specification

SUBROUTINE D02TLF (FFUN, FJAC, GAFUN, GBFUN, GAJAC, GBJAC, GUESS, RCOMM,
ICOMM, IUSER, RUSER, IFAIL)

&

INTEGER ICOMM(*), IUSER(*), IFAIL
REAL (KIND=nag_wp) RCOMM(*), RUSER(*)
EXTERNAL FFUN, FJAC, GAFUN, GBFUN, GAJAC, GBJAC, GUESS

3 Description

D02TLF and its associated routines (D02TVF, D02TXF, D02TYF and D02TZF) solve the two-point
boundary value problem for a nonlinear mixed order system of ordinary differential equations

y
m1ð Þ
1 xð Þ ¼ f1 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
y
m2ð Þ
2 xð Þ ¼ f2 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
..
.

y mnð Þ
n xð Þ ¼ fn x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
over an interval a; b½ � subject to p ( > 0) nonlinear boundary conditions at a and q ( > 0) nonlinear

boundary conditions at b, where pþ q ¼
Xn
i¼1
mi. Note that y mð Þ

i xð Þ is the mth derivative of the ith

solution component. Hence y 0ð Þ
i xð Þ ¼ yi xð Þ. The left boundary conditions at a are defined as

gi z y að Þð Þð Þ ¼ 0; i ¼ 1; 2; . . . ; p;

and the right boundary conditions at b as

�gj z y bð Þð Þð Þ ¼ 0; j ¼ 1; 2; . . . ; q;

where y ¼ y1; y2; . . . ; ynð Þ and

z y xð Þð Þ ¼ y1 xð Þ; y 1ð Þ
1 xð Þ; . . . ; y m1�1ð Þ

1 xð Þ; y2 xð Þ; . . . ; y mn�1ð Þ
n xð Þ

� �
:

First, D02TVF must be called to specify the initial mesh, error requirements and other details. Note that
the error requirements apply only to the solution components y1; y2; . . . ; yn and that no error control is
applied to derivatives of solution components. (If error control is required on derivatives then the
system must be reduced in order by introducing the derivatives whose error is to be controlled as new
variables. See Section 9 in D02TVF.) Then, D02TLF can be used to solve the boundary value problem.
After successful computation, D02TZF can be used to ascertain details about the final mesh and other
details of the solution procedure, and D02TYF can be used to compute the approximate solution
anywhere on the interval a; b½ �.
A description of the numerical technique used in D02TLF is given in Section 3 in D02TVF.

D02TLF can also be used in the solution of a series of problems, for example in performing
continuation, when the mesh used to compute the solution of one problem is to be used as the initial
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mesh for the solution of the next related problem. D02TXF should be used in between calls to D02TLF
in this context.

See Section 9 in D02TVF for details of how to solve boundary value problems of a more general
nature.

The routines are based on modified versions of the codes COLSYS and COLNEW (see Ascher et al.
(1979) and Ascher and Bader (1987)). A comprehensive treatment of the numerical solution of
boundary value problems can be found in Ascher et al. (1988) and Keller (1992).

4 References

Ascher U M and Bader G (1987) A new basis implementation for a mixed order boundary value ODE
solver SIAM J. Sci. Stat. Comput. 8 483–500

Ascher U M, Christiansen J and Russell R D (1979) A collocation solver for mixed order systems of
boundary value problems Math. Comput. 33 659–679

Ascher U M, Mattheij R M M and Russell R D (1988) Numerical Solution of Boundary Value Problems
for Ordinary Differential Equations Prentice–Hall

Keller H B (1992) Numerical Methods for Two-point Boundary-value Problems Dover, New York

5 Arguments

1: FFUN – SUBROUTINE, supplied by the user. External Procedure

FFUN must evaluate the functions fi for given values x; z y xð Þð Þ.

The specification of FFUN is:

SUBROUTINE FFUN (X, Y, NEQ, M, F, IUSER, RUSER)

INTEGER NEQ, M(NEQ), IUSER(*)
REAL (KIND=nag_wp) X, Y(NEQ,0 : �), F(NEQ), RUSER(*)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the independent variable.

2: YðNEQ; 0 : �Þ – REAL (KIND=nag_wp) array Input

On entry: Yði; jÞ contains y jð Þ
i xð Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i xð Þ ¼ yi xð Þ.

3: NEQ – INTEGER Input

On entry: the number of differential equations.

4: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

5: FðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: FðiÞ must contain fi, for i ¼ 1; 2; . . . ;NEQ.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FFUN is called with the arguments IUSER and RUSER as supplied to D02TLF. You
should use the arrays IUSER and RUSER to supply information to FFUN.
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FFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TLF is called. Arguments denoted as Input must not be changed by this
procedure.

2: FJAC – SUBROUTINE, supplied by the user. External Procedure

FJAC must evaluate the partial derivatives of fi with respect to the elements of

z y xð Þð Þ ¼ y1 xð Þ; y11 xð Þ; . . . ; y
m1�1ð Þ
1 xð Þ; y2 xð Þ; . . . ; y mn�1ð Þ

n xð Þ
� �

.

The specification of FJAC is:

SUBROUTINE FJAC (X, Y, NEQ, M, DFDY, IUSER, RUSER)

INTEGER NEQ, M(NEQ), IUSER(*)
REAL (KIND=nag_wp) X, Y(NEQ,0 : �), DFDY(NEQ,NEQ,0 : �), RUSER(*)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the independent variable.

2: YðNEQ; 0 : �Þ – REAL (KIND=nag_wp) array Input

On entry: Yði; jÞ contains y jð Þ
i xð Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i xð Þ ¼ yi xð Þ.

3: NEQ – INTEGER Input

On entry: the number of differential equations.

4: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

5: DFDYðNEQ;NEQ; 0 : �Þ – REAL (KIND=nag_wp) array Input/Output

On entry: set to zero.

On exit: DFDYði; j; kÞ must contain the partial derivative of fi with respect to y kð Þ
j , for

i ¼ 1; 2; . . . ;NEQ, j ¼ 1; 2; . . . ;NEQ and k ¼ 0; 1; . . . ;MðjÞ � 1. Only nonzero partial
derivatives need be set.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FJAC is called with the arguments IUSER and RUSER as supplied to D02TLF. You
should use the arrays IUSER and RUSER to supply information to FJAC.

FJAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TLF is called. Arguments denoted as Input must not be changed by this
procedure.

3: GAFUN – SUBROUTINE, supplied by the user. External Procedure

GAFUN must evaluate the boundary conditions at the left-hand end of the range, that is functions
gi z y að Þð Þð Þ for given values of z y að Þð Þ.

The specification of GAFUN is:

SUBROUTINE GAFUN (YA, NEQ, M, NLBC, GA, IUSER, RUSER)

INTEGER NEQ, M(NEQ), NLBC, IUSER(*)
REAL (KIND=nag_wp) YA(NEQ,0 : �), GA(NLBC), RUSER(*)
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1: YAðNEQ; 0 : �Þ – REAL (KIND=nag_wp) array Input

On entry: YAði; jÞ contains y jð Þ
i að Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i að Þ ¼ yi að Þ.

2: NEQ – INTEGER Input

On entry: the number of differential equations.

3: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

4: NLBC – INTEGER Input

On entry: the number of boundary conditions at a.

5: GAðNLBCÞ – REAL (KIND=nag_wp) array Output

On exit: GAðiÞ must contain gi z y að Þð Þð Þ, for i ¼ 1; 2; . . . ;NLBC.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

GAFUN is called with the arguments IUSER and RUSER as supplied to D02TLF. You
should use the arrays IUSER and RUSER to supply information to GAFUN.

GAFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TLF is called. Arguments denoted as Input must not be changed by this
procedure.

4: GBFUN – SUBROUTINE, supplied by the user. External Procedure

GBFUN must evaluate the boundary conditions at the right-hand end of the range, that is
functions �gi z y bð Þð Þð Þ for given values of z y bð Þð Þ.

The specification of GBFUN is:

SUBROUTINE GBFUN (YB, NEQ, M, NRBC, GB, IUSER, RUSER)

INTEGER NEQ, M(NEQ), NRBC, IUSER(*)
REAL (KIND=nag_wp) YB(NEQ,0 : �), GB(NRBC), RUSER(*)

1: YBðNEQ; 0 : �Þ – REAL (KIND=nag_wp) array Input

On entry: YBði; jÞ contains y jð Þ
i bð Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i bð Þ ¼ yi bð Þ.

2: NEQ – INTEGER Input

On entry: the number of differential equations.

3: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

4: NRBC – INTEGER Input

On entry: the number of boundary conditions at b.
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5: GBðNRBCÞ – REAL (KIND=nag_wp) array Output

On exit: GBðiÞ must contain �gi z y bð Þð Þð Þ, for i ¼ 1; 2; . . . ;NRBC.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

GBFUN is called with the arguments IUSER and RUSER as supplied to D02TLF. You
should use the arrays IUSER and RUSER to supply information to GBFUN.

GBFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TLF is called. Arguments denoted as Input must not be changed by this
procedure.

5: GAJAC – SUBROUTINE, supplied by the user. External Procedure

GAJAC must evaluate the partial derivatives of gi z y að Þð Þð Þ with respect to the elements of

z y að Þð Þ ¼ y1 að Þ; y11 að Þ; . . . ; y
m1�1ð Þ
1 að Þ; y2 að Þ; . . . ; y mn�1ð Þ

n að Þ
� �

.

The specification of GAJAC is:

SUBROUTINE GAJAC (YA, NEQ, M, NLBC, DGADY, IUSER, RUSER)

INTEGER NEQ, M(NEQ), NLBC, IUSER(*)
REAL (KIND=nag_wp) YA(NEQ,0 : �), DGADY(NLBC,NEQ,0 : �), RUSER(*)

1: YAðNEQ; 0 : �Þ – REAL (KIND=nag_wp) array Input

On entry: YAði; jÞ contains y jð Þ
i að Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i að Þ ¼ yi að Þ.

2: NEQ – INTEGER Input

On entry: the number of differential equations.

3: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

4: NLBC – INTEGER Input

On entry: the number of boundary conditions at a.

5: DGADYðNLBC;NEQ; 0 : �Þ – REAL (KIND=nag_wp) array Input/Output

On entry: set to zero.

On exit: DGADYði; j; kÞ must contain the partial derivative of gi z y að Þð Þð Þ with respect

to y
kð Þ
j að Þ, for i ¼ 1; 2; . . . ;NLBC, j ¼ 1; 2; . . . ;NEQ and k ¼ 0; 1; . . . ;MðjÞ � 1. Only

nonzero partial derivatives need be set.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

GAJAC is called with the arguments IUSER and RUSER as supplied to D02TLF. You
should use the arrays IUSER and RUSER to supply information to GAJAC.

GAJAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TLF is called. Arguments denoted as Input must not be changed by this
procedure.
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6: GBJAC – SUBROUTINE, supplied by the user. External Procedure

GBJAC must evaluate the partial derivatives of �gi z y bð Þð Þð Þ with respect to the elements of

z y bð Þð Þ ¼ y1 bð Þ; y11 bð Þ; . . . ; y
m1�1ð Þ
1 bð Þ; y2 bð Þ; . . . ; y mn�1ð Þ

n bð Þ
� �

.

The specification of GBJAC is:

SUBROUTINE GBJAC (YB, NEQ, M, NRBC, DGBDY, IUSER, RUSER)

INTEGER NEQ, M(NEQ), NRBC, IUSER(*)
REAL (KIND=nag_wp) YB(NEQ,0 : �), DGBDY(NRBC,NEQ,0 : �), RUSER(*)

1: YBðNEQ; 0 : �Þ – REAL (KIND=nag_wp) array Input

On entry: YBði; jÞ contains y jð Þ
i bð Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i bð Þ ¼ yi bð Þ.

2: NEQ – INTEGER Input

On entry: the number of differential equations.

3: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

4: NRBC – INTEGER Input

On entry: the number of boundary conditions at b.

5: DGBDYðNRBC;NEQ; 0 : �Þ – REAL (KIND=nag_wp) array Input/Output

On entry: set to zero.

On exit: DGBDYði; j; kÞ must contain the partial derivative of �gi z y bð Þð Þð Þ with respect

to y
kð Þ
j bð Þ, for i ¼ 1; 2; . . . ;NRBC, j ¼ 1; 2; . . . ;NEQ and k ¼ 0; 1; . . . ;MðjÞ � 1. Only

nonzero partial derivatives need be set.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

GBJAC is called with the arguments IUSER and RUSER as supplied to D02TLF. You
should use the arrays IUSER and RUSER to supply information to GBJAC.

GBJAC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TLF is called. Arguments denoted as Input must not be changed by this
procedure.

7: GUESS – SUBROUTINE, supplied by the user. External Procedure

GUESS must return initial approximations for the solution components y jð Þ
i and the derivatives

y
mið Þ
i , for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1. Try to compute each derivative y mið Þ

i such

that it corresponds to your approximations to y jð Þ
i , for j ¼ 0; 1; . . . ;MðiÞ � 1. You should not call

FFUN to compute y mið Þ
i .

If D02TLF is being used in conjunction with D02TXF as part of a continuation process, then
GUESS is not called by D02TLF after the call to D02TXF.

The specification of GUESS is:

SUBROUTINE GUESS (X, NEQ, M, Y, DYM, IUSER, RUSER)
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INTEGER NEQ, M(NEQ), IUSER(*)
REAL (KIND=nag_wp) X, Y(NEQ,0 : �), DYM(NEQ), RUSER(*)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the independent variable; x 2 a; b½ �.

2: NEQ – INTEGER Input

On entry: the number of differential equations.

3: MðNEQÞ – INTEGER array Input

On entry: MðiÞ contains mi, the order of the ith differential equation, for
i ¼ 1; 2; . . . ;NEQ.

4: YðNEQ; 0 : �Þ – REAL (KIND=nag_wp) array Output

On exit: Yði; jÞ must contain y jð Þ
i xð Þ, for i ¼ 1; 2; . . . ;NEQ and j ¼ 0; 1; . . . ;MðiÞ � 1.

Note: y
0ð Þ
i xð Þ ¼ yi xð Þ.

5: DYMðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: DYMðiÞ must contain y mið Þ
i xð Þ, for i ¼ 1; 2; . . . ;NEQ.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

GUESS is called with the arguments IUSER and RUSER as supplied to D02TLF. You
should use the arrays IUSER and RUSER to supply information to GUESS.

GUESS must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02TLF is called. Arguments denoted as Input must not be changed by this
procedure.

8: RCOMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
RCOMM in the previous call to D02TVF.

On entry: this must be the same array as supplied to D02TVF and must remain unchanged
between calls.

On exit: contains information about the solution for use on subsequent calls to associated
routines.

9: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
ICOMM in the previous call to D02TVF.

On entry: this must be the same array as supplied to D02TVF and must remain unchanged
between calls.

On exit: contains information about the solution for use on subsequent calls to associated
routines.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D02TLF, but are passed directly to FFUN, FJAC, GAFUN,
GBFUN, GAJAC, GBJAC and GUESS and should be used to pass information to these routines.
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12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D02TLF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

Either the setup routine has not been called or the communication arrays have become corrupted.
No solution will be computed.

IFAIL ¼ 2

Numerical singularity has been detected in the Jacobian used in the Newton iteration.
No results have been generated. Check the coding of the routines for calculating the Jacobians of
system and boundary conditions.

IFAIL ¼ 3

All Newton iterations that have been attempted have failed to converge.
No results have been generated. Check the coding of the routines for calculating the Jacobians of
system and boundary conditions.
Try to provide a better initial solution approximation.

IFAIL ¼ 4

A Newton iteration has failed to converge. The computation has not succeeded but results have
been returned for an intermediate mesh on which convergence was achieved.
These results should be treated with extreme caution.

IFAIL ¼ 5

The expected number of sub-intervals required to continue the computation exceeds the
maximum specified: valueh i.
Results have been generated which may be useful.
Try increasing this number or relaxing the error requirements.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the solution is determined by the argument TOLS in the prior call to D02TVF (see
Sections 3 and 9 in D02TVF for details and advice). Note that error control is applied only to solution
components (variables) and not to any derivatives of the solution. An estimate of the maximum error in
the computed solution is available by calling D02TZF.

8 Parallelism and Performance

D02TLF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02TLF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If D02TLF returns with IFAIL ¼ 2, 3, 4 or 5 and the call to D02TLF was a part of some continuation
procedure for which successful calls to D02TLF have already been made, then it is possible that the
adjustment(s) to the continuation parameter(s) between calls to D02TLF is (are) too large for the
problem under consideration. More conservative adjustment(s) to the continuation parameter(s) might
be appropriate.

10 Example

The following example is used to illustrate the treatment of a high-order system, control of the error in
a derivative of a component of the original system, and the use of continuation. See also D02TVF,
D02TXF, D02TYF and D02TZF, for the illustration of other facilities.

Consider the steady flow of an incompressible viscous fluid between two infinite coaxial rotating discs.
See Ascher et al. (1979) and the references therein. The governing equations are

1ffiffiffi
R
p f 000 þ ff 000 þ gg0 ¼ 0

1ffiffiffi
R
p g00 þ fg0 � f 0g ¼ 0

subject to the boundary conditions

f 0ð Þ ¼ f 0 0ð Þ ¼ 0; g 0ð Þ ¼ �0; f 1ð Þ ¼ f 0 1ð Þ ¼ 0; g 1ð Þ ¼ �1;

where R is the Reynolds number and �0; �1 are the angular velocities of the disks.

We consider the case of counter-rotation and a symmetric solution, that is �0 ¼ 1; �1 ¼ �1. This
problem is more difficult to solve, the larger the value of R. For illustration, we use simple continuation
to compute the solution for three different values of R ( ¼ 106; 108; 1010). However, this problem can be
addressed directly for the largest value of R considered here. Instead of the values suggested in
Section 5 in D02TXF for NMESH, IPMESH and MESH in the call to D02TXF prior to a continuation
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call, we use every point of the final mesh for the solution of the first value of R, that is we must modify
the contents of IPMESH. For illustrative purposes we wish to control the computed error in f 0 and so
recast the equations as

y01 ¼ y2
y0002 ¼ �

ffiffiffiffi
R
p

y1y
00
2 þ y3y03

� �
y003 ¼

ffiffiffiffi
R
p

y2y3 � y1y03
� �

subject to the boundary conditions

y1 0ð Þ ¼ y2 0ð Þ ¼ 0; y3 0ð Þ ¼ �; y1 1ð Þ ¼ y2 1ð Þ ¼ 0; y3 1ð Þ ¼ ��; � ¼ 1:

For the symmetric boundary conditions considered, there exists an odd solution about x ¼ 0:5. Hence,
to satisfy the boundary conditions, we use the following initial approximations to the solution in
GUESS:

y1 xð Þ ¼ �x2 x� 1
2

� �
x� 1ð Þ2

y2 xð Þ ¼ �x x� 1ð Þ 5x2 � 5xþ 1
� �

y3 xð Þ ¼ �8� x� 1
2

� �3
:

10.1 Program Text

! D02TLF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02tlfe_mod

! D02TLF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: ffun, fjac, gafun, gajac, gbfun, &

gbjac, guess
! .. Parameters ..

Integer, Parameter, Public :: mmax = 3, neq = 3, nin = 5, &
nlbc = 3, nout = 6, nrbc = 3

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: omega
Real (Kind=nag_wp), Public, Save :: one = 1.0_nag_wp
Real (Kind=nag_wp), Public, Save :: sqrofr

! .. Local Arrays ..
Integer, Public, Save :: m(neq) = (/1,3,2/)

Contains
Subroutine ffun(x,y,neq,m,f,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
f(1) = y(2,0)
f(2) = -(y(1,0)*y(2,2)+y(3,0)*y(3,1))*sqrofr
f(3) = (y(2,0)*y(3,0)-y(1,0)*y(3,1))*sqrofr
Return

End Subroutine ffun
Subroutine fjac(x,y,neq,m,dfdy,iuser,ruser)

! .. Scalar Arguments ..
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Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dfdy(neq,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dfdy(1,2,0) = one
dfdy(2,1,0) = -y(2,2)*sqrofr
dfdy(2,2,2) = -y(1,0)*sqrofr
dfdy(2,3,0) = -y(3,1)*sqrofr
dfdy(2,3,1) = -y(3,0)*sqrofr
dfdy(3,1,0) = -y(3,1)*sqrofr
dfdy(3,2,0) = y(3,0)*sqrofr
dfdy(3,3,0) = y(2,0)*sqrofr
dfdy(3,3,1) = -y(1,0)*sqrofr
Return

End Subroutine fjac
Subroutine gafun(ya,neq,m,nlbc,ga,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: ga(nlbc)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
ga(1) = ya(1,0)
ga(2) = ya(2,0)
ga(3) = ya(3,0) - omega
Return

End Subroutine gafun
Subroutine gbfun(yb,neq,m,nrbc,gb,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gb(nrbc)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
gb(1) = yb(1,0)
gb(2) = yb(2,0)
gb(3) = yb(3,0) + omega
Return

End Subroutine gbfun
Subroutine gajac(ya,neq,m,nlbc,dgady,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgady(nlbc,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgady(1,1,0) = one
dgady(2,2,0) = one
dgady(3,3,0) = one
Return

End Subroutine gajac
Subroutine gbjac(yb,neq,m,nrbc,dgbdy,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
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Real (Kind=nag_wp), Intent (Inout) :: dgbdy(nrbc,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgbdy(1,1,0) = one
dgbdy(2,2,0) = one
dgbdy(3,3,0) = one
Return

End Subroutine gbjac
Subroutine guess(x,neq,m,y,dym,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: dym(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*), y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
y(1,0) = -(x-0.5_nag_wp)*(x*(x-one))**2
y(2,0) = -x*(x-one)*(5._nag_wp*x*(x-one)+one)
y(2,1) = -(2._nag_wp*x-one)*(10.0_nag_wp*x*(x-one)+one)
y(2,2) = -12.0_nag_wp*(5._nag_wp*x*(x-one)+x)
y(3,0) = -8.0_nag_wp*omega*(x-0.5_nag_wp)**3
y(3,1) = -24.0_nag_wp*omega*(x-0.5_nag_wp)**2
dym(1) = y(2,0)
dym(2) = -120.0_nag_wp*(x-0.5_nag_wp)
dym(3) = -56.0_nag_wp*omega*(x-0.5_nag_wp)
Return

End Subroutine guess
End Module d02tlfe_mod
Program d02tlfe

! D02TLF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02tlf, d02tvf, d02txf, d02tyf, d02tzf, nag_wp
Use d02tlfe_mod, Only: ffun, fjac, gafun, gajac, gbfun, gbjac, guess, m, &

mmax, neq, nin, nlbc, nout, nrbc, omega, one, &
sqrofr

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: dx, ermx, r
Integer :: i, iermx, ifail, ijermx, j, licomm, &

lrcomm, mxmesh, ncol, ncont, nmesh
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: mesh(:), rcomm(:), tol(:), y(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icomm(:), ipmesh(:)
Integer :: iuser(2)

! .. Intrinsic Procedures ..
Intrinsic :: real, sqrt

! .. Executable Statements ..
Write (nout,*) ’D02TLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) ncol, nmesh, mxmesh

Allocate (mesh(mxmesh),tol(neq),y(neq,0:mmax-1),ipmesh(mxmesh))

Read (nin,*) omega
Read (nin,*) tol(1:neq)

dx = one/real(nmesh-1,kind=nag_wp)
mesh(1) = 0.0_nag_wp
Do i = 2, nmesh - 1

mesh(i) = mesh(i-1) + dx
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End Do
mesh(nmesh) = one

ipmesh(1) = 1
ipmesh(2:nmesh-1) = 2
ipmesh(nmesh) = 1

! Workspace query to get size of rcomm and icomm
ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tol,mxmesh,nmesh,mesh,ipmesh,ruser,0, &

iuser,2,ifail)
lrcomm = iuser(1)
licomm = iuser(2)
Allocate (rcomm(lrcomm),icomm(licomm))

! Initialize integrator for given problem.
ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tol,mxmesh,nmesh,mesh,ipmesh,rcomm, &

lrcomm,icomm,licomm,ifail)

! Number of continuation steps (last r=100**ncont, sqrofr=10**ncont)
Read (nin,*) ncont

! Initialize problem continuation parameter.
Read (nin,*) r
sqrofr = sqrt(r)

contn: Do j = 1, ncont
Write (nout,99999) tol(1), r

! Solve problem.
ifail = -1
Call d02tlf(ffun,fjac,gafun,gbfun,gajac,gbjac,guess,rcomm,icomm,iuser, &

ruser,ifail)

! Extract mesh
ifail = -1
Call d02tzf(mxmesh,nmesh,mesh,ipmesh,ermx,iermx,ijermx,rcomm,icomm, &

ifail)
If (ifail==1) Then

Exit contn
End If

! Print mesh and error statistics.
Write (nout,99998) nmesh, ermx, iermx, ijermx
Write (nout,99997)(i,ipmesh(i),mesh(i),i=1,nmesh)

! Print solution components on mesh.
Write (nout,99996)
Do i = 1, nmesh

ifail = 0
Call d02tyf(mesh(i),y,neq,mmax,rcomm,icomm,ifail)
Write (nout,99995) mesh(i), y(1:neq,0)

End Do

If (j==ncont) Then
Exit contn

End If

! Modify continuation parameter.
r = 100.0_nag_wp*r
sqrofr = sqrt(r)

! Select mesh for continuation and call continuation primer routine.
ipmesh(2:nmesh-1) = 2
ifail = 0
Call d02txf(mxmesh,nmesh,mesh,ipmesh,rcomm,icomm,ifail)

End Do contn

99999 Format (/,’ Tolerance = ’,1P,E8.1,’ R = ’,E10.3)
99998 Format (/,’ Used a mesh of ’,I4,’ points’,/,’ Maximum error = ’,E10.2, &
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’ in interval ’,I4,’ for component ’,I4,/)
99997 Format (/,’ Mesh points:’,/,4(I4,’(’,I1,’)’,E11.4))
99996 Format (/,’ x f f’’ g’)
99995 Format (’ ’,F8.3,1X,3F9.4)

End Program d02tlfe

10.2 Program Data

D02TLF Example Program Data
7 11 51 : ncol, nmesh, mxmesh
1.0 : omega
1.0E-4 1.0E-4 1.0E-4 : tol(1:neq)
3 : ncount
1.0E+6 : r

10.3 Program Results

D02TLF Example Program Results

Tolerance = 1.0E-04 R = 1.000E+06

Used a mesh of 21 points
Maximum error = 0.62E-09 in interval 20 for component 3

Mesh points:
1(1) 0.0000E+00 2(3) 0.5000E-01 3(2) 0.1000E+00 4(3) 0.1500E+00
5(2) 0.2000E+00 6(3) 0.2500E+00 7(2) 0.3000E+00 8(3) 0.3500E+00
9(2) 0.4000E+00 10(3) 0.4500E+00 11(2) 0.5000E+00 12(3) 0.5500E+00

13(2) 0.6000E+00 14(3) 0.6500E+00 15(2) 0.7000E+00 16(3) 0.7500E+00
17(2) 0.8000E+00 18(3) 0.8500E+00 19(2) 0.9000E+00 20(3) 0.9500E+00
21(1) 0.1000E+01

x f f’ g
0.000 0.0000 0.0000 1.0000
0.050 0.0070 0.1805 0.4416
0.100 0.0141 0.0977 0.1886
0.150 0.0171 0.0252 0.0952
0.200 0.0172 -0.0165 0.0595
0.250 0.0157 -0.0400 0.0427
0.300 0.0133 -0.0540 0.0322
0.350 0.0104 -0.0628 0.0236
0.400 0.0071 -0.0683 0.0156
0.450 0.0036 -0.0714 0.0078
0.500 0.0000 -0.0724 0.0000
0.550 -0.0036 -0.0714 -0.0078
0.600 -0.0071 -0.0683 -0.0156
0.650 -0.0104 -0.0628 -0.0236
0.700 -0.0133 -0.0540 -0.0322
0.750 -0.0157 -0.0400 -0.0427
0.800 -0.0172 -0.0165 -0.0595
0.850 -0.0171 0.0252 -0.0952
0.900 -0.0141 0.0977 -0.1886
0.950 -0.0070 0.1805 -0.4416
1.000 0.0000 0.0000 -1.0000

Tolerance = 1.0E-04 R = 1.000E+08

Used a mesh of 21 points
Maximum error = 0.45E-08 in interval 6 for component 3

Mesh points:
1(1) 0.0000E+00 2(3) 0.1757E-01 3(2) 0.3515E-01 4(3) 0.5203E-01
5(2) 0.6891E-01 6(3) 0.8593E-01 7(2) 0.1030E+00 8(3) 0.1351E+00
9(2) 0.1672E+00 10(3) 0.2306E+00 11(2) 0.2939E+00 12(3) 0.4713E+00

13(2) 0.6486E+00 14(3) 0.7455E+00 15(2) 0.8423E+00 16(3) 0.8824E+00
17(2) 0.9225E+00 18(3) 0.9449E+00 19(2) 0.9673E+00 20(3) 0.9836E+00
21(1) 0.1000E+01
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x f f’ g
0.000 0.0000 0.0000 1.0000
0.018 0.0025 0.1713 0.3923
0.035 0.0047 0.0824 0.1381
0.052 0.0056 0.0267 0.0521
0.069 0.0058 0.0025 0.0213
0.086 0.0057 -0.0073 0.0097
0.103 0.0056 -0.0113 0.0053
0.135 0.0052 -0.0135 0.0027
0.167 0.0047 -0.0140 0.0020
0.231 0.0038 -0.0142 0.0015
0.294 0.0029 -0.0142 0.0012
0.471 0.0004 -0.0143 0.0002
0.649 -0.0021 -0.0143 -0.0008
0.745 -0.0035 -0.0142 -0.0014
0.842 -0.0049 -0.0139 -0.0022
0.882 -0.0054 -0.0127 -0.0036
0.922 -0.0058 -0.0036 -0.0141
0.945 -0.0057 0.0205 -0.0439
0.967 -0.0045 0.0937 -0.1592
0.984 -0.0023 0.1753 -0.4208
1.000 0.0000 -0.0000 -1.0000

Tolerance = 1.0E-04 R = 1.000E+10

Used a mesh of 21 points
Maximum error = 0.31E-05 in interval 7 for component 3

Mesh points:
1(1) 0.0000E+00 2(3) 0.6256E-02 3(2) 0.1251E-01 4(3) 0.1851E-01
5(2) 0.2450E-01 6(3) 0.3076E-01 7(2) 0.3702E-01 8(3) 0.4997E-01
9(2) 0.6292E-01 10(3) 0.9424E-01 11(2) 0.1256E+00 12(3) 0.4190E+00

13(2) 0.7125E+00 14(3) 0.8246E+00 15(2) 0.9368E+00 16(3) 0.9544E+00
17(2) 0.9719E+00 18(3) 0.9803E+00 19(2) 0.9886E+00 20(3) 0.9943E+00
21(1) 0.1000E+01

x f f’ g
0.000 0.0000 0.0000 1.0000
0.006 0.0009 0.1623 0.3422
0.013 0.0016 0.0665 0.1021
0.019 0.0018 0.0204 0.0318
0.025 0.0019 0.0041 0.0099
0.031 0.0019 -0.0014 0.0028
0.037 0.0019 -0.0031 0.0007
0.050 0.0019 -0.0038 -0.0002
0.063 0.0018 -0.0038 -0.0003
0.094 0.0017 -0.0039 -0.0003
0.126 0.0016 -0.0039 -0.0002
0.419 0.0004 -0.0041 -0.0001
0.712 -0.0008 -0.0042 0.0001
0.825 -0.0013 -0.0043 0.0002
0.937 -0.0018 -0.0043 0.0003
0.954 -0.0019 -0.0042 0.0001
0.972 -0.0019 -0.0003 -0.0049
0.980 -0.0019 0.0152 -0.0252
0.989 -0.0015 0.0809 -0.1279
0.994 -0.0008 0.1699 -0.3814
1.000 0.0000 -0.0000 -1.0000
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NAG Library Routine Document

D02TVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02TVF is a setup routine which must be called prior to the first call of the nonlinear two-point
boundary value solver D02TLF.

2 Specification

SUBROUTINE D02TVF (NEQ, M, NLBC, NRBC, NCOL, TOLS, MXMESH, NMESH, MESH,
IPMESH, RCOMM, LRCOMM, ICOMM, LICOMM, IFAIL)

&

INTEGER NEQ, M(NEQ), NLBC, NRBC, NCOL, MXMESH, NMESH,
IPMESH(MXMESH), LRCOMM, ICOMM(LICOMM), LICOMM,
IFAIL

&
&

REAL (KIND=nag_wp) TOLS(NEQ), MESH(MXMESH), RCOMM(LRCOMM)

3 Description

D02TVF and its associated routines (D02TLF, D02TXF, D02TYF and D02TZF) solve the two-point
boundary value problem for a nonlinear system of ordinary differential equations

y
m1ð Þ
1 xð Þ ¼ f1 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
y
m2ð Þ
2 xð Þ ¼ f2 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
..
.

y mnð Þ
n xð Þ ¼ fn x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
over an interval a; b½ � subject to p ( > 0) nonlinear boundary conditions at a and q ( > 0) nonlinear

boundary conditions at b, where pþ q ¼
Xn
i¼1
mi. Note that y mð Þ

i xð Þ is the mth derivative of the ith

solution component. Hence y 0ð Þ
i xð Þ ¼ yi xð Þ. The left boundary conditions at a are defined as

gi z y að Þð Þð Þ ¼ 0; i ¼ 1; 2; . . . ; p;

and the right boundary conditions at b as

�gj z y bð Þð Þð Þ ¼ 0; j ¼ 1; 2; . . . ; q;

where y ¼ y1; y2; . . . ; ynð Þ and

z y xð Þð Þ ¼ y1 xð Þ; y 1ð Þ
1 xð Þ; . . . ; y m1�1ð Þ

1 xð Þ; y2 xð Þ; . . . ; y mn�1ð Þ
n xð Þ

� �
:

See Section 9 for information on how boundary value problems of a more general nature can be treated.

D02TVF is used to specify an initial mesh, error requirements and other details. D02TLF is then used
to solve the boundary value problem.

The solution routine D02TLF proceeds as follows. A modified Newton method is applied to the
equations

y
mið Þ
i xð Þ � fi x; z y xð Þð Þð Þ ¼ 0; i ¼ 1; . . . ; n

and the boundary conditions. To solve these equations numerically the components yi are approximated
by piecewise polynomials vij using a monomial basis on the jth mesh sub-interval. The coefficients of
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the polynomials vij form the unknowns to be computed. Collocation is applied at Gaussian points

v
mið Þ
ij xjk
� �

� fi xjk; z v xjk
� �� �� �

¼ 0; i ¼ 1; 2; . . . ; n;

where xjk is the kth collocation point in the jth mesh sub-interval. Continuity at the mesh points is
imposed, that is

vij xjþ1
� �

� vi;jþ1 xjþ1
� �

¼ 0; i ¼ 1; 2; . . . ; n;

where xjþ1 is the right-hand end of the jth mesh sub-interval. The linearized collocation equations and
boundary conditions, together with the continuity conditions, form a system of linear algebraic
equations, an almost block diagonal system which is solved using special linear solvers. To start the
modified Newton process, an approximation to the solution on the initial mesh must be supplied via the
procedure argument GUESS of D02TLF.

The solver attempts to satisfy the conditions

yi � vik k
1:0þ vik kð Þ � TOLSðiÞ; i ¼ 1; 2; . . . ; n; ð1Þ

where vi is the approximate solution for the ith solution component and TOLS is supplied by you. The
mesh is refined by trying to equidistribute the estimated error in the computed solution over all mesh
sub-intervals, and an extrapolation-like test (doubling the number of mesh sub-intervals) is used to
check for (1).

The routines are based on modified versions of the codes COLSYS and COLNEW (see Ascher et al.
(1979) and Ascher and Bader (1987)). A comprehensive treatment of the numerical solution of
boundary value problems can be found in Ascher et al. (1988) and Keller (1992).

4 References

Ascher U M and Bader G (1987) A new basis implementation for a mixed order boundary value ODE
solver SIAM J. Sci. Stat. Comput. 8 483–500

Ascher U M, Christiansen J and Russell R D (1979) A collocation solver for mixed order systems of
boundary value problems Math. Comput. 33 659–679

Ascher U M, Mattheij R M M and Russell R D (1988) Numerical Solution of Boundary Value Problems
for Ordinary Differential Equations Prentice–Hall

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Keller H B (1992) Numerical Methods for Two-point Boundary-value Problems Dover, New York

Schwartz I B (1983) Estimating regions of existence of unstable periodic orbits using computer-based
techniques SIAM J. Sci. Statist. Comput. 20(1) 106–120

5 Arguments

1: NEQ – INTEGER Input

On entry: n, the number of ordinary differential equations to be solved.

Constraint: NEQ � 1.

2: MðNEQÞ – INTEGER array Input

On entry: MðiÞ must contain mi, the order of the ith differential equation, for i ¼ 1; 2; . . . ; n.

Constraint: 1 � MðiÞ � 4, for i ¼ 1; 2; . . . ; n.
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3: NLBC – INTEGER Input

On entry: p, the number of left boundary conditions defined at the left-hand end, a
( ¼ MESHð1Þ).
Constraint: NLBC � 1.

4: NRBC – INTEGER Input

On entry: q, the number of right boundary conditions defined at the right-hand end, b
( ¼ MESHðNMESHÞ).
Constraints:

NRBC � 1;

NLBCþ NRBC ¼
Xn
i¼1

MðiÞ.

5: NCOL – INTEGER Input

On entry: the number of collocation points to be used in each mesh sub-interval.

Constraint: mmax � NCOL � 7, where mmax ¼ max MðiÞð Þ.

6: TOLSðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: TOLSðiÞ must contain the error requirement for the ith solution component.

Constraint: 100�machine precision < TOLSðiÞ < 1:0, for i ¼ 1; 2; . . . ; n.

7: MXMESH – INTEGER Input

On entry: the maximum number of mesh points to be used during the solution process.

Constraint: MXMESH � 2� NMESH� 1.

8: NMESH – INTEGER Input

On entry: the number of points to be used in the initial mesh of the solution process.

Constraint: NMESH � 6.

9: MESHðMXMESHÞ – REAL (KIND=nag_wp) array Input

On entry: the positions of the initial NMESH mesh points. The remaining elements of MESH
need not be set. You should try to place the mesh points in areas where you expect the solution to
vary most rapidly. In the absence of any other information the points should be equally
distributed on a; b½ �.
MESHð1Þ must contain the left boundary point, a, and MESHðNMESHÞ must contain the right
boundary point, b.

Constraint: MESHðiÞ < MESHði þ 1Þ, for i ¼ 1; 2; . . . ;NMESH� 1.

10: IPMESHðMXMESHÞ – INTEGER array Input

On entry: IPMESHðiÞ specifies whether or not the initial mesh point defined in MESHðiÞ, for
i ¼ 1; 2; . . . ;NMESH, should be a fixed point in all meshes computed during the solution
process. The remaining elements of IPMESH need not be set.

IPMESHðiÞ ¼ 1
Indicates that MESHðiÞ should be a fixed point in all meshes.

IPMESHðiÞ ¼ 2
Indicates that MESHðiÞ is not a fixed point.
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Constraints:

IPMESHð1Þ ¼ 1 and IPMESHðNMESHÞ ¼ 1, (i.e., the left and right boundary points, a
and b, must be fixed points, in all meshes);
IPMESHðiÞ ¼ 1 or 2, for i ¼ 2; 3; . . . ;NMESH� 1.

11: RCOMMðLRCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On exit: contains information for use by D02TLF. This must be the same array as will be
supplied to D02TLF. The contents of this array must remain unchanged between calls.

12: LRCOMM – INTEGER Input

On entry: the dimension of the array RCOMM as declared in the (sub)program from which
D02TVF is called. If LRCOMM ¼ 0, a communication array size query is requested. In this case
there is an immediate return with communication array dimensions stored in ICOMM;
ICOMMð1Þ contains the required dimension of RCOMM, while ICOMMð2Þ contains the
required dimension of ICOMM.

C o n s t r a i n t : LRCOMM ¼ 0, o r
LRCOMM � 51þ NEQþMXMESH� 2þm� þ knð Þ � kn þMXMESH=2, w h e r e

m� ¼
Xn
i¼1

MðiÞ and kn ¼ NCOL� NEQ.

13: ICOMMðLICOMMÞ – INTEGER array Communication Array

On exit: contains information for use by D02TLF. This must be the same array as will be
supplied to D02TLF. The contents of this array must remain unchanged between calls. If
LRCOMM ¼ 0, a communication array size query is requested. In this case, on immediate return,
ICOMMð1Þ will contain the required dimension for RCOMM while ICOMMð2Þ will contain the
required dimension for ICOMM.

14: LICOMM – INTEGER Input

On entry: the dimension of the array ICOMM as declared in the (sub)program from which
D02TVF is called. If LRCOMM ¼ 0, a communication array size query is requested. In this case
ICOMM need only be of dimension 2 in order to hold the required communication array
dimensions for the given problem and algorithmic parameters.

Constraints:

if LRCOMM ¼ 0, LICOMM � 2;
otherwise LICOMM � 23þ NEQþMXMESH.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IPMESHð1Þ or IPMESHðNMESHÞ does not equal 1.

On entry, IPMESHðiÞ 6¼ 1 or 2 for some i.

On entry, LICOMM ¼ valueh i.
Constraint: LICOMM � valueh i.
On entry, LRCOMM ¼ valueh i.
Constraint: LRCOMM ¼ 0 or LRCOMM � valueh i.
On entry, Mð valueh iÞ ¼ valueh i.
Constraint: 1 � MðiÞ � 4 for all i.

On entry, MXMESH ¼ valueh i and NMESH ¼ valueh i.
Constraint: MXMESH � 2� NMESH� 1.

On entry, NCOL ¼ valueh i and max MðiÞð Þ ¼ valueh i.
Constraint: max MðiÞð Þ � NCOL � 7.

On entry, NEQ ¼ valueh i.
Constraint: NEQ � 1.

On entry, NLBC ¼ valueh i, NRBC ¼ valueh i and sum MðiÞð Þ ¼ valueh i.
Constraint: NLBCþ NRBC ¼ sum MðiÞð Þ.
On entry, NLBC ¼ valueh i and NRBC ¼ valueh i.
Constraint: NLBC � 1 and NRBC � 1.

On entry, NMESH ¼ valueh i.
Constraint: NMESH � 6.

On entry, the elements of MESH are not strictly increasing.

On entry, TOLSð valueh iÞ ¼ valueh i.
Constraint: TOLSðiÞ > valueh i for all i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

D02TVF is not threaded in any implementation.

9 Further Comments

For problems where sharp changes of behaviour are expected over short intervals it may be advisable
to:

– use a large value for NCOL;

– cluster the initial mesh points where sharp changes in behaviour are expected;

– maintain fixed points in the mesh using the argument IPMESH to ensure that the remeshing process
does not inadvertently remove mesh points from areas of known interest before they are detected
automatically by the algorithm.

9.1 Nonseparated Boundary Conditions

A boundary value problem with nonseparated boundary conditions can be treated by transformation to
an equivalent problem with separated conditions. As a simple example consider the system

y01 ¼ f1 x; y1; y2ð Þ

y02 ¼ f2 x; y1; y2ð Þ

on a; b½ � subject to the boundary conditions

g1 y1 að Þð Þ ¼ 0
g2 y2 að Þ; y2 bð Þð Þ ¼ 0:

By adjoining the trivial ordinary differential equation

r0 ¼ 0;

which implies r að Þ ¼ r bð Þ, and letting r bð Þ ¼ y2 bð Þ, say, we have a new system

y01 ¼ f1 x; y1; y2ð Þ
y02 ¼ f2 x; y1; y2ð Þ
r0 ¼ 0;

subject to the separated boundary conditions

g1 y1 að Þð Þ ¼ 0
g2 y2 að Þ; r að Þð Þ ¼ 0
y2 bð Þ � r bð Þ ¼ 0:

There is an obvious overhead in adjoining an extra differential equation: the system to be solved is
increased in size.

9.2 Multipoint Boundary Value Problems

Multipoint boundary value problems, that is problems where conditions are specified at more than two
points, can also be transformed to an equivalent problem with two boundary points. Each sub-interval
defined by the multipoint conditions can be transformed onto the interval 0; 1½ �, say, leading to a larger
set of differential equations. The boundary conditions of the transformed system consist of the original
boundary conditions and the conditions imposed by the requirement that the solution components be
continuous at the interior break-points. For example, consider the equation

y 3ð Þ ¼ f t; y; y 1ð Þ; y 2ð Þ
� �

on a; c½ �

subject to the conditions
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y að Þ ¼ A
y bð Þ ¼ B

y 1ð Þ cð Þ ¼ C

where a < b < c. This can be transformed to the system

y
3ð Þ
1 ¼ f t; y1; y

1ð Þ
1 ; y

2ð Þ
1

� �
y

3ð Þ
2 ¼ f t; y2; y

1ð Þ
2 ; y

2ð Þ
2

� �
9=; on 0; 1½ �

where

y1 	 y on a; b½ �
y2 	 y on b; c½ �;

subject to the boundary conditions

y1 0ð Þ ¼ A
y1 1ð Þ ¼ B

y
1ð Þ
2 1ð Þ ¼ C
y2 0ð Þ ¼ B from y1 1ð Þ ¼ y2 0ð Þð Þ
y

1ð Þ
1 1ð Þ ¼ y

1ð Þ
2 0ð Þ

y
2ð Þ
1 1ð Þ ¼ y

2ð Þ
2 0ð Þ:

In this instance two of the resulting boundary conditions are nonseparated but they may next be treated
as described above.

9.3 High Order Systems

Systems of ordinary differential equations containing derivatives of order greater than four can always
be reduced to systems of order suitable for treatment by D02TVF and its related routines. For example
suppose we have the sixth-order equation

y 6ð Þ ¼ �y:

Writing the variables y1 ¼ y and y2 ¼ y 4ð Þ we obtain the system

y
4ð Þ
1 ¼ y2

y
2ð Þ
2 ¼ �y1

which has maximal order four, or writing the variables y1 ¼ y and y2 ¼ y 3ð Þ we obtain the system

y
3ð Þ
1 ¼ y2

y
3ð Þ
2 ¼ �y1

which has maximal order three. The best choice of reduction by choosing new variables will depend on
the structure and physical meaning of the system. Note that you will control the error in each of the
variables y1 and y2. Indeed, if you wish to control the error in certain derivatives of the solution of an
equation of order greater than one, then you should make those derivatives new variables.

9.4 Fixed Points and Singularities

The solver routine D02TLF employs collocation at Gaussian points in each sub-interval of the mesh.
Hence the coefficients of the differential equations are not evaluated at the mesh points. Thus, fixed
points should be specified in the mesh where either the coefficients are singular, or the solution has less
smoothness, or where the differential equations should not be evaluated. Singular coefficients at
boundary points often arise when physical symmetry is used to reduce partial differential equations to
ordinary differential equations. These do not pose a direct numerical problem for using this code but
they can severely impact its convergence.
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9.5 Numerical Jacobians

The solver routine D02TLF requires an external routine FJAC to evaluate the partial derivatives of fi

with respect to the elements of z yð Þ ( ¼ y1; y
1
1; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
). In cases where the partial

derivatives are difficult to evaluate, numerical approximations can be used. However, this approach
might have a negative impact on the convergence of the modified Newton method. You could consider
the use of symbolic mathematic packages and/or automatic differentiation packages if available to you.

See Section 10 in D02TZF for an example using numerical approximations to the Jacobian. There
central differences are used and each fi is assumed to depend on all the components of z. This requires
two evaluations of the system of differential equations for each component of z. The perturbation used
depends on the size of each component of z and a minimum quantity dependent on the machine
precision. The cost of this approach could be reduced by employing an alternative difference scheme
and/or by only perturbing the components of z which appear in the definitions of the fi. A discussion on
the choice of perturbation factors for use in finite difference approximations to partial derivatives can be
found in Gill et al. (1981).

10 Example

The following example is used to illustrate the treatment of nonseparated boundary conditions. See also
D02TLF, D02TXF, D02TYF and D02TZF, for the illustration of other facilities.

The following equations model of the spread of measles. See Schwartz (1983). Under certain
assumptions the dynamics of the model can be expressed as

y01 ¼ �� � xð Þy1y3
y02 ¼ � xð Þy1y3 � y2=�
y03 ¼ y2=�� y3=�

subject to the periodic boundary conditions

yi 0ð Þ ¼ yi 1ð Þ; i ¼ 1; 2; 3:

Here y1; y2 and y3 are respectively the proportions of susceptibles, infectives and latents to the whole
population. � ( ¼ 0:0279 years) is the latent period, � ( ¼ 0:01 years) is the infectious period and �
( ¼ 0:02) is the population birth rate. � xð Þ ¼ �0 1:0þ cos 2	xð Þ is the contact rate where �0 ¼ 1575:0.

The nonseparated boundary conditions are treated as described in Section 9 by adjoining the trivial
differential equations

y04 ¼ 0
y05 ¼ 0
y06 ¼ 0

that is y4; y5 and y6 are constants. The boundary conditions of the augmented system can then be posed
in the separated form

y1 0ð Þ � y4 0ð Þ ¼ 0
y2 0ð Þ � y5 0ð Þ ¼ 0
y3 0ð Þ � y6 0ð Þ ¼ 0
y1 1ð Þ � y4 1ð Þ ¼ 0
y2 1ð Þ � y5 1ð Þ ¼ 0
y3 1ð Þ � y6 1ð Þ ¼ 0:

This is a relatively easy problem and an (arbitrary) initial guess of 1 for each component suffices, even
though two components of the solution are much smaller than 1.
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10.1 Program Text

! D02TVF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02tvfe_mod

! D02TVF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: ffun, fjac, gafun, gajac, gbfun, &

gbjac, guess
! .. Parameters ..

Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter, Public :: mmax = 1, neq = 6, nin = 5, &

nlbc = 3, nout = 6, nrbc = 3
! .. Local Scalars ..

Real (Kind=nag_wp), Public, Save :: beta0, eta, lambda, mu
! .. Local Arrays ..

Integer, Public, Save :: m(neq) = (/1,1,1,1,1,1/)
Contains

Subroutine ffun(x,y,neq,m,f,iuser,ruser)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
beta = beta0*(one+cos(two*x01aaf(beta)*x))
f(1) = mu - beta*y(1,0)*y(3,0)
f(2) = beta*y(1,0)*y(3,0) - y(2,0)/lambda
f(3) = y(2,0)/lambda - y(3,0)/eta
f(4:6) = zero
Return

End Subroutine ffun
Subroutine fjac(x,y,neq,m,dfdy,iuser,ruser)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dfdy(neq,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
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beta = beta0*(one+cos(two*x01aaf(beta)*x))
dfdy(1,1,0) = -beta*y(3,0)
dfdy(1,3,0) = -beta*y(1,0)
dfdy(2,1,0) = beta*y(3,0)
dfdy(2,2,0) = -one/lambda
dfdy(2,3,0) = beta*y(1,0)
dfdy(3,2,0) = one/lambda
dfdy(3,3,0) = -one/eta
Return

End Subroutine fjac
Subroutine gafun(ya,neq,m,nlbc,ga,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: ga(nlbc)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
ga(1) = ya(1,0) - ya(4,0)
ga(2) = ya(2,0) - ya(5,0)
ga(3) = ya(3,0) - ya(6,0)
Return

End Subroutine gafun
Subroutine gbfun(yb,neq,m,nrbc,gb,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gb(nrbc)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
gb(1) = yb(1,0) - yb(4,0)
gb(2) = yb(2,0) - yb(5,0)
gb(3) = yb(3,0) - yb(6,0)
Return

End Subroutine gbfun
Subroutine gajac(ya,neq,m,nlbc,dgady,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgady(nlbc,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgady(1,1,0) = one
dgady(1,4,0) = -one
dgady(2,2,0) = one
dgady(2,5,0) = -one
dgady(3,3,0) = one
dgady(3,6,0) = -one
Return

End Subroutine gajac
Subroutine gbjac(yb,neq,m,nrbc,dgbdy,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgbdy(nrbc,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgbdy(1,1,0) = one
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dgbdy(1,4,0) = -one
dgbdy(2,2,0) = one
dgbdy(2,5,0) = -one
dgbdy(3,3,0) = one
dgbdy(3,6,0) = -one
Return

End Subroutine gbjac
Subroutine guess(x,neq,m,y,dym,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: dym(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*), y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
y(1:3,0) = one
y(4,0) = y(1,0)
y(5,0) = y(2,0)
y(6,0) = y(3,0)
dym(1:neq) = zero
Return

End Subroutine guess
End Module d02tvfe_mod
Program d02tvfe

! D02TVF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02tlf, d02tvf, d02tyf, d02tzf, nag_wp
Use d02tvfe_mod, Only: beta0, eta, ffun, fjac, gafun, gajac, gbfun, &

gbjac, guess, lambda, m, mmax, mu, neq, nin, &
nlbc, nout, nrbc, one

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: dx, ermx
Integer :: i, iermx, ifail, ijermx, licomm, &

lrcomm, mxmesh, ncol, nmesh
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: mesh(:), rcomm(:), tols(:), y(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icomm(:), ipmesh(:)
Integer :: iuser(2)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02TVF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) ncol, nmesh, mxmesh
Allocate (mesh(mxmesh),tols(neq),y(neq,0:mmax-1),ipmesh(mxmesh))

Read (nin,*) beta0, eta, lambda, mu
Read (nin,*) tols(1:neq)

dx = one/real(nmesh-1,kind=nag_wp)
mesh(1) = 0.0_nag_wp
Do i = 2, nmesh - 1

mesh(i) = mesh(i-1) + dx
End Do
mesh(nmesh) = one

ipmesh(1) = 1
ipmesh(2:nmesh-1) = 2
ipmesh(nmesh) = 1

! Workspace query to get size of rcomm and icomm
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ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tols,mxmesh,nmesh,mesh,ipmesh,ruser,0, &

iuser,2,ifail)
lrcomm = iuser(1)
licomm = iuser(2)
Allocate (rcomm(lrcomm),icomm(licomm))

! Initialize
ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tols,mxmesh,nmesh,mesh,ipmesh,rcomm, &

lrcomm,icomm,licomm,ifail)

! Solve
ifail = -1
Call d02tlf(ffun,fjac,gafun,gbfun,gajac,gbjac,guess,rcomm,icomm,iuser, &

ruser,ifail)

! Extract mesh.
ifail = -1
Call d02tzf(mxmesh,nmesh,mesh,ipmesh,ermx,iermx,ijermx,rcomm,icomm, &

ifail)

If (ifail/=1) Then
! Print mesh statistics

Write (nout,99999) nmesh, ermx, iermx, ijermx
Write (nout,99998)(i,ipmesh(i),mesh(i),i=1,nmesh)

! Print solution on mesh.
Write (nout,99997)
Do i = 1, nmesh

ifail = 0
Call d02tyf(mesh(i),y,neq,mmax,rcomm,icomm,ifail)
Write (nout,99996) mesh(i), y(1:3,0)

End Do
End If

99999 Format (/,’ Used a mesh of ’,I4,’ points’,/,’ Maximum error = ’,E10.2, &
’ in interval ’,I4,’ for component ’,I4,/)

99998 Format (/,’ Mesh points:’,/,4(I4,’(’,I1,’)’,F7.4))
99997 Format (/,’ Computed solution at mesh points’,/,’ x y1 ’, &

’ y2 y3’)
99996 Format (1X,F6.3,1X,3E11.3)

End Program d02tvfe

10.2 Program Data

D02TVF Example Program Data
5 11 100 : ncol, nmesh, mxmesh
1575.0 0.01 0.0279 0.02 : beta0, eta, lambda, mu
1.0E-5 1.0E-5 1.0E-5
1.0E-5 1.0E-5 1.0E-5 : tols(1:neq)

10.3 Program Results

D02TVF Example Program Results

Used a mesh of 21 points
Maximum error = 0.14E-07 in interval 5 for component 1

Mesh points:
1(1) 0.0000 2(3) 0.0500 3(2) 0.1000 4(3) 0.1500
5(2) 0.2000 6(3) 0.2500 7(2) 0.3000 8(3) 0.3500
9(2) 0.4000 10(3) 0.4500 11(2) 0.5000 12(3) 0.5500

13(2) 0.6000 14(3) 0.6500 15(2) 0.7000 16(3) 0.7500
17(2) 0.8000 18(3) 0.8500 19(2) 0.9000 20(3) 0.9500
21(1) 1.0000
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Computed solution at mesh points
x y1 y2 y3

0.000 0.752E-01 0.180E-04 0.498E-05
0.050 0.761E-01 0.789E-04 0.219E-04
0.100 0.766E-01 0.315E-03 0.892E-04
0.150 0.758E-01 0.101E-02 0.298E-03
0.200 0.726E-01 0.225E-02 0.713E-03
0.250 0.678E-01 0.311E-02 0.108E-02
0.300 0.641E-01 0.256E-02 0.984E-03
0.350 0.629E-01 0.129E-02 0.550E-03
0.400 0.633E-01 0.414E-03 0.197E-03
0.450 0.643E-01 0.912E-04 0.478E-04
0.500 0.653E-01 0.159E-04 0.881E-05
0.550 0.663E-01 0.277E-05 0.151E-05
0.600 0.673E-01 0.628E-06 0.313E-06
0.650 0.683E-01 0.219E-06 0.964E-07
0.700 0.693E-01 0.124E-06 0.487E-07
0.750 0.703E-01 0.116E-06 0.409E-07
0.800 0.713E-01 0.170E-06 0.551E-07
0.850 0.723E-01 0.370E-06 0.113E-06
0.900 0.733E-01 0.111E-05 0.322E-06
0.950 0.743E-01 0.420E-05 0.118E-05
1.000 0.752E-01 0.180E-04 0.498E-05

0.01

0.02

0.03

0.04

0.05

0.06

0.08

 0  0.2  0.4  0.6  0.8  1
 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

Su
sc

ep
ti

bl
es

In
fe

ct
iv

es
 a

nd
 L

at
en

ts

Time

Example Program
Model of Spread of Measles

susceptibles

infectiveslatents

D02 – Ordinary Differential D02TVF

Mark 26 D02TVF.13 (last)





NAG Library Routine Document

D02TXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02TXF allows a solution to a nonlinear two-point boundary value problem computed by D02TLF to
be used as an initial approximation in the solution of a related nonlinear two-point boundary value
problem in a continuation call to D02TLF.

2 Specification

SUBROUTINE D02TXF (MXMESH, NMESH, MESH, IPMESH, RCOMM, ICOMM, IFAIL)

INTEGER MXMESH, NMESH, IPMESH(MXMESH), ICOMM(*), IFAIL
REAL (KIND=nag_wp) MESH(MXMESH), RCOMM(*)

3 Description

D02TXF and its associated routines (D02TLF, D02TVF, D02TYF and D02TZF) solve the two-point
boundary value problem for a nonlinear system of ordinary differential equations

y
m1ð Þ
1 xð Þ ¼ f1 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
y
m2ð Þ
2 xð Þ ¼ f2 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
..
.

y mnð Þ
n xð Þ ¼ fn x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
over an interval a; b½ � subject to p ( > 0) nonlinear boundary conditions at a and q ( > 0) nonlinear

boundary conditions at b, where pþ q ¼
Xn
i¼1
mi. Note that y mð Þ

i xð Þ is the mth derivative of the ith

solution component. Hence y 0ð Þ
i xð Þ ¼ yi xð Þ. The left boundary conditions at a are defined as

gi z y að Þð Þð Þ ¼ 0; i ¼ 1; 2; . . . ; p;

and the right boundary conditions at b as

�gj z y bð Þð Þð Þ ¼ 0; j ¼ 1; 2; . . . ; q;

where y ¼ y1; y2; . . . ; ynð Þ and

z y xð Þð Þ ¼ y1 xð Þ; y 1ð Þ
1 xð Þ; . . . ; y m1�1ð Þ

1 xð Þ; y2 xð Þ; . . . ; y mn�1ð Þ
n xð Þ

� �
:

First, D02TVF must be called to specify the initial mesh, error requirements and other details. Then,
D02TLF can be used to solve the boundary value problem. After successful computation, D02TZF can
be used to ascertain details about the final mesh. D02TYF can be used to compute the approximate
solution anywhere on the interval a; b½ � using interpolation.

If the boundary value problem being solved is one of a sequence of related problems, for example as
part of some continuation process, then D02TXF should be used between calls to D02TLF. This avoids
the overhead of a complete initialization when the setup routine D02TVF is used. D02TXF allows the
solution values computed in the previous call to D02TLF to be used as an initial approximation for the
solution in the next call to D02TLF.

You must specify the new initial mesh. The previous mesh can be obtained by a call to D02TZF. It may
be used unchanged as the new mesh, in which case any fixed points in the previous mesh remain as
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fixed points in the new mesh. Fixed and other points may be added or subtracted from the mesh by
manipulation of the contents of the array argument IPMESH. Initial values for the solution components
on the new mesh are computed by interpolation on the values for the solution components on the
previous mesh.

The routines are based on modified versions of the codes COLSYS and COLNEW (see Ascher et al.
(1979) and Ascher and Bader (1987)). A comprehensive treatment of the numerical solution of
boundary value problems can be found in Ascher et al. (1988) and Keller (1992).

4 References

Ascher U M and Bader G (1987) A new basis implementation for a mixed order boundary value ODE
solver SIAM J. Sci. Stat. Comput. 8 483–500

Ascher U M, Christiansen J and Russell R D (1979) A collocation solver for mixed order systems of
boundary value problems Math. Comput. 33 659–679

Ascher U M, Mattheij R M M and Russell R D (1988) Numerical Solution of Boundary Value Problems
for Ordinary Differential Equations Prentice–Hall

Keller H B (1992) Numerical Methods for Two-point Boundary-value Problems Dover, New York

5 Arguments

1: MXMESH – INTEGER Input

On entry: the maximum number of points allowed in the mesh.

Constraint: this must be identical to the value supplied for the argument MXMESH in the prior
call to D02TVF.

2: NMESH – INTEGER Input

On entry: the number of points to be used in the new initial mesh. It is strongly recommended
that if this routine is called that the suggested value (see below) for NMESH is used. In this case
the arrays MESH and IPMESH returned by D02TZF can be passed to this routine without any
modification.

Suggested value: n� þ 1ð Þ=2, where n� is the number of mesh points used in the previous mesh
as returned in the argument NMESH of D02TZF.

Constraint: 6 � NMESH � MXMESHþ 1ð Þ=2.

3: MESHðMXMESHÞ – REAL (KIND=nag_wp) array Input

On entry: the NMESH points to be used in the new initial mesh as specified by IPMESH.

Suggested value: the argument MESH returned from a call to D02TZF.

Cons t r a i n t : MESHðijÞ < MESHðijþ1Þ, f o r j ¼ 1; 2; . . . ;NMESH� 1, t h e va l u e s o f
i1; i2; . . . ; iNMESH are defined in IPMESH.

MESHði1Þ must contain the left boundary point, a, and MESHðiNMESHÞ must contain the right
boundary point, b, as specified in the previous call to D02TVF.

4: IPMESHðMXMESHÞ – INTEGER array Input

On entry: specifies the points in MESH to be used as the new initial mesh. Let
ij : j ¼ 1; 2; . . . ;NMESH
� 

be the se t of ar ray indices of IPMESH such that
IPMESHðijÞ ¼ 1 or 2 and 1 ¼ i1 < i2 < � � � < iNMESH. Then MESHðijÞ will be included in the
new initial mesh.

If IPMESHðijÞ ¼ 1, MESHðijÞ will be a fixed point in the new initial mesh.

If IPMESHðkÞ ¼ 3 for any k, then MESHðkÞ will not be included in the new mesh.
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Suggested value: the argument IPMESH returned in a call to D02TZF.

Constraints:

IPMESHðkÞ ¼ 1, 2 or 3, for k ¼ 1; 2; . . . ; iNMESH;
IPMESHð1Þ ¼ IPMESHðiNMESHÞ ¼ 1.

5: RCOMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
RCOMM in the previous call to D02TLF.

On entry: this must be the same array as supplied to D02TLF and must remain unchanged
between calls.

On exit: contains information about the solution for use on subsequent calls to associated
routines.

6: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
ICOMM in the previous call to D02TLF.

On entry: this must be the same array as supplied to D02TLF and must remain unchanged
between calls.

On exit: contains information about the solution for use on subsequent calls to associated
routines.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An element of IPMESH was set to �1 before NMESH elements containing 1 or 2 were detected.

Expected valueh i elements of IPMESH to be 1 or 2, but valueh i such elements found.

IPMESHðiÞ 6¼ �1, 1, 2 or 3 for some i.

On entry, IPMESHð1Þ ¼ valueh i.
Constraint: IPMESHð1Þ ¼ 1.

On entry, MXMESH ¼ valueh i and MXMESH ¼ valueh i in D02TVF.
Constraint: MXMESH ¼ MXMESH in D02TVF.
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On entry, NMESH ¼ valueh i.
Constraint: NMESH � 6.

On entry, NMESH ¼ valueh i and MXMESH ¼ valueh i.
Constraint: NMESH � MXMESHþ 1ð Þ=2.
The entries in MESH are not strictly increasing.

The first element of array MESH does not coincide with the left hand end of the range previously
specified.
First element of MESH: valueh i; left hand of the range: valueh i.
The last point of the new mesh does not coincide with the right hand end of the range previously
specified.
Last point of the new mesh: valueh i; right hand end of the range: valueh i.
The solver routine did not produce any results suitable for remeshing.

The solver routine does not appear to have been called.

You have set the element of IPMESH corresponding to the last element of MESH to be included
in the new mesh as valueh i, which is not 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02TXF is not threaded in any implementation.

9 Further Comments

For problems where sharp changes of behaviour are expected over short intervals it may be advisable
to:

– cluster the mesh points where sharp changes in behaviour are expected;

– maintain fixed points in the mesh using the argument IPMESH to ensure that the remeshing process
does not inadvertently remove mesh points from areas of known interest.

In the absence of any other information about the expected behaviour of the solution, using the values
suggested in Section 5 for NMESH, IPMESH and MESH is strongly recommended.
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10 Example

This example illustrates the use of continuation, solution on an infinite range, and solution of a system
of two differential equations of orders 3 and 2. See also D02TLF, D02TVF, D02TYF and D02TZF, for
the illustration of other facilities.

Consider the problem of swirling flow over an infinite stationary disk with a magnetic field along the
axis of rotation. See Ascher et al. (1988) and the references therein. After transforming from a
cylindrical coordinate system r; �; zð Þ, in which the � component of the corresponding velocity field
behaves like r�n, the governing equations are

f 000 þ 1
2 3� nð Þff 00 þ n f 0ð Þ2 þ g2 � sf 0 ¼ �2

g00 þ 1
2 3� nð Þfg0 þ n� 1ð Þgf 0 � s g� 1ð Þ ¼ 0

with boundary conditions

f 0ð Þ ¼ f 0 0ð Þ ¼ g 0ð Þ ¼ 0; f 0 1ð Þ ¼ 0; g 1ð Þ ¼ �;

where s is the magnetic field strength, and � is the Rossby number.

Some solutions of interest are for � ¼ 1, small n and s! 0. An added complication is the infinite
range, which we approximate by 0; L½ �. We choose n ¼ 0:2 and first solve for L ¼ 60:0; s ¼ 0:24 using
the initial approximations f xð Þ ¼ �x2e�x and g xð Þ ¼ 1:0� e�x, which satisfy the boundary conditions,
on a uniform mesh of 21 points. Simple continuation on the parameters L and s using the values
L ¼ 120:0; s ¼ 0:144 and then L ¼ 240:0; s ¼ 0:0864 is used to compute further solutions. We use the
suggested values for NMESH, IPMESH and MESH in the call to D02TXF prior to a continuation call,
that is only every second point of the preceding mesh is used.

The equations are first mapped onto 0; 1½ � to yield

f 000 ¼ L3 �2 � g2
� �

þ L2sf 0 � L 1
2 3� nð Þff 00 þ n f 0ð Þ2
� �

g00 ¼ L2s g� 1ð Þ � L 1
2 3� nð Þfg0 þ n� 1ð Þf 0g
� �

:

10.1 Program Text

! D02TXF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02txfe_mod

! D02TXF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: ffun, fjac, gafun, gajac, gbfun, &

gbjac, guess
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: half = 0.5_nag_wp
Real (Kind=nag_wp), Parameter :: three = 3.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: xsplit = 30.0_nag_wp
Integer, Parameter, Public :: m1 = 3, m2 = 2, mmax = 3, neq = 2, &

nin = 5, nlbc = 3, nleft = 15, &
nout = 6, nrbc = 2, nright = 10

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: el, en, s

Contains
Subroutine ffun(x,y,neq,m,f,iuser,ruser)

! .. Scalar Arguments ..
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Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: t1, y11, y20

! .. Executable Statements ..
t1 = half*(three-en)*y(1,0)
y11 = y(1,1)
y20 = y(2,0)
f(1) = (el**3)*(one-y20**2) + (el**2)*s*y11 - el*(t1*y(1,2)+en*y11**2)
f(2) = (el**2)*s*(y20-one) - el*(t1*y(2,1)+(en-one)*y11*y20)
Return

End Subroutine ffun
Subroutine fjac(x,y,neq,m,dfdy,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dfdy(neq,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dfdy(1,2,0) = -two*el**3*y(2,0)
dfdy(1,1,0) = -el*half*(three-en)*y(1,2)
dfdy(1,1,1) = el**2*s - el*two*en*y(1,1)
dfdy(1,1,2) = -el*half*(three-en)*y(1,0)
dfdy(2,2,0) = el**2*s - el*(en-one)*y(1,1)
dfdy(2,2,1) = -el*half*(three-en)*y(1,0)
dfdy(2,1,0) = -el*half*(three-en)*y(2,1)
dfdy(2,1,1) = -el*(en-one)*y(2,0)
Return

End Subroutine fjac
Subroutine gafun(ya,neq,m,nlbc,ga,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: ga(nlbc)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
ga(1) = ya(1,0)
ga(2) = ya(1,1)
ga(3) = ya(2,0)
Return

End Subroutine gafun
Subroutine gbfun(yb,neq,m,nrbc,gb,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gb(nrbc)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
gb(1) = yb(1,1)
gb(2) = yb(2,0) - one
Return

End Subroutine gbfun
Subroutine gajac(ya,neq,m,nlbc,dgady,iuser,ruser)
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! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgady(nlbc,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgady(1,1,0) = one
dgady(2,1,1) = one
dgady(3,2,0) = one
Return

End Subroutine gajac
Subroutine gbjac(yb,neq,m,nrbc,dgbdy,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgbdy(nrbc,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgbdy(1,1,1) = one
dgbdy(2,2,0) = one
Return

End Subroutine gbjac
Subroutine guess(x,neq,m,y,dym,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: dym(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*), y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: ex, expmx

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
ex = x*el
expmx = exp(-ex)
y(1,0) = -ex**2*expmx
y(1,1) = (-two*ex+ex**2)*expmx
y(1,2) = (-two+4.0E0_nag_wp*ex-ex**2)*expmx
y(2,0) = one - expmx
y(2,1) = expmx
dym(1) = (6.0E0_nag_wp-6.0E0_nag_wp*ex+ex**2)*expmx
dym(2) = -expmx
Return

End Subroutine guess
End Module d02txfe_mod
Program d02txfe

! D02TXF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02tlf, d02tvf, d02txf, d02tyf, d02tzf, nag_wp
Use d02txfe_mod, Only: el, en, ffun, fjac, gafun, gajac, gbfun, gbjac, &

guess, m1, m2, mmax, neq, nin, nlbc, nleft, nout, &
nrbc, nright, one, s, two, xsplit

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: dx, el_init, ermx, s_init, xx
Integer :: i, iermx, ifail, ijermx, j, licomm, &

lrcomm, mxmesh, ncol, ncont, nmesh
! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: mesh(:), rcomm(:)
Real (Kind=nag_wp) :: ruser(1), tol(neq), y(neq,0:mmax-1)
Integer, Allocatable :: icomm(:), ipmesh(:)
Integer :: iuser(2), m(neq)

! .. Intrinsic Procedures ..
Intrinsic :: min, real

! .. Executable Statements ..
Write (nout,*) ’D02TXF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read method parameters
Read (nin,*) ncol, nmesh, mxmesh
Read (nin,*) tol(1:neq)

Allocate (mesh(mxmesh),ipmesh(mxmesh))
! Read problem (initial) parameters

Read (nin,*) en, el_init, s_init
! Initialize data

el = el_init
s = s_init
m(1) = m1
m(2) = m2

dx = one/real(nmesh-1,kind=nag_wp)
mesh(1) = 0.0_nag_wp
Do i = 2, nmesh - 1

mesh(i) = mesh(i-1) + dx
End Do
mesh(nmesh) = 1.0_nag_wp

ipmesh(1) = 1
ipmesh(2:nmesh-1) = 2
ipmesh(nmesh) = 1

! Workspace query to get size of rcomm and icomm
ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tol,mxmesh,nmesh,mesh,ipmesh,ruser,0, &

iuser,2,ifail)
lrcomm = iuser(1)
licomm = iuser(2)
Allocate (rcomm(lrcomm),icomm(licomm))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tol,mxmesh,nmesh,mesh,ipmesh,rcomm, &

lrcomm,icomm,licomm,ifail)

! Initialize number of continuation steps in el and s
Read (nin,*) ncont

cont: Do j = 1, ncont
Write (nout,99997) tol(1), el, s

! Solve
ifail = -1
Call d02tlf(ffun,fjac,gafun,gbfun,gajac,gbjac,guess,rcomm,icomm,iuser, &

ruser,ifail)
If (ifail/=0) Then

Exit cont
End If

! Extract mesh
ifail = 0
Call d02tzf(mxmesh,nmesh,mesh,ipmesh,ermx,iermx,ijermx,rcomm,icomm, &

ifail)

Write (nout,99996) nmesh, ermx, iermx, ijermx
! Print solution components on mesh

Write (nout,99999)
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! Left side domain [0,xsplit], evaluate at nleft+1 uniform grid points.
dx = xsplit/real(nleft,kind=nag_wp)/el
xx = 0.0_nag_wp
Do i = 0, nleft

ifail = 0
Call d02tyf(xx,y,neq,mmax,rcomm,icomm,ifail)
Write (nout,99998) xx*el, y(1,0), y(2,0)
xx = xx + dx

End Do

! Right side domain (xsplit,L], evaluate at nright uniform grid points.
dx = (el-xsplit)/real(nright,kind=nag_wp)/el
xx = xsplit/el
Do i = 1, nright

xx = min(1.0_nag_wp,xx+dx)
ifail = 0
Call d02tyf(xx,y,neq,mmax,rcomm,icomm,ifail)
Write (nout,99998) xx*el, y(1,0), y(2,0)

End Do

! Select mesh for continuation and update continuation parameters.
If (j<ncont) Then

el = two*el
s = 0.6_nag_wp*s
nmesh = (nmesh+1)/2
ifail = 0
Call d02txf(mxmesh,nmesh,mesh,ipmesh,rcomm,icomm,ifail)

End If
End Do cont

99999 Format (/,’ Solution on original interval:’,/,6X,’x’,8X,’f’,10X,’g’)
99998 Format (1X,F8.2,2(1X,F10.4))
99997 Format (/,/,’ Tolerance = ’,E8.1,’ L = ’,F8.3,’ S =’,F7.4)
99996 Format (/,’ Used a mesh of ’,I4,’ points’,/,’ Maximum error = ’,E10.2, &

’ in interval ’,I4,’ for component ’,I4)
End Program d02txfe

10.2 Program Data

D02TXF Example Program Data
6 21 250 : (method parameters) ncol, nmesh, mxmesh
1.0E-5 1.0E-5 : tolerances
0.2 60.0 0.24 : (problem parameters) en, el_init, s_init
3 : ncont

10.3 Program Results

D02TXF Example Program Results

Tolerance = 0.1E-04 L = 60.000 S = 0.2400

Used a mesh of 21 points
Maximum error = 0.27E-07 in interval 7 for component 1

Solution on original interval:
x f g

0.00 0.0000 0.0000
2.00 -0.9769 0.8011
4.00 -2.0900 1.1459
6.00 -2.6093 1.2389
8.00 -2.5498 1.1794

10.00 -2.1397 1.0478
12.00 -1.7176 0.9395
14.00 -1.5465 0.9206
16.00 -1.6127 0.9630
18.00 -1.7466 1.0068
20.00 -1.8286 1.0244
22.00 -1.8338 1.0185
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24.00 -1.7956 1.0041
26.00 -1.7582 0.9940
28.00 -1.7445 0.9926
30.00 -1.7515 0.9965
33.00 -1.7695 1.0019
36.00 -1.7730 1.0018
39.00 -1.7673 0.9998
42.00 -1.7645 0.9993
45.00 -1.7659 0.9999
48.00 -1.7672 1.0002
51.00 -1.7671 1.0001
54.00 -1.7666 0.9999
57.00 -1.7665 0.9999
60.00 -1.7666 1.0000

Tolerance = 0.1E-04 L = 120.000 S = 0.1440

Used a mesh of 21 points
Maximum error = 0.69E-05 in interval 7 for component 2

Solution on original interval:
x f g

0.00 0.0000 0.0000
2.00 -1.1406 0.7317
4.00 -2.6531 1.1315
6.00 -3.6721 1.3250
8.00 -4.0539 1.3707

10.00 -3.8285 1.3003
12.00 -3.1339 1.1407
14.00 -2.2469 0.9424
16.00 -1.6146 0.8201
18.00 -1.5472 0.8549
20.00 -1.8483 0.9623
22.00 -2.1761 1.0471
24.00 -2.3451 1.0778
26.00 -2.3236 1.0600
28.00 -2.1784 1.0165
30.00 -2.0214 0.9775
39.00 -2.1109 1.0155
48.00 -2.0362 0.9931
57.00 -2.0709 1.0023
66.00 -2.0588 0.9995
75.00 -2.0616 1.0000
84.00 -2.0615 1.0001
93.00 -2.0611 0.9999

102.00 -2.0614 1.0000
111.00 -2.0613 1.0000
120.00 -2.0613 1.0000

Tolerance = 0.1E-04 L = 240.000 S = 0.0864

Used a mesh of 81 points
Maximum error = 0.33E-06 in interval 19 for component 2

Solution on original interval:
x f g

0.00 0.0000 0.0000
2.00 -1.2756 0.6404
4.00 -3.1604 1.0463
6.00 -4.7459 1.3011
8.00 -5.8265 1.4467

10.00 -6.3412 1.5036
12.00 -6.2862 1.4824
14.00 -5.6976 1.3886
16.00 -4.6568 1.2263
18.00 -3.3226 1.0042
20.00 -2.0328 0.7718
22.00 -1.4035 0.6943
24.00 -1.6603 0.8218
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26.00 -2.2975 0.9928
28.00 -2.8661 1.1139
30.00 -3.1641 1.1641
51.00 -2.5307 1.0279
72.00 -2.3520 0.9919
93.00 -2.3674 0.9975

114.00 -2.3799 1.0003
135.00 -2.3800 1.0002
156.00 -2.3792 1.0000
177.00 -2.3791 1.0000
198.00 -2.3792 1.0000
219.00 -2.3792 1.0000
240.00 -2.3792 1.0000
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NAG Library Routine Document

D02TYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02TYF interpolates on the solution of a general two-point boundary value problem computed by
D02TLF.

2 Specification

SUBROUTINE D02TYF (X, Y, NEQ, MMAX, RCOMM, ICOMM, IFAIL)

INTEGER NEQ, MMAX, ICOMM(*), IFAIL
REAL (KIND=nag_wp) X, Y(NEQ,MMAX), RCOMM(*)

3 Description

D02TYF and its associated routines (D02TLF, D02TVF, D02TXF and D02TZF) solve the two-point
boundary value problem for a nonlinear mixed order system of ordinary differential equations

y
m1ð Þ
1 xð Þ ¼ f1 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
y
m2ð Þ
2 xð Þ ¼ f2 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
..
.

y mnð Þ
n xð Þ ¼ fn x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
over an interval a; b½ � subject to p ( > 0) nonlinear boundary conditions at a and q ( > 0) nonlinear

boundary conditions at b, where pþ q ¼
Xn
i¼1
mi. Note that y mð Þ

i xð Þ is the mth derivative of the ith

solution component. Hence y 0ð Þ
i xð Þ ¼ yi xð Þ. The left boundary conditions at a are defined as

gi z y að Þð Þð Þ ¼ 0; i ¼ 1; 2; . . . ; p;

and the right boundary conditions at b as

�gj z y bð Þð Þð Þ ¼ 0; j ¼ 1; 2; . . . ; q;

where y ¼ y1; y2; . . . ; ynð Þ and

z y xð Þð Þ ¼ y1 xð Þ; y 1ð Þ
1 xð Þ; . . . ; y m1�1ð Þ

1 xð Þ; y2 xð Þ; . . . ; y mn�1ð Þ
n xð Þ

� �
:

First, D02TVF must be called to specify the initial mesh, error requirements and other details. Then,
D02TLF can be used to solve the boundary value problem. After successful computation, D02TZF can
be used to ascertain details about the final mesh and other details of the solution procedure, and
D02TYF can be used to compute the approximate solution anywhere on the interval a; b½ � using
interpolation.

The routines are based on modified versions of the codes COLSYS and COLNEW (see Ascher et al.
(1979) and Ascher and Bader (1987)). A comprehensive treatment of the numerical solution of
boundary value problems can be found in Ascher et al. (1988) and Keller (1992).
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5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: x, the independent variable.

Constraint: a � X � b, i.e., not outside the range of the original mesh specified in the
initialization call to D02TVF.

2: YðNEQ;MMAXÞ – REAL (KIND=nag_wp) array Output

On exit: Yði; jÞ contains an approximation to y
jð Þ
i xð Þ, for i ¼ 1; 2; . . . ;NEQ and

j ¼ 0; 1; . . . ;mi � 1. The remaining elements of Y (where mi < MMAX) are initialized to 0:0.

3: NEQ – INTEGER Input

On entry: the number of differential equations.

Constraint: NEQ must be the same value as supplied to D02TVF.

4: MMAX – INTEGER Input

On entry: the maximal order of the differential equations, max mið Þ, for i ¼ 1; 2; . . . ;NEQ.

Constraint: MMAX must contain the maximum value of the components of the argument M as
supplied to D02TVF.

5: RCOMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
RCOMM in the previous call to D02TLF.

On entry: this must be the same array as supplied to D02TLF and must remain unchanged
between calls.

On exit: contains information about the solution for use on subsequent calls to associated
routines.

6: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
ICOMM in the previous call to D02TLF.

On entry: this must be the same array as supplied to D02TLF and must remain unchanged
between calls.

On exit: contains information about the solution for use on subsequent calls to associated
routines.
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7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D02TYF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MMAX ¼ valueh i and maxMðiÞ ¼ valueh i.
Constraint: MMAX ¼ maxMðiÞ.
On entry, NEQ ¼ valueh i and NEQ ¼ valueh i in D02TVF.
Constraint: NEQ ¼ NEQ in D02TVF.

On entry, X ¼ valueh i.
Constraint: X � valueh i.
On entry, X ¼ valueh i.
Constraint: X � valueh i.
The solver routine did not produce any results suitable for interpolation.

The solver routine does not appear to have been called.

IFAIL ¼ 2

The solver routine did not converge to a suitable solution.
A converged intermediate solution has been used.
Interpolated values should be treated with caution.

The solver routine did not satisfy the error requirements.
Interpolated values should be treated with caution.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

If D02TYF returns the value IFAIL ¼ 0, the computed values of the solution components yi should be
of similar accuracy to that specified by the argument TOLS of D02TVF. Note that during the solution

process the error in the derivatives y jð Þ
i , for j ¼ 1; 2; . . . ;mi � 1, has not been controlled and that the

derivative values returned by D02TYF are computed via differentiation of the piecewise polynomial
approximation to yi. See also Section 9.

8 Parallelism and Performance

D02TYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If D02TYF returns the value IFAIL ¼ 2 in this routine and IFAIL ¼ 5 in D02TLF, then the accuracy of
the interpolated values may be proportional to the quantity ERMX as returned by D02TZF.

If D02TLF returned a value for IFAIL other than IFAIL ¼ 0, then nothing can be said regarding either
the quality or accuracy of the values computed by D02TYF.

10 Example

The following example is used to illustrate that a system with singular coefficients can be treated
without modification of the system definition. See also D02TLF, D02TVF, D02TXF and D02TZF, for
the illustration of other facilities.

Consider the Thomas–Fermi equation used in the investigation of potentials and charge densities of
ionized atoms. See Grossman (1992), for example, and the references therein. The equation is

y00 ¼ x�1=2y3=2

with boundary conditions

y 0ð Þ ¼ 1; y að Þ ¼ 0; a > 0:

The coefficient x�1=2 implies a singularity at the left-hand boundary x ¼ 0.

We use the initial approximation y xð Þ ¼ 1� x=a, which satisfies the boundary conditions, on a uniform
mesh of six points. For illustration we choose a ¼ 1, as in Grossman (1992). Note that in FFUN and
FJAC (see D02TLF) we have taken the precaution of setting the function value and Jacobian value to
0:0 in case a value of y becomes negative, although starting from our initial solution profile this proves
unnecessary during the solution phase. Of course the true solution y xð Þ is positive for all x < a.

10.1 Program Text

! D02TYF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02tyfe_mod

! D02TYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None
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! .. Accessibility Statements ..
Private
Public :: ffun, fjac, gafun, gajac, gbfun, &

gbjac, guess
! .. Parameters ..

Integer, Parameter, Public :: mmax = 2, neq = 1, nin = 5, &
nlbc = 1, nmesh_out = 11, nout = 6, &
nrbc = 1

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: a

! .. Local Arrays ..
Integer, Public, Save :: m(1) = (/2/)

Contains
Subroutine ffun(x,y,neq,m,f,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
If (y(1,0)<=0.0E0_nag_wp) Then

f(1) = 0.0_nag_wp
Else

f(1) = (y(1,0))**1.5_nag_wp/sqrt(x)
End If
Return

End Subroutine ffun
Subroutine fjac(x,y,neq,m,dfdy,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dfdy(neq,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
If (y(1,0)<=0.0E0_nag_wp) Then

dfdy(1,1,0) = 0.0_nag_wp
Else

dfdy(1,1,0) = 1.5_nag_wp*sqrt(y(1,0))/sqrt(x)
End If
Return

End Subroutine fjac
Subroutine gafun(ya,neq,m,nlbc,ga,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: ga(nlbc)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
ga(1) = ya(1,0) - 1.0_nag_wp
Return

End Subroutine gafun
Subroutine gbfun(yb,neq,m,nrbc,gb,iuser,ruser)

! .. Scalar Arguments ..
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Integer, Intent (In) :: neq, nrbc
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (Out) :: gb(nrbc)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
gb(1) = yb(1,0)
Return

End Subroutine gbfun
Subroutine gajac(ya,neq,m,nlbc,dgady,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgady(nlbc,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgady(1,1,0) = 1.0_nag_wp
Return

End Subroutine gajac
Subroutine gbjac(yb,neq,m,nrbc,dgbdy,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgbdy(nrbc,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgbdy(1,1,0) = 1.0_nag_wp
Return

End Subroutine gbjac
Subroutine guess(x,neq,m,y,dym,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: dym(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*), y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
y(1,0) = 1.0_nag_wp - x/a
y(1,1) = -1.0_nag_wp/a
dym(1) = 0.0_nag_wp
Return

End Subroutine guess
End Module d02tyfe_mod
Program d02tyfe

! D02TYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02tlf, d02tvf, d02tyf, d02tzf, nag_wp
Use d02tyfe_mod, Only: a, ffun, fjac, gafun, gajac, gbfun, gbjac, guess, &

m, mmax, neq, nin, nlbc, nmesh_out, nout, nrbc
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: ainc, ermx, x
Integer :: i, iermx, ifail, ijermx, licomm, &

lrcomm, mxmesh, ncol, nmesh
Logical :: failed

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: mesh(:), rcomm(:), tol(:), y(:,:)
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Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icomm(:), ipmesh(:)
Integer :: iuser(2)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02TYF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) ncol, nmesh, mxmesh
Allocate (mesh(mxmesh),tol(neq),y(neq,0:mmax-1),ipmesh(mxmesh))

Read (nin,*) a
Read (nin,*) tol(1:neq)

ainc = a/real(nmesh-1,kind=nag_wp)
mesh(1) = 0.0E0_nag_wp
Do i = 2, nmesh - 1

mesh(i) = mesh(i-1) + ainc
End Do
mesh(nmesh) = a

ipmesh(1) = 1
ipmesh(2:nmesh-1) = 2
ipmesh(nmesh) = 1

! Workspace query to get size of rcomm and icomm
ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tol,mxmesh,nmesh,mesh,ipmesh,ruser,0, &

iuser,2,ifail)
lrcomm = iuser(1)
licomm = iuser(2)
Allocate (rcomm(lrcomm),icomm(licomm))

! Initialize
ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tol,mxmesh,nmesh,mesh,ipmesh,rcomm, &

lrcomm,icomm,licomm,ifail)

Write (nout,99999) tol(1), a

! Solve
ifail = -1
Call d02tlf(ffun,fjac,gafun,gbfun,gajac,gbjac,guess,rcomm,icomm,iuser, &

ruser,ifail)

failed = ifail /= 0

! Extract mesh.
ifail = -1
Call d02tzf(mxmesh,nmesh,mesh,ipmesh,ermx,iermx,ijermx,rcomm,icomm, &

ifail)

If (ifail/=1) Then
! Print mesh statistics

Write (nout,99998) nmesh, ermx, iermx, ijermx
Write (nout,99997)(i,ipmesh(i),mesh(i),i=1,nmesh)

End If
If (.Not. failed) Then

! Print solution on output mesh.
Write (nout,99996)
x = 0.0_nag_wp
ainc = a/real(nmesh_out-1,kind=nag_wp)
Do i = 1, nmesh_out

ifail = 0
Call d02tyf(x,y,neq,mmax,rcomm,icomm,ifail)
Write (nout,99995) x, y(1,0:1)
x = x + ainc

End Do
End If
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99999 Format (/,/,’ Tolerance = ’,E8.1,’ A = ’,F8.2)
99998 Format (/,’ Used a mesh of ’,I4,’ points’,/,’ Maximum error = ’,E10.2, &

’ in interval ’,I4,’ for component ’,I4,/)
99997 Format (/,’ Mesh points:’,/,4(I4,’(’,I1,’)’,E11.4))
99996 Format (/,’ Computed solution’,/,’ x solution derivative’)
99995 Format (’ ’,F8.2,2F11.5)

End Program d02tyfe

10.2 Program Data

D02TYF Example Program Data
4 6 100 : ncol, nmesh, mxmesh
1.0 : a
1.0E-5 : tol

10.3 Program Results

D02TYF Example Program Results

Tolerance = 0.1E-04 A = 1.00

Used a mesh of 11 points
Maximum error = 0.31E-05 in interval 1 for component 1

Mesh points:
1(1) 0.0000E+00 2(3) 0.1000E+00 3(2) 0.2000E+00 4(3) 0.3000E+00
5(2) 0.4000E+00 6(3) 0.5000E+00 7(2) 0.6000E+00 8(3) 0.7000E+00
9(2) 0.8000E+00 10(3) 0.9000E+00 11(1) 0.1000E+01

Computed solution
x solution derivative

0.00 1.00000 -1.84496
0.10 0.84944 -1.32330
0.20 0.72721 -1.13911
0.30 0.61927 -1.02776
0.40 0.52040 -0.95468
0.50 0.42754 -0.90583
0.60 0.33867 -0.87372
0.70 0.25239 -0.85369
0.80 0.16764 -0.84248
0.90 0.08368 -0.83756
1.00 0.00000 -0.83655
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NAG Library Routine Document

D02TZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02TZF returns information about the solution of a general two-point boundary value problem
computed by D02TLF.

2 Specification

SUBROUTINE D02TZF (MXMESH, NMESH, MESH, IPMESH, ERMX, IERMX, IJERMX,
RCOMM, ICOMM, IFAIL)

&

INTEGER MXMESH, NMESH, IPMESH(MXMESH), IERMX, IJERMX,
ICOMM(*), IFAIL

&

REAL (KIND=nag_wp) MESH(MXMESH), ERMX, RCOMM(*)

3 Description

D02TZF and its associated routines (D02TLF, D02TVF, D02TXF and D02TYF) solve the two-point
boundary value problem for a nonlinear mixed order system of ordinary differential equations

y
m1ð Þ
1 xð Þ ¼ f1 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
y
m2ð Þ
2 xð Þ ¼ f2 x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
..
.

y mnð Þ
n xð Þ ¼ fn x; y1; y

1ð Þ
1 ; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y

mn�1ð Þ
n

� �
over an interval a; b½ � subject to p ( > 0) nonlinear boundary conditions at a and q ( > 0) nonlinear

boundary conditions at b, where pþ q ¼
Xn
i¼1
mi. Note that y mð Þ

i xð Þ is the mth derivative of the ith

solution component. Hence y 0ð Þ
i xð Þ ¼ yi xð Þ. The left boundary conditions at a are defined as

gi z y að Þð Þð Þ ¼ 0; i ¼ 1; 2; . . . ; p;

and the right boundary conditions at b as

�gj z y bð Þð Þð Þ ¼ 0; j ¼ 1; 2; . . . ; q;

where y ¼ y1; y2; . . . ; ynð Þ and

z y xð Þð Þ ¼ y1 xð Þ; y 1ð Þ
1 xð Þ; . . . ; y m1�1ð Þ

1 xð Þ; y2 xð Þ; . . . ; y mn�1ð Þ
n xð Þ

� �
:

First, D02TVF must be called to specify the initial mesh, error requirements and other details. Then,
D02TLF can be used to solve the boundary value problem. After successful computation, D02TZF can
be used to ascertain details about the final mesh. D02TYF can be used to compute the approximate
solution anywhere on the interval a; b½ � using interpolation.

The routines are based on modified versions of the codes COLSYS and COLNEW (see Ascher et al.
(1979) and Ascher and Bader (1987)). A comprehensive treatment of the numerical solution of
boundary value problems can be found in Ascher et al. (1988) and Keller (1992).
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5 Arguments

1: MXMESH – INTEGER Input

On entry: the maximum number of points allowed in the mesh.

Constraint: this must be identical to the value supplied for the argument MXMESH in the prior
call to D02TVF.

2: NMESH – INTEGER Output

On exit: the number of points in the mesh last used by D02TLF.

3: MESHðMXMESHÞ – REAL (KIND=nag_wp) array Output

On exit: MESHðiÞ contains the ith point of the mesh last used by D02TLF, for
i ¼ 1; 2; . . . ;NMESH. MESHð1Þ will contain a and MESHðNMESHÞ will contain b. The
remaining elements of MESH are not initialized.

4: IPMESHðMXMESHÞ – INTEGER array Output

On exit: IPMESHðiÞ specifies the nature of the point MESHðiÞ, for i ¼ 1; 2; . . . ;NMESH, in the
final mesh computed by D02TLF.

IPMESHðiÞ ¼ 1
Indicates that the ith point is a fixed point and was used by the solver before an
extrapolation-like error test.

IPMESHðiÞ ¼ 2
Indicates that the ith point was used by the solver before an extrapolation-like error test.

IPMESHðiÞ ¼ 3
Indicates that the ith point was used by the solver only as part of an extrapolation-like
error test.

The remaining elements of IPMESH are initialized to �1.
See Section 9 for advice on how these values may be used in conjunction with a continuation
process.

5: ERMX – REAL (KIND=nag_wp) Output

On exit: an estimate of the maximum error in the solution computed by D02TLF, that is

ERMX ¼ max
yi � vik k

1:0þ vik kð Þ

where vi is the approximate solution for the ith solution component. If D02TLF returned
successfully with IFAIL ¼ 0, then ERMX will be less than TOLSðIJERMXÞ where TOLS
contains the error requirements as specified in Sections 3 and 5 in D02TVF.

If D02TLF returned with IFAIL ¼ 5, then ERMX will be greater than TOLSðIJERMXÞ.
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If D02TLF returned any other value for IFAIL then an error estimate is not available and ERMX
is initialized to 0:0.

6: IERMX – INTEGER Output

On exit: indicates the mesh sub-interval where the value of ERMX has been computed, that is
MESHðIERMXÞ;MESHðIERMXþ 1Þ½ �.
If an estimate of the error is not available then IERMX is initialized to 0.

7: IJERMX – INTEGER Output

On exit: indicates the component i ( ¼ IJERMX) of the solution for which ERMX has been
computed, that is the approximation of yi on MESHðIERMXÞ;MESHðIERMXþ 1Þ½ � is estimated
to have the largest error of all components yi over mesh sub-intervals defined by MESH.

If an estimate of the error is not available then IJERMX is initialized to 0.

8: RCOMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
RCOMM in the previous call to D02TLF.

On entry: this must be the same array as supplied to D02TLF and must remain unchanged
between calls.

On exit: contains information about the solution for use on subsequent calls to associated
routines.

9: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
ICOMM in the previous call to D02TLF.

On entry: this must be the same array as supplied to D02TLF and must remain unchanged
between calls.

On exit: contains information about the solution for use on subsequent calls to associated
routines.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D02TZF may return useful information for one or more of the following detected errors or
warnings.
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Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, an illegal value for MXMESH was specified, or an invalid call to D02TZF was made,
for example without a previous call to the solver routine D02TLF.

IFAIL ¼ 2

The solver routine D02TLF did not converge to a solution or did not satisfy the error
requirements. The last mesh computed by D02TLF has been returned by D02TZF. This mesh
should be treated with extreme caution as nothing can be said regarding its quality or suitability
for any subsequent computation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D02TZF is not threaded in any implementation.

9 Further Comments

Note that:

if D02TLF returned IFAIL ¼ 0, 4 or 5 then it will always be the case that
IPMESHð1Þ ¼ IPMESHðNMESHÞ ¼ 1;

if D02TLF returned IFAIL ¼ 0 or 5 then it will always be the case that IPMESHðiÞ ¼ 3, for
i ¼ 2; 4; . . . ;NMESH� 1 (even i) and IPMESHðiÞ ¼ 1 or 2, for i ¼ 3; 5; . . . ;NMESH� 2 (odd
i);

if D02TLF returned IFAIL ¼ 4 then it will always be the case that IPMESHðiÞ ¼ 1 or 2, for
i ¼ 2; 3; . . . ;NMESH� 1.

If D02TZF returns IFAIL ¼ 0, then examination of the mesh may provide assistance in determining a
suitable starting mesh for D02TVF in any subsequent attempts to solve similar problems.

If the problem being treated by D02TLF is one of a series of related problems (for example, as part of a
continuation process), then the values of IPMESH and MESH may be suitable as input arguments to
D02TXF. Using the mesh points not involved in the extrapolation error test is usually appropriate.
IPMESH and MESH should be passed unchanged to D02TXF but NMESH should be replaced by
NMESHþ 1ð Þ=2.
If D02TZF returns IFAIL ¼ 2, nothing can be said regarding the quality of the mesh returned. However,
it may be a useful starting mesh for D02TVF in any subsequent attempts to solve the same problem.
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If D02TLF returns IFAIL ¼ 5, this corresponds to the solver requiring more than MXMESH mesh
points to satisfy the error requirements. If MXMESH can be increased and the preceding call to
D02TLF was not part, or was the first part, of a continuation process then the values in MESH may
provide a suitable mesh with which to initialize a subsequent attempt to solve the same problem. If it is
not possible to provide more mesh points then relaxing the error requirements by setting
TOLSðIJERMXÞ to ERMX might lead to a successful solution. It may be necessary to reset the
other components of TOLS. Note that resetting the tolerances can lead to a different sequence of
meshes being computed and hence to a different solution being computed.

10 Example

The following example is used to illustrate the use of fixed mesh points, simple continuation and
numerical approximation of a Jacobian. See also D02TLF, D02TVF, D02TXF and D02TYF, for the
illustration of other facilities.

Consider the Lagerstrom–Cole equation

y00 ¼ y� yy0ð Þ=�

with the boundary conditions

y 0ð Þ ¼ � y 1ð Þ ¼ �; ð1Þ

where � is small and positive. The nature of the solution depends markedly on the values of �; �. See
Cole (1968).

We choose � ¼ �1
3; � ¼ 1

3 for which the solution is known to have corner layers at x ¼ 1
3;

2
3 . We choose

an initial mesh of seven points 0:0; 0:15; 0:3; 0:5; 0:7; 0:85; 1:0½ � and ensure that the points x ¼ 0:3; 0:7
near the corner layers are fixed, that is the corresponding elements of the array IPMESH are set to 1.
First we compute the solution for � ¼ 1:0E�4 using in GUESS the initial approximation
y xð Þ ¼ �þ � � �ð Þx which satisfies the boundary conditions. Then we use simple continuation to
compute the solution for � ¼ 1:0E�5. We use the suggested values for NMESH, IPMESH and MESH in
the call to D02TXF prior to the continuation call, that is only every second point of the preceding mesh
is used and the fixed mesh points are retained.

Although the analytic Jacobian for this system is easy to evaluate, for illustration the procedure FJAC
uses central differences and calls to FFUN to compute a numerical approximation to the Jacobian.

10.1 Program Text

! D02TZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02tzfe_mod

! D02TZF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: ffun, fjac, gafun, gajac, gbfun, &

gbjac, guess
! .. Parameters ..

Integer, Parameter, Public :: mmax = 2, neq = 1, nin = 5, &
nlbc = 1, nout = 6, nrbc = 1

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: alpha, beta, eps

! .. Local Arrays ..
Integer, Public, Save :: m(1) = (/2/)

Contains
Subroutine ffun(x,y,neq,m,f,iuser,ruser)
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! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
f(1) = (y(1,0)-y(1,0)*y(1,1))/eps
Return

End Subroutine ffun
Subroutine fjac(x,y,neq,m,dfdy,iuser,ruser)

! .. Use Statements ..
Use nag_library, Only: x02ajf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dfdy(neq,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: epsh, fac, ptrb
Integer :: i, j, k

! .. Local Arrays ..
Real (Kind=nag_wp) :: f1(1), f2(1), yp(1,0:3)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max, sqrt

! .. Executable Statements ..
epsh = 100.0_nag_wp*x02ajf()
fac = sqrt(x02ajf())
Do i = 1, neq

Do j = 0, m(i) - 1
yp(i,j) = y(i,j)

End Do
End Do
Do i = 1, neq

Do j = 0, m(i) - 1
ptrb = max(epsh,fac*abs(y(i,j)))
yp(i,j) = y(i,j) + ptrb
Call ffun(x,yp,neq,m,f1,iuser,ruser)
yp(i,j) = y(i,j) - ptrb
Call ffun(x,yp,neq,m,f2,iuser,ruser)
Do k = 1, neq

dfdy(k,i,j) = 0.5_nag_wp*(f1(k)-f2(k))/ptrb
End Do
yp(i,j) = y(i,j)

End Do
End Do
Return

End Subroutine fjac
Subroutine gafun(ya,neq,m,nlbc,ga,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: ga(nlbc)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
ga(1) = ya(1,0) - alpha
Return

End Subroutine gafun
Subroutine gbfun(yb,neq,m,nrbc,gb,iuser,ruser)
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! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gb(nrbc)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
gb(1) = yb(1,0) - beta
Return

End Subroutine gbfun
Subroutine gajac(ya,neq,m,nlbc,dgady,iuser,ruser)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgady(nlbc,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgady(1,1,0) = one
Return

End Subroutine gajac
Subroutine gbjac(yb,neq,m,nrbc,dgbdy,iuser,ruser)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgbdy(nrbc,neq,0:*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgbdy(1,1,0) = one
Return

End Subroutine gbjac
Subroutine guess(x,neq,m,y,dym,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: dym(neq)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*), y(neq,0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
y(1,0) = alpha + (beta-alpha)*x
y(1,1) = (beta-alpha)
dym(1) = 0.0_nag_wp
Return

End Subroutine guess
End Module d02tzfe_mod
Program d02tzfe

! D02TZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02tlf, d02tvf, d02txf, d02tyf, d02tzf, nag_wp
Use d02tzfe_mod, Only: alpha, beta, eps, ffun, fjac, gafun, gajac, &

gbfun, gbjac, guess, m, mmax, neq, nin, nlbc, &
nout, nrbc

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
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Real (Kind=nag_wp) :: ermx
Integer :: i, iermx, ifail, ijermx, j, licomm, &

lrcomm, mxmesh, ncol, nmesh
Logical :: failed

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: mesh(:), rcomm(:), tol(:), y(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icomm(:), ipmesh(:)
Integer :: iuser(2)

! .. Executable Statements ..
Write (nout,*) ’D02TZF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) ncol, nmesh, mxmesh
Allocate (mesh(mxmesh),tol(neq),y(neq,0:mmax-1),ipmesh(mxmesh))

Read (nin,*) alpha, beta, eps
Read (nin,*) mesh(1:nmesh)
Read (nin,*) ipmesh(1:nmesh)
Read (nin,*) tol(1:neq)

! Workspace query to get size of rcomm and icomm
ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tol,mxmesh,nmesh,mesh,ipmesh,ruser,0, &

iuser,2,ifail)
lrcomm = iuser(1)
licomm = iuser(2)
Allocate (rcomm(lrcomm),icomm(licomm))

! Initialize
ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tol,mxmesh,nmesh,mesh,ipmesh,rcomm, &

lrcomm,icomm,licomm,ifail)

eps = 0.1_nag_wp*eps

contn: Do j = 1, 2
Write (nout,99997) tol(1), eps

! Solve
ifail = -1
Call d02tlf(ffun,fjac,gafun,gbfun,gajac,gbjac,guess,rcomm,icomm,iuser, &

ruser,ifail)
failed = ifail /= 0

! Extract mesh.
ifail = -1
Call d02tzf(mxmesh,nmesh,mesh,ipmesh,ermx,iermx,ijermx,rcomm,icomm, &

ifail)

! Print mesh statistics.
Write (nout,99996) nmesh, ermx, iermx, ijermx

If (failed) Then
Exit contn

End If

! Print solution at every second point on final mesh.
Write (nout,99999)
Do i = 1, nmesh, 2

ifail = -1
Call d02tyf(mesh(i),y,neq,mmax,rcomm,icomm,ifail)
Write (nout,99998) mesh(i), y(1,0), y(1,1)

End Do

If (j==1) Then
! Halve final mesh for new initial mesh and set up for continuation.

nmesh = (nmesh+1)/2
ifail = 0
Call d02txf(mxmesh,nmesh,mesh,ipmesh,rcomm,icomm,ifail)
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! Reduce continuation parameter.
eps = 0.1_nag_wp*eps

End If
End Do contn

99999 Format (/,’ Solution and derivative at every second point:’,/, &
’ x u u’’’)

99998 Format (’ ’,F8.4,2F11.5)
99997 Format (/,/,’ Tolerance = ’,E8.1,’ EPS = ’,E10.3)
99996 Format (/,’ Used a mesh of ’,I4,’ points’,/,’ Maximum error = ’,E10.2, &

’ in interval ’,I4,’ for component ’,I4)
End Program d02tzfe

10.2 Program Data

D02TZF Example Program Data
5 7 50 : ncol, nmesh, mxmesh

-0.333333333333333333333
0.333333333333333333333 0.001 : alpha, beta, eps
0.0 0.15 0.3 0.5 0.7 0.85 1.0 : mesh(1:nmesh)
1 2 1 2 1 2 1 : ipmesh(1:nmesh)

1.0E-5 : tol

10.3 Program Results

D02TZF Example Program Results

Tolerance = 0.1E-04 EPS = 0.100E-03

Used a mesh of 25 points
Maximum error = 0.21E-05 in interval 16 for component 1

Solution and derivative at every second point:
x u u’

0.0000 -0.33333 1.00000
0.0750 -0.25833 1.00000
0.1500 -0.18333 1.00000
0.2250 -0.10833 1.00002
0.3000 -0.03332 1.00372
0.4000 -0.00001 0.00084
0.5000 -0.00000 0.00000
0.6000 0.00001 0.00084
0.7000 0.03332 1.00372
0.7750 0.10833 1.00002
0.8500 0.18333 1.00000
0.9250 0.25833 1.00000
1.0000 0.33333 1.00000

Tolerance = 0.1E-04 EPS = 0.100E-04

Used a mesh of 49 points
Maximum error = 0.21E-05 in interval 32 for component 1

Solution and derivative at every second point:
x u u’

0.0000 -0.33333 1.00014
0.0375 -0.29583 1.00018
0.0750 -0.25833 1.00022
0.1125 -0.22083 1.00029
0.1500 -0.18333 1.00040
0.1875 -0.14583 1.00059
0.2250 -0.10833 1.00098
0.2625 -0.07083 1.00202
0.3000 -0.03333 1.00745
0.3500 -0.00001 0.00354
0.4000 -0.00000 0.00000
0.4500 -0.00000 0.00000
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0.5000 -0.00000 0.00000
0.5500 0.00000 0.00000
0.6000 0.00000 0.00000
0.6500 0.00001 0.00354
0.7000 0.03333 1.00745
0.7375 0.07083 1.00202
0.7750 0.10833 1.00098
0.8125 0.14583 1.00059
0.8500 0.18333 1.00040
0.8875 0.22083 1.00029
0.9250 0.25833 1.00022
0.9625 0.29583 1.00018
1.0000 0.33333 1.00014
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NAG Library Routine Document

D02UAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02UAF obtains the Chebyshev coefficients of a function discretized on Chebyshev Gauss–Lobatto
points. The set of discretization points on which the function is evaluated is usually obtained by a
previous call to D02UCF.

2 Specification

SUBROUTINE D02UAF (N, F, C, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) F(N+1), C(N+1)

3 Description

D02UAF computes the coefficients cj , for j ¼ 1; 2; . . . ; nþ 1, of the interpolating Chebyshev series

1
2c1T0 �xð Þ þ c2T1 �xð Þ þ c3T2 �xð Þ þ � � � þ cnþ1Tn �xð Þ;

which interpolates the function f xð Þ evaluated at the Chebyshev Gauss–Lobatto points

�xr ¼ � cos r� 1ð Þ	=nð Þ; r ¼ 1; 2; . . . ; nþ 1:

Here Tj �xð Þ denotes the Chebyshev polynomial of the first kind of degree j with argument �x defined on
�1; 1½ �. In terms of your original variable, x say, the input values at which the function values are to be
provided are

xr ¼ �1
2 b� að Þ cos 	 r� 1ð Þ=nð Þ þ 1

2 bþ að Þ; r ¼ 1; 2; . . . ; nþ 1;

where b and a are respectively the upper and lower ends of the range of x over which the function is
required.

4 References

Canuto C (1988) Spectral Methods in Fluid Dynamics 502 Springer

Canuto C, Hussaini M Y, Quarteroni A and Zang T A (2006) Spectral Methods: Fundamentals in Single
Domains Springer

Trefethen L N (2000) Spectral Methods in MATLAB SIAM

5 Arguments

1: N – INTEGER Input

On entry: n, where the number of grid points is nþ 1. This is also the largest order of
Chebyshev polynomial in the Chebyshev series to be computed.

Constraint: N > 0 and N is even.

2: FðNþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the function values f xrð Þ, for r ¼ 1; 2; . . . ; nþ 1.
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3: CðNþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the Chebyshev coefficients, cj , for j ¼ 1; 2; . . . ; nþ 1.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 1.

On entry, N ¼ valueh i.
Constraint: N is even.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The Chebyshev coefficients computed should be accurate to within a small multiple of machine
precision.

8 Parallelism and Performance

D02UAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02UAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of operations is of the order nlog nð Þ and the memory requirements are O nð Þ; thus the
computation remains efficient and practical for very fine discretizations (very large values of n).

10 Example

See Section 10 in D02UEF.
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NAG Library Routine Document

D02UBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02UBF evaluates a function, or one of its lower order derivatives, from its Chebyshev series
representation at Chebyshev Gauss–Lobatto points on a; b½ �. The coefficients of the Chebyshev series
representation required are usually derived from those returned by D02UAF or D02UEF.

2 Specification

SUBROUTINE D02UBF (N, A, B, Q, C, F, IFAIL)

INTEGER N, Q, IFAIL
REAL (KIND=nag_wp) A, B, C(N+1), F(N+1)

3 Description

D02UBF evaluates the Chebyshev series

S �xð Þ ¼ 1
2c1T0 �xð Þ þ c2T1 �xð Þ þ c3T2 �xð Þ þ � � � þ cnþ1Tn �xð Þ;

or its derivative (up to fourth order) at the Chebyshev Gauss–Lobatto points on a; b½ �. Here Tj �xð Þ
denotes the Chebyshev polynomial of the first kind of degree j with argument �x defined on �1; 1½ �. In
terms of your original variable, x say, the input values at which the function values are to be provided
are

xr ¼ �1
2 b� að Þ cos 	 r� 1ð Þ=nð Þ þ 1

2 bþ að Þ; r ¼ 1; 2; . . . ; nþ 1;

where b and a are respectively the upper and lower ends of the range of x over which the function is
required.

The calculation is implemented by a forward one-dimensional discrete Fast Fourier Transform (DFT).

4 References

Canuto C (1988) Spectral Methods in Fluid Dynamics 502 Springer

Canuto C, Hussaini M Y, Quarteroni A and Zang T A (2006) Spectral Methods: Fundamentals in Single
Domains Springer

Trefethen L N (2000) Spectral Methods in MATLAB SIAM

5 Arguments

1: N – INTEGER Input

On entry: n, where the number of grid points is nþ 1. This is also the largest order of
Chebyshev polynomial in the Chebyshev series to be computed.

Constraint: N > 0 and N is even.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower bound of domain a; b½ �.
Constraint: A < B.
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3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper bound of domain a; b½ �.
Constraint: B > A.

4: Q – INTEGER Input

On entry: the order, q, of the derivative to evaluate.

Constraint: 0 � Q � 4.

5: CðNþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the Chebyshev coefficients, ci, for i ¼ 1; 2; . . . ; nþ 1.

6: FðNþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the derivatives S qð Þxi, for i ¼ 1; 2; . . . ; nþ 1, of the Chebyshev series, S.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, N ¼ valueh i.
Constraint: N is even.

IFAIL ¼ 2

On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: A < B.

IFAIL ¼ 3

On entry, Q ¼ valueh i.
Constraint: 0 � Q � 4.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Evaluations of DFT to obtain function or derivative values should be an order n multiple of machine
precision assuming full accuracy to machine precision in the given Chebyshev series representation.

8 Parallelism and Performance

D02UBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02UBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of operations is of the order nlog nð Þ and the memory requirements are O nð Þ; thus the
computation remains efficient and practical for very fine discretizations (very large values of n).

10 Example

See Section 10 in D02UEF.
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NAG Library Routine Document

D02UCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02UCF returns the Chebyshev Gauss–Lobatto grid points on a; b½ �.

2 Specification

SUBROUTINE D02UCF (N, A, B, X, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) A, B, X(N+1)

3 Description

D02UCF returns the Chebyshev Gauss–Lobatto grid points on a; b½ �. The Chebyshev Gauss–Lobatto

points on �1; 1½ � are computed as ti ¼ � cos i�1ð Þ	
n

� �
, for i ¼ 1; 2; . . . ; nþ 1. The Chebyshev Gauss–

Lobatto points on an arbitrary domain a; b½ � are:

xi ¼
b� a
2

ti þ
aþ b
2

; i ¼ 1; 2; . . . ; nþ 1:

4 References

Trefethen L N (2000) Spectral Methods in MATLAB SIAM

5 Arguments

1: N – INTEGER Input

On entry: n, where the number of grid points is nþ 1. This is also the largest order of
Chebyshev polynomial in the Chebyshev series to be computed.

Constraint: N > 0 and N is even.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower bound of domain a; b½ �.
Constraint: A < B.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper bound of domain a; b½ �.
Constraint: B > A.

4: XðNþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the Chebyshev Gauss–Lobatto grid points, xi, for i ¼ 1; 2; . . . ; nþ 1, on a; b½ �.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, N ¼ valueh i.
Constraint: N is even.

IFAIL ¼ 2

On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: A < B.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The Chebyshev Gauss–Lobatto grid points computed should be accurate to within a small multiple of
machine precision.

8 Parallelism and Performance

D02UCF is not threaded in any implementation.

9 Further Comments

The number of operations is of the order nlog nð Þ and there are no internal memory requirements; thus
the computation remains efficient and practical for very fine discretizations (very large values of n).
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10 Example

See Section 10 in D02UEF.
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NAG Library Routine Document

D02UDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02UDF differentiates a function discretized on Chebyshev Gauss–Lobatto points. The grid points on
which the function values are to be provided are normally returned by a previous call to D02UCF.

2 Specification

SUBROUTINE D02UDF (N, F, FD, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) F(N+1), FD(N+1)

3 Description

D02UDF differentiates a function discretized on Chebyshev Gauss–Lobatto points on �1; 1½ �. The
polynomial interpolation on Chebyshev points is equivalent to trigonometric interpolation on equally
spaced points. Hence the differentiation on the Chebyshev points can be implemented by the Fast
Fourier transform (FFT).

Given the function values f xið Þ on Chebyshev Gauss–Lobatto points xi ¼ � cos i � 1ð Þ	=nð Þ, for
i ¼ 1; 2; . . . ; nþ 1, f is differentiated with respect to x by means of forward and backward FFTs on the
function values f xið Þ. D02UDF returns the computed derivative values f 0 xið Þ, for i ¼ 1; 2; . . . ; nþ 1.
The derivatives are computed with respect to the standard Chebyshev Gauss–Lobatto points on �1; 1½ �;
for derivatives of a function on a; b½ � the returned values have to be scaled by a factor 2= b� að Þ.

4 References

Canuto C, Hussaini M Y, Quarteroni A and Zang T A (2006) Spectral Methods: Fundamentals in Single
Domains Springer

Greengard L (1991) Spectral integration and two-point boundary value problems SIAM J. Numer. Anal.
28(4) 1071–80

Trefethen L N (2000) Spectral Methods in MATLAB SIAM

5 Arguments

1: N – INTEGER Input

On entry: n, where the number of grid points is nþ 1.

Constraint: N > 0 and N is even.

2: FðNþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the function values f xið Þ, for i ¼ 1; 2; . . . ; nþ 1

3: FDðNþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the approximations to the derivatives of the function evaluated at the Chebyshev Gauss–
Lobatto points. For functions defined on a; b½ �, the returned derivative values (corresponding to
the domain �1; 1½ �) must be multiplied by the factor 2= b� að Þ to obtain the correct values on
a; b½ �.
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4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, N ¼ valueh i.
Constraint: N is even.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is close to machine precision for small numbers of grid points, typically less than 100.
For larger numbers of grid points, the error in differentiation grows with the number of grid points. See
Greengard (1991) for more details.

8 Parallelism and Performance

D02UDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02UDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The number of operations is of the order nlog nð Þ and the memory requirements are O nð Þ; thus the
computation remains efficient and practical for very fine discretizations (very large values of n).

10 Example

The function 2xþ exp �xð Þ, defined on 0; 1:5½ �, is supplied and then differentiated on a grid.

10.1 Program Text

! D02UDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02udfe_mod

! D02UDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: deriv, fcn

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: a = 0.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: b = 1.5_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6
Logical, Parameter, Public :: reqerr = .False.

Contains
Function fcn(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: fcn

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
fcn = (one+one)*x + exp(-x)
Return

End Function fcn
Function deriv(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: deriv

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
deriv = one + one - exp(-x)
Return

End Function deriv

End Module d02udfe_mod
Program d02udfe

! D02UDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02ucf, d02udf, nag_wp, x02ajf
Use d02udfe_mod, Only: a, b, deriv, fcn, nin, nout, reqerr

! .. Implicit None Statement ..
Implicit None
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! .. Local Scalars ..
Real (Kind=nag_wp) :: scale, teneps, uxerr
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), fd(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, int, max

! .. Executable Statements ..
Write (nout,*) ’ D02UDF Example Program Results ’
Write (nout,*)

Read (nin,*)
Read (nin,*) n

Allocate (f(n+1),fd(n+1),x(n+1))

! Set up solution grid
ifail = 0
Call d02ucf(n,a,b,x,ifail)

! Evaluate fcn on Chebyshev grid.
Do i = 1, n + 1

f(i) = fcn(x(i))
End Do

! Calculate derivative of fcn.
ifail = 0
Call d02udf(n,f,fd,ifail)

scale = 2.0_nag_wp/(b-a)
fd(1:n+1) = scale*fd(1:n+1)

! Print function and its derivative
Write (nout,*) ’ Original Function F and numerical derivative Fx’
Write (nout,*)
Write (nout,99999)
Write (nout,99998)(x(i),f(i),fd(i),i=1,n+1)

If (reqerr) Then
uxerr = 0.0_nag_wp
Do i = 1, n + 1

uxerr = max(uxerr,abs(fd(i)-deriv(x(i))))
End Do
teneps = 100.0_nag_wp*x02ajf()
Write (nout,99997) 100*(int(uxerr/teneps)+1)

End If

99999 Format (1X,T8,’X’,T18,’F’,T28,’Fx’)
99998 Format (1X,3F10.4)
99997 Format (1X,’Fx is within a multiple ’,I8,’ of machine precision.’)

End Program d02udfe

10.2 Program Data

D02UDF Example Program Data
16 : N

10.3 Program Results

D02UDF Example Program Results

Original Function F and numerical derivative Fx

X F Fx
0.0000 1.0000 1.0000
0.0144 1.0145 1.0143
0.0571 1.0587 1.0555
0.1264 1.1341 1.1187
0.2197 1.2421 1.1972
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0.3333 1.3832 1.2835
0.4630 1.5554 1.3706
0.6037 1.7542 1.4532
0.7500 1.9724 1.5276
0.8963 2.2007 1.5919
1.0370 2.4285 1.6455
1.1667 2.6448 1.6886
1.2803 2.8386 1.7221
1.3736 3.0004 1.7468
1.4429 3.1221 1.7638
1.4856 3.1975 1.7736
1.5000 3.2231 1.7769
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NAG Library Routine Document

D02UEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02UEF finds the solution of a linear constant coefficient boundary value problem by using the
Chebyshev integration formulation on a Chebyshev Gauss–Lobatto grid.

2 Specification

SUBROUTINE D02UEF (N, A, B, M, C, BMAT, Y, BVEC, F, UC, RESID, IFAIL)

INTEGER N, M, IFAIL
REAL (KIND=nag_wp) A, B, C(N+1), BMAT(M,M+1), Y(M), BVEC(M), F(M+1),

UC(N+1,M+1), RESID
&

3 Description

D02UEF solves the constant linear coefficient ordinary differential problemXm
j¼0
fjþ1

dju

dxj
¼ f xð Þ; x 2 a; b½ �

subject to a set of m linear constraints at points yi 2 a; b½ �, for i ¼ 1; 2; . . . ;m:Xm
j¼0
Bi;jþ1

dju

dxj

� �
x¼yið Þ

¼ �i;

where 1 � m � 4, B is an m� mþ 1ð Þ matrix of constant coefficients and �i are constants. The points
yi are usually either a or b.

The function f xð Þ is supplied as an array of Chebyshev coefficients cj, j ¼ 0; 1; . . . ; n for the function
discretized on nþ 1 Chebyshev Gauss–Lobatto points (as returned by D02UCF); the coefficients are
normally obtained by a previous call to D02UAF. The solution and its derivatives (up to order m) are
returned, in the form of their Chebyshev series representation, as arrays of Chebyshev coefficients;
subsequent calls to D02UBF will return the corresponding function and derivative values at the
Chebyshev Gauss–Lobatto discretization points on a; b½ �. Function and derivative values can be
obtained on any uniform grid over the same range a; b½ � by calling the interpolation routine D02UWF.

4 References

Clenshaw C W (1957) The numerical solution of linear differential equations in Chebyshev series Proc.
Camb. Phil. Soc. 53 134–149

Coutsias E A, Hagstrom T and Torres D (1996) An efficient spectral method for ordinary differential
equations with rational function coefficients Mathematics of Computation 65(214) 611–635

Greengard L (1991) Spectral integration and two-point boundary value problems SIAM J. Numer. Anal.
28(4) 1071–80

Lundbladh A, Hennigson D S and Johannson A V (1992) An efficient spectral integration method for
the solution of the Navier–Stokes equations Technical report FFA–TN 1992–28 Aeronautical Research
Institute of Sweden

Muite B K (2010) A numerical comparison of Chebyshev methods for solving fourth-order semilinear
initial boundary value problems Journal of Computational and Applied Mathematics 234(2) 317–342
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5 Arguments

1: N – INTEGER Input

On entry: n, where the number of grid points is nþ 1.

Constraint: N � 8 and N is even.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower bound of domain a; b½ �.
Constraint: A < B.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper bound of domain a; b½ �.
Constraint: B > A.

4: M – INTEGER Input

On entry: the order, m, of the boundary value problem to be solved.

Constraint: 1 � M � 4.

5: CðNþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the Chebyshev coefficients cj, j ¼ 0; 1; . . . ; n, for the right hand side of the boundary
value problem. Usually these are obtained by a previous call of D02UAF.

6: BMATðM;Mþ 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: BMATði; j þ 1Þ must contain the coefficients Bi;jþ1, for i ¼ 1; 2; . . . ;m and
j ¼ 0; 1; . . . ;m, in the problem formulation of Section 3.

On exit: the coefficients have been scaled to form an equivalent problem defined on the domain
�1; 1½ �.

7: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: the points, yi, for i ¼ 1; 2; . . . ;m, where the boundary conditions are discretized.

8: BVECðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values, �i, for i ¼ 1; 2; . . . ;m, in the formulation of the boundary conditions given
in Section 3.

9: FðMþ 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the coefficients, fj , for j ¼ 1; 2; . . . ;mþ 1, in the formulation of the linear boundary
value problem given in Section 3. The highest order term, FðMþ 1Þ, needs to be nonzero to have
a well posed problem.

On exit: the coefficients have been scaled to form an equivalent problem defined on the domain
�1; 1½ �.

10: UCðNþ 1;Mþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the Chebyshev coefficients in the Chebyshev series representations of the solution and
derivatives of the solution to the boundary value problem. The nþ 1 elements UCð1 : Nþ 1; 1Þ
contain the coefficients representing the solution U xið Þ, for i ¼ 0; 1; . . . ; n. UCð1 : Nþ 1; j þ 1Þ
contains the coefficients representing the jth derivative of U , for j ¼ 1; 2; . . . ;m.
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11: RESID – REAL (KIND=nag_wp) Output

On exit: the maximum residual resulting from substituting the solution vectors returned in UC
into both linear equations of Section 3 representing the linear boundary value problem and
associated boundary conditions. That is

max max
i¼1;m

Xm
j¼0
Bi;jþ1

dju

dxj

� �
x¼yið Þ

� �i

					
					

 !
; max
i¼1;nþ1

Xm
j¼0
fjþ1

dju

dxj

� �
x¼xið Þ

� f xð Þ
					

					
 !( )

:

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N is even.

On entry, N ¼ valueh i.
Constraint: N � 8.

IFAIL ¼ 2

On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: A < B.

IFAIL ¼ 3

On entry, FðMþ 1Þ ¼ 0:0.

IFAIL ¼ 6

On entry, M ¼ valueh i.
Constraint: 1 � M � 4.

IFAIL ¼ 7

Internal error while unpacking matrix during iterative refinement.
Please contact NAG.

IFAIL ¼ 8

Singular matrix encountered during iterative refinement.
Please check that your system is well posed.
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IFAIL ¼ 9

During iterative refinement, the maximum number of iterations was reached.
Number of iterations ¼ valueh i and residual achieved ¼ valueh i.

IFAIL ¼ 10

During iterative refinement, convergence was achieved, but the residual is more than
100�machine precision. Residual achieved on convergence ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy should be close to machine precision for well conditioned boundary value problems.

8 Parallelism and Performance

D02UEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02UEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of operations is of the order nlog nð Þ and the memory requirements are O nð Þ; thus the
computation remains efficient and practical for very fine discretizations (very large values of n).
Collocation methods will be faster for small problems, but the method of D02UEF should be faster for
larger discretizations.

10 Example

This example solves the third-order problem 4Uxxx þ 3Uxx þ 2Ux þ U ¼ 2 sinx� 2 cos x on
�	=2; 	=2½ � s u b j e c t t o t h e b o u n d a r y c o n d i t i o n s U �	=2½ � ¼ 0,
3Uxx �	=2½ � þ 2Ux �	=2½ � þ U �	=2½ � ¼ 2, and 3Uxx 	=2½ � þ 2Ux 	=2½ � þ U 	=2½ � ¼ �2 using the Cheby-
shev integration formulation on a Chebyshev Gauss–Lobatto grid of order 16.
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10.1 Program Text

! D02UEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02uefe_mod

! D02UEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndary, exact, pdedef

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: four = 4.0_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: three = 3.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: m = 3, nin = 5, nout = 6
Logical, Parameter, Public :: reqerr = .False.

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: a, b

Contains
Function exact(x,q)

! .. Function Return Value ..
Real (Kind=nag_wp) :: exact

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: q

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
Select Case (q)
Case (0)

exact = cos(x)
Case (1)

exact = -sin(x)
Case (2)

exact = -cos(x)
Case (3)

exact = sin(x)
End Select

End Function exact
Subroutine bndary(m,y,bmat,bvec)

! .. Scalar Arguments ..
Integer, Intent (In) :: m

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: bmat(m,m+1), bvec(m), y(m)

! .. Executable Statements ..
! Boundary condition on left side of domain

y(1:2) = a
y(3) = b

! Set up Dirichlet condition using exact solution
bmat(1:m,1:m+1) = zero
bmat(1:3,1) = one
bmat(2:3,2) = two
bmat(2:3,3) = three
bvec(1) = zero
bvec(2) = two
bvec(3) = -two
Return

End Subroutine bndary
Subroutine pdedef(m,f)
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! .. Scalar Arguments ..
Integer, Intent (In) :: m

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(m+1)

! .. Executable Statements ..
f(1) = one
f(2) = two
f(3) = three
f(4) = four
Return

End Subroutine pdedef
End Module d02uefe_mod
Program d02uefe

! D02UEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02uaf, d02ubf, d02ucf, d02uef, nag_wp, x01aaf, &

x02ajf
Use d02uefe_mod, Only: a, b, bndary, exact, m, nin, nout, pdedef, &

reqerr, two, zero
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: pi, resid, teneps
Integer :: i, ifail, n, q, q1

! .. Local Arrays ..
Real (Kind=nag_wp) :: bmat(m,m+1), bvec(m), f(m+1), &

uerr(m+1), y(m)
Real (Kind=nag_wp), Allocatable :: c(:), f0(:), u(:,:), uc(:,:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cos, int, max, sin

! .. Executable Statements ..
Write (nout,*) ’ D02UEF Example Program Results ’
Write (nout,*)

Read (nin,*)
Read (nin,*) n

Allocate (u(n+1,m+1),f0(n+1),c(n+1),uc(n+1,m+1),x(n+1))

! Set up domain, boundary conditions and definition
pi = x01aaf(zero)
a = -pi/two
b = pi/two
Call bndary(m,y,bmat,bvec)
Call pdedef(m,f)

! Set up solution grid.
ifail = 0
Call d02ucf(n,a,b,x,ifail)

! Set up problem right hand sides for grid and transform.
f0(1:n+1) = two*sin(x(1:n+1)) - two*cos(x(1:n+1))
ifail = 0
Call d02uaf(n,f0,c,ifail)

! Solve in coefficient space.
ifail = 0
Call d02uef(n,a,b,m,c,bmat,y,bvec,f,uc,resid,ifail)

! Evaluate solution and derivatives on Chebyshev grid.
Do q = 0, m

ifail = 0
Call d02ubf(n,a,b,q,uc(1,q+1),u(1,q+1),ifail)

End Do
! Print solution

Write (nout,*) ’ Numerical Solution U and its first three derivatives’
Write (nout,*)
Write (nout,99999)
Write (nout,99998)(x(i),u(i,1:m+1),i=1,n+1)
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If (reqerr) Then
uerr(1:m+1) = zero
Do i = 1, n + 1

Do q = 0, m
q1 = q + 1
uerr(q1) = max(uerr(q1),abs(u(i,q1)-exact(x(i),q)))

End Do
End Do
teneps = 10.0_nag_wp*x02ajf()
Write (nout,’(//)’)
Write (nout,99997)(q,10*(int(uerr(q+1)/teneps)+1),q=0,m)

End If

99999 Format (1X,T8,’X’,T18,’U’,T28,’Ux’,T37,’Uxx’,T47,’Uxxx’)
99998 Format (1X,5F10.4)
99997 Format (1X,’Error in the order ’,I1,’ derivative of U is < ’,I8, &

’ * machine precision.’)

End Program d02uefe

10.2 Program Data

D02UEF Example Program Data
16 : N

10.3 Program Results

D02UEF Example Program Results

Numerical Solution U and its first three derivatives

X U Ux Uxx Uxxx
-1.5708 -0.0000 1.0000 0.0000 -1.0000
-1.5406 0.0302 0.9995 -0.0302 -0.9995
-1.4512 0.1193 0.9929 -0.1193 -0.9929
-1.3061 0.2616 0.9652 -0.2616 -0.9652
-1.1107 0.4440 0.8960 -0.4440 -0.8960
-0.8727 0.6428 0.7661 -0.6428 -0.7661
-0.6011 0.8247 0.5656 -0.8247 -0.5656
-0.3064 0.9534 0.3017 -0.9534 -0.3017
-0.0000 1.0000 0.0000 -1.0000 -0.0000
0.3064 0.9534 -0.3017 -0.9534 0.3017
0.6011 0.8247 -0.5656 -0.8247 0.5656
0.8727 0.6428 -0.7661 -0.6428 0.7661
1.1107 0.4440 -0.8960 -0.4440 0.8960
1.3061 0.2616 -0.9652 -0.2616 0.9652
1.4512 0.1193 -0.9929 -0.1193 0.9929
1.5406 0.0302 -0.9995 -0.0302 0.9995
1.5708 -0.0000 -1.0000 0.0000 1.0000
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NAG Library Routine Document

D02UWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02UWF interpolates from a set of function values on a supplied grid onto a set of values for a uniform
grid on the same range. The interpolation is performed using barycentric Lagrange interpolation.
D02UWF is primarily a utility routine to map a set of function values specified on a Chebyshev Gauss–
Lobatto grid onto a uniform grid.

2 Specification

SUBROUTINE D02UWF (N, NIP, X, F, XIP, FIP, IFAIL)

INTEGER N, NIP, IFAIL
REAL (KIND=nag_wp) X(N+1), F(N+1), XIP(NIP), FIP(NIP)

3 Description

D02UWF interpolates from a set of nþ 1 function values, f xið Þ, on a supplied grid, xi, for
i ¼ 0; 1; . . . ; n, onto a set of m values, f̂ x̂j

� �
, on a uniform grid, x̂j , for j ¼ 1; 2; . . . ;m. The image x̂

has the same range as x, so that x̂j ¼ xmin þ j � 1ð Þ= m� 1ð Þð Þ � xmax � xminð Þ, for j ¼ 1; 2; . . . ;m.
The interpolation is performed using barycentric Lagrange interpolation as described in Berrut and
Trefethen (2004).

D02UWF is primarily a utility routine to map a set of function values specified on a Chebyshev Gauss–
Lobatto grid computed by D02UCF onto an evenly-spaced grid with the same range as the original grid.

4 References

Berrut J P and Trefethen L N (2004) Barycentric lagrange interpolation SIAM Rev. 46(3) 501–517

5 Arguments

1: N – INTEGER Input

On entry: n, where the number of grid points for the input data is nþ 1.

Constraint: N > 0 and N is even.

2: NIP – INTEGER Input

On entry: the number, m, of grid points in the uniform mesh x̂ onto which function values are
interpolated. If NIP ¼ 1 then on successful exit from D02UWF, FIPð1Þ will contain the value
f xnð Þ.
Constraint: NIP > 0.

3: XðNþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the grid points, xi, for i ¼ 0; 1; . . . ; n, at which the function is specified.

Usually this should be the array of Chebyshev Gauss–Lobatto points returned in D02UCF.

4: FðNþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the function values, f xið Þ, for i ¼ 0; 1; . . . ; n.
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5: XIPðNIPÞ – REAL (KIND=nag_wp) array Output

On exit: the evenly-spaced grid points, x̂j , for j ¼ 1; 2; . . . ;m.

6: FIPðNIPÞ – REAL (KIND=nag_wp) array Output

On exit: the set of interpolated values f̂ x̂j
� �

, for j ¼ 1; 2; . . . ;m. Here f̂ x̂j
� �

� f x ¼ x̂j
� �

.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, N ¼ valueh i.
Constraint: N is even.

IFAIL ¼ 2

On entry, NIP ¼ valueh i.
Constraint: NIP > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D02UWF is intended, primarily, for use with Chebyshev Gauss–Lobatto input grids. For such input
grids and for well-behaved functions (no discontinuities, peaks or cusps), the accuracy should be a
small multiple of machine precision.
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8 Parallelism and Performance

D02UWF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example interpolates the function xþ cos 5xð Þ, as specified on a 65-point Gauss–Lobatto grid on
�1; 1½ �, onto a coarse uniform grid.

10.1 Program Text

! D02UWF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02uwfe_mod

! D02UWF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: exact

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: a = -1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: b = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6
Logical, Parameter, Public :: reqerr = .False.

Contains
Function exact(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: exact

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
exact = x + cos(5.0_nag_wp*x)
Return

End Function exact
End Module d02uwfe_mod
Program d02uwfe

! D02UWF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02ucf, d02uwf, nag_wp, x02ajf
Use d02uwfe_mod, Only: a, b, exact, nin, nout, reqerr, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: uerr
Integer :: i, ifail, iu, n, nip

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), fip(:), x(:), xip(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, int, max

! .. Executable Statements ..
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Write (nout,*) ’ D02UWF Example Program Results ’
Write (nout,*)

Read (nin,*)
Read (nin,*) n, nip

Allocate (f(n+1),fip(nip),xip(nip),x(n+1))

! Set up solution grid
ifail = 0
Call d02ucf(n,a,b,x,ifail)

! Set up problem right hand sides for grid
Do i = 1, n + 1

f(i) = exact(x(i))
End Do

! Map to an equally spaced grid
ifail = 0
Call d02uwf(n,nip,x,f,xip,fip,ifail)

! Print solution
Write (nout,*) ’ Numerical solution F’
Write (nout,*)
Write (nout,99999)
Write (nout,99998)(xip(i),fip(i),i=1,nip)

If (reqerr) Then
uerr = zero
Do i = 1, nip

uerr = max(uerr,abs(fip(i)-exact(xip(i))))
End Do
iu = 10*(int(uerr/10.0_nag_wp/x02ajf())+1)
Write (nout,99997) iu

End If

99999 Format (1X,T8,’X’,T19,’F’)
99998 Format (1X,F10.4,1X,F10.4)
99997 Format (/,/,1X,’F is within a multiple ’,I8,’ of machine precision.’)

End Program d02uwfe

10.2 Program Data

D02UWF Example Program Data
64 17 : N NIP

10.3 Program Results

D02UWF Example Program Results

Numerical solution F

X F
-1.0000 -0.7163
-0.8750 -1.2060
-0.7500 -1.5706
-0.6250 -1.6249
-0.5000 -1.3011
-0.3750 -0.6745
-0.2500 0.0653
-0.1250 0.6860
0.0000 1.0000
0.1250 0.9360
0.2500 0.5653
0.3750 0.0755

D02UWF NAG Library Manual

D02UWF.4 Mark 26



0.5000 -0.3011
0.6250 -0.3749
0.7500 -0.0706
0.8750 0.5440
1.0000 1.2837
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NAG Library Routine Document

D02UYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02UYF obtains the weights for Clenshaw–Curtis quadrature at Chebyshev points. This allows for fast
approximations of integrals for functions specified on Chebyshev Gauss–Lobatto points on �1; 1½ �.

2 Specification

SUBROUTINE D02UYF (N, W, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) W(N+1)

3 Description

D02UYF obtains the weights for Clenshaw–Curtis quadrature at Chebyshev points.

Given the (Clenshaw–Curtis) weights wi, for i ¼ 0; 1; . . . ; n, and function values fi ¼ f tið Þ (where
ti ¼ � cos i � 	=nð Þ, for i ¼ 0; 1; . . . ; n, are the Chebyshev Gauss –Lobatto points), thenZ 1

�1
f xð Þdx �

Xn
i¼0
wifi.

For a function discretized on a Chebyshev Gauss–Lobatto grid on a; b½ � the resultant summation must
be multiplied by the factor b� að Þ=2.

4 References

Trefethen L N (2000) Spectral Methods in MATLAB SIAM

5 Arguments

1: N – INTEGER Input

On entry: n, where the number of grid points is nþ 1.

Constraint: N > 0 and N is even.

2: WðNþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the Clenshaw–Curtis quadrature weights, wi, for i ¼ 0; 1; . . . ; n.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, N ¼ valueh i.
Constraint: N is even.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy should be close to machine precision.

8 Parallelism and Performance

D02UYF is not threaded in any implementation.

9 Further Comments

A real array of length 2n is internally allocated.

10 Example

This example approximates the integral
Z 3

�1
3x2dx using 65 Clenshaw–Curtis weights and a 65-point

Chebyshev Gauss–Lobatto grid on �1; 3½ �.

10.1 Program Text

! D02UYF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02uyfe_mod

! D02UYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Accessibility Statements ..

Private
Public :: exact

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: a = -1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: b = 3.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6
Logical, Parameter, Public :: reqerr = .False., reqwgt = .False.

Contains
Function exact(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: exact

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Executable Statements ..
exact = 3.0_nag_wp*x**2
Return

End Function exact
End Module d02uyfe_mod
Program d02uyfe

! D02UYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02ucf, d02uyf, ddot, nag_wp, x02ajf
Use d02uyfe_mod, Only: a, b, exact, nin, nout, reqerr, reqwgt

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: integ, scale, uerr
Integer :: i, ifail, iu, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), w(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, int

! .. Executable Statements ..
Write (nout,*) ’ D02UYF Example Program Results ’
Write (nout,*)

Read (nin,*)
Read (nin,*) n

Allocate (f(n+1),w(n+1),x(n+1))

! Set up solution grid
ifail = 0
Call d02ucf(n,a,b,x,ifail)

! Set up problem right hand sides for grid
Do i = 1, n + 1

f(i) = exact(x(i))
End Do
scale = 0.5_nag_wp*(b-a)

! Solve on equally spaced grid
ifail = 0
Call d02uyf(n,w,ifail)

! The NAG name equivalent of ddot is f06eaf
integ = ddot(n+1,w,1,f,1)*scale

! Print function values and weights if required
If (reqwgt) Then

Write (nout,*) ’ f(x) and Integral weights’
Write (nout,*)
Write (nout,99999)
Write (nout,99998)(x(i),f(i),w(i),i=1,n+1)

End If

! Print approximation to integral
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Write (nout,99996) a, b, integ

If (reqerr) Then
uerr = abs(integ-28.0_nag_wp)
iu = 10*(int(uerr/10.0_nag_wp/x02ajf())+1)
Write (nout,99997) iu

End If

99999 Format (1X,T8,’X’,T18,’f(X)’,T28,’W’)
99998 Format (1X,3F10.4)
99997 Format (/,1X,’Integral is within a multiple ’,I8, &

’ of machine precision.’)
99996 Format (/,1X,’Integral of f(x) from ’,F6.1,’ to ’,F6.2,’ = ’,F13.5,’.’, &

/)
End Program d02uyfe

10.2 Program Data

D02UYF Example Program Data
64 : N

10.3 Program Results

D02UYF Example Program Results

Integral of f(x) from -1.0 to 3.00 = 28.00000.
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NAG Library Routine Document

D02UZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02UZF returns the value of the kth Chebyshev polynomial evaluated at a point x 2 �1; 1½ �. D02UZF
is primarily a utility routine for use by the Chebyshev boundary value problem solvers.

2 Specification

SUBROUTINE D02UZF (K, X, T, IFAIL)

INTEGER K, IFAIL
REAL (KIND=nag_wp) X, T

3 Description

D02UZF returns the value, T , of the kth Chebyshev polynomial evaluated at a point x 2 �1; 1½ �; that is,
T ¼ cos k� arccos xð Þð Þ.

4 References

Trefethen L N (2000) Spectral Methods in MATLAB SIAM

5 Arguments

1: K – INTEGER Input

On entry: the order of the Chebyshev polynomial.

Constraint: K � 0.

2: X – REAL (KIND=nag_wp) Input

On entry: the point at which to evaluate the polynomial.

Constraint: �1:0 � X � 1:0.

3: T – REAL (KIND=nag_wp) Output

On exit: the value, T , of the Chebyshev polynomial order k evaluated at x.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K ¼ valueh i.
Constraint: K � 0.

IFAIL ¼ 2

On entry, X ¼ valueh i.
Constraint: �1:0 � X � 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy should be close to machine precision.

8 Parallelism and Performance

D02UZF is not threaded in any implementation.

9 Further Comments

None.

10 Example

A set of Chebyshev coefficients is obtained for the function xþ exp �xð Þ defined on
�0:24� 	; 0:5� 	½ � using D02UCF. At each of a set of new grid points in the domain of the function
D02UZF is used to evaluate each Chebshev polynomial in the series representation. The values obtained
are multiplied to the Chebyshev coefficients and summed to obtain approximations to the given function
at the new grid points.

10.1 Program Text

! D02UZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02uzfe_mod

! D02UZF Example Program Module:
! Parameters and User-defined Routines

D02UZF NAG Library Manual

D02UZF.2 Mark 26



! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: exact

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6
Logical, Parameter, Public :: reqerr = .False.

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: a, b

Contains
Function exact(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: exact

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
exact = x + exp(-x)
Return

End Function exact
End Module d02uzfe_mod
Program d02uzfe

! D02UZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02uaf, d02ucf, d02uzf, nag_wp, x01aaf, x02ajf
Use d02uzfe_mod, Only: a, b, exact, nin, nout, one, reqerr, two, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: deven, dmap, fseries, pi, t, teneps, &

uerr, xeven, xmap
Integer :: i, ifail, k, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), f(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, int, max, min, real

! .. Executable Statements ..
Write (nout,*) ’ D02UZF Example Program Results ’
Write (nout,*)

Read (nin,*)
Read (nin,*) n, m

Allocate (f(n+1),c(n+1),x(n+1))

! Set up problem boundary conditions and definition
pi = x01aaf(pi)
a = -0.24_nag_wp*pi
b = pi/two

! Set up Chebyshev grid
ifail = 0
Call d02ucf(n,a,b,x,ifail)

! Evaluate function on grid and get interpolating Chebyshev coefficients.
Do i = 1, n + 1

f(i) = exact(x(i))
End Do
ifail = 0
Call d02uaf(n,f,c,ifail)
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! Evaluate Chebyshev series manually by evaluating each Chebyshev
! polynomial in turn at new equispaced (m+1) grid points.
! Chebyshev series on [-1,1] map of [a,b].

xmap = -one
dmap = two/real(m-1,kind=nag_wp)
xeven = a
deven = (b-a)/real(m-1,kind=nag_wp)

Write (nout,99999)
uerr = zero
Do i = 1, m

fseries = zero
Do k = 0, n

ifail = 0
Call d02uzf(k,xmap,t,ifail)
fseries = fseries + c(k+1)*t

End Do
uerr = max(uerr,abs(fseries-exact(xeven)))
Write (nout,99998) xmap, xeven, fseries
xmap = min(one,xmap+dmap)
xeven = xeven + deven

End Do

If (reqerr) Then
teneps = 10.0_nag_wp*x02ajf()
Write (nout,’(//)’)
Write (nout,99997) 10*(int(uerr/teneps)+1)

End If

99999 Format (1X,T6,’x_even’,T17,’x_map’,T28,’Sum’)
99998 Format (1X,3F10.4)
99997 Format (1X,’Error in coefficient sum is < ’,I8,’ * machine precision.’)

End Program d02uzfe

10.2 Program Data

D02UZF Example Program Data
16, 9 : N, M

10.3 Program Results

D02UZF Example Program Results

x_even x_map Sum
-1.0000 -0.7540 1.3715
-0.7500 -0.4634 1.1261
-0.5000 -0.1728 1.0158
-0.2500 0.1178 1.0067
0.0000 0.4084 1.0731
0.2500 0.6990 1.1961
0.5000 0.9896 1.3613
0.7500 1.2802 1.5582
1.0000 1.5708 1.7787
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NAG Library Routine Document

D02XJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02XJF interpolates components of the solution of a system of first-order ordinary differential
equations from information provided by the integrators in Sub-chapter D02M–N.

2 Specification

SUBROUTINE D02XJF (XSOL, SOL, M, YSAV, LDYSAV, SDYSAV, NEQ, X, NQU, HU,
H, IFAIL)

&

INTEGER M, LDYSAV, SDYSAV, NEQ, NQU, IFAIL
REAL (KIND=nag_wp) XSOL, SOL(M), YSAV(LDYSAV,SDYSAV), X, HU, H

3 Description

D02XJF evaluates the first m components of the solution of a system of ordinary differential equations
at any point using natural polynomial interpolation based on information generated by the integrator.
This information must be passed unchanged to D02XJF. D02XJF should not normally be used to
extrapolate outside the range of values obtained from the above routines.

4 References

None.

5 Arguments

1: XSOL – REAL (KIND=nag_wp) Input

On entry: the point at which the first m components of the solution are to be evaluated. XSOL
should not be an extrapolation point, that is XSOL should satisfy XSOL � Xð Þ � HU � 0:0.
Extrapolation is permitted but not recommended.

2: SOLðMÞ – REAL (KIND=nag_wp) array Output

On exit: the calculated value of the ith component of the solution at XSOL, for i ¼ 1; 2; . . . ;m.

3: M – INTEGER Input

On entry: m, the number of components of the solution whose values at XSOL are required. The
first M components are evaluated.

Constraint: 1 � M � NEQ.

4: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Input

On entry: the values provided in the argument YSAV on return from the integrator.

5: LDYSAV – INTEGER Input

On entry: the value used for the argument LDYSAV when calling the integrator.

Constraint: LDYSAV � 1.
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6: SDYSAV – INTEGER Input

On entry: the value used for the argument SDYSAV when calling the integrator.

Constraint: SDYSAV � NQUþ 1.

7: NEQ – INTEGER Input

On entry: the value used for the argument NEQ when calling the integrator.

Constraint: 1 � NEQ � LDYSAV.

8: X – REAL (KIND=nag_wp) Input

On entry: the latest value at which the solution has been computed, as provided in the argument
TCUR on return from the optional output D02NYF.

9: NQU – INTEGER Input

On entry: the order of the method used up to the latest value at which the solution has been
computed, as provided in the argument NQU on return from the optional output D02NYF.

Constraint: NQU � 1.

10: HU – REAL (KIND=nag_wp) Input

On entry: the last successful step used, that is the step used in the integration to get to X, as
provided in the argument HU on return from the optional output D02NYF.

11: H – REAL (KIND=nag_wp) Input

On entry: the next step size to be attempted in the integration, as provided in the argument H on
return from the optional output D02NYF.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

If D02XJF is to be used for extrapolation, IFAIL must be set to 1 before entry. It is then essential
to test the value of IFAIL on exit for IFAIL ¼ 1 or 2.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or NEQ < 1,
or LDYSAV < 1,
or NEQ > LDYSAV,
or M > NEQ,
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or NQU < 1,
or SDYSAV < NQUþ 1.

IFAIL ¼ 2

On entry, HU ¼ 0:0 or H ¼ 0:0. This error can only occur if H and HU have been changed by
you or possibly if the integrator has failed before calling D02XJF.

IFAIL ¼ 3

D02XJF has been called for extrapolation. Before returning with this error exit, the value of the
solution at XSOL is calculated and placed in SOL.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The solution values returned will be of a similar accuracy to those computed by the integrator.

8 Parallelism and Performance

D02XJF is not threaded in any implementation.

9 Further Comments

D02XJF is that employed for prediction purposes internally by the integrator. It is supplied for purposes
of consistency only. You are recommended to employ the C1 interpolant provided by D02XKF
wherever possible.

10 Example

See Section 10 in D02NGF.
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NAG Library Routine Document

D02XKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02XKF interpolates components of the solution of a system of first-order ordinary differential
equations from information provided by the integrators in Sub-chapter D02M–N. It provides C1

interpolation suitable for general use.

2 Specification

SUBROUTINE D02XKF (XSOL, SOL, M, YSAV, LDYSAV, SDYSAV, ACOR, NEQ, X,
NQU, HU, H, IFAIL)

&

INTEGER M, LDYSAV, SDYSAV, NEQ, NQU, IFAIL
REAL (KIND=nag_wp) XSOL, SOL(M), YSAV(LDYSAV,SDYSAV), ACOR(NEQ), X,

HU, H
&

3 Description

D02XKF evaluates the first m components of the solution of a system of ordinary differential equations
at any point using C1 polynomial interpolation based on information generated by the integrator. This
information must be passed unchanged to D02XKF. D02XKF should not normally be used to
extrapolate outside the range of values obtained from the above routines.

It may be used with the D02N routines only when the BDF integration method is being employed
(setup routine D02NVF), provided the Petzold error test was not selected.

4 References

None.

5 Arguments

1: XSOL – REAL (KIND=nag_wp) Input

On entry: the point at which the first m components of the solution are to be evaluated. XSOL
should not be an extrapolation point, that is XSOL should satisfy XSOL � Xð Þ � HU � 0:0.
Extrapolation is permitted but not recommended.

2: SOLðMÞ – REAL (KIND=nag_wp) array Output

On exit: the calculated value of the ith component of the solution at XSOL, for i ¼ 1; 2; . . . ;m.

3: M – INTEGER Input

On entry: the number of components of the solution whose values at XSOL are required. The
first m components are evaluated.

Constraint: 1 � M � NEQ.

4: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Input

On entry: the values provided in the argument YSAV on return from the integrator.
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5: LDYSAV – INTEGER Input

On entry: the value used for the argument LDYSAV when calling the integrator.

Constraint: LDYSAV � 1.

6: SDYSAV – INTEGER Input

On entry: the value used for the argument SDYSAV when calling the integrator.

Constraint: SDYSAV � NQUþ 1.

7: ACORðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the value returned in position LDYSAVþ 50þ ið Þ, for i ¼ 1; 2; . . . ;NEQ, of the
argument RWORK returned by the integrator. If one of the direct communication D02N routines
is being employed and D02XKF is to be used in MONITR, then ACORðiÞ must contain the value
given in position i; 2ð Þ of the MONITR argument ACOR, for i ¼ 1; 2; . . . ;NEQ (e.g., see
D02NBF).

8: NEQ – INTEGER Input

On entry: the value used for the argument NEQ when calling the integrator.

Constraint: 1 � NEQ � LDYSAV.

9: X – REAL (KIND=nag_wp) Input

On entry: the latest value at which the solution has been computed, as provided in the argument
TCUR on return from the optional output D02NYF.

10: NQU – INTEGER Input

On entry: the order of the method used up to the latest value at which the solution has been
computed, as provided in the argument NQU on return from the optional output D02NYF.

Constraint: NQU � 1.

11: HU – REAL (KIND=nag_wp) Input

On entry: the last successful step used, that is the step used in the integration to get to X, as
provided in the argument HU on return from the optional output D02NYF.

12: H – REAL (KIND=nag_wp) Input

On entry: the next step size to be attempted in the integration, as provided in the argument H on
return from the optional output D02NYF.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

If D02XKF is to be used for extrapolation, IFAIL must be set to 1 before entry. It is then
essential to test the value of IFAIL on exit for IFAIL ¼ 1 or 2.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or NEQ < 1,
or LDYSAV < 1,
or NEQ > LDYSAV,
or M > NEQ,
or NQU < 1,
or SDYSAV < NQUþ 1,
or the BDF integrator was not previously used,
or the Petzold error test, if applicable, was used.

IFAIL ¼ 2

On entry, HU ¼ 0:0 or H ¼ 0:0. This error can only occur if H and HU have been changed by
you or possibly if the integrator has failed before calling D02XKF.

IFAIL ¼ 3

D02XKF has been called for extrapolation. Before returning with this error exit, the value of the
solution at XSOL is calculated and placed in SOL.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The solution values returned will be of a similar accuracy to those computed by the integrator.

8 Parallelism and Performance

D02XKF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02XKF is not threaded in any implementation.
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9 Further Comments

D02XKF provides a C1 interpolant and as such is ideal for most applications, for example for
tabulation and root-finding. In general D02XKF should be preferred to D02XJF for interpolation as the
latter provides only a C0 interpolant. D02XJF is the natural interpolant employed by the BDF method
and it is supplied only to permit you to reproduce the internal values used by the integrator.

10 Example

See Section 10 in D02NDF and D02NMF.
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NAG Library Routine Document

D02ZAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02ZAF calculates the weighted norm of the local error estimate from inside a MONITR called from
an integrator in Sub-chapter D02M–N (e.g., see D02NBF).

2 Specification

FUNCTION D02ZAF (NEQ, V, W, IFAIL)
REAL (KIND=nag_wp) D02ZAF

INTEGER NEQ, IFAIL
REAL (KIND=nag_wp) V(NEQ), W(NEQ)

3 Description

D02ZAF is for use with the direct communication integrators D02NBF, D02NCF, D02NDF, D02NGF,
D02NHF and D02NJF and the reverse communication integrators D02NMF and D02NNF. It must be
used only inside MONITR (if this option is selected) for the direct communication routines or on the
equivalent return for the reverse communication routines. It may be used to evaluate the norm of the
scaled local error estimate, vk k, where the weights used are contained in w and the norm used is as
defined by an earlier call to the integrator setup routine (D02MVF, D02NVF or D02NWF). Its use is
described under the description of MONITR in the specifications for the direct communication
integrators mentioned above.

4 References

None.

5 Arguments

1: NEQ – INTEGER Input

On entry: the number of differential equations, as defined for the integrator being used.

2: VðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the vector, the weighted norm of which is to be evaluated by D02ZAF. V is calculated
internally by the integrator being used.

3: WðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the weights, calculated internally by the integrator, to be used in the norm evaluation.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D02ZAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The value of the norm would either overflow or is close to overflowing. A value close to the
square root of the largest number on the computer is returned.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The result is calculated close to machine precision except in the case when the routine exits with
IFAIL ¼ 1.

8 Parallelism and Performance

D02ZAF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02ZAF is not threaded in any implementation.

9 Further Comments

D02ZAF should only be used within MONITR associated with the integrators in Sub-chapter D02M–N
(e.g., see D02NBF). Its use and only valid calling sequence are fully documented in the description of
MONITR in the routine documents for the integrators.
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10 Example

This example solves the well-known stiff Robertson problem

a0 ¼ �0:04a þ 1:0E4bc
b0 ¼ 0:04a � 1:0E4bc � 3:0E7b2

c0 ¼ 3:0E7b2

over the range 0; 10½ � with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 using scalar error control
(ITOL ¼ 1) and computation of the solution at TOUT ¼ 10:0 with TCRIT (e.g., see D02MVF) set to
10:0 (ITASK ¼ 4). A BDF integrator (setup routine D02NVF) is used and a modified Newton method is
selected. This example illustrates the use of D02ZAF within a monitor routine MONITR to output
intermediate results during the integration. The same problem is solved in the example program for
D02NBF where no monitoring was performed and so no intermediate solution information is output.

10.1 Program Text

! D02ZAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02zafe_mod

! D02ZAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn, jac, monitr

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, itrace = 0, neq = 3, &

nin = 5, nout = 6
Integer, Parameter, Public :: nrw = 50 + 4*neq
Integer, Parameter, Public :: nwkjac = neq*(neq+1)
Integer, Parameter, Public :: ldysav = neq

Contains
Subroutine fcn(neq,t,y,f,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq)

! .. Executable Statements ..
f(1) = -0.04E0_nag_wp*y(1) + 1.0E4_nag_wp*y(2)*y(3)
f(2) = 0.04E0_nag_wp*y(1) - 1.0E4_nag_wp*y(2)*y(3) - &

3.0E7_nag_wp*y(2)*y(2)
f(3) = 3.0E7_nag_wp*y(2)*y(2)
Return

End Subroutine fcn
Subroutine jac(neq,t,y,h,d,p)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: d, h, t
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: p(neq,neq)
Real (Kind=nag_wp), Intent (In) :: y(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: hxd

! .. Executable Statements ..
hxd = h*d
p(1,1) = 1.0E0_nag_wp - hxd*(-0.04E0_nag_wp)
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p(1,2) = -hxd*(1.0E4_nag_wp*y(3))
p(1,3) = -hxd*(1.0E4_nag_wp*y(2))
p(2,1) = -hxd*(0.04E0_nag_wp)
p(2,2) = 1.0E0_nag_wp - hxd*(-1.0E4_nag_wp*y(3)-6.0E7_nag_wp*y(2))
p(2,3) = -hxd*(-1.0E4_nag_wp*y(2))

! Do not need to set P(3,1) since Jacobian preset to zero
! P(3,1) = - HXD*(0.0E0)

p(3,2) = -hxd*(6.0E7_nag_wp*y(2))
p(3,3) = 1.0E0_nag_wp - hxd*(0.0E0_nag_wp)
Return

End Subroutine jac
Subroutine monitr(neq,ldysav,t,hlast,hnext,y,ydot,ysav,r,acor,imon,inln, &

hmin,hmax,nqu)

! .. Use Statements ..
Use nag_library, Only: d02zaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: hlast, t
Real (Kind=nag_wp), Intent (Inout) :: hmax, hmin, hnext
Integer, Intent (Inout) :: imon
Integer, Intent (Out) :: inln
Integer, Intent (In) :: ldysav, neq, nqu

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: acor(neq,2), r(neq), ydot(neq), &

ysav(ldysav,*)
Real (Kind=nag_wp), Intent (Inout) :: y(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: errloc
Integer :: i, ifail

! .. Executable Statements ..
inln = 3
If (imon==1) Then

ifail = -1
errloc = d02zaf(neq,acor(1,2),acor(1,1),ifail)

If (ifail/=0) Then
imon = -2

Else If (errloc>5.0E0_nag_wp) Then
Write (nout,99999) t, (y(i),i=1,neq), errloc

Else
Write (nout,99998) t, (y(i),i=1,neq)

End If
End If

Return

99999 Format (1X,F10.6,3(F13.7,2X),/,1X,’ ** WARNING scaled local error = ’, &
F13.5)

99998 Format (1X,F10.6,3(F13.7,2X))
End Subroutine monitr

End Module d02zafe_mod
Program d02zafe

! D02ZAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02nbf, d02nsf, d02nvf, d02nyf, nag_wp, x04abf
Use d02zafe_mod, Only: fcn, iset, itrace, jac, ldysav, monitr, neq, nin, &

nout, nrw, nwkjac
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, h0, hmax, hmin, hu, t, tcrit, &
tcur, tolsf, tout

Integer :: i, ifail, imxer, itask, itol, &
maxord, maxstp, mxhnil, niter, nje, &
nq, nqu, nre, nst, outchn, sdysav

Logical :: petzld
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), &
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wkjac(:), y(:), ydot(:), ysav(:,:)
Real (Kind=nag_wp) :: con(6)
Integer :: inform(23)
Logical, Allocatable :: algequ(:)

! .. Executable Statements ..
Write (nout,*) ’D02ZAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! neq: number of differential equations
Read (nin,*) maxord, maxstp, mxhnil
sdysav = maxord + 1
Allocate (atol(neq),rtol(neq),rwork(nrw),wkjac(nwkjac),y(neq),ydot(neq), &

ysav(ldysav,sdysav),algequ(neq))
outchn = nout
Call x04abf(iset,outchn)

! Set algorithmic and problem parameters

Read (nin,*) hmin, hmax, h0, t, tout
Read (nin,*) petzld

! Initialization

! Integrate to tout without passing tout.
tcrit = tout
itask = 4

! Use default values for the array con.
con(1:6) = 0.0_nag_wp

! Use BDF formulae with modified Newton method.
! Use averaged L2 norm for local error control.

ifail = 0
Call d02nvf(neq,sdysav,maxord,’Newton’,petzld,con,tcrit,hmin,hmax,h0, &

maxstp,mxhnil,’Average-L2’,rwork,ifail)

! Setup for using analytic Jacobian
ifail = 0
Call d02nsf(neq,neq,’Analytical’,nwkjac,rwork,ifail)

Write (nout,*)
Write (nout,*) ’ Analytic Jacobian’
Write (nout,*)

! Set tolerances.
Read (nin,*) itol
Read (nin,*) rtol(1), atol(1)

! Initial values for Y.
Read (nin,*) y(1:neq)

Write (nout,*) ’ X Y(1) Y(2) Y(3)’
Write (nout,99999) t, (y(i),i=1,neq)

! Solve the problem using MONITR to output intermediate results.
ifail = -1
Call d02nbf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform,fcn, &

ysav,sdysav,jac,wkjac,nwkjac,monitr,itask,itrace,ifail)

If (ifail==0) Then

! Get integration statistics.
Call d02nyf(neq,neq,hu,h,tcur,tolsf,rwork,nst,nre,nje,nqu,nq,niter, &

imxer,algequ,inform,ifail)

Write (nout,*)
Write (nout,99997) hu, h, tcur
Write (nout,99996) nst, nre, nje
Write (nout,99995) nqu, nq, niter
Write (nout,99994) ’ Max Err Comp = ’, imxer
Write (nout,*)
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Else
Write (nout,*)
Write (nout,99998) ’Exit D02NBF with IFAIL = ’, ifail, ’ and T = ’, t

End If

99999 Format (1X,F10.6,3(F13.7,2X))
99998 Format (1X,A,I2,A,E12.5)
99997 Format (1X,’ HUSED = ’,E12.5,’ HNEXT = ’,E12.5,’ TCUR = ’,E12.5)
99996 Format (1X,’ NST = ’,I6,’ NRE = ’,I6,’ NJE = ’,I6)
99995 Format (1X,’ NQU = ’,I6,’ NQ = ’,I6,’ NITER = ’,I6)
99994 Format (1X,A,I4)

End Program d02zafe

10.2 Program Data

D02ZAF Example Program Data
5 200 5 : maxord, maxstp, mxhnil
1.0E-10 10.0 0.0 0.0 10.0 : hmin, hmax, h0, t, tout
.FALSE. : petzld
1 : itol
1.0E-4 1.0E-7 : rtol, atol
1.0 0.0 0.0 : y

10.3 Program Results

D02ZAF Example Program Results

Analytic Jacobian

X Y(1) Y(2) Y(3)
0.000000 1.0000000 0.0000000 0.0000000
0.000108 0.9999957 0.0000042 0.0000001
0.000215 0.9999914 0.0000083 0.0000003
0.000305 0.9999878 0.0000115 0.0000007
0.000394 0.9999842 0.0000145 0.0000013
0.000550 0.9999780 0.0000193 0.0000027
0.000707 0.9999717 0.0000234 0.0000049
0.000863 0.9999655 0.0000267 0.0000078
0.001134 0.9999546 0.0000308 0.0000145
0.001338 0.9999465 0.0000328 0.0000207
0.001541 0.9999384 0.0000342 0.0000274
0.001744 0.9999302 0.0000351 0.0000347
0.002024 0.9999190 0.0000357 0.0000453
0.002304 0.9999078 0.0000360 0.0000561
0.002584 0.9998966 0.0000362 0.0000671
0.002865 0.9998855 0.0000363 0.0000782
0.003252 0.9998700 0.0000364 0.0000936
0.003639 0.9998545 0.0000365 0.0001090
0.004026 0.9998390 0.0000365 0.0001245
0.005346 0.9997864 0.0000365 0.0001772
0.006665 0.9997337 0.0000365 0.0002298
0.011496 0.9995413 0.0000364 0.0004223
0.016328 0.9993492 0.0000364 0.0006144
0.027384 0.9989107 0.0000363 0.0010529
0.038440 0.9984742 0.0000362 0.0014896
0.049496 0.9980395 0.0000362 0.0019243
0.090362 0.9964493 0.0000359 0.0035149
0.131228 0.9948843 0.0000356 0.0050802
0.172093 0.9933438 0.0000353 0.0066209
0.256544 0.9902354 0.0000348 0.0097299
0.340995 0.9872231 0.0000342 0.0127427
0.425446 0.9843009 0.0000337 0.0156653
0.509897 0.9814639 0.0000332 0.0185029
0.647901 0.9769992 0.0000325 0.0229684
0.785904 0.9727312 0.0000318 0.0272371
0.923908 0.9686436 0.0000311 0.0313253
1.061912 0.9647221 0.0000305 0.0352474
1.315223 0.9579148 0.0000294 0.0420558
1.568533 0.9515559 0.0000285 0.0484156
1.821844 0.9455915 0.0000276 0.0543809
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2.075154 0.9399766 0.0000268 0.0599966
2.328465 0.9346727 0.0000261 0.0653013
2.707880 0.9272386 0.0000251 0.0727363
3.087296 0.9203375 0.0000242 0.0796383
3.466712 0.9138972 0.0000234 0.0860794
3.846128 0.9078595 0.0000227 0.0921178
4.225543 0.9021762 0.0000220 0.0978018
4.812256 0.8939921 0.0000211 0.1059867
5.398969 0.8864397 0.0000203 0.1135400
5.985682 0.8794262 0.0000196 0.1205542
6.572395 0.8728779 0.0000190 0.1271031
7.159109 0.8667346 0.0000184 0.1332470
8.060884 0.8579697 0.0000176 0.1420126
8.962660 0.8499047 0.0000169 0.1500784
9.481330 0.8455416 0.0000166 0.1544418

10.000000 0.8413577 0.0000162 0.1586261

HUSED = 0.51867E+00 HNEXT = 0.51867E+00 TCUR = 0.10000E+02
NST = 55 NRE = 81 NJE = 17
NQU = 3 NQ = 3 NITER = 79
Max Err Comp = 3
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NAG Library Chapter Contents

D03 – Partial Differential Equations

D03 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

D03EAF 7 nagf_pde_2d_laplace
Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain

D03EBF 7 nagf_pde_2d_ellip_fd
Elliptic PDE, solution of finite difference equations by SIP, five-point two-
dimensional molecule, iterate to convergence

D03ECF 8 nagf_pde_3d_ellip_fd
Elliptic PDE, solution of finite difference equations by SIP for seven-point
three-dimensional molecule, iterate to convergence

D03EDF 12 nagf_pde_2d_ellip_mgrid
Elliptic PDE, solution of finite difference equations by a multigrid
technique

D03EEF 13 nagf_pde_2d_ellip_discret
Discretize a second-order elliptic PDE on a rectangle

D03FAF 14 nagf_pde_3d_ellip_helmholtz
Elliptic PDE, Helmholtz equation, three-dimensional Cartesian coordinates

D03MAF 7 nagf_pde_2d_triangulate
Triangulation of plane region

D03NCF 20 nagf_pde_1d_blackscholes_fd
Finite difference solution of the Black–Scholes equations

D03NDF 20 nagf_pde_1d_blackscholes_closed
Analytic solution of the Black–Scholes equations

D03NEF 20 nagf_pde_1d_blackscholes_means
Compute average values for D03NDF

D03PCA 20 nagf_pde_1d_parab_fd
General system of parabolic PDEs, method of lines, finite differences, one
space variable

D03PCF 15 nagf_pde_1d_parab_fd_old
General system of parabolic PDEs, method of lines, finite differences, one
space variable

D03PDA 20 nagf_pde_1d_parab_coll
General system of parabolic PDEs, method of lines, Chebyshev C0

collocation, one space variable
D03PDF 15 nagf_pde_1d_parab_coll_old

General system of parabolic PDEs, method of lines, Chebyshev C0

collocation, one space variable
D03PEF 16 nagf_pde_1d_parab_keller

General system of first-order PDEs, method of lines, Keller box
discretization, one space variable

D03PFF 17 nagf_pde_1d_parab_convdiff
General system of convection-diffusion PDEs with source terms in
conservative form, method of lines, upwind scheme using numerical flux
function based on Riemann solver, one space variable

D03PHA 20 nagf_pde_1d_parab_dae_fd
General system of parabolic PDEs, coupled DAEs, method of lines, finite
differences, one space variable

D03PHF 15 nagf_pde_1d_parab_dae_fd_old
General system of parabolic PDEs, coupled DAEs, method of lines, finite
differences, one space variable
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D03PJA 20 nagf_pde_1d_parab_dae_coll
General system of parabolic PDEs, coupled DAEs, method of lines,
Chebyshev C0 collocation, one space variable

D03PJF 15 nagf_pde_1d_parab_dae_coll_old
General system of parabolic PDEs, coupled DAEs, method of lines,
Chebyshev C0 collocation, one space variable

D03PKF 16 nagf_pde_1d_parab_dae_keller
General system of first-order PDEs, coupled DAEs, method of lines, Keller
box discretization, one space variable

D03PLF 17 nagf_pde_1d_parab_convdiff_dae
General system of convection-diffusion PDEs with source terms in
conservative form, coupled DAEs, method of lines, upwind scheme using
numerical flux function based on Riemann solver, one space variable

D03PPA 20 nagf_pde_1d_parab_remesh_fd
General system of parabolic PDEs, coupled DAEs, method of lines, finite
differences, remeshing, one space variable

D03PPF 16 nagf_pde_1d_parab_remesh_fd_old
General system of parabolic PDEs, coupled DAEs, method of lines, finite
differences, remeshing, one space variable

D03PRF 16 nagf_pde_1d_parab_remesh_keller
General system of first-order PDEs, coupled DAEs, method of lines, Keller
box discretization, remeshing, one space variable

D03PSF 17 nagf_pde_1d_parab_convdiff_remesh
General system of convection-diffusion PDEs, coupled DAEs, method of
lines, upwind scheme, remeshing, one space variable

D03PUF 17 nagf_pde_1d_parab_euler_roe
Roe's approximate Riemann solver for Euler equations in conservative
form, for use with D03PFF, D03PLF and D03PSF

D03PVF 17 nagf_pde_1d_parab_euler_osher
Osher's approximate Riemann solver for Euler equations in conservative
form, for use with D03PFF, D03PLF and D03PSF

D03PWF 18 nagf_pde_1d_parab_euler_hll
Modified HLL Riemann solver for Euler equations in conservative form,
for use with D03PFF, D03PLF and D03PSF

D03PXF 18 nagf_pde_1d_parab_euler_exact
Exact Riemann solver for Euler equations in conservative form, for use
with D03PFF, D03PLF and D03PSF

D03PYF 15 nagf_pde_1d_parab_coll_interp
PDEs, spatial interpolation with D03PDF/D03PDA or D03PJF/D03PJA

D03PZF 15 nagf_pde_1d_parab_fd_interp
PDEs, spatial interpolation with D03PCF/D03PCA, D03PEF, D03PFF,
D03PHF/D03PHA, D03PKF, D03PLF, D03PPF/D03PPA, D03PRF or
D03PSF

D03RAF 18 nagf_pde_2d_gen_order2_rectangle
General system of second-order PDEs, method of lines, finite differences,
remeshing, two space variables, rectangular region

D03RBF 18 nagf_pde_2d_gen_order2_rectilinear
General system of second-order PDEs, method of lines, finite differences,
remeshing, two space variables, rectilinear region

D03RYF 18 nagf_pde_2d_gen_order2_checkgrid
Check initial grid data in D03RBF

D03RZF 18 nagf_pde_2d_gen_order2_rectilinear_extractgrid
Extract grid data from D03RBF
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D03UAF 7 nagf_pde_2d_ellip_fd_iter
Elliptic PDE, solution of finite difference equations by SIP, five-point two-
dimensional molecule, one iteration

D03UBF 8 nagf_pde_3d_ellip_fd_iter
Elliptic PDE, solution of finite difference equations by SIP, seven-point
three-dimensional molecule, one iteration
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1 Scope of the Chapter

This chapter is concerned with the numerical solution of partial differential equations.

2 Background to the Problems

The definition of a partial differential equation problem includes not only the equation itself but also the
domain of interest and appropriate subsidiary conditions. Indeed, partial differential equations are
usually classified as elliptic, hyperbolic or parabolic according to the form of the equation and the form
of the subsidiary conditions which must be assigned to produce a well-posed problem. The routines in
this chapter will often call upon routines from other chapters, such as Chapter F04 (Simultaneous
Linear Equations) and Chapter D02 (Ordinary Differential Equations). Other chapters also contain
relevant routines, in particular Chapter D06 (Mesh Generation) and Chapter F11 (Large Scale Linear
Systems).

The classification of partial differential equations is easily described in the case of linear equations of
the second order in two independent variables, i.e., equations of the form

auxx þ 2buxy þ cuyy þ dux þ euy þ fuþ g ¼ 0; ð1Þ

where a, b, c, d, e, f and g are functions of x and y only. Equation (1) is called elliptic, hyperbolic or
parabolic according to whether ac� b2 is positive, negative or zero, respectively. Useful definitions of
the concepts of elliptic, hyperbolic and parabolic character can also be given for differential equations
in more than two independent variables, for systems and for nonlinear differential equations.

For elliptic equations, of which Laplace's equation

uxx þ uyy ¼ 0 ð2Þ

is the simplest example of second order, the subsidiary conditions take the form of boundary
conditions, i.e., conditions which provide information about the solution at all points of a closed
boundary. For example, if equation (2) holds in a plane domain D bounded by a contour C, a solution u
may be sought subject to the condition

u ¼ f on C; ð3Þ

where f is a given function. The condition (3) is known as a Dirichlet boundary condition. Equally
common is the Neumann boundary condition

u0 ¼ g on C; ð4Þ

which is one form of a more general condition

u0 þ fu ¼ g on C; ð5Þ

where u0 denotes the derivative of u normal to the contour C, and f and g are given functions. Provided
that f and g satisfy certain restrictions, condition (5) yields a well-posed boundary value problem for
Laplace's equation. In the case of the Neumann problem, one further piece of information, e.g., the
value of u at a particular point, is necessary for uniqueness of the solution. Boundary conditions similar
to the above are applicable to more general second-order elliptic equations, whilst two such conditions
are required for equations of fourth order.

For hyperbolic equations, the wave equation

utt � uxx ¼ 0 ð6Þ

is the simplest example of second order. It is equivalent to a first-order system

ut � vx ¼ 0; vt � ux ¼ 0: ð7Þ

The subsidiary conditions may take the form of initial conditions, i.e., conditions which provide
information about the solution at points on a suitable open boundary. For example, if equation (6) is
satisfied for t > 0, a solution u may be sought such that

u x; 0ð Þ ¼ f xð Þ; ut x; 0ð Þ ¼ g xð Þ; ð8Þ
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where f and g are given functions. This is an example of an initial value problem, sometimes known
as Cauchy's problem.

For parabolic equations, of which the heat conduction equation

ut � uxx ¼ 0 ð9Þ

is the simplest example, the subsidiary conditions always include some of initial type and may also
include some of boundary type. For example, if equation (9) is satisfied for t > 0 and 0 < x < 1, a
solution u may be sought such that

u x; 0ð Þ ¼ f xð Þ; 0 < x < 1; ð10Þ

and

u 0; tð Þ ¼ 0; u 1; tð Þ ¼ 1; t > 0: ð11Þ

This is an example of a mixed initial/boundary value problem.

For all types of partial differential equations, finite difference methods (see Mitchell and Griffiths
(1980)) and finite element methods (see Wait and Mitchell (1985)) are the most common means of
solution. The use of finite difference methods features prominently in this chapter, however, the use of
finite element methods is sufficiently large in scope to warrant a separate library of routines for their
implementation. NAG no longer provides a companion finite element library, but there are several such
specialist libraries available, including ParaFEM. Some of the utility routines in this chapter are
concerned with the solution of the large sparse systems of equations which arise from finite difference
and finite element methods. Further routines for this purpose are provided in Chapter F11.

Alternative methods of solution are often suitable for special classes of problems. For example, the
method of characteristics is the most common for hyperbolic equations involving time and one space
dimension (see Smith (1985)). The method of lines (see Mikhlin and Smolitsky (1967)) may be used to
reduce a parabolic equation to a (stiff) system of ordinary differential equations, which may be solved
by means of routines from Chapter D02 (Ordinary Differential Equations). Similarly, integral equation
or boundary element methods (see Jaswon and Symm (1977)) are frequently used for elliptic equations.
Typically, in the latter case, the solution of a boundary value problem is represented in terms of certain
boundary functions by an integral expression which satisfies the differential equation throughout the
relevant domain. The boundary functions are obtained by applying the given boundary conditions to
this representation. Implementation of this method necessitates discretization of only the boundary of
the domain, the dimensionality of the problem thus being effectively reduced by one. The boundary
conditions yield a full system of simultaneous equations, as opposed to the sparse systems yielded by
finite difference and finite element methods, but the full system is usually of much lower order. Solution
of this system yields the boundary functions, from which the solution of the problem may be obtained,
by quadrature, as and where required.

3 Recommendations on Choice and Use of Available Routines

The choice of routine will depend first of all upon the type of partial differential equation to be solved.
At present no special allowances are made for problems with boundary singularities such as may arise
at corners of domains or at points where boundary conditions change. For such problems results should
be treated with caution. The choice of routine may also depend on whether or not it is to be used in a
multithreaded environment.

You may wish to construct your own partial differential equation solution software for problems not
solvable by the routines described in Section 3.2 to Section 3.8 below. In such cases you can employ
appropriate routines from the Linear Algebra Chapters to solve the resulting linear systems; see
Section 3.10 for further details.

3.1 Thread Safe Routines

Some of the routines in this chapter come in pairs, with each routine in the pair having exactly the same
functionality, except that one of them has additional arguments in order to make it safe for use in
multithreaded applications. The routine that is safe for use in multithreaded applicatons has an ‘A’ as
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the last character in the name, in place of the usual ‘F’. An example of such a pair is D03PCA and
D03PCF.

For some routines there is no thread safe alternative and if this is the case it is clearly stated in the
routine document.

3.2 Elliptic Equations

The routine D03EAF solves Laplace's equation in two dimensions, equation (2), by an integral equation
method. This routine is applicable to an arbitrary domain bounded internally or externally by one or
more closed contours, when the value of either the unknown function u or its normal derivative u0 is
given at each point of the boundary.

The routines D03EBF and D03ECF solve a system of simultaneous algebraic equations of five-point
and seven-point molecule form (see Mikhlin and Smolitsky (1967)) on two-dimensional and three-
dimensional topologically-rectangular meshes respectively, using Stone's Strongly Implicit Procedure
(SIP). These routines, which make repeated calls of the utility routines D03UAF and D03UBF
respectively, may be used to solve any boundary value problem whose finite difference representation
takes the appropriate form.

The routine D03EDF solves a system of seven-point difference equations in a rectangular grid (in two
dimensions), using the multigrid iterative method. The equations are supplied by you, and the seven-
point form allows cross-derivative terms to be represented (see Mitchell and Griffiths (1980)). The
method is particularly efficient for large systems of equations with diagonal dominance and should be
preferred to D03EBF whenever it is appropriate for the solution of the problem.

The routine D03EEF discretizes a second-order equation on a two-dimensional rectangular region using
finite differences and a seven-point molecule. The routine allows for cross-derivative terms, Dirichlet,
Neumann or mixed boundary conditions, and either central or upwind differences. The resulting seven-
diagonal difference equations are in a form suitable for passing directly to the multigrid routine
D03EDF, although other solution methods could just as easily be used.

The routine D03FAF, based on the routine HW3CRT from FISHPACK (see Swarztrauber and Sweet
(1979)), solves the Helmholtz equation in a three-dimensional cuboidal region, with any combination of
Dirichlet, Neumann or periodic boundary conditions. The method used is based on the fast Fourier
transform algorithm, and is likely to be particularly efficient on vector-processing machines.

3.3 Hyperbolic Equations

See Section 3.8.

3.4 Parabolic Equations

There are five routines available for solving general parabolic equations in one space dimension:

D03PCF/D03PCA,

D03PDF/D03PDA,

D03PHF/D03PHA,

D03PJF/D03PJA,

D03PPF/D03PPA.

Equations may include nonlinear terms but the true derivative ut should occur linearly and equations
should usually contain a second-order space derivative uxx. There are certain restrictions on the
coefficients to try to ensure that the problems posed can be solved by the above routines.

The method of solution is to discretize the space derivatives using finite differences or collocation, and
to solve the resulting system of ordinary differential equations using a ‘stiff’ solver.
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D03PCF/D03PCA and D03PDF/D03PDA can solve a system of parabolic equations of the formXn
j¼1

Pij x; t; U; Uxð Þ@Uj
@t
þQi x; t; U; Uxð Þ ¼ x�m @

@x
xmRi x; t; U; Uxð Þð Þ;

where i ¼ 1; 2; . . . ; n, a � x � b, t � t0.
The parameter m allows the routine to handle different coordinate systems easily (Cartesian, cylindrical
polars and spherical polars). D03PCF/D03PCA uses a finite differences spatial discretization and
D03PDF/D03PDA uses a collocation spatial discretization.

D03PHF/D03PHA and D03PJF/D03PJA are similar to D03PCF/D03PCA and D03PDF/D03PDA
respectively, except that they provide scope for coupled differential-algebraic systems. This extended
functionality allows for the solution of more complex and more general problems, e.g., periodic
boundary conditions and integro-differential equations.

D03PPF/D03PPA is similar to D03PHF/D03PHA but allows remeshing to take place in the spatial
direction. This facility can be very useful when the nature of the solution in the spatial direction varies
considerably over time.

For parabolic systems in two space dimensions see Section 3.7.

3.5 Black–Scholes Equations

D03NCF solves the Black–Scholes equation

@f

@t
þ r� qð ÞS@f

@S
þ �

2S2

2

@2f

@S2
¼ rf

Smin < S < Smax ; tmin < t < tmax ;

for the value f of a European or American, put or call stock option. The parameters r, q and � may
each be either constant or time-dependent. The values of the Greeks are also returned.

In certain cases an analytic solution of the Black–Scholes equation is available. In these cases the
solution may be computed by D03NDF. More generally, Chapter S contains a set of option pricing
routines that evaluate the closed form solutions or approximations to the equations that define
mathematical models for the prices of selected financial option contracts, including the Black–Scholes
equation (S30AAF).

3.6 First-order Systems in One Space Dimension

There are three routines available for solving systems of first-order partial differential equations:

D03PEF,

D03PKF,

D03PRF.

Equations may include nonlinear terms but the time derivative should occur linearly. There are certain
restrictions on the coefficients to ensure that the problems posed can be solved by the above routines.

The method of solution is to discretize the space derivatives using the Keller box scheme and to solve
the resulting system of ordinary differential equations using a ‘stiff’ solver.

D03PEF is designed to solve a system of the formXn
j¼1

Pij x; t; U; Uxð Þ@Uj
@t
þQi x; t; U; Uxð Þ ¼ 0;

where i ¼ 1; 2; . . . ; n, a � x � b, t � t0.
D03PKF is similar to D03PEF except that it provides scope for coupled differential algebraic systems.
This extended functionality allows for the solution of more complex problems.

D03 – Partial Differential Equations Introduction – D03

Mark 26 D03.5



D03PRF is similar to D03PKF but allows remeshing to take place in the spatial direction. This facility
can be very useful when the nature of the solution in the spatial direction varies considerably over time.

D03PEF, D03PKF or D03PRF may also be used to solve systems of higher or mixed order partial
differential equations which have been reduced to first-order. Note that in general these routines are
unsuitable for hyperbolic first-order equations, for which an appropriate upwind discretization scheme
should be used (see Section 3.8 for example).

3.7 Second-order Systems in Two Space Dimensions

There are two routines available for solving nonlinear second-order time-dependent systems in two
space dimensions:

D03RAF,

D03RBF.

These routines are formally applicable to the general nonlinear system

Fj t; x; y; u; ut; ux; uy; uxx; uxy; uyy
� �

¼ 0;

where j ¼ 1; 2; . . . ;NPDE, x; yð Þ 2 �, t0 � t � tout. However, they should not be used to solve purely
hyperbolic systems, or time-independent problems.

D03RAF solves the nonlinear system in a rectangular domain, while D03RBF solves in a rectilinear
region, i.e., a domain bounded by perpendicular straight lines.

Both routines use the method of lines and solve the resulting system of ordinary differential equations
using a backward differentiation formula (BDF) method, modified Newton method, and BiCGSTAB
iterative linear solver. Local uniform grid refinement is used to improve accuracy.

Utility routines D03RYF and D03RZF may be used in conjunction with D03RBF to check the user-
supplied initial mesh, and extract mesh coordinate data.

3.8 Convection-diffusion Systems

There are three routines available for solving systems of convection-diffusion equations with optional
source terms:

D03PFF,

D03PLF,

D03PSF.

Equations may include nonlinear terms but the time derivative should occur linearly. There are certain
restrictions on the coefficients to ensure that the problems posed can be solved by the above routines, in
particular the system must be posed in conservative form (see below). The routines may also be used to
solve hyperbolic convection-only systems.

Convection terms are discretized using an upwind scheme involving a numerical flux function based on
the solution of a Riemann problem at each mesh point (see LeVeque (1990)); and diffusion and source
terms are discretized using central differences. The resulting system of ordinary differential equations is
solved using a ‘stiff’ solver. In the case of Euler equations for a perfect gas various approximate and
exact Riemann solvers are provided in D03PUF, D03PVF, D03PWF and D03PXF. These routines may
be used in conjunction with D03PFF, D03PLF and D03PSF.

D03PFF is designed to solve systems of the form

Xn
j¼1

Pij x; t; Uð Þ@Uj
@t
þ @

@x
Fi x; t; Uð Þ ¼ Ci x; t; Uð Þ @

@x
Di x; t; U; Uxð Þ þ Si x; t; Uð Þ;

or hyperbolic convection-only systems of the form
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Xn
j¼1

Pij x; t; Uð Þ@Uj
@t
þ @Fi x; t; Uð Þ

@x
¼ 0;

where i ¼ 1; 2; . . . ; n, a � x � b, t � t0.
D03PLF is similar to D03PFF except that it provides scope for coupled differential algebraic systems.
This extended functionality allows for the solution of more complex problems.

D03PSF is similar to D03PLF but allows remeshing to take place in the spatial direction. This facility
can be very useful when the nature of the solution in the spatial direction varies considerably over time.

3.9 Automatic Mesh Generation

The routine D03MAF places a triangular mesh over a given two-dimensional region. The region may
have any shape and may include holes. It may also be used in conjunction with routines from the NAG
Finite Element Library. A wider range of mesh generation routines are available in Chapter D06.

3.10 Utility Routines

D03UAF (D03UBF) calculates, by the Strongly Implicit Procedure, an approximate correction to a
current estimate of the solution of a system of simultaneous algebraic equations for which the iterative
update matrix is of five (seven) point molecule form on a two- (three-) dimensional topologically-
rectangular mesh.

Routines are available in the Linear Algebra Chapters for the direct and iterative solution of linear
equations. Here we point to some of the routines that may be of use in solving the linear systems that
arise from finite difference or finite element approximations to partial differential equation solutions.
Chapters F01, F04, F07, F08 and F11 should be consulted for further information and for the
appropriate routine documents. Decision trees for the solution of linear systems are given in Section 4
in the F04 Chapter Introduction.

The following routines allow the direct solution of symmetric positive definite systems:

Band F07HDF (DPBTRF) and F07HEF (DPBTRS)

Variable band (skyline) F01MCF and F04MCF

Tridiagonal F07JAF (DPTSV), F07JDF (DPTTRF) and F07JEF (DPTTRS)

Sparse F11JAF� and F11JBF

(� the description of F11JBF explains how F11JAF should be called to obtain a direct method) and the
following routines allow the iterative solution of symmetric positive definite and symmetric-indefinite
systems:

Sparse F11GDF, F11GEF, F11GFF, F11JAF, F11JCF and F11JEF.

The latter two routines above are black box routines which include Incomplete Cholesky, SSOR or
Jacobi preconditioning.

The following routines allow the direct solution of nonsymmetric systems:

Band F07BDF (DGBTRF) and F07BEF (DGBTRS)

Almost block-diagonal F01LHF and F04LHF

Tridiagonal F01LEF, F04LEF or F07CAF (DGTSV)

Sparse F01BRF (and F01BSF) and F04AXF

and the following routines allow the iterative solution of nonsymmetric systems:

Sparse F11BDF, F11BEF, F11BFF, F11DAF, F11DCF and F11DEF.

The latter two routines above are black box routines which include incomplete LU , SSOR and Jacobi
preconditioning.
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The routines D03PYF and D03PZF use linear interpolation to compute the solution to a parabolic
problem and its first derivative at the user-specified points. D03PZF may be used in conjunction with
D03PCF/D03PCA, D03PEF, D03PHF/D03PHA, D03PKF, D03PPF/D03PPA and D03PRF. D03PYF
may be used in conjunction with D03PDF/D03PDA and D03PJF/D03PJA.

D03RYF and D03RZF are utility routines for use in conjunction with D03RBF. They can be called to
check the user-specified initial mesh and to extract mesh coordinate data.

4 Decision Trees

Tree 1

Does PDE have a
time derivative? yes

Does PDE have
second derivatives? yes

see Tree 4 Parabolic
branch

no

Is PDE hyperbolic?
yes

see Tree 3
Hyperbolic branch

no

1 space dimension?
yes

Does PDE have
coupled ODEs? yes

Is a remeshing
process required? yes

D03PRF

no

D03PKF

no

D03PEF

no

N/A

no

see Tree 2 Elliptic
branch

Tree 2: Elliptic branch

2 space dimensions?
yes

Is the domain arbitrary?
yes

D03EAF

no

Is the domain topologically
rectangular? yes

Do you want to use a
multigrid scheme? yes

D03EDF with D03EEF

no

D03EBF or D03UAF

no

D03EAF

no

3 space dimensions?
yes

Is the domain topologically
equivalent to a brick? yes

Is the PDE the Helmholtz
equation? yes

D03FAF

no

D03ECF or D03UBF

no

N/A

no

N/A
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Tree 3: Hyperbolic branch

1 space dimension?
yes

Does PDE have coupled
ODEs? yes

Is a remeshing process
required? yes

D03PSF

no

D03PLF

no

D03PFF

no

N/A

Tree 4: Parabolic branch

1 space dimension?
yes

Is PDE the Black–
Scholes equations? yes

D03NCF or D03NDF

no

Is PDE in
conservative form? yes

Does PDE have
coupled ODEs? yes

Is a remeshing
process required? yes

D03PSF

no

D03PLF

no

D03PFF

no

see Tree 5 Branch for
parabolic PDE in
non-conservative

form

no

2 space dimensions?
yes

Is the domain
rectangular? yes

D03RAF

no

Is the domain
rectilinear? yes

D03RBF

no

N/A

no

N/A

Tree 5: Branch for parabolic PDE in non-conservative form

Do you want to use finite
differences? yes

Does PDE have coupled
ODEs? yes

Is a remeshing process
required? yes

D03PPF

no

D03PHF

no

D03PCF

no

Do you want to use
Chebyshev collocation? yes

Does PDE have coupled
ODEs? yes

D03PJF

no

D03PDF

no

N/A
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5 Functionality Index

Automatic mesh generation,
triangles over a plane domain......................................................................................... D03MAF

Black–Scholes equation,
analytic............................................................................................................................ D03NDF
finite difference ............................................................................................................... D03NCF

Convection-diffusion system(s),
nonlinear,

one space dimension,
using upwind difference scheme based on Riemann solvers................................. D03PFF
using upwind difference scheme based on Riemann solvers,

with coupled differential algebraic system....................................................... D03PLF
with remeshing................................................................................................. D03PSF

Elliptic equations,
discretization on rectangular grid (seven-point two-dimensional molecule) .................... D03EEF
equations on rectangular grid (seven-point two-dimensional molecule) .......................... D03EDF
finite difference equations (five-point two-dimensional molecule) .................................. D03EBF
finite difference equations (seven-point three-dimensional molecule) ............................. D03ECF
Helmholtz's equation in three dimensions....................................................................... D03FAF
Laplace's equation in two dimensions............................................................................. D03EAF

First-order system(s),
nonlinear,

one space dimension,
using Keller box scheme....................................................................................... D03PEF
using Keller box scheme,

with coupled differential algebraic system....................................................... D03PKF
with remeshing................................................................................................. D03PRF

PDEs, general system, one space variable, method of lines,
parabolic,

collocation spatial discretization,
coupled DAEs, comprehensive.............................................................................. D03PJF
easy-to-use ............................................................................................................ D03PDF

finite differences spatial discretization,
coupled DAEs, comprehensive.............................................................................. D03PHF
coupled DAEs, remeshing, comprehensive............................................................ D03PPF
easy-to-use ............................................................................................................ D03PCF

Second order system(s),
nonlinear,

two space dimensions,
in rectangular domain ........................................................................................... D03RAF
in rectilinear domain ............................................................................................. D03RBF

Utility routine,
average values for D03NDF ........................................................................................... D03NEF
basic SIP for five-point two-dimensional molecule......................................................... D03UAF
basic SIP for seven-point three-dimensional molecule.................................................... D03UBF
check initial grid data for D03RBF ................................................................................ D03RYF
exact Riemann solver for Euler equations ...................................................................... D03PXF
HLL Riemann solver for Euler equations ....................................................................... D03PWF
interpolation routine for collocation scheme ................................................................... D03PYF
interpolation routine for finite difference,

Keller box and upwind scheme.................................................................................. D03PZF
Osher's Riemann solver for Euler equations ................................................................... D03PVF
return coordinates of grid points for D03RBF................................................................ D03RZF
Roe's Riemann solver for Euler equations ...................................................................... D03PUF

Introduction – D03 NAG Library Manual

D03.10 Mark 26



6 Auxiliary Routines Associated with Library Routine Arguments

D53PCK nagf_pde_1d_parab_remesh_fd_dummy_odedef
See the description of the argument ODEDEF in D03PHF/D03PHA, D03PJF/D03PJA and
D03PPF/D03PPA.

D03PCK nagf_pde_1d_parab_remesh_fd_dummy_odedef_old
See the description of the argument ODEDEF in D03PHF/D03PHA, D03PJF/D03PJA and
D03PPF/D03PPA.

D53PCL nagf_pde_1d_parab_remesh_fd_dummy_monitf
See the description of the argument MONITF in D03PPF/D03PPA.

D03PCL nagf_pde_1d_parab_remesh_fd_dummy_monitf_old
See the description of the argument MONITF in D03PPF/D03PPA.

D03PEK nagf_pde_1d_parab_dae_keller_remesh_fd_dummy_odedef
See the description of the argument ODEDEF in D03PKF, D03PLF, D03PRF and D03PSF.

D03PEL nagf_pde_1d_parab_dae_keller_remesh_fd_dummy_monitf
See the description of the argument MONITF in D03PRF and D03PSF.

D03PFP nagf_pde_1d_parab_convdiff_sample_pdedef
See the description of the argument PDEDEF in D03PFF.

D03PLP nagf_pde_1d_parab_convdiff_dae_sample_pdedef
See the description of the argument PDEDEF in D03PLF and D03PSF.

7 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

D03EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03EAF solves Laplace's equation in two dimensions for an arbitrary domain bounded internally or
externally by one or more closed contours, given the value of either the unknown function or its normal
derivative (into the domain) at each point of the boundary.

2 Specification

SUBROUTINE D03EAF (STAGE1, EXT, DORM, N, P, Q, X, Y, N1P1, PHI, PHID,
ALPHA, C, LDC, NP4, ICINT, NP1, IFAIL)

&

INTEGER N, N1P1, LDC, NP4, ICINT(NP1), NP1, IFAIL
REAL (KIND=nag_wp) P, Q, X(N1P1), Y(N1P1), PHI(N), PHID(N), ALPHA,

C(LDC,NP4)
&

LOGICAL STAGE1, EXT, DORM

3 Description

D03EAF uses an integral equation method, based upon Green's formula, which yields the solution, 
,
within the domain, given its value or that of its normal derivative at each point of the boundary (except
possibly at a finite number of discrete points). The solution is obtained in two stages. The first, which is
executed once only, determines the complementary boundary values, i.e., 
, where its normal derivative
is known and vice versa. The second stage is entered once for each point at which the solution is
required.

The boundary is divided into a number of intervals in each of which 
 and its normal derivative are
approximated by constants. Of these half are evaluated by applying the given boundary conditions at
one ‘nodal’ point within each interval while the remainder are determined (in stage 1) by solving a set
of simultaneous linear equations. Here this is achieved by means of auxiliary routine F08AAF
(DGELS), which will yield the least squares solution of an overdetermined system of equations as well
as the unique solution of a square nonsingular system.

In exterior domains the solution behaves as cþ s log rð Þ þO 1=rð Þ as r tends to infinity, where c is a
constant, s is the total integral of the normal derivative around the boundary and r is the radial distance
from the origin of coordinates. For the Neumann problem (when the normal derivative is given along
the whole boundary) s is fixed by the boundary conditions whilst c is chosen by you. However, for a
Dirichlet problem (when 
 is given along the whole boundary) or for a mixed problem, stage 1
produces a value of c for which s ¼ 0; then as r tends to infinity the solution tends to the constant c.

4 References

Symm G T and Pitfield R A (1974) Solution of Laplace's equation in two dimensions NPL Report NAC
44 National Physical Laboratory

5 Arguments

1: STAGE1 – LOGICAL Input

On entry: indicates whether the routine call is for stage 1 of the computation as defined in
Section 3.

STAGE1 ¼ :TRUE:
The call is for stage 1.
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STAGE1 ¼ :FALSE:
The call is for stage 2.

2: EXT – LOGICAL Input

On entry: the form of the domain. If EXT ¼ :TRUE:, the domain is unbounded. Otherwise the
domain is an interior one.

3: DORM – LOGICAL Input

On entry: the form of the boundary conditions. If DORM ¼ :TRUE:, then the problem is a
Dirichlet or mixed boundary value problem. Otherwise it is a Neumann problem.

4: N – INTEGER Input

On entry: the number of intervals into which the boundary is divided (see Sections 7 and 9).

5: P – REAL (KIND=nag_wp) Input
6: Q – REAL (KIND=nag_wp) Input

On entry: to stage 2, P and Q must specify the x and y coordinates respectively of a point at
which the solution is required.

When STAGE1 is .TRUE., P and Q are ignored.

7: XðN1P1Þ – REAL (KIND=nag_wp) array Input
8: YðN1P1Þ – REAL (KIND=nag_wp) array Input

On entry: the x and y coordinates respectively of points on the one or more closed contours
which define the domain of the problem.

Note: each contour is described in such a manner that the subscripts of the coordinates increase
when the domain is kept on the left. The final point on each contour coincides with the first and,
if a further contour is to be described, the coordinates of this point are repeated in the arrays. In
this way each interval is defined by three points, the second of which (the nodal point) always
has an even subscript. In the case of the interior Neumann problem, the outermost boundary
contour must be given first, if there is more than one.

9: N1P1 – INTEGER Input

On entry: the value 2 NþMð Þ � 1, where M denotes the number of closed contours which make
up the boundary.

10: PHIðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: for stage 1, PHI must contain the nodal values of 
 or its normal derivative (into the
domain) as prescribed in each interval. For stage 2 it must retain its output values from stage 1.

On exit: from stage 1, it contains the constants which approximate 
 in each interval. It remains
unchanged on exit from stage 2.

11: PHIDðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: for stage 1, PHIDðiÞ must hold the value 0:0 or 1:0 accordingly as PHIðiÞ contains a
value of 
 or its normal derivative, for i ¼ 1; 2; . . . ;N. For stage 2 it must retain its output values
from stage 1.

On exit: from stage 1, PHID contains the constants which approximate the normal derivative of 

in each interval. It remains unchanged on exit from stage 2.

12: ALPHA – REAL (KIND=nag_wp) Input/Output

On entry: for stage 1, the use of ALPHA depends on the nature of the problem:
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if DORM ¼ :TRUE:, ALPHA need not be set;

if DORM ¼ :FALSE: and EXT ¼ :TRUE:, ALPHA must contain the prescribed constant c
(see Section 3);

if DORM ¼ :FALSE: and EXT ¼ :FALSE:, ALPHA must contain an appropriate value
(often zero) for the integral of 
 around the outermost boundary.

For stage 2, on every call ALPHA must contain the value returned at stage 1.

On exit: from stage 1:

if EXT ¼ :FALSE:, ALPHA contains 0:0;

if EXT ¼ :TRUE: and DORM ¼ :FALSE: ALPHA is unchanged;

if EXT ¼ :TRUE: and DORM ¼ :TRUE: ALPHA contains a computed estimate for c.

From stage 2:

ALPHA contains the computed value of 
 at the point (P,Q).

13: CðLDC;NP4Þ – REAL (KIND=nag_wp) array Workspace
14: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which D03EAF
is called.

Constraint: LDC � Nþ 1.

15: NP4 – INTEGER Input

On entry: the value Nþ 4.

16: ICINTðNP1Þ – INTEGER array Workspace
17: NP1 – INTEGER Input

On entry: the value Nþ 1.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Invalid tolerance used in an internal call to an auxiliary routine:

ICINTð1Þ ¼ 0
Indicates too large a tolerance.
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ICINTð1Þ > 0
Indicates too small a tolerance.

Note: this error is only possible in stage 1, and the circumstances under which it may occur
cannot be foreseen. In the event of a failure, it is suggested that you change the scale of the
domain of the problem and apply the routine again.

IFAIL ¼ 2

Incorrect rank obtained by an auxiliary routine; ICINTð1Þ contains the computed rank.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the computed solution depends upon how closely 
 and its normal derivative may be
approximated by constants in each interval of the boundary and upon how well the boundary contours
are represented by polygons with vertices at the selected points XðiÞ;YðiÞð Þ, for
i ¼ 1; 2; . . . ; 2 NþMð Þ � 1 .

Consequently, in general, the accuracy increases as the boundary is subdivided into smaller and smaller
intervals and by comparing solutions for successive subdivisions one may obtain an indication of the
error in these solutions.

Alternatively, since the point of maximum error always lies on the boundary of the domain, an estimate
of the error may be obtained by computing 
 at a sufficient number of points on the boundary where
the true solution is known. The latter method (not applicable to the Neumann problem) is most useful in
the case where 
 alone is prescribed on the boundary (the Dirichlet problem).

8 Parallelism and Performance

D03EAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03EAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken for stage 1, which is executed once only, is roughly proportional to N2, being dominated
by the time taken to compute the coefficients. The time for each stage 2 application is proportional to
N.

D03EAF NAG Library Manual

D03EAF.4 Mark 26



The intervals into which the boundary is divided need not be of equal lengths.

For many practical problems useful results may be obtained with 20 to 40 intervals per boundary
contour.

10 Example

An interior Neumann problem to solve Laplace's equation in the domain bounded externally by the
triangle with vertices 3; 0ð Þ, �3; 0ð Þ and 0; 4ð Þ, and internally by the triangle with vertices 2; 1ð Þ, (�2; 1)
and 0; 3ð Þ, given that the normal derivative of the solution 
 is zero on each side of each triangle and,
for uniqueness that the total integral of 
 around the outer triangle is 16 (the length of the contour).

-3 -2 -1 0 1 2 3

1

2

3

4

This trivial example has the obvious solution 
 ¼ 1 throughout the domain. However it provides a
useful illustration of data input for a doubly-connected domain. The solution is computed at one corner
of each triangle and at one point inside the domain.

The program is written to handle any of the different types of problem that the routine can solve. The
array dimensions must be increased for larger problems.

10.1 Program Text

Program d03eafe

! D03EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d03eaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, alpha0, alpsav, p, q
Integer :: i, ifail, j, ldc, m, n, n1, n1p1, &

np1, np4, npts
Logical :: dorm, ext, stage1

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:,:), phi(:), phid(:), x(:), y(:)
Integer, Allocatable :: icint(:)

! .. Executable Statements ..
Write (nout,*) ’D03EAF Example Program Results’

! Skip heading in data file
Read (nin,*)
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Read (nin,*) m, n
n1 = 2*(n+m) - 2
n1p1 = n1 + 1
np1 = n + 1
np4 = n + 4
ldc = n + 1
Allocate (c(ldc,np4),phi(n),phid(n),x(n1p1),y(n1p1),icint(np1))
Read (nin,*) ext, dorm
If (.Not. dorm) Then

Read (nin,*) alpha0
alpha = alpha0

End If
Read (nin,*)(x(i),y(i),i=1,n1+1)
Read (nin,*)(phi(i),phid(i),i=1,n)

stage1 = .True.

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03eaf(stage1,ext,dorm,n,p,q,x,y,n1p1,phi,phid,alpha,c,ldc,np4, &

icint,np1,ifail)

alpsav = alpha
Write (nout,*)
If (.Not. dorm) Then

If (ext) Then
Write (nout,*) ’Exterior Neumann problem’
Write (nout,*)
Write (nout,99998) ’C=’, alpha0

Else
Write (nout,*) ’Interior Neumann problem’
Write (nout,*)
Write (nout,99999) ’Total integral =’, alpha0

End If
Else If (ext) Then

Write (nout,*)
Write (nout,*) ’Exterior problem’
Write (nout,*)
Write (nout,99999) ’Computed C =’, alpsav

End If
j = 2
Write (nout,*)
Write (nout,*) ’Nodes’
Write (nout,99996) ’X’, ’Y’, ’PHI’, ’PHID’
Do i = 1, n

If (x(j)==x(j-1) .And. y(j)==y(j-1)) Then
j = j + 2

End If
Write (nout,99997) x(j), y(j), phi(i), phid(i)
j = j + 2

End Do
stage1 = .False.
Write (nout,*)
Write (nout,*) ’Selected points’
Write (nout,*) ’ X Y PHI’
Read (nin,*) npts
Do i = 1, npts

Read (nin,*) p, q
alpha = alpsav

ifail = 0
Call d03eaf(stage1,ext,dorm,n,p,q,x,y,n1p1,phi,phid,alpha,c,ldc,np4, &

icint,np1,ifail)

Write (nout,99997) p, q, alpha
End Do
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99999 Format (1X,A,F15.2)
99998 Format (1X,A,E15.4)
99997 Format (1X,4F15.2)
99996 Format (1X,A12,A15,A17,A16)

End Program d03eafe

10.2 Program Data

D03EAF Example Program Data
2 6 : m, n
F F : ext, dorm

16.0 : alpha0
3.0 0.0
1.5 2.0
0.0 4.0

-1.5 2.0
-3.0 0.0
0.0 0.0
3.0 0.0
3.0 0.0
2.0 1.0
0.0 1.0

-2.0 1.0
-1.0 2.0
0.0 3.0
1.0 2.0
2.0 1.0 : x, y
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0 : phi, phid

3 : npts
2.0 1.0
2.5 0.5
3.0 0.0 : p, q

10.3 Program Results

D03EAF Example Program Results

Interior Neumann problem

Total integral = 16.00

Nodes
X Y PHI PHID
1.50 2.00 1.00 0.00

-1.50 2.00 1.00 0.00
0.00 0.00 1.00 0.00
0.00 1.00 1.00 0.00

-1.00 2.00 1.00 0.00
1.00 2.00 1.00 0.00

Selected points
X Y PHI
2.00 1.00 1.00
2.50 0.50 1.00
3.00 0.00 1.00
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NAG Library Routine Document

D03EBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03EBF uses the Strongly Implicit Procedure to calculate the solution to a system of simultaneous
algebraic equations of five-point molecule form on a two-dimensional topologically-rectangular mesh.
(‘Topological’ means that a polar grid, for example r; �ð Þ, can be used, being equivalent to a rectangular
box.)

2 Specification

SUBROUTINE D03EBF (N1, N2, LDA, A, B, C, D, E, Q, T, APARAM, ITMAX,
ITCOUN, ITUSED, NDIR, IXN, IYN, CONRES, CONCHN,
RESIDS, CHNGS, WRKSP1, WRKSP2, WRKSP3, IFAIL)

&
&

INTEGER N1, N2, LDA, ITMAX, ITCOUN, ITUSED, NDIR, IXN, IYN,
IFAIL

&

REAL (KIND=nag_wp) A(LDA,N2), B(LDA,N2), C(LDA,N2), D(LDA,N2),
E(LDA,N2), Q(LDA,N2), T(LDA,N2), APARAM, CONRES,
CONCHN, RESIDS(ITMAX), CHNGS(ITMAX),
WRKSP1(LDA,N2), WRKSP2(LDA,N2), WRKSP3(LDA,N2)

&
&
&

3 Description

Given a set of simultaneous equations

Mt ¼ q ð1Þ

(which could be nonlinear) derived, for example, from a finite difference representation of a two-
dimensional elliptic partial differential equation and its boundary conditions, the routine determines the
values of the dependent variable t. q is a known vector of length n1 � n2 and M is a square n1 � n2ð Þ
by n1 � n2ð Þ matrix.

The equations must be of five-diagonal form:

aijti;j�1 þ bijti�1;j þ cijtij þ dijtiþ1;j þ eijti;jþ1 ¼ qij
for i ¼ 1; 2; . . . ; n1 and j ¼ 1; 2; . . . ; n2, provided cij 6¼ 0:0. Indeed, if cij ¼ 0:0, then the equation is
assumed to be

tij ¼ qij:

For example, if n1 ¼ 3 and n2 ¼ 2, the equations take the form:

c11 d11 e11
b21 c21 d21 e21

b31 c31 e31
a12 c12 d12

a22 b22 c22 d22
a32 b32 c32

2666664

3777775
t11
t21
t31
t12
t22
t32

2666664

3777775 ¼
q11
q21
q31
q12
q22
q32

2666664

3777775:

The system is solved iteratively, from a starting approximation t 1ð Þ, by the formulae
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r nð Þ ¼ q �Mt nð Þ

Ms nð Þ ¼ r nð Þ

t nþ1ð Þ ¼ t nð Þ þ s nð Þ:

Thus r nð Þ is the residual of the nth approximate solution t nð Þ, and s nð Þ is the update change vector. The
calling program supplies an initial approximation for the values of the dependent variable in the array T,
the coefficients of the five-point molecule system of equations in the arrays A, B, C, D and E, and the
source terms in the array Q. The routine derives the residual of the latest approximate solution and then
uses the approximate LU factorization of the Strongly Implicit Procedure with the necessary
acceleration argument adjustment by calling D03UAF at each iteration. D03EBF combines the newly
derived change with the old approximation to obtain the new approximate solution for t. The new
solution is checked for convergence against the user-supplied convergence criteria and if these have not
been achieved the iterative cycle is repeated. Convergence is based on both the maximum absolute
normalized residuals (calculated with reference to the previous approximate solution as these are
calculated at the commencement of each iteration) and on the maximum absolute change made to the
values of t.

Problems in topologically non-rectangular regions can be solved using the routine by surrounding the
region by a circumscribing topological rectangle. The equations for the nodal values external to the
region of interest are set to zero (i.e., cij ¼ tij ¼ 0) and the boundary conditions are incorporated into
the equations for the appropriate nodes.

If there is no better initial approximation when starting the iterative cycle, an array of all zeros can be
used as the initial approximation.

The routine can be used to solve linear elliptic equations in which case the arrays A, B, C, D, E and Q
are constants and for which a single call provides the required solution. It can also be used to solve
nonlinear elliptic equations in which case some or all of these arrays may require updating during the
progress of the iterations as more accurate solutions are derived. The routine will then have to be called
repeatedly in an outer iterative cycle. Dependent on the nonlinearity, some under relaxation of the
coefficients and/or source terms may be needed during their recalculation using the new estimates of the
solution.

The routine can also be used to solve each step of a time-dependent parabolic equation in two space
dimensions. The solution at each time step can be expressed in terms of an elliptic equation if the
Crank–Nicolson or other form of implicit time integration is used.

Neither diagonal dominance, nor positive-definiteness, of the matrix M formed from the arrays A, B, C,
D, E is necessary to ensure convergence.

For problems in which the solution is not unique in the sense that an arbitrary constant can be added to
the solution, for example Laplace's equation with all Neumann boundary conditions, an argument is
incorporated so that the solution can be rescaled by subtracting a specified nodal value from the whole
solution t after the completion of every iteration to keep rounding errors to a minimum for those cases
when the convergence is slow.

4 References

Jacobs D A H (1972) The strongly implicit procedure for the numerical solution of parabolic and
elliptic partial differential equations Note RD/L/N66/72 Central Electricity Research Laboratory

Stone H L (1968) Iterative solution of implicit approximations of multi-dimensional partial differential
equations SIAM J. Numer. Anal. 5 530–558
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5 Arguments

1: N1 – INTEGER Input

On entry: the number of nodes in the first coordinate direction, n1.

Constraint: N1 > 1.

2: N2 – INTEGER Input

On entry: the number of nodes in the second coordinate direction, n2.

Constraint: N2 > 1.

3: LDA – INTEGER Input

On entry: the first dimension of the arrays A, B, C, D, E, Q, T, WRKSP1, WRKSP2 and
WRKSP3 as declared in the (sub)program from which D03EBF is called.

Constraint: LDA � N1.

4: AðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Aði; jÞ must contain the coefficient of the ‘southerly’ term involving ti;j�1 in the i; jð Þth
equation of the system (1), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of A, for
j ¼ 1, must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

5: BðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Bði; jÞ must contain the coefficient of the ‘westerly’ term involving ti�1;j in the i; jð Þth
equation of the system (1), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of B, for
i ¼ 1, must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

6: CðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Cði; jÞ must contain the coefficient of the ‘central’ term involving tij in the i; jð Þth
equation of the system (1), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of C are
checked to ensure that they are nonzero. If any element is found to be zero, the corresponding
algebraic equation is assumed to be tij ¼ qij . This feature can be used to define the equations for
nodes at which, for example, Dirichlet boundary conditions are applied, or for nodes external to
the problem of interest, by setting Cði; jÞ ¼ 0:0 at appropriate points, and the corresponding value
of Qði; jÞ to the appropriate value, namely the prescribed value of Tði; jÞ in the Dirichlet case or
zero at an external point.

7: DðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Dði; jÞ must contain the coefficient of the ‘easterly’ term involving tiþ1;j in the i; jð Þth
equation of the system (1), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of D, for
i ¼ N1, must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

8: EðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Eði; jÞ must contain the coefficient of the ‘northerly’ term involving ti;jþ1 in the i; jð Þth
equation of the system (1), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of E, for
j ¼ N2 must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

9: QðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Qði; jÞ must contain qij , for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2, i.e., the source term
values at the nodal points for the system (1).
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10: TðLDA;N2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Tði; jÞ must contain the element tij of the approximate solution to the equations
supplied by the calling program as an initial starting value, for i ¼ 1; 2; . . . ;N1 and
j ¼ 1; 2; . . . ;N2.

If no better approximation is known, an array of zeros can be used.

On exit: the solution derived by the routine.

11: APARAM – REAL (KIND=nag_wp) Input

On entry: the iteration acceleration factor. A value of 1:0 is adequate for most typical problems.
However, if convergence is slow, the value can be reduced, typically to 0:2 or 0:1. If divergence
is obtained, the value can be increased, typically to 2:0, 5:0 or 10:0.

Constraint: 0:0 < APARAM � N1� 1ð Þ2 þ N2� 1ð Þ2
� �

=2:0.

12: ITMAX – INTEGER Input

On entry: the maximum number of iterations to be used by the routine in seeking the solution. A
reasonable value might be 30 if N1 ¼ N2 ¼ 10 or 100 if N1 ¼ N2 ¼ 50.

13: ITCOUN – INTEGER Input/Output

On entry: on the first call of D03EBF, ITCOUN must be set to 0. On subsequent entries, its value
must be unchanged from the previous call.

On exit: its value is increased by the number of iterations used on this call (namely ITUSED). It
therefore stores the accumulated number of iterations actually used. For subsequent calls for the
same problem, i.e., with the same N1 and N2 but possibly different coefficients and/or source
terms, as occur with nonlinear systems or with time-dependent systems, ITCOUN is the
accumulated number of iterations. This applies to the second and subsequent calls to D03EBF. In
this way a suitable cycling of the sequence of iteration arguments is obtained in the calls to
D03UAF.

14: ITUSED – INTEGER Output

On exit: the number of iterations actually used on that call.

15: NDIR – INTEGER Input

On entry: indicates whether or not the system of equations has a unique solution. For systems
which have a unique solution, NDIR must be set to any nonzero value. For systems derived from,
for example, Laplace's equation with all Neumann boundary conditions, i.e., problems in which
an arbitrary constant can be added to the solution, NDIR should be set to 0 and the values of the
next two arguments must be specified. For such problems the routine subtracts the value of the
function derived at the node (IXN, IYN) from the whole solution after each iteration to reduce
the possibility of large rounding errors. You must also ensure that for such problems the
appropriate consistency condition on the source terms Q is satisfied.

16: IXN – INTEGER Input

On entry: is ignored unless NDIR is equal to zero, in which case it must specify the first index of
the nodal point at which the solution is to be set to zero. The node should not correspond to a
corner node, or to a node external to the region of interest.

17: IYN – INTEGER Input

On entry: is ignored unless NDIR is equal to zero, in which case it must specify the second index
of the nodal point at which the solution is to be set to zero. The node should not correspond to a
corner node, or to a node external to the region of interest.
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18: CONRES – REAL (KIND=nag_wp) Input

On entry: the convergence criterion to be used on the maximum absolute value of the normalized
residual vector components. The latter is defined as the residual of the algebraic equation divided
by the central coefficient when the latter is not equal to 0:0, and defined as the residual when the
central coefficient is zero.

Clearly CONRES should not be less than a reasonable multiple of the machine precision.

19: CONCHN – REAL (KIND=nag_wp) Input

On entry: the convergence criterion to be used on the maximum absolute value of the change
made at each iteration to the elements of the array T, namely the dependent variable. Clearly
CONCHN should not be less than a reasonable multiple of the machine precision multiplied by
the maximum value of T attained.

Convergence is achieved when both the convergence criteria are satisfied. You can therefore set
convergence on either the residual or on the change, or (as is recommended) on a requirement
that both are below prescribed limits.

20: RESIDSðITMAXÞ – REAL (KIND=nag_wp) array Output

On exit: the maximum absolute value of the residuals calculated at the ith iteration, for
i ¼ 1; 2; . . . ; ITUSED. If you want to know the maximum absolute residual of the solution which
is returned you must calculate this in the calling program. The sequence of values RESIDS
indicates the rate of convergence.

21: CHNGSðITMAXÞ – REAL (KIND=nag_wp) array Output

On exit: the maximum absolute value of the changes made to the components of the dependent
variable T at the ith iteration, for i ¼ 1; 2; . . . ; ITUSED. The sequence of values CHNGS
indicates the rate of convergence.

22: WRKSP1ðLDA;N2Þ – REAL (KIND=nag_wp) array Workspace
23: WRKSP2ðLDA;N2Þ – REAL (KIND=nag_wp) array Workspace
24: WRKSP3ðLDA;N2Þ – REAL (KIND=nag_wp) array Workspace

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 2,
or N2 < 2.
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IFAIL ¼ 2

On entry, LDA < N1.

IFAIL ¼ 3

On entry, APARAM � 0:0.

IFAIL ¼ 4

On entry, APARAM > N1� 1ð Þ2 þ N2� 1ð Þ2
� �

=2:0.

IFAIL ¼ 5

Convergence was not achieved after ITMAX iterations.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The improvement in accuracy for each iteration depends on the size of the system and on the condition
of the update matrix characterised by the five-diagonal coefficient arrays. The ultimate accuracy
obtainable depends on the above factors and on the machine precision. The rate of convergence
obtained with the Strongly Implicit Procedure is not always smooth because of the cyclic use of nine
acceleration arguments. The convergence may become slow with very large problems, for example
when N1 ¼ N2 ¼ 60. The final accuracy may be judged approximately from the rate of convergence
determined from the sequence of values returned in CHNGS and the magnitude of the maximum
absolute value of the change vector on the last iteration stored in CHNGSðITUSEDÞ.

8 Parallelism and Performance

D03EBF is not threaded in any implementation.

9 Further Comments

The time taken per iteration is approximately proportional to N1� N2.

Convergence may not always be obtained when the problem is very large and/or the coefficients of the
equations have widely disparate values. The latter case is often associated with a near ill-conditioned
matrix.

10 Example

This example solves Laplace's equation in a rectangle with a non-uniform grid spacing in the x and y
coordinate directions and with Dirichlet boundary conditions specifying the function on the perimeter of
the rectangle equal to
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e 1:0þxð Þ=y n2ð Þ � cos y=y n2ð Þð Þ:

10.1 Program Text

Program d03ebfe

! D03EBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d03ebf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: aparam, conchn, conres
Integer :: i, ifail, itcoun, itmax, itused, &

ixn, iyn, j, lda, n1, n2, ndir
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:), chngs(:), &
d(:,:), e(:,:), q(:,:), resids(:), &
t(:,:), wrksp1(:,:), wrksp2(:,:), &
wrksp3(:,:), x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: cos, exp

! .. Executable Statements ..
Write (nout,*) ’D03EBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n1, n2, itmax
lda = n1
Allocate (a(lda,n2),b(lda,n2),c(lda,n2),chngs(itmax),d(lda,n2), &

e(lda,n2),q(lda,n2),resids(itmax),t(lda,n2),wrksp1(lda,n2), &
wrksp2(lda,n2),wrksp3(lda,n2),x(n1),y(n2))

Read (nin,*) x(1:n1)
Read (nin,*) y(1:n2)
Read (nin,*) conres, conchn
Read (nin,*) ndir
aparam = one
itcoun = 0

! Set up difference equation coefficients, source terms and
! initial conditions.

a(1:n1,1:n2) = zero
b(1:n1,1:n2) = zero
c(1:n1,1:n2) = zero
d(1:n1,1:n2) = zero
e(1:n1,1:n2) = zero
q(1:n1,1:n2) = zero
t(1:n1,1:n2) = zero

! Non-zero specification for internal nodes
Do j = 2, n2 - 1

Do i = 2, n1 - 1
a(i,j) = two/((y(j)-y(j-1))*(y(j+1)-y(j-1)))
e(i,j) = two/((y(j+1)-y(j))*(y(j+1)-y(j-1)))
b(i,j) = two/((x(i)-x(i-1))*(x(i+1)-x(i-1)))
d(i,j) = two/((x(i+1)-x(i))*(x(i+1)-x(i-1)))
c(i,j) = -a(i,j) - b(i,j) - d(i,j) - e(i,j)

End Do
End Do

! Non-zero specification for boundary nodes
q(1:n1,1) = exp((x(1:n1)+one)/y(n2))*cos(y(1)/y(n2))
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q(1:n1,n2) = exp((x(1:n1)+one)/y(n2))*cos(y(n2)/y(n2))
q(1,1:n2) = exp((x(1)+one)/y(n2))*cos(y(1:n2)/y(n2))
q(n1,1:n2) = exp((x(n1)+one)/y(n2))*cos(y(1:n2)/y(n2))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03ebf(n1,n2,lda,a,b,c,d,e,q,t,aparam,itmax,itcoun,itused,ndir,ixn, &

iyn,conres,conchn,resids,chngs,wrksp1,wrksp2,wrksp3,ifail)

Write (nout,*) ’Iteration Maximum Maximum’
Write (nout,*) ’ number residual change’
Write (nout,99999)(i,resids(i),chngs(i),i=1,itused)
Write (nout,*)
Write (nout,*) ’Table of calculated function values’
Write (nout,*)
Write (nout,99998)(i,i=1,6)
Write (nout,*) ’ J’
Do j = 1, n2

Write (nout,99997) j, (t(i,j),i=1,n1)
End Do

99999 Format (2X,I2,10X,E11.4,4X,E11.4)
99998 Format (1X,’ I’,1X,6(I4,7X))
99997 Format (1X,I2,1X,6(F9.3,2X))

End Program d03ebfe

10.2 Program Data

D03EBF Example Program Data
6 10 18 : n1, n2, itmax
0.0 1.0 3.0 6.0 10.0 15.0 : x
0.0 1.0 3.0 6.0 10.0
15.0 21.0 28.0 36.0 45.0 : y
0.1E-5 0.1E-5 : conres, conchn
1 : ndir

10.3 Program Results

D03EBF Example Program Results

Iteration Maximum Maximum
number residual change
1 0.1427E+01 0.1427E+01
2 0.6671E-02 0.2176E-01
3 0.8422E-03 0.1621E-02
4 0.7635E-04 0.1810E-03
5 0.5434E-05 0.1199E-04
6 0.6471E-06 0.1245E-05
7 0.5467E-07 0.1081E-06

Table of calculated function values

I 1 2 3 4 5 6
J
1 1.022 1.045 1.093 1.168 1.277 1.427
2 1.022 1.045 1.093 1.168 1.277 1.427
3 1.020 1.043 1.091 1.166 1.274 1.424
4 1.013 1.036 1.083 1.158 1.266 1.414
5 0.997 1.020 1.066 1.140 1.246 1.392
6 0.966 0.988 1.033 1.104 1.207 1.348
7 0.913 0.934 0.976 1.044 1.141 1.274
8 0.831 0.850 0.888 0.950 1.038 1.160
9 0.712 0.728 0.762 0.814 0.890 0.994

10 0.552 0.565 0.591 0.631 0.690 0.771
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Example Program
Solution to Laplace’s Equation

using the Strongly Implicit Procedure on a Five-point Molecule Discretisation
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NAG Library Routine Document

D03ECF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03ECF uses the Strongly Implicit Procedure to calculate the solution to a system of simultaneous
algebraic equations of seven-point molecule form on a three-dimensional topologically-rectangular
mesh. (‘Topological’ means that a polar grid, for example, can be used if it is equivalent to a
rectangular box.)

2 Specification

SUBROUTINE D03ECF (N1, N2, N3, LDA, SDA, A, B, C, D, E, F, G, Q, T,
APARAM, ITMAX, ITCOUN, ITUSED, NDIR, IXN, IYN, IZN,
CONRES, CONCHN, RESIDS, CHNGS, WRKSP1, WRKSP2,
WRKSP3, WRKSP4, IFAIL)

&
&
&

INTEGER N1, N2, N3, LDA, SDA, ITMAX, ITCOUN, ITUSED, NDIR,
IXN, IYN, IZN, IFAIL

&

REAL (KIND=nag_wp) A(LDA,SDA,N3), B(LDA,SDA,N3), C(LDA,SDA,N3),
D(LDA,SDA,N3), E(LDA,SDA,N3), F(LDA,SDA,N3),
G(LDA,SDA,N3), Q(LDA,SDA,N3), T(LDA,SDA,N3),
APARAM, CONRES, CONCHN, RESIDS(ITMAX),
CHNGS(ITMAX), WRKSP1(LDA,SDA,N3),
WRKSP2(LDA,SDA,N3), WRKSP3(LDA,SDA,N3),
WRKSP4(LDA,SDA,N3)

&
&
&
&
&
&

3 Description

Given a set of simultaneous equations

Mt ¼ q ð1Þ

(which could be nonlinear) derived, for example, from a finite difference representation of a three-
dimensional elliptic partial differential equation and its boundary conditions, the routine determines the
values of the dependent variable t. M is a square n1 � n2 � n3ð Þ by n1 � n2 � n3ð Þ matrix and q is a
known vector of length n1 � n2 � n3ð Þ.
The equations must be of seven-diagonal form:

aijktij;k�1 þ bijkti;j�1;k þ cijkti�1;jk þ dijktijk þ eijktiþ1;jk þ fijkti;jþ1;k þ gijktij;kþ1 ¼ qijk
for i ¼ 1; 2; . . . ; n1, j ¼ 1; 2; . . . ; n2 and k ¼ 1; 2; . . . ; n3, provided that dijk 6¼ 0:0.

Indeed, if dijk ¼ 0:0, then the equation is assumed to be:

tijk ¼ qijk:

The system is solved iteratively from a starting approximation t 1ð Þ by the formulae:

r nð Þ ¼ q �Mt nð Þ

Ms nð Þ ¼ r nð Þ

t nþ1ð Þ ¼ t nð Þ þ s nð Þ:

Thus r nð Þ is the residual of the nth approximate solution t nð Þ, and s nð Þ is the update change vector.

The calling program supplies an initial approximation for the values of the dependent variable in the
array T, the coefficients of the seven-point molecule system of equations in the arrays A, B, C, D, E, F
and G, and the source terms in the array Q. The routine derives the residual of the latest approximate
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solution, and then uses the approximate LU factorization of the Strongly Implicit Procedure with the
necessary acceleration argument adjustment by calling D03UBF at each iteration. D03ECF combines
the newly derived change with the old approximation to obtain the new approximate solution for t. The
new solution is checked for convergence against the user-supplied convergence criteria, and if these
have not been satisfied, the iterative cycle is repeated. Convergence is based on both the maximum
absolute normalized residuals (calculated with reference to the previous approximate solution as these
are calculated at the commencement of each iteration) and on the maximum absolute change made to
the values of t.

Problems in topologically non-rectangular-box-shaped regions can be solved using the routine by
surrounding the region by a circumscribing topologically rectangular box. The equations for the nodal
values external to the region of interest are set to zero (i.e., dijk ¼ tijk ¼ 0) and the boundary conditions
are incorporated into the equations for the appropriate nodes.

If there is no better initial approximation when starting the iterative cycle, one can use an array of zeros
as the initial approximation.

The routine can be used to solve linear elliptic equations in which case the arrays A, B, C, D, E, F, G
and Q remain constant and for which a single call provides the required solution. It can also be used to
solve nonlinear elliptic equations, in which case some or all of these arrays may require updating during
the progress of the iterations as more accurate solutions are derived. The routine will then have to be
called repeatedly in an outer iterative cycle. Dependent on the nonlinearity, some under-relaxation of
the coefficients and/or source terms may be needed during their recalculation using the new estimates of
the solution.

The routine can also be used to solve each step of a time-dependent parabolic equation in three space
dimensions. The solution at each time step can be expressed in terms of an elliptic equation if the
Crank–Nicolson or other form of implicit time integration is used.

Neither diagonal dominance, nor positive-definiteness, of the matrix M formed from the arrays A, B, C,
D, E, F and G is necessary to ensure convergence.

For problems in which the solution is not unique in the sense that an arbitrary constant can be added to
the solution (for example Poisson's equation with all Neumann boundary conditions), an argument is
incorporated so that the solution can be rescaled. A specified nodal value is subtracted from the whole
solution t after the completion of every iteration. This keeps rounding errors to a minimum for those
cases when convergence is slow. For such problems there is generally an associated compatibility
condition. For the example mentioned this compatibility condition equates the total net source within
the region (i.e., the source integrated over the region) with the total net outflow across the boundaries
defined by the Neumann conditions (i.e., the normal derivative integrated along the whole boundary). It
is very important that the algebraic equations derived to model such a problem implement accurately
the compatibility condition. If they do not, a net source or sink is very likely to be represented by the
set of algebraic equations and no steady-state solution of the equations exists.

4 References

Jacobs D A H (1972) The strongly implicit procedure for the numerical solution of parabolic and
elliptic partial differential equations Note RD/L/N66/72 Central Electricity Research Laboratory

Stone H L (1968) Iterative solution of implicit approximations of multi-dimensional partial differential
equations SIAM J. Numer. Anal. 5 530–558

Weinstein H G, Stone H L and Kwan T V (1969) Iterative procedure for solution of systems of
parabolic and elliptic equations in three dimensions Industrial and Engineering Chemistry
Fundamentals 8 281–287

5 Arguments

1: N1 – INTEGER Input

On entry: the number of nodes in the first coordinate direction, n1.

Constraint: N1 > 1.
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2: N2 – INTEGER Input

On entry: the number of nodes in the second coordinate direction, n2.

Constraint: N2 > 1.

3: N3 – INTEGER Input

On entry: the number of nodes in the third coordinate direction, n3.

Constraint: N3 > 1.

4: LDA – INTEGER Input

On entry: the first dimension of the arrays A, B, C, D, E, F, G, Q, T, WRKSP1, WRKSP2,
WRKSP3 and WRKSP4 as declared in the (sub)program from which D03ECF is called.

Constraint: LDA � N1.

5: SDA – INTEGER Input

On entry: the second dimension of the arrays A, B, C, D, E, F, G, Q, T, WRKSP1, WRKSP2,
WRKSP3 and WRKSP4 as declared in the (sub)program from which D03ECF is called.

Constraint: SDA � N2.

6: AðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Aði; j; kÞ must contain the coefficient of tij;k�1 in the i; j; kð Þth equation of the system
(1), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of A, for k ¼ 1,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the box.

7: BðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Bði; j; kÞ must contain the coefficient of ti;j�1;k in the i; j; kð Þth equation of the system
(1), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of B, for j ¼ 1,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the box.

8: CðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Cði; j; kÞ must contain the coefficient of ti�1;jk in the i; j; kð Þth equation of the system
(1), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of C, for i ¼ 1, must
be zero after incorporating the boundary conditions, since they involve nodal values from outside
the box.

9: DðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Dði; j; kÞ must contain the coefficient of tijk (the ‘central’ term) in the i; j; kð Þth
equation of the system (1), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The
elements of D are checked to ensure that they are nonzero. If any element is found to be zero, the
corresponding algebraic equation is assumed to be tijk ¼ qijk. This feature can be used to define
the equations for nodes at which, for example, Dirichlet boundary conditions are applied, or for
nodes external to the problem of interest. Setting Dði; j; kÞ ¼ 0:0 at appropriate points, and the
corresponding value of Qði; j; kÞ to the appropriate value, namely the prescribed value of
Tði; j; kÞ in the Dirichlet case, or to zero at an external point.

10: EðLDA;SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Eði; j; kÞ must contain the coefficient of tiþ1;jk in the i; j; kð Þth equation of the system
(1), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of E, for i ¼ N1,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the box.
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11: FðLDA;SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Fði; j; kÞ must contain the coefficient of ti;jþ1;k in the i; j; kð Þth equation of the system
(1), , for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of F, for j ¼ N2,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the box.

12: GðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Gði; j; kÞ must contain the coefficient of tij;kþ1 in the i; j; kð Þth equation of the system
(1), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of G, for k ¼ N3,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the box.

13: QðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Qði; j; kÞ must contain qijk , for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3, i.
e., the source-term values at the nodal points of the system (1).

14: TðLDA;SDA;N3Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Tði; j; kÞ must contain the element tijk of an approximate solution to the equations, for
i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3.

If no better approximation is known, an array of zeros can be used.

On exit: the solution derived by the routine.

15: APARAM – REAL (KIND=nag_wp) Input

On entry: the iteration acceleration factor. A value of 1:0 is adequate for most typical problems.
However, if convergence is slow, the value can be reduced, typically to 0:2 or 0:1. If divergence
is obtained, the value can be increased, typically to 2:0, 5:0 or 10:0.

Constraint: 0:0 < APARAM � N1� 1ð Þ2 þ N2� 1ð Þ2 þ N3� 1ð Þ2
� �

=3:0.

16: ITMAX – INTEGER Input

On entry: the maximum number of iterations to be used by the routine in seeking the solution. A
reasonable value might be 20 for a problem with 3000 nodes and convergence criteria of about
10�3 of the original residual and change.

17: ITCOUN – INTEGER Input/Output

On entry: on the first call of D03ECF, ITCOUN must be set to 0. On subsequent entries, its value
must be unchanged from the previous call.

On exit: its value is increased by the number of iterations used on this call (namely ITUSED). It
therefore stores the accumulated number of iterations actually used.

For subsequent calls for the same problem, i.e., with the same N1, N2 and N3 but possibly
different coefficients and/or source terms, as occur with nonlinear systems or with time-
dependent systems, ITCOUN should not be reset, i.e., it must contain the accumulated number of
iterations. In this way a suitable cycling of the sequence of iteration arguments is obtained in the
calls to D03UBF.

18: ITUSED – INTEGER Output

On exit: the number of iterations actually used on that call.

19: NDIR – INTEGER Input

On entry: indicates whether or not the system of equations has a unique solution. For systems
which have a unique solution, NDIR must be set to any nonzero value. For systems derived from
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problems to which an arbitrary constant can be added to the solution, for example Poisson's
equation with all Neumann boundary conditions, NDIR should be set to 0 and the values of the
next three arguments must be specified. For such problems the routine subtracts the value of the
function derived at the node (IXN, IYN, IZN) from the whole solution after each iteration to
reduce the possibility of large rounding errors. You must also ensure for such problems that the
appropriate compatibility condition on the source terms Q is satisfied. See the comments at the
end of Section 3.

20: IXN – INTEGER Input

On entry: is ignored unless NDIR is equal to zero, in which case it must specify the first index of
the nodal point at which the solution is to be set to zero. The node should not correspond to a
corner node, or to a node external to the region of interest.

21: IYN – INTEGER Input

On entry: is ignored unless NDIR is equal to zero, in which case it must specify the second index
of the nodal point at which the solution is to be set to zero. The node should not correspond to a
corner node, or to a node external to the region of interest.

22: IZN – INTEGER Input

On entry: is ignored unless NDIR is equal to zero, in which case it must specify the third index
of the nodal point at which the solution is to be set to zero. The node should not correspond to a
corner node, or to a node external to the region of interest.

23: CONRES – REAL (KIND=nag_wp) Input

On entry: the convergence criterion to be used on the maximum absolute value of the normalized
residual vector components. The latter is defined as the residual of the algebraic equation divided
by the central coefficient when the latter is not equal to 0:0, and defined as the residual when the
central coefficient is zero.

CONRES should not be less than a reasonable multiple of the machine precision.

24: CONCHN – REAL (KIND=nag_wp) Input

On entry: the convergence criterion to be used on the maximum absolute value of the change
made at each iteration to the elements of the array T, namely the dependent variable. CONCHN
should not be less than a reasonable multiple of the machine accuracy multiplied by the
maximum value of T attained.

Convergence is achieved when both the convergence criteria are satisfied. You can therefore set
convergence on either the residual or on the change, or (as is recommended) on a requirement
that both are below prescribed limits.

25: RESIDSðITMAXÞ – REAL (KIND=nag_wp) array Output

On exit: the maximum absolute value of the residuals calculated at the ith iteration, for
i ¼ 1; 2; . . . ; ITUSED. If the residual of the solution is sought you must calculate this in the
subroutine from which D03ECF is called. The sequence of values RESIDS indicates the rate of
convergence.

26: CHNGSðITMAXÞ – REAL (KIND=nag_wp) array Output

On exit: the maximum absolute value of the changes made to the components of the dependent
variable T at the ith iteration, for i ¼ 1; 2; . . . ; ITUSED. The sequence of values CHNGS
indicates the rate of convergence.

D03 – Partial Differential Equations D03ECF

Mark 26 D03ECF.5



27: WRKSP1ðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Workspace
28: WRKSP2ðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Workspace
29: WRKSP3ðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Workspace
30: WRKSP4ðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Workspace

31: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D03ECF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 2,
or N2 < 2,
or N3 < 2.

IFAIL ¼ 2

On entry, LDA < N1,
or SDA < N2.

IFAIL ¼ 3

On entry, APARAM � 0:0.

IFAIL ¼ 4

On entry, APARAM > N1� 1ð Þ2 þ N2� 1ð Þ2 þ N3� 1ð Þ2
� �

=3:0.

IFAIL ¼ 5

Convergence was not achieved after ITMAX iterations.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The improvement in accuracy for each iteration depends on the size of the system and on the condition
of the update matrix characterised by the seven-diagonal coefficient arrays. The ultimate accuracy
obtainable depends on the above factors and on the machine precision. The rate of convergence
obtained with the Strongly Implicit Procedure is not always smooth because of the cyclic use of nine
acceleration arguments. The convergence may become slow with very large problems. The final
accuracy obtained may be judged approximately from the rate of convergence determined from the
sequence of values returned in the arrays RESIDS and CHNGS and the magnitude of the maximum
absolute value of the change vector on the last iteration stored in CHNGSðITUSEDÞ.

8 Parallelism and Performance

D03ECF is not threaded in any implementation.

9 Further Comments

The time taken per iteration is approximately proportional to N1� N2� N3.

Convergence may not always be obtained when the problem is very large and/or the coefficients of the
equations have widely disparate values. The latter case is often associated with a near ill-conditioned
matrix.

10 Example

This example solves Laplace's equation in a rectangular box with a non-uniform grid spacing in the x,
y, and z coordinate directions and with Dirichlet boundary conditions specifying the function on the
surfaces of the box equal to

e 1:0þxð Þ=y n2ð Þ � cos
ffiffiffi
2
p

y=y n2ð Þ
� �

� e �1:0�zð Þ=y n2ð Þ:

Note that this is the same problem as that solved in the example for D03UBF. The differences in the
maximum residuals obtained at each iteration between the two test runs are explained by the fact that in
D03ECF the residual at each node is normalized by dividing by the central coefficient, whereas this
normalization has not been used in the example program for D03UBF.

10.1 Program Text

Program d03ecfe

! D03ECF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d03ecf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: aparam, conchn, conres, root2, x1, &

x2, y1, y2, yy, z1, z2
Integer :: i, ifail, itcoun, itmax, itused, &
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ixn, iyn, izn, j, k, lda, n1, n2, &
n3, ndir, sda

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:,:), b(:,:,:), c(:,:,:), &

chngs(:), d(:,:,:), e(:,:,:), &
f(:,:,:), g(:,:,:), q(:,:,:), &
resids(:), t(:,:,:), wrksp1(:,:,:), &
wrksp2(:,:,:), wrksp3(:,:,:), &
wrksp4(:,:,:), x(:), y(:), z(:)

! .. Intrinsic Procedures ..
Intrinsic :: cos, exp, sqrt

! .. Executable Statements ..
Write (nout,*) ’D03ECF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n1, n2, n3, itmax
lda = n1
sda = n2
Allocate (a(lda,sda,n3),b(lda,sda,n3),c(lda,sda,n3),chngs(itmax), &

d(lda,sda,n3),e(lda,sda,n3),f(lda,sda,n3),g(lda,sda,n3),q(lda,sda,n3), &
resids(itmax),t(lda,sda,n3),wrksp1(lda,sda,n3),wrksp2(lda,sda,n3), &
wrksp3(lda,sda,n3),wrksp4(lda,sda,n3),x(n1),y(n2),z(n3))

Read (nin,*) x(1:n1)
Read (nin,*) y(1:n2)
Read (nin,*) z(1:n3)
Read (nin,*) conres, conchn
Read (nin,*) ndir
root2 = sqrt(two)
aparam = one
itcoun = 0

! Set up difference equation coefficients, source terms and
! initial approximation.

a(1:n1,1:n2,1:n3) = zero
b(1:n1,1:n2,1:n3) = zero
c(1:n1,1:n2,1:n3) = zero
d(1:n1,1:n2,1:n3) = zero
e(1:n1,1:n2,1:n3) = zero
f(1:n1,1:n2,1:n3) = zero
g(1:n1,1:n2,1:n3) = zero
q(1:n1,1:n2,1:n3) = zero
t(1:n1,1:n2,1:n3) = zero

! Non-zero Specification for internal nodes
Do k = 2, n3 - 1

Do j = 2, n2 - 1
Do i = 2, n1 - 1

a(i,j,k) = two/((z(k)-z(k-1))*(z(k+1)-z(k-1)))
g(i,j,k) = two/((z(k+1)-z(k))*(z(k+1)-z(k-1)))
b(i,j,k) = two/((y(j)-y(j-1))*(y(j+1)-y(j-1)))
f(i,j,k) = two/((y(j+1)-y(j))*(y(j+1)-y(j-1)))
c(i,j,k) = two/((x(i)-x(i-1))*(x(i+1)-x(i-1)))
e(i,j,k) = two/((x(i+1)-x(i))*(x(i+1)-x(i-1)))
d(i,j,k) = -a(i,j,k) - b(i,j,k) - c(i,j,k) - e(i,j,k) - f(i,j,k) - &

g(i,j,k)
End Do

End Do
End Do

! Non-zero specification for boundary nodes
yy = one/y(n2)
x1 = (x(1)+one)*yy
x2 = (x(n1)+one)*yy
Do j = 1, n2

y1 = root2*y(j)*yy
q(1,j,1:n3) = exp(x1)*cos(y1)*exp((-z(1:n3)-one)*yy)
q(n1,j,1:n3) = exp(x2)*cos(y1)*exp((-z(1:n3)-one)*yy)

End Do
y1 = root2*y(1)*yy
y2 = root2*y(n2)*yy
Do i = 1, n1

x1 = (x(i)+one)*yy

D03ECF NAG Library Manual

D03ECF.8 Mark 26



q(i,1,1:n3) = exp(x1)*cos(y1)*exp((-z(1:n3)-one)*yy)
q(i,n2,1:n3) = exp(x1)*cos(y2)*exp((-z(1:n3)-one)*yy)

End Do
z1 = (-z(1)-one)*yy
z2 = (-z(n3)-one)*yy
Do i = 1, n1

x1 = (x(i)+one)*yy
q(i,1:n2,1) = exp(x1)*cos(root2*y(1:n2)*yy)*exp(z1)
q(i,1:n2,n3) = exp(x1)*cos(root2*y(1:n2)*yy)*exp(z2)

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03ecf(n1,n2,n3,lda,sda,a,b,c,d,e,f,g,q,t,aparam,itmax,itcoun, &

itused,ndir,ixn,iyn,izn,conres,conchn,resids,chngs,wrksp1,wrksp2, &
wrksp3,wrksp4,ifail)

Write (nout,*) ’Iteration Maximum Maximum’
Write (nout,*) ’ number residual change’
If (itused/=0) Then

Write (nout,99999)(i,resids(i),chngs(i),i=1,itused)
End If
Write (nout,*)
Write (nout,*) ’Table of calculated function values’
Write (nout,*)
Write (nout,99998)
Do k = 1, n3

Do j = 1, n2
Write (nout,99997) k, j, (i,t(i,j,k),i=1,n1)

End Do
End Do

99999 Format (2X,I3,9X,E11.4,4X,E11.4)
99998 Format (1X,’K J ’,4(’ (I T )’))
99997 Format (1X,I1,2X,I1,1X,4(1X,I3,2X,F8.3))

End Program d03ecfe

10.2 Program Data

D03ECF Example Program Data
4 5 6 18 : n1, n2, n3, itmax
0.0 1.0 3.0 6.0 : x
0.0 1.0 3.0 6.0 10.0 : y
0.0 1.0 3.0 6.0 10.0, 15.0 : z
0.1E-5 0.1E-5 : conres, conchn
1 : ndir

10.3 Program Results

D03ECF Example Program Results

Iteration Maximum Maximum
number residual change

1 0.1822E+01 0.1822E+01
2 0.9025E-02 0.1970E-01
3 0.1358E-02 0.1496E-02
4 0.4013E-04 0.3848E-04
5 0.5321E-05 0.5481E-05
6 0.2695E-06 0.2333E-06

Table of calculated function values

K J (I T ) (I T ) (I T ) (I T )
1 1 1 1.000 2 1.105 3 1.350 4 1.822
1 2 1 0.990 2 1.094 3 1.336 4 1.804
1 3 1 0.911 2 1.007 3 1.230 4 1.661
1 4 1 0.661 2 0.731 3 0.892 4 1.205
1 5 1 0.156 2 0.172 3 0.211 4 0.284
2 1 1 0.905 2 1.000 3 1.221 4 1.649

D03 – Partial Differential Equations D03ECF

Mark 26 D03ECF.9



2 2 1 0.896 2 0.990 3 1.210 4 1.632
2 3 1 0.825 2 0.912 3 1.114 4 1.503
2 4 1 0.598 2 0.662 3 0.809 4 1.090
2 5 1 0.141 2 0.156 3 0.190 4 0.257
3 1 1 0.741 2 0.819 3 1.000 4 1.350
3 2 1 0.733 2 0.811 3 0.991 4 1.336
3 3 1 0.675 2 0.747 3 0.913 4 1.230
3 4 1 0.490 2 0.543 3 0.664 4 0.892
3 5 1 0.116 2 0.128 3 0.156 4 0.211
4 1 1 0.549 2 0.607 3 0.741 4 1.000
4 2 1 0.543 2 0.601 3 0.734 4 0.990
4 3 1 0.500 2 0.554 3 0.677 4 0.911
4 4 1 0.363 2 0.402 3 0.492 4 0.661
4 5 1 0.086 2 0.095 3 0.116 4 0.156
5 1 1 0.368 2 0.407 3 0.497 4 0.670
5 2 1 0.364 2 0.403 3 0.492 4 0.664
5 3 1 0.335 2 0.371 3 0.454 4 0.611
5 4 1 0.243 2 0.270 3 0.330 4 0.443
5 5 1 0.057 2 0.063 3 0.077 4 0.105
6 1 1 0.223 2 0.247 3 0.301 4 0.407
6 2 1 0.221 2 0.244 3 0.298 4 0.403
6 3 1 0.203 2 0.225 3 0.274 4 0.371
6 4 1 0.148 2 0.163 3 0.199 4 0.269
6 5 1 0.035 2 0.038 3 0.047 4 0.063

Example Program
Solution in Y-Z Planes for x=6
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NAG Library Routine Document

D03EDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03EDF solves seven-diagonal systems of linear equations which arise from the discretization of an
elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique.

2 Specification

SUBROUTINE D03EDF (NGX, NGY, LDA, A, RHS, UB, MAXIT, ACC, US, U, IOUT,
NUMIT, IFAIL)

&

INTEGER NGX, NGY, LDA, MAXIT, IOUT, NUMIT, IFAIL
REAL (KIND=nag_wp) A(LDA,7), RHS(LDA), UB(NGX*NGY), ACC, US(LDA),

U(LDA)
&

3 Description

D03EDF solves, by multigrid iteration, the seven-point scheme

A6
i;jui�1;jþ1 þ A7

i;jui;jþ1
þ A3

i;jui�1;j þ A4
i;juij þ A5

i;juiþ1;j
þ A1

i;jui;j�1 þ A2
i;juiþ1;j�1 ¼ fij; i ¼ 1; 2; . . . ; nx and j ¼ 1; 2; . . . ; ny;

which arises from the discretization of an elliptic partial differential equation of the form

� x; yð ÞUxx þ � x; yð ÞUxy þ � x; yð ÞUyy þ � x; yð ÞUx þ � x; yð ÞUy þ 
 x; yð ÞU ¼  x; yð Þ

and its boundary conditions, defined on a rectangular region. This we write in matrix form as

Au ¼ f:

The algorithm is described in separate reports by Wesseling (1982a), Wesseling (1982b) and McCarthy
(1983).

Systems of linear equations, matching the seven-point stencil defined above, are solved by a multigrid
iteration. An initial estimate of the solution must be provided by you. A zero guess may be supplied if
no better approximation is available.

A ‘smoother’ based on incomplete Crout decomposition is used to eliminate the high frequency
components of the error. A restriction operator is then used to map the system on to a sequence of
coarser grids. The errors are then smoothed and prolongated (mapped onto successively finer grids).
When the finest cycle is reached, the approximation to the solution is corrected. The cycle is repeated
for MAXIT iterations or until the required accuracy, ACC, is reached.

D03EDF will automatically determine the number l of possible coarse grids, ‘levels’ of the multigrid
scheme, for a particular problem. In other words, D03EDF determines the maximum integer l so that nx
and ny can be expressed in the form

nx ¼ m2l�1 þ 1; ny ¼ n2l�1 þ 1; with m � 2 and n � 2:

It should be noted that the rate of convergence improves significantly with the number of levels used
(see McCarthy (1983)), so that nx and ny should be carefully chosen so that nx � 1 and ny � 1 have
factors of the form 2l, with l as large as possible. For good convergence the integer l should be at least
2.

D03EDF has been found to be robust in application, but being an iterative method the problem of
divergence can arise. For a strictly diagonally dominant matrix A
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A4
ij

			 			 >X
k6¼4

Ak
ij

			 			; i ¼ 1; 2; . . . ; nx and j ¼ 1; 2; . . . ; ny

no such problem is foreseen. The diagonal dominance of A is not a necessary condition, but should this
condition be strongly violated then divergence may occur. The quickest test is to try the routine.

4 References

McCarthy G J (1983) Investigation into the multigrid code MGD1 Report AERE-R 10889 Harwell

Wesseling P (1982a) MGD1 – a robust and efficient multigrid method Multigrid Methods. Lecture
Notes in Mathematics 960 614–630 Springer–Verlag

Wesseling P (1982b) Theoretical aspects of a multigrid method SIAM J. Sci. Statist. Comput. 3 387–407

5 Arguments

1: NGX – INTEGER Input

On entry: the number of interior grid points in the x-direction, nx. NGX� 1 should preferably be
divisible by as high a power of 2 as possible.

Constraint: NGX � 3.

2: NGY – INTEGER Input

On entry: the number of interior grid points in the y-direction, ny. NGY� 1 should preferably be
divisible by as high a power of 2 as possible.

Constraint: NGY � 3.

3: LDA – INTEGER Input

On entry: the first dimension of the array A, which must also be a lower bound for the dimension
of the arrays RHS, US and U as declared in the (sub)program from which D03EDF is called. It is
always sufficient to set LDA � 4� NGXþ 1ð Þ � NGYþ 1ð Þð Þ=3, but slightly smaller values
may be permitted, depending on the values of NGX and NGY. If on entry, LDA is too small, an
error message gives the minimum permitted value. (LDA must be large enough to allow space
for the coarse-grid approximations.)

4: AðLDA; 7Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Aði þ j � 1ð Þ � NGX; kÞ must be set to Ak
ij , for i ¼ 1; 2; . . . ;NGX, j ¼ 1; 2; . . . ;NGY

and k ¼ 1; 2; . . . ; 7.

On exit: is overwritten.

5: RHSðLDAÞ – REAL (KIND=nag_wp) array Input/Output

On entry : RHSði þ j � 1ð Þ � NGXÞ must be set to fij , for i ¼ 1; 2; . . . ;NGX and
j ¼ 1; 2; . . . ;NGY.

On exit: the first NGX� NGY elements are unchanged and the rest of the array is used as
workspace.

6: UBðNGX� NGYÞ – REAL (KIND=nag_wp) array Input/Output

On entry: UBðiþ j� 1ð Þ � NGXÞ must be set to the initial estimate for the solution uij.

On exit: the corresponding component of the residual r ¼ f � Au.
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7: MAXIT – INTEGER Input

On entry: the maximum permitted number of multigrid iterations. If MAXIT ¼ 0, no multigrid
iterations are performed, but the coarse-grid approximations and incomplete Crout decomposi-
tions are computed, and may be output if IOUT is set accordingly.

Constraint: MAXIT � 0.

8: ACC – REAL (KIND=nag_wp) Input

On entry: the required tolerance for convergence of the residual 2-norm:

rk k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNGX�NGY

k¼1
rkð Þ2

vuut
where r ¼ f �Au and u is the computed solution. Note that the norm is not scaled by the
number of equations. The routine will stop after fewer than MAXIT iterations if the residual
2-norm is less than the specified tolerance. (If MAXIT > 0, at least one iteration is always
performed.)

If on entry ACC ¼ 0:0, then the machine precision is used as a default value for the tolerance; if
ACC > 0:0, but ACC is less than the machine precision, then the routine will stop when the
residual 2-norm is less than the machine precision and IFAIL will be set to 4.

Constraint: ACC � 0:0.

9: USðLDAÞ – REAL (KIND=nag_wp) array Output

On exit: the residual 2-norm, stored in element USð1Þ.

10: UðLDAÞ – REAL (KIND=nag_wp) array Output

On exit: the computed solution uij is returned in Uði þ j � 1ð Þ � NGXÞ, for i ¼ 1; 2; . . . ;NGX
and j ¼ 1; 2; . . . ;NGY.

11: IOUT – INTEGER Input

On entry: controls the output of printed information to the advisory message unit as returned by
X04ABF:

IOUT ¼ 0
No output.

IOUT ¼ 1
The solution uij , for i ¼ 1; 2; . . . ;NGX and j ¼ 1; 2; . . . ;NGY.

IOUT ¼ 2
The residual 2-norm after each iteration, with the reduction factor over the previous
iteration.

IOUT ¼ 3
As for IOUT ¼ 1 and IOUT ¼ 2.

IOUT ¼ 4
As for IOUT ¼ 3, plus the final residual (as returned in UB).

IOUT ¼ 5
As for IOUT ¼ 4, plus the initial elements of A and RHS.

IOUT ¼ 6
As for IOUT ¼ 5, plus the Galerkin coarse grid approximations.

IOUT ¼ 7
As for IOUT ¼ 6, plus the incomplete Crout decompositions.
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IOUT ¼ 8
As for IOUT ¼ 7, plus the residual after each iteration.

The elements Aðp; kÞ, the Galerkin coarse grid approximations and the incomplete Crout
decompositions are output in the format:

Y-index ¼ j
X-index ¼ iAðp; 1ÞAðp; 2ÞAðp; 3ÞAðp; 4ÞAðp; 5ÞAðp; 6ÞAðp; 7Þ
where p ¼ i þ j � 1ð Þ � NGX, for i ¼ 1; 2; . . . ;NGX and j ¼ 1; 2; . . . ;NGY.

The vectors UðpÞ, UBðpÞ, RHSðpÞ are output in matrix form with NGY rows and NGX columns.
Where NGX > 10, the NGX values for a given j value are produced in rows of 10. Values of
IOUT > 4 may yield considerable amounts of output.

Constraint: 0 � IOUT � 8.

12: NUMIT – INTEGER Output

On exit: the number of iterations performed.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NGX < 3,
or NGY < 3,
or LDA is too small,
or ACC < 0:0,
or MAXIT < 0,
or IOUT < 0,
or IOUT > 8.

IFAIL ¼ 2

MAXIT iterations have been performed with the residual 2-norm decreasing at each iteration but
the residual 2-norm has not been reduced to less than the specified tolerance (see ACC). Examine
the progress of the iteration by setting IOUT � 2.

IFAIL ¼ 3

As for IFAIL ¼ 2, except that at one or more iterations the residual 2-norm did not decrease. It is
likely that the method fails to converge for the given matrix A.
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IFAIL ¼ 4

On entry, ACC is less than the machine precision. The routine terminated because the residual
norm is less than the machine precision.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

See ACC (Section 5).

8 Parallelism and Performance

D03EDF is not threaded in any implementation.

9 Further Comments

The rate of convergence of this routine is strongly dependent upon the number of levels, l, in the
multigrid scheme, and thus the choice of NGX and NGY is very important. You are advised to
experiment with different values of NGX and NGY to see the effect they have on the rate of
convergence; for example, using a value such as NGX ¼ 65 ( ¼ 26 þ 1) followed by NGX ¼ 64 (for
which l ¼ 1).

10 Example

The program solves the elliptic partial differential equation

Uxx � �Uxy þ Uyy ¼ �4; � ¼ 1:7

on the unit square 0 � x; y � 1, with boundary conditions

U ¼ 0 on
x ¼ 0; 0 � y � 1ð Þ
y ¼ 0; 0 � x � 1ð Þ
y ¼ 1; 0 � x � 1ð Þ

8<: U ¼ 1 on x ¼ 1; 0 � y � 1:

For the equation to be elliptic, � must be less than 2.

The equation is discretized on a square grid with mesh spacing h in both directions using the following
approximations:
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Uxx ’ 1
h2
UE � 2UO þ UWð Þ

Uyy ’ 1
h2
UN � 2UO þ USð Þ

Uxy ’ 1
2h2 UN � UNW þ UE � 2UO þ UW � USE þ USð Þ:

Thus the following equations are solved:

1
2�ui�1;jþ1 þ 1� 1

2�
� �

ui;jþ1
þ 1� 1

2�
� �

uiþ1;j þ �4þ �ð Þuij þ 1� 1
2�

� �
uiþ1;j

þ 1� 1
2�

� �
ui;j�1 þ 1

2�uiþ1;j�1 ¼ �4h2

10.1 Program Text

Program d03edfe

! D03EDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d03edf, nag_wp, x04abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: four = 4.0_nag_wp
Real (Kind=nag_wp), Parameter :: half = 0.5_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: acc, alpha, hx, hy
Integer :: i, ifail, iout, ix, iy1, iy2, j, k, &

lda, levels, maxit, ngx, ngy, numit, &
outchn

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), rhs(:), u(:), ub(:), us(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D03EDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) levels
ngx = 2**levels + 1
ngy = ngx
lda = 4*(ngx+1)*(ngy+1)/3
Allocate (a(lda,7),rhs(lda),u(lda),ub(ngx*ngy),us(lda))

outchn = nout
Write (nout,*)
Read (nin,*) alpha, acc
Read (nin,*) maxit
Call x04abf(iset,outchn)

! ** Set iout > 2 to obtain intermediate output **
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iout = 0
hx = one/real(ngx+1,kind=nag_wp)
hy = one/real(ngy+1,kind=nag_wp)

! Set up operator, right-hand side and initial guess for
! step-lengths HX and HY

a(1:ngx*ngy,1) = one - half*alpha
a(1:ngx*ngy,2) = half*alpha
a(1:ngx*ngy,3) = one - half*alpha
a(1:ngx*ngy,4) = -four + alpha
a(1:ngx*ngy,5) = one - half*alpha
a(1:ngx*ngy,6) = half*alpha
a(1:ngx*ngy,7) = one - half*alpha
rhs(1:ngx*ngy) = -four*hx*hy
ub(1:ngx*ngy) = zero

! Correction for the boundary conditions
! Horizontal boundaries --
! Boundary condition on Y=0 -- U=0

a(2:ngx-1,1:2) = zero
! Boundary condition on Y=1 -- U=0

ix = (ngy-1)*ngx
a(ix+1:ix+ngx-1,6:7) = zero

! Vertical boundaries --
iy1 = 1
iy2 = ngx
Do j = 2, ngy - 1

! Boundary condition on X=0 -- U=0
iy1 = iy1 + ngx
a(iy1,3) = zero
a(iy1,6) = zero

! Boundary condition on X=1 -- U=1
iy2 = iy2 + ngx
rhs(iy2) = rhs(iy2) - a(iy2,5) - a(iy2,2)
a(iy2,2) = zero
a(iy2,5) = zero

End Do

! Now the four corners --
! Bottom left corner

a(1,1:3) = zero
a(1,6) = zero

! Top left corner
a(ix+1,3) = zero
a(ix+1,6:7) = zero

! Bottom right corner
! Use average value at discontinuity ( = 0.5 )

k = ngx
rhs(k) = rhs(k) - a(k,2)*half - a(k,5)
a(k,1:2) = zero
a(k,5) = zero

! Top right corner
k = ngx*ngy
rhs(k) = rhs(k) - a(k,2) - a(k,5)
a(k,2) = zero
a(k,5:7) = zero

! Solve the equations
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03edf(ngx,ngy,lda,a,rhs,ub,maxit,acc,us,u,iout,numit,ifail)

Write (nout,99999) ngx, ngy, acc, maxit
Write (nout,*)
Write (nout,99998) ’Residual norm =’, us(1)
Write (nout,99997) ’Number of iterations =’, numit
Write (nout,*)
Write (nout,*) ’Solution’
Write (nout,*)

D03 – Partial Differential Equations D03EDF

Mark 26 D03EDF.7



Write (nout,99996) ’ I/J’, (i,i=1,ngx)
Do j = 1, ngy

Write (nout,99995) j, (u(i+(j-1)*ngx),i=1,ngx)
End Do

99999 Format (1X,’NGX = ’,I3,’ NGY = ’,I3,’ ACC =’,1P,E10.2,’ MAXIT’,’ = ’, &
I3)

99998 Format (1X,A,1P,E12.2)
99997 Format (1X,A,I5)
99996 Format (1X,A,10I7,:)
99995 Format (1X,I3,2X,10F7.3,:)

End Program d03edfe

10.2 Program Data

D03EDF Example Program Data
3 : levels
1.7 1.0E-4 : alpha, acc
15 : maxit

10.3 Program Results

D03EDF Example Program Results

NGX = 9 NGY = 9 ACC = 1.00E-04 MAXIT = 15

Residual norm = 1.61E-05
Number of iterations = 4

Solution

I/J 1 2 3 4 5 6 7 8 9
1 0.024 0.047 0.071 0.095 0.120 0.148 0.185 0.261 0.579
2 0.047 0.094 0.142 0.192 0.245 0.310 0.412 0.636 0.913
3 0.071 0.142 0.215 0.292 0.378 0.489 0.663 0.862 0.969
4 0.095 0.191 0.289 0.393 0.511 0.656 0.810 0.915 0.967
5 0.119 0.239 0.361 0.486 0.616 0.741 0.836 0.895 0.939
6 0.143 0.284 0.419 0.543 0.648 0.729 0.786 0.832 0.893
7 0.164 0.315 0.438 0.527 0.593 0.641 0.682 0.734 0.823
8 0.174 0.306 0.378 0.427 0.462 0.492 0.528 0.591 0.717
9 0.155 0.202 0.229 0.248 0.264 0.282 0.313 0.376 0.523
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Example Program
Solution of Elliptic PDE

using Multigrid Iteration on System Resulting from Seven-point Stencil
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NAG Library Routine Document

D03EEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03EEF discretizes a second-order elliptic partial differential equation (PDE) on a rectangular region.

2 Specification

SUBROUTINE D03EEF (XMIN, XMAX, YMIN, YMAX, PDEF, BNDY, NGX, NGY, LDA, A,
RHS, SCHEME, IFAIL)

&

INTEGER NGX, NGY, LDA, IFAIL
REAL (KIND=nag_wp) XMIN, XMAX, YMIN, YMAX, A(LDA,7), RHS(LDA)
CHARACTER(1) SCHEME
EXTERNAL PDEF, BNDY

3 Description

D03EEF discretizes a second-order linear elliptic partial differential equation of the form

� x; yð Þ@
2U

@x2
þ � x; yð Þ @

2U

@x@y
þ � x; yð Þ@

2U

@y2
þ � x; yð Þ@U

@x
þ � x; yð Þ@U

@y
þ 
 x; yð ÞU ¼  x; yð Þ ð1Þ

on a rectangular region

xA � x � xB
yA � y � yB

subject to boundary conditions of the form

a x; yð ÞU þ b x; yð Þ@U
@n
¼ c x; yð Þ

where
@U

@n
denotes the outward pointing normal derivative on the boundary. Equation (1) is said to be

elliptic if

4� x; yð Þ� x; yð Þ � � x; yð Þð Þ2

for all points in the rectangular region. The linear equations produced are in a form suitable for passing
directly to the multigrid routine D03EDF.

The equation is discretized on a rectangular grid, with nx grid points in the x-direction and ny grid
points in the y-direction. The grid spacing used is therefore

hx ¼ xB � xAð Þ= nx � 1ð Þ
hy ¼ yB � yAð Þ= ny � 1

� �
and the coordinates of the grid points xi; yj

� �
are

xi ¼ xA þ i� 1ð Þhx; i ¼ 1; 2; . . . ; nx;
yj ¼ yA þ j� 1ð Þhy; j ¼ 1; 2; . . . ; ny:

At each grid point xi; yj
� �

six neighbouring grid points are used to approximate the partial differential
equation, so that the equation is discretized on the seven-point stencil shown in Figure 1.
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Figure 1

For convenience the approximation uij to the exact solution U xi; yj
� �

is denoted by uO, and the
neighbouring approximations are labelled according to points of the compass as shown. Where
numerical labels for the seven points are required, these are also shown.

The following approximations are used for the second derivatives:

@2U

@x2
’ 1

h2x
uE � 2uO þ uWð Þ

@2U

@y2
’ 1

h2y
uN � 2uO þ uSð Þ

@2U

@x@y
’ 1

2hxhy
uN � uNW þ uE � 2uO þ uW � uSE þ uSð Þ:

Two possible schemes may be used to approximate the first derivatives:

Central Differences

@U

@x
’ 1

2hx
uE � uWð Þ

@U

@y
’ 1

2hy
uN � uSð Þ

Upwind Differences

@U

@x
’ 1

hx
uO � uWð Þ if � x; yð Þ > 0

@U

@x
’ 1

hx
uE � uOð Þ if � x; yð Þ < 0

@U

@y
’ 1

hy
uN � uOð Þ if � x; yð Þ > 0

@U

@y
’ 1

hy
uO � uSð Þ if � x; yð Þ < 0:

Central differences are more accurate than upwind differences, but upwind differences may lead to a
more diagonally dominant matrix for those problems where the coefficients of the first derivatives are
significantly larger than the coefficients of the second derivatives.

The approximations used for the first derivatives may be written in a more compact form as follows:

@U

@x
’ 1

2hx
kx � 1ð ÞuW � 2kxuO þ kx þ 1ð ÞuEð Þ

@U

@y
’ 1

2hy
ky � 1
� �

uS � 2kyuO þ ky þ 1
� �

uN
� �

where kx ¼ sign � and ky ¼ sign � for upwind differences, and kx ¼ ky ¼ 0 for central differences.

At all points in the rectangular domain, including the boundary, the coefficients in the partial
differential equation are evaluated by calling PDEF, and applying the approximations. This leads to a
seven-diagonal system of linear equations of the form:
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A6
ijui�1;jþ1 þ A7

ijui;jþ1
þ A3

ijui�1;j þ A4
ijuij þ A5

ijuiþ1;j
þ A1

ijui;j�1 þ A2
ijuiþ1;j�1 ¼ fij; i ¼ 1; 2; . . . ; nx and j ¼ 1; 2; . . . ; ny;

where the coefficients are given by

A1
ij ¼ � xi; yj

� �
1

2hxhy
þ � xi; yj
� � 1

h2y
þ � xi; yj
� �

1
2hy

ky � 1
� �

A2
ij ¼ �� xi; yj

� �
1

2hxhy

A3
ij ¼ � xi; yj

� � 1
h2x
þ � xi; yj

� �
1

2hxhy
þ � xi; yj
� �

1
2hx

kx � 1ð Þ

A4
ij ¼ �� xi; yj

� � 2
h2x
� � xi; yj

� �
1

hxhy
� � xi; yj
� � 2

h2y
� � xi; yj
� �ky

hx
� � xi; yj
� �ky

hy
� 
 xi; yj

� �
A5
ij ¼ � xi; yj

� � 1
h2x
þ � xi; yj

� �
1

2hxhy
þ � xi; yj
� �

1
2hx

kx þ 1ð Þ

A6
ij ¼ �� xi; yj

� �
1

2hxhy

A7
ij ¼ � xi; yj

� �
1

2hxhy
þ � xi; yj
� � 1

h2y
þ � xi; yj
� �

1
2hy

ky þ 1
� �

fij ¼  xi; yj
� �

These equations then have to be modified to take account of the boundary conditions. These may be
Dirichlet (where the solution is given), Neumann (where the derivative of the solution is given), or
mixed (where a linear combination of solution and derivative is given).

If the boundary conditions are Dirichlet, there are an infinity of possible equations which may be
applied:

�uij ¼ �fij; � 6¼ 0: ð2Þ
If D03EDF is used to solve the discretized equations, it turns out that the choice of � can have a
dramatic effect on the rate of convergence, and the obvious choice � ¼ 1 is not the best. Some choices
may even cause the multigrid method to fail altogether. In practice it has been found that a value of the
same order as the other diagonal elements of the matrix is best, and the following value has been found
to work well in practice:

� ¼ min ij �
2

h2x
þ 2

h2y

( )
; A4

ij

 !
:

If the boundary conditions are either mixed or Neumann (i.e., B 6¼ 0 on return from BNDY), then one
of the points in the seven-point stencil lies outside the domain. In this case the normal derivative in the
boundary conditions is used to eliminate the ‘fictitious’ point, uoutside:

@U

@n
’ 1

2h
uoutside � uinsideð Þ: ð3Þ

It should be noted that if the boundary conditions are Neumann and 
 x; yð Þ 	 0, then there is no unique
solution. The routine returns with IFAIL ¼ 5 in this case, and the seven-diagonal matrix is singular.

The four corners are treated separately. BNDY is called twice, once along each of the edges meeting at
the corner. If both boundary conditions at this point are Dirichlet and the prescribed solution values
agree, then this value is used in an equation of the form (2). If the prescribed solution is discontinuous
at the corner, then the average of the two values is used. If one boundary condition is Dirichlet and the
other is mixed, then the value prescribed by the Dirichlet condition is used in an equation of the form
given above. Finally, if both conditions are mixed or Neumann, then two ‘fictitious’ points are
eliminated using two equations of the form (3).

It is possible that equations for which the solution is known at all points on the boundary, have
coefficients which are not defined on the boundary. Since this routine calls PDEF at all points in the
domain, including boundary points, arithmetic errors may occur in PDEF which this routine cannot trap.
If you have an equation with Dirichlet boundary conditions (i.e., B ¼ 0 at all points on the boundary),
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but with PDE coefficients which are singular on the boundary, then D03EDF could be called directly
only using interior grid points at your discretization.

After the equations have been set up as described above, they are checked for diagonal dominance. That
is to say,

A4
ij

			 			 >X
k6¼4

Ak
ij

			 			; i ¼ 1; 2; . . . ; nx and j ¼ 1; 2; . . . ; ny:

If this condition is not satisfied then the routine returns with IFAIL ¼ 6. The multigrid routineD03EDF
may still converge in this case, but if the coefficients of the first derivatives in the partial differential
equation are large compared with the coefficients of the second derivative, you should consider using
upwind differences (SCHEME ¼ U ).

Since this routine is designed primarily for use with D03EDF, this document should be read in
conjunction with the document for that routine.

4 References

Wesseling P (1982) MGD1 – a robust and efficient multigrid method Multigrid Methods. Lecture Notes
in Mathematics 960 614–630 Springer–Verlag

5 Arguments

1: XMIN – REAL (KIND=nag_wp) Input
2: XMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper x coordinates of the rectangular region respectively, xA and xB.

Constraint: XMIN < XMAX.

3: YMIN – REAL (KIND=nag_wp) Input
4: YMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper y coordinates of the rectangular region respectively, yA and yB.

Constraint: YMIN < YMAX.

5: PDEF – SUBROUTINE, supplied by the user. External Procedure

PDEF must evaluate the functions � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ, 
 x; yð Þ and  x; yð Þ
which define the equation at a general point x; yð Þ.

The specification of PDEF is:

SUBROUTINE PDEF (X, Y, ALPHA, BETA, GAMMA, DELTA, EPSLON, PHI,
PSI)

&

REAL (KIND=nag_wp) X, Y, ALPHA, BETA, GAMMA, DELTA, EPSLON, PHI,
PSI

&

1: X – REAL (KIND=nag_wp) Input
2: Y – REAL (KIND=nag_wp) Input

On entry: the x and y coordinates of the point at which the coefficients of the partial
differential equation are to be evaluated.
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3: ALPHA – REAL (KIND=nag_wp) Output
4: BETA – REAL (KIND=nag_wp) Output
5: GAMMA – REAL (KIND=nag_wp) Output
6: DELTA – REAL (KIND=nag_wp) Output
7: EPSLON – REAL (KIND=nag_wp) Output
8: PHI – REAL (KIND=nag_wp) Output
9: PSI – REAL (KIND=nag_wp) Output

On exit: ALPHA, BETA, GAMMA, DELTA, EPSLON, PHI and PSI must be set to the
values of � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ, 
 x; yð Þ and  x; yð Þ respectively at the
point specified by X and Y.

PDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03EEF is called. Arguments denoted as Input must not be changed by this
procedure.

6: BNDY – SUBROUTINE, supplied by the user. External Procedure

BNDY must evaluate the functions a x; yð Þ, b x; yð Þ, and c x; yð Þ involved in the boundary
conditions.

The specification of BNDY is:

SUBROUTINE BNDY (X, Y, A, B, C, IBND)

INTEGER IBND
REAL (KIND=nag_wp) X, Y, A, B, C

1: X – REAL (KIND=nag_wp) Input
2: Y – REAL (KIND=nag_wp) Input

On entry: the x and y coordinates of the point at which the boundary conditions are to
be evaluated.

3: A – REAL (KIND=nag_wp) Output
4: B – REAL (KIND=nag_wp) Output
5: C – REAL (KIND=nag_wp) Output

On exit: A, B and C must be set to the values of the functions appearing in the
boundary conditions.

6: IBND – INTEGER Input

On entry: specifies on which boundary the point (X,Y) lies. IBND ¼ 0, 1, 2 or 3
according as the point lies on the bottom, right, top or left boundary.

BNDY must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03EEF is called. Arguments denoted as Input must not be changed by this
procedure.

7: NGX – INTEGER Input
8: NGY – INTEGER Input

On entry: the number of interior grid points in the x- and y-directions respectively, nx and ny. If
the seven-diagonal equations are to be solved by D03EDF, then NGX� 1 and NGY� 1 should
preferably be divisible by as high a power of 2 as possible.

Constraints:

NGX � 3;
NGY � 3.
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9: LDA – INTEGER Input

On entry: the first dimension of the array A and the dimension of the array RHS as declared in
the (sub)program from which D03EEF is called.

Constraint: if only the seven-diagonal equations are required, then LDA � NGX� NGY. If a call
to this routine is to be followed by a call to D03EDF to solve the seven-diagonal linear
equations, LDA � 4� NGXþ 1ð Þ � NGYþ 1ð Þð Þ=3.
Note: this routine only checks the former condition. D03EDF, if called, will check the latter
condition.

10: AðLDA; 7Þ – REAL (KIND=nag_wp) array Output

On exit: Aði; jÞ, for i ¼ 1; 2; . . . ;NGX� NGY and j ¼ 1; 2; . . . ; 7, contains the seven-diagonal
linear equations produced by the discretization described above. If LDA > NGX� NGY, the
r e m a i n i n g e l e m e n t s a r e n o t r e f e r e n c e d b y t h e r o u t i n e , b u t i f
LDA � 4� NGXþ 1ð Þ � NGYþ 1ð Þð Þ=3 then the array A can be passed directly to D03EDF,
where these elements are used as workspace.

11: RHSðLDAÞ – REAL (KIND=nag_wp) array Output

On exit: the first NGX� NGY elements contain the right-hand sides of the seven-diagonal linear
equations produced by the discretization described above. If LDA > NGX� NGY, the remaining
elements are not referenced by the routine, but if LDA � 4� NGYþ 1ð Þ � NGYþ 1ð Þð Þ=3 then
the array RHS can be passed directly to D03EDF, where these elements are used as workspace.

12: SCHEME – CHARACTER(1) Input

On entry: the type of approximation to be used for the first derivatives which occur in the partial
differential equation.

SCHEME ¼ C
Central differences are used.

SCHEME ¼ U
Upwind differences are used.

Constraint: SCHEME ¼ C or U .

Note: generally speaking, if at least one of the coefficients multiplying the first derivatives
(DELTA or EPSLON as returned by PDEF) are large compared with the coefficients multiplying
the second derivatives, then upwind differences may be more appropriate. Upwind differences are
less accurate than central differences, but may result in more rapid convergence for strongly
convective equations. The easiest test is to try both schemes.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: D03EEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, XMIN � XMAX,
or YMIN � YMAX,
or NGX < 3,
or NGY < 3,
or LDA < NGX� NGY,
or SCHEME is not one of `C' or `U'.

IFAIL ¼ 2

At some point on the boundary there is a derivative in the boundary conditions (B 6¼ 0 on return

from BNDY) and there is a nonzero coefficient of the mixed derivative
@2U

@x@y
(BETA 6¼ 0 on

return from PDEF).

IFAIL ¼ 3

A null boundary has been specified, i.e., at some point both A and B are zero on return from a
call to BNDY.

IFAIL ¼ 4

The equation is not elliptic, i.e., 4� ALPHA� GAMMA < BETA2 after a call to PDEF. The
discretization has been completed, but the convergence of D03EDF cannot be guaranteed.

IFAIL ¼ 5

The boundary conditions are purely Neumann (only the derivative is specified) and there is, in
general, no unique solution.

IFAIL ¼ 6

The equations were not diagonally dominant. (See Section 3.)

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

D03EEF is not threaded in any implementation.

9 Further Comments

If this routine is used as a preprocessor to the multigrid routine D03EDF it should be noted that the rate
of convergence of that routine is strongly dependent upon the number of levels in the multigrid scheme,
and thus the choice of NGX and NGY is very important.

10 Example

The program solves the elliptic partial differential equation

@2U

@x2
þ @

2U

@y2
þ 50

@U

@x
þ @U
@y


 �
¼ f x; yð Þ

on the unit square 0 � x, y � 1, with boundary conditions

@U

@n
given on x ¼ 0 and y ¼ 0,

U given on x ¼ 1 and y ¼ 1.

The function f x; yð Þ and the exact form of the boundary conditions are derived from the exact solution
U x; yð Þ ¼ sinx sin y.

The equation is first solved using central differences. Since the coefficients of the first derivatives are
large, the linear equations are not diagonally dominated, and convergence is slow. The equation is
solved a second time with upwind differences, showing that convergence is more rapid, but the solution
is less accurate.

10.1 Program Text

! D03EEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03eefe_mod

! D03EEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndy, fexact, pdef

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine pdef(x,y,alpha,beta,gamma,delta,epslon,phi,psi)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: alpha, beta, delta, epslon, gamma, &

phi, psi
Real (Kind=nag_wp), Intent (In) :: x, y

! .. Intrinsic Procedures ..
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Intrinsic :: cos, sin
! .. Executable Statements ..

alpha = one
beta = zero
gamma = one
delta = 50.0_nag_wp
epslon = 50.0_nag_wp
phi = zero

psi = sin(x)*((-alpha-gamma+phi)*sin(y)+epslon*cos(y)) + &
cos(x)*(delta*sin(y)+beta*cos(y))

Return
End Subroutine pdef
Subroutine bndy(x,y,a,b,c,ibnd)

! .. Parameters ..
Integer, Parameter :: bottom = 0, left = 3, right = 1, &

top = 2
! .. Scalar Arguments ..

Real (Kind=nag_wp), Intent (Out) :: a, b, c
Real (Kind=nag_wp), Intent (In) :: x, y
Integer, Intent (In) :: ibnd

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
If (ibnd==top .Or. ibnd==right) Then

! Solution prescribed

a = one
b = zero
c = sin(x)*sin(y)

Else If (ibnd==bottom) Then

! Derivative prescribed

a = zero
b = one
c = -sin(x)

Else If (ibnd==left) Then

! Derivative prescribed

a = zero
b = one
c = -sin(y)

End If

Return
End Subroutine bndy
Function fexact(x,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: fexact

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x, y

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
fexact = sin(x)*sin(y)
Return

End Function fexact
End Module d03eefe_mod

Program d03eefe

! D03EEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03edf, d03eef, nag_wp
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Use d03eefe_mod, Only: bndy, fexact, nin, nout, pdef, zero
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: acc, hx, hy, rmserr, xmax, xmin, xx, &
ymax, ymin, yy

Integer :: i, icase, ifail, iout, ix, j, lda, &
levels, maxit, ngx, ngxy, ngy, numit

Character (7) :: scheme
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), rhs(:), u(:), ub(:), us(:), &
x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: real, sqrt

! .. Executable Statements ..
Write (nout,*) ’D03EEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) levels
ngx = 2**levels + 1
ngy = ngx
lda = 4*(ngx+1)*(ngy+1)/3
ngxy = ngx*ngy
Allocate (a(lda,7),rhs(lda),u(lda),ub(ngxy),us(lda),x(ngxy),y(ngxy))
Read (nin,*) xmin, xmax
Read (nin,*) ymin, ymax
hx = (xmax-xmin)/real(ngx-1,kind=nag_wp)
Do i = 1, ngx

xx = xmin + real(i-1,kind=nag_wp)*hx
x(i:ngxy:ngx) = xx

End Do
hy = (ymax-ymin)/real(ngy-1,kind=nag_wp)
Do j = 1, ngy

yy = ymin + real(j-1,kind=nag_wp)*hy
y((j-1)*ngx+1:j*ngx) = yy

End Do
! ** set iout > 2 to obtain intermediate output from D03EDF **

iout = 0
Read (nin,*) acc
Read (nin,*) maxit

cases: Do icase = 1, 2

Select Case (icase)
Case (1)

! Central differences
scheme = ’Central’

Case (2)
! Upwind differences

scheme = ’Upwind’
End Select

! Discretize the equations
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = -1
Call d03eef(xmin,xmax,ymin,ymax,pdef,bndy,ngx,ngy,lda,a,rhs,scheme, &

ifail)

If (ifail<0) Then
Write (nout,99995) ifail
Exit cases

End If

! Set the initial guess to zero
ub(1:ngxy) = zero

! Solve the equations
ifail = 0
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Call d03edf(ngx,ngy,lda,a,rhs,ub,maxit,acc,us,u,iout,numit,ifail)

! Print out the solution
Write (nout,*)
Write (nout,*) ’Exact solution above computed solution’
Write (nout,*)
Write (nout,99998) ’ I/J’, (i,i=1,ngx)
rmserr = zero
Do j = ngy, 1, -1

ix = (j-1)*ngx
Write (nout,*)
Write (nout,99999) j, (fexact(x(ix+i),y(ix+i)),i=1,ngx)
Write (nout,99999) j, u(ix+1:ix+ngx)
Do i = 1, ngx

rmserr = rmserr + (fexact(x(ix+i),y(ix+i))-u(ix+i))**2
End Do

End Do
rmserr = sqrt(rmserr/real(ngxy,kind=nag_wp))
Write (nout,*)
Write (nout,99997) ’Number of Iterations = ’, numit
Write (nout,99996) ’RMS Error = ’, rmserr

End Do cases

99999 Format (1X,I3,2X,10F7.3,:,/,(6X,10F7.3))
99998 Format (1X,A,10I7,:,/,(6X,10I7))
99997 Format (1X,A,I3)
99996 Format (1X,A,1P,E10.2)
99995 Format (1X,’ ** D03EEF returned with IFAIL = ’,I5)

End Program d03eefe

10.2 Program Data

D03EEF Example Program Data
3 : levels
0.0 1.0 : xmin, xmax
0.0 1.0 : ymin, ymax
1.0E-6 : acc
50 : maxit

10.3 Program Results

D03EEF Example Program Results

** The linear equations were not diagonally dominant.
** ABNORMAL EXIT from NAG Library routine D03EEF: IFAIL = 6
** NAG soft failure - control returned

Exact solution above computed solution

I/J 1 2 3 4 5 6 7 8 9

9 0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708
9 -0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708

8 0.000 0.096 0.190 0.281 0.368 0.449 0.523 0.589 0.646
8 -0.000 0.095 0.190 0.281 0.368 0.449 0.523 0.589 0.646

7 0.000 0.085 0.169 0.250 0.327 0.399 0.465 0.523 0.574
7 -0.000 0.084 0.168 0.249 0.326 0.398 0.464 0.523 0.574

6 0.000 0.073 0.145 0.214 0.281 0.342 0.399 0.449 0.492
6 -0.001 0.072 0.144 0.213 0.280 0.342 0.398 0.449 0.492

5 0.000 0.060 0.119 0.176 0.230 0.281 0.327 0.368 0.403
5 -0.001 0.059 0.118 0.174 0.229 0.280 0.326 0.368 0.403

4 0.000 0.046 0.091 0.134 0.176 0.214 0.250 0.281 0.308
4 -0.001 0.044 0.089 0.133 0.174 0.213 0.249 0.281 0.308

3 0.000 0.031 0.061 0.091 0.119 0.145 0.169 0.190 0.208
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3 -0.001 0.029 0.060 0.089 0.118 0.144 0.168 0.190 0.208

2 0.000 0.016 0.031 0.046 0.060 0.073 0.085 0.096 0.105
2 -0.001 0.014 0.029 0.044 0.059 0.072 0.084 0.095 0.105

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000 -0.000

Number of Iterations = 10
RMS Error = 7.92E-04

Exact solution above computed solution

I/J 1 2 3 4 5 6 7 8 9

9 0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708
9 -0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708

8 0.000 0.096 0.190 0.281 0.368 0.449 0.523 0.589 0.646
8 -0.002 0.093 0.186 0.276 0.362 0.443 0.517 0.585 0.646

7 0.000 0.085 0.169 0.250 0.327 0.399 0.465 0.523 0.574
7 -0.005 0.078 0.160 0.239 0.316 0.388 0.455 0.517 0.574

6 0.000 0.073 0.145 0.214 0.281 0.342 0.399 0.449 0.492
6 -0.008 0.063 0.132 0.200 0.266 0.329 0.388 0.443 0.492

5 0.000 0.060 0.119 0.176 0.230 0.281 0.327 0.368 0.403
5 -0.011 0.047 0.103 0.159 0.214 0.266 0.316 0.362 0.403

4 0.000 0.046 0.091 0.134 0.176 0.214 0.250 0.281 0.308
4 -0.013 0.030 0.074 0.117 0.159 0.200 0.239 0.276 0.308

3 0.000 0.031 0.061 0.091 0.119 0.145 0.169 0.190 0.208
3 -0.015 0.014 0.044 0.074 0.103 0.132 0.160 0.186 0.208

2 0.000 0.016 0.031 0.046 0.060 0.073 0.085 0.096 0.105
2 -0.016 -0.001 0.014 0.030 0.047 0.063 0.078 0.093 0.105

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 -0.016 -0.016 -0.015 -0.013 -0.011 -0.008 -0.005 -0.002 -0.000

Number of Iterations = 4
RMS Error = 1.05E-02
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Example Program
Solution of Elliptic PDE using Central Differences
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NAG Library Routine Document

D03FAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03FAF solves the Helmholtz equation in Cartesian coordinates in three dimensions using the standard
seven-point finite difference approximation. This routine is designed to be particularly efficient on
vector processors.

2 Specification

SUBROUTINE D03FAF (XS, XF, L, LBDCND, BDXS, BDXF, YS, YF, M, MBDCND,
BDYS, BDYF, ZS, ZF, N, NBDCND, BDZS, BDZF, LAMBDA,
LDF, LDF2, F, PERTRB, W, LWRK, IFAIL)

&
&

INTEGER L, LBDCND, M, MBDCND, N, NBDCND, LDF, LDF2, LWRK,
IFAIL

&

REAL (KIND=nag_wp) XS, XF, BDXS(LDF2,N+1), BDXF(LDF2,N+1), YS, YF,
BDYS(LDF,N+1), BDYF(LDF,N+1), ZS, ZF,
BDZS(LDF,M+1), BDZF(LDF,M+1), LAMBDA,
F(LDF,LDF2,N+1), PERTRB, W(LWRK)

&
&
&

3 Description

D03FAF solves the three-dimensional Helmholtz equation in Cartesian coordinates:

@2u

@x2
þ @

2u

@y2
þ @

2u

@z2
þ �u ¼ f x; y; zð Þ:

This subroutine forms the system of linear equations resulting from the standard seven-point finite
difference equations, and then solves the system using a method based on the fast Fourier transform
(FFT) described by Swarztrauber (1984). This subroutine is based on the routine HW3CRT from
FISHPACK (see Swarztrauber and Sweet (1979)).

More precisely, the routine replaces all the second derivatives by second-order central difference
approximations, resulting in a block tridiagonal system of linear equations. The equations are modified
to allow for the prescribed boundary conditions. Either the solution or the derivative of the solution
may be specified on any of the boundaries, or the solution may be specified to be periodic in any of the
three dimensions. By taking the discrete Fourier transform in the x- and y-directions, the equations are
reduced to sets of tridiagonal systems of equations. The Fourier transforms required are computed using
the multiple FFT routines found in Chapter C06.

4 References

Swarztrauber P N (1984) Fast Poisson solvers Studies in Numerical Analysis (ed G H Golub)
Mathematical Association of America

Swarztrauber P N and Sweet R A (1979) Efficient Fortran subprograms for the solution of separable
elliptic partial differential equations ACM Trans. Math. Software 5 352–364

5 Arguments

1: XS – REAL (KIND=nag_wp) Input

On entry: the lower bound of the range of x, i.e., XS � x � XF.

Constraint: XS < XF.
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2: XF – REAL (KIND=nag_wp) Input

On entry: the upper bound of the range of x, i.e., XS � x � XF.

Constraint: XS < XF.

3: L – INTEGER Input

On entry: the number of panels into which the interval (XS,XF) is subdivided. Hence, there will
be Lþ 1 grid points in the x-direction given by xi ¼ XSþ i � 1ð Þ � �x, for i ¼ 1; 2; . . . ;Lþ 1,
where �x ¼ XF� XSð Þ=L is the panel width.

Constraint: L � 5.

4: LBDCND – INTEGER Input

On entry: indicates the type of boundary conditions at x ¼ XS and x ¼ XF.

LBDCND ¼ 0
If the solution is periodic in x, i.e., u XS; y; zð Þ ¼ u XF; y; zð Þ.

LBDCND ¼ 1
If the solution is specified at x ¼ XS and x ¼ XF.

LBDCND ¼ 2
If the solution is specified at x ¼ XS and the derivative of the solution with respect to x is
specified at x ¼ XF.

LBDCND ¼ 3
If the derivative of the solution with respect to x is specified at x ¼ XS and x ¼ XF.

LBDCND ¼ 4
If the derivative of the solution with respect to x is specified at x ¼ XS and the solution is
specified at x ¼ XF.

Constraint: 0 � LBDCND � 4.

5: BDXSðLDF2;Nþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to x at x ¼ XS. When
LBDCND ¼ 3 or 4, BDXSðj; kÞ ¼ ux XS; yj; zk

� �
, for j ¼ 1; 2; . . . ;Mþ 1 and k ¼ 1; 2; . . . ;Nþ 1.

When LBDCND has any other value, BDXS is not referenced.

6: BDXFðLDF2;Nþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to x at x ¼ XF. When
LBDCND ¼ 2 or 3, BDXFðj; kÞ ¼ ux XF; yj ; zk

� �
, for j ¼ 1; 2; . . . ;Mþ 1 and k ¼ 1; 2; . . . ;Nþ 1.

When LBDCND has any other value, BDXF is not referenced.

7: YS – REAL (KIND=nag_wp) Input

On entry: the lower bound of the range of y, i.e., YS � y � YF.

Constraint: YS < YF.

8: YF – REAL (KIND=nag_wp) Input

On entry: the upper bound of the range of y, i.e., YS � y � YF.

Constraint: YS < YF.
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9: M – INTEGER Input

On entry: the number of panels into which the interval (YS,YF) is subdivided. Hence, there will
be Mþ 1 grid points in the y-direction given by yj ¼ YSþ j � 1ð Þ � �y, for j ¼ 1; 2; . . . ;Mþ 1,
where �y ¼ YF� YSð Þ=M is the panel width.

Constraint: M � 5.

10: MBDCND – INTEGER Input

On entry: indicates the type of boundary conditions at y ¼ YS and y ¼ YF.

MBDCND ¼ 0
If the solution is periodic in y, i.e., u x;YF; zð Þ ¼ u x;YS; zð Þ.

MBDCND ¼ 1
If the solution is specified at y ¼ YS and y ¼ YF.

MBDCND ¼ 2
If the solution is specified at y ¼ YS and the derivative of the solution with respect to y is
specified at y ¼ YF.

MBDCND ¼ 3
If the derivative of the solution with respect to y is specified at y ¼ YS and y ¼ YF.

MBDCND ¼ 4
If the derivative of the solution with respect to y is specified at y ¼ YS and the solution is
specified at y ¼ YF.

Constraint: 0 � MBDCND � 4.

11: BDYSðLDF;Nþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to y at y ¼ YS. When
MBDCND ¼ 3 or 4, BDYSði; kÞ ¼ uy xi;YS; zkð Þ, for i ¼ 1; 2; . . . ;Lþ 1 and k ¼ 1; 2; . . . ;Nþ 1.

When MBDCND has any other value, BDYS is not referenced.

12: BDYFðLDF;Nþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to y at y ¼ YF. When
MBDCND ¼ 2 or 3, BDYFði; kÞ ¼ uy xi;YF; zkð Þ, for i ¼ 1; 2; . . . ;Lþ 1 and k ¼ 1; 2; . . . ;Nþ 1.

When MBDCND has any other value, BDYF is not referenced.

13: ZS – REAL (KIND=nag_wp) Input

On entry: the lower bound of the range of z, i.e., ZS � z � ZF.

Constraint: ZS < ZF.

14: ZF – REAL (KIND=nag_wp) Input

On entry: the upper bound of the range of z, i.e., ZS � z � ZF.

Constraint: ZS < ZF.

15: N – INTEGER Input

On entry: the number of panels into which the interval (ZS,ZF) is subdivided. Hence, there will
be Nþ 1 grid points in the z-direction given by zk ¼ ZSþ k � 1ð Þ � �z, for k ¼ 1; 2; . . . ;Nþ 1,
where �z ¼ ZF� ZSð Þ=N is the panel width.

Constraint: N � 5.

D03 – Partial Differential Equations D03FAF

Mark 26 D03FAF.3



16: NBDCND – INTEGER Input

On entry: specifies the type of boundary conditions at z ¼ ZS and z ¼ ZF.

NBDCND ¼ 0
if the solution is periodic in z, i.e., u x; y;ZFð Þ ¼ u x; y;ZSð Þ.

NBDCND ¼ 1
if the solution is specified at z ¼ ZS and z ¼ ZF.

NBDCND ¼ 2
if the solution is specified at z ¼ ZS and the derivative of the solution with respect to z is
specified at z ¼ ZF.

NBDCND ¼ 3
if the derivative of the solution with respect to z is specified at z ¼ ZS and z ¼ ZF.

NBDCND ¼ 4
if the derivative of the solution with respect to z is specified at z ¼ ZS and the solution is
specified at z ¼ ZF.

Constraint: 0 � NBDCND � 4.

17: BDZSðLDF;Mþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to z at z ¼ ZS. When
NBDCND ¼ 3 or 4, BDZSði; jÞ ¼ uz xi; yj;ZS

� �
, for i ¼ 1; 2; . . . ;Lþ 1 and j ¼ 1; 2; . . . ;Mþ 1.

When NBDCND has any other value, BDZS is not referenced.

18: BDZFðLDF;Mþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to z at z ¼ ZF. When
NBDCND ¼ 2 or 3, BDZFði; jÞ ¼ uz xi; yj;ZF

� �
, for i ¼ 1; 2; . . . ;Lþ 1 and j ¼ 1; 2; . . . ;Mþ 1.

When NBDCND has any other value, BDZF is not referenced.

19: LAMBDA – REAL (KIND=nag_wp) Input

On entry: the constant � in the Helmholtz equation. For certain positive values of � a solution to
the differential equation may not exist, and close to these values the solution of the discretized
problem will be extremely ill-conditioned. If � > 0, then D03FAF will set IFAIL ¼ 3, but will
still attempt to find a solution. However, since in general the values of � for which no solution
exists cannot be predicted a priori, you are advised to treat any results computed with � > 0 with
great caution.

20: LDF – INTEGER Input

On entry: the first dimension of the arrays F, BDYS, BDYF, BDZS and BDZF as declared in the
(sub)program from which D03FAF is called.

Constraint: LDF � Lþ 1.

21: LDF2 – INTEGER Input

On entry: the second dimension of the array F and the first dimension of the arrays BDXS and
BDXF as declared in the (sub)program from which D03FAF is called.

Constraint: LDF2 � Mþ 1.

22: FðLDF;LDF2;Nþ 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the values of the right-side of the Helmholtz equation and boundary values (if any).

Fði; j; kÞ ¼ f xi; yj; zk
� �

i ¼ 2; 3; . . . ;L; j ¼ 2; 3; . . . ;M and k ¼ 2; 3; . . . ;N:

On the boundaries F is defined by
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LBDCND Fð1; j; kÞ FðLþ 1; j; kÞ
0 f XS; yj; zk

� �
f XS; yj; zk
� �

1 u XS; yj; zk
� �

u XF; yj; zk
� �

2 u XS; yj; zk
� �

f XF; yj; zk
� �

j ¼ 1; 2; . . . ;Mþ 1
3 f XS; yj; zk

� �
f XF; yj; zk
� �

k ¼ 1; 2; . . . ;Nþ 1
4 f XS; yj; zk

� �
u XF; yj; zk
� �

MBDCND Fði; 1; kÞ Fði;Mþ 1; kÞ
0 f xi;YS; zkð Þ f xi;YS; zkð Þ
1 u xi;YS; zkð Þ u xi;YF; zkð Þ
2 u xi;YS; zkð Þ f xi;YF; zkð Þ i ¼ 1; 2; . . . ;Lþ 1
3 f xi;YS; zkð Þ f xi;YF; zkð Þ k ¼ 1; 2; . . . ;Nþ 1
4 f xi;YS; zkð Þ u xi;YF; zkð Þ

NBDCND Fði; j; 1Þ Fði; j;Nþ 1Þ
0 f xi; yj;ZS

� �
f xi; yj;ZS
� �

1 u xi; yj;ZS
� �

u xi; yj;ZF
� �

2 u xi; yj;ZS
� �

f xi; yj;ZF
� �

i ¼ 1; 2; . . . ;Lþ 1
3 f xi; yj;ZS

� �
f xi; yj;ZF
� �

j ¼ 1; 2; . . . ;Mþ 1
4 f xi; yj;ZS

� �
u xi; yj;ZF
� �

Note: if the table calls for both the solution u and the right-hand side f on a boundary, then the
solution must be specified.

On exit: contains the solution u i; j; kð Þ of the finite difference approximation for the grid point
xi; yj ; zk
� �

, for i ¼ 1; 2; . . . ;Lþ 1, j ¼ 1; 2; . . . ;Mþ 1 and k ¼ 1; 2; . . . ;Nþ 1.

23: PERTRB – REAL (KIND=nag_wp) Output

On exit: PERTRB ¼ 0, unless a solution to Poisson's equation � ¼ 0ð Þ is required with a
combination of periodic or derivative boundary conditions (LBDCND, MBDCND and
NBDCND ¼ 0 or 3). In this case a solution may not exist. PERTRB is a constant, calculated
and subtracted from the array F, which ensures that a solution exists. D03FAF then computes this
solution, which is a least squares solution to the original approximation. This solution is not
unique and is unnormalized. The value of PERTRB should be small compared to the right-hand
side F, otherwise a solution has been obtained to an essentially different problem. This
comparison should always be made to ensure that a meaningful solution has been obtained.

24: WðLWRKÞ – REAL (KIND=nag_wp) array Workspace
25: LWRK – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D03FAF is
called. W is no longer used as workspace, LWRK can therefore be safely set to zero.

Constraint: LWRK � 0.

26: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, XS � XF,
or L < 5,
or LBDCND < 0,
or LBDCND > 4,
or YS � YF,
or M < 5,
or MBDCND < 0,
or MBDCND > 4,
or ZS � ZF,
or N < 5,
or NBDCND < 0,
or NBDCND > 4,
or LDF < Lþ 1,
or LDF2 < Mþ 1.

IFAIL ¼ 2

On entry, LWRK < 0.

IFAIL ¼ 3

On entry, � > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D03FAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03FAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The execution time is roughly proportional to L�M� N� log2 Lþ log2 Mþ 5ð Þ, but also depends on
input arguments LBDCND and MBDCND.

10 Example

This example solves the Helmholz equation

@2u

@x2
þ @

2u

@y2
þ @

2u

@z2
þ �u ¼ f x; y; zð Þ

for x; y; zð Þ 2 0; 1½ � � 0; 2	½ � � 0; 	2
� �

, where � ¼ �2, and f x; y; zð Þ is derived from the exact solution

u x; y; zð Þ ¼ x4 sin y cos z:

The equation is subject to the following boundary conditions, again derived from the exact solution
given above.

u 0; y; zð Þ and u 1; y; zð Þ are prescribed (i.e., LBDCND ¼ 1).

u x; 0; zð Þ ¼ u x; 2	; zð Þ (i.e., MBDCND ¼ 0).

u x; y; 0ð Þ and uz x; y; 	2
� �

are prescribed (i.e., NBDCND ¼ 2).

10.1 Program Text

Program d03fafe

! D03FAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d03faf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dx, dy, dz, error, lambda, pertrb, &

t, xf, xs, yf, ys, yy, zf, zs, zz
Integer :: i, ifail, j, k, l, lbdcnd, ldf, &

ldf2, lwrk, m, mbdcnd, n, nbdcnd
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: bdxf(:,:), bdxs(:,:), bdyf(:,:), &
bdys(:,:), bdzf(:,:), bdzs(:,:), &
f(:,:,:), x(:), y(:), z(:)

Real (Kind=nag_wp) :: w(0)
! .. Intrinsic Procedures ..

Intrinsic :: abs, cos, real, sin
! .. Executable Statements ..

Write (nout,*) ’D03FAF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) l, m, n
ldf = l + 1
ldf2 = m + 1
lwrk = 0
Allocate (bdxf(ldf2,n+1),bdxs(ldf2,n+1),bdyf(ldf,n+1),bdys(ldf,n+1), &

bdzf(ldf,m+1),bdzs(ldf,m+1),f(ldf,ldf2,n+1),x(l+1),y(m+1),z(n+1))
Read (nin,*) lambda
Read (nin,*) xs, xf
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Read (nin,*) ys, yf
Read (nin,*) zs, zf
Read (nin,*) lbdcnd, mbdcnd, nbdcnd

! Define the grid points for later use.

dx = (xf-xs)/real(l,kind=nag_wp)
Do i = 1, l + 1

x(i) = xs + real(i-1,kind=nag_wp)*dx
End Do
dy = (yf-ys)/real(m,kind=nag_wp)
Do j = 1, m + 1

y(j) = ys + real(j-1,kind=nag_wp)*dy
End Do
dz = (zf-zs)/real(n,kind=nag_wp)
Do k = 1, n + 1

z(k) = zs + real(k-1,kind=nag_wp)*dz
End Do

! Define the array of derivative boundary values.

Do j = 1, m + 1
yy = sin(y(j))
bdzf(1:l+1,j) = -yy*x(1:l+1)**4

End Do

! Note that for this example all other boundary arrays are
! dummy variables.

! We define the function boundary values in the F array.

f(1,1:m+1,1:n+1) = 0.0_nag_wp
Do k = 1, n + 1

zz = cos(z(k))
Do j = 1, m + 1

f(l+1,j,k) = zz*sin(y(j))
End Do

End Do
f(1:l+1,1:m+1,1) = -bdzf(1:l+1,1:m+1)

! Define the values of the right hand side of the Helmholtz
! equation.

Do k = 2, n + 1
zz = 4.0_nag_wp*cos(z(k))
Do j = 1, m + 1

yy = sin(y(j))*zz
Do i = 2, l

f(i,j,k) = yy*x(i)**2*(3.0_nag_wp-x(i)**2)
End Do

End Do
End Do

! Call D03FAF to generate and solve the finite difference equation.
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n, &

nbdcnd,bdzs,bdzf,lambda,ldf,ldf2,f,pertrb,w,lwrk,ifail)

! Compute discretization error. The exact solution to the
! problem is

! U(X,Y,Z) = X**4*SIN(Y)*COS(Z)

error = 0.0_nag_wp
Do k = 1, n + 1

zz = cos(z(k))
Do j = 1, m + 1

yy = sin(y(j))*zz
Do i = 1, l + 1
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t = abs(f(i,j,k)-yy*x(i)**4)
If (t>error) Then

error = t
End If

End Do
End Do

End Do
Write (nout,*)
Write (nout,99999) error

99999 Format (1X,’Maximum component of discretization error =’,1P,E13.6)
End Program d03fafe

10.2 Program Data

D03FAF Example Program Data
16 32 20 : l, m, n
-2.0 : lambda
0.0 1.0 : xs, xf
0.0 6.28318530717958647692 : ys, yf
0.0 1.57079632679489661923 : zs, zf
1 0 2 : lbdcnd, mbdcnd, nbdcnd

10.3 Program Results

D03FAF Example Program Results

Maximum component of discretization error = 5.176553E-04
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NAG Library Routine Document

D03MAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03MAF places a triangular mesh over a given two-dimensional region. The region may have any
shape, including one with holes.

2 Specification

SUBROUTINE D03MAF (H, M, N, NB, NPTS, PLACES, INDX, SDINDX, ISIN, DIST,
SDDIST, IFAIL)

&

INTEGER M, N, NB, NPTS, INDX(4,SDINDX), SDINDX, ISIN,
SDDIST, IFAIL

&

REAL (KIND=nag_wp) H, PLACES(2,SDINDX), DIST(4,SDDIST)
EXTERNAL ISIN

3 Description

D03MAF begins with a uniform triangular grid as shown in Figure 1 and assumes that the region to be
triangulated lies within the rectangle given by the inequalities

0 < x <
ffiffiffi
3
p

m� 1ð Þh; 0 < y < n� 1ð Þh:

This rectangle is drawn in bold in Figure 1. The region is specified by the ISIN which must determine
whether any given point x; yð Þ lies in the region. The uniform grid is processed column-wise, with
x1; y1ð Þ preceding x2; y2ð Þ if x1 < x2 or x1 ¼ x2, y1 < y2. Points near the boundary are moved onto it
and points well outside the boundary are omitted. The direction of movement is chosen to avoid
pathologically thin triangles. The points accepted are numbered in exactly the same order as the
corresponding points of the uniform grid were scanned. The output consists of the x; y coordinates of
all grid points and integers indicating whether they are internal and to which other points they are
joined by triangle sides.

The mesh size h must be chosen small enough for the essential features of the region to be apparent
from testing all points of the original uniform grid for being inside the region. For instance if any hole
is within 2h of another hole or the outer boundary then a triangle may be found with all vertices within
1
2h of a boundary. Such a triangle is taken to be external to the region so the effect will be to join the
hole to another hole or to the external region.

Further details of the algorithm are given in the references.

( ( m -1) h√ 3,0 )( 0,0)

( 0, ( n-1) h)

Figure 1
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4 References

Reid J K (1970) Fortran subroutines for the solutions of Laplace's equation over a general routine in
two dimensions Harwell Report TP422

Reid J K (1972) On the construction and convergence of a finite-element solution of Laplace's equation
J. Instr. Math. Appl. 9 1–13

5 Arguments

1: H – REAL (KIND=nag_wp) Input

On entry: h, the required length for the sides of the triangles of the uniform mesh.

2: M – INTEGER Input
3: N – INTEGER Input

On entry: values m and n such that all points x; yð Þ inside the region satisfy the inequalities

0 � x �
ffiffiffi
3
p

m� 1ð Þh;
0 � y � n� 1ð Þh:

Constraint: M ¼ N > 2.

4: NB – INTEGER Input

On entry: the number of times a triangle side is bisected to find a point on the boundary. A value
of 10 is adequate for most purposes (see Section 7).

Constraint: NB � 1.

5: NPTS – INTEGER Output

On exit: the number of points in the triangulation.

6: PLACESð2;SDINDXÞ – REAL (KIND=nag_wp) array Output

On exit: the x and y coordinates respectively of the ith point of the triangulation.

7: INDXð4; SDINDXÞ – INTEGER array Output

On exit: INDXð1; iÞ contains i if point i is inside the region and �i if it is on the boundary. For
each triangle side between points i and j with j > i, INDXðk; iÞ, k > 1, contains j or �j
according to whether point j is internal or on the boundary. There can never be more than three
such points. If there are less, then some values INDXðk; iÞ, k > 1, are zero.

8: SDINDX – INTEGER Input

On entry: the second dimension of the arrays PLACES and INDX as declared in the (sub)
program from which D03MAF is called.

Constraint: SDINDX � NPTS.

9: ISIN – INTEGER FUNCTION, supplied by the user. External Procedure

ISIN must return the value 1 if the given point (X,Y) lies inside the region, and 0 if it lies
outside.

The specification of ISIN is:

FUNCTION ISIN (X, Y)
INTEGER ISIN

REAL (KIND=nag_wp) X, Y
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1: X – REAL (KIND=nag_wp) Input
2: Y – REAL (KIND=nag_wp) Input

On entry: the coordinates of the given point.

ISIN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03MAF is called. Arguments denoted as Input must not be changed by
this procedure.

10: DISTð4; SDDISTÞ – REAL (KIND=nag_wp) array Workspace
11: SDDIST – INTEGER Input

On entry: the second dimension of the array DIST as declared in the (sub)program from which
D03MAF is called.

Constraint: SDDIST � 4N.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

SDINDX is too small.

IFAIL ¼ 2

A point inside the region violates one of the constraints (see arguments M and N).

IFAIL ¼ 3

SDDIST is too small.

IFAIL ¼ 4

M � 2.

IFAIL ¼ 5

N � 2.

IFAIL ¼ 6

NB � 0.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Points are moved onto the boundary by bisecting a triangle side NB times. The accuracy is therefore
h� 2�NB.

8 Parallelism and Performance

D03MAF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to m� n.

10 Example

The following program triangulates the circle with centre 7:0; 7:0ð Þ and radius 6:0 using a basic grid
size h ¼ 4:0.

10.1 Program Text

! D03MAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03mafe_mod

! D03MAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: isin

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: rad = 6.0_nag_wp
Real (Kind=nag_wp), Parameter :: xmid = 7.0_nag_wp
Real (Kind=nag_wp), Parameter :: ymid = 7.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function isin(x,y)

! Circular domain

! .. Function Return Value ..
Integer :: isin

! .. Scalar Arguments ..
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Real (Kind=nag_wp), Intent (In) :: x, y
! .. Executable Statements ..

If ((x-xmid)**2+(y-ymid)**2<=rad**2) Then
isin = 1

Else
isin = 0

End If
Return

End Function isin
End Module d03mafe_mod

Program d03mafe

! D03MAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03maf, nag_wp
Use d03mafe_mod, Only: isin, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: h
Integer :: i, ifail, m, n, nb, npts, sddist, &

sdindx
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: dist(:,:), places(:,:)
Integer, Allocatable :: indx(:,:)

! .. Executable Statements ..
Write (nout,*) ’D03MAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) sddist, sdindx
Allocate (dist(4,sddist),places(2,sdindx),indx(4,sdindx))

Read (nin,*) h
Read (nin,*) m, n, nb

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03maf(h,m,n,nb,npts,places,indx,sdindx,isin,dist,sddist,ifail)

Write (nout,*) ’ I X(I) Y(I)’
Do i = 1, npts

Write (nout,99999) i, places(1,i), places(2,i)
End Do
Write (nout,*)
Write (nout,*) ’INDX’
Write (nout,99998)(indx(1:4,i),i=1,npts)

99999 Format (1X,I3,2F10.6)
99998 Format (1X,4I5)

End Program d03mafe

10.2 Program Data

D03MAF Example Program Data
20 100 : sddist, sdindx
4.0 : h
3 5 10 : m, n, nb

10.3 Program Results

D03MAF Example Program Results

I X(I) Y(I)
1 1.013182 6.584961
2 1.412366 9.184570
3 2.268242 3.309570
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4 3.464102 8.000000
5 3.584195 11.930664
6 6.928203 1.001953
7 6.928203 6.000000
8 6.928203 10.000000
9 6.928203 12.998047

10 11.686269 3.252930
11 10.392305 8.000000
12 10.392305 11.947266
13 12.978541 6.506836
14 12.562443 9.252930

INDX
-1 -3 4 -2
-2 4 -5 0
-3 -6 7 4
4 7 8 -5

-5 8 -9 0
-6 0 -10 7
7 -10 11 8
8 11 -12 -9

-9 -12 0 0
-10 0 -13 11
11 -13 -14 -12

-12 -14 0 0
-13 0 0 -14
-14 0 0 0

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14

y

x

Example Program
Triangulation of a Circle

with centre (7,7) and radius 6 using grid size=4
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NAG Library Routine Document

D03NCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03NCF solves the Black–Scholes equation for financial option pricing using a finite difference
scheme.

2 Specification

SUBROUTINE D03NCF (KOPT, X, MESH, NS, S, NT, T, TDPAR, R, Q, SIGMA,
ALPHA, NTKEEP, F, THETA, DELTA, GAMMA, LAMBDA, RHO,
LDF, WORK, IWORK, IFAIL)

&
&

INTEGER KOPT, NS, NT, NTKEEP, LDF, IWORK(NS), IFAIL
REAL (KIND=nag_wp) X, S(NS), T(NT), R(*), Q(*), SIGMA(*), ALPHA,

F(LDF,NTKEEP), THETA(LDF,NTKEEP),
DELTA(LDF,NTKEEP), GAMMA(LDF,NTKEEP),
LAMBDA(LDF,NTKEEP), RHO(LDF,NTKEEP), WORK(4*NS)

&
&
&

LOGICAL TDPAR(3)
CHARACTER(1) MESH

3 Description

D03NCF solves the Black–Scholes equation (see Hull (1989) and Wilmott et al. (1995))

@f

@t
þ r� qð ÞS@f

@S
þ �

2S2

2

@2f

@S2
¼ rf ð1Þ

Smin < S < Smax ; tmin < t < tmax ; ð2Þ

for the value f of a European or American, put or call stock option, with exercise price X. In equation
(1) t is time, S is the stock price, r is the risk free interest rate, q is the continuous dividend, and � is
the stock volatility. According to the values in the array TDPAR, the arguments r, q and � may each be
either constant or functions of time. The routine also returns values of various Greeks.

D03NCF uses a finite difference method with a choice of time-stepping schemes. The method is explicit
for ALPHA ¼ 0:0 and implicit for nonzero values of ALPHA. Second order time accuracy can be
obtained by setting ALPHA ¼ 0:5. According to the value of the argument MESH the finite difference
mesh may be either uniform, or user-defined in both S and t directions.

4 References

Hull J (1989) Options, Futures and Other Derivative Securities Prentice–Hall

Wilmott P, Howison S and Dewynne J (1995) The Mathematics of Financial Derivatives Cambridge
University Press

5 Arguments

1: KOPT – INTEGER Input

On entry: specifies the kind of option to be valued.

KOPT ¼ 1
A European call option.
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KOPT ¼ 2
An American call option.

KOPT ¼ 3
A European put option.

KOPT ¼ 4
An American put option.

Constraint: KOPT ¼ 1, 2, 3 or 4.

2: X – REAL (KIND=nag_wp) Input

On entry: the exercise price X.

3: MESH – CHARACTER(1) Input

On entry: indicates the type of finite difference mesh to be used:

MESH ¼ U
Uniform mesh.

MESH ¼ C
Custom mesh supplied by you.

Constraint: MESH ¼ U or C .

4: NS – INTEGER Input

On entry: the number of stock prices to be used in the finite difference mesh.

Constraint: NS � 2.

5: SðNSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MESH ¼ C , SðiÞ must contain the ith stock price in the mesh, for i ¼ 1; 2; . . . ;NS.
These values should be in increasing order, with Sð1Þ ¼ Smin and SðNSÞ ¼ Smax .

If MESH ¼ U , Sð1Þ must be set to Smin and SðNSÞ to Smax , but Sð2Þ; Sð3Þ; . . . ; SðNS� 1Þ need
not be initialized, as they will be set internally by the routine in order to define a uniform mesh.

On exit: if MESH ¼ U , the elements of S define a uniform mesh over Smin ; Smax½ �.
If MESH ¼ C , the elements of S are unchanged.

Constraints:

if MESH ¼ C , Sð1Þ � 0:0 and SðiÞ < Sði þ 1Þ, for i ¼ 1; 2; . . . ;NS� 1;
if MESH ¼ U , 0:0 � Sð1Þ < SðNSÞ.

6: NT – INTEGER Input

On entry: the number of time-steps to be used in the finite difference method.

Constraint: NT � 2.

7: TðNTÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MESH ¼ C then TðjÞ must contain the jth time in the mesh, for j ¼ 1; 2; . . . ;NT.
These values should be in increasing order, with Tð1Þ ¼ tmin and TðNTÞ ¼ tmax .

If MESH ¼ U then Tð1Þ must be set to tmin and TðNTÞ to tmax , but Tð2Þ;Tð3Þ; . . . ;TðNT� 1Þ
need not be initialized, as they will be set internally by the routine in order to define a uniform
mesh.

On exit: if MESH ¼ U , the elements of T define a uniform mesh over tmin ; tmax½ �.
If MESH ¼ C , the elements of T are unchanged.
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Constraints:

if MESH ¼ C , Tð1Þ � 0:0 and TðjÞ < Tðj þ 1Þ, for j ¼ 1; 2; . . . ;NT� 1;
if MESH ¼ U , 0:0 � Tð1Þ < TðNTÞ.

8: TDPARð3Þ – LOGICAL array Input

On entry: specifies whether or not various arguments are time-dependent. More precisely, r is
time-dependent if TDPARð1Þ ¼ :TRUE: and constant otherwise. Similarly, TDPARð2Þ specifies
whether q is time-dependent and TDPARð3Þ specifies whether � is time-dependent.

9: Rð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array R must be at least NT if TDPARð1Þ ¼ :TRUE:, and at least 1
otherwise.

On entry: if TDPARð1Þ ¼ :TRUE: then RðjÞ must contain the value of the risk-free interest rate
r tð Þ at the jth time in the mesh, for j ¼ 1; 2; . . . ;NT.

If TDPARð1Þ ¼ :FALSE: then Rð1Þ must contain the constant value of the risk-free interest rate
r. The remaining elements need not be set.

10: Qð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Q must be at least NT if TDPARð2Þ ¼ :TRUE:, and at least 1
otherwise.

On entry: if TDPARð2Þ ¼ :TRUE: then QðjÞ must contain the value of the continuous dividend
q tð Þ at the jth time in the mesh, for j ¼ 1; 2; . . . ;NT.

If TDPARð2Þ ¼ :FALSE: then Qð1Þ must contain the constant value of the continuous dividend
q. The remaining elements need not be set.

11: SIGMAð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array SIGMA must be at least NT if TDPARð3Þ ¼ :TRUE:, and at
least 1 otherwise.

On entry: if TDPARð3Þ ¼ :TRUE: then SIGMAðjÞ must contain the value of the volatility � tð Þ at
the jth time in the mesh, for j ¼ 1; 2; . . . ;NT.

If TDPARð3Þ ¼ :FALSE: then SIGMAð1Þ must contain the constant value of the volatility �. The
remaining elements need not be set.

12: ALPHA – REAL (KIND=nag_wp) Input

On entry: the value of � to be used in the time-stepping scheme. Typical values include:

ALPHA ¼ 0:0
Explicit forward Euler scheme.

ALPHA ¼ 0:5
Implicit Crank–Nicolson scheme.

ALPHA ¼ 1:0
Implicit backward Euler scheme.

The value 0:5 gives second-order accuracy in time. Values greater than 0:5 give unconditional
stability. Since 0:5 is at the limit of unconditional stability this value does not damp oscillations.

Suggested value: ALPHA ¼ 0:55.

Constraint: 0:0 � ALPHA � 1:0.

13: NTKEEP – INTEGER Input

On entry: the number of solutions to be stored in the time direction. The routine calculates the
solution backwards from TðNTÞ to Tð1Þ at all times in the mesh. These time solutions and the
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corresponding Greeks will be stored at times TðiÞ, for i ¼ 1; 2; . . . ;NTKEEP, in the arrays F,
THETA, DELTA, GAMMA, LAMBDA and RHO. Other time solutions will be discarded. To
store all time solutions set NTKEEP ¼ NT.

Constraint: 1 � NTKEEP � NT.

14: FðLDF;NTKEEPÞ – REAL (KIND=nag_wp) array Output

On exit: Fði; jÞ, for i ¼ 1; 2; . . . ;NS and j ¼ 1; 2; . . . ;NTKEEP, contains the value f of the option
at the ith mesh point SðiÞ at time TðjÞ.

15: THETAðLDF;NTKEEPÞ – REAL (KIND=nag_wp) array Output
16: DELTAðLDF;NTKEEPÞ – REAL (KIND=nag_wp) array Output
17: GAMMAðLDF;NTKEEPÞ – REAL (KIND=nag_wp) array Output
18: LAMBDAðLDF;NTKEEPÞ – REAL (KIND=nag_wp) array Output
19: RHOðLDF;NTKEEPÞ – REAL (KIND=nag_wp) array Output

On exit: the values of various Greeks at the ith mesh point SðiÞ at time TðjÞ, as follows:

THETAði; jÞ ¼ @f
@t
; DELTAði; jÞ ¼ @f

@S
; GAMMAði; jÞ ¼ @2f

@S2
;

LAMBDAði; jÞ ¼ @f
@�
; RHOði; jÞ ¼ @f

@r
:

20: LDF – INTEGER Input

On entry: the first dimension of the arrays F, THETA, DELTA, GAMMA, LAMBDA and RHO
as declared in the (sub)program from which D03NCF is called.

Constraint: LDF � NS.

21: WORKð4� NSÞ – REAL (KIND=nag_wp) array Workspace

22: IWORKðNSÞ – INTEGER array Workspace

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, KOPT < 1,
or KOPT > 4,
or MESH 6¼ U or C ,
or NS < 2,
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or NT < 2,
or Sð1Þ < 0:0,
or Tð1Þ < 0:0,
or ALPHA < 0:0,
or ALPHA > 1:0,
or NTKEEP < 1,
or NTKEEP > NT,
or LDF < NS.

IFAIL ¼ 2

MESH ¼ U and the constraints:

Sð1Þ < SðNSÞ,
Tð1Þ < TðNTÞ

are violated. Thus the end points of the uniform mesh are not in order.

IFAIL ¼ 3

MESH ¼ C and the constraints:

SðiÞ < Sði þ 1Þ, for i ¼ 1; 2; . . . ;NS� 1,

TðiÞ < Tði þ 1Þ, for i ¼ 1; 2; . . . ;NT� 1

are violated. Thus the mesh points are not in order.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the solution f and the various derivatives returned by the routine is dependent on the
values of NS and NT supplied, the distribution of the mesh points, and the value of ALPHA chosen. For
most choices of ALPHA the solution has a truncation error which is second-order accurate in S and first
order accurate in t. For ALPHA ¼ 0:5 the truncation error is also second-order accurate in t.

The simplest approach to improving the accuracy is to increase the values of both NS and NT.

8 Parallelism and Performance

D03NCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03NCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

Each time-step requires the construction and solution of a tridiagonal system of linear equations. To
calculate each of the derivatives LAMBDA and RHO requires a repetition of the entire solution
process. The time taken for a call to the routine is therefore proportional to NS� NT.

9.2 Algorithmic Details

D03NCF solves equation (1) using a finite difference method. The solution is computed backwards in
time from tmax to tmin using a � scheme, which is implicit for all nonzero values of �, and is
unconditionally stable for values of � > 0:5. For each time-step a tridiagonal system is constructed and
solved to obtain the solution at the earlier time. For the explicit scheme (� ¼ 0) this tridiagonal system
degenerates to a diagonal matrix and is solved trivially. For American options the solution at each time-
step is inspected to check whether early exercise is beneficial, and amended accordingly.

To compute the arrays LAMBDA and RHO, which are derivatives of the stock value f with respect to
the problem arguments � and r respectively, the entire solution process is repeated with perturbed
values of these arguments.

10 Example

This example, taken from Hull (1989), solves the one-dimensional Black–Scholes equation for
valuation of a 5-month American put option on a non-dividend-paying stock with an exercise price of
$50. The risk-free interest rate is 10% per annum, and the stock volatility is 40% per annum.

A fully implicit backward Euler scheme is used, with a mesh of 20 stock price intervals and 10 time
intervals.

10.1 Program Text

! D03NCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03ncfe_mod

! D03NCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: print_greek

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine print_greek(ns,ntkeep,nt,s,t,grname,greek)

! .. Scalar Arguments ..
Integer, Intent (In) :: ns, nt, ntkeep
Character (*), Intent (In) :: grname

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: greek(ns,ntkeep), s(ns), t(nt)

! .. Local Scalars ..
Integer :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: len
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! .. Executable Statements ..
Write (nout,*)
Write (nout,*) grname
Write (nout,*)(’-’,i=1,len(grname))
Write (nout,*) ’ Stock Price | Time to Maturity (months)’
Write (nout,99999) ’|’, (12.0_nag_wp*(t(nt)-t(i)),i=1,ntkeep)
Write (nout,*) ’ -----------------’, (’------------’,i=1,ntkeep)
Do i = 1, ns

Write (nout,99998) s(i), ’|’, (greek(i,j),j=1,ntkeep)
End Do

Return

99999 Format (16X,A,1X,12(1P,E12.4))
99998 Format (1X,1P,E12.4,3X,A,1X,12(1P,E12.4))

End Subroutine print_greek
End Module d03ncfe_mod

Program d03ncfe

! D03NCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03ncf, nag_wp
Use d03ncfe_mod, Only: nin, nout, print_greek

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Logical, Parameter :: gprnt(5) = .True.

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, x
Integer :: ifail, kopt, ldf, ns, nt, ntkeep
Character (1) :: mesh

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: delta(:,:), f(:,:), gamma(:,:), &

lambda(:,:), rho(:,:), s(:), t(:), &
theta(:,:), work(:)

Real (Kind=nag_wp) :: q(3), r(3), sigma(3)
Integer, Allocatable :: iwork(:)
Logical :: tdpar(3)

! .. Executable Statements ..
Write (nout,*) ’D03NCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) ns, nt, ntkeep
ldf = ns

Allocate (delta(ldf,ntkeep),f(ldf,ntkeep),gamma(ldf,ntkeep), &
lambda(ldf,ntkeep),rho(ldf,ntkeep),s(ldf),t(nt),theta(ldf,ntkeep), &
work(4*ns),iwork(ns))

! Read problem parameters

Read (nin,*) kopt
Read (nin,*) x
Read (nin,*) mesh
Read (nin,*) s(1), s(ns)
Read (nin,*) t(1), t(nt)
Read (nin,*) alpha

! Set up input parameters for D03NCF

Read (nin,*) tdpar(1:3)
Read (nin,*) q(1), r(1), sigma(1)

! Call Black-Scholes solver
ifail = 0
Call d03ncf(kopt,x,mesh,ns,s,nt,t,tdpar,r,q,sigma,alpha,ntkeep,f,theta, &

delta,gamma,lambda,rho,ldf,work,iwork,ifail)
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! Output option values and possibly Greeks.

Call print_greek(ns,ntkeep,nt,s,t,’Option Values’,f)

If (gprnt(1)) Then
Call print_greek(ns,ntkeep,nt,s,t,’Theta’,theta)

End If
If (gprnt(2)) Then

Call print_greek(ns,ntkeep,nt,s,t,’Delta’,delta)
End If
If (gprnt(3)) Then

Call print_greek(ns,ntkeep,nt,s,t,’Gamma’,gamma)
End If
If (gprnt(4)) Then

Call print_greek(ns,ntkeep,nt,s,t,’Lambda’,lambda)
End If
If (gprnt(5)) Then

Call print_greek(ns,ntkeep,nt,s,t,’Rho’,rho)
End If

End Program d03ncfe

10.2 Program Data

D03NCF Example Program Data
21 11 4 : ns, nt, ntkeep
4 : kopt
50. : x
’U’ : mesh
0.0 100. : s(1), s(ns)
0.0 0.4166667 : t(1), t(nt)
1.0 : alpha
.FALSE. .FALSE. .FALSE. : tdpar
0.0 0.1 0.4 : q(1), r(1), sigma(1)

10.3 Program Results

D03NCF Example Program Results

Option Values
-------------

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 5.0000E+01 5.0000E+01 5.0000E+01 5.0000E+01
5.0000E+00 | 4.5000E+01 4.5000E+01 4.5000E+01 4.5000E+01
1.0000E+01 | 4.0000E+01 4.0000E+01 4.0000E+01 4.0000E+01
1.5000E+01 | 3.5000E+01 3.5000E+01 3.5000E+01 3.5000E+01
2.0000E+01 | 3.0000E+01 3.0000E+01 3.0000E+01 3.0000E+01
2.5000E+01 | 2.5000E+01 2.5000E+01 2.5000E+01 2.5000E+01
3.0000E+01 | 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01
3.5000E+01 | 1.5000E+01 1.5000E+01 1.5000E+01 1.5000E+01
4.0000E+01 | 1.0154E+01 1.0096E+01 1.0046E+01 1.0012E+01
4.5000E+01 | 6.5848E+00 6.4424E+00 6.2916E+00 6.1306E+00
5.0000E+01 | 4.0672E+00 3.8785E+00 3.6729E+00 3.4463E+00
5.5000E+01 | 2.4264E+00 2.2423E+00 2.0454E+00 1.8336E+00
6.0000E+01 | 1.4174E+00 1.2662E+00 1.1096E+00 9.4813E-01
6.5000E+01 | 8.1951E-01 7.0724E-01 5.9532E-01 4.8515E-01
7.0000E+01 | 4.7241E-01 3.9411E-01 3.1904E-01 2.4845E-01
7.5000E+01 | 2.7257E-01 2.2016E-01 1.7174E-01 1.2815E-01
8.0000E+01 | 1.5725E-01 1.2328E-01 9.2935E-02 6.6682E-02
8.5000E+01 | 8.9662E-02 6.8478E-02 5.0100E-02 3.4731E-02
9.0000E+01 | 4.8449E-02 3.6251E-02 2.5901E-02 1.7469E-02
9.5000E+01 | 2.1100E-02 1.5584E-02 1.0968E-02 7.2680E-03
1.0000E+02 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Theta
-----

Stock Price | Time to Maturity (months)
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| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00
-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
1.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
1.5000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2.5000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3.5000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
4.0000E+01 | -1.4043E+00 -1.1857E+00 -8.3285E-01 -2.8064E-01
4.5000E+01 | -3.4185E+00 -3.6183E+00 -3.8646E+00 -4.1880E+00
5.0000E+01 | -4.5285E+00 -4.9339E+00 -5.4387E+00 -6.0796E+00
5.5000E+01 | -4.4165E+00 -4.7277E+00 -5.0821E+00 -5.4821E+00
6.0000E+01 | -3.6294E+00 -3.7585E+00 -3.8748E+00 -3.9632E+00
6.5000E+01 | -2.6946E+00 -2.6860E+00 -2.6441E+00 -2.5561E+00
7.0000E+01 | -1.8790E+00 -1.8018E+00 -1.6941E+00 -1.5505E+00
7.5000E+01 | -1.2578E+00 -1.1621E+00 -1.0461E+00 -9.0969E-01
8.0000E+01 | -8.1539E-01 -7.2821E-01 -6.3006E-01 -5.2314E-01
8.5000E+01 | -5.0841E-01 -4.4106E-01 -3.6887E-01 -2.9433E-01
9.0000E+01 | -2.9276E-01 -2.4840E-01 -2.0237E-01 -1.5656E-01
9.5000E+01 | -1.3237E-01 -1.1079E-01 -8.8802E-02 -6.7378E-02
1.0000E+02 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Delta
-----

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | -1.0000E+00 -1.0000E+00 -1.0000E+00 -1.0000E+00
5.0000E+00 | -1.0000E+00 -1.0000E+00 -1.0000E+00 -1.0000E+00
1.0000E+01 | -1.0000E+00 -1.0000E+00 -1.0000E+00 -1.0000E+00
1.5000E+01 | -1.0000E+00 -1.0000E+00 -1.0000E+00 -1.0000E+00
2.0000E+01 | -1.0000E+00 -1.0000E+00 -1.0000E+00 -1.0000E+00
2.5000E+01 | -1.0000E+00 -1.0000E+00 -1.0000E+00 -1.0000E+00
3.0000E+01 | -1.0000E+00 -1.0000E+00 -1.0000E+00 -1.0000E+00
3.5000E+01 | -9.8457E-01 -9.9042E-01 -9.9536E-01 -9.9883E-01
4.0000E+01 | -8.4152E-01 -8.5576E-01 -8.7084E-01 -8.8694E-01
4.5000E+01 | -6.0871E-01 -6.2173E-01 -6.3735E-01 -6.5654E-01
5.0000E+01 | -4.1584E-01 -4.2000E-01 -4.2463E-01 -4.2970E-01
5.5000E+01 | -2.6498E-01 -2.6123E-01 -2.5633E-01 -2.4982E-01
6.0000E+01 | -1.6069E-01 -1.5351E-01 -1.4500E-01 -1.3485E-01
6.5000E+01 | -9.4501E-02 -8.7208E-02 -7.9055E-02 -6.9969E-02
7.0000E+01 | -5.4694E-02 -4.8708E-02 -4.2358E-02 -3.5699E-02
7.5000E+01 | -3.1515E-02 -2.7084E-02 -2.2610E-02 -1.8177E-02
8.0000E+01 | -1.8291E-02 -1.5168E-02 -1.2164E-02 -9.3423E-03
8.5000E+01 | -1.0880E-02 -8.7026E-03 -6.7034E-03 -4.9214E-03
9.0000E+01 | -6.8562E-03 -5.2894E-03 -3.9132E-03 -2.7463E-03
9.5000E+01 | -4.8449E-03 -3.6251E-03 -2.5901E-03 -1.7469E-03
1.0000E+02 | -4.2199E-03 -3.1168E-03 -2.1936E-03 -1.4536E-03

Gamma
-----

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
1.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
1.5000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2.5000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3.5000E+01 | 6.1726E-03 3.8321E-03 1.8558E-03 4.6773E-04
4.0000E+01 | 5.1047E-02 5.0031E-02 4.7953E-02 4.4288E-02
4.5000E+01 | 4.2075E-02 4.3582E-02 4.5444E-02 4.7873E-02
5.0000E+01 | 3.5072E-02 3.7109E-02 3.9646E-02 4.2863E-02
5.5000E+01 | 2.5275E-02 2.6400E-02 2.7671E-02 2.9089E-02
6.0000E+01 | 1.6442E-02 1.6688E-02 1.6860E-02 1.6900E-02
6.5000E+01 | 1.0032E-02 9.8331E-03 9.5193E-03 9.0515E-03
7.0000E+01 | 5.8907E-03 5.5669E-03 5.1595E-03 4.6562E-03
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7.5000E+01 | 3.3809E-03 3.0827E-03 2.7396E-03 2.3529E-03
8.0000E+01 | 1.9091E-03 1.6834E-03 1.4388E-03 1.1808E-03
8.5000E+01 | 1.0551E-03 9.0291E-04 7.4543E-04 5.8760E-04
9.0000E+01 | 5.5449E-04 4.6239E-04 3.7065E-04 2.8244E-04
9.5000E+01 | 2.5001E-04 2.0330E-04 1.5859E-04 1.1731E-04
1.0000E+02 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Lambda
------

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
1.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
1.5000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2.5000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3.5000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
4.0000E+01 | 6.3243E+00 5.1893E+00 3.8089E+00 2.1118E+00
4.5000E+01 | 1.0721E+01 9.9718E+00 9.2140E+00 8.4953E+00
5.0000E+01 | 1.2381E+01 1.1807E+01 1.1228E+01 1.0636E+01
5.5000E+01 | 1.1483E+01 1.0837E+01 1.0142E+01 9.3795E+00
6.0000E+01 | 9.3227E+00 8.5840E+00 7.7870E+00 6.9211E+00
6.5000E+01 | 6.9621E+00 6.2206E+00 5.4412E+00 4.6264E+00
7.0000E+01 | 4.9268E+00 4.2651E+00 3.5937E+00 2.9227E+00
7.5000E+01 | 3.3602E+00 2.8204E+00 2.2920E+00 1.7866E+00
8.0000E+01 | 2.2221E+00 1.8126E+00 1.4248E+00 1.0683E+00
8.5000E+01 | 1.4122E+00 1.1240E+00 8.5856E-01 6.2248E-01
9.0000E+01 | 8.2686E-01 6.4587E-01 4.8252E-01 3.4083E-01
9.5000E+01 | 3.7891E-01 2.9252E-01 2.1553E-01 1.4976E-01
1.0000E+02 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Rho
---

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
1.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
1.5000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2.5000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3.0000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3.5000E+01 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
4.0000E+01 | -7.1918E+00 -6.0114E+00 -4.5204E+00 -2.5855E+00
4.5000E+01 | -8.4541E+00 -7.6378E+00 -6.8479E+00 -6.1657E+00
5.0000E+01 | -7.5988E+00 -6.9323E+00 -6.2879E+00 -5.6707E+00
5.5000E+01 | -5.8905E+00 -5.2837E+00 -4.6809E+00 -4.0772E+00
6.0000E+01 | -4.1854E+00 -3.6547E+00 -3.1306E+00 -2.6135E+00
6.5000E+01 | -2.8221E+00 -2.3904E+00 -1.9743E+00 -1.5775E+00
7.0000E+01 | -1.8437E+00 -1.5137E+00 -1.2055E+00 -9.2283E-01
7.5000E+01 | -1.1812E+00 -9.4071E-01 -7.2326E-01 -5.3162E-01
8.0000E+01 | -7.4513E-01 -5.7680E-01 -4.2921E-01 -3.0383E-01
8.5000E+01 | -4.5907E-01 -3.4659E-01 -2.5060E-01 -1.7161E-01
9.0000E+01 | -2.6550E-01 -1.9656E-01 -1.3892E-01 -9.2652E-02
9.5000E+01 | -1.2280E-01 -8.9807E-02 -6.2569E-02 -4.1033E-02
1.0000E+02 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

D03NCF NAG Library Manual

D03NCF.10 Mark 26



-40

-20

 0

 20

 40

 0  20  40  60  80  100
-10

-5

 0

 5

 10

 15

O
pt

io
n 

V
al

ue
s

D
er

iv
at

iv
es

Stock Price

Example Program
Option Values and Derivatives at 5 Months to Maturity

option values

θ

δ

γ

λ

ρ

-40

-20

 0

 20

 40

 0  20  40  60  80  100
-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

O
pt

io
n 

V
al

ue
s

D
er

iv
at

iv
es

Stock Price

Option Values and Derivatives at 3.5 Months to Maturity

option values

θδ

γ

λ

ρ

D03 – Partial Differential Equations D03NCF

Mark 26 D03NCF.11 (last)





NAG Library Routine Document

D03NDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03NDF computes an analytic solution to the Black–Scholes equation for a certain set of option types.

2 Specification

SUBROUTINE D03NDF (KOPT, X, S, T, TMAT, TDPAR, R, Q, SIGMA, F, THETA,
DELTA, GAMMA, LAMBDA, RHO, IFAIL)

&

INTEGER KOPT, IFAIL
REAL (KIND=nag_wp) X, S, T, TMAT, R(*), Q(*), SIGMA(*), F, THETA,

DELTA, GAMMA, LAMBDA, RHO
&

LOGICAL TDPAR(3)

3 Description

D03NDF computes an analytic solution to the Black–Scholes equation (see Hull (1989) and Wilmott et
al. (1995))

@f

@t
þ r� qð ÞS@f

@S
þ �

2S2

2

@2f

@S2
¼ rf ð1Þ

Smin < S < Smax ; tmin < t < tmax ; ð2Þ

for the value f of a European put or call option, or an American call option with zero dividend q. In
equation (1) t is time, S is the stock price, X is the exercise price, r is the risk free interest rate, q is the
continuous dividend, and � is the stock volatility. The parameter r, q and � may be either constant, or
functions of time. In the latter case their average instantaneous values over the remaining life of the
option should be provided to D03NDF. An auxiliary routine D03NEF is available to compute such
averages from values at a set of discrete times. Equation (1) is subject to different boundary conditions
depending on the type of option. For a call option the boundary condition is

f S; t ¼ tmatð Þ ¼ max 0; S �Xð Þ

where tmat is the maturity time of the option. For a put option the equation (1) is subject to

f S; t ¼ tmatð Þ ¼ max 0; X � Sð Þ:
D03NDF also returns values of the Greeks

� ¼ @f
@t
; � ¼ @f

@x
;  ¼ @

2f

@x2
; � ¼ @f

@�
; � ¼ @f

@r
:

S30ABF also computes the European option price given by the Black–Scholes–Merton formula
together with a more comprehensive set of sensitivities (Greeks).

Further details of the analytic solution returned are given in Section 9.1.

4 References

Hull J (1989) Options, Futures and Other Derivative Securities Prentice–Hall

Wilmott P, Howison S and Dewynne J (1995) The Mathematics of Financial Derivatives Cambridge
University Press
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5 Arguments

1: KOPT – INTEGER Input

On entry: specifies the kind of option to be valued:

KOPT ¼ 1
A European call option.

KOPT ¼ 2
An American call option.

KOPT ¼ 3
A European put option.

Constraints:

KOPT ¼ 1, 2 or 3;
if q 6¼ 0, KOPT 6¼ 2.

2: X – REAL (KIND=nag_wp) Input

On entry: the exercise price X.

Constraint: X � 0:0.

3: S – REAL (KIND=nag_wp) Input

On entry: the stock price at which the option value and the Greeks should be evaluated.

Constraint: S � 0:0.

4: T – REAL (KIND=nag_wp) Input

On entry: the time at which the option value and the Greeks should be evaluated.

Constraint: T � 0:0.

5: TMAT – REAL (KIND=nag_wp) Input

On entry: the maturity time of the option.

Constraint: TMAT � T.

6: TDPARð3Þ – LOGICAL array Input

On entry: specifies whether or not various arguments are time-dependent. More precisely, r is
time-dependent if TDPARð1Þ ¼ :TRUE: and constant otherwise. Similarly, TDPARð2Þ specifies
whether q is time-dependent and TDPARð3Þ specifies whether � is time-dependent.

7: Rð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array R must be at least 3 if TDPARð1Þ ¼ :TRUE:, and at least 1
otherwise.

On entry: if TDPARð1Þ ¼ :FALSE: then Rð1Þ must contain the constant value of r. The
remaining elements need not be set.

If TDPARð1Þ ¼ :TRUE: then Rð1Þ must contain the value of r at time T and Rð2Þ must contain
its average instantaneous value over the remaining life of the option:

r̂ ¼
Z TMAT

T
r �ð Þ d�:

The auxiliary routine D03NEF may be used to construct R from a set of values of r at discrete
times.
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8: Qð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Q must be at least 3 if TDPARð2Þ ¼ :TRUE:, and at least 1
otherwise.

On entry: if TDPARð2Þ ¼ :FALSE: then Qð1Þ must contain the constant value of q. The
remaining elements need not be set.

If TDPARð2Þ ¼ :TRUE: then Qð1Þ must contain the constant value of q and Qð2Þ must contain
its average instantaneous value over the remaining life of the option:

q̂ ¼
Z TMAT

T
q �ð Þ d�:

The auxiliary routine D03NEF may be used to construct Q from a set of values of q at discrete
times.

9: SIGMAð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array SIGMA must be at least 3 if TDPARð3Þ ¼ :TRUE:, and at least
1 otherwise.

On entry: if TDPARð3Þ ¼ :FALSE: then SIGMAð1Þ must contain the constant value of �. The
remaining elements need not be set.

If TDPARð3Þ ¼ :TRUE: then SIGMAð1Þ must contain the value of � at time T, SIGMAð2Þ the
average instantaneous value �̂, and SIGMAð3Þ the second-order average ��, where:

�̂ ¼
Z TMAT

T
� �ð Þ d�;

�� ¼
Z TMAT

T
�2 �ð Þ d�

� �1=2

:

The auxiliary routine D03NEF may be used to compute SIGMA from a set of values at discrete
times.

Constraints:

if TDPARð3Þ ¼ :FALSE:, SIGMAð1Þ > 0:0;
if TDPARð3Þ ¼ :TRUE:, SIGMAðiÞ > 0:0, for i ¼ 1; 2; 3.

10: F – REAL (KIND=nag_wp) Output

On exit: the value f of the option at the stock price S and time T.

11: THETA – REAL (KIND=nag_wp) Output
12: DELTA – REAL (KIND=nag_wp) Output
13: GAMMA – REAL (KIND=nag_wp) Output
14: LAMBDA – REAL (KIND=nag_wp) Output
15: RHO – REAL (KIND=nag_wp) Output

On exit: the values of various Greeks at the stock price S and time T, as follows:

THETA ¼ � ¼ @f
@t
; DELTA ¼ � ¼ @f

@S
; GAMMA ¼  ¼ @

2f

@S2
;

LAMBDA ¼ � ¼ @f
@�
; RHO ¼ � ¼ @f

@r
:

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, KOPT < 1,
or KOPT > 3,
or KOPT ¼ 2 when q 6¼ 0,
or X < 0:0,
or S < 0:0,
or T < 0:0,
or TMAT < T,
or SIGMAð1Þ � 0:0, with TDPARð3Þ ¼ :FALSE:,
or SIGMAðiÞ � 0:0, with TDPARð3Þ ¼ :TRUE:, for some i ¼ 1, 2 or 3.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Given accurate values of R, Q and SIGMA no further approximations are made in the evaluation of the
Black–Scholes analytic formulae, and the results should therefore be within machine accuracy. The
values of R, Q and SIGMA returned from D03NEF are exact for polynomials of degree up to 3.

8 Parallelism and Performance

D03NDF is not threaded in any implementation.
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9 Further Comments

9.1 Algorithmic Details

The Black–Scholes analytic formulae are used to compute the solution. For a European call option
these are as follows:

f ¼ Se�q̂ T�tð ÞN d1ð Þ �Xe�r̂ T�tð ÞN d2ð Þ

where

d1 ¼
log S=Xð Þ þ r̂� q̂ þ ��2=2

� �
T � tð Þ

��
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p ;

d2 ¼
log S=Xð Þ þ r̂� q̂ � ��2=2

� �
T � tð Þ

��
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p ¼ d1 � ��

ffiffiffiffiffiffiffiffiffiffiffi
T � t
p

;

N xð Þ is the cumulative Normal distribution function and N 0 xð Þ is its derivative

N xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z x

�1
e��

2=2d�;

N 0 xð Þ ¼ 1ffiffiffiffiffiffi
2	
p e�x

2=2:

The functions q̂, r̂, �̂ and �� are average values of q, r and � over the time to maturity:

q̂ ¼ 1

T � t

Z T

t

q �ð Þd�;

r̂ ¼ 1

T � t

Z T

t

r �ð Þd�;

�̂ ¼ 1

T � t

Z T

t

� �ð Þd�;

�� ¼ 1

T � t

Z T

t

�2 �ð Þd�
� �1=2

:

The Greeks are then calculated as follows:

� ¼ @f

@S
¼ e�q̂ T�tð ÞN d1ð Þ þ

Se�q̂ T�tð ÞN 0 d1ð Þ �Xe�r̂ T�tð ÞN 0 d2ð Þ
��S

ffiffiffiffiffiffiffiffiffiffiffi
T � t
p ;

 ¼ @2f

@S2
¼ Se

�q̂ T�tð ÞN 0 d1ð Þ þXe�r̂ T�tð ÞN 0 d2ð Þ
��S2

ffiffiffiffiffiffiffiffiffiffiffi
T � t
p þ Se

�q̂ T�tð ÞN 0 d1ð Þ �Xe�r̂ T�tð ÞN 0 d2ð Þ
��2S2 T � tð Þ ;

� ¼ @f

@t
¼ rf þ q � rð ÞS�� �

2S2

2
;

� ¼ @f

@�
¼ Xd1e

�r̂ T�tð ÞN 0 d2ð Þ � Sd2e�q̂ T�tð ÞN 0 d1ð Þ
��2

� �
�̂;

� ¼ @f

@r
¼ X T � tð Þe�r̂ T�tð ÞN d2ð Þ þ

Se�q̂ T�tð ÞN 0 d1ð Þ �Xe�r̂ T�tð ÞN 0 d2ð Þ
� � ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

��
:
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Note: that � is obtained from substitution of other Greeks in the Black–Scholes partial differential
equation, rather than differentiation of f . The values of q, r and � appearing in its definition are the
instantaneous values, not the averages. Note also that both the first-order average �̂ and the second-
order average �� appear in the expression for �. This results from the fact that � is the derivative of f
with respect to �, not �̂.

For a European put option the equivalent equations are:

f ¼ Xe�r̂ T�tð ÞN �d2ð Þ � Se�q̂ T�tð ÞN �d1ð Þ;

� ¼ @f

@S
¼ �e�q̂ T�tð ÞN �d1ð Þ þ Se

�q̂ T�tð ÞN 0 �d1ð Þ �Xe�r̂ T�tð ÞN 0 �d2ð Þ
��S

ffiffiffiffiffiffiffiffiffiffiffi
T � t
p ;

 ¼ @2f

@S2
¼ Xe

�r̂ T�tð ÞN 0 �d2ð Þ þ Se�q̂ T�tð ÞN 0 �d1ð Þ
��S2

ffiffiffiffiffiffiffiffiffiffiffi
T � t
p þXe

�r̂ T�tð ÞN 00 �d2ð Þ � Se�q̂ T�tð ÞN 00 �d1ð Þ
��2S2 T � tð Þ ;

� ¼ @f

@t
¼ rf þ q � rð ÞS�� �

2S2

2
;

� ¼ @f

@�
¼ Xd1e

�r̂ T�tð ÞN 0 �d2ð Þ � Sd2e�q̂ T�tð ÞN 0 �d1ð Þ
��2

� �
�̂;

� ¼ @f

@r
¼ �X T � tð Þe�r̂ T�tð ÞN �d2ð Þ þ

Se�q̂ T�tð ÞN 0 �d1ð Þ �Xe�r̂ T�tð ÞN 0 �d2ð Þ
� � ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

�̂
:

The analytic solution for an American call option with q ¼ 0 is identical to that for a European call,
since early exercise is never optimal in this case. For all other cases no analytic solution is known.

10 Example

This example solves the Black–Scholes equation for valuation of a 5-month American call option on a
non-dividend-paying stock with an exercise price of $50. The risk-free interest rate is 10% per annum,
and the stock volatility is 40% per annum.

The option is valued at a range of times and stock prices.

10.1 Program Text

! D03NDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03ndfe_mod

! D03NDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: print_greek

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine print_greek(ns,nt,tmat,s,t,grname,greek)
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! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: tmat
Integer, Intent (In) :: ns, nt
Character (*), Intent (In) :: grname

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: greek(ns,nt), s(ns), t(nt)

! .. Local Scalars ..
Integer :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: len

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) grname
Write (nout,*)(’-’,i=1,len(grname))
Write (nout,*) ’ Stock Price | Time to Maturity (months)’
Write (nout,99999) ’|’, (12.0_nag_wp*(tmat-t(i)),i=1,nt)
Write (nout,*) ’ -----------------’, (’------------’,i=1,nt)
Do i = 1, ns

Write (nout,99998) s(i), ’|’, (greek(i,j),j=1,nt)
End Do

Return

99999 Format (16X,A,1X,12(1P,E12.4))
99998 Format (1X,1P,E12.4,3X,A,1X,12(1P,E12.4))

End Subroutine print_greek
End Module d03ndfe_mod

Program d03ndfe

! D03NDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03ndf, nag_wp
Use d03ndfe_mod, Only: nin, nout, print_greek

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Logical, Parameter :: gprnt(5) = .True.

! .. Local Scalars ..
Real (Kind=nag_wp) :: ds, dt, tmat, x
Integer :: i, ifail, j, kopt, ns, nt

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: delta(:,:), f(:,:), gamma(:,:), &

lambda(:,:), rho(:,:), s(:), t(:), &
theta(:,:)

Real (Kind=nag_wp) :: q(3), r(3), sigma(3)
Logical :: tdpar(3)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D03NDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) ns, nt

Allocate (delta(ns,nt),f(ns,nt),gamma(ns,nt),lambda(ns,nt),rho(ns,nt), &
s(ns),t(nt),theta(ns,nt))

! Read problem parameters

Read (nin,*) kopt
Read (nin,*) x
Read (nin,*) tmat
Read (nin,*) q(1), r(1), sigma(1)
Read (nin,*) s(1), s(ns)
Read (nin,*) t(1), t(nt)
Read (nin,*) tdpar(1:3)
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If (ns<2) Then
Write (nout,*) ’NS invalid.’

Else If (nt<2) Then
Write (nout,*) ’NT invalid.’

Else

ds = (s(ns)-s(1))/real(ns-1,kind=nag_wp)
dt = (t(nt)-t(1))/real(nt-1,kind=nag_wp)

! Loop over times
Do j = 1, nt

t(j) = t(1) + real(j-1,kind=nag_wp)*dt

! Loop over stock prices
Do i = 1, ns

s(i) = s(1) + real(i-1,kind=nag_wp)*ds

! Call Black-Scholes solver
ifail = 0
Call d03ndf(kopt,x,s(i),t(j),tmat,tdpar,r,q,sigma,f(i,j), &

theta(i,j),delta(i,j),gamma(i,j),lambda(i,j),rho(i,j),ifail)

End Do
End Do

! Output option values and possibly Greeks.

Call print_greek(ns,nt,tmat,s,t,’Option Values’,f)

If (gprnt(1)) Then
Call print_greek(ns,nt,tmat,s,t,’Theta’,theta)

End If
If (gprnt(2)) Then

Call print_greek(ns,nt,tmat,s,t,’Delta’,delta)
End If
If (gprnt(3)) Then

Call print_greek(ns,nt,tmat,s,t,’Gamma’,gamma)
End If
If (gprnt(4)) Then

Call print_greek(ns,nt,tmat,s,t,’Lambda’,lambda)
End If
If (gprnt(5)) Then

Call print_greek(ns,nt,tmat,s,t,’Rho’,rho)
End If

End If

End Program d03ndfe

10.2 Program Data

D03NDF Example Program Data
21 4 : ns, nt
2 : kopt
50. : x
0.4166667 : tmat
0.0 0.1 0.4 : q(1), r(1), sigma(1)
0.0 100. : s(1), s(ns)
0.0 0.125 : t(1), t(nt)
.FALSE. .FALSE. .FALSE. : tdpar

10.3 Program Results

D03NDF Example Program Results

Option Values
-------------

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00
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-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 4.4491E-19 4.5989E-21 1.5461E-23 1.0478E-26
1.0000E+01 | 5.5566E-10 5.5129E-11 3.1298E-12 8.0281E-14
1.5000E+01 | 4.7337E-06 1.2187E-06 2.2774E-07 2.7003E-08
2.0000E+01 | 7.2236E-04 3.1054E-04 1.1005E-04 2.9678E-05
2.5000E+01 | 1.6557E-02 9.6610E-03 5.0099E-03 2.2012E-03
3.0000E+01 | 1.3307E-01 9.4037E-02 6.1869E-02 3.6848E-02
3.5000E+01 | 5.6631E-01 4.5257E-01 3.4667E-01 2.5053E-01
4.0000E+01 | 1.6004E+00 1.3850E+00 1.1699E+00 9.5640E-01
4.5000E+01 | 3.4384E+00 3.1328E+00 2.8168E+00 2.4891E+00
5.0000E+01 | 6.1165E+00 5.7600E+00 5.3874E+00 4.9960E+00
5.5000E+01 | 9.5300E+00 9.1645E+00 8.7846E+00 8.3882E+00
6.0000E+01 | 1.3509E+01 1.3163E+01 1.2808E+01 1.2445E+01
6.5000E+01 | 1.7883E+01 1.7568E+01 1.7251E+01 1.6932E+01
7.0000E+01 | 2.2513E+01 2.2230E+01 2.1949E+01 2.1671E+01
7.5000E+01 | 2.7301E+01 2.7045E+01 2.6792E+01 2.6544E+01
8.0000E+01 | 3.2182E+01 3.1946E+01 3.1713E+01 3.1485E+01
8.5000E+01 | 3.7117E+01 3.6894E+01 3.6674E+01 3.6458E+01
9.0000E+01 | 4.2081E+01 4.1868E+01 4.1656E+01 4.1446E+01
9.5000E+01 | 4.7062E+01 4.6854E+01 4.6647E+01 4.6441E+01
1.0000E+02 | 5.2052E+01 5.1847E+01 5.1643E+01 5.1439E+01

Theta
-----

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | -4.4017E-17 -5.5977E-19 -2.3735E-21 -2.0936E-24
1.0000E+01 | -2.7827E-08 -3.3857E-09 -2.4163E-10 -8.0398E-12
1.5000E+01 | -1.3953E-04 -4.3864E-05 -1.0258E-05 -1.5706E-06
2.0000E+01 | -1.3287E-02 -6.9342E-03 -3.0567E-03 -1.0576E-03
2.5000E+01 | -1.9512E-01 -1.3714E-01 -8.7730E-02 -4.9018E-02
3.0000E+01 | -1.0161E+00 -8.5596E-01 -6.8695E-01 -5.1395E-01
3.5000E+01 | -2.8112E+00 -2.6426E+00 -2.4328E+00 -2.1723E+00
4.0000E+01 | -5.1662E+00 -5.1709E+00 -5.1500E+00 -5.0892E+00
4.5000E+01 | -7.2196E+00 -7.4540E+00 -7.7180E+00 -8.0183E+00
5.0000E+01 | -8.3848E+00 -8.7388E+00 -9.1543E+00 -9.6525E+00
5.5000E+01 | -8.6152E+00 -8.9372E+00 -9.3056E+00 -9.7329E+00
6.0000E+01 | -8.2058E+00 -8.4077E+00 -8.6186E+00 -8.8343E+00
6.5000E+01 | -7.5116E+00 -7.5845E+00 -7.6368E+00 -7.6553E+00
7.0000E+01 | -6.7905E+00 -6.7711E+00 -6.7202E+00 -6.6262E+00
7.5000E+01 | -6.1758E+00 -6.1099E+00 -6.0160E+00 -5.8893E+00
8.0000E+01 | -5.7084E+00 -5.6310E+00 -5.5359E+00 -5.4234E+00
8.5000E+01 | -5.3786E+00 -5.3103E+00 -5.2340E+00 -5.1533E+00
9.0000E+01 | -5.1582E+00 -5.1071E+00 -5.0551E+00 -5.0062E+00
9.5000E+01 | -5.0165E+00 -4.9835E+00 -4.9536E+00 -4.9298E+00
1.0000E+02 | -4.9281E+00 -4.9107E+00 -4.8979E+00 -4.8916E+00

Delta
-----

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 3.1381E-18 3.5969E-20 1.3576E-22 1.0494E-25
1.0000E+01 | 1.4005E-09 1.5376E-10 9.7805E-12 2.8553E-13
1.5000E+01 | 6.1418E-06 1.7452E-06 3.6436E-07 4.9030E-08
2.0000E+01 | 5.6040E-04 2.6494E-04 1.0451E-04 3.1863E-05
2.5000E+01 | 8.3312E-03 5.3217E-03 3.0570E-03 1.5104E-03
3.0000E+01 | 4.5711E-02 3.5158E-02 2.5461E-02 1.6934E-02
3.5000E+01 | 1.3765E-01 1.1889E-01 9.9459E-02 7.9557E-02
4.0000E+01 | 2.8307E-01 2.6258E-01 2.3996E-01 2.1479E-01
4.5000E+01 | 4.5320E-01 4.3858E-01 4.2214E-01 4.0335E-01
5.0000E+01 | 6.1427E-01 6.0856E-01 6.0249E-01 5.9601E-01
5.5000E+01 | 7.4525E-01 7.4687E-01 7.4937E-01 7.5308E-01
6.0000E+01 | 8.4052E-01 8.4611E-01 8.5298E-01 8.6148E-01
6.5000E+01 | 9.0433E-01 9.1096E-01 9.1862E-01 9.2752E-01
7.0000E+01 | 9.4449E-01 9.5045E-01 9.5699E-01 9.6412E-01
7.5000E+01 | 9.6862E-01 9.7325E-01 9.7808E-01 9.8300E-01
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8.0000E+01 | 9.8260E-01 9.8589E-01 9.8913E-01 9.9221E-01
8.5000E+01 | 9.9050E-01 9.9269E-01 9.9473E-01 9.9653E-01
9.0000E+01 | 9.9487E-01 9.9627E-01 9.9748E-01 9.9848E-01
9.5000E+01 | 9.9725E-01 9.9811E-01 9.9881E-01 9.9935E-01
1.0000E+02 | 9.9854E-01 9.9905E-01 9.9945E-01 9.9972E-01

Gamma
-----

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 2.1246E-17 2.7112E-19 1.1536E-21 1.0211E-24
1.0000E+01 | 3.3102E-09 4.0468E-10 2.9020E-11 9.7029E-13
1.5000E+01 | 7.2660E-06 2.2982E-06 5.4080E-07 8.3319E-08
2.0000E+01 | 3.8245E-04 2.0111E-04 8.9333E-05 3.1153E-05
2.5000E+01 | 3.5190E-03 2.4960E-03 1.6118E-03 9.0924E-04
3.0000E+01 | 1.2392E-02 1.0554E-02 8.5660E-03 6.4838E-03
3.5000E+01 | 2.4348E-02 2.3181E-02 2.1626E-02 1.9580E-02
4.0000E+01 | 3.2765E-02 3.3274E-02 3.3650E-02 3.3795E-02
4.5000E+01 | 3.4099E-02 3.5763E-02 3.7655E-02 3.9828E-02
5.0000E+01 | 2.9625E-02 3.1360E-02 3.3403E-02 3.5860E-02
5.5000E+01 | 2.2600E-02 2.3743E-02 2.5052E-02 2.6569E-02
6.0000E+01 | 1.5672E-02 1.6137E-02 1.6603E-02 1.7048E-02
6.5000E+01 | 1.0123E-02 1.0119E-02 1.0032E-02 9.8216E-03
7.0000E+01 | 6.1999E-03 5.9720E-03 5.6534E-03 5.2154E-03
7.5000E+01 | 3.6474E-03 3.3666E-03 3.0215E-03 2.6027E-03
8.0000E+01 | 2.0815E-03 1.8329E-03 1.5510E-03 1.2387E-03
8.5000E+01 | 1.1610E-03 9.7196E-04 7.7211E-04 5.6851E-04
9.0000E+01 | 6.3660E-04 5.0529E-04 3.7553E-04 2.5382E-04
9.5000E+01 | 3.4468E-04 2.5884E-04 1.7950E-04 1.1099E-04
1.0000E+02 | 1.8494E-04 1.3118E-04 8.4708E-05 4.7786E-05

Lambda
------

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 8.8525E-17 1.0167E-18 3.8453E-21 2.9781E-24
1.0000E+01 | 5.5171E-08 6.0702E-09 3.8694E-10 1.1320E-11
1.5000E+01 | 2.7247E-04 7.7565E-05 1.6224E-05 2.1871E-06
2.0000E+01 | 2.5496E-02 1.2066E-02 4.7644E-03 1.4538E-03
2.5000E+01 | 3.6656E-01 2.3400E-01 1.3431E-01 6.6299E-02
3.0000E+01 | 1.8588E+00 1.4248E+00 1.0279E+00 6.8080E-01
3.5000E+01 | 4.9710E+00 4.2595E+00 3.5323E+00 2.7983E+00
4.0000E+01 | 8.7374E+00 7.9857E+00 7.1787E+00 6.3084E+00
4.5000E+01 | 1.1508E+01 1.0863E+01 1.0167E+01 9.4094E+00
5.0000E+01 | 1.2344E+01 1.1760E+01 1.1134E+01 1.0459E+01
5.5000E+01 | 1.1394E+01 1.0773E+01 1.0104E+01 9.3768E+00
6.0000E+01 | 9.4033E+00 8.7137E+00 7.9693E+00 7.1602E+00
6.5000E+01 | 7.1285E+00 6.4127E+00 5.6514E+00 4.8412E+00
7.0000E+01 | 5.0632E+00 4.3894E+00 3.6936E+00 2.9815E+00
7.5000E+01 | 3.4194E+00 2.8406E+00 2.2661E+00 1.7080E+00
8.0000E+01 | 2.2203E+00 1.7596E+00 1.3235E+00 9.2488E-01
8.5000E+01 | 1.3981E+00 1.0534E+00 7.4380E-01 4.7920E-01
9.0000E+01 | 8.5941E-01 6.1393E-01 4.0558E-01 2.3986E-01
9.5000E+01 | 5.1846E-01 3.5040E-01 2.1600E-01 1.1686E-01
1.0000E+02 | 3.0824E-01 1.9677E-01 1.1294E-01 5.5750E-02

Rho
---

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 6.3524E-18 6.5717E-20 2.2112E-22 1.4997E-25
1.0000E+01 | 5.6040E-09 5.5594E-10 3.1558E-11 8.0937E-13
1.5000E+01 | 3.6414E-05 9.3595E-06 1.7459E-06 2.0663E-07
2.0000E+01 | 4.3690E-03 1.8706E-03 6.6008E-04 1.7721E-04
2.5000E+01 | 7.9884E-02 4.6268E-02 2.3805E-02 1.0371E-02
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3.0000E+01 | 5.1594E-01 3.6026E-01 2.3399E-01 1.3743E-01
3.5000E+01 | 1.7715E+00 1.3907E+00 1.0448E+00 7.3907E-01
4.0000E+01 | 4.0509E+00 3.4193E+00 2.8095E+00 2.2269E+00
4.5000E+01 | 7.0648E+00 6.2263E+00 5.3932E+00 4.5679E+00
5.0000E+01 | 1.0249E+01 9.2505E+00 8.2458E+00 7.2346E+00
5.5000E+01 | 1.3108E+01 1.1967E+01 1.0810E+01 9.6342E+00
6.0000E+01 | 1.5384E+01 1.4101E+01 1.2790E+01 1.1446E+01
6.5000E+01 | 1.7041E+01 1.5617E+01 1.4153E+01 1.2646E+01
7.0000E+01 | 1.8167E+01 1.6613E+01 1.5013E+01 1.3363E+01
7.5000E+01 | 1.8894E+01 1.7231E+01 1.5521E+01 1.3761E+01
8.0000E+01 | 1.9344E+01 1.7597E+01 1.5806E+01 1.3969E+01
8.5000E+01 | 1.9615E+01 1.7807E+01 1.5959E+01 1.4072E+01
9.0000E+01 | 1.9774E+01 1.7924E+01 1.6039E+01 1.4122E+01
9.5000E+01 | 1.9865E+01 1.7987E+01 1.6080E+01 1.4145E+01
1.0000E+02 | 1.9917E+01 1.8022E+01 1.6101E+01 1.4156E+01
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NAG Library Routine Document

D03NEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03NEF computes average values of a continuous function of time over the remaining life of an option.
It is used together with D03NDF to value options with time-dependent arguments.

2 Specification

SUBROUTINE D03NEF (T0, TMAT, NTD, TD, PHID, PHIAV, WORK, LWORK, IFAIL)

INTEGER NTD, LWORK, IFAIL
REAL (KIND=nag_wp) T0, TMAT, TD(NTD), PHID(NTD), PHIAV(3), WORK(LWORK)

3 Description

D03NEF computes the quantities


 t0ð Þ; 
̂ ¼ 1
T�t0

Z T

t0


 �ð Þ d�; �
 ¼ 1
T�t0

Z T

t0


2 �ð Þ d�
� �1=2

from a given set of values PHID of a continuous time-dependent function 
 tð Þ at a set of discrete points
TD, where t0 is the current time and T is the maturity time. Thus 
̂ and �
 are first and second order
averages of 
 over the remaining life of an option.

The routine may be used in conjunction with D03NDF in order to value an option in the case where the
risk-free interest rate r, the continuous dividend q, or the stock volatility � is time-dependent and is
described by values at a set of discrete times (see Section 9.2). This is illustrated in Section 10.

4 References

None.

5 Arguments

1: T0 – REAL (KIND=nag_wp) Input

On entry: the current time t0.

Constraint: TDð1Þ � T0 � TDðNTDÞ.

2: TMAT – REAL (KIND=nag_wp) Input

On entry: the maturity time T .

Constraint: TDð1Þ � TMAT � TDðNTDÞ.

3: NTD – INTEGER Input

On entry: the number of discrete times at which 
 is given.

Constraint: NTD � 2.
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4: TDðNTDÞ – REAL (KIND=nag_wp) array Input

On entry: the discrete times at which 
 is specified.

Constraint: TDð1Þ < TDð2Þ < � � � < TDðNTDÞ.

5: PHIDðNTDÞ – REAL (KIND=nag_wp) array Input

On entry: PHIDðiÞ must contain the value of 
 at time TDðiÞ, for i ¼ 1; 2; . . . ;NTD.

6: PHIAVð3Þ – REAL (KIND=nag_wp) array Output

On exit: PHIAVð1Þ contains the value of 
 interpolated to t0, PHIAVð2Þ contains the first-order
average 
̂ and PHIAVð3Þ contains the second-order average �
, where:


̂ ¼ 1
T�t0

Z T

t0


 �ð Þd�; �
 ¼ 1
T�t0

Z T

t0


2 �ð Þ d�
� �1=2

:

7: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
D03NEF is called.

Constraint: LWORK � 9� NTDþ 24.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, T0 lies outside the range [TDð1Þ;TDðNTDÞ],
or TMAT lies outside the range [TDð1Þ;TDðNTDÞ],
or NTD < 2,
or TD badly ordered,
or LWORK < 9� NTDþ 24.

IFAIL ¼ 2

Unexpected failure in internal call to E01BAF or E02BBF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If 
 2 C4 t0; T½ � then the error in the approximation of 
 t0ð Þ and 
̂ is O H4
� �

, where
H ¼ max

i
T iþ 1ð Þ � T ið Þð Þ, for i ¼ 1; 2; . . . ;NTD� 1. The approximation is exact for polynomials of

degree up to 3.

The third quantity �
 is O H2
� �

, and exact for linear functions.

8 Parallelism and Performance

D03NEF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken is proportional to NTD.

9.2 Use with D03NDF

Suppose you wish to evaluate the analytic solution of the Black–Scholes equation in the case when the
risk-free interest rate r is a known function of time, and is represented as a set of values at discrete
times. A call to D03NEF providing these values in PHID produces an output array PHIAV suitable for
use as the argument R in a subsequent call to D03NDF.

Time-dependent values of the continuous dividend Q and the volatility � may be handled in the same
way.

9.3 Algorithmic Details

The NTD data points are fitted with a cubic B-spline using the routine E01BAF. Evaluation is then
performed using E02BBF, and the definite integrals are computed using direct integration of the cubic
splines in each interval. The special case of T ¼ to is handled by interpolating 
 at that point.

10 Example

This example demonstrates the use of the routine in conjunction with D03NDF to solve the Black–
Scholes equation for valuation of a 5-month American call option on a non-dividend-paying stock with
an exercise price of $50. The risk-free interest rate varies linearly with time and the stock volatility has
a quadratic variation. Since these functions are integrated exactly by D03NEF the solution of the
Black–Scholes equation by D03NDF is also exact.

The option is valued at a range of times and stock prices.
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10.1 Program Text

! D03NEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03nefe_mod

! D03NEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: print_greek

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine print_greek(ns,nt,tmat,s,t,grname,greek)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: tmat
Integer, Intent (In) :: ns, nt
Character (*), Intent (In) :: grname

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: greek(ns,nt), s(ns), t(nt)

! .. Local Scalars ..
Integer :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: len

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) grname
Write (nout,*)(’-’,i=1,len(grname))
Write (nout,*) ’ Stock Price | Time to Maturity (months)’
Write (nout,99999) ’|’, (12.0_nag_wp*(tmat-t(i)),i=1,nt)
Write (nout,*) ’ -----------------’, (’------------’,i=1,nt)
Do i = 1, ns

Write (nout,99998) s(i), ’|’, (greek(i,j),j=1,nt)
End Do

Return

99999 Format (16X,A,1X,12(1P,E12.4))
99998 Format (1X,1P,E12.4,3X,A,1X,12(1P,E12.4))

End Subroutine print_greek
End Module d03nefe_mod

Program d03nefe

! D03NEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03ndf, d03nef, nag_wp
Use d03nefe_mod, Only: nin, nout, print_greek

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Logical, Parameter :: gprnt(5) = .True.

! .. Local Scalars ..
Real (Kind=nag_wp) :: ds, dt, tmat, x
Integer :: i, ifail, j, kopt, lwork, ns, nt, &

ntd
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: delta(:,:), f(:,:), gamma(:,:), &
lambda(:,:), rd(:), rho(:,:), s(:), &
sigd(:), t(:), td(:), theta(:,:), &
work(:)

Real (Kind=nag_wp) :: q(3), ra(3), siga(3)
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Logical :: tdpar(3)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Write (nout,*) ’D03NEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) ns, nt, ntd
lwork = 9*ntd + 24

Allocate (delta(ns,nt),f(ns,nt),gamma(ns,nt),lambda(ns,nt),rd(ntd), &
rho(ns,nt),s(ns),sigd(ntd),t(nt),td(ntd),theta(ns,nt),work(lwork))

! Read problem parameters

Read (nin,*) kopt
Read (nin,*) x
Read (nin,*) tmat
Read (nin,*) s(1), s(ns)
Read (nin,*) t(1), t(nt)
Read (nin,*) td(1:ntd)
Read (nin,*) rd(1:ntd)
Read (nin,*) sigd(1:ntd)
Read (nin,*) tdpar(1:3)
Read (nin,*) q(1)

If (ns<2) Then
Write (nout,*) ’NS invalid.’

Else If (nt<2) Then
Write (nout,*) ’NT invalid.’

Else

ds = (s(ns)-s(1))/real(ns-1,kind=nag_wp)
dt = (t(nt)-t(1))/real(nt-1,kind=nag_wp)

! Loop over times

Do j = 1, nt

t(j) = t(1) + real(j-1,kind=nag_wp)*dt

! Find average values of r and sigma
ifail = 0
Call d03nef(t(j),tmat,ntd,td,rd,ra,work,lwork,ifail)

ifail = 0
Call d03nef(t(j),tmat,ntd,td,sigd,siga,work,lwork,ifail)

! Loop over stock prices

Do i = 1, ns

s(i) = s(1) + real(i-1,kind=nag_wp)*ds

! Evaluate analytic solution of Black-Scholes equation
ifail = 0
Call d03ndf(kopt,x,s(i),t(j),tmat,tdpar,ra,q,siga,f(i,j), &

theta(i,j),delta(i,j),gamma(i,j),lambda(i,j),rho(i,j),ifail)

End Do
End Do

! Output option values and possibly Greeks.

Call print_greek(ns,nt,tmat,s,t,’Option Values’,f)

If (gprnt(1)) Then
Call print_greek(ns,nt,tmat,s,t,’Theta’,theta)

End If
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If (gprnt(2)) Then
Call print_greek(ns,nt,tmat,s,t,’Delta’,delta)

End If
If (gprnt(3)) Then

Call print_greek(ns,nt,tmat,s,t,’Gamma’,gamma)
End If
If (gprnt(4)) Then

Call print_greek(ns,nt,tmat,s,t,’Lambda’,lambda)
End If
If (gprnt(5)) Then

Call print_greek(ns,nt,tmat,s,t,’Rho’,rho)
End If

End If

End Program d03nefe

10.2 Program Data

D03NEF Example Program Data
21 4 6 : ns, nt, ntd
2 : kopt
50. : x
0.4166667 : tmat
0.0 100. : s(1), s(ns)
0.0 0.125 : t(1), t(nt)
0.00 0.10 0.20
0.30 0.40 0.50 : td
0.10 0.11 0.12
0.13 0.14 0.15 : rd
0.30 0.46 0.54
0.54 0.46 0.30 : sigd
.TRUE. .FALSE. .TRUE. : tdpar
0.0 : q(1)

10.3 Program Results

D03NEF Example Program Results

Option Values
-------------

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 3.3671E-13 7.7404E-14 7.3210E-15 2.0179E-16
1.0000E+01 | 5.2088E-07 2.4281E-07 7.2216E-08 1.1540E-08
1.5000E+01 | 2.6607E-04 1.6753E-04 8.0943E-05 2.7179E-05
2.0000E+01 | 8.9697E-03 6.6505E-03 4.1780E-03 2.0942E-03
2.5000E+01 | 8.3647E-02 6.8467E-02 5.0375E-02 3.2105E-02
3.0000E+01 | 3.8221E-01 3.3331E-01 2.7117E-01 2.0119E-01
3.5000E+01 | 1.1298E+00 1.0275E+00 8.9292E-01 7.3146E-01
4.0000E+01 | 2.5164E+00 2.3541E+00 2.1380E+00 1.8699E+00
4.5000E+01 | 4.6249E+00 4.4110E+00 4.1267E+00 3.7700E+00
5.0000E+01 | 7.4287E+00 7.1797E+00 6.8531E+00 6.4449E+00
5.5000E+01 | 1.0830E+01 1.0564E+01 1.0221E+01 9.7996E+00
6.0000E+01 | 1.4707E+01 1.4436E+01 1.4097E+01 1.3689E+01
6.5000E+01 | 1.8937E+01 1.8671E+01 1.8348E+01 1.7968E+01
7.0000E+01 | 2.3421E+01 2.3164E+01 2.2860E+01 2.2514E+01
7.5000E+01 | 2.8080E+01 2.7833E+01 2.7550E+01 2.7234E+01
8.0000E+01 | 3.2857E+01 3.2620E+01 3.2354E+01 3.2064E+01
8.5000E+01 | 3.7713E+01 3.7484E+01 3.7233E+01 3.6963E+01
9.0000E+01 | 4.2620E+01 4.2398E+01 4.2158E+01 4.1904E+01
9.5000E+01 | 4.7561E+01 4.7344E+01 4.7112E+01 4.6868E+01
1.0000E+02 | 5.2523E+01 5.2310E+01 5.2084E+01 5.1848E+01

Theta
-----

Stock Price | Time to Maturity (months)
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| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00
-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | -8.9082E-12 -3.4507E-12 -5.0884E-13 -2.1236E-14
1.0000E+01 | -7.2097E-06 -5.5915E-06 -2.5721E-06 -6.1830E-07
1.5000E+01 | -2.2499E-03 -2.3259E-03 -1.7227E-03 -8.6349E-04
2.0000E+01 | -4.9483E-02 -5.9355E-02 -5.6562E-02 -4.1921E-02
2.5000E+01 | -3.1200E-01 -4.0620E-01 -4.4765E-01 -4.1683E-01
3.0000E+01 | -9.8578E-01 -1.3408E+00 -1.6092E+00 -1.7186E+00
3.5000E+01 | -2.0479E+00 -2.8395E+00 -3.5745E+00 -4.1390E+00
4.0000E+01 | -3.2501E+00 -4.5165E+00 -5.8147E+00 -7.0323E+00
4.5000E+01 | -4.3144E+00 -5.9349E+00 -7.6762E+00 -9.4488E+00
5.0000E+01 | -5.0802E+00 -6.8543E+00 -8.7919E+00 -1.0815E+01
5.5000E+01 | -5.5225E+00 -7.2603E+00 -9.1500E+00 -1.1104E+01
6.0000E+01 | -5.7006E+00 -7.2722E+00 -8.9491E+00 -1.0625E+01
6.5000E+01 | -5.7014E+00 -7.0446E+00 -8.4366E+00 -9.7565E+00
7.0000E+01 | -5.6037E+00 -6.7093E+00 -7.8142E+00 -8.7951E+00
7.5000E+01 | -5.4653E+00 -6.3555E+00 -7.2107E+00 -7.9170E+00
8.0000E+01 | -5.3218E+00 -6.0329E+00 -6.6903E+00 -7.1974E+00
8.5000E+01 | -5.1920E+00 -5.7627E+00 -6.2736E+00 -6.6481E+00
9.0000E+01 | -5.0833E+00 -5.5487E+00 -5.9563E+00 -6.2492E+00
9.5000E+01 | -4.9969E+00 -5.3857E+00 -5.7234E+00 -5.9700E+00
1.0000E+02 | -4.9306E+00 -5.2651E+00 -5.5570E+00 -5.7797E+00

Delta
-----

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 1.6086E-12 3.8832E-13 3.9572E-14 1.2111E-15
1.0000E+01 | 8.9933E-07 4.3972E-07 1.4063E-07 2.4884E-08
1.5000E+01 | 2.3975E-04 1.5810E-04 8.1943E-05 3.0366E-05
2.0000E+01 | 4.9150E-03 3.8095E-03 2.5596E-03 1.4100E-03
2.5000E+01 | 3.0345E-02 2.5906E-02 2.0311E-02 1.4153E-02
3.0000E+01 | 9.6991E-02 8.7980E-02 7.5946E-02 6.1231E-02
3.5000E+01 | 2.0863E-01 1.9675E-01 1.8053E-01 1.5957E-01
4.0000E+01 | 3.4875E-01 3.3719E-01 3.2158E-01 3.0109E-01
4.5000E+01 | 4.9361E-01 4.8480E-01 4.7356E-01 4.5924E-01
5.0000E+01 | 6.2450E-01 6.1931E-01 6.1363E-01 6.0735E-01
5.5000E+01 | 7.3200E-01 7.3000E-01 7.2907E-01 7.2954E-01
6.0000E+01 | 8.1439E-01 8.1462E-01 8.1681E-01 8.2145E-01
6.5000E+01 | 8.7440E-01 8.7589E-01 8.7961E-01 8.8602E-01
7.0000E+01 | 9.1650E-01 9.1850E-01 9.2260E-01 9.2911E-01
7.5000E+01 | 9.4522E-01 9.4726E-01 9.5107E-01 9.5679E-01
8.0000E+01 | 9.6441E-01 9.6624E-01 9.6946E-01 9.7406E-01
8.5000E+01 | 9.7704E-01 9.7856E-01 9.8111E-01 9.8461E-01
9.0000E+01 | 9.8526E-01 9.8646E-01 9.8839E-01 9.9094E-01
9.5000E+01 | 9.9057E-01 9.9148E-01 9.9290E-01 9.9470E-01
1.0000E+02 | 9.9397E-01 9.9464E-01 9.9567E-01 9.9691E-01

Gamma
-----

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 7.2334E-12 1.8390E-12 2.0276E-13 6.9267E-15
1.0000E+01 | 1.4139E-06 7.2829E-07 2.5205E-07 4.9786E-08
1.5000E+01 | 1.8932E-04 1.3153E-04 7.3756E-05 3.0494E-05
2.0000E+01 | 2.2528E-03 1.8392E-03 1.3360E-03 8.2017E-04
2.5000E+01 | 8.6933E-03 7.8126E-03 6.6135E-03 5.1251E-03
3.0000E+01 | 1.8099E-02 1.7264E-02 1.6056E-02 1.4350E-02
3.5000E+01 | 2.5953E-02 2.5691E-02 2.5315E-02 2.4683E-02
4.0000E+01 | 2.9260E-02 2.9618E-02 3.0194E-02 3.0968E-02
4.5000E+01 | 2.8046E-02 2.8736E-02 2.9814E-02 3.1368E-02
5.0000E+01 | 2.4005E-02 2.4715E-02 2.5793E-02 2.7346E-02
5.5000E+01 | 1.8950E-02 1.9500E-02 2.0296E-02 2.1401E-02
6.0000E+01 | 1.4105E-02 1.4449E-02 1.4903E-02 1.5476E-02
6.5000E+01 | 1.0054E-02 1.0221E-02 1.0396E-02 1.0555E-02
7.0000E+01 | 6.9401E-03 6.9861E-03 6.9806E-03 6.8890E-03
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7.5000E+01 | 4.6779E-03 4.6538E-03 4.5552E-03 4.3505E-03
8.0000E+01 | 3.0978E-03 3.0414E-03 2.9096E-03 2.6800E-03
8.5000E+01 | 2.0250E-03 1.9598E-03 1.8291E-03 1.6205E-03
9.0000E+01 | 1.3114E-03 1.2499E-03 1.1365E-03 9.6637E-04
9.5000E+01 | 8.4362E-04 7.9138E-04 7.0024E-04 5.7052E-04
1.0000E+02 | 5.4033E-04 4.9856E-04 4.2893E-04 3.3442E-04

Lambda
------

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 3.6558E-11 8.6441E-12 8.6672E-13 2.6259E-14
1.0000E+01 | 2.8583E-05 1.3693E-05 4.3098E-06 7.5495E-07
1.5000E+01 | 8.6115E-03 5.5645E-03 2.8375E-03 1.0404E-03
2.0000E+01 | 1.8217E-01 1.3832E-01 9.1376E-02 4.9748E-02
2.5000E+01 | 1.0984E+00 9.1808E-01 7.0676E-01 4.8574E-01
3.0000E+01 | 3.2931E+00 2.9214E+00 2.4708E+00 1.9584E+00
3.5000E+01 | 6.4272E+00 5.9173E+00 5.3025E+00 4.5851E+00
4.0000E+01 | 9.4643E+00 8.9101E+00 8.2604E+00 7.5135E+00
4.5000E+01 | 1.1481E+01 1.0941E+01 1.0323E+01 9.6323E+00
5.0000E+01 | 1.2132E+01 1.1617E+01 1.1026E+01 1.0367E+01
5.5000E+01 | 1.1588E+01 1.1091E+01 1.0498E+01 9.8169E+00
6.0000E+01 | 1.0265E+01 9.7801E+00 9.1734E+00 8.4486E+00
6.5000E+01 | 8.5872E+00 8.1198E+00 7.5104E+00 6.7621E+00
7.0000E+01 | 6.8747E+00 6.4363E+00 5.8487E+00 5.1188E+00
7.5000E+01 | 5.3194E+00 4.9219E+00 4.3812E+00 3.7109E+00
8.0000E+01 | 4.0081E+00 3.6599E+00 3.1840E+00 2.6009E+00
8.5000E+01 | 2.9578E+00 2.6623E+00 2.2597E+00 1.7754E+00
9.0000E+01 | 2.1474E+00 1.9036E+00 1.5741E+00 1.1870E+00
9.5000E+01 | 1.5392E+00 1.3429E+00 1.0806E+00 7.8078E-01
1.0000E+02 | 1.0923E+00 9.3740E-01 7.3341E-01 5.0711E-01

Rho
---

Stock Price | Time to Maturity (months)
| 5.0000E+00 4.5000E+00 4.0000E+00 3.5000E+00

-----------------------------------------------------------------
0.0000E+00 | 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
5.0000E+00 | 3.2110E-12 6.9908E-13 6.3513E-14 1.7073E-15
1.0000E+01 | 3.5302E-06 1.5579E-06 4.4470E-07 6.9214E-08
1.5000E+01 | 1.3876E-03 8.2648E-04 3.8273E-04 1.2492E-04
2.0000E+01 | 3.7221E-02 2.6077E-02 1.5671E-02 7.6142E-03
2.5000E+01 | 2.8124E-01 2.1719E-01 1.5247E-01 9.3836E-02
3.0000E+01 | 1.0531E+00 8.6478E-01 6.6907E-01 4.7709E-01
3.5000E+01 | 2.5718E+00 2.1971E+00 1.8086E+00 1.4156E+00
4.0000E+01 | 4.7641E+00 4.1750E+00 3.5750E+00 2.9673E+00
4.5000E+01 | 7.3281E+00 6.5270E+00 5.7279E+00 4.9280E+00
5.0000E+01 | 9.9152E+00 8.9196E+00 7.9427E+00 6.9774E+00
5.5000E+01 | 1.2262E+01 1.1095E+01 9.9592E+00 8.8448E+00
6.0000E+01 | 1.4232E+01 1.2915E+01 1.1637E+01 1.0383E+01
6.5000E+01 | 1.5791E+01 1.4348E+01 1.2942E+01 1.1557E+01
7.0000E+01 | 1.6973E+01 1.5424E+01 1.3907E+01 1.2403E+01
7.5000E+01 | 1.7838E+01 1.6204E+01 1.4594E+01 1.2987E+01
8.0000E+01 | 1.8457E+01 1.6755E+01 1.5067E+01 1.3376E+01
8.5000E+01 | 1.8890E+01 1.7135E+01 1.5387E+01 1.3629E+01
9.0000E+01 | 1.9189E+01 1.7393E+01 1.5599E+01 1.3790E+01
9.5000E+01 | 1.9393E+01 1.7567E+01 1.5738E+01 1.3891E+01
1.0000E+02 | 1.9531E+01 1.7683E+01 1.5827E+01 1.3954E+01
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NAG Library Routine Document

D03PCF/D03PCA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PCF/D03PCA integrates a system of linear or nonlinear parabolic partial differential equations
(PDEs) in one space variable. The spatial discretization is performed using finite differences, and the
method of lines is employed to reduce the PDEs to a system of ordinary differential equations (ODEs).
The resulting system is solved using a backward differentiation formula method.

D03PCA is a version of D03PCF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5).

2 Specification

2.1 Specification for D03PCF

SUBROUTINE D03PCF (NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NPTS, X, ACC,
RSAVE, LRSAVE, ISAVE, LISAVE, ITASK, ITRACE, IND,
IFAIL)

&
&

INTEGER NPDE, M, NPTS, LRSAVE, ISAVE(LISAVE), LISAVE, ITASK,
ITRACE, IND, IFAIL

&

REAL (KIND=nag_wp) TS, TOUT, U(NPDE,NPTS), X(NPTS), ACC, RSAVE(LRSAVE)
EXTERNAL PDEDEF, BNDARY

2.2 Specification for D03PCA

SUBROUTINE D03PCA (NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NPTS, X, ACC,
RSAVE, LRSAVE, ISAVE, LISAVE, ITASK, ITRACE, IND,
IUSER, RUSER, CWSAV, LWSAV, IWSAV, RWSAV, IFAIL)

&
&

INTEGER NPDE, M, NPTS, LRSAVE, ISAVE(LISAVE), LISAVE, ITASK,
ITRACE, IND, IUSER(*), IWSAV(505), IFAIL

&

REAL (KIND=nag_wp) TS, TOUT, U(NPDE,NPTS), X(NPTS), ACC,
RSAVE(LRSAVE), RUSER(*), RWSAV(1100)

&

LOGICAL LWSAV(100)
CHARACTER(80) CWSAV(10)
EXTERNAL PDEDEF, BNDARY

3 Description

D03PCF/D03PCA integrates the system of parabolic equations:XNPDE
j¼1

Pi;j
@Uj
@t
þQi ¼ x�m

@

@x
xmRið Þ; i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0; ð1Þ

where Pi;j, Qi and Ri depend on x, t, U , Ux and the vector U is the set of solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T; ð2Þ

and the vector Ux is its partial derivative with respect to x. Note that Pi;j, Qi and Ri must not depend

on
@U

@t
.

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS
are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xNPTS. The coordinate system in
space is defined by the value of m; m ¼ 0 for Cartesian coordinates, m ¼ 1 for cylindrical polar
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coordinates and m ¼ 2 for spherical polar coordinates. The mesh should be chosen in accordance with
the expected behaviour of the solution.

The system is defined by the functions Pi;j, Qi and Ri which must be specified in PDEDEF.

The initial values of the functions U x; tð Þ must be given at t ¼ t0. The functions Ri, for
i ¼ 1; 2; . . . ;NPDE, which may be thought of as fluxes, are also used in the definition of the boundary
conditions for each equation. The boundary conditions must have the form

�i x; tð ÞRi x; t; U; Uxð Þ ¼ �i x; t; U; Uxð Þ; i ¼ 1; 2; . . . ;NPDE; ð3Þ

where x ¼ a or x ¼ b.
The boundary conditions must be specified in BNDARY.

The problem is subject to the following restrictions:

(i) t0 < tout, so that integration is in the forward direction;

(ii) Pi;j, Qi and the flux Ri must not depend on any time derivatives;

(iii) the evaluation of the functions Pi;j, Qi and Ri is done at the mid-points of the mesh intervals by
calling the PDEDEF for each mid-point in turn. Any discontinuities in these functions must
therefore be at one or more of the mesh points x1; x2; . . . ; xNPTS;

(iv) at least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
problem; and

(v) if m > 0 and x1 ¼ 0:0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done by either specifying the solution at x ¼ 0:0 or
by specifying a zero flux there, that is �i ¼ 1:0 and �i ¼ 0:0. See also Section 9.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. For simple problems in Cartesian coordinates, this system is obtained by replacing the space
derivatives by the usual central, three-point finite difference formula. However, for polar and spherical
problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified
three-point formula which maintains second-order accuracy. In total there are NPDE� NPTS ODEs in
the time direction. This system is then integrated forwards in time using a backward differentiation
formula method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (eds J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Dew P M and Walsh J (1981) A set of library routines for solving parabolic equations in one space
variable ACM Trans. Math. Software 7 295–314

Skeel R D and Berzins M (1990) A method for the spatial discretization of parabolic equations in one
space variable SIAM J. Sci. Statist. Comput. 11(1) 1–32

5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system to be solved.

Constraint: NPDE � 1.
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2: M – INTEGER Input

On entry: the coordinate system used:

M ¼ 0
Indicates Cartesian coordinates.

M ¼ 1
Indicates cylindrical polar coordinates.

M ¼ 2
Indicates spherical polar coordinates.

Constraint: M ¼ 0, 1 or 2.

3: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

4: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

5: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must compute the functions Pi;j, Qi and Ri which define the system of PDEs. PDEDEF
is called approximately midway between each pair of mesh points in turn by D03PCF/D03PCA.

The specification of PDEDEF for D03PCF is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UX, P, Q, R, IRES)

INTEGER NPDE, IRES
REAL (KIND=nag_wp) T, X, U(NPDE), UX(NPDE), P(NPDE,NPDE),

Q(NPDE), R(NPDE)
&

The specification of PDEDEF for D03PCA is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UX, P, Q, R, IRES, IUSER,
RUSER)

&

INTEGER NPDE, IRES, IUSER(*)
REAL (KIND=nag_wp) T, X, U(NPDE), UX(NPDE), P(NPDE,NPDE),

Q(NPDE), R(NPDE), RUSER(*)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ;NPDE.

5: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

, for i ¼ 1; 2; . . . ;NPDE.
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6: PðNPDE;NPDEÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ must be set to the value of Pi;j x; t; U; Uxð Þ, for i ¼ 1; 2; . . . ;NPDE and
j ¼ 1; 2; . . . ;NPDE.

7: QðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: QðiÞ must be set to the value of Qi x; t; U; Uxð Þ, for i ¼ 1; 2; . . . ;NPDE.

8: RðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: RðiÞ must be set to the value of Ri x; t; U; Uxð Þ, for i ¼ 1; 2; . . . ;NPDE.

9: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PCF/D03PCA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.

Note: the following are additional arguments for specific use with D03PCA. Users of
D03PCF therefore need not read the remainder of this description.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

PDEDEF is called with the arguments IUSER and RUSER as supplied to D03PCF/
D03PCA. You should use the arrays IUSER and RUSER to supply information to
PDEDEF.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PCF/D03PCA is called. Arguments denoted as Input must not be
changed by this procedure.

6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must compute the functions �i and �i which define the boundary conditions as in
equation (3).

The specification of BNDARY for D03PCF is:

SUBROUTINE BNDARY (NPDE, T, U, UX, IBND, BETA, GAMMA, IRES)

INTEGER NPDE, IBND, IRES
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), BETA(NPDE),

GAMMA(NPDE)
&

The specification of BNDARY for D03PCA is:

SUBROUTINE BNDARY (NPDE, T, U, UX, IBND, BETA, GAMMA, IRES,
IUSER, RUSER)

&

INTEGER NPDE, IBND, IRES, IUSER(*)
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), BETA(NPDE),

GAMMA(NPDE), RUSER(*)
&
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1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ at the boundary specified
by IBND, for i ¼ 1; 2; . . . ;NPDE.

4: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

at the boundary

specified by IBND, for i ¼ 1; 2; . . . ;NPDE.

5: IBND – INTEGER Input

On entry: determines the position of the boundary conditions.

IBND ¼ 0
BNDARY must set up the coefficients of the left-hand boundary, x ¼ a.

IBND 6¼ 0
Indicates that BNDARY must set up the coefficients of the right-hand boundary,
x ¼ b.

6: BETAðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: BETAðiÞ must be set to the value of �i x; tð Þ at the boundary specified by
IBND, for i ¼ 1; 2; . . . ;NPDE.

7: GAMMAðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: GAMMAðiÞ must be set to the value of �i x; t; U; Uxð Þ at the boundary specified
by IBND, for i ¼ 1; 2; . . . ;NPDE.

8: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PCF/D03PCA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.
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Note: the following are additional arguments for specific use with D03PCA. Users of
D03PCF therefore need not read the remainder of this description.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

BNDARY is called with the arguments IUSER and RUSER as supplied to D03PCF/
D03PCA. You should use the arrays IUSER and RUSER to supply information to
BNDARY.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PCF/D03PCA is called. Arguments denoted as Input must not be
changed by this procedure.

7: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of U x; tð Þ at t ¼ TS and the mesh points XðjÞ, for j ¼ 1; 2; . . . ;NPTS.

On exit: Uði; jÞ will contain the computed solution at t ¼ TS.

8: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: NPTS � 3.

9: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the mesh points in the spatial direction. Xð1Þ must specify the left-hand boundary, a,
and XðNPTSÞ must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.

10: ACC – REAL (KIND=nag_wp) Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If
E i; jð Þ is the estimated error for Ui at the jth mesh point, the error test is:

E i; jð Þj j ¼ ACC� 1:0þ Uði; jÞj jð Þ:
Constraint: ACC > 0:0.

11: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

12: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PCF/D03PCA is called.

Constraint: LRSAVE � 6� NPDEþ 10ð Þ � NPDE� NPTSþ 3� NPDEþ 21ð Þ � NPDEþ
7� NPTSþ 54.

13: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set on entry.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration. In particular:

ISAVEð1Þ
Contains the number of steps taken in time.
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ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the last backward differentiation formula method used.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU
decomposition of the Jacobian matrix.

14: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which
D03PCF/D03PCA is called.

Constraint: LISAVE � NPDE� NPTSþ 24.

15: ITASK – INTEGER Input

On entry: specifies the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT.

ITASK ¼ 2
One step and return.

ITASK ¼ 3
Stop at first internal integration point at or beyond t ¼ TOUT.

Constraint: ITASK ¼ 1, 2 or 3.

16: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PCF/D03PCA and the underlying
ODE solver. ITRACE may take the value �1, 0, 1, 2 or 3.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE > 0
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. You are advised to set
ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.

17: IND – INTEGER Input/Output

On entry: indicates whether this is a continuation call or a new integration.

IND ¼ 0
Starts or restarts the integration in time.
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IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT and IFAIL should be reset between calls to D03PCF/D03PCA.

Constraint: IND ¼ 0 or 1.

On exit: IND ¼ 1.

18: IFAIL – INTEGER Input/Output

Note: for D03PCA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: the following are additional arguments for specific use with D03PCA. Users of D03PCF
therefore need not read the remainder of this description.

19: IUSERð�Þ – INTEGER array User Workspace
20: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D03PCF/D03PCA, but are passed directly to PDEDEF and
BNDARY and should be used to pass information to these routines.

21: CWSAVð10Þ – CHARACTER(80) array Communication Array

If IND ¼ 0, CWSAV need not be set on entry.

If IND ¼ 1, CWSAV must be unchanged from the previous call to the routine.

22: LWSAVð100Þ – LOGICAL array Communication Array

If IND ¼ 0, LWSAV need not be set on entry.

If IND ¼ 1, LWSAV must be unchanged from the previous call to the routine.

23: IWSAVð505Þ – INTEGER array Communication Array

If IND ¼ 0, IWSAV need not be set on entry.

If IND ¼ 1, IWSAV must be unchanged from the previous call to the routine.

24: RWSAVð1100Þ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RWSAV need not be set on entry.

If IND ¼ 1, RWSAV must be unchanged from the previous call to the routine.

25: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOUT � TS,
or TOUT� TS is too small,
or ITASK 6¼ 1, 2 or 3,
or M 6¼ 0, 1 or 2,
or M > 0 and Xð1Þ < 0:0,
or the mesh points XðiÞ are not ordered,
or NPTS < 3,
or NPDE < 1,
or ACC � 0:0,
or IND 6¼ 0 or 1,
or LRSAVE is too small,
or LISAVE is too small.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress across the integration range from
the current point t ¼ TS with the supplied value of ACC. The components of U contain the
computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated errors or corrector convergence test failures
on an attempted step, before completing the requested task. The problem may have a singularity
or ACC is too small for the integration to continue. Integration was successful as far as t ¼ TS.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
at least PDEDEF or BNDARY, when the residual in the underlying ODE solver was being
evaluated.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. You should check your
problem formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least PDEDEF
or BNDARY. Integration was successful as far as t ¼ TS.

IFAIL ¼ 7

The value of ACC is so small that the routine is unable to start the integration in time.

IFAIL ¼ 8

In one of PDEDEF or BNDARY, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification and all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.
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IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ACC is unlikely
to produce any change in the computed solution. (Only applies when you are not operating in one
step mode, that is when ITASK 6¼ 2.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current error message unit).

IFAIL ¼ 12

Not applicable.

IFAIL ¼ 13

Not applicable.

IFAIL ¼ 14

The flux function Ri was detected as depending on time derivatives, which is not permissible.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PCF/D03PCA controls the accuracy of the integration in the time direction but not the accuracy of
the approximation in space. The spatial accuracy depends on both the number of mesh points and on
their distribution in space. In the time integration only the local error over a single step is controlled
and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of
varying the accuracy argument, ACC.

8 Parallelism and Performance

D03PCF/D03PCA is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

D03PCF/D03PCA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

D03PCF/D03PCA is designed to solve parabolic systems (possibly including some elliptic equations)
with second-order derivatives in space. The argument specification allows you to include equations with
only first-order derivatives in the space direction but there is no guarantee that the method of integration
will be satisfactory for such systems. The position and nature of the boundary conditions in particular
are critical in defining a stable problem. It may be advisable in such cases to reduce the whole system
to first-order and to use the Keller box scheme routine D03PEF.

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

10 Example

We use the example given in Dew and Walsh (1981) which consists of an elliptic-parabolic pair of
PDEs. The problem was originally derived from a single third-order in space PDE. The elliptic equation
is

1

r

@

@r
r2
@U1

@r

� �
¼ 4� U2 þ r

@U2

@r

� �
and the parabolic equation is

1� r2
� �@U2

@t
¼ 1

r

@

@r
r
@U2

@r
� U2U1

� �� �
where r; tð Þ 2 0; 1½ � � 0; 1½ �. The boundary conditions are given by

U1 ¼
@U2

@r
¼ 0 at r ¼ 0;

and

@

@r
rU1ð Þ ¼ 0 and U2 ¼ 0 at r ¼ 1:

The first of these boundary conditions implies that the flux term in the second PDE,
@U2

@r
� U2U1

� �
, is

zero at r ¼ 0.

The initial conditions at t ¼ 0 are given by

U1 ¼ 2�r and U2 ¼ 1:0; r 2 0; 1½ �:

The value � ¼ 1 was used in the problem definition. A mesh of 20 points was used with a circular mesh
spacing to cluster the points towards the right-hand side of the spatial interval, r ¼ 1.

10.1 Program Text

the following program illustrates the use of D03PCF. An equivalent program illustrating the use of
D03PCA is available with the supplied Library and is also available from the NAG web site.

! D03PCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03pcfe_mod

! D03PCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndary, pdedef, uinit

! .. Parameters ..

D03 – Partial Differential Equations D03PCF
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Integer, Parameter, Public :: nin = 5, nout = 6, npde = 2
! .. Local Scalars ..

Real (Kind=nag_wp), Public, Save :: alpha
Contains

Subroutine pdedef(npde,t,x,u,ux,p,q,r,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: p(npde,npde), q(npde), r(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde)

! .. Executable Statements ..
q(1) = 4.0_nag_wp*alpha*(u(2)+x*ux(2))
q(2) = 0.0_nag_wp
r(1) = x*ux(1)
r(2) = ux(2) - u(1)*u(2)
p(1,1) = 0.0_nag_wp
p(1,2) = 0.0_nag_wp
p(2,1) = 0.0_nag_wp
p(2,2) = 1.0_nag_wp - x*x
Return

End Subroutine pdedef
Subroutine bndary(npde,t,u,ux,ibnd,beta,gamma,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, npde
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: beta(npde), gamma(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde)

! .. Executable Statements ..
If (ibnd==0) Then

beta(1) = 0.0_nag_wp
beta(2) = 1.0_nag_wp
gamma(1) = u(1)
gamma(2) = -u(1)*u(2)

Else
beta(1) = 1.0_nag_wp
beta(2) = 0.0_nag_wp
gamma(1) = -u(1)
gamma(2) = u(2)

End If
Return

End Subroutine bndary
Subroutine uinit(u,x,npts)

! Routine for PDE initial condition

! .. Scalar Arguments ..
Integer, Intent (In) :: npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(2,npts)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
Do i = 1, npts

u(1,i) = 2.0_nag_wp*alpha*x(i)
u(2,i) = 1.0_nag_wp

End Do
Return

End Subroutine uinit
End Module d03pcfe_mod
Program d03pcfe

! D03PCF Example Main Program

! .. Use Statements ..
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Use nag_library, Only: d03pcf, d03pzf, nag_wp, x01aaf
Use d03pcfe_mod, Only: alpha, bndary, nin, nout, npde, pdedef, uinit

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: acc, hx, pi, piby2, tout, ts
Integer :: i, ifail, ind, intpts, it, itask, &

itrace, itype, lisave, lrsave, m, &
neqn, npts, nwk

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:,:), uout(:,:,:), x(:), &

xout(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: real, sin

! .. Executable Statements ..
Write (nout,*) ’D03PCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) intpts, npts, itype
neqn = npde*npts
lisave = neqn + 24
nwk = (10+6*npde)*neqn
lrsave = nwk + (21+3*npde)*npde + 7*npts + 54
Allocate (rsave(lrsave),u(npde,npts),uout(npde,intpts,itype),x(npts), &

xout(intpts),isave(lisave))

Read (nin,*) xout(1:intpts)
Read (nin,*) acc, alpha
Read (nin,*) m, itrace
ind = 0
itask = 1

! Set spatial mesh points

piby2 = 0.5_nag_wp*x01aaf(pi)
hx = piby2/real(npts-1,kind=nag_wp)
x(1) = 0.0_nag_wp
x(npts) = 1.0_nag_wp
Do i = 2, npts - 1

x(i) = sin(hx*real(i-1,kind=nag_wp))
End Do

! Set initial conditions
Read (nin,*) ts, tout

! Set the initial values
Call uinit(u,x,npts)

Do it = 1, 5
tout = 10.0_nag_wp*tout

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03pcf(npde,m,ts,tout,pdedef,bndary,u,npts,x,acc,rsave,lrsave, &

isave,lisave,itask,itrace,ind,ifail)

If (it==1) Then
Write (nout,99999) acc, alpha
Write (nout,99998) xout(1:6)

End If

! Interpolate at required spatial points

ifail = 0
Call d03pzf(npde,m,u,npts,x,xout,intpts,itype,uout,ifail)

Write (nout,99996) tout, uout(1,1:intpts,1)
Write (nout,99995) uout(2,1:intpts,1)

End Do
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! Print integration statistics

Write (nout,99997) isave(1), isave(2), isave(3), isave(5)

99999 Format (/,/,’ Accuracy requirement = ’,E12.5,/,’ Parameter ALPHA =’, &
’ ’,E12.3,/)

99998 Format (’ T / X ’,6F8.4,/)
99997 Format (’ Number of integration steps in time ’,I4,/, &

’ Number of residual evaluations of resulting ODE system’,I4,/, &
’ Number of Jacobian evaluations ’,I4,/, &
’ Number of iterations of nonlinear solver ’,I4)

99996 Format (1X,F7.4,’ U(1)’,6F8.4)
99995 Format (9X,’U(2)’,6F8.4,/)

End Program d03pcfe

10.2 Program Data

D03PCF Example Program Data
6 20 1 : intpts, npts, itype
0.0 0.4 0.6 0.8 0.9 1.0 : xout(1:intpts)
1.0E-3 1.0 : acc, alpha
1 0 : m, itrace
0.0 0.1E-4 : ts, tout

10.3 Program Results

D03PCF Example Program Results

Accuracy requirement = 0.10000E-02
Parameter ALPHA = 0.100E+01

T / X 0.0000 0.4000 0.6000 0.8000 0.9000 1.0000

0.0001 U(1) 0.0000 0.8008 1.1988 1.5990 1.7958 1.8485
U(2) 0.9997 0.9995 0.9994 0.9988 0.9663 -0.0000

0.0010 U(1) 0.0000 0.7982 1.1940 1.5841 1.7179 1.6734
U(2) 0.9969 0.9952 0.9937 0.9484 0.6385 -0.0000

0.0100 U(1) 0.0000 0.7676 1.1239 1.3547 1.3635 1.2830
U(2) 0.9627 0.9495 0.8754 0.5537 0.2908 -0.0000

0.1000 U(1) 0.0000 0.3908 0.5007 0.5297 0.5120 0.4744
U(2) 0.5468 0.4299 0.2995 0.1479 0.0724 -0.0000

1.0000 U(1) 0.0000 0.0007 0.0008 0.0008 0.0008 0.0007
U(2) 0.0010 0.0007 0.0005 0.0002 0.0001 -0.0000

Number of integration steps in time 78
Number of residual evaluations of resulting ODE system 378
Number of Jacobian evaluations 25
Number of iterations of nonlinear solver 190
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Example Program
Solution, U(1,x,t), of Elliptic-parabolic Pair using Method of Lines and BDF Method
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Solution, U(2,x,t), of Elliptic-parabolic Pair using Finite-differences and BDF
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NAG Library Routine Document

D03PDF/D03PDA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PDF/D03PDA integrates a system of linear or nonlinear parabolic partial differential equations
(PDEs) in one space variable. The spatial discretization is performed using a Chebyshev C0 collocation
method, and the method of lines is employed to reduce the PDEs to a system of ordinary differential
equations (ODEs). The resulting system is solved using a backward differentiation formula method.

D03PDA is a version of D03PDF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5).

2 Specification

2.1 Specification for D03PDF

SUBROUTINE D03PDF (NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NBKPTS, XBKPTS,
NPOLY, NPTS, X, UINIT, ACC, RSAVE, LRSAVE, ISAVE,
LISAVE, ITASK, ITRACE, IND, IFAIL)

&
&

INTEGER NPDE, M, NBKPTS, NPOLY, NPTS, LRSAVE, ISAVE(LISAVE),
LISAVE, ITASK, ITRACE, IND, IFAIL

&

REAL (KIND=nag_wp) TS, TOUT, U(NPDE,NPTS), XBKPTS(NBKPTS), X(NPTS),
ACC, RSAVE(LRSAVE)

&

EXTERNAL PDEDEF, BNDARY, UINIT

2.2 Specification for D03PDA

SUBROUTINE D03PDA (NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NBKPTS, XBKPTS,
NPOLY, NPTS, X, UINIT, ACC, RSAVE, LRSAVE, ISAVE,
LISAVE, ITASK, ITRACE, IND, IUSER, RUSER, CWSAV,
LWSAV, IWSAV, RWSAV, IFAIL)

&
&
&

INTEGER NPDE, M, NBKPTS, NPOLY, NPTS, LRSAVE, ISAVE(LISAVE),
LISAVE, ITASK, ITRACE, IND, IUSER(*), IWSAV(505),
IFAIL

&
&

REAL (KIND=nag_wp) TS, TOUT, U(NPDE,NPTS), XBKPTS(NBKPTS), X(NPTS),
ACC, RSAVE(LRSAVE), RUSER(*), RWSAV(1100)

&

LOGICAL LWSAV(100)
CHARACTER(80) CWSAV(10)
EXTERNAL PDEDEF, BNDARY, UINIT

3 Description

D03PDF/D03PDA integrates the system of parabolic equations:XNPDE
j¼1

Pi;j
@Uj
@t
þQi ¼ x�m

@

@x
xmRið Þ; i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0; ð1Þ

where Pi;j, Qi and Ri depend on x, t, U , Ux and the vector U is the set of solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T; ð2Þ

and the vector Ux is its partial derivative with respect to x. Note that Pi;j, Qi and Ri must not depend

on
@U

@t
.
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The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and
b ¼ xNBKPTS are the leftmost and rightmost of a user-defined set of break-points x1; x2; . . . ; xNBKPTS.
The coordinate system in space is defined by the value of m; m ¼ 0 for Cartesian coordinates, m ¼ 1
for cylindrical polar coordinates and m ¼ 2 for spherical polar coordinates.

The system is defined by the functions Pi;j, Qi and Ri which must be specified in PDEDEF.

The initial values of the functions U x; tð Þ must be given at t ¼ t0, and must be specified in UINIT.

The functions Ri, for i ¼ 1; 2; . . . ;NPDE, which may be thought of as fluxes, are also used in the
definition of the boundary conditions for each equation. The boundary conditions must have the form

�i x; tð ÞRi x; t; U; Uxð Þ ¼ �i x; t; U; Uxð Þ; i ¼ 1; 2; . . . ;NPDE; ð3Þ

where x ¼ a or x ¼ b.
The boundary conditions must be specified in BNDARY. Thus, the problem is subject to the following
restrictions:

(i) t0 < tout, so that integration is in the forward direction;

(ii) Pi;j, Qi and the flux Ri must not depend on any time derivatives;

(iii) the evaluation of the functions Pi;j, Qi and Ri is done at both the break-points and internally
selected points for each element in turn, that is Pi;j, Qi and Ri are evaluated twice at each break-
point. Any discontinuities in these functions must therefore be at one or more of the break-points
x1; x2; . . . ; xNBKPTS;

(iv) at least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
problem;

(v) if m > 0 and x1 ¼ 0:0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done by either specifying the solution at x ¼ 0:0 or
by specifying a zero flux there, that is �i ¼ 1:0 and �i ¼ 0:0. See also Section 9.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at the mesh
points. This ODE system is obtained by approximating the PDE solution between each pair of break-
points by a Chebyshev polynomial of degree NPOLY. The interval between each pair of break-points is
treated by D03PDF/D03PDA as an element, and on this element, a polynomial and its space and time
derivatives are made to satisfy the system of PDEs at NPOLY� 1 spatial points, which are chosen
internally by the code and the break-points. In the case of just one element, the break-points are the
boundaries. The user-defined break-points and the internally selected points together define the mesh.
The smallest value that NPOLY can take is one, in which case, the solution is approximated by
piecewise linear polynomials between consecutive break-points and the method is similar to an ordinary
finite element method.

In total there are NBKPTS� 1ð Þ � NPOLYþ 1 mesh points in the spatial direction, and
NPDE� NBKPTS� 1ð Þ � NPOLYþ 1ð Þ ODEs in the time direction; one ODE at each break-point
for each PDE component and (NPOLY� 1) ODEs for each PDE component between each pair of
break-points. The system is then integrated forwards in time using a backward differentiation formula
method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (eds J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic
systems of PDEs ACM Trans. Math. Software 17 178–206

Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a
channel by a suction at porous walls Fluid Dynamics Research 4
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5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system to be solved.

Constraint: NPDE � 1.

2: M – INTEGER Input

On entry: the coordinate system used:

M ¼ 0
Indicates Cartesian coordinates.

M ¼ 1
Indicates cylindrical polar coordinates.

M ¼ 2
Indicates spherical polar coordinates.

Constraint: M ¼ 0, 1 or 2.

3: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

4: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

5: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must compute the values of the functions Pi;j, Qi and Ri which define the system of
PDEs. The functions may depend on x, t, U and Ux and must be evaluated at a set of points.

The specification of PDEDEF for D03PDF is:

SUBROUTINE PDEDEF (NPDE, T, X, NPTL, U, UX, P, Q, R, IRES)

INTEGER NPDE, NPTL, IRES
REAL (KIND=nag_wp) T, X(NPTL), U(NPDE,NPTL), UX(NPDE,NPTL),

P(NPDE,NPDE,NPTL), Q(NPDE,NPTL),
R(NPDE,NPTL)

&
&

The specification of PDEDEF for D03PDA is:

SUBROUTINE PDEDEF (NPDE, T, X, NPTL, U, UX, P, Q, R, IRES, IUSER,
RUSER)

&

INTEGER NPDE, NPTL, IRES, IUSER(*)
REAL (KIND=nag_wp) T, X(NPTL), U(NPDE,NPTL), UX(NPDE,NPTL),

P(NPDE,NPDE,NPTL), Q(NPDE,NPTL),
R(NPDE,NPTL), RUSER(*)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.
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3: XðNPTLÞ – REAL (KIND=nag_wp) array Input

On entry: contains a set of mesh points at which Pi;j, Qi and Ri are to be evaluated.
Xð1Þ and XðNPTLÞ contain successive user-supplied break-points and the elements of
the array will satisfy Xð1Þ < Xð2Þ < � � � < XðNPTLÞ.

4: NPTL – INTEGER Input

On entry: the number of points at which evaluations are required (the value of
NPOLYþ 1).

5: UðNPDE;NPTLÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of the component Ui x; tð Þ where x ¼ XðjÞ, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTL.

6: UXðNPDE;NPTLÞ – REAL (KIND=nag_wp) array Input

On entry: UXði; jÞ contains the value of the component
@Ui x; tð Þ
@x

where x ¼ XðjÞ, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTL.

7: PðNPDE;NPDE;NPTLÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; j; kÞ must be set to the value of Pi;j x; t; U; Uxð Þ where x ¼ XðkÞ, for
i ¼ 1; 2; . . . ;NPDE, j ¼ 1; 2; . . . ;NPDE and k ¼ 1; 2; . . . ;NPTL.

8: QðNPDE;NPTLÞ – REAL (KIND=nag_wp) array Output

On exit: Qði; jÞ must be set to the value of Qi x; t; U; Uxð Þ where x ¼ XðjÞ, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTL.

9: RðNPDE;NPTLÞ – REAL (KIND=nag_wp) array Output

On exit: Rði; jÞ must be set to the value of Ri x; t; U; Uxð Þ where x ¼ XðjÞ, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTL.

10: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PDF/D03PDA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.

Note: the following are additional arguments for specific use with D03PDA. Users of
D03PDF therefore need not read the remainder of this description.

11: IUSERð�Þ – INTEGER array User Workspace
12: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

PDEDEF is called with the arguments IUSER and RUSER as supplied to D03PDF/
D03PDA. You should use the arrays IUSER and RUSER to supply information to
PDEDEF.
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PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PDF/D03PDA is called. Arguments denoted as Input must not be
changed by this procedure.

6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must compute the functions �i and �i which define the boundary conditions as in
equation (3).

The specification of BNDARY for D03PDF is:

SUBROUTINE BNDARY (NPDE, T, U, UX, IBND, BETA, GAMMA, IRES)

INTEGER NPDE, IBND, IRES
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), BETA(NPDE),

GAMMA(NPDE)
&

The specification of BNDARY for D03PDA is:

SUBROUTINE BNDARY (NPDE, T, U, UX, IBND, BETA, GAMMA, IRES,
IUSER, RUSER)

&

INTEGER NPDE, IBND, IRES, IUSER(*)
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), BETA(NPDE),

GAMMA(NPDE), RUSER(*)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ at the boundary specified
by IBND, for i ¼ 1; 2; . . . ;NPDE.

4: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

at the boundary

specified by IBND, for i ¼ 1; 2; . . . ;NPDE.

5: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated.

IBND ¼ 0
BNDARY must set up the coefficients of the left-hand boundary, x ¼ a.

IBND 6¼ 0
BNDARY must set up the coefficients of the right-hand boundary, x ¼ b.

6: BETAðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: BETAðiÞ must be set to the value of �i x; tð Þ at the boundary specified by
IBND, for i ¼ 1; 2; . . . ;NPDE.

7: GAMMAðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: GAMMAðiÞ must be set to the value of �i x; t; U; Uxð Þ at the boundary specified
by IBND, for i ¼ 1; 2; . . . ;NPDE.
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8: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PDF/D03PDA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.

Note: the following are additional arguments for specific use with D03PDA. Users of
D03PDF therefore need not read the remainder of this description.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

BNDARY is called with the arguments IUSER and RUSER as supplied to D03PDF/
D03PDA. You should use the arrays IUSER and RUSER to supply information to
BNDARY.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PDF/D03PDA is called. Arguments denoted as Input must not be
changed by this procedure.

7: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IND ¼ 1 the value of U must be unchanged from the previous call.

On exit: Uði; jÞ will contain the computed solution at t ¼ TS.

8: NBKPTS – INTEGER Input

On entry: the number of break-points in the interval a; b½ �.
Constraint: NBKPTS � 2.

9: XBKPTSðNBKPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the break-points in the space direction. XBKPTSð1Þ must specify the left-
hand boundary, a, and XBKPTSðNBKPTSÞ must specify the right-hand boundary, b.

Constraint: XBKPTSð1Þ < XBKPTSð2Þ < � � � < XBKPTSðNBKPTSÞ.

10: NPOLY – INTEGER Input

On entry: the degree of the Chebyshev polynomial to be used in approximating the PDE solution
between each pair of break-points.

Constraint: 1 � NPOLY � 49.

11: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: NPTS ¼ NBKPTS� 1ð Þ � NPOLYþ 1.
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12: XðNPTSÞ – REAL (KIND=nag_wp) array Output

On exit: the mesh points chosen by D03PDF/D03PDA in the spatial direction. The values of X
will satisfy Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.

13: UINIT – SUBROUTINE, supplied by the user. External Procedure

UINIT must compute the initial values of the PDE components Ui xj ; t0
� �

, for i ¼ 1; 2; . . . ;NPDE
and j ¼ 1; 2; . . . ;NPTS.

The specification of UINIT for D03PDF is:

SUBROUTINE UINIT (NPDE, NPTS, X, U)

INTEGER NPDE, NPTS
REAL (KIND=nag_wp) X(NPTS), U(NPDE,NPTS)

The specification of UINIT for D03PDA is:

SUBROUTINE UINIT (NPDE, NPTS, X, U, IUSER, RUSER)

INTEGER NPDE, NPTS, IUSER(*)
REAL (KIND=nag_wp) X(NPTS), U(NPDE,NPTS), RUSER(*)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XðjÞ, contains the values of the jth mesh point, for j ¼ 1; 2; . . . ;NPTS.

4: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Output

On exit: Uði; jÞ must be set to the initial value Ui xj ; t0
� �

, for i ¼ 1; 2; . . . ;NPDE and
j ¼ 1; 2; . . . ;NPTS.

Note: the following are additional arguments for specific use with D03PDA. Users of
D03PDF therefore need not read the remainder of this description.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

UINIT is called with the arguments IUSER and RUSER as supplied to D03PDF/
D03PDA. You should use the arrays IUSER and RUSER to supply information to
UINIT.

UINIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PDF/D03PDA is called. Arguments denoted as Input must not be
changed by this procedure.

14: ACC – REAL (KIND=nag_wp) Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If
E i; jð Þ is the estimated error for Ui at the jth mesh point, the error test is:

E i; jð Þj j ¼ ACC� 1:0þ Uði; jÞj jð Þ:
Constraint: ACC > 0:0.

15: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.
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If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

16: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PDF/D03PDA is called.

Constraint: LRSAVE � 11� NPDE� NPTSþ 50þ nwkres þ lenode.

17: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set on entry.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration. In particular:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the last backward differentiation formula method used.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU
decomposition of the Jacobian matrix.

18: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which
D03PDF/D03PDA is called.

Constraint: LISAVE � NPDE� NPTSþ 24.

19: ITASK – INTEGER Input

On entry: specifies the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT.

ITASK ¼ 2
One step and return.

ITASK ¼ 3
Stop at first internal integration point at or beyond t ¼ TOUT.

Constraint: ITASK ¼ 1, 2 or 3.

20: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PDF/D03PDA and the underlying
ODE solver. ITRACE may take the value �1, 0, 1, 2 or 3.

ITRACE ¼ �1
No output is generated.
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ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE > 0
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. You are advised to set
ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.

21: IND – INTEGER Input/Output

On entry: indicates whether this is a continuation call or a new integration.

IND ¼ 0
Starts or restarts the integration in time.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT and IFAIL should be reset between calls to D03PDF/D03PDA.

Constraint: IND ¼ 0 or 1.

On exit: IND ¼ 1.

22: IFAIL – INTEGER Input/Output

Note: for D03PDA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: the following are additional arguments for specific use with D03PDA. Users of D03PDF
therefore need not read the remainder of this description.

23: IUSERð�Þ – INTEGER array User Workspace

IUSER is not used by D03PDF/D03PDA, but is passed directly to PDEDEF, BNDARY and
UINIT and should be used to pass information to these routines.

24: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

25: CWSAVð10Þ – CHARACTER(80) array Communication Array

26: LWSAVð100Þ – LOGICAL array Communication Array

27: IWSAVð505Þ – INTEGER array Communication Array

28: RWSAVð1100Þ – REAL (KIND=nag_wp) array Communication Array
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29: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOUT � TS,
or TOUT� TS is too small,
or ITASK 6¼ 1, 2 or 3,
or M 6¼ 0, 1 or 2,
or M > 0 and XBKPTSð1Þ < 0:0,
or NPDE < 1,
or NBKPTS < 2,
or NPOLY < 1 or NPOLY > 49,
or NPTS 6¼ NBKPTS� 1ð Þ � NPOLYþ 1,
or ACC � 0:0,
or IND 6¼ 0 or 1,
or break-points XBKPTSðiÞ are not ordered,
or LRSAVE is too small,
or LISAVE is too small.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress across the integration range from
the current point t ¼ TS with the supplied value of ACC. The components of U contain the
computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated errors or corrector convergence test failures
on an attempted step, before completing the requested task. The problem may have a singularity
or ACC is too small for the integration to continue. Integration was successful as far as t ¼ TS.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
at least PDEDEF or BNDARY, when the residual in the underlying ODE solver was being
evaluated.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. You should check your
problem formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least PDEDEF
or BNDARY. Integration was successful as far as t ¼ TS.

IFAIL ¼ 7

The value of ACC is so small that the routine is unable to start the integration in time.
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IFAIL ¼ 8

In one of PDEDEF or BNDARY, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification and all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ACC is unlikely
to produce any change in the computed solution. (Only applies when you are not operating in one
step mode, that is when ITASK 6¼ 2.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current error message unit).

IFAIL ¼ 12

Not applicable.

IFAIL ¼ 13

Not applicable.

IFAIL ¼ 14

The flux function Ri was detected as depending on time derivatives, which is not permissible.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PDF/D03PDA controls the accuracy of the integration in the time direction but not the accuracy of
the approximation in space. The spatial accuracy depends on the degree of the polynomial
approximation NPOLY, and on both the number of break-points and on their distribution in space. In
the time integration only the local error over a single step is controlled and so the accuracy over a
number of steps cannot be guaranteed. You should therefore test the effect of varying the accuracy
argument, ACC.

8 Parallelism and Performance

D03PDF/D03PDA is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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D03PDF/D03PDA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

D03PDF/D03PDA is designed to solve parabolic systems (possibly including elliptic equations) with
second-order derivatives in space. The argument specification allows you to include equations with only
first-order derivatives in the space direction but there is no guarantee that the method of integration will
be satisfactory for such systems. The position and nature of the boundary conditions in particular are
critical in defining a stable problem.

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

10 Example

The problem consists of a fourth-order PDE which can be written as a pair of second-order elliptic-
parabolic PDEs for U1 x; tð Þ and U2 x; tð Þ,

0 ¼ @
2U1

@x2
� U2 ð4Þ

@U2

@t
¼ @

2U2

@x2
þ U2

@U1

@x
� U1

@U2

@x
ð5Þ

where �1 � x � 1 and t � 0. The boundary conditions are given by

@U1

@x
¼ 0 and U1 ¼ 1 at x ¼ �1; and

@U1

@x
¼ 0 and U1 ¼ �1 at x ¼ 1:

The initial conditions at t ¼ 0 are given by

U1 ¼ � sin
	x

2
and U2 ¼

	2

4
sin

	x

2
:

The absence of boundary conditions for U2 x; tð Þ does not pose any difficulties provided that the

derivative flux boundary conditions are assigned to the first PDE (4) which has the correct flux,
@U1

@x
.

The conditions on U1 x; tð Þ at the boundaries are assigned to the second PDE by setting �2 ¼ 0:0 in
equation (3) and placing the Dirichlet boundary conditions on U1 x; tð Þ in the function �2.

10.1 Program Text

the following program illustrates the use of D03PDF. An equivalent program illustrating the use of
D03PDA is available with the supplied Library and is also available from the NAG web site.

! D03PDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03pdfe_mod

! D03PDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None
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! .. Accessibility Statements ..
Private
Public :: bndary, pdedef, uinit

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6, npde = 2

Contains
Subroutine uinit(npde,npts,x,u)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: piby2
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
piby2 = 0.5_nag_wp*x01aaf(piby2)
Do i = 1, npts

u(1,i) = -sin(piby2*x(i))
u(2,i) = -piby2*piby2*u(1,i)

End Do
Return

End Subroutine uinit

Subroutine pdedef(npde,t,x,nptl,u,ux,p,q,r,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: npde, nptl

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: p(npde,npde,nptl), q(npde,nptl), &

r(npde,nptl)
Real (Kind=nag_wp), Intent (In) :: u(npde,nptl), ux(npde,nptl), &

x(nptl)
! .. Local Scalars ..

Integer :: i
! .. Executable Statements ..

Do i = 1, nptl
q(1,i) = u(2,i)
q(2,i) = u(1,i)*ux(2,i) - ux(1,i)*u(2,i)
r(1,i) = ux(1,i)
r(2,i) = ux(2,i)
p(1,1,i) = 0.0_nag_wp
p(1,2,i) = 0.0_nag_wp
p(2,1,i) = 0.0_nag_wp
p(2,2,i) = 1.0_nag_wp

End Do
Return

End Subroutine pdedef

Subroutine bndary(npde,t,u,ux,ibnd,beta,gamma,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, npde
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: beta(npde), gamma(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde)

! .. Executable Statements ..
If (ibnd==0) Then

beta(1) = 1.0_nag_wp
gamma(1) = 0.0_nag_wp
beta(2) = 0.0_nag_wp
gamma(2) = u(1) - 1.0_nag_wp
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Else
beta(1) = 1.0E+0_nag_wp
gamma(1) = 0.0_nag_wp
beta(2) = 0.0_nag_wp
gamma(2) = u(1) + 1.0_nag_wp

End If
Return

End Subroutine bndary
End Module d03pdfe_mod

Program d03pdfe

! D03PDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03pdf, d03pyf, nag_wp
Use d03pdfe_mod, Only: bndary, nin, nout, npde, pdedef, uinit

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: acc, dx, tout, ts
Integer :: i, ifail, ind, intpts, it, itask, &

itrace, itype, lenode, lisave, &
lrsave, m, mu, nbkpts, nel, neqn, &
npl1, npoly, npts, nwkres

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:,:), uout(:,:,:), x(:), &

xbkpts(:), xout(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D03PDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) intpts, nbkpts, npoly, itype

nel = nbkpts - 1
npts = nel*npoly + 1
mu = npde*(npoly+1) - 1
neqn = npde*npts
lisave = neqn + 24
npl1 = npoly + 1
nwkres = 3*npl1*npl1 + npl1*(npde*npde+6*npde+nbkpts+1) + 13*npde + 5
lenode = (3*mu+1)*neqn
lrsave = 11*neqn + 50 + nwkres + lenode

Allocate (u(npde,npts),uout(npde,intpts,itype),rsave(lrsave),x(npts), &
xbkpts(nbkpts),xout(intpts),isave(lisave))

Read (nin,*) xout(1:intpts)
Read (nin,*) acc
Read (nin,*) m, itrace

! Set the break-points

dx = 2.0_nag_wp/real(nbkpts-1,kind=nag_wp)
xbkpts(1) = -1.0_nag_wp
Do i = 2, nbkpts - 1

xbkpts(i) = xbkpts(i-1) + dx
End Do
xbkpts(nbkpts) = 1.0_nag_wp

ind = 0
itask = 1
Read (nin,*) ts, tout

! Loop over output values of t

Do it = 1, 5
tout = 10.0_nag_wp*tout
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! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03pdf(npde,m,ts,tout,pdedef,bndary,u,nbkpts,xbkpts,npoly,npts,x, &

uinit,acc,rsave,lrsave,isave,lisave,itask,itrace,ind,ifail)

If (it==1) Then
Write (nout,99999) npoly, nel
Write (nout,99998) acc, npts
Write (nout,99997) xout(1:6)

End If

! Interpolate at required spatial points

ifail = 0
Call d03pyf(npde,u,nbkpts,xbkpts,npoly,npts,xout,intpts,itype,uout, &

rsave,lrsave,ifail)

Write (nout,99996) ts, uout(1,1:intpts,1)
Write (nout,99995) uout(2,1:intpts,1)

End Do

! Print integration statistics

Write (nout,99994) isave(1), isave(2), isave(3), isave(5)

99999 Format (’ Polynomial degree =’,I4,’ No. of elements = ’,I4)
99998 Format (’ Accuracy requirement =’,E10.3,’ Number of points = ’,I5,/)
99997 Format (’ T / X ’,6F8.4,/)
99996 Format (1X,F7.4,’ U(1)’,6F8.4)
99995 Format (9X,’U(2)’,6F8.4,/)
99994 Format (’ Number of integration steps in time ’,I4,/, &

’ Number of residual evaluations of resulting ODE system’,I4,/, &
’ Number of Jacobian evaluations ’,I4,/, &
’ Number of iterations of nonlinear solver ’,I4)

End Program d03pdfe

10.2 Program Data

D03PDF Example Program Data
6 10 3 1 : intpts, nbkpts, npoly, itype
-1.0 -0.6 -0.2 0.2 0.6 1.0 : xout
1.0E-4 : acc
0 0 : m, itrace
0.0 0.1E-4 : ts, tout

10.3 Program Results

D03PDF Example Program Results
Polynomial degree = 3 No. of elements = 9
Accuracy requirement = 0.100E-03 Number of points = 28

T / X -1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000

0.0001 U(1) 1.0000 0.8090 0.3090 -0.3090 -0.8090 -1.0000
U(2) -2.4850 -1.9957 -0.7623 0.7623 1.9957 2.4850

0.0010 U(1) 1.0000 0.8085 0.3088 -0.3088 -0.8085 -1.0000
U(2) -2.5583 -1.9913 -0.7606 0.7606 1.9913 2.5583

0.0100 U(1) 1.0000 0.8051 0.3068 -0.3068 -0.8051 -1.0000
U(2) -2.6962 -1.9481 -0.7439 0.7439 1.9481 2.6962

0.1000 U(1) 1.0000 0.7951 0.2985 -0.2985 -0.7951 -1.0000
U(2) -2.9022 -1.8339 -0.6338 0.6338 1.8339 2.9022

1.0000 U(1) 1.0000 0.7939 0.2972 -0.2972 -0.7939 -1.0000
U(2) -2.9233 -1.8247 -0.6120 0.6120 1.8247 2.9233
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Number of integration steps in time 50
Number of residual evaluations of resulting ODE system 407
Number of Jacobian evaluations 18
Number of iterations of nonlinear solver 122

Example Program
Solution, U(1,x,t), of Elliptic-parabolic Pair using Chebyshev Collocation and BDF
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Solution, U(2,x,t), of Elliptic-parabolic Pair using Chebyshev Collocation and BDF
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NAG Library Routine Document

D03PEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PEF integrates a system of linear or nonlinear, first-order, time-dependent partial differential
equations (PDEs) in one space variable. The spatial discretization is performed using the Keller box
scheme and the method of lines is employed to reduce the PDEs to a system of ordinary differential
equations (ODEs). The resulting system is solved using a Backward Differentiation Formula (BDF)
method.

2 Specification

SUBROUTINE D03PEF (NPDE, TS, TOUT, PDEDEF, BNDARY, U, NPTS, X, NLEFT,
ACC, RSAVE, LRSAVE, ISAVE, LISAVE, ITASK, ITRACE,
IND, IFAIL)

&
&

INTEGER NPDE, NPTS, NLEFT, LRSAVE, ISAVE(LISAVE), LISAVE,
ITASK, ITRACE, IND, IFAIL

&

REAL (KIND=nag_wp) TS, TOUT, U(NPDE,NPTS), X(NPTS), ACC, RSAVE(LRSAVE)
EXTERNAL PDEDEF, BNDARY

3 Description

D03PEF integrates the system of first-order PDEs

Gi x; t; U; Ux; Utð Þ ¼ 0; i ¼ 1; 2; . . . ;NPDE: ð1Þ

In particular the functions Gi must have the general form

Gi ¼
XNPDE
j¼1

Pi;j
@Uj
@t
þQi; i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0; ð2Þ

where Pi;j and Qi depend on x, t, U , Ux and the vector U is the set of solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T; ð3Þ

and the vector Ux is its partial derivative with respect to x. Note that Pi;j and Qi must not depend on
@U

@t
.

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS
are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xNPTS. The mesh should be
chosen in accordance with the expected behaviour of the solution.

The PDE system which is defined by the functions Gi must be specified in PDEDEF.

The initial values of the functions U x; tð Þ must be given at t ¼ t0. For a first-order system of PDEs,
only one boundary condition is required for each PDE component Ui. The NPDE boundary conditions
are separated into na at the left-hand boundary x ¼ a, and nb at the right-hand boundary x ¼ b, such
that na þ nb ¼ NPDE. The position of the boundary condition for each component should be chosen
with care; the general rule is that if the characteristic direction of Ui at the left-hand boundary (say)
points into the interior of the solution domain, then the boundary condition for Ui should be specified at
the left-hand boundary. Incorrect positioning of boundary conditions generally results in initialization or
integration difficulties in the underlying time integration routines.
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The boundary conditions have the form:

GL
i x; t; U; Utð Þ ¼ 0 at x ¼ a; i ¼ 1; 2; . . . ; na ð4Þ

at the left-hand boundary, and

GR
i x; t; U; Utð Þ ¼ 0 at x ¼ b; i ¼ 1; 2; . . . ; nb ð5Þ

at the right-hand boundary.

Note that the functions GL
i and GR

i must not depend on Ux, since spatial derivatives are not determined
explicitly in the Keller box scheme (see Keller (1970)). If the problem involves derivative (Neumann)
boundary conditions then it is generally possible to restate such boundary conditions in terms of
permissible variables. Also note that GL

i and GR
i must be linear with respect to time derivatives, so that

the boundary conditions have the general formXNPDE
j¼1

EL
i;j

@Uj
@t
þ SLi ¼ 0; i ¼ 1; 2; . . . ; na ð6Þ

at the left-hand boundary, and XNPDE
j¼1

ER
i;j

@Uj
@t
þ SRi ¼ 0; i ¼ 1; 2; . . . ; nb ð7Þ

at the right-hand boundary, where EL
i;j, E

R
i;j, S

L
i , and S

R
i depend on x, t and U only.

The boundary conditions must be specified in BNDARY.

The problem is subject to the following restrictions:

(i) t0 < tout, so that integration is in the forward direction;

(ii) Pi;j and Qi must not depend on any time derivatives;

(iii) The evaluation of the function Gi is done at the mid-points of the mesh intervals by calling the
PDEDEF for each mid-point in turn. Any discontinuities in the function must therefore be at one
or more of the mesh points x1; x2; . . . ; xNPTS;

(iv) At least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
problem.

In this method of lines approach the Keller box scheme (see Keller (1970)) is applied to each PDE in
the space variable only, resulting in a system of ODEs in time for the values of Ui at each mesh point.
In total there are NPDE� NPTS ODEs in the time direction. This system is then integrated forwards in
time using a BDF method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (eds J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Keller H B (1970) A new difference scheme for parabolic problems Numerical Solutions of Partial
Differential Equations (ed J Bramble) 2 327–350 Academic Press

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

D03PEF NAG Library Manual

D03PEF.2 Mark 26



5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system to be solved.

Constraint: NPDE � 1.

2: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

Constraint: TS < TOUT.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

3: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

4: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must compute the functions Gi which define the system of PDEs. PDEDEF is called
approximately midway between each pair of mesh points in turn by D03PEF.

The specification of PDEDEF is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UT, UX, RES, IRES)

INTEGER NPDE, IRES
REAL (KIND=nag_wp) T, X, U(NPDE), UT(NPDE), UX(NPDE), RES(NPDE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ;NPDE.

5: UTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UTðiÞ contains the value of the component
@Ui x; tð Þ

@t
, for i ¼ 1; 2; . . . ;NPDE.

6: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

, for i ¼ 1; 2; . . . ;NPDE.

7: RESðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: RESðiÞ must contain the ith component of G, for i ¼ 1; 2; . . . ;NPDE, where G
is defined as

Gi ¼
XNPDE
j¼1

Pi;j
@Uj

@t
; ð8Þ
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i.e., only terms depending explicitly on time derivatives, or

Gi ¼
XNPDE
j¼1

Pi;j
@Uj

@t
þQi; ð9Þ

i.e., all terms in equation (2).

The definition of G is determined by the input value of IRES.

8: IRES – INTEGER Input/Output

On entry: the form of Gi that must be returned in the array RES.

IRES ¼ �1
Equation (8) must be used.

IRES ¼ 1
Equation (9) must be used.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions, as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PEF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PEF is called. Arguments denoted as Input must not be changed by this
procedure.

5: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must compute the functions GL
i and GR

i which define the boundary conditions as in
equations (4) and (5).

The specification of BNDARY is:

SUBROUTINE BNDARY (NPDE, T, IBND, NOBC, U, UT, RES, IRES)

INTEGER NPDE, IBND, NOBC, IRES
REAL (KIND=nag_wp) T, U(NPDE), UT(NPDE), RES(NOBC)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: IBND – INTEGER Input

On entry: determines the position of the boundary conditions.

IBND ¼ 0
BNDARY must compute the left-hand boundary condition at x ¼ a.
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IBND 6¼ 0
Indicates that BNDARY must compute the right-hand boundary condition at
x ¼ b.

4: NOBC – INTEGER Input

On entry: specifies the number of boundary conditions at the boundary specified by
IBND.

5: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ at the boundary specified
by IBND, for i ¼ 1; 2; . . . ;NPDE.

6: UTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UTðiÞ contains the value of the component
@Ui x; tð Þ

@t
at the boundary specified

by IBND, for i ¼ 1; 2; . . . ;NPDE.

7: RESðNOBCÞ – REAL (KIND=nag_wp) array Output

On exit: RESðiÞ must contain the ith component of GL or GR, depending on the value
of IBND, for i ¼ 1; 2; . . . ;NOBC, where GL is defined as

GL
i ¼

XNPDE
j¼1

EL
i;j

@Uj

@t
; ð10Þ

i.e., only terms depending explicitly on time derivatives, or

GL
i ¼

XNPDE
j¼1

EL
i;j

@Uj

@t
þ SLi ; ð11Þ

i.e., all terms in equation (6), and similarly for GR
i .

The definitions of GL and GR are determined by the input value of IRES.

8: IRES – INTEGER Input/Output

On entry: the form GL
i (or GR

i ) that must be returned in the array RES.

IRES ¼ �1
Equation (10) must be used.

IRES ¼ 1
Equation (11) must be used.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions, as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PEF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PEF is called. Arguments denoted as Input must not be changed
by this procedure.

D03 – Partial Differential Equations D03PEF

Mark 26 D03PEF.5



6: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of U x; tð Þ at t ¼ TS and the mesh points XðjÞ, for j ¼ 1; 2; . . . ;NPTS.

On exit: Uði; jÞ will contain the computed solution at t ¼ TS.

7: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: NPTS � 3.

8: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the mesh points in the spatial direction. Xð1Þ must specify the left-hand boundary, a,
and XðNPTSÞ must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.

9: NLEFT – INTEGER Input

On entry: the number na of boundary conditions at the left-hand mesh point Xð1Þ.
Constraint: 0 � NLEFT � NPDE.

10: ACC – REAL (KIND=nag_wp) Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If
E i; jð Þ is the estimated error for Ui at the jth mesh point, the error test is:

E i; jð Þj j ¼ ACC� 1:0þ Uði; jÞj jð Þ:
Constraint: ACC > 0:0.

11: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

12: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PEF is called.

C o n s t r a i n t :
LRSAVE � 4� NPDEþ NLEFTþ 14ð Þ � NPDE� NPTSþ 3� NPDEþ 21ð Þ � NPDEþ
7� NPTSþ 54.

13: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set on entry.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration. In particular:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.
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ISAVEð4Þ
Contains the order of the last backward differentiation formula method used.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU
decomposition of the Jacobian matrix.

14: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which D03PEF
is called.

Constraint: LISAVE � NPDE� NPTSþ 24.

15: ITASK – INTEGER Input

On entry: specifies the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT.

ITASK ¼ 2
Take one step and return.

ITASK ¼ 3
Stop at the first internal integration point at or beyond t ¼ TOUT.

Constraint: ITASK ¼ 1, 2 or 3.

16: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PEF and the underlying ODE solver as
follows:

ITRACE � �1
No output is generated.

ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE ¼ 1
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

ITRACE ¼ 2
Output from the underlying ODE solver is similar to that produced when ITRACE ¼ 1,
except that the advisory messages are given in greater detail.

ITRACE � 3
Output from the underlying ODE solver is similar to that produced when ITRACE ¼ 2,
except that the advisory messages are given in greater detail.

You are advised to set ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.

17: IND – INTEGER Input/Output

On entry: indicates whether this is a continuation call or a new integration.

IND ¼ 0
Starts or restarts the integration in time.
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IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT and IFAIL should be reset between calls to D03PEF.

Constraint: IND ¼ 0 or 1.

On exit: IND ¼ 1.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOUT � TS,
or TOUT� TSð Þ is too small,
or ITASK 6¼ 1, 2 or 3,
or mesh points XðiÞ are not ordered correctly,
or NPTS < 3,
or NPDE < 1,
or NLEFT is not in the range 0 to NPDE,
or ACC � 0:0,
or IND 6¼ 0 or 1,
or LRSAVE is too small,
or LISAVE is too small,
or D03PEF called initially with IND ¼ 1.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress across the integration range from
the current point t ¼ TS with the supplied value of ACC. The components of U contain the
computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated errors or corrector convergence test failures
on an attempted step, before completing the requested task. The problem may have a singularity
or ACC is too small for the integration to continue. Incorrect positioning of boundary conditions
may also result in this error. Integration was successful as far as t ¼ TS.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
the PDEDEF or BNDARY, when the residual in the underlying ODE solver was being evaluated.
Incorrect positioning of boundary conditions may also result in this error.
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IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. You should check their
problem formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in one of PDEDEF
or BNDARY. Integration was successful as far as t ¼ TS.

IFAIL ¼ 7

The value of ACC is so small that the routine is unable to start the integration in time.

IFAIL ¼ 8

In either, PDEDEF or BNDARY, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification and all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ACC is unlikely
to produce any change in the computed solution. (Only applies when you are not operating in one
step mode, that is when ITASK 6¼ 2.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current advisory message unit).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PEF controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of
varying the accuracy argument, ACC.
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8 Parallelism and Performance

D03PEF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03PEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03PEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to first-
order by the introduction of new variables (see the example problem in D03PKF). In general, a second-
order problem can be solved with slightly greater accuracy using the Keller box scheme instead of a
finite difference scheme (D03PCF/D03PCA or D03PHF/D03PHA for example), but at the expense of
increased CPU time due to the larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may
be unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection
equation Ut þ aUx ¼ 0, where a is a constant, resulting in spurious oscillations due to the lack of
dissipation. This type of problem requires a discretization scheme with upwind weighting (D03PFF for
example), or the addition of a second-order artificial dissipation term.

The time taken depends on the complexity of the system and on the accuracy requested.

10 Example

This example is the simple first-order system

@U1

@t
þ @U1

@x
þ @U2

@x
¼ 0;

@U2

@t
þ 4

@U1

@x
þ @U2

@x
¼ 0;

for t 2 0; 1½ � and x 2 0; 1½ �.
The initial conditions are

U1 x; 0ð Þ ¼ exp xð Þ; U2 x; 0ð Þ ¼ sin xð Þ;

and the Dirichlet boundary conditions for U1 at x ¼ 0 and U2 at x ¼ 1 are given by the exact solution:

U1 x; tð Þ ¼ 1
2 exp xþ tð Þ þ exp x� 3tð Þf g þ 1

4 sin x� 3tð Þ � sin xþ tð Þf g;

U2 x; tð Þ ¼ exp x� 3tð Þ � exp xþ tð Þ þ 1
2 sin xþ tð Þ þ sin x� 3tð Þf g:

10.1 Program Text

! D03PEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03pefe_mod

! D03PEF Example Program Module:
! Parameters and User-defined Routines
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! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndary, exact, pdedef, uinit

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: half = 0.5_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Integer, Parameter, Public :: nin = 5, nleft = 1, nout = 6, &

npde = 2
Contains

Subroutine uinit(npde,npts,x,u)
! Routine for PDE initial values

! .. Scalar Arguments ..
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp, sin

! .. Executable Statements ..
Do i = 1, npts

u(1,i) = exp(x(i))
u(2,i) = sin(x(i))

End Do
Return

End Subroutine uinit
Subroutine pdedef(npde,t,x,u,ut,ux,res,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: res(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ut(npde), ux(npde)

! .. Executable Statements ..
If (ires==-1) Then

res(1) = ut(1)
res(2) = ut(2)

Else
res(1) = ut(1) + ux(1) + ux(2)
res(2) = ut(2) + 4.0_nag_wp*ux(1) + ux(2)

End If
Return

End Subroutine pdedef
Subroutine bndary(npde,t,ibnd,nobc,u,ut,res,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, nobc, npde
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: res(nobc)
Real (Kind=nag_wp), Intent (In) :: u(npde), ut(npde)

! .. Local Scalars ..
Real (Kind=nag_wp) :: t1, t3

! .. Intrinsic Procedures ..
Intrinsic :: exp, sin

! .. Executable Statements ..
If (ires==-1) Then

res(1) = 0.0_nag_wp
Else If (ibnd==0) Then

t3 = -3.0_nag_wp*t
t1 = t
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res(1) = u(1) - half*((exp(t3)+exp(t1))+half*(sin(t3)-sin(t1)))
Else

t3 = one - 3.0_nag_wp*t
t1 = one + t
res(1) = u(2) - ((exp(t3)-exp(t1))+half*(sin(t3)+sin(t1)))

End If
Return

End Subroutine bndary
Subroutine exact(t,npde,npts,x,u)

! Exact solution (for comparison purposes)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: xt, xt3
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp, sin

! .. Executable Statements ..
Do i = 1, npts

xt3 = x(i) - 3.0_nag_wp*t
xt = x(i) + t
u(1,i) = half*((exp(xt3)+exp(xt))+half*(sin(xt3)-sin(xt)))
u(2,i) = (exp(xt3)-exp(xt)) + half*(sin(xt3)+sin(xt))

End Do
Return

End Subroutine exact
End Module d03pefe_mod
Program d03pefe

! D03PEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03pef, nag_wp
Use d03pefe_mod, Only: bndary, exact, nin, nleft, nout, npde, pdedef, &

uinit
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: acc, tout, ts
Integer :: i, ifail, ind, it, itask, itrace, &

lisave, lrsave, neqn, npts, nwkres
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: eu(:,:), rsave(:), u(:,:), x(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D03PEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts
nwkres = npde*(npts+21+3*npde) + 7*npts + 4
neqn = npde*npts
lisave = neqn + 24
lrsave = 11*neqn + (4*npde+nleft+2)*neqn + 50 + nwkres

Allocate (eu(npde,npts),rsave(lrsave),u(npde,npts),x(npts), &
isave(lisave))

Read (nin,*) acc
Read (nin,*) itrace

! Set spatial-mesh points

Do i = 1, npts
x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)

End Do
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ind = 0
itask = 1

Call uinit(npde,npts,x,u)

! Loop over output value of t
Read (nin,*) ts, tout

Do it = 1, 5
tout = 0.2_nag_wp*real(it,kind=nag_wp)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03pef(npde,ts,tout,pdedef,bndary,u,npts,x,nleft,acc,rsave, &

lrsave,isave,lisave,itask,itrace,ind,ifail)

If (it==1) Then
Write (nout,99997) acc, npts
Write (nout,99999) x(5), x(13), x(21), x(29), x(37)

End If

! Check against the exact solution

Call exact(tout,npde,npts,x,eu)

Write (nout,99998) ts
Write (nout,99995) u(1,5:37:8)
Write (nout,99994) eu(1,5:37:8)
Write (nout,99993) u(2,5:37:8)
Write (nout,99992) eu(2,5:37:8)

End Do
Write (nout,99996) isave(1), isave(2), isave(3), isave(5)

99999 Format (’ X ’,5F10.4,/)
99998 Format (’ T = ’,F5.2)
99997 Format (/,/,’ Accuracy requirement =’,E10.3,’ Number of points = ’,I3, &

/)
99996 Format (’ Number of integration steps in time = ’,I6,/,’ Number o’, &

’f function evaluations = ’,I6,/,’ Number of Jacobian eval’, &
’uations =’,I6,/,’ Number of iterations = ’,I6)

99995 Format (’ Approx U1’,5F10.4)
99994 Format (’ Exact U1’,5F10.4)
99993 Format (’ Approx U2’,5F10.4)
99992 Format (’ Exact U2’,5F10.4,/)

End Program d03pefe

10.2 Program Data

D03PEF Example Program Data
41 : npts
0.1E-5 : acc
0 : itrace
0.0 0.0 : ts, tout

10.3 Program Results

D03PEF Example Program Results

Accuracy requirement = 0.100E-05 Number of points = 41

X 0.1000 0.3000 0.5000 0.7000 0.9000

T = 0.20
Approx U1 0.7845 1.0010 1.2733 1.6115 2.0281
Exact U1 0.7845 1.0010 1.2733 1.6115 2.0281
Approx U2 -0.8352 -0.8159 -0.8367 -0.9128 -1.0609
Exact U2 -0.8353 -0.8160 -0.8367 -0.9129 -1.0609
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T = 0.40
Approx U1 0.6481 0.8533 1.1212 1.4627 1.8903
Exact U1 0.6481 0.8533 1.1212 1.4627 1.8903
Approx U2 -1.5216 -1.6767 -1.8934 -2.1917 -2.5944
Exact U2 -1.5217 -1.6767 -1.8935 -2.1917 -2.5945

T = 0.60
Approx U1 0.6892 0.8961 1.1747 1.5374 1.9989
Exact U1 0.6892 0.8962 1.1747 1.5374 1.9989
Approx U2 -2.0047 -2.3434 -2.7677 -3.3002 -3.9680
Exact U2 -2.0048 -2.3436 -2.7678 -3.3003 -3.9680

T = 0.80
Approx U1 0.8977 1.1247 1.4320 1.8349 2.3514
Exact U1 0.8977 1.1247 1.4320 1.8349 2.3512
Approx U2 -2.3403 -2.8675 -3.5110 -4.2960 -5.2536
Exact U2 -2.3405 -2.8677 -3.5111 -4.2961 -5.2537

T = 1.00
Approx U1 1.2470 1.5206 1.8828 2.3528 2.9519
Exact U1 1.2470 1.5205 1.8829 2.3528 2.9518
Approx U2 -2.6229 -3.3338 -4.1998 -5.2505 -6.5218
Exact U2 -2.6232 -3.3340 -4.2001 -5.2507 -6.5219

Number of integration steps in time = 149
Number of function evaluations = 399
Number of Jacobian evaluations = 13
Number of iterations = 323

Example Program
Solution, U(1,x,t), of First-order System using Keller, Box and BDF
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Solution, U(2,x,t), of First-order System using Keller, Box and BDF
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NAG Library Routine Document

D03PFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PFF integrates a system of linear or nonlinear convection-diffusion equations in one space
dimension, with optional source terms. The system must be posed in conservative form. Convection
terms are discretized using a sophisticated upwind scheme involving a user-supplied numerical flux
function based on the solution of a Riemann problem at each mesh point. The method of lines is
employed to reduce the PDEs to a system of ordinary differential equations (ODEs), and the resulting
system is solved using a backward differentiation formula (BDF) method.

2 Specification

SUBROUTINE D03PFF (NPDE, TS, TOUT, PDEDEF, NUMFLX, BNDARY, U, NPTS, X,
ACC, TSMAX, RSAVE, LRSAVE, ISAVE, LISAVE, ITASK,
ITRACE, IND, IFAIL)

&
&

INTEGER NPDE, NPTS, LRSAVE, ISAVE(LISAVE), LISAVE, ITASK,
ITRACE, IND, IFAIL

&

REAL (KIND=nag_wp) TS, TOUT, U(NPDE,NPTS), X(NPTS), ACC(2), TSMAX,
RSAVE(LRSAVE)

&

EXTERNAL PDEDEF, NUMFLX, BNDARY

3 Description

D03PFF integrates the system of convection-diffusion equations in conservative form:XNPDE
j¼1

Pi;j
@Uj
@t
þ @Fi
@x
¼ Ci

@Di

@x
þ Si; ð1Þ

or the hyperbolic convection-only system:

@Ui
@t
þ @Fi
@x
¼ 0; ð2Þ

for i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0, where the vector U is the set of solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T:

The functions Pi;j, Fi, Ci and Si depend on x, t and U ; and Di depends on x, t, U and Ux, where Ux is
the spatial derivative of U . Note that Pi;j, Fi, Ci and Si must not depend on any space derivatives; and

none of the functions may depend on time derivatives. In terms of conservation laws, Fi,
Ci@Di

@x
and Si

are the convective flux, diffusion and source terms respectively.

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS
are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xNPTS. The initial values of the
functions U x; tð Þ must be given at t ¼ t0.
The PDEs are approximated by a system of ODEs in time for the values of Ui at mesh points using a
spatial discretization method similar to the central-difference scheme used in D03PCF/D03PCA,
D03PHF/D03PHA and D03PPF/D03PPA, but with the flux Fi replaced by a numerical flux, which is a
representation of the flux taking into account the direction of the flow of information at that point (i.e.,
the direction of the characteristics). Simple central differencing of the numerical flux then becomes a
sophisticated upwind scheme in which the correct direction of upwinding is automatically achieved.
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The numerical flux vector, F̂i say, must be calculated by you in terms of the left and right values of the
solution vector U (denoted by UL and UR respectively), at each mid-point of the mesh
xj�1=2 ¼ xj�1 þ xj

� �
=2, for j ¼ 2; 3; . . . ;NPTS. The left and right values are calculated by D03PFF

from two adjacent mesh points using a standard upwind technique combined with a Van Leer slope-
limiter (see LeVeque (1990)). The physically correct value for F̂i is derived from the solution of the
Riemann problem given by

@Ui
@t
þ @Fi
@y
¼ 0; ð3Þ

where y ¼ x� xj�1=2, i.e., y ¼ 0 corresponds to x ¼ xj�1=2, with discontinuous initial values U ¼ UL
for y < 0 and U ¼ UR for y > 0, using an approximate Riemann solver. This applies for either of the
systems (1) or (2); the numerical flux is independent of the functions Pi;j, Ci, Di and Si. A description
of several approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989).
Roe's scheme (see Roe (1981)) is perhaps the easiest to understand and use, and a brief summary
follows. Consider the system of PDEs Ut þ Fx ¼ 0 or equivalently Ut þAUx ¼ 0. Provided the system
is linear in U , i.e., the Jacobian matrix A does not depend on U , the numerical flux F̂ is given by

F̂ ¼ 1
2 FL þ FRð Þ � 1

2

XNPDE
k¼1

�k �kj jek; ð4Þ

where FL (FR) is the flux F calculated at the left (right) value of U , denoted by UL (UR); the �k are the
eigenvalues of A; the ek are the right eigenvectors of A; and the �k are defined by

UR � UL ¼
XNPDE
k¼1

�kek: ð5Þ

An example is given in Section 10.

If the system is nonlinear, Roe's scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions Pi;j, Ci, Di and Si (but not Fi) must be specified in a PDEDEF. The numerical flux F̂i
must be supplied in a separate NUMFLX. For problems in the form (2), the actual argument D03PFP
may be used for PDEDEF. D03PFP is included in the NAG Library and sets the matrix with entries Pi;j
to the identity matrix, and the functions Ci, Di and Si to zero.

The boundary condition specification has sufficient flexibility to allow for different types of problems.
For second-order problems, i.e., Di depending on Ux, a boundary condition is required for each PDE at
both boundaries for the problem to be well-posed. If there are no second-order terms present, then the
continuous PDE problem generally requires exactly one boundary condition for each PDE, that is
NPDE boundary conditions in total. However, in common with most discretization schemes for first-
order problems, a numerical boundary condition is required at the other boundary for each PDE. In
order to be consistent with the characteristic directions of the PDE system, the numerical boundary
conditions must be derived from the solution inside the domain in some manner (see below). You must
supply both types of boundary conditions, i.e., a total of NPDE conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a
numerical boundary condition is required at the other boundary. In many cases the boundary conditions
are simple, e.g., for the linear advection equation. In general you should calculate the characteristics of
the PDE system and specify a physical boundary condition for each of the characteristic variables
associated with incoming characteristics, and a numerical boundary condition for each outgoing
characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic
variables from the inside of the domain. Note that only linear extrapolation is allowed in this routine
(for greater flexibility the routine D03PLF should be used). For problems in which the solution is
known to be uniform (in space) towards a boundary during the period of integration then extrapolation
is unnecessary; the numerical boundary condition can be supplied as the known solution at the
boundary. Examples can be found in Section 10.
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The boundary conditions must be specified in BNDARY in the form

GL
i x; t; Uð Þ ¼ 0 at x ¼ a; i ¼ 1; 2; . . . ;NPDE; ð6Þ

at the left-hand boundary, and

GR
i x; t; Uð Þ ¼ 0 at x ¼ b; i ¼ 1; 2; . . . ;NPDE; ð7Þ

at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to BNDARY, but they can be
calculated using values of U at and adjacent to the boundaries if required. However, it should be noted
that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

The problem is subject to the following restrictions:

(i) Pi;j, Fi, Ci and Si must not depend on any space derivatives;

(ii) Pi;j, Fi, Ci, Di and Si must not depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) The evaluation of the terms Pi;j, Ci, Di and Si is done by calling the PDEDEF at a point
approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the mesh points x1; x2; . . . ; xNPTS;

(v) At least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
PDE problem.

In total there are NPDE� NPTS ODEs in the time direction. This system is then integrated forwards in
time using a BDF method.

For further details of the algorithm, see Pennington and Berzins (1994) and the references therein.

4 References

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Hirsch C (1990) Numerical Computation of Internal and External Flows, Volume 2: Computational
Methods for Inviscid and Viscous Flows John Wiley

LeVeque R J (1990) Numerical Methods for Conservation Laws BirkhÌuser Verlag

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

Roe P L (1981) Approximate Riemann solvers, parameter vectors, and difference schemes J. Comput.
Phys. 43 357–372

5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.

2: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.
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3: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

4: PDEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

PDEDEF must evaluate the functions Pi;j, Ci, Di and Si which partially define the system of
PDEs. Pi;j, Ci and Si may depend on x, t and U; Di may depend on x, t, U and Ux. PDEDEF is
called approximately midway between each pair of mesh points in turn by D03PFF. The actual
argument D03PFP may be used for PDEDEF for problems in the form (2). (D03PFP is included
in the NAG Library.)

The specification of PDEDEF is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UX, P, C, D, S, IRES)

INTEGER NPDE, IRES
REAL (KIND=nag_wp) T, X, U(NPDE), UX(NPDE), P(NPDE,NPDE),

C(NPDE), D(NPDE), S(NPDE)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ;NPDE.

5: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

, for i ¼ 1; 2; . . . ;NPDE.

6: PðNPDE;NPDEÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ must be set to the value of Pi;j x; t; Uð Þ, for i ¼ 1; 2; . . . ;NPDE and
j ¼ 1; 2; . . . ;NPDE.

7: CðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: CðiÞ must be set to the value of Ci x; t; Uð Þ, for i ¼ 1; 2; . . . ;NPDE.

8: DðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: DðiÞ must be set to the value of Di x; t; U; Uxð Þ, for i ¼ 1; 2; . . . ;NPDE.

9: SðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: SðiÞ must be set to the value of Si x; t; Uð Þ, for i ¼ 1; 2; . . . ;NPDE.

10: IRES – INTEGER Input/Output

On entry: set to �1 or 1.
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On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling subroutine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PFF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PFF is called. Arguments denoted as Input must not be changed by this
procedure.

5: NUMFLX – SUBROUTINE, supplied by the user. External Procedure

NUMFLX must supply the numerical flux for each PDE given the left and right values of the
solution vector U. NUMFLX is called approximately midway between each pair of mesh points
in turn by D03PFF.

The specification of NUMFLX is:

SUBROUTINE NUMFLX (NPDE, T, X, ULEFT, URIGHT, FLUX, IRES)

INTEGER NPDE, IRES
REAL (KIND=nag_wp) T, X, ULEFT(NPDE), URIGHT(NPDE), FLUX(NPDE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: ULEFTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: ULEFTðiÞ contains the left value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ;NPDE.

5: URIGHTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: URIGHTðiÞ contains the right value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ;NPDE.

6: FLUXðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: FLUXðiÞ must be set to the numerical flux F̂i, for i ¼ 1; 2; . . . ;NPDE.

7: IRES – INTEGER Input/Output

On entry: set to �1 or 1.
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On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling subroutine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PFF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

NUMFLX must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PFF is called. Arguments denoted as Input must not be changed by
this procedure.

6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions GL
i and GR

i which describe the physical and numerical
boundary conditions, as given by (6) and (7).

The specification of BNDARY is:

SUBROUTINE BNDARY (NPDE, NPTS, T, X, U, IBND, G, IRES)

INTEGER NPDE, NPTS, IBND, IRES
REAL (KIND=nag_wp) T, X(NPTS), U(NPDE,3), G(NPDE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the mesh points in the spatial direction. Xð1Þ corresponds to the left-hand
boundary, a, and XðNPTSÞ corresponds to the right-hand boundary, b.

5: UðNPDE; 3Þ – REAL (KIND=nag_wp) array Input

On entry: contains the value of solution components in the boundary region.

If IBND ¼ 0, Uði; jÞ contains the value of the component Ui xendgroup; tÞð at x ¼ XðjÞ,
for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; 3.

I f IBND 6¼ 0, Uði; jÞ conta ins the value of the component Ui x; tð Þ at
x ¼ XðNPTS� j þ 1Þ, for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; 3.

6: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated.

IBND ¼ 0
BNDARY must evaluate the left-hand boundary condition at x ¼ a.

IBND 6¼ 0
BNDARY must evaluate the right-hand boundary condition at x ¼ b.
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7: GðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: GðiÞ must contain the ith component of either GL or GR in (6) and (7),
depending on the value of IBND, for i ¼ 1; 2; . . . ;NPDE.

8: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling subroutine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PFF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PFF is called. Arguments denoted as Input must not be changed by
this procedure.

7: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: Uði; jÞ must contain the initial value of Ui x; tð Þ at x ¼ XðjÞ and t ¼ TS, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

On exit: Uði; jÞ will contain the computed solution Ui x; tð Þ at x ¼ XðjÞ and t ¼ TS, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

8: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: NPTS � 3.

9: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the mesh points in the space direction. Xð1Þ must specify the left-hand boundary, a,
and XðNPTSÞ must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.

10: ACCð2Þ – REAL (KIND=nag_wp) array Input

On entry: the components of ACC contain the relative and absolute error tolerances used in the
local error test in the time integration.

If E i; jð Þ is the estimated error for Ui at the jth mesh point, the error test is

E i; jð Þ ¼ ACCð1Þ � Uði; jÞ þ ACCð2Þ:
Constraint: ACCð1Þ and ACCð2Þ � 0:0 (but not both zero).

11: TSMAX – REAL (KIND=nag_wp) Input

On entry: the maximum absolute step size to be allowed in the time integration. If TSMAX ¼ 0:0
then no maximum is imposed.

Constraint: TSMAX � 0:0.
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12: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

13: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PFF is called.

Constraint: LRSAVE � 11þ 9� NPDEð Þ � NPDE� NPTSþ 32þ 3� NPDEð Þ � NPDEþ 7�
NPTSþ 54.

14: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set on entry.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration. In particular:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the last backward differentiation formula method used.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU
decomposition of the Jacobian matrix.

15: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which D03PFF
is called.

Constraint: LISAVE � NPDE� NPTSþ 24.

16: ITASK – INTEGER Input

On entry: the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT (by overshooting and interpolating).

ITASK ¼ 2
Take one step in the time direction and return.

ITASK ¼ 3
Stop at first internal integration point at or beyond t ¼ TOUT.

Constraint: ITASK ¼ 1, 2 or 3.
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17: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PFF and the underlying ODE solver.
ITRACE may take the value �1, 0, 1, 2 or 3.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE > 0
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. You are advised to set
ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.

18: IND – INTEGER Input/Output

On entry: indicates whether this is a continuation call or a new integration.

IND ¼ 0
Starts or restarts the integration in time.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT and IFAIL should be reset between calls to D03PFF.

Constraint: IND ¼ 0 or 1.

On exit: IND ¼ 1.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TS � TOUT,
or TOUT� TS is too small,
or ITASK ¼ 1, 2 or 3,
or NPTS < 3,
or NPDE < 1,
or IND 6¼ 0 or 1,
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or incorrect user-defined mesh, i.e., XðiÞ � Xðiþ 1Þ for some i ¼ 1; 2; . . . ;NPTS� 1,
or LRSAVE or LISAVE are too small,
or IND ¼ 1 on initial entry to D03PFF,
or ACCð1Þ or ACCð2Þ < 0:0,
or ACCð1Þ or ACCð2Þ are both zero,
or TSMAX < 0:0.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ACC, across
the integration range from the current point t ¼ TS. The components of U contain the computed
values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate. Incorrect specification of
boundary conditions may also result in this error.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
one of PDEDEF, NUMFLX or BNDARY when the residual in the underlying ODE solver was
being evaluated. Incorrect specification of boundary conditions may also result in this error.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. Check the problem
formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least one of
PDEDEF, NUMFLX or BNDARY. Integration was successful as far as t ¼ TS.

IFAIL ¼ 7

The values of ACCð1Þ and ACCð2Þ are so small that the routine is unable to start the integration
in time.

IFAIL ¼ 8

In either, PDEDEF, NUMFLX or BNDARY, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification and all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in the values of
ACC is unlikely to produce any change in the computed solution. (Only applies when you are not
operating in one step mode, that is when ITASK 6¼ 2.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current advisory message unit when ITRACE � 1).
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IFAIL ¼ 12

Not applicable.

IFAIL ¼ 13

Not applicable.

IFAIL ¼ 14

One or more of the functions Pi;j, Di or Ci was detected as depending on time derivatives, which
is not permissible.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PFF controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of
varying the components of the accuracy argument, ACC.

8 Parallelism and Performance

D03PFF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03PFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03PFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

D03PFF is designed to solve systems of PDEs in conservative form, with optional source terms which
are independent of space derivatives, and optional second-order diffusion terms. The use of the routine
to solve systems which are not naturally in this form is discouraged, and you are advised to use one of
the central-difference schemes for such problems.
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You should be aware of the stability limitations for hyperbolic PDEs. For most problems with small
error tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum
time step should be imposed using TSMAX. It is worth experimenting with this argument, particularly
if the integration appears to progress unrealistically fast (with large time steps). Setting the maximum
time step to the minimum mesh size is a safe measure, although in some cases this may be too
restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms
stable and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-
physical speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is
essential to employ a very fine mesh for problems with source terms and discontinuities, and to check
for non-physical propagation speeds by comparing results for different mesh sizes. Further details and
an example can be found in Pennington and Berzins (1994).

The time taken depends on the complexity of the system and on the accuracy requested.

10 Example

For this routine two examples are presented. There is a single example program for D03PFF, with a
main program and the code to solve the two example problems given in Example 1 (EX1) and Example
2 (EX2).

Example 1 (EX1)

This example is a simple first-order system which illustrates the calculation of the numerical flux using
Roe's approximate Riemann solver, and the specification of numerical boundary conditions using
extrapolated characteristic variables. The PDEs are

@U1

@t
þ @U1

@x
þ @U2

@x
¼ 0;

@U2

@t
þ 4

@U1

@x
þ @U2

@x
¼ 0;

for x 2 0; 1½ � and t � 0. The PDEs have an exact solution given by

U1 x; tð Þ ¼ 1
2 exp xþ tð Þ þ exp x� 3tð Þf g þ 1

4 sin 2	 x� 3tð Þ2
� �

� sin 2	 xþ tð Þ2
� �n o

þ 2t2 � 2xt;

U2 x; tð Þ ¼ exp x� 3tð Þ � exp xþ tð Þ þ 1
2 sin 2	 x� 3tð Þ2

� �
þ sin 2	 x� 3tð Þ2

� �n o
þ x2 þ 5t2 � 2xt:

The initial conditions are given by the exact solution. The characteristic variables are 2U1 þ U2 and
2U1 � U2 corresponding to the characteristics given by dx=dt ¼ 3 and dx=dt ¼ �1 respectively. Hence
a physical boundary condition is required for 2U1 þ U2 at the left-hand boundary, and for 2U1 � U2 at
the right-hand boundary (corresponding to the incoming characteristics); and a numerical boundary
condition is required for 2U1 � U2 at the left-hand boundary, and for 2U1 þ U2 at the right-hand
boundary (outgoing characteristics). The physical boundary conditions are obtained from the exact
solution, and the numerical boundary conditions are calculated by linear extrapolation of the appropriate
characteristic variable. The numerical flux is calculated using Roe's approximate Riemann solver: Using
the notation in Section 3, the flux vector F and the Jacobian matrix A are

F ¼ U1 þ U2
4U1 þ U2

� �
and A ¼ 1 1

4 1

� �
;

and the eigenvalues of A are 3 and �1 with right eigenvectors 1 2
� �T

and �1 2
� �T

respectively.
Using equation (4) the �k are given by

U1R � U1L
U2R � U2L

� �
¼ �1

1
2

� �
þ �2

�1
2

� �
;

that is

�1 ¼ 1
4 2U1R � 2U1L þ U2R � U2Lð Þ and �2 ¼ 1

4 �2U1R þ 2U1L þ U2R � U2Lð Þ:

D03PFF NAG Library Manual

D03PFF.12 Mark 26



FL is given by

FL ¼ U1L þ U2L
4U1L þ U2L

� �
;

and similarly for FR. From equation (4), the numerical flux vector is

F̂ ¼ 1
2

U1L þ U2L þ U1R þ U2R
4U1L þ U2L þ 4U1R þ U2R

� �
� 1

2�1 3j j 1
2

� �
� 1

2�2 �1j j �1
2

� �
;

that is

F̂ ¼ 1
2

3U1L � U1R þ 3
2U2L þ 1

2U2R
6U1L þ 2U1R þ 3U2L � U2R

� �
:

Example 2 (EX2)

This example is an advection-diffusion equation in which the flux term depends explicitly on x:

@U

@t
þ x@U

@x
¼ �@

2U

@x2
;

for x 2 �1; 1½ � and 0 � t � 10. The argument � is taken to be 0:01. The two physical boundary
conditions are U �1; tð Þ ¼ 3:0 and U 1; tð Þ ¼ 5:0 and the initial condition is U x; 0ð Þ ¼ xþ 4. The
integration is run to steady state at which the solution is known to be U ¼ 4 across the domain with a
narrow boundary layer at both boundaries. In order to write the PDE in conservative form, a source
term must be introduced, i.e.,

@U

@t
þ @ xUð Þ

@x
¼ �@

2U

@x2
þ U:

As in Example 1, the numerical flux is calculated using the Roe approximate Riemann solver. The
Riemann problem to solve locally is

@U

@t
þ @ xUð Þ

@x
¼ 0:

The x in the flux term is assumed to be constant at a local level, and so using the notation in Section 3,
F ¼ xU and A ¼ x. The eigenvalue is x and the eigenvector (a scalar in this case) is 1. The numerical
flux is therefore

F̂ ¼ xUL if x � 0;
xUR if x < 0:




10.1 Program Text

! D03PFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03pffe_mod

! D03PFF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndry1, bndry2, exact, nmflx1, &

nmflx2, pdedef
! .. Parameters ..

Integer, Parameter, Public :: nin = 5, nout = 6, npde1 = 2, &
npde2 = 1

Contains
Subroutine exact(t,u,npde,x,npts)
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! Exact solution (for comparison and b.c. purposes)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: half = 0.5_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: pi, px1, px2, x1, x2
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp, sin

! .. Executable Statements ..
pi = x01aaf(pi)

Do i = 1, npts
x1 = x(i) + t
x2 = x(i) - 3.0_nag_wp*t
px1 = half*sin(two*pi*x1**2)
px2 = half*sin(two*pi*x2**2)
u(1,i) = half*(exp(x2)+exp(x1)+px2-px1) - t*(x1+x2)
u(2,i) = (exp(x2)-exp(x1)+px2+px1) + x1*x2 + 8.0_nag_wp*t**2

End Do
Return

End Subroutine exact
Subroutine bndry1(npde,npts,t,x,u,ibnd,g,ires)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, npde, npts
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde,3), x(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, exu1, exu2

! .. Local Arrays ..
Real (Kind=nag_wp) :: ue(2,1)

! .. Executable Statements ..
If (ibnd==0) Then

Call exact(t,ue,npde,x(1),1)
c = (x(2)-x(1))/(x(3)-x(2))
exu1 = (one+c)*u(1,2) - c*u(1,3)
exu2 = (one+c)*u(2,2) - c*u(2,3)
g(1) = two*u(1,1) + u(2,1) - two*ue(1,1) - ue(2,1)
g(2) = two*u(1,1) - u(2,1) - two*exu1 + exu2

Else
Call exact(t,ue,npde,x(npts),1)
c = (x(npts)-x(npts-1))/(x(npts-1)-x(npts-2))
exu1 = (one+c)*u(1,2) - c*u(1,3)
exu2 = (one+c)*u(2,2) - c*u(2,3)
g(1) = two*u(1,1) - u(2,1) - two*ue(1,1) + ue(2,1)
g(2) = two*u(1,1) + u(2,1) - two*exu1 - exu2

End If
Return

End Subroutine bndry1
Subroutine nmflx1(npde,t,x,uleft,uright,flux,ires)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: half = 0.5_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
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Integer, Intent (Inout) :: ires
Integer, Intent (In) :: npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: flux(npde)
Real (Kind=nag_wp), Intent (In) :: uleft(npde), uright(npde)

! .. Local Scalars ..
Real (Kind=nag_wp) :: ltmp, rtmp

! .. Executable Statements ..
ltmp = 3.0_nag_wp*uleft(1) + 1.5_nag_wp*uleft(2)
rtmp = uright(1) - half*uright(2)
flux(1) = half*(ltmp-rtmp)
flux(2) = ltmp + rtmp
Return

End Subroutine nmflx1
Subroutine pdedef(npde,t,x,u,ux,p,c,d,s,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(npde), d(npde), p(npde,npde), &

s(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde)

! .. Executable Statements ..
p(1,1) = 1.0_nag_wp
c(1) = 0.01_nag_wp
d(1) = ux(1)
s(1) = u(1)
Return

End Subroutine pdedef
Subroutine bndry2(npde,npts,t,x,u,ibnd,g,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, npde, npts
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde,3), x(npts)

! .. Executable Statements ..
If (ibnd==0) Then

g(1) = u(1,1) - 3.0_nag_wp
Else

g(1) = u(1,1) - 5.0_nag_wp
End If
Return

End Subroutine bndry2
Subroutine nmflx2(npde,t,x,uleft,uright,flux,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: flux(npde)
Real (Kind=nag_wp), Intent (In) :: uleft(npde), uright(npde)

! .. Executable Statements ..
If (x>=0.0E0_nag_wp) Then

flux(1) = x*uleft(1)
Else

flux(1) = x*uright(1)
End If
Return

End Subroutine nmflx2
End Module d03pffe_mod
Program d03pffe

! D03PFF Example Main Program

! .. Use Statements ..
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Use d03pffe_mod, Only: nout
! .. Implicit None Statement ..

Implicit None
! .. Executable Statements ..

Write (nout,*) ’D03PFF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: d03pff, d03pfp, nag_wp
Use d03pffe_mod, Only: bndry1, exact, nin, nmflx1, npde1

! .. Local Scalars ..
Real (Kind=nag_wp) :: dx, tout, ts, tsmax
Integer :: i, ifail, inc, ind, it, itask, &

itrace, lisave, lrsave, nfuncs, &
niters, njacs, nop, npde, npts, &
nsteps, outpts

! .. Local Arrays ..
Real (Kind=nag_wp) :: acc(2)
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:,:), ue(:,:), x(:), &

xout(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 1’
Write (nout,*)

! Skip heading in data file
npde = npde1
Read (nin,*)
Read (nin,*) npts, inc, outpts
lisave = 24 + npde*npts
lrsave = (11+9*npde)*npde*npts + (32+3*npde)*npde + 7*npts + 54

Allocate (rsave(lrsave),u(npde,npts),ue(npde,outpts),x(npts), &
xout(outpts),isave(lisave))

Read (nin,*) acc(1:2)
Read (nin,*) itrace
Read (nin,*) tsmax

! Initialize mesh
dx = 1.0_nag_wp/real(npts-1,kind=nag_wp)
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)*dx
End Do

! Set initial values
Read (nin,*) ts
Call exact(ts,u,npde,x,npts)

ind = 0
itask = 1

Write (nout,99992) npts
Write (nout,99991) acc(1)
Write (nout,99990) acc(2)
Write (nout,99999)

Do it = 1, 2
tout = 0.1E0_nag_wp*real(it,kind=nag_wp)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
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Call d03pff(npde,ts,tout,d03pfp,nmflx1,bndry1,u,npts,x,acc,tsmax, &
rsave,lrsave,isave,lisave,itask,itrace,ind,ifail)

! Set output points

nop = 0
Do i = 1, npts, inc

nop = nop + 1
xout(nop) = x(i)

End Do

! Check against exact solution

Call exact(tout,ue,npde,xout,nop)
nop = 1
i = 1
Write (nout,99998) ts, xout(nop), u(1,i), ue(1,nop), u(2,i), &

ue(2,nop)
Do i = inc + 1, npts, inc

nop = nop + 1
Write (nout,99997) xout(nop), u(1,i), ue(1,nop), u(2,i), ue(2,nop)

End Do
End Do

! Print integration statistics (reasonably rounded)
nsteps = 5*((isave(1)+2)/5)
nfuncs = 50*((isave(2)+25)/50)
njacs = 10*((isave(3)+5)/10)
niters = 50*((isave(5)+25)/50)
Write (nout,99996) nsteps
Write (nout,99995) nfuncs
Write (nout,99994) njacs
Write (nout,99993) niters

Return

99999 Format (/,5X,’t’,9X,’x’,8X,’Approx u’,4X,’Exact u’,5X,’Approx v’,4X, &
’Exact v’)

99998 Format (/,1X,F6.3,5(3X,F9.4))
99997 Format (7X,5(3X,F9.4))
99996 Format (/,’ Number of time steps (nearest 5) = ’,I6)
99995 Format (’ Number of function evaluations (nearest 50) = ’,I6)
99994 Format (’ Number of Jacobian evaluations (nearest 10) = ’,I6)
99993 Format (’ Number of iterations (nearest 50) = ’,I6)
99992 Format (/,’ Number of mesh points used = ’,I4)
99991 Format (’ Relative tolerance used = ’,E10.3)
99990 Format (’ Absolute tolerance used = ’,E10.3)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d03pff, nag_wp
Use d03pffe_mod, Only: bndry2, nin, nmflx2, npde2, pdedef

! .. Local Scalars ..
Real (Kind=nag_wp) :: dx, tout, ts, tsmax
Integer :: i, ifail, ind, it, itask, itrace, &

lisave, lrsave, nfuncs, niters, &
njacs, npde, npts, nsteps, outpts

! .. Local Arrays ..
Real (Kind=nag_wp) :: acc(2)
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:,:), x(:), xout(:)
Integer, Allocatable :: iout(:), isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 2’
Write (nout,*)
npde = npde2
Read (nin,*)
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Read (nin,*) npts, outpts
lisave = 24 + npde*npts
lrsave = (11+9*npde)*npde*npts + (32+3*npde)*npde + 7*npts + 54

Allocate (rsave(lrsave),u(npde,npts),x(npts),xout(outpts), &
isave(lisave),iout(outpts))

Read (nin,*) iout(1:outpts)
Read (nin,*) acc(1:2)
Read (nin,*) itrace
Read (nin,*) tsmax

! Initialize mesh
dx = 2.0_nag_wp/real(npts-1,kind=nag_wp)
Do i = 1, npts

x(i) = -1.0_nag_wp + real(i-1,kind=nag_wp)*dx
End Do

! Set initial values
u(1,1:npts) = x(1:npts) + 4.0_nag_wp

ind = 0
itask = 1

! Set output points from inout indices
Do i = 1, outpts

xout(i) = x(iout(i))
End Do

! Two output value of t: tout read from file and 10.0

Read (nin,*) ts, tout

Write (nout,99995) npts
Write (nout,99994) acc(1)
Write (nout,99993) acc(2)
Write (nout,99992) xout(1:outpts)

Do it = 1, 2

ifail = 0
Call d03pff(npde,ts,tout,pdedef,nmflx2,bndry2,u,npts,x,acc,tsmax, &

rsave,lrsave,isave,lisave,itask,itrace,ind,ifail)

Write (nout,99991) ts, (u(1,iout(i)),i=1,outpts)
tout = 10.0_nag_wp

End Do

! Print integration statistics (reasonably rounded)
nsteps = 5*((isave(1)+2)/5)
nfuncs = 50*((isave(2)+25)/50)
njacs = 10*((isave(3)+5)/10)
niters = 50*((isave(5)+25)/50)
Write (nout,99999) nsteps
Write (nout,99998) nfuncs
Write (nout,99997) njacs
Write (nout,99996) niters

Return

99999 Format (/,’ Number of time steps (nearest 5) = ’,I6)
99998 Format (’ Number of function evaluations (nearest 50) = ’,I6)
99997 Format (’ Number of Jacobian evaluations (nearest 10) = ’,I6)
99996 Format (’ Number of iterations (nearest 50) = ’,I6)
99995 Format (/,’ Number of mesh points used = ’,I4)
99994 Format (’ Relative tolerance used = ’,E10.3)
99993 Format (’ Absolute tolerance used = ’,E10.3)
99992 Format (/,1X,’x’,10X,7F9.4)
99991 Format (1X,’u(t=’,F6.3,’)’,7F9.4)

End Subroutine ex2
End Program d03pffe
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10.2 Program Data

D03PFF Example Program Data
101 20 7 : (Ex1) npts, inc, outpts

0.1E-3 0.1E-4 : acc
0 : itrace
0.0 : tsmax
0.0 : ts

151 7 : (Ex2) npts, outpts
1 4 37

76 112 148
151 : iout(1:outpts)

0.1E-4 0.1E-4 : acc
0 : itrace
0.02 : tsmax
0.0 1.0 : ts, tout

10.3 Program Results

D03PFF Example Program Results

Example 1

Number of mesh points used = 101
Relative tolerance used = 0.100E-03
Absolute tolerance used = 0.100E-04

t x Approx u Exact u Approx v Exact v

0.100 0.0000 1.0615 1.0613 -0.0155 -0.0150
0.2000 0.9892 0.9891 -0.0953 -0.0957
0.4000 1.0826 1.0826 0.1180 0.1178
0.6000 1.7001 1.7001 -0.0751 -0.0746
0.8000 2.3959 2.3966 -0.2453 -0.2458
1.0000 2.1029 2.1025 0.3760 0.3753

0.200 0.0000 1.0957 1.0956 0.0368 0.0370
0.2000 1.0808 1.0811 0.1826 0.1828
0.4000 1.1102 1.1100 -0.2935 -0.2938
0.6000 1.6461 1.6454 -1.2921 -1.2908
0.8000 1.7913 1.7920 -0.8510 -0.8525
1.0000 2.2050 2.2050 -0.4222 -0.4221

Number of time steps (nearest 5) = 55
Number of function evaluations (nearest 50) = 250
Number of Jacobian evaluations (nearest 10) = 10
Number of iterations (nearest 50) = 150

Example 2

Number of mesh points used = 151
Relative tolerance used = 0.100E-04
Absolute tolerance used = 0.100E-04

x -1.0000 -0.9600 -0.5200 0.0000 0.4800 0.9600 1.0000
u(t= 1.000) 3.0000 3.6221 3.8087 4.0000 4.1766 4.3779 5.0000
u(t=10.000) 3.0000 3.9592 4.0000 4.0000 4.0000 4.0408 5.0000

Number of time steps (nearest 5) = 505
Number of function evaluations (nearest 50) = 1200
Number of Jacobian evaluations (nearest 10) = 30
Number of iterations (nearest 50) = 1050
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NAG Library Routine Document

D03PHF/D03PHA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PHF/D03PHA integrates a system of linear or nonlinear parabolic partial differential equations
(PDEs) in one space variable, with scope for coupled ordinary differential equations (ODEs). The
spatial discretization is performed using finite differences, and the method of lines is employed to
reduce the PDEs to a system of ODEs. The resulting system is solved using a backward differentiation
formula method or a Theta method (switching between Newton's method and functional iteration).

D03PHA is a version of D03PHF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5).

2 Specification

2.1 Specification for D03PHF

SUBROUTINE D03PHF (NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NPTS, X, NCODE,
ODEDEF, NXI, XI, NEQN, RTOL, ATOL, ITOL, NORM, LAOPT,
ALGOPT, RSAVE, LRSAVE, ISAVE, LISAVE, ITASK, ITRACE,
IND, IFAIL)

&
&
&

INTEGER NPDE, M, NPTS, NCODE, NXI, NEQN, ITOL, LRSAVE,
ISAVE(LISAVE), LISAVE, ITASK, ITRACE, IND, IFAIL

&

REAL (KIND=nag_wp) TS, TOUT, U(NEQN), X(NPTS), XI(NXI), RTOL(*),
ATOL(*), ALGOPT(30), RSAVE(LRSAVE)

&

CHARACTER(1) NORM, LAOPT
EXTERNAL PDEDEF, BNDARY, ODEDEF

2.2 Specification for D03PHA

SUBROUTINE D03PHA (NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NPTS, X, NCODE,
ODEDEF, NXI, XI, NEQN, RTOL, ATOL, ITOL, NORM, LAOPT,
ALGOPT, RSAVE, LRSAVE, ISAVE, LISAVE, ITASK, ITRACE,
IND, IUSER, RUSER, CWSAV, LWSAV, IWSAV, RWSAV, IFAIL)

&
&
&

INTEGER NPDE, M, NPTS, NCODE, NXI, NEQN, ITOL, LRSAVE,
ISAVE(LISAVE), LISAVE, ITASK, ITRACE, IND,
IUSER(*), IWSAV(505), IFAIL

&
&

REAL (KIND=nag_wp) TS, TOUT, U(NEQN), X(NPTS), XI(NXI), RTOL(*),
ATOL(*), ALGOPT(30), RSAVE(LRSAVE), RUSER(*),
RWSAV(1100)

&
&

LOGICAL LWSAV(100)
CHARACTER(1) NORM, LAOPT
CHARACTER(80) CWSAV(10)
EXTERNAL PDEDEF, BNDARY, ODEDEF

3 Description

D03PHF/D03PHA integrates the system of parabolic-elliptic equations and coupled ODEsXNPDE
j¼1

Pi;j
@Uj
@t
þQi ¼ x�m

@

@x
xmRið Þ; i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0; ð1Þ

Fi t; V ; _V ; �; U�; U�x; R
�; U�t ; U

�
xt

� �
¼ 0; i ¼ 1; 2; . . . ;NCODE; ð2Þ

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.

D03 – Partial Differential Equations D03PHF

Mark 26 D03PHF.1



In (1), Pi;j and Ri depend on x, t, U , Ux and V ; Qi depends on x, t, U , Ux, V and linearly on _V . The
vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T;

and the vector Ux is the partial derivative with respect to x. The vector V is the set of ODE solution
values

V tð Þ ¼ V1 tð Þ; . . . ; VNCODE tð Þ½ �T;

and _V denotes its derivative with respect to time.

In (2), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to some of the PDE spatial mesh points. U�, U�x , R

�, U�t and U�xt
are the functions U , Ux, R, Ut and Uxt evaluated at these coupling points. Each Fi may only depend
linearly on time derivatives. Hence the equation (2) may be written more precisely as

F ¼ G�A _V �B U�t
U�xt

� �
; ð3Þ

where F ¼ F1; . . . ; FNCODE½ �T, G is a vector of length NCODE, A is an NCODE by NCODE matrix, B
is an NCODE by n� � NPDE

� �
matrix and the entries in G, A and B may depend on t, �, U�, U�x and

V . In practice you only need to supply a vector of information to define the ODEs and not the matrices
A and B. (See Section 5 for the specification of ODEDEF.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS
are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xNPTS. The coordinate system in
space is defined by the values of m; m ¼ 0 for Cartesian coordinates, m ¼ 1 for cylindrical polar
coordinates and m ¼ 2 for spherical polar coordinates.

The PDE system which is defined by the functions Pi;j, Qi and Ri must be specified in PDEDEF.

The initial values of the functions U x; tð Þ and V tð Þ must be given at t ¼ t0.
The functions Ri which may be thought of as fluxes, are also used in the definition of the boundary
conditions. The boundary conditions must have the form

�i x; tð ÞRi x; t; U; Ux; Vð Þ ¼ �i x; t; U; Ux; V ; _V
� �

; i ¼ 1; 2; . . . ;NPDE; ð4Þ

where x ¼ a or x ¼ b.

The boundary conditions must be specified in BNDARY. The function �i may depend linearly on _V .

The problem is subject to the following restrictions:

(i) In (1), _Vj tð Þ, for j ¼ 1; 2; . . . ;NCODE, may only appear linearly in the functions Qi, for
i ¼ 1; 2; . . . ;NPDE, with a similar restriction for �;

(ii) Pi;j and the flux Ri must not depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) the evaluation of the terms Pi;j, Qi and Ri is done approximately at the mid-points of the mesh
XðiÞ, for i ¼ 1; 2; . . . ;NPTS, by calling the PDEDEF for each mid-point in turn. Any
discontinuities in these functions must therefore be at one or more of the mesh points
x1; x2; . . . ; xNPTS;

(v) at least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
PDE problem;

(vi) if m > 0 and x1 ¼ 0:0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done by either specifying the solution at x ¼ 0:0 or
by specifying a zero flux there, that is �i ¼ 1:0 and �i ¼ 0:0. See also Section 9 below.

The algebraic-differential equation system which is defined by the functions Fi must be specified in
ODEDEF. You must also specify the coupling points � in the array XI.
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The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. For simple problems in Cartesian coordinates, this system is obtained by replacing the space
derivatives by the usual central, three-point finite difference formula. However, for polar and spherical
problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified
three-point formula which maintains second order accuracy. In total there are NPDE� NPTSþ NCODE
ODEs in the time direction. This system is then integrated forwards in time using a backward
differentiation formula (BDF) or a Theta method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (eds J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

Skeel R D and Berzins M (1990) A method for the spatial discretization of parabolic equations in one
space variable SIAM J. Sci. Statist. Comput. 11(1) 1–32

5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.

2: M – INTEGER Input

On entry: the coordinate system used:

M ¼ 0
Indicates Cartesian coordinates.

M ¼ 1
Indicates cylindrical polar coordinates.

M ¼ 2
Indicates spherical polar coordinates.

Constraint: M ¼ 0, 1 or 2.

3: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

4: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

5: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Pi;j, Qi and Ri which define the system of PDEs. The
functions may depend on x, t, U , Ux and V . Qi may depend linearly on _V . PDEDEF is called
approximately midway between each pair of mesh points in turn by D03PHF/D03PHA.
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The specification of PDEDEF for D03PHF is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UX, NCODE, V, VDOT, P, Q, R,
IRES)

&

INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, U(NPDE), UX(NPDE), V(NCODE),

VDOT(NCODE), P(NPDE,NPDE), Q(NPDE), R(NPDE)
&

The specification of PDEDEF for D03PHA is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UX, NCODE, V, VDOT, P, Q, R,
IRES, IUSER, RUSER)

&

INTEGER NPDE, NCODE, IRES, IUSER(*)
REAL (KIND=nag_wp) T, X, U(NPDE), UX(NPDE), V(NCODE),

VDOT(NCODE), P(NPDE,NPDE), Q(NPDE), R(NPDE),
RUSER(*)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ;NPDE.

5: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

, for i ¼ 1; 2; . . . ;NPDE.

6: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

7: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

8: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in Qj , for
j ¼ 1; 2; . . . ;NPDE.

9: PðNPDE;NPDEÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ must be set to the value of Pi;j x; t; U; Ux; Vð Þ, for i ¼ 1; 2; . . . ;NPDE
and j ¼ 1; 2; . . . ;NPDE.

10: QðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: QðiÞ must be set to the value of Qi x; t; U; Ux; V ; _V
� �

, for i ¼ 1; 2; . . . ;NPDE.
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11: RðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: RðiÞ must be set to the value of Ri x; t; U; Ux; Vð Þ, for i ¼ 1; 2; . . . ;NPDE.

12: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PHF/D03PHA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.

Note: the following are additional arguments for specific use with D03PHA. Users of
D03PHF therefore need not read the remainder of this description.

13: IUSERð�Þ – INTEGER array User Workspace
14: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

PDEDEF is called with the arguments IUSER and RUSER as supplied to D03PHF/
D03PHA. You should use the arrays IUSER and RUSER to supply information to
PDEDEF.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PHF/D03PHA is called. Arguments denoted as Input must not be
changed by this procedure.

6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions �i and �i which describe the boundary conditions, as
given in (4).

The specification of BNDARY for D03PHF is:

SUBROUTINE BNDARY (NPDE, T, U, UX, NCODE, V, VDOT, IBND, BETA,
GAMMA, IRES)

&

INTEGER NPDE, NCODE, IBND, IRES
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), V(NCODE), VDOT(NCODE),

BETA(NPDE), GAMMA(NPDE)
&

The specification of BNDARY for D03PHA is:

SUBROUTINE BNDARY (NPDE, T, U, UX, NCODE, V, VDOT, IBND, BETA,
GAMMA, IRES, IUSER, RUSER)

&

INTEGER NPDE, NCODE, IBND, IRES, IUSER(*)
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), V(NCODE), VDOT(NCODE),

BETA(NPDE), GAMMA(NPDE), RUSER(*)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.
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3: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ at the boundary specified
by IBND, for i ¼ 1; 2; . . . ;NPDE.

4: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

at the boundary

specified by IBND, for i ¼ 1; 2; . . . ;NPDE.

5: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

6: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

7: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in Qj , for
j ¼ 1; 2; . . . ;NPDE.

8: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated.

IBND ¼ 0
BNDARY must set up the coefficients of the left-hand boundary, x ¼ a.

IBND 6¼ 0
BNDARY must set up the coefficients of the right-hand boundary, x ¼ b.

9: BETAðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: BETAðiÞ must be set to the value of �i x; tð Þ at the boundary specified by
IBND, for i ¼ 1; 2; . . . ;NPDE.

10: GAMMAðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: GAMMAðiÞ must be set to the value of �i x; t; U; Ux; V ; _V
� �

at the boundary
specified by IBND, for i ¼ 1; 2; . . . ;NPDE.

11: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PHF/D03PHA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.
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Note: the following are additional arguments for specific use with D03PHA. Users of
D03PHF therefore need not read the remainder of this description.

12: IUSERð�Þ – INTEGER array User Workspace
13: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

BNDARY is called with the arguments IUSER and RUSER as supplied to D03PHF/
D03PHA. You should use the arrays IUSER and RUSER to supply information to
BNDARY.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PHF/D03PHA is called. Arguments denoted as Input must not be
changed by this procedure.

7: UðNEQNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the dependent variables defined as follows:

UðNPDE� j � 1ð Þ þ iÞ contain Ui xj ; t0
� �

, for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS,
and

UðNPTS� NPDEþ iÞ contain Vi t0ð Þ, for i ¼ 1; 2; . . . ;NCODE.

On exit: the computed solution Ui xj ; t
� �

, for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS, and
Vk tð Þ, for k ¼ 1; 2; . . . ;NCODE, evaluated at t ¼ TS.

8: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: NPTS � 3.

9: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the mesh points in the space direction. Xð1Þ must specify the left-hand boundary, a,
and XðNPTSÞ must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.

10: NCODE – INTEGER Input

On entry: the number of coupled ODE components.

Constraint: NCODE � 0.

11: ODEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

ODEDEF must evaluate the functions F , which define the system of ODEs, as given in (3).

If you wish to compute the solution of a system of PDEs only (NCODE ¼ 0), ODEDEF must be
the dummy routine D03PCK for D03PHF (or D53PCK for D03PHA). D03PCK and D53PCK are
included in the NAG Library.

The specification of ODEDEF for D03PHF is:

SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
RCP, UCPT, UCPTX, F, IRES)

&

INTEGER NPDE, NCODE, NXI, IRES
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),

UCP(NPDE,*), UCPX(NPDE,*), RCP(NPDE,*),
UCPT(NPDE,*), UCPTX(NPDE,*), F(NCODE)

&
&

The specification of ODEDEF for D03PHA is:
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SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
RCP, UCPT, UCPTX, F, IRES, IUSER, RUSER)

&

INTEGER NPDE, NCODE, NXI, IRES, IUSER(*)
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),

UCP(NPDE,*), UCPX(NPDE,*), RCP(NPDE,*),
UCPT(NPDE,*), UCPTX(NPDE,*), F(NCODE),
RUSER(*)

&
&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

4: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

5: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

6: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

7: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ contains the ODE/PDE coupling points, �i, for
i ¼ 1; 2; . . . ;NXI.

8: UCPðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPði; jÞ contains the value of Ui x; tð Þ at the coupling point
x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

9: UCPXðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPXði; jÞ contains the value of
@Ui x; tð Þ
@x

at the coupling point

x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

10: RCPðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: RCPði; jÞ contains the value of the flux Ri at the coupling point x ¼ �j , for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

11: UCPTðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPTði; jÞ contains the value of
@Ui

@t
at the coupling point x ¼ �j ,

for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.
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12: UCPTXðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: UCPTXði; jÞ contains the value of
@2Ui

@x@t
at the coupling point x ¼ �j , for

i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

13: FðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: FðiÞ must contain the ith component of F , for i ¼ 1; 2; . . . ;NCODE, where F
is defined as

F ¼ G�A _V �B U�t
U�xt

� �
; ð5Þ

or

F ¼ �A _V �B U�t
U�xt

� �
: ð6Þ

The definition of F is determined by the input value of IRES.

14: IRES – INTEGER Input/Output

On entry: the form of F that must be returned in the array F.

IRES ¼ 1
Equation (5) must be used.

IRES ¼ �1
Equation (6) must be used.

On exit: should usually remain unchanged. However, you may reset IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PHF/D03PHA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.

Note: the following are additional arguments for specific use with D03PHA. Users of
D03PHF therefore need not read the remainder of this description.

15: IUSERð�Þ – INTEGER array User Workspace
16: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

ODEDEF is called with the arguments IUSER and RUSER as supplied to D03PHF/
D03PHA. You should use the arrays IUSER and RUSER to supply information to
ODEDEF.

ODEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PHF/D03PHA is called. Arguments denoted as Input must not be
changed by this procedure.

12: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

D03 – Partial Differential Equations D03PHF

Mark 26 D03PHF.9



Constraints:

if NCODE ¼ 0, NXI ¼ 0;
if NCODE > 0, NXI � 0.

13: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ, for i ¼ 1; 2; . . . ;NXI, must be set to the ODE/PDE coupling points.

Constraint: Xð1Þ � XIð1Þ < XIð2Þ < � � � < XIðNXIÞ � XðNPTSÞ.

14: NEQN – INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN ¼ NPDE� NPTSþ NCODE.

15: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2 and at least NEQN if
ITOL ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i.

16: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3 and at least NEQN if
ITOL ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i.

Note: corresponding elements of RTOL and ATOL cannot both be 0:0.

17: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D03PHF/D03PHA
whether to interpret either or both of RTOL or ATOL as a vector or scalar. The error test to be
satisfied is ei=wik k < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi
1 scalar scalar RTOLð1Þ � Uij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � Uij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � Uij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � Uij j þ ATOLðiÞ

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, UðiÞ, for i ¼ 1; 2; . . . ;NEQN.

The choice of norm used is defined by the argument NORM.

Constraint: 1 � ITOL � 4.

18: NORM – CHARACTER(1) Input

On entry: the type of norm to be used.

NORM ¼ M
Maximum norm.

NORM ¼ A
Averaged L2 norm.
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If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L2 norm

Unorm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NEQN

XNEQN
i¼1

UðiÞ=wið Þ2
vuut ;

while for the maximum norm

Unorm ¼ max
i

UðiÞ=wij j:

See the description of ITOL for the formulation of the weight vector w.

Constraint: NORM ¼ M or A .

19: LAOPT – CHARACTER(1) Input

On entry: the type of matrix algebra required.

LAOPT ¼ F
Full matrix methods to be used.

LAOPT ¼ B
Banded matrix methods to be used.

LAOPT ¼ S
Sparse matrix methods to be used.

Constraint: LAOPT ¼ F , B or S .

Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
NCODE ¼ 0).

20: ALGOPTð30Þ – REAL (KIND=nag_wp) array Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then ALGOPTð1Þ should be set to 0:0. Default values will also be used for
any other elements of ALGOPT set to zero. The permissible values, default values, and meanings
are as follows:

ALGOPTð1Þ
Selects the ODE integration method to be used. If ALGOPTð1Þ ¼ 1:0, a BDF method is
used and if ALGOPTð1Þ ¼ 2:0, a Theta method is used. The default value is
ALGOPTð1Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 2:0, then ALGOPTðiÞ, for i ¼ 2; 3; 4 are not used.

ALGOPTð2Þ
Specifies the maximum order of the BDF integration formula to be used. ALGOPTð2Þ may
be 1:0, 2:0, 3:0, 4:0 or 5:0. The default value is ALGOPTð2Þ ¼ 5:0.

ALGOPTð3Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If ALGOPTð3Þ ¼ 1:0 a modified Newton iteration is used
and if ALGOPTð3Þ ¼ 2:0 a functional iteration method is used. If functional iteration is
selected and the integrator encounters difficulty, then there is an automatic switch to the
modified Newton iteration. The default value is ALGOPTð3Þ ¼ 1:0.

ALGOPTð4Þ
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;NPDE, for some i or when there is no _Vi tð Þ dependence in the
coupled ODE system. If ALGOPTð4Þ ¼ 1:0, then the Petzold test is used. If
ALGOPTð4Þ ¼ 2:0, then the Petzold test is not used. The default value is
ALGOPTð4Þ ¼ 1:0.

D03 – Partial Differential Equations D03PHF

Mark 26 D03PHF.11



If ALGOPTð1Þ ¼ 1:0, then ALGOPTðiÞ, for i ¼ 5; 6; 7, are not used.

ALGOPTð5Þ
Specifies the value of Theta to be used in the Theta integration method.
0:51 � ALGOPTð5Þ � 0:99. The default value is ALGOPTð5Þ ¼ 0:55.

ALGOPTð6Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If ALGOPTð6Þ ¼ 1:0, a modified Newton iteration is used
and if ALGOPTð6Þ ¼ 2:0, a functional iteration method is used. The default value is
ALGOPTð6Þ ¼ 1:0.

ALGOPTð7Þ
Specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If
ALGOPTð7Þ ¼ 1:0, then switching is allowed and if ALGOPTð7Þ ¼ 2:0, then switching is
not allowed. The default value is ALGOPTð7Þ ¼ 1:0.

ALGOPTð11Þ
Specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the argument ITASK. If ALGOPTð1Þ 6¼ 0:0, a
value of 0:0 for ALGOPTð11Þ, say, should be specified even if ITASK subsequently
specifies that tcrit will not be used.

ALGOPTð12Þ
Specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð12Þ should be set to 0:0.

ALGOPTð13Þ
Specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð13Þ should be set to 0:0.

ALGOPTð14Þ
Specifies the initial step size to be attempted by the integrator. If ALGOPTð14Þ ¼ 0:0, then
the initial step size is calculated internally.

ALGOPTð15Þ
Specifies the maximum number of steps to be attempted by the integrator in any one call.
If ALGOPTð15Þ ¼ 0:0, then no limit is imposed.

ALGOPTð23Þ
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If ALGOPTð23Þ ¼ 1:0, a modified Newton
iteration is used and if ALGOPTð23Þ ¼ 2:0, functional iteration is used. The default value
is ALGOPTð23Þ ¼ 1:0.

ALGOPTð29Þ and ALGOPTð30Þ are used only for the sparse matrix algebra option,
LAOPT ¼ S .

ALGOPTð29Þ
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < ALGOPTð29Þ < 1:0, with smaller values biasing the
algorithm towards maintaining sparsity at the expense of numerical stability. If
ALGOPTð29Þ lies outside this range then the default value is used. If the routines regard
the Jacobian matrix as numerically singular then increasing ALGOPTð29Þ towards 1:0 may
help, but at the cost of increased fill-in. The default value is ALGOPTð29Þ ¼ 0:1.

ALGOPTð30Þ
Is used as a relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPTð29Þ) below which an internal error is invoked. If ALGOPTð30Þ is greater than
1:0 no check is made on the pivot size, and this may be a necessary option if the Jacobian
is found to be numerically singular (see ALGOPTð29Þ). The default value is
ALGOPTð30Þ ¼ 0:0001.
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21: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

22: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PHF/D03PHA is called.

Constraint:

If LAOPT ¼ F , LRSAVE � NEQN� NEQNþ NEQNþ nwkres þ lenode.

If LAOPT ¼ B , LRSAVE � 3�mlu þ 1ð Þ � NEQNþ nwkres þ lenode.

If LAOPT ¼ S , LRSAVE � 4� NEQNþ 11� NEQN=2þ 1þ nwkres þ lenode.

Where

mlu is the lower or upper half bandwidths such that
mlu ¼ 3� NPDE� 1, for PDE problems only (no coupled ODEs); or
mlu ¼ NEQN� 1, for coupled PDE/ODE problems.

nwkres ¼
NPDE� 2� NPTSþ 6� NXIþ 3� NPDEþ 26ð Þ þ NXIþ NCODEþ 7� NPTSþ 2; when NCODE > 0 and NXI > 0;
NPDE� 2� NPTSþ 3� NPDEþ 32ð Þ þ NCODEþ 7� NPTSþ 3; when NCODE > 0 and NXI ¼ 0;
NPDE� 2� NPTSþ 3� NPDEþ 32ð Þ þ 7� NPTSþ 4; when NCODE ¼ 0:

8<:
lenode ¼ 6þ int ALGOPTð2Þð Þð Þ � NEQNþ 50; when the BDF method is used; or

9� NEQNþ 50; when the Theta method is used:



Note: when LAOPT ¼ S , the value of LRSAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LRSAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15..

23: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set on entry.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration. In particular:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the last backward differentiation formula method used.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU
decomposition of the Jacobian matrix.

24: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which
D03PHF/D03PHA is called. Its size depends on the type of matrix algebra selected:
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if LAOPT ¼ F , LISAVE � 24;

if LAOPT ¼ B , LISAVE � NEQNþ 24;

if LAOPT ¼ S , LISAVE � 25� NEQNþ 24.

Note: when using the sparse option, the value of LISAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LISAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

25: ITASK – INTEGER Input

On entry: specifies the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT.

ITASK ¼ 2
One step and return.

ITASK ¼ 3
Stop at first internal integration point at or beyond t ¼ TOUT.

ITASK ¼ 4
Normal computation of output values U at t ¼ TOUT but without overshooting t ¼ tcrit
where tcrit is described under the argument ALGOPT.

ITASK ¼ 5
Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument ALGOPT.

Constraint: ITASK ¼ 1, 2, 3, 4 or 5.

26: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PHF/D03PHA and the underlying
ODE solver. ITRACE may take the value �1, 0, 1, 2 or 3.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE > 0
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. You are advised to set
ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.

27: IND – INTEGER Input/Output

On entry: indicates whether this is a continuation call or a new integration.

IND ¼ 0
Starts or restarts the integration in time.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT and IFAIL should be reset between calls to D03PHF/D03PHA.

Constraint: IND ¼ 0 or 1.

On exit: IND ¼ 1.
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28: IFAIL – INTEGER Input/Output

Note: for D03PHA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: the following are additional arguments for specific use with D03PHA. Users of D03PHF
therefore need not read the remainder of this description.

29: IUSERð�Þ – INTEGER array User Workspace
30: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D03PHF/D03PHA, but are passed directly to PDEDEF,
BNDARY and ODEDEF and should be used to pass information to these routines.

31: CWSAVð10Þ – CHARACTER(80) array Communication Array

32: LWSAVð100Þ – LOGICAL array Communication Array

33: IWSAVð505Þ – INTEGER array Communication Array

34: RWSAVð1100Þ – REAL (KIND=nag_wp) array Communication Array

35: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOUT� TS is too small,
or ITASK 6¼ 1, 2, 3, 4 or 5,
or M 6¼ 0, 1 or 2,
or at least one of the coupling points defined in array XI is outside the interval

[Xð1Þ;XðNPTSÞ],
or M > 0 and Xð1Þ < 0:0,
or NPTS < 3,
or NPDE < 1,
or NORM 6¼ A or M ,
or LAOPT 6¼ F , B or S ,
or ITOL 6¼ 1, 2, 3 or 4,
or IND 6¼ 0 or 1,
or mesh points XðiÞ are badly ordered,
or LRSAVE is too small,
or LISAVE is too small,
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or NCODE and NXI are incorrectly defined,
or NEQN 6¼ NPDE� NPTSþ NCODE,
or either an element of RTOL or ATOL < 0:0,
or all the elements of RTOL and ATOL are zero.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and
RTOL, across the integration range from the current point t ¼ TS. The components of U contain
the computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
at least PDEDEF, BNDARY or ODEDEF, when the residual in the underlying ODE solver was
being evaluated.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. You should check your
problem formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least PDEDEF,
BNDARY or ODEDEF. Integration was successful as far as t ¼ TS.

IFAIL ¼ 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In one of PDEDEF, BNDARY or ODEDEF, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification and all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL
is unlikely to produce any change in the computed solution. (Only applies when you are not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current error message unit). If using the sparse matrix algebra
option, the values of ALGOPTð29Þ and ALGOPTð30Þ may be inappropriate.
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IFAIL ¼ 12

In solving the ODE system, the maximum number of steps specified in ALGOPTð15Þ have been
taken.

IFAIL ¼ 13

Some error weights wi became zero during the time integration (see the description of ITOL).
Pure relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has
become zero. The integration was successful as far as t ¼ TS.

IFAIL ¼ 14

The flux function Ri was detected as depending on time derivatives, which is not permissible.

IFAIL ¼ 15

When using the sparse option, the value of LISAVE or LRSAVE was not sufficient (more
detailed information may be directed to the current error message unit).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PHF/D03PHA controls the accuracy of the integration in the time direction but not the accuracy of
the approximation in space. The spatial accuracy depends on both the number of mesh points and on
their distribution in space. In the time integration only the local error over a single step is controlled
and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of
varying the accuracy arguments ATOL and RTOL.

8 Parallelism and Performance

D03PHF/D03PHA is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

D03PHF/D03PHA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The argument specification allows you to include equations with only first-order derivatives in the space
direction but there is no guarantee that the method of integration will be satisfactory for such systems.
The position and nature of the boundary conditions in particular are critical in defining a stable
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problem. It may be advisable in such cases to reduce the whole system to first-order and to use the
Keller box scheme routine D03PKF.

The time taken depends on the complexity of the parabolic system and on the accuracy requested. For a
given system and a fixed accuracy it is approximately proportional to NEQN.

10 Example

This example provides a simple coupled system of one PDE and one ODE.

V1ð Þ2
@U1

@t
� xV1 _V1

@U1

@x
¼ @2yU1

@x2

_V1 ¼ V1U1 þ
@U1

@x
þ 1þ t;

for t 2 10�4; 0:1� 2i
� �

; i ¼ 1; 2; . . . ; 5; x 2 0; 1½ �.

The left boundary condition at x ¼ 0 is

@U1

@x
¼ �V1 exp t:

The right boundary condition at x ¼ 1 is

@U1

@x
¼ �V1 _V1:

The initial conditions at t ¼ 10�4 are defined by the exact solution:

V1 ¼ t; and U1 x; tð Þ ¼ exp t 1� xð Þf g � 1:0; x 2 0; 1½ �;

and the coupling point is at �1 ¼ 1:0.

10.1 Program Text

the following program illustrates the use of D03PHF. An equivalent program illustrating the use of
D03PHA is available with the supplied Library and is also available from the NAG web site.

! D03PHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03phfe_mod

! D03PHF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndary, odedef, pdedef, uvinit

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Integer, Parameter, Public :: itrace = 0, ncode = 1, nin = 5, &

nout = 6, npde = 1, nxi = 1
Logical, Parameter, Public :: print_stat = .False.

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: ts

Contains
Subroutine odedef(npde,t,ncode,v,vdot,nxi,xi,ucp,ucpx,rcp,ucpt,ucptx,f, &

ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde, nxi

! .. Array Arguments ..
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Real (Kind=nag_wp), Intent (Out) :: f(ncode)
Real (Kind=nag_wp), Intent (In) :: rcp(npde,*), ucp(npde,*), &

ucpt(npde,*), ucptx(npde,*), &
ucpx(npde,*), v(ncode), vdot(ncode), &
xi(nxi)

! .. Executable Statements ..
If (ires==1) Then

f(1) = vdot(1) - v(1)*ucp(1,1) - ucpx(1,1) - one - t
Else If (ires==-1) Then

f(1) = vdot(1)
End If
Return

End Subroutine odedef
Subroutine pdedef(npde,t,x,u,ux,ncode,v,vdot,p,q,r,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: p(npde,npde), q(npde), r(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde), v(ncode), &

vdot(ncode)
! .. Executable Statements ..

p(1,1) = v(1)*v(1)
r(1) = ux(1)
q(1) = -x*ux(1)*v(1)*vdot(1)
Return

End Subroutine pdedef
Subroutine bndary(npde,t,u,ux,ncode,v,vdot,ibnd,beta,gamma,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: beta(npde), gamma(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde), v(ncode), &

vdot(ncode)
! .. Intrinsic Procedures ..

Intrinsic :: exp
! .. Executable Statements ..

beta(1) = one
If (ibnd==0) Then

gamma(1) = -v(1)*exp(t)
Else

gamma(1) = -v(1)*vdot(1)
End If
Return

End Subroutine bndary
Subroutine uvinit(npde,npts,x,u,ncode,neqn)

! Routine for PDE initial values

! .. Scalar Arguments ..
Integer, Intent (In) :: ncode, neqn, npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(neqn)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Do i = 1, npts

u(i) = exp(ts*(one-x(i))) - one
End Do
u(neqn) = ts
Return

End Subroutine uvinit
End Module d03phfe_mod
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Program d03phfe

! D03PHF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03phf, nag_wp
Use d03phfe_mod, Only: bndary, itrace, ncode, nin, nout, npde, nxi, &

odedef, pdedef, print_stat, ts, uvinit
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: tout
Integer :: i, ifail, ind, it, itask, itol, &

latol, lenode, lisave, lrsave, &
lrtol, m, neqn, npts, nwkres

Logical :: theta
Character (1) :: laopt, norm

! .. Local Arrays ..
Real (Kind=nag_wp) :: algopt(30), xi(nxi)
Real (Kind=nag_wp), Allocatable :: atol(:), rsave(:), rtol(:), u(:), &

x(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: mod, real

! .. Executable Statements ..
Write (nout,*) ’D03PHF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, npts
neqn = npde*npts + ncode
nwkres = npde*(npts+6*nxi+3*npde+15) + ncode + nxi + 7*npts + 2
lenode = 11*neqn + 50
lrsave = neqn*neqn + neqn + nwkres + lenode
lisave = 25*neqn + 24

Allocate (u(neqn),rsave(lrsave),x(npts),isave(lisave))

Read (nin,*) itol
latol = 1
lrtol = 1
If (itol>2) Then

latol = neqn
End If
If (mod(itol,2)==0) Then

lrtol = neqn
End If
Allocate (atol(latol),rtol(lrtol))
Read (nin,*) atol(1:latol), rtol(1:lrtol)

Read (nin,*) ts

! Set break-points
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do

Read (nin,*) xi(1:nxi)
Read (nin,*) norm, laopt
ind = 0
itask = 1

! Set theta to .TRUE. if the Theta integrator is required
theta = .False.
algopt(1:30) = 0.0_nag_wp
If (theta) Then

algopt(1) = 2.0_nag_wp
End If

! Loop over output value of t

Call uvinit(npde,npts,x,u,ncode,neqn)
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Write (nout,99998)
Write (nout,99997) atol
Write (nout,99996) npts
Write (nout,99999)

tout = 0.2_nag_wp
Do it = 1, 5

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03phf(npde,m,ts,tout,pdedef,bndary,u,npts,x,ncode,odedef,nxi,xi, &

neqn,rtol,atol,itol,norm,laopt,algopt,rsave,lrsave,isave,lisave, &
itask,itrace,ind,ifail)

Write (nout,99995) ts, u(1)
tout = 2.0_nag_wp*tout

End Do
If (print_stat) Then

Write (nout,*)
Write (nout,99994) ’time steps’, isave(1)
Write (nout,99994) ’function evaluations’, isave(2)
Write (nout,99994) ’Jacobian evaluations’, isave(3)
Write (nout,99994) ’iterations’, isave(5)

End If

99999 Format (3X,’time’,8X,’solution at x=0’)
99998 Format (/,/,’ Simple coupled PDE using BDF’)
99997 Format (’ Local Accuracy = ’,1P,E12.3)
99996 Format (’ Number of mesh points = ’,I4,/)
99995 Format (1X,F6.1,14X,F6.2)
99994 Format (’ Number of ’,A20,’ = ’,I6)

End Program d03phfe

10.2 Program Data

D03PHF Example Program Data
0 101 : m, npts
1 : itol (latol=1,lrtol=1)
1.0E-5, 1.0E-5 : atol(1), rtol(1)
1.0E-4 : ts
1.0 : xi(1:nxi)
A F : norm, laopt

10.3 Program Results

D03PHF Example Program Results

Simple coupled PDE using BDF
Local Accuracy = 1.000E-05
Number of mesh points = 101

time solution at x=0
0.2 0.22
0.4 0.49
0.8 1.23
1.6 3.95
3.2 23.53
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Example Program
Parabolic PDE Coupled with ODE using Finite-differences and BDF
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NAG Library Routine Document

D03PJF/D03PJA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PJF/D03PJA integrates a system of linear or nonlinear parabolic partial differential equations
(PDEs), in one space variable with scope for coupled ordinary differential equations (ODEs). The
spatial discretization is performed using a Chebyshev C0 collocation method, and the method of lines is
employed to reduce the PDEs to a system of ODEs. The resulting system is solved using a backward
differentiation formula (BDF) method or a Theta method (switching between Newton's method and
functional iteration).

D03PJA is a version of D03PJF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5).

2 Specification

2.1 Specification for D03PJF

SUBROUTINE D03PJF (NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NBKPTS, XBKPTS,
NPOLY, NPTS, X, NCODE, ODEDEF, NXI, XI, NEQN, UVINIT,
RTOL, ATOL, ITOL, NORM, LAOPT, ALGOPT, RSAVE, LRSAVE,
ISAVE, LISAVE, ITASK, ITRACE, IND, IFAIL)

&
&
&

INTEGER NPDE, M, NBKPTS, NPOLY, NPTS, NCODE, NXI, NEQN,
ITOL, LRSAVE, ISAVE(LISAVE), LISAVE, ITASK, ITRACE,
IND, IFAIL

&
&

REAL (KIND=nag_wp) TS, TOUT, U(NEQN), XBKPTS(NBKPTS), X(NPTS), XI(*),
RTOL(*), ATOL(*), ALGOPT(30), RSAVE(LRSAVE)

&

CHARACTER(1) NORM, LAOPT
EXTERNAL PDEDEF, BNDARY, ODEDEF, UVINIT

2.2 Specification for D03PJA

SUBROUTINE D03PJA (NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NBKPTS, XBKPTS,
NPOLY, NPTS, X, NCODE, ODEDEF, NXI, XI, NEQN, UVINIT,
RTOL, ATOL, ITOL, NORM, LAOPT, ALGOPT, RSAVE, LRSAVE,
ISAVE, LISAVE, ITASK, ITRACE, IND, IUSER, RUSER,
CWSAV, LWSAV, IWSAV, RWSAV, IFAIL)

&
&
&
&

INTEGER NPDE, M, NBKPTS, NPOLY, NPTS, NCODE, NXI, NEQN,
ITOL, LRSAVE, ISAVE(LISAVE), LISAVE, ITASK, ITRACE,
IND, IUSER(*), IWSAV(505), IFAIL

&
&

REAL (KIND=nag_wp) TS, TOUT, U(NEQN), XBKPTS(NBKPTS), X(NPTS), XI(*),
RTOL(*), ATOL(*), ALGOPT(30), RSAVE(LRSAVE),
RUSER(*), RWSAV(1100)

&
&

LOGICAL LWSAV(100)
CHARACTER(1) NORM, LAOPT
CHARACTER(80) CWSAV(10)
EXTERNAL PDEDEF, BNDARY, ODEDEF, UVINIT

3 Description

D03PJF/D03PJA integrates the system of parabolic-elliptic equations and coupled ODEsXNPDE
j¼1

Pi;j
@Uj
@t
þQi ¼ x�m

@

@x
xmRið Þ; i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0; ð1Þ
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Fi t; V ; _V ; �; U�; U�x; R
�; U�t ; U

�
xt

� �
¼ 0; i ¼ 1; 2; . . . ;NCODE; ð2Þ

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.

In (1), Pi;j and Ri depend on x, t, U , Ux, and V ; Qi depends on x, t, U , Ux, V and linearly on _V . The
vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T;

and the vector Ux is the partial derivative with respect to x. Note that Pi;j, Qi and Ri must not depend

on
@U

@t
. The vector V is the set of ODE solution values

V tð Þ ¼ V1 tð Þ; . . . ; VNCODE tð Þ½ �T;

and _V denotes its derivative with respect to time.

In (2), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to some of the PDE spatial mesh points. U�, U�x , R

�, U�t and U�xt
are the functions U , Ux, R, Ut and Uxt evaluated at these coupling points. Each Fi may only depend
linearly on time derivatives. Hence the equation (2) may be written more precisely as

F ¼ G�A _V �B U�t
U�xt

� �
; ð3Þ

where F ¼ F1; . . . ; FNCODE½ �T, G is a vector of length NCODE, A is an NCODE by NCODE matrix, B
is an NCODE by n� � NPDE

� �
matrix and the entries in G, A and B may depend on t, �, U�, U�x and

V . In practice you need only supply a vector of information to define the ODEs and not the matrices A
and B. (See Section 5 for the specification of ODEDEF.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and
b ¼ xNBKPTS are the leftmost and rightmost of a user-defined set of break-points x1; x2; . . . ; xNBKPTS.
The coordinate system in space is defined by the value of m; m ¼ 0 for Cartesian coordinates, m ¼ 1
for cylindrical polar coordinates and m ¼ 2 for spherical polar coordinates.

The PDE system which is defined by the functions Pi;j, Qi and Ri must be specified in PDEDEF.

The initial values of the functions U x; tð Þ and V tð Þ must be given at t ¼ t0. These values are calculated
in UVINIT.

The functions Ri which may be thought of as fluxes, are also used in the definition of the boundary
conditions. The boundary conditions must have the form

�i x; tð ÞRi x; t; U; Ux; Vð Þ ¼ �i x; t; U; Ux; V ; _V
� �

; i ¼ 1; 2; . . . ;NPDE; ð4Þ

where x ¼ a or x ¼ b. The functions �i may only depend linearly on _V .

The boundary conditions must be specified in BNDARY.

The algebraic-differential equation system which is defined by the functions Fi must be specified in
ODEDEF. You must also specify the coupling points � in the array XI. Thus, the problem is subject to
the following restrictions:

(i) in (1), _Vj tð Þ, for j ¼ 1; 2; . . . ;NCODE, may only appear linearly in the functions Qi, for
i ¼ 1; 2; . . . ;NPDE, with a similar restriction for �;

(ii) Pi;j and the flux Ri must not depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) the evaluation of the functions Pi;j, Qi and Ri is done at both the break-points and internally
selected points for each element in turn, that is Pi;j, Qi and Ri are evaluated twice at each break-
point. Any discontinuities in these functions must therefore be at one or more of the mesh points;
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(v) at least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
PDE problem;

(vi) if m > 0 and x1 ¼ 0:0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done either by specifying the solution at x ¼ 0:0 or
by specifying a zero flux there, that is �i ¼ 1:0 and �i ¼ 0:0.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at the mesh
points. This ODE system is obtained by approximating the PDE solution between each pair of break-
points by a Chebyshev polynomial of degree NPOLY. The interval between each pair of break-points is
treated by D03PJF/D03PJA as an element, and on this element, a polynomial and its space and time
derivatives are made to satisfy the system of PDEs at NPOLY� 1 spatial points, which are chosen
internally by the code and the break-points. The user-defined break-points and the internally selected
points together define the mesh. The smallest value that NPOLY can take is one, in which case, the
solution is approximated by piecewise linear polynomials between consecutive break-points and the
method is similar to an ordinary finite element method.

In total there are NBKPTS� 1ð Þ � NPOLYþ 1 mesh points in the spatial direction, and
NPDE� NBKPTS� 1ð Þ � NPOLYþ 1ð Þ þ NCODE ODEs in the time direction; one ODE at each
break-point for each PDE component, NPOLY� 1 ODEs for each PDE component between each pair
of break-points, and NCODE coupled ODEs. The system is then integrated forwards in time using a
Backward Differentiation Formula (BDF) method or a Theta method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (eds J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic
systems of PDEs ACM Trans. Math. Software 17 178–206

Berzins M, Dew P M and Furzeland R M (1988) Software tools for time-dependent equations in
simulation and optimization of large systems Proc. IMA Conf. Simulation and Optimization (ed A J
Osiadcz) 35–50 Clarendon Press, Oxford

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a
channel by a suction at porous walls Fluid Dynamics Research 4

5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.

2: M – INTEGER Input

On entry: the coordinate system used:

M ¼ 0
Indicates Cartesian coordinates.

M ¼ 1
Indicates cylindrical polar coordinates.

M ¼ 2
Indicates spherical polar coordinates.

Constraint: M ¼ 0, 1 or 2.
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3: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

4: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

5: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must compute the functions Pi;j, Qi and Ri which define the system of PDEs. The
functions may depend on x, t, U , Ux and V ; Qi may depend linearly on _V . The functions must be
evaluated at a set of points.

The specification of PDEDEF for D03PJF is:

SUBROUTINE PDEDEF (NPDE, T, X, NPTL, U, UX, NCODE, V, VDOT, P, Q,
R, IRES)

&

INTEGER NPDE, NPTL, NCODE, IRES
REAL (KIND=nag_wp) T, X(NPTL), U(NPDE,NPTL), UX(NPDE,NPTL),

V(NCODE), VDOT(NCODE), P(NPDE,NPDE,NPTL),
Q(NPDE,NPTL), R(NPDE,NPTL)

&
&

The specification of PDEDEF for D03PJA is:

SUBROUTINE PDEDEF (NPDE, T, X, NPTL, U, UX, NCODE, V, VDOT, P, Q,
R, IRES, IUSER, RUSER)

&

INTEGER NPDE, NPTL, NCODE, IRES, IUSER(*)
REAL (KIND=nag_wp) T, X(NPTL), U(NPDE,NPTL), UX(NPDE,NPTL),

V(NCODE), VDOT(NCODE), P(NPDE,NPDE,NPTL),
Q(NPDE,NPTL), R(NPDE,NPTL), RUSER(*)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: XðNPTLÞ – REAL (KIND=nag_wp) array Input

On entry: contains a set of mesh points at which Pi;j, Qi and Ri are to be evaluated.
Xð1Þ and XðNPTLÞ contain successive user-supplied break-points and the elements of
the array will satisfy Xð1Þ < Xð2Þ < � � � < XðNPTLÞ.

4: NPTL – INTEGER Input

On entry: the number of points at which evaluations are required (the value of
NPOLYþ 1).

5: UðNPDE;NPTLÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of the component Ui x; tð Þ where x ¼ XðjÞ, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTL.

6: UXðNPDE;NPTLÞ – REAL (KIND=nag_wp) array Input

On entry: UXði; jÞ contains the value of the component
@Ui x; tð Þ
@x

where x ¼ XðjÞ, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTL.
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7: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

8: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

9: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in Qj , for
j ¼ 1; 2; . . . ;NPDE.

10: PðNPDE;NPDE;NPTLÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; j; kÞ must be set to the value of Pi;j x; t; U; Ux; Vð Þ where x ¼ XðkÞ, for
i ¼ 1; 2; . . . ;NPDE, j ¼ 1; 2; . . . ;NPDE and k ¼ 1; 2; . . . ;NPTL.

11: QðNPDE;NPTLÞ – REAL (KIND=nag_wp) array Output

On exit: Qði; jÞ must be set to the value of Qi x; t; U; Ux; V ; _V
� �

where x ¼ XðjÞ, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTL.

12: RðNPDE;NPTLÞ – REAL (KIND=nag_wp) array Output

On exit: Rði; jÞ must be set to the value of Ri x; t; U; Ux; Vð Þ where x ¼ XðiÞ, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTL.

13: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PJF/D03PJA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.

Note: the following are additional arguments for specific use with D03PJA. Users of D03PJF
therefore need not read the remainder of this description.

14: IUSERð�Þ – INTEGER array User Workspace
15: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

PDEDEF is called with the arguments IUSER and RUSER as supplied to D03PJF/
D03PJA. You should use the arrays IUSER and RUSER to supply information to
PDEDEF.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PJF/D03PJA is called. Arguments denoted as Input must not be
changed by this procedure.
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6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must compute the functions �i and �i which define the boundary conditions as in
equation (4).

The specification of BNDARY for D03PJF is:

SUBROUTINE BNDARY (NPDE, T, U, UX, NCODE, V, VDOT, IBND, BETA,
GAMMA, IRES)

&

INTEGER NPDE, NCODE, IBND, IRES
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), V(NCODE), VDOT(NCODE),

BETA(NPDE), GAMMA(NPDE)
&

The specification of BNDARY for D03PJA is:

SUBROUTINE BNDARY (NPDE, T, U, UX, NCODE, V, VDOT, IBND, BETA,
GAMMA, IRES, IUSER, RUSER)

&

INTEGER NPDE, NCODE, IBND, IRES, IUSER(*)
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), V(NCODE), VDOT(NCODE),

BETA(NPDE), GAMMA(NPDE), RUSER(*)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ at the boundary specified
by IBND, for i ¼ 1; 2; . . . ;NPDE.

4: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

at the boundary

specified by IBND, for i ¼ 1; 2; . . . ;NPDE.

5: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

6: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

7: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in Qj , for
j ¼ 1; 2; . . . ;NPDE.

8: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated.

IBND ¼ 0
BNDARY must set up the coefficients of the left-hand boundary, x ¼ a.
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IBND 6¼ 0
BNDARY must set up the coefficients of the right-hand boundary, x ¼ b.

9: BETAðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: BETAðiÞ must be set to the value of �i x; tð Þ at the boundary specified by
IBND, for i ¼ 1; 2; . . . ;NPDE.

10: GAMMAðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: GAMMAðiÞ must be set to the value of �i x; t; U; Ux; V ; _V
� �

at the boundary
specified by IBND, for i ¼ 1; 2; . . . ;NPDE.

11: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PJF/D03PJA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.

Note: the following are additional arguments for specific use with D03PJA. Users of D03PJF
therefore need not read the remainder of this description.

12: IUSERð�Þ – INTEGER array User Workspace
13: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

BNDARY is called with the arguments IUSER and RUSER as supplied to D03PJF/
D03PJA. You should use the arrays IUSER and RUSER to supply information to
BNDARY.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PJF/D03PJA is called. Arguments denoted as Input must not be
changed by this procedure.

7: UðNEQNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IND ¼ 1 the value of U must be unchanged from the previous call.

On exit: the computed solution Ui xj ; t
� �

, for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS, and
Vk tð Þ, for k ¼ 1; 2; . . . ;NCODE, evaluated at t ¼ TS, as follows:

UðNPDE� j � 1ð Þ þ iÞ contain Ui xj ; t
� �

, for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS,
and

UðNPTS� NPDEþ iÞ contain Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE.

8: NBKPTS – INTEGER Input

On entry: the number of break-points in the interval a; b½ �.
Constraint: NBKPTS � 2.
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9: XBKPTSðNBKPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the break-points in the space direction. XBKPTSð1Þ must specify the left-
hand boundary, a, and XBKPTSðNBKPTSÞ must specify the right-hand boundary, b.

Constraint: XBKPTSð1Þ < XBKPTSð2Þ < � � � < XBKPTSðNBKPTSÞ.

10: NPOLY – INTEGER Input

On entry: the degree of the Chebyshev polynomial to be used in approximating the PDE solution
between each pair of break-points.

Constraint: 1 � NPOLY � 49.

11: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: NPTS ¼ NBKPTS� 1ð Þ � NPOLYþ 1.

12: XðNPTSÞ – REAL (KIND=nag_wp) array Output

On exit: the mesh points chosen by D03PJF/D03PJA in the spatial direction. The values of X will
satisfy Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.

13: NCODE – INTEGER Input

On entry: the number of coupled ODE components.

Constraint: NCODE � 0.

14: ODEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

ODEDEF must evaluate the functions F , which define the system of ODEs, as given in (3).

If you wish to compute the solution of a system of PDEs only (NCODE ¼ 0), ODEDEF must be
the dummy routine D03PCK for D03PJF (or D53PCK for D03PJA). D03PCK and D53PCK are
included in the NAG Library.

The specification of ODEDEF for D03PJF is:

SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
RCP, UCPT, UCPTX, F, IRES)

&

INTEGER NPDE, NCODE, NXI, IRES
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),

UCP(NPDE,*), UCPX(NPDE,*), RCP(NPDE,*),
UCPT(NPDE,*), UCPTX(NPDE,*), F(NCODE)

&
&

The specification of ODEDEF for D03PJA is:

SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
RCP, UCPT, UCPTX, F, IRES, IUSER, RUSER)

&

INTEGER NPDE, NCODE, NXI, IRES, IUSER(*)
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),

UCP(NPDE,*), UCPX(NPDE,*), RCP(NPDE,*),
UCPT(NPDE,*), UCPTX(NPDE,*), F(NCODE),
RUSER(*)

&
&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.
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3: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

4: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

5: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

6: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

7: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ contains the ODE/PDE coupling points, �i, for
i ¼ 1; 2; . . . ;NXI.

8: UCPðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPði; jÞ contains the value of Ui x; tð Þ at the coupling point
x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

9: UCPXðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPXði; jÞ contains the value of
@Ui x; tð Þ
@x

at the coupling point

x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

10: RCPðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: RCPði; jÞ contains the value of the flux Ri at the coupling point x ¼ �j , for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

11: UCPTðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPTði; jÞ contains the value of
@Ui

@t
at the coupling point x ¼ �j ,

for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

12: UCPTXðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: UCPTXði; jÞ contains the value of
@2Ui

@x@t
at the coupling point x ¼ �j , for

i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

13: FðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: FðiÞ must contain the ith component of F , for i ¼ 1; 2; . . . ;NCODE, where F
is defined as

F ¼ G�A _V �B U�t
U�xt

� �
; ð5Þ

or
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F ¼ �A _V �B U�t
U�xt

� �
: ð6Þ

The definition of F is determined by the input value of IRES.

14: IRES – INTEGER Input/Output

On entry: the form of F that must be returned in the array F.

IRES ¼ 1
Equation (5) must be used.

IRES ¼ �1
Equation (6) must be used.

On exit: should usually remain unchanged. However, you may reset IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PJF/D03PJA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.

Note: the following are additional arguments for specific use with D03PJA. Users of D03PJF
therefore need not read the remainder of this description.

15: IUSERð�Þ – INTEGER array User Workspace
16: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

ODEDEF is called with the arguments IUSER and RUSER as supplied to D03PJF/
D03PJA. You should use the arrays IUSER and RUSER to supply information to
ODEDEF.

ODEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PJF/D03PJA is called. Arguments denoted as Input must not be
changed by this procedure.

15: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if NCODE ¼ 0, NXI ¼ 0;
if NCODE > 0, NXI � 0.

16: XIð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array XI must be at least max 1;NXIð Þ.
On entry: XIðiÞ, for i ¼ 1; 2; . . . ;NXI, must be set to the ODE/PDE coupling points.

Constraint: XBKPTSð1Þ � XIð1Þ < XIð2Þ < � � � < XIðNXIÞ � XBKPTSðNBKPTSÞ.

17: NEQN – INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN ¼ NPDE� NPTSþ NCODE.
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18: UVINIT – SUBROUTINE, supplied by the user. External Procedure

UVINIT must compute the initial values of the PDE and the ODE components Ui xj ; t0
� �

, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS, and Vk t0ð Þ, for k ¼ 1; 2; . . . ;NCODE.

The specification of UVINIT for D03PJF is:

SUBROUTINE UVINIT (NPDE, NPTS, X, U, NCODE, V)

INTEGER NPDE, NPTS, NCODE
REAL (KIND=nag_wp) X(NPTS), U(NPDE,NPTS), V(NCODE)

The specification of UVINIT for D03PJA is:

SUBROUTINE UVINIT (NPDE, NPTS, X, U, NCODE, V, IUSER, RUSER)

INTEGER NPDE, NPTS, NCODE, IUSER(*)
REAL (KIND=nag_wp) X(NPTS), U(NPDE,NPTS), V(NCODE), RUSER(*)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ, for i ¼ 1; 2; . . . ;NPTS, contains the current values of the space variable
xi.

4: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Output

On exit: if NXI > 0, Uði; jÞ contains the value of the component Ui xj ; t0
� �

, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

5: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

6: VðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: VðiÞ contains the value of component Vi t0ð Þ, for i ¼ 1; 2; . . . ;NCODE.

Note: the following are additional arguments for specific use with D03PJA. Users of D03PJF
therefore need not read the remainder of this description.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

UVINIT is called with the arguments IUSER and RUSER as supplied to D03PJF/
D03PJA. You should use the arrays IUSER and RUSER to supply information to
UVINIT.

UVINIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PJF/D03PJA is called. Arguments denoted as Input must not be
changed by this procedure.

19: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2 and at least NEQN if
ITOL ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i.

D03 – Partial Differential Equations D03PJF

Mark 26 D03PJF.11



20: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3 and at least NEQN if
ITOL ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i.

Note: corresponding elements of RTOL and ATOL cannot both be 0:0.

21: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D03PJF/D03PJA
whether to interpret either or both of RTOL or ATOL as a vector or scalar. The error test to be
satisfied is ei=wik k < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi
1 scalar scalar RTOLð1Þ � Uij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � Uij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � Uij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � Uij j þ ATOLðiÞ

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, UðiÞ, for i ¼ 1; 2; . . . ;NEQN.

The choice of norm used is defined by the argument NORM.

Constraint: 1 � ITOL � 4.

22: NORM – CHARACTER(1) Input

On entry: the type of norm to be used.

NORM ¼ M
Maximum norm.

NORM ¼ A
Averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L2 norm

Unorm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NEQN

XNEQN
i¼1

UðiÞ=wið Þ2
vuut ;

while for the maximum norm

Unorm ¼ max
i

UðiÞ=wij j:

See the description of ITOL for the formulation of the weight vector w.

Constraint: NORM ¼ M or A .

23: LAOPT – CHARACTER(1) Input

On entry: the type of matrix algebra required.

LAOPT ¼ F
Full matrix methods to be used.

LAOPT ¼ B
Banded matrix methods to be used.

LAOPT ¼ S
Sparse matrix methods to be used.

Constraint: LAOPT ¼ F , B or S .
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Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
NCODE ¼ 0).

24: ALGOPTð30Þ – REAL (KIND=nag_wp) array Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then ALGOPTð1Þ should be set to 0:0. Default values will also be used for
any other elements of ALGOPT set to zero. The permissible values, default values, and meanings
are as follows:

ALGOPTð1Þ
Selects the ODE integration method to be used. If ALGOPTð1Þ ¼ 1:0, a BDF method is
used and if ALGOPTð1Þ ¼ 2:0, a Theta method is used. The default value is
ALGOPTð1Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 2:0, then ALGOPTðiÞ, for i ¼ 2; 3; 4 are not used.

ALGOPTð2Þ
Specifies the maximum order of the BDF integration formula to be used. ALGOPTð2Þ may
be 1:0, 2:0, 3:0, 4:0 or 5:0. The default value is ALGOPTð2Þ ¼ 5:0.

ALGOPTð3Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If ALGOPTð3Þ ¼ 1:0 a modified Newton iteration is used
and if ALGOPTð3Þ ¼ 2:0 a functional iteration method is used. If functional iteration is
selected and the integrator encounters difficulty, then there is an automatic switch to the
modified Newton iteration. The default value is ALGOPTð3Þ ¼ 1:0.

ALGOPTð4Þ
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;NPDE, for some i or when there is no _Vi tð Þ dependence in the
coupled ODE system. If ALGOPTð4Þ ¼ 1:0, then the Petzold test is used. If
ALGOPTð4Þ ¼ 2:0, then the Petzold test is not used. The default value is
ALGOPTð4Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 1:0, then ALGOPTðiÞ, for i ¼ 5; 6; 7, are not used.

ALGOPTð5Þ
Specifies the value of Theta to be used in the Theta integration method.
0:51 � ALGOPTð5Þ � 0:99. The default value is ALGOPTð5Þ ¼ 0:55.

ALGOPTð6Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If ALGOPTð6Þ ¼ 1:0, a modified Newton iteration is used
and if ALGOPTð6Þ ¼ 2:0, a functional iteration method is used. The default value is
ALGOPTð6Þ ¼ 1:0.

ALGOPTð7Þ
Specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If
ALGOPTð7Þ ¼ 1:0, then switching is allowed and if ALGOPTð7Þ ¼ 2:0, then switching is
not allowed. The default value is ALGOPTð7Þ ¼ 1:0.

ALGOPTð11Þ
Specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the argument ITASK. If ALGOPTð1Þ 6¼ 0:0, a
value of 0:0 for ALGOPTð11Þ, say, should be specified even if ITASK subsequently
specifies that tcrit will not be used.

ALGOPTð12Þ
Specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð12Þ should be set to 0:0.
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ALGOPTð13Þ
Specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð13Þ should be set to 0:0.

ALGOPTð14Þ
Specifies the initial step size to be attempted by the integrator. If ALGOPTð14Þ ¼ 0:0, then
the initial step size is calculated internally.

ALGOPTð15Þ
Specifies the maximum number of steps to be attempted by the integrator in any one call.
If ALGOPTð15Þ ¼ 0:0, then no limit is imposed.

ALGOPTð23Þ
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If ALGOPTð23Þ ¼ 1:0, a modified Newton
iteration is used and if ALGOPTð23Þ ¼ 2:0, functional iteration is used. The default value
is ALGOPTð23Þ ¼ 1:0.

ALGOPTð29Þ and ALGOPTð30Þ are used only for the sparse matrix algebra option,
LAOPT ¼ S .

ALGOPTð29Þ
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < ALGOPTð29Þ < 1:0, with smaller values biasing the
algorithm towards maintaining sparsity at the expense of numerical stability. If
ALGOPTð29Þ lies outside this range then the default value is used. If the routines regard
the Jacobian matrix as numerically singular then increasing ALGOPTð29Þ towards 1:0 may
help, but at the cost of increased fill-in. The default value is ALGOPTð29Þ ¼ 0:1.

ALGOPTð30Þ
Is used as a relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPTð29Þ) below which an internal error is invoked. If ALGOPTð30Þ is greater than
1:0 no check is made on the pivot size, and this may be a necessary option if the Jacobian
is found to be numerically singular (see ALGOPTð29Þ). The default value is
ALGOPTð30Þ ¼ 0:0001.

25: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

26: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PJF/D03PJA is called. Its size depends on the type of matrix algebra selected.

If LAOPT ¼ F , LRSAVE � NEQN� NEQNþ NEQNþ nwkres þ lenode.

If LAOPT ¼ B , LRSAVE � 3�mlu þ 1ð Þ � NEQNþ nwkres þ lenode.

If LAOPT ¼ S , LRSAVE � 4� NEQNþ 11� NEQN=2þ 1þ nwkres þ lenode.

Where

mlu is the lower or upper half bandwidths such that
mlu ¼ 3� NPDE� 1, for PDE problems only (no coupled ODEs); or
mlu ¼ NEQN� 1, for coupled PDE/ODE problems.

nwkres ¼
3� NPOLYþ 1ð Þ2 þ NPOLYþ 1ð Þ � NPDE2 þ 6� NPDEþ NBKPTSþ 1

� �
þ 8� NPDEþ NXI� 5� NPDEþ 1ð Þ þNCODEþ 3; when NCODE > 0 and NXI > 0; or

3� NPOLYþ 1ð Þ2 þ NPOLY þ 1ð Þ � NPDE2 þ 6�NPDEþ NBKPTSþ 1
� �

þ 13 � NPDEþ NCODEþ 4; when NCODE > 0 and NXI ¼ 0; or
3� NPOLYþ 1ð Þ2 þ NPOLY þ 1ð Þ � NPDE2 þ 6�NPDEþ NBKPTSþ 1

� �
þ 13 � NPDEþ 5; when NCODE ¼ 0:

8<:

lenode ¼ 6þ int ALGOPTð2Þð Þð Þ � NEQNþ 50; when the BDF method is used; or
9� NEQNþ 50; when the Theta method is used:
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Note: when LAOPT ¼ S , the value of LRSAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LRSAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

27: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set on entry.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration required for subsequent calls. In particular:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the ODE method last used in the time integration.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

28: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which
D03PJF/D03PJA is called. Its size depends on the type of matrix algebra selected:

if LAOPT ¼ F , LISAVE � 24;

if LAOPT ¼ B , LISAVE � NEQNþ 24;

if LAOPT ¼ S , LISAVE � 25� NEQNþ 24.

Note: when using the sparse option, the value of LISAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LISAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

29: ITASK – INTEGER Input

On entry: specifies the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT.

ITASK ¼ 2
One step and return.

ITASK ¼ 3
Stop at first internal integration point at or beyond t ¼ TOUT.

ITASK ¼ 4
Normal computation of output values U at t ¼ TOUT but without overshooting t ¼ tcrit
where tcrit is described under the argument ALGOPT.

ITASK ¼ 5
Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument ALGOPT.

Constraint: ITASK ¼ 1, 2, 3, 4 or 5.
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30: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PJF/D03PJA and the underlying ODE
solver. ITRACE may take the value �1, 0, 1, 2 or 3.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE > 0
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. You are advised to set
ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.

31: IND – INTEGER Input/Output

On entry: indicates whether this is a continuation call or a new integration.

IND ¼ 0
Starts or restarts the integration in time.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT and IFAIL should be reset between calls to D03PJF/D03PJA.

Constraint: IND ¼ 0 or 1.

On exit: IND ¼ 1.

32: IFAIL – INTEGER Input/Output

Note: for D03PJA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: the following are additional arguments for specific use with D03PJA. Users of D03PJF therefore
need not read the remainder of this description.

33: IUSERð�Þ – INTEGER array User Workspace
34: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D03PJF/D03PJA, but are passed directly to PDEDEF,
BNDARY, ODEDEF and UVINIT and should be used to pass information to these routines.

35: CWSAVð10Þ – CHARACTER(80) array Communication Array

36: LWSAVð100Þ – LOGICAL array Communication Array
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37: IWSAVð505Þ – INTEGER array Communication Array

38: RWSAVð1100Þ – REAL (KIND=nag_wp) array Communication Array

39: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOUT� TS is too small,
or ITASK 6¼ 1, 2, 3, 4 or 5,
or M 6¼ 0, 1 or 2,
or at least one of the coupling point in array XI is outside the interval

[XBKPTSð1Þ;XBKPTSðNBKPTSÞ],
or NPTS 6¼ NBKPTS� 1ð Þ � NPOLYþ 1,
or NBKPTS < 2,
or NPDE � 0,
or NORM 6¼ A or M ,
or ITOL 6¼ 1, 2, 3 or 4,
or NPOLY < 1 or NPOLY > 49,
or NCODE and NXI are incorrectly defined,
or NEQN 6¼ NPDE� NPTSþ NCODE,
or LAOPT 6¼ F , B or S ,
or IND 6¼ 0 or 1,
or break-points XBKPTSðiÞ are badly ordered,
or LRSAVE is too small,
or LISAVE is too small,
or the ODE integrator has not been correctly defined; check ALGOPT argument,
or either an element of RTOL or ATOL < 0:0,
or all the elements of RTOL and ATOL are zero.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and
RTOL, across the integration range from the current point t ¼ TS. The components of U contain
the computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
at least PDEDEF, BNDARY or ODEDEF, when the residual in the underlying ODE solver was
being evaluated.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. You should check your
problem formulation.

D03 – Partial Differential Equations D03PJF

Mark 26 D03PJF.17



IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least PDEDEF,
BNDARY or ODEDEF. Integration was successful as far as t ¼ TS.

IFAIL ¼ 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In one of PDEDEF, BNDARY or ODEDEF, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification and all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL
is unlikely to produce any change in the computed solution. (Only applies when you are not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current error message unit).

IFAIL ¼ 12

In solving the ODE system, the maximum number of steps specified in ALGOPTð15Þ have been
taken.

IFAIL ¼ 13

Some error weights wi became zero during the time integration (see the description of ITOL).
Pure relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has
become zero. The integration was successful as far as t ¼ TS.

IFAIL ¼ 14

The flux function Ri was detected as depending on time derivatives, which is not permissible.

IFAIL ¼ 15

When using the sparse option, the value of LISAVE or LRSAVE was not sufficient (more
detailed information may be directed to the current error message unit).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PJF/D03PJA controls the accuracy of the integration in the time direction but not the accuracy of
the approximation in space. The spatial accuracy depends on both the number of mesh points and on
their distribution in space. In the time integration only the local error over a single step is controlled
and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of
varying the accuracy argument ATOL and RTOL.

8 Parallelism and Performance

D03PJF/D03PJA is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

D03PJF/D03PJA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The argument specification allows you to include equations with only first-order derivatives in the space
direction but there is no guarantee that the method of integration will be satisfactory for such systems.
The position and nature of the boundary conditions in particular are critical in defining a stable
problem.

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

10 Example

This example provides a simple coupled system of one PDE and one ODE.

V1ð Þ2
@U1

@t
� xV1 _V1

@U1

@x
¼ @

2U1

@x2

_V1 ¼ V1U1 þ
@U1

@x
þ 1þ t;

for t 2 10�4; 0:1� 2i
� �

; i ¼ 1; 2; . . . ; 5; x 2 0; 1½ �.

The left boundary condition at x ¼ 0 is

@U1

@x
¼ �V1 exp t:

The right boundary condition at x ¼ 1 is

U1 ¼ �V1 _V1:

The initial conditions at t ¼ 10�4 are defined by the exact solution:

V1 ¼ t; and U1 x; tð Þ ¼ exp t 1� xð Þf g � 1:0; x 2 0; 1½ �;

and the coupling point is at �1 ¼ 1:0.

D03 – Partial Differential Equations D03PJF

Mark 26 D03PJF.19



10.1 Program Text

the following program illustrates the use of D03PJF. An equivalent program illustrating the use of
D03PJA is available with the supplied Library and is also available from the NAG web site.

! D03PJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03pjfe_mod

! D03PJF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndary, odedef, pdedef, uvinit

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Integer, Parameter, Public :: itrace = 0, ncode = 1, nin = 5, &

nout = 6, npde = 1, nxi = 1
Logical, Parameter, Public :: print_stat = .False.

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: ts

Contains
Subroutine uvinit(npde,npts,x,u,ncode,v)

! Routine for PDE initial values (start time is 0.1D-6)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncode, npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts), v(ncode)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
v(1) = ts
Do i = 1, npts

u(1,i) = exp(ts*(one-x(i))) - one
End Do
Return

End Subroutine uvinit
Subroutine odedef(npde,t,ncode,v,vdot,nxi,xi,ucp,ucpx,rcp,ucpt,ucptx,f, &

ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde, nxi

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(ncode)
Real (Kind=nag_wp), Intent (In) :: rcp(npde,*), ucp(npde,*), &

ucpt(npde,*), ucptx(npde,*), &
ucpx(npde,*), v(ncode), vdot(ncode), &
xi(nxi)

! .. Executable Statements ..
If (ires==1) Then

f(1) = vdot(1) - v(1)*ucp(1,1) - ucpx(1,1) - one - t
Else If (ires==-1) Then

f(1) = vdot(1)
End If
Return

End Subroutine odedef
Subroutine pdedef(npde,t,x,nptl,u,ux,ncode,v,vdot,p,q,r,ires)

D03PJF NAG Library Manual

D03PJF.20 Mark 26



! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde, nptl

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: p(npde,npde,nptl), q(npde,nptl), &

r(npde,nptl)
Real (Kind=nag_wp), Intent (In) :: u(npde,nptl), ux(npde,nptl), &

v(ncode), vdot(ncode), x(nptl)
! .. Local Scalars ..

Integer :: i
! .. Executable Statements ..

Do i = 1, nptl
p(1,1,i) = v(1)*v(1)
r(1,i) = ux(1,i)
q(1,i) = -x(i)*ux(1,i)*v(1)*vdot(1)

End Do
Return

End Subroutine pdedef
Subroutine bndary(npde,t,u,ux,ncode,v,vdot,ibnd,beta,gamma,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: beta(npde), gamma(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde), v(ncode), &

vdot(ncode)
! .. Intrinsic Procedures ..

Intrinsic :: exp
! .. Executable Statements ..

beta(1) = 1.0E0_nag_wp
If (ibnd==0) Then

gamma(1) = -v(1)*exp(t)
Else

gamma(1) = -v(1)*vdot(1)
End If
Return

End Subroutine bndary
End Module d03pjfe_mod
Program d03pjfe

! D03PJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03pjf, nag_wp
Use d03pjfe_mod, Only: bndary, itrace, ncode, nin, nout, npde, nxi, &

odedef, pdedef, print_stat, ts, uvinit
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: tout
Integer :: i, ifail, ind, it, itask, itol, &

latol, lenode, lisave, lrsave, &
lrtol, m, nbkpts, nel, neqn, np1, &
npoly, npts, nwkres

Logical :: theta
Character (1) :: laopt, norm

! .. Local Arrays ..
Real (Kind=nag_wp) :: algopt(30), xi(nxi)
Real (Kind=nag_wp), Allocatable :: atol(:), rsave(:), rtol(:), u(:), &

x(:), xbkpts(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: mod, real

! .. Executable Statements ..
Write (nout,*) ’D03PJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, nbkpts, npoly
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nel = nbkpts - 1
npts = nel*npoly + 1
neqn = npde*npts + ncode
np1 = npoly + 1
nwkres = np1*(3*np1+npde*npde+6*npde+nbkpts+1)
nwkres = nwkres + 8*npde + nxi*(5*npde+1) + ncode + 3
lenode = 11*neqn + 50
lisave = 25*neqn + 24
lrsave = neqn*neqn + neqn + nwkres + lenode
Allocate (u(neqn),rsave(lrsave),x(npts),xbkpts(nbkpts),isave(lisave))

Read (nin,*) itol
latol = 1
lrtol = 1
If (itol>2) Then

latol = neqn
End If
If (mod(itol,2)==0) Then

lrtol = neqn
End If
Allocate (atol(latol),rtol(lrtol))
Read (nin,*) atol(1:latol), rtol(1:lrtol)

Read (nin,*) ts

! Set break-points
Do i = 1, nbkpts

xbkpts(i) = real(i-1,kind=nag_wp)/real(nbkpts-1,kind=nag_wp)
End Do

Read (nin,*) xi(1:nxi)
Read (nin,*) norm, laopt
ind = 0
itask = 1

! Set theta to .TRUE. if the Theta integrator is required
theta = .False.
algopt(1:30) = 0.0_nag_wp
If (theta) Then

algopt(1) = 2.0_nag_wp
End If

Write (nout,99998)
Write (nout,99997) atol
Write (nout,99996) npoly
Write (nout,99995) nel
Write (nout,99994) npts
Write (nout,99999)

! Output value solution at t = 0.1*(2**k) for k=1,2,...,5

tout = 0.1_nag_wp
Do it = 1, 5

tout = tout + tout

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03pjf(npde,m,ts,tout,pdedef,bndary,u,nbkpts,xbkpts,npoly,npts,x, &

ncode,odedef,nxi,xi,neqn,uvinit,rtol,atol,itol,norm,laopt,algopt, &
rsave,lrsave,isave,lisave,itask,itrace,ind,ifail)

Write (nout,99993) ts, u(1)
End Do

If (print_stat) Then
Write (nout,*)
Write (nout,99992) ’time steps’, isave(1)
Write (nout,99992) ’function evaluations’, isave(2)
Write (nout,99992) ’Jacobian evaluations’, isave(3)
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Write (nout,99992) ’iterations’, isave(5)
End If

99999 Format (3X,’time’,8X,’solution at x=0’)
99998 Format (/,/,’ Simple coupled PDE using BDF’)
99997 Format (’ Accuracy requirement = ’,1P,E12.3)
99996 Format (’ Degree of Polynomial = ’,I4)
99995 Format (’ Number of elements = ’,I4)
99994 Format (’ Number of mesh points = ’,I4,/)
99993 Format (1X,F6.1,14X,F6.2)
99992 Format (’ Number of ’,A20,’ = ’,I6)

End Program d03pjfe

10.2 Program Data

D03PJF Example Program Data
0 30 3 : m, nbkpts, npoly
1 : itol
1.0E-5 1.0E-5 : atol(1), rtol(1)
1.0E-4 : ts
1.0 : xi(1:nxi)
A F : norm, laopt

10.3 Program Results

D03PJF Example Program Results

Simple coupled PDE using BDF
Accuracy requirement = 1.000E-05
Degree of Polynomial = 3
Number of elements = 29
Number of mesh points = 88

time solution at x=0
0.2 0.22
0.4 0.49
0.8 1.23
1.6 3.95
3.2 23.53

D03 – Partial Differential Equations D03PJF

Mark 26 D03PJF.23



Example Program
Parabolic PDE Coupled with ODE using Collocation and BDF
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NAG Library Routine Document

D03PKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PKF integrates a system of linear or nonlinear, first-order, time-dependent partial differential
equations (PDEs) in one space variable, with scope for coupled ordinary differential equations (ODEs).
The spatial discretization is performed using the Keller box scheme and the method of lines is
employed to reduce the PDEs to a system of ODEs. The resulting system is solved using a Backward
Differentiation Formula (BDF) method or a Theta method (switching between Newton's method and
functional iteration).

2 Specification

SUBROUTINE D03PKF (NPDE, TS, TOUT, PDEDEF, BNDARY, U, NPTS, X, NLEFT,
NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL, ITOL, NORM,
LAOPT, ALGOPT, RSAVE, LRSAVE, ISAVE, LISAVE, ITASK,
ITRACE, IND, IFAIL)

&
&
&

INTEGER NPDE, NPTS, NLEFT, NCODE, NXI, NEQN, ITOL, LRSAVE,
ISAVE(LISAVE), LISAVE, ITASK, ITRACE, IND, IFAIL

&

REAL (KIND=nag_wp) TS, TOUT, U(NEQN), X(NPTS), XI(*), RTOL(*), ATOL(*),
ALGOPT(30), RSAVE(LRSAVE)

&

CHARACTER(1) NORM, LAOPT
EXTERNAL PDEDEF, BNDARY, ODEDEF

3 Description

D03PKF integrates the system of first-order PDEs and coupled ODEs

Gi x; t; U; Ux; Ut; V ; _V
� �

¼ 0; i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0; ð1Þ

Ri t; V ; _V ; �; U�; U�x; U
�
t

� �
¼ 0; i ¼ 1; 2; . . . ;NCODE: ð2Þ

In the PDE part of the problem given by (1), the functions Gi must have the general form

Gi ¼
XNPDE
j¼1

Pi;j
@Uj
@t
þ
XNCODE
j¼1

Qi;j
_Vj þ Si ¼ 0; i ¼ 1; 2; . . . ;NPDE; ð3Þ

where Pi;j, Qi;j and Si depend on x; t; U; Ux and V .

The vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T;

and the vector Ux is the partial derivative with respect to x. The vector V is the set of ODE solution
values

V tð Þ ¼ V1 tð Þ; . . . ; VNCODE tð Þ½ �T;

and _V denotes its derivative with respect to time.

In the ODE part given by (2), � represents a vector of n� spatial coupling points at which the ODEs are
coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points.
U�, U�x and U�t are the functions U , Ux and Ut evaluated at these coupling points. Each Ri may only
depend linearly on time derivatives. Hence equation (2) may be written more precisely as

R ¼ A�B _V � CU�t ; ð4Þ
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where R ¼ R1; . . . ; RNCODE½ �T, A is a vector of length NCODE, B is an NCODE by NCODE matrix, C
is an NCODE by n� � NPDE

� �
matrix. The entries in A, B and C may depend on t, �, U�, U�x and V .

In practice you only need to supply a vector of information to define the ODEs and not the matrices B
and C. (See Section 5 for the specification of ODEDEF.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS
are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xNPTS.

The PDE system which is defined by the functions Gi must be specified in PDEDEF.

The initial values of the functions U x; tð Þ and V tð Þ must be given at t ¼ t0.
For a first-order system of PDEs, only one boundary condition is required for each PDE component Ui.
The NPDE boundary conditions are separated into na at the left-hand boundary x ¼ a, and nb at the
right-hand boundary x ¼ b, such that na þ nb ¼ NPDE. The position of the boundary condition for each
component should be chosen with care; the general rule is that if the characteristic direction of Ui at the
left-hand boundary (say) points into the interior of the solution domain, then the boundary condition for
Ui should be specified at the left-hand boundary. Incorrect positioning of boundary conditions generally
results in initialization or integration difficulties in the underlying time integration routines.

The boundary conditions have the form:

GL
i x; t; U; Ut; V ; _V
� �

¼ 0 at x ¼ a; i ¼ 1; 2; . . . ; na; ð5Þ

at the left-hand boundary, and

GR
i x; t; U; Ut; V ; _V
� �

¼ 0 at x ¼ b; i ¼ 1; 2; . . . ; nb; ð6Þ

at the right-hand boundary.

Note that the functions GL
i and GR

i must not depend on Ux, since spatial derivatives are not determined
explicitly in the Keller box scheme. If the problem involves derivative (Neumann) boundary conditions
then it is generally possible to restate such boundary conditions in terms of permissible variables. Also
note that GL

i and GR
i must be linear with respect to time derivatives, so that the boundary conditions

have the general form: XNPDE
j¼1

EL
i;j

@Uj
@t
þ
XNCODE
j¼1

HL
i;j

_Vj þKL
i ¼ 0; i ¼ 1; 2; . . . ; na; ð7Þ

at the left-hand boundary, andXNPDE
j¼1

ER
i;j

@Uj
@t
þ
XNCODE
j¼1

HR
i;j

_Vj þKR
i ¼ 0; i ¼ 1; 2; . . . ; nb; ð8Þ

at the right-hand boundary, where EL
i;j, E

R
i;j, H

L
i;j, H

R
i;j, K

L
i and KR

i depend on x; t; U and V only.

The boundary conditions must be specified in BNDARY.

The problem is subject to the following restrictions:

(i) Pi;j, Qi;j and Si must not depend on any time derivatives;

(ii) t0 < tout, so that integration is in the forward direction;

(iii) The evaluation of the function Gi is done approximately at the mid-points of the mesh XðiÞ, for
i ¼ 1; 2; . . . ;NPTS, by calling the PDEDEF for each mid-point in turn. Any discontinuities in the
function must therefore be at one or more of the mesh points x1; x2; . . . ; xNPTS;

(iv) At least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
PDE problem.

The algebraic-differential equation system which is defined by the functions Ri must be specified in
ODEDEF. You must also specify the coupling points � in the array XI.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. In this method of lines approach the Keller box scheme (see Keller (1970)) is applied to each
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PDE in the space variable only, resulting in a system of ODEs in time for the values of Ui at each mesh
point. In total there are NPDE� NPTSþ NCODE ODEs in time direction. This system is then
integrated forwards in time using a Backward Differentiation Formula (BDF) or a Theta method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (eds J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

Keller H B (1970) A new difference scheme for parabolic problems Numerical Solutions of Partial
Differential Equations (ed J Bramble) 2 327–350 Academic Press

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.

2: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

Constraint: TS < TOUT.

On exit: the value of t corresponding to the solution in U. Normally TS ¼ TOUT.

3: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

4: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Gi which define the system of PDEs. PDEDEF is called
approximately midway between each pair of mesh points in turn by D03PKF.

The specification of PDEDEF is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UT, UX, NCODE, V, VDOT, RES,
IRES)

&

INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, U(NPDE), UT(NPDE), UX(NPDE), V(NCODE),

VDOT(NCODE), RES(NPDE)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.
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4: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ;NPDE.

5: UTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UTðiÞ contains the value of the component
@Ui x; tð Þ

@t
, for i ¼ 1; 2; . . . ;NPDE.

6: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

, for i ¼ 1; 2; . . . ;NPDE.

7: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

8: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

9: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

10: RESðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: RESðiÞ must contain the ith component of G, for i ¼ 1; 2; . . . ;NPDE, where G
is defined as

Gi ¼
XNPDE
j¼1

Pi;j
@Uj

@t
þ
XNCODE
j¼1

Qi;j
_Vj ; ð9Þ

i.e., only terms depending explicitly on time derivatives, or

Gi ¼
XNPDE
j¼1

Pi;j
@Uj

@t
þ
XNCODE
j¼1

Qi;j
_Vj þ Si; ð10Þ

i.e., all terms in equation (3).

The definition of G is determined by the input value of IRES.

11: IRES – INTEGER Input/Output

On entry: the form of Gi that must be returned in the array RES.

IRES ¼ �1
Equation (9) must be used.

IRES ¼ 1
Equation (10) must be used.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions, as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
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meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PKF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PKF is called. Arguments denoted as Input must not be changed by this
procedure.

5: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions GL
i and GR

i which describe the boundary conditions, as
given in (5) and (6).

The specification of BNDARY is:

SUBROUTINE BNDARY (NPDE, T, IBND, NOBC, U, UT, NCODE, V, VDOT,
RES, IRES)

&

INTEGER NPDE, IBND, NOBC, NCODE, IRES
REAL (KIND=nag_wp) T, U(NPDE), UT(NPDE), V(NCODE), VDOT(NCODE),

RES(NOBC)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated.

IBND ¼ 0
BNDARY must compute the left-hand boundary condition at x ¼ a.

IBND 6¼ 0
BNDARY must compute the right-hand boundary condition at x ¼ b.

4: NOBC – INTEGER Input

On entry: specifies the number of boundary conditions at the boundary specified by
IBND.

5: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ at the boundary specified
by IBND, for i ¼ 1; 2; . . . ;NPDE.

6: UTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UTðiÞ contains the value of the component
@Ui x; tð Þ

@t
at the boundary specified

by IBND, for i ¼ 1; 2; . . . ;NPDE.

7: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

8: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.
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9: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

Note: VDOTðiÞ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly as in (7) and (8).

10: RESðNOBCÞ – REAL (KIND=nag_wp) array Output

On exit: RESðiÞ must contain the ith component of GL or GR, depending on the value
of IBND, for i ¼ 1; 2; . . . ;NOBC, where GL is defined as

GL
i ¼

XNPDE
j¼1

EL
i;j

@Uj

@t
þ
XNCODE
j¼1

HL
i;j

_Vj ; ð11Þ

i.e., only terms depending explicitly on time derivatives, or

GL
i ¼

XNPDE
j¼1

EL
i;j

@Uj

@t
þ
XNCODE
j¼1

HL
i;j

_Vj þKL
i ; ð12Þ

i.e., all terms in equation (7), and similarly for GR
i .

The definitions of GL and GR are determined by the input value of IRES.

11: IRES – INTEGER Input/Output

On entry: the form of GL
i (or GR

i ) that must be returned in the array RES.

IRES ¼ �1
Equation (11) must be used.

IRES ¼ 1
Equation (12) must be used.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PKF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PKF is called. Arguments denoted as Input must not be changed
by this procedure.

6: UðNEQNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the dependent variables defined as follows:

UðNPDE� j � 1ð Þ þ iÞ contain Ui xj ; t0
� �

, for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS,
and

UðNPTS� NPDEþ iÞ contain Vi t0ð Þ, for i ¼ 1; 2; . . . ;NCODE.

On exit: the computed solution Ui xj ; t
� �

, for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS, and
Vk tð Þ, for k ¼ 1; 2; . . . ;NCODE, evaluated at t ¼ TS.
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7: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: NPTS � 3.

8: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the mesh points in the space direction. Xð1Þ must specify the left-hand boundary, a,
and XðNPTSÞ must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.

9: NLEFT – INTEGER Input

On entry: the number na of boundary conditions at the left-hand mesh point Xð1Þ.
Constraint: 0 � NLEFT � NPDE.

10: NCODE – INTEGER Input

On entry: the number of coupled ODE components.

Constraint: NCODE � 0.

11: ODEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

ODEDEF must evaluate the functions R, which define the system of ODEs, as given in (4).

If you wish to compute the solution of a system of PDEs only (i.e., NCODE ¼ 0), ODEDEF
must be the dummy routine D03PEK. (D03PEK is included in the NAG Library.)

The specification of ODEDEF is:

SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
UCPT, R, IRES)

&

INTEGER NPDE, NCODE, NXI, IRES
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),

UCP(NPDE,*), UCPX(NPDE,*), UCPT(NPDE,*),
R(NCODE)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

4: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

5: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

6: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.
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7: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ contains the ODE/PDE coupling points, �i, for
i ¼ 1; 2; . . . ;NXI.

8: UCPðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPði; jÞ contains the value of Ui x; tð Þ at the coupling point
x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

9: UCPXðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPXði; jÞ contains the value of
@Ui x; tð Þ
@x

at the coupling point

x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

10: UCPTðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPTði; jÞ contains the value of
@Ui

@t
at the coupling point x ¼ �j ,

for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

11: RðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: if NCODE > 0, RðiÞ must contain the ith component of R, for
i ¼ 1; 2; . . . ;NCODE, where R is defined as

R ¼ �B _V � CU�t ; ð13Þ

i.e., only terms depending explicitly on time derivatives, or

R ¼ A�B _V � CU�t ; ð14Þ

i.e., all terms in equation (4). The definition of R is determined by the input value of
IRES.

12: IRES – INTEGER Input/Output

On entry: the form of R that must be returned in the array R.

IRES ¼ �1
Equation (13) must be used.

IRES ¼ 1
Equation (14) must be used.

On exit: should usually remain unchanged. However, you may reset IRES to force the
integration routine to take certain actions, as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PKF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

ODEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PKF is called. Arguments denoted as Input must not be changed
by this procedure.
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12: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if NCODE ¼ 0, NXI ¼ 0;
if NCODE > 0, NXI � 0.

13: XIð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array XI must be at least max 1;NXIð Þ.
On entry: XIðiÞ, for i ¼ 1; 2; . . . ;NXI, must be set to the ODE/PDE coupling points, �i.

Constraint: Xð1Þ � XIð1Þ < XIð2Þ < � � � < XIðNXIÞ � XðNPTSÞ.

14: NEQN – INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN ¼ NPDE� NPTSþ NCODE.

15: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2 and at least NEQN if
ITOL ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i.

16: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3 and at least NEQN if
ITOL ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i.

Note: corresponding elements of RTOL and ATOL cannot both be 0:0.

17: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D03PKF whether
to interpret either or both of RTOL or ATOL as a vector or scalar. The error test to be satisfied is
ei=wik k < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � UðiÞj j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � UðiÞj j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � UðiÞj j þ ATOLð1Þ
4 vector vector RTOLðiÞ � UðiÞj j þ ATOLðiÞ

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, UðiÞ, for i ¼ 1; 2; . . . ;NEQN.

The choice of norm used is defined by the argument NORM.

Constraint: 1 � ITOL � 4.

18: NORM – CHARACTER(1) Input

On entry: the type of norm to be used.

NORM ¼ M
Maximum norm.
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NORM ¼ A
Averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L2 norm

Unorm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NEQN

XNEQN
i¼1

UðiÞ=wið Þ2
vuut ;

while for the maximum norm

Unorm ¼ max
i

UðiÞ=wij j:

See the description of ITOL for the formulation of the weight vector w.

Constraint: NORM ¼ M or A .

19: LAOPT – CHARACTER(1) Input

On entry: the type of matrix algebra required.

LAOPT ¼ F
Full matrix methods to be used.

LAOPT ¼ B
Banded matrix methods to be used.

LAOPT ¼ S
Sparse matrix methods to be used.

Constraint: LAOPT ¼ F , B or S .

Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
NCODE ¼ 0).

20: ALGOPTð30Þ – REAL (KIND=nag_wp) array Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then ALGOPTð1Þ should be set to 0:0. Default values will also be used for
any other elements of ALGOPT set to zero. The permissible values, default values, and meanings
are as follows:

ALGOPTð1Þ
Selects the ODE integration method to be used. If ALGOPTð1Þ ¼ 1:0, a BDF method is
used and if ALGOPTð1Þ ¼ 2:0, a Theta method is used. The default value is
ALGOPTð1Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 2:0, then ALGOPTðiÞ, for i ¼ 2; 3; 4, are not used.

ALGOPTð2Þ
Specifies the maximum order of the BDF integration formula to be used. ALGOPTð2Þ may
be 1:0, 2:0, 3:0, 4:0 or 5:0. The default value is ALGOPTð2Þ ¼ 5:0.

ALGOPTð3Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If ALGOPTð3Þ ¼ 1:0 a modified Newton iteration is used
and if ALGOPTð3Þ ¼ 2:0 a functional iteration method is used. If functional iteration is
selected and the integrator encounters difficulty, then there is an automatic switch to the
modified Newton iteration. The default value is ALGOPTð3Þ ¼ 1:0.

ALGOPTð4Þ
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;NPDE, for some i or when there is no _Vi tð Þ dependence in the
coupled ODE system. If ALGOPTð4Þ ¼ 1:0, then the Petzold test is used. If
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ALGOPTð4Þ ¼ 2:0, then the Petzold test is not used. The default value is
ALGOPTð4Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 1:0, then ALGOPTðiÞ, for i ¼ 5; 6; 7, are not used.

ALGOPTð5Þ
Specifies the value of Theta to be used in the Theta integration method.
0:51 � ALGOPTð5Þ � 0:99. The default value is ALGOPTð5Þ ¼ 0:55.

ALGOPTð6Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If ALGOPTð6Þ ¼ 1:0, a modified Newton iteration is used
and if ALGOPTð6Þ ¼ 2:0, a functional iteration method is used. The default value is
ALGOPTð6Þ ¼ 1:0.

ALGOPTð7Þ
Specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If
ALGOPTð7Þ ¼ 1:0, then switching is allowed and if ALGOPTð7Þ ¼ 2:0, then switching is
not allowed. The default value is ALGOPTð7Þ ¼ 1:0.

ALGOPTð11Þ
Specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the argument ITASK. If ALGOPTð1Þ 6¼ 0:0, a
value of 0:0, for ALGOPTð11Þ, say, should be specified even if ITASK subsequently
specifies that tcrit will not be used.

ALGOPTð12Þ
Specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð12Þ should be set to 0:0.

ALGOPTð13Þ
Specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð13Þ should be set to 0:0.

ALGOPTð14Þ
Specifies the initial step size to be attempted by the integrator. If ALGOPTð14Þ ¼ 0:0, then
the initial step size is calculated internally.

ALGOPTð15Þ
Specifies the maximum number of steps to be attempted by the integrator in any one call.
If ALGOPTð15Þ ¼ 0:0, then no limit is imposed.

ALGOPTð23Þ
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If ALGOPTð23Þ ¼ 1:0, a modified Newton
iteration is used and if ALGOPTð23Þ ¼ 2:0, functional iteration is used. The default value
is ALGOPTð23Þ ¼ 1:0.

ALGOPTð29Þ and ALGOPTð30Þ are used only for the sparse matrix algebra option, i.e.,
LAOPT ¼ S .

ALGOPTð29Þ
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < ALGOPTð29Þ < 1:0, with smaller values biasing the
algorithm towards maintaining sparsity at the expense of numerical stability. If
ALGOPTð29Þ lies outside this range then the default value is used. If the routines regard
the Jacobian matrix as numerically singular then increasing ALGOPTð29Þ towards 1:0 may
help, but at the cost of increased fill-in. The default value is ALGOPTð29Þ ¼ 0:1.

ALGOPTð30Þ
Used as a relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPTð29Þ) below which an internal error is invoked. ALGOPTð30Þ must be greater
than zero, otherwise the default value is used. If ALGOPTð30Þ is greater than 1:0 no check
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is made on the pivot size, and this may be a necessary option if the Jacobian is found to be
numerically singular (see ALGOPTð29Þ). The default value is ALGOPTð30Þ ¼ 0:0001.

21: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

22: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PKF is called. Its size depends on the type of matrix algebra selected.

If LAOPT ¼ F , LRSAVE � NEQN� NEQNþ NEQNþ nwkres þ lenode.

If LAOPT ¼ B , LRSAVE � 2�ml þmu þ 2ð Þ � NEQNþ nwkres þ lenode.

If LAOPT ¼ S , LRSAVE � 4� NEQNþ 11� NEQN=2þ 1þ nwkres þ lenode.

Where

ml and mu are the lower and upper half bandwidths given by ml ¼ NPDEþ NLEFT� 1 such that
mu ¼ 2� NPDE� NLEFT� 1, for problems involving PDEs only; or
ml ¼ mu ¼ NEQN� 1, for coupled PDE/ODE problems.

nwkres ¼
NPDE� 3� NPDEþ 6� NXIþ NPTSþ 15ð Þ þ NXIþ NCODEþ 7� NPTSþ 2; when NCODE > 0 and NXI > 0; or
NPDE� 3� NPDEþ NPTSþ 21ð Þ þ NCODEþ 7� NPTSþ 3; when NCODE > 0 and NXI ¼ 0; or
NPDE� 3� NPDEþ NPTSþ 21ð Þ þ 7� NPTSþ 4; when NCODE ¼ 0:

8<:
lenode ¼ 6þ int ALGOPTð2Þð Þð Þ � NEQNþ 50; when the BDF method is used; or

9� NEQNþ 50; when the Theta method is used:



Note: when using the sparse option, the value of LRSAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LRSAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

23: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration. In particular the following components of the array
ISAVE concern the efficiency of the integration:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the ODE method last used in the time integration.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.
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24: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which
D03PKF is called. Its size depends on the type of matrix algebra selected:

if LAOPT ¼ F , LISAVE � 24;

if LAOPT ¼ B , LISAVE � NEQNþ 24;

if LAOPT ¼ S , LISAVE � 25� NEQNþ 24.

Note: when using the sparse option, the value of LISAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LISAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

25: ITASK – INTEGER Input

On entry: the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT (by overshooting and interpolating).

ITASK ¼ 2
Take one step in the time direction and return.

ITASK ¼ 3
Stop at first internal integration point at or beyond t ¼ TOUT.

ITASK ¼ 4
Normal computation of output values U at t ¼ TOUT but without overshooting t ¼ tcrit
where tcrit is described under the argument ALGOPT.

ITASK ¼ 5
Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument ALGOPT.

Constraint: ITASK ¼ 1, 2, 3, 4 or 5.

26: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PKF and the underlying ODE solver
as follows:

ITRACE � �1
No output is generated.

ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE ¼ 1
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

ITRACE ¼ 2
Output from the underlying ODE solver is similar to that produced when ITRACE ¼ 1,
except that the advisory messages are given in greater detail.

ITRACE � 3
Output from the underlying ODE solver is similar to that produced when ITRACE ¼ 2,
except that the advisory messages are given in greater detail.

You advised to set ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.
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27: IND – INTEGER Input/Output

On entry: indicates whether this is a continuation call or a new integration.

IND ¼ 0
Starts or restarts the integration in time.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT and IFAIL should be reset between calls to D03PKF.

Constraint: IND ¼ 0 or 1.

On exit: IND ¼ 1.

28: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOUT� TSð Þ is too small,
or ITASK 6¼ 1, 2, 3, 4 or 5,
or at least one of the coupling points defined in array XI is outside the interval

[Xð1Þ;XðNPTSÞ],
or NPTS < 3,
or NPDE < 1,
or NLEFT not in range 0 to NPDE,
or NORM 6¼ A or M ,
or LAOPT 6¼ F , B or S ,
or ITOL 6¼ 1, 2, 3 or 4,
or IND 6¼ 0 or 1,
or mesh points XðiÞ are badly ordered,
or LRSAVE or LISAVE are too small,
or NCODE and NXI are incorrectly defined,
or IND ¼ 1 on initial entry to D03PKF,
or an element of RTOL or ATOL < 0:0,
or corresponding elements of ATOL and RTOL are both 0:0,
or NEQN 6¼ NPDE� NPTSþ NCODE.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and
RTOL, across the integration range from the current point t ¼ TS. The components of U contain
the computed values at the current point t ¼ TS.
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IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate. Incorrect positioning of
boundary conditions may also result in this error.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
one of PDEDEF, BNDARY or ODEDEF, when the residual in the underlying ODE solver was
being evaluated. Incorrect positioning of boundary conditions may also result in this error.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. You should check their
problem formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in one of PDEDEF,
BNDARY or ODEDEF. Integration was successful as far as t ¼ TS.

IFAIL ¼ 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In either, PDEDEF, BNDARY or ODEDEF, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification and all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL
is unlikely to produce any change in the computed solution. (Only applies when you are not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current advisory message unit). If using the sparse matrix
algebra option, the values of ALGOPTð29Þ and ALGOPTð30Þ may be inappropriate.

IFAIL ¼ 12

In solving the ODE system, the maximum number of steps specified in ALGOPTð15Þ has been
taken.

IFAIL ¼ 13

Some error weights wi became zero during the time integration (see the description of ITOL).
Pure relative error control ATOLðiÞ ¼ 0:0ð Þ was requested on a variable (the ith) which has
become zero. The integration was successful as far as t ¼ TS.

IFAIL ¼ 14

Not applicable.
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IFAIL ¼ 15

When using the sparse option, the value of LISAVE or LRSAVE was insufficient (more detailed
information may be directed to the current error message unit).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PKF controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of
varying the accuracy arguments, ATOL and RTOL.

8 Parallelism and Performance

D03PKF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03PKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03PKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to first-
order by the introduction of new variables (see the example in Section 10). In general, a second-order
problem can be solved with slightly greater accuracy using the Keller box scheme instead of a finite
difference scheme (see D03PCF/D03PCA or D03PHF/D03PHA for example), but at the expense of
increased CPU time due to the larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may
be unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection
equation Ut þ aUx ¼ 0, where a is a constant, resulting in spurious oscillations due to the lack of
dissipation. This type of problem requires a discretization scheme with upwind weighting (D03PLF for
example), or the addition of a second-order artificial dissipation term.

The time taken depends on the complexity of the system and on the accuracy requested. For a given
system and a fixed accuracy it is approximately proportional to NEQN.
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10 Example

This example provides a simple coupled system of two PDEs and one ODE.

V1ð Þ2
@U1

@t
� xV1 _V1U2 �

@U2

@x
¼ 0;

U2 �
@U1

@x
¼ 0;

_V1 � V1U1 � U2 � 1� t ¼ 0;

for t 2 10�4; 0:1� 2i
� �

, for i ¼ 1; 2; . . . ; 5; x 2 0; 1½ �. The left boundary condition at x ¼ 0 is

U2 ¼ �V1 exp t;

and the right boundary condition at x ¼ 1 is

U2 ¼ �V1 _V1:

The initial conditions at t ¼ 10�4 are defined by the exact solution:

V1 ¼ t; U1 x; tð Þ ¼ exp t 1� xð Þf g � 1:0 and U2 x; tð Þ ¼ �t exp t 1� xð Þf g; x 2 0; 1½ �;

and the coupling point is at �1 ¼ 1:0.

This problem is exactly the same as the D03PHF/D03PHA example problem, but reduced to first-order
by the introduction of a second PDE variable (as mentioned in Section 9).

10.1 Program Text

! D03PKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03pkfe_mod

! D03PKF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndary, exact, odedef, pdedef, &

uvinit
! .. Parameters ..

Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Integer, Parameter, Public :: itrace = 0, ncode = 1, nin = 5, &

nleft = 1, nout = 6, npde = 2, &
nxi = 1

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: ts

Contains
Subroutine odedef(npde,t,ncode,v,vdot,nxi,xi,ucp,ucpx,ucpt,r,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde, nxi

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(ncode)
Real (Kind=nag_wp), Intent (In) :: ucp(npde,*), ucpt(npde,*), &

ucpx(npde,*), v(ncode), vdot(ncode), &
xi(nxi)

! .. Executable Statements ..
If (ires==-1) Then

r(1) = vdot(1)
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Else
r(1) = vdot(1) - v(1)*ucp(1,1) - ucp(2,1) - one - t

End If
Return

End Subroutine odedef
Subroutine pdedef(npde,t,x,u,ut,ux,ncode,v,vdot,res,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: res(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ut(npde), ux(npde), &

v(ncode), vdot(ncode)
! .. Executable Statements ..

If (ires==-1) Then
res(1) = v(1)*v(1)*ut(1) - x*u(2)*v(1)*vdot(1)
res(2) = 0.0_nag_wp

Else
res(1) = v(1)*v(1)*ut(1) - x*u(2)*v(1)*vdot(1) - ux(2)
res(2) = u(2) - ux(1)

End If
Return

End Subroutine pdedef
Subroutine bndary(npde,t,ibnd,nobc,u,ut,ncode,v,vdot,res,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, nobc, npde
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: res(nobc)
Real (Kind=nag_wp), Intent (In) :: u(npde), ut(npde), v(ncode), &

vdot(ncode)
! .. Intrinsic Procedures ..

Intrinsic :: exp
! .. Executable Statements ..

If (ibnd==0) Then
If (ires==-1) Then

res(1) = 0.0_nag_wp
Else

res(1) = u(2) + v(1)*exp(t)
End If

Else
If (ires==-1) Then

res(1) = v(1)*vdot(1)
Else

res(1) = u(2) + v(1)*vdot(1)
End If

End If
Return

End Subroutine bndary
Subroutine uvinit(npde,npts,x,u,ncode,neqn)

! Routine for PDE initial values

! .. Scalar Arguments ..
Integer, Intent (In) :: ncode, neqn, npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(neqn)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Integer :: i, k

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
k = 1
Do i = 1, npts

u(k) = exp(ts*(one-x(i))) - one
u(k+1) = -ts*exp(ts*(one-x(i)))
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k = k + 2
End Do
u(neqn) = ts
Return

End Subroutine uvinit
Subroutine exact(time,neqn,npts,x,u)

! Exact solution (for comparison purposes)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: time
Integer, Intent (In) :: neqn, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(neqn)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Integer :: i, k

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
k = 1
Do i = 1, npts

u(k) = exp(time*(one-x(i))) - one
k = k + 2

End Do
Return

End Subroutine exact
End Module d03pkfe_mod
Program d03pkfe

! .. Use Statements ..
Use nag_library, Only: d03pkf, nag_wp
Use d03pkfe_mod, Only: bndary, exact, itrace, ncode, nin, nleft, nout, &

npde, nxi, odedef, one, pdedef, ts, uvinit
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: tout
Integer :: i, ifail, ind, it, itask, itol, &

latol, lenode, lisave, lrsave, &
lrtol, neqn, npts, nwkres

Character (1) :: laopt, norm
! .. Local Arrays ..

Real (Kind=nag_wp) :: algopt(30), xi(nxi)
Real (Kind=nag_wp), Allocatable :: atol(:), exy(:), rsave(:), rtol(:), &

u(:), x(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: mod, real

! .. Executable Statements ..
Write (nout,*) ’D03PKF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts
neqn = npde*npts + ncode
nwkres = npde*(npts+6*nxi+3*npde+15) + ncode + nxi + 7*npts + 2
lenode = 11*neqn + 50
lisave = 25*neqn + 24
lrsave = neqn*neqn + neqn + nwkres + lenode
Allocate (exy(neqn),u(neqn),rsave(lrsave),x(npts),isave(lisave))

Read (nin,*) itol
latol = 1
lrtol = 1
If (itol>2) Then

latol = neqn
End If
If (mod(itol,2)==0) Then

lrtol = neqn
End If
Allocate (atol(latol),rtol(lrtol))
Read (nin,*) atol(1:latol), rtol(1:lrtol)
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Read (nin,*) ts

! Set spatial-mesh points
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do

Read (nin,*) xi(1:nxi)
Read (nin,*) norm, laopt
ind = 0
itask = 1

algopt(1:30) = 0.0_nag_wp
algopt(1) = one
algopt(13) = 0.005_nag_wp

! Loop over output value of t

Call uvinit(npde,npts,x,u,ncode,neqn)

tout = 0.2_nag_wp
Do it = 1, 5

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03pkf(npde,ts,tout,pdedef,bndary,u,npts,x,nleft,ncode,odedef, &

nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,rsave,lrsave,isave, &
lisave,itask,itrace,ind,ifail)

If (it==1) Then
Write (nout,99997) atol, npts
Write (nout,99999)(x(i),i=1,13,4), x(npts)

End If

! Check against the exact solution

Call exact(tout,neqn,npts,x,exy)

Write (nout,99998) ts
Write (nout,99995)(u(i),i=1,25,4*npde), u(neqn-2), u(neqn)
Write (nout,99994)(exy(i),i=1,25,4*npde), exy(neqn-2), ts
tout = 2.0_nag_wp*tout

End Do
Write (nout,99996) isave(1), isave(2), isave(3), isave(5)

99999 Format (’ X ’,5F9.3,/)
99998 Format (’ T = ’,F6.3)
99997 Format (/,/,’ Accuracy requirement =’,E10.3,’ Number of points = ’,I3, &

/)
99996 Format (’ Number of integration steps in time = ’,I6,/,’ Number o’, &

’f function evaluations = ’,I6,/,’ Number of Jacobian eval’, &
’uations =’,I6,/,’ Number of iterations = ’,I6)

99995 Format (1X,’App. sol. ’,F7.3,4F9.3,’ ODE sol. =’,F8.3)
99994 Format (1X,’Exact sol. ’,F7.3,4F9.3,’ ODE sol. =’,F8.3,/)

End Program d03pkfe

10.2 Program Data

D03PKF Example Program Data
21 : npts
1 : itol
0.1E-3 0.1E-3 : atol(1), rtol(1)
1.0E-4 : ts
1.0 : xi(1:nxi)
A F : norm, laopt
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10.3 Program Results

D03PKF Example Program Results

Accuracy requirement = 0.100E-03 Number of points = 21

X 0.000 0.200 0.400 0.600 1.000

T = 0.200
App. sol. 0.222 0.174 0.128 0.084 0.000 ODE sol. = 0.200
Exact sol. 0.221 0.174 0.127 0.083 0.000 ODE sol. = 0.200

T = 0.400
App. sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400
Exact sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400

T = 0.800
App. sol. 1.226 0.896 0.616 0.377 -0.000 ODE sol. = 0.800
Exact sol. 1.226 0.896 0.616 0.377 0.000 ODE sol. = 0.800

T = 1.600
App. sol. 3.952 2.595 1.610 0.895 -0.001 ODE sol. = 1.600
Exact sol. 3.953 2.597 1.612 0.896 0.000 ODE sol. = 1.600

T = 3.200
App. sol. 23.522 11.918 5.807 2.588 -0.004 ODE sol. = 3.197
Exact sol. 23.533 11.936 5.821 2.597 0.000 ODE sol. = 3.200

Number of integration steps in time = 642
Number of function evaluations = 3022
Number of Jacobian evaluations = 39
Number of iterations = 1328

Example Program
Two PDEs Coupled with One ODE using Keller, Box and BDF

Solution U(1,x,t)
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Two PDEs Coupled with One ODE using Keller, Box and BDF
Solution U(2,x,t)
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NAG Library Routine Document

D03PLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PLF integrates a system of linear or nonlinear convection-diffusion equations in one space
dimension, with optional source terms and scope for coupled ordinary differential equations (ODEs).
The system must be posed in conservative form. Convection terms are discretized using a sophisticated
upwind scheme involving a user-supplied numerical flux function based on the solution of a Riemann
problem at each mesh point. The method of lines is employed to reduce the partial differential equations
(PDEs) to a system of ODEs, and the resulting system is solved using a backward differentiation
formula (BDF) method or a Theta method.

2 Specification

SUBROUTINE D03PLF (NPDE, TS, TOUT, PDEDEF, NUMFLX, BNDARY, U, NPTS, X,
NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL, ITOL, NORM,
LAOPT, ALGOPT, RSAVE, LRSAVE, ISAVE, LISAVE, ITASK,
ITRACE, IND, IFAIL)

&
&
&

INTEGER NPDE, NPTS, NCODE, NXI, NEQN, ITOL, LRSAVE,
ISAVE(LISAVE), LISAVE, ITASK, ITRACE, IND, IFAIL

&

REAL (KIND=nag_wp) TS, TOUT, U(NEQN), X(NPTS), XI(*), RTOL(*), ATOL(*),
ALGOPT(30), RSAVE(LRSAVE)

&

CHARACTER(1) NORM, LAOPT
EXTERNAL PDEDEF, NUMFLX, BNDARY, ODEDEF

3 Description

D03PLF integrates the system of convection-diffusion equations in conservative form:XNPDE
j¼1

Pi;j
@Uj
@t
þ @Fi
@x
¼ Ci

@Di

@x
þ Si; ð1Þ

or the hyperbolic convection-only system:

@Ui
@t
þ @Fi
@x
¼ 0; ð2Þ

for i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0, where the vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T:

The optional coupled ODEs are of the general form

Ri t; V ; _V ; �; U�; U�x; U
�
t

� �
¼ 0; i ¼ 1; 2; . . . ;NCODE; ð3Þ

where the vector V is the set of ODE solution values

V tð Þ ¼ V1 tð Þ; . . . ; VNCODE tð Þ½ �T;
_V denotes its derivative with respect to time, and Ux is the spatial derivative of U .

In (1), Pi;j, Fi and Ci depend on x, t, U and V ; Di depends on x, t, U , Ux and V ; and Si depends on x,
t, U , V and linearly on _V . Note that Pi;j, Fi, Ci and Si must not depend on any space derivatives, and

Pi;j, Fi, Ci and Di must not depend on any time derivatives. In terms of conservation laws, Fi,
Ci@Di

@x
and Si are the convective flux, diffusion and source terms respectively.
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In (3), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to PDE spatial mesh points. U�, U�x and U�t are the functions U ,
Ux and Ut evaluated at these coupling points. Each Ri may depend only linearly on time derivatives.
Hence (3) may be written more precisely as

R ¼ L�M _V �NU�t ; ð4Þ

where R ¼ R1; . . . ; RNCODE½ �T, L is a vector of length NCODE, M is an NCODE by NCODE matrix, N
is an NCODE by n� � NPDE

� �
matrix and the entries in L, M and N may depend on t, �, U�, U�x and

V . In practice you only need to supply a vector of information to define the ODEs and not the matrices
L, M and N . (See Section 5 for the specification of ODEDEF.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS
are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xNPTS. The initial values of the
functions U x; tð Þ and V tð Þ must be given at t ¼ t0.
The PDEs are approximated by a system of ODEs in time for the values of Ui at mesh points using a
spatial discretization method similar to the central-difference scheme used in D03PCF/D03PCA,
D03PHF/D03PHA and D03PPF/D03PPA, but with the flux Fi replaced by a numerical flux, which is a
representation of the flux taking into account the direction of the flow of information at that point (i.e.,
the direction of the characteristics). Simple central differencing of the numerical flux then becomes a
sophisticated upwind scheme in which the correct direction of upwinding is automatically achieved.

The numerical flux vector, F̂i say, must be calculated by you in terms of the left and right values of the
solution vector U (denoted by UL and UR respectively), at each mid-point of the mesh
xj�1

2
¼ xj�1 þ xj
� �

=2 , for j ¼ 2; 3; . . . ;NPTS. The left and right values are calculated by D03PLF

from two adjacent mesh points using a standard upwind technique combined with a Van Leer slope-
limiter (see LeVeque (1990)). The physically correct value for F̂i is derived from the solution of the
Riemann problem given by

@Ui
@t
þ @Fi
@y
¼ 0; ð5Þ

where y ¼ x� xj�1
2
, i.e., y ¼ 0 corresponds to x ¼ xj�1

2
, with discontinuous initial values U ¼ UL for

y < 0 and U ¼ UR for y > 0, using an approximate Riemann solver. This applies for either of the
systems (1) or (2); the numerical flux is independent of the functions Pi;j, Ci, Di and Si. A description
of several approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989).
Roe's scheme (see Roe (1981)) is perhaps the easiest to understand and use, and a brief summary
follows. Consider the system of PDEs Ut þ Fx ¼ 0 or equivalently Ut þAUx ¼ 0. Provided the system
is linear in U , i.e., the Jacobian matrix A does not depend on U , the numerical flux F̂ is given by

F̂ ¼ 1
2 FL þ FRð Þ � 1

2

XNPDE
k¼1

�k �kj jek; ð6Þ

where FL (FR) is the flux F calculated at the left (right) value of U , denoted by UL (UR); the �k are the
eigenvalues of A; the ek are the right eigenvectors of A; and the �k are defined by

UR � UL ¼
XNPDE
k¼1

�kek: ð7Þ

An example is given in Section 10 and in the D03PFF documentation.

If the system is nonlinear, Roe's scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions Pi;j, Ci, Di and Si (but not Fi) must be specified in PDEDEF. The numerical flux F̂i
must be supplied in a separate NUMFLX. For problems in the form (2), the actual argument D03PLP
may be used for PDEDEF. D03PLP is included in the NAG Library and sets the matrix with entries Pi;j
to the identity matrix, and the functions Ci, Di and Si to zero.

The boundary condition specification has sufficient flexibility to allow for different types of problems.
For second-order problems, i.e., Di depending on Ux, a boundary condition is required for each PDE at
both boundaries for the problem to be well-posed. If there are no second-order terms present, then the
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continuous PDE problem generally requires exactly one boundary condition for each PDE, that is
NPDE boundary conditions in total. However, in common with most discretization schemes for first-
order problems, a numerical boundary condition is required at the other boundary for each PDE. In
order to be consistent with the characteristic directions of the PDE system, the numerical boundary
conditions must be derived from the solution inside the domain in some manner (see below). You must
supply both types of boundary condition, i.e., a total of NPDE conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a
numerical boundary condition is required at the other boundary. In many cases the boundary conditions
are simple, e.g., for the linear advection equation. In general you should calculate the characteristics of
the PDE system and specify a physical boundary condition for each of the characteristic variables
associated with incoming characteristics, and a numerical boundary condition for each outgoing
characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic
variables from the inside of the domain (note that when using banded matrix algebra the fixed
bandwidth means that only linear extrapolation is allowed, i.e., using information at just two interior
points adjacent to the boundary). For problems in which the solution is known to be uniform (in space)
towards a boundary during the period of integration then extrapolation is unnecessary; the numerical
boundary condition can be supplied as the known solution at the boundary. Another method of
supplying numerical boundary conditions involves the solution of the characteristic equations associated
with the outgoing characteristics. Examples of both methods can be found in Section 10 and in the
D03PFF documentation.

The boundary conditions must be specified in BNDARY in the form

GL
i x; t; U; V ; _V
� �

¼ 0 at x ¼ a; i ¼ 1; 2; . . . ;NPDE; ð8Þ

at the left-hand boundary, and

GR
i x; t; U; V ; _V
� �

¼ 0 at x ¼ b; i ¼ 1; 2; . . . ;NPDE; ð9Þ

at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to BNDARY, but they can be
calculated using values of U at and adjacent to the boundaries if required. However, it should be noted
that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

The algebraic-differential equation system which is defined by the functions Ri must be specified in
ODEDEF. You must also specify the coupling points � (if any) in the array XI.

The problem is subject to the following restrictions:

(i) In (1), _Vj tð Þ, for j ¼ 1; 2; . . . ;NCODE, may only appear linearly in the functions Si, for
i ¼ 1; 2; . . . ;NPDE, with a similar restriction for GL

i and GR
i ;

(ii) Pi;j, Fi, Ci and Si must not depend on any space derivatives; and Pi;j, Fi, Ci and Di must not
depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) The evaluation of the terms Pi;j, Ci, Di and Si is done by calling the PDEDEF at a point
approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the mesh points x1; x2; . . . ; xNPTS;

(v) At least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
PDE problem.

In total there are NPDE� NPTSþ NCODE ODEs in the time direction. This system is then integrated
forwards in time using a BDF or Theta method, optionally switching between Newton's method and
functional iteration (see Berzins et al. (1989)).

For further details of the scheme, see Pennington and Berzins (1994) and the references therein.
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5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.

2: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

3: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

4: PDEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

PDEDEF must evaluate the functions Pi;j, Ci, Di and Si which partially define the system of
PDEs. Pi;j and Ci may depend on x, t, U and V ; Di may depend on x, t, U , Ux and V ; and Si
may depend on x, t, U , V and linearly on _V . PDEDEF is called approximately midway between
each pair of mesh points in turn by D03PLF. The actual argument D03PLP may be used for
PDEDEF for problems in the form (2). (D03PLP is included in the NAG Library.)

The specification of PDEDEF is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UX, NCODE, V, VDOT, P, C, D, S,
IRES)

&

INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, U(NPDE), UX(NPDE), V(NCODE),

VDOT(NCODE), P(NPDE,NPDE), C(NPDE), D(NPDE),
S(NPDE)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.
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3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ;NPDE.

5: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

, for i ¼ 1; 2; . . . ;NPDE.

6: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

7: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

8: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in Sj , for
j ¼ 1; 2; . . . ;NPDE.

9: PðNPDE;NPDEÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ must be set to the value of Pi;j x; t; U; Vð Þ, for i ¼ 1; 2; . . . ;NPDE and
j ¼ 1; 2; . . . ;NPDE.

10: CðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: CðiÞ must be set to the value of Ci x; t; U; Vð Þ, for i ¼ 1; 2; . . . ;NPDE.

11: DðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: DðiÞ must be set to the value of Di x; t; U; Ux; Vð Þ, for i ¼ 1; 2; . . . ;NPDE.

12: SðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: SðiÞ must be set to the value of Si x; t; U; V ; _V
� �

, for i ¼ 1; 2; . . . ;NPDE.

13: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling subroutine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PLF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.
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PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PLF is called. Arguments denoted as Input must not be changed by this
procedure.

5: NUMFLX – SUBROUTINE, supplied by the user. External Procedure

NUMFLX must supply the numerical flux for each PDE given the left and right values of the
solution vector U. NUMFLX is called approximately midway between each pair of mesh points
in turn by D03PLF.

The specification of NUMFLX is:

SUBROUTINE NUMFLX (NPDE, T, X, NCODE, V, ULEFT, URIGHT, FLUX,
IRES)

&

INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, V(NCODE), ULEFT(NPDE), URIGHT(NPDE),

FLUX(NPDE)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

5: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

6: ULEFTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: ULEFTðiÞ contains the left value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ;NPDE.

7: URIGHTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: URIGHTðiÞ contains the right value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ;NPDE.

8: FLUXðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: FLUXðiÞ must be set to the numerical flux F̂i, for i ¼ 1; 2; . . . ;NPDE.

9: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling subroutine with the error indicator set to IFAIL ¼ 6.
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IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PLF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

NUMFLX must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PLF is called. Arguments denoted as Input must not be changed
by this procedure.

6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions GL
i and GR

i which describe the physical and numerical
boundary conditions, as given by (8) and (9).

The specification of BNDARY is:

SUBROUTINE BNDARY (NPDE, NPTS, T, X, U, NCODE, V, VDOT, IBND, G,
IRES)

&

INTEGER NPDE, NPTS, NCODE, IBND, IRES
REAL (KIND=nag_wp) T, X(NPTS), U(NPDE,NPTS), V(NCODE),

VDOT(NCODE), G(NPDE)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the mesh points in the spatial direction. Xð1Þ corresponds to the left-hand
boundary, a, and XðNPTSÞ corresponds to the right-hand boundary, b.

5: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of the component Ui x; tð Þ at x ¼ XðjÞ, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

Note: if banded matrix algebra is to be used then the functions GL
i and GR

i may depend
on the value of Ui x; tð Þ at the boundary point and the two adjacent points only.

6: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

7: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

8: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.
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Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in GL
j and GR

j , for
j ¼ 1; 2; . . . ;NPDE.

9: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated.

IBND ¼ 0
BNDARY must evaluate the left-hand boundary condition at x ¼ a.

IBND 6¼ 0
BNDARY must evaluate the right-hand boundary condition at x ¼ b.

10: GðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: GðiÞ must contain the ith component of either GL
i or GR

i in (8) and (9),
depending on the value of IBND, for i ¼ 1; 2; . . . ;NPDE.

11: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling subroutine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PLF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PLF is called. Arguments denoted as Input must not be changed
by this procedure.

7: UðNEQNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the dependent variables defined as follows:

UðNPDE� j � 1ð Þ þ iÞ contain Ui xj ; t0
� �

, for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS,
and

UðNPTS� NPDEþ kÞ contain Vk t0ð Þ, for k ¼ 1; 2; . . . ;NCODE.

On exit: the computed solution Ui xj ; t
� �

, for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS, and
Vk tð Þ, for k ¼ 1; 2; . . . ;NCODE, all evaluated at t ¼ TS.

8: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: NPTS � 3.

9: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the mesh points in the space direction. Xð1Þ must specify the left-hand boundary, a,
and XðNPTSÞ must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.

D03PLF NAG Library Manual

D03PLF.8 Mark 26



10: NCODE – INTEGER Input

On entry: the number of coupled ODE components.

Constraint: NCODE � 0.

11: ODEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

ODEDEF must evaluate the functions R, which define the system of ODEs, as given in (4).

If you wish to compute the solution of a system of PDEs only (i.e., NCODE ¼ 0), ODEDEF
must be the dummy routine D03PEK. (D03PEK is included in the NAG Library.)

The specification of ODEDEF is:

SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
UCPT, R, IRES)

&

INTEGER NPDE, NCODE, NXI, IRES
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),

UCP(NPDE,*), UCPX(NPDE,*), UCPT(NPDE,*),
R(NCODE)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

4: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

5: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

6: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

7: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ contains the ODE/PDE coupling point, �i, for
i ¼ 1; 2; . . . ;NXI.

8: UCPðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPði; jÞ contains the value of Ui x; tð Þ at the coupling point
x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

9: UCPXðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPXði; jÞ contains the value of
@Ui x; tð Þ
@x

at the coupling point

x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.
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10: UCPTðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPTði; jÞ contains the value of
@Ui

@t
at the coupling point x ¼ �j ,

for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

11: RðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: RðiÞ must contain the ith component of R, for i ¼ 1; 2; . . . ;NCODE, where R
is defined as

R ¼ L�M _V �NU�t ; ð10Þ

or

R ¼ �M _V �NU�t : ð11Þ

The definition of R is determined by the input value of IRES.

12: IRES – INTEGER Input/Output

On entry: the form of R that must be returned in the array R.

IRES ¼ 1
Equation (10) must be used.

IRES ¼ �1
Equation (11) must be used.

On exit: should usually remain unchanged. However, you may reset IRES to force the
integration routine to take certain actions, as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PLF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

ODEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PLF is called. Arguments denoted as Input must not be changed
by this procedure.

12: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if NCODE ¼ 0, NXI ¼ 0;
if NCODE > 0, NXI � 0.

13: XIð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array XI must be at least max 1;NXIð Þ.
On entry: XIðiÞ, for i ¼ 1; 2; . . . ;NXI, must be set to the ODE/PDE coupling points.

Constraint: Xð1Þ � XIð1Þ < XIð2Þ < � � � < XIðNXIÞ � XðNPTSÞ.
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14: NEQN – INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN ¼ NPDE� NPTSþ NCODE.

15: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2 and at least NEQN if
ITOL ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i.

16: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3 and at least NEQN if
ITOL ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i.

Note: corresponding elements of RTOL and ATOL cannot both be 0:0.

17: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. If ei is the estimated local error for
UðiÞ, for i ¼ 1; 2; . . . ;NEQN, and k k denotes the norm, then the error test to be satisfied is
eik k < 1:0. ITOL indicates to D03PLF whether to interpret either or both of RTOL and ATOL as
a vector or scalar in the formation of the weights wi used in the calculation of the norm (see the
description of NORM):

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � UðiÞj j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � UðiÞj j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � UðiÞj j þ ATOLð1Þ
4 vector vector RTOLðiÞ � UðiÞj j þ ATOLðiÞ

Constraint: 1 � ITOL � 4.

18: NORM – CHARACTER(1) Input

On entry: the type of norm to be used.

NORM ¼ 1
Averaged L1 norm.

NORM ¼ 2
Averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L1 norm

Unorm ¼
1

NEQN

XNEQN
i¼1

UðiÞ=wi;

and for the averaged L2 norm

Unorm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NEQN

XNEQN
i¼1

UðiÞ=wið Þ2
vuut :

See the description of ITOL for the formulation of the weight vector w.

Constraint: NORM ¼ 1 or 2 .
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19: LAOPT – CHARACTER(1) Input

On entry: the type of matrix algebra required.

LAOPT ¼ F
Full matrix methods to be used.

LAOPT ¼ B
Banded matrix methods to be used.

LAOPT ¼ S
Sparse matrix methods to be used.

Constraint: LAOPT ¼ F , B or S .

Note: you are recommended to use the banded option when no coupled ODEs are present
(NCODE ¼ 0). Also, the banded option should not be used if the boundary conditions involve
solution components at points other than the boundary and the immediately adjacent two points.

20: ALGOPTð30Þ – REAL (KIND=nag_wp) array Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then ALGOPTð1Þ should be set to 0:0. Default values will also be used for
any other elements of ALGOPT set to zero. The permissible values, default values, and meanings
are as follows:

ALGOPTð1Þ
Selects the ODE integration method to be used. If ALGOPTð1Þ ¼ 1:0, a BDF method is
used and if ALGOPTð1Þ ¼ 2:0, a Theta method is used. The default is ALGOPTð1Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 2:0, then ALGOPTðiÞ, for i ¼ 2; 3; 4, are not used.

ALGOPTð2Þ
Specifies the maximum order of the BDF integration formula to be used. ALGOPTð2Þ may
be 1:0, 2:0, 3:0, 4:0 or 5:0. The default value is ALGOPTð2Þ ¼ 5:0.

ALGOPTð3Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If ALGOPTð3Þ ¼ 1:0 a modified Newton iteration is used
and if ALGOPTð3Þ ¼ 2:0 a functional iteration method is used. If functional iteration is
selected and the integrator encounters difficulty, then there is an automatic switch to the
modified Newton iteration. The default value is ALGOPTð3Þ ¼ 1:0.

ALGOPTð4Þ
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;NPDE, for some i or when there is no _Vi tð Þ dependence in the
coupled ODE system. If ALGOPTð4Þ ¼ 1:0, then the Petzold test is used. If
ALGOPTð4Þ ¼ 2:0, then the Petzold test is not used. The default value is
ALGOPTð4Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 1:0, then ALGOPTðiÞ, for i ¼ 5; 6; 7, are not used.

ALGOPTð5Þ
Specifies the value of Theta to be used in the Theta integration method.
0:51 � ALGOPTð5Þ � 0:99. The default value is ALGOPTð5Þ ¼ 0:55.

ALGOPTð6Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If ALGOPTð6Þ ¼ 1:0, a modified Newton iteration is used
and if ALGOPTð6Þ ¼ 2:0, a functional iteration method is used. The default value is
ALGOPTð6Þ ¼ 1:0.

ALGOPTð7Þ
Specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If
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ALGOPTð7Þ ¼ 1:0, then switching is allowed and if ALGOPTð7Þ ¼ 2:0, then switching is
not allowed. The default value is ALGOPTð7Þ ¼ 1:0.

ALGOPTð11Þ
Specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the argument ITASK. If ALGOPTð1Þ 6¼ 0:0, a
value of 0:0 for ALGOPTð11Þ, say, should be specified even if ITASK subsequently
specifies that tcrit will not be used.

ALGOPTð12Þ
Specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð12Þ should be set to 0:0.

ALGOPTð13Þ
Specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð13Þ should be set to 0:0.

ALGOPTð14Þ
Specifies the initial step size to be attempted by the integrator. If ALGOPTð14Þ ¼ 0:0, then
the initial step size is calculated internally.

ALGOPTð15Þ
Specifies the maximum number of steps to be attempted by the integrator in any one call.
If ALGOPTð15Þ ¼ 0:0, then no limit is imposed.

ALGOPTð23Þ
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If ALGOPTð23Þ ¼ 1:0, a modified Newton
iteration is used and if ALGOPTð23Þ ¼ 2:0, functional iteration is used. The default value
is ALGOPTð23Þ ¼ 1:0.

ALGOPTð29Þ and ALGOPTð30Þ are used only for the sparse matrix algebra option, i.e.,
LAOPT ¼ S .

ALGOPTð29Þ
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < ALGOPTð29Þ < 1:0, with smaller values biasing the
algorithm towards maintaining sparsity at the expense of numerical stability. If
ALGOPTð29Þ lies outside the range then the default value is used. If the routines regard
the Jacobian matrix as numerically singular, then increasing ALGOPTð29Þ towards 1:0
may help, but at the cost of increased fill-in. The default value is ALGOPTð29Þ ¼ 0:1.

ALGOPTð30Þ
Used as the relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPTð29Þ) below which an internal error is invoked. ALGOPTð30Þ must be greater
than zero, otherwise the default value is used. If ALGOPTð30Þ is greater than 1:0 no check
is made on the pivot size, and this may be a necessary option if the Jacobian matrix is
found to be numerically singular (see ALGOPTð29Þ). The default value is
ALGOPTð30Þ ¼ 0:0001.

21: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

22: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PLF is called. Its size depends on the type of matrix algebra selected.

If LAOPT ¼ F , LRSAVE � NEQN� NEQNþ NEQNþ nwkres þ lenode.

If LAOPT ¼ B , LRSAVE � 3�mlu þ 1ð Þ � NEQNþ nwkres þ lenode.
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If LAOPT ¼ S , LRSAVE � 4� NEQNþ 11� NEQN=2þ 1þ nwkres þ lenode.

Where

mlu is the lower or upper half bandwidths such that
mlu ¼ 3� NPDE� 1, for PDE problems only (no coupled ODEs); or
mlu ¼ NEQN� 1, for coupled PDE/ODE problems.

nwkres ¼
NPDE� 2� NPTSþ 6� NXIþ 3� NPDEþ 26ð Þ þ NXIþ NCODEþ 7� NPTSþ 2; when NCODE > 0 and NXI > 0;
NPDE� 2� NPTSþ 3� NPDEþ 32ð Þ þ NCODEþ 7� NPTSþ 3; when NCODE > 0 and NXI ¼ 0;
NPDE� 2� NPTSþ 3� NPDEþ 32ð Þ þ 7� NPTSþ 4; when NCODE ¼ 0:

8<:
lenode ¼ 6þ int ALGOPTð2Þð Þð Þ � NEQNþ 50; when the BDF method is used; or

9� NEQNþ 50; when the Theta method is used:



Note: when LAOPT ¼ S , the value of LRSAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LRSAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

23: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration. In particular the following components of the array
ISAVE concern the efficiency of the integration:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the BDF method last used in the time integration, if applicable.
When the Theta method is used, ISAVEð4Þ contains no useful information.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

24: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which D03PLF
is called. Its size depends on the type of matrix algebra selected:

if LAOPT ¼ F , LISAVE � 24;

if LAOPT ¼ B , LISAVE � NEQNþ 24;

if LAOPT ¼ S , LISAVE � 25� NEQNþ 24.

Note: when using the sparse option, the value of LISAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LISAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

25: ITASK – INTEGER Input

On entry: the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT (by overshooting and interpolating).

D03PLF NAG Library Manual

D03PLF.14 Mark 26



ITASK ¼ 2
Take one step in the time direction and return.

ITASK ¼ 3
Stop at first internal integration point at or beyond t ¼ TOUT.

ITASK ¼ 4
Normal computation of output values U at t ¼ TOUT but without overshooting t ¼ tcrit
where tcrit is described under the argument ALGOPT.

ITASK ¼ 5
Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument ALGOPT.

Constraint: ITASK ¼ 1, 2, 3, 4 or 5.

26: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PLF and the underlying ODE solver.
ITRACE may take the value �1, 0, 1, 2 or 3.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE > 0
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. You are advised to set
ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.

27: IND – INTEGER Input/Output

On entry: indicates whether this is a continuation call or a new integration.

IND ¼ 0
Starts or restarts the integration in time.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT and IFAIL should be reset between calls to D03PLF.

Constraint: IND ¼ 0 or 1.

On exit: IND ¼ 1.

28: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TS � TOUT,
or TOUT� TS is too small,
or ITASK 6¼ 1, 2, 3, 4 or 5,
or at least one of the coupling points defined in array XI is outside the interval

[Xð1Þ;XðNPTSÞ],
or the coupling points are not in strictly increasing order,
or NPTS < 3,
or NPDE < 1,
or LAOPT 6¼ F , `B' or `S',
or ITOL 6¼ 1, 2, 3 or 4,
or IND 6¼ 0 or 1,
or mesh points XðiÞ are badly ordered,
or LRSAVE or LISAVE are too small,
or NCODE and NXI are incorrectly defined,
or IND ¼ 1 on initial entry to D03PLF,
or NEQN 6¼ NPDE� NPTSþ NCODE,
or an element of RTOL or ATOL < 0:0,
or corresponding elements of RTOL and ATOL are both 0:0,
or NORM 6¼ 1 or 2.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and
RTOL, across the integration range from the current point t ¼ TS. The components of U contain
the computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate. Incorrect specification of
boundary conditions may also result in this error.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
one of PDEDEF, NUMFLX, BNDARY or ODEDEF, when the residual in the underlying ODE
solver was being evaluated. Incorrect specification of boundary conditions may also result in this
error.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. Check the problem
formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least one of
PDEDEF, NUMFLX, BNDARY or ODEDEF. Integration was successful as far as t ¼ TS.
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IFAIL ¼ 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In either, PDEDEF, NUMFLX, BNDARY or ODEDEF, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification and all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL
is unlikely to produce any change in the computed solution. (Only applies when you are not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current advisory message unit when ITRACE � 1). If using
the sparse matrix algebra option, the values of ALGOPTð29Þ and ALGOPTð30Þ may be
inappropriate.

IFAIL ¼ 12

In solving the ODE system, the maximum number of steps specified in ALGOPTð15Þ has been
taken.

IFAIL ¼ 13

Some error weights wi became zero during the time integration (see the description of ITOL).
Pure relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has
become zero. The integration was successful as far as t ¼ TS.

IFAIL ¼ 14

One or more of the functions Pi;j, Di or Ci was detected as depending on time derivatives, which
is not permissible.

IFAIL ¼ 15

When using the sparse option, the value of LISAVE or LRSAVE was not sufficient (more
detailed information may be directed to the current error message unit).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

D03PLF controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of
varying the accuracy arguments, ATOL and RTOL.

8 Parallelism and Performance

D03PLF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03PLF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03PLF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

D03PLF is designed to solve systems of PDEs in conservative form, with optional source terms which
are independent of space derivatives, and optional second-order diffusion terms. The use of the routine
to solve systems which are not naturally in this form is discouraged, and you are advised to use one of
the central-difference schemes for such problems.

You should be aware of the stability limitations for hyperbolic PDEs. For most problems with small
error tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum
time step should be imposed using ALGOPTð13Þ. It is worth experimenting with this argument,
particularly if the integration appears to progress unrealistically fast (with large time steps). Setting the
maximum time step to the minimum mesh size is a safe measure, although in some cases this may be
too restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms
stable and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-
physical speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is
essential to employ a very fine mesh for problems with source terms and discontinuities, and to check
for non-physical propagation speeds by comparing results for different mesh sizes. Further details and
an example can be found in Pennington and Berzins (1994).

The time taken depends on the complexity of the system and on the accuracy requested. For a given
system and a fixed accuracy it is approximately proportional to NEQN.

10 Example

For this routine two examples are presented, with a main program and two example problems given in
Example 1 (EX1) and Example 2 (EX2).

Example 1 (EX1)

This example is a simple first-order system with coupled ODEs arising from the use of the
characteristic equations for the numerical boundary conditions.
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The PDEs are

@U1

@t
þ @U1

@x
þ 2

@U2

@x
¼ 0;

@U2

@t
þ 2

@U1

@x
þ @U2

@x
¼ 0;

for x 2 0; 1½ � and t � 0.

The PDEs have an exact solution given by

U1 x; tð Þ ¼ f x� 3tð Þ þ g xþ tð Þ; U2 x; tð Þ ¼ f x� 3tð Þ � g xþ tð Þ;

where f zð Þ ¼ exp 	zð Þ sin 2	zð Þ, g zð Þ ¼ exp �2	zð Þ cos 2	zð Þ.
The initial conditions are given by the exact solution.

The characteristic variables are W1 ¼ U1 � U2 and W2 ¼ U1 þ U2, corresponding to the characteristics
given by dx=dt ¼ �1 and dx=dt ¼ 3 respectively. Hence we require a physical boundary condition for
W2 at the left-hand boundary and for W1 at the right-hand boundary (corresponding to the incoming
characteristics), and a numerical boundary condition for W1 at the left-hand boundary and for W2 at the
right-hand boundary (outgoing characteristics).

The physical boundary conditions are obtained from the exact solution, and the numerical boundary
conditions are supplied in the form of the characteristic equations for the outgoing characteristics, that
is

@W1

@t
� @W1

@x
¼ 0

at the left-hand boundary, and

@W2

@t
þ 3

@W2

@x
¼ 0

at the right-hand boundary.

In order to specify these boundary conditions, two ODE variables V1 and V2 are introduced, defined by

V1 tð Þ ¼W1 0; tð Þ ¼ U1 0; tð Þ � U2 0; tð Þ;
V2 tð Þ ¼W2 1; tð Þ ¼ U1 1; tð Þ þ U2 1; tð Þ:

The coupling points are therefore at x ¼ 0 and x ¼ 1.

The numerical boundary conditions are now

_V1 �
@W1

@x
¼ 0

at the left-hand boundary, and

_V2 þ 3
@W2

@x
¼ 0

at the right-hand boundary.

The spatial derivatives are evaluated at the appropriate boundary points in BNDARY using one-sided
differences (into the domain and therefore consistent with the characteristic directions).

The numerical flux is calculated using Roe's approximate Riemann solver (see Section 3 for details),
giving

F̂ ¼ 1
2

3U1L � U1R þ 3U2L þ U2R
3U1L þ U1R þ 3U2L � U2R

� �
:

Example 2 (EX2)

This example is the standard shock-tube test problem proposed by Sod (1978) for the Euler equations of
gas dynamics. The problem models the flow of a gas in a long tube following the sudden breakdown of
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a diaphragm separating two initial gas states at different pressures and densities. There is an exact
solution to this problem which is not included explicitly as the calculation is quite lengthy. The PDEs
are

@�

@t
þ @m
@x

¼ 0;

@m

@t
þ @

@x
m2

� þ � � 1ð Þ e� m2

2�

� �� �
¼ 0;

@e

@t
þ @

@x
me
� þ m

� � � 1ð Þ e� m2

2�

� �� �
¼ 0;

where � is the density; m is the momentum, such that m ¼ �u, where u is the velocity; e is the specific
energy; and � is the (constant) ratio of specific heats. The pressure p is given by

p ¼ � � 1ð Þ e� �u
2

2

� �
:

The solution domain is 0 � x � 1 for 0 < t � 0:2, with the initial discontinuity at x ¼ 0:5, and initial
conditions

� x; 0ð Þ ¼ 1; m x; 0ð Þ ¼ 0; e x; 0ð Þ ¼ 2:5; for x < 0:5;
� x; 0ð Þ ¼ 0:125; m x; 0ð Þ ¼ 0; e x; 0ð Þ ¼ 0:25; for x > 0:5:

The solution is uniform and constant at both boundaries for the spatial domain and time of integration
stated, and hence the physical and numerical boundary conditions are indistinguishable and are both
given by the initial conditions above. The evaluation of the numerical flux for the Euler equations is not
trivial; the Roe algorithm given in Section 3 cannot be used directly as the Jacobian is nonlinear.
However, an algorithm is available using the argument-vector method (see Roe (1981)), and this is
provided in the utility routine D03PUF. An alternative Approxiate Riemann Solver using Osher's
scheme is provided in D03PVF. Either D03PUF or D03PVF can be called from NUMFLX.

10.1 Program Text

! D03PLF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03plfe_mod

! D03PLF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndry1, bndry2, exact, nmflx1, &

nmflx2, odedef, pdedef, uvinit
! .. Parameters ..

Real (Kind=nag_wp), Parameter, Public :: el0 = 2.5_nag_wp
Real (Kind=nag_wp), Parameter, Public :: er0 = 0.25_nag_wp
Real (Kind=nag_wp), Parameter, Public :: gamma = 1.4_nag_wp
Real (Kind=nag_wp), Parameter, Public :: rl0 = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: rr0 = 0.125_nag_wp
Integer, Parameter, Public :: itrace = 0, ncode1 = 2, ncode2 = 0, &

nin = 5, nout = 6, npde1 = 2, &
npde2 = 3, nxi1 = 2, nxi2 = 0

Contains
Subroutine exact(t,u,npde,x,npts)

! Exact solution (for comparison and b.c. purposes)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
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Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
Real (Kind=nag_wp), Intent (In) :: x(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: f, g, pi, pi2, x1, x3
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: cos, exp, sin

! .. Executable Statements ..
f = 0.0_nag_wp
pi = x01aaf(f)
pi2 = 2.0_nag_wp*pi
Do i = 1, npts

x1 = x(i) + t
x3 = x(i) - 3.0_nag_wp*t
f = exp(pi*x3)*sin(pi2*x3)
g = exp(-pi2*x1)*cos(pi2*x1)
u(1,i) = f + g
u(2,i) = f - g

End Do
Return

End Subroutine exact
Subroutine pdedef(npde,t,x,u,ux,ncode,v,vdot,p,c,d,s,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(npde), d(npde), p(npde,npde), &

s(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde), v(ncode), &

vdot(ncode)
! .. Local Scalars ..

Integer :: i
! .. Executable Statements ..

c(1:npde) = 1.0_nag_wp
d(1:npde) = 0.0_nag_wp
s(1:npde) = 0.0_nag_wp
p(1:npde,1:npde) = 0.0_nag_wp
Do i = 1, npde

p(i,i) = 1.0_nag_wp
End Do
Return

End Subroutine pdedef
Subroutine bndry1(npde,npts,t,x,u,ncode,v,vdot,ibnd,g,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde, npts
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde,npts), v(ncode), &

vdot(ncode), x(npts)
! .. Local Scalars ..

Real (Kind=nag_wp) :: dudx
Integer :: i

! .. Local Arrays ..
Real (Kind=nag_wp) :: ue(2,1)

! .. Executable Statements ..
If (ibnd==0) Then

i = 1
Call exact(t,ue,npde,x(i),1)
g(1) = u(1,i) + u(2,i) - ue(1,1) - ue(2,1)
dudx = (u(1,i+1)-u(2,i+1)-u(1,i)+u(2,i))/(x(i+1)-x(i))
g(2) = vdot(1) - dudx

Else
i = npts
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Call exact(t,ue,npde,x(i),1)
g(1) = u(1,i) - u(2,i) - ue(1,1) + ue(2,1)
dudx = (u(1,i)+u(2,i)-u(1,i-1)-u(2,i-1))/(x(i)-x(i-1))
g(2) = vdot(2) + 3.0_nag_wp*dudx

End If
Return

End Subroutine bndry1
Subroutine nmflx1(npde,t,x,ncode,v,uleft,uright,flux,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: flux(npde)
Real (Kind=nag_wp), Intent (In) :: uleft(npde), uright(npde), v(ncode)

! .. Local Scalars ..
Real (Kind=nag_wp) :: tmpl, tmpr

! .. Executable Statements ..
tmpl = 3.0_nag_wp*(uleft(1)+uleft(2))
tmpr = uright(1) - uright(2)
flux(1) = 0.5_nag_wp*(tmpl-tmpr)
flux(2) = 0.5_nag_wp*(tmpl+tmpr)
Return

End Subroutine nmflx1
Subroutine odedef(npde,t,ncode,v,vdot,nxi,xi,ucp,ucpx,ucpt,r,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde, nxi

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r(ncode)
Real (Kind=nag_wp), Intent (In) :: ucp(npde,*), ucpt(npde,*), &

ucpx(npde,*), v(ncode), vdot(ncode), &
xi(nxi)

! .. Executable Statements ..
If (ires==-1) Then

r(1) = 0.0_nag_wp
r(2) = 0.0_nag_wp

Else
r(1) = v(1) - ucp(1,1) + ucp(2,1)
r(2) = v(2) - ucp(1,2) - ucp(2,2)

End If
Return

End Subroutine odedef
Subroutine bndry2(npde,npts,t,x,u,ncode,v,vdot,ibnd,g,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde, npts
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde,npts), v(ncode), &

vdot(ncode), x(npts)
! .. Executable Statements ..

If (ibnd==0) Then
g(1) = u(1,1) - rl0
g(2) = u(2,1)
g(3) = u(3,1) - el0

Else
g(1) = u(1,npts) - rr0
g(2) = u(2,npts)
g(3) = u(3,npts) - er0

End If
Return

End Subroutine bndry2
Subroutine nmflx2(npde,t,x,ncode,v,uleft,uright,flux,ires)

! .. Use Statements ..
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Use nag_library, Only: d03puf, d03pvf
! .. Scalar Arguments ..

Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: flux(npde)
Real (Kind=nag_wp), Intent (In) :: uleft(npde), uright(npde), v(ncode)

! .. Local Scalars ..
Integer :: ifail
Character (1) :: path, solver

! .. Executable Statements ..
ifail = 0
solver = ’R’
If (solver==’R’) Then

! ROE scheme ..
Call d03puf(uleft,uright,gamma,flux,ifail)

Else
! OSHER scheme ..

path = ’P’
Call d03pvf(uleft,uright,gamma,path,flux,ifail)

End If
Return

End Subroutine nmflx2
Subroutine uvinit(npde,npts,x,u)

! .. Scalar Arguments ..
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
Do i = 1, npts

If (x(i)<0.5_nag_wp) Then
u(1,i) = rl0
u(2,i) = 0.0_nag_wp
u(3,i) = el0

Else If (x(i)==0.5_nag_wp) Then
u(1,i) = 0.5_nag_wp*(rl0+rr0)
u(2,i) = 0.0_nag_wp
u(3,i) = 0.5_nag_wp*(el0+er0)

Else
u(1,i) = rr0
u(2,i) = 0.0_nag_wp
u(3,i) = er0

End If
End Do
Return

End Subroutine uvinit
End Module d03plfe_mod
Program d03plfe

! D03PLF Example Main Program

! .. Use Statements ..
Use d03plfe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’D03PLF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
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Use nag_library, Only: d03plf, nag_wp
Use d03plfe_mod, Only: bndry1, exact, itrace, ncode1, nin, nmflx1, &

npde1, nxi1, odedef, pdedef
! .. Local Scalars ..

Real (Kind=nag_wp) :: errmax, lerr, lwgt, tout, ts
Integer :: i, ifail, ind, itask, itol, j, &

lenode, lisave, lrsave, ncode, neqn, &
nfuncs, niters, njacs, npde, npts, &
nsteps, nwkres, nxi

Character (1) :: laopt, norm
! .. Local Arrays ..

Real (Kind=nag_wp) :: algopt(30), atol(1), rtol(1)
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:), ue(:,:), x(:), &

xi(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, int, max, real

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 1’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts
npde = npde1
ncode = ncode1
nxi = nxi1
neqn = npde*npts + ncode
lisave = 25*neqn + 24
nwkres = npde*(2*npts+6*nxi+3*npde+26) + nxi + ncode + 7*npts + 2
lenode = 11*neqn + 50
lrsave = 4*neqn + 11*neqn/2 + 1 + nwkres + lenode
lisave = lisave*4
lrsave = lrsave*4
Allocate (rsave(lrsave),u(neqn),ue(npde,npts),x(npts),xi(nxi), &

isave(lisave))

Read (nin,*) itol
Read (nin,*) norm
Read (nin,*) atol(1), rtol(1)

! Initialize mesh
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do
xi(1) = 0.0_nag_wp
xi(2) = 1.0_nag_wp

! Set initial values ..
ts = 0.0_nag_wp
Call exact(ts,u,npde,x,npts)
u(neqn-1) = u(1) - u(2)
u(neqn) = u(neqn-2) + u(neqn-3)

laopt = ’S’
ind = 0
itask = 1

algopt(1:30) = 0.0_nag_wp
! Theta integration

algopt(1) = 1.0_nag_wp
! Sparse matrix algebra parameters

algopt(29) = 0.1_nag_wp
algopt(30) = 1.1_nag_wp

tout = 0.5_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
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Call d03plf(npde,ts,tout,pdedef,nmflx1,bndry1,u,npts,x,ncode,odedef, &
nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,rsave,lrsave,isave, &
lisave,itask,itrace,ind,ifail)

Write (nout,99992)
Write (nout,99991) npts
Write (nout,99990) rtol(1)
Write (nout,99989) atol(1)

! Calculate global error at t=tout : max (||u-ue||, over x)

! Get exact solution at t=tout
Call exact(tout,ue,npde,x,npts)
errmax = -1.0_nag_wp
Do i = 2, npts

lerr = 0.0_nag_wp
Do j = 1, npde

lwgt = rtol(1)*abs(ue(j,i)) + atol(1)
lerr = lerr + abs(u((i-1)*npde+j)-ue(j,i))/lwgt

End Do
lerr = lerr/real(npde,kind=nag_wp)
errmax = max(errmax,lerr)

End Do
Write (nout,99999)
Write (nout,99998) 100*int(errmax/100.0_nag_wp) + 100

! Print integration statistics (reasonably rounded)
nsteps = 50*((isave(1)+25)/50)
nfuncs = 100*((isave(2)+50)/100)
njacs = 20*((isave(3)+10)/20)
niters = 100*((isave(5)+50)/100)
Write (nout,99997)
Write (nout,99996) nsteps
Write (nout,99995) nfuncs
Write (nout,99994) njacs
Write (nout,99993) niters

Return

99999 Format (/,1X,’Integration Results:’)
99998 Format (2X,’Global error is less than ’,I3, &

’ times the local error tolerance.’)
99997 Format (/,1X,’Integration Statistics:’)
99996 Format (2X,’Number of time steps (nearest 50) = ’,I6)
99995 Format (2X,’Number of function evaluations (nearest 100) = ’,I6)
99994 Format (2X,’Number of Jacobian evaluations (nearest 20) = ’,I6)
99993 Format (2X,’Number of iterations (nearest 100) = ’,I6)
99992 Format (/,1X,’Method Parameters:’)
99991 Format (2X,’Number of mesh points used = ’,I4)
99990 Format (2X,’Relative tolerance used = ’,E10.3)
99989 Format (2X,’Absolute tolerance used = ’,E10.3)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d03pek, d03plf, d03plp, nag_wp
Use d03plfe_mod, Only: bndry2, el0, er0, gamma, itrace, ncode2, nin, &

nmflx2, npde2, nxi2, rl0, rr0, uvinit
! .. Local Scalars ..

Real (Kind=nag_wp) :: d, p, tout, ts, v
Integer :: i, ifail, ind, it, itask, itol, &

lenode, lisave, lrsave, mlu, ncode, &
neqn, nfuncs, niters, njacs, npde, &
npts, nskip, nsteps, nwkres, nxi

Character (1) :: laopt, norm
! .. Local Arrays ..

Real (Kind=nag_wp) :: algopt(30), atol(1), rtol(1), xi(1)
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:,:), x(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: real
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! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 2’
Write (nout,*)
Read (nin,*)
Read (nin,*) npts, nskip

npde = npde2
ncode = ncode2
nxi = nxi2
nwkres = npde*(2*npts+3*npde+32) + 7*npts + 4
mlu = 3*npde - 1
neqn = npde*npts + ncode
lenode = 9*neqn + 50
lisave = neqn + 24
lrsave = (3*mlu+1)*neqn + nwkres + lenode

Allocate (rsave(lrsave),u(npde,npts),x(npts),isave(lisave))

! Print problem parameters
Write (nout,99997)
Write (nout,99996) gamma
Write (nout,99995) el0, er0
Write (nout,99994) rl0, rr0

! Read and print method parameters
Read (nin,*) itol
Read (nin,*) norm
Read (nin,*) atol(1), rtol(1)

Write (nout,99987)
Write (nout,99986) npts
Write (nout,99985) rtol(1)
Write (nout,99984) atol(1)

! Initialize mesh
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do

! Initial values of variables
Call uvinit(npde,npts,x,u)

xi(1) = 0.0_nag_wp
laopt = ’B’
ind = 0
itask = 1

algopt(1:30) = 0.0_nag_wp
! Theta integration

algopt(1) = 2.0_nag_wp
algopt(6) = 2.0_nag_wp
algopt(7) = 2.0_nag_wp

! Max. time step
algopt(13) = 0.5E-2_nag_wp

Write (nout,99999)
Write (nout,99998)

ts = 0.0_nag_wp
tout = ts
Do it = 1, 2

tout = tout + 0.1_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03plf(npde,ts,tout,d03plp,nmflx2,bndry2,u,npts,x,ncode,d03pek, &

nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,rsave,lrsave,isave, &
lisave,itask,itrace,ind,ifail)
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! Calculate density, velocity and pressure ..
Do i = 1, npts, nskip

d = u(1,i)
v = u(2,i)/d
p = d*(gamma-1.0_nag_wp)*(u(3,i)/d-0.5_nag_wp*v**2)
If (i==1) Then

Write (nout,99993) ts, x(i), d, v, p
Else

Write (nout,99992) x(i), d, v, p
End If

End Do
Write (nout,*)

End Do

! Print integration statistics (reasonably rounded)
nsteps = 50*((isave(1)+25)/50)
nfuncs = 50*((isave(2)+25)/50)
njacs = isave(3)
niters = isave(5)
Write (nout,99991) nsteps
Write (nout,99990) nfuncs
Write (nout,99989) njacs
Write (nout,99988) niters

Return

99999 Format (/,1X,’Solution’)
99998 Format (4X,’t’,6X,’x’,5X,’density’,1X,’velocity’,1X,’pressure’)
99997 Format (/,’ Problem Parameter and initial conditions:’)
99996 Format (’ gamma =’,F6.3)
99995 Format (’ e(x<0.5,0) =’,F6.3,’ e(x>0.5,0) =’,F6.3)
99994 Format (’ rho(x>0.5,0) =’,F6.3,’ rho(x>0.5,0) =’,F6.3)
99993 Format (1X,F6.3,1X,F7.4,3(2X,F7.4))
99992 Format (8X,F7.3,3(2X,F7.4))
99991 Format (/,’ Number of time steps (nearest 50) = ’,I6)
99990 Format (’ Number of function evaluations (nearest 50) = ’,I6)
99989 Format (’ Number of Jacobian evaluations (nearest 1) = ’,I6)
99988 Format (’ Number of iterations (nearest 1) = ’,I6)
99987 Format (/,’ Method Parameters:’)
99986 Format (’ Number of mesh points used = ’,I4)
99985 Format (’ Relative tolerance used = ’,E10.3)
99984 Format (’ Absolute tolerance used = ’,E10.3)

End Subroutine ex2
End Program d03plfe

10.2 Program Data

D03PLF Example Program Data
201 : (ex1) npts

1 : itol
’1’ : norm

0.1E-4 0.25E-3 : atol(1), rtol(1)

141 14 : (ex2) npts, nskip
1 : itol

’2’ : norm
0.5E-2 0.5E-3 : atol(1), rtol(1)

10.3 Program Results

D03PLF Example Program Results

Example 1

Method Parameters:
Number of mesh points used = 201
Relative tolerance used = 0.250E-03
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Absolute tolerance used = 0.100E-04

Integration Results:
Global error is less than 100 times the local error tolerance.

Integration Statistics:
Number of time steps (nearest 50) = 150
Number of function evaluations (nearest 100) = 1400
Number of Jacobian evaluations (nearest 20) = 20
Number of iterations (nearest 100) = 400

Example 2

Problem Parameter and initial conditions:
gamma = 1.400

e(x<0.5,0) = 2.500 e(x>0.5,0) = 0.250
rho(x>0.5,0) = 1.000 rho(x>0.5,0) = 0.125

Method Parameters:
Number of mesh points used = 141
Relative tolerance used = 0.500E-03
Absolute tolerance used = 0.500E-02

Solution
t x density velocity pressure

0.100 0.0000 1.0000 0.0000 1.0000
0.100 1.0000 -0.0000 1.0000
0.200 1.0000 -0.0000 1.0000
0.300 1.0000 -0.0000 1.0000
0.400 0.8668 0.1665 0.8188
0.500 0.4299 0.9182 0.3071
0.600 0.2969 0.9274 0.3028
0.700 0.1250 0.0000 0.1000
0.800 0.1250 -0.0000 0.1000
0.900 0.1250 -0.0000 0.1000
1.000 0.1250 0.0000 0.1000

0.200 0.0000 1.0000 0.0000 1.0000
0.100 1.0000 -0.0000 1.0000
0.200 1.0000 -0.0000 1.0000
0.300 0.8718 0.1601 0.8253
0.400 0.6113 0.5543 0.5022
0.500 0.4245 0.9314 0.3014
0.600 0.4259 0.9277 0.3030
0.700 0.2772 0.9272 0.3031
0.800 0.2657 0.9276 0.3032
0.900 0.1250 -0.0000 0.1000
1.000 0.1250 0.0000 0.1000

Number of time steps (nearest 50) = 150
Number of function evaluations (nearest 50) = 400
Number of Jacobian evaluations (nearest 1) = 1
Number of iterations (nearest 1) = 2
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Example Program 1
First-order System with Coupled ODEs

Solution U(1,x,t)

U
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,x
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Example Program 2
Shock Tube Test Problem of Euler Equations in Gas Dynamics
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Shock Tube Test Problem of Euler Equations in Gas Dynamics
VELOCITY

V
el

oc
it

y

 0
 0.02

 0.04
 0.06

 0.08
 0.1

 0.12
 0.14

 0.16
 0.18

 0.2
 0.22

Time

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
x

 0

 0.3

 0.6

 0.9

Shock Tube Test Problem of Euler Equations in Gas Dynamics
PRESSURE
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NAG Library Routine Document

D03PPF/D03PPA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PPF/D03PPA integrates a system of linear or nonlinear parabolic partial differential equations
(PDEs) in one space variable, with scope for coupled ordinary differential equations (ODEs), and
automatic adaptive spatial remeshing. The spatial discretization is performed using finite differences,
and the method of lines is employed to reduce the PDEs to a system of ODEs. The resulting system is
solved using a Backward Differentiation Formula (BDF) method or a Theta method (switching between
Newton's method and functional iteration).

D03PPA is a version of D03PPF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5).

2 Specification

2.1 Specification for D03PPF

SUBROUTINE D03PPF (NPDE, M, TS, TOUT, PDEDEF, BNDARY, UVINIT, U, NPTS,
X, NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL, ITOL,
NORM, LAOPT, ALGOPT, REMESH, NXFIX, XFIX, NRMESH,
DXMESH, TRMESH, IPMINF, XRATIO, CON, MONITF, RSAVE,
LRSAVE, ISAVE, LISAVE, ITASK, ITRACE, IND, IFAIL)

&
&
&
&

INTEGER NPDE, M, NPTS, NCODE, NXI, NEQN, ITOL, NXFIX,
NRMESH, IPMINF, LRSAVE, ISAVE(LISAVE), LISAVE,
ITASK, ITRACE, IND, IFAIL

&
&

REAL (KIND=nag_wp) TS, TOUT, U(NEQN), X(NPTS), XI(NXI), RTOL(*),
ATOL(*), ALGOPT(30), XFIX(*), DXMESH, TRMESH,
XRATIO, CON, RSAVE(LRSAVE)

&
&

LOGICAL REMESH
CHARACTER(1) NORM, LAOPT
EXTERNAL PDEDEF, BNDARY, UVINIT, ODEDEF, MONITF

2.2 Specification for D03PPA

SUBROUTINE D03PPA (NPDE, M, TS, TOUT, PDEDEF, BNDARY, UVINIT, U, NPTS,
X, NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL, ITOL,
NORM, LAOPT, ALGOPT, REMESH, NXFIX, XFIX, NRMESH,
DXMESH, TRMESH, IPMINF, XRATIO, CON, MONITF, RSAVE,
LRSAVE, ISAVE, LISAVE, ITASK, ITRACE, IND, IUSER,
RUSER, CWSAV, LWSAV, IWSAV, RWSAV, IFAIL)

&
&
&
&
&

INTEGER NPDE, M, NPTS, NCODE, NXI, NEQN, ITOL, NXFIX,
NRMESH, IPMINF, LRSAVE, ISAVE(LISAVE), LISAVE,
ITASK, ITRACE, IND, IUSER(*), IWSAV(505), IFAIL

&
&

REAL (KIND=nag_wp) TS, TOUT, U(NEQN), X(NPTS), XI(NXI), RTOL(*),
ATOL(*), ALGOPT(30), XFIX(*), DXMESH, TRMESH,
XRATIO, CON, RSAVE(LRSAVE), RUSER(*), RWSAV(1100)

&
&

LOGICAL REMESH, LWSAV(100)
CHARACTER(1) NORM, LAOPT
CHARACTER(80) CWSAV(10)
EXTERNAL PDEDEF, BNDARY, UVINIT, ODEDEF, MONITF
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3 Description

D03PPF/D03PPA integrates the system of parabolic-elliptic equations and coupled ODEsXNPDE
j¼1

Pi;j
@Uj
@t
þQi ¼ x�m

@

@x
xmRið Þ; i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0; ð1Þ

Fi t; V ; _V ; �; U�; U�x; R
�; U�t ; U

�
xt

� �
¼ 0; i ¼ 1; 2; . . . ;NCODE; ð2Þ

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.

In (1), Pi;j and Ri depend on x, t, U , Ux, and V ; Qi depends on x, t, U , Ux, V and linearly on _V . The
vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T;

and the vector Ux is the partial derivative with respect to x. The vector V is the set of ODE solution
values

V tð Þ ¼ V1 tð Þ; . . . ; VNCODE tð Þ½ �T;

and _V denotes its derivative with respect to time.

In (2), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to some of the PDE spatial mesh points. U�, U�x , R

�, U�t and U�xt
are the functions U , Ux, R, Ut and Uxt evaluated at these coupling points. Each Fi may only depend
linearly on time derivatives. Hence the equation (2) may be written more precisely as

F ¼ G�A _V �B U�t
U�xt

� �
; ð3Þ

where F ¼ F1; . . . ; FNCODE½ �T, G is a vector of length NCODE, A is an NCODE by NCODE matrix, B
is an NCODE by n� � NPDE

� �
matrix and the entries in G, A and B may depend on t, �, U�, U�x and

V . In practice you only need to supply a vector of information to define the ODEs and not the matrices
A and B. (See Section 5 for the specification of ODEDEF.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS
are the leftmost and rightmost points of a mesh x1; x2; . . . ; xNPTS defined initially by you and (possibly)
adapted automatically during the integration according to user-specified criteria. The coordinate system
in space is defined by the following values of m; m ¼ 0 for Cartesian coordinates, m ¼ 1 for
cylindrical polar coordinates and m ¼ 2 for spherical polar coordinates.

The PDE system which is defined by the functions Pi;j, Qi and Ri must be specified in PDEDEF.

The initial t ¼ t0ð Þ values of the functions U x; tð Þ and V tð Þ must be specified in UVINIT. Note that
UVINIT will be called again following any initial remeshing, and so U x; t0ð Þ should be specified for all
values of x in the interval a � x � b, and not just the initial mesh points.

The functions Ri which may be thought of as fluxes, are also used in the definition of the boundary
conditions. The boundary conditions must have the form

�i x; tð ÞRi x; t; U; Ux; Vð Þ ¼ �i x; t; U; Ux; V ; _V
� �

; i ¼ 1; 2; . . . ;NPDE; ð4Þ

where x ¼ a or x ¼ b.

The boundary conditions must be specified in BNDARY. The function �i may depend linearly on _V .

The problem is subject to the following restrictions:

(i) In (1), _Vj tð Þ, for j ¼ 1; 2; . . . ;NCODE, may only appear linearly in the functions Qi, for
i ¼ 1; 2; . . . ;NPDE, with a similar restriction for �;

(ii) Pi;j and the flux Ri must not depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;
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(iv) The evaluation of the terms Pi;j, Qi and Ri is done approximately at the mid-points of the mesh
XðiÞ, for i ¼ 1; 2; . . . ;NPTS, by calling the PDEDEF for each mid-point in turn. Any
discontinuities in these functions must therefore be at one or more of the fixed mesh points
specified by XFIX;

(v) At least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
PDE problem;

(vi) If m > 0 and x1 ¼ 0:0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done by either specifying the solution at x ¼ 0:0 or
by specifying a zero flux there, that is �i ¼ 1:0 and �i ¼ 0:0. See also Section 9.

The algebraic-differential equation system which is defined by the functions Fi must be specified in
ODEDEF. You must also specify the coupling points � in the array XI.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. For simple problems in Cartesian coordinates, this system is obtained by replacing the space
derivatives by the usual central, three-point finite difference formula. However, for polar and spherical
problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified
three-point formula which maintains second order accuracy. In total there are NPDE� NPTSþ NCODE
ODEs in time direction. This system is then integrated forwards in time using a Backward
Differentiation Formula (BDF) or a Theta method.

The adaptive space remeshing can be used to generate meshes that automatically follow the changing
time-dependent nature of the solution, generally resulting in a more efficient and accurate solution using
fewer mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with
travelling wavefronts or variable-width boundary layers for example will benefit from using a moving
adaptive mesh. The discrete time-step method used here (developed by Furzeland (1984)) automatically
creates a new mesh based on the current solution profile at certain time-steps, and the solution is then
interpolated onto the new mesh and the integration continues.

The method requires you to supply a MONITF which specifies in an analytical or numerical form the
particular aspect of the solution behaviour you wish to track. This so-called monitor function is used to
choose a mesh which equally distributes the integral of the monitor function over the domain. A typical
choice of monitor function is the second space derivative of the solution value at each point (or some
combination of the second space derivatives if there is more than one solution component), which
results in refinement in regions where the solution gradient is changing most rapidly.

You must specify the frequency of mesh updates together with certain other criteria such as adjacent
mesh ratios. Remeshing can be expensive and you are encouraged to experiment with the different
options in order to achieve an efficient solution which adequately tracks the desired features of the
solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial
mesh points, a new initial mesh is calculated and adopted according to the user-specified remeshing
criteria. UVINIT will then be called again to determine the initial solution values at the new mesh
points (there is no interpolation at this stage) and the integration proceeds.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (eds J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

Furzeland R M (1984) The construction of adaptive space meshes TNER.85.022 Thornton Research
Centre, Chester

Skeel R D and Berzins M (1990) A method for the spatial discretization of parabolic equations in one
space variable SIAM J. Sci. Statist. Comput. 11(1) 1–32
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5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.

2: M – INTEGER Input

On entry: the coordinate system used:

M ¼ 0
Indicates Cartesian coordinates.

M ¼ 1
Indicates cylindrical polar coordinates.

M ¼ 2
Indicates spherical polar coordinates.

Constraint: M ¼ 0, 1 or 2.

3: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

4: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

5: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Pi;j, Qi and Ri which define the system of PDEs. The
functions may depend on x, t, U , Ux and V . Qi may depend linearly on _V . PDEDEF is called
approximately midway between each pair of mesh points in turn by D03PPF/D03PPA.

The specification of PDEDEF for D03PPF is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UX, NCODE, V, VDOT, P, Q, R,
IRES)

&

INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, U(NPDE), UX(NPDE), V(NCODE),

VDOT(NCODE), P(NPDE,NPDE), Q(NPDE), R(NPDE)
&

The specification of PDEDEF for D03PPA is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UX, NCODE, V, VDOT, P, Q, R,
IRES, IUSER, RUSER)

&

INTEGER NPDE, NCODE, IRES, IUSER(*)
REAL (KIND=nag_wp) T, X, U(NPDE), UX(NPDE), V(NCODE),

VDOT(NCODE), P(NPDE,NPDE), Q(NPDE), R(NPDE),
RUSER(*)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.
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3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ;NPDE.

5: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

, for i ¼ 1; 2; . . . ;NPDE.

6: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

7: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

8: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in Qj , for
j ¼ 1; 2; . . . ;NPDE.

9: PðNPDE;NPDEÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ must be set to the value of Pi;j x; t; U; Ux; Vð Þ, for i ¼ 1; 2; . . . ;NPDE
and j ¼ 1; 2; . . . ;NPDE.

10: QðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: QðiÞ must be set to the value of Qi x; t; U; Ux; V ; _V
� �

, for i ¼ 1; 2; . . . ;NPDE.

11: RðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: RðiÞ must be set to the value of Ri x; t; U; Ux; Vð Þ, for i ¼ 1; 2; . . . ;NPDE.

12: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PPF/D03PPA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.
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Note: the following are additional arguments for specific use with D03PPA. Users of D03PPF
therefore need not read the remainder of this description.

13: IUSERð�Þ – INTEGER array User Workspace
14: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

PDEDEF is called with the arguments IUSER and RUSER as supplied to D03PPF/
D03PPA. You should use the arrays IUSER and RUSER to supply information to
PDEDEF.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PPF/D03PPA is called. Arguments denoted as Input must not be
changed by this procedure.

6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions �i and �i which describe the boundary conditions, as
given in (4).

The specification of BNDARY for D03PPF is:

SUBROUTINE BNDARY (NPDE, T, U, UX, NCODE, V, VDOT, IBND, BETA,
GAMMA, IRES)

&

INTEGER NPDE, NCODE, IBND, IRES
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), V(NCODE), VDOT(NCODE),

BETA(NPDE), GAMMA(NPDE)
&

The specification of BNDARY for D03PPA is:

SUBROUTINE BNDARY (NPDE, T, U, UX, NCODE, V, VDOT, IBND, BETA,
GAMMA, IRES, IUSER, RUSER)

&

INTEGER NPDE, NCODE, IBND, IRES, IUSER(*)
REAL (KIND=nag_wp) T, U(NPDE), UX(NPDE), V(NCODE), VDOT(NCODE),

BETA(NPDE), GAMMA(NPDE), RUSER(*)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ at the boundary specified
by IBND, for i ¼ 1; 2; . . . ;NPDE.

4: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

at the boundary

specified by IBND, for i ¼ 1; 2; . . . ;NPDE.

5: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

6: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.
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7: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: VDOTðiÞ contains the value of component _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in �j , for
j ¼ 1; 2; . . . ;NPDE.

8: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated.

IBND ¼ 0
BNDARY must set up the coefficients of the left-hand boundary, x ¼ a.

IBND 6¼ 0
BNDARY must set up the coefficients of the right-hand boundary, x ¼ b.

9: BETAðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: BETAðiÞ must be set to the value of �i x; tð Þ at the boundary specified by
IBND, for i ¼ 1; 2; . . . ;NPDE.

10: GAMMAðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: GAMMAðiÞ must be set to the value of �i x; t; U; Ux; V ; _V
� �

at the boundary
specified by IBND, for i ¼ 1; 2; . . . ;NPDE.

11: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PPF/D03PPA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.

Note: the following are additional arguments for specific use with D03PPA. Users of D03PPF
therefore need not read the remainder of this description.

12: IUSERð�Þ – INTEGER array User Workspace
13: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

BNDARY is called with the arguments IUSER and RUSER as supplied to D03PPF/
D03PPA. You should use the arrays IUSER and RUSER to supply information to
BNDARY.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PPF/D03PPA is called. Arguments denoted as Input must not be
changed by this procedure.

7: UVINIT – SUBROUTINE, supplied by the user. External Procedure

UVINIT must supply the initial t ¼ t0ð Þ values of U x; tð Þ and V tð Þ for all values of x in the
interval a � x � b.
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The specification of UVINIT for D03PPF is:

SUBROUTINE UVINIT (NPDE, NPTS, NXI, X, XI, U, NCODE, V)

INTEGER NPDE, NPTS, NXI, NCODE
REAL (KIND=nag_wp) X(NPTS), XI(NXI), U(NPDE,NPTS), V(NCODE)

The specification of UVINIT for D03PPA is:

SUBROUTINE UVINIT (NPDE, NPTS, NXI, X, XI, U, NCODE, V, IUSER,
RUSER)

&

INTEGER NPDE, NPTS, NXI, NCODE, IUSER(*)
REAL (KIND=nag_wp) X(NPTS), XI(NXI), U(NPDE,NPTS), V(NCODE),

RUSER(*)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the current mesh. XðiÞ contains the value of xi, for i ¼ 1; 2; . . . ;NPTS.

5: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ contains the value of the ODE/PDE coupling point, �i, for
i ¼ 1; 2; . . . ;NXI.

6: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Output

On exit: if NXI > 0, Uði; jÞ contains the value of the component Ui xj ; t0
� �

, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

7: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

8: VðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: VðiÞ contains the value of component Vi t0ð Þ, for i ¼ 1; 2; . . . ;NCODE.

Note: the following are additional arguments for specific use with D03PPA. Users of D03PPF
therefore need not read the remainder of this description.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

UVINIT is called with the arguments IUSER and RUSER as supplied to D03PPF/
D03PPA. You should use the arrays IUSER and RUSER to supply information to
UVINIT.

UVINIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PPF/D03PPA is called. Arguments denoted as Input must not be
changed by this procedure.
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8: UðNEQNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IND ¼ 1, the value of U must be unchanged from the previous call.

On exit: UðNPDE� j � 1ð Þ þ iÞ contains the computed solution Ui xj ; t
� �

, for i ¼ 1; 2; . . . ;NPDE
and j ¼ 1; 2; . . . ;NPTS, and UðNPTS� NPDEþ kÞ contains Vk tð Þ, for k ¼ 1; 2; . . . ;NCODE,
evaluated at t ¼ TS.

9: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: NPTS � 3.

10: XðNPTSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial mesh points in the space direction. Xð1Þ must specify the left-hand boundary,
a, and XðNPTSÞ must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.
On exit: the final values of the mesh points.

11: NCODE – INTEGER Input

On entry: the number of coupled ODE in the system.

Constraint: NCODE � 0.

12: ODEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

ODEDEF must evaluate the functions F , which define the system of ODEs, as given in (3).

If you wish to compute the solution of a system of PDEs only (NCODE ¼ 0), ODEDEF must be
the dummy routine D03PCK for D03PPF (or D53PCK for D03PPA). D03PCK and D53PCK are
included in the NAG Library.

The specification of ODEDEF for D03PPF is:

SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
RCP, UCPT, UCPTX, F, IRES)

&

INTEGER NPDE, NCODE, NXI, IRES
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),

UCP(NPDE,*), UCPX(NPDE,*), RCP(NPDE,*),
UCPT(NPDE,*), UCPTX(NPDE,*), F(NCODE)

&
&

The specification of ODEDEF for D03PPA is:

SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
RCP, UCPT, UCPTX, F, IRES, IUSER, RUSER)

&

INTEGER NPDE, NCODE, NXI, IRES, IUSER(*)
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),

UCP(NPDE,*), UCPX(NPDE,*), RCP(NPDE,*),
UCPT(NPDE,*), UCPTX(NPDE,*), F(NCODE),
RUSER(*)

&
&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.
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4: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

5: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

6: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

7: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ contains the ODE/PDE coupling points, �i, for
i ¼ 1; 2; . . . ;NXI.

8: UCPðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPði; jÞ contains the value of Ui x; tð Þ at the coupling point
x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

9: UCPXðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPXði; jÞ contains the value of
@Ui x; tð Þ
@x

at the coupling point

x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

10: RCPðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: RCPði; jÞ contains the value of the flux Ri at the coupling point x ¼ �j , for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

11: UCPTðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPTði; jÞ contains the value of
@Ui

@t
at the coupling point x ¼ �j ,

for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

12: UCPTXðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: UCPTXði; jÞ contains the value of
@2Ui

@x@t
at the coupling point x ¼ �j , for

i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

13: FðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: FðiÞ must contain the ith component of F , for i ¼ 1; 2; . . . ;NCODE, where F
is defined as

F ¼ G�A _V �B U�t
U�xt

� �
; ð5Þ

or

F ¼ �A _V �B U�t
U�xt

� �
: ð6Þ

The definition of F is determined by the input value of IRES.
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14: IRES – INTEGER Input/Output

On entry: the form of F that must be returned in the array F.

IRES ¼ 1
Equation (5) must be used.

IRES ¼ �1
Equation (6) must be used.

On exit: should usually remain unchanged. However, you may reset IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PPF/D03PPA returns to the calling subroutine with the error
indicator set to IFAIL ¼ 4.

Note: the following are additional arguments for specific use with D03PPA. Users of D03PPF
therefore need not read the remainder of this description.

15: IUSERð�Þ – INTEGER array User Workspace
16: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

ODEDEF is called with the arguments IUSER and RUSER as supplied to D03PPF/
D03PPA. You should use the arrays IUSER and RUSER to supply information to
ODEDEF.

ODEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PPF/D03PPA is called. Arguments denoted as Input must not be
changed by this procedure.

13: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if NCODE ¼ 0, NXI ¼ 0;
if NCODE > 0, NXI � 0.

14: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ, for i ¼ 1; 2; . . . ;NXI, must be set to the ODE/PDE coupling points.

Constraint: Xð1Þ � XIð1Þ < XIð2Þ < � � � < XIðNXIÞ � XðNPTSÞ.

15: NEQN – INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN ¼ NPDE� NPTSþ NCODE.

16: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2 and at least NEQN if
ITOL ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i.
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17: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3 and at least NEQN if
ITOL ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraints:

ATOLðiÞ � 0:0 for all relevant i;
Corresponding elements of ATOL and RTOL cannot both be 0:0.

18: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D03PPF/D03PPA
whether to interpret either or both of RTOL or ATOL as a vector or scalar. The error test to be
satisfied is ei=wik k < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi
1 scalar scalar RTOLð1Þ � Uij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � Uij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � Uij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � Uij j þ ATOLðiÞ

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, UðiÞ, for i ¼ 1; 2; . . . ;NEQN.

The choice of norm used is defined by the argument NORM.

Constraint: 1 � ITOL � 4.

19: NORM – CHARACTER(1) Input

On entry: the type of norm to be used.

NORM ¼ M
Maximum norm.

NORM ¼ A
Averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L2 norm

Unorm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NEQN

XNEQN
i¼1

UðiÞ=wið Þ2
vuut ;

while for the maximum norm

Unorm ¼ max
i

UðiÞ=wij j:

See the description of ITOL for the formulation of the weight vector w.

Constraint: NORM ¼ M or A .

20: LAOPT – CHARACTER(1) Input

On entry: the type of matrix algebra required.

LAOPT ¼ F
Full matrix methods to be used.

LAOPT ¼ B
Banded matrix methods to be used.
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LAOPT ¼ S
Sparse matrix methods to be used.

Constraint: LAOPT ¼ F , B or S .

Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
NCODE ¼ 0).

21: ALGOPTð30Þ – REAL (KIND=nag_wp) array Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then ALGOPTð1Þ should be set to 0:0. Default values will also be used for
any other elements of ALGOPT set to zero. The permissible values, default values, and meanings
are as follows:

ALGOPTð1Þ
Selects the ODE integration method to be used. If ALGOPTð1Þ ¼ 1:0, a BDF method is
used and if ALGOPTð1Þ ¼ 2:0, a Theta method is used. The default value is
ALGOPTð1Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 2:0, then ALGOPTðiÞ, for i ¼ 2; 3; 4 are not used.

ALGOPTð2Þ
Specifies the maximum order of the BDF integration formula to be used. ALGOPTð2Þ may
be 1:0, 2:0, 3:0, 4:0 or 5:0. The default value is ALGOPTð2Þ ¼ 5:0.

ALGOPTð3Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If ALGOPTð3Þ ¼ 1:0 a modified Newton iteration is used
and if ALGOPTð3Þ ¼ 2:0 a functional iteration method is used. If functional iteration is
selected and the integrator encounters difficulty, then there is an automatic switch to the
modified Newton iteration. The default value is ALGOPTð3Þ ¼ 1:0.

ALGOPTð4Þ
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;NPDE, for some i or when there is no _Vi tð Þ dependence in the
coupled ODE system. If ALGOPTð4Þ ¼ 1:0, then the Petzold test is used. If
ALGOPTð4Þ ¼ 2:0, then the Petzold test is not used. The default value is
ALGOPTð4Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 1:0, then ALGOPTðiÞ, for i ¼ 5; 6; 7, are not used.

ALGOPTð5Þ
Specifies the value of Theta to be used in the Theta integration method.
0:51 � ALGOPTð5Þ � 0:99. The default value is ALGOPTð5Þ ¼ 0:55.

ALGOPTð6Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If ALGOPTð6Þ ¼ 1:0, a modified Newton iteration is used
and if ALGOPTð6Þ ¼ 2:0, a functional iteration method is used. The default value is
ALGOPTð6Þ ¼ 1:0.

ALGOPTð7Þ
Specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If
ALGOPTð7Þ ¼ 1:0, then switching is allowed and if ALGOPTð7Þ ¼ 2:0, then switching is
not allowed. The default value is ALGOPTð7Þ ¼ 1:0.

ALGOPTð11Þ
Specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the argument ITASK. If ALGOPTð1Þ 6¼ 0:0, a
value of 0:0 for ALGOPTð11Þ, say, should be specified even if ITASK subsequently
specifies that tcrit will not be used.
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ALGOPTð12Þ
Specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð12Þ should be set to 0:0.

ALGOPTð13Þ
Specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð13Þ should be set to 0:0.

ALGOPTð14Þ
Specifies the initial step size to be attempted by the integrator. If ALGOPTð14Þ ¼ 0:0, then
the initial step size is calculated internally.

ALGOPTð15Þ
Specifies the maximum number of steps to be attempted by the integrator in any one call.
If ALGOPTð15Þ ¼ 0:0, then no limit is imposed.

ALGOPTð23Þ
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If ALGOPTð23Þ ¼ 1:0, a modified Newton
iteration is used and if ALGOPTð23Þ ¼ 2:0, functional iteration is used. The default value
is ALGOPTð23Þ ¼ 1:0.

ALGOPTð29Þ and ALGOPTð30Þ are used only for the sparse matrix algebra option,
LAOPT ¼ S .

ALGOPTð29Þ
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < ALGOPTð29Þ < 1:0, with smaller values biasing the
algorithm towards maintaining sparsity at the expense of numerical stability. If
ALGOPTð29Þ lies outside this range then the default value is used. If the routines regard
the Jacobian matrix as numerically singular then increasing ALGOPTð29Þ towards 1:0 may
help, but at the cost of increased fill-in. The default value is ALGOPTð29Þ ¼ 0:1.

ALGOPTð30Þ
Is used as a relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPTð29Þ) below which an internal error is invoked. If ALGOPTð30Þ is greater than
1:0 no check is made on the pivot size, and this may be a necessary option if the Jacobian
is found to be numerically singular (see ALGOPTð29Þ). The default value is
ALGOPTð30Þ ¼ 0:0001.

22: REMESH – LOGICAL Input

On entry: indicates whether or not spatial remeshing should be performed.

REMESH ¼ :TRUE:
Indicates that spatial remeshing should be performed as specified.

REMESH ¼ :FALSE:
Indicates that spatial remeshing should be suppressed.

Note: REMESH should not be changed between consecutive calls to D03PPF/D03PPA.
Remeshing can be switched off or on at specified times by using appropriate values for the
arguments NRMESH and TRMESH at each call.

23: NXFIX – INTEGER Input

On entry: the number of fixed mesh points.

Constraint: 0 � NXFIX � NPTS� 2.

Note: the end points Xð1Þ and XðNPTSÞ are fixed automatically and hence should not be
specified as fixed points.
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24: XFIXð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array XFIX must be at least max 1;NXFIXð Þ.
On entry: XFIXðiÞ, for i ¼ 1; 2; . . . ;NXFIX, must contain the value of the x coordinate at the ith
fixed mesh point.

Constraints:

XFIXðiÞ < XFIXði þ 1Þ, for i ¼ 1; 2; . . . ;NXFIX� 1;
each fixed mesh point must coincide with a user-supplied initial mesh point, that is
XFIXðiÞ ¼ XðjÞ for some j, 2 � j � NPTS� 1.

Note: the positions of the fixed mesh points in the array X remain fixed during remeshing, and so
the number of mesh points between adjacent fixed points (or between fixed points and end
points) does not change. You should take this into account when choosing the initial mesh
distribution.

25: NRMESH – INTEGER Input

On entry: specifies the spatial remeshing frequency and criteria for the calculation and adoption
of a new mesh.

NRMESH < 0
Indicates that a new mesh is adopted according to the argument DXMESH. The mesh is
tested every NRMESHj j timesteps.

NRMESH ¼ 0
Indicates that remeshing should take place just once at the end of the first time step
reached when t > TRMESH.

NRMESH > 0
Indicates that remeshing will take place every NRMESH time steps, with no testing using
DXMESH.

Note: NRMESH may be changed between consecutive calls to D03PPF/D03PPA to give greater
flexibility over the times of remeshing.

26: DXMESH – REAL (KIND=nag_wp) Input

On entry: determines whether a new mesh is adopted when NRMESH is set less than zero. A
possible new mesh is calculated at the end of every NRMESHj j time steps, but is adopted only if

x
newð Þ
i > x

oldð Þ
i þ DXMESH� x

oldð Þ
iþ1 � x

oldð Þ
i

� �
or

x
newð Þ
i < x

oldð Þ
i � DXMESH� x

oldð Þ
i � x oldð Þ

i�1

� �
DXMESH thus imposes a lower limit on the difference between one mesh and the next.

Constraint: DXMESH � 0:0.

27: TRMESH – REAL (KIND=nag_wp) Input

On entry: specifies when remeshing will take place when NRMESH is set to zero. Remeshing
will occur just once at the end of the first time step reached when t is greater than TRMESH.

Note: TRMESH may be changed between consecutive calls to D03PPF/D03PPA to force
remeshing at several specified times.
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28: IPMINF – INTEGER Input

On entry: the level of trace information regarding the adaptive remeshing. Details are directed to
the current advisory message unit (see X04ABF).

IPMINF ¼ 0
No trace information.

IPMINF ¼ 1
Brief summary of mesh characteristics.

IPMINF ¼ 2
More detailed information, including old and new mesh points, mesh sizes and monitor
function values.

Constraint: IPMINF ¼ 0, 1 or 2.

29: XRATIO – REAL (KIND=nag_wp) Input

On entry: an input bound on the adjacent mesh ratio (greater than 1:0 and typically in the range
1:5 to 3:0). The remeshing routines will attempt to ensure that

xi � xi�1ð Þ=XRATIO < xiþ1 � xi < XRATIO� xi � xi�1ð Þ:
Suggested value: XRATIO ¼ 1:5.

Constraint: XRATIO > 1:0.

30: CON – REAL (KIND=nag_wp) Input

On entry: an input bound on the sub-integral of the monitor function Fmon xð Þ over each space
step. The remeshing routines will attempt to ensure thatZ xiþ1

xi

Fmon xð Þ dx � CON
Z xNPTS

x1

Fmon xð Þ dx;

(see Furzeland (1984)). CON gives you more control over the mesh distribution e.g., decreasing
CON allows more clustering. A typical value is 2= NPTS� 1ð Þ, but you are encouraged to
experiment with different values. Its value is not critical and the mesh should be qualitatively
correct for all values in the range given below.

Suggested value: CON ¼ 2:0= NPTS� 1ð Þ.
Constraint: 0:1= NPTS� 1ð Þ � CON � 10:0= NPTS� 1ð Þ.

31: MONITF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONITF must supply and evaluate a remesh monitor function to indicate the solution behaviour
of interest.

If you specify REMESH ¼ :FALSE:, i.e., no remeshing, then MONITF will not be called and the
dummy routine D03PCL for D03PPF (or D53PCL for D03PPA) may be used for MONITF.
(D03PCL and D53PCL are included in the NAG Library.)

The specification of MONITF for D03PPF is:

SUBROUTINE MONITF (T, NPTS, NPDE, X, U, R, FMON)

INTEGER NPTS, NPDE
REAL (KIND=nag_wp) T, X(NPTS), U(NPDE,NPTS), R(NPDE,NPTS),

FMON(NPTS)
&

The specification of MONITF for D03PPA is:

SUBROUTINE MONITF (T, NPTS, NPDE, X, U, R, FMON, IUSER, RUSER)

INTEGER NPTS, NPDE, IUSER(*)
REAL (KIND=nag_wp) T, X(NPTS), U(NPDE,NPTS), R(NPDE,NPTS),

FMON(NPTS), RUSER(*)
&
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1: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the current mesh. XðiÞ contains the value of xi, for i ¼ 1; 2; . . . ;NPTS.

5: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of Ui x; tð Þ at x ¼ XðjÞ and time t, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

6: RðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input

On entry: Rði; jÞ contains the value of Ri x; t; U; Ux; Vð Þ at x ¼ XðjÞ and time t, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

7: FMONðNPTSÞ – REAL (KIND=nag_wp) array Output

On exit: FMONðiÞ must contain the value of the monitor function Fmon xð Þ at mesh
point x ¼ XðiÞ.
Constraint: FMONðiÞ � 0:0.

Note: the following are additional arguments for specific use with D03PPA. Users of D03PPF
therefore need not read the remainder of this description.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONITF is called with the arguments IUSER and RUSER as supplied to D03PPF/
D03PPA. You should use the arrays IUSER and RUSER to supply information to
MONITF.

MONITF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PPF/D03PPA is called. Arguments denoted as Input must not be
changed by this procedure.

32: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

33: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PPF/D03PPA is called. Its size depends on the type of matrix algebra selected.

If LAOPT ¼ F , LRSAVE � NEQN� NEQNþ NEQNþ nwkres þ lenode.

If LAOPT ¼ B , LRSAVE � 3�mlu þ 1ð Þ � NEQNþ nwkres þ lenode.

If LAOPT ¼ S , LRSAVE � 4� NEQNþ 11� NEQN=2þ 1þ nwkres þ lenode.

Where

D03 – Partial Differential Equations D03PPF

Mark 26 D03PPF.17



mlu is the lower or upper half bandwidths such that
mlu ¼ 2� NPDE� 1, for PDE problems only; or
mlu ¼ NEQN� 1, for coupled PDE/ODE problems.

nwkres ¼
NPDE� 3� NPDEþ 6� NXIþ NPTS þ 15ð Þ þ NXIþ NCODEþ 7� NPTS þ NXFIXþ 1; when NCODE > 0 and NXI > 0;
NPDE� 3� NPDEþ NPTS þ 21ð Þ þ NCODEþ 7� NPTS þ NXFIXþ 2; when NCODE > 0 and NXI ¼ 0; or
NPDE� 3� NPDEþ NPTS þ 21ð Þ þ 7� NPTS þ NXFIXþ 3; when NCODE ¼ 0:

8<:
lenode ¼ 6þ int ALGOPTð2Þð Þð Þ � NEQNþ 50; when the BDF method is used;

9� NEQNþ 50; when the Theta method is used:



Note: when using the sparse option, the value of LRSAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LRSAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

34: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set on entry.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration required for subsequent calls. In particular:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the ODE method last used in the time integration.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

The rest of the array is used as workspace.

35: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which
D03PPF/D03PPA is called.

Its size depends on the type of matrix algebra selected:

if LAOPT ¼ B , LISAVE � NEQNþ 25þ NXFIX;

if LAOPT ¼ F , LISAVE � 25þ NXFIX;

if LAOPT ¼ S , LISAVE � 25� NEQNþ 25þ NXFIX.

Note: when using the sparse option, the value of LISAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LISAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

36: ITASK – INTEGER Input

On entry: specifies the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT.

ITASK ¼ 2
One step and return.
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ITASK ¼ 3
Stop at first internal integration point at or beyond t ¼ TOUT.

ITASK ¼ 4
Normal computation of output values U at t ¼ TOUT but without overshooting t ¼ tcrit
where tcrit is described under the argument ALGOPT.

ITASK ¼ 5
Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument ALGOPT.

Constraint: ITASK ¼ 1, 2, 3, 4 or 5.

37: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PPF/D03PPA and the underlying ODE
solver:

ITRACE � �1
No output is generated.

ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE ¼ 1
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

ITRACE ¼ 2
Output from the underlying ODE solver is similar to that produced when ITRACE ¼ 1,
except that the advisory messages are given in greater detail.

ITRACE � 3
Output from the underlying ODE solver is similar to that produced when ITRACE ¼ 2,
except that the advisory messages are given in greater detail.

You are advised to set ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.

38: IND – INTEGER Input/Output

On entry: must be set to 0 or 1.

IND ¼ 0
Starts or restarts the integration in time.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT and IFAIL and the remeshing arguments NRMESH, DXMESH,
TRMESH, XRATIO and CON may be reset between calls to D03PPF/D03PPA.

Constraint: 0 � IND � 1.

On exit: IND ¼ 1.

39: IFAIL – INTEGER Input/Output

Note: for D03PPA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: the following are additional arguments for specific use with D03PPA. Users of D03PPF
therefore need not read the remainder of this description.

40: IUSERð�Þ – INTEGER array User Workspace
41: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D03PPF/D03PPA, but are passed directly to PDEDEF,
BNDARY, UVINIT, ODEDEF and MONITF and should be used to pass information to these
routines.

42: CWSAVð10Þ – CHARACTER(80) array Communication Array

43: LWSAVð100Þ – LOGICAL array Communication Array

44: IWSAVð505Þ – INTEGER array Communication Array

45: RWSAVð1100Þ – REAL (KIND=nag_wp) array Communication Array

46: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOUT� TS is too small,
or ITASK 6¼ 1, 2, 3, 4 or 5,
or M 6¼ 0, 1 or 2,
or at least one of the coupling points defined in array XI is outside the interval

Xð1Þ;XðNPTSÞ½ �,
or M > 0 and Xð1Þ < 0:0,
or NPTS < 3,
or NPDE < 1,
or NORM 6¼ A or M ,
or LAOPT 6¼ F , B or S ,
or ITOL 6¼ 1, 2, 3 or 4,
or IND 6¼ 0 or 1,
or mesh points XðiÞ are badly ordered,
or LRSAVE is too small,
or LISAVE is too small,
or NCODE and NXI are incorrectly defined,
or an element of RTOL or ATOL < 0:0,
or corresponding elements of RTOL and ATOL are both 0:0,
or NEQN 6¼ NPDE� NPTSþ NCODE,
or NXFIX not in the range 0 to NPTS� 2,
or fixed mesh point(s) do not coincide with any of the user-supplied mesh points,
or DXMESH < 0:0,
or IPMINF 6¼ 0, 1 or 2,
or XRATIO � 1:0,
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or CON not in the range 0:1= NPTS� 1ð Þ to 10= NPTS� 1ð Þ.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and
RTOL, across the integration range from the current point t ¼ TS. The components of U contain
the computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
at least PDEDEF, BNDARY or ODEDEF, when the residual in the underlying ODE solver was
being evaluated.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. You should check your
problem formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least PDEDEF,
BNDARY or ODEDEF. Integration was successful as far as t ¼ TS.

IFAIL ¼ 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In one of PDEDEF, BNDARY or ODEDEF, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification and all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL
is unlikely to produce any change in the computed solution. (Only applies when you are not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current error message unit). If using the sparse matrix algebra
option, the values of ALGOPTð29Þ and ALGOPTð30Þ may be inappropriate.

IFAIL ¼ 12

In solving the ODE system, the maximum number of steps specified in ALGOPTð15Þ have been
taken.

D03 – Partial Differential Equations D03PPF

Mark 26 D03PPF.21



IFAIL ¼ 13

Some error weights wi became zero during the time integration (see the description of ITOL).
Pure relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has
become zero. The integration was successful as far as t ¼ TS.

IFAIL ¼ 14

The flux function Ri was detected as depending on time derivatives, which is not permissible.

IFAIL ¼ 15

When using the sparse option, the value of LISAVE or LRSAVE was not sufficient (more
detailed information may be directed to the current error message unit).

IFAIL ¼ 16

REMESH has been changed between calls to D03PPF/D03PPA, which is not permissible.

IFAIL ¼ 17

The remeshing process has produced zero or negative mesh spacing. You are advised to check
MONITF and to try adjusting the values of DXMESH, XRATIO and CON. Setting IPMINF ¼ 1
may provide more information.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PPF/D03PPA controls the accuracy of the integration in the time direction but not the accuracy of
the approximation in space. The spatial accuracy depends on both the number of mesh points and on
their distribution in space. In the time integration only the local error over a single step is controlled
and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of
varying the accuracy arguments, ATOL and RTOL.

8 Parallelism and Performance

D03PPF/D03PPA is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

D03PPF/D03PPA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

D03PPF NAG Library Manual

D03PPF.22 Mark 26



9 Further Comments

The argument specification allows you to include equations with only first-order derivatives in the space
direction but there is no guarantee that the method of integration will be satisfactory for such systems.
The position and nature of the boundary conditions in particular are critical in defining a stable
problem. It may be advisable in such cases to reduce the whole system to first-order and to use the
Keller box scheme routine D03PRF.

The time taken depends on the complexity of the parabolic system, the accuracy requested, and the
frequency of the mesh updates. For a given system with fixed accuracy and mesh-update frequency it is
approximately proportional to NEQN.

10 Example

This example uses Burgers Equation, a common test problem for remeshing algorithms, given by

@U

@t
¼ �U@U

@x
þ E@

2U

@x2
;

for x 2 0; 1½ � and t 2 0; 1½ �, where E is a small constant.

The initial and boundary conditions are given by the exact solution

U x; tð Þ ¼ 0:1 exp �Að Þ þ 0:5 exp �Bð Þ þ exp �Cð Þ
exp �Að Þ þ exp �Bð Þ þ exp �Cð Þ ;

where

A ¼ 50

E
x� 0:5þ 4:95tð Þ;

B ¼ 250

E
x� 0:5þ 0:75tð Þ;

C ¼ 500

E
x� 0:375ð Þ:

10.1 Program Text

the following program illustrates the use of D03PPF. An equivalent program illustrating the use of
D03PPA is available with the supplied Library and is also available from the NAG web site.

! D03PPF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03ppfe_mod

! D03PPF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndary, exact, monitf, pdedef, &

uvinit
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: four = 4.0_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: ptone = 0.1_nag_wp
Real (Kind=nag_wp), Parameter, Public :: half = 0.5_nag_wp
Real (Kind=nag_wp), Parameter, Public :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: itrace = 0, m = 0, ncode = 0, &

nin = 5, nout = 6, npde = 1, &
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nxfix = 0, nxi = 0
! .. Local Scalars ..

Real (Kind=nag_wp), Public, Save :: e
Contains

Subroutine uvinit(npde,npts,nxi,x,xi,u,ncode,v)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncode, npde, npts, nxi

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts), v(ncode)
Real (Kind=nag_wp), Intent (In) :: x(npts), xi(nxi)

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, c, t
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
t = zero
Do i = 1, npts

a = (x(i)-0.25_nag_wp-0.75_nag_wp*t)/(four*e)
b = (0.9_nag_wp*x(i)-0.325_nag_wp-0.495_nag_wp*t)/(two*e)
If (a>zero .And. a>b) Then

a = exp(-a)
c = (0.8_nag_wp*x(i)-0.4_nag_wp-0.24_nag_wp*t)/(four*e)
c = exp(c)
u(1,i) = (half+ptone*c+a)/(one+c+a)

Else If (b>zero .And. b>=a) Then
b = exp(-b)
c = (-0.8_nag_wp*x(i)+0.4_nag_wp+0.24_nag_wp*t)/(four*e)
c = exp(c)
u(1,i) = (ptone+half*c+b)/(one+c+b)

Else
a = exp(a)
b = exp(b)
u(1,i) = (one+half*a+ptone*b)/(one+a+b)

End If
End Do
Return

End Subroutine uvinit
Subroutine pdedef(npde,t,x,u,ux,ncode,v,vdot,p,q,r,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: p(npde,npde), q(npde), r(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde), v(ncode), &

vdot(ncode)
! .. Executable Statements ..

p(1,1) = one
r(1) = e*ux(1)
q(1) = u(1)*ux(1)
Return

End Subroutine pdedef
Subroutine bndary(npde,t,u,ux,ncode,v,vdot,ibnd,beta,gamma,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: beta(npde), gamma(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde), v(ncode), &

vdot(ncode)
! .. Local Scalars ..

Real (Kind=nag_wp) :: a, b, c, ue, x
! .. Intrinsic Procedures ..

Intrinsic :: exp
! .. Executable Statements ..

beta(1) = zero
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If (ibnd==0) Then
x = zero
a = (x-0.25_nag_wp-0.75_nag_wp*t)/(four*e)
b = (0.9_nag_wp*x-0.325_nag_wp-0.495_nag_wp*t)/(two*e)
If (a>zero .And. a>b) Then

a = exp(-a)
c = (0.8_nag_wp*x-0.4_nag_wp-0.24_nag_wp*t)/(four*e)
c = exp(c)
ue = (half+ptone*c+a)/(one+c+a)

Else If (b>zero .And. b>=a) Then
b = exp(-b)
c = (-0.8_nag_wp*x+0.4_nag_wp+0.24_nag_wp*t)/(four*e)
c = exp(c)
ue = (ptone+half*c+b)/(one+c+b)

Else
a = exp(a)
b = exp(b)
ue = (one+half*a+ptone*b)/(one+a+b)

End If
Else

x = one
a = (x-0.25_nag_wp-0.75_nag_wp*t)/(four*e)
b = (0.9_nag_wp*x-0.325_nag_wp-0.495_nag_wp*t)/(two*e)
If (a>zero .And. a>b) Then

a = exp(-a)
c = (0.8_nag_wp*x-0.4_nag_wp-0.24_nag_wp*t)/(four*e)
c = exp(c)
ue = (half+ptone*c+a)/(one+c+a)

Else If (b>zero .And. b>=a) Then
b = exp(-b)
c = (-0.8_nag_wp*x+0.4_nag_wp+0.24_nag_wp*t)/(four*e)
c = exp(c)
ue = (ptone+half*c+b)/(one+c+b)

Else
a = exp(a)
b = exp(b)
ue = (one+half*a+ptone*b)/(one+a+b)

End If
End If
gamma(1) = u(1) - ue
Return

End Subroutine bndary
Subroutine monitf(t,npts,npde,x,u,r,fmon)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fmon(npts)
Real (Kind=nag_wp), Intent (In) :: r(npde,npts), u(npde,npts), x(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: drdx, h
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
fmon(1) = abs((r(1,2)-r(1,1))/((x(2)-x(1))*half))
Do i = 2, npts - 1

h = (x(i+1)-x(i-1))*half
! Second derivative ..

drdx = (r(1,i+1)-r(1,i))/h
fmon(i) = abs(drdx)

End Do
fmon(npts) = fmon(npts-1)
Return

End Subroutine monitf
Subroutine exact(t,x,npts,u)

! Exact solution (for comparison purposes)

! .. Scalar Arguments ..
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Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npts)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, c
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Do i = 1, npts

a = (x(i)-0.25_nag_wp-0.75_nag_wp*t)/(four*e)
b = (0.9_nag_wp*x(i)-0.325_nag_wp-0.495_nag_wp*t)/(two*e)
If (a>zero .And. a>b) Then

a = exp(-a)
c = (0.8_nag_wp*x(i)-0.4_nag_wp-0.24_nag_wp*t)/(four*e)
c = exp(c)
u(i) = (half+ptone*c+a)/(one+c+a)

Else If (b>zero .And. b>=a) Then
b = exp(-b)
c = (-0.8_nag_wp*x(i)+0.4_nag_wp+0.24_nag_wp*t)/(four*e)
c = exp(c)
u(i) = (ptone+half*c+b)/(one+c+b)

Else
a = exp(a)
b = exp(b)
u(i) = (one+half*a+ptone*b)/(one+a+b)

End If
End Do
Return

End Subroutine exact
End Module d03ppfe_mod
Program d03ppfe

! D03PPF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03pck, d03ppf, d03pzf, nag_wp
Use d03ppfe_mod, Only: bndary, e, exact, half, itrace, m, monitf, ncode, &

nin, nout, npde, nxfix, nxi, pdedef, two, uvinit, &
zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: con, dx, dxmesh, tout, trmesh, ts, &

x0, xmid, xratio
Integer :: i, ifail, ind, intpts, ipminf, it, &

itask, itol, itype, lenode, lisave, &
lrsave, neqn, npts, nrmesh, nwkres

Logical :: remesh, theta
Character (1) :: laopt, norm

! .. Local Arrays ..
Real (Kind=nag_wp) :: algopt(30), atol(1), rtol(1), &

xfix(1), xi(1)
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:), ue(:), uout(:,:,:), &

x(:), xout(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: min, real

! .. Executable Statements ..
Write (nout,*) ’D03PPF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts, intpts, itype
lisave = 25 + nxfix
neqn = npde*npts + ncode
nwkres = npde*(npts+3*npde+21) + 7*npts + nxfix + 3
lenode = 11*neqn + 50
lrsave = neqn*neqn + neqn + nwkres + lenode
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Allocate (u(neqn),ue(intpts),uout(npde,intpts,itype),rsave(lrsave), &
x(npts),xout(intpts),isave(lisave))

Read (nin,*) itol
Read (nin,*) atol(1), rtol(1)
Read (nin,*) e

! Initialize mesh
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do

! Set remesh parameters
remesh = .True.
nrmesh = 3
dxmesh = half
con = two/real(npts-1,kind=nag_wp)
xratio = 1.5_nag_wp
ipminf = 0

xi(1) = zero
norm = ’A’
laopt = ’F’
ind = 0
itask = 1

! Set theta to .TRUE. if the Theta integrator is required

theta = .False.
algopt(1:30) = zero
If (theta) Then

algopt(1) = two
Else

algopt(1) = zero
End If

! Loop over output value of t

ts = zero
tout = zero
Do it = 1, 5

xmid = half + half*tout
tout = 0.2_nag_wp*real(it,kind=nag_wp)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03ppf(npde,m,ts,tout,pdedef,bndary,uvinit,u,npts,x,ncode,d03pck, &

nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,remesh,nxfix,xfix, &
nrmesh,dxmesh,trmesh,ipminf,xratio,con,monitf,rsave,lrsave,isave, &
lisave,itask,itrace,ind,ifail)

If (it==1) Then
Write (nout,99998) atol, npts
Write (nout,99993) nrmesh
Write (nout,99992) e
Write (nout,*)

End If

! Set output points ..
dx = 0.1_nag_wp
If (tout>half) Then

dx = 0.05_nag_wp
End If

x0 = xmid - half*real(intpts-1,kind=nag_wp)*dx
Do i = 1, intpts

xout(i) = x0
x0 = x0 + dx

End Do
xout(intpts) = min(xout(intpts),x(npts))
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Write (nout,99999) ts
Write (nout,99996) xout(1:intpts)

! Interpolate at output points ..
ifail = 0
Call d03pzf(npde,m,u,npts,x,xout,intpts,itype,uout,ifail)

! Check against exact solution ..
Call exact(ts,xout,intpts,ue)

Write (nout,99995) uout(1,1:intpts,1)
Write (nout,99994) ue(1:intpts)

End Do
Write (nout,99997) isave(1), isave(2), isave(3), isave(5)

99999 Format (’ T = ’,F6.3)
99998 Format (/,/,’ Accuracy requirement =’,E10.3,’ Number of points = ’,I3, &

/)
99997 Format (’ Number of integration steps in time = ’,I6,/,’ Number o’, &

’f function evaluations = ’,I6,/,’ Number of Jacobian eval’, &
’uations =’,I6,/,’ Number of iterations = ’,I6)

99996 Format (1X,’X ’,5F9.4)
99995 Format (1X,’Approx sol. ’,5F9.4)
99994 Format (1X,’Exact sol. ’,5F9.4,/)
99993 Format (2X,’Remeshing every’,I3,’ time steps’,/)
99992 Format (2X,’E =’,F8.3)

End Program d03ppfe

10.2 Program Data

D03PPF Example Program Data
61 5 1 : npts, intpts, itype
1 : itol
0.5E-4 0.5E-4 : atol(1), rtol(1)
0.5E-2 : e

10.3 Program Results

D03PPF Example Program Results

Accuracy requirement = 0.500E-04 Number of points = 61

Remeshing every 3 time steps

E = 0.005

T = 0.200
X 0.3000 0.4000 0.5000 0.6000 0.7000
Approx sol. 0.9968 0.7448 0.4700 0.1667 0.1018
Exact sol. 0.9967 0.7495 0.4700 0.1672 0.1015

T = 0.400
X 0.4000 0.5000 0.6000 0.7000 0.8000
Approx sol. 1.0003 0.9601 0.4088 0.1154 0.1005
Exact sol. 0.9997 0.9615 0.4094 0.1157 0.1003

T = 0.600
X 0.6000 0.6500 0.7000 0.7500 0.8000
Approx sol. 0.9966 0.9390 0.3978 0.1264 0.1037
Exact sol. 0.9964 0.9428 0.4077 0.1270 0.1033

T = 0.800
X 0.7000 0.7500 0.8000 0.8500 0.9000
Approx sol. 1.0003 0.9872 0.5450 0.1151 0.1010
Exact sol. 0.9996 0.9878 0.5695 0.1156 0.1008

T = 1.000
X 0.8000 0.8500 0.9000 0.9500 1.0000
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Approx sol. 1.0001 0.9961 0.7324 0.1245 0.1004
Exact sol. 0.9999 0.9961 0.7567 0.1273 0.1004

Number of integration steps in time = 205
Number of function evaluations = 4872
Number of Jacobian evaluations = 71
Number of iterations = 518

Example Program
Solution of Burgers Equation using Moving Mesh
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NAG Library Routine Document

D03PRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PRF integrates a system of linear or nonlinear, first-order, time-dependent partial differential
equations (PDEs) in one space variable, with scope for coupled ordinary differential equations (ODEs),
and automatic adaptive spatial remeshing. The spatial discretization is performed using the Keller box
scheme (see Keller (1970)) and the method of lines is employed to reduce the PDEs to a system of
ODEs. The resulting system is solved using a Backward Differentiation Formula (BDF) method or a
Theta method (switching between Newton's method and functional iteration).

2 Specification

SUBROUTINE D03PRF (NPDE, TS, TOUT, PDEDEF, BNDARY, UVINIT, U, NPTS, X,
NLEFT, NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL,
ITOL, NORM, LAOPT, ALGOPT, REMESH, NXFIX, XFIX,
NRMESH, DXMESH, TRMESH, IPMINF, XRATIO, CON, MONITF,
RSAVE, LRSAVE, ISAVE, LISAVE, ITASK, ITRACE, IND,
IFAIL)

&
&
&
&
&

INTEGER NPDE, NPTS, NLEFT, NCODE, NXI, NEQN, ITOL, NXFIX,
NRMESH, IPMINF, LRSAVE, ISAVE(LISAVE), LISAVE,
ITASK, ITRACE, IND, IFAIL

&
&

REAL (KIND=nag_wp) TS, TOUT, U(NEQN), X(NPTS), XI(*), RTOL(*), ATOL(*),
ALGOPT(30), XFIX(*), DXMESH, TRMESH, XRATIO, CON,
RSAVE(LRSAVE)

&
&

LOGICAL REMESH
CHARACTER(1) NORM, LAOPT
EXTERNAL PDEDEF, BNDARY, UVINIT, ODEDEF, MONITF

3 Description

D03PRF integrates the system of first-order PDEs and coupled ODEs given by the master equations:

Gi x; t; U; Ux; Ut; V ; _V
� �

¼ 0; i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0; ð1Þ

Ri t; V ; _V ; �; U�; U�x; U
�
t

� �
¼ 0; i ¼ 1; 2; . . . ;NCODE: ð2Þ

In the PDE part of the problem given by (1), the functions Gi must have the general form

Gi ¼
XNPDE
j¼1

Pi;j
@Uj
@t
þ
XNCODE
j¼1

Qi;j
_Vj þ Si ¼ 0; i ¼ 1; 2; . . . ;NPDE; ð3Þ

where Pi;j, Qi;j and Si depend on x, t, U , Ux and V .

The vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T;

and the vector Ux is the partial derivative with respect to x. The vector V is the set of ODE solution
values

V tð Þ ¼ V1 tð Þ; . . . ; VNCODE tð Þ½ �T;

and _V denotes its derivative with respect to time.

In the ODE part given by (2), � represents a vector of n� spatial coupling points at which the ODEs are
coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points.
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U�, U�x and U�t are the functions U , Ux and Ut evaluated at these coupling points. Each Ri may only
depend linearly on time derivatives. Hence equation (2) may be written more precisely as

R ¼ A�B _V � CU�t ; ð4Þ

where R ¼ R1; . . . ; RNCODE½ �T, A is a vector of length NCODE, B is an NCODE by NCODE matrix, C
is an NCODE by n� � NPDE

� �
matrix and the entries in A, B and C may depend on t, �, U�, U�x and

V . In practice you only need to supply a vector of information to define the ODEs and not the matrices
B and C. (See Section 5 for the specification of ODEDEF.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS
are the leftmost and rightmost points of a mesh x1; x2; . . . ; xNPTS defined initially by you and (possibly)
adapted automatically during the integration according to user-specified criteria.

The PDE system which is defined by the functions Gi must be specified in PDEDEF.

The initial t ¼ t0ð Þ values of the functions U x; tð Þ and V tð Þ must be specified in UVINIT. Note that
UVINIT will be called again following any remeshing, and so U x; t0ð Þ should be specified for all values
of x in the interval a � x � b, and not just the initial mesh points.

For a first-order system of PDEs, only one boundary condition is required for each PDE component Ui.
The NPDE boundary conditions are separated into na at the left-hand boundary x ¼ a, and nb at the
right-hand boundary x ¼ b, such that na þ nb ¼ NPDE. The position of the boundary condition for each
component should be chosen with care; the general rule is that if the characteristic direction of Ui at the
left-hand boundary (say) points into the interior of the solution domain, then the boundary condition for
Ui should be specified at the left-hand boundary. Incorrect positioning of boundary conditions generally
results in initialization or integration difficulties in the underlying time integration routines.

The boundary conditions have the master equation form:

GL
i x; t; U; Ut; V ; _V
� �

¼ 0 at x ¼ a; i ¼ 1; 2; . . . ; na; ð5Þ

at the left-hand boundary, and

GR
i x; t; U; Ut; V ; _V
� �

¼ 0 at x ¼ b; i ¼ 1; 2; . . . ; nb; ð6Þ

at the right-hand boundary.

Note that the functions GL
i and GR

i must not depend on Ux, since spatial derivatives are not determined
explicitly in the Keller box scheme routines. If the problem involves derivative (Neumann) boundary
conditions then it is generally possible to restate such boundary conditions in terms of permissible
variables. Also note that GL

i and GR
i must be linear with respect to time derivatives, so that the

boundary conditions have the general form:XNPDE
j¼1

EL
i;j

@Uj
@t
þ
XNCODE
j¼1

HL
i;j

_Vj þKL
i ¼ 0; i ¼ 1; 2; . . . ; na; ð7Þ

at the left-hand boundary, andXNPDE
j¼1

ER
i;j

@Uj
@t
þ
XNCODE
j¼1

HR
i;j

_Vj þKR
i ¼ 0; i ¼ 1; 2; . . . ; nb; ð8Þ

at the right-hand boundary, where EL
i;j, E

R
i;j, H

L
i;j, H

R
i;j, K

L
i and KR

i depend on x; t; U and V only.

The boundary conditions must be specified in BNDARY.

The problem is subject to the following restrictions:

(i) Pi;j, Qi;j and Si must not depend on any time derivatives;

(ii) t0 < tout, so that integration is in the forward direction;

(iii) The evaluation of the function Gi is done approximately at the mid-points of the mesh XðiÞ, for
i ¼ 1; 2; . . . ;NPTS, by calling PDEDEF for each mid-point in turn. Any discontinuities in the
function must therefore be at one or more of the fixed mesh points specified by XFIX;
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(iv) At least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
PDE problem.

The algebraic-differential equation system which is defined by the functions Ri must be specified in
ODEDEF. You must also specify the coupling points � in the array XI.

The first-order equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. In this method of lines approach the Keller box scheme is applied to each PDE in the space
variable only, resulting in a system of ODEs in time for the values of Ui at each mesh point. In total
there are NPDE� NPTSþ NCODE ODEs in time direction. This system is then integrated forwards in
time using a Backward Differentiation Formula (BDF) or a Theta method.

The adaptive space remeshing can be used to generate meshes that automatically follow the changing
time-dependent nature of the solution, generally resulting in a more efficient and accurate solution using
fewer mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with
travelling wavefronts or variable-width boundary layers for example will benefit from using a moving
adaptive mesh. The discrete time-step method used here (developed by Furzeland (1984)) automatically
creates a new mesh based on the current solution profile at certain time-steps, and the solution is then
interpolated onto the new mesh and the integration continues.

The method requires you to supply MONITF which specifies in an analytic or numeric form the
particular aspect of the solution behaviour you wish to track. This so-called monitor function is used to
choose a mesh which equally distributes the integral of the monitor function over the domain. A typical
choice of monitor function is the second space derivative of the solution value at each point (or some
combination of the second space derivatives if more than one solution component), which results in
refinement in regions where the solution gradient is changing most rapidly.

You must specify the frequency of mesh updates along with certain other criteria such as adjacent mesh
ratios. Remeshing can be expensive and you are encouraged to experiment with the different options in
order to achieve an efficient solution which adequately tracks the desired features of the solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial
mesh points, a new initial mesh is calculated and adopted according to the user-specified remeshing
criteria. UVINIT will then be called again to determine the initial solution values at the new mesh
points (there is no interpolation at this stage) and the integration proceeds.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (eds J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

Furzeland R M (1984) The construction of adaptive space meshes TNER.85.022 Thornton Research
Centre, Chester

Keller H B (1970) A new difference scheme for parabolic problems Numerical Solutions of Partial
Differential Equations (ed J Bramble) 2 327–350 Academic Press

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.
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2: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

Constraint: TS < TOUT.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

3: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

4: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Gi which define the system of PDEs. PDEDEF is called
approximately midway between each pair of mesh points in turn by D03PRF.

The specification of PDEDEF is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UDOT, UX, NCODE, V, VDOT, RES,
IRES)

&

INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, U(NPDE), UDOT(NPDE), UX(NPDE),

V(NCODE), VDOT(NCODE), RES(NPDE)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ;NPDE.

5: UDOTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UDOTðiÞ contains the value of the component
@Ui x; tð Þ

@t
, for

i ¼ 1; 2; . . . ;NPDE.

6: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

, for i ¼ 1; 2; . . . ;NPDE.

7: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

8: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

9: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.
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10: RESðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: RESðiÞ must contain the ith component of G, for i ¼ 1; 2; . . . ;NPDE, where G
is defined as

Gi ¼
XNPDE
j¼1

Pi;j
@Uj

@t
þ
XNCODE
j¼1

Qi;j
_Vj ; ð9Þ

i.e., only terms depending explicitly on time derivatives, or

Gi ¼
XNPDE
j¼1

Pi;j
@Uj

@t
þ
XNCODE
j¼1

Qi;j
_Vj þ Si; ð10Þ

i.e., all terms in equation (3).

The definition of G is determined by the input value of IRES.

11: IRES – INTEGER Input/Output

On entry: the form of Gi that must be returned in the array RES.

IRES ¼ �1
Equation (9) must be used.

IRES ¼ 1
Equation (10) must be used.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions, as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PRF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PRF is called. Arguments denoted as Input must not be changed by this
procedure.

5: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions GL
i and GR

i which describe the boundary conditions, as
given in (5) and (6).

The specification of BNDARY is:

SUBROUTINE BNDARY (NPDE, T, IBND, NOBC, U, UDOT, NCODE, V, VDOT,
RES, IRES)

&

INTEGER NPDE, IBND, NOBC, NCODE, IRES
REAL (KIND=nag_wp) T, U(NPDE), UDOT(NPDE), V(NCODE),

VDOT(NCODE), RES(NOBC)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.
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2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated.

IBND ¼ 0
BNDARY must compute the left-hand boundary condition at x ¼ a.

IBND 6¼ 0
BNDARY must compute of the right-hand boundary condition at x ¼ b.

4: NOBC – INTEGER Input

On entry: specifies the number na of boundary conditions at the boundary specified by
IBND.

5: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ at the boundary specified
by IBND, for i ¼ 1; 2; . . . ;NPDE.

6: UDOTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UDOTðiÞ contains the value of the component
@Ui x; tð Þ

@t
, for

i ¼ 1; 2; . . . ;NPDE.

7: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

8: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

9: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

Note: VDOTðiÞ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly as in (11) and (12).

10: RESðNOBCÞ – REAL (KIND=nag_wp) array Output

On exit: RESðiÞ must contain the ith component of GL or GR, depending on the value
of IBND, for i ¼ 1; 2; . . . ;NOBC, where GL is defined as

GL
i ¼

XNPDE
j¼1

EL
i;j

@Uj

@t
þ
XNCODE
j¼1

HL
i;j

_Vj ; ð11Þ

i.e., only terms depending explicitly on time derivatives, or

GL
i ¼

XNPDE
j¼1

EL
i;j

@Uj

@t
þ
XNCODE
j¼1

HL
i;j

_Vj þKL
i ; ð12Þ

i.e., all terms in equation (7), and similarly for GR
i .

The definitions of GL and GR are determined by the input value of IRES.

D03PRF NAG Library Manual

D03PRF.6 Mark 26



11: IRES – INTEGER Input/Output

On entry: the form of GL
i (or GR

i ) that must be returned in the array RES.

IRES ¼ �1
Equation (11) must be used.

IRES ¼ 1
Equation (12) must be used.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PRF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PRF is called. Arguments denoted as Input must not be changed
by this procedure.

6: UVINIT – SUBROUTINE, supplied by the user. External Procedure

UVINIT must supply the initial t ¼ t0ð Þ values of U x; tð Þ and V tð Þ for all values of x in the
interval a; b½ �.

The specification of UVINIT is:

SUBROUTINE UVINIT (NPDE, NPTS, NXI, X, XI, U, NCODE, V)

INTEGER NPDE, NPTS, NXI, NCODE
REAL (KIND=nag_wp) X(NPTS), XI(NXI), U(NPDE,NPTS), V(NCODE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the current mesh. XðiÞ contains the value of xi, for i ¼ 1; 2; . . . ;NPTS.

5: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ contains the ODE/PDE coupling point, �i, for
i ¼ 1; 2; . . . ;NXI.

6: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Output

On exit: if NXI > 0, Uði; jÞ contains the value of the component Ui xj ; t0
� �

, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.
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7: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

8: VðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: if NCODE > 0, VðiÞ must contain the value of component Vi t0ð Þ, for
i ¼ 1; 2; . . . ;NCODE.

UVINIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PRF is called. Arguments denoted as Input must not be changed by this
procedure.

7: UðNEQNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IND ¼ 1, the value of U must be unchanged from the previous call.

On exit: UðNPDE� j � 1ð Þ þ iÞ contains the computed solution Ui xj ; t
� �

, for i ¼ 1; 2; . . . ;NPDE
and j ¼ 1; 2; . . . ;NPTS, evaluated at t ¼ TS.

8: NPTS – INTEGER Input

On entry: the number of mesh points in the interval [a; b].

Constraint: NPTS � 3.

9: XðNPTSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial mesh points in the space direction. Xð1Þ must specify the left-hand boundary,
a, and XðNPTSÞ must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.
On exit: the final values of the mesh points.

10: NLEFT – INTEGER Input

On entry: the number na of boundary conditions at the left-hand mesh point Xð1Þ.
Constraint: 0 � NLEFT � NPDE.

11: NCODE – INTEGER Input

On entry: the number of coupled ODE components.

Constraint: NCODE � 0.

12: ODEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

ODEDEF must evaluate the functions R, which define the system of ODEs, as given in (4).

If you wish to compute the solution of a system of PDEs only (i.e., NCODE ¼ 0), ODEDEF
must be the dummy routine D03PEK. (D03PEK is included in the NAG Library.)

The specification of ODEDEF is:

SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
UCPT, R, IRES)

&

INTEGER NPDE, NCODE, NXI, IRES
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),

UCP(NPDE,*), UCPX(NPDE,*), UCPT(NPDE,*),
R(NCODE)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.
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2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

4: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

5: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

6: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

7: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ contains the ODE/PDE coupling point, �i, for
i ¼ 1; 2; . . . ;NXI.

8: UCPðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPði; jÞ contains the value of Ui x; tð Þ at the coupling point
x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

9: UCPXðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPXði; jÞ contains the value of
@Ui x; tð Þ
@x

at the coupling point

x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

10: UCPTðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPTði; jÞ contains the value of
@Ui

@t
at the coupling point x ¼ �j ,

for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

11: RðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: if NCODE > 0, RðiÞ must contain the ith component of R, for
i ¼ 1; 2; . . . ;NCODE, where R is defined as

R ¼ �B _V � CU�t ; ð13Þ

i.e., only terms depending explicitly on time derivatives, or

R ¼ A�B _V � CU�t ; ð14Þ

i.e., all terms in equation (4). The definition of R is determined by the input value of
IRES.

12: IRES – INTEGER Input/Output

On entry: the form of R that must be returned in the array R.

IRES ¼ �1
Equation (13) must be used.
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IRES ¼ 1
Equation (14) must be used.

On exit: should usually remain unchanged. However, you may reset IRES to force the
integration routine to take certain actions, as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PRF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

ODEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PRF is called. Arguments denoted as Input must not be changed
by this procedure.

13: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if NCODE ¼ 0, NXI ¼ 0;
if NCODE > 0, NXI � 0.

14: XIð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array XI must be at least max 1;NXIð Þ.
On entry: XIðiÞ, for i ¼ 1; 2; . . . ;NXI, must be set to the ODE/PDE coupling points, �i.

Constraint: Xð1Þ � XIð1Þ < XIð2Þ < � � � < XIðNXIÞ � XðNPTSÞ.

15: NEQN – INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN ¼ NPDE� NPTSþ NCODE.

16: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2 and at least NEQN if
ITOL ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i.

17: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3 and at least NEQN if
ITOL ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i.

Note: corresponding elements of RTOL and ATOL cannot both be 0:0.
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18: ITOL – INTEGER Input

A value to indicate the form of the local error test. ITOL indicates to D03PRF whether to
interpret either or both of RTOL or ATOL as a vector or scalar. The error test to be satisfied is
ei=wik k < 1:0, where wi is defined as follows:

On entry:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � UðiÞj j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � UðiÞj j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � UðiÞj j þ ATOLð1Þ
4 vector vector RTOLðiÞ � UðiÞj j þ ATOLðiÞ

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, UðiÞ, for i ¼ 1; 2; . . . ;NEQN.

The choice of norm used is defined by the argument NORM.

Constraint: ITOL ¼ 1, 2, 3 or 4.

19: NORM – CHARACTER(1) Input

On entry: the type of norm to be used.

NORM ¼ M
Maximum norm.

NORM ¼ A
Averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L2 norm

Unorm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NEQN

XNEQN
i¼1

U ið Þ=wið Þ2
vuut ;

while for the maximum norm

Unorm ¼ max
i

UðiÞ=wij j:

See the description of ITOL for the formulation of the weight vector w.

Constraint: NORM ¼ M or A .

20: LAOPT – CHARACTER(1) Input

On entry: the type of matrix algebra required.

LAOPT ¼ F
Full matrix methods to be used.

LAOPT ¼ B
Banded matrix methods to be used.

LAOPT ¼ S
Sparse matrix methods to be used.

Constraint: LAOPT ¼ F , B or S .

Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
NCODE ¼ 0).

21: ALGOPTð30Þ – REAL (KIND=nag_wp) array Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then ALGOPTð1Þ should be set to 0:0. Default values will also be used for
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any other elements of ALGOPT set to zero. The permissible values, default values, and meanings
are as follows:

ALGOPTð1Þ
Selects the ODE integration method to be used. If ALGOPTð1Þ ¼ 1:0, a BDF method is
used and if ALGOPTð1Þ ¼ 2:0, a Theta method is used. The default value is
ALGOPTð1Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 2:0, then ALGOPTðiÞ, for i ¼ 2; 3; 4, are not used.

ALGOPTð2Þ
Specifies the maximum order of the BDF integration formula to be used. ALGOPTð2Þ may
be 1:0, 2:0, 3:0, 4:0 or 5:0. The default value is ALGOPTð2Þ ¼ 5:0.

ALGOPTð3Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If ALGOPTð3Þ ¼ 1:0 a modified Newton iteration is used
and if ALGOPTð3Þ ¼ 2:0 a functional iteration method is used. If functional iteration is
selected and the integrator encounters difficulty, then there is an automatic switch to the
modified Newton iteration. The default value is ALGOPTð3Þ ¼ 1:0.

ALGOPTð4Þ
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;NPDE, for some i or when there is no _Vi tð Þ dependence in the
coupled ODE system. If ALGOPTð4Þ ¼ 1:0, then the Petzold test is used. If
ALGOPTð4Þ ¼ 2:0, then the Petzold test is not used. The default value is
ALGOPTð4Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 1:0, then ALGOPTðiÞ, for i ¼ 5; 6; 7, are not used.

ALGOPTð5Þ
Specifies the value of Theta to be used in the Theta integration method.
0:51 � ALGOPTð5Þ � 0:99. The default value is ALGOPTð5Þ ¼ 0:55.

ALGOPTð6Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If ALGOPTð6Þ ¼ 1:0, a modified Newton iteration is used
and if ALGOPTð6Þ ¼ 2:0, a functional iteration method is used. The default value is
ALGOPTð6Þ ¼ 1:0.

ALGOPTð7Þ
Specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If
ALGOPTð7Þ ¼ 1:0, then switching is allowed and if ALGOPTð7Þ ¼ 2:0, then switching is
not allowed. The default value is ALGOPTð7Þ ¼ 1:0.

ALGOPTð11Þ
Specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the argument ITASK. If ALGOPTð1Þ 6¼ 0:0, a
value of 0:0, for ALGOPTð11Þ, say, should be specified even if ITASK subsequently
specifies that tcrit will not be used.

ALGOPTð12Þ
Specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð12Þ should be set to 0:0.

ALGOPTð13Þ
Specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð13Þ should be set to 0:0.

ALGOPTð14Þ
Specifies the initial step size to be attempted by the integrator. If ALGOPTð14Þ ¼ 0:0, then
the initial step size is calculated internally.
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ALGOPTð15Þ
Specifies the maximum number of steps to be attempted by the integrator in any one call.
If ALGOPTð15Þ ¼ 0:0, then no limit is imposed.

ALGOPTð23Þ
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If ALGOPTð23Þ ¼ 1:0, a modified Newton
iteration is used and if ALGOPTð23Þ ¼ 2:0, functional iteration is used. The default value
is ALGOPTð23Þ ¼ 1:0.

ALGOPTð29Þ and ALGOPTð30Þ are used only for the sparse matrix algebra option, i.e.,
LAOPT ¼ S .

ALGOPTð29Þ
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < ALGOPTð29Þ < 1:0, with smaller values biasing the
algorithm towards maintaining sparsity at the expense of numerical stability. If
ALGOPTð29Þ lies outside this range then the default value is used. If the routines regard
the Jacobian matrix as numerically singular then increasing ALGOPTð29Þ towards 1:0 may
help, but at the cost of increased fill-in. The default value is ALGOPTð29Þ ¼ 0:1.

ALGOPTð30Þ
Used as a relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPTð29Þ) below which an internal error is invoked. ALGOPTð30Þ must be greater
than zero, otherwise the default value is used. If ALGOPTð30Þ is greater than 1:0 no check
is made on the pivot size, and this may be a necessary option if the Jacobian is found to be
numerically singular (see ALGOPTð29Þ). The default value is ALGOPTð30Þ ¼ 0:0001.

22: REMESH – LOGICAL Input

On entry: indicates whether or not spatial remeshing should be performed.

REMESH ¼ :TRUE:
Indicates that spatial remeshing should be performed as specified.

REMESH ¼ :FALSE:
Indicates that spatial remeshing should be suppressed.

Note: REMESH should not be changed between consecutive calls to D03PRF. Remeshing can be
switched off or on at specified times by using appropriate values for the arguments NRMESH
and TRMESH at each call.

23: NXFIX – INTEGER Input

On entry: the number of fixed mesh points.

Constraint: 0 � NXFIX � NPTS� 2.

Note: the end points Xð1Þ and XðNPTSÞ are fixed automatically and hence should not be
specified as fixed points.

24: XFIXð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array XFIX must be at least max 1;NXFIXð Þ.
On entry: XFIXðiÞ, for i ¼ 1; 2; . . . ;NXFIX, must contain the value of the x coordinate at the ith
fixed mesh point.

Constraint: XFIXðiÞ < XFIXði þ 1Þ, for i ¼ 1; 2; . . . ;NXFIX� 1, and each fixed mesh point
must coincide with a user-supplied initial mesh point, that is XFIXðiÞ ¼ XðjÞ for some j,
2 � j � NPTS� 1.

Note: the positions of the fixed mesh points in the array X remain fixed during remeshing, and so
the number of mesh points between adjacent fixed points (or between fixed points and end
points) does not change. You should take this into account when choosing the initial mesh
distribution.
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25: NRMESH – INTEGER Input

On entry: indicates the form of meshing to be performed.

NRMESH < 0
Indicates that a new mesh is adopted according to the argument DXMESH. The mesh is
tested every NRMESHj j timesteps.

NRMESH ¼ 0
Indicates that remeshing should take place just once at the end of the first time step
reached when t > TRMESH.

NRMESH > 0
Indicates that remeshing will take place every NRMESH time steps, with no testing using
DXMESH.

Note: NRMESH may be changed between consecutive calls to D03PRF to give greater flexibility
over the times of remeshing.

26: DXMESH – REAL (KIND=nag_wp) Input

On entry: determines whether a new mesh is adopted when NRMESH is set less than zero. A
possible new mesh is calculated at the end of every NRMESHj j time steps, but is adopted only if

xnewi > xoldi þ DXMESH� xoldiþ1 � xoldi
� �

;

or

xnewi < xoldi � DXMESH� xoldi � xoldi�1
� �

:

DXMESH thus imposes a lower limit on the difference between one mesh and the next.

Constraint: DXMESH � 0:0.

27: TRMESH – REAL (KIND=nag_wp) Input

On entry: specifies when remeshing will take place when NRMESH is set to zero. Remeshing
will occur just once at the end of the first time step reached when t is greater than TRMESH.

Note: TRMESH may be changed between consecutive calls to D03PRF to force remeshing at
several specified times.

28: IPMINF – INTEGER Input

On entry: the level of trace information regarding the adaptive remeshing. Details are directed to
the current advisory message unit (see X04ABF).

IPMINF ¼ 0
No trace information.

IPMINF ¼ 1
Brief summary of mesh characteristics.

IPMINF ¼ 2
More detailed information, including old and new mesh points, mesh sizes and monitor
function values.

Constraint: IPMINF ¼ 0, 1 or 2.

29: XRATIO – REAL (KIND=nag_wp) Input

On entry: input bound on adjacent mesh ratio (greater than 1:0 and typically in the range 1:5 to
3:0). The remeshing routines will attempt to ensure that

xi � xi�1ð Þ=XRATIO < xiþ1 � xi < XRATIO� xi � xi�1ð Þ:
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Suggested value: XRATIO ¼ 1:5.

Constraint: XRATIO > 1:0.

30: CON – REAL (KIND=nag_wp) Input

On entry: an input bound on the sub-integral of the monitor function Fmon xð Þ over each space
step. The remeshing routines will attempt to ensure thatZ xiþ1

x1

Fmon xð Þ dx � CON
Z xNPTS

x1

Fmon xð Þ dx;

(see Furzeland (1984)). CON gives you more control over the mesh distribution e.g., decreasing
CON allows more clustering. A typical value is 2= NPTS� 1ð Þ, but you are encouraged to
experiment with different values. Its value is not critical and the mesh should be qualitatively
correct for all values in the range given below.

Suggested value: CON ¼ 2:0= NPTS� 1ð Þ.
Constraint: 0:1= NPTS� 1ð Þ � CON � 10:0= NPTS� 1ð Þ.

31: MONITF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONITF must supply and evaluate a remesh monitor function to indicate the solution behaviour
of interest.

If you specify REMESH ¼ :FALSE:, i.e., no remeshing, then MONITF will not be called and the
dummy routine D03PEL may be used for MONITF. (D03PEL is included in the NAG Library.)

The specification of MONITF is:

SUBROUTINE MONITF (T, NPTS, NPDE, X, U, FMON)

INTEGER NPTS, NPDE
REAL (KIND=nag_wp) T, X(NPTS), U(NPDE,NPTS), FMON(NPTS)

1: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the current mesh. XðiÞ contains the value of xi, for i ¼ 1; 2; . . . ;NPTS.

5: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of Ui x; tð Þ at x ¼ XðjÞ and time t, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

6: FMONðNPTSÞ – REAL (KIND=nag_wp) array Output

On exit: FMONðiÞ must contain the value of the monitor function Fmon xð Þ at mesh
point x ¼ XðiÞ.
Constraint: FMONðiÞ � 0:0.
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MONITF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PRF is called. Arguments denoted as Input must not be changed
by this procedure.

32: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

33: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PRF is called. Its size depends on the type of matrix algebra selected.

If LAOPT ¼ F , LRSAVE � NEQN� NEQNþ NEQNþ nwkres þ lenode.

If LAOPT ¼ B , LRSAVE � 3�ml þmu þ 2ð Þ � NEQNþ nwkres þ lenode.

If LAOPT ¼ S , LRSAVE � 4� NEQNþ 11� NEQN=2þ 1þ nwkres þ lenode.

Where

ml and mu are the lower and upper half bandwidths given by ml ¼ NPDEþ NLEFT� 1 such that
mu ¼ 2� NPDE� NLEFT� 1, for problems involving PDEs only; or
ml ¼ mu ¼ NEQN� 1, for coupled PDE/ODE problems.

nwkres ¼
NPDE� 3� NPDEþ 6� NXIþ NPTS þ 15ð Þ þ NXIþ NCODEþ 7� NPTS þ NXFIXþ 1; when NCODE > 0 and NXI > 0; or
NPDE� 3� NPDEþ NPTS þ 21ð Þ þ NCODEþ 7� NPTS þ NXFIXþ 2; when NCODE > 0 and NXI ¼ 0; or
NPDE� 3� NPDEþ NPTS þ 21ð Þ þ 7� NPTS þ NXFIXþ 3; when NCODE ¼ 0:

8<:
lenode ¼ 6þ int ALGOPTð2Þð Þð Þ � NEQNþ 50; when the BDF method is used; or

9� NEQNþ 50; when the Theta method is used:



Note: when using the sparse option, the value of LRSAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LRSAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

34: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration. In particular the following components of the array
ISAVE concern the efficiency of the integration:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the ODE method last used in the time integration.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

The rest of the array is used as workspace.
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35: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which
D03PRF is called. Its size depends on the type of matrix algebra selected:

if LAOPT ¼ F , LISAVE � 25þ NXFIX;

if LAOPT ¼ B , LISAVE � NEQNþ 25þ NXFIX;

if LAOPT ¼ S , LISAVE � 25� NEQNþ 25þ NXFIX.

Note: when using the sparse option, the value of LISAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LISAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

36: ITASK – INTEGER Input

On entry: the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT (by overshooting and interpolating).

ITASK ¼ 2
Take one step in the time direction and return.

ITASK ¼ 3
Stop at first internal integration point at or beyond t ¼ TOUT.

ITASK ¼ 4
Normal computation of output values U at t ¼ TOUT but without overshooting t ¼ tcrit
where tcrit is described under the argument ALGOPT.

ITASK ¼ 5
Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument ALGOPT.

Constraint: ITASK ¼ 1, 2, 3, 4 or 5.

37: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PRF and the underlying ODE solver as
follows:

ITRACE � �1
No output is generated.

ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE ¼ 1
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

ITRACE ¼ 2
Output from the underlying ODE solver is similar to that produced when ITRACE ¼ 1,
except that the advisory messages are given in greater detail.

ITRACE � 3
The output from the underlying ODE solver is similar to that produced when
ITRACE ¼ 2, except that the advisory messages are given in greater detail.

You are advised to set ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.
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38: IND – INTEGER Input/Output

On entry: indicates whether this is a continuation call or a new integration.

IND ¼ 0
Starts or restarts the integration in time.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT and IFAIL and the remeshing arguments NRMESH, DXMESH,
TRMESH, XRATIO and CON may be reset between calls to D03PRF.

Constraint: IND ¼ 0 or 1.

On exit: IND ¼ 1.

39: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOUT� TSð Þ is too small,
or ITASK 6¼ 1, 2, 3, 4 or 5,
or at least one of the coupling points defined in array XI is outside the interval

[Xð1Þ;XðNPTSÞ],
or NPTS < 3,
or NPDE < 1,
or NLEFT not in the range 0 to NPDE,
or NORM 6¼ A or M ,
or LAOPT 6¼ F , B or S ,
or ITOL 6¼ 1, 2, 3 or 4,
or IND 6¼ 0 or 1,
or mesh points XðiÞ are badly ordered,
or LRSAVE is too small,
or LISAVE is too small,
or NCODE and NXI are incorrectly defined,
or IND ¼ 1 on initial entry to D03PRF,
or an element of RTOL or ATOL < 0:0,
or corresponding elements of RTOL and ATOL are both 0:0,
or NEQN 6¼ NPDE� NPTSþ NCODE,
or NXFIX not in the range 0 to NPTS� 2,
or fixed mesh point(s) do not coincide with any of the user-supplied mesh points,
or DXMESH < 0:0,
or IPMINF 6¼ 0, 1 or 2,
or XRATIO � 1:0,
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or CON not in the range 0:1= NPTS� 1ð Þ to 10= NPTS� 1ð Þ.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and
RTOL, across the integration range from the current point t ¼ TS. The components of U contain
the computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate. Incorrect positioning of
boundary conditions may also result in this error.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
one of PDEDEF, BNDARY or ODEDEF, when the residual in the underlying ODE solver was
being evaluated. Incorrect positioning of boundary conditions may also result in this error.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. You should check their
problem formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in one of PDEDEF,
BNDARY or ODEDEF. Integration was successful as far as t ¼ TS.

IFAIL ¼ 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In either, PDEDEF, BNDARY or ODEDEF, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification an all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL
is unlikely to produce any change in the computed solution. (Only applies when you are not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current advisory message unit). If using the sparse matrix
algebra option, the values of ALGOPTð29Þ and ALGOPTð30Þ may be inappropriate.

IFAIL ¼ 12

In solving the ODE system, the maximum number of steps specified in ALGOPTð15Þ have been
taken.
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IFAIL ¼ 13

Some error weights wi became zero during the time integration (see the description of ITOL).
Pure relative error control ATOLðiÞ ¼ 0:0ð Þ was requested on a variable (the ith) which has
become zero. The integration was successful as far as t ¼ TS.

IFAIL ¼ 14

Not applicable.

IFAIL ¼ 15

When using the sparse option, the value of LISAVE or LRSAVE was insufficient (more detailed
information may be directed to the current error message unit).

IFAIL ¼ 16

REMESH has been changed between calls to D03PRF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PRF controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of
varying the accuracy arguments, ATOL and RTOL.

8 Parallelism and Performance

D03PRF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03PRF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03PRF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to first-
order by the introduction of new variables (see the example in Section 10). In general, a second-order
problem can be solved with slightly greater accuracy using the Keller box scheme instead of a finite
difference scheme (D03PPF/D03PPA for example), but at the expense of increased CPU time due to the
larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may
be unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection
equation Ut þ aUx ¼ 0, where a is a constant, resulting in spurious oscillations due to the lack of
dissipation. This type of problem requires a discretization scheme with upwind weighting (D03PSF for
example), or the addition of a second-order artificial dissipation term.

The time taken depends on the complexity of the system, the accuracy requested, and the frequency of
the mesh updates. For a given system with fixed accuracy and mesh-update frequency it is
approximately proportional to NEQN.

10 Example

This example is the first-order system

@U1

@t
þ @U1

@x
þ @U2

@x
¼ 0;

@U2

@t
þ 4

@U1

@x
þ @U2

@x
¼ 0;

for x 2 0; 1½ � and t � 0.

The initial conditions are

U1 x; 0ð Þ ¼ ex;

U2 x; 0ð Þ ¼ x2 þ sin 2	x2
� �

;

and the Dirichlet boundary conditions for U1 at x ¼ 0 and U2 at x ¼ 1 are given by the exact solution:

U1 x; tð Þ ¼ 1
2 exþt þ ex�3t
� 

þ 1
4 sin 2	 x� 3tð Þ2

� �
� sin 2	 xþ tð Þ2

� �n o
þ 2t2 � 2xt;

U2 x; tð Þ ¼ ex�3t � exþt þ 1
2 sin 2	 x� 3tð Þ2

� �
þ sin 2	 xþ tð Þ2

� �n o
þ x2 þ 5t2 � 2xt:

10.1 Program Text

! D03PRF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03prfe_mod

! D03PRF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndary, exact, monitf, pdedef, &

uvinit
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: half = 0.5_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter, Public :: itrace = 0, ncode = 0, nin = 5, &

nleft = 1, nout = 6, npde = 2, &
nxfix = 0, nxi = 0
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Contains
Subroutine uvinit(npde,npts,nxi,x,xi,u,ncode,v)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Integer, Intent (In) :: ncode, npde, npts, nxi

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts), v(ncode)
Real (Kind=nag_wp), Intent (In) :: x(npts), xi(nxi)

! .. Local Scalars ..
Real (Kind=nag_wp) :: pi
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp, sin

! .. Executable Statements ..
pi = x01aaf(pi)
Do i = 1, npts

u(1,i) = exp(x(i))
u(2,i) = x(i)**2 + sin(two*pi*x(i)**2)

End Do
Return

End Subroutine uvinit
Subroutine pdedef(npde,t,x,u,udot,ux,ncode,v,vdot,res,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: res(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), udot(npde), ux(npde), &

v(ncode), vdot(ncode)
! .. Executable Statements ..

If (ires==-1) Then
res(1) = udot(1)
res(2) = udot(2)

Else
res(1) = udot(1) + ux(1) + ux(2)
res(2) = udot(2) + 4.0_nag_wp*ux(1) + ux(2)

End If
Return

End Subroutine pdedef
Subroutine bndary(npde,t,ibnd,nobc,u,udot,ncode,v,vdot,res,ires)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, nobc, npde
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: res(nobc)
Real (Kind=nag_wp), Intent (In) :: u(npde), udot(npde), v(ncode), &

vdot(ncode)
! .. Local Scalars ..

Real (Kind=nag_wp) :: pp, ppt1, ppt3, t1, t3
! .. Intrinsic Procedures ..

Intrinsic :: exp, sin
! .. Executable Statements ..

If (ires==-1) Then
res(1) = 0.0_nag_wp

Else
pp = two*x01aaf(pp)
t1 = t
t3 = -3.0_nag_wp*t
If (ibnd==0) Then

ppt3 = sin(pp*t3**2)
ppt1 = sin(pp*t1**2)
res(1) = u(1) - half*(exp(t3)+exp(t1)+half*(ppt3-ppt1))
res(1) = res(1) - 2.0_nag_wp*t**2
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Else
t3 = t3 + 1.0_nag_wp
t1 = t1 + 1.0_nag_wp
ppt3 = sin(pp*t3**2)
ppt1 = sin(pp*t1**2)
res(1) = u(2) - (exp(t3)-exp(t1)+half*(ppt3+ppt1))
res(1) = res(1) - (1.0_nag_wp+5.0_nag_wp*t**2-2.0_nag_wp*t)

End If
End If
Return

End Subroutine bndary
Subroutine monitf(t,npts,npde,x,u,fmon)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fmon(npts)
Real (Kind=nag_wp), Intent (In) :: u(npde,npts), x(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: d2x1, d2x2, h1, h2, h3
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: abs, max

! .. Executable Statements ..
Do i = 2, npts - 1

h1 = x(i) - x(i-1)
h2 = x(i+1) - x(i)
h3 = half*(x(i+1)-x(i-1))

! Second derivatives ..
d2x1 = abs(((u(1,i+1)-u(1,i))/h2-(u(1,i)-u(1,i-1))/h1)/h3)
d2x2 = abs(((u(2,i+1)-u(2,i))/h2-(u(2,i)-u(2,i-1))/h1)/h3)
fmon(i) = max(d2x1,d2x2)

End Do
fmon(1) = fmon(2)
fmon(npts) = fmon(npts-1)
Return

End Subroutine monitf
Subroutine exact(t,npde,npts,x,u)

! Exact solution (for comparison purposes)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
Real (Kind=nag_wp), Intent (In) :: x(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: pp, ppt1, ppt3, x1, x3
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp, sin

! .. Executable Statements ..
pp = 2.0_nag_wp*x01aaf(pp)
Do i = 1, npts

x1 = x(i) + t
x3 = x(i) - 3.0_nag_wp*t
ppt3 = sin(pp*x3**2)
ppt1 = sin(pp*x1**2)
u(1,i) = half*(exp(x3)+exp(x1)+half*(ppt3-ppt1)) - two*x(i)*t + &

two*t**2
u(2,i) = (exp(x3)-exp(x1)+half*(ppt3+ppt1)) - two*x(i)*t + x(i)**2 + &

5.0_nag_wp*t**2
End Do
Return

End Subroutine exact
End Module d03prfe_mod
Program d03prfe
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! D03PRF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03pek, d03prf, d03pzf, nag_wp
Use d03prfe_mod, Only: bndary, exact, itrace, monitf, ncode, nin, nleft, &

nout, npde, nxfix, nxi, pdedef, uvinit
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: con, dxmesh, tout, trmesh, ts, &
xratio

Integer :: i, ifail, ind, intpts, ipminf, it, &
itask, itol, itype, lenode, lisave, &
lrsave, neqn, npts, nrmesh, nwkres

Logical :: remesh, theta
Character (1) :: laopt, norm

! .. Local Arrays ..
Real (Kind=nag_wp) :: algopt(30), atol(1), rtol(1), &

xfix(1), xi(1)
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:,:), ue(:,:), &

uout(:,:,:), x(:), xout(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D03PRF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts, intpts, itype
lisave = 25 + nxfix
neqn = npde*npts + ncode
nwkres = npde*(npts+21+3*npde) + 7*npts + nxfix + 3
lenode = 11*neqn + 50
lrsave = neqn*neqn + neqn + nwkres + lenode

Allocate (rsave(lrsave),u(npde,npts),ue(npde,npts), &
uout(npde,intpts,itype),x(npts),xout(intpts),isave(lisave))

Read (nin,*) itol
Read (nin,*) atol(1), rtol(1)

! Set remesh parameters
remesh = .True.
nrmesh = 3
dxmesh = 0.0_nag_wp
con = 5.0_nag_wp/real(npts-1,kind=nag_wp)
xratio = 1.2_nag_wp
ipminf = 0

! Initialize mesh
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do
xi(1) = 0.0_nag_wp

Read (nin,*) xout(1:intpts)
Read (nin,*) norm, laopt
ind = 0
itask = 1

! Set theta to .TRUE. if the Theta integrator is required
theta = .False.
algopt(1:30) = 0.0_nag_wp
If (theta) Then

algopt(1) = 2.0_nag_wp
algopt(6) = 2.0_nag_wp
algopt(7) = 1.0_nag_wp

End If

! Loop over output value of t
ts = 0.0_nag_wp
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tout = 0.0_nag_wp

Do it = 1, 5
tout = 0.05_nag_wp*real(it,kind=nag_wp)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03prf(npde,ts,tout,pdedef,bndary,uvinit,u,npts,x,nleft,ncode, &

d03pek,nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,remesh,nxfix, &
xfix,nrmesh,dxmesh,trmesh,ipminf,xratio,con,monitf,rsave,lrsave, &
isave,lisave,itask,itrace,ind,ifail)

If (it==1) Then
Write (nout,99996) atol, npts
Write (nout,99999) nrmesh
Write (nout,99998) xout(1:intpts)

End If

! Interpolate at output points ..
ifail = 0
Call d03pzf(npde,0,u,npts,x,xout,intpts,itype,uout,ifail)

! Check against exact solution ..
Call exact(ts,npde,intpts,xout,ue)

Write (nout,99997) ts
Write (nout,99994) uout(1,1:intpts,1)
Write (nout,99993) ue(1,1:intpts)
Write (nout,99992) uout(2,1:intpts,1)
Write (nout,99991) ue(2,1:intpts)

End Do
Write (nout,99995) isave(1), isave(2), isave(3), isave(5)

99999 Format (’ Remeshing every ’,I3,’ time steps’,/)
99998 Format (’ X ’,5F10.4,/)
99997 Format (’ T = ’,F6.3)
99996 Format (/,/,’ Accuracy requirement =’,E10.3,’ Number of points = ’,I3, &

/)
99995 Format (’ Number of integration steps in time = ’,I6,/,’ Number o’, &

’f function evaluations = ’,I6,/,’ Number of Jacobian eval’, &
’uations =’,I6,/,’ Number of iterations = ’,I6)

99994 Format (’ Approx U1’,5F10.4)
99993 Format (’ Exact U1’,5F10.4)
99992 Format (’ Approx U2’,5F10.4)
99991 Format (’ Exact U2’,5F10.4,/)

End Program d03prfe

10.2 Program Data

D03PRF Example Program Data
61 5 1 : npts, intpts, itype
1 : itol
0.5E-4 0.5E-4 : atol(1), rtol(1)
0.0 0.25 0.5 0.75 1.0 : xout(1:intpts)
A F : norm, laopt

10.3 Program Results

D03PRF Example Program Results

Accuracy requirement = 0.500E-04 Number of points = 61

Remeshing every 3 time steps

X 0.0000 0.2500 0.5000 0.7500 1.0000

T = 0.050
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Approx U1 0.9923 1.0894 1.4686 2.3388 2.1071
Exact U1 0.9923 1.0893 1.4686 2.3391 2.1073
Approx U2 -0.0997 0.1057 0.7180 0.0967 0.2021
Exact U2 -0.0998 0.1046 0.7193 0.0966 0.2022

T = 0.100
Approx U1 1.0613 0.9856 1.3120 2.3084 2.1039
Exact U1 1.0613 0.9851 1.3113 2.3092 2.1025
Approx U2 -0.0150 -0.0481 0.1075 -0.3240 0.3753
Exact U2 -0.0150 -0.0495 0.1089 -0.3235 0.3753

T = 0.150
Approx U1 1.1485 0.9763 1.2658 2.0906 2.2027
Exact U1 1.1485 0.9764 1.2654 2.0911 2.2027
Approx U2 0.1370 -0.0250 -0.4107 -0.8577 0.3096
Exact U2 0.1366 -0.0266 -0.4100 -0.8567 0.3096

T = 0.200
Approx U1 1.0956 1.0529 1.3407 1.8322 2.2035
Exact U1 1.0956 1.0515 1.3393 1.8327 2.2050
Approx U2 0.0381 0.1282 -0.7979 -1.1776 -0.4221
Exact U2 0.0370 0.1247 -0.7961 -1.1784 -0.4221

T = 0.250
Approx U1 0.8119 1.1288 1.5163 1.6076 2.2027
Exact U1 0.8119 1.1276 1.5142 1.6091 2.2035
Approx U2 -0.4968 0.2123 -1.0259 -1.2149 -1.3938
Exact U2 -0.4992 0.2078 -1.0257 -1.2183 -1.3938

Number of integration steps in time = 50
Number of function evaluations = 2579
Number of Jacobian evaluations = 20
Number of iterations = 126

Example Program
Solution of First-order System using Moving Mesh

U(1,x,t)

U
(1

,x
,t)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Time

 0  0.2  0.4  0.6  0.8  1

x

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

D03PRF NAG Library Manual

D03PRF.26 Mark 26



Solution of First-order System using Moving Mesh
U(2,x,t)
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NAG Library Routine Document

D03PSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PSF integrates a system of linear or nonlinear convection-diffusion equations in one space
dimension, with optional source terms and scope for coupled ordinary differential equations (ODEs).
The system must be posed in conservative form. This routine also includes the option of automatic
adaptive spatial remeshing. Convection terms are discretized using a sophisticated upwind scheme
involving a user-supplied numerical flux function based on the solution of a Riemann problem at each
mesh point. The method of lines is employed to reduce the partial differential equations (PDEs) to a
system of ODEs, and the resulting system is solved using a backward differentiation formula (BDF)
method or a Theta method.

2 Specification

SUBROUTINE D03PSF (NPDE, TS, TOUT, PDEDEF, NUMFLX, BNDARY, UVINIT, U,
NPTS, X, NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL,
ITOL, NORM, LAOPT, ALGOPT, REMESH, NXFIX, XFIX,
NRMESH, DXMESH, TRMESH, IPMINF, XRATIO, CON, MONITF,
RSAVE, LRSAVE, ISAVE, LISAVE, ITASK, ITRACE, IND,
IFAIL)

&
&
&
&
&

INTEGER NPDE, NPTS, NCODE, NXI, NEQN, ITOL, NXFIX, NRMESH,
IPMINF, LRSAVE, ISAVE(LISAVE), LISAVE, ITASK,
ITRACE, IND, IFAIL

&
&

REAL (KIND=nag_wp) TS, TOUT, U(NEQN), X(NPTS), XI(NXI), RTOL(*),
ATOL(*), ALGOPT(30), XFIX(*), DXMESH, TRMESH,
XRATIO, CON, RSAVE(LRSAVE)

&
&

LOGICAL REMESH
CHARACTER(1) NORM, LAOPT
EXTERNAL PDEDEF, NUMFLX, BNDARY, UVINIT, ODEDEF, MONITF

3 Description

D03PSF integrates the system of convection-diffusion equations in conservative form:XNPDE
j¼1

Pi;j
@Uj
@t
þ @Fi
@x
¼ Ci

@Di

@x
þ Si; ð1Þ

or the hyperbolic convection-only system:

@Ui
@t
þ @Fi
@x
¼ 0; ð2Þ

for i ¼ 1; 2; . . . ;NPDE, a � x � b, t � t0, where the vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; UNPDE x; tð Þ½ �T:

The optional coupled ODEs are of the general form

Ri t; V ; _V ; �; U�; U�x; U
�
t

� �
¼ 0; i ¼ 1; 2; . . . ;NCODE; ð3Þ

where the vector V is the set of ODE solution values

V tð Þ ¼ V1 tð Þ; . . . ; VNCODE tð Þ½ �T;
_V denotes its derivative with respect to time, and Ux is the spatial derivative of U .
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In (2), Pi;j, Fi and Ci depend on x, t, U and V ; Di depends on x, t, U , Ux and V ; and Si depends on x,
t, U , V and linearly on _V . Note that Pi;j, Fi, Ci and Si must not depend on any space derivatives, and

Pi;j, Fi, Ci and Di must not depend on any time derivatives. In terms of conservation laws, Fi,
Ci@Di

@x
and Si are the convective flux, diffusion and source terms respectively.

In (3), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to PDE spatial mesh points. U�, U�x and U�t are the functions U ,
Ux and Ut evaluated at these coupling points. Each Ri may depend only linearly on time derivatives.
Hence (3) may be written more precisely as

R ¼ L�M _V �NU�t ; ð4Þ

where R ¼ R1; . . . ; RNCODE½ �T, L is a vector of length NCODE, M is an NCODE by NCODE matrix, N
is an NCODE by n� � NPDE

� �
matrix and the entries in L, M and N may depend on t, �, U�, U�x and

V . In practice you only need to supply a vector of information to define the ODEs and not the matrices
L, M and N . (See Section 5 for the specification of ODEDEF.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS
are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xNPTS defined initially by you
and (possibly) adapted automatically during the integration according to user-specified criteria.

The initial t ¼ t0ð Þ values of the functions U x; tð Þ and V tð Þ must be specified in UVINIT. Note that
UVINIT will be called again following any initial remeshing, and so U x; t0ð Þ should be specified for all
values of x in the interval a � x � b, and not just the initial mesh points.

The PDEs are approximated by a system of ODEs in time for the values of Ui at mesh points using a
spatial discretization method similar to the central-difference scheme used in D03PCF/D03PCA,
D03PHF/D03PHA and D03PPF/D03PPA, but with the flux Fi replaced by a numerical flux, which is a
representation of the flux taking into account the direction of the flow of information at that point (i.e.,
the direction of the characteristics). Simple central differencing of the numerical flux then becomes a
sophisticated upwind scheme in which the correct direction of upwinding is automatically achieved.

The numerical flux, F̂i say, must be calculated by you in terms of the left and right values of the
solution vector U (denoted by UL and UR respectively), at each mid-point of the mesh
xj�1

2
¼ xj�1 þ xj
� �

=2 , for j ¼ 2; 3; . . . ;NPTS. The left and right values are calculated by D03PSF

from two adjacent mesh points using a standard upwind technique combined with a Van Leer slope-
limiter (see LeVeque (1990)). The physically correct value for F̂i is derived from the solution of the
Riemann problem given by

@Ui
@t
þ @Fi
@y
¼ 0; ð5Þ

where y ¼ x� xj�1
2
, i.e., y ¼ 0 corresponds to x ¼ xj�1

2
, with discontinuous initial values U ¼ UL for

y < 0 and U ¼ UR for y > 0, using an approximate Riemann solver. This applies for either of the
systems (1) or (2); the numerical flux is independent of the functions Pi;j, Ci, Di and Si. A description
of several approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989).
Roe's scheme (see Roe (1981)) is perhaps the easiest to understand and use, and a brief summary
follows. Consider the system of PDEs Ut þ Fx ¼ 0 or equivalently Ut þAUx ¼ 0. Provided the system
is linear in U , i.e., the Jacobian matrix A does not depend on U , the numerical flux F̂ is given by

F̂ ¼ 1
2 FL þ FRð Þ � 1

2

XNPDE
k¼1

�k �kj jek; ð6Þ

where FL (FR) is the flux F calculated at the left (right) value of U , denoted by UL (UR); the �k are the
eigenvalues of A; the ek are the right eigenvectors of A; and the �k are defined by

UR � UL ¼
XNPDE
k¼1

�kek: ð7Þ

Examples are given in the documents for D03PFF and D03PLF.
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If the system is nonlinear, Roe's scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions Pi;j, Ci, Di and Si (but not Fi) must be specified in PDEDEF. The numerical flux F̂i
must be supplied in NUMFLX. For problems in the form (2), the actual argument D03PLP may be used
for PDEDEF. D03PLP is included in the NAG Library and sets the matrix with entries Pi;j to the
identity matrix, and the functions Ci, Di and Si to zero.

For second-order problems, i.e., diffusion terms are present, a boundary condition is required for each
PDE at both boundaries for the problem to be well-posed. If there are no diffusion terms present, then
the continuous PDE problem generally requires exactly one boundary condition for each PDE, that is
NPDE boundary conditions in total. However, in common with most discretization schemes for first-
order problems, a numerical boundary condition is required at the other boundary for each PDE. In
order to be consistent with the characteristic directions of the PDE system, the numerical boundary
conditions must be derived from the solution inside the domain in some manner (see below). You must
supply both types of boundary conditions, i.e., a total of NPDE conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a
numerical boundary condition is required at the other boundary. In many cases the boundary conditions
are simple, e.g., for the linear advection equation. In general you should calculate the characteristics of
the PDE system and specify a physical boundary condition for each of the characteristic variables
associated with incoming characteristics, and a numerical boundary condition for each outgoing
characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic
variables from the inside of the domain (note that when using banded matrix algebra the fixed
bandwidth means that only linear extrapolation is allowed, i.e., using information at just two interior
points adjacent to the boundary). For problems in which the solution is known to be uniform (in space)
towards a boundary during the period of integration then extrapolation is unnecessary; the numerical
boundary condition can be supplied as the known solution at the boundary. Another method of
supplying numerical boundary conditions involves the solution of the characteristic equations associated
with the outgoing characteristics. Examples of both methods can be found in the documents for
D03PFF and D03PLF.

The boundary conditions must be specified in BNDARY in the form

GL
i x; t; U; V ; _V
� �

¼ 0 at x ¼ a; i ¼ 1; 2; . . . ;NPDE; ð8Þ

at the left-hand boundary, and

GR
i x; t; U; V ; _V
� �

¼ 0 at x ¼ b; i ¼ 1; 2; . . . ;NPDE; ð9Þ

at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to BNDARY, but they can be
calculated using values of U at and adjacent to the boundaries if required. However, it should be noted
that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

The algebraic-differential equation system which is defined by the functions Ri must be specified in
ODEDEF. You must also specify the coupling points � (if any) in the array XI.

In total there are NPDE� NPTSþ NCODE ODEs in the time direction. This system is then integrated
forwards in time using a BDF or Theta method, optionally switching between Newton's method and
functional iteration (see Berzins et al. (1989) and the references therein).

The adaptive space remeshing can be used to generate meshes that automatically follow the changing
time-dependent nature of the solution, generally resulting in a more efficient and accurate solution using
fewer mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with
travelling wavefronts or variable-width boundary layers for example will benefit from using a moving
adaptive mesh. The discrete time-step method used here (developed by Furzeland (1984)) automatically
creates a new mesh based on the current solution profile at certain time-steps, and the solution is then
interpolated onto the new mesh and the integration continues.
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The method requires you to supply a MONITF which specifies in an analytical or numerical form the
particular aspect of the solution behaviour you wish to track. This so-called monitor function is used by
the routine to choose a mesh which equally distributes the integral of the monitor function over the
domain. A typical choice of monitor function is the second space derivative of the solution value at
each point (or some combination of the second space derivatives if there is more than one solution
component), which results in refinement in regions where the solution gradient is changing most
rapidly.

You must specify the frequency of mesh updates together with certain other criteria such as adjacent
mesh ratios. Remeshing can be expensive and you are encouraged to experiment with the different
options in order to achieve an efficient solution which adequately tracks the desired features of the
solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial
mesh points, a new initial mesh is calculated and adopted according to the user-specified remeshing
criteria. UVINIT will then be called again to determine the initial solution values at the new mesh
points (there is no interpolation at this stage) and the integration proceeds.

The problem is subject to the following restrictions:

(i) In (1), _Vj tð Þ, for j ¼ 1; 2; . . . ;NCODE, may only appear linearly in the functions Si, for
i ¼ 1; 2; . . . ;NPDE, with a similar restriction for GL

i and GR
i ;

(ii) Pi;j, Fi, Ci and Si must not depend on any space derivatives; and Pi;j, Ci, Di and Fi must not
depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) The evaluation of the terms Pi;j, Ci, Di and Si is done by calling the PDEDEF at a point
approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the fixed mesh points specified by XFIX;

(v) At least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
PDE problem.

For further details of the scheme, see Pennington and Berzins (1994) and the references therein.
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5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.
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2: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

3: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

4: PDEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

PDEDEF must evaluate the functions Pi;j, Ci, Di and Si which partially define the system of
PDEs. Pi;j and Ci may depend on x, t, U and V ; Di may depend on x, t, U , Ux and V ; and Si
may depend on x, t, U , V and linearly on _V . PDEDEF is called approximately midway between
each pair of mesh points in turn by D03PSF. The actual argument D03PLP may be used for
PDEDEF for problems in the form (2). (D03PLP is included in the NAG Library.)

The specification of PDEDEF is:

SUBROUTINE PDEDEF (NPDE, T, X, U, UX, NCODE, V, VDOT, P, C, D, S,
IRES)

&

INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, U(NPDE), UX(NPDE), V(NCODE),

VDOT(NCODE), P(NPDE,NPDE), C(NPDE), D(NPDE),
S(NPDE)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: UðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ;NPDE.

5: UXðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXðiÞ contains the value of the component
@Ui x; tð Þ
@x

, for i ¼ 1; 2; . . . ;NPDE.

6: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

7: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

8: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.
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Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in Sj , for
j ¼ 1; 2; . . . ;NPDE.

9: PðNPDE;NPDEÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ must be set to the value of Pi;j x; t; U; Vð Þ, for i ¼ 1; 2; . . . ;NPDE and
j ¼ 1; 2; . . . ;NPDE.

10: CðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: CðiÞ must be set to the value of Ci x; t; U; Vð Þ, for i ¼ 1; 2; . . . ;NPDE.

11: DðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: DðiÞ must be set to the value of Di x; t; U; Ux; Vð Þ, for i ¼ 1; 2; . . . ;NPDE.

12: SðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: SðiÞ must be set to the value of Si x; t; U; V ; _V
� �

, for i ¼ 1; 2; . . . ;NPDE.

13: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PSF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PSF is called. Arguments denoted as Input must not be changed by this
procedure.

5: NUMFLX – SUBROUTINE, supplied by the user. External Procedure

NUMFLX must supply the numerical flux for each PDE given the left and right values of the
solution vector U. NUMFLX is called approximately midway between each pair of mesh points
in turn by D03PSF.

The specification of NUMFLX is:

SUBROUTINE NUMFLX (NPDE, T, X, NCODE, V, ULEFT, URIGHT, FLUX,
IRES)

&

INTEGER NPDE, NCODE, IRES
REAL (KIND=nag_wp) T, X, V(NCODE), ULEFT(NPDE), URIGHT(NPDE),

FLUX(NPDE)
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.
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3: X – REAL (KIND=nag_wp) Input

On entry: the current value of the space variable x.

4: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

5: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

6: ULEFTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: ULEFTðiÞ contains the left value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ;NPDE.

7: URIGHTðNPDEÞ – REAL (KIND=nag_wp) array Input

On entry: URIGHTðiÞ contains the right value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ;NPDE.

8: FLUXðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: FLUXðiÞ must be set to the numerical flux F̂i, for i ¼ 1; 2; . . . ;NPDE.

9: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PSF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

NUMFLX must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PSF is called. Arguments denoted as Input must not be changed by
this procedure.

6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions GL
i and GR

i which describe the physical and numerical
boundary conditions, as given by (8) and (9).

The specification of BNDARY is:

SUBROUTINE BNDARY (NPDE, NPTS, T, X, U, NCODE, V, VDOT, IBND, G,
IRES)

&

INTEGER NPDE, NPTS, NCODE, IBND, IRES
REAL (KIND=nag_wp) T, X(NPTS), U(NPDE,NPTS), V(NCODE),

VDOT(NCODE), G(NPDE)
&
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1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the mesh points in the spatial direction. Xð1Þ corresponds to the left-hand
boundary, a, and XðNPTSÞ corresponds to the right-hand boundary, b.

5: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of the component Ui x; tð Þ at x ¼ XðjÞ, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

Note: if banded matrix algebra is to be used then the functions GL
i and GR

i may depend
on the value of Ui x; tð Þ at the boundary point and the two adjacent points only.

6: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

7: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

8: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in GL
j and GR

j , for
j ¼ 1; 2; . . . ;NPDE.

9: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated.

IBND ¼ 0
BNDARY must evaluate the left-hand boundary condition at x ¼ a.

IBND 6¼ 0
BNDARY must evaluate the right-hand boundary condition at x ¼ b.

10: GðNPDEÞ – REAL (KIND=nag_wp) array Output

On exit: GðiÞ must contain the ith component of either GL
i or GR

i in (8) and (9),
depending on the value of IBND, for i ¼ 1; 2; . . . ;NPDE.

11: IRES – INTEGER Input/Output

On entry: set to �1 or 1.
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On exit: should usually remain unchanged. However, you may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
IRES ¼ 3, then D03PSF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PSF is called. Arguments denoted as Input must not be changed by
this procedure.

7: UVINIT – SUBROUTINE, supplied by the user. External Procedure

UVINIT must supply the initial t ¼ t0ð Þ values of U x; tð Þ and V tð Þ for all values of x in the
interval a � x � b.

The specification of UVINIT is:

SUBROUTINE UVINIT (NPDE, NPTS, NXI, X, XI, U, NCODE, V)

INTEGER NPDE, NPTS, NXI, NCODE
REAL (KIND=nag_wp) X(NPTS), XI(NXI), U(NPDE,NPTS), V(NCODE)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval [a; b].

3: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the current mesh. XðiÞ contains the value of xi, for i ¼ 1; 2; . . . ;NPTS.

5: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ contains the ODE/PDE coupling point, �i, for
i ¼ 1; 2; . . . ;NXI.

6: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Output

On exit: if NXI > 0, Uði; jÞ contains the value of the component Ui xj ; t0
� �

, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

7: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

8: VðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: if NCODE > 0, VðiÞ must contain the value of component Vi t0ð Þ, for
i ¼ 1; 2; . . . ;NCODE.
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UVINIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03PSF is called. Arguments denoted as Input must not be changed by this
procedure.

8: UðNEQNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IND ¼ 1 the value of U must be unchanged from the previous call.

On exit: UðNPDE� j � 1ð Þ þ iÞ contains the computed solution Ui xj ; t
� �

, for i ¼ 1; 2; . . . ;NPDE
and j ¼ 1; 2; . . . ;NPTS, and UðNPTS� NPDEþ kÞ contains Vk tð Þ, for k ¼ 1; 2; . . . ;NCODE, all
evaluated at t ¼ TS.

9: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: NPTS � 3.

10: XðNPTSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the mesh points in the space direction. Xð1Þ must specify the left-hand boundary, a,
and XðNPTSÞ must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.
On exit: the final values of the mesh points.

11: NCODE – INTEGER Input

On entry: the number of coupled ODE components.

Constraint: NCODE � 0.

12: ODEDEF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

ODEDEF must evaluate the functions R, which define the system of ODEs, as given in (4).

If you wish to compute the solution of a system of PDEs only (i.e., NCODE ¼ 0), ODEDEF
must be the dummy routine D03PEK. (D03PEK is included in the NAG Library.)

The specification of ODEDEF is:

SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
UCPT, R, IRES)

&

INTEGER NPDE, NCODE, NXI, IRES
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI),

UCP(NPDE,*), UCPX(NPDE,*), UCPT(NPDE,*),
R(NCODE)

&
&

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

3: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

4: VðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VðiÞ contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.
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5: VDOTðNCODEÞ – REAL (KIND=nag_wp) array Input

On entry: if NCODE > 0, VDOTðiÞ contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;NCODE.

6: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

7: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ contains the ODE/PDE coupling point, �i, for
i ¼ 1; 2; . . . ;NXI.

8: UCPðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPði; jÞ contains the value of Ui x; tð Þ at the coupling point
x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

9: UCPXðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPXði; jÞ contains the value of
@Ui x; tð Þ
@x

at the coupling point

x ¼ �j , for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

10: UCPTðNPDE; �Þ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, UCPTði; jÞ contains the value of
@Ui

@t
at the coupling point x ¼ �j ,

for i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NXI.

11: RðNCODEÞ – REAL (KIND=nag_wp) array Output

On exit: RðiÞ must contain the ith component of R, for i ¼ 1; 2; . . . ;NCODE, where R
is defined as

R ¼ L�M _V �NU�t ; ð10Þ

or

R ¼ �M _V �NU�t : ð11Þ

The definition of R is determined by the input value of IRES.

12: IRES – INTEGER Input/Output

On entry: the form of R that must be returned in the array R.

IRES ¼ 1
Equation (10) must be used.

IRES ¼ �1
Equation (11) must be used.

On exit: should usually remain unchanged. However, you may reset IRES to force the
integration routine to take certain actions, as described below:

IRES ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling (sub)routine with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set IRES ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set

D03 – Partial Differential Equations D03PSF

Mark 26 D03PSF.11



IRES ¼ 3, then D03PSF returns to the calling subroutine with the error indicator
set to IFAIL ¼ 4.

ODEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PSF is called. Arguments denoted as Input must not be changed by
this procedure.

13: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if NCODE ¼ 0, NXI ¼ 0;
if NCODE > 0, NXI � 0.

14: XIðNXIÞ – REAL (KIND=nag_wp) array Input

On entry: if NXI > 0, XIðiÞ, for i ¼ 1; 2; . . . ;NXI, must be set to the ODE/PDE coupling points.

Constraint: Xð1Þ � XIð1Þ < XIð2Þ < � � � < XIðNXIÞ � XðNPTSÞ.

15: NEQN – INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN ¼ NPDE� NPTSþ NCODE.

16: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2 and at least NEQN if
ITOL ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i.

17: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3 and at least NEQN if
ITOL ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i.

Note: corresponding elements of RTOL and ATOL cannot both be 0:0.

18: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. If ei is the estimated local error for
UðiÞ, for i ¼ 1; 2; . . . ;NEQN, and k k, denotes the norm, then the error test to be satisfied is
eik k < 1:0. ITOL indicates to D03PSF whether to interpret either or both of RTOL and ATOL as
a vector or scalar in the formation of the weights wi used in the calculation of the norm (see the
description of NORM):

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � UðiÞj j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � UðiÞj j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � UðiÞj j þ ATOLð1Þ
4 vector vector RTOLðiÞ � UðiÞj j þ ATOLðiÞ

Constraint: ITOL ¼ 1, 2, 3 or 4.
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19: NORM – CHARACTER(1) Input

On entry: the type of norm to be used.

NORM ¼ 1
Averaged L1 norm.

NORM ¼ 2
Averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L1 norm

Unorm ¼
1

NEQN

XNEQN
i¼1

UðiÞ=wi;

and for the averaged L2 norm

Unorm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NEQN

XNEQN
i¼1

UðiÞ=wið Þ2
vuut ;

See the description of ITOL for the formulation of the weight vector w.

Constraint: NORM ¼ 1 or 2 .

20: LAOPT – CHARACTER(1) Input

On entry: the type of matrix algebra required.

LAOPT ¼ F
Full matrix methods to be used.

LAOPT ¼ B
Banded matrix methods to be used.

LAOPT ¼ S
Sparse matrix methods to be used.

Constraint: LAOPT ¼ F , B or S .

Note: you are recommended to use the banded option when no coupled ODEs are present
(NCODE ¼ 0). Also, the banded option should not be used if the boundary conditions involve
solution components at points other than the boundary and the immediately adjacent two points.

21: ALGOPTð30Þ – REAL (KIND=nag_wp) array Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then ALGOPTð1Þ should be set to 0:0. Default values will also be used for
any other elements of ALGOPT set to zero. The permissible values, default values, and meanings
are as follows:

ALGOPTð1Þ
Selects the ODE integration method to be used. If ALGOPTð1Þ ¼ 1:0, a BDF method is
used and if ALGOPTð1Þ ¼ 2:0, a Theta method is used. The default is ALGOPTð1Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 2:0, then ALGOPTðiÞ, for i ¼ 2; 3; 4, are not used.

ALGOPTð2Þ
Specifies the maximum order of the BDF integration formula to be used. ALGOPTð2Þ may
be 1:0, 2:0, 3:0, 4:0 or 5:0. The default value is ALGOPTð2Þ ¼ 5:0.

ALGOPTð3Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If ALGOPTð3Þ ¼ 1:0 a modified Newton iteration is used
and if ALGOPTð3Þ ¼ 2:0 a functional iteration method is used. If functional iteration is
selected and the integrator encounters difficulty, then there is an automatic switch to the
modified Newton iteration. The default value is ALGOPTð3Þ ¼ 1:0.
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ALGOPTð4Þ
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;NPDE, for some i or when there is no _Vi tð Þ dependence in the
coupled ODE system. If ALGOPTð4Þ ¼ 1:0, then the Petzold test is used. If
ALGOPTð4Þ ¼ 2:0, then the Petzold test is not used. The default value is
ALGOPTð4Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 1:0, then ALGOPTðiÞ, for i ¼ 5; 6; 7, are not used.

ALGOPTð5Þ
Specifies the value of Theta to be used in the Theta integration method.
0:51 � ALGOPTð5Þ � 0:99. The default value is ALGOPTð5Þ ¼ 0:55.

ALGOPTð6Þ
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If ALGOPTð6Þ ¼ 1:0, a modified Newton iteration is used
and if ALGOPTð6Þ ¼ 2:0, a functional iteration method is used. The default value is
ALGOPTð6Þ ¼ 1:0.

ALGOPTð7Þ
Specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If
ALGOPTð7Þ ¼ 1:0, then switching is allowed and if ALGOPTð7Þ ¼ 2:0, then switching is
not allowed. The default value is ALGOPTð7Þ ¼ 1:0.

ALGOPTð11Þ
Specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the argument ITASK. If ALGOPTð1Þ 6¼ 0:0, a
value of 0:0 for ALGOPTð11Þ, say, should be specified even if ITASK subsequently
specifies that tcrit will not be used.

ALGOPTð12Þ
Specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð12Þ should be set to 0:0.

ALGOPTð13Þ
Specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPTð13Þ should be set to 0:0.

ALGOPTð14Þ
Specifies the initial step size to be attempted by the integrator. If ALGOPTð14Þ ¼ 0:0, then
the initial step size is calculated internally.

ALGOPTð15Þ
Specifies the maximum number of steps to be attempted by the integrator in any one call.
If ALGOPTð15Þ ¼ 0:0, then no limit is imposed.

ALGOPTð23Þ
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If ALGOPTð23Þ ¼ 1:0, a modified Newton
iteration is used and if ALGOPTð23Þ ¼ 2:0, functional iteration is used. The default value
is ALGOPTð23Þ ¼ 1:0.

ALGOPTð29Þ and ALGOPTð30Þ are used only for the sparse matrix algebra option, i.e.,
LAOPT ¼ S .

ALGOPTð29Þ
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < ALGOPTð29Þ < 1:0, with smaller values biasing the
algorithm towards maintaining sparsity at the expense of numerical stability. If
ALGOPTð29Þ lies outside the range then the default value is used. If the routines regard
the Jacobian matrix as numerically singular, then increasing ALGOPTð29Þ towards 1:0
may help, but at the cost of increased fill-in. The default value is ALGOPTð29Þ ¼ 0:1.
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ALGOPTð30Þ
Used as the relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPTð29Þ) below which an internal error is invoked. ALGOPTð30Þ must be greater
than zero, otherwise the default value is used. If ALGOPTð30Þ is greater than 1:0 no check
is made on the pivot size, and this may be a necessary option if the Jacobian matrix is
found to be numerically singular (see ALGOPTð29Þ). The default value is
ALGOPTð30Þ ¼ 0:0001.

22: REMESH – LOGICAL Input

On entry: indicates whether or not spatial remeshing should be performed.

REMESH ¼ :TRUE:
Indicates that spatial remeshing should be performed as specified.

REMESH ¼ :FALSE:
Indicates that spatial remeshing should be suppressed.

Note: REMESH should not be changed between consecutive calls to D03PSF. Remeshing can be
switched off or on at specified times by using appropriate values for the arguments NRMESH
and TRMESH at each call.

23: NXFIX – INTEGER Input

On entry: the number of fixed mesh points.

Constraint: 0 � NXFIX � NPTS� 2.

Note: the end points Xð1Þ and XðNPTSÞ are fixed automatically and hence should not be
specified as fixed points.

24: XFIXð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array XFIX must be at least max 1;NXFIXð Þ.
On entry: XFIXðiÞ, for i ¼ 1; 2; . . . ;NXFIX, must contain the value of the x coordinate at the ith
fixed mesh point.

Constraints:

XFIXðiÞ < XFIXði þ 1Þ, for i ¼ 1; 2; . . . ;NXFIX� 1;
each fixed mesh point must coincide with a user-supplied initial mesh point, that is
XFIXðiÞ ¼ XðjÞ for some j, 2 � j � NPTS� 1..

Note: the positions of the fixed mesh points in the array XðNPTSÞ remain fixed during
remeshing, and so the number of mesh points between adjacent fixed points (or between fixed
points and end points) does not change. You should take this into account when choosing the
initial mesh distribution.

25: NRMESH – INTEGER Input

On entry: specifies the spatial remeshing frequency and criteria for the calculation and adoption
of a new mesh.

NRMESH < 0
Indicates that a new mesh is adopted according to the argument DXMESH. The mesh is
tested every NRMESHj j timesteps.

NRMESH ¼ 0
Indicates that remeshing should take place just once at the end of the first time step
reached when t > TRMESH.

NRMESH > 0
Indicates that remeshing will take place every NRMESH time steps, with no testing using
DXMESH.
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Note: NRMESH may be changed between consecutive calls to D03PSF to give greater flexibility
over the times of remeshing.

26: DXMESH – REAL (KIND=nag_wp) Input

On entry: determines whether a new mesh is adopted when NRMESH is set less than zero. A
possible new mesh is calculated at the end of every NRMESHj j time steps, but is adopted only if

xnewi > xoldi þ DXMESH� xoldiþ1 � xoldi
� �

or

xnewi < xoldi � DXMESH� xoldi � xoldi�1
� �

DXMESH thus imposes a lower limit on the difference between one mesh and the next.

Constraint: DXMESH � 0:0.

27: TRMESH – REAL (KIND=nag_wp) Input

On entry: specifies when remeshing will take place when NRMESH is set to zero. Remeshing
will occur just once at the end of the first time step reached when t is greater than TRMESH.

Note: TRMESH may be changed between consecutive calls to D03PSF to force remeshing at
several specified times.

28: IPMINF – INTEGER Input

On entry: the level of trace information regarding the adaptive remeshing. Details are directed to
the current advisory message unit (see X04ABF).

IPMINF ¼ 0
No trace information.

IPMINF ¼ 1
Brief summary of mesh characteristics.

IPMINF ¼ 2
More detailed information, including old and new mesh points, mesh sizes and monitor
function values.

Constraint: IPMINF ¼ 0, 1 or 2.

29: XRATIO – REAL (KIND=nag_wp) Input

On entry: an input bound on the adjacent mesh ratio (greater than 1:0 and typically in the range
1:5 to 3:0). The remeshing routines will attempt to ensure that

xi � xi�1ð Þ=XRATIO < xiþ1 � xi < XRATIO� xi � xi�1ð Þ:
Suggested value: XRATIO ¼ 1:5.

Constraint: XRATIO > 1:0.

30: CON – REAL (KIND=nag_wp) Input

On entry: an input bound on the sub-integral of the monitor function Fmon xð Þ over each space
step. The remeshing routines will attempt to ensure thatZ xiþ1

xi

Fmon xð Þ dx � CON
Z xNPTS

x1

Fmon xð Þ dx;

(see Furzeland (1984)). CON gives you more control over the mesh distribution, e.g., decreasing
CON allows more clustering. A typical value is 2:0= NPTS� 1ð Þ, but you are encouraged to
experiment with different values. Its value is not critical and the mesh should be qualitatively
correct for all values in the range given below.
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Suggested value: CON ¼ 2:0= NPTS� 1ð Þ.
Constraint: 0:1= NPTS� 1ð Þ � CON � 10:0= NPTS� 1ð Þ.

31: MONITF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONITF must supply and evaluate a remesh monitor function to indicate the solution behaviour
of interest.

If you specify REMESH ¼ :FALSE:, i.e., no remeshing, then MONITF will not be called and the
dummy routine D03PEL may be used for MONITF. (D03PEL is included in the NAG Library.)

The specification of MONITF is:

SUBROUTINE MONITF (T, NPTS, NPDE, X, U, FMON)

INTEGER NPTS, NPDE
REAL (KIND=nag_wp) T, X(NPTS), U(NPDE,NPTS), FMON(NPTS)

1: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

2: NPTS – INTEGER Input

On entry: the number of mesh points in the interval a; b½ �.

3: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the current mesh. XðiÞ contains the value of xi, for i ¼ 1; 2; . . . ;NPTS.

5: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of Ui x; tð Þ at x ¼ XðjÞ and time t, for
i ¼ 1; 2; . . . ;NPDE and j ¼ 1; 2; . . . ;NPTS.

6: FMONðNPTSÞ – REAL (KIND=nag_wp) array Output

On exit: FMONðiÞ must contain the value of the monitor function Fmon xð Þ at mesh
point x ¼ XðiÞ.
Constraint: FMONðiÞ � 0:0.

MONITF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03PSF is called. Arguments denoted as Input must not be changed by
this procedure.

32: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

If IND ¼ 0, RSAVE need not be set on entry.

If IND ¼ 1, RSAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration.

33: LRSAVE – INTEGER Input

On entry: the dimension of the array RSAVE as declared in the (sub)program from which
D03PSF is called. Its size depends on the type of matrix algebra selected.

If LAOPT ¼ F , LRSAVE � NEQN� NEQNþ NEQNþ nwkres þ lenode.

If LAOPT ¼ B , LRSAVE � 3�mlu þ 1ð Þ � NEQNþ nwkres þ lenode.
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If LAOPT ¼ S , LRSAVE � 4� NEQNþ 11� NEQN=2þ 1þ nwkres þ lenode.

Where

mlu is the lower or upper half bandwidths such that
mlu ¼ 3� NPDE� 1, for PDE problems only (no coupled ODEs); or
mlu ¼ NEQN� 1, for coupled PDE/ODE problems.

nwkres ¼
NPDE� 2� NPTSþ 6� NXIþ 3� NPDEþ 26ð Þ þ NXIþ NCODE þ 7� NPTSþ NXFIX þ 1; when NCODE > 0 and NXI > 0; or
NPDE� 2� NPTSþ 3� NPDEþ 32ð Þ þ NCODEþ 7� NPTSþ NXFIXþ 2; when NCODE > 0 and NXI ¼ 0; or
NPDE� 2� NPTSþ 3� NPDEþ 32ð Þ þ 7� NPTSþ NXFIX þ 3; when NCODE ¼ 0:

8<:
lenode ¼ 6þ int ALGOPTð2Þð Þð Þ � NEQNþ 50; when the BDF method is used; or

9� NEQNþ 50; when the Theta method is used:



Note: when LAOPT ¼ S , the value of LRSAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LRSAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

34: ISAVEðLISAVEÞ – INTEGER array Communication Array

If IND ¼ 0, ISAVE need not be set.

If IND ¼ 1, ISAVE must be unchanged from the previous call to the routine because it contains
required information about the iteration. In particular the following components of the array
ISAVE concern the efficiency of the integration:

ISAVEð1Þ
Contains the number of steps taken in time.

ISAVEð2Þ
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

ISAVEð3Þ
Contains the number of Jacobian evaluations performed by the time integrator.

ISAVEð4Þ
Contains the order of the BDF method last used in the time integration, if applicable.
When the Theta method is used, ISAVEð4Þ contains no useful information.

ISAVEð5Þ
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

35: LISAVE – INTEGER Input

On entry: the dimension of the array ISAVE as declared in the (sub)program from which D03PSF
is called. Its size depends on the type of matrix algebra selected:

if LAOPT ¼ F , LISAVE � 25;

if LAOPT ¼ B , LISAVE � NEQNþ NXFIXþ 25;

if LAOPT ¼ S , LISAVE � 25� NEQNþ NXFIXþ 25.

Note: when using the sparse option, the value of LISAVE may be too small when supplied to the
integrator. An estimate of the minimum size of LISAVE is printed on the current error message
unit if ITRACE > 0 and the routine returns with IFAIL ¼ 15.

36: ITASK – INTEGER Input

On entry: the task to be performed by the ODE integrator.

ITASK ¼ 1
Normal computation of output values U at t ¼ TOUT (by overshooting and interpolating).
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ITASK ¼ 2
Take one step in the time direction and return.

ITASK ¼ 3
Stop at first internal integration point at or beyond t ¼ TOUT.

ITASK ¼ 4
Normal computation of output values U at t ¼ TOUT but without overshooting t ¼ tcrit
where tcrit is described under the argument ALGOPT.

ITASK ¼ 5
Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument ALGOPT.

Constraint: ITASK ¼ 1, 2, 3, 4 or 5.

37: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PSF and the underlying ODE solver.
ITRACE may take the value �1, 0, 1, 2 or 3.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages from the PDE solver are printed on the current error message unit
(see X04AAF).

ITRACE > 0
Output from the underlying ODE solver is printed on the current advisory message unit
(see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and
the time integration during the computation of the ODE system.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. You are advised to set
ITRACE ¼ 0, unless you are experienced with Sub-chapter D02M–N.

38: IND – INTEGER Input/Output

On entry: indicates whether this is a continuation call or a new integration.

IND ¼ 0
Starts or restarts the integration in time.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
arguments TOUT, IFAIL, NRMESH and TRMESH may be reset between calls to D03PSF.

Constraint: IND ¼ 0 or 1.

On exit: IND ¼ 1.

39: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TS � TOUT,
or TOUT� TS is too small,
or ITASK 6¼ 1, 2, 3, 4 or 5,
or at least one of the coupling points defined in array XI is outside the interval

[Xð1Þ;XðNPTSÞ],
or the coupling points are not in strictly increasing order,
or NPTS < 3,
or NPDE < 1,
or LAOPT 6¼ F , B or S ,
or ITOL 6¼ 1, 2, 3 or 4,
or IND 6¼ 0 or 1,
or mesh points XðiÞ are badly ordered,
or LRSAVE is too small,
or LISAVE is too small,
or NCODE and NXI are incorrectly defined,
or IND ¼ 1 on initial entry to D03PSF,
or NEQN 6¼ NPDE� NPTSþ NCODE,
or an element of RTOL or ATOL < 0:0,
or corresponding elements of RTOL and ATOL are both 0:0,
or NORM 6¼ 1 or 2 ,
or NXFIX not in the range 0 to NPTS� 2,
or fixed mesh point(s) do not coincide with any of the user-supplied mesh points,
or DXMESH < 0:0,
or IPMINF 6¼ 0, 1 or 2,
or XRATIO � 1:0,
or CON not in the range 0:1= NPTS� 1ð Þ to 10:0= NPTS� 1ð Þ.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and
RTOL, across the integration range from the current point t ¼ TS. The components of U contain
the computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate. Incorrect specification of
boundary conditions may also result in this error.

IFAIL ¼ 4

In setting up the ODE system, the internal initialization routine was unable to initialize the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in
one of PDEDEF, NUMFLX, BNDARY or ODEDEF, when the residual in the underlying ODE
solver was being evaluated. Incorrect specification of boundary conditions may also result in this
error.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. Check the problem
formulation.
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IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least one of
PDEDEF, NUMFLX, BNDARY or ODEDEF. Integration was successful as far as t ¼ TS.

IFAIL ¼ 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In one of PDEDEF, NUMFLX, BNDARY or ODEDEF, IRES was set to an invalid value.

IFAIL ¼ 9 (D02NNF)

A serious error has occurred in an internal call to the specified routine. Check the problem
specification and all arguments and array dimensions. Setting ITRACE ¼ 1 may provide more
information. If the problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL
is unlikely to produce any change in the computed solution. (Only applies when you are not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current advisory message unit when ITRACE � 1). If using
the sparse matrix algebra option, the values of ALGOPTð29Þ and ALGOPTð30Þ may be
inappropriate.

IFAIL ¼ 12

In solving the ODE system, the maximum number of steps specified in ALGOPTð15Þ have been
taken.

IFAIL ¼ 13

Some error weights wi became zero during the time integration (see the description of ITOL).
Pure relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has
become zero. The integration was successful as far as t ¼ TS.

IFAIL ¼ 14

One or more of the functions Pi;j, Di or Ci was detected as depending on time derivatives, which
is not permissible.

IFAIL ¼ 15

When using the sparse option, the value of LISAVE or LRSAVE was not sufficient (more
detailed information may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 16

REMESH has been changed between calls to D03PSF.

IFAIL ¼ 17

FMON is negative at one or more mesh points, or zero mesh spacing has been obtained due to an
inappropriate choice of monitor function.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PSF controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of
varying the accuracy arguments, ATOL and RTOL.

8 Parallelism and Performance

D03PSF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03PSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03PSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

D03PSF is designed to solve systems of PDEs in conservative form, with optional source terms which
are independent of space derivatives, and optional second-order diffusion terms. The use of the routine
to solve systems which are not naturally in this form is discouraged, and you are advised to use one of
the central-difference scheme routines for such problems.

You should be aware of the stability limitations for hyperbolic PDEs. For most problems with small
error tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum
time step should be imposed using ALGOPTð13Þ. It is worth experimenting with this argument,
particularly if the integration appears to progress unrealistically fast (with large time steps). Setting the
maximum time step to the minimum mesh size is a safe measure, although in some cases this may be
too restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms
stable and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-
physical speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is
essential to employ a very fine mesh for problems with source terms and discontinuities, and to check
for non-physical propagation speeds by comparing results for different mesh sizes. Further details and
an example can be found in Pennington and Berzins (1994).
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The time taken depends on the complexity of the system, the accuracy requested, and the frequency of
the mesh updates. For a given system with fixed accuracy and mesh-update frequency it is
approximately proportional to NEQN.

10 Example

For this routine two examples are presented, with a main program and two example problems given in
Example 1 (EX1) and Example 2 (EX2).

Example 1 (EX1)

This example is a simple model of the advection and diffusion of a cloud of material:

@U

@t
þW@U

@x
¼ C@

2U

@x2
;

for x 2 0; 1½ � and t � 0 � 0:3. In this example the constant wind speed W ¼ 1 and the diffusion
coefficient C ¼ 0:002.

The cloud does not reach the boundaries during the time of integration, and so the two (physical)
boundary conditions are simply U 0; tð Þ ¼ U 1; tð Þ ¼ 0:0, and the initial condition is

U x; 0ð Þ ¼ sin 	
x� a
b� a

� �
; a � x � b;

and U x; 0ð Þ ¼ 0 elsewhere, where a ¼ 0:2 and b ¼ 0:4.

The numerical flux is simply F̂ ¼WUL.

The monitor function for remeshing is taken to be the absolute value of the second derivative of U .

Example 2 (EX2)

This example is a linear advection equation with a nonlinear source term and discontinuous initial
profile:

@u

@t
þ @u
@x
¼ �pu u� 1ð Þ u� 1

2

� �
;

for 0 � x � 1 and t � 0. The discontinuity is modelled by a ramp function of width 0:01 and gradient
100, so that the exact solution at any time t � 0 is

u x; tð Þ ¼ 1:0þmax min �; 0ð Þ;�1ð Þ;

where � ¼ 100 0:1� xþ tð Þ. The initial profile is given by the exact solution. The characteristic points
into the domain at x ¼ 0 and out of the domain at x ¼ 1, and so a physical boundary condition
u 0; tð Þ ¼ 1 is imposed at x ¼ 0, with a numerical boundary condition at x ¼ 1 which can be specified as
u 1; tð Þ ¼ 0 since the discontinuity does not reach x ¼ 1 during the time of integration.

The numerical flux is simply F̂ ¼ UL at all times.

The remeshing monitor function (described below) is chosen to create an increasingly fine mesh
towards the discontinuity in order to ensure good resolution of the discontinuity, but without loss of
efficiency in the surrounding regions. However, refinement must be limited so that the time step
required for stability does not become unrealistically small. The region of refinement must also keep up
with the discontinuity as it moves across the domain, and hence it cannot be so small that the
discontinuity moves out of the refined region between remeshing.

The above requirements mean that the use of the first or second spatial derivative of U for the monitor
function is inappropriate; the large relative size of either derivative in the region of the discontinuity
leads to extremely small mesh-spacing in a very limited region, and the solution is then far more
expensive than for a very fine fixed mesh.

An alternative monitor function based on a cosine function proves very successful. It is only semi-
automatic as it requires some knowledge of the solution (for problems without an exact solution an
initial approximate solution can be obtained using a coarse fixed mesh). On each call to MONITF the
discontinuity is located by finding the maximum spatial derivative of the solution. On the first call the
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desired width of the region of nonzero monitor function is set (this can be changed at a later time if
desired). Then on each call the monitor function is assigned using a cosine function so that it has a
value of one at the discontinuity down to zero at the edges of the predetermined region of refinement,
and zero outside the region. Thus the monitor function and the subsequent refinement are limited, and
the region is large enough to ensure that there is always sufficient refinement at the discontinuity.

10.1 Program Text

! D03PSF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03psfe_mod

! D03PSF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndry1, bndry2, exact, monit1, &

monit2, nmflx1, nmflx2, pdef1, &
pdef2, uvin1, uvin2

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: half = 0.5_nag_wp
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: itrace = 0, ncode = 0, nin = 5, &

nout = 6, npde = 1, nxfix = 0, &
nxi = 0

Contains
Subroutine exact(t,u,x,npts)

! Exact solution (for comparison and b.c. purposes)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(1,npts)
Real (Kind=nag_wp), Intent (In) :: x(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: del, psi, rm, rn, s
Integer :: i

! .. Executable Statements ..
s = 0.1_nag_wp
del = 0.01_nag_wp
rm = -one/del
rn = one + s/del
Do i = 1, npts

psi = x(i) - t
If (psi<s) Then

u(1,i) = one
Else If (psi>(del+s)) Then

u(1,i) = zero
Else

u(1,i) = rm*psi + rn
End If

End Do
Return

End Subroutine exact
Subroutine uvin1(npde,npts,nxi,x,xi,u,ncode,v)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Integer, Intent (In) :: ncode, npde, npts, nxi

! .. Array Arguments ..
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Real (Kind=nag_wp), Intent (Out) :: u(npde,npts), v(ncode)
Real (Kind=nag_wp), Intent (In) :: x(npts), xi(nxi)

! .. Local Scalars ..
Real (Kind=nag_wp) :: pi, tmp
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
tmp = zero
pi = x01aaf(tmp)
Do i = 1, npts

If (x(i)>0.2_nag_wp .And. x(i)<=0.4_nag_wp) Then
tmp = pi*(5.0_nag_wp*x(i)-one)
u(1,i) = sin(tmp)

Else
u(1,i) = zero

End If
End Do
Return

End Subroutine uvin1
Subroutine pdef1(npde,t,x,u,ux,ncode,v,vdot,p,c,d,s,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(npde), d(npde), p(npde,npde), &

s(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde), v(ncode), &

vdot(ncode)
! .. Executable Statements ..

p(1,1) = one
c(1) = 0.002_nag_wp
d(1) = ux(1)
s(1) = zero
Return

End Subroutine pdef1
Subroutine bndry1(npde,npts,t,x,u,ncode,v,vdot,ibnd,g,ires)

! Zero solution at both boundaries

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde, npts
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde,npts), v(ncode), &

vdot(ncode), x(npts)
! .. Executable Statements ..

If (ibnd==0) Then
g(1) = u(1,1)

Else
g(1) = u(1,npts)

End If
Return

End Subroutine bndry1
Subroutine monit1(t,npts,npde,x,u,fmon)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fmon(npts)
Real (Kind=nag_wp), Intent (In) :: u(npde,npts), x(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h1, h2, h3
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: abs
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! .. Executable Statements ..
Do i = 2, npts - 1

h1 = x(i) - x(i-1)
h2 = x(i+1) - x(i)
h3 = half*(x(i+1)-x(i-1))

! Second derivatives ..
fmon(i) = abs(((u(1,i+1)-u(1,i))/h2-(u(1,i)-u(1,i-1))/h1)/h3)

End Do
fmon(1) = fmon(2)
fmon(npts) = fmon(npts-1)
Return

End Subroutine monit1
Subroutine nmflx1(npde,t,x,ncode,v,uleft,uright,flux,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: flux(npde)
Real (Kind=nag_wp), Intent (In) :: uleft(npde), uright(npde), v(ncode)

! .. Executable Statements ..
flux(1) = uleft(1)
Return

End Subroutine nmflx1
Subroutine uvin2(npde,npts,nxi,x,xi,u,ncode,v)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncode, npde, npts, nxi

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npde,npts), v(ncode)
Real (Kind=nag_wp), Intent (In) :: x(npts), xi(nxi)

! .. Local Scalars ..
Real (Kind=nag_wp) :: t

! .. Executable Statements ..
t = zero
Call exact(t,u,x,npts)
Return

End Subroutine uvin2
Subroutine pdef2(npde,t,x,u,ux,ncode,v,vdot,p,c,d,s,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(npde), d(npde), p(npde,npde), &

s(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde), v(ncode), &

vdot(ncode)
! .. Executable Statements ..

p(1,1) = one
c(1) = zero
d(1) = zero
s(1) = -100.0_nag_wp*u(1)*(u(1)-one)*(u(1)-half)
Return

End Subroutine pdef2
Subroutine bndry2(npde,npts,t,x,u,ncode,v,vdot,ibnd,g,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde, npts
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde,npts), v(ncode), &

vdot(ncode), x(npts)
! .. Local Arrays ..

Real (Kind=nag_wp) :: ue(1,1)
! .. Executable Statements ..
! Solution known to be constant at both boundaries
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If (ibnd==0) Then
Call exact(t,ue,x(1),1)
g(1) = ue(1,1) - u(1,1)

Else
Call exact(t,ue,x(npts),1)
g(1) = ue(1,1) - u(1,npts)

End If
Return

End Subroutine bndry2
Subroutine nmflx2(npde,t,x,ncode,v,uleft,uright,flux,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: flux(npde)
Real (Kind=nag_wp), Intent (In) :: uleft(npde), uright(npde), v(ncode)

! .. Executable Statements ..
flux(1) = uleft(1)
Return

End Subroutine nmflx2
Subroutine monit2(t,npts,npde,x,u,fmon)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fmon(npts)
Real (Kind=nag_wp), Intent (In) :: u(npde,npts), x(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h1, pi, ux, uxmax, xa, xl, xmax, xr, &

xx
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: abs, cos

! .. Executable Statements ..
xx = zero
pi = x01aaf(xx)

! Locate shock ..
uxmax = zero
xmax = zero
Do i = 2, npts - 1

h1 = x(i) - x(i-1)
ux = abs((u(1,i)-u(1,i-1))/h1)
If (ux>uxmax) Then

uxmax = ux
xmax = x(i)

End If
End Do

! Desired width of nonzero region of monitor function
xa = 7.0_nag_wp/60.0_nag_wp

xl = xmax - xa
xr = xmax + xa

! Assign monitor function ..
Do i = 1, npts

If (x(i)>xl .And. x(i)<xr) Then
fmon(i) = one + cos(pi*(x(i)-xmax)/xa)

Else
fmon(i) = zero

End If
End Do
Return

End Subroutine monit2
End Module d03psfe_mod
Program d03psfe
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! D03PSF Example Main Program

! .. Use Statements ..
Use d03psfe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’D03PSF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: d03pek, d03psf, d03pzf, nag_wp
Use d03psfe_mod, Only: bndry1, itrace, monit1, ncode, nin, nmflx1, &

npde, nxfix, nxi, one, pdef1, uvin1, zero
! .. Local Scalars ..

Real (Kind=nag_wp) :: con, dxmesh, tout, trmesh, ts, &
xratio

Integer :: i, ifail, ind, intpts, ipminf, it, &
itask, itol, itype, lenode, lisave, &
lrsave, m, mlu, neqn, npts, nrmesh, &
nwkres

Logical :: remesh
Character (1) :: laopt, norm

! .. Local Arrays ..
Real (Kind=nag_wp) :: algopt(30), atol(1), rtol(1), &

xfix(1), xi(1)
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:,:), uout(:,:,:), &

x(:), xout(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 1’

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts, intpts, itype
nwkres = npde*(3*npts+3*npde+32) + 7*npts + 3
mlu = 3*npde - 1
neqn = npde*npts + ncode
lenode = 11*neqn + 50
lisave = 25 + nxfix + neqn
lrsave = (3*mlu+1)*neqn + nwkres + lenode

Allocate (rsave(lrsave),u(npde,npts),uout(npde,intpts,itype),x(npts), &
xout(intpts),isave(lisave))

Read (nin,*) xout(1:intpts)
Read (nin,*) itol
Read (nin,*) norm
Read (nin,*) atol(1), rtol(1)

! Initialize mesh
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do
xfix(1) = zero

! Set remesh parameters
remesh = .True.
nrmesh = 3
dxmesh = zero
trmesh = zero
con = 2.0_nag_wp/real(npts-1,kind=nag_wp)
xratio = 1.5_nag_wp
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ipminf = 0

xi(1) = zero
laopt = ’B’
ind = 0
itask = 1

algopt(1:30) = zero
! b.d.f. integration

algopt(1) = one
algopt(13) = 0.005_nag_wp

! Loop over output value of t

ts = zero
tout = zero
Do it = 1, 3

tout = real(it,kind=nag_wp)*0.1_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03psf(npde,ts,tout,pdef1,nmflx1,bndry1,uvin1,u,npts,x,ncode, &

d03pek,nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,remesh,nxfix, &
xfix,nrmesh,dxmesh,trmesh,ipminf,xratio,con,monit1,rsave,lrsave, &
isave,lisave,itask,itrace,ind,ifail)

If (it==1) Then
Write (nout,*)
Write (nout,99998) npts, atol, rtol

End If

Write (nout,99999) ts
Write (nout,99996) xout(1:intpts)

! Interpolate at output points ..
m = 0

ifail = 0
Call d03pzf(npde,m,u,npts,x,xout,intpts,itype,uout,ifail)

Write (nout,99995) uout(1,1:intpts,1)
End Do

Write (nout,99997) isave(1), isave(2), isave(3), isave(5)

Return

99999 Format (’ T = ’,F6.3)
99998 Format (/,’ NPTS = ’,I4,’ ATOL = ’,E10.3,’ RTOL = ’,E10.3,/)
99997 Format (’ Number of integration steps in time = ’,I6,/,’ Number ’, &

’of function evaluations = ’,I6,/,’ Number of Jacobian ’, &
’evaluations =’,I6,/,’ Number of iterations = ’,I6)

99996 Format (1X,’X ’,7F9.4)
99995 Format (1X,’Approx U ’,7F9.4,/)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d03pek, d03psf, d03pzf, nag_wp
Use d03psfe_mod, Only: bndry2, exact, itrace, monit2, ncode, nin, &

nmflx2, npde, nxfix, nxi, one, pdef2, uvin2, &
zero

! .. Local Scalars ..
Real (Kind=nag_wp) :: con, dxmesh, tout, trmesh, ts, &

xratio
Integer :: i, ifail, ind, intpts, ipminf, it, &

itask, itol, itype, lenode, lisave, &
lrsave, m, mlu, neqn, npts, nrmesh, &
nwkres

Logical :: remesh
Character (1) :: laopt, norm
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! .. Local Arrays ..
Real (Kind=nag_wp) :: algopt(30), atol(1), rtol(1), &

xfix(1), xi(1)
Real (Kind=nag_wp), Allocatable :: rsave(:), u(:), ue(:,:), &

uout(:,:,:), x(:), xout(:)
Integer, Allocatable :: isave(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 2’

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts, intpts, itype
nwkres = npde*(3*npts+3*npde+32) + 7*npts + 3
mlu = 3*npde - 1
neqn = npde*npts + ncode
lenode = 11*neqn + 50
lisave = 25 + nxfix + neqn
lrsave = (3*mlu+1)*neqn + nwkres + lenode

Allocate (rsave(lrsave),u(neqn),ue(1,intpts),uout(1,intpts,itype), &
x(npts),xout(intpts),isave(lisave))

Read (nin,*) xout(1:intpts)
Read (nin,*) itol
Read (nin,*) norm
Read (nin,*) atol(1), rtol(1)

! Initialize mesh
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do
xfix(1) = zero

! Set remesh parameters
remesh = .True.
nrmesh = 5
dxmesh = zero
con = one/real(npts-1,kind=nag_wp)
xratio = 1.5_nag_wp
ipminf = 0

xi(1) = zero
laopt = ’B’
ind = 0
itask = 1

algopt(1:30) = zero
! Theta integration ..

algopt(1) = 2.0_nag_wp
algopt(6) = 2.0_nag_wp
algopt(7) = 2.0_nag_wp

! Max. time step ..
algopt(13) = 2.5E-3_nag_wp

ts = zero
tout = zero
Do it = 1, 2

tout = real(it,kind=nag_wp)*0.2_nag_wp

ifail = 0
Call d03psf(npde,ts,tout,pdef2,nmflx2,bndry2,uvin2,u,npts,x,ncode, &

d03pek,nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,remesh,nxfix, &
xfix,nrmesh,dxmesh,trmesh,ipminf,xratio,con,monit2,rsave,lrsave, &
isave,lisave,itask,itrace,ind,ifail)

If (it==1) Then
Write (nout,*)
Write (nout,99998) npts, atol, rtol
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End If

Write (nout,99999) ts
Write (nout,99996)

! Interpolate at output points ..
m = 0

ifail = 0
Call d03pzf(npde,m,u,npts,x,xout,intpts,itype,uout,ifail)

! Check against exact solution ..
Call exact(tout,ue,xout,intpts)
Do i = 1, intpts

Write (nout,99995) xout(i), uout(1,i,1), ue(1,i)
End Do

End Do

Write (nout,99997) isave(1), isave(2), isave(3), isave(5)

Return

99999 Format (’ T = ’,F6.3)
99998 Format (/,’ NPTS = ’,I4,’ ATOL = ’,E10.3,’ RTOL = ’,E10.3,/)
99997 Format (/,’ Number of integration steps in time = ’,I6,/,’ Number ’, &

’of function evaluations = ’,I6,/,’ Number of Jacobian ’, &
’evaluations =’,I6,/,’ Number of iterations = ’,I6)

99996 Format (8X,’X’,8X,’Approx U’,4X,’Exact U’,/)
99995 Format (3(3X,F9.4))

End Subroutine ex2
End Program d03psfe

10.2 Program Data

D03PSF Example Program Data
61 7 1 : npts, intpts, itype
0.2 0.3 0.4 0.5 0.6 0.7 0.8 : xout(1:intpts)
1 : itol
’1’ : norm
0.1E-3 0.1E-3 : atol(1), rtol(1)

61 7 1 : npts, intpts, itype
0.0 0.3 0.4 0.5 0.6 0.7 1.0 : xout(1:intpts)
1 : itol
’1’ : norm
0.5E-3 0.5E-1 : atol(1), rtol(1)

10.3 Program Results

D03PSF Example Program Results

Example 1

NPTS = 61 ATOL = 0.100E-03 RTOL = 0.100E-03

T = 0.100
X 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
Approx U 0.0000 0.1198 0.9461 0.1182 0.0000 0.0000 0.0000

T = 0.200
X 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
Approx U 0.0000 0.0007 0.1631 0.9015 0.1629 0.0001 0.0000

T = 0.300
X 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
Approx U 0.0000 0.0000 0.0025 0.1924 0.8596 0.1946 0.0002

Number of integration steps in time = 92
Number of function evaluations = 443
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Number of Jacobian evaluations = 39
Number of iterations = 231

Example 2

NPTS = 61 ATOL = 0.500E-03 RTOL = 0.500E-01

T = 0.200
X Approx U Exact U

0.0000 1.0000 1.0000
0.3000 0.9536 1.0000
0.4000 0.0000 0.0000
0.5000 0.0000 0.0000
0.6000 0.0000 0.0000
0.7000 -0.0000 0.0000
1.0000 0.0000 0.0000

T = 0.400
X Approx U Exact U

0.0000 1.0000 1.0000
0.3000 1.0000 1.0000
0.4000 1.0000 1.0000
0.5000 0.9750 1.0000
0.6000 -0.0000 0.0000
0.7000 0.0000 0.0000
1.0000 0.0000 0.0000

Number of integration steps in time = 672
Number of function evaluations = 1515
Number of Jacobian evaluations = 1
Number of iterations = 2

Example Program 1
Advection and Diffusion of a Cloud of Material

u(
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Example Program 2
Linear Advection Equation with Non-linear Source Term

u(
x,

t)
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NAG Library Routine Document

D03PUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PUF calculates a numerical flux function using Roe's Approximate Riemann Solver for the Euler
equations in conservative form. It is designed primarily for use with the upwind discretization schemes
D03PFF, D03PLF or D03PSF, but may also be applicable to other conservative upwind schemes
requiring numerical flux functions.

2 Specification

SUBROUTINE D03PUF (ULEFT, URIGHT, GAMMA, FLUX, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) ULEFT(3), URIGHT(3), GAMMA, FLUX(3)

3 Description

D03PUF calculates a numerical flux function at a single spatial point using Roe's Approximate Riemann
Solver (see Roe (1981)) for the Euler equations (for a perfect gas) in conservative form. You must
supply the left and right solution values at the point where the numerical flux is required, i.e., the initial
left and right states of the Riemann problem defined below.

In the routines D03PFF, D03PLF and D03PSF, the left and right solution values are derived
automatically from the solution values at adjacent spatial points and supplied to the subroutine
argument NUMFLX from which you may call D03PUF.

The Euler equations for a perfect gas in conservative form are:

@U

@t
þ @F
@x
¼ 0; ð1Þ

with

U ¼
�
m
e

24 35 and F ¼
m

m2

� þ � � 1ð Þ e� m2

2�

� �
me
� þ m

� � � 1ð Þ e� m2

2�

� �
2664

3775; ð2Þ

where � is the density, m is the momentum, e is the specific total energy, and � is the (constant) ratio of
specific heats. The pressure p is given by

p ¼ � � 1ð Þ e� �u
2

2

� �
; ð3Þ

where u ¼ m=� is the velocity.

The rou t ine ca lcu la tes the Roe approximat ion to the numer ica l flux func t ion
F UL; URð Þ ¼ F U� UL; URð Þð Þ, where U ¼ UL and U ¼ UR are the left and right solution values, and
U� UL; URð Þ is the intermediate state ! 0ð Þ arising from the similarity solution U y; tð Þ ¼ ! y=tð Þ of the
Riemann problem defined by

@U

@t
þ @F
@y
¼ 0; ð4Þ

with U and F as in (2), and initial piecewise constant values U ¼ UL for y < 0 and U ¼ UR for y > 0.
The spatial domain is �1 < y <1, where y ¼ 0 is the point at which the numerical flux is required.
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This implementation of Roe's scheme for the Euler equations uses the so-called argument-vector
method described in Roe (1981).

4 References

LeVeque R J (1990) Numerical Methods for Conservation Laws BirkhÌuser Verlag

Quirk J J (1994) A contribution to the great Riemann solver debate Internat. J. Numer. Methods Fluids
18 555–574

Roe P L (1981) Approximate Riemann solvers, parameter vectors, and difference schemes J. Comput.
Phys. 43 357–372

5 Arguments

1: ULEFTð3Þ – REAL (KIND=nag_wp) array Input

On entry: ULEFTðiÞ must contain the left value of the component Ui, for i ¼ 1; 2; 3. That is,
ULEFTð1Þ must contain the left value of �, ULEFTð2Þ must contain the left value of m and
ULEFTð3Þ must contain the left value of e.

Constraints:

ULEFTð1Þ � 0:0;
Left pressure, pl � 0:0, where pl is calculated using (3).

2: URIGHTð3Þ – REAL (KIND=nag_wp) array Input

On entry: URIGHTðiÞ must contain the right value of the component Ui, for i ¼ 1; 2; 3. That is,
URIGHTð1Þ must contain the right value of �, URIGHTð2Þ must contain the right value of m and
URIGHTð3Þ must contain the right value of e.

Constraints:

URIGHTð1Þ � 0:0;
Right pressure, pr � 0:0, where pr is calculated using (3).

3: GAMMA – REAL (KIND=nag_wp) Input

On entry: the ratio of specific heats, �.

Constraint: GAMMA > 0:0.

4: FLUXð3Þ – REAL (KIND=nag_wp) array Output

On exit: FLUXðiÞ contains the numerical flux component F̂i, for i ¼ 1; 2; 3.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: if the left and/or right values of � or p (from (3)) are found to be negative, then the routine
will terminate with an error exit (IFAIL ¼ 2). If the routine is being called from the NUMFLX
etc., then a soft fail option (IFAIL ¼ 1 or �1) is recommended so that a recalculation of the
current time step can be forced using the NUMFLX argument IRES (see D03PFF or D03PLF).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, GAMMA � 0:0.

IFAIL ¼ 2

On entry, the left and/or right density or pressure value is less than 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PUF performs an exact calculation of the Roe numerical flux function, and so the result will be
accurate to machine precision.

8 Parallelism and Performance

D03PUF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03PUF is not threaded in any implementation.

9 Further Comments

D03PUF must only be used to calculate the numerical flux for the Euler equations in exactly the form
given by (2), with ULEFTðiÞ and URIGHTðiÞ containing the left and right values of �;m and e, for
i ¼ 1; 2; 3, respectively. It should be noted that Roe's scheme, in common with all Riemann solvers,
may be unsuitable for some problems (see Quirk (1994) for examples). In particular Roe's scheme does
not satisfy an ‘entropy condition’ which guarantees that the approximate solution of the PDE converges
to the correct physical solution, and hence it may admit non-physical solutions such as expansion
shocks. The algorithm used in this routine does not detect or correct any entropy violation. The time
taken is independent of the input arguments.

10 Example

See Section 10 in D03PLF.
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NAG Library Routine Document

D03PVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PVF calculates a numerical flux function using Osher's Approximate Riemann Solver for the Euler
equations in conservative form. It is designed primarily for use with the upwind discretization schemes
D03PFF, D03PLF or D03PSF, but may also be applicable to other conservative upwind schemes
requiring numerical flux functions.

2 Specification

SUBROUTINE D03PVF (ULEFT, URIGHT, GAMMA, PATH, FLUX, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) ULEFT(3), URIGHT(3), GAMMA, FLUX(3)
CHARACTER(1) PATH

3 Description

D03PVF calculates a numerical flux function at a single spatial point using Osher's Approximate
Riemann Solver (see Hemker and Spekreijse (1986) and Pennington and Berzins (1994)) for the Euler
equations (for a perfect gas) in conservative form. You must supply the left and right solution values at
the point where the numerical flux is required, i.e., the initial left and right states of the Riemann
problem defined below. In the routines D03PFF, D03PLF and D03PSF, the left and right solution values
are derived automatically from the solution values at adjacent spatial points and supplied to the
subroutine argument NUMFLX from which you may call D03PVF.

The Euler equations for a perfect gas in conservative form are:

@U

@t
þ @F
@x
¼ 0; ð1Þ

with

U ¼
�
m
e

24 35 and F ¼
m

m2

� þ � � 1ð Þ e� m2

2�

� �
me
� þ m

� � � 1ð Þ e� m2

2�

� �
2664

3775; ð2Þ

where � is the density, m is the momentum, e is the specific total energy, and � is the (constant) ratio of
specific heats. The pressure p is given by

p ¼ � � 1ð Þ e� �u
2

2

� �
; ð3Þ

where u ¼ m=� is the velocity.

The rout ine calcula tes the Osher approximation to the numerical flux funct ion
F UL; URð Þ ¼ F U� UL; URð Þð Þ, where U ¼ UL and U ¼ UR are the left and right solution values, and
U� UL; URð Þ is the intermediate state ! 0ð Þ arising from the similarity solution U y; tð Þ ¼ ! y=tð Þ of the
Riemann problem defined by

@U

@t
þ @F
@y
¼ 0; ð4Þ

with U and F as in (2), and initial piecewise constant values U ¼ UL for y < 0 and U ¼ UR for y > 0.
The spatial domain is �1 < y <1, where y ¼ 0 is the point at which the numerical flux is required.
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Osher's solver carries out an integration along a path in the phase space of U consisting of subpaths
which are piecewise parallel to the eigenvectors of the Jacobian of the PDE system. There are two
variants of the Osher solver termed O (original) and P (physical), which differ in the order in which the
subpaths are taken. The P-variant is generally more efficient, but in some rare cases may fail (see
Hemker and Spekreijse (1986) for details). The argument PATH specifies which variant is to be used.
The algorithm for Osher's solver for the Euler equations is given in detail in the Appendix of
Pennington and Berzins (1994).

4 References

Hemker P W and Spekreijse S P (1986) Multiple grid and Osher's scheme for the efficient solution of
the steady Euler equations Applied Numerical Mathematics 2 475–493

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

Quirk J J (1994) A contribution to the great Riemann solver debate Internat. J. Numer. Methods Fluids
18 555–574

5 Arguments

1: ULEFTð3Þ – REAL (KIND=nag_wp) array Input

On entry: ULEFTðiÞ must contain the left value of the component Ui, for i ¼ 1; 2; 3. That is,
ULEFTð1Þ must contain the left value of �, ULEFTð2Þ must contain the left value of m and
ULEFTð3Þ must contain the left value of e.

Constraints:

ULEFTð1Þ � 0:0;
Left pressure, pl � 0:0, where pl is calculated using (3).

2: URIGHTð3Þ – REAL (KIND=nag_wp) array Input

On entry: URIGHTðiÞ must contain the right value of the component Ui, for i ¼ 1; 2; 3. That is,
URIGHTð1Þ must contain the right value of �, URIGHTð2Þ must contain the right value of m and
URIGHTð3Þ must contain the right value of e.

Constraints:

URIGHTð1Þ � 0:0;
Right pressure, pr � 0:0, where pr is calculated using (3).

3: GAMMA – REAL (KIND=nag_wp) Input

On entry: the ratio of specific heats, �.

Constraint: GAMMA > 0:0.

4: PATH – CHARACTER(1) Input

On entry: the variant of the Osher scheme.

PATH ¼ O
Original.

PATH ¼ P
Physical.

Constraint: PATH ¼ O or P .

5: FLUXð3Þ – REAL (KIND=nag_wp) array Output

On exit: FLUXðiÞ contains the numerical flux component F̂i, for i ¼ 1; 2; 3.
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: if the left and/or right values of � or p (from (3)) are found to be negative, then the routine
will terminate with an error exit (IFAIL ¼ 2). If the routine is being called from the NUMFLX
etc., then a soft fail option (IFAIL ¼ 1 or �1) is recommended so that a recalculation of the
current time step can be forced using the NUMFLX argument IRES (see D03PFF or D03PLF).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, GAMMA � 0:0,
or PATH 6¼ O or P .

IFAIL ¼ 2

On entry, the left and/or right density or pressure value is less than 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PVF performs an exact calculation of the Osher numerical flux function, and so the result will be
accurate to machine precision.

8 Parallelism and Performance

D03PVF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03PVF is not threaded in any implementation.
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9 Further Comments

D03PVF must only be used to calculate the numerical flux for the Euler equations in exactly the form
given by (2), with ULEFTðiÞ and URIGHTðiÞ containing the left and right values of �;m and e, for
i ¼ 1; 2; 3, respectively. It should be noted that Osher's scheme, in common with all Riemann solvers,
may be unsuitable for some problems (see Quirk (1994) for examples). The time taken depends on the
input argument PATH and on the left and right solution values, since inclusion of each subpath depends
on the signs of the eigenvalues. In general this cannot be determined in advance.

10 Example

See Section 10 in D03PLF.

D03PVF NAG Library Manual

D03PVF.4 (last) Mark 26



NAG Library Routine Document

D03PWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PWF calculates a numerical flux function using a modified HLL (Harten–Lax–van Leer)
Approximate Riemann Solver for the Euler equations in conservative form. It is designed primarily for
use with the upwind discretization schemes D03PFF, D03PLF or D03PSF, but may also be applicable to
other conservative upwind schemes requiring numerical flux functions.

2 Specification

SUBROUTINE D03PWF (ULEFT, URIGHT, GAMMA, FLUX, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) ULEFT(3), URIGHT(3), GAMMA, FLUX(3)

3 Description

D03PWF calculates a numerical flux function at a single spatial point using a modified HLL (Harten–
Lax–van Leer) Approximate Riemann Solver (see Toro (1992), Toro (1996) and Toro et al. (1994)) for
the Euler equations (for a perfect gas) in conservative form. You must supply the left and right solution
values at the point where the numerical flux is required, i.e., the initial left and right states of the
Riemann problem defined below. In D03PFF, D03PLF and D03PSF, the left and right solution values
are derived automatically from the solution values at adjacent spatial points and supplied to the
subroutine argument NUMFLX from which you may call D03PWF.

The Euler equations for a perfect gas in conservative form are:

@U

@t
þ @F
@x
¼ 0; ð1Þ

with

U ¼
�
m
e

24 35 and F ¼
m

m2

� þ � � 1ð Þ e� m2

2�

� �
me
� þ m

� � � 1ð Þ e� m2

2�

� �
2664

3775; ð2Þ

where � is the density, m is the momentum, e is the specific total energy and � is the (constant) ratio of
specific heats. The pressure p is given by

p ¼ � � 1ð Þ e� �u
2

2

� �
; ð3Þ

where u ¼ m=� is the velocity.

The routine calculates an approximation to the numerical flux function F UL; URð Þ ¼ F U� UL;URð Þð Þ,
where U ¼ UL and U ¼ UR are the left and right solution values, and U� UL; URð Þ is the intermediate
state ! 0ð Þ arising from the similarity solution U y; tð Þ ¼ ! y=tð Þ of the Riemann problem defined by

@U

@t
þ @F
@y
¼ 0; ð4Þ

with U and F as in (2), and initial piecewise constant values U ¼ UL for y < 0 and U ¼ UR for y > 0.
The spatial domain is �1 < y <1, where y ¼ 0 is the point at which the numerical flux is required.
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4 References

Toro E F (1992) The weighted average flux method applied to the Euler equations Phil. Trans. R. Soc.
Lond. A341 499–530

Toro E F (1996) Riemann Solvers and Upwind Methods for Fluid Dynamics Springer–Verlag

Toro E F, Spruce M and Spears W (1994) Restoration of the contact surface in the HLL Riemann solver
J. Shock Waves 4 25–34

5 Arguments

1: ULEFTð3Þ – REAL (KIND=nag_wp) array Input

On entry: ULEFTðiÞ must contain the left value of the component Ui, for i ¼ 1; 2; 3. That is,
ULEFTð1Þ must contain the left value of �, ULEFTð2Þ must contain the left value of m and
ULEFTð3Þ must contain the left value of e.

Constraints:

ULEFTð1Þ � 0:0;
Left pressure, pl � 0:0, where pl is calculated using (3).

2: URIGHTð3Þ – REAL (KIND=nag_wp) array Input

On entry: URIGHTðiÞ must contain the right value of the component Ui, for i ¼ 1; 2; 3. That is,
URIGHTð1Þ must contain the right value of �, URIGHTð2Þ must contain the right value of m and
URIGHTð3Þ must contain the right value of e.

Constraints:

URIGHTð1Þ � 0:0;
Right pressure, pr � 0:0, where pr is calculated using (3).

3: GAMMA – REAL (KIND=nag_wp) Input

On entry: the ratio of specific heats, �.

Constraint: GAMMA > 0:0.

4: FLUXð3Þ – REAL (KIND=nag_wp) array Output

On exit: FLUXðiÞ contains the numerical flux component F̂i, for i ¼ 1; 2; 3.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: if the left and/or right values of � or p (from (3)) are found to be negative, then the routine
will terminate with an error exit (IFAIL ¼ 2). If the routine is being called from the NUMFLX
etc., then a soft fail option (IFAIL ¼ 1 or �1) is recommended so that a recalculation of the
current time step can be forced using the NUMFLX argument IRES (see D03PFF or D03PLF).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, GAMMA � 0:0.

IFAIL ¼ 2

On entry, the left and/or right density or derived pressure value is less than 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

D03PWF performs an exact calculation of the HLL (Harten–Lax–van Leer) numerical flux function,
and so the result will be accurate to machine precision.

8 Parallelism and Performance

D03PWF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03PWF is not threaded in any implementation.

9 Further Comments

D03PWF must only be used to calculate the numerical flux for the Euler equations in exactly the form
given by (2), with ULEFTðiÞ and URIGHTðiÞ containing the left and right values of �;m and e, for
i ¼ 1; 2; 3, respectively. The time taken is independent of the input arguments.

10 Example

This example uses D03PLF and D03PWF to solve the Euler equations in the domain 0 � x � 1 for
0 < t � 0:035 with initial conditions for the primitive variables � x; tð Þ, u x; tð Þ and p x; tð Þ given by

� x; 0ð Þ ¼ 5:99924; u x; 0ð Þ ¼ 19:5975; p x; 0ð Þ ¼ 460:894; for x < 0:5;
� x; 0ð Þ ¼ 5:99242; u x; 0ð Þ ¼ �6:19633; p x; 0ð Þ ¼ 46:095; for x > 0:5:

This test problem is taken from Toro (1996) and its solution represents the collision of two strong
shocks travelling in opposite directions, consisting of a left facing shock (travelling slowly to the right),
a right travelling contact discontinuity and a right travelling shock wave. There is an exact solution to
this problem (see Toro (1996)) but the calculation is lengthy and has therefore been omitted.
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10.1 Program Text

! D03PWF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03pwfe_mod

! D03PWF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndary, numflx

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: alpha_l = 460.894_nag_wp
Real (Kind=nag_wp), Parameter, Public :: alpha_r = 46.095_nag_wp
Real (Kind=nag_wp), Parameter, Public :: beta_l = 19.5975_nag_wp
Real (Kind=nag_wp), Parameter, Public :: beta_r = 6.19633_nag_wp
Real (Kind=nag_wp), Parameter, Public :: half = 0.5_nag_wp
Integer, Parameter, Public :: itrace = 0, ncode = 0, nin = 5, &

nout = 6, npde = 3, nxi = 0
! .. Local Scalars ..

Real (Kind=nag_wp), Public, Save :: el0, er0, gamma, rl0, rr0, ul0, ur0
Contains

Subroutine bndary(npde,npts,t,x,u,ncode,v,vdot,ibnd,g,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde, npts
Integer, Intent (Inout) :: ires

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde,npts), v(ncode), &

vdot(ncode), x(npts)
! .. Executable Statements ..

If (ibnd==0) Then
g(1) = u(1,1) - rl0
g(2) = u(2,1) - ul0
g(3) = u(3,1) - el0

Else
g(1) = u(1,npts) - rr0
g(2) = u(2,npts) - ur0
g(3) = u(3,npts) - er0

End If
Return

End Subroutine bndary
Subroutine numflx(npde,t,x,ncode,v,uleft,uright,flux,ires)

! .. Use Statements ..
Use nag_library, Only: d03pwf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: flux(npde)
Real (Kind=nag_wp), Intent (In) :: uleft(npde), uright(npde), v(ncode)

! .. Local Scalars ..
Integer :: ifail

! .. Executable Statements ..
ifail = 0
Call d03pwf(uleft,uright,gamma,flux,ifail)
Return

End Subroutine numflx
End Module d03pwfe_mod
Program d03pwfe
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! D03PWF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03pek, d03plf, d03plp, nag_wp
Use d03pwfe_mod, Only: alpha_l, alpha_r, beta_l, beta_r, bndary, el0, &

er0, gamma, half, itrace, ncode, nin, nout, npde, &
numflx, nxi, rl0, rr0, ul0, ur0

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, p, tout, ts, v
Integer :: i, ifail, ind, itask, itol, k, &

lenode, mlu, neqn, niw, npts, nw, &
nwkres

Character (1) :: laopt, norm
! .. Local Arrays ..

Real (Kind=nag_wp) :: algopt(30), atol(1), rtol(1), &
ue(3,9), xi(1)

Real (Kind=nag_wp), Allocatable :: u(:,:), w(:), x(:)
Integer, Allocatable :: iw(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D03PWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts

nwkres = npde*(2*npts+3*npde+32) + 7*npts + 4
mlu = 3*npde - 1
neqn = npde*npts + ncode
niw = neqn + 24
lenode = 9*neqn + 50
nw = (3*mlu+1)*neqn + nwkres + lenode
Allocate (u(npde,npts),w(nw),x(npts),iw(niw))

Read (nin,*) gamma, rl0, rr0, ul0, ur0

el0 = alpha_l/(gamma-1.0_nag_wp) + half*rl0*beta_l**2
er0 = alpha_r/(gamma-1.0_nag_wp) + half*rr0*beta_r**2

! Initialize mesh
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do
xi(1) = 0.0_nag_wp

! Initial values

Do i = 1, npts
If (x(i)<half) Then

u(1,i) = rl0
u(2,i) = ul0
u(3,i) = el0

Else If (x(i)==half) Then
u(1,i) = half*(rl0+rr0)
u(2,i) = half*(ul0+ur0)
u(3,i) = half*(el0+er0)

Else
u(1,i) = rr0
u(2,i) = ur0
u(3,i) = er0

End If
End Do

Read (nin,*) itol
Read (nin,*) norm
Read (nin,*) atol(1), rtol(1)
Read (nin,*) laopt
ind = 0
itask = 1
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algopt(1:30) = 0.0_nag_wp

! Theta integration
algopt(1) = 2.0_nag_wp
algopt(6) = 2.0_nag_wp
algopt(7) = 2.0_nag_wp

! Max. time step
algopt(13) = 0.5E-2_nag_wp

ts = 0.0_nag_wp
tout = 0.035_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03plf(npde,ts,tout,d03plp,numflx,bndary,u,npts,x,ncode,d03pek,nxi, &

xi,neqn,rtol,atol,itol,norm,laopt,algopt,w,nw,iw,niw,itask,itrace,ind, &
ifail)

Write (nout,99998) ts
Write (nout,99999)

! Read exact data at output points

Do i = 1, 9
Read (nin,*) ue(1:3,i)

End Do

! Calculate density, velocity and pressure

k = 0
Do i = 15, npts - 14, 14

d = u(1,i)
v = u(2,i)/d
p = d*(gamma-1.0_nag_wp)*(u(3,i)/d-half*v**2)
k = k + 1
Write (nout,99996) x(i), d, ue(1,k), v, ue(2,k), p, ue(3,k)

End Do

Write (nout,99997) iw(1), iw(2), iw(3), iw(5)

99999 Format (4X,’X’,7X,’APPROX D’,3X,’EXACT D’,4X,’APPROX V’,3X,’EXAC’,’T V’, &
4X,’APPROX P’,3X,’EXACT P’)

99998 Format (/,’ T = ’,F6.3,/)
99997 Format (/,’ Number of integration steps in time = ’,I6,/,’ Number ’, &

’of function evaluations = ’,I6,/,’ Number of Jacobian ’, &
’evaluations =’,I6,/,’ Number of iterations = ’,I6)

99996 Format (1X,E9.2,6(E11.4))
End Program d03pwfe

10.2 Program Data

D03PWF Example Program Data
141 : npts
1.4 5.99924 5.99242

1.175701059E2 -3.71310118186E1 : gamma, rl0, rr0, ul0, ur0
1 : itol
’2’ : norm
0.5E-2 0.5E-3 : atol(1), rtol(1)
’B’ : laopt
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.1428E+02 0.8690E+01 0.1692E+04
0.1428E+02 0.8690E+01 0.1692E+04
0.1428E+02 0.8690E+01 0.1692E+04
0.3104E+02 0.8690E+01 0.1692E+04 : ue
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10.3 Program Results

D03PWF Example Program Results

T = 0.035

X APPROX D EXACT D APPROX V EXACT V APPROX P EXACT P
0.10E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.20E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.30E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.40E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.50E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.60E+00 0.1422E+02 0.1428E+02 0.8658E+01 0.8690E+01 0.1687E+04 0.1692E+04
0.70E+00 0.1426E+02 0.1428E+02 0.8670E+01 0.8690E+01 0.1688E+04 0.1692E+04
0.80E+00 0.1944E+02 0.1428E+02 0.8678E+01 0.8690E+01 0.1691E+04 0.1692E+04
0.90E+00 0.3100E+02 0.3104E+02 0.8676E+01 0.8690E+01 0.1687E+04 0.1692E+04

Number of integration steps in time = 699
Number of function evaluations = 1714
Number of Jacobian evaluations = 1
Number of iterations = 2
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NAG Library Routine Document

D03PXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PXF calculates a numerical flux function using an Exact Riemann Solver for the Euler equations in
conservative form. It is designed primarily for use with the upwind discretization schemes D03PFF,
D03PLF or D03PSF, but may also be applicable to other conservative upwind schemes requiring
numerical flux functions.

2 Specification

SUBROUTINE D03PXF (ULEFT, URIGHT, GAMMA, TOL, NITER, FLUX, IFAIL)

INTEGER NITER, IFAIL
REAL (KIND=nag_wp) ULEFT(3), URIGHT(3), GAMMA, TOL, FLUX(3)

3 Description

D03PXF calculates a numerical flux function at a single spatial point using an Exact Riemann Solver
(see Toro (1996) and Toro (1989)) for the Euler equations (for a perfect gas) in conservative form. You
must supply the left and right solution values at the point where the numerical flux is required, i.e., the
initial left and right states of the Riemann problem defined below. In D03PFF, D03PLF and D03PSF,
the left and right solution values are derived automatically from the solution values at adjacent spatial
points and supplied to the subroutine argument NUMFLX from which you may call D03PXF.

The Euler equations for a perfect gas in conservative form are:

@U

@t
þ @F
@x
¼ 0; ð1Þ

with

U ¼
�
m
e

24 35 and F ¼
m

m2

� þ � � 1ð Þ e� m2

2�

� �
me
� þ m

� � � 1ð Þ e� m2

2�

� �
2664

3775; ð2Þ

where � is the density, m is the momentum, e is the specific total energy and � is the (constant) ratio of
specific heats. The pressure p is given by

p ¼ � � 1ð Þ e� �u
2

2

� �
; ð3Þ

where u ¼ m=� is the velocity.

The routine calculates the numerical flux function F UL; URð Þ ¼ F U� UL; URð Þð Þ, where U ¼ UL and
U ¼ UR are the left and right solution values, and U� UL; URð Þ is the intermediate state ! 0ð Þ arising
from the similarity solution U y; tð Þ ¼ ! y=tð Þ of the Riemann problem defined by

@U

@t
þ @F
@y
¼ 0; ð4Þ

with U and F as in (2), and initial piecewise constant values U ¼ UL for y < 0 and U ¼ UR for y > 0.
The spatial domain is �1 < y <1, where y ¼ 0 is the point at which the numerical flux is required.

The algorithm is termed an Exact Riemann Solver although it does in fact calculate an approximate
solution to a true Riemann problem, as opposed to an Approximate Riemann Solver which involves
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some form of alternative modelling of the Riemann problem. The approximation part of the Exact
Riemann Solver is a Newton–Raphson iterative procedure to calculate the pressure, and you must
supply a tolerance TOL and a maximum number of iterations NITER. Default values for these
arguments can be chosen.

A solution cannot be found by this routine if there is a vacuum state in the Riemann problem (loosely
characterised by zero density), or if such a state is generated by the interaction of two non-vacuum data
states. In this case a Riemann solver which can handle vacuum states has to be used (see Toro (1996)).

4 References

Toro E F (1989) A weighted average flux method for hyperbolic conservation laws Proc. Roy. Soc.
Lond. A423 401–418

Toro E F (1996) Riemann Solvers and Upwind Methods for Fluid Dynamics Springer–Verlag

5 Arguments

1: ULEFTð3Þ – REAL (KIND=nag_wp) array Input

On entry: ULEFTðiÞ must contain the left value of the component Ui, for i ¼ 1; 2; 3. That is,
ULEFTð1Þ must contain the left value of �, ULEFTð2Þ must contain the left value of m and
ULEFTð3Þ must contain the left value of e.

2: URIGHTð3Þ – REAL (KIND=nag_wp) array Input

On entry: URIGHTðiÞ must contain the right value of the component Ui, for i ¼ 1; 2; 3. That is,
URIGHTð1Þ must contain the right value of �, URIGHTð2Þ must contain the right value of m and
URIGHTð3Þ must contain the right value of e.

3: GAMMA – REAL (KIND=nag_wp) Input

On entry: the ratio of specific heats, �.

Constraint: GAMMA > 0:0.

4: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance to be used in the Newton–Raphson procedure to calculate the pressure. If
TOL is set to zero then the default value of 1:0� 10�6 is used.

Constraint: TOL � 0:0.

5: NITER – INTEGER Input

On entry: the maximum number of Newton–Raphson iterations allowed. If NITER is set to zero
then the default value of 20 is used.

Constraint: NITER � 0.

6: FLUXð3Þ – REAL (KIND=nag_wp) array Output

On exit: FLUXðiÞ contains the numerical flux component F̂i, for i ¼ 1; 2; 3.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: if the left and/or right values of � or p (from (3)) are found to be negative, then the routine
will terminate with an error exit (IFAIL ¼ 2). If the routine is being called from the NUMFLX
etc., then a soft fail option (IFAIL ¼ 1 or �1) is recommended so that a recalculation of the
current time step can be forced using the NUMFLX argument IRES (see D03PFF or D03PLF).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, GAMMA � 0:0,
or TOL < 0:0,
or NITER < 0.

IFAIL ¼ 2

On entry, the left and/or right density or derived pressure value is less than 0:0.

IFAIL ¼ 3

A vacuum condition has been detected therefore a solution cannot be found using this routine.
You are advised to check your problem formulation.

IFAIL ¼ 4

The internal Newton–Raphson iterative procedure used to solve for the pressure has failed to
converge. The value of TOL or NITER may be too small, but if the problem persists try an
Approximate Riemann Solver (D03PUF, D03PVF or D03PWF).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The algorithm is exact apart from the calculation of the pressure which uses a Newton–Raphson
iterative procedure, the accuracy of which is controlled by the argument TOL. In some cases the initial
guess for the Newton–Raphson procedure is exact and no further iterations are required.
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8 Parallelism and Performance

D03PXF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03PXF is not threaded in any implementation.

9 Further Comments

D03PXF must only be used to calculate the numerical flux for the Euler equations in exactly the form
given by (2), with ULEFTðiÞ and URIGHTðiÞ containing the left and right values of �;m and e, for
i ¼ 1; 2; 3, respectively.

For some problems the routine may fail or be highly inefficient in comparison with an Approximate
Riemann Solver (e.g., D03PUF, D03PVF or D03PWF). Hence it is advisable to try more than one
Riemann solver and to compare the performance and the results.

The time taken by the routine is independent of all input arguments other than TOL.

10 Example

This example uses D03PLF and D03PXF to solve the Euler equations in the domain 0 � x � 1 for
0 < t � 0:035 with initial conditions for the primitive variables � x; tð Þ, u x; tð Þ and p x; tð Þ given by

� x; 0ð Þ ¼ 5:99924; u x; 0ð Þ ¼ 19:5975; p x; 0ð Þ ¼ 460:894; for x < 0:5;
� x; 0ð Þ ¼ 5:99242; u x; 0ð Þ ¼ �6:19633; p x; 0ð Þ ¼ 46:095; for x > 0:5:

This test problem is taken from Toro (1996) and its solution represents the collision of two strong
shocks travelling in opposite directions, consisting of a left facing shock (travelling slowly to the right),
a right travelling contact discontinuity and a right travelling shock wave. There is an exact solution to
this problem (see Toro (1996)) but the calculation is lengthy and has therefore been omitted.

10.1 Program Text

! D03PXF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03pxfe_mod

! D03PXF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndary, numflx

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: alpha_l = 460.894_nag_wp
Real (Kind=nag_wp), Parameter, Public :: alpha_r = 46.095_nag_wp
Real (Kind=nag_wp), Parameter, Public :: beta_l = 19.5975_nag_wp
Real (Kind=nag_wp), Parameter, Public :: beta_r = 6.19633_nag_wp
Real (Kind=nag_wp), Parameter, Public :: half = 0.5_nag_wp
Integer, Parameter, Public :: itrace = 0, ncode = 0, nin = 5, &

nout = 6, npde = 3, nxi = 0
! .. Local Scalars ..

Real (Kind=nag_wp), Public, Save :: el0, er0, gamma, rl0, rr0, ul0, ur0
Contains

Subroutine bndary(npde,npts,t,x,u,ncode,v,vdot,ibnd,g,ires)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde, npts
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Integer, Intent (Inout) :: ires
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (Out) :: g(npde)
Real (Kind=nag_wp), Intent (In) :: u(npde,npts), v(ncode), &

vdot(ncode), x(npts)
! .. Executable Statements ..

If (ibnd==0) Then
g(1) = u(1,1) - rl0
g(2) = u(2,1) - ul0
g(3) = u(3,1) - el0

Else
g(1) = u(1,npts) - rr0
g(2) = u(2,npts) - ur0
g(3) = u(3,npts) - er0

End If
Return

End Subroutine bndary
Subroutine numflx(npde,t,x,ncode,v,uleft,uright,flux,ires)

! .. Use Statements ..
Use nag_library, Only: d03pxf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: flux(npde)
Real (Kind=nag_wp), Intent (In) :: uleft(npde), uright(npde), v(ncode)

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: ifail, niter

! .. Executable Statements ..
tol = 0.0_nag_wp
niter = 0

ifail = 0
Call d03pxf(uleft,uright,gamma,tol,niter,flux,ifail)

Return
End Subroutine numflx

End Module d03pxfe_mod
Program d03pxfe

! D03PXF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03pek, d03plf, d03plp, nag_wp
Use d03pxfe_mod, Only: alpha_l, alpha_r, beta_l, beta_r, bndary, el0, &

er0, gamma, half, itrace, ncode, nin, nout, npde, &
numflx, nxi, rl0, rr0, ul0, ur0

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, p, tout, ts, v
Integer :: i, ifail, ind, itask, itol, k, &

lenode, mlu, neqn, niw, npts, nw, &
nwkres

Character (1) :: laopt, norm
! .. Local Arrays ..

Real (Kind=nag_wp) :: algopt(30), atol(1), rtol(1), &
ue(3,9), xi(1)

Real (Kind=nag_wp), Allocatable :: u(:,:), w(:), x(:)
Integer, Allocatable :: iw(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D03PXF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts
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nwkres = npde*(2*npts+3*npde+32) + 7*npts + 4
mlu = 3*npde - 1
neqn = npde*npts + ncode
niw = neqn + 24
lenode = 9*neqn + 50
nw = (3*mlu+1)*neqn + nwkres + lenode
Allocate (u(npde,npts),w(nw),x(npts),iw(niw))

Read (nin,*) gamma, rl0, rr0, ul0, ur0

el0 = alpha_l/(gamma-1.0_nag_wp) + half*rl0*beta_l**2
er0 = alpha_r/(gamma-1.0_nag_wp) + half*rr0*beta_r**2

! Initialize mesh
Do i = 1, npts

x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do
xi(1) = 0.0_nag_wp

! Initial values
Do i = 1, npts

If (x(i)<half) Then
u(1,i) = rl0
u(2,i) = ul0
u(3,i) = el0

Else If (x(i)==half) Then
u(1,i) = half*(rl0+rr0)
u(2,i) = half*(ul0+ur0)
u(3,i) = half*(el0+er0)

Else
u(1,i) = rr0
u(2,i) = ur0
u(3,i) = er0

End If
End Do

Read (nin,*) itol
Read (nin,*) norm
Read (nin,*) atol(1), rtol(1)
Read (nin,*) laopt

ind = 0
itask = 1
algopt(1:30) = 0.0_nag_wp

! Theta integration
algopt(1) = 2.0_nag_wp
algopt(6) = 2.0_nag_wp
algopt(7) = 2.0_nag_wp

! Max. time step
algopt(13) = 0.5E-2_nag_wp

ts = 0.0_nag_wp
tout = 0.035_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03plf(npde,ts,tout,d03plp,numflx,bndary,u,npts,x,ncode,d03pek,nxi, &

xi,neqn,rtol,atol,itol,norm,laopt,algopt,w,nw,iw,niw,itask,itrace,ind, &
ifail)

Write (nout,99998) ts
Write (nout,99999)

! Read exact data at output points

Do i = 1, 9
Read (nin,*) ue(1:3,i)

End Do
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! Calculate density, velocity and pressure

k = 0
Do i = 15, npts - 14, 14

d = u(1,i)
v = u(2,i)/d
p = d*(gamma-1.0_nag_wp)*(u(3,i)/d-half*v**2)
k = k + 1
Write (nout,99996) x(i), d, ue(1,k), v, ue(2,k), p, ue(3,k)

End Do

Write (nout,99997) iw(1), iw(2), iw(3), iw(5)

99999 Format (4X,’X’,7X,’APPROX D’,3X,’EXACT D’,4X,’APPROX V’,3X,’EXAC’,’T V’, &
4X,’APPROX P’,3X,’EXACT P’)

99998 Format (/,’ T = ’,F6.3,/)
99997 Format (/,’ Number of integration steps in time = ’,I6,/,’ Number ’, &

’of function evaluations = ’,I6,/,’ Number of Jacobian ’, &
’evaluations =’,I6,/,’ Number of iterations = ’,I6)

99996 Format (1X,E9.2,6(E11.4))
End Program d03pxfe

10.2 Program Data

D03PXF Example Program Data
141 : npts
1.4 5.99924 5.99242

1.175701059E2 -3.71310118186E1 : gamma, rl0, rr0, ul0, ur0
1 : itol
’2’ : norm
0.5E-2 0.5E-3 : atol(1), rtol(1)
’B’ : laopt
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.1428E+02 0.8690E+01 0.1692E+04
0.1428E+02 0.8690E+01 0.1692E+04
0.1428E+02 0.8690E+01 0.1692E+04
0.3104E+02 0.8690E+01 0.1692E+04 : ue

10.3 Program Results

D03PXF Example Program Results

T = 0.035

X APPROX D EXACT D APPROX V EXACT V APPROX P EXACT P
0.10E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.20E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.30E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.40E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.50E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.60E+00 0.1423E+02 0.1428E+02 0.8660E+01 0.8690E+01 0.1688E+04 0.1692E+04
0.70E+00 0.1425E+02 0.1428E+02 0.8672E+01 0.8690E+01 0.1688E+04 0.1692E+04
0.80E+00 0.1921E+02 0.1428E+02 0.8674E+01 0.8690E+01 0.1689E+04 0.1692E+04
0.90E+00 0.3100E+02 0.3104E+02 0.8675E+01 0.8690E+01 0.1687E+04 0.1692E+04

Number of integration steps in time = 697
Number of function evaluations = 1708
Number of Jacobian evaluations = 1
Number of iterations = 2
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NAG Library Routine Document

D03PYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PYF may be used in conjunction with either D03PDF/D03PDA or D03PJF/D03PJA. It computes
the solution and its first derivative at user-specified points in the spatial coordinate.

2 Specification

SUBROUTINE D03PYF (NPDE, U, NBKPTS, XBKPTS, NPOLY, NPTS, XP, INTPTS,
ITYPE, UP, RSAVE, LRSAVE, IFAIL)

&

INTEGER NPDE, NBKPTS, NPOLY, NPTS, INTPTS, ITYPE, LRSAVE,
IFAIL

&

REAL (KIND=nag_wp) U(NPDE,NPTS), XBKPTS(NBKPTS), XP(INTPTS),
UP(NPDE,INTPTS,ITYPE), RSAVE(LRSAVE)

&

3 Description

D03PYF is an interpolation routine for evaluating the solution of a system of partial differential
equations (PDEs), or the PDE components of a system of PDEs with coupled ordinary differential
equations (ODEs), at a set of user-specified points. The solution of a system of equations can be
computed using D03PDF/D03PDA or D03PJF/D03PJA on a set of mesh points; D03PYF can then be
employed to compute the solution at a set of points other than those originally used in D03PDF/
D03PDA or D03PJF/D03PJA. It can also evaluate the first derivative of the solution. Polynomial
interpolation is used between each of the break-points XBKPTSðiÞ, for i ¼ 1; 2; . . . ;NBKPTS. When
the derivative is needed (ITYPE ¼ 2), the array XPðINTPTSÞ must not contain any of the break-points,
as the method, and consequently the interpolation scheme, assumes that only the solution is continuous
at these points.

4 References

None.

5 Arguments

Note: the arguments U, NPTS, NPDE, XBKPTS, NBKPTS, RSAVE and LRSAVE must be supplied
unchanged from either D03PDF/D03PDA or D03PJF/D03PJA.

1: NPDE – INTEGER Input

On entry: the number of PDEs.

Constraint: NPDE � 1.

2: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the PDE part of the original solution returned in the argument U by the routine
D03PDF/D03PDA or D03PJF/D03PJA.

3: NBKPTS – INTEGER Input

On entry: the number of break-points.

Constraint: NBKPTS � 2.
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4: XBKPTSðNBKPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XBKPTSðiÞ, for i ¼ 1; 2; . . . ;NBKPTS, must contain the break-points as used by
D03PDF/D03PDA or D03PJF/D03PJA.

Constraint: XBKPTSð1Þ < XBKPTSð2Þ < � � � < XBKPTSðNBKPTSÞ.

5: NPOLY – INTEGER Input

On entry: the degree of the Chebyshev polynomial used for approximation as used by D03PDF/
D03PDA or D03PJF/D03PJA.

Constraint: 1 � NPOLY � 49.

6: NPTS – INTEGER Input

On entry: the number of mesh points as used by D03PDF/D03PDA or D03PJF/D03PJA.

Constraint: NPTS ¼ NBKPTS� 1ð Þ � NPOLYþ 1.

7: XPðINTPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XPðiÞ, for i ¼ 1; 2; . . . ; INTPTS, must contain the spatial interpolation points.

Constraints:

XBKPTSð1Þ � XPð1Þ < XPð2Þ < � � � < XPðINTPTSÞ � XBKPTSðNBKPTSÞ;
i f ITYPE ¼ 2, XPðiÞ 6¼ XBKPTSðjÞ, f o r i ¼ 1; 2; . . . ; INTPTS a n d
j ¼ 2; 3; . . . ;NBKPTS� 1.

8: INTPTS – INTEGER Input

On entry: the number of interpolation points.

Constraint: INTPTS � 1.

9: ITYPE – INTEGER Input

On entry: specifies the interpolation to be performed.

ITYPE ¼ 1
The solution at the interpolation points are computed.

ITYPE ¼ 2
Both the solution and the first derivative at the interpolation points are computed.

Constraint: ITYPE ¼ 1 or 2.

10: UPðNPDE; INTPTS; ITYPEÞ – REAL (KIND=nag_wp) array Output

On exit: if ITYPE ¼ 1, UPði; j; 1Þ, contains the value of the solution Ui xj ; tout
� �

, at the
interpolation points xj ¼ XPðjÞ, for j ¼ 1; 2; . . . ; INTPTS and i ¼ 1; 2; . . . ;NPDE.

If ITYPE ¼ 2, UPði; j; 1Þ contains Ui xj ; tout
� �

and UPði; j; 2Þ contains @Ui

@x
at these points.

11: RSAVEðLRSAVEÞ – REAL (KIND=nag_wp) array Communication Array

The array RSAVE contains information required by D03PYF as returned by D03PDF/D03PDA or
D03PJF/D03PJA. The contents of RSAVE must not be changed from the call to D03PDF/
D03PDA or D03PJF/D03PJA. Some elements of this array are overwritten on exit.

12: LRSAVE – INTEGER Input

On entry: the size of the workspace RSAVE, as in D03PDF/D03PDA or D03PJF/D03PJA.
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13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ITYPE 6¼ 1 or 2,
or NPOLY < 1,
or NPDE < 1,
or NBKPTS < 2,
or INTPTS < 1,
or NPTS 6¼ NBKPTS� 1ð Þ � NPOLYþ 1,
or XBKPTSðiÞ, for i ¼ 1; 2; . . . ;NBKPTS, are not ordered.

IFAIL ¼ 2

On entry, the interpolation points XPðiÞ, for i ¼ 1; 2; . . . ; INTPTS, are not in strictly increasing
order, or when ITYPE ¼ 2, at least one of the interpolation points stored in XP is equal to one of
the break-points stored in XBKPTS.

IFAIL ¼ 3

You are attempting extrapolation, that is, one of the interpolation points XPðiÞ, for some i, lies
outside the interval [XBKPTSð1Þ;XBKPTSðNBKPTSÞ]. Extrapolation is not permitted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

See the documents for D03PDF/D03PDA or D03PJF/D03PJA.
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8 Parallelism and Performance

D03PYF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D03PDF/D03PDA.
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NAG Library Routine Document

D03PZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03PZF interpolates in the spatial coordinate the solution and derivative of a system of partial
differential equations (PDEs). The solution must first be computed using one of the finite difference
schemes D03PCF/D03PCA, D03PHF/D03PHA or D03PPF/D03PPA, or one of the Keller box schemes
D03PEF, D03PKF or D03PRF.

2 Specification

SUBROUTINE D03PZF (NPDE, M, U, NPTS, X, XP, INTPTS, ITYPE, UP, IFAIL)

INTEGER NPDE, M, NPTS, INTPTS, ITYPE, IFAIL
REAL (KIND=nag_wp) U(NPDE,NPTS), X(NPTS), XP(INTPTS),

UP(NPDE,INTPTS,ITYPE)
&

3 Description

D03PZF is an interpolation routine for evaluating the solution of a system of partial differential
equations (PDEs), at a set of user-specified points. The solution of the system of equations (possibly
with coupled ordinary differential equations) must be computed using a finite difference scheme or a
Keller box scheme on a set of mesh points. D03PZF can then be employed to compute the solution at a
set of points anywhere in the range of the mesh. It can also evaluate the first spatial derivative of the
solution. It uses linear interpolation for approximating the solution.

4 References

None.

5 Arguments

Note: the arguments X, M, U, NPTS and NPDE must be supplied unchanged from the PDE routine.

1: NPDE – INTEGER Input

On entry: the number of PDEs.

Constraint: NPDE � 1.

2: M – INTEGER Input

On entry: the coordinate system used. If the call to D03PZF follows one of the finite difference
routines then M must be the same argument M as used in that call. For the Keller box scheme
only Cartesian coordinate systems are valid and so M must be set to zero. No check will be
made by D03PZF in this case.

M ¼ 0
Indicates Cartesian coordinates.

M ¼ 1
Indicates cylindrical polar coordinates.

M ¼ 2
Indicates spherical polar coordinates.
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Constraints:

0 � M � 2 following a finite difference routine;
M ¼ 0 following a Keller box scheme routine.

3: UðNPDE;NPTSÞ – REAL (KIND=nag_wp) array Input

On entry: the PDE part of the original solution returned in the argument U by the PDE routine.

Constraint: NPDE � 1.

4: NPTS – INTEGER Input

On entry: the number of mesh points.

Constraint: NPTS � 3.

5: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ, for i ¼ 1; 2; . . . ;NPTS, must contain the mesh points as used by the PDE routine.

6: XPðINTPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XPðiÞ, for i ¼ 1; 2; . . . ; INTPTS, must contain the spatial interpolation points.

Constraint: Xð1Þ � XPð1Þ < XPð2Þ < � � � < XPðINTPTSÞ � XðNPTSÞ.

7: INTPTS – INTEGER Input

On entry: the number of interpolation points.

Constraint: INTPTS � 1.

8: ITYPE – INTEGER Input

On entry: specifies the interpolation to be performed.

ITYPE ¼ 1
The solutions at the interpolation points are computed.

ITYPE ¼ 2
Both the solutions and their first derivatives at the interpolation points are computed.

Constraint: ITYPE ¼ 1 or 2.

9: UPðNPDE; INTPTS; ITYPEÞ – REAL (KIND=nag_wp) array Output

On exit: if ITYPE ¼ 1, UPði; j; 1Þ, contains the value of the solution Ui xj ; tout
� �

, at the
interpolation points xj ¼ XPðjÞ, for j ¼ 1; 2; . . . ; INTPTS and i ¼ 1; 2; . . . ;NPDE.

If ITYPE ¼ 2, UPði; j; 1Þ contains Ui xj ; tout
� �

and UPði; j; 2Þ contains @Ui

@x
at these points.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

D03PZF NAG Library Manual

D03PZF.2 Mark 26



6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ITYPE 6¼ 1 or 2,
or INTPTS < 1,
or NPDE < 1,
or NPTS < 3,
or M 6¼ 0, 1 or 2,
or the mesh points XðiÞ, for i ¼ 1; 2; . . . ;NPTS, are not in strictly increasing order.

IFAIL ¼ 2

On entry, the interpolation points XPðiÞ, for i ¼ 1; 2; . . . ; INTPTS, are not in strictly increasing
order.

IFAIL ¼ 3

You are attempting extrapolation, that is, one of the interpolation points XPðiÞ, for some i, lies
outside the interval [Xð1Þ;XðNPTSÞ]. Extrapolation is not permitted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

See the PDE routine documents.

8 Parallelism and Performance

D03PZF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D03PCF/D03PCA, D03PPF/D03PPA and D03PRF.
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NAG Library Routine Document

D03RAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03RAF integrates a system of linear or nonlinear, time-dependent partial differential equations (PDEs)
in two space dimensions on a rectangular domain. The method of lines is employed to reduce the PDEs
to a system of ordinary differential equations (ODEs) which are solved using a backward differentiation
formula (BDF) method. The resulting system of nonlinear equations is solved using a modified Newton
method and a Bi-CGSTAB iterative linear solver with ILU preconditioning. Local uniform grid
refinement is used to improve the accuracy of the solution. D03RAF originates from the VLUGR2
package (see Blom and Verwer (1993) and Blom et al. (1996)).

2 Specification

SUBROUTINE D03RAF (NPDE, TS, TOUT, DT, XMIN, XMAX, YMIN, YMAX, NX, NY,
TOLS, TOLT, PDEDEF, BNDARY, PDEIV, MONITR, OPTI,
OPTR, RWK, LENRWK, IWK, LENIWK, LWK, LENLWK, ITRACE,
IND, IFAIL)

&
&
&

INTEGER NPDE, NX, NY, OPTI(4), LENRWK, IWK(LENIWK), LENIWK,
LENLWK, ITRACE, IND, IFAIL

&

REAL (KIND=nag_wp) TS, TOUT, DT(3), XMIN, XMAX, YMIN, YMAX, TOLS, TOLT,
OPTR(3,NPDE), RWK(LENRWK)

&

LOGICAL LWK(LENLWK)
EXTERNAL PDEDEF, BNDARY, PDEIV, MONITR

3 Description

D03RAF integrates the system of PDEs:

Fj t; x; y; u; ut; ux; uy; uxx; uxy; uyy
� �

¼ 0; j ¼ 1; 2; . . . ;NPDE; ð1Þ

for x and y in the rectangular domain xmin � x � xmax , ymin � y � ymax , and time interval
t0 � t � tout, where the vector u is the set of solution values

u x; y; tð Þ ¼ u1 x; y; tð Þ; . . . ; uNPDE x; y; tð Þ½ �T;

and ut denotes partial differentiation with respect to t, and similarly for ux etc.

The functions Fj must be supplied by you in PDEDEF. Similarly the initial values of the functions
u x; y; tð Þ must be specified at t ¼ t0 in PDEIV.

Note that whilst complete generality is offered by the master equations (1), D03RAF is not appropriate
for all PDEs. In particular, hyperbolic systems should not be solved using this routine. Also, at least one
component of ut must appear in the system of PDEs.

The boundary conditions must be supplied by you in BNDARY in the form

Gj t; x; y; u; ut; ux; uy
� �

¼ 0; ð2Þ

for all y when xmin or xmax and for all x when y ¼ ymin or y ¼ ymax and j ¼ 1; 2; . . . ;NPDE

The domain is covered by a uniform coarse base grid of size nx � ny specified by you, and nested finer
uniform subgrids are subsequently created in regions with high spatial activity. The refinement is
controlled using a space monitor which is computed from the current solution and a user-supplied space
tolerance TOLS. A number of optional parameters, e.g., the maximum number of grid levels at any
time, and some weighting factors, can be specified in the arrays OPTI and OPTR. Further details of the
refinement strategy can be found in Section 9.
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The system of PDEs and the boundary conditions are discretized in space on each grid using a standard
second-order finite difference scheme (centred on the internal domain and one-sided at the boundaries),
and the resulting system of ODEs is integrated in time using a second-order, two-step, implicit BDF
method with variable step size. The time integration is controlled using a time monitor computed at
each grid level from the current solution and a user-supplied time tolerance TOLT, and some further
optional user-specified weighting factors held in OPTR (see Section 9 for details). The time monitor is
used to compute a new step size, subject to restrictions on the size of the change between steps, and
(optional) user-specified maximum and minimum step sizes held in DT. The step size is adjusted so that
the remaining integration interval is an integer number times �t. In this way a solution is obtained at
t ¼ tout.
A modified Newton method is used to solve the nonlinear equations arising from the time integration.
You may specify (in OPTI) the maximum number of Newton iterations to be attempted. A Jacobian
matrix is calculated at the beginning of each time step. If the Newton process diverges or the maximum
number of iterations is exceeded, a new Jacobian is calculated using the most recent iterates and the
Newton process is restarted. If convergence is not achieved after the (optional) user-specified maximum
number of new Jacobian evaluations, the time step is retried with �t ¼ �t=4. The linear systems
arising from the Newton iteration are solved using a Bi-CGSTAB iterative method, in combination with
ILU preconditioning. The maximum number of iterations can be specified by you in OPTI.

The solution at all grid levels is stored in the workspace arrays, along with other information needed for
a restart (i.e., a continuation call). It is not intended that you extract the solution from these arrays,
indeed the necessary information regarding these arrays is not included. The user-supplied monitor
MONITR should be used to obtain the solution at particular levels and times. MONITR is called at the
end of every time step, with the last step being identified via the input argument TLAST.

Within PDEIV, PDEDEF, BNDARY and MONITR the data structure is as follows. Each point on a
particular grid is given an index (ranging from 1 to the total number of points on the grid) and all
coordinate or solution information is stored in arrays according to this index, e.g., XðiÞ and YðiÞ contain
the x- and y coordinate of point i, and Uði; jÞ contains the jth solution component uj at point i.

Further details of the underlying algorithm can be found in Section 9 and in Blom and Verwer (1993)
and Blom et al. (1996) and the references therein.

4 References

Adjerid S and Flaherty J E (1988) A local refinement finite element method for two-dimensional
parabolic systems SIAM J. Sci. Statist. Comput. 9 792–811

Blom J G, Trompert R A and Verwer J G (1996) Algorithm 758. VLUGR2: A vectorizable adaptive
grid solver for PDEs in 2D Trans. Math. Software 22 302–328

Blom J G and Verwer J G (1993) VLUGR2: A vectorized local uniform grid refinement code for PDEs
in 2D Report NM-R9306 CWI, Amsterdam

Brown P N, Hindmarsh A C and Petzold L R (1994) Using Krylov methods in the solution of large
scale differential-algebraic systems SIAM J. Sci. Statist. Comput. 15 1467–1488

Trompert R A (1993) Local uniform grid refinement and systems of coupled partial differential
equations Appl. Numer. Maths 12 331–355

Trompert R A and Verwer J G (1993) Analysis of the implicit Euler local uniform grid refinement
method SIAM J. Sci. Comput. 14 259–278

5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

Constraint: NPDE � 1.
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2: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t which has been reached. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

3: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

4: DTð3Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial, minimum and maximum time step sizes respectively.

DTð1Þ
Specifies the initial time step size to be used on the first entry, i.e., when IND ¼ 0. If
DTð1Þ ¼ 0:0 then the default value DTð1Þ ¼ 0:01� TOUT� TSð Þ is used. On subsequent
entries (IND ¼ 1), the value of DTð1Þ is not referenced.

DTð2Þ
Specifies the minimum time step size to be attempted by the integrator. If DTð2Þ ¼ 0:0 the
default value DTð2Þ ¼ 10:0�machine precision is used.

DTð3Þ
Specifies the maximum time step size to be attempted by the integrator. If DTð3Þ ¼ 0:0 the
default value DTð3Þ ¼ TOUT� TS is used.

On exit: DTð1Þ contains the time step size for the next time step. DTð2Þ and DTð3Þ are
unchanged or set to their default values if zero on entry.

Constraints:

if IND ¼ 0, DTð1Þ � 0:0;
if IND ¼ 0 and DTð1Þ > 0:0,
10:0�machine precision�max TSj j; TOUTj jð Þ � DTð1Þ � TOUT� TS and
DTð2Þ � DTð1Þ � DTð3Þ, where the values of DTð2Þ and DTð3Þ will have been reset to
their default values if zero on entry;
0 � DTð2Þ � DTð3Þ.

5: XMIN – REAL (KIND=nag_wp) Input
6: XMAX – REAL (KIND=nag_wp) Input

On entry: the extents of the rectangular domain in the x-direction, i.e., the x coordinates of the
left and right boundaries respectively.

Constraint: XMIN < XMAX and XMAX must be sufficiently distinguishable from XMIN for the
precision of the machine being used.

7: YMIN – REAL (KIND=nag_wp) Input
8: YMAX – REAL (KIND=nag_wp) Input

On entry: the extents of the rectangular domain in the y-direction, i.e., the y coordinates of the
lower and upper boundaries respectively.

Constraint: YMIN < YMAX and YMAX must be sufficiently distinguishable from YMIN for the
precision of the machine being used.

9: NX – INTEGER Input

On entry: the number of grid points in the x-direction (including the boundary points).

Constraint: NX � 4.
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10: NY – INTEGER Input

On entry: the number of grid points in the y-direction (including the boundary points).

Constraint: NY � 4.

11: TOLS – REAL (KIND=nag_wp) Input

On entry: the space tolerance used in the grid refinement strategy (� in equation (4)). See
Section 9.2.

Constraint: TOLS > 0:0.

12: TOLT – REAL (KIND=nag_wp) Input

On entry: the time tolerance used to determine the time step size (� in equation (7)). See
Section 9.3.

Constraint: TOLT > 0:0.

13: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Fj, for j ¼ 1; 2; . . . ;NPDE, in equation (1) which define the
system of PDEs (i.e., the residuals of the resulting ODE system) at all interior points of the
domain. Values at points on the boundaries of the domain are ignored and will be overwritten by
BNDARY. PDEDEF is called for each subgrid in turn.

The specification of PDEDEF is:

SUBROUTINE PDEDEF (NPTS, NPDE, T, X, Y, U, UT, UX, UY, UXX, UXY,
UYY, RES)

&

INTEGER NPTS, NPDE
REAL (KIND=nag_wp) T, X(NPTS), Y(NPTS), U(NPTS,NPDE),

UT(NPTS,NPDE), UX(NPTS,NPDE), UY(NPTS,NPDE),
UXX(NPTS,NPDE), UXY(NPTS,NPDE),
UYY(NPTS,NPDE), RES(NPTS,NPDE)

&
&
&

1: NPTS – INTEGER Input

On entry: the number of grid points in the current grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ contains the x coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

5: YðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ contains the y coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.
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7: UTðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UTði; jÞ contains the value of
@u

@t
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

8: UXðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXði; jÞ contains the value of
@u

@x
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

9: UYðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UYði; jÞ contains the value of
@u

@y
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

10: UXXðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXXði; jÞ contains the value of
@2u

@x2
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

11: UXYðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXYði; jÞ contains the value of
@2u

@x@y
for the jth PDE component at the ith

grid point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

12: UYYðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UYYði; jÞ contains the value of
@2u

@y2
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

13: RESðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Output

On exit: RESði; jÞ must contain the value of Fj , for j ¼ 1; 2; . . . ;NPDE, at the ith grid
point, for i ¼ 1; 2; . . . ;NPTS, although the residuals at boundary points will be ignored
(and overwritten later on) and so they need not be specified here.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03RAF is called. Arguments denoted as Input must not be changed by this
procedure.

14: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions Gj , for j ¼ 1; 2; . . . ;NPDE, in equation (2) which define
the boundary conditions at all boundary points of the domain. Residuals at interior points must
not be altered by this subroutine.

The specification of BNDARY is:

SUBROUTINE BNDARY (NPTS, NPDE, T, X, Y, U, UT, UX, UY, NBPTS,
LBND, RES)

&

INTEGER NPTS, NPDE, NBPTS, LBND(NBPTS)
REAL (KIND=nag_wp) T, X(NPTS), Y(NPTS), U(NPTS,NPDE),

UT(NPTS,NPDE), UX(NPTS,NPDE), UY(NPTS,NPDE),
RES(NPTS,NPDE)

&
&
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1: NPTS – INTEGER Input

On entry: the number of grid points in the current grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ contains the x coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

5: YðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ contains the y coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

7: UTðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UTði; jÞ contains the value of
@u

@t
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

8: UXðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXði; jÞ contains the value of
@u

@x
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

9: UYðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UYði; jÞ contains the value of
@u

@y
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

10: NBPTS – INTEGER Input

On entry: the number of boundary points in the grid.

11: LBNDðNBPTSÞ – INTEGER array Input

On entry: LBNDðiÞ contains the grid index for the ith boundary point, for
i ¼ 1; 2; . . . ;NBPTS. Hence the ith boundary point has coordinates XðLBNDðiÞÞ and
YðLBNDðiÞÞ, and the corresponding solution values are UðLBNDðiÞ;NPDEÞ, etc.

12: RESðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input/Output

On entry: RESði; jÞ contains the value of Fj , for i ¼ 1; 2; . . . ;NPDE, at the ith grid
point, for i ¼ 1; 2; . . . ;NPTS, as returned by PDEDEF. The residuals at the boundary
points will be overwritten and so need not have been set by PDEDEF.

On exit: RESðLBNDðiÞ; jÞ must contain the value of Gj , for j ¼ 1; 2; . . . ;NPDE, at the
ith boundary point, for i ¼ 1; 2; . . . ;NBPTS.

Note: elements of RES corresponding to interior points must not be altered.
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BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03RAF is called. Arguments denoted as Input must not be changed
by this procedure.

15: PDEIV – SUBROUTINE, supplied by the user. External Procedure

PDEIV must specify the initial values of the PDE components u at all points in the grid. PDEIV
is not referenced if, on entry, IND ¼ 1.

The specification of PDEIV is:

SUBROUTINE PDEIV (NPTS, NPDE, T, X, Y, U)

INTEGER NPTS, NPDE
REAL (KIND=nag_wp) T, X(NPTS), Y(NPTS), U(NPTS,NPDE)

1: NPTS – INTEGER Input

On entry: the number of grid points in the grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – REAL (KIND=nag_wp) Input

On entry: the (initial) value of the independent variable t.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ contains the x coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

5: YðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ contains the y coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Output

On exit: Uði; jÞ must contain the value of the jth PDE component at the ith grid point,
for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

PDEIV must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03RAF is called. Arguments denoted as Input must not be changed by this
procedure.

16: MONITR – SUBROUTINE, supplied by the user. External Procedure

MONITR is called by D03RAF at the end of every successful time step, and may be used to
examine or print the solution or perform other tasks such as error calculations, particularly at the
final time step, indicated by the argument TLAST. The input arguments contain information
about the grid and solution at all grid levels used.

MONITR can also be used to force an immediate tidy termination of the solution process and
return to the calling program.

The specification of MONITR is:

SUBROUTINE MONITR (NPDE, T, DT, DTNEW, TLAST, NLEV, NGPTS, XPTS,
YPTS, LSOL, SOL, IERR)

&

INTEGER NPDE, NLEV, NGPTS(NLEV), LSOL(NLEV), IERR
REAL (KIND=nag_wp) T, DT, DTNEW, XPTS(*), YPTS(*), SOL(*)
LOGICAL TLAST
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1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t, i.e., the time at the end of the
integration step just completed.

3: DT – REAL (KIND=nag_wp) Input

On entry: the current time step size �t, i.e., the time step size used for the integration
step just completed.

4: DTNEW – REAL (KIND=nag_wp) Input

On entry: the step size that will be used for the next time step.

5: TLAST – LOGICAL Input

On entry: indicates if intermediate or final time step. TLAST ¼ :FALSE: for an
intermediate step, TLAST ¼ :TRUE: for the last call to MONITR before returning to
your program.

6: NLEV – INTEGER Input

On entry: the number of grid levels used at time T.

7: NGPTSðNLEVÞ – INTEGER array Input

On entry: NGPTSðlÞ contains the number of grid points at level l, for
l ¼ 1; 2; . . . ;NLEV.

8: XPTSð�Þ – REAL (KIND=nag_wp) array Input

On entry: contains the x coordinates of the grid points in each level in turn, i.e., XðiÞ,
for i ¼ 1; 2; . . . ;NGPTSðlÞ and l ¼ 1; 2; . . . ;NLEV.

S o f o r l e v e l l, XðiÞ ¼ XPTSðk þ iÞ, w h e r e
k ¼ NGPTSð1Þ þ NGPTSð2Þ þ � � � þ NGPTSðl � 1Þ, for i ¼ 1; 2; . . . ;NGPTSðlÞ and
l ¼ 1; 2; . . . ;NLEV.

9: YPTSð�Þ – REAL (KIND=nag_wp) array Input

On entry: contains the y coordinates of the grid points in each level in turn, i.e., YðiÞ,
for i ¼ 1; 2; . . . ;NGPTSðlÞ and l ¼ 1; 2; . . . ;NLEV.

S o f o r l e v e l l, YðiÞ ¼ YPTSðk þ iÞ, w h e r e
k ¼ NGPTSð1Þ þ NGPTSð2Þ þ � � � þ NGPTSðl � 1Þ, for i ¼ 1; 2; . . . ;NGPTSðlÞ and
l ¼ 1; 2; . . . ;NLEV.

10: LSOLðNLEVÞ – INTEGER array Input

On entry: LSOLðlÞ contains the pointer to the solution in SOL at grid level l and time
T. (LSOLðlÞ actually contains the array index immediately preceding the start of the
solution in SOL.)

11: SOLð�Þ – REAL (KIND=nag_wp) array Input

On entry: contains the solution UðNGPTSðlÞ;NPDEÞ at time T for each grid level l in
t u r n , p o s i t i o n e d a c c o r d i n g t o L S O L , i . e . , f o r l e v e l l,
Uði; jÞ ¼ SOLðLSOLðlÞ þ j � 1ð Þ � NGPTSðlÞ þ iÞ, f o r i ¼ 1; 2; . . . ;NGPTSðlÞ,
j ¼ 1; 2; . . . ;NPDE and l ¼ 1; 2; . . . ;NLEV.
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12: IERR – INTEGER Input/Output

On entry: will be set to 0.

On exit: should be set to 1 to force a tidy termination and an immediate return to the
calling program with IFAIL ¼ 4. IERR should remain unchanged otherwise.

MONITR must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03RAF is called. Arguments denoted as Input must not be changed
by this procedure.

17: OPTIð4Þ – INTEGER array Input

On entry: may be set to control various options available in the integrator.

OPTIð1Þ ¼ 0
All the default options are employed.

OPTIð1Þ > 0
The default value of OPTIðiÞ, for i ¼ 2; 3; 4, can be obtained by setting OPTIðiÞ ¼ 0.

OPTIð1Þ
Specifies the maximum number of grid levels allowed (including the base grid).
OPTIð1Þ � 0. The default value is OPTIð1Þ ¼ 3.

OPTIð2Þ
Specifies the maximum number of Jacobian evaluations allowed during each nonlinear
equations solution. OPTIð2Þ � 0. The default value is OPTIð2Þ ¼ 2.

OPTIð3Þ
Specifies the maximum number of Newton iterations in each nonlinear equations solution.
OPTIð3Þ � 0. The default value is OPTIð3Þ ¼ 10.

OPTIð4Þ
Specifies the maximum number of iterations in each linear equations solution.
OPTIð4Þ � 0. The default value is OPTIð4Þ ¼ 100.

Constraint: OPTIð1Þ � 0 and if OPTIð1Þ > 0, OPTIðiÞ � 0, for i ¼ 2; 3; 4.

18: OPTRð3;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: may be used to specify the optional vectors umax , ws and wt in the space and time
monitors (see Section 9).

If an optional vector is not required then all its components should be set to 1:0.

OPTRð1; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies umax
j , the approximate maximum absolute value of

the jth component of u, as used in (4) and (7). OPTRð1; jÞ > 0:0, for j ¼ 1; 2; . . . ;NPDE.

OPTRð2; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies ws
j , the weighting factors used in the space monitor

(see (4)) to indicate the relative importance of the jth component of u on the space monitor.
OPTRð2; jÞ � 0:0, for j ¼ 1; 2; . . . ;NPDE.

OPTRð3; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies wt
j , the weighting factors used in the time monitor

(see (6)) to indicate the relative importance of the jth component of u on the time monitor.
OPTRð3; jÞ � 0:0, for j ¼ 1; 2; . . . ;NPDE.

Constraints:

OPTRð1; jÞ > 0:0, for j ¼ 1; 2; . . . ;NPDE;
OPTRði; jÞ � 0:0, for i ¼ 2; 3 and j ¼ 1; 2; . . . ;NPDE.

19: RWKðLENRWKÞ – REAL (KIND=nag_wp) array Communication Array
20: LENRWK – INTEGER Input

On entry: the dimension of the array RWK as declared in the (sub)program from which D03RAF
is called.
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The required value of LENRWK cannot be determined exactly in advance, but a suggested value
is

LENRWK ¼ maxpts � NPDE� 5� l þ 18� NPDEþ 9ð Þ þ 2�maxpts;

where l ¼ OPTIð1Þ if OPTIð1Þ 6¼ 0 and l ¼ 3 otherwise, and maxpts is the expected maximum
number of grid points at any one level. If during the execution the supplied value is found to be
too small then the routine returns with IFAIL ¼ 3 and an estimated required size is printed on the
current error message unit (see X04AAF).

Constraint: LENRWK � NX� NY� NPDE� 14þ 18� NPDEð Þ þ 2� NX� NY (the required
size for the initial grid).

21: IWKðLENIWKÞ – INTEGER array Communication Array

On entry: if IND ¼ 0, IWK need not be set. Otherwise IWK must remain unchanged from a
previous call to D03RAF.

On exit: the following components of the array IWK concern the efficiency of the integration.
Here, m is the maximum number of grid levels allowed (m ¼ OPTIð1Þ if OPTIð1Þ > 1 and
m ¼ 3 otherwise), and l is a grid level taking the values l ¼ 1; 2; . . . ;nl, where nl is the number
of levels used.

IWKð1Þ
Contains the number of steps taken in time.

IWKð2Þ
Contains the number of rejected time steps.

IWKð2þ lÞ
Contains the total number of residual evaluations performed (i.e., the number of times
PDEDEF was called) at grid level l.

IWKð2þmþ lÞ
Contains the total number of Jacobian evaluations performed at grid level l.

IWKð2þ 2�mþ lÞ
Contains the total number of Newton iterations performed at grid level l.

IWKð2þ 3�mþ lÞ
Contains the total number of linear solver iterations performed at grid level l.

IWKð2þ 4�mþ lÞ
Contains the maximum number of Newton iterations performed at any one time step at
grid level l.

IWKð2þ 5�mþ lÞ
Contains the maximum number of linear solver iterations performed at any one time step
at grid level l.

Note: the total and maximum numbers are cumulative over all calls to D03RAF. If the specified
maximum number of Newton or linear solver iterations is exceeded at any stage, then the
maximums above are set to the specified maximum plus one.

22: LENIWK – INTEGER Input

On entry: the dimension of the array IWK as declared in the (sub)program from which D03RAF
is called.

The required value of LENIWK cannot be determined exactly in advance, but a suggested value
is

LENIWK ¼ maxpts � 14þ 5�mð Þ þ 7�mþ 2;

where maxpts is the expected maximum number of grid points at any one level and
m ¼ OPTIð1Þ if OPTIð1Þ > 0 and m ¼ 3 otherwise. If during the execution the supplied value is
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found to be too small then the routine returns with IFAIL ¼ 3 and an estimated required size is
printed on the current error message unit (see X04AAF).

Constraint: LENIWK � 19� NX� NYþ 9 (the required size for the initial grid).

23: LWKðLENLWKÞ – LOGICAL array Workspace
24: LENLWK – INTEGER Input

On entry: the dimension of the array LWK as declared in the (sub)program from which D03RAF
is called.

The required value of LENLWK cannot be determined exactly in advanced, but a suggested value
is

LENLWK ¼ maxpts þ 1;

where maxpts is the expected maximum number of grid points at any one level. If during the
execution the supplied value is found to be too small then the routine returns with IFAIL ¼ 3 and
an estimated required size is printed on the current error message unit (see X04AAF).

Constraint: LENLWK � NX� NYþ 1 (the required size for the initial grid).

25: ITRACE – INTEGER Input

On entry: the level of trace information required from D03RAF. ITRACE may take the value �1,
0, 1, 2 or 3.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages are printed.

ITRACE > 0
Output from the underlying solver is printed on the current advisory message unit (see
X04ABF). This output contains details of the time integration, the nonlinear iteration and
the linear solver.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. Setting ITRACE ¼ 1
allows you to monitor the progress of the integration without possibly excessive information.

26: IND – INTEGER Input/Output

On entry: must be set to 0 or 1, alternatively 10 or 11.

IND ¼ 0
Starts the integration in time. PDEDEF is assumed to be serial.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
following parameters may be reset between calls to D03RAF: TOUT, DT, TOLS, TOLT,
OPTI, OPTR, ITRACE and IFAIL. PDEDEF is assumed to be serial.

IND ¼ 10
Starts the integration in time. PDEDEF is assumed to have been parallelized by you, as
described in Section 8. In all other respects, this is equivalent to IND ¼ 0.

IND ¼ 11
Continues the integration after an earlier exit from the routine. In this case, only the
following parameters may be reset between calls to D03RAF: TOUT, DT, TOLS, TOLT,
OPTI, OPTR, ITRACE and IFAIL. PDEDEF is assumed to have been parallelized by you,
as described in Section 8. In all other respects, this is equivalent to IND ¼ 1.

Constraint: 0 � IND � 1 or 10 � IND � 11.

On exit: IND ¼ 1, if IND on input was 0 or 1, or IND ¼ 11, if IND on input was 10 or 11.
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Note: for users of serial versions of the NAG Library, it is recommended that you only use
IND ¼ 0 or 1. See Section 8 for more information on the use of IND.

27: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPDE < 1,
or TOUT � TS,
or TOUT is too close to TS,
or IND ¼ 0 and DTð1Þ < 0:0,
or DTðiÞ < 0:0, for i ¼ 2 or 3,
or DTð2Þ > DTð3Þ,
or IND ¼ 0 and 0:0 < DTð1Þ < 10�machine precision�max TSj j; TOUTj jð Þ,
or IND ¼ 0 and DTð1Þ > TOUT� TS,
or IND ¼ 0 and DTð1Þ < DTð2Þ or DTð1Þ > DTð3Þ,
or XMIN � XMAX,
or XMAX too close to XMIN,
or YMIN � YMAX,
or YMAX too close to YMIN,
or NX or NY < 4,
or TOLS or TOLT � 0:0,
or OPTIð1Þ < 0,
or OPTIð1Þ > 0 and OPTIðjÞ < 0, for j ¼ 2, 3 or 4,
or OPTRð1; jÞ � 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or OPTRð2; jÞ < 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or OPTRð3; jÞ < 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or LENRWK, LENIWK or LENLWK too small for initial grid level,
or IND 6¼ 0 or 1,
or IND ¼ 1 on initial entry to D03RAF.

IFAIL ¼ 2

The time step size to be attempted is less than the specified minimum size. This may occur
following time step failures and subsequent step size reductions caused by one or more of the
following:

the requested accuracy could not be achieved, i.e., TOLT is too small,

the maximum number of linear solver iterations, Newton iterations or Jacobian evaluations
is too small,

ILU decomposition of the Jacobian matrix could not be performed, possibly due to
singularity of the Jacobian.
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Setting ITRACE to a higher value may provide further information.

In the latter two cases you are advised to check their problem formulation in PDEDEF and/or
BNDARY, and the initial values in PDEIV if appropriate.

IFAIL ¼ 3

One or more of the workspace arrays is too small for the required number of grid points. An
estimate of the required sizes for the current stage is output, but more space may be required at a
later stage.

IFAIL ¼ 4

IERR was set to 1 in MONITR, forcing control to be passed back to calling program. Integration
was successful as far as T ¼ TS.

IFAIL ¼ 5

The integration has been completed but the maximum number of levels specified in OPTIð1Þ was
insufficient at one or more time steps, meaning that the requested space accuracy could not be
achieved. To avoid this warning either increase the value of OPTIð1Þ or decrease the value of
TOLS.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

There are three sources of error in the algorithm: space and time discretization, and interpolation
(linear) between grid levels. The space and time discretization errors are controlled separately using the
arguments TOLS and TOLT described in the following section, and you should test the effects of
varying these arguments. Interpolation errors are generally implicitly controlled by the refinement
criterion since in areas where interpolation errors are potentially large, the space monitor will also be
large. It can be shown that the global spatial accuracy is comparable to that which would be obtained
on a uniform grid of the finest grid size. A full error analysis can be found in Trompert and Verwer
(1993).

8 Parallelism and Performance

D03RAF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D03RAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03RAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

D03RAF requires a user-supplied routine PDEDEF to evaluate the functions Fj, for j ¼ 1; 2; . . . ;NPDE.
The parallelism within D03RAF will be more efficient if PDEDEF can also be parallelized. This is
often the case, but you must add some OpenMP directives to your version of PDEDEF to implement
the parallelism. For example, if the body of code for PDEDEF is as follows (adapted from the first test
case in the document for D03RAF):

res(1:npts,1:npde) = ut(1:npts,1:npde) - diffusion*(uxx(1:npts,1: &
npde)+uyy(1:npts,1:npde)) - damkohler*(one+heat_release-u(1:npts, &
1:npde))*exp(-activ_energy/u(1:npts,1:npde))

This example can be parallelized, as the updating of RES for each value in the range 1; . . . ;NPTS is
independent of every other value. Thus this should be parallelized in OpenMP (using an explicit loop
rather than Fortran array syntax) as follows:

!$OMP DO
Do i = 1, npts

res(i,1:npde) = ut(i,1:npde) -diffusion*(uxx(i,1:npde)+uyy(i,1:npde &
)) - damkohler*(1.0E0_nag_wp+heat_release-u(i,1:npde))*exp(- &
activ_energy/u(i,1:npde))

End Do
!$OMP END DO

Note that the OpenMP PARALLEL directive must not be specified, as the OpenMP DO directive will
bind to the PARALLEL region within the D03RAF code. Also note that this assumes the default
OpenMP behaviour that all variables are SHARED, except for loop indices that are PRIVATE.

To avoid problems for existing library users, who will not have specified any OpenMP directives in
their PDEDEF routine, the default assumption of D03RAF is that PDEDEF has not been parallelized,
and executes calls to PDEDEF in serial mode. You must indicate that PDEDEF has been parallelized by
setting IND to 10 or 11 as appropriate. See Section 5 for details.

If the code within PDEDEF cannot be parallelized, you must not add any OpenMP directives to your
code, and must not set IND to 10 or 11. If IND is set to 10 or 11 and PDEDEF has not been
parallelized, results on multiple threads will be unpredictable and may give rise to incorrect results and/
or program crashes or deadlocks. Please contact NAG for advice if required. Overloading IND in this
manner is not entirely satisfactory, consequently it is likely that replacement interfaces for D03RAF will
be included in a future NAG Library release.

9 Further Comments

9.1 Algorithm Outline

The local uniform grid refinement method is summarised as follows:

1. Initialize the course base grid, an initial solution and an initial time step.

2. Solve the system of PDEs on the current grid with the current time step.

3. If the required accuracy in space and the maximum number of grid levels have not yet been
reached:

(a) Determine new finer grid at forward time level.

(b) Get solution values at previous time level(s) on new grid.

(c) Interpolate internal boundary values from old grid at forward time.

(d) Get initial values for the Newton process at forward time.

(e) Go to 2.

4. Update the coarser grid solution using the finer grid values.

5. Estimate error in time integration. If time error is acceptable advance time level.
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6. Determine new step size then go to 2 with coarse base as current grid.

9.2 Refinement Strategy

For each grid point i a space monitor �si is determined by

�si ¼ max
j¼1;NPDE

�j �x2
@2

@x2
uj xi; yi; tð Þ

				 				þ �y2
@2

@y2
uj xi; yi; tð Þ

				 				� �
 �
; ð3Þ

where �x and �y are the grid widths in the x and y directions; and xi, yi are the x and y coordinates at
grid point i. The argument �j is obtained from

�j ¼
ws
j

umax
j �

; ð4Þ

where � is the user-supplied space tolerance; wsj is a weighting factor for the relative importance of the
jth PDE component on the space monitor; and umax

j is the approximate maximum absolute value of the
jth component. A value for � must be supplied by you. Values for ws

j and u
max
j must also be supplied

but may be set to the value 1:0 if little information about the solution is known.

A new level of refinement is created if

max
i

�si
� 

> 0:9 or 1:0; ð5Þ

depending on the grid level at the previous step in order to avoid fluctuations in the number of grid
levels between time steps. If (5) is satisfied then all grid points for which �si > 0:25 are flagged and
surrounding cells are quartered in size.

No derefinement takes place as such, since at each time step the solution on the base grid is computed
first and new finer grids are then created based on the new solution. Hence derefinement occurs
implicitly. See Section 9.1.

9.3 Time Integration

The time integration is controlled using a time monitor calculated at each level l up to the maximum
level used, given by

�tl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XNPDE
j¼1

wtj
XNGPTSðlÞ

i¼1

�t

�ij
ut xi; yi; tð Þ

� �2
vuut ð6Þ

where NGPTSðlÞ is the total number of points on grid level l; N ¼ NGPTSðlÞ � NPDE; �t is the
current time step; ut is the time derivative of u which is approximated by first-order finite differences;
wt
j is the time equivalent of the space weighting factor ws

j; and �ij is given by

�ij ¼ �
umax
j

100
þ u xi; yi; tð Þj j

� �
ð7Þ

where umax
j is as before, and � is the user-specified time tolerance.

An integration step is rejected and retried at all levels if

max
l

�tl
� 

> 1:0: ð8Þ

10 Example

For this routine two examples are presented, with a main program and two example problems given in
Example 1 (EX1) and Example 2 (EX2).

Example 1 (EX1)

This example stems from combustion theory and is a model for a single, one-step reaction of a mixture
of two chemicals (see Adjerid and Flaherty (1988)). The PDE for the temperature of the mixture u is
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@u

@t
¼ d @2u

@x2
þ @

2u

@y2

� �
þD 1þ �� uð Þ exp ��

u

� �
for 0 � x; y � 1 and t � 0, with initial conditions u x; y; 0ð Þ ¼ 1 for 0 � x; y � 1, and boundary
conditions

ux 0; y; tð Þ ¼ 0; u 1; y; tð Þ ¼ 1 for 0 � y � 1;

uy x; 0; tð Þ ¼ 0; u x; 1; tð Þ ¼ 1 for 0 � x � 1:

The heat release argument � ¼ 1, the Damkohler number D ¼ R exp �ð Þ= ��ð Þ, the activation energy
� ¼ 20, the reaction rate R ¼ 5, and the diffusion argument d ¼ 0:1.

For small times the temperature gradually increases in a circular region about the origin, and at about
t ¼ 0:24 ‘ignition’ occurs causing the temperature to suddenly jump from near unity to 1þ �, and a
reaction front forms and propagates outwards, becoming steeper. Thus during the solution, just one grid
level is used up to the ignition point, then two levels, and then three as the reaction front steepens.

Example 2 (EX2)

This example is taken from a multispecies food web model, in which predator-prey relationships in a
spatial domain are simulated (see Brown et al. (1994)). In this example there is just one species each of
prey and predator, and the two PDEs for the concentrations c1 and c2 of the prey and the predator
respectively are

@c1
@t
¼ c1 b1 þ a11c1 þ a12c2ð Þ þ d1

@2c1
@x2
þ @

2c1
@y2

� �
;

0 ¼ c2 b2 þ a21c1 þ a22c2ð Þ þ d2
@2c2
@x2
þ @

2c2
@y2

� �
;

with

a11 ¼ a22 ¼ �1;
a12 ¼ �0:5� 10�6; and
a21 ¼ 104; and
b1 ¼ 1þ �xyþ � sin 4	xð Þ sin 4	yð Þ;

where � ¼ 50 and � ¼ 300, and b2 ¼ �b1.
The initial conditions are taken to be simple peaked functions which satisfy the boundary conditions
and very nearly satisfy the PDEs:

c1 ¼ 10þ 16x 1� xð Þy 1� yð Þð Þ2;
c2 ¼ b2 þ a21c1;

and the boundary conditions are of Neumann type, i.e., zero normal derivatives everywhere.

During the solution a number of peaks and troughs develop across the domain, and so the number of
levels required increases with time. Since the solution varies rapidly in space across the whole of the
domain, refinement at intermediate levels tends to occur at all points of the domain.

10.1 Program Text

! D03RAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03rafe_mod

! D03RAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Accessibility Statements ..

Private
Public :: bndry1, bndry2, &

compute_wkspace_lens, monit1, &
monit2, monit_dummy, pdedef1, &
pdedef2, pdeiv1, pdeiv2, &
print_statistics

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 50.0_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 300.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: xmax = one
Real (Kind=nag_wp), Parameter, Public :: ymax = one
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: xmin = zero
Real (Kind=nag_wp), Parameter, Public :: ymin = zero
Integer, Parameter, Public :: itrace = 0, nin = 5, nout = 6, &

npde1 = 1, npde2 = 2
Contains

Subroutine pdeiv1(npts,npde,t,x,y,u)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npts,npde)
Real (Kind=nag_wp), Intent (In) :: x(npts), y(npts)

! .. Executable Statements ..
u(1:npts,1:npde) = one
Return

End Subroutine pdeiv1
Subroutine pdedef1(npts,npde,t,x,y,u,ut,ux,uy,uxx,uxy,uyy,res)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: activ_energy = 20.0_nag_wp
Real (Kind=nag_wp), Parameter :: diffusion = 0.1_nag_wp
Real (Kind=nag_wp), Parameter :: heat_release = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: reaction_rate = 5.0_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: res(npts,npde)
Real (Kind=nag_wp), Intent (In) :: u(npts,npde), ut(npts,npde), &

ux(npts,npde), uxx(npts,npde), &
uxy(npts,npde), uy(npts,npde), &
uyy(npts,npde), x(npts), y(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: damkohler
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
damkohler = reaction_rate*exp(activ_energy)/ &

(heat_release*activ_energy)
!$Omp Do
Do i = 1, npts

res(i,1:npde) = ut(i,1:npde) - diffusion*(uxx(i,1:npde)+uyy(i,1:npde &
)) - damkohler*(1.0E0_nag_wp+heat_release-u(i,1:npde))*exp( &
-activ_energy/u(i,1:npde))

End Do
!$Omp End Do
Return

End Subroutine pdedef1
Subroutine bndry1(npts,npde,t,x,y,u,ut,ux,uy,nbpts,lbnd,res)

! .. Use Statements ..
Use nag_library, Only: x02ajf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
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Integer, Intent (In) :: nbpts, npde, npts
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (Inout) :: res(npts,npde)
Real (Kind=nag_wp), Intent (In) :: u(npts,npde), ut(npts,npde), &

ux(npts,npde), uy(npts,npde), &
x(npts), y(npts)

Integer, Intent (In) :: lbnd(nbpts)
! .. Local Scalars ..

Real (Kind=nag_wp) :: tol
Integer :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
tol = 10._nag_wp*x02ajf()

Do i = 1, nbpts
j = lbnd(i)

If (abs(x(j))<=tol) Then
res(j,1:npde) = ux(j,1:npde)

Else If (abs(x(j)-one)<=tol) Then
res(j,1:npde) = u(j,1:npde) - one

Else If (abs(y(j))<=tol) Then
res(j,1:npde) = uy(j,1:npde)

Else If (abs(y(j)-one)<=tol) Then
res(j,1:npde) = u(j,1:npde) - one

End If
End Do

Return
End Subroutine bndry1
Subroutine monit1(npde,t,dt,dtnew,tlast,nlev,ngpts,xpts,ypts,lsol,sol, &

ierr)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: dt, dtnew, t
Integer, Intent (Inout) :: ierr
Integer, Intent (In) :: nlev, npde
Logical, Intent (In) :: tlast

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: sol(*), xpts(*), ypts(*)
Integer, Intent (In) :: lsol(nlev), ngpts(nlev)

! .. Local Scalars ..
Integer :: i, ipsol, k, level, npts

! .. Intrinsic Procedures ..
Intrinsic :: sum

! .. Executable Statements ..
If (tlast) Then

! Print solution

level = nlev
Write (nout,99999) level, t
Write (nout,99998)
npts = ngpts(level)
ipsol = lsol(level)
k = sum(ngpts(1:nlev-1))
Do i = 1, npts, 4

Write (nout,99997) xpts(k+i), ypts(k+i), sol(ipsol+i)
End Do

Write (nout,*)

End If

Return
99999 Format (1X,’Solution at every 4th grid point in level’,I10, &

’ at time ’,F8.4,’:’)
99998 Format (1X,/,7X,’x’,10X,’y’,8X,’approx u’,/)
99997 Format (1X,1P,E11.4,2(1X,1P,E11.3))

End Subroutine monit1
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Subroutine pdeiv2(npts,npde,t,x,y,u)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npts,npde)
Real (Kind=nag_wp), Intent (In) :: x(npts), y(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: fourpi

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
fourpi = 4.0_nag_wp*x01aaf(fourpi)
u(1:npts,1) = 10.0_nag_wp + (16.0_nag_wp*x(1:npts)*(one-x(1:npts))*y(1 &

:npts)*(one-y(1:npts)))**2
u(1:npts,2) = -one - alpha*x(1:npts)*y(1:npts) - &

beta*sin(fourpi*x(1:npts))*sin(fourpi*y(1:npts)) + &
1.0E4_nag_wp*u(1:npts,1)

Return
End Subroutine pdeiv2
Subroutine pdedef2(npts,npde,t,x,y,u,ut,ux,uy,uxx,uxy,uyy,res)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: res(npts,npde)
Real (Kind=nag_wp), Intent (In) :: u(npts,npde), ut(npts,npde), &

ux(npts,npde), uxx(npts,npde), &
uxy(npts,npde), uy(npts,npde), &
uyy(npts,npde), x(npts), y(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: b1, fourpi
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
fourpi = 4.0_nag_wp*x01aaf(fourpi)
Do i = 1, npts

b1 = 1.0E0_nag_wp + alpha*x(i)*y(i) + beta*sin(fourpi*x(i))*sin( &
fourpi*y(i))

res(i,1) = ut(i,1) - (uxx(i,1)+uyy(i,1)) - &
u(i,1)*(b1-u(i,1)-0.5E-6_nag_wp*u(i,2))

res(i,2) = -0.05E0_nag_wp*(uxx(i,2)+uyy(i,2)) - &
u(i,2)*(-b1+1.0E4_nag_wp*u(i,1)-u(i,2))

End Do
Return

End Subroutine pdedef2
Subroutine bndry2(npts,npde,t,x,y,u,ut,ux,uy,nbpts,lbnd,res)

! .. Use Statements ..
Use nag_library, Only: x02ajf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: nbpts, npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: res(npts,npde)
Real (Kind=nag_wp), Intent (In) :: u(npts,npde), ut(npts,npde), &

ux(npts,npde), uy(npts,npde), &
x(npts), y(npts)

Integer, Intent (In) :: lbnd(nbpts)
! .. Local Scalars ..

Real (Kind=nag_wp) :: tol
Integer :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: abs
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! .. Executable Statements ..
tol = 10.0_nag_wp*x02ajf()

Do i = 1, nbpts
j = lbnd(i)

If (abs(x(j))<=tol .Or. abs(x(j)-one)<=tol) Then
res(j,1:npde) = ux(j,1:npde)

Else If (abs(y(j))<=tol .Or. abs(y(j)-one)<=tol) Then
res(j,1:npde) = uy(j,1:npde)

End If
End Do

Return
End Subroutine bndry2
Subroutine monit2(npde,t,dt,dtnew,tlast,nlev,ngpts,xpts,ypts,lsol,sol, &

ierr)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: dt, dtnew, t
Integer, Intent (Inout) :: ierr
Integer, Intent (In) :: nlev, npde
Logical, Intent (In) :: tlast

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: sol(*), xpts(*), ypts(*)
Integer, Intent (In) :: lsol(nlev), ngpts(nlev)

! .. Local Scalars ..
Integer :: i, ipsol, k, level, npts

! .. Intrinsic Procedures ..
Intrinsic :: sum

! .. Executable Statements ..
If (tlast) Then

! Print solution

level = nlev
Write (nout,99999) level, t
Write (nout,99998)
npts = ngpts(level)
ipsol = lsol(level)
k = sum(ngpts(1:nlev-1))

Do i = 1, npts, 2
Write (nout,99997) xpts(k+i), ypts(k+i), sol(ipsol+i), &

sol(ipsol+npts+i)
End Do

Write (nout,*)

End If

Return
99999 Format (1X,’Solution at every 2nd grid point in level’,I10, &

’ at time ’,F8.4,’:’)
99998 Format (1X,/,7X,’x’,10X,’y’,9X,’approx c1’,3X,’approx c2’,/)
99997 Format (1P,2(1X,E11.3),2X,E11.3,2X,E11.3)

End Subroutine monit2
Subroutine monit_dummy(npde,t,dt,dtnew,tlast,nlev,ngpts,xpts,ypts,lsol, &

sol,ierr)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: dt, dtnew, t
Integer, Intent (Inout) :: ierr
Integer, Intent (In) :: nlev, npde
Logical, Intent (In) :: tlast

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: sol(*), xpts(*), ypts(*)
Integer, Intent (In) :: lsol(nlev), ngpts(nlev)

! .. Executable Statements ..
Return

End Subroutine monit_dummy
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Subroutine compute_wkspace_lens(maxlev,npde,maxpts,lenrwk,leniwk,lenlwk)

! Returns suitable workspace lengths for the two problems
! being solved, based on trial-and-error.

! .. Scalar Arguments ..
Integer, Intent (Out) :: leniwk, lenlwk, lenrwk
Integer, Intent (In) :: maxlev, maxpts, npde

! .. Executable Statements ..
lenrwk = 2*maxpts*npde*(5*maxlev+18*npde+9) + 2*maxpts
leniwk = 2*maxpts*(14+5*maxlev) + 7*maxlev + 2
lenlwk = 2*maxpts + 400
Return

End Subroutine compute_wkspace_lens
Subroutine print_statistics(ts,iwk,maxlev)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: ts
Integer, Intent (In) :: maxlev

! .. Array Arguments ..
Integer, Intent (In) :: iwk(6*maxlev+2)

! .. Local Scalars ..
Integer :: i, j

! .. Local Arrays ..
Integer :: istats(4)

! .. Executable Statements ..
Write (nout,’(1X,A)’) ’Statistics:’
Write (nout,99999) ’Time = ’, ts
Write (nout,99998) ’Total number of accepted timesteps =’, iwk(1)
Write (nout,99998) ’Total number of rejected timesteps =’, iwk(2)
Write (nout,’(1X,4(/,A))’) &

’ Total number (rounded) of ’, &
’ Residual Jacobian Newton Lin sys’, &
’ evals evals iters iters’, ’ At level ’

Do j = 1, maxlev
If (iwk(j+2)/=0) Then

istats(1:4) = iwk(j+2:j+2+3*maxlev:maxlev)
Call round_statistics(istats)
Write (nout,99997) j, istats(1:4)

End If
End Do

Write (nout,’(1X,3(/,A))’) ’ Maximum number of ’, &
’ Newton iters Lin sys iters ’, ’ At level ’

Do j = 1, maxlev
If (iwk(j+2)/=0) Then

Write (nout,99996) j, (iwk(j+2+i*maxlev),i=4,5)
End If

End Do
Write (nout,*)

Return
99999 Format (1X,A,F8.4)
99998 Format (1X,A,I5)
99997 Format (I8,4I10)
99996 Format (I8,2I14)

End Subroutine print_statistics
Subroutine round_statistics(istat)

! .. Array Arguments ..
Integer, Intent (Inout) :: istat(4)

! .. Local Scalars ..
Real (Kind=nag_wp) :: lt
Integer :: i, k

! .. Intrinsic Procedures ..
Intrinsic :: int, log, real

! .. Executable Statements ..
lt = log(10.0_nag_wp)
Do i = 1, 4
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k = int(log(real(istat(i),kind=nag_wp))/lt)
k = 10**k
istat(i) = k*((istat(i)+k/2)/k)

End Do
End Subroutine round_statistics

End Module d03rafe_mod
Program d03rafe

! D03RAF Example Main Program

! .. Use Statements ..
Use d03rafe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’D03RAF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: d03raf, nag_wp
Use d03rafe_mod, Only: bndry1, compute_wkspace_lens, itrace, monit1, &

monit_dummy, nin, npde1, one, pdedef1, pdeiv1, &
print_statistics, xmax, xmin, ymax, ymin, zero

! .. Local Scalars ..
Real (Kind=nag_wp) :: tols, tolt, tout, ts
Integer :: i, ifail, ind, leniwk, lenlwk, &

lenrwk, maxlev, npde, npts, nx, ny
! .. Local Arrays ..

Real (Kind=nag_wp) :: dt(3), twant(2)
Real (Kind=nag_wp), Allocatable :: optr(:,:), rwk(:)
Integer, Allocatable :: iwk(:)
Integer :: opti(4)
Logical, Allocatable :: lwk(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 1’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts

npde = npde1

dt(1:3) = (/0.1E-2_nag_wp,zero,zero/)
twant(1:2) = (/0.24_nag_wp,0.25_nag_wp/)
ts = zero

! Specify that we are starting the integration in time (ind = 0
! normally).
! Note: we have parallelized the loop in the function pdedef1 using
! OpenMP so set alternative value of ind to indicate that this can be
! run in parallel if we are using a multithreaded implementation.
! Either option is OK for serial NAG Library implementations from
! Mark 25 onwards.

ind = 10

nx = 41
ny = 41
tols = 0.5_nag_wp
tolt = 0.01_nag_wp
opti(1) = 6
opti(2:4) = 0
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maxlev = max(opti(1),3)

Call compute_wkspace_lens(maxlev,npde,npts,lenrwk,leniwk,lenlwk)

Allocate (rwk(lenrwk),iwk(leniwk),lwk(lenlwk),optr(3,npde))
optr(1:3,1:npde) = one

Do i = 1, 2
tout = twant(i)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
If (i==1) Then

! Use monit_dummy to avoid output first time around
Call d03raf(npde,ts,tout,dt,xmin,xmax,ymin,ymax,nx,ny,tols,tolt, &

pdedef1,bndry1,pdeiv1,monit_dummy,opti,optr,rwk,lenrwk,iwk, &
leniwk,lwk,lenlwk,itrace,ind,ifail)

Else
Call d03raf(npde,ts,tout,dt,xmin,xmax,ymin,ymax,nx,ny,tols,tolt, &

pdedef1,bndry1,pdeiv1,monit1,opti,optr,rwk,lenrwk,iwk,leniwk, &
lwk,lenlwk,itrace,ind,ifail)

End If

Call print_statistics(ts,iwk,maxlev)

End Do

Return
End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d03raf, nag_wp
Use d03rafe_mod, Only: bndry2, compute_wkspace_lens, itrace, monit2, &

monit_dummy, nin, npde2, one, pdedef2, pdeiv2, &
print_statistics, xmax, xmin, ymax, ymin, zero

! .. Parameters ..
Integer, Parameter :: opti(4) = (/4,0,0,0/)

! .. Local Scalars ..
Real (Kind=nag_wp) :: tols, tolt, tout, ts
Integer :: i, ifail, ind, leniwk, lenlwk, &

lenrwk, maxlev, npde, npts, nx, ny
! .. Local Arrays ..

Real (Kind=nag_wp) :: dt(3), twant(2)
Real (Kind=nag_wp), Allocatable :: optr(:,:), rwk(:)
Integer, Allocatable :: iwk(:)
Logical, Allocatable :: lwk(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 2’
Write (nout,*)
Read (nin,*)
Read (nin,*) npts

npde = npde2
dt(1:3) = (/0.5E-3_nag_wp,1.0E-6_nag_wp,zero/)
twant(1:2) = (/0.01_nag_wp,0.025_nag_wp/)
ts = zero

! Specify that we are starting the integration in time (ind = 0
! normally).
! Note: In this second example we have not added OpenMP directives to
! parallelize the loop in the function pdedef2. Thus the alternative
! ind=10 must not be specified here, as this will not function correctly
! if a multithreaded implementation of the NAG Library is used. Adding
! OpenMP to pdedef2, that would enable ind=10 to be used here safely, is
! left as an exercise for the reader.
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ind = 0

nx = 11
ny = 11
tols = 0.1_nag_wp
tolt = 0.1_nag_wp
maxlev = max(opti(1),3)

Call compute_wkspace_lens(maxlev,npde,npts,lenrwk,leniwk,lenlwk)

Allocate (rwk(lenrwk),iwk(leniwk),lwk(lenlwk),optr(3,npde))
optr(1,1:npde) = (/250.0_nag_wp,1.5E6_nag_wp/)
optr(2:3,1:npde) = one

Do i = 1, 2
tout = twant(i)

ifail = 0
If (i==1) Then

! Use monit_dummy to avoid output first time around
Call d03raf(npde,ts,tout,dt,xmin,xmax,ymin,ymax,nx,ny,tols,tolt, &

pdedef2,bndry2,pdeiv2,monit_dummy,opti,optr,rwk,lenrwk,iwk, &
leniwk,lwk,lenlwk,itrace,ind,ifail)

Else
Call d03raf(npde,ts,tout,dt,xmin,xmax,ymin,ymax,nx,ny,tols,tolt, &

pdedef2,bndry2,pdeiv2,monit2,opti,optr,rwk,lenrwk,iwk,leniwk, &
lwk,lenlwk,itrace,ind,ifail)

End If

Call print_statistics(ts,iwk,maxlev)

End Do

Return
End Subroutine ex2

End Program d03rafe

10.2 Program Data

D03RAF Example Program Data
2000 : npts

2000 : npts

10.3 Program Results

D03RAF Example Program Results

Example 1

Statistics:
Time = 0.2400
Total number of accepted timesteps = 77
Total number of rejected timesteps = 0

Total number (rounded) of
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 600 80 200 200

Maximum number of
Newton iters Lin sys iters

At level
1 2 3

Solution at every 4th grid point in level 2 at time 0.2500:

x y approx u
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6.7500E-01 0.000E+00 2.000E+00
7.2500E-01 0.000E+00 1.980E+00
7.7500E-01 0.000E+00 1.342E+00
8.2500E-01 0.000E+00 1.190E+00
7.1250E-01 1.250E-02 1.996E+00
7.6250E-01 1.250E-02 1.468E+00
8.1250E-01 1.250E-02 1.213E+00
7.0000E-01 2.500E-02 1.999E+00
7.5000E-01 2.500E-02 1.625E+00
8.0000E-01 2.500E-02 1.240E+00
6.8750E-01 3.750E-02 2.000E+00
7.3750E-01 3.750E-02 1.870E+00
7.8750E-01 3.750E-02 1.283E+00
6.7500E-01 5.000E-02 2.000E+00
7.2500E-01 5.000E-02 1.980E+00
7.7500E-01 5.000E-02 1.342E+00
8.2500E-01 5.000E-02 1.190E+00
7.1250E-01 6.250E-02 1.996E+00
7.6250E-01 6.250E-02 1.468E+00
8.1250E-01 6.250E-02 1.213E+00
7.0000E-01 7.500E-02 1.999E+00
7.5000E-01 7.500E-02 1.625E+00
8.0000E-01 7.500E-02 1.240E+00
6.8750E-01 8.750E-02 2.000E+00
7.3750E-01 8.750E-02 1.870E+00
7.8750E-01 8.750E-02 1.283E+00
6.7500E-01 1.000E-01 2.000E+00
7.2500E-01 1.000E-01 1.980E+00
7.7500E-01 1.000E-01 1.342E+00
8.2500E-01 1.000E-01 1.190E+00
7.1250E-01 1.125E-01 1.996E+00
7.6250E-01 1.125E-01 1.468E+00
8.1250E-01 1.125E-01 1.213E+00
7.0000E-01 1.250E-01 1.999E+00
7.5000E-01 1.250E-01 1.625E+00
8.0000E-01 1.250E-01 1.240E+00
6.8750E-01 1.375E-01 2.000E+00
7.3750E-01 1.375E-01 1.870E+00
7.8750E-01 1.375E-01 1.283E+00
6.7500E-01 1.500E-01 2.000E+00
7.2500E-01 1.500E-01 1.980E+00
7.7500E-01 1.500E-01 1.341E+00
8.2500E-01 1.500E-01 1.190E+00
7.1250E-01 1.625E-01 1.995E+00
7.6250E-01 1.625E-01 1.467E+00
8.1250E-01 1.625E-01 1.213E+00
7.0000E-01 1.750E-01 1.999E+00
7.5000E-01 1.750E-01 1.624E+00
8.0000E-01 1.750E-01 1.240E+00
6.8750E-01 1.875E-01 2.000E+00
7.3750E-01 1.875E-01 1.869E+00
7.8750E-01 1.875E-01 1.282E+00
6.7500E-01 2.000E-01 2.000E+00
7.2500E-01 2.000E-01 1.980E+00
7.7500E-01 2.000E-01 1.341E+00
8.2500E-01 2.000E-01 1.189E+00
7.1250E-01 2.125E-01 1.995E+00
7.6250E-01 2.125E-01 1.465E+00
8.1250E-01 2.125E-01 1.212E+00
7.0000E-01 2.250E-01 1.999E+00
7.5000E-01 2.250E-01 1.621E+00
8.0000E-01 2.250E-01 1.240E+00
6.8750E-01 2.375E-01 2.000E+00
7.3750E-01 2.375E-01 1.869E+00
7.8750E-01 2.375E-01 1.282E+00
6.7500E-01 2.500E-01 2.000E+00
7.2500E-01 2.500E-01 1.980E+00
7.7500E-01 2.500E-01 1.340E+00
8.2500E-01 2.500E-01 1.189E+00
7.1250E-01 2.625E-01 1.995E+00
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7.6250E-01 2.625E-01 1.462E+00
8.1250E-01 2.625E-01 1.212E+00
7.0000E-01 2.750E-01 1.999E+00
7.5000E-01 2.750E-01 1.616E+00
8.0000E-01 2.750E-01 1.239E+00
6.8750E-01 2.875E-01 2.000E+00
7.3750E-01 2.875E-01 1.866E+00
7.8750E-01 2.875E-01 1.281E+00
6.7500E-01 3.000E-01 2.000E+00
7.2500E-01 3.000E-01 1.979E+00
7.7500E-01 3.000E-01 1.337E+00
8.2500E-01 3.000E-01 1.189E+00
7.1250E-01 3.125E-01 1.995E+00
7.6250E-01 3.125E-01 1.455E+00
8.1250E-01 3.125E-01 1.212E+00
7.0000E-01 3.250E-01 1.999E+00
7.5000E-01 3.250E-01 1.605E+00
8.0000E-01 3.250E-01 1.239E+00
6.8750E-01 3.375E-01 2.000E+00
7.3750E-01 3.375E-01 1.862E+00
7.8750E-01 3.375E-01 1.279E+00
6.7500E-01 3.500E-01 2.000E+00
7.2500E-01 3.500E-01 1.977E+00
7.7500E-01 3.500E-01 1.332E+00
8.2500E-01 3.500E-01 1.189E+00
7.1250E-01 3.625E-01 1.993E+00
7.6250E-01 3.625E-01 1.442E+00
8.1250E-01 3.625E-01 1.211E+00
7.0000E-01 3.750E-01 1.999E+00
7.5000E-01 3.750E-01 1.585E+00
8.0000E-01 3.750E-01 1.236E+00
6.8750E-01 3.875E-01 2.000E+00
7.3750E-01 3.875E-01 1.849E+00
7.8750E-01 3.875E-01 1.274E+00
6.7500E-01 4.000E-01 2.000E+00
7.2500E-01 4.000E-01 1.972E+00
7.7500E-01 4.000E-01 1.324E+00
8.2500E-01 4.000E-01 1.187E+00
7.1250E-01 4.125E-01 1.990E+00
7.6250E-01 4.125E-01 1.420E+00
8.1250E-01 4.125E-01 1.209E+00
7.0000E-01 4.250E-01 1.997E+00
7.5000E-01 4.250E-01 1.549E+00
8.0000E-01 4.250E-01 1.233E+00
6.8750E-01 4.375E-01 1.999E+00
7.3750E-01 4.375E-01 1.813E+00
7.8750E-01 4.375E-01 1.267E+00
6.7500E-01 4.500E-01 2.000E+00
7.2500E-01 4.500E-01 1.952E+00
7.7500E-01 4.500E-01 1.310E+00
8.2500E-01 4.500E-01 1.185E+00
7.1250E-01 4.625E-01 1.976E+00
7.6250E-01 4.625E-01 1.387E+00
8.1250E-01 4.625E-01 1.206E+00
6.7500E-01 4.750E-01 2.000E+00
7.2500E-01 4.750E-01 1.924E+00
7.7500E-01 4.750E-01 1.301E+00
8.2500E-01 4.750E-01 1.184E+00
6.8750E-01 4.875E-01 1.999E+00
7.3750E-01 4.875E-01 1.714E+00
7.8750E-01 4.875E-01 1.257E+00
6.5000E-01 5.000E-01 2.000E+00
7.0000E-01 5.000E-01 1.991E+00
7.5000E-01 5.000E-01 1.454E+00
8.0000E-01 5.000E-01 1.224E+00
6.6250E-01 5.125E-01 2.000E+00
7.1250E-01 5.125E-01 1.932E+00
7.6250E-01 5.125E-01 1.346E+00
6.5000E-01 5.250E-01 2.000E+00
7.0000E-01 5.250E-01 1.986E+00
7.5000E-01 5.250E-01 1.414E+00
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8.0000E-01 5.250E-01 1.219E+00
6.8750E-01 5.375E-01 1.996E+00
7.3750E-01 5.375E-01 1.545E+00
7.8750E-01 5.375E-01 1.243E+00
6.5000E-01 5.500E-01 2.000E+00
7.0000E-01 5.500E-01 1.978E+00
7.5000E-01 5.500E-01 1.373E+00
8.0000E-01 5.500E-01 1.214E+00
6.6250E-01 5.625E-01 1.999E+00
7.1250E-01 5.625E-01 1.843E+00
7.6250E-01 5.625E-01 1.302E+00
6.2500E-01 5.750E-01 2.000E+00
6.7500E-01 5.750E-01 1.995E+00
7.2500E-01 5.750E-01 1.545E+00
7.7500E-01 5.750E-01 1.256E+00
6.3750E-01 5.875E-01 2.000E+00
6.8750E-01 5.875E-01 1.954E+00
7.3750E-01 5.875E-01 1.392E+00
7.8750E-01 5.875E-01 1.226E+00
6.2500E-01 6.000E-01 2.000E+00
6.7500E-01 6.000E-01 1.984E+00
7.2500E-01 6.000E-01 1.443E+00
7.7500E-01 6.000E-01 1.243E+00
6.1250E-01 6.125E-01 2.000E+00
6.6250E-01 6.125E-01 1.988E+00
7.1250E-01 6.125E-01 1.531E+00
7.6250E-01 6.125E-01 1.263E+00
5.5000E-01 6.250E-01 2.000E+00
6.0000E-01 6.250E-01 2.000E+00
6.5000E-01 6.250E-01 1.993E+00
7.0000E-01 6.250E-01 1.577E+00
7.5000E-01 6.250E-01 1.280E+00
8.0000E-01 6.250E-01 1.194E+00
5.8750E-01 6.375E-01 2.000E+00
6.3750E-01 6.375E-01 1.992E+00
6.8750E-01 6.375E-01 1.672E+00
7.3750E-01 6.375E-01 1.300E+00
4.7500E-01 6.500E-01 2.000E+00
5.2500E-01 6.500E-01 2.000E+00
5.7500E-01 6.500E-01 2.000E+00
6.2500E-01 6.500E-01 1.993E+00
6.7500E-01 6.500E-01 1.680E+00
7.2500E-01 6.500E-01 1.314E+00
7.7500E-01 6.500E-01 1.218E+00
5.1250E-01 6.625E-01 2.000E+00
5.6250E-01 6.625E-01 1.999E+00
6.1250E-01 6.625E-01 1.988E+00
6.6250E-01 6.625E-01 1.721E+00
7.1250E-01 6.625E-01 1.331E+00
7.6250E-01 6.625E-01 1.229E+00
2.5000E-02 6.750E-01 2.000E+00
7.5000E-02 6.750E-01 2.000E+00
1.2500E-01 6.750E-01 2.000E+00
1.7500E-01 6.750E-01 2.000E+00
2.2500E-01 6.750E-01 2.000E+00
2.7500E-01 6.750E-01 2.000E+00
3.2500E-01 6.750E-01 2.000E+00
3.7500E-01 6.750E-01 2.000E+00
4.2500E-01 6.750E-01 2.000E+00
4.7500E-01 6.750E-01 2.000E+00
5.2500E-01 6.750E-01 2.000E+00
5.7500E-01 6.750E-01 1.995E+00
6.2500E-01 6.750E-01 1.932E+00
6.7500E-01 6.750E-01 1.447E+00
7.2500E-01 6.750E-01 1.277E+00
7.7500E-01 6.750E-01 1.205E+00
3.7500E-02 6.875E-01 2.000E+00
8.7500E-02 6.875E-01 2.000E+00
1.3750E-01 6.875E-01 2.000E+00
1.8750E-01 6.875E-01 2.000E+00
2.3750E-01 6.875E-01 2.000E+00
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2.8750E-01 6.875E-01 2.000E+00
3.3750E-01 6.875E-01 2.000E+00
3.8750E-01 6.875E-01 2.000E+00
4.3750E-01 6.875E-01 1.999E+00
4.8750E-01 6.875E-01 1.999E+00
5.3750E-01 6.875E-01 1.996E+00
5.8750E-01 6.875E-01 1.954E+00
6.3750E-01 6.875E-01 1.672E+00
6.8750E-01 6.875E-01 1.343E+00
7.3750E-01 6.875E-01 1.244E+00
2.5000E-02 7.000E-01 1.999E+00
7.5000E-02 7.000E-01 1.999E+00
1.2500E-01 7.000E-01 1.999E+00
1.7500E-01 7.000E-01 1.999E+00
2.2500E-01 7.000E-01 1.999E+00
2.7500E-01 7.000E-01 1.999E+00
3.2500E-01 7.000E-01 1.999E+00
3.7500E-01 7.000E-01 1.999E+00
4.2500E-01 7.000E-01 1.997E+00
4.7500E-01 7.000E-01 1.994E+00
5.2500E-01 7.000E-01 1.986E+00
5.7500E-01 7.000E-01 1.941E+00
6.2500E-01 7.000E-01 1.577E+00
6.7500E-01 7.000E-01 1.336E+00
7.2500E-01 7.000E-01 1.247E+00
1.2500E-02 7.125E-01 1.996E+00
6.2500E-02 7.125E-01 1.996E+00
1.1250E-01 7.125E-01 1.995E+00
1.6250E-01 7.125E-01 1.995E+00
2.1250E-01 7.125E-01 1.995E+00
2.6250E-01 7.125E-01 1.995E+00
3.1250E-01 7.125E-01 1.995E+00
3.6250E-01 7.125E-01 1.993E+00
4.1250E-01 7.125E-01 1.990E+00
4.6250E-01 7.125E-01 1.976E+00
5.1250E-01 7.125E-01 1.932E+00
5.6250E-01 7.125E-01 1.843E+00
6.1250E-01 7.125E-01 1.531E+00
6.6250E-01 7.125E-01 1.331E+00
7.1250E-01 7.125E-01 1.250E+00
2.5000E-02 7.250E-01 1.980E+00
7.5000E-02 7.250E-01 1.980E+00
1.2500E-01 7.250E-01 1.980E+00
1.7500E-01 7.250E-01 1.980E+00
2.2500E-01 7.250E-01 1.980E+00
2.7500E-01 7.250E-01 1.979E+00
3.2500E-01 7.250E-01 1.978E+00
3.7500E-01 7.250E-01 1.975E+00
4.2500E-01 7.250E-01 1.965E+00
4.7500E-01 7.250E-01 1.924E+00
5.2500E-01 7.250E-01 1.772E+00
5.7500E-01 7.250E-01 1.545E+00
6.2500E-01 7.250E-01 1.366E+00
6.7500E-01 7.250E-01 1.277E+00
7.2500E-01 7.250E-01 1.222E+00
3.7500E-02 7.375E-01 1.870E+00
8.7500E-02 7.375E-01 1.870E+00
1.3750E-01 7.375E-01 1.870E+00
1.8750E-01 7.375E-01 1.869E+00
2.3750E-01 7.375E-01 1.868E+00
2.8750E-01 7.375E-01 1.866E+00
3.3750E-01 7.375E-01 1.862E+00
3.8750E-01 7.375E-01 1.849E+00
4.3750E-01 7.375E-01 1.813E+00
4.8750E-01 7.375E-01 1.714E+00
5.3750E-01 7.375E-01 1.545E+00
5.8750E-01 7.375E-01 1.392E+00
6.3750E-01 7.375E-01 1.300E+00
6.8750E-01 7.375E-01 1.244E+00
2.5000E-02 7.500E-01 1.625E+00
7.5000E-02 7.500E-01 1.625E+00
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1.2500E-01 7.500E-01 1.625E+00
1.7500E-01 7.500E-01 1.624E+00
2.2500E-01 7.500E-01 1.621E+00
2.7500E-01 7.500E-01 1.616E+00
3.2500E-01 7.500E-01 1.605E+00
3.7500E-01 7.500E-01 1.585E+00
4.2500E-01 7.500E-01 1.549E+00
4.7500E-01 7.500E-01 1.491E+00
5.2500E-01 7.500E-01 1.414E+00
5.7500E-01 7.500E-01 1.337E+00
6.2500E-01 7.500E-01 1.280E+00
6.7500E-01 7.500E-01 1.237E+00
1.2500E-02 7.625E-01 1.468E+00
6.2500E-02 7.625E-01 1.468E+00
1.1250E-01 7.625E-01 1.468E+00
1.6250E-01 7.625E-01 1.467E+00
2.1250E-01 7.625E-01 1.465E+00
2.6250E-01 7.625E-01 1.462E+00
3.1250E-01 7.625E-01 1.455E+00
3.6250E-01 7.625E-01 1.442E+00
4.1250E-01 7.625E-01 1.420E+00
4.6250E-01 7.625E-01 1.387E+00
5.1250E-01 7.625E-01 1.345E+00
5.6250E-01 7.625E-01 1.302E+00
6.1250E-01 7.625E-01 1.263E+00
6.6250E-01 7.625E-01 1.229E+00
2.5000E-02 7.750E-01 1.342E+00
7.5000E-02 7.750E-01 1.342E+00
1.2500E-01 7.750E-01 1.342E+00
1.7500E-01 7.750E-01 1.341E+00
2.2500E-01 7.750E-01 1.340E+00
2.7500E-01 7.750E-01 1.339E+00
3.2500E-01 7.750E-01 1.335E+00
3.7500E-01 7.750E-01 1.329E+00
4.2500E-01 7.750E-01 1.317E+00
4.7500E-01 7.750E-01 1.301E+00
5.2500E-01 7.750E-01 1.280E+00
5.7500E-01 7.750E-01 1.256E+00
6.2500E-01 7.750E-01 1.231E+00
6.7500E-01 7.750E-01 1.205E+00
3.7500E-02 7.875E-01 1.283E+00
8.7500E-02 7.875E-01 1.283E+00
1.3750E-01 7.875E-01 1.283E+00
1.8750E-01 7.875E-01 1.282E+00
2.3750E-01 7.875E-01 1.282E+00
2.8750E-01 7.875E-01 1.281E+00
3.3750E-01 7.875E-01 1.279E+00
3.8750E-01 7.875E-01 1.274E+00
4.3750E-01 7.875E-01 1.267E+00
4.8750E-01 7.875E-01 1.257E+00
5.3750E-01 7.875E-01 1.243E+00
5.8750E-01 7.875E-01 1.226E+00
0.0000E+00 8.000E-01 1.240E+00
5.0000E-02 8.000E-01 1.240E+00
1.0000E-01 8.000E-01 1.240E+00
1.5000E-01 8.000E-01 1.240E+00
2.0000E-01 8.000E-01 1.240E+00
2.5000E-01 8.000E-01 1.240E+00
3.0000E-01 8.000E-01 1.239E+00
3.5000E-01 8.000E-01 1.238E+00
4.0000E-01 8.000E-01 1.235E+00
4.5000E-01 8.000E-01 1.230E+00
5.0000E-01 8.000E-01 1.224E+00
5.5000E-01 8.000E-01 1.214E+00
6.0000E-01 8.000E-01 1.202E+00
1.2500E-02 8.125E-01 1.213E+00
6.2500E-02 8.125E-01 1.213E+00
1.1250E-01 8.125E-01 1.213E+00
1.6250E-01 8.125E-01 1.213E+00
2.1250E-01 8.125E-01 1.212E+00
2.6250E-01 8.125E-01 1.212E+00
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3.1250E-01 8.125E-01 1.212E+00
3.6250E-01 8.125E-01 1.211E+00
4.1250E-01 8.125E-01 1.209E+00
4.6250E-01 8.125E-01 1.206E+00
0.0000E+00 8.250E-01 1.190E+00
5.0000E-02 8.250E-01 1.190E+00
1.0000E-01 8.250E-01 1.190E+00
1.5000E-01 8.250E-01 1.190E+00
2.0000E-01 8.250E-01 1.189E+00
2.5000E-01 8.250E-01 1.189E+00
3.0000E-01 8.250E-01 1.189E+00
3.5000E-01 8.250E-01 1.189E+00
4.0000E-01 8.250E-01 1.187E+00
4.5000E-01 8.250E-01 1.185E+00
5.0000E-01 8.250E-01 1.182E+00

Statistics:
Time = 0.2500
Total number of accepted timesteps = 161
Total number of rejected timesteps = 2

Total number (rounded) of
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 1000 200 400 400
2 200 20 50 50

Maximum number of
Newton iters Lin sys iters

At level
1 4 3
2 4 1

Example 2

Statistics:
Time = 0.0100
Total number of accepted timesteps = 14
Total number of rejected timesteps = 0

Total number (rounded) of
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 200 10 30 40
2 200 10 20 30
3 40 3 6 9

Maximum number of
Newton iters Lin sys iters

At level
1 2 2
2 2 2
3 2 2

Solution at every 2nd grid point in level 3 at time 0.0250:

x y approx c1 approx c2

0.000E+00 0.000E+00 6.997E+01 6.996E+05
5.000E-02 0.000E+00 7.282E+01 7.281E+05
1.000E-01 0.000E+00 7.567E+01 7.566E+05
1.500E-01 0.000E+00 6.957E+01 6.956E+05
2.000E-01 0.000E+00 5.387E+01 5.386E+05
2.500E-01 0.000E+00 3.536E+01 3.536E+05
3.000E-01 0.000E+00 2.107E+01 2.108E+05
3.500E-01 0.000E+00 1.370E+01 1.371E+05
4.000E-01 0.000E+00 1.300E+01 1.301E+05
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4.500E-01 0.000E+00 1.859E+01 1.859E+05
5.000E-01 0.000E+00 3.003E+01 3.003E+05
5.500E-01 0.000E+00 4.434E+01 4.433E+05
6.000E-01 0.000E+00 5.473E+01 5.472E+05
6.500E-01 0.000E+00 5.469E+01 5.468E+05
7.000E-01 0.000E+00 4.413E+01 4.413E+05
7.500E-01 0.000E+00 2.943E+01 2.944E+05
8.000E-01 0.000E+00 1.712E+01 1.713E+05
8.500E-01 0.000E+00 9.594E+00 9.601E+04
9.000E-01 0.000E+00 6.033E+00 6.040E+04
9.500E-01 0.000E+00 4.825E+00 4.829E+04
1.000E+00 0.000E+00 4.607E+00 4.609E+04
2.500E-02 2.500E-02 7.150E+01 7.150E+05
7.500E-02 2.500E-02 7.646E+01 7.646E+05
1.250E-01 2.500E-02 7.586E+01 7.585E+05
1.750E-01 2.500E-02 6.394E+01 6.394E+05
2.250E-01 2.500E-02 4.495E+01 4.494E+05
2.750E-01 2.500E-02 2.736E+01 2.736E+05
3.250E-01 2.500E-02 1.628E+01 1.629E+05
3.750E-01 2.500E-02 1.231E+01 1.232E+05
4.250E-01 2.500E-02 1.481E+01 1.481E+05
4.750E-01 2.500E-02 2.364E+01 2.364E+05
5.250E-01 2.500E-02 3.764E+01 3.764E+05
5.750E-01 2.500E-02 5.170E+01 5.169E+05
6.250E-01 2.500E-02 5.776E+01 5.775E+05
6.750E-01 2.500E-02 5.161E+01 5.160E+05
7.250E-01 2.500E-02 3.731E+01 3.731E+05
7.750E-01 2.500E-02 2.274E+01 2.275E+05
8.250E-01 2.500E-02 1.266E+01 1.266E+05
8.750E-01 2.500E-02 7.348E+00 7.358E+04
9.250E-01 2.500E-02 5.237E+00 5.245E+04
9.750E-01 2.500E-02 4.739E+00 4.742E+04
0.000E+00 5.000E-02 7.282E+01 7.281E+05
5.000E-02 5.000E-02 7.745E+01 7.744E+05
1.000E-01 5.000E-02 8.280E+01 8.278E+05
1.500E-01 5.000E-02 7.633E+01 7.631E+05
2.000E-01 5.000E-02 5.756E+01 5.755E+05
2.500E-01 5.000E-02 3.603E+01 3.603E+05
3.000E-01 5.000E-02 2.036E+01 2.037E+05
3.500E-01 5.000E-02 1.273E+01 1.275E+05
4.000E-01 5.000E-02 1.209E+01 1.210E+05
4.500E-01 5.000E-02 1.799E+01 1.800E+05
5.000E-01 5.000E-02 3.070E+01 3.071E+05
5.500E-01 5.000E-02 4.762E+01 4.761E+05
6.000E-01 5.000E-02 6.050E+01 6.048E+05
6.500E-01 5.000E-02 6.048E+01 6.047E+05
7.000E-01 5.000E-02 4.750E+01 4.749E+05
7.500E-01 5.000E-02 3.026E+01 3.026E+05
8.000E-01 5.000E-02 1.679E+01 1.681E+05
8.500E-01 5.000E-02 9.182E+00 9.200E+04
9.000E-01 5.000E-02 5.901E+00 5.918E+04
9.500E-01 5.000E-02 5.010E+00 5.021E+04
1.000E+00 5.000E-02 4.957E+00 4.961E+04
2.500E-02 7.500E-02 7.646E+01 7.646E+05
7.500E-02 7.500E-02 8.585E+01 8.583E+05
1.250E-01 7.500E-02 8.738E+01 8.735E+05
1.750E-01 7.500E-02 7.236E+01 7.234E+05
2.250E-01 7.500E-02 4.806E+01 4.805E+05
2.750E-01 7.500E-02 2.701E+01 2.702E+05
3.250E-01 7.500E-02 1.491E+01 1.493E+05
3.750E-01 7.500E-02 1.091E+01 1.094E+05
4.250E-01 7.500E-02 1.361E+01 1.363E+05
4.750E-01 7.500E-02 2.348E+01 2.349E+05
5.250E-01 7.500E-02 4.057E+01 4.056E+05
5.750E-01 7.500E-02 5.914E+01 5.912E+05
6.250E-01 7.500E-02 6.756E+01 6.754E+05
6.750E-01 7.500E-02 5.918E+01 5.916E+05
7.250E-01 7.500E-02 4.047E+01 4.047E+05
7.750E-01 7.500E-02 2.296E+01 2.297E+05
8.250E-01 7.500E-02 1.211E+01 1.213E+05
8.750E-01 7.500E-02 7.095E+00 7.120E+04
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9.250E-01 7.500E-02 5.522E+00 5.542E+04
9.750E-01 7.500E-02 5.505E+00 5.512E+04
0.000E+00 1.000E-01 7.567E+01 7.566E+05
5.000E-02 1.000E-01 8.280E+01 8.278E+05
1.000E-01 1.000E-01 9.189E+01 9.187E+05
1.500E-01 1.000E-01 8.513E+01 8.510E+05
2.000E-01 1.000E-01 6.222E+01 6.220E+05
2.500E-01 1.000E-01 3.676E+01 3.676E+05
3.000E-01 1.000E-01 1.947E+01 1.949E+05
3.500E-01 1.000E-01 1.168E+01 1.170E+05
4.000E-01 1.000E-01 1.114E+01 1.116E+05
4.500E-01 1.000E-01 1.738E+01 1.739E+05
5.000E-01 1.000E-01 3.167E+01 3.167E+05
5.500E-01 1.000E-01 5.212E+01 5.211E+05
6.000E-01 1.000E-01 6.856E+01 6.853E+05
6.500E-01 1.000E-01 6.864E+01 6.861E+05
7.000E-01 1.000E-01 5.228E+01 5.226E+05
7.500E-01 1.000E-01 3.165E+01 3.165E+05
8.000E-01 1.000E-01 1.682E+01 1.684E+05
8.500E-01 1.000E-01 9.289E+00 9.317E+04
9.000E-01 1.000E-01 6.561E+00 6.590E+04
9.500E-01 1.000E-01 6.305E+00 6.322E+04
1.000E+00 1.000E-01 6.594E+00 6.600E+04
2.500E-02 1.250E-01 7.586E+01 7.585E+05
7.500E-02 1.250E-01 8.738E+01 8.735E+05
1.250E-01 1.250E-01 9.027E+01 9.024E+05
1.750E-01 1.250E-01 7.438E+01 7.436E+05
2.250E-01 1.250E-01 4.841E+01 4.840E+05
2.750E-01 1.250E-01 2.662E+01 2.663E+05
3.250E-01 1.250E-01 1.465E+01 1.467E+05
3.750E-01 1.250E-01 1.087E+01 1.090E+05
4.250E-01 1.250E-01 1.355E+01 1.358E+05
4.750E-01 1.250E-01 2.351E+01 2.352E+05
5.250E-01 1.250E-01 4.148E+01 4.147E+05
5.750E-01 1.250E-01 6.178E+01 6.175E+05
6.250E-01 1.250E-01 7.124E+01 7.121E+05
6.750E-01 1.250E-01 6.205E+01 6.203E+05
7.250E-01 1.250E-01 4.183E+01 4.182E+05
7.750E-01 1.250E-01 2.364E+01 2.365E+05
8.250E-01 1.250E-01 1.302E+01 1.304E+05
8.750E-01 1.250E-01 8.572E+00 8.603E+04
9.250E-01 1.250E-01 7.650E+00 7.675E+04
9.750E-01 1.250E-01 8.236E+00 8.245E+04
0.000E+00 1.500E-01 6.957E+01 6.956E+05
5.000E-02 1.500E-01 7.633E+01 7.631E+05
1.000E-01 1.500E-01 8.513E+01 8.510E+05
1.500E-01 1.500E-01 7.927E+01 7.924E+05
2.000E-01 1.500E-01 5.845E+01 5.844E+05
2.500E-01 1.500E-01 3.536E+01 3.536E+05
3.000E-01 1.500E-01 1.982E+01 1.984E+05
3.500E-01 1.500E-01 1.289E+01 1.292E+05
4.000E-01 1.500E-01 1.245E+01 1.248E+05
4.500E-01 1.500E-01 1.809E+01 1.811E+05
5.000E-01 1.500E-01 3.108E+01 3.108E+05
5.500E-01 1.500E-01 4.985E+01 4.983E+05
6.000E-01 1.500E-01 6.509E+01 6.506E+05
6.500E-01 1.500E-01 6.532E+01 6.529E+05
7.000E-01 1.500E-01 5.043E+01 5.041E+05
7.500E-01 1.500E-01 3.175E+01 3.175E+05
8.000E-01 1.500E-01 1.852E+01 1.853E+05
8.500E-01 1.500E-01 1.204E+01 1.207E+05
9.000E-01 1.500E-01 1.005E+01 1.007E+05
9.500E-01 1.500E-01 1.043E+01 1.045E+05
1.000E+00 1.500E-01 1.106E+01 1.106E+05
2.500E-02 1.750E-01 6.394E+01 6.394E+05
7.500E-02 1.750E-01 7.236E+01 7.234E+05
1.250E-01 1.750E-01 7.438E+01 7.436E+05
1.750E-01 1.750E-01 6.250E+01 6.248E+05
2.250E-01 1.750E-01 4.296E+01 4.295E+05
2.750E-01 1.750E-01 2.634E+01 2.635E+05
3.250E-01 1.750E-01 1.704E+01 1.706E+05
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3.750E-01 1.750E-01 1.408E+01 1.410E+05
4.250E-01 1.750E-01 1.619E+01 1.621E+05
4.750E-01 1.750E-01 2.393E+01 2.394E+05
5.250E-01 1.750E-01 3.768E+01 3.767E+05
5.750E-01 1.750E-01 5.302E+01 5.300E+05
6.250E-01 1.750E-01 6.022E+01 6.020E+05
6.750E-01 1.750E-01 5.361E+01 5.359E+05
7.250E-01 1.750E-01 3.870E+01 3.869E+05
7.750E-01 1.750E-01 2.512E+01 2.513E+05
8.250E-01 1.750E-01 1.719E+01 1.721E+05
8.750E-01 1.750E-01 1.407E+01 1.409E+05
9.250E-01 1.750E-01 1.381E+01 1.383E+05
9.750E-01 1.750E-01 1.479E+01 1.480E+05
0.000E+00 2.000E-01 5.387E+01 5.386E+05
5.000E-02 2.000E-01 5.756E+01 5.755E+05
1.000E-01 2.000E-01 6.222E+01 6.220E+05
1.500E-01 2.000E-01 5.845E+01 5.844E+05
2.000E-01 2.000E-01 4.603E+01 4.602E+05
2.500E-01 2.000E-01 3.208E+01 3.208E+05
3.000E-01 2.000E-01 2.249E+01 2.250E+05
3.500E-01 2.000E-01 1.815E+01 1.817E+05
4.000E-01 2.000E-01 1.783E+01 1.785E+05
4.500E-01 2.000E-01 2.125E+01 2.126E+05
5.000E-01 2.000E-01 2.913E+01 2.913E+05
5.500E-01 2.000E-01 4.033E+01 4.032E+05
6.000E-01 2.000E-01 4.935E+01 4.933E+05
6.500E-01 2.000E-01 4.973E+01 4.972E+05
7.000E-01 2.000E-01 4.145E+01 4.144E+05
7.500E-01 2.000E-01 3.086E+01 3.086E+05
8.000E-01 2.000E-01 2.340E+01 2.341E+05
8.500E-01 2.000E-01 1.997E+01 1.998E+05
9.000E-01 2.000E-01 1.916E+01 1.918E+05
9.500E-01 2.000E-01 1.973E+01 1.974E+05
1.000E+00 2.000E-01 2.031E+01 2.031E+05
2.500E-02 2.250E-01 4.495E+01 4.494E+05
7.500E-02 2.250E-01 4.806E+01 4.805E+05
1.250E-01 2.250E-01 4.841E+01 4.840E+05
1.750E-01 2.250E-01 4.296E+01 4.295E+05
2.250E-01 2.250E-01 3.441E+01 3.440E+05
2.750E-01 2.250E-01 2.736E+01 2.736E+05
3.250E-01 2.250E-01 2.372E+01 2.373E+05
3.750E-01 2.250E-01 2.262E+01 2.263E+05
4.250E-01 2.250E-01 2.316E+01 2.317E+05
4.750E-01 2.250E-01 2.585E+01 2.586E+05
5.250E-01 2.250E-01 3.130E+01 3.130E+05
5.750E-01 2.250E-01 3.770E+01 3.769E+05
6.250E-01 2.250E-01 4.091E+01 4.090E+05
6.750E-01 2.250E-01 3.863E+01 3.862E+05
7.250E-01 2.250E-01 3.321E+01 3.321E+05
7.750E-01 2.250E-01 2.881E+01 2.881E+05
8.250E-01 2.250E-01 2.704E+01 2.704E+05
8.750E-01 2.250E-01 2.685E+01 2.685E+05
9.250E-01 2.250E-01 2.695E+01 2.696E+05
9.750E-01 2.250E-01 2.714E+01 2.714E+05
0.000E+00 2.500E-01 3.536E+01 3.536E+05
5.000E-02 2.500E-01 3.603E+01 3.603E+05
1.000E-01 2.500E-01 3.676E+01 3.676E+05
1.500E-01 2.500E-01 3.536E+01 3.536E+05
2.000E-01 2.500E-01 3.208E+01 3.208E+05
2.500E-01 2.500E-01 2.934E+01 2.934E+05
3.000E-01 2.500E-01 2.875E+01 2.875E+05
3.500E-01 2.500E-01 2.932E+01 2.932E+05
4.000E-01 2.500E-01 2.914E+01 2.914E+05
4.500E-01 2.500E-01 2.808E+01 2.808E+05
5.000E-01 2.500E-01 2.782E+01 2.782E+05
5.500E-01 2.500E-01 2.935E+01 2.935E+05
6.000E-01 2.500E-01 3.135E+01 3.135E+05
6.500E-01 2.500E-01 3.187E+01 3.187E+05
7.000E-01 2.500E-01 3.106E+01 3.105E+05
7.500E-01 2.500E-01 3.106E+01 3.106E+05
8.000E-01 2.500E-01 3.316E+01 3.316E+05
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8.500E-01 2.500E-01 3.594E+01 3.594E+05
9.000E-01 2.500E-01 3.702E+01 3.702E+05
9.500E-01 2.500E-01 3.612E+01 3.612E+05
1.000E+00 2.500E-01 3.540E+01 3.540E+05
2.500E-02 2.750E-01 2.736E+01 2.736E+05
7.500E-02 2.750E-01 2.701E+01 2.702E+05
1.250E-01 2.750E-01 2.662E+01 2.663E+05
1.750E-01 2.750E-01 2.634E+01 2.635E+05
2.250E-01 2.750E-01 2.736E+01 2.736E+05
2.750E-01 2.750E-01 3.081E+01 3.080E+05
3.250E-01 2.750E-01 3.542E+01 3.541E+05
3.750E-01 2.750E-01 3.761E+01 3.760E+05
4.250E-01 2.750E-01 3.522E+01 3.521E+05
4.750E-01 2.750E-01 3.021E+01 3.020E+05
5.250E-01 2.750E-01 2.614E+01 2.614E+05
5.750E-01 2.750E-01 2.446E+01 2.447E+05
6.250E-01 2.750E-01 2.447E+01 2.448E+05
6.750E-01 2.750E-01 2.568E+01 2.569E+05
7.250E-01 2.750E-01 2.908E+01 2.908E+05
7.750E-01 2.750E-01 3.567E+01 3.566E+05
8.250E-01 2.750E-01 4.371E+01 4.371E+05
8.750E-01 2.750E-01 4.876E+01 4.875E+05
9.250E-01 2.750E-01 4.818E+01 4.817E+05
9.750E-01 2.750E-01 4.500E+01 4.499E+05
0.000E+00 3.000E-01 2.107E+01 2.108E+05
5.000E-02 3.000E-01 2.036E+01 2.037E+05
1.000E-01 3.000E-01 1.947E+01 1.949E+05
1.500E-01 3.000E-01 1.982E+01 1.984E+05
2.000E-01 3.000E-01 2.249E+01 2.250E+05
2.500E-01 3.000E-01 2.875E+01 2.875E+05
3.000E-01 3.000E-01 3.792E+01 3.791E+05
3.500E-01 3.000E-01 4.533E+01 4.531E+05
4.000E-01 3.000E-01 4.534E+01 4.532E+05
4.500E-01 3.000E-01 3.784E+01 3.783E+05
5.000E-01 3.000E-01 2.840E+01 2.840E+05
5.500E-01 3.000E-01 2.183E+01 2.184E+05
6.000E-01 3.000E-01 1.914E+01 1.915E+05
6.500E-01 3.000E-01 1.976E+01 1.977E+05
7.000E-01 3.000E-01 2.408E+01 2.409E+05
7.500E-01 3.000E-01 3.336E+01 3.336E+05
8.000E-01 3.000E-01 4.678E+01 4.676E+05
8.500E-01 3.000E-01 5.863E+01 5.861E+05
9.000E-01 3.000E-01 6.202E+01 6.200E+05
9.500E-01 3.000E-01 5.724E+01 5.723E+05
1.000E+00 3.000E-01 5.355E+01 5.354E+05
2.500E-02 3.250E-01 1.628E+01 1.629E+05
7.500E-02 3.250E-01 1.491E+01 1.493E+05
1.250E-01 3.250E-01 1.465E+01 1.467E+05
1.750E-01 3.250E-01 1.704E+01 1.706E+05
2.250E-01 3.250E-01 2.372E+01 2.373E+05
2.750E-01 3.250E-01 3.542E+01 3.541E+05
3.250E-01 3.250E-01 4.849E+01 4.847E+05
3.750E-01 3.250E-01 5.457E+01 5.454E+05
4.250E-01 3.250E-01 4.867E+01 4.865E+05
4.750E-01 3.250E-01 3.559E+01 3.558E+05
5.250E-01 3.250E-01 2.375E+01 2.376E+05
5.750E-01 3.250E-01 1.711E+01 1.713E+05
6.250E-01 3.250E-01 1.548E+01 1.551E+05
6.750E-01 3.250E-01 1.855E+01 1.857E+05
7.250E-01 3.250E-01 2.761E+01 2.762E+05
7.750E-01 3.250E-01 4.362E+01 4.361E+05
8.250E-01 3.250E-01 6.229E+01 6.226E+05
8.750E-01 3.250E-01 7.345E+01 7.342E+05
9.250E-01 3.250E-01 7.114E+01 7.112E+05
9.750E-01 3.250E-01 6.278E+01 6.277E+05
0.000E+00 3.500E-01 1.370E+01 1.371E+05
5.000E-02 3.500E-01 1.273E+01 1.275E+05
1.000E-01 3.500E-01 1.168E+01 1.170E+05
1.500E-01 3.500E-01 1.289E+01 1.292E+05
2.000E-01 3.500E-01 1.815E+01 1.817E+05
2.500E-01 3.500E-01 2.932E+01 2.932E+05
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3.000E-01 3.500E-01 4.533E+01 4.531E+05
3.500E-01 3.500E-01 5.835E+01 5.832E+05
4.000E-01 3.500E-01 5.854E+01 5.851E+05
4.500E-01 3.500E-01 4.577E+01 4.576E+05
5.000E-01 3.500E-01 2.979E+01 2.979E+05
5.500E-01 3.500E-01 1.865E+01 1.867E+05
6.000E-01 3.500E-01 1.387E+01 1.390E+05
6.500E-01 3.500E-01 1.455E+01 1.458E+05
7.000E-01 3.500E-01 2.128E+01 2.130E+05
7.500E-01 3.500E-01 3.607E+01 3.607E+05
8.000E-01 3.500E-01 5.785E+01 5.783E+05
8.500E-01 3.500E-01 7.728E+01 7.725E+05
9.000E-01 3.500E-01 8.238E+01 8.235E+05
9.500E-01 3.500E-01 7.359E+01 7.357E+05
1.000E+00 3.500E-01 6.699E+01 6.698E+05
2.500E-02 3.750E-01 1.231E+01 1.232E+05
7.500E-02 3.750E-01 1.091E+01 1.094E+05
1.250E-01 3.750E-01 1.087E+01 1.090E+05
1.750E-01 3.750E-01 1.408E+01 1.410E+05
2.250E-01 3.750E-01 2.262E+01 2.263E+05
2.750E-01 3.750E-01 3.761E+01 3.760E+05
3.250E-01 3.750E-01 5.457E+01 5.454E+05
3.750E-01 3.750E-01 6.259E+01 6.256E+05
4.250E-01 3.750E-01 5.507E+01 5.504E+05
4.750E-01 3.750E-01 3.835E+01 3.834E+05
5.250E-01 3.750E-01 2.342E+01 2.343E+05
5.750E-01 3.750E-01 1.514E+01 1.517E+05
6.250E-01 3.750E-01 1.306E+01 1.309E+05
6.750E-01 3.750E-01 1.671E+01 1.673E+05
7.250E-01 3.750E-01 2.779E+01 2.780E+05
7.750E-01 3.750E-01 4.774E+01 4.773E+05
8.250E-01 3.750E-01 7.139E+01 7.136E+05
8.750E-01 3.750E-01 8.551E+01 8.548E+05
9.250E-01 3.750E-01 8.219E+01 8.216E+05
9.750E-01 3.750E-01 7.107E+01 7.105E+05
0.000E+00 4.000E-01 1.300E+01 1.301E+05
5.000E-02 4.000E-01 1.209E+01 1.210E+05
1.000E-01 4.000E-01 1.114E+01 1.116E+05
1.500E-01 4.000E-01 1.245E+01 1.248E+05
2.000E-01 4.000E-01 1.783E+01 1.785E+05
2.500E-01 4.000E-01 2.914E+01 2.914E+05
3.000E-01 4.000E-01 4.534E+01 4.532E+05
3.500E-01 4.000E-01 5.854E+01 5.851E+05
4.000E-01 4.000E-01 5.887E+01 5.885E+05
4.500E-01 4.000E-01 4.616E+01 4.615E+05
5.000E-01 4.000E-01 3.019E+01 3.018E+05
5.500E-01 4.000E-01 1.904E+01 1.905E+05
6.000E-01 4.000E-01 1.426E+01 1.429E+05
6.500E-01 4.000E-01 1.499E+01 1.502E+05
7.000E-01 4.000E-01 2.182E+01 2.183E+05
7.500E-01 4.000E-01 3.676E+01 3.676E+05
8.000E-01 4.000E-01 5.874E+01 5.872E+05
8.500E-01 4.000E-01 7.834E+01 7.831E+05
9.000E-01 4.000E-01 8.350E+01 8.347E+05
9.500E-01 4.000E-01 7.465E+01 7.463E+05
1.000E+00 4.000E-01 6.800E+01 6.799E+05
2.500E-02 4.250E-01 1.481E+01 1.481E+05
7.500E-02 4.250E-01 1.361E+01 1.363E+05
1.250E-01 4.250E-01 1.355E+01 1.358E+05
1.750E-01 4.250E-01 1.619E+01 1.621E+05
2.250E-01 4.250E-01 2.316E+01 2.317E+05
2.750E-01 4.250E-01 3.522E+01 3.521E+05
3.250E-01 4.250E-01 4.867E+01 4.865E+05
3.750E-01 4.250E-01 5.507E+01 5.504E+05
4.250E-01 4.250E-01 4.937E+01 4.935E+05
4.750E-01 4.250E-01 3.636E+01 3.635E+05
5.250E-01 4.250E-01 2.455E+01 2.456E+05
5.750E-01 4.250E-01 1.793E+01 1.795E+05
6.250E-01 4.250E-01 1.637E+01 1.639E+05
6.750E-01 4.250E-01 1.956E+01 1.958E+05
7.250E-01 4.250E-01 2.884E+01 2.885E+05
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7.750E-01 4.250E-01 4.515E+01 4.514E+05
8.250E-01 4.250E-01 6.413E+01 6.411E+05
8.750E-01 4.250E-01 7.551E+01 7.548E+05
9.250E-01 4.250E-01 7.322E+01 7.320E+05
9.750E-01 4.250E-01 6.474E+01 6.473E+05
0.000E+00 4.500E-01 1.859E+01 1.859E+05
5.000E-02 4.500E-01 1.799E+01 1.800E+05
1.000E-01 4.500E-01 1.738E+01 1.739E+05
1.500E-01 4.500E-01 1.809E+01 1.811E+05
2.000E-01 4.500E-01 2.125E+01 2.126E+05
2.500E-01 4.500E-01 2.808E+01 2.808E+05
3.000E-01 4.500E-01 3.784E+01 3.783E+05
3.500E-01 4.500E-01 4.577E+01 4.576E+05
4.000E-01 4.500E-01 4.616E+01 4.615E+05
4.500E-01 4.500E-01 3.890E+01 3.889E+05
5.000E-01 4.500E-01 2.959E+01 2.959E+05
5.500E-01 4.500E-01 2.313E+01 2.314E+05
6.000E-01 4.500E-01 2.056E+01 2.057E+05
6.500E-01 4.500E-01 2.133E+01 2.135E+05
7.000E-01 4.500E-01 2.585E+01 2.586E+05
7.500E-01 4.500E-01 3.540E+01 3.539E+05
8.000E-01 4.500E-01 4.914E+01 4.913E+05
8.500E-01 4.500E-01 6.130E+01 6.128E+05
9.000E-01 4.500E-01 6.485E+01 6.483E+05
9.500E-01 4.500E-01 6.004E+01 6.003E+05
1.000E+00 4.500E-01 5.629E+01 5.629E+05
2.500E-02 4.750E-01 2.364E+01 2.364E+05
7.500E-02 4.750E-01 2.348E+01 2.349E+05
1.250E-01 4.750E-01 2.351E+01 2.352E+05
1.750E-01 4.750E-01 2.393E+01 2.394E+05
2.250E-01 4.750E-01 2.585E+01 2.586E+05
2.750E-01 4.750E-01 3.021E+01 3.020E+05
3.250E-01 4.750E-01 3.559E+01 3.558E+05
3.750E-01 4.750E-01 3.835E+01 3.834E+05
4.250E-01 4.750E-01 3.636E+01 3.635E+05
4.750E-01 4.750E-01 3.166E+01 3.165E+05
5.250E-01 4.750E-01 2.787E+01 2.787E+05
5.750E-01 4.750E-01 2.648E+01 2.648E+05
6.250E-01 4.750E-01 2.674E+01 2.675E+05
6.750E-01 4.750E-01 2.814E+01 2.815E+05
7.250E-01 4.750E-01 3.170E+01 3.170E+05
7.750E-01 4.750E-01 3.846E+01 3.845E+05
8.250E-01 4.750E-01 4.672E+01 4.672E+05
8.750E-01 4.750E-01 5.199E+01 5.197E+05
9.250E-01 4.750E-01 5.155E+01 5.154E+05
9.750E-01 4.750E-01 4.841E+01 4.840E+05
0.000E+00 5.000E-01 3.003E+01 3.003E+05
5.000E-02 5.000E-01 3.070E+01 3.071E+05
1.000E-01 5.000E-01 3.167E+01 3.167E+05
1.500E-01 5.000E-01 3.108E+01 3.108E+05
2.000E-01 5.000E-01 2.913E+01 2.913E+05
2.500E-01 5.000E-01 2.782E+01 2.782E+05
3.000E-01 5.000E-01 2.840E+01 2.840E+05
3.500E-01 5.000E-01 2.979E+01 2.979E+05
4.000E-01 5.000E-01 3.019E+01 3.018E+05
4.500E-01 5.000E-01 2.959E+01 2.959E+05
5.000E-01 5.000E-01 2.982E+01 2.982E+05
5.500E-01 5.000E-01 3.188E+01 3.188E+05
6.000E-01 5.000E-01 3.438E+01 3.437E+05
6.500E-01 5.000E-01 3.522E+01 3.522E+05
7.000E-01 5.000E-01 3.448E+01 3.448E+05
7.500E-01 5.000E-01 3.442E+01 3.441E+05
8.000E-01 5.000E-01 3.647E+01 3.647E+05
8.500E-01 5.000E-01 3.934E+01 3.934E+05
9.000E-01 5.000E-01 4.064E+01 4.064E+05
9.500E-01 5.000E-01 4.000E+01 4.000E+05
1.000E+00 5.000E-01 3.940E+01 3.940E+05
2.500E-02 5.250E-01 3.764E+01 3.764E+05
7.500E-02 5.250E-01 4.057E+01 4.056E+05
1.250E-01 5.250E-01 4.148E+01 4.147E+05
1.750E-01 5.250E-01 3.768E+01 3.767E+05
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2.250E-01 5.250E-01 3.130E+01 3.130E+05
2.750E-01 5.250E-01 2.614E+01 2.614E+05
3.250E-01 5.250E-01 2.375E+01 2.376E+05
3.750E-01 5.250E-01 2.342E+01 2.343E+05
4.250E-01 5.250E-01 2.455E+01 2.456E+05
4.750E-01 5.250E-01 2.787E+01 2.787E+05
5.250E-01 5.250E-01 3.410E+01 3.409E+05
5.750E-01 5.250E-01 4.134E+01 4.133E+05
6.250E-01 5.250E-01 4.519E+01 4.518E+05
6.750E-01 5.250E-01 4.309E+01 4.308E+05
7.250E-01 5.250E-01 3.744E+01 3.744E+05
7.750E-01 5.250E-01 3.265E+01 3.265E+05
8.250E-01 5.250E-01 3.066E+01 3.066E+05
8.750E-01 5.250E-01 3.056E+01 3.057E+05
9.250E-01 5.250E-01 3.106E+01 3.106E+05
9.750E-01 5.250E-01 3.169E+01 3.169E+05
0.000E+00 5.500E-01 4.434E+01 4.434E+05
5.000E-02 5.500E-01 4.762E+01 4.761E+05
1.000E-01 5.500E-01 5.212E+01 5.211E+05
1.500E-01 5.500E-01 4.985E+01 4.983E+05
2.000E-01 5.500E-01 4.033E+01 4.032E+05
2.500E-01 5.500E-01 2.935E+01 2.935E+05
3.000E-01 5.500E-01 2.183E+01 2.184E+05
3.500E-01 5.500E-01 1.865E+01 1.867E+05
4.000E-01 5.500E-01 1.904E+01 1.905E+05
4.500E-01 5.500E-01 2.313E+01 2.314E+05
5.000E-01 5.500E-01 3.188E+01 3.188E+05
5.500E-01 5.500E-01 4.419E+01 4.418E+05
6.000E-01 5.500E-01 5.427E+01 5.425E+05
6.500E-01 5.500E-01 5.523E+01 5.521E+05
7.000E-01 5.500E-01 4.679E+01 4.678E+05
7.500E-01 5.500E-01 3.558E+01 3.558E+05
8.000E-01 5.500E-01 2.753E+01 2.754E+05
8.500E-01 5.500E-01 2.390E+01 2.391E+05
9.000E-01 5.500E-01 2.342E+01 2.344E+05
9.500E-01 5.500E-01 2.472E+01 2.473E+05
1.000E+00 5.500E-01 2.575E+01 2.575E+05
2.500E-02 5.750E-01 5.170E+01 5.169E+05
7.500E-02 5.750E-01 5.914E+01 5.912E+05
1.250E-01 5.750E-01 6.178E+01 6.175E+05
1.750E-01 5.750E-01 5.302E+01 5.300E+05
2.250E-01 5.750E-01 3.770E+01 3.769E+05
2.750E-01 5.750E-01 2.446E+01 2.447E+05
3.250E-01 5.750E-01 1.711E+01 1.713E+05
3.750E-01 5.750E-01 1.514E+01 1.517E+05
4.250E-01 5.750E-01 1.793E+01 1.795E+05
4.750E-01 5.750E-01 2.648E+01 2.648E+05
5.250E-01 5.750E-01 4.134E+01 4.133E+05
5.750E-01 5.750E-01 5.798E+01 5.796E+05
6.250E-01 5.750E-01 6.625E+01 6.622E+05
6.750E-01 5.750E-01 5.995E+01 5.993E+05
7.250E-01 5.750E-01 4.455E+01 4.454E+05
7.750E-01 5.750E-01 3.017E+01 3.018E+05
8.250E-01 5.750E-01 2.172E+01 2.174E+05
8.750E-01 5.750E-01 1.871E+01 1.873E+05
9.250E-01 5.750E-01 1.927E+01 1.929E+05
9.750E-01 5.750E-01 2.131E+01 2.132E+05
0.000E+00 6.000E-01 5.473E+01 5.472E+05
5.000E-02 6.000E-01 6.050E+01 6.048E+05
1.000E-01 6.000E-01 6.856E+01 6.853E+05
1.500E-01 6.000E-01 6.509E+01 6.506E+05
2.000E-01 6.000E-01 4.935E+01 4.933E+05
2.500E-01 6.000E-01 3.135E+01 3.135E+05
3.000E-01 6.000E-01 1.914E+01 1.915E+05
3.500E-01 6.000E-01 1.387E+01 1.390E+05
4.000E-01 6.000E-01 1.426E+01 1.429E+05
4.500E-01 6.000E-01 2.056E+01 2.057E+05
5.000E-01 6.000E-01 3.438E+01 3.437E+05
5.500E-01 6.000E-01 5.427E+01 5.425E+05
6.000E-01 6.000E-01 7.076E+01 7.073E+05
6.500E-01 6.000E-01 7.189E+01 7.186E+05
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7.000E-01 6.000E-01 5.714E+01 5.712E+05
7.500E-01 6.000E-01 3.796E+01 3.795E+05
8.000E-01 6.000E-01 2.415E+01 2.416E+05
8.500E-01 6.000E-01 1.758E+01 1.760E+05
9.000E-01 6.000E-01 1.630E+01 1.633E+05
9.500E-01 6.000E-01 1.813E+01 1.815E+05
1.000E+00 6.000E-01 1.967E+01 1.967E+05
2.500E-02 6.250E-01 5.776E+01 5.775E+05
7.500E-02 6.250E-01 6.756E+01 6.754E+05
1.250E-01 6.250E-01 7.124E+01 7.121E+05
1.750E-01 6.250E-01 6.022E+01 6.020E+05
2.250E-01 6.250E-01 4.091E+01 4.090E+05
2.750E-01 6.250E-01 2.447E+01 2.448E+05
3.250E-01 6.250E-01 1.548E+01 1.551E+05
3.750E-01 6.250E-01 1.306E+01 1.309E+05
4.250E-01 6.250E-01 1.637E+01 1.639E+05
4.750E-01 6.250E-01 2.674E+01 2.675E+05
5.250E-01 6.250E-01 4.519E+01 4.518E+05
5.750E-01 6.250E-01 6.625E+01 6.622E+05
6.250E-01 6.250E-01 7.677E+01 7.673E+05
6.750E-01 6.250E-01 6.856E+01 6.853E+05
7.250E-01 6.250E-01 4.883E+01 4.882E+05
7.750E-01 6.250E-01 3.068E+01 3.068E+05
8.250E-01 6.250E-01 2.013E+01 2.015E+05
8.750E-01 6.250E-01 1.635E+01 1.638E+05
9.250E-01 6.250E-01 1.700E+01 1.702E+05
9.750E-01 6.250E-01 1.949E+01 1.950E+05
0.000E+00 6.500E-01 5.469E+01 5.468E+05
5.000E-02 6.500E-01 6.048E+01 6.047E+05
1.000E-01 6.500E-01 6.864E+01 6.861E+05
1.500E-01 6.500E-01 6.532E+01 6.529E+05
2.000E-01 6.500E-01 4.973E+01 4.972E+05
2.500E-01 6.500E-01 3.187E+01 3.187E+05
3.000E-01 6.500E-01 1.976E+01 1.977E+05
3.500E-01 6.500E-01 1.455E+01 1.458E+05
4.000E-01 6.500E-01 1.499E+01 1.502E+05
4.500E-01 6.500E-01 2.133E+01 2.135E+05
5.000E-01 6.500E-01 3.522E+01 3.522E+05
5.500E-01 6.500E-01 5.523E+01 5.521E+05
6.000E-01 6.500E-01 7.189E+01 7.186E+05
6.500E-01 6.500E-01 7.323E+01 7.320E+05
7.000E-01 6.500E-01 5.869E+01 5.867E+05
7.500E-01 6.500E-01 3.968E+01 3.968E+05
8.000E-01 6.500E-01 2.603E+01 2.604E+05
8.500E-01 6.500E-01 1.963E+01 1.966E+05
9.000E-01 6.500E-01 1.860E+01 1.863E+05
9.500E-01 6.500E-01 2.076E+01 2.078E+05
1.000E+00 6.500E-01 2.250E+01 2.250E+05
2.500E-02 6.750E-01 5.161E+01 5.160E+05
7.500E-02 6.750E-01 5.918E+01 5.916E+05
1.250E-01 6.750E-01 6.205E+01 6.203E+05
1.750E-01 6.750E-01 5.361E+01 5.359E+05
2.250E-01 6.750E-01 3.863E+01 3.862E+05
2.750E-01 6.750E-01 2.568E+01 2.569E+05
3.250E-01 6.750E-01 1.855E+01 1.857E+05
3.750E-01 6.750E-01 1.671E+01 1.673E+05
4.250E-01 6.750E-01 1.956E+01 1.958E+05
4.750E-01 6.750E-01 2.814E+01 2.815E+05
5.250E-01 6.750E-01 4.309E+01 4.308E+05
5.750E-01 6.750E-01 5.995E+01 5.993E+05
6.250E-01 6.750E-01 6.856E+01 6.853E+05
6.750E-01 6.750E-01 6.271E+01 6.269E+05
7.250E-01 6.750E-01 4.782E+01 4.781E+05
7.750E-01 6.750E-01 3.394E+01 3.394E+05
8.250E-01 6.750E-01 2.597E+01 2.598E+05
8.750E-01 6.750E-01 2.344E+01 2.346E+05
9.250E-01 6.750E-01 2.457E+01 2.459E+05
9.750E-01 6.750E-01 2.718E+01 2.719E+05
0.000E+00 7.000E-01 4.413E+01 4.413E+05
5.000E-02 7.000E-01 4.750E+01 4.749E+05
1.000E-01 7.000E-01 5.228E+01 5.226E+05
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1.500E-01 7.000E-01 5.043E+01 5.041E+05
2.000E-01 7.000E-01 4.145E+01 4.144E+05
2.500E-01 7.000E-01 3.106E+01 3.105E+05
3.000E-01 7.000E-01 2.408E+01 2.409E+05
3.500E-01 7.000E-01 2.128E+01 2.130E+05
4.000E-01 7.000E-01 2.182E+01 2.183E+05
4.500E-01 7.000E-01 2.585E+01 2.586E+05
5.000E-01 7.000E-01 3.448E+01 3.448E+05
5.500E-01 7.000E-01 4.679E+01 4.678E+05
6.000E-01 7.000E-01 5.714E+01 5.712E+05
6.500E-01 7.000E-01 5.869E+01 5.867E+05
7.000E-01 7.000E-01 5.114E+01 5.113E+05
7.500E-01 7.000E-01 4.103E+01 4.102E+05
8.000E-01 7.000E-01 3.413E+01 3.414E+05
8.500E-01 7.000E-01 3.154E+01 3.155E+05
9.000E-01 7.000E-01 3.193E+01 3.194E+05
9.500E-01 7.000E-01 3.397E+01 3.398E+05
1.000E+00 7.000E-01 3.539E+01 3.539E+05
2.500E-02 7.250E-01 3.731E+01 3.731E+05
7.500E-02 7.250E-01 4.047E+01 4.047E+05
1.250E-01 7.250E-01 4.183E+01 4.182E+05
1.750E-01 7.250E-01 3.870E+01 3.869E+05
2.250E-01 7.250E-01 3.321E+01 3.321E+05
2.750E-01 7.250E-01 2.908E+01 2.908E+05
3.250E-01 7.250E-01 2.761E+01 2.762E+05
3.750E-01 7.250E-01 2.779E+01 2.780E+05
4.250E-01 7.250E-01 2.884E+01 2.885E+05
4.750E-01 7.250E-01 3.170E+01 3.170E+05
5.250E-01 7.250E-01 3.744E+01 3.744E+05
5.750E-01 7.250E-01 4.455E+01 4.454E+05
6.250E-01 7.250E-01 4.883E+01 4.882E+05
6.750E-01 7.250E-01 4.782E+01 4.781E+05
7.250E-01 7.250E-01 4.392E+01 4.391E+05
7.750E-01 7.250E-01 4.136E+01 4.136E+05
8.250E-01 7.250E-01 4.158E+01 4.159E+05
8.750E-01 7.250E-01 4.315E+01 4.316E+05
9.250E-01 7.250E-01 4.458E+01 4.458E+05
9.750E-01 7.250E-01 4.567E+01 4.567E+05
0.000E+00 7.500E-01 2.943E+01 2.944E+05
5.000E-02 7.500E-01 3.026E+01 3.026E+05
1.000E-01 7.500E-01 3.165E+01 3.165E+05
1.500E-01 7.500E-01 3.175E+01 3.175E+05
2.000E-01 7.500E-01 3.086E+01 3.086E+05
2.500E-01 7.500E-01 3.106E+01 3.106E+05
3.000E-01 7.500E-01 3.336E+01 3.336E+05
3.500E-01 7.500E-01 3.607E+01 3.607E+05
4.000E-01 7.500E-01 3.676E+01 3.676E+05
4.500E-01 7.500E-01 3.540E+01 3.539E+05
5.000E-01 7.500E-01 3.442E+01 3.441E+05
5.500E-01 7.500E-01 3.558E+01 3.558E+05
6.000E-01 7.500E-01 3.796E+01 3.795E+05
6.500E-01 7.500E-01 3.968E+01 3.968E+05
7.000E-01 7.500E-01 4.103E+01 4.102E+05
7.500E-01 7.500E-01 4.429E+01 4.428E+05
8.000E-01 7.500E-01 5.034E+01 5.034E+05
8.500E-01 7.500E-01 5.664E+01 5.664E+05
9.000E-01 7.500E-01 5.974E+01 5.973E+05
9.500E-01 7.500E-01 5.934E+01 5.933E+05
1.000E+00 7.500E-01 5.860E+01 5.860E+05
2.500E-02 7.750E-01 2.274E+01 2.275E+05
7.500E-02 7.750E-01 2.296E+01 2.297E+05
1.250E-01 7.750E-01 2.364E+01 2.365E+05
1.750E-01 7.750E-01 2.512E+01 2.513E+05
2.250E-01 7.750E-01 2.881E+01 2.881E+05
2.750E-01 7.750E-01 3.567E+01 3.566E+05
3.250E-01 7.750E-01 4.362E+01 4.361E+05
3.750E-01 7.750E-01 4.774E+01 4.773E+05
4.250E-01 7.750E-01 4.515E+01 4.514E+05
4.750E-01 7.750E-01 3.846E+01 3.845E+05
5.250E-01 7.750E-01 3.265E+01 3.265E+05
5.750E-01 7.750E-01 3.017E+01 3.018E+05
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6.250E-01 7.750E-01 3.068E+01 3.068E+05
6.750E-01 7.750E-01 3.394E+01 3.394E+05
7.250E-01 7.750E-01 4.136E+01 4.136E+05
7.750E-01 7.750E-01 5.388E+01 5.387E+05
8.250E-01 7.750E-01 6.826E+01 6.825E+05
8.750E-01 7.750E-01 7.755E+01 7.754E+05
9.250E-01 7.750E-01 7.785E+01 7.784E+05
9.750E-01 7.750E-01 7.362E+01 7.361E+05
0.000E+00 8.000E-01 1.712E+01 1.713E+05
5.000E-02 8.000E-01 1.679E+01 1.681E+05
1.000E-01 8.000E-01 1.682E+01 1.684E+05
1.500E-01 8.000E-01 1.852E+01 1.853E+05
2.000E-01 8.000E-01 2.340E+01 2.341E+05
2.500E-01 8.000E-01 3.316E+01 3.316E+05
3.000E-01 8.000E-01 4.678E+01 4.676E+05
3.500E-01 8.000E-01 5.785E+01 5.783E+05
4.000E-01 8.000E-01 5.874E+01 5.872E+05
4.500E-01 8.000E-01 4.914E+01 4.913E+05
5.000E-01 8.000E-01 3.647E+01 3.647E+05
5.500E-01 8.000E-01 2.753E+01 2.754E+05
6.000E-01 8.000E-01 2.415E+01 2.416E+05
6.500E-01 8.000E-01 2.603E+01 2.604E+05
7.000E-01 8.000E-01 3.413E+01 3.414E+05
7.500E-01 8.000E-01 5.034E+01 5.034E+05
8.000E-01 8.000E-01 7.292E+01 7.291E+05
8.500E-01 8.000E-01 9.274E+01 9.272E+05
9.000E-01 8.000E-01 9.928E+01 9.926E+05
9.500E-01 8.000E-01 9.289E+01 9.288E+05
1.000E+00 8.000E-01 8.753E+01 8.752E+05
2.500E-02 8.250E-01 1.266E+01 1.266E+05
7.500E-02 8.250E-01 1.211E+01 1.213E+05
1.250E-01 8.250E-01 1.302E+01 1.304E+05
1.750E-01 8.250E-01 1.719E+01 1.721E+05
2.250E-01 8.250E-01 2.704E+01 2.704E+05
2.750E-01 8.250E-01 4.371E+01 4.371E+05
3.250E-01 8.250E-01 6.229E+01 6.226E+05
3.750E-01 8.250E-01 7.139E+01 7.136E+05
4.250E-01 8.250E-01 6.413E+01 6.411E+05
4.750E-01 8.250E-01 4.672E+01 4.672E+05
5.250E-01 8.250E-01 3.066E+01 3.066E+05
5.750E-01 8.250E-01 2.172E+01 2.174E+05
6.250E-01 8.250E-01 2.013E+01 2.015E+05
6.750E-01 8.250E-01 2.597E+01 2.598E+05
7.250E-01 8.250E-01 4.158E+01 4.159E+05
7.750E-01 8.250E-01 6.826E+01 6.825E+05
8.250E-01 8.250E-01 9.880E+01 9.878E+05
8.750E-01 8.250E-01 1.174E+02 1.174E+06
9.250E-01 8.250E-01 1.151E+02 1.151E+06
9.750E-01 8.250E-01 1.029E+02 1.029E+06
0.000E+00 8.500E-01 9.594E+00 9.601E+04
5.000E-02 8.500E-01 9.182E+00 9.200E+04
1.000E-01 8.500E-01 9.289E+00 9.317E+04
1.500E-01 8.500E-01 1.204E+01 1.207E+05
2.000E-01 8.500E-01 1.997E+01 1.998E+05
2.500E-01 8.500E-01 3.594E+01 3.594E+05
3.000E-01 8.500E-01 5.863E+01 5.861E+05
3.500E-01 8.500E-01 7.728E+01 7.725E+05
4.000E-01 8.500E-01 7.834E+01 7.831E+05
4.500E-01 8.500E-01 6.130E+01 6.128E+05
5.000E-01 8.500E-01 3.934E+01 3.934E+05
5.500E-01 8.500E-01 2.390E+01 2.391E+05
6.000E-01 8.500E-01 1.758E+01 1.760E+05
6.500E-01 8.500E-01 1.963E+01 1.966E+05
7.000E-01 8.500E-01 3.154E+01 3.155E+05
7.500E-01 8.500E-01 5.664E+01 5.664E+05
8.000E-01 8.500E-01 9.274E+01 9.272E+05
8.500E-01 8.500E-01 1.247E+02 1.246E+06
9.000E-01 8.500E-01 1.341E+02 1.340E+06
9.500E-01 8.500E-01 1.215E+02 1.215E+06
1.000E+00 8.500E-01 1.115E+02 1.115E+06
2.500E-02 8.750E-01 7.348E+00 7.358E+04
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7.500E-02 8.750E-01 7.095E+00 7.120E+04
1.250E-01 8.750E-01 8.572E+00 8.603E+04
1.750E-01 8.750E-01 1.407E+01 1.409E+05
2.250E-01 8.750E-01 2.685E+01 2.685E+05
2.750E-01 8.750E-01 4.876E+01 4.875E+05
3.250E-01 8.750E-01 7.345E+01 7.342E+05
3.750E-01 8.750E-01 8.551E+01 8.548E+05
4.250E-01 8.750E-01 7.551E+01 7.548E+05
4.750E-01 8.750E-01 5.199E+01 5.197E+05
5.250E-01 8.750E-01 3.056E+01 3.057E+05
5.750E-01 8.750E-01 1.871E+01 1.873E+05
6.250E-01 8.750E-01 1.635E+01 1.638E+05
6.750E-01 8.750E-01 2.344E+01 2.346E+05
7.250E-01 8.750E-01 4.315E+01 4.316E+05
7.750E-01 8.750E-01 7.755E+01 7.754E+05
8.250E-01 8.750E-01 1.174E+02 1.174E+06
8.750E-01 8.750E-01 1.416E+02 1.416E+06
9.250E-01 8.750E-01 1.379E+02 1.379E+06
9.750E-01 8.750E-01 1.211E+02 1.211E+06
0.000E+00 9.000E-01 6.033E+00 6.040E+04
5.000E-02 9.000E-01 5.901E+00 5.918E+04
1.000E-01 9.000E-01 6.561E+00 6.590E+04
1.500E-01 9.000E-01 1.005E+01 1.007E+05
2.000E-01 9.000E-01 1.916E+01 1.918E+05
2.500E-01 9.000E-01 3.702E+01 3.702E+05
3.000E-01 9.000E-01 6.202E+01 6.200E+05
3.500E-01 9.000E-01 8.238E+01 8.235E+05
4.000E-01 9.000E-01 8.350E+01 8.347E+05
4.500E-01 9.000E-01 6.485E+01 6.483E+05
5.000E-01 9.000E-01 4.064E+01 4.064E+05
5.500E-01 9.000E-01 2.342E+01 2.344E+05
6.000E-01 9.000E-01 1.630E+01 1.633E+05
6.500E-01 9.000E-01 1.860E+01 1.863E+05
7.000E-01 9.000E-01 3.193E+01 3.194E+05
7.500E-01 9.000E-01 5.974E+01 5.973E+05
8.000E-01 9.000E-01 9.928E+01 9.926E+05
8.500E-01 9.000E-01 1.341E+02 1.340E+06
9.000E-01 9.000E-01 1.446E+02 1.446E+06
9.500E-01 9.000E-01 1.316E+02 1.316E+06
1.000E+00 9.000E-01 1.211E+02 1.210E+06
2.500E-02 9.250E-01 5.237E+00 5.245E+04
7.500E-02 9.250E-01 5.522E+00 5.542E+04
1.250E-01 9.250E-01 7.650E+00 7.675E+04
1.750E-01 9.250E-01 1.381E+01 1.383E+05
2.250E-01 9.250E-01 2.695E+01 2.695E+05
2.750E-01 9.250E-01 4.818E+01 4.817E+05
3.250E-01 9.250E-01 7.114E+01 7.112E+05
3.750E-01 9.250E-01 8.219E+01 8.216E+05
4.250E-01 9.250E-01 7.322E+01 7.320E+05
4.750E-01 9.250E-01 5.155E+01 5.154E+05
5.250E-01 9.250E-01 3.106E+01 3.106E+05
5.750E-01 9.250E-01 1.927E+01 1.929E+05
6.250E-01 9.250E-01 1.700E+01 1.702E+05
6.750E-01 9.250E-01 2.457E+01 2.459E+05
7.250E-01 9.250E-01 4.458E+01 4.458E+05
7.750E-01 9.250E-01 7.785E+01 7.784E+05
8.250E-01 9.250E-01 1.151E+02 1.151E+06
8.750E-01 9.250E-01 1.379E+02 1.379E+06
9.250E-01 9.250E-01 1.362E+02 1.361E+06
9.750E-01 9.250E-01 1.225E+02 1.225E+06
0.000E+00 9.500E-01 4.825E+00 4.829E+04
5.000E-02 9.500E-01 5.010E+00 5.021E+04
1.000E-01 9.500E-01 6.305E+00 6.322E+04
1.500E-01 9.500E-01 1.043E+01 1.045E+05
2.000E-01 9.500E-01 1.973E+01 1.974E+05
2.500E-01 9.500E-01 3.612E+01 3.612E+05
3.000E-01 9.500E-01 5.724E+01 5.723E+05
3.500E-01 9.500E-01 7.359E+01 7.357E+05
4.000E-01 9.500E-01 7.465E+01 7.463E+05
4.500E-01 9.500E-01 6.004E+01 6.003E+05
5.000E-01 9.500E-01 4.000E+01 4.000E+05
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5.500E-01 9.500E-01 2.472E+01 2.473E+05
6.000E-01 9.500E-01 1.813E+01 1.814E+05
6.500E-01 9.500E-01 2.076E+01 2.078E+05
7.000E-01 9.500E-01 3.397E+01 3.398E+05
7.500E-01 9.500E-01 5.934E+01 5.933E+05
8.000E-01 9.500E-01 9.289E+01 9.288E+05
8.500E-01 9.500E-01 1.215E+02 1.215E+06
9.000E-01 9.500E-01 1.316E+02 1.316E+06
9.500E-01 9.500E-01 1.240E+02 1.240E+06
1.000E+00 9.500E-01 1.173E+02 1.173E+06
2.500E-02 9.750E-01 4.739E+00 4.742E+04
7.500E-02 9.750E-01 5.505E+00 5.512E+04
1.250E-01 9.750E-01 8.236E+00 8.245E+04
1.750E-01 9.750E-01 1.479E+01 1.480E+05
2.250E-01 9.750E-01 2.714E+01 2.714E+05
2.750E-01 9.750E-01 4.500E+01 4.499E+05
3.250E-01 9.750E-01 6.278E+01 6.277E+05
3.750E-01 9.750E-01 7.107E+01 7.105E+05
4.250E-01 9.750E-01 6.474E+01 6.473E+05
4.750E-01 9.750E-01 4.841E+01 4.840E+05
5.250E-01 9.750E-01 3.169E+01 3.169E+05
5.750E-01 9.750E-01 2.131E+01 2.132E+05
6.250E-01 9.750E-01 1.949E+01 1.950E+05
6.750E-01 9.750E-01 2.718E+01 2.719E+05
7.250E-01 9.750E-01 4.567E+01 4.567E+05
7.750E-01 9.750E-01 7.362E+01 7.361E+05
8.250E-01 9.750E-01 1.029E+02 1.029E+06
8.750E-01 9.750E-01 1.211E+02 1.211E+06
9.250E-01 9.750E-01 1.225E+02 1.224E+06
9.750E-01 9.750E-01 1.154E+02 1.154E+06
0.000E+00 1.000E+00 4.607E+00 4.608E+04
5.000E-02 1.000E+00 4.957E+00 4.961E+04
1.000E-01 1.000E+00 6.594E+00 6.600E+04
1.500E-01 1.000E+00 1.106E+01 1.106E+05
2.000E-01 1.000E+00 2.031E+01 2.031E+05
2.500E-01 1.000E+00 3.540E+01 3.540E+05
3.000E-01 1.000E+00 5.355E+01 5.354E+05
3.500E-01 1.000E+00 6.699E+01 6.698E+05
4.000E-01 1.000E+00 6.800E+01 6.799E+05
4.500E-01 1.000E+00 5.629E+01 5.629E+05
5.000E-01 1.000E+00 3.940E+01 3.940E+05
5.500E-01 1.000E+00 2.575E+01 2.575E+05
6.000E-01 1.000E+00 1.967E+01 1.967E+05
6.500E-01 1.000E+00 2.250E+01 2.250E+05
7.000E-01 1.000E+00 3.539E+01 3.539E+05
7.500E-01 1.000E+00 5.860E+01 5.860E+05
8.000E-01 1.000E+00 8.753E+01 8.752E+05
8.500E-01 1.000E+00 1.115E+02 1.115E+06
9.000E-01 1.000E+00 1.211E+02 1.210E+06
9.500E-01 1.000E+00 1.173E+02 1.173E+06
1.000E+00 1.000E+00 1.132E+02 1.132E+06

Statistics:
Time = 0.0250
Total number of accepted timesteps = 29
Total number of rejected timesteps = 0

Total number (rounded) of
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 400 30 60 90
2 400 30 50 80
3 300 20 40 50

Maximum number of
Newton iters Lin sys iters
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At level
1 2 2
2 2 2
3 2 2

Example Program 1
Model for a Single, One-step Reaction of a Mixture of Two Chemicals

U
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Example Program 2
Multispecies Food Web Model

Concentrations of Predator
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NAG Library Routine Document

D03RBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03RBF integrates a system of linear or nonlinear, time-dependent partial differential equations (PDEs)
in two space dimensions on a rectilinear domain. The method of lines is employed to reduce the NPDEs
to a system of ordinary differential equations (ODEs) which are solved using a backward differentiation
formula (BDF) method. The resulting system of nonlinear equations is solved using a modified Newton
method and a Bi-CGSTAB iterative linear solver with ILU preconditioning. Local uniform grid
refinement is used to improve the accuracy of the solution. D03RBF originates from the VLUGR2
package (see Blom and Verwer (1993) and Blom et al. (1996)).

2 Specification

SUBROUTINE D03RBF (NPDE, TS, TOUT, DT, TOLS, TOLT, INIDOM, PDEDEF,
BNDARY, PDEIV, MONITR, OPTI, OPTR, RWK, LENRWK, IWK,
LENIWK, LWK, LENLWK, ITRACE, IND, IFAIL)

&
&

INTEGER NPDE, OPTI(4), LENRWK, IWK(LENIWK), LENIWK, LENLWK,
ITRACE, IND, IFAIL

&

REAL (KIND=nag_wp) TS, TOUT, DT(3), TOLS, TOLT, OPTR(3,NPDE),
RWK(LENRWK)

&

LOGICAL LWK(LENLWK)
EXTERNAL INIDOM, PDEDEF, BNDARY, PDEIV, MONITR

3 Description

D03RBF integrates the system of PDEs:

Fj t; x; y; u; ut; ux; uy; uxx; uxy; uyy
� �

¼ 0; j ¼ 1; 2; . . . ;NPDE; x; yð Þ 2 �; t0 � t � tout; ð1Þ

where � is an arbitrary rectilinear domain, i.e., a domain bounded by perpendicular straight lines. If the
domain is rectangular then it is recommended that D03RAF is used.

The vector u is the set of solution values

u x; y; tð Þ ¼ u1 x; y; tð Þ; . . . ; uNPDE x; y; tð Þ½ �T;

and ut denotes partial differentiation with respect to t, and similarly for ux, etc.

The functions Fj must be supplied by you in PDEDEF. Similarly the initial values of the functions
u x; y; tð Þ for x; yð Þ 2 � must be specified at t ¼ t0 in PDEIV.

Note that whilst complete generality is offered by the master equations (1), D03RBF is not appropriate
for all PDEs. In particular, hyperbolic systems should not be solved using this routine. Also, at least one
component of ut must appear in the system of PDEs.

The boundary conditions must be supplied by you in BNDARY in the form

Gj t; x; y; u; ut; ux; uy
� �

¼ 0; j ¼ 1; 2; . . . ;NPDE; x; yð Þ 2 @�; t0 � t � tout: ð2Þ
The domain is covered by a uniform coarse base grid specified by you, and nested finer uniform
subgrids are subsequently created in regions with high spatial activity. The refinement is controlled
using a space monitor which is computed from the current solution and a user-supplied space tolerance
TOLS. A number of optional parameters, e.g., the maximum number of grid levels at any time, and
some weighting factors, can be specified in the arrays OPTI and OPTR. Further details of the
refinement strategy can be found in Section 9.
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The system of PDEs and the boundary conditions are discretized in space on each grid using a standard
second-order finite difference scheme (centred on the internal domain and one-sided at the boundaries),
and the resulting system of ODEs is integrated in time using a second-order, two-step, implicit BDF
method with variable step size. The time integration is controlled using a time monitor computed at
each grid level from the current solution and a user-supplied time tolerance TOLT, and some further
optional user-specified weighting factors held in OPTR (see Section 9 for details). The time monitor is
used to compute a new step size, subject to restrictions on the size of the change between steps, and
(optional) user-specified maximum and minimum step sizes held in DT. The step size is adjusted so that
the remaining integration interval is an integer number times �t. In this way a solution is obtained at
t ¼ tout.
A modified Newton method is used to solve the nonlinear equations arising from the time integration.
You may specify (in OPTI) the maximum number of Newton iterations to be attempted. A Jacobian
matrix is calculated at the beginning of each time step. If the Newton process diverges or the maximum
number of iterations is exceeded, a new Jacobian is calculated using the most recent iterates and the
Newton process is restarted. If convergence is not achieved after the (optional) user-specified maximum
number of new Jacobian evaluations, the time step is retried with �t ¼ �t=4. The linear systems
arising from the Newton iteration are solved using a Bi-CGSTAB iterative method, in combination with
ILU preconditioning. The maximum number of iterations can be specified by you in OPTI.

In order to define the base grid you must first specify a virtual uniform rectangular grid which contains
the entire base grid. The position of the virtual grid in physical x; yð Þ space is given by the x; yð Þ
coordinates of its boundaries. The number of points nx and ny in the x and y directions must also be
given, corresponding to the number of columns and rows respectively. This is sufficient to determine
precisely the x; yð Þ coordinates of all virtual grid points. Each virtual grid point is then referred to by
integer coordinates vx; vy

� �
, where 0; 0ð Þ corresponds to the lower-left corner and nx � 1; ny � 1

� �
corresponds to the upper-right corner. vx and vy are also referred to as the virtual column and row
indices respectively.

The base grid is then specified with respect to the virtual grid, with each base grid point coinciding with
a virtual grid point. Each base grid point must be given an index, starting from 1, and incrementing
row-wise from the leftmost point of the lowest row. Also, each base grid row must be numbered
consecutively from the lowest row in the grid, so that row 1 contains grid point 1.

As an example, consider the domain consisting of the two separate squares shown in Figure 1. The left-
hand diagram shows the virtual grid and its integer coordinates (i.e., its column and row indices), and
the right-hand diagram shows the base grid point indices and the base row indices (in brackets).
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Figure 1

Hence the base grid point with index 6 say is in base row 2, virtual column 4, and virtual row 1, i.e.,
virtual grid integer coordinates 4; 1ð Þ; and the base grid point with index 19 say is in base row 5, virtual
column 2, and virtual row 5, i.e., virtual grid integer coordinates 2; 5ð Þ.
The base grid must then be defined in INIDOM by specifying the number of base grid rows, the number
of base grid points, the number of boundaries, the number of boundary points, and the following integer
arrays:

LROW contains the base grid indices of the starting points of the base grid rows;

IROW contains the virtual row numbers vy of the base grid rows;

ICOL contains the virtual column numbers vx of the base grid points;

LBND contains the grid indices of the boundary edges (without corners) and corner points;

LLBND contains the starting elements of the boundaries and corners in LBND.
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Finally, ILBND contains the types of the boundaries and corners, as follows:

Boundaries:

1 – lower boundary

2 – left boundary

3 – upper boundary

4 – right boundary

External corners (90�):

12 – lower-left corner

23 – upper-left corner

34 – upper-right corner

41 – lower-right corner

Internal corners (270�):

21 – lower-left corner

32 – upper-left corner

43 – upper-right corner

14 – lower-right corner

Figure 2 shows the boundary types of a domain with a hole. Notice the logic behind the labelling of the
corners: each one includes the types of the two adjacent boundary edges, in a clockwise fashion
(outside the domain).
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As an example, consider the domain shown in Figure 3. The left-hand diagram shows the physical
domain and the right-hand diagram shows the base and virtual grids. The numbers outside the base grid
are the indices of the left and rightmost base grid points, and the numbers inside the base grid are the
boundary or corner numbers, indicating the order in which the boundaries are stored in LBND.

24

1012 14

25 28

2726

7

9 23

105

18
4

17

20115 ...

16

22

11

13

8

21

1

4

15

26

37

46

57

68

79

88

97

96

87

78

67

56

45

36

25

14

3

5

2 6

19

Figure 3

For this example we have

NROWS = 11
NPTS = 105
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NBNDS = 28
NBPTS = 72

LROW = (1,4,15,26,37,46,57,68,79,88,97)

IROW = (0,1,2,3,4,5,6,7,8,9,10)

ICOL = (0,1,2,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,
0,1,2,3,4,5,6,7,8,
0,1,2,3,4,5,6,7,8)

LBND = (2,
4,15,26,37,46,57,68,79,88,
98,99,100,101,102,103,104,
96,
86,85,84,83,82,
70,59,48,39,28,17,6,
8,9,10,11,12,13,
18,29,40,49,60,
72,73,74,75,76,77,
67,56,45,36,25,
33,32,
42,
52,53,
43,
1,97,105,87,81,3,7,71,78,14,31,51,54,34)

LLBND = (1,2,11,18,19,24,31,37,42,48,53,55,56,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72)

ILBND = (1,2,3,4,1,4,1,2,3,4,3,4,1,2,12,23,34,41,14,41,
12,23,34,41,43,14,21,32)

This particular domain is used in the example in Section 10, and data statements are used to define the
above arrays in that example program. For less complicated domains it is simpler to assign the values
of the arrays in do-loops. This also allows flexibility in the number of base grid points.

The routine D03RYF can be called from INIDOM to obtain a simple graphical representation of the
base grid, and to verify the data that you have specified in INIDOM.

Subgrids are stored internally using the same data structure, and solution information is communicated
to you in PDEIV, PDEDEF and BNDARY in arrays according to the grid index on the particular level,
e.g., XðiÞ and YðiÞ contain the x; yð Þ coordinates of grid point i, and Uði; jÞ contains the jth solution
component uj at grid point i.

The grid data and the solutions at all grid levels are stored in the workspace arrays, along with other
information needed for a restart (i.e., a continuation call). It is not intended that you extract the solution
from these arrays, indeed the necessary information regarding these arrays is not provided. The user-
supplied monitor (MONITR) should be used to obtain the solution at particular levels and times.
MONITR is called at the end of every time step, with the last step being identified via the input
argument TLAST. The routine D03RZF should be called from MONITR to obtain grid information at a
particular level.

Further details of the underlying algorithm can be found in Section 9 and in Blom and Verwer (1993)
and Blom et al. (1996) and the references therein.
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5 Arguments

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

Constraint: NPDE � 1.

2: TS – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t which has been reached. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

3: TOUT – REAL (KIND=nag_wp) Input

On entry: the final value of t to which the integration is to be carried out.

4: DTð3Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial, minimum and maximum time step sizes respectively.

DTð1Þ
Specifies the initial time step size to be used on the first entry, i.e., when IND ¼ 0. If
DTð1Þ ¼ 0:0 then the default value DTð1Þ ¼ 0:01� TOUT� TSð Þ is used. On subsequent
entries (IND ¼ 1), the value of DTð1Þ is not referenced.

DTð2Þ
Specifies the minimum time step size to be attempted by the integrator. If DTð2Þ ¼ 0:0 the
default value DTð2Þ ¼ 10:0�machine precision is used.

DTð3Þ
Specifies the maximum time step size to be attempted by the integrator. If DTð3Þ ¼ 0:0 the
default value DTð3Þ ¼ TOUT� TS is used.

On exit: DTð1Þ contains the time step size for the next time step. DTð2Þ and DTð3Þ are
unchanged or set to their default values if zero on entry.

Constraints:

if IND ¼ 0, DTð1Þ � 0:0;
if IND ¼ 0 and DTð1Þ > 0:0,
10:0�machine precision�max TSj j; TOUTj jð Þ � DTð1Þ � TOUT� TS and
DTð2Þ � DTð1Þ � DTð3Þ, where the values of DTð2Þ and DTð3Þ will have been reset to
their default values if zero on entry;
0 � DTð2Þ � DTð3Þ.
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5: TOLS – REAL (KIND=nag_wp) Input

On entry: the space tolerance used in the grid refinement strategy (� in equation (4)). See
Section 9.2.

Constraint: TOLS > 0:0.

6: TOLT – REAL (KIND=nag_wp) Input

On entry: the time tolerance used to determine the time step size (� in equation (7)). See
Section 9.3.

Constraint: TOLT > 0:0.

7: INIDOM – SUBROUTINE, supplied by the user. External Procedure

INIDOM must specify the base grid in terms of the data structure described in Section 3.
INIDOM is not referenced if, on entry, IND ¼ 1. D03RYF can be called from INIDOM to obtain
a simple graphical representation of the base grid, and to verify the data that you have specified
in INIDOM. D03RBF also checks the validity of the data, but you are strongly advised to call
D03RYF to ensure that the base grid is exactly as required.

Note: the boundaries of the base grid should consist of as many points as are necessary to
employ second-order space discretization, i.e., a boundary enclosing the internal part of the
domain must include at least 3 grid points including the corners. If Neumann boundary
conditions are to be applied the minimum is 4.

The specification of INIDOM is:

SUBROUTINE INIDOM (MAXPTS, XMIN, XMAX, YMIN, YMAX, NX, NY, NPTS,
NROWS, NBNDS, NBPTS, LROW, IROW, ICOL, LLBND,
ILBND, LBND, IERR)

&
&

INTEGER MAXPTS, NX, NY, NPTS, NROWS, NBNDS, NBPTS,
LROW(*), IROW(*), ICOL(*), LLBND(*),
ILBND(*), LBND(*), IERR

&
&

REAL (KIND=nag_wp) XMIN, XMAX, YMIN, YMAX

1: MAXPTS – INTEGER Input

On entry: the maximum number of base grid points allowed by the available workspace.

2: XMIN – REAL (KIND=nag_wp) Output
3: XMAX – REAL (KIND=nag_wp) Output

On exit: the extents of the virtual grid in the x-direction, i.e., the x coordinates of the
left and right boundaries respectively.

Constraint: XMIN < XMAX and XMAX must be sufficiently distinguishable from
XMIN for the precision of the machine being used.

4: YMIN – REAL (KIND=nag_wp) Output
5: YMAX – REAL (KIND=nag_wp) Output

On exit: the extents of the virtual grid in the y-direction, i.e., the y coordinates of the
left and right boundaries respectively.

Constraint: YMIN < YMAX and YMAX must be sufficiently distinguishable from
YMIN for the precision of the machine being used.
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6: NX – INTEGER Output
7: NY – INTEGER Output

On exit: the number of virtual grid points in the x- and y-direction respectively
(including the boundary points).

Constraint: NX and NY � 4.

8: NPTS – INTEGER Output

On exit: the total number of points in the base grid. If the required number of points is
greater than MAXPTS then INIDOM must be exited immediately with IERR set to �1
to avoid overwriting memory.

Constraint: NPTS � NX� NY and if IERR 6¼ �1 on exit, NPTS � MAXPTS.

9: NROWS – INTEGER Output

On exit: the total number of rows of the virtual grid that contain base grid points. This
is the maximum base row index.

Constraint: 4 � NROWS � NY.

10: NBNDS – INTEGER Output

On exit: the total number of physical boundaries and corners in the base grid.

Constraint: NBNDS � 8.

11: NBPTS – INTEGER Output

On exit: the total number of boundary points in the base grid.

Constraint: 12 � NBPTS < NPTS.

12: LROWð�Þ – INTEGER array Output

On exit: LROWðiÞ, for i ¼ 1; 2; . . . ;NROWS, must contain the base grid index of the
first grid point in base grid row i.

Constraints:

1 � LROWðiÞ � NPTS, for i ¼ 1; 2; . . . ;NROWS;
LROWði � 1Þ < LROWðiÞ, for i ¼ 2; 3; . . . ;NROWS.

13: IROWð�Þ – INTEGER array Output

On exit: IROWðiÞ, for i ¼ 1; 2; . . . ;NROWS, must contain the virtual row number vy
that corresponds to base grid row i.

Constraints:

0 � IROWðiÞ � NY, for i ¼ 1; 2; . . . ;NROWS;
IROWði � 1Þ < IROWðiÞ, for i ¼ 2; 3; . . . ;NROWS.

14: ICOLð�Þ – INTEGER array Output

On exit: ICOLðiÞ, for i ¼ 1; 2; . . . ;NPTS, must contain the virtual column number vx
that contains base grid point i.

Constraint: 0 � ICOLðiÞ � NX, for i ¼ 1; 2; . . . ;NPTS.

15: LLBNDð�Þ – INTEGER array Output

On exit: LLBNDðiÞ, for i ¼ 1; 2; . . . ;NBNDS, must contain the element of LBND
corresponding to the start of the ith boundary or corner.
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Note: the order of the boundaries and corners in LLBND must be first all the
boundaries and then all the corners. The end points of a boundary (i.e., the adjacent
corner points) must not be included in the list of points on that boundary. Also, if a
corner is shared by two pairs of physical boundaries then it has two types and must
therefore be treated as two corners.

Constraints:

1 � LLBNDðiÞ � NBPTS, for i ¼ 1; 2; . . . ;NBNDS;
LLBNDði � 1Þ < LLBNDðiÞ, for i ¼ 2; 3; . . . ;NBNDS.

16: ILBNDð�Þ – INTEGER array Output

On exit: ILBNDðiÞ, for i ¼ 1; 2; . . . ;NBNDS, must contain the type of the ith boundary
(or corner), as given in Section 3.

Constraint: ILBNDðiÞ must be equal to one of the following: 1, 2, 3, 4, 12, 23, 34, 41,
21, 32, 43 or 14, for i ¼ 1; 2; . . . ;NBNDS.

17: LBNDð�Þ – INTEGER array Output

On exit: LBNDðiÞ, for i ¼ 1; 2; . . . ;NBPTS, must contain the grid index of the ith
boundary point. The order of the boundaries is as specified in LLBND, but within this
restriction the order of the points in LBND is arbitrary.

Constraint: 1 � LBNDðiÞ � NPTS, for i ¼ 1; 2; . . . ;NBPTS.

18: IERR – INTEGER Input/Output

On entry: will be initialized by D03RBF to some value prior to internal calls to
INIDOM.

On exit: if the required number of grid points is larger than MAXPTS, IERR must be
set to �1 to force a termination of the integration and an immediate return to the calling
program with IFAIL ¼ 3. Otherwise, IERR should remain unchanged.

INIDOM must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03RBF is called. Arguments denoted as Input must not be changed by this
procedure.

8: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Fj , for j ¼ 1; 2; . . . ;NPDE, in equation (1) which define the
system of PDEs (i.e., the residuals of the resulting ODE system) at all interior points of the
domain. Values at points on the boundaries of the domain are ignored and will be overwritten by
BNDARY. PDEDEF is called for each subgrid in turn.

The specification of PDEDEF is:

SUBROUTINE PDEDEF (NPTS, NPDE, T, X, Y, U, UT, UX, UY, UXX, UXY,
UYY, RES)

&

INTEGER NPTS, NPDE
REAL (KIND=nag_wp) T, X(NPTS), Y(NPTS), U(NPTS,NPDE),

UT(NPTS,NPDE), UX(NPTS,NPDE), UY(NPTS,NPDE),
UXX(NPTS,NPDE), UXY(NPTS,NPDE),
UYY(NPTS,NPDE), RES(NPTS,NPDE)

&
&
&

1: NPTS – INTEGER Input

On entry: the number of grid points in the current grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.
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3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ contains the x coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

5: YðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ contains the y coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

7: UTðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UTði; jÞ contains the value of
@u

@t
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

8: UXðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXði; jÞ contains the value of
@u

@x
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

9: UYðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UYði; jÞ contains the value of
@u

@y
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

10: UXXðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXXði; jÞ contains the value of
@2u

@x2
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

11: UXYðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXYði; jÞ contains the value of
@2u

@x@y
for the jth PDE component at the ith

grid point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

12: UYYðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UYYði; jÞ contains the value of
@2u

@y2
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

13: RESðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Output

On exit: RESði; jÞ must contain the value of Fj , for j ¼ 1; 2; . . . ;NPDE, at the ith grid
point, for i ¼ 1; 2; . . . ;NPTS, although the residuals at boundary points will be ignored
(and overwritten later on) and so they need not be specified here.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03RBF is called. Arguments denoted as Input must not be changed by this
procedure.
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9: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions Gj , for j ¼ 1; 2; . . . ;NPDE, in equation (2) which define
the boundary conditions at all boundary points of the domain. Residuals at interior points must
not be altered by this subroutine.

The specification of BNDARY is:

SUBROUTINE BNDARY (NPTS, NPDE, T, X, Y, U, UT, UX, UY, NBNDS,
NBPTS, LLBND, ILBND, LBND, RES)

&

INTEGER NPTS, NPDE, NBNDS, NBPTS, LLBND(NBNDS),
ILBND(NBNDS), LBND(NBPTS)

&

REAL (KIND=nag_wp) T, X(NPTS), Y(NPTS), U(NPTS,NPDE),
UT(NPTS,NPDE), UX(NPTS,NPDE), UY(NPTS,NPDE),
RES(NPTS,NPDE)

&
&

1: NPTS – INTEGER Input

On entry: the number of grid points in the current grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ contains the x coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

5: YðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ contains the y coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: Uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

7: UTðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UTði; jÞ contains the value of
@u

@t
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

8: UXðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UXði; jÞ contains the value of
@u

@x
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

9: UYðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: UYði; jÞ contains the value of
@u

@y
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

10: NBNDS – INTEGER Input

On entry: the total number of physical boundaries and corners in the grid.
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11: NBPTS – INTEGER Input

On entry: the total number of boundary points in the grid.

12: LLBNDðNBNDSÞ – INTEGER array Input

On entry: LLBNDðiÞ, for i ¼ 1; 2; . . . ;NBNDS, contains the element of LBND
corresponding to the start of the ith boundary (or corner).

13: ILBNDðNBNDSÞ – INTEGER array Input

On entry: ILBNDðiÞ, for i ¼ 1; 2; . . . ;NBNDS, contains the type of the ith boundary, as
given in Section 3.

14: LBNDðNBPTSÞ – INTEGER array Input

On entry: LBNDðiÞ, contains the grid index of the ith boundary point, where the order
of the boundaries is as specified in LLBND. Hence the ith boundary point has
coordinates XðLBNDðiÞÞ and YðLBNDðiÞÞ, and the corresponding solution values are
UðLBNDðiÞ; jÞ, for i ¼ 1; 2; . . . ;NBPTS and j ¼ 1; 2; . . . ;NPDE.

15: RESðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Input/Output

On entry: contains function values returned by PDEDEF.

On exit: RESðLBNDðiÞ; jÞ must contain the value of Gj , for j ¼ 1; 2; . . . ;NPDE, at the
ith boundary point, for i ¼ 1; 2; . . . ;NBPTS.

Note: elements of RES corresponding to interior points, i.e., points not included in
LBND, must not be altered.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03RBF is called. Arguments denoted as Input must not be changed
by this procedure.

10: PDEIV – SUBROUTINE, supplied by the user. External Procedure

PDEIV must specify the initial values of the PDE components u at all points in the base grid.
PDEIV is not referenced if, on entry, IND ¼ 1.

The specification of PDEIV is:

SUBROUTINE PDEIV (NPTS, NPDE, T, X, Y, U)

INTEGER NPTS, NPDE
REAL (KIND=nag_wp) T, X(NPTS), Y(NPTS), U(NPTS,NPDE)

1: NPTS – INTEGER Input

On entry: the number of grid points in the base grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – REAL (KIND=nag_wp) Input

On entry: the (initial) value of the independent variable t.

4: XðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ contains the x coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.
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5: YðNPTSÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ contains the y coordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS;NPDEÞ – REAL (KIND=nag_wp) array Output

On exit: Uði; jÞ must contain the value of the jth PDE component at the ith grid point,
for i ¼ 1; 2; . . . ;NPTS and j ¼ 1; 2; . . . ;NPDE.

PDEIV must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D03RBF is called. Arguments denoted as Input must not be changed by this
procedure.

11: MONITR – SUBROUTINE, supplied by the user. External Procedure

MONITR is called by D03RBF at the end of every successful time step, and may be used to
examine or print the solution or perform other tasks such as error calculations, particularly at the
final time step, indicated by the argument TLAST.

The input arguments contain information about the grid and solution at all grid levels used.
D03RZF should be called from MONITR in order to extract the number of points and their x; yð Þ
coordinates on a particular grid.

MONITR can also be used to force an immediate tidy termination of the solution process and
return to the calling program.

The specification of MONITR is:

SUBROUTINE MONITR (NPDE, T, DT, DTNEW, TLAST, NLEV, XMIN, YMIN,
DXB, DYB, LGRID, ISTRUC, LSOL, SOL, IERR)

&

INTEGER NPDE, NLEV, LGRID(*), ISTRUC(*), LSOL(NLEV),
IERR

&

REAL (KIND=nag_wp) T, DT, DTNEW, XMIN, YMIN, DXB, DYB, SOL(*)
LOGICAL TLAST

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – REAL (KIND=nag_wp) Input

On entry: the current value of the independent variable t, i.e., the time at the end of the
integration step just completed.

3: DT – REAL (KIND=nag_wp) Input

On entry: the current time step size �t, i.e., the time step size used for the integration
step just completed.

4: DTNEW – REAL (KIND=nag_wp) Input

On entry: the time step size that will be used for the next time step.

5: TLAST – LOGICAL Input

On entry: indicates if intermediate or final time step. TLAST ¼ :FALSE: for an
intermediate step, TLAST ¼ :TRUE: for the last call to MONITR before returning to
your program.

6: NLEV – INTEGER Input

On entry: the number of grid levels used at time T.
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7: XMIN – REAL (KIND=nag_wp) Input
8: YMIN – REAL (KIND=nag_wp) Input

On entry: the x; yð Þ coordinates of the lower-left corner of the virtual grid.

9: DXB – REAL (KIND=nag_wp) Input
10: DYB – REAL (KIND=nag_wp) Input

On entry: the sizes of the base grid spacing in the x- and y-direction respectively.

11: LGRIDð�Þ – INTEGER array Input

On entry: contains pointers to the start of the grid structures in ISTRUC, and must be
passed unchanged to D03RZF in order to extract the grid information.

12: ISTRUCð�Þ – INTEGER array Input

On entry: contains the grid structures for each grid level and must be passed unchanged
to D03RZF in order to extract the grid information.

13: LSOLðNLEVÞ – INTEGER array Input

On entry: LSOLðlÞ contains the pointer to the solution in SOL at grid level l and time
T. (LSOLðlÞ actually contains the array index immediately preceding the start of the
solution in SOL.)

14: SOLð�Þ – REAL (KIND=nag_wp) array Input

On entry: contains the solution u at time T for each grid level l in turn, positioned
according to LSOL. More precisely

Uði; jÞ ¼ SOLðLSOLðlÞ þ j � 1ð Þ � nl þ iÞ

represents the jth component of the solution at the ith grid point in the lth level, for
i ¼ 1; 2; . . . ; nl , j ¼ 1; 2; . . . ;NPDE and l ¼ 1; 2; . . . ;NLEV, where nl is the number of
grid points at level l (obtainable by a call to D03RZF).

15: IERR – INTEGER Input/Output

On entry: will be initialized by D03RBF to some value prior to internal calls to IERR.

On exit: should be set to 1 to force a termination of the integration and an immediate
return to the calling program with IFAIL ¼ 4. IERR should remain unchanged
otherwise.

MONITR must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03RBF is called. Arguments denoted as Input must not be changed
by this procedure.

12: OPTIð4Þ – INTEGER array Input

On entry: may be set to control various options available in the integrator.

OPTIð1Þ ¼ 0
All the default options are employed.

OPTIð1Þ > 0
The default value of OPTIðiÞ, for i ¼ 2; 3; 4, can be obtained by setting OPTIðiÞ ¼ 0.

OPTIð1Þ
Specifies the maximum number of grid levels allowed (including the base grid).
OPTIð1Þ � 0. The default value is OPTIð1Þ ¼ 3.
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OPTIð2Þ
Specifies the maximum number of Jacobian evaluations allowed during each nonlinear
equations solution. OPTIð2Þ � 0. The default value is OPTIð2Þ ¼ 2.

OPTIð3Þ
Specifies the maximum number of Newton iterations in each nonlinear equations solution.
OPTIð3Þ � 0. The default value is OPTIð3Þ ¼ 10.

OPTIð4Þ
Specifies the maximum number of iterations in each linear equations solution.
OPTIð4Þ � 0. The default value is OPTIð4Þ ¼ 100.

Constraint: OPTIð1Þ � 0 and if OPTIð1Þ > 0, OPTIðiÞ � 0, for i ¼ 2; 3; 4.

13: OPTRð3;NPDEÞ – REAL (KIND=nag_wp) array Input

On entry: may be used to specify the optional vectors umax , ws and wt in the space and time
monitors (see Section 9).

If an optional vector is not required then all its components should be set to 1:0.

OPTRð1; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies umax
j , the approximate maximum absolute value of

the jth component of u, as used in (4) and (7). OPTRð1; jÞ > 0:0, for j ¼ 1; 2; . . . ;NPDE.

OPTRð2; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies wsj , the weighting factors used in the space monitor
(see (4)) to indicate the relative importance of the jth component of u on the space monitor.
OPTRð2; jÞ � 0:0, for j ¼ 1; 2; . . . ;NPDE.

OPTRð3; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies wtj , the weighting factors used in the time monitor
(see (6)) to indicate the relative importance of the jth component of u on the time monitor.
OPTRð3; jÞ � 0:0, for j ¼ 1; 2; . . . ;NPDE.

Constraints:

OPTRð1; jÞ > 0:0, for j ¼ 1; 2; . . . ;NPDE;
OPTRði; jÞ � 0:0, for i ¼ 2; 3 and j ¼ 1; 2; . . . ;NPDE.

14: RWKðLENRWKÞ – REAL (KIND=nag_wp) array Communication Array
15: LENRWK – INTEGER Input

On entry: the dimension of the array RWK as declared in the (sub)program from which D03RBF
is called.

The required value of LENRWK cannot be determined exactly in advance, but a suggested value
is

LENRWK ¼ maxpts � NPDE� 5� lþ 18� NPDEþ 9ð Þ þ 2�maxpts;

where l ¼ OPTIð1Þ if OPTIð1Þ 6¼ 0 and l ¼ 3 otherwise, and maxpts is the expected maximum
number of grid points at any one level. If during the execution the supplied value is found to be
too small then the routine returns with IFAIL ¼ 3 and an estimated required size is printed on the
current error message unit (see X04AAF).

Note: the size of LENRWK cannot be checked upon initial entry to D03RBF since the number of
grid points on the base grid is not known.

16: IWKðLENIWKÞ – INTEGER array Communication Array

On entry: if IND ¼ 0, IWK need not be set. Otherwise IWK must remain unchanged from a
previous call to D03RBF.

On exit: the following components of the array IWK concern the efficiency of the integration.
Here, m is the maximum number of grid levels allowed (m ¼ OPTIð1Þ if OPTIð1Þ > 1 and
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m ¼ 3 otherwise), and l is a grid level taking the values l ¼ 1; 2; . . . ; nl, where nl is the number
of levels used.

IWKð1Þ
Contains the number of steps taken in time.

IWKð2Þ
Contains the number of rejected time steps.

IWKð2þ lÞ
Contains the total number of residual evaluations performed (i.e., the number of times
PDEDEF was called) at grid level l.

IWKð2þmþ lÞ
Contains the total number of Jacobian evaluations performed at grid level l.

IWKð2þ 2�mþ lÞ
Contains the total number of Newton iterations performed at grid level l.

IWKð2þ 3�mþ lÞ
Contains the total number of linear solver iterations performed at grid level l.

IWKð2þ 4�mþ lÞ
Contains the maximum number of Newton iterations performed at any one time step at
grid level l.

IWKð2þ 5�mþ lÞ
Contains the maximum number of linear solver iterations performed at any one time step
at grid level l.

Note: the total and maximum numbers are cumulative over all calls to D03RBF. If the specified
maximum number of Newton or linear solver iterations is exceeded at any stage, then the
maximums above are set to the specified maximum plus one.

17: LENIWK – INTEGER Input

On entry: the dimension of the array IWK as declared in the (sub)program from which D03RBF
is called.

The required value of LENIWK cannot be determined exactly in advance, but a suggested value
is

LENIWK ¼ maxpts � 14þ 5�mð Þ þ 7�mþ 2;

where maxpts is the expected maximum number of grid points at any one level and
m ¼ OPTIð1Þ if OPTIð1Þ > 0 and m ¼ 3 otherwise. If during the execution the supplied value is
found to be too small then the routine returns with IFAIL ¼ 3 and an estimated required size is
printed on the current error message unit (see X04AAF).

Note: the size of LENIWK cannot be checked upon initial entry to D03RBF since the number of
grid points on the base grid is not known.

18: LWKðLENLWKÞ – LOGICAL array Workspace
19: LENLWK – INTEGER Input

On entry: the dimension of the array LWK as declared in the (sub)program from which D03RBF
is called.

The required value of LENLWK cannot be determined exactly in advance, but a suggested value
is

LENLWK ¼ maxpts þ 1;

where maxpts is the expected maximum number of grid points at any one level. If during the
execution the supplied value is found to be too small then the routine returns with IFAIL ¼ 3 and
an estimated required size is printed on the current error message unit (see X04AAF).
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Note: the size of LENLWK cannot be checked upon initial entry to D03RBF since the number of
grid points on the base grid is not known.

20: ITRACE – INTEGER Input

On entry: the level of trace information required from D03RBF. ITRACE may take the value �1,
0, 1, 2 or 3.

ITRACE ¼ �1
No output is generated.

ITRACE ¼ 0
Only warning messages are printed.

ITRACE > 0
Output from the underlying solver is printed on the current advisory message unit (see
X04ABF). This output contains details of the time integration, the nonlinear iteration and
the linear solver.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. Setting ITRACE ¼ 1
allows you to monitor the progress of the integration without possibly excessive information.

21: IND – INTEGER Input/Output

On entry: must be set to 0 or 1, alternatively 10 or 11.

IND ¼ 0
Starts the integration in time. PDEDEF is assumed to be serial.

IND ¼ 1
Continues the integration after an earlier exit from the routine. In this case, only the
following parameters may be reset between calls to D03RBF: TOUT, DT, TOLS, TOLT,
OPTI, OPTR, ITRACE and IFAIL. PDEDEF is assumed to be serial.

IND ¼ 10
Starts the integration in time. PDEDEF is assumed to have been parallelized by you, as
described in Section 8. In all other respects, this is equivalent to IND ¼ 0.

IND ¼ 11
Continues the integration after an earlier exit from the routine. In this case, only the
following parameters may be reset between calls to D03RAF: TOUT, DT, TOLS, TOLT,
OPTI, OPTR, ITRACE and IFAIL. PDEDEF is assumed to have been parallelized by you,
as described in Section 8. In all other respects, this is equivalent to IND ¼ 1.

Constraint: 0 � IND � 1 or 10 � IND � 11.

On exit: IND ¼ 1, if IND on input was 0 or 1, or IND ¼ 11, if IND on input was 10 or 11.

Note: for users of serial versions of the NAG Library, it is recommended that you only use
IND ¼ 0 or 1. See Section 8 for more information on the use of IND.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPDE < 1,
or TOUT � TS,
or TOUT is too close to TS,
or IND ¼ 0 and DTð1Þ < 0:0,
or DTðiÞ < 0:0, for i ¼ 2 or 3,
or DTð2Þ > DTð3Þ,
or IND ¼ 0 and 0:0 < DTð1Þ < 10�machine precision�max TSj j; TOUTj jð Þ,
or IND ¼ 0 and DTð1Þ > TOUT� TS,
or IND ¼ 0 and DTð1Þ < DTð2Þ or DTð1Þ > DTð3Þ,
or TOLS or TOLT � 0:0,
or OPTIð1Þ < 0,
or OPTIð1Þ > 0 and OPTIðjÞ < 0, for j ¼ 2, 3 or 4,
or OPTRð1; jÞ � 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or OPTRð2; jÞ < 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or OPTRð3; jÞ < 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or IND 6¼ 0 or 1,
or IND ¼ 1 on initial entry to D03RBF.

IFAIL ¼ 2

The time step size to be attempted is less than the specified minimum size. This may occur
following time step failures and subsequent step size reductions caused by one or more of the
following:

the requested accuracy could not be achieved, i.e., TOLT is too small,

the maximum number of linear solver iterations, Newton iterations or Jacobian evaluations
is too small,

ILU decomposition of the Jacobian matrix could not be performed, possibly due to
singularity of the Jacobian.

Setting ITRACE to a higher value may provide further information.

In the latter two cases you are advised to check their problem formulation in PDEDEF and/or
BNDARY, and the initial values in PDEIV if appropriate.

IFAIL ¼ 3

One or more of the workspace arrays is too small for the required number of grid points. At the
initial time step this error may result because you set IERR to �1 in INIDOM or the internal
check on the number of grid points following the call to INIDOM. An estimate of the required
sizes for the current stage is output, but more space may be required at a later stage.

IFAIL ¼ 4

IERR was set to 1 in MONITR, forcing control to be passed back to calling program. Integration
was successful as far as T ¼ TS.

IFAIL ¼ 5

The integration has been completed but the maximum number of levels specified in OPTIð1Þ was
insufficient at one or more time steps, meaning that the requested space accuracy could not be
achieved. To avoid this warning either increase the value of OPTIð1Þ or decrease the value of
TOLS.
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IFAIL ¼ 6

One or more of the output arguments of INIDOM was incorrectly specified, i.e.,

XMIN � XMAX,
or XMAX too close to XMIN,
or YMIN � YMAX,
or YMAX too close to YMIN,
or NX or NY < 4,
or NROWS < 4,
or NROWS > NY,
or NPTS > NX� NY,
or NBNDS < 8,
or NBPTS < 12,
or NBPTS � NPTS,
or LROWðiÞ < 1 or LROWðiÞ > NPTS, for some i ¼ 1; 2; . . . ;NROWS,
or LROWðiÞ � LROWði� 1Þ, for some i ¼ 2; 3; . . . ;NROWS,
or IROWðiÞ < 0 or IROWðiÞ > NY, for some i ¼ 1; 2; . . . ;NROWS,
or IROWðiÞ � IROWði� 1Þ, for some i ¼ 2; 3; . . . ;NROWS,
or ICOLðiÞ < 0 or ICOLðiÞ > NX, for some i ¼ 1; 2; . . . ;NPTS,
or LLBNDðiÞ < 1 or LLBNDðiÞ > NBPTS, for some i ¼ 1; 2; . . . ;NBNDS,
or LLBNDðiÞ � LLBNDði� 1Þ, for some i ¼ 2; 3; . . . ;NBNDS,
or ILBNDðiÞ 6¼ 1, 2, 3, 4, 12, 23, 34, 41, 21, 32, 43 or 14, for some i ¼ 1; 2; . . . ;NBNDS,
or LBNDðiÞ < 1 or LBNDðiÞ > NPTS, for some i ¼ 1; 2; . . . ;NBPTS.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

There are three sources of error in the algorithm: space and time discretization, and interpolation
(linear) between grid levels. The space and time discretization errors are controlled separately using the
arguments TOLS and TOLT described in Section 9, and you should test the effects of varying these
arguments. Interpolation errors are generally implicitly controlled by the refinement criterion since in
areas where interpolation errors are potentially large, the space monitor will also be large. It can be
shown that the global spatial accuracy is comparable to that which would be obtained on a uniform grid
of the finest grid size. A full error analysis can be found in Trompert and Verwer (1993).

8 Parallelism and Performance

D03RBF requires a user-supplied routine PDEDEF to evaluate the functions Fj, for j ¼ 1; 2; . . . ;NPDE.
The parallelism within D03RBF will be more efficient if PDEDEF can also be parallelized. This is
often the case, but you must add some OpenMP directives to your version of PDEDEF to implement
the parallelism. For example, if the body of code for PDEDEF is as follows (adapted from the first test
case in the document for D03RBF):
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res(1:npts,1:npde) = ut(1:npts,1:npde) - diffusion*(uxx(1:npts,1: &
npde)+uyy(1:npts,1:npde)) - damkohler*(one+heat_release-u(1:npts, &
1:npde))*exp(-activ_energy/u(1:npts,1:npde))

This example can be parallelized, as the updating of RES for each value in the range 1; . . . ;NPTS is
independent of every other value. Thus this should be parallelized in OpenMP (using an explicit loop
rather than Fortran array syntax) as follows:

!$OMP DO
Do i = 1, npts

res(i,1:npde) = ut(i,1:npde) -diffusion*(uxx(i,1:npde)+uyy(i,1:npde &
)) - damkohler*(1.0E0_nag_wp+heat_release-u(i,1:npde))*exp(- &
activ_energy/u(i,1:npde))

End Do
!$OMP END DO

Note that the OpenMP PARALLEL directive must not be specified, as the OpenMP DO directive will
bind to the PARALLEL region within the D03RBF code. Also note that this assumes the default
OpenMP behaviour that all variables are SHARED, except for loop indices that are PRIVATE.

To avoid problems for existing library users, who will not have specified any OpenMP directives in
their PDEDEF routine, the default assumption of D03RBF is that PDEDEF has not been parallelized,
and executes calls to PDEDEF in serial mode. You must indicate that PDEDEF has been parallelized by
setting IND to 10 or 11 as appropriate. See Section 5 for details.

If the code within PDEDEF cannot be parallelized, you must not add any OpenMP directives to your
code, and must not set IND to 10 or 11. If IND is set to 10 or 11 and PDEDEF has not been
parallelized, results on multiple threads will be unpredictable and may give rise to incorrect results and/
or program crashes or deadlocks. Please contact NAG for advice if required. Overloading IND in this
manner is not entirely satisfactory, consequently it is likely that replacement interfaces for D03RBF will
be included in a future NAG Library release.

9 Further Comments

9.1 Algorithm Outline

The local uniform grid refinement method is summarised as follows.

1. Initialize the course base grid, an initial solution and an initial time step.

2. Solve the system of PDEs on the current grid with the current time step.

3. If the required accuracy in space and the maximum number of grid levels have not yet been
reached:

(a) Determine new finer grid at forward time level.

(b) Get solution values at previous time level(s) on new grid.

(c) Interpolate internal boundary values from old grid at forward time.

(d) Get initial values for the Newton process at forward time.

(e) Go to 2.

4. Update the coarser grid solution using the finer grid values.

5. Estimate error in time integration. If time error is acceptable advance time level.

6. Determine new step size then go to 2 with coarse base as current grid.

9.2 Refinement Strategy

For each grid point i a space monitor �si is determined by

�si ¼ max
j¼1;NPDE

�j �x2 @
2

@x2
uj xi; yi; tð Þ

			 			þ �y2 @
2

@y2
uj xi; yi; tð Þ

			 			� �n o
; ð3Þ

where �x and �y are the grid widths in the x and y directions; and xi, yi are the x; yð Þ coordinates at
grid point i. The argument �j is obtained from
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�j ¼
wsj

umax
j �

; ð4Þ

where � is the user-supplied space tolerance; wsj is a weighting factor for the relative importance of the
jth PDE component on the space monitor; and umax

j is the approximate maximum absolute value of the
jth component. A value for � must be supplied by you. Values for wsj and u

max
j must also be supplied

but may be set to the values 1:0 if little information about the solution is known.

A new level of refinement is created if

max
i

�si
� 

> 0:9 or 1:0; ð5Þ

depending on the grid level at the previous step in order to avoid fluctuations in the number of grid
levels between time steps. If (5) is satisfied then all grid points for which �si > 0:25 are flagged and
surrounding cells are quartered in size.

No derefinement takes place as such, since at each time step the solution on the base grid is computed
first and new finer grids are then created based on the new solution. Hence derefinement occurs
implicitly. See Section 9.1.

9.3 Time Integration

The time integration is controlled using a time monitor calculated at each level l up to the maximum
level used, given by

�tl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XNPDE
j¼1

wtj
Xngpts lð Þ
i¼1

�t

�ij
ut xi; yi; tð Þ

� �2
vuut ð6Þ

where ngpts lð Þ is the total number of points on grid level l; N ¼ ngpts lð Þ � NPDE; �t is the current
time step; ut is the time derivative of u which is approximated by first-order finite differences; wtj is the
time equivalent of the space weighting factor wsj ; and �ij is given by

�ij ¼ �
umax
j

100
þ u xi; yi; tð Þj j

� �
ð7Þ

where umax
j is as before, and � is the user-specified time tolerance.

An integration step is rejected and retried at all levels if

max
l

�tl
� 

> 1:0: ð8Þ

10 Example

This example is taken from Blom and Verwer (1993) and is the two-dimensional Burgers' system

@u

@t
¼ �u@u

@x
� v@u

@y
þ � @2u

@x2
þ @

2u

@y2

� �
;

@v

@t
¼ �u@v

@x
� v@v

@y
þ � @2v

@x2
þ @

2v

@y2

� �
;

with � ¼ 10�3 on the domain given in Figure 3. Dirichlet boundary conditions are used on all
boundaries using the exact solution

u ¼ 3
4�

1

4 1þ exp �4xþ 4y� tð Þ= 32�ð Þð Þð Þ;

v ¼ 3
4þ

1

4 1þ exp �4xþ 4y� tð Þ= 32�ð Þð Þð Þ:
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The solution contains a wave front at y ¼ xþ 0:25t which propagates in a direction perpendicular to the
front with speed

ffiffiffi
2
p

=8.

10.1 Program Text

! D03RBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d03rbfe_mod

! D03RBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: bndary, inidom, monitr, pdedef, &

pdeiv
! .. Parameters ..

Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: twant(2) = (/0.25_nag_wp,one/)
Integer, Parameter, Public :: itrace = 0, nin = 5, nout = 6, &

npde = 2
! .. Local Scalars ..

Integer, Public, Save :: iout
Contains

Subroutine pdeiv(npts,npde,t,x,y,u)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: eps = 0.001_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npts,npde)
Real (Kind=nag_wp), Intent (In) :: x(npts), y(npts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: a
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Do i = 1, npts

a = (4.0_nag_wp*(y(i)-x(i))-t)/(32.0_nag_wp*eps)
If (a<=zero) Then

u(i,1) = 0.75_nag_wp - 0.25_nag_wp/(one+exp(a))
u(i,2) = 0.75_nag_wp + 0.25_nag_wp/(one+exp(a))

Else
a = -a
u(i,1) = 0.75_nag_wp - 0.25_nag_wp*exp(a)/(one+exp(a))
u(i,2) = 0.75_nag_wp + 0.25_nag_wp*exp(a)/(one+exp(a))

End If
End Do

Return
End Subroutine pdeiv
Subroutine inidom(maxpts,xmin,xmax,ymin,ymax,nx,ny,npts,nrows,nbnds, &

nbpts,lrow,irow,icol,llbnd,ilbnd,lbnd,ierr)

! .. Use Statements ..
Use nag_library, Only: d03ryf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: xmax, xmin, ymax, ymin
Integer, Intent (Inout) :: ierr
Integer, Intent (In) :: maxpts
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Integer, Intent (Out) :: nbnds, nbpts, npts, nrows, nx, ny
! .. Array Arguments ..

Integer, Intent (Inout) :: icol(*), ilbnd(*), irow(*), lbnd(*), &
llbnd(*), lrow(*)

! .. Local Scalars ..
Integer :: i, ifail, j, leniwk

! .. Local Arrays ..
Integer :: icold(105), ilbndd(28), irowd(11), &

iwk(122), lbndd(72), llbndd(28), &
lrowd(11)

Character (33) :: pgrid(11)
! .. Executable Statements ..

icold(1:105) = (/0,1,2,0,1,2,3,4,5,6,7,8,9,10,0,1,2,3,4,5,6,7,8,9,10, &
0,1,2,3,4,5,6,7,8,9,10,0,1,2,3,4,5,8,9,10,0,1,2,3,4,5,6,7,8,9,10,0, &
1,2,3,4,5,6,7,8,9,10,0,1,2,3,4,5,6,7,8,9,10,0,1,2,3,4,5,6,7,8,0,1,2, &
3,4,5,6,7,8,0,1,2,3,4,5,6,7,8/)

ilbndd(1:28) = (/1,2,3,4,1,4,1,2,3,4,3,4,1,2,12,23,34,41,14,41,12,23, &
34,41,43,14,21,32/)

irowd(1:11) = (/0,1,2,3,4,5,6,7,8,9,10/)

lbndd(1:72) = (/2,4,15,26,37,46,57,68,79,88,98,99,100,101,102,103,104, &
96,86,85,84,83,82,70,59,48,39,28,17,6,8,9,10,11,12,13,18,29,40,49, &
60,72,73,74,75,76,77,67,56,45,36,25,33,32,42,52,53,43,1,97,105,87, &
81,3,7,71,78,14,31,51,54,34/)

llbndd(1:28) = (/1,2,11,18,19,24,31,37,42,48,53,55,56,58,59,60,61,62, &
63,64,65,66,67,68,69,70,71,72/)

lrowd(1:11) = (/1,4,15,26,37,46,57,68,79,88,97/)

nx = 11
ny = 11

! Check MAXPTS against rough estimate of NPTS

npts = nx*ny
If (maxpts<npts) Then

ierr = -1
Return

End If

xmin = zero
ymin = zero
xmax = one
ymax = one

nrows = 11
npts = 105
nbnds = 28
nbpts = 72

Do i = 1, nrows
lrow(i) = lrowd(i)
irow(i) = irowd(i)

End Do

Do i = 1, nbnds
llbnd(i) = llbndd(i)
ilbnd(i) = ilbndd(i)

End Do

Do i = 1, nbpts
lbnd(i) = lbndd(i)

End Do

Do i = 1, npts
icol(i) = icold(i)

End Do

Write (nout,*) ’Base grid:’
Write (nout,*)
leniwk = 122
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ifail = -1

Call d03ryf(nx,ny,npts,nrows,nbnds,nbpts,lrow,irow,icol,llbnd,ilbnd, &
lbnd,iwk,leniwk,pgrid,ifail)

If (ifail==0) Then
Write (nout,*) ’ ’
Do j = 1, ny

Write (nout,*) pgrid(j)
Write (nout,*) ’ ’

End Do
Write (nout,*) ’ ’

End If

Return
End Subroutine inidom
Subroutine pdedef(npts,npde,t,x,y,u,ut,ux,uy,uxx,uxy,uyy,res)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: eps = 1E-3_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: res(npts,npde)
Real (Kind=nag_wp), Intent (In) :: u(npts,npde), ut(npts,npde), &

ux(npts,npde), uxx(npts,npde), &
uxy(npts,npde), uy(npts,npde), &
uyy(npts,npde), x(npts), y(npts)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
!$Omp Do
Do i = 1, npts

res(i,1) = -u(i,1)*ux(i,1) - u(i,2)*uy(i,1) + &
eps*(uxx(i,1)+uyy(i,1))

res(i,2) = -u(i,1)*ux(i,2) - u(i,2)*uy(i,2) + &
eps*(uxx(i,2)+uyy(i,2))

res(i,1) = ut(i,1) - res(i,1)
res(i,2) = ut(i,2) - res(i,2)

End Do
!$Omp End Do

Return
End Subroutine pdedef
Subroutine bndary(npts,npde,t,x,y,u,ut,ux,uy,nbnds,nbpts,llbnd,ilbnd, &

lbnd,res)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: eps = 1E-3_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: nbnds, nbpts, npde, npts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: res(npts,npde)
Real (Kind=nag_wp), Intent (In) :: u(npts,npde), ut(npts,npde), &

ux(npts,npde), uy(npts,npde), &
x(npts), y(npts)

Integer, Intent (In) :: ilbnd(nbnds), lbnd(nbpts), &
llbnd(nbnds)

! .. Local Scalars ..
Real (Kind=nag_wp) :: a
Integer :: i, k

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Do k = llbnd(1), nbpts

i = lbnd(k)
a = (-4.0_nag_wp*x(i)+4.0_nag_wp*y(i)-t)/(32.0_nag_wp*eps)
If (a<=zero) Then

res(i,1) = 0.75_nag_wp - 0.25_nag_wp/(one+exp(a))
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res(i,2) = 0.75_nag_wp + 0.25_nag_wp/(one+exp(a))
Else

a = -a
res(i,1) = 0.75_nag_wp - 0.25_nag_wp*exp(a)/(one+exp(a))
res(i,2) = 0.75_nag_wp + 0.25_nag_wp*exp(a)/(one+exp(a))

End If
res(i,1:2) = u(i,1:2) - res(i,1:2)

End Do

Return
End Subroutine bndary
Subroutine monitr(npde,t,dt,dtnew,tlast,nlev,xmin,ymin,dxb,dyb,lgrid, &

istruc,lsol,sol,ierr)

! .. Use Statements ..
Use nag_library, Only: d03rzf

! .. Parameters ..
Integer, Parameter :: maxpts = 2500, nout = 6

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: dt, dtnew, dxb, dyb, t, xmin, ymin
Integer, Intent (Inout) :: ierr
Integer, Intent (In) :: nlev, npde
Logical, Intent (In) :: tlast

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: sol(*)
Integer, Intent (In) :: istruc(*), lgrid(*), lsol(nlev)

! .. Local Scalars ..
Integer :: i, ifail, ipsol, level, npts

! .. Local Arrays ..
Real (Kind=nag_wp) :: uex(105,2), x(maxpts), y(maxpts)

! .. Executable Statements ..
ifail = -1

levels: Do level = 1, nlev
If (.Not. tlast) Then

Exit levels
End If
ipsol = lsol(level)

! Get grid information

Call d03rzf(level,nlev,xmin,ymin,dxb,dyb,lgrid,istruc,npts,x,y, &
maxpts,ifail)

If (ifail/=0) Then
ierr = 1
Exit levels

End If

! Skip printing if iout<2 or level>1.
If (iout/=2 .Or. level/=1) Then

Cycle levels
End If

! Get exact solution
Call pdeiv(npts,npde,t,x,y,uex)
Write (nout,*)
Write (nout,99999) t
Write (nout,*)
Write (nout,99998) ’x’, ’y’, ’approx u’, ’exact u’, ’approx v’, &

’exact v’
Write (nout,*)
ipsol = lsol(level)
Do i = 1, npts, 2

Write (nout,99997) x(i), y(i), sol(ipsol+i), uex(i,1), &
sol(ipsol+npts+i), uex(i,2)

End Do
Write (nout,*)

End Do levels

Return
99999 Format (’ Solution at every 2nd grid point in level 1 at time ’,F8.4, &
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’:’)
99998 Format (7X,A,9X,A,6X,A,2X,A,2X,A,2X,A)
99997 Format (6(1X,F9.2))

End Subroutine monitr
End Module d03rbfe_mod
Program d03rbfe

! D03RBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03rbf, nag_wp
Use d03rbfe_mod, Only: bndary, inidom, iout, itrace, monitr, nin, nout, &

npde, one, pdedef, pdeiv, twant, zero
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: tols, tolt, tout, ts
Integer :: i, ifail, ind, j, leniwk, lenlwk, &

lenrwk, maxlev, mxlev, npts
! .. Local Arrays ..

Real (Kind=nag_wp) :: dt(3)
Real (Kind=nag_wp), Allocatable :: optr(:,:), rwk(:)
Integer, Allocatable :: iwk(:)
Integer :: opti(4)
Logical, Allocatable :: lwk(:)

! .. Executable Statements ..
Write (nout,*) ’D03RBF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) npts, mxlev

leniwk = npts*(5*mxlev+14) + 2 + 7*mxlev
lenlwk = 2*npts
lenrwk = npts*npde*(5*mxlev+9+18*npde) + 2*npts
Allocate (rwk(lenrwk),iwk(leniwk),lwk(lenlwk),optr(3,npde))

! Specify that we are starting the integration in time (ind = 0 normally).
! Note: we have parallelized the loop in the function pdedef using OpenMP
! so set the alternative value of ind to indicate that this can be run in
! parallel if we are using a multithreaded implementation. Either option
! is OK for serial NAG Library implementations from Mark 25 onwards.

ind = 10

ts = zero
dt(1) = 0.001_nag_wp
dt(2) = 1.0E-7_nag_wp
dt(3) = zero
tols = 0.1_nag_wp
tolt = 0.05_nag_wp
opti(1) = 5
maxlev = opti(1)
opti(2:4) = 0
optr(1:3,1:npde) = one

! Call main routine
Do iout = 1, 2

tout = twant(iout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03rbf(npde,ts,tout,dt,tols,tolt,inidom,pdedef,bndary,pdeiv, &

monitr,opti,optr,rwk,lenrwk,iwk,leniwk,lwk,lenlwk,itrace,ind,ifail)

! Print statistics

Write (nout,99999) ’Statistics:’
Write (nout,99998) ’Time = ’, ts
Write (nout,99997) ’Total number of accepted timesteps =’, iwk(1)
Write (nout,99997) ’Total number of rejected timesteps =’, iwk(2)
Write (nout,’(1X,4(/,A,A))’) ’ Total number of ’, &
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’ maximum number of ’, &
’ Residual Jacobian Newton ’, ’ Newton ’, &
’ evals evals iters ’, ’ iters ’, ’ Level ’

maxlev = opti(1)
Do j = 1, maxlev

If (iwk(j+2)/=0) Then
Write (nout,’(I4,4I10)’) j, (iwk(j+2+i*maxlev),i=0,2), &

iwk(j+2+4*maxlev)
End If

End Do
Write (nout,*)

End Do

99999 Format (1X,A)
99998 Format (1X,A,F8.4)
99997 Format (1X,A,I5)

End Program d03rbfe

10.2 Program Data

D03RBF Example Program Data
3000 5 : npts, mxlev

10.3 Program Results

D03RBF Example Program Results
Base grid:

23 3 3 3 3 3 3 3 34 XX XX

2 .. .. .. .. .. .. .. 4 XX XX

2 .. 14 1 1 1 1 1 41 XX XX

2 .. 4 23 3 3 3 3 3 3 34

2 .. 4 2 .. .. .. .. .. .. 4

2 .. 4 2 .. 14 1 1 21 .. 4

2 .. 4 2 .. 4 XX XX 2 .. 4

2 .. 4 2 .. 43 3 3 32 .. 4

2 .. 4 2 .. .. .. .. .. .. 4

2 .. 4 12 1 1 1 1 1 1 41

12 1 41 XX XX XX XX XX XX XX XX

Statistics:
Time = 0.2500
Total number of accepted timesteps = 14
Total number of rejected timesteps = 0

Total number of maximum number of
Residual Jacobian Newton Newton
evals evals iters iters

Level
1 196 14 28 2
2 196 14 28 2
3 196 14 28 2
4 196 14 28 2
5 141 10 21 3
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Solution at every 2nd grid point in level 1 at time 1.0000:

x y approx u exact u approx v exact v

0.00 0.00 0.50 0.50 1.00 1.00
0.20 0.00 0.50 0.50 1.00 1.00
0.10 0.10 0.50 0.50 1.00 1.00
0.30 0.10 0.50 0.50 1.00 1.00
0.50 0.10 0.50 0.50 1.00 1.00
0.70 0.10 0.50 0.50 1.00 1.00
0.90 0.10 0.50 0.50 1.00 1.00
0.00 0.20 0.50 0.50 1.00 1.00
0.20 0.20 0.50 0.50 1.00 1.00
0.40 0.20 0.50 0.50 1.00 1.00
0.60 0.20 0.50 0.50 1.00 1.00
0.80 0.20 0.50 0.50 1.00 1.00
1.00 0.20 0.50 0.50 1.00 1.00
0.10 0.30 0.50 0.50 1.00 1.00
0.30 0.30 0.50 0.50 1.00 1.00
0.50 0.30 0.50 0.50 1.00 1.00
0.70 0.30 0.50 0.50 1.00 1.00
0.90 0.30 0.50 0.50 1.00 1.00
0.00 0.40 0.75 0.75 0.75 0.75
0.20 0.40 0.50 0.50 1.00 1.00
0.40 0.40 0.50 0.50 1.00 1.00
0.80 0.40 0.50 0.50 1.00 1.00
1.00 0.40 0.50 0.50 1.00 1.00
0.10 0.50 0.75 0.75 0.75 0.75
0.30 0.50 0.50 0.50 1.00 1.00
0.50 0.50 0.50 0.50 1.00 1.00
0.70 0.50 0.50 0.50 1.00 1.00
0.90 0.50 0.50 0.50 1.00 1.00
0.00 0.60 0.75 0.75 0.75 0.75
0.20 0.60 0.75 0.75 0.75 0.75
0.40 0.60 0.50 0.50 1.00 1.00
0.60 0.60 0.50 0.50 1.00 1.00
0.80 0.60 0.50 0.50 1.00 1.00
1.00 0.60 0.50 0.50 1.00 1.00
0.10 0.70 0.75 0.75 0.75 0.75
0.30 0.70 0.75 0.75 0.75 0.75
0.50 0.70 0.50 0.50 1.00 1.00
0.70 0.70 0.50 0.50 1.00 1.00
0.90 0.70 0.50 0.50 1.00 1.00
0.00 0.80 0.75 0.75 0.75 0.75
0.20 0.80 0.75 0.75 0.75 0.75
0.40 0.80 0.75 0.75 0.75 0.75
0.60 0.80 0.50 0.50 1.00 1.00
0.80 0.80 0.50 0.50 1.00 1.00
0.10 0.90 0.75 0.75 0.75 0.75
0.30 0.90 0.75 0.75 0.75 0.75
0.50 0.90 0.75 0.75 0.75 0.75
0.70 0.90 0.50 0.50 1.00 1.00
0.00 1.00 0.75 0.75 0.75 0.75
0.20 1.00 0.75 0.75 0.75 0.75
0.40 1.00 0.75 0.75 0.75 0.75
0.60 1.00 0.75 0.75 0.75 0.75
0.80 1.00 0.50 0.50 1.00 1.00

Statistics:
Time = 1.0000
Total number of accepted timesteps = 45
Total number of rejected timesteps = 0

Total number of maximum number of
Residual Jacobian Newton Newton
evals evals iters iters

Level
1 630 45 90 2
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2 630 45 90 2
3 630 45 90 2
4 630 45 90 2
5 575 41 83 3
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NAG Library Routine Document

D03RYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03RYF is designed to be used in conjunction with D03RBF. It can be called from the INIDOM to
check the user-specified initial grid data and to obtain a simple graphical representation of the initial
grid.

2 Specification

SUBROUTINE D03RYF (NX, NY, NPTS, NROWS, NBNDS, NBPTS, LROW, IROW, ICOL,
LLBND, ILBND, LBND, IWK, LENIWK, PGRID, IFAIL)

&

INTEGER NX, NY, NPTS, NROWS, NBNDS, NBPTS, LROW(NROWS),
IROW(NROWS), ICOL(NPTS), LLBND(NBNDS), ILBND(NBNDS),
LBND(NBPTS), IWK(LENIWK), LENIWK, IFAIL

&
&

CHARACTER(*) PGRID(NY)

3 Description

D03RYF outputs a character array which can be printed to provide a simple graphical representation of
the virtual and base grids supplied to D03RBF. It must be called only from within the INIDOM after all
output arguments of INIDOM (other than IERR) have been set. D03RYF also checks the validity of the
grid data specified in INIDOM.

You are strongly advised to call D03RYF during the initial call of D03RBF (at least) and to print the
resulting character array in order to check that the base grid is exactly as required.

D03RYF writes a representation of each point in the virtual and base grids to the character array
PGRID as follows:

– internal base grid points are written as two dots (..);

– boundary base grid points are written as the ILBND value (i.e., the type) of the boundary;

– points external to the base grid are written as XX.

As an example, consider a rectangular domain with a rectangular hole in which the virtual domain
extends by one base grid point beyond the actual domain in all directions. The output when each row of
PGRID is printed consecutively is as follows:

XX XX XX XX XX XX XX XX XX XX XX XX XX XX
XX 23 3 3 3 3 3 3 3 3 3 3 34 XX
XX 2 .. .. .. .. .. .. .. .. .. .. 4 XX
XX 2 .. .. .. .. .. .. .. .. .. .. 4 XX
XX 2 .. .. 14 1 1 1 1 21 .. .. 4 XX
XX 2 .. .. 4 XX XX XX XX 2 .. .. 4 XX
XX 2 .. .. 4 XX XX XX XX 2 .. .. 4 XX
XX 2 .. .. 4 XX XX XX XX 2 .. .. 4 XX
XX 2 .. .. 4 XX XX XX XX 2 .. .. 4 XX
XX 2 .. .. 4 XX XX XX XX 2 .. .. 4 XX
XX 2 .. .. 43 3 3 3 3 32 .. .. 4 XX
XX 2 .. .. .. .. .. .. .. .. .. .. 4 XX
XX 2 .. .. .. .. .. .. .. .. .. .. 4 XX
XX 12 1 1 1 1 1 1 1 1 1 1 41 XX
XX XX XX XX XX XX XX XX XX XX XX XX XX XX
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4 References

None.

5 Arguments

1: NX – INTEGER Input
2: NY – INTEGER Input

On entry: the number of virtual grid points in the x- and y-direction respectively (including the
boundary points).

Constraint: NX and NY � 4.

3: NPTS – INTEGER Input

On entry: the total number of points in the base grid.

Constraint: NPTS � NX� NY.

4: NROWS – INTEGER Input

On entry: the total number of rows of the virtual grid that contain base grid points.

Constraint: 4 � NROWS � NY.

5: NBNDS – INTEGER Input

On entry: the total number of physical boundaries and corners in the base grid.

Constraint: NBNDS � 8.

6: NBPTS – INTEGER Input

On entry: the total number of boundary points in the base grid.

Constraint: 12 � NBPTS < NPTS.

7: LROWðNROWSÞ – INTEGER array Input

On entry: LROWðiÞ, for i ¼ 1; 2; . . . ;NROWS, contains the base grid index of the first grid point
in base grid row i.

Constraints:

1 � LROWðiÞ � NPTS, for i ¼ 1; 2; . . . ;NROWS;
LROWði � 1Þ < LROWðiÞ, for i ¼ 2; 3; . . . ;NROWS.

8: IROWðNROWSÞ – INTEGER array Input

On entry: IROWðiÞ, for i ¼ 1; 2; . . . ;NROWS, contains the virtual grid row number that
corresponds to base grid row i.

Constraints:

0 � IROWðiÞ � NY, for i ¼ 1; 2; . . . ;NROWS;
IROWði � 1Þ < IROWðiÞ, for i ¼ 2; 3; . . . ;NROWS.

9: ICOLðNPTSÞ – INTEGER array Input

On entry: ICOLðiÞ, for i ¼ 1; 2; . . . ;NPTS, contains the virtual grid column number that contains
base grid point i.

Constraint: 0 � ICOLðiÞ � NX, for i ¼ 1; 2; . . . ;NPTS.
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10: LLBNDðNBNDSÞ – INTEGER array Input

On entry: LLBNDðiÞ, for i ¼ 1; 2; . . . ;NBNDS, contains the element of LBND corresponding to
the start of the ith boundary (or corner).

Constraints:

1 � LLBNDðiÞ � NBPTS, for i ¼ 1; 2; . . . ;NBNDS;
LLBNDði � 1Þ < LLBNDðiÞ, for i ¼ 2; 3; . . . ;NBNDS.

11: ILBNDðNBNDSÞ – INTEGER array Input

On entry: ILBNDðiÞ, for i ¼ 1; 2; . . . ;NBNDS, contains the type of the ith boundary (or corner),
as defined in D03RBF.

Constraint: ILBNDðiÞ must be equal to one of the following: 1, 2, 3, 4, 12, 23, 34, 41, 21, 32, 43
or 14, for i ¼ 1; 2; . . . ;NBNDS.

12: LBNDðNBPTSÞ – INTEGER array Input

On entry: LBNDðiÞ, for i ¼ 1; 2; . . . ;NBPTS, contains the grid index of the ith boundary point.

Constraint: 1 � LBNDðiÞ � NPTS, for i ¼ 1; 2; . . . ;NBPTS.

13: IWKðLENIWKÞ – INTEGER array Workspace
14: LENIWK – INTEGER Input

On entry: the dimension of the array IWK as declared in the (sub)program from which D03RYF
is called.

Constraint: LENIWK � NX� NYþ 1.

15: PGRIDðNYÞ – CHARACTER(*) array Output

On exit: PGRIDðiÞ, for i ¼ 1; 2; . . . ;NY, contains a graphical representation of row NY� i þ 1
of the virtual grid (see Section 3).

Constraint: LEN PGRIDð1Þð Þ � 3� NX.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NX or NY < 4,
or NPTS > NX� NY,
or NROWS < 4,
or NROWS > NY,
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or NBNDS < 8,
or NBPTS < 12,
or NBPTS � NPTS,
or LROWðiÞ < 1, for some i ¼ 1; 2; . . . ;NROWS,
or LROWðiÞ > NPTS, for some i ¼ 1; 2; . . . ;NROWS,
or LROWðiÞ � LROWði� 1Þ, for some i ¼ 2; 3; . . . ;NROWS,
or IROWðiÞ < 0, for some i ¼ 1; 2; . . . ;NROWS,
or IROWðiÞ > NY, for some i ¼ 1; 2; . . . ;NROWS,
or IROWðiÞ � IROWði� 1Þ, for some i ¼ 2; 3; . . . ;NROWS,
or ICOLðiÞ < 0, for some i ¼ 1; 2; . . . ;NPTS,
or ICOLðiÞ > NX, for some i ¼ 1; 2; . . . ;NPTS,
or LLBNDðiÞ < 1, for some i ¼ 1; 2; . . . ;NBNDS,
or LLBNDðiÞ > NBPTS, for some i ¼ 1; 2; . . . ;NBNDS,
or LLBNDðiÞ � LLBNDði� 1Þ, for some i ¼ 2; 3; . . . ;NBPTS,
or ILBNDðiÞ 6¼ 1, 2, 3, 4, 12, 23, 34, 41, 21, 32, 43 or 14, for some i ¼ 1; 2; . . . ;NBNDS,
or LBNDðiÞ < 1, for some i ¼ 1; 2; . . . ;NBPTS,
or LBNDðiÞ > NPTS, for some i ¼ 1; 2; . . . ;NBPTS,
or LENIWK < NX� NYþ 1,
or LEN PGRIDð1Þð Þ < 3� NX.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D03RYF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D03RBF.
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NAG Library Routine Document

D03RZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03RZF is designed to be used in conjunction with D03RBF. It can be called from the MONITR to
obtain the number of grid points and their x; yð Þ coordinates on a solution grid.

2 Specification

SUBROUTINE D03RZF (LEVEL, NLEV, XMIN, YMIN, DXB, DYB, LGRID, ISTRUC,
NPTS, X, Y, LENXY, IFAIL)

&

INTEGER LEVEL, NLEV, LGRID(*), ISTRUC(*), NPTS, LENXY, IFAIL
REAL (KIND=nag_wp) XMIN, YMIN, DXB, DYB, X(LENXY), Y(LENXY)

3 Description

D03RZF extracts the number of grid points and their x; yð Þ coordinates on a specific solution grid
produced by D03RBF. It must be called only from within the MONITR. The arguments NLEV, XMIN,
YMIN, DXB, DYB, LGRID and ISTRUC to MONITR must be passed unchanged to D03RZF.

4 References

None.

5 Arguments

1: LEVEL – INTEGER Input

On entry: the grid level at which the coordinates are required.

Constraint: 1 � LEVEL � NLEV.

2: NLEV – INTEGER Input
3: XMIN – REAL (KIND=nag_wp) Input
4: YMIN – REAL (KIND=nag_wp) Input
5: DXB – REAL (KIND=nag_wp) Input
6: DYB – REAL (KIND=nag_wp) Input

On entry: NLEV, XMIN, YMIN, DXB and DYB as supplied to MONITR must be passed
unchanged to D03RZF.

7: LGRIDð�Þ – INTEGER array Input

Note: the dimension of the array LGRID must be at least NLEV.

On entry: LGRID as supplied to MONITR must be passed unchanged to D03RZF.

8: ISTRUCð�Þ – INTEGER array Input

N o t e : t h e d i m e n s i o n o f t h e a r r a y I S T R U C m u s t b e a t l e a s t
LGRIDðNLEVÞ þ 2� nrows þ NPTSþ 1 where nrows is stored in ISTRUCðLGRIDðNLEVÞÞ
and is the number of rows in the grid at level NLEV.

On entry: ISTRUC as supplied to MONITR must be passed unchanged to D03RZF.
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9: NPTS – INTEGER Output

On exit: the number of grid points in the grid level LEVEL.

10: XðLENXYÞ – REAL (KIND=nag_wp) array Output
11: YðLENXYÞ – REAL (KIND=nag_wp) array Output

On exit: XðiÞ and YðiÞ contain the x; yð Þ coordinates respectively of the ith grid point, for
i ¼ 1; 2; . . . ;NPTS.

12: LENXY – INTEGER Input

On entry: the dimension of the arrays X and Y as declared in the (sub)program from which
D03RZF is called.

Constraint: LENXY � NPTS.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LEVEL < 1,
or LEVEL > NLEV.

IFAIL ¼ 2

The dimension of the arrays X and Y is too small for the requested grid level, i.e.,
LENXY < NPTS.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

D03RZF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in D03RBF.
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NAG Library Routine Document

D03UAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03UAF performs at each call one iteration of the Strongly Implicit Procedure. It is used to calculate
on successive calls a sequence of approximate corrections to the current estimate of the solution when
solving a system of simultaneous algebraic equations for which the iterative update matrix is of five-
point molecule form on a two-dimensional topologically-rectangular mesh. (‘Topological’ means that a
polar grid r; �ð Þ, for example, can be used as it is equivalent to a rectangular box.)

2 Specification

SUBROUTINE D03UAF (N1, N2, LDA, A, B, C, D, E, APARAM, IT, R, WRKSP1,
WRKSP2, IFAIL)

&

INTEGER N1, N2, LDA, IT, IFAIL
REAL (KIND=nag_wp) A(LDA,N2), B(LDA,N2), C(LDA,N2), D(LDA,N2),

E(LDA,N2), APARAM, R(LDA,N2), WRKSP1(LDA,N2),
WRKSP2(LDA,N2)

&
&

3 Description

Given a set of simultaneous equations

Mt ¼ q ð1Þ

(which could be nonlinear) derived, for example, from a finite difference representation of a two-
dimensional elliptic partial differential equation and its boundary conditions, the solution t may be
obtained iteratively from a starting approximation t 1ð Þ by the formulae

r nð Þ ¼ q �Mt nð Þ

Ms nð Þ ¼ r nð Þ

t nþ1ð Þ ¼ t nð Þ þ s nð Þ:

Thus r nð Þ is the residual of the nth approximate solution t nð Þ, and s nð Þ is the update change vector.

D03UAF determines the approximate change vector s corresponding to a given residual r, i.e., it
determines an approximate solution to a set of equations

Ms ¼ r ð2Þ

where M is a square n1 � n2ð Þ by n1 � n2ð Þ matrix and r is a known vector of length n1 � n2. The set
of equations (2) must be of five-diagonal form

aijsi;j�1 þ bijsi�1;j þ cijsij þ dijsiþ1;j þ eijsi;jþ1 ¼ rij;

for i ¼ 1; 2; . . . ; n1 and j ¼ 1; 2; . . . ; n2, provided that cij 6¼ 0:0. Indeed, if cij ¼ 0:0, then the equation is
assumed to be

sij ¼ rij:
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For example, if n1 ¼ 3 and n2 ¼ 2, the equations take the form

c11 d11 e11
b21 c21 d21 e21

b31 c31 e31
a12 c12 d12

a22 b22 c22 d22
a32 b32 c32

2666664

3777775
s11
s21
s31
s12
s22
s32

2666664

3777775 ¼
r11
r21
r31
r12
r22
r32

2666664

3777775:
The calling program supplies the current residual r at each iteration and the coefficients of the five-
point molecule system of equations on which the update procedure is based. The routine performs one
iteration, using the approximate LU factorization of the Strongly Implicit Procedure with the necessary
acceleration argument adjustment, to calculate the approximate solution s of the set of equations (2).
The change s overwrites the residual array for return to the calling program. The calling program must
combine this change stored in r with the old approximation to obtain the new approximate solution for
t. It must then recalculate the residuals and, if the accuracy requirements have not been satisfied,
commence the next iterative cycle.

Clearly there is no requirement that the iterative update matrix passed in the form of the five-diagonal
element arrays A, B, C, D and E is the same as that used to calculate the residuals, and therefore the
one governing the problem. However, the convergence may be impaired if they are not equal. Indeed, if
the system of equations (1) is not precisely of the five-diagonal form illustrated above but has a few
additional terms, then the methods of deferred or defect correction can be employed. The residual is
calculated by the calling program using the full system of equations, but the update formula is based on
a five-diagonal system (2) of the form given above. For example, the solution of a system of nine-
diagonal equations each involving the combination of terms with ti
1;j
1; ti
1;j; ti;j
1 and tij could use
the five-diagonal coefficients on which to base the update, provided these incorporate the major features
of the equations.

Problems in topologically non-rectangular regions can be solved using the routine by surrounding the
region with a circumscribing topological rectangle. The equations for the nodal values external to the
region of interest are set to zero (i.e., cij ¼ rij ¼ 0) and the boundary conditions are incorporated into
the equations for the appropriate nodes.

If there is no better initial approximation when starting the iterative cycle, one can use an array of all
zeros as the initial approximation from which the first set of residuals are determined.

The routine can be used to solve linear elliptic equations in which case the arrays A, B, C, D, E and the
quantities q will be unchanged during the iterative cycles, or for solving nonlinear elliptic equations in
which case some or all of these arrays may require updating as each new approximate solution is
derived. Depending on the nonlinearity, some under-relaxation of the coefficients and/or source terms
may be needed during their recalculation using the new estimates of the solution (see Jacobs (1972)).

The routine can also be used to solve each step of a time-dependent parabolic equation in two space
dimensions. The solution at each time step can be expressed in terms of an elliptic equation if the
Crank–Nicolson or other form of implicit time integration is used.

Neither diagonal dominance, nor positive-definiteness, of the matrix M or of the update matrix formed
from the arrays A, B, C, D and E is necessary to ensure convergence.

For problems in which the solution is not unique, in the sense that an arbitrary constant can be added to
the solution (for example Laplace's equation with all Neumann boundary conditions), the calling
program should subtract a typical nodal value from the whole solution t at every iteration to keep
rounding errors to a minimum.
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5 Arguments

1: N1 – INTEGER Input

On entry: the number of nodes in the first coordinate direction, n1.

Constraint: N1 > 1.

2: N2 – INTEGER Input

On entry: the number of nodes in the second coordinate direction, n2.

Constraint: N2 > 1.

3: LDA – INTEGER Input

On entry: the first dimension of the arrays A, B, C, D, E, R, WRKSP1 and WRKSP2 as declared
in the (sub)program from which D03UAF is called.

Constraint: LDA � N1.

4: AðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Aði; jÞ must contain the coefficient of the ‘southerly’ term involving si;j�1 in the i; jð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of A, for
j ¼ 1, must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

5: BðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Bði; jÞ must contain the coefficient of the ‘westerly’ term involving si�1;j in the i; jð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of B, for
i ¼ 1, must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

6: CðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Cði; jÞ must contain the coefficient of the ‘central’ term involving sij in the i; jð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of C are
checked to ensure that they are nonzero. If any element is found to be zero, the corresponding
algebraic equation is assumed to be sij ¼ rij . This feature can be used to define the equations for
nodes at which, for example, Dirichlet boundary conditions are applied, or for nodes external to
the problem of interest, by setting Cði; jÞ ¼ 0:0 at appropriate points. The corresponding value of
Rði; jÞ is set equal to the appropriate value, namely the difference between the prescribed value
of tij and the current value of tij in the Dirichlet case, or zero at an external point.

7: DðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Dði; jÞ must contain the coefficient of the ‘easterly’ term involving siþ1;j in the i; jð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of D, for
i ¼ N1, must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.
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8: EðLDA;N2Þ – REAL (KIND=nag_wp) array Input

On entry: Eði; jÞ must contain the coefficient of the ‘northerly’ term involving si;jþ1 in the i; jð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of E, for
j ¼ N2, must be zero after incorporating the boundary conditions, since they involve nodal
values from outside the rectangle.

9: APARAM – REAL (KIND=nag_wp) Input

On entry: the iteration acceleration factor. A value of 1:0 is adequate for most typical problems.
However, if convergence is slow, the value can be reduced, typically to 0:2 or 0:1. If divergence
is obtained, the value can be increased, typically to 2:0, 5:0 or 10:0.

Constraint: 0:0 < APARAM � N1� 1ð Þ2 þ N2� 1ð Þ2
� �

=2:0.

10: IT – INTEGER Input

On entry: the iteration number. It must be initialized, but not necessarily to 1, before the first call,
and must be incremented by one in the calling program for each subsequent call. D03UAF uses
the counter to select the appropriate acceleration argument from a sequence of nine, each one
being used twice in succession. (Note that the acceleration argument depends on the value of
APARAM.)

11: RðLDA;N2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Rði; jÞ must contain the current residual rij on the right-hand side of the i; jð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2.

On exit: these residuals are overwritten by the corresponding components of solution s to the
system (2), i.e., the changes to be made to the vector t to reduce the residuals supplied.

12: WRKSP1ðLDA;N2Þ – REAL (KIND=nag_wp) array Workspace
13: WRKSP2ðLDA;N2Þ – REAL (KIND=nag_wp) array Workspace

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 2,
or N2 < 2.

IFAIL ¼ 2

On entry, LDA < N1.
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IFAIL ¼ 3

On entry, APARAM � 0:0.

IFAIL ¼ 4

On entry, APARAM > N1� 1ð Þ2 þ N2� 1ð Þ2
� �

=2:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The improvement in accuracy for each iteration, i.e., on each call, depends on the size of the system
and on the condition of the update matrix characterised by the five-diagonal coefficient arrays. The
ultimate accuracy obtainable depends on the above factors and on the machine precision. However,
since D03UAF works with residuals and the update vector, the calling program can, in most cases
where at each iteration all the residuals are usually of about the same size, calculate the residuals from
extended precision values of the function, source term and equation coefficients if greater accuracy is
required. The rate of convergence obtained with the Strongly Implicit Procedure is not always smooth
because of the cyclic use of nine acceleration arguments. The convergence may become slow with very
large problems. The final accuracy obtained can be judged approximately from the rate of convergence
determined from the changes to the dependent variable t and in particular the change on the last
iteration.

8 Parallelism and Performance

D03UAF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to N1� N2 for each call.

When used with deferred or defect correction, the residual is calculated in the calling program from a
different system of equations to those represented by the five-point molecule coefficients used by
D03UAF as the basis of the iterative update procedure. When using deferred correction the overall rate
of convergence depends not only on the items detailed in Section 7 but also on the difference between
the two coefficient matrices used.

Convergence may not always be obtained when the problem is very large and/or the coefficients of the
equations have widely disparate values. The latter case may be associated with an ill-conditioned
matrix.

D03 – Partial Differential Equations D03UAF

Mark 26 D03UAF.5



10 Example

This example solves Laplace's equation in a rectangle with a non-uniform grid spacing in the x and y
coordinate directions and with Dirichlet boundary conditions specifying the function on the perimeter of
the rectangle equal to e 1:0þxð Þ=y n2ð Þ � cos y=y n2ð Þð Þ.

10.1 Program Text

Program d03uafe

! D03UAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d03uaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: adel, aparam, ares, delmax, delmn, &

resmax, resmn
Integer :: i, ifail, it, j, lda, n1, n2, nits

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:), d(:,:), &

e(:,:), q(:,:), r(:,:), t(:,:), &
wrksp1(:,:), wrksp2(:,:), x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cos, exp, max, real

! .. Executable Statements ..
Write (nout,*) ’D03UAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n1, n2, nits
lda = n1
Allocate (a(lda,n2),b(lda,n2),c(lda,n2),d(lda,n2),e(lda,n2),q(lda,n2), &

r(lda,n2),t(lda,n2),wrksp1(lda,n2),wrksp2(lda,n2),x(n1),y(n2))
Read (nin,*) x(1:n1)
Read (nin,*) y(1:n2)
aparam = one

! Set up difference equation coefficients, source terms and
! initial S

a(1:n1,1:n2) = zero
b(1:n1,1:n2) = zero
d(1:n1,1:n2) = zero
e(1:n1,1:n2) = zero
q(1:n1,1:n2) = zero
t(1:n1,1:n2) = zero

! Specification for internal nodes
Do j = 2, n2 - 1

a(2:n1-1,j) = two/((y(j)-y(j-1))*(y(j+1)-y(j-1)))
e(2:n1-1,j) = two/((y(j+1)-y(j))*(y(j+1)-y(j-1)))

End Do
Do i = 2, n1 - 1

b(i,2:n2-1) = two/((x(i)-x(i-1))*(x(i+1)-x(i-1)))
d(i,2:n2-1) = two/((x(i+1)-x(i))*(x(i+1)-x(i-1)))

End Do
c(1:n1,1:n2) = -a(1:n1,1:n2) - b(1:n1,1:n2) - d(1:n1,1:n2) - &

e(1:n1,1:n2)
! Specification for boundary nodes

Do j = 1, n2
q(1,j) = exp((x(1)+one)/y(n2))*cos(y(j)/y(n2))
q(n1,j) = exp((x(n1)+one)/y(n2))*cos(y(j)/y(n2))
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End Do
Do i = 1, n1

q(i,1) = exp((x(i)+one)/y(n2))*cos(y(1)/y(n2))
q(i,n2) = exp((x(i)+one)/y(n2))*cos(y(n2)/y(n2))

End Do

! Iterative loop
Do it = 1, nits

! Calculate the residuals
resmax = zero
resmn = zero
Do j = 1, n2

Do i = 1, n1
If (c(i,j)/=zero) Then

! Five point molecule formula
r(i,j) = q(i,j) - a(i,j)*t(i,j-1) - b(i,j)*t(i-1,j) - &

c(i,j)*t(i,j) - d(i,j)*t(i+1,j) - e(i,j)*t(i,j+1)
Else

! Explicit equation
r(i,j) = q(i,j) - t(i,j)

End If
ares = abs(r(i,j))
resmax = max(resmax,ares)
resmn = resmn + ares

End Do
End Do
resmn = resmn/(real(n1*n2,kind=nag_wp))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03uaf(n1,n2,lda,a,b,c,d,e,aparam,it,r,wrksp1,wrksp2,ifail)

If (it==1) Then
Write (nout,99997) ’Iteration’, ’Residual’, ’Change’
Write (nout,99996) ’No’, ’Max.’, ’Mean’, ’Max.’, ’Mean’

End If

! Update the dependent variable
delmax = zero
delmn = zero
Do j = 1, n2

Do i = 1, n1
t(i,j) = t(i,j) + r(i,j)
adel = abs(r(i,j))
delmax = max(delmax,adel)
delmn = delmn + adel

End Do
End Do
delmn = delmn/(real(n1*n2,kind=nag_wp))
Write (nout,99999) it, resmax, resmn, delmax, delmn

! Convergence tests here if required
End Do

! End of iterative loop
Write (nout,*)
Write (nout,*) ’Table of calculated function values’
Write (nout,*)
Write (nout,99995) ’I’, 1, (i,i=2,6)
Write (nout,*) ’ J’
Do j = 1, n2

Write (nout,99998) j, (t(i,j),i=1,n1)
End Do

99999 Format (1X,I3,4(2X,E11.4))
99998 Format (1X,I2,1X,6(F9.3,2X))
99997 Format (1X,A,6X,A,19X,A)
99996 Format (3X,A,7X,A,8X,A,11X,A,6X,A,/)
99995 Format (4X,A,4X,I1,5I11)

End Program d03uafe
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10.2 Program Data

D03UAF Example Program Data
6 10 10 : n1, n2, nits
0.0 1.0 3.0 6.0 10.0 15.0 : x
0.0 1.0 3.0 6.0 10.0 15.0
21.0 28.0 36.0 45.0 : y

10.3 Program Results

D03UAF Example Program Results

Iteration Residual Change
No Max. Mean Max. Mean

1 0.1427E+01 0.4790E+00 0.1427E+01 0.1031E+01
2 0.1098E-02 0.3871E-03 0.2176E-01 0.6158E-02
3 0.7364E-03 0.5926E-04 0.1621E-02 0.2475E-03
4 0.2036E-04 0.2914E-05 0.1810E-03 0.2259E-04
5 0.6946E-05 0.6214E-06 0.1199E-04 0.2347E-05
6 0.2267E-06 0.4215E-07 0.1245E-05 0.2270E-06
7 0.5625E-07 0.4500E-08 0.1081E-06 0.1761E-07
8 0.2305E-08 0.3998E-09 0.1289E-07 0.1794E-08
9 0.4733E-09 0.7397E-10 0.1422E-08 0.1841E-09

10 0.7109E-10 0.8598E-11 0.3214E-09 0.2791E-10

Table of calculated function values

I 1 2 3 4 5 6
J
1 1.022 1.045 1.093 1.168 1.277 1.427
2 1.022 1.045 1.093 1.168 1.277 1.427
3 1.020 1.043 1.091 1.166 1.274 1.424
4 1.013 1.036 1.083 1.158 1.266 1.414
5 0.997 1.020 1.066 1.140 1.246 1.392
6 0.966 0.988 1.033 1.104 1.207 1.348
7 0.913 0.934 0.976 1.044 1.141 1.274
8 0.831 0.850 0.888 0.950 1.038 1.160
9 0.712 0.728 0.762 0.814 0.890 0.994

10 0.552 0.565 0.591 0.631 0.690 0.771
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Example Program
Laplace’s Equation on a Non-uniform Grid
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NAG Library Routine Document

D03UBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03UBF performs at each call one iteration of the Strongly Implicit Procedure. It is used to calculate
on successive calls a sequence of approximate corrections to the current estimate of the solution when
solving a system of simultaneous algebraic equations for which the iterative update matrix is of seven-
point molecule form on a three-dimensional topologically-rectangular mesh. (‘Topological’ means that a
polar grid r; �ð Þ, for example, can be used as it is equivalent to a rectangular box.)

2 Specification

SUBROUTINE D03UBF (N1, N2, N3, LDA, SDA, A, B, C, D, E, F, G, APARAM, IT,
R, WRKSP1, WRKSP2, WRKSP3, IFAIL)

&

INTEGER N1, N2, N3, LDA, SDA, IT, IFAIL
REAL (KIND=nag_wp) A(LDA,SDA,N3), B(LDA,SDA,N3), C(LDA,SDA,N3),

D(LDA,SDA,N3), E(LDA,SDA,N3), F(LDA,SDA,N3),
G(LDA,SDA,N3), APARAM, R(LDA,SDA,N3),
WRKSP1(LDA,SDA,N3), WRKSP2(LDA,SDA,N3),
WRKSP3(LDA,SDA,N3)

&
&
&
&

3 Description

Given a set of simultaneous equations

Mt ¼ q ð1Þ

(which could be nonlinear) derived, for example, from a finite difference representation of a three-
dimensional elliptic partial differential equation and its boundary conditions, the solution t may be
obtained iteratively from a starting approximation t 1ð Þ by the formulae

r nð Þ ¼ q �Mt nð Þ

Ms nð Þ ¼ r nð Þ

t nþ1ð Þ ¼ t nð Þ þ s nð Þ:

Thus r nð Þ is the residual of the nth approximate solution t nð Þ, and s nð Þ is the update change vector.

D03UBF determines the approximate change vector s corresponding to a given residual r, i.e., it
determines an approximate solution to a set of equations

Ms ¼ r ð2Þ

where M is a square n1 � n2 � n3ð Þ by n1 � n2 � n3ð Þ matrix and r is a known vector of length
n1 � n2 � n3ð Þ. The set of equations (2) must be of seven-diagonal form

aijksij;k�1 þ bijksi;j�1;k þ cijksi�1;jk þ dijksijk þ eijksiþ1;jk þ fijksi;jþ1;k þ gijksij;kþ1 ¼ rijk
for i ¼ 1; 2; . . . ; n1, j ¼ 1; 2; . . . ; n2 and k ¼ 1; 2; . . . ; n3, provided that dijk 6¼ 0:0. Indeed, if dijk ¼ 0:0,
then the equation is assumed to be

sijk ¼ rijk:

The calling program supplies the current residual r at each iteration and the coefficients of the seven-
point molecule system of equations on which the update procedure is based. The routine performs one
iteration, using the approximate LU factorization of the Strongly Implicit Procedure with the necessary
acceleration argument adjustment, to calculate the approximate solution s of the set of equations (2).
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The change s overwrites the residual array for return to the calling program. The calling program must
combine this change stored in r with the old approximation to obtain the new approximate solution for
t. It must then recalculate the residuals and, if the accuracy requirements have not been satisfied,
commence the next iterative cycle.

Clearly there is no requirement that the iterative update matrix passed in the form of the seven-diagonal
element arrays A, B, C, D, E, F and G is the same as that used to calculate the residuals, and therefore
the one governing the problem. However, the convergence may be impaired if they are not equal.
Indeed, if the system of equations (1) is not precisely of the seven-diagonal form illustrated above but
has a few additional terms, then the methods of deferred or defect correction can be employed. The
residual is calculated by the calling program using the full system of equations, but the update formula
is based on a seven-diagonal system (2) of the form given above. For example, the solution of a system
of e l even -d i agona l equa t i ons each invo lv ing the combina t i on o f t e rms wi th
ti
1;j
1;k; ti
1;j;k; ti;j
1;k; ti;j;k
1 and tijk could use the seven-diagonal coefficients on which to base the
update, provided these incorporate the major features of the equations.

Problems in topologically non-rectangular box-shaped regions can be solved using the routine by
surrounding the region with a circumscribing topologically rectangular box. The equations for the nodal
values external to the region of interest are set to zero (i.e., dijk ¼ rijk ¼ 0) and the boundary conditions
are incorporated into the equations for the appropriate nodes.

If there is no better initial approximation when starting the iterative cycle, one can use an array of all
zeros as the initial approximation from which the first set of residuals are determined.

The routine can be used to solve linear elliptic equations in which case the arrays A, B, C, D, E, F and
G and the quantities q will be unchanged during the iterative cycles, or for solving nonlinear elliptic
equations in which case some or all of these arrays may require updating as each new approximate
solution is derived. Depending on the nonlinearity, some under-relaxation of the coefficients and/or
source terms may be needed during their recalculation using the new estimates of the solution (see
Jacobs (1972)).

The routine can also be used to solve each step of a time-dependent parabolic equation in three space
dimensions. The solution at each time step can be expressed in terms of an elliptic equation if the
Crank–Nicolson or other form of implicit time integration is used.

Neither diagonal dominance, nor positive-definiteness, of the matrix M or of the update matrix formed
from the arrays A, B, C, D, E, F and G is necessary to ensure convergence.

For problems in which the solution is not unique, in the sense that an arbitrary constant can be added to
the solution (for example Poisson's equation with all Neumann boundary conditions), the calling
program should subtract a typical nodal value from the whole solution t at every iteration to keep
rounding errors to a minimum for those cases when convergence is slow. For such problems there is
generally an associated compatibility condition. For the example mentioned this compatibility condition
equates the total net source within the region (i.e., the source integrated over the region) with the total
net outflow across the boundaries defined by the Neumann conditions (i.e., the normal derivative
integrated along the whole boundary). It is very important that the algebraic equations derived to model
such a problem accurately implement the compatibility condition. If they do not, a net source or sink is
very likely to be represented by the set of algebraic equations and no steady-state solution of the
equations exists.

4 References

Ames W F (1977) Nonlinear Partial Differential Equations in Engineering (2nd Edition) Academic
Press

Jacobs D A H (1972) The strongly implicit procedure for the numerical solution of parabolic and
elliptic partial differential equations Note RD/L/N66/72 Central Electricity Research Laboratory

D03UBF NAG Library Manual

D03UBF.2 Mark 26



Stone H L (1968) Iterative solution of implicit approximations of multi-dimensional partial differential
equations SIAM J. Numer. Anal. 5 530–558

Weinstein H G, Stone H L and Kwan T V (1969) Iterative procedure for solution of systems of
parabolic and elliptic equations in three dimensions Industrial and Engineering Chemistry
Fundamentals 8 281–287

5 Arguments

1: N1 – INTEGER Input

On entry: the number of nodes in the first coordinate direction, n1.

Constraint: N1 > 1.

2: N2 – INTEGER Input

On entry: the number of nodes in the second coordinate direction, n2.

Constraint: N2 > 1.

3: N3 – INTEGER Input

On entry: the number of nodes in the third coordinate direction, n3.

Constraint: N3 > 1.

4: LDA – INTEGER Input

On entry: the first dimension of the arrays A, B, C, D, E, F, G, R, WRKSP1, WRKSP2 and
WRKSP3 as declared in the (sub)program from which D03UBF is called.

Constraint: LDA � N1.

5: SDA – INTEGER Input

On entry: the second dimension of the arrays A, B, C, D, E, F, G, R, WRKSP1, WRKSP2 and
WRKSP3 as declared in the (sub)program from which D03UBF is called.

Constraint: SDA � N2.

6: AðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Aði; j; kÞ must contain the coefficient of sij;k�1 in the i; j; kð Þth equation of the system
(2), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of A, for k ¼ 1,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the box.

7: BðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Bði; j; kÞ must contain the coefficient of si;j�1;k in the i; j; kð Þth equation of the system
(2), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of B, for j ¼ 1,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the box.

8: CðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Cði; j; kÞ must contain the coefficient of si�1;j;k in the i; j; kð Þth equation of the system
(2), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of C, for i ¼ 1, must
be zero after incorporating the boundary conditions, since they involve nodal values from outside
the box.
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9: DðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Dði; j; kÞ must contain the coefficient of sijk , the ‘central’ term, in the i; j; kð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The
elements of D are checked to ensure that they are nonzero. If any element is found to be zero, the
corresponding algebraic equation is assumed to be sijk ¼ rijk . This feature can be used to define
the equations for nodes at which, for example, Dirichlet boundary conditions are applied, or for
nodes external to the problem of interest, by setting Dði; j; kÞ ¼ 0:0 at appropriate points. The
corresponding value of rijk is set equal to the appropriate value, namely the difference between
the prescribed value of tijk and the current value in the Dirichlet case, or zero at an external
point.

10: EðLDA;SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Eði; j; kÞ must contain the coefficient of siþ1;j;k in the i; j; kð Þth equation of the system
(2), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of E, for i ¼ N1,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the box.

11: FðLDA;SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Fði; j; kÞ must contain the coefficient of si;jþ1;k in the i; j; kð Þth equation of the system
(2), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of F, for j ¼ N2,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the box.

12: GðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Input

On entry: Gði; j; kÞ must contain the coefficient of si;j;kþ1 in the i; j; kð Þth equation of the system
(2), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of G, for k ¼ N3,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the box.

13: APARAM – REAL (KIND=nag_wp) Input

On entry: the iteration acceleration factor. A value of 1:0 is adequate for most typical problems.
However, if convergence is slow, the value can be reduced, typically to 0:2 or 0:1. If divergence
is obtained, the value can be increased, typically to 2:0, 5:0 or 10:0.

Constraint: 0:0 < APARAM � N1� 1ð Þ2 þ N2� 1ð Þ2 þ N3� 1ð Þ2
� �

=3:0.

14: IT – INTEGER Input

On entry: the iteration number. It must be initialized, but not necessarily to 1, before the first call,
and should be incremented by one in the calling program for each subsequent call. The routine
uses this counter to select the appropriate acceleration argument from a sequence of nine, each
one being used twice in succession. (Note that the acceleration argument depends on the value of
APARAM.)

15: RðLDA;SDA;N3Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the current residual rijk on the right-hand side of the i; j; kð Þth equation of the system
(2), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3.

On exit: these residuals are overwritten by the corresponding components of the solution s of the
system (2), i.e., the changes to be made to the vector t to reduce the residuals supplied.
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16: WRKSP1ðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Workspace
17: WRKSP2ðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Workspace
18: WRKSP3ðLDA; SDA;N3Þ – REAL (KIND=nag_wp) array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 2,
or N2 < 2,
or N3 < 2.

IFAIL ¼ 2

On entry, LDA < N1,
or SDA < N2.

IFAIL ¼ 3

On entry, APARAM � 0:0.

IFAIL ¼ 4

On entry, APARAM > N1� 1ð Þ2 þ N2� 1ð Þ2 þ N3� 1ð Þ2
� �

=3:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The improvement in accuracy for each iteration, i.e., on each call, depends on the size of the system
and on the condition of the update matrix characterised by the seven-diagonal coefficient arrays. The
ultimate accuracy obtainable depends on the above factors and on the machine precision. However,
since D03UBF works with residuals and the update vector, the calling program can, in most cases
where at each iteration all the residuals are usually of about the same size, calculate the residuals from
extended precision values of the function, source term and equation coefficients if greater accuracy is
required. The rate of convergence obtained with the Strongly Implicit Procedure is not always smooth
because of the cyclic use of nine acceleration arguments. The convergence may become slow with very
large problems. The final accuracy obtained can be judged approximately from the rate of convergence
determined from the changes to the dependent variable t and in particular the change on the last
iteration.

8 Parallelism and Performance

D03UBF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to N1� N2� N3 for each call.

When used with deferred or defect correction, the residual is calculated in the calling program from a
different system of equations to those represented by the seven-point molecule coefficients used by
D03UBF as the basis of the iterative update procedure. When using deferred correction the overall rate
of convergence depends not only on the items detailed in Section 7 but also on the difference between
the two coefficient matrices used.

Convergence may not always be obtained when the problem is very large and/or the coefficients of the
equations have widely disparate values. The latter case may be associated with an ill-conditioned
matrix.

10 Example

This example solves Laplace's equation in a rectangular box with a non-uniform grid spacing in the x, y
and z coordinate directions and with Dirichlet boundary conditions specifying the function on the
surfaces of the box equal to

e 1:0þxð Þ=y n2ð Þ � cos
ffiffiffi
2
p

y=y n2ð Þ
� �

� e �1:0�zð Þ=y n2ð Þ:

Note that this is the same problem as that solved in the example for D03ECF. The differences in the
maximum residuals obtained at each iteration between the two test runs are explained by the fact that in
D03ECF the residual at each node is normalized by dividing by the central coefficient, whereas this
normalization has not been used in the example program for D03UBF.

10.1 Program Text

Program d03ubfe

! D03UBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d03ubf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: adel, aparam, ares, delmax, delmn, &

resmax, resmn, root2, x1, x2, y1, &
y2, yy, z1, z2

Integer :: i, ifail, it, j, k, lda, n1, n2, n3, &
nits, sda

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:,:), b(:,:,:), c(:,:,:), &

d(:,:,:), e(:,:,:), f(:,:,:), &
g(:,:,:), q(:,:,:), r(:,:,:), &
t(:,:,:), wrksp1(:,:,:), &
wrksp2(:,:,:), wrksp3(:,:,:), x(:), &
y(:), z(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cos, exp, max, real, sqrt

! .. Executable Statements ..
Write (nout,*) ’D03UBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n1, n2, n3, nits
lda = n1
sda = n2
Allocate (a(lda,sda,n3),b(lda,sda,n3),c(lda,sda,n3),d(lda,sda,n3), &

e(lda,sda,n3),f(lda,sda,n3),g(lda,sda,n3),q(lda,sda,n3),r(lda,sda,n3), &
t(lda,sda,n3),wrksp1(lda,sda,n3),wrksp2(lda,sda,n3), &
wrksp3(lda,sda,n3),x(n1),y(n2),z(n3))

Read (nin,*) x(1:n1)
Read (nin,*) y(1:n2)
Read (nin,*) z(1:n3)
root2 = sqrt(two)
aparam = one

! Set up difference equation coefficients, source terms and
! initial approximation

a(1:n1,1:n2,1:n3) = zero
b(1:n1,1:n2,1:n3) = zero
c(1:n1,1:n2,1:n3) = zero
e(1:n1,1:n2,1:n3) = zero
f(1:n1,1:n2,1:n3) = zero
g(1:n1,1:n2,1:n3) = zero
q(1:n1,1:n2,1:n3) = zero
t(1:n1,1:n2,1:n3) = zero

! Specification for internal nodes
Do k = 2, n3 - 1

a(2:n1-1,2:n2-1,k) = two/((z(k)-z(k-1))*(z(k+1)-z(k-1)))
g(2:n1-1,2:n2-1,k) = two/((z(k+1)-z(k))*(z(k+1)-z(k-1)))

End Do
Do j = 2, n2 - 1

b(2:n1-1,j,2:n3-1) = two/((y(j)-y(j-1))*(y(j+1)-y(j-1)))
f(2:n1-1,j,2:n3-1) = two/((y(j+1)-y(j))*(y(j+1)-y(j-1)))

End Do
Do i = 2, n1 - 1

c(i,2:n2-1,2:n3-1) = two/((x(i)-x(i-1))*(x(i+1)-x(i-1)))
e(i,2:n2-1,2:n3-1) = two/((x(i+1)-x(i))*(x(i+1)-x(i-1)))

End Do
d(1:n1,1:n2,1:n3) = -a(1:n1,1:n2,1:n3) - b(1:n1,1:n2,1:n3) - &

c(1:n1,1:n2,1:n3) - e(1:n1,1:n2,1:n3) - f(1:n1,1:n2,1:n3) - &
g(1:n1,1:n2,1:n3)

! Specification for boundary nodes
yy = one/y(n2)
x1 = (x(1)+one)*yy
x2 = (x(n1)+one)*yy
Do j = 1, n2

y1 = root2*y(j)*yy
q(1,j,1:n3) = exp(x1)*cos(y1)*exp((-z(1:n3)-one)*yy)
q(n1,j,1:n3) = exp(x2)*cos(y1)*exp((-z(1:n3)-one)*yy)

End Do
y1 = root2*y(1)*yy
y2 = root2*y(n2)*yy
Do i = 1, n1
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x1 = (x(i)+one)*yy
q(i,1,1:n3) = exp(x1)*cos(y1)*exp((-z(1:n3)-one)*yy)
q(i,n2,1:n3) = exp(x1)*cos(y2)*exp((-z(1:n3)-one)*yy)

End Do
z1 = (-z(1)-one)*yy
z2 = (-z(n3)-one)*yy
Do i = 1, n1

x1 = (x(i)+one)*yy
q(i,1:n2,1) = exp(x1)*cos(root2*y(1:n2)*yy)*exp(z1)
q(i,1:n2,n3) = exp(x1)*cos(root2*y(1:n2)*yy)*exp(z2)

End Do
! Iterative loop

Do it = 1, nits
resmax = zero
resmn = zero
Do k = 1, n3

Do j = 1, n2
Do i = 1, n1

If (d(i,j,k)/=zero) Then
! Seven point molecule formula

r(i,j,k) = q(i,j,k) - a(i,j,k)*t(i,j,k-1) - &
b(i,j,k)*t(i,j-1,k) - c(i,j,k)*t(i-1,j,k) - &
d(i,j,k)*t(i,j,k) - e(i,j,k)*t(i+1,j,k) - &
f(i,j,k)*t(i,j+1,k) - g(i,j,k)*t(i,j,k+1)

Else
! Explicit equation

r(i,j,k) = q(i,j,k) - t(i,j,k)
End If
ares = abs(r(i,j,k))
resmax = max(resmax,ares)
resmn = resmn + ares

End Do
End Do

End Do
resmn = resmn/(real(n1*n2*n3,kind=nag_wp))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03ubf(n1,n2,n3,lda,sda,a,b,c,d,e,f,g,aparam,it,r,wrksp1,wrksp2, &

wrksp3,ifail)

If (it==1) Then
Write (nout,99997) ’Iteration’, ’Residual’, ’Change’
Write (nout,99996) ’No’, ’Max.’, ’Mean’, ’Max.’, ’Mean’

End If

! Update the dependent variable
delmax = zero
delmn = zero
Do k = 1, n3

Do j = 1, n2
Do i = 1, n1

t(i,j,k) = t(i,j,k) + r(i,j,k)
adel = abs(r(i,j,k))
delmax = max(delmax,adel)
delmn = delmn + adel

End Do
End Do

End Do
delmn = delmn/(real(n1*n2*n3,kind=nag_wp))
Write (nout,99999) it, resmax, resmn, delmax, delmn

! Convergence tests here if required
End Do

! End of iterative loop
Write (nout,*)
Write (nout,*) ’Table of calculated function values’
Write (nout,99995)
Write (nout,*)
Write (nout,99998)((k,j,(i,t(i,j,k),i=1,n1),j=1,n2),k=1,n3)
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99999 Format (1X,I5,4(2X,E11.4))
99998 Format ((1X,I1,I3,1X,4(1X,I3,2X,F8.3)))
99997 Format (1X,A,6X,A,19X,A)
99996 Format (2X,A,7X,A,8X,A,11X,A,6X,A,/)
99995 Format (1X,’K J’,2X,4(1X,’(I T )’))

End Program d03ubfe

10.2 Program Data

D03UBF Example Program Data
4 5 6 10 : n1, n2, n3, nits
0.0 1.0 3.0 6.0 : x
0.0 1.0 3.0 6.0 10.0 : y
0.0 1.0 3.0 6.0 10.0 15.0 : z

10.3 Program Results

D03UBF Example Program Results

Iteration Residual Change
No Max. Mean Max. Mean

1 0.1822E+01 0.4847E+00 0.1822E+01 0.6173E+00
2 0.8585E-02 0.9369E-03 0.1970E-01 0.1895E-02
3 0.3168E-02 0.7783E-04 0.1496E-02 0.5819E-04
4 0.4085E-04 0.2179E-05 0.3848E-04 0.1931E-05
5 0.7820E-05 0.3999E-06 0.5481E-05 0.2312E-06
6 0.2246E-06 0.1524E-07 0.2333E-06 0.1093E-07
7 0.2219E-07 0.1669E-08 0.2222E-07 0.9131E-09
8 0.2841E-08 0.1820E-09 0.1969E-08 0.9337E-10
9 0.6696E-09 0.4762E-10 0.5873E-09 0.2450E-10

10 0.7848E-10 0.4908E-11 0.5863E-10 0.2671E-11

Table of calculated function values
K J (I T ) (I T ) (I T ) (I T )

1 1 1 1.000 2 1.105 3 1.350 4 1.822
1 2 1 0.990 2 1.094 3 1.336 4 1.804
1 3 1 0.911 2 1.007 3 1.230 4 1.661
1 4 1 0.661 2 0.731 3 0.892 4 1.205
1 5 1 0.156 2 0.172 3 0.211 4 0.284
2 1 1 0.905 2 1.000 3 1.221 4 1.649
2 2 1 0.896 2 0.990 3 1.210 4 1.632
2 3 1 0.825 2 0.912 3 1.114 4 1.503
2 4 1 0.598 2 0.662 3 0.809 4 1.090
2 5 1 0.141 2 0.156 3 0.190 4 0.257
3 1 1 0.741 2 0.819 3 1.000 4 1.350
3 2 1 0.733 2 0.811 3 0.991 4 1.336
3 3 1 0.675 2 0.747 3 0.913 4 1.230
3 4 1 0.490 2 0.543 3 0.664 4 0.892
3 5 1 0.116 2 0.128 3 0.156 4 0.211
4 1 1 0.549 2 0.607 3 0.741 4 1.000
4 2 1 0.543 2 0.601 3 0.734 4 0.990
4 3 1 0.500 2 0.554 3 0.677 4 0.911
4 4 1 0.363 2 0.402 3 0.492 4 0.661
4 5 1 0.086 2 0.095 3 0.116 4 0.156
5 1 1 0.368 2 0.407 3 0.497 4 0.670
5 2 1 0.364 2 0.403 3 0.492 4 0.664
5 3 1 0.335 2 0.371 3 0.454 4 0.611
5 4 1 0.243 2 0.270 3 0.330 4 0.443
5 5 1 0.057 2 0.063 3 0.077 4 0.105
6 1 1 0.223 2 0.247 3 0.301 4 0.407
6 2 1 0.221 2 0.244 3 0.298 4 0.403
6 3 1 0.203 2 0.225 3 0.274 4 0.371
6 4 1 0.148 2 0.163 3 0.199 4 0.269
6 5 1 0.035 2 0.038 3 0.047 4 0.063
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Example Program
Solution of Three-dimensional Laplace’s Equation in a Box

Solutions in the xy-plane for Various Values of z
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NAG Library Chapter Contents

D04 – Numerical Differentiation

D04 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

D04AAF 5 nagf_numdiff
Numerical differentiation, derivatives up to order 14, function of one real
variable

D04BAF 23 nagf_numdiff_rcomm
Numerical differentiation, user-supplied function values, derivatives up to
order 14, derivatives with respect to one real variable

D04BBF 23 nagf_numdiff_sample
Generates sample points for function evaluations by D04BAF
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1 Scope of the Chapter

This chapter is concerned with calculating approximations to derivatives of a function f .

2 Background to the Problems

2.1 Description of the Problem

The problem of numerical differentiation does not receive very much attention nowadays. Although the
Taylor series plays a key role in much of classical analysis, the poor reputation enjoyed by numerical
differentiation has led numerical analysts to construct techniques for most problems which avoid the
explicit use of numerical differentiation.

One may briefly and roughly define the term numerical differentiation as any process in which
numerical values of derivatives f sð Þ x0ð Þ are obtained from evaluations f xið Þ of the function f xð Þ at
several abscissae xi near x0. This problem can be stable, well-conditioned, and accurate when complex-
valued abscissae are used. This was first pointed out by Lyness and Moler (1967). An item of numerical
software for this appears in Lyness and Ande (1971). However, in many applications the use of
complex-valued abscissae is either prohibitive or prohibited. The main difficulty in using real abscissae
is that amplification of round-off error can completely obliterate meaningful results. In the days when
one relied on hand calculating machines and tabular data, the frustration caused by this effect led to the
abandonment of serious use of the process.

There are several reasons for believing that, in the present-day computing environment, numerical
differentiation might find a useful role. The first is that, by present standards, it is rather a small-scale
calculation, so its cost may well be negligible compared with any overall saving in cost that might
result from its use. Secondly, the assignment of a step length h is now generally open. One does not
have to rely on tabular data. Thirdly, although the amplification of round-off error is an integral part of
the calculation, its effect can be measured reliably and automatically by the routine at the time of the
calculation.

Thus you do not have to gauge the round-off level (or noise level) of the function values or assess the
effect of this on the accuracy of the results. A routine does this automatically, returning with each result
an error estimate which has already taken round-off error amplification into account.

We now illustrate, by means of a very simple example, the importance of the round-off error effect. A
very simple approximation of f 0 0ð Þ, based on the identity

f 0 0ð Þ ¼ f hð Þ � f �hð Þð Þ=2hþ h2=3!
� �

f 000 �ð Þ; ð1Þ

is

f hð Þ � f �hð Þð Þ=2h:

If there were no precision problem, this formula would be the only one needed in the theory of first-
order numerical differentiation. We could simply take h ¼ 10�40 (or h ¼ 10�1000) to obtain an excellent
approximation based on two function values. It is only when we consider in detail how a machine with
finite precision comes to calculate f hð Þ � f �hð Þð Þ=2h that the necessity for a sophisticated theory
becomes apparent.

To simplify the subsequent description we shall assume that the quantities involved are neither so close
to zero that the machine underflow characteristics need be considered nor so large that machine
overflow occurs. The approximation mentioned above involves the function values f hð Þ and f �hð Þ. In
general no computer has available these numbers exactly. Instead it uses approximations f̂ hð Þ and
f̂ �hð Þ whose relative accuracy is less than some tolerance �f . If the function f xð Þ is a library function,
for example sinx, �f may coincide with the machine accuracy parameter �m. More generally the
function f xð Þ is calculated in a user-supplied routine and �f is larger than �m by a small factor 5 or 6 if
the calculation is short or by some larger factor in an extended calculation. This factor is not usually
known by you.

Introduction – D04 NAG Library Manual

D04.2 Mark 26



f̂ hð Þ and f̂ �hð Þ are related to f hð Þ and f �hð Þ by

f̂ hð Þ ¼ f hð Þ 1þ �1�f
� �

; �1j j � 1

f̂ �hð Þ ¼ f �hð Þ 1þ �2�f
� �

; �2j j � 1:

Thus even if the rest of the calculation were carried out exactly, it is trivial to show that

f̂ hð Þ � f̂ �hð Þ
2h

� f hð Þ � f �hð Þ
2h

’ 2
�f
f �ð Þ
2h

; 
j j � 1:

The difference between the quantity actually calculated and the quantity which one attempts to calculate
may be as large as �ff �ð Þ=h; for example using h ¼ 10�40 and �m ¼ 10�7 this gives a ‘conditioning
error’ of 1033f �ð Þ.
In practice much more sophisticated formulae than (1) above are used, and for these and for the
corresponding higher-derivative formulae the error analysis is different and more complicated in detail.
But invariably the theory contains the same overall feature. In a finite length calculation, the error is
composed of two main parts: a discretization error which increases as h becomes large and is zero for
h ¼ 0; and a ‘conditioning’ error due to amplification of round-off error in function evaluation, which
increases as h becomes small and is infinite for h ¼ 0.

The routines in this chapter have to take into account internally both these sources of error in the
results. Thus they return pairs of results, DERðjÞ and ERESTðjÞ where DERðjÞ is an approximation to
f jð Þ x0ð Þ and ERESTðjÞ is an estimate of the error in the approximation DERðjÞ. If the routine has not
been misled, DERðjÞ and ERESTðjÞ satisfy

DERðjÞ � f jð Þ x0ð Þ
		 		 � ERESTðjÞ:

In this respect, numerical differentiation routines are fundamentally different from other routines. You
do not specify an error criterion. Instead the routine provides the error estimate and this may be very
large.

We mention here a terminological distinction. A fully automatic routine is one in which you do not
need to provide any information other than that required to specify the problem. Such a routine (at a
cost in computing time) decides an appropriate internal parameter such as the step length h by itself. On
the other hand a routine which requires you to provide a step length h, but automatically chooses from
several different formulae each based on the specified step length, is termed a semi-automatic routine.

The situation described above must have seemed rather depressing when hand machines were in
common use. For example in the simple illustration one does not know the values of the quantities
f 000 �ð Þ or �f involved in the error estimates, and the idea of altering the value of h and starting again
must have seemed appalling. However, by present-day standards, it is a relatively simple matter to write
a program which carries out all the previously considered time-consuming calculations which may seem
necessary. None of the routines in this chapter are particularly revolutionary in concept. They simply
utilize the computer for the sort of task for which it was originally designed. It carries out simple
tedious calculations which are necessary to estimate the accuracy of the results of other even simpler
tedious calculations.

2.2 Examples of Applications for Numerical Differentiation Routines

(a) One immediate use to which a set of derivatives at a point is likely to be put is that of constructing
a Taylor series representation:

f xð Þ ¼ f x0ð Þ þ
Xn
j¼1

f jð Þ x0ð Þ
j!

x� x0ð Þj þ f
nþ1ð Þ �ð Þ
nþ 1ð Þ! x� x0ð Þnþ1; � � x0j j � x:

This infinite series converges so long as x� x0j j < Rc (the radius of convergence) and it is only for
these values of x that such a series is likely to be used. In this case in forming the sum, the
required accuracy in f jð Þ x0ð Þ diminishes with increasing j.
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The series formed from the Taylor series using elementary operations such as integration or
differentiation has the same overall characteristic. A technique based on a Taylor series expansion
may be quite accurate, even if the individual derivatives are not, so long as the less accurate
derivatives are associated with known small coefficients.

The error introduced by using n approximate derivatives DERðjÞ is bounded byXn
j¼1

ERESTðjÞ x� x0j jj=j!

Thus, if you are prepared to base the result on a truncated Taylor series, the additional error
introduced by using approximate Taylor coefficients can be readily bounded from the values of
ERESTðjÞ. However, in an automatic code you must be prepared to introduce some alternative
approach in case this error bound turns out to be unduly high.

In this sort of application the accuracy of the result depends on the size of the errors in the
numerical differentiation. There are other applications where the effect of large errors ERESTðjÞ is
merely to prolong a calculation, but not to impair the final accuracy.

(b) A simple Taylor series approach such as described in (a) is used to find a starting value for a
rapidly converging but extremely local iterative process.

(c) The technique known as ‘subtracting out the singularity’ as a preliminary to numerical quadrature
may be extended and may be carried out approximately. Thus suppose we are interested in
evaluating Z 1

0
x� 1=2ð Þ
 xð Þ dx;

we have an automatic quadrature routine available, and we have a routine available for 
 xð Þ which
we know to be an analytic function. An integrand function like x� 1=2ð Þ
 xð Þ is generally accepted to
be difficult for an automatic integrator because of the singularity. If 
 xð Þ and some of its
derivatives at the singularity x ¼ 0 are known one may effectively ‘subtract out’ the singularity
using the following identity:Z 1

0
x� 1=2ð Þ
 xð Þ dx ¼

Z 1

0
x� 1=2ð Þ 
 xð Þ � 
 0ð Þ �Ax�Bx2=2

� �
dxþ 2
 0ð Þ þ 2A=3þB=5 ð2Þ

with A ¼ 
0 0ð Þ and B ¼ 
00 0ð Þ.
The integrand function on the right of (2) has no singularity, but its third derivative does. Thus
using numerical quadrature for this integral is much cheaper than using numerical quadrature for
the original integral (in the left-hand side of (2)).

However, (2) is an identity whatever values of A and B are assigned. Thus the same procedure can
be used with A and B being approximations to 
0 0ð Þ and 
00 0ð Þ provided by a numerical
differentiation routine. The integrand would now be more difficult to integrate than if A and B
were correct but still much less difficult than the original integrand (on the left-hand side of (2)).
But, assuming that the automatic quadrature routine is reliable, the overall result would still be
correct. The effect of using approximate derivatives rather than exact derivatives does not impair
the accuracy of the result. It simply makes the result more expensive to obtain, but not nearly as
expensive as if no derivatives were used at all.

(d) The calculation of a definite integral may be based on the Euler–Maclaurin expansionZ 1

0
f xð Þ dx ¼ 1

m

Xm
j¼0

00

f j=mð Þ �
Xl
s¼1

B2s

2s!

f 2s�1ð Þ 1ð Þ � f 2s�1ð Þ 0ð Þ
� �

m2s
þO m �2l�2ð Þ

� �
:

Here B2s is a Bernoulli number. If one fixes a value of l then as m is increased the right-hand side
(without the remainder term) approaches the true value of the integral. This statement remains true
whatever values are used to replace f 2s�1ð Þ 1ð Þ and f 2s�1ð Þ 0ð Þ. If no derivatives are available, and
this formula is used (effectively with the derivatives replaced by zero) the rate of convergence is
slow (like m�2) and a large number of function evaluations may be used in calculating the
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trapezoidal rule sum for large m before a sufficiently accurate result is attained. However, if
approximate derivatives are used, the initial rate of convergence is enhanced. In fact, in this
example any derivative approximation which is closer than the approximation zero is helpful. Thus
the use of inaccurate derivatives may have the effect of shortening the overall calculation, since a
sufficiently accurate result may be obtained using a smaller value of m, without impairing the
accuracy of the result. (The resemblance with Gregory's formula is superficial. Here l is kept fixed
and m is increased, ensuring a convergent process.)

The examples given above are only intended to illustrate the sort of use to which approximate
derivatives may be put. Very simple illustrations have been used for clarity, and in such simple
cases there are usually more efficient approaches to the problem. The same ideas applied in a more
complicated or restrictive setting may provide an efficient approach to a problem for which no
simple standard approach exists.

3 Recommendations on Choice and Use of Available Routines

(a) At the present, there is only one numerical differentiation algorithm available in this chapter
accessible using direct communication in D04AAF, and using reverse communication in D04BAF
(see Section 3.3.3 in How to Use the NAG Library and its Documentation for a description of the
difference between these two conventions). These are semi-automatic routines for obtaining
approximations to the first fourteen derivatives of a real valued function f xð Þ at a specified point
x0. For D04AAF, you must provide a FUNCTION representing f xð Þ, the value of x0, an upper
limit n � 14 on the order of the derivatives required and a step length h. For D04BAF, you must
supply the value of x0, 20 other abscissae and the function values at those abscissae. Both routines
return a set of approximations DERðjÞ and corresponding error estimates ERESTðjÞ which
hopefully satisfy

DERðjÞ � f jð Þ x0ð Þ
		 		 � ERESTðjÞ; j ¼ 1; 2; . . . ; n � 14:

It is important that the error estimate ERESTðjÞ be taken into consideration before any use of
DERðjÞ is made. The actual size of ERESTðjÞ depends on the analytic structure of the function, on
the computational precision used and on the step size h, and is difficult to predict. Thus you have
to run the routine to find out how accurate the results are. Usually you will find the higher-order
derivatives are successively more inaccurate and that past a certain order, say 10 or 11, the size of
ERESTðjÞ actually exceeds DERðjÞ. Clearly when this happens the approximation DERðjÞ is
unusable.

(b) There is available in the algorithm section of CACM (see Lyness and Ande (1971)) a semi-
automatic Fortran routine for numerical differentiation of an analytical function f zð Þ at a possibly
complex abscissa z0. This is a stable problem. It can be used for any problem for which D04AAF
might be used and produces more accurate results, and derivatives of arbitrary high order.
However, even if z0 is real and f zð Þ is real for z, this routine requires a user-supplied FUNCTION
which evaluates f zð Þ for complex values of z and it makes use of complex arithmetic.

(c) Routines are available in Chapter E02 to differentiate functions which are polynomials (in
Chebyshev series representation) or cubic splines (in B-spline representation).

4 Functionality Index

Generates abscissae for D04BAF......................................................................................... D04BBF

Numerical derivatives,
direct communication ...................................................................................................... D04AAF
reverse communication.................................................................................................... D04BAF

5 Auxiliary Routines Associated with Library Routine Arguments

None.
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6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References

Lyness J N and Ande G (1971) Algorithm 413, ENTCAF and ENTCRE: evaluation of normalised
Taylor coefficients of an analytic function Comm. ACM 14(10) 669–675

Lyness J N and Moler C B (1967) Numerical differentiation of analytic functions SIAM J. Numer. Anal.
4(2) 202–210
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NAG Library Routine Document

D04AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D04AAF calculates a set of derivatives (up to order 14) of a function of one real variable at a point,
together with a corresponding set of error estimates, using an extension of the Neville algorithm.

2 Specification

SUBROUTINE D04AAF (XVAL, NDER, HBASE, DER, EREST, FUN, IFAIL)

INTEGER NDER, IFAIL
REAL (KIND=nag_wp) XVAL, HBASE, DER(14), EREST(14), FUN
EXTERNAL FUN

3 Description

D04AAF provides a set of approximations:

DERðjÞ; j ¼ 1; 2; . . . ; n

to the derivatives:

f jð Þ x0ð Þ; j ¼ 1; 2; . . . ; n

of a real valued function f xð Þ at a real abscissa x0, together with a set of error estimates:

ERESTðjÞ; j ¼ 1; 2; . . . ; n

which hopefully satisfy:

DERðjÞ � f jð Þ x0ð Þ
		 		 < ERESTðjÞ; j ¼ 1; 2; . . . ; n:

You must provide the value of x0, a value of n (which is reduced to 14 should it exceed 14), a
subroutine which evaluates f xð Þ for all real x, and a step length h. The results DERðjÞ and ERESTðjÞ
are based on 21 function values:

f x0ð Þ; f x0 
 2i� 1ð Þhð Þ; i ¼ 1; 2; . . . ; 10:

Internally D04AAF calculates the odd order derivatives and the even order derivatives separately. There
is an option you can use for restricting the calculation to only odd (or even) order derivatives. For each
derivative the routine employs an extension of the Neville Algorithm (see Lyness and Moler (1969)) to
obtain a selection of approximations.

For example, for odd derivatives, based on 20 function values, D04AAF calculates a set of numbers:

Tk;p;s; p ¼ s; sþ 1; . . . ; 6; k ¼ 0; 1; . . . ; 9� p

each of which is an approximation to f 2sþ1ð Þ x0ð Þ= 2sþ 1ð Þ!. A specific approximation Tk;p;s is of
polynomial degree 2pþ 2 and is based on polynomial interpolation using function values
f x0 
 2i� 1ð Þhð Þ, for k ¼ k; . . . ; k þ p. In the absence of round-off error, the better approximations
would be associated with the larger values of p and of k. However, round-off error in function values
has an increasingly contaminating effect for successively larger values of p. This routine proceeds to
make a judicious choice between all the approximations in the following way.

For a specified value of s, let:

Rp ¼ Up � Lp; p ¼ s; sþ 1; . . . ; 6
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where Up ¼ max
k

Tk;p;s
� �

and Lp ¼ min
k

Tk;p;s
� �

, for k ¼ 0; 1; . . . ; 9� p, and let �p be such that

R�p ¼ min
p

Rp

� �
, for p ¼ s; . . . ; 6.

The routine returns:

DERð2sþ 1Þ ¼ 1

8� �p
�

X9��p
k¼0

Tk;�p;s � U�p � L�p

( )
2sþ 1ð Þ!

and

ERESTð2sþ 1Þ ¼ R�p � 2sþ 1ð Þ!�K2sþ1

where Kj is a safety factor which has been assigned the values:

Kj ¼ 1, j � 9
Kj ¼ 1:5, j ¼ 10; 11
Kj ¼ 2 j � 12,

on the basis of performance statistics.

The even order derivatives are calculated in a precisely analogous manner.

4 References

Lyness J N and Moler C B (1966) van der Monde systems and numerical differentiation Numer. Math. 8
458–464

Lyness J N and Moler C B (1969) Generalised Romberg methods for integrals of derivatives Numer.
Math. 14 1–14

5 Arguments

1: XVAL – REAL (KIND=nag_wp) Input

On entry: the point at which the derivatives are required, x0.

2: NDER – INTEGER Input

On entry: must be set so that its absolute value is the highest order derivative required.

NDER > 0
All derivatives up to order min NDER; 14ð Þ are calculated.

NDER < 0 and NDER is even
Only even order derivatives up to order min �NDER; 14ð Þ are calculated.

NDER < 0 and NDER is odd
Only odd order derivatives up to order min �NDER; 13ð Þ are calculated.

3: HBASE – REAL (KIND=nag_wp) Input

On entry: the initial step length which may be positive or negative. For advice on the choice of
HBASE see Section 9.

Constraint: HBASE 6¼ 0:0.

4: DERð14Þ – REAL (KIND=nag_wp) array Output

On exit: DERðjÞ contains an approximation to the jth derivative of f xð Þ at x ¼ XVAL, so long
as the jth derivative is one of those requested by you when specifying NDER. For other values of
j, DERðjÞ is unused.
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5: ERESTð14Þ – REAL (KIND=nag_wp) array Output

On exit: an estimate of the absolute error in the corresponding result DERðjÞ so long as the jth
derivative is one of those requested by you when specifying NDER. The sign of ERESTðjÞ is
positive unless the result DERðjÞ is questionable. It is set negative when DERðjÞj j < ERESTðjÞj j
or when for some other reason there is doubt about the validity of the result DERðjÞ (see
Section 6). For other values of j, ERESTðjÞ is unused.

6: FUN – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

FUN must evaluate the function f xð Þ at a specified point.

The specification of FUN is:

FUNCTION FUN (X)
REAL (KIND=nag_wp) FUN

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the value of the argument x.

If you have equally spaced tabular data, the following information may be useful:

(i) in any call of D04AAF the only values of x for which f xð Þ will be required are
x ¼ XVAL and x ¼ XVAL
 2j � 1ð ÞHBASE, for j ¼ 1; 2; . . . ; 10; and

(ii) f x0ð Þ is always computed, but it is disregarded when only odd order derivatives are
required.

FUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D04AAF is called. Arguments denoted as Input must not be changed by
this procedure.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDER ¼ 0,
or HBASE ¼ 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL has a value zero on exit then D04AAF has terminated successfully, but before any use is made
of a derivative DERðjÞ the value of ERESTðjÞ must be checked.

7 Accuracy

The accuracy of the results is problem dependent. An estimate of the accuracy of each result DERðjÞ is
returned in ERESTðjÞ (see Sections 3, 5 and 9).

A basic feature of any floating-point routine for numerical differentiation based on real function values
on the real axis is that successively higher order derivative approximations are successively less
accurate. It is expected that in most cases DERð14Þ will be unusable. As an aid to this process, the sign
of ERESTðjÞ is set negative when the estimated absolute error is greater than the approximate
derivative itself, i.e., when the approximate derivative may be so inaccurate that it may even have the
wrong sign. It is also set negative in some other cases when information available to the routine
indicates that the corresponding value of DERðjÞ is questionable.

The actual values in EREST depend on the accuracy of the function values, the properties of the
machine arithmetic, the analytic properties of the function being differentiated and the user-supplied
step length HBASE (see Section 9). The only hard and fast rule is that for a given FUN XVALð Þ and
HBASE, the values of ERESTðjÞ increase with increasing j. The limit of 14 is dictated by experience.
Only very rarely can one obtain meaningful approximations for higher order derivatives on
conventional machines.

8 Parallelism and Performance

D04AAF is not threaded in any implementation.

9 Further Comments

The time taken by D04AAF depends on the time spent for function evaluations. Otherwise the time is
roughly equivalent to that required to evaluate the function 21 times and calculate a finite difference
table having about 200 entries in total.

The results depend very critically on the choice of the user-supplied step length HBASE. The overall
accuracy is diminished as HBASE becomes small (because of the effect of round-off error) and as
HBASE becomes large (because the discretization error also becomes large). If the routine is used four
or five times with different values of HBASE one can find a reasonably good value. A process in which
the value of HBASE is successively halved (or doubled) is usually quite effective. Experience has
shown that in cases in which the Taylor series for FUN Xð Þ about XVAL has a finite radius of
convergence R, the choices of HBASE > R=19 are not likely to lead to good results. In this case some
function values lie outside the circle of convergence.

10 Example

This example evaluates the odd-order derivatives of the function:

f xð Þ ¼ 1
2e

2x�1

up to order 7 at the point x ¼ 1
2 . Several different values of HBASE are used, to illustrate that:
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(i) extreme choices of HBASE, either too large or too small, yield poor results;

(ii) the quality of these results is adequately indicated by the values of EREST.

10.1 Program Text

! D04AAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d04aafe_mod

! D04AAF Example Program Module:
! Parameters and User-defined Routines

! nder: abs(nder) is largest order derivative required;
! nder < 0 means only odd or even derivatives.
! h_init: initial step size.
! h_reduce: reduction factor applied to successive step sizes.
! xval: derivatives evaluated at x=xval.

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fun

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: h_init = 0.5_nag_wp
Real (Kind=nag_wp), Parameter, Public :: h_reduce = 0.1_nag_wp
Real (Kind=nag_wp), Parameter, Public :: xval = 0.5_nag_wp
Integer, Parameter, Public :: nder = -7, nout = 6

Contains
Function fun(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: fun

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
fun = 0.5_nag_wp*exp(2.0_nag_wp*x-1.0_nag_wp)
Return

End Function fun
End Module d04aafe_mod
Program d04aafe

! D04AAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d04aaf, nag_wp
Use d04aafe_mod, Only: fun, h_init, h_reduce, nder, nout, xval

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: hbase
Integer :: i, ifail, j, k, l

! .. Local Arrays ..
Real (Kind=nag_wp) :: der(14), erest(14)

! .. Intrinsic Procedures ..
Intrinsic :: abs, merge

! .. Executable Statements ..
Write (nout,*) ’D04AAF Example Program Results’

Write (nout,*)
Write (nout,*) &

’Four separate runs to calculate the first four odd order ’, &
’derivatives of’

Write (nout,*) ’ FUN(X) = 0.5*exp(2.0*X-1.0) at X = 0.5.’
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Write (nout,*) ’The exact results are 1, 4, 16 and 64’
Write (nout,*)
Write (nout,*) ’Input parameters common to all four runs’
Write (nout,99999) ’ XVAL = ’, xval, ’ NDER = ’, nder, &

’ IFAIL = 0’
Write (nout,*)

hbase = h_init
l = abs(nder)

If (nder>=0) Then
j = 1

Else
j = 2

End If

Do k = 1, 4

ifail = 0
Call d04aaf(xval,nder,hbase,der,erest,fun,ifail)

Write (nout,*)
Write (nout,99998) ’with step length’, hbase, ’ the results are’
Write (nout,*) ’Order Derivative Questionable?’

Do i = 1, l, j
Write (nout,99997) i, der(i), merge(’Yes’,’No ’,erest(i)<0._nag_wp)

End Do

hbase = hbase*h_reduce
End Do

99999 Format (1X,A,F4.1,A,I2,A)
99998 Format (1X,A,F9.4,A)
99997 Format (1X,I2,E21.4,13X,A)

End Program d04aafe

10.2 Program Data

None.

10.3 Program Results

D04AAF Example Program Results

Four separate runs to calculate the first four odd order derivatives of
FUN(X) = 0.5*exp(2.0*X-1.0) at X = 0.5.

The exact results are 1, 4, 16 and 64

Input parameters common to all four runs
XVAL = 0.5 NDER = -7 IFAIL = 0

with step length 0.5000 the results are
Order Derivative Questionable?
1 0.1392E+04 Yes
3 -0.3139E+04 Yes
5 0.8762E+04 Yes
7 -0.2475E+05 Yes

with step length 0.0500 the results are
Order Derivative Questionable?
1 0.1000E+01 No
3 0.4000E+01 No
5 0.1600E+02 No
7 0.6400E+02 No

with step length 0.0050 the results are
Order Derivative Questionable?
1 0.1000E+01 No
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3 0.4000E+01 No
5 0.1600E+02 No
7 0.6404E+02 No

with step length 0.0005 the results are
Order Derivative Questionable?
1 0.1000E+01 No
3 0.4000E+01 No
5 0.1599E+02 No
7 0.3825E+05 Yes
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NAG Library Routine Document

D04BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D04BAF calculates a set of derivatives (up to order 14) of a function at a point with respect to a single
variable. A corresponding set of error estimates is also returned. Derivatives are calculated using an
extension of the Neville algorithm. This routine differs from D04AAF, in that the abscissae and
corresponding function values must be calculated before this routine is called. The abscissae may be
generated using D04BBF.

2 Specification

SUBROUTINE D04BAF (XVAL, FVAL, DER, EREST, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) XVAL(21), FVAL(21), DER(14), EREST(14)

3 Description

D04BAF provides a set of approximations:

DERðjÞ; j ¼ 1; 2; . . . ; 14

to the derivatives:

f jð Þ x0ð Þ; j ¼ 1; 2; . . . ; 14

of a real valued function f xð Þ at a real abscissa x0, together with a set of error estimates:

ERESTðjÞ; j ¼ 1; 2; . . . ; 14

which hopefully satisfy:

DERðjÞ � f jð Þ x0ð Þ
		 		 < ERESTðjÞ; j ¼ 1; 2; . . . ; 14:

The results DERðjÞ and ERESTðjÞ are based on 21 function values:

f x0ð Þ; f x0 
 2i� 1ð Þhð Þ; i ¼ 1; 2; . . . ; 10:

The abscissae x and the corresponding function values f xð Þ should be passed into D04BAF as the
vectors XVAL and FVAL respectively. The step size h is derived from the abscissae in XVAL. See
Section 9 for a discussion of how the derived value of h may affect the results of D04BAF. The order
in which the abscissae and function values are stored in XVAL and FVAL is irrelevant, provided that
the function value at any given index corresponds to the value of the abscissa at the same index.
Abscissae may be automatically generated using D04BBF if desired. For each derivative D04BAF
employs an extension of the Neville Algorithm (see Lyness and Moler (1969)) to obtain a selection of
approximations.

For example, for odd derivatives, this routine calculates a set of numbers:

Tk;p;s; p ¼ s; sþ 1; . . . ; 6; k ¼ 0; 1; . . . ; 9� p

each of which is an approximation to f 2sþ1ð Þ x0ð Þ= 2sþ 1ð Þ!. A specific approximation Tk;p;s is of
polynomial degree 2pþ 2 and is based on polynomial interpolation using function values
f x0 
 2i� 1ð Þhð Þ, for k ¼ k; . . . ; k þ p. In the absence of round-off error, the better approximations
would be associated with the larger values of p and of k. However, round-off error in function values
has an increasingly contaminating effect for successively larger values of p. This routine proceeds to
make a judicious choice between all the approximations in the following way.
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For a specified value of s, let:

Rp ¼ Up � Lp; p ¼ s; sþ 1; . . . ; 6

where Up ¼ max
k

Tk;p;s
� �

and Lp ¼ min
k

Tk;p;s
� �

, for k ¼ 0; 1; . . . ; 9� p, and let �p be such that

R�p ¼ min
p

Rp

� �
, for p ¼ s; . . . ; 6.

This routine returns:

DERð2sþ 1Þ ¼ 1

8� �p
�

X9��p
k¼0

Tk;�p;s � U�p � L�p

( )
2sþ 1ð Þ!

and

ERESTð2sþ 1Þ ¼ R�p � 2sþ 1ð Þ!�K2sþ1

where Kj is a safety factor which has been assigned the values:

Kj ¼ 1, j � 9
Kj ¼ 1:5, j ¼ 10; 11
Kj ¼ 2 j � 12,

on the basis of performance statistics.

The even order derivatives are calculated in a precisely analogous manner.

4 References

Lyness J N and Moler C B (1969) Generalised Romberg methods for integrals of derivatives Numer.
Math. 14 1–14

5 Arguments

1: XVALð21Þ – REAL (KIND=nag_wp) array Input

On entry: the abscissae at which the function has been evaluated, as described in Section 3.
These can be generated by calling D04BBF. The order of the abscissae is irrelevant.

Constraint: the values in XVAL must span the set x0; x0 
 2j � 1ð Þhf g, for j ¼ 1; 2; . . . ; 10.

2: FVALð21Þ – REAL (KIND=nag_wp) array Input

On entry: FVALðjÞ must contain the function value at XVALðjÞ, for j ¼ 1; 2; . . . ; 21.

3: DERð14Þ – REAL (KIND=nag_wp) array Output

On exit: the 14 derivative estimates.

4: ERESTð14Þ – REAL (KIND=nag_wp) array Output

On exit: the 14 error estimates for the derivatives.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, the values of XVAL are not correctly spaced.
Derived h ¼ valueh i.
The derived h is below tolerance.
Derived h > valueh i is required. Derived h ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the results is problem dependent. An estimate of the accuracy of each result DERðjÞ is
returned in ERESTðjÞ (see Sections 3, 5 and 9).

A basic feature of any floating-point routine for numerical differentiation based on real function values
on the real axis is that successively higher order derivative approximations are successively less
accurate. It is expected that in most cases DERð14Þ will be unusable. As an aid to this process, the sign
of ERESTðjÞ is set negative when the estimated absolute error is greater than the approximate
derivative itself, i.e., when the approximate derivative may be so inaccurate that it may even have the
wrong sign. It is also set negative in some other cases when information available to D04BAF indicates
that the corresponding value of DERðjÞ is questionable.

The actual values in EREST depend on the accuracy of the function values, the properties of the
machine arithmetic, the analytic properties of the function being differentiated and the step length h
(see Section 9). The only hard and fast rule is that for a given objective function and h, the values of
ERESTðjÞ increase with increasing j. The limit of 14 is dictated by experience. Only very rarely can
one obtain meaningful approximations for higher order derivatives on conventional machines.

8 Parallelism and Performance

D04BAF is not threaded in any implementation.
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9 Further Comments

The results depend very critically on the choice of the step length h. The overall accuracy is diminished
as h becomes small (because of the effect of round-off error) and as h becomes large (because the
discretization error also becomes large). If this routine is used four or five times with different values of
h one can find a reasonably good value. A process in which the value of h is successively halved (or
doubled) is usually quite effective. Experience has shown that in cases in which the Taylor series for
the objective function about x0 has a finite radius of convergence R, the choices of h > R=19 are not
likely to lead to good results. In this case some function values lie outside the circle of convergence.

As mentioned, the order of the abscissae in XVAL does not matter, provided the corresponding values
of FVAL are ordered identically. If the abscissae are generated by D04BBF, then they will be in
ascending order. In particular, the target abscissa x0 will be stored in XVALð11Þ.

10 Example

This example evaluates the derivatives of the polygamma function, calculated using S14AEF, and
compares the first 3 derivatives calculated to those found using S14AEF.

10.1 Program Text

Program d04bafe

! D04BAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d04baf, d04bbf, nag_wp, s14aef, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: x_0 = 0.05_nag_wp
Integer, Parameter :: indent = 0, ncols = 80, nout = 6, &

n_der_comp = 3, n_display = 3, &
n_hbase = 4, zeroth = 0

Character (1), Parameter :: chlabel = ’C’, diag = ’N’, &
form = ’ ’, matrix = ’G’, &
nolabel = ’N’

! .. Local Scalars ..
Real (Kind=nag_wp) :: hbase
Integer :: ifail, j, k
Character (50) :: title

! .. Local Arrays ..
Real (Kind=nag_wp) :: actder(n_display), der(14), &

der_comp(n_hbase,n_der_comp,14), &
erest(14), fval(21), xval(21)

Character (10) :: clabs(n_der_comp), rlabs(1)
! .. Executable Statements ..

Write (nout,*) ’D04BAF Example Program Results’
Write (nout,*)
Write (nout,*) ’ Find the derivatives of the polygamma (psi) function’
Write (nout,*) ’ using function values generated by S14AEF.’
Write (nout,*)
Write (nout,*) ’ Demonstrate the effect of successively reducing HBASE.’
Write (nout,*)

! Select an initial separation distance HBASE.
hbase = 0.0025_nag_wp

! Compute the actual derivatives at target location x_0 using s14aef for
! comparison.

Do j = 1, n_display
ifail = 0
actder(j) = s14aef(x_0,j,ifail)

End Do

! Attempt N_HBASE approximations, reducing HBASE by factor 0.1 each time.
Do j = 1, n_hbase
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! Generate the abscissa XVAL using D04BBF
Call d04bbf(x_0,hbase,xval)

! Calculate the corresponding objective function values.
Do k = 1, 21

ifail = 0
fval(k) = s14aef(xval(k),zeroth,ifail)

End Do

! Call D04BAF to calculate the derivative estimates
ifail = 0
Call d04baf(xval,fval,der,erest,ifail)

! Store results in DER_COMP
der_comp(j,1,1:14) = hbase
der_comp(j,2,1:14) = der(1:14)
der_comp(j,3,1:14) = erest(1:14)

! Decrease hbase for next loop
hbase = hbase*0.1_nag_wp

End Do

! Display Results for first N_DISPLAY derivatives

Do j = 1, n_display
Write (nout,99996) j, actder(j)
Write (clabs(1),99997) ’hbase ’
Write (clabs(2),99998) ’DER’, j, ’ ’
Write (clabs(3),99999) ’EREST’, j
Write (title,99999) ’ Derivative and error estimates for derivative ’, &

j
Flush (nout)

! Use X04CBF to display the matrix
ifail = 0
Call x04cbf(matrix,diag,n_hbase,n_der_comp,der_comp(1,1,j),n_hbase, &

form,title,nolabel,rlabs,chlabel,clabs,ncols,indent,ifail)
Write (nout,*)

End Do

99999 Format (A,’(’,I1,’)’)
99998 Format (A,’(’,I1,’)’,A)
99997 Format (A)
99996 Format (1X,’ Derivative (’,I1,’) calculated using S14AEF :’,1X,Es11.4)

End Program d04bafe

10.2 Program Data

None.

10.3 Program Results

D04BAF Example Program Results

Find the derivatives of the polygamma (psi) function
using function values generated by S14AEF.

Demonstrate the effect of successively reducing HBASE.

Derivative (1) calculated using S14AEF : 4.0153E+02
Derivative and error estimates for derivative (1)

hbase DER(1) EREST(1)
2.5000E-03 4.0204E+02 1.3940E+02
2.5000E-04 4.0153E+02 4.9170E-11
2.5000E-05 4.0153E+02 2.1799E-10
2.5000E-06 4.0153E+02 1.1826E-09

Derivative (2) calculated using S14AEF : -1.6002E+04
Derivative and error estimates for derivative (2)
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hbase DER(2) EREST(2)
2.5000E-03 -1.6022E+04 5.5760E+03
2.5000E-04 -1.6002E+04 1.2831E-07
2.5000E-05 -1.6002E+04 6.0543E-06
2.5000E-06 -1.6002E+04 9.5762E-04

Derivative (3) calculated using S14AEF : 9.6001E+05
Derivative and error estimates for derivative (3)

hbase DER(3) EREST(3)
2.5000E-03 9.1465E+05 -7.3750E+06
2.5000E-04 9.6001E+05 2.3718E-04
2.5000E-05 9.6001E+05 4.2253E-02
2.5000E-06 9.6001E+05 5.9679E+01
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NAG Library Routine Document

D04BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D04BBF generates abscissae about a target abscissa x0 for use in a subsequent call to D04BAF.

2 Specification

SUBROUTINE D04BBF (X_0, HBASE, XVAL)

REAL (KIND=nag_wp) X_0, HBASE, XVAL(21)

3 Description

D04BBF may be used to generate the necessary abscissae about a target abscissa x0 for the calculation
of derivatives using D04BAF.

For a given x0 and h, the abscissae correspond to the set x0; x0 
 2j � 1ð Þhf g, for j ¼ 1; 2; . . . ; 10.
These 21 points will be returned in ascending order in XVAL. In particular, XVALð11Þ will be equal to
x0.

4 References

Lyness J N and Moler C B (1969) Generalised Romberg methods for integrals of derivatives Numer.
Math. 14 1–14

5 Arguments

1: X 0 – REAL (KIND=nag_wp) Input

On entry: the abscissa x0 at which derivatives are required.

2: HBASE – REAL (KIND=nag_wp) Input

On entry: the chosen step size h. If h < 10�, where � ¼ X02AJFðÞ, then the default h ¼ � 1=4ð Þ will
be used.

3: XVALð21Þ – REAL (KIND=nag_wp) array Output

On exit: the abscissae for passing to D04BAF.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D04BBF is not threaded in any implementation.

D04 – Numerical Differentiation D04BBF

Mark 26 D04BBF.1



9 Further Comments

The results computed by D04BAF depend very critically on the choice of the user-supplied step length
h. The overall accuracy is diminished as h becomes small (because of the effect of round-off error) and
as h becomes large (because the discretization error also becomes large). If the process of calculating
derivatives is repeated four or five times with different values of h one can find a reasonably good
value. A process in which the value of h is successively halved (or doubled) is usually quite effective.
Experience has shown that in cases in which the Taylor series for for the objective function about x0
has a finite radius of convergence R, the choices of h > R=19 are not likely to lead to good results. In
this case some function values lie outside the circle of convergence.

10 Example

See Section 10 in D04BAF.
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NAG Library Chapter Contents

D05 – Integral Equations

D05 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

D05AAF 5 nagf_inteq_fredholm2_split
Linear nonsingular Fredholm integral equation, second kind, split kernel

D05ABF 6 nagf_inteq_fredholm2_smooth
Linear nonsingular Fredholm integral equation, second kind, smooth kernel

D05BAF 14 nagf_inteq_volterra2
Nonlinear Volterra convolution equation, second kind

D05BDF 16 nagf_inteq_abel2_weak
Nonlinear convolution Volterra–Abel equation, second kind, weakly
singular

D05BEF 16 nagf_inteq_abel1_weak
Nonlinear convolution Volterra–Abel equation, first kind, weakly singular

D05BWF 16 nagf_inteq_volterra_weights
Generate weights for use in solving Volterra equations

D05BYF 16 nagf_inteq_abel_weak_weights
Generate weights for use in solving weakly singular Abel-type equations
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NAG Library Chapter Introduction

D05 – Integral Equations
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1 Scope of the Chapter

This chapter is concerned with the numerical solution of integral equations. Provision will be made for
most of the standard types of equation (see Section 2). The following are, however, specifically
excluded:

(a) Equations arising in the solution of partial differential equations by integral equation methods. In
cases where the prime purpose of an algorithm is the solution of a partial differential equation it
will normally be included in Chapter D03.

(b) Calculation of inverse integral transforms. This problem falls within the scope of Chapter C06.

2 Background to the Problems

2.1 Introduction

Any functional equation in which the unknown function appears under the sign of integration is called
an integral equation. Integral equations arise in a great many branches of science; for example, in
potential theory, acoustics, elasticity, fluid mechanics, radiative transfer, theory of population, etc. In
many instances the integral equation originates from the conversion of a boundary value problem or an
initial value problem associated with a partial or an ordinary differential equation, but many problems
lead directly to integral equations and cannot be formulated in terms of differential equations.

Integral equations are of many types; here we attempt to indicate some of the main distinguishing
features with particular regard to the use and construction of algorithms.

2.2 Classification of Integral Equations

In the classical theory of integral equations one distinguishes between Fredholm equations and Volterra
equations. In a Fredholm equation the region of integration is fixed, whereas in a Volterra equation the
region is variable. Thus, the equation

cy tð Þ ¼ f tð Þ þ �
Z b

a

K t; s; y sð Þð Þ ds; a � t � b ð1Þ

is an example of Fredholm equation, and the equation

cy tð Þ ¼ f tð Þ þ �
Z t

a

K t; s; y sð Þð Þ ds; a � t ð2Þ

is an example of a Volterra equation.

Here the forcing function f tð Þ and the kernel function K t; s; y sð Þð Þ are prescribed, while y tð Þ is the
unknown function to be determined. (More generally the integration and the domain of definition of the
functions may extend to more than one dimension.) The parameter � is often omitted; it is, however, of
importance in certain theoretical investigations (e.g., stability) and in the eigenvalue problem discussed
below.

If in (1) or (2), c ¼ 0, the integral equation is said to be of the first kind. If c ¼ 1, the equation is said to
be of the second kind.

Equations (1) and (2) are linear if the kernel K t; s; y sð Þð Þ ¼ k t; sð Þy sð Þ, otherwise they are nonlinear.

Note: in a linear integral equation, k t; sð Þ is usually referred to as the kernel. We adopt this convention
throughout.

These two types of equations are broadly analogous to problems of initial- and boundary value type for
an ordinary differential equation (ODE); thus the Volterra equation, characterised by a variable upper
limit of integration, is amenable to solution by methods of marching type whilst most methods for
treating Fredholm equations lead ultimately to the solution of an approximating system of simultaneous
algebraic equations. For comprehensive discussion of numerical methods see Atkinson (1976), Baker
(1977), Brunner and van der Houwen (1986) and Delves and Walsh (1974). In what follows, the term
‘integral equation’ is used in its general sense, and the type is distinguished when appropriate.
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2.3 Structure of Kernel

When considering numerical methods for integral equations, particular attention should be paid to the
character of the kernel, which is usually the main factor governing the choice of an appropriate
quadrature formula or system of approximating functions. Various commonly occurring types of
singularity call for individual treatment.

Likewise provision can be made for cases of symmetry, periodicity or other special structure, where the
solution may have special properties and/or economies may be effected in the solution process. We note
in particular the following cases to which we shall often have occasion to refer in the description of
individual algorithms.

(a) A linear integral equation with a kernel k t; sð Þ ¼ k s; tð Þ is said to be symmetric. This property
plays a key role in the theory of Fredholm integral equations.

(b) If k t; sð Þ ¼ k aþ b� t; aþ b� sð Þ in a linear integral equation, the kernel is called centro-
symmetric.

(c) If in Equations (1) or (2) the kernel has the form K t; s; y sð Þð Þ ¼ k t� sð Þg s; y sð Þð Þ, the equation is
called a convolution integral equation; in the linear case g s; y sð Þð Þ ¼ y sð Þ.

(d) If the kernel in (1) has the form

K t; s; y sð Þð Þ ¼ K1 t; s; y sð Þð Þ; a � s � t;
K t; s; y sð Þð Þ ¼ K2 t; s; y sð Þð Þ; t < s � b;

where the functions K1 and K2 are well behaved, whilst K or its s-derivative is possibly
discontinuous, may be described as discontinuous or of ‘split’ type; in the linear case
K t; s; y sð Þð Þ ¼ k t; sð Þy sð Þ and consequently K1 ¼ k1y and K2 ¼ k2y. Examples are the commonly
occurring kernels of the type k t� sj jð Þ and the Green's functions (influence functions) which arise
in the conversion of ODE boundary value problems to integral equations. It is also of interest to
note that the Volterra equation (2) may be conceived as a Fredholm equation with kernel of split
type, with K2 t; s; y sð Þð Þ 	 0; consequently methods designed for the solution of Fredholm
equations with split kernels are also applicable to Volterra equations.

2.4 Singular and Weakly Singular Equations

An integral equation may be called singular if either

(a) its kernel contains a singularity, or

(b) the range of integration is infinite,

and it is said to be weakly singular if the kernel becomes infinite at s ¼ t.
Sometimes a solution can be effected by a simple adaptation of a method applicable to a nonsingular
equation: for example, an infinite range may be truncated at a suitably chosen point. In other cases,
however, theoretical considerations will dictate the need for special methods and algorithms. Examples
are:

(i) Integral equations with singular kernels of Cauchy type;

(ii) Equations of Wiener–Hopf type;

(iii) Various dual integral equations arising in the solution of boundary value problems of mathematical
physics;

(iv) The well-known Abel integral equation, an equation of Volterra type, whose kernel contains an
inverse square root singularity at s ¼ t.

Problems of inversion of integral transforms also fall under this heading but, as already remarked, they
lie outside the scope of this chapter.

D05 – Integral Equations Introduction – D05

Mark 26 D05.3



2.5 Fredholm Integral Equations

2.5.1 Eigenvalue problem

Closely connected with the linear Fredholm integral equation of the second kind is the eigenvalue
problem represented by the homogeneous equation

y tð Þ � �
Z b

a

k t; sð Þy sð Þ ds ¼ 0; a � t � b: ð3Þ

If � is chosen arbitrarily this equation in general possesses only the trivial solution y tð Þ ¼ 0. However,
for a certain critical set of values of �, the characteristic values or eigenvalues (the latter term is
sometimes reserved for the reciprocals � ¼ 1=�), there exist nontrivial solutions y tð Þ, termed
characteristic functions or eigenfunctions, which are of fundamental importance in many
investigations. The analogy with the eigenproblem of linear algebra is readily apparent, and indeed
most methods of solution of equation (3) entail reduction to an approximately equivalent algebraic
problem

K � �Ið Þy ¼ 0: ð4Þ

2.5.2 Equations of the first kind

The Fredholm integral equation of the first kindZ b

a

k t; sð Þy sð Þ ds ¼ f tð Þ; a � t � b; ð5Þ

belong to the class of ‘ill-posed’ problems; even supposing that a solution corresponding to the
prescribed f tð Þ exists, a slight perturbation of f tð Þ may give rise to an arbitrarily large variation in the
solution y tð Þ. Hence the equation may be closely satisfied by a function bearing little resemblance to the
‘true’ solution. The difficulty associated with this instability is aggravated by the fact that in practice
the specification of f tð Þ is usually inexact.

Nevertheless a great many physical problems (e.g., in radiography, spectroscopy, stereology, chemical
analysis) are appropriately formulated in terms of integral equations of the first kind, and useful and
meaningful ‘solutions’ can be obtained with the aid of suitable stabilizing procedures. See Chapters 12
and 13 of Delves and Walsh (1974) for further discussion and references.

2.5.3 Equations of the second kind

Consider the nonlinear Fredholm equation of the second kind

y tð Þ ¼ f tð Þ þ
Z b

a

K t; s; y sð Þð Þ ds; a � t � b: ð6Þ

The numerical solution of equation (6) is usually accomplished either by simple iteration or by a more
sophisticated iterative scheme based on Newton's method; in the latter case it is necessary to solve a
sequence of linear integral equations. Convergence may be demonstrated subject to suitable conditions
of Lipschitz continuity of the functions K with respect to the parameter y.

Examples of Fredholm type (for which the provision of algorithms is contemplated) are:

(a) the Uryson equation

u tð Þ �
Z 1

0
F t; s; u sð Þð Þ ds ¼ 0; 0 � t � 1; ð7Þ

(b) the Hammerstein equation

u tð Þ �
Z 1

0
k t; sð Þg s; u sð Þð Þ ds ¼ 0; 0 � t � 1; ð8Þ

where F and g are arbitrary functions.
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2.6 Volterra Integral Equations

2.6.1 Equations of the first kind

Consider the Volterra integral equation of the first kindZ t

a

k t; sð Þy sð Þ ds ¼ f tð Þ; a � t: ð9Þ

Clearly it is necessary that f að Þ ¼ 0; otherwise no solution to (9) can exist. The following types of
Volterra integral equations of the first kind occur in real life problems:

equations with unbounded kernel at s ¼ t,
equations with sufficiently smooth kernel.

These types belong also to the class of ‘ill-posed’ problems. However, the instability is appreciably less
severe in the equations with unbounded kernel. In general, a nonsingular Volterra equation of the first
kind presents less computational difficulty than the Fredholm equation (5) with a smooth kernel.

A Volterra equation of the first kind may, under suitable conditions, be converted by differentiation to
one of the second kind or by integration by parts to an equation of the second kind for the integral of
the wanted function.

2.6.2 Equations of the second kind

A very general Volterra equation of the second kind is given by

y tð Þ ¼ f tð Þ þ
Z t

a

K t; s; y sð Þð Þ ds; a � t: ð10Þ

The resemblance of Volterra equations to ODEs suggests that the underlying methods for ODE
problems can be applied to Volterra equations. Indeed this turns out to be the case. The main
advantages of implementing these methods are their well-developed theoretical background, i.e.,
convergence and stability; see Brunner and van der Houwen (1986) and Wolkenfelt (1982).

Many Volterra integral equations arising in real life problems have a convolution kernel (see Section 2.3
(c)); see Brunner and van der Houwen (1986) for references. However, a subclass of these equations
which have kernels of the form

k t� sð Þ ¼
XM
j¼0

�j t� sð Þj; ð11Þ

where �j
� 

are real, can be converted into a system of linear or nonlinear ODEs; see Brunner and van
der Houwen (1986).

For more information on the theoretical and the numerical treatment of integral equations we refer you
to Atkinson (1976), Baker (1977), Brunner and van der Houwen (1986), Cochran (1972) and Delves
and Walsh (1974).

3 Recommendations on Choice and Use of Available Routines

The choice of routine will depend first of all upon the type of integral equation to be solved.

3.1 Fredholm Equations of the Second Kind

(a) Linear equations

D05AAF is applicable to an equation with a discontinuous or ‘split’ kernel as defined in
Section 2.3(d). Here, however, both the functions k1 and k2 are required to be defined (and well-
behaved) throughout the square a � s, t � b.
D05ABF is applicable to an equation with a smooth kernel. Note that D05AAF may also be
applied to this case, by setting k1 ¼ k2 ¼ k, but D05ABF is more efficient.
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3.2 Volterra Equations of the Second Kind

(a) Linear equations

D05AAF may be used to solve a Volterra equation by defining k2 (or k1) to be identically zero.
(See also (b).)

(b) Nonlinear equations

D05BAF is applicable to a nonlinear convolution Volterra integral equation of the second kind. The
kernel function has the form

K t; s; y sð Þð Þ ¼ k t� sð Þg s; y sð Þð Þ:
The underlying methods used in the routine are the reducible linear multistep methods. You have a
choice of variety of these methods. This routine can also be used for linear g.

D05BDF is applicable to a nonlinear convolution equation having a weakly-singular kernel (Abel).
The kernel function has the form

K t; s; y sð Þð Þ ¼ k t� sð Þffiffiffiffiffiffiffiffiffiffi
t� s
p g s; y sð Þð Þ:

The underlying methods used in the routine are the fractional linear multistep methods based on
Backward Difference Formula (BDF, see Section 3.1 in the D02 Chapter Introduction) methods.
This routine can also be used for linear g.

3.3 Volterra Equations of the First Kind

(a) Linear equations

See (b).

(b) Nonlinear equations

D05BEF is applicable to a nonlinear equation having a weakly-singular kernel (Abel). The kernel
function has the form

K t; s; y sð Þð Þ ¼ k t� sð Þffiffiffiffiffiffiffiffiffiffi
t� s
p g s; y sð Þð Þ:

The underlying methods used in the routine are the fractional linear multistep methods based on
BDF methods. This routine can also be used for linear g.

3.4 Utility Routines

D05BWF generates the weights associated with Adams' and BDF linear multistep methods. These
weights can be used for the solution of nonsingular Volterra integral and integro-differential equations
of general type.

D05BYF generates the weights associated with BDF linear multistep methods. These weights can be
used for the solution of weakly-singular Volterra (Abel) integral equations of general type.

3.5 User-supplied Routines

Many of the routines in this chapter require you to supply procedures defining the kernels and other
given functions in the equations. It is important to test these independently before using them in
conjunction with NAG Library routines.

4 Functionality Index

Fredholm equation of second kind,
linear,

nonsingular discontinuous or ‘split’ kernel ................................................................ D05AAF
nonsingular smooth kernel ......................................................................................... D05ABF
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Volterra equation of first kind,
nonlinear,

weakly-singular,
convolution equation (Abel):................................................................................. D05BEF

Volterra equation of second kind,
nonlinear,

nonsingular,
convolution equation ............................................................................................. D05BAF

weakly-singular,
convolution equation (Abel):................................................................................. D05BDF

Weight generating routines,
weights for general solution of Volterra equations.......................................................... D05BWF
weights for general solution of Volterra equations with weakly-singular kernel............. D05BYF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References

Atkinson K E (1976) A Survey of Numerical Methods for the Solution of Fredholm Integral Equations
of the Second Kind SIAM, Philadelphia

Baker C T H (1977) The Numerical Treatment of Integral Equations Oxford University Press

Brunner H and van der Houwen P J (1986) The Numerical Solution of Volterra Equations CWI
Monographs, North-Holland, Amsterdam

Cochran J A (1972) The Analysis of Linear Integral Equations McGraw–Hill

Delves L M and Walsh J (1974) Numerical Solution of Integral Equations Clarendon Press, Oxford

Wolkenfelt P H M (1982) The construction of reducible quadrature rules for Volterra integral and
integro-differential equations IMA J. Numer. Anal. 2 131–152
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NAG Library Routine Document

D05AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D05AAF solves a linear, nonsingular Fredholm equation of the second kind with a split kernel.

2 Specification

SUBROUTINE D05AAF (LAMBDA, A, B, K1, K2, G, F, C, N, IND, W1, W2, WD,
LDW1, LDW2, IFAIL)

&

INTEGER N, IND, LDW1, LDW2, IFAIL
REAL (KIND=nag_wp) LAMBDA, A, B, K1, K2, G, F(N), C(N), W1(LDW1,LDW2),

W2(LDW2,4), WD(LDW2)
&

EXTERNAL K1, K2, G

3 Description

D05AAF solves an integral equation of the form

f xð Þ � �
Z b

a

k x; sð Þf sð Þ ds ¼ g xð Þ

for a � x � b, when the kernel k is defined in two parts: k ¼ k1 for a � s � x and k ¼ k2 for x < s � b.
The method used is that of El–Gendi (1969) for which, it is important to note, each of the functions k1
and k2 must be defined, smooth and nonsingular, for all x and s in the interval a; b½ �.

An approximation to the solution f xð Þ is found in the form of an n term Chebyshev series
Xn
i¼1
ciTi xð Þ,

where 0 indicates that the first term is halved in the sum. The coefficients ci, for i ¼ 1; 2; . . . ; n, of this
series are determined directly from approximate values fi, for i ¼ 1; 2; . . . ; n, of the function f xð Þ at the
first n of a set of mþ 1 Chebyshev points:

xi ¼ 1
2 aþ bþ b� að Þ cos i� 1ð Þ	=m½ �ð Þ; i ¼ 1; 2; . . . ;mþ 1:

The values fi are obtained by solving simultaneous linear algebraic equations formed by applying a
quadrature formula (equivalent to the scheme of Clenshaw and Curtis (1960)) to the integral equation at
the above points.

In general m ¼ n� 1. However, if the kernel k is centro-symmetric in the interval a; b½ �, i.e., if
k x; sð Þ ¼ k aþ b� x; aþ b� sð Þ, then the routine is designed to take advantage of this fact in the
formation and solution of the algebraic equations. In this case, symmetry in the function g xð Þ implies
symmetry in the function f xð Þ. In particular, if g xð Þ is even about the mid-point of the range of
integration, then so also is f xð Þ, which may be approximated by an even Chebyshev series with
m ¼ 2n� 1. Similarly, if g xð Þ is odd about the mid-point then f xð Þ may be approximated by an odd
series with m ¼ 2n.

4 References

Clenshaw C W and Curtis A R (1960) A method for numerical integration on an automatic computer
Numer. Math. 2 197–205

El–Gendi S E (1969) Chebyshev solution of differential, integral and integro-differential equations
Comput. J. 12 282–287
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5 Arguments

1: LAMBDA – REAL (KIND=nag_wp) Input

On entry: the value of the parameter � of the integral equation.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration.

Constraint: B > A.

4: K1 – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

K1 must evaluate the kernel k x; sð Þ ¼ k1 x; sð Þ of the integral equation for a � s � x.

The specification of K1 is:

FUNCTION K1 (X, S)
REAL (KIND=nag_wp) K1

REAL (KIND=nag_wp) X, S

1: X – REAL (KIND=nag_wp) Input
2: S – REAL (KIND=nag_wp) Input

On entry: the values of x and s at which k1 x; sð Þ is to be evaluated.

K1 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05AAF is called. Arguments denoted as Input must not be changed by
this procedure.

5: K2 – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

K2 must evaluate the kernel k x; sð Þ ¼ k2 x; sð Þ of the integral equation for x < s � b.

The specification of K2 is:

FUNCTION K2 (X, S)
REAL (KIND=nag_wp) K2

REAL (KIND=nag_wp) X, S

1: X – REAL (KIND=nag_wp) Input
2: S – REAL (KIND=nag_wp) Input

On entry: the values of x and s at which k2 x; sð Þ is to be evaluated.

K2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05AAF is called. Arguments denoted as Input must not be changed by
this procedure.

Note that the functions k1 and k2 must be defined, smooth and nonsingular for all x and s in the
interval [a; b].

6: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must evaluate the function g xð Þ for a � x � b.

The specification of G is:

FUNCTION G (X)
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REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the values of x at which g xð Þ is to be evaluated.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05AAF is called. Arguments denoted as Input must not be changed by
this procedure.

7: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: the approximate values fi, for i ¼ 1; 2; . . . ;N, of f xð Þ evaluated at the first N of mþ 1
Chebyshev points xi, (see Section 3).

If IND ¼ 0 or 3, m ¼ N� 1.

If IND ¼ 1, m ¼ 2� N.

If IND ¼ 2, m ¼ 2� N� 1.

8: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: the coefficients ci, for i ¼ 1; 2; . . . ;N, of the Chebyshev series approximation to f xð Þ.
If IND ¼ 1 this series contains polynomials of odd order only and if IND ¼ 2 the series contains
even order polynomials only.

9: N – INTEGER Input

On entry: the number of terms in the Chebyshev series required to approximate f xð Þ.
Constraint: N � 1.

10: IND – INTEGER Input

On entry: determines the forms of the kernel, k x; sð Þ, and the function g xð Þ.
IND ¼ 0

k x; sð Þ is not centro-symmetric (or no account is to be taken of centro-symmetry).

IND ¼ 1
k x; sð Þ is centro-symmetric and g xð Þ is odd.

IND ¼ 2
k x; sð Þ is centro-symmetric and g xð Þ is even.

IND ¼ 3
k x; sð Þ is centro-symmetric but g xð Þ is neither odd nor even.

Constraint: IND ¼ 0, 1, 2 or 3.

11: W1ðLDW1;LDW2Þ – REAL (KIND=nag_wp) array Workspace
12: W2ðLDW2; 4Þ – REAL (KIND=nag_wp) array Workspace
13: WDðLDW2Þ – REAL (KIND=nag_wp) array Workspace

14: LDW1 – INTEGER Input

On entry: the first dimension of the array W1 as declared in the (sub)program from which
D05AAF is called.

Constraint: LDW1 � N.
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15: LDW2 – INTEGER Input

On entry: the second dimension of the array W1 and the first dimension of the array W2 and the
dimension of the array WD as declared in the (sub)program from which D05AAF is called.

Constraint: LDW2 � 2� Nþ 2.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, A � B or N < 1.

IFAIL ¼ 2

A failure has occurred due to proximity to an eigenvalue. In general, if LAMBDA is near an
eigenvalue of the integral equation, the corresponding matrix will be nearly singular. In the
special case, m ¼ 1, the matrix reduces to a zero-valued number.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

No explicit error estimate is provided by the routine but it is usually possible to obtain a good
indication of the accuracy of the solution either

(i) by examining the size of the later Chebyshev coefficients ci, or

(ii) by comparing the coefficients ci or the function values fi for two or more values of N.
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8 Parallelism and Performance

D05AAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D05AAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D05AAF increases with N.

This routine may be used to solve an equation with a continuous kernel by defining K1 and K2 to be
identical.

This routine may also be used to solve a Volterra equation by defining K2 (or K1) to be identically
zero.

10 Example

This example solves the equation

f xð Þ �
Z 1

0
k x; sð Þf sð Þ ds ¼ 1� 1

	2

� �
sin 	xð Þ

where

k x; sð Þ ¼ s 1� xð Þ for 0 � s � x;
x 1� sð Þ for x < s � 1:



Five terms of the Chebyshev series are sought, taking advantage of the centro-symmetry of the k x; sð Þ
and even nature of g xð Þ about the mid-point of the range 0; 1½ �.
The approximate solution at the point x ¼ 0:1 is calculated by calling C06DCF.

10.1 Program Text

! D05AAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d05aafe_mod

! D05AAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: g, k1, k2

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: a = 0.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: b = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: lambda = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: xval = 0.1_nag_wp
Integer, Parameter, Public :: ind = 2, n = 5, nout = 6
Integer, Parameter, Public :: ldw1 = n
Integer, Parameter, Public :: ldw2 = 2*n + 2

Contains
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Function k1(x,s)

! .. Function Return Value ..
Real (Kind=nag_wp) :: k1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: s, x

! .. Executable Statements ..
k1 = s*(1.0_nag_wp-x)

Return
End Function k1
Function k2(x,s)

! .. Function Return Value ..
Real (Kind=nag_wp) :: k2

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: s, x

! .. Executable Statements ..
k2 = x*(1.0_nag_wp-s)

Return
End Function k2
Function g(x)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Local Scalars ..
Real (Kind=nag_wp) :: pi

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
pi = x01aaf(pi)
g = sin(pi*x)*(1.0_nag_wp-1.0_nag_wp/(pi*pi))

Return
End Function g

End Module d05aafe_mod
Program d05aafe

! D05AAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c06dcf, d05aaf, nag_wp
Use d05aafe_mod, Only: a, b, g, ind, k1, k2, lambda, ldw1, ldw2, n, &

nout, xval
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Integer :: ifail, is
! .. Local Arrays ..

Real (Kind=nag_wp) :: ans(1), x(1)
Real (Kind=nag_wp), Allocatable :: c(:), f(:), w1(:,:), w2(:,:), wd(:)

! .. Executable Statements ..
Write (nout,*) ’D05AAF Example Program Results’

Allocate (c(n),f(n),w1(ldw1,ldw2),w2(ldw2,4),wd(ldw2))

ifail = 0
Call d05aaf(lambda,a,b,k1,k2,g,f,c,n,ind,w1,w2,wd,ldw1,ldw2,ifail)

Write (nout,99999)
Write (nout,99998) c(1:n)

x(1) = xval

Select Case (ind)
Case (1)
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is = 3
Case (2)

is = 2
Case Default

is = 1
End Select

ifail = 0
Call c06dcf(x,1,a,b,c,n,is,ans,ifail)

Write (nout,99997) ’X=’, x, ’ ANS=’, ans

99999 Format (/,1X,’Kernel is centro-symmetric and G is even so the ’, &
’solution is even’,/,/,1X,’Chebyshev coefficients’,/)

99998 Format (1X,5E14.4,/)
99997 Format (1X,A,F5.2,A,1F10.4)

End Program d05aafe

10.2 Program Data

None.

10.3 Program Results

D05AAF Example Program Results

Kernel is centro-symmetric and G is even so the solution is even

Chebyshev coefficients

0.9440E+00 -0.4994E+00 0.2799E-01 -0.5967E-03 0.6658E-05

X= 0.10 ANS= 0.3090
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NAG Library Routine Document

D05ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D05ABF solves any linear nonsingular Fredholm integral equation of the second kind with a smooth
kernel.

2 Specification

SUBROUTINE D05ABF (K, G, LAMBDA, A, B, ODOREV, EV, N, CM, F1, WK, LDCM,
NT2P1, F, C, IFAIL)

&

INTEGER N, LDCM, NT2P1, IFAIL
REAL (KIND=nag_wp) K, G, LAMBDA, A, B, CM(LDCM,LDCM), F1(LDCM,1),

WK(2,NT2P1), F(N), C(N)
&

LOGICAL ODOREV, EV
EXTERNAL K, G

3 Description

D05ABF uses the method of El–Gendi (1969) to solve an integral equation of the form

f xð Þ � �
Z b

a

k x; sð Þf sð Þ ds ¼ g xð Þ

for the function f xð Þ in the range a � x � b.

An approximation to the solution f xð Þ is found in the form of an n term Chebyshev series
Xn
i¼1
ciTi xð Þ,

where 0 indicates that the first term is halved in the sum. The coefficients ci, for i ¼ 1; 2; . . . ; n, of this
series are determined directly from approximate values fi, for i ¼ 1; 2; . . . ; n, of the function f xð Þ at the
first n of a set of mþ 1 Chebyshev points

xi ¼ 1
2 aþ bþ b� að Þ � cos i� 1ð Þ � 	=m½ �ð Þ; i ¼ 1; 2; . . . ;mþ 1:

The values fi are obtained by solving a set of simultaneous linear algebraic equations formed by
applying a quadrature formula (equivalent to the scheme of Clenshaw and Curtis (1960)) to the integral
equation at each of the above points.

In general m ¼ n� 1. However, advantage may be taken of any prior knowledge of the symmetry of
f xð Þ. Thus if f xð Þ is symmetric (i.e., even) about the mid-point of the range a; bð Þ, it may be
approximated by an even Chebyshev series with m ¼ 2n� 1. Similarly, if f xð Þ is anti-symmetric (i.e.,
odd) about the mid-point of the range of integration, it may be approximated by an odd Chebyshev
series with m ¼ 2n.

4 References

Clenshaw C W and Curtis A R (1960) A method for numerical integration on an automatic computer
Numer. Math. 2 197–205

El–Gendi S E (1969) Chebyshev solution of differential, integral and integro-differential equations
Comput. J. 12 282–287
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5 Arguments

1: K – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

K must compute the value of the kernel k x; sð Þ of the integral equation over the square
a � x � b, a � s � b.

The specification of K is:

FUNCTION K (X, S)
REAL (KIND=nag_wp) K

REAL (KIND=nag_wp) X, S

1: X – REAL (KIND=nag_wp) Input
2: S – REAL (KIND=nag_wp) Input

On entry: the values of x and s at which k x; sð Þ is to be calculated.

K must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05ABF is called. Arguments denoted as Input must not be changed by this
procedure.

2: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must compute the value of the function g xð Þ of the integral equation in the interval a � x � b.

The specification of G is:

FUNCTION G (X)
REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the value of x at which g xð Þ is to be calculated.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05ABF is called. Arguments denoted as Input must not be changed by this
procedure.

3: LAMBDA – REAL (KIND=nag_wp) Input

On entry: the value of the parameter � of the integral equation.

4: A – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of integration.

5: B – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of integration.

Constraint: B > A.

6: ODOREV – LOGICAL Input

On entry: indicates whether it is known that the solution f xð Þ is odd or even about the mid-point
of the range of integration. If ODOREV is .TRUE. then an odd or even solution is sought
depending upon the value of EV.

7: EV – LOGICAL Input

On entry: is ignored if ODOREV is .FALSE.. Otherwise, if EV is .TRUE., an even solution is
sought, whilst if EV is .FALSE., an odd solution is sought.
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8: N – INTEGER Input

On entry: the number of terms in the Chebyshev series which approximates the solution f xð Þ.
Constraint: N � 1.

9: CMðLDCM;LDCMÞ – REAL (KIND=nag_wp) array Workspace
10: F1ðLDCM; 1Þ – REAL (KIND=nag_wp) array Workspace
11: WKð2;NT2P1Þ – REAL (KIND=nag_wp) array Workspace

12: LDCM – INTEGER Input

On entry: the first dimension of the arrays CM and F1 and the second dimension of the array CM
as declared in the (sub)program from which D05ABF is called.

Constraint: LDCM � N.

13: NT2P1 – INTEGER Input

On entry: the second dimension of the array WK as declared in the (sub)program from which
D05ABF is called. The value 2� Nþ 1.

14: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: the approximate values fi, for i ¼ 1; 2; . . . ;N, of the function f xð Þ at the first N of
mþ 1 Chebyshev points (see Section 3), where

m ¼ 2N� 1 if ODOREV ¼ :TRUE: and EV ¼ :TRUE:.
m ¼ 2N if ODOREV ¼ :TRUE: and EV ¼ :FALSE:.
m ¼ N� 1 if ODOREV ¼ :FALSE:.

15: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: the coefficients ci, for i ¼ 1; 2; . . . ;N, of the Chebyshev series approximation to f xð Þ.
When ODOREV is .TRUE., this series contains polynomials of even order only or of odd order
only, according to EV being .TRUE. or .FALSE. respectively.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, A � B or N < 1.
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IFAIL ¼ 2

A failure has occurred due to proximity to an eigenvalue. In general, if LAMBDA is near an
eigenvalue of the integral equation, the corresponding matrix will be nearly singular. In the
special case, m ¼ 1, the matrix reduces to a zero-valued number.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

No explicit error estimate is provided by the routine but it is possible to obtain a good indication of the
accuracy of the solution either

(i) by examining the size of the later Chebyshev coefficients ci, or

(ii) by comparing the coefficients ci or the function values fi for two or more values of N.

8 Parallelism and Performance

D05ABF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D05ABF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D05ABF depends upon the value of N and upon the complexity of the kernel
function k x; sð Þ.

10 Example

This example solves Love's equation:

f xð Þ þ 1

	

Z 1

�1

f sð Þ
1þ x� sð Þ2

ds ¼ 1:

It will solve the slightly more general equation:

f xð Þ � �
Z b

a

k x; sð Þf sð Þ ds ¼ 1

where k x; sð Þ ¼ �= �2 þ x� sð Þ2
� �

. The values � ¼ �1=	; a ¼ �1; b ¼ 1; � ¼ 1 are used below.
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It is evident from the symmetry of the given equation that f xð Þ is an even function. Advantage is taken
of this fact both in the application of D05ABF, to obtain the fi ’ f xið Þ and the ci, and in subsequent
applications of C06DCF to obtain f xð Þ at selected points.

The program runs for N ¼ 5 and N ¼ 10.

10.1 Program Text

! D05ABF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d05abfe_mod

! D05ABF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: g, k

! .. Parameters ..
Integer, Parameter, Public :: nmax = 10, nout = 6

Contains
Function k(x,s)

! .. Function Return Value ..
Real (Kind=nag_wp) :: k

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: w = alpha**2

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: s, x

! .. Executable Statements ..
k = alpha/(w+(x-s)*(x-s))

Return
End Function k
Function g(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Executable Statements ..
g = 1.0_nag_wp

Return
End Function g

End Module d05abfe_mod
Program d05abfe

! D05ABF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c06dcf, d05abf, nag_wp, x01aaf
Use d05abfe_mod, Only: g, k, nmax, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, lambda, x0
Integer :: i, ifail, ldcm, lx, n, nt2p1, ss
Logical :: ev, odorev

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), chebr(:), cm(:,:), f(:), &

f1(:,:), wk(:,:), x(:)
! .. Intrinsic Procedures ..

Intrinsic :: cos, int, real
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! .. Executable Statements ..
Write (nout,*) ’D05ABF Example Program Results’

odorev = .True.
ev = .True.
lambda = -0.3183_nag_wp
a = -1.0_nag_wp
b = 1.0_nag_wp

If (odorev) Then
Write (nout,*)
If (ev) Then

Write (nout,*) ’Solution is even’
ss = 2

Else
Write (nout,*) ’Solution is odd’
ss = 3

End If
x0 = 0.5_nag_wp*(a+b)

Else
ss = 1
x0 = a

End If

! Set up uniform grid to evaluate Chebyshev polynomials.
lx = int(4.000001_nag_wp*(b-x0)) + 1
Allocate (x(lx),chebr(lx))
x(1) = x0
Do i = 2, lx

x(i) = x(i-1) + 0.25_nag_wp
End Do

Do n = 5, nmax, 5
ldcm = n
nt2p1 = 2*n + 1
Allocate (c(n),cm(ldcm,ldcm),f(n),f1(ldcm,1),wk(2,nt2p1))

ifail = -1
Call d05abf(k,g,lambda,a,b,odorev,ev,n,cm,f1,wk,ldcm,nt2p1,f,c,ifail)

If (ifail==0) Then
Write (nout,*)
Write (nout,99999) ’Results for N =’, n
Write (nout,*)
Write (nout,99996) ’Solution on first ’, n, &

’ Chebyshev points and Chebyshev coefficients’
Write (nout,*) ’ I X F(I) C(I)’
Write (nout,99998)(i,cos(x01aaf(a)*real(i,kind=nag_wp)/real(2*n-1, &

kind=nag_wp)),f(i),c(i),i=1,n)

! Evaluate and print solution on uniform grid.
ifail = 0
Call c06dcf(x,lx,a,b,c,n,ss,chebr,ifail)

Write (nout,*)
Write (nout,*) ’Solution on evenly spaced grid’
Write (nout,*) ’ X F(X)’
Write (nout,99997)(x(i),chebr(i),i=1,lx)

End If

Deallocate (c,cm,f,f1,wk)
End Do
Deallocate (x,chebr)

99999 Format (1X,A,I3)
99998 Format (1X,I3,2F15.5,E15.5)
99997 Format (1X,F8.4,F15.5)
99996 Format (1X,A,I2,A)

End Program d05abfe
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10.2 Program Data

None.

10.3 Program Results

D05ABF Example Program Results

Solution is even

Results for N = 5

Solution on first 5 Chebyshev points and Chebyshev coefficients
I X F(I) C(I)
1 0.93969 0.75572 0.14152E+01
2 0.76604 0.74534 0.49384E-01
3 0.50000 0.71729 -0.10476E-02
4 0.17365 0.68319 -0.23282E-03
5 -0.17365 0.66051 0.20890E-04

Solution on evenly spaced grid
X F(X)

0.0000 0.65742
0.2500 0.66383
0.5000 0.68319
0.7500 0.71489
1.0000 0.75572

Results for N = 10

Solution on first 10 Chebyshev points and Chebyshev coefficients
I X F(I) C(I)
1 0.98636 0.75572 0.14152E+01
2 0.94582 0.75336 0.49384E-01
3 0.87947 0.74639 -0.10475E-02
4 0.78914 0.73525 -0.23275E-03
5 0.67728 0.72081 0.19986E-04
6 0.54695 0.70452 0.98675E-06
7 0.40170 0.68825 -0.23796E-06
8 0.24549 0.67404 0.18581E-08
9 0.08258 0.66361 0.24483E-08

10 -0.08258 0.65812 -0.16527E-09

Solution on evenly spaced grid
X F(X)

0.0000 0.65742
0.2500 0.66384
0.5000 0.68319
0.7500 0.71489
1.0000 0.75572
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NAG Library Routine Document

D05BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D05BAF computes the solution of a nonlinear convolution Volterra integral equation of the second kind
using a reducible linear multi-step method.

2 Specification

SUBROUTINE D05BAF (CK, CG, CF, METHOD, IORDER, ALIM, TLIM, YN, ERREST,
NMESH, TOL, THRESH, WORK, LWK, IFAIL)

&

INTEGER IORDER, NMESH, LWK, IFAIL
REAL (KIND=nag_wp) CK, CG, CF, ALIM, TLIM, YN(NMESH), ERREST(NMESH),

TOL, THRESH, WORK(LWK)
&

CHARACTER(1) METHOD
EXTERNAL CK, CG, CF

3 Description

D05BAF computes the numerical solution of the nonlinear convolution Volterra integral equation of the
second kind

y tð Þ ¼ f tð Þ þ
Z t

a

k t� sð Þg s; y sð Þð Þ ds; a � t � T: ð1Þ

It is assumed that the functions involved in (1) are sufficiently smooth. The routine uses a reducible
linear multi-step formula selected by you to generate a family of quadrature rules. The reducible
formulae available in D05BAF are the Adams–Moulton formulae of orders 3 to 6, and the backward
differentiation formulae (BDF) of orders 2 to 5. For more information about the behaviour and the
construction of these rules we refer to Lubich (1983) and Wolkenfelt (1982).

The algorithm is based on computing the solution in a step-by-step fashion on a mesh of equispaced
points. The initial step size which is given by T � að Þ=N, N being the number of points at which the
solution is sought, is halved and another approximation to the solution is computed. This extrapolation
procedure is repeated until successive approximations satisfy a user-specified error requirement.

The above methods require some starting values. For the Adams' formula of order greater than 3 and
the BDF of order greater than 2 we employ an explicit Dormand–Prince–Shampine Runge–Kutta
method (see Shampine (1986)). The above scheme avoids the calculation of the kernel, k tð Þ, on the
negative real line.

4 References

Lubich Ch (1983) On the stability of linear multi-step methods for Volterra convolution equations IMA
J. Numer. Anal. 3 439–465

Shampine L F (1986) Some practical Runge–Kutta formulas Math. Comput. 46(173) 135–150

Wolkenfelt P H M (1982) The construction of reducible quadrature rules for Volterra integral and
integro-differential equations IMA J. Numer. Anal. 2 131–152
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5 Arguments

1: CK – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CK must evaluate the kernel k tð Þ of the integral equation (1).

The specification of CK is:

FUNCTION CK (T)
REAL (KIND=nag_wp) CK

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: t, the value of the independent variable.

CK must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05BAF is called. Arguments denoted as Input must not be changed by this
procedure.

2: CG – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CG must evaluate the function g s; y sð Þð Þ in (1).

The specification of CG is:

FUNCTION CG (S, Y)
REAL (KIND=nag_wp) CG

REAL (KIND=nag_wp) S, Y

1: S – REAL (KIND=nag_wp) Input

On entry: s, the value of the independent variable.

2: Y – REAL (KIND=nag_wp) Input

On entry: the value of the solution y at the point S.

CG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05BAF is called. Arguments denoted as Input must not be changed by this
procedure.

3: CF – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CF must evaluate the function f tð Þ in (1).

The specification of CF is:

FUNCTION CF (T)
REAL (KIND=nag_wp) CF

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: t, the value of the independent variable.

CF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05BAF is called. Arguments denoted as Input must not be changed by this
procedure.
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4: METHOD – CHARACTER(1) Input

On entry: the type of method which you wish to employ.

METHOD ¼ A
For Adams' type formulae.

METHOD ¼ B
For backward differentiation formulae.

Constraint: METHOD ¼ A or B .

5: IORDER – INTEGER Input

On entry: the order of the method to be used.

Constraints:

if METHOD ¼ A , 3 � IORDER � 6;
if METHOD ¼ B , 2 � IORDER � 5.

6: ALIM – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of the integration interval.

Constraint: ALIM � 0:0.

7: TLIM – REAL (KIND=nag_wp) Input

On entry: the final point of the integration interval, T .

Constraint: TLIM > ALIM.

8: YNðNMESHÞ – REAL (KIND=nag_wp) array Output

On exit: YNðiÞ contains the most recent approximation of the true solution y tð Þ at the specified
point t ¼ ALIMþ i � H , for i ¼ 1; 2; . . . ;NMESH, where H ¼ TLIM� ALIMð Þ=NMESH.

9: ERRESTðNMESHÞ – REAL (KIND=nag_wp) array Output

On exit: ERRESTðiÞ contains the most recent approximation of the relative error in the computed
s o l u t i o n a t t h e p o i n t t ¼ ALIMþ i � H , f o r i ¼ 1; 2; . . . ;NMESH, w h e r e
H ¼ TLIM� ALIMð Þ=NMESH.

10: NMESH – INTEGER Input

On entry: the number of equidistant points at which the solution is sought.

Constraints:

if METHOD ¼ A , NMESH � IORDER� 1;
if METHOD ¼ B , NMESH � IORDER.

11: TOL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required in the computed values of the solution.

Constraint:
ffiffi
�
p
� TOL � 1:0, where � is the machine precision.

12: THRESH – REAL (KIND=nag_wp) Input

On entry: the threshold value for use in the evaluation of the estimated relative errors. For two
successive meshes the following condition must hold at each point of the coarser mesh

Y1 � Y2j j
max Y1j j; Y2j j; THRESHj jð Þ � TOL;

where Y1 is the computed solution on the coarser mesh and Y2 is the computed solution at the
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corresponding point in the finer mesh. If this condition is not satisfied then the step size is halved
and the solution is recomputed.

Note: THRESH can be used to effect a relative, absolute or mixed error test. If THRESH ¼ 0:0
then pure relative error is measured and, if the computed solution is small and THRESH ¼ 1:0,
absolute error is measured.

13: WORKðLWKÞ – REAL (KIND=nag_wp) array Output
14: LWK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
D05BAF is called.

Constraint: LWK � 10� NMESHþ 6.

Note: the above value of LWK is sufficient for D05BAF to perform only one extrapolation on the
initial mesh as defined by NMESH. In general much more workspace is required and in the case
when a large step size is supplied (i.e., NMESH is small), you must provide a considerably larger
workspace.

On exit: if IFAIL ¼ 5 or 6, WORKð1Þ contains the size of LWK required for the algorithm to
proceed further.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ A or B ,
or IORDER < 2 or IORDER > 6,
or METHOD ¼ A and IORDER ¼ 2,
or METHOD ¼ B and IORDER ¼ 6,
or ALIM < 0:0,
or TLIM � ALIM,
or TOL <

ffiffi
�
p

or TOL > 1:0, where � is the machine precision.

IFAIL ¼ 2

On entry, NMESH � IORDER� 2, when METHOD ¼ A ,
or NMESH � IORDER� 1, when METHOD ¼ B .

IFAIL ¼ 3

On entry, LWK < 10� NMESHþ 6.

D05BAF NAG Library Manual

D05BAF.4 Mark 26



IFAIL ¼ 4

The solution of the nonlinear equation (2) (see Section 9 for further details) could not be
computed by C05AVF and C05AZF.

IFAIL ¼ 5

The size of the workspace LWK is too small for the required accuracy. The computation has
failed in its initial phase (see Section 9 for further details).

IFAIL ¼ 6

The size of the workspace LWK is too small for the required accuracy on the interval
ALIM;TLIM½ � (see Section 9 for further details).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy depends on TOL, the theoretical behaviour of the solution of the integral equation, the
interval of integration and on the method being used. It can be controlled by varying TOL and
THRESH; you are recommended to choose a smaller value for TOL, the larger the value of IORDER.

You are warned not to supply a very small TOL, because the required accuracy may never be achieved.
This will usually force an error exit with IFAIL ¼ 5 or 6.

In general, the higher the order of the method, the faster the required accuracy is achieved with less
workspace. For non-stiff problems (see Section 9) you are recommended to use the Adams' method
(METHOD ¼ A ) of order greater than 4 (IORDER > 4).

8 Parallelism and Performance

D05BAF is not threaded in any implementation.

9 Further Comments

When solving (1), the solution of a nonlinear equation of the form

Yn � �g tn; Ynð Þ � �n ¼ 0; ð2Þ

is required, where �n and � are constants. D05BAF calls C05AVF to find an interval for the zero of
this equation followed by C05AZF to find its zero.

There is an initial phase of the algorithm where the solution is computed only for the first few points of
the mesh. The exact number of these points depends on IORDER and METHOD. The step size is
halved until the accuracy requirements are satisfied on these points and only then the solution on the
whole mesh is computed. During this initial phase, if LWK is too small, D05BAF will exit with
IFAIL ¼ 5.
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In the case IFAIL ¼ 4 or 5, you may be dealing with a ‘stiff’ equation; an equation where the Lipschitz
constant L of the function g t; yð Þ in (1) with respect to its second argument is large, viz,

g t; uð Þ � g t; vð Þj j � L u� vj j: ð3Þ

In this case, if a BDF method (METHOD ¼ B ) has been used, you are recommended to choose a
smaller step size by increasing the value of NMESH, or provide a larger workspace. But, if an Adams'
method (METHOD ¼ A ) has been selected, you are recommended to switch to a BDF method instead.

In the case IFAIL ¼ 6, the specified accuracy has not been attained but YN and ERREST contain the
most recent approximation to the computed solution and the corresponding error estimate. In this case,
the error message informs you of the number of extrapolations performed and the size of LWK required
for the algorithm to proceed further. The latter quantity will also be available in WORKð1Þ.

10 Example

Consider the following integral equation

y tð Þ ¼ e�t þ
Z t

0
e� t�sð Þ y sð Þ þ e�y sð Þ

h i
ds; 0 � t � 20 ð4Þ

with the solution y tð Þ ¼ ln tþ eð Þ. In this example, the Adams' method of order 6 is used to solve this
equation with TOL ¼ 1:E�4.

10.1 Program Text

! D05BAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d05bafe_mod

! D05BAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: cf, cg, ck, sol

! .. Parameters ..
Integer, Parameter, Public :: nmesh = 6, nout = 6

Contains
Function sol(t)

! .. Function Return Value ..
Real (Kind=nag_wp) :: sol

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Intrinsic Procedures ..
Intrinsic :: exp, log

! .. Executable Statements ..
sol = log(t+exp(1.0_nag_wp))

Return

End Function sol
Function cf(t)

! .. Function Return Value ..
Real (Kind=nag_wp) :: cf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
cf = exp(-t)
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Return

End Function cf
Function ck(t)

! .. Function Return Value ..
Real (Kind=nag_wp) :: ck

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
ck = exp(-t)

Return

End Function ck
Function cg(s,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: cg

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: s, y

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
cg = y + exp(-y)

Return

End Function cg
End Module d05bafe_mod
Program d05bafe

! D05BAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d05baf, nag_wp, x02ajf
Use d05bafe_mod, Only: cf, cg, ck, nmesh, nout, sol

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: alim, h, hi, si, thresh, tlim, tol
Integer :: i, ifail, iorder, lwk
Character (1) :: method

! .. Local Arrays ..
Real (Kind=nag_wp) :: errest(nmesh), yn(nmesh)
Real (Kind=nag_wp), Allocatable :: work(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, int, real

! .. Executable Statements ..
Write (nout,*) ’D05BAF Example Program Results’

method = ’A’
iorder = 6
alim = 0.0_nag_wp
tlim = 20.0_nag_wp
h = (tlim-alim)/real(nmesh,kind=nag_wp)
tol = 1.E-3_nag_wp
thresh = x02ajf()
lwk = 10*nmesh + 6
Allocate (work(lwk))

! Loop until the supplied workspace is big enough

loop: Do

ifail = 1
Call d05baf(ck,cg,cf,method,iorder,alim,tlim,yn,errest,nmesh,tol, &

thresh,work,lwk,ifail)
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Select Case (ifail)
Case (5,6)

lwk = int(work(1))
Deallocate (work)
Allocate (work(lwk))

Case Default
Exit loop

End Select

End Do loop

If (ifail/=0) Then
Write (nout,99996) ’D05BAF exited with IFAIL =’, ifail
Go To 100

End If

Write (nout,*)
Write (nout,99999) ’Size of workspace =’, lwk
Write (nout,99998) ’Tolerance =’, tol
Write (nout,*)
Write (nout,*) &

’ T Approx. Sol. True Sol. Est. Error Actual Error’
Do i = 1, nmesh

hi = real(i,kind=nag_wp)*h
si = sol(hi)
Write (nout,99997) alim + hi, yn(i), si, errest(i), abs((yn(i)-si)/si)

End Do

100 Continue

99999 Format (1X,A,I12)
99998 Format (1X,A,E12.4)
99997 Format (F7.2,2F14.5,2E15.5)
99996 Format (1X,A,I5)

End Program d05bafe

10.2 Program Data

None.

10.3 Program Results

D05BAF Example Program Results

Size of workspace = 486
Tolerance = 0.1000E-02

T Approx. Sol. True Sol. Est. Error Actual Error
3.33 1.80037 1.80033 0.80378E-04 0.23847E-04
6.67 2.23916 2.23911 0.17774E-03 0.23477E-04

10.00 2.54310 2.54304 0.24595E-03 0.22456E-04
13.33 2.77587 2.77581 0.30574E-03 0.21743E-04
16.67 2.96456 2.96450 0.36170E-03 0.21382E-04
20.00 3.12324 3.12317 0.41713E-03 0.21310E-04
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NAG Library Routine Document

D05BDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D05BDF computes the solution of a weakly singular nonlinear convolution Volterra–Abel integral
equation of the second kind using a fractional Backward Differentiation Formulae (BDF) method.

2 Specification

SUBROUTINE D05BDF (CK, CF, CG, INITWT, IORDER, TLIM, TOLNL, NMESH, YN,
WORK, LWK, NCT, IFAIL)

&

INTEGER IORDER, NMESH, LWK, NCT(NMESH/32+1), IFAIL
REAL (KIND=nag_wp) CK, CF, CG, TLIM, TOLNL, YN(NMESH), WORK(LWK)
CHARACTER(1) INITWT
EXTERNAL CK, CF, CG

3 Description

D05BDF computes the numerical solution of the weakly singular convolution Volterra–Abel integral
equation of the second kind

y tð Þ ¼ f tð Þ þ 1ffiffiffi
	
p
Z t

0

k t� sð Þffiffiffiffiffiffiffiffiffiffi
t� s
p g s; y sð Þð Þ ds; 0 � t � T: ð1Þ

Note the constant 1ffiffi
	
p in (1). It is assumed that the functions involved in (1) are sufficiently smooth.

The routine uses a fractional BDF linear multi-step method to generate a family of quadrature rules (see
D05BYF). The BDF methods available in D05BDF are of orders 4, 5 and 6 ( ¼ p say). For a
description of the theoretical and practical background to these methods we refer to Lubich (1985) and
to Baker and Derakhshan (1987) and Hairer et al. (1988) respectively.

The algorithm is based on computing the solution y tð Þ in a step-by-step fashion on a mesh of
equispaced points. The size of the mesh is given by T= N � 1ð Þ, N being the number of points at which
the solution is sought. These methods require 2p� 1 (including y 0ð Þ) starting values which are
evaluated internally. The computation of the lag term arising from the discretization of (1) is performed
by fast Fourier transform (FFT) techniques when N > 32þ 2p� 1, and directly otherwise. The routine
does not provide an error estimate and you are advised to check the behaviour of the solution with a
different value of N . An option is provided which avoids the re-evaluation of the fractional weights
when D05BDF is to be called several times (with the same value of N) within the same program unit
with different functions.

4 References

Baker C T H and Derakhshan M S (1987) FFT techniques in the numerical solution of convolution
equations J. Comput. Appl. Math. 20 5–24

Hairer E, Lubich Ch and Schlichte M (1988) Fast numerical solution of weakly singular Volterra
integral equations J. Comput. Appl. Math. 23 87–98

Lubich Ch (1985) Fractional linear multistep methods for Abel–Volterra integral equations of the
second kind Math. Comput. 45 463–469
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5 Arguments

1: CK – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CK must evaluate the kernel k tð Þ of the integral equation (1).

The specification of CK is:

FUNCTION CK (T)
REAL (KIND=nag_wp) CK

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: t, the value of the independent variable.

CK must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05BDF is called. Arguments denoted as Input must not be changed by this
procedure.

2: CF – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CF must evaluate the function f tð Þ in (1).

The specification of CF is:

FUNCTION CF (T)
REAL (KIND=nag_wp) CF

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: t, the value of the independent variable.

CF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05BDF is called. Arguments denoted as Input must not be changed by this
procedure.

3: CG – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CG must evaluate the function g s; y sð Þð Þ in (1).

The specification of CG is:

FUNCTION CG (S, Y)
REAL (KIND=nag_wp) CG

REAL (KIND=nag_wp) S, Y

1: S – REAL (KIND=nag_wp) Input

On entry: s, the value of the independent variable.

2: Y – REAL (KIND=nag_wp) Input

On entry: the value of the solution y at the point S.

CG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05BDF is called. Arguments denoted as Input must not be changed by this
procedure.
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4: INITWT – CHARACTER(1) Input

On entry: if the fractional weights required by the method need to be calculated by the routine
then set INITWT ¼ I (Initial call).

If INITWT ¼ S (Subsequent call), the routine assumes the fractional weights have been
computed on a previous call and are stored in WORK.

Constraint: INITWT ¼ I or S .

Note: when D05BDF is re-entered with the value of INITWT ¼ S , the values of NMESH,
IORDER and the contents of WORK must not be changed.

5: IORDER – INTEGER Input

On entry: p, the order of the BDF method to be used.

Suggested value: IORDER ¼ 4.

Constraint: 4 � IORDER � 6.

6: TLIM – REAL (KIND=nag_wp) Input

On entry: the final point of the integration interval, T .

Constraint: TLIM > 10�machine precision.

7: TOLNL – REAL (KIND=nag_wp) Input

On entry: the accuracy required for the computation of the starting value and the solution of the
nonlinear equation at each step of the computation (see Section 9).

Suggested value: TOLNL ¼
ffiffi
�
p

where � is the machine precision.

Constraint: TOLNL > 10�machine precision.

8: NMESH – INTEGER Input

On entry: N , the number of equispaced points at which the solution is sought.

Constraint: NMESH ¼ 2m þ 2� IORDER � 1, where m � 1.

9: YNðNMESHÞ – REAL (KIND=nag_wp) array Output

On exit: YNðiÞ contains the approximate value of the true solution y tð Þ at the point
t ¼ i � 1ð Þ � h, for i ¼ 1; 2; . . . ;NMESH, where h ¼ TLIM= NMESH� 1ð Þ.

10: WORKðLWKÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if INITWT ¼ S , WORK must contain fractional weights computed by a previous call
of D05BDF (see description of INITWT).

On exit: contains fractional weights which may be used by a subsequent call of D05BDF.

11: LWK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
D05BDF is called.

Constraint: LWK � 2� IORDER þ 6ð Þ � NMESHþ 8� IORDER2 � 16� IORDER þ 1.

12: NCTðNMESH=32þ 1Þ – INTEGER array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

D05 – Integral Equations D05BDF

Mark 26 D05BDF.3



For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IORDER < 4 or IORDER > 6,
or TLIM � 10�machine precision,
or INITWT 6¼ I or S ,
or INITWT ¼ S on the first call to D05BDF,
or TOLNL � 10�machine precision,
or NMESH 6¼ 2m þ 2� IORDER � 1;m � 1,
or LWK < 2� IORDER þ 6ð Þ � NMESHþ 8� IORDER2 � 16� IORDER þ 1.

IFAIL ¼ 2

The routine cannot compute the 2p� 1 starting values due to an error solving the system of
nonlinear equations. Relaxing the value of TOLNL and/or increasing the value of NMESH may
overcome this problem (see Section 9 for further details).

IFAIL ¼ 3

The routine cannot compute the solution at a specific step due to an error in the solution of the
nonlinear equation (2). Relaxing the value of TOLNL and/or increasing the value of NMESH
may overcome this problem (see Section 9 for further details).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy depends on NMESH and TOLNL, the theoretical behaviour of the solution of the integral
equation and the interval of integration. The value of TOLNL controls the accuracy required for
computing the starting values and the solution of (2) at each step of computation. This value can affect
the accuracy of the solution. However, for most problems, the value of

ffiffi
�
p

, where � is the machine
precision, should be sufficient.
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8 Parallelism and Performance

D05BDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D05BDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

In solving (1), initially, D05BDF computes the solution of a system of nonlinear equations for obtaining
the 2p� 1 starting values. C05QDF is used for this purpose. When a failure with IFAIL ¼ 2 occurs
(which corresponds to an error exit from C05QDF), you are advised to either relax the value of TOLNL
or choose a smaller step size by increasing the value of NMESH. Once the starting values are computed
successfully, the solution of a nonlinear equation of the form

Yn � �g tn; Ynð Þ � �n ¼ 0; ð2Þ

is required at each step of computation, where �n and � are constants. D05BDF calls C05AXF to find
the root of this equation.

If a failure with IFAIL ¼ 3 occurs (which corresponds to an error exit from C05AXF), you are advised
to relax the value of the TOLNL or choose a smaller step size by increasing the value of NMESH.

If a failure with IFAIL ¼ 2 or 3 persists even after adjustments to TOLNL and/or NMESH then you
should consider whether there is a more fundamental difficulty. For example, the problem is ill-posed or
the functions in (1) are not sufficiently smooth.

10 Example

In this example we solve the following integral equations

y tð Þ ¼
ffiffi
t
p
þ 3

8	t
2 �

Z t

0

1ffiffiffiffiffiffiffiffiffiffi
t� s
p y sð Þ½ �3 ds; 0 � t � 7;

with the solution y tð Þ ¼
ffiffi
t
p

, and

y tð Þ ¼ 3� tð Þ
ffiffi
t
p
�
Z t

0

1ffiffiffiffiffiffiffiffiffiffi
t� s
p exp s 1� sð Þ2 � y sð Þ½ �2

� �
ds; 0 � t � 5;

with the solution y tð Þ ¼ 1� tð Þ
ffiffi
t
p

. In the above examples, the fourth-order BDF is used, and NMESH
is set to 26 þ 7.

10.1 Program Text

! D05BDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d05bdfe_mod

! D05BDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: cf1, cf2, cg1, cg2, ck1, ck2

! .. Parameters ..
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Integer, Parameter, Public :: iorder = 4
Integer, Parameter, Public :: nmesh = 2**6 + 2*iorder - 1
Integer, Parameter, Public :: nout = 6
Integer, Parameter, Public :: lct = nmesh/32 + 1
Integer, Parameter, Public :: lwk = (2*iorder+6)*nmesh + 8*iorder* &

iorder - 16*iorder + 1
Contains

Function ck1(t)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Function Return Value ..
Real (Kind=nag_wp) :: ck1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Local Scalars ..
Real (Kind=nag_wp) :: pi

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
ck1 = -sqrt(x01aaf(pi))

Return

End Function ck1
Function cf1(t)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Function Return Value ..
Real (Kind=nag_wp) :: cf1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Local Scalars ..
Real (Kind=nag_wp) :: pi

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
cf1 = sqrt(t) + (3.0_nag_wp/8.0_nag_wp)*t*t*x01aaf(pi)

Return

End Function cf1
Function cg1(s,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: cg1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: s, y

! .. Executable Statements ..
cg1 = y*y*y

Return

End Function cg1
Function ck2(t)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Function Return Value ..
Real (Kind=nag_wp) :: ck2

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Local Scalars ..
Real (Kind=nag_wp) :: pi

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
ck2 = -sqrt(x01aaf(pi))

Return
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End Function ck2
Function cf2(t)

! .. Function Return Value ..
Real (Kind=nag_wp) :: cf2

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
cf2 = (3.0_nag_wp-t)*sqrt(t)

Return

End Function cf2
Function cg2(s,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: cg2

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: s, y

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
cg2 = exp(s*(1.0_nag_wp-s)*(1.0_nag_wp-s)-y*y)

Return

End Function cg2
End Module d05bdfe_mod
Program d05bdfe

! D05BDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d05bdf, nag_wp, x02ajf
Use d05bdfe_mod, Only: cf1, cf2, cg1, cg2, ck1, ck2, iorder, lct, lwk, &

nmesh, nout
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, t, tlim, tolnl
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: work(lwk), yn(nmesh)
Integer :: nct(lct)

! .. Intrinsic Procedures ..
Intrinsic :: mod, real, sqrt

! .. Executable Statements ..
Write (nout,*) ’D05BDF Example Program Results’

tlim = 7.0_nag_wp
tolnl = sqrt(x02ajf())
h = tlim/real(nmesh-1,kind=nag_wp)

ifail = 0
Call d05bdf(ck1,cf1,cg1,’Initial’,iorder,tlim,tolnl,nmesh,yn,work,lwk, &

nct,ifail)

Write (nout,*)
Write (nout,*) ’Example 1’
Write (nout,*)
Write (nout,99998) h
Write (nout,*)
Write (nout,*) ’ T Approximate’
Write (nout,*) ’ Solution ’
Write (nout,*)

Do i = 1, nmesh
t = real(i-1,kind=nag_wp)*h
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If (mod(i,5)==1) Then
Write (nout,99999) t, yn(i)

End If

End Do

tlim = 5.0_nag_wp
h = tlim/real(nmesh-1,kind=nag_wp)

ifail = 0
Call d05bdf(ck2,cf2,cg2,’Subsequent’,iorder,tlim,tolnl,nmesh,yn,work, &

lwk,nct,ifail)

Write (nout,*)
Write (nout,*) ’Example 2’
Write (nout,*)
Write (nout,99998) h
Write (nout,*)
Write (nout,*) ’ T Approximate’
Write (nout,*) ’ Solution ’
Write (nout,*)

Do i = 1, nmesh
t = real(i-1,kind=nag_wp)*h

If (mod(i,7)==1) Then
Write (nout,99999) t, yn(i)

End If

End Do

99999 Format (1X,F8.4,F15.4)
99998 Format (’ The stepsize h = ’,F8.4)

End Program d05bdfe

10.2 Program Data

None.

10.3 Program Results

D05BDF Example Program Results

Example 1

The stepsize h = 0.1000

T Approximate
Solution

0.0000 0.0000
0.5000 0.7071
1.0000 1.0000
1.5000 1.2247
2.0000 1.4142
2.5000 1.5811
3.0000 1.7321
3.5000 1.8708
4.0000 2.0000
4.5000 2.1213
5.0000 2.2361
5.5000 2.3452
6.0000 2.4495
6.5000 2.5495
7.0000 2.6458

Example 2

The stepsize h = 0.0714
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T Approximate
Solution

0.0000 0.0000
0.5000 0.3536
1.0000 0.0000
1.5000 -0.6124
2.0000 -1.4142
2.5000 -2.3717
3.0000 -3.4641
3.5000 -4.6771
4.0000 -6.0000
4.5000 -7.4246
5.0000 -8.9443
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NAG Library Routine Document

D05BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D05BEF computes the solution of a weakly singular nonlinear convolution Volterra–Abel integral
equation of the first kind using a fractional Backward Differentiation Formulae (BDF) method.

2 Specification

SUBROUTINE D05BEF (CK, CF, CG, INITWT, IORDER, TLIM, TOLNL, NMESH, YN,
WORK, LWK, NCT, IFAIL)

&

INTEGER IORDER, NMESH, LWK, NCT(NMESH/32+1), IFAIL
REAL (KIND=nag_wp) CK, CF, CG, TLIM, TOLNL, YN(NMESH), WORK(LWK)
CHARACTER(1) INITWT
EXTERNAL CK, CF, CG

3 Description

D05BEF computes the numerical solution of the weakly singular convolution Volterra–Abel integral
equation of the first kind

f tð Þ þ 1ffiffiffi
	
p
Z t

0

k t� sð Þffiffiffiffiffiffiffiffiffiffi
t� s
p g s; y sð Þð Þ ds ¼ 0; 0 � t � T: ð1Þ

Note the constant 1ffiffi
	
p in (1). It is assumed that the functions involved in (1) are sufficiently smooth and

if

f tð Þ ¼ t�w tð Þ with � > �1
2 and w tð Þ smooth; ð2Þ

then the solution y tð Þ is unique and has the form y tð Þ ¼ t��1=2z tð Þ, (see Lubich (1987)). It is evident
from (1) that f 0ð Þ ¼ 0. You are required to provide the value of y tð Þ at t ¼ 0. If y 0ð Þ is unknown,
Section 9 gives a description of how an approximate value can be obtained.

The routine uses a fractional BDF linear multi-step method selected by you to generate a family of
quadrature rules (see D05BYF). The BDF methods available in D05BEF are of orders 4, 5 and 6 ( ¼ p
say). For a description of the theoretical and practical background related to these methods we refer to
Lubich (1987) and to Baker and Derakhshan (1987) and Hairer et al. (1988) respectively.

The algorithm is based on computing the solution y tð Þ in a step-by-step fashion on a mesh of
equispaced points. The size of the mesh is given by T= N � 1ð Þ, N being the number of points at which
the solution is sought. These methods require 2p� 2 starting values which are evaluated internally. The
computation of the lag term arising from the discretization of (1) is performed by fast Fourier transform
(FFT) techniques when N > 32þ 2p� 1, and directly otherwise. The routine does not provide an error
estimate and you are advised to check the behaviour of the solution with a different value of N . An
option is provided which avoids the re-evaluation of the fractional weights when D05BEF is to be
called several times (with the same value of N) within the same program with different functions.

4 References

Baker C T H and Derakhshan M S (1987) FFT techniques in the numerical solution of convolution
equations J. Comput. Appl. Math. 20 5–24

Gorenflo R and Pfeiffer A (1991) On analysis and discretization of nonlinear Abel integral equations of
first kind Acta Math. Vietnam 16 211–262
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Hairer E, Lubich Ch and Schlichte M (1988) Fast numerical solution of weakly singular Volterra
integral equations J. Comput. Appl. Math. 23 87–98

Lubich Ch (1987) Fractional linear multistep methods for Abel–Volterra integral equations of the first
kind IMA J. Numer. Anal 7 97–106

5 Arguments

1: CK – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CK must evaluate the kernel k tð Þ of the integral equation (1).

The specification of CK is:

FUNCTION CK (T)
REAL (KIND=nag_wp) CK

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: t, the value of the independent variable.

CK must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05BEF is called. Arguments denoted as Input must not be changed by this
procedure.

2: CF – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CF must evaluate the function f tð Þ in (1).

The specification of CF is:

FUNCTION CF (T)
REAL (KIND=nag_wp) CF

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: t, the value of the independent variable.

CF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05BEF is called. Arguments denoted as Input must not be changed by this
procedure.

3: CG – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CG must evaluate the function g s; y sð Þð Þ in (1).

The specification of CG is:

FUNCTION CG (S, Y)
REAL (KIND=nag_wp) CG

REAL (KIND=nag_wp) S, Y

1: S – REAL (KIND=nag_wp) Input

On entry: s, the value of the independent variable.

2: Y – REAL (KIND=nag_wp) Input

On entry: the value of the solution y at the point S.
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CG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D05BEF is called. Arguments denoted as Input must not be changed by this
procedure.

4: INITWT – CHARACTER(1) Input

On entry: if the fractional weights required by the method need to be calculated by the routine
then set INITWT ¼ I (Initial call).

If INITWT ¼ S (Subsequent call), the routine assumes the fractional weights have been
computed by a previous call and are stored in WORK.

Constraint: INITWT ¼ I or S .

Note: when D05BEF is re-entered with a value of INITWT ¼ S , the values of NMESH,
IORDER and the contents of WORK must not be changed.

5: IORDER – INTEGER Input

On entry: p, the order of the BDF method to be used.

Suggested value: IORDER ¼ 4.

Constraint: 4 � IORDER � 6.

6: TLIM – REAL (KIND=nag_wp) Input

On entry: the final point of the integration interval, T .

Constraint: TLIM > 10�machine precision.

7: TOLNL – REAL (KIND=nag_wp) Input

On entry: the accuracy required for the computation of the starting value and the solution of the
nonlinear equation at each step of the computation (see Section 9).

Suggested value: TOLNL ¼
ffiffi
�
p

where � is the machine precision.

Constraint: TOLNL > 10�machine precision.

8: NMESH – INTEGER Input

On entry: N , the number of equispaced points at which the solution is sought.

Constraint: NMESH ¼ 2m þ 2� IORDER � 1, where m � 1.

9: YNðNMESHÞ – REAL (KIND=nag_wp) array Input/Output

On entry: YNð1Þ must contain the value of y tð Þ at t ¼ 0 (see Section 9).

On exit: YNðiÞ contains the approximate value of the true solution y tð Þ at the point
t ¼ i � 1ð Þ � h, for i ¼ 1; 2; . . . ;NMESH, where h ¼ TLIM= NMESH� 1ð Þ.

10: WORKðLWKÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if INITWT ¼ S , WORK must contain fractional weights computed by a previous call
of D05BEF (see description of INITWT).

On exit: contains fractional weights which may be used by a subsequent call of D05BEF.

11: LWK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
D05BEF is called.

Constraint: LWK � 2� IORDER þ 6ð Þ � NMESHþ 8� IORDER2 � 16� IORDER þ 1.
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12: NCTðNMESH=32þ 1Þ – INTEGER array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IORDER < 4 or IORDER > 6,
or TLIM � 10�machine precision,
or INITWT 6¼ I or S ,
or INITWT ¼ S on the first call to D05BEF,
or TOLNL � 10�machine precision,
or NMESH 6¼ 2m þ 2� IORDER � 1;m � 1,
or LWK < 2� IORDER þ 6ð Þ � NMESHþ 8� IORDER2 � 16� IORDER þ 1.

IFAIL ¼ 2

The routine cannot compute the 2p� 2 starting values due to an error in solving the system of
nonlinear equations. Relaxing the value of TOLNL and/or increasing the value of NMESH may
overcome this problem (see Section 9 for further details).

IFAIL ¼ 3

The routine cannot compute the solution at a specific step due to an error in the solution of the
single nonlinear equation (3). Relaxing the value of TOLNL and/or increasing the value of
NMESH may overcome this problem (see Section 9 for further details).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The accuracy depends on NMESH and TOLNL, the theoretical behaviour of the solution of the integral
equation and the interval of integration. The value of TOLNL controls the accuracy required for
computing the starting values and the solution of (3) at each step of computation. This value can affect
the accuracy of the solution. However, for most problems, the value of

ffiffi
�
p

, where � is the machine
precision, should be sufficient.

8 Parallelism and Performance

D05BEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D05BEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Also when solving (1) the initial value y 0ð Þ is required. This value may be computed from the limit
relation (see Gorenflo and Pfeiffer (1991))

�2ffiffiffi
	
p k 0ð Þg 0; y 0ð Þð Þ ¼ lim

t!0

f tð Þffiffi
t
p : ð3Þ

If the value of the above limit is known then by solving the nonlinear equation (3) an approximation to
y 0ð Þ can be computed. If the value of the above limit is not known, an approximation should be
provided. Following the analysis presented in Gorenflo and Pfeiffer (1991), the following pth-order
approximation can be used:

lim
t!0

f tð Þffiffi
t
p ’ f h

pð Þ
hp=2

: ð4Þ

However, it must be emphasized that the approximation in (4) may result in an amplification of the

rounding errors and hence you are advised (if possible) to determine lim
t!0

f tð Þffiffi
t
p by analytical methods.

Also when solving (1), initially, D05BEF computes the solution of a system of nonlinear equation for
obtaining the 2p� 2 starting values. C05QDF is used for this purpose. If a failure with IFAIL ¼ 2
occurs (corresponding to an error exit from C05QDF), you are advised to either relax the value of
TOLNL or choose a smaller step size by increasing the value of NMESH. Once the starting values are
computed successfully, the solution of a nonlinear equation of the form

Yn � �g tn; Ynð Þ � �n ¼ 0; ð5Þ

is required at each step of computation, where �n and � are constants. D05BEF calls C05AXF to find
the root of this equation.

When a failure with IFAIL ¼ 3 occurs (which corresponds to an error exit from C05AXF), you are
advised to either relax the value of the TOLNL or choose a smaller step size by increasing the value of
NMESH.

If a failure with IFAIL ¼ 2 or 3 persists even after adjustments to TOLNL and/or NMESH then you
should consider whether there is a more fundamental difficulty. For example, the problem is ill-posed or
the functions in (1) are not sufficiently smooth.
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10 Example

We solve the following integral equations.

Example 1

The density of the probability that a Brownian motion crosses a one-sided moving boundary a tð Þ before
time t, satisfies the integral equation (see Hairer et al. (1988))

� 1ffiffi
t
p exp 1

2� a tð Þf g2=t
� �

þ
Z t

0

exp �1
2 a tð Þ � a sð Þf g2= t� sð Þ

� �
ffiffiffiffiffiffiffiffiffiffi
t� s
p y sð Þ ds ¼ 0; 0 � t � 7:

In the case of a straight line a tð Þ ¼ 1þ t, the exact solution is known to be

y tð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2	t3
p exp � 1þ tð Þ2=2t

n o
Example 2

In this example we consider the equation

�
2log

ffiffiffiffiffiffiffiffiffiffi
1þ t
p

þ
ffiffi
t
p� �ffiffiffiffiffiffiffiffiffiffi

1þ t
p þ

Z t

0

y sð Þffiffiffiffiffiffiffiffiffiffi
t� s
p ds ¼ 0; 0 � t � 5:

The solution is given by y tð Þ ¼ 1
1þt .

In the above examples, the fourth-order BDF is used, and NMESH is set to 26 þ 7.

10.1 Program Text

! D05BEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d05befe_mod

! D05BEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: cf1, cf2, cg1, cg2, ck1, ck2, sol1, &

sol2
! .. Parameters ..

Integer, Parameter, Public :: iorder = 4
Integer, Parameter, Public :: nmesh = 2**6 + 2*iorder - 1
Integer, Parameter, Public :: nout = 6
Integer, Parameter, Public :: lct = nmesh/32 + 1
Integer, Parameter, Public :: lwk = (2*iorder+6)*nmesh + 8*iorder* &

iorder - 16*iorder + 1
Contains

Function sol1(t)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Function Return Value ..
Real (Kind=nag_wp) :: sol1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, pi, t1

! .. Intrinsic Procedures ..
Intrinsic :: exp, sqrt

! .. Executable Statements ..
t1 = 1.0_nag_wp + t
c = 1.0_nag_wp/sqrt(2.0_nag_wp*x01aaf(pi))
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sol1 = c*(1.0_nag_wp/(t**1.5_nag_wp))*exp(-t1*t1/(2.0_nag_wp*t))

Return

End Function sol1
Function sol2(t)

! .. Function Return Value ..
Real (Kind=nag_wp) :: sol2

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Executable Statements ..
sol2 = 1.0_nag_wp/(1.0_nag_wp+t)

Return

End Function sol2
Function ck1(t)

! .. Function Return Value ..
Real (Kind=nag_wp) :: ck1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
ck1 = exp(-0.5_nag_wp*t)

Return

End Function ck1
Function cf1(t)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Function Return Value ..
Real (Kind=nag_wp) :: cf1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, pi, t1

! .. Intrinsic Procedures ..
Intrinsic :: exp, sqrt

! .. Executable Statements ..
t1 = 1.0_nag_wp + t
a = 1.0_nag_wp/sqrt(x01aaf(pi)*t)
cf1 = -a*exp(-0.5_nag_wp*t1*t1/t)

Return

End Function cf1
Function cg1(s,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: cg1

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: s, y

! .. Executable Statements ..
cg1 = y

Return

End Function cg1
Function ck2(t)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Function Return Value ..
Real (Kind=nag_wp) :: ck2

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
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! .. Local Scalars ..
Real (Kind=nag_wp) :: pi

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
ck2 = sqrt(x01aaf(pi))

Return

End Function ck2
Function cf2(t)

! .. Function Return Value ..
Real (Kind=nag_wp) :: cf2

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Local Scalars ..
Real (Kind=nag_wp) :: st1

! .. Intrinsic Procedures ..
Intrinsic :: log, sqrt

! .. Executable Statements ..
st1 = sqrt(1.0_nag_wp+t)
cf2 = -2.0_nag_wp*log(st1+sqrt(t))/st1

Return

End Function cf2
Function cg2(s,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: cg2

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: s, y

! .. Executable Statements ..
cg2 = y

Return

End Function cg2
End Module d05befe_mod
Program d05befe

! D05BEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d05bef, nag_wp, x02ajf
Use d05befe_mod, Only: cf1, cf2, cg1, cg2, ck1, ck2, iorder, lct, lwk, &

nmesh, nout, sol1, sol2
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: err, errmax, h, hi1, soln, t, tlim, &
tolnl

Integer :: i, ifail
! .. Local Arrays ..

Real (Kind=nag_wp) :: work(lwk), yn(nmesh)
Integer :: nct(lct)

! .. Intrinsic Procedures ..
Intrinsic :: abs, mod, real, sqrt

! .. Executable Statements ..
Write (nout,*) ’D05BEF Example Program Results’

tlim = 7.0_nag_wp
tolnl = sqrt(x02ajf())
h = tlim/real(nmesh-1,kind=nag_wp)
yn(1) = 0.0_nag_wp

ifail = 0
Call d05bef(ck1,cf1,cg1,’Initial’,iorder,tlim,tolnl,nmesh,yn,work,lwk, &

nct,ifail)
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Write (nout,*)
Write (nout,*) ’Example 1’
Write (nout,*)
Write (nout,99997) h
Write (nout,*)
Write (nout,*) ’ T Approximate’
Write (nout,*) ’ Solution ’
Write (nout,*)

errmax = 0.0_nag_wp

Do i = 2, nmesh
hi1 = real(i-1,kind=nag_wp)*h
err = abs(yn(i)-sol1(hi1))

If (err>errmax) Then
errmax = err
t = hi1
soln = yn(i)

End If

If (i>5 .And. mod(i,5)==1) Then
Write (nout,99998) hi1, yn(i)

End If

End Do

Write (nout,*)
Write (nout,99999) errmax, t, soln
Write (nout,*)

tlim = 5.0_nag_wp
h = tlim/real(nmesh-1,kind=nag_wp)
yn(1) = 1.0_nag_wp

ifail = 0
Call d05bef(ck2,cf2,cg2,’Subsequent’,iorder,tlim,tolnl,nmesh,yn,work, &

lwk,nct,ifail)

Write (nout,*)
Write (nout,*) ’Example 2’
Write (nout,*)
Write (nout,99997) h
Write (nout,*)
Write (nout,*) ’ T Approximate’
Write (nout,*) ’ Solution ’
Write (nout,*)

errmax = 0.0_nag_wp

Do i = 1, nmesh
hi1 = real(i-1,kind=nag_wp)*h
err = abs(yn(i)-sol2(hi1))

If (err>errmax) Then
errmax = err
t = hi1
soln = yn(i)

End If

If (i>7 .And. mod(i,7)==1) Then
Write (nout,99998) hi1, yn(i)

End If

End Do

Write (nout,*)
Write (nout,99999) errmax, t, soln

D05 – Integral Equations D05BEF

Mark 26 D05BEF.9



99999 Format (’ The maximum absolute error, ’,E10.2,’, occurred at T =’,F8.4, &
/,’ with solution ’,F8.4)

99998 Format (1X,F8.4,F15.4)
99997 Format (’ The stepsize h = ’,F8.4)

End Program d05befe

10.2 Program Data

None.

10.3 Program Results

D05BEF Example Program Results

Example 1

The stepsize h = 0.1000

T Approximate
Solution

0.5000 0.1191
1.0000 0.0528
1.5000 0.0265
2.0000 0.0146
2.5000 0.0086
3.0000 0.0052
3.5000 0.0033
4.0000 0.0022
4.5000 0.0014
5.0000 0.0010
5.5000 0.0007
6.0000 0.0004
6.5000 0.0003
7.0000 0.0002

The maximum absolute error, 0.29E-02, occurred at T = 0.1000
with solution 0.0326

Example 2

The stepsize h = 0.0714

T Approximate
Solution

0.5000 0.6667
1.0000 0.5000
1.5000 0.4000
2.0000 0.3333
2.5000 0.2857
3.0000 0.2500
3.5000 0.2222
4.0000 0.2000
4.5000 0.1818
5.0000 0.1667

The maximum absolute error, 0.32E-05, occurred at T = 0.0714
with solution 0.9333
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NAG Library Routine Document

D05BWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D05BWF computes the quadrature weights associated with the Adams' methods of orders three to six
and the Backward Differentiation Formulae (BDF) methods of orders two to five. These rules, which
are referred to as reducible quadrature rules, can then be used in the solution of Volterra integral and
integro-differential equations.

2 Specification

SUBROUTINE D05BWF (METHOD, IORDER, OMEGA, NOMG, LENSW, SW, LDSW, NWT,
IFAIL)

&

INTEGER IORDER, NOMG, LENSW, LDSW, NWT, IFAIL
REAL (KIND=nag_wp) OMEGA(NOMG), SW(LDSW,NWT)
CHARACTER(1) METHOD

3 Description

D05BWF computes the weights Wi;j and !i for a family of quadrature rules related to the Adams'
methods of orders three to six and the BDF methods of orders two to five, for approximating the
integral: Z t

0

 sð Þ ds ’ h

Xp�1
j¼0

Wi;j
 j� hð Þ þ h
Xi
j¼p

!i�j
 j� hð Þ; 0 � t � T; ð1Þ

with t ¼ i � h, for i ¼ 0; 1; . . . ; n, for some given constant h.

In (1), h is a uniform mesh, p is related to the order of the method being used and Wi;j, !i are the
starting and the convolution weights respectively. The mesh size h is determined as h ¼ T

n , where
n ¼ nw þ p� 1 and nw is the chosen number of convolution weights wj, for j ¼ 1; 2; . . . ; nw � 1. A
description of how these weights can be used in the solution of a Volterra integral equation of the
second kind is given in Section 9. For a general discussion of these methods, see Wolkenfelt (1982) for
more details.

4 References

Lambert J D (1973) Computational Methods in Ordinary Differential Equations John Wiley

Wolkenfelt P H M (1982) The construction of reducible quadrature rules for Volterra integral and
integro-differential equations IMA J. Numer. Anal. 2 131–152

5 Arguments

1: METHOD – CHARACTER(1) Input

On entry: the type of method to be used.

METHOD ¼ A
For Adams' type formulae.
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METHOD ¼ B
For Backward Differentiation Formulae.

Constraint: METHOD ¼ A or B .

2: IORDER – INTEGER Input

On entry: the order of the method to be used. The number of starting weights, p is determined by
METHOD and IORDER.

If METHOD ¼ A , p ¼ IORDER� 1.

If METHOD ¼ B , p ¼ IORDER.

Constraints:

if METHOD ¼ A , 3 � IORDER � 6;
if METHOD ¼ B , 2 � IORDER � 5.

3: OMEGAðNOMGÞ – REAL (KIND=nag_wp) array Output

On exit: contains the first NOMG convolution weights.

4: NOMG – INTEGER Input

On entry: the number of convolution weights, nw.

Constraint: NOMG � 1.

5: LENSW – INTEGER Output

On exit: the number of rows in the weights Wi;j.

6: SWðLDSW;NWTÞ – REAL (KIND=nag_wp) array Output

On ex i t : SWði; j þ 1Þ con t a i n s t he we igh t s Wi;j , f o r i ¼ 1; 2; . . . ;LENSW and
j ¼ 0; 1; . . . ;NWT� 1, where n is as defined in Section 3.

7: LDSW – INTEGER Input

On entry: the first dimension of the array SW as declared in the (sub)program from which
D05BWF is called.

Constraints:

if METHOD ¼ A , LDSW � NOMGþ IORDER � 2;
if METHOD ¼ B , LDSW � NOMGþ IORDER � 1.

8: NWT – INTEGER Input

On entry: p, the number of columns in the starting weights.

Constraints:

if METHOD ¼ A , NWT ¼ IORDER � 1;
if METHOD ¼ B , NWT ¼ IORDER.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ A or B .

IFAIL ¼ 2

On entry, IORDER < 2 or IORDER > 6,
or NOMG < 1.

IFAIL ¼ 3

On entry, METHOD ¼ A and IORDER ¼ 2,
or METHOD ¼ B and IORDER ¼ 6.

IFAIL ¼ 4

On entry, METHOD ¼ A and NWT 6¼ IORDER� 1,
or METHOD ¼ B and NWT 6¼ IORDER.

IFAIL ¼ 5

On entry, METHOD ¼ A and LDSW < NOMGþ IORDER� 2,
or METHOD ¼ B and LDSW < NOMGþ IORDER � 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D05BWF is not threaded in any implementation.
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9 Further Comments

Reducible quadrature rules are most appropriate for solving Volterra integral equations (and integro-
differential equations). In this section, we propose the following algorithm which you may find useful
in solving a linear Volterra integral equation of the form

y tð Þ ¼ f tð Þ þ
Z t

0
K t; sð Þy sð Þ ds; 0 � t � T; ð2Þ

using D05BWF. In (2), K t; sð Þ and f tð Þ are given and the solution y tð Þ is sought on a uniform mesh of
size h such that T ¼ nh. Discretization of (2) yields

yi ¼ f i� hð Þ þ h
Xp�1
j¼0

Wi;jK i; h; j; hð Þyj þ h
Xi
j¼p

!i�jK i; h; j; hð Þyj; ð3Þ

where yi ’ y i� hð Þ. We propose the following algorithm for computing yi from (3) after a call to
D05BWF:

(a) Equation (3) requires starting values, yj , for j ¼ 1; 2; . . . ;NWT� 1, with y0 ¼ f 0ð Þ. These starting
values can be computed by solving the linear system

yi ¼ f i� hð Þ þ h
XNWT�1

j¼0
SWði; jþ 1ÞK i; h; j; hð Þyj; i ¼ 1; 2; . . . ;NWT� 1:

(b) Compute the inhomogeneous terms

�i ¼ f i� hð Þ þ h
XNWT�1

j¼0
SWði; jþ 1ÞK i; h; j; hð Þyj; i ¼ NWT;NWTþ 1; . . . ; n:

(c) Start the iteration for i ¼ NWT;NWTþ 1; . . . ; n to compute yi from:

1� h� OMEGAð1ÞK i; h; i; hð Þð Þyi ¼ �i þ h
Xi�1

j¼NWT

OMEGAði� jþ 1ÞK i; h; j; hð Þyj:

Note that for a nonlinear integral equation, the solution of a nonlinear algebraic system is required at
step (a) and a single nonlinear equation at step (c).

10 Example

The following example generates the first ten convolution and thirteen starting weights generated by the
fourth-order BDF method.

10.1 Program Text

Program d05bwfe

! D05BWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d05bwf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iorder = 4, nomg = 10, nout = 6
Integer, Parameter :: nwt = iorder
Integer, Parameter :: ldsw = nomg + iorder - 1

! .. Local Scalars ..
Integer :: ifail, lensw, n

! .. Local Arrays ..
Real (Kind=nag_wp) :: omega(nomg), sw(ldsw,nwt)

! .. Executable Statements ..
Write (nout,*) ’D05BWF Example Program Results’
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ifail = 0
Call d05bwf(’BDF’,iorder,omega,nomg,lensw,sw,ldsw,nwt,ifail)

Write (nout,*)
Write (nout,*) ’The convolution weights’
Write (nout,*)

Do n = 1, nomg
Write (nout,99999) n - 1, omega(n)

End Do

Write (nout,*)
Write (nout,*) ’The weights W’
Write (nout,*)

Do n = 1, lensw
Write (nout,99999) n, sw(n,1:nwt)

End Do

99999 Format (1X,I3,4X,6F10.4)
End Program d05bwfe

10.2 Program Data

None.

10.3 Program Results

D05BWF Example Program Results

The convolution weights

0 0.4800
1 0.9216
2 1.0783
3 1.0504
4 0.9962
5 0.9797
6 0.9894
7 1.0003
8 1.0034
9 1.0017

The weights W

1 0.3750 0.7917 -0.2083 0.0417
2 0.3333 1.3333 0.3333 0.0000
3 0.3750 1.1250 1.1250 0.3750
4 0.4800 0.7467 1.5467 0.7467
5 0.5499 0.5719 1.5879 0.8886
6 0.5647 0.5829 1.5016 0.8709
7 0.5545 0.6385 1.4514 0.8254
8 0.5458 0.6629 1.4550 0.8098
9 0.5449 0.6578 1.4741 0.8170

10 0.5474 0.6471 1.4837 0.8262
11 0.5491 0.6428 1.4831 0.8292
12 0.5492 0.6438 1.4798 0.8279
13 0.5488 0.6457 1.4783 0.8263
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NAG Library Routine Document

D05BYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D05BYF computes the fractional quadrature weights associated with the Backward Differentiation
Formulae (BDF) of orders 4, 5 and 6. These weights can then be used in the solution of weakly singular
equations of Abel type.

2 Specification

SUBROUTINE D05BYF (IORDER, IQ, LENFW, WT, SW, LDSW, WORK, LWK, IFAIL)

INTEGER IORDER, IQ, LENFW, LDSW, LWK, IFAIL
REAL (KIND=nag_wp) WT(LENFW), SW(LDSW,2*IORDER-1), WORK(LWK)

3 Description

D05BYF computes the weights Wi;j and !i for a family of quadrature rules related to a BDF method for
approximating the integral:

1ffiffiffi
	
p
Z t

0


 sð Þffiffiffiffiffiffiffiffiffiffi
t� s
p ds ’

ffiffiffi
h
p X2p�2

j¼0
Wi;j
 j� hð Þ þ

ffiffiffi
h
p Xi

j¼2p�1
!i�j
 j� hð Þ; 0 � t � T; ð1Þ

with t ¼ i� h i � 0ð Þ, for some given h. In (1), p is the order of the BDF method used and Wi;j, !i are
the fractional starting and the fractional convolution weights respectively. The algorithm for the
generation of !i is based on Newton's iteration. Fast Fourier transform (FFT) techniques are used for
computing these weights and subsequently Wi;j (see Baker and Derakhshan (1987) and Henrici (1979)
for practical details and Lubich (1986) for theoretical details). Some special functions can be
represented as the fractional integrals of simpler functions and fractional quadratures can be employed
for their computation (see Lubich (1986)). A description of how these weights can be used in the
solution of weakly singular equations of Abel type is given in Section 9.

4 References

Baker C T H and Derakhshan M S (1987) Computational approximations to some power series
Approximation Theory (eds L Collatz, G Meinardus and G NÏrnberger) 81 11–20

Henrici P (1979) Fast Fourier methods in computational complex analysis SIAM Rev. 21 481–529

Lubich Ch (1986) Discretized fractional calculus SIAM J. Math. Anal. 17 704–719

5 Arguments

1: IORDER – INTEGER Input

On entry: p, the order of the BDF method to be used.

Constraint: 4 � IORDER � 6.

2: IQ – INTEGER Input

On entry: determines the number of weights to be computed. By setting IQ to a value, 2IQþ1

fractional convolution weights are computed.

Constraint: IQ � 0.
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3: LENFW – INTEGER Input

On entry: the dimension of the array WT as declared in the (sub)program from which D05BYF is
called.

Constraint: LENFW � 2IQþ2.

4: WTðLENFWÞ – REAL (KIND=nag_wp) array Output

On exit: the first 2IQþ1 elements of WT contains the fractional convolution weights !i, for
i ¼ 0; 1; . . . ; 2IQþ1 � 1. The remainder of the array is used as workspace.

5: SWðLDSW; 2� IORDER � 1Þ – REAL (KIND=nag_wp) array Output

On exit: SWði; j þ 1Þ contains the fractional starting weights Wi�1;j , for i ¼ 1; 2; . . . ;N and
j ¼ 0; 1; . . . ; 2� IORDER � 2, where N ¼ 2IQþ1 þ 2� IORDER � 1

� �
.

6: LDSW – INTEGER Input

On entry: the first dimension of the array SW as declared in the (sub)program from which
D05BYF is called.

Constraint: LDSW � 2IQþ1 þ 2� IORDER � 1.

7: WORKðLWKÞ – REAL (KIND=nag_wp) array Workspace
8: LWK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
D05BYF is called.

Constraint: LWK � 2IQþ3.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IORDER < 4 or IORDER > 6,
or IQ < 0,
or LENFW < 2IQþ2,
or LDSW < 2IQþ1 þ 2� IORDER � 1,
or LWK < 2IQþ3.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D05BYF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D05BYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Fractional quadrature weights can be used for solving weakly singular integral equations of Abel type.
In this section, we propose the following algorithm which you may find useful in solving a linear
weakly singular integral equation of the form

y tð Þ ¼ f tð Þ þ 1ffiffiffi
	
p
Z t

0

K t; sð Þy sð Þffiffiffiffiffiffiffiffiffiffi
t� s
p ds; 0 � t � T; ð2Þ

using D05BYF. In (2), K t; sð Þ and f tð Þ are given and the solution y tð Þ is sought on a uniform mesh of
size h such that T ¼ N � h. Discretization of (2) yields

yi ¼ f i� hð Þ þ
ffiffiffi
h
p X2p�2

j¼0
Wi;jK i� h; j� hð Þyj þ

ffiffiffi
h
p Xi

j¼2p�1
!i�jK i� h; j� hð Þyj; ð3Þ

where yi ’ y i � hð Þ, for i ¼ 1; 2; . . . ;N. We propose the following algorithm for computing yi from (3)
after a call to D05BYF:

(a) Set N ¼ 2IQþ1 þ 2� IORDER� 2 and h ¼ T=N .

(b) Equation (3) requires 2� IORDER� 2 starting values, yj , for j ¼ 1; 2; . . . ; 2� IORDER � 2, with
y0 ¼ f 0ð Þ. These starting values can be computed by solving the system

yi ¼ f i� hð Þ þ
ffiffiffi
h
p X2�IORDER�2

j¼0
SWðiþ 1; jþ 1ÞK i� h; j� hð Þyj; i ¼ 1; 2; . . . ; 2� IORDER� 2:
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(c) Compute the inhomogeneous terms

�i ¼ f i� hð Þ þ
ffiffiffi
h
p X2�IORDER�2

j¼0
SWðiþ 1; jþ 1ÞK i� h; j� hð Þyj; i ¼ 2� IORDER � 1; 2� IORDER; . . . ;N :

(d) Start the iteration for i ¼ 2� IORDER � 1; 2� IORDER; . . . ;N to compute yi from:

1�
ffiffiffi
h
p

WTð1ÞK i� h; i� hð Þ
� �

yi ¼ �i þ
ffiffiffi
h
p Xi�1

j¼2�IORDER�1
WTði� jþ 1ÞK i� h; j� hð Þyj:

Note that for nonlinear weakly singular equations, the solution of a nonlinear algebraic system is
required at step (b) and a single nonlinear equation at step (d).

10 Example

The following example generates the first 16 fractional convolution and 23 fractional starting weights
generated by the fourth-order BDF method.

10.1 Program Text

Program d05byfe

! D05BYF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d05byf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iorder = 4, iq = 3
Integer, Parameter :: itiq = 2**(iq+1)
Integer, Parameter :: itpmt = 2*iorder - 1
Integer, Parameter :: ldsw = itiq + itpmt
Integer, Parameter :: lenfw = 2*itiq
Integer, Parameter :: lwk = 4*itiq
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: sw(ldsw,itpmt), work(lwk), wt(lenfw)

! .. Executable Statements ..
Write (nout,*) ’D05BYF Example Program Results’

ifail = 0
Call d05byf(iorder,iq,lenfw,wt,sw,ldsw,work,lwk,ifail)

Write (nout,*)
Write (nout,*) ’Fractional convolution weights’
Write (nout,*)

Do i = 1, itiq
Write (nout,99999) i - 1, wt(i)

End Do

Write (nout,*)
Write (nout,*) ’Fractional starting weights’
Write (nout,*)

Do i = 1, ldsw
Write (nout,99999) i - 1, sw(i,1:itpmt)

End Do

99999 Format (1X,I5,7F9.4)
End Program d05byfe
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10.2 Program Data

None.

10.3 Program Results

D05BYF Example Program Results

Fractional convolution weights

0 0.6928
1 0.6651
2 0.4589
3 0.3175
4 0.2622
5 0.2451
6 0.2323
7 0.2164
8 0.2006
9 0.1878

10 0.1780
11 0.1700
12 0.1629
13 0.1566
14 0.1508
15 0.1457

Fractional starting weights

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0565 2.8928 -6.7497 11.6491 -11.1355 5.5374 -1.1223
2 0.0371 1.7401 -2.8628 6.5207 -6.4058 3.2249 -0.6583
3 0.0300 1.3207 -2.4642 6.3612 -5.4478 2.7025 -0.5481
4 0.0258 1.1217 -2.2620 5.3683 -3.7553 2.2132 -0.4549
5 0.0230 0.9862 -2.0034 4.5005 -3.2772 2.7262 -0.4320
6 0.0208 0.9001 -1.8989 4.2847 -3.5881 2.8201 0.2253
7 0.0190 0.8506 -1.9250 4.4164 -4.0181 2.7932 0.1564
8 0.0173 0.8177 -1.9697 4.5348 -4.2425 2.7458 -0.0697
9 0.0160 0.7886 -1.9781 4.5318 -4.2769 2.6997 -0.2127

10 0.0149 0.7603 -1.9548 4.4545 -4.2332 2.6541 -0.2620
11 0.0140 0.7338 -1.9198 4.3619 -4.1782 2.6059 -0.2716
12 0.0132 0.7097 -1.8842 4.2754 -4.1246 2.5544 -0.2767
13 0.0125 0.6880 -1.8497 4.1933 -4.0662 2.5011 -0.2845
14 0.0119 0.6681 -1.8153 4.1109 -4.0004 2.4479 -0.2915
15 0.0114 0.6497 -1.7805 4.0279 -3.9304 2.3962 -0.2951
16 0.0110 0.6327 -1.7461 3.9463 -3.8598 2.3466 -0.2958
17 0.0105 0.6168 -1.7126 3.8677 -3.7907 2.2990 -0.2950
18 0.0102 0.6020 -1.6804 3.7926 -3.7238 2.2536 -0.2935
19 0.0098 0.5882 -1.6495 3.7209 -3.6589 2.2101 -0.2917
20 0.0095 0.5752 -1.6199 3.6523 -3.5961 2.1686 -0.2895
21 0.0093 0.5631 -1.5916 3.5867 -3.5356 2.1291 -0.2871
22 0.0090 0.5517 -1.5644 3.5240 -3.4774 2.0914 -0.2844
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NAG Library Chapter Contents

D06 – Mesh Generation

D06 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

D06AAF 20 nagf_mesh_2d_gen_inc
Generates a two-dimensional mesh using a simple incremental method

D06ABF 20 nagf_mesh_2d_gen_delaunay
Generates a two-dimensional mesh using a Delaunay–Voronoi process

D06ACF 20 nagf_mesh_2d_gen_front
Generates a two-dimensional mesh using an Advancing-front method

D06BAF 20 nagf_mesh_2d_gen_boundary
Generates a boundary mesh

D06CAF 20 nagf_mesh_2d_smooth_bary
Uses a barycentering technique to smooth a given mesh

D06CBF 20 nagf_mesh_2d_sparsity
Generates a sparsity pattern of a Finite Element matrix associated with a
given mesh

D06CCF 20 nagf_mesh_2d_renumber
Renumbers a given mesh using Gibbs method

D06DAF 20 nagf_mesh_2d_transform_affine
Generates a mesh resulting from an affine transformation of a given mesh

D06DBF 20 nagf_mesh_2d_join
Joins together two given adjacent (possibly overlapping) meshes
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1 Scope of the Chapter

This chapter is concerned with automatic mesh generation

with line segments, over the boundary of a closed two-dimensional connected polygonal domain;

with triangles, over a given two-dimensional region using only its boundary mesh.

2 Background to the Problems

An important area of scientific computing in engineering is the solution of partial differential equations
of various type (for solid mechanics, fluid mechanics, thermal modelling, . . .) by means of the finite
element method. In essence, the finite element method is a numerical technique which solves the
governing equations of a complicated system through a discretization process. You may wish to consult
Cheung et al. (1996) to see an application of the finite element method to solid mechanics and field
problems.

A key requirement of the Finite Element method is a mesh, which subdivides the region on which the
partial differential equations are defined. Note that such meshes are also essential to other discretization
processes, such as the Finite Volume method. However, for the purpose this description we focus
(without loss of generality) on the Finite Element method. Thus, meshing algorithms are of crucial
importance in every numerical simulation based on the finite element method. In particular, the
accuracy and even the validity of a solution is strongly tied to the properties of the underlying mesh of
the domain under consideration.

In this chapter, the Delaunay constrained 2D triangulation (see George and Borouchaki (1998) or
Chapter 7 of Cheung et al. (1996)) is considered and routines are provided to triangulate a closed
polygonal domain of R2, given a mesh of its boundary (in a later Mark of the Library, software for the
3D case will be available). A domain in R

2 is given via a discretization of its boundary. The boundary
is described as a list of segments, with given end point coordinates. Then an incremental method is used
to generate the set of interior vertices.

Let � be a closed bounded domain in R
2 or R3. The question is how to construct a triangulation (mesh)

of this domain suitable for a finite element framework. Following the definition in George and
Borouchaki (1998):

T is a mesh of � if

� ¼
S
K2TK:

Every element K in T is non-empty.

The intersection of the interior of any two elements is empty.

The intersection of any two elements in T is either,

the empty set,

a vertex,

an edge,

a face (in R
3).

In the finite element method, the meshes are in general denoted T or T h, where the index h refers to a
measure of the diameter (length of the longest edge) of the elements in the mesh. A triangulation is a
set of entities described in a suitable manner by picking an adequate data structure. The algorithm for
triangulation construction creates a table of elements in the triangulation as well as the neighbourhood
relationships between the elements. Those elements are meant to satisfy the so-called ‘empty sphere
criterion’ which means that the open ball associated with the element (the circumcircle of the triangle in
2D, and the circumsphere of the tetrahedron in 3D) does not contain any vertices (while the closed ball
contains the vertices of the element in consideration only). This criterion is a characterisation of the
Delaunay triangulation.

Given T i the Delaunay triangulation of the convex hull of the first i points, the purpose of the
incremental method (which is the main method to generate nodes and elements inside the domain) is
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to obtain T iþ1 the Delaunay triangulation which includes an iþ 1ð Þth point P as an element vertex. To
this end, one can introduce a procedure referred to as the ‘Delaunay kernel’ construction. This kernel is

T iþ1 ¼ T i � CP þ BP ;

where BP is the ball associated with P and CP is the associated cavity. The ball associated with a given
point P is the set of elements in the triangulation including P as a vertex, while the cavity is the set of
elements whose circumcircles or circumballs enclose the point P . One can prove that, given T i a
Delaunay triangulation of a convex hull of the first i points, then T iþ1 is a Delaunay triangulation of the
hull that includes P as the iþ 1ð Þth vertex. The completion of a Delaunay triangulation relies on
applying the Delaunay kernel procedure to every point.

The problems here are

to choose the input data T 0 of the incremental method, and

to generate at each iteration this iþ 1ð Þth point, such that T iþ1 is still a Delaunay triangulation
of the convex hull of the iþ 1ð Þ points.

For a finite element application, it is required to construct a mesh of the domain � whose elements are
as close to equilateral as possible.

The mesh generation methods include an initial creation stage resulting in a mesh T 0, without internal
points, except for any specified interior points (see George and Borouchaki (1998) for more details).
Such a mesh is referred to as the ‘empty mesh’. This mesh consists of a box which includes the whole
geometry plus some vertices on the edge of that box. From here the methods differ in how the required
internal points are created.

The general principle of interior mesh generation is to either create a point and insert it immediately by
means of the Delaunay method (the so-called Delaunay kernel), repeating the process as long as points
can be created, or to generate a series of points, insert this series and iterate the process as long as a
non-empty series is created. At this stage it is quite useful to define the notion of a control space to
govern the internal point creation. The ‘ideal’ control is the input of a function defined analytically at
any point of R

2 and which specifies the size and the direction features that must be conformed to
anywhere in the space.

To construct such a function, one can consider several approaches. For our purpose in this chapter, this
control function computes, from data, the local step sizes (the desired distance between two points)
related to the given points. A generalized interpolation then enables us to obtain the function
everywhere. This process is purely geometric in the sense that it relies only on the geometric data
properties: boundary edge lengths, and so on. You are advised to consult George and Borouchaki (1998)
for more details about this strategy, especially about the other approaches which can be considered to
construct the control function.

3 Recommendations on Choice and Use of Available Routines

3.1 Boundary Mesh Generation

The first step to mesh any domain of R2 or R3 is to generate a mesh of the domain boundary. In this
chapter, since only the 2D case is considered, the relevant routine is D06BAF. This routine meshes with
segments a boundary of a closed connected polygonal domain of R2, given a set of characteristic points
and characteristic lines which define the shape of the frontier. The boundary has to be partitioned into
geometrically simple lines. Each line segment may be a straight line, a curve defined by an equation of
the type f x; yð Þ ¼ 0, or simply a polygonal curve, delimited by characteristic points (end points of the
lines). Then, you can assemble those lines into connected components of the domain boundary.

3.2 Interior Mesh Generation

In this chapter three routines are provided to mesh a domain given a discretization of its boundary with
optionally specified interior points.
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D06ABF uses an internal point construction method along the internal edges. Using the control
function, a small number of points are generated along each edge.

D06ACF uses a point creation method based on an advancing front point placement strategy,
starting from the ‘empty mesh’.

D06AAF uses a simple incremental method based on a control function given analytically via the
argument POWER.

Any point construction method results in a set of points. These points are then inserted by means of the
Delaunay kernel.

The point insertion process is completed by successive waves. The first wave results from the empty
mesh edge analysis (edge method) or from the empty mesh front analysis (advancing front method).
Subsequent waves correspond to the analysis of the edges of the previous mesh. For the advancing front
strategy, the waves follow the analysis of the front associated with the current mesh.

One can propose a general scheme for a mesh generation method. Seven steps can be identified as
follows.

Preparation step.

Data input: point coordinates, boundary edges and internal edges (if any),

construction of the bounding box,

meshing of this box by means of a few triangles.

Construction of the box mesh.

Insertion of the given points in the box mesh using the Delaunay kernel.

Construction of the empty mesh.

Search for the missing specified edges,

enforcement of these edges,

definition of the connected components of the domain.

Internal point creation and point insertion.

Control space definition,

1ð Þ internal edge analysis, point creation along these edges,

point insertion via the Delaunay kernel and return to 1ð Þ.
Domain definition.

Removal of the elements exterior to the domain,

classification of the elements with respect to the connected components.

Optimization.

edge swapping,

point relocation, . . .

File output.

When using the advancing front approach described earlier, one has to replace the step denoted by 1ð Þ
of the general scheme. The analysis of the edges of the current mesh is then replaced by the front
analysis.

Due to the fact that the particular mesh generated by D06AAF, D06ABF and D06ACF may be sensitive
to the platform being used; there may be differences between generated nodal coordinates and
connectivities. However all meshes generated should be expected to satisfy the ‘empty sphere criterion’.
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3.3 Mesh Management and Utility Routines

In addition to meshing routines, management and utility routines are also available in this chapter.

A mesh smoother routine D06CAF, is provided to improve mesh triangle quality.

Since the Finite Element framework includes a requirement to solve matrices based on meshes, the
routine D06CBF generates the sparsity pattern of such a matrix. Due to the fact that the numbering of
unknowns in a linear system could be crucial in term of storage and performance issues, a vertex
renumbering routine D06CCF is provided. This routine also returns the new sparsity pattern based on
the renumbered mesh.

To mesh a complicated geometry, it is sometimes better to partition the whole geometry into a set of
geometrically simpler ones. Some geometry could also be deducted from another geometry by an affine
transformation and D06DAF could be used for that purpose. D06DBF is provided to join all the simple
geometry meshes. This routine can also handle the joining of two adjacent as well as overlapping
meshes, which may be useful in a domain decomposition framework.

4 Example of Use in the Solution of a Partial Differential Equation

The use of Chapter D06 mesh generation routines, together with sparse solver routines from Chapter
F11 to solve partial differential equations with the finite element method is described in a NAG
Technical Report (see Bouhamou (2001)). This report, and accompanying source code, is available from
the NAG web site, or by contacting one of the NAG Response Centres.

5 Functionality Index

Boundary mesh generation,
2D boundary mesh generation ........................................................................................ D06BAF

Interior mesh generation,
2D mesh generation using advancing front method........................................................ D06ACF
2D mesh generation using a simple incremental method ............................................... D06AAF
2D mesh generation using Delaunay–Voronoi method ................................................... D06ABF

Mesh Management and Utility routine,
2D mesh smoother using a barycentering technique....................................................... D06CAF
2D mesh transformer by an affine transformation .......................................................... D06DAF
2D mesh vertex renumbering.......................................................................................... D06CCF
finite Element matrix sparsity pattern generation............................................................ D06CBF
joins together two given adjacent (possibly overlapping) meshes................................... D06DBF

6 Auxiliary Routines Associated with Library Routine Arguments

D06BAD nagf_mesh_2d_gen_boundary_dummy_fbnd
See the description of the argument FBND in D06BAF.

7 Routines Withdrawn or Scheduled for Withdrawal

None.

8 References

Bouhamou N (2001) The use of NAG mesh generation and sparse solver routines for solving partial
differential equations NAG Technical Report TR 1/01 NAG Ltd, Oxford

Cheung Y K, Lo S H and Leung A Y T (1996) Finite Element Implementation Blackwell Science
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George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

Quarteroni A and Valli A (1997) Numerical approximation of partial differential equations Comp.
Maths. 23
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NAG Library Routine Document

D06AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D06AAF generates a triangular mesh of a closed polygonal region in R
2, given a mesh of its boundary.

It uses a simple incremental method.

2 Specification

SUBROUTINE D06AAF (NVB, NVMAX, NEDGE, EDGE, NV, NELT, COOR, CONN,
BSPACE, SMOOTH, COEF, POWER, ITRACE, RWORK, LRWORK,
IWORK, LIWORK, IFAIL)

&
&

INTEGER NVB, NVMAX, NEDGE, EDGE(3,NEDGE), NV, NELT,
CONN(3,2*(NVMAX-1)), ITRACE, LRWORK, IWORK(LIWORK),
LIWORK, IFAIL

&
&

REAL (KIND=nag_wp) COOR(2,NVMAX), BSPACE(NVB), COEF, POWER,
RWORK(LRWORK)

&

LOGICAL SMOOTH

3 Description

D06AAF generates the set of interior vertices using a process based on a simple incremental method. A
smoothing of the mesh is optionally available. For more details about the triangulation method, consult
the D06 Chapter Introduction as well as George and Borouchaki (1998).

This routine is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

5 Arguments

1: NVB – INTEGER Input

On entry: the number of vertices in the input boundary mesh.

Constraint: 3 � NVB � NVMAX.

2: NVMAX – INTEGER Input

On entry: the maximum number of vertices in the mesh to be generated.

3: NEDGE – INTEGER Input

On entry: the number of boundary edges in the input mesh.

Constraint: NEDGE � 1.
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4: EDGEð3;NEDGEÞ – INTEGER array Input

On entry: the specification of the boundary edges. EDGEð1; jÞ and EDGEð2; jÞ contain the vertex
numbers of the two end points of the jth boundary edge. EDGEð3; jÞ is a user-supplied tag for
the jth boundary edge and is not used by D06AAF.

Cons t r a i n t : 1 � EDGEði; jÞ � NVB and EDGEð1; jÞ 6¼ EDGEð2; jÞ, f o r i ¼ 1; 2 and
j ¼ 1; 2; . . . ;NEDGE.

5: NV – INTEGER Output

On exit: the total number of vertices in the output mesh (including both boundary and interior
vertices). If NVB ¼ NVMAX, no interior vertices will be generated and NV ¼ NVB.

6: NELT – INTEGER Output

On exit: the number of triangular elements in the mesh.

7: COORð2;NVMAXÞ – REAL (KIND=nag_wp) array Input/Output

On entry: COORð1; iÞ contains the x coordinate of the ith input boundary mesh vertex; while
COORð2; iÞ contains the corresponding y coordinate, for i ¼ 1; 2; . . . ;NVB.

On exit: COORð1; iÞ will contain the x coordinate of the i � NVBð Þth generated interior mesh
vertex; while COORð2; iÞ will contain the corresponding y coordinate, for i ¼ NVBþ 1; . . . ;NV.
The remaining elements are unchanged.

8: CONNð3; 2� NVMAX� 1ð ÞÞ – INTEGER array Output

On exit: the connectivity of the mesh between triangles and vertices. For each triangle j,
CONNði; jÞ gives the indices of its three vertices (in anticlockwise order), for i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT.

9: BSPACEðNVBÞ – REAL (KIND=nag_wp) array Input

On entry: the desired mesh spacing (triangle diameter, which is the length of the longer edge of
the triangle) near the boundary vertices.

Constraint: BSPACEðiÞ > 0:0, for i ¼ 1; 2; . . . ;NVB.

10: SMOOTH – LOGICAL Input

On entry: indicates whether or not mesh smoothing should be performed.

If SMOOTH ¼ :TRUE:, the smoothing is performed; otherwise no smoothing is performed.

11: COEF – REAL (KIND=nag_wp) Input

On entry: the coefficient in the stopping criteria for the generation of interior vertices. This
argument controls the triangle density and the number of triangles generated is in O COEF2

� �
.

The mesh will be finer if COEF is greater than 0:7165 and 0:75 is a good value.

Suggested value: 0:75.

12: POWER – REAL (KIND=nag_wp) Input

On entry: controls the rate of change of the mesh size during the generation of interior vertices.
The smaller the value of POWER, the faster the decrease in element size away from the
boundary.

Suggested value: 0:25.

Constraint: 0:1 � POWER � 10:0.
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13: ITRACE – INTEGER Input

On entry: the level of trace information required from D06AAF.

ITRACE � 0
No output is generated.

ITRACE � 1
Output from the meshing solver is printed on the current advisory message unit (see
X04ABF). This output contains details of the vertices and triangles generated by the
process.

You are advised to set ITRACE ¼ 0, unless you are experienced with finite element mesh
generation.

14: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Workspace
15: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D06AAF is called.

Constraint: LRWORK � NVMAX.

16: IWORKðLIWORKÞ – INTEGER array Workspace
17: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D06AAF is called.

Constraint: LIWORK � 16� NVMAXþ 2� NEDGEþmax 4� NVMAXþ 2;NEDGEð Þ � 14.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NVB < 3 or NVB > NVMAX,
or NEDGE < 1,
or EDGEði; jÞ < 1 or EDGEði; jÞ > NVB, for some i ¼ 1; 2 and j ¼ 1; 2; . . . ;NEDGE,
or EDGEð1; jÞ ¼ EDGEð2; jÞ, for some j ¼ 1; 2; . . . ;NEDGE,
or BSPACEðiÞ � 0:0, for some i ¼ 1; 2; . . . ;NVB,
or POWER < 0:1 or POWER > 10:0,
or LIWORK < 16� NVMAXþ 2� NEDGEþmax 4� NVMAXþ 2;NEDGEð Þ � 14,
or LRWORK < NVMAX.
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IFAIL ¼ 2

An error has occurred during the generation of the interior mesh. Check the definition of the
boundary (arguments COOR and EDGE) as well as the orientation of the boundary (especially in
the case of a multiple connected component boundary). Setting ITRACE > 0 may provide more
details.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D06AAF is not threaded in any implementation.

9 Further Comments

The position of the internal vertices is a function of the positions of the vertices on the given boundary.
A fine mesh on the boundary results in a fine mesh in the interior. The algorithm allows you to obtain a
denser interior mesh by varying NVMAX, BSPACE, COEF and POWER. But you are advised to
manipulate the last two arguments with care.

You are advised to take care to set the boundary inputs properly, especially for a boundary with
multiply connected components. The orientation of the interior boundaries should be in clockwise order
and opposite to that of the exterior boundary. If the boundary has only one connected component, its
orientation should be anticlockwise.

10 Example

In this example, a geometry with two holes (two interior circles inside an exterior one) is meshed using
the simple incremental method (see the D06 Chapter Introduction). The exterior circle is centred at the
origin with a radius 1:0, the first interior circle is centred at the point �0:5; 0:0ð Þ with a radius 0:49, and
the second one is centred at the point �0:5; 0:65ð Þ with a radius 0:15. Note that the points �1:0; 0:0ð Þ
and �0:5; 0:5ð Þ) are points of ‘near tangency’ between the exterior circle and the first and second
circles.

The boundary mesh has 100 vertices and 100 edges (see Figure 1 in Section 10.3). Note that the
particular mesh generated could be sensitive to the machine precision and therefore may differ from
one implementation to another. Figure 2 in Section 10.3 contains the output mesh.
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10.1 Program Text

Program d06aafe

! D06AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d06aaf, nag_wp, x01aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: meshout = 7, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: coef, pi2, power, r, theta, theta_i, &

x0, y0
Integer :: i, ifail, itrace, liwork, lrwork, &

nedge, nelt, nv, nvb, nvb1, nvb2, &
nvb3, nvmax

Logical :: smooth
Character (1) :: pmesh

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: bspace(:), coor(:,:), rwork(:)
Integer, Allocatable :: conn(:,:), edge(:,:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: cos, max, real, sin

! .. Executable Statements ..
Write (nout,*) ’D06AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Reading of the geometry
! Coordinates of the boundary mesh vertices and
! edges references.

Read (nin,*) nvb1, nvb2, nvb3, nvmax
nvb = nvb1 + nvb2 + nvb3
nedge = nvb

lrwork = nvmax
liwork = 16*nvmax + 2*nedge + max(4*nvmax+2,nedge-14)
Allocate (bspace(nvb),coor(2,nvmax),rwork(lrwork),conn(3,2*(nvmax- &

1)),edge(3,nedge),iwork(liwork))

! Outer circle
pi2 = 2.0_nag_wp*x01aaf(theta)
theta = pi2/real(nvb1,kind=nag_wp)
r = 1.0_nag_wp
x0 = 0.0_nag_wp
y0 = 0.0_nag_wp
Do i = 1, nvb1

theta_i = theta*real(i,kind=nag_wp)
coor(1,i) = x0 + r*cos(theta_i)
coor(2,i) = y0 + r*sin(theta_i)

End Do
! Larger inner circle

theta = pi2/real(nvb2,kind=nag_wp)
r = 0.49_nag_wp
x0 = -0.5_nag_wp
y0 = 0.0_nag_wp
Do i = 1, nvb2

theta_i = theta*real(i,kind=nag_wp)
coor(1,nvb1+i) = x0 + r*cos(theta_i)
coor(2,nvb1+i) = y0 + r*sin(theta_i)

End Do
! Smaller inner circle

theta = pi2/real(nvb3,kind=nag_wp)
r = 0.15_nag_wp
x0 = -0.5_nag_wp
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y0 = 0.65_nag_wp
Do i = 1, nvb3

theta_i = theta*real(i,kind=nag_wp)
coor(1,nvb1+nvb2+i) = x0 + r*cos(theta_i)
coor(2,nvb1+nvb2+i) = y0 + r*sin(theta_i)

End Do

! Boundary edges

Do i = 1, nedge
edge(1,i) = i
edge(2,i) = i + 1
edge(3,i) = 1

End Do
edge(2,nvb1) = 1
edge(2,nvb1+nvb2) = nvb1 + 1
edge(2,nvb) = nvb1 + nvb2 + 1

! Initialize mesh control parameters

bspace(1:nvb) = 0.05E0_nag_wp
smooth = .True.
itrace = 0
coef = 0.75E0_nag_wp
power = 0.25E0_nag_wp

! Call to the mesh generator

ifail = 0
Call d06aaf(nvb,nvmax,nedge,edge,nv,nelt,coor,conn,bspace,smooth,coef, &

power,itrace,rwork,lrwork,iwork,liwork,ifail)

Write (nout,*)
Read (nin,*) pmesh

Select Case (pmesh)
Case (’N’)

Write (nout,99999) ’NV =’, nv
Write (nout,99999) ’NELT =’, nelt

Case (’Y’)

! Output the mesh in a form suitable for printing

Write (meshout,*) ’# D06ABF Example Program Mesh results’
Do i = 1, nelt

Write (meshout,99998) coor(1,conn(1,i)), coor(2,conn(1,i))
Write (meshout,99998) coor(1,conn(2,i)), coor(2,conn(2,i))
Write (meshout,99998) coor(1,conn(3,i)), coor(2,conn(3,i))
Write (meshout,99998) coor(1,conn(1,i)), coor(2,conn(1,i))
Write (meshout,*)

End Do
Write (meshout,*)

Case Default
Write (nout,*) ’Problem with the printing option Y or N’

End Select

99999 Format (1X,A,I6)
99998 Format (2(2X,E13.6))

End Program d06aafe

10.2 Program Data

Note 1: since the data file for this example is quite large only a section of it is reproduced in this
document. The full data file is distributed with your implementation.

D06AAF Example Program Data
40 30 30 250 : nvb1, nvb2, nvb3, nvmax
’N’ : Print mesh? ’Y’ or ’N’
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10.3 Program Results

D06AAF Example Program Results

NV = 250
NELT = 402

Example Program
Figure 1: The Geometry of Circular Region With Two Holes
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Figure 2: Mesh Generated on the Geometry With Two Holes
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NAG Library Routine Document

D06ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D06ABF generates a triangular mesh of a closed polygonal region in R
2, given a mesh of its boundary.

It uses a Delaunay–Voronoi process, based on an incremental method.

2 Specification

SUBROUTINE D06ABF (NVB, NVINT, NVMAX, NEDGE, EDGE, NV, NELT, COOR, CONN,
WEIGHT, NPROPA, ITRACE, RWORK, LRWORK, IWORK, LIWORK,
IFAIL)

&
&

INTEGER NVB, NVINT, NVMAX, NEDGE, EDGE(3,NEDGE), NV, NELT,
CONN(3,2*NVMAX+5), NPROPA, ITRACE, LRWORK,
IWORK(LIWORK), LIWORK, IFAIL

&
&

REAL (KIND=nag_wp) COOR(2,NVMAX), WEIGHT(*), RWORK(LRWORK)

3 Description

D06ABF generates the set of interior vertices using a Delaunay–Voronoi process, based on an
incremental method. It allows you to specify a number of fixed interior mesh vertices together with
weights which allow concentration of the mesh in their neighbourhood. For more details about the
triangulation method, consult the D06 Chapter Introduction as well as George and Borouchaki (1998).

This routine is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

5 Arguments

1: NVB – INTEGER Input

On entry: the number of vertices in the input boundary mesh.

Constraint: NVB � 3.

2: NVINT – INTEGER Input

On entry: the number of fixed interior mesh vertices to which a weight will be applied.

Constraint: NVINT � 0.

3: NVMAX – INTEGER Input

On entry: the maximum number of vertices in the mesh to be generated.

Constraint: NVMAX � NVBþ NVINT.
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4: NEDGE – INTEGER Input

On entry: the number of boundary edges in the input mesh.

Constraint: NEDGE � 1.

5: EDGEð3;NEDGEÞ – INTEGER array Input

On entry: the specification of the boundary edges. EDGEð1; jÞ and EDGEð2; jÞ contain the vertex
numbers of the two end points of the jth boundary edge. EDGEð3; jÞ is a user-supplied tag for
the jth boundary edge and is not used by D06ABF.

Cons t r a i n t : 1 � EDGEði; jÞ � NVB and EDGEð1; jÞ 6¼ EDGEð2; jÞ, f o r i ¼ 1; 2 and
j ¼ 1; 2; . . . ;NEDGE.

6: NV – INTEGER Output

On exit: the total number of vertices in the output mesh (including both boundary and interior
vertices). If NVBþ NVINT ¼ NVMAX, no interior vertices will be generated and
NV ¼ NVMAX.

7: NELT – INTEGER Output

On exit: the number of triangular elements in the mesh.

8: COORð2;NVMAXÞ – REAL (KIND=nag_wp) array Input/Output

On entry: COORð1; iÞ contains the x coordinate of the ith input boundary mesh vertex, for
i ¼ 1; 2; . . . ;NVB. COORð1; iÞ contains the x coordinate of the i � NVBð Þth fixed interior vertex,
for i ¼ NVBþ 1; . . . ;NVBþ NVINT. For boundary and interior vertices, COORð2; iÞ contains
the corresponding y coordinate, for i ¼ 1; 2; . . . ;NVBþ NVINT.

On exit: COORð1; iÞ will contain the x coordinate of the i � NVB� NVINTð Þth generated
interior mesh vertex, for i ¼ NVBþ NVINTþ 1; . . . ;NV; while COORð2; iÞ will contain the
corresponding y coordinate. The remaining elements are unchanged.

9: CONNð3; 2� NVMAXþ 5Þ – INTEGER array Output

On exit: the connectivity of the mesh between triangles and vertices. For each triangle j,
CONNði; jÞ gives the indices of its three vertices (in anticlockwise order), for i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT.

10: WEIGHTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WEIGHT must be at least max 1;NVINTð Þ.
On entry: the weight of fixed interior vertices. It is the diameter of triangles (length of the longer
edge) created around each of the given interior vertices.

Constraint: if NVINT > 0, WEIGHTðiÞ > 0:0, for i ¼ 1; 2; . . . ;NVINT.

11: NPROPA – INTEGER Input

On entry: the propagation type and coefficient, the argument NPROPA is used when the internal
points are created. They are distributed in a geometric manner if NPROPA is positive and in an
arithmetic manner if it is negative. For more details see Section 9.

Constraint: NPROPA 6¼ 0.

12: ITRACE – INTEGER Input

On entry: the level of trace information required from D06ABF.

ITRACE � 0
No output is generated.

D06ABF NAG Library Manual

D06ABF.2 Mark 26



ITRACE � 1
Output from the meshing solver is printed on the current advisory message unit (see
X04ABF). This output contains details of the vertices and triangles generated by the
process.

You are advised to set ITRACE ¼ 0, unless you are experienced with finite element mesh
generation.

13: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Workspace
14: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D06ABF is called.

Constraint: LRWORK � 12� NVMAXþ 15.

15: IWORKðLIWORKÞ – INTEGER array Workspace
16: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D06ABF is called.

Constraint: LIWORK � 6� NEDGEþ 32� NVMAXþ 2� NVBþ 78.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NVB < 3,
or NVINT < 0,
or NVBþ NVINT > NVMAX,
or NEDGE < 1,
or EDGEði; jÞ < 1 or EDGEði; jÞ > NVB, for some i ¼ 1; 2 and j ¼ 1; 2; . . . ;NEDGE,
or EDGEð1; jÞ ¼ EDGEð2; jÞ, for some j ¼ 1; 2; . . . ;NEDGE,
or NPROPA ¼ 0;
or if NVINT > 0, WEIGHTðiÞ � 0:0, for some i ¼ 1; 2; . . . ;NVINT;
or LRWORK < 12� NVMAXþ 15,
or LIWORK < 6� NEDGEþ 32� NVMAXþ 2� NVBþ 78.

IFAIL ¼ 2

An error has occurred during the generation of the interior mesh. Check the definition of the
boundary (arguments COOR and EDGE) as well as the orientation of the boundary (especially in
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the case of a multiple connected component boundary). Setting ITRACE > 0 may provide more
details.

IFAIL ¼ 3

An error has occurred during the generation of the boundary mesh. It appears that NVMAX is
not large enough.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D06ABF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The position of the internal vertices is a function position of the vertices on the given boundary. A fine
mesh on the boundary results in a fine mesh in the interior. To dilute the influence of the data on the
interior of the domain, the value of NPROPA can be changed. The propagation coefficient is calculated

as: ! ¼ 1þ a� 1:0

20:0
, where a is the absolute value of NPROPA. During the process vertices are

generated on edges of the mesh T i to obtain the mesh T iþ1 in the general incremental method (consult
the D06 Chapter Introduction or George and Borouchaki (1998)). This generation uses the coefficient !,
and it is geometric if NPROPA > 0, and arithmetic otherwise. But increasing the value of a may lead to
failure of the process, due to precision, especially in geometries with holes. So you are advised to
manipulate the argument NPROPA with care.

You are advised to take care to set the boundary inputs properly, especially for a boundary with
multiply connected components. The orientation of the interior boundaries should be in clockwise order
and opposite to that of the exterior boundary. If the boundary has only one connected component, its
orientation should be anticlockwise.
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10 Example

In this example, a geometry with two holes (two wings inside an exterior circle) is meshed using a
Delaunay–Voronoi method. The exterior circle is centred at the point 1:0; 0:0ð Þ with a radius 3. The
main wing, using aerofoil RAE 2822 data, lies between the origin and the centre of the circle, while the
secondary aerofoil is produced from the first by performing a translation, a scale reduction and a
rotation. To be able to carry out some realistic computation on that geometry, some interior points have
been introduced to have a finer mesh in the wake of those aerofoils.

The boundary mesh has 296 vertices and 296 edges (see Section 10.3 top). Note that the particular mesh
generated could be sensitive to the machine precision and therefore may differ from one
implementation to another. The interior meshes for different values of NPROPA are given in
Section 10.3.

10.1 Program Text

Program d06abfe

! D06ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d06abf, f06epf, nag_wp, x01aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: meshout = 7, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, d, dnvint, r, s, theta, theta_i
Integer :: i, i1, ic, ifail, itrace, j, liwork, &

lrwork, nearest, nedge, nelt, &
nelt_near, npropa, nrae, nv, nvb, &
nvint, nvmax, nv_near

Character (1) :: pmesh
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: coor(:,:), rwork(:), weight(:)
Real (Kind=nag_wp) :: t(2)
Integer, Allocatable :: conn(:,:), edge(:,:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: cos, real, sin, tan

! .. Executable Statements ..
Write (nout,*) ’D06ABF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Reading of the geometry:
! number of points on RAE aerofoil data;
! number of points on circular boundary;
! maximum number of vertices.

Read (nin,*) nrae, nvint, nvmax
Read (nin,*) pmesh

nvb = nvint + 2*nrae
nedge = nvb

lrwork = 12*nvmax + 15
liwork = 6*nedge + 32*nvmax + 2*nvb + 78
Allocate (coor(2,nvmax),rwork(lrwork),weight(nvint),conn(3,2*nvmax+5), &

edge(3,nedge),iwork(liwork))

! Circular outer boundary, radius 3 and centre (1,0)
theta = 2.0_nag_wp*x01aaf(r)/real(nvint,kind=nag_wp)
r = 3.0_nag_wp
t(1) = 1.0_nag_wp
Do i = 1, nvint
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theta_i = theta*real(i-1,kind=nag_wp)
coor(1,i) = r*cos(theta_i) + t(1)
coor(2,i) = r*sin(theta_i)

End Do

! Read data for aerofoil RAE 2822
Do i = 1, nrae

Read (nin,*) i1, coor(1,nvint+i), coor(2,nvint+i)
End Do

! Transform RAE 2822 for secondary foil
theta = x01aaf(theta)/12.0_nag_wp
c = cos(theta)
s = sin(theta)
ic = nvint + nrae

! Copy and rotate coordinates by theta = pi/12
coor(1:2,ic+1:ic+nrae) = coor(1:2,nvint+1:ic)
Call f06epf(nrae,coor(1,ic+1),2,coor(2,ic+1),2,c,s)

! Reduce by 0.4 and translate to distance 0.25 from intercept at (0.75,0)
d = 0.4_nag_wp
t(1) = 0.75_nag_wp + 0.25_nag_wp*c
t(2) = -0.25_nag_wp*s
Do i = 1, nrae

coor(1:2,ic+i) = d*coor(1:2,ic+i) + t(1:2)
End Do

! Boundary edges
Do i = 1, nedge

edge(1,i) = i
edge(2,i) = i + 1
edge(3,i) = 0

End Do
! Tie up end of three boundary edges

edge(2,nvint) = 1
edge(2,nvint+nrae) = nvint + 1
edge(2,nedge) = nvint + nrae + 1

! Initialize mesh control parameters

itrace = 0

! Generation of interior vertices on the
! RAE airfoil’s wake

dnvint = 2.5E0_nag_wp/real(nvint+1,kind=nag_wp)

Do i = 1, nvint
i1 = nvb + i
coor(1,i1) = 1.38E0_nag_wp + real(i,kind=nag_wp)*dnvint
coor(2,i1) = -tan(theta)*(coor(1,i1)-0.75_nag_wp)

End Do

weight(1:nvint) = 0.01E0_nag_wp

Write (nout,*)

! Loop on the propagation coef

pcoef: Do j = 1, 4

nearest = 250
Select Case (j)
Case (1)

npropa = -5
Case (2)

npropa = -1
Case (3)

npropa = 1
Case Default

npropa = 5
End Select
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! Call to the 2D Delaunay-Voronoi mesh generator

ifail = 0
Call d06abf(nvb,nvint,nvmax,nedge,edge,nv,nelt,coor,conn,weight, &

npropa,itrace,rwork,lrwork,iwork,liwork,ifail)

Write (nout,99999) ’Mesh characteristics with NPROPA =’, npropa
nv_near = ((nv+nearest/2)/nearest)*nearest
nelt_near = ((nelt+nearest/2)/nearest)*nearest
Write (nout,99998) ’NV ’, nv_near, nearest
Write (nout,99998) ’NELT’, nelt_near, nearest

If (pmesh==’Y’) Then
! Output the mesh in a form suitable for printing

If (j==1) Then
Write (meshout,*) ’# D06ABF Example Program Mesh results’

End If
Write (meshout,99999) ’# Mesh line segments for NPROPA =’, npropa
Do i = 1, nelt

Write (meshout,99997) coor(1,conn(1,i)), coor(2,conn(1,i))
Write (meshout,99997) coor(1,conn(2,i)), coor(2,conn(2,i))
Write (meshout,99997) coor(1,conn(3,i)), coor(2,conn(3,i))
Write (meshout,99997) coor(1,conn(1,i)), coor(2,conn(1,i))
Write (meshout,*)

End Do
Write (meshout,*)

End If

End Do pcoef

99999 Format (1X,A,I6)
99998 Format (1X,A5,’ = ’,I10,’ to the nearest ’,I3)
99997 Format (2(2X,E13.6))

End Program d06abfe

10.2 Program Data

Note 1: since the data file for this example is quite large only a section of it is reproduced in this
document. The full data file is distributed with your implementation.

D06ABF Example Program Data
128 40 6000 : nrae nvint nvmax
’N’ : Printing mesh? ’Y’ or ’N’

01 0.000000E+00 0.000000E+00
.
.
.

128 0.602000E-03 -.316000E-02 : RAE Aerofoil 2822

10.3 Program Results

D06ABF Example Program Results

Mesh characteristics with NPROPA = -5
NV = 2250 to the nearest 250
NELT = 4250 to the nearest 250

Mesh characteristics with NPROPA = -1
NV = 4500 to the nearest 250
NELT = 8500 to the nearest 250

Mesh characteristics with NPROPA = 1
NV = 5250 to the nearest 250
NELT = 10000 to the nearest 250

Mesh characteristics with NPROPA = 5
NV = 2000 to the nearest 250
NELT = 3750 to the nearest 250
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Example Program
Geometry for Generating Meshes

Mesh Generated Using Arithmetic Coefficient ω=1.2
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Mesh Generated Using Arithmetic Coefficient ω=1.0

Mesh Generated Using Geometric Coefficient ω=1.0
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NAG Library Routine Document

D06ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D06ACF generates a triangular mesh of a closed polygonal region in R
2, given a mesh of its boundary.

It uses an Advancing Front process, based on an incremental method.

2 Specification

SUBROUTINE D06ACF (NVB, NVINT, NVMAX, NEDGE, EDGE, NV, NELT, COOR, CONN,
WEIGHT, ITRACE, RWORK, LRWORK, IWORK, LIWORK, IFAIL)

&

INTEGER NVB, NVINT, NVMAX, NEDGE, EDGE(3,NEDGE), NV, NELT,
CONN(3,2*NVMAX+5), ITRACE, LRWORK, IWORK(LIWORK),
LIWORK, IFAIL

&
&

REAL (KIND=nag_wp) COOR(2,NVMAX), WEIGHT(*), RWORK(LRWORK)

3 Description

D06ACF generates the set of interior vertices using an Advancing Front process, based on an
incremental method. It allows you to specify a number of fixed interior mesh vertices together with
weights which allow concentration of the mesh in their neighbourhood. For more details about the
triangulation method, consult the D06 Chapter Introduction as well as George and Borouchaki (1998).

This routine is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

5 Arguments

1: NVB – INTEGER Input

On entry: the number of vertices in the input boundary mesh.

Constraint: NVB � 3.

2: NVINT – INTEGER Input

On entry: the number of fixed interior mesh vertices to which a weight will be applied.

Constraint: NVINT � 0.

3: NVMAX – INTEGER Input

On entry: the maximum number of vertices in the mesh to be generated.

Constraint: NVMAX � NVBþ NVINT.

4: NEDGE – INTEGER Input

On entry: the number of boundary edges in the input mesh.

Constraint: NEDGE � 1.

D06 – Mesh Generation D06ACF

Mark 26 D06ACF.1



5: EDGEð3;NEDGEÞ – INTEGER array Input

On entry: the specification of the boundary edges. EDGEð1; jÞ and EDGEð2; jÞ contain the vertex
numbers of the two end points of the jth boundary edge. EDGEð3; jÞ is a user-supplied tag for
the jth boundary edge and is not used by D06ACF.

Cons t r a i n t : 1 � EDGEði; jÞ � NVB and EDGEð1; jÞ 6¼ EDGEð2; jÞ, f o r i ¼ 1; 2 and
j ¼ 1; 2; . . . ;NEDGE.

6: NV – INTEGER Output

On exit: the total number of vertices in the output mesh (including both boundary and interior
vertices). If NVBþ NVINT ¼ NVMAX, no interior vertices will be generated and
NV ¼ NVMAX.

7: NELT – INTEGER Output

On exit: the number of triangular elements in the mesh.

8: COORð2;NVMAXÞ – REAL (KIND=nag_wp) array Input/Output

On entry: COORð1; iÞ contains the x coordinate of the ith input boundary mesh vertex, for
i ¼ 1; 2; . . . ;NVB. COORð1; iÞ contains the x coordinate of the i � NVBð Þth fixed interior vertex,
for i ¼ NVBþ 1; . . . ;NVBþ NVINT. For boundary and interior vertices, COORð2; iÞ contains
the corresponding y coordinate, for i ¼ 1; 2; . . . ;NVBþ NVINT.

On exit: COORð1; iÞ will contain the x coordinate of the i � NVB� NVINTð Þth generated
interior mesh vertex, for i ¼ NVBþ NVINTþ 1; . . . ;NV; while COORð2; iÞ will contain the
corresponding y coordinate. The remaining elements are unchanged.

9: CONNð3; 2� NVMAXþ 5Þ – INTEGER array Output

On exit: the connectivity of the mesh between triangles and vertices. For each triangle j,
CONNði; jÞ gives the indices of its three vertices (in anticlockwise order), for i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT.

10: WEIGHTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WEIGHT must be at least max 1;NVINTð Þ.
On entry: the weight of fixed interior vertices. It is the diameter of triangles (length of the longer
edge) created around each of the given interior vertices.

Constraint: if NVINT > 0, WEIGHTðiÞ > 0:0, for i ¼ 1; 2; . . . ;NVINT.

11: ITRACE – INTEGER Input

On entry: the level of trace information required from D06ACF.

ITRACE � 0
No output is generated.

ITRACE � 1
Output from the meshing solver is printed on the current advisory message unit (see
X04ABF). This output contains details of the vertices and triangles generated by the
process.

You are advised to set ITRACE ¼ 0, unless you are experienced with finite element mesh
generation.
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12: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Workspace
13: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D06ACF is called.

Constraint: LRWORK � 12� NVMAXþ 30015.

14: IWORKðLIWORKÞ – INTEGER array Workspace
15: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D06ACF is called.

Constraint: LIWORK � 8� NEDGEþ 53� NVMAXþ 2� NVBþ 10078.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NVB < 3,
or NVINT < 0,
or NVBþ NVINT > NVMAX,
or NEDGE < 1,
or EDGEði; jÞ < 1 or EDGEði; jÞ > NVB, for some i ¼ 1; 2 and j ¼ 1; 2; . . . ;NEDGE,
or EDGEð1; jÞ ¼ EDGEð2; jÞ, for some j ¼ 1; 2; . . . ;NEDGE,
or if NVINT > 0, WEIGHTðiÞ � 0:0, for some i ¼ 1; 2; . . . ;NVINT;
or LRWORK < 12� NVMAXþ 30015,
or LIWORK < 8� NEDGEþ 53� NVMAXþ 2� NVBþ 10078.

IFAIL ¼ 2

An error has occurred during the generation of the interior mesh. Check the definition of the
boundary (arguments COOR and EDGE) as well as the orientation of the boundary (especially in
the case of a multiple connected component boundary). Setting ITRACE > 0 may provide more
details.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D06ACF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The position of the internal vertices is a function position of the vertices on the given boundary. A fine
mesh on the boundary results in a fine mesh in the interior. During the process vertices are generated on
edges of the mesh T i to obtain the mesh T iþ1 in the general incremental method (consult the D06
Chapter Introduction or George and Borouchaki (1998)).

You are advised to take care to set the boundary inputs properly, especially for a boundary with
multiply connected components. The orientation of the interior boundaries should be in clockwise order
and opposite to that of the exterior boundary. If the boundary has only one connected component, its
orientation should be anticlockwise.

10 Example

In this example, a geometry with two holes (two wings inside an exterior circle) is meshed using a
Delaunay–Voronoi method. The exterior circle is centred at the point 1:5; 0:0ð Þ with a radius 4:5, the
first wing begins at the origin and it is normalized, finally the last wing is also normalized and begins at
the point 0:8;�0:3ð Þ. To be able to carry out some realistic computation on that geometry, some interior
points have been introduced to have a finer mesh in the wake of those airfoils.

The boundary mesh has 120 vertices and 120 edges (see Figure 1 top). Note that the particular mesh
generated could be sensitive to the machine precision and therefore may differ from one
implementation to another.

10.1 Program Text

! D06ACF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d06acfe_mod

! D06ACF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None
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! .. Accessibility Statements ..
Private
Public :: fbnd

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function fbnd(i,x,y,ruser,iuser)

! .. Function Return Value ..
Real (Kind=nag_wp) :: fbnd

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x, y
Integer, Intent (In) :: i

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, radius, x0, x1, y0, y1

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
fbnd = 0.0_nag_wp

Select Case (i)
Case (1)

! upper NACA0012 wing beginning at the origin

c = 1.008930411365_nag_wp
fbnd = 0.6_nag_wp*(0.2969_nag_wp*sqrt(c*x)-0.126_nag_wp*c*x- &

0.3516_nag_wp*(c*x)**2+0.2843_nag_wp*(c*x)**3- &
0.1015_nag_wp*(c*x)**4) - c*y

Case (2)

! lower NACA0012 wing beginning at the origin

c = 1.008930411365_nag_wp
fbnd = 0.6_nag_wp*(0.2969_nag_wp*sqrt(c*x)-0.126_nag_wp*c*x- &

0.3516_nag_wp*(c*x)**2+0.2843_nag_wp*(c*x)**3- &
0.1015_nag_wp*(c*x)**4) + c*y

Case (3)
x0 = ruser(1)
y0 = ruser(2)
radius = ruser(3)
fbnd = (x-x0)**2 + (y-y0)**2 - radius**2

Case (4)

! upper NACA0012 wing beginning at (X1;Y1)

c = 1.008930411365_nag_wp
x1 = ruser(4)
y1 = ruser(5)
fbnd = 0.6_nag_wp*(0.2969_nag_wp*sqrt(c*(x- &

x1))-0.126_nag_wp*c*(x-x1)-0.3516_nag_wp*(c*(x- &
x1))**2+0.2843_nag_wp*(c*(x-x1))**3-0.1015_nag_wp*(c*(x-x1))**4) - &
c*(y-y1)

Case (5)

! lower NACA0012 wing beginning at (X1;Y1)

c = 1.008930411365_nag_wp
x1 = ruser(4)
y1 = ruser(5)
fbnd = 0.6_nag_wp*(0.2969_nag_wp*sqrt(c*(x- &

x1))-0.126_nag_wp*c*(x-x1)-0.3516_nag_wp*(c*(x- &
x1))**2+0.2843_nag_wp*(c*(x-x1))**3-0.1015_nag_wp*(c*(x-x1))**4) + &
c*(y-y1)

End Select

Return
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End Function fbnd
End Module d06acfe_mod
Program d06acfe

! D06ACF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d06acf, d06baf, f16dnf, nag_wp
Use d06acfe_mod, Only: fbnd, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: dnvint, radius, x0, x1, y0, y1
Integer :: i, ifail, itrace, j, k, liwork, &

lrwork, maxind, maxval, ncomp, &
nedge, nedmx, nelt, nlines, nv, nvb, &
nvint, nvint2, nvmax, reftk, sdcrus

Character (1) :: pmesh
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: coor(:,:), coorch(:,:), crus(:,:), &
rate(:), rwork(:), weight(:)

Real (Kind=nag_wp) :: ruser(5)
Integer, Allocatable :: conn(:,:), edge(:,:), iwork(:), &

lcomp(:), lined(:,:), nlcomp(:)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, real

! .. Executable Statements ..
Write (nout,*) ’D06ACF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Initialize boundary mesh inputs:
! the number of line and of the characteristic points of
! the boundary mesh

Read (nin,*) nlines, nvmax, nedmx
Allocate (coor(2,nvmax),coorch(2,nlines),rate(nlines),edge(3,nedmx), &

lcomp(nlines),lined(4,nlines))

Read (nin,*) coorch(1,1:nlines)
Read (nin,*) coorch(2,1:nlines)

! The Lines of the boundary mesh

Read (nin,*)(lined(1:4,j),rate(j),j=1,nlines)

sdcrus = 0

Do i = 1, nlines

If (lined(4,i)<0) Then
sdcrus = sdcrus + lined(1,i) - 2

End If

End Do

liwork = 8*nlines + nvmax + 3*nedmx + 3*sdcrus

! Get max(LINED(1,:)) for computing LRWORK

Call f16dnf(nlines,lined,4,maxind,maxval)

lrwork = 2*nlines + sdcrus + 2*maxval*nlines

! The number of connected components to the boundary
! and their information

Read (nin,*) ncomp
Allocate (crus(2,sdcrus),nlcomp(ncomp),iwork(liwork),rwork(lrwork))
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j = 1

Do i = 1, ncomp
Read (nin,*) nlcomp(i)
k = j + abs(nlcomp(i)) - 1
Read (nin,*) lcomp(j:k)
j = k + 1

End Do

! Data passed to the user-supplied function

x0 = 1.5_nag_wp
y0 = 0.0_nag_wp
radius = 4.5_nag_wp
x1 = 0.8_nag_wp
y1 = -0.3_nag_wp

ruser(1:5) = (/x0,y0,radius,x1,y1/)
iuser(1) = 0

itrace = 0

! Call to the 2D boundary mesh generator

ifail = 0
Call d06baf(nlines,coorch,lined,fbnd,crus,sdcrus,rate,ncomp,nlcomp, &

lcomp,nvmax,nedmx,nvb,coor,nedge,edge,itrace,ruser,iuser,rwork,lrwork, &
iwork,liwork,ifail)

Write (nout,*)
Read (nin,*) pmesh

Select Case (pmesh)
Case (’N’)

Write (nout,*) ’Boundary mesh characteristics’
Write (nout,99999) ’NVB =’, nvb
Write (nout,99999) ’NEDGE =’, nedge

Case (’Y’)

! Output the mesh

Write (nout,99998) nvb, nedge

Do i = 1, nvb
Write (nout,99997) i, coor(1:2,i)

End Do

Do i = 1, nedge
Write (nout,99996) i, edge(1:3,i)

End Do
Case Default

Write (nout,*) ’Problem with the printing option Y or N’
Go To 100

End Select

Deallocate (rwork,iwork)

! Initialize mesh control parameters

itrace = 0

! Generation of interior vertices
! for the wake of the first NACA

nvint = 40
lrwork = 12*nvmax + 30015
liwork = 8*nedge + 53*nvmax + 2*nvb + 10078
Allocate (weight(nvint),rwork(lrwork),conn(3,2*nvmax+5),iwork(liwork))

nvint2 = 20
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dnvint = 5.0_nag_wp/real(nvint2+1,kind=nag_wp)

Do i = 1, nvint2
reftk = nvb + i
coor(1,reftk) = 1.0_nag_wp + real(i,kind=nag_wp)*dnvint
coor(2,reftk) = 0.0_nag_wp

End Do

weight(1:nvint2) = 0.05_nag_wp

! for the wake of the second one

dnvint = 4.19_nag_wp/real(nvint2+1,kind=nag_wp)

Do i = nvint2 + 1, nvint
reftk = nvb + i
coor(1,reftk) = 1.8_nag_wp + real(i-nvint2,kind=nag_wp)*dnvint
coor(2,reftk) = -0.3_nag_wp

End Do

weight((nvint2+1):nvint) = 0.05_nag_wp

! Call to the 2D Advancing front mesh generator

ifail = 0
Call d06acf(nvb,nvint,nvmax,nedge,edge,nv,nelt,coor,conn,weight,itrace, &

rwork,lrwork,iwork,liwork,ifail)

Select Case (pmesh)
Case (’N’)

Write (nout,*) ’Complete mesh characteristics’
Write (nout,99999) ’NV (rounded to nearest 10) =’, 10*((nv+5)/10)
Write (nout,99999) ’NELT (rounded to nearest 10) =’, 10*((nelt+5)/10)

Case (’Y’)

! Output the mesh

Write (nout,99998) nv, nelt

Do i = 1, nv
Write (nout,99995) coor(1:2,i)

End Do

reftk = 0

Do k = 1, nelt
Write (nout,99994) conn(1:3,k), reftk

End Do

End Select

100 Continue

99999 Format (1X,A,I6)
99998 Format (1X,2I10)
99997 Format (2X,I4,2(2X,E13.6))
99996 Format (1X,4I4)
99995 Format (2(2X,E13.6))
99994 Format (1X,4I10)

End Program d06acfe

10.2 Program Data

D06ACF Example Program Data
8 2000 200 :NLINES (m), NVMAX, NEDMX
0.0000 1.0000 -3.0000 6.0000 0.8000
1.8000 1.5000 1.5000 :(COORCH(1,1:m))
0.0000 0.0000 0.0000 0.0000 -0.3000

-0.3000 4.5000 -4.5000 :(COORCH(2,1:m))
21 2 1 1 1.0000 21 1 2 2 1.0000
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11 3 8 3 1.0000 11 4 7 3 1.0000
21 6 5 4 1.0000 21 5 6 5 1.0000
11 7 3 3 1.0000 11 8 4 3 1.0000 :(LINE(:,j),RATE(j),j=1,m)
3 :NCOMP (n, number of contours)

-2 :number of lines in contour 1
1 2 :lines of contour 1
4 :number of lines in contour 2
3 8 4 7 :lines of contour 2

-2 :number of lines in contour 3
5 6 :lines of contour 3

’N’ :Printing option ’Y’ or ’N’

10.3 Program Results

D06ACF Example Program Results

Boundary mesh characteristics
NVB = 120
NEDGE = 120
Complete mesh characteristics
NV (rounded to nearest 10) = 1890
NELT (rounded to nearest 10) = 3660
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Figure 1
The boundary mesh (top), the interior mesh (bottom) of a

double wing inside a circle geometry
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NAG Library Routine Document

D06BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D06BAF generates a boundary mesh on a closed connected subdomain � of R2.

2 Specification

SUBROUTINE D06BAF (NLINES, COORCH, LINED, FBND, CRUS, SDCRUS, RATE,
NCOMP, NLCOMP, LCOMP, NVMAX, NEDMX, NVB, COOR, NEDGE,
EDGE, ITRACE, RUSER, IUSER, RWORK, LRWORK, IWORK,
LIWORK, IFAIL)

&
&
&

INTEGER NLINES, LINED(4,NLINES), SDCRUS, NCOMP,
NLCOMP(NCOMP), LCOMP(NLINES), NVMAX, NEDMX, NVB,
NEDGE, EDGE(3,NEDMX), ITRACE, IUSER(*), LRWORK,
IWORK(LIWORK), LIWORK, IFAIL

&
&
&

REAL (KIND=nag_wp) COORCH(2,NLINES), FBND, CRUS(2,SDCRUS),
RATE(NLINES), COOR(2,NVMAX), RUSER(*),
RWORK(LRWORK)

&
&

EXTERNAL FBND

3 Description

Given a closed connected subdomain � of R2, whose boundary @� is divided by characteristic points
into m distinct line segments, D06BAF generates a boundary mesh on @�. Each line segment may be a
straight line, a curve defined by the equation f x; yð Þ ¼ 0, or a polygonal curve defined by a set of given
boundary mesh points.

This routine is primarily designed for use with either D06AAF (a simple incremental method) or
D06ABF (Delaunay–Voronoi method) or D06ACF (Advancing Front method) to triangulate the interior
of the domain �. For more details about the boundary and interior mesh generation, consult the D06
Chapter Introduction as well as George and Borouchaki (1998).

This routine is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

5 Arguments

1: NLINES – INTEGER Input

On entry: m, the number of lines that define the boundary of the closed connected subdomain
(this equals the number of characteristic points which separate the entire boundary @� into lines).

Constraint: NLINES � 1.

2: COORCHð2;NLINESÞ – REAL (KIND=nag_wp) array Input

On entry: COORCHð1; iÞ contains the x coordinate of the ith characteristic point, for
i ¼ 1; 2; . . . ;NLINES; while COORCHð2; iÞ contains the corresponding y coordinate.
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3: LINEDð4;NLINESÞ – INTEGER array Input

On entry: the description of the lines that define the boundary domain. The line i, for
i ¼ 1; 2; . . . ;m, is defined as follows:

LINEDð1; iÞ
The number of points on the line, including two end points.

LINEDð2; iÞ
The first end point of the line. If LINEDð2; iÞ ¼ j, then the coordinates of the first end
point are those stored in COORCHð:; jÞ.

LINEDð3; iÞ
The second end point of the line. If LINEDð3; iÞ ¼ k, then the coordinates of the second
end point are those stored in COORCHð:; kÞ.

LINEDð4; iÞ
This defines the type of line segment connecting the end points. Additional information is
conveyed by the numerical value of LINEDð4; iÞ as follows:

(i) LINEDð4; iÞ > 0, the line is described in FBND with LINEDð4; iÞ as the index. In this
case, the line must be described in the trigonometric (anticlockwise) direction;

(ii) LINEDð4; iÞ ¼ 0, the line is a straight line;

(iii) if LINEDð4; iÞ < 0, say (�p), then the line is a polygonal arc joining the end points
and interior points specified in CRUS. In this case the line contains the points whose
coordinates are stored in
COORCHð:; jÞ;
CRUSð:; pÞ;
CRUSð:; pþ 1Þ; . . . ;CRUSð:; pþ r� 3Þ;
COORCHð:; kÞ ,
where z 2 1; 2f g, r ¼ LINEDð1; iÞ, j ¼ LINEDð2; iÞ and k ¼ LINEDð3; iÞ.

Constraints:

2 � LINEDð1; iÞ;
1 � LINEDð2; iÞ � NLINES;
1 � LINEDð3; iÞ � NLINES;
LINEDð2; iÞ 6¼ LINEDð3; iÞ, for i ¼ 1; 2; . . . ;NLINES.

For each line described by FBND (lines with LINEDð4; iÞ > 0, for i ¼ 1; 2; . . . ;NLINES) the two
end points (LINEDð2; iÞ and LINEDð3; iÞ) lie on the curve defined by index LINEDð4; iÞ in
FBND, i.e.,

FBND LINEDð4; iÞ;COORCHð1;LINEDð2; iÞÞ;COORCHð2;LINEDð2; iÞÞ;RUSER; IUSERð Þ ¼ 0;

FBND LINEDð4; iÞ;COORCHð1;LINEDð3; iÞÞ;COORCHð2;LINEDð3; iÞÞ;RUSER; IUSERð Þ ¼ 0,
for i ¼ 1; 2; . . . ;NLINES.

For all lines described as polygonal arcs (lines with LINEDð4; iÞ < 0, for i ¼ 1; 2; . . . ;NLINES)
the sets of intermediate points (i.e., �LINEDð4; iÞ : �LINEDð4; iÞ þ LINEDð1; iÞ � 3½ � for all i
such that LINEDð4; iÞ < 0) are not overlapping. This can be expressed as:

�LINEDð4; iÞ þ LINEDð1; iÞ � 3 ¼
X

i;LINEDð4;iÞ<0f g
LINEDð1; iÞ � 2f g

or

�LINEDð4; iÞ þ LINEDð1; iÞ � 2 ¼ �LINEDð4; jÞ;

for a j such that j ¼ 1; 2; . . . ;NLINES, j 6¼ i and LINEDð4; jÞ < 0.

4: FBND – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

FBND must be supplied to calculate the value of the function which describes the curve
x; yð Þ 2 R

2; such that f x; yð Þ ¼ 0
� 

on segments of the boundary for which LINEDð4; iÞ > 0. If
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there are no boundaries for which LINEDð4; iÞ > 0 FBND will never be referenced by D06BAF
and FBND may be the dummy function D06BAD. (D06BAD is included in the NAG Library.)

The specification of FBND is:

FUNCTION FBND (I, X, Y, RUSER, IUSER)
REAL (KIND=nag_wp) FBND

INTEGER I, IUSER(*)
REAL (KIND=nag_wp) X, Y, RUSER(*)

1: I – INTEGER Input

On entry: LINEDð4; iÞ, the reference index of the line (portion of the contour) i
described.

2: X – REAL (KIND=nag_wp) Input
3: Y – REAL (KIND=nag_wp) Input

On entry: the values of x and y at which f x; yð Þ is to be evaluated.

4: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace
5: IUSERð�Þ – INTEGER array User Workspace

FBND is called with the arguments RUSER and IUSER as supplied to D06BAF. You
should use the arrays RUSER and IUSER to supply information to FBND.

FBND must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D06BAF is called. Arguments denoted as Input must not be changed by this
procedure.

5: CRUSð2; SDCRUSÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the intermediate points for polygonal arc lines. For a line i defined
as a polygonal arc (i.e., LINEDð4; iÞ < 0), if p ¼ �LINEDð4; iÞ, then CRUSð1; kÞ, for
k ¼ p; . . . ; pþ LINEDð1; iÞ � 3, must contain the x coordinate of the consecutive intermediate
points for this line. Similarly CRUSð2; kÞ, for k ¼ p; . . . ; pþ LINEDð1; iÞ � 3, must contain the
corresponding y coordinate.

6: SDCRUS – INTEGER Input

On entry: the second dimension of the array CRUS as declared in the (sub)program from which
D06BAF is called.

Constraint: SDCRUS �
P

i;LINEDð4;iÞ<0f g
LINEDð1; iÞ � 2f g.

7: RATEðNLINESÞ – REAL (KIND=nag_wp) array Input

On entry: RATEðiÞ is the geometric progression ratio between the points to be generated on the
line i, for i ¼ 1; 2; . . . ;m and LINEDð4; iÞ � 0.

If LINEDð4; iÞ < 0, RATEðiÞ is not referenced.

Constraint: if LINEDð4; iÞ � 0, RATEðiÞ > 0:0, for i ¼ 1; 2; . . . ;NLINES.

8: NCOMP – INTEGER Input

On entry: n, the number of separately connected components of the boundary.

Constraint: NCOMP � 1.
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9: NLCOMPðNCOMPÞ – INTEGER array Input

On entry: NLCOMPðkÞj j is the number of line segments in component k of the contour. The line
i of component k runs in the direction LINEDð2; iÞ to LINEDð3; iÞ if NLCOMPðkÞ > 0, and in
the opposite direction otherwise; for k ¼ 1; 2; . . . ; n.

Constraints:

1 � NLCOMPðkÞj j � NLINES, for k ¼ 1; 2; . . . ;NCOMP;Xn
k¼1

NLCOMPðkÞj j ¼ NLINES.

10: LCOMPðNLINESÞ – INTEGER array Input

On entry: LCOMP must contain the list of line numbers for the each component of the boundary.
Specifically, the line numbers for the kth component of the boundary, for k ¼ 1; 2; . . . ;NCOMP,

must be in elements l1� 1 to l2� 1 of LCOMP, where l2 ¼
Xk
i¼1

NLCOMPðiÞj j and

l1 ¼ l2þ 1� NLCOMPðkÞj j.
Constraint: LCOMP must hold a valid permutation of the integers 1;NLINES½ �.

11: NVMAX – INTEGER Input

On entry: the maximum number of the boundary mesh vertices to be generated.

Constraint: NVMAX � NLINES.

12: NEDMX – INTEGER Input

On entry: the maximum number of boundary edges in the boundary mesh to be generated.

Constraint: NEDMX � 1.

13: NVB – INTEGER Output

On exit: the total number of boundary mesh vertices generated.

14: COORð2;NVMAXÞ – REAL (KIND=nag_wp) array Output

On exit: COORð1; iÞ will contain the x coordinate of the ith boundary mesh vertex generated, for
i ¼ 1; 2; . . . ;NVB; while COORð2; iÞ will contain the corresponding y coordinate.

15: NEDGE – INTEGER Output

On exit: the total number of boundary edges in the boundary mesh.

16: EDGEð3;NEDMXÞ – INTEGER array Output

On exit: the specification of the boundary edges. EDGEð1; jÞ and EDGEð2; jÞ will contain the
vertex numbers of the two end points of the jth boundary edge. EDGEð3; jÞ is a reference
number for the jth boundary edge and

EDGEð3; jÞ ¼ LINEDð4; iÞ, where i and j are such that the jth edges is part of the ith line
of the boundary and LINEDð4; iÞ � 0;

EDGEð3; jÞ ¼ 100þ LINEDð4; iÞj j, where i and j are such that the jth edges is part of the
ith line of the boundary and LINEDð4; iÞ < 0.

17: ITRACE – INTEGER Input

On entry: the level of trace information required from D06BAF.

ITRACE ¼ 0 or ITRACE < �1
No output is generated.
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ITRACE ¼ 1
Output from the boundary mesh generator is printed on the current advisory message unit
(see X04ABF). This output contains the input information of each line and each connected
component of the boundary.

ITRACE ¼ �1
An analysis of the output boundary mesh is printed on the current advisory message unit.
This analysis includes the orientation (clockwise or anticlockwise) of each connected
component of the boundary. This information could be of interest to you, especially if an
interior meshing is carried out using the output of this routine, calling either D06AAF,
D06ABF or D06ACF.

ITRACE > 1
The output is similar to that produced when ITRACE ¼ 1, but the coordinates of the
generated vertices on the boundary are also output.

You are advised to set ITRACE ¼ 0, unless you are experienced with finite element mesh
generation.

18: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace
19: IUSERð�Þ – INTEGER array User Workspace

RUSER and IUSER are not used by D06BAF, but are passed directly to FBND and should be
used to pass information to this routine.

20: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Workspace
21: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D06BAF is called.

C o n s t r a i n t :
LRWORK � 2� NLINESþ SDCRUSð Þ þ 2�max i¼1;2;...;m LINEDð1; iÞf g � NLINES.

22: IWORKðLIWORKÞ – INTEGER array Workspace
23: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D06BAF is called.

Constraint:
LIWORK �P
i;LINEDð4;iÞ<0f g

LINEDð1; iÞ � 2f g þ 8� NLINESþ NVMAXþ 3� NEDMXþ 2� SDCRUS.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NLINES < 1;
or NVMAX < NLINES;
or NEDMX < 1;
or NCOMP < 1;
or LRWORK < 2� NLINESþ SDCRUSð Þ þ 2�max i¼1;2;...;m LINEDð1; iÞf g � NLINES;
or LIWORK <

P
i;LINEDð4;iÞ<0f g

LINEDð1; iÞ � 2f g þ 8� NLINESþ NVMAXþ 3�

NEDMXþ 2� SDCRUS;
or SDCRUS <

P
i;LINEDð4;iÞ<0f g

LINEDð1; iÞ � 2f g;

or RATEðiÞ < 0:0 for some i ¼ 1; 2; . . . ;NLINES with LINEDð4; iÞ � 0;
or LINEDð1; iÞ < 2 for some i ¼ 1; 2; . . . ;NLINES;
or LINEDð2; iÞ < 1 or LINEDð2; iÞ > NLINES for some i ¼ 1; 2; . . . ;NLINES;
or LINEDð3; iÞ < 1 or LINEDð3; iÞ > NLINES for some i ¼ 1; 2; . . . ;NLINES;
or LINEDð2; iÞ ¼ LINEDð3; iÞ for some i ¼ 1; 2; . . . ;NLINES;
or NLCOMPðkÞ ¼ 0, or NLCOMPðkÞj j > NLINES for a k ¼ 1; 2; . . . ;NCOMP;

or
Xn
k¼1

NLCOMPðkÞj j 6¼ NLINES;

or LCOMP does not represent a valid permutation of the integers in 1;NLINES½ �;
or one of the end points for a line i described by the user-supplied function (lines with

LINEDð4; iÞ > 0, for i ¼ 1; 2; . . . ;NLINES) does not belong to the corresponding
curve in FBND;

or the intermediate points for the lines described as polygonal arcs (lines with
LINEDð4; iÞ < 0, for i ¼ 1; 2; . . . ;NLINES) are overlapping.

IFAIL ¼ 2

An error has occurred during the generation of the boundary mesh. It appears that NEDMX is not
large enough, so you are advised to increase the value of NEDMX.

IFAIL ¼ 3

An error has occurred during the generation of the boundary mesh. It appears that NVMAX is
not large enough, so you are advised to increase the value of NVMAX.

IFAIL ¼ 4

An error has occurred during the generation of the boundary mesh. Check the definition of each
line (the argument LINED) and each connected component of the boundary (the arguments
NLCOMP, and LCOMP, as well as the coordinates of the characteristic points. Setting
ITRACE > 0 may provide more details.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D06BAF is not threaded in any implementation.

9 Further Comments

The boundary mesh generation technique in this routine has a ‘tree’ structure. The boundary should be
partitioned into geometrically simple segments (straight lines or curves) delimited by characteristic
points. Then, the lines should be assembled into connected components of the boundary domain.

Using this strategy, the inputs to that routine can be built up, following the requirements stated in
Section 5:

the characteristic and the user-supplied intermediate points:

NLINES, SDCRUS, COORCH and CRUS;

the characteristic lines:

LINED, FBND, RATE;

finally the assembly of lines into the connected components of the boundary:

NCOMP, and

NLCOMP, LCOMP.

The example below details the use of this strategy.

10 Example

The NAG logo is taken as an example of a geometry with holes. The boundary has been partitioned in
40 lines characteristic points; including 4 for the exterior boundary and 36 for the logo itself. All line
geometry specifications have been considered, see the description of LINED, including 4 lines defined
as polygonal arc, 4 defined by FBND and all the others are straight lines.

10.1 Program Text

! D06BAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d06bafe_mod

! D06BAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fbnd

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function fbnd(i,x,y,ruser,iuser)
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! .. Function Return Value ..
Real (Kind=nag_wp) :: fbnd

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x, y
Integer, Intent (In) :: i

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: radius2, x0, xa, xb, y0

! .. Executable Statements ..
xa = ruser(1)
xb = ruser(2)
x0 = ruser(3)
y0 = ruser(4)

fbnd = 0.0_nag_wp

Select Case (i)
Case (1)

! line 1,2,3, and 4: ellipse centred in (X0,Y0) with
! XA and XB as coefficients

fbnd = ((x-x0)/xa)**2 + ((y-y0)/xb)**2 - 1.0_nag_wp
Case (2)

! line 7, lower arc on letter n, is a circle centred in (X0,Y0)
! with radius SQRT(RADIUS2)

x0 = 0.5_nag_wp
y0 = 6.25_nag_wp
radius2 = 20.3125_nag_wp
fbnd = (x-x0)**2 + (y-y0)**2 - radius2

Case (3)

! line 11, upper arc on letter n, is a circle centred in (X0,Y0)
! with radius SQRT(RADIUS2)

x0 = 1.0_nag_wp
y0 = 4.0_nag_wp
radius2 = 9.0_nag_wp + (11.0_nag_wp-y0)**2
fbnd = (x-x0)**2 + (y-y0)**2 - radius2

Case (4)

! line 15, upper arc on letter a, is a circle centred in (X0,Y0)
! with radius SQRT(RADIUS2) touching point (5,11).

x0 = 8.5_nag_wp
y0 = 2.75_nag_wp
radius2 = (x0-5.0_nag_wp)**2 + (11.0_nag_wp-y0)**2
fbnd = (x-x0)**2 + (y-y0)**2 - radius2

Case (5)

! line 25, lower arc on hat of ’a’, is a circle centred in (X0,Y0)
! with radius SQRT(RADIUS2) touching point (11,10).

x0 = 8.5_nag_wp
y0 = 4.0_nag_wp
radius2 = 2.5_nag_wp**2 + (10.0_nag_wp-y0)**2
fbnd = (x-x0)**2 + (y-y0)**2 - radius2

Case (6)

! lines 20, 21 and 22, belly of letter a, is an ellipse centered
! in (X0, Y0) with semi-axes 3.5 and 2.75.

x0 = 8.5_nag_wp
y0 = 5.75_nag_wp
fbnd = ((x-x0)/3.5_nag_wp)**2 + ((y-y0)/2.75_nag_wp)**2 - 1.0_nag_wp

Case (7)
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! lines 43, 44 and 45, outer curve on bottom of ’g’, is an ellipse
! centered in (X0, Y0) with semi-axes 3.5 and 2.5.

x0 = 17.5_nag_wp
y0 = 2.5_nag_wp
fbnd = ((x-x0)/3.5_nag_wp)**2 + ((y-y0)/2.5_nag_wp)**2 - 1.0_nag_wp

Case (8)

! lines 28, 29 and 30, inner curve on bottom of ’g’, is an ellipse
! centered in (X0, Y0) with semi-axes 2.0 and 1.5.

x0 = 17.5_nag_wp
y0 = 2.5_nag_wp
fbnd = ((x-x0)/2.0_nag_wp)**2 + ((y-y0)/1.5_nag_wp)**2 - 1.0_nag_wp

Case (9)

! line 42, inner curve on lower middle of ’g’, is an ellipse
! centered in (X0, Y0) with semi-axes 1.5 and 0.5.

x0 = 17.5_nag_wp
y0 = 5.5_nag_wp
fbnd = ((x-x0)/1.5_nag_wp)**2 + ((y-y0)/0.5_nag_wp)**2 - 1.0_nag_wp

Case (10)

! line 31, outer curve on lower middle of ’g’, is an ellipse
! centered in (X0, Y0) with semi-axes 2.0 and 1.5.

x0 = 17.5_nag_wp
y0 = 5.5_nag_wp
fbnd = ((x-x0)/3.0_nag_wp)**2 + ((y-y0)/1.5_nag_wp)**2 - 1.0_nag_wp

Case (11)

! line 41, inner curve on upper middle of ’g’, is an ellipse
! centered in (X0, Y0) with semi-axes 1.0 and 1.0.

x0 = 17.0_nag_wp
y0 = 5.5_nag_wp
fbnd = ((x-x0)/1.0_nag_wp)**2 + ((y-y0)/1.0_nag_wp)**2 - 1.0_nag_wp

Case (12)

! line 32, outer curve on upper middle of ’g’, is an ellipse
! centered in (X0, Y0) with semi-axes 1.5 and 1.1573.

x0 = 16.0_nag_wp
y0 = 5.5_nag_wp
fbnd = ((x-x0)/1.5_nag_wp)**2 + ((y-y0)/1.1573_nag_wp)**2 - &

1.0_nag_wp
Case (13)

! lines 33, 33, 34, 39 and 40, upper portion of ’g’, is an ellipse
! centered in (X0, Y0) with semi-axes 3.0 and 2.75.

x0 = 17.0_nag_wp
y0 = 9.25_nag_wp
fbnd = ((x-x0)/3.0_nag_wp)**2 + ((y-y0)/2.75_nag_wp)**2 - 1.0_nag_wp

End Select

Return

End Function fbnd
End Module d06bafe_mod
Program d06bafe

! D06BAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d06abf, d06acf, d06baf, f16dnf, nag_wp
Use d06bafe_mod, Only: fbnd, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
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Real (Kind=nag_wp) :: x0, xa, xb, xmax, xmin, y0, ymax, &
ymin

Integer :: i, ifail, itrace, j, k, liwork, &
lrwork, maxind, maxval, ncomp, &
nedge, nedmx, nelt, nlines, npropa, &
nv, nvb, nvint, nvmax, reftk, sdcrus

Character (1) :: pmesh
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: coor(:,:), coorch(:,:), crus(:,:), &
rate(:), rwork(:), weight(:)

Real (Kind=nag_wp) :: ruser(4)
Integer, Allocatable :: conn(:,:), edge(:,:), iwork(:), &

lcomp(:), lined(:,:), nlcomp(:)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’D06BAF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Initialize boundary mesh inputs:
! the number of line and of the characteristic points of
! the boundary mesh

Read (nin,*) nlines, nvmax, nedmx
Allocate (coor(2,nvmax),coorch(2,nlines),rate(nlines),edge(3,nedmx), &

lcomp(nlines),lined(4,nlines))

! The Lines of the boundary mesh

Read (nin,*)(lined(1:4,j),rate(j),j=1,nlines)

sdcrus = 0

Do i = 1, nlines

If (lined(4,i)<0) Then
sdcrus = sdcrus + lined(1,i) - 2

End If

End Do

liwork = 8*nlines + nvmax + 3*nedmx + 3*sdcrus

! Get max(LINED(1,:)) for computing LRWORK

Call f16dnf(nlines,lined,4,maxind,maxval)

lrwork = 2*(nlines+sdcrus) + 2*maxval*nlines

Allocate (crus(2,sdcrus),iwork(liwork),rwork(lrwork))

! The ellipse boundary which envelops the NAG Logo
! the N, the A and the G

Read (nin,*) coorch(1,1:nlines)
Read (nin,*) coorch(2,1:nlines)

Read (nin,*) crus(1,1:sdcrus)
Read (nin,*) crus(2,1:sdcrus)

! The number of connected components to the boundary
! and their information

Read (nin,*) ncomp
Allocate (nlcomp(ncomp))

j = 1
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Do i = 1, ncomp
Read (nin,*) nlcomp(i)
k = j + abs(nlcomp(i)) - 1
Read (nin,*) lcomp(j:k)
j = k + 1

End Do

! Data passed to the user-supplied function

xmin = coorch(1,4)
xmax = coorch(1,2)
ymin = coorch(2,1)
ymax = coorch(2,3)

xa = (xmax-xmin)/2.0_nag_wp
xb = (ymax-ymin)/2.0_nag_wp

x0 = (xmin+xmax)/2.0_nag_wp
y0 = (ymin+ymax)/2.0_nag_wp

ruser(1:4) = (/xa,xb,x0,y0/)
iuser(1) = 0

itrace = -1

Write (nout,*)
Flush (nout)

! Call to the boundary mesh generator

ifail = 0
Call d06baf(nlines,coorch,lined,fbnd,crus,sdcrus,rate,ncomp,nlcomp, &

lcomp,nvmax,nedmx,nvb,coor,nedge,edge,itrace,ruser,iuser,rwork,lrwork, &
iwork,liwork,ifail)

Read (nin,*) pmesh

Select Case (pmesh)
Case (’N’)

Write (nout,*) ’Boundary mesh characteristics’
Write (nout,99999) ’NVB =’, nvb
Write (nout,99999) ’NEDGE =’, nedge

Case (’Y’)

! Output the mesh

Write (nout,99998) nvb, nedge

Do i = 1, nvb
Write (nout,99997) i, coor(1:2,i)

End Do

Do i = 1, nedge
Write (nout,99996) i, edge(1:3,i)

End Do

Flush (nout)

Case Default
Write (nout,*) ’Problem with the printing option Y or N’
Go To 100

End Select

Deallocate (rwork,iwork)

! Initialize mesh control parameters

itrace = 0
npropa = 1
nvint = 0
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lrwork = 12*nvmax + 15
liwork = 6*nedge + 32*nvmax + 2*nvb + 78
Allocate (weight(nvint),rwork(lrwork),iwork(liwork),conn(3,2*nvmax+5))

! Call to the 2D Delaunay-Voronoi mesh generator

ifail = 0
Call d06abf(nvb,nvint,nvmax,nedge,edge,nv,nelt,coor,conn,weight,npropa, &

itrace,rwork,lrwork,iwork,liwork,ifail)

Select Case (pmesh)
Case (’N’)

Write (nout,*) ’Complete mesh (via the 2D Delaunay-Voronoi’
Write (nout,*) ’mesh generator) characteristics’
Write (nout,99999) ’NV (rounded to nearest 10) =’, 10*((nv+5)/10)
Write (nout,99999) ’NELT (rounded to nearest 10) =’, 10*((nelt+5)/10)

Case (’Y’)

! Output the mesh

Write (nout,99998) nv, nelt

Do i = 1, nv
Write (nout,99995) coor(1:2,i)

End Do

reftk = 0

Do k = 1, nelt
Write (nout,99994) conn(1:3,k), reftk

End Do

Flush (nout)

End Select

Deallocate (rwork,iwork)
lrwork = 12*nvmax + 30015
liwork = 8*nedge + 53*nvmax + 2*nvb + 10078
Allocate (rwork(lrwork),iwork(liwork))

! Call to the 2D Advancing front mesh generator

ifail = 0
Call d06acf(nvb,nvint,nvmax,nedge,edge,nv,nelt,coor,conn,weight,itrace, &

rwork,lrwork,iwork,liwork,ifail)

Select Case (pmesh)
Case (’N’)

Write (nout,*) ’Complete mesh (via the 2D Advancing front mesh’
Write (nout,*) ’generator) characteristics’
Write (nout,99999) ’NV (rounded to nearest 10) =’, 10*((nv+5)/10)
Write (nout,99999) ’NELT (rounded to nearest 10) =’, 10*((nelt+5)/10)

Case (’Y’)

! Output the mesh

Write (nout,99998) nv, nelt

Do i = 1, nv
Write (nout,99995) coor(1:2,i)

End Do

reftk = 0

Do k = 1, nelt
Write (nout,99994) conn(1:3,k), reftk

End Do

End Select
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100 Continue

99999 Format (1X,A,I6)
99998 Format (1X,2I10)
99997 Format (2X,I4,2(2X,E13.6))
99996 Format (1X,4I4)
99995 Format (2(2X,E13.6))
99994 Format (1X,4I10)

End Program d06bafe

10.2 Program Data

D06BAF Example Program Data
45 5000 1000 :NLINES (m), NVMAX, NEDMX
15 1 2 1 0.9500 15 2 3 1 1.0500
15 3 4 1 0.9500 15 4 1 1 1.0500
4 6 5 -1 1.0000 10 10 6 0 1.0000

10 14 10 2 1.0000 10 7 14 0 1.0000
4 8 7 0 1.0000 10 13 8 0 1.0000

10 13 9 3 1.0000 10 12 9 0 1.0000
4 11 12 0 1.0000 15 5 11 0 1.0000

15 26 15 4 1.0000 10 26 25 0 1.0000
4 25 24 0 1.0000 4 24 23 0 1.0000
4 23 22 0 1.0000 10 21 22 6 1.0000

10 20 21 6 1.0000 10 19 20 6 1.0000
4 19 18 0 1.0000 5 18 17 0 1.0000

15 17 16 5 1.0000 4 16 15 0 1.0000
4 27 28 0 1.0000 7 28 30 8 1.0000
7 30 32 8 1.0000 7 32 34 8 1.0000
6 36 34 10 1.0000 6 38 36 12 1.0000

10 40 38 13 1.0000 10 42 40 13 1.0000
8 44 42 13 1.0000 4 44 45 0 1.0000
4 45 43 0 1.0000 4 43 41 0 1.0000
6 39 41 13 1.0000 10 37 39 13 1.0000
6 37 35 11 1.0000 6 35 33 9 1.0000

10 31 33 7 1.0000 10 29 31 7 1.0000
10 27 29 7 1.0000 :(LINE(:,j),RATE(j),j=1,m)

9.5000 33.0000 9.5000 -14.0000
-4.0000 -2.0000 2.0000 4.0000 -2.0000 -2.0000 -4.0000
-2.0000 4.0000 2.0000
5.0000 6.0000 11.0000 11.0000 8.5000 5.0000 8.5000

11.5000 13.0000 14.0000 13.0000 13.0000
14.0000 15.5000 17.5000 17.5000 21.0000 19.5000 17.5000
17.5000 16.0000 14.5000 17.0000 16.0000 20.0000 14.0000
19.3142 17.0000 20.5000 18.7249 19.5000 : End of X coords
-3.0000 6.5000 16.0000 6.5000
3.0000 3.0000 3.0000 3.0000 11.0000 10.0000 11.5000

12.0000 11.0000 10.5000
11.0000 10.0000 10.0000 8.5000 8.5000 5.7500 3.0000
4.3335 3.0000 3.7500 4.7500 10.5000
2.5000 2.5000 0.0000 1.0000 2.5000 2.5000 5.0000
4.0000 5.5000 5.5000 6.5000 6.6573 9.2500 9.2500

11.0000 12.000 11.5000 11.5000 12.0000 : End of Y coords
-2.6667 -3.3333 3.3333 2.6667 :(Poly (X))
3.0000 3.0000 3.0000 3.0000 :(Poly (Y))

4 :NCOMP (n, number of contours)
4 :number of lines in contour 1
1 2 3 4 :lines of contour 1 (Ellipse)

10 :number of lines in contour 2
14 13 12 11 10 9 8 7 6 5 :lines of contour 2 (Letter N)
12 :number of lines in contour 3
18 19 20 21 22 23 24 25 26 15 16 17 :lines of contour 3 (Letter A)
19 :number of lines in contour 4
27 28 29 30 31 32 33 34 35 36 37 38
39 40 41 42 43 44 45 :lines of contour 4 (Letter G)
’N’ :Printing option ’Y’ or ’N’
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10.3 Program Results

D06BAF Example Program Results

Analysis of the boundary created:
The boundary mesh contains 332 vertices and 332 edges
There are 4 components comprising the boundary:
The 1-st component contains 4 lines in anticlockwise orientation
The 2-nd component contains 10 lines in clockwise orientation
The 3-rd component contains 12 lines in anticlockwise orientation
The 4-th component contains 19 lines in clockwise orientation
Boundary mesh characteristics
NVB = 332
NEDGE = 332
Complete mesh (via the 2D Delaunay-Voronoi
mesh generator) characteristics
NV (rounded to nearest 10) = 900
NELT (rounded to nearest 10) = 1480
Complete mesh (via the 2D Advancing front mesh
generator) characteristics
NV (rounded to nearest 10) = 920
NELT (rounded to nearest 10) = 1520

Example Program
Boundary Mesh of the NAG Logo with 259 Nodes and 259 Edges
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Final Mesh Built Using the Delaunay-Voronoi Method

Final Mesh Built Using the Advancing Front Method
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NAG Library Routine Document

D06CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D06CAF uses a barycentering technique to smooth a given mesh.

2 Specification

SUBROUTINE D06CAF (NV, NELT, NEDGE, COOR, EDGE, CONN, NVFIX, NUMFIX,
ITRACE, NQINT, IWORK, LIWORK, RWORK, LRWORK, IFAIL)

&

INTEGER NV, NELT, NEDGE, EDGE(3,NEDGE), CONN(3,NELT),
NVFIX, NUMFIX(*), ITRACE, NQINT, IWORK(LIWORK),
LIWORK, LRWORK, IFAIL

&
&

REAL (KIND=nag_wp) COOR(2,NV), RWORK(LRWORK)

3 Description

D06CAF uses a barycentering approach to improve the smoothness of a given mesh. The measure of
quality used for a triangle K is

QK ¼ �
hK
�K

;

where hK is the diameter (length of the longest edge) of K, �K is the radius of its inscribed circle and

� ¼
ffiffiffi
3
p

6
is a normalization factor chosen to give QK ¼ 1 for an equilateral triangle. QK ranges from 1,

for an equilateral triangle, to 1, for a totally flat triangle.

D06CAF makes small perturbation to vertices (using a barycenter formula) in order to give a reasonably
good value of QK for all neighbouring triangles. Some vertices may optionally be excluded from this
process.

For more details about the smoothing method, especially with regard to differing quality, consult the
D06 Chapter Introduction as well as George and Borouchaki (1998).

This routine is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

5 Arguments

1: NV – INTEGER Input

On entry: the total number of vertices in the input mesh.

Constraint: NV � 3.

2: NELT – INTEGER Input

On entry: the number of triangles in the input mesh.

Constraint: NELT � 2� NV� 1.
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3: NEDGE – INTEGER Input

On entry: the number of the boundary and interface edges in the input mesh.

Constraint: NEDGE � 1.

4: COORð2;NVÞ – REAL (KIND=nag_wp) array Input/Output

On entry: COORð1; iÞ contains the x coordinate of the ith input mesh vertex, for
i ¼ 1; 2; . . . ;NV; while COORð2; iÞ contains the corresponding y coordinate.

On exit: COORð1; iÞ will contain the x coordinate of the ith smoothed mesh vertex, for
i ¼ 1; 2; . . . ;NV; while COORð2; iÞ will contain the corresponding y coordinate. Note that the
coordinates of boundary and interface edge vertices, as well as those specified by you (see the
description of NUMFIX), are unchanged by the process.

5: EDGEð3;NEDGEÞ – INTEGER array Input

On entry: the specification of the boundary or interface edges. EDGEð1; jÞ and EDGEð2; jÞ
contain the vertex numbers of the two end points of the jth boundary edge. EDGEð3; jÞ is a user-
supplied tag for the jth boundary or interface edge: EDGEð3; jÞ ¼ 0 for an interior edge and has
a nonzero tag otherwise.

Co n s t r a i n t : 1 � EDGEði; jÞ � NV a n d EDGEð1; jÞ 6¼ EDGEð2; jÞ, f o r i ¼ 1; 2 a n d
j ¼ 1; 2; . . . ;NEDGE.

6: CONNð3;NELTÞ – INTEGER array Input

On entry: the connectivity of the mesh between triangles and vertices. For each triangle j,
CONNði; jÞ gives the indices of its three vertices (in anticlockwise order), for i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT.

C o n s t r a i n t : 1 � CONNði; jÞ � NV a n d CONNð1; jÞ 6¼ CONNð2; jÞ a n d
CONNð1; jÞ 6¼ CONNð3; jÞ a n d CONNð2; jÞ 6¼ CONNð3; jÞ, f o r i ¼ 1; 2; 3 a n d
j ¼ 1; 2; . . . ;NELT.

7: NVFIX – INTEGER Input

On entry: the number of fixed vertices in the input mesh.

Constraint: 0 � NVFIX � NV.

8: NUMFIXð�Þ – INTEGER array Input

Note: the dimension of the array NUMFIX must be at least max 1;NVFIXð Þ.
On entry: the indices in COOR of fixed interior vertices of the input mesh.

Constraint: if NVFIX > 0, 1 � NUMFIXðiÞ � NV, for i ¼ 1; 2; . . . ;NVFIX.

9: ITRACE – INTEGER Input

On entry: the level of trace information required from D06CAF.

ITRACE � 0
No output is generated.

ITRACE ¼ 1
A histogram of the triangular element qualities is printed on the current advisory message
unit (see X04ABF) before and after smoothing. This histogram gives the lowest and the
highest triangle quality as well as the number of elements lying in each of the NQINT
equal intervals between the extremes.

ITRACE > 1
The output is similar to that produced when ITRACE ¼ 1 but the connectivity between
vertices and triangles (for each vertex, the list of triangles in which it appears) is given.
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You are advised to set ITRACE ¼ 0, unless you are experienced with finite element meshes.

10: NQINT – INTEGER Input

On entry: the number of intervals between the extreme quality values for the input and the
smoothed mesh.

If ITRACE ¼ 0, NQINT is not referenced.

11: IWORKðLIWORKÞ – INTEGER array Workspace
12: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D06CAF is called.

Constraint: LIWORK � 8� NELTþ 2� NV.

13: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Workspace
14: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D06CAF is called.

Constraint: LRWORK � 2� NVþ NELT.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NV < 3,
or NELT > 2� NV� 1,
or NEDGE < 1,
or EDGEði; jÞ < 1 or EDGEði; jÞ > NV for some i ¼ 1; 2 and j ¼ 1; 2; . . . ;NEDGE,
or EDGEð1; jÞ ¼ EDGEð2; jÞ for some j ¼ 1; 2; . . . ;NEDGE,
or CONNði; jÞ < 1 or CONNði; jÞ > NV for some i ¼ 1; 2; 3 and j ¼ 1; 2; . . . ;NELT,
or CONNð1; jÞ ¼ CONNð2; jÞ o r CONNð1; jÞ ¼ CONNð3; jÞ o r

CONNð2; jÞ ¼ CONNð3; jÞ for some j ¼ 1; 2; . . . ;NELT,
or NVFIX < 0 or NVFIX > NV,
or NUMFIXðiÞ < 1 or NUMFIXðiÞ > NV for some i ¼ 1; 2; . . . ;NVFIX if NVFIX > 0,
or LIWORK < 8� NELTþ 2� NV,
or LRWORK < 2� NVþ NELT.
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IFAIL ¼ 2

A serious error has occurred in an internal call to an auxiliary routine. Check the input mesh,
especially the connectivity between triangles and vertices (the argument CONN). Setting
ITRACE > 1 may provide more information. If the problem persists, contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D06CAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

In this example, a uniform mesh on the unit square is randomly distorted using routines from Chapter
G05. D06CAF is then used to smooth the distorted mesh and recover a uniform mesh.

10.1 Program Text

Program d06cafe

! D06CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d06caf, g05kff, g05sqf, nag_wp, x01aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: delta, hx, hy, pi2, r, rad, sk, &

theta, x1, x2, x3, y1, y2, y3
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Integer :: genid, i, ifail, imax, ind, itrace, &
j, jmax, k, liwork, lrwork, lseed, &
lstate, me1, me2, me3, nedge, nelt, &
nqint, nv, nvfix, reftk, subid

Character (1) :: pmesh
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: coor(:,:), rwork(:), variates(:)
Integer, Allocatable :: conn(:,:), edge(:,:), iwork(:), &

numfix(:), seed(:), state(:)
! .. Intrinsic Procedures ..

Intrinsic :: cos, min, real, sin
! .. Executable Statements ..

Write (nout,*) ’D06CAF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read IMAX and JMAX, the number of vertices
! in the x and y directions respectively.

Read (nin,*) imax, jmax
nv = imax*jmax
nelt = 2*(imax-1)*(jmax-1)
nedge = 2*(imax-1) + 2*(jmax-1)
liwork = 8*nelt + 2*nv
lrwork = 2*nv + nelt

! The array VARIATES will be used when distorting the mesh

Allocate (variates(2*nv),coor(2,nv),conn(3,nelt),edge(3,nedge), &
iwork(liwork),rwork(lrwork))

! Read distortion percentage and calculate radius
! of distortion neighbourhood so that cross-over
! can only occur at 100% or greater.

Read (nin,*) delta

hx = 1.0E0_nag_wp/real(imax-1,kind=nag_wp)
hy = 1.0E0_nag_wp/real(jmax-1,kind=nag_wp)
rad = 0.005E0_nag_wp*delta*min(hx,hy)
pi2 = 2.0E0_nag_wp*x01aaf(pi2)

! GENID identifies the base generator

genid = 1
subid = 1

! For GENID = 1 only one seed is required
! The initializer is first called in query mode to get the value of
! LSTATE for the chosen base generator

lseed = 1
lstate = -1
Allocate (seed(lseed),state(lstate))

! Initialize the seed

seed(1:lseed) = (/1762541/)

ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence

ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
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! Generate two sets of uniform random variates

ifail = 0
Call g05sqf(nv,0.0E0_nag_wp,rad,state,variates,ifail)

ifail = 0
Call g05sqf(nv,0.0E0_nag_wp,pi2,state,variates(nv+1),ifail)

! Generate a simple uniform mesh and then distort it
! randomly within the distortion neighbourhood of each
! node.

k = 0
ind = 0

Do j = 1, jmax

Do i = 1, imax
k = k + 1
r = variates(k)
theta = variates(nv+k)

If (i==1 .Or. i==imax .Or. j==1 .Or. j==jmax) Then
r = 0.E0_nag_wp

End If

coor(1,k) = real(i-1,kind=nag_wp)*hx + r*cos(theta)
coor(2,k) = real(j-1,kind=nag_wp)*hy + r*sin(theta)

If (i<imax .And. j<jmax) Then
ind = ind + 1
conn(1,ind) = k
conn(2,ind) = k + 1
conn(3,ind) = k + imax + 1
ind = ind + 1
conn(1,ind) = k
conn(2,ind) = k + imax + 1
conn(3,ind) = k + imax

End If

End Do

End Do

Read (nin,*) pmesh

Write (nout,*)

Select Case (pmesh)
Case (’N’)

Write (nout,*) ’The complete distorted mesh characteristics’
Write (nout,99999) ’Number of vertices =’, nv
Write (nout,99999) ’Number of elements =’, nelt

Case (’Y’)

! Output the mesh

Write (nout,99998) nv, nelt

Do i = 1, nv
Write (nout,99997) coor(1,i), coor(2,i)

End Do

Case Default
Write (nout,*) ’Problem: the printing option must be Y or N’
Go To 100

End Select

reftk = 0
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Do k = 1, nelt
me1 = conn(1,k)
me2 = conn(2,k)
me3 = conn(3,k)

x1 = coor(1,me1)
x2 = coor(1,me2)
x3 = coor(1,me3)
y1 = coor(2,me1)
y2 = coor(2,me2)
y3 = coor(2,me3)

sk = ((x2-x1)*(y3-y1)-(y2-y1)*(x3-x1))/2.E0_nag_wp

If (sk<0.E0_nag_wp) Then
Write (nout,*) ’Error: the surface of the element is negative’
Write (nout,99999) ’element number = ’, k
Write (nout,99995) ’element surface = ’, sk
Go To 100

End If

If (pmesh==’Y’) Then
Write (nout,99996) conn(1,k), conn(2,k), conn(3,k), reftk

End If

End Do
Flush (nout)

! Boundary edges

Do i = 1, imax - 1
edge(1,i) = i
edge(2,i) = i + 1

End Do

Do i = 1, jmax - 1
edge(1,imax-1+i) = i*imax
edge(2,imax-1+i) = (i+1)*imax

End Do

Do i = 1, imax - 1
edge(1,imax-1+jmax-1+i) = imax*jmax - i + 1
edge(2,imax-1+jmax-1+i) = imax*jmax - i

End Do

Do i = 1, jmax - 1
edge(1,2*(imax-1)+jmax-1+i) = (jmax-i)*imax + 1
edge(2,2*(imax-1)+jmax-1+i) = (jmax-i-1)*imax + 1

End Do

edge(3,1:nedge) = 0

nvfix = 0
Allocate (numfix(nvfix))

itrace = 1
nqint = 10

! Call the smoothing routine

ifail = 0
Call d06caf(nv,nelt,nedge,coor,edge,conn,nvfix,numfix,itrace,nqint, &

iwork,liwork,rwork,lrwork,ifail)

Select Case (pmesh)
Case (’N’)

Write (nout,*)
Write (nout,*) ’The complete smoothed mesh characteristics’
Write (nout,99999) ’Number of vertices =’, nv
Write (nout,99999) ’Number of elements =’, nelt

Case (’Y’)
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! Output the mesh

Write (nout,99998) nv, nelt

Do i = 1, nv
Write (nout,99997) coor(1,i), coor(2,i)

End Do

reftk = 0

Do k = 1, nelt
Write (nout,99996) conn(1,k), conn(2,k), conn(3,k), reftk

End Do

End Select

100 Continue

99999 Format (1X,A,I6)
99998 Format (1X,2I10)
99997 Format (2(2X,E13.6))
99996 Format (1X,4I10)
99995 Format (1X,A,E13.6)

End Program d06cafe

10.2 Program Data

D06CAF Example Program Data
20 20 :IMAX JMAX
87.0 :DELTA
’N’ :Printing option ’Y’ or ’N’

10.3 Program Results

D06CAF Example Program Results

The complete distorted mesh characteristics
Number of vertices = 400
Number of elements = 722
BEFORE SMOOTHING
Minimum smoothness measure: 1.0060557
Maximum smoothness measure: 45.7310387
Distribution interval Number of elements

1.0060557 - 5.4785540 715
5.4785540 - 9.9510523 4
9.9510523 - 14.4235506 1

14.4235506 - 18.8960489 0
18.8960489 - 23.3685472 0
23.3685472 - 27.8410455 0
27.8410455 - 32.3135438 0
32.3135438 - 36.7860421 0
36.7860421 - 41.2585404 0
41.2585404 - 45.7310387 1

AFTER SMOOTHING
Minimum smoothness measure: 1.3377832
Maximum smoothness measure: 1.4445226
Distribution interval Number of elements

1.3377832 - 1.3484572 0
1.3484572 - 1.3591311 13
1.3591311 - 1.3698050 42
1.3698050 - 1.3804790 104
1.3804790 - 1.3911529 162
1.3911529 - 1.4018268 159
1.4018268 - 1.4125008 122
1.4125008 - 1.4231747 74
1.4231747 - 1.4338486 31
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1.4338486 - 1.4445226 14

The complete smoothed mesh characteristics
Number of vertices = 400
Number of elements = 722

Example Program
Randomly distorted uniform mesh

Distorted mesh smoothed and a uniform mesh recovered
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NAG Library Routine Document

D06CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D06CBF generates the sparsity pattern of a finite element matrix associated with a given mesh.

2 Specification

SUBROUTINE D06CBF (NV, NELT, NNZMAX, CONN, NNZ, IROW, ICOL, IFAIL)

INTEGER NV, NELT, NNZMAX, CONN(3,NELT), NNZ, IROW(NNZMAX),
ICOL(NNZMAX), IFAIL

&

3 Description

D06CBF generates the sparsity pattern of a finite element matrix associated with a given mesh. The
sparsity pattern is returned in a coordinate storage format consistent with the sparse linear algebra
routines in Chapter F11. More precisely D06CBF returns the number of nonzero elements in the
associated sparse matrix, and their row and column indices. This is designed to assist you in applying
finite element discretization to meshes from the D06 Chapter Introduction and in solving the resulting
sparse linear system using routines from Chapter F11.

The output sparsity pattern is based on the fact that finite element matrix A has elements aij satisfying:

aij 6¼ 0) i and j are vertices belonging to the same triangle:

4 References

None.

5 Arguments

1: NV – INTEGER Input

On entry: the total number of vertices in the input mesh.

Constraint: NV � 3.

2: NELT – INTEGER Input

On entry: the number of triangles in the input mesh.

Constraint: NELT � 2� NV� 1.

3: NNZMAX – INTEGER Input

On entry: the maximum number of nonzero entries in the matrix based on the input mesh. It is
the dimension of the arrays IROW and ICOL as declared in the subroutine from which D06CBF
is called.

Constraint: 4� NELTþ NV � NNZMAX � NV2.
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4: CONNð3;NELTÞ – INTEGER array Input

On entry: the connectivity of the mesh between triangles and vertices. For each triangle j,
CONNði; jÞ gives the indices of its three vertices (in anticlockwise order), for i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT.

C o n s t r a i n t : 1 � CONNði; jÞ � NV a n d CONNð1; jÞ 6¼ CONNð2; jÞ a n d
CONNð1; jÞ 6¼ CONNð3; jÞ a n d CONNð2; jÞ 6¼ CONNð3; jÞ, f o r i ¼ 1; 2; 3 a n d
j ¼ 1; 2; . . . ;NELT.

5: NNZ – INTEGER Output

On exit: the number of nonzero entries in the matrix associated with the input mesh.

6: IROWðNNZMAXÞ – INTEGER array Output
7: ICOLðNNZMAXÞ – INTEGER array Output

On exit: the first NNZ elements contain the row and column indices of the nonzero elements
supplied in the finite element matrix A.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NV < 3,
or NELT > 2� NV� 1,
or NNZMAX < 4� NELTþ NV or NNZMAX > NV2

or CONNði; jÞ < 1 or CONNði; jÞ > NV for some i ¼ 1; 3 and j, 1 � j � NELT,
or CONNð1; jÞ ¼ CONNð2; jÞ or CONNð1; jÞ ¼ CONNð3; jÞ or

CONNð2; jÞ ¼ CONNð3; jÞ for some j ¼ 1; 2; . . . ;NELT.

IFAIL ¼ 2

A serious error has occurred in an internal call to an auxiliary routine. Check the input mesh,
especially the connectivity between triangles and vertices (the argument CONN). Array
dimensions should be checked as well. If the problem persists, contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D06CBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

See Section 10 in D06CCF.
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NAG Library Routine Document

D06CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D06CCF renumbers the vertices of a given mesh using a Gibbs method, in order the reduce the
bandwidth of Finite Element matrices associated with that mesh.

2 Specification

SUBROUTINE D06CCF (NV, NELT, NEDGE, NNZMAX, NNZ, COOR, EDGE, CONN, IROW,
ICOL, ITRACE, IWORK, LIWORK, RWORK, LRWORK, IFAIL)

&

INTEGER NV, NELT, NEDGE, NNZMAX, NNZ, EDGE(3,NEDGE),
CONN(3,NELT), IROW(NNZMAX), ICOL(NNZMAX), ITRACE,
IWORK(LIWORK), LIWORK, LRWORK, IFAIL

&
&

REAL (KIND=nag_wp) COOR(2,NV), RWORK(LRWORK)

3 Description

D06CCF uses a Gibbs method to renumber the vertices of a given mesh in order to reduce the
bandwidth of the associated finite element matrix A. This matrix has elements aij such that:

aij 6¼ 0) i and j are vertices belonging to the same triangle:

This routine reduces the bandwidth m, which is the smallest integer such that aij 6¼ 0 whenever
i� jj j > m (see Gibbs et al. (1976) for details about that method). D06CCF also returns the sparsity
structure of the matrix associated with the renumbered mesh.

This routine is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

Gibbs N E, Poole W G Jr and Stockmeyer P K (1976) An algorithm for reducing the bandwidth and
profile of a sparse matrix SIAM J. Numer. Anal. 13 236–250

5 Arguments

1: NV – INTEGER Input

On entry: the total number of vertices in the input mesh.

Constraint: NV � 3.

2: NELT – INTEGER Input

On entry: the number of triangles in the input mesh.

Constraint: NELT � 2� NV� 1.

3: NEDGE – INTEGER Input

On entry: the number of boundary edges in the input mesh.

Constraint: NEDGE � 1.
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4: NNZMAX – INTEGER Input

On entry: the maximum number of nonzero entries in the matrix based on the input mesh. It is
the dimension of the arrays IROW and ICOL as declared in the subroutine from which D06CCF
is called.

Constraint: 4� NELTþ NV � NNZMAX � NV2.

5: NNZ – INTEGER Output

On exit: the number of nonzero entries in the matrix based on the input mesh.

6: COORð2;NVÞ – REAL (KIND=nag_wp) array Input/Output

On entry: COORð1; iÞ contains the x coordinate of the ith input mesh vertex, for
i ¼ 1; 2; . . . ;NV; while COORð2; iÞ contains the corresponding y coordinate.

On exit: COORð1; iÞ will contain the x coordinate of the ith renumbered mesh vertex, for
i ¼ 1; 2; . . . ;NV; while COORð2; iÞ will contain the corresponding y coordinate.

7: EDGEð3;NEDGEÞ – INTEGER array Input/Output

On entry: the specification of the boundary or interface edges. EDGEð1; jÞ and EDGEð2; jÞ
contain the vertex numbers of the two end points of the jth boundary edge. EDGEð3; jÞ is a user-
supplied tag for the jth boundary or interface edge: EDGEð3; jÞ ¼ 0 for an interior edge and has
a nonzero tag otherwise.

Co n s t r a i n t : 1 � EDGEði; jÞ � NV a n d EDGEð1; jÞ 6¼ EDGEð2; jÞ, f o r i ¼ 1; 2 a n d
j ¼ 1; 2; . . . ;NEDGE.

On exit: the renumbered specification of the boundary or interface edges.

8: CONNð3;NELTÞ – INTEGER array Input/Output

On entry: the connectivity of the mesh between triangles and vertices. For each triangle j,
CONNði; jÞ gives the indices of its three vertices (in anticlockwise order), for i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT.

C o n s t r a i n t : 1 � CONNði; jÞ � NV a n d CONNð1; jÞ 6¼ CONNð2; jÞ a n d
CONNð1; jÞ 6¼ CONNð3; jÞ a n d CONNð2; jÞ 6¼ CONNð3; jÞ, f o r i ¼ 1; 2; 3 a n d
j ¼ 1; 2; . . . ;NELT.

On exit: the renumbered connectivity of the mesh between triangles and vertices.

9: IROWðNNZMAXÞ – INTEGER array Output
10: ICOLðNNZMAXÞ – INTEGER array Output

On exit: the first NNZ elements contain the row and column indices of the nonzero elements
supplied in the finite element matrix A.

11: ITRACE – INTEGER Input

On entry: the level of trace information required from D06CCF.

ITRACE � 0
No output is generated.

ITRACE ¼ 1
Information about the effect of the renumbering on the finite element matrix are output.
This information includes the half bandwidth and the sparsity structure of this matrix
before and after renumbering.

ITRACE > 1
The output is similar to that produced when ITRACE ¼ 1 but the sparsities (for each row
of the matrix, indices of nonzero entries) of the matrix before and after renumbering are
also output.
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12: IWORKðLIWORKÞ – INTEGER array Workspace
13: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D06CCF is called.

Constraint: LIWORK � max NNZMAX; 20� NVð Þ.

14: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Workspace
15: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D06CCF is called.

Constraint: LRWORK � NV.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NV < 3,
or NELT > 2� NV� 1,
or NEDGE < 1,
or NNZMAX < 4� NELTþ NV or NNZMAX > NV2

or CONNði; jÞ < 1 or CONNði; jÞ > NV for some i ¼ 1; 2; 3 and j ¼ 1; 2; . . . ;NELT,
or CONNð1; jÞ ¼ CONNð2; jÞ or CONNð1; jÞ ¼ CONNð3; jÞ or

CONNð2; jÞ ¼ CONNð3; jÞ for some j ¼ 1; 2; . . . ;NELT,
or EDGEði; jÞ < 1 or EDGEði; jÞ > NV for some i ¼ 1; 2 and j ¼ 1; 2; . . . ;NEDGE,
or EDGEð1; jÞ ¼ EDGEð2; jÞ for some j ¼ 1; 2; . . . ;NEDGE,
or LIWORK < max NNZMAX; 20� NVð Þ,
or LRWORK < NV.

IFAIL ¼ 2

A serious error has occurred during the computation of the compact sparsity of the finite element
matrix or in an internal call to the renumbering routine. Check the input mesh, especially the
connectivity between triangles and vertices (the argument CONN). If the problem persists,
contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D06CCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

In this example, a geometry with two holes (two interior circles inside an exterior one) is considered.
The geometry has been meshed using the simple incremental method (D06AAF) and it has 250 vertices
and 402 triangles (see Figure 1 in Section 10.3). The routine D06BAF is used to renumber the vertices,
and one can see the benefit in terms of the sparsity of the finite element matrix based on the renumbered
mesh (see Figure 2 and 3 in Section 10.3).

10.1 Program Text

! D06CCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d06ccfe_mod

! D06CCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp, x01aaf

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: create_mesh

! .. Parameters ..
Integer, Parameter, Public :: matout = 7, nout = 6, nvb1 = 40, &

nvb2 = 30, nvb3 = 30, nvmax = 260
Integer, Parameter, Public :: nvb = nvb1 + nvb2 + nvb3
Integer, Parameter, Public :: nedge = nvb
Logical, Parameter, Public :: pmesh = .False.

Contains
Subroutine create_mesh(edge,coor,nv,nelt,conn)

! .. Use Statements ..
Use nag_library, Only: d06aaf
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! .. Scalar Arguments ..
Integer, Intent (Out) :: nelt, nv

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: coor(2,nvmax)
Integer, Intent (Out) :: conn(3,2*nvmax-2), edge(3,nedge)

! .. Local Scalars ..
Real (Kind=nag_wp) :: coef, pi2, power, r, theta, theta_i, &

x0, y0
Integer :: i, ifail, itrace, liwork, lrwork
Logical :: smooth

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: bspace(:), rwork(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: cos, max, real, sin

! .. Executable Statements ..

lrwork = nvmax
liwork = 16*nvmax + 2*nedge + max(4*nvmax+2,nedge-14)
Allocate (bspace(nvb),rwork(lrwork),iwork(liwork))

! Outer circle
pi2 = 2.0_nag_wp*x01aaf(theta)
theta = pi2/real(nvb1,kind=nag_wp)
r = 1.0_nag_wp
x0 = 0.0_nag_wp
y0 = 0.0_nag_wp
Do i = 1, nvb1

theta_i = theta*real(i,kind=nag_wp)
coor(1,i) = x0 + r*cos(theta_i)
coor(2,i) = y0 + r*sin(theta_i)

End Do
! Larger inner circle

theta = pi2/real(nvb2,kind=nag_wp)
r = 0.49_nag_wp
x0 = -0.5_nag_wp
y0 = 0.0_nag_wp
Do i = 1, nvb2

theta_i = theta*real(i,kind=nag_wp)
coor(1,nvb1+i) = x0 + r*cos(theta_i)
coor(2,nvb1+i) = y0 + r*sin(theta_i)

End Do
! Smaller inner circle

theta = pi2/real(nvb3,kind=nag_wp)
r = 0.15_nag_wp
x0 = -0.5_nag_wp
y0 = 0.65_nag_wp
Do i = 1, nvb3

theta_i = theta*real(i,kind=nag_wp)
coor(1,nvb1+nvb2+i) = x0 + r*cos(theta_i)
coor(2,nvb1+nvb2+i) = y0 + r*sin(theta_i)

End Do

! Boundary edges
Do i = 1, nedge

edge(1,i) = i
edge(2,i) = i + 1
edge(3,i) = 1

End Do
edge(2,nvb1) = 1
edge(2,nvb1+nvb2) = nvb1 + 1
edge(2,nvb) = nvb1 + nvb2 + 1

! Initialize mesh control parameters
bspace(1:nvb) = 0.05E0_nag_wp
smooth = .True.
itrace = 0
coef = 0.75E0_nag_wp
power = 0.25E0_nag_wp

! Call to the mesh generator
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ifail = 0
Call d06aaf(nvb,nvmax,nedge,edge,nv,nelt,coor,conn,bspace,smooth,coef, &

power,itrace,rwork,lrwork,iwork,liwork,ifail)

Deallocate (bspace,rwork,iwork)

Return
End Subroutine create_mesh

End Module d06ccfe_mod
Program d06ccfe

! D06CCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d06cbf, d06ccf, nag_wp
Use d06ccfe_mod, Only: create_mesh, matout, nedge, nout, nvmax, pmesh

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ifail, itrace, liwork, lrwork, &

nelt, nnz, nnzmax, nv
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: coor(:,:), rwork(:)
Integer, Allocatable :: conn(:,:), edge(:,:), icol(:), &

irow(:), iwork(:)
! .. Intrinsic Procedures ..

Intrinsic :: max
! .. Executable Statements ..

Write (nout,*) ’D06CCF Example Program Results’
Flush (nout)

! Allocate arrays defining mesh
Allocate (conn(3,2*nvmax-2),edge(3,nedge),coor(2,nvmax))

! Define boundary mesh and Generate interior mesh
Call create_mesh(edge,coor,nv,nelt,conn)

nnzmax = nv**2
liwork = max(nnzmax,20*nv)
lrwork = nv
Allocate (irow(nnzmax),icol(nnzmax),iwork(liwork),rwork(lrwork))

! Compute the sparsity of the FE matrix
! from the input geometry

ifail = 0
Call d06cbf(nv,nelt,nnzmax,conn,nnz,irow,icol,ifail)

Write (nout,*)

If (pmesh) Then

! Output the sparsity of the mesh
Write (matout,99998)(irow(i),icol(i),i=1,nnz)

Else
Write (nout,*) ’Matrix Sparsity characteristics before renumbering’
Write (nout,99999) ’nv =’, nv
Write (nout,99999) ’nnz =’, nnz
Write (nout,99999) ’nelt =’, nelt

End If
Flush (nout)

! Call the renumbering routine and get the new sparsity

itrace = 1

ifail = 0
Call d06ccf(nv,nelt,nedge,nnzmax,nnz,coor,edge,conn,irow,icol,itrace, &

iwork,liwork,rwork,lrwork,ifail)
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If (pmesh) Then

! Output the sparsity of the renumbered mesh
Write (matout,*)
Write (matout,*)
Write (matout,99998)(irow(i),icol(i),i=1,nnz)

! Output the renumbered mesh
Write (nout,99998) nv, nelt
Write (nout,99997)(coor(1:2,i),i=1,nv)
Write (nout,99996)(conn(1:3,i),i=1,nelt)

Else
Write (nout,*)
Write (nout,*) ’Matrix Sparsity characteristics after renumbering’
Write (nout,99999) ’nv =’, nv
Write (nout,99999) ’nnz =’, nnz
Write (nout,99999) ’nelt =’, nelt

End If

99999 Format (1X,A,I6)
99998 Format (1X,2I10)
99997 Format (2(2X,E13.6))
99996 Format (1X,3I10)

End Program d06ccfe

10.2 Program Data

None.

10.3 Program Results

D06CCF Example Program Results

Matrix Sparsity characteristics before renumbering
nv = 260
nnz = 1626
nelt = 422

Initial half-bandwidth: 251 Initial profile: 19911
Final half-bandwidth: 27 Final profile: 4012

Matrix Sparsity characteristics after renumbering
nv = 260
nnz = 1626
nelt = 422
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Example Program
Figure 1: Mesh of the Geometry

Figure 2: Sparsity of the FE Matrix Before Renumbering
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Figure 3: Sparsity of the FE Matrix After Renumbering
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NAG Library Routine Document

D06DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D06DAF is a utility which performs an affine transformation of a given mesh.

2 Specification

SUBROUTINE D06DAF (NV, NEDGE, NELT, NTRANS, ITYPE, TRANS, COORI, EDGEI,
CONNI, COORO, EDGEO, CONNO, ITRACE, RWORK, LRWORK,
IFAIL)

&
&

INTEGER NV, NEDGE, NELT, NTRANS, ITYPE(NTRANS),
EDGEI(3,NEDGE), CONNI(3,NELT), EDGEO(3,NEDGE),
CONNO(3,NELT), ITRACE, LRWORK, IFAIL

&
&

REAL (KIND=nag_wp) TRANS(6,NTRANS), COORI(2,NV), COORO(2,NV),
RWORK(LRWORK)

&

3 Description

D06DAF generates a mesh (coordinates, triangle/vertex connectivities and edge/vertex connectivities)
resulting from an affine transformation of a given mesh. This transformation is of the form
Y ¼ A�X þ B, where

Y , X and B are in R
2, and

A is a real 2 by 2 matrix.

Such a transformation includes a translation, a rotation, a scale reduction or increase, a symmetric
transformation with respect to a user-supplied line, a user-supplied analytic transformation, or a
composition of several transformations.

This routine is partly derived from material in the MODULEF package from INRIA (Institut National
de Recherche en Informatique et Automatique).

4 References

None.

5 Arguments

1: NV – INTEGER Input

On entry: the total number of vertices in the input mesh.

Constraint: NV � 3.

2: NEDGE – INTEGER Input

On entry: the number of the boundary or interface edges in the input mesh.

Constraint: NEDGE � 1.
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3: NELT – INTEGER Input

On entry: the number of triangles in the input mesh.

Constraint: NELT � 2� NV� 1.

4: NTRANS – INTEGER Input

On entry: the number of transformations of the input mesh.

Constraint: NTRANS � 1.

5: ITYPEðNTRANSÞ – INTEGER array Input

On entry: ITYPEðiÞ, for i ¼ 1; 2; . . . ;NTRANS, indicates the type of each transformation as
follows:

ITYPEðiÞ ¼ 0
Identity transformation.

ITYPEðiÞ ¼ 1
Translation.

ITYPEðiÞ ¼ 2
Symmetric transformation with respect to a user-supplied line.

ITYPEðiÞ ¼ 3
Rotation.

ITYPEðiÞ ¼ 4
Scaling.

ITYPEðiÞ ¼ 10
User-supplied analytic transformation.

Note that the transformations are applied in the order described in ITYPE.

Constraint: ITYPEðiÞ ¼ 0, 1, 2, 3, 4 or 10, for i ¼ 1; 2; . . . ;NTRANS.

6: TRANSð6;NTRANSÞ – REAL (KIND=nag_wp) array Input

On entry: the arguments for each transformation. For i ¼ 1; 2; . . . ;NTRANS, TRANSð1; iÞ to
TRANSð6; iÞ contain the arguments of the ith transformation.

If ITYPEðiÞ ¼ 0, elements TRANSð1; iÞ to TRANSð6; iÞ are not referenced.

If ITYPEðiÞ ¼ 1, the translation vector is ~u ¼ a
b

� �
, where a ¼ TRANSð1; iÞ and

b ¼ TRANSð2; iÞ, while elements TRANSð3; iÞ to TRANSð6; iÞ are not referenced.

If ITYPEðiÞ ¼ 2, the user-supplied line is the curve { x; yð Þ 2 R
2; such that axþ byþ c ¼ 0},

where a ¼ TRANSð1; iÞ, b ¼ TRANSð2; iÞ and c ¼ TRANSð3; iÞ, while elements TRANSð4; iÞ to
TRANSð6; iÞ are not referenced.

If ITYPEðiÞ ¼ 3, the centre of the rotation is x0; y0ð Þ where x0 ¼ TRANSð1; iÞ and
y0 ¼ TRANSð2; iÞ, � ¼ TRANSð3; iÞ is its angle in degrees, while elements TRANSð4; iÞ to
TRANSð6; iÞ are not referenced.

If ITYPEðiÞ ¼ 4, a ¼ TRANSð1; iÞ is the scaling coefficient in the x-direction, b ¼ TRANSð2; iÞ
is the scaling coefficient in the y-direction, and x0; y0ð Þ are the scaling centre coordinates, with
x0 ¼ TRANSð3; iÞ and y0 ¼ TRANSð4; iÞ; while elements TRANSð5; iÞ to TRANSð6; iÞ are not
referenced.

If ITYPEðiÞ ¼ 10, the user-supplied analytic affine transformation Y ¼ A�X þB is such that
A ¼ aklð Þ1�k;l�2 a n d B ¼ bkð Þ1�k�2 w h e r e akl ¼ TRANSð2� k� 1ð Þ þ l; iÞ, a n d
bk ¼ TRANSð4þ k; iÞ with k; l ¼ 1; 2.
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7: COORIð2;NVÞ – REAL (KIND=nag_wp) array Input/Output

On entry: COORIð1; iÞ contains the x coordinate of the ith vertex of the input mesh, for
i ¼ 1; 2; . . . ;NV; while COORIð2; iÞ contains the corresponding y coordinate.

On exit: see Section 9.

8: EDGEIð3;NEDGEÞ – INTEGER array Input/Output

On entry: the specification of the boundary or interface edges. EDGEIð1; jÞ and EDGEIð2; jÞ
contain the vertex numbers of the two end points of the jth boundary edge. EDGEIð3; jÞ is a
user-supplied tag for the jth boundary edge.

Cons t ra i n t : 1 � EDGEIði; jÞ � NV and EDGEIð1; jÞ 6¼ EDGEIð2; jÞ, f o r i ¼ 1; 2 and
j ¼ 1; 2; . . . ;NEDGE.

On exit: see Section 9.

9: CONNIð3;NELTÞ – INTEGER array Input/Output

On entry: the connectivity of the input mesh between triangles and vertices. For each triangle j,
CONNIði; jÞ gives the indices of its three vertices (in anticlockwise order), for i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT.

Constraints:

1 � CONNIði; jÞ � NV;
CONNIð1; jÞ 6¼ CONNIð2; jÞ;
CONNIð1; jÞ 6¼ CONNIð3; jÞ a n d CONNIð2; jÞ 6¼ CONNIð3; jÞ, f o r i ¼ 1; 2; 3 a n d
j ¼ 1; 2; . . . ;NELT.

On exit: see Section 9.

10: COOROð2;NVÞ – REAL (KIND=nag_wp) array Output

On exit: COOROð1; iÞ will contain the x coordinate of the ith vertex of the transformed mesh, for
i ¼ 1; 2; . . . ;NV; while COOROð2; iÞ will contain the corresponding y coordinate.

11: EDGEOð3;NEDGEÞ – INTEGER array Output

On exit: the specification of the boundary or interface edges of the transformed mesh. If the
number of symmetric transformations is even or zero thenEDGEOði; jÞ ¼ EDGEIði; jÞ, for
i ¼ 1; 2; 3 a n d j ¼ 1; 2; . . . ;NEDGE; o t h e r w i s e
EDGEOð1; jÞ ¼ EDGEIð2; jÞ,EDGEOð2; jÞ ¼ EDGEIð1; jÞ and EDGEOð3; jÞ ¼ EDGEIð3; jÞ, for
j ¼ 1; 2; . . . ;NEDGE.

12: CONNOð3;NELTÞ – INTEGER array Output

On exit: the connectivity of the transformed mesh between triangles and vertices. If the number
of symmetric transformations is even or zero thenCONNOði; jÞ ¼ CONNIði; jÞ, for i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT; otherwise CONNOð1; jÞ ¼ CONNIð1; jÞ, CONNOð2; jÞ ¼ CONNIð3; jÞ and
CONNOð3; jÞ ¼ CONNIð2; jÞ, for j ¼ 1; 2; . . . ;NELT.

13: ITRACE – INTEGER Input

On entry: the level of trace information required from D06DAF.

ITRACE � 0
No output is generated.

ITRACE � 1
Details of each transformation, the matrix A and the vector B of the final transformation,
which is the composition of all the NTRANS transformations, are printed on the current
advisory message unit (see X04ABF).
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14: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Workspace
15: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D06DAF is called.

Constraint: LRWORK � 12� NTRANS.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NV < 3;
or NELT > 2� NV� 1;
or NEDGE < 1;
or EDGEIði; jÞ < 1 or EDGEIði; jÞ > NV for some i ¼ 1; 2 and j ¼ 1; 2; . . . ;NEDGE;
or EDGEIð1; jÞ ¼ EDGEIð2; jÞ for some j ¼ 1; 2; . . . ;NEDGE;
or CONNIði; jÞ < 1 or CONNIði; jÞ > NV for some i ¼ 1; 2; 3 and j ¼ 1; 2; . . . ;NELT;
or CONNIð1; jÞ ¼ CONNIð2; jÞ or CONNIð1; jÞ ¼ CONNIð3; jÞ or

CONNIð2; jÞ ¼ CONNIð3; jÞ for some j ¼ 1; 2; . . . ;NELT;
or NTRANS < 1;
or ITYPEðiÞ 6¼ 0, 1, 2, 3, 4 or 10 for some i ¼ 1; 2; . . . ;NTRANS;
or LRWORK < 12� NTRANS.

IFAIL ¼ 2

A serious error has occurred in an internal call to an auxiliary routine. Check the input mesh
especially the triangles/vertices and the edges/vertices connectivities as well as the details of each
transformations.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D06DAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

You may not wish to save the input mesh (COORI, EDGEI and CONNI) and could call D06DAF using
the same arguments for the input and the output (transformed) mesh.

10 Example

For an example of the use of this utility routine, see Section 10 in D06DBF.
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NAG Library Routine Document

D06DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D06DBF joins together (restitches) two adjacent, or overlapping, meshes.

2 Specification

SUBROUTINE D06DBF (EPS, NV1, NELT1, NEDGE1, COOR1, EDGE1, CONN1, REFT1,
NV2, NELT2, NEDGE2, COOR2, EDGE2, CONN2, REFT2, NV3,
NELT3, NEDGE3, COOR3, EDGE3, CONN3, REFT3, ITRACE,
IWORK, LIWORK, IFAIL)

&
&
&

INTEGER NV1, NELT1, NEDGE1, EDGE1(3,NEDGE1),
CONN1(3,NELT1), REFT1(NELT1), NV2, NELT2, NEDGE2,
EDGE2(3,NEDGE2), CONN2(3,NELT2), REFT2(NELT2), NV3,
NELT3, NEDGE3, EDGE3(3,*), CONN3(3,*), REFT3(*),
ITRACE, IWORK(LIWORK), LIWORK, IFAIL

&
&
&
&

REAL (KIND=nag_wp) EPS, COOR1(2,NV1), COOR2(2,NV2), COOR3(2,*)

3 Description

D06DBF joins together two adjacent, or overlapping, meshes. If the two meshes are adjacent then
vertices belonging to the part of the boundary forming the common interface should coincide. If the two
meshes overlap then vertices and triangles in the overlapping zone should coincide too.

This routine is partly derived from material in the MODULEF package from INRIA (Institut National
de Recherche en Informatique et Automatique).

4 References

None.

5 Arguments

1: EPS – REAL (KIND=nag_wp) Input

On entry: the relative precision of the restitching of the two input meshes (see Section 9).

Suggested value: 0:001.

Constraint: EPS > 0:0.

2: NV1 – INTEGER Input

On entry: the total number of vertices in the first input mesh.

Constraint: NV1 � 3.

3: NELT1 – INTEGER Input

On entry: the number of triangular elements in the first input mesh.

Constraint: NELT1 � 2� NV1� 1.
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4: NEDGE1 – INTEGER Input

On entry: the number of boundary edges in the first input mesh.

Constraint: NEDGE1 � 1.

5: COOR1ð2;NV1Þ – REAL (KIND=nag_wp) array Input

On entry: COOR1ð1; iÞ contains the x coordinate of the ith vertex of the first input mesh, for
i ¼ 1; 2; . . . ;NV1; while COOR1ð2; iÞ contains the corresponding y coordinate.

6: EDGE1ð3;NEDGE1Þ – INTEGER array Input

On entry: the specification of the boundary edges of the first input mesh. EDGE1ð1; jÞ and
EDGE1ð2; jÞ contain the vertex numbers of the two end points of the jth boundary edge.
EDGE1ð3; jÞ is a user-supplied tag for the jth boundary edge.

Constraint : 1 � EDGE1ði; jÞ � NV1 and EDGE1ð1; jÞ 6¼ EDGE1ð2; jÞ, for i ¼ 1; 2 and
j ¼ 1; 2; . . . ;NEDGE1.

7: CONN1ð3;NELT1Þ – INTEGER array Input

On entry: the connectivity between triangles and vertices of the first input mesh. For each
triangle j, CONN1ði; jÞ gives the indices of its three vertices (in anticlockwise order), for
i ¼ 1; 2; 3 and j ¼ 1; 2; . . . ;NELT1.

Constraints:

1 � CONN1ði; jÞ � NV1;
CONN1ð1; jÞ 6¼ CONN1ð2; jÞ;
CONN1ð1; jÞ 6¼ CONN1ð3; jÞ and CONN1ð2; jÞ 6¼ CONN1ð3; jÞ, fo r i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT1.

8: REFT1ðNELT1Þ – INTEGER array Input

On entry: REFT1ðkÞ contains the user-supplied tag of the kth triangle from the first input mesh,
for k ¼ 1; 2; . . . ;NELT1.

9: NV2 – INTEGER Input

On entry: the total number of vertices in the second input mesh.

Constraint: NV2 � 3.

10: NELT2 – INTEGER Input

On entry: the number of triangular elements in the second input mesh.

Constraint: NELT2 � 2� NV2� 1.

11: NEDGE2 – INTEGER Input

On entry: the number of boundary edges in the second input mesh.

Constraint: NEDGE2 � 1.

12: COOR2ð2;NV2Þ – REAL (KIND=nag_wp) array Input

On entry: COOR2ð1; iÞ contains the x coordinate of the ith vertex of the second input mesh, for
i ¼ 1; 2; . . . ;NV2; while COOR2ð2; iÞ contains the corresponding y coordinate.
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13: EDGE2ð3;NEDGE2Þ – INTEGER array Input

On entry: the specification of the boundary edges of the second input mesh. EDGE2ð1; jÞ and
EDGE2ð2; jÞ contain the vertex numbers of the two end points of the jth boundary edge.
EDGE2ð3; jÞ is a user-supplied tag for the jth boundary edge.

Constraint : 1 � EDGE2ði; jÞ � NV2 and EDGE2ð1; jÞ 6¼ EDGE2ð2; jÞ, for i ¼ 1; 2 and
j ¼ 1; 2; . . . ;NEDGE2.

14: CONN2ð3;NELT2Þ – INTEGER array Input

On entry: the connectivity between triangles and vertices of the second input mesh. For each
triangle j, CONN2ði; jÞ gives the indices of its three vertices (in anticlockwise order), for
i ¼ 1; 2; 3 and j ¼ 1; 2; . . . ;NELT2.

Constraints:

1 � CONN2ði; jÞ � NV2;
CONN2ð1; jÞ 6¼ CONN2ð2; jÞ;
CONN2ð1; jÞ 6¼ CONN2ð3; jÞ and CONN2ð2; jÞ 6¼ CONN2ð3; jÞ, fo r i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT2.

15: REFT2ðNELT2Þ – INTEGER array Input

On entry: REFT2ðkÞ contains the user-supplied tag of the kth triangle from the second input
mesh, for k ¼ 1; 2; . . . ;NELT2.

16: NV3 – INTEGER Output

On exit: the total number of vertices in the resulting mesh.

17: NELT3 – INTEGER Output

On exit: the number of triangular elements in the resulting mesh.

18: NEDGE3 – INTEGER Output

On exit: the number of boundary edges in the resulting mesh.

19: COOR3ð2; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array COOR3 must be at least NV1þ NV2.

On exit: COOR3ð1; iÞ will contain the x coordinate of the ith vertex of the resulting mesh, for
i ¼ 1; 2; . . . ;NV3; while COOR3ð2; iÞ will contain the corresponding y coordinate.

20: EDGE3ð3; �Þ – INTEGER array Output

Note: the second dimension of the array EDGE3 must be at least NEDGE1þ NEDGE2. This
may be reduced to NEDGE3 once that value is known.

On exit: the specification of the boundary edges of the resulting mesh. EDGE3ði; jÞ will contain
the vertex number of the ith end point (i ¼ 1; 2) of the jth boundary or interface edge.

If the two meshes overlap, EDGE3ð3; jÞ will contain the same tag as the corresponding edge
belonging to the first and/or the second input mesh.

If the two meshes are adjacent,

(i) if the jth edge is part of the partition interface, then EDGE3ð3; jÞ will contain the value
1000� k1 þ k2 where k1 and k2 are the tags for the same edge of the first and the second
mesh respectively;

(ii) otherwise, EDGE3ð3; jÞ will contain the same tag as the corresponding edge belonging to the
first and/or the second input mesh.
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21: CONN3ð3; �Þ – INTEGER array Output

Note: the second dimension of the array CONN3 must be at least NELT1þ NELT2. This may be
reduced to NELT3 once that value is known.

On exit: the connectivity between triangles and vertices of the resulting mesh. CONN3ði; jÞ will
give the indices of its three vertices (in anticlockwise order), for i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT3.

22: REFT3ð�Þ – INTEGER array Output

Note: the dimension of the array REFT3 must be at least NELT1þ NELT2. This may be reduced
to NELT3 once that value is known.

On exit: if the two meshes form a partition, REFT3ðkÞ will contain the same tag as the
corresponding triangle belonging to the first or the second input mesh, for k ¼ 1; 2; . . . ;NELT3.
If the two meshes overlap, then REFT3ðkÞ will contain the value 1000� k1 þ k2 where k1 and k2
are the user-supplied tags for the same triangle of the first and the second mesh respectively, for
k ¼ 1; 2; . . . ;NELT3.

23: ITRACE – INTEGER Input

On entry: the level of trace information required from D06DBF.

ITRACE � 0
No output is generated.

ITRACE � 1
Details about the common vertices, edges and triangles to both meshes are printed on the
current advisory message unit (see X04ABF).

24: IWORKðLIWORKÞ – INTEGER array Workspace
25: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D06DBF is called.

Constraint:
LIWORK � 2� NV1þ 3� NV2þ NELT1þ NELT2þ NEDGE1þ NEDGE2þ 1024.

26: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, EPS � 0:0,
or NV1 < 3,
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or NELT1 > 2� NV1� 1,
or NEDGE1 < 1,
or EDGE1ði; jÞ < 1 or EDGE1ði; jÞ > NV1 for some i ¼ 1; 2 and

j ¼ 1; 2; . . . ;NEDGE1,
or EDGE1ð1; jÞ ¼ EDGE1ð2; jÞ for some j ¼ 1; 2; . . . ;NEDGE1,
or CONN1ði; jÞ < 1 or CONN1ði; jÞ > NV1 for some i ¼ 1; 2; 3 and

j ¼ 1; 2; . . . ;NELT1,
or CONN1ð1; jÞ ¼ CONN1ð2; jÞ or CONN1ð1; jÞ ¼ CONN1ð3; jÞ or

CONN1ð2; jÞ ¼ CONN1ð3; jÞ for some j ¼ 1; 2; . . . ;NELT1,
or NV2 < 3,
or NELT2 > 2� NV2� 1,
or NEDGE2 < 1,
or EDGE2ði; jÞ < 1 or EDGE2ði; jÞ > NV2 for some i ¼ 1; 2 and j ¼ 1; 2; . . . ;NEDGE2,
or EDGE2ð1; jÞ ¼ EDGE2ð2; jÞ for some j ¼ 1; 2; . . . ;NEDGE2,
or CONN2ði; jÞ < 1 or CONN2ði; jÞ > NV2 for some i ¼ 1; 2; 3 and

j ¼ 1; 2; . . . ;NELT2,
or CONN2ð1; jÞ ¼ CONN2ð2; jÞ or

CONN2ð1; jÞ ¼ CONN2ð3; jÞ or
CONN2ð2; jÞ ¼ CONN2ð3; jÞ for some j ¼ 1; 2; . . . ;NELT2,

or LIWORK < 2� NV1þ 3� NV2þ NELT1þ NELT2þ NEDGE1þ NEDGE2þ
1024.

IFAIL ¼ 2

Using the input precision EPS, the routine has detected fewer than two coincident vertices
between the two input meshes. You are advised to try another value of EPS; if this error still
occurs the two meshes are probably not stitchable.

IFAIL ¼ 3

A serious error has occurred in an internal call to the restitching routine. You should check the
input of the two meshes, especially the edge/vertex and/or the triangle/vertex connectivities. If
the problem persists, contact NAG.

IFAIL ¼ 4

The routine has detected a different number of coincident triangles from the two input meshes in
the overlapping zone. You should check the input of the two meshes, especially the triangle/
vertex connectivities.

IFAIL ¼ 5

The routine has detected a different number of coincident edges from the two meshes on the
partition interface. You should check the input of the two meshes, especially the edge/vertex
connectivities.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

D06DBF is not threaded in any implementation.

9 Further Comments

D06DBF finds all the common vertices between the two input meshes using the relative precision of the
restitching argument EPS. You are advised to vary the value of EPS in the neighbourhood of 0:001 with
ITRACE � 1 to get the optimal value for the meshes under consideration.

10 Example

For this routine two examples are presented. There is a single example program for D06DBF, with a
main program and the code to solve the two example problems given in Example 1 (EX1) and Example
2 (EX2).

Example 1 (EX1)

This example involves the unit square 0; 1½ �2 meshed uniformly, and then translated by a vector

~u ¼ u1
u2

� �
(using D06DAF). This translated mesh is then restitched with the original mesh. Two cases

are considered:

(a) overlapping meshes (u1 ¼ 15:0, u2 ¼ 17:0),

(b) partitioned meshes (u1 ¼ 19:0, u2 ¼ 0:0).

The mesh on the unit square has 400 vertices, 722 triangles and its boundary has 76 edges. In the
partitioned case the resulting geometry is shown in Figure 1 in Section 10.3 while the restitched mesh is
shown in Figure 2 in Section 10.3. In the overlapping case the geometry and mesh are shown in Figure
3 and Figure 4 in Section 10.3.

Example 2 (EX2)

This example restitches three geometries by calling the routine D06DBF twice. The result is a mesh
with three partitions. The first geometry is meshed by the Delaunay–Voronoi process (using D06ABF),
the second one meshed by an Advancing Front algorithm (using D06ACF), while the third one is the
result of a rotation (by �	=2) of the second one (using D06DAF). The resulting geometry is shown in
Figure 5 in Section 10.3 and restitched mesh in Figure 6 in Section 10.3.

10.1 Program Text

! D06DBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d06dbfe_mod

! D06DBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fbnd

! .. Parameters ..
Integer, Parameter, Public :: meshout = 7, nin = 5, nout = 6, &

nvb1 = 19
Logical, Parameter, Public :: pmesh = .False.

Contains
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Function fbnd(i,x,y,ruser,iuser)

! .. Function Return Value ..
Real (Kind=nag_wp) :: fbnd

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x, y
Integer, Intent (In) :: i

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: radius2, x0, y0

! .. Executable Statements ..
fbnd = 0.0_nag_wp

Select Case (i)
Case (1)

! inner circle

x0 = 0.0_nag_wp
y0 = 0.0_nag_wp
radius2 = 1.0_nag_wp
fbnd = (x-x0)**2 + (y-y0)**2 - radius2

Case (2)

! outer circle

x0 = 0.0_nag_wp
y0 = 0.0_nag_wp
radius2 = 5.0_nag_wp
fbnd = (x-x0)**2 + (y-y0)**2 - radius2

End Select

Return

End Function fbnd
End Module d06dbfe_mod
Program d06dbfe

! D06DBF Example Main Program

! .. Use Statements ..
Use d06dbfe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’D06DBF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: d06daf, d06dbf, nag_wp, x01aaf
Use d06dbfe_mod, Only: meshout, nout, nvb1, pmesh

! .. Local Scalars ..
Real (Kind=nag_wp) :: ddx, ddy, dx, eps, pi2, pi4, r_i, &

r_j
Integer :: i, ifail, imax, itrace, itrans, j, &

jmax, jtrans, k, ktrans, l, liwork, &
lrwork, nedge1, nedge2, nedge3, &
nelt1, nelt2, nelt3, ntrans, nv1, &
nv2, nv3

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: coor1(:,:), coor2(:,:), coor3(:,:), &

rwork(:), trans(:,:)
Integer, Allocatable :: conn1(:,:), conn2(:,:), conn3(:,:), &
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edge1(:,:), edge2(:,:), edge3(:,:), &
itype(:), iwork(:), reft1(:), &
reft2(:), reft3(:)

! .. Intrinsic Procedures ..
Intrinsic :: real, sin

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’Example 1’
Write (nout,*)

imax = nvb1 + 1
jmax = imax
nedge1 = 2*(imax-1) + 2*(jmax-1)
nedge2 = nedge1
nedge3 = nedge1 + nedge2
ntrans = 1
lrwork = 12*ntrans

! Allocate for mesh : coordinates and connectivity of the 1st domain,
! 2nd translated domain and restitched domain.

nv1 = (nvb1+1)**2
nelt1 = 2*nvb1*nvb1
nv2 = nv1
nv3 = nv1 + nv2
nelt2 = nelt1
nelt3 = nelt1 + nelt2
liwork = 2*nv1 + 3*nv2 + nelt1 + nelt2 + nedge1 + nedge2 + 1024
Allocate (coor1(2,nv1),coor2(2,nv2),coor3(2,nv3),conn1(3,nelt1), &

conn2(3,nelt2),conn3(3,nelt3),reft1(nelt1),reft2(nelt2), &
reft3(nelt3),edge1(3,nedge1),edge2(3,nedge2),edge3(3,nedge3), &
itype(ntrans),trans(6,ntrans),rwork(lrwork),iwork(liwork))

! Set up interior mesh as small perturbations on regular grid
! with regularity on the boundary of square on [0,1]x[0,1].

dx = 1.0_nag_wp/real(nvb1,kind=nag_wp)
pi2 = x01aaf(dx) + x01aaf(dx)
pi4 = pi2 + pi2
k = 0
Do j = 1, jmax

ddy = real(j-1,kind=nag_wp)*dx
Do i = 1, imax

k = k + 1
ddx = real(i-1,kind=nag_wp)*dx
coor1(1,k) = ddx + dx*0.05_nag_wp*sin(pi4*ddx)*sin(pi4*ddy)
coor1(2,k) = ddy + dx*0.05_nag_wp*sin(pi2*ddx)*sin(pi2*ddy)

End Do
End Do

! Triangulate using skew-diagonals on grid squares
k = 0
l = 0
Do i = 1, nvb1

Do j = 1, nvb1
l = l + 1
k = k + 1
conn1(1,k) = l
conn1(2,k) = l + 1
conn1(3,k) = l + nvb1 + 2
k = k + 1
conn1(1,k) = l
conn1(2,k) = l + nvb1 + 2
conn1(3,k) = l + nvb1 + 1

End Do
l = l + 1

End Do

reft1(1:nelt1) = 1
reft2(1:nelt2) = 2

! Define the edges of the boundary
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Do i = 1, nvb1
edge1(1,i) = i
edge1(2,i) = i + 1

End Do
Do i = 1, nvb1

edge1(1,nvb1+i) = i*imax
edge1(2,nvb1+i) = (i+1)*imax

End Do
Do i = 1, nvb1

edge1(1,2*nvb1+i) = imax*jmax - i + 1
edge1(2,2*nvb1+i) = imax*jmax - i

End Do
Do i = 1, nvb1

edge1(1,3*nvb1+i) = (jmax-i)*imax + 1
edge1(2,3*nvb1+i) = (jmax-i-1)*imax + 1

End Do
edge1(3,1:nedge1) = 1

If (pmesh) Then
! Print interior mesh of single square

Do i = 1, nelt1
Write (meshout,99997) coor1(1,conn1(1,i)), coor1(2,conn1(1,i))
Write (meshout,99997) coor1(1,conn1(2,i)), coor1(2,conn1(2,i))
Write (meshout,99997) coor1(1,conn1(3,i)), coor1(2,conn1(3,i))
Write (meshout,99997) coor1(1,conn1(1,i)), coor1(2,conn1(1,i))
Write (meshout,*)

End Do
Write (meshout,*)

End If

Do ktrans = 1, 2

! Translation of the 1st domain to obtain the 2nd domain
! KTRANS = 1 leading to a domains (4x2) overlapping
! KTRANS = 2 leading to a domains partition

If (ktrans==1) Then
itrans = nvb1 - 4
jtrans = nvb1 - 2

Else
itrans = nvb1
jtrans = 0

End If

itype(1:ntrans) = (/1/)
r_i = real(itrans,kind=nag_wp)/real(nvb1,kind=nag_wp)
r_j = real(jtrans,kind=nag_wp)/real(nvb1,kind=nag_wp)
trans(1,1:ntrans) = (/r_i/)
trans(2,1:ntrans) = (/r_j/)
itrace = 0

ifail = 0
Call d06daf(nv2,nedge2,nelt2,ntrans,itype,trans,coor1,edge1,conn1, &

coor2,edge2,conn2,itrace,rwork,lrwork,ifail)

edge2(3,1:nedge2) = 2

! Call to the restitching driver

itrace = 0
eps = 1.E-2_nag_wp

ifail = 0
Call d06dbf(eps,nv1,nelt1,nedge1,coor1,edge1,conn1,reft1,nv2,nelt2, &

nedge2,coor2,edge2,conn2,reft2,nv3,nelt3,nedge3,coor3,edge3,conn3, &
reft3,itrace,iwork,liwork,ifail)

If (pmesh) Then

! Output the overlapping or partitioned mesh
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Write (nout,99998) nv3, nelt3, nedge3

Do i = 1, nelt3
Write (meshout,99997) coor3(1,conn3(1,i)), coor3(2,conn3(1,i))
Write (meshout,99997) coor3(1,conn3(2,i)), coor3(2,conn3(2,i))
Write (meshout,99997) coor3(1,conn3(3,i)), coor3(2,conn3(3,i))
Write (meshout,99997) coor3(1,conn3(1,i)), coor3(2,conn3(1,i))
Write (meshout,*)

End Do
Write (meshout,*)

Do k = 1, nelt3
Write (nout,99996) conn3(1:3,k), reft3(k)

End Do

Do k = 1, nedge3
Write (nout,99998) edge3(1:3,k)

End Do
Else

If (ktrans==1) Then
Write (nout,*) &

’The restitched mesh characteristics in the overlapping case’
Else

Write (nout,*) &
’The restitched mesh characteristics in the partition case’

End If

Write (nout,99999) ’nv =’, nv3
Write (nout,99999) ’nelt =’, nelt3
Write (nout,99999) ’nedge =’, nedge3

End If
End Do

99999 Format (1X,A,I6)
99998 Format (1X,3I10)
99997 Format (2(2X,E13.6))
99996 Format (1X,4I10)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d06abf, d06acf, d06baf, d06caf, d06daf, d06dbf, &

f16dnf, nag_wp
Use d06dbfe_mod, Only: fbnd, meshout, nin, nout, pmesh

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps
Integer :: i, ifail, itrace, j, k, liwork, &

lrwork, maxind, maxval, ncomp, &
nedge1, nedge2, nedge3, nedge4, &
nedge5, nedmx, nelt1, nelt2, nelt3, &
nelt4, nelt5, nlines, npropa, nqint, &
ntrans, nv1, nv2, nv3, nv4, nv5, &
nvb1, nvb2, nvfix, nvint, nvmax, &
sdcrus

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: coor1(:,:), coor2(:,:), coor3(:,:), &

coor4(:,:), coor5(:,:), coorch(:,:), &
crus(:,:), rate(:), rwork(:), &
trans(:,:), weight(:)

Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: conn1(:,:), conn2(:,:), conn3(:,:), &

conn4(:,:), conn5(:,:), edge1(:,:), &
edge2(:,:), edge3(:,:), edge4(:,:), &
edge5(:,:), itype(:), iwork(:), &
lcomp(:), lined(:,:), nlcomp(:), &
numfix(:), reft1(:), reft2(:), &
reft3(:), reft4(:), reft5(:)

Integer :: iuser(1)
! .. Intrinsic Procedures ..

Intrinsic :: abs
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! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’Example 2’
Write (nout,*)

! Skip headings in data file
Read (nin,*)
Read (nin,*)

! Build and mesh two domains and rotate/translate second to create
! third.

! ----------------------------------------------
! 1st domain: Annulus with straight right edge.
! First two points are end of straight edge.
! The mesh for inner circle is defined by four NWSE points with mesh
! points on the quarter-circle between each pair (fbnd, i=1).
! The mesh for the incomplete outer circle is defined by three NWS
! points and the edge points, mesh points computed using fbnd,
! i=2.

! The number of lines (1+4+4).
Read (nin,*) nlines, nvmax, nedmx
Allocate (coor1(2,nvmax),edge1(3,nedmx),lined(4,nlines),lcomp(nlines), &

coorch(2,nlines),rate(nlines))

! Characteristic points of the boundary geometry.
Read (nin,*) coorch(1,1:nlines)
Read (nin,*) coorch(2,1:nlines)

! The Lines of the boundary mesh
Read (nin,*)(lined(1:4,j),rate(j),j=1,nlines)

! Allocate workspace for d06baf.

! sdcrus = 0 in this case.
sdcrus = 0
Do i = 1, nlines

If (lined(4,i)<0) Then
sdcrus = sdcrus + lined(1,i) - 2

End If
End Do

! Get max(LINED(1,:)) for computing lrwork
Call f16dnf(nlines,lined,4,maxind,maxval)
liwork = 8*nlines + nvmax + 3*nedmx + 3*sdcrus
lrwork = 2*(nlines+sdcrus) + 2*maxval*nlines
Allocate (crus(2,sdcrus),rwork(lrwork),iwork(liwork))

! The number of connected components (outer circle/edge and inner
! circle)

Read (nin,*) ncomp
Allocate (nlcomp(ncomp))

! Read the lines comprising each connected component
j = 1
Do i = 1, ncomp

Read (nin,*) nlcomp(i)
k = j + abs(nlcomp(i)) - 1
Read (nin,*) lcomp(j:k)
j = k + 1

End Do

itrace = 0
! Call to the 2D boundary mesh generator

ifail = 0
Call d06baf(nlines,coorch,lined,fbnd,crus,sdcrus,rate,ncomp,nlcomp, &

lcomp,nvmax,nedmx,nvb1,coor1,nedge1,edge1,itrace,ruser,iuser,rwork, &
lrwork,iwork,liwork,ifail)

Deallocate (rwork,iwork)
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! Generate mesh using Delaunay-Voronoi method

! Initialize mesh control parameters and allocate workspace.
itrace = 0
npropa = 1
nvint = 0
lrwork = 12*nvmax + 15
liwork = 6*nedge1 + 32*nvmax + 2*nvb1 + 78
Allocate (weight(nvint),rwork(lrwork),iwork(liwork), &

conn1(3,2*nvmax+5))

! Call to the 2D Delaunay-Voronoi mesh generator
ifail = 0
Call d06abf(nvb1,nvint,nvmax,nedge1,edge1,nv1,nelt1,coor1,conn1, &

weight,npropa,itrace,rwork,lrwork,iwork,liwork,ifail)

Deallocate (rwork,iwork)

! Call the smoothing routine
nvfix = 0
nqint = 10
lrwork = 2*nv1 + nelt1
liwork = 8*nelt1 + 2*nv1
Allocate (numfix(nvfix),rwork(lrwork),iwork(liwork))
ifail = 0
Call d06caf(nv1,nelt1,nedge1,coor1,edge1,conn1,nvfix,numfix,itrace, &

nqint,iwork,liwork,rwork,lrwork,ifail)

Deallocate (rwork,iwork,coorch,lined,lcomp,rate,nlcomp,crus)

! ----------------------------------------------
! 2nd domain: a rectangle (4 by 2) abutting straight edge of 1st domain.

Read (nin,*) nlines
Allocate (lined(4,nlines),lcomp(nlines),coorch(2,nlines),rate(nlines), &

coor2(2,nvmax),edge2(3,nedmx))

! Characteristic points of the boundary geometry
Read (nin,*) coorch(1,1:nlines)
Read (nin,*) coorch(2,1:nlines)

! The Lines of the boundary mesh
Read (nin,*)(lined(1:4,j),rate(j),j=1,nlines)

! sdcrus = 0 again here.
sdcrus = 0
Do i = 1, nlines

If (lined(4,i)<0) Then
sdcrus = sdcrus + lined(1,i) - 2

End If
End Do

! Generate initial mesh using Delaunay-Voronoi method

liwork = 8*nlines + nvmax + 3*nedmx + 3*sdcrus
Call f16dnf(nlines,lined,4,maxind,maxval)
lrwork = 2*(nlines+sdcrus) + 2*maxval*nlines

Allocate (crus(2,sdcrus),rwork(lrwork),iwork(liwork))

! The number of connected components (1 rectangle)
Read (nin,*) ncomp
Allocate (nlcomp(ncomp))

! Four lines of rectangle
j = 1
Do i = 1, ncomp

Read (nin,*) nlcomp(i)
k = j + abs(nlcomp(i)) - 1
Read (nin,*) lcomp(j:k)
j = k + 1
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End Do

itrace = 0
! Call to the 2D boundary mesh generator

ifail = 0
Call d06baf(nlines,coorch,lined,fbnd,crus,sdcrus,rate,ncomp,nlcomp, &

lcomp,nvmax,nedmx,nvb2,coor2,nedge2,edge2,itrace,ruser,iuser,rwork, &
lrwork,iwork,liwork,ifail)

Deallocate (rwork,iwork,weight)

! Remesh 2nd domain using the advancing front method

! Initialize mesh control parameters
itrace = 0
nvint = 0
lrwork = 12*nvmax + 30015
liwork = 8*nedge2 + 53*nvmax + 2*nvb2 + 10078
Allocate (weight(nvint),rwork(lrwork),iwork(liwork), &

conn2(3,2*nvmax+5))

! Call to the 2D Advancing front mesh generator
ifail = 0
Call d06acf(nvb2,nvint,nvmax,nedge2,edge2,nv2,nelt2,coor2,conn2, &

weight,itrace,rwork,lrwork,iwork,liwork,ifail)

Deallocate (rwork,iwork)

! ----------------------------------------------
! 3rd domain: rotation and translation of the 2nd domain mesh

ntrans = 1
lrwork = 12*ntrans
Allocate (rwork(lrwork),itype(ntrans),trans(6,ntrans),coor3(2,nv2), &

edge3(3,nedge2),conn3(3,nelt2))

itype(1:ntrans) = (/3/)
trans(1,1:ntrans) = (/6.0_nag_wp/)
trans(2,1:ntrans) = (/-1.0_nag_wp/)
trans(3,1:ntrans) = (/-90.0_nag_wp/)
itrace = 0

ifail = 0
Call d06daf(nv2,nedge2,nelt2,ntrans,itype,trans,coor2,edge2,conn2, &

coor3,edge3,conn3,itrace,rwork,lrwork,ifail)

Deallocate (rwork)

! ----------------------------------------------
! Combine Meshes

nv3 = nv2
nelt3 = nelt2
nedge3 = nedge2

nv4 = nv1 + nv2
nelt4 = nelt1 + nelt2
nedge4 = nedge1 + nedge2
liwork = 2*nv1 + 3*nv2 + nelt1 + nelt2 + nedge1 + nedge2 + 1024
Allocate (iwork(liwork),coor4(2,nv4),edge4(3,nedge4),conn4(3,nelt4), &

reft4(nelt4),reft1(nelt1),reft2(nelt2))

! Restitching of the mesh 1 and 2 to form the mesh 4
reft1(1:nelt1) = 1
reft2(1:nelt2) = 2
eps = 1.E-3_nag_wp
itrace = 0
ifail = 0
Call d06dbf(eps,nv1,nelt1,nedge1,coor1,edge1,conn1,reft1,nv2,nelt2, &

nedge2,coor2,edge2,conn2,reft2,nv4,nelt4,nedge4,coor4,edge4,conn4, &
reft4,itrace,iwork,liwork,ifail)
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Deallocate (iwork)

nv5 = nv4 + nv3
nelt5 = nelt4 + nelt3
nedge5 = nedge4 + nedge3
liwork = 2*nv4 + 3*nv3 + nelt4 + nelt3 + nedge4 + nedge3 + 1024
Allocate (iwork(liwork),coor5(2,nv5),edge5(3,nedge5),conn5(3,nelt5), &

reft5(nelt5),reft3(nelt3))

! Restitching of the mesh 3 and 4 to form the mesh 5
reft3(1:nelt3) = 3
itrace = 0
ifail = 0
Call d06dbf(eps,nv4,nelt4,nedge4,coor4,edge4,conn4,reft4,nv3,nelt3, &

nedge3,coor3,edge3,conn3,reft3,nv5,nelt5,nedge5,coor5,edge5,conn5, &
reft5,itrace,iwork,liwork,ifail)

If (pmesh) Then
! Output the mesh

Do i = 1, nelt5
Write (meshout,99997) coor5(1,conn5(1,i)), coor5(2,conn5(1,i))
Write (meshout,99997) coor5(1,conn5(2,i)), coor5(2,conn5(2,i))
Write (meshout,99997) coor5(1,conn5(3,i)), coor5(2,conn5(3,i))
Write (meshout,99997) coor5(1,conn5(1,i)), coor5(2,conn5(1,i))
Write (meshout,*)

End Do
Write (meshout,*)

Write (nout,99998) nv5, nelt5, nedge5
Do i = 1, nv5

Write (nout,99997) coor5(1:2,i)
End Do
Do k = 1, nelt5

Write (nout,99996) conn5(1,k), conn5(2,k), conn5(3,k), reft5(k)
End Do
Do k = 1, nedge5

Write (nout,99998) edge5(1:3,k)
End Do

Else
Write (nout,*) ’The restitched mesh characteristics’
Write (nout,99999) ’nv =’, nv5
Write (nout,99999) ’nelt =’, nelt5
Write (nout,99999) ’nedge =’, nedge5

End If

99999 Format (1X,A,I6)
99998 Format (1X,3I10)
99997 Format (2(2X,E13.6))
99996 Format (1X,4I10)

End Subroutine ex2
End Program d06dbfe

10.2 Program Data

Note 1: since the data file for this example is quite large only a section of it is reproduced in this
document. The full data file is distributed with your implementation.

D06DBF Example Program Data
Example 2

9 700 200 : 1st geometry nlines(m), nvmax, nedmx
2.0000 2.0000 1.0000

-1.0000 -2.2361 0.0000
0.0000 0.0000 0.0000 : coorch(1,1:m)

-1.0000 1.0000 0.0000
0.0000 0.0000 -2.2361

-1.0000 1.0000 2.2361 : coorch(2,1:m)
10 1 2 0 1.0
10 2 9 2 1.0
10 9 5 2 1.0
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10 5 6 2 1.0
10 6 1 2 1.0
10 3 8 1 1.0
10 8 4 1 1.0
10 4 7 1 1.0
10 7 3 1 1.0 : line(1:4,j),rate(j), j=1,m
2 : contours (outer+inner)
5 : lines in contour 1: outer
1 2 3 4 5

-4 : lines in contour 2: inner
9 8 7 6

4 : 2nd geometry nlines(m)
2.0 6.0 6.0 2.0 : coorch(1,1:m)

-1.0 -1.0 1.0 1.0 : coorch(2,1:m)
19 1 2 0 1.0
10 2 3 0 1.0
19 3 4 0 1.0
10 4 1 0 1.0 : line(1:4,j),rate(j), j=1,m
1 : contours (rectangle)
4 : lines in contour 1
1 2 3 4

10.3 Program Results

D06DBF Example Program Results

Example 1

The restitched mesh characteristics in the overlapping case
nv = 785
nelt = 1428
nedge = 152
The restitched mesh characteristics in the partition case
nv = 780
nelt = 1444
nedge = 133

Example 2

The restitched mesh characteristics
nv = 643
nelt = 1133
nedge = 171
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Example Program
Figure 1: Boundary and Interior Interface of Partitioned Squares

Figure 2: Interior Mesh of Partitioned Squares
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Figure 3: Boundary and Interior Interface of Overlapping Squares

Figure 4: Interior Mesh of Overlapping Squares
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Figure 5: Boundary and Interior Interfaces for Key Shape

Figure 6: Interior Mesh of KeyShape
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NAG Library Chapter Contents

E01 – Interpolation

E01 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

E01AAF 1 nagf_interp_1d_aitken
Interpolated values, Aitken's technique, unequally spaced data, one variable

E01ABF 1 nagf_interp_1d_everett
Interpolated values, Everett's formula, equally spaced data, one variable

E01AEF 8 nagf_interp_1d_cheb
Interpolating functions, polynomial interpolant, data may include derivative
values, one variable

E01BAF 8 nagf_interp_1d_spline
Interpolating functions, cubic spline interpolant, one variable

E01BEF 13 nagf_interp_1d_monotonic
Interpolating functions, monotonicity-preserving, piecewise cubic Hermite,
one variable

E01BFF 13 nagf_interp_1d_monotonic_eval
Interpolated values, interpolant computed by E01BEF, function only, one
variable

E01BGF 13 nagf_interp_1d_monotonic_deriv
Interpolated values, interpolant computed by E01BEF, function and first
derivative, one variable

E01BHF 13 nagf_interp_1d_monotonic_intg
Interpolated values, interpolant computed by E01BEF, definite integral, one
variable

E01DAF 14 nagf_interp_2d_spline_grid
Interpolating functions, fitting bicubic spline, data on rectangular grid

E01EAF 25 nagf_interp_2d_triangulate
Triangulation of two-dimensional scattered grid, method of Renka and Cline

E01EBF 25 nagf_interp_2d_triang_bary_eval
Barycentric interpolation on function values provided on a two-dimensional
scattered grid

E01RAF 9 nagf_interp_1d_ratnl
Interpolating functions, rational interpolant, one variable

E01RBF 9 nagf_interp_1d_ratnl_eval
Interpolated values, evaluate rational interpolant computed by E01RAF, one
variable

E01SAF 13 nagf_interp_2d_scat
Interpolating functions, method of Renka and Cline, two variables

E01SBF 13 nagf_interp_2d_scat_eval
Interpolated values, evaluate interpolant computed by E01SAF, two
variables

E01SGF 18 nagf_interp_2d_scat_shep
Interpolating functions, modified Shepard's method, two variables

E01SHF 18 nagf_interp_2d_scat_shep_eval
Interpolated values, evaluate interpolant computed by E01SGF, function and
first derivatives, two variables

E01TGF 18 nagf_interp_3d_scat_shep
Interpolating functions, modified Shepard's method, three variables

E01THF 18 nagf_interp_3d_scat_shep_eval
Interpolated values, evaluate interpolant computed by E01TGF, function and
first derivatives, three variables
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E01TKF 23 nagf_interp_4d_scat_shep
Interpolating functions, modified Shepard's method, four variables

E01TLF 23 nagf_interp_4d_scat_shep_eval
Interpolated values, evaluate interpolant computed by E01TKF, function and
first derivatives, four variables

E01TMF 23 nagf_interp_5d_scat_shep
Interpolating functions, modified Shepard's method, five variables

E01TNF 23 nagf_interp_5d_scat_shep_eval
Interpolated values, evaluate interpolant computed by E01TMF, function
and first derivatives, five variables

E01ZMF 24 nagf_interp_nd_scat_shep
Interpolating function, modified Shepard's method, d dimensions

E01ZNF 24 nagf_interp_nd_scat_shep_eval
Interpolated values, evaluate interpolant computed by E01ZMF, function
and first derivatives, d dimensions

Contents – E01 NAG Library Manual

e01conts.2 (last) Mark 26



NAG Library Chapter Introduction

E01 – Interpolation

Contents

1 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background to the Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Recommendations on Choice and Use of Available Routines. . . . . . . . . . . . . . 3

3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 One Independent Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2.1 Interpolated values: data without derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2.2 Interpolating function: data without derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2.3 Data containing derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Two Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3.1 Data on a rectangular mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3.2 Arbitrary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.4 Three Independent Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.4.1 Arbitrary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.5 Four and Five Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.5.1 Arbitrary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.6 Multidimensional interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.6.1 Arbitrary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Functionality Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Auxiliary Routines Associated with Library Routine Arguments . . . . . . . . . 7

7 Routines Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . . . . . . . . . 8

8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

E01 – Interpolation Introduction – E01

Mark 26 E01.1



1 Scope of the Chapter

This chapter is concerned with the interpolation of a function of one or more variables. When provided
with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a
number of values of the variable(s), the NAG Library routines provide either an interpolating function
or an interpolated value. For some of the interpolating functions, there are supporting NAG Library
routines to evaluate, differentiate or integrate them.

2 Background to the Problems

In motivation and in some of its numerical processes, this chapter has much in common with Chapter
E02 (Curve and Surface Fitting). For this reason, we shall adopt the same terminology and refer to
dependent variable and independent variable(s) instead of function and variable(s). Where there is only
one independent variable, we shall denote it by x and the dependent variable by y. Thus, in the basic
problem considered in this chapter, we are given a set of distinct values x1; x2; . . . ; xm of x and a
corresponding set of values y1; y2; . . . ; ym of y, and we shall describe the problem as being one of
interpolating the data points xr; yrð Þ, rather than interpolating a function. In modern usage, however,
interpolation can have either of two rather different meanings, both relevant to routines in this chapter.
They are

(a) the determination of a function of x which takes the value yr at x ¼ xr, for r ¼ 1; 2; . . . ;m (an
interpolating function or interpolant),

(b) the determination of the value (interpolated value or interpolate) of an interpolating function at
any given value, say x̂, of x within the range of the xr (so as to estimate the value at x̂ of the
function underlying the data).

The latter is the older meaning, associated particularly with the use of mathematical tables. The term
‘function underlying the data’, like the other terminology described above, is used so as to cover
situations additional to those in which the data points have been computed from a known function, as
with a mathematical table. In some contexts, the function may be unknown, perhaps representing the
dependency of one physical variable on another, say temperature upon time.

Whether the underlying function is known or unknown, the object of interpolation will usually be to
approximate it to acceptable accuracy by a function which is easy to evaluate anywhere in some range
of interest. Polynomials, rational functions (ratios of two polynomials) and piecewise polynomials, such
as cubic splines (see Section 2.2 in the E02 Chapter Introduction for definitions of terms in the latter
case), being easy to evaluate and also capable of approximating a wide variety of functions, are the
types of function mostly used in this chapter as interpolating functions. An interpolating polynomial is
taken to have degree m� 1 when there are m data points, and so it is unique. It is called the Lagrange
interpolating polynomial. The rational function, in the special form used, is also unique. An
interpolating spline, on the other hand, depends on the choice made for the knots.

One way of achieving the objective in (b) above is, of course, through (a), but there are also methods
which do not involve the explicit computation of the interpolating function. Everett's formula and
Aitken's successive linear interpolation (see Dahlquist and BjÎrck (1974)) provide two such methods.
Both are used in this chapter and determine a value of the Lagrange interpolating polynomial.

It is important to appreciate, however, that the Lagrange interpolating polynomial often exhibits
unwanted fluctuations between the data points. These tend to occur particularly towards the ends of the
data range, and to get larger with increasing number of data points. In severe cases, such as with 30 or
40 equally spaced values of x, the polynomial can take on values several orders of magnitude larger
than the data values. (Closer spacing near the ends of the range tends to improve the situation, and
wider spacing tends to make it worse.) Clearly, therefore, the Lagrange polynomial often gives a very
poor approximation to the function underlying the data. On the other hand, it can be perfectly
satisfactory when its use is restricted to providing interpolated values away from the ends of the data
range from a reasonably small number of data values.

In contrast, a cubic spline which interpolates a large number of data points can often be used
satisfactorily over the whole of the data range. Unwanted fluctuations can still arise but much less
frequently and much less severely than with polynomials. Rational functions, when appropriate, would
also be used over the whole data range. The main danger with these functions is that their polynomial
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denominators may take zero values within that range. Unwanted fluctuations are avoided altogether by a
routine using piecewise cubic polynomials having only first derivative continuity. It is designed
especially for monotonic data, but for other data still provides an interpolant which increases, or
decreases, over the same intervals as the data.

The concept of interpolation can be generalized in a number of ways. Firstly, at each x, the
interpolating function may be required to take on not only a given value but also given values for all its
derivatives up to some specified order (which can vary with r). This is the Hermite–Birkoff
interpolation problem. Secondly, we may be required to estimate the value of the underlying function at
a value x̂ outside the range of the data. This is the process of extrapolation. In general, it is a good
deal less accurate than interpolation and is to be avoided whenever possible.

Interpolation can also be extended to the case of two or more independent variables. If the data values
are given at the intersections of a regular two-dimensional mesh bicubic splines (see Section 2.3.2 in
the E02 Chapter Introduction) are very suitable and usually very effective for the problem. For other
cases, perhaps where the data values are quite arbitrarily scattered, polynomials and splines are not at
all appropriate and special forms of interpolating function have to be employed. Many such forms have
been devised and two of the most successful are in routines in this chapter. They both have continuity
in first, but not higher, derivatives.

3 Recommendations on Choice and Use of Available Routines

3.1 General

Before undertaking interpolation, in other than the simplest cases, you should seriously consider the
alternative of using a routine from Chapter E02 to approximate the data by a polynomial or spline
containing significantly fewer coefficients than the corresponding interpolating function. This approach
is much less liable to produce unwanted fluctuations and so can often provide a better approximation to
the function underlying the data.

When interpolation is employed to approximate either an underlying function or its values, you will
need to be satisfied that the accuracy of approximation achieved is adequate. There may be a means for
doing this which is particular to the application, or the routine used may itself provide a means. In other
cases, one possibility is to repeat the interpolation using one or more extra data points, if they are
available, or otherwise one or more fewer, and to compare the results. Other possibilities, if it is an
interpolating function which is determined, are to examine the function graphically, if that gives
sufficient accuracy, or to observe the behaviour of the differences in a finite difference table, formed
from evaluations of the interpolating function at equally-spaced values of x over the range of interest.
The spacing should be small enough to cause the typical size of the differences to decrease as the order
of difference increases.

3.2 One Independent Variable

3.2.1 Interpolated values: data without derivatives

When the underlying function is well represented by data points on both sides of the value, x̂, at which
an interpolated value is required, E01ABF should be tried first if the data points are equally spaced,
E01AAF if they are not. Both compute a value of the Lagrange interpolating polynomial, the first using
Everett's formula, the second Aitken's successive linear interpolation. The first routine requires an equal
(or nearly equal) number of data points on each side of x̂; such a distribution of points is preferable also
for the second routine. If there are many data points, this will be achieved simply by using only an
appropriate subset for each value of x̂. Ten to twelve data points are the most that would be required for
many problems. Both routines provide a means of assessing the accuracy of an interpolated value, with
E01ABF by examination of the size of the finite differences supplied, with E01AAF by intercomparison
of the set of interpolated values obtained from polynomials of increasing degree.

In other cases, or when the above routines fail to produce a satisfactory result, one of the routines
discussed in the next section should be used. The spline and other piecewise polynomial routines are the
most generally applicable. They are particularly appropriate when interpolated values towards the ends
of the range are required. They are also likely to be preferable, for reasons of economy, when many
interpolated values are required.
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E01AAF above, and three of the routines discussed in the next section, can be used to compute
extrapolated values. These three are E01AEF, E01BEF and E01RAF based on polynomials, piecewise
polynomials and rational functions respectively. Extrapolation is not recommended in general, but can
sometimes give acceptable results if it is to a point not far outside the data range, and only the few
nearest data points are used in the process. E01RAF is most likely to be successful.

3.2.2 Interpolating function: data without derivatives

E01AEF computes the Lagrange interpolating polynomial by a method (based on Newton's formula
with divided differences (see FrÎberg (1970)) which has proved numerically very stable. Thus, it can
sometimes be used to provide interpolated values in more difficult cases than can E01AAF (see the
previous section). However, the likelihood of the polynomial having unwanted fluctuations, particularly
near the ends of the data range when a moderate or large number of data points are used, should be
remembered.

Such fluctuations of the polynomial can be avoided if you are at liberty to choose the x values at which
to provide data points. In this case, a routine from Chapter E02, namely E02AFF, should be used in the
manner and with the x values discussed in Section 3.2.2 in the E02 Chapter Introduction.

Usually however, when the whole of the data range is of interest, it is preferable to use a cubic spline as
the interpolating function. E01BAF computes an interpolating cubic spline, using a particular choice for
the set of knots which has proved generally satisfactory in practice. If you wish to choose a different
set, a cubic spline routine from Chapter E02, namely E02BAF, may be used in its interpolating mode,
setting NCAP7 ¼ Mþ 4 and all elements of the argument W to unity.

The cubic spline does not always avoid unwanted fluctuations, especially when the data shows a steep
slope close to a region of small slope, or when the data inadequately represents the underlying curve. In
such cases, E01BEF can be very useful. It derives a piecewise cubic polynomial (with first derivative
continuity) which, between any adjacent pair of data points, either increases all the way, or decreases all
the way (or stays constant). It is especially suited to data which is monotonic over the whole range.

In this routine, the interpolating function is represented simply by its value and first derivative at the
data points. Supporting routines compute its value and first derivative elsewhere, as well as its definite
integral over an arbitrary interval. The other routines mentioned, namely E01AEF and E01BAF, provide
the interpolating function either in Chebyshev series form or in B-spline form (see Sections 2.2.1 and
2.2.2 in the E02 Chapter Introduction). Routines for evaluating, differentiating and integrating these
forms are discussed in Section 3.7 in the E02 Chapter Introduction. The splines and other piecewise
cubics will normally provide better estimates of the derivatives of the underlying function than will
interpolating polynomials, at any rate away from the central part of the data range.

E01RAF computes an interpolating rational function. It is intended mainly for those cases where you
know that this form of function is appropriate. However, it is also worth trying in cases where the other
routines have proved unsatisfactory. E01RBF is available to compute values of the function provided by
E01RAF.

3.2.3 Data containing derivatives

E01AEF (see Section 3.2.2) can also compute the polynomial which, at each xr, has not only a
specified value yr but also a specified value of each derivative up to order pr.

3.3 Two Independent Variables

3.3.1 Data on a rectangular mesh

Given the value fqr of the dependent variable f at the point xq; yr
� �

in the plane of the independent
variables x and y, for each q ¼ 1; 2; . . . ;m and r ¼ 1; 2; . . . ; n (so that the points xq; yr

� �
lie at the

m� n intersections of a rectangular mesh), E01DAF computes an interpolating bicubic spline, using a
particular choice for each of the spline's knot-set. This choice, the same as in E01BAF, has proved
generally satisfactory in practice. If, instead, you wish to specify your own knots, a routine from
Chapter E02, namely E02DAF, may be used (it is more cumbersome for the purpose, however, and
much slower for larger problems). Using m and n in the above sense, the argument M must be set to
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m� n, PX and PY must be set to mþ 4 and nþ 4 respectively and all elements of W should be set to
unity. The recommended value for EPS is zero.

3.3.2 Arbitrary data

As remarked at the end of Section 2, specific methods of interpolating are required for this problem,
which can often be difficult to solve satisfactorily. Two of the most successful are employed in E01SAF
and E01SGF, the two routines which (with their respective evaluation routines E01SBF and E01SHF)
are provided for the problem. Definitions can be found in the routine documents. Both interpolants have
first derivative continuity and are ‘local’, in that their value at any point depends only on data in the
immediate neighbourhood of the point. This latter feature is necessary for large sets of data to avoid
prohibitive computing time. E01SHF allows evaluation of the interpolant and its first partial derivatives.

The relative merits of the two methods vary with the data and it is not possible to predict which will be
the better in any particular case.

E01SAF performs a triangulation of the scattered data points and then calculates a bicubic interpolant
based on this triangulation and on the function values at the scattered points (which can be evaluated by
E01SBF). Where derivative continuity is not essential and where bilinear interpolated values are
sufficient, E01EAF (which performs the same triangulation as E01SAF) and E01EBF (which performs
barycentric interpolation using the set of function values) may be used.

3.4 Three Independent Variables

3.4.1 Arbitrary data

The routine E01TGF and its evaluation routine E01THF are provided for interpolation of three-
dimensional scattered data. As in the case of two independent variables, the method is local, and
produces an interpolant with first derivative continuity. E01THF allows evaluation of the interpolant
and its first partial derivatives.

3.5 Four and Five Independent Variables

3.5.1 Arbitrary data

The routine E01TKF and its evaluation routine E01TLF allow interpolation of four-dimensional
scattered data, while the routine E01TMF and its evaluation routine E01TNF allow interpolation of
five-dimensional scattered data. E01TKF and E01TMF are higher dimensional analogues to the routines
E01SGF and E01TGF, while E01TLF and E01TNF are analogous to E01SHF and E01THF.

3.6 Multidimensional interpolation

3.6.1 Arbitrary data

Interpolation of scattered data in d-dimensions, where d > 2, is provided by routine E01ZMF. This
extends the local method of E01TGF and E01TKF to higher dimensions. Evaluation of the interpolant,
which has continuous first derivatives, is carried out by routine E01ZNF.
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4 Decision Tree

Tree 1

More than one independent variable?
yes

Data on rectangular mesh?
yes

E01DAF

no

Two independent variables?
yes

E01EAF, E01SAF or E01SGF

no

Three independent variables?
yes

E01TGF

no

Four independent variables?
yes

E01TKF

no

Five independent variables?
yes

E01TMF

no

More than five independent variables?
yes

E01ZMF

no

Does data contain derivatives?
yes

E01AEF

no

Interpolating function required?
yes

Do you wish to impose monotonicity?
yes

E01BEF

no

Polynomial function required?
yes

E01AEF

no

Rational function required?
yes

E01RAF

no

E01BAF unless you have received an
unacceptable result in which case

E01BEF

no

Well away from end of data range?
yes

Data points equally spaced?
yes

E01ABF

no

E01AAF

no

E01BAF unless you have received an
unacceptable result in which case

E01BEF

5 Functionality Index

Derivative,
of interpolant,

from E01BEF.............................................................................................................. E01BGF
from E01SGF.............................................................................................................. E01SHF
from E01TGF.............................................................................................................. E01THF
from E01TKF.............................................................................................................. E01TLF
from E01TMF............................................................................................................. E01TNF
from E01ZMF............................................................................................................. E01ZNF

Evaluation,
of interpolant,

from E01BEF.............................................................................................................. E01BFF
from E01RAF ............................................................................................................. E01RBF
from E01SAF.............................................................................................................. E01SBF
from E01SGF.............................................................................................................. E01SHF
from E01TGF.............................................................................................................. E01THF
from E01TKF.............................................................................................................. E01TLF
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from E01TMF............................................................................................................. E01TNF
from E01ZMF............................................................................................................. E01ZNF
from triangulation from E01EAF ................................................................................ E01EBF

Extrapolation,
one variable,

piecewise cubic ........................................................................................................... E01BEF
polynomial,

data with or without derivatives ............................................................................ E01AEF
general data............................................................................................................ E01AAF

rational function .......................................................................................................... E01RAF

Integration (definite) of interpolant from E01BEF................................................................ E01BHF

Interpolated values,
d variables,

from interpolant from E01ZMF .................................................................................. E01ZNF
five variables,

from interpolant from E01TMF .................................................................................. E01TNF
four variables,

from interpolant from E01TKF................................................................................... E01TLF
one variable,

from interpolant from E01BEF ................................................................................... E01BFF
from interpolant from E01BEF (including derivative) ................................................ E01BGF
from polynomial,

equally spaced data ................................................................................................ E01ABF
general data............................................................................................................ E01AAF

from rational function ................................................................................................. E01RBF
three variables,

from interpolant from E01TGF................................................................................... E01THF
two variables,

barycentric, from triangulation from E01EAF............................................................. E01EBF
from interpolant from E01SAF ................................................................................... E01SBF
from interpolant from E01SGF ................................................................................... E01SHF

Interpolating function,
d variables,

modified Shepard method............................................................................................ E01ZMF
five variables,

modified Shepard method............................................................................................ E01TMF
four variables,

modified Shepard method............................................................................................ E01TKF
one variable,

cubic spline................................................................................................................. E01BAF
other piecewise polynomial......................................................................................... E01BEF
polynomial,

data with or without derivatives ............................................................................ E01AEF
rational function .......................................................................................................... E01RAF

three variables,
modified Shepard method............................................................................................ E01TGF

two variables,
bicubic spline .............................................................................................................. E01DAF
modified Shepard method............................................................................................ E01SGF
other piecewise polynomial......................................................................................... E01SAF
triangulation ................................................................................................................ E01EAF

6 Auxiliary Routines Associated with Library Routine Arguments

None.
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7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

E01SEF 20 E01SGF
E01SFF 20 E01SHF

8 References

Dahlquist G and BjÎrck Ð (1974) Numerical Methods Prentice–Hall

FrÎberg C E (1970) Introduction to Numerical Analysis Addison–Wesley
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NAG Library Routine Document

E01AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01AAF interpolates a function of one variable at a given point x from a table of function values yi
evaluated at equidistant or non-equidistant points xi, for i ¼ 1; 2; . . . ; nþ 1, using Aitken's technique of
successive linear interpolations.

2 Specification

SUBROUTINE E01AAF (A, B, C, N1, N2, N, X)

INTEGER N1, N2, N
REAL (KIND=nag_wp) A(N1), B(N1), C(N2), X

3 Description

E01AAF interpolates a function of one variable at a given point x from a table of values xi and yi, for
i ¼ 1; 2; . . . ; nþ 1 using Aitken's method (see FrÎberg (1970)). The intermediate values of linear
interpolations are stored to enable an estimate of the accuracy of the results to be made.

4 References

FrÎberg C E (1970) Introduction to Numerical Analysis Addison–Wesley

5 Arguments

1: AðN1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: AðiÞ must contain the x-component of the ith data point, xi, for i ¼ 1; 2; . . . ; nþ 1.

On exit: AðiÞ contains the value xi � x, for i ¼ 1; 2; . . . ; nþ 1.

2: BðN1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: BðiÞ must contain the y-component (function value) of the ith data point, yi, for
i ¼ 1; 2; . . . ; nþ 1.

On exit: the contents of B are unspecified.

3: CðN2Þ – REAL (KIND=nag_wp) array Output

On exit:

Cð1Þ; . . . ;CðnÞ contain the first set of linear interpolations,

Cðnþ 1Þ; . . . ;Cð2� n� 1Þ contain the second set of linear interpolations,

Cð2nÞ; . . . ;Cð3� n� 3Þ contain the third set of linear interpolations,

..

.

Cðn� nþ 1ð Þ=2Þ contains the interpolated function value at the point x.
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4: N1 – INTEGER Input

On entry: the value nþ 1 where n is the number of intervals; that is, N1 is the number of data
points.

5: N2 – INTEGER Input

On entry: the value n� nþ 1ð Þ=2 where n is the number of intervals.

6: N – INTEGER Input

On entry: the number of intervals which are to be used in interpolating the value at x; that is,
there are nþ 1 data points xi; yið Þ.
Constraint: N > 0.

7: X – REAL (KIND=nag_wp) Input

On entry: the point x at which the interpolation is required.

6 Error Indicators and Warnings

None.

7 Accuracy

An estimate of the accuracy of the result can be made from a comparison of the final result and the
previous interpolates, given in the array C. In particular, the first interpolate in the ith set, for
i ¼ 1; 2; . . . ; n, is the value at x of the polynomial interpolating the first iþ 1ð Þ data points. It is given
in position i� 1ð Þ 2n� iþ 2ð Þ=2 of the array C. Ideally, providing n is large enough, this set of n
interpolates should exhibit convergence to the final value, the difference between one interpolate and
the next settling down to a roughly constant magnitude (but with varying sign). This magnitude
indicates the size of the error (any subsequent increase meaning that the value of n is too high). Better
convergence will be obtained if the data points are supplied, not in their natural order, but ordered so
that the first i data points give good coverage of the neighbourhood of x, for all i. To this end, the
following ordering is recommended as widely suitable: first the point nearest to x, then the nearest point
on the opposite side of x, followed by the remaining points in increasing order of their distance from x,
that is of xr � xj j. With this modification the Aitken method will generally perform better than the
related method of Neville, which is often given in the literature as superior to that of Aitken.

8 Parallelism and Performance

E01AAF is not threaded in any implementation.

9 Further Comments

The computation time for interpolation at any point x is proportional to n� nþ 1ð Þ=2.

10 Example

This example interpolates at x ¼ 0:28 the function value of a curve defined by the points

xi �1:00 �0:50 0:00 0:50 1:00 1:50
yi 0:00 �0:53 �1:00 �0:46 2:00 11:09

� �
:
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10.1 Program Text

Program e01aafe

! E01AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01aaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x
Integer :: i, j, k, n, n1, n2

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), c(:)

! .. Executable Statements ..
Write (nout,*) ’E01AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, x
n1 = n + 1
n2 = n*(n+1)/2
Allocate (a(n1),b(n1),c(n2))

Read (nin,*)(a(i),i=1,n1)
Read (nin,*)(b(i),i=1,n1)

Call e01aaf(a,b,c,n1,n2,n,x)

Write (nout,*)
Write (nout,*) ’Interpolated values’

k = 1

Do i = 1, n - 1
Write (nout,99999)(c(j),j=k,k+n-i)
k = k + n - i + 1

End Do

Write (nout,*)
Write (nout,99998) ’Interpolation point = ’, x
Write (nout,*)
Write (nout,99998) ’Function value at interpolation point = ’, c(n2)

99999 Format (1X,6F12.5)
99998 Format (1X,A,F12.5)

End Program e01aafe

10.2 Program Data

E01AAF Example Program Data
5 0.28

-1.00 -0.50 0.00 0.50 1.00 1.50
0.00 -0.53 -1.00 -0.46 2.00 11.09

10.3 Program Results

E01AAF Example Program Results

Interpolated values
-1.35680 -1.28000 -0.39253 1.28000 5.67808
-1.23699 -0.60467 0.01434 1.38680
-0.88289 -0.88662 -0.74722
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-0.88125 -0.91274

Interpolation point = 0.28000

Function value at interpolation point = -0.83591
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NAG Library Routine Document

E01ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01ABF interpolates a function of one variable at a given point x from a table of function values
evaluated at equidistant points, using Everett's formula.

2 Specification

SUBROUTINE E01ABF (N, P, A, G, N1, N2, IFAIL)

INTEGER N, N1, N2, IFAIL
REAL (KIND=nag_wp) P, A(N1), G(N2)

3 Description

E01ABF interpolates a function of one variable at a given point

x ¼ x0 þ ph;

where �1 < p < 1 and h is the interval of differencing, from a table of values xm ¼ x0 þmh and ym
where m ¼ � n� 1ð Þ;� n� 2ð Þ; . . . ;�1; 0; 1; . . . ; n. The formula used is that of FrÎberg (1970),
neglecting the remainder term:

yp ¼
Xn�1
r¼0

1� pþ r
2rþ 1

� �
�2ry0 þ

Xn�1
r¼0

pþ r
2rþ 1

� �
�2ry1:

The values of �2ry0 and �2ry1 are stored on exit from the routine in addition to the interpolated function
value yp.

4 References

FrÎberg C E (1970) Introduction to Numerical Analysis Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, half the number of points to be used in the interpolation.

Constraint: N > 0.

2: P – REAL (KIND=nag_wp) Input

On entry: the point p at which the interpolated function value is required, i.e., p ¼ x� x0ð Þ=h
with �1:0 < p < 1:0.

Constraint: �1:0 < P < 1:0.

3: AðN1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: AðiÞ must be set to the function value yi�n, for i ¼ 1; 2; . . . ; 2n.

On exit: the contents of A are unspecified.
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4: GðN2Þ – REAL (KIND=nag_wp) array Output

On exit: the array contains

y0 in Gð1Þ

y1 in Gð2Þ

�2ry0 in Gð2rþ 1Þ

�2ry1 in Gð2r þ 2Þ, for r ¼ 1; 2; . . . ; n� 1.

The interpolated function value yp is stored in Gð2nþ 1Þ.

5: N1 – INTEGER Input

On entry: the value 2n, that is, N1 is equal to the number of data points.

6: N2 – INTEGER Input

On entry: the value 2nþ 1, that is, N2 is one more than the number of data points.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, P � �1:0,
or P � 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

In general, increasing n improves the accuracy of the result until full attainable accuracy is reached,
after which it might deteriorate. If x lies in the central interval of the data (i.e., 0:0 � p < 1:0), as is
desirable, an upper bound on the contribution of the highest order differences (which is usually an
upper bound on the error of the result) is given approximately in terms of the elements of the array G
by a� Gð2n� 1Þj j þ Gð2nÞj jð Þ, where a ¼ 0:1, 0:02, 0:005, 0:001, 0:0002 for n ¼ 1; 2; 3; 4; 5
respectively, thereafter decreasing roughly by a factor of 4 each time.

8 Parallelism and Performance

E01ABF is not threaded in any implementation.

9 Further Comments

The computation time increases as the order of n increases.

10 Example

This example interpolates at the point x ¼ 0:28 from the function values

xi �1:00 �0:50 0:00 0:50 1:00 1:50
yi 0:00 �0:53 �1:00 �0:46 2:00 11:09

� �
:

We take n ¼ 3 and p ¼ 0:56.

10.1 Program Text

Program e01abfe

! E01ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01abf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p
Integer :: i, ifail, n, n1, n2, r

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), g(:)

! .. Executable Statements ..
Write (nout,*) ’E01ABF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, p
n1 = 2*n
n2 = n1 + 1
Allocate (a(n1),g(n2))

Read (nin,*)(a(i),i=1,n1)

ifail = 0
Call e01abf(n,p,a,g,n1,n2,ifail)

Write (nout,*)

Do r = 0, n - 1
Write (nout,99999) ’Central differences order ’, r, ’ of Y0 =’, &
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g(2*r+1)
Write (nout,99998) ’ Y1 =’, g(2*r+2)

End Do

Write (nout,*)
Write (nout,99998) ’Function value at interpolation point =’, g(n2)

99999 Format (1X,A,I1,A,F12.5)
99998 Format (1X,A,F12.5)

End Program e01abfe

10.2 Program Data

E01ABF Example Program Data
3 0.56

0.00 -0.53 -1.00 -0.46 2.00 11.09

10.3 Program Results

E01ABF Example Program Results

Central differences order 0 of Y0 = -1.00000
Y1 = -0.46000

Central differences order 1 of Y0 = 1.01000
Y1 = 1.92000

Central differences order 2 of Y0 = -0.04000
Y1 = 3.80000

Function value at interpolation point = -0.83591
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NAG Library Routine Document

E01AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01AEF constructs the Chebyshev series representation of a polynomial interpolant to a set of data
which may contain derivative values.

2 Specification

SUBROUTINE E01AEF (M, XMIN, XMAX, X, Y, IP, N, ITMIN, ITMAX, A, WRK,
LWRK, IWRK, LIWRK, IFAIL)

&

INTEGER M, IP(M), N, ITMIN, ITMAX, LWRK, IWRK(LIWRK), LIWRK,
IFAIL

&

REAL (KIND=nag_wp) XMIN, XMAX, X(M), Y(N), A(N), WRK(LWRK)

3 Description

Let m distinct values xi of an independent variable x be given, with xmin � xi � xmax , for
i ¼ 1; 2; . . . ;m. For each value xi, suppose that the value yi of the dependent variable y together with
the first pi derivatives of y with respect to x are given. Each pi must therefore be a non-negative

integer, with the total number of interpolating conditions, n, equal to mþ
Xm
i¼1
pi.

E01AEF calculates the unique polynomial q xð Þ of degree n� 1 (or less) which is such that

q kð Þ xið Þ ¼ y kð Þ
i , for i ¼ 1; 2; . . . ;m and k ¼ 0; 1; . . . ; pi. Here q 0ð Þ xið Þ means q xið Þ. This polynomial is

represented in Chebyshev series form in the normalized variable �x, as follows:

q xð Þ ¼ 1
2a0T0 �xð Þ þ a1T1 �xð Þ þ � � � þ an�1Tn�1 �xð Þ;

where

�x ¼ 2x� xmin � xmax

xmax � xmin

so that �1 � �x � 1 for x in the interval xmin to xmax , and where Ti �xð Þ is the Chebyshev polynomial of
the first kind of degree i with argument �x.

(The polynomial interpolant can subsequently be evaluated for any value of x in the given range by
using E02AKF. Chebyshev series representations of the derivative(s) and integral(s) of q xð Þ may be
obtained by (repeated) use of E02AHF and E02AJF.)

The method used consists first of constructing a divided-difference table from the normalized �x values
and the given values of y and its derivatives with respect to �x. The Newton form of q xð Þ is then
obtained from this table, as described in Huddleston (1974) and Krogh (1970), with the modification
described in Section 9.2. The Newton form of the polynomial is then converted to Chebyshev series
form as described in Section 9.3.

Since the errors incurred by these stages can be considerable, a form of iterative refinement is used to
improve the solution. This refinement is particularly useful when derivatives of rather high order are
given in the data. In reasonable examples, the refinement will usually terminate with a certain accuracy
criterion satisfied by the polynomial (see Section 7). In more difficult examples, the criterion may not
be satisfied and refinement will continue until the maximum number of iterations (as specified by the
input argument ITMAX) is reached.
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In extreme examples, the iterative process may diverge (even though the accuracy criterion is satisfied):
if a certain divergence criterion is satisfied, the process terminates at once. In all cases the routine
returns the ‘best’ polynomial achieved before termination. For the definition of ‘best’ and details of
iterative refinement and termination criteria, see Section 9.4.

4 References

Huddleston R E (1974) CDC 6600 routines for the interpolation of data and of data with derivatives
SLL-74-0214 Sandia Laboratories (Reprint)

Krogh F T (1970) Efficient algorithms for polynomial interpolation and numerical differentiation Math.
Comput. 24 185–190

5 Arguments

1: M – INTEGER Input

On entry: m, the number of given values of the independent variable x.

Constraint: M � 1.

2: XMIN – REAL (KIND=nag_wp) Input
3: XMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper end points, respectively, of the interval xmin ; xmax½ �. If they are not
determined by your problem, it is recommended that they be set respectively to the smallest and
largest values among the xi.

Constraint: XMIN < XMAX.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: the value of xi, for i ¼ 1; 2; . . . ;m. The XðiÞ need not be ordered.

Constraint: XMIN � XðiÞ � XMAX, and the XðiÞ must be distinct.

5: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the given values of the dependent variable, and derivatives, as follows:

The first p1 þ 1 elements contain y1; y
1ð Þ
1 ; . . . ; y

p1ð Þ
1 in that order.

The next p2 þ 1 elements contain y2; y
1ð Þ
2 ; . . . ; y

p2ð Þ
2 in that order.

..

.

The last pm þ 1 elements contain ym; y 1ð Þ
m ; . . . ; y pmð Þ

m in that order.

6: IPðMÞ – INTEGER array Input

On entry: pi, the order of the highest-order derivative whose value is given at xi, for
i ¼ 1; 2; . . . ;m. If the value of y only is given for some xi then the corresponding value of IPðiÞ
must be zero.

Constraint: IPðiÞ � 0, for i ¼ 1; 2; . . . ;M.

7: N – INTEGER Input

On entry: n, the total number of interpolating conditions.

Constraint: N ¼ Mþ
XM
i¼1

IPðiÞ.
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8: ITMIN – INTEGER Input
9: ITMAX – INTEGER Input

On entry: respectively the minimum and maximum number of iterations to be performed by the
routine (for full details see Section 9.4). Setting ITMIN and/or ITMAX negative or zero invokes
default value(s) of 2 and/or 10, respectively.

The default values will be satisfactory for most problems, but occasionally significant
improvement will result from using higher values.

Suggested value: ITMIN ¼ 0 and ITMAX ¼ 0.

10: AðNÞ – REAL (KIND=nag_wp) array Output

On exit: Aði þ 1Þ contains the coefficient ai in the Chebyshev series representation of q xð Þ, for
i ¼ 0; 1; . . . ; n� 1.

11: WRKðLWRKÞ – REAL (KIND=nag_wp) array Output

On exit: used as workspace, but see also Section 9.5.

12: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which E01AEF
is called.

Constraint: LWRK � 7� Nþ 5�max ipmax; 0ð Þ þMþ 7, where ipmax is the largest element
of IPðiÞ, for i ¼ 1; 2; . . . ;M.

13: IWRKðLIWRKÞ – INTEGER array Output

On exit: used as workspace, but see also Section 9.5.

14: LIWRK – INTEGER Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which E01AEF
is called.

Constraint: LIWRK � 2�Mþ 2.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or N 6¼ Mþ IPð1Þ þ IPð2Þ þ � � � þ IPðMÞ,
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or LWRK < 7� Nþ 5� ipmax þMþ 7 (see LWRK for the definition of ipmax),
or LIWRK < 2�Mþ 2.

IFAIL ¼ 2

On entry, IPðiÞ < 0 for some i.

IFAIL ¼ 3

On entry, XMIN � XMAX,
or XðiÞ < XMIN for some i,
or XðiÞ > XMAX,
or XðiÞ ¼ XðjÞ for some i 6¼ j.

IFAIL ¼ 4

Not all the performance indices are less than eight times the machine precision, although
ITMAX iterations have been performed. Arguments A, WRK and IWRK relate to the best
polynomial determined. A more accurate solution may possibly be obtained by increasing
ITMAX and recalling the routine. See also Sections 7, 9.4 and 9.5.

IFAIL ¼ 5

The computation has been terminated because the iterative process appears to be diverging.
(Arguments A, WRK and IWRK relate to the best polynomial determined.) Thus the problem
specified by your data is probably too ill-conditioned for the solution to be satisfactory. This may
result from some of the XðiÞ being very close together, or from the number of interpolating
conditions, N, being large. If in such cases the conditions do not involve derivatives, you are
likely to obtain a much more satisfactory solution to your problem either by cubic spline
interpolation (see E01BAF) or by curve-fitting with a polynomial or spline in which the number
of coefficients is less than N, preferably much less if N is large (see Chapter E02). But see
Sections 7, 9.4 and 9.5.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

A complete error analysis is not currently available, but the method gives good results for reasonable
problems.

It is important to realise that for some sets of data, the polynomial interpolation problem is ill-
conditioned. That is, a small perturbation in the data may induce large changes in the polynomial,
even in exact arithmetic. Though by no means the worst example, interpolation by a single polynomial
to a large number of function values given at points equally spaced across the range is notoriously ill-
conditioned and the polynomial interpolating such a dataset is prone to exhibit enormous oscillations
between the data points, especially near the ends of the range. These will be reflected in the Chebyshev
coefficients being large compared with the given function values. A more familiar example of ill-
conditioning occurs in the solution of certain systems of linear algebraic equations, in which a small
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change in the elements of the matrix and/or in the components of the right-hand side vector induces a
relatively large change in the solution vector. The best that can be achieved in these cases is to make
the residual vector small in some sense. If this is possible, the computed solution is exact for a slightly
perturbed set of data. Similar considerations apply to the interpolation problem.

The residuals y kð Þ
i � q kð Þ xið Þ are available for inspection (see Section 9.5). To assess whether these are

reasonable, however, it is necessary to relate them to the largest function and derivative values taken by
q xð Þ over the interval xmin ; xmax½ �. The following performance indices aim to do this. Let the kth
derivative of q with respect to the normalized variable �x be given by the Chebyshev series

1
2a
k
0T0 �xð Þ þ ak1T1 �xð Þ þ � � � þ akn�1�kTn�1�k �xð Þ:

Let Ak denote the sum of the moduli of these coefficients (this is an upper bound on the kth derivative
in the interval and is taken as a measure of the maximum size of this derivative), and define

Sk ¼ max
i�k

Ai:

Then if the root-mean-square value of the residuals of q kð Þ, scaled so as to relate to the normalized
variable �x, is denoted by rk, the performance indices are defined by

Pk ¼ rk=Sk; for k ¼ 0; 1; . . . ;max
i

pið Þ:

It is expected that, in reasonable cases, they will all be less than (say) 8 times the machine precision
(this is the accuracy criterion mentioned in Section 3), and in many cases will be of the order of
machine precision or less.

8 Parallelism and Performance

E01AEF is not threaded in any implementation.

9 Further Comments

9.1 Timing

Computation time is approximately proportional to it � n3, where it is the number of iterations actually
used. (See Section 9.5.)

9.2 Divided-difference Strategy

In constructing each new coefficient in the Newton form of the polynomial, a new xi must be brought
into the computation. The xi chosen is that which yields the smallest new coefficient. This strategy
increases the stability of the divided-difference technique, sometimes quite markedly, by reducing errors
due to cancellation.

9.3 Conversion to Chebyshev Form

Conversion from the Newton form to Chebyshev series form is effected by evaluating the former at the
n values of �x at which Tn�1 xð Þ takes the value 
1, and then interpolating these n function values by a
call of E02AFF, which provides the Chebyshev series representation of the polynomial with very small
additional relative error.

9.4 Iterative Refinement

The iterative refinement process is performed as follows.

Firstly, an initial approximation, q1 xð Þ say, is found by the technique described in Section 3. The rth
step of the refinement process then consists of evaluating the residuals of the rth approximation qr xð Þ,
and constructing an interpolant, dqr xð Þ, to these residuals. The next approximation qrþ1 xð Þ to the
interpolating polynomial is then obtained as
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qrþ1 xð Þ ¼ qr xð Þ þ dqr xð Þ:

This completes the description of the rth step.

The iterative process is terminated according to the following criteria. When a polynomial is found
whose performance indices (as defined in Section 7) are all less than 8 times the machine precision, the
process terminates after ITMIN further iterations (or after a total of ITMAX iterations if that occurs
earlier). This will occur in most reasonable problems. The extra iterations are to allow for the
possibility of further improvement. If no such polynomial is found, the process terminates after a total
of ITMAX iterations. Both these criteria are over-ridden, however, in two special cases. Firstly, if for
some value of r the sum of the moduli of the Chebyshev coefficients of dqr xð Þ is greater than that of
qr xð Þ, it is concluded that the process is diverging and the process is terminated at once (qrþ1 xð Þ is not
computed).

Secondly, if at any stage, the performance indices are all computed as zero, again the process is
terminated at once.

As the iterations proceed, a record is kept of the best polynomial. Subsequently, at the end of each
iteration, the new polynomial replaces the current best polynomial if it satisfies two conditions
(otherwise the best polynomial remains unchanged). The first condition is that at least one of its root-
mean-square residual values, rk (see Section 7) is smaller than the corresponding value for the current
best polynomial. The second condition takes two different forms according to whether or not the
performance indices (see Section 7) of the current best polynomial are all less than 8 times the machine
precision. If they are, then the largest performance index of the new polynomial is required to be less
than that of the current best polynomial. If they are not, the number of indices which are less than 8
times the machine precision must not be smaller than for the current best polynomial. When the
iterative process is terminated, it is the polynomial then recorded as best, which is returned to you as
q xð Þ.

9.5 Workspace Information

On successful exit, and also if IFAIL ¼ 4 or 5 on exit, the following information is contained in the
workspace arrays WRK and IWRK:

WRKðk þ 1Þ, for k ¼ 0; 1; . . . ; ipmax where ipmax ¼ max
i
pi, contains the ratio of pk, the performance

index relating to the kth derivative of the q xð Þ finally provided, to 8 times the machine precision.

WRKðipmax þ 1þ jÞ, for j ¼ 1; 2; . . . ; n, contains the jth residual, i.e., the value of y kð Þ
i � q kð Þ xið Þ,

where i and k are the appropriate values corresponding to the jth element in the array Y (see the
description of Y in Section 5).

IWRKð1Þ contains the number of iterations actually performed in deriving q xð Þ.
If, on exit, IFAIL ¼ 4 or 5, the q xð Þ finally provided may still be adequate for your requirements. To
assess this you should examine the residuals contained in WRKðipmax þ 1þ jÞ, for j ¼ 1; 2; . . . ; n, to
see whether they are acceptably small.

10 Example

This example constructs an interpolant q xð Þ to the following data:

m ¼ 4; xmin ¼ 2; xmax ¼ 6;
x1 ¼ 2; p1 ¼ 0; y1 ¼ 1;

x2 ¼ 4; p2 ¼ 1; y2 ¼ 2; y
1ð Þ
2 ¼ �1;

x3 ¼ 5; p3 ¼ 0; y3 ¼ 1;

x4 ¼ 6; p4 ¼ 2; y4 ¼ 2; y
1ð Þ
4 ¼ 4; y

2ð Þ
4 ¼ �2:

The coefficients in the Chebyshev series representation of q xð Þ are printed, and also the residuals
corresponding to each of the given function and derivative values.

This program is written in a generalized form which can read any number of data-sets.
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10.1 Program Text

Program e01aefe

! E01AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01aef, f16dnf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: restol, xmax, xmin
Integer :: i, ifail, ipmax, ires, itmax, itmin, &

iy, j, k, liwrk, lwrk, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), wrk(:), x(:), y(:)
Integer, Allocatable :: ip(:), iwrk(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, sum

! .. Executable Statements ..
Write (nout,*) ’E01AEF Example Program Results’

! Skip heading in data file
Read (nin,*)

itmin = -1
itmax = -1

Read (nin,*) m, xmin, xmax
liwrk = 2*(m+1)
Allocate (ip(m),x(m),iwrk(liwrk))

Read (nin,*)(ip(i),i=1,m)
Read (nin,*)(x(i),i=1,m)

n = m + sum(ip(1:m))

! Get the maximum value of IP

Call f16dnf(m,ip,1,k,ipmax)

lwrk = 7*n + 5*ipmax + m + 7
Allocate (a(n),y(n),wrk(lwrk))

j = 0

Do i = 1, m
Read (nin,*)(y(k),k=j+1,j+ip(i)+1)
j = j + ip(i) + 1

End Do

ifail = -1
Call e01aef(m,xmin,xmax,x,y,ip,n,itmin,itmax,a,wrk,lwrk,iwrk,liwrk, &

ifail)

Write (nout,*)

Select Case (ifail)
Case (0,4:)

Write (nout,99999) ’Total number of interpolating conditions =’, n
Write (nout,*)
Write (nout,*) ’Interpolating polynomial’
Write (nout,*)
Write (nout,*) ’ i a_i’

Do i = 0, n - 1
Write (nout,99998) i, a(i+1)
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End Do

Write (nout,*)
Write (nout,*) ’ i x_i order(k) y^(k) Residual’

! Residuals less than 100 times machine precision are not printed.
restol = x02ajf()*100.0_nag_wp
iy = 0
ires = ipmax + 1

Do i = 1, m

iy = iy + 1
ires = ires + 1
If (abs(wrk(ires))>restol) Then

Write (nout,99996) i, x(i), 0, y(iy), wrk(ires)
Else

Write (nout,99995) i, x(i), 0, y(iy), ’ - ’
End If
Do j = 1, ip(i)

iy = iy + 1
ires = ires + 1
If (abs(wrk(ires))>restol) Then

Write (nout,99997) j, y(iy), wrk(ires)
Else

Write (nout,99994) j, y(iy), ’ - ’
End If

End Do

End Do

End Select

99999 Format (1X,A,I4)
99998 Format (1X,I4,F20.4)
99997 Format (10X,I7,F11.1,E19.10)
99996 Format (1X,I3,F6.1,I7,F11.1,E19.10)
99995 Format (1X,I3,F6.1,I7,F11.1,A11)
99994 Format (10X,I7,F11.1,A11)

End Program e01aefe

10.2 Program Data

E01AEF Example Program Data
4 2.0 6.0 : m, xmin, xmax
0 1 0 2 : ip(1:m), n=1+2+1+3=7
2.0 4.0 5.0 6.0 : x(1:m)
1.0
2.0 -1.0
1.0
2.0 4.0 -2.0 : y(1:n)

10.3 Program Results

E01AEF Example Program Results

Total number of interpolating conditions = 7

Interpolating polynomial

i a_i
0 9.1250
1 -4.5781
2 0.4609
3 2.8516
4 -2.8125
5 2.2266
6 -0.7109

i x_i order(k) y^(k) Residual
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1 2.0 0 1.0 -
2 4.0 0 2.0 -

1 -1.0 -
3 5.0 0 1.0 -
4 6.0 0 2.0 -

1 4.0 -
2 -2.0 -
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NAG Library Routine Document

E01BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01BAF determines a cubic spline interpolant to a given set of data.

2 Specification

SUBROUTINE E01BAF (M, X, Y, LAMDA, C, LCK, WRK, LWRK, IFAIL)

INTEGER M, LCK, LWRK, IFAIL
REAL (KIND=nag_wp) X(M), Y(M), LAMDA(LCK), C(LCK), WRK(LWRK)

3 Description

E01BAF determines a cubic spline s xð Þ, defined in the range x1 � x � xm, which interpolates (passes
exactly through) the set of data points xi; yið Þ, for i ¼ 1; 2; . . . ;m, where m � 4 and
x1 < x2 < � � � < xm. Unlike some other spline interpolation algorithms, derivative end conditions are
not imposed. The spline interpolant chosen has m� 4 interior knots �5; �6; . . . ; �m, which are set to the
values of x3; x4; . . . ; xm�2 respectively. This spline is represented in its B-spline form (see Cox (1975)):

s xð Þ ¼
Xm
i¼1
ciNi xð Þ;

where Ni xð Þ denotes the normalized B-spline of degree 3, defined upon the knots �i; �iþ1; . . . ; �iþ4, and
ci denotes its coefficient, whose value is to be determined by the routine.

The use of B-splines requires eight additional knots �1, �2, �3, �4, �mþ1, �mþ2, �mþ3 and �mþ4 to be
specified; E01BAF sets the first four of these to x1 and the last four to xm.

The algorithm for determining the coefficients is as described in Cox (1975) except that QR
factorization is used instead of LU decomposition. The implementation of the algorithm involves
setting up appropriate information for the related routine E02BAF followed by a call of that routine.
(See E02BAF for further details.)

Values of the spline interpolant, or of its derivatives or definite integral, can subsequently be computed
as detailed in Section 9.

4 References

Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95–108

Cox M G (1977) A survey of numerical methods for data and function approximation The State of the
Art in Numerical Analysis (ed D A H Jacobs) 627–668 Academic Press

5 Arguments

1: M – INTEGER Input

On entry: m, the number of data points.

Constraint: M � 4.
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2: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must be set to xi, the ith data value of the independent variable x, for
i ¼ 1; 2; . . . ;m.

Constraint: XðiÞ < Xði þ 1Þ, for i ¼ 1; 2; . . . ;M� 1.

3: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ must be set to yi, the ith data value of the dependent variable y, for
i ¼ 1; 2; . . . ;m.

4: LAMDAðLCKÞ – REAL (KIND=nag_wp) array Output

On exit: the value of �i, the ith knot, for i ¼ 1; 2; . . . ;mþ 4.

5: CðLCKÞ – REAL (KIND=nag_wp) array Output

On exit: the coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ;m. The remaining elements of
the array are not used.

6: LCK – INTEGER Input

On entry: the dimension of the arrays LAMDA and C as declared in the (sub)program from
which E01BAF is called.

Constraint: LCK � Mþ 4.

7: WRKðLWRKÞ – REAL (KIND=nag_wp) array Workspace
8: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which E01BAF
is called.

Constraint: LWRK � 6�Mþ 16.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 4,
or LCK < Mþ 4,
or LWRK < 6�Mþ 16.
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IFAIL ¼ 2

The X-values fail to satisfy the condition

Xð1Þ < Xð2Þ < Xð3Þ < � � � < XðMÞ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The rounding errors incurred are such that the computed spline is an exact interpolant for a slightly
perturbed set of ordinates yi þ �yi. The ratio of the root-mean-square value of the �yi to that of the yi is
no greater than a small multiple of the relative machine precision.

8 Parallelism and Performance

E01BAF is not threaded in any implementation.

9 Further Comments

The time taken by E01BAF is approximately proportional to m.

All the xi are used as knot positions except x2 and xm�1. This choice of knots (see Cox (1977)) means
that s xð Þ is composed of m� 3 cubic arcs as follows. If m ¼ 4, there is just a single arc space spanning
the whole interval x1 to x4. If m � 5, the first and last arcs span the intervals x1 to x3 and xm�2 to xm
respectively. Additionally if m � 6, the ith arc, for i ¼ 2; 3; . . . ;m� 4, spans the interval xiþ1 to xiþ2.

After the call

CALL E01BAF (M, X, Y, LAMDA, C, LCK, WRK, LWRK, IFAIL)

the following operations may be carried out on the interpolant s xð Þ.
The value of s xð Þ at x ¼ X can be provided in the real variable S by the call

CALL E02BBF (M+4, LAMDA, C, X, S, IFAIL)

(see E02BBF).

The values of s xð Þ and its first three derivatives at x ¼ X can be provided in the real array S of
dimension 4, by the call

CALL E02BCF (M+4, LAMDA, C, X, LEFT, S, IFAIL)

(see E02BCF).

Here LEFT must specify whether the left- or right-hand value of the third derivative is required (see
E02BCF for details).

The value of the integral of s xð Þ over the range x1 to xm can be provided in the real variable DINT by

CALL E02BDF (M+4, LAMDA, C, DINT, IFAIL)

(see E02BDF).
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10 Example

This example sets up data from 7 values of the exponential function in the interval 0 to 1. E01BAF is
then called to compute a spline interpolant to these data.

The spline is evaluated by E02BBF, at the data points and at points halfway between each adjacent pair
of data points, and the spline values and the values of ex are printed out.

10.1 Program Text

Program e01bafe

! E01BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01baf, e02bbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: m = 7, nout = 6
Integer, Parameter :: lck = m + 4
Integer, Parameter :: lwrk = 6*m + 16
Real (Kind=nag_wp), Parameter :: x(m) = (/0.0E0_nag_wp,0.2E0_nag_wp, &

0.4E0_nag_wp,0.6E0_nag_wp, &
0.75E0_nag_wp,0.9E0_nag_wp, &
1.0E0_nag_wp/)

! .. Local Scalars ..
Real (Kind=nag_wp) :: fit, xarg
Integer :: ifail, j, r

! .. Local Arrays ..
Real (Kind=nag_wp) :: c(lck), lamda(lck), wrk(lwrk), y(m)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Write (nout,*) ’E01BAF Example Program Results’

y(1:m) = exp(x(1:m))

ifail = 0
Call e01baf(m,x,y,lamda,c,lck,wrk,lwrk,ifail)

Write (nout,*)
Write (nout,*) ’ J Knot LAMDA(J+2) B-spline coeff C(J)’
Write (nout,*)

j = 1
Write (nout,99998) j, c(1)

Do j = 2, m - 1
Write (nout,99999) j, lamda(j+2), c(j)

End Do

Write (nout,99998) m, c(m)
Write (nout,*)
Write (nout,*) &

’ R Abscissa Ordinate Spline’
Write (nout,*)

Do r = 1, m

ifail = 0
Call e02bbf(m+4,lamda,c,x(r),fit,ifail)

Write (nout,99999) r, x(r), y(r), fit

If (r<m) Then
xarg = 0.5E0_nag_wp*(x(r)+x(r+1))
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ifail = 0
Call e02bbf(m+4,lamda,c,xarg,fit,ifail)

Write (nout,99997) xarg, fit
End If

End Do

99999 Format (1X,I4,F15.4,2F20.4)
99998 Format (1X,I4,F35.4)
99997 Format (1X,F19.4,F40.4)

End Program e01bafe

10.2 Program Data

None.

10.3 Program Results

E01BAF Example Program Results

J Knot LAMDA(J+2) B-spline coeff C(J)

1 1.0000
2 0.0000 1.1336
3 0.4000 1.3726
4 0.6000 1.7827
5 0.7500 2.1744
6 1.0000 2.4918
7 2.7183

R Abscissa Ordinate Spline

1 0.0000 1.0000 1.0000
0.1000 1.1052

2 0.2000 1.2214 1.2214
0.3000 1.3498

3 0.4000 1.4918 1.4918
0.5000 1.6487

4 0.6000 1.8221 1.8221
0.6750 1.9640

5 0.7500 2.1170 2.1170
0.8250 2.2819

6 0.9000 2.4596 2.4596
0.9500 2.5857

7 1.0000 2.7183 2.7183
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NAG Library Routine Document

E01BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01BEF computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data
points.

2 Specification

SUBROUTINE E01BEF (N, X, F, D, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), F(N), D(N)

3 Description

E01BEF estimates first derivatives at the set of data points xr ; frð Þ, for r ¼ 1; 2; . . . ; n, which determine
a piecewise cubic Hermite interpolant to the data, that preserves monotonicity over ranges where the
data points are monotonic. If the data points are only piecewise monotonic, the interpolant will have an
extremum at each point where monotonicity switches direction. The estimates of the derivatives are
computed by a formula due to Brodlie, which is described in Fritsch and Butland (1984), with suitable
changes at the boundary points.

The routine is derived from routine PCHIM in Fritsch (1982).

Values of the computed interpolant, and of its first derivative and definite integral, can subsequently be
computed by calling E01BFF, E01BGF and E01BHF, as described in Section 9.

4 References

Fritsch F N (1982) PCHIP final specifications Report UCID-30194 Lawrence Livermore National
Laboratory

Fritsch F N and Butland J (1984) A method for constructing local monotone piecewise cubic
interpolants SIAM J. Sci. Statist. Comput. 5 300–304

5 Arguments

1: N – INTEGER Input

On entry: n, the number of data points.

Constraint: N � 2.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðrÞ must be set to xr , the rth value of the independent variable (abscissa), for
r ¼ 1; 2; . . . ; n.

Constraint: XðrÞ < Xðrþ 1Þ.

3: FðNÞ – REAL (KIND=nag_wp) array Input

On entry: FðrÞ must be set to fr , the rth value of the dependent variable (ordinate), for
r ¼ 1; 2; . . . ; n.
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4: DðNÞ – REAL (KIND=nag_wp) array Output

On exit: estimates of derivatives at the data points. DðrÞ contains the derivative at XðrÞ.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

The values of XðrÞ, for r ¼ 1; 2; . . . ;N, are not in strictly increasing order.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computational errors in the array D should be negligible in most practical situations.

8 Parallelism and Performance

E01BEF is not threaded in any implementation.

9 Further Comments

The time taken by E01BEF is approximately proportional to n.

The values of the computed interpolant at the points PXðiÞ, for i ¼ 1; 2; . . . ;M, may be obtained in the
real array PF, of length at least M, by the call:
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CALL E01BFF(N,X,F,D,M,PX,PF,IFAIL)

where N, X and F are the input arguments to E01BEF and D is the output argument from E01BEF.

The values of the computed interpolant at the points PXðiÞ, for i ¼ 1; 2; . . . ;M, together with its first
derivatives, may be obtained in the real arrays PF and PD, both of length at least M, by the call:

CALL E01BGF(N,X,F,D,M,PX,PF,PD,IFAIL)

where N, X, F and D are as described above.

The value of the definite integral of the interpolant over the interval A to B can be obtained in the real
variable PINT by the call:

CALL E01BHF(N,X,F,D,A,B,PINT,IFAIL)

where N, X, F and D are as described above.

10 Example

This example reads in a set of data points, calls E01BEF to compute a piecewise monotonic interpolant,
and then calls E01BFF to evaluate the interpolant at equally spaced points.

10.1 Program Text

Program e01befe

! E01BEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01bef, e01bff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: step
Integer :: i, ifail, m, n, r

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), f(:), pf(:), px(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: min, real

! .. Executable Statements ..
Write (nout,*) ’E01BEF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Allocate (d(n),f(n),x(n))

Do r = 1, n
Read (nin,*) x(r), f(r)

End Do

ifail = 0
Call e01bef(n,x,f,d,ifail)

Read (nin,*) m
Allocate (pf(m),px(m))

! Compute M equally spaced points from X(1) to X(N).

step = (x(n)-x(1))/real(m-1,kind=nag_wp)

Do i = 1, m
px(i) = min(x(1)+real(i-1,kind=nag_wp)*step,x(n))

End Do
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ifail = 0
Call e01bff(n,x,f,d,m,px,pf,ifail)

Write (nout,*)
Write (nout,*) ’ Interpolated’
Write (nout,*) ’ Abscissa Value’

Do i = 1, m
Write (nout,99999) px(i), pf(i)

End Do

99999 Format (1X,F13.4,2X,F13.4)
End Program e01befe

10.2 Program Data

E01BEF Example Program Data
9 N, the number of data points

7.99 0.00000E+0 X(R), F(R), independent and dependent variable
8.09 0.27643E-4
8.19 0.43750E-1
8.70 0.16918E+0
9.20 0.46943E+0

10.00 0.94374E+0
12.00 0.99864E+0
15.00 0.99992E+0
20.00 0.99999E+0 End of data points
11 M, the number of evaluation points

10.3 Program Results

E01BEF Example Program Results

Interpolated
Abscissa Value

7.9900 0.0000
9.1910 0.4640

10.3920 0.9645
11.5930 0.9965
12.7940 0.9992
13.9950 0.9998
15.1960 0.9999
16.3970 1.0000
17.5980 1.0000
18.7990 1.0000
20.0000 1.0000
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NAG Library Routine Document

E01BFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01BFF evaluates a piecewise cubic Hermite interpolant at a set of points.

2 Specification

SUBROUTINE E01BFF (N, X, F, D, M, PX, PF, IFAIL)

INTEGER N, M, IFAIL
REAL (KIND=nag_wp) X(N), F(N), D(N), PX(M), PF(M)

3 Description

E01BFF evaluates a piecewise cubic Hermite interpolant, as computed by E01BEF, at the points PXðiÞ,
for i ¼ 1; 2; . . . ;m. If any point lies outside the interval from Xð1Þ to XðNÞ, a value is extrapolated
from the nearest extreme cubic, and a warning is returned.

The routine is derived from routine PCHFE in Fritsch (1982).

4 References

Fritsch F N (1982) PCHIP final specifications Report UCID-30194 Lawrence Livermore National
Laboratory

5 Arguments

1: N – INTEGER Input
2: XðNÞ – REAL (KIND=nag_wp) array Input
3: FðNÞ – REAL (KIND=nag_wp) array Input
4: DðNÞ – REAL (KIND=nag_wp) array Input

On entry: N, X, F and D must be unchanged from the previous call of E01BEF.

5: M – INTEGER Input

On entry: m, the number of points at which the interpolant is to be evaluated. If any point lies
outside the interval from Xð1Þ) to XðNÞ, a value is extrapolated from the nearest extreme cubic,
and a warning is returned. The extrapolation simply extends the final cubic at each end.

Constraint: M � 1.

6: PXðMÞ – REAL (KIND=nag_wp) array Input

On entry: the m values of x at which the interpolant is to be evaluated.

7: PFðMÞ – REAL (KIND=nag_wp) array Output

On exit: PFðiÞ contains the value of the interpolant evaluated at the point PXðiÞ, for
i ¼ 1; 2; . . . ;m.
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8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

The values of XðrÞ, for r ¼ 1; 2; . . . ;N, are not in strictly increasing order.

IFAIL ¼ 3

On entry, M < 1.

IFAIL ¼ 4

At least one of the points PXðiÞ, for i ¼ 1; 2; . . . ;M, lies outside the interval [Xð1Þ;XðNÞ], and
extrapolation was performed at all such points. Values computed at such points may be very
unreliable.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computational errors in the array PF should be negligible in most practical situations.

8 Parallelism and Performance

E01BFF is not threaded in any implementation.
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9 Further Comments

The time taken by E01BFF is approximately proportional to the number of evaluation points, m. The
evaluation will be most efficient if the elements of PX are in nondecreasing order (or, more generally, if
they are grouped in increasing order of the intervals Xðr� 1Þ;XðrÞ½ �). A single call of E01BFF with
m > 1 is more efficient than several calls with m ¼ 1.

As documented above, this routine will use extrapolation if presented with evaluation points outside the
region x1; xn½ �. Since such extrapolated values are computed simply by extending the cubic
approximation at each end interval, the values may not be suitable for all purposes. If you need
more control over how values outside the original region are calculated, consider the following possible
procedures for degree 0, 1 and 2 extrapolation.

(i) Flat extrapolation

For x < x1 choose f ¼ F 1ð Þ;
for x > xn choose f ¼ F Nð Þ.

(ii) Linear extrapolation

For x < x1, call E01BGF using PX 1ð Þ ¼ X 1ð Þ to obtain PD 1ð Þ, then choose
f ¼ PD 1ð Þ � x� X 1ð Þð Þ þ F 1ð Þ;
for x > xn, call E01BGF using PX 1ð Þ ¼ X Nð Þ to obtain PD Nð Þ, then choose
f ¼ PD Nð Þ � x� X Nð Þð Þ þ F Nð Þ.

(iii) Quadratic extrapolation

For x < x1, call E01BGF to obtain derivative values PD 1ð Þ and PD 2ð Þ at x1 and x2,

if PD 2ð Þj j � PD 1ð Þj j revert to linear extrapolation (ii),

otherwise let l1 xð Þ ¼ x� x1ð Þ; l2 xð Þ ¼ x� x2ð Þ and c ¼ 1= x1 � x2ð Þ, then choose
f xð Þ ¼ PD 1ð Þ � l1 xð Þ � l2 xð Þ � c� F 1ð Þ � l2 xð Þ � l1 xð Þ þ l1 x2ð Þð Þ � c2 þ F 2ð Þ �
l1 xð Þ � c½ �2;

for x > xn, call E01BGF to obtain derivative values PD Nð Þ and PD N� 1ð Þ at xn and xn�1,

if PD N� 1ð Þj j � PD Nð Þj j revert to linear extrapolation (ii),

otherwise let ln xð Þ ¼ x� xnð Þ; ln�1 xð Þ ¼ x� xn�1ð Þ and c ¼ 1= xn � xn�1ð Þ, then
choose f xð Þ ¼ PD Nð Þ � ln xð Þ � ln�1 xð Þ � c� F Nð Þ � ln�1 xð Þ � ln xð Þ þ ln xn�1ð Þð Þ �
c2 þ F N� 1ð Þ � ln xð Þ � c½ �2.

10 Example

This example reads in values of N, X, F and D, and then calls E01BFF to evaluate the interpolant at
equally spaced points.

10.1 Program Text

Program e01bffe

! E01BFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01bff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: step
Integer :: i, ifail, m, n, r

! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: d(:), f(:), pf(:), px(:), x(:)
! .. Intrinsic Procedures ..

Intrinsic :: min, real
! .. Executable Statements ..

Write (nout,*) ’E01BFF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Allocate (d(n),f(n),x(n))

Do r = 1, n
Read (nin,*) x(r), f(r), d(r)

End Do

Read (nin,*) m
Allocate (pf(m),px(m))

! Compute M equally spaced points from X(1) to X(N).

step = (x(n)-x(1))/real(m-1,kind=nag_wp)

Do i = 1, m
px(i) = min(x(1)+real(i-1,kind=nag_wp)*step,x(n))

End Do

ifail = 0
Call e01bff(n,x,f,d,m,px,pf,ifail)

Write (nout,*)
Write (nout,*) ’ Interpolated’
Write (nout,*) ’ Abscissa Value’

Do i = 1, m
Write (nout,99999) px(i), pf(i)

End Do

99999 Format (1X,3F15.4)
End Program e01bffe

10.2 Program Data

E01BFF Example Program Data
9 N, the number of data points

7.990 0.00000E+0 0.00000E+0 X(R), F(R), D(R)
8.090 0.27643E-4 5.52510E-4
8.190 0.43749E-1 0.33587E+0
8.700 0.16918E+0 0.34944E+0
9.200 0.46943E+0 0.59696E+0
10.00 0.94374E+0 6.03260E-2
12.00 0.99864E+0 8.98335E-4
15.00 0.99992E+0 2.93954E-5
20.00 0.99999E+0 0.00000E+0 End of data points
11 M, the number of evaluation points

10.3 Program Results

E01BFF Example Program Results

Interpolated
Abscissa Value

7.9900 0.0000
9.1910 0.4640

10.3920 0.9645
11.5930 0.9965
12.7940 0.9992
13.9950 0.9998

E01BFF NAG Library Manual

E01BFF.4 Mark 26



15.1960 0.9999
16.3970 1.0000
17.5980 1.0000
18.7990 1.0000
20.0000 1.0000

E01 – Interpolation E01BFF
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NAG Library Routine Document

E01BGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01BGF evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points.

2 Specification

SUBROUTINE E01BGF (N, X, F, D, M, PX, PF, PD, IFAIL)

INTEGER N, M, IFAIL
REAL (KIND=nag_wp) X(N), F(N), D(N), PX(M), PF(M), PD(M)

3 Description

E01BGF evaluates a piecewise cubic Hermite interpolant, as computed by E01BEF, at the points PXðiÞ,
for i ¼ 1; 2; . . . ;m. The first derivatives at the points are also computed. If any point lies outside the
interval from Xð1Þ to XðNÞ, values of the interpolant and its derivative are extrapolated from the nearest
extreme cubic, and a warning is returned.

If values of the interpolant only, and not of its derivative, are required, E01BFF should be used.

The routine is derived from routine PCHFD in Fritsch (1982).

4 References

Fritsch F N (1982) PCHIP final specifications Report UCID-30194 Lawrence Livermore National
Laboratory

5 Arguments

1: N – INTEGER Input
2: XðNÞ – REAL (KIND=nag_wp) array Input
3: FðNÞ – REAL (KIND=nag_wp) array Input
4: DðNÞ – REAL (KIND=nag_wp) array Input

On entry: N, X, F and D must be unchanged from the previous call of E01BEF.

5: M – INTEGER Input

On entry: m, the number of points at which the interpolant is to be evaluated.

Constraint: M � 1.

6: PXðMÞ – REAL (KIND=nag_wp) array Input

On entry: the m values of x at which the interpolant is to be evaluated.

7: PFðMÞ – REAL (KIND=nag_wp) array Output

On exit: PFðiÞ contains the value of the interpolant evaluated at the point PXðiÞ, for
i ¼ 1; 2; . . . ;m.
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8: PDðMÞ – REAL (KIND=nag_wp) array Output

On exit: PDðiÞ contains the first derivative of the interpolant evaluated at the point PXðiÞ, for
i ¼ 1; 2; . . . ;m.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

The values of XðrÞ, for r ¼ 1; 2; . . . ;N, are not in strictly increasing order.

IFAIL ¼ 3

On entry, M < 1.

IFAIL ¼ 4

At least one of the points PXðiÞ, for i ¼ 1; 2; . . . ;M, lies outside the interval [Xð1Þ;XðNÞ], and
extrapolation was performed at all such points. Values computed at these points may be very
unreliable.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computational errors in the arrays PF and PD should be negligible in most practical situations.
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8 Parallelism and Performance

E01BGF is not threaded in any implementation.

9 Further Comments

The time taken by E01BGF is approximately proportional to the number of evaluation points, m. The
evaluation will be most efficient if the elements of PX are in nondecreasing order (or, more generally, if
they are grouped in increasing order of the intervals Xðr� 1Þ;XðrÞ½ �). A single call of E01BGF with
m > 1 is more efficient than several calls with m ¼ 1.

10 Example

This example reads in values of N, X, F and D, and calls E01BGF to compute the values of the
interpolant and its derivative at equally spaced points.

10.1 Program Text

Program e01bgfe

! E01BGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01bgf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: step
Integer :: i, ifail, m, n, r

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), f(:), pd(:), pf(:), px(:), &

x(:)
! .. Intrinsic Procedures ..

Intrinsic :: min, real
! .. Executable Statements ..

Write (nout,*) ’E01BGF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Allocate (d(n),f(n),x(n))

Do r = 1, n
Read (nin,*) x(r), f(r), d(r)

End Do

Read (nin,*) m
Allocate (pd(m),pf(m),px(m))

! Compute M equally spaced points from X(1) to X(N).

step = (x(n)-x(1))/real(m-1,kind=nag_wp)

Do i = 1, m
px(i) = min(x(1)+real(i-1,kind=nag_wp)*step,x(n))

End Do

ifail = 0
Call e01bgf(n,x,f,d,m,px,pf,pd,ifail)

Write (nout,*)
Write (nout,*) ’ Interpolated Interpolated’
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Write (nout,*) ’ Abscissa Value Derivative’

Do i = 1, m
Write (nout,99999) px(i), pf(i), pd(i)

End Do

99999 Format (1X,2F15.4,1P,E15.3)
End Program e01bgfe

10.2 Program Data

E01BGF Example Program Data
9 N, the number of data points

7.990 0.00000E+0 0.00000E+0 X(R), F(R), D(R)
8.090 0.27643E-4 5.52510E-4
8.190 0.43749E-1 0.33587E+0
8.700 0.16918E+0 0.34944E+0
9.200 0.46943E+0 0.59696E+0
10.00 0.94374E+0 6.03260E-2
12.00 0.99864E+0 8.98335E-4
15.00 0.99992E+0 2.93954E-5
20.00 0.99999E+0 0.00000E+0 End of data points
11 M, the number of evaluation points

10.3 Program Results

E01BGF Example Program Results

Interpolated Interpolated
Abscissa Value Derivative

7.9900 0.0000 0.000E+00
9.1910 0.4640 6.060E-01

10.3920 0.9645 4.569E-02
11.5930 0.9965 9.917E-03
12.7940 0.9992 6.249E-04
13.9950 0.9998 2.708E-04
15.1960 0.9999 2.809E-05
16.3970 1.0000 2.034E-05
17.5980 1.0000 1.308E-05
18.7990 1.0000 6.297E-06
20.0000 1.0000 -3.388E-21
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NAG Library Routine Document

E01BHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01BHF evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval a; b½ �.

2 Specification

SUBROUTINE E01BHF (N, X, F, D, A, B, PINT, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), F(N), D(N), A, B, PINT

3 Description

E01BHF evaluates the definite integral of a piecewise cubic Hermite interpolant, as computed by
E01BEF, over the interval a; b½ �.
If either a or b lies outside the interval from Xð1Þ to XðNÞ computation of the integral involves
extrapolation and a warning is returned.

The routine is derived from routine PCHIA in Fritsch (1982).

4 References

Fritsch F N (1982) PCHIP final specifications Report UCID-30194 Lawrence Livermore National
Laboratory

5 Arguments

1: N – INTEGER Input
2: XðNÞ – REAL (KIND=nag_wp) array Input
3: FðNÞ – REAL (KIND=nag_wp) array Input
4: DðNÞ – REAL (KIND=nag_wp) array Input

On entry: N, X, F and D must be unchanged from the previous call of E01BEF.

5: A – REAL (KIND=nag_wp) Input
6: B – REAL (KIND=nag_wp) Input

On entry: the interval a; b½ � over which integration is to be performed.

7: PINT – REAL (KIND=nag_wp) Output

On exit: the value of the definite integral of the interpolant over the interval a; b½ �.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

The values of XðrÞ, for r ¼ 1; 2; . . . ;N, are not in strictly increasing order.

IFAIL ¼ 3

On entry, at least one of A or B lies outside the interval [Xð1Þ;XðNÞ], and extrapolation was
performed to compute the integral. The value returned is therefore unreliable.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computational error in the value returned for PINT should be negligible in most practical situations.

8 Parallelism and Performance

E01BHF is not threaded in any implementation.

9 Further Comments

The time taken by E01BHF is approximately proportional to the number of data points included within
the interval a; b½ �.

10 Example

This example reads in values of N, X, F and D. It then reads in pairs of values for A and B, and
evaluates the definite integral of the interpolant over the interval A;B½ � until end-of-file is reached.
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10.1 Program Text

Program e01bhfe

! E01BHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01bhf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, pint
Integer :: ifail, ioerr, n, r

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), f(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’E01BHF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Allocate (d(n),f(n),x(n))

Do r = 1, n
Read (nin,*) x(r), f(r), d(r)

End Do

Write (nout,*)
Write (nout,*) ’ Integral’
Write (nout,*) ’ A B over (A,B)’

data: Do
Read (nin,*,Iostat=ioerr) a, b

If (ioerr<0) Then
Exit data

End If

ifail = 0
Call e01bhf(n,x,f,d,a,b,pint,ifail)

Write (nout,99999) a, b, pint
End Do data

99999 Format (1X,3F13.4)
End Program e01bhfe

10.2 Program Data

E01BHF Example Program Data
9 N, the number of data points

7.990 0.00000E+0 0.00000E+0 X(R), F(R), D(R)
8.090 0.27643E-4 5.52510E-4
8.190 0.43749E-1 0.33587E+0
8.700 0.16918E+0 0.34944E+0
9.200 0.46943E+0 0.59696E+0
10.00 0.94374E+0 6.03260E-2
12.00 0.99864E+0 8.98335E-4
15.00 0.99992E+0 2.93954E-5
20.00 0.99999E+0 0.00000E+0
7.99 20.0 A, B pairs until end of file
10.0 12.0
12.0 10.0
15.0 15.0
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10.3 Program Results

E01BHF Example Program Results

Integral
A B over (A,B)

7.9900 20.0000 10.7648
10.0000 12.0000 1.9622
12.0000 10.0000 -1.9622
15.0000 15.0000 0.0000
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NAG Library Routine Document

E01DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01DAF computes a bicubic spline interpolating surface through a set of data values, given on a
rectangular grid in the x-y plane.

2 Specification

SUBROUTINE E01DAF (MX, MY, X, Y, F, PX, PY, LAMDA, MU, C, WRK, IFAIL)

INTEGER MX, MY, PX, PY, IFAIL
REAL (KIND=nag_wp) X(MX), Y(MY), F(MX*MY), LAMDA(MX+4), MU(MY+4),

C(MX*MY), WRK((MX+6)*(MY+6))
&

3 Description

E01DAF determines a bicubic spline interpolant to the set of data points xq; yr ; fq;r
� �

, for
q ¼ 1; 2; . . . ;mx and r ¼ 1; 2; . . . ;my. The spline is given in the B-spline representation

s x; yð Þ ¼
Xmx

i¼1

Xmy

j¼1
cijMi xð ÞNj yð Þ;

such that

s xq; yr
� �

¼ fq;r;

where Mi xð Þ and Nj yð Þ denote normalized cubic B-splines, the former defined on the knots �i to �iþ4
and the latter on the knots �j to �jþ4, and the cij are the spline coefficients. These knots, as well as the
coefficients, are determined by the routine, which is derived from the routine B2IRE in Anthony et al.
(1982). The method used is described in Section 9.2.

For further information on splines, see Hayes and Halliday (1974) for bicubic splines and de Boor
(1972) for normalized B-splines.

Values and derivatives of the computed spline can subsequently be computed by calling E02DEF,
E02DFF or E02DHF as described in Section 9.3.

4 References

Anthony G T, Cox M G and Hayes J G (1982) DASL – Data Approximation Subroutine Library
National Physical Laboratory

Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95–108

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

Hayes J G and Halliday J (1974) The least squares fitting of cubic spline surfaces to general data sets J.
Inst. Math. Appl. 14 89–103
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5 Arguments

1: MX – INTEGER Input
2: MY – INTEGER Input

On entry: MX and MY must specify mx and my respectively, the number of points along the x
and y axis that define the rectangular grid.

Constraint: MX � 4 and MY � 4.

3: XðMXÞ – REAL (KIND=nag_wp) array Input
4: YðMYÞ – REAL (KIND=nag_wp) array Input

On entry: XðqÞ and YðrÞ must contain xq , for q ¼ 1; 2; . . . ;mx, and yr , for r ¼ 1; 2; . . . ;my,
respectively.

Constraints:

XðqÞ < Xðq þ 1Þ, for q ¼ 1; 2; . . . ;mx � 1;
YðrÞ < Yðr þ 1Þ, for r ¼ 1; 2; . . . ;my � 1.

5: FðMX�MYÞ – REAL (KIND=nag_wp) array Input

On entry: Fðmy � q � 1ð Þ þ rÞ must contain fq;r , for q ¼ 1; 2; . . . ;mx and r ¼ 1; 2; . . . ;my.

6: PX – INTEGER Output
7: PY – INTEGER Output

On exit: PX and PY contain mx þ 4 and my þ 4, the total number of knots of the computed
spline with respect to the x and y variables, respectively.

8: LAMDAðMXþ 4Þ – REAL (KIND=nag_wp) array Output
9: MUðMYþ 4Þ – REAL (KIND=nag_wp) array Output

On exit: LAMDA contains the complete set of knots �i associated with the x variable, i.e., the
interior knots LAMDAð5Þ;LAMDAð6Þ; . . . ;LAMDAðPX� 4Þ, as well as the additional knots

LAMDAð1Þ ¼ LAMDAð2Þ ¼ LAMDAð3Þ ¼ LAMDAð4Þ ¼ Xð1Þ

and

LAMDAðPX� 3Þ ¼ LAMDAðPX� 2Þ ¼ LAMDAðPX� 1Þ ¼ LAMDAðPXÞ ¼ XðMXÞ

needed for the B-spline representation.

10: CðMX�MYÞ – REAL (KIND=nag_wp) array Output

On exit: the coefficients of the spline interpolant. Cðmy � i� 1ð Þ þ jÞ contains the coefficient cij
described in Section 3.

11: WRKð MXþ 6ð Þ � MYþ 6ð ÞÞ – REAL (KIND=nag_wp) array Workspace

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MX < 4,
or MY < 4.

IFAIL ¼ 2

On entry, either the values in the X array or the values in the Y array are not in increasing order
if not already there.

IFAIL ¼ 3

A system of linear equations defining the B-spline coefficients was singular; the problem is too
ill-conditioned to permit solution.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The main sources of rounding errors are in steps 2, 3, 6 and 7 of the algorithm described in Section 9.2.
It can be shown (see Cox (1975)) that the matrix Ax formed in step 2 has elements differing relatively
from their true values by at most a small multiple of 3�, where � is the machine precision. Ax is ‘totally
positive’, and a linear system with such a coefficient matrix can be solved quite safely by elimination
without pivoting. Similar comments apply to steps 6 and 7. Thus the complete process is numerically
stable.

8 Parallelism and Performance

E01DAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken by E01DAF is approximately proportional to mxmy.
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9.2 Outline of Method Used

The process of computing the spline consists of the following steps:

1. choice of the interior x-knots �5, �6; . . . ; �mx
as �i ¼ xi�2, for i ¼ 5; 6; . . . ;mx,

2. formation of the system

AxE ¼ F;

where Ax is a band matrix of order mx and bandwidth 4, containing in its qth row the values at
xq of the B-splines in x, F is the mx by my rectangular matrix of values fq;r, and E denotes an
mx by my rectangular matrix of intermediate coefficients,

3. use of Gaussian elimination to reduce this system to band triangular form,

4. solution of this triangular system for E,

5. choice of the interior y knots �5, �6; . . . ; �my
as �i ¼ yi�2, for i ¼ 5; 6; . . . ;my,

6. formation of the system

AyC
T ¼ ET;

where Ay is the counterpart of Ax for the y variable, and C denotes the mx by my rectangular
matrix of values of cij,

7. use of Gaussian elimination to reduce this system to band triangular form,

8. solution of this triangular system for CT and hence C.

For computational convenience, steps 2 and 3, and likewise steps 6 and 7, are combined so that the
formation of Ax and Ay and the reductions to triangular form are carried out one row at a time.

9.3 Evaluation of Computed Spline

The values of the computed spline at the points xk ; ykð Þ, for k ¼ 1; 2; . . . ;m, may be obtained in the real
array FF (see E02DEF), of length at least m, by the following call:

IFAIL = 0
CALL E02DEF(M,PX,PY,X,Y,LAMDA,MU,C,FF,WRK,IWRK,IFAIL)

where M ¼ m and the coordinates xk, yk are stored in X kð Þ, Y kð Þ. PX and PY, LAMDA, MU and C have the
same values as PX and PY LAMDA, MU and C output from E01DAF. WRK is a real workspace array of
length at least PY, and IWRK is an integer workspace array of length at least PY� 4. (See E02DEF.)

To evaluate the computed spline on an mx by my rectangular grid of points in the x-y plane, which is
defined by the x coordinates stored in X jð Þ, for j ¼ 1; 2; . . . ;mx, and the y coordinates stored in Y kð Þ,
for k ¼ 1; 2; . . . ;my, returning the results in the real array FF (see E02DFF) which is of length at least
MX�MY, the following call may be used:

IFAIL = 0
CALL E02DFF(MX,MY,PX,PY,X,Y,LAMDA,MU,C,FG,WRK,LWRK,

* IWRK,LIWRK,IFAIL)

where MX ¼ mx, MY ¼ my. PX and PY, LAMDA, MU and C have the same values as PX, PY, LAMDA, MU
and C output from E01DAF. WRK is a real workspace array of length at least
LWRK ¼ min nwrk1; nwrk2ð Þ, for nwrk1 ¼ MX� 4þ PX, nwrk2 ¼ MY� 4þ PY, and IWRK is an integer
workspace array of length at least LIWRK ¼ MYþ PY� 4 if nwrk1 > nwrk2, or MXþ PX� 4 otherwise.

The result of the spline evaluated at grid point j; kð Þ is returned in element (MY� j� 1ð Þ þ k) of the
array FG.

10 Example

This example reads in values of mx, xq , for q ¼ 1; 2; . . . ;mx, my and yr , for r ¼ 1; 2; . . . ;my, followed
by values of the ordinates fq;r defined at the grid points xq; yr

� �
.
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It then calls E01DAF to compute a bicubic spline interpolant of the data values, and prints the values of
the knots and B-spline coefficients. Finally it evaluates the spline at a small sample of points on a
rectangular grid.

10.1 Program Text

Program e01dafe

! E01DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01daf, e02dff, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: indent = 0, ncols = 80, nin = 5, &

nout = 6
Character (1), Parameter :: chlabel = ’C’, diag = ’N’, &

matrix = ’G’
Character (4), Parameter :: form = ’F8.3’

! .. Local Scalars ..
Real (Kind=nag_wp) :: step, xhi, xlo, yhi, ylo
Integer :: i, ifail, j, liwrk, lwrk, mx, my, &

nx, ny, px, py
Character (54) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), f(:,:), fg(:), lamda(:), &

mu(:), tx(:), ty(:), wrk(:), x(:), &
y(:)

Integer, Allocatable :: iwrk(:)
Character (10), Allocatable :: clabs(:), rlabs(:)

! .. Intrinsic Procedures ..
Intrinsic :: min, real

! .. Executable Statements ..
Write (nout,*) ’E01DAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read the number of X points, MX, and the values of the
! X co-ordinates.

Read (nin,*) mx
Allocate (x(mx),lamda(mx+4))

Read (nin,*) x(1:mx)

! Read the number of Y points, MY, and the values of the
! Y co-ordinates.

Read (nin,*) my
Allocate (y(my),mu(my+4),c(mx*my),f(my,mx),wrk((mx+6)*(my+6)))

Read (nin,*) y(1:my)

! Read the function values at the grid points.

Do j = 1, my
Read (nin,*) f(j,1:mx)

End Do

! Generate the (X,Y,F) interpolating bicubic B-spline.

ifail = 0
Call e01daf(mx,my,x,y,f,px,py,lamda,mu,c,wrk,ifail)

! Print the knot sets, LAMDA and MU.
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Write (nout,*)
Write (nout,*) ’ I Knot LAMDA(I) J Knot MU(J)’
Write (nout,99997)(j,lamda(j),j,mu(j),j=4,min(px,py)-3)
If (px>py) Then

Write (nout,99997)(j,lamda(j),j=py-2,px-3)
Else If (px<py) Then

Write (nout,99996)(j,mu(j),j=px-2,py-3)
End If

! Print the spline coefficients.

Write (nout,*)
Write (nout,*) ’The B-Spline coefficients:’
Write (nout,99999)(c(i),i=1,mx*my)
Write (nout,*)
Flush (nout)

! Evaluate the spline on a regular rectangular grid at nx*ny points
! over the domain [xlo,xhi] x [ylo,yhi].

Deallocate (wrk)

Read (nin,*) nx, xlo, xhi
Read (nin,*) ny, ylo, yhi
lwrk = min(4*nx+px,4*ny+py)

If (4*nx+px>4*ny+py) Then
liwrk = ny + py - 4

Else
liwrk = nx + px - 4

End If

Allocate (tx(nx),ty(ny),fg(nx*ny),wrk(lwrk),iwrk(liwrk))

! Generate nx/ny equispaced x/y co-ordinates.

step = (xhi-xlo)/real(nx-1,kind=nag_wp)
tx(1) = xlo
Do i = 2, nx - 1

tx(i) = tx(i-1) + step
End Do
tx(nx) = xhi

step = (yhi-ylo)/real(ny-1,kind=nag_wp)
ty(1) = ylo
Do i = 2, ny - 1

ty(i) = ty(i-1) + step
End Do
ty(ny) = yhi

! Evaluate the spline.
ifail = 0
Call e02dff(nx,ny,px,py,tx,ty,lamda,mu,c,fg,wrk,lwrk,iwrk,liwrk,ifail)

! Generate row and column labels and title for printing results.
Allocate (clabs(nx),rlabs(ny))
Do i = 1, nx

Write (clabs(i),99998) tx(i)
End Do
Do i = 1, ny

Write (rlabs(i),99998) ty(i)
Flush (nout)

End Do
title = ’Spline evaluated on a regular mesh (X across, Y down):’

! Print the results.
ifail = 0
Call x04cbf(matrix,diag,ny,nx,fg,ny,form,title,chlabel,rlabs,chlabel, &

clabs,ncols,indent,ifail)
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99999 Format (1X,8F9.4)
99998 Format (F5.2)
99997 Format (1X,I16,F12.4,I11,F12.4)
99996 Format (1X,I39,F12.4)

End Program e01dafe

10.2 Program Data

E01DAF Example Program Data
7 MX
1.00 1.10 1.30 1.50 1.60 1.80 2.00 X(1) .. X(MX)
6 MY
0.00 0.10 0.40 0.70 0.90 1.00 Y(1) .. Y(MY)
1.00 1.21 1.69 2.25 2.56 3.24 4.00 (F(MY*(I-1)+J),I=1..MX),J=1..MY
1.10 1.31 1.79 2.35 2.66 3.34 4.10
1.40 1.61 2.09 2.65 2.96 3.64 4.40
1.70 1.91 2.39 2.95 3.26 3.94 4.70
1.90 2.11 2.59 3.15 3.46 4.14 4.90
2.00 2.21 2.69 3.25 3.56 4.24 5.00
6 1.0 2.0 NX XLO XHI
6 0.0 1.0 NY YLO YHI

10.3 Program Results

E01DAF Example Program Results

I Knot LAMDA(I) J Knot MU(J)
4 1.0000 4 0.0000
5 1.3000 5 0.4000
6 1.5000 6 0.7000
7 1.6000 7 1.0000
8 2.0000

The B-Spline coefficients:
1.0000 1.1333 1.3667 1.7000 1.9000 2.0000 1.2000 1.3333
1.5667 1.9000 2.1000 2.2000 1.5833 1.7167 1.9500 2.2833
2.4833 2.5833 2.1433 2.2767 2.5100 2.8433 3.0433 3.1433
2.8667 3.0000 3.2333 3.5667 3.7667 3.8667 3.4667 3.6000
3.8333 4.1667 4.3667 4.4667 4.0000 4.1333 4.3667 4.7000
4.9000 5.0000

Spline evaluated on a regular mesh (X across, Y down):
1.00 1.20 1.40 1.60 1.80 2.00

0.00 1.000 1.440 1.960 2.560 3.240 4.000
0.20 1.200 1.640 2.160 2.760 3.440 4.200
0.40 1.400 1.840 2.360 2.960 3.640 4.400
0.60 1.600 2.040 2.560 3.160 3.840 4.600
0.80 1.800 2.240 2.760 3.360 4.040 4.800
1.00 2.000 2.440 2.960 3.560 4.240 5.000
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NAG Library Routine Document

E01EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01EAF generates a triangulation for a given set of two-dimensional points using the method of Renka
and Cline.

2 Specification

SUBROUTINE E01EAF (N, X, Y, TRIANG, IFAIL)

INTEGER N, TRIANG(7*N), IFAIL
REAL (KIND=nag_wp) X(N), Y(N)

3 Description

E01EAF creates a Thiessen triangulation with a given set of two-dimensional data points as nodes. This
triangulation will be as equiangular as possible (Cline and Renka (1984)). See Renka and Cline (1984)
for more detailed information on the algorithm, a development of that by Lawson (1977). The code is
derived from Renka (1984).

The computed triangulation is returned in a form suitable for passing to E01EBF which, for a set of
nodal function values, computes interpolated values at a set of points.

4 References

Cline A K and Renka R L (1984) A storage-efficient method for construction of a Thiessen
triangulation Rocky Mountain J. Math. 14 119–139

Lawson C L (1977) Software for C1 surface interpolation Mathematical Software III (ed J R Rice) 161–
194 Academic Press

Renka R L (1984) Algorithm 624: triangulation and interpolation of arbitrarily distributed points in the
plane ACM Trans. Math. Software 10 440–442

Renka R L and Cline A K (1984) A triangle-based C1 interpolation method Rocky Mountain J. Math.
14 223–237

5 Arguments

1: N – INTEGER Input

On entry: n, the number of data points.

Constraint: N � 3.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the x coordinates of the n data points.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the y coordinates of the n data points.
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4: TRIANGð7� NÞ – INTEGER array Output

On exit: a data structure defining the computed triangulation, in a form suitable for passing to
E01EBF. Details of how the triangulation is encoded in TRIANG are given in Section 9. These
details are most likely to be of use when plotting the computed triangulation which is
demonstrated in Section 10.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 3.

IFAIL ¼ 2

On entry, all the x; yð Þ pairs are collinear.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E01EAF is not threaded in any implementation.
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9 Further Comments

The time taken for a call of E01EAF is approximately proportional to the number of data points, n. The
routine is more efficient if, before entry, the x; yð Þ pairs are arranged in X and Y such that the x values
are in ascending order.

The triangulation is encoded in TRIANG as follows:

set j0 ¼ 0; for each node, k ¼ 1; 2; . . . ; n, (using the ordering inferred from X and Y)

ik ¼ jk�1 þ 1

jk ¼ TRIANGð6� Nþ kÞ
TRIANGðjÞ, for j ¼ ik; . . . ; jk, contains the list of nodes to which node k is connected. If
TRIANGðjkÞ ¼ 0 then node k is on the boundary of the mesh.

10 Example

In this example, E01EAF creates a triangulation from a set of data points. E01EBF then evaluates the
interpolant at a sample of points using this triangulation. Note that this example is not typical of a
realistic problem: the number of data points would normally be larger, so that interpolants can be more
accurately evaluated at the fine triangulated grid.

10.1 Program Text

Program e01eafe

! E01EAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01eaf, e01ebf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Logical, Parameter :: pr_tr = .False.

! .. Local Scalars ..
Integer :: i, ifail, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), pf(:), px(:), py(:), x(:), &

y(:)
Integer, Allocatable :: triang(:)

! .. Executable Statements ..

Write (nout,*) ’E01EAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Allocate (x(n),y(n),f(n),triang(7*n))
Read (nin,*)(x(i),y(i),f(i),i=1,n)

! Triangulate data
ifail = 0
Call e01eaf(n,x,y,triang,ifail)

Read (nin,*) m
Allocate (px(m),py(m),pf(m))
Read (nin,*)(px(i),py(i),i=1,m)

! Interpolate data
ifail = 0
Call e01ebf(m,n,x,y,f,triang,px,py,pf,ifail)

! Display results
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Write (nout,*)
Write (nout,99999) ’px’, ’py’, ’Interpolated Value’
Write (nout,99998)(px(i),py(i),pf(i),i=1,m)

If (pr_tr) Then
Call print_triang

End If

99999 Format (2X,A4,4X,A4,4X,A19)
99998 Format (1X,F7.4,1X,F7.4,8X,F7.4)

Contains
Subroutine print_triang

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i_k, j, j_k, k

! .. Executable Statements ..

! Print a sequence of unique line segments for plotting triangulation
Write (nout,*)
Write (nout,*) ’ Triangulation as a set of line segments’
Write (nout,*)
j_k = 0
Do k = 1, n

i_k = j_k + 1
j_k = triang(6*n+k)
Do j = i_k, j_k

If (triang(j)>k) Then
Write (nout,99999) x(k), y(k)
Write (nout,99999) x(triang(j)), y(triang(j))
Write (nout,*)

End If
End Do

End Do
Return

99999 Format (1X,F7.4,1X,F7.4)
End Subroutine print_triang

End Program e01eafe

10.2 Program Data

E01EAF Example Program Data
30 : n, data points
0.00 0.00 58.20
0.00 20.00 34.60
0.51 8.37 49.43
2.14 15.03 53.10
3.31 0.33 44.08
3.45 12.78 41.24
5.22 14.66 40.36
5.47 17.13 28.63
7.54 10.69 19.31
7.58 1.98 29.87
9.66 20.00 4.73

11.16 1.24 22.15
11.52 8.53 15.74
12.13 10.79 13.71
12.85 3.06 22.11
14.26 17.87 10.74
15.20 0.00 21.60
15.91 7.74 15.30
17.25 19.57 6.43
17.32 13.78 12.11
17.43 3.46 18.60
19.72 1.39 16.83
19.85 10.72 7.97
20.87 20.00 5.74
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21.67 14.36 5.52
22.23 6.21 10.25
22.69 19.63 3.25
22.80 12.39 5.47
25.00 11.87 4.40
25.00 3.87 8.74 : (x,y,f)(1:n)

5 : m, interpolation points
2.05 1.775
3.75 3.25
5.00 5.00
8.54 2.05
9.14 4.45 : (px,py)(1:m)

10.3 Program Results

E01EAF Example Program Results

px py Interpolated Value
2.0500 1.7750 48.2100
3.7500 3.2500 41.4195
5.0000 5.0000 36.1613
8.5400 2.0500 28.2458
9.1400 4.4500 24.4543

 0
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Example Program
Thiessen Triangulation for given Data Points
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NAG Library Routine Document

E01EBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01EBF performs barycentric interpolation, at a given set of points, using a set of function values on a
scattered grid and a triangulation of that grid computed by E01EAF.

2 Specification

SUBROUTINE E01EBF (M, N, X, Y, F, TRIANG, PX, PY, PF, IFAIL)

INTEGER M, N, TRIANG(7*N), IFAIL
REAL (KIND=nag_wp) X(N), Y(N), F(N), PX(M), PY(M), PF(M)

3 Description

E01EBF takes as input a set of scattered data points xr ; yr ; frð Þ, for r ¼ 1; 2; . . . ; n, and a Thiessen
triangulation of the xr; yrð Þ computed by E01EAF, and interpolates at a set of points pxi; pyið Þ, for
i ¼ 1; 2; . . . ;m.

If the ith interpolation point pxi; pyið Þ is equal to xr; yrð Þ for some value of r, the returned value will be
equal to fr; otherwise a barycentric transformation will be used to calculate the interpolant.

For each point pxi; pyið Þ, a triangle is sought which contains the point; the vertices of the triangle and
fr values at the vertices are then used to compute the value F pxi; pyið Þ.
If any interpolation point lies outside the triangulation defined by the input arguments, the returned
value is the value provided, fs, at the closest node xs; ysð Þ.
E01EBF must only be called after a call to E01EAF.

4 References

Cline A K and Renka R L (1984) A storage-efficient method for construction of a Thiessen
triangulation Rocky Mountain J. Math. 14 119–139

Lawson C L (1977) Software for C1 surface interpolation Mathematical Software III (ed J R Rice) 161–
194 Academic Press

Renka R L (1984) Algorithm 624: triangulation and interpolation of arbitrarily distributed points in the
plane ACM Trans. Math. Software 10 440–442

Renka R L and Cline A K (1984) A triangle-based C1 interpolation method Rocky Mountain J. Math.
14 223–237

5 Arguments

1: M – INTEGER Input

On entry: m, the number of points to interpolate.

Constraint: M � 1.

2: N – INTEGER Input

On entry: n, the number of data points. N must be unchanged from the previous call of E01EAF.

Constraint: N � 3.
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3: XðNÞ – REAL (KIND=nag_wp) array Input
4: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the rth data point, xr; yrð Þ, for r ¼ 1; 2; . . . ; n. X and Y must be
unchanged from the previous call of E01EAF.

5: FðNÞ – REAL (KIND=nag_wp) array Input

On entry: the function values fr at xr ; yrð Þ, for r ¼ 1; 2; . . . ; n.

6: TRIANGð7� NÞ – INTEGER array Input

On entry: the triangulation computed by the previous call of E01EAF. See Section 9 in E01EAF
for details of how the triangulation used is encoded in TRIANG.

7: PXðMÞ – REAL (KIND=nag_wp) array Input
8: PYðMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates pxi; pyið Þ, for i ¼ 1; 2; . . . ;m, at which interpolated function values are
sought.

9: PFðMÞ – REAL (KIND=nag_wp) array Output

On exit: the interpolated values F pxi; pyið Þ, for i ¼ 1; 2; . . . ;m.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 3.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, the triangulation information held in the array TRIANG does not specify a valid
triangulation of the data points. TRIANG has been corrupted since the call to E01EAF.
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IFAIL ¼ 4

At least one evaluation point lies outside the nodal triangulation. For each such point the value
returned in PF is that corresponding to a node on the closest boundary line segment.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E01EBF is not threaded in any implementation.

9 Further Comments

The time taken for a call of E01EBF is approximately proportional to the number of interpolation
points, m.

10 Example

See Section 10 in E01EAF.
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NAG Library Routine Document

E01RAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01RAF produces, from a set of function values and corresponding abscissae, the coefficients of an
interpolating rational function expressed in continued fraction form.

2 Specification

SUBROUTINE E01RAF (N, X, F, M, A, U, IW, IFAIL)

INTEGER N, M, IW(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N), A(N), U(N)

3 Description

E01RAF produces the parameters of a rational function R xð Þ which assumes prescribed values fi at
prescribed values xi of the independent variable x, for i ¼ 1; 2; . . . ; n. More specifically, E01RAF
determines the parameters aj, for j ¼ 1; 2; . . . ;m and uj, for j ¼ 1; 2; . . . ;m� 1, in the continued
fraction

R xð Þ ¼ a1 þRm xð Þ ð1Þ

where

Ri xð Þ ¼
am�iþ2 x� um�iþ1ð Þ

1þRi�1 xð Þ
; for i ¼ m;m� 1; . . . ; 2;

and

R1 xð Þ ¼ 0;

such that R xið Þ ¼ fi, for i ¼ 1; 2; . . . ; n. The value of m in (1) is determined by the routine; normally
m ¼ n. The values of uj form a reordered subset of the values of xi and their ordering is designed to
ensure that a representation of the form (1) is determined whenever one exists.

The subsequent evaluation of (1) for given values of x can be carried out using E01RBF.

The computational method employed in E01RAF is the modification of the Thacher–Tukey algorithm
described in Graves–Morris and Hopkins (1981).

4 References

Graves–Morris P R and Hopkins T R (1981) Reliable rational interpolation Numer. Math. 36 111–128

5 Arguments

1: N – INTEGER Input

On entry: n, the number of data points.

Constraint: N > 0.
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2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must be set to the value of the ith data abscissa, xi, for i ¼ 1; 2; . . . ; n.

Constraint: the XðiÞ must be distinct.

3: FðNÞ – REAL (KIND=nag_wp) array Input

On entry: FðiÞ must be set to the value of the data ordinate, fi, corresponding to xi, for
i ¼ 1; 2; . . . ; n.

4: M – INTEGER Output

On exit: m, the number of terms in the continued fraction representation of R xð Þ.

5: AðNÞ – REAL (KIND=nag_wp) array Output

On exit: AðjÞ contains the value of the parameter aj in R xð Þ, for j ¼ 1; 2; . . . ;m. The remaining
elements of A, if any, are set to zero.

6: UðNÞ – REAL (KIND=nag_wp) array Output

On exit: UðjÞ contains the value of the parameter uj in R xð Þ, for j ¼ 1; 2; . . . ;m� 1. The uj are a
permuted subset of the elements of X. The remaining n�mþ 1 locations contain a permutation
of the remaining xi, which can be ignored.

7: IWðNÞ – INTEGER array Workspace

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 0.

IFAIL ¼ 2

At least one pair of the values XðiÞ are equal (or so nearly so that a subsequent division will
inevitably cause overflow).

IFAIL ¼ 3

A continued fraction of the required form does not exist.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Usually, it is not the accuracy of the coefficients produced by this routine which is of prime interest, but
rather the accuracy of the value of R xð Þ that is produced by the associated routine E01RBF when
subsequently it evaluates the continued fraction (1) for a given value of x. This final accuracy will
depend mainly on the nature of the interpolation being performed. If interpolation of a ‘well-behaved
smooth’ function is attempted (and provided the data adequately represents the function), high accuracy
will normally ensue, but, if the function is not so ‘smooth’ or extrapolation is being attempted, high
accuracy is much less likely. Indeed, in extreme cases, results can be highly inaccurate.

There is no built-in test of accuracy but several courses are open to you to prevent the production or the
acceptance of inaccurate results.

1. If the origin of a variable is well outside the range of its data values, the origin should be shifted to
correct this; and, if the new data values are still excessively large or small, scaling to make the
largest value of the order of unity is recommended. Thus, normalization to the range �1:0 to þ1:0
is ideal. This applies particularly to the independent variable; for the dependent variable, the
removal of leading figures which are common to all the data values will usually suffice.

2. To check the effect of rounding errors engendered in the routines themselves, E01RAF should be
re-entered with x1 interchanged with xi and f1 with fi, i 6¼ 1ð Þ. This will produce a completely
different vector a and a reordered vector u, but any change in the value of R xð Þ subsequently
produced by E01RBF will be due solely to rounding error.

3. Even if the data consist of calculated values of a formal mathematical function, it is only in
exceptional circumstances that bounds for the interpolation error (the difference between the true
value of the function underlying the data and the value which would be produced by the two
routines if exact arithmetic were used) can be derived that are sufficiently precise to be of practical
use. Consequently, you are recommended to rely on comparison checks: if extra data points are
available, the calculation may be repeated with one or more data pairs added or exchanged, or
alternatively, one of the original data pairs may be omitted. If the algorithms are being used for
extrapolation, the calculations should be performed repeatedly with the 2; 3; . . . nearest points until,
hopefully, successive values of R xð Þ for the given x agree to the required accuracy.

8 Parallelism and Performance

E01RAF is not threaded in any implementation.

9 Further Comments

The time taken by E01RAF is approximately proportional to n2.

The continued fraction (1) when expanded produces a rational function in x, the degree of whose
numerator is either equal to or exceeds by unity that of the denominator. Only if this rather special form
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of interpolatory rational function is needed explicitly, would this routine be used without subsequent
entry (or entries) to E01RBF.

10 Example

This example reads in the abscissae and ordinates of 5 data points and prints the arguments aj and uj of
a rational function which interpolates them.

10.1 Program Text

Program e01rafe

! E01RAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01raf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 5, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, m

! .. Local Arrays ..
Real (Kind=nag_wp) :: a(n), f(n), u(n), x(n)
Integer :: iw(n)

! .. Executable Statements ..
Write (nout,*) ’E01RAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*)(x(i),i=1,n)
Read (nin,*)(f(i),i=1,n)

ifail = 0
Call e01raf(n,x,f,m,a,u,iw,ifail)

Write (nout,*)
Write (nout,*) ’The values of U(J) are’
Write (nout,99999)(u(i),i=1,m-1)
Write (nout,*)
Write (nout,*) ’The Thiele coefficients A(J) are’
Write (nout,99999)(a(i),i=1,m)

99999 Format (1X,1P,4E12.4)
End Program e01rafe

10.2 Program Data

E01RAF Example Program Data
0.0 1.0 2.0 3.0 4.0
4.0 2.0 4.0 7.0 10.4

10.3 Program Results

E01RAF Example Program Results

The values of U(J) are
0.0000E+00 3.0000E+00 1.0000E+00

The Thiele coefficients A(J) are
4.0000E+00 1.0000E+00 7.5000E-01 -1.0000E+00
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NAG Library Routine Document

E01RBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01RBF evaluates continued fractions of the form produced by E01RAF.

2 Specification

SUBROUTINE E01RBF (M, A, U, X, F, IFAIL)

INTEGER M, IFAIL
REAL (KIND=nag_wp) A(M), U(M), X, F

3 Description

E01RBF evaluates the continued fraction

R xð Þ ¼ a1 þRm xð Þ

where

Ri xð Þ ¼
am�iþ2 x� um�iþ1ð Þ

1þRi�1 xð Þ
; for i ¼ m;m� 1; . . . ; 2:

and

R1 xð Þ ¼ 0

for a prescribed value of x. E01RBF is intended to be used to evaluate the continued fraction
representation (of an interpolatory rational function) produced by E01RAF.

4 References

Graves–Morris P R and Hopkins T R (1981) Reliable rational interpolation Numer. Math. 36 111–128

5 Arguments

1: M – INTEGER Input

On entry: m, the number of terms in the continued fraction.

Constraint: M � 1.

2: AðMÞ – REAL (KIND=nag_wp) array Input

On entry: AðjÞ must be set to the value of the parameter aj in the continued fraction, for
j ¼ 1; 2; . . . ;m.

3: UðMÞ – REAL (KIND=nag_wp) array Input

On entry: UðjÞ must be set to the value of the parameter uj in the continued fraction, for
j ¼ 1; 2; . . . ;m� 1. (The element UðmÞ is not used).

4: X – REAL (KIND=nag_wp) Input

On entry: the value of x at which the continued fraction is to be evaluated.
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5: F – REAL (KIND=nag_wp) Output

On exit: the value of the continued fraction corresponding to the value of x.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The value of X corresponds to a pole of R xð Þ or is so close that an overflow is likely to ensue.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

See Section 7 in E01RAF.

8 Parallelism and Performance

E01RBF is not threaded in any implementation.

9 Further Comments

The time taken by E01RBF is approximately proportional to m.

10 Example

This example reads in the arguments aj and uj of a continued fraction (as determined by the example
for E01RAF) and evaluates the continued fraction at a point x.
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10.1 Program Text

Program e01rbfe

! E01RBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01rbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: m = 4, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: f, x
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: a(m), u(m)

! .. Executable Statements ..
Write (nout,*) ’E01RBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*)(a(i),i=1,m)
Read (nin,*)(u(i),i=1,m-1)
Read (nin,*) x

ifail = 0
Call e01rbf(m,a,u,x,f,ifail)

Write (nout,*)
Write (nout,99999) ’X =’, x
Write (nout,*)
Write (nout,99999) ’The value of R(X) is ’, f

99999 Format (1X,A,1P,E12.4)
End Program e01rbfe

10.2 Program Data

E01RBF Example Program Data
4.000 1.000 0.750 -1.000
0.000 3.000 1.000
6.000

10.3 Program Results

E01RBF Example Program Results

X = 6.0000E+00

The value of R(X) is 1.7714E+01
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NAG Library Routine Document

E01SAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01SAF generates a two-dimensional surface interpolating a set of scattered data points, using the
method of Renka and Cline.

2 Specification

SUBROUTINE E01SAF (M, X, Y, F, TRIANG, GRADS, IFAIL)

INTEGER M, TRIANG(7*M), IFAIL
REAL (KIND=nag_wp) X(M), Y(M), F(M), GRADS(2,M)

3 Description

E01SAF constructs an interpolating surface F x; yð Þ through a set of m scattered data points xr ; yr ; frð Þ,
for r ¼ 1; 2; . . . ;m, using a method due to Renka and Cline. In the x; yð Þ plane, the data points must be
distinct. The constructed surface is continuous and has continuous first derivatives.

The method involves firstly creating a triangulation with all the x; yð Þ data points as nodes, the
triangulation being as nearly equiangular as possible (see Cline and Renka (1984)). Then gradients in
the x- and y-directions are estimated at node r , for r ¼ 1; 2; . . . ;m, as the partial derivatives of a
quadratic function of x and y which interpolates the data value fr, and which fits the data values at
nearby nodes (those within a certain distance chosen by the algorithm) in a weighted least squares
sense. The weights are chosen such that closer nodes have more influence than more distant nodes on
derivative estimates at node r. The computed partial derivatives, with the fr values, at the three nodes
of each triangle define a piecewise polynomial surface of a certain form which is the interpolant on that
triangle. See Renka and Cline (1984) for more detailed information on the algorithm, a development of
that by Lawson (1977). The code is derived from Renka (1984).

The interpolant F x; yð Þ can subsequently be evaluated at any point x; yð Þ inside or outside the domain
of the data by a call to E01SBF. Points outside the domain are evaluated by extrapolation.

4 References

Cline A K and Renka R L (1984) A storage-efficient method for construction of a Thiessen
triangulation Rocky Mountain J. Math. 14 119–139

Lawson C L (1977) Software for C1 surface interpolation Mathematical Software III (ed J R Rice) 161–
194 Academic Press

Renka R L (1984) Algorithm 624: triangulation and interpolation of arbitrarily distributed points in the
plane ACM Trans. Math. Software 10 440–442

Renka R L and Cline A K (1984) A triangle-based C1 interpolation method Rocky Mountain J. Math.
14 223–237

5 Arguments

1: M – INTEGER Input

On entry: m, the number of data points.

Constraint: M � 3.
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2: XðMÞ – REAL (KIND=nag_wp) array Input
3: YðMÞ – REAL (KIND=nag_wp) array Input
4: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the rth data point, for r ¼ 1; 2; . . . ;m. The data points are accepted
in any order, but see Section 9.

Constraint: the x; yð Þ nodes must not all be collinear, and each node must be unique.

5: TRIANGð7�MÞ – INTEGER array Output

On exit: a data structure defining the computed triangulation, in a form suitable for passing to
E01SBF.

6: GRADSð2;MÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated partial derivatives at the nodes, in a form suitable for passing to E01SBF.
The derivatives at node r with respect to x and y are contained in GRADSð1; rÞ and
GRADSð2; rÞ respectively, for r ¼ 1; 2; . . . ;m.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 3.

IFAIL ¼ 2

On entry, all the (X,Y) pairs are collinear.

IFAIL ¼ 3

On entry, XðiÞ;YðiÞð Þ ¼ XðjÞ;YðjÞð Þ for some i 6¼ j.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit, the computational errors should be negligible in most situations but you should
always check the computed surface for acceptability, by drawing contours for instance. The surface
always interpolates the input data exactly.

8 Parallelism and Performance

E01SAF is not threaded in any implementation.

9 Further Comments

The time taken for a call of E01SAF is approximately proportional to the number of data points, m.
The routine is more efficient if, before entry, the values in X, Y and F are arranged so that the X array
is in ascending order.

10 Example

This example reads in a set of 30 data points and calls E01SAF to construct an interpolating surface. It
then calls E01SBF to evaluate the interpolant at a sample of points on a rectangular grid.

Note that this example is not typical of a realistic problem: the number of data points would normally
be larger, and the interpolant would need to be evaluated on a finer grid to obtain an accurate plot, say.

10.1 Program Text

Program e01safe

! E01SAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01saf, e01sbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: hx, hy, xhi, xlo, yhi, ylo
Integer :: i, ifail, j, m, nx, ny

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), grads(:,:), pf(:), px(:), &

py(:), x(:), y(:)
Integer, Allocatable :: triang(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’E01SAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m
Allocate (x(m),y(m),f(m),grads(2,m),triang(7*m))

Do i = 1, m
Read (nin,*) x(i), y(i), f(i)

End Do
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! Generate the triangulation and gradients.

ifail = 0
Call e01saf(m,x,y,f,triang,grads,ifail)

! Evaluate the interpolant on a rectangular grid at NX*NY
! points over the domain (XLO to XHI) x (YLO to YHI).

Read (nin,*) nx, xlo, xhi
Read (nin,*) ny, ylo, yhi
Allocate (px(nx),py(ny),pf(nx))

hx = (xhi-xlo)/real(nx-1,kind=nag_wp)
px(1) = xlo

Do i = 2, nx
px(i) = px(i-1) + hx

End Do

hy = (yhi-ylo)/real(ny-1,kind=nag_wp)
py(1) = ylo

Do i = 2, ny
py(i) = py(i-1) + hy

End Do

Write (nout,*)
Write (nout,99999) ’ X’, (px(i),i=1,nx)
Write (nout,*) ’ Y’

Do i = ny, 1, -1

Do j = 1, nx

ifail = 0
Call e01sbf(m,x,y,f,triang,grads,px(j),py(i),pf(j),ifail)

End Do

Write (nout,99998) py(i), (pf(j),j=1,nx)
End Do

99999 Format (1X,A,7F8.2)
99998 Format (1X,F8.2,3X,7F8.2)

End Program e01safe

10.2 Program Data

E01SAF Example Program Data
30 M, the number of data points

11.16 1.24 22.15 X, Y, F data point definition
12.85 3.06 22.11
19.85 10.72 7.97
19.72 1.39 16.83
15.91 7.74 15.30
0.00 20.00 34.60

20.87 20.00 5.74
3.45 12.78 41.24

14.26 17.87 10.74
17.43 3.46 18.60
22.80 12.39 5.47
7.58 1.98 29.87

25.00 11.87 4.40
0.00 0.00 58.20
9.66 20.00 4.73
5.22 14.66 40.36

17.25 19.57 6.43
25.00 3.87 8.74
12.13 10.79 13.71
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22.23 6.21 10.25
11.52 8.53 15.74
15.20 0.00 21.60
7.54 10.69 19.31

17.32 13.78 12.11
2.14 15.03 53.10
0.51 8.37 49.43

22.69 19.63 3.25
5.47 17.13 28.63

21.67 14.36 5.52
3.31 0.33 44.08 End of the data points

7 3.0 21.0 Grid definition, X axis
6 2.0 17.0 Grid definition, Y axis

10.3 Program Results

E01SAF Example Program Results

X 3.00 6.00 9.00 12.00 15.00 18.00 21.00
Y

17.00 41.25 27.62 18.03 12.29 11.68 9.09 5.37
14.00 47.61 36.66 22.87 14.02 13.44 11.20 6.46
11.00 38.55 25.25 16.72 13.83 13.08 10.71 6.88
8.00 37.90 23.97 16.79 16.43 15.46 13.02 9.30
5.00 40.49 29.26 22.51 20.72 19.30 16.72 12.87
2.00 43.52 33.91 26.59 22.23 21.15 18.67 14.88
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NAG Library Routine Document

E01SBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01SBF evaluates at a given point the two-dimensional interpolant function computed by E01SAF.

2 Specification

SUBROUTINE E01SBF (M, X, Y, F, TRIANG, GRADS, PX, PY, PF, IFAIL)

INTEGER M, TRIANG(7*M), IFAIL
REAL (KIND=nag_wp) X(M), Y(M), F(M), GRADS(2,M), PX, PY, PF

3 Description

E01SBF takes as input the arguments defining the interpolant F x; yð Þ of a set of scattered data points
xr; yr; frð Þ, for r ¼ 1; 2; . . . ;m, as computed by E01SAF, and evaluates the interpolant at the point
px; pyð Þ.
If px; pyð Þ is equal to xr; yrð Þ for some value of r, the returned value will be equal to fr.

If px; pyð Þ is not equal to xr; yrð Þ for any r, the derivatives in GRADS will be used to compute the
interpolant. A triangle is sought which contains the point px; pyð Þ, and the vertices of the triangle along
with the partial derivatives and fr values at the vertices are used to compute the value F px; pyð Þ. If the
point px; pyð Þ lies outside the triangulation defined by the input arguments, the returned value is
obtained by extrapolation. In this case, the interpolating function F is extended linearly beyond the
triangulation boundary. The method is described in more detail in Renka and Cline (1984) and the code
is derived from Renka (1984).

E01SBF must only be called after a call to E01SAF.

4 References

Renka R L (1984) Algorithm 624: triangulation and interpolation of arbitrarily distributed points in the
plane ACM Trans. Math. Software 10 440–442

Renka R L and Cline A K (1984) A triangle-based C1 interpolation method Rocky Mountain J. Math.
14 223–237

5 Arguments

1: M – INTEGER Input
2: XðMÞ – REAL (KIND=nag_wp) array Input
3: YðMÞ – REAL (KIND=nag_wp) array Input
4: FðMÞ – REAL (KIND=nag_wp) array Input
5: TRIANGð7�MÞ – INTEGER array Input
6: GRADSð2;MÞ – REAL (KIND=nag_wp) array Input

On entry: M, X, Y, F, TRIANG and GRADS must be unchanged from the previous call of
E01SAF.

7: PX – REAL (KIND=nag_wp) Input
8: PY – REAL (KIND=nag_wp) Input

On entry: the point px; pyð Þ at which the interpolant is to be evaluated.
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9: PF – REAL (KIND=nag_wp) Output

On exit: the value of the interpolant evaluated at the point px; pyð Þ.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 3.

IFAIL ¼ 2

On entry, the triangulation information held in the array TRIANG does not specify a valid
triangulation of the data points. TRIANG may have been corrupted since the call to E01SAF.

IFAIL ¼ 3

The evaluation point (PX,PY) lies outside the nodal triangulation, and the value returned in PF is
computed by extrapolation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Computational errors should be negligible in most practical situations.
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8 Parallelism and Performance

E01SBF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

E01SBF is not threaded in any implementation.

9 Further Comments

The time taken for a call of E01SBF is approximately proportional to the number of data points, m.

The results returned by this routine are particularly suitable for applications such as graph plotting,
producing a smooth surface from a number of scattered points.

10 Example

See Section 10 in E01SAF.
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NAG Library Routine Document

E01SGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01SGF generates a two-dimensional interpolant to a set of scattered data points, using a modified
Shepard method.

2 Specification

SUBROUTINE E01SGF (M, X, Y, F, NW, NQ, IQ, LIQ, RQ, LRQ, IFAIL)

INTEGER M, NW, NQ, IQ(LIQ), LIQ, LRQ, IFAIL
REAL (KIND=nag_wp) X(M), Y(M), F(M), RQ(LRQ)

3 Description

E01SGF constructs a smooth function Q x; yð Þ which interpolates a set of m scattered data points
xr; yr; frð Þ, for r ¼ 1; 2; . . . ;m, using a modification of Shepard's method. The surface is continuous and
has continuous first partial derivatives.

The basic Shepard (1968) method interpolates the input data with the weighted mean

Q x; yð Þ ¼

Xm
r¼1

wr x; yð Þqr

Xm
r¼1

wr x; yð Þ
;

where qr ¼ fr, wr x; yð Þ ¼ 1

d2r
and d2r ¼ x� xrð Þ2 þ y� yrð Þ2.

The basic method is global in that the interpolated value at any point depends on all the data, but this
routine uses a modification (see Franke and Nielson (1980) and Renka (1988a)), whereby the method
becomes local by adjusting each wr x; yð Þ to be zero outside a circle with centre xr; yrð Þ and some radius
Rw. Also, to improve the performance of the basic method, each qr above is replaced by a function
qr x; yð Þ, which is a quadratic fitted by weighted least squares to data local to xr; yrð Þ and forced to
interpolate xr; yr; frð Þ. In this context, a point x; yð Þ is defined to be local to another point if it lies
within some distance Rq of it. Computation of these quadratics constitutes the main work done by this
routine.

The efficiency of the routine is further enhanced by using a cell method for nearest neighbour searching
due to Bentley and Friedman (1979).

The radii Rw and Rq are chosen to be just large enough to include Nw and Nq data points, respectively,
for user-supplied constants Nw and Nq. Default values of these arguments are provided by the routine,
and advice on alternatives is given in Section 9.2.

This routine is derived from the routine QSHEP2 described by Renka (1988b).

Values of the interpolant Q x; yð Þ generated by this routine, and its first partial derivatives, can
subsequently be evaluated for points in the domain of the data by a call to E01SHF.
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4 References

Bentley J L and Friedman J H (1979) Data structures for range searching ACM Comput. Surv. 11 397–
409

Franke R and Nielson G (1980) Smooth interpolation of large sets of scattered data Internat. J. Num.
Methods Engrg. 15 1691–1704

Renka R J (1988a) Multivariate interpolation of large sets of scattered data ACM Trans. Math. Software
14 139–148

Renka R J (1988b) Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation of
scattered data ACM Trans. Math. Software 14 149–150

Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data Proc. 23rd Nat.
Conf. ACM 517–523 Brandon/Systems Press Inc., Princeton

5 Arguments

1: M – INTEGER Input

On entry: m, the number of data points.

Constraint: M � 6.

2: XðMÞ – REAL (KIND=nag_wp) array Input
3: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: the Cartesian coordinates of the data points xr ; yrð Þ, for r ¼ 1; 2; . . . ;m.

Constraint: these coordinates must be distinct, and must not all be collinear.

4: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: FðrÞ must be set to the data value fr , for r ¼ 1; 2; . . . ;m.

5: NW – INTEGER Input

On entry: the number Nw of data points that determines each radius of influence Rw, appearing in
the definition of each of the weights wr , for r ¼ 1; 2; . . . ;m (see Section 3). Note that Rw is
different for each weight. If NW � 0 the default value NW ¼ min 19;M� 1ð Þ is used instead.

Constraint: NW � min 40;M� 1ð Þ.

6: NQ – INTEGER Input

On entry: the number Nq of data points to be used in the least squares fit for coefficients defining
the nodal functions qr x; yð Þ (see Section 3). If NQ � 0 the default value NQ ¼ min 13;M� 1ð Þ is
used instead.

Constraint: NQ � 0 or 5 � NQ � min 40;M� 1ð Þ.

7: IQðLIQÞ – INTEGER array Output

On exit: integer data defining the interpolant Q x; yð Þ.

8: LIQ – INTEGER Input

On entry: the dimension of the array IQ as declared in the (sub)program from which E01SGF is
called.

Constraint: LIQ � 2�Mþ 1.

9: RQðLRQÞ – REAL (KIND=nag_wp) array Output

On exit: real data defining the interpolant Q x; yð Þ.
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10: LRQ – INTEGER Input

On entry: the dimension of the array RQ as declared in the (sub)program from which E01SGF is
called.

Constraint: LRQ � 6�Mþ 5.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 6,
or 0 < NQ < 5,
or NQ > min 40;M� 1ð Þ,
or NW > min 40;M� 1ð Þ,
or LIQ < 2�Mþ 1,
or LRQ < 6�Mþ 5.

IFAIL ¼ 2

On entry, XðiÞ;YðiÞð Þ ¼ XðjÞ;YðjÞð Þ for some i 6¼ j.

IFAIL ¼ 3

On entry, all the data points are collinear. No unique solution exists.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

On successful exit, the function generated interpolates the input data exactly and has quadratic
accuracy.

8 Parallelism and Performance

E01SGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E01SGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to E01SGF will depend in general on the distribution of the data points. If X
and Y are uniformly randomly distributed, then the time taken should be O Mð Þ. At worst O M2

� �
time

will be required.

9.2 Choice of Nw and Nq

Default values of the arguments Nw and Nq may be selected by calling E01SGF with NW � 0 and
NQ � 0. These default values may well be satisfactory for many applications.

If non-default values are required they must be supplied to E01SGF through positive values of NW and
NQ. Increasing these arguments makes the method less local. This may increase the accuracy of the
resulting interpolant at the expense of increased computational cost. The default values
NW ¼ min 19;M� 1ð Þ and NQ ¼ min 13;M� 1ð Þ have been chosen on the basis of experimental
results reported in Renka (1988a). In these experiments the error norm was found to vary smoothly with
Nw and Nq, generally increasing monotonically and slowly with distance from the optimal pair. The
method is not therefore thought to be particularly sensitive to the argument values. For further advice
on the choice of these arguments see Renka (1988a).

10 Example

This program reads in a set of 30 data points and calls E01SGF to construct an interpolating function
Q x; yð Þ. It then calls E01SHF to evaluate the interpolant at a set of points.

Note that this example is not typical of a realistic problem: the number of data points would normally
be larger.

10.1 Program Text

Program e01sgfe

! E01SGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01sgf, e01shf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Integer :: i, ifail, liq, lrq, m, n, nq, nw
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: f(:), q(:), qx(:), qy(:), rq(:), &
u(:), v(:), x(:), y(:)

Integer, Allocatable :: iq(:)
! .. Executable Statements ..

Write (nout,*) ’E01SGF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Input the number of data points

Read (nin,*) m
liq = 2*m + 1
lrq = 6*m + 5
Allocate (x(m),y(m),f(m),iq(liq),rq(lrq))

Do i = 1, m
Read (nin,*) x(i), y(i), f(i)

End Do

! Generate the interpolant.

nq = 0
nw = 0

ifail = 0
Call e01sgf(m,x,y,f,nw,nq,iq,liq,rq,lrq,ifail)

! Input the number of evaluation points.

Read (nin,*) n
Allocate (u(n),v(n),q(n),qx(n),qy(n))

Do i = 1, n
Read (nin,*) u(i), v(i)

End Do

! Evaluate the interpolant using E01SHF.

ifail = 0
Call e01shf(m,x,y,f,iq,liq,rq,lrq,n,u,v,q,qx,qy,ifail)

Write (nout,*)
Write (nout,*) ’ I U(I) V(I) Q(I)’

Do i = 1, n
Write (nout,99999) i, u(i), v(i), q(i)

End Do

99999 Format (1X,I6,3F10.2)
End Program e01sgfe

10.2 Program Data

E01SGF Example Program Data
30 M, the number of data points
11.16 1.24 22.15 X, Y, F data point definition
12.85 3.06 22.11
19.85 10.72 7.97
19.72 1.39 16.83
15.91 7.74 15.30
0.00 20.00 34.60

20.87 20.00 5.74
3.45 12.78 41.24

14.26 17.87 10.74
17.43 3.46 18.60
22.80 12.39 5.47
7.58 1.98 29.87
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25.00 11.87 4.40
0.00 0.00 58.20
9.66 20.00 4.73
5.22 14.66 40.36

17.25 19.57 6.43
25.00 3.87 8.74
12.13 10.79 13.71
22.23 6.21 10.25
11.52 8.53 15.74
15.20 0.00 21.60
7.54 10.69 19.31

17.32 13.78 12.11
2.14 15.03 53.10
0.51 8.37 49.43

22.69 19.63 3.25
5.47 17.13 28.63

21.67 14.36 5.52
3.31 0.33 44.08 End of data points

5 N, the number of evaluation points
20.00 3.14 U, V evaluation point definition
6.41 15.44
7.54 10.69
9.91 18.27

12.30 9.22 End of evaluation points

10.3 Program Results

E01SGF Example Program Results

I U(I) V(I) Q(I)
1 20.00 3.14 15.95
2 6.41 15.44 38.71
3 7.54 10.69 19.31
4 9.91 18.27 16.39
5 12.30 9.22 14.66
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NAG Library Routine Document

E01SHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01SHF evaluates the two-dimensional interpolating function generated by E01SGF and its first partial
derivatives.

2 Specification

SUBROUTINE E01SHF (M, X, Y, F, IQ, LIQ, RQ, LRQ, N, U, V, Q, QX, QY,
IFAIL)

&

INTEGER M, IQ(LIQ), LIQ, LRQ, N, IFAIL
REAL (KIND=nag_wp) X(M), Y(M), F(M), RQ(LRQ), U(N), V(N), Q(N), QX(N),

QY(N)
&

3 Description

E01SHF takes as input the interpolant Q x; yð Þ of a set of scattered data points xr; yr; frð Þ, for
r ¼ 1; 2; . . . ;m, as computed by E01SGF, and evaluates the interpolant and its first partial derivatives at
the set of points ui; við Þ, for i ¼ 1; 2; . . . ; n.

E01SHF must only be called after a call to E01SGF.

This routine is derived from the routine QS2GRD described by Renka (1988).

4 References

Renka R J (1988) Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation of
scattered data ACM Trans. Math. Software 14 149–150

5 Arguments

1: M – INTEGER Input
2: XðMÞ – REAL (KIND=nag_wp) array Input
3: YðMÞ – REAL (KIND=nag_wp) array Input
4: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: M, X, Y and F must be the same values as were supplied in the preceding call to
E01SGF.

5: IQðLIQÞ – INTEGER array Input

On entry: must be unchanged from the value returned from a previous call to E01SGF.

6: LIQ – INTEGER Input

On entry: the dimension of the array IQ as declared in the (sub)program from which E01SHF is
called.

Constraint: LIQ � 2�Mþ 1.

7: RQðLRQÞ – REAL (KIND=nag_wp) array Input

On entry: must be unchanged from the value returned from a previous call to E01SGF.
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8: LRQ – INTEGER Input

On entry: the dimension of the array RQ as declared in the (sub)program from which E01SHF is
called.

Constraint: LRQ � 6�Mþ 5.

9: N – INTEGER Input

On entry: n, the number of evaluation points.

Constraint: N � 1.

10: UðNÞ – REAL (KIND=nag_wp) array Input
11: VðNÞ – REAL (KIND=nag_wp) array Input

On entry: the evaluation points ui; við Þ, for i ¼ 1; 2; . . . ; n.

12: QðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the interpolant at ui; við Þ, for i ¼ 1; 2; . . . ; n. If any of these evaluation
points lie outside the region of definition of the interpolant the corresponding entries in Q are set
to the largest machine representable number (see X02ALF), and E01SHF returns with IFAIL ¼ 3.

13: QXðNÞ – REAL (KIND=nag_wp) array Output
14: QYðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the partial derivatives of the interpolant Q x; yð Þ at ui; við Þ, for
i ¼ 1; 2; . . . ; n. If any of these evaluation points lie outside the region of definition of the
interpolant, the corresponding entries in QX and QY are set to the largest machine representable
number (see X02ALF), and E01SHF returns with IFAIL ¼ 3.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 6,
or LIQ < 2�Mþ 1,
or LRQ < 6�Mþ 5,
or N < 1.

IFAIL ¼ 2

Values supplied in IQ or RQ appear to be invalid. Check that these arrays have not been
corrupted between the calls to E01SGF and E01SHF.
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IFAIL ¼ 3

At least one evaluation point lies outside the region of definition of the interpolant. At all such
points the corresponding values in Q, QX and QY have been set to the largest machine
representable number (see X02ALF).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Computational errors should be negligible in most practical situations.

8 Parallelism and Performance

E01SHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken for a call to E01SHF will depend in general on the distribution of the data points. If X
and Y are approximately uniformly distributed, then the time taken should be only O nð Þ. At worst
O mnð Þ time will be required.

10 Example

See Section 10 in E01SGF.
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NAG Library Routine Document

E01TGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01TGF generates a three-dimensional interpolant to a set of scattered data points, using a modified
Shepard method.

2 Specification

SUBROUTINE E01TGF (M, X, Y, Z, F, NW, NQ, IQ, LIQ, RQ, LRQ, IFAIL)

INTEGER M, NW, NQ, IQ(LIQ), LIQ, LRQ, IFAIL
REAL (KIND=nag_wp) X(M), Y(M), Z(M), F(M), RQ(LRQ)

3 Description

E01TGF constructs a smooth function Q x; y; zð Þ which interpolates a set of m scattered data points
xr; yr; zr; frð Þ, for r ¼ 1; 2; . . . ;m, using a modification of Shepard's method. The surface is continuous
and has continuous first partial derivatives.

The basic Shepard method, which is a generalization of the two-dimensional method described in
Shepard (1968), interpolates the input data with the weighted mean

Q x; y; zð Þ ¼

Xm
r¼1

wr x; y; zð Þqr

Xm
r¼1

wr x; y; zð Þ
;

where

qr ¼ fr and wr x; y; zð Þ ¼ 1

d2r
and d2r ¼ x� xrð Þ2 þ y� yrð Þ2 þ z� zrð Þ2:

The basic method is global in that the interpolated value at any point depends on all the data, but this
routine uses a modification (see Franke and Nielson (1980) and Renka (1988a)), whereby the method
becomes local by adjusting each wr x; y; zð Þ to be zero outside a sphere with centre xr; yr; zrð Þ and some
radius Rw. Also, to improve the performance of the basic method, each qr above is replaced by a
function qr x; y; zð Þ, which is a quadratic fitted by weighted least squares to data local to xr; yr; zrð Þ and
forced to interpolate xr; yr; zr; frð Þ. In this context, a point x; y; zð Þ is defined to be local to another
point if it lies within some distance Rq of it. Computation of these quadratics constitutes the main work
done by this routine.

The efficiency of the routine is further enhanced by using a cell method for nearest neighbour searching
due to Bentley and Friedman (1979).

The radii Rw and Rq are chosen to be just large enough to include Nw and Nq data points, respectively,
for user-supplied constants Nw and Nq. Default values of these arguments are provided by the routine,
and advice on alternatives is given in Section 9.2.

This routine is derived from the routine QSHEP3 described by Renka (1988b).

Values of the interpolant Q x; y; zð Þ generated by this routine, and its first partial derivatives, can
subsequently be evaluated for points in the domain of the data by a call to E01THF.
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4 References

Bentley J L and Friedman J H (1979) Data structures for range searching ACM Comput. Surv. 11 397–
409

Franke R and Nielson G (1980) Smooth interpolation of large sets of scattered data Internat. J. Num.
Methods Engrg. 15 1691–1704

Renka R J (1988a) Multivariate interpolation of large sets of scattered data ACM Trans. Math. Software
14 139–148

Renka R J (1988b) Algorithm 661: QSHEP3D: Quadratic Shepard method for trivariate interpolation of
scattered data ACM Trans. Math. Software 14 151–152

Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data Proc. 23rd Nat.
Conf. ACM 517–523 Brandon/Systems Press Inc., Princeton

5 Arguments

1: M – INTEGER Input

On entry: m, the number of data points.

Constraint: M � 10.

2: XðMÞ – REAL (KIND=nag_wp) array Input
3: YðMÞ – REAL (KIND=nag_wp) array Input
4: ZðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðrÞ, YðrÞ, ZðrÞ must be set to the Cartesian coordinates of the data point xr ; yr ; zrð Þ,
for r ¼ 1; 2; . . . ;m.

Constraint: these coordinates must be distinct, and must not all be coplanar.

5: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: FðrÞ must be set to the data value fr , for r ¼ 1; 2; . . . ;m.

6: NW – INTEGER Input

On entry: the number Nw of data points that determines each radius of influence Rw, appearing in
the definition of each of the weights wr , for r ¼ 1; 2; . . . ;m (see Section 3). Note that Rw is
different for each weight. If NW � 0 the default value NW ¼ min 32;M� 1ð Þ is used instead.

Constraint: NW � min 40;M� 1ð Þ.

7: NQ – INTEGER Input

On entry: the number Nq of data points to be used in the least squares fit for coefficients defining
the nodal functions qr x; y; zð Þ (see Section 3). If NQ � 0 the default value NQ ¼ min 17;M� 1ð Þ
is used instead.

Constraint: NQ � 0 or 9 � NQ � min 40;M� 1ð Þ.

8: IQðLIQÞ – INTEGER array Output

On exit: integer data defining the interpolant Q x; y; zð Þ.

9: LIQ – INTEGER Input

On entry: the dimension of the array IQ as declared in the (sub)program from which E01TGF is
called.

Constraint: LIQ � 2�Mþ 1.
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10: RQðLRQÞ – REAL (KIND=nag_wp) array Output

On exit: real data defining the interpolant Q x; y; zð Þ.

11: LRQ – INTEGER Input

On entry: the dimension of the array RQ as declared in the (sub)program from which E01TGF is
called.

Constraint: LRQ � 10�Mþ 7.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 10,
or 0 < NQ < 9,
or NQ > min 40;M� 1ð Þ,
or NW > min 40;M� 1ð Þ,
or LIQ < 2�Mþ 1,
or LRQ < 10�Mþ 7.

IFAIL ¼ 2

On entry, XðiÞ;YðiÞ;ZðiÞð Þ ¼ XðjÞ;YðjÞ;ZðjÞð Þ for some i 6¼ j.

IFAIL ¼ 3

On entry, all the data points are coplanar. No unique solution exists.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

On successful exit, the function generated interpolates the input data exactly and has quadratic
accuracy.

8 Parallelism and Performance

E01TGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E01TGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to E01TGF will depend in general on the distribution of the data points. If X,
Y and Z are uniformly randomly distributed, then the time taken should be O(M). At worst O M2

� �
time

will be required.

9.2 Choice of Nw and Nq

Default values of the arguments Nw and Nq may be selected by calling E01TGF with NW � 0 and
NQ � 0. These default values may well be satisfactory for many applications.

If non-default values are required they must be supplied to E01TGF through positive values of NW and
NQ. Increasing these arguments makes the method less local. This may increase the accuracy of the
resulting interpolant at the expense of increased computational cost. The default values
NW ¼ min 32;M� 1ð Þ and NQ ¼ min 17;M� 1ð Þ have been chosen on the basis of experimental
results reported in Renka (1988a). In these experiments the error norm was found to vary smoothly with
Nw and Nq, generally increasing monotonically and slowly with distance from the optimal pair. The
method is not therefore thought to be particularly sensitive to the argument values. For further advice
on the choice of these arguments see Renka (1988a).

10 Example

This program reads in a set of 30 data points and calls E01TGF to construct an interpolating function
Q x; y; zð Þ. It then calls E01THF to evaluate the interpolant at a set of points.

Note that this example is not typical of a realistic problem: the number of data points would normally
be larger.

10.1 Program Text

Program e01tgfe

! E01TGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01tgf, e01thf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Integer :: i, ifail, liq, lrq, m, n, nq, nw
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: f(:), q(:), qx(:), qy(:), qz(:), &
rq(:), u(:), v(:), w(:), x(:), y(:), &
z(:)

Integer, Allocatable :: iq(:)
! .. Executable Statements ..

Write (nout,*) ’E01TGF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Input the number of nodes.

Read (nin,*) m
liq = 2*m + 1
lrq = 10*m + 7
Allocate (x(m),y(m),z(m),f(m),iq(liq),rq(lrq))

Do i = 1, m
Read (nin,*) x(i), y(i), z(i), f(i)

End Do

! Generate the interpolant.

nq = 0
nw = 0

ifail = 0
Call e01tgf(m,x,y,z,f,nw,nq,iq,liq,rq,lrq,ifail)

! Input the number of evaluation points.

Read (nin,*) n
Allocate (u(n),v(n),w(n),q(n),qx(n),qy(n),qz(n))

! Input the evaluation points.

Do i = 1, n
Read (nin,*) u(i), v(i), w(i)

End Do

! Evaluate the interpolant using E01THF.

ifail = -0
Call e01thf(m,x,y,z,f,iq,liq,rq,lrq,n,u,v,w,q,qx,qy,qz,ifail)

Write (nout,*)
Write (nout,*) ’ I U(I) V(I) W(I) Q(I)’

Do i = 1, n
Write (nout,99999) i, u(i), v(i), w(i), q(i)

End Do

99999 Format (1X,I6,4F10.4)
End Program e01tgfe

10.2 Program Data

E01TGF Example Program Data
30 M, the number of data points
0.80 0.23 0.37 0.51 X, Y, Z, F data point definition
0.23 0.88 0.05 1.80
0.18 0.43 0.04 0.11
0.58 0.95 0.62 2.65
0.64 0.69 0.20 0.93
0.88 0.35 0.49 0.72
0.30 0.10 0.78 -0.11
0.87 0.09 0.05 0.67
0.04 0.02 0.40 0.00
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0.62 0.90 0.43 2.20
0.87 0.96 0.24 3.17
0.62 0.64 0.45 0.74
0.86 0.13 0.47 0.64
0.87 0.60 0.46 1.07
0.49 0.43 0.13 0.22
0.12 0.61 0.00 0.41
0.02 0.71 0.82 0.58
0.62 0.93 0.44 2.48
0.49 0.54 0.04 0.37
0.36 0.56 0.39 0.35
0.62 0.42 0.97 -0.20
0.01 0.72 0.45 0.78
0.41 0.36 0.52 0.11
0.17 0.99 0.65 2.82
0.51 0.29 0.59 0.14
0.85 0.05 0.04 0.61
0.20 0.20 0.87 -0.25
0.04 0.67 0.04 0.59
0.31 0.63 0.18 0.50
0.88 0.27 0.07 0.71 End of data points
6 N, the number of evaluation points
0.10 0.10 0.10 U, V, W evaluation point definition
0.20 0.20 0.20
0.30 0.30 0.30
0.40 0.40 0.40
0.50 0.50 0.50
0.60 0.60 0.60 End of evaluation points

10.3 Program Results

E01TGF Example Program Results

I U(I) V(I) W(I) Q(I)
1 0.1000 0.1000 0.1000 0.2663
2 0.2000 0.2000 0.2000 0.1040
3 0.3000 0.3000 0.3000 0.0695
4 0.4000 0.4000 0.4000 0.1539
5 0.5000 0.5000 0.5000 0.3010
6 0.6000 0.6000 0.6000 0.5695
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NAG Library Routine Document

E01THF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01THF evaluates the three-dimensional interpolating function generated by E01TGF and its first
partial derivatives.

2 Specification

SUBROUTINE E01THF (M, X, Y, Z, F, IQ, LIQ, RQ, LRQ, N, U, V, W, Q, QX,
QY, QZ, IFAIL)

&

INTEGER M, IQ(LIQ), LIQ, LRQ, N, IFAIL
REAL (KIND=nag_wp) X(M), Y(M), Z(M), F(M), RQ(LRQ), U(N), V(N), W(N),

Q(N), QX(N), QY(N), QZ(N)
&

3 Description

E01THF takes as input the interpolant Q x; y; zð Þ of a set of scattered data points xr; yr; zr; frð Þ, for
r ¼ 1; 2; . . . ;m, as computed by E01TGF, and evaluates the interpolant and its first partial derivatives at
the set of points ui; vi; wið Þ, for i ¼ 1; 2; . . . ; n.

E01THF must only be called after a call to E01TGF.

This routine is derived from the routine QS3GRD described by Renka (1988).

4 References

Renka R J (1988) Algorithm 661: QSHEP3D: Quadratic Shepard method for trivariate interpolation of
scattered data ACM Trans. Math. Software 14 151–152

5 Arguments

1: M – INTEGER Input
2: XðMÞ – REAL (KIND=nag_wp) array Input
3: YðMÞ – REAL (KIND=nag_wp) array Input
4: ZðMÞ – REAL (KIND=nag_wp) array Input
5: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: M, X, Y, Z and F must be the same values as were supplied in the preceding call to
E01TGF.

6: IQðLIQÞ – INTEGER array Input

On entry: must be unchanged from the value returned from a previous call to E01TGF.

7: LIQ – INTEGER Input

On entry: the dimension of the array IQ as declared in the (sub)program from which E01THF is
called.

Constraint: LIQ � 2�Mþ 1.
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8: RQðLRQÞ – REAL (KIND=nag_wp) array Input

On entry: must be unchanged from the value returned from a previous call to E01TGF.

9: LRQ – INTEGER Input

On entry: the dimension of the array RQ as declared in the (sub)program from which E01THF is
called.

Constraint: LRQ � 10�Mþ 7.

10: N – INTEGER Input

On entry: n, the number of evaluation points.

Constraint: N � 1.

11: UðNÞ – REAL (KIND=nag_wp) array Input
12: VðNÞ – REAL (KIND=nag_wp) array Input
13: WðNÞ – REAL (KIND=nag_wp) array Input

On entry: UðiÞ, VðiÞ, WðiÞ must be set to the evaluation point ui; vi; wið Þ, for i ¼ 1; 2; . . . ; n.

14: QðNÞ – REAL (KIND=nag_wp) array Output

On exit: QðiÞ contains the value of the interpolant, at ui; vi; wið Þ, for i ¼ 1; 2; . . . ; n. If any of
these evaluation points lie outside the region of definition of the interpolant the corresponding
entries in Q are set to the largest machine representable number (see X02ALF), and E01THF
returns with IFAIL ¼ 3.

15: QXðNÞ – REAL (KIND=nag_wp) array Output
16: QYðNÞ – REAL (KIND=nag_wp) array Output
17: QZðNÞ – REAL (KIND=nag_wp) array Output

On exit: QXðiÞ, QYðiÞ, QZðiÞ contains the value of the partial derivatives of the interpolant
Q x; y; zð Þ at ui; vi; wið Þ, for i ¼ 1; 2; . . . ; n. If any of these evaluation points lie outside the region
of definition of the interpolant, the corresponding entries in QX, QY and QZ are set to the largest
machine representable number (see X02ALF), and E01THF returns with IFAIL ¼ 3.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 10,
or LIQ < 2�Mþ 1,
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or LRQ < 10�Mþ 7,
or N < 1.

IFAIL ¼ 2

Values supplied in IQ or RQ appear to be invalid. Check that these arrays have not been
corrupted between the calls to E01TGF and E01THF.

IFAIL ¼ 3

At least one evaluation point lies outside the region of definition of the interpolant. At all such
points the corresponding values in Q, QX, QY and QZ have been set to the largest machine
representable number (see X02ALF).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Computational errors should be negligible in most practical situations.

8 Parallelism and Performance

E01THF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken for a call to E01THF will depend in general on the distribution of the data points. If X,
Y and Z are approximately uniformly distributed, then the time taken should be only O Nð Þ. At worst
O MNð Þ time will be required.

10 Example

See Section 10 in E01TGF.
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NAG Library Routine Document

E01TKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01TKF generates a four-dimensional interpolant to a set of scattered data points, using a modified
Shepard method.

2 Specification

SUBROUTINE E01TKF (M, X, F, NW, NQ, IQ, RQ, IFAIL)

INTEGER M, NW, NQ, IQ(2*M+1), IFAIL
REAL (KIND=nag_wp) X(4,M), F(M), RQ(15*M+9)

3 Description

E01TKF constructs a smooth function Q xð Þ, x 2 R
4 which interpolates a set of m scattered data points

xr; frð Þ, for r ¼ 1; 2; . . . ;m, using a modification of Shepard's method. The surface is continuous and
has continuous first partial derivatives.

The basic Shepard method, which is a generalization of the two-dimensional method described in
Shepard (1968), interpolates the input data with the weighted mean

Q xð Þ ¼

Xm
r¼1

wr xð Þqr

Xm
r¼1

wr xð Þ
;

where qr ¼ fr, wr xð Þ ¼ 1

d2r
and d2r ¼ x� xrk k22.

The basic method is global in that the interpolated value at any point depends on all the data, but
E01TKF uses a modification (see Franke and Nielson (1980) and Renka (1988a)), whereby the method
becomes local by adjusting each wr xð Þ to be zero outside a hypersphere with centre xr and some radius
Rw. Also, to improve the performance of the basic method, each qr above is replaced by a function
qr xð Þ, which is a quadratic fitted by weighted least squares to data local to xr and forced to interpolate
xr; frð Þ. In this context, a point x is defined to be local to another point if it lies within some distance
Rq of it.

The efficiency of E01TKF is enhanced by using a cell method for nearest neighbour searching due to
Bentley and Friedman (1979) with a cell density of 3.

The radii Rw and Rq are chosen to be just large enough to include Nw and Nq data points, respectively,
for user-supplied constants Nw and Nq. Default values of these arguments are provided by the routine,
and advice on alternatives is given in Section 9.2.

E01TKF is derived from the new implementation of QSHEP3 described by Renka (1988b). It uses the
modification for high-dimensional interpolation described by Berry and Minser (1999).

Values of the interpolant Q xð Þ generated by E01TKF, and its first partial derivatives, can subsequently
be evaluated for points in the domain of the data by a call to E01TLF.
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4 References

Bentley J L and Friedman J H (1979) Data structures for range searching ACM Comput. Surv. 11 397–
409

Berry M W, Minser K S (1999) Algorithm 798: high-dimensional interpolation using the modified
Shepard method ACM Trans. Math. Software 25 353–366

Franke R and Nielson G (1980) Smooth interpolation of large sets of scattered data Internat. J. Num.
Methods Engrg. 15 1691–1704

Renka R J (1988a) Multivariate interpolation of large sets of scattered data ACM Trans. Math. Software
14 139–148

Renka R J (1988b) Algorithm 661: QSHEP3D: Quadratic Shepard method for trivariate interpolation of
scattered data ACM Trans. Math. Software 14 151–152

Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data Proc. 23rd Nat.
Conf. ACM 517–523 Brandon/Systems Press Inc., Princeton

5 Arguments

1: M – INTEGER Input

On entry: m, the number of data points.

Constraint: M � 16.

2: Xð4;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xð1 : 4; rÞ must be set to the Cartesian coordinates of the data point xr , for
r ¼ 1; 2; . . . ;m.

Constraint: these coordinates must be distinct, and must not all lie on the same three-dimensional
hypersurface.

3: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: FðrÞ must be set to the data value fr , for r ¼ 1; 2; . . . ;m.

4: NW – INTEGER Input

On entry: the number Nw of data points that determines each radius of influence Rw, appearing in
the definition of each of the weights wr , for r ¼ 1; 2; . . . ;m (see Section 3). Note that Rw is
different for each weight. If NW � 0 the default value NW ¼ min 32;M� 1ð Þ is used instead.

Constraint: NW � min 50;M� 1ð Þ.

5: NQ – INTEGER Input

On entry: the number Nq of data points to be used in the least squares fit for coefficients defining
the quadratic functions qr xð Þ (see Section 3). If NQ � 0 the default value NQ ¼ min 38;M� 1ð Þ
is used instead.

Constraint: NQ � 0 or 14 � NQ � min 50;M� 1ð Þ.

6: IQð2�Mþ 1Þ – INTEGER array Output

On exit: integer data defining the interpolant Q xð Þ.

7: RQð15�Mþ 9Þ – REAL (KIND=nag_wp) array Output

On exit: real data defining the interpolant Q xð Þ.
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8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 16.

On entry, NQ ¼ valueh i.
Constraint: NQ � 0 or NQ � 14.

On entry, NQ ¼ valueh i and M ¼ valueh i.
Constraint: NQ � min 50;M� 1ð Þ.
On entry, NW ¼ valueh i and M ¼ valueh i.
Constraint: NW � min 50;M� 1ð Þ.

IFAIL ¼ 2

There are duplicate nodes in the dataset. Xði; kÞ ¼ Xðj; kÞ, for i ¼ valueh i, j ¼ valueh i and
k ¼ 1; 2; . . . ; 4. The interpolant cannot be derived.

IFAIL ¼ 3

On entry, all the data points lie on the same three-dimensional hypersurface. No unique solution
exists.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

On successful exit, the routine generated interpolates the input data exactly and has quadratic precision.
Overall accuracy of the interpolant is affected by the choice of arguments NW and NQ as well as the
smoothness of the function represented by the input data.

8 Parallelism and Performance

E01TKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E01TKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to E01TKF will depend in general on the distribution of the data points and on
the choice of Nw and Nq parameters. If the data points are uniformly randomly distributed, then the
time taken should be O mð Þ. At worst O m2

� �
time will be required.

9.2 Choice of Nw and Nq

Default values of the arguments Nw and Nq may be selected by calling E01TKF with NW � 0 and
NQ � 0. These default values may well be satisfactory for many applications.

If non-default values are required they must be supplied to E01TKF through positive values of NW and
NQ. Increasing these argument values makes the method less local. This may increase the accuracy of
the resulting interpolant at the expense of increased computational cost.

10 Example

This program reads in a set of 30 data points and calls E01TKF to construct an interpolating function
Q xð Þ. It then calls E01TLF to evaluate the interpolant at a set of points.

Note that this example is not typical of a realistic problem: the number of data points would normally
be larger.

See also Section 10 in E01TLF.

10.1 Program Text

Program e01tkfe

! E01TKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01tkf, e01tlf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, liq, lrq, m, n, nq, nw

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), q(:), qx(:,:), rq(:), x(:,:), &
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xe(:,:)
Integer, Allocatable :: iq(:)

! .. Executable Statements ..
Write (nout,*) ’E01TKF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Input the number of nodes.
Read (nin,*) m
liq = 2*m + 1
lrq = 15*m + 9
Allocate (x(4,m),f(m),iq(liq),rq(lrq))

! Input the data points X and F.
Do i = 1, m

Read (nin,*) x(1:4,i), f(i)
End Do

! Generate the interpolant.
nq = 0
nw = 0

ifail = 0
Call e01tkf(m,x,f,nw,nq,iq,rq,ifail)

! Input the number of evaluation points.
Read (nin,*) n
Allocate (xe(4,n),q(n),qx(4,n))

! Input the evaluation points.
Do i = 1, n

Read (nin,*) xe(1:4,i)
End Do

! Evaluate the interpolant using E01TLF.
ifail = 1
Call e01tlf(m,x,f,iq,rq,n,xe,q,qx,ifail)
If (ifail==0 .Or. ifail==3) Then

If (ifail==3) Then
Write (nout,*) ’Some values below have been extrapolated’
Write (nout,*)

End If
Write (nout,99998) ’Interpolated Evaluation Points’, ’Values’
Write (nout,99997)
Write (nout,99996)(i,i=1,4)
Write (nout,99997)
Do i = 1, n

Write (nout,99999) i, xe(1:4,i), q(i)
End Do

Else
Write (nout,99995) ’Evaluation routine returned with IFAIL = ’, ifail

End If

99999 Format (1X,I4,1X,4F10.4,1X,F10.4)
99998 Format (/,4X,’ |’,5X,A31,5X,’|’,A7)
99997 Format (4X,’---|’,41(’-’),’+’,8(’-’))
99996 Format (4X,’I |’,4(2X,’XE(I,’,I1,’)’,1X),1X,’|’,2X,’Q(I)’)
99995 Format (1X,A,I4)

End Program e01tkfe

10.2 Program Data

E01TKF Example Program Data
30 M the number of data points
0.81 0.15 0.44 0.83 6.39 X, F data point definition
0.91 0.96 0.00 0.09 2.50
0.13 0.88 0.22 0.21 9.34
0.91 0.49 0.39 0.79 7.52
0.63 0.41 0.72 0.68 6.91
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0.10 0.13 0.77 0.47 4.68
0.28 0.93 0.24 0.90 45.40
0.55 0.01 0.04 0.41 5.48
0.96 0.19 0.95 0.66 2.75
0.96 0.32 0.53 0.96 7.43
0.16 0.05 0.16 0.30 6.05
0.97 0.14 0.36 0.72 5.77
0.96 0.73 0.28 0.75 8.68
0.49 0.48 0.58 0.19 2.38
0.80 0.34 0.64 0.57 3.70
0.14 0.24 0.12 0.06 1.34
0.42 0.45 0.03 0.68 15.18
0.92 0.19 0.48 0.67 4.35
0.79 0.32 0.15 0.13 1.50
0.96 0.26 0.93 0.89 3.43
0.66 0.83 0.41 0.17 3.10
0.04 0.70 0.40 0.54 14.33
0.85 0.33 0.15 0.03 0.35
0.93 0.58 0.88 0.81 4.30
0.68 0.29 0.88 0.60 3.77
0.76 0.26 0.09 0.41 4.16
0.74 0.26 0.33 0.64 6.75
0.39 0.68 0.69 0.37 5.22
0.66 0.52 0.17 1.00 16.23
0.17 0.08 0.35 0.71 10.62 End of data points

9 N the number of evaluation points
0.10 0.10 0.10 0.10 XE evaluation point definition
0.20 0.20 0.20 0.20
0.30 0.30 0.30 0.30
0.40 0.40 0.40 0.40
0.50 0.50 0.50 0.50
0.60 0.60 0.60 0.60
0.70 0.70 0.70 0.70
0.80 0.80 0.80 0.80
0.90 0.90 0.90 0.90 End of evaluation points

10.3 Program Results

E01TKF Example Program Results

| Interpolated Evaluation Points | Values
---|-----------------------------------------+--------
I | XE(I,1) XE(I,2) XE(I,3) XE(I,4) | Q(I)
---|-----------------------------------------+--------
1 0.1000 0.1000 0.1000 0.1000 2.7209
2 0.2000 0.2000 0.2000 0.2000 4.3166
3 0.3000 0.3000 0.3000 0.3000 5.5397
4 0.4000 0.4000 0.4000 0.4000 6.5347
5 0.5000 0.5000 0.5000 0.5000 7.5691
6 0.6000 0.6000 0.6000 0.6000 8.7335
7 0.7000 0.7000 0.7000 0.7000 10.0524
8 0.8000 0.8000 0.8000 0.8000 11.6254
9 0.9000 0.9000 0.9000 0.9000 13.3268
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NAG Library Routine Document

E01TLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01TLF evaluates the four-dimensional interpolating function generated by E01TKF and its first partial
derivatives.

2 Specification

SUBROUTINE E01TLF (M, X, F, IQ, RQ, N, XE, Q, QX, IFAIL)

INTEGER M, IQ(2*M+1), N, IFAIL
REAL (KIND=nag_wp) X(4,M), F(M), RQ(15*M+9), XE(4,N), Q(N), QX(4,N)

3 Description

E01TLF takes as input the interpolant Q xð Þ, x 2 R
4 of a set of scattered data points xr ; frð Þ, for

r ¼ 1; 2; . . . ;m, as computed by E01TKF, and evaluates the interpolant and its first partial derivatives at
the set of points xi, for i ¼ 1; 2; . . . ; n.

E01TLF must only be called after a call to E01TKF.

E01TLF is derived from the new implementation of QS3GRD described by Renka (1988). It uses the
modification for high-dimensional interpolation described by Berry and Minser (1999).

4 References

Berry M W, Minser K S (1999) Algorithm 798: high-dimensional interpolation using the modified
Shepard method ACM Trans. Math. Software 25 353–366

Renka R J (1988) Algorithm 661: QSHEP3D: Quadratic Shepard method for trivariate interpolation of
scattered data ACM Trans. Math. Software 14 151–152

5 Arguments

1: M – INTEGER Input

On entry: must be the same value supplied for argument M in the preceding call to E01TKF.

Constraint: M � 16.

2: Xð4;MÞ – REAL (KIND=nag_wp) array Input

Note: the coordinates of xr are stored in Xð1; rÞ . . .Xð4; rÞ.
On entry: must be the same array supplied as argument X in the preceding call to E01TKF. It
must remain unchanged between calls.

3: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: must be the same array supplied as argument F in the preceding call to E01TKF. It
must remain unchanged between calls.
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4: IQð2�Mþ 1Þ – INTEGER array Input

On entry: must be the same array returned as argument IQ in the preceding call to E01TKF. It
must remain unchanged between calls.

5: RQð15�Mþ 9Þ – REAL (KIND=nag_wp) array Input

On entry: must be the same array returned as argument RQ in the preceding call to E01TKF. It
must remain unchanged between calls.

6: N – INTEGER Input

On entry: n, the number of evaluation points.

Constraint: N � 1.

7: XEð4;NÞ – REAL (KIND=nag_wp) array Input

On entry: XEð1 : 4; iÞ must be set to the evaluation point xi , for i ¼ 1; 2; . . . ; n.

8: QðNÞ – REAL (KIND=nag_wp) array Output

On exit: QðiÞ contains the value of the interpolant, at xi, for i ¼ 1; 2; . . . ; n. If any of these
evaluation points lie outside the region of definition of the interpolant the corresponding entries
in Q are set to the largest machine representable number (see X02ALF), and E01TLF returns
with IFAIL ¼ 3.

9: QXð4;NÞ – REAL (KIND=nag_wp) array Output

On exit: QXðj; iÞ contains the value of the partial derivatives with respect to xj of the interpolant
Q xð Þ at xi, for i ¼ 1; 2; . . . ; n, and for each of the four partial derivatives j ¼ 1; 2; 3; 4. If any of
these evaluation points lie outside the region of definition of the interpolant, the corresponding
entries in QX are set to the largest machine representable number (see X02ALF), and E01TLF
returns with IFAIL ¼ 3.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 16.

On entry, N ¼ valueh i.
Constraint: N � 1.
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IFAIL ¼ 2

On entry, values in IQ appear to be invalid. Check that IQ has not been corrupted between calls
to E01TKF and E01TLF.

On entry, values in RQ appear to be invalid. Check that RQ has not been corrupted between calls
to E01TKF and E01TLF.

IFAIL ¼ 3

On entry, at least one evaluation point lies outside the region of definition of the interpolant. At
all such points the corresponding values in Q and QX have been set to X02ALFðÞ:
X02ALFðÞ ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Computational errors should be negligible in most practical situations.

8 Parallelism and Performance

E01TLF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken for a call to E01TLF will depend in general on the distribution of the data points. If the
data points are approximately uniformly distributed, then the time taken should be only O nð Þ. At worst
O mnð Þ time will be required.

10 Example

This program evaluates the function

f xð Þ ¼ 1:25þ cos 5:4x4ð Þð Þ cos 6x1ð Þ cos 6x2ð Þ
6þ 6 3x3 � 1ð Þ2

at a set of 30 randomly generated data points and calls E01TKF to construct an interpolating function
Q xð Þ. It then calls E01TLF to evaluate the interpolant at a set of random points.

To reduce the time taken by this example, the number of data points is limited to 30. Increasing this
value improves the interpolation accuracy at the expense of more time.
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See also Section 10 in E01TKF.

10.1 Program Text

! E01TLF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e01tlfe_mod

! E01TLF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: six = 6.0_nag_wp
Real (Kind=nag_wp), Parameter :: three = 3.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine funct(m,x,f)

! This subroutine evaluates the 4D function funct.

! .. Scalar Arguments ..
Integer, Intent (In) :: m

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(m)
Real (Kind=nag_wp), Intent (In) :: x(4,m)

! .. Local Scalars ..
Real (Kind=nag_wp) :: c1, c2, c3, c4
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
Do i = 1, m

c1 = cos(six*x(1,i))
c2 = cos(six*x(2,i))
c3 = six + six*(three*x(3,i)-one)**2
c4 = 1.25_nag_wp + cos(5.4_nag_wp*x(4,i))
f(i) = c4*c1*c2/c3

End Do
Return

End Subroutine funct
End Module e01tlfe_mod
Program e01tlfe

! E01TLF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e01tkf, e01tlf, g05kff, g05saf, nag_wp
Use e01tlfe_mod, Only: funct, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1

! .. Local Scalars ..
Integer :: genid, i, ifail, liq, lrq, lstate, &

m, n, nq, nw, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: f(:), fun(:), q(:), qx(:,:), rq(:), &
x(:,:), xe(:,:)

Integer, Allocatable :: iq(:), state(:)
Integer :: seed(lseed), seed2(lseed)

! .. Intrinsic Procedures ..
Intrinsic :: abs

E01TLF NAG Library Manual

E01TLF.4 Mark 26



! .. Executable Statements ..
Write (nout,*) ’E01TLF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seeds
Read (nin,*) genid, subid, seed(1), seed2(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Input the number of nodes.
Read (nin,*) m
liq = 2*m + 1
lrq = 15*m + 9
Allocate (x(4,m),f(m),iq(liq),rq(lrq))

! Generate the data points X
ifail = 0
Call g05saf(4*m,state,x,ifail)

! Evaluate F
Call funct(m,x,f)

! Generate the interpolant using E01TKF.
nq = 0
nw = 0

ifail = 0
Call e01tkf(m,x,f,nw,nq,iq,rq,ifail)

! Input the number of evaluation points.
Read (nin,*) n
Allocate (xe(4,n),q(n),qx(4,n),fun(n))

! Generate repeatable evaluation points.
ifail = 0
Call g05kff(genid,subid,seed2,lseed,state,lstate,ifail)
ifail = 0
Call g05saf(4*n,state,xe,ifail)

! Evaluate the interpolant.
ifail = 0
Call e01tlf(m,x,f,iq,rq,n,xe,q,qx,ifail)

Write (nout,99997)
Write (nout,99998)
Call funct(n,xe,fun)
Write (nout,99999)(i,fun(i),q(i),abs(fun(i)-q(i)),i=1,n)

99999 Format (1X,I4,1X,2F10.4,2X,F10.4)
99998 Format (4X,’---+’,20(’-’),’+’,11(’-’),’+’)
99997 Format (/,4X,’I |’,2X,’F(I)’,6X,’Q(I)’,4X,’|’,1X,’|F(I)-Q(I)|’)

End Program e01tlfe
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10.2 Program Data

E01TLF Example Program Data
1 1 1762543 43331 genid, subid, seed(1), seed(2)
30 M the number of data points
8 N the number of evaluation points

10.3 Program Results

E01TLF Example Program Results

I | F(I) Q(I) | |F(I)-Q(I)|
---+--------------------+-----------+
1 -0.0189 -0.0385 0.0196
2 -0.0186 0.0965 0.1151
3 0.1147 0.0613 0.0535
4 0.0096 -0.1494 0.1591
5 -0.1354 -0.1916 0.0562
6 0.0022 -0.1787 0.1809
7 -0.0095 -0.1220 0.1125
8 0.0113 -0.4374 0.4486
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NAG Library Routine Document

E01TMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01TMF generates a five-dimensional interpolant to a set of scattered data points, using a modified
Shepard method.

2 Specification

SUBROUTINE E01TMF (M, X, F, NW, NQ, IQ, RQ, IFAIL)

INTEGER M, NW, NQ, IQ(2*M+1), IFAIL
REAL (KIND=nag_wp) X(5,M), F(M), RQ(21*M+11)

3 Description

E01TMF constructs a smooth function Q xð Þ, x 2 R
5 which interpolates a set of m scattered data points

xr; frð Þ, for r ¼ 1; 2; . . . ;m, using a modification of Shepard's method. The surface is continuous and
has continuous first partial derivatives.

The basic Shepard method, which is a generalization of the two-dimensional method described in
Shepard (1968), interpolates the input data with the weighted mean

Q xð Þ ¼

Xm
r¼1

wr xð Þqr

Xm
r¼1

wr xð Þ
;

where qr ¼ fr, wr xð Þ ¼ 1

d2r
and d2r ¼ x� xrk k22.

The basic method is global in that the interpolated value at any point depends on all the data, but
E01TMF uses a modification (see Franke and Nielson (1980) and Renka (1988a)), whereby the method
becomes local by adjusting each wr xð Þ to be zero outside a hypersphere with centre xr and some radius
Rw. Also, to improve the performance of the basic method, each qr above is replaced by a function
qr xð Þ, which is a quadratic fitted by weighted least squares to data local to xr and forced to interpolate
xr; frð Þ. In this context, a point x is defined to be local to another point if it lies within some distance
Rq of it.

The efficiency of E01TMF is enhanced by using a cell method for nearest neighbour searching due to
Bentley and Friedman (1979) with a cell density of 3.

The radii Rw and Rq are chosen to be just large enough to include Nw and Nq data points, respectively,
for user-supplied constants Nw and Nq. Default values of these arguments are provided, and advice on
alternatives is given in Section 9.2.

E01TMF is derived from the new implementation of QSHEP3 described by Renka (1988b). It uses the
modification for five-dimensional interpolation described by Berry and Minser (1999).

Values of the interpolant Q xð Þ generated by E01TMF, and its first partial derivatives, can subsequently
be evaluated for points in the domain of the data by a call to E01TNF.

E01 – Interpolation E01TMF

Mark 26 E01TMF.1



4 References
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Methods Engrg. 15 1691–1704

Renka R J (1988a) Multivariate interpolation of large sets of scattered data ACM Trans. Math. Software
14 139–148
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Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data Proc. 23rd Nat.
Conf. ACM 517–523 Brandon/Systems Press Inc., Princeton

5 Arguments

1: M – INTEGER Input

On entry: m, the number of data points.

Note: on the basis of experimental results reported in Berry and Minser (1999), it is
recommended to use M � 4000.

Constraint: M � 23.

2: Xð5;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xð1 : 5; rÞ must be set to the Cartesian coordinates of the data point xr , for
r ¼ 1; 2; . . . ;m.

Constraint: these coordinates must be distinct, and must not all lie on the same four-dimensional
hypersurface.

3: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: FðrÞ must be set to the data value fr , for r ¼ 1; 2; . . . ;m.

4: NW – INTEGER Input

On entry: the number Nw of data points that determines each radius of influence Rw, appearing in
the definition of each of the weights wr , for r ¼ 1; 2; . . . ;m (see Section 3). Note that Rw is
different for each weight. If NW � 0 the default value NW ¼ min 32;M� 1ð Þ is used instead.

Constraint: NW � min 50;M� 1ð Þ.

5: NQ – INTEGER Input

On entry: the number Nq of data points to be used in the least squares fit for coefficients defining
the quadratic functions qr xð Þ (see Section 3). If NQ � 0 the default value NQ ¼ min 50;M� 1ð Þ
is used instead.

Constraint: NQ � 0 or 20 � NQ � min 70;M� 1ð Þ.

6: IQð2�Mþ 1Þ – INTEGER array Output

On exit: integer data defining the interpolant Q xð Þ.

7: RQð21�Mþ 11Þ – REAL (KIND=nag_wp) array Output

On exit: real data defining the interpolant Q xð Þ.
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8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 23.

On entry, NQ ¼ valueh i.
Constraint: NQ � 0 or NQ � 20.

On entry, NQ ¼ valueh i and M ¼ valueh i.
Constraint: NQ � min 70;M� 1ð Þ.
On entry, NW ¼ valueh i and M ¼ valueh i.
Constraint: NW � min 50;M� 1ð Þ.

IFAIL ¼ 2

There are duplicate nodes in the dataset. Xði; kÞ ¼ Xðj; kÞ, for i ¼ valueh i, j ¼ valueh i and
k ¼ 1; 2; . . . ; 5. The interpolant cannot be derived.

IFAIL ¼ 3

On entry, all the data points lie on the same four-dimensional hypersurface. No unique solution
exists.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

On successful exit, the routine generated interpolates the input data exactly and has quadratic precision.
Overall accuracy of the interpolant is affected by the choice of arguments NW and NQ as well as the
smoothness of the routine represented by the input data. Berry and Minser (1999) report on the results
obtained for a set of test routines.

8 Parallelism and Performance

E01TMF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E01TMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to E01TMF will depend in general on the distribution of the data points and
on the choice of Nw and Nq parameters. If the data points are uniformly randomly distributed, then the
time taken should be O mð Þ. At worst O m2

� �
time will be required.

9.2 Choice of Nw and Nq

Default values of the arguments Nw and Nq may be selected by calling E01TMF with NW � 0 and
NQ � 0. These default values may well be satisfactory for many applications.

If non-default values are required they must be supplied to E01TMF through positive values of NW and
NQ. Increasing these argument values makes the method less local. This may increase the accuracy of
the resulting interpolant at the expense of increased computational cost. The default values
NW ¼ min 32;M� 1ð Þ and NQ ¼ min 50;M� 1ð Þ have been chosen on the basis of experimental
results reported in Berry and Minser (1999). In these experiments the error norm was found to increase
with the decrease of Nq, but to be little affected by the choice of Nw. The choice of both, directly
affected the time taken by the routine. For further advice on the choice of these arguments see Berry
and Minser (1999).

10 Example

This program reads in a set of 30 data points and calls E01TMF to construct an interpolating function
Q xð Þ. It then calls E01TNF to evaluate the interpolant at a set of points.

Note that this example is not typical of a realistic problem: the number of data points would normally
be larger.

See also Section 10 in E01TNF.

10.1 Program Text

Program e01tmfe

! E01TMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01tmf, e01tnf, nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, liq, lrq, m, n, nq, nw
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: f(:), q(:), qx(:,:), rq(:), x(:,:), &
xe(:,:)

Integer, Allocatable :: iq(:)
! .. Executable Statements ..

Write (nout,*) ’E01TMF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Input the number of nodes.
Read (nin,*) m
liq = 2*m + 1
lrq = 21*m + 11
Allocate (x(5,m),f(m),iq(liq),rq(lrq))

! Input the data points X and F.
Do i = 1, m

Read (nin,*) x(1:5,i), f(i)
End Do

! Generate the interpolant.
nq = 0
nw = 0

ifail = 0
Call e01tmf(m,x,f,nw,nq,iq,rq,ifail)

! Input the number of evaluation points.
Read (nin,*) n
Allocate (xe(5,n),q(n),qx(5,n))

! Input the evaluation points.
Do i = 1, n

Read (nin,*) xe(1:5,i)
End Do

! Evaluate the interpolant using E01TNF.
ifail = 0
Call e01tnf(m,x,f,iq,rq,n,xe,q,qx,ifail)

Write (nout,99998) ’Interpolated Evaluation Points’, ’Values’
Write (nout,99997)
Write (nout,99996)(i,i=1,5)
Write (nout,99997)
Write (nout,99999)(i,xe(1:5,i),q(i),i=1,n)

99999 Format (1X,I4,1X,6F10.4)
99998 Format (/,4X,’ |’,10X,A31,10X,’|’,A7)
99997 Format (4X,’---|’,51(’-’),’+’,7(’-’))
99996 Format (4X,’I |’,5(2X,’XE(’,I1,’,I)’,1X),1X,’|’,3X,’Q(I)’)

End Program e01tmfe

10.2 Program Data

E01TMF Example Program Data
30 M the number of data points
0.81 0.15 0.44 0.83 0.21 6.39 X, F data point definition
0.91 0.96 0.00 0.09 0.98 2.50
0.13 0.88 0.22 0.21 0.73 9.34
0.91 0.49 0.39 0.79 0.47 7.52
0.63 0.41 0.72 0.68 0.65 6.91
0.10 0.13 0.77 0.47 0.22 4.68
0.28 0.93 0.24 0.90 0.96 45.40
0.55 0.01 0.04 0.41 0.26 5.48
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0.96 0.19 0.95 0.66 0.99 2.75
0.96 0.32 0.53 0.96 0.84 7.43
0.16 0.05 0.16 0.30 0.58 6.05
0.97 0.14 0.36 0.72 0.78 5.77
0.96 0.73 0.28 0.75 0.28 8.68
0.49 0.48 0.58 0.19 0.25 2.38
0.80 0.34 0.64 0.57 0.08 3.70
0.14 0.24 0.12 0.06 0.63 1.34
0.42 0.45 0.03 0.68 0.66 15.18
0.92 0.19 0.48 0.67 0.28 4.35
0.79 0.32 0.15 0.13 0.40 1.50
0.96 0.26 0.93 0.89 0.61 3.43
0.66 0.83 0.41 0.17 0.09 3.10
0.04 0.70 0.40 0.54 0.37 14.33
0.85 0.33 0.15 0.03 0.36 0.35
0.93 0.58 0.88 0.81 0.40 4.30
0.68 0.29 0.88 0.60 0.47 3.77
0.76 0.26 0.09 0.41 0.14 4.16
0.74 0.26 0.33 0.64 0.36 6.75
0.39 0.68 0.69 0.37 0.12 5.22
0.66 0.52 0.17 1.00 0.43 16.23
0.17 0.08 0.35 0.71 0.17 10.62 End of data points

6 N the number of evaluation points
0.10 0.10 0.10 0.10 0.10 XE evaluation point definition
0.20 0.20 0.20 0.20 0.20
0.30 0.30 0.30 0.30 0.30
0.40 0.40 0.40 0.40 0.40
0.50 0.50 0.50 0.50 0.50
0.60 0.60 0.60 0.60 0.60 End of evaluation points

10.3 Program Results

E01TMF Example Program Results

| Interpolated Evaluation Points | Values
---|---------------------------------------------------+-------
I | XE(1,I) XE(2,I) XE(3,I) XE(4,I) XE(5,I) | Q(I)
---|---------------------------------------------------+-------
1 0.1000 0.1000 0.1000 0.1000 0.1000 3.2315
2 0.2000 0.2000 0.2000 0.2000 0.2000 4.2536
3 0.3000 0.3000 0.3000 0.3000 0.3000 5.2681
4 0.4000 0.4000 0.4000 0.4000 0.4000 6.3781
5 0.5000 0.5000 0.5000 0.5000 0.5000 7.6784
6 0.6000 0.6000 0.6000 0.6000 0.6000 9.4105
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NAG Library Routine Document

E01TNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01TNF evaluates the five-dimensional interpolating function generated by E01TMF and its first partial
derivatives.

2 Specification

SUBROUTINE E01TNF (M, X, F, IQ, RQ, N, XE, Q, QX, IFAIL)

INTEGER M, IQ(2*M+1), N, IFAIL
REAL (KIND=nag_wp) X(5,M), F(M), RQ(21*M+11), XE(5,N), Q(N), QX(5,N)

3 Description

E01TNF takes as input the interpolant Q xð Þ, x 2 R
5 of a set of scattered data points xr ; frð Þ, for

r ¼ 1; 2; . . . ;m, as computed by E01TMF, and evaluates the interpolant and its first partial derivatives
at the set of points xi, for i ¼ 1; 2; . . . ; n.

E01TNF must only be called after a call to E01TMF.

E01TNF is derived from the new implementation of QS3GRD described by Renka (1988). It uses the
modification for five-dimensional interpolation described by Berry and Minser (1999).

4 References

Berry M W, Minser K S (1999) Algorithm 798: high-dimensional interpolation using the modified
Shepard method ACM Trans. Math. Software 25 353–366

Renka R J (1988) Algorithm 661: QSHEP3D: Quadratic Shepard method for trivariate interpolation of
scattered data ACM Trans. Math. Software 14 151–152

5 Arguments

1: M – INTEGER Input

On entry: must be the same value supplied for argument M in the preceding call to E01TMF.

Constraint: M � 23.

2: Xð5;MÞ – REAL (KIND=nag_wp) array Input

On entry: must be the same array supplied as argument X in the preceding call to E01TMF. It
must remain unchanged between calls.

3: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: must be the same array supplied as argument F in the preceding call to E01TMF. It
must remain unchanged between calls.

4: IQð2�Mþ 1Þ – INTEGER array Input

On entry: must be the same array returned as argument IQ in the preceding call to E01TMF. It
must remain unchanged between calls.
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5: RQð21�Mþ 11Þ – REAL (KIND=nag_wp) array Input

On entry: must be the same array returned as argument RQ in the preceding call to E01TMF. It
must remain unchanged between calls.

6: N – INTEGER Input

On entry: n, the number of evaluation points.

Constraint: N � 1.

7: XEð5;NÞ – REAL (KIND=nag_wp) array Input

On entry: XEð1 : 5; iÞ must be set to the evaluation point xi , for i ¼ 1; 2; . . . ; n.

8: QðNÞ – REAL (KIND=nag_wp) array Output

On exit: QðiÞ contains the value of the interpolant, at xi, for i ¼ 1; 2; . . . ; n. If any of these
evaluation points lie outside the region of definition of the interpolant the corresponding entries
in Q are set to the largest machine representable number (see X02ALF), and E01TNF returns
with IFAIL ¼ 3.

9: QXð5;NÞ – REAL (KIND=nag_wp) array Output

On exit: QXðj; iÞ contains the value of the partial derivatives with respect to xj of the interpolant
Q xð Þ at xi, for i ¼ 1; 2; . . . ; n, and for each of the five partial derivatives j ¼ 1; 2; 3; 4; 5. If any of
these evaluation points lie outside the region of definition of the interpolant, the corresponding
entries in QX are set to the largest machine representable number (see X02ALF), and E01TNF
returns with IFAIL ¼ 3.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 23.

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 2

On entry, values in IQ appear to be invalid. Check that IQ has not been corrupted between calls
to E01TMF and E01TNF.
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On entry, values in RQ appear to be invalid. Check that RQ has not been corrupted between calls
to E01TMF and E01TNF.

IFAIL ¼ 3

On entry, at least one evaluation point lies outside the region of definition of the interpolant. At
all such points the corresponding values in Q and QX have been set to X02ALFðÞ:
X02ALFðÞ ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Computational errors should be negligible in most practical situations.

8 Parallelism and Performance

E01TNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E01TNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken for a call to E01TNF will depend in general on the distribution of the data points. If the
data points are approximately uniformly distributed, then the time taken should be only O nð Þ. At worst
O mnð Þ time will be required.

10 Example

This program evaluates the function

f xð Þ ¼ 1:25þ cos 5:4x5ð Þð Þ cos 6x1ð Þ cos 6x2ð Þ cos 6x3ð Þ
6þ 6 3x4 � 1ð Þ2

at a set of 30 randomly generated data points and calls E01TMF to construct an interpolating function
Q xð Þ. It then calls E01TNF to evaluate the interpolant at a set of random points.

To reduce the time taken by this example, the number of data points is limited to 30. Increasing this
value to the suggested minimum of 4000 improves the interpolation accuracy at the expense of more
time.
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See also Section 10 in E01TMF.

10.1 Program Text

! E01TNF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e01tnfe_mod

! E01TNF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: six = 6.0_nag_wp
Real (Kind=nag_wp), Parameter :: three = 3.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function funct(x)

! This function evaluates the 5D function funct.

! .. Function Return Value ..
Real (Kind=nag_wp) :: funct

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(5)

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
funct = ((1.25_nag_wp+cos(5.4_nag_wp*x(5)))*cos(six*x(1))*cos(six*x(2) &

)*cos(six*x(3)))/(six+six*(three*x(4)-one)**2)

Return
End Function funct

End Module e01tnfe_mod
Program e01tnfe

! E01TNF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e01tmf, e01tnf, g05kff, g05saf, nag_wp
Use e01tnfe_mod, Only: funct, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1

! .. Local Scalars ..
Real (Kind=nag_wp) :: fun
Integer :: genid, i, ifail, liq, lrq, lstate, &

m, n, nq, nw, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: f(:), q(:), qx(:,:), rq(:), x(:,:), &
xe(:,:)

Integer, Allocatable :: iq(:), state(:)
Integer :: seed(lseed), seed2(lseed)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’E01TNF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seeds
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Read (nin,*) genid, subid, seed(1), seed2(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Input the number of nodes.
Read (nin,*) m
liq = 2*m + 1
lrq = 21*m + 11
Allocate (x(5,m),f(m),iq(liq),rq(lrq))

! Generate the data points X
ifail = 0
Call g05saf(5*m,state,x,ifail)

! Evaluate F
Do i = 1, m

f(i) = funct(x(1,i))
End Do

! Generate the interpolant using E01TMF.
nq = 0
nw = 0

ifail = 0
Call e01tmf(m,x,f,nw,nq,iq,rq,ifail)

! Input the number of evaluation points.
Read (nin,*) n
Allocate (xe(5,n),q(n),qx(5,n))

! Generate repeatable evaluation points.
ifail = 0
Call g05kff(genid,subid,seed2,lseed,state,lstate,ifail)
ifail = 0
Call g05saf(5*n,state,xe,ifail)

! Evaluate the interpolant.
ifail = 0
Call e01tnf(m,x,f,iq,rq,n,xe,q,qx,ifail)

Write (nout,99997)
Write (nout,99998)
Do i = 1, n

fun = funct(xe(1,i))
Write (nout,99999) i, fun, q(i), abs(fun-q(i))

End Do

99999 Format (1X,I4,1X,3F10.4)
99998 Format (4X,’---|’,20(’-’),’+’,15(’-’))
99997 Format (/,4X,’I |’,2X,’F(I)’,6X,’Q(I)’,4X,’|’,1X,’|F(I)-Q(I)|’)

End Program e01tnfe

10.2 Program Data

E01TNF Example Program Data
1 1 1762543 43331 genid, subid, seed(1), seed(2)
30 M the number of data points
8 N the number of evaluation points
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10.3 Program Results

E01TNF Example Program Results

I | F(I) Q(I) | |F(I)-Q(I)|
---|--------------------+---------------
1 0.0058 0.0458 0.0401
2 0.0034 0.5020 0.4986
3 -0.1096 0.0743 0.1838
4 0.0875 0.0337 0.0538
5 0.0015 0.0375 0.0360
6 -0.0158 -0.1064 0.0906
7 0.0046 -0.0490 0.0536
8 -0.0090 -0.0127 0.0037
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NAG Library Routine Document

E01ZMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01ZMF generates a multidimensional interpolant to a set of scattered data points, using a modified
Shepard method. When the number of dimensions is no more than five, there are corresponding routines
in Chapter E01 which are specific to the given dimensionality. E01SGF generates the two-dimensional
interpolant, while E01TGF, E01TKF and E01TMF generate the three-, four- and five-dimensional
interpolants respectively.

2 Specification

SUBROUTINE E01ZMF (D, M, X, F, NW, NQ, IQ, RQ, IFAIL)

INTEGER D, M, NW, NQ, IQ(2*M+1), IFAIL
REAL (KIND=nag_wp) X(D,M), F(M), RQ(*)

3 Description

E01ZMF constructs a smooth function Q xð Þ, x 2 R
d which interpolates a set of m scattered data points

xr; frð Þ, for r ¼ 1; 2; . . . ;m, using a modification of Shepard's method. The surface is continuous and
has continuous first partial derivatives.

The basic Shepard method, which is a generalization of the two-dimensional method described in
Shepard (1968), interpolates the input data with the weighted mean

Q xð Þ ¼

Xm
r¼1

wr xð Þqr

Xm
r¼1

wr xð Þ
;

where qr ¼ fr, wr xð Þ ¼ 1

x� xrk k22
.

The basic method is global in that the interpolated value at any point depends on all the data, but
E01ZMF uses a modification (see Franke and Nielson (1980) and Renka (1988a)), whereby the method
becomes local by adjusting each wr xð Þ to be zero outside a hypersphere with centre xr and some radius
Rw. Also, to improve the performance of the basic method, each qr above is replaced by a function
qr xð Þ, which is a quadratic fitted by weighted least squares to data local to xr and forced to interpolate
xr; frð Þ. In this context, a point x is defined to be local to another point if it lies within some distance
Rq of it.

The efficiency of E01ZMF is enhanced by using a cell method for nearest neighbour searching due to
Bentley and Friedman (1979) with a cell density of 3.

The radii Rw and Rq are chosen to be just large enough to include Nw and Nq data points, respectively,
for user-supplied constants Nw and Nq. Default values of these parameters are provided, and advice on
alternatives is given in Section 9.2.

E01ZMF is derived from the new implementation of QSHEP3 described by Renka (1988b). It uses the
modification for high-dimensional interpolation described by Berry and Minser (1999).

Values of the interpolant Q xð Þ generated by E01ZMF, and its first partial derivatives, can subsequently
be evaluated for points in the domain of the data by a call to E01ZNF.
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5 Arguments

1: D – INTEGER Input

On entry: d, the number of dimensions.

Constraint: D � 2.

2: M – INTEGER Input

On entry: m, the number of data points.

Note: on the basis of experimental results reported in Berry and Minser (1999), when D � 5 it is
recommended to use M � 4000.

Constraint: M � Dþ 1ð Þ � Dþ 2ð Þ=2þ 2.

3: XðD;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xð1 : D; rÞ must be set to the Cartesian coordinates of the data point xr , for
r ¼ 1; 2; . . . ;m.

Constraint: these coordinates must be distinct, and must not all lie on the same d� 1ð Þ-dimen-
sional hypersurface.

4: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: FðrÞ must be set to the data value fr , for r ¼ 1; 2; . . . ;m.

5: NW – INTEGER Input

On entry: the number Nw of data points that determines each radius of influence Rw, appearing in
the definition of each of the weights wr , for r ¼ 1; 2; . . . ;m (see Section 3). Note that Rw is
different for each weight. If NW � 0 the default value NW ¼ min 2� Dþ 1ð Þ � Dþ 2ð Þ;M� 1ð Þ
is used instead.

Suggested value: NW ¼ �1.
Constraint: NW � M� 1.

6: NQ – INTEGER Input

On entry: the number Nq of data points to be used in the least squares fit for coefficients defining
the quadrat ic funct ions qr xð Þ (see Sect ion 3) . I f NQ � 0 the defaul t value
NQ ¼ min Dþ 1ð Þ � Dþ 2ð Þ � 6=5;M� 1ð Þ is used instead.
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Suggested value: NQ ¼ �1.
Constraint: NQ � 0 or Dþ 1ð Þ � Dþ 2ð Þ=2� 1 � NQ � M� 1.

7: IQð2�Mþ 1Þ – INTEGER array Output

On exit: integer data defining the interpolant Q xð Þ.

8: RQð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RQ must be at least Dþ 1ð Þ � Dþ 2ð Þ=2ð Þ �Mþ 2� Dþ 1.

On exit: real data defining the interpolant Q xð Þ.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, D ¼ valueh i.
Constraint: D � 2.

On entry, Dþ 1ð Þ � Dþ 2ð Þ=2ð Þ �Mþ 2� Dþ 1 exceeds the largest machine integer.
D ¼ valueh i and M ¼ valueh i.
On entry, M ¼ valueh i and D ¼ valueh i.
Constraint: M � Dþ 1ð Þ � Dþ 2ð Þ=2þ 2.

On entry, NQ ¼ valueh i and D ¼ valueh i.
Constraint: NQ � 0 or NQ � Dþ 1ð Þ � Dþ 2ð Þ=2� 1.

On entry, NQ ¼ valueh i and M ¼ valueh i.
Constraint: NQ � M� 1.

On entry, NW ¼ valueh i and M ¼ valueh i.
Constraint: NW � M� 1.

IFAIL ¼ 2

There are duplicate nodes in the dataset. Xðk; iÞ ¼ Xðk; jÞ, for i ¼ valueh i, j ¼ valueh i and
k ¼ 1; 2; . . . ;D. The interpolant cannot be derived.

IFAIL ¼ 3

On entry, all the data points lie on the same hypersurface. No unique solution exists.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In experiments undertaken by Berry and Minser (1999), the accuracies obtained for a conditional
function resulting in sharp functional transitions were of the order of 10�1 at best. In other cases in
these experiments, the function generated interpolates the input data with maximum absolute error of
the order of 10�2.

8 Parallelism and Performance

E01ZMF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E01ZMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to E01ZMF will depend in general on the distribution of the data points and
on the choice of Nw and Nq parameters. If the data points are uniformly randomly distributed, then the
time taken should be O mð Þ. At worst O m2

� �
time will be required.

9.2 Choice of Nw and Nq

Default values of the parameters Nw and Nq may be selected by calling E01ZMF with NW � 0 and
NQ � 0. These default values may well be satisfactory for many applications.

If non-default values are required they must be supplied to E01ZMF through positive values of NW and
NQ. Increasing these argument values makes the method less local. This may increase the accuracy of
the resulting interpolant at the expense of increased computational cost. The default values
NW ¼ min 2� Dþ 1ð Þ � Dþ 2ð Þ;M� 1ð Þ and NQ ¼ min Dþ 1ð Þ � Dþ 2ð Þ � 6=5;M� 1ð Þ have been
chosen on the basis of experimental results reported in Renka (1988a) and Berry and Minser (1999).
For further advice on the choice of these arguments see Renka (1988a) and Berry and Minser (1999).

10 Example

This program reads in a set of 30 data points and calls E01ZMF to construct an interpolating function
Q xð Þ. It then calls E01ZNF to evaluate the interpolant at a set of points.
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Note that this example is not typical of a realistic problem: the number of data points would normally
be very much larger.

See also Section 10 in E01ZNF.

10.1 Program Text

Program e01zmfe

! E01ZMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e01zmf, e01znf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: d, i, ifail, liq, lrq, m, n, nq, nw

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), q(:), qx(:,:), rq(:), x(:,:), &

xe(:,:)
Integer, Allocatable :: iq(:)

! .. Executable Statements ..
Write (nout,*) ’E01ZMF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Input the number of nodes.
Read (nin,*) d, m
liq = 2*m + 1
lrq = (d+1)*(d+2)/2*m + 2*d + 1
Allocate (x(d,m),f(m),iq(liq),rq(lrq))

! Input the data points X and F.
Do i = 1, m

Read (nin,*) x(1:d,i), f(i)
End Do

! Generate the interpolant.
nq = 0
nw = 0

ifail = 0
Call e01zmf(d,m,x,f,nw,nq,iq,rq,ifail)

! Input the number of evaluation points.
Read (nin,*) n
Allocate (xe(d,n),q(n),qx(d,n))

! Input the evaluation points.
Do i = 1, n

Read (nin,*) xe(1:d,i)
End Do

! Evaluate the interpolant using E01ZNF.
ifail = 1
Call e01znf(d,m,x,f,iq,rq,n,xe,q,qx,ifail)
If (ifail==0 .Or. ifail==3) Then

If (ifail==3) Then
Write (nout,*) ’Some values below have been extrapolated’
Write (nout,*)

End If
Write (nout,*)
ifail = 0
Call x04caf(’General’,’ ’,d,n,xe,d, &

’Interpolated Evaluation Points (columns)’,ifail)
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Write (nout,*)
Call x04caf(’General’,’ ’,1,n,q,1,’Interpolated values’,ifail)

Else
Write (nout,99999) ’Evaluation routine returned with IFAIL = ’, ifail

End If

99999 Format (1X,A,I4)
End Program e01zmfe

10.2 Program Data

E01ZMF Example Program Data
6 30 D, M number of dimensions and data points
0.81 0.15 0.44 0.83 0.21 0.64 6.39 X, F data point definition
0.91 0.96 0.00 0.09 0.98 0.37 2.50
0.13 0.88 0.22 0.21 0.73 1.00 9.34
0.91 0.49 0.39 0.79 0.47 0.71 7.52
0.63 0.41 0.72 0.68 0.65 0.83 6.91
0.10 0.13 0.77 0.47 0.22 0.09 4.68
0.28 0.93 0.24 0.90 0.96 0.21 45.40
0.55 0.01 0.04 0.41 0.26 0.79 5.48
0.96 0.19 0.95 0.66 0.99 0.68 2.75
0.96 0.32 0.53 0.96 0.84 0.47 7.43
0.16 0.05 0.16 0.30 0.58 0.90 6.05
0.97 0.14 0.36 0.72 0.78 0.06 0.41
0.96 0.73 0.28 0.75 0.28 0.68 8.68
0.49 0.48 0.58 0.19 0.25 0.67 2.38
0.80 0.34 0.64 0.57 0.08 0.13 3.70
0.14 0.24 0.12 0.06 0.63 0.89 1.34
0.42 0.45 0.03 0.68 0.66 0.17 15.18
0.92 0.19 0.48 0.67 0.28 0.54 4.35
0.79 0.32 0.15 0.13 0.40 0.03 1.50
0.96 0.26 0.93 0.89 0.61 0.81 3.43
0.66 0.83 0.41 0.17 0.09 0.60 3.10
0.04 0.70 0.40 0.54 0.37 0.41 14.33
0.85 0.33 0.15 0.03 0.36 5.77 0.35
0.93 0.58 0.88 0.81 0.40 0.66 4.30
0.68 0.29 0.88 0.60 0.47 0.96 3.77
0.76 0.26 0.09 0.41 0.14 0.30 4.16
0.74 0.26 0.33 0.64 0.36 0.72 6.75
0.39 0.68 0.69 0.37 0.12 0.75 5.22
0.66 0.52 0.17 1.00 0.43 0.19 16.23
0.17 0.08 0.35 0.71 0.17 0.57 10.62 End of data points

6 N number of evaluation points
0.10 0.10 0.10 0.10 0.10 0.10 XE evaluation point definition
0.20 0.20 0.20 0.20 0.20 0.20
0.30 0.30 0.30 0.30 0.30 0.30
0.40 0.40 0.40 0.40 0.40 0.40
0.50 0.50 0.50 0.50 0.50 0.50
0.60 0.60 0.60 0.60 0.60 0.60 End of evaluation points

10.3 Program Results

E01ZMF Example Program Results

Interpolated Evaluation Points (columns)
1 2 3 4 5 6

1 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
2 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
3 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
4 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
5 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
6 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

Interpolated values
1 2 3 4 5 6

1 -7.2059 -3.9343 -0.9674 1.6680 3.9251 5.9318
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NAG Library Routine Document

E01ZNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E01ZNF evaluates the multidimensional interpolating function generated by E01ZMF and its first
partial derivatives.

2 Specification

SUBROUTINE E01ZNF (D, M, X, F, IQ, RQ, N, XE, Q, QX, IFAIL)

INTEGER D, M, IQ(2*M+1), N, IFAIL
REAL (KIND=nag_wp) X(D,M), F(M), RQ(*), XE(D,N), Q(N), QX(D,N)

3 Description

E01ZNF takes as input the interpolant Q xð Þ, x 2 R
d of a set of scattered data points xr ; frð Þ, for

r ¼ 1; 2; . . . ;m, as computed by E01ZMF, and evaluates the interpolant and its first partial derivatives
at the set of points xi, for i ¼ 1; 2; . . . ; n.

E01ZNF must only be called after a call to E01ZMF.

E01ZNF is derived from the new implementation of QS3GRD described by Renka (1988). It uses the
modification for high-dimensional interpolation described by Berry and Minser (1999).

4 References

Berry M W, Minser K S (1999) Algorithm 798: high-dimensional interpolation using the modified
Shepard method ACM Trans. Math. Software 25 353–366

Renka R J (1988) Algorithm 661: QSHEP3D: Quadratic Shepard method for trivariate interpolation of
scattered data ACM Trans. Math. Software 14 151–152

5 Arguments

1: D – INTEGER Input

On entry: must be the same value supplied for argument D in the preceding call to E01ZMF.

Constraint: D � 2.

2: M – INTEGER Input

On entry: must be the same value supplied for argument M in the preceding call to E01ZMF.

Constraint: M � Dþ 1ð Þ � Dþ 2ð Þ=2þ 2.

3: XðD;MÞ – REAL (KIND=nag_wp) array Input

Note: the ith ordinate of the point xj is stored in Xði; jÞ.
On entry: must be the same array supplied as argument X in the preceding call to E01ZMF. It
must remain unchanged between calls.
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4: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: must be the same array supplied as argument F in the preceding call to E01ZMF. It
must remain unchanged between calls.

5: IQð2�Mþ 1Þ – INTEGER array Input

On entry: must be the same array returned as argument IQ in the preceding call to E01ZMF. It
must remain unchanged between calls.

6: RQð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RQ must be at least Dþ 1ð Þ � Dþ 2ð Þ=2ð Þ �Mþ 2� Dþ 1.

On entry: must be the same array returned as argument RQ in the preceding call to E01ZMF. It
must remain unchanged between calls.

7: N – INTEGER Input

On entry: n, the number of evaluation points.

Constraint: N � 1.

8: XEðD;NÞ – REAL (KIND=nag_wp) array Input

Note: the ith ordinate of the point xj is stored in XEði; jÞ.
On entry: XEð1 : D; jÞ must be set to the evaluation point xj , for j ¼ 1; 2; . . . ; n.

9: QðNÞ – REAL (KIND=nag_wp) array Output

On exit: QðiÞ contains the value of the interpolant, at xi, for i ¼ 1; 2; . . . ; n. If any of these
evaluation points lie outside the region of definition of the interpolant the corresponding entries
in Q are set to an extrapolated approximation, and E01ZNF returns with IFAIL ¼ 3.

10: QXðD;NÞ – REAL (KIND=nag_wp) array Output

On exit: QXði; jÞ contains the value of the partial derivatives with respect to the ith independent
variable (dimension) of the interpolant Q xð Þ at xj , for j ¼ 1; 2; . . . ; n, and for each of the partial
derivatives i ¼ 1; 2; . . . ; d. If any of these evaluation points lie outside the region of definition of
the interpolant, the corresponding entries in QX are set to extrapolated approximations to the
partial derivatives, and E01ZNF returns with IFAIL ¼ 3.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, D ¼ valueh i.
Constraint: D � 2.

On entry, Dþ 1ð Þ � Dþ 2ð Þ=2ð Þ �Mþ 2� Dþ 1 exceeds the largest machine integer.
D ¼ valueh i and M ¼ valueh i.
On entry, M ¼ valueh i and D ¼ valueh i.
Constraint: M � Dþ 1ð Þ � Dþ 2ð Þ=2þ 2.

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 2

On entry, values in IQ appear to be invalid. Check that IQ has not been corrupted between calls
to E01ZMF and E01ZNF.

On entry, values in RQ appear to be invalid. Check that RQ has not been corrupted between calls
to E01ZMF and E01ZNF.

IFAIL ¼ 3

On entry, at least one evaluation point lies outside the region of definition of the interpolant. At
such points the corresponding values in Q and QX contain extrapolated approximations. Points
should be evaluated one by one to identify extrapolated values.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Computational errors should be negligible in most practical situations.

8 Parallelism and Performance

E01ZNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E01ZNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken for a call to E01ZNF will depend in general on the distribution of the data points. If the
data points are approximately uniformly distributed, then the time taken should be only O nð Þ. At worst
O mnð Þ time will be required.

10 Example

This program evaluates the function (in six variables)

f xð Þ ¼ x1x2x3
1þ 2x4x5x6

at a set of randomly generated data points and calls E01ZMF to construct an interpolating function Qx.
It then calls E01ZNF to evaluate the interpolant at a set of points on the line xi ¼ x, for i ¼ 1; 2; . . . ; 6.
To reduce the time taken by this example, the number of data points is limited. Increasing this value to
the suggested minimum of 4000 improves the interpolation accuracy at the expense of more time.

See also Section 10 in E01ZMF.

10.1 Program Text

! E01ZNF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e01znfe_mod

! E01ZNF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter, Public :: d = 6, nin = 5, nout = 6

Contains
Function funct(x)

! This function evaluates the 6D function funct.

! .. Function Return Value ..
Real (Kind=nag_wp) :: funct

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(d)

! .. Executable Statements ..
funct = x(1)*x(2)*x(3)/(one+two*x(4)*x(5)*x(6))

Return
End Function funct

End Module e01znfe_mod
Program e01znfe

! E01ZNF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e01zmf, e01znf, g05kff, g05saf, nag_wp
Use e01znfe_mod, Only: d, funct, nin, nout

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: lseed = 1
! .. Local Scalars ..

Real (Kind=nag_wp) :: fun
Integer :: genid, i, ifail, liq, lrq, lstate, &

m, n, nq, nw, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: f(:), q(:), qx(:,:), rq(:), x(:,:), &
xe(:,:)

Integer, Allocatable :: iq(:), state(:)
Integer :: seed(lseed)

! .. Intrinsic Procedures ..
Intrinsic :: abs, real

! .. Executable Statements ..
Write (nout,*) ’E01ZNF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seeds
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Input the number of nodes.
Read (nin,*) m
liq = 2*m + 1
lrq = (d+1)*(d+2)/2*m + 2*d + 1
Allocate (x(d,m),f(m),iq(liq),rq(lrq))

! Generate the data points X
ifail = 0
Call g05saf(d*m,state,x,ifail)

! Evaluate F
Do i = 1, m

f(i) = funct(x(1,i))
End Do

! Generate the interpolant using E01ZMF.
nq = 0
nw = 0

ifail = 0
Call e01zmf(d,m,x,f,nw,nq,iq,rq,ifail)

! Input the number of evaluation points.
Read (nin,*) n
Allocate (xe(d,n),q(n),qx(d,n))

! Generate a set of evaluation points lying on diagonal line
! xe(1:d,i) = xe(1,i) = i/(n+1).

Do i = 1, n
xe(1:d,i) = real(i,kind=nag_wp)/real(n+1,kind=nag_wp)

End Do

! Evaluate the interpolant.
ifail = 0
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Call e01znf(d,m,x,f,iq,rq,n,xe,q,qx,ifail)

Write (nout,99997)
Write (nout,99998)
Do i = 1, n

fun = funct(xe(1,i))
Write (nout,99999) i, fun, q(i), abs(fun-q(i))

End Do

99999 Format (1X,I4,1X,3F10.4)
99998 Format (4X,’---|’,20(’-’),’+’,15(’-’))
99997 Format (/,4X,’I |’,2X,’F(I)’,6X,’Q(I)’,4X,’|’,1X,’|F(I)-Q(I)|’)

End Program e01znfe

10.2 Program Data

E01ZNF Example Program Data
1 1 1762543 : genid, subid, seed(1)
120 : M, the number of data points
9 : N, the number of evaluation points

10.3 Program Results

E01ZNF Example Program Results

I | F(I) Q(I) | |F(I)-Q(I)|
---|--------------------+---------------
1 0.0010 0.0050 0.0040
2 0.0079 0.0046 0.0033
3 0.0256 0.0214 0.0042
4 0.0567 0.0537 0.0030
5 0.1000 0.0986 0.0014
6 0.1508 0.1523 0.0015
7 0.2034 0.2071 0.0036
8 0.2530 0.2560 0.0030
9 0.2966 0.2940 0.0025
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NAG Library Chapter Contents

E02 – Curve and Surface Fitting

E02 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

E02ACF 1 nagf_fit_withdraw_1dmmax
Minimax curve fit by polynomials
Note: this routine is scheduled for withdrawal at Mark 27, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

E02ADF 5 nagf_fit_1dcheb_arb
Least squares curve fit, by polynomials, arbitrary data points

E02AEF 5 nagf_fit_1dcheb_eval
Evaluation of fitted polynomial in one variable from Chebyshev series form
(simplified parameter list)

E02AFF 5 nagf_fit_1dcheb_glp
Least squares polynomial fit, special data points (including interpolation)

E02AGF 8 nagf_fit_1dcheb_con
Least squares polynomial fit, values and derivatives may be constrained,
arbitrary data points

E02AHF 8 nagf_fit_1dcheb_deriv
Derivative of fitted polynomial in Chebyshev series form

E02AJF 8 nagf_fit_1dcheb_integ
Integral of fitted polynomial in Chebyshev series form

E02AKF 8 nagf_fit_1dcheb_eval2
Evaluation of fitted polynomial in one variable from Chebyshev series form

E02ALF 25 nagf_1d_minimax_polynomial
Minimax curve fit by polynomials

E02BAF 5 nagf_fit_1dspline_knots
Least squares curve cubic spline fit (including interpolation)

E02BBF 5 nagf_fit_1dspline_eval
Evaluation of fitted cubic spline, function only

E02BCF 7 nagf_fit_1dspline_deriv
Evaluation of fitted cubic spline, function and derivatives

E02BDF 7 nagf_fit_1dspline_integ
Evaluation of fitted cubic spline, definite integral

E02BEF 13 nagf_fit_1dspline_auto
Least squares cubic spline curve fit, automatic knot placement

E02BFF 24 nagf_fit_1dspline_deriv_vector
Evaluation of fitted cubic spline, function and optionally derivatives at a
vector of points

E02CAF 7 nagf_fit_2dcheb_lines
Least squares surface fit by polynomials, data on lines parallel to one
independent coordinate axis

E02CBF 7 nagf_fit_2dcheb_eval
Evaluation of fitted polynomial in two variables

E02DAF 6 nagf_fit_2dspline_panel
Least squares surface fit, bicubic splines

E02DCF 13 nagf_fit_2dspline_grid
Least squares surface fit by bicubic splines with automatic knot placement,
data on rectangular grid
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E02DDF 13 nagf_fit_2dspline_sctr
Least squares surface fit by bicubic splines with automatic knot placement,
scattered data

E02DEF 14 nagf_fit_2dspline_evalv
Evaluation of fitted bicubic spline at a vector of points

E02DFF 14 nagf_fit_2dspline_evalm
Evaluation of fitted bicubic spline at a mesh of points

E02DHF 23 nagf_fit_2dspline_derivm
Evaluation of spline surface at mesh of points with derivatives

E02GAF 7 nagf_fit_glin_l1sol
L1-approximation by general linear function

E02GBF 7 nagf_fit_glinc_l1sol
L1-approximation by general linear function subject to linear inequality
constraints

E02GCF 8 nagf_fit_glin_linf
L1-approximation by general linear function

E02JDF 24 nagf_fit_2dspline_ts_sctr
Spline approximation to a set of scattered data using a two-stage
approximation method

E02JEF 24 nagf_fit_2dspline_ts_evalv
Evaluation at a vector of points of a spline computed by E02JDF

E02JFF 24 nagf_fit_2dspline_ts_evalm
Evaluation at a mesh of points of a spline computed by E02JDF

E02RAF 7 nagf_fit_pade_app
Padé approximants

E02RBF 7 nagf_fit_pade_eval
Evaluation of fitted rational function as computed by E02RAF

E02ZAF 6 nagf_fit_2dspline_sort
Sort two-dimensional data into panels for fitting bicubic splines

E02ZKF 24 nagf_fit_opt_set
Option setting routine

E02ZLF 24 nagf_fit_opt_get
Option getting routine
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1 Scope of the Chapter

The main aim of this chapter is to assist you in finding a function which approximates a set of data
points. Typically the data contain random errors, as of experimental measurement, which need to be
smoothed out. To seek an approximation to the data, it is first necessary to specify for the
approximating function a mathematical form (a polynomial, for example) which contains a number of
unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which
provide the best fit of that particular form. The chapter deals mainly with curve and surface fitting (i.e.,
fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the
fitting function, since these cover the most common needs. However, fitting with other functions and/or
more variables can be undertaken by means of general linear or nonlinear routines (some of which are
contained in other chapters) depending on whether the coefficients in the function occur linearly or
nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first
reading a suitable set of points from the graph.

The chapter also contains routines for evaluating, differentiating and integrating polynomial and spline
curves and surfaces, once the numerical values of their coefficients have been determined.

There is also a routine for computing a Padé approximant of a mathematical function (see Sections 2.6
and 3.8).

2 Background to the Problems

2.1 Preliminary Considerations

In the curve-fitting problems considered in this chapter, we have a dependent variable y and an
independent variable x, and we are given a set of data points xr ; yrð Þ, for r ¼ 1; 2; . . . ;m. The
preliminary matters to be considered in this section will, for simplicity, be discussed in this context of
curve-fitting problems. In fact, however, these considerations apply equally well to surface and higher-
dimensional problems. Indeed, the discussion presented carries over essentially as it stands if, for these
cases, we interpret x as a vector of several independent variables and correspondingly each xr as a
vector containing the rth data value of each independent variable.

We wish, then, to approximate the set of data points as closely as possible with a specified function,
f xð Þ say, which is as smooth as possible: f xð Þ may, for example, be a polynomial. The requirements of
smoothness and closeness conflict, however, and a balance has to be struck between them. Most often,
the smoothness requirement is met simply by limiting the number of coefficients allowed in the fitting
function – for example, by restricting the degree in the case of a polynomial. Given a particular number
of coefficients in the function in question, the fitting routines of this chapter determine the values of the
coefficients such that the ‘distance’ of the function from the data points is as small as possible. The
necessary balance is struck when you compare a selection of such fits having different numbers of
coefficients. If the number of coefficients is too low, the approximation to the data will be poor. If the
number is too high, the fit will be too close to the data, essentially following the random errors and
tending to have unwanted fluctuations between the data points. Between these extremes, there is often a
group of fits all similarly close to the data points and then, particularly when least squares polynomials
are used, the choice is clear: it is the fit from this group having the smallest number of coefficients.

You are in effect minimizing the smoothness measure (i.e., the number of coefficients) subject to the
distance from the data points being acceptably small. Some of the routines, however, do this task
themselves. They use a different measure of smoothness (in each case one that is continuous) and
minimize it subject to the distance being less than a threshold specified by you. This is a much more
automatic process, requiring only some experimentation with the threshold.

2.1.1 Fitting criteria: norms

A measure of the above ‘distance’ between the set of data points and the function f xð Þ is needed. The
distance from a single data point xr; yrð Þ to the function can simply be taken as

�r ¼ yr � f xrð Þ; ð1Þ

and is called the residual of the point. (With this definition, the residual is regarded as a function of the
coefficients contained in f xð Þ; however, the term is also used to mean the particular value of �r which

E02 – Curve and Surface Fitting Introduction – E02

Mark 26 E02.3



corresponds to the fitted values of the coefficients.) However, we need a measure of distance for the set
of data points as a whole. Three different measures are used in the different routines (which measure to
select, according to circumstances, is discussed later in this sub-section). With �r defined in (1), these
measures, or norms, are Xm

r¼1
�rj j; ð2Þ

ffiffiffiffiffiffiffiffiffiffiffiXm
r¼1

�2r

s
; ð3Þ

and

max
r

�rj j; ð4Þ

respectively the ‘1 norm, the ‘2 norm and the ‘1 norm.

Minimization of one or other of these norms usually provides the fitting criterion, the minimization
being carried out with respect to the coefficients in the mathematical form used for f xð Þ: with respect to
the bi for example if the mathematical form is the power series in (8) below. The fit which results from
minimizing (2) is known as the ‘1 fit, or the fit in the ‘1 norm: that which results from minimizing (3) is
the ‘2 fit, the well-known least squares fit (minimizing (3) is equivalent to minimizing the square of (3),
i.e., the sum of squares of residuals, and it is the latter which is used in practice), and that from
minimizing (4) is the ‘1, or minimax, fit.

Strictly speaking, implicit in the use of the above norms are the statistical assumptions that the random
errors in the yr are independent of one another and that any errors in the xr are negligible by
comparison. From this point of view, the use of the ‘2 norm is appropriate when the random errors in
the yr have a Normal distribution, and the ‘1 norm is appropriate when they have a rectangular
distribution, as when fitting a table of values rounded to a fixed number of decimal places. The ‘1 norm
is appropriate when the error distribution has its frequency function proportional to the negative
exponential of the modulus of the normalized error – not a common situation.

However, it may be that you are indifferent to these statistical considerations, and simply seek a fit
which can be assessed by inspection, perhaps visually from a graph of the results. In this event, the ‘1
norm is particularly appropriate when the data are thought to contain some ‘wild’ points (since fitting in
this norm tends to be unaffected by the presence of a small number of such points), though of course in
simple situations you may prefer to identify and reject these points. The ‘1 norm should be used only
when the maximum residual is of particular concern, as may be the case for example when the data
values have been obtained by accurate computation, as of a mathematical function. Generally, however,
a routine based on least squares should be preferred, as being computationally faster and usually
providing more information on which to assess the results. In many problems the three fits will not
differ significantly for practical purposes.

Some of the routines based on the ‘2 norm do not minimize the norm itself but instead minimize some
(intuitively acceptable) measure of smoothness subject to the norm being less than a user-specified
threshold. These routines fit with cubic or bicubic splines (see (10) and (14) below) and the smoothing
measures relate to the size of the discontinuities in their third derivatives. A much more automatic
fitting procedure follows from this approach.

2.1.2 Weighting of data points

The use of the above norms also assumes that the data values yr are of equal (absolute) accuracy. Some
of the routines enable an allowance to be made to take account of differing accuracies. The allowance
takes the form of ‘weights’ applied to the y values so that those values known to be more accurate have
a greater influence on the fit than others. These weights, to be supplied by you, should be calculated
from estimates of the absolute accuracies of the y values, these estimates being expressed as standard
deviations, probable errors or some other measure which has the same dimensions as y. Specifically, for
each yr the corresponding weight wr should be inversely proportional to the accuracy estimate of yr.
For example, if the percentage accuracy is the same for all yr, then the absolute accuracy of yr is
proportional to yr (assuming yr to be positive, as it usually is in such cases) and so wr ¼ K=yr , for
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r ¼ 1; 2; . . . ;m, for an arbitrary positive constant K. (This definition of weight is stressed because often
weight is defined as the square of that used here.) The norms (2), (3) and (4) above are then replaced
respectively by Xm

r¼1
wr�rj j; ð5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
r¼1

w2
r�

2
r

s
; ð6Þ

and

max
r

wr�rj j: ð7Þ

Again it is the square of (6) which is used in practice rather than (6) itself.

2.2 Curve Fitting

When, as is commonly the case, the mathematical form of the fitting function is immaterial to the
problem, polynomials and cubic splines are to be preferred because their simplicity and ease of
handling confer substantial benefits. The cubic spline is the more versatile of the two. It consists of a
number of cubic polynomial segments joined end to end with continuity in first and second derivatives
at the joins. The third derivative at the joins is in general discontinuous. The x values of the joins are
called knots, or, more precisely, interior knots. Their number determines the number of coefficients in
the spline, just as the degree determines the number of coefficients in a polynomial.

2.2.1 Representation of polynomials

Two different forms for representing a polynomial are used in different routines. One is the usual
power-series form

f xð Þ 	 b0 þ b1xþ b2x2 þ � � � þ bkxk: ð8Þ

The other is the Chebyshev series form

f xð Þ 	 1
2a0T0 xð Þ þ a1T1 xð Þ þ a2T2 xð Þ þ � � � þ akTk xð Þ; ð9Þ

where Ti xð Þ is the Chebyshev polynomial of the first kind of degree i (see page 9 of Cox and Hayes
(1973)), and where the range of x has been normalized to run from �1 to þ1. The use of either form
leads theoretically to the same fitted polynomial, but in practice results may differ substantially because
of the effects of rounding error. The Chebyshev form is to be preferred, since it leads to much better
accuracy in general, both in the computation of the coefficients and in the subsequent evaluation of the
fitted polynomial at specified points. This form also has other advantages: for example, since the later
terms in (9) generally decrease much more rapidly from left to right than do those in (8), the situation is
more often encountered where the last terms are negligible and it is obvious that the degree of the
polynomial can be reduced (note that on the interval �1 � x � 1 for all i, Ti xð Þ attains the value unity
but never exceeds it, so that the coefficient ai gives directly the maximum value of the term containing
it). If the power-series form is used it is most advisable to work with the variable x normalized to the
range �1 to þ1, carrying out the normalization before entering the relevant routine. This will often
substantially improve computational accuracy.

2.2.2 Representation of cubic splines

A cubic spline is represented in the form

f xð Þ 	 c1N1 xð Þ þ c2N2 xð Þ þ � � � þ cpNp xð Þ; ð10Þ

where Ni xð Þ, for i ¼ 1; 2; . . . ; p, is a normalized cubic B-spline (see Hayes (1974)). This form, also, has
advantages of computational speed and accuracy over alternative representations.
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2.3 Surface Fitting

There are now two independent variables, and we shall denote these by x and y. The dependent
variable, which was denoted by y in the curve-fitting case, will now be denoted by f. (This is a rather
different notation from that indicated for the general-dimensional problem in the first paragraph of
Section 2.1, but it has some advantages in presentation.)

Again, in the absence of contrary indications in the particular application being considered, polynomials
and splines are the approximating functions most commonly used.

2.3.1 Representation of bivariate polynomials

The type of bivariate polynomial currently considered in the chapter can be represented in either of the
two forms

f x; yð Þ 	
Xk
i¼0

X‘
j¼0

bijx
iyj; ð11Þ

and

f x; yð Þ 	
Xk
i¼0

X‘
j¼0

aijTi xð ÞTj yð Þ; ð12Þ

where Ti xð Þ is the Chebyshev polynomial of the first kind of degree i in the parameter x (see page 9 of
Cox and Hayes (1973)), and correspondingly for Tj yð Þ. The prime on the two summation signs,
following standard convention, indicates that the first term in each sum is halved, as shown for one
variable in equation (9). The two forms (11) and (12) are mathematically equivalent, but again the
Chebyshev form is to be preferred on numerical grounds, as discussed in Section 2.2.1.

2.3.2 Bicubic splines: definition and representation

The bicubic spline is defined over a rectangle R in the x; yð Þ plane, the sides of R being parallel to the
x and y axes. R is divided into rectangular panels, again by lines parallel to the axes. Over each panel
the bicubic spline is a bicubic polynomial, that is it takes the formX3

i¼0

X3
j¼0

aijx
iyj: ð13Þ

Each of these polynomials joins the polynomials in adjacent panels with continuity up to the second
derivative. The constant x values of the dividing lines parallel to the y-axis form the set of interior
knots for the variable x, corresponding precisely to the set of interior knots of a cubic spline. Similarly,
the constant y values of dividing lines parallel to the x-axis form the set of interior knots for the
variable y. Instead of representing the bicubic spline in terms of the above set of bicubic polynomials,
however, it is represented, for the sake of computational speed and accuracy, in the form

f x; yð Þ ¼
Xp
i¼1

Xq
j¼1

cijMi xð ÞNj yð Þ; ð14Þ

where Mi xð Þ, for i ¼ 1; 2; . . . ; p, and Nj yð Þ, for j ¼ 1; 2; . . . ; q, are normalized B-splines (see Hayes and
Halliday (1974) for further details of bicubic splines and Hayes (1974) for normalized B-splines).

2.4 General Linear and Nonlinear Fitting Functions

We have indicated earlier that, unless the data-fitting application under consideration specifically
requires some other type of fit, a polynomial or a spline is usually to be preferred. Special routines for
these types, in one and in two variables, are provided in this chapter. When the application does specify
some other form of fitting, however, it may be treated by a routine which deals with a general linear
function, or by one for a general nonlinear function, depending on whether the coefficients occur
linearly or nonlinearly.
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The general linear fitting function can be written in the form

f xð Þ 	 c1
1 xð Þ þ c2
2 xð Þ þ � � � þ cp
p xð Þ; ð15Þ

where x is a vector of one or more independent variables, and the 
i are any given functions of these
variables (though they must be linearly independent of one another if there is to be the possibility of a
unique solution to the fitting problem). This is not intended to imply that each 
i is necessarily a
function of all the variables: we may have, for example, that each 
i is a function of a different single
variable, and even that one of the 
i is a constant. All that is required is that a value of each 
i xð Þ can
be computed when a value of each independent variable is given.

When the fitting function f xð Þ is not linear in its coefficients, no more specific representation is
available in general than f xð Þ itself. However, we shall find it helpful later on to indicate the fact that
f xð Þ contains a number of coefficients (to be determined by the fitting process) by using instead the
notation f x; cð Þ, where c denotes the vector of coefficients. An example of a nonlinear fitting function is

f x; cð Þ 	 c1 þ c2 exp �c4xð Þ þ c3 exp �c5xð Þ; ð16Þ

which is in one variable and contains five coefficients. Note that here, as elsewhere in this Chapter
Introduction, we use the term ‘coefficients’ to include all the quantities whose values are to be
determined by the fitting process, not just those which occur linearly. We may observe that it is only the
presence of the coefficients c4 and c5 which makes the form (16) nonlinear. If the values of these two
coefficients were known beforehand, (16) would instead be a linear function which, in terms of the
general linear form (15), has p ¼ 3 and


1 xð Þ 	 1; 
2 xð Þ 	 exp �c4xð Þ; and 
3 xð Þ 	 exp �c5xð Þ:

We may note also that polynomials and splines, such as (9) and (14), are themselves linear in their
coefficients. Thus if, when fitting with these functions, a suitable special routine is not available (as
when more than two independent variables are involved or when fitting in the ‘1 norm), it is appropriate
to use a routine designed for a general linear function.

2.5 Constrained Problems

So far, we have considered only fitting processes in which the values of the coefficients in the fitting
function are determined by an unconstrained minimization of a particular norm. Some fitting problems,
however, require that further restrictions be placed on the determination of the coefficient values.
Sometimes these restrictions are contained explicitly in the formulation of the problem in the form of
equalities or inequalities which the coefficients, or some function of them, must satisfy. For example, if
the fitting function contains a term A exp �kxð Þ, it may be required that k � 0. Often, however, the
equality or inequality constraints relate to the value of the fitting function or its derivatives at specified
values of the independent variable(s), but these too can be expressed in terms of the coefficients of the
fitting function, and it is appropriate to do this if a general linear or nonlinear routine is being used. For
example, if the fitting function is that given in (10), the requirement that the first derivative of the
function at x ¼ x0 be non-negative can be expressed as

c1N
0
1 x0ð Þ þ c2N 02 x0ð Þ þ � � � þ cpN 0p x0ð Þ � 0; ð17Þ

where the prime denotes differentiation with respect to x and each derivative is evaluated at x ¼ x0. On
the other hand, if the requirement had been that the derivative at x ¼ x0 be exactly zero, the inequality
sign in (17) would be replaced by an equality.

Routines which provide a facility for minimizing the appropriate norm subject to such constraints are
discussed in Section 3.6.

2.6 Padé Approximants

A Padé approximant to a function f xð Þ is a rational function (ratio of two polynomials) whose
Maclaurin series expansion is the same as that of f xð Þ up to and including the term in xk, where k is
the sum of the degrees of the numerator and denominator of the approximant. Padé approximation can
be a useful technique when values of a function are to be obtained from its Maclaurin series but
convergence of the series is unacceptably slow or even nonexistent.
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3 Recommendations on Choice and Use of Available Routines

3.1 General

The choice of a routine to treat a particular fitting problem will depend first of all on the fitting function
and the norm to be used. Unless there is good reason to the contrary, the fitting function should be a
polynomial or a cubic spline (in the appropriate number of variables) and the norm should be the ‘2
norm (leading to the least squares fit). If some other function is to be used, the choice of routine will
depend on whether the function is nonlinear (in which case see Section 3.5.2) or linear in its
coefficients (see Section 3.5.1), and, in the latter case, on whether the ‘1, ‘2 or ‘1 norm is to be used.
The latter section is appropriate for polynomials and splines, too, if the ‘1 or ‘1 norm is preferred, with
one exception: there is a special routine for fitting polynomial curves in the unweighted ‘1 norm (see
Section 3.2.3).

In the case of a polynomial or cubic spline, if there is only one independent variable, you should choose
a spline (see Section 3.3) when the curve represented by the data is of complicated form, perhaps with
several peaks and troughs. When the curve is of simple form, first try a polynomial (see Section 3.2) of
low degree, say up to degree 5 or 6, and then a spline if the polynomial fails to provide a satisfactory
fit. (Of course, if third-derivative discontinuities are unacceptable, a polynomial is the only choice.) If
the problem is one of surface fitting, the polynomial routine (see Section 3.4.1) should be tried first if
the data arrangement happens to be appropriate, otherwise one of the spline routines (see Section 3.4.3).
If the problem has more than two independent variables, it may be treated by the general linear routine
in Section 3.5.1, again using a polynomial in the first instance.

Another factor which affects the choice of routine is the presence of constraints, as previously discussed
on Section 2.5. Indeed this factor is likely to be overriding at present, because of the limited number of
routines which have the necessary facility. Consequently those routines have been grouped together for
discussion in Section 3.6.

3.1.1 Data considerations

A satisfactory fit cannot be expected by any means if the number and arrangement of the data points do
not adequately represent the character of the underlying relationship: sharp changes in behaviour, in
particular, such as sharp peaks, should be well covered. Data points should extend over the whole range
of interest of the independent variable(s): extrapolation outside the data ranges is most unwise. Then,
with polynomials, it is advantageous to have additional points near the ends of the ranges, to counteract
the tendency of polynomials to develop fluctuations in these regions. When, with polynomial curves,
you can precisely choose the x values of the data, the special points defined in Section 3.2.2 should be
selected. With polynomial surfaces, each of these same x values should, where possible, be combined
with each of a corresponding set of y values (not necessarily with the same value of n), thus forming a
rectangular grid of x; yð Þ-values. With splines the choice is less critical as long as the character of the
relationship is adequately represented. All fits should be tested graphically before accepting them as
satisfactory.

For this purpose it should be noted that it is not sufficient to plot the values of the fitted function only at
the data values of the independent variable(s); at the least, its values at a similar number of intermediate
points should also be plotted, as unwanted fluctuations may otherwise go undetected. Such fluctuations
are the less likely to occur the lower the number of coefficients chosen in the fitting function. No firm
guide can be given, but as a rough rule, at least initially, the number of coefficients should not exceed
half the number of data points (points with equal or nearly equal values of the independent variable, or
both independent variables in surface fitting, counting as a single point for this purpose). However, the
situation may be such, particularly with a small number of data points, that a satisfactorily close fit to
the data cannot be achieved without unwanted fluctuations occurring. In such cases, it is often possible
to improve the situation by a transformation of one or more of the variables, as discussed in the next
section: otherwise it will be necessary to provide extra data points. Further advice on curve-fitting is
given in Cox and Hayes (1973) and, for polynomials only, in Hayes (1970). Much of the advice applies
also to surface fitting; see also the routine documents.
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3.1.2 Transformation of variables

Before starting the fitting, consideration should be given to the choice of a good form in which to deal
with each of the variables: often it will be satisfactory to use the variables as they stand, but sometimes
the use of the logarithm, square root, or some other function of a variable will lead to a better-behaved
relationship. This question is customarily taken into account in preparing graphs and tables of a
relationship and the same considerations apply when curve or surface fitting. The practical context will
often give a guide. In general, it is best to avoid having to deal with a relationship whose behaviour in
one region is radically different from that in another. A steep rise at the left-hand end of a curve, for
example, can often best be treated by curve-fitting in terms of log xþ cð Þ with some suitable value of
the constant c. A case when such a transformation gave substantial benefit is discussed in page 60 of
Hayes (1970). According to the features exhibited in any particular case, transformation of either
dependent variable or independent variable(s) or both may be beneficial. When there is a choice it is
usually better to transform the independent variable(s): if the dependent variable is transformed, the
weights attached to the data points must be adjusted. Thus (denoting the dependent variable by y, as in
the notation for curves) if the yr to be fitted have been obtained by a transformation y ¼ g Yð Þ from
original data values Yr, with weights Wr , for r ¼ 1; 2; . . . ;m, we must take

wr ¼ Wr= dy=dYð Þ; ð18Þ

where the derivative is evaluated at Yr. Strictly, the transformation of Y and the adjustment of weights
are valid only when the data errors in the Yr are small compared with the range spanned by the Yr, but
this is usually the case.

3.2 Polynomial Curves

3.2.1 Least squares polynomials: arbitrary data points

E02ADF fits to arbitrary data points, with arbitrary weights, polynomials of all degrees up to a
maximum degree k, which is a choice. If you are seeking only a low-degree polynomial, up to degree 5
or 6 say, k ¼ 10 is an appropriate value, providing there are about 20 data points or more. To assist in
deciding the degree of polynomial which satisfactorily fits the data, the routine provides the root-mean-
square residual si for all degrees i ¼ 1; 2; . . . ; k. In a satisfactory case, these si will decrease steadily as
i increases and then settle down to a fairly constant value, as shown in the example

i si
0 3:5215
1 0:7708
2 0:1861
3 0:0820
4 0:0554
5 0:0251
6 0:0264
7 0:0280
8 0:0277
9 0:0297

10 0:0271

If the si values settle down in this way, it indicates that the closest polynomial approximation justified
by the data has been achieved. The degree which first gives the approximately constant value of si
(degree 5 in the example) is the appropriate degree to select. (If you are prepared to accept a fit higher
than sixth degree you should simply find a high enough value of k to enable the type of behaviour
indicated by the example to be detected: thus you should seek values of k for which at least 4 or 5
consecutive values of si are approximately the same.) If the degree were allowed to go high enough, si
would, in most cases, eventually start to decrease again, indicating that the data points are being fitted
too closely and that undesirable fluctuations are developing between the points. In some cases,
particularly with a small number of data points, this final decrease is not distinguishable from the initial
decrease in si. In such cases, you may seek an acceptable fit by examining the graphs of several of the
polynomials obtained. Failing this, you may (a) seek a transformation of variables which improves the
behaviour, (b) try fitting a spline, or (c) provide more data points. If data can be provided simply by
drawing an approximating curve by hand and reading points from it, use the points discussed in
Section 3.2.2.
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3.2.2 Least squares polynomials: selected data points

When you are at liberty to choose the x values of data points, such as when the points are taken from a
graph, it is most advantageous when fitting with polynomials to use the values xr ¼ cos 	r=nð Þ, for
r ¼ 0; 1; . . . ; n for some value of n, a suitable value for which is discussed at the end of this section.
Note that these xr relate to the variable x after it has been normalized so that its range of interest is �1
to þ1. E02ADF may then be used as in Section 3.2.1 to seek a satisfactory fit. However, if the ordinate
values are of equal weight, as would often be the case when they are read from a graph, E02AFF is to
be preferred, as being simpler to use and faster. This latter algorithm provides the coefficients aj , for
j ¼ 0; 1; . . . ; n, in the Chebyshev series form of the polynomial of degree n which interpolates the data.
In a satisfactory case, the later coefficients in this series, after some initial significant ones, will exhibit
a random behaviour, some positive and some negative, with a size about that of the errors in the data or
less. All these ‘random’ coefficients should be discarded, and the remaining (initial) terms of the series
be taken as the approximating polynomial. This truncated polynomial is a least squares fit to the data,
though with the point at each end of the range given half the weight of each of the other points. The
following example illustrates a case in which degree 5 or perhaps 6 would be chosen for the
approximating polynomial.

j aj
0 9:315
1 �8:030
2 0:303
3 �1:483
4 0:256
5 �0:386
6 0:076
7 0:022
8 0:014
9 0:005

10 0:011
11 �0:040
12 0:017
13 �0:054
14 0:010
15 �0:034
16 �0:001

Basically, the value of n used needs to be large enough to exhibit the type of behaviour illustrated in
the above example. A value of 16 is suggested as being satisfactory for very many practical problems,
the required cosine values for this value of n being given on page 11 of Cox and Hayes (1973). If a
satisfactory fit is not obtained, a spline fit should be tried, or, if you are prepared to accept a higher
degree of polynomial, n should be increased: doubling n is an advantageous strategy, since the set of
values cos 	r=nð Þ, for r ¼ 0; 1; . . . ; n, contains all the values of cos 	r=2nð Þ, for r ¼ 0; 1; . . . ; n, so that
the old dataset will then be re-used in the new one. Thus, for example, increasing n from 16 to 32 will
require only 16 new data points, a smaller number than for any other increase of n. If data points are
particularly expensive to obtain, a smaller initial value than 16 may be tried, provided you are satisfied
that the number is adequate to reflect the character of the underlying relationship. Again, the number
should be doubled if a satisfactory fit is not obtained.

3.2.3 Minimax space polynomials

E02ALF determines the polynomial of given degree which is a minimax space fit to arbitrary data
points with equal weights. (If unequal weights are required, the polynomial must be treated as a general
linear function and fitted using E02GCF.) To arrive at a satisfactory degree it will be necessary to try
several different degrees and examine the results graphically. Initial guidance can be obtained from the
value of the maximum residual: this will vary with the degree of the polynomial in very much the same
way as does si in least squares fitting, but it is much more expensive to investigate this behaviour in the
same detail.

The algorithm uses the power-series form of the polynomial so for numerical accuracy it is advisable to
normalize the data range of x to �1; 1½ �.
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3.3 Cubic Spline Curves

3.3.1 Least squares cubic splines

E02BAF fits to arbitrary data points, with arbitrary weights, a cubic spline with interior knots specified
by you. The choice of these knots so as to give an acceptable fit must largely be a matter of trial and
error, though with a little experience a satisfactory choice can often be made after one or two trials. It is
usually best to start with a small number of knots (too many will result in unwanted fluctuations in the
fit, or even in there being no unique solution) and, examining the fit graphically at each stage, to add a
few knots at a time at places where the fit is particularly poor. Moving the existing knots towards these
places will also often improve the fit. In regions where the behaviour of the curve underlying the data is
changing rapidly, closer knots will be needed than elsewhere. Otherwise, positioning is not usually very
critical and equally-spaced knots are often satisfactory. See also the next section, however.

A useful feature of the routine is that it can be used in applications which require the continuity to be
less than the normal continuity of the cubic spline. For example, the fit may be required to have a
discontinuous slope at some point in the range. This can be achieved by placing three coincident knots
at the given point. Similarly a discontinuity in the second derivative at a point can be achieved by
placing two knots there. Analogy with these discontinuous cases can provide guidance in more usual
cases: for example, just as three coincident knots can produce a discontinuity in slope, so three close
knots can produce a rapid change in slope. The closer the knots are, the more rapid can the change be.

An example set of data is given in Figure 1. It is a rather tricky set, because of the scarcity of data on
the right, but it will serve to illustrate some of the above points and to show some of the dangers to be
avoided. Three interior knots (indicated by the vertical lines at the top of the diagram) are chosen as a
start. We see that the resulting curve is not steep enough in the middle and fluctuates at both ends,
severely on the right. The spline is unable to cope with the shape and more knots are needed.
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Figure 3

In Figure 2, three knots have been added in the centre, where the data shows a rapid change in
behaviour, and one further out at each end, where the fit is poor. The fit is still poor, so a further knot is
added in this region and, in Figure 3, disaster ensues in rather spectacular fashion.

The reason is that, at the right-hand end, the fits in Figures 1 and 2 have been interpreted as poor
simply because of the fluctuations about the curve underlying the data (or what it is naturally assumed
to be). But the fitting process knows only about the data and nothing else about the underlying curve, so
it is important to consider only closeness to the data when deciding goodness-of-fit.

Thus, in Figure 1, the curve fits the last two data points quite well compared with the fit elsewhere, so
no knot should have been added in this region. In Figure 2, the curve goes exactly through the last two
points, so a further knot is certainly not needed here.

Figure 4 shows what can be achieved without the extra knot on each of the flat regions. Remembering
that within each knot interval the spline is a cubic polynomial, there is really no need to have more than
one knot interval covering each flat region.

× × × × × × × × × ×
×

×
×
×

×

×

×

×

×
× ×× × ×

Figure 4

What we have, in fact, in Figures 2 and 3 is a case of too many knots (so too many coefficients in the
spline equation) for the number of data points. The warning in the second paragraph of Section 2.1 was
that the fit will then be too close to the data, tending to have unwanted fluctuations between the data
points. The warning applies locally for splines, in the sense that, in localities where there are plenty of
data points, there can be a lot of knots, as long as there are few knots where there are few points,
especially near the ends of the interval. In the present example, with so few data points on the right,
just the one extra knot in Figure 2 is too many! The signs are clearly present, with the last two points
fitted exactly (at least to the graphical accuracy and actually much closer than that) and fluctuations
within the last two knot-intervals (see Figure 1, where only the final point is fitted exactly and one of
the wobbles spans several data points).

The situation in Figure 3 is different. The fit, if computed exactly, would still pass through the last two
data points, with even more violent fluctuations. However, the problem has become so ill-conditioned
that all accuracy has been lost. Indeed, if the last interior knot were moved a tiny amount to the right,
there would be no unique solution and an error message would have been caused. Near-singularity is,
sadly, not picked up by the routine, but can be spotted readily in a graph, as Figure 3. B-spline
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coefficients becoming large, with alternating signs, is another indication. However, it is better to avoid
such situations, firstly by providing, whenever possible, data adequately covering the range of interest,
and secondly by placing knots only where there is a reasonable amount of data.

The example here could, in fact, have utilized from the start the observation made in the second
paragraph of this section, that three close knots can produce a rapid change in slope. The example has
two such rapid changes and so requires two sets of three close knots (in fact, the two sets can be so
close that one knot can serve in both sets, so only five knots prove sufficient in Figure 4). It should be
noted, however, that the rapid turn occurs within the range spanned by the three knots. This is the
reason that the six knots in Figure 2 are not satisfactory as they do not quite span the two turns.

Some more examples to illustrate the choice of knots are given in Cox and Hayes (1973).

3.3.2 Automatic fitting with cubic splines

E02BEF fits cubic splines to arbitrary data points with arbitrary weights but itself chooses the number
and positions of the knots. You have to supply only a threshold for the sum of squares of residuals. The
routine first builds up a knot set by a series of trial fits in the ‘2 norm. Then, with the knot set decided,
the final spline is computed to minimize a certain smoothing measure subject to satisfaction of the
chosen threshold. Thus it is easier to use than E02BAF (see the previous section), requiring only some
experimentation with this threshold. It should therefore be first choice unless you have a preference for
the ordinary least squares fit or, for example, if you wish to experiment with knot positions, trying to
keep their number down (E02BEF aims only to be reasonably frugal with knots).

3.4 Polynomial and Spline Surfaces

3.4.1 Least squares polynomials

E02CAF fits bivariate polynomials of the form (12), with k and ‘ specified by you, to data points in a
particular, but commonly occurring, arrangement. This is such that, when the data points are plotted in
the plane of the independent variables x and y, they lie on lines parallel to the x-axis. Arbitrary weights
are allowed. The matter of choosing satisfactory values for k and ‘ is discussed in Section 9 in
E02CAF.

3.4.2 Least squares bicubic splines

E02DAF fits to arbitrary data points, with arbitrary weights, a bicubic spline with its two sets of interior
knots specified by you. For choosing these knots, the advice given for cubic splines, in Section 3.3.1
above, applies here too (see also the next section, however). If changes in the behaviour of the surface
underlying the data are more marked in the direction of one variable than of the other, more knots will
be needed for the former variable than the latter. Note also that, in the surface case, the reduction in
continuity caused by coincident knots will extend across the whole spline surface: for example, if three
knots associated with the variable x are chosen to coincide at a value L, the spline surface will have a
discontinuous slope across the whole extent of the line x ¼ L.
With some sets of data and some choices of knots, the least squares bicubic spline will not be unique.
This will not occur, with a reasonable choice of knots, if the rectangle R is well covered with data
points: here R is defined as the smallest rectangle in the x; yð Þ plane, with sides parallel to the axes,
which contains all the data points. Where the least squares solution is not unique, the minimal least
squares solution is computed, namely that least squares solution which has the smallest value of the
sum of squares of the B-spline coefficients cij (see the end of Section 2.3.2 above). This choice of least
squares solution tends to minimize the risk of unwanted fluctuations in the fit. The fit will not be
reliable, however, in regions where there are few or no data points.

3.4.3 Automatic fitting with bicubic splines

E02DDF fits bicubic splines to arbitrary data points with arbitrary weights but chooses the knot sets
itself. You have to supply only a threshold for the sum of squares of residuals. Just like the automatic
curve, E02BEF (see Section 3.3.2), E02DDF then builds up the knot sets and finally fits a spline
minimizing a smoothing measure subject to satisfaction of the threshold. Again, this easier to use
routine is normally to be preferred, at least in the first instance.
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E02DCF is a very similar routine to E02DDF but deals with data points of equal weight which lie on a
rectangular mesh in the x; yð Þ plane. This kind of data allows a very much faster computation and so is
to be preferred when applicable. Substantial departures from equal weighting can be ignored if you are
not concerned with statistical questions, though the quality of the fit will suffer if this is taken too far.
In such cases, you should revert to E02DDF.

3.4.4 Large data sets

For fitting large sets of equally weighted, arbitrary data points, E02JDF provides a two stage method
where local, least squares, polynomial fits are extended to form a C1 surface.

3.5 General Linear and Nonlinear Fitting Functions

3.5.1 General linear functions

For the general linear function (15), routines are available for fitting in all three norms. The least
squares routines (which are to be preferred unless there is good reason to use another norm – see
Section 2.1.1) are in Chapters F04 and F08. The ‘1 routine is E02GCF. Two routines for the ‘1 norm
are provided, E02GAF and E02GBF. Of these two, the former should be tried in the first instance, since
it will be satisfactory in most cases, has a much shorter code and is faster. E02GBF, however, uses a
more stable computational algorithm and therefore may provide a solution when E02GAF fails to do so.
It also provides a facility for imposing linear inequality constraints on the solution (see Section 3.6).

All the above routines are essentially linear algebra routines, and in considering their use we need to
view the fitting process in a slightly different way from hitherto. Taking y to be the dependent variable
and x the vector of independent variables, we have, as for equation (1) but with each xr now a vector,

�r ¼ yr � f xrð Þ; r ¼ 1; 2; . . . ;m:

Substituting for f xð Þ the general linear form (15), we can write this as

c1
1 xrð Þ þ c2
2 xrð Þ þ � � � þ cp
p xrð Þ ¼ yr � �r; r ¼ 1; 2; . . . ;m: ð19Þ

Thus we have a system of linear equations in the coefficients cj. Usually, in writing these equations, the
�r are omitted and simply taken as implied. The system of equations is then described as an
overdetermined system (since we must have m � p if there is to be the possibility of a unique solution
to our fitting problem), and the fitting process of computing the cj to minimize one or other of the
norms (2), (3) and (4) can be described, in relation to the system of equations, as solving the
overdetermined system in that particular norm. In matrix notation, the system can be written as

�c ¼ y; ð20Þ

where � is the m by p matrix whose element in row r and column j is 
j xrð Þ, for r ¼ 1; 2; . . . ;m and
j ¼ 1; 2; . . . ; p. The vectors c and y respectively contain the coefficients cj and the data values yr.

All four routines, however, use the standard notation of linear algebra, the overdetermined system of
equations being denoted by

Ax ¼ b: ð21Þ

(In fact, F04AMF can deal with several right-hand sides simultaneously, and thus is concerned with a
matrix of right-hand sides, denoted by B, instead of the single vector b, and correspondingly with a
matrix X of solutions instead of the single vector x.) The correspondence between this notation and that
which we have used for the data-fitting problem (20) is therefore given by

A 	 �;
x 	 c;
b 	 y:

ð22Þ

Note that the norms used by these routines are the unweighted norms (2), (3) and (4). If you wish to
apply weights to the data points, that is to use the norms (5), (6) or (7), the equivalences (22) should be
replaced by
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A 	 D�;
x 	 c;
b 	 Dy;

where D is a diagonal matrix with wr as the rth diagonal element. Here wr , for r ¼ 1; 2; . . . ;m, is the
weight of the rth data point as defined in Section 2.1.2.

3.5.2 Nonlinear functions

Routines for fitting with a nonlinear function in the ‘2 norm are provided in Chapter E04. Consult the
E04 Chapter Introduction for the appropriate choice of routine. Again, however, the notation adopted is
different from that we have used for data fitting. In the latter, we denote the fitting function by f x; cð Þ,
where x is the vector of independent variables and c is the vector of coefficients, whose values are to be
determined. The squared ‘2 norm, to be minimized with respect to the elements of c, is thenXm

r¼1
w2
r yr � f xr; cð Þ½ �2 ð23Þ

where yr is the rth data value of the dependent variable, xr is the vector containing the rth values of the
independent variables, and wr is the corresponding weight as defined in Section 2.1.2.

On the other hand, in the nonlinear least squares routines of Chapter E04, the function to be minimized
is denoted by Xm

i¼1
f2i xð Þ; ð24Þ

the minimization being carried out with respect to the elements of the vector x. The correspondence
between the two notations is given by

x 	 c and fi xð Þ 	 wr yr � f xr; cð Þ½ �; i ¼ r ¼ 1; 2; . . . ;m:

Note especially that the vector x of variables of the nonlinear least squares routines is the vector c of
coefficients of the data-fitting problem, and in particular that, if the selected routine requires derivatives
of the fi xð Þ to be provided, these are derivatives of wr yr � f xr; cð Þ½ � with respect to the coefficients of
the data-fitting problem.

3.6 Constraints

At present, there are only a limited number of routines which fit subject to constraints. E02GBF allows
the imposition of linear inequality constraints (the inequality (17) for example) when fitting with the
general linear function in the ‘1 norm. In addition, Chapter E04 contains a routine, E04USF/E04USA,
which can be used for fitting with a nonlinear function in the ‘2 norm subject to general equality or
inequality constraints.

The remaining two constraint routines relate to fitting with polynomials in the ‘2 norm. E02AGF deals
with polynomial curves and allows precise values of the fitting function and (if required) all its
derivatives up to a given order to be prescribed at one or more values of the independent variable. The
related surface-fitting E02CAF, designed for data on lines as discussed in Section 3.4.1, has a feature
which permits precise values of the function and its derivatives to be imposed all along one or more
lines parallel to the x or y axes (see the routine document for the relationship between these normalized
variables and your original variables). In this case, however, the prescribed values cannot be supplied
directly to the routine: instead, you must provide modified data ordinates Fr;s and polynomial factors
�1 xð Þ and �2 xð Þ, as defined on page 95 of Hayes (1970).

3.7 Evaluation, Differentiation and Integration

Routines are available to evaluate, differentiate and integrate polynomials in Chebyshev series form and
cubic or bicubic splines in B-spline form. These polynomials and splines may have been produced by
the various fitting routines or, in the case of polynomials, from prior calls of the differentiation and
integration routines themselves.
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E02AEF and E02AKF evaluate polynomial curves: the latter has a longer argument list but does not
require you to normalize the values of the independent variable and can accept coefficients which are
not stored in contiguous locations. E02CBF evaluates polynomial surfaces, E02BBF cubic spline
curves, E02DEF and E02DFF bicubic spline surfaces, and E02DHF bicubic spline surfaces with
derivatives.

Differentiation and integration of polynomial curves are carried out by E02AHF and E02AJF
respectively. The results are provided in Chebyshev series form and so repeated differentiation and
integration are catered for. Values of the derivative or integral can then be computed using the
appropriate evaluation routine. Polynomial surfaces can be treated by a sequence of calls of one or
other of the same two routines, differentiating or integrating the form (12) piece by piece. For example,
if, for some given value of j, the coefficients aij, for i ¼ 0; 1; . . . ; k, are supplied to E02AHF, we obtain
coefficients �aij say, for i ¼ 0; 1; . . . ; k� 1, which are the coefficients in the derivative with respect to x
of the polynomial Xk

i¼0
aijTi xð Þ:

If this is repeated for all values of j, we obtain all the coefficients in the derivative of the surface with
respect to x, namely Xk�1

i¼0

X‘
j¼0

�aijTj yð Þ: ð25Þ

The derivative of (12), or of (25), with respect to y can be obtained in a corresponding manner. In the
latter case, for example, for each value of i in turn we supply the coefficients �ai0; �ai1; �ai2; . . . , to the
routine. Values of the resulting polynomials, such as (25), can subsequently be computed using
E02CBF. It is important, however, to note one exception: the process described will not give valid
results for differentiating or integrating a surface with respect to y if the normalization of x was made
dependent upon y, an option which is available in the fitting routine E02CAF.

For splines the differentiation and integration routines provided are of a different nature from those for
polynomials. E02BCF and E02BFF provide values of a cubic spline curve together with its first three
derivatives (the rest, of course, are zero) at a given value, or vector of values, of x. E02BDF computes
the value of the definite integral of a cubic spline over its whole range. Again the routines can be
applied to surfaces, this time of the form (14). For example, if, for each value of j in turn, the
coefficients cij, for i ¼ 1; 2; . . . ; p, are supplied to E02BCF with x ¼ x0 and on each occasion we select
from the output the value of the second derivative, dj say, and if the whole set of dj are then supplied to
the same routine with x ¼ y0, the output will contain all the values at x0; y0ð Þ of

@2f

@x2
and

@rþ2f

@x2@yr
; r ¼ 1; 2; 3:

Equally, if after each of the first p calls of E02BCF we had selected the function value (E02BBF would
also provide this) instead of the second derivative and we had supplied these values to E02BDF, the
result obtained would have been the value ofZ B

A

f x0; yð Þ dy;

where A and B are the end points of the y interval over which the spline was defined.

3.8 Padé Approximants

Given two non-negative integers ‘ and m, and the coefficients in the Maclaurin series expansion of a
function up to degree ‘þm, E02RAF calculates the Padé approximant of degree ‘ in the numerator and
degree m in the denominator. See Sections 3 and 10 in E02RAF for further advice.

E02RBF is provided to compute values of the Padé approximant, once it has been obtained.
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4 Decision Trees

Note: these Decision Trees are concerned with unconstrained fitting; for constrained fitting, consult
Section 3.6.

Tree 1

Do you have reason to
choose a type of fitting
function other than
polynomials or spline?

yes
Are the fitting functions
nonlinear? yes

See least squares routines in
Chapter E04

no

Do you prefer the ‘2 norm?
yes

See the least squares
routines in Chapters F04 and

F08

no

Do you prefer the ‘1 norm?
yes

E02GAF

no

Use the ‘1 norm, E02GCF

no

Does the problem have more
than two independent
variables?

yes

Do you have a reason to
prefer a norm other than the
‘2 norm?

yes
Do you prefer the ‘1 norm?

yes
E02GAF

no

use ‘1 norm, E02GCF

no

See the least squares
routines in Chapters F04 and

F08

no

Do you wish to use the ‘1
norm? yes

E02GAF

no

Is there just one independent
variable (curve-fitting)? yes

Continue on Tree 2

no

Does the data have equal
weights? yes

Does the data lie on a
rectangular mesh? yes

E02DCF

no

E02JDF

no

Are the data on lines? (see
Section 3.4.1) yes

E02CAF

no

E02DDF or E02DAF
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Tree 2

Do you wish to use the ‘1 norm?
yes

Do you prefer splines?
yes

E02GCF (using a spline basis)

no

Have data points different weights?
yes

E02GCF (using a polynomial basis)

no

E02ALF

no

Do you prefer polynomials?
yes

Are the x values of data points different
from the values defined in Section 3.2.2
or cannot be chosen to be so?

yes
E02ADF

no

Choose x values defined in
Section 3.2.2. Have data points different
weights?

yes
E02ADF

no

E02AFF

no

Do you wish to use ‘2 norm?
yes

E02BAF

no

E02BEF

5 Functionality Index

Automatic fitting,
with cubic splines ............................................................................................................ E02BEF

Automatic knot placement,
with bicubic splines,

data on rectangular mesh ............................................................................................ E02DCF

Data on lines......................................................................................................................... E02CAF

Data on rectangular mesh ..................................................................................................... E02DCF

Differentiation,
of bicubic splines............................................................................................................. E02DHF
of polynomials ................................................................................................................. E02AHF

Evaluation,
at a point,

of cubic splines........................................................................................................... E02BBF
of cubic splines and derivatives.................................................................................. E02BCF

at vector of points,
of bicubic splines at vector of points ......................................................................... E02DEF
of C1 scattered fit ....................................................................................................... E02JEF
of cubic splines and optionally derivatives ................................................................. E02BFF

of polynomials,
in one variable ............................................................................................................ E02AKF
in one variable (simple interface) ............................................................................... E02AEF
in two variables .......................................................................................................... E02CBF

of rational functions......................................................................................................... E02RBF
on mesh,

of bicubic splines........................................................................................................ E02DFF
of C1 scattered fit ....................................................................................................... E02JFF

Integration,
of cubic splines (definite integral) ................................................................................... E02BDF
of polynomials ................................................................................................................. E02AJF
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l1 fit,
with constraints ................................................................................................................ E02GBF
with general linear function ............................................................................................. E02GAF

Least squares curve fit,
with cubic splines ............................................................................................................ E02BAF
with polynomials,

arbitrary data points .................................................................................................... E02ADF
selected data points ..................................................................................................... E02AFF
with constraints ........................................................................................................... E02AGF

Least squares surface fit,
with bicubic splines ......................................................................................................... E02DAF
with polynomials.............................................................................................................. E02CAF

Minimax space fit,
with general linear function ............................................................................................. E02GCF
with polynomials in one variable..................................................................................... E02ALF

Padé approximants ................................................................................................................ E02RAF

Scattered data fit,
bicubic spline ................................................................................................................... E02DDF
C1 spline.......................................................................................................................... E02JDF

Service routines,
general option getting routine .......................................................................................... E02ZLF
general option setting routine........................................................................................... E02ZKF

Sorting .................................................................................................................................. E02ZAF

6 Auxiliary Routines Associated with Library Routine Arguments

None.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

E02ACF 27 E02ALF
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NAG Library Routine Document

E02ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02ACF calculates a minimax polynomial fit to a set of data points.

2 Specification

SUBROUTINE E02ACF (X, Y, N, A, M1, REF)

INTEGER N, M1
REAL (KIND=nag_wp) X(N), Y(N), A(M1), REF

3 Description

Given a set of data points xi; yið Þ, for i ¼ 1; 2; . . . ; n, E02ACF uses the exchange algorithm to compute
an mth-order polynomial

P xð Þ ¼ a1 þ a2xþ a3x2 þ � � � þ amþ1xm

such that max
i
2 P xið Þ � yij j is a minimum.

The routine also returns a number whose absolute value is the final reference deviation (see Section 6).
The routine is an adaptation of Boothroyd (1967).

4 References

Boothroyd J B (1967) Algorithm 318 Comm. ACM 10 801

Stieffel E (1959) Numerical methods of Tchebycheff approximation On Numerical Approximation (ed R
E Langer) 217–232 University of Wisconsin Press

5 Arguments

1: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the x coordinates, xi, for i ¼ 1; 2; . . . ; n.

Constraint: x1 < x2 < � � � < xn.

2: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the y coordinates, yi, for i ¼ 1; 2; . . . ; n.

3: N – INTEGER Input

On entry: the number n of data points.

4: AðM1Þ – REAL (KIND=nag_wp) array Output

On exit: the coefficients ai of the final polynomial, for i ¼ 1; 2; . . . ;mþ 1.

5: M1 – INTEGER Input

On entry: mþ 1, where m is the order of the polynomial to be found.

Constraint: M1 < min N; 100ð Þ.
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6: REF – REAL (KIND=nag_wp) Output

On exit: the final reference deviation (see Section 6).

6 Error Indicators and Warnings

If an error is detected in an input argument E02ACF will act as if a soft noisy exit has been requested
(see Section 3.4.4 in How to Use the NAG Library and its Documentation).

7 Accuracy

This is wholly dependent on the given data points.

8 Parallelism and Performance

E02ACF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken increases with m.

10 Example

This example calculates a minimax fit with a polynomial of degree 5 to the exponential function
evaluated at 21 points over the interval 0; 1½ �. It then prints values of the function and the fitted
polynomial.

10.1 Program Text

Program e02acfe

! E02ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02acf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: m1 = 6, n = 21, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: ref, s, t, z
Integer :: i, j

! .. Local Arrays ..
Real (Kind=nag_wp) :: a(m1), x(n), y(n)

! .. Intrinsic Procedures ..
Intrinsic :: exp, real

! .. Executable Statements ..
Write (nout,*) ’E02ACF Example Program Results’

x(1:n) = real((/(i-1,i=1,n)/),kind=nag_wp)/real(n-1,kind=nag_wp)
y(1:n) = exp(x(1:n))

Call e02acf(x,y,n,a,m1,ref)

Write (nout,*)
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Write (nout,*) ’ Polynomial coefficients’
Write (nout,99998)(a(i),i=1,m1)
Write (nout,*)
Write (nout,99997) ’ Reference deviation = ’, ref
Write (nout,*)
Write (nout,*) ’ X exp(X) Fit Residual’

Do j = 1, n, 2
z = x(j)

s = a(m1)

Do i = m1 - 1, 1, -1
s = s*z + a(i)

End Do

t = y(j)
Write (nout,99999) z, s, t, s - t

End Do

99999 Format (1X,F5.2,2F9.4,E11.2)
99998 Format (6X,E12.4)
99997 Format (1X,A,E10.2)

End Program e02acfe

10.2 Program Data

None.

10.3 Program Results

E02ACF Example Program Results

Polynomial coefficients
0.1000E+01
0.1000E+01
0.4991E+00
0.1704E+00
0.3478E-01
0.1391E-01

Reference deviation = 0.11E-05

X exp(X) Fit Residual
0.00 1.0000 1.0000 -0.11E-05
0.10 1.1052 1.1052 0.97E-06
0.20 1.2214 1.2214 -0.74E-06
0.30 1.3499 1.3499 -0.92E-06
0.40 1.4918 1.4918 0.30E-06
0.50 1.6487 1.6487 0.11E-05
0.60 1.8221 1.8221 0.46E-06
0.70 2.0138 2.0138 -0.82E-06
0.80 2.2255 2.2255 -0.84E-06
0.90 2.4596 2.4596 0.88E-06
1.00 2.7183 2.7183 -0.11E-05
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NAG Library Routine Document

E02ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02ADF computes weighted least squares polynomial approximations to an arbitrary set of data points.

2 Specification

SUBROUTINE E02ADF (M, KPLUS1, LDA, X, Y, W, WORK1, WORK2, A, S, IFAIL)

INTEGER M, KPLUS1, LDA, IFAIL
REAL (KIND=nag_wp) X(M), Y(M), W(M), WORK1(3*M), WORK2(2*KPLUS1),

A(LDA,KPLUS1), S(KPLUS1)
&

3 Description

E02ADF determines least squares polynomial approximations of degrees 0; 1; . . . ; k to the set of data
points xr ; yrð Þ with weights wr , for r ¼ 1; 2; . . . ;m.

The approximation of degree i has the property that it minimizes �i the sum of squares of the weighted
residuals �r, where

�r ¼ wr yr � frð Þ

and fr is the value of the polynomial of degree i at the rth data point.

Each polynomial is represented in Chebyshev series form with normalized argument �x. This argument
lies in the range �1 to þ1 and is related to the original variable x by the linear transformation

�x ¼ 2x� xmax � xminð Þ
xmax � xminð Þ :

Here xmax and xmin are respectively the largest and smallest values of xr. The polynomial
approximation of degree i is represented as

1
2aiþ1;1T0 �xð Þ þ aiþ1;2T1 �xð Þ þ aiþ1;3T2 �xð Þ þ � � � þ aiþ1;iþ1Ti �xð Þ;

where Tj �xð Þ, for j ¼ 0; 1; . . . ; i, are the Chebyshev polynomials of the first kind of degree j with
argument �xð Þ.
For i ¼ 0; 1; . . . ; k, the routine produces the values of aiþ1;jþ1, for j ¼ 0; 1; . . . ; i, together with the value

of the root-mean-square residual si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i= m� i� 1ð Þ

p
. In the case m ¼ iþ 1 the routine sets the value

of si to zero.

The method employed is due to Forsythe (1957) and is based on the generation of a set of polynomials
orthogonal with respect to summation over the normalized dataset. The extensions due to
Clenshaw (1960) to represent these polynomials as well as the approximating polynomials in their
Chebyshev series forms are incorporated. The modifications suggested by Reinsch and Gentleman (see
Gentleman (1969)) to the method originally employed by Clenshaw for evaluating the orthogonal
polynomials from their Chebyshev series representations are used to give greater numerical stability.

For further details of the algorithm and its use see Cox (1974) and Cox and Hayes (1973).

Subsequent evaluation of the Chebyshev series representations of the polynomial approximations should
be carried out using E02AEF.
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4 References

Clenshaw C W (1960) Curve fitting with a digital computer Comput. J. 2 170–173

Cox M G (1974) A data-fitting package for the non-specialist user Software for Numerical Mathematics
(ed D J Evans) Academic Press

Cox M G and Hayes J G (1973) Curve fitting: a guide and suite of algorithms for the non-specialist user
NPL Report NAC26 National Physical Laboratory

Forsythe G E (1957) Generation and use of orthogonal polynomials for data fitting with a digital
computer J. Soc. Indust. Appl. Math. 5 74–88

Gentleman W M (1969) An error analysis of Goertzel's (Watt's) method for computing Fourier
coefficients Comput. J. 12 160–165

Hayes J G (ed.) (1970) Numerical Approximation to Functions and Data Athlone Press, London

5 Arguments

1: M – INTEGER Input

On entry: the number m of data points.

Constraint: M � mdist � 2, where mdist is the number of distinct x values in the data.

2: KPLUS1 – INTEGER Input

On entry: kþ 1, where k is the maximum degree required.

Constraint: 0 < KPLUS1 � mdist, where mdist is the number of distinct x values in the data.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E02ADF
is called.

Constraint: LDA � KPLUS1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values xr of the independent variable, for r ¼ 1; 2; . . . ;m.

Constraint: the values must be supplied in nondecreasing order with XðMÞ > Xð1Þ.

5: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values yr of the dependent variable, for r ¼ 1; 2; . . . ;m.

6: WðMÞ – REAL (KIND=nag_wp) array Input

On entry: the set of weights, wr , for r ¼ 1; 2; . . . ;m. For advice on the choice of weights, see
Section 2.1.2 in the E02 Chapter Introduction.

Constraint: WðrÞ > 0:0, for r ¼ 1; 2; . . . ;m.

7: WORK1ð3�MÞ – REAL (KIND=nag_wp) array Workspace
8: WORK2ð2� KPLUS1Þ – REAL (KIND=nag_wp) array Workspace

9: AðLDA;KPLUS1Þ – REAL (KIND=nag_wp) array Output

On exit: the coefficients of Tj �xð Þ in the approximating polynomial of degree i. Aði þ 1; j þ 1Þ
contains the coefficient aiþ1;jþ1, for i ¼ 0; 1; . . . ; k and j ¼ 0; 1; . . . ; i.
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10: SðKPLUS1Þ – REAL (KIND=nag_wp) array Output

On exit: Sði þ 1Þ contains the root-mean-square residual si, for i ¼ 0; 1; . . . ; k, as described in
Section 3. For the interpretation of the values of the si and their use in selecting an appropriate
degree, see Section 3.1 in the E02 Chapter Introduction.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The weights are not all strictly positive.

IFAIL ¼ 2

The values of XðrÞ, for r ¼ 1; 2; . . . ;M, are not in nondecreasing order.

IFAIL ¼ 3

All XðrÞ have the same value: thus the normalization of X is not possible.

IFAIL ¼ 4

On entry, KPLUS1 < 1 (so the maximum degree required is negative)
or KPLUS1 > mdist, where mdist is the number of distinct x values in the data (so there

cannot be a unique solution for degree k ¼ KPLUS1� 1).

IFAIL ¼ 5

LDA < KPLUS1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

No error analysis for the method has been published. Practical experience with the method, however, is
generally extremely satisfactory.

8 Parallelism and Performance

E02ADF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to m kþ 1ð Þ kþ 11ð Þ.
The approximating polynomials may exhibit undesirable oscillations (particularly near the ends of the
range) if the maximum degree k exceeds a critical value which depends on the number of data points m
and their relative positions. As a rough guide, for equally-spaced data, this critical value is about
2�

ffiffiffiffiffi
m
p

. For further details see page 60 of Hayes (1970).

10 Example

Determine weighted least squares polynomial approximations of degrees 0, 1, 2 and 3 to a set of 11
prescribed data points. For the approximation of degree 3, tabulate the data and the corresponding
values of the approximating polynomial, together with the residual errors, and also the values of the
approximating polynomial at points half-way between each pair of adjacent data points.

The example program supplied is written in a general form that will enable polynomial approximations
of degrees 0; 1; . . . ; k to be obtained to m data points, with arbitrary positive weights, and the
approximation of degree k to be tabulated. E02AEF is used to evaluate the approximating polynomial.
The program is self-starting in that any number of datasets can be supplied.

10.1 Program Text

Program e02adfe

! E02ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02adf, e02aef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fit, x1, xarg, xcapr, xm
Integer :: i, ifail, iwght, j, k, kplus1, lda, &

m, r
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), ak(:), s(:), w(:), work1(:), &
work2(:), x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’E02ADF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m
Read (nin,*) k, iwght
kplus1 = k + 1
lda = kplus1
Allocate (a(lda,kplus1),s(kplus1),w(m),work1(3*m),work2(2*kplus1),x(m), &

y(m))

Do r = 1, m
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If (iwght/=1) Then
Read (nin,*) x(r), y(r), w(r)

Else
Read (nin,*) x(r), y(r)
w(r) = 1.0E0_nag_wp

End If

End Do

ifail = 0
Call e02adf(m,kplus1,lda,x,y,w,work1,work2,a,s,ifail)

Do i = 0, k
Write (nout,*)
Write (nout,99998) ’Degree’, i, ’ R.M.S. residual =’, s(i+1)
Write (nout,*)
Write (nout,*) ’ J Chebyshev coeff A(J)’
Write (nout,99997)(j,a(i+1,j),j=1,i+1)

End Do

Allocate (ak(kplus1))

ak(1:kplus1) = a(kplus1,1:kplus1)
x1 = x(1)
xm = x(m)

Write (nout,*)
Write (nout,99996) ’Polynomial approximation and residuals for degree’, &

k
Write (nout,*)
Write (nout,*) &

’ R Abscissa Weight Ordinate Polynomial Residual’

Do r = 1, m
xcapr = ((x(r)-x1)-(xm-x(r)))/(xm-x1)

ifail = 0
Call e02aef(kplus1,ak,xcapr,fit,ifail)

Write (nout,99999) r, x(r), w(r), y(r), fit, fit - y(r)

If (r<m) Then
xarg = 0.5E0_nag_wp*(x(r)+x(r+1))
xcapr = ((xarg-x1)-(xm-xarg))/(xm-x1)

ifail = 0
Call e02aef(kplus1,ak,xcapr,fit,ifail)

Write (nout,99995) xarg, fit
End If

End Do

99999 Format (1X,I3,4F11.4,E11.2)
99998 Format (1X,A,I4,A,E12.2)
99997 Format (1X,I3,F15.4)
99996 Format (1X,A,I4)
99995 Format (4X,F11.4,22X,F11.4)

End Program e02adfe

10.2 Program Data

E02ADF Example Program Data
11
3 2

1.00 10.40 1.00
2.10 7.90 1.00
3.10 4.70 1.00
3.90 2.50 1.00
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4.90 1.20 1.00
5.80 2.20 0.80
6.50 5.10 0.80
7.10 9.20 0.70
7.80 16.10 0.50
8.40 24.50 0.30
9.00 35.30 0.20

10.3 Program Results

E02ADF Example Program Results

Degree 0 R.M.S. residual = 0.41E+01

J Chebyshev coeff A(J)
1 12.1740

Degree 1 R.M.S. residual = 0.43E+01

J Chebyshev coeff A(J)
1 12.2954
2 0.2740

Degree 2 R.M.S. residual = 0.17E+01

J Chebyshev coeff A(J)
1 20.7345
2 6.2016
3 8.1876

Degree 3 R.M.S. residual = 0.68E-01

J Chebyshev coeff A(J)
1 24.1429
2 9.4065
3 10.8400
4 3.0589

Polynomial approximation and residuals for degree 3

R Abscissa Weight Ordinate Polynomial Residual
1 1.0000 1.0000 10.4000 10.4461 0.46E-01

1.5500 9.3106
2 2.1000 1.0000 7.9000 7.7977 -0.10E+00

2.6000 6.2555
3 3.1000 1.0000 4.7000 4.7025 0.25E-02

3.5000 3.5488
4 3.9000 1.0000 2.5000 2.5533 0.53E-01

4.4000 1.6435
5 4.9000 1.0000 1.2000 1.2390 0.39E-01

5.3500 1.4257
6 5.8000 0.8000 2.2000 2.2425 0.42E-01

6.1500 3.3803
7 6.5000 0.8000 5.1000 5.0116 -0.88E-01

6.8000 6.8400
8 7.1000 0.7000 9.2000 9.0982 -0.10E+00

7.4500 12.3171
9 7.8000 0.5000 16.1000 16.2123 0.11E+00

8.1000 20.1266
10 8.4000 0.3000 24.5000 24.6048 0.10E+00

8.7000 29.6779
11 9.0000 0.2000 35.3000 35.3769 0.77E-01
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NAG Library Routine Document

E02AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02AEF evaluates a polynomial from its Chebyshev series representation.

2 Specification

SUBROUTINE E02AEF (NPLUS1, A, XCAP, P, IFAIL)

INTEGER NPLUS1, IFAIL
REAL (KIND=nag_wp) A(NPLUS1), XCAP, P

3 Description

E02AEF evaluates the polynomial

1
2a1T0 �xð Þ þ a2T1 �xð Þ þ a3T2 �xð Þ þ � � � þ anþ1Tn �xð Þ

for any value of �x satisfying �1 � �x � 1. Here Tj �xð Þ denotes the Chebyshev polynomial of the first
kind of degree j with argument �x. The value of n is prescribed by you.

In practice, the variable �x will usually have been obtained from an original variable x, where
xmin � x � xmax and

�x ¼ x� xminð Þ � xmax � xð Þð Þ
xmax � xminð Þ

Note that this form of the transformation should be used computationally rather than the mathematical
equivalent

�x ¼ 2x� xmin � xmaxð Þ
xmax � xminð Þ

since the former guarantees that the computed value of �x differs from its true value by at most 4�,
where � is the machine precision, whereas the latter has no such guarantee.

The method employed is based on the three-term recurrence relation due to Clenshaw (1955), with
modifications to give greater numerical stability due to Reinsch and Gentleman (see Gentleman (1969)).

For further details of the algorithm and its use see Cox (1974) and Cox and Hayes (1973).

4 References

Clenshaw C W (1955) A note on the summation of Chebyshev series Math. Tables Aids Comput. 9
118–120

Cox M G (1974) A data-fitting package for the non-specialist user Software for Numerical Mathematics
(ed D J Evans) Academic Press

Cox M G and Hayes J G (1973) Curve fitting: a guide and suite of algorithms for the non-specialist user
NPL Report NAC26 National Physical Laboratory

Gentleman W M (1969) An error analysis of Goertzel's (Watt's) method for computing Fourier
coefficients Comput. J. 12 160–165
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5 Arguments

1: NPLUS1 – INTEGER Input

On entry: the number nþ 1 of terms in the series (i.e., one greater than the degree of the
polynomial).

Constraint: NPLUS1 � 1.

2: AðNPLUS1Þ – REAL (KIND=nag_wp) array Input

On entry: AðiÞ must be set to the value of the ith coefficient in the series, for i ¼ 1; 2; . . . ; nþ 1.

3: XCAP – REAL (KIND=nag_wp) Input

On entry: �x, the argument at which the polynomial is to be evaluated. It should lie in the range
�1 to þ1, but a value just outside this range is permitted (see Section 6) to allow for possible
rounding errors committed in the transformation from x to �x discussed in Section 3. Provided the
recommended form of the transformation is used, a successful exit is thus assured whenever the
value of x lies in the range xmin to xmax .

4: P – REAL (KIND=nag_wp) Output

On exit: the value of the polynomial.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

ABS XCAPð Þ > 1:0þ 4�, where � is the machine precision. In this case the value of P is set
arbitrarily to zero.

IFAIL ¼ 2

On entry, NPLUS1 < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The rounding errors committed are such that the computed value of the polynomial is exact for a
slightly perturbed set of coefficients ai þ �ai. The ratio of the sum of the absolute values of the �ai to
the sum of the absolute values of the ai is less than a small multiple of nþ 1ð Þ �machine precision.

8 Parallelism and Performance

E02AEF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to nþ 1.

It is expected that a common use of E02AEF will be the evaluation of the polynomial approximations
produced by E02ADF and E02AFF.

10 Example

Evaluate at 11 equally-spaced points in the interval �1 � �x � 1 the polynomial of degree 4 with
Chebyshev coefficients, 2:0, 0:5, 0:25, 0:125, 0:0625.

The example program is written in a general form that will enable a polynomial of degree n in its
Chebyshev series form to be evaluated at m equally-spaced points in the interval �1 � �x � 1. The
program is self-starting in that any number of datasets can be supplied.

10.1 Program Text

Program e02aefe

! E02AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02aef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, xcap
Integer :: i, ifail, m, n, nplus1, r

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’E02AEF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m
Read (nin,*) n
nplus1 = n + 1
Allocate (a(nplus1))

Read (nin,*)(a(i),i=1,nplus1)
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Do r = 1, m
xcap = real(2*r-m-1,kind=nag_wp)/real(m-1,kind=nag_wp)

ifail = 0
Call e02aef(nplus1,a,xcap,p,ifail)

If (r==1) Then
Write (nout,*)
Write (nout,*) ’ R Argument Value of polynomial’

End If

Write (nout,99999) r, xcap, p
End Do

99999 Format (1X,I3,F14.4,4X,F14.4)
End Program e02aefe

10.2 Program Data

E02AEF Example Program Data
11
4

2.0000
0.5000
0.2500
0.1250
0.0625

10.3 Program Results

E02AEF Example Program Results

R Argument Value of polynomial
1 -1.0000 0.6875
2 -0.8000 0.6613
3 -0.6000 0.6943
4 -0.4000 0.7433
5 -0.2000 0.7843
6 0.0000 0.8125
7 0.2000 0.8423
8 0.4000 0.9073
9 0.6000 1.0603

10 0.8000 1.3733
11 1.0000 1.9375
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NAG Library Routine Document

E02AFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02AFF computes the coefficients of a polynomial, in its Chebyshev series form, which interpolates
(passes exactly through) data at a special set of points. Least squares polynomial approximations can
also be obtained.

2 Specification

SUBROUTINE E02AFF (NPLUS1, F, A, IFAIL)

INTEGER NPLUS1, IFAIL
REAL (KIND=nag_wp) F(NPLUS1), A(NPLUS1)

3 Description

E02AFF computes the coefficients aj , for j ¼ 1; 2; . . . ; nþ 1, in the Chebyshev series

1
2a1T0 �xð Þ þ a2T1 �xð Þ þ a3T2 �xð Þ þ � � � þ anþ1Tn �xð Þ;

which interpolates the data fr at the points

�xr ¼ cos r� 1ð Þ	=nð Þ; r ¼ 1; 2; . . . ; nþ 1:

Here Tj �xð Þ denotes the Chebyshev polynomial of the first kind of degree j with argument �x. The use of
these points minimizes the risk of unwanted fluctuations in the polynomial and is recommended when
the data abscissae can be chosen by you, e.g., when the data is given as a graph. For further advantages
of this choice of points, see Clenshaw (1962).

In terms of your original variables, x say, the values of x at which the data fr are to be provided are

xr ¼ 1
2 xmax � xminð Þ cos 	 r� 1ð Þ=nð Þ þ 1

2 xmax þ xminð Þ; r ¼ 1; 2; . . . ; nþ 1

where xmax and xmin are respectively the upper and lower ends of the range of x over which you wish
to interpolate.

Truncation of the resulting series after the term involving aiþ1, say, yields a least squares approximation
to the data. This approximation, p �xð Þ, say, is the polynomial of degree i which minimizes

1
2�

2
1 þ �22 þ �23 þ � � � þ �2n þ 1

2�
2
nþ1;

where the residual �r ¼ p �xrð Þ � fr , for r ¼ 1; 2; . . . ; nþ 1.

The method employed is based on the application of the three-term recurrence relation due to Clenshaw
(1955) for the evaluation of the defining expression for the Chebyshev coefficients (see, for example,
Clenshaw (1962)). The modifications to this recurrence relation suggested by Reinsch and Gentleman
(see Gentleman (1969)) are used to give greater numerical stability.

For further details of the algorithm and its use see Cox (1974) and Cox and Hayes (1973).

Subsequent evaluation of the computed polynomial, perhaps truncated after an appropriate number of
terms, should be carried out using E02AEF.
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4 References

Clenshaw C W (1955) A note on the summation of Chebyshev series Math. Tables Aids Comput. 9
118–120

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO
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5 Arguments

1: NPLUS1 – INTEGER Input

On entry: the number nþ 1 of data points (one greater than the degree n of the interpolating
polynomial).

Constraint: NPLUS1 � 2.

2: FðNPLUS1Þ – REAL (KIND=nag_wp) array Input

On entry: for r ¼ 1; 2; . . . ; nþ 1, FðrÞ must contain fr the value of the dependent variable
(ordinate) corresponding to the value

�xr ¼ cos 	 r� 1ð Þ=nð Þ

of the independent variable (abscissa) �x, or equivalently to the value

x rð Þ ¼ 1
2 xmax � xminð Þ cos 	 r� 1ð Þ=nð Þ þ 1

2 xmax þ xminð Þ

of your original variable x. Here xmax and xmin are respectively the upper and lower ends of the
range over which you wish to interpolate.

3: AðNPLUS1Þ – REAL (KIND=nag_wp) array Output

On exit: AðjÞ is the coefficient aj in the interpolating polynomial, for j ¼ 1; 2; . . . ; nþ 1.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E02AFF NAG Library Manual

E02AFF.2 Mark 26



6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPLUS1 < 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The rounding errors committed are such that the computed coefficients are exact for a slightly perturbed
set of ordinates fr þ �fr. The ratio of the sum of the absolute values of the �fr to the sum of the
absolute values of the fr is less than a small multiple of nþ 1ð Þ�, where � is the machine precision.

8 Parallelism and Performance

E02AFF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to nþ 1ð Þ2 þ 30.

For choice of degree when using the routine for least squares approximation, see Section 3.2 in the E02
Chapter Introduction.

10 Example

Determine the Chebyshev coefficients of the polynomial which interpolates the data �xr ; fr , for
r ¼ 1; 2; . . . ; 11, where �xr ¼ cos 	� r� 1ð Þ=10ð Þ and fr ¼ e�xr . Evaluate, for comparison with the
values of fr , the resulting Chebyshev series at �xr , for r ¼ 1; 2; . . . ; 11.

The example program supplied is written in a general form that will enable polynomial interpolations of
arbitrary data at the cosine points cos 	� r � 1ð Þ=nð Þ, for r ¼ 1; 2; . . . ; nþ 1, to be obtained for any n
( ¼ NPLUS1� 1). Note that E02AEF is used to evaluate the interpolating polynomial. The program is
self-starting in that any number of datasets can be supplied.
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10.1 Program Text

Program e02affe

! E02AFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02aef, e02aff, nag_wp, x01aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fit, pi, piby2n
Integer :: i, ifail, j, n, nplus1, r

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), f(:), xcap(:)

! .. Intrinsic Procedures ..
Intrinsic :: real, sin

! .. Executable Statements ..
Write (nout,*) ’E02AFF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
nplus1 = n + 1
Allocate (a(nplus1),f(nplus1),xcap(nplus1))

piby2n = 0.5E0_nag_wp*x01aaf(pi)/real(n,kind=nag_wp)

Read (nin,*)(f(r),r=1,nplus1)

Do r = 1, nplus1
i = r - 1

! The following method of evaluating XCAP = cos(PI*I/N)
! ensures that the computed value has a small relative error
! and, moreover, is bounded in modulus by unity for all
! I = 0, 1, ..., N. (It is assumed that the sine routine
! produces a result with a small relative error for values
! of the argument between -PI/4 and PI/4).

If (4*i<=n) Then
xcap(i+1) = 1.0E0_nag_wp - 2.0E0_nag_wp*sin(piby2n*real(i,kind= &

nag_wp))**2
Else If (4*i>3*n) Then

xcap(i+1) = 2.0E0_nag_wp*sin(piby2n*real(n-i,kind=nag_wp))**2 - &
1.0E0_nag_wp

Else
xcap(i+1) = sin(piby2n*real(n-2*i,kind=nag_wp))

End If

End Do

ifail = 0
Call e02aff(nplus1,f,a,ifail)

Write (nout,*)
Write (nout,*) ’ Chebyshev’
Write (nout,*) ’ J coefficient A(J)’
Write (nout,99998)(j,a(j),j=1,nplus1)
Write (nout,*)
Write (nout,*) ’ R Abscissa Ordinate Fit’

Do r = 1, nplus1

ifail = 0
Call e02aef(nplus1,a,xcap(r),fit,ifail)
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Write (nout,99999) r, xcap(r), f(r), fit
End Do

99999 Format (1X,I3,3F11.4)
99998 Format (1X,I3,F14.7)

End Program e02affe

10.2 Program Data

E02AFF Example Program Data
10

2.7182
2.5884
2.2456
1.7999
1.3620
1.0000
0.7341
0.5555
0.4452
0.3863
0.3678

10.3 Program Results

E02AFF Example Program Results

Chebyshev
J coefficient A(J)
1 2.5320000
2 1.1303095
3 0.2714893
4 0.0443462
5 0.0055004
6 0.0005400
7 0.0000307
8 -0.0000006
9 -0.0000004

10 0.0000049
11 -0.0000200

R Abscissa Ordinate Fit
1 1.0000 2.7182 2.7182
2 0.9511 2.5884 2.5884
3 0.8090 2.2456 2.2456
4 0.5878 1.7999 1.7999
5 0.3090 1.3620 1.3620
6 0.0000 1.0000 1.0000
7 -0.3090 0.7341 0.7341
8 -0.5878 0.5555 0.5555
9 -0.8090 0.4452 0.4452

10 -0.9511 0.3863 0.3863
11 -1.0000 0.3678 0.3678

E02 – Curve and Surface Fitting E02AFF

Mark 26 E02AFF.5



 0

 0.5

 1

 1.5

 2

 2.5

-1 -0.5  0  0.5  1

 5e-05

 0.0001

 0.00015

P
(x

)

|ex
−P

(x
)| 

(e
rr

or
)

x

Example Program
 Interpolating Chebyshev Polynomial

Che
by

sh
ev

 po
ly

no
m

ial
 fi

t

|ex−P(x)|

E02AFF NAG Library Manual

E02AFF.6 (last) Mark 26



NAG Library Routine Document

E02AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02AGF computes constrained weighted least squares polynomial approximations in Chebyshev series
form to an arbitrary set of data points. The values of the approximations and any number of their
derivatives can be specified at selected points.

2 Specification

SUBROUTINE E02AGF (M, KPLUS1, LDA, XMIN, XMAX, X, Y, W, MF, XF, YF, LYF,
IP, A, S, NP1, WRK, LWRK, IWRK, LIWRK, IFAIL)

&

INTEGER M, KPLUS1, LDA, MF, LYF, IP(MF), NP1, LWRK,
IWRK(LIWRK), LIWRK, IFAIL

&

REAL (KIND=nag_wp) XMIN, XMAX, X(M), Y(M), W(M), XF(MF), YF(LYF),
A(LDA,KPLUS1), S(KPLUS1), WRK(LWRK)

&

3 Description

E02AGF determines least squares polynomial approximations of degrees up to k to the set of data
points xr ; yrð Þ with weights wr , for r ¼ 1; 2; . . . ;m. The value of k, the maximum degree required, is to
be prescribed by you. At each of the values xfr , for r ¼ 1; 2; . . . ;mf, of the independent variable x, the
approximations and their derivatives up to order pr are constrained to have one of the values yfs, for

s ¼ 1; 2; . . . ; n, specified by you, where n ¼ mf þ
Xmf
r¼0

pr.

The approximation of degree i has the property that, subject to the imposed constraints, it minimizes �i,
the sum of the squares of the weighted residuals �r , for r ¼ 1; 2; . . . ;m, where

�r ¼ wr yr � fi xrð Þð Þ

and fi xrð Þ is the value of the polynomial approximation of degree i at the rth data point.

Each polynomial is represented in Chebyshev series form with normalized argument �x. This argument
lies in the range �1 to þ1 and is related to the original variable x by the linear transformation

�x ¼ 2x� xmax þ xminð Þ
xmax � xminð Þ

where xmin and xmax , specified by you, are respectively the lower and upper end points of the interval
of x over which the polynomials are to be defined.

The polynomial approximation of degree i can be written as

1
2ai;0 þ ai;1T1 �xð Þ þ � � � þ aijTj �xð Þ þ � � � þ aiiTi �xð Þ

where Tj �xð Þ is the Chebyshev polynomial of the first kind of degree j with argument �x. For
i ¼ n; n þ 1; . . . ; k, the routine produces the values of the coefficients aij , for j ¼ 0; 1; . . . ; i, together
with the value of the root mean square residual,

Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�i
m0 þ n � i� 1ð Þ

r
;

where m0 is the number of data points with nonzero weight.

Values of the approximations may subsequently be computed using E02AEF or E02AKF.
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First E02AGF determines a polynomial � �xð Þ, of degree n � 1, which satisfies the given constraints, and
a polynomial � �xð Þ, of degree n, which has value (or derivative) zero wherever a constrained value (or
derivative) is specified. It then fits yr � � xrð Þ, for r ¼ 1; 2; . . . ;m, with polynomials of the required
degree in �x each with factor � �xð Þ. Finally the coefficients of � �xð Þ are added to the coefficients of these
fits to give the coefficients of the constrained polynomial approximations to the data points xr ; yrð Þ, for
r ¼ 1; 2; . . . ;m. The method employed is given in Hayes (1970): it is an extension of Forsythe's
orthogonal polynomials method (see Forsythe (1957)) as modified by Clenshaw (see Clenshaw (1960)).

4 References

Clenshaw C W (1960) Curve fitting with a digital computer Comput. J. 2 170–173

Forsythe G E (1957) Generation and use of orthogonal polynomials for data fitting with a digital
computer J. Soc. Indust. Appl. Math. 5 74–88

Hayes J G (ed.) (1970) Numerical Approximation to Functions and Data Athlone Press, London

5 Arguments

1: M – INTEGER Input

On entry: m, the number of data points to be fitted.

Constraint: M � 1.

2: KPLUS1 – INTEGER Input

On entry: kþ 1, where k is the maximum degree required.

Constraint: n þ 1 � KPLUS1 � m00 þ n is the total number of constraints and m00 is the number
of data points with nonzero weights and distinct abscissae which do not coincide with any of the
XFðrÞ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E02AGF
is called.

Constraint: LDA � KPLUS1.

4: XMIN – REAL (KIND=nag_wp) Input
5: XMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper end points, respectively, of the interval xmin ; xmax½ �. Unless there
are specific reasons to the contrary, it is recommended that XMIN and XMAX be set respectively
to the lowest and highest value among the xr and xfr. This avoids the danger of extrapolation
provided there is a constraint point or data point with nonzero weight at each end point.

Constraint: XMAX > XMIN.

6: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðrÞ must contain the value xr of the independent variable at the rth data point, for
r ¼ 1; 2; . . . ;m.

Constraint: the XðrÞ must be in nondecreasing order and satisfy XMIN � XðrÞ � XMAX.

7: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: YðrÞ must contain yr , the value of the dependent variable at the rth data point, for
r ¼ 1; 2; . . . ;m.
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8: WðMÞ – REAL (KIND=nag_wp) array Input

On entry: WðrÞ must contain the weight wr to be applied to the data point xr , for
r ¼ 1; 2; . . . ;m. For advice on the choice of weights see the E02 Chapter Introduction. Negative
weights are treated as positive. A zero weight causes the corresponding data point to be ignored.
Zero weight should be given to any data point whose x and y values both coincide with those of
a constraint (otherwise the denominators involved in the root mean square residuals Si will be
slightly in error).

9: MF – INTEGER Input

On entry: mf , the number of values of the independent variable at which a constraint is
specified.

Constraint: MF � 1.

10: XFðMFÞ – REAL (KIND=nag_wp) array Input

On entry: XFðrÞ must contain xfr , the value of the independent variable at which a constraint is
specified, for r ¼ 1; 2; . . . ;MF.

Constraint: these values need not be ordered but must be distinct and satisfy
XMIN � XFðrÞ � XMAX.

11: YFðLYFÞ – REAL (KIND=nag_wp) array Input

On entry: the values which the approximating polynomials and their derivatives are required to
take at the points specified in XF. For each value of XFðrÞ, YF contains in successive elements
the required value of the approximation, its first derivative, second derivative, . . . ; pr th
derivative, for r ¼ 1; 2; . . . ;mf. Thus the value, yfs, which the kth derivative of each
approximation (k ¼ 0 referring to the approximation itself) is required to take at the point XFðrÞ
must be contained in YFðsÞ, where

s ¼ rþ kþ p1 þ p2 þ � � � þ pr�1;

where k ¼ 0; 1; . . . ; pr and r ¼ 1; 2; . . . ;mf . The derivatives are with respect to the independent
variable x.

12: LYF – INTEGER Input

On entry: the dimension of the array YF as declared in the (sub)program from which E02AGF is
called.

Constraint: LYF � MFþ
XMF

i¼1
IPðiÞ.

13: IPðMFÞ – INTEGER array Input

On entry: IPðrÞ must contain pr , the order of the highest-order derivative specified at XFðrÞ, for
r ¼ 1; 2; . . . ;mf . pr ¼ 0 implies that the value of the approximation at XFðrÞ is specified, but not
that of any derivative.

Constraint: IPðrÞ � 0, for r ¼ 1; 2; . . . ;MF.

14: AðLDA;KPLUS1Þ – REAL (KIND=nag_wp) array Output

On exit: Aði þ 1; j þ 1Þ contains the coefficient aij in the approximating polynomial of degree i,
for i ¼ n; . . . ; k and j ¼ 0; 1; . . . ; i.

15: SðKPLUS1Þ – REAL (KIND=nag_wp) array Output

On exit: Sði þ 1Þ contains Si, for i ¼ n; . . . ; k, the root mean square residual corresponding to the
approximating polynomial of degree i. In the case where the number of data points with nonzero
weight is equal to kþ 1� n, Si is indeterminate: the routine sets it to zero. For the interpretation

E02 – Curve and Surface Fitting E02AGF

Mark 26 E02AGF.3



of the values of Si and their use in selecting an appropriate degree, see Section 3.1 in the E02
Chapter Introduction.

16: NP1 – INTEGER Output

On exit: n þ 1, where n is the total number of constraint conditions imposed:
n ¼ mf þ p1 þ p2 þ � � � þ pmf .

17: WRKðLWRKÞ – REAL (KIND=nag_wp) array Output

On exit: contains weighted residuals of the highest degree of fit determined kð Þ. The residual at
xr is in element 2 n þ 1ð Þ þ 3 mþ k þ 1ð Þ þ r , for r ¼ 1; 2; . . . ;m. The rest of the array is used
as workspace.

18: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which E02AGF
is called.

Constraint: LWRK � max 4�Mþ 3� KPLUS1; 8� n þ 5� ipmax þMFþ 10ð Þ þ 2� n þ 2,
where ipmax ¼ max IPðrÞð Þ, for r ¼ 1; 2; . . . ;mf.

19: IWRKðLIWRKÞ – INTEGER array Workspace
20: LIWRK – INTEGER Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which E02AGF
is called.

Constraint: LIWRK � 2�MFþ 2.

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or KPLUS1 < n þ 1,
or LDA < KPLUS1,
or MF < 1,
or LYF < n,
or LWRK is too small (see Section 5),
or LIWRK < 2�MFþ 2.

(Here n is the total number of constraint conditions.)
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IFAIL ¼ 2

IPðrÞ < 0 for some r ¼ 1; 2; . . . ;MF.

IFAIL ¼ 3

XMIN � XMAX, or XFðrÞ is not in the interval XMIN to XMAX for some r ¼ 1; 2; . . . ;MF, or
the XFðrÞ are not distinct.

IFAIL ¼ 4

XðrÞ is not in the interval XMIN to XMAX for some r ¼ 1; 2; . . . ;M.

IFAIL ¼ 5

XðrÞ < Xðr� 1Þ for some r ¼ 2; 3; . . . ;M.

IFAIL ¼ 6

KPLUS1 > m00 þ n, where m00 is the number of data points with nonzero weight and distinct
abscissae which do not coincide with any XFðrÞ. Thus there is no unique solution.

IFAIL ¼ 7

The polynomials � xð Þ and/or � xð Þ cannot be determined. The problem supplied is too ill-
conditioned. This may occur when the constraint points are very close together, or large in
number, or when an attempt is made to constrain high-order derivatives.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

No complete error analysis exists for either the interpolating algorithm or the approximating algorithm.
However, considerable experience with the approximating algorithm shows that it is generally
extremely satisfactory. Also the moderate number of constraints, of low-order, which are typical of data
fitting applications, are unlikely to cause difficulty with the interpolating routine.

8 Parallelism and Performance

E02AGF is not threaded in any implementation.

9 Further Comments

The time taken to form the interpolating polynomial is approximately proportional to n3, and that to
form the approximating polynomials is very approximately proportional to m kþ 1ð Þ kþ 1� nð Þ.
To carry out a least squares polynomial fit without constraints, use E02ADF. To carry out polynomial
interpolation only, use E01AEF.

E02 – Curve and Surface Fitting E02AGF

Mark 26 E02AGF.5



10 Example

This example reads data in the following order, using the notation of the argument list above:

MF

IPðiÞ, XFðiÞ, Y-value and derivative values (if any) at XFðiÞ, for i ¼ 1; 2; . . . ;MF

M

XðiÞ, YðiÞ, WðiÞ, for i ¼ 1; 2; . . . ;M

k, XMIN, XMAX

The output is:

the root mean square residual for each degree from n to k;

the Chebyshev coefficients for the fit of degree k;

the data points, and the fitted values and residuals for the fit of degree k.

The program is written in a generalized form which will read any number of datasets.

The dataset supplied specifies 5 data points in the interval 0:0; 4:0½ � with unit weights, to which are to
be fitted polynomials, p, of degrees up to 4, subject to the 3 constraints:

p 0:0ð Þ ¼ 1:0; p0 0:0ð Þ ¼ �2:0; p 4:0ð Þ ¼ 9:0:

10.1 Program Text

Program e02agfe

! E02AGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02agf, e02akf, f16dnf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fiti, xmax, xmin
Integer :: i, ifail, ipmax, k, kplus1, la, lda, &

liwrk, lwrk, lyf, m, mf, n, np1
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), s(:), w(:), wrk(:), x(:), &
xf(:), y(:), yf(:)

Integer, Allocatable :: ip(:), iwrk(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, sum
! .. Executable Statements ..

Write (nout,*) ’E02AGF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) mf
liwrk = 2*mf + 2
Allocate (ip(mf),xf(mf),iwrk(liwrk))

Read (nin,*) ip(1:mf)

! Get max(IP) for later use

Call f16dnf(mf,ip,1,i,ipmax)

Read (nin,*) xf(1:mf)

lyf = mf + sum(ip(1:mf))
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Allocate (yf(lyf))

Read (nin,*) yf(1:lyf)

Read (nin,*) m
Allocate (x(m),y(m),w(m))

Read (nin,*)(x(i),y(i),w(i),i=1,m)

Read (nin,*) k, xmin, xmax
kplus1 = k + 1
n = lyf
np1 = n + 1
lwrk = max(4*m+3*kplus1,8*n+5*ipmax+mf+10) + 2*n + 2
lda = kplus1
Allocate (wrk(lwrk),a(lda,kplus1),s(kplus1))

ifail = 0
Call e02agf(m,kplus1,lda,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,a,s,np1,wrk, &

lwrk,iwrk,liwrk,ifail)

Write (nout,*)
Write (nout,*) ’Degree RMS residual’
Write (nout,99999)(i,s(i+1),i=np1-1,k)
Write (nout,*)
Write (nout,99996) ’Details of the fit of degree ’, k
Write (nout,*)
Write (nout,*) ’ Index Coefficient’

Do i = 1, kplus1
Write (nout,99997) i - 1, a(kplus1,i)

End Do

Write (nout,*)
Write (nout,*) ’ I X(I) Y(I) Fit Residual’

Do i = 1, m
la = lda*kplus1 - k

ifail = 0
Call e02akf(kplus1,xmin,xmax,a(kplus1,1),lda,la,x(i),fiti,ifail)

Write (nout,99998) i, x(i), y(i), fiti, fiti - y(i)
End Do

99999 Format (1X,I4,1P,E15.2)
99998 Format (1X,I6,3F11.4,E11.2)
99997 Format (1X,I6,F11.4)
99996 Format (1X,A,I2)

End Program e02agfe

10.2 Program Data

E02AGF Example Program Data
2 : MF
1 0 : IP
0.0 4.0 : XF
1.0 -2.0
9.0 : YF
5 : M

0.5 0.03 1.0
1.0 -0.75 1.0
2.0 -1.0 1.0
2.5 -0.1 1.0
3.0 1.75 1.0 : X, Y, W

4 0.0 4.0 : K, XMIN, XMAX

E02 – Curve and Surface Fitting E02AGF
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10.3 Program Results

E02AGF Example Program Results

Degree RMS residual
3 2.55E-03
4 2.94E-03

Details of the fit of degree 4

Index Coefficient
0 3.9980
1 3.4995
2 3.0010
3 0.5005
4 -0.0000

I X(I) Y(I) Fit Residual
1 0.5000 0.0300 0.0310 0.10E-02
2 1.0000 -0.7500 -0.7508 -0.78E-03
3 2.0000 -1.0000 -1.0020 -0.20E-02
4 2.5000 -0.1000 -0.0961 0.39E-02
5 3.0000 1.7500 1.7478 -0.22E-02
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NAG Library Routine Document

E02AHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02AHF determines the coefficients in the Chebyshev series representation of the derivative of a
polynomial given in Chebyshev series form.

2 Specification

SUBROUTINE E02AHF (NP1, XMIN, XMAX, A, IA1, LA, PATM1, ADIF, IADIF1,
LADIF, IFAIL)

&

INTEGER NP1, IA1, LA, IADIF1, LADIF, IFAIL
REAL (KIND=nag_wp) XMIN, XMAX, A(LA), PATM1, ADIF(LADIF)

3 Description

E02AHF forms the polynomial which is the derivative of a given polynomial. Both the original
polynomial and its derivative are represented in Chebyshev series form. Given the coefficients ai, for
i ¼ 0; 1; . . . ; n, of a polynomial p xð Þ of degree n, where

p xð Þ ¼ 1
2a0 þ a1T1 �xð Þ þ � � � þ anTn �xð Þ

the routine returns the coefficients �ai, for i ¼ 0; 1; . . . ; n� 1, of the polynomial q xð Þ of degree n� 1,
where

q xð Þ ¼ dp xð Þ
dx
¼ 1

2�a0 þ �a1T1 �xð Þ þ � � � þ �an�1Tn�1 �xð Þ:

Here Tj �xð Þ denotes the Chebyshev polynomial of the first kind of degree j with argument �x. It is
assumed that the normalized variable �x in the interval �1;þ1½ � was obtained from your original
variable x in the interval xmin ; xmax½ � by the linear transformation

�x ¼ 2x� xmax þ xminð Þ
xmax � xmin

and that you require the derivative to be with respect to the variable x. If the derivative with respect to
�x is required, set xmax ¼ 1 and xmin ¼ �1.
Values of the derivative can subsequently be computed, from the coefficients obtained, by using
E02AKF.

The method employed is that of Chebyshev series (see Chapter 8 of Modern Computing Methods
(1961)), modified to obtain the derivative with respect to x. Initially setting �anþ1 ¼ �an ¼ 0, the routine
forms successively

�ai�1 ¼ �aiþ1 þ
2

xmax � xmin
2iai; i ¼ n; n� 1; . . . ; 1:

4 References

Modern Computing Methods (1961) Chebyshev-series NPL Notes on Applied Science 16 (2nd Edition)
HMSO
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5 Arguments

1: NP1 – INTEGER Input

On entry: nþ 1, where n is the degree of the given polynomial p xð Þ. Thus NP1 is the number of
coefficients in this polynomial.

Constraint: NP1 � 1.

2: XMIN – REAL (KIND=nag_wp) Input
3: XMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper end points respectively of the interval xmin ; xmax½ �. The Chebyshev
series representation is in terms of the normalized variable �x, where

�x ¼ 2x� xmax þ xminð Þ
xmax � xmin

:

Constraint: XMAX > XMIN.

4: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: the Chebyshev coefficients of the polynomial p xð Þ. Specifically, element i � IA1 of A
must contain the coefficient ai, for i ¼ 0; 1; . . . ; n. Only these nþ 1 elements will be accessed.

Unchanged on exit, but see ADIF, below.

5: IA1 – INTEGER Input

On entry: the index increment of A. Most frequently the Chebyshev coefficients are stored in
adjacent elements of A, and IA1 must be set to 1. However, if for example, they are stored in
Að1Þ;Að4Þ;Að7Þ; . . . , then the value of IA1 must be 3. See also Section 9.

Constraint: IA1 � 1.

6: LA – INTEGER Input

On entry: the dimension of the array A as declared in the (sub)program from which E02AHF is
called.

Constraint: LA � 1þ NP1� 1ð Þ � IA1.

7: PATM1 – REAL (KIND=nag_wp) Output

On exit: the value of p xminð Þ. If this value is passed to the integration routine E02AJF with the
coefficients of q xð Þ, then the original polynomial p xð Þ is recovered, including its constant
coefficient.

8: ADIFðLADIFÞ – REAL (KIND=nag_wp) array Output

On exit: the Chebyshev coefficients of the derived polynomial q xð Þ. (The differentiation is with
respect to the variable x.) Specifically, element i � IADIF1þ 1 of ADIF contains the coefficient
�ai, for i ¼ 0; 1; . . . ; n� 1. Additionally, element n� IADIF1þ 1 is set to zero. A call of the
routine may have the array name ADIF the same as A, provided that note is taken of the order in
which elements are overwritten, when choosing the starting elements and increments IA1 and
IADIF1, i.e., the coefficients a0; a1; . . . ; ai�1 must be intact after coefficient �ai is stored. In
particular, it is possible to overwrite the ai completely by having IA1 ¼ IADIF1, and the actual
arrays for A and ADIF identical.
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9: IADIF1 – INTEGER Input

On entry: the index increment of ADIF. Most frequently the Chebyshev coefficients are required
in adjacent elements of ADIF, and IADIF1 must be set to 1. However, if, for example, they are to
be stored in ADIFð1Þ;ADIFð4Þ;ADIFð7Þ; . . . , then the value of IADIF1 must be 3. See Section 9.

Constraint: IADIF1 � 1.

10: LADIF – INTEGER Input

On entry: the dimension of the array ADIF as declared in the (sub)program from which E02AHF
is called.

Constraint: LADIF � 1þ NP1� 1ð Þ � IADIF1.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NP1 < 1,
or XMAX � XMIN,
or IA1 < 1,
or LA � NP1� 1ð Þ � IA1,
or IADIF1 < 1,
or LADIF � NP1� 1ð Þ � IADIF1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

There is always a loss of precision in numerical differentiation, in this case associated with the
multiplication by 2i in the formula quoted in Section 3.

8 Parallelism and Performance

E02AHF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to nþ 1.

The increments IA1, IADIF1 are included as arguments to give a degree of flexibility which, for
example, allows a polynomial in two variables to be differentiated with respect to either variable
without rearranging the coefficients.

10 Example

Suppose a polynomial has been computed in Chebyshev series form to fit data over the interval
�0:5; 2:5½ �. The following program evaluates the first and second derivatives of this polynomial at 4
equally spaced points over the interval. (For the purposes of this example, XMIN, XMAX and the
Chebyshev coefficients are simply supplied in DATA statements. Normally a program would first read
in or generate data and compute the fitted polynomial.)

10.1 Program Text

Program e02ahfe

! E02AHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02ahf, e02akf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: xmax = 2.5E0_nag_wp
Real (Kind=nag_wp), Parameter :: xmin = -0.5E0_nag_wp
Integer, Parameter :: nout = 6, np1 = 7
Integer, Parameter :: la = np1
Integer, Parameter :: ladif = np1
Real (Kind=nag_wp), Parameter :: a(la) = (/2.53213E0_nag_wp, &

1.13032E0_nag_wp,0.27150E0_nag_wp, &
0.04434E0_nag_wp,0.00547E0_nag_wp, &
0.00054E0_nag_wp,0.00004E0_nag_wp/)

! .. Local Scalars ..
Real (Kind=nag_wp) :: deriv, deriv2, patm1, x
Integer :: i, ifail, m

! .. Local Arrays ..
Real (Kind=nag_wp) :: adif(ladif), adif2(ladif)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’E02AHF Example Program Results’

ifail = 0
Call e02ahf(np1,xmin,xmax,a,1,la,patm1,adif,1,ladif,ifail)

ifail = 0
Call e02ahf(np1-1,xmin,xmax,adif,1,ladif,patm1,adif2,1,ladif,ifail)

m = 4

E02AHF NAG Library Manual

E02AHF.4 Mark 26



Write (nout,*)
Write (nout,*) ’ I Argument 1st deriv 2nd deriv’

Do i = 1, m
x = (xmin*real(m-i,kind=nag_wp)+xmax*real(i-1,kind=nag_wp))/ &

real(m-1,kind=nag_wp)

ifail = 0
Call e02akf(np1-1,xmin,xmax,adif,1,ladif,x,deriv,ifail)

ifail = 0
Call e02akf(np1-2,xmin,xmax,adif2,1,ladif,x,deriv2,ifail)

Write (nout,99999) i, x, deriv, deriv2
End Do

99999 Format (1X,I4,F9.4,2(4X,F9.4))
End Program e02ahfe

10.2 Program Data

None.

10.3 Program Results

E02AHF Example Program Results

I Argument 1st deriv 2nd deriv
1 -0.5000 0.2453 0.1637
2 0.5000 0.4777 0.3185
3 1.5000 0.9304 0.6203
4 2.5000 1.8119 1.2056
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NAG Library Routine Document

E02AJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02AJF determines the coefficients in the Chebyshev series representation of the indefinite integral of a
polynomial given in Chebyshev series form.

2 Specification

SUBROUTINE E02AJF (NP1, XMIN, XMAX, A, IA1, LA, QATM1, AINTC, IAINT1,
LAINT, IFAIL)

&

INTEGER NP1, IA1, LA, IAINT1, LAINT, IFAIL
REAL (KIND=nag_wp) XMIN, XMAX, A(LA), QATM1, AINTC(LAINT)

3 Description

E02AJF forms the polynomial which is the indefinite integral of a given polynomial. Both the original
polynomial and its integral are represented in Chebyshev series form. If supplied with the coefficients
ai, for i ¼ 0; 1; . . . ; n, of a polynomial p xð Þ of degree n, where

p xð Þ ¼ 1
2a0 þ a1T1 �xð Þ þ � � � þ anTn �xð Þ;

the routine returns the coefficients a0i, for i ¼ 0; 1; . . . ; nþ 1, of the polynomial q xð Þ of degree nþ 1,
where

q xð Þ ¼ 1
2a
0
0 þ a01T1 �xð Þ þ � � � þ a0nþ1Tnþ1 �xð Þ;

and

q xð Þ ¼
Z
p xð Þdx:

Here Tj �xð Þ denotes the Chebyshev polynomial of the first kind of degree j with argument �x. It is
assumed that the normalized variable �x in the interval �1;þ1½ � was obtained from your original
variable x in the interval xmin ; xmax½ � by the linear transformation

�x ¼ 2x� xmax þ xminð Þ
xmax � xmin

and that you require the integral to be with respect to the variable x. If the integral with respect to �x is
required, set xmax ¼ 1 and xmin ¼ �1.
Values of the integral can subsequently be computed, from the coefficients obtained, by using E02AKF.

The method employed is that of Chebyshev series (see Chapter 8 of Modern Computing Methods
(1961)), modified for integrating with respect to x. Initially taking anþ1 ¼ anþ2 ¼ 0, the routine forms
successively

a0i ¼
ai�1 � aiþ1

2i
� xmax � xmin

2
; i ¼ nþ 1; n; . . . ; 1:

The constant coefficient a00 is chosen so that q xð Þ is equal to a specified value, QATM1, at the lower
end point of the interval on which it is defined, i.e., �x ¼ �1, which corresponds to x ¼ xmin .

E02 – Curve and Surface Fitting E02AJF

Mark 26 E02AJF.1



4 References

Modern Computing Methods (1961) Chebyshev-series NPL Notes on Applied Science 16 (2nd Edition)
HMSO

5 Arguments

1: NP1 – INTEGER Input

On entry: nþ 1, where n is the degree of the given polynomial p xð Þ. Thus NP1 is the number of
coefficients in this polynomial.

Constraint: NP1 � 1.

2: XMIN – REAL (KIND=nag_wp) Input
3: XMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper end points respectively of the interval xmin ; xmax½ �. The Chebyshev
series representation is in terms of the normalized variable �x, where

�x ¼ 2x� xmax þ xminð Þ
xmax � xmin

:

Constraint: XMAX > XMIN.

4: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: the Chebyshev coefficients of the polynomial p xð Þ. Specifically, element i � IA1þ 1 of
A must contain the coefficient ai, for i ¼ 0; 1; . . . ; n. Only these nþ 1 elements will be accessed.

Unchanged on exit, but see AINTC, below.

5: IA1 – INTEGER Input

On entry: the index increment of A. Most frequently the Chebyshev coefficients are stored in
adjacent elements of A, and IA1 must be set to 1. However, if for example, they are stored in
Að1Þ;Að4Þ;Að7Þ; . . . , then the value of IA1 must be 3. See also Section 9.

Constraint: IA1 � 1.

6: LA – INTEGER Input

On entry: the dimension of the array A as declared in the (sub)program from which E02AJF is
called.

Constraint: LA � 1þ NP1� 1ð Þ � IA1.

7: QATM1 – REAL (KIND=nag_wp) Input

On entry: the value that the integrated polynomial is required to have at the lower end point of its
interval of definition, i.e., at �x ¼ �1 which corresponds to x ¼ xmin . Thus, QATM1 is a constant
of integration and will normally be set to zero by you.

8: AINTCðLAINTÞ – REAL (KIND=nag_wp) array Output

On exit: the Chebyshev coefficients of the integral q xð Þ. (The integration is with respect to the
variable x, and the constant coefficient is chosen so that q xminð Þ equals QATM1). Specifically,
element i� IAINT1þ 1 of AINTC contains the coefficient a0i, for i ¼ 0; 1; . . . ; nþ 1. A call of
the routine may have the array name AINTC the same as A, provided that note is taken of the
order in which elements are overwritten when choosing starting elements and increments IA1 and
IAINT1: i.e., the coefficients, a0; a1; . . . ; ai�2 must be intact after coefficient a0i is stored. In
particular it is possible to overwrite the ai entirely by having IA1 ¼ IAINT1, and the actual array
for A and AINTC identical.
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9: IAINT1 – INTEGER Input

On entry: the index increment of AINTC. Most frequently the Chebyshev coefficients are
required in adjacent elements of AINTC, and IAINT1 must be set to 1. However, if, for example,
they are to be stored in AINTCð1Þ;AINTCð4Þ;AINTCð7Þ; . . . , then the value of IAINT1 must be
3. See also Section 9.

Constraint: IAINT1 � 1.

10: LAINT – INTEGER Input

On entry: the dimension of the array AINTC as declared in the (sub)program from which
E02AJF is called.

Constraint: LAINT � 1þ NP1ð Þ � IAINT1.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NP1 < 1,
or XMAX � XMIN,
or IA1 < 1,
or LA � NP1� 1ð Þ � IA1,
or IAINT1 < 1,
or LAINT � NP1� IAINT1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

In general there is a gain in precision in numerical integration, in this case associated with the division
by 2i in the formula quoted in Section 3.

8 Parallelism and Performance

E02AJF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to nþ 1.

The increments IA1, IAINT1 are included as arguments to give a degree of flexibility which, for
example, allows a polynomial in two variables to be integrated with respect to either variable without
rearranging the coefficients.

10 Example

Suppose a polynomial has been computed in Chebyshev series form to fit data over the interval
�0:5; 2:5½ �. The following program evaluates the integral of the polynomial from 0:0 to 2:0. (For the
purpose of this example, XMIN, XMAX and the Chebyshev coefficients are simply supplied in DATA
statements. Normally a program would read in or generate data and compute the fitted polynomial).

10.1 Program Text

Program e02ajfe

! E02AJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02ajf, e02akf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: xmax = 2.5E0_nag_wp
Real (Kind=nag_wp), Parameter :: xmin = -0.5E0_nag_wp
Integer, Parameter :: nout = 6, np1 = 7
Integer, Parameter :: la = np1
Integer, Parameter :: laint = np1 + 1
Real (Kind=nag_wp), Parameter :: a(la) = (/2.53213E0_nag_wp, &

1.13032E0_nag_wp,0.27150E0_nag_wp, &
0.04434E0_nag_wp,0.00547E0_nag_wp, &
0.00054E0_nag_wp,0.00004E0_nag_wp/)

! .. Local Scalars ..
Real (Kind=nag_wp) :: ra, rb, res, xa, xb
Integer :: ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: aintc(laint)

! .. Executable Statements ..
Write (nout,*) ’E02AJF Example Program Results’

ifail = 0
Call e02ajf(np1,xmin,xmax,a,1,la,0.0E0_nag_wp,aintc,1,laint,ifail)

xa = 0.0E0_nag_wp
xb = 2.0E0_nag_wp

ifail = 0
Call e02akf(np1+1,xmin,xmax,aintc,1,laint,xa,ra,ifail)

ifail = 0
Call e02akf(np1+1,xmin,xmax,aintc,1,laint,xb,rb,ifail)
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res = rb - ra

Write (nout,*)
Write (nout,99999) ’Value of definite integral is ’, res

99999 Format (1X,A,F10.4)
End Program e02ajfe

10.2 Program Data

None.

10.3 Program Results

E02AJF Example Program Results

Value of definite integral is 2.1515
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NAG Library Routine Document

E02AKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02AKF evaluates a polynomial from its Chebyshev series representation, allowing an arbitrary index
increment for accessing the array of coefficients.

2 Specification

SUBROUTINE E02AKF (NP1, XMIN, XMAX, A, IA1, LA, X, RESULT, IFAIL)

INTEGER NP1, IA1, LA, IFAIL
REAL (KIND=nag_wp) XMIN, XMAX, A(LA), X, RESULT

3 Description

If supplied with the coefficients ai, for i ¼ 0; 1; . . . ; n, of a polynomial p �xð Þ of degree n, where

p �xð Þ ¼ 1
2a0 þ a1T1 �xð Þ þ � � � þ anTn �xð Þ;

E02AKF returns the value of p �xð Þ at a user-specified value of the variable x. Here Tj �xð Þ denotes the
Chebyshev polynomial of the first kind of degree j with argument �x. It is assumed that the independent
variable �x in the interval �1;þ1½ � was obtained from your original variable x in the interval xmin ; xmax½ �
by the linear transformation

�x ¼ 2x� xmax þ xminð Þ
xmax � xmin

:

The coefficients ai may be supplied in the array A, with any increment between the indices of array
elements which contain successive coefficients. This enables the routine to be used in surface fitting and
other applications, in which the array might have two or more dimensions.

The method employed is based on the three-term recurrence relation due to Clenshaw (see Clenshaw
(1955)), with modifications due to Reinsch and Gentleman (see Gentleman (1969)). For further details
of the algorithm and its use see Cox (1973) and Cox and Hayes (1973).

4 References

Clenshaw C W (1955) A note on the summation of Chebyshev series Math. Tables Aids Comput. 9
118–120

Cox M G (1973) A data-fitting package for the non-specialist user NPL Report NAC 40 National
Physical Laboratory

Cox M G and Hayes J G (1973) Curve fitting: a guide and suite of algorithms for the non-specialist user
NPL Report NAC26 National Physical Laboratory

Gentleman W M (1969) An error analysis of Goertzel's (Watt's) method for computing Fourier
coefficients Comput. J. 12 160–165

5 Arguments

1: NP1 – INTEGER Input

On entry: nþ 1, where n is the degree of the given polynomial p �xð Þ.
Constraint: NP1 � 1.
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2: XMIN – REAL (KIND=nag_wp) Input
3: XMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper end points respectively of the interval xmin ; xmax½ �. The Chebyshev
series representation is in terms of the normalized variable �x, where

�x ¼ 2x� xmax þ xminð Þ
xmax � xmin

:

Constraint: XMIN < XMAX.

4: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: the Chebyshev coefficients of the polynomial p �xð Þ. Specifically, element i � IA1þ 1
must contain the coefficient ai, for i ¼ 0; 1; . . . ; n. Only these nþ 1 elements will be accessed.

5: IA1 – INTEGER Input

On entry: the index increment of A. Most frequently, the Chebyshev coefficients are stored in
adjacent elements of A, and IA1 must be set to 1. However, if, for example, they are stored in
Að1Þ;Að4Þ;Að7Þ; . . . , then the value of IA1 must be 3.

Constraint: IA1 � 1.

6: LA – INTEGER Input

On entry: the dimension of the array A as declared in the (sub)program from which E02AKF is
called.

Constraint: LA � NP1� 1ð Þ � IA1þ 1.

7: X – REAL (KIND=nag_wp) Input

On entry: the argument x at which the polynomial is to be evaluated.

Constraint: XMIN � X � XMAX.

8: RESULT – REAL (KIND=nag_wp) Output

On exit: the value of the polynomial p �xð Þ.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NP1 < 1,
or IA1 < 1,
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or LA � NP1� 1ð Þ � IA1,
or XMIN � XMAX.

IFAIL ¼ 2

X does not satisfy the restriction XMIN � X � XMAX.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The rounding errors are such that the computed value of the polynomial is exact for a slightly perturbed
set of coefficients ai þ �ai. The ratio of the sum of the absolute values of the �ai to the sum of the
absolute values of the ai is less than a small multiple of nþ 1ð Þ �machine precision.

8 Parallelism and Performance

E02AKF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to nþ 1.

10 Example

Suppose a polynomial has been computed in Chebyshev series form to fit data over the interval
�0:5; 2:5½ �. The following program evaluates the polynomial at 4 equally spaced points over the
interval. (For the purposes of this example, XMIN, XMAX and the Chebyshev coefficients are supplied
in DATA statements. Normally a program would first read in or generate data and compute the fitted
polynomial.)

10.1 Program Text

Program e02akfe

! E02AKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02akf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: xmax = 2.5E0_nag_wp
Real (Kind=nag_wp), Parameter :: xmin = -0.5E0_nag_wp
Integer, Parameter :: nout = 6, np1 = 7
Integer, Parameter :: la = np1
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Real (Kind=nag_wp), Parameter :: a(la) = (/2.53213E0_nag_wp, &
1.13032E0_nag_wp,0.27150E0_nag_wp, &
0.04434E0_nag_wp,0.00547E0_nag_wp, &
0.00054E0_nag_wp,0.00004E0_nag_wp/)

! .. Local Scalars ..
Real (Kind=nag_wp) :: res, x
Integer :: i, ifail, m

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’E02AKF Example Program Results’

m = 4

Do i = 1, m
x = (xmin*real(m-i,kind=nag_wp)+xmax*real(i-1,kind=nag_wp))/ &

real(m-1,kind=nag_wp)

ifail = 0
Call e02akf(np1,xmin,xmax,a,1,la,x,res,ifail)

If (i==1) Then
Write (nout,*)
Write (nout,*) ’ I Argument Value of polynomial’

End If

Write (nout,99999) i, x, res
End Do

99999 Format (1X,I4,F10.4,4X,F9.4)
End Program e02akfe

10.2 Program Data

None.

10.3 Program Results

E02AKF Example Program Results

I Argument Value of polynomial
1 -0.5000 0.3679
2 0.5000 0.7165
3 1.5000 1.3956
4 2.5000 2.7183
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NAG Library Routine Document

E02ALF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02ALF calculates a minimax polynomial fit to a set of data points.

2 Specification

SUBROUTINE E02ALF (N, X, Y, M, A, REF, IFAIL)

INTEGER N, M, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), A(M+1), REF

3 Description

Given a set of data points xi; yið Þ, for i ¼ 1; 2; . . . ; n, E02ALF uses the exchange algorithm to compute
an mth-degree polynomial

P xð Þ ¼ a0 þ a1xþ a2x2 þ � � � þ amxm

such that max
i

P xið Þ � yij j is a minimum.

The routine also returns a number whose absolute value is the final reference deviation (see Section 5).
The routine is an adaptation of Boothroyd (1967).

4 References

Boothroyd J B (1967) Algorithm 318 Comm. ACM 10 801

Stieffel E (1959) Numerical methods of Tchebycheff approximation On Numerical Approximation (ed R
E Langer) 217–232 University of Wisconsin Press

5 Arguments

1: N – INTEGER Input

On entry: n, the number of data points.

Constraint: N � 1.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the x coordinates, xi, for i ¼ 1; 2; . . . ; n.

Constraint: x1 < x2 < . . . < xn.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the y coordinates, yi, for i ¼ 1; 2; . . . ; n.

4: M – INTEGER Input

On entry: m, where m is the degree of the polynomial to be found.

Constraint: 0 � M < min 100;N� 1ð Þ.
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5: AðMþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the coefficients ai of the minimax polynomial, for i ¼ 0; 1; . . . ;m.

6: REF – REAL (KIND=nag_wp) Output

On exit: the final reference deviation, i.e., the maximum deviation of the computed polynomial
evaluated at xi from the reference values yi, for i ¼ 1; 2; . . . ; n. REF may return a negative value
which indicates that the algorithm started to cycle due to round-off errors.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M < 100.

On entry, M ¼ valueh i.
Constraint: M � 0.

On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: M < N� 1.

IFAIL ¼ 3

On entry, i ¼ valueh i, Xði þ 1Þ ¼ valueh i and XðiÞ ¼ valueh i.
Constraint: Xði þ 1Þ > XðiÞ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

This is dependent on the given data points and on the degree of the polynomial. The data points should
represent a fairly smooth function which does not contain regions with markedly different behaviours.
For large numbers of data points (N > 100, say), rounding error will affect the computation regardless
of the quality of the data; in this case, relatively small degree polynomials (M

ffiffiffiffi
N
p

) may be used
when this is consistent with the required approximation. A limit of 99 is placed on the degree of
polynomial since it is known from experiment that a complete loss of accuracy often results from using
such high degree polynomials in this form of the algorithm.

8 Parallelism and Performance

E02ALF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken increases with m.

10 Example

This example calculates a minimax fit with a polynomial of degree 5 to the exponential function
evaluated at 21 points over the interval 0; 1½ �. It then prints values of the function and the fitted
polynomial.

10.1 Program Text

Program e02alfe

! E02ALF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02alf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dxx, ref, s, t, xx
Integer :: i, ifail, j, m, n, neval

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: exp, real

! .. Executable Statements ..
Write (nout,*) ’E02ALF Example Program Results’

! Skip heading in data file
Read (nin,*)
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Read (nin,*) n, m, neval
Allocate (a(m+1),x(n),y(n))

Read (nin,*)(x(i),y(i),i=1,n)

ifail = 0
Call e02alf(n,x,y,m,a,ref,ifail)

Write (nout,*)
Write (nout,*) ’ Polynomial coefficients’
Write (nout,99998)(a(i),i=1,m+1)
Write (nout,*)
Write (nout,99997) ’ Reference deviation = ’, ref
Write (nout,*)
Write (nout,*) ’ x Fit exp(x) Residual’

! The neval evaluation points are equispaced on [0,1].
dxx = 1.0_nag_wp/real(neval-1,kind=nag_wp)

Do j = 1, neval
xx = real(j-1,kind=nag_wp)*dxx

s = a(m+1)

Do i = m, 1, -1
s = s*xx + a(i)

End Do

t = exp(xx)
Write (nout,99999) xx, s, t, s - t

End Do

99999 Format (1X,F5.2,2F9.4,E11.2)
99998 Format (6X,E12.4)
99997 Format (1X,A,E10.2)

End Program e02alfe

10.2 Program Data

E02ALF Example Program Data
21 5 11 : N, M, NEVAL
0.00 1.0000000000
0.05 1.0512710964
0.10 1.1051709181
0.15 1.1618342427
0.20 1.2214027582
0.25 1.2840254167
0.30 1.3498588076
0.35 1.4190675486
0.40 1.4918246976
0.45 1.5683121855
0.50 1.6487212707
0.55 1.7332530179
0.60 1.8221188004
0.65 1.9155408290
0.70 2.0137527075
0.75 2.1170000166
0.80 2.2255409285
0.85 2.3396468519
0.90 2.4596031112
0.95 2.5857096593
1.00 2.7182818285 : X, Y
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10.3 Program Results

E02ALF Example Program Results

Polynomial coefficients
0.1000E+01
0.1000E+01
0.4991E+00
0.1704E+00
0.3478E-01
0.1391E-01

Reference deviation = 0.11E-05

x Fit exp(x) Residual
0.00 1.0000 1.0000 -0.11E-05
0.10 1.1052 1.1052 0.97E-06
0.20 1.2214 1.2214 -0.74E-06
0.30 1.3499 1.3499 -0.92E-06
0.40 1.4918 1.4918 0.30E-06
0.50 1.6487 1.6487 0.11E-05
0.60 1.8221 1.8221 0.46E-06
0.70 2.0138 2.0138 -0.82E-06
0.80 2.2255 2.2255 -0.84E-06
0.90 2.4596 2.4596 0.88E-06
1.00 2.7183 2.7183 -0.11E-05
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NAG Library Routine Document

E02BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02BAF computes a weighted least squares approximation to an arbitrary set of data points by a cubic
spline with knots prescribed by you. Cubic spline interpolation can also be carried out.

2 Specification

SUBROUTINE E02BAF (M, NCAP7, X, Y, W, LAMDA, WORK1, WORK2, C, SS, IFAIL)

INTEGER M, NCAP7, IFAIL
REAL (KIND=nag_wp) X(M), Y(M), W(M), LAMDA(NCAP7), WORK1(M),

WORK2(4*NCAP7), C(NCAP7), SS
&

3 Description

E02BAF determines a least squares cubic spline approximation s xð Þ to the set of data points xr ; yrð Þ
with weights wr , for r ¼ 1; 2; . . . ;m. The value of NCAP7 ¼ �nþ 7, where �n is the number of intervals
of the spline (one greater than the number of interior knots), and the values of the knots
�5; �6; . . . ; ��nþ3, interior to the data interval, are prescribed by you.

s xð Þ has the property that it minimizes �, the sum of squares of the weighted residuals �r , for
r ¼ 1; 2; . . . ;m, where

�r ¼ wr yr � s xrð Þð Þ:

The routine produces this minimizing value of � and the coefficients c1; c2; . . . ; cq, where q ¼ �nþ 3, in
the B-spline representation

s xð Þ ¼
Xq
i¼1
ciNi xð Þ:

Here Ni xð Þ denotes the normalized B-spline of degree 3 defined upon the knots �i; �iþ1; . . . ; �iþ4.

In order to define the full set of B-splines required, eight additional knots �1; �2; �3; �4 and
��nþ4; ��nþ5; ��nþ6; ��nþ7 are inserted automatically by the routine. The first four of these are set equal to
the smallest xr and the last four to the largest xr.

The representation of s xð Þ in terms of B-splines is the most compact form possible in that only �nþ 3
coefficients, in addition to the �nþ 7 knots, fully define s xð Þ.
The method employed involves forming and then computing the least squares solution of a set of m
linear equations in the coefficients ci, for i ¼ 1; 2; . . . ; �nþ 3. The equations are formed using a
recurrence relation for B-splines that is unconditionally stable (see Cox (1972) and de Boor (1972)),
even for multiple (coincident) knots. The least squares solution is also obtained in a stable manner by
using orthogonal transformations, viz. a variant of Givens rotations (see Gentleman (1974) and
Gentleman (1973)). This requires only one equation to be stored at a time. Full advantage is taken of
the structure of the equations, there being at most four nonzero values of Ni xð Þ for any value of x and
hence at most four coefficients in each equation.

For further details of the algorithm and its use see Cox (1974), Cox (1975) and Cox and Hayes (1973).

Subsequent evaluation of s xð Þ from its B-spline representation may be carried out using E02BBF. If
derivatives of s xð Þ are also required, E02BCF may be used. E02BDF can be used to compute the
definite integral of s xð Þ.

E02 – Curve and Surface Fitting E02BAF

Mark 26 E02BAF.1



4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

Cox M G (1974) A data-fitting package for the non-specialist user Software for Numerical Mathematics
(ed D J Evans) Academic Press

Cox M G (1975) Numerical methods for the interpolation and approximation of data by spline functions
PhD Thesis City University, London

Cox M G and Hayes J G (1973) Curve fitting: a guide and suite of algorithms for the non-specialist user
NPL Report NAC26 National Physical Laboratory

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

Gentleman W M (1973) Least squares computations by Givens transformations without square roots J.
Inst. Math. Applic. 12 329–336

Gentleman W M (1974) Algorithm AS 75. Basic procedures for large sparse or weighted linear least
squares problems Appl. Statist. 23 448–454

Schoenberg I J and Whitney A (1953) On Polya frequency functions III Trans. Amer. Math. Soc. 74
246–259

5 Arguments

1: M – INTEGER Input

On entry: the number m of data points.

Constraint: M � mdist � 4, where mdist is the number of distinct x values in the data.

2: NCAP7 – INTEGER Input

On entry: �nþ 7, where �n is the number of intervals of the spline (which is one greater than the
number of interior knots, i.e., the knots strictly within the range x1 to xm) over which the spline
is defined.

Constraint: 8 � NCAP7 � mdist þ 4, where mdist is the number of distinct x values in the data.

3: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values xr of the independent variable (abscissa), for r ¼ 1; 2; . . . ;m.

Constraint: x1 � x2 � � � � � xm.

4: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values yr of the dependent variable (ordinate), for r ¼ 1; 2; . . . ;m.

5: WðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values wr of the weights, for r ¼ 1; 2; . . . ;m. For advice on the choice of weights,
see the E02 Chapter Introduction.

Constraint: WðrÞ > 0:0, for r ¼ 1; 2; . . . ;m.

6: LAMDAðNCAP7Þ – REAL (KIND=nag_wp) array Input/Output

On entry: LAMDAðiÞ must be set to the i � 4ð Þth (interior) knot, �i, for i ¼ 5; 6; . . . ; �nþ 3.

Constraint: Xð1Þ < LAMDAð5Þ � LAMDAð6Þ � � � � � LAMDAðNCAP7� 4Þ < XðMÞ.
On exit: the input values are unchanged, and LAMDAðiÞ, for i ¼ 1; 2; 3; 4, NCAP7� 3,
NCAP7� 2, NCAP7� 1, NCAP7 contains the additional (exterior) knots introduced by the
routine. For advice on the choice of knots, see Section 3.3 in the E02 Chapter Introduction.
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7: WORK1ðMÞ – REAL (KIND=nag_wp) array Workspace
8: WORK2ð4� NCAP7Þ – REAL (KIND=nag_wp) array Workspace

9: CðNCAP7Þ – REAL (KIND=nag_wp) array Output

On exit: the coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ; �nþ 3. The remaining elements
of the array are not used.

10: SS – REAL (KIND=nag_wp) Output

On exit: the residual sum of squares, �.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The knots fail to satisfy the condition

Xð1Þ < LAMDAð5Þ � LAMDAð6Þ � � � � � LAMDAðNCAP7� 4Þ < XðMÞ.
Thus the knots are not in correct order or are not interior to the data interval.

IFAIL ¼ 2

The weights are not all strictly positive.

IFAIL ¼ 3

The values of XðrÞ, for r ¼ 1; 2; . . . ;M, are not in nondecreasing order.

IFAIL ¼ 4

NCAP7 < 8 (so the number of interior knots is negative) or NCAP7 > mdist þ 4, where mdist is
the number of distinct x values in the data (so there cannot be a unique solution).

IFAIL ¼ 5

The conditions specified by Schoenberg and Whitney (1953) fail to hold for at least one subset of
the distinct data abscissae. That is, there is no subset of NCAP7 � 4 strictly increasing values,
XðR 1ð ÞÞ;XðR 2ð ÞÞ; . . . ;XðR NCAP7� 4ð ÞÞ, among the abscissae such that

XðR 1ð ÞÞ < LAMDAð1Þ < XðR 5ð ÞÞ,
XðR 2ð ÞÞ < LAMDAð2Þ < XðR 6ð ÞÞ,

..

.
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XðR NCAP7� 8ð ÞÞ < LAMDAðNCAP7� 8Þ < XðR NCAP7� 4ð ÞÞ.
This means that there is no unique solution: there are regions containing too many knots
compared with the number of data points.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The rounding errors committed are such that the computed coefficients are exact for a slightly perturbed
set of ordinates yr þ �yr. The ratio of the root-mean-square value for the �yr to the root-mean-square
value of the yr can be expected to be less than a small multiple of ��m�machine precision, where �
is a condition number for the problem. Values of � for 20–30 practical datasets all proved to lie
between 4:5 and 7:8 (see Cox (1975)). (Note that for these datasets, replacing the coincident end knots
at the end points x1 and xm used in the routine by various choices of non-coincident exterior knots gave
values of � between 16 and 180. Again see Cox (1975) for further details.) In general we would not
expect � to be large unless the choice of knots results in near-violation of the Schoenberg–Whitney
conditions.

A cubic spline which adequately fits the data and is free from spurious oscillations is more likely to be
obtained if the knots are chosen to be grouped more closely in regions where the function (underlying
the data) or its derivatives change more rapidly than elsewhere.

8 Parallelism and Performance

E02BAF is not threaded in any implementation.

9 Further Comments

The time taken is approximately C � 2mþ �nþ 7ð Þ seconds, where C is a machine-dependent constant.

Multiple knots are permitted as long as their multiplicity does not exceed 4, i.e., the complete set of
knots must satisfy �i < �iþ4, for i ¼ 1; 2; . . . ; �nþ 3, (see Section 6). At a knot of multiplicity one (the
usual case), s xð Þ and its first two derivatives are continuous. At a knot of multiplicity two, s xð Þ and its
first derivative are continuous. At a knot of multiplicity three, s xð Þ is continuous, and at a knot of
multiplicity four, s xð Þ is generally discontinuous.

The routine can be used efficiently for cubic spline interpolation, i.e., if m ¼ �nþ 3. The abscissae must
then of course satisfy x1 < x2 < � � � < xm. Recommended values for the knots in this case are
�i ¼ xi�2, for i ¼ 5; 6; . . . ; �nþ 3.

10 Example

Determine a weighted least squares cubic spline approximation with five intervals (four interior knots)
to a set of 14 given data points. Tabulate the data and the corresponding values of the approximating
spline, together with the residual errors, and also the values of the approximating spline at points half-
way between each pair of adjacent data points.
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The example program is written in a general form that will enable a cubic spline approximation with �n
intervals (�n� 1 interior knots) to be obtained to m data points, with arbitrary positive weights, and the
approximation to be tabulated. Note that E02BBF is used to evaluate the approximating spline. The
program is self-starting in that any number of datasets can be supplied.

10.1 Program Text

Program e02bafe

! E02BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02baf, e02bbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fit, ss, xarg
Integer :: ifail, iwght, j, m, ncap, ncap7, r

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), lamda(:), w(:), work1(:), &

work2(:), x(:), y(:)
! .. Executable Statements ..

Write (nout,*) ’E02BAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m
Read (nin,*) ncap, iwght
ncap7 = ncap + 7
Allocate (x(m),y(m),w(m),lamda(ncap7),c(ncap7),work1(m),work2(4*ncap7))

Read (nin,*) lamda(5:(ncap+3))

Do r = 1, m

If (iwght==1) Then
Read (nin,*) x(r), y(r)
w(r) = 1.0E0_nag_wp

Else
Read (nin,*) x(r), y(r), w(r)

End If

End Do

ifail = 0
Call e02baf(m,ncap7,x,y,w,lamda,work1,work2,c,ss,ifail)

Write (nout,*)
Write (nout,*) ’ J LAMDA(J+2) B-spline coeff C(J)’
Write (nout,*)

j = 1
Write (nout,99998) j, c(1)

Do j = 2, ncap + 2
Write (nout,99999) j, lamda(j+2), c(j)

End Do

Write (nout,99998) ncap + 3, c(ncap+3)
Write (nout,*)
Write (nout,99997) ’Residual sum of squares = ’, ss
Write (nout,*)
Write (nout,*) ’Cubic spline approximation and residuals’
Write (nout,*)
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Write (nout,*) &
’ R Abscissa Weight Ordinate Spline Residual’

Write (nout,*)

Do r = 1, m

ifail = 0
Call e02bbf(ncap7,lamda,c,x(r),fit,ifail)

Write (nout,99995) r, x(r), w(r), y(r), fit, fit - y(r)

If (r<m) Then
xarg = 0.5E0_nag_wp*(x(r)+x(r+1))

ifail = 0
Call e02bbf(ncap7,lamda,c,xarg,fit,ifail)

Write (nout,99996) xarg, fit
End If

End Do

99999 Format (1X,I3,F15.4,F20.4)
99998 Format (1X,I3,F35.4)
99997 Format (1X,A,E12.2)
99996 Format (1X,F14.4,F33.4)
99995 Format (1X,I3,4F11.4,E10.2)

End Program e02bafe

10.2 Program Data

E02BAF Example Program Data
14
5 2

1.50
2.60
4.00
8.00
0.20 0.00 0.20
0.47 2.00 0.20
0.74 4.00 0.30
1.09 6.00 0.70
1.60 8.00 0.90
1.90 8.62 1.00
2.60 9.10 1.00
3.10 8.90 1.00
4.00 8.15 0.80
5.15 7.00 0.50
6.17 6.00 0.70
8.00 4.54 1.00

10.00 3.39 1.00
12.00 2.56 1.00

10.3 Program Results

E02BAF Example Program Results

J LAMDA(J+2) B-spline coeff C(J)

1 -0.0465
2 0.2000 3.6150
3 1.5000 8.5724
4 2.6000 9.4261
5 4.0000 7.2716
6 8.0000 4.1207
7 12.0000 3.0822
8 2.5597

Residual sum of squares = 0.18E-02
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Cubic spline approximation and residuals

R Abscissa Weight Ordinate Spline Residual

1 0.2000 0.2000 0.0000 -0.0465 -0.47E-01
0.3350 1.0622

2 0.4700 0.2000 2.0000 2.1057 0.11E+00
0.6050 3.0817

3 0.7400 0.3000 4.0000 3.9880 -0.12E-01
0.9150 5.0558

4 1.0900 0.7000 6.0000 5.9983 -0.17E-02
1.3450 7.1376

5 1.6000 0.9000 8.0000 7.9872 -0.13E-01
1.7500 8.3544

6 1.9000 1.0000 8.6200 8.6348 0.15E-01
2.2500 9.0076

7 2.6000 1.0000 9.1000 9.0896 -0.10E-01
2.8500 9.0353

8 3.1000 1.0000 8.9000 8.9125 0.12E-01
3.5500 8.5660

9 4.0000 0.8000 8.1500 8.1321 -0.18E-01
4.5750 7.5592

10 5.1500 0.5000 7.0000 6.9925 -0.75E-02
5.6600 6.5010

11 6.1700 0.7000 6.0000 6.0255 0.26E-01
7.0850 5.2292

12 8.0000 1.0000 4.5400 4.5315 -0.85E-02
9.0000 3.9045

13 10.0000 1.0000 3.3900 3.3928 0.28E-02
11.0000 2.9574

14 12.0000 1.0000 2.5600 2.5597 -0.35E-03
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NAG Library Routine Document

E02BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02BBF evaluates a cubic spline from its B-spline representation.

2 Specification

SUBROUTINE E02BBF (NCAP7, LAMDA, C, X, S, IFAIL)

INTEGER NCAP7, IFAIL
REAL (KIND=nag_wp) LAMDA(NCAP7), C(NCAP7), X, S

3 Description

E02BBF evaluates the cubic spline s xð Þ at a prescribed argument x from its augmented knot set �i, for
i ¼ 1; 2; . . . ; nþ 7, (see E02BAF) and from the coefficients ci, for i ¼ 1; 2; . . . ; qin its B-spline
representation

s xð Þ ¼
Xq
i¼1
ciNi xð Þ:

Here q ¼ �nþ 3, where �n is the number of intervals of the spline, and Ni xð Þ denotes the normalized
B-spline of degree 3 defined upon the knots �i; �iþ1; . . . ; �iþ4. The prescribed argument x must satisfy
�4 � x � ��nþ4.

It is assumed that �j � �j�1, for j ¼ 2; 3; . . . ; �nþ 7, and ��nþ4 > �4.

If x is a point at which 4 knots coincide, s xð Þ is discontinuous at x; in this case, S contains the value
defined as x is approached from the right.

The method employed is that of evaluation by taking convex combinations due to de Boor (1972). For
further details of the algorithm and its use see Cox (1972) and Cox and Hayes (1973).

It is expected that a common use of E02BBF will be the evaluation of the cubic spline approximations
produced by E02BAF. A generalization of E02BBF which also forms the derivative of s xð Þ is E02BCF.
E02BCF takes about 50% longer than E02BBF.

4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135–143

Cox M G and Hayes J G (1973) Curve fitting: a guide and suite of algorithms for the non-specialist user
NPL Report NAC26 National Physical Laboratory

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62
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5 Arguments

1: NCAP7 – INTEGER Input

On entry: �nþ 7, where �n is the number of intervals (one greater than the number of interior
knots, i.e., the knots strictly within the range �4 to ��nþ4) over which the spline is defined.

Constraint: NCAP7 � 8.

2: LAMDAðNCAP7Þ – REAL (KIND=nag_wp) array Input

On entry: LAMDAðjÞ must be set to the value of the jth member of the complete set of knots, �j ,
for j ¼ 1; 2; . . . ; �nþ 7.

Constraint: the LAMDAðjÞ must be in nondecreasing order with LAMDAðNCAP7� 3Þ >
LAMDAð4Þ.

3: CðNCAP7Þ – REAL (KIND=nag_wp) array Input

On entry: the coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ; �nþ 3. The remaining elements
of the array are not referenced.

4: X – REAL (KIND=nag_wp) Input

On entry: the argument x at which the cubic spline is to be evaluated.

Constraint: LAMDAð4Þ � X � LAMDAðNCAP7� 3Þ.

5: S – REAL (KIND=nag_wp) Output

On exit: the value of the spline, s xð Þ.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The argument X does not satisfy LAMDAð4Þ � X � LAMDAðNCAP7� 3Þ.
In this case the value of S is set arbitrarily to zero.

IFAIL ¼ 2

NCAP7 < 8, i.e., the number of interior knots is negative.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed value of s xð Þ has negligible error in most practical situations. Specifically, this value has
an absolute error bounded in modulus by 18� cmax �machine precision, where cmax is the largest in
modulus of cj; cjþ1; cjþ2 and cjþ3, and j is an integer such that �jþ3 � x � �jþ4. If cj; cjþ1; cjþ2 and cjþ3
are all of the same sign, then the computed value of s xð Þ has a relative error not exceeding
20�machine precision in modulus. For further details see Cox (1978).

8 Parallelism and Performance

E02BBF is not threaded in any implementation.

9 Further Comments

The time taken is approximately C� 1þ 0:1� log �nþ 7ð Þð Þ seconds, where C is a machine-dependent
constant.

Note: the routine does not test all the conditions on the knots given in the description of LAMDA in
Section 5, since to do this would result in a computation time approximately linear in �nþ 7 instead of
log �nþ 7ð Þ. All the conditions are tested in E02BAF, however.

10 Example

Evaluate at nine equally-spaced points in the interval 1:0 � x � 9:0 the cubic spline with (augmented)
knots 1:0, 1:0, 1:0, 1:0, 3:0, 6:0, 8:0, 9:0, 9:0, 9:0, 9:0 and normalized cubic B-spline coefficients 1:0,
2:0, 4:0, 7:0, 6:0, 4:0, 3:0.

The example program is written in a general form that will enable a cubic spline with �n intervals, in its
normalized cubic B-spline form, to be evaluated at m equally-spaced points in the interval
LAMDAð4Þ � x � LAMDAð�nþ 4Þ. The program is self-starting in that any number of datasets may
be supplied.

10.1 Program Text

Program e02bbfe

! E02BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02bbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, s, x
Integer :: ifail, j, m, ncap, ncap7, r

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), lamda(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’E02BBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m
Read (nin,*) ncap
ncap7 = ncap + 7
Allocate (lamda(ncap7),c(ncap7))

Read (nin,*) lamda(1:ncap7)
Read (nin,*) c(1:ncap+3)

a = lamda(4)
b = lamda(ncap+4)

Do r = 1, m
x = (real(m-r,kind=nag_wp)*a+real(r-1,kind=nag_wp)*b)/ &

real(m-1,kind=nag_wp)

ifail = 0
Call e02bbf(ncap7,lamda,c,x,s,ifail)

If (r==1) Then
Write (nout,*)
Write (nout,*) ’ J LAMDA(J) B-spline coefficient (J-2)’
Write (nout,*)

Do j = 1, ncap7

If (j<3 .Or. j>ncap+5) Then
Write (nout,99999) j, lamda(j)

Else
Write (nout,99999) j, lamda(j), c(j-2)

End If

End Do

Write (nout,*)
Write (nout,*) ’ R Argument Value of cubic spline’
Write (nout,*)

End If

Write (nout,99999) r, x, s
End Do

99999 Format (1X,I3,F14.4,F21.4)
End Program e02bbfe

10.2 Program Data

E02BBF Example Program Data
9
4

1.00
1.00
1.00
1.00
3.00
6.00
8.00
9.00
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9.00
9.00
9.00
1.00
2.00
4.00
7.00
6.00
4.00
3.00

10.3 Program Results

E02BBF Example Program Results

J LAMDA(J) B-spline coefficient (J-2)

1 1.0000
2 1.0000
3 1.0000 1.0000
4 1.0000 2.0000
5 3.0000 4.0000
6 6.0000 7.0000
7 8.0000 6.0000
8 9.0000 4.0000
9 9.0000 3.0000

10 9.0000
11 9.0000

R Argument Value of cubic spline

1 1.0000 1.0000
2 2.0000 2.3779
3 3.0000 3.6229
4 4.0000 4.8327
5 5.0000 5.8273
6 6.0000 6.3571
7 7.0000 6.1905
8 8.0000 5.1667
9 9.0000 3.0000
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NAG Library Routine Document

E02BCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02BCF evaluates a cubic spline and its first three derivatives from its B-spline representation.

2 Specification

SUBROUTINE E02BCF (NCAP7, LAMDA, C, X, LEFT, S, IFAIL)

INTEGER NCAP7, LEFT, IFAIL
REAL (KIND=nag_wp) LAMDA(NCAP7), C(NCAP7), X, S(4)

3 Description

E02BCF evaluates the cubic spline s xð Þ and its first three derivatives at a prescribed argument x. It is
assumed that s xð Þ is represented in terms of its B-spline coefficients ci, for i ¼ 1; 2; . . . ; �nþ 3 and
(augmented) ordered knot set �i, for i ¼ 1; 2; . . . ; �nþ 7, (see E02BAF), i.e.,

s xð Þ ¼
Xq
i¼1
ciNi xð Þ:

Here q ¼ �nþ 3, �n is the number of intervals of the spline and Ni xð Þ denotes the normalized B-spline of
degree 3 (order 4) defined upon the knots �i; �iþ1; . . . ; �iþ4. The prescribed argument x must satisfy

�4 � x � ��nþ4:

At a simple knot �i (i.e., one satisfying �i�1 < �i < �iþ1), the third derivative of the spline is in general
discontinuous. At a multiple knot (i.e., two or more knots with the same value), lower derivatives, and
even the spline itself, may be discontinuous. Specifically, at a point x ¼ u where (exactly) r knots
coincide (such a point is termed a knot of multiplicity r), the values of the derivatives of order 4� j,
for j ¼ 1; 2; . . . ; r, are in general discontinuous. (Here 1 � r � 4; r > 4 is not meaningful.) You must
specify whether the value at such a point is required to be the left- or right-hand derivative.

The method employed is based upon:

(i) carrying out a binary search for the knot interval containing the argument x (see Cox (1978)),

(ii) evaluating the nonzero B-splines of orders 1, 2, 3 and 4 by recurrence (see Cox (1972) and
Cox (1978)),

(iii) computing all derivatives of the B-splines of order 4 by applying a second recurrence to these
computed B-spline values (see de Boor (1972)),

(iv) multiplying the fourth-order B-spline values and their derivative by the appropriate B-spline
coefficients, and summing, to yield the values of s xð Þ and its derivatives.

E02BCF can be used to compute the values and derivatives of cubic spline fits and interpolants
produced by E02BAF.

If only values and not derivatives are required, E02BBF may be used instead of E02BCF, which takes
about 50% longer than E02BBF.
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4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135–143

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

5 Arguments

1: NCAP7 – INTEGER Input

On entry: �nþ 7, where �n is the number of intervals of the spline (which is one greater than the
number of interior knots, i.e., the knots strictly within the range �4 to ��nþ4 over which the spline
is defined).

Constraint: NCAP7 � 8.

2: LAMDAðNCAP7Þ – REAL (KIND=nag_wp) array Input

On entry: LAMDAðjÞ must be set to the value of the jth member of the complete set of knots, �j ,
for j ¼ 1; 2; . . . ; �nþ 7.

Constraint: the LAMDAðjÞ must be in nondecreasing order with
LAMDAðNCAP7� 3Þ > LAMDAð4Þ.

3: CðNCAP7Þ – REAL (KIND=nag_wp) array Input

On entry: the coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ; �nþ 3. The remaining elements
of the array are not referenced.

4: X – REAL (KIND=nag_wp) Input

On entry: the argument x at which the cubic spline and its derivatives are to be evaluated.

Constraint: LAMDAð4Þ � X � LAMDAðNCAP7� 3Þ.

5: LEFT – INTEGER Input

On entry: specifies whether left- or right-hand values of the spline and its derivatives are to be
computed (see Section 3). Left- or right-hand values are formed according to whether LEFT is
equal or not equal to 1.

If x does not coincide with a knot, the value of LEFT is immaterial.

If x ¼ LAMDAð4Þ, right-hand values are computed.

If x ¼ LAMDAðNCAP7� 3Þ, left-hand values are formed, regardless of the value of LEFT.

6: Sð4Þ – REAL (KIND=nag_wp) array Output

On exit: SðjÞ contains the value of the j � 1ð Þth derivative of the spline at the argument x, for
j ¼ 1; 2; 3; 4. Note that Sð1Þ contains the value of the spline.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

NCAP7 < 8, i.e., the number of intervals is not positive.

IFAIL ¼ 2

Either LAMDAð4Þ � LAMDAðNCAP7� 3Þ, i.e., the range over which s xð Þ is defined is null or
nega t ive in leng th , o r X is an inva l id argument , i . e . , X < LAMDAð4Þ or
X > LAMDAðNCAP7� 3Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed value of s xð Þ has negligible error in most practical situations. Specifically, this value has
an absolute error bounded in modulus by 18� cmax �machine precision, where cmax is the largest in
modulus of cj; cjþ1; cjþ2 and cjþ3, and j is an integer such that �jþ3 � x � �jþ4. If cj; cjþ1; cjþ2 and cjþ3
are all of the same sign, then the computed value of s xð Þ has relative error bounded by
20�machine precision. For full details see Cox (1978).

No complete error analysis is available for the computation of the derivatives of s xð Þ. However, for
most practical purposes the absolute errors in the computed derivatives should be small.

8 Parallelism and Performance

E02BCF is not threaded in any implementation.

9 Further Comments

The time taken is approximately linear in log �nþ 7ð Þ.
Note: the routine does not test all the conditions on the knots given in the description of LAMDA in
Section 5, since to do this would result in a computation time approximately linear in �nþ 7 instead of
log �nþ 7ð Þ. All the conditions are tested in E02BAF, however.
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10 Example

Compute, at the 7 arguments x ¼ 0, 1, 2, 3, 4, 5, 6, the left- and right-hand values and first 3 derivatives
of the cubic spline defined over the interval 0 � x � 6 having the 6 interior knots x ¼ 1, 3, 3, 3, 4, 4,
the 8 additional knots 0, 0, 0, 0, 6, 6, 6, 6, and the 10 B-spline coefficients 10, 12, 13, 15, 22, 26, 24,
18, 14, 12.

The input data items (using the notation of Section 5) comprise the following values in the order
indicated:

�n m
LAMDAðjÞ, for j ¼ 1; 2; . . . ;NCAP7
CðjÞ, for j ¼ 1; 2; . . . ;NCAP7� 4
XðiÞ, for i ¼ 1; 2; . . . ;m

This example program is written in a general form that will enable the values and derivatives of a cubic
spline having an arbitrary number of knots to be evaluated at a set of arbitrary points. Any number of
datasets may be supplied. The only changes required to the program relate to the dimensions of the
arrays LAMDA and C.

10.1 Program Text

Program e02bcfe

! E02BCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02bcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x
Integer :: i, ifail, l, left, m, ncap, ncap7

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), lamda(:)
Real (Kind=nag_wp) :: s(4)

! .. Executable Statements ..
Write (nout,*) ’E02BCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) ncap, m
ncap7 = ncap + 7
Allocate (lamda(ncap7),c(ncap7))

Read (nin,*) lamda(1:ncap7)
Read (nin,*) c(1:(ncap+3))

Do i = 1, m
Read (nin,*) x

Do left = 1, 2

ifail = 0
Call e02bcf(ncap7,lamda,c,x,left,s,ifail)

If (left==1) Then

If (i==1) Then
Write (nout,*)
Write (nout,*) &

’ X Spline 1st deriv 2nd deriv ’, &
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’3rd deriv’
End If

Write (nout,*)
Write (nout,99999) x, ’ LEFT’, (s(l),l=1,4)

Else
Write (nout,99999) x, ’ RIGHT’, (s(l),l=1,4)

End If

End Do

End Do

99999 Format (1X,E10.2,A,4E12.4)
End Program e02bcfe

10.2 Program Data

E02BCF Example Program Data
7 7

0.0 0.0 0.0 0.0 1.0 3.0 3.0 3.0
4.0 4.0 6.0 6.0 6.0 6.0

10.0 12.0 13.0 15.0 22.0 26.0 24.0 18.0
14.0 12.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0

10.3 Program Results

E02BCF Example Program Results

X Spline 1st deriv 2nd deriv 3rd deriv

0.00E+00 LEFT 0.1000E+02 0.6000E+01 -0.1000E+02 0.1067E+02
0.00E+00 RIGHT 0.1000E+02 0.6000E+01 -0.1000E+02 0.1067E+02

0.10E+01 LEFT 0.1278E+02 0.1333E+01 0.6667E+00 0.1067E+02
0.10E+01 RIGHT 0.1278E+02 0.1333E+01 0.6667E+00 0.3917E+01

0.20E+01 LEFT 0.1510E+02 0.3958E+01 0.4583E+01 0.3917E+01
0.20E+01 RIGHT 0.1510E+02 0.3958E+01 0.4583E+01 0.3917E+01

0.30E+01 LEFT 0.2200E+02 0.1050E+02 0.8500E+01 0.3917E+01
0.30E+01 RIGHT 0.2200E+02 0.1200E+02 -0.3600E+02 0.3600E+02

0.40E+01 LEFT 0.2200E+02 -0.6000E+01 0.0000E+00 0.3600E+02
0.40E+01 RIGHT 0.2200E+02 -0.6000E+01 0.0000E+00 0.1500E+01

0.50E+01 LEFT 0.1625E+02 -0.5250E+01 0.1500E+01 0.1500E+01
0.50E+01 RIGHT 0.1625E+02 -0.5250E+01 0.1500E+01 0.1500E+01

0.60E+01 LEFT 0.1200E+02 -0.3000E+01 0.3000E+01 0.1500E+01
0.60E+01 RIGHT 0.1200E+02 -0.3000E+01 0.3000E+01 0.1500E+01
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NAG Library Routine Document

E02BDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02BDF computes the definite integral of a cubic spline from its B-spline representation.

2 Specification

SUBROUTINE E02BDF (NCAP7, LAMDA, C, DINT, IFAIL)

INTEGER NCAP7, IFAIL
REAL (KIND=nag_wp) LAMDA(NCAP7), C(NCAP7), DINT

3 Description

E02BDF computes the definite integral of the cubic spline s xð Þ between the limits x ¼ a and x ¼ b,
where a and b are respectively the lower and upper limits of the range over which s xð Þ is defined. It is
assumed that s xð Þ is represented in terms of its B-spline coefficients ci, for i ¼ 1; 2; . . . ; �nþ 3 and
(augmented) ordered knot set �i, for i ¼ 1; 2; . . . ; �nþ 7, with �i ¼ a, for i ¼ 1; 2; 3; 4 and �i ¼ b, for
i ¼ �nþ 4; . . . ; �nþ 7, (see E02BAF), i.e.,

s xð Þ ¼
Xq
i¼1
ciNi xð Þ:

Here q ¼ �nþ 3, �n is the number of intervals of the spline and Ni xð Þ denotes the normalized B-spline of
degree 3 (order 4) defined upon the knots �i; �iþ1; . . . ; �iþ4.

The method employed uses the formula given in Section 3 of Cox (1975).

E02BDF can be used to determine the definite integrals of cubic spline fits and interpolants produced by
E02BAF.

4 References

Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95–108

5 Arguments

1: NCAP7 – INTEGER Input

On entry: �nþ 7, where �n is the number of intervals of the spline (which is one greater than the
number of interior knots, i.e., the knots strictly within the range a to b) over which the spline is
defined.

Constraint: NCAP7 � 8.

2: LAMDAðNCAP7Þ – REAL (KIND=nag_wp) array Input

On entry: LAMDAðjÞ must be set to the value of the jth member of the complete set of knots, �j ,
for j ¼ 1; 2; . . . ; �nþ 7.

Constraint: the LAMDAðjÞ must be in nondecreasing order with LAMDAðNCAP7� 3Þ >
LAMDAð4Þ a n d s a t i s f y LAMDAð1Þ ¼ LAMDAð2Þ ¼ LAMDAð3Þ ¼ LAMDAð4Þ a n d
LAMDAðNCAP7� 3Þ ¼ LAMDAðNCAP7� 2Þ ¼
LAMDAðNCAP7� 1Þ ¼ LAMDAðNCAP7Þ.
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3: CðNCAP7Þ – REAL (KIND=nag_wp) array Input

On entry: the coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ; �nþ 3. The remaining elements
of the array are not referenced.

4: DINT – REAL (KIND=nag_wp) Output

On exit: the value of the definite integral of s xð Þ between the limits x ¼ a and x ¼ b, where
a ¼ �4 and b ¼ ��nþ4.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

NCAP7 < 8, i.e., the number of intervals is not positive.

IFAIL ¼ 2

At least one of the following restrictions on the knots is violated:

LAMDAðNCAP7� 3Þ > LAMDAð4Þ,
LAMDAðjÞ � LAMDAðj� 1Þ,

for j ¼ 2; 3; . . . ;NCAP7, with equality in the cases j ¼ 2; 3; 4;NCAP7� 2;NCAP7� 1, and
NCAP7.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

E02BDF NAG Library Manual

E02BDF.2 Mark 26



7 Accuracy

The rounding errors are such that the computed value of the integral is exact for a slightly perturbed set
of B-spline coefficients ci differing in a relative sense from those supplied by no more than
2:2� �nþ 3ð Þ �machine precision.

8 Parallelism and Performance

E02BDF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to �nþ 7.

10 Example

This example determines the definite integral over the interval 0 � x � 6 of a cubic spline having 6
interior knots at the positions � ¼ 1, 3, 3, 3, 4, 4, the 8 additional knots 0, 0, 0, 0, 6, 6, 6, 6, and the 10
B-spline coefficients 10, 12, 13, 15, 22, 26, 24, 18, 14, 12.

The input data items (using the notation of Section 5) comprise the following values in the order
indicated:

�n
LAMDAðjÞ, for j ¼ 1; 2; . . . ;NCAP7
CðjÞ, for j ¼ 1; 2; . . . ;NCAP7� 3

10.1 Program Text

Program e02bdfe

! E02BDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02bdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dint
Integer :: ifail, ncap, ncap7

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), lamda(:)

! .. Executable Statements ..
Write (nout,*) ’E02BDF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) ncap
ncap7 = ncap + 7
Allocate (lamda(ncap7),c(ncap7))

Read (nin,*) lamda(1:ncap7)
Read (nin,*) c(1:(ncap+3))

ifail = 0
Call e02bdf(ncap7,lamda,c,dint,ifail)
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Write (nout,*)
Write (nout,99999) ’Definite integral = ’, dint

99999 Format (1X,A,E11.3)
End Program e02bdfe

10.2 Program Data

E02BDF Example Program Data
7

0.0 0.0 0.0 0.0 1.0 3.0 3.0 3.0
4.0 4.0 6.0 6.0 6.0 6.0

10.0 12.0 13.0 15.0 22.0 26.0 24.0 18.0
14.0 12.0

10.3 Program Results

E02BDF Example Program Results

Definite integral = 0.100E+03
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NAG Library Routine Document

E02BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02BEF computes a cubic spline approximation to an arbitrary set of data points. The knots of the
spline are located automatically, but a single argument must be specified to control the trade-off
between closeness of fit and smoothness of fit.

2 Specification

SUBROUTINE E02BEF (START, M, X, Y, W, S, NEST, N, LAMDA, C, FP, WRK,
LWRK, IWRK, IFAIL)

&

INTEGER M, NEST, N, LWRK, IWRK(NEST), IFAIL
REAL (KIND=nag_wp) X(M), Y(M), W(M), S, LAMDA(NEST), C(NEST), FP,

WRK(LWRK)
&

CHARACTER(1) START

3 Description

E02BEF determines a smooth cubic spline approximation s xð Þ to the set of data points xr ; yrð Þ, with
weights wr , for r ¼ 1; 2; . . . ;m.

The spline is given in the B-spline representation

s xð Þ ¼
Xn�4
i¼1
ciNi xð Þ; ð1Þ

where Ni xð Þ denotes the normalized cubic B-spline defined upon the knots �i; �iþ1; . . . ; �iþ4.

The total number n of these knots and their values �1; . . . ; �n are chosen automatically by the routine.
The knots �5; . . . ; �n�4 are the interior knots; they divide the approximation interval x1; xm½ � into n� 7
sub-intervals. The coefficients c1; c2; . . . ; cn�4 are then determined as the solution of the following
constrained minimization problem:

minimize

� ¼
Xn�4
i¼5
�2i ð2Þ

subject to the constraint

� ¼
Xm
r¼1

�2r � S; ð3Þ

where �i stands for the discontinuity jump in the third order derivative of s xð Þ at the interior knot
�i,

�r denotes the weighted residual wr yr � s xrð Þð Þ,
and S is a non-negative number to be specified by you.

The quantity � can be seen as a measure of the (lack of) smoothness of s xð Þ, while closeness of fit is
measured through �. By means of the argument S, ‘the smoothing factor’, you can then control the
balance between these two (usually conflicting) properties. If S is too large, the spline will be too
smooth and signal will be lost (underfit); if S is too small, the spline will pick up too much noise
(overfit). In the extreme cases the routine will return an interpolating spline � ¼ 0ð Þ if S is set to zero,

E02 – Curve and Surface Fitting E02BEF

Mark 26 E02BEF.1



and the weighted least squares cubic polynomial � ¼ 0ð Þ if S is set very large. Experimenting with S
values between these two extremes should result in a good compromise. (See Section 9.2 for advice on
choice of S.)

The method employed is outlined in Section 9.3 and fully described in Dierckx (1975), Dierckx (1981)
and Dierckx (1982). It involves an adaptive strategy for locating the knots of the cubic spline
(depending on the function underlying the data and on the value of S), and an iterative method for
solving the constrained minimization problem once the knots have been determined.

Values of the computed spline, or of its derivatives or definite integral, can subsequently be computed
by calling E02BBF, E02BCF or E02BDF, as described in Section 9.4.

4 References

Dierckx P (1975) An algorithm for smoothing, differentiating and integration of experimental data using
spline functions J. Comput. Appl. Math. 1 165–184

Dierckx P (1981) An improved algorithm for curve fitting with spline functions Report TW54
Department of Computer Science, Katholieke Univerciteit Leuven

Dierckx P (1982) A fast algorithm for smoothing data on a rectangular grid while using spline functions
SIAM J. Numer. Anal. 19 1286–1304

Reinsch C H (1967) Smoothing by spline functions Numer. Math. 10 177–183

5 Arguments

1: START – CHARACTER(1) Input

On entry: must be set to `C' or `W'.

START ¼ C
The routine will build up the knot set starting with no interior knots. No values need be
assigned to the arguments N, LAMDA, WRK or IWRK.

START ¼ W
The routine will restart the knot-placing strategy using the knots found in a previous call
of the routine. In this case, the arguments N, LAMDA, WRK, and IWRK must be
unchanged from that previous call. This warm start can save much time in searching for a
satisfactory value of S.

Constraint: START ¼ C or W.

2: M – INTEGER Input

On entry: m, the number of data points.

Constraint: M � 4.

3: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values xr of the independent variable (abscissa) x, for r ¼ 1; 2; . . . ;m.

Constraint: x1 < x2 < � � � < xm.

4: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values yr of the dependent variable (ordinate) y, for r ¼ 1; 2; . . . ;m.

5: WðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values wr of the weights, for r ¼ 1; 2; . . . ;m. For advice on the choice of weights,
see Section 2.1.2 in the E02 Chapter Introduction.

Constraint: WðrÞ > 0:0, for r ¼ 1; 2; . . . ;m.
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6: S – REAL (KIND=nag_wp) Input

On entry: the smoothing factor, S.

If S ¼ 0:0, the routine returns an interpolating spline.

If S is smaller than machine precision, it is assumed equal to zero.

For advice on the choice of S, see Sections 3 and 9.2.

Constraint: S � 0:0.

7: NEST – INTEGER Input

On entry: an overestimate for the number, n, of knots required.

Constraint: NEST � 8. In most practical situations, NEST ¼ M=2 is sufficient. NEST never
needs to be larger than Mþ 4, the number of knots needed for interpolation S ¼ 0:0ð Þ.

8: N – INTEGER Input/Output

On entry: if the warm start option is used, the value of N must be left unchanged from the
previous call.

On exit: the total number, n, of knots of the computed spline.

9: LAMDAðNESTÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if the warm start option is used, the values LAMDAð1Þ;LAMDAð2Þ; . . . ;LAMDAðNÞ
must be left unchanged from the previous call.

On exit: the knots of the spline, i.e., the positions of the interior knots LAMDAð5Þ;
LAMDAð6Þ; . . . ;LAMDAðN� 4Þ as well as the positions of the additional knots

LAMDAð1Þ ¼ LAMDAð2Þ ¼ LAMDAð3Þ ¼ LAMDAð4Þ ¼ x1
and

LAMDAðN� 3Þ ¼ LAMDAðN� 2Þ ¼ LAMDAðN� 1Þ ¼ LAMDAðNÞ ¼ xm
needed for the B-spline representation.

10: CðNESTÞ – REAL (KIND=nag_wp) array Output

On exit: the coefficient ci of the B-spline Ni xð Þ in the spline approximation s xð Þ, for
i ¼ 1; 2; . . . ; n� 4.

11: FP – REAL (KIND=nag_wp) Output

On exit: the sum of the squared weighted residuals, �, of the computed spline approximation. If
FP ¼ 0:0, this is an interpolating spline. FP should equal S within a relative tolerance of 0:001
unless n ¼ 8 when the spline has no interior knots and so is simply a cubic polynomial. For
knots to be inserted, S must be set to a value below the value of FP produced in this case.

12: WRKðLWRKÞ – REAL (KIND=nag_wp) array Communication Array

If the warm start option is used on entry, the values WRKð1Þ; . . . ;WRKðnÞ must be left
unchanged from the previous call.

13: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which E02BEF
is called.

Constraint: LWRK � 4�Mþ 16� NESTþ 41.

E02 – Curve and Surface Fitting E02BEF
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14: IWRKðNESTÞ – INTEGER array Communication Array

If the warm start option is used, on entry, the values IWRKð1Þ; . . . ; IWRKðnÞ must be left
unchanged from the previous call.

This array is used as workspace.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, START 6¼ C or W ,
or M < 4,
or S < 0:0,
or S ¼ 0:0 and NEST < Mþ 4,
or NEST < 8,
or LWRK < 4�Mþ 16� NESTþ 41.

IFAIL ¼ 2

The weights are not all strictly positive.

IFAIL ¼ 3

The values of XðrÞ, for r ¼ 1; 2; . . . ;M, are not in strictly increasing order.

IFAIL ¼ 4

The number of knots required is greater than NEST. Try increasing NEST and, if necessary,
supplying larger arrays for the arguments LAMDA, C, WRK and IWRK. However, if NEST is
already large, say NEST > M=2, then this error exit may indicate that S is too small.

IFAIL ¼ 5

The iterative process used to compute the coefficients of the approximating spline has failed to
converge. This error exit may occur if S has been set very small. If the error persists with
increased S, contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL ¼ 4 or 5, a spline approximation is returned, but it fails to satisfy the fitting criterion (see (2)
and (3)) – perhaps by only a small amount, however.

7 Accuracy

On successful exit, the approximation returned is such that its weighted sum of squared residuals � (as
in (3)) is equal to the smoothing factor S, up to a specified relative tolerance of 0:001 – except that if
n ¼ 8, � may be significantly less than S: in this case the computed spline is simply a weighted least
squares polynomial approximation of degree 3, i.e., a spline with no interior knots.

8 Parallelism and Performance

E02BEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call of E02BEF depends on the complexity of the shape of the data, the value of
the smoothing factor S, and the number of data points. If E02BEF is to be called for different values of
S, much time can be saved by setting START ¼ W after the first call.

9.2 Choice of S

If the weights have been correctly chosen (see Section 2.1.2 in the E02 Chapter Introduction), the
standard deviation of wryr would be the same for all r, equal to �, say. In this case, choosing the
smoothing factor S in the range �2 m


ffiffiffiffiffiffiffi
2m
p� �

, as suggested by Reinsch (1967), is likely to give a
good start in the search for a satisfactory value. Otherwise, experimenting with different values of S
will be required from the start, taking account of the remarks in Section 3.

In that case, in view of computation time and memory requirements, it is recommended to start with a
very large value for S and so determine the least squares cubic polynomial; the value returned in FP,
call it �0, gives an upper bound for S. Then progressively decrease the value of S to obtain closer fits –
say by a factor of 10 in the beginning, i.e., S ¼ �0=10, S ¼ �0=100, and so on, and more carefully as
the approximation shows more details.

The number of knots of the spline returned, and their location, generally depend on the value of S and
on the behaviour of the function underlying the data. However, if E02BEF is called with START ¼ W ,
the knots returned may also depend on the smoothing factors of the previous calls. Therefore if, after a
number of trials with different values of S and START ¼ W , a fit can finally be accepted as
satisfactory, it may be worthwhile to call E02BEF once more with the selected value for S but now
using START ¼ C . Often, E02BEF then returns an approximation with the same quality of fit but with
fewer knots, which is therefore better if data reduction is also important.
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9.3 Outline of Method Used

If S ¼ 0, the requisite number of knots is known in advance, i.e., n ¼ mþ 4; the interior knots are
located immediately as �i ¼ xi�2, for i ¼ 5; 6; . . . ; n� 4. The corresponding least squares spline (see
E02BAF) is then an interpolating spline and therefore a solution of the problem.

If S > 0, a suitable knot set is built up in stages (starting with no interior knots in the case of a cold
start but with the knot set found in a previous call if a warm start is chosen). At each stage, a spline is
fitted to the data by least squares (see E02BAF) and �, the weighted sum of squares of residuals, is
computed. If � > S, new knots are added to the knot set to reduce � at the next stage. The new knots
are located in intervals where the fit is particularly poor, their number depending on the value of S and
on the progress made so far in reducing �. Sooner or later, we find that � � S and at that point the knot
set is accepted. The routine then goes on to compute the (unique) spline which has this knot set and
which satisfies the full fitting criterion specified by (2) and (3). The theoretical solution has � ¼ S. The
routine computes the spline by an iterative scheme which is ended when � ¼ S within a relative
tolerance of 0:001. The main part of each iteration consists of a linear least squares computation of
special form, done in a similarly stable and efficient manner as in E02BAF.

An exception occurs when the routine finds at the start that, even with no interior knots n ¼ 8ð Þ, the
least squares spline already has its weighted sum of squares of residuals � S. In this case, since this
spline (which is simply a cubic polynomial) also has an optimal value for the smoothness measure �,
namely zero, it is returned at once as the (trivial) solution. It will usually mean that S has been chosen
too large.

For further details of the algorithm and its use, see Dierckx (1981).

9.4 Evaluation of Computed Spline

The value of the computed spline at a given value X may be obtained in the real variable S by the call:

CALL E02BBF(N,LAMDA,C,X,S,IFAIL)

where N, LAMDA and C are the output arguments of E02BEF.

The values of the spline and its first three derivatives at a given value X may be obtained in the real
array S of dimension at least 4 by the call:

CALL E02BCF(N,LAMDA,C,X,LEFT,S,IFAIL)

where if LEFT ¼ 1, left-hand derivatives are computed and if LEFT 6¼ 1, right-hand derivatives are
calculated. The value of LEFT is only relevant if X is an interior knot (see E02BCF).

The value of the definite integral of the spline over the interval Xð1Þ to XðMÞ can be obtained in the
real variable DINT by the call:

CALL E02BDF(N,LAMDA,C,DINT,IFAIL)

(see E02BDF).

10 Example

This example reads in a set of data values, followed by a set of values of S. For each value of S it calls
E02BEF to compute a spline approximation, and prints the values of the knots and the B-spline
coefficients ci.

The program includes code to evaluate the computed splines, by calls to E02BBF, at the points xr and
at points mid-way between them. These values are not printed out, however; instead the results are
illustrated by plots of the computed splines, together with the data points (indicated by �) and the
positions of the knots (indicated by vertical lines): the effect of decreasing S can be clearly seen.
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10.1 Program Text

Program e02befe

! E02BEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02bbf, e02bef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fp, s, txr
Integer :: ifail, ioerr, j, lwrk, m, n, nest, r
Character (1) :: start

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), lamda(:), sp(:), w(:), wrk(:), &

x(:), y(:)
Integer, Allocatable :: iwrk(:)

! .. Executable Statements ..
Write (nout,*) ’E02BEF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Input the number of data points, followed by the data points (X),
! the function values (Y) and the weights (W).

Read (nin,*) m
nest = m + 4
lwrk = 4*m + 16*nest + 41
Allocate (x(m),y(m),w(m),iwrk(nest),lamda(nest),wrk(lwrk),c(nest), &

sp(2*m-1))

Do r = 1, m
Read (nin,*) x(r), y(r), w(r)

End Do

start = ’C’

! Read in successive values of S until end of data file.

data: Do
Read (nin,*,Iostat=ioerr) s

If (ioerr<0) Then
Exit data

End If

! Determine the spline approximation.

ifail = 0
Call e02bef(start,m,x,y,w,s,nest,n,lamda,c,fp,wrk,lwrk,iwrk,ifail)

! Evaluate the spline at each X point and midway between
! X points, saving the results in SP.

Do r = 1, m

ifail = 0
Call e02bbf(n,lamda,c,x(r),sp((r-1)*2+1),ifail)

End Do

Do r = 1, m - 1
txr = (x(r)+x(r+1))/2.0E0_nag_wp

ifail = 0
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Call e02bbf(n,lamda,c,txr,sp(r*2),ifail)

End Do

! Output the results.

Write (nout,*)
Write (nout,99999) ’Calling with smoothing factor S =’, s
Write (nout,*)
Write (nout,*) ’ B-Spline’
Write (nout,*) &

’ J Knot LAMDA(J+2) Coefficient C(J)’
Write (nout,99998) 1, c(1)

Do j = 2, n - 5
Write (nout,99997) j, lamda(j+2), c(j)

End Do

Write (nout,99998) n - 4, c(n-4)
Write (nout,*)
Write (nout,99999) ’Weighted sum of squared residuals FP =’, fp

If (fp==0.0E0_nag_wp) Then
Write (nout,*) ’(The spline is an interpolating spline)’

Else If (n==8) Then
Write (nout,*) &

’(The spline is the weighted least squares cubic polynomial)’
End If

Write (nout,*)
start = ’W’

End Do data

99999 Format (1X,A,1P,E12.3)
99998 Format (11X,I4,20X,F16.4)
99997 Format (11X,I4,2F18.4)

End Program e02befe

10.2 Program Data

E02BEF Example Program Data
15 M, the number of data points
0.0000E+00 -1.1000E+00 1.00 X, Y, W, abscissa, ordinate and weight
5.0000E-01 -3.7200E-01 2.00
1.0000E+00 4.3100E-01 1.50
1.5000E+00 1.6900E+00 1.00
2.0000E+00 2.1100E+00 3.00
2.5000E+00 3.1000E+00 1.00
3.0000E+00 4.2300E+00 0.50
4.0000E+00 4.3500E+00 1.00
4.5000E+00 4.8100E+00 2.00
5.0000E+00 4.6100E+00 2.50
5.5000E+00 4.7900E+00 1.00
6.0000E+00 5.2300E+00 3.00
7.0000E+00 6.3500E+00 1.00
7.5000E+00 7.1900E+00 2.00
8.0000E+00 7.9700E+00 1.00 End of data points
1.0 S, smoothing factor
0.5 S, smoothing factor
0.1 S, smoothing factor

10.3 Program Results

E02BEF Example Program Results

Calling with smoothing factor S = 1.000E+00

B-Spline
J Knot LAMDA(J+2) Coefficient C(J)
1 -1.3201
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2 0.0000 1.3542
3 4.0000 5.5510
4 8.0000 4.7031
5 8.2277

Weighted sum of squared residuals FP = 1.000E+00

Calling with smoothing factor S = 5.000E-01

B-Spline
J Knot LAMDA(J+2) Coefficient C(J)
1 -1.1072
2 0.0000 -0.6571
3 1.0000 0.4350
4 2.0000 2.8061
5 4.0000 4.6824
6 5.0000 4.6416
7 6.0000 5.1976
8 8.0000 6.9008
9 7.9979

Weighted sum of squared residuals FP = 5.001E-01

Calling with smoothing factor S = 1.000E-01

B-Spline
J Knot LAMDA(J+2) Coefficient C(J)
1 -1.0901
2 0.0000 -0.6401
3 1.0000 0.0334
4 1.5000 1.6390
5 2.0000 2.1243
6 3.0000 4.5591
7 4.0000 4.2174
8 4.5000 4.9105
9 5.0000 4.5475

10 5.5000 4.6960
11 6.0000 5.7370
12 8.0000 6.8179
13 7.9953

Weighted sum of squared residuals FP = 9.999E-02
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NAG Library Routine Document

E02BFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02BFF evaluates a cubic spline and up to its first three derivatives from its B-spline representation at a
vector of points. E02BFF can be used to compute the values and derivatives of cubic spline fits and
interpolants produced by reference to E01BAF, E02BAF and E02BEF.

2 Specification

SUBROUTINE E02BFF (START, NCAP7, LAMDA, C, DERIV, XORD, X, IXLOC, NX, S,
LDS, IWRK, LIWRK, IFAIL)

&

INTEGER START, NCAP7, DERIV, XORD, IXLOC(NX), NX, LDS,
IWRK(LIWRK), LIWRK, IFAIL

&

REAL (KIND=nag_wp) LAMDA(NCAP7), C(NCAP7), X(NX), S(LDS,*)

3 Description

E02BFF evaluates the cubic spline s xð Þ and optionally derivatives up to order 3 for a vector of points
xj , for j ¼ 1; 2; . . . ; nx. It is assumed that s xð Þ is represented in terms of its B-spline coefficients ci, for
i ¼ 1; 2; . . . ; �nþ 3, and (augmented) ordered knot set �i, for i ¼ 1; 2; . . . ; �nþ 7, (see E02BAF and
E02BEF), i.e.,

s xð Þ ¼
Xq
i¼1
ciNi xð Þ:

Here q ¼ �nþ 3, �n is the number of intervals of the spline and Ni xð Þ denotes the normalized B-spline of
degree 3 (order 4) defined upon the knots �i; �iþ1; . . . ; �iþ4. The knots �5; �6; . . . ; ��nþ3 are the interior
knots. The remaining knots, �1, �2, �3, �4 and ��nþ4, ��nþ5, ��nþ6, � �nþ7 are the exterior knots. The knots
�4 and ��nþ4 are the boundaries of the spline.

Only abscissae satisfying,

�4 � xj � ��nþ4;

will be evaluated. At a simple knot �i (i.e., one satisfying �i�1 < �i < �iþ1), the third derivative of the
spline is, in general, discontinuous. At a multiple knot (i.e., two or more knots with the same value),
lower derivatives, and even the spline itself, may be discontinuous. Specifically, at a point x ¼ u where
(exactly) r knots coincide (such a point is termed a knot of multiplicity r), the values of the derivatives
of order 4� j, for j ¼ 1; 2; . . . ; r, are, in general, discontinuous. (Here 1 � r � 4; r > 4 is not
meaningful.) The maximum order of the derivatives to be evaluated Dord, and the left- or right-
handedness of the computation when an abscissa corresponds exactly to an interior knot, are determined
by the value of DERIV.

Each abscissa (point at which the spline is to be evaluated) xj contained in X has an associated
enclosing interval number, ixlocj either supplied or returned in IXLOC (see argument START). A
simple call to E02BFF would set START ¼ 0 and the contents of IXLOC need never be set nor
referenced, and the following description on modes of operation can be ignored. However, where
efficiency is an important consideration, the following description will help to choose the appropriate
mode of operation.

The interval numbers are used to determine which B-splines must be evaluated for a given abscissa, and
are defined as
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ixlocj ¼

� 0 xj < �1
4 �4 ¼ xj
k �k < xj < �kþ1
k �4 < �k ¼ xj left derivatives
k xj ¼ �kþ1 < ��nþ4 right derivatives or no derivatives
�nþ 4 ��nþ4 ¼ xj
> �nþ 7 xj > ��nþ7

0BBBBBBB@

1CCCCCCCA
ð1Þ

The algorithm has two modes of vectorization, termed here sorted and unsorted, which are selectable by
the argument START.

Furthermore, if the supplied abscissae are sufficiently ordered, as indicated by the argument XORD, the
algorithm will take advantage of significantly faster methods for the determination of both the interval
numbers and the subsequent spline evaluations.

The sorted mode has two phases, a sorting phase and an evaluation phase. This mode is recommended
if there are many abscissae to evaluate relative to the number of intervals of the spline, or the abscissae
are distributed relatively densely over a subsection of the spline. In the first phase, ixlocj is determined
for each xj and a permutation is calculated to sort the xj by interval number. The first phase may be
either partially or completely by-passed using the argument START if the enclosing segments and/or the
subsequent ordering are already known a priori, for example if multiple spline coefficients C are to be
evaluated over the same set of knots LAMDA.

In the second phase of the sorted mode, spline approximations are evaluated by segment, so that non-
abscissa dependent calculations over a segment may be reused in the evaluation for all abscissae
belonging to a specific segment. For example, all third derivatives of all abscissae in the same segment
will be identical.

In the unsorted mode of vectorization, no a priori segment sorting is performed, and if the abscissae are
not sufficiently ordered, the evaluation at an abscissa will be independent of evaluations at other
abscissae; also non-abscissa dependent calculations over a segment will be repeated for each abscissa in
a segment. This may be quicker if the number of abscissa is small in comparison to the number of knots
in the spline, and they are distributed sparsely throughout the domain of the spline. This is effectively a
direct vectorization of E02BBF and E02BCF, although if the enclosing interval numbers ixlocj are
known, these may again be provided.

If the abscissae are sufficiently ordered, then once the first abscissa in a segment is known, an efficient
algorithm will be used to determine the location of the final abscissa in this segment. The spline will
subsequently be evaluated in a vectorized manner for all the abscissae indexed between the first and last
of the current segment.

If no derivatives are required, the spline evaluation is calculated by taking convex combinations due to
de Boor (1972). Otherwise, the calculation of s xð Þ and its derivatives is based upon,

(i) evaluating the nonzero B-splines of orders 1, 2, 3 and 4 by recurrence (see Cox (1972) and Cox
(1978)),

(ii) computing all derivatives of the B-splines of order 4 by applying a second recurrence to these
computed B-spline values (see de Boor (1972)),

(iii) multiplying the fourth-order B-spline values and their derivative by the appropriate B-spline
coefficients, and summing, to yield the values of s xð Þ and its derivatives.

The method of convex combinations is significantly faster than the recurrence based method. If higher
derivatives of order 2 or 3 are not required, as much computation as possible is avoided.

4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135–143

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62
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5 Arguments

1: START – INTEGER Input

On entry: indicates the completion state of the first phase of the algorithm.

START ¼ 0
The enclosing interval numbers ixlocj for the abscissae xj contained in X have not been
determined, and you wish to use the sorted mode of vectorization.

START ¼ 1
The enclosing interval numbers ixlocj have been determined and are provided in IXLOC,
however the required permutation and interval related information has not been determined
and you wish to use the sorted mode of vectorization.

START ¼ 2
You wish to use the sorted mode of vectorization, and the entire first phase has been
completed, with the enclosing interval numbers supplied in IXLOC, and the required
permutation and interval related information provided in IWRK (from a previous call to
E02BFF).

START ¼ 10
The enclosing interval numbers ixlocj for the abscissae xj contained in X have not been
determined, and you wish to use the unsorted mode of vectorization.

START ¼ 11
The enclosing interval numbers ixlocj for the abscissae xj contained in X have been
supplied in IXLOC, and you wish to use the unsorted mode of vectorization.

Constraint: START ¼ 0, 1, 2, 10 or 11.

Additional: START ¼ 0 or 10 should be used unless you are sure that the knot set is unchanged
between calls.

2: NCAP7 – INTEGER Input

On entry: �nþ 7, where �n is the number of intervals of the spline (which is one greater than the
number of interior knots, i.e., the knots strictly within the range �4 to ��nþ4 over which the spline
is defined). Note that if E02BEF was used to generate the knots and spline coefficients then
NCAP7 should contain the same value as returned in N by E02BEF.

Constraint: NCAP7 � 8.

3: LAMDAðNCAP7Þ – REAL (KIND=nag_wp) array Input

On entry: LAMDAðjÞ must be set to the value of the jth member of the complete set of knots, �j ,
for j ¼ 1; 2; . . . ; �nþ 7.

Constraint: the LAMDAðjÞ must be in nondecreasing order with
LAMDAðNCAP7� 3Þ > LAMDAð4Þ.

4: CðNCAP7Þ – REAL (KIND=nag_wp) array Input

On entry: the coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ; �nþ 3. The remaining elements
of the array are not referenced.

5: DERIV – INTEGER Input

On entry: the order of derivatives required.
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If DERIV < 0 left derivatives are calculated, otherwise right derivatives are calculated. For
abscissae satisfying xj ¼ �4 or xj ¼ ��nþ4 only right-handed or left-handed computation will be
used respectively. For abscissae which do not coincide exactly with a knot, the handedness of the
computation is immaterial.

DERIV ¼ 0
No derivatives required.

DERIV ¼ 
1
Only s xð Þ and its first derivative are required.

DERIV ¼ 
2
Only s xð Þ and its first and second derivatives are required.

DERIV ¼ 
3
s xð Þ and its first, second and third derivatives are required.

Note: if DERIVj j is greater than 3 only the derivatives up to and including 3 will be returned.

6: XORD – INTEGER Input

On entry: indicates whether X is supplied in a sufficiently ordered manner. If X is sufficiently
ordered E02BFF will complete faster.

XORD 6¼ 0
The abscissae in X are ordered at least by ascending interval, in that any two abscissae
contained in the same interval are only separated by abscissae in the same interval, and the
intervals are arranged in ascending order. For example, xj < xjþ1, for j ¼ 1; 2; . . . ;NX� 1.

XORD ¼ 0
The abscissae in X are not sufficiently ordered.

7: XðNXÞ – REAL (KIND=nag_wp) array Input

On entry: the abscissae xj , for j ¼ 1; 2; . . . ; nx. If START ¼ 0 or 10 then evaluations will only be
performed for these xj satisfying �4 � xj � ��nþ4. Otherwise evaluation will be performed unless
the corresponding element of IXLOC contains an invalid interval number. Please note that if the
IXLOCðjÞ is a valid interval number then no check is made that XðjÞ actually lies in that
interval.

Constraint: at least one abscissa must fall between LAMDAð4Þ and LAMDAðNCAP7� 3Þ.

8: IXLOCðNXÞ – INTEGER array Input/Output

On entry: if START ¼ 1, 2 or 11, if you wish xj to be evaluated, IXLOCðjÞ must be the
enclosing interval number ixlocj of the abscissae xj (see (1)). If you do not wish xj to be
evaluated, you may set the interval number to be either less than 4 or greater than �nþ 4.

Otherwise, IXLOC need not be set.

On exit: if START ¼ 1, 2 or 11, IXLOC is unchanged on exit.

Otherwise, IXLOCðjÞ, contains the enclosing interval number ixlocj, for the abscissa supplied in
XðjÞ, for j ¼ 1; 2; . . . ; nx. Evaluations will only be performed for abscissae xj satisfying
�4 � xj � ��nþ4. If evaluation is not performed IXLOCðjÞ is set to 0 if xj < �4 or �nþ 7 if
xj > ��nþ4.

Constraint: if START ¼ 1, 2 or 11, at least one element of IXLOC must be between 4 and
NCAP7� 3.

9: NX – INTEGER Input

On entry: nx, the total number of abscissae contained in X, including any that will not be
evaluated.

Constraint: NX � 1.
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10: SðLDS; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array S must be at least Dord þ 1, see DERIV for the
definition of Dord.

On exit: if xj is valid, Sðj; dÞ will contain the (d � 1)th derivative of s xð Þ, for
d ¼ 1; 2; . . . ;Dord þ 1 and j ¼ 1; 2; . . . ; nx. In particular, Sðj; 1Þ will contain the approximation
of s xj

� �
for all legal values in X.

11: LDS – INTEGER Input

On entry: the first dimension of the array S as declared in the (sub)program from which E02BFF
is called.

Constraint: LDS � NX, regardless of the acceptability of the elements of X.

12: IWRKðLIWRKÞ – INTEGER array Input/Output

On entry: if START ¼ 2, IWRK must be unchanged from a previous call to E02BFF with
START ¼ 0 or 1.

Otherwise, IWRK need not be set.

On exit: if START ¼ 10 or 11, IWRK is unchanged on exit.

Otherwise, IWRK contains the required permutation of elements of X, if any, and information
related to the division of the abscissae xj between the intervals derived from LAMDA.

13: LIWRK – INTEGER Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which E02BFF
is called.

Constraint: if START ¼ 0, 1 or 2, LIWRK � 3þ 3� NX.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E02BFF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one element of X has an enclosing interval number in IXLOC outside the set
allowed by the provided spline. The spline has been evaluated for all X with enclosing interval
numbers inside the allowable set.
valueh i entries of X were indexed below the lower bound valueh i.
valueh i entries of X were indexed above the upper bound valueh i.
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IFAIL ¼ 2

On entry, all elements of X had enclosing interval numbers in IXLOC outside the domain
allowed by the provided spline.
valueh i entries of X were indexed below the lower bound valueh i.
valueh i entries of X were indexed above the upper bound valueh i.

IFAIL ¼ 11

On entry, START ¼ valueh i.
Constraint: START ¼ 0, 1, 2, 10 or 11.

IFAIL ¼ 12

On entry, START ¼ 2 and NX is not consistent with the previous call to E02BFF.
On entry, NX ¼ valueh i.
Constraint: NX ¼ valueh i.

IFAIL ¼ 21

On entry, NCAP7 ¼ valueh i.
Constraint: NCAP7 � 8.

IFAIL ¼ 31

On entry, LAMDAð4Þ ¼ valueh i, NCAP7 ¼ valueh i and LAMDAðNCAP7� 3Þ ¼ valueh i.
Constraint: LAMDAð4Þ < LAMDAðNCAP7� 3Þ.

IFAIL ¼ 91

On entry, NX ¼ valueh i.
Constraint: NX � 1.

IFAIL ¼ 111

On entry, LDS ¼ valueh i.
Constraint: LDS � NX ¼ valueh i.

IFAIL ¼ 131

On entry, LIWRK ¼ valueh i.
Constraint: LIWRK � 3� NXþ 3 ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The computed value of s xð Þ has negligible error in most practical situations. Specifically, this value has
an absolute error bounded in modulus by 18� cmax �machine precision, where cmax is the largest in
modulus of cj, cj þ 1, cj þ 2 and cj þ 3, and j is an integer such that �j þ 3 < x � �j þ 4. If cj, cj þ 1,
cj þ 2 and cj þ 3 are all of the same sign, then the computed value of s xð Þ has relative error bounded
by 20�machine precision. For full details see Cox (1978).

No complete error analysis is available for the computation of the derivatives of s xð Þ. However, for
most practical purposes the absolute errors in the computed derivatives should be small. Note that this
is in comparison to the derivatives of the spline, which may or may not be comparable to the
derivatives of the function that has been approximated by the spline.

8 Parallelism and Performance

E02BFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If using the sorted mode of vectorization, the time required for the first phase to determine the
enclosing intervals is approximately proportional to O nxlog �nð Þð Þ. The time required to then generate
the required permutations and interval information is O nxð Þ if X is ordered sufficiently, or at worst
O nxmin nx; �nð Þlog min nx; �nð Þð Þð Þ if X is not ordered. The time required by the second phase is then
proportional to O nxð Þ.
If using the unsorted mode of vectorization, the time required is proportional to O nxlog �nð Þð Þ if the
enclosing interval numbers are not provided, or O nxð Þ if they are provided. However, the repeated
calculation of various quantities will typically make this slower than the sorted mode when the ratio of
abscissae to knots is high, or the abscissae are densely distributed over a relatively small subset of the
intervals of the spline.

Note: the routine does not test all the conditions on the knots given in the description of LAMDA in
Section 5, since to do this would result in a computation time with a linear dependency upon �n instead
of log �nð Þ. All the conditions are tested in E02BAF and E02BEF, however.

10 Example

This example fits a spline through a set of data points using E02BEF and then evaluates the spline at a
set of supplied abscissae.

10.1 Program Text

Program e02bffe

! E02BFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02bef, e02bff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fp, sfac
Integer :: deriv, ifail, ifail_e02bef, lds, &

liwrk, lwrk, m, ncap7, nest, nx, r, &
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sd2, start, xord
Character (1) :: cstart

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), lamda(:), s(:,:), wdata(:), &

wrk(:), x(:), xdata(:), ydata(:)
Integer, Allocatable :: iwrk(:), ixloc(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, min

! .. Executable Statements ..
Write (nout,*) ’E02BFF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Input the number of data points for the spline,
! followed by the data points (XDATA), the function values (YDATA)
! and the weights (WDATA).

Read (nin,*) m
nest = m + 4
lwrk = 4*m + 16*nest + 41

! allocate memory for generating the spline
Allocate (xdata(m),ydata(m),wdata(m),iwrk(nest),lamda(nest),wrk(lwrk), &

c(nest))

Read (nin,*)(xdata(r),ydata(r),wdata(r),r=1,m)

cstart = ’C’

! Read in the requested smoothing factor.
Read (nin,*) sfac

! Determine the spline approximation.

ifail_e02bef = 0
Call e02bef(cstart,m,xdata,ydata,wdata,sfac,nest,ncap7,lamda,c,fp,wrk, &

lwrk,iwrk,ifail_e02bef)
If (ifail_e02bef/=0) Then

Write (nout,99997) &
’Failed to generate spline using data set provided.’

Write (nout,99996) ’E02BEF returned IFAIL = ’, ifail_e02bef
Go To 100

End If
Deallocate (iwrk)

! Read in the number of sample points requested.
Read (nin,*) nx

! Allocate memory for sample point locations and
! function and derivative approximations.

lds = nx
liwrk = 3 + 3*nx
Allocate (x(nx),s(lds,4),ixloc(nx),iwrk(liwrk))

! Read in sample points.
Read (nin,*) x(1:nx)

xord = 0
start = 0
deriv = 3
ifail = 1
Call e02bff(start,ncap7,lamda,c,deriv,xord,x,ixloc,nx,s,lds,iwrk,liwrk, &

ifail)
If (ifail>1) Then

Write (nout,99996) ’ E02BFF detected a fatal error. IFAIL = ’, ifail
Go To 100

End If

! Output the results.
Write (nout,*)
Write (nout,99999)

E02BFF NAG Library Manual

E02BFF.8 Mark 26



sd2 = min(abs(deriv),3) + 1
Do r = 1, nx

If (ixloc(r)>=4 .And. ixloc(r)<=ncap7-3) Then
Write (nout,99998) x(r), ixloc(r), s(r,1:sd2)

Else
Write (nout,99998) x(r), ixloc(r)

End If
End Do

100 Continue
99999 Format ( &

’ x ixloc s(x) ds/dx d2s/dx2 d3s/dx3’&
)

99998 Format (1X,F8.4,3X,I5,4(1X,Es12.4))
99997 Format (1X,A)
99996 Format (1X,A,1X,I5)

End Program e02bffe

10.2 Program Data

E02BFF Example Program Data
15 : M, the number of data points.
0.0000E+00 -1.1000E+00 1.00
5.0000E-01 -3.7200E-01 1.00
1.0000E+00 4.3100E-01 1.50
1.5000E+00 1.6900E+00 1.00
2.0000E+00 2.1100E+00 1.00
2.5000E+00 3.1000E+00 1.00
3.0000E+00 4.2300E+00 1.00
4.0000E+00 4.3500E+00 1.00
4.5000E+00 4.8100E+00 1.00
5.0000E+00 4.6100E+00 1.00
5.5000E+00 4.7900E+00 1.00
6.0000E+00 5.2300E+00 1.00
7.0000E+00 6.3500E+00 1.00
7.5000E+00 7.1900E+00 1.00
8.0000E+00 7.9700E+00 1.00 : xdata(1:m), ydata(1:m), wdata(1:m)
0.001 : S, smoothing factor.

20 : NX, the number of evaluation points.
6.5178 7.2463 1.0159 7.3070
5.0589 0.7803 2.2280 4.3751
7.6601 7.7191 1.2609 7.7647
7.6573 3.8830 6.4022 1.1351
3.3741 7.3259 6.3377 7.6759 : Unordered evaluation points x(1:nx).

10.3 Program Results

E02BFF Example Program Results

x ixloc s(x) ds/dx d2s/dx2 d3s/dx3
6.5178 14 5.7418E+00 1.0741E+00 5.6736E-01 1.3065E+00
7.2463 15 6.7486E+00 1.7074E+00 4.9054E-01 -2.8697E+00
1.0159 5 4.7469E-01 2.4179E+00 3.8175E+00 -2.2171E+01
7.3070 15 6.8531E+00 1.7319E+00 3.1634E-01 -2.8697E+00
5.0589 12 4.6105E+00 -1.0363E-01 2.9075E+00 -4.4467E+00
0.7803 4 6.6885E-03 1.6216E+00 2.5007E+00 7.5980E+00
2.2280 7 2.4751E+00 1.9559E+00 3.0615E+00 -6.6690E+00
4.3751 10 4.7199E+00 8.5194E-01 -3.0718E+00 -1.9866E+01
7.6601 15 7.4633E+00 1.6647E+00 -6.9696E-01 -2.8697E+00
7.7191 15 7.5602E+00 1.6186E+00 -8.6627E-01 -2.8697E+00
1.2609 5 1.1273E+00 2.6878E+00 -1.6146E+00 -2.2171E+01
7.7647 15 7.6330E+00 1.5761E+00 -9.9713E-01 -2.8697E+00
7.6573 15 7.4586E+00 1.6667E+00 -6.8892E-01 -2.8697E+00
3.8830 9 4.3152E+00 1.6458E-01 3.1754E+00 1.0296E+01
6.4022 14 5.6211E+00 1.0172E+00 4.1633E-01 1.3065E+00
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1.1351 5 7.8376E-01 2.7154E+00 1.1746E+00 -2.2171E+01
3.3741 9 4.4165E+00 -1.1809E-01 -2.0644E+00 1.0296E+01
7.3259 15 6.8859E+00 1.7374E+00 2.6211E-01 -2.8697E+00
6.3377 14 5.5563E+00 9.9310E-01 3.3206E-01 1.3065E+00
7.6759 15 7.4895E+00 1.6534E+00 -7.4230E-01 -2.8697E+00
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NAG Library Routine Document

E02CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02CAF forms an approximation to the weighted, least squares Chebyshev series surface fit to data
arbitrarily distributed on lines parallel to one independent coordinate axis.

2 Specification

SUBROUTINE E02CAF (M, N, K, L, X, Y, F, W, MTOT, A, NA, XMIN, XMAX, NUX,
INUXP1, NUY, INUYP1, WORK, NWORK, IFAIL)

&

INTEGER M(N), N, K, L, MTOT, NA, INUXP1, INUYP1, NWORK,
IFAIL

&

REAL (KIND=nag_wp) X(MTOT), Y(N), F(MTOT), W(MTOT), A(NA), XMIN(N),
XMAX(N), NUX(INUXP1), NUY(INUYP1), WORK(NWORK)

&

3 Description

E02CAF determines a bivariate polynomial approximation of degree k in x and l in y to the set of data
points xr;s; ys; fr;s

� �
, with weights wr;s, for s ¼ 1; 2; . . . ; n and r ¼ 1; 2; . . . ;ms. That is, the data points

are on lines y ¼ ys, but the x values may be different on each line. The values of k and l are prescribed
by you (for guidance on their choice, see Section 9). The subroutine is based on the method described
in Sections 5 and 6 of Clenshaw and Hayes (1965).

The polynomial is represented in double Chebyshev series form with arguments �x and �y. The arguments
lie in the range �1 to þ1 and are related to the original variables x and y by the transformations

�x ¼ 2x� xmax þ xminð Þ
xmax � xminð Þ and �y ¼ 2y� ymax þ yminð Þ

ymax � yminð Þ :

Here ymax and ymin are set by the subroutine to, respectively, the largest and smallest value of ys, but
xmax and xmin are functions of y prescribed by you (see Section 9). For this subroutine, only their

values x sð Þ
max and x sð Þ

min at each y ¼ ys are required. For each s ¼ 1; 2; . . . ; n, x sð Þ
max must not be less than

the largest xr;s on the line y ¼ ys, and, similarly, x sð Þ
min must not be greater than the smallest xr;s.

The double Chebyshev series can be written asXk
i¼0

Xl
j¼0

aijTi �xð ÞTj �yð Þ

where Ti �xð Þ is the Chebyshev polynomial of the first kind of degree i with argument �x, and Tj yð Þ is
similarly defined. However, the standard convention, followed in this subroutine, is that coefficients in
the above expression which have either i or j zero are written as 1

2aij , instead of simply aij, and the
coefficient with both i and j equal to zero is written as 1

4a0;0 . The series with coefficients output by the
subroutine should be summed using this convention. E02CBF is available to compute values of the
fitted function from these coefficients.

The subroutine first obtains Chebyshev series coefficients cs;i, for i ¼ 0; 1; . . . ; k, of the weighted least
squares polynomial curve fit of degree k in �x to the data on each line y ¼ ys, for s ¼ 1; 2; . . . ; n, in turn,
using an auxiliary subroutine. The same subroutine is then called kþ 1 times to fit cs;i, for
s ¼ 1; 2; . . . ; n, by a polynomial of degree l in �y, for each i ¼ 0; 1; . . . ; k. The resulting coefficients are
the required aij.
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You can force the fit to contain a given polynomial factor. This allows for the surface fit to be
constrained to have specified values and derivatives along the boundaries x ¼ xmin , x ¼ xmax , y ¼ ymin

and y ¼ ymax or indeed along any lines �x ¼ constant or �y ¼ constant (see Section 8 of Clenshaw and
Hayes (1965)).

4 References

Clenshaw C W and Hayes J G (1965) Curve and surface fitting J. Inst. Math. Appl. 1 164–183

Hayes J G (ed.) (1970) Numerical Approximation to Functions and Data Athlone Press, London

5 Arguments

1: MðNÞ – INTEGER array Input

On entry: MðsÞ must be set to ms, the number of data x values on the line y ¼ ys, for
s ¼ 1; 2; . . . ; n.

Constraint: MðsÞ > 0, for s ¼ 1; 2; . . . ;N.

2: N – INTEGER Input

On entry: the number of lines y ¼ constant on which data points are given.

Constraint: N > 0.

3: K – INTEGER Input

On entry: k, the required degree of x in the fit.

Constraint: for s ¼ 1; 2; . . . ; n, INUXP1� 1 � K < mdist sð Þ þ INUXP1� 1, where mdist sð Þ is
the number of distinct x values with nonzero weight on the line y ¼ ys. See Section 9.

4: L – INTEGER Input

On entry: l, the required degree of y in the fit.

Constraints:

L � 0;
INUYP1� 1 � L < Nþ INUYP1� 1.

5: XðMTOTÞ – REAL (KIND=nag_wp) array Input

On entry: the x values of the data points. The sequence must be

all points on y ¼ y1, followed by

all points on y ¼ y2, followed by

..

.

all points on y ¼ yn.
Constraint: for each ys, the x values must be in nondecreasing order.

6: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: YðsÞ must contain the y value of line y ¼ ys, for s ¼ 1; 2; . . . ; n, on which data is
given.

Constraint: the ys values must be in strictly increasing order.

7: FðMTOTÞ – REAL (KIND=nag_wp) array Input

On entry: f , the data values of the dependent variable in the same sequence as the x values.
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8: WðMTOTÞ – REAL (KIND=nag_wp) array Input

On entry: the weights to be assigned to the data points, in the same sequence as the x values.
These weights should be calculated from estimates of the absolute accuracies of the fr, expressed
as standard deviations, probable errors or some other measure which is of the same dimensions
as fr. Specifically, each wr should be inversely proportional to the accuracy estimate of fr. Often
weights all equal to unity will be satisfactory. If a particular weight is zero, the corresponding
data point is omitted from the fit.

9: MTOT – INTEGER Input

On entry: the dimension of the arrays X, F and W as declared in the (sub)program from which
E02CAF is called.

Constraint: MTOT �
XN
s¼1

MðsÞ.

10: AðNAÞ – REAL (KIND=nag_wp) array Output

On exit: contains the Chebyshev coefficients of the fit. Aði� Lþ 1ð Þ þ jÞ is the coefficient aij of
Section 3 defined according to the standard convention. These coefficients are used by E02CBF
to calculate values of the fitted function.

11: NA – INTEGER Input

On entry: the dimension of the array A as declared in the (sub)program from which E02CAF is
called.

Constraint: NA � K þ 1ð Þ � Lþ 1ð Þ, the total number of coefficients in the fit.

12: XMINðNÞ – REAL (KIND=nag_wp) array Input

On entry: XMINðsÞ must contain x sð Þ
min , the lower end of the range of x on the line y ¼ ys, for

s ¼ 1; 2; . . . ; n. It must not be greater than the lowest data value of x on the line. Each x sð Þ
min is

scaled to �1:0 in the fit. (See also Section 9.)

13: XMAXðNÞ – REAL (KIND=nag_wp) array Input

On entry: XMAXðsÞ must contain x sð Þ
max , the upper end of the range of x on the line y ¼ ys, for

s ¼ 1; 2; . . . ; n. It must not be less than the highest data value of x on the line. Each x
sð Þ
max is

scaled to þ1:0 in the fit. (See also Section 9.)

Constraint: XMAXðsÞ > XMINðsÞ.

14: NUXðINUXP1Þ – REAL (KIND=nag_wp) array Input

On entry: NUXðiÞ must contain the coefficient of the Chebyshev polynomial of degree i � 1ð Þ in
�x, in the Chebyshev series representation of the polynomial factor in �x which you require the fit
to contain, for i ¼ 1; 2; . . . ; INUXP1. These coefficients are defined according to the standard
convention of Section 3.

Constraint: NUXðINUXP1Þ must be nonzero, unless INUXP1 ¼ 1, in which case NUX is
ignored.

15: INUXP1 – INTEGER Input

On entry: INUX þ 1, where INUX is the degree of a polynomial factor in �x which you require
the fit to contain. (See Section 3, last paragraph.)

If this option is not required, INUXP1 should be set equal to 1.

Constraint: 1 � INUXP1 � Kþ 1.
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16: NUYðINUYP1Þ – REAL (KIND=nag_wp) array Input

On entry: NUYðiÞ must contain the coefficient of the Chebyshev polynomial of degree i � 1ð Þ in
�y, in the Chebyshev series representation of the polynomial factor which you require the fit to
contain, for i ¼ 1; 2; . . . ; INUYP1. These coefficients are defined according to the standard
convention of Section 3.

Constraint: NUYðINUYP1Þ must be nonzero, unless INUYP1 ¼ 1, in which case NUY is
ignored.

17: INUYP1 – INTEGER Input

On entry: INUY þ 1, where INUY is the degree of a polynomial factor in �y which you require
the fit to contain. (See Section 3, last paragraph.) If this option is not required, INUYP1 should
be set equal to 1.

18: WORKðNWORKÞ – REAL (KIND=nag_wp) array Workspace
19: NWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
E02CAF is called.

Constraint: NWORK � 3�MTOTþ 2� N� Kþ 2ð Þ þ 5� 1þmax K;Lð Þð Þ.

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K or L < 0,
or INUXP1 or INUYP1 < 1,
or INUXP1 > K þ 1,
or INUYP1 > Lþ 1,
or MðiÞ < K � INUXP1þ 2 for some i ¼ 1; 2; . . . ;N,
or N < L� INUYP1þ 2,
or NA is too small,
or NWORK is too small,
or MTOT is too small.

IFAIL ¼ 2

XMINðiÞ and XMAXðiÞ do not span the data X values on Y ¼ YðiÞ for some i ¼ 1; 2; . . . ;N,
possibly because XMINðiÞ � XMAXðiÞ.
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IFAIL ¼ 3

The data X values on Y ¼ YðiÞ are not nondecreasing for some i ¼ 1; 2; . . . ;N, or the YðiÞ
themselves are not strictly increasing.

IFAIL ¼ 4

The number of distinct X values with nonzero weight on Y ¼ YðiÞ is less than K� INUXP1þ 2
for some i ¼ 1; 2; . . . ;N.

IFAIL ¼ 5

On entry, NUXðINUXP1Þ ¼ 0:0 and INUXP1 6¼ 1,
or NUYðINUYP1Þ ¼ 0:0 and INUYP1 6¼ 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

No error analysis for this method has been published. Practical experience with the method, however, is
generally extremely satisfactory.

8 Parallelism and Performance

E02CAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to k� k�MTOTþ n� l2
� �

.

The reason for allowing xmax and xmin (which are used to normalize the range of x) to vary with y is
that unsatisfactory fits can result if the highest (or lowest) data values of the normalized x on each line
y ¼ ys are not approximately the same. (For an explanation of this phenomenon, see page 176 of
Clenshaw and Hayes (1965).) Commonly in practice, the lowest (for example) data values x1;s, while
not being approximately constant, do lie close to some smooth curve in the x; yð Þ plane. Using values
from this curve as the values of xmin , different in general on each line, causes the lowest transformed
data values �x1;s to be approximately constant. Sometimes, appropriate curves for xmax and xmin will be
clear from the context of the problem (they need not be polynomials). If this is not the case, suitable
curves can often be obtained by fitting to the lowest data values x1;s and to the corresponding highest
data values of x, low degree polynomials in y, using routine E02ADF, and then shifting the two curves
outwards by a small amount so that they just contain all the data between them. The complete curves
are not in fact supplied to the present subroutine, only their values at each ys; and the values simply
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need to lie on smooth curves. More values on the complete curves will be required subsequently, when
computing values of the fitted surface at arbitrary y values.

Naturally, a satisfactory approximation to the surface underlying the data cannot be expected if the
character of the surface is not adequately represented by the data. Also, as always with polynomials, the
approximating function may exhibit unwanted oscillations (particularly near the ends of the ranges) if
the degrees k and l are taken greater than certain values, generally unknown but depending on the total
number of coefficients kþ 1ð Þ � lþ 1ð Þ should be significantly smaller than, say not more than half, the
total number of data points. Similarly, kþ 1 should be significantly smaller than most (preferably all)
the ms, and lþ 1 significantly smaller than n. Closer spacing of the data near the ends of the x and y
ranges is an advantage. In particular, if �ys ¼ � cos 	 s � 1ð Þ= n� 1ð Þð Þ, for s ¼ 1; 2; . . . ; n and
�xr;s ¼ � cos 	 r � 1ð Þ= m� 1ð Þð Þ, for r ¼ 1; 2; . . . ;m, (thus ms ¼ m for all s), then the values
k ¼ m� 1 and l ¼ n� 1 (so that the polynomial passes exactly through all the data points) should
not give unwanted oscillations. Other datasets should be similarly satisfactory if they are everywhere at
least as closely spaced as the above cosine values with m replaced by kþ 1 and n by lþ 1 (more
precisely, if for every s the largest interval between consecutive values of arccos �xr;s, for
r ¼ 1; 2; . . . ;m, is not greater than 	=k, and similarly for the �ys). The polynomial obtained should
always be examined graphically before acceptance. Note that, for this purpose it is not sufficient to plot
the polynomial only at the data values of x and y: intermediate values should also be plotted, preferably
via a graphics facility.

Provided the data are adequate, and the surface underlying the data is of a form that can be represented
by a polynomial of the chosen degrees, the subroutine should produce a good approximation to this
surface. It is not, however, the true least squares surface fit nor even a polynomial in x and y, the
original variables (see Section 6 of Clenshaw and Hayes (1965), ), except in certain special cases. The
most important of these is where the data values of x are the same on each line y ¼ ys, (i.e., the data
points lie on a rectangular mesh in the x; yð Þ plane), the weights of the data points are all equal, and
xmax and xmin are both constants (in this case they should be set to the largest and smallest data values
of x, respectively).

If the dataset is such that it can be satisfactorily approximated by a polynomial of degrees k0 and l0, say,
then if higher values are used for k and l in the subroutine, all the coefficients aij for i > k0 or j > l0

will take apparently random values within a range bounded by the size of the data errors, or rather less.
(This behaviour of the Chebyshev coefficients, most readily observed if they are set out in a rectangular
array, closely parallels that in curve-fitting, examples of which are given in Section 8 of Hayes (1970).)
In practice, therefore, to establish suitable values of k0 and l0, you should first be seeking (within the
limitations discussed above) values for k and l which are large enough to exhibit the behaviour
described. Values for k0 and l0 should then be chosen as the smallest which do not exclude any
coefficients significantly larger than the random ones. A polynomial of degrees k0 and l0 should then be
fitted to the data.

If the option to force the fit to contain a given polynomial factor in x is used and if zeros of the chosen
factor coincide with data x values on any line, then the effective number of data points on that line is
reduced by the number of such coincidences. A similar consideration applies when forcing the
y-direction. No account is taken of this by the subroutine when testing that the degrees k and l have not
been chosen too large.

10 Example

This example reads data in the following order, using the notation of the argument list for E02CAF
above:

N K L
YðiÞ MðiÞ XMINðiÞ XMAXðiÞ; for i ¼ 1; 2; . . . ;N
XðiÞ FðiÞ WðiÞ; for i ¼ 1; 2; . . . ;MTOT:

The data points are fitted using E02CAF, and then the fitting polynomial is evaluated at the data points
using E02CBF.

The output is:
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the data points and their fitted values;

the Chebyshev coefficients of the fit.

10.1 Program Text

Program e02cafe

! E02CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02caf, e02cbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: ymax
Integer :: i, ifail, inuxp1, inuyp1, j, k, l, &

mi, mtot, n, na, nwork, r, t
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), f(:), ff(:), nux(:), nuy(:), &
w(:), work(:), x(:), xmax(:), &
xmin(:), y(:)

Integer, Allocatable :: m(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, sum
! .. Executable Statements ..

Write (nout,*) ’E02CAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Input the number of lines Y = Y(I) on which data is given,
! and the required degree of fit in the X and Y directions

Read (nin,*) n, k, l
inuxp1 = 1
inuyp1 = 1
na = (k+1)*(l+1)
Allocate (a(na),m(n),y(n),xmin(n),xmax(n),nux(inuxp1),nuy(inuyp1))

! Input Y(I), the number of data points on Y = Y(I) and the
! range of X-values on this line, for I = 1,2,...N

Do i = 1, n
Read (nin,*) y(i), m(i), xmin(i), xmax(i)

End Do

mtot = sum(m(1:n))
nwork = 3*mtot + 2*n*(k+2) + 5*(1+max(k,l))
Allocate (x(mtot),f(mtot),w(mtot),ff(mtot),work(nwork))

! Input the X-values and function values, F, together with
! their weights, W.

Read (nin,*)(x(i),f(i),w(i),i=1,mtot)

! Evaluate the coefficients, A, of the fit to this set of data

ifail = 0
Call e02caf(m,n,k,l,x,y,f,w,mtot,a,na,xmin,xmax,nux,inuxp1,nuy,inuyp1, &

work,nwork,ifail)

mi = 0

Write (nout,*)
Write (nout,*) ’ Data Y Data X Data F Fitted F Residual’
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Write (nout,*)

Do r = 1, n
t = mi + 1
mi = mi + m(r)
ymax = y(n)

If (n==1) Then
ymax = ymax + 1.0E0_nag_wp

End If

! Evaluate the fitted polynomial at each of the data points
! on the line Y = Y(R)

ifail = 0
Call e02cbf(t,mi,k,l,x,xmin(r),xmax(r),y(r),y(1),ymax,ff,a,na,work, &

nwork,ifail)

! Output the data and fitted values on the line Y = Y(R)

Do i = t, mi
Write (nout,99999) y(r), x(i), f(i), ff(i), ff(i) - f(i)

End Do

Write (nout,*)
End Do

! Output the Chebyshev coefficients of the fit

Write (nout,*) ’Chebyshev coefficients of the fit’
Write (nout,*)

Do j = 1, k + 1
Write (nout,99998)(a(i),i=1+(j-1)*(l+1),j*(l+1))

End Do

99999 Format (3X,4F11.4,E11.2)
99998 Format (1X,6F11.4)

End Program e02cafe

10.2 Program Data

E02CAF Example Program Data
4 3 2

0.0 8 0.0 5.0
1.0 7 0.1 4.5
2.0 7 0.4 4.0
4.0 6 1.6 3.5
0.1 1.01005 1.0
1.0 1.10517 1.0
1.6 1.17351 1.0
2.1 1.23368 1.0
3.3 1.39097 1.0
3.9 1.47698 1.0
4.2 1.52196 1.0
4.9 1.63232 1.0
0.1 2.02010 1.0
1.1 2.23256 1.0
1.9 2.41850 1.0
2.7 2.61993 1.0
3.2 2.75426 1.0
4.1 3.01364 1.0
4.5 3.13662 1.0
0.5 3.15381 1.0
1.1 3.34883 1.0
1.3 3.41649 1.0
2.2 3.73823 1.0
2.9 4.00928 1.0
3.5 4.25720 1.0
3.9 4.43094 1.0
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1.7 5.92652 1.0
2.0 6.10701 1.0
2.4 6.35625 1.0
2.7 6.54982 1.0
3.1 6.81713 1.0
3.5 7.09534 1.0

10.3 Program Results

E02CAF Example Program Results

Data Y Data X Data F Fitted F Residual

0.0000 0.1000 1.0100 1.0175 0.74E-02
0.0000 1.0000 1.1052 1.1126 0.74E-02
0.0000 1.6000 1.1735 1.1809 0.74E-02
0.0000 2.1000 1.2337 1.2412 0.75E-02
0.0000 3.3000 1.3910 1.3992 0.82E-02
0.0000 3.9000 1.4770 1.4857 0.87E-02
0.0000 4.2000 1.5220 1.5310 0.90E-02
0.0000 4.9000 1.6323 1.6422 0.98E-02

1.0000 0.1000 2.0201 1.9987 -0.21E-01
1.0000 1.1000 2.2326 2.2110 -0.22E-01
1.0000 1.9000 2.4185 2.3962 -0.22E-01
1.0000 2.7000 2.6199 2.5966 -0.23E-01
1.0000 3.2000 2.7543 2.7299 -0.24E-01
1.0000 4.1000 3.0136 2.9869 -0.27E-01
1.0000 4.5000 3.1366 3.1084 -0.28E-01

2.0000 0.5000 3.1538 3.1700 0.16E-01
2.0000 1.1000 3.3488 3.3648 0.16E-01
2.0000 1.3000 3.4165 3.4325 0.16E-01
2.0000 2.2000 3.7382 3.7549 0.17E-01
2.0000 2.9000 4.0093 4.0272 0.18E-01
2.0000 3.5000 4.2572 4.2769 0.20E-01
2.0000 3.9000 4.4309 4.4521 0.21E-01

4.0000 1.7000 5.9265 5.9231 -0.34E-02
4.0000 2.0000 6.1070 6.1036 -0.34E-02
4.0000 2.4000 6.3563 6.3527 -0.35E-02
4.0000 2.7000 6.5498 6.5462 -0.36E-02
4.0000 3.1000 6.8171 6.8132 -0.40E-02
4.0000 3.5000 7.0953 7.0909 -0.45E-02

Chebyshev coefficients of the fit

15.3482 5.1507 0.1014
1.1472 0.1442 -0.1046
0.0490 -0.0031 -0.0070
0.0015 -0.0003 -0.0002
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NAG Library Routine Document

E02CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02CBF evaluates a bivariate polynomial from the rectangular array of coefficients in its double
Chebyshev series representation.

2 Specification

SUBROUTINE E02CBF (MFIRST, MLAST, K, L, X, XMIN, XMAX, Y, YMIN, YMAX,
FF, A, NA, WORK, NWORK, IFAIL)

&

INTEGER MFIRST, MLAST, K, L, NA, NWORK, IFAIL
REAL (KIND=nag_wp) X(MLAST), XMIN, XMAX, Y, YMIN, YMAX, FF(MLAST),

A(NA), WORK(NWORK)
&

3 Description

This subroutine evaluates a bivariate polynomial (represented in double Chebyshev form) of degree k in
one variable, �x, and degree l in the other, �y. The range of both variables is �1 to þ1. However, these
normalized variables will usually have been derived (as when the polynomial has been computed by
E02CAF, for example) from your original variables x and y by the transformations

�x ¼ 2x� xmax þ xminð Þ
xmax � xminð Þ and �y ¼ 2y� ymax þ yminð Þ

ymax � yminð Þ :

(Here xmin and xmax are the ends of the range of x which has been transformed to the range �1 to þ1
of �x. ymin and ymax are correspondingly for y. See Section 9). For this reason, the subroutine has been
designed to accept values of x and y rather than �x and �y, and so requires values of xmin , etc. to be
supplied by you. In fact, for the sake of efficiency in appropriate cases, the routine evaluates the
polynomial for a sequence of values of x, all associated with the same value of y.

The double Chebyshev series can be written asXk
i¼0

Xl
j¼0

aijTi �xð ÞTj �yð Þ;

where Ti �xð Þ is the Chebyshev polynomial of the first kind of degree i and argument �x, and Tj �yð Þ is
similarly defined. However the standard convention, followed in this subroutine, is that coefficients in
the above expression which have either i or j zero are written 1

2aij , instead of simply aij, and the
coefficient with both i and j zero is written 1

4a0;0 .

The subroutine first forms ci ¼
Xl
j¼0

aijTj �yð Þ, with ai;0 replaced by 1
2ai;0 , for each of i ¼ 0; 1; . . . ; k. The

value of the double series is then obtained for each value of x, by summing ci � Ti �xð Þ, with c0 replaced
by 1

2c0 , over i ¼ 0; 1; . . . ; k. The Clenshaw three term recurrence (see Clenshaw (1955)) with
modifications due to Reinsch and Gentleman (1969) is used to form the sums.
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4 References

Clenshaw C W (1955) A note on the summation of Chebyshev series Math. Tables Aids Comput. 9
118–120

Gentleman W M (1969) An error analysis of Goertzel's (Watt's) method for computing Fourier
coefficients Comput. J. 12 160–165

5 Arguments

1: MFIRST – INTEGER Input
2: MLAST – INTEGER Input

On entry: the index of the first and last x value in the array x at which the evaluation is required
respectively (see Section 9).

Constraint: MLAST � MFIRST.

3: K – INTEGER Input
4: L – INTEGER Input

On entry: the degree k of x and l of y, respectively, in the polynomial.

Constraint: K � 0 and L � 0.

5: XðMLASTÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ, for i ¼ MFIRST; . . . ;MLAST, must contain the x values at which the evaluation
is required.

Constraint: XMIN � XðiÞ � XMAX, for all i.

6: XMIN – REAL (KIND=nag_wp) Input
7: XMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper ends, xmin and xmax , of the range of the variable x (see Section 3).

The values of XMIN and XMAX may depend on the value of y (e.g., when the polynomial has
been derived using E02CAF).

Constraint: XMAX > XMIN.

8: Y – REAL (KIND=nag_wp) Input

On entry: the value of the y coordinate of all the points at which the evaluation is required.

Constraint: YMIN � Y � YMAX.

9: YMIN – REAL (KIND=nag_wp) Input
10: YMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper ends, ymin and ymax , of the range of the variable y (see Section 3).

Constraint: YMAX > YMIN.

11: FFðMLASTÞ – REAL (KIND=nag_wp) array Output

On exi t : FFðiÞ gives the value of the polynomial at the point xi; yð Þ, for
i ¼ MFIRST; . . . ;MLAST.

12: AðNAÞ – REAL (KIND=nag_wp) array Input

On entry: the Chebyshev coefficients of the polynomial. The coefficient aij defined according to
the standard convention (see Section 3) must be in Aði� lþ 1ð Þ þ jþ 1Þ.
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13: NA – INTEGER Input

On entry: the dimension of the array A as declared in the (sub)program from which E02CBF is
called.

Constraint: NA � K þ 1ð Þ � Lþ 1ð Þ, the number of coefficients in a polynomial of the specified
degree.

14: WORKðNWORKÞ – REAL (KIND=nag_wp) array Workspace
15: NWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
E02CBF is called.

Constraint: NWORK � K þ 1.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MFIRST > MLAST,
or K < 0,
or L < 0,
or NA < K þ 1ð Þ � Lþ 1ð Þ,
or NWORK < K þ 1.

IFAIL ¼ 2

On entry, YMIN � YMAX,
or Y < YMIN,
or Y > YMAX.

IFAIL ¼ 3

On entry, XMIN � XMAX,
or XðiÞ < XMIN, or XðiÞ > XMAX, for some i ¼ MFIRST;MFIRSTþ 1; . . . ;MLAST.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The method is numerically stable in the sense that the computed values of the polynomial are exact for
a set of coefficients which differ from those supplied by only a modest multiple of machine precision.

8 Parallelism and Performance

E02CBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Th e t im e t a k e n i s a p p r o x ima t e l y p r o p o r t i o n a l t o kþ 1ð Þ � mþ lþ 1ð Þ, w h e r e
m ¼ MLAST�MFIRSTþ 1, the number of points at which the evaluation is required.

This subroutine is suitable for evaluating the polynomial surface fits produced by the subroutine
E02CAF, which provides the real array A in the required form. For this use, the values of ymin and ymax

supplied to the present subroutine must be the same as those supplied to E02CAF. The same applies to
xmin and xmax if they are independent of y. If they vary with y, their values must be consistent with
those supplied to E02CAF (see Section 9 in E02CAF).

The arguments MFIRST and MLAST are intended to permit the selection of a segment of the array X
which is to be associated with a particular value of y, when, for example, other segments of X are
associated with other values of y. Such a case arises when, after using E02CAF to fit a set of data, you
wish to evaluate the resulting polynomial at all the data values. In this case, if the arguments X, Y,
MFIRST and MLAST of the present routine are set respectively (in terms of arguments of E02CAF) to

X, Y Sð Þ, 1þ
Xs�1
i¼1

M ið Þ and
Xs
i¼1

M ið Þ, the routine will compute values of the polynomial surface at all

data points which have YðSÞ as their y coordinate (from which values the residuals of the fit may be
derived).

10 Example

This example reads data in the following order, using the notation of the argument list above:

N K L
AðiÞ; for i ¼ 1; 2; . . . ; K þ 1ð Þ � Lþ 1ð Þ
YMIN YMAX
YðiÞ M ið Þ XMINðiÞ XMAXðiÞ X1 ið Þ XM ið Þ; for i ¼ 1; 2; . . . ; N:

For each line Y ¼ YðiÞ the polynomial is evaluated at M ið Þ equispaced points between X1 ið Þ and
XM ið Þ inclusive.
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10.1 Program Text

Program e02cbfe

! E02CBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02cbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xmax, xmin, y, ymax, ymin
Integer :: i, ifail, j, k, l, m, m1, m2, &

mfirst, mlast, na, nwork
Logical :: plot

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), ff(:), work(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: min, real

! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)

Read (nin,*) plot

If (.Not. plot) Then
Write (nout,*) ’E02CBF Example Program Results’

End If

Read (nin,*) k, l, m

If (plot) Then
m1 = 1
m2 = m
mlast = m

Else
m1 = (2*m+3)/7
m2 = (6*m+3)/7 + 1
mlast = min(5,m)

End If

na = (k+1)*(l+1)
nwork = k + 1
Allocate (x(mlast),ff(mlast),a(na),work(nwork))

Read (nin,*) a(1:na)
Read (nin,*) ymin, ymax, xmin, xmax

Do j = 1, mlast
x(j) = xmin + (xmax-xmin)*real(j-1,kind=nag_wp)/real(mlast-1,kind= &

nag_wp)
End Do
mfirst = 1

Do i = m1, m2, m1
y = ymin + ((ymax-ymin)*real(i-1,kind=nag_wp))/real(m-1,kind=nag_wp)

ifail = 0
Call e02cbf(mfirst,mlast,k,l,x,xmin,xmax,y,ymin,ymax,ff,a,na,work, &

nwork,ifail)

If (plot) Then

Do j = 1, mlast
Write (nout,99998) y, x(j), ff(j)

End Do
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Write (nout,*)
Else

Write (nout,*)
Write (nout,99999) ’Y = ’, y
Write (nout,*)
Write (nout,*) ’ I X(I) Poly(X(I),Y)’

Do j = 1, mlast
Write (nout,99997) j, x(j), ff(j)

End Do

End If

End Do

99999 Format (1X,A,E13.4)
99998 Format (1X,1P,2E13.4,1P,2E13.4)
99997 Format (1X,I3,1P,2E13.4)

End Program e02cbfe

10.2 Program Data

E02CBF Example Program Data
.FALSE. : output data for plotting

3 2 20 : k, l, m=no of output points.
15.34820
5.15073

-2.20140
1.14719

-0.64419
0.30464

-0.49010
-0.00314
-6.69912
0.00153
3.00033

-0.00022 : Chebyshev coefficients
0.0 4.0 0.1 4.5 : ymin ymax xmin xmax

10.3 Program Results

E02CBF Example Program Results

Y = 0.1053E+01

I X(I) Poly(X(I),Y)
1 1.0000E-01 7.3827E+00
2 1.2000E+00 -2.7648E-01
3 2.3000E+00 -2.2541E-01
4 3.4000E+00 3.2750E+00
5 4.5000E+00 5.9637E+00

Y = 0.2316E+01

I X(I) Poly(X(I),Y)
1 1.0000E-01 1.0752E+01
2 1.2000E+00 2.6132E+00
3 2.3000E+00 -8.3004E-01
4 3.4000E+00 1.8462E+00
5 4.5000E+00 1.2066E+01

Y = 0.3579E+01

I X(I) Poly(X(I),Y)
1 1.0000E-01 1.1902E+00
2 1.2000E+00 8.8478E+00
3 2.3000E+00 7.4980E+00
4 3.4000E+00 4.2491E+00
5 4.5000E+00 6.2093E+00
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NAG Library Routine Document

E02DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02DAF forms a minimal, weighted least squares bicubic spline surface fit with prescribed knots to a
given set of data points.

2 Specification

SUBROUTINE E02DAF (M, PX, PY, X, Y, F, W, LAMDA, MU, POINT, NPOINT, DL,
C, NC, WS, NWS, EPS, SIGMA, RANK, IFAIL)

&

INTEGER M, PX, PY, POINT(NPOINT), NPOINT, NC, NWS, RANK,
IFAIL

&

REAL (KIND=nag_wp) X(M), Y(M), F(M), W(M), LAMDA(PX), MU(PY), DL(NC),
C(NC), WS(NWS), EPS, SIGMA

&

3 Description

E02DAF determines a bicubic spline fit s x; yð Þ to the set of data points xr; yr; frð Þ with weights wr, for
r ¼ 1; 2; . . . ;m. The two sets of internal knots of the spline, �f g and �f g, associated with the variables
x and y respectively, are prescribed by you. These knots can be thought of as dividing the data region
of the x; yð Þ plane into panels (see Figure 1 in Section 5). A bicubic spline consists of a separate
bicubic polynomial in each panel, the polynomials joining together with continuity up to the second
derivative across the panel boundaries.

s x; yð Þ has the property that �, the sum of squares of its weighted residuals �r, for r ¼ 1; 2; . . . ;m,
where

�r ¼ wr s xr; yrð Þ � frð Þ ð1Þ

is as small as possible for a bicubic spline with the given knot sets. The routine produces this
minimized value of � and the coefficients cij in the B-spline representation of s x; yð Þ – see Section 9.
E02DEF, E02DFF and E02DHF are available to compute values and derivatives of the fitted spline
from the coefficients cij.

The least squares criterion is not always sufficient to determine the bicubic spline uniquely: there may
be a whole family of splines which have the same minimum sum of squares. In these cases, the routine
selects from this family the spline for which the sum of squares of the coefficients cij is smallest: in
other words, the minimal least squares solution. This choice, although arbitrary, reduces the risk of
unwanted fluctuations in the spline fit. The method employed involves forming a system of m linear
equations in the coefficients cij and then computing its least squares solution, which will be the minimal
least squares solution when appropriate. The basis of the method is described in Hayes and Halliday
(1974). The matrix of the equation is formed using a recurrence relation for B-splines which is
numerically stable (see Cox (1972) and de Boor (1972) – the former contains the more elementary
derivation but, unlike de Boor (1972), does not cover the case of coincident knots). The least squares
solution is also obtained in a stable manner by using orthogonal transformations, viz. a variant of
Givens rotation (see Gentleman (1973)). This requires only one row of the matrix to be stored at a time.
Advantage is taken of the stepped-band structure which the matrix possesses when the data points are
suitably ordered, there being at most sixteen nonzero elements in any row because of the definition of
B-splines. First the matrix is reduced to upper triangular form and then the diagonal elements of this
triangle are examined in turn. When an element is encountered whose square, divided by the mean
squared weight, is less than a threshold �, it is replaced by zero and the rest of the elements in its row
are reduced to zero by rotations with the remaining rows. The rank of the system is taken to be the
number of nonzero diagonal elements in the final triangle, and the nonzero rows of this triangle are
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used to compute the minimal least squares solution. If all the diagonal elements are nonzero, the rank is
equal to the number of coefficients cij and the solution obtained is the ordinary least squares solution,
which is unique in this case.

4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

Gentleman W M (1973) Least squares computations by Givens transformations without square roots J.
Inst. Math. Applic. 12 329–336

Hayes J G and Halliday J (1974) The least squares fitting of cubic spline surfaces to general data sets J.
Inst. Math. Appl. 14 89–103

5 Arguments

1: M – INTEGER Input

On entry: m, the number of data points.

Constraint: M > 1.

2: PX – INTEGER Input
3: PY – INTEGER Input

On entry: the total number of knots � and � associated with the variables x and y, respectively.

Constraint: PX � 8 and PY � 8.
(They are such that PX� 8 and PY� 8 are the corresponding numbers of interior knots.) The
running time and storage required by the routine are both minimized if the axes are labelled so
that PY is the smaller of PX and PY.

4: XðMÞ – REAL (KIND=nag_wp) array Input
5: YðMÞ – REAL (KIND=nag_wp) array Input
6: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the data point xr ; yr ; frð Þ, for r ¼ 1; 2; . . . ;m. The order of the data
points is immaterial, but see the array POINT.

7: WðMÞ – REAL (KIND=nag_wp) array Input

On entry: the weight wr of the rth data point. It is important to note the definition of weight
implied by the equation (1) in Section 3, since it is also common usage to define weight as the
square of this weight. In this routine, each wr should be chosen inversely proportional to the
(absolute) accuracy of the corresponding fr, as expressed, for example, by the standard deviation
or probable error of the fr. When the fr are all of the same accuracy, all the wr may be set equal
to 1:0.

8: LAMDAðPXÞ – REAL (KIND=nag_wp) array Input/Output

On entry: LAMDAði þ 4Þ must contain the ith interior knot �iþ4 associated with the variable x,
for i ¼ 1; 2; . . . ; PX� 8. The knots must be in nondecreasing order and lie strictly within the
range covered by the data values of x. A knot is a value of x at which the spline is allowed to be
discontinuous in the third derivative with respect to x, though continuous up to the second
derivative. This degree of continuity can be reduced, if you require, by the use of coincident
knots, provided that no more than four knots are chosen to coincide at any point. Two, or three,
coincident knots allow loss of continuity in, respectively, the second and first derivative with
respect to x at the value of x at which they coincide. Four coincident knots split the spline
surface into two independent parts. For choice of knots see Section 9.
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On exit: the interior knots LAMDAð5Þ to LAMDAðPX� 4Þ are unchanged, and the segments
LAMDAð1 : 4Þ and LAMDAðPX� 3 : PXÞ contain additional (exterior) knots introduced by the
routine in order to define the full set of B-splines required. The four knots in the first segment are
all set equal to the lowest data value of x and the other four additional knots are all set equal to
the highest value: there is experimental evidence that coincident end-knots are best for numerical
accuracy. The complete array must be left undisturbed if E02DEF or E02DFF is to be used
subsequently.

9: MUðPYÞ – REAL (KIND=nag_wp) array Input/Output

On entry: MUði þ 4Þ must contain the ith interior knot �iþ4 associated with the variable y, for
i ¼ 1; 2; . . . ;PY� 8.

On exit: the same remarks apply to MU as to LAMDA above, with Y replacing X, and y
replacing x.

10: POINTðNPOINTÞ – INTEGER array Input

On entry: indexing information usually provided by E02ZAF which enables the data points to be
accessed in the order which produces the advantageous matrix structure mentioned in Section 3.
This order is such that, if the x; yð Þ plane is thought of as being divided into rectangular panels
by the two sets of knots, all data in a panel occur before data in succeeding panels, where the
panels are numbered from bottom to top and then left to right with the usual arrangement of axes,
as indicated in Figure 1.

LAMDA(4) LAMDA(5) LAMDA(6) LAMDA(7)

panel 4 8 12

panel 3 7 11

panel 2 6 10

panel 1 5 9

MU(8)

MU(7)

MU(6)

MU(5)

MU(4)

Y

X

Figure 1

A data point lying exactly on one or more panel sides is considered to be in the highest
numbered panel adjacent to the point. E02ZAF should be called to obtain the array POINT,
unless it is provided by other means.

E02 – Curve and Surface Fitting E02DAF

Mark 26 E02DAF.3



11: NPOINT – INTEGER Input

On entry: the dimension of the array POINT as declared in the (sub)program from which
E02DAF is called.

Constraint: NPOINT � Mþ PX� 7ð Þ � PY� 7ð Þ.

12: DLðNCÞ – REAL (KIND=nag_wp) array Output

On exit: gives the squares of the diagonal elements of the reduced triangular matrix, divided by
the mean squared weight. It includes those elements, less than �, which are treated as zero (see
Section 3).

13: CðNCÞ – REAL (KIND=nag_wp) array Output

On exit: gives the coefficients of the fit. Cð PY� 4ð Þ � i � 1ð Þ þ jÞ is the coefficient cij of
Sections 3 and 9, for i ¼ 1; 2; . . . ; PX� 4 and j ¼ 1; 2; . . . ;PY� 4. These coefficients are used
by E02DEF or E02DFF to calculate values of the fitted function.

14: NC – INTEGER Input

On entry: the value PX� 4ð Þ � PY� 4ð Þ.

15: WSðNWSÞ – REAL (KIND=nag_wp) array Workspace
16: NWS – INTEGER Input

On entry: the dimension of the array WS as declared in the (sub)program from which E02DAF is
called.

Constraint: NWS � 2� NCþ 1ð Þ � 3� PY� 6ð Þ � 2.

17: EPS – REAL (KIND=nag_wp) Input

On entry: a threshold � for determining the effective rank of the system of linear equations. The
rank is determined as the number of elements of the array DL which are nonzero. An element of
DL is regarded as zero if it is less than �. Machine precision is a suitable value for � in most
practical applications which have only 2 or 3 decimals accurate in data. If some coefficients of
the fit prove to be very large compared with the data ordinates, this suggests that � should be
increased so as to decrease the rank. The array DL will give a guide to appropriate values of � to
achieve this, as well as to the choice of � in other cases where some experimentation may be
needed to determine a value which leads to a satisfactory fit.

18: SIGMA – REAL (KIND=nag_wp) Output

On exit: �, the weighted sum of squares of residuals. This is not computed from the individual
residuals but from the right-hand sides of the orthogonally-transformed linear equations. For
further details see page 97 of Hayes and Halliday (1974). The two methods of computation are
theoretically equivalent, but the results may differ because of rounding error.

19: RANK – INTEGER Output

On exit: the rank of the system as determined by the value of the threshold �.

RANK ¼ NC
The least squares solution is unique.

RANK 6¼ NC
The minimal least squares solution is computed.

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

At least one set of knots is not in nondecreasing order, or an interior knot is outside the range of
the data values.

IFAIL ¼ 2

More than four knots coincide at a single point, possibly because all data points have the same
value of x (or y) or because an interior knot coincides with an extreme data value.

IFAIL ¼ 3

Array POINT does not indicate the data points in panel order. Call E02ZAF to obtain a correct
array.

IFAIL ¼ 4

On entry, M � 1,
or PX < 8,
or PY < 8,
or NC 6¼ PX� 4ð Þ � PY� 4ð Þ,
or NWS is too small,
or NPOINT is too small.

IFAIL ¼ 5

All the weights wr are zero or rank determined as zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The computation of the B-splines and reduction of the observation matrix to triangular form are both
numerically stable.

8 Parallelism and Performance

E02DAF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to the number of data points, m, and to
3� PY� 4ð Þ þ 4ð Þ2.
The B-spline representation of the bicubic spline is

s x; yð Þ ¼
X
i;j

cijMi xð ÞNj yð Þ

summed over i ¼ 1; 2; . . . ; PX� 4 and over j ¼ 1; 2; . . . ;PY� 4. Here Mi xð Þ and Nj yð Þ denote
normalized cubic B-splines, the former defined on the knots �i; �iþ1; . . . ; �iþ4 and the latter on the knots
�j; �jþ1; . . . ; �jþ4. For further details, see Hayes and Halliday (1974) for bicubic splines and de Boor
(1972) for normalized B-splines.

The choice of the interior knots, which help to determine the spline's shape, must largely be a matter of
trial and error. It is usually best to start with a small number of knots and, examining the fit at each
stage, add a few knots at a time in places where the fit is particularly poor. In intervals of x or y where
the surface represented by the data changes rapidly, in function value or derivatives, more knots will be
needed than elsewhere. In some cases guidance can be obtained by analogy with the case of coincident
knots: for example, just as three coincident knots can produce a discontinuity in slope, three close knots
can produce rapid change in slope. Of course, such rapid changes in behaviour must be adequately
represented by the data points, as indeed must the behaviour of the surface generally, if a satisfactory fit
is to be achieved. When there is no rapid change in behaviour, equally-spaced knots will often suffice.

In all cases the fit should be examined graphically before it is accepted as satisfactory.

The fit obtained is not defined outside the rectangle

�4 � x � �PX�3; �4 � y � �PY�3:

The reason for taking the extreme data values of x and y for these four knots is that, as is usual in data
fitting, the fit cannot be expected to give satisfactory values outside the data region. If, nevertheless,
you require values over a larger rectangle, this can be achieved by augmenting the data with two
artificial data points a; c; 0ð Þ and b; d; 0ð Þ with zero weight, where a � x � b, c � y � d defines the
enlarged rectangle. In the case when the data are adequate to make the least squares solution unique
(RANK ¼ NC), this enlargement will not affect the fit over the original rectangle, except for possibly
enlarged rounding errors, and will simply continue the bicubic polynomials in the panels bordering the
rectangle out to the new boundaries: in other cases the fit will be affected. Even using the original
rectangle there may be regions within it, particularly at its corners, which lie outside the data region and
where, therefore, the fit will be unreliable. For example, if there is no data point in panel 1 of Figure 1
in Section 5, the least squares criterion leaves the spline indeterminate in this panel: the minimal spline
determined by the subroutine in this case passes through the value zero at the point �4; �4ð Þ.

10 Example

This example reads a value for �, and a set of data points, weights and knot positions. If there are more
y knots than x knots, it interchanges the x and y axes. It calls E02ZAF to sort the data points into panel
order, E02DAF to fit a bicubic spline to them, and E02DEF to evaluate the spline at the data points.

Finally it prints:
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– the weighted sum of squares of residuals computed from the linear equations;

– the rank determined by E02DAF;

– data points, fitted values and residuals in panel order;

– the weighted sum of squares of the residuals; and

– the coefficients of the spline fit.

The program is written to handle any number of datasets.

Note: the data supplied in this example is not typical of a realistic problem: the number of data points
would normally be much larger (in which case the array dimensions and the value of NWS in the
program would have to be increased); and the value of � would normally be much smaller on most
machines (see Section 5; the relatively large value of 10�6 has been chosen in order to illustrate a
minimal least squares solution when RANK < NC; in this example NC ¼ 24).

10.1 Program Text

Program e02dafe

! E02DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02daf, e02def, e02zaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: label(2) = (/’X’,’Y’/)

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, sigma, sum, temp
Integer :: i, iadres, ifail, itemp, j, m, &

nadres, nc, npoint, nws, px, py, &
rank

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), dl(:), f(:), ff(:), lamda(:), &

mu(:), w(:), wrk(:), ws(:), x(:), &
y(:)

Integer, Allocatable :: adres(:), iwrk(:), point(:)
! .. Executable Statements ..

Write (nout,*) ’E02DAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read data, interchanging X and Y axes if PX < PY

Read (nin,*) eps
Read (nin,*) m
Read (nin,*) px, py

If (px<py) Then
itemp = px
px = py
py = itemp
itemp = 1

Else
itemp = 0

End If

nadres = (px-7)*(py-7)
npoint = m + (px-7)*(py-7)
nc = (px-4)*(py-4)
nws = (2*nc+1)*(3*py-6) - 2
Allocate (lamda(px),mu(py),x(m),y(m),f(m),ff(m),w(m),dl(nc),c(nc), &

ws(nws),point(npoint),adres(nadres),wrk(py-4),iwrk(py-4))
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If (itemp==1) Then
Read (nin,*)(y(i),x(i),f(i),w(i),i=1,m)

If (py>8) Then
Read (nin,*) mu(5:(py-4))

End If

If (px>8) Then
Read (nin,*) lamda(5:(px-4))

End If

Else
Read (nin,*)(x(i),y(i),f(i),w(i),i=1,m)

If (px>8) Then
Read (nin,*) lamda(5:(px-4))

End If

If (py>8) Then
Read (nin,*) mu(5:(py-4))

End If

End If

! Sort points into panel order

ifail = 0
Call e02zaf(px,py,lamda,mu,m,x,y,point,npoint,adres,nadres,ifail)

Write (nout,*)
Write (nout,99995) ’Interior ’, label(itemp+1), ’-knots’

If (px==8) Then
Write (nout,*) ’None’

Else

Do j = 5, px - 4
Write (nout,99996) lamda(j)

End Do

End If

Write (nout,*)
Write (nout,99995) ’Interior ’, label(2-itemp), ’-knots’

If (py==8) Then
Write (nout,*) ’None’

Else

Do j = 5, py - 4
Write (nout,99996) mu(j)

End Do

End If

! Fit bicubic spline to data points

ifail = 0
Call e02daf(m,px,py,x,y,f,w,lamda,mu,point,npoint,dl,c,nc,ws,nws,eps, &

sigma,rank,ifail)

Write (nout,*)
Write (nout,99999) ’Sum of squares of residual RHS’, sigma
Write (nout,*)
Write (nout,99998) ’Rank’, rank

! Evaluate spline at the data points

ifail = 0
Call e02def(m,px,py,x,y,lamda,mu,c,ff,wrk,iwrk,ifail)
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sum = 0.0E0_nag_wp

If (itemp==1) Then
Write (nout,*)
Write (nout,*) ’X and Y have been interchanged’

End If

! Output data points, fitted values and residuals

Write (nout,*)
Write (nout,*) ’ X Y Data Fit Residual’

Do i = 1, nadres
iadres = i + m

loop: Do
iadres = point(iadres)

If (iadres<=0) Then
Exit loop

End If

temp = ff(iadres) - f(iadres)
Write (nout,99997) x(iadres), y(iadres), f(iadres), ff(iadres), temp
sum = sum + (temp*w(iadres))**2

End Do loop

End Do

Write (nout,*)
Write (nout,99999) ’Sum of squared residuals’, sum
Write (nout,*)
Write (nout,*) ’Spline coefficients’

Do i = 1, px - 4
Write (nout,99996)(c((i-1)*(py-4)+j),j=1,py-4)

End Do

99999 Format (1X,A,1P,E16.2)
99998 Format (1X,A,I5)
99997 Format (1X,4F11.4,E11.2)
99996 Format (1X,6F11.4)
99995 Format (1X,A,A1,A)

End Program e02dafe

10.2 Program Data

E02DAF Example Program Data
0.000001

30
8

10
-0.52 0.60 0.93 10.
-0.61 -0.95 -1.79 10.
0.93 0.87 0.36 10.
0.09 0.84 0.52 10.
0.88 0.17 0.49 10.

-0.70 -0.87 -1.76 10.
1.00 1.00 0.33 1.
1.00 0.10 0.48 1.
0.30 0.24 0.65 1.

-0.77 -0.77 -1.82 1.
-0.23 0.32 0.92 1.
-1.00 1.00 1.00 1.
-0.26 -0.63 8.88 1.
-0.83 -0.66 -2.01 1.
0.22 0.93 0.47 1.
0.89 0.15 0.49 1.

-0.80 0.99 0.84 1.
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-0.88 -0.54 -2.42 1.
0.68 0.44 0.47 1.

-0.14 -0.72 7.15 1.
0.67 0.63 0.44 1.

-0.90 -0.40 -3.34 1.
-0.84 0.20 2.78 1.
0.84 0.43 0.44 1.
0.15 0.28 0.70 1.

-0.91 -0.24 -6.52 1.
-0.35 0.86 0.66 1.
-0.16 -0.41 2.32 1.
-0.35 -0.05 1.66 1.
-1.00 -1.00 -1.00 1.

-0.5
0.0

10.3 Program Results

E02DAF Example Program Results

Interior Y-knots
-0.5000
0.0000

Interior X-knots
None

Sum of squares of residual RHS 1.47E+01

Rank 22

X and Y have been interchanged

X Y Data Fit Residual
-0.9500 -0.6100 -1.7900 -1.7931 -0.31E-02
-0.8700 -0.7000 -1.7600 -1.7521 0.79E-02
-0.7700 -0.7700 -1.8200 -2.4301 -0.61E+00
-0.6300 -0.2600 8.8800 7.6346 -0.12E+01
-0.6600 -0.8300 -2.0100 -1.5815 0.43E+00
-0.5400 -0.8800 -2.4200 -2.6795 -0.26E+00
-0.7200 -0.1400 7.1500 7.5708 0.42E+00
-1.0000 -1.0000 -1.0000 -1.0228 -0.23E-01
-0.4000 -0.9000 -3.3400 -4.6955 -0.14E+01
-0.2400 -0.9100 -6.5200 -4.7072 0.18E+01
-0.4100 -0.1600 2.3200 2.7039 0.38E+00
-0.0500 -0.3500 1.6600 2.2865 0.63E+00
0.6000 -0.5200 0.9300 0.9441 0.14E-01
0.8700 0.9300 0.3600 0.3529 -0.71E-02
0.8400 0.0900 0.5200 0.5024 -0.18E-01
0.1700 0.8800 0.4900 0.4705 -0.20E-01
1.0000 1.0000 0.3300 0.6315 0.30E+00
0.1000 1.0000 0.4800 1.4910 0.10E+01
0.2400 0.3000 0.6500 0.9241 0.27E+00
0.3200 -0.2300 0.9200 -0.3692 -0.13E+01
1.0000 -1.0000 1.0000 1.0835 0.84E-01
0.9300 0.2200 0.4700 1.4912 0.10E+01
0.1500 0.8900 0.4900 0.4414 -0.49E-01
0.9900 -0.8000 0.8400 0.5495 -0.29E+00
0.4400 0.6800 0.4700 1.5862 0.11E+01
0.6300 0.6700 0.4400 0.6288 0.19E+00
0.2000 -0.8400 2.7800 1.7123 -0.11E+01
0.4300 0.8400 0.4400 0.6888 0.25E+00
0.2800 0.1500 0.7000 0.7713 0.71E-01
0.8600 -0.3500 0.6600 0.9347 0.27E+00

Sum of squared residuals 1.47E+01

Spline coefficients
-1.0228 115.4668 -433.5558 -68.1973
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24.8426 -140.1485 258.5042 15.6756
-29.4878 132.2933 -173.5103 20.0983

9.9575 -51.6200 67.6666 -5.8765
10.0577 4.7543 -15.3533 -0.3260
1.0835 -2.7932 7.7708 0.6315

Example Program
Evaluation of Least-squares Bi-cubic Spline Fit
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NAG Library Routine Document

E02DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02DCF computes a bicubic spline approximation to a set of data values, given on a rectangular grid in
the x-y plane. The knots of the spline are located automatically, but a single argument must be specified
to control the trade-off between closeness of fit and smoothness of fit.

2 Specification

SUBROUTINE E02DCF (START, MX, X, MY, Y, F, S, NXEST, NYEST, NX, LAMDA,
NY, MU, C, FP, WRK, LWRK, IWRK, LIWRK, IFAIL)

&

INTEGER MX, MY, NXEST, NYEST, NX, NY, LWRK, IWRK(LIWRK),
LIWRK, IFAIL

&

REAL (KIND=nag_wp) X(MX), Y(MY), F(MX*MY), S, LAMDA(NXEST), MU(NYEST),
C((NXEST-4)*(NYEST-4)), FP, WRK(LWRK)

&

CHARACTER(1) START

3 Description

E02DCF determines a smooth bicubic spline approximation s x; yð Þ to the set of data points
xq; yr ; fq;r
� �

, for q ¼ 1; 2; . . . ;mx and r ¼ 1; 2; . . . ;my.

The spline is given in the B-spline representation

s x; yð Þ ¼
Xnx�4
i¼1

Xny�4
j¼1

cijMi xð ÞNj yð Þ; ð1Þ

where Mi xð Þ and Nj yð Þ denote normalized cubic B-splines, the former defined on the knots �i to �iþ4
and the latter on the knots �j to �jþ4. For further details, see Hayes and Halliday (1974) for bicubic
splines and de Boor (1972) for normalized B-splines.

The total numbers nx and ny of these knots and their values �1; . . . ; �nx and �1; . . . ; �ny are chosen
automatically by the routine. The knots �5; . . . ; �nx�4 and �5; . . . ; �ny�4 are the interior knots; they
divide the approximation domain x1; xmx

½ � � y1; ymy

� �
into nx � 7ð Þ � ny � 7

� �
subpanels

�i; �iþ1½ � � �j ; �jþ1
� �

, for i ¼ 4; 5; . . . ; nx � 4 and j ¼ 4; 5; . . . ; ny � 4. Then, much as in the curve
case (see E02BEF), the coefficients cij are determined as the solution of the following constrained
minimization problem:

minimize �; ð2Þ

subject to the constraint

� ¼
Xmx

q¼1

Xmy

r¼1
�2q;r � S; ð3Þ

where � is a measure of the (lack of) smoothness of s x; yð Þ. Its value depends on the
discontinuity jumps in s x; yð Þ across the boundaries of the subpanels. It is zero only
when there are no discontinuities and is positive otherwise, increasing with the size of
the jumps (see Dierckx (1982) for details).

�q;r denotes the residual fq;r � s xq; yr
� �

,
and S is a non-negative number specified by you.
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By means of the argument S, ‘the smoothing factor’, you will then control the balance between
smoothness and closeness of fit, as measured by the sum of squares of residuals in (3). If S is too large,
the spline will be too smooth and signal will be lost (underfit); if S is too small, the spline will pick up
too much noise (overfit). In the extreme cases the routine will return an interpolating spline � ¼ 0ð Þ if S
is set to zero, and the least squares bicubic polynomial � ¼ 0ð Þ if S is set very large. Experimenting
with S-values between these two extremes should result in a good compromise. (See Section 9.3 for
advice on choice of S.)

The method employed is outlined in Section 9.5 and fully described in Dierckx (1981) and Dierckx
(1982). It involves an adaptive strategy for locating the knots of the bicubic spline (depending on the
function underlying the data and on the value of S), and an iterative method for solving the constrained
minimization problem once the knots have been determined.

Values and derivatives of the computed spline can subsequently be computed by calling E02DEF,
E02DFF or E02DHF as described in Section 9.6.

4 References

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

Dierckx P (1981) An improved algorithm for curve fitting with spline functions Report TW54
Department of Computer Science, Katholieke Univerciteit Leuven
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5 Arguments

1: START – CHARACTER(1) Input

On entry: determines whether calculations are to be performed afresh (Cold Start) or whether
knots found in previous calls are to be used as an initial estimate of knot placement (Warm Start).

START ¼ C
The routine will build up the knot set starting with no interior knots. No values need be
assigned to the arguments NX, NY, LAMDA, MU, WRK or IWRK.

START ¼ W
The routine will restart the knot-placing strategy using the knots found in a previous call
of the routine. In this case, the arguments NX, NY, LAMDA, MU, WRK and IWRK must
be unchanged from that previous call. This warm start can save much time in determining
a satisfactory set of knots for the given value of S. This is particularly useful when
different smoothing factors are used for the same dataset.

Constraint: START ¼ C or W.

2: MX – INTEGER Input

On entry: mx, the number of grid points along the x axis.

Constraint: MX � 4.

3: XðMXÞ – REAL (KIND=nag_wp) array Input

On entry: XðqÞ must be set to xq , the x coordinate of the qth grid point along the x axis, for
q ¼ 1; 2; . . . ;mx.

Constraint: x1 < x2 < � � � < xmx
.
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4: MY – INTEGER Input

On entry: my, the number of grid points along the y axis.

Constraint: MY � 4.

5: YðMYÞ – REAL (KIND=nag_wp) array Input

On entry: YðrÞ must be set to yr , the y coordinate of the rth grid point along the y axis, for
r ¼ 1; 2; . . . ;my.

Constraint: y1 < y2 < � � � < ymy
.

6: FðMX�MYÞ – REAL (KIND=nag_wp) array Input

On entry: Fðmy � q � 1ð Þ þ rÞ must contain the data value fq;r , for q ¼ 1; 2; . . . ;mx and
r ¼ 1; 2; . . . ;my.

7: S – REAL (KIND=nag_wp) Input

On entry: the smoothing factor, S.

If S ¼ 0:0, the routine returns an interpolating spline.

If S is smaller than machine precision, it is assumed equal to zero.

For advice on the choice of S, see Sections 3 and 9.3.

Constraint: S � 0:0.

8: NXEST – INTEGER Input
9: NYEST – INTEGER Input

On entry: an upper bound for the number of knots nx and ny required in the x- and y-directions
respectively.

In most practical situations, NXEST ¼ mx=2 and NYEST ¼ my=2 is sufficient. NXEST and
NYEST never need to be larger than mx þ 4 and my þ 4 respectively, the numbers of knots
needed for interpolation S ¼ 0:0ð Þ. See also Section 9.4.

Constraints:

NXEST � 8;
NYEST � 8.

10: NX – INTEGER Input/Output

On entry: if the warm start option is used, the value of NX must be left unchanged from the
previous call.

On exit: the total number of knots, nx, of the computed spline with respect to the x variable.

11: LAMDAðNXESTÞ – REAL (KIND=nag_wp) array Input/Output

O n e n t r y : i f t h e w a r m s t a r t o p t i o n i s u s e d , t h e v a l u e s
LAMDAð1Þ;LAMDAð2Þ; . . . ;LAMDAðNXÞ must be left unchanged from the previous call.

On exit: contains the complete set of knots �i associated with the x variable, i.e., the interior
knots LAMDAð5Þ;LAMDAð6Þ; . . . ;LAMDAðNX� 4Þ as well as the additional knots

LAMDAð1Þ ¼ LAMDAð2Þ ¼ LAMDAð3Þ ¼ LAMDAð4Þ ¼ Xð1Þ

and

LAMDAðNX� 3Þ ¼ LAMDAðNX� 2Þ ¼ LAMDAðNX� 1Þ ¼ LAMDAðNXÞ ¼ XðMXÞ

needed for the B-spline representation.
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12: NY – INTEGER Input/Output

On entry: if the warm start option is used, the value of NY must be left unchanged from the
previous call.

On exit: the total number of knots, ny, of the computed spline with respect to the y variable.

13: MUðNYESTÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if the warm start option is used, the values MUð1Þ;MUð2Þ; . . . ;MUðNYÞ must be left
unchanged from the previous call.

On exit: contains the complete set of knots �i associated with the y variable, i.e., the interior
knots MUð5Þ;MUð6Þ; . . . ;MUðNY� 4Þ as well as the additional knots

MUð1Þ ¼ MUð2Þ ¼ MUð3Þ ¼ MUð4Þ ¼ Yð1Þ

and

MUðNY� 3Þ ¼ MUðNY� 2Þ ¼ MUðNY� 1Þ ¼ MUðNYÞ ¼ YðMYÞ

needed for the B-spline representation.

14: Cð NXEST� 4ð Þ � NYEST� 4ð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the coefficients of the spline approximation. Cð ny � 4
� �

� i� 1ð Þ þ jÞ is the coefficient
cij defined in Section 3.

15: FP – REAL (KIND=nag_wp) Output

On exit: the sum of squared residuals, �, of the computed spline approximation. If FP ¼ 0:0, this
is an interpolating spline. FP should equal S within a relative tolerance of 0:001 unless
NX ¼ NY ¼ 8, when the spline has no interior knots and so is simply a bicubic polynomial. For
knots to be inserted, S must be set to a value below the value of FP produced in this case.

16: WRKðLWRKÞ – REAL (KIND=nag_wp) array Communication Array

If the warm start option is used, on entry, the values WRKð1Þ; . . . ;WRKð4Þ must be left
unchanged from the previous call.

This array is used as workspace.

17: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which E02DCF
is called.

Constraint: LWRK � 4� MXþMYð Þ þ 11� NXESTþ NYESTð Þ þ NXEST�MYþ
max MY;NXESTð Þ þ 54.

18: IWRKðLIWRKÞ – INTEGER array Communication Array

If the warm start option is used, on entry, the values IWRKð1Þ; . . . ; IWRKð3Þ must be left
unchanged from the previous call.

This array is used as workspace.

19: LIWRK – INTEGER Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which E02DCF
is called.

Constraint: LIWRK � 3þMXþMY þ NXESTþ NYEST.
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20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, START 6¼ C or W ,
or MX < 4,
or MY < 4,
or S < 0:0,
or S ¼ 0:0 and NXEST < MXþ 4,
or S ¼ 0:0 and NYEST < MYþ 4,
or NXEST < 8,
or NYEST < 8,
or LWRK < 4� MXþMYð Þ þ 11� NXESTþ NYESTð Þ þ NXEST�MYþ

max MY;NXESTð Þ þ 54,
or LIWRK < 3þMXþMYþ NXESTþ NYEST.

IFAIL ¼ 2

The values of XðqÞ, for q ¼ 1; 2; . . . ;MX, are not in strictly increasing order.

IFAIL ¼ 3

The values of YðrÞ, for r ¼ 1; 2; . . . ;MY, are not in strictly increasing order.

IFAIL ¼ 4

The number of knots required is greater than allowed by NXEST and NYEST. Try increasing
NXEST and/or NYEST and, if necessary, supplying larger arrays for the arguments LAMDA,
MU, C, WRK and IWRK. However, if NXEST and NYEST are already large, say
NXEST > MX=2 and NYEST > MY=2, then this error exit may indicate that S is too small.

IFAIL ¼ 5

The iterative process used to compute the coefficients of the approximating spline has failed to
converge. This error exit may occur if S has been set very small. If the error persists with
increased S, contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL ¼ 4 or 5, a spline approximation is returned, but it fails to satisfy the fitting criterion (see (2)
and (3) in Section 3) – perhaps by only a small amount, however.

7 Accuracy

On successful exit, the approximation returned is such that its sum of squared residuals FP is equal to
the smoothing factor S, up to a specified relative tolerance of 0:001 – except that if nx ¼ 8 and ny ¼ 8,
FP may be significantly less than S: in this case the computed spline is simply the least squares bicubic
polynomial approximation of degree 3, i.e., a spline with no interior knots.

8 Parallelism and Performance

E02DCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call of E02DCF depends on the complexity of the shape of the data, the value of
the smoothing factor S, and the number of data points. If E02DCF is to be called for different values of
S, much time can be saved by setting START ¼ W after the first call.

9.2 Weighting of Data Points

E02DCF does not allow individual weighting of the data values. If these were determined to widely
differing accuracies, it may be better to use E02DDF. The computation time would be very much
longer, however.

9.3 Choice of S

If the standard deviation of fq;r is the same for all q and r (the case for which E02DCF is designed –
see Section 9.2.) and known to be equal, at least approximately, to �, say, then following Reinsch
(1967) and choosing the argument S in the range �2 m


ffiffiffiffiffiffiffi
2m
p� �

, where m ¼ mxmy, is likely to give a
good start in the search for a satisfactory value. If the standard deviations vary, the sum of their squares
over all the data points could be used. Otherwise experimenting with different values of S will be
required from the start, taking account of the remarks in Section 3.

In that case, in view of computation time and memory requirements, it is recommended to start with a
very large value for S and so determine the least squares bicubic polynomial; the value returned for FP,
call it FP0, gives an upper bound for S. Then progressively decrease the value of S to obtain closer fits
– say by a factor of 10 in the beginning, i.e., S ¼ FP0=10, S ¼ FP0=100, and so on, and more carefully
as the approximation shows more details.
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The number of knots of the spline returned, and their location, generally depend on the value of S and
on the behaviour of the function underlying the data. However, if E02DCF is called with START ¼ W ,
the knots returned may also depend on the smoothing factors of the previous calls. Therefore if, after a
number of trials with different values of S and START ¼ W , a fit can finally be accepted as
satisfactory, it may be worthwhile to call E02DCF once more with the selected value for S but now
using START ¼ C . Often, E02DCF then returns an approximation with the same quality of fit but with
fewer knots, which is therefore better if data reduction is also important.

9.4 Choice of NXEST and NYEST

The number of knots may also depend on the upper bounds NXEST and NYEST. Indeed, if at a certain
stage in E02DCF the number of knots in one direction (say nx) has reached the value of its upper
bound (NXEST), then from that moment on all subsequent knots are added in the other yð Þ direction.
Therefore you have the option of limiting the number of knots the routine locates in any direction. For
example, by setting NXEST ¼ 8 (the lowest allowable value for NXEST), you can indicate that you
want an approximation which is a simple cubic polynomial in the variable x.

9.5 Outline of Method Used

If S ¼ 0, the requisite number of knots is known in advance, i.e., nx ¼ mx þ 4 and ny ¼ my þ 4; the
interior knots are located immediately as �i ¼ xi�2 and �j ¼ yj�2, for i ¼ 5; 6; . . . ; nx � 4 and
j ¼ 5; 6; . . . ; ny � 4. The corresponding least squares spline is then an interpolating spline and therefore
a solution of the problem.

If S > 0, suitable knot sets are built up in stages (starting with no interior knots in the case of a cold
start but with the knot set found in a previous call if a warm start is chosen). At each stage, a bicubic
spline is fitted to the data by least squares, and �, the sum of squares of residuals, is computed. If
� > S, new knots are added to one knot set or the other so as to reduce � at the next stage. The new
knots are located in intervals where the fit is particularly poor, their number depending on the value of
S and on the progress made so far in reducing �. Sooner or later, we find that � � S and at that point
the knot sets are accepted. The routine then goes on to compute the (unique) spline which has these
knot sets and which satisfies the full fitting criterion specified by (2) and (3). The theoretical solution
has � ¼ S. The routine computes the spline by an iterative scheme which is ended when � ¼ S within a
relative tolerance of 0:001. The main part of each iteration consists of a linear least squares computation
of special form, done in a similarly stable and efficient manner as in E02BAF for least squares curve-
fitting.

An exception occurs when the routine finds at the start that, even with no interior knots nx ¼ ny ¼ 8
� �

,
the least squares spline already has its sum of residuals � S. In this case, since this spline (which is
simply a bicubic polynomial) also has an optimal value for the smoothness measure �, namely zero, it is
returned at once as the (trivial) solution. It will usually mean that S has been chosen too large.

For further details of the algorithm and its use see Dierckx (1982).

9.6 Evaluation of Computed Spline

The values of the computed spline at the points xr ; yrð Þ, for r ¼ 1; 2; . . . ;m, may be obtained in the real
array FF (see E02DEF), of length at least m, by the following call:

IFAIL = 0
CALL E02DEF(M,PX,PY,X,Y,LAMDA,MU,C,FF,WRK,IWRK,IFAIL)

where M ¼ m and the coordinates xr, yr are stored in X kð Þ, Y kð Þ. PX and PY have the same values as NX
and NY as output from E02DCF, and LAMDA, MU and C have the same values as LAMDA, MU and C
output from E02DCF. WRK is a real workspace array of length at least PY� 4, and IWRK is an integer
workspace array of length at least PY� 4.

To evaluate the computed spline on a mx by my rectangular grid of points in the x-y plane, which is
defined by the x coordinates stored in X qð Þ, for q ¼ 1; 2; . . . ;mx, and the y coordinates stored in Y rð Þ,
for r ¼ 1; 2; . . . ;my, returning the results in the real array FF (see E02DFF) which is of length at least
MX�MY, the following call may be used:
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IFAIL = 0
CALL E02DFF(MX,MY,PX,PY,X,Y,LAMDA,MU,C,FG,WRK,LWRK,

* IWRK,LIWRK,IFAIL)

where MX ¼ mx, MY ¼ my. PX and PY have the same values as NX and NY as output from E02DCF,
andLAMDA, MU and C have the same values as LAMDA, MU and C output from E02DCF. WRK is a real
workspace array of length at least LWRK ¼ min nwrk1; nwrk2ð Þ, where nwrk1 ¼ MX� 4þ PX and
nwrk2 ¼ MY� 4þ PY. IWRK is an integer workspace array of length at least LIWRK ¼ MYþ PY� 4 if
nwrk1 � nwrk2, or MXþ PX� 4 otherwise.

The result of the spline evaluated at grid point q; rð Þ is returned in element MY� q � 1ð Þ þ rð Þ of the
array FG.

10 Example

This example reads in values of MX, MY, xq , for q ¼ 1; 2; . . . ;MX, and yr , for r ¼ 1; 2; . . . ;MY,
followed by values of the ordinates fq;r defined at the grid points xq; yr

� �
. It then calls E02DCF to

compute a bicubic spline approximation for one specified value of S, and prints the values of the
computed knots and B-spline coefficients. Finally it evaluates the spline at a small sample of points on
a rectangular grid.

10.1 Program Text

! E02DCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e02dcfe_mod

! E02DCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: cprint

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine cprint(c,ny,nx,nout)

! .. Scalar Arguments ..
Integer, Intent (In) :: nout, nx, ny

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: c(ny-4,nx-4)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’The B-spline coefficients:’
Write (nout,*)

Do i = 1, ny - 4
Write (nout,99999) c(i,1:(nx-4))

End Do

Return

99999 Format (1X,8F9.4)
End Subroutine cprint

End Module e02dcfe_mod
Program e02dcfe

! E02DCF Example Main Program

! .. Use Statements ..
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Use nag_library, Only: e02dcf, e02dff, nag_wp
Use e02dcfe_mod, Only: cprint, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: delta, fp, s, xhi, xlo, yhi, ylo
Integer :: i, ifail, j, liwrk, lwrk, mx, my, &

npx, npy, nx, nxest, ny, nyest
Character (1) :: start

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), f(:), fg(:), lamda(:), mu(:), &

px(:), py(:), wrk(:), x(:), y(:)
Integer, Allocatable :: iwrk(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min, real

! .. Executable Statements ..
Write (nout,*) ’E02DCF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Input the number of X, Y co-ordinates MX, MY.

Read (nin,*) mx, my
nxest = mx + 4
nyest = my + 4
lwrk = 4*(mx+my) + 11*(nxest+nyest) + nxest*my + max(my,nxest) + 54
liwrk = 3 + mx + my + nxest + nyest
Allocate (x(mx),y(my),f(mx*my),lamda(nxest),mu(nyest),wrk(lwrk), &

iwrk(liwrk),c((nxest-4)*(nyest-4)))

Read (nin,*) x(1:mx)
Read (nin,*) y(1:my)

! Input the MX*MY function values F at the grid points.

Read (nin,*) f(1:mx*my)

start = ’C’

Read (nin,*) s

! Determine the spline approximation.

ifail = 0
Call e02dcf(start,mx,x,my,y,f,s,nxest,nyest,nx,lamda,ny,mu,c,fp,wrk, &

lwrk,iwrk,liwrk,ifail)

Deallocate (wrk,iwrk)

Write (nout,*)
Write (nout,99999) ’Calling with smoothing factor S =’, s, ’: NX =’, nx, &

’, NY =’, ny, ’.’
Write (nout,*)
Write (nout,*) ’ I Knot LAMDA(I) J Knot MU(J)’
Write (nout,*)

Do j = 4, max(nx,ny) - 3

If (j<=nx-3 .And. j<=ny-3) Then
Write (nout,99997) j, lamda(j), j, mu(j)

Else If (j<=nx-3) Then
Write (nout,99997) j, lamda(j)

Else If (j<=ny-3) Then
Write (nout,99996) j, mu(j)

End If

End Do

Call cprint(c,ny,nx,nout)
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Write (nout,*)
Write (nout,99998) ’Sum of squared residuals FP =’, fp

If (fp==0.0E+0_nag_wp) Then
Write (nout,*) ’(The spline is an interpolating spline)’

Else If (nx==8 .And. ny==8) Then
Write (nout,*) ’(The spline is the least squares bi-cubic polynomial)’

End If

! Evaluate the spline on a rectangular grid at NPX*NPY points
! over the domain (XLO to XHI) x (YLO to YHI).

Read (nin,*) npx, xlo, xhi
Read (nin,*) npy, ylo, yhi

lwrk = min(4*npx+nx,4*npy+ny)

If (4*npx+nx>4*npy+ny) Then
liwrk = npy + ny - 4

Else
liwrk = npx + nx - 4

End If

Allocate (px(npx),py(npy),fg(npx*npy),wrk(lwrk),iwrk(liwrk))

delta = (xhi-xlo)/real(npx-1,kind=nag_wp)

Do i = 1, npx
px(i) = min(xlo+real(i-1,kind=nag_wp)*delta,xhi)

End Do

delta = (yhi-ylo)/real(npy-1,kind=nag_wp)

Do i = 1, npy
py(i) = min(ylo+real(i-1,kind=nag_wp)*delta,yhi)

End Do

ifail = 0
Call e02dff(npx,npy,nx,ny,px,py,lamda,mu,c,fg,wrk,lwrk,iwrk,liwrk,ifail)

Write (nout,*)
Write (nout,*) ’Values of computed spline:’
Write (nout,*)
Write (nout,99995) ’ X’, (px(i),i=1,npx)
Write (nout,*) ’ Y’

Do i = npy, 1, -1
Write (nout,99994) py(i), (fg(npy*(j-1)+i),j=1,npx)

End Do

99999 Format (1X,A,1P,E13.4,A,I5,A,I5,A)
99998 Format (1X,A,1P,E13.4)
99997 Format (1X,I16,F12.4,I11,F12.4)
99996 Format (1X,I39,F12.4)
99995 Format (1X,A,7F8.2)
99994 Format (1X,F8.2,3X,7F8.2)

End Program e02dcfe

10.2 Program Data

E02DCF Example Program Data
11 9 MX, MY, number of grid points on the X and Y axes
0.0000E+00 5.0000E-01 1.0000E+00 1.5000E+00 2.0000E+00
2.5000E+00 3.0000E+00 3.5000E+00 4.0000E+00 4.5000E+00
5.0000E+00 End of MX grid points
0.0000E+00 5.0000E-01 1.0000E+00 1.5000E+00 2.0000E+00
2.5000E+00 3.0000E+00 3.5000E+00 4.0000E+00 End of MY grid points
1.0000E+00 8.8758E-01 5.4030E-01 7.0737E-02 -4.1515E-01

-8.0114E-01 -9.7999E-01 -9.3446E-01 -6.5664E-01 1.5000E+00
1.3564E+00 8.2045E-01 1.0611E-01 -6.2422E-01 -1.2317E+00
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-1.4850E+00 -1.3047E+00 -9.8547E-01 2.0600E+00 1.7552E+00
1.0806E+00 1.5147E-01 -8.3229E-01 -1.6023E+00 -1.9700E+00

-1.8729E+00 -1.4073E+00 2.5700E+00 2.1240E+00 1.3508E+00
1.7684E-01 -1.0404E+00 -2.0029E+00 -2.4750E+00 -2.3511E+00

-1.6741E+00 3.0000E+00 2.6427E+00 1.6309E+00 2.1221E-01
-1.2484E+00 -2.2034E+00 -2.9700E+00 -2.8094E+00 -1.9809E+00
3.5000E+00 3.1715E+00 1.8611E+00 2.4458E-01 -1.4565E+00

-2.8640E+00 -3.2650E+00 -3.2776E+00 -2.2878E+00 4.0400E+00
3.5103E+00 2.0612E+00 2.8595E-01 -1.6946E+00 -3.2046E+00

-3.9600E+00 -3.7958E+00 -2.6146E+00 4.5000E+00 3.9391E+00
2.4314E+00 3.1632E-01 -1.8627E+00 -3.6351E+00 -4.4550E+00

-4.2141E+00 -2.9314E+00 5.0400E+00 4.3879E+00 2.7515E+00
3.5369E-01 -2.0707E+00 -4.0057E+00 -4.9700E+00 -4.6823E+00

-3.2382E+00 5.5050E+00 4.8367E+00 2.9717E+00 3.8505E-01
-2.2888E+00 -4.4033E+00 -5.4450E+00 -5.1405E+00 -3.5950E+00
6.0000E+00 5.2755E+00 3.2418E+00 4.2442E-01 -2.4769E+00

-4.8169E+00 -5.9300E+00 -5.6387E+00 -3.9319E+00 End of data values
0.1 S, smoothing factor
6 0.0 5.0
5 0.0 4.0

10.3 Program Results

E02DCF Example Program Results

Calling with smoothing factor S = 1.0000E-01: NX = 10, NY = 13.

I Knot LAMDA(I) J Knot MU(J)

4 0.0000 4 0.0000
5 1.5000 5 1.0000
6 2.5000 6 2.0000
7 5.0000 7 2.5000

8 3.0000
9 3.5000

10 4.0000

The B-spline coefficients:

0.9918 1.5381 2.3913 3.9845 5.2138 5.9965
1.0546 1.5270 2.2441 4.2217 5.0860 6.0821
0.6098 0.9557 1.5587 2.3458 3.3860 3.7716

-0.2915 -0.4199 -0.7399 -1.1763 -1.5527 -1.7775
-0.8476 -1.3296 -1.8521 -3.3468 -4.3628 -5.0085
-1.0168 -1.5952 -2.4022 -3.9390 -5.4680 -6.1656
-0.9529 -1.3381 -2.2844 -3.9559 -5.0032 -5.8709
-0.7711 -1.0914 -1.8488 -3.2549 -3.9444 -4.7297
-0.6476 -1.0373 -1.5936 -2.5887 -3.3485 -3.9330

Sum of squared residuals FP = 1.0004E-01

Values of computed spline:

X 0.00 1.00 2.00 3.00 4.00 5.00
Y

4.00 -0.65 -1.36 -1.99 -2.61 -3.25 -3.93
3.00 -0.98 -1.97 -2.91 -3.91 -4.97 -5.92
2.00 -0.42 -0.83 -1.24 -1.66 -2.08 -2.48
1.00 0.54 1.09 1.61 2.14 2.71 3.24
0.00 0.99 2.04 3.03 4.01 5.02 6.00
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Example Program
Calculation and Evaluation of Least Squares Bicubic Spline Fit
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NAG Library Routine Document

E02DDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02DDF computes a bicubic spline approximation to a set of scattered data. The knots of the spline are
located automatically, but a single argument must be specified to control the trade-off between closeness
of fit and smoothness of fit.

2 Specification

SUBROUTINE E02DDF (START, M, X, Y, F, W, S, NXEST, NYEST, NX, LAMDA, NY,
MU, C, FP, RANK, WRK, LWRK, IWRK, LIWRK, IFAIL)

&

INTEGER M, NXEST, NYEST, NX, NY, RANK, LWRK, IWRK(LIWRK),
LIWRK, IFAIL

&

REAL (KIND=nag_wp) X(M), Y(M), F(M), W(M), S, LAMDA(NXEST), MU(NYEST),
C((NXEST-4)*(NYEST-4)), FP, WRK(LWRK)

&

CHARACTER(1) START

3 Description

E02DDF determines a smooth bicubic spline approximation s x; yð Þ to the set of data points xr ; yr ; frð Þ
with weights wr , for r ¼ 1; 2; . . . ;m.

The approximation domain is considered to be the rectangle xmin ; xmax½ � � ymin ; ymax½ �, where
xmin yminð Þ and xmax ymaxð Þ denote the lowest and highest data values of x yð Þ.
The spline is given in the B-spline representation

s x; yð Þ ¼
Xnx�4
i¼1

Xny�4
j¼1

cijMi xð ÞNj yð Þ; ð1Þ

where Mi xð Þ and Nj yð Þ denote normalized cubic B-splines, the former defined on the knots �i to �iþ4
and the latter on the knots �j to �jþ4. For further details, see Hayes and Halliday (1974) for bicubic
splines and de Boor (1972) for normalized B-splines.

The total numbers nx and ny of these knots and their values �1; . . . ; �nx and �1; . . . ; �ny are chosen
automatically by the routine. The knots �5; . . . ; �nx�4 and �5; . . . ; �ny�4 are the interior knots; they
divide the approximation domain xmin ; xmax½ � � ymin ; ymax½ � into nx � 7ð Þ � ny � 7

� �
subpanels

�i; �iþ1½ � � �j ; �jþ1
� �

, for i ¼ 4; 5; . . . ; nx � 4 and j ¼ 4; 5; . . . ; ny � 4. Then, much as in the curve
case (see E02BEF), the coefficients cij are determined as the solution of the following constrained
minimization problem:

minimize

�; ð2Þ

subject to the constraint

� ¼
Xm
r¼1

�2r � S ð3Þ
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where: � is a measure of the (lack of) smoothness of s x; yð Þ. Its value depends on the
discontinuity jumps in s x; yð Þ across the boundaries of the subpanels. It is zero only
when there are no discontinuities and is positive otherwise, increasing with the size of
the jumps (see Dierckx (1981b) for details).

�r denotes the weighted residual wr fr � s xr; yrð Þð Þ,
and S is a non-negative number to be specified by you.

By means of the argument S, ‘the smoothing factor’, you will then control the balance between
smoothness and closeness of fit, as measured by the sum of squares of residuals in (3). If S is too large,
the spline will be too smooth and signal will be lost (underfit); if S is too small, the spline will pick up
too much noise (overfit). In the extreme cases the method would return an interpolating spline � ¼ 0ð Þ if
S were set to zero, and returns the least squares bicubic polynomial � ¼ 0ð Þ if S is set very large.
Experimenting with S-values between these two extremes should result in a good compromise. (See
Section 9.2 for advice on choice of S.) Note however, that this routine, unlike E02BEF and E02DCF,
does not allow S to be set exactly to zero: to compute an interpolant to scattered data, E01SAF or
E01SGF should be used.

The method employed is outlined in Section 9.5 and fully described in Dierckx (1981a) and Dierckx
(1981b). It involves an adaptive strategy for locating the knots of the bicubic spline (depending on the
function underlying the data and on the value of S), and an iterative method for solving the constrained
minimization problem once the knots have been determined.

Values and derivatives of the computed spline can subsequently be computed by calling E02DEF,
E02DFF or E02DHF as described in Section 9.6.

4 References

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

Dierckx P (1981a) An improved algorithm for curve fitting with spline functions Report TW54
Department of Computer Science, Katholieke Univerciteit Leuven

Dierckx P (1981b) An algorithm for surface fitting with spline functions IMA J. Numer. Anal. 1 267–
283

Hayes J G and Halliday J (1974) The least squares fitting of cubic spline surfaces to general data sets J.
Inst. Math. Appl. 14 89–103

Peters G and Wilkinson J H (1970) The least squares problem and pseudo-inverses Comput. J. 13 309–
316

Reinsch C H (1967) Smoothing by spline functions Numer. Math. 10 177–183

5 Arguments

1: START – CHARACTER(1) Input

On entry: determines whether calculations are to be performed afresh (Cold Start) or whether
knots found in previous calls are to be used as an initial estimate of knot placement (Warm Start).

START ¼ C
The routine will build up the knot set starting with no interior knots. No values need be
assigned to the arguments NX, NY, LAMDA, MU or WRK.

START ¼ W
The routine will restart the knot-placing strategy using the knots found in a previous call
of the routine. In this case, the arguments NX, NY, LAMDA, MU and WRK must be
unchanged from that previous call. This warm start can save much time in determining a
satisfactory set of knots for the given value of S. This is particularly useful when different
smoothing factors are used for the same dataset.

Constraint: START ¼ C or W.
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2: M – INTEGER Input

On entry: m, the number of data points.

The number of data points with nonzero weight (see W) must be at least 16.

3: XðMÞ – REAL (KIND=nag_wp) array Input
4: YðMÞ – REAL (KIND=nag_wp) array Input
5: FðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðrÞ, YðrÞ, FðrÞ must be set to the coordinates of xr ; yr ; frð Þ, the rth data point, for
r ¼ 1; 2; . . . ;m. The order of the data points is immaterial.

6: WðMÞ – REAL (KIND=nag_wp) array Input

On entry: WðrÞ must be set to wr , the rth value in the set of weights, for r ¼ 1; 2; . . . ;m. Zero
weights are permitted and the corresponding points are ignored, except when determining xmin ,
xmax , ymin and ymax (see Section 9.4). For advice on the choice of weights, see Section 2.1.2 in
the E02 Chapter Introduction.

Constraint: the number of data points with nonzero weight must be at least 16.

7: S – REAL (KIND=nag_wp) Input

On entry: the smoothing factor, S.

For advice on the choice of S, see Sections 3 and 9.2.

Constraint: S > 0:0.

8: NXEST – INTEGER Input
9: NYEST – INTEGER Input

On entry: an upper bound for the number of knots nx and ny required in the x- and y-directions
respectively.

In most practical situations, NXEST ¼ NYEST ¼ 4þ
ffiffiffiffiffiffiffiffiffiffi
m=2

p
is sufficient. See also Section 9.3.

Constraint: NXEST � 8 and NYEST � 8.

10: NX – INTEGER Input/Output

On entry: if the warm start option is used, the value of NX must be left unchanged from the
previous call.

On exit: the total number of knots, nx, of the computed spline with respect to the x variable.

11: LAMDAðNXESTÞ – REAL (KIND=nag_wp) array Input/Output

O n e n t r y : i f t h e w a r m s t a r t o p t i o n i s u s e d , t h e v a l u e s
LAMDAð1Þ;LAMDAð2Þ; . . . ;LAMDAðNXÞ must be left unchanged from the previous call.

On exit: contains the complete set of knots �i associated with the x variable, i.e., the interior
knots LAMDAð5Þ;LAMDAð6Þ; . . . ;LAMDAðNX� 4Þ as well as the additional knots

LAMDAð1Þ ¼ LAMDAð2Þ ¼ LAMDAð3Þ ¼ LAMDAð4Þ ¼ xmin

and

LAMDAðNX� 3Þ ¼ LAMDAðNX� 2Þ ¼ LAMDAðNX� 1Þ ¼ LAMDAðNXÞ ¼ xmax

needed for the B-spline representation (where xmin and xmax are as described in Section 3).

12: NY – INTEGER Input/Output

On entry: if the warm start option is used, the value of NY must be left unchanged from the
previous call.
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On exit: the total number of knots, ny, of the computed spline with respect to the y variable.

13: MUðNYESTÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if the warm start option is used, the values MUð1Þ;MUð2Þ; . . . ;MUðNYÞ must be left
unchanged from the previous call.

On exit: contains the complete set of knots �i associated with the y variable, i.e., the interior
knots MUð5Þ;MUð6Þ; . . . ;MUðNY� 4Þ as well as the additional knots

MUð1Þ ¼ MUð2Þ ¼ MUð3Þ ¼ MUð4Þ ¼ ymin

and

MUðNY� 3Þ ¼ MUðNY� 2Þ ¼ MUðNY� 1Þ ¼ MUðNYÞ ¼ ymax

needed for the B-spline representation (where ymin and ymax are as described in Section 3).

14: Cð NXEST� 4ð Þ � NYEST� 4ð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the coefficients of the spline approximation. Cð ny � 4
� �

� i� 1ð Þ þ jÞ is the coefficient
cij defined in Section 3.

15: FP – REAL (KIND=nag_wp) Output

On exit: the weighted sum of squared residuals, �, of the computed spline approximation. FP
should equal S within a relative tolerance of 0:001 unless NX ¼ NY ¼ 8, when the spline has no
interior knots and so is simply a bicubic polynomial. For knots to be inserted, S must be set to a
value below the value of FP produced in this case.

16: RANK – INTEGER Output

On exit: gives the rank of the system of equations used to compute the final spline (as determined
by a suitable machine-dependent threshold). When RANK ¼ NX� 4ð Þ � NY� 4ð Þ, the solution
is unique; otherwise the system is rank-deficient and the minimum-norm solution is computed.
The latter case may be caused by too small a value of S.

17: WRKðLWRKÞ – REAL (KIND=nag_wp) array Communication Array

If the warm start option is used, on entry, the value of WRKð1Þ must be left unchanged from the
previous call.

This array is used as workspace.

18: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which E02DDF
is called.

Constraint: LWRK � 7� u � v þ 25� wð Þ � w þ 1ð Þ þ 2� u þ v þ 4�Mð Þ þ 23� w þ 56,
where u ¼ NXEST� 4, v ¼ NYEST� 4 and w ¼ max u; vð Þ.
For some problems, the routine may need to compute the minimal least squares solution of a
rank-deficient system of linear equations (see Section 3). The amount of workspace required to
solve such problems will be larger than specified by the value given above, which must be
increased by an amount, lwrk2 say. An upper bound for lwrk2 is given by
4� u � v � w þ 2� u � v þ 4� w, where u, v and w are as above. However, if there are
enough data points, scattered uniformly over the approximation domain, and if the smoothing
factor S is not too small, there is a good chance that this extra workspace is not needed. A lot of
memory might therefore be saved by assuming that no additional workspace is required
(lwrk2 ¼ 0).
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19: IWRKðLIWRKÞ – INTEGER array Workspace
20: LIWRK – INTEGER Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which E02DDF
is called.

Constraint: LIWRK � Mþ 2� NXEST� 7ð Þ � NYEST� 7ð Þ.

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, START 6¼ C or W ,
or the number of data points with nonzero weight < 16,
or S � 0:0,
or NXEST < 8,
or NYEST < 8,
or LWRK < 7� u � v þ 25� wð Þ � w þ 1ð Þ þ 2� u þ v þ 4�Mð Þ þ 23� w þ 56,

where u ¼ NXEST� 4, v ¼ NYEST� 4 and w ¼ max u; vð Þ,
or LIWRK < Mþ 2� NXEST� 7ð Þ � NYEST� 7ð Þ.

IFAIL ¼ 2

On entry, either all the XðrÞ, for r ¼ 1; 2; . . . ;M, are equal, or all the YðrÞ, for r ¼ 1; 2; . . . ;M,
are equal.

IFAIL ¼ 3

The number of knots required is greater than allowed by NXEST and NYEST. Try increasing
NXEST and/or NYEST and, if necessary, supplying larger arrays for the arguments LAMDA,
MU, C, WRK and IWRK. However, if NXEST and NYEST are already large, say NXEST,
NYEST > 4þ

ffiffiffiffiffiffiffiffiffiffi
M=2

p
, then this error exit may indicate that S is too small.

IFAIL ¼ 4

No more knots can be added because the number of B-spline coefficients NX� 4ð Þ � NY� 4ð Þ
already exceeds the number of data points M. This error exit may occur if either of S or M is too
small.

IFAIL ¼ 5

No more knots can be added because the additional knot would (quasi) coincide with an old one.
This error exit may occur if too large a weight has been given to an inaccurate data point, or if S
is too small.
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IFAIL ¼ 6

The iterative process used to compute the coefficients of the approximating spline has failed to
converge. This error exit may occur if S has been set very small. If the error persists with
increased S, contact NAG.

IFAIL ¼ 7

LWRK is too small; the routine needs to compute the minimal least squares solution of a rank-
deficient system of linear equations, but there is not enough workspace. There is no
approximation returned but, having saved the information contained in NX, LAMDA, NY, MU
and WRK, and having adjusted the value of LWRK and the dimension of array WRK
accordingly, you can continue at the point the program was left by calling E02DDF with
START ¼ W . Note that the requested value for LWRK is only large enough for the current
phase of the algorithm. If the routine is restarted with LWRK set to the minimum value
requested, a larger request may be made at a later stage of the computation. See Section 5 for the
upper bound on LWRK. On soft failure, the minimum requested value for LWRK is returned in
IWRKð1Þ and the safe value for LWRK is returned in IWRKð2Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL ¼ 3, 4, 5 or 6, a spline approximation is returned, but it fails to satisfy the fitting criterion (see
(2) and (3) in Section 3 – perhaps only by a small amount, however.

7 Accuracy

On successful exit, the approximation returned is such that its weighted sum of squared residuals FP is
equal to the smoothing factor S, up to a specified relative tolerance of 0:001 – except that if nx ¼ 8 and
ny ¼ 8, FP may be significantly less than S: in this case the computed spline is simply the least squares
bicubic polynomial approximation of degree 3, i.e., a spline with no interior knots.

8 Parallelism and Performance

E02DDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

9.1 Timing

The time taken for a call of E02DDF depends on the complexity of the shape of the data, the value of
the smoothing factor S, and the number of data points. If E02DDF is to be called for different values of
S, much time can be saved by setting START ¼ W after the first call.

It should be noted that choosing S very small considerably increases computation time.

9.2 Choice of S

If the weights have been correctly chosen (see Section 2.1.2 in the E02 Chapter Introduction), the
standard deviation of wrfr would be the same for all r, equal to �, say. In this case, choosing the
smoothing factor S in the range �2 m


ffiffiffiffiffiffiffi
2m
p� �

, as suggested by Reinsch (1967), is likely to give a good
start in the search for a satisfactory value. Otherwise, experimenting with different values of S will be
required from the start.

In that case, in view of computation time and memory requirements, it is recommended to start with a
very large value for S and so determine the least squares bicubic polynomial; the value returned for FP,
call it FP0, gives an upper bound for S. Then progressively decrease the value of S to obtain closer fits
– say by a factor of 10 in the beginning, i.e., S ¼ FP0=10, S ¼ FP0=100, and so on, and more carefully
as the approximation shows more details.

To choose S very small is strongly discouraged. This considerably increases computation time and
memory requirements. It may also cause rank-deficiency (as indicated by the argument RANK) and
endanger numerical stability.

The number of knots of the spline returned, and their location, generally depend on the value of S and
on the behaviour of the function underlying the data. However, if E02DDF is called with START ¼ W ,
the knots returned may also depend on the smoothing factors of the previous calls. Therefore if, after a
number of trials with different values of S and START ¼ W , a fit can finally be accepted as
satisfactory, it may be worthwhile to call E02DDF once more with the selected value for S but now
using START ¼ C . Often, E02DDF then returns an approximation with the same quality of fit but with
fewer knots, which is therefore better if data reduction is also important.

9.3 Choice of NXEST and NYEST

The number of knots may also depend on the upper bounds NXEST and NYEST. Indeed, if at a certain
stage in E02DDF the number of knots in one direction (say nx) has reached the value of its upper
bound (NXEST), then from that moment on all subsequent knots are added in the other yð Þ direction.
This may indicate that the value of NXEST is too small. On the other hand, it gives you the option of
limiting the number of knots the routine locates in any direction. For example, by setting NXEST ¼ 8
(the lowest allowable value for NXEST), you can indicate that you want an approximation which is a
simple cubic polynomial in the variable x.

9.4 Restriction of the approximation domain

The fit obtained is not defined outside the rectangle �4; �nx�3½ � � �4; �ny�3
� �

. The reason for taking the
extreme data values of x and y for these four knots is that, as is usual in data fitting, the fit cannot be
expected to give satisfactory values outside the data region. If, nevertheless, you require values over a
larger rectangle, this can be achieved by augmenting the data with two artificial data points a; c; 0ð Þ and
b; d; 0ð Þ with zero weight, where a; b½ � � c; d½ � denotes the enlarged rectangle.

9.5 Outline of method used

First suitable knot sets are built up in stages (starting with no interior knots in the case of a cold start
but with the knot set found in a previous call if a warm start is chosen). At each stage, a bicubic spline
is fitted to the data by least squares and �, the sum of squares of residuals, is computed. If � > S, a new
knot is added to one knot set or the other so as to reduce � at the next stage. The new knot is located in
an interval where the fit is particularly poor. Sooner or later, we find that � � S and at that point the
knot sets are accepted. The routine then goes on to compute a spline which has these knot sets and
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which satisfies the full fitting criterion specified by (2) and (3). The theoretical solution has � ¼ S. The
routine computes the spline by an iterative scheme which is ended when � ¼ S within a relative
tolerance of 0:001. The main part of each iteration consists of a linear least squares computation of
special form, done in a similarly stable and efficient manner as in E02DAF. As there also, the minimal
least squares solution is computed wherever the linear system is found to be rank-deficient.

An exception occurs when the routine finds at the start that, even with no interior knots (N ¼ 8), the
least squares spline already has its sum of squares of residuals � S. In this case, since this spline
(which is simply a bicubic polynomial) also has an optimal value for the smoothness measure �, namely
zero, it is returned at once as the (trivial) solution. It will usually mean that S has been chosen too
large.

For further details of the algorithm and its use see Dierckx (1981b).

9.6 Evaluation of Computed Spline

The values of the computed spline at the points xr ; yrð Þ, for r ¼ 1; 2; . . . ; n, may be obtained in the real
array FF (see E02DEF), of length at least n, by the following call:

IFAIL = 0
CALL E02DEF(N,NX,NY,X,Y,LAMDA,MU,C,FF,WRK,IWRK,IFAIL)

where N ¼ n and the coordinates xr, yr are stored in X kð Þ, Y kð Þ. PX and PY have the same values as NX
and NY as output from E02DDF, and LAMDA, MU and C have the same values as LAMDA, MU and C
output from E02DDF. WRK is a real workspace array of length at least PY� 4, and IWRK is an integer
workspace array of length at least PY� 4.

To evaluate the computed spline on a kx by ky rectangular grid of points in the x-y plane, which is
defined by the x coordinates stored in X qð Þ, for q ¼ 1; 2; . . . ; kx, and the y coordinates stored in Y rð Þ, for
r ¼ 1; 2; . . . ; ky, returning the results in the real array FF (see E02DFF) which is of length at least
MX�MY, the following call may be used:

IFAIL = 0
CALL E02DFF(KX,KY,NX,NY,TX,TY,LAMDA,MU,C,FG,WRK,LWRK,

* IWRK,LIWRK,IFAIL)

where KX ¼ kx, KY ¼ ky. NX, NY,LAMDA, MU and C have the same values as NX, NY,LAMDA, MU and C
output from E02DDF. WRK is a real workspace array of length at least LWRK ¼ min nwrk1; nwrk2ð Þ,
where nwrk1 ¼ KX� 4þ PX and nwrk2 ¼ KY� 4þ PY. IWRK is an integer workspace array of length at
least LIWRK ¼ KYþ PY� 4 if nwrk1 � nwrk2, or KXþ PX� 4 otherwise.

The result of the spline evaluated at grid point q; rð Þ is returned in element KY� q � 1ð Þ þ rð Þ of the
array FG.

10 Example

This example reads in a value of M, followed by a set of M data points xr; yr; frð Þ and their weights wr.
It then calls E02DDF to compute a bicubic spline approximation for one specified value of S, and prints
the values of the computed knots and B-spline coefficients. Finally it evaluates the spline at a small
sample of points on a rectangular grid.

10.1 Program Text

! E02DDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e02ddfe_mod

! E02DDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
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Public :: cprint
! .. Parameters ..

Integer, Parameter, Public :: nin = 5, nout = 6
Contains

Subroutine cprint(c,ny,nx,nout)

! .. Scalar Arguments ..
Integer, Intent (In) :: nout, nx, ny

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: c(ny-4,nx-4)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’The B-spline coefficients:’
Write (nout,*)

Do i = 1, ny - 4
Write (nout,99999) c(i,1:(nx-4))

End Do

Return

99999 Format (1X,7F9.2)
End Subroutine cprint

End Module e02ddfe_mod
Program e02ddfe

! E02DDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e02ddf, e02dff, nag_wp
Use e02ddfe_mod, Only: cprint, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: delta, fp, s, xhi, xlo, yhi, ylo
Integer :: i, ifail, j, liwrk, lwrk, m, npx, &

npy, nx, nxest, ny, nyest, rank, u, &
v, ww

Character (1) :: start
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:), f(:), fg(:), lamda(:), mu(:), &
px(:), py(:), w(:), wrk(:), x(:), &
y(:)

Integer, Allocatable :: iwrk(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min, real
! .. Executable Statements ..

Write (nout,*) ’E02DDF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m
nxest = m
nyest = nxest
liwrk = m + 2*(nxest-7)*(nyest-7)
u = nxest - 4
v = nyest - 4
ww = max(u,v)
lwrk = (7*u*v+25*ww)*(ww+1) + 2*(u+v+4*m) + 23*ww + 56
Allocate (x(m),y(m),f(m),w(m),lamda(nxest),mu(nyest),c((nxest-4)*(nyest- &

4)),iwrk(liwrk),wrk(lwrk))

! Input the data-points and the weights.

Do i = 1, m
Read (nin,*) x(i), y(i), f(i), w(i)

End Do

E02 – Curve and Surface Fitting E02DDF
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start = ’C’

Read (nin,*) s

! Determine the spline approximation.

ifail = 0
Call e02ddf(start,m,x,y,f,w,s,nxest,nyest,nx,lamda,ny,mu,c,fp,rank,wrk, &

lwrk,iwrk,liwrk,ifail)

Deallocate (wrk,iwrk)

Write (nout,*)
Write (nout,99999) ’Calling with smoothing factor S =’, s, ’: NX =’, nx, &

’, NY =’, ny, ’,’
Write (nout,99998) ’rank deficiency =’, (nx-4)*(ny-4) - rank
Write (nout,*)
Write (nout,*) ’ I Knot LAMDA(I) J Knot MU(J)’
Write (nout,*)

Do j = 4, max(nx,ny) - 3

If (j<=nx-3 .And. j<=ny-3) Then
Write (nout,99996) j, lamda(j), j, mu(j)

Else If (j<=nx-3) Then
Write (nout,99996) j, lamda(j)

Else If (j<=ny-3) Then
Write (nout,99995) j, mu(j)

End If

End Do

Call cprint(c,ny,nx,nout)

Write (nout,*)
Write (nout,99997) ’ Sum of squared residuals FP =’, fp

If (nx==8 .And. ny==8) Then
Write (nout,*) &

’ ( The spline is the least squares bi-cubic polynomial )’
End If

! Evaluate the spline on a rectangular grid at NPX*NPY points
! over the domain (XLO to XHI) x (YLO to YHI).

Read (nin,*) npx, xlo, xhi
Read (nin,*) npy, ylo, yhi

lwrk = min(4*npx+nx,4*npy+ny)

If (4*npx+nx>4*npy+ny) Then
liwrk = npy + ny - 4

Else
liwrk = npx + nx - 4

End If

Allocate (px(npx),py(npy),fg(npx*npy),wrk(lwrk),iwrk(liwrk))

delta = (xhi-xlo)/real(npx-1,kind=nag_wp)

Do i = 1, npx
px(i) = min(xlo+real(i-1,kind=nag_wp)*delta,xhi)

End Do

Do i = 1, npy
py(i) = min(ylo+real(i-1,kind=nag_wp)*delta,yhi)

End Do

ifail = 0
Call e02dff(npx,npy,nx,ny,px,py,lamda,mu,c,fg,wrk,lwrk,iwrk,liwrk,ifail)
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Write (nout,*)
Write (nout,*) ’Values of computed spline:’
Write (nout,*)
Write (nout,99994) ’ X’, (px(i),i=1,npx)
Write (nout,*) ’ Y’

Do i = npy, 1, -1
Write (nout,99993) py(i), (fg(npy*(j-1)+i),j=1,npx)

End Do

99999 Format (1X,A,1P,E13.4,A,I5,A,I5,A)
99998 Format (1X,A,I5)
99997 Format (1X,A,1P,E13.4,A)
99996 Format (1X,I16,F12.4,I11,F12.4)
99995 Format (1X,I39,F12.4)
99994 Format (1X,A,7F8.2)
99993 Format (1X,F8.2,3X,7F8.2)

End Program e02ddfe

10.2 Program Data

E02DDF Example Program Data
30 M, number of data points
11.16 1.24 22.15 1.00 X,Y,F,W data point coordinates and weight
12.85 3.06 22.11 1.00
19.85 10.72 7.97 1.00
19.72 1.39 16.83 1.00
15.91 7.74 15.30 1.00
0.00 20.00 34.60 1.00

20.87 20.00 5.74 1.00
3.45 12.78 41.24 1.00

14.26 17.87 10.74 1.00
17.43 3.46 18.60 1.00
22.80 12.39 5.47 1.00
7.58 1.98 29.87 1.00

25.00 11.87 4.40 1.00
0.00 0.00 58.20 1.00
9.66 20.00 4.73 1.00
5.22 14.66 40.36 1.00

17.25 19.57 6.43 1.00
25.00 3.87 8.74 1.00
12.13 10.79 13.71 1.00
22.23 6.21 10.25 1.00
11.52 8.53 15.74 1.00
15.20 0.00 21.60 1.00
7.54 10.69 19.31 1.00

17.32 13.78 12.11 1.00
2.14 15.03 53.10 1.00
0.51 8.37 49.43 1.00

22.69 19.63 3.25 1.00
5.47 17.13 28.63 1.00

21.67 14.36 5.52 1.00
3.31 0.33 44.08 1.00 End of data points

10.0 S, smoothing factor
7 3.0 21.0
6 2.0 17.0

10.3 Program Results

E02DDF Example Program Results

Calling with smoothing factor S = 1.0000E+01: NX = 10, NY = 9,
rank deficiency = 0

I Knot LAMDA(I) J Knot MU(J)

4 0.0000 4 0.0000
5 9.7575 5 9.0008
6 18.2582 6 20.0000
7 25.0000
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The B-spline coefficients:

58.16 46.31 6.01 32.00 5.86 -23.78
63.78 46.74 33.37 18.30 14.36 15.95
40.84 -33.79 5.17 13.10 -4.13 19.37
75.44 111.92 6.94 17.33 7.09 -13.24
34.61 -42.61 25.20 -1.96 10.37 -9.09

Sum of squared residuals FP = 1.0002E+01

Values of computed spline:

X 3.00 6.00 9.00 12.00 15.00 18.00 21.00
Y

17.00 40.74 28.62 19.84 14.29 11.21 9.46 7.09
14.00 48.34 33.97 21.56 14.71 12.32 10.82 7.15
11.00 37.26 24.46 17.21 14.14 13.02 11.23 7.29
8.00 30.25 19.66 16.90 16.28 15.21 12.71 8.99
5.00 36.64 26.75 23.07 21.13 18.97 15.90 11.98
2.00 45.04 33.70 26.25 22.88 21.62 19.39 13.40

Example Program
Calculation and Evaluation of Least-squares Bicubic Spline Fit

from Scattered Data
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NAG Library Routine Document

E02DEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02DEF calculates values of a bicubic spline from its B-spline representation.

2 Specification

SUBROUTINE E02DEF (M, PX, PY, X, Y, LAMDA, MU, C, FF, WRK, IWRK, IFAIL)

INTEGER M, PX, PY, IWRK(PY-4), IFAIL
REAL (KIND=nag_wp) X(M), Y(M), LAMDA(PX), MU(PY), C((PX-4)*(PY-4)),

FF(M), WRK(PY-4)
&

3 Description

E02DEF calculates values of the bicubic spline s x; yð Þ at prescribed points xr ; yrð Þ, for r ¼ 1; 2; . . . ;m,
from its augmented knot sets �f g and �f g and from the coefficients cij, for i ¼ 1; 2; . . . ; PX� 4 and
j ¼ 1; 2; . . . ; PY� 4, in its B-spline representation

s x; yð Þ ¼
X
ij

cijMi xð ÞNj yð Þ:

Here Mi xð Þ and Nj yð Þ denote normalized cubic B-splines, the former defined on the knots �i to �iþ4
and the latter on the knots �j to �jþ4.

This routine may be used to calculate values of a bicubic spline given in the form produced by
E01DAF, E02DAF, E02DCF and E02DDF. It is derived from the routine B2VRE in Anthony et al.
(1982).

4 References

Anthony G T, Cox M G and Hayes J G (1982) DASL – Data Approximation Subroutine Library
National Physical Laboratory

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135–143

5 Arguments

1: M – INTEGER Input

On entry: m, the number of points at which values of the spline are required.

Constraint: M � 1.

2: PX – INTEGER Input
3: PY – INTEGER Input

On entry: PX and PY must specify the total number of knots associated with the variables x and
y respectively. They are such that PX� 8 and PY� 8 are the corresponding numbers of interior
knots.

Constraint: PX � 8 and PY � 8.

E02 – Curve and Surface Fitting E02DEF
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4: XðMÞ – REAL (KIND=nag_wp) array Input
5: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: X and Y must contain xr and yr , for r ¼ 1; 2; . . . ;m, respectively. These are the
coordinates of the points at which values of the spline are required. The order of the points is
immaterial.

Constraint: X and Y must satisfy

LAMDAð4Þ � XðrÞ � LAMDAðPX� 3Þ

and

MUð4Þ � YðrÞ � MUðPY� 3Þ; r ¼ 1; 2; . . . ;m:

The spline representation is not valid outside these intervals

6: LAMDAðPXÞ – REAL (KIND=nag_wp) array Input
7: MUðPYÞ – REAL (KIND=nag_wp) array Input

On entry: LAMDA and MU must contain the complete sets of knots �f g and �f g associated with
the x and y variables respectively.

Constra in t : the knots in each se t must be in nondecreas ing order, wi th
LAMDAðPX� 3Þ > LAMDAð4Þ and MUðPY� 3Þ > MUð4Þ.

8: Cð PX� 4ð Þ � PY� 4ð ÞÞ – REAL (KIND=nag_wp) array Input

On entry: Cð PY� 4ð Þ � i � 1ð Þ þ jÞ must contain the coefficient cij described in Section 3, for
i ¼ 1; 2; . . . ;PX� 4 and j ¼ 1; 2; . . . ; PY� 4.

9: FFðMÞ – REAL (KIND=nag_wp) array Output

On exit: FFðrÞ contains the value of the spline at the point xr ; yrð Þ, for r ¼ 1; 2; . . . ;m.

10: WRKðPY� 4Þ – REAL (KIND=nag_wp) array Workspace
11: IWRKðPY� 4Þ – INTEGER array Workspace

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or PY < 8,
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or PX < 8.

IFAIL ¼ 2

On entry, the knots in array LAMDA, or those in array MU, are not in nondecreasing order, or
LAMDAðPX� 3Þ � LAMDAð4Þ, or MUðPY� 3Þ � MUð4Þ.

IFAIL ¼ 3

On entry, at least one of the prescribed points xr; yrð Þ lies outside the rectangle defined by
LAMDAð4Þ, LAMDAðPX� 3Þ and MUð4Þ, MUðPY� 3Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The method used to evaluate the B-splines is numerically stable, in the sense that each computed value
of s xr; yrð Þ can be regarded as the value that would have been obtained in exact arithmetic from slightly
perturbed B-spline coefficients. See Cox (1978) for details.

8 Parallelism and Performance

E02DEF is not threaded in any implementation.

9 Further Comments

Computation time is approximately proportional to the number of points, m, at which the evaluation is
required.

10 Example

This program reads in knot sets LAMDAð1Þ; . . . ;LAMDAðPXÞ and MUð1Þ; . . . ;MUðPYÞ, and a set of
bicubic spline coefficients cij. Following these are a value for m and the coordinates xr ; yrð Þ, for
r ¼ 1; 2; . . . ;m, at which the spline is to be evaluated.

10.1 Program Text

Program e02defe

! E02DEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02def, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..

E02 – Curve and Surface Fitting E02DEF
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, m, px, py
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:), ff(:), lamda(:), mu(:), &
wrk(:), x(:), y(:)

Integer, Allocatable :: iwrk(:)
! .. Executable Statements ..

Write (nout,*) ’E02DEF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read PX and PY, the number of knots in the X and Y directions.

Read (nin,*) px, py
Allocate (lamda(px),mu(py),c((px-4)*(py-4)),wrk(py-4),iwrk(py-4))

! Read the knots LAMDA(1) .. LAMDA(PX) and MU(1) .. MU(PY).

Read (nin,*) lamda(1:px)
Read (nin,*) mu(1:py)

! Read C, the bicubic spline coefficients.

Read (nin,*) c(1:(px-4)*(py-4))

! Read M, the number of spline evaluation points.

Read (nin,*) m
Allocate (x(m),y(m),ff(m))

! Read the X and Y co-ordinates of the evaluation points.

Do i = 1, m
Read (nin,*) x(i), y(i)

End Do

! Evaluate the spline at the M points.

ifail = 0
Call e02def(m,px,py,x,y,lamda,mu,c,ff,wrk,iwrk,ifail)

Write (nout,*)
Write (nout,*) ’ I X(I) Y(I) FF(I)’
Write (nout,99999)(i,x(i),y(i),ff(i),i=1,m)

99999 Format (1X,I7,3F11.3)
End Program e02defe

10.2 Program Data

E02DEF Example Program Data
11 10 PX PY
1.0 1.0 1.0 1.0 1.3 1.5 1.6 2.0 2.0 2.0 2.0 LAMDA(1) .. LAMDA(PX)
0.0 0.0 0.0 0.0 0.4 0.7 1.0 1.0 1.0 1.0 MU(1) .. MU(PY)
1.0000 1.1333 1.3667 1.7000 1.9000 2.0000
1.2000 1.3333 1.5667 1.9000 2.1000 2.2000
1.5833 1.7167 1.9500 2.2833 2.4833 2.5833
2.1433 2.2767 2.5100 2.8433 3.0433 3.1433
2.8667 3.0000 3.2333 3.5667 3.7667 3.8667
3.4667 3.6000 3.8333 4.1667 4.3667 4.4667
4.0000 4.1333 4.3667 4.7000 4.9000 5.0000 Spline coefficients, C
7 M
1.0 0.0 X(1), Y(1)
1.1 0.1
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1.5 0.7
1.6 0.4
1.9 0.3
1.9 0.8
2.0 1.0 X(M), Y(M)

10.3 Program Results

E02DEF Example Program Results

I X(I) Y(I) FF(I)
1 1.000 0.000 1.000
2 1.100 0.100 1.310
3 1.500 0.700 2.950
4 1.600 0.400 2.960
5 1.900 0.300 3.910
6 1.900 0.800 4.410
7 2.000 1.000 5.000
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NAG Library Routine Document

E02DFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02DFF calculates values of a bicubic spline from its B-spline representation. The spline is evaluated at
all points on a rectangular grid.

2 Specification

SUBROUTINE E02DFF (MX, MY, PX, PY, X, Y, LAMDA, MU, C, FF, WRK, LWRK,
IWRK, LIWRK, IFAIL)

&

INTEGER MX, MY, PX, PY, LWRK, IWRK(LIWRK), LIWRK, IFAIL
REAL (KIND=nag_wp) X(MX), Y(MY), LAMDA(PX), MU(PY), C((PX-4)*(PY-4)),

FF(MX*MY), WRK(LWRK)
&

3 Description

E02DFF calculates values of the bicubic spline s x; yð Þ on a rectangular grid of points in the x-y plane,
from its augmented knot sets �f g and �f g and from the coefficients cij, for i ¼ 1; 2; . . . ; PX� 4 and
j ¼ 1; 2; . . . ; PY� 4, in its B-spline representation

s x; yð Þ ¼
X
ij

cijMi xð ÞNj yð Þ:

Here Mi xð Þ and Nj yð Þ denote normalized cubic B-splines, the former defined on the knots �i to �iþ4
and the latter on the knots �j to �jþ4.

The points in the grid are defined by coordinates xq, for q ¼ 1; 2; . . . ;mx, along the x axis, and
coordinates yr, for r ¼ 1; 2; . . . ;my, along the y axis.

This routine may be used to calculate values of a bicubic spline given in the form produced by
E01DAF, E02DAF, E02DCF and E02DDF. It is derived from the routine B2VRE in Anthony et al.
(1982).

4 References

Anthony G T, Cox M G and Hayes J G (1982) DASL – Data Approximation Subroutine Library
National Physical Laboratory

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135–143

5 Arguments

1: MX – INTEGER Input
2: MY – INTEGER Input

On entry: MX and MY must specify mx and my respectively, the number of points along the x
and y axis that define the rectangular grid.

Constraint: MX � 1 and MY � 1.
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3: PX – INTEGER Input
4: PY – INTEGER Input

On entry: PX and PY must specify the total number of knots associated with the variables x and
y respectively. They are such that PX� 8 and PY� 8 are the corresponding numbers of interior
knots.

Constraint: PX � 8 and PY � 8.

5: XðMXÞ – REAL (KIND=nag_wp) array Input
6: YðMYÞ – REAL (KIND=nag_wp) array Input

On entry: X and Y must contain xq , for q ¼ 1; 2; . . . ;mx, and yr , for r ¼ 1; 2; . . . ;my,
respectively. These are the x and y coordinates that define the rectangular grid of points at which
values of the spline are required.

Constraint: X and Y must satisfy

LAMDAð4Þ � XðqÞ < Xðq þ 1Þ � LAMDAðPX� 3Þ; q ¼ 1; 2; . . . ;mx � 1

and

MUð4Þ � YðrÞ < Yðrþ 1Þ � MUðPY� 3Þ; r ¼ 1; 2; . . . ;my � 1:

.

The spline representation is not valid outside these intervals.

7: LAMDAðPXÞ – REAL (KIND=nag_wp) array Input
8: MUðPYÞ – REAL (KIND=nag_wp) array Input

On entry: LAMDA and MU must contain the complete sets of knots �f g and �f g associated with
the x and y variables respectively.

Constra in t : the knots in each se t must be in nondecreas ing order, wi th
LAMDAðPX� 3Þ > LAMDAð4Þ and MUðPY� 3Þ > MUð4Þ.

9: Cð PX� 4ð Þ � PY� 4ð ÞÞ – REAL (KIND=nag_wp) array Input

On entry: Cð PY� 4ð Þ � i � 1ð Þ þ jÞ must contain the coefficient cij described in Section 3, for
i ¼ 1; 2; . . . ;PX� 4 and j ¼ 1; 2; . . . ; PY� 4.

10: FFðMX�MYÞ – REAL (KIND=nag_wp) array Output

On exit: FFðMY� q � 1ð Þ þ rÞ contains the value of the spline at the point xq; yr
� �

, for
q ¼ 1; 2; . . . ;mx and r ¼ 1; 2; . . . ;my.

11: WRKðLWRKÞ – REAL (KIND=nag_wp) array Workspace
12: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which E02DFF
is called.

Constraint: LWRK � min 4�MXþ PX; 4�MYþ PYð Þ.

13: IWRKðLIWRKÞ – INTEGER array Workspace
14: LIWRK – INTEGER Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which E02DFF
is called.

Constraints:

if 4�MX þ PX > 4�MYþ PY, LIWRK � MYþ PY� 4;
otherwise LIWRK � MXþ PX� 4.
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15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MX < 1,
or MY < 1,
or PY < 8,
or PX < 8.

IFAIL ¼ 2

On entry, LWRK is too small,
or LIWRK is too small.

IFAIL ¼ 3

On entry, the knots in array LAMDA, or those in array MU, are not in nondecreasing order, or
LAMDAðPX� 3Þ � LAMDAð4Þ, or MUðPY� 3Þ � MUð4Þ.

IFAIL ¼ 4

On entry, the restriction LAMDAð4Þ � Xð1Þ < � � � < XðMXÞ � LAMDAðPX� 3Þ, or the
restriction MUð4Þ � Yð1Þ < � � � < YðMYÞ � MUðPY� 3Þ, is violated.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The method used to evaluate the B-splines is numerically stable, in the sense that each computed value
of s xr; yrð Þ can be regarded as the value that would have been obtained in exact arithmetic from slightly
perturbed B-spline coefficients. See Cox (1978) for details.

8 Parallelism and Performance

E02DFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Computation time is approximately proportional to mxmy þ 4 mx þmy

� �
.

10 Example

This example reads in knot sets LAMDAð1Þ; . . . ;LAMDAðPXÞ and MUð1Þ; . . . ;MUðPYÞ, and a set of
bicubic spline coefficients cij. Following these are values for mx and the x coordinates xq, for
q ¼ 1; 2; . . . ;mx, and values for my and the y coordinates yr, for r ¼ 1; 2; . . . ;my, defining the grid of
points on which the spline is to be evaluated.

10.1 Program Text

Program e02dffe

! E02DFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02dff, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: indent = 0, ncols = 80, nin = 5, &

nout = 6
Character (1), Parameter :: chlabel = ’C’, diag = ’N’, &

matrix = ’G’
Character (4), Parameter :: form = ’F8.3’

! .. Local Scalars ..
Integer :: ifail, liwrk, lwrk, mx, my, px, py
Character (48) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), ff(:), lamda(:), mu(:), &

wrk(:), x(:), y(:)
Integer, Allocatable :: iwrk(:)
Character (10), Allocatable :: clabs(:), rlabs(:)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’E02DFF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read PX and PY, the number of knots in the X and Y directions.

Read (nin,*) px, py
Allocate (lamda(px),mu(py),c((px-4)*(py-4)))
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! Read the knots LAMDA(1) .. LAMDA(PX) and MU(1) .. MU(PY).

Read (nin,*) lamda(1:px)
Read (nin,*) mu(1:py)

! Read C, the bicubic spline coefficients.

Read (nin,*) c(1:(px-4)*(py-4))

! Read MX and MY, the number of grid points in the X and Y
! directions respectively.

Read (nin,*) mx, my
lwrk = min(4*mx+px,4*my+py)
liwrk = mx + px - 4
Allocate (clabs(mx),rlabs(my),x(mx),y(my),ff(mx*my),wrk(lwrk), &

iwrk(liwrk))

! Read the X and Y co-ordinates defining the evaluation grid.

Read (nin,*) x(1:mx)
Read (nin,*) y(1:my)

! Evaluate the spline at the MX by MY points.

ifail = 0
Call e02dff(mx,my,px,py,x,y,lamda,mu,c,ff,wrk,lwrk,iwrk,liwrk,ifail)

! Generate column and row labels to print the results with.

Write (clabs(1:mx),99999) x(1:mx)
Write (rlabs(1:my),99999) y(1:my)

Write (nout,*)
Flush (nout)

! Print the result array.
title = ’Spline evaluated on X-Y grid (X across, Y down):’
Call x04cbf(matrix,diag,my,mx,ff,my,form,title,chlabel,rlabs,chlabel, &

clabs,ncols,indent,ifail)

99999 Format ((F5.1))
End Program e02dffe

10.2 Program Data

E02DFF Example Program Data
11 10 PX PY
1.0 1.0 1.0 1.0 1.3 1.5 1.6 2.0 2.0 2.0 2.0 LAMDA(1) .. LAMDA(PX)
0.0 0.0 0.0 0.0 0.4 0.7 1.0 1.0 1.0 1.0 MU(1) .. MU(PY)
1.0000 1.1333 1.3667 1.7000 1.9000 2.0000
1.2000 1.3333 1.5667 1.9000 2.1000 2.2000
1.5833 1.7167 1.9500 2.2833 2.4833 2.5833
2.1433 2.2767 2.5100 2.8433 3.0433 3.1433
2.8667 3.0000 3.2333 3.5667 3.7667 3.8667
3.4667 3.6000 3.8333 4.1667 4.3667 4.4667
4.0000 4.1333 4.3667 4.7000 4.9000 5.0000 Spline coefficients, C
7 6 MX MY
1.0 1.1 1.3 1.4 1.5 1.7 2.0 X(1) .. X(MX)
0.0 0.2 0.4 0.6 0.8 1.0 Y(1) .. Y(MY)
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10.3 Program Results

E02DFF Example Program Results

Spline evaluated on X-Y grid (X across, Y down):
1.0 1.1 1.3 1.4 1.5 1.7 2.0

0.0 1.000 1.210 1.690 1.960 2.250 2.890 4.000
0.2 1.200 1.410 1.890 2.160 2.450 3.090 4.200
0.4 1.400 1.610 2.090 2.360 2.650 3.290 4.400
0.6 1.600 1.810 2.290 2.560 2.850 3.490 4.600
0.8 1.800 2.010 2.490 2.760 3.050 3.690 4.800
1.0 2.000 2.210 2.690 2.960 3.250 3.890 5.000
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NAG Library Routine Document

E02DHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02DHF computes the partial derivative (of order �x, �y), of a bicubic spline approximation to a set of
data values, from its B-spline representation, at points on a rectangular grid in the x-y plane. This
routine may be used to calculate derivatives of a bicubic spline given in the form produced by E01DAF,
E02DAF, E02DCF and E02DDF.

2 Specification

SUBROUTINE E02DHF (MX, MY, PX, PY, X, Y, LAMDA, MU, C, NUX, NUY, Z,
IFAIL)

&

INTEGER MX, MY, PX, PY, NUX, NUY, IFAIL
REAL (KIND=nag_wp) X(MX), Y(MY), LAMDA(PX), MU(PY), C((PX-4)*(PY-4)),

Z(MX*MY)
&

3 Description

E02DHF determines the partial derivative @�xþ�y
@x�x @y�y of a smooth bicubic spline approximation s x; yð Þ at

the set of data points xq; yr
� �

.

The spline is given in the B-spline representation

s x; yð Þ ¼
Xnx�4
i¼1

Xny�4
j¼1

cijMi xð ÞNj yð Þ; ð1Þ

where Mi xð Þ and Nj yð Þ denote normalized cubic B-splines, the former defined on the knots �i to �iþ4
and the latter on the knots �j to �jþ4, with nx and ny the total numbers of knots of the computed spline
with respect to the x and y variables respectively. For further details, see Hayes and Halliday (1974) for
bicubic splines and de Boor (1972) for normalized B-splines. This routine is suitable for B-spline
representations returned by E01DAF, E02DAF, E02DCF and E02DDF.

The partial derivatives can be up to order 2 in each direction; thus the highest mixed derivative
available is @4

@x2@y2
.

The points in the grid are defined by coordinates xq , for q ¼ 1; 2; . . . ;mx, along the x axis, and
coordinates yr , for r ¼ 1; 2; . . . ;my, along the y axis.

4 References

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

Dierckx P (1981) An improved algorithm for curve fitting with spline functions Report TW54
Department of Computer Science, Katholieke Univerciteit Leuven

Dierckx P (1982) A fast algorithm for smoothing data on a rectangular grid while using spline functions
SIAM J. Numer. Anal. 19 1286–1304

Hayes J G and Halliday J (1974) The least squares fitting of cubic spline surfaces to general data sets J.
Inst. Math. Appl. 14 89–103

Reinsch C H (1967) Smoothing by spline functions Numer. Math. 10 177–183
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5 Arguments

1: MX – INTEGER Input

On entry: mx, the number of grid points along the x axis.

Constraint: MX � 1.

2: MY – INTEGER Input

On entry: my, the number of grid points along the y axis.

Constraint: MY � 1.

3: PX – INTEGER Input

On entry: the total number of knots in the x-direction of the bicubic spline approximation, e.g.,
the value NX as returned by E02DCF.

4: PY – INTEGER Input

On entry: the total number of knots in the y-direction of the bicubic spline approximation, e.g.,
the value NY as returned by E02DCF.

5: XðMXÞ – REAL (KIND=nag_wp) array Input

On entry: XðqÞ must be set to xq , the x coordinate of the qth grid point along the x axis, for
q ¼ 1; 2; . . . ;mx, on which values of the partial derivative are sought.

Constraint: x1 < x2 < � � � < xmx
.

6: YðMYÞ – REAL (KIND=nag_wp) array Input

On entry: YðrÞ must be set to yr , the y coordinate of the rth grid point along the y axis, for
r ¼ 1; 2; . . . ;my on which values of the partial derivative are sought.

Constraint: y1 < y2 < � � � < ymy
.

7: LAMDAðPXÞ – REAL (KIND=nag_wp) array Input

On entry: contains the position of the knots in the x-direction of the bicubic spline approximation
to be differentiated, e.g., LAMDA as returned by E02DCF.

8: MUðPYÞ – REAL (KIND=nag_wp) array Input

On entry: contains the position of the knots in the y-direction of the bicubic spline approximation
to be differentiated, e.g., MU as returned by E02DCF.

9: Cð PX� 4ð Þ � PY� 4ð ÞÞ – REAL (KIND=nag_wp) array Input

On entry: the coefficients of the bicubic spline approximation to be differentiated, e.g., C as
returned by E02DCF.

10: NUX – INTEGER Input

On entry: specifies the order, �x of the partial derivative in the x-direction.

Constraint: 0 � NUX � 2.

11: NUY – INTEGER Input

On entry: specifies the order, �y of the partial derivative in the y-direction.

Constraint: 0 � NUY � 2.
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12: ZðMX�MYÞ – REAL (KIND=nag_wp) array Output

On exit: Zðmy � q � 1ð Þ þ rÞ contains the derivative @�xþ�y
@x�x@y�ys xq; yr

� �
, for q ¼ 1; 2; . . . ;mx and

r ¼ 1; 2; . . . ;my.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NUX ¼ valueh i.
Constraint: 0 � NUX � 2.

IFAIL ¼ 2

On entry, NUY ¼ valueh i.
Constraint: 0 � NUY � 2.

IFAIL ¼ 3

On entry, MX ¼ valueh i.
Constraint: MX � 1.

IFAIL ¼ 4

On entry, MY ¼ valueh i.
Constraint: MY � 1.

IFAIL ¼ 5

On entry, for i ¼ valueh i, Xði� 1Þ ¼ valueh i and XðiÞ ¼ valueh i.
Constraint: Xði � 1Þ � XðiÞ, for i ¼ 2; 3; . . . ;MX.

IFAIL ¼ 6

On entry, for i ¼ valueh i, Yði� 1Þ ¼ valueh i and YðiÞ ¼ valueh i.
Constraint: Yði � 1Þ � YðiÞ, for i ¼ 2; 3; . . . ;MY.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit, the partial derivatives on the given mesh are accurate to machine precision with
respect to the supplied bicubic spline. Please refer to Section 7 in E01DAF, E02DAF, E02DCF and
E02DDF of the routine document for the respective routine which calculated the spline approximant for
details on the accuracy of that approximation.

8 Parallelism and Performance

E02DHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in values of mx, my, xq , for q ¼ 1; 2; . . . ;mx, and yr , for r ¼ 1; 2; . . . ;my, followed
by values of the ordinates fq;r defined at the grid points xq; yr

� �
. It then calls E02DCF to compute a

bicubic spline approximation for one specified value of S. Finally it evaluates the spline and its first x
derivative at a small sample of points on a rectangular grid by calling E02DHF.

10.1 Program Text

! E02DHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e02dhfe_mod

! E02DHF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: print_spline

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine print_spline(ngx,gridx,ngy,gridy,z,zder)

! Print spline function and spline derivative evaluation

! .. Use Statements ..
Use nag_library, Only: x04cbf

! .. Parameters ..
Integer, Parameter :: indent = 0, ncols = 80
Character (1), Parameter :: chlabel = ’C’, diag = ’N’, &

matrix = ’G’
Character (4), Parameter :: form = ’F8.3’
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! .. Scalar Arguments ..
Integer, Intent (In) :: ngx, ngy

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: gridx(ngx), gridy(ngy), z(ngx*ngy), &

zder(ngx*ngy)
! .. Local Scalars ..

Integer :: i, ifail
Character (48) :: title

! .. Local Arrays ..
Character (10), Allocatable :: clabs(:), rlabs(:)

! .. Executable Statements ..
! Allocate for row and column label

Allocate (clabs(ngx),rlabs(ngy))
! Generate column and row labels to print the results with.

Do i = 1, ngx
Write (clabs(i),99999) gridx(i)

End Do
Do i = 1, ngy

Write (rlabs(i),99999) gridy(i)
End Do

! Print the spline evaluations.
title = ’Spline evaluated on X-Y grid (X across, Y down):’
Write (nout,*)
Flush (nout)
ifail = 0
Call x04cbf(matrix,diag,ngy,ngx,z,ngy,form,title,chlabel,rlabs, &

chlabel,clabs,ncols,indent,ifail)

! Print the spline derivative evaluations.
title = ’Spline derivative evaluated on X-Y grid:’
Write (nout,*)
Flush (nout)
ifail = 0
Call x04cbf(matrix,diag,ngy,ngx,zder,ngy,form,title(1:40),chlabel, &

rlabs,chlabel,clabs,ncols,indent,ifail)

Deallocate (clabs,rlabs)

99999 Format (F5.2)
End Subroutine print_spline

End Module e02dhfe_mod
Program e02dhfe

! E02DHF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e02dcf, e02dhf, nag_wp
Use e02dhfe_mod, Only: nin, nout, print_spline

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: delta, fp, s, xhi, xlo, yhi, ylo
Integer :: i, ifail, liwrk, lwrk, mx, my, nc, &

ngx, ngy, nux, nuy, nx, nxest, ny, &
nyest

Character (1) :: start
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:), f(:), gridx(:), gridy(:), &
lamda(:), mu(:), wrk(:), x(:), y(:), &
z(:), zder(:)

Integer, Allocatable :: iwrk(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, real
! .. Executable Statements ..

Write (nout,*) ’E02DHF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Input the number of X, Y co-ordinates MX, MY.
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Read (nin,*) mx, my
nxest = mx + 4
nyest = my + 4
nc = (nxest-4)*(nyest-4)

! Allocations for spline fit
Allocate (lamda(nxest),mu(nyest),c(nc))

! Allocations for e02dcf only
lwrk = 4*(mx+my) + 11*(nxest+nyest) + nxest*my + max(my,nxest) + 54
liwrk = 3 + mx + my + nxest + nyest
Allocate (x(mx),y(my),f(mx*my),wrk(lwrk),iwrk(liwrk))

Read (nin,*) x(1:mx)
Read (nin,*) y(1:my)

! Input the MX*MY function values F at grid points and smoothing factor.

Read (nin,*) f(1:mx*my)
Read (nin,*) s

! Determine the spline approximation.
start = ’C’
ifail = 0
Call e02dcf(start,mx,x,my,y,f,s,nxest,nyest,nx,lamda,ny,mu,c,fp,wrk, &

lwrk,iwrk,liwrk,ifail)

Deallocate (x,y,f,wrk,iwrk)

Write (nout,*)
Write (nout,99999) ’Spline fit used smoothing factor S =’, s, ’.’
Write (nout,99998) ’Number of knots in each direction =’, nx, ny
Write (nout,*)
Write (nout,99999) ’Sum of squared residuals =’, fp, ’.’

! Spline and its derivative to be evaluated on rectangular grid with
! ngx*ngy points on the domain [xlo,xhi]x[ylo,yhi].

Read (nin,*) ngx, xlo, xhi
Read (nin,*) ngy, ylo, yhi

! Allocations for e02dhf (spline evaluation).
Allocate (gridx(ngx),gridy(ngy),z(ngx*ngy),zder(ngx*ngy))

delta = (xhi-xlo)/real(ngx-1,kind=nag_wp)
gridx(1) = xlo
Do i = 2, ngx - 1

gridx(i) = gridx(i-1) + delta
End Do
gridx(ngx) = xhi

delta = (yhi-ylo)/real(ngy-1,kind=nag_wp)
gridy(1) = ylo
Do i = 2, ngy - 1

gridy(i) = gridy(i-1) + delta
End Do
gridy(ngy) = yhi

! Evaluate spline (nux=nuy=0)
nux = 0
nuy = 0
ifail = 0
Call e02dhf(ngx,ngy,nx,ny,gridx,gridy,lamda,mu,c,nux,nuy,z,ifail)

! Evaluate spline partial derivative of order (nux,nuy)
Read (nin,*) nux, nuy
Write (nout,*)
Write (nout,99998) ’Derivative of spline has order nux, nuy =’, nux, nuy
ifail = 0
Call e02dhf(ngx,ngy,nx,ny,gridx,gridy,lamda,mu,c,nux,nuy,zder,ifail)
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! Print tabulated spline and derivative evaluations.
Call print_spline(ngx,gridx,ngy,gridy,z,zder)

99999 Format (1X,A,1P,E13.4,A)
99998 Format (1X,A,I5,’,’,I5,’.’)

End Program e02dhfe

10.2 Program Data

E02DHF Example Program Data
11 9 : MX, MY
0.0000E+00 5.0000E-01 1.0000E+00 1.5000E+00 2.0000E+00
2.5000E+00 3.0000E+00 3.5000E+00 4.0000E+00 4.5000E+00
5.0000E+00 : X(1:MX)
0.0000E+00 5.0000E-01 1.0000E+00 1.5000E+00 2.0000E+00
2.5000E+00 3.0000E+00 3.5000E+00 4.0000E+00 : Y(1:MY)
1.0000E+00 8.8758E-01 5.4030E-01 7.0737E-02 -4.1515E-01

-8.0114E-01 -9.7999E-01 -9.3446E-01 -6.5664E-01 1.5000E+00
1.3564E+00 8.2045E-01 1.0611E-01 -6.2422E-01 -1.2317E+00

-1.4850E+00 -1.3047E+00 -9.8547E-01 2.0600E+00 1.7552E+00
1.0806E+00 1.5147E-01 -8.3229E-01 -1.6023E+00 -1.9700E+00

-1.8729E+00 -1.4073E+00 2.5700E+00 2.1240E+00 1.3508E+00
1.7684E-01 -1.0404E+00 -2.0029E+00 -2.4750E+00 -2.3511E+00

-1.6741E+00 3.0000E+00 2.6427E+00 1.6309E+00 2.1221E-01
-1.2484E+00 -2.2034E+00 -2.9700E+00 -2.8094E+00 -1.9809E+00
3.5000E+00 3.1715E+00 1.8611E+00 2.4458E-01 -1.4565E+00

-2.8640E+00 -3.2650E+00 -3.2776E+00 -2.2878E+00 4.0400E+00
3.5103E+00 2.0612E+00 2.8595E-01 -1.6946E+00 -3.2046E+00

-3.9600E+00 -3.7958E+00 -2.6146E+00 4.5000E+00 3.9391E+00
2.4314E+00 3.1632E-01 -1.8627E+00 -3.6351E+00 -4.4550E+00

-4.2141E+00 -2.9314E+00 5.0400E+00 4.3879E+00 2.7515E+00
3.5369E-01 -2.0707E+00 -4.0057E+00 -4.9700E+00 -4.6823E+00

-3.2382E+00 5.5050E+00 4.8367E+00 2.9717E+00 3.8505E-01
-2.2888E+00 -4.4033E+00 -5.4450E+00 -5.1405E+00 -3.5950E+00
6.0000E+00 5.2755E+00 3.2418E+00 4.2442E-01 -2.4769E+00

-4.8169E+00 -5.9300E+00 -5.6387E+00 -3.9319E+00 : F(1:MX*MY)
0.1 : S
6 0.0 5.0 : NGX, XLO, XHI
5 0.0 4.0 : NGY, YLO, YHI
1 0 : NUX, NUY

10.3 Program Results

E02DHF Example Program Results

Spline fit used smoothing factor S = 1.0000E-01.
Number of knots in each direction = 10, 13.

Sum of squared residuals = 1.0004E-01.

Derivative of spline has order nux, nuy = 1, 0.

Spline evaluated on X-Y grid (X across, Y down):
0.00 1.00 2.00 3.00 4.00 5.00

0.00 0.992 2.043 3.029 4.014 5.021 5.997
1.00 0.541 1.088 1.607 2.142 2.705 3.239
2.00 -0.417 -0.829 -1.241 -1.665 -2.083 -2.485
3.00 -0.978 -1.975 -2.914 -3.913 -4.965 -5.924
4.00 -0.648 -1.363 -1.991 -2.606 -3.251 -3.933

Spline derivative evaluated on X-Y grid:
0.00 1.00 2.00 3.00 4.00 5.00

0.00 1.093 1.013 0.970 1.004 1.001 0.939
1.00 0.565 0.531 0.515 0.558 0.559 0.499
2.00 -0.429 -0.404 -0.421 -0.423 -0.412 -0.389
3.00 -1.060 -0.951 -0.949 -1.048 -1.031 -0.861
4.00 -0.779 -0.661 -0.608 -0.628 -0.663 -0.701

E02 – Curve and Surface Fitting E02DHF

Mark 26 E02DHF.7 (last)





NAG Library Routine Document

E02GAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02GAF calculates an l1 solution to an over-determined system of linear equations.

2 Specification

SUBROUTINE E02GAF (M, A, LDA, B, NPLUS2, TOLER, X, RESID, IRANK, ITER,
IWORK, IFAIL)

&

INTEGER M, LDA, NPLUS2, IRANK, ITER, IWORK(M), IFAIL
REAL (KIND=nag_wp) A(LDA,NPLUS2), B(M), TOLER, X(NPLUS2), RESID

3 Description

Given a matrix A with m rows and n columns m � nð Þ and a vector b with m elements, the routine
calculates an l1 solution to the over-determined system of equations

Ax ¼ b:

That is to say, it calculates a vector x, with n elements, which minimizes the l1 norm (the sum of the
absolute values) of the residuals

r xð Þ ¼
Xm
i¼1

rij j;

where the residuals ri are given by

ri ¼ bi �
Xn
j¼1

aijxj; i ¼ 1; 2; . . . ;m:

Here aij is the element in row i and column j of A, bi is the ith element of b and xj the jth element of
x. The matrix A need not be of full rank.

Typically in applications to data fitting, data consisting of m points with coordinates ti; yið Þ are to be
approximated in the l1 norm by a linear combination of known functions 
j tð Þ,

�1
1 tð Þ þ �2
2 tð Þ þ � � � þ �n
n tð Þ:

This is equivalent to fitting an l1 solution to the over-determined system of equationsXn
j¼1


j tið Þ�j ¼ yi; i ¼ 1; 2; . . . ;m:

Thus if, for each value of i and j, the element aij of the matrix A in the previous paragraph is set equal
to the value of 
j tið Þ and bi is set equal to yi, the solution vector x will contain the required values of
the �j. Note that the independent variable t above can, instead, be a vector of several independent
variables (this includes the case where each 
i is a function of a different variable, or set of variables).

The algorithm is a modification of the simplex method of linear programming applied to the primal
formulation of the l1 problem (see Barrodale and Roberts (1973) and Barrodale and Roberts (1974)).
The modification allows several neighbouring simplex vertices to be passed through in a single
iteration, providing a substantial improvement in efficiency.
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4 References

Barrodale I and Roberts F D K (1973) An improved algorithm for discrete l1 linear approximation
SIAM J. Numer. Anal. 10 839–848

Barrodale I and Roberts F D K (1974) Solution of an overdetermined system of equations in the
l1-norm Comm. ACM 17(6) 319–320

5 Arguments

1: M – INTEGER Input

On entry: the number of equations, m (the number of rows of the matrix A).

Constraint: M � n � 1.

2: AðLDA;NPLUS2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Aði; jÞ must contain aij , the element in the ith row and jth column of the matrix A, for
i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n. The remaining elements need not be set.

On exit: contains the last simplex tableau generated by the simplex method.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E02GAF
is called.

Constraint: LDA � Mþ 2.

4: BðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: BðiÞ must contain bi, the ith element of the vector b, for i ¼ 1; 2; . . . ;m.

On exit: the ith residual ri corresponding to the solution vector x, for i ¼ 1; 2; . . . ;m.

5: NPLUS2 – INTEGER Input

On entry: nþ 2, where n is the number of unknowns (the number of columns of the matrix A).

Constraint: 3 � NPLUS2 � Mþ 2.

6: TOLER – REAL (KIND=nag_wp) Input

On entry: a non-negative value. In general TOLER specifies a threshold below which numbers
are regarded as zero. The recommended threshold value is �2=3 where � is the machine precision.
The recommended value can be computed within the routine by setting TOLER to zero. If
premature termination occurs a larger value for TOLER may result in a valid solution.

Suggested value: 0:0.

7: XðNPLUS2Þ – REAL (KIND=nag_wp) array Output

On exit: XðjÞ contains the jth element of the solution vector x, for j ¼ 1; 2; . . . ; n. The elements
Xðnþ 1Þ and Xðnþ 2Þ are unused.

8: RESID – REAL (KIND=nag_wp) Output

On exit: the sum of the absolute values of the residuals for the solution vector x.

9: IRANK – INTEGER Output

On exit: the computed rank of the matrix A.
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10: ITER – INTEGER Output

On exit: the number of iterations taken by the simplex method.

11: IWORKðMÞ – INTEGER array Workspace

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An optimal solution has been obtained but this may not be unique.

IFAIL ¼ 2

The calculations have terminated prematurely due to rounding errors. Experiment with larger
values of TOLER or try scaling the columns of the matrix (see Section 9).

IFAIL ¼ 3

On entry, NPLUS2 < 3,
or NPLUS2 > Mþ 2,
or LDA < Mþ 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Experience suggests that the computational accuracy of the solution x is comparable with the accuracy
that could be obtained by applying Gaussian elimination with partial pivoting to the n equations
satisfied by this algorithm (i.e., those equations with zero residuals). The accuracy therefore varies with
the conditioning of the problem, but has been found generally very satisfactory in practice.

8 Parallelism and Performance

E02GAF is not threaded in any implementation.

9 Further Comments

The effects of m and n on the time and on the number of iterations in the Simplex Method vary from
problem to problem, but typically the number of iterations is a small multiple of n and the total time
taken is approximately proportional to mn2.

It is recommended that, before the routine is entered, the columns of the matrix A are scaled so that the
largest element in each column is of the order of unity. This should improve the conditioning of the
matrix, and also enable the argument TOLER to perform its correct function. The solution x obtained
will then, of course, relate to the scaled form of the matrix. Thus if the scaling is such that, for each
j ¼ 1; 2; . . . ; n, the elements of the jth column are multiplied by the constant kj, the element xj of the
solution vector x must be multiplied by kj if it is desired to recover the solution corresponding to the
original matrix A.

10 Example

Suppose we wish to approximate a set of data by a curve of the form

y ¼ Ket þ Le�t þM

where K, L and M are unknown. Given values yi at 5 points ti we may form the over-determined set of
equations for K, L and M

exiK þ e�xiLþM ¼ yi; i ¼ 1; 2; . . . ; 5:

E02GAF is used to solve these in the l1 sense.

10.1 Program Text

Program e02gafe

! E02GAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02gaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6, nplus2 = 5

! .. Local Scalars ..
Real (Kind=nag_wp) :: resid, t, toler
Integer :: i, ifail, irank, iter, lda, m

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), x(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Write (nout,*) ’E02GAF Example Program Results’

! Skip heading in data file
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Read (nin,*)

Read (nin,*) m
lda = m + 2
Allocate (a(lda,nplus2),iwork(m),b(m),x(nplus2))

Do i = 1, m
Read (nin,*) t, b(i)
a(i,1) = exp(t)
a(i,2) = exp(-t)

End Do

a(1:m,3) = 1.0E0_nag_wp
toler = 0.0E0_nag_wp

ifail = -1
Call e02gaf(m,a,lda,b,nplus2,toler,x,resid,irank,iter,iwork,ifail)

Select Case (ifail)
Case (0,1)

Write (nout,*)
Write (nout,99999) ’Resid = ’, resid, ’ Rank = ’, irank, &

’ Iterations = ’, iter, ’ IFAIL =’, ifail
Write (nout,*)
Write (nout,*) ’Solution’
Write (nout,99998) x(1:(nplus2-2))

End Select

99999 Format (1X,A,E10.2,A,I5,A,I5,A,I5)
99998 Format (1X,6F10.4)

End Program e02gafe

10.2 Program Data

E02GAF Example Program Data
5
0.0 4.501
0.2 4.360
0.4 4.333
0.6 4.418
0.8 4.625

10.3 Program Results

E02GAF Example Program Results

Resid = 0.28E-02 Rank = 3 Iterations = 5 IFAIL = 0

Solution
1.0014 2.0035 1.4960
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NAG Library Routine Document

E02GBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02GBF calculates an l1 solution to an over-determined system of linear equations, possibly subject to
linear inequality constraints.

2 Specification

SUBROUTINE E02GBF (M, N, MPL, E, LDE, F, X, MXS, MONIT, IPRINT, K, EL1N,
INDX, W, IW, IFAIL)

&

INTEGER M, N, MPL, LDE, MXS, IPRINT, K, INDX(MPL), IW, IFAIL
REAL (KIND=nag_wp) E(LDE,MPL), F(MPL), X(N), EL1N, W(IW)
EXTERNAL MONIT

3 Description

Given a matrix A with m rows and n columns m � nð Þ and a vector b with m elements, the routine
calculates an l1 solution to the over-determined system of equations

Ax ¼ b:

That is to say, it calculates a vector x, with n elements, which minimizes the l1-norm (the sum of the
absolute values) of the residuals

r xð Þ ¼
Xm
i¼1

rij j;

where the residuals ri are given by

ri ¼ bi �
Xn
j¼1

aijxj; i ¼ 1; 2; . . . ;m:

Here aij is the element in row i and column j of A, bi is the ith element of b and xj the jth element of
x.

If, in addition, a matrix C with l rows and n columns and a vector d with l elements, are given, the
vector x computed by the routine is such as to minimize the l1-norm r xð Þ subject to the set of inequality
constraints Cx � d.
The matrices A and C need not be of full rank.

Typically in applications to data fitting, data consisting of m points with coordinates ti; yið Þ is to be
approximated by a linear combination of known functions 
i tð Þ,

�1
1 tð Þ þ �2
2 tð Þ þ � � � þ �n
n tð Þ;

in the l1-norm, possibly subject to linear inequality constraints on the coefficients �j of the form
C� � d where � is the vector of the �j and C and d are as in the previous paragraph. This is equivalent
to finding an l1 solution to the over-determined system of equationsXn

j¼1

j tið Þ�j ¼ yi; i ¼ 1; 2; . . . ;m;

subject to C� � d.
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Thus if, for each value of i and j, the element aij of the matrix A above is set equal to the value of

j tið Þ and bi is equal to yi and C and d are also supplied to the routine, the solution vector x will
contain the required values of the �j. Note that the independent variable t above can, instead, be a
vector of several independent variables (this includes the case where each of 
i is a function of a
different variable, or set of variables).

The algorithm follows the Conn–Pietrzykowski approach (see Bartels et al. (1978) and Conn and
Pietrzykowski (1977)), which is via an exact penalty function

g xð Þ ¼ �r xð Þ �
Xl
i¼1

min 0; cTi x� di
� �

;

where � is a penalty parameter, cTi is the ith row of the matrix C, and di is the ith element of the vector
d. It proceeds in a step-by-step manner much like the simplex method for linear programming but does
not move from vertex to vertex and does not require the problem to be cast in a form containing only
non-negative unknowns. It uses stable procedures to update an orthogonal factorization of the current
set of active equations and constraints.

4 References

Bartels R H, Conn A R and Charalambous C (1976) Minimisation techniques for piecewise
Differentiable functions – the l1 solution to an overdetermined linear system Technical Report No. 247,
CORR 76/30 Mathematical Sciences Department, The John Hopkins University

Bartels R H, Conn A R and Sinclair J W (1976) A Fortran program for solving overdetermined systems
of linear equations in the l1 Sense Technical Report No. 236, CORR 76/7 Mathematical Sciences
Department, The John Hopkins University

Bartels R H, Conn A R and Sinclair J W (1978) Minimisation techniques for piecewise differentiable
functions – the l1 solution to an overdetermined linear system SIAM J. Numer. Anal. 15 224–241

Conn A R and Pietrzykowski T (1977) A penalty-function method converging directly to a constrained
optimum SIAM J. Numer. Anal. 14 348–375

5 Arguments

1: M – INTEGER Input

On entry: the number of equations in the over-determined system, m (i.e., the number of rows of
the matrix A).

Constraint: M � N.

2: N – INTEGER Input

On entry: the number of unknowns, n (the number of columns of the matrix A).

Constraint: N � 2.

3: MPL – INTEGER Input

On entry: mþ l, where l is the number of constraints (which may be zero).

Constraint: MPL � M.

4: EðLDE;MPLÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the equation and constraint matrices stored in the following manner.

The first m columns contain the m rows of the matrix A; element Eði; jÞ specifying the element
aji in the jth row and ith column of A (the coefficient of the ith unknown in the jth equation), for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m. The next l columns contain the l rows of the constraint matrix
C; element Eði; j þmÞ containing the element cji in the jth row and ith column of C (the
coefficient of the ith unknown in the jth constraint), for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; l.
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On exit: unchanged, except possibly to the extent of a small multiple of the machine precision.
(See Section 9.)

5: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which E02GBF
is called.

Constraint: LDE � N.

6: FðMPLÞ – REAL (KIND=nag_wp) array Input

On entry: FðiÞ, for i ¼ 1; 2; . . . ;m, must contain bi (the ith element of the right-hand side vector
of the over-determined system of equations) and Fðmþ iÞ, for i ¼ 1; 2; . . . ; l, must contain di (the
ith element of the right-hand side vector of the constraints), where l is the number of constraints.

7: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðiÞ must contain an estimate of the ith unknown, for i ¼ 1; 2; . . . ; n. If no better
initial estimate for XðiÞ is available, set XðiÞ ¼ 0:0.

On exit: the latest estimate of the ith unknown, for i ¼ 1; 2; . . . ; n. If IFAIL ¼ 0 on exit, these are
the solution values.

8: MXS – INTEGER Input

On entry: the maximum number of steps to be allowed for the solution of the unconstrained
problem. Typically this may be a modest multiple of n. If, on entry, MXS is zero or negative, the
value returned by X02BBF is used.

9: MONIT – SUBROUTINE, supplied by the user. External Procedure

MONIT can be used to print out the current values of any selection of its arguments. The
frequency with which MONIT is called in E02GBF is controlled by IPRINT.

The specification of MONIT is:

SUBROUTINE MONIT (N, X, NITER, K, EL1N)

INTEGER N, NITER, K
REAL (KIND=nag_wp) X(N), EL1N

1: N – INTEGER Input

On entry: the number n of unknowns (the number of columns of the matrix A).

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the latest estimate of the unknowns.

3: NITER – INTEGER Input

On entry: the number of iterations so far carried out.

4: K – INTEGER Input

On entry: the total number of equations and constraints which are currently active (i.e.,
the number of equations with zero residuals plus the number of constraints which are
satisfied as equations).

5: EL1N – REAL (KIND=nag_wp) Input

On entry: the l1-norm of the current residuals of the over-determined system of
equations.
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MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E02GBF is called. Arguments denoted as Input must not be changed by this
procedure.

10: IPRINT – INTEGER Input

On entry: the frequency of iteration print out.

IPRINT > 0
MONIT is called every IPRINT iterations and at the solution.

IPRINT ¼ 0
Information is printed out at the solution only. Otherwise MONIT is not called (but a
dummy routine must still be provided).

11: K – INTEGER Output

On exit: the total number of equations and constraints which are then active (i.e., the number of
equations with zero residuals plus the number of constraints which are satisfied as equalities).

12: EL1N – REAL (KIND=nag_wp) Output

On exit: the l1-norm (sum of absolute values) of the equation residuals.

13: INDXðMPLÞ – INTEGER array Output

On exit: specifies which columns of E relate to the inactive equations and constraints. INDXð1Þ
up to INDXðKÞ number the active columns and INDXðK þ 1Þ up to INDXðMPLÞ number the
inactive columns.

14: WðIWÞ – REAL (KIND=nag_wp) array Workspace
15: IW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E02GBF is
called.

Constraint: IW � 3�MPLþ 5� Nþ N2 þ Nþ 1ð Þ � Nþ 2ð Þ=2.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The constraints cannot all be satisfied simultaneously: they are not compatible with one another.
Hence no solution is possible.

E02GBF NAG Library Manual

E02GBF.4 Mark 26



IFAIL ¼ 2

The limit imposed by MXS has been reached without finding a solution. Consider restarting from
the current point by simply calling E02GBF again without changing the arguments.

IFAIL ¼ 3

The routine has failed because of numerical difficulties; the problem is too ill-conditioned.
Consider rescaling the unknowns.

IFAIL ¼ 4

Elements 1 to M of one of the first MPL columns of the array E are all zero – this corresponds to
a zero row in either of the matrices A or C.

On entry, IW is too small. IW ¼ valueh i. Minimum possible dimension: valueh i.
On entry, LDE ¼ valueh i and N ¼ valueh i.
Constraint: LDE � N.

On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: M � N.

On entry, MPL ¼ valueh i and M ¼ valueh i.
Constraint: MPL � M.

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The method is stable.

8 Parallelism and Performance

E02GBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The effect of m and n on the time and on the number of iterations varies from problem to problem, but
typically the number of iterations is a small multiple of n and the total time taken is approximately
proportional to mn2.

E02 – Curve and Surface Fitting E02GBF

Mark 26 E02GBF.5



Linear dependencies among the rows or columns of A and C are not necessarily a problem to the
algorithm. Solutions can be obtained from rank-deficient A and C. However, the algorithm requires that
at every step the currently active columns of E form a linearly independent set. If this is not the case at
any step, small, random perturbations of the order of rounding error are added to the appropriate
columns of E. Normally this perturbation process will not affect the solution significantly. It does mean,
however, that results may not be exactly reproducible.

10 Example

Suppose we wish to approximate in 0; 1½ � a set of data by a curve of the form

y ¼ ax3 þ bx2 þ cxþ d

which has non-negative slope at the data points. Given points ti; yið Þ we may form the equations

yi ¼ at3i þ bt2i þ cti þ d

for i ¼ 1; 2; . . . ; 6, for the 6 data points. The requirement of a non-negative slope at the data points
demands

3at2i þ 2bti þ c � 0

for each ti and these form the constraints.

(Note that, for fitting with polynomials, it would usually be advisable to work with the polynomial
expressed in Chebyshev series form (see the E02 Chapter Introduction). The power series form is used
here for simplicity of exposition.)

10.1 Program Text

! E02GBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e02gbfe_mod

! E02GBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: monit

! .. Parameters ..
Integer, Parameter, Public :: n = 4, nin = 5, nout = 6

Contains
Subroutine monit(n,x,niter,k,el1n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: el1n
Integer, Intent (In) :: k, n, niter

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(n)

! .. Executable Statements ..
Write (nout,*)
Write (nout,99999) ’Results at iteration ’, niter
Write (nout,*) ’X-values’
Write (nout,99998) x
Write (nout,99997) ’Norm of residuals =’, el1n

Return

99999 Format (1X,A,I5)
99998 Format (1X,4F15.4)
99997 Format (1X,A,E12.5)

End Subroutine monit
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End Module e02gbfe_mod
Program e02gbfe

! E02GBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e02gbf, nag_wp
Use e02gbfe_mod, Only: monit, n, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: el1n, t
Integer :: i, ifail, iprint, iw, k, l, lde, m, &

mpl, mxs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: e(:,:), f(:), w(:), x(:)
Integer, Allocatable :: indx(:)

! .. Executable Statements ..
Write (nout,*) ’E02GBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m
lde = n
l = m
mpl = m + l
iw = 3*mpl + 5*n + n**2 + (n+1)*(n+2)/2
Allocate (e(lde,mpl),f(mpl),x(n),indx(mpl),w(iw))

Do i = 1, m
Read (nin,*) t, f(i)
e(1:4,i) = (/1.0_nag_wp,t,t*t,t*t*t/)
e(1:4,m+i) = (/0.0_nag_wp,1.0_nag_wp,2.0_nag_wp*t,3.0_nag_wp*t*t/)
f(m+i) = 0.0_nag_wp

End Do

x(1:n) = 0.0_nag_wp
mxs = 50

! * Set IPRINT=1 to obtain output from MONIT at each iteration *
iprint = 0

ifail = -1
Call e02gbf(m,n,m+l,e,lde,f,x,mxs,monit,iprint,k,el1n,indx,w,iw,ifail)

End Program e02gbfe

10.2 Program Data

E02GBF Example Program Data
6
0.00 0.00
0.20 0.07
0.40 0.07
0.60 0.11
0.80 0.27
1.00 0.68

10.3 Program Results

E02GBF Example Program Results

Results at iteration 8
X-values

0.0000 0.6943 -2.1482 2.1339
Norm of residuals = 0.95714E-02
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NAG Library Routine Document

E02GCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02GCF calculates an l1 solution to an over-determined system of linear equations.

2 Specification

SUBROUTINE E02GCF (M, N, SDA, LDA, A, B, TOL, RELERR, X, RESMAX, IRANK,
ITER, IFAIL)

&

INTEGER M, N, SDA, LDA, IRANK, ITER, IFAIL
REAL (KIND=nag_wp) A(LDA,SDA), B(M), TOL, RELERR, X(N), RESMAX

3 Description

Given a matrix A with m rows and n columns m � nð Þ and a vector b with m elements, the routine
calculates an l1 solution to the over-determined system of equations

Ax ¼ b:
That is to say, it calculates a vector x, with n elements, which minimizes the l1 norm of the residuals
(the absolutely largest residual)

r xð Þ ¼ max
1�i�m

rij j

where the residuals ri are given by

ri ¼ bi �
Xn
j¼1

aijxj; i ¼ 1; 2; . . . ;m:

Here aij is the element in row i and column j of A, bi is the ith element of b and xj the jth element of
x. The matrix A need not be of full rank. The solution is not unique in this case, and may not be unique
even if A is of full rank.

Alternatively, in applications where a complete minimization of the l1 norm is not necessary, you may
obtain an approximate solution, usually in shorter time, by giving an appropriate value to the argument
RELERR.

Typically in applications to data fitting, data consisting of m points with coordinates ti; yið Þ is to be
approximated in the l1 norm by a linear combination of known functions 
j tð Þ,

�1
1 tð Þ þ �2
2 tð Þ þ � � � þ �n
n tð Þ:
This is equivalent to finding an l1 solution to the over-determined system of equationsXn

j¼1

j tið Þ�j ¼ yi; i ¼ 1; 2; . . . ;m:

Thus if, for each value of i and j the element aij of the matrix A above is set equal to the value of

j tið Þ and bi is set equal to yi, the solution vector x will contain the required values of the �j. Note that
the independent variable t above can, instead, be a vector of several independent variables (this includes
the case where each 
i is a function of a different variable, or set of variables).

The algorithm is a modification of the simplex method of linear programming applied to the dual
formation of the l1 problem (see Barrodale and Phillips (1974) and Barrodale and Phillips (1975)). The
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modifications are designed to improve the efficiency and stability of the simplex method for this
particular application.

4 References

Barrodale I and Phillips C (1974) An improved algorithm for discrete Chebyshev linear approximation
Proc. 4th Manitoba Conf. Numerical Mathematics 177–190 University of Manitoba, Canada

Barrodale I and Phillips C (1975) Solution of an overdetermined system of linear equations in the
Chebyshev norm [F4] (Algorithm 495) ACM Trans. Math. Software 1(3) 264–270

5 Arguments

1: M – INTEGER Input

On entry: the number of equations, m (the number of rows of the matrix A).

Constraint: M � N.

2: N – INTEGER Input

On entry: the number of unknowns, n (the number of columns of the matrix A).

Constraint: N � 1.

3: SDA – INTEGER Input

On entry: the second dimension of the array A as declared in the (sub)program from which
E02GCF is called.

Constraint: SDA � Mþ 1.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E02GCF
is called.

Constraint: LDA � Nþ 3.

5: AðLDA; SDAÞ – REAL (KIND=nag_wp) array Input/Output

On entry: Aðj; iÞ must contain aij , the element in the ith row and jth column of the matrix A, for
i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n, (that is, the transpose of the matrix). The remaining elements
need not be set. Preferably, the columns of the matrix A (rows of the argument A) should be
scaled before entry: see Section 7.

On exit: contains the last simplex tableau.

6: BðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: BðiÞ must contain bi, the ith element of the vector b, for i ¼ 1; 2; . . . ;m.

On exit: the ith residual ri corresponding to the solution vector x, for i ¼ 1; 2; . . . ;m. Note
however that these residuals may contain few significant figures, especially when RESMAX is
within one or two orders of magnitude of TOL. Indeed if RESMAX � TOL, the elements BðiÞ
may all be set to zero. It is therefore often advisable to compute the residuals directly.

7: TOL – REAL (KIND=nag_wp) Input

On entry: a threshold below which numbers are regarded as zero. The recommended threshold
value is 10:0� �, where � is the machine precision. If TOL � 0:0 on entry, the recommended
value is used within the routine. If premature termination occurs, a larger value for TOL may
result in a valid solution.

Suggested value: 0:0.
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8: RELERR – REAL (KIND=nag_wp) Input/Output

On entry: must be set to a bound on the relative error acceptable in the maximum residual at the
solution.

If RELERR � 0:0, then the l1 solution is computed, and RELERR is set to 0:0 on exit.

If RELERR > 0:0, then the routine obtains instead an approximate solution for which the largest
residual is less than 1:0þ RELERR times that of the l1 solution; on exit, RELERR contains a
smaller value such that the above bound still applies. (The usual result of this option, say with
RELERR ¼ 0:1, is a saving in the number of simplex iterations).

On exit: is altered as described above.

9: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0 or 1, XðjÞ contains the jth element of the solution vector x, for
j ¼ 1; 2; . . . ; n. Whether this is an l1 solution or an approximation to one, depends on the value
of RELERR on entry.

10: RESMAX – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or 1, RESMAX contains the absolute value of the largest residual(s) for the
solution vector x. (See B.)

11: IRANK – INTEGER Output

On exit: if IFAIL ¼ 0 or 1, IRANK contains the computed rank of the matrix A.

12: ITER – INTEGER Output

On exit: if IFAIL ¼ 0 or 1, ITER contains the number of iterations taken by the simplex method.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E02GCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

An optimal solution has been obtained but this may not be unique (perhaps simply because the
matrix A is not of full rank, i.e., IRANK < N).
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IFAIL ¼ 2

The calculations have terminated prematurely due to rounding errors. Experiment with larger
values of TOL or try rescaling the columns of the matrix (see Section 9).

IFAIL ¼ 3

On entry, LDA < Nþ 3,
or SDA < Mþ 1,
or M < N,
or N < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Experience suggests that the computational accuracy of the solution x is comparable with the accuracy
that could be obtained by applying Gaussian elimination with partial pivoting to the nþ 1 equations
which have residuals of largest absolute value. The accuracy therefore varies with the conditioning of
the problem, but has been found generally very satisfactory in practice.

8 Parallelism and Performance

E02GCF is not threaded in any implementation.

9 Further Comments

The effects of m and n on the time and on the number of iterations in the simplex method vary from
problem to problem, but typically the number of iterations is a small multiple of n and the total time is
approximately proportional to mn2.

It is recommended that, before the routine is entered, the columns of the matrix A are scaled so that the
largest element in each column is of the order of unity. This should improve the conditioning of the
matrix, and also enable the argument TOL to perform its correct function. The solution x obtained will
then, of course, relate to the scaled form of the matrix. Thus if the scaling is such that, for each
j ¼ 1; 2; . . . ; n, the elements of the jth column are multiplied by the constant kj, the element xj of the
solution vector x must be multiplied by kj if it is desired to recover the solution corresponding to the
original matrix A.

10 Example

This example approximates a set of data by a curve of the form

y ¼ Ket þ Le�t þM

where K, L and M are unknown. Given values yi at 5 points ti we may form the over-determined set of
equations for K, L and M
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etiK þ e�tiLþM ¼ yi; i ¼ 1; 2; . . . ; 5:

E02GCF is used to solve these in the l1 sense.

10.1 Program Text

Program e02gcfe

! E02GCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02gcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 3, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: relerr, resmax, t, tol
Integer :: i, ifail, irank, iter, lda, m, sda

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Write (nout,*) ’E02GCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m
lda = n + 3
sda = m + 1
Allocate (a(lda,sda),b(m),x(n))

Do i = 1, m
Read (nin,*) t, b(i)
a(1,i) = exp(t)
a(2,i) = exp(-t)
a(3,i) = 1.0E0_nag_wp

End Do

tol = 0.0E0_nag_wp
relerr = 0.0E0_nag_wp

ifail = -1
Call e02gcf(m,n,sda,lda,a,b,tol,relerr,x,resmax,irank,iter,ifail)

Select Case (ifail)
Case (0,1)

Write (nout,*)
Write (nout,99999) ’RESMAX = ’, resmax, ’ Rank = ’, irank, &

’ Iterations = ’, iter, ’ IFAIL =’, ifail
Write (nout,*)
Write (nout,*) ’Solution’
Write (nout,99998) x(1:n)

End Select

99999 Format (1X,A,E10.2,3(A,I5))
99998 Format (1X,6F10.4)

End Program e02gcfe

E02 – Curve and Surface Fitting E02GCF

Mark 26 E02GCF.5



10.2 Program Data

E02GCF Example Program Data
5
0.0 4.501
0.2 4.360
0.4 4.333
0.6 4.418
0.8 4.625

10.3 Program Results

E02GCF Example Program Results

RESMAX = 0.10E-02 Rank = 3 Iterations = 4 IFAIL = 0

Solution
1.0049 2.0149 1.4822
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NAG Library Routine Document

E02JDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the specification of the optional parameters
produced by the routine.

1 Purpose

E02JDF computes a spline approximation to a set of scattered data using a two-stage approximation
method.

The computational complexity of the method grows linearly with the number of data points; hence large
datasets are easily accommodated.

2 Specification

SUBROUTINE E02JDF (N, X, Y, F, LSMINP, LSMAXP, NXCELS, NYCELS, LCOEFS,
COEFS, IOPTS, OPTS, IFAIL)

&

INTEGER N, LSMINP, LSMAXP, NXCELS, NYCELS, LCOEFS, IOPTS(*),
IFAIL

&

REAL (KIND=nag_wp) X(N), Y(N), F(N), COEFS(LCOEFS), OPTS(*)

Before calling E02JDF, E02ZKF must be called with OPTSTR set to "IInniittiiaalliizzee = E02JDF".
Settings for optional algorithmic arguments may be specified by calling E02ZKF before a call to
E02JDF.

3 Description

E02JDF determines a smooth bivariate spline approximation to a set of data points xi; yi; fið Þ, for
i ¼ 1; 2; . . . ; n. Here, ‘smooth’ means C1 or C2. (You may select the degree of smoothing using the
optional parameter Global Smoothing Level.)

The approximation domain is the bounding box xmin ; xmax½ � � ymin ; ymax½ �, where xmin (respectively
ymin ) and xmax (respectively ymax ) denote the lowest and highest data values of the xið Þ (respectively
yið Þ).
The spline is computed by local approximations on a uniform triangulation of the bounding box. These
approximations are extended to a smooth spline representation of the surface over the domain. The local
approximation scheme is controlled by the optional parameter Local Method. The schemes provided
are: by least squares polynomial approximation (Davydov and Zeilfelder (2004)); by hybrid polynomial
and radial basis function (RBF) approximation (Davydov et al. (2006)); or by pure RBF approximation
(Davydov et al. (2005)).

The two-stage approximation method employed by E02JDF is derived from the TSFIT package of O.
Davydov and F. Zeilfelder.

Values of the computed spline can subsequently be computed by calling E02JEF or E02JFF.
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4 References

Davydov O, Morandi R and Sestini A (2006) Local hybrid approximation for scattered data fitting with
bivariate splines Comput. Aided Geom. Design 23 703–721

Davydov O, Sestini A and Morandi R (2005) Local RBF approximation for scattered data fitting with
bivariate splines Trends and Applications in Constructive Approximation M. G. de Bruin, D. H. Mache,
and J. Szabados, Eds ISNM Vol. 151 Birkhauser 91–102

Davydov O and Zeilfelder F (2004) Scattered data fitting by direct extension of local polynomials to
bivariate splines Advances in Comp. Math. 21 223–271

5 Arguments

1: N – INTEGER Input

On entry: n, the number of data values to be fitted.

Constraint: N > 1.

2: XðNÞ – REAL (KIND=nag_wp) array Input
3: YðNÞ – REAL (KIND=nag_wp) array Input
4: FðNÞ – REAL (KIND=nag_wp) array Input

On entry: the xi; yi; fið Þ data values to be fitted.

Constraint: XðjÞ 6¼ Xð1Þ for some j ¼ 2; . . . ; n and YðkÞ 6¼ Yð1Þ for some k ¼ 2; . . . ; n; i.e.,
there are at least two distinct x and y values.

5: LSMINP – INTEGER Input
6: LSMAXP – INTEGER Input

On entry: are control parameters for the local approximations.

Each local approximation is computed on a local domain containing one of the triangles in the
discretization of the bounding box. The size of each local domain will be adaptively chosen such
that if it contains fewer than LSMINP sample points it is expanded, else if it contains greater
than LSMAXP sample points a thinning method is applied. LSMAXP mainly controls
computational cost (in that working with a thinned set of points is cheaper and may be
appropriate if the input data is densely distributed), while LSMINP allows handling of different
types of scattered data.

Setting LSMAXP < LSMINP, and therefore forcing either expansion or thinning, may be useful
for computing initial coarse approximations. In general smaller values for these arguments
reduces cost.

A calibration procedure (experimenting with a small subset of the data to be fitted and validating
the results) may be needed to choose the most appropriate values for LSMINP and LSMAXP.

Constraints:

1 � LSMINP � N;
LSMAXP � 1.

7: NXCELS – INTEGER Input
8: NYCELS – INTEGER Input

On entry: NXCELS (respectively NYCELS) is the number of cells in the x (respectively y)
direction that will be used to create the triangulation of the bounding box of the domain of the
function to be fitted.

Greater efficiency generally comes when NXCELS and NYCELS are chosen to be of the same
order of magnitude and are such that N is O NXCELS� NYCELSð Þ. Thus for a ‘square’
triangulation — when NXCELS ¼ NYCELS — the quantities

ffiffiffiffi
N
p

and NXCELS should be of the
same order of magnitude. See also Section 9.
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Constraints:

NXCELS � 1;
NYCELS � 1.

9: LCOEFS – INTEGER Input
10: COEFSðLCOEFSÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0 on exit, COEFS contains the computed spline coefficients.

Constraints:

if Global Smoothing Level ¼ 1,
LCOEFS � NXCELSþ 2ð Þ � NYCELSþ 2ð Þ þ 1ð Þ=2ð Þ � 10þ 1;
if Global Smoothing Level ¼ 2,
LCOEFS � 28� NXCELSþ 2ð Þ � NYCELSþ 2ð Þ � 4þ 1.

11: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to E02ZKF.

On entry: the contents of IOPTS must not be modified in any way either directly or indirectly,
by further calls to E02ZKF, before calling either or both of the evaluation routines E02JEF and
E02JFF.

12: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to E02ZKF.

On entry: the contents of OPTS must not be modified in any way either directly or indirectly, by
further calls to E02ZKF, before calling either or both of the evaluation routines E02JEF and
E02JFF.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N > 1.
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IFAIL ¼ 4

On entry, LSMINP ¼ valueh i and N ¼ valueh i.
Constraint: 1 � LSMINP � N.

IFAIL ¼ 5

On entry, LSMAXP ¼ valueh i.
Constraint: LSMAXP � 1.

IFAIL ¼ 6

On entry, NXCELS ¼ valueh i.
Constraint: NXCELS � 1.

IFAIL ¼ 7

On entry, NYCELS ¼ valueh i.
Constraint: NYCELS � 1.

IFAIL ¼ 8

On entry, LCOEFS ¼ valueh i.
Constraint:
if Global Smoothing Level ¼ 1,
LCOEFS � NXCELSþ 2ð Þ � NYCELSþ 2ð Þ þ 1ð Þ=2ð Þ � 10þ 1;
if Global Smoothing Level ¼ 2,
LCOEFS � 28� NXCELSþ 2ð Þ � NYCELSþ 2ð Þ � 4þ 1.

IFAIL ¼ 9

Option arrays are not initialized or are corrupted.

IFAIL ¼ 11

An unexpected algorithmic failure was encountered. Please contact NAG.

IFAIL ¼ 12

On entry, all elements of X or of Y are equal.

IFAIL ¼ 20

The selected radial basis function cannot be used with the RBF local method.

IFAIL ¼ 21

The value of optional parameter Polynomial Starting Degree was invalid.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Technical results on error bounds can be found in Davydov and Zeilfelder (2004), Davydov et al.
(2006) and Davydov et al. (2005).

Local approximation by polynomials of degree d for n data points has optimal approximation order
n� dþ1ð Þ=2. The improved approximation power of hybrid polynomial/RBF and of pure RBF
approximations is shown in Davydov et al. (2006) and Davydov et al. (2005).

The approximation error for C1 global smoothing is O n�2
� �

. For C2 smoothing the error is O n�7=2
� �

when Supersmooth C2 ¼ YES and O n�3
� �

when Supersmooth C2 ¼ NO.

Whether maximal accuracy is achieved depends on the distribution of the input data and the choices of
the algorithmic parameters. The references above contain extensive numerical tests and further technical
discussions of how best to configure the method.

8 Parallelism and Performance

E02JDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E02JDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

n-linear complexity and memory usage can be attained for sufficiently dense input data if the
triangulation parameters NXCELS and NYCELS are chosen as recommended in their descriptions
above. For sparse input data on such triangulations, if many expansion steps are required (see LSMINP)
the complexity may rise to be loglinear.

Parts of the pure RBF method used when Local Method ¼ RBF have n-quadratic memory usage.

Note that if Local Method ¼ HYBRID and an initial hybrid approximation is deemed unreliable (see
the description of optional parameter Minimum Singular Value LHA), a pure polynomial
approximation will be used instead on that local domain.

10 Example

The Franke function

f x; yð Þ ¼ 0:75 exp � 9x� 2ð Þ2 þ 9y� 2ð Þ2
� �

=4
� �

þ
0:75 exp � 9xþ 1ð Þ2=49� 9yþ 1ð Þ=10

� �
þ

0:5 exp � 9x� 7ð Þ2 þ 9y� 3ð Þ2
� �

=4
� �

�
0:2 exp � 9x� 4ð Þ2 � 9y� 7ð Þ2

� �
is widely used for testing surface-fitting methods. The example program randomly generates a number
of points on this surface. From these a spline is computed and then evaluated at a vector of points and
on a mesh.
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10.1 Program Text

Program e02jdfe

! E02JDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02jdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: liopts = 100, lopts = 100, nin = 5, &

nout = 6
! .. Local Scalars ..

Integer :: gsmoothness, ifail, lcoefs, lsmaxp, &
lsminp, n, nxcels, nycels

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: coefs(:), f(:), x(:), y(:)
Real (Kind=nag_wp) :: opts(lopts), pmax(2), pmin(2)
Integer :: iopts(liopts)

! .. Intrinsic Procedures ..
Intrinsic :: maxval, minval

! .. Executable Statements ..
Write (nout,*) ’E02JDF Example Program Results’

! Generate the data to fit and set the compulsory algorithmic control
! parameters.

Call generate_data(n,x,y,f,lsminp,lsmaxp,nxcels,nycels,lcoefs,coefs, &
gsmoothness)

! Initialize the options arrays and set/get some options.

Call handle_options(iopts,liopts,opts,lopts)

! Compute the spline coefficients.

ifail = 0
Call e02jdf(n,x,y,f,lsminp,lsmaxp,nxcels,nycels,lcoefs,coefs,iopts,opts, &

ifail)

! pmin and pmax form the bounding box of the spline. We must not attempt
! to evaluate the spline outside this box.

pmin(:) = (/minval(x),minval(y)/)
pmax(:) = (/maxval(x),maxval(y)/)

Deallocate (x,y,f)

! Evaluate the approximation at a vector of values.

Call evaluate_at_vector(coefs,iopts,opts,pmin,pmax)

! Evaluate the approximation on a mesh.

Call evaluate_on_mesh(coefs,iopts,opts,pmin,pmax)

Contains
Subroutine generate_data(n,x,y,f,lsminp,lsmaxp,nxcels,nycels,lcoefs, &

coefs,gsmoothness)

! Reads n from a data file and then generates an x and a y vector of n
! pseudorandom uniformly-distributed values on (0,1]. These are passed
! to the bivariate function of R. Franke to create the data set to fit.
! The remaining input data for E02JDF are set to suitable values for
! this problem, as discussed by Davydov and Zeilfelder.
! Reads the global smoothing level from a data file. This value
! determines the minimum required length of the array of spline
! coefficients, coefs.
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! .. Use Statements ..
Use nag_library, Only: g05kff, g05saf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 4, mstate = 21

! .. Scalar Arguments ..
Integer, Intent (Out) :: gsmoothness, lcoefs, lsmaxp, lsminp, &

n, nxcels, nycels
! .. Array Arguments ..

Real (Kind=nag_wp), Allocatable, Intent (Out) :: coefs(:), f(:), x(:), &
y(:)

! .. Local Scalars ..
Integer :: genid, ifail, lstate, subid

! .. Local Arrays ..
Integer :: seed(lseed), state(mstate)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Continue

! Read the size of the data set to be generated and fitted.
! (Skip the heading in the data file.)

Read (nin,*)
Read (nin,*) n
Allocate (x(n),y(n),f(n))

! Initialize the random number generator and then generate the data.

genid = 2
subid = 53
seed(:) = (/32958,39838,881818,45812/)
lstate = mstate

ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

ifail = 0
Call g05saf(n,state,x,ifail)

ifail = 0
Call g05saf(n,state,y,ifail)

! Ensure that the bounding box stretches all the way to (0,0) and (1,1).

x(1) = 0.0_nag_wp
y(1) = 0.0_nag_wp
x(n) = 1.0_nag_wp
y(n) = 1.0_nag_wp

f(:) = 0.75_nag_wp*exp(-((9._nag_wp*x(:)-2._nag_wp)**2+(9._nag_wp*y(:) &
-2._nag_wp)**2)/4._nag_wp) + 0.75_nag_wp*exp(-(9._nag_wp*x(:)+ &
1._nag_wp)**2/49._nag_wp-(9._nag_wp*y(:)+1._nag_wp)/10._nag_wp) + &
0.5_nag_wp*exp(-((9._nag_wp*x(:)-7._nag_wp)**2+(9._nag_wp*y(:)- &
3._nag_wp)**2)/4._nag_wp) - 0.2_nag_wp*exp(-(9._nag_wp*x(:)- &
4._nag_wp)**2-(9._nag_wp*y(:)-7._nag_wp)**2)

! Set the grid size for the approximation.

nxcels = 6
nycels = nxcels

! Read the required level of global smoothing.

Read (nin,*) gsmoothness

! Identify the computation.

Write (nout,*)
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Write (nout,99998) ’Computing the coefficients of a C^’, gsmoothness, &
’ spline approximation to Franke’’s function’

Write (nout,99999) ’Using a ’, nxcels, ’ by ’, nycels, ’ grid’

! Set the local-approximation control parameters.

lsminp = 3
lsmaxp = 100

! Set up the array to hold the computed spline coefficients.

Select Case (gsmoothness)
Case (1)

lcoefs = (((nxcels+2)*(nycels+2)+1)/2)*10 + 1
Case (2)

lcoefs = 28*(nxcels+2)*(nycels+2)*4 + 1
Case Default

lcoefs = 0
End Select

Allocate (coefs(lcoefs))

Return
99999 Format (1X,A,I2,A,I2,A)
99998 Format (1X,A,I1,A)

End Subroutine generate_data
Subroutine handle_options(iopts,liopts,opts,lopts)

! Auxiliary routine for initializing the options arrays and
! for demonstrating how to set and get optional parameters.

! .. Use Statements ..
Use nag_library, Only: e02zkf, e02zlf

! .. Scalar Arguments ..
Integer, Intent (In) :: liopts, lopts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: opts(lopts)
Integer, Intent (Out) :: iopts(liopts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: rvalue
Integer :: ifail, ivalue, optype
Logical :: supersmooth
Character (16) :: cvalue
Character (80) :: optstr

! .. Executable Statements ..
ifail = 0
Call e02zkf(’Initialize = E02JDF’,iopts,liopts,opts,lopts,ifail)

! Configure the global approximation method.

Write (optstr,99998) ’Global Smoothing Level = ’, gsmoothness

ifail = 0
Call e02zkf(optstr,iopts,liopts,opts,lopts,ifail)

! If C^2 smoothing is requested, compute the spline using additional
! super-smoothness constraints?
! (The default is ’No’.)

Read (nin,*) supersmooth

If (gsmoothness==2 .And. supersmooth) Then

ifail = 0
Call e02zkf(’Supersmooth C2 = Yes’,iopts,liopts,opts,lopts,ifail)

End If

ifail = 0
Call e02zkf(’Averaged Spline = Yes’,iopts,liopts,opts,lopts,ifail)
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! Configure the local approximation method.
! (The default is ’Polynomial’.)

ifail = 0
Call e02zkf(’Local Method = Polynomial’,iopts,liopts,opts,lopts,ifail)

Write (optstr,99999) ’Minimum Singular Value LPA = ’, &
1._nag_wp/32._nag_wp

ifail = 0
Call e02zkf(optstr,iopts,liopts,opts,lopts,ifail)

Select Case (gsmoothness)
Case (1)

optstr = ’Polynomial Starting Degree = 3’
Case (2)

If (supersmooth) Then

! We can benefit from starting with local polynomials of greater
! degree than with regular C^2 smoothing.

Write (nout,*) ’Using super-smoothing’
optstr = ’Polynomial Starting Degree = 6’

Else
optstr = ’Polynomial Starting Degree = 5’

End If

End Select

ifail = 0
Call e02zkf(optstr,iopts,liopts,opts,lopts,ifail)

! As an example of how to get the value of an optional parameter,
! display whether averaging of local approximations is in operation.

ifail = 0
Call e02zlf(’Averaged Spline’,ivalue,rvalue,cvalue,optype,iopts,opts, &

ifail)

If (cvalue==’YES’) Then
Write (nout,*) ’Using an averaged local approximation’

End If

Return
99999 Format (A,E16.9)
99998 Format (A,I1)

End Subroutine handle_options
Subroutine evaluate_at_vector(coefs,iopts,opts,pmin,pmax)

! Evaluates the approximation at a vector of values.

! .. Use Statements ..
Use nag_library, Only: e02jef

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: coefs(*), opts(*), pmax(2), pmin(2)
Integer, Intent (In) :: iopts(*)

! .. Local Scalars ..
Integer :: i, ifail, nevalv

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fevalv(:), xevalv(:), yevalv(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Read (nin,*) nevalv
Allocate (xevalv(nevalv),yevalv(nevalv),fevalv(nevalv))

Read (nin,*)(xevalv(i),yevalv(i),i=1,nevalv)

! Force the points to be within the bounding box of the spline.
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Do i = 1, nevalv
xevalv(i) = max(xevalv(i),pmin(1))
xevalv(i) = min(xevalv(i),pmax(1))
yevalv(i) = max(yevalv(i),pmin(2))
yevalv(i) = min(yevalv(i),pmax(2))

End Do

ifail = 0
Call e02jef(nevalv,xevalv,yevalv,coefs,fevalv,iopts,opts,ifail)

Write (nout,*)
Write (nout,*) ’Values of computed spline at (x_i,y_i):’
Write (nout,*)
Write (nout,99999) ’x_i’, ’y_i’, ’f(x_i,y_i)’
Write (nout,99998)(xevalv(i),yevalv(i),fevalv(i),i=1,nevalv)

Return
99999 Format (1X,3A12)
99998 Format (1X,3F12.2)

End Subroutine evaluate_at_vector
Subroutine evaluate_on_mesh(coefs,iopts,opts,pmin,pmax)

! Evaluates the approximation on a mesh of n_x * n_y values.

! .. Use Statements ..
Use nag_library, Only: e02jff

! .. Implicit None Statement ..
Implicit None

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: coefs(*), opts(*), pmax(2), pmin(2)
Integer, Intent (In) :: iopts(*)

! .. Local Scalars ..
Integer :: i, ifail, j, nxeval, nyeval
Logical :: print_mesh

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fevalm(:,:), xevalm(:), yevalm(:)
Real (Kind=nag_wp) :: h(2), ll_corner(2), ur_corner(2)

! .. Intrinsic Procedures ..
Intrinsic :: max, min, real

! .. Executable Statements ..
Read (nin,*) nxeval, nyeval
Allocate (xevalm(nxeval),yevalm(nyeval),fevalm(nxeval,nyeval))

! Define the mesh by its lower-left and upper-right corners.

Read (nin,*) ll_corner(1:2)
Read (nin,*) ur_corner(1:2)

! Set the mesh spacing and the evaluation points.
! Force the points to be within the bounding box of the spline.

h(1) = (ur_corner(1)-ll_corner(1))/real(nxeval-1,nag_wp)
h(2) = (ur_corner(2)-ll_corner(2))/real(nyeval-1,nag_wp)

Do i = 1, nxeval
xevalm(i) = ll_corner(1) + real(i-1,nag_wp)*h(1)
xevalm(i) = max(xevalm(i),pmin(1))
xevalm(i) = min(xevalm(i),pmax(1))

End Do

Do j = 1, nyeval
yevalm(j) = ll_corner(2) + real(j-1,nag_wp)*h(2)
yevalm(j) = max(yevalm(j),pmin(2))
yevalm(j) = min(yevalm(j),pmax(2))

End Do

! Evaluate.

ifail = 0
Call e02jff(nxeval,nyeval,xevalm,yevalm,coefs,fevalm,iopts,opts,ifail)
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! Output the computed function values?

Read (nin,*) print_mesh

If (.Not. print_mesh) Then
Write (nout,*)
Write (nout,*) &

’Outputting of the function values on the mesh is disabled’
Else

Write (nout,*)
Write (nout,*) ’Values of computed spline at (x_i,y_j):’
Write (nout,*)
Write (nout,99999) ’x_i’, ’y_j’, ’f(x_i,y_j)’
Write (nout,99998)((xevalm(i),yevalm(j),fevalm(i, &

j),i=1,nxeval),j=1,nyeval)
End If

Return
99999 Format (1X,3A12)
99998 Format (1X,3F12.2)

End Subroutine evaluate_on_mesh
End Program e02jdfe

10.2 Program Data

E02JDF Example Program Data
100 : number of data points to fit
1 : global smoothing level
F : if C^2 smoothing, supersmooth?
1 : no. points for vector evaluation
0 0 : (x_i,y_i) vector to eval.
101 101 : (n_x,n_y) size for mesh eval.
0 0 : mesh lower-left corner
1 1 : mesh upper-right corner
F : display the computed mesh vals?

10.3 Program Results

E02JDF Example Program Results

Computing the coefficients of a C^1 spline approximation to Franke’s function
Using a 6 by 6 grid
Using an averaged local approximation

Values of computed spline at (x_i,y_i):

x_i y_i f(x_i,y_i)
0.00 0.00 0.76

Outputting of the function values on the mesh is disabled
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Example Program
Calculation and Evaluation of Bivariate Spline Fit

from Scattered Data using Two-Stage Approximation
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11 Optional Parameters

Several optional parameters in E02JDF control aspects of the algorithm, methodology used, logic or
output. Their values are contained in the arrays IOPTS and OPTS; these must be initialized before
calling E02JDF by first calling E02ZKF with OPTSTR set to "IInniittiiaalliizzee = E02JDF".

Each optional parameter has an associated default value; to set any of them to a non-default value, or to
reset any of them to the default value, use E02ZKF. The current value of an optional parameter can be
queried using E02ZLF.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 11.1.

Averaged Spline

Global Smoothing Level

Interpolation Only RBF

Local Method

Minimum Singular Value LHA

Minimum Singular Value LPA

Polynomial Starting Degree

Radial Basis Function

Scaling Coefficient RBF

Separation LRBFA

Supersmooth C2
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11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value.

Keywords and character values are case insensitive.

For E02JDF the maximum length of the parameter CVALUE used by E02ZLF is 16.

Averaged Spline a Default ¼ NO

When the bounding box is triangulated there are 8 equivalent configurations of the mesh. Setting
Averaged Spline ¼ YES will use the averaged value of the 8 possible local polynomial approximations
over each triangle in the mesh. This usually gives better results but at (about 8 times) higher
computational cost.

Constraint: Averaged Spline ¼ YES or NO.

Global Smoothing Level i Default ¼ 1

The smoothness level for the global spline approximation.

Global Smoothing Level ¼ 1
Will use C1 piecewise cubics.

Global Smoothing Level ¼ 2
Will use C2 piecewise sextics.

Constraint: Global Smoothing Level ¼ 1 or 2.

Interpolation Only RBF a Default ¼ YES

If Interpolation Only RBF ¼ YES, each local RBF approximation is computed by interpolation.

If Interpolation Only RBF ¼ NO, each local RBF approximation is computed by a discrete least
squares approach. This is likely to be more accurate and more expensive than interpolation.

If Local Method ¼ HYBRID or POLYNOMIAL, this option setting is ignored.

Constraint: Interpolation Only RBF ¼ YES or NO.

Local Method a Default ¼ POLYNOMIAL

The local approximation scheme to use.

Local Method ¼ POLYNOMIAL
Uses least squares polynomial approximations.

Local Method ¼ HYBRID
Uses hybrid polynomial and RBF approximations.

Local Method ¼ RBF
Uses pure RBF approximations.

In general POLYNOMIAL is less computationally expensive than HYBRID is less computationally
expensive than RBF with the reverse ordering holding for accuracy of results.

Constraint: Local Method ¼ POLYNOMIAL, HYBRID or RBF.
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Minimum Singular Value LHA r Default ¼ 1:0

A tolerance measure for accepting or rejecting a local hybrid approximation (LHA) as reliable.

The solution of a local least squares problem solved on each triangle subdomain is accepted as reliable
if the minimum singular value � of the collocation matrix (of polynomial and radial basis function
terms) associated with the least squares problem satisfies Minimum Singular Value LHA � �.
In general the approximation power will be reduced as Minimum Singular Value LHA is reduced. (A
small � indicates that the local data has hidden redundancies which prevent it from carrying enough
information for a good approximation to be made.) Setting Minimum Singular Value LHA very large
may have the detrimental effect that only approximations of low degree are deemed reliable.

A calibration procedure (experimenting with a small subset of the data to be fitted and validating the
results) may be needed to choose the most appropriate value for this parameter.

If Local Method ¼ POLYNOMIAL or RBF, this option setting is ignored.

Constraint: Minimum Singular Value LHA � 0:0.

Minimum Singular Value LPA r Default ¼ 1:0

A tolerance measure for accepting or rejecting a local polynomial approximation (LPA) as reliable.
Clearly this setting is relevant when Local Method ¼ POLYNOMIAL, but it also may be used when
Local Method ¼ HYBRID (see Section 9.)

The solution of a local least squares problem solved on each triangle subdomain is accepted as reliable
if the minimum singular value � of the matrix (of Bernstein polynomial values) associated with the
least squares problem satisfies Minimum Singular Value LPA � �.
In general the approximation power will be reduced as Minimum Singular Value LPA is reduced. (A
small � indicates that the local data has hidden redundancies which prevent it from carrying enough
information for a good approximation to be made.) Setting Minimum Singular Value LPA very large
may have the detrimental effect that only approximations of low degree are deemed reliable.

Minimum Singular Value LPA will have no effect if Polynomial Starting Degree ¼ 0, and it will
have little effect if the input data is ‘smooth’ (e.g., from a known function).

A calibration procedure (experimenting with a small subset of the data to be fitted and validating the
results) may be needed to choose the most appropriate value for this parameter.

If Local Method ¼ RBF, this option setting is ignored.

Constraint: Minimum Singular Value LPA � 0:0.

Polynomial Starting Degree i Default ¼ 5 if Local Method ¼ HYBRID,
Default ¼ 1 otherwise

The degree to be used for the polynomial part in the initial step of each local approximation.

At this initial step the method will attempt to fit with a local approximation having polynomial part of
degree Polynomial Starting Degree. If Local Method ¼ POLYNOMIAL and the approximation is
deemed unreliable (according to Minimum Singular Value LPA), the degree will be decremented by
one and a new local approximation computed, ending with a constant approximation if no other is
reliable. If Local Method ¼ HYBRID and the approximation is deemed unreliable (according to
Minimum Singular Value LHA), a pure polynomial approximation of this degree will be tried instead.
The method then proceeds as in the POLYNOMIAL case.

Polynomial Starting Degree is bounded from above by the maximum possible spline degree, which is
6 (when performing C2 global super-smoothing). Note that the best-case approximation error (see
Section 7) for C2 smoothing with Supersmooth C2 ¼ NO is achieved for local polynomials of degree
5; that is, for this level of global smoothing no further benefit is gained by setting
Polynomial Starting Degree ¼ 6.

The default value gives a good compromise between efficiency and accuracy. In general the best
approximation can be obtained by setting:
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If Local Method ¼ POLYNOMIAL

if Global Smoothing Level ¼ 1, Polynomial Starting Degree ¼ 3;

if Global Smoothing Level ¼ 2;

if Supersmooth C2 ¼ NO, Polynomial Starting Degree ¼ 5;

otherwise Polynomial Starting Degree ¼ 6.

If Local Method ¼ HYBRID, Polynomial Starting Degree as small as possible.

If Local Method ¼ RBF, this option setting is ignored.

Constraints:

if Local Method ¼ HYBRID,

if Radial Basis Function ¼ MQ2, MQ3, TPS or POLYHARMONIC3,
Polynomial Starting Degree � 1;
if Radial Basis Function ¼ TPS4 or POLYHARMONIC5,
Polynomial Starting Degree � 2;
if Radial Basis Function ¼ TPS6 or POLYHARMONIC7,
Polynomial Starting Degree � 3;
if Radial Basis Function ¼ POLYHARMONIC9,
Polynomial Starting Degree � 4.;

otherwise Polynomial Starting Degree � 0;
if Local Method ¼ POLYNOMIAL and Global Smoothing Level ¼ 1,
Polynomial Starting Degree � 3;
otherwise Polynomial Starting Degree � 6.

Radial Basis Function a Default ¼ MQ
Scaling Coefficient RBF r Default ¼ 1:0

Radial Basis Function selects the RBF to use in each local RBF approximation, while Scaling
Coefficient RBF selects the scale factor to use in its evaluation, as described below.

A calibration procedure (experimenting with a small subset of the data to be fitted and validating the
results) may be needed to choose the most appropriate scale factor and RBF.

If Local Method ¼ POLYNOMIAL, these option settings are ignored.

If Local Method ¼ HYBRID or RBF, the following (conditionally) positive definite functions may be
chosen.

Define R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and � ¼ R=r.

GAUSS Gaussian exp ��2
� �

IMQ inverse multiquadric 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þR2
p

IMQ2 inverse multiquadric 1= r2 þR2
� �

IMQ3 inverse multiquadric 1= r2 þR2
� � 3=2ð Þ

IMQ0 5 inverse multiquadric 1= r2 þR2
� � 1=4ð Þ

WENDLAND31 H. Wendland's C2 function max 0; 1� �ð Þ4 4�þ 1ð Þ
WENDLAND32 H. Wendland's C4 function max 0; 1� �ð Þ6 35�2 þ 18�þ 3

� �
WENDLAND33 H. Wendland's C6 function max 0; 1� �ð Þ8 32�3 þ 25�2 þ 8�þ 1

� �
BUHMANNC3 M. Buhmann's C3 function

112=45� 9=2ð Þ þ 16=3� 7=2ð Þ � 7�4 � 14=15�2 þ 1=9 if � � 1, 0 otherwise

MQ multiquadric
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þR2
p

MQ1 5
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multiquadric r2 þR2
� � 1:5=2ð Þ

POLYHARMONIC1 5 polyharmonic spline �1:5

POLYHARMONIC1 75 polyharmonic spline �1:75

If Local Method ¼ HYBRID the following conditionally positive definite functions may also be
chosen.

MQ2 multiquadric r2 þR2
� �

log r2 þR2
� �

MQ3 multiquadric r2 þR2
� � 3=2ð Þ

TPS thin plate spline �2log �2

POLYHARMONIC3 polyharmonic spline �3

TPS4 thin plate spline �4log �2

POLYHARMONIC5 polyharmonic spline �5

TPS6 thin plate spline �6log �2

POLYHARMONIC7 polyharmonic spline �7

POLYHARMONIC9 polyharmonic spline �9

Constraints:

if Radial Basis Function ¼ MQ2, MQ3, TPS or POLYHARMONIC3,
Local Method ¼ HYBRID and Polynomial Starting Degree � 1;
if Radial Basis Function ¼ TPS4 or POLYHARMONIC5,
Local Method ¼ HYBRID and Polynomial Starting Degree � 2;
if Radial Basis Function ¼ TPS6 or POLYHARMONIC7,
Local Method ¼ HYBRID and Polynomial Starting Degree � 3;
if Radial Basis Function ¼ POLYHARMONIC9,
Local Method ¼ HYBRID and Polynomial Starting Degree � 4;
Scaling Coefficient RBF > 0:0.

Separation LRBFA r Default ¼ 16:0=Scaling Coefficient RBF

A knot-separation parameter used to control the condition number of the matrix used in each local RBF
approximation (LRBFA). A smaller value may mean greater numerical stability but fewer knots.

If Local Method ¼ HYBRID or POLYNOMIAL, this option setting is ignored.

Constraint: Separation LRBFA > 0:0.

Supersmooth C2 a Default ¼ NO

If Supersmooth C2 ¼ YES, the C2 spline is generated using additional smoothness constraints. This
usually gives better results but at higher computational cost.

If Global Smoothing Level ¼ 1 this option setting is ignored.

Constraint: Supersmooth C2 ¼ YES or NO.
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NAG Library Routine Document

E02JEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02JEF calculates a vector of values of a spline computed by E02JDF.

2 Specification

SUBROUTINE E02JEF (NEVALV, XEVALV, YEVALV, COEFS, FEVALV, IOPTS, OPTS,
IFAIL)

&

INTEGER NEVALV, IOPTS(*), IFAIL
REAL (KIND=nag_wp) XEVALV(NEVALV), YEVALV(NEVALV), COEFS(*),

FEVALV(NEVALV), OPTS(*)
&

3 Description

E02JEF calculates values at prescribed points (xi,yi), for i ¼ 1; 2; . . . ; n, of a bivariate spline computed
by E02JDF. It is derived from the TSFIT package of O. Davydov and F. Zeilfelder.

4 References

Davydov O, Morandi R and Sestini A (2006) Local hybrid approximation for scattered data fitting with
bivariate splines Comput. Aided Geom. Design 23 703–721

Davydov O, Sestini A and Morandi R (2005) Local RBF approximation for scattered data fitting with
bivariate splines Trends and Applications in Constructive Approximation M. G. de Bruin, D. H. Mache,
and J. Szabados, Eds ISNM Vol. 151 Birkhauser 91–102

Davydov O and Zeilfelder F (2004) Scattered data fitting by direct extension of local polynomials to
bivariate splines Advances in Comp. Math. 21 223–271

Farin G and Hansford D (2000) The Essentials of CAGD Natic, MA: A K Peters, Ltd.

5 Arguments

1: NEVALV – INTEGER Input

On entry: n, the number of values at which the spline is to be evaluated.

Constraint: NEVALV � 1.

2: XEVALVðNEVALVÞ – REAL (KIND=nag_wp) array Input

On entry: the xið Þ values at which the spline is to be evaluated.

Constraint: for all i, XEVALVðiÞ must lie inside, or on the boundary of, the spline's bounding
box as determined by E02JDF.

3: YEVALVðNEVALVÞ – REAL (KIND=nag_wp) array Input

On entry: the yið Þ values at which the spline is to be evaluated.

Constraint: for all i, YEVALVðiÞ must lie inside, or on the boundary of, the spline's bounding
box as determined by E02JDF.
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4: COEFSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument COEFS
in the previous call to E02JDF.

On entry: the computed spline coefficients as output from E02JDF.

5: FEVALVðNEVALVÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0 on exit FEVALVðiÞ contains the computed spline value at xi; yið Þ.

6: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to E02ZKF.

On entry: the contents of the array must not have been modified either directly or indirectly, by a
call to E02ZKF, between calls to E02JDF and E02JEF.

7: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to E02ZKF.

On entry: the contents of the array must not have been modified either directly or indirectly, by a
call to E02ZKF, between calls to E02JDF and E02JEF.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

On entry, NEVALV ¼ valueh i.
Constraint: NEVALV � 1.

IFAIL ¼ 9

Option arrays are not initialized or are corrupted.

IFAIL ¼ 10

The fitting routine has not been called, or the array of coefficients has been corrupted.
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IFAIL ¼ 13

On entry, XEVALVð valueh iÞ ¼ valueh i was outside the bounding box.
Constraint: valueh i � XEVALVðiÞ � valueh i for all i.

IFAIL ¼ 14

On entry, YEVALVð valueh iÞ ¼ valueh i was outside the bounding box.
Constraint: valueh i � YEVALVðiÞ � valueh i for all i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

E02JEF uses the de Casteljau algorithm and thus is numerically stable. See Farin and Hansford (2000)
for details.

8 Parallelism and Performance

E02JEF is not threaded in any implementation.

9 Further Comments

To evaluate a C1 approximation (i.e., when Global Smoothing Level ¼ 1), a real array of length O 1ð Þ
is dynamically allocated by each invocation of E02JEF. No memory is allocated internally when
evaluating a C2 approximation.

10 Example

See Section 10 in E02JDF.
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NAG Library Routine Document

E02JFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02JFF calculates a mesh of values of a spline computed by E02JDF.

2 Specification

SUBROUTINE E02JFF (NXEVAL, NYEVAL, XEVALM, YEVALM, COEFS, FEVALM, IOPTS,
OPTS, IFAIL)

&

INTEGER NXEVAL, NYEVAL, IOPTS(*), IFAIL
REAL (KIND=nag_wp) XEVALM(NXEVAL), YEVALM(NYEVAL), COEFS(*),

FEVALM(NXEVAL,NYEVAL), OPTS(*)
&

3 Description

E02JFF calculates values on a rectangular mesh of a bivariate spline computed by E02JDF. The points
in the mesh are defined by x coordinates (xi), for i ¼ 1; 2; . . . ; nx, and y coordinates (yj), for
j ¼ 1; 2; . . . ; ny. This routine is derived from the TSFIT package of O. Davydov and F. Zeilfelder.

4 References

Davydov O, Morandi R and Sestini A (2006) Local hybrid approximation for scattered data fitting with
bivariate splines Comput. Aided Geom. Design 23 703–721

Davydov O, Sestini A and Morandi R (2005) Local RBF approximation for scattered data fitting with
bivariate splines Trends and Applications in Constructive Approximation M. G. de Bruin, D. H. Mache,
and J. Szabados, Eds ISNM Vol. 151 Birkhauser 91–102

Davydov O and Zeilfelder F (2004) Scattered data fitting by direct extension of local polynomials to
bivariate splines Advances in Comp. Math. 21 223–271

Farin G and Hansford D (2000) The Essentials of CAGD Natic, MA: A K Peters, Ltd.

5 Arguments

1: NXEVAL – INTEGER Input

On entry: nx, the number of values in the x direction forming the mesh on which the spline is to
be evaluated.

Constraint: NXEVAL � 1.

2: NYEVAL – INTEGER Input

On entry: ny, the number of values in the y direction forming the mesh on which the spline is to
be evaluated.

Constraint: NYEVAL � 1.
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3: XEVALMðNXEVALÞ – REAL (KIND=nag_wp) array Input

On entry: the xið Þ values forming the mesh on which the spline is to be evaluated.

Constraint: for all i, XEVALMðiÞ must lie inside, or on the boundary of, the spline's bounding
box as determined by E02JDF.

4: YEVALMðNYEVALÞ – REAL (KIND=nag_wp) array Input

On entry: the yj
� �

values forming the mesh on which the spline is to be evaluated.

Constraint: for all j, YEVALMðjÞ must lie inside, or on the boundary of, the spline's bounding
box as determined by E02JDF.

5: COEFSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument COEFS
in the previous call to E02JDF.

On entry: the computed spline coefficients as output from E02JDF.

6: FEVALMðNXEVAL;NYEVALÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0 on exit FEVALMði; jÞ contains the computed spline value at xi; yj
� �

.

7: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to E02ZKF.

On entry: the contents of the array must not have been modified either directly or indirectly, by a
call to E02ZKF, between calls to E02JDF and E02JFF.

8: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to E02ZKF.

On entry: the contents of the array must not have been modified either directly or indirectly, by a
call to E02ZKF, between calls to E02JDF and E02JFF.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 6

On entry, NXEVAL ¼ valueh i.
Constraint: NXEVAL � 1.

IFAIL ¼ 7

On entry, NYEVAL ¼ valueh i.
Constraint: NYEVAL � 1.

IFAIL ¼ 9

Option arrays are not initialized or are corrupted.

IFAIL ¼ 10

The fitting routine has not been called, or the array of coefficients has been corrupted.

IFAIL ¼ 13

On entry, XEVALMð valueh iÞ ¼ valueh i was outside the bounding box.
Constraint: valueh i � XEVALMðiÞ � valueh i for all i.

IFAIL ¼ 14

On entry, YEVALMð valueh iÞ ¼ valueh i was outside the bounding box.
Constraint: valueh i � YEVALMðjÞ � valueh i for all j.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

E02JFF uses the de Casteljau algorithm and thus is numerically stable. See Farin and Hansford (2000)
for details.

8 Parallelism and Performance

E02JFF is not threaded in any implementation.
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9 Further Comments

To evaluate a C1 approximation (i.e., when Global Smoothing Level ¼ 1), a real array of length O 1ð Þ
is dynamically allocated by each invocation of E02JFF. No memory is allocated internally when
evaluating a C2 approximation.

10 Example

See Section 10 in E02JDF.
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NAG Library Routine Document

E02RAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02RAF calculates the coefficients in a Padé approximant to a function from its user-supplied
Maclaurin expansion.

2 Specification

SUBROUTINE E02RAF (IA, IB, C, IC, A, B, W, JW, IFAIL)

INTEGER IA, IB, IC, JW, IFAIL
REAL (KIND=nag_wp) C(IC), A(IA), B(IB), W(JW)

3 Description

Given a power series

c0 þ c1xþ c2x2 þ � � � þ clþmxlþm þ � � �

E02RAF uses the coefficients ci, for i ¼ 0; 1; . . . ; lþm, to form the l=m½ � Padé approximant of the
form

a0 þ a1xþ a2x2 þ � � � þ alxl
b0 þ b1xþ b2x2 þ � � � þ bmxm

with b0 defined to be unity. The two sets of coefficients aj, for j ¼ 0; 1; . . . ; l, and bk, for
k ¼ 0; 1; . . . ;m, in the numerator and denominator are calculated by direct solution of the Padé
equations (see Graves–Morris (1979)); these values are returned through the argument list unless the
approximant is degenerate.

Padé approximation is a useful technique when values of a function are to be obtained from its
Maclaurin expansion but convergence of the series is unacceptably slow or even nonexistent. It is based
on the hypothesis of the existence of a sequence of convergent rational approximations, as described in
Baker and Graves–Morris (1981) and Graves–Morris (1979).

Unless there are reasons to the contrary (as discussed in Chapter 4, Section 2, Chapters 5 and 6 of
Baker and Graves–Morris (1981)), one normally uses the diagonal sequence of Padé approximants,
namely

m=m½ �;m ¼ 0; 1; 2; . . .f g:

Subsequent evaluation of the approximant at a given value of x may be carried out using E02RBF.

4 References

Baker G A Jr and Graves–Morris P R (1981) Padé approximants, Part 1: Basic theory encyclopaedia of
Mathematics and its Applications Addison–Wesley

Graves–Morris P R (1979) The numerical calculation of Padé approximants Padé Approximation and
its Applications. Lecture Notes in Mathematics (ed L Wuytack) 765 231–245 Adison–Wesley
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5 Arguments

1: IA – INTEGER Input
2: IB – INTEGER Input

On entry: IA must specify lþ 1 and IB must specify mþ 1, where l and m are the degrees of the
numerator and denominator of the approximant, respectively.

Constraint: IA � 1 and IB � 1.

3: CðICÞ – REAL (KIND=nag_wp) array Input

On entry: CðiÞ must specify, for i ¼ 1; 2; . . . ; lþmþ 1, the coefficient of xi�1 in the given power
series.

4: IC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which E02RAF is
called.

Constraint: IC � IAþ IB� 1.

5: AðIAÞ – REAL (KIND=nag_wp) array Output

On exit: Aðj þ 1Þ, for j ¼ 1; 2; . . . ; lþ 1, contains the coefficient aj in the numerator of the
approximant.

6: BðIBÞ – REAL (KIND=nag_wp) array Output

On exit: Bðk þ 1Þ, for k ¼ 1; 2; . . . ;mþ 1, contains the coefficient bk in the denominator of the
approximant.

7: WðJWÞ – REAL (KIND=nag_wp) array Workspace
8: JW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E02RAF is
called.

Constraint: JW � IB� 2� IBþ 3ð Þ.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, JW < IB� 2� IBþ 3ð Þ,
or IA < 1,
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or IB < 1,
or IC < IAþ IB� 1

(so there are insufficient coefficients in the given power series to calculate the desired
approximant).

IFAIL ¼ 2

The Padé approximant is degenerate.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The solution should be the best possible to the extent to which the solution is determined by the input
coefficients. It is recommended that you determine the locations of the zeros of the numerator and
denominator polynomials, both to examine compatibility with the analytic structure of the given
function and to detect defects. (Defects are nearby pole-zero pairs; defects close to x ¼ 0:0 characterise
ill-conditioning in the construction of the approximant.) Defects occur in regions where the
approximation is necessarily inaccurate. The example program calls C02AGF to determine the above
zeros.

It is easy to test the stability of the computed numerator and denominator coefficients by making small
perturbations of the original Maclaurin series coefficients (e.g., cl or clþm). These questions of intrinsic
error of the approximants and computational error in their calculation are discussed in Chapter 2 of
Baker and Graves–Morris (1981).

8 Parallelism and Performance

E02RAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E02RAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to m3.
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10 Example

This example calculates the 4=4½ � Padé approximant of ex (whose power-series coefficients are first
stored in the array C). The poles and zeros are then calculated to check the character of the 4=4½ � Padé
approximant.

10.1 Program Text

Program e02rafe

! E02RAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: c02agf, e02raf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: l = 4, m = 4, nout = 6
Integer, Parameter :: ia = l + 1
Integer, Parameter :: ib = m + 1
Integer, Parameter :: ic = ia + ib - 1
Integer, Parameter :: jw = ib*(2*ib+3)
Logical, Parameter :: scale = .True.

! .. Local Scalars ..
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: a(ia), b(ib), c(ic), dd(ia+ib), &

w(jw), work(2*(l+m+1)), z(2,l+m)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Write (nout,*) ’E02RAF Example Program Results’

! Power series coefficients in C

c(1) = 1.0E0_nag_wp

Do i = 1, ic - 1
c(i+1) = c(i)/real(i,kind=nag_wp)

End Do

ifail = 0
Call e02raf(ia,ib,c,ic,a,b,w,jw,ifail)

Write (nout,*)
Write (nout,*) ’The given series coefficients are’
Write (nout,99999) c(1:ic)
Write (nout,*)
Write (nout,*) ’Numerator coefficients’
Write (nout,99999) a(1:ia)
Write (nout,*)
Write (nout,*) ’Denominator coefficients’
Write (nout,99999) b(1:ib)

! Calculate zeros of the approximant using C02AGF
! First need to reverse order of coefficients

dd(ia:1:-1) = a(1:ia)

ifail = 0
Call c02agf(dd,l,scale,z,work,ifail)

Write (nout,*)
Write (nout,*) ’Zeros of approximant are at’
Write (nout,*)
Write (nout,*) ’ Real part Imag part’
Write (nout,99998)(z(1,i),z(2,i),i=1,l)
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! Calculate poles of the approximant using C02AGF
! Reverse order of coefficients

dd(ib:1:-1) = b(1:ib)

ifail = 0
Call c02agf(dd,m,scale,z,work,ifail)

Write (nout,*)
Write (nout,*) ’Poles of approximant are at’
Write (nout,*)
Write (nout,*) ’ Real part Imag part’
Write (nout,99998)(z(1,i),z(2,i),i=1,m)

99999 Format (1X,5E13.4)
99998 Format (1X,2E13.4)

End Program e02rafe

10.2 Program Data

None.

10.3 Program Results

E02RAF Example Program Results

The given series coefficients are
0.1000E+01 0.1000E+01 0.5000E+00 0.1667E+00 0.4167E-01
0.8333E-02 0.1389E-02 0.1984E-03 0.2480E-04

Numerator coefficients
0.1000E+01 0.5000E+00 0.1071E+00 0.1190E-01 0.5952E-03

Denominator coefficients
0.1000E+01 -0.5000E+00 0.1071E+00 -0.1190E-01 0.5952E-03

Zeros of approximant are at

Real part Imag part
-0.5792E+01 0.1734E+01
-0.5792E+01 -0.1734E+01
-0.4208E+01 0.5315E+01
-0.4208E+01 -0.5315E+01

Poles of approximant are at

Real part Imag part
0.5792E+01 0.1734E+01
0.5792E+01 -0.1734E+01
0.4208E+01 0.5315E+01
0.4208E+01 -0.5315E+01
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NAG Library Routine Document

E02RBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02RBF evaluates a rational function at a user-supplied point, given the numerator and denominator
coefficients.

2 Specification

SUBROUTINE E02RBF (A, IA, B, IB, X, ANS, IFAIL)

INTEGER IA, IB, IFAIL
REAL (KIND=nag_wp) A(IA), B(IB), X, ANS

3 Description

Given a real value x and the coefficients aj, for j ¼ 0; 1; . . . ; l and bk, for k ¼ 0; 1; . . . ;m, E02RBF
evaluates the rational function Xl

j¼0
ajx

j

Xm
k¼0

bkxk
:

using nested multiplication (see Conte and de Boor (1965)).

A particular use of E02RBF is to compute values of the Padé approximants determined by E02RAF.

4 References

Conte S D and de Boor C (1965) Elementary Numerical Analysis McGraw–Hill

Peters G and Wilkinson J H (1971) Practical problems arising in the solution of polynomial equations J.
Inst. Maths. Applics. 8 16–35

5 Arguments

1: AðIAÞ – REAL (KIND=nag_wp) array Input

On entry: Aðj þ 1Þ, for j ¼ 1; 2; . . . ; lþ 1, must contain the value of the coefficient aj in the
numerator of the rational function.

2: IA – INTEGER Input

On entry: the value of lþ 1, where l is the degree of the numerator.

Constraint: IA � 1.

3: BðIBÞ – REAL (KIND=nag_wp) array Input

On entry: Bðk þ 1Þ, for k ¼ 1; 2; . . . ;mþ 1, must contain the value of the coefficient bk in the
denominator of the rational function.

Constraint: if IB ¼ 1, Bð1Þ 6¼ 0:0.
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4: IB – INTEGER Input

On entry: the value of mþ 1, where m is the degree of the denominator.

Constraint: IB � 1.

5: X – REAL (KIND=nag_wp) Input

On entry: the point x at which the rational function is to be evaluated.

6: ANS – REAL (KIND=nag_wp) Output

On exit: the result of evaluating the rational function at the given point x.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The rational function is being evaluated at or near a pole.

IFAIL ¼ 2

On entry, IA < 1,
or IB < 1,
or Bð1Þ ¼ 0:0 when IB ¼ 1 (so the denominator is identically zero).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

A running error analysis for polynomial evaluation by nested multiplication using the recurrence
suggested by Kahan (see Peters and Wilkinson (1971)) is used to detect whether you are attempting to
evaluate the approximant at or near a pole.

8 Parallelism and Performance

E02RBF is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to lþm.

10 Example

This example first calls E02RAF to calculate the 4=4 Padé approximant to ex, and then uses E02RBF to
evaluate the approximant at x ¼ 0:1; 0:2; . . . ; 1:0.

10.1 Program Text

Program e02rbfe

! E02RBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02raf, e02rbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: l = 4, m = 4, nout = 6
Integer, Parameter :: ia = l + 1
Integer, Parameter :: ib = m + 1
Integer, Parameter :: ic = ia + ib - 1
Integer, Parameter :: iw = ib*(2*ib+3)
Logical, Parameter :: plot = .False.

! .. Local Scalars ..
Real (Kind=nag_wp) :: ans, tval, x
Integer :: i, ifail, nx

! .. Local Arrays ..
Real (Kind=nag_wp) :: a(ia), b(ib), cc(ic), w(iw)

! .. Intrinsic Procedures ..
Intrinsic :: abs, exp, real

! .. Executable Statements ..
If (.Not. plot) Then

Write (nout,*) ’E02RBF Example Program Results’
nx = 10

Else
nx = 30

End If

cc(1) = 1.0E0_nag_wp

Do i = 1, ic - 1
cc(i+1) = cc(i)/real(i,kind=nag_wp)

End Do

ifail = 0
Call e02raf(ia,ib,cc,ic,a,b,w,iw,ifail)

If (.Not. plot) Then
Write (nout,*)
Write (nout,*) ’ X Pade True’

End If
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Do i = 1, nx
x = real(i,kind=nag_wp)/10.0_nag_wp

ifail = 0
Call e02rbf(a,ia,b,ib,x,ans,ifail)

tval = exp(x)

If (plot) Then
Write (nout,99999) x, ans, tval, abs(tval-ans)/tval

Else
Write (nout,99998) x, ans, tval

End If
End Do

99999 Format (1X,F6.1,4E19.9)
99998 Format (1X,F6.1,3E15.5)

End Program e02rbfe

10.2 Program Data

None.

10.3 Program Results

E02RBF Example Program Results

X Pade True
0.1 0.11052E+01 0.11052E+01
0.2 0.12214E+01 0.12214E+01
0.3 0.13499E+01 0.13499E+01
0.4 0.14918E+01 0.14918E+01
0.5 0.16487E+01 0.16487E+01
0.6 0.18221E+01 0.18221E+01
0.7 0.20138E+01 0.20138E+01
0.8 0.22255E+01 0.22255E+01
0.9 0.24596E+01 0.24596E+01
1.0 0.27183E+01 0.27183E+01
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NAG Library Routine Document

E02ZAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02ZAF sorts two-dimensional data into rectangular panels.

2 Specification

SUBROUTINE E02ZAF (PX, PY, LAMDA, MU, M, X, Y, POINT, NPOINT, ADRES,
NADRES, IFAIL)

&

INTEGER PX, PY, M, POINT(NPOINT), NPOINT, ADRES(NADRES),
NADRES, IFAIL

&

REAL (KIND=nag_wp) LAMDA(PX), MU(PY), X(M), Y(M)

3 Description

A set of m data points with rectangular Cartesian coordinates xr; yr are sorted into panels defined by
lines parallel to the y and x axes. The intercepts of these lines on the x and y axes are given in
LAMDAðiÞ, for i ¼ 5; 6; . . . ; PX� 4 and MUðjÞ, for j ¼ 5; 6; . . . ; PY� 4, respectively. The subroutine
orders the data so that all points in a panel occur before data in succeeding panels, where the panels are
numbered from bottom to top and then left to right, with the usual arrangement of axes, as shown in the
diagram. Within a panel the points maintain their original order.

panel 4 8 12

panel 3 7 11

panel 2 6 10

panel 1 5 9

MU(7)

MU(6)

MU(5)

LAMDA(5) LAMDA(6)

Y

X

Figure 1
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A data point lying exactly on one or more panel sides is taken to be in the highest-numbered panel
adjacent to the point. The subroutine does not physically rearrange the data, but provides the array
POINT which contains a linked list for each panel, pointing to the data in that panel. The total number
of panels is PX� 7ð Þ � PY� 7ð Þ.

4 References

None.

5 Arguments

1: PX – INTEGER Input
2: PY – INTEGER Input

On entry: PX and PY must specify eight more than the number of intercepts on the x axis and y
axis, respectively.

Constraint: PX � 8 and PY � 8.

3: LAMDAðPXÞ – REAL (KIND=nag_wp) array Input

On entry: LAMDAð5Þ to LAMDAðPX� 4Þ must contain, in nondecreasing order, the intercepts
on the x axis of the sides of the panels parallel to the y axis.

4: MUðPYÞ – REAL (KIND=nag_wp) array Input

On entry: MUð5Þ to MUðPY� 4Þ must contain, in nondecreasing order, the intercepts on the y
axis of the sides of the panels parallel to the x axis.

5: M – INTEGER Input

On entry: the number m of data points.

6: XðMÞ – REAL (KIND=nag_wp) array Input
7: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the rth data point xr ; yrð Þ, for r ¼ 1; 2; . . . ;m.

8: POINTðNPOINTÞ – INTEGER array Output

On exit: for i ¼ 1; 2; . . . ;NPOINT, POINTðmþ iÞ ¼ I1 is the index of the first point in panel i,
POINTðI1Þ ¼ I2 is the index of the second point in panel i and so on.

POINTðInÞ ¼ 0 indicates that XðInÞ;YðInÞ was the last point in the panel.

The coordinates of points in panel i can be accessed in turn by means of the following
instructions:

IN = M + I
10 IN = POINT(IN)
IF (IN.EQ. 0) GOTO 20
XI = X(IN)
YI = Y(IN)
.
.
.
GOTO 10
20 ...

9: NPOINT – INTEGER Input

On entry: the dimension of the array POINT as declared in the (sub)program from which
E02ZAF is called.

Constraint: NPOINT � Mþ PX� 7ð Þ � PY� 7ð Þ.
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10: ADRESðNADRESÞ – INTEGER array Workspace
11: NADRES – INTEGER Input

On entry: the value PX� 7ð Þ � PY� 7ð Þ, the number of panels into which the x; yð Þ plane is
divided.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The intercepts in the array LAMDA, or in the array MU, are not in nondecreasing order.

IFAIL ¼ 2

On entry, PX < 8,
or PY < 8,
or M � 0,
or NADRES 6¼ PX� 7ð Þ � PY� 7ð Þ,
or NPOINT < Mþ PX� 7ð Þ � PY� 7ð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E02ZAF is not threaded in any implementation.
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9 Further Comments

The time taken is approximately proportional to m� log NPOINTð Þ.
This subroutine was written to sort two-dimensional data in the manner required by routine E02DAF.
The first 9 arguments of E02ZAF are the same as the arguments in E02DAF which have the same
name.

10 Example

This example reads in data points and the intercepts of the panel sides on the x and y axes; it calls
E02ZAF to set up the index array POINT; and finally it prints the data points in panel order.

10.1 Program Text

Program e02zafe

! E02ZAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e02zaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, iadres, ifail, m, nadres, npoint, &

px, py
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: lamda(:), mu(:), x(:), y(:)
Integer, Allocatable :: adres(:), point(:)

! .. Executable Statements ..
Write (nout,*) ’E02ZAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m
Read (nin,*) px, py
nadres = (px-7)*(py-7)
npoint = m + nadres
Allocate (adres(nadres),lamda(px),mu(py),x(m),y(m),point(npoint))

! Read data points and intercepts of panel sides

Read (nin,*)(x(i),y(i),i=1,m)

If (px>8) Then
Read (nin,*) lamda(5:(px-4))

End If

If (py>8) Then
Read (nin,*) mu(5:(py-4))

End If

! Sort points into panel order

ifail = 0
Call e02zaf(px,py,lamda,mu,m,x,y,point,npoint,adres,nadres,ifail)

! Output points in panel order

Do i = 1, nadres
Write (nout,*)
Write (nout,99999) ’Panel’, i
iadres = m + i
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loop: Do
iadres = point(iadres)

If (iadres<=0) Then
Exit loop

End If

Write (nout,99998) x(iadres), y(iadres)
End Do loop

End Do

99999 Format (1X,A,I4)
99998 Format (1X,2F7.2)

End Program e02zafe

10.2 Program Data

E02ZAF Example Program Data
10
9

10
0 0.77
0.70 1.06
1.44 0.33
0.21 0.44
1.01 0.50
1.84 0.02
0.71 1.95
1.00 1.20
0.54 0.04
1.53 0.18
1.00
0.80
1.20
0

10.3 Program Results

E02ZAF Example Program Results

Panel 1
0.00 0.77
0.21 0.44
0.54 0.04

Panel 2
0.70 1.06

Panel 3
0.71 1.95

Panel 4
1.44 0.33
1.01 0.50
1.84 0.02
1.53 0.18

Panel 5

Panel 6
1.00 1.20
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NAG Library Routine Document

E02ZKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02ZKF either initializes or resets the optional parameter arrays or sets a single optional parameter for
supported problem solving routines in Chapter E02. Currently, only E02JDF is supported.

2 Specification

SUBROUTINE E02ZKF (OPTSTR, IOPTS, LIOPTS, OPTS, LOPTS, IFAIL)

INTEGER IOPTS(LIOPTS), LIOPTS, LOPTS, IFAIL
REAL (KIND=nag_wp) OPTS(LOPTS)
CHARACTER(*) OPTSTR

3 Description

E02ZKF has three purposes: to initialize optional parameter arrays, to reset all optional parameters to
their default values or to set a single optional parameter to a user-supplied value.

Optional parameters and their values are, in general, presented as a character string, OPTSTR, of the
form ‘option ¼ optval’; alphabetic characters can be supplied in either upper or lower case. Both
option and optval may consist of one or more tokens separated by white space. The tokens that
comprise optval will normally be either an integer, real or character value as defined in the description
of the specific optional argument. In addition all optional parameters can take an optval DEFAULT
which resets the optional parameter to its default value.

It is imperative that optional parameter arrays are initialized before any options are set, before the
relevant problem solving routine is called and before any options are queried using E02ZLF. To
initialize the optional parameter arrays IOPTS and OPTS for a specific problem solving routine, the
option Initialize is used with optval identifying the problem solving routine to be called, via its short
name. For example, to initialize optional parameter arrays to be passed to E02JDF, E02ZKF is called as
follows:

CALL E02ZKF(’Initialize = e02jdf’, IOPTS, LIOPTS, OPTS, LOPTS, IFAIL)

Information relating to available option names and their corresponding valid values is given in
Section 11 in E02JDF.

4 References

None.
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5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option to be set.

Initialize ¼ routine name
Initialize the optional parameter arrays IOPTS and OPTS for use with routine
routine name, where routine name is the short name of the problem solving routine
you wish to use.

Defaults
Resets all options to their default values.

option ¼ optval
See Section 11 in E02JDF for details of valid values for option and optval. The equals sign
(¼) delimiter must be used to separate the option from its optval.

The processing of OPTSTR does not depend on its case. Each token in the option and optval
component must be separated by at least one space.

2: IOPTSðLIOPTSÞ – INTEGER array Communication Array

On entry: optional parameter array.

If OPTSTR has the form Initialize ¼ routine name, the contents of IOPTS need not be set.

Otherwise, IOPTS must not have been altered since the last call to E02ZKF, E02ZLF or the
selected problem solving routine or suite of routines.

On exit: dependent on the contents of OPTSTR, either an initialized, reset or updated version of
the optional parameter array.

3: LIOPTS – INTEGER Input

On entry: the length of the array IOPTS.

Constraint: unless otherwise stated in the documentation for a specific, supported, problem
solving routine, LIOPTS � 100.

4: OPTSðLOPTSÞ – REAL (KIND=nag_wp) array Communication Array

On entry: optional parameter array.

If OPTSTR has the form Initialize ¼ routine name, the contents of OPTS need not be set.

Otherwise, OPTS must not have been altered since the last call to E02ZKF, E02ZLF or the
selected problem solving routine or suite of routines.

On exit: dependent on the contents of OPTSTR, either an initialized, reset or updated version of
the optional parameter array.

5: LOPTS – INTEGER Input

On entry: the length of the array OPTS.

Constraint: unless otherwise stated in the documentation for a specific, supported, problem
solving routine, LOPTS � 100.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, the optional parameter in OPTSTR was not recognized: OPTSTR ¼ valueh i.

IFAIL ¼ 12

On entry, the expected delimiter ‘¼’ was not found in OPTSTR: OPTSTR ¼ valueh i.

IFAIL ¼ 13

On entry, could not convert the specified optval to an integer: OPTSTR ¼ valueh i.
On entry, could not convert the specified optval to a real: OPTSTR ¼ valueh i.

IFAIL ¼ 14

On entry, attempting to initialize the optional parameter arrays but specified routine name was
not valid: name ¼ valueh i.

IFAIL ¼ 15

On entry, the optval supplied for the integer optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 16

On entry, the optval supplied for the real optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 17

On entry, the optval supplied for the character optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 21

On entry, either the option arrays have not been initialized or they have been corrupted.

IFAIL ¼ 31

On entry, LIOPTS ¼ valueh i.
Constraint: LIOPTS � valueh i.

IFAIL ¼ 51

On entry, LOPTS ¼ valueh i.
Constraint: LOPTS � valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E02ZKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

See the example programs associated with the problem solving routine you wish to use for a
demonstration of how to use E02ZKF to initialize option arrays and set options.
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NAG Library Routine Document

E02ZLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02ZLF is used to query the value of optional parameters available to supported problem solving
routines in Chapter E02. Currently, only E02JDF is supported.

2 Specification

SUBROUTINE E02ZLF (OPTSTR, IVALUE, RVALUE, CVALUE, OPTYPE, IOPTS, OPTS,
IFAIL)

&

INTEGER IVALUE, OPTYPE, IOPTS(*), IFAIL
REAL (KIND=nag_wp) RVALUE, OPTS(*)
CHARACTER(*) OPTSTR, CVALUE

3 Description

E02ZLF is used to query the current values of options. It is necessary to initalize optional parameter
arrays using E02ZKF before any options are queried.

E02ZLF will normally return either an integer, real or character value dependent upon the type
associated with the optional parameter being queried. Whether the option queried is of integer, real or
character type is indicated by the returned value of OPTYPE.

Information on optional parameter names and whether these options are real, integer or character can be
found in Section 11 in E02JDF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option whose current value is required. See Section 11 in
E02JDF for information on valid options. In addition, the following is a valid option:

Identify
E02ZLF returns in CVALUE the routine name supplied to E02ZKF when the optional
parameter arrays IOPTS and OPTS were initialized.

2: IVALUE – INTEGER Output

On exit: if the optional parameter supplied in OPTSTR is an integer valued argument, IVALUE
will hold its current value.

3: RVALUE – REAL (KIND=nag_wp) Output

On exit: if the optional parameter supplied in OPTSTR is a real valued argument, RVALUE will
hold its current value.
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4: CVALUE – CHARACTER(*) Output

Note: the maximum length of the string returned in CVALUE depends on the problem solving
routine in use. See Section 11.1 of the relevant solver.

On exit: if the optional parameter supplied in OPTSTR is a character valued argument, CVALUE
will hold its current value, unless Identify is specified (see OPTSTR).

5: OPTYPE – INTEGER Output

On exit: indicates whether the optional parameter supplied in OPTSTR is an integer, real or
character valued argument and hence which of IVALUE, RVALUE or CVALUE holds the current
value.

OPTYPE ¼ 1
OPTSTR is an integer valued optional parameter, its current value has been returned in
IVALUE.

OPTYPE ¼ 2
OPTSTR is a real valued optional parameter, its current value has been returned in
RVALUE.

OPTYPE ¼ 3
OPTSTR is a character valued optional parameter, its current value has been returned in
CVALUE.

6: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to E02ZKF.

7: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to E02ZKF.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, the optional parameter in OPTSTR was not recognized: OPTSTR ¼ valueh i.

E02ZLF NAG Library Manual

E02ZLF.2 Mark 26



IFAIL ¼ 41

On entry, OPTSTR indicates a character optional parameter, but CVALUE is too short to hold the
stored value. The returned value will be truncated.

IFAIL ¼ 61

On entry, either the option arrays have not been initialized or they have been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E02ZLF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See the example programs associated with the problem solving routine you wish to use for a
demonstration of how to use E02ZLF to query options.
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NAG Library Chapter Contents

E04 – Minimizing or Maximizing a Function

E04 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

E04ABA 20 nagf_opt_one_var_func
Minimum, function of one variable, using function values only

E04ABF 6 nagf_opt_one_var_func_old
Minimum, function of one variable, using function values only

E04BBA 20 nagf_opt_one_var_deriv
Minimum, function of one variable, using first derivative

E04BBF 6 nagf_opt_one_var_deriv_old
Minimum, function of one variable, using first derivative

E04CBF 22 nagf_opt_uncon_simplex
Unconstrained minimum, Nelder–Mead simplex algorithm, using function
values only

E04DGA 20 nagf_opt_uncon_conjgrd_comp
Unconstrained minimum, preconditioned conjugate gradient algorithm,
using first derivatives (comprehensive)

E04DGF 12 nagf_opt_uncon_conjgrd_comp_old
Unconstrained minimum, preconditioned conjugate gradient algorithm,
using first derivatives (comprehensive)

E04DJA 20 nagf_opt_uncon_conjgrd_option_file
Supply optional parameter values for E04DGF/E04DGA from external file

E04DJF 12 nagf_opt_uncon_conjgrd_option_file_old
Supply optional parameter values for E04DGF/E04DGA from external file

E04DKA 20 nagf_opt_uncon_conjgrd_option_string
Supply optional parameter values to E04DGF/E04DGA from a character
string

E04DKF 12 nagf_opt_uncon_conjgrd_option_string_old
Supply optional parameter values to E04DGF/E04DGA from a character
string

E04FCF 7 nagf_opt_lsq_uncon_mod_func_comp
Unconstrained minimum of a sum of squares, combined Gauss–Newton
and modified Newton algorithm, using function values only
(comprehensive)

E04FYF 18 nagf_opt_lsq_uncon_mod_func_easy
Unconstrained minimum of a sum of squares, combined Gauss–Newton
and modified Newton algorithm, using function values only (easy-to-use)

E04GBF 7 nagf_opt_lsq_uncon_quasi_deriv_comp
Unconstrained minimum of a sum of squares, combined Gauss–Newton
and quasi-Newton algorithm, using first derivatives (comprehensive)

E04GDF 7 nagf_opt_lsq_uncon_mod_deriv_comp
Unconstrained minimum of a sum of squares, combined Gauss–Newton
and modified Newton algorithm, using first derivatives (comprehensive)

E04GYF 18 nagf_opt_lsq_uncon_quasi_deriv_easy
Unconstrained minimum of a sum of squares, combined Gauss–Newton
and quasi-Newton algorithm, using first derivatives (easy-to-use)

E04GZF 18 nagf_opt_lsq_uncon_mod_deriv_easy
Unconstrained minimum of a sum of squares, combined Gauss–Newton
and modified Newton algorithm, using first derivatives (easy-to-use)

E04HCF 6 nagf_opt_check_deriv
Check user's routine for calculating first derivatives of function
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E04HDF 6 nagf_opt_check_deriv2
Check user's routine for calculating second derivatives of function

E04HEF 7 nagf_opt_lsq_uncon_mod_deriv2_comp
Unconstrained minimum of a sum of squares, combined Gauss–Newton
and modified Newton algorithm, using second derivatives (comprehensive)

E04HYF 18 nagf_opt_lsq_uncon_mod_deriv2_easy
Unconstrained minimum of a sum of squares, combined Gauss–Newton
and modified Newton algorithm, using second derivatives (easy-to-use)

E04JCF 23 nagf_opt_bounds_bobyqa_func
Bound constrained minimum, model-based algorithm, using function values
only

E04JYF 18 nagf_opt_bounds_quasi_func_easy
Bound constrained minimum, quasi-Newton algorithm, using function
values only (easy-to-use)

E04KDF 6 nagf_opt_bounds_mod_deriv_comp
Bound constrained minimum, modified Newton algorithm, using first
derivatives (comprehensive)

E04KYF 18 nagf_opt_bounds_quasi_deriv_easy
Bound constrained minimum, quasi-Newton algorithm, using first
derivatives (easy-to-use)

E04KZF 18 nagf_opt_bounds_mod_deriv_easy
Bound constrained minimum, modified Newton algorithm, using first
derivatives (easy-to-use)

E04LBF 6 nagf_opt_bounds_mod_deriv2_comp
Bound constrained minimum, modified Newton algorithm, using first and
second derivatives (comprehensive)

E04LYF 18 nagf_opt_bounds_mod_deriv2_easy
Bound constrained minimum, modified Newton algorithm, using first and
second derivatives (easy-to-use)

E04MFA 20 nagf_opt_lp_solve
Linear programming (LP), dense, active-set method

E04MFF 16 nagf_opt_lp_solve_old
Linear programming (LP), dense, active-set method

E04MGA 20 nagf_opt_lp_option_file
Supply optional parameter values for E04MFF/E04MFA from external file

E04MGF 16 nagf_opt_lp_option_file_old
Supply optional parameter values for E04MFF/E04MFA from external file

E04MHA 20 nagf_opt_lp_option_string
Supply optional parameter values to E04MFF/E04MFA from a character
string

E04MHF 16 nagf_opt_lp_option_string_old
Supply optional parameter values to E04MFF/E04MFA from a character
string

E04MWF 26 nagf_opt_miqp_mps_write
Write MPS data file defining LP, QP, MILP or MIQP problem

E04MXF 24 nagf_opt_miqp_mps_read
Read MPS data file defining LP, QP, MILP or MIQP problem

E04MZF 18 nagf_opt_qpconvex1_sparse_mps
Read MPS data file defining LP or QP problem, deprecated

E04NCA 20 nagf_opt_lsq_lincon_solve
Linear programming (LP) convex quadratic programming (QP) or linearly-
constrained linear least squares problem, dense

E04NCF 12 nagf_opt_lsq_lincon_solve_old
Linear programming (LP) convex quadratic programming (QP) or linearly-
constrained linear least squares problem, dense

E04NDA 20 nagf_opt_lsq_lincon_option_file
Supply optional parameter values for E04NCF/E04NCA from external file

E04NDF 12 nagf_opt_lsq_lincon_option_file_old
Supply optional parameter values for E04NCF/E04NCA from external file
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E04NEA 20 nagf_opt_lsq_lincon_option_string
Supply optional parameter values to E04NCF/E04NCA from a character
string

E04NEF 12 nagf_opt_lsq_lincon_option_string_old
Supply optional parameter values to E04NCF/E04NCA from a character
string

E04NFA 20 nagf_opt_qp_dense_solve
General (possibly non-convex) quadratic programming (QP) , dense,
active-set method

E04NFF 16 nagf_opt_qp_dense_solve_old
General (possibly non-convex) quadratic programming (QP) , dense,
active-set method

E04NGA 20 nagf_opt_qp_dense_option_file
Supply optional parameter values for E04NFF/E04NFA from external file

E04NGF 16 nagf_opt_qp_dense_option_file_old
Supply optional parameter values for E04NFF/E04NFA from external file

E04NHA 20 nagf_opt_qp_dense_option_string
Supply optional parameter values to E04NFF/E04NFA from a character
string

E04NHF 16 nagf_opt_qp_dense_option_string_old
Supply optional parameter values to E04NFF/E04NFA from a character
string

E04NKA 20 nagf_opt_qpconvex1_sparse_solve
Linear programming (LP) or convex quadratic programming (QP), sparse,
active-set method

E04NKF 18 nagf_opt_qpconvex1_sparse_solve_old
Linear programming (LP) or convex quadratic programming (QP), sparse,
active-set method

E04NLA 20 nagf_opt_qpconvex1_sparse_option_file
Supply optional parameter values for E04NKF/E04NKA from external file

E04NLF 18 nagf_opt_qpconvex1_sparse_option_file_old
Supply optional parameter values for E04NKF/E04NKA from external file

E04NMA 20 nagf_opt_qpconvex1_sparse_option_string
Supply optional parameter values to E04NKF/E04NKA from a character
string

E04NMF 18 nagf_opt_qpconvex1_sparse_option_string_old
Supply optional parameter values to E04NKF/E04NKA from a character
string

E04NPF 21 nagf_opt_qpconvex2_sparse_init
Initialization routine for E04NQF

E04NQF 21 nagf_opt_qpconvex2_sparse_solve
Linear programming (LP) or convex quadratic programming (QP), sparse,
active-set method, recommended

E04NRF 21 nagf_opt_qpconvex2_sparse_option_file
Supply optional parameter values for E04NQF from external file

E04NSF 21 nagf_opt_qpconvex2_sparse_option_string
Set a single option for E04NQF from a character string

E04NTF 21 nagf_opt_qpconvex2_sparse_option_integer_set
Set a single option for E04NQF from an integer argument

E04NUF 21 nagf_opt_qpconvex2_sparse_option_double_set
Set a single option for E04NQF from a real argument

E04NXF 21 nagf_opt_qpconvex2_sparse_option_integer_get
Get the setting of an integer valued option of E04NQF

E04NYF 21 nagf_opt_qpconvex2_sparse_option_double_get
Get the setting of a real valued option of E04NQF

E04PCF 24 nagf_bnd_lin_lsq
Computes the least squares solution to a set of linear equations subject to
fixed upper and lower bounds on the variables. An option is provided to
return a minimal length solution if a solution is not unique
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E04RAF 26 nagf_opt_handle_init
Initialization of a handle for the NAG optimization modelling suite for
problems, such as, quadratic programming (QP), nonlinear programming
(NLP), linear semidefinite programming (SDP) or SDP with bilinear matrix
inequalities (BMI-SDP)

E04RDF 26 nagf_opt_sdp_read_sdpa
A reader of sparse SDPA data files for linear SDP problems

E04REF 26 nagf_opt_handle_set_linobj
Define a linear objective function to a problem initialized by E04RAF

E04RFF 26 nagf_opt_handle_set_quadobj
Define a linear or a quadratic objective function to a problem initialized by
E04RAF

E04RGF 26 nagf_opt_handle_set_nlnobj
Define a nonlinear objective function to a problem initialized by E04RAF

E04RHF 26 nagf_opt_handle_set_simplebounds
Define bounds of variables of a problem initialized by E04RAF

E04RJF 26 nagf_opt_handle_set_linconstr
Define a block of linear constraints to a problem initialized by E04RAF

E04RKF 26 nagf_opt_handle_set_nlnconstr
Define a block of nonlinear constraints to a problem initialized by E04RAF

E04RLF 26 nagf_opt_handle_set_nlnhess
Define a structure of Hessian of the objective, constraints or the Lagrangian
to a problem initialized by E04RAF

E04RNF 26 nagf_opt_handle_set_linmatineq
Add one or more linear matrix inequality constraints to a problem
initialized by E04RAF

E04RPF 26 nagf_opt_handle_set_quadmatineq
Define bilinear matrix terms to a problem initialized by E04RAF

E04RYF 26 nagf_opt_handle_print
Print information about a problem handle initialized by E04RAF

E04RZF 26 nagf_opt_handle_free
Destroy the problem handle initialized by E04RAF and deallocate all the
memory used

E04STF 26 nagf_opt_handle_solve_ipopt
Run an interior point solver on a sparse nonlinear programming problem
(NLP) initialized by E04RAF and defined by other routines from the suite

E04SVF 26 nagf_opt_handle_solve_pennon
Run the Pennon solver on a compatible problem initialized by E04RAF and
defined by other routines from the suite, such as, semidefinite programming
(SDP) and SDP with bilinear matrix inequalities (BMI)

E04UCA 20 nagf_opt_nlp1_solve
Nonlinear programming (NLP), dense, active-set SQP method, using
function values and optionally first derivatives, recommended

E04UCF 12 nagf_opt_nlp1_solve_old
Nonlinear programming (NLP), dense, active-set SQP method, using
function values and optionally first derivatives, recommended

E04UDA 20 nagf_opt_nlp1_option_file
Supply optional parameter values for E04UCF/E04UCA or E04UFF/
E04UFA from external file

E04UDF 12 nagf_opt_nlp1_option_file_old
Supply optional parameter values for E04UCF/E04UCA or E04UFF/
E04UFA from external file

E04UEA 20 nagf_opt_nlp1_option_string
Supply optional parameter values to E04UCF/E04UCA or E04UFF/
E04UFA from a character string

E04UEF 12 nagf_opt_nlp1_option_string_old
Supply optional parameter values to E04UCF/E04UCA or E04UFF/
E04UFA from a character string

Contents – E04 NAG Library Manual

e04conts.4 Mark 26



E04UFA 20 nagf_opt_nlp1_rcomm
Nonlinear programming (NLP), dense, active-set, SQP method, using
function values and optionally first derivatives (reverse communication,
comprehensive)

E04UFF 18 nagf_opt_nlp1_rcomm_old
Nonlinear programming (NLP), dense, active-set, SQP method, using
function values and optionally first derivatives (reverse communication,
comprehensive)

E04UGA 20 nagf_opt_nlp1_sparse_solve
Nonlinear programming (NLP), sparse, active-set SQP method, using
function values and optionally first derivatives

E04UGF 19 nagf_opt_nlp1_sparse_solve_old
Nonlinear programming (NLP), sparse, active-set SQP method, using
function values and optionally first derivatives

E04UHA 20 nagf_opt_withdraw_nlp1_sparse_option_file
Supply optional parameter values for E04UGF/E04UGA from external file

E04UHF 19 nagf_opt_nlp1_sparse_option_file_old
Supply optional parameter values for E04UGF/E04UGA from external file

E04UJA 20 nagf_opt_nlp1_withdraw_sparse_option_string
Supply optional parameter values to E04UGF/E04UGA from a character
string

E04UJF 19 nagf_opt_nlp1_sparse_option_string_old
Supply optional parameter values to E04UGF/E04UGA from a character
string

E04UQA 20 nagf_opt_lsq_gencon_deriv_option_file
Supply optional parameter values for E04USF/E04USA from external file

E04UQF 14 nagf_opt_lsq_gencon_deriv_option_file_old
Supply optional parameter values for E04USF/E04USA from external file

E04URA 20 nagf_opt_lsq_gencon_deriv_option_string
Supply optional parameter values to E04USF/E04USA from a character
string

E04URF 14 nagf_opt_lsq_gencon_deriv_option_string_old
Supply optional parameter values to E04USF/E04USA from a character
string

E04USA 20 nagf_opt_lsq_gencon_deriv
Minimum of a sum of squares, nonlinear constraints, dense, active-set SQP
method, using function values and optionally first derivatives

E04USF 14 nagf_opt_lsq_gencon_deriv_old
Minimum of a sum of squares, nonlinear constraints, dense, active-set SQP
method, using function values and optionally first derivatives

E04VGF 21 nagf_opt_nlp2_sparse_init
Initialization routine for E04VHF

E04VHF 21 nagf_opt_nlp2_sparse_solve
Nonlinear programming (NLP), sparse, active-set SQP method, using
function values and optionally first derivatives, recommended

E04VJF 21 nagf_opt_nlp2_sparse_jacobian
Determine the pattern of nonzeros in the Jacobian matrix for E04VHF

E04VKF 21 nagf_opt_nlp2_sparse_option_file
Supply optional parameter values for E04VHF from external file

E04VLF 21 nagf_opt_nlp2_sparse_option_string
Set a single option for E04VHF from a character string

E04VMF 21 nagf_opt_nlp2_sparse_option_integer_set
Set a single option for E04VHF from an integer argument

E04VNF 21 nagf_opt_nlp2_sparse_option_double_set
Set a single option for E04VHF from a real argument

E04VRF 21 nagf_opt_nlp2_sparse_option_integer_get
Get the setting of an integer valued option of E04VHF

E04VSF 21 nagf_opt_nlp2_sparse_option_double_get
Get the setting of a real valued option of E04VHF
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E04WBF 20 nagf_opt_init
Initialization routine for E04DGA, E04MFA, E04NCA, E04NFA,
E04NKA, E04UCA, E04UFA, E04UGA and E04USA

E04WCF 21 nagf_opt_nlp2_init
Initialization routine for E04WDF

E04WDF 21 nagf_opt_nlp2_solve
Nonlinear programming (NLP), dense, active-set SQP method, using
function values and optionally first derivatives

E04WEF 21 nagf_opt_nlp2_option_file
Supply optional parameter values for E04WDF from external file

E04WFF 21 nagf_opt_nlp2_option_string
Set a single option for E04WDF from a character string

E04WGF 21 nagf_opt_nlp2_option_integer_set
Set a single option for E04WDF from an integer argument

E04WHF 21 nagf_opt_nlp2_option_double_set
Set a single option for E04WDF from a real argument

E04WKF 21 nagf_opt_nlp2_option_integer_get
Get the setting of an integer valued option of E04WDF

E04WLF 21 nagf_opt_nlp2_option_double_get
Get the setting of a real valued option of E04WDF

E04XAA 20 nagf_opt_estimate_deriv
Estimate (using numerical differentiation) gradient and/or Hessian of a
function

E04XAF 12 nagf_opt_estimate_deriv_old
Estimate (using numerical differentiation) gradient and/or Hessian of a
function

E04YAF 7 nagf_opt_lsq_check_deriv
Check user's routine for calculating Jacobian of first derivatives

E04YBF 7 nagf_opt_lsq_check_hessian
Check user's routine for calculating Hessian of a sum of squares

E04YCF 11 nagf_opt_lsq_uncon_covariance
Covariance matrix for nonlinear least squares problem (unconstrained)

E04ZMF 26 nagf_opt_handle_opt_set
Option setting routine for the solvers from the NAG optimization
modelling suite

E04ZNF 26 nagf_opt_handle_opt_get
Option getting routine for the solvers from the NAG optimization
modelling suite

E04ZPF 26 nagf_opt_handle_opt_set_file
Option setting routine for the solvers from the NAG optimization
modelling suite from external file
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1 Scope of the Chapter

This chapter provides routines for solving various mathematical optimization problems by solvers based
on local stopping criteria. The main classes of problems covered in this chapter are:

Linear Programming (LP) – dense and sparse;

Quadratic Programming (QP) – convex and nonconvex, dense and sparse;

Nonlinear Programming (NLP) – dense and sparse, based on active-set SQP methods and
interior point method (IPM);

Semidefinite Programming (SDP) – both linear matrix inequalities (LMI) and bilinear matrix
inequalities (BMI);

Derivative-free Optimization (DFO);

Least Squares (LSQ), data fitting – linear and nonlinear, constrained and unconstrained.

For a full overview of the functionality offered in this chapter, see Section 5 or the Chapter Contents
(Chapter E04).

See also other chapters in the Library relevant to optimization:

Chapter E05 contains routines to solve global optimization problems;

Chapter H addresses problems arising in operational research and focuses on Mixed Integer
Programming (MIP);

Chapters F07 and F08 include routines for linear algebra and in particular unconstrained linear
least squares;

Chapter E02 focuses on curve and surface fitting, in which linear data fitting in l1 norm might be
of interest.

This introduction is only a brief guide to the subject of optimization designed for the casual user. It
discusses a classification of the optimization problems and presents an overview of the algorithms and
their stopping criteria to assist choosing the right solver for a particular problem. Anyone with a
difficult or protracted problem to solve will find it beneficial to consult a more detailed text, see Gill et
al. (1981), Fletcher (1987) or Nocedal and Wright (1999). If you are unfamiliar with the mathematics of
the subject you may find Sections 2.1, 2.2, 2.3, 2.6 and 3 a useful starting point.

2 Background to the Problems

2.1 Introduction to Mathematical Optimization

Mathematical Optimization, also known as Mathematical Programming, refers to the problem of finding
values of the inputs from a given set so that a function (called the objective function) is minimized or
maximized. The inputs are called decision variables, primal variables or just variables. The given set
from which the decision variables are selected is referred to as a feasible set and might be defined as a
domain where constraints expressed as functions of the decision variables hold certain values. Each
point of the feasible set is called a feasible point.

A general mathematical formulation of such a problem might be written as

minimize f xð Þ
subject to x 2 F

where x denotes the decision variables, f xð Þ the objective function and F the feasibility set. In this
chapter we assume that F � R

n. Since maximization of the objective function f xð Þ is equivalent to
minimizing �f xð Þ, only minimization is considered further in the text. Some routines allow you to
specify whether you are solving a minimization or maximization problem, carrying out the required
transformation of the objective function in the latter case.

A point x� is said to be a local minimum of a function f if it is feasible (x� 2 F ) and if f xð Þ � f x�ð Þ
for all x 2 F near x�. A point x� is a global minimum if it is a local minimum and f xð Þ � f x�ð Þ for
all feasible x. The solvers in this chapter are based on algorithms which seek only a local minimum,
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however, many problems (such as convex optimization problems) have only one local minimum. This is
also the global minimum. In such cases the Chapter E04 solvers find the global minimum. See Chapter
E05 for solvers which try to find a global solution even for nonconvex functions.

2.2 Classification of Optimization Problems

There is no single efficient solver for all optimization problems. Therefore it is important to choose a
solver which matches the problem and any specific needs as closely as possible. A more generic solver
might be applied, however, the performance suffers in some cases depending on the underlying
algorithm.

There are various criteria to help to classify optimization problems into particular categories. The main
criteria are as follows:

Type of objective function;

Type of constraints;

Size of the problem;

Smoothness of the data and available derivative information.

Each of the criterion is discussed below to give the necessary information to identify the class of the
optimization problem. Section 2.5 presents the basic properties of the algorithms and Section 3 advises
on the choice of particular routines in the chapter.

2.2.1 Types of objective functions

In general, if there is a structure in the problem the solver should benefit from it. For example, a solver
for problems with the sum of squares objective should work better than when this objective is treated as
a general nonlinear objective. Therefore it is important to recognize typical types of the objective
functions.

An optimization problem which has no objective is equivalent to having a constant zero objective, i.e.,
f xð Þ ¼ 0. It is usually called a feasible point problem. The task is to then find any point which
satisfies the constraints.

A linear objective function is a function which is linear in all variables and therefore can be
represented as

f xð Þ ¼ cTxþ c0
where c 2 R

n. Scalar c0 has no influence on the choice of decision variables x and is usually omitted. It
will not be used further in this text.

A quadratic objective function is an extension of a linear function with quadratic terms as follows:

f xð Þ ¼ 1

2
xTHxþ cTx:

Here H is a real symmetric n� n matrix. In addition, if H is positive semidefinite (all its eigenvalues
are non-negative), the objective is convex.

A general nonlinear objective function is any f : Rn ! R without a special structure.

Special consideration is given to the objective function in the form of a sum of squares of functions,
such as

f xð Þ ¼
Xm
i¼1
r2i xð Þ

where ri : R
n ! R; often called residual functions. This form of the objective plays a key role in data

fitting solved as a least squares problem as shown in Section 2.2.3.
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2.2.2 Types of constraints

Not all optimization problems have to have constraints. If there are no restrictions on the choice of x
except that x 2 F ¼ R

n, the problem is called unconstrained and thus every point is a feasible point.

Simple bounds on decision variables x 2 R
n (also known as box constaints or bound constraints)

restrict the value of the variables, e.g., x5 � 10. They might be written in a general form as

lxi � xi � uxi ; for i ¼ 1; . . . ; n

or in the vector notation as

lx � x � ux
where lx and ux are n-dimensional vectors. Note that lower and upper bounds are specified for all the
variables. By conceptually allowing lxi ¼ �1 and uxi ¼ þ1 or lxi ¼ uxi full generality in various
types of constraints is allowed, such as unconstrained variables, one-sided inequalities, ranges or
equalities (fixing the variable).

The same format of bounds is adopted to linear and nonlinear constraints in the whole chapter. Note
that for the purpose of passing infinite bounds to the routines, all values above a certain threshold
(typically 1020) are treated as þ1.

Linear constraints are defined as constraint functions that are linear in all of their variables, e.g.,
3x1 þ 2x2 � 4. They can be stated in a matrix form as

lB � Bx � uB
where B is a general mB � n rectangular matrix and lB and uB are mB-dimensional vectors. Each row
of B represents linear coefficients of one linear constraint. The same rules for bounds apply as in the
simple bounds case.

Although the bounds on xi could be included in the definition of linear constraints, it is recommended
to distinguish between them for reasons of computational efficiency as most of the solvers treat simple
bounds explicitly.

A set of mg nonlinear constraints may be defined in terms of a nonlinear function g : Rn ! R
mg and

the bounds lg and ug which follow the same format as simple bounds and linear constraints:

lg � g xð Þ � ug:
Although the linear constraints could be included in the definition of nonlinear constraints, again we
prefer to distinguish between them for reasons of computational efficiency.

A matrix constraint (or matrix inequality) is a constraint on eigenvalues of a matrix operator. More
precisely, let Sm denote the space of real symmetric matrices m by m and let A be a matrix operator
A : Rn ! S

m, i.e., it assigns a symmetric matrix A xð Þ for each x. The matrix constraint can be
expressed as

A xð Þ � 0

where the inequality S � 0 for S 2 S
m is meant in the eigenvalue sense, namely all eigenvalues of the

matrix S should be non-negative (the matrix should be positive semidefinite).

There are two types of matrix constraints allowed in the current mark of the Library. The first is linear
matrix inequality (LMI) formulated as

A xð Þ ¼
Xn
i¼1
xiAi �A0 � 0

and the second one, bilinear matrix inequality (BMI), stated as

A xð Þ ¼
Xn
i;j¼1

xixjQij þ
Xn
i¼1
xiAi �A0 � 0:

Here all matrices Ai, Qij are given real symmetric matrices of the same dimension. Note that the latter
type is in fact quadratic in x, nevertheless, it is referred to as bilinear for historical reasons.
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2.2.3 Typical classes of optimization problems

Specific combinations of the types of the objective functions and constraints give rise to various classes
of optimization problems. The common ones are presented below. It is always advisable to consider the
closest formulation which covers your problem when choosing the solver. For more information see
classical texts such as Dantzig (1963), Gill et al. (1981), Fletcher (1987), Nocedal and Wright (1999) or
ChvÄtal (1983).

A Linear Programming (LP) problem is a problem with a linear objective function, linear constraints
and simple bounds. It can be written as follows:

minimize
x2Rn

cTx

subject to lB � Bx � uB
lx � x � ux

Quadratic Programming (QP) problems optimize a quadratic objective function over a set given by
linear constraints and simple bounds. Depending on the convexity of the objective function, we can
distinguish between convex and nonconvex (or general) QP.

minimize
x2Rn

1
2x

THxþ cTx
subject to lB � Bx � uB

lx � x � ux
Nonlinear Programming (NLP) problems allow a general nonlinear objective function f xð Þ and any of
the nonlinear, linear or bound constraints. Special cases when some (or all) of the constraints are
missing are termed as unconstrained, bound-constrained or linearly-constrained nonlinear program-
ming and might have a specific solver as some algorithms take special provision for each of the
constraint type. Problems with a linear or quadratic objective and nonlinear constraints should be still
solved as general NLPs.

minimize
x2Rn

f xð Þ
subject to lg � g xð Þ � ug

lB � Bx � uB
lx � x � ux

Semidefinite Programming (SDP) typically refers to linear semidefinite programming thus a problem
with a linear objective function, linear constraints and linear matrix inequalities:

minimize
x2Rn

cTx

subject to
Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA

lB � Bx � uB
lx � x � ux

This problem can be extended with a quadratic objective and bilinear (in fact quadratic) matrix
inequalities. We refer to it as a semidefinite programming problem with bilinear matrix inequalities
(BMI-SDP):

minimize
x2Rn

1
2x

THxþ cTx

subject to
Xn
i;j¼1

xixjQ
k
ij þ

Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA

lB � Bx � uB
lx � x � ux

A least squares (LSQ) problem is a problem where the objective function in the form of sum of
squares is minimized subject to usual constraints. If the residual functions ri xð Þ are linear or nonlinear,
the problem is known as linear or nonlinear least squares, respectively. Not all types of the
constraints need to be present which brings up special cases of unconstrained, bound-constrained or
linearly-constrained least squares problems as in NLP .
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minimize
x2Rn

Xm
i¼1
r2i xð Þ

subject to lg � g xð Þ � ug
lB � Bx � uB
lx � x � ux

This form of the problem is very common in data fitting as demonstrated on the following example.
Let us consider a process that is observed at times ti and measured with results yi, for i ¼ 1; 2; . . . ;m.
Furthermore, the process is assumed to behave according to a model 
 t; xð Þ where x are parameters of
the model. Given the fact that the measurements might be inaccurate and the process might not exactly
follow the model, it is beneficial to find model parameters x so that the error of the fit of the model to
the measurements is minimized. This can be formulated as an optimization problem in which x are
decision variables and the objective function is the sum of squared errors of the fit at each individual
measurement, thus:

minimize
x2Rn

Xm
i¼1
r2i xð Þ where ri xð Þ ¼ 
 ti; xð Þ � yi

2.2.4 Problem size, dense and sparse problems

The size of the optimization problem plays an important role in the choice of the solver. The size is
usually understood to be the number of variables n and the number (and the type) of the constraints.
Depending on the size of the problem we talk about small-scale, medium-scale or large-scale problems.

It is often more practical to look at the data and its structure rather than just the size of the problem.
Typically in a large-scale problem not all variables interact with everything else. It is natural that only a
small portion of the constraints (if any) involves all variables and the majority of the constraints
depends only on small different subsets of the variables. This creates many explicit zeros in the data
representation which it is beneficial to capture and pass to the solver. In such a case the problem is
referred to as sparse. The data representation usually has the form of a sparse matrix which defines the
linear constraint matrix B, Jacobian matrix of the nonlinear constraints gi or the Hessian of the
objective H. Common sparse matrix formats are used, such as coordinate storage (CS) and compressed
column storage (CCS) (see Section 2.1 in the F11 Chapter Introduction).

The counterpart to a sparse problem is a dense problem in which the matrices are stored in general full
format and no structure is assumed or exploited. Whereas passing a dense problem to a sparse solver
presents typically only a small overhead, calling a dense solver on a large-scale sparse problem is ill-
advised; it leads to a significant performance degradation and memory overuse.

2.2.5 Derivative information, smoothness, noise and derivative-free optimization (DFO)

Most of the classical optimization algorithms rely heavily on derivative information. It plays a key role
in necessary and sufficient conditions (see Section 2.4) and in the computation of the search direction at
each iteration (see Section 2.5). Therefore it is important that accurate derivatives of the nonlinear
objective and nonlinear constraints are provided whenever possible.

Unless stated otherwise, it is assumed that the nonlinear functions are sufficiently smooth. The solvers
will usually solve optimization problems even if there are isolated discontinuities away from the
solution, however, it should always be considered if an alternative smooth representation of the problem
exists. A typical example is an absolute value xij j which does not have a first derivative for xi ¼ 0.
Nevertheless, it can sometimes be transformed as

xi ¼ xþi � x�i ; xij j ¼ xþi þ x�i ; where xþi ; x
�
i � 0

which avoids the discontinuity of the first derivative. If many discontinuities are present, alternative
methods need to be applied such as E04CBF or stochastic algorithms in Chapter E05, E05SAF or
E05SBF.
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The vector of first partial derivatives of a function is called the gradient vector, i.e.,

rf xð Þ ¼ @f xð Þ
@x1

;
@f xð Þ
@x2

; . . . ;
@f xð Þ
@xn

� �T
;

the matrix of second partial derivatives is termed the Hessian matrix, i.e.,

r2f xð Þ ¼ @2f xð Þ
@xi@xj

� �
i;j¼1;...;n

and the matrix of first partial derivatives of the vector-valued function f : Rn ! R
m is known as the

Jacobian matrix:

J xð Þ ¼ @fi xð Þ
@xj

� �
i¼1;...;m;j¼1;...;n

:

If the function is smooth and the derivative is unavailable, it is possible to approximate it by finite
differences, a change in function values in response to small perturbations of the variables. Many
routines in the Library estimate missing elements of the gradients automatically this way. The choice of
the size of the perturbations strongly affects the quality of the approximation. Too small perturbations
might spoil the approximation due to the cancellation errors in floating-point arithmetic and too big
reduce the match of the finite differences and the derivative (see E04XAF/E04XAA for optimal balance
of the factors). In addition, finite differences are very sensitive to the accuracy of f xð Þ. They might be
unreliable or fail completely if the function evaluation is inaccurate or noisy such as when f xð Þ is a
result of a stochastic simulation or an approximate solution of a PDE.

Derivative-free optimization (DFO) represents an alternative to derivative-based optimization
algorithms. DFO solvers neither rely on derivative information nor approximate it by finite differences.
They sample function evaluations across the domain to determine a new iteration point (for example, by
a quadratic model through the sampled points). They are therefore less exposed to the relative error of
the noise of the function because the sample points are never too close to each other to take the error
into account. DFO might be useful even if the finite differences can be computed as the number of
function evaluations is lower. This is particularly beneficial for problems where the evaluations of f are
expensive. DFO solvers tend to exhibit a faster initial progress to the solution, however, they typically
cannot achieve high-accurate solutions.

2.2.6 Minimization subject to bounds on the objective function

In all of the above problem categories it is assumed that

a � f xð Þ � b

where a ¼ �1 and b ¼ þ1. Problems in which a and/or b are finite can be solved by adding an extra
constraint of the appropriate type (i.e., linear or nonlinear) depending on the form of f xð Þ. Further
advice is given in Section 3.7.

2.2.7 Multi-objective optimization

Sometimes a problem may have two or more objective functions which are to be optimized at the same
time. Such problems are called multi-objective, multi-criteria or multi-attribute optimization. If the
constraints are linear and the objectives are all linear then the terminology goal programming is also
used.

Although there is no routine dealing with this type of problems explicitly in this mark of the Library,
techniques used in this chapter and in Chapter E05 may be employed to address such problems, see
Section 2.5.5.

Introduction – E04 NAG Library Manual

E04.8 Mark 26



2.3 Geometric Representation

To illustrate the nature of optimization problems it is useful to consider the following example in two
dimensions:

f xð Þ ¼ ex1 4x21 þ 2x22 þ 4x1x2 þ 2x2 þ 1
� �

:

(This function is used as the example function in the documentation for the unconstrained routines.)
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Figure 1 is a contour diagram of f xð Þ. The contours labelled F0; F1; . . . ; F4 are isovalue contours, or

lines along which the function f xð Þ takes specific constant values. The point x� ¼ 1
2;�1
� �T

is a local
unconstrained minimum, that is, the value of f x�ð Þ ( ¼ 0) is less than at all the neighbouring points.
A function may have several such minima. The point xs is said to be a saddle point because it is a
minimum along the line AB, but a maximum along CD.

If we add the constraint x1 � 0 (a simple bound) to the problem of minimizing f xð Þ, the solution
remains unaltered. In Figure 1 this constraint is represented by the straight line passing through x1 ¼ 0,
and the shading on the line indicates the unacceptable region (i.e., x1 < 0).

If we add the nonlinear constraint g1 xð Þ : x1 þ x2 � x1x2 � 3
2 � 0 , represented by the curved shaded line

in Figure 1, then x� is not a feasible point because g1 x�ð Þ < 0. The solution of the new constrained
problem is xb ’ 1:1825;�1:7397ð ÞT, the feasible point with the smallest function value (where
f xbð Þ ’ 3:0607).

2.4 Sufficient Conditions for a Solution

All nonlinear functions will be assumed to have continuous second derivatives in the neighbourhood of
the solution.

2.4.1 Unconstrained minimization

The following conditions are sufficient for the point x� to be an unconstrained local minimum of f xð Þ:
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(i) rf x�ð Þk k ¼ 0 and

(ii) r2f x�ð Þ is positive definite,

where �k k denotes the Euclidean norm.

2.4.2 Minimization subject to bounds on the variables

At the solution of a bounds-constrained problem, variables which are not on their bounds are termed
free variables. If it is known in advance which variables are on their bounds at the solution, the
problem can be solved as an unconstrained problem in just the free variables; thus, the sufficient
conditions for a solution are similar to those for the unconstrained case, applied only to the free
variables.

Sufficient conditions for a feasible point x� to be the solution of a bounds-constrained problem are as
follows:

(i) �g x�ð Þk k ¼ 0; and

(ii) �G x�ð Þ is positive definite; and

(iii)
@

@xj
f x�ð Þ < 0; xj ¼ uj ;

@

@xj
f x�ð Þ > 0; xj ¼ lj ,

where �g xð Þ is the gradient of f xð Þ with respect to the free variables, and �G xð Þ is the Hessian matrix of
f xð Þ with respect to the free variables. The extra condition (iii) ensures that f xð Þ cannot be reduced by
moving off one or more of the bounds.

2.4.3 Linearly-constrained minimization

For the sake of simplicity, the following description does not include a specific treatment of bounds or
range constraints, since the results for general linear inequality constraints can be applied directly to
these cases.

At a solution x�, of a linearly-constrained problem, the constraints which hold as equalities are called
the active or binding constraints. Assume that there are t active constraints at the solution x�, and let Â
denote the matrix whose columns are the columns of A corresponding to the active constraints, with b̂
the vector similarly obtained from b; then

ÂTx� ¼ b̂:

The matrix Z is defined as an n� n� tð Þ matrix satisfying:

ÂTZ ¼ 0;
ZTZ ¼ I:

The columns of Z form an orthogonal basis for the set of vectors orthogonal to the columns of Â.

Define

gZ xð Þ ¼ ZTrf xð Þ, the projected gradient vector of f xð Þ;

GZ xð Þ ¼ ZTr2f xð ÞZ, the projected Hessian matrix of f xð Þ.
At the solution of a linearly-constrained problem, the projected gradient vector must be zero, which
implies that the gradient vector rf x�ð Þ can be written as a linear combination of the columns of Â, i.e.,

rf x�ð Þ ¼
Xt
i¼1
��i âi ¼ Â��. The scalar ��i is defined as the Lagrange multiplier corresponding to the ith

active constraint. A simple interpretation of the ith Lagrange multiplier is that it gives the gradient of
f xð Þ along the ith active constraint normal; a convenient definition of the Lagrange multiplier vector
(although not a recommended method for computation) is:

Introduction – E04 NAG Library Manual

E04.10 Mark 26



�� ¼ ÂTÂ
� ��1

ÂTrf x�ð Þ:

Sufficient conditions for x� to be the solution of a linearly-constrained problem are:

(i) x� is feasible, and ÂTx� ¼ b̂; and

(ii) gZ x�ð Þk k ¼ 0, or equivalently, rf x�ð Þ ¼ Â��; and
(iii) GZ x�ð Þ is positive definite; and

(iv) ��i > 0 if ��i corresponds to a constraint âTi x
� � b̂i;

��i < 0 if ��i corresponds to a constraint âTi x
� � b̂i.

The sign of ��i is immaterial for equality constraints, which by definition are always active.

2.4.4 Nonlinearly-constrained minimization

For nonlinearly-constrained problems, much of the terminology is defined exactly as in the linearly-
constrained case. To simplify the notation, let us assume that all nonlinear constraints are in the form
c xð Þ � 0. The set of active constraints at x again means the set of constraints that hold as equalities at
x, with corresponding definitions of ĉ and Â: the vector ĉ xð Þ contains the active constraint functions,
and the columns of Â xð Þ are the gradient vectors of the active constraints. As before, Z is defined in
terms of Â xð Þ as a matrix such that:

ÂTZ ¼ 0;
ZTZ ¼ I

where the dependence on x has been suppressed for compactness.

The projected gradient vector gZ xð Þ is the vector ZTrf xð Þ. At the solution x� of a nonlinearly-
constrained problem, the projected gradient must be zero, which implies the existence of Lagrange
multipliers corresponding to the active constraints, i.e., rf x�ð Þ ¼ Â x�ð Þ��.
The Lagrangian function is given by:

L x; �ð Þ ¼ f xð Þ � �Tĉ xð Þ:

We define gL xð Þ as the gradient of the Lagrangian function; GL xð Þ as its Hessian matrix, and ĜL xð Þ as
its projected Hessian matrix, i.e., ĜL ¼ ZTGLZ.

Sufficient conditions for x� to be the solution of a nonlinearly-constrained problem are:

(i) x� is feasible, and ĉ x�ð Þ ¼ 0; and

(ii) gZ x�ð Þk k ¼ 0, or, equivalently, rf x�ð Þ ¼ Â x�ð Þ��; and

(iii) ĜL x
�ð Þ is positive definite; and

(iv) ��i > 0 if ��i corresponds to a constraint of the form ĉi � 0.

The sign of ��i is immaterial for equality constraints, which by definition are always active.

Note that condition (ii) implies that the projected gradient of the Lagrangian function must also be zero
at x�, since the application of ZT annihilates the matrix Â x�ð Þ.

2.5 Background to Optimization Methods

All the algorithms contained in this chapter generate an iterative sequence x kð Þ� 
that converges to the

solution x� in the limit, except for some special problem categories (i.e., linear and quadratic
programming). To terminate computation of the sequence, a convergence test is performed to determine
whether the current estimate of the solution is an adequate approximation. The convergence tests are
discussed in Section 2.7.

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 26 E04.11



Most of the methods construct a sequence x kð Þ� 
satisfying:

x kþ1ð Þ ¼ x kð Þ þ � kð Þp kð Þ;

where the vector p kð Þ is termed the direction of search, and � kð Þ is the steplength. The steplength � kð Þ

is chosen so that f x kþ1ð Þ� �
< f x kð Þ� �

and is computed using one of the techniques for one-dimensional
optimization referred to in Section 2.5.1.

2.5.1 One-dimensional optimization

The Library contains two special routines for minimizing a function of a single variable. Both routines
are based on safeguarded polynomial approximation. One routine requires function evaluations only and
fits a quadratic polynomial whilst the other requires function and gradient evaluations and fits a cubic
polynomial. See Section 4.1 of Gill et al. (1981).

2.5.2 Methods for unconstrained optimization

The distinctions between methods arise primarily from the need to use varying levels of information
about derivatives of f xð Þ in defining the search direction. We describe three basic approaches to
unconstrained problems, which may be extended to other problem categories. Since a full description of
the methods would fill several volumes, the discussion here can do little more than allude to the
processes involved, and direct you to other sources for a full explanation.

(a) Newton-type Methods (Modified Newton Methods)

Newton-type methods use the Hessian matrix r2f x kð Þ� �
, or its finite difference approximation , to

define the search direction. The routines in the Library either require a subroutine that computes
the elements of the Hessian directly, or they approximate them by finite differences.

Newton-type methods are the most powerful methods available for general problems and will find
the minimum of a quadratic function in one iteration. See Sections 4.4 and 4.5.1 of Gill et al.
(1981).

(b) Quasi-Newton Methods

Quasi-Newton methods approximate the Hessian r2f x kð Þ� �
by a matrix B kð Þ which is modified at

each iteration to include information obtained about the curvature of f along the current search
direction p kð Þ. Although not as robust as Newton-type methods, quasi-Newton methods can be more
efficient because the Hessian is not computed directly, or approximated by finite differences. Quasi-
Newton methods minimize a quadratic function in n iterations, where n is the number of variables.
See Section 4.5.2 of Gill et al. (1981).

(c) Conjugate-gradient Methods

Unlike Newton-type and quasi-Newton methods, conjugate-gradient methods do not require the
storage of an n by n matrix and so are ideally suited to solve large problems. Conjugate-gradient
type methods are not usually as reliable or efficient as Newton-type, or quasi-Newton methods. See
Section 4.8.3 of Gill et al. (1981).

2.5.3 Methods for nonlinear least squares problems

These methods are similar to those for general nonlinear optimization, but exploit the special structure
of the Hessian matrix to give improved computational efficiency.

Since

f xð Þ ¼
Xm
i¼1
r2i xð Þ

the Hessian matrix is of the form
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r2f xð Þ ¼ 2 J xð ÞTJ xð Þ þ
Xm
i¼1
ri xð Þr2ri xð Þ

 !
;

where J xð Þ is the Jacobian matrix of r xð Þ.

In the neighbourhood of the solution, r xð Þk k is often small compared to J xð ÞTJ xð Þ
�� �� (for example,

when r xð Þ represents the goodness-of-fit of a nonlinear model to observed data). In such cases,
2J xð ÞTJ xð Þ may be an adequate approximation to r2f xð Þ, thereby avoiding the need to compute or
approximate second derivatives of ri xð Þf g. See Section 4.7 of Gill et al. (1981).

2.5.4 Methods for handling constraints

Bounds on the variables are dealt with by fixing some of the variables on their bounds and adjusting the
remaining free variables to minimize the function. By examining estimates of the Lagrange multipliers
it is possible to adjust the set of variables fixed on their bounds so that eventually the bounds active at
the solution should be correctly identified. This type of method is called an active-set method. One
feature of such a method is that, given an initial feasible point, all approximations x kð Þ are feasible. This
approach can be extended to general linear constraints. At a point, x, the set of constraints which hold
as equalities being used to predict, or approximate, the set of active constraints is called the working
set.

Nonlinear constraints are more difficult to handle. If at all possible, it is usually beneficial to avoid
including nonlinear constraints during the formulation of the problem. The methods currently
implemented in the Library handle nonlinearly constrained problems by transforming them into a
sequence of quadratic programming problems. A feature of such methods is that x kð Þ is not guaranteed
to be feasible except in the limit, and this is certainly true of the routines currently in the Library. See
Chapter 6, particularly Sections 6.4 and 6.5, of Gill et al. (1981).

Anyone interested in a detailed description of methods for optimization should consult the references.

2.5.5 Methods for handling multi-objective optimization

Suppose we have objective functions fi xð Þ, i > 1, all of which we need to minimize at the same time.
There are two main approaches to this problem:

(a) Combine the individual objectives into one composite objective. Typically this might be a weighted
sum of the objectives, e.g.,

w1f1 xð Þ þ w2f2 xð Þ þ � � � þ wnfn xð Þ

Here you choose the weights to express the relative importance of the corresponding objective.
Ideally each of the fi xð Þ should be of comparable size at a solution.

(b) Order the objectives in order of importance. Suppose fi are ordered such that fi xð Þ is more
important than fiþ1 xð Þ, for i ¼ 1; 2; . . . ; n� 1. Then in the lexicographical approach to multi-
objective optimization a sequence of subproblems are solved. Firstly solve the problem for
objective function f1 xð Þ and denote by r1 the value of this minimum. If i � 1ð Þ subproblems have
been solved with results ri�1 then subproblem i becomes min fi xð Þð Þ subject to rk � fk xð Þ � rk, for
k ¼ 1; 2; . . . ; i� 1 plus the other constraints.

Clearly the bounds on fk might be relaxed at your discretion.

In general, if NAG routines from the Chapter E04 are used then only local minima are found. This
means that a better solution to an individual objective might be found without worsening the optimal
solutions to the other objectives. Ideally you seek a Pareto solution; one in which an improvement in
one objective can only be achieved by a worsening of another objective.

To obtain a Pareto solution routines from Chapter E05 might be used or, alternatively, a pragmatic
attempt to derive a global minimum might be tried (see E05UCF). In this approach a variety of different
minima are computed for each subproblem by starting from a range of different starting points. The best
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solution achieved is taken to be the global minimum. The more starting points chosen the greater
confidence you might have in the computed global minimum.

2.6 Scaling

Scaling (in a broadly defined sense) often has a significant influence on the performance of optimization
methods.

Since convergence tolerances and other criteria are necessarily based on an implicit definition of ‘small’
and ‘large’, problems with unusual or unbalanced scaling may cause difficulties for some algorithms.

Although there are currently no user-callable scaling routines in the Library, scaling can be performed
automatically in routines which solve sparse LP, QP or NLP problems and in some dense solver
routines. Such routines have an optional parameter ‘Scale Option’ which can be set by the user; see
individual routine documents for details.

The following sections present some general comments on problem scaling.

2.6.1 Transformation of variables

One method of scaling is to transform the variables from their original representation, which may reflect
the physical nature of the problem, to variables that have certain desirable properties in terms of
optimization. It is generally helpful for the following conditions to be satisfied:

(i) the variables are all of similar magnitude in the region of interest;

(ii) a fixed change in any of the variables results in similar changes in f xð Þ. Ideally, a unit change in
any variable produces a unit change in f xð Þ;

(iii) the variables are transformed so as to avoid cancellation error in the evaluation of f xð Þ.
Normally, you should restrict yourself to linear transformations of variables, although occasionally
nonlinear transformations are possible. The most common such transformation (and often the most
appropriate) is of the form

xnew ¼ Dxold;

where D is a diagonal matrix with constant coefficients. Our experience suggests that more use should
be made of the transformation

xnew ¼ Dxold þ v;

where v is a constant vector.

Consider, for example, a problem in which the variable x3 represents the position of the peak of a
Gaussian curve to be fitted to data for which the extreme values are 150 and 170; therefore x3 is known
to lie in the range 150–170. One possible scaling would be to define a new variable �x3, given by

�x3 ¼
x3
170

:

A better transformation, however, is given by defining �x3 as

�x3 ¼
x3 � 160

10
:

Frequently, an improvement in the accuracy of evaluation of f xð Þ can result if the variables are scaled
before the routines to evaluate f xð Þ are coded. For instance, in the above problem just mentioned of
Gaussian curve-fitting, x3 may always occur in terms of the form x3 � xmð Þ, where xm is a constant
representing the mean peak position.

2.6.2 Scaling the objective function

The objective function has already been mentioned in the discussion of scaling the variables. The
solution of a given problem is unaltered if f xð Þ is multiplied by a positive constant, or if a constant
value is added to f xð Þ. It is generally preferable for the objective function to be of the order of unity in
the region of interest; thus, if in the original formulation f xð Þ is always of the order of 10þ5 (say), then
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the value of f xð Þ should be multiplied by 10�5 when evaluating the function within an optimization
routine. If a constant is added or subtracted in the computation of f xð Þ, usually it should be omitted, i.
e., it is better to formulate f xð Þ as x21 þ x22 rather than as x21 þ x22 þ 1000 or even x21 þ x22 þ 1. The
inclusion of such a constant in the calculation of f xð Þ can result in a loss of significant figures.

2.6.3 Scaling the constraints

A ‘well scaled’ set of constraints has two main properties. Firstly, each constraint should be well-
conditioned with respect to perturbations of the variables. Secondly, the constraints should be balanced
with respect to each other, i.e., all the constraints should have ‘equal weight’ in the solution process.

The solution of a linearly- or nonlinearly-constrained problem is unaltered if the ith constraint is
multiplied by a positive weight wi. At the approximation of the solution determined by an active-set
solver, any active linear constraints will (in general) be satisfied ‘exactly’ (i.e., to within the tolerance
defined by machine precision) if they have been properly scaled. This is in contrast to any active
nonlinear constraints, which will not (in general) be satisfied ‘exactly’ but will have ‘small’ values (for
example, ĝ1 x�ð Þ ¼ 10�8, ĝ2 x�ð Þ ¼ �10�6, and so on). In general, this discrepancy will be minimized if
the constraints are weighted so that a unit change in x produces a similar change in each constraint.

A second reason for introducing weights is related to the effect of the size of the constraints on the
Lagrange multiplier estimates and, consequently, on the active-set strategy. This means that different
sets of weights may cause an algorithm to produce different sequences of iterates. Additional discussion
is given in Gill et al. (1981).

2.7 Analysis of Computed Results

2.7.1 Convergence criteria

The convergence criteria inevitably vary from routine to routine, since in some cases more information
is available to be checked (for example, is the Hessian matrix positive definite?), and different checks
need to be made for different problem categories (for example, in constrained minimization it is
necessary to verify whether a trial solution is feasible). Nonetheless, the underlying principles of the
various criteria are the same; in non-mathematical terms, they are:

(i) is the sequence x kð Þ� 
converging?

(ii) is the sequence f kð Þ� 
converging?

(iii) are the necessary and sufficient conditions for the solution satisfied?

The decision as to whether a sequence is converging is necessarily speculative. The criterion used in the
present routines is to assume convergence if the relative change occurring between two successive
iterations is less than some prescribed quantity. Criterion (iii) is the most reliable but often the
conditions cannot be checked fully because not all the required information may be available.

2.7.2 Checking results

Little a priori guidance can be given as to the quality of the solution found by a nonlinear optimization
algorithm, since no guarantees can be given that the methods will not fail. Therefore, you should always
check the computed solution even if the routine reports success. Frequently a ‘solution’ may have been
found even when the routine does not report a success. The reason for this apparent contradiction is that
the routine needs to assess the accuracy of the solution. This assessment is not an exact process and
consequently may be unduly pessimistic. Any ‘solution’ is in general only an approximation to the
exact solution, and it is possible that the accuracy you have specified is too stringent.

Further confirmation can be sought by trying to check whether or not convergence tests are almost
satisfied, or whether or not some of the sufficient conditions are nearly satisfied. When it is thought that
a routine has returned a nonzero value of IFAIL only because the requirements for ‘success’ were too
stringent it may be worth restarting with increased convergence tolerances.

For constrained problems, check whether the solution returned is feasible, or nearly feasible; if not, the
solution returned is not an adequate solution.
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Confidence in a solution may be increased by restarting the solver with a different initial approximation
to the solution. See Section 8.3 of Gill et al. (1981) for further information.

2.7.3 Monitoring progress

Many of the routines in the chapter have facilities to allow you to monitor the progress of the
minimization process, and you are encouraged to make use of these facilities. Monitoring information
can be a great aid in assessing whether or not a satisfactory solution has been obtained, and in
indicating difficulties in the minimization problem or in the ability of the routine to cope with the
problem.

The behaviour of the function, the estimated solution and first derivatives can help in deciding whether
a solution is acceptable and what to do in the event of a return with a nonzero value of IFAIL.

2.7.4 Confidence intervals for least squares solutions

When estimates of the parameters in a nonlinear least squares problem have been found, it may be
necessary to estimate the variances of the parameters and the fitted function. These can be calculated
from the Hessian of the objective f xð Þ at the solution.

In many least squares problems, the Hessian is adequately approximated at the solution by G ¼ 2JTJ
(see Section 2.5.3). The Jacobian, J , or a factorization of J is returned by all the comprehensive least
squares routines and, in addition, a routine is available in the Library to estimate variances of the
parameters following the use of most of the nonlinear least squares routines, in the case that G ¼ 2JTJ
is an adequate approximation.

Let H be the inverse of G, and S be the sum of squares, both calculated at the solution �x; an unbiased
estimate of the variance of the ith parameter xi is

var �xi ¼
2S

m� nHii

and an unbiased estimate of the covariance of �xi and �xj is

covar �xi; �xj
� �

¼ 2S

m� nHij:

If x� is the true solution, then the 100 1� �ð Þ% confidence interval on �x is

�xi �
ffiffiffiffiffiffiffiffiffiffiffiffi
var �xi
p

:t 1��=2;m�nð Þ < x�i < �xi þ
ffiffiffiffiffiffiffiffiffiffiffiffi
var �xi
p

:t 1��=2;m�nð Þ; i ¼ 1; 2; . . . ; n

where t 1��=2;m�nð Þ is the 100 1� �ð Þ=2 percentage point of the t-distribution with m� n degrees of
freedom.

In the majority of problems, the residuals ri, for i ¼ 1; 2; . . . ;m, contain the difference between the
values of a model function 
 z; xð Þ calculated for m different values of the independent variable z, and
the corresponding observed values at these points. The minimization process determines the parameters,
or constants x, of the fitted function 
 z; xð Þ. For any value, �z, of the independent variable z, an
unbiased estimate of the variance of 
 is

var
 ¼ 2S

m� n
Xn
i¼1

Xn
j¼1

@


@xi

� �
�z

@


@xj

� �
�z

Hij:

The 100 1� �ð Þ% confidence interval on f at the point �z is


 �z; �xð Þ �
ffiffiffiffiffiffiffiffiffiffi
var


p
:t �=2;m�nð Þ < 
 �z; x�ð Þ < 
 �z; �xð Þ þ

ffiffiffiffiffiffiffiffiffiffi
var


p
:t �=2;m�nð Þ:

For further details on the analysis of least squares solutions see Bard (1974) and Wolberg (1967).

3 Recommendations on Choice and Use of Available Routines

The choice of routine depends on several factors: the type of problem (unconstrained, etc.); the level of
derivative information available (function values only, etc.); your experience (there are easy-to-use
versions of some routines); whether or not a problem is sparse; whether or not the routine is to be used
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in a multithreaded environment; and whether computational time has a high priority. Not all choices are
catered for in the current version of the Library.

3.1 Easy-to-use and Comprehensive Routines

Many routines appear in the Library in two forms: a comprehensive form and an easy-to-use form. The
purpose of the easy-to-use forms is to make the routine simple to use by including in the calling
sequence only those arguments absolutely essential to the definition of the problem, as opposed to
arguments relevant to the solution method. If you are an experienced user the comprehensive routines
have additional arguments which enable you to improve their efficiency by ‘tuning’ the method to a
particular problem. If you are a casual or inexperienced user, this feature is of little value and may in
some cases cause a failure because of a poor choice of some arguments.

In the easy-to-use routines, these extra arguments are determined either by fixing them at a known safe
and reasonably efficient value, or by an auxiliary routine which generates a ‘good’ value automatically.

For routines introduced since Mark 12 of the Library a different approach has been adopted towards the
choice of easy-to-use and comprehensive routines. The optimization routine has an easy-to-use
argument list, but additional arguments may be changed from their default values by calling an ‘option’
setting routine before the call to the main optimization routine. This approach has the advantages of
allowing the options to be given in the form of keywords and requiring only those options that are to be
different from their default values to be set.

3.2 Thread Safe Routines

Many of the routines in this chapter come in pairs, with each routine in the pair having exactly the same
functionality, except that one of them has additional arguments in order to make it safe for use in
multithreaded applications. The routine that is safe for use in multithreaded applicatons has an ‘A’ as
the last character in the name, in place of the usual ‘F’.

An example of such a pair is E04ABA and E04ABF.

3.3 Reverse Communication Routines

Most of the routines in this chapter are called just once in order to compute the minimum of a given
objective function subject to a set of constraints on the variables. The objective function and nonlinear
constraints (if any) are specified by you and written as subroutines to a very rigid format described in
the relevant routine document.

This chapter also contains a pair of reverse communication routines, E04UFF/E04UFA, which solve
dense NLP problems using a sequential quadratic programming method. These may be convenient to
use when the minimization routine is being called from a computer language which does not fully
support procedure arguments in a way that is compatible with the Library. These routine are also useful
if a large amount of data needs to be transmitted into the routine. See Section 3.3.3 in How to Use the
NAG Library and its Documentation for more information about reverse communication routines.

3.4 Choosing Between Variant Routines for Some Problems

As evidenced by the wide variety of routines available in Chapter E04, it is clear that no single
algorithm can solve all optimization problems. It is important to try to match the problem to the most
suitable routine, and that is what the decision trees in Section 4 help to do.

Sometimes in Chapter E04 more than one routine is available to solve precisely the same minimization
problem. Thus, for example, the general nonlinear programming routines E04UCF/E04UCA and
E04WDF are based on similar methods. Experience shows that although both routines can usually solve
the same problem and get similar results, sometimes one routine will be faster, sometimes one might
find a different local minimum to the other, or, in difficult cases, one routine may obtain a solution
when the other one fails.

After using one of these routines, if the results obtained are unacceptable for some reason, it may be
worthwhile trying the other routine instead. In the absence of any other information, in the first instance
you are recommended to try using E04UCF/E04UCA, and if that proves unsatisfactory, try using
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E04WDF. Although the algorithms used are very similar, the two routines each have slightly different
optional parameters which may allow the course of the computation to be altered in different ways.

Other pairs of routines which solve the same kind of problem are E04NQF (recommended first choice)
or E04NKF/E04NKA, for sparse quadratic or linear programming problems, and E04VHF
(recommended) or E04UGF/E04UGA, for sparse nonlinear programming. In these cases the argument
lists are not so similar as E04UCF/E04UCA or E04WDF, but the same considerations apply.

3.5 NAG Optimization Modelling Suite

Mark 26 of the Library introduced NAG optimization modelling suite, a suite of routines which allows
you to define and solve various optimization problems in a uniform manner. The first key feature of the
suite is that the definition of the optimization problem and the call to the solver have been separated so
it is possible to set up a problem in the same way for different solvers. The second feature is that the
problem representation is built up from basic components (for example, a QP problem is composed of a
quadratic objective, simple bounds and linear constraints), therefore different types of problems reuse
the same routines for their common parts.

A connecting element to all routines in the suite is a handle, a pointer to an internal data structure,
which is passed among the routines. It holds all information about the problem, the solution and the
solver. Each handle should go through four stages in its life: initialization, problem formulation,
problem solution and deallocation.

The initialization is performed by E04RAF which creates an empty problem with n decision variables.
A call to E04RZF marks the end of the life of the handle as it deallocates all the allocated memory and
data within the handle and destroys the handle itself. After the initialization, the objective may be
defined as one of the following:

E04REF – a linear objective as a dense vector;

E04RFF – a quadratic objective or a spare linear objective;

E04RGF – a nonlinear objective function.

The routines for constraint definition are

E04RHF – simple bounds;

E04RJF – linear constraints;

E04RKF – nonlinear constraints;

E04RLF – second derivatives for the objective and/or constraints;

E04RNF – linear matrix inequalities;

E04RPF – quadratic terms for bilinear matrix inequalities.

These routines may be called in an arbitrary order, however, a call to E04RNF must precede a call to
E04RPF for the matrix inequalities with bilinear terms and the nonlinear objective or constraints
(E04RGF or E04RKF) must precede the definition of the second derivatives by E04RLF. For further
details please refer to the documentation of the individual routines.

The suite also includes the following service routines:

E04RYF – query/printing routine;

E04ZMF – supply an optional parameter from a character string;

E04ZPF – supply one or more optional parameters from a file;

E04ZNF – get the settings of an optional parameter.

When the problem is fully formulated, the handle can be passed to a solver which is compatible with
the defined problem. At the current mark of the Library the NAG optimization modelling suite
comprises of E04STF and E04SVF. The solver indicates by an error flag if it cannot deal with the given
formulation. A diagram of the life cycle of the handle is depicted in Figure 2.
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E04RA

E04RE E04RF E04RJ E04RN E04RP

E04SV

E04RZ
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E04RH E04RP
Problem 
Formulation

E04RK

Nonlinear
constraints

E04RG

E04RL

Hessians

E04ST

3.6 Service Routines

One of the most common errors in the use of optimization routines is that user-supplied subroutines do
not evaluate the relevant partial derivatives correctly. Because exact gradient information normally
enhances efficiency in all areas of optimization, you are encouraged to provide analytical derivatives
whenever possible. However, mistakes in the computation of derivatives can result in serious and
obscure run-time errors. Consequently, service routines are provided to perform an elementary check
on the gradients you supplied. These routines are inexpensive to use in terms of the number of calls
they require to user-supplied subroutines.

The appropriate checking routines are as follows:

Minimization routine Checking routine(s)

E04KDF E04HCF
E04LBF E04HCF and E04HDF
E04GBF E04YAF
E04GDF E04YAF
E04HEF E04YAF and E04YBF

It should be noted that routines E04STF, E04UCF/E04UCA, E04UFF/E04UFA, E04UGF/E04UGA,
E04USF/E04USA, E04VHF and E04WDF each incorporate a check on the derivatives being supplied.
This involves verifying the gradients at the first point that satisfies the linear constraints and bounds.
There is also an option to perform a more reliable (but more expensive) check on the individual
gradient elements being supplied. Note that the checks are not infallible.

A second type of service routine computes a set of finite differences to be used when approximating
first derivatives. Such differences are required as input arguments by some routines that use only
function evaluations.

E04YCF estimates selected elements of the variance-covariance matrix for the computed regression
parameters following the use of a nonlinear least squares routine.

E04XAF/E04XAA estimates the gradient and Hessian of a function at a point, given a routine to
calculate function values only, or estimates the Hessian of a function at a point, given a routine to
calculate function and gradient values.
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3.7 Function Evaluations at Infeasible Points

All the solvers for constrained problems based on active-set method will ensure that any evaluations of
the objective function occur at points which approximately (up to the given tolerance) satisfy any
simple bounds or linear constraints.

There is no attempt to ensure that the current iteration satisfies any nonlinear constraints. If you wish to
prevent your objective function being evaluated outside some known region (where it may be undefined
or not practically computable), you may try to confine the iteration within this region by imposing
suitable simple bounds or linear constraints (but beware as this may create new local minima where
these constraints are active).

Note also that some routines allow you to return the argument (IFLAG, INFORM, MODE or STATUS)
with a negative value to indicate when the objective function (or nonlinear constraints where
appropriate) cannot be evaluated. In case the routine cannot recover (e.g., cannot find a different trial
point), it forces an immediate clean exit from the routine.

3.8 Related Problems

Apart from the standard types of optimization problem, there are other related problems which can be
solved by routines in this or other chapters of the Library.

H02BBF solves dense integer LP problems, H02CBF solves dense integer QP problems, H02CEF
solves sparse integer QP problems, H02DAF solves dense mixed integer NLP problems and H03ABF
solves a special type of such problem known as a ‘transportation’ problem.

Several routines in Chapters F04 and F08 solve linear least squares problems, i.e., minimize
Xm
i¼1
ri xð Þ2

where ri xð Þ ¼ bi �
Xn
j¼1

aijxj.

E02GAF solves an overdetermined system of linear equations in the l1 norm, i.e., minimizes
Xm
i¼1

ri xð Þj j,

with ri as above, and E02GBF solves the same problem subject to linear inequality constraints.

E02GCF solves an overdetermined system of linear equations in the l1 norm, i.e., minimizes
max
i
ri xð Þj j, with ri as above.

Chapter E05 contains routines for global minimization.

Section 2.5.5 describes how a multi-objective optimization problem might be addressed using routines
from this chapter and from Chapter E05.
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4 Decision Trees

no objective linear quadratic nonlinear sum of squares

unconstrained QP
See Tree 2

NLP
See Tree 3

LSQ
See Tree 4

simple bounds LP
See Tree 1

LP
See Tree 1

QP
See Tree 2

NLP
See Tree 3

LSQ
See Tree 4

linear LP
See Tree 1

LP
See Tree 1

QP
See Tree 2

NLP
See Tree 3

LSQ
See Tree 4

nonlinear NLP
See Tree 3

NLP
See Tree 3

NLP
See Tree 3

NLP
See Tree 3

LSQ
See Tree 4

matrix inequalities E04SVF E04SVF E04SVF

Table 1
Decision Matrix

Tree 1: Linear Programming (LP)

Is the problem sparse/large-scale?
yes

E04NQF, E04NKF

no

E04MFF, E04NCF

Tree 2: Quadratic Programming (QP)

Is the problem sparse/large-scale?
yes

Is it convex?
yes

E04NQF, E04STF, E04NKF

no

E04STF, E04VHF, E04UGF

no

Is it convex?
yes

E04NCF

no

E04NFF
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Tree 3: Nonlinear Programming (NLP)

Is the problem sparse/large-
scale? yes

Is it unconstrained?
yes

Are first derivatives
available? yes

E04STF, E04DGA,
E04VHF, E04UGA

no

E04VHF, E04UGA

no

Are first derivatives
available? yes

Are second derivatives
available? yes

E04STF

no

E04VHF, E04STF, E04UGA

no

E04VHF, E04UGA

no

Are there linear or nonlinear
constraints? yes

E04UCA, E04UFA,
E04WDF

no

Is there only one variable?
yes

Are first derivatives
available? yes

E04BBA

no

E04ABA

no

Is it unconstrained with the
objective with many
discontinuities?

yes
E04CBF or E05SAF

no

Are first derivatives
available? yes

Are second derivatives
available? yes

Are you an experienced
user? yes

E04LBF

no

E04LYF

no

Are many function
evaluations problematic? yes

Are you an experienced
user? yes

E04UCA, E04UFA,
E04WDF

no

E04KYF

no

Are you an experienced
user? yes

E04KDF

no

E04KZF

no

Is the objective expensive to
evaluate or noisy? yes

E04JCF

no

Are you an experienced
user? yes

E04UCA, E04UFA,
E04WDF

no

E04JYF
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Tree 4: Least squares problems (LSQ)

Is the objective sum of
squared linear functions and
no nonlinear constraints?

yes
Are there linear constraints?

yes
E04NCF

no

Are there simple bounds?
yes

E04PCF, E04NCF

no

Chapters F04, F07 or F08 or
E04PCF, E04NCF

no

Are there simple bounds,
linear or nonlinear
constraints?

yes
E04USF

no

Are you an experienced
user? yes

Are first derivatives
available? yes

Are second derivatives
available? yes

E04HEF

no

Are many function
evaluations problematic? yes

E04GBF

no

E04GDF

no

E04FCF

no

Are first derivatives
available? yes

Are second derivatives
available? yes

E04HYF

no

Are many function
evaluations problematic? yes

E04GYF

no

E04GZF

no

E04FYF

5 Functionality Index

Linear programming (LP),
dense,

active-set method/primal simplex,
alternative 1 ......................................................................................................... E04MFF
alternative 2 ......................................................................................................... E04NCF

sparse,
active-set method/primal simplex,

recommended (see Section 3.4) ........................................................................... E04NQF
alternative............................................................................................................. E04NKF

Quadratic programming (QP),
dense,

active-set method for (possibly nonconvex) QP problem ......................................... E04NFF
active-set method for convex QP problem................................................................ E04NCF

sparse,
active-set method sparse convex QP problem,

recommended (see Section 3.4) ........................................................................... E04NQF
alternative............................................................................................................. E04NKF
interior point method (IPM) for (possibly nonconvex) QP problems .................. E04STF
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Nonlinear programming (NLP),
dense,

active-set sequential quadratic programming (SQP),
recommended (see Section 3.4) ........................................................................... E04UCF
alternative............................................................................................................. E04WDF
reverse communication......................................................................................... E04UFF

sparse,
interior point method (IPM)...................................................................................... E04STF
active-set sequential quadratic programming (SQP),

recommended (see Section 3.4) ........................................................................... E04VHF
alternative............................................................................................................. E04UGF

Nonlinear programming (NLP) – derivative free optimization (DFO),
model-based method for bound-constrained optimization .............................................. E04JCF
Nelder–Mead simplex method for unconstrained optimization ...................................... E04CBF

Nonlinear programming (NLP) – special cases,
unidimensional optimization (one-dimensional) with bound constraints,

method based on quadratic interpolation, no derivatives .......................................... E04ABF
method based on cubic interpolation ........................................................................ E04BBF

unconstrained,
preconditioned conjugate gradient method ................................................................ E04DGF

bound-constrained,
quasi-Newton algorithm, no derivatives .................................................................... E04JYF
quasi-Newton algorithm, first derivatives.................................................................. E04KYF
modified Newton algorithm, first derivatives ............................................................ E04KDF
modified Newton algorithm, first derivatives, easy-to-use......................................... E04KZF
modified Newton algorithm, first and second derivatives ......................................... E04LBF
modified Newton algorithm, first and second derivatives, easy-to-use...................... E04LYF

Semidefinite programming (SDP),
generalized augmented Lagrangian method for SDP and SDP with bilinear matrix
inequalities (BMI-SDP)..................................................................................................

E04SVF

Linear least squares, linear regression, data fitting,
constrained,

bound-constrained least squares problem .................................................................. E04PCF
linearly-constrained active-set method....................................................................... E04NCF

Nonlinear least squares, data fitting,
unconstrained,

combined Gauss–Newton and modified Newton algorithm,
no derivatives....................................................................................................... E04FCF
no derivatives, easy-to-use ................................................................................... E04FYF
first derivatives..................................................................................................... E04GDF
first derivatives, easy-to-use ................................................................................. E04GZF
first and second derivatives.................................................................................. E04HEF
first and second derivatives, easy-to-use .............................................................. E04HYF

combined Gauss–Newton and quasi-Newton algorithm,
first derivatives..................................................................................................... E04GBF
first derivatives, easy-to-use ................................................................................. E04GYF

covariance matrix for nonlinear least squares problem (unconstrained).................... E04YCF
constrained,

nonlinear constraints active-set sequential quadratic programming (SQP) ................ E04USF

NAG optimization modelling suite,
initialization of a handle for the NAG optimization modelling suite............................. E04RAF
define a linear objective function................................................................................... E04REF
define a linear or a quadratic objective function ........................................................... E04RFF
define a nonlinear objective function ............................................................................. E04RGF
define bounds of variables ............................................................................................. E04RHF
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define a block of linear constraints................................................................................ E04RJF
define a block of nonlinear constraints .......................................................................... E04RKF
define a structure of Hessian of the objective, constraints or the Lagrangian ............... E04RLF
add one or more linear matrix inequality constraints .................................................... E04RNF
define bilinear matrix terms ........................................................................................... E04RPF
print information about a problem handle...................................................................... E04RYF
destroy the problem handle............................................................................................ E04RZF
interior point method (IPM) for nonlinear programming (NLP) .................................... E04STF
generalized augmented Lagrangian method for SDP and SDP with bilinear matrix
inequalities (BMI-SDP)..................................................................................................

E04SVF

supply optional parameter values from a character string.............................................. E04ZMF
get the setting of option ................................................................................................ E04ZNF
supply optional parameter values from external file ...................................................... E04ZPF

Service routines,
input and output (I/O),

read MPS data file defining LP, QP, MILP or MIQP problem................................. E04MXF
write MPS data file defining LP, QP, MILP or MIQP problem................................ E04MWF
read sparse SPDA data files for linear SDP problems.............................................. E04RDF
read MPS data file defining LP or QP problem (deprecated) ................................... E04MZF

derivative check and approximation,
check user's routine for calculating first derivatives of function............................... E04HCF
check user's routine for calculating second derivatives of function .......................... E04HDF
check user's routine for calculating Jacobian of first derivatives .............................. E04YAF
check user's routine for calculating Hessian of a sum of squares ............................ E04YBF
estimate (using numerical differentiation) gradient and/or Hessian of a function..... E04XAF
determine the pattern of nonzeros in the Jacobian matrix for E04VHF ................... E04VJF

covariance matrix for nonlinear least squares problem (unconstrained)......................... E04YCF
option setting routines,

NAG optimization modelling suite,
supply optional parameter values from a character string.................................... E04ZMF
get the setting of option ...................................................................................... E04ZNF
supply optional parameter values from external file ............................................ E04ZPF

E04DGF/E04DGA,
initialization routine for E04DGA........................................................................ E04WBF
supply optional parameter values from external file ............................................ E04DJF
supply optional parameter values from a character string.................................... E04DKF

E04MFF/E04MFA,
initialization routine for E04MFA........................................................................ E04WBF
supply optional parameter values from external file ............................................ E04MGF
supply optional parameter values from a character string.................................... E04MHF

E04NCF/E04NCA,
initialization routine for E04NCA........................................................................ E04WBF
supply optional parameter values from external file ............................................ E04NDF
supply optional parameter values from a character string.................................... E04NEF

E04NFF/E04NFA,
initialization routine for E04NFA......................................................................... E04WBF
supply optional parameter values from external file ............................................ E04NGF
supply optional parameter values from a character string.................................... E04NHF

E04NKF/E04NKA,
initialization routine for E04NKA........................................................................ E04WBF
supply optional parameter values from external file ............................................ E04NLF
supply optional parameter values from a character string.................................... E04NMF

E04NQF,
initialization routine ............................................................................................. E04NPF
supply optional parameter values from external file ............................................ E04NRF
set a single option from a character string .......................................................... E04NSF
set a single option from an integer argument ...................................................... E04NTF
set a single option from a real argument............................................................. E04NUF
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get the setting of an integer valued option .......................................................... E04NXF
get the setting of a real valued option................................................................. E04NYF

E04UCF/E04UCA and E04UFF/E04UFA,
initialization routine for E04UCA and E04UFA .................................................. E04WBF
supply optional parameter values from external file ............................................ E04UDF
supply optional parameter values from a character string.................................... E04UEF

E04UGF/E04UGA,
initialization routine for E04UGA........................................................................ E04WBF
supply optional parameter values from external file ............................................ E04UHF
supply optional parameter values from a character string.................................... E04UJF

E04USF/E04USA,
initialization routine for E04USA ........................................................................ E04WBF
supply optional parameter values from external file ............................................ E04UQF
supply optional parameter values from a character string.................................... E04URF

E04VHF,
initialization routine ............................................................................................. E04VGF
supply optional parameter values from external file ............................................ E04VKF
set a single option from a character string .......................................................... E04VLF
set a single option from an integer argument ...................................................... E04VMF
set a single option from a real argument............................................................. E04VNF
get the setting of an integer valued option .......................................................... E04VRF
get the setting of a real valued option................................................................. E04VSF

E04WDF,
initialization routine ............................................................................................. E04WCF
supply optional parameter values from external file ............................................ E04WEF
set a single option from a character string .......................................................... E04WFF
set a single option from an integer argument ...................................................... E04WGF
set a single option from a real argument............................................................. E04WHF
get the setting of an integer valued option .......................................................... E04WKF
get the setting of a real valued option................................................................. E04WLF

6 Auxiliary Routines Associated with Library Routine Arguments

E04CBK nagf_opt_uncon_simplex_dummy_monit
See the description of the argument MONIT in E04CBF.

E04FCV nagf_opt_lsq_uncon_quasi_deriv_comp_lsqlin_fun
See the description of the argument LSQLIN in E04GBF.

E04FDZ nagf_opt_lsq_dummy_lsqmon
See the description of the argument LSQMON in E04FCF, E04GDF and E04HEF.

E04HEV nagf_opt_lsq_uncon_quasi_deriv_comp_lsqlin_deriv
See the description of the argument LSQLIN in E04GBF.

E04JCP nagf_opt_bounds_bobyqa_func_dummy_monfun
See the description of the argument MONFUN in E04JCF.

E54NFU nagf_opt_qp_dense_sample_qphess
See the description of the argument QPHESS in E04NFF/E04NFA and H02CBF.

E04NFU nagf_opt_qp_dense_sample_qphess_old
See the description of the argument QPHESS in E04NFF/E04NFA and H02CBF.

E54NKU nagf_opt_qpconvex1_sparse_dummy_qphx
See the description of the argument QPHX in E04NKF/E04NKA and H02CEF.

E04NKU nagf_opt_qpconvex1_sparse_dummy_qphx_old
See the description of the argument QPHX in E04NKF/E04NKA and H02CEF.

E04NSH nagf_opt_qpconvex2_sparse_dummy_qphx
See the description of the argument QPHX in E04NQF.

E04STU nagf_opt_ipopt_dummy_mon
See the description of the argument MON in E04STF.

E04STV nagf_opt_ipopt_dummy_objfun
See the description of the argument OBJFUN in E04STF.
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E04STW nagf_opt_ipopt_dummy_objgrd
See the description of the argument OBJGRD in E04STF.

E04STX nagf_opt_ipopt_dummy_confun
See the description of the argument CONFUN in E04STF.

E04STY nagf_opt_ipopt_dummy_congrd
See the description of the argument CONGRD in E04STF.

E04STZ nagf_opt_ipopt_dummy_hess
See the description of the argument HESS in E04STF.

E04UDM nagf_opt_nlp1_dummy_confun
See the description of the argument CONFUN in E04UCF/E04UCA and E04USF/E04USA.

E04UGM nagf_opt_nlp1_sparse_dummy_confun
See the description of the argument CONFUN in E04UGF/E04UGA.

E04UGN nagf_opt_nlp1_sparse_dummy_objfun
See the description of the argument OBJFUN in E04UGF/E04UGA.

E04WDP nagf_opt_nlp2_dummy_confun
See the description of the argument CONFUN in E04WDF.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

E04CCF/E04CCA 24 E04CBF
E04FDF 19 E04FYF
E04GCF 19 E04GYF
E04GEF 19 E04GZF
E04HFF 19 E04HYF
E04JAF 19 E04JYF
E04KAF 19 E04KYF
E04KCF 19 E04KZF
E04LAF 19 E04LYF
E04UNF 22 E04USF/E04USA
E04UPF 19 E04USF/E04USA
E04ZCF/E04ZCA 24 No longer required
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NAG Library Routine Document

E04ABF/E04ABA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04ABF/E04ABA searches for a minimum, in a given finite interval, of a continuous function of a
single variable, using function values only. The method (based on quadratic interpolation) is intended
for functions which have a continuous first derivative (although it will usually work if the derivative has
occasional discontinuities).

E04ABA is a version of E04ABF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5).

2 Specification

2.1 Specification for E04ABF

SUBROUTINE E04ABF (FUNCT, E1, E2, A, B, MAXCAL, X, F, IFAIL)

INTEGER MAXCAL, IFAIL
REAL (KIND=nag_wp) E1, E2, A, B, X, F
EXTERNAL FUNCT

2.2 Specification for E04ABA

SUBROUTINE E04ABA (FUNCT, E1, E2, A, B, MAXCAL, X, F, IUSER, RUSER,
IFAIL)

&

INTEGER MAXCAL, IUSER(*), IFAIL
REAL (KIND=nag_wp) E1, E2, A, B, X, F, RUSER(*)
EXTERNAL FUNCT

3 Description

E04ABF/E04ABA is applicable to problems of the form:

MinimizeF xð Þ subject to a � x � b:

It normally computes a sequence of x values which tend in the limit to a minimum of F xð Þ subject to
the given bounds. It also progressively reduces the interval a; b½ � in which the minimum is known to lie.
It uses the safeguarded quadratic-interpolation method described in Gill and Murray (1973).

You must supply a FUNCT to evaluate F xð Þ. The arguments E1 and E2 together specify the accuracy

Tol xð Þ ¼ E1� xj j þ E2

to which the position of the minimum is required. Note that FUNCT is never called at any point which
is closer than Tol xð Þ to a previous point.

If the original interval a; b½ � contains more than one minimum, E04ABF/E04ABA will normally find one
of the minima.

4 References

Gill P E and Murray W (1973) Safeguarded steplength algorithms for optimization using descent
methods NPL Report NAC 37 National Physical Laboratory
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5 Arguments

1: FUNCT – SUBROUTINE, supplied by the user. External Procedure

You must supply this routine to calculate the value of the function F xð Þ at any point x in a; b½ �. It
should be tested separately before being used in conjunction with E04ABF/E04ABA.

The specification of FUNCT for E04ABF is:

SUBROUTINE FUNCT (XC, FC)

REAL (KIND=nag_wp) XC, FC

The specification of FUNCT for E04ABA is:

SUBROUTINE FUNCT (XC, FC, IUSER, RUSER)

INTEGER IUSER(*)
REAL (KIND=nag_wp) XC, FC, RUSER(*)

1: XC – REAL (KIND=nag_wp) Input

On entry: the point x at which the value of F is required.

2: FC – REAL (KIND=nag_wp) Output

On exit: must be set to the value of the function F at the current point x.

Note: the following are additional arguments for specific use with E04ABA. Users of E04ABF
therefore need not read the remainder of this description.

3: IUSERð�Þ – INTEGER array User Workspace
4: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FUNCT is called with the arguments IUSER and RUSER as supplied to E04ABF/
E04ABA. You should use the arrays IUSER and RUSER to supply information to
FUNCT.

FUNCT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04ABF/E04ABA is called. Arguments denoted as Input must not be
changed by this procedure.

2: E1 – REAL (KIND=nag_wp) Input/Output

On entry: the relative accuracy to which the position of a minimum is required. (Note that, since
E1 is a relative tolerance, the scaling of x is automatically taken into account.)

E1 should be no smaller than 2�, and preferably not much less than
ffiffi
�
p

, where � is the machine
precision.

On exit: if you set E1 to 0:0 (or to any value less than �), E1 will be reset to the default value
ffiffi
�
p

before starting the minimization process.

3: E2 – REAL (KIND=nag_wp) Input/Output

On entry: the absolute accuracy to which the position of a minimum is required. E2 should be no
smaller than 2�.

On exit: if you set E2 to 0:0 (or to any value less than �), E2 will be reset to the default value
ffiffi
�
p

.

4: A – REAL (KIND=nag_wp) Input/Output

On entry: the lower bound a of the interval containing a minimum.

On exit: an improved lower bound on the position of the minimum.
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5: B – REAL (KIND=nag_wp) Input/Output

On entry: the upper bound b of the interval containing a minimum.

On exit: an improved upper bound on the position of the minimum.

6: MAXCAL – INTEGER Input/Output

On entry: the maximum number of calls of F xð Þ to be allowed.

Constraint: MAXCAL � 3. (Few problems will require more than 30.)

There will be an error exit (see Section 6) after MAXCAL calls of FUNCT

On exit: the total number of times that FUNCT was actually called.

7: X – REAL (KIND=nag_wp) Output

On exit: the estimated position of the minimum.

8: F – REAL (KIND=nag_wp) Output

On exit: the function value at the final point given in X.

9: IFAIL – INTEGER Input/Output

Note: for E04ABA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: the following are additional arguments for specific use with E04ABA. Users of E04ABF therefore
need not read the remainder of this description.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04ABF/E04ABA, but are passed directly to FUNCT and
should be used to pass information to this routine.

12: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04ABF/E04ABA may return useful information for one or more of the following detected errors
or warnings.
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Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, Aþ E2ð Þ � B,
or MAXCAL < 3,

IFAIL ¼ 2

The number of calls of FUNCT has exceeded MAXCAL. This may have happened simply
because MAXCAL was set too small for a particular problem, or may be due to a mistake in
FUNCT. If no mistake can be found in FUNCT, restart E04ABF/E04ABA (preferably with the
values of A and B given on exit from the previous call of E04ABF/E04ABA).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If F xð Þ is �-unimodal for some � < Tol xð Þ, where Tol xð Þ ¼ E1� xj j þ E2, then, on exit, x
approximates the minimum of F xð Þ in the original interval a; b½ � with an error less than 3� Tol xð Þ.

8 Parallelism and Performance

E04ABF/E04ABA is not threaded in any implementation.

9 Further Comments

Timing depends on the behaviour of F xð Þ, the accuracy demanded and the length of the interval a; b½ �.
Unless F xð Þ can be evaluated very quickly, the run time will usually be dominated by the time spent in
FUNCT.

If F xð Þ has more than one minimum in the original interval a; b½ �, E04ABF/E04ABA will determine an
approximation x (and improved bounds a and b) for one of the minima.

If E04ABF/E04ABA finds an x such that F x� �1ð Þ > F xð Þ < F xþ �2ð Þ for some �1; �2 � Tol xð Þ, the
interval x� �1; xþ �2½ � will be regarded as containing a minimum, even if F xð Þ is less than F x� �1ð Þ
and F xþ �2ð Þ only due to rounding errors in the subroutine. Therefore FUNCT should be programmed
to calculate F xð Þ as accurately as possible, so that E04ABF/E04ABA will not be liable to find a
spurious minimum.
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10 Example

A sketch of the function

F xð Þ ¼ sinx

x

shows that it has a minimum somewhere in the range 3:5; 5:0½ �. The following program shows how
E04ABF/E04ABA can be used to obtain a good approximation to the position of a minimum.

10.1 Program Text

the following program illustrates the use of E04ABF. An equivalent program illustrating the use of
E04ABA is available with the supplied Library and is also available from the NAG web site.

! E04ABF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04abfe_mod

! E04ABF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Subroutine funct(xc,fc)

! Routine to evaluate F(x) at any point in (A, B)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc
Real (Kind=nag_wp), Intent (In) :: xc

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
fc = sin(xc)/xc

Return

End Subroutine funct
End Module e04abfe_mod
Program e04abfe

! E04ABF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04abf, nag_wp
Use e04abfe_mod, Only: funct, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, e1, e2, f, x
Integer :: ifail, maxcal

! .. Executable Statements ..
Write (nout,*) ’E04ABF Example Program Results’

! E1 and E2 are set to zero so that E04ABF will reset them to
! their default values

e1 = 0.0_nag_wp
e2 = 0.0_nag_wp

! The minimum is known to lie in the range (3.5, 5.0)
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a = 3.5_nag_wp
b = 5.0_nag_wp

! Allow 30 calls of FUNCT

maxcal = 30

ifail = -1
Call e04abf(funct,e1,e2,a,b,maxcal,x,f,ifail)

Select Case (ifail)
Case (0,2)

Write (nout,*)
Write (nout,99999) ’The minimum lies in the interval’, a, ’ to’, b
Write (nout,99999) ’Its estimated position is’, x, ’,’
Write (nout,99998) ’where the function value is ’, f
Write (nout,99997) maxcal, ’function evaluations were required’

End Select

99999 Format (1X,A,F11.8,A,F11.8)
99998 Format (1X,A,F7.4)
99997 Format (1X,I2,1X,A)

End Program e04abfe

10.2 Program Data

None.

10.3 Program Results

E04ABF Example Program Results

The minimum lies in the interval 4.49340940 to 4.49340951
Its estimated position is 4.49340945,
where the function value is -0.2172
10 function evaluations were required
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NAG Library Routine Document

E04BBF/E04BBA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04BBF/E04BBA searches for a minimum, in a given finite interval, of a continuous function of a
single variable, using function and first derivative values. The method (based on cubic interpolation) is
intended for functions which have a continuous first derivative (although it will usually work if the
derivative has occasional discontinuities).

E04BBA is a version of E04BBF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5).

2 Specification

2.1 Specification for E04BBF

SUBROUTINE E04BBF (FUNCT, E1, E2, A, B, MAXCAL, X, F, G, IFAIL)

INTEGER MAXCAL, IFAIL
REAL (KIND=nag_wp) E1, E2, A, B, X, F, G
EXTERNAL FUNCT

2.2 Specification for E04BBA

SUBROUTINE E04BBA (FUNCT, E1, E2, A, B, MAXCAL, X, F, G, IUSER, RUSER,
IFAIL)

&

INTEGER MAXCAL, IUSER(*), IFAIL
REAL (KIND=nag_wp) E1, E2, A, B, X, F, G, RUSER(*)
EXTERNAL FUNCT

3 Description

E04BBF/E04BBA is applicable to problems of the form:

MinimizeF xð Þ subject to a � x � b

when the first derivative
dF

dx
can be calculated. The routine normally computes a sequence of x values

which tend in the limit to a minimum of F xð Þ subject to the given bounds. It also progressively reduces
the interval a; b½ � in which the minimum is known to lie. It uses the safeguarded cubic-interpolation
method described in Gill and Murray (1973).

You must supply a FUNCT to evaluate F xð Þ and dF
dx

. The arguments E1 and E2 together specify the

accuracy

Tol xð Þ ¼ E1� xj j þ E2

to which the position of the minimum is required. Note that FUNCT is never called at a point which is
closer than Tol xð Þ to a previous point.

If the original interval a; b½ � contains more than one minimum, E04BBF/E04BBA will normally find one
of the minima.
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4 References

Gill P E and Murray W (1973) Safeguarded steplength algorithms for optimization using descent
methods NPL Report NAC 37 National Physical Laboratory

5 Arguments

1: FUNCT – SUBROUTINE, supplied by the user. External Procedure

You must supply this routine to calculate the values of F xð Þ and dF
dx

at any point x in a; b½ �.

It should be tested separately before being used in conjunction with E04BBF/E04BBA.

The specification of FUNCT for E04BBF is:

SUBROUTINE FUNCT (XC, FC, GC)

REAL (KIND=nag_wp) XC, FC, GC

The specification of FUNCT for E04BBA is:

SUBROUTINE FUNCT (XC, FC, GC, IUSER, RUSER)

INTEGER IUSER(*)
REAL (KIND=nag_wp) XC, FC, GC, RUSER(*)

1: XC – REAL (KIND=nag_wp) Input

On entry: the point x at which the values of F and
dF

dx
are required.

2: FC – REAL (KIND=nag_wp) Output

On exit: must be set to the value of the function F at the current point x.

3: GC – REAL (KIND=nag_wp) Output

On exit: must be set to the value of the first derivative
dF

dx
at the current point x.

Note: the following are additional arguments for specific use with E04BBA. Users of E04BBF
therefore need not read the remainder of this description.

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FUNCT is called with the arguments IUSER and RUSER as supplied to E04BBF/
E04BBA. You should use the arrays IUSER and RUSER to supply information to
FUNCT.

FUNCT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04BBF/E04BBA is called. Arguments denoted as Input must not be
changed by this procedure.

2: E1 – REAL (KIND=nag_wp) Input/Output

On entry: the relative accuracy to which the position of a minimum is required. (Note that, since
E1 is a relative tolerance, the scaling of x is automatically taken into account.)

E1 should be no smaller than 2�, and preferably not much less than
ffiffi
�
p

, where � is the machine
precision.

On exit: if you set E1 to 0:0 (or to any value less than �), E1 will be reset to the default value
ffiffi
�
p

before starting the minimization process.
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3: E2 – REAL (KIND=nag_wp) Input/Output

On entry: the absolute accuracy to which the position of a minimum is required. E2 should be no
smaller than 2�.

On exit: if you set E2 to 0:0 (or to any value less than �), E2 will be reset to the default value
ffiffi
�
p

.

4: A – REAL (KIND=nag_wp) Input/Output

On entry: the lower bound a of the interval containing a minimum.

On exit: an improved lower bound on the position of the minimum.

5: B – REAL (KIND=nag_wp) Input/Output

On entry: the upper bound b of the interval containing a minimum.

On exit: an improved upper bound on the position of the minimum.

6: MAXCAL – INTEGER Input/Output

On entry: the maximum number of calls of FUNCT to be allowed.

Constraint: MAXCAL � 2. (Few problems will require more than 20.)

There will be an error exit (see Section 6) after MAXCAL calls of FUNCT

On exit: the total number of times that FUNCT was actually called.

7: X – REAL (KIND=nag_wp) Output

On exit: the estimated position of the minimum.

8: F – REAL (KIND=nag_wp) Output

On exit: the function value at the final point given in X.

9: G – REAL (KIND=nag_wp) Output

On exit: the value of the first derivative at the final point in X.

10: IFAIL – INTEGER Input/Output

Note: for E04BBA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: the following are additional arguments for specific use with E04BBA. Users of E04BBF therefore
need not read the remainder of this description.

11: IUSERð�Þ – INTEGER array User Workspace
12: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04BBF/E04BBA, but are passed directly to FUNCT and
should be used to pass information to this routine.
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13: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04BBF/E04BBA may return useful information for one or more of the following detected errors
or warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, Aþ E2ð Þ � B,
or MAXCAL < 2.

IFAIL ¼ 2

The number of calls of FUNCT has exceeded MAXCAL. This may have happened simply
because MAXCAL was set too small for a particular problem, or may be due to a mistake in
FUNCT. If no mistake can be found in FUNCT, restart E04BBF/E04BBA (preferably with the
values of A and B given on exit from the previous call of E04BBF/E04BBA).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If F xð Þ is �-unimodal for some � < Tol xð Þ, where Tol xð Þ ¼ E1� xj j þ E2, then, on exit, x
approximates the minimum of F xð Þ in the original interval a; b½ � with an error less than 3� Tol xð Þ.

8 Parallelism and Performance

E04BBF/E04BBA is not threaded in any implementation.

9 Further Comments

Timing depends on the behaviour of F xð Þ, the accuracy demanded and the length of the interval a; b½ �.
Unless F xð Þ and dF

dx
can be evaluated very quickly, the run time will usually be dominated by the time

spent in FUNCT.

If F xð Þ has more than one minimum in the original interval a; b½ �, E04BBF/E04BBA will determine an
approximation x (and improved bounds a and b) for one of the minima.
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If E04BBF/E04BBA finds an x such that F x� �1ð Þ > F xð Þ < F xþ �2ð Þ for some �1; �2 � Tol xð Þ, the
interval x� �1; xþ �2½ � will be regarded as containing a minimum, even if F xð Þ is less than F x� �1ð Þ
and F xþ �2ð Þ only due to rounding errors in the subroutine. Therefore FUNCT should be programmed
to calculate F xð Þ as accurately as possible, so that E04BBF/E04BBA will not be liable to find a

spurious minimum. (For similar reasons,
dF

dx
should be evaluated as accurately as possible.)

10 Example

A sketch of the function

F xð Þ ¼ sinx

x

shows that it has a minimum somewhere in the range 3:5; 5:0½ �. The following program shows how
E04BBF/E04BBA can be used to obtain a good approximation to the position of a minimum.

10.1 Program Text

the following program illustrates the use of E04BBF. An equivalent program illustrating the use of
E04BBA is available with the supplied Library and is also available from the NAG web site.

! E04BBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04bbfe_mod

! E04BBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Subroutine funct(xc,fc,gc)

! Routine to evaluate F(x) and dF/dx at any point in (A, B)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc, gc
Real (Kind=nag_wp), Intent (In) :: xc

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
fc = sin(xc)/xc
gc = (cos(xc)-fc)/xc

Return

End Subroutine funct
End Module e04bbfe_mod
Program e04bbfe

! E04BBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04bbf, nag_wp
Use e04bbfe_mod, Only: funct, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, e1, e2, f, g, x
Integer :: ifail, maxcal

! .. Executable Statements ..
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Write (nout,*) ’E04BBF Example Program Results’

! E1 and E2 are set to zero so that E04BBF will reset them to
! their default values

e1 = 0.0_nag_wp
e2 = 0.0_nag_wp

! The minimum is known to lie in the range (3.5, 5.0)

a = 3.5_nag_wp
b = 5.0_nag_wp

! Allow 30 calls of FUNCT

maxcal = 30

ifail = -1
Call e04bbf(funct,e1,e2,a,b,maxcal,x,f,g,ifail)

Select Case (ifail)
Case (0,2)

Write (nout,*)
Write (nout,99999) ’The minimum lies in the interval’, a, ’ to’, b
Write (nout,99999) ’Its estimated position is’, x, ’,’
Write (nout,99998) ’where the function value is ’, f
Write (nout,99997) ’and the gradient is ’, g, ’ (machine dependent)’
Write (nout,99996) maxcal, ’ calls of FUNCT were required’

End Select

99999 Format (1X,A,F11.8,A,F11.8)
99998 Format (1X,A,F7.4)
99997 Format (1X,A,1P,E8.1,A)
99996 Format (1X,I2,A)

End Program e04bbfe

10.2 Program Data

None.

10.3 Program Results

E04BBF Example Program Results

The minimum lies in the interval 4.49340946 to 4.49340952
Its estimated position is 4.49340946,
where the function value is -0.2172
and the gradient is -3.8E-16 (machine dependent)
6 calls of FUNCT were required
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NAG Library Routine Document

E04CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04CBF minimizes a general function F xð Þ of n independent variables x ¼ x1; x2; . . . ; xnð ÞT by the
Nelder and Mead simplex method (see Nelder and Mead (1965)). Derivatives of the function need not
be supplied.

2 Specification

SUBROUTINE E04CBF (N, X, F, TOLF, TOLX, FUNCT, MONIT, MAXCAL, IUSER,
RUSER, IFAIL)

&

INTEGER N, MAXCAL, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), F, TOLF, TOLX, RUSER(*)
EXTERNAL FUNCT, MONIT

3 Description

E04CBF finds an approximation to a minimum of a function F of n variables. You must supply a
subroutine to calculate the value of F for any set of values of the variables.

The method is iterative. A simplex of nþ 1 points is set up in the n-dimensional space of the variables
(for example, in 2 dimensions the simplex is a triangle) under the assumption that the problem has been
scaled so that the values of the independent variables at the minimum are of order unity. The starting
point you have provided is the first vertex of the simplex, the remaining n vertices are generated by
E04CBF. The vertex of the simplex with the largest function value is reflected in the centre of gravity
of the remaining vertices and the function value at this new point is compared with the remaining
function values. Depending on the outcome of this test the new point is accepted or rejected, a further
expansion move may be made, or a contraction may be carried out. See Nelder and Mead (1965) and
Parkinson and Hutchinson (1972) for more details. When no further progress can be made the sides of
the simplex are reduced in length and the method is repeated.

The method can be slow, but computational bottlenecks have been reduced following Singer and Singer
(2004). However, E04CBF is robust, and therefore very useful for functions that are subject to
inaccuracies.

There are the following options for successful termination of the method: based only on the function
values at the vertices of the current simplex (see (1)); based only on a volume ratio between the current
simplex and the initial one (see (2)); or based on which one of the previous two tests passes first. The
volume test may be useful if F is discontinuous, while the function-value test should be sufficient on its
own if F is continuous.

4 References

Nelder J A and Mead R (1965) A simplex method for function minimization Comput. J. 7 308–313

Parkinson J M and Hutchinson D (1972) An investigation into the efficiency of variants of the simplex
method Numerical Methods for Nonlinear Optimization (ed F A Lootsma) Academic Press

Singer S and Singer S (2004) Efficient implementation of the Nelder–Mead search algorithm Appl.
Num. Anal. Comp. Math. 1(3) 524–534
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N � 1.

2: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: a guess at the position of the minimum. Note that the problem should be scaled so that
the values of the XðiÞ are of order unity.

On exit: the value of x corresponding to the function value in F.

3: F – REAL (KIND=nag_wp) Output

On exit: the lowest function value found.

4: TOLF – REAL (KIND=nag_wp) Input

On entry: the error tolerable in the function values, in the following sense. If fi, for
i ¼ 1; 2; . . . ; nþ 1, are the individual function values at the vertices of the current simplex, and if
fm is the mean of these values, then you can request that E04CBF should terminate ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nþ 1

Xnþ1
i¼1

fi � fmð Þ2
vuut < TOLF: ð1Þ

You may specify TOLF ¼ 0 if you wish to use only the termination criterion (2) on the spatial
values: see the description of TOLX.

Constraint: TOLF must be greater than or equal to the machine precision (see Chapter X02), or
if TOLF equals zero then TOLX must be greater than or equal to the machine precision.

5: TOLX – REAL (KIND=nag_wp) Input

On entry: the error tolerable in the spatial values, in the following sense. If LV denotes the
‘linearized’ volume of the current simplex, and if LV init denotes the ‘linearized’ volume of the
initial simplex, then you can request that E04CBF should terminate if

LV

LV init
< TOLX: ð2Þ

You may specify TOLX ¼ 0 if you wish to use only the termination criterion (1) on function
values: see the description of TOLF.

Constraint: TOLX must be greater than or equal to the machine precision (see Chapter X02), or
if TOLX equals zero then TOLF must be greater than or equal to the machine precision.

6: FUNCT – SUBROUTINE, supplied by the user. External Procedure

FUNCT must evaluate the function F at a specified point. It should be tested separately before
being used in conjunction with E04CBF.

The specification of FUNCT is:

SUBROUTINE FUNCT (N, XC, FC, IUSER, RUSER)

INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, RUSER(*)
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1: N – INTEGER Input

On entry: n, the number of variables.

2: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point at which the function value is required.

3: FC – REAL (KIND=nag_wp) Output

On exit: the value of the function F at the current point x.

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FUNCT is called with the arguments IUSER and RUSER as supplied to E04CBF. You
should use the arrays IUSER and RUSER to supply information to FUNCT.

FUNCT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04CBF is called. Arguments denoted as Input must not be changed by this
procedure.

7: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT may be used to monitor the optimization process. It is invoked once every iteration.

If no monitoring is required, MONIT may be the dummy monitoring routine E04CBK supplied
by the NAG Library.

The specification of MONIT is:

SUBROUTINE MONIT (FMIN, FMAX, SIM, N, NCALL, SERROR, VRATIO,
IUSER, RUSER)

&

INTEGER N, NCALL, IUSER(*)
REAL (KIND=nag_wp) FMIN, FMAX, SIM(N+1,N), SERROR, VRATIO,

RUSER(*)
&

1: FMIN – REAL (KIND=nag_wp) Input

On entry: the smallest function value in the current simplex.

2: FMAX – REAL (KIND=nag_wp) Input

On entry: the largest function value in the current simplex.

3: SIMðNþ 1;NÞ – REAL (KIND=nag_wp) array Input

On entry: the nþ 1 position vectors of the current simplex.

4: N – INTEGER Input

On entry: n, the number of variables.

5: NCALL – INTEGER Input

On entry: the number of times that FUNCT has been called so far.

6: SERROR – REAL (KIND=nag_wp) Input

On entry: the current value of the standard deviation in function values used in
termination test (1).
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7: VRATIO – REAL (KIND=nag_wp) Input

On entry: the current value of the linearized volume ratio used in termination test (2).

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONIT is called with the arguments IUSER and RUSER as supplied to E04CBF. You
should use the arrays IUSER and RUSER to supply information to MONIT.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04CBF is called. Arguments denoted as Input must not be changed by this
procedure.

8: MAXCAL – INTEGER Input

On entry: the maximum number of function evaluations to be allowed.

Constraint: MAXCAL � 1.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04CBF, but are passed directly to FUNCT and MONIT and
should be used to pass information to these routines.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MAXCAL ¼ valueh i.
Constraint: MAXCAL � 1.

On entry, N ¼ valueh i.
Constraint: N � 1.

On entry, TOLF ¼ 0:0 and TOLX ¼ valueh i.
Constraint: if TOLF ¼ 0:0 then TOLX is greater than or equal to the machine precision.

On entry, TOLF ¼ valueh i and TOLX ¼ valueh i.
Constraint: if TOLF 6¼ 0:0 and TOLX 6¼ 0:0 then both should be greater than or equal to the
machine precision.

On entry, TOLX ¼ 0:0 and TOLF ¼ valueh i.
Constraint: if TOLX ¼ 0:0 then TOLF is greater than or equal to the machine precision.
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IFAIL ¼ 2

MAXCAL function evaluations have been completed without any other termination test passing.
Check the coding of FUNCT before increasing the value of MAXCAL.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On a successful exit the accuracy will be as defined by TOLF or TOLX, depending on which criterion
was satisfied first.

8 Parallelism and Performance

E04CBF is not threaded in any implementation.

9 Further Comments

Local workspace arrays of fixed lengths (depending on N) are allocated internally by E04CBF. The total
size of these arrays amounts to N2 þ 6Nþ 2 real elements.

The time taken by E04CBF depends on the number of variables, the behaviour of the function and the
distance of the starting point from the minimum. Each iteration consists of 1 or 2 function evaluations
unless the size of the simplex is reduced, in which case nþ 1 function evaluations are required.

10 Example

This example finds a minimum of the function

F x1; x2ð Þ ¼ ex1 4x21 þ 2x22 þ 4x1x2 þ 2x2 þ 1
� �

:

This example uses the initial point �1; 1ð Þ (see Section 10.3), and we expect to reach the minimum at
0:5;�1ð Þ.

10.1 Program Text

! E04CBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04cbfe_mod

! E04CBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
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Public :: funct, monit
! .. Parameters ..

Integer, Parameter, Public :: nout = 6
Contains

Subroutine funct(n,xc,fc,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
fc = exp(xc(1))*(4.0_nag_wp*xc(1)*(xc(1)+xc(2))+2.0_nag_wp*xc(2)*(xc(2 &

)+1.0_nag_wp)+1.0_nag_wp)

Return

End Subroutine funct
Subroutine monit(fmin,fmax,sim,n,ncall,serror,vratio,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: fmax, fmin, serror, vratio
Integer, Intent (In) :: n, ncall

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: sim(n+1,n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
Write (nout,*)
Write (nout,99999) ncall
Write (nout,99998) fmin
Write (nout,99997)
Write (nout,99996) sim(1:(n+1),1:n)
Write (nout,99995) serror
Write (nout,99994) vratio

Return

99999 Format (1X,’There have been’,I5,’ function calls’)
99998 Format (1X,’The smallest function value is’,F10.4)
99997 Format (1X,’The simplex is’)
99996 Format (1X,2F10.4)
99995 Format (1X,’The standard deviation in function values at the ’, &

’vertices of the simplex is’,F10.4)
99994 Format (1X,’The linearized volume ratio of the current simplex’, &

’ to the starting one is’,F10.4)
End Subroutine monit

End Module e04cbfe_mod
Program e04cbfe

! E04CBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04cbf, e04cbk, nag_wp, x02ajf
Use e04cbfe_mod, Only: funct, monit, nout

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 2

! .. Local Scalars ..
Real (Kind=nag_wp) :: f, tolf, tolx
Integer :: ifail, maxcal
Logical :: monitoring

! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(1), x(n)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
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Intrinsic :: sqrt
! .. Executable Statements ..

Write (nout,*) ’E04CBF Example Program Results’

! Set MONITORING to .TRUE. to obtain monitoring information

monitoring = .False.

x(1:n) = (/-1.0_nag_wp,1.0_nag_wp/)
tolf = sqrt(x02ajf())
tolx = sqrt(tolf)
maxcal = 100

ifail = 0

If (.Not. monitoring) Then

Call e04cbf(n,x,f,tolf,tolx,funct,e04cbk,maxcal,iuser,ruser,ifail)

Else

Call e04cbf(n,x,f,tolf,tolx,funct,monit,maxcal,iuser,ruser,ifail)

End If

Write (nout,*)
Write (nout,99999) f
Write (nout,99998) x(1:n)

99999 Format (1X,’The final function value is’,F12.4)
99998 Format (1X,’at the point’,2F12.4)

End Program e04cbfe

10.2 Program Data

None.

10.3 Program Results

E04CBF Example Program Results

The final function value is 0.0000
at the point 0.5000 -0.9999
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Example Program
Contours of F Showing the Initial Point (X) and Local Minimum (*)

*
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NAG Library Routine Document

E04DGF/E04DGA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm and to Section 12 for a detailed
description of the specification of the optional parameters.

1 Purpose

E04DGF/E04DGA minimizes an unconstrained nonlinear function of several variables using a pre-
conditioned, limited memory quasi-Newton conjugate gradient method. First derivatives (or an
‘acceptable’ finite difference approximation to them) are required. It is intended for use on large scale
problems.

E04DGA is a version of E04DGF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04DGA.

2 Specification

2.1 Specification for E04DGF

SUBROUTINE E04DGF (N, OBJFUN, ITER, OBJF, OBJGRD, X, IWORK, WORK, IUSER,
RUSER, IFAIL)

&

INTEGER N, ITER, IWORK(N+1), IUSER(*), IFAIL
REAL (KIND=nag_wp) OBJF, OBJGRD(N), X(N), WORK(13*N), RUSER(*)
EXTERNAL OBJFUN

2.2 Specification for E04DGA

SUBROUTINE E04DGA (N, OBJFUN, ITER, OBJF, OBJGRD, X, IWORK, WORK, IUSER,
RUSER, LWSAV, IWSAV, RWSAV, IFAIL)

&

INTEGER N, ITER, IWORK(N+1), IUSER(*), IWSAV(610), IFAIL
REAL (KIND=nag_wp) OBJF, OBJGRD(N), X(N), WORK(13*N), RUSER(*),

RWSAV(475)
&

LOGICAL LWSAV(120)
EXTERNAL OBJFUN

Before calling E04DGA, or either of the option setting routines E04DJA or E04DKA, routine E04WBF
must be called. The specification for E04WBF is:

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
RWSAV, LRWSAV, IFAIL)

&

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV,
IFAIL

&

REAL (KIND=nag_wp) RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER(*) RNAME
CHARACTER(80) CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ E04DGA . LCWSAV, LLWSAV, LIWSAV and LRWSAV,
the declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 1

LLWSAV � 120
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LIWSAV � 610

LRWSAV � 475

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04DGA, E04DJA, E04DKA and E04WBF.

3 Description

E04DGF/E04DGA is designed to solve unconstrained minimization problems of the form

minimize
x2Rn

F xð Þ subject to �1 � x � 1;

where x is an n-element vector.

You must supply an initial estimate of the solution.

For maximum reliability, it is preferable to provide all first partial derivatives. If all of the derivatives
cannot be provided, you are recommended to obtain approximate values (using finite differences) by
calling E04XAF/E04XAA from within OBJFUN. This is illustrated in Section 10 in E04DJF/E04DJA.

The method used by E04DGF/E04DGA is described in Section 11.

4 References

Gill P E and Murray W (1979) Conjugate-gradient methods for large-scale nonlinear optimization
Technical Report SOL 79-15 Department of Operations Research, Stanford University

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the objective function F xð Þ and possibly its gradient as well for a
specified n-element vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER,
RUSER)

&

INTEGER MODE, N, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), OBJF, OBJGRD(N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0
OBJF.

MODE ¼ 2
OBJF and OBJGRD.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem, and in this case E04DGF/E04DGA will terminate with IFAIL set to
MODE.
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2: N – INTEGER Input

On entry: n, the number of variables.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the objective function and its gradient are
to be evaluated.

4: OBJF – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at x.

5: OBJGRDðNÞ – REAL (KIND=nag_wp) array Output

On exit: if MODE ¼ 2, OBJGRDðiÞ must contain the value of
@F

@xi
evaluated at x, for

i ¼ 1; 2; . . . ; n.

6: NSTATE – INTEGER Input

On entry: will be 1 on the first call of OBJFUN by E04DGF/E04DGA, and 0 for all
subsequent calls. Thus, you may wish to test, NSTATE within OBJFUN in order to
perform certain calculations once only. For example, you may read data or initialize
COMMON blocksglobal variables when NSTATE ¼ 1.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E04DGF/
E04DGA. You should use the arrays IUSER and RUSER to supply information to
OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04DGF/E04DGA is called. Arguments denoted as Input must not be
changed by this procedure.

Note: OBJFUN should be tested separately before being used in conjunction with E04DGF/
E04DGA. See also the description of the optional parameter Verify.

3: ITER – INTEGER Output

On exit: the total number of iterations performed.

4: OBJF – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at the final iterate.

5: OBJGRDðNÞ – REAL (KIND=nag_wp) array Output

On exit: the gradient of the objective function at the final iterate (or its finite difference
approximation).

6: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the solution.

On exit: the final estimate of the solution.
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7: IWORKðNþ 1Þ – INTEGER array Workspace
8: WORKð13� NÞ – REAL (KIND=nag_wp) array Workspace

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04DGF/E04DGA, but are passed directly to OBJFUN and
should be used to pass information to this routine.

11: IFAIL – INTEGER Input/Output

Note: for E04DGA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04DGF/E04DGA returns with IFAIL ¼ 0 if the following three conditions are satisfied:

(i) Fk�1 � Fk < �F 1þ Fkj jð Þ
(ii) xk�1 � xkk k < ffiffiffiffiffi

�F
p

1þ xkk kð Þ
(iii) gkk k �

ffiffiffiffiffi
�F3
p

1þ Fkj jð Þ or gkk k < �A

where �F is the value of the optional parameter Optimality Tolerance (default value ¼ �0:8) and
�A is the absolute error associated with computing the objective function.

For a full discussion on termination criteria see Chapter 8 of Gill et al. (1981).

Note: the following are additional arguments for specific use with E04DGA. Users of E04DGF
therefore need not read the remainder of this description.

12: LWSAVð120Þ – LOGICAL array Communication Array
13: IWSAVð610Þ – INTEGER array Communication Array
14: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04DGA, E04DJA, E04DKA or E04WBF.

15: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04DGF/E04DGA may return useful information for one or more of the following detected errors
or warnings.

E04DGF NAG Library Manual

E04DGF.4 Mark 26



Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04DGF/E04DGA because you set MODE < 0
in OBJFUN. The value of IFAIL will be the same as your setting of MODE.

IFAIL ¼ 1

Not used by this routine.

IFAIL ¼ 2

Not used by this routine.

IFAIL ¼ 3

The limiting number of iterations (as determined by the optional parameter Iteration Limit
(default value ¼ max 50; 5nð Þ) has been reached.

If the algorithm appears to be making satisfactory progress, then optional parameter Iteration
Limit may be too small. If so, increase its value and rerun E04DGF/E04DGA. If the algorithm
seems to be making little or no progress, then you should check for incorrect gradients as
described under IFAIL ¼ 7.

IFAIL ¼ 4

The computed upper bound on the step length taken during the linesearch was too small. A rerun
with an increased value of the optional parameter Maximum Step Length (� say) may be
successful unless � � 1020 (the default value), in which case the current point cannot be
improved upon.

IFAIL ¼ 5

Not used by this routine.

IFAIL ¼ 6

The conditions for an acceptable solution (see argument IFAIL in Section 5) have not all been
met, but a lower point could not be found.

If OBJFUN computes the objective function and its gradient correctly, then this may occur
because an overly stringent accuracy has been requested, i.e., the value of the optional parameter
Optimality Tolerance (default value ¼ �0:8) is too small or if �k ’ 0. In this case you should
apply the three tests described under IFAIL ¼ 0 to determine whether or not the final solution is
acceptable. For a discussion of attainable accuracy see Gill et al. (1981).

If many iterations have occurred in which essentially no progress has been made or E04DGF/
E04DGA has failed to move from the initial point, OBJFUN may be incorrect. You should refer
to the comments below under IFAIL ¼ 7 and check the gradients using the optional parameter
Verify (default value ¼ 0). Unfortunately, there may be small errors in the objective gradients
that cannot be detected by the verification process. Finite difference approximations to first
derivatives are catastrophically affected by even small inaccuracies.

IFAIL ¼ 7

The user-supplied derivatives of the objective function appear to be incorrect.

Large errors were found in the derivatives of the objective function. This value of IFAIL will
occur if the verification process indicated that at least one gradient element had no correct
figures. You should refer to the printed output to determine which elements are suspected to be in
error.

As a first step, you should check that the code for the objective values is correct – for example,
by computing the function at a point where the correct value is known. However, care should be
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taken that the chosen point fully tests the evaluation of the function. It is remarkable how often
the values x ¼ 0 or x ¼ 1 are used to test function evaluation procedures, and how often the
special properties of these numbers make the test meaningless.

Special care should be used in this test if computation of the objective function involves
subsidiary data communicated in COMMON storage. Although the first evaluation of the
function may be correct, subsequent calculations may be in error because some of the subsidiary
data has accidentally been overwritten.

Errors in programming the function may be quite subtle in that the function value is almost
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the
function; since some compilers do not convert such constants to double precision, half the correct
figures may be lost by such a seemingly trivial error.

IFAIL ¼ 8

The gradient g ¼ @F
@x

� �
at the starting point x0 is ‘too small’. More precisely, the value of

g x0ð ÞTg x0ð Þ is less than �r 1þ F x0ð Þj j, where �r is the value of the optional parameter Function
Precision (default value ¼ �0:9).
The problem should be rerun from a different starting point.

IFAIL ¼ 9

An input argument is invalid.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit (IFAIL ¼ 0) the accuracy of the solution will be as defined by the optional parameter
Optimality Tolerance (default value ¼ �0:8).

8 Parallelism and Performance

E04DGF/E04DGA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

To evaluate an ‘acceptable’ set of finite difference intervals using E04XAF/E04XAA requires 2 function
evaluations per variable for a well-scaled problem and up to 6 function evaluations per variable for a
badly scaled problem.

9.1 Description of Printed Output

This section describes the intermediate printout and final printout produced by E04DGF/E04DGA. You
can control the level of printed output (see the description of the optional parameter Print Level). Note
that the intermediate printout and final printout are produced only if Print Level � 10 (the default for
E04DGF, by default no output is produced by E04DGA).

The following line of summary output ( < 80 characters) is produced at every iteration. In all cases, the
values of the quantities are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Nfun is the cumulated number of evaluations of the objective function needed for
the linesearch. Evaluations needed for the verification of the gradients by
finite differences are not included. Nfun is printed as a guide to the amount of
work required for the linesearch. E04DGF/E04DGA will perform at most 11
function evaluations per iteration.

Objective is the value of the objective function at xk.

Norm G is the Euclidean norm of the gradient of the objective function at xk.

Norm X is the Euclidean norm of xk.

Norm (X(k-1)-X(k)) is the Euclidean norm of xk�1 � xk.
The following describes the printout for each variable.

Variable gives the name (Varbl) and index j, for j ¼ 1; 2; . . . ; n of the variable.

Value is the value of the variable at the final iteration.

Gradient Value is the value of the gradient of the objective function with respect to the jth
variable at the final iteration.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This example finds a minimum of the function

F ¼ ex1 4x21 þ 2x22 þ 4x1x2 þ 2x2 þ 1
� �

:

The initial point is

x0 ¼ �1:0; 1:0ð ÞT;

and F x0ð Þ ¼ 1:8394 (to five figures).

The optimal solution is

x� ¼ 0:5;�1:0ð ÞT;

and F x�ð Þ ¼ 0.

The document for E04DJF/E04DJA includes an example program to solve the same problem using
some of the optional parameters described in Section 12.
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10.1 Program Text

the following program illustrates the use of E04DGF. An equivalent program illustrating the use of
E04DGA is available with the supplied Library and is also available from the NAG web site.

! E04DGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04dgfe_mod

! E04DGF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: objfun

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine objfun(mode,n,x,objf,objgrd,nstate,iuser,ruser)

! Routine to evaluate F(x) and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objgrd(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: expx1, x1, x2

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
x1 = x(1)
x2 = x(2)
expx1 = exp(x1)
objf = expx1*(4.0_nag_wp*x1**2+2.0_nag_wp*x2**2+4.0_nag_wp*x1*x2+ &

2.0_nag_wp*x2+1.0_nag_wp)

If (mode==2) Then
objgrd(1:n) = (/4.0_nag_wp*expx1*(2.0_nag_wp*x1+x2)+objf, &

2.0_nag_wp*expx1*(2.0_nag_wp*x2+2.0_nag_wp*x1+1.0_nag_wp)/)
End If

Return

End Subroutine objfun
End Module e04dgfe_mod
Program e04dgfe

! E04DGF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04dgf, nag_wp
Use e04dgfe_mod, Only: nin, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: objf
Integer :: ifail, iter, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: objgrd(:), work(:), x(:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)
Integer, Allocatable :: iwork(:)
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! .. Executable Statements ..
Write (nout,*) ’E04DGF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Allocate (iwork(n+1),objgrd(n),x(n),work(13*n))

Read (nin,*) x(1:n)

! Solve the problem

ifail = -1
Call e04dgf(n,objfun,iter,objf,objgrd,x,iwork,work,iuser,ruser,ifail)

End Program e04dgfe

10.2 Program Data

E04DGF Example Program Data
2 :Value of N

-1.0 1.0 :End of X

10.3 Program Results

E04DGF Example Program Results

*** E04DGF

Parameters
----------

Variables.............. 2

Maximum step length.... 1.00E+20 EPS (machine precision) 1.11E-16
Optimality tolerance... 3.26E-12 Linesearch tolerance... 9.00E-01

Est. opt. function val. None Function precision..... 4.37E-15
Verify level........... 0

Iteration limit........ 50 Print level............ 10

Verification of the objective gradients.
----------------------------------------

The objective gradients seem to be ok.

Directional derivative of the objective -1.47151776E-01
Difference approximation -1.47151796E-01

Itn Step Nfun Objective Norm G Norm X Norm (X(k-1)-X(k))
0 1 1.839397E+00 8.2E-01 1.4E+00
1 3.7E-01 3 1.724275E+00 2.8E-01 1.3E+00 3.0E-01
2 1.6E+01 8 6.083488E-02 9.2E-01 9.3E-01 2.2E+00
3 1.6E-03 14 5.367978E-02 1.0E+00 9.6E-01 3.7E-02
4 4.8E-01 16 1.783392E-04 5.8E-02 1.1E+00 1.6E-01
5 1.0E+00 17 1.671122E-05 2.0E-02 1.1E+00 6.7E-03
6 1.0E+00 18 1.101991E-07 1.7E-03 1.1E+00 2.4E-03
7 1.0E+00 19 2.332133E-09 1.8E-04 1.1E+00 1.5E-04
8 1.0E+00 20 9.130924E-11 3.3E-05 1.1E+00 3.0E-05
9 1.0E+00 21 1.085455E-12 4.7E-06 1.1E+00 7.0E-06

10 1.0E+00 22 5.308300E-14 1.2E-06 1.1E+00 6.4E-07

Exit from E04DGF after 10 iterations.
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Variable Value Gradient value
Varbl 1 0.500000 9.1E-07
Varbl 2 -1.00000 8.3E-07

Exit E04DGF - Optimal solution found.

Final objective value = 0.5308300E-13

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Section 12.
Section 12 describes the optional parameters which may be set by calls to E04DJF/E04DJA and/or
E04DKF/E04DKA.

11 Algorithmic Details

This section contains a description of the method used by E04DGF/E04DGA.

E04DGF/E04DGA uses a pre-conditioned conjugate gradient method and is based upon algorithm
PLMA as described in Section 4.8.3 of Gill and Murray (1979) and Gill et al. (1981).

The algorithm proceeds as follows:

Let x0 be a given starting point and let k denote the current iteration, starting with k ¼ 0. The iteration
requires gk, the gradient vector evaluated at xk, the kth estimate of the minimum. At each iteration a
vector pk (known as the direction of search) is computed and the new estimate xkþ1 is given by
xk þ �kpk where �k (the step length) minimizes the function F xk þ �kpkð Þ with respect to the scalar �k.
A choice of initial step �0 is taken as

�0 ¼ min 1; 2� Fk � Festj j=gTkgk
� 

where Fest is a user-supplied estimate of the function value at the solution. If Fest is not specified, the
software always chooses the unit step length for �0. Subsequent step length estimates are computed
using cubic interpolation with safeguards.

A quasi-Newton method can be used to compute the search direction pk by updating the inverse of the
approximate Hessian Hkð Þ and computing

pkþ1 ¼ �Hkþ1gkþ1: ð1Þ

The updating formula for the approximate inverse is given by

Hkþ1 ¼ Hk �
1

yTksk
Hkyks

T
k þ skyTkHk

� �
þ 1

yTksk
1þ y

T
kHkyk
yTksk

� �
sks

T
k ; ð2Þ

where yk ¼ gk�1 � gk and sk ¼ xkþ1 � xk ¼ �kpk.
The method used to obtain the search direction is based upon computing pkþ1 as �Hkþ1gkþ1 where
Hkþ1 is a matrix obtained by updating the identity matrix with a limited number of quasi-Newton
corrections. The storage of an n by n matrix is avoided by storing only the vectors that define the rank
two corrections – hence the term ‘limited-memory’ quasi-Newton method. The precise method depends
upon the number of updating vectors stored. For example, the direction obtained with the ‘one-step’
limited memory update is given by (1) using (2) with Hk equal to the identity matrix, viz.

pkþ1 ¼ �gkþ1 þ
1

yTksk
sTkgkþ1yk þ yTkgkþ1sk
� �

� s
T
kgkþ1
yTksk

1þ y
T
kyk
yTksk

� �
sk:

Using a limited-memory quasi-Newton formula, such as the one above, guarantees pkþ1 to be a descent
direction if all the inner products yTksk are positive for all vectors yk and sk used in the updating
formula.
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12 Optional Parameters

Several optional parameters in E04DGF/E04DGA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal arguments of E04DGF/E04DGA these optional
parameters have associated default values that are appropriate for most problems. Therefore, you need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Defaults

Estimated Optimal Function Value

Function Precision

Iteration Limit

Iters

Itns

Linesearch Tolerance

List

Maximum Step Length

Nolist

Optimality Tolerance

Print Level

Start Objective Check at Variable

Stop Objective Check at Variable

Verify

Verify Gradients

Verify Level

Verify Objective Gradients

Optional parameters may be specified by calling one, or both, of the routines E04DJF/E04DJA and
E04DKF/E04DKA before a call to E04DGF/E04DGA.

E04DJF/E04DJA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 1

End

The call

CALL E04DJF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS.INFORM will be zero on successful exit. E04DJF/
E04DJA should be consulted for a full description of this method of supplying optional parameters.

E04DKF/E04DKA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04DKF (’Print Level = 1’)

E04DKF/E04DKA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by E04DGF/E04DGA (unless they define invalid values) and so remain
in effect for subsequent calls unless altered by you.
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12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
and �r denotes the relative precision of the objective function Function Precision.

Keywords and character values are case and white space insensitive.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Estimated Optimal Function Value r

This value of r specifies the user-supplied guess of the optimum objective function value Fest. This
value is used to calculate an initial step length �0 (see Section 11). If the value of r is not specified (the
default), then this has the effect of setting �0 to unity. It should be noted that for badly scaled functions
a unit step along the steepest descent direction will often compute the objective function at very large
values of x.

Function Precision r Default ¼ �0:9

The parameter defines �r, which is intended to be a measure of the accuracy with which the problem
function F xð Þ can be computed. If r < � or r � 1, the default value is used.

The value of �r should reflect the relative precision of 1þ F xð Þj j; i.e., �r acts as a relative precision
when Fj j is large, and as an absolute precision when Fj j is small. For example, if F xð Þ is typically of
order 1000 and the first six significant digits are known to be correct, an appropriate value for �r would
be 10�6. In contrast, if F xð Þ is typically of order 10�4 and the first six significant digits are known to be
correct, an appropriate value for �r would be 10�10. The choice of �r can be quite complicated for badly
scaled problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However when the
accuracy of the computed function values is known to be significantly worse than full precision, the
value of �r should be large enough so that no attempt will be made to distinguish between function
values that differ by less than the error inherent in the calculation.

Iteration Limit i Default ¼ max 50; 5nð Þ
Iters
Itns

The value of i specifies the maximum number of iterations allowed before termination. If i < 0, the
default value is used.

Problems whose Hessian matrices at the solution contain sets of clustered eigenvalues are likely to be
minimized in significantly fewer than n iterations. Problems without this property may require anything
between n and 5n iterations, with approximately 2n iterations being a common figure for moderately
difficult problems.

Linesearch Tolerance r Default ¼ 0:9

The value r controls the accuracy with which the step � taken during each iteration approximates a
minimum of the function along the search direction (the smaller the value of r, the more accurate the
linesearch). The default value r ¼ 0:9 requests an inaccurate search, and is appropriate for most
problems. A more accurate search may be appropriate when it is desirable to reduce the number of
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iterations – for example, if the objective function is cheap to evaluate. If r < 0 or r � 1, the default
value is used.

List Default for E04DGF ¼ List
Nolist Default for E04DGA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist
may be used to suppress the printing and optional parameter List may be used to restore printing.

Maximum Step Length r Default ¼ 1020

If r > 0, the maximum allowable step length for the linesearch is taken as min 1
X02AMFðÞ;

r
pkk k

� �
. If r � 0,

the default value is used.

Optimality Tolerance r Default ¼ �0:8R
The parameter r specifies the accuracy to which you wish the final iterate to approximate a solution of
the problem. Broadly speaking, r indicates the number of correct figures desired in the objective
function at the solution. For example, if r is 10�6 and termination occurs with IFAIL ¼ 0 (see
Section 5), then the final point satisfies the termination criteria, where �F represents Optimality
Tolerance. If r < �r or r � 1, the default value is used. If Optimality Tolerance is chosen below a
certain threshold, it will automatically be reset to another value.

Print Level i Default for E04DGF ¼ 10
Default for E04DGA ¼ 0

The value i controls the amount of printout produced by E04DGF/E04DGA, as indicated below. A
detailed description of the printout is given in Section 9.1 (summary output at each iteration and the
final solution).

i Output

0 No output.

1 The final solution only.

5 One line of summary output ( < 80 characters; see Section 9.1) for each iteration (no printout of
the final solution).

10 The final solution and one line of summary output for each iteration.

Start Objective Check at Variable i1 Default ¼ 1
Stop Objective Check at Variable i2 Default ¼ n
These keywords take effect only if Verify Level > 0. They may be used to control the verification of
gradient elements computed by OBJFUN. For example, if the first 30 elements of the objective gradient
appeared to be correct in an earlier run, so that only element 31 remains questionable, it is reasonable to
specify Start Objective Check at Variable ¼ 31. If the first 30 variables appear linearly in the
objective, so that the corresponding gradient elements are constant, the above choice would also be
appropriate.

If i1 � 0 or i1 > max 1;min n; i2ð Þð Þ, the default value is used. If i2 � 0 or i2 > n, the default value is
used.

Verify Level i Default ¼ 0
Verify
Verify Gradients
Verify Objective Gradients

These keywords refer to finite difference checks on the gradient elements computed by OBJFUN.
Gradients are verified at the user-supplied initial estimate of the solution. The possible choices for i are
as follows:
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i Meaning

�1 No checks are performed.

0 Only a ‘cheap’ test will be performed, requiring one call to OBJFUN.

1 In addition to the ‘cheap’ test, individual gradient elements will also be checked using a reliable
(but more expensive) test.

For example, the objective gradient will be verified if Verify, Verify ¼ YES, Verify Gradients, Verify
Objective Gradients or Verify Level ¼ 1 is specified.
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NAG Library Routine Document

E04DJF/E04DJA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply optional parameters to E04DGF/E04DGA from an external file. More precisely, E04DJF
must be used to supply optional parameters to E04DGF and E04DJA must be used to supply optional
parameters to E04DGA.

E04DJA is a version of E04DJF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04DJA.

2 Specification

2.1 Specification for E04DJF

SUBROUTINE E04DJF (IOPTNS, INFORM)

INTEGER IOPTNS, INFORM

2.2 Specification for E04DJA

SUBROUTINE E04DJA (IOPTNS, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IOPTNS, IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)

3 Description

E04DJF/E04DJA may be used to supply values for optional parameters to E04DGF/E04DGA. E04DJF/
E04DJA reads an external file and each line of the file defines a single optional parameter. It is only
necessary to supply values for those arguments whose values are to be different from their default
values.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print level = 5

End
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For E04DJF each line of the file is normally printed as it is read, on the current advisory message unit
(see X04ABF), but printing may be suppressed using the keyword Nolist. To suppress printing of
Begin, Nolist must be the first option supplied as in the file:

Begin
Nolist
Print level = 5

End

Printing will automatically be turned on again after a call to E04DGF or E04DJF and may be turned on
again at any time using the keyword List.

For E04DJA printing is turned off by default, but may be turned on at any time using the keyword List.

Optional parameter settings are preserved following a call to E04DGF/E04DGA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04DGF/E04DGA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04DGF/E04DGA.

4 References

None.

5 Arguments

1: IOPTNS – INTEGER Input

On entry: the unit number of the options file to be read.

Constraint: 0 � IOPTNS � 99.

2: INFORM – INTEGER Output

Note: for E04DJA, INFORM does not occur in this position in the argument list. See the
additional arguments described below.

On exit: contains zero if the options file has been successfully read and a value > 0 otherwise
(see Section 6).

Note: the following are additional arguments for specific use with E04DJA. Users of E04DJF therefore
need not read the remainder of this description.

3: LWSAVð120Þ – LOGICAL array Communication Array
4: IWSAVð610Þ – INTEGER array Communication Array
5: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04DJA, E04DGA, E04DKA or E04WBF.

6: INFORM – INTEGER Output

Note: see the argument description for INFORM above.

6 Error Indicators and Warnings

INFORM ¼ 1

IOPTNS is not in the range 0; 99½ �.

INFORM ¼ 2

Begin was found, but end-of-file was found before End was found.
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INFORM ¼ 3

end-of-file was found before Begin was found.

INFORM ¼ 4

Not used.

INFORM ¼ 5

One or more lines of the options file is invalid. Check that all keywords are neither ambiguous
nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04DJF/E04DJA is not threaded in any implementation.

9 Further Comments

E04DKF/E04DKA may also be used to supply optional parameters to E04DGF/E04DGA.

10 Example

This example solves the same problem as the example for E04DGF/E04DGA, but in addition illustrates
the use of E04DJF/E04DJA and E04DKF/E04DKA to set optional parameters for E04DGF/E04DGA.

In this example the options file read by E04DJF/E04DJA is appended to the data file for the program
(see Section 10.2). It would usually be more convenient in practice to keep the data file and the options
file separate.

10.1 Program Text

the following program illustrates the use of E04DJF. An equivalent program illustrating the use of
E04DJA is available with the supplied Library and is also available from the NAG web site.

! E04DJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04djfe_mod

! E04DJF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: objfn1

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, ninopt = 7, nout = 6

Contains
Subroutine objfn2(mode,n,x,objf,objgrd,nstate,iuser,ruser)

! Routine to evaluate F(x)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objgrd(n)
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Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: x1, x2

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
x1 = x(1)
x2 = x(2)

objf = exp(x1)*(4.0_nag_wp*x1**2+2.0_nag_wp*x2**2+4.0_nag_wp*x1*x2+ &
2.0_nag_wp*x2+1.0_nag_wp)

Return

End Subroutine objfn2
Subroutine objfn1(mode,n,x,objf,objgrd,nstate,iuser,ruser)

! Routine to evaluate F(x) and approximate its 1st derivatives

! .. Use Statements ..
Use nag_library, Only: e04xaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objgrd(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: epsrf
Integer :: ifail, imode, iwarn, ldh, msglvl

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: h(:,:), hcntrl(:), hforw(:), &

work(:), xcopy(:)
Integer, Allocatable :: info(:)

! .. Executable Statements ..
Select Case (mode)
Case (0)

! Evaluate F(x) only

Call objfn2(mode,n,x,objf,objgrd,nstate,iuser,ruser)

Case (2)

! Evaluate F(x) and approximate its 1st derivatives

imode = 0
ldh = n
Allocate (info(n),hforw(n),hcntrl(n),h(ldh,1),work(n),xcopy(n))
xcopy(1:n) = x(1:n)
hforw(1:n) = 0.0_nag_wp
msglvl = 0
epsrf = 0.0_nag_wp

ifail = 1
Call e04xaf(msglvl,n,epsrf,xcopy,imode,objfn2,ldh,hforw,objf,objgrd, &

hcntrl,h,iwarn,work,iuser,ruser,info,ifail)

End Select

Return

End Subroutine objfn1
End Module e04djfe_mod
Program e04djfe

! E04DJF Example Main Program
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! .. Use Statements ..
Use nag_library, Only: e04dgf, e04djf, e04dkf, nag_wp, x04abf, x04acf, &

x04baf
Use e04djfe_mod, Only: nin, ninopt, nout, objfn1

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Character (*), Parameter :: fname = ’e04djfe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: objf
Integer :: ifail, inform, iter, mode, n, outchn
Character (80) :: rec

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: objgrd(:), work(:), x(:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (rec,99998) ’E04DJF Example Program Results’
Call x04baf(nout,rec)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Allocate (iwork(n+1),objgrd(n),x(n),work(13*n))

! Set the unit number for advisory messages to OUTCHN

outchn = nout
Call x04abf(1,outchn)

Read (nin,*) x(1:n)

! Set two options using E04DKF

Call e04dkf(’ Verify Level = -1 ’)

Call e04dkf(’ Maximum Step Length = 100.0 ’)

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Read the options file for the remaining options

Call e04djf(ninopt,inform)

If (inform/=0) Then
Write (rec,99999) ’E04DJF terminated with INFORM = ’, inform

Call x04baf(nout,rec)

Go To 100
End If

! Solve the problem

ifail = -1
Call e04dgf(n,objfn1,iter,objf,objgrd,x,iwork,work,iuser,ruser,ifail)

100 Continue

99999 Format (1X,A,I5)
99998 Format (1X,A)

End Program e04djfe
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10.2 Program Data

Begin Example options file for E04DJF
Iteration Limit = 25 * (Default = 50)
Print Level = 1 * (Default = 10)
End

E04DJF Example Program Data
2 :Value of N

-1.0 1.0 :End of X

10.3 Program Results

E04DJF Example Program Results

Calls to E04DKF
---------------

Verify Level = -1
Maximum Step Length = 100.0

OPTIONS file
------------

Begin Example options file for E04DJF
Iteration Limit = 25 * (Default = 50)
Print Level = 1 * (Default = 10)
End

*** E04DGF

Parameters
----------

Variables.............. 2

Maximum step length.... 1.00E+02 EPS (machine precision) 1.11E-16
Optimality tolerance... 3.26E-12 Linesearch tolerance... 9.00E-01

Est. opt. function val. None Function precision..... 4.37E-15
Verify level........... -1

Iteration limit........ 25 Print level............ 1

Exit from E04DGF after 10 iterations.

Variable Value Gradient value
Varbl 1 0.500000 9.1E-07
Varbl 2 -1.00000 8.3E-07

Exit E04DGF - Optimal solution found.

Final objective value = 0.5235082E-13
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NAG Library Routine Document

E04DKF/E04DKA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply individual optional parameters to E04DGF/E04DGA. More precisely, E04DKF must be used
to supply optional parameters to E04DGF and E04DKA must be used to supply optional parameters to
E04DGA.

E04DKA is a version of E04DKF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04DKA.

2 Specification

2.1 Specification for E04DKF

SUBROUTINE E04DKF (STR)

CHARACTER(*) STR

2.2 Specification for E04DKA

SUBROUTINE E04DKA (STR, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)
CHARACTER(*) STR

3 Description

E04DKF/E04DKA may be used to supply values for optional parameters to E04DGF/E04DGA. It is
only necessary to call E04DKF/E04DKA for those arguments whose values are to be different from
their default values. One call to E04DKF/E04DKA sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

For E04DKF, each user-specified option is normally printed as it is defined, on the current advisory
message unit (see X04ABF), but this printing may be suppressed using the keyword Nolist. Thus the
statement

CALL E04DKF (’Nolist’)
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suppresses printing of this and subsequent options. Printing will automatically be turned on again after
a call to E04DGF and may be turned on again at any time using the keyword List.

For E04DKA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04DGF/E04DGA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04DGF/E04DGA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04DGF/E04DGA.

4 References

None.

5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 and in Section 12 in E04DGF/
E04DGA).

Note: the following are additional arguments for specific use with E04DKA. Users of E04DKF
therefore need not read the remainder of this description.

2: LWSAVð120Þ – LOGICAL array Communication Array
3: IWSAVð610Þ – INTEGER array Communication Array
4: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04DKA, E04DGA, E04DJA or E04WBF.

5: INFORM – INTEGER Output

On exit: contains zero if a valid option string has been supplied and a value > 0 otherwise (see
Section 6).

6 Error Indicators and Warnings

INFORM ¼ 5

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04DKF/E04DKA is not threaded in any implementation.

9 Further Comments

E04DJF/E04DJA may also be used to supply optional parameters to E04DGF/E04DGA.
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10 Example

See Section 10 in E04DJF/E04DJA.
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NAG Library Routine Document

E04FCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04FCF is a comprehensive algorithm for finding an unconstrained minimum of a sum of squares of m
nonlinear functions in n variables m � nð Þ. No derivatives are required.

The routine is intended for functions which have continuous first and second derivatives (although it
will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04FCF (M, N, LSQFUN, LSQMON, IPRINT, MAXCAL, ETA, XTOL,
STEPMX, X, FSUMSQ, FVEC, FJAC, LDFJAC, S, V, LDV,
NITER, NF, IW, LIW, W, LW, IFAIL)

&
&

INTEGER M, N, IPRINT, MAXCAL, LDFJAC, LDV, NITER, NF,
IW(LIW), LIW, LW, IFAIL

&

REAL (KIND=nag_wp) ETA, XTOL, STEPMX, X(N), FSUMSQ, FVEC(M),
FJAC(LDFJAC,N), S(N), V(LDV,N), W(LW)

&

EXTERNAL LSQFUN, LSQMON

3 Description

E04FCF is essentially identical to the subroutine LSQNDN in the NPL Algorithms Library. It is
applicable to problems of the form

MinimizeF xð Þ ¼
Xm
i¼1

fi xð Þ½ �2

where x ¼ x1; x2; . . . ; xnð ÞT and m � n. (The functions fi xð Þ are often referred to as ‘residuals’.)

You must supply LSQFUN to calculate the values of the fi xð Þ at any point x.

From a starting point x 1ð Þ supplied by you, the routine generates a sequence of points x 2ð Þ; x 3ð Þ; . . .,
which is intended to converge to a local minimum of F xð Þ. The sequence of points is given by

x kþ1ð Þ ¼ x kð Þ þ � kð Þp kð Þ

where the vector p kð Þ is a direction of search, and � kð Þ is chosen such that F x kð Þ þ � kð Þp kð Þ� �
is

approximately a minimum with respect to � kð Þ.

The vector p kð Þ used depends upon the reduction in the sum of squares obtained during the last iteration.
If the sum of squares was sufficiently reduced, then p kð Þ is an approximation to the Gauss–Newton
direction; otherwise additional function evaluations are made so as to enable p kð Þ to be a more accurate
approximation to the Newton direction.

The method is designed to ensure that steady progress is made whatever the starting point, and to have
the rapid ultimate convergence of Newton's method.

4 References

Gill P E and Murray W (1978) Algorithms for the solution of the nonlinear least squares problem SIAM
J. Numer. Anal. 15 977–992
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5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number m of residuals, fi xð Þ, and the number n of variables, xj.

Constraint: 1 � N � M.

3: LSQFUN – SUBROUTINE, supplied by the user. External Procedure

LSQFUN must calculate the vector of values fi xð Þ at any point x. (However, if you do not wish
to calculate the residuals at a particular x, there is the option of setting an argument to cause
E04FCF to terminate immediately.)

The specification of LSQFUN is:

SUBROUTINE LSQFUN (IFLAG, M, N, XC, FVEC, IW, LIW, W, LW)

INTEGER IFLAG, M, N, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FVEC(M), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: has a non-negative value.

On exit: if LSQFUN resets IFLAG to some negative number, E04FCF will terminate
immediately, with IFAIL set to your setting of IFLAG.

2: M – INTEGER Input

On entry: m, the numbers of residuals.

3: N – INTEGER Input

On entry: n, the numbers of variables.

4: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the values of the fi are required.

5: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset to a negative number, FVECðiÞ must contain the value
of fi at the point x, for i ¼ 1; 2; . . . ;m.

6: IWðLIWÞ – INTEGER array Workspace
7: LIW – INTEGER Input
8: WðLWÞ – REAL (KIND=nag_wp) array Workspace
9: LW – INTEGER Input

LSQFUN is called with these arguments as in the call to E04FCF, so you can pass
quantities to LSQFUN from the subroutine which calls E04FCF by using partitions of
IW and W beyond those used as workspace by E04FCF. However, because of the
danger of mistakes in partitioning, it is recommended that this facility be used very
selectively, e.g., for stable applications packages which need to pass their own variable
dimension workspace to LSQFUN. It is recommended that the normal method for
passing information from your subroutine to LSQFUN should be via COMMON global
variables. In any case, you must not change LIW, LW or the elements of IW and W
used as workspace by E04FCF.

LSQFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04FCF is called. Arguments denoted as Input must not be changed by
this procedure.
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Note: LSQFUN should be tested separately before being used in conjunction with E04FCF.

4: LSQMON – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

If IPRINT � 0, you must supply LSQMON which is suitable for monitoring the minimization
process. LSQMON must not change the values of any of its arguments.

If IPRINT < 0, the dummy routine E04FDZ can be used as LSQMON.

The specification of LSQMON is:

SUBROUTINE LSQMON (M, N, XC, FVEC, FJAC, LDFJAC, S, IGRADE,
NITER, NF, IW, LIW, W, LW)

&

INTEGER M, N, LDFJAC, IGRADE, NITER, NF, IW(LIW),
LIW, LW

&

REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), S(N), W(LW)

Important: the dimension declaration for FJAC must contain the variable LDFJAC, not an
integer constant.

1: M – INTEGER Input

On entry: m, the numbers of residuals.

2: N – INTEGER Input

On entry: n, the numbers of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the current point x.

4: FVECðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the residuals fi at the current point x.

5: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Input

On entry: FJACði; jÞ contains the value of
@fi
@xj

at the current point x, for i ¼ 1; 2; . . . ;m

and j ¼ 1; 2; . . . ; n.

6: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from
which E04FCF is called.

7: SðNÞ – REAL (KIND=nag_wp) array Input

On entry: the singular values of the current approximation to the Jacobian matrix. Thus
S may be useful as information about the structure of your problem.

8: IGRADE – INTEGER Input

On entry: E04FCF estimates the dimension of the subspace for which the Jacobian
matrix can be used as a valid approximation to the curvature (see Gill and Murray
(1978)). This estimate is called the grade of the Jacobian matrix, and IGRADE gives its
current value.

9: NITER – INTEGER Input

On entry: the number of iterations which have been performed in E04FCF.
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10: NF – INTEGER Input

On entry: the number of times that LSQFUN has been called so far. (However, for
intermediate calls of LSQMON, NF is calculated on the assumption that the latest linear
search has been successful. If this is not the case, then the n evaluations allowed for
approximating the Jacobian at the new point will not in fact have been made. NF will
be accurate at the final call of LSQMON.)

11: IWðLIWÞ – INTEGER array Workspace
12: LIW – INTEGER Input
13: WðLWÞ – REAL (KIND=nag_wp) array Workspace
14: LW – INTEGER Input

These arguments correspond to the arguments IW, LIW, W and LW of E04FCF. They
are included in LSQMON's argument list primarily for when E04FCF is called by other
Library routines.

LSQMON must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04FCF is called. Arguments denoted as Input must not be changed by
this procedure.

Note: you should normally print the sum of squares of residuals, so as to be able to examine the
sequence of values of F xð Þ mentioned in Section 7. It is usually helpful to print XC, the
estimated gradient of the sum of squares, NITER and NF.

5: IPRINT – INTEGER Input

On entry: the frequency with which LSQMON is to be called.

If IPRINT > 0, LSQMON is called once every IPRINT iterations and just before exit from
E04FCF.

If IPRINT ¼ 0, LSQMON is just called at the final point.

If IPRINT < 0, LSQMON is not called at all.

IPRINT should normally be set to a small positive number.

Suggested value: IPRINT ¼ 1.

6: MAXCAL – INTEGER Input

On entry: the limit you set on the number of times that LSQFUN may be called by E04FCF.
There will be an error exit (see Section 6) after MAXCAL calls of LSQFUN.

Suggested value: MAXCAL ¼ 400� n.
Constraint: MAXCAL � 1.

7: ETA – REAL (KIND=nag_wp) Input

Every iteration of E04FCF involves a linear minimization, i.e., minimization of
F x kð Þ þ � kð Þp kð Þ� �

with respect to � kð Þ.

On entry: specifies how accurately the linear minimizations are to be performed. The minimum
with respect to � kð Þ will be located more accurately for small values of ETA (say, 0:01) than for
large values (say, 0:9). Although accurate linear minimizations will generally reduce the number
of iterations performed by E04FCF, they will increase the number of calls of LSQFUN made
each iteration. On balance it is usually more efficient to perform a low accuracy minimization.

Suggested value: ETA ¼ 0:5 (ETA ¼ 0:0 if N ¼ 1).

Constraint: 0:0 � ETA < 1:0.
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8: XTOL – REAL (KIND=nag_wp) Input

On entry: the accuracy in x to which the solution is required.

If xtrue is the true value of x at the minimum, then xsol, the estimated position before a normal
exit, is such that

xsol � xtruek k < XTOL� 1:0þ xtruek kð Þ;

where yk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

y2j

s
. For example, if the elements of xsol are not much larger than 1:0 in

modulus and if XTOL ¼ 1:0E�5, then xsol is usually accurate to about five decimal places. (For
further details see Section 7.)

Suggested value: if F xð Þ and the variables are scaled roughly as described in Section 9 and � is
the machine precision, then a setting of order XTOL ¼

ffiffi
�
p

will usually be appropriate. If XTOL
is set to 0:0 or some positive value less than 10�, E04FCF will use 10� instead of XTOL, since
10� is probably the smallest reasonable setting.

Constraint: XTOL � 0:0.

9: STEPMX – REAL (KIND=nag_wp) Input

On entry: an estimate of the Euclidean distance between the solution and the starting point
supplied by you. (For maximum efficiency, a slight overestimate is preferable.) E04FCF will
ensure that, for each iteration,Xn

j¼1
x
kð Þ
j � x

k�1ð Þ
j

� �2
� STEPMXð Þ2;

where k is the iteration number. Thus, if the problem has more than one solution, E04FCF is
most likely to find the one nearest to the starting point. On difficult problems, a realistic choice
can prevent the sequence x kð Þ entering a region where the problem is ill-behaved and can help
avoid overflow in the evaluation of F xð Þ. However, an underestimate of STEPMX can lead to
inefficiency.

Suggested value: STEPMX ¼ 100000:0.

Constraint: STEPMX � XTOL.

10: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n.

On exit: the final point x kð Þ. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the jth component of the
estimated position of the minimum.

11: FSUMSQ – REAL (KIND=nag_wp) Output

On exit: the value of F xð Þ, the sum of squares of the residuals fi xð Þ, at the final point given in X.

12: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: the value of the residual fi xð Þ at the final point given in X, for i ¼ 1; 2; . . . ;m.

13: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: the estimate of the first derivative
@fi
@xj

at the final point given in X, for i ¼ 1; 2; . . . ;m

and j ¼ 1; 2; . . . ; n.
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14: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which
E04FCF is called.

Constraint: LDFJAC � M.

15: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: the singular values of the estimated Jacobian matrix at the final point. Thus S may be
useful as information about the structure of your problem.

16: VðLDV;NÞ – REAL (KIND=nag_wp) array Output

On exit: the matrix V associated with the singular value decomposition

J ¼ USV T

of the estimated Jacobian matrix at the final point, stored by columns. This matrix may be useful
for statistical purposes, since it is the matrix of orthonormalized eigenvectors of JTJ .

17: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which E04FCF
is called.

Constraint: LDV � N.

18: NITER – INTEGER Output

On exit: the number of iterations which have been performed in E04FCF.

19: NF – INTEGER Output

On exit: the number of times that the residuals have been evaluated (i.e., number of calls of
LSQFUN).

20: IWðLIWÞ – INTEGER array Communication Array
21: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04FCF is
called.

Constraint: LIW � 1.

22: WðLWÞ – REAL (KIND=nag_wp) array Communication Array
23: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04FCF is
called.

Constraints:

if N > 1, LW � 6� NþM� Nþ 2�Mþ N� N� 1ð Þ=2;
if N ¼ 1, LW � 7þ 3�M.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04FCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04FCF because you have set IFLAG negative
in LSQFUN. The value of IFAIL will be the same as your setting of IFLAG.

IFAIL ¼ 1

On entry, N < 1,
or M < N,
or MAXCAL < 1,
or ETA < 0:0,
or ETA � 1:0,
or XTOL < 0:0,
or STEPMX < XTOL,
or LDFJAC < M,
or LDV < N,
or LIW < 1,
or LW < 6� NþM� Nþ 2�Mþ N� N� 1ð Þ=2, when N > 1,
or LW < 7þ 3�M, when N ¼ 1.

When this exit occurs, no values will have been assigned to FSUMSQ, or to the elements of
FVEC, FJAC, S or V.

IFAIL ¼ 2

There have been MAXCAL calls of LSQFUN. If steady reductions in the sum of squares, F xð Þ,
were monitored up to the point where this exit occurred, then the exit probably occurred simply
because MAXCAL was set too small, so the calculations should be restarted from the final point
held in X. This exit may also indicate that F xð Þ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been satisfied, but a lower point could not be found.
This could be because XTOL has been set so small that rounding errors in the evaluation of the
residuals make attainment of the convergence conditions impossible.

IFAIL ¼ 4

The method for computing the singular value decomposition of the estimated Jacobian matrix has
failed to converge in a reasonable number of sub-iterations. It may be worth applying E04FCF
again starting with an initial approximation which is not too close to the point at which the
failure occurred.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

The values IFAIL ¼ 2, 3 or 4 may also be caused by mistakes in LSQFUN, by the formulation of the
problem or by an awkward function. If there are no such mistakes it is worth restarting the calculations
from a different starting point (not the point at which the failure occurred) in order to avoid the region
which caused the failure.

7 Accuracy

A successful exit (IFAIL ¼ 0) is made from E04FCF when (B1, B2 and B3) or B4 or B5 hold, where

B1 	 � kð Þ � p kð Þ�� �� < XTOLþ �ð Þ � 1:0þ x kð Þ�� ��� �
B2 	 F kð Þ � F k�1ð Þ		 		 < XTOLþ �ð Þ2 � 1:0þ F kð Þ� �
B3 	 g kð Þ�� �� < �1=3 þ XTOL

� �
� 1:0þ F kð Þ� �

B4 	 F kð Þ < �2

B5 	 g kð Þ�� �� < ��
ffiffiffiffiffiffiffiffiffi
F kð Þ
p� �1=2

and where :k k and � are as defined in Section 5, and F kð Þ and g kð Þ are the values of F xð Þ and its vector
of estimated first derivatives at x kð Þ. If IFAIL ¼ 0 then the vector in X on exit, xsol, is almost certainly
an estimate of xtrue, the position of the minimum to the accuracy specified by XTOL.

If IFAIL ¼ 3, then xsol may still be a good estimate of xtrue, but to verify this you should make the
following checks. If

(a) the sequence F x kð Þ� �� 
converges to F xsolð Þ at a superlinear or a fast linear rate, and

(b) g xsolð ÞTg xsolð Þ < 10�, where T denotes transpose, then it is almost certain that xsol is a close
approximation to the minimum. When (b) is true, then usually F xsolð Þ is a close approximation to
F xtrueð Þ. The values of F x kð Þ� �

can be calculated in LSQMON, and the vector g xsolð Þ can be
calculated from the contents of FVEC and FJAC on exit from E04FCF.

Further suggestions about confirmation of a computed solution are given in the E04 Chapter
Introduction.

8 Parallelism and Performance

E04FCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E04FCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of iterations required depends on the number of variables, the number of residuals, the
behaviour of F xð Þ, the accuracy demanded and the distance of the starting point from the solution. The
number of multiplications performed per iteration of E04FCF varies, but for m� n is approximately

E04FCF NAG Library Manual

E04FCF.8 Mark 26



n�m2 þO n3
� �

. In addition, each iteration makes at least nþ 1 calls of LSQFUN. So, unless the
residuals can be evaluated very quickly, the run time will be dominated by the time spent in LSQFUN.

Ideally, the problem should be scaled so that, at the solution, F xð Þ and the corresponding values of the
xj are each in the range �1;þ1ð Þ, and so that at points one unit away from the solution, F xð Þ differs
from its value at the solution by approximately one unit. This will usually imply that the Hessian matrix
of F xð Þ at the solution is well-conditioned. It is unlikely that you will be able to follow these
recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the
difficulty of the minimization problem, so that E04FCF will take less computer time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements
of the variance-covariance matrix of the estimated regression coefficients can be computed by a
subsequent call to E04YCF, using information returned in the arrays S and V. See E04YCF for further
details.

10 Example

This example finds least squares estimates of x1; x2 and x3 in the model

y ¼ x1 þ
t1

x2t2 þ x3t3
using the 15 sets of data given in the following table.

y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

The program uses 0:5; 1:0; 1:5ð Þ as the initial guess at the position of the minimum.

10.1 Program Text

! E04FCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04fcfe_mod

! E04FCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: lsqfun, lsqgrd, lsqmon

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: inc1 = 1
Integer, Parameter, Public :: liw = 1, m = 15, n = 3, nin = 5, &
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nout = 6, nt = 3
Integer, Parameter, Public :: ldfjac = m
Integer, Parameter, Public :: ldv = n
Integer, Parameter, Public :: lw = 6*n + m*n + 2*m + n*(n-1)/2
Character (1), Parameter :: trans = ’T’

! .. Local Arrays ..
Real (Kind=nag_wp), Public, Save :: t(m,nt), y(m)

Contains
Subroutine lsqgrd(m,n,fvec,fjac,ldfjac,g)

! Routine to evaluate gradient of the sum of squares

! .. Use Statements ..
Use nag_library, Only: dgemv

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfjac, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: fjac(ldfjac,n), fvec(m)
Real (Kind=nag_wp), Intent (Out) :: g(n)

! .. Executable Statements ..
! The NAG name equivalent of dgemv is f06paf

Call dgemv(trans,m,n,one,fjac,ldfjac,fvec,inc1,zero,g,inc1)

g(1:n) = two*g(1:n)

Return

End Subroutine lsqgrd
Subroutine lsqfun(iflag,m,n,xc,fvec,iw,liw,w,lw)

! Routine to evaluate the residuals

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: liw, lw, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Executable Statements ..
fvec(1:m) = xc(1) + t(1:m,1)/(xc(2)*t(1:m,2)+xc(3)*t(1:m,3)) - y(1:m)

Return

End Subroutine lsqfun
Subroutine lsqmon(m,n,xc,fvec,fjac,ldfjac,s,igrade,niter,nf,iw,liw,w,lw)

! Monitoring routine

! .. Use Statements ..
Use nag_library, Only: ddot

! .. Parameters ..
Integer, Parameter :: ndec = 3

! .. Scalar Arguments ..
Integer, Intent (In) :: igrade, ldfjac, liw, lw, m, n, nf, &

niter
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (In) :: fjac(ldfjac,n), fvec(m), s(n), &
xc(n)

Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Real (Kind=nag_wp) :: fsumsq, gtg
Integer :: j

! .. Local Arrays ..
Real (Kind=nag_wp) :: g(ndec)

! .. Executable Statements ..
! The NAG name equivalent of ddot is f06eaf

fsumsq = ddot(m,fvec,inc1,fvec,inc1)

Call lsqgrd(m,n,fvec,fjac,ldfjac,g)
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gtg = ddot(n,g,inc1,g,inc1)

Write (nout,*)
Write (nout,*) &

’ Itn F evals SUMSQ GTG Grade’
Write (nout,99999) niter, nf, fsumsq, gtg, igrade
Write (nout,*)
Write (nout,*) &

’ X G Singular values’

Write (nout,99998)(xc(j),g(j),s(j),j=1,n)

Return

99999 Format (1X,I4,6X,I5,6X,1P,E13.5,6X,1P,E9.1,6X,I3)
99998 Format (1X,1P,E13.5,10X,1P,E9.1,10X,1P,E9.1)

End Subroutine lsqmon
End Module e04fcfe_mod
Program e04fcfe

! E04FCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04fcf, nag_wp, x02ajf
Use e04fcfe_mod, Only: ldfjac, ldv, liw, lsqfun, lsqgrd, lsqmon, lw, m, &

n, nin, nout, nt, t, y
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: eta, fsumsq, stepmx, xtol
Integer :: i, ifail, iprint, maxcal, nf, niter

! .. Local Arrays ..
Real (Kind=nag_wp) :: fjac(m,n), fvec(m), g(n), s(n), &

v(ldv,n), w(lw), x(n)
Integer :: iw(liw)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Write (nout,*) ’E04FCF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Observations of TJ (J = 1, 2, ..., nt) are held in T(I, J)
! (I = 1, 2, ..., m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:nt)

End Do

! Set IPRINT to 1 to obtain output from LSQMON at each iteration

iprint = -1

maxcal = 400*n
eta = 0.5_nag_wp
xtol = 10.0_nag_wp*sqrt(x02ajf())

! We estimate that the minimum will be within 10 units of the
! starting point

stepmx = 10.0_nag_wp

! Set up the starting point

x(1:nt) = (/0.5_nag_wp,1.0_nag_wp,1.5_nag_wp/)

ifail = -1
Call e04fcf(m,n,lsqfun,lsqmon,iprint,maxcal,eta,xtol,stepmx,x,fsumsq, &

fvec,fjac,ldfjac,s,v,ldv,niter,nf,iw,liw,w,lw,ifail)

E04 – Minimizing or Maximizing a Function E04FCF

Mark 26 E04FCF.11



Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’On exit, the sum of squares is’, fsumsq
Write (nout,99999) ’at the point’, x(1:n)

Call lsqgrd(m,n,fvec,fjac,ldfjac,g)

Write (nout,99998) ’The estimated gradient is’, g(1:n)
Write (nout,*) ’ (machine dependent)’
Write (nout,*) ’and the residuals are’
Write (nout,99997) fvec(1:m)

End Select

99999 Format (1X,A,3F12.4)
99998 Format (1X,A,1P,3E12.3)
99997 Format (1X,1P,E9.1)

End Program e04fcfe

10.2 Program Data

E04FCF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

10.3 Program Results

E04FCF Example Program Results

On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437
The estimated gradient is -1.607E-09 -7.436E-11 6.130E-10

(machine dependent)
and the residuals are
-5.9E-03
-2.7E-04
2.7E-04
6.5E-03

-8.2E-04
-1.3E-03
-4.5E-03
-2.0E-02
8.2E-02

-1.8E-02
-1.5E-02
-1.5E-02
-1.1E-02
-4.2E-03
6.8E-03
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NAG Library Routine Document

E04FYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04FYF is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of m
nonlinear functions in n variables m � nð Þ. No derivatives are required.

It is intended for functions which are continuous and which have continuous first and second
derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04FYF (M, N, LSFUN1, X, FSUMSQ, W, LW, IUSER, RUSER, IFAIL)

INTEGER M, N, LW, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), FSUMSQ, W(LW), RUSER(*)
EXTERNAL LSFUN1

3 Description

E04FYF is essentially identical to the subroutine LSNDN1 in the NPL Algorithms Library. It is
applicable to problems of the form

MinimizeF xð Þ ¼
Xm
i¼1

fi xð Þ½ �2

where x ¼ x1; x2; . . . ; xnð ÞT and m � n. (The functions fi xð Þ are often referred to as ‘residuals’.)

You must supply a subroutine to evaluate functions fi xð Þ at any point x.

From a starting point supplied by you, a sequence of points is generated which is intended to converge
to a local minimum of the sum of squares. These points are generated using estimates of the curvature
of F xð Þ.

4 References

Gill P E and Murray W (1978) Algorithms for the solution of the nonlinear least squares problem SIAM
J. Numer. Anal. 15 977–992

5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number m of residuals, fi xð Þ, and the number n of variables, xj.

Constraint: 1 � N � M.

3: LSFUN1 – SUBROUTINE, supplied by the user. External Procedure

You must supply this routine to calculate the vector of values fi xð Þ at any point x. It should be
tested separately before being used in conjunction with E04FYF (see the E04 Chapter
Introduction).
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The specification of LSFUN1 is:

SUBROUTINE LSFUN1 (M, N, XC, FVEC, IUSER, RUSER)

INTEGER M, N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVEC(M), RUSER(*)

1: M – INTEGER Input

On entry: m, the numbers of residuals.

2: N – INTEGER Input

On entry: n, the numbers of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the values of the fi are required.

4: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: FVECðiÞ must contain the value of fi at the point x, for i ¼ 1; 2; . . . ;m.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

LSFUN1 is called with the arguments IUSER and RUSER as supplied to E04FYF. You
should use the arrays IUSER and RUSER to supply information to LSFUN1.

LSFUN1 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04FYF is called. Arguments denoted as Input must not be changed by this
procedure.

4: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n.

On exit: the lowest point found during the calculations. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the
jth component of the position of the minimum.

5: FSUMSQ – REAL (KIND=nag_wp) Output

On exit: the value of the sum of squares, F xð Þ, corresponding to the final point stored in X.

6: WðLWÞ – REAL (KIND=nag_wp) array Workspace
7: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04FYF is
called.

Constraints:

if N > 1, LW � 7� Nþ N� Nþ 2�M� Nþ 3�Mþ N� N� 1ð Þ=2;
if N ¼ 1, LW � 9þ 5�M.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04FYF, but are passed directly to LSFUN1 and should be
used to pass information to this routine.
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10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04FYF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or M < N,
or LW < 7� Nþ N� Nþ 2�M� Nþ 3�Mþ N� N� 1ð Þ=2, when N > 1,
or LW < 9þ 5�M, when N ¼ 1.

IFAIL ¼ 2

There have been 400� n calls of LSFUN1, yet the algorithm does not seem to have converged.
This may be due to an awkward function or to a poor starting point, so it is worth restarting
E04FYF from the final point held in X.

IFAIL ¼ 3

The final point does not satisfy the conditions for acceptance as a minimum, but no lower point
could be found.

IFAIL ¼ 4

An auxiliary routine has been unable to complete a singular value decomposition in a reasonable
number of sub-iterations.

IFAIL ¼ 5
IFAIL ¼ 6
IFAIL ¼ 7
IFAIL ¼ 8

There is some doubt about whether the point Xx found by E04FYF is a minimum of F xð Þ. The
degree of confidence in the result decreases as IFAIL increases. Thus, when IFAIL ¼ 5, it is
probable that the final x gives a good estimate of the position of a minimum, but when
IFAIL ¼ 8 it is very unlikely that the routine has found a minimum.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If you are not satisfied with the result (e.g., because IFAIL lies between 3 and 8), it is worth restarting
the calculations from a different starting point (not the point at which the failure occurred) in order to
avoid the region which caused the failure. Repeated failure may indicate some defect in the formulation
of the problem.

7 Accuracy

If the problem is reasonably well scaled and a successful exit is made, then, for a computer with a
mantissa of t decimals, one would expect to get about t=2� 1 decimals accuracy in the components of
x and between t� 1 (if F xð Þ is of order 1 at the minimum) and 2t� 2 (if F xð Þ is close to zero at the
minimum) decimals accuracy in F xð Þ.

8 Parallelism and Performance

E04FYF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E04FYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of iterations required depends on the number of variables, the number of residuals and their
behaviour, and the distance of the starting point from the solution. The number of multiplications
performed per iteration of E04FYF varies, but for m� n is approximately n�m2 þO n3

� �
. In

addition, each iteration makes at least nþ 1 calls of LSFUN1. So, unless the residuals can be evaluated
very quickly, the run time will be dominated by the time spent in LSFUN1.

Ideally, the problem should be scaled so that the minimum value of the sum of squares is in the range
0;þ1ð Þ, and so that at points a unit distance away from the solution the sum of squares is approximately
a unit value greater than at the minimum. It is unlikely that you will be able to follow these
recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the
difficulty of the minimization problem, so that E04FYF will take less computer time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements
of the variance-covariance matrix of the estimated regression coefficients can be computed by a
subsequent call to E04YCF, using information returned in segments of the workspace array W. See
E04YCF for further details.
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10 Example

This example finds least squares estimates of x1, x2 and x3 in the model

y ¼ x1 þ
t1

x2t2 þ x3t3
using the 15 sets of data given in the following table.

y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

The program uses 0:5; 1:0; 1:5ð Þ as the initial guess at the position of the minimum.

10.1 Program Text

! E04FYF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04fyfe_mod

! E04FYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: lsfun1

! .. Parameters ..
Integer, Parameter, Public :: m = 15, n = 3, nin = 5, nout = 6, &

nt = 3
Integer, Parameter, Public :: lw = 7*n + n*n + 2*m*n + 3*m + n*(n- &

1)/2
! .. Local Arrays ..

Real (Kind=nag_wp), Public, Save :: t(m,nt), y(m)
Contains

Subroutine lsfun1(m,n,xc,fvec,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
fvec(1:m) = xc(1) + t(1:m,1)/(xc(2)*t(1:m,2)+xc(3)*t(1:m,3)) - y(1:m)

Return

End Subroutine lsfun1
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End Module e04fyfe_mod
Program e04fyfe

! E04FYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04fyf, nag_wp
Use e04fyfe_mod, Only: lsfun1, lw, m, n, nin, nout, nt, t, y

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fsumsq
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(1), w(lw), x(n)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’E04FYF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Observations of TJ (J = 1, 2, ..., nt) are held in T(I, J)
! (I = 1, 2, ..., m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:nt)

End Do

x(1:nt) = (/0.5_nag_wp,1.0_nag_wp,1.5_nag_wp/)

ifail = -1
Call e04fyf(m,n,lsfun1,x,fsumsq,w,lw,iuser,ruser,ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’On exit, the sum of squares is’, fsumsq
Write (nout,99999) ’at the point’, x(1:n)

End Select

99999 Format (1X,A,3F12.4)
End Program e04fyfe

10.2 Program Data

E04FYF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0
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10.3 Program Results

E04FYF Example Program Results

On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437
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NAG Library Routine Document

E04GBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04GBF is a comprehensive quasi-Newton algorithm for finding an unconstrained minimum of a sum
of squares of m nonlinear functions in n variables m � nð Þ. First derivatives are required.

The routine is intended for functions which have continuous first and second derivatives (although it
will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04GBF (M, N, LSQLIN, LSQFUN, LSQMON, IPRINT, MAXCAL, ETA,
XTOL, STEPMX, X, FSUMSQ, FVEC, FJAC, LDFJAC, S, V,
LDV, NITER, NF, IW, LIW, W, LW, IFAIL)

&
&

INTEGER M, N, IPRINT, MAXCAL, LDFJAC, LDV, NITER, NF,
IW(LIW), LIW, LW, IFAIL

&

REAL (KIND=nag_wp) ETA, XTOL, STEPMX, X(N), FSUMSQ, FVEC(M),
FJAC(LDFJAC,N), S(N), V(LDV,N), W(LW)

&

EXTERNAL LSQLIN, LSQFUN, LSQMON

3 Description

E04GBF is essentially identical to the subroutine LSQFDQ in the NPL Algorithms Library. It is
applicable to problems of the form:

MinimizeF xð Þ ¼
Xm
i¼1

fi xð Þ½ �2

where x ¼ x1; x2; . . . ; xnð ÞT and m � n. (The functions fi xð Þ are often referred to as ‘residuals’.)

You must supply a subroutine to calculate the values of the fi xð Þ and their first derivatives
@fi
@xj

at any

point x.

From a starting point x 1ð Þ supplied by you, the routine generates a sequence of points x 2ð Þ; x 3ð Þ; . . .,
which is intended to converge to a local minimum of F xð Þ. The sequence of points is given by

x kþ1ð Þ ¼ x kð Þ þ � kð Þp kð Þ

where the vector p kð Þ is a direction of search, and � kð Þ is chosen such that F x kð Þ þ � kð Þp kð Þ� �
is

approximately a minimum with respect to � kð Þ.

The vector p kð Þ used depends upon the reduction in the sum of squares obtained during the last iteration.
If the sum of squares was sufficiently reduced, then p kð Þ is the Gauss–Newton direction; otherwise the
second derivatives of the fi xð Þ are taken into account using a quasi-Newton updating scheme.

The method is designed to ensure that steady progress is made whatever the starting point, and to have
the rapid ultimate convergence of Newton's method.

4 References

Gill P E and Murray W (1978) Algorithms for the solution of the nonlinear least squares problem SIAM
J. Numer. Anal. 15 977–992
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5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number m of residuals, fi xð Þ, and the number n of variables, xj.

Constraint: 1 � N � M.

3: LSQLIN – SUBROUTINE, supplied by the NAG Library. External Procedure

LSQLIN enables you to specify whether the linear minimizations (i.e., minimizations of
F x kð Þ þ � kð Þp kð Þ� �

with respect to � kð Þ) are to be performed by a routine which just requires the
evaluation of the fi xð Þ (E04FCV), or by a routine which also requires the first derivatives of the
fi xð Þ (E04HEV).
It will often be possible to evaluate the first derivatives of the residuals in about the same amount
of computer time that is required for the evaluation of the residuals themselves – if this is so
then E04GBF should be called with routine E04HEV as the argument LSQLIN. However, if the
evaluation of the derivatives takes more than about 4 times as long as the evaluation of the
residuals, then E04FCV will usually be preferable. If in doubt, use E04HEV as it is slightly more
robust.

Whichever subroutine is used, must be declared as EXTERNAL in the subroutine from which
E04GBF is called.

4: LSQFUN – SUBROUTINE, supplied by the user. External Procedure

LSQFUN must calculate the vector of values fi xð Þ and Jacobian matrix of first derivatives
@fi
@xj

at

any point x. (However, if you do not wish to calculate the residuals or first derivatives at a
particular x, there is the option of setting an argument to cause E04GBF to terminate
immediately.)

The specification of LSQFUN is:

SUBROUTINE LSQFUN (IFLAG, M, N, XC, FVEC, FJAC, LDFJAC, IW, LIW,
W, LW)

&

INTEGER IFLAG, M, N, LDFJAC, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), W(LW)

Important: the dimension declaration for FJAC must contain the variable LDFJAC, not an
integer constant.

1: IFLAG – INTEGER Input/Output

On entry: will be set to 0, 1 or 2.

IFLAG ¼ 0
Indicates that only the residuals need to be evaluated

IFLAG ¼ 1
Indicates that only the Jacobian matrix needs to be evaluated

IFLAG ¼ 2
Indicates that both the residuals and the Jacobian matrix must be calculated.

If E04HEV is used as E04GBF's LSQLIN, LSQFUN will always be called with IFLAG
set to 2.

On exit: if it is not possible to evaluate the fi xð Þ or their first derivatives at the point
given in XC (or if it is wished to stop the calculations for any other reason), you should
reset IFLAG to some negative number and return control to E04GBF. E04GBF will
then terminate immediately, with IFAIL set to your setting of IFLAG.
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2: M – INTEGER Input

On entry: m, the number of residuals.

3: N – INTEGER Input

On entry: n, the number of variables.

4: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the values of the fi and the
@fi
@xj

are required.

5: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG ¼ 1 on entry, or IFLAG is reset to a negative number, then
FVECðiÞ must contain the value of fi at the point x, for i ¼ 1; 2; . . . ;m.

6: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG ¼ 0 on entry, or IFLAG is reset to a negative number, then

FJACði; jÞ must contain the value of
@fi
@xj

at the point x, for i ¼ 1; 2; . . . ;m and

j ¼ 1; 2; . . . ; n.

7: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC, set to m by E04GBF.

8: IWðLIWÞ – INTEGER array Workspace
9: LIW – INTEGER Input
10: WðLWÞ – REAL (KIND=nag_wp) array Workspace
11: LW – INTEGER Input

LSQFUN is called with E04GBF's arguments IW, LIW, W, LW as these arguments.
They are present so that, when other library routines require the solution of a
minimization subproblem, constants needed for the evaluation of residuals can be
passed through IW and W. Similarly, you could pass quantities to LSQFUN from the
segment which calls E04GBF by using partitions of IW and W beyond those used as
workspace by E04GBF. However, because of the danger of mistakes in partitioning, it is
recommended that you should pass information to LSQFUN via COMMON global
variables and not use IW or W at all. In any case you must not change the elements of
IW and W used as workspace by E04GBF.

LSQFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04GBF is called. Arguments denoted as Input must not be changed
by this procedure.

Note: LSQFUN should be tested separately before being used in conjunction with E04GBF.

5: LSQMON – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

If IPRINT � 0, you must supply LSQMON which is suitable for monitoring the minimization
process. LSQMON must not change the values of any of its arguments.

If IPRINT < 0, the NAG Library dummy routine E04FDZ can be used as LSQMON.

The specification of LSQMON is:

SUBROUTINE LSQMON (M, N, XC, FVEC, FJAC, LDFJAC, S, IGRADE,
NITER, NF, IW, LIW, W, LW)

&
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INTEGER M, N, LDFJAC, IGRADE, NITER, NF, IW(LIW),
LIW, LW

&

REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), S(N), W(LW)

Important: the dimension declaration for FJAC must contain the variable LDFJAC, not an
integer constant.

1: M – INTEGER Input

On entry: m, the numbers of residuals.

2: N – INTEGER Input

On entry: n, the numbers of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the current point x.

4: FVECðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the residuals fi at the current point x.

5: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Input

On entry: FJACði; jÞ contains the value of
@fi
@xj

at the current point x, for i ¼ 1; 2; . . . ;m

and j ¼ 1; 2; . . . ; n.

6: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from
which E04GBF is called.

7: SðNÞ – REAL (KIND=nag_wp) array Input

On entry: the singular values of the current Jacobian matrix. Thus S may be useful as
information about the structure of your problem.

8: IGRADE – INTEGER Input

On entry: E04GBF estimates the dimension of the subspace for which the Jacobian
matrix can be used as a valid approximation to the curvature (see Gill and Murray
(1978)). This estimate is called the grade of the Jacobian matrix, and IGRADE gives its
current value.

9: NITER – INTEGER Input

On entry: the number of iterations which have been performed in E04GBF.

10: NF – INTEGER Input

On entry: the number of evaluations of the residuals. (If E04HEV is used as LSQLIN,
NF is also the number of evaluations of the Jacobian matrix.)

11: IWðLIWÞ – INTEGER array Workspace
12: LIW – INTEGER Input
13: WðLWÞ – REAL (KIND=nag_wp) array Workspace
14: LW – INTEGER Input

As in LSQFUN, these arguments correspond to the arguments IW, LIW, W, LW of
E04GBF. They are included in LSQMON's argument list primarily for when E04GBF is
called by other library routines.
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LSQMON must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04GBF is called. Arguments denoted as Input must not be changed
by this procedure.

Note: you should normally print the sum of squares of residuals, so as to be able to examine the
sequence of values of F xð Þ mentioned in Section 7. It is usually helpful to also print XC, the
gradient of the sum of squares, NITER and NF.

6: IPRINT – INTEGER Input

On entry: the frequency with which LSQMON is to be called.

IPRINT > 0
LSQMON is called once every IPRINT iterations and just before exit from E04GBF.

IPRINT ¼ 0
LSQMON is just called at the final point.

IPRINT < 0
LSQMON is not called at all.

IPRINT should normally be set to a small positive number.

Suggested value: IPRINT ¼ 1.

7: MAXCAL – INTEGER Input

On entry: enables you to limit the number of times that LSQFUN is called by E04GBF. There
will be an error exit (see Section 6) after MAXCAL calls of LSQFUN.

Suggested value:

MAXCAL ¼ 75� n if E04FCV is used as LSQLIN,

MAXCAL ¼ 50� n if E04HEV is used as LSQLIN.

Constraint: MAXCAL � 1.

8: ETA – REAL (KIND=nag_wp) Input

On entry: every iteration of E04GBF involves a linear minimization (i.e., minimization of
F x kð Þ þ � kð Þp kð Þ� �

with respect to � kð Þ). ETA specifies how accurately these linear minimizations

are to be performed. The minimum with respect to � kð Þ will be located more accurately for small
values of ETA (say, 0:01) than for large values (say, 0:9).

Although accurate linear minimizations will generally reduce the number of iterations performed
by E04GBF, they will increase the number of calls of LSQFUN made every iteration. On balance
it is usually more efficient to perform a low accuracy minimization.

Suggested value:

ETA ¼ 0:9 if N > 1 and E04HEV is used as LSQLIN,

ETA ¼ 0:5 if N > 1 and E04FCV is uses as LSQLIN,

ETA ¼ 0:0 if N ¼ 1.

Constraint: 0:0 � ETA < 1:0.

9: XTOL – REAL (KIND=nag_wp) Input

On entry: the accuracy in x to which the solution is required.

If xtrue is the true value of x at the minimum, then xsol, the estimated position before a normal
exit, is such that

xsol � xtruek k < XTOL� 1:0þ xtruek kð Þ;
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where yk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

y2j

s
. For example, if the elements of xsol are not much larger than 1:0 in

modulus and if XTOL ¼ 1:0E�5, then xsol is usually accurate to about five decimal places. (For
further details see Section 7.)

If F xð Þ and the variables are scaled roughly as described in Section 9 and � is the machine
precision, then a setting of order XTOL ¼

ffiffi
�
p

will usually be appropriate. If XTOL is set to 0:0
or some positive value less than 10�, E04GBF will use 10� instead of XTOL, since 10� is
probably the smallest reasonable setting.

Constraint: XTOL � 0:0.

10: STEPMX – REAL (KIND=nag_wp) Input

On entry: an estimate of the Euclidean distance between the solution and the starting point
supplied by you. (For maximum efficiency, a slight overestimate is preferable.)

E04GBF will ensure that, for each iteration,Xn
j¼1

x
kð Þ
j � x

k�1ð Þ
j

� �2
� STEPMXð Þ2

where k is the iteration number. Thus, if the problem has more than one solution, E04GBF is
most likely to find the one nearest to the starting point. On difficult problems, a realistic choice
can prevent the sequence of x kð Þ entering a region where the problem is ill-behaved and can help
avoid overflow in the evaluation of F xð Þ. However, an underestimate of STEPMX can lead to
inefficiency.

Suggested value: STEPMX ¼ 100000:0.

Constraint: STEPMX � XTOL.

11: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n.

On exit: the final point x kð Þ. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the jth component of the
estimated position of the minimum.

12: FSUMSQ – REAL (KIND=nag_wp) Output

On exit: the value of F xð Þ, the sum of squares of the residuals fi xð Þ, at the final point given in X.

13: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: the value of the residual fi xð Þ at the final point given in X, for i ¼ 1; 2; . . . ;m.

14: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: the value of the first derivative
@fi
@xj

evaluated at the final point given in X, for

i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n.

15: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which
E04GBF is called.

Constraint: LDFJAC � M.
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16: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: the singular values of the Jacobian matrix at the final point. Thus S may be useful as
information about the structure of your problem.

17: VðLDV;NÞ – REAL (KIND=nag_wp) array Output

On exit: the matrix V associated with the singular value decomposition

J ¼ USV T

of the Jacobian matrix at the final point, stored by columns. This matrix may be useful for
statistical purposes, since it is the matrix of orthonormalized eigenvectors of JTJ .

18: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which E04GBF
is called.

Constraint: LDV � N.

19: NITER – INTEGER Output

On exit: the number of iterations which have been performed in E04GBF.

20: NF – INTEGER Output

On exit: the number of times that the residuals have been evaluated (i.e., the number of calls of
LSQFUN). If E04HEV is used as LSQLIN, NF is also the number of times that the Jacobian
matrix has been evaluated.

21: IWðLIWÞ – INTEGER array Communication Array
22: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04GBF is
called.

Constraint: LIW � 1.

23: WðLWÞ – REAL (KIND=nag_wp) array Communication Array
24: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04GBF is
called.

Constraints:

if N > 1, LW � 7� NþM� Nþ 2�Mþ N� N;
if N ¼ 1, LW � 9þ 3�M.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04GBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04GBF because you have set IFLAG negative
in LSQFUN. The value of IFAIL will be the same as your setting of IFLAG.

IFAIL ¼ 1

On entry, N < 1,
or M < N,
or MAXCAL < 1,
or ETA < 0:0,
or ETA � 1:0,
or XTOL < 0:0,
or STEPMX < XTOL,
or LDFJAC < M,
or LDV < N,
or LIW < 1,
or LW < 7� NþM� Nþ 2�Mþ N� N when N > 1,
or LW < 9þ 3�M when N ¼ 1.

When this exit occurs, no values will have been assigned to FSUMSQ, or to the elements of
FVEC, FJAC, S or V.

IFAIL ¼ 2

There have been MAXCAL calls of LSQFUN. If steady reductions in the sum of squares, F xð Þ,
were monitored up to the point where this exit occurred, then the exit probably occurred simply
because MAXCAL was set too small, so the calculations should be restarted from the final point
held in X. This exit may also indicate that F xð Þ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been satisfied, but a lower point could not be found.
This could be because XTOL has been set so small that rounding errors in the evaluation of the
residuals and derivatives make attainment of the convergence conditions impossible. See
Section 7 for further information.

IFAIL ¼ 4

The method for computing the singular value decomposition of the Jacobian matrix has failed to
converge in a reasonable number of sub-iterations. It may be worth applying E04GBF again
starting with an initial approximation which is not too close to the point at which the failure
occurred.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

The values IFAIL ¼ 2, 3 or 4 may also be caused by mistakes in LSQFUN, by the formulation of the
problem or by an awkward function. If there are no such mistakes it is worth restarting the calculations
from a different starting point (not the point at which the failure occurred) in order to avoid the region
which caused the failure.

7 Accuracy

A successful exit (IFAIL ¼ 0) is made from E04GBF when (B1, B2 and B3) or B4 or B5 hold, where

B1 	 � kð Þ � p kð Þ�� �� < XTOLþ �ð Þ � 1:0þ x kð Þ�� ��� �
B2 	 F kð Þ � F k�1ð Þ		 		 < XTOLþ �ð Þ2 � 1:0þ F kð Þ� �
B3 	 g kð Þ�� �� < �1=3 � 1:0þ F kð Þ� �
B4 	 F kð Þ < �2

B5 	 g kð Þ�� �� < ��
ffiffiffiffiffiffiffiffiffi
F kð Þ
p� �1=2

and where :k k and � are as defined in XTOL, and F kð Þ and g kð Þ are the values of F xð Þ and its vector of
first derivatives at x kð Þ.

If IFAIL ¼ 0, then the vector in X on exit, xsol, is almost certainly an estimate of xtrue, the position of
the minimum to the accuracy specified by XTOL.

If IFAIL ¼ 3, then xsol may still be a good estimate of xtrue, but to verify this you should make the
following checks. If

(a) the sequence F x kð Þ� �� 
converges to F xsolð Þ at a superlinear or a fast linear rate, and

(b) g xsolð ÞTg xsolð Þ < 10�where T denotes transpose, then it is almost certain that xsol is a close
approximation to the minimum.

When (b) is true, then usually F xsolð Þ is a close approximation to F xtrueð Þ. The values of F x kð Þ� �
can

be calculated in LSQMON, and the vector g xsolð Þ can be calculated from the contents of FVEC and
FJAC on exit from E04GBF.

Further suggestions about confirmation of a computed solution are given in the E04 Chapter
Introduction.

8 Parallelism and Performance

E04GBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E04GBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of iterations required depends on the number of variables, the number of residuals, the
behaviour of F xð Þ, the accuracy demanded and the distance of the starting point from the solution. The
number of multiplications performed per iteration of E04GBF varies, but for m� n is approximately
n�m2 þO n3

� �
. In addition, each iteration makes at least one call of LSQFUN. So, unless the
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residuals and their derivatives can be evaluated very quickly, the run time will be dominated by the
time spent in LSQFUN.

Ideally, the problem should be scaled so that, at the solution, F xð Þ and the corresponding values of the
xj are each in the range �1;þ1ð Þ, and so that at points one unit away from the solution F xð Þ differs
from its value at the solution by approximately one unit. This will usually imply that the Hessian matrix
of F xð Þ at the solution is well-conditioned. It is unlikely that you will be able to follow these
recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the
difficulty of the minimization problem, so that E04GBF will take less computer time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements
of the variance-covariance matrix of the estimated regression coefficients can be computed by a
subsequent call to E04YCF, using information returned in the arrays S and V. See E04YCF for further
details.

10 Example

This example finds least squares estimates of x1, x2 and x3 in the model

y ¼ x1 þ
t1

x2t2 þ x3t3
using the 15 sets of data given in the following table.

y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

Before calling E04GBF, the program calls E04YAF to check LSQFUN. It uses 0:5; 1:0; 1:5ð Þ as the
initial guess at the position of the minimum.

10.1 Program Text

! E04GBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04gbfe_mod

! E04GBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: lsqfun, lsqgrd, lsqmon

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: inc1 = 1
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Integer, Parameter, Public :: liw = 1, m = 15, n = 3, nin = 5, &
nout = 6, nt = 3

Integer, Parameter, Public :: ldfjac = m
Integer, Parameter, Public :: ldv = n
Integer, Parameter, Public :: lw = 7*n + m*n + 2*m + n*n
Character (1), Parameter :: trans = ’T’

! .. Local Arrays ..
Real (Kind=nag_wp), Public, Save :: t(m,nt), y(m)

Contains
Subroutine lsqgrd(m,n,fvec,fjac,ldfjac,g)

! Routine to evaluate gradient of the sum of squares

! .. Use Statements ..
Use nag_library, Only: dgemv

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfjac, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: fjac(ldfjac,n), fvec(m)
Real (Kind=nag_wp), Intent (Out) :: g(n)

! .. Executable Statements ..
! The NAG name equivalent of dgemv is f06paf

Call dgemv(trans,m,n,one,fjac,ldfjac,fvec,inc1,zero,g,inc1)

g(1:n) = two*g(1:n)

Return

End Subroutine lsqgrd
Subroutine lsqfun(iflag,m,n,xc,fvec,fjac,ldfjac,iw,liw,w,lw)

! Routine to evaluate the residuals and their 1st derivatives.
! This routine is also suitable for use when E04FCV is used as
! LSQLIN, since it can deal with IFLAG = 0 as well as IFLAG = 2.

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: ldfjac, liw, lw, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(ldfjac,n), w(lw)
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Real (Kind=nag_wp) :: denom, dummy
Integer :: i

! .. Executable Statements ..
Do i = 1, m

denom = xc(2)*t(i,2) + xc(3)*t(i,3)
fvec(i) = xc(1) + t(i,1)/denom - y(i)

If (iflag/=0) Then
fjac(i,1) = one
dummy = -one/(denom*denom)
fjac(i,2) = t(i,1)*t(i,2)*dummy
fjac(i,3) = t(i,1)*t(i,3)*dummy

End If

End Do

Return

End Subroutine lsqfun
Subroutine lsqmon(m,n,xc,fvec,fjac,ldfjac,s,igrade,niter,nf,iw,liw,w,lw)

! Monitoring routine

! .. Use Statements ..
Use nag_library, Only: ddot

! .. Parameters ..
Integer, Parameter :: ndec = 3

! .. Scalar Arguments ..
Integer, Intent (In) :: igrade, ldfjac, liw, lw, m, n, nf, &
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niter
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (In) :: fjac(ldfjac,n), fvec(m), s(n), &
xc(n)

Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Real (Kind=nag_wp) :: fsumsq, gtg
Integer :: j

! .. Local Arrays ..
Real (Kind=nag_wp) :: g(ndec)

! .. Executable Statements ..
! The NAG name equivalent of ddot is f06eaf

fsumsq = ddot(m,fvec,inc1,fvec,inc1)

Call lsqgrd(m,n,fvec,fjac,ldfjac,g)

gtg = ddot(n,g,inc1,g,inc1)

Write (nout,*)
Write (nout,*) &

’ Itn F evals SUMSQ GTG Grade’
Write (nout,99999) niter, nf, fsumsq, gtg, igrade
Write (nout,*)
Write (nout,*) &

’ X G Singular values’

Write (nout,99998)(xc(j),g(j),s(j),j=1,n)

Return

99999 Format (1X,I4,6X,I5,6X,1P,E13.5,6X,1P,E9.1,6X,I3)
99998 Format (1X,1P,E13.5,10X,1P,E9.1,10X,1P,E9.1)

End Subroutine lsqmon
End Module e04gbfe_mod
Program e04gbfe

! E04GBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04gbf, e04hev, e04yaf, nag_wp, x02ajf
Use e04gbfe_mod, Only: ldfjac, ldv, liw, lsqfun, lsqgrd, lsqmon, lw, m, &

n, nin, nout, nt, t, y
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: eta, fsumsq, stepmx, xtol
Integer :: i, ifail, iprint, maxcal, nf, niter

! .. Local Arrays ..
Real (Kind=nag_wp) :: fjac(ldfjac,n), fvec(m), g(n), s(n), &

v(ldv,n), w(lw), x(n)
Integer :: iw(liw)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Write (nout,*) ’E04GBF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Observations of TJ (J = 1, 2, ..., nt) are held in T(I, J)
! (I = 1, 2, . . . , m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:nt)

End Do

! Check LSQFUN by calling E04YAF at an arbitrary point

x(1:nt) = (/0.19_nag_wp,-1.34_nag_wp,0.88_nag_wp/)
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ifail = 0
Call e04yaf(m,n,lsqfun,x,fvec,fjac,ldfjac,iw,liw,w,lw,ifail)

! Continue setting parameters for E04GBF

! Set IPRINT to 1 to obtain output from LSQMON at each iteration
iprint = -1

maxcal = 50*n

! Since E04HEV is being used as LSQLIN, we set ETA to 0.9

eta = 0.9_nag_wp

xtol = 10.0_nag_wp*sqrt(x02ajf())

! We estimate that the minimum will be within 10 units of the
! starting point

stepmx = 10.0_nag_wp

! Set up the starting point

x(1:nt) = (/0.5_nag_wp,1.0_nag_wp,1.5_nag_wp/)

ifail = -1
Call e04gbf(m,n,e04hev,lsqfun,lsqmon,iprint,maxcal,eta,xtol,stepmx,x, &

fsumsq,fvec,fjac,ldfjac,s,v,ldv,niter,nf,iw,liw,w,lw,ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’On exit, the sum of squares is’, fsumsq
Write (nout,99999) ’at the point’, x(1:n)

Call lsqgrd(m,n,fvec,fjac,ldfjac,g)

Write (nout,99998) ’The corresponding gradient is’, g(1:n)
Write (nout,*) ’ (machine dependent)’
Write (nout,*) ’and the residuals are’
Write (nout,99997) fvec(1:m)

End Select

99999 Format (1X,A,3F12.4)
99998 Format (1X,A,1P,3E12.3)
99997 Format (1X,1P,E9.1)

End Program e04gbfe

10.2 Program Data

E04GBF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0
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10.3 Program Results

E04GBF Example Program Results

On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437
The corresponding gradient is 1.199E-09 -1.865E-11 1.807E-11

(machine dependent)
and the residuals are
-5.9E-03
-2.7E-04
2.7E-04
6.5E-03

-8.2E-04
-1.3E-03
-4.5E-03
-2.0E-02
8.2E-02

-1.8E-02
-1.5E-02
-1.5E-02
-1.1E-02
-4.2E-03
6.8E-03
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NAG Library Routine Document

E04GDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04GDF is a comprehensive modified Gauss–Newton algorithm for finding an unconstrained minimum
of a sum of squares of m nonlinear functions in n variables m � nð Þ. First derivatives are required.

The routine is intended for functions which have continuous first and second derivatives (although it
will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04GDF (M, N, LSQFUN, LSQMON, IPRINT, MAXCAL, ETA, XTOL,
STEPMX, X, FSUMSQ, FVEC, FJAC, LDFJAC, S, V, LDV,
NITER, NF, IW, LIW, W, LW, IFAIL)

&
&

INTEGER M, N, IPRINT, MAXCAL, LDFJAC, LDV, NITER, NF,
IW(LIW), LIW, LW, IFAIL

&

REAL (KIND=nag_wp) ETA, XTOL, STEPMX, X(N), FSUMSQ, FVEC(M),
FJAC(LDFJAC,N), S(N), V(LDV,N), W(LW)

&

EXTERNAL LSQFUN, LSQMON

3 Description

E04GDF is essentially identical to the subroutine LSQFDN in the NPL Algorithms Library. It is
applicable to problems of the form

MinimizeF xð Þ ¼
Xm
i¼1

fi xð Þ½ �2

where x ¼ x1; x2; . . . ; xnð ÞT and m � n. (The functions fi xð Þ are often referred to as ‘residuals’.)

You must supply a subroutine to calculate the values of the fi xð Þ and their first derivatives
@fi
@xj

at any

point x.

From a starting point x 1ð Þ supplied by you, the routine generates a sequence of points x 2ð Þ; x 3ð Þ; . . .,
which is intended to converge to a local minimum of F xð Þ. The sequence of points is given by

x kþ1ð Þ ¼ x kð Þ þ � kð Þp kð Þ

where the vector p kð Þ is a direction of search, and � kð Þ is chosen such that F x kð Þ þ � kð Þp kð Þ� �
is

approximately a minimum with respect to � kð Þ.

The vector p kð Þ used depends upon the reduction in the sum of squares obtained during the last iteration.
If the sum of squares was sufficiently reduced, then p kð Þ is the Gauss–Newton direction; otherwise finite
difference estimates of the second derivatives of the fi xð Þ are taken into account.

The method is designed to ensure that steady progress is made whatever the starting point, and to have
the rapid ultimate convergence of Newton's method.

4 References

Gill P E and Murray W (1978) Algorithms for the solution of the nonlinear least squares problem SIAM
J. Numer. Anal. 15 977–992

E04 – Minimizing or Maximizing a Function E04GDF

Mark 26 E04GDF.1



5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number m of residuals, fi xð Þ, and the number n of variables, xj.

Constraint: 1 � N � M.

3: LSQFUN – SUBROUTINE, supplied by the user. External Procedure

LSQFUN must calculate the vector of values fi xð Þ and Jacobian matrix of first derivatives
@fi
@xj

at

any point x. (However, if you do not wish to calculate the residuals or first derivatives at a
particular x, there is the option of setting an argument to cause E04GDF to terminate
immediately.)

The specification of LSQFUN is:

SUBROUTINE LSQFUN (IFLAG, M, N, XC, FVEC, FJAC, LDFJAC, IW, LIW,
W, LW)

&

INTEGER IFLAG, M, N, LDFJAC, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), W(LW)

Note: the dimension declaration for FJAC must contain the variable LDFJAC, not an integer
constant.

1: IFLAG – INTEGER Input/Output

On entry: to LSQFUN, IFLAG will be set to 1 or 2.

IFLAG ¼ 1
Indicates that only the Jacobian matrix needs to be evaluated

IFLAG ¼ 2
Indicates that both the residuals and the Jacobian matrix must be calculated

On exit: if it is not possible to evaluate the fi xð Þ or their first derivatives at the point
given in XC (or if it wished to stop the calculations for any other reason), you should
reset IFLAG to some negative number and return control to E04GDF. E04GDF will
then terminate immediately, with IFAIL set to your setting of IFLAG.

2: M – INTEGER Input

On entry: m, the numbers of residuals.

3: N – INTEGER Input

On entry: n, the numbers of variables.

4: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the values of the fi and the
@fi
@xj

are required.

5: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG ¼ 1 on entry, or IFLAG is reset to a negative number, then
FVECðiÞ must contain the value of fi at the point x, for i ¼ 1; 2; . . . ;m.

6: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset to a negative number, FJACði; jÞ must contain the value

of
@fi
@xj

at the point x, for i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n.
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7: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC, set to m by E04GDF.

8: IWðLIWÞ – INTEGER array Workspace
9: LIW – INTEGER Input
10: WðLWÞ – REAL (KIND=nag_wp) array Workspace
11: LW – INTEGER Input

LSQFUN is called with E04GDF's arguments IW, LIW, W, LW as these arguments.
They are present so that, when other library routines require the solution of a
minimization subproblem, constants needed for the evaluation of residuals can be
passed through IW and W. Similarly, you could pass quantities to LSQFUN from the
segment which calls E04GDF by using partitions of IW and W beyond those used as
workspace by E04GDF. However, because of the danger of mistakes in partitioning, it
is recommended that you should pass information to LSQFUN via COMMON global
variables and not use IW or W at all. In any case you must not change the elements of
IW and W used as workspace by E04GDF.

LSQFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04GDF is called. Arguments denoted as Input must not be changed
by this procedure.

Note: LSQFUN should be tested separately before being used in conjunction with E04GDF.

4: LSQMON – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

If IPRINT � 0, you must supply LSQMON which is suitable for monitoring the minimization
process. LSQMON must not change the values of any of its arguments.

If IPRINT < 0, the dummy routine E04FDZ can be used as LSQMON.

The specification of LSQMON is:

SUBROUTINE LSQMON (M, N, XC, FVEC, FJAC, LDFJAC, S, IGRADE,
NITER, NF, IW, LIW, W, LW)

&

INTEGER M, N, LDFJAC, IGRADE, NITER, NF, IW(LIW),
LIW, LW

&

REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), S(N), W(LW)

Note: the dimension declaration for FJAC must contain the variable LDFJAC, not an integer
constant.

1: M – INTEGER Input

On entry: m, the numbers of residuals.

2: N – INTEGER Input

On entry: n, the numbers of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the current point x.

4: FVECðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the residuals fi at the current point x.
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5: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Input

On entry: FJACði; jÞ contains the value of
@fi
@xj

at the current point x, for i ¼ 1; 2; . . . ;m

and j ¼ 1; 2; . . . ; n.

6: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from
which E04GDF is called.

7: SðNÞ – REAL (KIND=nag_wp) array Input

On entry: the singular values of the current Jacobian matrix. Thus S may be useful as
information about the structure of your problem. (If IPRINT > 0, LSQMON is called at
the initial point before the singular values have been calculated. So the elements of S
are set to zero for the first call of LSQMON.)

8: IGRADE – INTEGER Input

On entry: E04GDF estimates the dimension of the subspace for which the Jacobian
matrix can be used as a valid approximation to the curvature (see Gill and Murray
(1978)). This estimate is called the grade of the Jacobian matrix, and IGRADE gives its
current value.

9: NITER – INTEGER Input

On entry: the number of iterations which have been performed in E04GDF.

10: NF – INTEGER Input

On entry: the number of times that LSQFUN has been called so far with IFLAG ¼ 2.
(In addition to these calls monitored by NF, LSQFUN is called not more than N times
per iteration with IFLAG set to 1.)

11: IWðLIWÞ – INTEGER array Workspace
12: LIW – INTEGER Input
13: WðLWÞ – REAL (KIND=nag_wp) array Workspace
14: LW – INTEGER Input

As in LSQFUN, these arguments correspond to the arguments IW, LIW, W, LW of
E04GDF. They are included in LSQMON's argument list primarily for when E04GDF is
called by other library routines.

LSQMON must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04GDF is called. Arguments denoted as Input must not be changed
by this procedure.

Note: you should normally print the sum of squares of residuals, so as to be able to examine the
sequence of values of F xð Þ mentioned in Section 7. It is usually also helpful to print XC, the
gradient of the sum of squares, NITER and NF.

5: IPRINT – INTEGER Input

On entry: the frequency with which LSQMON is to be called.

IPRINT > 0
LSQMON is called once every IPRINT iterations and just before exit from E04GDF.

IPRINT ¼ 0
LSQMON is just called at the final point.
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IPRINT < 0
LSQMON is not called at all.

IPRINT should normally be set to a small positive number.

Suggested value: IPRINT ¼ 1.

6: MAXCAL – INTEGER Input

On entry: enables you to limit the number of times that LSQFUN is called by E04GDF. There
will be an error exit (see Section 6) after MAXCAL evaluations of the residuals (i.e., calls of
LSQFUN with IFLAG set to 2). It should be borne in mind that, in addition to the calls of
LSQFUN which are limited directly by MAXCAL, there will be calls of LSQFUN (with IFLAG
set to 1) to evaluate only first derivatives.

Suggested value: MAXCAL ¼ 50� n.
Constraint: MAXCAL � 1.

7: ETA – REAL (KIND=nag_wp) Input

On entry: every iteration of E04GDF involves a linear minimization, i.e., minimization of
F x kð Þ þ � kð Þp kð Þ� �

with respect to � kð Þ. ETA specifies how accurately these linear minimizations

are to be performed. The minimum with respect to � kð Þ will be located more accurately for small
values of ETA (say, 0:01) than for large values (say, 0:9).

Although accurate linear minimizations will generally reduce the number of iterations, they will
tend to increase the number of calls of LSQFUN (with IFLAG set to 2) needed for each linear
minimization. On balance it is usually efficient to perform a low accuracy linear minimization.

Suggested value: ETA ¼ 0:5 (ETA ¼ 0:0 if N ¼ 1).

Constraint: 0:0 � ETA < 1:0.

8: XTOL – REAL (KIND=nag_wp) Input

On entry: the accuracy in x to which the solution is required.

If xtrue is the true value of x at the minimum, then xsol, the estimated position before a normal
exit, is such that

xsol � xtruek k < XTOL� 1:0þ xtruek kð Þ

where yk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

y2j

s
. For example, if the elements of xsol are not much larger than 1:0 in

modulus and if XTOL ¼ 1:0E�5, then xsol is usually accurate to about five decimal places. (For
further details see Section 7.)

If F xð Þ and the variables are scaled roughly as described in Section 9 and � is the machine
precision, then a setting of order XTOL ¼

ffiffi
�
p

will usually be appropriate. If XTOL is set to 0:0
or some positive value less than 10�, E04GDF will use 10� instead of XTOL, since 10� is
probably the smallest reasonable setting.

Constraint: XTOL � 0:0.

9: STEPMX – REAL (KIND=nag_wp) Input

On entry: an estimate of the Euclidean distance between the solution and the starting point
supplied by you. (For maximum efficiency, a slight overestimate is preferable.) E04GDF will
ensure that, for each iteration,Xn

j¼1
x
kð Þ
j � x

k�1ð Þ
j

� �2
� STEPMXð Þ2

where k is the iteration number. Thus, if the problem has more than one solution, E04GDF is
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most likely to find the one nearest to the starting point. On difficult problems, a realistic choice
can prevent the sequence of x kð Þ entering a region where the problem is ill-behaved and can help
avoid overflow in the evaluation of F xð Þ. However, an underestimate of STEPMX can lead to
inefficiency.

Suggested value: STEPMX ¼ 100000:0.

Constraint: STEPMX � XTOL.

10: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n.

On exit: the final point x kð Þ. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the jth component of the
estimated position of the minimum.

11: FSUMSQ – REAL (KIND=nag_wp) Output

On exit: the value of F xð Þ, the sum of squares of the residuals fi xð Þ, at the final point given in X.

12: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: the value of the residual fi xð Þ at the final point given in X, for i ¼ 1; 2; . . . ;m.

13: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: the value of the first derivative
@fi
@xj

evaluated at the final point given in X, for

i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n.

14: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which
E04GDF is called.

Constraint: LDFJAC � M.

15: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: the singular values of the Jacobian matrix at the final point. Thus S may be useful as
information about the structure of your problem.

16: VðLDV;NÞ – REAL (KIND=nag_wp) array Output

On exit: the matrix V associated with the singular value decomposition

J ¼ USV T

of the Jacobian matrix at the final point, stored by columns. This matrix may be useful for
statistical purposes, since it is the matrix of orthonormalized eigenvectors of JTJ .

17: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which E04GDF
is called.

Constraint: LDV � N.

18: NITER – INTEGER Output

On exit: the number of iterations which have been performed in E04GDF.
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19: NF – INTEGER Output

On exit: the number of times that the residuals have been evaluated (i.e., number of calls of
LSQFUN with IFLAG set to 2).

20: IWðLIWÞ – INTEGER array Communication Array
21: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04GDF is
called.

Constraint: LIW � 1.

22: WðLWÞ – REAL (KIND=nag_wp) array Communication Array
23: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04GDF is
called.

Constraints:

if N > 1, LW � 7� NþM� Nþ 2�Mþ N� N;
if N ¼ 1, LW � 9þ 3�M.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04GDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04GDF because you have set IFLAG negative
in LSQFUN. The value of IFAIL will be the same as your setting of IFLAG.

IFAIL ¼ 1

On entry, N < 1,
or M < N,
or MAXCAL < 1,
or ETA < 0:0,
or ETA � 1:0,
or XTOL < 0:0,
or STEPMX < XTOL,
or LDFJAC < M,
or LDV < N,
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or LIW < 1,
or LW < 7� NþM� Nþ 2�Mþ N� N when N > 1,
or LW < 9þ 3�M when N ¼ 1.

When this exit occurs, no values will have been assigned to FSUMSQ, or to the elements of
FVEC, FJAC, S or V.

IFAIL ¼ 2

There have been MAXCAL evaluations of the residuals. If steady reductions in the sum of
squares, F xð Þ, were monitored up to the point where this exit occurred, then the exit probably
occurred simply because MAXCAL was set too small, so the calculations should be restarted
from the final point held in X. This exit may also indicate that F xð Þ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been satisfied, but a lower point could not be found.
This could be because XTOL has been set so small that rounding errors in the evaluation of the
residuals and derivatives make attainment of the convergence conditions impossible. See
Section 7 for further information.

IFAIL ¼ 4

The method for computing the singular value decomposition of the Jacobian matrix has failed to
converge in a reasonable number of sub-iterations. It may be worth applying E04GDF again
starting with an initial approximation which is not too close to the point at which the failure
occurred.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

The values IFAIL ¼ 2, 3 or 4 may also be caused by mistakes in LSQFUN, by the formulation of the
problem or by an awkward function. If there are no such mistakes it is worth restarting the calculations
from a different starting point (not the point at which the failure occurred) in order to avoid the region
which caused the failure.

7 Accuracy

A successful exit (IFAIL ¼ 0) is made from E04GDF when the matrix of approximate second
derivatives of F xð Þ is positive definite, and when (B1, B2 and B3) or B4 or B5 hold, where

B1 	 � kð Þ � p kð Þ�� �� < XTOLþ �ð Þ � 1:0þ x kð Þ�� ��� �
B2 	 F kð Þ � F k�1ð Þ		 		 < XTOLþ �ð Þ2 � 1:0þ F kð Þ� �
B3 	 g kð Þ�� �� < �1=3 � 1:0þ F kð Þ� �
B4 	 F kð Þ < �2

B5 	 g kð Þ�� �� < ��
ffiffiffiffiffiffiffiffiffi
F kð Þ
p� �1=2
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and where :k k and � are as defined in XTOL, and F kð Þ and g kð Þ are the values of F xð Þ and its vector of
estimated first derivatives at x kð Þ.

If IFAIL ¼ 0 then the vector in X on exit, xsol, is almost certainly an estimate of xtrue, the position of
the minimum to the accuracy specified by XTOL.

If IFAIL ¼ 3, then xsol may still be a good estimate of xtrue, but to verify this you should make the
following checks. If

(a) the sequence F x kð Þ� �� 
converges to F xsolð Þ at a superlinear or a fast linear rate, and

(b) g xsolð ÞTg xsolð Þ < 10�, where T denotes transpose, then it is almost certain that xsol is a close
approximation to the minimum.

When (b) is true, then usually F xsolð Þ is a close approximation to F xtrueð Þ. The values of F x kð Þ� �
can

be calculated in LSQMON, and the vector g xsolð Þ can be calculated from the contents of FVEC and
FJAC on exit from E04GDF.

Further suggestions about confirmation of a computed solution are given in the E04 Chapter
Introduction.

8 Parallelism and Performance

E04GDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E04GDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of iterations required depends on the number of variables, the number of residuals, the
behaviour of F xð Þ, the accuracy demanded and the distance of the starting point from the solution. The
number of multiplications performed per iteration of E04GDF varies, but for m� n is approximately
n�m2 þO n3

� �
. In addition, each iteration makes at least one call of LSQFUN. So, unless the

residuals and their derivatives can be evaluated very quickly, the run time will be dominated by the
time spent in LSQFUN.

Ideally, the problem should be scaled so that, at the solution, F xð Þ and the corresponding values of the
xj are each in the range �1;þ1ð Þ, and so that at points one unit away from the solution, F xð Þ differs
from its value at the solution by approximately one unit. This will usually imply that the Hessian matrix
of F xð Þ at the solution is well-conditioned. It is unlikely that you will be able to follow these
recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the
difficulty of the minimization problem, so that E04GDF will take less computer time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements
of the variance-covariance matrix of the estimated regression coefficients can be computed by a
subsequent call to E04YCF, using information returned in the arrays S and V. See E04YCF for further
details.

10 Example

This example finds least squares estimates of x1, x2 and x3 in the model

y ¼ x1 þ
t1

x2t2 þ x3t3
using the 15 sets of data given in the following table.
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y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

Before calling E04GDF, the program calls E04YAF to check LSQFUN. It uses 0:5; 1:0; 1:5ð Þ as the
initial guess at the position of the minimum.

10.1 Program Text

! E04GDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04gdfe_mod

! E04GDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: lsqfun, lsqgrd, lsqmon

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: inc1 = 1
Integer, Parameter, Public :: liw = 1, m = 15, n = 3, nin = 5, &

nout = 6, nt = 3
Integer, Parameter, Public :: ldfjac = m
Integer, Parameter, Public :: ldv = n
Integer, Parameter, Public :: lw = 7*n + m*n + 2*m + n*n
Character (1), Parameter :: trans = ’T’

! .. Local Arrays ..
Real (Kind=nag_wp), Public, Save :: t(m,nt), y(m)

Contains
Subroutine lsqgrd(m,n,fvec,fjac,ldfjac,g)

! Routine to evaluate gradient of the sum of squares

! .. Use Statements ..
Use nag_library, Only: dgemv

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfjac, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: fjac(ldfjac,n), fvec(m)
Real (Kind=nag_wp), Intent (Out) :: g(n)

! .. Executable Statements ..
! The NAG name equivalent of dgemv is f06paf

Call dgemv(trans,m,n,one,fjac,ldfjac,fvec,inc1,zero,g,inc1)

g(1:n) = two*g(1:n)
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Return

End Subroutine lsqgrd
Subroutine lsqfun(iflag,m,n,xc,fvec,fjac,ldfjac,iw,liw,w,lw)

! Routine to evaluate the residuals and their 1st derivatives.
! A global variable could be updated here to count the
! number of calls of LSQFUN with IFLAG set to 1 (since NF
! in LSQMON only counts calls with IFLAG set to 2)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: ldfjac, liw, lw, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(ldfjac,n), w(lw)
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Real (Kind=nag_wp) :: denom, dummy
Integer :: i

! .. Executable Statements ..
Do i = 1, m

denom = xc(2)*t(i,2) + xc(3)*t(i,3)

If (iflag==2) Then
fvec(i) = xc(1) + t(i,1)/denom - y(i)

End If

fjac(i,1) = one
dummy = -one/(denom*denom)
fjac(i,2) = t(i,1)*t(i,2)*dummy
fjac(i,3) = t(i,1)*t(i,3)*dummy

End Do

Return

End Subroutine lsqfun
Subroutine lsqmon(m,n,xc,fvec,fjac,ldfjac,s,igrade,niter,nf,iw,liw,w,lw)

! Monitoring routine

! .. Use Statements ..
Use nag_library, Only: ddot

! .. Parameters ..
Integer, Parameter :: ndec = 3

! .. Scalar Arguments ..
Integer, Intent (In) :: igrade, ldfjac, liw, lw, m, n, nf, &

niter
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (In) :: fjac(ldfjac,n), fvec(m), s(n), &
xc(n)

Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Real (Kind=nag_wp) :: fsumsq, gtg
Integer :: j

! .. Local Arrays ..
Real (Kind=nag_wp) :: g(ndec)

! .. Executable Statements ..
! The NAG name equivalent of ddot is f06eaf

fsumsq = ddot(m,fvec,inc1,fvec,inc1)

Call lsqgrd(m,n,fvec,fjac,ldfjac,g)

gtg = ddot(n,g,inc1,g,inc1)

! A global variable giving the number of calls of
! LSQFUN with IFLAG set to 1 could be printed here

Write (nout,*)
Write (nout,*) &
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’ Itns F evals SUMSQ GTG grade’
Write (nout,99999) niter, nf, fsumsq, gtg, igrade
Write (nout,*)
Write (nout,*) &

’ X G Singular values’

Write (nout,99998)(xc(j),g(j),s(j),j=1,n)

Return

99999 Format (1X,I4,6X,I5,6X,1P,E13.5,6X,1P,E9.1,6X,I3)
99998 Format (1X,1P,E13.5,10X,1P,E9.1,10X,1P,E9.1)

End Subroutine lsqmon
End Module e04gdfe_mod
Program e04gdfe

! E04GDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04gdf, e04yaf, nag_wp, x02ajf
Use e04gdfe_mod, Only: ldfjac, ldv, liw, lsqfun, lsqgrd, lsqmon, lw, m, &

n, nin, nout, nt, t, y
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: eta, fsumsq, stepmx, xtol
Integer :: i, ifail, iprint, maxcal, nf, niter

! .. Local Arrays ..
Real (Kind=nag_wp) :: fjac(ldfjac,n), fvec(m), g(n), s(n), &

v(ldv,n), w(lw), x(n)
Integer :: iw(liw)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Write (nout,*) ’E04GDF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Observations of TJ (J = 1, 2, ..., nt) are held in T(I, J)
! (I = 1, 2, ... , m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:nt)

End Do

! Check LSQFUN by calling E04YAF at an arbitrary point. Since
! E04YAF only checks the derivatives calculated when IFLAG = 2,
! a separate program should be run before using E04YAF or
! E04GDF to check that LSQFUN gives the same values for the
! elements of FJAC when IFLAG is set to 1 as when IFLAG is
! set to 2.

x(1:nt) = (/0.19_nag_wp,-1.34_nag_wp,0.88_nag_wp/)

ifail = 0
Call e04yaf(m,n,lsqfun,x,fvec,fjac,ldfjac,iw,liw,w,lw,ifail)

! Continue setting parameters for E04GDF

! Set IPRINT to 1 to obtain output from LSQMON at each iteration

iprint = -1

maxcal = 50*n
eta = 0.9_nag_wp
xtol = 10.0_nag_wp*sqrt(x02ajf())

! We estimate that the minimum will be within 10 units of the
! starting point
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stepmx = 10.0_nag_wp

! Set up the starting point

x(1:nt) = (/0.5_nag_wp,1.0_nag_wp,1.5_nag_wp/)

ifail = -1
Call e04gdf(m,n,lsqfun,lsqmon,iprint,maxcal,eta,xtol,stepmx,x,fsumsq, &

fvec,fjac,ldfjac,s,v,ldv,niter,nf,iw,liw,w,lw,ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’On exit, the sum of squares is’, fsumsq
Write (nout,99999) ’at the point’, x(1:n)

Call lsqgrd(m,n,fvec,fjac,ldfjac,g)

Write (nout,99998) ’The corresponding gradient is’, g(1:n)
Write (nout,*) ’ (machine dependent)’
Write (nout,*) ’and the residuals are’
Write (nout,99997) fvec(1:m)

End Select

99999 Format (1X,A,3F12.4)
99998 Format (1X,A,1P,3E12.3)
99997 Format (1X,1P,E9.1)

End Program e04gdfe

10.2 Program Data

E04GDF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

10.3 Program Results

E04GDF Example Program Results

On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437
The corresponding gradient is -6.061E-12 9.031E-11 9.385E-11

(machine dependent)
and the residuals are
-5.9E-03
-2.7E-04
2.7E-04
6.5E-03

-8.2E-04
-1.3E-03
-4.5E-03
-2.0E-02
8.2E-02

-1.8E-02
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-1.5E-02
-1.5E-02
-1.1E-02
-4.2E-03
6.8E-03
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NAG Library Routine Document

E04GYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04GYF is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of a sum of
squares of m nonlinear functions in n variables m � nð Þ. First derivatives are required.

It is intended for functions which are continuous and which have continuous first and second
derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04GYF (M, N, LSFUN2, X, FSUMSQ, W, LW, IUSER, RUSER, IFAIL)

INTEGER M, N, LW, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), FSUMSQ, W(LW), RUSER(*)
EXTERNAL LSFUN2

3 Description

E04GYF is similar to the subroutine LSFDQ2 in the NPL Algorithms Library. It is applicable to
problems of the form

MinimizeF xð Þ ¼
Xm
i¼1

fi xð Þ½ �2

where x ¼ x1; x2; . . . ; xnð ÞT and m � n. (The functions fi xð Þ are often referred to as ‘residuals’.) You
must supply a subroutine to evaluate the residuals and their first derivatives at any point x.

Before attempting to minimize the sum of squares, the algorithm checks the subroutine for consistency.
Then, from a starting point supplied by you, a sequence of points is generated which is intended to
converge to a local minimum of the sum of squares. These points are generated using estimates of the
curvature of F xð Þ.

4 References

Gill P E and Murray W (1978) Algorithms for the solution of the nonlinear least squares problem SIAM
J. Numer. Anal. 15 977–992

5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number m of residuals, fi xð Þ, and the number n of variables, xj.

Constraint: 1 � N � M.

3: LSFUN2 – SUBROUTINE, supplied by the user. External Procedure

You must supply this routine to calculate the vector of values fi xð Þ and the Jacobian matrix of

first derivatives
@fi
@xj

at any point x. It should be tested separately before being used in

conjunction with E04GYF (see the E04 Chapter Introduction).
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The specification of LSFUN2 is:

SUBROUTINE LSFUN2 (M, N, XC, FVEC, FJAC, LDFJAC, IUSER, RUSER)

INTEGER M, N, LDFJAC, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), RUSER(*)

Important: the dimension declaration for FJAC must contain the variable LDFJAC, not an
integer constant.

1: M – INTEGER Input

On entry: m, the numbers of residuals.

2: N – INTEGER Input

On entry: n, the numbers of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the values of the fi and the
@fi
@xj

are required.

4: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: FVECðiÞ must contain the value of fi at the point x, for i ¼ 1; 2; . . . ;m.

5: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: FJACði; jÞ must contain the value of
@fi
@xj

at the point x, for i ¼ 1; 2; . . . ;m and

j ¼ 1; 2; . . . ; n.

6: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC, set to m by E04GYF.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

LSFUN2 is called with the arguments IUSER and RUSER as supplied to E04GYF. You
should use the arrays IUSER and RUSER to supply information to LSFUN2.

LSFUN2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04GYF is called. Arguments denoted as Input must not be changed by this
procedure.

4: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n. The routine checks the first derivatives calculated by LSFUN2 at the starting
point and so is more likely to detect an error in your routine if the initial XðjÞ are nonzero and
mutually distinct.

On exit: the lowest point found during the calculations. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the
jth component of the position of the minimum.

5: FSUMSQ – REAL (KIND=nag_wp) Output

On exit: the value of the sum of squares, F xð Þ, corresponding to the final point stored in X.
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6: WðLWÞ – REAL (KIND=nag_wp) array Workspace
7: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04GYF is
called.

Constraints:

if N > 1, LW � 8� Nþ 2� N� Nþ 2�M� Nþ 3�M;
if N ¼ 1, LW � 11þ 5�M.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04GYF, but are passed directly to LSFUN2 and should be
used to pass information to this routine.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04GYF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or M < N,
or LW < 8� Nþ 2� N� Nþ 2�M� Nþ 3�M, when N > 1,
or LW < 11þ 5�M, when N ¼ 1.

IFAIL ¼ 2

There have been 50� n calls of LSFUN2, yet the algorithm does not seem to have converged.
This may be due to an awkward function or to a poor starting point, so it is worth restarting
E04GYF from the final point held in X.

IFAIL ¼ 3

The final point does not satisfy the conditions for acceptance as a minimum, but no lower point
could be found.

IFAIL ¼ 4

An auxiliary routine has been unable to complete a singular value decomposition in a reasonable
number of sub-iterations.
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IFAIL ¼ 5
IFAIL ¼ 6
IFAIL ¼ 7
IFAIL ¼ 8

There is some doubt about whether the point Xx found by E04GYF is a minimum of F xð Þ. The
degree of confidence in the result decreases as IFAIL increases. Thus, when IFAIL ¼ 5, it is
probable that the final x gives a good estimate of the position of a minimum, but when
IFAIL ¼ 8 it is very unlikely that the routine has found a minimum.

IFAIL ¼ 9

It is very likely that you have made an error in forming the derivatives
@fi
@xj

in LSFUN2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If you are not satisfied with the result (e.g., because IFAIL lies between 3 and 8), it is worth restarting
the calculations from a different starting point (not the point at which the failure occurred) in order to
avoid the region which caused the failure. Repeated failure may indicate some defect in the formulation
of the problem.

7 Accuracy

If the problem is reasonably well scaled and a successful exit is made then, for a computer with a
mantissa of t decimals, one would expect to get t=2� 1 decimals accuracy in the components of x and
between t� 1 (if F xð Þ is of order 1 at the minimum) and 2t� 2 (if F xð Þ is close to zero at the
minimum) decimals accuracy in F xð Þ.

8 Parallelism and Performance

E04GYF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E04GYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of iterations required depends on the number of variables, the number of residuals and their
behaviour, and the distance of the starting point from the solution. The number of multiplications
performed per iteration of E04GYF varies, but for m� n is approximately n�m2 þO n3

� �
. In
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addition, each iteration makes at least one call of LSFUN2. So, unless the residuals and their
derivatives can be evaluated very quickly, the run time will be dominated by the time spent in LSFUN2.

Ideally the problem should be scaled so that the minimum value of the sum of squares is in the range
0; 1ð Þ and so that at points a unit distance away from the solution the sum of squares is approximately a
unit value greater than at the minimum. It is unlikely that you will be able to follow these
recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the
difficulty of the minimization problem, so that E04GYF will take less computer time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements
of the variance-covariance matrix of the estimated regression coefficients can be computed by a
subsequent call to E04YCF, using information returned in segments of the workspace array W. See
E04YCF for further details.

10 Example

This example finds the least squares estimates of x1, x2 and x3 in the model

y ¼ x1 þ
t1

x2t2 þ x3t3
using the 15 sets of data given in the following table.

y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

The program uses 0:5; 1:0; 1:5ð Þ as the initial guess at the position of the minimum.

10.1 Program Text

! E04GYF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04gyfe_mod

! E04GYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: lsfun2

! .. Parameters ..
Integer, Parameter, Public :: m = 15, n = 3, nin = 5, nout = 6, &

nt = 3
Integer, Parameter, Public :: lw = 8*n + 2*n*n + 2*m*n + 3*m

! .. Local Arrays ..
Real (Kind=nag_wp), Public, Save :: t(m,nt), y(m)

Contains
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Subroutine lsfun2(m,n,xc,fvec,fjac,ldfjac,iuser,ruser)
! Routine to evaluate the residuals and their 1st derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfjac, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(ldfjac,n), ruser(*)
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: denom, dummy
Integer :: i

! .. Executable Statements ..
Do i = 1, m

denom = xc(2)*t(i,2) + xc(3)*t(i,3)
fvec(i) = xc(1) + t(i,1)/denom - y(i)
fjac(i,1) = 1.0_nag_wp
dummy = -1.0_nag_wp/(denom*denom)
fjac(i,2) = t(i,1)*t(i,2)*dummy
fjac(i,3) = t(i,1)*t(i,3)*dummy

End Do

Return

End Subroutine lsfun2
End Module e04gyfe_mod
Program e04gyfe

! E04GYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04gyf, nag_wp
Use e04gyfe_mod, Only: lsfun2, lw, m, n, nin, nout, nt, t, y

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fsumsq
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(1), w(lw), x(n)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’E04GYF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Observations of TJ (J = 1, 2, ..., nt) are held in T(I, J)
! (I = 1, 2, ..., m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:nt)

End Do

x(1:nt) = (/0.5_nag_wp,1.0_nag_wp,1.5_nag_wp/)

ifail = -1
Call e04gyf(m,n,lsfun2,x,fsumsq,w,lw,iuser,ruser,ifail)

Select Case (ifail)
Case (0,2:8,10:)

Write (nout,*)
Write (nout,99999) ’On exit, the sum of squares is’, fsumsq
Write (nout,99999) ’at the point’, x(1:n)

End Select

99999 Format (1X,A,3F12.4)
End Program e04gyfe
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10.2 Program Data

E04GYF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

10.3 Program Results

E04GYF Example Program Results

On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437
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NAG Library Routine Document

E04GZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04GZF is an easy-to-use modified Gauss–Newton algorithm for finding an unconstrained minimum of
a sum of squares of m nonlinear functions in n variables m � nð Þ. First derivatives are required.

It is intended for functions which are continuous and which have continuous first and second
derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04GZF (M, N, LSFUN2, X, FSUMSQ, W, LW, IUSER, RUSER, IFAIL)

INTEGER M, N, LW, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), FSUMSQ, W(LW), RUSER(*)
EXTERNAL LSFUN2

3 Description

E04GZF is similar to the subroutine LSFDN2 in the NPL Algorithms Library. It is applicable to
problems of the form

MinimizeF xð Þ ¼
Xm
i¼1

fi xð Þ½ �2

where x ¼ x1; x2; . . . ; xnð ÞT and m � n. (The functions fi xð Þ are often referred to as ‘residuals’.)

You must supply a subroutine to evaluate the residuals and their first derivatives at any point x.

Before attempting to minimize the sum of squares, the algorithm checks the subroutine for consistency.
Then, from a starting point supplied by you, a sequence of points is generated which is intended to
converge to a local minimum of the sum of squares. These points are generated using estimates of the
curvature of F xð Þ.

4 References

Gill P E and Murray W (1978) Algorithms for the solution of the nonlinear least squares problem SIAM
J. Numer. Anal. 15 977–992

5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number m of residuals, fi xð Þ, and the number n of variables, xj.

Constraint: 1 � N � M.

3: LSFUN2 – SUBROUTINE, supplied by the user. External Procedure

You must supply this routine to calculate the vector of values fi xð Þ and the Jacobian matrix of

first derivatives
@fi
@xj

at any point x. It should be tested separately before being used in

conjunction with E04GZF.

E04 – Minimizing or Maximizing a Function E04GZF

Mark 26 E04GZF.1



The specification of LSFUN2 is:

SUBROUTINE LSFUN2 (M, N, XC, FVEC, FJAC, LDFJAC, IUSER, RUSER)

INTEGER M, N, LDFJAC, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), RUSER(*)

Important: the dimension declaration for FJAC must contain the variable LDFJAC, not an
integer constant.

1: M – INTEGER Input

On entry: m, the numbers of residuals.

2: N – INTEGER Input

On entry: n, the numbers of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the values of the fi and the
@fi
@xj

are required.

4: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: FVECðiÞ must be set to the value of fi at the point x, for i ¼ 1; 2; . . . ;m.

5: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: FJACði; jÞ must be set to the value of
@fi
@xj

at the point x, for i ¼ 1; 2; . . . ;m

and j ¼ 1; 2; . . . ; n.

6: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC, set to m by E04GZF.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

LSFUN2 is called with the arguments IUSER and RUSER as supplied to E04GZF. You
should use the arrays IUSER and RUSER to supply information to LSFUN2.

LSFUN2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04GZF is called. Arguments denoted as Input must not be changed by this
procedure.

4: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n. The routine checks the first derivatives calculated by LSFUN2 at the starting
point and so is more likely to detect any error in your routines if the initial XðjÞ are nonzero and
mutually distinct.

On exit: the lowest point found during the calculations. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the
jth component of the position of the minimum.

5: FSUMSQ – REAL (KIND=nag_wp) Output

On exit: the value of the sum of squares, F xð Þ, corresponding to the final point stored in X.
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6: WðLWÞ – REAL (KIND=nag_wp) array Workspace
7: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04GZF is
called.

Constraints:

if N > 1, LW � 8� Nþ 2� N� Nþ 2�M� Nþ 3�M;
if N ¼ 1, LW � 11þ 5�M.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04GZF, but are passed directly to LSFUN2 and should be
used to pass information to this routine.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04GZF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or M < N,
or LW < 8� Nþ 2� N� Nþ 2�M� Nþ 3�M, when N > 1,
or LW < 11þ 5�M, when N ¼ 1.

IFAIL ¼ 2

There have been 50� n calls of LSFUN2, yet the algorithm does not seem to have converged.
This may be due to an awkward function or to a poor starting point, so it is worth restarting
E04GZF from the final point held in X.

IFAIL ¼ 3

The final point does not satisfy the conditions for acceptance as a minimum, but no lower point
could be found.

IFAIL ¼ 4

An auxiliary routine has been unable to complete a singular value decomposition in a reasonable
number of sub-iterations.
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IFAIL ¼ 5
IFAIL ¼ 6
IFAIL ¼ 7
IFAIL ¼ 8

There is some doubt about whether the point Xx found by E04GZF is a minimum of F xð Þ. The
degree of confidence in the result decreases as IFAIL increases. Thus, when IFAIL ¼ 5, it is
probable that the final x gives a good estimate of the position of a minimum, but when
IFAIL ¼ 8 it is very unlikely that the routine has found a minimum.

IFAIL ¼ 9

It is very likely that you have made an error in forming the derivatives
@fi
@xj

in LSFUN2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If you are not satisfied with the result (e.g., because IFAIL lies between 3 and 8), it is worth restarting
the calculations from a different starting point (not the point at which the failure occurred) in order to
avoid the region which caused the failure. Repeated failure may indicate some defect in the formulation
of the problem.

7 Accuracy

If the problem is reasonably well scaled and a successful exit is made, then, for a computer with a
mantissa of t decimals, one would expect to get about t=2� 1 decimals accuracy in the components of
x and between t� 1 (if F xð Þ is of order 1 at the minimum) and 2t� 2 (if F xð Þ is close to zero at the
minimum) decimals accuracy in F xð Þ.

8 Parallelism and Performance

E04GZF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E04GZF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of iterations required depends on the number of variables, the number of residuals and their
behaviour, and the distance of the starting point from the solution. The number of multiplications
performed per iteration of E04GZF varies, but for m� n is approximately n�m2 þO n3

� �
. In
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addition, each iteration makes at least one call of LSFUN2. So, unless the residuals and their
derivatives can be evaluated very quickly, the run time will be dominated by the time spent in LSFUN2.

Ideally, the problem should be scaled so that the minimum value of the sum of squares is in the range
0;þ1ð Þ and so that at points a unit distance away from the solution the sum of squares is approximately
a unit value greater than at the minimum. It is unlikely that you will be able to follow these
recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the
difficulty of the minimization problem, so that E04GZF will take less computer time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements
of the variance-covariance matrix of the estimated regression coefficients can be computed by a
subsequent call to E04YCF, using information returned in segments of the workspace array W. See
E04YCF for further details.

10 Example

This example finds least squares estimates of x1, x2 and x3 in the model

y ¼ x1 þ
t1

x2t2 þ x3t3
using the 15 sets of data given in the following table.

y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

The program uses 0:5; 1:0; 1:5ð Þ as the initial guess at the position of the minimum.

10.1 Program Text

! E04GZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04gzfe_mod

! E04GZF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: lsfun2

! .. Parameters ..
Integer, Parameter, Public :: m = 15, n = 3, nin = 5, nout = 6, &

nt = 3
Integer, Parameter, Public :: lw = 8*n + 2*n*n + 2*m*n + 3*m

! .. Local Arrays ..
Real (Kind=nag_wp), Public, Save :: t(m,nt), y(m)

Contains
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Subroutine lsfun2(m,n,xc,fvec,fjac,ldfjac,iuser,ruser)
! Routine to evaluate the residuals and their 1st derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfjac, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(ldfjac,n), ruser(*)
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: denom, dummy
Integer :: i

! .. Executable Statements ..
Do i = 1, m

denom = xc(2)*t(i,2) + xc(3)*t(i,3)
fvec(i) = xc(1) + t(i,1)/denom - y(i)
fjac(i,1) = 1.0E0_nag_wp
dummy = -1.0E0_nag_wp/(denom*denom)
fjac(i,2) = t(i,1)*t(i,2)*dummy
fjac(i,3) = t(i,1)*t(i,3)*dummy

End Do

Return

End Subroutine lsfun2
End Module e04gzfe_mod
Program e04gzfe

! E04GZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04gzf, nag_wp
Use e04gzfe_mod, Only: lsfun2, lw, m, n, nin, nout, nt, t, y

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fsumsq
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(1), w(lw), x(n)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’E04GZF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Observations of TJ (J = 1, 2, ..., nt) are held in T(I, J)
! (I = 1, 2, ..., m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:nt)

End Do

x(1:nt) = (/0.5E0_nag_wp,1.0E0_nag_wp,1.5E0_nag_wp/)

ifail = -1
Call e04gzf(m,n,lsfun2,x,fsumsq,w,lw,iuser,ruser,ifail)

Select Case (ifail)
Case (0,2:8,10:)

Write (nout,*)
Write (nout,99999) ’On exit, the sum of squares is’, fsumsq
Write (nout,99999) ’at the point’, x(1:n)

End Select

99999 Format (1X,A,3F12.4)
End Program e04gzfe
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10.2 Program Data

E04GZF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

10.3 Program Results

E04GZF Example Program Results

On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437
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NAG Library Routine Document

E04HCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04HCF checks that a subroutine for evaluating an objective function and its first derivatives produces
derivative values which are consistent with the function values calculated.

2 Specification

SUBROUTINE E04HCF (N, FUNCT, X, F, G, IW, LIW, W, LW, IFAIL)

INTEGER N, IW(LIW), LIW, LW, IFAIL
REAL (KIND=nag_wp) X(N), F, G(N), W(LW)
EXTERNAL FUNCT

3 Description

Routines for minimizing a function of several variables may require you to supply a subroutine to
evaluate the objective function F x1; x2; . . . ; xnð Þ and its first derivatives. E04HCF is designed to check
the derivatives calculated by such user-supplied subroutines . As well as the routine to be checked (
FUNCT), you must supply a point x ¼ x1; x2; . . . ; xnð ÞT at which the check will be made. Note that
E04HCF checks routines of the form required for E04KDF and E04LBF.

E04HCF first calls FUNCT to evaluate F and its first derivatives gj ¼
@F

@xj
, for j ¼ 1; 2; . . . ; n at x. The

components of the user-supplied derivatives along two orthogonal directions (defined by unit vectors p1
and p2, say) are then calculated; these will be gTp1 and gTp2 respectively. The same components are
also estimated by finite differences, giving quantities

vk ¼
F xþ hpkð Þ � F xð Þ

h
; k ¼ 1; 2

where h is a small positive scalar. If the relative difference between v1 and gTp1 or between v2 and gTp2
is judged too large, an error indicator is set.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: the number n of independent variables in the objective function.

Constraint: N � 1.

2: FUNCT – SUBROUTINE, supplied by the user. External Procedure

FUNCT must evaluate the function and its first derivatives at a given point. (The minimization
routines mentioned in Section 3 gives you the option of resetting arguments of FUNCT to cause
the minimization process to terminate immediately. E04HCF will also terminate immediately,
without finishing the checking process, if the argument in question is reset.)
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The specification of FUNCT is:

SUBROUTINE FUNCT (IFLAG, N, XC, FC, GC, IW, LIW, W, LW)

INTEGER IFLAG, N, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FC, GC(N), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: will be set to 2.

On exit: if you reset IFLAG to a negative number in FUNCT and return control to
E04HCF, E04HCF will terminate immediately with IFAIL set to your setting of IFLAG.

2: N – INTEGER Input

On entry: the number n of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which F and its derivatives are required.

4: FC – REAL (KIND=nag_wp) Output

On exit: unless FUNCT resets IFLAG, FC must be set to the value of the function F at
the current point x.

5: GCðNÞ – REAL (KIND=nag_wp) array Output

On exit: unless FUNCT resets IFLAG, GCðjÞ must be set to the value of the first

derivative
@F

@xj
at the point x, for j ¼ 1; 2; . . . ; n.

6: IWðLIWÞ – INTEGER array Workspace
7: LIW – INTEGER Input
8: WðLWÞ – REAL (KIND=nag_wp) array Workspace
9: LW – INTEGER Input

These arguments are present so that FUNCT will be of the form required by the
minimization routines mentioned in Section 3. FUNCT is called with E04HCF's
arguments IW, LIW, W, LW as these arguments. If the advice given in the minimization
routine documents is being followed, you will have no reason to examine or change any
elements of IW or W. In any case, FUNCT must not change the first 3� N elements of
W.

FUNCT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04HCF is called. Arguments denoted as Input must not be changed by this
procedure.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðjÞ, for j ¼ 1; 2; . . . ; n, must be set to the coordinates of a suitable point at which to
check the derivatives calculated by FUNCT. ‘Obvious’ settings, such as 0:0 or 1:0, should not be
used since, at such particular points, incorrect terms may take correct values (particularly zero),
so that errors could go undetected. Similarly, it is preferable that no two elements of X should be
the same.

4: F – REAL (KIND=nag_wp) Output

On exit: unless you set IFLAG negative in the first call of FUNCT, F contains the value of the
objective function F xð Þ at the point given by you in X.
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5: GðNÞ – REAL (KIND=nag_wp) array Output

On exit: unless you set IFLAG negative in the first call of FUNCT, GðjÞ contains the value of the

derivative
@F

@xj
at the point given in X, as calculated by FUNCT, for j ¼ 1; 2; . . . ; n.

6: IWðLIWÞ – INTEGER array Communication Array

This array is in the argument list so that it can be used by other library routines for passing
integer quantities to FUNCT. It is not examined or changed by E04HCF. Generally, you must
provide an array IW but are advised not to use it.

7: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04HCF is
called.

Constraint: LIW � 1.

8: WðLWÞ – REAL (KIND=nag_wp) array Communication Array
9: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04HCF is
called.

Constraint: LW � 3� N.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04HCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04HCF because you have set IFLAG negative
in FUNCT. The setting of IFAIL will be the same as your setting of IFLAG. The check on
FUNCT will not have been completed.

IFAIL ¼ 1

On entry, N < 1,
or LIW < 1,
or LW < 3� N.
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IFAIL ¼ 2

You should check carefully the derivation and programming of expressions for the derivatives of
F xð Þ, because it is very unlikely that FUNCT is calculating them correctly.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

IFAIL is set to 2 if

vk � gTpk
� �2 � h� gTpk

� �2 þ 1
� �

for k ¼ 1 or 2. (See Section 3 for definitions of the quantities involved.) The scalar h is set equal to
ffiffi
�
p

,
where � is the machine precision as given by X02AJF.

8 Parallelism and Performance

E04HCF is not threaded in any implementation.

9 Further Comments

FUNCT is called 3 times.

Before using E04HCF to check the calculation of first derivatives, you should be confident that FUNCT
is calculating F correctly. The usual way of checking the calculation of the function is to compare
values of F xð Þ calculated by FUNCT at nontrivial points x with values calculated independently. (‘Non-
trivial’ means that, as when setting x before calling E04HCF, coordinates such as 0:0 or 1:0 should be
avoided.)

E04HCF only checks the derivatives calculated when IFLAG ¼ 2. So, if FUNCT is intended for use in
conjunction with a minimization routine which may set IFLAG to 1, you must check that, for given
settings of the XCðjÞ, FUNCT produces the same values for the GCðjÞ when IFLAG is set to 1 as when
IFLAG is set to 2.

10 Example

Suppose that it is intended to use E04KDF to minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4:

The following program could be used to check the first derivatives calculated by FUNCT. (The tests of
whether IFLAG ¼ 0 or 1 in FUNCT are present ready for when FUNCT is called by E04KDF. E04HCF
will always call FUNCT with IFLAG set to 2.)
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10.1 Program Text

! E04HCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04hcfe_mod

! E04HCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct

! .. Parameters ..
Integer, Parameter, Public :: liw = 1, n = 4, nout = 6
Integer, Parameter, Public :: lw = 3*n

Contains
Subroutine funct(iflag,n,xc,fc,gc,iw,liw,w,lw)

! Routine to evaluate objective function and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: liw, lw, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gc(n)
Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Executable Statements ..
fc = (xc(1)+10.0_nag_wp*xc(2))**2 + 5.0_nag_wp*(xc(3)-xc(4))**2 + &

(xc(2)-2.0_nag_wp*xc(3))**4 + 10.0_nag_wp*(xc(1)-xc(4))**4
gc(1) = 2.0_nag_wp*(xc(1)+10.0_nag_wp*xc(2)) + &

40.0_nag_wp*(xc(1)-xc(4))**3
gc(2) = 20.0_nag_wp*(xc(1)+10.0_nag_wp*xc(2)) + &

4.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3))**3
gc(3) = 10.0_nag_wp*(xc(3)-xc(4)) - 8.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3) &

)**3
gc(4) = 10.0_nag_wp*(xc(4)-xc(3)) - 40.0_nag_wp*(xc(1)-xc(4))**3

Return

End Subroutine funct
End Module e04hcfe_mod
Program e04hcfe

! E04HCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04hcf, nag_wp
Use e04hcfe_mod, Only: funct, liw, lw, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: f
Integer :: ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: g(n), w(lw), x(n)
Integer :: iw(liw)

! .. Executable Statements ..
Write (nout,*) ’E04HCF Example Program Results’

! Set up an arbitrary point at which to check the 1st derivatives

x(1:n) = (/1.46_nag_wp,-0.82_nag_wp,0.57_nag_wp,1.21_nag_wp/)

Write (nout,*)
Write (nout,*) ’The test point is’
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Write (nout,99999) x(1:n)

ifail = -1
Call e04hcf(n,funct,x,f,g,iw,liw,w,lw,ifail)

If (ifail>=0) Then
Write (nout,*)

If (ifail==0) Then
Write (nout,*) ’1st derivatives are consistent with function values’

Else
Write (nout,*) ’Probable error in calculation of 1st derivatives’

End If

Write (nout,*)
Write (nout,99998) ’At the test point, FUNCT gives the function value’ &

, f
Write (nout,*) ’and the 1st derivatives’
Write (nout,99997) g(1:n)

End If

99999 Format (1X,4F10.4)
99998 Format (1X,A,1P,E12.4)
99997 Format (1X,1P,4E12.3)

End Program e04hcfe

10.2 Program Data

None.

10.3 Program Results

E04HCF Example Program Results

The test point is
1.4600 -0.8200 0.5700 1.2100

1st derivatives are consistent with function values

At the test point, FUNCT gives the function value 6.2273E+01
and the 1st derivatives

-1.285E+01 -1.649E+02 5.384E+01 5.775E+00
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NAG Library Routine Document

E04HDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04HDF checks that a subroutine for calculating second derivatives of an objective function is
consistent with a subroutine for calculating the corresponding first derivatives.

2 Specification

SUBROUTINE E04HDF (N, FUNCT, H, X, G, HESL, LH, HESD, IW, LIW, W, LW,
IFAIL)

&

INTEGER N, LH, IW(LIW), LIW, LW, IFAIL
REAL (KIND=nag_wp) X(N), G(N), HESL(LH), HESD(N), W(LW)
EXTERNAL FUNCT, H

3 Description

Routines for minimizing a function F x1; x2; . . . ; xnð Þ of the variables x1; x2; . . . ; xn may require you to
provide a subroutine to evaluate the second derivatives of F . E04HDF is designed to check the second
derivatives calculated by such user-supplied subroutines. As well as the routine to be checked (H), you
must supply a subroutine (FUNCT) to evaluate the first derivatives, and a point x ¼ x1; x2; . . . ; xnð ÞT at
which the checks will be made. Note that E04HDF checks routines of the form required for E04LBF.

E04HDF first calls user-supplied subroutines FUNCT and H to evaluate the first and second derivatives
of F at x. The user-supplied Hessian matrix (H, say) is projected onto two orthogonal vectors y and z
to give the scalars yTHy and zTHz respectively. The same projections of the Hessian matrix are also
estimated by finite differences, giving

p ¼ yTg xþ hyð Þ � yTg xð Þð Þ=h and
q ¼ zTg xþ hzð Þ � zTg xð Þð Þ=h

respectively, where gðÞ denotes the vector of first derivatives at the point in brackets and h is a small
positive scalar. If the relative difference between p and yTHy or between q and zTHz is judged too
large, an error indicator is set.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: the number n of independent variables in the objective function.

Constraint: N � 1.

2: FUNCT – SUBROUTINE, supplied by the user. External Procedure

FUNCT must evaluate the function and its first derivatives at a given point. (E04LBF gives you
the option of resetting arguments of FUNCT to cause the minimization process to terminate
immediately. E04HDF will also terminate immediately, without finishing the checking process, if
the argument in question is reset.)
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The specification of FUNCT is:

SUBROUTINE FUNCT (IFLAG, N, XC, FC, GC, IW, LIW, W, LW)

INTEGER IFLAG, N, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FC, GC(N), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: to FUNCT, IFLAG will be set to 2.

On exit: if you set IFLAG to some negative number in FUNCT and return control to
E04HDF, E04HDF will terminate immediately with IFAIL set to your setting of IFLAG.

2: N – INTEGER Input

On entry: the number n of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the function and first derivatives are required.

4: FC – REAL (KIND=nag_wp) Output

On exit: unless FUNCT resets IFLAG, FC must be set to the value of the objective
function F at the current point x.

5: GCðNÞ – REAL (KIND=nag_wp) array Output

On exit: unless FUNCT resets IFLAG, GCðjÞ must be set to the value of the first

derivative
@F

@xj
at the point x, for j ¼ 1; 2; . . . ; n.

6: IWðLIWÞ – INTEGER array Workspace
7: LIW – INTEGER Input
8: WðLWÞ – REAL (KIND=nag_wp) array Workspace
9: LW – INTEGER Input

These arguments are present so that FUNCT will be of the form required by E04LBF.
FUNCT is called with E04HDF's arguments IW, LIW, W, LW as these arguments. If the
advice given in E04LBF is being followed, you will have no reason to examine or
change any elements of IW or W. In any case, FUNCT must not change the first 5� N
elements of W.

FUNCT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04HDF is called. Arguments denoted as Input must not be changed by this
procedure.

E04HCF should be used to check the first derivatives calculated by FUNCT before E04HDF is
used to check the second derivatives, since E04HDF assumes that the first derivatives are correct.

3: H – SUBROUTINE, supplied by the user. External Procedure

H must evaluate the second derivatives of the function at a given point. (As with FUNCT, an
argument can be set to cause immediate termination.)

The specification of H is:

SUBROUTINE H (IFLAG, N, XC, FHESL, LH, FHESD, IW, LIW, W, LW)

INTEGER IFLAG, N, LH, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FHESL(LH), FHESD(N), W(LW)
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1: IFLAG – INTEGER Input/Output

On entry: is set to a non-negative number.

On exit: if H resets IFLAG to a negative number, E04HDF will terminate immediately
with IFAIL set to your setting of IFLAG.

2: N – INTEGER Input

On entry: the number n of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the second derivatives of F xð Þ are required.

4: FHESLðLHÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset, H must place the strict lower triangle of the second
derivative matrix of F (evaluated at the point x) in FHESL, stored by rows, i.e.,

FHESLð i � 1ð Þ i � 2ð Þ=2þ jÞ must be set to the value of
@2F

@xi@xj
at the point x, for

i ¼ 2; 3; . . . ; n and j ¼ 1; 2; . . . ; i � 1. (The upper triangle is not required because the
matrix is symmetric.)

5: LH – INTEGER Input

On entry: the length of the array FHESL.

6: FHESDðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: contains the value of
@F

@xj
at the point x, for j ¼ 1; 2; . . . ; n. Routines written

to take advantage of a similar feature of E04LBF can be tested as they stand by
E04HDF.

On exit: unless IFLAG is reset, H must place the diagonal elements of the second
derivative matrix of F (evaluated at the point x) in FHESD, i.e., FHESDðjÞ must be set

to the value of
@2F

@x2j
at the point x, for j ¼ 1; 2; . . . ; n.

7: IWðLIWÞ – INTEGER array Workspace
8: LIW – INTEGER Input
9: WðLWÞ – REAL (KIND=nag_wp) array Workspace
10: LW – INTEGER Input

As in FUNCT, these arguments correspond to the arguments IW, LIW, W and LW of
E04HDF. H must not change the first 5� N elements of W.

H must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04HDF is called. Arguments denoted as Input must not be changed by this
procedure.

4: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðjÞ, for j ¼ 1; 2; . . . ; n, must contain the coordinates of a suitable point at which to
check the derivatives calculated by FUNCT. ‘Obvious’ settings, such as 0:0 or 1:0, should not be
used since, at such particular points, incorrect terms may take correct values (particularly zero),
so that errors could go undetected. Similarly, it is advisable that no two elements of X should be
the same.
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5: GðNÞ – REAL (KIND=nag_wp) array Output

On exit: unless you set IFLAG negative in the first call of FUNCT, GðjÞ contains the value of the

first derivative
@F

@xj
at the point given in X, as calculated by FUNCT, for j ¼ 1; 2; . . . ;N.

6: HESLðLHÞ – REAL (KIND=nag_wp) array Output

On exit: unless you set IFLAG negative in H, HESL contains the strict lower triangle of the
second derivative matrix of F , as evaluated by H at the point given in X, stored by rows.

7: LH – INTEGER Input

On entry: the dimension of the array HESL as declared in the (sub)program from which E04HDF
is called.

Constraint: LH � max 1;N� N� 1ð Þ=2ð Þ.

8: HESDðNÞ – REAL (KIND=nag_wp) array Output

On exit: unless you set IFLAG negative in H, HESD contains the diagonal elements of the
second derivative matrix of F , as evaluated by H at the point given in X.

9: IWðLIWÞ – INTEGER array Communication Array

This array is in the argument list so that it can be used by other library routines for passing
integer quantities to FUNCT or H. It is not examined or changed by E04HDF. In general you
must provide an array IW, but are advised not to use it.

10: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04HDF is
called.

Constraint: LIW � 1.

11: WðLWÞ – REAL (KIND=nag_wp) array Communication Array
12: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04HDF is
called.

Constraint: LW � 5� N.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04HDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04HDF because you have set IFLAG negative
in FUNCT or H. The value of IFAIL will be the same as the value you set for IFLAG. The check
on H will not have been completed.

IFAIL ¼ 1

On entry, N < 1,
or LH < max 1;N� N� 1ð Þ=2ð Þ,
or LIW < 1,
or LW < 5� N.

IFAIL ¼ 2

You should check carefully the derivation and programming of expressions for the second
derivatives of F xð Þ, because it is very unlikely that H is calculating them correctly.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

IFAIL is set to 2 if

yTHy� pj j �
ffiffiffi
h
p
� yTHyj j þ 1:0ð Þ or

zTHz� qj j �
ffiffiffi
h
p
� zTHzj j þ 1:0ð Þ

where h is set equal to
ffiffi
�
p

(� being the machine precision as given by X02AJF) and other quantities are
as defined in Section 3.

8 Parallelism and Performance

E04HDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

E04HDF calls H once and FUNCT three times.

10 Example

Suppose that it is intended to use E04LBF to minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

The following program could be used to check the second derivatives calculated by H required. (The
call of E04HDF is preceded by a call of E04HCF to check FUNCT which calculates the first
derivatives.)

10.1 Program Text

! E04HDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04hdfe_mod

! E04HDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct, h

! .. Parameters ..
Integer, Parameter, Public :: liw = 1, n = 4, nout = 6
Integer, Parameter, Public :: lh = n*(n-1)/2
Integer, Parameter, Public :: lw = 5*n

Contains
Subroutine funct(iflag,n,xc,fc,gc,iw,liw,w,lw)

! Routine to evaluate objective function and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: liw, lw, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gc(n)
Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Executable Statements ..
fc = (xc(1)+10.0_nag_wp*xc(2))**2 + 5.0_nag_wp*(xc(3)-xc(4))**2 + &

(xc(2)-2.0_nag_wp*xc(3))**4 + 10.0_nag_wp*(xc(1)-xc(4))**4
gc(1) = 2.0_nag_wp*(xc(1)+10.0_nag_wp*xc(2)) + &

40.0_nag_wp*(xc(1)-xc(4))**3
gc(2) = 20.0_nag_wp*(xc(1)+10.0_nag_wp*xc(2)) + &

4.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3))**3
gc(3) = 10.0_nag_wp*(xc(3)-xc(4)) - 8.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3) &

)**3
gc(4) = 10.0_nag_wp*(xc(4)-xc(3)) - 40.0_nag_wp*(xc(1)-xc(4))**3

Return

End Subroutine funct
Subroutine h(iflag,n,xc,fhesl,lh,fhesd,iw,liw,w,lw)

! Routine to evaluate 2nd derivatives

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: lh, liw, lw, n

! .. Array Arguments ..
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Real (Kind=nag_wp), Intent (Inout) :: fhesd(n), w(lw)
Real (Kind=nag_wp), Intent (Out) :: fhesl(lh)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Executable Statements ..
fhesd(1) = 2.0_nag_wp + 120.0_nag_wp*(xc(1)-xc(4))**2
fhesd(2) = 200.0_nag_wp + 12.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3))**2
fhesd(3) = 10.0_nag_wp + 48.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3))**2
fhesd(4) = 10.0_nag_wp + 120.0_nag_wp*(xc(1)-xc(4))**2

fhesl(1) = 20.0_nag_wp
fhesl(2) = 0.0_nag_wp
fhesl(3) = -24.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3))**2
fhesl(4) = -120.0_nag_wp*(xc(1)-xc(4))**2
fhesl(5) = 0.0_nag_wp
fhesl(6) = -10.0_nag_wp

Return

End Subroutine h
End Module e04hdfe_mod
Program e04hdfe

! E04HDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04hcf, e04hdf, nag_wp
Use e04hdfe_mod, Only: funct, h, lh, liw, lw, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: f
Integer :: i, ifail, k

! .. Local Arrays ..
Real (Kind=nag_wp) :: g(n), hesd(n), hesl(lh), w(lw), x(n)
Integer :: iw(liw)

! .. Executable Statements ..
Write (nout,*) ’E04HDF Example Program Results’

! Set up an arbitrary point at which to check the derivatives

x(1:n) = (/1.46_nag_wp,-0.82_nag_wp,0.57_nag_wp,1.21_nag_wp/)

Write (nout,*)
Write (nout,*) ’The test point is’
Write (nout,99999) x(1:n)

! Check the 1st derivatives

ifail = 0
Call e04hcf(n,funct,x,f,g,iw,liw,w,lw,ifail)

! Check the 2nd derivatives

ifail = -1
Call e04hdf(n,funct,h,x,g,hesl,lh,hesd,iw,liw,w,lw,ifail)

If (ifail>=0) Then
Write (nout,*)

If (ifail==0) Then
Write (nout,*) ’2nd derivatives are consistent with 1st derivatives’

Else If (ifail==2) Then
Write (nout,*) ’Probable error in calculation of 2nd derivatives’

End If

Write (nout,*)
Write (nout,99998) ’At the test point, FUNCT gives the function value’ &

, f
Write (nout,*) ’and the 1st derivatives’
Write (nout,99997) g(1:n)
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Write (nout,*)
Write (nout,*) ’H gives the lower triangle of the Hessian matrix’
Write (nout,99996) hesd(1)

k = 1

Do i = 2, n
Write (nout,99996) hesl(k:(k+i-2)), hesd(i)
k = k + i - 1

End Do

End If

99999 Format (1X,4F9.4)
99998 Format (1X,A,1P,E12.4)
99997 Format (1X,1P,4E12.3)
99996 Format (1X,1P,4E12.3)

End Program e04hdfe

10.2 Program Data

None.

10.3 Program Results

E04HDF Example Program Results

The test point is
1.4600 -0.8200 0.5700 1.2100

2nd derivatives are consistent with 1st derivatives

At the test point, FUNCT gives the function value 6.2273E+01
and the 1st derivatives

-1.285E+01 -1.649E+02 5.384E+01 5.775E+00

H gives the lower triangle of the Hessian matrix
9.500E+00
2.000E+01 2.461E+02
0.000E+00 -9.220E+01 1.944E+02

-7.500E+00 0.000E+00 -1.000E+01 1.750E+01
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NAG Library Routine Document

E04HEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04HEF is a comprehensive modified Gauss–Newton algorithm for finding an unconstrained minimum
of a sum of squares of m nonlinear functions in n variables m � nð Þ. First and second derivatives are
required.

The routine is intended for functions which have continuous first and second derivatives (although it
will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04HEF (M, N, LSQFUN, LSQHES, LSQMON, IPRINT, MAXCAL, ETA,
XTOL, STEPMX, X, FSUMSQ, FVEC, FJAC, LDFJAC, S, V,
LDV, NITER, NF, IW, LIW, W, LW, IFAIL)

&
&

INTEGER M, N, IPRINT, MAXCAL, LDFJAC, LDV, NITER, NF,
IW(LIW), LIW, LW, IFAIL

&

REAL (KIND=nag_wp) ETA, XTOL, STEPMX, X(N), FSUMSQ, FVEC(M),
FJAC(LDFJAC,N), S(N), V(LDV,N), W(LW)

&

EXTERNAL LSQFUN, LSQHES, LSQMON

3 Description

E04HEF is essentially identical to the subroutine LSQSDN in the NPL Algorithms Library. It is
applicable to problems of the form:

MinimizeF xð Þ ¼
Xm
i¼1

fi xð Þ½ �2

where x ¼ x1; x2; . . . ; xnð ÞT and m � n. (The functions fi xð Þ are often referred to as ‘residuals’.)

You must supply subroutines to calculate the values of the fi xð Þ and their first derivatives and second
derivatives at any point x.

From a starting point x 1ð Þ supplied by you, the routine generates a sequence of points x 2ð Þ; x 3ð Þ; . . .,
which is intended to converge to a local minimum of F xð Þ. The sequence of points is given by

x kþ1ð Þ ¼ x kð Þ þ � kð Þp kð Þ

where the vector p kð Þ is a direction of search, and � kð Þ is chosen such that F x kð Þ þ � kð Þp kð Þ� �
is

approximately a minimum with respect to � kð Þ.

The vector p kð Þ used depends upon the reduction in the sum of squares obtained during the last iteration.
If the sum of squares was sufficiently reduced, then p kð Þ is the Gauss–Newton direction; otherwise the
second derivatives of the fi xð Þ are taken into account.

The method is designed to ensure that steady progress is made whatever the starting point, and to have
the rapid ultimate convergence of Newton's method.

4 References

Gill P E and Murray W (1978) Algorithms for the solution of the nonlinear least squares problem SIAM
J. Numer. Anal. 15 977–992
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5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number m of residuals, fi xð Þ, and the number n of variables, xj.

Constraint: 1 � N � M.

3: LSQFUN – SUBROUTINE, supplied by the user. External Procedure

LSQFUN must calculate the vector of values fi xð Þ and Jacobian matrix of first derivatives
@fi
@xj

at

any point x. (However, if you do not wish to calculate the residuals or first derivatives at a
particular x, there is the option of setting an argument to cause E04HEF to terminate
immediately.)

The specification of LSQFUN is:

SUBROUTINE LSQFUN (IFLAG, M, N, XC, FVEC, FJAC, LDFJAC, IW, LIW,
W, LW)

&

INTEGER IFLAG, M, N, LDFJAC, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), W(LW)

Important: the dimension declaration FJAC must contain the variable LDFJAC, not an integer
constant.

1: IFLAG – INTEGER Input/Output

On entry: to LSQFUN, IFLAG will be set to 2.

On exit: if it is not possible to evaluate the fi xð Þ or their first derivatives at the point
given in XC (or if it wished to stop the calculations for any other reason), you should
reset IFLAG to some negative number and return control to E04HEF. E04HEF will then
terminate immediately, with IFAIL set to your setting of IFLAG.

2: M – INTEGER Input

On entry: m, the numbers of residuals.

3: N – INTEGER Input

On entry: n, the numbers of variables.

4: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the values of the fi and the
@fi
@xj

are required.

5: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset to a negative number, FVECðiÞ must contain the value
of fi at the point x, for i ¼ 1; 2; . . . ;m.

6: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset to a negative number, FJACði; jÞ must contain the value

of
@fi
@xj

at the point x, for i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n.

7: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from
which E04HEF is called.
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8: IWðLIWÞ – INTEGER array Workspace
9: LIW – INTEGER Input
10: WðLWÞ – REAL (KIND=nag_wp) array Workspace
11: LW – INTEGER Input

LSQFUN is called with E04HEF's arguments IW, LIW, W, LW as these arguments.
They are present so that, when other library routines require the solution of a
minimization subproblem, constants needed for the evaluation of residuals can be
passed through IW and W. Similarly, you could pass quantities of LSQFUN from the
segment which calls E04HEF by using partitions of IW and W beyond those used as
workspace by E04HEF. However, because of the danger of mistakes in partitioning, it is
recommended that you should pass information to LSQFUN via COMMON global
variables and not use IW or W at all. In any case you must not change the elements of
IW and W used as workspace by E04HEF.

LSQFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04HEF is called. Arguments denoted as Input must not be changed
by this procedure.

Note: LSQFUN should be tested separately before being used in conjunction with E04HEF.

4: LSQHES – SUBROUTINE, supplied by the user. External Procedure

LSQHES must calculate the elements of the symmetric matrix

B xð Þ ¼
Xm
i¼1
fi xð ÞGi xð Þ;

at any point x, where Gi xð Þ is the Hessian matrix of fi xð Þ. (As with LSQFUN, there is the option
of causing E04HEF to terminate immediately.)

The specification of LSQHES is:

SUBROUTINE LSQHES (IFLAG, M, N, FVEC, XC, B, LB, IW, LIW, W, LW)

INTEGER IFLAG, M, N, LB, IW(LIW), LIW, LW
REAL (KIND=nag_wp) FVEC(M), XC(N), B(LB), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: is set to a non-negative number.

On exit: if LSQHES resets IFLAG to some negative number, E04HEF will terminate
immediately, with IFAIL set to your setting of IFLAG.

2: M – INTEGER Input

On entry: m, the numbers of residuals.

3: N – INTEGER Input

On entry: n, the numbers of variables.

4: FVECðMÞ – REAL (KIND=nag_wp) array Input

On entry: the value of the residual fi at the point x, for i ¼ 1; 2; . . . ;m, so that the
values of the fi can be used in the calculation of the elements of B.

5: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the elements of B are to be evaluated.
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6: BðLBÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset to a negative number, B must contain the lower triangle
of the matrix BðxÞ, evaluated at the point x, stored by rows. (The upper triangle is not
required because the matrix is symmetric.) More precisely, Bðj j � 1ð Þ=2þ kÞ must

contain
Xm
i¼1
fi

@2fi
@xj@xk

evaluated at the point x, for j ¼ 1; 2; . . . ; n and k ¼ 1; 2; . . . ; j.

7: LB – INTEGER Input

On entry: the length of the array B.

8: IWðLIWÞ – INTEGER array Workspace
9: LIW – INTEGER Input
10: WðLWÞ – REAL (KIND=nag_wp) array Workspace
11: LW – INTEGER Input

As in LSQFUN, these arguments correspond to the arguments IW, LIW, W, LW of
E04HEF. LSQHES must not change the sections of IW and W required as workspace
by E04HEF. Again, it is recommended that you should pass quantities to LSQHES via
COMMON global variables and not use IW or W at all.

LSQHES must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04HEF is called. Arguments denoted as Input must not be changed by this
procedure.

Note: LSQHES should be tested separately before being used in conjunction with E04HEF.

5: LSQMON – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

If IPRINT � 0, you must supply LSQMON which is suitable for monitoring the minimization
process. LSQMON must not change the values of any of its arguments.

If IPRINT < 0, the dummy routine E04FDZ can be used as LSQMON.

The specification of LSQMON is:

SUBROUTINE LSQMON (M, N, XC, FVEC, FJAC, LDFJAC, S, IGRADE,
NITER, NF, IW, LIW, W, LW)

&

INTEGER M, N, LDFJAC, IGRADE, NITER, NF, IW(LIW),
LIW, LW

&

REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), S(N), W(LW)

Important: the dimension declaration for FJAC must contain the variable LDFJAC, not an
integer constant.

1: M – INTEGER Input

On entry: m, the numbers of residuals.

2: N – INTEGER Input

On entry: n, the numbers of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the current point x.

4: FVECðMÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the residuals fi at the current point x.
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5: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Input

On entry: FJACði; jÞ contains the value of
@fi
@xj

at the current point x, for i ¼ 1; 2; . . . ;m

and j ¼ 1; 2; . . . ; n.

6: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from
which E04HEF is called.

7: SðNÞ – REAL (KIND=nag_wp) array Input

On entry: the singular values of the current Jacobian matrix. Thus S may be useful as
information about the structure of your problem. (If IPRINT > 0, LSQMON is called at
the initial point before the singular values have been calculated, so the elements of S
are set to zero for the first call of LSQMON.)

8: IGRADE – INTEGER Input

On entry: E04HEF estimates the dimension of the subspace for which the Jacobian
matrix can be used as a valid approximation to the curvature (see Gill and Murray
(1978)). This estimate is called the grade of the Jacobian matrix, and IGRADE gives its
current value.

9: NITER – INTEGER Input

On entry: the number of iterations which have been performed in E04HEF.

10: NF – INTEGER Input

On entry: the number of times that LSQFUN has been called so far. Thus NF gives the
number of evaluations of the residuals and the Jacobian matrix.

11: IWðLIWÞ – INTEGER array Workspace
12: LIW – INTEGER Input
13: WðLWÞ – REAL (KIND=nag_wp) array Workspace
14: LW – INTEGER Input

As in LSQFUN and LSQHES, these arguments correspond to the arguments IW, LIW,
W, LW of E04HEF. They are included in LSQMON's argument list primarily for when
E04HEF is called by other library routines.

LSQMON must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04HEF is called. Arguments denoted as Input must not be changed
by this procedure.

Note: you should normally print the sum of squares of residuals, so as to be able to examine the
sequence of values of F xð Þ mentioned in Section 7. It is usually helpful to also print XC, the
gradient of the sum of squares, NITER and NF.

6: IPRINT – INTEGER Input

On entry: specifies the frequency with which LSQMON is to be called.

IPRINT > 0
LSQMON is called once every IPRINT iterations and just before exit from E04HEF.

IPRINT ¼ 0
LSQMON is just called at the final point.

IPRINT < 0
LSQMON is not called at all.
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IPRINT should normally be set to a small positive number.

Suggested value: IPRINT ¼ 1.

7: MAXCAL – INTEGER Input

On entry: this argument is present so as to enable you to limit the number of times that LSQFUN
is called by E04HEF. There will be an error exit (see Section 6) after MAXCAL calls of
LSQFUN.

Suggested value: MAXCAL ¼ 50� n.
Constraint: MAXCAL � 1.

8: ETA – REAL (KIND=nag_wp) Input

On entry: every iteration of E04HEF involves a linear minimization (i.e., minimization of
F x kð Þ þ � kð Þp kð Þ� �

with respect to � kð Þ). ETA must lie in the range 0:0 � ETA < 1:0, and specifies
how accurately these linear minimizations are to be performed. The minimum with respect to � kð Þ

will be located more accurately for small values of ETA (say, 0:01) than for large values (say,
0:9).

Although accurate linear minimizations will generally reduce the number of iterations performed
by E04HEF, they will increase the number of calls of LSQFUN made each iteration. On balance
it is usually more efficient to perform a low accuracy minimization.

Suggested value: ETA ¼ 0:5 (ETA ¼ 0:0 if N ¼ 1).

Constraint: 0:0 � ETA < 1:0.

9: XTOL – REAL (KIND=nag_wp) Input

On entry: the accuracy in x to which the solution is required.

If xtrue is the true value of x at the minimum, then xsol, the estimated position before a normal
exit, is such that

xsol � xtruek k < XTOL� 1:0þ xtruek kð Þ;

where yk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

y2j

s
. For example, if the elements of xsol are not much larger than 1:0 in

modulus and if XTOL ¼ 1:0E�5, then xsol is usually accurate to about five decimal places. (For
further details see Section 7.)

If F xð Þ and the variables are scaled roughly as described in Section 9 and � is the machine
precision, then a setting of order XTOL ¼

ffiffi
�
p

will usually be appropriate. If XTOL is set to 0:0
or some positive value less than 10�, E04HEF will use 10� instead of XTOL, since 10� is
probably the smallest reasonable setting.

Constraint: XTOL � 0:0.

10: STEPMX – REAL (KIND=nag_wp) Input

On entry: an estimate of the Euclidean distance between the solution and the starting point
supplied by you. (For maximum efficiency, a slight overestimate is preferable.)

E04HEF will ensure that, for each iterationXn
j¼1

x
kð Þ
j � x

k�1ð Þ
j

� �2
� STEPMXð Þ2;

where k is the iteration number. Thus, if the problem has more than one solution, E04HEF is
most likely to find the one nearest to the starting point. On difficult problems, a realistic choice
can prevent the sequence of x kð Þ entering a region where the problem is ill-behaved and can help
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avoid overflow in the evaluation of F xð Þ. However, an underestimate of STEPMX can lead to
inefficiency.

Suggested value: STEPMX ¼ 100000:0.

Constraint: STEPMX � XTOL.

11: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n.

On exit: the final point x kð Þ. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the jth component of the
estimated position of the minimum.

12: FSUMSQ – REAL (KIND=nag_wp) Output

On exit: the value of F xð Þ, the sum of squares of the residuals fi xð Þ, at the final point given in X.

13: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: the value of the residual fi xð Þ at the final point given in X, for i ¼ 1; 2; . . . ;m.

14: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: the value of the first derivative
@fi
@xj

evaluated at the final point given in X, for

i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n.

15: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which
E04HEF is called.

Constraint: LDFJAC � M.

16: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: the singular values of the Jacobian matrix at the final point. Thus S may be useful as
information about the structure of your problem.

17: VðLDV;NÞ – REAL (KIND=nag_wp) array Output

On exit: the matrix V associated with the singular value decomposition

J ¼ USV T

of the Jacobian matrix at the final point, stored by columns. This matrix may be useful for
statistical purposes, since it is the matrix of orthonormalized eigenvectors of JTJ .

18: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which E04HEF
is called.

Constraint: LDV � N.

19: NITER – INTEGER Output

On exit: the number of iterations which have been performed in E04HEF.

20: NF – INTEGER Output

On exit: the number of times that the residuals and Jacobian matrix have been evaluated (i.e.,
number of calls of LSQFUN).
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21: IWðLIWÞ – INTEGER array Communication Array
22: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04HEF is
called.

Constraint: LIW � 1.

23: WðLWÞ – REAL (KIND=nag_wp) array Communication Array
24: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04HEF is
called.

Constraints:

if N > 1, LW � 7� Nþ 2�M� NþMþ N� N;
if N ¼ 1, LW � 9þ 3�M.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04HEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04HEF because you have set IFLAG negative
in LSQFUN or LSQHES. The value of IFAIL will be the same as your setting of IFLAG.

IFAIL ¼ 1

On entry, N < 1,
or M < N,
or MAXCAL < 1,
or ETA < 0:0,
or ETA � 1:0,
or XTOL < 0:0,
or STEPMX < XTOL,
or LDFJAC < M,
or LDV < N,
or LIW < 1,
or LW < 7� NþM� Nþ 2�Mþ N� N when N > 1,
or LW < 9þ 3�M when N ¼ 1.

When this exit occurs, no values will have been assigned to FSUMSQ, or to the elements of
FVEC, FJAC, S or V.
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IFAIL ¼ 2

There have been MAXCAL calls of LSQFUN. If steady reductions in the sum of squares, F xð Þ,
were monitored up to the point where this exit occurred, then the exit probably occurred simply
because MAXCAL was set too small, so the calculations should be restarted from the final point
held in X. This exit may also indicate that F xð Þ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been satisfied, but a lower point could not be found.
This could be because XTOL has been set so small that rounding errors in the evaluation of the
residuals and derivatives make attainment of the convergence conditions impossible.

IFAIL ¼ 4

The method for computing the singular value decomposition of the Jacobian matrix has failed to
converge in a reasonable number of sub-iterations. It may be worth applying E04HEF again
starting with an initial approximation which is not too close to the point at which the failure
occurred.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

The values IFAIL ¼ 2, 3 and 4 may also be caused by mistakes in LSQFUN or LSQHES, by the
formulation of the problem or by an awkward function. If there are no such mistakes it is worth
restarting the calculations from a different starting point (not the point at which the failure occurred) in
order to avoid the region which caused the failure.

7 Accuracy

A successful exit (IFAIL ¼ 0) is made from E04HEF when the matrix of second derivatives of F xð Þ is
positive definite, and when (B1, B2 and B3) or B4 or B5 hold, where

B1 	 � kð Þ � p kð Þ�� �� < XTOLþ �ð Þ � 1:0þ x kð Þ�� ��� �
B2 	 F kð Þ � F k�1ð Þ		 		 < XTOLþ �ð Þ2 � 1:0þ F kð Þ� �
B3 	 g kð Þ�� �� < �1=3 � 1:0þ F kð Þ� �
B4 	 F kð Þ < �2

B5 	 g kð Þ�� �� < ��
ffiffiffiffiffiffiffiffiffi
F kð Þ
p� �1=2

and where :k k and � are as defined in Section 5, and F kð Þ and g kð Þ are the values of F xð Þ and its vector
of first derivatives at x kð Þ.

If IFAIL ¼ 0, then the vector in X on exit, xsol, is almost certainly an estimate of xtrue, the position of
the minimum to the accuracy specified by XTOL.

If IFAIL ¼ 3, then xsol may still be a good estimate of xtrue, but to verify this you should make the
following checks. If
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(a) the sequence F x kð Þ� �� 
converges to F xsolð Þ at a superlinear or a fast linear rate, and

(b) g xsolð ÞTg xsolð Þ < 10�, where T denotes transpose, then it is almost certain that xsol is a close
approximation to the minimum.

When (b) is true, then usually F xsolð Þ is a close approximation to F xtrueð Þ. The values of F x kð Þ� �
can

be calculated in LSQMON, and the vector g xsolð Þ can be calculated from the contents of FVEC and
FJAC on exit from E04HEF.

Further suggestions about confirmation of a computed solution are given in the E04 Chapter
Introduction.

8 Parallelism and Performance

E04HEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E04HEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of iterations required depends on the number of variables, the number of residuals, the
behaviour of F xð Þ, the accuracy demanded and the distance of the starting point from the solution. The
number of multiplications performed per iteration of E04HEF varies, but for m� n is approximately
n�m2 þO n3

� �
. In addition, each iteration makes at least one call of LSQFUN and some iterations

may call LSQHES. So, unless the residuals and their derivatives can be evaluated very quickly, the run
time will be dominated by the time spent in LSQFUN (and, to a lesser extent, in LSQHES).

Ideally, the problem should be scaled so that, at the solution, F xð Þ and the corresponding values of the
xj are each in the range �1;þ1ð Þ, and so that at points one unit away from the solution, F xð Þ differs
from its value at the solution by approximately one unit. This will usually imply that the Hessian matrix
of F xð Þ at the solution is well-conditioned. It is unlikely that you will be able to follow these
recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the
difficulty of the minimization problem, so that E04HEF will take less computer time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements
of the variance-covariance matrix of the estimated regression coefficients can be computed by a
subsequent call to E04YCF, using information returned in the arrays S and V. See E04YCF for further
details.

10 Example

This example finds least squares estimates of x1; x2 and x3 in the model

y ¼ x1 þ
t1

x2t2 þ x3t3
using the 15 sets of data given in the following table.
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y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

Before calling E04HEF, the program calls E04YAF and E04YBF to check LSQFUN and LSQHES. It
uses 0:5; 1:0; 1:5ð Þ as the initial guess at the position of the minimum.

10.1 Program Text

! E04HEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04hefe_mod

! E04HEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: lsqfun, lsqgrd, lsqhes, lsqmon

! .. Parameters ..
Integer, Parameter, Public :: liw = 1, m = 15, n = 3, nin = 5, &

nout = 6, nt = 3
Integer, Parameter, Public :: lb = n*(n+1)/2
Integer, Parameter, Public :: ldfjac = m
Integer, Parameter, Public :: ldv = n
Integer, Parameter, Public :: lw = 7*n + m*n + 2*m + n*n

! .. Local Arrays ..
Real (Kind=nag_wp), Public, Save :: t(m,nt), y(m)

Contains
Subroutine lsqgrd(m,n,fvec,fjac,ldfjac,g)

! Routine to evaluate gradient of the sum of squares

! .. Use Statements ..
Use nag_library, Only: dgemv

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfjac, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: fjac(ldfjac,n), fvec(m)
Real (Kind=nag_wp), Intent (Out) :: g(n)

! .. Executable Statements ..
! The NAG name equivalent of dgemv is f06paf

Call dgemv(’T’,m,n,1.0_nag_wp,fjac,ldfjac,fvec,1,0.0_nag_wp,g,1)

g(1:n) = 2.0_nag_wp*g(1:n)

Return

End Subroutine lsqgrd
Subroutine lsqfun(iflag,m,n,xc,fvec,fjac,ldfjac,iw,liw,w,lw)
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! Routine to evaluate the residuals and their 1st derivatives

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: ldfjac, liw, lw, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(ldfjac,n), w(lw)
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Real (Kind=nag_wp) :: denom, dummy
Integer :: i

! .. Executable Statements ..
Do i = 1, m

denom = xc(2)*t(i,2) + xc(3)*t(i,3)
fvec(i) = xc(1) + t(i,1)/denom - y(i)
fjac(i,1) = 1.0_nag_wp
dummy = -1.0_nag_wp/(denom*denom)
fjac(i,2) = t(i,1)*t(i,2)*dummy
fjac(i,3) = t(i,1)*t(i,3)*dummy

End Do

Return

End Subroutine lsqfun
Subroutine lsqhes(iflag,m,n,fvec,xc,b,lb,iw,liw,w,lw)

! Routine to compute the lower triangle of the matrix B
! (stored by rows in the array B)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: lb, liw, lw, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: b(lb)
Real (Kind=nag_wp), Intent (In) :: fvec(m), xc(n)
Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Real (Kind=nag_wp) :: dummy, sum22, sum32, sum33
Integer :: i

! .. Executable Statements ..
b(1) = 0.0_nag_wp
b(2) = 0.0_nag_wp
sum22 = 0.0_nag_wp
sum32 = 0.0_nag_wp
sum33 = 0.0_nag_wp

Do i = 1, m
dummy = 2.0_nag_wp*t(i,1)/(xc(2)*t(i,2)+xc(3)*t(i,3))**3
sum22 = sum22 + fvec(i)*dummy*t(i,2)**2
sum32 = sum32 + fvec(i)*dummy*t(i,2)*t(i,3)
sum33 = sum33 + fvec(i)*dummy*t(i,3)**2

End Do

b(3) = sum22
b(4) = 0.0_nag_wp
b(5) = sum32
b(6) = sum33

Return

End Subroutine lsqhes
Subroutine lsqmon(m,n,xc,fvec,fjac,ldfjac,s,igrade,niter,nf,iw,liw,w,lw)

! Monitoring routine

! .. Use Statements ..
Use nag_library, Only: f06eaf

! .. Parameters ..
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Integer, Parameter :: ndec = 3
! .. Scalar Arguments ..

Integer, Intent (In) :: igrade, ldfjac, liw, lw, m, n, nf, &
niter

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: fjac(ldfjac,n), fvec(m), s(n), &

xc(n)
Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Real (Kind=nag_wp) :: fsumsq, gtg
Integer :: j

! .. Local Arrays ..
Real (Kind=nag_wp) :: g(ndec)

! .. Executable Statements ..
fsumsq = f06eaf(m,fvec,1,fvec,1)

Call lsqgrd(m,n,fvec,fjac,ldfjac,g)

gtg = f06eaf(n,g,1,g,1)

Write (nout,*)
Write (nout,*) &

’ Itns F evals SUMSQ GTG grade’
Write (nout,99999) niter, nf, fsumsq, gtg, igrade
Write (nout,*)
Write (nout,*) &

’ X G Singular values’

Do j = 1, n
Write (nout,99998) xc(j), g(j), s(j)

End Do

Return

99999 Format (1X,I4,6X,I5,6X,1P,E13.5,6X,1P,E9.1,6X,I3)
99998 Format (1X,1P,E13.5,10X,1P,E9.1,10X,1P,E9.1)

End Subroutine lsqmon
End Module e04hefe_mod
Program e04hefe

! E04HEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04hef, e04yaf, e04ybf, nag_wp, x02ajf
Use e04hefe_mod, Only: lb, ldfjac, ldv, liw, lsqfun, lsqgrd, lsqhes, &

lsqmon, lw, m, n, nin, nout, nt, t, y
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: eta, fsumsq, stepmx, xtol
Integer :: i, ifail, iprint, maxcal, nf, niter

! .. Local Arrays ..
Real (Kind=nag_wp) :: b(lb), fjac(ldfjac,n), fvec(m), &

g(n), s(n), v(ldv,n), w(lw), x(n)
Integer :: iw(liw)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Write (nout,*) ’E04HEF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Observations of TJ (J = 1, 2, ..., nt) are held in T(I, J)
! (I = 1, 2, ..., m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:nt)

End Do
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! Set up an arbitrary point at which to check the derivatives

x(1:nt) = (/0.19_nag_wp,-1.34_nag_wp,0.88_nag_wp/)

! Check the 1st derivatives

ifail = 0
Call e04yaf(m,n,lsqfun,x,fvec,fjac,ldfjac,iw,liw,w,lw,ifail)

! Check the evaluation of B

ifail = 0
Call e04ybf(m,n,lsqfun,lsqhes,x,fvec,fjac,ldfjac,b,lb,iw,liw,w,lw,ifail)

! Continue setting parameters for E04HEF

! Set IPRINT to 1 to obtain output from LSQMON at each iteration

iprint = -1

maxcal = 50*n
eta = 0.9_nag_wp
xtol = 10.0_nag_wp*sqrt(x02ajf())

! We estimate that the minimum will be within 10 units of the
! starting point

stepmx = 10.0_nag_wp

! Set up the starting point

x(1:nt) = (/0.5_nag_wp,1.0_nag_wp,1.5_nag_wp/)

ifail = -1
Call e04hef(m,n,lsqfun,lsqhes,lsqmon,iprint,maxcal,eta,xtol,stepmx,x, &

fsumsq,fvec,fjac,ldfjac,s,v,ldv,niter,nf,iw,liw,w,lw,ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’On exit, the sum of squares is’, fsumsq
Write (nout,99999) ’at the point’, x(1:n)

Call lsqgrd(m,n,fvec,fjac,ldfjac,g)

Write (nout,99998) ’The corresponding gradient is’, g(1:n)
Write (nout,*) ’ (machine dependent)’
Write (nout,*) ’and the residuals are’
Write (nout,99997) fvec(1:m)

End Select

99999 Format (1X,A,3F12.4)
99998 Format (1X,A,1P,3E12.3)
99997 Format (1X,1P,E9.1)

End Program e04hefe

10.2 Program Data

E04HEF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
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0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

10.3 Program Results

E04HEF Example Program Results

On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437
The corresponding gradient is -6.060E-12 9.030E-11 9.385E-11

(machine dependent)
and the residuals are
-5.9E-03
-2.7E-04
2.7E-04
6.5E-03

-8.2E-04
-1.3E-03
-4.5E-03
-2.0E-02
8.2E-02

-1.8E-02
-1.5E-02
-1.5E-02
-1.1E-02
-4.2E-03
6.8E-03
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NAG Library Routine Document

E04HYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04HYF is an easy-to-use modified Gauss–Newton algorithm for finding an unconstrained minimum of
a sum of squares of m nonlinear functions in n variables m � nð Þ. First and second derivatives are
required.

It is intended for functions which are continuous and which have continuous first and second
derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04HYF (M, N, LSFUN2, LSHES2, X, FSUMSQ, W, LW, IUSER, RUSER,
IFAIL)

&

INTEGER M, N, LW, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), FSUMSQ, W(LW), RUSER(*)
EXTERNAL LSFUN2, LSHES2

3 Description

E04HYF is similar to the subroutine LSSDN2 in the NPL Algorithms Library. It is applicable to
problems of the form:

MinimizeF xð Þ ¼
Xm
i¼1

fi xð Þ½ �2

where x ¼ x1; x2; . . . ; xnð ÞT and m � n. (The functions fi xð Þ are often referred to as ‘residuals’.)

You must supply a subroutine to evaluate the residuals and their first derivatives at any point x, and a
subroutine to evaluate the elements of the second derivative term of the Hessian matrix of F xð Þ.
Before attempting to minimize the sum of squares, the algorithm checks the user-supplied subroutines
for consistency. Then, from a starting point supplied by you, a sequence of points is generated which is
intended to converge to a local minimum of the sum of squares. These points are generated using
estimates of the curvature of F xð Þ.

4 References

Gill P E and Murray W (1978) Algorithms for the solution of the nonlinear least squares problem SIAM
J. Numer. Anal. 15 977–992

5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number m of residuals, fi xð Þ, and the number n of variables, xj.

Constraint: 1 � N � M.

E04 – Minimizing or Maximizing a Function E04HYF
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3: LSFUN2 – SUBROUTINE, supplied by the user. External Procedure

You must supply this routine to calculate the vector of values fi xð Þ and the Jacobian matrix of

first derivatives
@fi
@xj

at any point x. It should be tested separately before being used in

conjunction with E04HYF (see the E04 Chapter Introduction).

The specification of LSFUN2 is:

SUBROUTINE LSFUN2 (M, N, XC, FVEC, FJAC, LDFJAC, IUSER, RUSER)

INTEGER M, N, LDFJAC, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), RUSER(*)

Important: the dimension declaration for FJAC must contain the variable LDFJAC, not an
integer constant.

1: M – INTEGER Input

On entry: m, the numbers of residuals.

2: N – INTEGER Input

On entry: n, the numbers of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the values of the fi and the
@fi
@xj

are required.

4: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: FVECðiÞ must be set to the value of fi at the point x, for i ¼ 1; 2; . . . ;m.

5: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: FJACði; jÞ must be set to the value of
@fi
@xj

at the point x, for i ¼ 1; 2; . . . ;m

and j ¼ 1; 2; . . . ; n.

6: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from
which E04HYF is called.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

LSFUN2 is called with the arguments IUSER and RUSER as supplied to E04HYF. You
should use the arrays IUSER and RUSER to supply information to LSFUN2.

LSFUN2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04HYF is called. Arguments denoted as Input must not be changed by this
procedure.

4: LSHES2 – SUBROUTINE, supplied by the user. External Procedure

You must supply this routine to calculate the elements of the symmetric matrix

B xð Þ ¼
Xm
i¼1
fi xð ÞGi xð Þ;

at any point x, where Gi xð Þ is the Hessian matrix of fi xð Þ. It should be tested separately before
being used in conjunction with E04HYF (see the E04 Chapter Introduction).
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The specification of LSHES2 is:

SUBROUTINE LSHES2 (M, N, FVEC, XC, B, LB, IUSER, RUSER)

INTEGER M, N, LB, IUSER(*)
REAL (KIND=nag_wp) FVEC(M), XC(N), B(LB), RUSER(*)

1: M – INTEGER Input

On entry: m, the number of residuals.

2: N – INTEGER Input

On entry: n, the number of residuals.

3: FVECðMÞ – REAL (KIND=nag_wp) array Input

On entry: the value of the residual fi at the point x, for i ¼ 1; 2; . . . ;m, so that the
values of the fi can be used in the calculation of the elements of B.

4: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the elements of B are to be evaluated.

5: BðLBÞ – REAL (KIND=nag_wp) array Output

On exit: must contain the lower triangle of the matrix B xð Þ, evaluated at the point x,
stored by rows. (The upper triangle is not required because the matrix is symmetric.)

More precisely, Bðj j � 1ð Þ=2þ kÞ must contain
Xm
i¼1
fi

@2fi
@xj@xk

evaluated at the point x,

for j ¼ 1; 2; . . . ; n and k ¼ 1; 2; . . . ; j.

6: LB – INTEGER Input

On entry: the length of the array B.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

LSHES2 is called with the arguments IUSER and RUSER as supplied to E04HYF. You
should use the arrays IUSER and RUSER to supply information to LSHES2.

LSHES2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04HYF is called. Arguments denoted as Input must not be changed by this
procedure.

5: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n. The routine checks LSFUN2 and LSHES2 at the starting point and so is more
likely to detect any error in your routines if the initial XðjÞ are nonzero and mutually distinct.

On exit: the lowest point found during the calculations. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the
jth component of the position of the minimum.

6: FSUMSQ – REAL (KIND=nag_wp) Output

On exit: the value of the sum of squares, F xð Þ, corresponding to the final point stored in X.

7: WðLWÞ – REAL (KIND=nag_wp) array Workspace
8: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04HYF is
called.
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Constraints:

if N > 1, LW � 8� Nþ 2� N� Nþ 2�M� Nþ 3�M;
if N ¼ 1, LW � 11þ 5�M.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04HYF, but are passed directly to LSFUN2 and LSHES2
and should be used to pass information to these routines.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04HYF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or M < N,
or LW < 8� Nþ 2� N� Nþ 2�M� Nþ 3�M, when N > 1,
or LW < 11þ 5�M, when N ¼ 1.

IFAIL ¼ 2

There have been 50� n calls of LSFUN2, yet the algorithm does not seem to have converged.
This may be due to an awkward function or to a poor starting point, so it is worth restarting
E04HYF from the final point held in X.

IFAIL ¼ 3

The final point does not satisfy the conditions for acceptance as a minimum, but no lower point
could be found.

IFAIL ¼ 4

An auxiliary routine has been unable to complete a singular value decomposition in a reasonable
number of sub-iterations.
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IFAIL ¼ 5
IFAIL ¼ 6
IFAIL ¼ 7
IFAIL ¼ 8

There is some doubt about whether the point Xx found by E04HYF is a minimum of F xð Þ. The
degree of confidence in the result decreases as IFAIL increases. Thus, when IFAIL ¼ 5, it is
probable that the final x gives a good estimate of the position of a minimum, but when
IFAIL ¼ 8 it is very unlikely that the routine has found a minimum.

IFAIL ¼ 9

It is very likely that you have made an error in forming the derivatives
@fi
@xj

in LSFUN2.

IFAIL ¼ 10

It is very likely that you have made an error in forming the quantities Bjk in LSHES2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If you are not satisfied with the result (e.g., because IFAIL lies between 3 and 8), it is worth restarting
the calculations from a different starting point (not the point at which the failure occurred) in order to
avoid the region which caused the failure. Repeated failure may indicate some defect in the formulation
of the problem.

7 Accuracy

If the problem is reasonably well scaled and a successful exit is made, then, for a computer with a
mantissa of t decimals, one would expect to get about t=2� 1 decimals accuracy in the components of
x and between t� 1 (if F xð Þ is of order 1 at the minimum) and 2t� 2 (if F xð Þ is close to zero at the
minimum) decimals accuracy in F xð Þ.

8 Parallelism and Performance

E04HYF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E04HYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

E04 – Minimizing or Maximizing a Function E04HYF

Mark 26 E04HYF.5



9 Further Comments

The number of iterations required depends on the number of variables, the number of residuals and their
behaviour, and the distance of the starting point from the solution. The number of multiplications
performed per iteration of E04HYF varies, but for m� n is approximately n�m2 þO n3

� �
. In

addition, each iteration makes at least one call of LSFUN2 and some iterations may call LSHES2. So,
unless the residuals and their derivatives can be evaluated very quickly, the run time will be dominated
by the time spent in LSFUN2 (and, to a lesser extent, in LSHES2).

Ideally, the problem should be scaled so that the minimum value of the sum of squares is in the range
0;þ1ð Þ and so that at points a unit distance away from the solution the sum of squares is approximately
a unit value greater than at the minimum. It is unlikely that you will be able to follow these
recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the
difficulty of the minimization problem, so that E04HYF will take less computer time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements
of the variance-covariance matrix of the estimated regression coefficients can be computed by a
subsequent call to E04YCF, using information returned in segments of the workspace array W. See
E04YCF for further details.

10 Example

This example finds least squares estimates of x1, x2 and x3 in the model

y ¼ x1 þ
t1

x2t2 þ x3t3
using the 15 sets of data given in the following table.

y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

The program uses 0:5; 1:0; 1:5ð Þ as the initial guess at the position of the minimum.

10.1 Program Text

! E04HYF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04hyfe_mod

! E04HYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: lsfun2, lshes2
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! .. Parameters ..
Integer, Parameter, Public :: m = 15, n = 3, nin = 5, nout = 6, &

nt = 3
Integer, Parameter, Public :: lw = 8*n + 2*n*n + 2*m*n + 3*m

! .. Local Arrays ..
Real (Kind=nag_wp), Public, Save :: t(m,nt), y(m)

Contains
Subroutine lsfun2(m,n,xc,fvec,fjac,ldfjac,iuser,ruser)

! Routine to evaluate the residuals and their 1st derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfjac, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(ldfjac,n), ruser(*)
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: denom, dummy
Integer :: i

! .. Executable Statements ..
Do i = 1, m

denom = xc(2)*t(i,2) + xc(3)*t(i,3)
fvec(i) = xc(1) + t(i,1)/denom - y(i)
fjac(i,1) = 1.0E0_nag_wp
dummy = -1.0E0_nag_wp/(denom*denom)
fjac(i,2) = t(i,1)*t(i,2)*dummy
fjac(i,3) = t(i,1)*t(i,3)*dummy

End Do

Return

End Subroutine lsfun2
Subroutine lshes2(m,n,fvec,xc,b,lb,iuser,ruser)

! Routine to compute the lower triangle of the matrix B
! (stored by rows in the array B).

! .. Scalar Arguments ..
Integer, Intent (In) :: lb, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: b(lb)
Real (Kind=nag_wp), Intent (In) :: fvec(m), xc(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: dummy, sum22, sum32, sum33
Integer :: i

! .. Executable Statements ..
b(1) = 0.0E0_nag_wp
b(2) = 0.0E0_nag_wp
sum22 = 0.0E0_nag_wp
sum32 = 0.0E0_nag_wp
sum33 = 0.0E0_nag_wp

Do i = 1, m
dummy = 2.0E0_nag_wp*t(i,1)/(xc(2)*t(i,2)+xc(3)*t(i,3))**3
sum22 = sum22 + fvec(i)*dummy*t(i,2)**2
sum32 = sum32 + fvec(i)*dummy*t(i,2)*t(i,3)
sum33 = sum33 + fvec(i)*dummy*t(i,3)**2

End Do

b(3) = sum22
b(4) = 0.0E0_nag_wp
b(5) = sum32
b(6) = sum33

Return

End Subroutine lshes2
End Module e04hyfe_mod
Program e04hyfe
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! E04HYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04hyf, nag_wp
Use e04hyfe_mod, Only: lsfun2, lshes2, lw, m, n, nin, nout, nt, t, y

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fsumsq
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(1), w(lw), x(n)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’E04HYF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Observations of TJ (J = 1, 2, ..., nt) are held in T(I, J)
! (I = 1, 2, ..., m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:nt)

End Do

x(1:nt) = (/0.5E0_nag_wp,1.0E0_nag_wp,1.5E0_nag_wp/)

ifail = -1
Call e04hyf(m,n,lsfun2,lshes2,x,fsumsq,w,lw,iuser,ruser,ifail)

Select Case (ifail)
Case (0,2:8,10:)

Write (nout,*)
Write (nout,99999) ’On exit, the sum of squares is’, fsumsq
Write (nout,99999) ’at the point’, x(1:n)

End Select

99999 Format (1X,A,3F12.4)
End Program e04hyfe

10.2 Program Data

E04HYF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

10.3 Program Results

E04HYF Example Program Results

On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437
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NAG Library Routine Document

E04JCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04JCF is an easy-to-use algorithm that uses methods of quadratic approximation to find a minimum of
an objective function F over x 2 Rn, subject to fixed lower and upper bounds on the independent
variables x1; x2; . . . ; xn. Derivatives of F are not required.

The routine is intended for functions that are continuous and that have continuous first and second
derivatives (although it will usually work even if the derivatives have occasional discontinuities).
Efficiency is maintained for large n.

2 Specification

SUBROUTINE E04JCF (OBJFUN, N, NPT, X, BL, BU, RHOBEG, RHOEND, MONFUN,
MAXCAL, F, NF, IUSER, RUSER, IFAIL)

&

INTEGER N, NPT, MAXCAL, NF, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), BL(N), BU(N), RHOBEG, RHOEND, F, RUSER(*)
EXTERNAL OBJFUN, MONFUN

3 Description

E04JCF is applicable to problems of the form:

minimize
x2Rn

F xð Þ subject to l � x � u and l � u;

where F is a nonlinear scalar function whose derivatives may be unavailable, and where the bound
vectors are elements of Rn. Relational operators between vectors are interpreted elementwise.

Fixing variables (that is, setting ‘i ¼ ui for some i) is allowed in E04JCF.

You must supply a subroutine to calculate the value of F at any given point x.

The method used by E04JCF is based on BOBYQA, the method of Bound Optimization BY Quadratic
Approximation described in Powell (2009). In particular, each iteration of E04JCF generates a quadratic
approximation Q to F that agrees with F at m automatically chosen interpolation points. The value of
m is a constant prescribed by you. Updates to the independent variables mostly occur from approximate
solutions to trust-region subproblems, using the current quadratic model.

4 References

Powell M J D (2009) The BOBYQA algorithm for bound constrained optimization without derivatives
Report DAMTP 2009/NA06 University of Cambridge http://www.damtp.cam.ac.uk/user/na/NA_papers/
NA2009_06.pdf

5 Arguments

1: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must evaluate the objective function F at a specified vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (N, X, F, IUSER, RUSER, INFORM)
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INTEGER N, IUSER(*), INFORM
REAL (KIND=nag_wp) X(N), F, RUSER(*)

1: N – INTEGER Input

On entry: n, the number of independent variables.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector at which the objective function is to be evaluated.

3: F – REAL (KIND=nag_wp) Output

On exit: must be set to the value of the objective function at x, unless you have
specified termination of the current problem using INFORM.

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E04JCF. You
should use the arrays IUSER and RUSER to supply information to OBJFUN.

6: INFORM – INTEGER Output

On exit: must be set to a value describing the action to be taken by the solver on return
from OBJFUN. Specifically, if the value is negative the solution of the current problem
will terminate immediately; otherwise, computations will continue.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04JCF is called. Arguments denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: n, the number of independent variables.

Constraint: N � 2 and nr � 2, where nr denotes the number of non-fixed variables.

3: NPT – INTEGER Input

On entry: m, the number of interpolation conditions imposed on the quadratic approximation at
each iteration.

Suggested value: NPT ¼ 2� nr þ 1, where nr denotes the number of non-fixed variables.

Constraint: nr þ 2 � NPT � nrþ1ð Þ� nrþ2ð Þ
2 , where nr denotes the number of non-fixed variables.

4: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an estimate of the position of the minimum. If any component is out-of-bounds it is
replaced internally by the bound it violates.

On exit: the lowest point found during the calculations. Thus, if IFAIL ¼ 0 on exit, X is the
position of the minimum.

5: BLðNÞ – REAL (KIND=nag_wp) array Input
6: BUðNÞ – REAL (KIND=nag_wp) array Input

On entry: the fixed vectors of bounds: the lower bounds l and the upper bounds u, respectively.
To signify that a variable is unbounded you should choose a large scalar r appropriate to your
problem, then set the lower bound on that variable to �r and the upper bound to r. For well-

scaled problems r ¼ r
1
4
max may be suitable, where rmax denotes the largest positive model number

(see X02ALF).

E04JCF NAG Library Manual

E04JCF.2 Mark 26



Constraints:

if XðiÞ is to be fixed at BLðiÞ, then BLðiÞ ¼ BUðiÞ;
otherwise BUðiÞ � BLðiÞ � 2:0� RHOBEG, for i ¼ 1; 2; . . . ;N.

7: RHOBEG – REAL (KIND=nag_wp) Input

On entry: an initial lower bound on the value of the trust-region radius.

Suggested value: RHOBEG should be about one tenth of the greatest expected overall change to
a variable: the initial quadratic model will be constructed by taking steps from the initial X of
length RHOBEG along each coordinate direction.

Constraints:

RHOBEG > 0:0;
RHOBEG � RHOEND.

8: RHOEND – REAL (KIND=nag_wp) Input

On entry: a final lower bound on the value of the trust-region radius.

Suggested value: RHOEND should indicate the absolute accuracy that is required in the final
values of the variables.

Constraint: RHOEND � macheps, where macheps ¼ X02AJFðÞ, the machine precision..

9: MONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONFUN may be used to monitor the optimization process. It is invoked every time a new trust-
region radius is chosen.

If no monitoring is required, MONFUN may be the dummy monitoring routine E04JCP supplied
by the NAG Library.

The specification of MONFUN is:

SUBROUTINE MONFUN (N, NF, X, F, RHO, IUSER, RUSER, INFORM)

INTEGER N, NF, IUSER(*), INFORM
REAL (KIND=nag_wp) X(N), F, RHO, RUSER(*)

1: N – INTEGER Input

On entry: n, the number of independent variables.

2: NF – INTEGER Input

On entry: the cumulative number of calls made to OBJFUN.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the current best point.

4: F – REAL (KIND=nag_wp) Input

On entry: the value of OBJFUN at X.

5: RHO – REAL (KIND=nag_wp) Input

On entry: a lower bound on the current trust-region radius.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONFUN is called with the arguments IUSER and RUSER as supplied to E04JCF. You
should use the arrays IUSER and RUSER to supply information to MONFUN.

E04 – Minimizing or Maximizing a Function E04JCF

Mark 26 E04JCF.3



8: INFORM – INTEGER Output

On exit: must be set to a value describing the action to be taken by the solver on return
from MONFUN. Specifically, if the value is negative the solution of the current
problem will terminate immediately; otherwise, computations will continue.

MONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04JCF is called. Arguments denoted as Input must not be changed by
this procedure.

10: MAXCAL – INTEGER Input

On entry: the maximum permitted number of calls to OBJFUN.

Constraint: MAXCAL � 1.

11: F – REAL (KIND=nag_wp) Output

On exit: the function value at the lowest point found (X).

12: NF – INTEGER Output

On exit: unless IFAIL ¼ 1 or �999 on exit, the total number of calls made to OBJFUN.

13: IUSERð�Þ – INTEGER array User Workspace
14: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04JCF, but are passed directly to OBJFUN and MONFUN
and should be used to pass information to these routines.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04JCF returns with IFAIL ¼ 0 if the final trust-region radius has reached its lower bound
RHOEND.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MAXCAL ¼ valueh i.
Constraint: MAXCAL � 1.

On entry, RHOBEG ¼ valueh i, BLðiÞ ¼ valueh i, BUðiÞ ¼ valueh i and i ¼ valueh i.
Constraint: if BLðiÞ 6¼ BUðiÞ in coordinate i, then BUðiÞ � BLðiÞ � 2� RHOBEG.

On entry, RHOBEG ¼ valueh i.
Constraint: RHOBEG > 0:0.
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On entry, RHOBEG ¼ valueh i and RHOEND ¼ valueh i.
Constraint: RHOEND � RHOBEG.

On entry, RHOEND ¼ valueh i.
Constraint: RHOEND � macheps, where macheps ¼ X02AJFðÞ, the machine precision.

There were nr ¼ valueh i unequal bounds.
Constraint: nr � 2.

There were nr ¼ valueh i unequal bounds and NPT ¼ valueh i on entry.

Constraint: nr þ 2 � NPT � nrþ1ð Þ� nrþ2ð Þ
2 .

IFAIL ¼ 2

The function evaluations limit was reached: OBJFUN has been called MAXCAL times.

IFAIL ¼ 3

The predicted reduction in a trust-region step was non-positive. Check your specification of
OBJFUN and whether the function needs rescaling. Try a different initial X.

IFAIL ¼ 4

A rescue procedure has been called in order to correct damage from rounding errors when
computing an update to a quadratic approximation of F , but no further progess could be made.
Check your specification of OBJFUN and whether the function needs rescaling. Try a different
initial X.

IFAIL ¼ 5

User-supplied monitoring routine requested termination.

User-supplied objective function requested termination.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Experience shows that, in many cases, on successful termination the 1-norm distance from the best
point x to a local minimum of F is less than 10� RHOEND, unless RHOEND is so small that such
accuracy is unattainable.

8 Parallelism and Performance

E04JCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each invocation of E04JCF, local workspace arrays of fixed length are allocated internally. The total

size of these arrays amounts to NPTþ 6ð Þ � NPTþ nrð Þ þ nr� 3nrþ21ð Þ
2 real elements and nr integer

elements, where nr denotes the number of non-fixed variables; that is, the total size is O n4r
� �

. If you
follow the recommendation for the choice of NPT on entry, this total size reduces to O n2r

� �
.

Usually the total number of function evaluations (NF) is substantially less than O n2r
� �

, and often, if
NPT ¼ 2� nr þ 1 on entry, NF is only of magnitude nr or less.

10 Example

This example involves the minimization of

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

subject to

1 � x1 � 3
�2 � x2 � 0
1 � x4 � 3;

starting from the initial guess 3;�1; 0; 1ð Þ.

10.1 Program Text

! E04JCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04jcfe_mod

! E04JCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: monfun, objfun

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Subroutine objfun(n,x,f,iuser,ruser,inform)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: five = 5.0_nag_wp
Real (Kind=nag_wp), Parameter :: ten = 1.0E1_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f
Integer, Intent (Out) :: inform
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
inform = 0

f = (x(1)+ten*x(2))**2 + five*(x(3)-x(4))**2 + (x(2)-two*x(3))**4 + &
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ten*(x(1)-x(4))**4

Return

End Subroutine objfun
Subroutine monfun(n,nf,x,f,rho,iuser,ruser,inform)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: f, rho
Integer, Intent (Out) :: inform
Integer, Intent (In) :: n, nf

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Logical :: verbose_output

! .. Executable Statements ..
inform = 0

Write (nout,Fmt=99999) ’Monitoring: new trust region radius =’, rho

! Set this to .True. to get more detailed output
verbose_output = .False.

If (verbose_output) Then
Write (nout,Fmt=99998) ’Number of function calls =’, nf
Write (nout,Fmt=99997) ’Current function value =’, f
Write (nout,Fmt=99996) ’The corresponding X is:’, x(1:n)

End If

Return
99999 Format (/,4X,A,1P,E13.3)
99998 Format (4X,A,I16)
99997 Format (4X,A,1P,E12.4)
99996 Format (4X,A,/,(4X,5E12.4))

End Subroutine monfun
End Module e04jcfe_mod
Program e04jcfe

! Example problem for E04JCF.

! .. Use Statements ..
Use nag_library, Only: e04jcf, nag_wp, x02alf
Use e04jcfe_mod, Only: monfun, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: f, infbnd, rhobeg, rhoend
Integer :: ifail, maxcal, n, nf, npt

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: bl(:), bu(:), x(:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’E04JCF Example Program Results’

maxcal = 500
rhobeg = 1.0E-1_nag_wp
rhoend = 1.0E-6_nag_wp
n = 4
npt = 2*n + 1

! x(3) is unconstrained, so we’re going to set bl(3) to a large
! negative number and bu(3) to a large positive number.

infbnd = x02alf()**0.25_nag_wp

Allocate (bl(n),bu(n),x(n))

bl(1:n) = (/1.0_nag_wp,-2.0_nag_wp,-infbnd,1.0_nag_wp/)
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bu(1:n) = (/3.0_nag_wp,0.0_nag_wp,infbnd,3.0_nag_wp/)
x(1:n) = (/3.0_nag_wp,-1.0_nag_wp,0.0_nag_wp,1.0_nag_wp/)

ifail = -1
Call e04jcf(objfun,n,npt,x,bl,bu,rhobeg,rhoend,monfun,maxcal,f,nf,iuser, &

ruser,ifail)

Select Case (ifail)
Case (0,2:5)

If (ifail==0) Then
Write (nout,Fmt=99999) ’Successful exit from E04JCF.’, &

’Function value at lowest point found =’, f
Else

Write (nout,Fmt=99998) &
’On exit from E04JCF, function value at lowest point found =’, f

End If

Write (nout,Fmt=99997) ’The corresponding X is:’, x(1:n)
End Select

99999 Format (2(/,1X,A),1P,E13.3)
99998 Format (/,1X,A,1P,E13.3)
99997 Format (1X,A,/,(2X,5E13.3))

End Program e04jcfe

10.2 Program Data

None.

10.3 Program Results

E04JCF Example Program Results

Monitoring: new trust region radius = 1.000E-02

Monitoring: new trust region radius = 1.000E-03

Monitoring: new trust region radius = 1.000E-04

Monitoring: new trust region radius = 1.000E-05

Monitoring: new trust region radius = 1.000E-06

Successful exit from E04JCF.
Function value at lowest point found = 2.434E+00
The corresponding X is:

0.100E+01 -0.852E-01 0.409E+00 0.100E+01
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NAG Library Routine Document

E04JYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04JYF is an easy-to-use quasi-Newton algorithm for finding a minimum of a function
F x1; x2; . . . ; xnð Þ, subject to fixed upper and lower bounds of the independent variables
x1; x2; . . . ; xn, using function values only.

It is intended for functions which are continuous and which have continuous first and second
derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04JYF (N, IBOUND, FUNCT1, BL, BU, X, F, IW, LIW, W, LW,
IUSER, RUSER, IFAIL)

&

INTEGER N, IBOUND, IW(LIW), LIW, LW, IUSER(*), IFAIL
REAL (KIND=nag_wp) BL(N), BU(N), X(N), F, W(LW), RUSER(*)
EXTERNAL FUNCT1

3 Description

E04JYF is applicable to problems of the form:

MinimizeF x1; x2; . . . ; xnð Þ subject to lj � xj � uj; j ¼ 1; 2; . . . ; n

when derivatives of F xð Þ are unavailable.

Special provision is made for problems which actually have no bounds on the xj, problems which have
only non-negativity bounds and problems in which l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un. You must
supply a subroutine to calculate the value of F xð Þ at any point x.

From a starting point you supplied there is generated, on the basis of estimates of the gradient and the
curvature of F xð Þ, a sequence of feasible points which is intended to converge to a local minimum of
the constrained function. An attempt is made to verify that the final point is a minimum.

A typical iteration starts at the current point x where nz (say) variables are free from both their bounds.
The projected gradient vector gz, whose elements are finite difference approximations to the derivatives
of F xð Þ with respect to the free variables, is known. A unit lower triangular matrix L and a diagonal
matrix D (both of dimension nz), such that LDLT is a positive definite approximation of the matrix of
second derivatives with respect to the free variables (i.e., the projected Hessian) are also held. The
equations

LDLTpz ¼ �gz
are solved to give a search direction pz, which is expanded to an n-vector p by an insertion of
appropriate zero elements. Then � is found such that F xþ �pð Þ is approximately a minimum (subject
to the fixed bounds) with respect to �; x is replaced by xþ �p, and the matrices L and D are updated
so as to be consistent with the change produced in the estimated gradient by the step �p. If any variable
actually reaches a bound during the search along p, it is fixed and nz is reduced for the next iteration.
Most iterations calculate gz using forward differences, but central differences are used when they seem
necessary.

There are two sets of convergence criteria – a weaker and a stronger. Whenever the weaker criteria are
satisfied, the Lagrange multipliers are estimated for all the active constraints. If any Lagrange multiplier
estimate is significantly negative, then one of the variables associated with a negative Lagrange
multiplier estimate is released from its bound and the next search direction is computed in the extended
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subspace (i.e., nz is increased). Otherwise minimization continues in the current subspace provided that
this is practicable. When it is not, or when the stronger convergence criteria are already satisfied, then,
if one or more Lagrange multiplier estimates are close to zero, a slight perturbation is made in the
values of the corresponding variables in turn until a lower function value is obtained. The normal
algorithm is then resumed from the perturbed point.

If a saddle point is suspected, a local search is carried out with a view to moving away from the saddle
point. A local search is also performed when a point is found which is thought to be a constrained
minimum.

4 References

Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC 72
National Physical Laboratory

5 Arguments

1: N – INTEGER Input

On entry: the number n of independent variables.

Constraint: N � 1.

2: IBOUND – INTEGER Input

On entry: indicates whether the facility for dealing with bounds of special forms is to be used.

It must be set to one of the following values:

IBOUND ¼ 0
If you are supplying all the lj and uj individually.

IBOUND ¼ 1
If there are no bounds on any xj.

IBOUND ¼ 2
If all the bounds are of the form 0 � xj.

IBOUND ¼ 3
If l1 ¼ l2 ¼ . . . ¼ ln and u1 ¼ u2 ¼ . . . ¼ un.

3: FUNCT1 – SUBROUTINE, supplied by the user. External Procedure

You must supply FUNCT1 to calculate the value of the function F xð Þ at any point x. It should be
tested separately before being used with E04JYF (see the E04 Chapter Introduction).

The specification of FUNCT1 is:

SUBROUTINE FUNCT1 (N, XC, FC, IUSER, RUSER)

INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, RUSER(*)

1: N – INTEGER Input

On entry: the number n of variables.

2: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the function value is required.

3: FC – REAL (KIND=nag_wp) Output

On exit: the value of the function F at the current point x.
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4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FUNCT1 is called with the arguments IUSER and RUSER as supplied to E04JYF. You
should use the arrays IUSER and RUSER to supply information to FUNCT1.

FUNCT1 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04JYF is called. Arguments denoted as Input must not be changed by this
procedure.

4: BLðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the lower bounds lj.

If IBOUND is set to 0, you must set BLðjÞ to lj , for j ¼ 1; 2; . . . ; n. (If a lower bound is not
specified for a particular xj, the corresponding BLðjÞ should be set to �106.)
If IBOUND is set to 3, you must set BLð1Þ to l1; E04JYF will then set the remaining elements of
BL equal to BLð1Þ.
On exit: the lower bounds actually used by E04JYF.

5: BUðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the upper bounds uj.

If IBOUND is set to 0, you must set BUðjÞ to uj , for j ¼ 1; 2; . . . ; n. (If an upper bound is not
specified for a particular xj, the corresponding BUðjÞ should be set to 106.)

If IBOUND is set to 3, you must set BUð1Þ to u1; E04JYF will then set the remaining elements
of BU equal to BUð1Þ.
On exit: the upper bounds actually used by E04JYF.

6: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to an estimate of the jth component of the position of the minimum,
for j ¼ 1; 2; . . . ; n.

On exit: the lowest point found during the calculations. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the
jth component of the position of the minimum.

7: F – REAL (KIND=nag_wp) Output

On exit: the value of F xð Þ corresponding to the final point stored in X.

8: IWðLIWÞ – INTEGER array Output

On exit: if IFAIL ¼ 0, 3 or 5, the first N elements of IW contain information about which
variables are currently on their bounds and which are free. Specifically, if xi is:

– fixed on its upper bound, IWðiÞ is �1;
– fixed on its lower bound, IWðiÞ is �2;
– effectively a constant (i.e., lj ¼ uj), IWðiÞ is �3;
– free, IWðiÞ gives its position in the sequence of free variables.

In addition, IWðNþ 1Þ contains the number of free variables (i.e., nz). The rest of the array is
used as workspace.
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9: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04JYF is
called.

Constraint: LIW � Nþ 2.

10: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0, 3 or 5, WðiÞ contains a finite difference approximation to the ith element
of the projected gradient vector gz, for i ¼ 1; 2; . . . ;N. In addition, WðNþ 1Þ contains an estimate
of the condition number of the projected Hessian matrix (i.e., k). The rest of the array is used as
workspace.

11: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04JYF is
called.

Constraint: LW � max N� N� 1ð Þ=2þ 12� N; 13ð Þ.

12: IUSERð�Þ – INTEGER array User Workspace
13: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04JYF, but are passed directly to FUNCT1 and should be
used to pass information to this routine.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04JYF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or IBOUND < 0,
or IBOUND > 3,
or IBOUND ¼ 0 and BLðjÞ > BUðjÞ for some j,
or IBOUND ¼ 3 and BLð1Þ > BUð1Þ,
or LIW < Nþ 2,
or LW < max 13; 12� Nþ N� N� 1ð Þ=2ð Þ.
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IFAIL ¼ 2

There have been 400� n function evaluations, yet the algorithm does not seem to be converging.
The calculations can be restarted from the final point held in X. The error may also indicate that
F xð Þ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been met but a lower point could not be found and
the algorithm has failed.

IFAIL ¼ 4

An overflow has occurred during the computation. This is an unlikely failure, but if it occurs you
should restart at the latest point given in X.

IFAIL ¼ 5
IFAIL ¼ 6
IFAIL ¼ 7
IFAIL ¼ 8

There is some doubt about whether the point x found by E04JYF is a minimum. The degree of
confidence in the result decreases as IFAIL increases. Thus, when IFAIL ¼ 5 it is probable that
the final x gives a good estimate of the position of a minimum, but when IFAIL ¼ 8 it is very
unlikely that the routine has found a minimum.

IFAIL ¼ 9

In the search for a minimum, the modulus of one of the variables has become very large � 106
� �

.
This indicates that there is a mistake in FUNCT1, that your problem has no finite solution, or that
the problem needs rescaling (see Section 9).

IFAIL ¼ 10

The computed set of forward-difference intervals (stored in Wð9� Nþ 1Þ;Wð9� Nþ 2Þ; . . . ;
Wð10� NÞ) is such that XðiÞ þWð9� Nþ iÞ � XðiÞ for some i.

This is an unlikely failure, but if it occurs you should attempt to select another starting point.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If you are dissatisfied with the result (e.g., because IFAIL ¼ 5, 6, 7 or 8), it is worth restarting the
calculations from a different starting point (not the point at which the failure occurred) in order to avoid
the region which caused the failure. If persistent trouble occurs and the gradient can be calculated, it
may be advisable to change to a routine which uses gradients (see the E04 Chapter Introduction).
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7 Accuracy

A successful exit (IFAIL ¼ 0) is made from E04JYF when (B1, B2 and B3) or B4 hold, and the local
search confirms a minimum, where

B1 	 � kð Þ � p kð Þ�� �� < xtol þ
ffiffi
�
p

ð Þ � 1:0þ x kð Þ�� ��� �
B2 	 F kð Þ � F k�1ð Þ		 		 < x2tol þ �

� �
� 1:0þ F kð Þ		 		� �

B3 	 g kð Þ
z

�� �� < �1=3 þ xtol
� �

� 1:0þ F kð Þ		 		� �
B4 	 g kð Þ

z

�� �� < 0:01�
ffiffi
�
p

.

(Quantities with superscript k are the values at the kth iteration of the quantities mentioned in Section 3,
xtol ¼ 100

ffiffi
�
p

, � is the machine precision and :k k denotes the Euclidean norm. The vector gz is returned
in the array W.)

If IFAIL ¼ 0, then the vector in X on exit, xsol, is almost certainly an estimate of the position of the
minimum, xtrue, to the accuracy specified by xtol.

If IFAIL ¼ 3 or 5, xsol may still be a good estimate of xtrue, but the following checks should be made.
Let k denote an estimate of the condition number of the projected Hessian matrix at xsol. (The value of
k is returned in WðNþ 1Þ). If

(i) the sequence F x kð Þ� �� 
converges to F xsolð Þ at a superlinear or a fast linear rate,

(ii) gz xxolð Þk k2 < 10:0� �, and
(iii) k < 1:0= gz xsolð Þk k,
then it is almost certain that xsol is a close approximation to the position of a minimum. When (ii) is
true, then usually F xsolð Þ is a close approximation to F xtrueð Þ.
When a successful exit is made then, for a computer with a mantissa of t decimals, one would expect to
get about t=2� 1 decimals accuracy in x and about t� 1 decimals accuracy in F , provided the problem
is reasonably well scaled.

8 Parallelism and Performance

E04JYF is not threaded in any implementation.

9 Further Comments

The number of iterations required depends on the number of variables, the behaviour of F xð Þ and the
distance of the starting point from the solution. The number of operations performed in an iteration of
E04JYF is roughly proportional to n2. In addition, each iteration makes at least mþ 1 calls of
FUNCT1, where m is the number of variables not fixed on bounds. So, unless F xð Þ can be evaluated
very quickly, the run time will be dominated by the time spent in FUNCT1.

Ideally the problem should be scaled so that at the solution the value of F xð Þ and the corresponding
values of x1; x2; . . . ; xn are each in the range �1;þ1ð Þ, and so that at points a unit distance away from
the solution, F is approximately a unit value greater than at the minimum. It is unlikely that you will be
able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible
scaling will reduce the difficulty of the minimization problem, so that E04JYF will take less computer
time.

10 Example

To minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

subject to
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1 � x1 � 3
�2 � x2 � 0
1 � x4 � 3;

starting from the initial guess 3;�1; 0; 1ð Þ.

10.1 Program Text

! E04JYF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04jyfe_mod

! E04JYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct1

! .. Parameters ..
Integer, Parameter, Public :: n = 4, nout = 6
Integer, Parameter, Public :: liw = n + 2
Integer, Parameter, Public :: lw = n*(n-1)/2 + 12*n

Contains
Subroutine funct1(n,xc,fc,iuser,ruser)

! Routine to evaluate objective function.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: x1, x2, x3, x4

! .. Executable Statements ..
x1 = xc(1)
x2 = xc(2)
x3 = xc(3)
x4 = xc(4)
fc = (x1+10.0_nag_wp*x2)**2 + 5.0_nag_wp*(x3-x4)**2 + &

(x2-2.0_nag_wp*x3)**4 + 10.0_nag_wp*(x1-x4)**4

Return

End Subroutine funct1
End Module e04jyfe_mod
Program e04jyfe

! E04JYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04jyf, nag_wp
Use e04jyfe_mod, Only: funct1, liw, lw, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: f
Integer :: ibound, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(n), bu(n), ruser(n), w(lw), x(n)
Integer :: iuser(n), iw(6)

! .. Executable Statements ..
Write (nout,*) ’E04JYF Example Program Results’
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Flush (nout)

x(1:n) = (/3.0_nag_wp,-1.0_nag_wp,0.0_nag_wp,1.0_nag_wp/)
ibound = 0

! X(3) is unconstrained, so we set BL(3) to a large negative
! number and BU(3) to a large positive number.

bl(1:n) = (/1.0_nag_wp,-2.0_nag_wp,-1.0E6_nag_wp,1.0_nag_wp/)
bu(1:n) = (/3.0_nag_wp,0.0_nag_wp,1.0E6_nag_wp,3.0_nag_wp/)

ifail = -1
Call e04jyf(n,ibound,funct1,bl,bu,x,f,iw,liw,w,lw,iuser,ruser,ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’Function value on exit is ’, f
Write (nout,99998) ’at the point’, x(1:n)

End Select

99999 Format (1X,A,F8.4)
99998 Format (1X,A,4F9.4)

End Program e04jyfe

10.2 Program Data

None.

10.3 Program Results

E04JYF Example Program Results
** It is probable that a local minimum has been found,
** but it cannot be guaranteed.
** ABNORMAL EXIT from NAG Library routine E04JYF: IFAIL = 5
** NAG soft failure - control returned

Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
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NAG Library Routine Document

E04KDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04KDF is a comprehensive modified Newton algorithm for finding:

– an unconstrained minimum of a function of several variables;

– a minimum of a function of several variables subject to fixed upper and/or lower bounds on the
variables.

First derivatives are required. The routine is intended for functions which have continuous first and
second derivatives (although it will usually work even if the derivatives have occasional
discontinuities).

2 Specification

SUBROUTINE E04KDF (N, FUNCT, MONIT, IPRINT, MAXCAL, ETA, XTOL, DELTA,
STEPMX, IBOUND, BL, BU, X, HESL, LH, HESD, ISTATE, F,
G, IW, LIW, W, LW, IFAIL)

&
&

INTEGER N, IPRINT, MAXCAL, IBOUND, LH, ISTATE(N), IW(LIW),
LIW, LW, IFAIL

&

REAL (KIND=nag_wp) ETA, XTOL, DELTA, STEPMX, BL(N), BU(N), X(N),
HESL(LH), HESD(N), F, G(N), W(LW)

&

EXTERNAL FUNCT, MONIT

3 Description

E04KDF is applicable to problems of the form:

MinimizeF x1; x2; . . . ; xnð Þ subject to lj � xj � uj; j ¼ 1; 2; . . . ; n:

Special provision is made for unconstrained minimization (i.e., problems which actually have no bounds
on the xj), problems which have only non-negativity bounds, and problems in which l1 ¼ l2 ¼ � � � ¼ ln
and u1 ¼ u2 ¼ � � � ¼ un. It is possible to specify that a particular xj should be held constant. You must

supply a starting point, and a FUNCT to calculate the value of F xð Þ and its first derivatives
@F

@xj
at any

point x.

A typical iteration starts at the current point x where nz (say) variables are free from their bounds. The
vector gz, whose elements are the derivatives of F xð Þ with respect to the free variables, is known. The
matrix of second derivatives with respect to the free variables, H, is estimated by finite differences.
(Note that gz and H are both of dimension nz.) The equations

H þ Eð Þpz ¼ �gz
are solved to give a search direction pz. (The matrix E is chosen so that H þ E is positive definite.)

pz is then expanded to an n-vector p by the insertion of appropriate zero elements, � is found such that
F xþ �pð Þ is approximately a minimum (subject to the fixed bounds) with respect to �; and x is
replaced by xþ �p. (If a saddle point is found, a special search is carried out so as to move away from
the saddle point.) If any variable actually reaches a bound, it is fixed and nz is reduced for the next
iteration.

There are two sets of convergence criteria – a weaker and a stronger. Whenever the weaker criteria are
satisfied, the Lagrange multipliers are estimated for all the active constraints. If any Lagrange multiplier
estimate is significantly negative, then one of the variables associated with a negative Lagrange
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multiplier estimate is released from its bound and the next search direction is computed in the extended
subspace (i.e., nz is increased). Otherwise minimization continues in the current subspace until the
stronger convergence criteria are satisfied. If at this point there are no negative or near-zero Lagrange
multiplier estimates, the process is terminated.

If you specify that the problem is unconstrained, E04KDF sets the lj to �106 and the uj to 106. Thus,
provided that the problem has been sensibly scaled, no bounds will be encountered during the
minimization process and E04KDF will act as an unconstrained minimization algorithm.

4 References

Gill P E and Murray W (1973) Safeguarded steplength algorithms for optimization using descent
methods NPL Report NAC 37 National Physical Laboratory

Gill P E and Murray W (1974) Newton-type methods for unconstrained and linearly constrained
optimization Math. Programming 7 311–350

Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC 72
National Physical Laboratory

5 Arguments

1: N – INTEGER Input

On entry: the number n of independent variables.

Constraint: N � 1.

2: FUNCT – SUBROUTINE, supplied by the user. External Procedure

FUNCT must evaluate the function F xð Þ and its first derivatives
@F

@xj
at a specified point.

(However, if you do not wish to calculate F or its first derivatives at a particular x, there is the
option of setting an argument to cause E04KDF to terminate immediately.)

The specification of FUNCT is:

SUBROUTINE FUNCT (IFLAG, N, XC, FC, GC, IW, LIW, W, LW)

INTEGER IFLAG, N, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FC, GC(N), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: will have been set to 1 or 2. The value 1 indicates that only the first
derivatives of F need be supplied, and the value 2 indicates that both F itself and its
first derivatives must be calculated.

On exit: if it is not possible to evaluate F or its first derivatives at the point given in
XC (or if it is wished to stop the calculations for any other reason) you should reset
IFLAG to a negative number and return control to E04KDF. E04KDF will then
terminate immediately, with IFAIL set to your setting of IFLAG.

2: N – INTEGER Input

On entry: the number n of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the
@F

@xj
, or F and the

@F

@xj
, are required.
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4: FC – REAL (KIND=nag_wp) Output

On exit: unless IFLAG ¼ 1 on entry or IFLAG is reset, FUNCT must set FC to the
value of the objective function F at the current point x.

5: GCðNÞ – REAL (KIND=nag_wp) array Output

On exit: unless FUNCT resets IFLAG, it must set GCðjÞ to the value of the first

derivative
@F

@xj
at the point x, for j ¼ 1; 2; . . . ; n.

6: IWðLIWÞ – INTEGER array Workspace
7: LIW – INTEGER Input
8: WðLWÞ – REAL (KIND=nag_wp) array Workspace
9: LW – INTEGER Input

FUNCT is called with the same arguments IW, LIW, W, LW as for E04KDF. They are
present so that, when other library routines require the solution of a minimization
subproblem, constants needed for the function evaluation can be passed through IW and
W. Similarly, you could use elements 3; 4; . . . ;LIW of IW and elements from
max 8; 7� Nþ N� N� 1ð Þ=2ð Þ þ 1 onwards of W for passing quantities to FUNCT
from the subroutine which calls E04KDF. However, because of the danger of mistakes
in partitioning, it is recommended that you should pass information to FUNCT via
COMMON global variables and not use IW or W at all. In any case you must not
change the first 2 elements of IW or the first max 8; 7� Nþ N� N� 1ð Þ=2ð Þ elements
of W.

FUNCT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04KDF is called. Arguments denoted as Input must not be changed by this
procedure.

Note: FUNCT should be tested separately before being used in conjunction with E04KDF.

3: MONIT – SUBROUTINE, supplied by the user. External Procedure

If IPRINT � 0, you must supply MONIT which is suitable for monitoring the minimization
process. MONIT must not change the values of any of its arguments.

If IPRINT < 0, a MONIT with the correct argument list must still be supplied, although it will
not be called.

The specification of MONIT is:

SUBROUTINE MONIT (N, XC, FC, GC, ISTATE, GPJNRM, COND, POSDEF,
NITER, NF, IW, LIW, W, LW)

&

INTEGER N, ISTATE(N), NITER, NF, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FC, GC(N), GPJNRM, COND, W(LW)
LOGICAL POSDEF

1: N – INTEGER Input

On entry: the number n of variables.

2: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the current point x.

3: FC – REAL (KIND=nag_wp) Input

On entry: the value of F xð Þ at the current point x.
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4: GCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value of
@F

@xj
at the current point x, for j ¼ 1; 2; . . . ; n.

5: ISTATEðNÞ – INTEGER array Input

On entry: information about which variables are currently fixed on their bounds and
which are free.

If ISTATEðjÞ is negative, xj is currently:

– fixed on its upper bound if ISTATEðjÞ ¼ �1
– fixed on its lower bound if ISTATEðjÞ ¼ �2
– effectively a constant (i.e., lj ¼ uj) if ISTATEðjÞ ¼ �3
If ISTATEðjÞ is positive, its value gives the position of xj in the sequence of free
variables.

6: GPJNRM – REAL (KIND=nag_wp) Input

On entry: the Euclidean norm of the current projected gradient vector gz.

7: COND – REAL (KIND=nag_wp) Input

On entry: the ratio of the largest to the smallest elements of the diagonal factor D of the
approximated projected Hessian matrix. This quantity is usually a good estimate of the
condition number of the projected Hessian matrix. (If no variables are currently free,
COND is set to zero.)

8: POSDEF – LOGICAL Input

On entry: specifies .TRUE. or .FALSE. according to whether or not the approximation
to the second derivative matrix for the current subspace, H, is positive definite.

9: NITER – INTEGER Input

On entry: the number of iterations (as outlined in Section 3) which have been
performed by E04KDF so far.

10: NF – INTEGER Input

On entry: the number of evaluations of F xð Þ so far, i.e., the number of calls of FUNCT
with IFLAG set to 2. Each such call of FUNCT also calculates the first derivatives of
F . (In addition to these calls monitored by NF, FUNCT is called with IFLAG set to 1
not more than N times per iteration.)

11: IWðLIWÞ – INTEGER array Workspace
12: LIW – INTEGER Input
13: WðLWÞ – REAL (KIND=nag_wp) array Workspace
14: LW – INTEGER Input

As in FUNCT, these arguments correspond to the arguments IW, LIW, W, LW of
E04KDF. They are included in MONIT's argument list primarily for when E04KDF is
called by other library routines.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04KDF is called. Arguments denoted as Input must not be changed by this
procedure.

You should normally print FC, GPJNRM and COND to be able to compare the quantities
mentioned in Section 7. It is usually helpful to examine XC, POSDEF and NF too.
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4: IPRINT – INTEGER Input

On entry: the frequency with which MONIT is to be called.

IPRINT > 0
MONIT is called once every IPRINT iterations and just before exit from E04KDF.

IPRINT ¼ 0
MONIT is just called at the final point.

IPRINT < 0
MONIT is not called at all.

IPRINT should normally be set to a small positive number.

Suggested value: IPRINT ¼ 1.

5: MAXCAL – INTEGER Input

On entry: the maximum permitted number of evaluations of F xð Þ, i.e., the maximum permitted
number of calls of FUNCT with IFLAG set to 2. It should be borne in mind that, in addition to
the calls of FUNCT which are limited directly by MAXCAL, there will be calls of FUNCT (with
IFLAG set to 1) to evaluate only first derivatives.

Suggested value: MAXCAL ¼ 50� N.

Constraint: MAXCAL � 1.

6: ETA – REAL (KIND=nag_wp) Input

On entry: every iteration of E04KDF involves a linear minimization (i.e., minimization of
F xþ �pð Þ with respect to �). ETA specifies how accurately these linear minimizations are to be
performed. The minimum with respect to � will be located more accurately for small values of
ETA (say, 0:01) than large values (say, 0:9).

Although accurate linear minimizations will generally reduce the number of iterations (and hence
the number of calls of FUNCT to estimate the second derivatives), they will tend to increase the
number of calls of FUNCT needed for each linear minimization. On balance, it is usually more
efficient to perform a low accuracy linear minimization when n is small and a high accuracy
minimization when n is large.

Suggested value:

ETA ¼ 0:5 if 1 < n < 10;
ETA ¼ 0:1 if 10 � n � 20;
ETA ¼ 0:01 if n > 20.

If N ¼ 1, ETA should be set to 0:0 (also when the problem is effectively one-dimensional even
though n > 1; i.e., if for all except one of the variables the lower and upper bounds are equal).

Constraint: 0:0 � ETA < 1:0.

7: XTOL – REAL (KIND=nag_wp) Input

On entry: the accuracy in x to which the solution is required.

If xtrue is the true value of x at the minimum, then xsol, the estimated position before a normal

exit, is such that xsol � xtruek k < XTOL� 1:0þ xtruek kð Þ where yk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

y2j

s
. For example, if

the elements of xsol are not much larger than 1:0 in modulus, and if XTOL is set to 10�5, then
xsol is usually accurate to about five decimal places. (For further details see Section 7.)

If the problem is scaled as described in Section 9.2 and � is the machine precision, then
ffiffi
�
p

is
probably the smallest reasonable choice for XTOL. This is because, normally, to machine
accuracy, F xþ

ffiffi
�
p
ej

� �
¼ F xð Þ, for any j where ej is the jth column of the identity matrix. If
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you set XTOL to 0:0 (or any positive value less than �), E04KDF will use 10:0�
ffiffi
�
p

instead of
XTOL.

Suggested value: XTOL ¼ 0:0.

Constraint: XTOL � 0:0.

8: DELTA – REAL (KIND=nag_wp) Input

On entry: the differencing interval to be used for approximating the second derivatives of F xð Þ.
Thus, for the finite difference approximations, the first derivatives of F xð Þ are evaluated at points
which are DELTA apart. If � is the machine precision, then

ffiffi
�
p

will usually be a suitable setting
for DELTA. If you set DELTA to 0:0 (or to any positive value less than �), E04KDF will
automatically use

ffiffi
�
p

as the differencing interval.

Suggested value: DELTA ¼ 0:0.

Constraint: DELTA � 0:0.

9: STEPMX – REAL (KIND=nag_wp) Input

On entry: an estimate of the Euclidean distance between the solution and the starting point
supplied by you. (For maximum efficiency a slight overestimate is preferable.)

E04KDF will ensure that, for each iteration,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

x
kð Þ
j � x

k�1ð Þ
j

h i2vuut � STEPMX;

where k is the iteration number. Thus, if the problem has more than one solution, E04KDF is
most likely to find the one nearest to the starting point. On difficult problems, a realistic choice
can prevent the sequence of x kð Þ entering a region where the problem is ill-behaved and can also
help to avoid possible overflow in the evaluation of F xð Þ. However, an underestimate of
STEPMX can lead to inefficiency.

Suggested value: STEPMX ¼ 100000:0.

Constraint: STEPMX � XTOL.

10: IBOUND – INTEGER Input

On entry: indicates whether the problem is unconstrained or bounded. If there are bounds on the
variables, IBOUND can be used to indicate whether the facility for dealing with bounds of
special forms is to be used. It must be set to one of the following values:

IBOUND ¼ 0
If the variables are bounded and you are supplying all the lj and uj individually.

IBOUND ¼ 1
If the problem is unconstrained.

IBOUND ¼ 2
If the variables are bounded, but all the bounds are of the form 0 � xj.

IBOUND ¼ 3
If all the variables are bounded, and l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un.

IBOUND ¼ 4
If the problem is unconstrained. (The IBOUND ¼ 4 option is provided for consistency
with other routines. In E04KDF it produces the same effect as IBOUND ¼ 1:)

Constraint: 0 � IBOUND � 4.

11: BLðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the fixed lower bounds lj.
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If IBOUND is set to 0, you must set BLðjÞ to lj , for j ¼ 1; 2; . . . ; n. (If a lower bound is not
specified for any xj, the corresponding BLðjÞ should be set to a large negative number, e.g.,
�106.)
If IBOUND is set to 3, you must set BLð1Þ to l1; E04KDF will then set the remaining elements
of BL equal to BLð1Þ.
If IBOUND is set to 1, 2 or 4, BL will be initialized by E04KDF.

On exit : the lower bounds actually used by E04KDF, e.g. , if IBOUND ¼ 2,
BLð1Þ ¼ BLð2Þ ¼ � � � ¼ BLðnÞ ¼ 0:0.

12: BUðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the fixed upper bounds uj.

If IBOUND is set to 0, you must set BUðjÞ to uj , for j ¼ 1; 2; . . . ; n. (If an upper bound is not
specified for any variable, the corresponding BUðjÞ should be set to a large positive number, e.g.,
106.)

If IBOUND is set to 3, you must set BUð1Þ to u1; E04KDF will then set the remaining elements
of BU equal to BUð1Þ.
If IBOUND is set to 1, 2 or 4, BU will be initialized by E04KDF.

On exit : the upper bounds actually used by E04KDF, e.g. , if IBOUND ¼ 2,
BUð1Þ ¼ BUð2Þ ¼ � � � ¼ BUðnÞ ¼ 106.

13: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n.

On exit: the final point x kð Þ. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the jth component of the
estimated position of the minimum.

14: HESLðLHÞ – REAL (KIND=nag_wp) array Output

On exit: during the determination of a direction pz (see Section 3), H þ E is decomposed into the
product LDLT, where L is a unit lower triangular matrix and D is a diagonal matrix. (The
matrices H, E, L and D are all of dimension nz, where nz is the number of variables free from
their bounds. H consists of those rows and columns of the full estimated second derivative
matrix which relate to free variables. E is chosen so that H þ E is positive definite.)

HESL and HESD are used to store the factors L and D. The elements of the strict lower triangle
of L are stored row by row in the first nz nz � 1ð Þ=2 positions of HESL. The diagonal elements of
D are stored in the first nz positions of HESD. In the last factorization before a normal exit, the
matrix E will be zero, so that HESL and HESD will contain, on exit, the factors of the final
estimated second derivative matrix H. The elements of HESD are useful for deciding whether to
accept the results produced by E04KDF (see Section 7).

15: LH – INTEGER Input

On entry: the dimension of the array HESL as declared in the (sub)program from which E04KDF
is called.

Constraint: LH � max N� N� 1ð Þ=2; 1ð Þ.

16: HESDðNÞ – REAL (KIND=nag_wp) array Output

On exit: during the determination of a direction pz (see Section 3), H þ E is decomposed into the
product LDLT, where L is a unit lower triangular matrix and D is a diagonal matrix. (The
matrices H, E, L and D are all of dimension nz, where nz is the number of variables free from
their bounds. H consists of those rows and columns of the full estimated second derivative
matrix which relate to free variables. E is chosen so that H þ E is positive definite.)
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HESL and HESD are used to store the factors L and D. The elements of the strict lower triangle
of L are stored row by row in the first nz nz � 1ð Þ=2 positions of HESL. The diagonal elements of
D are stored in the first nz positions of HESD. In the last factorization before a normal exit, the
matrix E will be zero, so that HESL and HESD will contain, on exit, the factors of the final
estimated second derivative matrix H. The elements of HESD are useful for deciding whether to
accept the results produced by E04KDF (see Section 7).

17: ISTATEðNÞ – INTEGER array Output

On exit: information about which variables are currently on their bounds and which are free. If
ISTATEðjÞ is:

– equal to �1, xj is fixed on its upper bound;

– equal to �2, xj is fixed on its lower bound;

– equal to �3, xj is effectively a constant (i.e., lj ¼ uj);
– positive, ISTATEðjÞ gives the position of xj in the sequence of free variables.

18: F – REAL (KIND=nag_wp) Output

On exit: the function value at the final point given in X.

19: GðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first derivative vector corresponding to the final point given in X. The components of
G corresponding to free variables should normally be close to zero.

20: IWðLIWÞ – INTEGER array Communication Array
21: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04KDF is
called.

Constraint: LIW � 2.

22: WðLWÞ – REAL (KIND=nag_wp) array Communication Array
23: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04KDF is
called.

Constraint: LW � max 7� Nþ N� N� 1ð Þ=2; 8ð Þ.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04KDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04KDF because you have set IFLAG negative
in FUNCT. The value of IFAIL will be the same as your setting of IFLAG.

IFAIL ¼ 1

On entry, N < 1,
or MAXCAL < 1,
or ETA < 0:0,
or ETA � 1:0,
or XTOL < 0:0,
or DELTA < 0:0,
or STEPMX < XTOL,
or IBOUND < 0,
or IBOUND > 4,
or BLðjÞ > BUðjÞ for some j if IBOUND ¼ 0,
or BLð1Þ > BUð1Þ if IBOUND ¼ 3,
or LH < max 1;N� N� 1ð Þ=2ð Þ,
or LIW < 2,
or LW < max 8; 7� Nþ N� N� 1ð Þ=2ð Þ.
(Note that if you have set XTOL or DELTA to 0:0, E04KDF uses the default values and
continues without failing.) When this exit occurs, no values will have been assigned to F or to
the elements of HESL, HESD or G.

IFAIL ¼ 2

There have been MAXCAL function evaluations. If steady reductions in F xð Þ were monitored up
to the point where this exit occurred, then the exit probably occurred simply because MAXCAL
was set too small, so the calculations should be restarted from the final point held in X. This exit
may also indicate that F xð Þ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been met, but a lower point could not be found.

Provided that, on exit, the first derivatives of F xð Þ with respect to the free variables are
sufficiently small, and that the estimated condition number of the second derivative matrix is not
too large, this error exit may simply mean that, although it has not been possible to satisfy the
specified requirements, the algorithm has in fact found the minimum as far as the accuracy of the
machine permits. Such a situation can arise, for instance, if XTOL has been set so small that
rounding errors in the evaluation of F xð Þ or its derivatives make it impossible to satisfy the
convergence conditions.

If the estimated condition number of the second derivative matrix at the final point is large, it
could be that the final point is a minimum, but that the smallest eigenvalue of the Hessian matrix
is so close to zero that it is not possible to recognize the point as a minimum.

IFAIL ¼ 4

Not used. (This is done to make the significance of IFAIL ¼ 5 similar for E04KDF and E04LBF.)
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IFAIL ¼ 5

All the Lagrange multiplier estimates which are not indisputably positive lie relatively close to
zero, but it is impossible either to continue minimizing on the current subspace or to find a
feasible lower point by releasing and perturbing any of the fixed variables. You should
investigate as for IFAIL ¼ 3.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

The values IFAIL ¼ 2, 3 or 5 may also be caused by mistakes in FUNCT, by the formulation of the
problem or by an awkward function. If there are no such mistakes, it is worth restarting the calculations
from a different starting point (not the point at which the failure occurred) in order to avoid the region
which caused the failure.

7 Accuracy

A successful exit (IFAIL ¼ 0) is made from E04KDF when H kð Þ is positive definite and when (B1, B2
and B3) or B4 hold, where

B1 	 � kð Þ � p kð Þ�� �� < XTOLþ
ffiffi
�
p

ð Þ � 1:0þ x kð Þ�� ��� �
B2 	 F kð Þ � F k�1ð Þ		 		 < XTOL2 þ �

� �
� 1:0þ F kð Þ		 		� �

B3 	 g kð Þ
z

�� �� < �1=3 þ XTOL
� �

� 1:0þ F kð Þ		 		� �
B4 	 g kð Þ

z

�� �� < 0:01�
ffiffi
�
p
:

(Quantities with superscript k are the values at the kth iteration of the quantities mentioned in Section 3,
� is the machine precision and :k k denotes the Euclidean norm.)

If IFAIL ¼ 0, then the vector in X on exit, xsol, is almost certainly an estimate of the position of the
minimum, xtrue, to the accuracy specified by XTOL.

If IFAIL ¼ 3 or 5, xsol may still be a good estimate of xtrue, but the following checks should be made.
Let the largest of the first nz elements of HESD be HESDðbÞ, let the smallest be HESDðsÞ, and define
k ¼ HESDðbÞ=HESDðsÞ. The scalar k is usually a good estimate of the condition number of the
projected Hessian matrix at xsol. If

(i) the sequence F x kð Þ� �� 
converges to F xsolð Þ at a superlinear or fast linear rate,

(ii) gz xsolð Þk k2 < 10:0� �, and
(iii) k < 1:0= gz xsolð Þk k,
then it is almost certain that xsol is a close approximation to the position of a minimum. When (ii) is
true, then usually F xsolð Þ is a close approximation to F xtrueð Þ. The quantities needed for these checks
are all available via MONIT; in particular the value of COND in the last call of MONIT before exit
gives k.

Further suggestions about confirmation of a computed solution are given in the E04 Chapter
Introduction.
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8 Parallelism and Performance

E04KDF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The number of iterations required depends on the number of variables, the behaviour of F xð Þ, the
accuracy demanded and the distance of the starting point from the solution. The number of

multiplications performed in an iteration of E04KDF is
n3z
6
þO n2z

� �
. In addition, each iteration makes

nz calls of FUNCT (with IFLAG set to 1) in approximating the projected Hessian matrix, and at least
one other call of FUNCT (with IFLAG set to 2). So, unless F xð Þ and its first derivatives can be
evaluated very quickly, the run time will be dominated by the time spent in FUNCT.

9.2 Scaling

Ideally, the problem should be scaled so that, at the solution, F xð Þ and the corresponding values of xj
are each in the range �1;þ1ð Þ, and so that at points one unit away from the solution, F xð Þ differs from
its value at the solution by approximately one unit. This will usually imply that the Hessian matrix at
the solution is well-conditioned. It is unlikely that you will be able to follow these recommendations
very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the
minimization problem, so that E04KDF will take less computer time.

9.3 Unconstrained Minimization

If a problem is genuinely unconstrained and has been scaled sensibly, the following points apply:

(a) nz will always be n,

(b) HESL and HESD will be factors of the full estimated second derivative matrix with elements
stored in the natural order,

(c) the elements of g should all be close to zero at the final point,

(d) the values of the ISTATEðjÞ given by MONIT and on exit from E04KDF are unlikely to be of
interest (unless they are negative, which would indicate that the modulus of one of the xj has
reached 106 for some reason),

(e) MONIT's argument GPJNRM simply gives the norm of the first derivative vector.

So the following routine (in which partitions of extended workspace arrays are used as BL, BU and
ISTATE) could be used for unconstrained problems:

SUBROUTINE UNCKDF(N,FUNCT,MONIT,IPRINT,MAXCAL,ETA,XTOL,DELTA, &
STEPMX,X,HESL,LH,HESD,F,G,IWORK,LIWORK,WORK, &
LWORK,IFAIL)

! A ROUTINE TO APPLY E04KDF TO UNCONSTRAINED PROBLEMS.

! THE REAL ARRAY WORK MUST BE OF DIMENSION AT LEAST
! (9*N + MAX(1, N*(N-1)/2)). ITS FIRST 7*N + MAX(1, N*(N-1)/2)
! ELEMENTS WILL BE USED BY E04KDF AS THE ARRAY W. ITS LAST
! 2*N ELEMENTS WILL BE USED AS THE ARRAYS BL AND BU.

! THE INTEGER ARRAY IWORK MUST BE OF DIMENSION AT LEAST (N+2)
! ITS FIRST 2 ELEMENTS WILL BE USED BY E04KDF AS THE ARRAY IW.
! ITS LAST N ELEMENTS WILL BE USED AS THE ARRAY ISTATE.

! LIWORK AND LWORK MUST BE SET TO THE ACTUAL LENGTHS OF IWORK
! AND WORK RESPECTIVELY, AS DECLARED IN THE CALLING SEGMENT.

! OTHER PARAMETERS ARE AS FOR E04KDF.
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! .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)

! .. Scalar Arguments ..
REAL (KIND=nag_wp) DELTA, ETA, F, STEPMX, XTOL
INTEGER IFAIL, IPRINT, LH, LIWORK, LWORK, MAXCAL, N

! .. Array Arguments ..
REAL (KIND=nag_wp) G(N), HESD(N), HESL(LH), WORK(LWORK), X(N)
INTEGER IWORK(LIWORK)

! .. Subroutine Arguments ..
EXTERNAL FUNCT, MONIT

! .. Local Scalars ..
INTEGER IBOUND, J, JBL, JBU, NH
LOGICAL TOOBIG

! .. External Subroutines ..
EXTERNAL E04KDF

! .. Executable Statements ..
! CHECK THAT SUFFICIENT WORKSPACE HAS BEEN SUPPLIED

NH = N*(N-1)/2
IF (NH.EQ.0) NH = 1
IF (LWORK.LT.9*N+NH .OR. LIWORK.LT.N+2) THEN

WRITE (NOUT,FMT=99999)
STOP

END IF
! JBL AND JBU SPECIFY THE PARTS OF WORK USED AS BL AND BU

JBL = 7*N + NH + 1
JBU = JBL + N

! SPECIFY THAT THE PROBLEM IS UNCONSTRAINED
IBOUND = 4
CALL E04KDF(N,FUNCT,MONIT,IPRINT,MAXCAL,ETA,XTOL,DELTA,STEPMX, &

IBOUND,WORK(JBL),WORK(JBU),X,HESL,LH,HESD,IWORK(3), &
F,G,IWORK,LIWORK,WORK,LWORK,IFAIL)

! CHECK THE PART OF IWORK WHICH WAS USED AS ISTATE IN CASE
! THE MODULUS OF SOME X(J) HAS REACHED E+6

TOOBIG = .FALSE.
DO 20 J = 1, N

IF (IWORK(2+J).LT.0) TOOBIG = .TRUE.
20 CONTINUE

IF ( .NOT. TOOBIG) RETURN
WRITE (NOUT,FMT=99998)
STOP

99999 FORMAT (’ ***** INSUFFICIENT WORKSPACE HAS BEEN SUPPLIED *****’)
99998 FORMAT (’ ***** A VARIABLE HAS REACHED E+6 IN MODULUS - NO UNCON’, &

’STRAINED MINIMUM HAS BEEN FOUND *****’)
END

10 Example

A program to minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

subject to the bounds

1 � x1 � 3
�2 � x2 � 0
1 � x4 � 3;

starting from the initial guess 3;�1; 0; 1ð Þ. Before calling E04KDF, the program calls E04HCF to check
the first derivatives calculated by FUNCT.
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10.1 Program Text

! E04KDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04kdfe_mod

! E04KDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct, monit

! .. Parameters ..
Integer, Parameter, Public :: liw = 2, n = 4, nout = 6
Integer, Parameter, Public :: lh = n*(n-1)/2
Integer, Parameter, Public :: lw = 7*n + n*(n-1)/2

Contains
Subroutine funct(iflag,n,xc,fc,gc,iw,liw,w,lw)

! Routine to evaluate objective function and its 1st derivatives.
! A global variable could be updated here to count the number of
! calls of FUNCT with IFLAG = 1 (since NF in MONIT only counts
! calls with IFLAG = 2)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: liw, lw, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gc(n)
Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Executable Statements ..
If (iflag/=1) Then

fc = (xc(1)+10.0_nag_wp*xc(2))**2 + 5.0_nag_wp*(xc(3)-xc(4))**2 + &
(xc(2)-2.0_nag_wp*xc(3))**4 + 10.0_nag_wp*(xc(1)-xc(4))**4

End If

gc(1) = 2.0_nag_wp*(xc(1)+10.0_nag_wp*xc(2)) + &
40.0_nag_wp*(xc(1)-xc(4))**3

gc(2) = 20.0_nag_wp*(xc(1)+10.0_nag_wp*xc(2)) + &
4.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3))**3

gc(3) = 10.0_nag_wp*(xc(3)-xc(4)) - 8.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3) &
)**3

gc(4) = 10.0_nag_wp*(xc(4)-xc(3)) - 40.0_nag_wp*(xc(1)-xc(4))**3

Return

End Subroutine funct
Subroutine monit(n,xc,fc,gc,istate,gpjnrm,cond,posdef,niter,nf,iw,liw,w, &

lw)
! Monitoring routine

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: cond, fc, gpjnrm
Integer, Intent (In) :: liw, lw, n, nf, niter
Logical, Intent (In) :: posdef

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: gc(n), xc(n)
Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Integer, Intent (In) :: istate(n)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Integer :: isj, j

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’ Itn Fn evals Fn value’ // &
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’ Norm of proj gradient’
Write (nout,99999) niter, nf, fc, gpjnrm
Write (nout,*)
Write (nout,*) &

’ J X(J) G(J) Status’

Do j = 1, n
isj = istate(j)

Select Case (isj)
Case (1:)

Write (nout,99998) j, xc(j), gc(j), ’ Free’
Case (-1)

Write (nout,99998) j, xc(j), gc(j), ’ Upper Bound’
Case (-2)

Write (nout,99998) j, xc(j), gc(j), ’ Lower Bound’
Case (-3)

Write (nout,99998) j, xc(j), gc(j), ’ Constant’
End Select

End Do

If (cond/=0.0_nag_wp) Then

If (cond>1.0E6_nag_wp) Then
Write (nout,*)
Write (nout,*) &

’Estimated condition number of projected Hessian is more than ’, &
’1.0E+6’

Else
Write (nout,*)
Write (nout,99997) &

’Estimated condition number of projected Hessian = ’, cond
End If

If (.Not. posdef) Then
Write (nout,*)
Write (nout,*) ’Projected Hessian matrix is not positive definite’

End If

End If

Return

99999 Format (1X,I3,6X,I5,2(6X,1P,E20.4))
99998 Format (1X,I2,1X,1P,2E20.4,A)
99997 Format (1X,A,1P,E10.2)

End Subroutine monit
End Module e04kdfe_mod
Program e04kdfe

! E04KDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04hcf, e04kdf, nag_wp
Use e04kdfe_mod, Only: funct, lh, liw, lw, monit, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: delta, eta, f, stepmx, xtol
Integer :: ibound, ifail, iprint, maxcal

! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(n), bu(n), g(n), hesd(n), &

hesl(lh), w(lw), x(n)
Integer :: istate(n), iw(liw)

! .. Executable Statements ..
Write (nout,*) ’E04KDF Example Program Results’
Flush (nout)

! Check FUNCT by calling E04HCF at an arbitrary point. Since E04HCF
! only checks the derivatives calculated when IFLAG = 2, a separate
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! program should be run before using E04HCF or E04KDF to check that
! FUNCT gives the same values for the GC(J) when IFLAG is set to 1
! as when IFLAG is set to 2.

x(1:n) = (/1.46_nag_wp,-0.82_nag_wp,0.57_nag_wp,1.21_nag_wp/)

ifail = 0
Call e04hcf(n,funct,x,f,g,iw,liw,w,lw,ifail)

! Continue setting parameters for E04KDF

! Set IPRINT to 1 to obtain output from MONIT at each iteration
iprint = -1

maxcal = 50*n
eta = 0.5_nag_wp

! Set XTOL and DELTA to zero so that E04KDF will use the default
! values

xtol = 0.0_nag_wp
delta = 0.0_nag_wp

! We estimate that the minimum will be within 4 units of the
! starting point

stepmx = 4.0_nag_wp

ibound = 0

! X(3) is not bounded, so we set BL(3) to a large negative
! number and BU(3) to a large positive number

bl(1:n) = (/1.0_nag_wp,-2.0_nag_wp,-1.0E6_nag_wp,1.0_nag_wp/)
bu(1:n) = (/3.0_nag_wp,0.0_nag_wp,1.0E6_nag_wp,3.0_nag_wp/)

! Set up starting point

x(1:n) = (/3.0_nag_wp,-1.0_nag_wp,0.0_nag_wp,1.0_nag_wp/)

ifail = -1
Call e04kdf(n,funct,monit,iprint,maxcal,eta,xtol,delta,stepmx,ibound,bl, &

bu,x,hesl,lh,hesd,istate,f,g,iw,liw,w,lw,ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’Function value on exit is ’, f
Write (nout,99999) ’at the point’, x(1:n)
Write (nout,*) ’The corresponding (machine dependent) gradient is’
Write (nout,99998) g(1:n)
Write (nout,99997) ’ISTATE contains’, istate(1:n)
Write (nout,99996) ’and HESD contains’, hesd(1:n)

End Select

99999 Format (1X,A,4F12.4)
99998 Format (24X,1P,4E12.3)
99997 Format (1X,A,4I5)
99996 Format (1X,A,4E12.4)

End Program e04kdfe

10.2 Program Data

None.
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10.3 Program Results

E04KDF Example Program Results
** The conditions for a minimum have not all been satisfied,
** but a lower point could not be found.
** ABNORMAL EXIT from NAG Library routine E04KDF: IFAIL = 3
** NAG soft failure - control returned

Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
The corresponding (machine dependent) gradient is

2.953E-01 -5.870E-10 1.176E-09 5.907E+00
ISTATE contains -2 1 2 -2
and HESD contains 0.2098E+03 0.4738E+02 0.4552E+02 0.0000E+00
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NAG Library Routine Document

E04KYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04KYF is an easy-to-use quasi-Newton algorithm for finding a minimum of a function
F x1; x2; . . . ; xnð Þ, subject to fixed upper and lower bounds on the independent variables
x1; x2; . . . ; xn, when first derivatives of F are available.

It is intended for functions which are continuous and which have continuous first and second
derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04KYF (N, IBOUND, FUNCT2, BL, BU, X, F, G, IW, LIW, W, LW,
IUSER, RUSER, IFAIL)

&

INTEGER N, IBOUND, IW(LIW), LIW, LW, IUSER(*), IFAIL
REAL (KIND=nag_wp) BL(N), BU(N), X(N), F, G(N), W(LW), RUSER(*)
EXTERNAL FUNCT2

3 Description

E04KYF is applicable to problems of the form:

MinimizeF x1; x2; . . . ; xnð Þ subject to lj � xj � uj; j ¼ 1; 2; . . . ; n

when first derivatives are available.

Special provision is made for problems which actually have no bounds on the xj, problems which have
only non-negativity bounds, and problems in which l1 ¼ l2 ¼ . . . ¼ ln and u1 ¼ u2 ¼ . . . ¼ un. You
must supply a subroutine to calculate the values of F xð Þ and its first derivatives at any point x.

From a starting point you supplied there is generated, on the basis of estimates of the curvature of
F xð Þ, a sequence of feasible points which is intended to converge to a local minimum of the
constrained function. An attempt is made to verify that the final point is a minimum.

A typical iteration starts at the current point x where nz (say) variables are free from both their bounds.
The projected gradient vector gz, whose elements are the derivatives of F xð Þ with respect to the free
variables, is known. A unit lower triangular matrix L and a diagonal matrix D (both of dimension nz),
such that LDLT is a positive definite approximation of the matrix of second derivatives with respect to
the free variables (i.e., the projected Hessian) are also held. The equations

LDLTpz ¼ �gz
are solved to give a search direction pz, which is expanded to an n-vector p by an insertion of
appropriate zero elements. Then � is found such that F xþ �pð Þ is approximately a minimum (subject
to the fixed bounds) with respect to �; x is replaced by xþ �p, and the matrices L and D are updated
so as to be consistent with the change produced in the gradient by the step �p. If any variable actually
reaches a bound during the search along p, it is fixed and nz is reduced for the next iteration.

There are two sets of convergence criteria – a weaker and a stronger. Whenever the weaker criteria are
satisfied, the Lagrange multipliers are estimated for all the active constraints. If any Lagrange multiplier
estimate is significantly negative, then one of the variables associated with a negative Lagrange
multiplier estimate is released from its bound and the next search direction is computed in the extended
subspace (i.e., nz is increased). Otherwise minimization continues in the current subspace provided that
this is practicable. When it is not, or when the stronger convergence criteria are already satisfied, then,
if one or more Lagrange multiplier estimates are close to zero, a slight perturbation is made in the
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values of the corresponding variables in turn until a lower function value is obtained. The normal
algorithm is then resumed from the perturbed point.

If a saddle point is suspected, a local search is carried out with a view to moving away from the saddle
point. A local search is also performed when a point is found which is thought to be a constrained
minimum.

4 References

Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC 72
National Physical Laboratory

5 Arguments

1: N – INTEGER Input

On entry: the number n of independent variables.

Constraint: N � 1.

2: IBOUND – INTEGER Input

On entry: indicates whether the facility for dealing with bounds of special forms is to be used. It
must be set to one of the following values:

IBOUND ¼ 0
If you are supplying all the lj and uj individually.

IBOUND ¼ 1
If there are no bounds on any xj.

IBOUND ¼ 2
If all the bounds are of the form 0 � xj.

IBOUND ¼ 3
If l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un.

Constraint: 0 � IBOUND � 3.

3: FUNCT2 – SUBROUTINE, supplied by the user. External Procedure

You must supply FUNCT2 to calculate the values of the function F xð Þ and its first derivative
@F

@xj
at any point x. It should be tested separately before being used in conjunction with E04KYF (see
the E04 Chapter Introduction).

The specification of FUNCT2 is:

SUBROUTINE FUNCT2 (N, XC, FC, GC, IUSER, RUSER)

INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, GC(N), RUSER(*)

1: N – INTEGER Input

On entry: the number n of variables.

2: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the function and derivatives are required.

3: FC – REAL (KIND=nag_wp) Output

On exit: the value of the function F at the current point x.
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4: GCðNÞ – REAL (KIND=nag_wp) array Output

On exit: GCðjÞ must be set to the value of the first derivative
@F

@xj
at the point x, for

j ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FUNCT2 is called with the arguments IUSER and RUSER as supplied to E04KYF. You
should use the arrays IUSER and RUSER to supply information to FUNCT2.

FUNCT2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04KYF is called. Arguments denoted as Input must not be changed by this
procedure.

4: BLðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the lower bounds lj.

If IBOUND is set to 0, you must set BLðjÞ to lj , for j ¼ 1; 2; . . . ; n. (If a lower bound is not
specified for a particular xj, the corresponding BLðjÞ should be set to �106.)
If IBOUND is set to 3, you must set BLð1Þ to l1; E04KYF will then set the remaining elements
of BL equal to BLð1Þ.
On exit: the lower bounds actually used by E04KYF.

5: BUðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the upper bounds uj.

If IBOUND is set to 0, you must set BUðjÞ to uj , for j ¼ 1; 2; . . . ; n. (If an upper bound is not
specified for a particular xj, the corresponding BUðjÞ should be set to 106.)

If IBOUND is set to 3, you must set BUð1Þ to u1; E04KYF will then set the remaining elements
of BU equal to BUð1Þ.
On exit: the upper bounds actually used by E04KYF.

6: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n. The routine checks the gradient at the starting point, and is more likely to detect
any error in your programming if the initial XðjÞ are nonzero and mutually distinct.

On exit: the lowest point found during the calculations. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the
jth component of the position of the minimum.

7: F – REAL (KIND=nag_wp) Output

On exit: the value of F xð Þ corresponding to the final point stored in X.

8: GðNÞ – REAL (KIND=nag_wp) array Output

On exit: the value of
@F

@xj
corresponding to the final point stored in X, for j ¼ 1; 2; . . . ; n; the

value of GðjÞ for variables not on a bound should normally be close to zero.

9: IWðLIWÞ – INTEGER array Output

On exit: if IFAIL ¼ 0, 3 or 5, the first N elements of IW contain information about which
variables are currently on their bounds and which are free. Specifically, if xi is:
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– fixed on its upper bound, IWðiÞ is �1;
– fixed on its lower bound, IWðiÞ is �2;
– effectively a constant (i.e., lj ¼ uj), IWðiÞ is �3;
– free, IWðiÞ gives its position in the sequence of free variables.

In addition, IWðNþ 1Þ contains the number of free variables (i.e., nz). The rest of the array is
used as workspace.

10: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04KYF is
called.

Constraint: LIW � Nþ 2.

11: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0, 3 or 5, WðiÞ contains the ith element of the projected gradient vector gz,
for i ¼ 1; 2; . . . ;N. In addition, WðNþ 1Þ contains an estimate of the condition number of the
projected Hessian matrix (i.e., k). The rest of the array is used as workspace.

12: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04KYF is
called.

Constraint: LW � max 10� Nþ N� N� 1ð Þ=2; 11ð Þ.

13: IUSERð�Þ – INTEGER array User Workspace
14: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04KYF, but are passed directly to FUNCT2 and should be
used to pass information to this routine.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04KYF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or IBOUND < 0,
or IBOUND > 3,
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or IBOUND ¼ 0 and BLðjÞ > BUðjÞ for some j,
or IBOUND ¼ 3 and BLð1Þ > BUð1Þ,
or LIW < Nþ 2,
or LW < max 11; 10� Nþ N� N� 1ð Þ=2ð Þ.

IFAIL ¼ 2

There have been 100� n function evaluations, yet the algorithm does not seem to be converging.
The calculations can be restarted from the final point held in X. The error may also indicate that
F xð Þ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been met but a lower point could not be found and
the algorithm has failed.

IFAIL ¼ 4

An overflow has occurred during the computation. This is an unlikely failure, but if it occurs you
should restart at the latest point given in X.

IFAIL ¼ 5
IFAIL ¼ 6
IFAIL ¼ 7
IFAIL ¼ 8

There is some doubt about whether the point x found by E04KYF is a minimum. The degree of
confidence in the result decreases as IFAIL increases. Thus, when IFAIL ¼ 5 it is probable that
the final x gives a good estimate of the position of a minimum, but when IFAIL ¼ 8 it is very
unlikely that the routine has found a minimum.

IFAIL ¼ 9

In the search for a minimum, the modulus of one of the variables has become very large � 106
� �

.
This indicates that there is a mistake in FUNCT2, that your problem has no finite solution, or that
the problem needs rescaling (see Section 9).

IFAIL ¼ 10

It is very likely that you have made an error in forming the gradient.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If you are dissatisfied with the result (e.g., because IFAIL ¼ 5, 6, 7 or 8), it is worth restarting the
calculations from a different starting point (not the point at which the failure occurred) in order to avoid
the region which caused the failure. If persistent trouble occurs it may be advisable to try E04KZF.
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7 Accuracy

A successful exit (IFAIL ¼ 0) is made from E04KYF when (B1, B2 and B3) or B4 hold, and the local
search confirms a minimum, where

B1 	 � kð Þ � p kð Þ�� �� < xtol þ
ffiffi
�
p

ð Þ � 1:0þ x kð Þ�� ��� �
B2 	 F kð Þ � F k�1ð Þ		 		 < x2tol þ �

� �
� 1:0þ F kð Þ		 		� �

B3 	 g kð Þ
z

�� �� < �1=3 þ xtol
� �

� 1:0þ F kð Þ		 		� �
B4 	 g kð Þ

z

�� �� < 0:01�
ffiffi
�
p

.

(Quantities with superscript k are the values at the kth iteration of the quantities mentioned in Section 3,
xtol ¼ 100

ffiffi
�
p

, � is the machine precision and :k k denotes the Euclidean norm. The vector gz is returned
in the array W.)

If IFAIL ¼ 0, then the vector in X on exit, xsol, is almost certainly an estimate of the position of the
minimum, xtrue, to the accuracy specified by xtol.

If IFAIL ¼ 3 or 5, xsol may still be a good estimate of xtrue, but the following checks should be made.
Let k denote an estimate of the condition number of the projected Hessian matrix at xsol. (The value of
k is returned in WðNþ 1Þ). If

(i) the sequence F x kð Þ� �� 
converges to F xsolð Þ at a superlinear or a fast linear rate,

(ii) gz xxolð Þk k2 < 10:0� � and

(iii) k < 1:0= gz xsolð Þk k,
then it is almost certain that xsol is a close approximation to the position of a minimum. When (ii) is
true, then usually F xsolð Þ is a close approximation to F xtrueð Þ.
When a successful exit is made then, for a computer with a mantissa of t decimals, one would expect to
get about t=2� 1 decimals accuracy in x, and about t� 1 decimals accuracy in F , provided the
problem is reasonably well scaled.

8 Parallelism and Performance

E04KYF is not threaded in any implementation.

9 Further Comments

The number of iterations required depends on the number of variables, the behaviour of F xð Þ and the
distance of the starting point from the solution. The number of operations performed in an iteration of
E04KYF is roughly proportional to n2. In addition, each iteration makes at least one call of FUNCT2.
So, unless F xð Þ and the gradient vector can be evaluated very quickly, the run time will be dominated
by the time spent in FUNCT2.

Ideally the problem should be scaled so that at the solution the value of F xð Þ and the corresponding
values of x1; x2; . . . ; xn are each in the range �1;þ1ð Þ, and so that at points a unit distance away from
the solution, F is approximately a unit value greater than at the minimum. It is unlikely that you will be
able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible
scaling will reduce the difficulty of the minimization problem, so that E04KYF will take less computer
time.

10 Example

A program to minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

subject to
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1 � x1 � 3
�2 � x2 � 0
1 � x4 � 3;

starting from the initial guess 3;�1; 0; 1ð Þ.

10.1 Program Text

! E04KYF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04kyfe_mod

! E04KYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct2

! .. Parameters ..
Integer, Parameter, Public :: n = 4, nout = 6
Integer, Parameter, Public :: liw = n + 2
Integer, Parameter, Public :: lw = 10*n + n*(n-1)/2

Contains
Subroutine funct2(n,xc,fc,gc,iuser,ruser)

! Routine to evaluate objective function and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gc(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: x1, x2, x3, x4

! .. Executable Statements ..
x1 = xc(1)
x2 = xc(2)
x3 = xc(3)
x4 = xc(4)
fc = (x1+10.0_nag_wp*x2)**2 + 5.0_nag_wp*(x3-x4)**2 + &

(x2-2.0_nag_wp*x3)**4 + 10.0_nag_wp*(x1-x4)**4
gc(1) = 2.0_nag_wp*(x1+10.0_nag_wp*x2) + 40.0_nag_wp*(x1-x4)**3
gc(2) = 20.0_nag_wp*(x1+10.0_nag_wp*x2) + 4.0_nag_wp*(x2-2.0_nag_wp*x3 &

)**3
gc(3) = 10.0_nag_wp*(x3-x4) - 8.0_nag_wp*(x2-2.0_nag_wp*x3)**3
gc(4) = -10.0_nag_wp*(x3-x4) - 40.0_nag_wp*(x1-x4)**3

Return

End Subroutine funct2
End Module e04kyfe_mod
Program e04kyfe

! E04KYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04kyf, nag_wp
Use e04kyfe_mod, Only: funct2, liw, lw, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: f
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Integer :: ibound, ifail
! .. Local Arrays ..

Real (Kind=nag_wp) :: bl(n), bu(n), g(n), ruser(1), w(lw), &
x(n)

Integer :: iuser(1), iw(liw)
! .. Executable Statements ..

Write (nout,*) ’E04KYF Example Program Results’

x(1:n) = (/3.0_nag_wp,-1.0_nag_wp,0.0_nag_wp,1.0_nag_wp/)
ibound = 0

! X(3) is unconstrained, so we set BL(3) to a large negative
! number and BU(3) to a large positive number.

bl(1:n) = (/1.0_nag_wp,-2.0_nag_wp,-1.0E6_nag_wp,1.0_nag_wp/)
bu(1:n) = (/3.0_nag_wp,0.0_nag_wp,1.0E6_nag_wp,3.0_nag_wp/)

ifail = -1
Call e04kyf(n,ibound,funct2,bl,bu,x,f,g,iw,liw,w,lw,iuser,ruser,ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’Function value on exit is ’, f
Write (nout,99998) ’at the point’, x(1:n)
Write (nout,*) ’The corresponding (machine dependent) gradient is’
Write (nout,99997) g(1:n)

End Select

99999 Format (1X,A,F9.4)
99998 Format (1X,A,4F9.4)
99997 Format (13X,4E12.4)

End Program e04kyfe

10.2 Program Data

None.

10.3 Program Results

E04KYF Example Program Results

Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
The corresponding (machine dependent) gradient is

0.2953E+00 0.3022E-08 -0.1236E-07 0.5907E+01

E04KYF NAG Library Manual

E04KYF.8 (last) Mark 26



NAG Library Routine Document

E04KZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04KZF is an easy-to-use modified Newton algorithm for finding a minimum of a function
F x1; x2; . . . ; xnð Þ, subject to fixed upper and lower bounds on the independent variables x1; x2; . . . ; xn,
when first derivatives of F are available. It is intended for functions which are continuous and which
have continuous first and second derivatives (although it will usually work even if the derivatives have
occasional discontinuities).

2 Specification

SUBROUTINE E04KZF (N, IBOUND, FUNCT2, BL, BU, X, F, G, IW, LIW, W, LW,
IUSER, RUSER, IFAIL)

&

INTEGER N, IBOUND, IW(LIW), LIW, LW, IUSER(*), IFAIL
REAL (KIND=nag_wp) BL(N), BU(N), X(N), F, G(N), W(LW), RUSER(*)
EXTERNAL FUNCT2

3 Description

E04KZF is applicable to problems of the form:

MinimizeF x1; x2; . . . ; xnð Þ subject to lj � xj � uj; j ¼ 1; 2; . . . ; n

when first derivatives are known.

Special provision is made for problems which actually have no bounds on the xj, problems which have
only non-negativity bounds, and problems in which l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un. You
must supply a subroutine to calculate the values of F xð Þ and its first derivatives at any point x.

From a starting point you supplied there is generated, on the basis of estimates of the gradient of the
curvature of F xð Þ, a sequence of feasible points which is intended to converge to a local minimum of
the constrained function.

4 References

Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC 72
National Physical Laboratory

5 Arguments

1: N – INTEGER Input

On entry: the number n of independent variables.

Constraint: N � 1.

2: IBOUND – INTEGER Input

On entry: indicates whether the facility for dealing with bounds of special forms is to be used. It
must be set to one of the following values:

IBOUND ¼ 0
If you are supplying all the lj and uj individually.
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IBOUND ¼ 1
If there are no bounds on any xj.

IBOUND ¼ 2
If all the bounds are of the form 0 � xj.

IBOUND ¼ 3
If l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un.

Constraint: 0 � IBOUND � 3.

3: FUNCT2 – SUBROUTINE, supplied by the user. External Procedure

You must supply this routine to calculate the values of the function F xð Þ and its first derivatives
@F

@xj
at any point x. It should be tested separately before being used in conjunction with E04KZF

(see Chapter E04).

The specification of FUNCT2 is:

SUBROUTINE FUNCT2 (N, XC, FC, GC, IUSER, RUSER)

INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, GC(N), RUSER(*)

1: N – INTEGER Input

On entry: the number n of variables.

2: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the function and derivatives are required.

3: FC – REAL (KIND=nag_wp) Output

On exit: the value of the function F at the current point x,

4: GCðNÞ – REAL (KIND=nag_wp) array Output

On exit: GCðjÞ must be set to the value of the first derivative
@F

@xj
at the point x, for

j ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FUNCT2 is called with the arguments IUSER and RUSER as supplied to E04KZF. You
should use the arrays IUSER and RUSER to supply information to FUNCT2.

FUNCT2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04KZF is called. Arguments denoted as Input must not be changed by this
procedure.

4: BLðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the lower bounds lj.

If IBOUND is set to 0, you must set BLðjÞ to lj , for j ¼ 1; 2; . . . ; n. (If a lower bound is not
specified for a particular xj, the corresponding BLðjÞ should be set to �106.)
If IBOUND is set to 3, you must set BLð1Þ to l1; E04KZF will then set the remaining elements of
BL equal to BLð1Þ.
On exit: the lower bounds actually used by E04KZF.
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5: BUðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the upper bounds uj.

If IBOUND is set to 0, you must set BUðjÞ to uj , for j ¼ 1; 2; . . . ; n. (If an upper bound is not
specified for a particular xj, the corresponding BUðjÞ should be set to 106.)

If IBOUND is set to 3, you must set BUð1Þ to u1; E04KZF will then set the remaining elements
of BU equal to BUð1Þ.
On exit: the upper bounds actually used by E04KZF.

6: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n. The routine checks the gradient at the starting point, and is more likely to detect
any error in your programming if the initial XðjÞ are nonzero and mutually distinct.

On exit: the lowest point found during the calculations of the position of the minimum.

7: F – REAL (KIND=nag_wp) Output

On exit: the value of F xð Þ corresponding to the final point stored in X.

8: GðNÞ – REAL (KIND=nag_wp) array Output

On exit: the value of
@F

@xj
corresponding to the final point stored in X, for j ¼ 1; 2; . . . ; n; the

value of GðjÞ for variables not on a bound should normally be close to zero.

9: IWðLIWÞ – INTEGER array Workspace
10: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04KZF is
called.

Constraint: LIW � Nþ 2.

11: WðLWÞ – REAL (KIND=nag_wp) array Workspace
12: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04KZF is
called.

Constraint: LW � max N� Nþ 7ð Þ; 10ð Þ.

13: IUSERð�Þ – INTEGER array User Workspace
14: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04KZF, but are passed directly to FUNCT2 and should be
used to pass information to this routine.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04KZF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or IBOUND < 0,
or IBOUND > 3,
or IBOUND ¼ 0 and BLðjÞ > BUðjÞ for some j,
or IBOUND ¼ 3 and BLð1Þ > BUð1Þ,
or LIW < Nþ 2,
or LW < max 10;N� Nþ 7ð Þð Þ.

IFAIL ¼ 2

There has been a large number of function evaluations, yet the algorithm does not seem to be
converging. The calculations can be restarted from the final point held in X. The error may also
indicate that F xð Þ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been met but a lower point could not be found and
the algorithm has failed.

IFAIL ¼ 4

Not used. (This value of the argument is included to make the significance of IFAIL ¼ 5 etc.
consistent in the easy-to-use routines.)

IFAIL ¼ 5
IFAIL ¼ 6
IFAIL ¼ 7
IFAIL ¼ 8

There is some doubt about whether the point x found by E04KZF is a minimum. The degree of
confidence in the result decreases as IFAIL increases. Thus, when IFAIL ¼ 5 it is probable that
the final x gives a good estimate of the position of a minimum, but when IFAIL ¼ 8 it is very
unlikely that the routine has found a minimum.

IFAIL ¼ 9

In the search for a minimum, the modulus of one of the variables has become very large � 106
� �

.
This indicates that there is a mistake in FUNCT2, that your problem has no finite solution, or that
the problem needs rescaling (see Section 9).

IFAIL ¼ 10

It is very likely that you have made an error in forming the gradient.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

E04KZF NAG Library Manual

E04KZF.4 Mark 26



IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If you are dissatisfied with the result (e.g., because IFAIL ¼ 5, 6, 7 or 8), it is worth restarting the
calculations from a different starting point (not the point at which the failure occurred) in order to avoid
the region which caused the failure. If persistent trouble occurs and it is possible to calculate second
derivatives it may be advisable to change to a routine which uses second derivatives (see the E04
Chapter Introduction).

7 Accuracy

When a successful exit is made then, for a computer with a mantissa of t decimals, one would expect to
get about t=2� 1 decimals accuracy in x and about t� 1 decimals accuracy in F , provided the problem
is reasonably well scaled.

8 Parallelism and Performance

E04KZF is not threaded in any implementation.

9 Further Comments

The number of iterations required depends on the number of variables, the behaviour of F xð Þ and the
distance of the starting point from the solution. The number of operations performed in an iteration of
E04KZF is roughly proportional to n3 þO n2

� �
. In addition, each iteration makes at least mþ 1 calls of

FUNCT2 where m is the number of variables not fixed on bounds. So unless F xð Þ and the gradient
vector can be evaluated very quickly, the run time will be dominated by the time spent in FUNCT2.

Ideally the problem should be scaled so that at the solution the value of F xð Þ and the corresponding
values of x1; x2; . . . ; xn are in the range �1;þ1ð Þ, and so that at points a unit distance away from the
solution, F is approximately a unit value greater than at the minimum. It is unlikely that you will be
able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible
scaling will reduce the difficulty of the minimization problem, so that E04KZF will take less computer
time.

10 Example

A program to minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

subject to

1 � x1 � 3
�2 � x2 � 0
1 � x4 � 3

starting from the initial guess 3;�1; 0; 1ð Þ.
In practice, it is worth trying to make FUNCT2 as efficient as possible. This has not been done in the
example program for reasons of clarity.
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10.1 Program Text

! E04KZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04kzfe_mod

! E04KZF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct2

! .. Parameters ..
Integer, Parameter, Public :: n = 4, nout = 6
Integer, Parameter, Public :: liw = n + 2
Integer, Parameter, Public :: lw = n*(n+7)

Contains
Subroutine funct2(n,xc,fc,gc,iuser,ruser)

! Routine to evaluate objective function and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gc(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: x1, x2, x3, x4

! .. Executable Statements ..
x1 = xc(1)
x2 = xc(2)
x3 = xc(3)
x4 = xc(4)
fc = (x1+10.0_nag_wp*x2)**2 + 5.0_nag_wp*(x3-x4)**2 + &

(x2-2.0_nag_wp*x3)**4 + 10.0_nag_wp*(x1-x4)**4
gc(1) = 2.0_nag_wp*(x1+10.0_nag_wp*x2) + 40.0_nag_wp*(x1-x4)**3
gc(2) = 20.0_nag_wp*(x1+10.0_nag_wp*x2) + 4.0_nag_wp*(x2-2.0_nag_wp*x3 &

)**3
gc(3) = 10.0_nag_wp*(x3-x4) - 8.0_nag_wp*(x2-2.0_nag_wp*x3)**3
gc(4) = -10.0_nag_wp*(x3-x4) - 40.0_nag_wp*(x1-x4)**3

Return

End Subroutine funct2
End Module e04kzfe_mod
Program e04kzfe

! E04KZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04kzf, nag_wp
Use e04kzfe_mod, Only: funct2, liw, lw, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: f
Integer :: ibound, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(n), bu(n), g(n), ruser(1), w(lw), &

x(n)
Integer :: iuser(1), iw(liw)

! .. Executable Statements ..
Write (nout,*) ’E04KZF Example Program Results’
Flush (nout)
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x(1:n) = (/3.0_nag_wp,-1.0_nag_wp,0.0_nag_wp,1.0_nag_wp/)

ibound = 0

! X(3) is unconstrained, so we set BL(3) to a large negative
! number and BU(3) to a large positive number.

bl(1:n) = (/1.0_nag_wp,-2.0_nag_wp,-1.0E6_nag_wp,1.0_nag_wp/)
bu(1:n) = (/3.0_nag_wp,0.0_nag_wp,1.0E6_nag_wp,3.0_nag_wp/)

ifail = -1
Call e04kzf(n,ibound,funct2,bl,bu,x,f,g,iw,liw,w,lw,iuser,ruser,ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’Function value on exit is ’, f
Write (nout,99999) ’at the point’, x(1:n)
Write (nout,*) ’the corresponding (machine dependent) gradient is’
Write (nout,99998) g(1:n)

End Select

99999 Format (1X,A,4F12.4)
99998 Format (13X,4E12.4)

End Program e04kzfe

10.2 Program Data

None.

10.3 Program Results

E04KZF Example Program Results
** It is probable that a local minimum has been found,
** but it cannot be guaranteed.
** ABNORMAL EXIT from NAG Library routine E04KZF: IFAIL = 5
** NAG soft failure - control returned

Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
the corresponding (machine dependent) gradient is

0.2953E+00 -0.5870E-09 0.1176E-08 0.5907E+01
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NAG Library Routine Document

E04LBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04LBF is a comprehensive modified Newton algorithm for finding:

an unconstrained minimum of a function of several variables

a minimum of a function of several variables subject to fixed upper and/or lower bounds on the
variables.

First and second derivatives are required. The routine is intended for functions which have continuous
first and second derivatives (although it will usually work even if the derivatives have occasional
discontinuities).

2 Specification

SUBROUTINE E04LBF (N, FUNCT, H, MONIT, IPRINT, MAXCAL, ETA, XTOL,
STEPMX, IBOUND, BL, BU, X, HESL, LH, HESD, ISTATE, F,
G, IW, LIW, W, LW, IFAIL)

&
&

INTEGER N, IPRINT, MAXCAL, IBOUND, LH, ISTATE(N), IW(LIW),
LIW, LW, IFAIL

&

REAL (KIND=nag_wp) ETA, XTOL, STEPMX, BL(N), BU(N), X(N), HESL(LH),
HESD(N), F, G(N), W(LW)

&

EXTERNAL FUNCT, H, MONIT

3 Description

E04LBF is applicable to problems of the form:

MinimizeF x1; x2; . . . ; xnð Þsubject to lj � xj � uj; j ¼ 1; 2; . . . ; n:

Special provision is made for unconstrained minimization (i.e., problems which actually have no bounds
on the xj), problems which have only non-negativity bounds, and problems in which l1 ¼ l2 ¼ � � � ¼ ln
and u1 ¼ u2 ¼ � � � ¼ un. It is possible to specify that a particular xj should be held constant. You must

supply a starting point, a FUNCT to calculate the value of F xð Þ and its first derivatives
@F

@xj
at any point

x, and a H to calculate the second derivatives
@2F

@xi@xj
.

A typical iteration starts at the current point x where nz (say) variables are free from both their bounds.
The vector of first derivatives of F xð Þ with respect to the free variables, gz, and the matrix of second
derivatives with respect to the free variables, H, are obtained. (These both have dimension nz.)

The equations

H þ Eð Þpz ¼ �gz
are solved to give a search direction pz. (The matrix E is chosen so that H þ E is positive definite.)

pz is then expanded to an n-vector p by the insertion of appropriate zero elements; � is found such that
F xþ �pð Þ is approximately a minimum (subject to the fixed bounds) with respect to �, and x is
replaced by xþ �p. (If a saddle point is found, a special search is carried out so as to move away from
the saddle point.)

If any variable actually reaches a bound, it is fixed and nz is reduced for the next iteration.
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There are two sets of convergence criteria – a weaker and a stronger. Whenever the weaker criteria are
satisfied, the Lagrange multipliers are estimated for all active constraints. If any Lagrange multiplier
estimate is significantly negative, then one of the variables associated with a negative Lagrange
multiplier estimate is released from its bound and the next search direction is computed in the extended
subspace (i.e., nz is increased). Otherwise, minimization continues in the current subspace until the
stronger criteria are satisfied. If at this point there are no negative or near-zero Lagrange multiplier
estimates, the process is terminated.

If you specify that the problem is unconstrained, E04LBF sets the lj to �106 and the uj to 106. Thus,
provided that the problem has been sensibly scaled, no bounds will be encountered during the
minimization process and E04LBF will act as an unconstrained minimization algorithm.

4 References

Gill P E and Murray W (1973) Safeguarded steplength algorithms for optimization using descent
methods NPL Report NAC 37 National Physical Laboratory

Gill P E and Murray W (1974) Newton-type methods for unconstrained and linearly constrained
optimization Math. Programming 7 311–350

Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC 72
National Physical Laboratory

5 Arguments

1: N – INTEGER Input

On entry: the number n of independent variables.

Constraint: N � 1.

2: FUNCT – SUBROUTINE, supplied by the user. External Procedure

FUNCT must evaluate the function F xð Þ and its first derivatives
@F

@xj
at any point x. (However, if

you do not wish to calculate F xð Þ or its first derivatives at a particular x, there is the option of
setting an argument to cause E04LBF to terminate immediately.)

The specification of FUNCT is:

SUBROUTINE FUNCT (IFLAG, N, XC, FC, GC, IW, LIW, W, LW)

INTEGER IFLAG, N, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FC, GC(N), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: will have been set to 2.

On exit: if it is not possible to evaluate F xð Þ or its first derivatives at the point x given
in XC (or if it is wished to stop the calculation for any other reason) you should reset
IFLAG to some negative number and return control to E04LBF. E04LBF will then
terminate immediately with IFAIL set to your setting of IFLAG.

2: N – INTEGER Input

On entry: the number n of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which F and the
@F

@xj
are required.
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4: FC – REAL (KIND=nag_wp) Output

On exit: unless IFLAG is reset, FUNCT must set FC to the value of the objective
function F at the current point x.

5: GCðNÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset, FUNCT must set GCðjÞ to the value of the first

derivative
@F

@xj
at the point x, for j ¼ 1; 2; . . . ; n.

6: IWðLIWÞ – INTEGER array Workspace
7: LIW – INTEGER Input
8: WðLWÞ – REAL (KIND=nag_wp) array Workspace
9: LW – INTEGER Input

FUNCT is called with the same arguments IW, LIW, W and LW as for E04LBF. They
are present so that, when other library routines require the solution of a minimization
subproblem, constants needed for the function evaluation can be passed through IW and
W. Similarly, you could use elements 3; 4; . . . ;LIW of IW and elements from
max 8; 7� Nþ N� N� 1ð Þ=2ð Þ þ 1 onwards of W for passing quantities to FUNCT
from the subroutine which calls E04LBF. However, because of the danger of mistakes
in partitioning, it is recommended that you should pass information to FUNCT via
COMMON global variables and not use IW or W at all. In any case FUNCT must not
change the first 2 elements of IW or the first max 8; 7� Nþ N� N� 1ð Þ=2ð Þ elements
of W.

FUNCT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04LBF is called. Arguments denoted as Input must not be changed by this
procedure.

Note: FUNCT should be tested separately before being used in conjunction with E04LBF.

3: H – SUBROUTINE, supplied by the user. External Procedure

H must calculate the second derivatives of F at any point x. (As with FUNCT, there is the option
of causing E04LBF to terminate immediately.)

The specification of H is:

SUBROUTINE H (IFLAG, N, XC, FHESL, LH, FHESD, IW, LIW, W, LW)

INTEGER IFLAG, N, LH, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FHESL(LH), FHESD(N), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: is set to a non-negative number.

On exit: if H resets IFLAG to some negative number, E04LBF will terminate
immediately with IFAIL set to your setting of IFLAG.

2: N – INTEGER Input

On entry: the number n of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the second derivatives of F are required.

4: FHESLðLHÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset, H must place the strict lower triangle of the second
derivative matrix of F (evaluated at the point x) in FHESL, stored by rows, i.e., set
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FHESLð i � 1ð Þ i � 2ð Þ=2þ jÞ ¼ @2F

@xi@xj

				
XC

, for i ¼ 2; 3; . . . ; n and j ¼ 1; 2; . . . ; i� 1.

(The upper triangle is not required because the matrix is symmetric.)

5: LH – INTEGER Input

On entry: the length of the array FHESL.

6: FHESDðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the value of
@F

@xj
at the point x, for j ¼ 1; 2; . . . ; n.

These values may be useful in the evaluation of the second derivatives.

On exit: unless IFLAG is reset, H must place the diagonal elements of the second
derivative matrix of F (evaluated at the point x) in FHESD, i.e., set

FHESDðjÞ ¼ @
2F

@x2j

					
XC

, j ¼ 1; 2; . . . ; n.

7: IWðLIWÞ – INTEGER array Workspace
8: LIW – INTEGER Input
9: WðLWÞ – REAL (KIND=nag_wp) array Workspace
10: LW – INTEGER Input

As in FUNCT, these arguments correspond to the arguments IW, LIW, W, LW of
E04LBF. H must not change the first two elements of IW or the first
max 8; 7� Nþ N� N� 1ð Þ=2ð Þ elements of W. Again, it is recommended that you
should pass quantities to H via COMMON global variables and not use IW or W at all.

H must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04LBF is called. Arguments denoted as Input must not be changed by this
procedure.

Note: H should be tested separately before being used in conjunction with E04LBF.

4: MONIT – SUBROUTINE, supplied by the user. External Procedure

If IPRINT � 0, you must supply MONIT which is suitable for monitoring the minimization
process. MONIT must not change the values of any of its arguments.

If IPRINT < 0, a MONIT with the correct argument list should still be supplied, although it will
not be called.

The specification of MONIT is:

SUBROUTINE MONIT (N, XC, FC, GC, ISTATE, GPJNRM, COND, POSDEF,
NITER, NF, IW, LIW, W, LW)

&

INTEGER N, ISTATE(N), NITER, NF, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FC, GC(N), GPJNRM, COND, W(LW)
LOGICAL POSDEF

1: N – INTEGER Input

On entry: the number n of variables.

2: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the coordinates of the current point x.
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3: FC – REAL (KIND=nag_wp) Input

On entry: the value of F xð Þ at the current point x.

4: GCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value of
@F

@xj
at the current point x, for j ¼ 1; 2; . . . ; n.

5: ISTATEðNÞ – INTEGER array Input

On entry: information about which variables are currently fixed on their bounds and
which are free.

If ISTATEðjÞ is negative, xj is currently:

– fixed on its upper bound if ISTATEðjÞ ¼ �1;
– fixed on its lower bound if ISTATEðjÞ ¼ �2;
– effectively a constant (i.e., lj ¼ uj) if ISTATEðjÞ ¼ �3.
If ISTATE is positive, its value gives the position of xj in the sequence of free
variables.

6: GPJNRM – REAL (KIND=nag_wp) Input

On entry: the Euclidean norm of the projected gradient vector gz.

7: COND – REAL (KIND=nag_wp) Input

On entry: the ratio of the largest to the smallest elements of the diagonal factor D of the
projected Hessian matrix (see specification of H). This quantity is usually a good
estimate of the condition number of the projected Hessian matrix. (If no variables are
currently free, COND is set to zero.)

8: POSDEF – LOGICAL Input

On entry: is set .TRUE. or .FALSE. according to whether the second derivative matrix
for the current subspace, H, is positive definite or not.

9: NITER – INTEGER Input

On entry: the number of iterations (as outlined in Section 3) which have been
performed by E04LBF so far.

10: NF – INTEGER Input

On entry: the number of times that FUNCT has been called so far. Thus NF is the
number of function and gradient evaluations made so far.

11: IWðLIWÞ – INTEGER array Workspace
12: LIW – INTEGER Input
13: WðLWÞ – REAL (KIND=nag_wp) array Workspace
14: LW – INTEGER Input

As in FUNCT, and H, these arguments correspond to the arguments IW, LIW, W, LW of
E04LBF. They are included in MONIT's argument list primarily for when E04LBF is
called by other library routines.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04LBF is called. Arguments denoted as Input must not be changed by this
procedure.
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You should normally print out FC, GPJNRM and COND so as to be able to compare the
quantities mentioned in Section 7. It is normally helpful to examine XC, POSDEF and NF as
well.

5: IPRINT – INTEGER Input

On entry: the frequency with which MONIT is to be called.

IPRINT > 0
MONIT is called once every IPRINT iterations and just before exit from E04LBF.

IPRINT ¼ 0
MONIT is just called at the final point.

IPRINT < 0
MONIT is not called at all.

IPRINT should normally be set to a small positive number.

Suggested value: IPRINT ¼ 1.

6: MAXCAL – INTEGER Input

On entry: the maximum permitted number of evaluations of F xð Þ, i.e., the maximum permitted
number of calls of FUNCT.

Suggested value: MAXCAL ¼ 50� N.

Constraint: MAXCAL � 1.

7: ETA – REAL (KIND=nag_wp) Input

On entry: every iteration of E04LBF involves a linear minimization (i.e., minimization of
F xþ �pð Þ with respect to �). ETA specifies how accurately these linear minimizations are to be
performed. The minimum with respect to � will be located more accurately for small values of
ETA (say, 0:01) than for large values (say, 0:9).

Although accurate linear minimizations will generally reduce the number of iterations of
E04LBF, this usually results in an increase in the number of function and gradient evaluations
required for each iteration. On balance, it is usually more efficient to perform a low accuracy
linear minimization.

Suggested value: ETA ¼ 0:9 is usually a good choice although a smaller value may be
warranted if the matrix of second derivatives is expensive to compute compared with the function
and first derivatives.

If N ¼ 1, ETA should be set to 0:0 (also when the problem is effectively one-dimensional even
though n > 1; i.e., if for all except one of the variables the lower and upper bounds are equal).

Constraint: 0:0 � ETA < 1:0.

8: XTOL – REAL (KIND=nag_wp) Input

On entry: the accuracy in x to which the solution is required.

If xtrue is the true value of x at the minimum, then xsol, the estimated position before a normal

exit, is such that xsol � xtruek k < XTOL� 1:0þ xtruek kð Þ, where yk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

y2j

s
. For example, if

the elements of xsol are not much larger than 1:0 in modulus, and if XTOL is set to 10�5 then xsol
is usually accurate to about five decimal places. (For further details see Section 7.)

If the problem is scaled roughly as described in Section 9 and � is the machine precision, thenffiffi
�
p

is probably the smallest reasonable choice for XTOL. (This is because, normally, to machine
accuracy, F xþ

ffiffi
�
p
; ej

� �
¼ F xð Þ where ej is any column of the identity matrix.)
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If you set XTOL to 0:0 (or any positive value less than �), E04LBF will use 10:0�
ffiffi
�
p

instead of
XTOL.

Suggested value: XTOL ¼ 0:0.

Constraint: XTOL � 0:0.

9: STEPMX – REAL (KIND=nag_wp) Input

On entry: an estimate of the Euclidean distance between the solution and the starting point
supplied by you. (For maximum efficiency a slight overestimate is preferable.)

E04LBF will ensure that, for each iteration,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

x
kð Þ
j � x

k�1ð Þ
j

h i2vuut � STEPMX

where k is the iteration number. Thus, if the problem has more than one solution, E04LBF is
most likely to find the one nearest to the starting point. On difficult problems, a realistic choice
can prevent the sequence of x kð Þ entering a region where the problem is ill-behaved and can also
help to avoid possible overflow in the evaluation of F xð Þ. However, an underestimate of
STEPMX can lead to inefficiency.

Suggested value: STEPMX ¼ 100000:0.

Constraint: STEPMX � XTOL.

10: IBOUND – INTEGER Input

On entry: specifies whether the problem is unconstrained or bounded. If there are bounds on the
variables, IBOUND can be used to indicate whether the facility for dealing with bounds of
special forms is to be used. It must be set to one of the following values:

IBOUND ¼ 0
If the variables are bounded and you are supplying all the lj and uj individually.

IBOUND ¼ 1
If the problem is unconstrained.

IBOUND ¼ 2
If the variables are bounded, but all the bounds are of the form 0 � xj.

IBOUND ¼ 3
If all the variables are bounded, and l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un.

IBOUND ¼ 4
If the problem is unconstrained. (The IBOUND ¼ 4 option is provided purely for
consistency with other routines. In E04LBF it produces the same effect as IBOUND ¼ 1.)

Constraint: 0 � IBOUND � 4.

11: BLðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the fixed lower bounds lj.

If IBOUND is set to 0, you must set BLðjÞ to lj , for j ¼ 1; 2; . . . ; n. (If a lower bound is not
specified for any xj, the corresponding BLðjÞ should be set to a large negative number, e.g.,
�106.)
If IBOUND is set to 3, you must set BLð1Þ to l1; E04LBF will then set the remaining elements of
BL equal to BLð1Þ.
If IBOUND is set to 1, 2 or 4, BL will be initialized by E04LBF.

On exit : the lower bounds actually used by E04LBF, e.g. , if IBOUND ¼ 2,
BLð1Þ ¼ BLð2Þ ¼ � � � ¼ BLðnÞ ¼ 0:0.
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12: BUðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the fixed upper bounds uj.

If IBOUND is set to 0, you must set BUðjÞ to uj , for j ¼ 1; 2; . . . ; n. (If an upper bound is not
specified for any variable, the corresponding BUðjÞ should be set to a large positive number, e.g.,
106.)

If IBOUND is set to 3, you must set BUð1Þ to u1; E04LBF will then set the remaining elements
of BU equal to BUð1Þ.
If IBOUND is set to 1, 2 or 4, BU will then be initialized by E04LBF.

On exit : the upper bounds actually used by E04LBF, e.g. , if IBOUND ¼ 2,
BUð1Þ ¼ BUð2Þ ¼ � � � ¼ BUðNÞ ¼ 106.

13: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n.

On exit: the final point x kð Þ. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the jth component of the
estimated position of the minimum.

14: HESLðLHÞ – REAL (KIND=nag_wp) array Output

On exit: during the determination of a direction pz (see Section 3), H þ E is decomposed into the
product LDLT, where L is a unit lower triangular matrix and D is a diagonal matrix. (The
matrices H, E, L and D are all of dimension nz, where nz is the number of variables free from
their bounds. H consists of those rows and columns of the full estimated second derivative
matrix which relate to free variables. E is chosen so that H þ E is positive definite.)

HESL and HESD are used to store the factors L and D. The elements of the strict lower triangle
of L are stored row by row in the first nz nz � 1ð Þ=2 positions of HESL. The diagonal elements of
D are stored in the first nz positions of HESD. In the last factorization before a normal exit, the
matrix E will be zero, so that HESL and HESD will contain, on exit, the factors of the final
estimated second derivative matrix H. The elements of HESD are useful for deciding whether to
accept the results produced by E04LBF (see Section 7).

15: LH – INTEGER Input

On entry: the dimension of the array HESL as declared in the (sub)program from which E04LBF
is called.

Constraint: LH � max N� N� 1ð Þ=2; 1ð Þ.

16: HESDðNÞ – REAL (KIND=nag_wp) array Output

On exit: during the determination of a direction pz (see Section 3), H þ E is decomposed into the
product LDLT, where L is a unit lower triangular matrix and D is a diagonal matrix. (The
matrices H, E, L and D are all of dimension nz, where nz is the number of variables free from
their bounds. H consists of those rows and columns of the full second derivative matrix which
relate to free variables. E is chosen so that H þ E is positive definite.)

HESL and HESD are used to store the factors L and D. The elements of the strict lower triangle
of L are stored row by row in the first nz nz � 1ð Þ=2 positions of HESL. The diagonal elements of
D are stored in the first nz positions of HESD.

In the last factorization before a normal exit, the matrix E will be zero, so that HESL and HESD
will contain, on exit, the factors of the final second derivative matrix H. The elements of HESD
are useful for deciding whether to accept the result produced by E04LBF (see Section 7).
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17: ISTATEðNÞ – INTEGER array Output

On exit: information about which variables are currently on their bounds and which are free. If
ISTATEðjÞ is:

– equal to �1, xj is fixed on its upper bound;

– equal to �2, xj is fixed on its lower bound;

– equal to �3, xj is effectively a constant (i.e., lj ¼ uj);
– positive, ISTATEðjÞ gives the position of xj in the sequence of free variables.

18: F – REAL (KIND=nag_wp) Output

On exit: the function value at the final point given in X.

19: GðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first derivative vector corresponding to the final point given in X. The components of
G corresponding to free variables should normally be close to zero.

20: IWðLIWÞ – INTEGER array Communication Array
21: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04LBF is
called.

Constraint: LIW � 2.

22: WðLWÞ – REAL (KIND=nag_wp) array Communication Array
23: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04LBF is
called.

Constraint: LW � max 7� Nþ N� N� 1ð Þ=2; 8ð Þ.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04LBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04LBF because you have set IFLAG negative
in FUNCT or H. The value of IFAIL will be the same as your setting of IFLAG.
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IFAIL ¼ 1

On entry, N < 1,
or MAXCAL < 1,
or ETA < 0:0,
or ETA � 1:0,
or XTOL < 0:0,
or STEPMX < XTOL,
or IBOUND < 0,
or IBOUND > 4,
or BLðjÞ > BUðjÞ for some j if IBOUND ¼ 0,
or BLð1Þ > BUð1Þ if IBOUND ¼ 3,
or LH < max 1;N� N� 1ð Þ=2ð Þ,
or LIW < 2,
or LW < max 8; 7� Nþ N� N� 1ð Þ=2ð Þ.
(Note that if you have set XTOL to 0:0, E04LBF uses the default value and continues without
failing.) When this exit occurs no values will have been assigned to F or to the elements of
HESL, HESD or G.

IFAIL ¼ 2

There have been MAXCAL function evaluations. If steady reductions in F xð Þ were monitored up
to the point where this exit occurred, then the exit probably occurred simply because MAXCAL
was set too small, so the calculations should be restarted from the final point held in X. This exit
may also indicate that F xð Þ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been met, but a lower point could not be found.

Provided that, on exit, the first derivatives of F xð Þ with respect to the free variables are
sufficiently small, and that the estimated condition number of the second derivative matrix is not
too large, this error exit may simply mean that, although it has not been possible to satisfy the
specified requirements, the algorithm has in fact found the minimum as far as the accuracy of the
machine permits. Such a situation can arise, for instance, if XTOL has been set so small that
rounding errors in the evaluation of F xð Þ or its derivatives make it impossible to satisfy the
convergence conditions.

If the estimated condition number of the second derivative matrix at the final point is large, it
could be that the final point is a minimum, but that the smallest eigenvalue of the Hessian matrix
is so close to zero that it is not possible to recognize the point as a minimum.

IFAIL ¼ 4

Not used. (This is done to make the significance of IFAIL ¼ 5 similar for E04KDF and E04LBF.)

IFAIL ¼ 5

All the Lagrange multiplier estimates which are not indisputably positive lie relatively close to
zero, but it is impossible either to continue minimizing on the current subspace or to find a
feasible lower point by releasing and perturbing any of the fixed variables. You should
investigate as for IFAIL ¼ 3.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

The values IFAIL ¼ 2, 3 or 5 may also be caused by mistakes in user-supplied subroutines FUNCT or
H, by the formulation of the problem or by an awkward function. If there are no such mistakes, it is
worth restarting the calculations from a different starting point (not the point at which the failure
occurred) in order to avoid the region which caused the failure.

7 Accuracy

A successful exit (IFAIL ¼ 0) is made from E04LBF when H kð Þ is positive definite and when (B1, B2
and B3) or B4 hold, where

B1 	 � kð Þ � p kð Þ�� �� < XTOLþ
ffiffi
�
p

ð Þ � 1:0þ x kð Þ�� ��� �
B2 	 F kð Þ � F k�1ð Þ		 		 < XTOL2 þ �

� �
� 1:0þ F kð Þ		 		� �

B3 	 g kð Þ
z

�� �� < �1=3 þ XTOL
� �

� 1:0þ F kð Þ		 		� �
B4 	 g kð Þ

z

�� �� < 0:01�
ffiffi
�
p
:

(Quantities with superscript k are the values at the kth iteration of the quantities mentioned in Section 3.
� is the machine precision and :k k denotes the Euclidean norm.)

If IFAIL ¼ 0, then the vector in X on exit, xsol, is almost certainly an estimate of the position of the
minimum, xtrue, to the accuracy specified by XTOL.

If IFAIL ¼ 3 or 5, xsol may still be a good estimate of xtrue, but the following checks should be made.
Let the largest of the first nz elements of HESD be HESDðbÞ, let the smallest be HESDðsÞ, and define
k ¼ HESDðbÞ=HESDðsÞ. The scalar k is usually a good estimate of the condition number of the
projected Hessian matrix at xsol. If

(i) the sequence F x kð Þ� �� 
converges to F xsolð Þ at a superlinear or fast linear rate,

(ii) gz xsolð Þk k2 < 10:0� �, and
(iii) k < 1:0= gz xsolð Þk k,
then it is almost certain that xsol is a close approximation to the position of a minimum. When (ii) is
true, then usually F xsolð Þ is a close approximation to F xtrueð Þ. The quantities needed for these checks
are all available via MONIT; in particular the value of COND in the last call of MONIT before exit
gives k.

Further suggestions about confirmation of a computed solution are given in the E04 Chapter
Introduction.

8 Parallelism and Performance

E04LBF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The number of iterations required depends on the number of variables, the behaviour of F xð Þ, the
accuracy demanded and the distance of the starting point from the solution. The number of

multiplications performed in an iteration of E04LBF is
n3z
6
þO n2z

� �
. In addition, each iteration makes

one call of H and at least one call of FUNCT. So, unless F xð Þ and its derivatives can be evaluated very
quickly, the run time will be dominated by the time spent in FUNCT and H.
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9.2 Scaling

Ideally, the problem should be scaled so that, at the solution, F xð Þ and the corresponding values of the
xj are each in the range �1;þ1ð Þ, and so that at points one unit away from the solution, F xð Þ differs
from its value at the solution by approximately one unit. This will usually imply that the Hessian matrix
at the solution is well-conditioned. It is unlikely that you will be able to follow these recommendations
very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the
minimization problem, so that E04LBF will take less computer time.

9.3 Unconstrained Minimization

If a problem is genuinely unconstrained and has been scaled sensibly, the following points apply:

(a) nz will always be n,

(b) HESL and HESD will be factors of the full second derivative matrix with elements stored in the
natural order,

(c) the elements of g should all be close to zero at the final point,

(d) the values of the ISTATEðjÞ given by MONIT and on exit from E04LBF are unlikely to be of
interest (unless they are negative, which would indicate that the modulus of one of the xj has
reached 106 for some reason),

(e) MONIT's argument GPJNRM simply gives the norm of the first derivative vector.

So the following routine (in which partitions of extended workspace arrays are used as BL, BU and
ISTATE) could be used for unconstrained problems:

SUBROUTINE UNCLBF(N,FUNCT,H,MONIT,IPRINT,MAXCAL,ETA,XTOL, &
STEPMX,X,HESL,LH,HESD,F,G,IWORK,LIWORK,WORK, &
LWORK,IFAIL)

! A ROUTINE TO APPLY E04LBF TO UNCONSTRAINED PROBLEMS.

! THE REAL ARRAY WORK MUST BE OF DIMENSION AT LEAST
! (9*N + MAX(1, N*(N-1)/2)). ITS FIRST 7*N + MAX(1, N*(N-1)/2)
! ELEMENTS WILL BE USED BY E04LBF AS THE ARRAY W. ITS LAST
! 2*N ELEMENTS WILL BE USED AS THE ARRAYS BL AND BU.

! THE INTEGER ARRAY IWORK MUST BE OF DIMENSION AT LEAST (N+2)
! ITS FIRST 2 ELEMENTS WILL BE USED BY E04LBF AS THE ARRAY IW.
! ITS LAST N ELEMENTS WILL BE USED AS THE ARRAY ISTATE.

! LIWORK AND LWORK MUST BE SET TO THE ACTUAL LENGTHS OF IWORK
! AND WORK RESPECTIVELY, AS DECLARED IN THE CALLING SEGMENT.

! OTHER PARAMETERS ARE AS FOR E04LBF.

! .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)

! .. Scalar Arguments ..
REAL (KIND=nag_wp) ETA, F, STEPMX, XTOL
INTEGER IFAIL, IPRINT, LH, LIWORK, LWORK, MAXCAL, N

! .. Array Arguments ..
REAL (KIND=nag_wp) G(N), HESD(N), HESL(LH), WORK(LWORK), X(N)
INTEGER IWORK(LIWORK)

! .. Subroutine Arguments ..
EXTERNAL FUNCT, H, MONIT

! .. Local Scalars ..
INTEGER IBOUND, J, JBL, JBU, NH
LOGICAL TOOBIG

! .. External Subroutines ..
EXTERNAL E04LBF

! .. Executable Statements ..
! CHECK THAT SUFFICIENT WORKSPACE HAS BEEN SUPPLIED

NH = N*(N-1)/2
IF (NH.EQ.0) NH = 1
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IF (LWORK.LT.9*N+NH .OR. LIWORK.LT.N+2) THEN
WRITE (NOUT,FMT=99999)
STOP
END IF

! JBL AND JBU SPECIFY THE PARTS OF WORK USED AS BL AND BU
JBL = 7*N + NH + 1
JBU = JBL + N

! SPECIFY THAT THE PROBLEM IS UNCONSTRAINED
IBOUND = 4
CALL E04LBF(N,FUNCT,H,MONIT,IPRINT,MAXCAL,ETA,XTOL,STEPMX, &

IBOUND,WORK(JBL),WORK(JBU),X,HESL,LH,HESD,IWORK(3), &
F,G,IWORK,LIWORK,WORK,LWORK,IFAIL)

! CHECK THE PART OF IWORK WHICH WAS USED AS ISTATE IN CASE
! THE MODULUS OF SOME X(J) HAS REACHED E+6

TOOBIG = .FALSE.
DO 20 J = 1, N

IF (IWORK(2+J).LT.0) TOOBIG = .TRUE.
20 CONTINUE

IF ( .NOT. TOOBIG) RETURN
WRITE (NOUT,FMT=99998)
STOP

99999 FORMAT (’ ***** INSUFFICIENT WORKSPACE HAS BEEN SUPPLIED *****’)
99998 FORMAT (’ ***** A VARIABLE HAS REACHED E+6 IN MODULUS - NO UNCON’, &

’STRAINED MINIMUM HAS BEEN FOUND *****’)
END

10 Example

A program to minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

subject to the bounds

1 � x1 � 3
�2 � x2 � 0
1 � x4 � 3:

starting from the initial guess 3;�1; 0; 1ð Þ. Before calling E04LBF, the program calls E04HCF and
E04HDF to check the derivatives calculated by user-supplied subroutines FUNCT and H.

10.1 Program Text

! E04LBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04lbfe_mod

! E04LBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct, h, monit

! .. Parameters ..
Integer, Parameter, Public :: liw = 2, n = 4, nout = 6
Integer, Parameter, Public :: lh = n*(n-1)/2
Integer, Parameter, Public :: lw = 7*n + n*(n-1)/2

Contains
Subroutine funct(iflag,n,xc,fc,gc,iw,liw,w,lw)

! Routine to evaluate objective function and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc
Integer, Intent (Inout) :: iflag
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Integer, Intent (In) :: liw, lw, n
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (Out) :: gc(n)
Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Executable Statements ..
fc = (xc(1)+10.0_nag_wp*xc(2))**2 + 5.0_nag_wp*(xc(3)-xc(4))**2 + &

(xc(2)-2.0_nag_wp*xc(3))**4 + 10.0_nag_wp*(xc(1)-xc(4))**4
gc(1) = 2.0_nag_wp*(xc(1)+10.0_nag_wp*xc(2)) + &

40.0_nag_wp*(xc(1)-xc(4))**3
gc(2) = 20.0_nag_wp*(xc(1)+10.0_nag_wp*xc(2)) + &

4.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3))**3
gc(3) = 10.0_nag_wp*(xc(3)-xc(4)) - 8.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3) &

)**3
gc(4) = 10.0_nag_wp*(xc(4)-xc(3)) - 40.0_nag_wp*(xc(1)-xc(4))**3

Return

End Subroutine funct
Subroutine h(iflag,n,xc,fhesl,lh,fhesd,iw,liw,w,lw)

! Routine to evaluate 2nd derivatives

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: lh, liw, lw, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fhesd(n), w(lw)
Real (Kind=nag_wp), Intent (Out) :: fhesl(lh)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Executable Statements ..
fhesd(1) = 2.0_nag_wp + 120.0_nag_wp*(xc(1)-xc(4))**2
fhesd(2) = 200.0_nag_wp + 12.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3))**2
fhesd(3) = 10.0_nag_wp + 48.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3))**2
fhesd(4) = 10.0_nag_wp + 120.0_nag_wp*(xc(1)-xc(4))**2
fhesl(1) = 20.0_nag_wp
fhesl(2) = 0.0_nag_wp
fhesl(3) = -24.0_nag_wp*(xc(2)-2.0_nag_wp*xc(3))**2
fhesl(4) = -120.0_nag_wp*(xc(1)-xc(4))**2
fhesl(5) = 0.0_nag_wp
fhesl(6) = -10.0_nag_wp

Return

End Subroutine h
Subroutine monit(n,xc,fc,gc,istate,gpjnrm,cond,posdef,niter,nf,iw,liw,w, &

lw)
! Monitoring routine

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: cond, fc, gpjnrm
Integer, Intent (In) :: liw, lw, n, nf, niter
Logical, Intent (In) :: posdef

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: gc(n), xc(n)
Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Integer, Intent (In) :: istate(n)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Integer :: isj, j

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’ Itn Fn evals Fn value ’, &

’Norm of proj gradient’
Write (nout,99999) niter, nf, fc, gpjnrm
Write (nout,*)
Write (nout,*) &

’ J X(J) G(J) Status’

Do j = 1, n
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isj = istate(j)

Select Case (isj)
Case (1:)

Write (nout,99998) j, xc(j), gc(j), ’ Free’
Case (-1)

Write (nout,99998) j, xc(j), gc(j), ’ Upper Bound’
Case (-2)

Write (nout,99998) j, xc(j), gc(j), ’ Lower Bound’
Case (-3)

Write (nout,99998) j, xc(j), gc(j), ’ Constant’
End Select

End Do

If (cond/=0.0_nag_wp) Then

If (cond>1.0E6_nag_wp) Then
Write (nout,*)
Write (nout,*) &

’Estimated condition number of projected Hessian is more than ’, &
’1.0E+6’

Else
Write (nout,*)
Write (nout,99997) &

’Estimated condition number of projected Hessian = ’, cond
End If

If (.Not. posdef) Then
Write (nout,*)
Write (nout,*) ’Projected Hessian matrix is not positive definite’

End If

End If

Return

99999 Format (1X,I3,6X,I5,2(6X,1P,E20.4))
99998 Format (1X,I2,1X,1P,2E20.4,A)
99997 Format (1X,A,1P,E10.2)

End Subroutine monit
End Module e04lbfe_mod
Program e04lbfe

! E04LBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04hcf, e04hdf, e04lbf, nag_wp
Use e04lbfe_mod, Only: funct, h, lh, liw, lw, monit, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: eta, f, stepmx, xtol
Integer :: ibound, ifail, iprint, maxcal, nz

! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(n), bu(n), g(n), hesd(n), &

hesl(lh), w(lw), x(n)
Integer :: istate(n), iw(liw)

! .. Intrinsic Procedures ..
Intrinsic :: count

! .. Executable Statements ..
Write (nout,*) ’E04LBF Example Program Results’
Flush (nout)

! Set up an arbitrary point at which to check the derivatives

x(1:n) = (/1.46_nag_wp,-0.82_nag_wp,0.57_nag_wp,1.21_nag_wp/)

! Check the 1st derivatives

ifail = 0
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Call e04hcf(n,funct,x,f,g,iw,liw,w,lw,ifail)

! Check the 2nd derivatives

ifail = 0
Call e04hdf(n,funct,h,x,g,hesl,lh,hesd,iw,liw,w,lw,ifail)

! Continue setting parameters for E04LBF

! Set IPRINT to 1 to obtain output from MONIT at each iteration
iprint = -1

maxcal = 50*n
eta = 0.9_nag_wp

! Set XTOL to zero so that E04LBF will use the default tolerance

xtol = 0.0_nag_wp

! We estimate that the minimum will be within 4 units of the
! starting point

stepmx = 4.0_nag_wp

ibound = 0

! X(3) is unconstrained, so we set BL(3) to a large negative
! number and BU(3) to a large positive number.

bl(1:n) = (/1.0_nag_wp,-2.0_nag_wp,-1.0E6_nag_wp,1.0_nag_wp/)
bu(1:n) = (/3.0_nag_wp,0.0_nag_wp,1.0E6_nag_wp,3.0_nag_wp/)

! Set up starting point

x(1:n) = (/3.0_nag_wp,-1.0_nag_wp,0.0_nag_wp,1.0_nag_wp/)

ifail = -1
Call e04lbf(n,funct,h,monit,iprint,maxcal,eta,xtol,stepmx,ibound,bl,bu, &

x,hesl,lh,hesd,istate,f,g,iw,liw,w,lw,ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’Function value on exit is ’, f
Write (nout,99998) ’at the point’, x(1:n)
Write (nout,*) ’The corresponding (machine dependent) gradient is’
Write (nout,99997) g(1:n)
Write (nout,99996) ’ISTATE contains’, istate(1:n)

nz = count(istate(1:n)>0)

Write (nout,99995) ’and HESD contains’, hesd(1:nz)
End Select

99999 Format (1X,A,F9.4)
99998 Format (1X,A,4F9.4)
99997 Format (23X,1P,4E12.3)
99996 Format (1X,A,4I5)
99995 Format (1X,A,4E12.4)

End Program e04lbfe

10.2 Program Data

None.
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10.3 Program Results

E04LBF Example Program Results
** The conditions for a minimum have not all been satisfied,
** but a lower point could not be found.
** ABNORMAL EXIT from NAG Library routine E04LBF: IFAIL = 3
** NAG soft failure - control returned

Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
The corresponding (machine dependent) gradient is

2.953E-01 -5.867E-10 1.173E-09 5.907E+00
ISTATE contains -2 1 2 -2
and HESD contains 0.2098E+03 0.4738E+02

E04 – Minimizing or Maximizing a Function E04LBF

Mark 26 E04LBF.17 (last)





NAG Library Routine Document

E04LYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04LYF is an easy-to-use modified-Newton algorithm for finding a minimum of a function,
F x1; x2; . . . ; xnð Þ subject to fixed upper and lower bounds on the independent variables,
x1; x2; . . . ; xn when first and second derivatives of F are available. It is intended for functions which
are continuous and which have continuous first and second derivatives (although it will usually work
even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04LYF (N, IBOUND, FUNCT2, HESS2, BL, BU, X, F, G, IW, LIW,
W, LW, IUSER, RUSER, IFAIL)

&

INTEGER N, IBOUND, IW(LIW), LIW, LW, IUSER(*), IFAIL
REAL (KIND=nag_wp) BL(N), BU(N), X(N), F, G(N), W(LW), RUSER(*)
EXTERNAL FUNCT2, HESS2

3 Description

E04LYF is applicable to problems of the form:

MinimizeF x1; x2; . . . ; xnð Þ subject to lj � xj � uj; j ¼ 1; 2; . . . ; n

when first and second derivatives of F xð Þ are available.

Special provision is made for problems which actually have no bounds on the xj, problems which have
only non-negativity bounds and problems in which l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un. You must
supply a subroutine to calculate the values of F xð Þ and its first derivatives at any point x and a
subroutine to calculate the second derivatives.

From a starting point you supplied there is generated, on the basis of estimates of the curvature of
F xð Þ, a sequence of feasible points which is intended to converge to a local minimum of the
constrained function.

4 References

Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC 72
National Physical Laboratory

5 Arguments

1: N – INTEGER Input

On entry: the number n of independent variables.

Constraint: N � 1.

2: IBOUND – INTEGER Input

On entry: indicates whether the facility for dealing with bounds of special forms is to be used. It
must be set to one of the following values:

IBOUND ¼ 0
If you are supplying all the lj and uj individually.
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IBOUND ¼ 1
If there are no bounds on any xj.

IBOUND ¼ 2
If all the bounds are of the form 0 � xj.

IBOUND ¼ 3
If l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un.

Constraint: 0 � IBOUND � 3.

3: FUNCT2 – SUBROUTINE, supplied by the user. External Procedure

You must supply this routine to calculate the values of the function F xð Þ and its first derivatives
@F

@xj
at any point x. It should be tested separately before being used in conjunction with E04LYF

(see the E04 Chapter Introduction).

The specification of FUNCT2 is:

SUBROUTINE FUNCT2 (N, XC, FC, GC, IUSER, RUSER)

INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, GC(N), RUSER(*)

1: N – INTEGER Input

On entry: the number n of variables.

2: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the function and its derivatives are required.

3: FC – REAL (KIND=nag_wp) Output

On exit: the value of the function F at the current point x.

4: GCðNÞ – REAL (KIND=nag_wp) array Output

On exit: GCðjÞ must be set to the value of the first derivative
@F

@xj
at the point x, for

j ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FUNCT2 is called with the arguments IUSER and RUSER as supplied to E04LYF. You
should use the arrays IUSER and RUSER to supply information to FUNCT2.

FUNCT2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04LYF is called. Arguments denoted as Input must not be changed by this
procedure.

4: HESS2 – SUBROUTINE, supplied by the user. External Procedure

You must supply this routine to evaluate the elements Hij ¼
@2F

@xi@xj
of the matrix of second

derivatives of F xð Þ at any point x. It should be tested separately before being used in conjunction
with E04LYF (see the E04 Chapter Introduction).

The specification of HESS2 is:

SUBROUTINE HESS2 (N, XC, HESLC, LH, HESDC, IUSER, RUSER)
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INTEGER N, LH, IUSER(*)
REAL (KIND=nag_wp) XC(N), HESLC(LH), HESDC(N), RUSER(*)

1: N – INTEGER Input

On entry: the number n of variables.

2: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the derivatives are required.

3: HESLCðLHÞ – REAL (KIND=nag_wp) array Output

On exit: HESS2 must place the strict lower triangle of the second derivative matrix H

in HESLC, stored by rows, i.e., set HESLCð i � 1ð Þ i � 2ð Þ=2þ jÞ ¼ @2F

@xi@xj
, for

i ¼ 2; 3; . . . ; n and j ¼ 1; 2; . . . ; i � 1. (The upper triangle is not required because the
matrix is symmetric.)

4: LH – INTEGER Input

On entry: the length of the array HESLC.

5: HESDCðNÞ – REAL (KIND=nag_wp) array Output

On exit: must contain the diagonal elements of the second derivative matrix, i.e., set

HESDCðjÞ ¼ @
2F

@x2j
, for j ¼ 1; 2; . . . ; n.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

HESS2 is called with the arguments IUSER and RUSER as supplied to E04LYF. You
should use the arrays IUSER and RUSER to supply information to HESS2.

HESS2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04LYF is called. Arguments denoted as Input must not be changed by this
procedure.

5: BLðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the lower bounds lj.

If IBOUND is set to 0, BLðjÞ must be set to lj , for j ¼ 1; 2; . . . ; n. (If a lower bound is not
specified for any xj, the corresponding BLðjÞ should be set to �106.)
If IBOUND is set to 3, you must set BLð1Þ to l1; E04LYF will then set the remaining elements of
BL equal to BLð1Þ.
On exit: the lower bounds actually used by E04LYF.

6: BUðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the upper bounds uj.

If IBOUND is set to 0, BUðjÞ must be set to uj , for j ¼ 1; 2; . . . ; n. (If an upper bound is not
specified for any xj the corresponding BUðjÞ should be set to 106.)

If IBOUND is set to 3, you must set BUð1Þ to u1; E04LYF will then set the remaining elements
of BU equal to BUð1Þ.
On exit: the upper bounds actually used by E04LYF.
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7: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n. The routine checks the gradient and the Hessian matrix at the starting point, and
is more likely to detect any error in your programming if the initial XðjÞ are nonzero and
mutually distinct.

On exit: the lowest point found during the calculations. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the
jth component of the position of the minimum.

8: F – REAL (KIND=nag_wp) Output

On exit: the value of F xð Þ corresponding to the final point stored in X.

9: GðNÞ – REAL (KIND=nag_wp) array Output

On exit: the value of
@F

@xj
corresponding to the final point stored in X, for j ¼ 1; 2; . . . ; n; the

value of GðjÞ for variables not on a bound should normally be close to zero.

10: IWðLIWÞ – INTEGER array Workspace
11: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04LYF is
called.

Constraint: LIW � Nþ 2.

12: WðLWÞ – REAL (KIND=nag_wp) array Workspace
13: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04LYF is
called.

Constraint: LW � max N� Nþ 7ð Þ; 10ð Þ.

14: IUSERð�Þ – INTEGER array User Workspace
15: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04LYF, but are passed directly to FUNCT2 and HESS2 and
should be used to pass information to these routines.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04LYF may return useful information for one or more of the following detected errors or
warnings.
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Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or IBOUND < 0,
or IBOUND > 3,
or IBOUND ¼ 0 and BLðjÞ > BUðjÞ for some j,
or IBOUND ¼ 3 and BLð1Þ > BUð1Þ,
or LIW < Nþ 2,
or LW < max 10;N� Nþ 7ð Þð Þ.

IFAIL ¼ 2

There have been 50� N function evaluations, yet the algorithm does not seem to be converging.
The calculations can be restarted from the final point held in X. The error may also indicate that
F xð Þ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been met but a lower point could not be found and
the algorithm has failed.

IFAIL ¼ 4

Not used. (This value of the argument is included so as to make the significance of IFAIL ¼ 5
etc. consistent in the easy-to-use routines.)

IFAIL ¼ 5
IFAIL ¼ 6
IFAIL ¼ 7
IFAIL ¼ 8

There is some doubt about whether the point x found by E04LYF is a minimum. The degree of
confidence in the result decreases as IFAIL increases. Thus, when IFAIL ¼ 5 it is probable that
the final x gives a good estimate of the position of a minimum, but when IFAIL ¼ 8 it is very
unlikely that the routine has found a minimum.

IFAIL ¼ 9

In the search for a minimum, the modulus of one of the variables has become very large � 106
� �

.
This indicates that there is a mistake in user-supplied subroutines FUNCT2 or HESS2, that your
problem has no finite solution, or that the problem needs rescaling (see Section 9).

IFAIL ¼ 10

It is very likely that you have made an error in forming the gradient.

IFAIL ¼ 11

It is very likely that you have made an error in forming the second derivatives.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If you are dissatisfied with the result (e.g., because IFAIL ¼ 5, 6, 7 or 8), it is worth restarting the
calculations from a different starting point (not the point at which the failure occurred) in order to avoid
the region which caused the failure.

7 Accuracy

When a successful exit is made then, for a computer with a mantissa of t decimals, one would expect to
get about t=2� 1 decimals accuracy in x, and about t� 1 decimals accuracy in F , provided the
problem is reasonably well scaled.

8 Parallelism and Performance

E04LYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of iterations required depends on the number of variables, the behaviour of F xð Þ and the
distance of the starting point from the solution. The number of operations performed in an iteration of
E04LYF is roughly proportional to n3 þO n2

� �
. In addition, each iteration makes one call of HESS2

and at least one call of FUNCT2. So, unless F xð Þ, the gradient vector and the matrix of second
derivatives can be evaluated very quickly, the run time will be dominated by the time spent in user-
supplied subroutines FUNCT2 and HESS2.

Ideally the problem should be scaled so that at the solution the value of F xð Þ and the corresponding
values of x1; x2; . . . xn are each in the range �1;þ1ð Þ, and so that at points a unit distance away from
the solution, F is approximately a unit value greater than at the minimum. It is unlikely that you will be
able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible
scaling will reduce the difficulty of the minimization problem, so that E04LYF will take less computer
time.

10 Example

A program to minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

subject to

1 � x1 � 3
�2 � x2 � 0
1 � x4 � 3:

starting from the initial guess 3;�1; 0; 1ð Þ. (In practice, it is worth trying to make user-supplied
subroutines FUNCT2 and HESS2 as efficient as possible. This has not been done in the example
program for reasons of clarity.)
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10.1 Program Text

! E04LYF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04lyfe_mod

! E04LYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: funct2, hess2

! .. Parameters ..
Integer, Parameter, Public :: n = 4, nout = 6
Integer, Parameter, Public :: liw = n + 2
Integer, Parameter, Public :: lw = n*(n+7)

Contains
Subroutine funct2(n,xc,fc,gc,iuser,ruser)

! Routine to evaluate objective function and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gc(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: x1, x2, x3, x4

! .. Executable Statements ..
x1 = xc(1)
x2 = xc(2)
x3 = xc(3)
x4 = xc(4)
fc = (x1+10.0_nag_wp*x2)**2 + 5.0_nag_wp*(x3-x4)**2 + &

(x2-2.0_nag_wp*x3)**4 + 10.0_nag_wp*(x1-x4)**4
gc(1) = 2.0_nag_wp*(x1+10.0_nag_wp*x2) + 40.0_nag_wp*(x1-x4)**3
gc(2) = 20.0_nag_wp*(x1+10.0_nag_wp*x2) + 4.0_nag_wp*(x2-2.0_nag_wp*x3 &

)**3
gc(3) = 10.0_nag_wp*(x3-x4) - 8.0_nag_wp*(x2-2.0_nag_wp*x3)**3
gc(4) = -10.0_nag_wp*(x3-x4) - 40.0_nag_wp*(x1-x4)**3

Return

End Subroutine funct2
Subroutine hess2(n,xc,heslc,lh,hesdc,iuser,ruser)

! Routine to evaluate 2nd derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: lh, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hesdc(n), heslc(lh)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: x1, x2, x3, x4

! .. Executable Statements ..
x1 = xc(1)
x2 = xc(2)
x3 = xc(3)
x4 = xc(4)
hesdc(1) = 2.0_nag_wp + 120.0_nag_wp*(x1-x4)**2
hesdc(2) = 200.0_nag_wp + 12.0_nag_wp*(x2-2.0_nag_wp*x3)**2
hesdc(3) = 10.0_nag_wp + 48.0_nag_wp*(x2-2.0_nag_wp*x3)**2
hesdc(4) = 10.0_nag_wp + 120.0_nag_wp*(x1-x4)**2
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heslc(1) = 20.0_nag_wp
heslc(2) = 0.0_nag_wp
heslc(3) = -24.0_nag_wp*(x2-2.0_nag_wp*x3)**2
heslc(4) = -120.0_nag_wp*(x1-x4)**2
heslc(5) = 0.0_nag_wp
heslc(6) = -10.0_nag_wp

Return

End Subroutine hess2
End Module e04lyfe_mod
Program e04lyfe

! E04LYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04lyf, nag_wp
Use e04lyfe_mod, Only: funct2, hess2, liw, lw, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: f
Integer :: ibound, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(n), bu(n), g(n), ruser(1), w(lw), &

x(n)
Integer :: iuser(1), iw(liw)

! .. Executable Statements ..
Write (nout,*) ’E04LYF Example Program Results’
Flush (nout)

ibound = 0

! X(3) is unconstrained, so we set BL(3) to a large negative
! number and BU(3) to a large positive number.

bl(1:n) = (/1.0_nag_wp,-2.0_nag_wp,-1.0E6_nag_wp,1.0_nag_wp/)
bu(1:n) = (/3.0_nag_wp,0.0_nag_wp,1.0E6_nag_wp,3.0_nag_wp/)

! Set up starting point

x(1:n) = (/3.0_nag_wp,-1.0_nag_wp,0.0_nag_wp,1.0_nag_wp/)

ifail = -1
Call e04lyf(n,ibound,funct2,hess2,bl,bu,x,f,g,iw,liw,w,lw,iuser,ruser, &

ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’Function value on exit is ’, f
Write (nout,99999) ’at the point’, x(1:n)
Write (nout,*) ’The corresponding (machine dependent) gradient is’
Write (nout,99998) g(1:n)

End Select

99999 Format (1X,A,4F9.4)
99998 Format (13X,4E12.4)

End Program e04lyfe

10.2 Program Data

None.
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10.3 Program Results

E04LYF Example Program Results
** It is probable that a local minimum has been found,
** but it cannot be guaranteed.
** ABNORMAL EXIT from NAG Library routine E04LYF: IFAIL = 5
** NAG soft failure - control returned

Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
The corresponding (machine dependent) gradient is

0.2953E+00 -0.5867E-09 0.1173E-08 0.5907E+01
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NAG Library Routine Document

E04MFF/E04MFA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

E04MFF/E04MFA solves general linear programming problems. It is not intended for large sparse
problems.

E04MFA is a version of E04MFF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04MFA.

2 Specification

2.1 Specification for E04MFF

SUBROUTINE E04MFF (N, NCLIN, A, LDA, BL, BU, CVEC, ISTATE, X, ITER, OBJ,
AX, CLAMDA, IWORK, LIWORK, WORK, LWORK, IFAIL)

&

INTEGER N, NCLIN, LDA, ISTATE(N+NCLIN), ITER,
IWORK(LIWORK), LIWORK, LWORK, IFAIL

&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN), BU(N+NCLIN), CVEC(*), X(N),
OBJ, AX(max(1,NCLIN)), CLAMDA(N+NCLIN), WORK(LWORK)

&

2.2 Specification for E04MFA

SUBROUTINE E04MFA (N, NCLIN, A, LDA, BL, BU, CVEC, ISTATE, X, ITER, OBJ,
AX, CLAMDA, IWORK, LIWORK, WORK, LWORK, LWSAV, IWSAV,
RWSAV, IFAIL)

&
&

INTEGER N, NCLIN, LDA, ISTATE(N+NCLIN), ITER,
IWORK(LIWORK), LIWORK, LWORK, IWSAV(610), IFAIL

&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN), BU(N+NCLIN), CVEC(*), X(N),
OBJ, AX(max(1,NCLIN)), CLAMDA(N+NCLIN),
WORK(LWORK), RWSAV(475)

&
&

LOGICAL LWSAV(120)

Before calling E04MFA, or either of the option setting routines E04MGA or E04MHA, E04WBF must
be called. The specification for E04WBF is:

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
RWSAV, LRWSAV, IFAIL)

&

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV,
IFAIL

&

REAL (KIND=nag_wp) RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER(*) RNAME
CHARACTER(80) CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ E04MFA . LCWSAV, LLWSAV, LIWSAV and LRWSAV,
the declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:
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LCWSAV � 1

LLWSAV � 120

LIWSAV � 610

LRWSAV � 475

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04MFA, E04MGA, E04MHA and E04WBF.

3 Description

E04MFF/E04MFA is designed to solve linear programming (LP) problems of the form

minimize
x2Rn

cTx; subject to l � x
Ax


 �
� u;

where c is an n-element vector and A is an mL by n matrix.

This is the default type of problem, referred to as type LP. The optional parameter Problem Type may
be used to specify an alternative problem type FP, in which the objective function is omitted and the
routine attempts to find a feasible point for the set of constraints.

The constraints involving A are called the general constraints. Note that upper and lower bounds are
specified for all the variables and for all the general constraints. An equality constraint can be specified
by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u can be set to
special values that will be treated as �1 or þ1. (See the description of the optional parameter Infinite
Bound Size.)

You must supply an initial estimate of the solution.

The method used by E04MFF/E04MFA is described in detail in Section 11.

4 References

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users' guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E and Murray W (1978) Numerically stable methods for quadratic programming Math.
Programming 14 349–372

Gill P E, Murray W, Saunders M A and Wright M H (1984) Procedures for optimization problems with
a mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for
linearly constrained optimization Math. Programming 45 437–474

Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: NCLIN – INTEGER Input

On entry: mL, the number of general linear constraints.

Constraint: NCLIN � 0.
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3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0 and at least 1 if
NCLIN ¼ 0.

On entry: the ith row of A must contain the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ;mL.

If NCLIN ¼ 0, A is not referenced.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
E04MFF/E04MFA is called.

Constraint: LDA � max 1;NCLINð Þ.

5: BLðNþ NCLINÞ – REAL (KIND=nag_wp) array Input
6: BUðNþ NCLINÞ – REAL (KIND=nag_wp) array Input

On entry: must contain the lower bounds and BU the upper bounds, for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, and
the next mL elements the bounds for the general linear constraints (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a nonexistent
upper bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this
may be changed by the optional parameter Infinite Bound Size. To specify the jth constraint as
an equality, set BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLIN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

7: CVECð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array CVEC must be at least N if the problem is of type LP (the
default), and at least 1 otherwise.

On entry: the coefficients of the objective function when the problem is of type LP.

If the problem is of type FP, CVEC is not referenced.

8: ISTATEðNþ NCLINÞ – INTEGER array Input/Output

On entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, ISTATE specifies the desired status of
the constraints at the start of the feasibility phase. More precisely, the first n elements of ISTATE
refer to the upper and lower bounds on the variables, and the next mL elements refer to the
general linear constraints (if any). Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ Meaning

0 The corresponding constraint should not be in the initial working set.

1 The constraint should be in the initial working set at its lower bound.

2 The constraint should be in the initial working set at its upper bound.

3 The constraint should be in the initial working set as an equality. This value must
not be specified unless BLðjÞ ¼ BUðjÞ.

The values �2, �1 and 4 are also acceptable but will be reset to zero by the routine. If E04MFF/
E04MFA has been called previously with the same values of N and NCLIN, ISTATE already
contains satisfactory information. (See also the description of the optional parameter Warm
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Start.) The routine also adjusts (if necessary) the values supplied in X to be consistent with
ISTATE.

Constraint: �2 � ISTATEðjÞ � 4, for j ¼ 1; 2; . . . ;Nþ NCLIN.

On exit: the status of the constraints in the working set at the point returned in X. The
significance of each possible value of ISTATEðjÞ is as follows:

ISTATEðjÞ Meaning

�2 The constraint violates its lower bound by more than the feasibility tolerance.

�1 The constraint violates its upper bound by more than the feasibility tolerance.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the
working set.

1 This inequality constraint is included in the working set at its lower bound.

2 This inequality constraint is included in the working set at its upper bound.

3 This constraint is included in the working set as an equality. This value of ISTATE
can occur only when BLðjÞ ¼ BUðjÞ.

4 This corresponds to optimality being declared with XðjÞ being temporarily fixed at
its current value. This value of ISTATE can occur only when IFAIL ¼ 1 on exit.

9: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the solution.

On exit: the point at which E04MFF/E04MFA terminated. If IFAIL ¼ 0, 1 or 4, X contains an
estimate of the solution.

10: ITER – INTEGER Output

On exit: the total number of iterations performed.

11: OBJ – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at x if x is feasible, or the sum of infeasibiliites at x
otherwise. If the problem is of type FP and x is feasible, OBJ is set to zero.

12: AXðmax 1;NCLINð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the final values of the linear constraints Ax.

If NCLIN ¼ 0, AX is not referenced.

13: CLAMDAðNþ NCLINÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the Lagrange multipliers for each constraint with respect to the current
working set. The first n elements contain the multipliers for the bound constraints on the
variables, and the next mL elements contain the multipliers for the general linear constraints (if
any). If ISTATEðjÞ ¼ 0 (i.e., constraint j is not in the working set), CLAMDAðjÞ is zero. If x is
optimal, CLAMDAðjÞ should be non-negative if ISTATEðjÞ ¼ 1, non-positive if ISTATEðjÞ ¼ 2
and zero if ISTATEðjÞ ¼ 4.

14: IWORKðLIWORKÞ – INTEGER array Workspace
15: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
E04MFF/E04MFA is called.

Constraint: LIWORK � 2� Nþ 3.
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16: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
E04MFF/E04MFA is called.

Constraints:

if the problem is of type LP (the default),

if NCLIN ¼ 0, LWORK � 7� Nþ 1;
if NCLIN � N, LWORK � 2� N2 þ 7� Nþ 5� NCLIN;
otherwise LWORK � 2� NCLINþ 1ð Þ2 þ 7� Nþ 5� NCLIN.;

if the problem is of type FP,

if NCLIN ¼ 0, LWORK � 6� Nþ 1;
if NCLIN � N, LWORK � 2� N2 þ 6� Nþ 5� NCLIN;
otherwise LWORK � 2� NCLINþ 1ð Þ2 þ 6� Nþ 5� NCLIN..

The amounts of workspace provided and required are (by default) output on the current advisory
message unit (as defined by X04ABF). As an alternative to computing LIWORK and LWORK
from the formulas given above, you may prefer to obtain appropriate values from the output of a
preliminary run with LIWORK and LWORK set to 1. (E04MFF/E04MFA will then terminate
with IFAIL ¼ 6.)

18: IFAIL – INTEGER Input/Output

Note: for E04MFA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04MFF/E04MFA returns with IFAIL ¼ 0 if x is a strong local minimizer, i.e., the reduced
gradient (Norm Gz; see Section 9.2) is negligible and the Lagrange multipliers (Lagr Mult; see
Section 9.2) are optimal.

Note: the following are additional arguments for specific use with E04MFA. Users of E04MFF
therefore need not read the remainder of this description.

19: LWSAVð120Þ – LOGICAL array Communication Array
20: IWSAVð610Þ – INTEGER array Communication Array
21: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04MFA, E04MGA, E04MHA or E04WBF.

22: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04MFF/E04MFA may return useful information for one or more of the following detected errors
or warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

x is a weak local minimum (the projected gradient is negligible and the Lagrange multipliers are
optimal but there is a small multiplier). This means that the solution is not unique.

IFAIL ¼ 2

The solution appears to be unbounded, i.e., the objective function is not bounded below in the
feasible region. This value of IFAIL occurs if a step larger than Infinite Step Size
(default value ¼ 1020) would have to be taken in order to continue the algorithm, or the next
step would result in an element of x having magnitude larger than optional parameter Infinite
Bound Size (default value ¼ 1020).

IFAIL ¼ 3

No feasible point was found, i.e., it was not possible to satisfy all the constraints to within the
feasibility tolerance. In this case, the constraint violations at the final x will reveal a value of the
tolerance for which a feasible point will exist – for example, when the feasibility tolerance for
each violated constraint exceeds its Slack (see Section 9.2) at the final point. The modified
problem (with an altered feasibility tolerance) may then be solved using a Warm Start. You
should check that there are no constraint redundancies. If the data for the constraints are accurate
only to the absolute precision �, you should ensure that the value of the optional parameter
Feasibility Tolerance (default value ¼

ffiffi
�
p

, where � is the machine precision) is greater than �.
For example, if all elements of A are of order unity and are accurate only to three decimal places,
the Feasibility Tolerance should be at least 10�3.

IFAIL ¼ 4

The limiting number of iterations was reached before normal termination occurred.

The value of the optional parameter Iteration Limit (default value ¼ max 50; 5 nþmLð Þð Þ) may
be too small. If the method appears to be making progress (e.g., the objective function is being
satisfactorily reduced), either rerun E04MFF/E04MFA with a larger value of Iteration Limit or,
alternatively, rerun E04MFF/E04MFA using the Warm Start facility to specify the initial
working set.

IFAIL ¼ 5

Not used by this routine.

IFAIL ¼ 6

An input argument is invalid.

IFAIL ¼ 7

The designated problem type was not FP or LP. Rerun E04MFF/E04MFA with the optional
parameter Problem Type set to one of these values.

Overflow

If the printed output before the overflow error contains a warning about serious ill-conditioning
in the working set when adding the jth constraint, it may be possible to avoid the difficulty by
increasing the magnitude of the Feasibility Tolerance (default value ¼

ffiffi
�
p

, where � is the
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machine precision) and rerunning the program. If the message recurs even after this change, the
offending linearly dependent constraint (with index ‘j’) must be removed from the problem.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

E04MFF/E04MFA implements a numerically stable active set strategy and returns solutions that are as
accurate as the condition of the problem warrants on the machine.

8 Parallelism and Performance

E04MFF/E04MFA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This section contains some comments on scaling and a description of the printed output.

9.1 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the
problem less sensitive to perturbations in the data, thus improving the condition of the problem. In the
absence of better information it is usually sensible to make the Euclidean lengths of each constraint of
comparable magnitude. See the E04 Chapter Introduction and Gill et al. (1981) for further information
and advice.

9.2 Description of the Printed Output

This section describes the intermediate printout and final printout produced by E04MFF/E04MFA. The
intermediate printout is a subset of the monitoring information produced by the routine at every
iteration (see Section 13). You can control the level of printed output (see the description of the
optional parameter Print Level). Note that the intermediate printout and final printout are produced
only if Print Level � 10 (the default for E04MFF, by default no output is produced by E04MFA).

The following line of summary output ( < 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration, Step will be the step to the nearest constraint. When
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the problem is of type LP, the step can be greater than one during the optimality
phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function of (1). The output line for the
final iteration of the feasibility phase (i.e., the first iteration for which Ninf is
zero) will give the value of the true objective at the first feasible point.

During the optimality phase the value of the objective function will be
nonincreasing. During the feasibility phase the number of constraint infeasibilities
will not increase until either a feasible point is found or the optimality of the
multipliers implies that no feasible point exists. Once optimal multipliers are
obtained the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Norm Gz is ZT
RgFR

�� ��, the Euclidean norm of the reduced gradient with respect to ZR.
During the optimality phase, this norm will be approximately zero after a unit
step. (See Sections 11.2 and 11.4.)

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if
temporarily fixed at its current value). If Value lies outside the upper or lower
bounds by more than the Feasibility Tolerance, State will be ++ or --
respectively.

A key is sometimes printed before State.

A Alternative optimum possible. The variable is active at one of its bounds,
but its Lagrange multiplier is essentially zero. This means that if the
variable were allowed to start moving away from its bound then there
would be no change to the objective function. The values of the other free
variables might change, giving a genuine alternative solution. However, if
there are any degenerate variables (labelled D), the actual change might
prove to be zero, since one of them could encounter a bound immediately.
In either case the values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is
FR unless BLðjÞ � �bigbnd and BUðjÞ � bigbnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL and
non-positive if State is UL.
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Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ
respectively, and with the following change in the heading:

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL, of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This example minimizes the function

�0:02x1 � 0:2x2 � 0:2x3 � 0:2x4 � 0:2x5 þ 0:04x6 þ 0:04x7

subject to the bounds

�0:01 � x1 � 0:01
�0:1 � x2 � 0:15
�0:01 � x3 � 0:03
�0:04 � x4 � 0:02
�0:1 � x5 � 0:05
�0:01 � x6
�0:01 � x7

and the general constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ �0:13
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � �0:0049
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 � �0:0064
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � �0:0037
0:02x1 þ 0:03x2 þ 0:01x5 � �0:0012

�0:0992 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
�0:003 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 0:002

The initial point, which is infeasible, is

x0 ¼ �0:01;�0:03; 0:0;�0:01;�0:1; 0:02; 0:01ð ÞT:

The optimal solution (to five figures) is

x� ¼ �0:01;�0:1; 0:03; 0:02;�0:067485;�0:0022801;�0:00023453ð ÞT:

Four bound constraints and three general constraints are active at the solution.

The document for E04MGF/E04MGA includes an example program to solve the same problem using
some of the optional parameters described in Section 12.

10.1 Program Text

the following program illustrates the use of E04MFF. An equivalent program illustrating the use of
E04MFA is available with the supplied Library and is also available from the NAG web site.

Program e04mffe

! E04MFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: e04mff, e04mhf, nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: obj
Integer :: i, ifail, iter, j, lda, liwork, &

lwork, n, nclin, sda
Logical :: verbose_output

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ax(:), bl(:), bu(:), &

clamda(:), cvec(:), work(:), x(:)
Integer, Allocatable :: istate(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04MFF Example Program Results’

! Skip heading in data file

Read (nin,*)
Read (nin,*) n, nclin
liwork = 2*n + 3

! The minimum LWORK for an LP problem:

If (0<nclin .And. nclin<n) Then
lwork = 2*(nclin+1)**2 + 7*n + 5*nclin

Else If (nclin>=n) Then
lwork = 2*n**2 + 7*n + 5*nclin

Else
lwork = 7*n + 1

End If

lda = max(1,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

Allocate (istate(n+nclin),iwork(liwork),a(lda,sda),bl(n+nclin), &
bu(n+nclin),cvec(n),x(n),ax(max(1,nclin)),clamda(n+nclin),work(lwork))

Read (nin,*) cvec(1:n)
Read (nin,*)(a(i,1:sda),i=1,nclin)
Read (nin,*) bl(1:(n+nclin))
Read (nin,*) bu(1:(n+nclin))
Read (nin,*) x(1:n)

! Set this to .True. to cause e04nqf to produce intermediate
! progress output

verbose_output = .False.

If (.Not. verbose_output) Then
! Turn off intermediate output from e04mff - it is on by default

Call e04mhf(’Nolist’)
Call e04mhf(’Print Level = 0’)

End If

! Solve the problem

ifail = 0
Call e04mff(n,nclin,a,lda,bl,bu,cvec,istate,x,iter,obj,ax,clamda,iwork, &

liwork,work,lwork,ifail)

Select Case (ifail)
Case (0:5,7:)

Write (nout,*)
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Write (nout,99999)
Do i = 1, n

Write (nout,99998) i, istate(i), x(i), clamda(i)
End Do

If (nclin>0) Then
Write (nout,*)
Write (nout,99997)
Do i = n + 1, n + nclin

j = i - n
Write (nout,99996) j, istate(i), ax(j), clamda(i)

End Do

End If

Write (nout,*)
Write (nout,99995) obj

End Select

99999 Format (1X,’Varbl’,3X,’Istate’,4X,’Value’,9X,’Lagr Mult’)
99998 Format (1X,’V’,2(1X,I3),4X,1P,E14.3,2X,1P,E12.3)
99997 Format (1X,’L Con’,3X,’Istate’,4X,’Value’,9X,’Lagr Mult’)
99996 Format (1X,’L’,2(1X,I3),4X,1P,E14.3,2X,1P,E12.3)
99995 Format (1X,’Final objective value = ’,1P,E15.3)

End Program e04mffe

10.2 Program Data

E04MFF Example Program Data
7 7 :Values of N and NCLIN

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of CVEC
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.00
0.02 0.04 0.01 0.02 0.02 0.00 0.00
0.02 0.03 0.00 0.00 0.01 0.00 0.00
0.70 0.75 0.80 0.75 0.80 0.97 0.00
0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of matrix A

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01
-0.13 -1.0D+25 -1.0D+25 -1.0D+25 -1.0D+25 -9.92D-02 -3.0D-03 :End of BL
0.01 0.15 0.03 0.02 0.05 1.0D+25 1.0D+25

-0.13 -4.9D-03 -6.4D-03 -3.7D-03 -1.2D-03 1.0D+25 2.0D-03 :End of BU
-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of X

10.3 Program Results

E04MFF Example Program Results

Varbl Istate Value Lagr Mult
V 1 1 -1.000E-02 3.301E-01
V 2 1 -1.000E-01 1.438E-02
V 3 2 3.000E-02 -9.100E-02
V 4 2 2.000E-02 -7.661E-02
V 5 0 -6.749E-02 0.000E+00
V 6 0 -2.280E-03 0.000E+00
V 7 0 -2.345E-04 0.000E+00

L Con Istate Value Lagr Mult
L 1 3 -1.300E-01 -1.431E+00
L 2 0 -5.480E-03 0.000E+00
L 3 0 -6.572E-03 0.000E+00
L 4 0 -4.850E-03 0.000E+00
L 5 0 -3.875E-03 0.000E+00
L 6 1 -9.920E-02 1.501E+00
L 7 1 -3.000E-03 1.517E+00

Final objective value = 2.360E-02
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Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to E04MGF/E04MGA and/or
E04MHF/E04MHA. Section 13 describes the quantities which can be requested to monitor the course of
the computation.

11 Algorithmic Details

This section contains a detailed description of the method used by E04MFF/E04MFA.

11.1 Overview

E04MFF/E04MFA is based on an inertia-controlling method due to Gill and Murray (1978), and is
described in detail by Gill et al. (1991). Here we briefly summarise the main features of the method.
Where possible, explicit reference is made to the names of variables that are arguments of E04MFF/
E04MFA or appear in the printed output. E04MFF/E04MFA has two phases: finding an initial feasible
point by minimizing the sum of infeasibilities (the feasibility phase), and minimizing the linear
objective function within the feasible region (the optimality phase). The computations in both phases
are performed by the same subroutines. The two-phase nature of the algorithm is reflected by changing
the function being minimized from the sum of infeasibilities to the linear objective function. The
feasibility phase does not perform the standard simplex method (i.e., it does not necessarily find a
vertex), except in the case when mL � n. Once any iterate is feasible, all subsequent iterates remain
feasible.

In general, an iterative process is required to solve a linear program. (For simplicity, we shall always
consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate �x is
defined by

�x ¼ xþ �p; ð1Þ

where the step length � is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the optional parameter
Feasibility Tolerance). The working set is the current prediction of the constraints that hold with
equality at a solution of an LP problem. The search direction is constructed so that the constraints in the
working set remain unaltered for any value of the step length. For a bound constraint in the working
set, this property is achieved by setting the corresponding element of the search direction to zero. Thus,
the associated variable is fixed, and specification of the working set induces a partition of x into fixed
and free variables. During a given iteration, the fixed variables are effectively removed from the
problem; since the relevant elements of the search direction are zero, the columns of A corresponding
to fixed variables may be ignored.

Let mW denote the number of general constraints in the working set and let nFX denote the number of
variables fixed at one of their bounds (mW and nFX are the quantities Lin and Bnd in the monitoring file
output from E04MFF/E04MFA; see Section 13). Similarly, let nFR (nFR ¼ n� nFX) denote the number
of free variables. At every iteration, the variables are reordered so that the last nFX variables are fixed,
with all other relevant vectors and matrices ordered accordingly.

11.2 Definition of Search Direction

Let AFR denote the mW by nFR sub-matrix of general constraints in the working set corresponding to
the free variables, and let pFR denote the search direction with respect to the free variables only. The
general constraints in the working set will be unaltered by any move along p if

AFRpFR ¼ 0: ð2Þ

In order to compute pFR, the TQ factorization of AFR is used:

AFRQFR ¼ 0 Tð Þ; ð3Þ

where T is a nonsingular mW by mW upper triangular matrix (i.e., tij ¼ 0 if i > j), and the nonsingular
nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. (1984)). If the
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columns of QFR are partitioned so that

QFR ¼ Z Yð Þ;

where Y is nFR by mW, then the nZ (nZ ¼ nFR �mW) columns of Z form a basis for the null space of
AFR. Let nR be an integer such that 0 � nR � nZ , and let ZR denote a matrix whose nR columns are a
subset of the columns of Z. (The integer nR is the quantity Zr in the monitoring file output from
E04MFF/E04MFA. In many cases, ZR will include all the columns of Z.) The direction pFR will satisfy
(2) if

pFR ¼ ZRpR ð4Þ

where pR is any nR-vector.

11.3 Main Iteration

Let Q denote the n by n matrix

Q ¼ QFR
IFX

� �
;

where IFX is the identity matrix of order nFX. Let gQ denote the transformed gradient

gQ ¼ QTc

and let the vector of the first nR elements of gQ be denoted by gR. The quantity gR is known as the
reduced gradient of cTx. If the reduced gradient is zero, x is a constrained stationary point in the
subspace defined by Z. During the feasibility phase, the reduced gradient will usually be zero only at a
vertex (although it may be zero at non-vertices in the presence of constraint dependencies). During the
optimality phase, a zero reduced gradient implies that x minimizes the linear objective when the
constraints in the working set are treated as equalities. At a constrained stationary point, Lagrange
multipliers �C and �B for the general and bound constraints are defined from the equations

AT
FR�C ¼ gFR and �B ¼ gFX �AT

FX�C: ð5Þ

Given a positive constant � of the order of the machine precision, a Lagrange multiplier �j
corresponding to an inequality constraint in the working set is said to be optimal if �j � � when the
associated constraint is at its upper bound, or if �j � �� when the associated constraint is at its lower
bound. If a multiplier is nonoptimal, the objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint (with index Jdel; see
Section 13) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, there
is no feasible point, and you can force E04MFF/E04MFA to continue until the minimum value of the
sum of infeasibilities has been found; see the discussion of the optional parameter Minimum Sum of
Infeasibilities. At such a point, the Lagrange multiplier �j corresponding to an inequality constraint in
the working set will be such that � 1þ �ð Þ � �j � � when the associated constraint is at its upper
bound, and �� � �j � 1þ �ð Þ when the associated constraint is at its lower bound. Lagrange
multipliers for equality constraints will satisfy �j

		 		 � 1þ �.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the nonzero
elements of the search direction p are given by ZRpR. The choice of step length is influenced by the
need to maintain feasibility with respect to the satisfied constraints.

Each change in the working set leads to a simple change to AFR: if the status of a general constraint
changes, a row of AFR is altered; if a bound constraint enters or leaves the working set, a column of
AFR changes. Explicit representations are recurred of the matrices T and QFR; and of vectors QTg, and
QTc.

One of the most important features of E04MFF/E04MFA is its control of the conditioning of the
working set, whose nearness to linear dependence is estimated by the ratio of the largest to smallest
diagonal elements of the TQ factor T (the printed value Cond T; see Section 13). In constructing the
initial working set, constraints are excluded that would result in a large value of Cond T.
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E04MFF/E04MFA includes a rigorous procedure that prevents the possibility of cycling at a point
where the active constraints are nearly linearly dependent (see Gill et al. (1989)). The main feature of
the anti-cycling procedure is that the feasibility tolerance is increased slightly at the start of every
iteration. This not only allows a positive step to be taken at every iteration, but also provides, whenever
possible, a choice of constraints to be added to the working set. Let �M denote the maximum step at
which xþ �Mp does not violate any constraint by more than its feasibility tolerance. All constraints at a
distance � (� � �M) along p from the current point are then viewed as acceptable candidates for
inclusion in the working set. The constraint whose normal makes the largest angle with the search
direction is added to the working set.

11.4 Choosing the Initial Working Set

Let Z be partitioned as Z ¼ ZRZAð Þ. A working set for which ZR defines the null space can be
obtained by including the rows of ZT

A as ‘artificial constraints’. Minimization of the objective function
then proceeds within the subspace defined by ZR, as described in Section 11.2.

The artificially augmented working set is given by

�AFR ¼ ZT
A

AFR

� �
; ð6Þ

so that pFR will satisfy AFRpFR ¼ 0 and ZT
ApFR ¼ 0. By definition of the TQ factorization, �AFR

automatically satisfies the following:

�AFRQFR ¼ ZT
A

AFR

� �
QFR ¼ ZT

A
AFR

� �
ZR ZA Y
� �

¼ 0 �T
� �

;

where

�T ¼ I 0
0 T

� �
;

and hence the TQ factorization of (6) is available trivially from T and QFR without additional expense.

The matrix ZA is not kept fixed, since its role is purely to define an appropriate null space; the TQ
factorization can therefore be updated in the normal fashion as the iterations proceed. No work is
required to ‘delete’ the artificial constraints associated with ZA when ZT

RgFR ¼ 0, since this simply
involves repartitioning QFR. The ‘artificial’ multiplier vector associated with the rows of ZT

A is equal to
ZT
AgFR, and the multipliers corresponding to the rows of the ‘true’ working set are the multipliers that

would be obtained if the artificial constraints were not present. If an artificial constraint is ‘deleted’
from the working set, an A appears alongside the entry in the Jdel column of the monitoring file output
(see Section 13).

The number of columns in ZA and ZR and the Euclidean norm of ZT
RgFR, appear in the monitoring file

output as Art, Zr and Norm Gz respectively (see Section 13).

Under some circumstances, a different type of artificial constraint is used when solving a linear
program. Although the algorithm of E04MFF/E04MFA does not usually perform simplex steps (in the
traditional sense), there is one exception: a linear program with fewer general constraints than variables
(i.e., mL � n). Use of the simplex method in this situation leads to savings in storage. At the starting
point, the ‘natural’ working set (the set of constraints exactly or nearly satisfied at the starting point) is
augmented with a suitable number of ‘temporary’ bounds, each of which has the effect of temporarily
fixing a variable at its current value. In subsequent iterations, a temporary bound is treated as a standard
constraint until it is deleted from the working set, in which case it is never added again. If a temporary
bound is ‘deleted’ from the working set, an F (for ‘Fixed’) appears alongside the entry in the Jdel
column of the monitoring file output (see Section 13).
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12 Optional Parameters

Several optional parameters in E04MFF/E04MFA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal arguments of E04MFF/E04MFA these optional
parameters have associated default values that are appropriate for most problems. Therefore, you need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Check Frequency

Cold Start

Crash Tolerance

Defaults

Expand Frequency

Feasibility Tolerance

Infinite Bound Size

Infinite Step Size

Iteration Limit

Iters

Itns

List

Minimum Sum of Infeasibilities

Monitoring File

Nolist

Optimality Tolerance

Print Level

Problem Type

Warm Start

Optional parameters may be specified by calling one, or both, of the routines E04MGF/E04MGA and
E04MHF/E04MHA before a call to E04MFF/E04MFA.

E04MGF/E04MGA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04MGF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04MGF/
E04MGA should be consulted for a full description of this method of supplying optional parameters.

E04MHF/E04MHA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04MHF (’Print Level = 5’)

E04MHF/E04MHA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by E04MFF/E04MFA (unless they define invalid values) and so remain
in effect for subsequent calls unless altered by you.
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12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Check Frequency i Default ¼ 50

Every ith iteration, a numerical test is made to see if the current solution x satisfies the constraints in
the working set. If the largest residual of the constraints in the working set is judged to be too large, the
current working set is refactorized and the variables are recomputed to satisfy the constraints more
accurately. If i � 0, the default value is used.

Cold Start Default
Warm Start

This option specifies how the initial working set is chosen. With a Cold Start, E04MFF/E04MFA
chooses the initial working set based on the values of the variables and constraints at the initial point.
Broadly speaking, the initial working set will include equality constraints and bounds or inequality
constraints that violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance).

With a Warm Start, you must provide a valid definition of every element of the array ISTATE.
E04MFF/E04MFA will override your specification of ISTATE if necessary, so that a poor choice of the
working set will not cause a fatal error. For instance, any elements of ISTATE which are set to �2,
�1 or 4 will be reset to zero, as will any elements which are set to 3 when the corresponding elements
of BL and BU are not equal. A warm start will be advantageous if a good estimate of the initial
working set is available – for example, when E04MFF/E04MFA is called repeatedly to solve related
problems.

Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
E04MFF/E04MFA selects an initial working set. If 0 � r � 1, the initial working set will include (if
possible) bounds or general inequality constraints that lie within r of their bounds. In particular, a

constraint of the form aTj x � l will be included in the initial working set if aTj x� l
			 			 � r 1þ lj jð Þ. If

r < 0 or r > 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Expand Frequency i Default ¼ 5

This option is part of an anti-cycling procedure designed to guarantee progress even on highly
degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the constraints by a
small amount. Suppose that the value of the optional parameter Feasibility Tolerance is �. Over a
period of i iterations, the feasibility tolerance actually used by E04MFF/E04MFA (i.e., the working
feasibility tolerance) increases from 0:5� to � (in steps of 0:5�=i).

At certain stages the following ‘resetting procedure’ is used to remove constraint infeasibilities. First,
all variables whose upper or lower bounds are in the working set are moved exactly onto their bounds.
A count is kept of the number of nontrivial adjustments made. If the count is positive, iterative
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refinement is used to give variables that satisfy the working set to (essentially) machine precision.
Finally, the working feasibility tolerance is reinitialized to 0:5�.

If a problem requires more than i iterations, the resetting procedure is invoked and a new cycle of i
iterations is started with i incremented by 10. (The decision to resume the feasibility phase or optimality
phase is based on comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when E04MFF/E04MFA reaches an apparently optimal,
infeasible or unbounded solution, unless this situation has already occurred twice. If any nontrivial
adjustments are made, iterations are continued.

If i � 0, the default value is used. If i � 9999999, no anti-cycling procedure is invoked.

Feasibility Tolerance r Default ¼
ffiffi
�
p

If r � �, r defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point.
For example, if the variables and the coefficients in the general constraints are of order unity, and the
latter are correct to about 6 decimal digits, it would be appropriate to specify r as 10�6. If 0 � r < �,
the default value is used.

E04MFF/E04MFA attempts to find a feasible solution before optimizing the objective function. If the
sum of infeasibilities cannot be reduced to zero, the optional parameter Minimum Sum of
Infeasibilities can be used to find the minimum value of the sum. Let Sinf be the corresponding
sum of infeasibilities. If Sinf is quite small, it may be appropriate to raise r by a factor of 10 or 100.
Otherwise, some error in the data should be suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the tolerance r.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r < 0, the default value is used.

Infinite Step Size r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the problem is of type LP.)
If the change in x during an iteration would exceed the value of r, the objective function is considered
to be unbounded below in the feasible region. If r � 0, the default value is used.

Iteration Limit i Default ¼ max 50; 5 nþmLð Þð Þ
Iters
Itns

The value of i specifies the maximum number of iterations allowed before termination. With i ¼ 0 and
Print Level > 0, the workspace needed will be computed and printed, but no iterations will be
performed. If i < 0, the default value is used.

List Default for E04MFF ¼ List
Nolist Default for E04MFA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist
may be used to suppress the printing and optional parameter List may be used to restore printing.

Minimum Sum of Infeasibilities No Default ¼ NO

If no feasible point exists for the constraints, this option is used to control whether or not E04MFF/
E04MFA wi l l c a l cu l a t e a po in t t ha t min imize s t he cons t r a i n t v io l a t i on s . I f
Minimum Sum of Infeasibilities ¼ NO, E04MFF/E04MFA will terminate as soon as it is evident that
no feasible point exists for the constraints. The final point will generally not be the point at which the
sum of infeasibilities is minimized. If Minimum Sum of Infeasibilities ¼ YES, E04MFF/E04MFA will
continue until the sum of infeasibilities is minimized.
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Monitoring File i Default ¼ �1
If i � 0 and Print Level � 5, monitoring information produced by E04MFF/E04MFA at every iteration
is sent to a file with logical unit number i. If i < 0 and/or Print Level < 5, no monitoring information
is produced.

Optimality Tolerance r Default ¼ �0:8

If r � �, r defines the tolerance used to determine if the bounds and general constraints have the right
‘sign’ for the solution to be judged to be optimal.

If 0 � r < �, the default value is used.

Print Level i Default for E04MFF ¼ 10
Default for E04MFA ¼ 0

The value of i controls the amount of printout produced by E04MFF/E04MFA, as indicated below. A
detailed description of the printed output is given in Section 9.2 (summary output at each iteration and
the final solution) and Section 13 (monitoring information at each iteration).

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.

1 The final solution only.

5 One line of summary output ( < 80 characters; see Section 9.2) for each iteration (no printout
of the final solution).

� 10 The final solution and one line of summary output for each iteration.

The following printout is sent to the logical unit number by the optional parameter Monitoring File:

i Output

< 5 No output.

� 5 One long line of output ( > 80 characters; see Section 13) for each iteration (no printout of the
final solution).

� 20 At each iteration, the Lagrange multipliers, the variables x, the constraint values Ax and the
constraint status (see ISTATE).

� 30 At each iteration, the diagonal elements of the upper triangular matrix T associated with the
TQ factorization (3) (see Section 11.2) of the working set.

If Print Level � 5 and the unit number defined by the optional parameter Monitoring File is the same
as that defined by X04ABF,then the summary output for each major iteration is suppressed.

Problem Type a Default ¼ LP

This option specifies the type of objective function to be minimized during the optimality phase. The
following is the optional keyword and the dimensions of the array that must be specified in order to
define the objective function:

LP CVECðNÞ required.
For problems of type FP, the objective function is omitted and CVEC is not referenced. The following
keywords are also acceptable. The minimum abbreviation of each keyword is underlined.

a Option

Linear LP

Feasible FP

E04MFF NAG Library Manual

E04MFF.18 Mark 26



13 Description of Monitoring Information

This section describes the long line of output ( > 80 characters) which forms part of the monitoring
information produced by E04MFF/E04MFA. (See also the description of the optional parameters
Monitoring File and Print Level.) You can control the level of printed output.

To aid interpretation of the printed results, the following convention is used for numbering the
constraints: indices 1 through n refer to the bounds on the variables, and indices nþ 1 through nþmL

refer to the general constraints. When the status of a constraint changes, the index of the constraint is
printed, along with the designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed
variable) or A (artificial constraint).

When Print Level � 5 and Monitoring File � 0, the following line of output is produced at every
iteration on the unit number specified by optional parameter Monitoring File. In all cases, the values of
the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no
constraint was added.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration, Step will be the step to the nearest constraint. When
the problem is of type LP, the step can be greater than one during the optimality
phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function of (1). The output line for the
final iteration of the feasibility phase (i.e., the first iteration for which Ninf is
zero) will give the value of the true objective at the first feasible point.

During the optimality phase the value of the objective function will be
nonincreasing. During the feasibility phase the number of constraint infeasibilities
will not increase until either a feasible point is found or the optimality of the
multipliers implies that no feasible point exists. Once optimal multipliers are
obtained the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Art is the number of artificial constraints in the working set, i.e., the number of
columns of ZA (see Section 11.4).

Zr is the number of columns of ZR (see Section 11.2). Zr is the dimension of the
subspace in which the objective function is currently being minimized. The value
of Zr is the number of variables minus the number of constraints in the working
set; i.e., Zr ¼ n� Bndþ Linþ Artð Þ.
The value of nZ , the number of columns of Z (see Section 11.2) can be
calculated as nZ ¼ n� Bndþ Linð Þ. A zero value of nZ implies that x lies at a
vertex of the feasible region.

Norm Gz is ZT
RgFR

�� ��, the Euclidean norm of the reduced gradient with respect to ZR.
During the optimality phase, this norm will be approximately zero after a unit
step.
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NOpt is the number of nonoptimal Lagrange multipliers at the current point. NOpt is not
printed if the current x is infeasible or no multipliers have been calculated. At a
minimizer, NOpt will be zero.

Min Lm is the value of the Lagrange multiplier associated with the deleted constraint. If
Min Lm is negative, a lower bound constraint has been deleted, if Min Lm is
positive, an upper bound constraint has been deleted. If no multipliers are
calculated during a given iteration Min Lm will be zero.

Cond T is a lower bound on the condition number of the working set.

E04MFF NAG Library Manual

E04MFF.20 (last) Mark 26



NAG Library Routine Document

E04MGF/E04MGA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply optional parameters to E04MFF/E04MFA from an external file. More precisely, E04MGF
must be used to supply optional parameters to E04MFF and E04MGA must be used to supply optional
parameters to E04MFA.

E04MGA is a version of E04MGF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04MGA.

2 Specification

2.1 Specification for E04MGF

SUBROUTINE E04MGF (IOPTNS, INFORM)

INTEGER IOPTNS, INFORM

2.2 Specification for E04MGA

SUBROUTINE E04MGA (IOPTNS, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IOPTNS, IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)

3 Description

E04MGF/E04MGA may be used to supply values for optional parameters to E04MFF/E04MFA.
E04MGF/E04MGA reads an external file and each line of the file defines a single optional parameter. It
is only necessary to supply values for those arguments whose values are to be different from their
default values.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print level = 5

End
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For E04MGF each line of the file is normally printed as it is read, on the current advisory message unit
(see X04ABF), but printing may be suppressed using the keyword Nolist. To suppress printing of
Begin, Nolist must be the first option supplied as in the file:

Begin
Nolist
Print level = 5

End

Printing will automatically be turned on again after a call to E04MFF or E04MGF and may be turned
on again at any time using the keyword List.

For E04MGA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04MFF/E04MFA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04MFF/E04MFA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04MFF/E04MFA.

4 References

None.

5 Arguments

1: IOPTNS – INTEGER Input

On entry: the unit number of the options file to be read.

Constraint: 0 � IOPTNS � 99.

2: INFORM – INTEGER Output

Note: for E04MGA, INFORM does not occur in this position in the argument list. See the
additional arguments described below.

On exit: contains zero if the options file has been successfully read and a value > 0 otherwise
(see Section 6).

Note: the following are additional arguments for specific use with E04MGA. Users of E04MGF
therefore need not read the remainder of this description.

3: LWSAVð120Þ – LOGICAL array Communication Array
4: IWSAVð610Þ – INTEGER array Communication Array
5: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04MGA, E04MFA, E04MHA or E04WBF.

6: INFORM – INTEGER Output

Note: see the argument description for INFORM above.

6 Error Indicators and Warnings

INFORM ¼ 1

IOPTNS is not in the range 0; 99½ �.
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INFORM ¼ 2

Begin was found, but end-of-file was found before End was found.

INFORM ¼ 3

end-of-file was found before Begin was found.

INFORM ¼ 4

Not used.

INFORM ¼ 5

One or more lines of the options file is invalid. Check that all keywords are neither ambiguous
nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04MGF/E04MGA is not threaded in any implementation.

9 Further Comments

E04MHF/E04MHA may also be used to supply optional parameters to E04MFF/E04MFA.

10 Example

This example solves the same problem as the example for E04MFF/E04MFA, but in addition illustrates
the use of E04MGF/E04MGA and E04MHF/E04MHA to set optional parameters for E04MFF/
E04MFA.

In this example the options file read by E04MGF/E04MGA is appended to the data file for the program
(see Section 10.2). It would usually be more convenient in practice to keep the data file and the options
file separate.

10.1 Program Text

the following program illustrates the use of E04MGF. An equivalent program illustrating the use of
E04MGA is available with the supplied Library and is also available from the NAG web site.

Program e04mgfe

! E04MGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04mff, e04mgf, e04mhf, nag_wp, x04abf, x04acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, ninopt = 7, &

nout = 6
Character (*), Parameter :: fname = ’e04mgfe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj
Integer :: i, ifail, inform, iter, j, lda, &

liwork, lwork, mode, n, nclin, &
outchn, sda

Logical :: verbose_output
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ax(:), bl(:), bu(:), &

clamda(:), cvec(:), work(:), x(:)
Integer, Allocatable :: istate(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04MGF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, nclin

liwork = 2*n + 3

! The minimum LWORK for an LP problem:

If (0<nclin .And. nclin<n) Then
lwork = 2*(nclin+1)**2 + 7*n + 5*nclin

Else If (nclin>=n) Then
lwork = 2*n**2 + 7*n + 5*nclin

Else
lwork = 7*n + 1

End If

lda = max(1,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

Allocate (istate(n+nclin),iwork(liwork),a(lda,sda),bl(n+nclin), &
bu(n+nclin),cvec(n),x(n),ax(max(1,nclin)),clamda(n+nclin),work(lwork))

Read (nin,*) cvec(1:n)
Read (nin,*)(a(i,1:sda),i=1,nclin)
Read (nin,*) bl(1:(n+nclin))
Read (nin,*) bu(1:(n+nclin))
Read (nin,*) x(1:n)

! Set the unit number for advisory messages to OUTCHN

outchn = nout
Call x04abf(iset,outchn)

! Set this to .True. to cause e04nqf to produce intermediate
! progress output

verbose_output = .False.

If (.Not. verbose_output) Then
! Turn off intermediate output from e04mff - it is on by default

Call e04mhf(’Print Level = 0’)
End If

! Set some other options using E04MHF

Call e04mhf(’Check Frequency = 10’)

Call e04mhf(’Infinite Bound Size = 1.0D+25’)

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Read the options file for the remaining options
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Call e04mgf(ninopt,inform)

If (inform/=0) Then
Write (nout,99999) ’E04MGF terminated with INFORM = ’, inform
Go To 100

End If

! Solve the problem

ifail = 0
Call e04mff(n,nclin,a,lda,bl,bu,cvec,istate,x,iter,obj,ax,clamda,iwork, &

liwork,work,lwork,ifail)

Select Case (ifail)
Case (0:5,7:)

Write (nout,*)
Write (nout,99998)
Do i = 1, n

Write (nout,99997) i, istate(i), x(i), clamda(i)
End Do

If (nclin>0) Then
Write (nout,*)
Write (nout,99996)
Do i = n + 1, n + nclin

j = i - n
Write (nout,99995) j, istate(i), ax(j), clamda(i)

End Do

End If

Write (nout,*)
Write (nout,99994) obj

End Select

100 Continue

99999 Format (1X,A,I5)
99998 Format (1X,’Varbl’,3X,’Istate’,4X,’Value’,9X,’Lagr Mult’)
99997 Format (1X,’V’,2(1X,I3),4X,1P,E14.3,2X,1P,E12.3)
99996 Format (1X,’L Con’,3X,’Istate’,4X,’Value’,9X,’Lagr Mult’)
99995 Format (1X,’L’,2(1X,I3),4X,1P,E14.3,2X,1P,E12.3)
99994 Format (1X,’Final objective value = ’,1P,E15.3)

End Program e04mgfe

10.2 Program Data

Begin Example options file for E04MGF
Crash Tolerance = 0.05 * (Default = 0.01)
Iteration Limit = 25 * (Default = 70)

End

E04MGF Example Program Data
7 7 :Values of N and NCLIN

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of CVEC
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.00
0.02 0.04 0.01 0.02 0.02 0.00 0.00
0.02 0.03 0.00 0.00 0.01 0.00 0.00
0.70 0.75 0.80 0.75 0.80 0.97 0.00
0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of matrix A

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01
-0.13 -1.0D+25 -1.0D+25 -1.0D+25 -1.0D+25 -9.92D-02 -3.0D-03 :End of BL
0.01 0.15 0.03 0.02 0.05 1.0D+25 1.0D+25

-0.13 -4.9D-03 -6.4D-03 -3.7D-03 -1.2D-03 1.0D+25 2.0D-03 :End of BU
-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of X
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10.3 Program Results

E04MGF Example Program Results

Calls to E04MHF
---------------

Print Level = 0
Check Frequency = 10
Infinite Bound Size = 1.0D+25

OPTIONS file
------------

Begin Example options file for E04MGF
Crash Tolerance = 0.05 * (Default = 0.01)
Iteration Limit = 25 * (Default = 70)

End

Varbl Istate Value Lagr Mult
V 1 1 -1.000E-02 3.301E-01
V 2 1 -1.000E-01 1.438E-02
V 3 2 3.000E-02 -9.100E-02
V 4 2 2.000E-02 -7.661E-02
V 5 0 -6.749E-02 0.000E+00
V 6 0 -2.280E-03 0.000E+00
V 7 0 -2.345E-04 0.000E+00

L Con Istate Value Lagr Mult
L 1 3 -1.300E-01 -1.431E+00
L 2 0 -5.480E-03 0.000E+00
L 3 0 -6.572E-03 0.000E+00
L 4 0 -4.850E-03 0.000E+00
L 5 0 -3.875E-03 0.000E+00
L 6 1 -9.920E-02 1.501E+00
L 7 1 -3.000E-03 1.517E+00

Final objective value = 2.360E-02
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NAG Library Routine Document

E04MHF/E04MHA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply individual optional parameters to E04MFF/E04MFA. More precisely, E04MHF must be used
to supply optional parameters to E04MFF and E04MHA must be used to supply optional parameters to
E04MFA.

E04MHA is a version of E04MHF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04MHA.

2 Specification

2.1 Specification for E04MHF

SUBROUTINE E04MHF (STR)

CHARACTER(*) STR

2.2 Specification for E04MHA

SUBROUTINE E04MHA (STR, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)
CHARACTER(*) STR

3 Description

E04MHF/E04MHA may be used to supply values for optional parameters to E04MFF/E04MFA. It is
only necessary to call E04MHF/E04MHA for those arguments whose values are to be different from
their default values. One call to E04MHF/E04MHA sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

For E04MHF, each user-specified option is normally printed as it is defined, on the current advisory
message unit (see X04ABF), but this printing may be suppressed using the keyword Nolist. Thus the
statement

CALL E04MHF (’Nolist’)
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suppresses printing of this and subsequent options. Printing will automatically be turned on again after
a call to E04MFF and may be turned on again at any time using the keyword List.

For E04MHA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04MFF/E04MFA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04MFF/E04MFA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04MFF/E04MFA.

4 References

None.

5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 and in Section 12 in E04MFF/
E04MFA).

Note: the following are additional arguments for specific use with E04MHA. Users of E04MHF
therefore need not read the remainder of this description.

2: LWSAVð120Þ – LOGICAL array Communication Array
3: IWSAVð610Þ – INTEGER array Communication Array
4: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04MHA, E04MFA, E04MGA or E04WBF.

5: INFORM – INTEGER Output

On exit: contains zero if a valid option string has been supplied and a value > 0 otherwise (see
Section 6).

6 Error Indicators and Warnings

INFORM ¼ 5

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04MHF/E04MHA is not threaded in any implementation.

9 Further Comments

E04MGF/E04MGA may also be used to supply optional parameters to E04MFF/E04MFA.
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10 Example

See Section 10 in E04MGF/E04MGA.
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NAG Library Routine Document

E04MWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04MWF writes data for sparse linear programming, mixed integer linear programming, quadratic
programming or mixed integer quadratic programming problems to a file in MPS format.

2 Specification

SUBROUTINE E04MWF (OUTFILE, N, M, NNZC, NNZA, NCOLH, NNZH, LINTVAR,
IDXC, C, IOBJ, A, IROWA, ICCOLA, BL, BU, PNAMES,
NNAME, CRNAME, H, IROWH, ICCOLH, MINMAX, INTVAR,
IFAIL)

&
&
&

INTEGER OUTFILE, N, M, NNZC, NNZA, NCOLH, NNZH, LINTVAR,
IDXC(NNZC), IOBJ, IROWA(NNZA), ICCOLA(N+1), NNAME,
IROWH(NNZH), ICCOLH(NCOLH+1), MINMAX,
INTVAR(LINTVAR), IFAIL

&
&
&

REAL (KIND=nag_wp) C(NNZC), A(NNZA), BL(N+M), BU(N+M), H(NNZH)
CHARACTER(8) PNAMES(5), CRNAME(NNAME)

3 Description

E04MWF writes data for linear programming (LP) or quadratic programming (QP) problems (or their
mixed integer variants) from an optimization problem to a MPS output file, see Section 3.1 in E04MXF
for the format description. The problem is expected in the form

minimize
x

cTxþ 1
2x

THx subject to l � x
Ax


 �
� u:

Where n is the number of variables, m is the number of general linear constraints, A is the linear
constraint matrix with dimension m by n, the vectors l and u are the lower and upper bounds,
respectively. H is the Hessian matrix with dimension n by n, however, only leading NCOLH columns
might contain nonzero elements and the rest is assumed to be zero.

Note that the linear term of the objective function c might be supplied either as C or via IOBJ. If C is
supplied then IDXC contains the indices of the nonzero elements of sparse vector c, whereas if IOBJ is
supplied (IOBJ > 0), row IOBJ of matrix A is a free row storing the nonzero elements of c.

Note: that this routine uses fixed MPS format, see IBM (1971).

4 References

IBM (1971) MPSX – Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

5 Arguments

1: OUTFILE – INTEGER Input

On entry: the ID of the file to store the problem data as associated by a call to X04ACF.

Constraint: OUTFILE � 0.
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2: N – INTEGER Input

On entry: n, the number of variables in the problem.

Constraint: N � 1.

3: M – INTEGER Input

On entry: m, the number of constraints in the problem. This is the number of rows in the linear
constraint matrix A, including the free row (if any; see IOBJ).

Constraint: M � 0.

4: NNZC – INTEGER Input

On entry: the number of nonzero elements in the sparse vector c.

If NNZC ¼ 0, the vector c is considered empty and the arrays IDXC and C will not be
referenced. In this case the linear term of the objective function, if any, might be provided via
IOBJ.

Constraints:

NNZC � 0;
if NNZC > 0, IOBJ ¼ 0.

5: NNZA – INTEGER Input

On entry: the number of nonzero elements in matrix A.

If NNZA ¼ 0, matrix A is considered empty, arrays A and IROWA will not be referenced, and
ICCOLA should be the array of 1.

Constraint: NNZA � 0.

6: NCOLH – INTEGER Input

On entry: the number of leading nonzero columns of the Hessian matrix H.

If NCOLH ¼ 0, the quadratic term H of the objective function is considered zero (e.g., LP
problems), and arrays H, IROWH and ICCOLH will not be referenced.

Constraint: 0 � NCOLH � N.

7: NNZH – INTEGER Input

On entry: the number of nonzero elements of the Hessian matrix H.

Constraints:

if NCOLH > 0, NNZH > 0;
otherwise NNZH ¼ 0.

8: LINTVAR – INTEGER Input

On entry: the number of integer variables in the problem.

If LINTVAR ¼ 0, all variables are considered continuous and array INTVAR will not be
referenced.

Constraint: LINTVAR � 0.

9: IDXCðNNZCÞ – INTEGER array Input
10: CðNNZCÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements of sparse vector c. IDXCðiÞ must contain the index of CðiÞ in the
vector, for i ¼ 1; 2; . . . ;NNZC.

The elements are stored in ascending order.
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Constraints:

1 � IDXCðiÞ � N, for i ¼ 1; 2; . . . ;NNZC;
IDXCðiÞ < IDXCði þ 1Þ, for i ¼ 1; 2; . . . ;NNZC.

11: IOBJ – INTEGER Input

On entry: if IOBJ > 0, row IOBJ of A is a free row containing the nonzero coefficients of the
linear terms of the objective function. In this case NNZC is set to 0.

If IOBJ ¼ 0, there is no free row in A, and the linear terms might be supplied in array C.

Constraint: if IOBJ > 0, NNZC ¼ 0.

12: AðNNZAÞ – REAL (KIND=nag_wp) array Input
13: IROWAðNNZAÞ – INTEGER array Input
14: ICCOLAðNþ 1Þ – INTEGER array Input

On entry: the nonzero elements of matrix A in compressed column storage (see Section 2.1.3 in
the F11 Chapter Introduction). Arrays IROWA and A store the row indices and the values of the
nonzero elements, respectively. The elements are sorted by columns and within each column in
nondecreasing order. Duplicate entries are not allowed. ICCOLA contains the (one-based) indices
to the beginning of each column in A and IROWA.

If NNZA ¼ 0, A and IROWA are not referenced.

Constraints:

1 � IROWAðiÞ � M, for i ¼ 1; 2; . . . ;NNZA;
ICCOLAð1Þ ¼ 1;
ICCOLAðiÞ � ICCOLAði þ 1Þ, for i ¼ 1; 2; . . . ;N;
ICCOLAðNþ 1Þ ¼ NNZAþ 1.

15: BLðNþMÞ – REAL (KIND=nag_wp) array Input
16: BUðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: BL and BU contains the lower bounds l and the upper bounds u, respectively.

The first N elements refer to the bounds for the variables x and the rest to the bounds for the
linear constraints (including the objective row IOBJ if present).

To specify a nonexistent lower bound (i.e., lj ¼ �inf), set BLðjÞ � �1020; to specify a
nonexistent upper bound, set BUðjÞ � 1020.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;NþM;
BLðjÞ < 1020, for j ¼ 1; 2; . . . ;NþM;
BUðjÞ > �1020, for j ¼ 1; 2; . . . ;NþM;
if IOBJ > 0, BLðIOBJþ NÞ � �1020 and BUðIOBJþ NÞ � 1020.

17: PNAMESð5Þ – CHARACTER(8) array Input

On entry: a set of names associated with the MPSX form of the problem.

The names can be composed only from ‘printable’ characters (ASCII codes between 32 and 126).

If any of the names are blank, the default name is used.

PNAMESð1Þ
Contains the name of the problem.

PNAMESð2Þ
Contains the name of the objective row if the objective is provided in C instead of IOBJ
and all names CRNAME are given. The name must be nonempty and unique. In all other
cases PNAMESð2Þ is not used.
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PNAMESð3Þ
Contains the name of the RHS set.

PNAMESð4Þ
Contains the name of the RANGE.

PNAMESð5Þ
Contains the name of the BOUNDS.

18: NNAME – INTEGER Input

On entry: the number of column (i.e., variable) and row names supplied in the array CRNAME.

If NNAME ¼ 0, the names are automatically generated and the array CRNAME is not
referenced.

Constraint: NNAME ¼ 0 or NþM.

19: CRNAMEðNNAMEÞ – CHARACTER(8) array Input

On entry: the names of all the variables and constraints in the problem in that order.

The names can be composed only from 'printable' characters and must be unique.

20: HðNNZHÞ – REAL (KIND=nag_wp) array Input
21: IROWHðNNZHÞ – INTEGER array Input
22: ICCOLHðNCOLHþ 1Þ – INTEGER array Input

On entry: the nonzero elements of the Hessian matrix H in compressed column storage (see
Section 2.1.3 in the F11 Chapter Introduction). The Hessian matrix, H, is symmetric and its
elements are stored in a lower triangular matrix.

Arrays IROWH and H store the row indices and the values of the nonzero elements, respectively.
The elements are sorted by columns and within each column in nondecreasing order. Duplicate
entries are not allowed. ICCOLH contains the (one-based) indices to the beginning of each
column in H and IROWH.

If NCOLH ¼ 0, H is not referenced.

Constraints:

1 � IROWHðiÞ � NCOLH, for i ¼ 1; 2; . . . ;NNZH;
ICCOLHð1Þ ¼ 1;
ICCOLHðiÞ � ICCOLHði þ 1Þ, for i ¼ 1; 2; . . . ;NCOLH;
ICCOLHðNCOLHþ 1Þ ¼ NNZHþ 1.

23: MINMAX – INTEGER Input

On entry: MINMAX defines the direction of optimization problem.

MINMAX ¼ �1
Minimization.

MINMAX ¼ 1
Maximization.

Constraint: MINMAX ¼ �1 or 1.

24: INTVARðLINTVARÞ – INTEGER array Input

On entry: INTVAR contains the indices k of variables xk which are defined as integers. Duplicate
indices are not allowed.

If LINTVAR ¼ 0, INTVAR is not referenced.

Constraint: 1 � INTVARðjÞ � N, for j ¼ 1; 2; . . . ;LINTVAR.
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25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, OUTFILE ¼ valueh i.
Constraint: OUTFILE � 0.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 0.

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 3

On entry, LINTVAR ¼ valueh i.
Constraint: LINTVAR � 0.

On entry, NNAME ¼ valueh i, N ¼ valueh i and M ¼ valueh i.
Constraint: NNAME ¼ 0 or NþM.

On entry, NNZA ¼ valueh i.
Constraint: NNZA � 0.

On entry, NNZC ¼ valueh i.
Constraint: NNZC � 0.

IFAIL ¼ 4

On entry, NCOLH ¼ valueh i and N ¼ valueh i.
Constraint: 0 � NCOLH � N.

On entry, NCOLH ¼ valueh i and NNZH ¼ valueh i.
Constraint: if NCOLH > 0, NNZH > 0.

On entry, NCOLH ¼ valueh i and NNZH ¼ valueh i.
Constraint: if NCOLH ¼ 0, NNZH ¼ 0 .

IFAIL ¼ 5

On entry, j ¼ valueh i, IDXCðjÞ ¼ valueh i and IDXCðjþ 1Þ ¼ valueh i.
Constraint: IDXCðjÞ < IDXCðjþ 1Þ.
On entry, j ¼ valueh i, IDXCðjÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � IDXCðjÞ � N.
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IFAIL ¼ 6

On entry, MINMAX ¼ valueh i.
Constraint: MINMAX ¼ �1 or 1.

IFAIL ¼ 7

On entry, IOBJ ¼ valueh i and M ¼ valueh i.
Constraint: 0 � IOBJ � M.

On entry, IOBJ ¼ valueh i and NNZC ¼ valueh i.
Constraint: at most one of IOBJ or NNZC may be nonzero.

IFAIL ¼ 8

On entry, IOBJ ¼ valueh i, BLðjÞ ¼ valueh i and BUðjÞ ¼ valueh i, if IOBJ > 0 the bounds must be
infinite.
Constraints: BLðjÞ � �1Eþ 20, BUðjÞ � 1Eþ 20.

On entry, j ¼ valueh i, BLðjÞ ¼ valueh i and BUðjÞ ¼ valueh i, the integer variable j requires at
least one bound finite.
Constraint: at least one of the following conditions must be met for integer variable j:
BLðjÞ > �1Eþ 20, BUðjÞ < 1Eþ 20.

On entry, j ¼ valueh i, BLðjÞ ¼ valueh i and BUðjÞ ¼ valueh i are incorrect.
Constraint: BLðjÞ � BUðjÞ.
On entry, j ¼ valueh i and BLðjÞ ¼ valueh i, BLðjÞ is incorrect.
Constraint: BLðjÞ < 1Eþ 20.

On entry, j ¼ valueh i and BUðjÞ ¼ valueh i, BUðjÞ is incorrect.
Constraint: BUðjÞ > �1Eþ 20.

IFAIL ¼ 9

On entry, CRNAMEðjÞ for j ¼ valueh i has been already used.
Constraint: the names in CRNAME must be unique.

On entry, CRNAMEðjÞ for j ¼ valueh i is incorrect.
Constraint: the names in CRNAME must consist only of printable characters.

On entry, PNAMESðjÞ for j ¼ valueh i is incorrect.
Constraint: the names in PNAMES must consist only of printable characters.

The name specified in PNAMESð2Þ is empty or has been already used among row names.
Constraint: the names in PNAMESð2Þ must be unique and nonempty if CRNAME is provided
and NNZC > 0.

IFAIL ¼ 10

On entry, INTVARð valueh iÞ ¼ INTVARð valueh iÞ ¼ valueh i.
Constraint: all entries in INTVAR must be unique.

On entry, j ¼ valueh i, INTVARðjÞ ¼ valueh i and LINTVAR ¼ valueh i.
Constraint: 1 � INTVARðjÞ � LINTVAR.

IFAIL ¼ 11

On entry, i ¼ valueh i, IROWAðiÞ ¼ valueh i and M ¼ valueh i.
Constraint: 1 � IROWAðiÞ � M.

On entry, more than one element of A has row index valueh i and column index valueh i.
Constraint: each element of A must have a unique row and column index.
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IFAIL ¼ 12

On entry, ICCOLAð1Þ ¼ valueh i.
Constraint: ICCOLAð1Þ ¼ 1.

On entry, ICCOLAðNþ 1Þ ¼ valueh i and NNZA ¼ valueh i.
Constraint: ICCOLAðNþ 1Þ ¼ NNZAþ 1.

On entry, j ¼ valueh i, ICCOLAðjÞ ¼ valueh i and ICCOLAðjþ 1Þ ¼ valueh i, the values of
ICCOLA must be nondecreasing.
Constraint: ICCOLAðjÞ � ICCOLAðjþ 1Þ.

IFAIL ¼ 13

On entry, j ¼ valueh i, i ¼ valueh i, NCOLH ¼ valueh i and IROWHðiÞ ¼ valueh i
Constraint: j � IROWHðiÞ � NCOLH (within the lower triangle).

On entry, more than one element of H has row index valueh i and column index valueh i.
Constraint: each element of H must have a unique row and column index.

IFAIL ¼ 14

On entry, ICCOLHð1Þ ¼ valueh i.
Constraint: ICCOLHð1Þ ¼ 1.

On entry, ICCOLHðNCOLHþ 1Þ ¼ valueh i and NNZH ¼ valueh i.
Constraint: ICCOLHðNCOLHþ 1Þ ¼ NNZHþ 1.

On entry, j ¼ valueh i, ICCOLHðjÞ ¼ valueh i and ICCOLHðjþ 1Þ ¼ valueh i, the values of
ICCOLH must be nondecreasing.
Constraint: ICCOLHðjÞ � ICCOLHðjþ 1Þ.

IFAIL ¼ 15

An error occurred when writing to file.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04MWF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example shows how to store an optimization problem to a file in MPS format after it has been
solved by E04NQF. The problem is a minimization of the quadratic function f xð Þ ¼ cTxþ 1

2x
THx ,

where

c ¼ �200:0;�2000:0;�2000:0;�2000:0;�2000:0; 400:0; 400:0ð ÞT

H ¼

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 2
0 0 0 0 0 2 2

0BBBBBBB@

1CCCCCCCA
subject to the bounds

0 � x1 � 200
0 � x2 � 2500

400 � x3 � 800
100 � x4 � 700

0 � x5 � 1500
0 � x6
0 � x7

and to the linear constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ 2000
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � 60
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 � 100
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � 40
0:02x1 þ 0:03x2 þ 0:01x5 � 30

1500 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
250 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 300

The initial point, which is infeasible, is

x0 ¼ 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0ð ÞT:

The optimal solution (to five figures) is

x� ¼ 0:0; 349:40; 648:85; 172:85; 407:52; 271:36; 150:02ð ÞT:

The generated file is called e04mwfe.mps.

10.1 Program Text

! E04MWF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04mwfe_mod

! E04MWF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: qphx

Contains
Subroutine qphx(ncolh,x,hx,nstate,cuser,iuser,ruser)

! Subroutine to compute H*x.

E04MWF NAG Library Manual
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! Note: IUSER and RUSER contain the following data:
! RUSER(1:NNZH) = H(1:NNZH)
! IUSER(1:NCOLH+1) = ICCOLH(1:NCOLH+1)
! IUSER(NCOLH+2:NNZH+NCOLH+1) = IROWH(1:NNZH)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncolh, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hx(ncolh)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(ncolh)
Integer, Intent (Inout) :: iuser(*)
Character (8), Intent (Inout) :: cuser(*)

! .. Local Scalars ..
Integer :: icol, idx, iend, irow, istart

! .. Executable Statements ..
hx(1:ncolh) = 0.0E0_nag_wp

Do icol = 1, ncolh
istart = iuser(icol)
iend = iuser(icol+1) - 1

Do idx = istart, iend
irow = iuser(ncolh+1+idx)
hx(irow) = hx(irow) + x(icol)*ruser(idx)
If (irow/=icol) Then

hx(icol) = hx(icol) + x(irow)*ruser(idx)
End If

End Do
End Do
Return

End Subroutine qphx
End Module e04mwfe_mod

Program e04mwfe

! E04MWF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04mwf, e04npf, e04nqf, e04ntf, x04acf, x04adf
Use e04mwfe_mod, Only: qphx
Use nag_precisions, Only: wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lencw = 600, leniw = 600, &

lenrw = 600, nin = 5, nout = 6, &
outfile = 42

Character (*), Parameter :: outfile_name = ’e04mwfe.mps’
! .. Local Scalars ..

Real (Kind=wp) :: obj, objadd, sinf
Integer :: i, icol, ierr, ifail, iobj, jcol, &

lenc, lintvar, m, minmax, n, ncolh, &
ne, ninf, nname, nnzh, ns

Logical :: verbose_output
Character (1) :: istart
Character (8) :: prob

! .. Local Arrays ..
Real (Kind=wp), Allocatable :: acol(:), bl(:), bu(:), c(:), h(:), &

pi(:), rc(:), ruser(:), x(:)
Real (Kind=wp) :: rw(lenrw)
Integer, Allocatable :: helast(:), hs(:), iccolh(:), &

idxc(:), inda(:), intvar(:), &
irowh(:), iuser(:), loca(:)

Integer :: iw(leniw)
Character (8) :: cuser(1), cw(lencw), pnames(5)
Character (8), Allocatable :: names(:)

! .. Intrinsic Procedures ..
Intrinsic :: max
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! .. Executable Statements ..
Write (nout,*) ’E04MWF Example Program Results’

! Skip heading in data file.
Read (nin,*)

Read (nin,*) n, m
Read (nin,*) ne, iobj, ncolh, nnzh, nname
Allocate (inda(ne),loca(n+1),helast(n+m),hs(n+m),acol(ne),bl(n+m), &

bu(n+m),x(n+m),pi(m),rc(n+m),names(nname),h(nnzh),irowh(nnzh), &
iccolh(ncolh+1))

! Read array of names
Read (nin,*) names(1:nname)

! Read the matrix ACOL from data file. Set up LOCA.
jcol = 1
loca(jcol) = 1

Do i = 1, ne
! Element ( INDA( I ), ICOL ) is stored in ACOL( I ).

Read (nin,*) acol(i), inda(i), icol

If (icol<jcol) Then
! Elements not ordered by increasing column index.

Write (nout,99998) ’Element in column’, icol, &
’ found after element in column’, jcol, ’. Problem’, ’ abandoned.’

Go To 100
Else If (icol==jcol+1) Then

! Index in ACOL of the start of the ICOL-th column equals I.
loca(icol) = i
jcol = icol

Else If (icol>jcol+1) Then
! Columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
! corresponding elements of LOCA to I.

loca((jcol+1):icol) = i
jcol = icol

End If
End Do

loca(n+1) = ne + 1

! Columns N,N-1,...,ICOL+1 are empty. Set the corresponding
! elements of LOCA accordingly.

Do i = n, icol + 1, -1
loca(i) = loca(i+1)

End Do

! Read the matrix H from data file. Set up ICCOLH.
jcol = 1
iccolh(1) = 1

Do i = 1, nnzh
! Element ( IROWH( I ), ICOL ) is stored in H( I ).

Read (nin,*) h(i), irowh(i), icol

If (icol<jcol) Then
! Elements not ordered by increasing column index

Write (nout,99998) ’Element in column’, icol, &
’ found after element in column’, jcol, ’. Problem’, ’ abandoned.’

Go To 100
Else If (icol==jcol+1) Then

! Index in ICCOLH of the start of the ICOL-th column equals I.
iccolh(icol) = i
jcol = icol

Else If (icol>jcol+1) Then
! Columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
! corresponding elements of ICCOLH to I.

iccolh((jcol+1):icol) = i
jcol = icol

End If

E04MWF NAG Library Manual

E04MWF.10 Mark 26



End Do

iccolh(ncolh+1) = nnzh + 1

! Columns N,N-1,...,ICOL+1 are empty. Set the corresponding
! elements of ICCOLH accordingly.

Do i = n, icol + 1, -1
iccolh(i) = iccolh(i+1)

End Do

! Read lower and upper bounds
Read (nin,*) bl(1:(n+m))
Read (nin,*) bu(1:(n+m))

! Set cold start
istart = ’C’
hs(1:(n+m)) = 0.0_wp

! Read the initial point x_0
Read (nin,*) x(1:n)

! Print dimensions of the QP problem
Write (nout,99999) n, m

! Call e04npf to initialize E04NQF.
ifail = 0
Call e04npf(cw,lencw,iw,leniw,rw,lenrw,ifail)

! Set this to .True. to cause e04nqf to produce intermediate
! progress output

verbose_output = .False.

If (verbose_output) Then
! By default e04nqf does not print monitoring
! information. Set the print file unit or the summary
! file unit to get information.

ifail = 0
Call e04ntf(’Print file’,nout,cw,iw,rw,ifail)

End If

! We have no explicit objective vector so set LENC = 0; the
! objective vector is stored in row IOBJ of ACOL.

lenc = 0
Allocate (c(max(1,lenc)),iuser(ncolh+1+nnzh),ruser(nnzh))

objadd = 0.0E0_wp
prob = ’ ’

! Do not allow any elastic variables (i.e. they cannot be
! infeasible). If we’d set optional argument "Elastic mode" to 0,
! we wouldn’t need to set the individual elements of array HELAST.

helast(1:(n+m)) = 0

If (ncolh>0) Then
! Store the non zeros of H in ruser for use by qphx

ruser(1:nnzh) = h(1:nnzh)

! Store iccolh and irowh in iuser for use by qphx
iuser(1:ncolh+1) = iccolh(1:ncolh+1)
iuser(ncolh+2:nnzh+ncolh+1) = irowh(1:nnzh)

End If

! Call e04nqf to solve the problem.
ifail = 0
Call e04nqf(istart,qphx,m,n,ne,nname,lenc,ncolh,iobj,objadd,prob,acol, &

inda,loca,bl,bu,c,names,helast,hs,x,pi,rc,ns,ninf,sinf,obj,cw,lencw, &
iw,leniw,rw,lenrw,cuser,iuser,ruser,ifail)

! Print objective function and optimal x*
Write (nout,*)
Write (nout,99997) obj
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Write (nout,99996) x(1:n)

! Set the rest of inputs for e04mwf. Due to IOBJ > 0, LENC = 0 and
! C and IDXC will not be referenced.

lintvar = 0
Allocate (idxc(lenc),intvar(lintvar))
c(:) = 0
idxc(:) = 0
intvar(:) = 0
pnames(:) = ’ ’
pnames(1) = ’USRPNAME’
pnames(2) = ’OBJ.....’
minmax = -1

! Open data file for writing
ifail = 0
Call x04acf(outfile,outfile_name,1,ifail)

! Call e04mwf to store the problem in a MPS file with fixed format.
ifail = 0
Call e04mwf(outfile,n,m,lenc,ne,ncolh,nnzh,lintvar,idxc,c,iobj,acol, &

inda,loca,bl,bu,pnames,nname,names,h,irowh,iccolh,minmax,intvar,ifail)

Write (nout,99995) outfile_name

! Close data file
ierr = 0
Call x04adf(outfile,ierr)

100 Continue

99999 Format (1X,/,1X,’QP problem contains ’,I3,’ variables and ’,I3, &
’ linear constraints’)

99998 Format (1X,A,I5,A,I5,A,A)
99997 Format (1X,’Final objective value = ’,1P,E11.3)
99996 Format (1X,’Optimal X = ’,7F9.2)
99995 Format (1X,/,1X,’MPS file was written: ’,A)

End Program e04mwfe

10.2 Program Data

E04MWF Example Program Data
7 8 : Values of N and M

48 8 7 9 15 : Values of NNZ, IOBJ, NCOLH, NNZH and NNAME

’...X1...’ ’...X2...’ ’...X3...’ ’...X4...’ ’...X5...’
’...X6...’ ’...X7...’ ’..ROW1..’ ’..ROW2..’ ’..ROW3..’
’..ROW4..’ ’..ROW5..’ ’..ROW6..’ ’..ROW7..’ ’..COST..’ : End of array NAMES

0.02 7 1 : Sparse matrix A, ordered by increasing column index;
0.02 5 1 : each row contains ACOL(i), INDA(i), ICOL (= column index)
0.03 3 1 : The row indices may be in any order. In this example
1.00 1 1 : row 8 defines the linear objective term transpose(C)*X.
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
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0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
0.04 2 4

-2000.00 8 4
0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7 : End of matrix A

2.0 1 1 : Sparse matrix H, stored in a lower triangular matrix,
2.0 2 2 : ordered by increasing column index; each row contains
2.0 3 3 : H(i), IROWH(i), ICOL (= column index)
2.0 4 3 : The row indices may be in any order.
2.0 4 4
2.0 5 5
2.0 6 6
2.0 7 6
2.0 7 7 : End of matrix H

0.0 0.0 4.0E+02 1.0E+02 0.0 0.0
0.0 2.0E+03 -1.0E+25 -1.0E+25 -1.0E+25 -1.0E+25
1.5E+03 2.5E+02 -1.0E+25 : End of lower bounds array BL

2.0E+02 2.5E+03 8.0E+02 7.0E+02 1.5E+03 1.0E+25
1.0E+25 2.0E+03 6.0E+01 1.0E+02 4.0E+01 3.0E+01
1.0E+25 3.0E+02 1.0E+25 : End of upper bounds array BU

0.0 0.0 0.0 0.0 0.0 0.0 0.0 : Initial vector X

10.3 Program Results

E04MWF Example Program Results

QP problem contains 7 variables and 8 linear constraints

Final objective value = -1.848E+06
Optimal X = 0.00 349.40 648.85 172.85 407.52 271.36 150.02

MPS file was written: e04mwfe.mps
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NAG Library Routine Document

E04MXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04MXF reads data for sparse linear programming, mixed integer linear programming, quadratic
programming or mixed integer quadratic programming problems from an external file which is in
standard or compatible MPS input format.

2 Specification

SUBROUTINE E04MXF (INFILE, MAXN, MAXM, MAXNNZ, MAXNCOLH, MAXNNZH,
MAXLINTVAR, MPSLST, N, M, NNZ, NCOLH, NNZH, LINTVAR,
IOBJ, A, IROWA, ICCOLA, BL, BU, PNAMES, NNAME,
CRNAME, H, IROWH, ICCOLH, MINMAX, INTVAR, IFAIL)

&
&
&

INTEGER INFILE, MAXN, MAXM, MAXNNZ, MAXNCOLH, MAXNNZH,
MAXLINTVAR, MPSLST, N, M, NNZ, NCOLH, NNZH, LINTVAR,
IOBJ, IROWA(MAXNNZ), ICCOLA(MAXN+1), NNAME,
IROWH(MAXNNZH), ICCOLH(MAXNCOLH+1), MINMAX,
INTVAR(MAXLINTVAR), IFAIL

&
&
&
&

REAL (KIND=nag_wp) A(MAXNNZ), BL(MAXN+MAXM), BU(MAXN+MAXM), H(MAXNNZH)
CHARACTER(8) PNAMES(5), CRNAME(MAXN+MAXM)

3 Description

E04MXF reads data for linear programming (LP) or quadratic programming (QP) problems (or their
mixed integer variants) from an external file which is prepared in standard or compatible MPS (see IBM
(1971)) input format. It then initializes n (the number of variables), m (the number of general linear
constraints), the m by n matrix A, the vectors l, u, c (stored in row IOBJ of A) and the n by n Hessian
matrix H for use with E04NKF/E04NKA and E04NQF. These routines are designed to solve problems
of the form

minimize
x

cTxþ 1
2x

THx subject to l � x
Ax


 �
� u:

3.1 MPS input format

The input file of data may only contain two types of lines:

1. Indicator lines (specifying the type of data which is to follow).

2. Data lines (specifying the actual data).

A section is a combination of an indicator line and its corresponding data line(s). Any characters
beyond column 80 are ignored. Indicator lines must not contain leading blank characters (in other words
they must begin in column 1). The following displays the order in which the indicator lines must appear
in the file:
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NAME user-supplied name (optional)
OBJSENSE (optional)

data line
OBJNAME (optional)

data line
ROWS

data line(s)
COLUMNS

data line(s)
RHS

data line(s)
RANGES (optional)

data line(s)
BOUNDS (optional)

data line(s)
QUADOBJ (optional)

data line(s)
ENDATA

A data line follows a fixed format, being made up of fields as defined below. The contents of the fields
may have different significance depending upon the section of data in which they appear.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2�3 5�12 15�22 25�36 40�47 50�61
Contents Code Name Name Value Name Value

Each name and code must consist of ‘printable’ characters only; names and codes supplied must match
the case used in the following descriptions. Values are read using a field width of 12. This allows values
to be entered in several equivalent forms. For example, 1:2345678, 1:2345678Eþ 0, 123:45678E�2 and
12345678E�07 all represent the same number. It is safest to include an explicit decimal point.

Lines with an asterisk (�) in column 1 will be considered comment lines and will be ignored by the
routine.

Columns outside the six fields must be blank, except for columns 72–80, whose contents are ignored by
the routine. A non-blank character outside the predefined six fields and columns 72–80 is considered to
be a major error (IFAIL ¼ 16; see Section 6), unless it is part of a comment.

3.1.1 NAME Section (optional)

The NAME section is the only section where the data must be on the same line as the indicator. The
‘user-supplied name’ must be in field 3 but may be blank.

Field Required Description
3 No Name of the problem

3.1.2 OBJSENSE Section (optional)

The data line in this section can be used to specify the sense of the objective function. If this section is
present it must contain only one data line. If the section is missing or empty, minimization is assumed.

Field Required Description
2 No Sense of the objective function

Field 2 may contain either MIN, MAX, MINIMIZE or MAXIMIZE.
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3.1.3 OBJNAME Section (optional)

The data line in this section can be used to specify the name of a free row (see Section 3.1.4) that
should be used as the objective function. If this section is present it must contain only one data line. If
the section is missing or is empty, the first free row will be chosen instead. Alternatively, OBJNAME
can be overridden by setting nonempty PNAMESð2Þ (see Section 5).

Field Required Description
2 No Row name to be used as the objective function

Field 2 must contain a valid row name.

3.1.4 ROWS Section

The data lines in this section specify unique row (constraint) names and their inequality types (i.e.,
unconstrained, ¼, � or �).

Field Required Description
1 Yes Inequality key
2 Yes Row name

The inequality key specifies each row's type. It must be E, G, L or N and can be in either column 2 or 3.

Inequality Key Description l u
N Free row �1 1
G Greater than or equal to finite 1
L Less than or equal to �1 finite
E Equal to finite l

Row type N stands for ‘Not binding’. It can be used to define the objective row. The objective row is a
free row that specifies the vector c in the linear objective term cTx. If there is more than one free row,
the first free row is chosen, unless another free row name is specified by OBJNAME (see Section 3.1.3)
or PNAMESð2Þ (see Section 5). Note that c is assumed to be zero if either the chosen row does not
appear in the COLUMNS section (i.e., has no nonzero elements) or there are no free rows defined in the
ROWS section.

3.1.5 COLUMNS Section

Data lines in this section specify the names to be assigned to the variables (columns) in the general
linear constraint matrix A, and define, in terms of column vectors, the actual values of the
corresponding matrix elements.

Field Required Description
2 Yes Column name
3 Yes Row name
4 Yes Value
5 No Row name
6 No Value

Each data line in the COLUMNS section defines the nonzero elements of A or c. Any elements of A or
c that are undefined are assumed to be zero. Nonzero elements of A must be grouped by column, that is
to say that all of the nonzero elements in the jth column of A must be specified before those in the
j þ 1th column, for j ¼ 1; 2; . . . ; n� 1. Rows may appear in any order within the column.

3.1.5.1 Integer Markers

For backward compatibility E04MXF allows you to define the integer variables within the COLUMNS
section using integer markers, although this is not recommended as markers can be treated differently
by different MPS readers; you should instead define any integer variables in the BOUNDS section (see
below). Each marker line must have the following format:
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Field Required Description
2 No Marker ID
3 Yes Marker tag
5 Yes Marker type

The marker tag must be 0MARKER0. The marker type must be 0INTORG0 to start reading integer variables
and 0INTEND0 to finish reading integer variables. This implies that a row cannot be named 0MARKER0,
0INTORG0 or 0INTEND0. Please note that both marker tag and marker type comprise of 8 characters as a 0

is the mandatory first and last character in the string. You may wish to have several integer marker
sections within the COLUMNS section, in which case each marker section must begin with an 0INTORG0

marker and end with an 0INTEND0 marker and there should not be another marker between them.

Field 2 is ignored by E04MXF. When an integer variable is declared it will keep its default bounds
unless they are changed in the BOUNDS section. This may vary between different MPS readers.

3.1.6 RHS Section

This section specifies the right-hand side values (if any) of the general linear constraint matrix A.

Field Required Description
2 Yes RHS name
3 Yes Row name
4 Yes Value
5 No Row name
6 No Value

The MPS file may contain several RHS sets distinguished by RHS name. If an RHS name is defined in
PNAMESð3Þ (see Section 5) then E04MXF will read in only that RHS vector, otherwise the first RHS
set will be used.

Only the nonzero RHS elements need to be specified. Note that if an RHS is given to the objective
function it will be ignored by E04MXF. An RHS given to the objective function is dealt with differently
by different MPS readers, therefore it is safer to not define an RHS of the objective function in your
MPS file. Note that this section may be empty, in which case the RHS vector is assumed to be zero.

3.1.7 RANGES Section (optional)

Ranges are used to modify the interpretation of constraints defined in the ROWS section (see
Section 3.1.4) to the form l � Ax � u, where both l and u are finite. The range of the constraint is
r ¼ u� l.

Field Required Description
2 Yes Range name
3 Yes Row name
4 Yes Value
5 No Row name
6 No Value

The range of each constraint implies an upper and lower bound dependent on the inequality key of each
constraint, on the RHS b of the constraint (as defined in the RHS section), and on the range r.

Inequality Key Sign of r l u
E þ b bþ r
E � bþ r b
G þ=� b bþ rj j
L þ=� b� rj j b
N þ=� �1 þ1

If a range name is defined in PNAMESð4Þ (see Section 5) then the routine will read in only the range
set of that name, otherwise the first set will be used.

E04MXF NAG Library Manual

E04MXF.4 Mark 26



3.1.8 BOUNDS Section (optional)

These lines specify limits on the values of the variables (the quantities l and u in l � x � u). If a
variable is not specified in the bound set then it is automatically assumed to lie between 0 and þ1.

Field Required Description
1 Yes Bound type identifier
2 Yes Bound name
3 Yes Column name
4 Yes/No Value

Note: field 4 is required only if the bound type identifier is one of UP, LO, FX, UI or LI in which case it
gives the value k below. If the bound type identifier is FR, MI, PL or BV, field 4 is ignored and it is
recommended to leave it blank.

The table below describes the acceptable bound type identifiers and how each determines the variables'
bounds.

Bound Type
Identifier l u

Integer
Variable?

UP unchanged k No
LO k unchanged No
FX k k No
FR �1 1 No
MI �1 unchanged No
PL unchanged 1 No
BV 0 1 Yes
UI unchanged k Yes
LI k unchanged Yes

If a bound name is defined in PNAMESð5Þ (see Section 5) then the routine will read in only the bound
set of that name, otherwise the first set will be used.

3.1.9 QUADOBJ Section (optional)

The QUADOBJ section defines nonzero elements of the upper or lower triangle of the Hessian matrix
H.

Field Required Description
2 Yes Column name (HColumn Index)
3 Yes Column name (HRow Index)
4 Yes Value
5 No Column name (HRow Index)
6 No Value

Each data line in the QUADOBJ section defines one (or optionally two) nonzero elements Hij of the
matrix H. Each element Hij is given as a triplet of row index i, column index j and a value. The
column names (as defined in the COLUMNS section) are used to link the names of the variables and
the indices i and j. More precisely, the matrix H on output will have a nonzero element

Hij ¼ Value

where index j belongs to HColumn Index and index i to one of the HRow Indices such that

CRNAMEðjÞ ¼ Column name ðHColumn IndexÞ and
CRNAMEðiÞ ¼ Column name ðHRow IndexÞ.

It is only necessary to define either the upper or lower triangle of the H matrix; either will suffice. Any
elements that have been defined in the upper triangle of the matrix will be moved to the lower triangle
of the matrix, then any repeated nonzeros will be summed.
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Note: it is much more efficient for E04NKF/E04NKA and E04NQF to have the H matrix defined by the
first NCOLH column names. If the nonzeros of H are defined by any columns that are not in the first
NCOLH of N then E04MXF will rearrange the matrices A and H so that they are.

3.2 Query Mode

E04MXF offers a ‘query mode’ to quickly give upper estimates on the sizes of user arrays. In this mode
any expensive checks of the data and of the file format are skipped, providing a prompt count of the
number of variables, constraints and matrix nonzeros. This might be useful in the common case where
the size of the problem is not known in advance.

You may activate query mode by setting any of the following: MAXN < 1, MAXM < 1,
MAXNNZ < 1, MAXNCOLH < 0 or MAXNNZH < 0. If no major formatting error is detected in
the data file, IFAIL ¼ 0 is returned and the upper estimates are given as stated in Table 1. Alternatively,
the routine switches to query mode while the file is being read if it is discovered that the provided space
is insufficient (that is, if N > MAXN, M > MAXM, NNZ > MAXNNZ, NCOLH > MAXNCOLH,
NNZH > MAXNNZH or LINTVAR > MAXLINTVAR). In this case IFAIL ¼ 2 is returned.

Argument Name Upper Estimate for
N MAXN
M MAXM
NNZ MAXNNZ
NCOLH MAXNCOLH
NNZH MAXNNZH
LINTVAR MAXLINTVAR

Table 1

The recommended practice is shown in Section 10, where the routine is invoked twice. The first call
queries the array lengths required, after which the data arrays are allocated to be of these sizes. The
second call reads the data using the sufficiently-sized arrays.

4 References

IBM (1971) MPSX – Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

5 Arguments

1: INFILE – INTEGER Input

On entry: the ID of the MPSX data file to be read as returned by a call to X04ACF.

Constraint: INFILE � 0.

2: MAXN – INTEGER Input

On entry: an upper limit for the number of variables in the problem.

If MAXN < 1, E04MXF will start in query mode (see Section 3.2).

3: MAXM – INTEGER Input

On entry: an upper limit for the number of general linear constraints (including the objective
row) in the problem.

If MAXM < 1, E04MXF will start in query mode (see Section 3.2).

4: MAXNNZ – INTEGER Input

On entry: an upper limit for the number of nonzeros (including the objective row) in the problem.

If MAXNNZ < 1, E04MXF will start in query mode (see Section 3.2).
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5: MAXNCOLH – INTEGER Input

On entry: an upper limit for the dimension of the matrix H.

If MAXNCOLH < 0, E04MXF will start in query mode (see Section 3.2).

6: MAXNNZH – INTEGER Input

On entry: an upper limit for the number of nonzeros of the matrix H.

If MAXNNZH < 0, E04MXF will start in query mode (see Section 3.2).

7: MAXLINTVAR – INTEGER Input

On entry: if MAXLINTVAR � 0, an upper limit for the number of integer variables.

If MAXLINTVAR < 0, E04MXF will treat all integer variables in the file as continuous
variables.

8: MPSLST – INTEGER Input

On entry: if MPSLST 6¼ 0, summary messages are sent to the current advisory message unit (as
defined by X04ABF) as E04MXF reads through the data file. This can be useful for debugging
the file. If MPSLST ¼ 0, then no summary is produced.

9: N – INTEGER Output

On exit: if E04MXF was run in query mode (see Section 3.2), or returned with IFAIL ¼ 2, an
upper estimate of the number of variables of the problem. Otherwise, n, the actual number of
variables in the problem.

10: M – INTEGER Output

On exit: if E04MXF was run in query mode (see Section 3.2), or returned with IFAIL ¼ 2, an
upper estimate of the number of general linear constraints in the problem (including the objective
row). Otherwise m, the actual number of general linear constaints of the problem.

11: NNZ – INTEGER Output

On exit: if E04MXF was run in query mode (see Section 3.2), or returned with IFAIL ¼ 2, an
upper estimate of the number of nonzeros in the problem (including the objective row).
Otherwise the actual number of nonzeros in the problem (including the objective row).

12: NCOLH – INTEGER Output

On exit: if E04MXF was run in query mode (see Section 3.2), or returned with IFAIL ¼ 2, an
upper estimate of the value of NCOLH required by E04NKF/E04NKA and E04NQF. In this
context NCOLH is the number of leading nonzero columns of the Hessian matrix H. Otherwise,
the actual dimension of the matrix H.

13: NNZH – INTEGER Output

On exit: if E04MXF was run in query mode (see Section 3.2), or returned with IFAIL ¼ 2, an
upper estimate of the number of nonzeros of the matrix H. Otherwise, the actual number of
nonzeros of the matrix H.

14: LINTVAR – INTEGER Output

On exit: if on entry MAXLINTVAR < 0, all integer variables are treated as continuous and
LINTVAR ¼ �1.
If E04MXF was run in query mode (see Section 3.2), or returned with IFAIL ¼ 2, an upper
estimate of the number of integer variables of the problem. Otherwise, the actual number of
integer variables of the problem.
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15: IOBJ – INTEGER Output

On exit: if IOBJ > 0, row IOBJ of A is a free row containing the nonzero coefficients of the
vector c.

If IOBJ ¼ 0, the coefficients of c are assumed to be zero.

If E04MXF is run in query mode (see Section 3.2) IOBJ is not referenced.

16: AðMAXNNZÞ – REAL (KIND=nag_wp) array Output

On exit: the nonzero elements of A, ordered by increasing column index.

If E04MXF is run in query mode (see Section 3.2), A is not referenced.

17: IROWAðMAXNNZÞ – INTEGER array Output

On exit: the row indices of the nonzero elements stored in A.

If E04MXF is run in query mode (see Section 3.2), IROWA is not referenced.

18: ICCOLAðMAXNþ 1Þ – INTEGER array Output

On exit: a set of pointers to the beginning of each column of A. More precisely, ICCOLAðiÞ
contains the index in A of the start of the ith column, for i ¼ 1; 2; . . . ;N. Note that
ICCOLAð1Þ ¼ 1 and ICCOLAðNþ 1Þ ¼ NNZþ 1.

If E04MXF is run in query mode (see Section 3.2), ICCOLA is not referenced.

19: BLðMAXNþMAXMÞ – REAL (KIND=nag_wp) array Output
20: BUðMAXNþMAXMÞ – REAL (KIND=nag_wp) array Output

On exit: BL contains the vector l (the lower bounds) and BU contains the vector u (the upper
bounds), for all the variables and constraints in the following order. The first N elements of each
array contains the bounds on the variables x and the next M elements contains the bounds for the
linear objective term cTx and for the general linear constraints Ax (if any). Note that an ‘infinite’
lower bound is indicated by BLðjÞ ¼ �1:0Eþ 20 and an ‘infinite’ upper bound by
BUðjÞ ¼ þ1:0Eþ 20. In other words, any element of u greater than or equal to 1020 will be
regarded as þ1 (and similarly any element of l less than or equal to �1020 will be regarded as
�1). If this value is deemed to be ‘inappropriate’, before calling E04NKF/E04NKA or E04NQF
you are recommended to reset the value of its optional parameter E04NKF/E04NKA and
E04NQF and make any necessary changes to BL and/or BU.

If E04MXF is run in query mode (see Section 3.2), BL and BU are not referenced.

21: PNAMESð5Þ – CHARACTER(8) array Input/Output

On entry: a set of names associated with the MPSX form of the problem.

PNAMESð1Þ
Must either contain the name of the problem or be blank.

PNAMESð2Þ
Must either be blank or contain the name of the objective row (in which case it overrides
OBJNAME section and the default choice of the first objective free row).

PNAMESð3Þ
Must either contain the name of the RHS set to be used or be blank (in which case the first
RHS set is used).

PNAMESð4Þ
Must either contain the name of the RANGE set to be used or be blank (in which case the
first RANGE set (if any) is used).
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PNAMESð5Þ
Must either contain the name of the BOUNDS set to be used or be blank (in which case
the first BOUNDS set (if any) is used).

On exit: a set of names associated with the problem as defined in the MPSX data file as follows:

PNAMESð1Þ
Contains the name of the problem (or blank if none).

PNAMESð2Þ
Contains the name of the objective row (or blank if none).

PNAMESð3Þ
Contains the name of the RHS set (or blank if none).

PNAMESð4Þ
Contains the name of the RANGE set (or blank if none).

PNAMESð5Þ
Contains the name of the BOUNDS set (or blank if none).

If E04MXF is run in query mode (see Section 3.2), PNAMES is not referenced.

22: NNAME – INTEGER Output

On exit: nþm, the total number of variables and constraints in the problem (including the
objective row).

If E04MXF was run in query mode (see Section 3.2), or returned with IFAIL ¼ 2, NNAME is
not set.

23: CRNAMEðMAXNþMAXMÞ – CHARACTER(8) array Output

On exit: the MPS names of all the variables and constraints in the problem in the following order.
The first N elements contain the MPS names for the variables and the next M elements contain
the MPS names for the objective row and general linear constraints (if any). Note that the MPS
name for the objective row is stored in CRNAMEðNþ IOBJÞ.
If E04MXF is run in query mode (see Section 3.2), CRNAME is not referenced.

24: HðMAXNNZHÞ – REAL (KIND=nag_wp) array Output

On exit: the NNZH nonzero elements of H, arranged by increasing column index.

If E04MXF is run in query mode (see Section 3.2), H is not referenced.

25: IROWHðMAXNNZHÞ – INTEGER array Output

On exit: the NNZH row indices of the elements stored in H.

If E04MXF is run in query mode (see Section 3.2), IROWH is not referenced.

26: ICCOLHðMAXNCOLHþ 1Þ – INTEGER array Output

On exit: a set of pointers to the beginning of each column of H. More precisely, ICCOLHðiÞ
contains the index in H of the start of the ith column, for i ¼ 1; 2; . . . ;NCOLH. Note that
ICCOLHð1Þ ¼ 1 and ICCOLHðNCOLHþ 1Þ ¼ NNZHþ 1.

If E04MXF is run in query mode (see Section 3.2), ICCOLH is not referenced.

27: MINMAX – INTEGER Output

On exit: MINMAX defines the direction of the optimization as read from the MPS file. By
default the routine assumes the objective function should be minimized and will return
MINMAX ¼ �1. If the routine discovers in the OBJSENSE section that the objective function
should be maximized it will return MINMAX ¼ 1. If the routine discovers that there is neither
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the linear objective term c (the objective row) nor the Hessian matrix H, the problem is
considered as a feasible point problem and MINMAX ¼ 0 is returned.

If E04MXF was run in query mode (see Section 3.2), or returned with IFAIL ¼ 2, MINMAX is
not set.

28: INTVARðMAXLINTVARÞ – INTEGER array Output

On exit: if MAXLINTVAR > 0 on entry, INTVAR contains pointers to the columns that are
defined as integer variables. More precisely, INTVARðiÞ ¼ k, where k is the index of a column
that is defined as an integer variable, for i ¼ 1; 2; . . . ;LINTVAR.

If MAXLINTVAR � 0 on entry, or E04MXF was run in query mode (see Section 3.2), or it
returned with IFAIL ¼ 2, INTVAR is not set.

29: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note that if any of the relevant arguments are accidentally set to zero, or not set and assume zero
values, then the routine will have executed in query mode. In this case only the size of the
problem is returned and other arguments are not set. See Section 3.2.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Warning: MPS file not strictly fixed format, although the problem was read anyway. The data
may have been read incorrectly. You should set MPSLST ¼ 1 and repeat the call to E04MXF for
more details.

IFAIL ¼ 2

At least one of MAXM, MAXN, MAXNNZ, MAXNNZH, MAXNCOLH or MAXLINTVAR is
too small. Suggested values are returned in M, N, NNZ, NNZH, NCOLH and LINTVAR
respectively.

IFAIL ¼ 3

Incorrect ordering of indicator lines.
OBJNAME indicator line found after ROWS indicator line.

IFAIL ¼ 4

Incorrect ordering of indicator lines.
COLUMNS indicator line found before ROWS indicator line.
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IFAIL ¼ 5

Incorrect ordering of indicator lines.
RHS indicator line found before COLUMNS indicator line.

IFAIL ¼ 6

Incorrect ordering of indicator lines.
RANGES indicator line found before RHS indicator line.

IFAIL ¼ 7

Incorrect ordering of indicator lines.
BOUNDS indicator line found before COLUMNS indicator line.

IFAIL ¼ 8

Incorrect ordering of indicator lines.
QUADOBJ indicator line found before BOUNDS indicator line.

IFAIL ¼ 9

Incorrect ordering of indicator lines.
QUADOBJ indicator line found before COLUMNS indicator line.

IFAIL ¼ 10

Unknown indicator line ‘ valueh i’.

IFAIL ¼ 12

Indicator line ‘ valueh i’ has been found more than once in the MPS file.

IFAIL ¼ 13

End of file found before ENDATA indicator line.

IFAIL ¼ 14

No indicator line found in file. It may be an empty file.

IFAIL ¼ 15

At least one mandatory section not found in MPS file.

IFAIL ¼ 16

An illegal line was detected in ‘ valueh i’ section.
This is neither a comment nor a valid data line.

IFAIL ¼ 17

Unknown inequality key ‘ valueh i’ in ROWS section.
Expected ‘N’, ‘G’, ‘L’ or ‘E’.

IFAIL ¼ 18

Empty ROWS section.
Neither the objective row nor the constraints were defined.

IFAIL ¼ 19

The supplied name, in PNAMESð2Þ or in OBJNAME, of the objective row was not found among
the free rows in the ROWS section.
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IFAIL ¼ 20

The supplied name, in PNAMESð5Þ, of the BOUNDS set to be used was not found in the
BOUNDS section.

IFAIL ¼ 21

The supplied name, in PNAMESð3Þ, of the RHS set to be used was not found in the RHS
section.

IFAIL ¼ 22

The supplied name, in PNAMESð4Þ, of the RANGES set to be used was not found in the
RANGES section.

IFAIL ¼ 23

Illegal row name.
Row names must consist of printable characters only.

IFAIL ¼ 24

Illegal column name.
Column names must consist of printable characters only.

IFAIL ¼ 25

Row name ‘ valueh i’ has been defined more than once in the ROWS section.

IFAIL ¼ 26

Column ‘ valueh i’ has been defined more than once in the COLUMNS section. Column
definitions must be continuous. (See Section 3.1.5).

IFAIL ¼ 27

Found ‘INTORG’ marker within ‘INTORG’ to ‘INTEND’ range.

IFAIL ¼ 28

Found ‘INTEND’ marker without previous marker being ‘INTORG’.

IFAIL ¼ 29

Found ‘INTORG’ but not ‘INTEND’ before the end of the COLUMNS section.

IFAIL ¼ 30

Illegal marker type ‘ valueh i’.
Should be either ‘INTORG’ or ‘INTEND’.

IFAIL ¼ 31

Unknown row name ‘ valueh i’ in valueh i section.
All row names must be specified in the ROWS section.

IFAIL ¼ 32

Unknown column name ‘ valueh i’ in valueh i section.
All column names must be specified in the COLUMNS section.

IFAIL ¼ 33

Unknown bound type ‘ valueh i’ in BOUNDS section.
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IFAIL ¼ 34

More than one nonzero of A has row name ‘ valueh i’ and column name ‘ valueh i’ in the
COLUMNS section.

IFAIL ¼ 35

Field valueh i did not contain a number (see Section 3).

IFAIL ¼ 36

On entry, INFILE ¼ valueh i.
Constraint: INFILE � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04MXF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example solves the quadratic programming problem

minimize cTxþ 1
2x

THx subject to l � Ax � u;
�2 � x � 2;

where
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c ¼

�4:0
�1:0
�1:0
�1:0
�1:0
�1:0
�1:0
�0:1
�0:3

0BBBBBBBBBB@

1CCCCCCCCCCA
; H ¼

2 1 1 1 1 0 0 0 0
1 2 1 1 1 0 0 0 0
1 1 2 1 1 0 0 0 0
1 1 1 2 1 0 0 0 0
1 1 1 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0BBBBBBBBBB@

1CCCCCCCCCCA
;

A ¼
1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 4:0
1:0 2:0 3:0 4:0 �2:0 1:0 1:0 1:0 1:0
1:0 �1:0 1:0 �1:0 1:0 1:0 1:0 1:0 1:0

0@ 1A;
l ¼

�2:0
�2:0
�2:0

0@ 1A and u ¼
1:5
1:5
4:0

0@ 1A:
The optimal solution (to five figures) is

x� ¼ 2:0;�0:23333;�0:26667;�0:3;�0:1; 2:0; 2:0;�1:7777;�0:45555ð ÞT:
Three bound constraints and two general linear constraints are active at the solution. Note that, although
the Hessian matrix is only positive semidefinite, the point x� is unique.

The MPS representation of the problem is given in Section 10.2.

Another example which shows how to use E04MXF together with the NAG optimization modelling
suite is associated with E04RJF.

10.1 Program Text

! E04MXF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04mxfe_mod

! E04MXF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: qphx

Contains
Subroutine qphx(ncolh,x,hx,nstate,cuser,iuser,ruser)

! Subroutine to compute H*x.

! Note: IUSER and RUSER contain the following data:
! RUSER(1:NNZH) = H(1:NNZH)
! IUSER(1:NCOLH+1) = ICCOLH(1:NCOLH+1)
! IUSER(NCOLH+2:NNZH+NCOLH+1) = IROWH(1:NNZH)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncolh, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hx(ncolh)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(ncolh)
Integer, Intent (Inout) :: iuser(*)
Character (8), Intent (Inout) :: cuser(*)

! .. Local Scalars ..
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Integer :: end, icol, idx, irow, start
! .. Executable Statements ..

hx(1:ncolh) = 0.0E0_nag_wp

Do icol = 1, ncolh
start = iuser(icol)
end = iuser(icol+1) - 1

Do idx = start, end
irow = iuser(ncolh+1+idx)
hx(irow) = hx(irow) + x(icol)*ruser(idx)
If (irow/=icol) Then

hx(icol) = hx(icol) + x(irow)*ruser(idx)
End If

End Do

End Do

Return
End Subroutine qphx

End Module e04mxfe_mod

Program e04mxfe

! .. Use Statements ..
Use nag_library, Only: e04mxf, e04npf, e04nqf, e04nsf, e04ntf, nag_wp, &

x04acf, x04adf
Use e04mxfe_mod, Only: qphx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lencw = 600, leniw = 600, &

lenrw = 600, mpslst = 1, nin = 7, &
nout = 6

Logical, Parameter :: readints = .False.
Character (*), Parameter :: fname = ’e04mxfe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj, objadd, sinf
Integer :: i, ifail, iobj, lenc, lintvar, m, &

maxlintvar, maxm, maxn, maxncolh, &
maxnnz, maxnnzh, minmax, mode, n, &
ncolh, ninf, nname, nnz, nnzh, ns

Character (1) :: start
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), bl(:), bu(:), c(:), h(:), &
pi(:), rc(:), ruser(:), rw(:), x(:)

Integer, Allocatable :: helast(:), hs(:), iccola(:), &
iccolh(:), intvar(:), irowa(:), &
irowh(:), iuser(:), iw(:)

Character (8), Allocatable :: crname(:), cw(:)
Character (8) :: cuser(1), pnames(5)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’E04MXF Example Program Results’
Flush (nout)

! Initialize
pnames(1:5) = ’ ’
maxm = 0
maxn = 0
maxnnz = 0
maxnnzh = 0
maxncolh = 0
maxlintvar = 0

! Open the data file for reading
mode = 0
ifail = 0
Call x04acf(nin,fname,mode,ifail)
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! Call e04mxf in query mode
Allocate (a(maxnnz),irowa(maxnnz),iccola(maxn+1),bl(maxn+maxm), &

bu(maxn+maxm),crname(maxn+maxm),h(maxnnzh),irowh(maxnnzh), &
iccolh(maxncolh+1),intvar(maxlintvar))

ifail = 0
Call e04mxf(nin,maxn,maxm,maxnnz,maxncolh,maxnnzh,maxlintvar,mpslst,n,m, &

nnz,ncolh,nnzh,lintvar,iobj,a,irowa,iccola,bl,bu,pnames,nname,crname, &
h,irowh,iccolh,minmax,intvar,ifail)

Deallocate (a,irowa,iccola,bl,bu,crname,h,irowh,iccolh,intvar)

! Close the data file
ifail = 0
Call x04adf(nin,ifail)

! set maxm maxn and maxnnz
maxm = m
maxn = n
maxnnz = nnz
maxnnzh = nnzh
maxncolh = ncolh
If (readints) Then

maxlintvar = lintvar
Else

maxlintvar = -1
End If

! Allocate memory
Allocate (irowa(maxnnz),iccola(maxn+1),a(maxnnz),bl(maxn+maxm), &

bu(maxn+maxm),crname(maxn+maxm),irowh(maxnnzh),iccolh(maxncolh+1), &
h(maxnnzh),intvar(maxlintvar))

! Open the data file for reading
mode = 0
ifail = 0
Call x04acf(nin,fname,mode,ifail)

! Call e04mxf to read the problem
ifail = 0
Call e04mxf(nin,maxn,maxm,maxnnz,maxncolh,maxnnzh,maxlintvar,mpslst,n,m, &

nnz,ncolh,nnzh,lintvar,iobj,a,irowa,iccola,bl,bu,pnames,nname,crname, &
h,irowh,iccolh,minmax,intvar,ifail)

! Close the data file
ifail = 0
Call x04adf(nin,ifail)

! Data has been read. Set up and run the solver

Allocate (iw(leniw),rw(lenrw),cw(lencw))

! Call e04npf to initialize workspace
ifail = 0
Call e04npf(cw,lencw,iw,leniw,rw,lenrw,ifail)

! Call option setter e04nsf to change the direction of optimization.
! Minimization is assumed by default.

If (minmax==1) Then
ifail = 0
Call e04nsf(’Maximize’,cw,iw,rw,ifail)

Else If (minmax==0) Then
ifail = 0
Call e04nsf(’Feasible Point’,cw,iw,rw,ifail)

End If

! By default E04NQF does not print monitoring
! information. Set the print file unit or the summary
! file unit to get information.

ifail = 0
Call e04ntf(’Print file’,nout,cw,iw,rw,ifail)
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! We have no explicit objective vector so set LENC = 0; the
! objective vector is stored in row IOBJ of ACOL.

lenc = 0
objadd = 0.0E0_nag_wp
start = ’C’

Allocate (c(max(1,lenc)),helast(n+m),x(n+m),pi(m),rc(n+m),hs(n+m),iuser( &
ncolh+1+nnzh),ruser(nnzh))

helast(1:n+m) = 0
hs(1:n+m) = 0
Do i = 1, n + m

x(i) = min(max(0.0E0_nag_wp,bl(i)),bu(i))
End Do

If (ncolh>0) Then
! Store the non zeros of H in ruser for use by qphx

ruser(1:nnzh) = h(1:nnzh)

! Store iccolh and irowh in iuser for use by qphx
iuser(1:ncolh+1) = iccolh(1:ncolh+1)
iuser(ncolh+2:nnzh+ncolh+1) = irowh(1:nnzh)

End If

! Call e04nqf to solve the problem
ifail = 0
Call e04nqf(start,qphx,m,n,nnz,nname,lenc,ncolh,iobj,objadd,pnames(1),a, &

irowa,iccola,bl,bu,c,crname,helast,hs,x,pi,rc,ns,ninf,sinf,obj,cw, &
lencw,iw,leniw,rw,lenrw,cuser,iuser,ruser,ifail)

End Program e04mxfe

10.2 Program Data

NAME E04MX.EX
ROWS
L ..ROW1..
L ..ROW2..
L ..ROW3..
N ..COST..

COLUMNS
...X1... ..ROW1.. 1.0 ..ROW2.. 1.0
...X1... ..ROW3.. 1.0 ..COST.. -4.0
...X2... ..ROW1.. 1.0 ..ROW2.. 2.0
...X2... ..ROW3.. -1.0 ..COST.. -1.0
...X3... ..ROW1.. 1.0 ..ROW2.. 3.0
...X3... ..ROW3.. 1.0 ..COST.. -1.0
...X4... ..ROW1.. 1.0 ..ROW2.. 4.0
...X4... ..ROW3.. -1.0 ..COST.. -1.0
...X5... ..ROW1.. 1.0 ..ROW2.. -2.0
...X5... ..ROW3.. 1.0 ..COST.. -1.0
...X6... ..ROW1.. 1.0 ..ROW2.. 1.0
...X6... ..ROW3.. 1.0 ..COST.. -1.0
...X7... ..ROW1.. 1.0 ..ROW2.. 1.0
...X7... ..ROW3.. 1.0 ..COST.. -1.0
...X8... ..ROW1.. 1.0 ..ROW2.. 1.0
...X8... ..ROW3.. 1.0 ..COST.. -0.1
...X9... ..ROW1.. 4.0 ..ROW2.. 1.0
...X9... ..ROW3.. 1.0 ..COST.. -0.3

RHS
RHS1 ..ROW1.. 1.5
RHS1 ..ROW2.. 1.5
RHS1 ..ROW3.. 4.0
RHS1 ..COST.. 1000.0

RANGES
RANGE1 ..ROW1.. 3.5
RANGE1 ..ROW2.. 3.5
RANGE1 ..ROW3.. 6.0

BOUNDS
LO BOUND ...X1... -2.0
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LO BOUND ...X2... -2.0
LO BOUND ...X3... -2.0
LO BOUND ...X4... -2.0
LO BOUND ...X5... -2.0
LO BOUND ...X6... -2.0
LO BOUND ...X7... -2.0
LO BOUND ...X8... -2.0
LO BOUND ...X9... -2.0
UP BOUND ...X1... 2.0
UP BOUND ...X2... 2.0
UP BOUND ...X3... 2.0
UP BOUND ...X4... 2.0
UP BOUND ...X5... 2.0
UP BOUND ...X6... 2.0
UP BOUND ...X7... 2.0
UP BOUND ...X8... 2.0
UP BOUND ...X9... 2.0

QUADOBJ
...X1... ...X1... 2.00000000E0 ...X2... 1.00000000E0
...X1... ...X3... 1.00000000E0 ...X4... 1.00000000E0
...X1... ...X5... 1.00000000E0
...X2... ...X2... 2.00000000E0 ...X3... 1.00000000E0
...X2... ...X4... 1.00000000E0 ...X5... 1.00000000E0
...X3... ...X3... 2.00000000E0 ...X4... 1.00000000E0
...X3... ...X5... 1.00000000E0
...X4... ...X4... 2.00000000E0 ...X5... 1.00000000E0
...X5... ...X5... 2.00000000E0

ENDATA

10.3 Program Results
E04MXF Example Program Results

MPSX INPUT LISTING
------------------
Searching for indicator line
Line 1: Found NAME indicator line

Query mode - Ignoring NAME data.
Line 2: Found ROWS indicator line

Query mode - Counting ROWS data.
Line 7: Found COLUMNS indicator line

Query mode - Counting COLUMNS data.
Line 26: Found RHS indicator line

Query mode - Ignoring RHS data.
Line 31: Found RANGES indicator line

Query mode - Ignoring RANGES data.
Line 35: Found BOUNDS indicator line

Query mode - Counting BOUNDS data.
Line 54: Found QUADOBJ indicator line

Query mode - Counting QUADOBJ data.
Query mode - End of QUADOBJ data. Exit

MPSX INPUT LISTING
------------------
Searching for indicator line
Line 1: Found NAME indicator line
Line 2: Found ROWS indicator line
Line 7: Found COLUMNS indicator line
Line 26: Found RHS indicator line
Line 31: Found RANGES indicator line
Line 35: Found BOUNDS indicator line
Line 54: Found QUADOBJ indicator line
Line 64: Found ENDATA indicator line

Parameters
==========

Files
-----
Solution file.......... 0 Old basis file ........ 0 (Print file)........... 6
Insert file............ 0 New basis file ........ 0 (Summary file)......... 0
Punch file............. 0 Backup basis file...... 0
Load file.............. 0 Dump file.............. 0

Frequencies
-----------
Print frequency........ 100 Check frequency........ 60 Save new basis map..... 100
Summary frequency...... 100 Factorization frequency 50 Expand frequency....... 10000

LP/QP Parameters
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----------------
Minimize............... QPsolver Cholesky...... Cold start.............
Scale tolerance........ 0.900 Feasibility tolerance.. 1.00E-06 Iteration limit........ 10000
Scale option........... 2 Optimality tolerance... 1.00E-06 Print level............ 1
Crash tolerance........ 0.100 Pivot tolerance........ 2.04E-11 Partial price.......... 1
Crash option........... 3 Elastic weight......... 1.00E+00 Prtl price section ( A) 9
Elastic mode........... 1 Elastic objective...... 1 Prtl price section (-I) 4

QP objective
------------
Objective variables.... 5 Hessian columns........ 5 Superbasics limit...... 6
Nonlin Objective vars.. 5 Unbounded step size.... 1.00E+20
Linear Objective vars.. 0

Miscellaneous
-------------
LU factor tolerance.... 3.99 LU singularity tol..... 2.04E-11 Timing level........... 0
LU update tolerance.... 3.99 LU swap tolerance...... 1.03E-04 Debug level............ 0
LU partial pivoting... eps (machine precision) 1.11E-16 System information..... No

Matrix statistics
-----------------

Total Normal Free Fixed Bounded
Rows 4 0 1 0 3
Columns 9 0 0 0 9

No. of matrix elements 36 Density 100.000
Biggest 4.0000E+00 (excluding fixed columns,
Smallest 1.0000E+00 free rows, and RHS)

No. of objective coefficients 9
Biggest 4.0000E+00 (excluding fixed columns)
Smallest 1.0000E-01

Nonlinear constraints 0 Linear constraints 4
Nonlinear variables 5 Linear variables 4
Jacobian variables 0 Objective variables 5
Total constraints 4 Total variables 9

Itn 0: Feasible linear constraints

E04NQT EXIT 0 -- finished successfully
E04NQT INFO 1 -- optimality conditions satisfied

Problem name E04MX.EX
No. of iterations 11 Objective value -8.0677777778E+00
No. of Hessian products 25 Objective row -1.0785555556E+01

Quadratic objective 2.7177777778E+00
No. of superbasics 4 No. of basic nonlinears 2
No. of degenerate steps 2 Percentage 18.18
Max x (scaled) 1 1.3E+00 Max pi (scaled) 4 1.0E+00
Max x 1 2.0E+00 Max pi 4 1.0E+00
Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 0 0.0E+00
Max Primal infeas 0 0.0E+00 Max Dual infeas 0 0.0E+00

Name E04MX.EX Objective Value -8.0677777778E+00

Status Optimal Soln Iteration 11 Superbasics 4

Section 1 - Rows

Number ...Row.. State ...Activity... Slack Activity ..Lower Limit. ..Upper Limit. .Dual Activity ..i

10 ..ROW1.. UL 1.50000 . -2.00000 1.50000 -0.06667 1
11 ..ROW2.. UL 1.50000 . -2.00000 1.50000 -0.03333 2
12 ..ROW3.. SBS 3.93333 -0.06667 -2.00000 4.00000 . 3
13 ..COST.. BS -10.78556 -10.78556 None None -1.0 4

Section 2 - Columns

Number .Column. State ...Activity... .Obj Gradient. ..Lower Limit. ..Upper Limit. Reduced Gradnt m+j

1 ...X1... UL 2.00000 -0.90000 -2.00000 2.00000 -0.80000 5
2 ...X2... SBS -0.23333 -0.13333 -2.00000 2.00000 . 6
3 ...X3... BS -0.26667 -0.16667 -2.00000 2.00000 . 7
4 ...X4... BS -0.30000 -0.20000 -2.00000 2.00000 . 8
5 ...X5... SBS -0.10000 . -2.00000 2.00000 . 9
6 ...X6... UL 2.00000 -1.0 -2.00000 2.00000 -0.90000 10
7 ...X7... UL 2.00000 -1.0 -2.00000 2.00000 -0.90000 11
8 ...X8... SBS -1.77778 -0.10000 -2.00000 2.00000 . 12
9 ...X9... BS -0.45556 -0.30000 -2.00000 2.00000 . 13
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NAG Library Routine Document

E04MZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04MZF reads data for a sparse linear programming or quadratic programming problem from an
external file which is in standard or compatible MPSX input format.

2 Specification

SUBROUTINE E04MZF (INFILE, MAXN, MAXM, MAXNNZ, XBLDEF, XBUDEF, MPSLST,
N, M, NNZ, IOBJ, NCOLH, A, HA, KA, BL, BU, START,
NAMES, NNAME, CRNAME, XS, ISTATE, IFAIL)

&
&

INTEGER INFILE, MAXN, MAXM, MAXNNZ, N, M, NNZ, IOBJ, NCOLH,
HA(MAXNNZ), KA(MAXN+1), NNAME, ISTATE(MAXN+MAXM),
IFAIL

&
&

REAL (KIND=nag_wp) XBLDEF, XBUDEF, A(MAXNNZ), BL(MAXN+MAXM),
BU(MAXN+MAXM), XS(MAXN+MAXM)

&

LOGICAL MPSLST
CHARACTER(1) START
CHARACTER(8) NAMES(5), CRNAME(MAXN+MAXM)

3 Description

E04MZF reads linear programming (LP) or quadratic programming (QP) problem data from an external
file which is prepared in standard or compatible MPSX (see IBM (1971)) input format and then
initializes n (the number of variables), m (the number of general linear constraints), the m by n matrix
A, and the vectors l, u and c (stored in row IOBJ of A) for use with E04NKF, which is designed to
solve problems of the form

minimize
x2Rn

cTxþ 1
2x

THx subject to l � x
Ax


 �
� u:

For LP problems, H ¼ 0. For QP problems, you must set NCOLH > 0 (see Section 5) and provide a
subroutine to E04NKF to compute Hx for any given vector x. (This is illustrated in Section 10.) The
optional parameter Maximize may be used to specify an alternative problem in which the objective
function is maximized (see Section 12.1 in E04NKF/E04NKA).

MPSX input format

The input file of data may only contain two types of lines:

1. Indicator lines (specifying the type of data which is to follow).

2. Data lines (specifying the actual data).

The input file must not contain any blank lines. Any characters beyond column 80 are ignored.
Indicator lines must not contain leading blank characters (in other words they must begin in column 1).
The following displays the order in which the indicator lines must appear in the file:
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NAME user-supplied name
ROWS

data line(s)
COLUMNS

data line(s)
RHS

data line(s)
RANGES (optional)

data line(s)
BOUNDS (optional)

data line(s)
ENDATA

The ‘user-supplied name’ specifies a name for the problem and must occupy columns 15�22. The name
can either be blank or up to a maximum of 8 characters.

A data line follows the same fixed format made up of fields defined below. The contents of the fields
may have different significance depending upon the section of data in which they appear.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2�3 5�12 15�22 25�36 40�47 50�61
Contents Code Name Name Value Name Value

The names and codes consist of ‘alphanumeric’ characters (i.e., a–z, A–Z, 0–9, þ, �, *, blank ( ), :, $
or full stop (.) only) and the names must not contain leading blank characters. Values are read using
Fortran format E12:0. This allows values to be entered in several equivalent forms. For example,
1:2345678, 1:2345678Eþ 0, 123:45678E�2 and 12345678E�07 all represent the same number. It is
safest to include an explicit decimal point.

Note that in order to ensure numeric values are interpreted as intended, they should be right-justified in
the 12-character field, with no trailing blanks. This is because in some situations trailing blanks may be
interpreted as zeros and this can dramatically affect the interpretation of the value. This is relevant if
the value contains an exponent, or if it contains neither an exponent nor an explicit decimal point. For
example, the fields

%%%%1.23E-2%
%%%%%%%123%%

may be interpreted as 1:23E�20 and 12300 respectively (where % denotes a blank). The actual
behaviour is system-dependent.

Comment lines are allowed in the data file. These must have an asterisk (*) in column 1 and any
characters in columns 2–80. In any data line, a dollar sign ($) as the first character in Field 3 or 5
indicates that the information from that point through column 80 consists of comments.

Columns outside the six fields must be blank, except for columns 72–80, whose contents are ignored by
the routine. These columns may be used to enter a sequence number. A non-blank character outside the
predefined six fields and columns 72–80 is considered to be a major error (IFAIL ¼ 13; see Section 6),
unless it is part of a comment.

ROWS Data Lines

These lines specify row (constraint) names and their inequality types (i.e., ¼, � or �).

Field 1: defines the constraint type. It may be in column 2 or column 3.
N free row, that is no constraint. It may be used to define the objective row.
G greater than or equal to (i.e., �).
L less than or equal to (i.e., �).
E exactly equal to (i.e., ¼).
Field 2: defines the row name.

Row type N stands for ‘Not binding’, also known as ‘Free’. It can be used to define the objective row.
The objective row is a free row that specifies the vector c in the linear objective term cTx. It is taken to
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be the first free row, unless some other free row name is specified by the NAMES array (see Section 5).
Note that c is assumed to be zero if (for example) the line

%N%%DUMMYROW

(where % denotes a blank) appears in the ROWS section of the MPSX data file, and the row name
DUMMYROW is omitted from the COLUMNS section.

COLUMNS Data Lines

These lines specify the names to be assigned to the variables (columns) in the general linear constraint
matrix A, and define, in terms of column vectors, the actual values of the corresponding matrix
elements.

Field 1: blank (ignored).

Field 2: gives the name of the column associated with the elements specified in the following
fields.

Field 3: contains the name of a row.

Field 4: used in conjunction with Field 3 contains the value of the matrix element.

Field 5: is optional (may be used like Field 3).

Field 6: is optional (may be used like Field 4).

Note that only the nonzero elements of A and c need to be specified in the COLUMNS section, as any
zero elements of A are removed and any unspecified elements of c are assumed to be zero. In addition,
any nonzero elements in the jth column of A must be grouped together before those in the j þ 1ð Þth
column, for j ¼ 1; 2; . . . ; n� 1. Nonzero elements within a column may however appear in any order.

RHS Data Lines

This section specifies the right-hand side values of the general linear constraint matrix A (if any). The
lines specify the name to be given to the right-hand side (RHS) vector along with the numerical values
of the elements of the vector, which may appear in any order. The data lines have exactly the same
format as the COLUMNS data lines, except that the column name is replaced by the RHS name. Only
the nonzero elements need be specified. Note that this section may be empty, in which case the RHS
vector is assumed to be zero.

RANGES Data Lines (optional)

Ranges are used for constraints of the form l � Ax � u, where both l and u are finite. The range of the
constraint is r ¼ u� l. Either l or u must be specified in the RHS section and r must be defined in this
section. The data lines have exactly the same format as the COLUMNS data lines, except that the
column name is replaced by the RANGES name.

BOUNDS Data Lines (optional)

These lines specify limits on the values of the variables (l and u in l � x � u). If the variable is not
specified in the bound set then it is automatically assumed to lie between default lower and upper
bounds (usually 0 and þ1). Like an RHS column which is given a name, the set of variables in one
bound set is also given a name.

Field 1: specifies the type of bound or defines the variable type.
LO lower bound
UP upper bound
FX fixed variable
FR free variable (�1 to þ1)
MI lower bound is �1
PL upper bound is þ1. This is the default variable type.
Field 2: identifies a name for the bound set.
Field 3: identifies the column name of the variable belonging to this set.
Field 4: identifies the value of the bound; this has a numerical value only in association with LO,

UP, FX in Field 1, otherwise it is blank.
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Field 5: is blank and ignored.
Field 6: is blank and ignored.

Note that if RANGES and BOUNDS sections are both present, the RANGES section must appear first.

4 References

IBM (1971) MPSX – Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

5 Arguments

1: INFILE – INTEGER Input

On entry: the unit number associated with the MPSX data file.

Constraint: 0 � INFILE � 99.

2: MAXN – INTEGER Input

On entry: an upper limit for the number of variables in the problem.

Constraint: MAXN � 1.

3: MAXM – INTEGER Input

On entry: an upper limit for the number of constraints (including the objective row) in the
problem.

Constraint: MAXM � 1.

4: MAXNNZ – INTEGER Input

On entry: an upper limit for the number of nonzeros (including the objective row) in the problem.

Constraint: MAXNNZ � 1.

5: XBLDEF – REAL (KIND=nag_wp) Input

On entry: the default lower bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file. For a standard LP or QP problem
XBLDEF would normally be set to zero.

6: XBUDEF – REAL (KIND=nag_wp) Input

On entry: the default upper bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file. For a standard LP or QP problem
XBUDEF would normally be set to ‘infinity’ (i.e., XBUDEF � 1020).

Constraint: XBUDEF � XBLDEF.

7: MPSLST – LOGICAL Input

On entry: if MPSLST ¼ :TRUE:, then a listing of the input data is sent to the current advisory
message unit (as defined by X04ABF). This can be useful for debugging the MPSX data file. If
MPSLST ¼ :FALSE:, then no listing is produced.

8: N – INTEGER Output

On exit: n, the actual number of variables in the problem.
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9: M – INTEGER Output

On exit: m, the actual number of general linear constraints in the problem (including the
objective row).

10: NNZ – INTEGER Output

On exit: the actual number of nonzeros in the problem (including the objective row).

11: IOBJ – INTEGER Output

On exit: if IOBJ > 0, row IOBJ of A is a free row containing the nonzero coefficients of the
vector c.

If IOBJ ¼ 0, the coefficients of c are assumed to be zero.

If IOBJ ¼ �1, no such row was found and the routine terminates with IFAIL ¼ 4 or 5 (see
Section 6).

12: NCOLH – INTEGER Output

On exit: NCOLH ¼ 0. For QP problems, NCOLH is the number of leading nonzero columns of
the Hessian matrix H and must therefore be set > 0 before calling E04NKF.

13: AðMAXNNZÞ – REAL (KIND=nag_wp) array Output

On exit: the nonzero elements of A, ordered by increasing column index.

14: HAðMAXNNZÞ – INTEGER array Output

On exit: the row indices of the nonzero elements stored in A.

15: KAðMAXNþ 1Þ – INTEGER array Output

On exit: a set of pointers to the beginning of each column of A. More precisely, KAðiÞ contains
the index in A of the start of the ith column, for i ¼ 1; 2; . . . ;N. Note that KAð1Þ ¼ 1 and
KAðNþ 1Þ ¼ NNZþ 1.

16: BLðMAXNþMAXMÞ – REAL (KIND=nag_wp) array Output
17: BUðMAXNþMAXMÞ – REAL (KIND=nag_wp) array Output

On exit: BL contains the vector l (the lower bounds) and BU contains the vector u (the upper
bounds), for all the variables and constraints in the following order. The first N elements of each
array contain the bounds on the variables x and the next M elements contain the bounds for the
linear objective term cTx and the general linear constraints Ax (if any). Note that an ‘infinite’
lower bound is indicated by BLðjÞ ¼ �1:0Eþ 20, an ‘infinite’ upper bound by
BUðjÞ ¼ �1:0Eþ 20 and an equality constraint by BLðjÞ ¼ BUðjÞ. (The lower bound for cTx,
stored in BLðNþ IOBJÞ, is set to �XBUDEF. The corresponding upper bound, stored in
BUðNþ IOBJÞ, is set to XBUDEF.)

Note that E04MZF uses an ‘infinite’ bound size of 1020 in the definition of l and u. In other
words, any element of u greater than or equal to 1020 will be regarded as þ1 (and similarly any
element of l less than or equal to �1020 will be regarded as �1). If this value is deemed to be
‘inappropriate’, you are recommended to reset the value of the optional parameter Infinite
Bound Size and make any necessary changes to BL and/or BU before calling E04NKF.

18: START – CHARACTER(1) Output

On exit: START ¼ C and an internal Crash procedure will be used by E04NKF to choose an
initial basis.
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19: NAMESð5Þ – CHARACTER(8) array Input/Output

On entry: a set of names associated with the MPSX form of the problem.

NAMESð1Þ
Must contain either the name of the problem or be blank.

NAMESð2Þ
Must contain either the name of the objective row or be blank (in which case the first
objective free row is used).

NAMESð3Þ
Must contain either the name of the RHS set to be used or be blank (in which case the first
RHS set is used).

NAMESð4Þ
Must contain either the name of the RANGE set to be used or be blank (in which case the
first RANGE set (if any) is used).

NAMESð5Þ
Must contain either the name of the BOUNDS set to be used or be blank (in which case
the first BOUNDS set (if any) is used).

On exit: a set of names associated with the problem as defined in the MPSX data file as follows:

NAMESð1Þ
Contains the name of the problem (or blank if none).

NAMESð2Þ
Contains the name of the objective row (or blank if none).

NAMESð3Þ
Contains the name of the RHS set (or blank if none).

NAMESð4Þ
Contains the name of the RANGE set (or blank if none).

NAMESð5Þ
Contains the name of the BOUNDS set (or blank if none).

20: NNAME – INTEGER Output

On exit: nþm, the total number of variables and constraints in the problem.

21: CRNAMEðMAXNþMAXMÞ – CHARACTER(8) array Output

On exit: the MPSX names of all the variables and constraints in the problem in the following
order. The first N elements contain the MPSX names for the variables and the next M elements
contain the MPSX names for the objective row and general linear constraints (if any). Note that
the MPSX name for the objective row is stored in CRNAMEðNþ IOBJÞ.

22: XSðMAXNþMAXMÞ – REAL (KIND=nag_wp) array Output

On exit: a set of initial values for the variables and constraints in the problem. More precisely,
XSðjÞ ¼ min max 0:0;BLðjÞð Þ;BUðjÞð Þ, for j ¼ 1; 2; . . . ;NNAME.

23: ISTATEðMAXNþMAXMÞ – INTEGER array Output

On exit: a set of initial states for the variables and constraints in the problem. More precisely,
ISTATEðjÞ ¼ 1 if XSðjÞ ¼ BUðjÞ and 0 otherwise, for j ¼ 1; 2; . . . ;NNAME.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

There are too many rows present in the data file. Increase MAXM by at least M�MAXMð Þ and
rerun E04MZF.

IFAIL ¼ 2

There are too many columns present in the data file. Increase MAXN by at least N�MAXNð Þ
and rerun E04MZF.

IFAIL ¼ 3

There are too many nonzeros present in the data file. Increase MAXNNZ by at least
NNZ�MAXNNZð Þ and rerun E04MZF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

The following error exits (apart from IFAIL ¼ 17) are caused by having either a corrupt or a
nonstandard MPSX data file. Refer to Section 3 for a detailed description of the MPSX format which
can be read by E04MZF. If MPSLST ¼ :TRUE:, the last line of printed output refers to the line in the
MPSX data file which contains the reported error.

IFAIL ¼ 4

The objective row was not found. There must be at least one row in the ROWS section with row
type N for the objective row.

IFAIL ¼ 5

An unknown objective row name was detected in the ROWS section.

IFAIL ¼ 6

There are no rows specified in the ROWS section.
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IFAIL ¼ 7

An illegal constraint type was detected in the ROWS section. The constraint type must be either
N, L, G or E.

IFAIL ¼ 8

An illegal row name was detected in the ROWS section. Names must be made up of
‘alphanumeric’ characters (see Section 3) with no leading blanks.

IFAIL ¼ 9

An illegal column name was detected in the COLUMNS section. Names must be made up of
‘alphanumeric’ characters (see Section 3) with no leading blanks.

IFAIL ¼ 10

An illegal bound type was detected in the BOUNDS section. The bound type must be either LO,
UP, FX, FR, MI or PL.

IFAIL ¼ 11

An unknown column name was detected in the BOUNDS section. All the column names must be
specified in the COLUMNS section.

IFAIL ¼ 12

The last line in the data file does not contain the ENDATA line indicator.

IFAIL ¼ 13

An illegal data line was detected in the file. This line is neither a comment line nor a valid data
line.

IFAIL ¼ 14

An unknown row name was detected in COLUMNS, RHS or RANGES section. All the row
names must be specified in the ROWS section.

IFAIL ¼ 15

There were no columns specified in the COLUMNS section.

IFAIL ¼ 16

The name of the RHS, RANGES or BOUNDS set to be used was not found in the data file.

IFAIL ¼ 17

On entry, INFILE < 0,
or INFILE > 99,
or MAXN < 1,
or MAXM < 1,
or MAXNNZ < 1,
or XBLDEF > XBUDEF.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04MZF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example solves the quadratic programming problem

minimize cTxþ 1
2x

THx subject to l � Ax � u;
�2 � x � 2;

where

c ¼

�4:0
�1:0
�1:0
�1:0
�1:0
�1:0
�1:0
�0:1
�0:3

0BBBBBBBBBB@

1CCCCCCCCCCA
; H ¼

2 1 1 1 1 0 0 0 0
1 2 1 1 1 0 0 0 0
1 1 2 1 1 0 0 0 0
1 1 1 2 1 0 0 0 0
1 1 1 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0BBBBBBBBBB@

1CCCCCCCCCCA
; NCOLH ¼ 5;

A ¼
1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 4:0
1:0 2:0 3:0 4:0 �2:0 1:0 1:0 1:0 1:0
1:0 �1:0 1:0 �1:0 1:0 1:0 1:0 1:0 1:0

0@ 1A;
l ¼

�2:0
�2:0
�2:0

0@ 1A and u ¼
1:5
1:5
4:0

0@ 1A:
The optimal solution (to five figures) is

x� ¼ 2:0;�0:23333;�0:26667;�0:3;�0:1; 2:0; 2:0;�1:7777;�0:45555ð ÞT:

Three bound constraints and two general linear constraints are active at the solution. Note that, although
the Hessian matrix is positive semidefinite, the point x� is unique.

The MPSX representation of the problem is given in Section 10.2.

10.1 Program Text

! E04MZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04mzfe_mod

! E04MZF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: qphx

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: xbldef = 0.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: xbudef = 1.0E+20_nag_wp
Integer, Parameter, Public :: iset = 1, lencw = 600, leniw = 600, &

lenrw = 600, maxm = 10000, &
maxn = 10000, maxnnz = 100000, &
nindat = 7, nout = 6

Contains
Subroutine qphx(ncolh,x,hx,nstate,cuser,iuser,ruser)
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! Routine to compute H*x. (In this version of QPHX, the Hessian
! matrix H is not referenced explicitly.)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncolh, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hx(ncolh)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(ncolh)
Integer, Intent (Inout) :: iuser(*)
Character (8), Intent (Inout) :: cuser(*)

! .. Executable Statements ..
If (nstate==1) Then

! First entry. You may perform any required one-time
! operations here.

End If

hx(1) = 2.0_nag_wp*x(1) + x(2) + x(3) + x(4) + x(5)
hx(2) = x(1) + 2.0_nag_wp*x(2) + x(3) + x(4) + x(5)
hx(3) = x(1) + x(2) + 2.0_nag_wp*x(3) + x(4) + x(5)
hx(4) = x(1) + x(2) + x(3) + 2.0_nag_wp*x(4) + x(5)
hx(5) = x(1) + x(2) + x(3) + x(4) + 2.0_nag_wp*x(5)

If (nstate>=2) Then

! Final entry. You may perform any required clean up
! operations here.

End If

Return

End Subroutine qphx
End Module e04mzfe_mod
Program e04mzfe

! E04MZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04mzf, e04npf, e04nqf, e04ntf, nag_wp, x04abf, &

x04acf
Use e04mzfe_mod, Only: iset, lencw, leniw, lenrw, maxm, maxn, maxnnz, &

nindat, nout, qphx, xbldef, xbudef
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Character (*), Parameter :: fname = ’e04mzfe.opt’
! .. Local Scalars ..

Real (Kind=nag_wp) :: obj, objadd, sinf
Integer :: i, ifail, infile, iobj, lenc, m, &

mode, n, ncolh, ninf, nname, nnz, &
ns, outchn

Logical :: mpslst, verbose_output
Character (8) :: prob
Character (1) :: start

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), bl(:), bu(:), c(:), pi(:), &

rc(:), xs(:)
Real (Kind=nag_wp) :: ruser(1), rw(lenrw)
Integer, Allocatable :: ha(:), helast(:), istate(:), ka(:)
Integer :: iuser(1), iw(leniw)
Character (8), Allocatable :: crname(:)
Character (8) :: cuser(1), cw(lencw), names(5)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04MZF Example Program Results’

Allocate (ha(maxnnz),ka(maxn+1),istate(maxn+maxm),a(maxnnz), &
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bl(maxn+maxm),bu(maxn+maxm),xs(maxn+maxm),crname(maxn+maxm))

! Open the data file for reading

mode = 0

ifail = 0
Call x04acf(nindat,fname,mode,ifail)

! Initialize parameters.

infile = nindat
mpslst = .False.
names(1:5) = ’ ’

! Convert the MPSX data file for use by E04NQF.

Write (nout,99999)

ifail = 0
Call e04mzf(infile,maxn,maxm,maxnnz,xbldef,xbudef,mpslst,n,m,nnz,iobj, &

ncolh,a,ha,ka,bl,bu,start,names,nname,crname,xs,istate,ifail)

Write (nout,99998) n, m

! Set the unit number for advisory messages to OUTCHN.

outchn = nout
Call x04abf(iset,outchn)

! Set the value of NCOLH (the number of columns of the Hessian matrix)

ncolh = 5

! Call E04NPF to initialize E04NQF.

ifail = 0
Call e04npf(cw,lencw,iw,leniw,rw,lenrw,ifail)

! Set this to .True. to cause e04nqf to produce intermediate
! progress output

verbose_output = .False.
If (verbose_output) Then

Call e04ntf(’Print file’,nout,cw,iw,rw,ifail)
End If

! We have no explicit objective vector so set LENC = 0; the
! objective vector is stored in row IOBJ of A.

lenc = 0
Allocate (c(max(1,lenc)),helast(n+m),pi(m),rc(n+m))

objadd = 0.0_nag_wp
prob = ’ ’

! Do not allow any elastic variables (i.e. they cannot be
! infeasible).

helast(1:(n+m)) = 0

Write (nout,99997)
ifail = 0
Call e04nqf(start,qphx,m,n,nnz,nname,lenc,ncolh,iobj,objadd,prob,a,ha, &

ka,bl,bu,c,crname,helast,istate,xs,pi,rc,ns,ninf,sinf,obj,cw,lencw,iw, &
leniw,rw,lenrw,cuser,iuser,ruser,ifail)

Write (nout,99996) obj
Write (nout,99995)
Write (nout,99994)(i,xs(i),i=1,n)

99999 Format (1X,/,1X,’Reading MPSX file:’)
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99998 Format (1X,’MPSX file contains ’,I3,’ variables and ’,I3, &
’ linear constraints’)

99997 Format (1X,/,1X,’Solving QP problem:’)
99996 Format (1X,’Optimal objective value: ’,1P,E11.3)
99995 Format (1X,’Optimal X:’)
99994 Format (1X,’ X(’,I2,’) =’,F10.4)

End Program e04mzfe

10.2 Program Data

Note: the MPSX data which is read by E04MZF begins with the second record of this data file; the first
record is a caption which is read by the example program.

NAME QP
ROWS
L ..ROW1..
L ..ROW2..
L ..ROW3..
N ..COST..

COLUMNS
...X1... ..ROW1.. 1.0 ..ROW2.. 1.0
...X1... ..ROW3.. 1.0 ..COST.. -4.0
...X2... ..ROW1.. 1.0 ..ROW2.. 2.0
...X2... ..ROW3.. -1.0 ..COST.. -1.0
...X3... ..ROW1.. 1.0 ..ROW2.. 3.0
...X3... ..ROW3.. 1.0 ..COST.. -1.0
...X4... ..ROW1.. 1.0 ..ROW2.. 4.0
...X4... ..ROW3.. -1.0 ..COST.. -1.0
...X5... ..ROW1.. 1.0 ..ROW2.. -2.0
...X5... ..ROW3.. 1.0 ..COST.. -1.0
...X6... ..ROW1.. 1.0 ..ROW2.. 1.0
...X6... ..ROW3.. 1.0 ..COST.. -1.0
...X7... ..ROW1.. 1.0 ..ROW2.. 1.0
...X7... ..ROW3.. 1.0 ..COST.. -1.0
...X8... ..ROW1.. 1.0 ..ROW2.. 1.0
...X8... ..ROW3.. 1.0 ..COST.. -0.1
...X9... ..ROW1.. 4.0 ..ROW2.. 1.0
...X9... ..ROW3.. 1.0 ..COST.. -0.3

RHS
RHS1 ..ROW1.. 1.5
RHS1 ..ROW2.. 1.5
RHS1 ..ROW3.. 4.0

RANGES
RANGE1 ..ROW1.. 3.5
RANGE1 ..ROW2.. 3.5
RANGE1 ..ROW3.. 6.0

BOUNDS
LO BOUND ...X1... -2.0
LO BOUND ...X2... -2.0
LO BOUND ...X3... -2.0
LO BOUND ...X4... -2.0
LO BOUND ...X5... -2.0
LO BOUND ...X6... -2.0
LO BOUND ...X7... -2.0
LO BOUND ...X8... -2.0
LO BOUND ...X9... -2.0
UP BOUND ...X1... 2.0
UP BOUND ...X2... 2.0
UP BOUND ...X3... 2.0
UP BOUND ...X4... 2.0
UP BOUND ...X5... 2.0
UP BOUND ...X6... 2.0
UP BOUND ...X7... 2.0
UP BOUND ...X8... 2.0
UP BOUND ...X9... 2.0

ENDATA
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10.3 Program Results
E04MZF Example Program Results

Reading MPSX file:
MPSX file contains 9 variables and 4 linear constraints

Solving QP problem:
Optimal objective value: -8.068E+00
Optimal X:

X( 1) = 2.0000
X( 2) = -0.2333
X( 3) = -0.2667
X( 4) = -0.3000
X( 5) = -0.1000
X( 6) = 2.0000
X( 7) = 2.0000
X( 8) = -1.7778
X( 9) = -0.4556
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NAG Library Routine Document

E04NCF/E04NCA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

E04NCF/E04NCA solves linearly constrained linear least squares problems and convex quadratic
programming problems. It is not intended for large sparse problems.

E04NCA is a version of E04NCF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04NCA.

2 Specification

2.1 Specification for E04NCF

SUBROUTINE E04NCF (M, N, NCLIN, LDC, LDA, C, BL, BU, CVEC, ISTATE, KX,
X, A, B, ITER, OBJ, CLAMDA, IWORK, LIWORK, WORK,
LWORK, IFAIL)

&
&

INTEGER M, N, NCLIN, LDC, LDA, ISTATE(N+NCLIN), KX(N), ITER,
IWORK(LIWORK), LIWORK, LWORK, IFAIL

&

REAL (KIND=nag_wp) C(LDC,*), BL(N+NCLIN), BU(N+NCLIN), CVEC(*), X(N),
A(LDA,*), B(*), OBJ, CLAMDA(N+NCLIN), WORK(LWORK)

&

2.2 Specification for E04NCA

SUBROUTINE E04NCA (M, N, NCLIN, LDC, LDA, C, BL, BU, CVEC, ISTATE, KX,
X, A, B, ITER, OBJ, CLAMDA, IWORK, LIWORK, WORK,
LWORK, LWSAV, IWSAV, RWSAV, IFAIL)

&
&

INTEGER M, N, NCLIN, LDC, LDA, ISTATE(N+NCLIN), KX(N), ITER,
IWORK(LIWORK), LIWORK, LWORK, IWSAV(610), IFAIL

&

REAL (KIND=nag_wp) C(LDC,*), BL(N+NCLIN), BU(N+NCLIN), CVEC(*), X(N),
A(LDA,*), B(*), OBJ, CLAMDA(N+NCLIN), WORK(LWORK),
RWSAV(475)

&
&

LOGICAL LWSAV(120)

Before calling E04NCA, or either of the option setting routines E04NDA or E04NEA, E04WBF must
be called. The specification for E04WBF is:

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
RWSAV, LRWSAV, IFAIL)

&

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV,
IFAIL

&

REAL (KIND=nag_wp) RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER(*) RNAME
CHARACTER(80) CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ E04NCA . LCWSAV, LLWSAV, LIWSAV and LRWSAV,
the declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:
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LCWSAV � 1

LLWSAV � 120

LIWSAV � 610

LRWSAV � 475

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04NCA, E04NDA, E04NEA and E04WBF.

3 Description

E04NCF/E04NCA is designed to solve a class of quadratic programming problems of the following
general form:

minimize
x2Rn

F xð Þ subject to l � x
Cx


 �
� u ð1Þ

where C is an nL by n matrix and the objective function F xð Þ may be specified in a variety of ways
depending upon the particular problem to be solved. The available forms for F xð Þ are listed in Table 1,
in which the prefixes FP, LP, QP and LS stand for ‘feasible point’, ‘linear programming’, ‘quadratic
programming’ and ‘least squares’ respectively, c is an n-element vector, b is an m element vector and
zk k denotes the Euclidean length of z.

Problem type F xð Þ Matrix A

FP None Not applicable
LP cTx Not applicable
QP1 1

2x
TAx n by n symmetric positive semidefinite

QP2 cTxþ 1
2x

TAx n by n symmetric positive semidefinite
QP3 1

2x
TATAx m by n upper trapezoidal

QP4 cTxþ 1
2x

TATAx m by n upper trapezoidal
LS1 1

2 b�Axk k2 m by n

LS2 cTxþ 1
2 b�Axk k2 m by n

LS3 1
2 b�Axk k2 m by n upper trapezoidal

LS4 cTxþ 1
2 b�Axk k2 m by n upper trapezoidal

In the standard LS problem F xð Þ will usually have the form LS1, and in the standard convex QP
problem F xð Þ will usually have the form QP2. The default problem type is LS1 and other objective
functions are selected by using the optional parameter Problem Type.

When A is upper trapezoidal it will usually be the case that m ¼ n, so that A is upper triangular, but
full generality has been allowed for in the specification of the problem. The upper trapezoidal form is
intended for cases where a previous factorization, such as a QR factorization, has been performed.

The constraints involving C are called the general constraints. Note that upper and lower bounds are
specified for all the variables and for all the general constraints. An equality constraint can be specified
by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u can be set to
special values that will be treated as �1 or þ1. (See the description of the optional parameter Infinite
Bound Size.)

The defining feature of a quadratic function F xð Þ is that the second-derivative matrix H (the Hessian
matrix) is constant. For the LP case H ¼ 0; for QP1 and QP2, H ¼ A; for QP3 and QP4, H ¼ ATA
and for LS1 (the default), LS2, LS3 and LS4, H ¼ ATA.

Problems of type QP3 and QP4 for which A is not in upper trapezoidal form should be solved as types
LS1 and LS2 respectively, with b ¼ 0.

For problems of type LS, we refer to A as the least squares matrix, or the matrix of observations and to
b as the vector of observations.

You must supply an initial estimate of the solution.
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If H is nonsingular then E04NCF/E04NCA will obtain the unique (global) minimum. If H is singular
then the solution may still be a global minimum if all active constraints have nonzero Lagrange
multipliers. Otherwise the solution obtained will be either a weak minimum (i.e., with a unique optimal
objective value, but an infinite set of optimal x), or else the objective function is unbounded below in
the feasible region. The last case can only occur when F xð Þ contains an explicit linear term (as in
problems LP, QP2, QP4, LS2 and LS4).

The method used by E04NCF/E04NCA is described in detail in Section 11.

4 References

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users' guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1984) Procedures for optimization problems with
a mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Stoer J (1971) On the numerical solution of constrained least squares problems SIAM J. Numer. Anal. 8
382–411

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows in the matrix A. If the problem is specified as type FP or LP, M
is not referenced and is assumed to be zero.

If the problem is of type QP, M will usually be n, the number of variables. However, a value of
M less than n is appropriate for QP3 or QP4 if A is an upper trapezoidal matrix with m rows.
Similarly, M may be used to define the dimension of a leading block of nonzeros in the Hessian
matrices of QP1 or QP2, in which case the last n�mð Þ rows and columns of A are assumed to
be zero. In the QP case, m should not be greater than n; if it is, the last m� nð Þ rows of A are
ignored.

If the problem is of type LS1 (the default) or specified as type LS2, LS3 or LS4, M is also the
dimension of the array B. Note that all possibilities (m < n, m ¼ n and m > n) are allowed in
this case.

Constraint: M > 0 if the problem is not of type FP or LP.

2: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

3: NCLIN – INTEGER Input

On entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.

4: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which
E04NCF/E04NCA is called.

Constraint: LDC � max 1;NCLINð Þ.
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5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
E04NCF/E04NCA is called.

Constraint: LDA � max 1;Mð Þ.

6: CðLDC; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array C must be at least N if NCLIN > 0, and at least 1
otherwise.

On entry: the ith row of C must contain the coefficients of the ith general constraint, for
i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0, C is not referenced.

7: BLðNþ NCLINÞ – REAL (KIND=nag_wp) array Input
8: BUðNþ NCLINÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds and BU the upper bounds, for all the constraints, in
the following order. The first n elements of each array must contain the bounds on the variables,
and the next nL elements must contain the bounds for the general linear constraints (if any). To
specify a nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a
nonexistent upper bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is
1020, but this may be changed by the optional parameter Infinite Bound Size. To specify the jth
constraint as an equality, set BUðjÞ ¼ BLðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLIN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

9: CVECð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array CVEC must be at least N if the problem is of type LP, QP2,
QP4, LS2 or LS4, and at least 1 otherwise.

On entry: the coefficients of the explicit linear term of the objective function.

If the problem is of type FP, QP1, QP3, LS1 (the default) or LS3, CVEC is not referenced.

10: ISTATEðNþ NCLINÞ – INTEGER array Input/Output

On entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, ISTATE specifies the desired status of
the constraints at the start of the feasibility phase. More precisely, the first n elements of ISTATE
refer to the upper and lower bounds on the variables, and the next nL elements refer to the
general linear constraints (if any). Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ Meaning

0 The constraint should not be in the initial working set.

1 The constraint should be in the initial working set at its lower bound.

2 The constraint should be in the initial working set at its upper bound.

3 The constraint should be in the initial working set as an equality. This value must
not be specified unless BLðjÞ ¼ BUðjÞ.

The values �2, �1 and 4 are also acceptable but will be reset to zero by the routine. If E04NCF/
E04NCA has been called previously with the same values of N and NCLIN, ISTATE already
contains satisfactory information. (See also the description of the optional parameter Warm
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Start.) The routine also adjusts (if necessary) the values supplied in X to be consistent with
ISTATE.

Constraint: �2 � ISTATEðjÞ � 4, for j ¼ 1; 2; . . . ;Nþ NCLIN.

On exit: the status of the constraints in the working set at the point returned in X. The
significance of each possible value of ISTATEðjÞ is as follows:

ISTATEðjÞ Meaning

�2 The constraint violates its lower bound by more than the feasibility tolerance.

�1 The constraint violates its upper bound by more than the feasibility tolerance.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the
working set.

1 This inequality constraint is included in the working set at its lower bound.

2 This inequality constraint is included in the working set at its upper bound.

3 The constraint is included in the working set as an equality. This value of ISTATE
can occur only when BLðjÞ ¼ BUðjÞ.

4 This corresponds to optimality being declared with XðjÞ being temporarily fixed at
its current value.

11: KXðNÞ – INTEGER array Input/Output

On entry: need not be initialized for problems of type FP, LP, QP1, QP2, LS1 (the default) or
LS2.

For problems QP3, QP4, LS3 or LS4, KX must specify the order of the columns of the matrix A
with respect to the ordering of X. Thus if column j of A is the column associated with the
variable xi then KXðjÞ ¼ i.
Constraints:

1 � KXðiÞ � N, for i ¼ 1; 2; . . . ;N;
if i 6¼ j, KXðiÞ 6¼ KXðjÞ.

On exit: defines the order of the columns of A with respect to the ordering of X, as described
above.

12: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the solution.

Note: that it may be best to avoid the choice X ¼ 0:0.

On exit: the point at which E04NCF/E04NCA terminated. If IFAIL ¼ 0, 1 or 4, X contains an
estimate of the solution.

13: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N if the problem is of type QP1, QP2,
QP3, QP4, LS1 (the default), LS2, LS3 or LS4, and at least 1 otherwise.

On entry: the array A must contain the matrix A as specified in Table 1 (see Section 3).

If the problem is of type QP1 or QP2, the first m rows and columns of A must contain the
leading m by m rows and columns of the symmetric Hessian matrix. Only the diagonal and
upper triangular elements of the leading m rows and columns of A are referenced. The remaining
elements are assumed to be zero and need not be assigned.

For problems QP3, QP4, LS3 or LS4, the first m rows of A must contain an m by n upper
trapezoidal factor of either the Hessian matrix or the least squares matrix, ordered according to
the KX array. The factor need not be of full rank, i.e., some of the diagonals may be zero.
However, as a general rule, the larger the dimension of the leading nonsingular sub-matrix of A,
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the fewer iterations will be required. Elements outside the upper triangular part of the first m
rows of A are assumed to be zero and need not be assigned.

If a constrained least squares problem contains a very large number of observations, storage
limitations may prevent storage of the entire least squares matrix. In such cases, you should
transform the original A into a triangular matrix before the call to E04NCF/E04NCA and solve
the problem as type LS3 or LS4.

On exit: if Hessian ¼ NO and the problem is of type LS or QP, A contains the upper triangular
Cholesky factor R of (8) (see Section 11.3), with columns ordered as indicated by KX.

If Hessian ¼ YES and the problem is of type LS or QP, A contains the upper triangular Cholesky
factor R of the Hessian matrix H, with columns ordered as indicated by KX. In either case R
may be used to obtain the variance-covariance matrix or to recover the upper triangular factor of
the original least squares matrix.

If the problem is of type FP or LP, A is not referenced.

14: Bð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array B must be at least M if the problem is of type LS1 (the default),
LS2, LS3 or LS4, and at least 1 otherwise.

On entry: the m elements of the vector of observations.

On exit: the transformed residual vector of equation (10) (see Section 11.3).

If the problem is of type FP, LP, QP1, QP2, QP3 or QP4, B is not referenced.

15: ITER – INTEGER Output

On exit: the total number of iterations performed.

16: OBJ – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at x if x is feasible, or the sum of infeasibiliites at x
otherwise. If the problem is of type FP and x is feasible, OBJ is set to zero.

17: CLAMDAðNþ NCLINÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the Lagrange multipliers for each constraint with respect to the current
working set. The first n elements contain the multipliers for the bound constraints on the
variables, and the next nL elements contain the multipliers for the general linear constraints (if
any). If ISTATEðjÞ ¼ 0 (i.e., constraint j is not in the working set), CLAMDAðjÞ is zero. If x is
optimal, CLAMDAðjÞ should be non-negative if ISTATEðjÞ ¼ 1, non-positive if ISTATEðjÞ ¼ 2
and zero if ISTATEðjÞ ¼ 4.

18: IWORKðLIWORKÞ – INTEGER array Workspace
19: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
E04NCF/E04NCA is called.

Constraint: LIWORK � N.

20: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
21: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
E04NCF/E04NCA is called.
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Constraints:

if the problem is of type FP,

if NCLIN ¼ 0, LWORK � 6� N;
if NCLIN � N, LWORK � 2� N2 þ 6� Nþ 6� NCLIN;
otherwise LWORK � 2� NCLINþ 1ð Þ2 þ 6� Nþ 6� NCLIN.;

if the problem is of type LP,

if NCLIN ¼ 0, LWORK � 7� N;
if NCLIN � N, LWORK � 2� N2 þ 7� Nþ 6� NCLIN;
otherwise LWORK � 2� NCLINþ 1ð Þ2 þ 7� Nþ 6� NCLIN.;

if problems QP1, QP3, LS1 (the default) and LS3,

if NCLIN > 0, LWORK � 2� N2 þ 9� Nþ 6� NCLIN;
if NCLIN ¼ 0, LWORK � 9� N.;

if problems QP2, QP4, LS2 and LS4,

if NCLIN > 0, LWORK � 2� N2 þ 10� Nþ 6� NCLIN;
if NCLIN ¼ 0, LWORK � 10� N..

The amounts of workspace provided and required are (by default) output on the current advisory
message unit (as defined by X04ABF). As an alternative to computing LIWORK and LWORK
from the formulas given above, you may prefer to obtain appropriate values from the output of a
preliminary run with LIWORK and LWORK set to 1. (E04NCF/E04NCA will then terminate
with IFAIL ¼ 6.)

22: IFAIL – INTEGER Input/Output

Note: for E04NCA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04NCF/E04NCA returns with IFAIL ¼ 0 if x is a strong local minimizer, i.e., the projected
gradient (Norm Gz; see Section 9.2) is negligible, the Lagrange multipliers (Lagr Mult; see
Section 11.2) are optimal and RZ (see Section 11.3) is nonsingular.

Note: the following are additional arguments for specific use with E04NCA. Users of E04NCF
therefore need not read the remainder of this description.

23: LWSAVð120Þ – LOGICAL array Communication Array
24: IWSAVð610Þ – INTEGER array Communication Array
25: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04NCA, E04NDA or E04NEA.

26: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04NCF/E04NCA may return useful information for one or more of the following detected errors
or warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

X is a weak local minimum, (i.e., the projected gradient is negligible, the Lagrange multipliers
are optimal, but either RZ (see Section 11.3) is singular, or there is a small multiplier). This
means that x is not unique.

IFAIL ¼ 2

The solution appears to be unbounded. This value of IFAIL implies that a step as large as
Infinite Bound Size (default value ¼ 1020) would have to be taken in order to continue the
algorithm. This situation can occur only when A is singular, there is an explicit linear term, and
at least one variable has no upper or lower bound.

IFAIL ¼ 3

No feasible point was found, i.e., it was not possible to satisfy all the constraints to within the
feasibility tolerance. In this case, the constraint violations at the final x will reveal a value of the
tolerance for which a feasible point will exist – for example, when the feasibility tolerance for
each violated constraint exceeds its Slack (see Section 9.2) at the final point. The modified
problem (with an altered feasibility tolerance) may then be solved using a Warm Start. You
should check that there are no constraint redundancies. If the data for the constraints are accurate
only to the absolute precision �, you should ensure that the value of the optional parameter
Feasibility Tolerance (default value ¼

ffiffi
�
p

, where � is the machine precision) is greater than �.
For example, if all elements of C are of order unity and are accurate only to three decimal places,
the Feasibility Tolerance should be at least 10�3.

IFAIL ¼ 4

The limiting number of iterations (determined by the optional parameters Feasibility Phase
Iteration Limit (default value ¼ max 50; 5 nþ nLð Þð Þ) and Optimality Phase Iteration Limit
(default value ¼ max 50; 5 nþ nLð Þð Þ)) was reached before normal termination occurred. If the
method appears to be making progress (e.g., the objective function is being satisfactorily
reduced), either increase the iterations limit and rerun E04NCF/E04NCA or, alternatively, rerun
E04NCF/E04NCA using the Warm Start facility to specify the initial working set. If the
iteration limit is already large, but some of the constraints could be nearly linearly dependent,
check the monitoring information (see Section 13) for a repeated pattern of constraints entering
and leaving the working set. (Near-dependencies are often indicated by wide variations in size in
the diagonal elements of the matrix T (see Section 11.2), which will be printed if
Print Level � 30 (default value ¼ 10). In this case, the algorithm could be cycling (see the
comments for IFAIL ¼ 5).

IFAIL ¼ 5

The algorithm could be cycling, since a total of 50 changes were made to the working set without
altering x. You should check the monitoring information (see Section 13) for a repeated pattern
of constraint deletions and additions.

If a sequence of constraint changes is being repeated, the iterates are probably cycling. (E04NCF/
E04NCA does not contain a method that is guaranteed to avoid cycling; such a method would be
combinatorial in nature.) Cycling may occur in two circumstances: at a constrained stationary
point where there are some small or zero Lagrange multipliers; or at a point (usually a vertex)
where the constraints that are satisfied exactly are nearly linearly dependent. In the latter case,
you have the option of identifying the offending dependent constraints and removing them from
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the problem, or restarting the run with a larger value of the optional parameter Feasibility
Tolerance (default value ¼

ffiffi
�
p

, where � is the machine precision). If E04NCF/E04NCA
terminates with IFAIL ¼ 5, but no suspicious pattern of constraint changes can be observed, it
may be worthwhile to restart with the final x (with or without the Warm Start option).

Note: that this error exit may also occur if a poor starting point X is supplied (for example,
X ¼ 0:0). You are advised to try a nonzero starting point.

IFAIL ¼ 6

An input argument is invalid.

IFAIL ¼ 7

The problem to be solved is of type QP1 or QP2, but the Hessian matrix supplied in A is not
positive semidefinite.

Overflow

If the printed output before the overflow error contains a warning about serious ill-conditioning
in the working set when adding the jth constraint, it may be possible to avoid the difficulty by
increasing the magnitude of the Feasibility Tolerance (default value ¼

ffiffi
�
p

, where � is the
machine precision) and rerunning the program. If the message recurs even after this change, the
offending linearly dependent constraint (with index ‘j’) must be removed from the problem.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

E04NCF/E04NCA implements a numerically stable active set strategy and returns solutions that are as
accurate as the condition of the problem warrants on the machine.

8 Parallelism and Performance

E04NCF/E04NCA is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

E04NCF/E04NCA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This section contains some comments on scaling and a description of the printed output.
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9.1 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the
problem less sensitive to perturbations in the data, thus improving the condition of the problem. In the
absence of better information it is usually sensible to make the Euclidean lengths of each constraint of
comparable magnitude. See the E04 Chapter Introduction and Gill et al. (1981) for further information
and advice.

9.2 Description of the Printed Output

This section describes the intermediate printout and final printout produced by E04NCF/E04NCA. The
intermediate printout is a subset of the monitoring information produced by the routine at every
iteration (see Section 13). You can control the level of printed output (see the description of the
optional parameter Print Level). Note that the intermediate printout and final printout are produced
only if Print Level � 10 (the default for E04NCF, by default no output is produced by E04NCA).

The following line of summary output ( < 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration (i.e., Jadd is positive), Step will be the step to the
nearest constraint. During the optimality phase, the step can be greater than one
only if the factor RZ is singular. (See Section 11.3.)

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function of (1). The output line for the
final iteration of the feasibility phase (i.e., the first iteration for which Ninf is
zero) will give the value of the true objective at the first feasible point.

During the optimality phase the value of the objective function will be
nonincreasing. During the feasibility phase the number of constraint infeasibilities
will not increase until either a feasible point is found or the optimality of the
multipliers implies that no feasible point exists. Once optimal multipliers are
obtained the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Norm Gz is ZT
1 gFR

�� ��, the Euclidean norm of the reduced gradient with respect to Z1. During
the optimality phase, this norm will be approximately zero after a unit step. (See
Sections 11.2 and 11.3.)

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily
fixed at its current value). If Value lies outside the upper or lower bounds by more
than the Feasibility Tolerance, State will be ++ or -- respectively.

A key is sometimes printed before State.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound then there would be no
change to the objective function. The values of the other free variables
might change, giving a genuine alternative solution. However, if there are
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any degenerate variables (labelled D), the actual change might prove to be
zero, since one of them could encounter a bound immediately. In either case
the values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more than
the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is
FR unless BLðjÞ � �bigbnd and BUðjÞ � bigbnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL and
non-positive if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ
respectively, and with the following change in the heading:

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL, of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This example minimizes the function 1
2 b�Axk k2 , where

A ¼

1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 2 0 0
1 1 3 1 1 1 �1 �1 �3
1 1 1 4 1 1 1 1 1
1 1 1 3 1 1 1 1 1
1 1 2 1 1 0 0 0 �1
1 1 1 1 0 1 1 1 1
1 1 1 0 1 1 1 1 1
1 1 0 1 1 1 2 2 3
1 0 1 1 1 1 0 2 2

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
and b ¼

1
1
1
1
1
1
1
1
1
1

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
subject to the bounds

0 � x1 � 2
0 � x2 � 2

�1 � x3 � 2
0 � x4 � 2
0 � x5 � 2
0 � x6 � 2
0 � x7 � 2
0 � x8 � 2
0 � x9 � 2

and to the general constraints
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2:0 � x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ 4x9 � 1
�1 � x1 þ 2x2 þ 3x3 þ 4x4 � 2x5 þ x6 þ x7 þ x8 þ x9 � 2:0
1:0 � x1 � x2 þ x3 � x4 þ x5 þ x6 þ x7 þ x8 þ x9 � 4:0

The initial point, which is infeasible, is

x0 ¼ 1:0; 0:5; 0:3333; 0:25; 0:2; 0:1667; 0:1428; 0:125; 0:1111ð ÞT;

and F x0ð Þ ¼ 9:4746 (to five figures).

The optimal solution (to five figures) is

x� ¼ 0:0; 0:041526; 0:58718; 0:0; 0:099643; 0:0; 0:04906; 0:0; 0:30565ð ÞT;

and F x�ð Þ ¼ 0:081341. Four bound constraints and all three general constraints are active at the
solution.

The document for E04NDF/E04NDA includes an example program to solve a convex quadratic
programming problem, using some of the optional parameters described in Section 12.

10.1 Program Text

the following program illustrates the use of E04NCF. An equivalent program illustrating the use of
E04NCA is available with the supplied Library and is also available from the NAG web site.

Program e04ncfe

! E04NCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgemv, e04ncf, e04nef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: inc1 = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj
Integer :: i, ifail, iter, lda, ldc, liwork, &

lwork, m, n, nclin, sdc
Logical :: verbose_output

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), bl(:), bu(:), c(:,:), &

clamda(:), cvec(:), work(:), x(:)
Integer, Allocatable :: istate(:), iwork(:), kx(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04NCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m, n, nclin
liwork = n
ldc = max(1,nclin)
lda = max(1,m)

If (nclin>0) Then
sdc = n

Else
sdc = 1

End If

! This particular example problem is of type LS1, so we allocate
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! A(LDA,N), CVEC(1), B(M) and define LWORK as below

If (nclin>0) Then
lwork = 2*n**2 + 9*n + 6*nclin

Else
lwork = 9*n

End If

Allocate (istate(n+nclin),kx(n),iwork(liwork),c(ldc,sdc),bl(n+nclin), &
bu(n+nclin),cvec(1),x(n),a(lda,n),b(m),clamda(n+nclin),work(lwork))

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)
Read (nin,*)(c(i,1:sdc),i=1,nclin)
Read (nin,*) bl(1:(n+nclin))
Read (nin,*) bu(1:(n+nclin))
Read (nin,*) x(1:n)

! Set this to .True. to cause e04nqf to produce intermediate
! progress output

verbose_output = .False.
If (.Not. verbose_output) Then

! Switch off intermediate output from e04ncf
Call e04nef(’Nolist’)
Call e04nef(’Print level = 0’)

End If

! Solve the problem

ifail = -1
Call e04ncf(m,n,nclin,ldc,lda,c,bl,bu,cvec,istate,kx,x,a,b,iter,obj, &

clamda,iwork,liwork,work,lwork,ifail)

Select Case (ifail)
Case (0:5,7:)

! Print variable headers
Write (nout,99999)

Do i = 1, n
Write (nout,99998) i, istate(i), x(i), clamda(i)

End Do

If (nclin>0) Then

! C*x --> work
! The NAG name equivalent of dgemv is f06paf

Call dgemv(’N’,nclin,n,one,c,ldc,x,inc1,zero,work,inc1)

! Print constraint headers
Write (nout,99997)

Do i = 1, nclin
Write (nout,99996) i, istate(i+n), work(i), clamda(i+n)

End Do

End If

Write (nout,99995) obj
End Select

99999 Format (/,1X,’Varbl’,3X,’Istate’,4X,’Value’,9X,’Lagr Mult’)
99998 Format (1X,’V’,2(1X,I3),4X,1P,E14.3,2X,1P,E12.3)
99997 Format (/,1X,’L Con’,3X,’Istate’,4X,’Value’,9X,’Lagr Mult’)
99996 Format (1X,’L’,2(1X,I3),4X,1P,E14.3,2X,1P,E12.3)
99995 Format (/,1X,’Final objective value = ’,1P,E15.3)

End Program e04ncfe
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10.2 Program Data

E04NCF Example Program Data
10 9 3 :Values of M, N and NCLIN
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 2.0 1.0 1.0 1.0 1.0 2.0 0.0 0.0
1.0 1.0 3.0 1.0 1.0 1.0 -1.0 -1.0 -3.0
1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 3.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 2.0 1.0 1.0 0.0 0.0 0.0 -1.0
1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 0.0 1.0 1.0 1.0 2.0 2.0 3.0
1.0 0.0 1.0 1.0 1.0 1.0 0.0 2.0 2.0 :End of matrix A
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 :End of B
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0
1.0 2.0 3.0 4.0 -2.0 1.0 1.0 1.0 1.0
1.0 -1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0 :End of matrix C
0.0 0.0 -1.0E+25 0.0 0.0 0.0 0.0 0.0 0.0
2.0 -1.0E+25 1.0 :End of BL
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
1.0E+25 2.0 4.0 :End of BU
1.0 0.5 0.3333 0.25 0.2 0.1667 0.1428 0.125 0.1111 :End of X

10.3 Program Results

E04NCF Example Program Results

Varbl Istate Value Lagr Mult
V 1 1 0.000E+00 1.572E-01
V 2 0 4.153E-02 0.000E+00
V 3 0 5.872E-01 0.000E+00
V 4 1 0.000E+00 8.782E-01
V 5 0 9.964E-02 0.000E+00
V 6 1 0.000E+00 1.473E-01
V 7 0 4.906E-02 0.000E+00
V 8 1 0.000E+00 8.603E-01
V 9 0 3.056E-01 0.000E+00

L Con Istate Value Lagr Mult
L 1 1 2.000E+00 3.777E-01
L 2 2 2.000E+00 -5.791E-02
L 3 1 1.000E+00 1.075E-01

Final objective value = 8.134E-02

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to E04NDF/E04NDA and/or
E04NEF/E04NEA. Section 13 describes the quantities which can be requested to monitor the course of
the computation.

11 Algorithmic Details

This section contains a detailed description of the method used by E04NCF/E04NCA.

11.1 Overview

E04NCF/E04NCA is essentially identical to the subroutine LSSOL described in Gill et al. (1986). It is
based on a two-phase (primal) quadratic programming method with features to exploit the convexity of
the objective function due to Gill et al. (1984). (In the full-rank case, the method is related to that of
Stoer (1971).) E04NCF/E04NCA has two phases: finding an initial feasible point by minimizing the
sum of infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the
feasible region (the optimality phase). The two-phase nature of the algorithm is reflected by changing
the function being minimized from the sum of infeasibilities to the quadratic objective function. The
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feasibility phase does not perform the standard simplex method (i.e., it does not necessarily find a
vertex), except in the LP case when nL � n. Once any iterate is feasible, all subsequent iterates remain
feasible.

E04NCF/E04NCA has been designed to be efficient when used to solve a sequence of related problems
– for example, within a sequential quadratic programming method for nonlinearly constrained
optimization (e.g., E04UFF/E04UFA or E04WDF). In particular, you may specify an initial working set
(the indices of the constraints believed to be satisfied exactly at the solution); see the discussion of the
optional parameter Warm Start.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall
always consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate �x
is defined by

�x ¼ xþ �p; ð2Þ

where the step length � is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the optional parameter
Feasibility Tolerance). The working set is the current prediction of the constraints that hold with
equality at a solution of (1). The search direction is constructed so that the constraints in the working
set remain unaltered for any value of the step length. For a bound constraint in the working set, this
property is achieved by setting the corresponding element of the search direction to zero. Thus, the
associated variable is fixed, and specification of the working set induces a partition of x into fixed and
free variables. During a given iteration, the fixed variables are effectively removed from the problem;
since the relevant elements of the search direction are zero, the columns of C corresponding to fixed
variables may be ignored.

Let nW denote the number of general constraints in the working set and let nFX denote the number of
variables fixed at one of their bounds (nW and nFX are the quantities Lin and Bnd in the monitoring file
output from E04NCF/E04NCA; see Section 13). Similarly, let nFR nFR ¼ n� nFXð Þ denote the number
of free variables. At every iteration, the variables are reordered so that the last nFX variables are fixed,
with all other relevant vectors and matrices ordered accordingly. The order of the variables is indicated
by the contents of the array KX on exit (see Section 5).

11.2 Definition of Search Direction

Let CFR denote the nW by nFR sub-matrix of general constraints in the working set corresponding to the
free variables, and let pFR denote the search direction with respect to the free variables only. The
general constraints in the working set will be unaltered by any move along p if

CFRpFR ¼ 0: ð3Þ

In order to compute pFR, the TQ factorization of CFR is used:

CFRQFR ¼ 0 Tð Þ ð4Þ

where T is a nonsingular nW by nW reverse-triangular matrix (i.e., tij ¼ 0 if iþ j < nW), and the
nonsingular nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. (1984)).
If the columns of QFR are partitioned so that

QFR ¼ Z Yð Þ; ð5Þ

where Y is nFR by nW, then the nZ nZ ¼ nFR � nWð Þ columns of Z form a basis for the null space of
CFR. Let nR be an integer such that 0 � nR � nZ , and let Z1 denote a matrix whose nR columns are a
subset of the columns of Z. (The integer nR is the quantity Zr in the monitoring file output from
E04NCF/E04NCA. In many cases, Z1 will include all the columns of Z.) The direction pFR will satisfy
(3) if

pFR ¼ Z1pZ ð6Þ

where pZ is any nR-vector.
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11.3 Main Iteration

Let Q denote the n by n matrix

Q ¼ QFR
IFX

� �
; ð7Þ

where IFX is the identity matrix of order nFX. Let R denote an n by n upper triangular matrix (the
Cholesky factor) such that

RTR ¼ HQ 	 QT ~HQ; ð8Þ

where ~H is the Hessian H with rows and columns permuted so that the free variables are first.

Let the matrix of the first nZ rows and columns of R be denoted by RZ. The definition of pZ in (6)
depends on whether or not the matrix RZ is singular at x. In the nonsingular case, pZ satisfies the
equations

RT
ZRZpZ ¼ �gZ ð9Þ

where gZ denotes the vector ZTgFR and g denotes the objective gradient. (The norm of gFR is the printed
quantity Norm Gf; see Section 13.) When pZ is defined by (9), xþ p is the minimizer of the objective
function subject to the constraints (bounds and general) in the working set treated as equalities. In
general, a vector fZ is available such that RT

ZfZ ¼ �gZ , which allows pZ to be computed from a single
back-substitution RZpZ ¼ fZ . For example, when solving problem LS1, fZ comprises the first nZ
elements of the transformed residual vector

f ¼ P b�Axð Þ; ð10Þ

which is recurred from one iteration to the next, where P is an orthogonal matrix.

In the singular case, pZ is defined such that

RZpZ ¼ 0 and gTZpZ < 0: ð11Þ

This vector has the property that the objective function is linear along p and may be reduced by any
step of the form xþ �p, where � > 0.

The vector ZTgFR is known as the projected gradient at x. If the projected gradient is zero, x is a
constrained stationary point in the subspace defined by Z. During the feasibility phase, the projected
gradient will usually be zero only at a vertex (although it may be zero at non-vertices in the presence of
constraint dependencies). During the optimality phase, a zero projected gradient implies that x
minimizes the quadratic objective when the constraints in the working set are treated as equalities. At a
constrained stationary point, Lagrange multipliers �C and �B for the general and bound constraints are
defined from the equations

CT
FR�C ¼ gFRand �B ¼ gFX � CT

FX�C: ð12Þ

Given a positive constant � of the order of the machine precision, the Lagrange multiplier �j
corresponding to an inequality constraint in the working set is said to be optimal if �j � � when the
associated constraint is at its upper bound, or if �j � �� when the associated constraint is at its lower
bound. If a multiplier is nonoptimal, the objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint (with index Jdel; see
Section 13) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, there
is no feasible point, and E04NCF/E04NCA will continue until the minimum value of the sum of
infeasibilities has been found. At this point, the Lagrange multiplier �j corresponding to an inequality
constraint in the working set will be such that � 1þ �ð Þ � �j � � when the associated constraint is at its
upper bound, and �� � �j � 1þ �ð Þ when the associated constraint is at its lower bound. Lagrange
multipliers for equality constraints will satisfy �j

		 		 � 1þ �.

The choice of step length is based on remaining feasible with respect to the satisfied constraints. If RZ

is nonsingular and xþ p is feasible, � will be taken as unity. In this case, the projected gradient at �x
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will be zero, and Lagrange multipliers are computed. Otherwise, � is set to �M, the step to the ‘nearest’
constraint (with index Jadd; see Section 13), which is added to the working set at the next iteration.

If A is not input as a triangular matrix, it is overwritten by a triangular matrix R satisfying (8) obtained
using the Cholesky factorization in the QP case, or the QR factorization in the LS case. Column
interchanges are used in both cases, and an estimate is made of the rank of the triangular factor.
Thereafter, the dependent rows of R are eliminated from the problem.

Each change in the working set leads to a simple change to CFR: if the status of a general constraint
changes, a row of CFR is altered; if a bound constraint enters or leaves the working set, a column of CFR

changes. Explicit representations are recurred of the matrices T;QFR and R; and of vectors QTg, QTc
and f , which are related by the formulae

f ¼ Pb� R
0

� �
QTx; b 	 0for the QP caseð Þ;

and

QTg ¼ QTc�RTf:

Note that the triangular factor R associated with the Hessian of the original problem is updated during
both the optimality and the feasibility phases.

The treatment of the singular case depends critically on the following feature of the matrix updating
schemes used in E04NCF/E04NCA: if a given factor RZ is nonsingular, it can become singular during
subsequent iterations only when a constraint leaves the working set, in which case only its last diagonal
element can become zero. This property implies that a vector satisfying (11) may be found using the
single back-substitution �RZpZ ¼ eZ , where �RZ is the matrix RZ with a unit last diagonal, and eZ is a
vector of all zeros except in the last position. If H is singular, the matrix R (and hence RZ) may be
singular at the start of the optimality phase. However, RZ will be nonsingular if enough constraints are
included in the initial working set. (The matrix with no rows and columns is positive definite by
definition, corresponding to the case when CFR contains nFR constraints.) The idea is to include as many
general constraints as necessary to ensure a nonsingular RZ.

At the beginning of each phase, an upper triangular matrix R1 is determined that is the largest
nonsingular leading sub-matrix of RZ . The use of interchanges during the factorization of A tends to
maximize the dimension of R1. (The rank of R1 is estimated using the optional parameter Rank
Tolerance.) Let Z1 denote the columns of Z corresponding to R1, and let Z be partitioned as
Z ¼ Z1 Z2ð Þ. A working set for which Z1 defines the null space can be obtained by including the rows
of ZT

2 as ‘artificial constraints’. Minimization of the objective function then proceeds within the
subspace defined by Z1.

The artificially augmented working set is given by

�CFR ¼ CFR
ZT
2

� �
; ð13Þ

so that pFR will satisfy CFRpFR ¼ 0 and ZT
2 pFR ¼ 0. By definition of the TQ factorization, �CFR

automatically satisfies the following:

�CFRQFR ¼ CFR
ZT
2

� �
QFR ¼ CFR

ZT
2

� �
Z1 Z2 Y
� �

¼ 0 �T
� �

;

where

�T ¼ 0 T
I 0

� �
;

and hence the TQ factorization of (13) requires no additional work.

The matrix Z2 need not be kept fixed, since its role is purely to define an appropriate null space; the
TQ factorization can therefore be updated in the normal fashion as the iterations proceed. No work is
required to ‘delete’ the artificial constraints associated with Z2 when ZT

1 gFR ¼ 0, since this simply
involves repartitioning QFR. When deciding which constraint to delete, the ‘artificial’ multiplier vector
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associated with the rows of ZT
2 is equal to ZT

2 gFR, and the multipliers corresponding to the rows of the
‘true’ working set are the multipliers that would be obtained if the temporary constraints were not
present.

The number of columns in Z2 and Z1, the Euclidean norm of ZT
1 gFR, and the condition estimator of R1

appear in the monitoring file output as Art, Zr, Norm Gz and Cond Rz respectively (see Section 13).

Although the algorithm of E04NCF/E04NCA does not perform simplex steps in general, there is one
exception: a linear program with fewer general constraints than variables (i.e., nL � n). Use of the
simplex method in this situation leads to savings in storage. At the starting point, the ‘natural’ working
set (the set of constraints exactly or nearly satisfied at the starting point) is augmented with a suitable
number of ‘temporary’ bounds, each of which has the effect of temporarily fixing a variable at its
current value. In subsequent iterations, a temporary bound is treated as a standard constraint until it is
deleted from the working set, in which case it is never added again.

One of the most important features of E04NCF/E04NCA is its control of the conditioning of the
working set, whose nearness to linear dependence is estimated by the ratio of the largest to smallest
diagonals of the TQ factor T (the printed value Cond T; see Section 13). In constructing the initial
working set, constraints are excluded that would result in a large value of Cond T. Thereafter, E04NCF/
E04NCA allows constraints to be violated by as much as a user-specified optional parameter Feasibility
Tolerance in order to provide, whenever possible, a choice of constraints to be added to the working set
at a given iteration. Let �M denote the maximum step at which xþ �Mp does not violate any constraint
by more than its feasibility tolerance. All constraints at distance � � � �Mð Þ along p from the current
point are then viewed as acceptable candidates for inclusion in the working set. The constraint whose
normal makes the largest angle with the search direction is added to the working set. In order to ensure
that the new iterate satisfies the constraints in the working set as accurately as possible, the step taken is
the exact distance to the newly added constraint. As a consequence, negative steps are occasionally
permitted, since the current iterate may violate the constraint to be added by as much as the feasibility
tolerance.

12 Optional Parameters

Several optional parameters in E04NCF/E04NCA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal arguments of E04NCF/E04NCA these optional
parameters have associated default values that are appropriate for most problems. Therefore, you need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Cold Start

Crash Tolerance

Defaults

Feasibility Phase Iteration Limit

Feasibility Tolerance

Hessian

Infinite Bound Size

Infinite Step Size

Iteration Limit

Iters

Itns

List

Monitoring File

Nolist

Optimality Phase Iteration Limit
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Print Level

Problem Type

Rank Tolerance

Warm Start

Optional parameters may be specified by calling one, or both, of the routines E04NDF/E04NDA and
E04NEF/E04NEA before a call to E04NCF/E04NCA.

E04NDF/E04NDA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print level = 1

End

The call

CALL E04NDF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04NDF/
E04NDA should be consulted for a full description of this method of supplying optional parameters.

E04NEF/E04NEA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04NEF (’Print Level = 1’)

E04NEF/E04NEA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by E04NCF/E04NCA (unless they define invalid values) and so remain
in effect for subsequent calls unless altered by you.

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Cold Start Default
Warm Start

This option specifies how the initial working set is chosen. With a Cold Start, E04NCF/E04NCA
chooses the initial working set based on the values of the variables and constraints at the initial point.
Broadly speaking, the initial working set will include equality constraints and bounds or inequality
constraints that violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance).

With a Warm Start, you must provide a valid definition of every element of the array ISTATE.
E04NCF/E04NCA will override your specification of ISTATE if necessary, so that a poor choice of the
working set will not cause a fatal error. For instance, any elements of ISTATE which are set to �2,
�1 or 4 will be reset to zero, as will any elements which are set to 3 when the corresponding elements
of BL and BU are not equal. A warm start will be advantageous if a good estimate of the initial
working set is available – for example, when E04NCF/E04NCA is called repeatedly to solve related
problems.
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Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
E04NCF/E04NCA selects an initial working set. If 0 � r � 1, the initial working set will include (if
possible) bounds or general inequality constraints that lie within r of their bounds. In particular, a

constraint of the form cTj x � l will be included in the initial working set if cTj x� l
			 			 � r 1þ lj jð Þ. If

r < 0 or r > 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Feasibility Phase Iteration Limit i1 Default ¼ max 50; 5 nþ nLð Þð Þ
Optimality Phase Iteration Limit i2 Default ¼ max 50; 5 nþ nLð Þð Þ
The scalars i1 and i2 specify the maximum number of iterations allowed in the feasibility and optimality
phases. Optional parameter Optimality Phase Iteration Limit is equivalent to optional parameter
Iteration Limit. Setting i2 ¼ 0 and Print Level > 0 means that the workspace needed will be
computed and printed, but no iterations will be performed. If i1 < 0 or i2 < 0, the default value is used.

Feasibility Tolerance r Default ¼
ffiffi
�
p

If r > �, r defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point.
For example, if the variables and the coefficients in the general constaints are of order unity, and the
latter are correct to about 6 decimal digits, it would be appropriate to specify r as 10�6. If 0 � r < �,
the default value is used.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the tolerance r.

Hessian No Default ¼ NO

This option controls the contents of the upper triangular matrix R (see the description of A in
Section 5). E04NCF/E04NCA works exclusively with the transformed and reordered matrix HQ (8), and
hence extra computation is required to form the Hessian itself. If Hessian ¼ NO, A contains the
Cholesky factor of the matrix HQ with columns ordered as indicated by KX (see Section 5). If
Hessian ¼ YES, A contains the Cholesky factor of the matrix H, with columns ordered as indicated by
KX.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r < 0, the default value is used.

Infinite Step Size r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is singular and
the objective contains an explicit linear term.) If the change in x during an iteration would exceed the
value of r, the objective function is considered to be unbounded below in the feasible region. If r � 0,
the default value is used.

Iteration Limit i Default ¼ max 50; 5 nþ nLð Þð Þ
Iters
Itns

See optional parameter Feasibility Phase Iteration Limit.
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List Default for E04NCF ¼ List
Nolist Default for E04NCA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist
may be used to suppress the printing and optional parameter List may be used to restore printing.

Monitoring File i Default ¼ �1
If i � 0 and Print Level � 5, monitoring information produced by E04NCF/E04NCA at every iteration
is sent to a file with logical unit number i. If i < 0 and/or Print Level < 5, no monitoring information
is produced.

Print Level i Default for E04NCF ¼ 10
Default for E04NCA ¼ 0

The value of i controls the amount of printout produced by E04NCF/E04NCA, as indicated below. A
detailed description of the printed output is given in Section 9.2 (summary output at each iteration and
the final solution) and Section 13 (monitoring information at each iteration).

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.

1 The final solution only.

5 One line of summary output ( < 80 characters; see Section 9.2) for each iteration (no printout
of the final solution).

� 10 The final solution and one line of summary output for each iteration.

The following printout is sent to the logical unit number by the optional parameter Monitoring File:

i Output

< 5 No output.

� 5 One long line of output ( > 80 characters; see Section 13) for each iteration (no printout of the
final solution).

� 20 At each iteration, the Lagrange multipliers, the variables x, the constraint values Cx and the
constraint status.

� 30 At each iteration, the diagonal elements of the matrix T associated with the TQ factorization
(4) (see Section 11.2) of the working set, and the diagonal elements of the upper triangular
matrix R.

If Print Level � 5 and the unit number defined by the optional parameter Monitoring File is the same
as that defined by X04ABF,then the summary output for each major iteration is suppressed.

Problem Type a Default ¼ LS1

This option specifies the type of objective function to be minimized during the optimality phase. The
following are the nine optional keywords and the dimensions of the arrays that must be specified in
order to define the objective function:

LP A and B not referenced, CVECðNÞ;
QP1 AðLDA;NÞ symmetric, B and CVEC not referenced;
QP2 AðLDA;NÞ symmetric, B not referenced, CVECðNÞ;
QP3 AðLDA;NÞ upper trapezoidal, KXðNÞ, B and CVEC not referenced;
QP4 AðLDA;NÞ upper trapezoidal, KXðNÞ, B not referenced, CVECðNÞ;
LS1 AðLDA;NÞ, BðMÞ, CVEC not referenced;
LS2 AðLDA;NÞ, BðMÞ, CVECðNÞ;
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LS3 AðLDA;NÞ upper trapezoidal, KXðNÞ, BðMÞ, CVEC not referenced;
LS4 AðLDA;NÞ upper trapezoidal, KXðNÞ, BðMÞ, CVECðNÞ.

For problems of type FP, the objective function is omitted and A, B and CVEC are not referenced.

The following keywords are also acceptable. The minimum abbreviation of each keyword is underlined.

a Option

Least LS1

Quadratic QP2

Linear LP

In addition, the keywords LS and LSQ are equivalent to the default option LS1, and the keyword QP is
equivalent to the option QP2.

If A ¼ 0, i.e., the objective function is purely linear, the efficiency of E04NCF/E04NCA may be
increased by specifying a as LP.

Rank Tolerance r Default ¼ 100� or 10
ffiffi
�
p

(see below)

Note that this option does not apply to problems of type FP or LP.

The default value of r depends on the problem type. If A occurs as a least squares matrix, as it does in
problem types QP1, LS1 and LS3, then the default value of r is 100�. In all other cases, A is treated as
the ‘square root’ of the Hessian matrix H and r has the default value 10

ffiffi
�
p

.

This parameter enables you to control the estimate of the triangular factor R1 (see Section 11.3). If �i
denotes the function �i ¼ max R11j j; R22j j; . . . ; Riij jf g, the rank of R is defined to be smallest index i
such that Riþ1;iþ1

		 		 � r �iþ1j j. If r � 0, the default value is used.

13 Description of Monitoring Information

This section describes the long line of output ( > 80 characters) which forms part of the monitoring
information produced by E04NCF/E04NCA. (See also the description of the optional parameters
Monitoring File and Print Level.) You can control the level of printed output.

To aid interpretation of the printed results, the following convention is used for numbering the
constraints: indices 1 through n refer to the bounds on the variables, and indices nþ 1 through nþ nL
refer to the general constraints. When the status of a constraint changes, the index of the constraint is
printed, along with the designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed
variable) or A (artificial constraint).

When Print Level � 5 and Monitoring File � 0, the following line of output is produced at every
iteration on the unit number specified by optional parameter Monitoring File. In all cases, the values of
the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no
constraint was added.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration (i.e., Jadd is positive), Step will be the step to the
nearest constraint. During the optimality phase, the step can be greater than one
only if the factor RZ is singular.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.
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Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function of (1). The output line for the
final iteration of the feasibility phase (i.e., the first iteration for which Ninf is
zero) will give the value of the true objective at the first feasible point.

During the optimality phase the value of the objective function will be
nonincreasing. During the feasibility phase the number of constraint infeasibilities
will not increase until either a feasible point is found or the optimality of the
multipliers implies that no feasible point exists. Once optimal multipliers are
obtained the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Art is the number of artificial constraints in the working set, i.e., the number of
columns of Z2 (see Section 11.3).

Zr is the number of columns of Z1 (see Section 11.2). Zr is the dimension of the
subspace in which the objective function is currently being minimized. The value
of Zr is the number of variables minus the number of constraints in the working
set; i.e., Zr ¼ n� Bndþ Linþ Artð Þ.
The value of nZ , the number of columns of Z (see Section 11.2) can be calculated
as nZ ¼ n� Bndþ Linð Þ. A zero value of nZ implies that x lies at a vertex of the
feasible region.

Norm Gz is ZT
1 gFR

�� ��, the Euclidean norm of the reduced gradient with respect to Z1. During
the optimality phase, this norm will be approximately zero after a unit step.

Norm Gf is the Euclidean norm of the gradient function with respect to the free variables, i.
e., variables not currently held at a bound.

Cond T is a lower bound on the condition number of the working set.

Cond Rz is a lower bound on the condition number of the triangular factor R1 (the first Zr
rows and columns of the factor RZ). If the problem is specified to be of type LP or
the estimated rank of the data matrix A is zero then Cond Rz is not printed.
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NAG Library Routine Document

E04NDF/E04NDA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply optional parameters to E04NCF/E04NCA from an external file. More precisely, E04NDF
must be used to supply optional parameters to E04NCF and E04NDA must be used to supply optional
parameters to E04NCA.

E04NDA is a version of E04NDF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04NDA.

2 Specification

2.1 Specification for E04NDF

SUBROUTINE E04NDF (IOPTNS, INFORM)

INTEGER IOPTNS, INFORM

2.2 Specification for E04NDA

SUBROUTINE E04NDA (IOPTNS, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IOPTNS, IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)

3 Description

E04NDF/E04NDA may be used to supply values for optional parameters to E04NCF/E04NCA.
E04NDF/E04NDA reads an external file and each line of the file defines a single optional parameter. It
is only necessary to supply values for those arguments whose values are to be different from their
default values.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print level = 5

End
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For E04NDF each line of the file is normally printed as it is read, on the current advisory message unit
(see X04ABF), but printing may be suppressed using the keyword Nolist. To suppress printing of
Begin, Nolist must be the first option supplied as in the file:

Begin
Nolist
Print level = 5

End

Printing will automatically be turned on again after a call to E04NCF or E04NDF and may be turned on
again at any time using the keyword List.

For E04NDA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04NCF/E04NCA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04NCF/E04NCA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NCF/E04NCA.

4 References

None.

5 Arguments

1: IOPTNS – INTEGER Input

On entry: the unit number of the options file to be read.

Constraint: 0 � IOPTNS � 99.

2: INFORM – INTEGER Output

Note: for E04NDA, INFORM does not occur in this position in the argument list. See the
additional arguments described below.

On exit: contains zero if the options file has been successfully read and a value > 0 otherwise
(see Section 6).

Note: the following are additional arguments for specific use with E04NDA. Users of E04NDF
therefore need not read the remainder of this description.

3: LWSAVð120Þ – LOGICAL array Communication Array
4: IWSAVð610Þ – INTEGER array Communication Array
5: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04NDA, E04NCA, E04NEA or E04WBF.

6: INFORM – INTEGER Output

Note: see the argument description for INFORM above.

6 Error Indicators and Warnings

INFORM ¼ 1

IOPTNS is not in the range 0; 99½ �.
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INFORM ¼ 2

Begin was found, but end-of-file was found before End was found.

INFORM ¼ 3

end-of-file was found before Begin was found.

INFORM ¼ 4

Not used.

INFORM ¼ 5

One or more lines of the options file is invalid. Check that all keywords are neither ambiguous
nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NDF/E04NDA is not threaded in any implementation.

9 Further Comments

E04NEF/E04NEA may also be used to supply optional parameters to E04NCF/E04NCA.

10 Example

This example minimizes the quadratic function cTxþ 1
2x

TAx , where

c ¼ �4:0;�1:0;�1:0;�1:0;�1:0;�1:0;�1:0;�0:1;�0:3ð ÞT;

A ¼

2 1 1 1 1 0 0 0 0
1 2 1 1 1 0 0 0 0
1 1 2 1 1 0 0 0 0
1 1 1 2 1 0 0 0 0
1 1 1 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0BBBBBBBBBB@

1CCCCCCCCCCA
subject to the bounds

�2 � x1 � 2
�2 � x2 � 2
�2 � x3 � 2
�2 � x4 � 2
�2 � x5 � 2
�2 � x6 � 2
�2 � x7 � 2
�2 � x8 � 2
�2 � x9 � 2

and to the general constraints
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�2:0 � x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ 4x9 � 1:5
�2:0 � x1 þ 2x2 þ 3x3 þ 4x4 � 2x5 þ x6 þ x7 þ x8 þ x9 � 1:5
�2:0 � x1 � x2 þ x3 � x4 þ x5 þ x6 þ x7 þ x8 þ x9 � 4:0

The initial point, which is feasible, is

x0 ¼ 0; 0; 0; 0; 0; 0; 0; 0; 0ð ÞT;

and F x0ð Þ ¼ 0.

The optimal solution (to five figures) is

x� ¼ 2:0;�0:23333;�0:26667;�0:3;�0:1; 2:0; 2:0;�1:7777;�0:45555ð ÞT;

and F x�ð Þ ¼ �8:0678. Three bound constraints and two general constraints are active at the solution.
Note that, although the Hessian matrix is positive semidefinite, the point x� is unique.

In this example the options file read by E04NDF/E04NDA is appended to the data file for the program
(see Section 10.2). It would usually be more convenient in practice to keep the data file and the options
file separate.

10.1 Program Text

the following program illustrates the use of E04NDF. An equivalent program illustrating the use of
E04NDA is available with the supplied Library and is also available from the NAG web site.

Program e04ndfe

! E04NDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04ncf, e04ndf, e04nef, nag_wp, x04abf, x04acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, ninopt = 7, &

nout = 6
Character (*), Parameter :: fname = ’e04ndfe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj
Integer :: i, ifail, inform, iter, lda, ldc, &

liwork, lwork, m, mode, n, nclin, &
outchn, sdc

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), bl(:), bu(:), c(:,:), &

clamda(:), cvec(:), work(:), x(:)
Integer, Allocatable :: istate(:), iwork(:), kx(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,99998) ’E04NDF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) m, n, nclin
liwork = n
ldc = max(1,nclin)
lda = max(1,m)

If (nclin>0) Then
sdc = n

Else
sdc = 1

End If
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! This particular example problem is of type QP2, so we allocate
! A(LDA,N), CVEC(N), B(1) and define LWORK as below

If (nclin>0) Then
lwork = 2*n**2 + 10*n + 6*nclin

Else
lwork = 10*n

End If

Allocate (istate(n+nclin),kx(n),iwork(liwork),c(ldc,sdc),bl(n+nclin), &
bu(n+nclin),cvec(n),x(n),a(lda,n),b(1),clamda(n+nclin),work(lwork))

Read (nin,*) cvec(1:n)
Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(c(i,1:sdc),i=1,nclin)
Read (nin,*) bl(1:(n+nclin))
Read (nin,*)
Read (nin,*) bu(1:(n+nclin))
Read (nin,*)
Read (nin,*) x(1:n)

! Set the unit number for advisory messages to OUTCHN

outchn = nout
Call x04abf(iset,outchn)

! Set one option using E04NEF

Call e04nef(’ Problem Type = QP2 ’)

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Read the options file for the remaining options

Call e04ndf(ninopt,inform)

If (inform/=0) Then
Write (nout,99999) ’ ** E04NDF terminated with INFORM =’, inform
Flush (nout)
Go To 100

End If

! Solve the problem

ifail = 0
Call e04ncf(m,n,nclin,ldc,lda,c,bl,bu,cvec,istate,kx,x,a,b,iter,obj, &

clamda,iwork,liwork,work,lwork,ifail)

100 Continue

99999 Format (1X,A,I5)
99998 Format (1X,A)

End Program e04ndfe
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10.2 Program Data

Begin Example options file for E04NDF
Iteration Limit = 30 * (Default = 90)

End

E04NDF Example Program Data
9 9 3 :Values of M, N and NCLIN

-4.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.1 -0.3 :End of CVEC
2.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
1.0 2.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 2.0 1.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 2.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 2.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 :End of matrix A
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0
1.0 2.0 3.0 4.0 -2.0 1.0 1.0 1.0 1.0
1.0 -1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0 :End of matrix C

-2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0
:End of BL

2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.5 1.5 4.0
:End of BU

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 :End of X

10.3 Program Results

E04NDF Example Program Results

Calls to E04NEF
---------------

Problem Type = QP2

OPTIONS file
------------

Begin Example options file for E04NDF
Iteration Limit = 30 * (Default = 90)

End

*** E04NCF

Parameters
----------

Problem type........... QP2 Hessian................ NO

Linear constraints..... 3 Feasibility tolerance.. 1.05E-08
Variables.............. 9 Crash tolerance........ 1.00E-02
Objective matrix rows.. 9 Rank tolerance......... 1.05E-07

Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16

Print level............ 10 Feasibility phase itns. 60
Monitoring file........ -1 Optimality phase itns. 30

Workspace provided is IWORK( 9), WORK( 270).
To solve problem we need IWORK( 9), WORK( 270).

Rank of the objective function data matrix = 5

Itn Step Ninf Sinf/Objective Norm Gz
0 0.0E+00 0 0.000000E+00 4.5E+00
1 7.5E-01 0 -4.375000E+00 5.0E-01
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2 1.0E+00 0 -4.400000E+00 2.8E-17
3 3.0E-01 0 -4.700000E+00 8.9E-01
4 1.0E+00 0 -5.100000E+00 2.4E-17
5 5.4E-01 0 -6.055714E+00 1.7E+00
6 1.1E-02 0 -6.113326E+00 1.6E+00
7 1.1E-01 0 -6.215049E+00 1.2E+00
8 1.0E+00 0 -6.538008E+00 1.8E-17
9 6.5E-01 0 -7.428704E+00 7.2E-02

10 1.0E+00 0 -7.429717E+00 1.8E-17
11 1.0E+00 0 -8.067718E+00 1.8E-17
12 1.0E+00 0 -8.067778E+00 1.8E-17

Exit from QP problem after 12 iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 UL 2.00000 -2.00000 2.00000 -0.8000 .
V 2 FR -0.233333 -2.00000 2.00000 . 1.767
V 3 FR -0.266667 -2.00000 2.00000 . 1.733
V 4 FR -0.300000 -2.00000 2.00000 . 1.700
V 5 FR -0.100000 -2.00000 2.00000 . 1.900
V 6 UL 2.00000 -2.00000 2.00000 -0.9000 .
V 7 UL 2.00000 -2.00000 2.00000 -0.9000 .
V 8 FR -1.77778 -2.00000 2.00000 . 0.2222
V 9 FR -0.455556 -2.00000 2.00000 . 1.544

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 UL 1.50000 -2.00000 1.50000 -6.6667E-02 1.1102E-15
L 2 UL 1.50000 -2.00000 1.50000 -3.3333E-02 -4.4409E-16
L 3 FR 3.93333 -2.00000 4.00000 . 6.6667E-02

Exit E04NCF - Optimal QP solution.

Final QP objective value = -8.067778
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E04NEF/E04NEA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply individual optional parameters to E04NCF/E04NCA. More precisely, E04NEF must be used
to supply optional parameters to E04NCF and E04NEA must be used to supply optional parameters to
E04NCA.

E04NEA is a version of E04NEF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04NEA.

2 Specification

2.1 Specification for E04NEF

SUBROUTINE E04NEF (STR)

CHARACTER(*) STR

2.2 Specification for E04NEA

SUBROUTINE E04NEA (STR, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)
CHARACTER(*) STR

3 Description

E04NEF/E04NEA may be used to supply values for optional parameters to E04NCF/E04NCA. It is
only necessary to call E04NEF/E04NEA for those arguments whose values are to be different from
their default values. One call to E04NEF/E04NEA sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

For E04NEF, each user-specified option is normally printed as it is defined, on the current advisory
message unit (see X04ABF), but this printing may be suppressed using the keyword Nolist. Thus the
statement

CALL E04NEF (’Nolist’)
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suppresses printing of this and subsequent options. Printing will automatically be turned on again after
a call to E04NCF and may be turned on again at any time using the keyword List.

For E04NEA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04NCF/E04NCA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04NCF/E04NCA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NCF/E04NCA.

4 References

None.

5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 and in Section 12 in E04NCF/
E04NCA).

Note: the following are additional arguments for specific use with E04NEA. Users of E04NEF
therefore need not read the remainder of this description.

2: LWSAVð120Þ – LOGICAL array Communication Array
3: IWSAVð610Þ – INTEGER array Communication Array
4: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04NEA, E04NCA, E04NDA or E04WBF.

5: INFORM – INTEGER Output

On exit: contains zero if a valid option string has been supplied and a value > 0 otherwise (see
Section 6).

6 Error Indicators and Warnings

INFORM ¼ 5

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NEF/E04NEA is not threaded in any implementation.

9 Further Comments

E04NDF/E04NDA may also be used to supply optional parameters to E04NCF/E04NCA.
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10 Example

See Section 10 in E04NDF/E04NDA.
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E04NFF/E04NFA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

E04NFF/E04NFA solves general quadratic programming problems. It is not intended for large sparse
problems.

E04NFA is a version of E04NFF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04NFA.

2 Specification

2.1 Specification for E04NFF

SUBROUTINE E04NFF (N, NCLIN, A, LDA, BL, BU, CVEC, H, LDH, QPHESS,
ISTATE, X, ITER, OBJ, AX, CLAMDA, IWORK, LIWORK,
WORK, LWORK, IFAIL)

&
&

INTEGER N, NCLIN, LDA, LDH, ISTATE(N+NCLIN), ITER,
IWORK(LIWORK), LIWORK, LWORK, IFAIL

&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN), BU(N+NCLIN), CVEC(*),
H(LDH,*), X(N), OBJ, AX(max(1,NCLIN)),
CLAMDA(N+NCLIN), WORK(LWORK)

&
&

EXTERNAL QPHESS

2.2 Specification for E04NFA

SUBROUTINE E04NFA (N, NCLIN, A, LDA, BL, BU, CVEC, H, LDH, QPHESS,
ISTATE, X, ITER, OBJ, AX, CLAMDA, IWORK, LIWORK,
WORK, LWORK, IUSER, RUSER, LWSAV, IWSAV, RWSAV,
IFAIL)

&
&
&

INTEGER N, NCLIN, LDA, LDH, ISTATE(N+NCLIN), ITER,
IWORK(LIWORK), LIWORK, LWORK, IUSER(*), IWSAV(610),
IFAIL

&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN), BU(N+NCLIN), CVEC(*),
H(LDH,*), X(N), OBJ, AX(max(1,NCLIN)),
CLAMDA(N+NCLIN), WORK(LWORK), RUSER(*), RWSAV(475)

&
&

LOGICAL LWSAV(120)
EXTERNAL QPHESS

Before calling E04NFA, or either of the option setting routines E04NGA or E04NHA, E04WBF must
be called. The specification for E04WBF is:

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
RWSAV, LRWSAV, IFAIL)

&

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV,
IFAIL

&

REAL (KIND=nag_wp) RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
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CHARACTER(*) RNAME
CHARACTER(80) CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ E04NFA . LCWSAV, LLWSAV, LIWSAV and LRWSAV,
the declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 1

LLWSAV � 120

LIWSAV � 610

LRWSAV � 475

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04NFA, E04NGA, E04NHA and E04WBF.

3 Description

E04NFF/E04NFA is designed to solve a class of quadratic programming problems that are assumed to
be stated in the following general form:

minimize
x2Rn

f xð Þ subject to l � x
Ax

� �
� u;

where A is an mL by n matrix and f xð Þ may be specified in a variety of ways depending upon the
particular problem to be solved. The available forms for f xð Þ are listed in Table 1, in which the prefixes
FP, LP and QP stand for ‘feasible point’, ‘linear programming’ and ‘quadratic programming’
respectively and c is an n-element vector.

Problem type f xð Þ Matrix H

FP Not applicable Not applicable
LP cTx Not applicable
QP1 1

2x
THx symmetric

QP2 cTxþ 1
2x

THx symmetric
QP3 1

2x
THTHx m by n upper trapezoidal

QP4 cTxþ 1
2x

THTHx m by n upper trapezoidal

There is no restriction on H or HTH apart from symmetry. If the quadratic function is convex, a global
minimum is found; otherwise, a local minimum is found. The default problem type is QP2 and other
objective functions are selected by using the optional parameter Problem Type. For problems of type
FP, the objective function is omitted and the routine attempts to find a feasible point for the set of
constraints.

The constraints involving A are called the general constraints. Note that upper and lower bounds are
specified for all the variables and for all the general constraints. An equality constraint can be specified
by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u can be set to
special values that will be treated as �1 or þ1. (See the description of the optional parameter Infinite
Bound Size.)

The defining feature of a quadratic function f xð Þ is that the second-derivative matrix r2f xð Þ (the
Hessian matrix) is constant. For QP1 and QP2 (the default), r2f xð Þ ¼ H; for QP3 and QP4,
r2f xð Þ ¼ HTH; and for the LP case, r2f xð Þ ¼ 0. If H is positive semidefinite, it is usually more
efficient to use E04NCF/E04NCA. If H is defined as the zero matrix, E04NFF/E04NFA will still
attempt to solve the resulting linear programming problem; however, this can be accomplished more
efficiently by setting the optional parameter Problem Type ¼ LP, or by using E04MFF/E04MFA
instead.

You must supply an initial estimate of the solution.

In the QP case, you may supply H either explicitly as an m by n matrix, or implicitly in a subroutine
that computes the product Hx or HTHx for any given vector x.
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In general, a successful run of E04NFF/E04NFA will indicate one of three situations:

(i) a minimizer has been found;

(ii) the algorithm has terminated at a so-called dead-point; or

(iii) the problem has no bounded solution.

If a minimizer is found, and r2f xð Þ is positive definite or positive semidefinite, E04NFF/E04NFA will
obtain a global minimizer; otherwise, the solution will be a local minimizer (which may or may not be
a global minimizer). A dead-point is a point at which the necessary conditions for optimality are
satisfied but the sufficient conditions are not. At such a point, a feasible direction of decrease may or
may not exist, so that the point is not necessarily a local solution of the problem. Verification of
optimality in such instances requires further information, and is in general an NP-hard problem (see
Pardalos and Schnitger (1988)). Termination at a dead-point can occur only if r2f xð Þ is not positive
definite. If r2f xð Þ is positive semidefinite, the dead-point will be a weak minimizer (i.e., with a unique
optimal objective value, but an infinite set of optimal x).

The method used by E04NFF/E04NFA (see Section 11) is most efficient when many constraints or
bounds are active at the solution.

4 References

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users' guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E and Murray W (1978) Numerically stable methods for quadratic programming Math.
Programming 14 349–372

Gill P E, Murray W, Saunders M A and Wright M H (1984) Procedures for optimization problems with
a mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for
linearly constrained optimization Math. Programming 45 437–474

Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Pardalos P M and Schnitger G (1988) Checking local optimality in constrained quadratic programming
is NP-hard Operations Research Letters 7 33–35

5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: NCLIN – INTEGER Input

On entry: mL, the number of general linear constraints.

Constraint: NCLIN � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0 and at least 1 if
NCLIN ¼ 0.

On entry: the ith row of A must contain the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ;mL.

If NCLIN ¼ 0, A is not referenced.
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4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
E04NFF/E04NFA is called.

Constraint: LDA � max 1;NCLINð Þ.

5: BLðNþ NCLINÞ – REAL (KIND=nag_wp) array Input
6: BUðNþ NCLINÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds and BU the upper bounds, for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
and the next mL elements the bounds for the general linear constraints (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a nonexistent
upper bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this
may be changed by the optional parameter Infinite Bound Size. To specify the jth constraint as
an equality, set BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLIN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

7: CVECð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array CVEC must be at least N if the problem is of type LP, QP2 (the
default) or QP4, and at least 1 otherwise.

On entry: the coefficients of the explicit linear term of the objective function when the problem is
of type LP, QP2 (the default) and QP4.

If the problem is of type FP, QP1, or QP3, CVEC is not referenced.

8: HðLDH; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array H must be at least N if it is to be used to store H
explicitly, and at least 1 otherwise.

On entry: may be used to store the quadratic term H of the QP objective function if desired. In
some cases, you need not use H to store H explicitly (see the specification of subroutine
QPHESS). The elements of H are referenced only by subroutine QPHESS. The number of rows
of H is denoted by m, whose default value is n. (The optional parameter Hessian Rows may be
used to specify a value of m < n.)

If the default version of QPHESS is used and the problem is of type QP1 or QP2 (the default),
the first m rows and columns of H must contain the leading m by m rows and columns of the
symmetric Hessian matrix H. Only the diagonal and upper triangular elements of the leading m
rows and columns of H are referenced. The remaining elements need not be assigned.

If the default version of QPHESS is used and the problem is of type QP3 or QP4, the first m
rows of H must contain an m by n upper trapezoidal factor of the symmetric Hessian matrix
HTH. The factor need not be of full rank, i.e., some of the diagonal elements may be zero.
However, as a general rule, the larger the dimension of the leading nonsingular sub-matrix of H,
the fewer iterations will be required. Elements outside the upper trapezoidal part of the first m
rows of H need not be assigned.

If a non-default version of QPHESS is supplied, then in some cases it may be desirable to use a
one-dimensional array to transmit data to QPHESS. (This is illustrated in the example program in
Section 10 in E04NGF/E04NGA.) H is then declared as an LDH by 1 array, where
LDH � N� Nþ 1ð Þ=2.

In other situations, it may be desirable to compute Hx or HTHx without accessing H – for
example, if H or HTH is sparse or has special structure. The arguments H and LDH may then
refer to any convenient array.
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If the problem is of type FP or LP, H is not referenced.

9: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which
E04NFF/E04NFA is called.

Constraints:

if the problem is of type QP1, QP2 (the default), QP3 or QP4, LDH � N or at least the
value of the optional parameter Hessian Rows;
if the problem is of type FP or LP, LDH � 1.

10: QPHESS – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

In general, you need not provide a version of QPHESS, because a ‘default’ subroutine with name
E04NFU/E54NFU is included in the Library. However, the algorithm of E04NFF/E04NFA
requires only the product of H or HTH and a vector x; and in some cases you may obtain
increased efficiency by providing a version of QPHESS that avoids the need to define the
elements of the matrices H or HTH explicitly.

QPHESS is not referenced if the problem is of type FP or LP, in which case QPHESS may be the
routine E04NFU/E54NFU.

The specification of QPHESS for E04NFF is:

SUBROUTINE QPHESS (N, JTHCOL, H, LDH, X, HX)

INTEGER N, JTHCOL, LDH
REAL (KIND=nag_wp) H(LDH,*), X(N), HX(N)

The specification of QPHESS for E04NFA is:

SUBROUTINE QPHESS (N, JTHCOL, H, LDH, X, HX, IUSER, RUSER, IWSAV)

INTEGER N, JTHCOL, LDH, IUSER(*), IWSAV(610)
REAL (KIND=nag_wp) H(LDH,*), X(N), HX(N), RUSER(*)

1: N – INTEGER Input

On entry: this is the same argument as supplied to this routine. See the description for
the top level argument N.

2: JTHCOL – INTEGER Input

On entry: specifies whether or not the vector x is a column of the identity matrix.

JTHCOL ¼ j > 0
The vector x is the jth column of the identity matrix, and hence Hx or HTHx is
the jth column of H or HTH, respectively. This may in some cases require very
little computation and QPHESS may be coded to take advantage of this. However
special code is not necessary because x is always stored explicitly in the array X.

JTHCOL ¼ 0
x has no special form.

3: HðLDH; �Þ – REAL (KIND=nag_wp) array Input

On entry: this is the same argument as supplied to this routine. See the description for
the top level argument H.

4: LDH – INTEGER Input

On entry: this is the same argument as supplied to this routine. See the description for
the top level argument LDH.
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5: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector x.

6: HXðNÞ – REAL (KIND=nag_wp) array Output

On exit: the product Hx if the problem is of type QP1 or QP2 (the default), or the
product HTHx if the problem is of type QP3 or QP4.

Note: the following are additional arguments for specific use with E04NFA. Users of E04NFF
therefore need not read the remainder of this description.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

QPHESS is called with the arguments IUSER and RUSER as supplied to E04NFF/
E04NFA. You should use the arrays IUSER and RUSER to supply information to
QPHESS.

9: IWSAVð610Þ – INTEGER array Communication Array

IWSAV contains information that is required by the default routine E54NFU.

QPHESS must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04NFF/E04NFA is called. Arguments denoted as Input must not be
changed by this procedure.

11: ISTATEðNþ NCLINÞ – INTEGER array Input/Output

On entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, ISTATE specifies the desired status of
the constraints at the start of the feasibility phase. More precisely, the first n elements of ISTATE
refer to the upper and lower bounds on the variables, and the next mL elements refer to the
general linear constraints (if any). Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ Meaning

0 The corresponding constraint should not be in the initial working set.

1 The constraint should be in the initial working set at its lower bound.

2 The constraint should be in the initial working set at its upper bound.

3 The constraint should be in the initial working set as an equality. This value must
not be specified unless BLðjÞ ¼ BUðjÞ.

The values �2, �1 and 4 are also acceptable but will be reset to zero by the routine. If E04NFF/
E04NFA has been called previously with the same values of N and NCLIN, ISTATE already
contains satisfactory information. (See also the description of the optional parameter Warm
Start.) The routine also adjusts (if necessary) the values supplied in X to be consistent with
ISTATE.

Constraint: �2 � ISTATEðjÞ � 4, for j ¼ 1; 2; . . . ;Nþ NCLIN.

On exit: the status of the constraints in the working set at the point returned in X. The
significance of each possible value of ISTATEðjÞ is as follows:

ISTATEðjÞ Meaning

�2 The constraint violates its lower bound by more than the feasibility tolerance.

�1 The constraint violates its upper bound by more than the feasibility tolerance.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the
working set.
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1 This inequality constraint is included in the working set at its lower bound.

2 This inequality constraint is included in the working set at its upper bound.

3 This constraint is included in the working set as an equality. This value of ISTATE
can occur only when BLðjÞ ¼ BUðjÞ.

4 This corresponds to optimality being declared with XðjÞ being temporarily fixed at
its current value. This value of ISTATE can occur only when IFAIL ¼ 1 on exit.

12: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the solution.

On exit: the point at which E04NFF/E04NFA terminated. If IFAIL ¼ 0, 1 or 4, X contains an
estimate of the solution.

13: ITER – INTEGER Output

On exit: the total number of iterations performed.

14: OBJ – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at x if x is feasible, or the sum of infeasibilities at x
otherwise. If the problem is of type FP and x is feasible, OBJ is set to zero.

15: AXðmax 1;NCLINð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the final values of the linear constraints Ax.

If NCLIN ¼ 0, AX is not referenced.

16: CLAMDAðNþ NCLINÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the Lagrange multipliers for each constraint with respect to the current
working set. The first n elements contain the multipliers for the bound constraints on the
variables, and the next mL elements contain the multipliers for the general linear constraints (if
any). If ISTATEðjÞ ¼ 0 (i.e., constraint j is not in the working set), CLAMDAðjÞ is zero. If x is
optimal, CLAMDAðjÞ should be non-negative if ISTATEðjÞ ¼ 1, non-positive if ISTATEðjÞ ¼ 2
and zero if ISTATEðjÞ ¼ 4.

17: IWORKðLIWORKÞ – INTEGER array Workspace
18: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
E04NFF/E04NFA is called.

Constraint: LIWORK � 2� Nþ 3.

19: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
20: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
E04NFF/E04NFA is called.

Constraints:

if the problem is of type QP2 (the default) or QP4,

if NCLIN > 0, LWORK � 2� N2 þ 8� Nþ 5� NCLIN;
if NCLIN ¼ 0, LWORK � N2 þ 8� N.;

if the problem is of type QP1 or QP3,

if NCLIN > 0, LWORK � 2� N2 þ 7� Nþ 5� NCLIN;
if NCLIN ¼ 0, LWORK � N2 þ 7� N.;
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if the problem is of type LP,

if NCLIN ¼ 0, LWORK � 8� Nþ 1;
if NCLIN � N, LWORK � 2� N2 þ 8� Nþ 5� NCLIN;
otherwise LWORK � 2� NCLINþ 1ð Þ2 þ 8� Nþ 5� NCLIN.;

if the problem is of type FP,

if NCLIN ¼ 0, LWORK � 7� Nþ 1;
if NCLIN � N, LWORK � 2� N2 þ 7� Nþ 5� NCLIN;
otherwise LWORK � 2� NCLINþ 1ð Þ2 þ 7� Nþ 5� NCLIN..

The amounts of workspace provided and required are (by default) output on the current advisory
message unit (as defined by X04ABF). As an alternative to computing LIWORK and LWORK
from the formulas given above, you may prefer to obtain appropriate values from the output of a
preliminary run with LIWORK and LWORK set to 1. (E04NFF/E04NFA will then terminate with
IFAIL ¼ 6.)

21: IFAIL – INTEGER Input/Output

Note: for E04NFA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04NFF/E04NFA returns with IFAIL ¼ 0 if x is a strong local minimizer, i.e., the reduced
gradient (Norm Gz; see Section 9.2) is negligible, the Lagrange multipliers (Lagr Mult; see
Section 9.2) are optimal and HR (the reduced Hessian of f xð Þ; see Section 11.2) is positive
semidefinite.

Note: the following are additional arguments for specific use with E04NFA. Users of E04NFF therefore
need not read the remainder of this description.

22: IUSERð�Þ – INTEGER array User Workspace
23: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04NFF/E04NFA, but are passed directly to QPHESS and
should be used to pass information to this routine.

24: LWSAVð120Þ – LOGICAL array Communication Array
25: IWSAVð610Þ – INTEGER array Communication Array
26: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04NFA, E04NGA or E04NHA.

27: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04NFF/E04NFA may return useful information for one or more of the following detected errors
or warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The iterations were terminated at a dead-point. The necessary conditions for optimality are
satisfied but the sufficient conditions are not. (The reduced gradient is negligible, the Lagrange
multipliers are optimal, but HR is singular or there are some very small multipliers.) If r2f xð Þ is
not positive definite, x is not necessarily a local solution of the problem and verification of
optimality requires further information. If r2f xð Þ is positive semidefinite or the problem is of
type LP, x gives the global minimum value of the objective function, but the final x is not
unique.

IFAIL ¼ 2

The solution appears to be unbounded, i.e., the objective function is not bounded below in the
feasible region. This value of IFAIL occurs if a step larger than Infinite Step Size
(default value ¼ 1020) would have to be taken in order to continue the algorithm, or the next
step would result in an element of x having magnitude larger than Infinite Bound Size
(default value ¼ 1020).

IFAIL ¼ 3

No feasible point was found, i.e., it was not possible to satisfy all the constraints to within the
feasibility tolerance. In this case, the constraint violations at the final x will reveal a value of the
tolerance for which a feasible point will exist – for example, when the feasibility tolerance for
each violated constraint exceeds its Slack (see Section 9.2) at the final point. The modified
problem (with an altered feasibility tolerance) may then be solved using a Warm Start. You
should check that there are no constraint redundancies. If the data for the constraints are accurate
only to the absolute precision �, you should ensure that the value of the optional parameter
Feasibility Tolerance (default value ¼

ffiffi
�
p

, where � is the machine precision) is greater than �.
For example, if all elements of A are of order unity and are accurate only to three decimal places,
the Feasibility Tolerance should be at least 10�3.

IFAIL ¼ 4

The limiting number of iterations was reached before normal termination occurred.

The values of the opt ional parameters Feasibi l i ty Phase Iterat ion Limit
( default value ¼ max 50; 5 nþmLð Þð Þ) a n d Op t im a l i t y P h a s e I t e r a t i o n L im i t
(default value ¼ max 50; 5 nþmLð Þð Þ) may be too small. If the method appears to be making
progress (e.g., the objective function is being satisfactorily reduced), either increase the iterations
limit and rerun E04NFF/E04NFA or, alternatively, rerun E04NFF/E04NFA using the Warm
Start facility to specify the initial working set.

IFAIL ¼ 5

The reduced Hessian exceeds its assigned dimension. The algorithm needed to expand the
reduced Hessian when it was already at its maximum dimension, as specified by the optional
parameter Maximum Degrees of Freedom (default value ¼ n).
The value of the optional parameter Maximum Degrees of Freedom is too small. Rerun
E04NFF/E04NFA with a larger value (possibly using the Warm Start facility to specify the
initial working set).
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IFAIL ¼ 6

An input argument is invalid.

IFAIL ¼ 7

The designated problem type was not FP, LP, QP1, QP2, QP3 or QP4. Rerun E04NFF/E04NFA
with the optional parameter Problem Type set to one of these values.

Overflow

If the printed output before the overflow error contains a warning about serious ill-conditioning
in the working set when adding the jth constraint, it may be possible to avoid the difficulty by
increasing the magnitude of the Feasibility Tolerance (default value ¼

ffiffi
�
p

, where � is the
machine precision) and rerunning the program. If the message recurs even after this change, the
offending linearly dependent constraint (with index ‘j’) must be removed from the problem.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

E04NFF/E04NFA implements a numerically stable active set strategy and returns solutions that are as
accurate as the condition of the problem warrants on the machine.

8 Parallelism and Performance

E04NFF/E04NFA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This section contains some comments on scaling and a description of the printed output.

9.1 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the
problem less sensitive to perturbations in the data, thus improving the condition of the problem. In the
absence of better information it is usually sensible to make the Euclidean lengths of each constraint of
comparable magnitude. See the E04 Chapter Introduction and Gill et al. (1981) for further information
and advice.
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9.2 Description of the Printed Output

This section describes the intermediate printout and final printout produced by E04NFF/E04NFA. The
intermediate printout is a subset of the monitoring information produced by the routine at every
iteration (see Section 13). You can control the level of printed output (see the description of the
optional parameter Print Level). Note that the intermediate printout and final printout are produced
only if Print Level � 10 (the default for E04NFF, by default no output is produced by E04NFA).

The following line of summary output ( < 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration, Step will be the step to the nearest constraint. When
the problem is of type LP, the step can be greater than one during the optimality
phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function of (1). The output line for the
final iteration of the feasibility phase (i.e., the first iteration for which Ninf is
zero) will give the value of the true objective at the first feasible point.

During the optimality phase the value of the objective function will be
nonincreasing. During the feasibility phase the number of constraint infeasibilities
will not increase until either a feasible point is found or the optimality of the
multipliers implies that no feasible point exists. Once optimal multipliers are
obtained the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Norm Gz is ZT
RgFR

�� ��, the Euclidean norm of the reduced gradient with respect to ZR. During
the optimality phase, this norm will be approximately zero after a unit step. (See
Sections 11.2 and 11.3.)

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily
fixed at its current value). If Value lies outside the upper or lower bounds by more
than the Feasibility Tolerance, State will be ++ or -- respectively.

A key is sometimes printed before State.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound then there would be no
change to the objective function. The values of the other free variables
might change, giving a genuine alternative solution. However, if there are
any degenerate variables (labelled D), the actual change might prove to be
zero, since one of them could encounter a bound immediately. In either case
the values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.
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I Infeasible. The variable is currently violating one of its bounds by more than
the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is
FR unless BLðjÞ � �bigbnd and BUðjÞ � bigbnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL and
non-positive if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ
respectively, and with the following change in the heading:

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL, of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This example minimizes the quadratic function f xð Þ ¼ cTxþ 1
2x

THx , where

c ¼ �0:02;�0:2;�0:2;�0:2;�0:2; 0:04; 0:04ð ÞT

H ¼

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 �2 �2
0 0 0 0 0 �2 �2

0BBBBBBB@

1CCCCCCCA
subject to the bounds

�0:01 � x1 � 0:01
�0:1 � x2 � 0:15
�0:01 � x3 � 0:03
�0:04 � x4 � 0:02
�0:1 � x5 � 0:05
�0:01 � x6
�0:01 � x7

and to the general constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ �0:13
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � �0:0049
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 � �0:0064
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � �0:0037
0:02x1 þ 0:03x2 þ 0:01x5 � �0:0012

�0:0992 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
�0:003 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 0:002

The initial point, which is infeasible, is

x0 ¼ �0:01;�0:03; 0:0;�0:01;�0:1; 0:02; 0:01ð ÞT:

E04NFF NAG Library Manual

E04NFF.12 Mark 26



The optimal solution (to five figures) is

x� ¼ �0:01;�0:069865; 0:018259;�0:24261;�0:62006; 0:013805; 0:0040665ð ÞT:

One bound constraint and four general constraints are active at the solution.

The document for E04NGF/E04NGA includes an example program to solve the same problem using
some of the optional parameters described in Section 12.

10.1 Program Text

the following program illustrates the use of E04NFF. An equivalent program illustrating the use of
E04NFA is available with the supplied Library and is also available from the NAG web site.

Program e04nffe

! E04NFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04nff, e04nfu, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj
Integer :: i, ifail, iter, lda, ldh, liwork, &

lwork, n, nclin, sda
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), ax(:), bl(:), bu(:), &
clamda(:), cvec(:), h(:,:), work(:), &
x(:)

Integer, Allocatable :: istate(:), iwork(:)
! .. Intrinsic Procedures ..

Intrinsic :: max
! .. Executable Statements ..

Write (nout,*) ’E04NFF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, nclin
liwork = 2*n + 3
lda = max(1,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

! This particular example problem is of type QP2 with H stored explicitly,
! so we allocate CVEC(N) and H(LDH,N), and define LDH and LWORK as below

ldh = n

If (nclin>0) Then
lwork = 2*n**2 + 8*n + 5*nclin

Else
lwork = n**2 + 8*n

End If

Allocate (istate(n+nclin),ax(max(1,nclin)),iwork(liwork),h(ldh,n),bl(n+ &
nclin),bu(n+nclin),cvec(n),x(n),a(lda,sda),clamda(n+nclin), &
work(lwork))

Read (nin,*) cvec(1:n)
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Read (nin,*)(a(i,1:sda),i=1,nclin)
Read (nin,*) bl(1:(n+nclin))
Read (nin,*) bu(1:(n+nclin))
Read (nin,*) x(1:n)
Read (nin,*)(h(i,1:n),i=1,n)

! Solve the problem

ifail = 0
Call e04nff(n,nclin,a,lda,bl,bu,cvec,h,ldh,e04nfu,istate,x,iter,obj,ax, &

clamda,iwork,liwork,work,lwork,ifail)

End Program e04nffe

10.2 Program Data

E04NFF Example Program Data
7 7 :Values of N and NCLIN

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of CVEC
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.00
0.02 0.04 0.01 0.02 0.02 0.00 0.00
0.02 0.03 0.00 0.00 0.01 0.00 0.00
0.70 0.75 0.80 0.75 0.80 0.97 0.00
0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of matrix A

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01
-0.13 -1.0D+25 -1.0D+25 -1.0D+25 -1.0D+25 -9.92D-02 -3.0D-03 :End of BL
0.01 0.15 0.03 0.02 0.05 1.0D+25 1.0D+25

-0.13 -4.9D-03 -6.4D-03 -3.7D-03 -1.2D-03 1.0D+25 2.0D-03 :End of BU
-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of X
2.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 2.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 2.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00 :End of matrix H

10.3 Program Results

E04NFF Example Program Results

*** E04NFF

Parameters
----------

Problem type........... QP2

Linear constraints..... 7 Feasibility tolerance.. 1.05E-08
Variables.............. 7 Optimality tolerance... 1.05E-08
Hessian rows........... 7 Rank tolerance......... 1.11E-14

Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16

Check frequency........ 50 Expand frequency....... 5
Minimum sum of infeas.. NO Crash tolerance........ 1.00E-02

Max degrees of freedom. 7 Print level............ 10
Feasibility phase itns. 70 Monitoring file........ -1
Optimality phase itns. 70

Workspace provided is IWORK( 17), WORK( 189).
To solve problem we need IWORK( 17), WORK( 189).

Itn Step Ninf Sinf/Objective Norm Gz
0 0.0E+00 3 1.038000E-01 0.0E+00

E04NFF NAG Library Manual

E04NFF.14 Mark 26



1 4.1E-02 1 3.000000E-02 0.0E+00
2 4.2E-02 0 0.000000E+00 0.0E+00

Itn 2 -- Feasible point found.
2 0.0E+00 0 4.580000E-02 0.0E+00
3 1.3E-01 0 4.161596E-02 0.0E+00
4 1.0E+00 0 3.936227E-02 4.2E-17
5 4.1E-01 0 3.758935E-02 1.2E-02
6 1.0E+00 0 3.755377E-02 2.4E-17
7 1.0E+00 0 3.703165E-02 4.2E-17

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 LL -1.000000E-02 -1.000000E-02 1.000000E-02 0.4700 .
V 2 FR -6.986465E-02 -0.100000 0.150000 . 3.0135E-02
V 3 FR 1.825915E-02 -1.000000E-02 3.000000E-02 . 1.1741E-02
V 4 FR -2.426081E-02 -4.000000E-02 2.000000E-02 . 1.5739E-02
V 5 FR -6.200564E-02 -0.100000 5.000000E-02 . 3.7994E-02
V 6 FR 1.380544E-02 -1.000000E-02 None . 2.3805E-02
V 7 FR 4.066496E-03 -1.000000E-02 None . 1.4066E-02

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 EQ -0.130000 -0.130000 -0.130000 -1.908 .
L 2 FR -5.879898E-03 None -4.900000E-03 . 9.7990E-04
L 3 UL -6.400000E-03 None -6.400000E-03 -0.3144 8.6736E-19
L 4 FR -4.537323E-03 None -3.700000E-03 . 8.3732E-04
L 5 FR -2.915996E-03 None -1.200000E-03 . 1.7160E-03
L 6 LL -9.920000E-02 -9.920000E-02 None 1.955 1.3878E-17
L 7 LL -3.000000E-03 -3.000000E-03 2.000000E-03 1.972 8.6736E-19

Exit E04NFF - Optimal QP solution.

Final QP objective value = 0.3703165E-01

Exit from QP problem after 7 iterations.

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to E04NGF/E04NGA and/or
E04NHF/E04NHA. Section 13 describes the quantities which can be requested to monitor the course of
the computation.

11 Algorithmic Details

This section contains a detailed description of the method used by E04NFF/E04NFA.

11.1 Overview

E04NFF/E04NFA is based on an inertia-controlling method that maintains a Cholesky factorization of
the reduced Hessian (see below). The method is based on that of Gill and Murray (1978), and is
described in detail by Gill et al. (1991). Here we briefly summarise the main features of the method.
Where possible, explicit reference is made to the names of variables that are arguments of E04NFF/
E04NFA or appear in the printed output. E04NFF/E04NFA has two phases:

(i) finding an initial feasible point by minimizing the sum of infeasibilities (the feasibility phase), and

(ii) minimizing the quadratic objective function within the feasible region (the optimality phase).

The computations in both phases are performed by the same subroutines. The two-phase nature of the
algorithm is reflected by changing the function being minimized from the sum of infeasibilities to the
quadratic objective function. The feasibility phase does not perform the standard simplex method (i.e.,
it does not necessarily find a vertex), except in the LP case when mL � n. Once any iterate is feasible,
all subsequent iterates remain feasible.
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E04NFF/E04NFA has been designed to be efficient when used to solve a sequence of related problems
– for example, within a sequential quadratic programming method for nonlinearly constrained
optimization (e.g., E04UFF/E04UFA or E04WDF). In particular, you may specify an initial working set
(the indices of the constraints believed to be satisfied exactly at the solution); see the discussion of the
optional parameter Warm Start.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall
always consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate �x
is defined by

�x ¼ xþ �p ð1Þ

where the step length � is a non-negative scalar and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the optional parameter
Feasibility Tolerance). The working set is the current prediction of the constraints that hold with
equality at the solution of a linearly constrained QP problem. The search direction is constructed so that
the constraints in the working set remain unaltered for any value of the step length. For a bound
constraint in the working set, this property is achieved by setting the corresponding element of the
search direction to zero. Thus, the associated variable is fixed, and specification of the working set
induces a partition of x into fixed and free variables. During a given iteration, the fixed variables are
effectively removed from the problem; since the relevant elements of the search direction are zero, the
columns of A corresponding to fixed variables may be ignored.

Let mW denote the number of general constraints in the working set and let nFX denote the number of
variables fixed at one of their bounds (mW and nFX are the quantities Lin and Bnd in the monitoring file
output from E04NFF/E04NFA; see Section 13). Similarly, let nFR (nFR ¼ n� nFX) denote the number
of free variables. At every iteration, the variables are reordered so that the last nFX variables are fixed,
with all other relevant vectors and matrices ordered accordingly.

11.2 Definition of Search Direction

Let AFR denote the mW by nFR sub-matrix of general constraints in the working set corresponding to
the free variables and let pFR denote the search direction with respect to the free variables only. The
general constraints in the working set will be unaltered by any move along p if

AFRpFR ¼ 0: ð2Þ

In order to compute pFR, the TQ factorization of AFR is used:

AFRQFR ¼ 0 Tð Þ; ð3Þ

where T is a nonsingular mW by mW upper triangular matrix (i.e., tij ¼ 0 if i > j), and the nonsingular
nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. (1984)). If the
columns of QFR are partitioned so that

QFR ¼ Z Yð Þ;

where Y is nFR by mW, then the nZ nZ ¼ nFR �mWð Þ columns of Z form a basis for the null space of
AFR. Let nR be an integer such that 0 � nR � nZ , and let ZR denote a matrix whose nR columns are a
subset of the columns of Z. (The integer nR is the quantity Zr in the monitoring output from E04NFF/
E04NFA. In many cases, ZR will include all the columns of Z.) The direction pFR will satisfy (2) if

pFR ¼ ZRpR; ð4Þ

where pR is any nR-vector.

Let Q denote the n by n matrix

Q ¼ QFR
IFX

� �
;

where IFX is the identity matrix of order nFX. Let HQ and gQ denote the n by n transformed Hessian
and transformed gradient
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HQ ¼ QTHQ and gQ ¼ QT cþHxð Þ

and let the matrix of first nR rows and columns of HQ be denoted by HR and the vector of the first nR
elements of gQ be denoted by gR. The quantities HR and gR are known as the reduced Hessian and
reduced gradient of f xð Þ, respectively. Roughly speaking, gR and HR describe the first and second
derivatives of an unconstrained problem for the calculation of pR.

At each iteration, a triangular factorization of HR is available. If HR is positive definite, HR ¼ RTR,
where R is the upper triangular Cholesky factor of HR. If HR is not positive definite, HR ¼ RTDR,
where D ¼ diag 1; 1; . . . ; 1; �ð Þ, with � � 0.

The computation is arranged so that the reduced-gradient vector is a multiple of eR, a vector of all zeros
except in the last (i.e., nRth) position. This allows the vector pR in (4) to be computed from a single
back-substitution

RpR ¼ �eR ð5Þ

where � is a scalar that depends on whether or not the reduced Hessian is positive definite at x. In the
positive definite case, xþ p is the minimizer of the objective function subject to the constraints (bounds
and general) in the working set treated as equalities. If HR is not positive definite pR satisfies the
conditions

pTRHRpR < 0 and gTRpR � 0;

which allow the objective function to be reduced by any positive step of the form xþ �p.

11.3 Main Iteration

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined by Z. During
the feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
at non-vertices in the presence of constraint dependencies). During the optimality phase a zero reduced
gradient implies that x minimizes the quadratic objective when the constraints in the working set are
treated as equalities. At a constrained stationary point, Lagrange multipliers �C and �B for the general
and bound constraints are defined from the equations

AT
FR�C ¼ gFR and �B ¼ gFX �AT

FX�C: ð6Þ

Given a positive constant � of the order of the machine precision, a Lagrange multiplier �j
corresponding to an inequality constraint in the working set is said to be optimal if �j � � when the
associated constraint is at its upper bound, or if �j � �� when the associated constraint is at its lower
bound. If a multiplier is nonoptimal, the objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint (with index Jdel; see
Section 13) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, there
is no feasible point, and you can force E04NFF/E04NFA to continue until the minimum value of the
sum of infeasibilities has been found; see the discussion of the optional parameter Minimum Sum of
Infeasibilities. At such a point, the Lagrange multiplier �j corresponding to an inequality constraint in
the working set will be such that � 1þ �ð Þ � �j � � when the associated constraint is at its upper
bound, and �� � �j � 1þ �ð Þ when the associated constraint is at its lower bound. Lagrange
multipliers for equality constraints will satisfy �j

		 		 � 1þ �.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the nonzero
elements of the search direction p are given by ZRpR (see (4) and (5)). The choice of step length is
influenced by the need to maintain feasibility with respect to the satisfied constraints. If HR is positive
definite and xþ p is feasible, � will be taken as unity. In this case, the reduced gradient at �x will be
zero, and Lagrange multipliers are computed. Otherwise, � is set to �M, the step to the ‘nearest’
constraint (with index Jadd; see Section 13), which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to AFR: if the status of a general constraint
changes, a row of AFR is altered; if a bound constraint enters or leaves the working set, a column of
AFR changes. Explicit representations are recurred of the matrices T , QFR and R; and of vectors QTg,
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and QTc. The triangular factor R associated with the reduced Hessian is only updated during the
optimality phase.

One of the most important features of E04NFF/E04NFA is its control of the conditioning of the
working set, whose nearness to linear dependence is estimated by the ratio of the largest to smallest
diagonal elements of the TQ factor T (the printed value Cond T; see Section 13). In constructing the
initial working set, constraints are excluded that would result in a large value of Cond T.

E04NFF/E04NFA includes a rigorous procedure that prevents the possibility of cycling at a point where
the active constraints are nearly linearly dependent (see Gill et al. (1989)). The main feature of the anti-
cycling procedure is that the feasibility tolerance is increased slightly at the start of every iteration. This
not only allows a positive step to be taken at every iteration, but also provides, whenever possible, a
choice of constraints to be added to the working set. Let �M denote the maximum step at which
xþ �Mp does not violate any constraint by more than its feasibility tolerance. All constraints at a
distance � (� � �M) along p from the current point are then viewed as acceptable candidates for
inclusion in the working set. The constraint whose normal makes the largest angle with the search
direction is added to the working set.

11.4 Choosing the Initial Working Set

At the start of the optimality phase, a positive definite HR can be defined if enough constraints are
included in the initial working set. (The matrix with no rows and columns is positive definite by
definition, corresponding to the case when AFR contains nFR constraints.) The idea is to include as
many general constraints as necessary to ensure that the reduced Hessian is positive definite.

Let HZ denote the matrix of the first nZ rows and columns of the matrix HQ ¼ QTHQ at the beginning
of the optimality phase. A partial Cholesky factorization is used to find an upper triangular matrix R
that is the factor of the largest positive definite leading sub-matrix of HZ . The use of interchanges
during the factorization of HZ tends to maximize the dimension of R. (The condition of R may be
controlled using the optional parameter Rank Tolerance.) Let ZR denote the columns of Z
corresponding to R, and let Z be partitioned as Z ¼ ZR ZA

� �
. A working set for which ZR defines

the null space can be obtained by including the rows of ZT
A as ‘artificial constraints’. Minimization of

the objective function then proceeds within the subspace defined by ZR, as described in Section 11.2.

The artificially augmented working set is given by

�AFR ¼ ZT
A

AFR

� �
; ð7Þ

so that pFR will satisfy AFRpFR ¼ 0 and ZT
ApFR ¼ 0. By definition of the TQ factorization, �AFR

automatically satisfies the following:

�AFRQFR ¼ ZT
A

AFR

� �
QFR ¼ ZT

A
AFR

� �
ZR ZA Y
� �

¼ 0 �T
� �

;

where

�T ¼ I 0
0 T

� �
;

and hence the TQ factorization of (7) is available trivially from T and QFR without additional expense.

The matrix ZA is not kept fixed, since its role is purely to define an appropriate null space; the TQ
factorization can therefore be updated in the normal fashion as the iterations proceed. No work is
required to ‘delete’ the artificial constraints associated with ZA when ZT

RgFR ¼ 0, since this simply
involves repartitioning QFR. The ‘artificial’ multiplier vector associated with the rows of ZT

A is equal to
ZT
AgFR, and the multipliers corresponding to the rows of the ‘true’ working set are the multipliers that

would be obtained if the artificial constraints were not present. If an artificial constraint is ‘deleted’
from the working set, an A appears alongside the entry in the Jdel column of the monitoring file output
(see Section 13).

The number of columns in ZA and ZR, the Euclidean norm of ZT
RgFR, and the condition estimator of R

appear in the monitoring file output as Art, Zr, Norm Gz and Cond Rz respectively (see Section 13).
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Under some circumstances, a different type of artificial constraint isused when solving a linear program.
Although the algorithm of E04NFF/E04NFA does not usually perform simplex steps (in the traditional
sense), there is one exception: a linear program with fewer general constraints than variables (i.e.,
mL � n). Use of the simplex method in this situation leads to savings in storage. At the starting point,
the ‘natural’ working set (the set of constraints exactly or nearly satisfied at the starting point) is
augmented with a suitable number of ‘temporary’ bounds, each of which has the effect of temporarily
fixing a variable at its current value. In subsequent iterations, a temporary bound is treated as a standard
constraint until it is deleted from the working set, in which case it is never added again. If a temporary
bound is ‘deleted’ from the working set, an F (for ‘Fixed’) appears alongside the entry in the Jdel
column of the monitoring file output (see Section 13).

12 Optional Parameters

Several optional parameters in E04NFF/E04NFA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal arguments of E04NFF/E04NFA these optional
parameters have associated default values that are appropriate for most problems. Therefore, you need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Check Frequency

Cold Start

Crash Tolerance

Defaults

Expand Frequency

Feasibility Phase Iteration Limit

Feasibility Tolerance

Hessian Rows

Infinite Bound Size

Infinite Step Size

Iteration Limit

Iters

Itns

List

Maximum Degrees of Freedom

Minimum Sum of Infeasibilities

Monitoring File

Nolist

Optimality Phase Iteration Limit

Optimality Tolerance

Print Level

Problem Type

Rank Tolerance

Warm Start

Optional parameters may be specified by calling one, or both, of the routines E04NGF/E04NGA and
E04NHF/E04NHA before a call to E04NFF/E04NFA.

E04NGF/E04NGA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,
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Begin
Print Level = 5

End

The call

CALL E04NGF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04NGF/
E04NGA should be consulted for a full description of this method of supplying optional parameters.

E04NHF/E04NHA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04NHF (’Print Level = 5’)

E04NHF/E04NHA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by E04NFF/E04NFA (unless they define invalid values) and so remain in
effect for subsequent calls unless altered by you.

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Check Frequency r Default ¼ 50

Every ith iteration, a numerical test is made to see if the current solution x satisfies the constraints in
the working set. If the largest residual of the constraints in the working set is judged to be too large, the
current working set is refactorized and the variables are recomputed to satisfy the constraints more
accurately. If i � 0, the default value is used.

Cold Start Default
Warm Start

This option specifies how the initial working set is chosen. With a Cold Start, E04NFF/E04NFA
chooses the initial working set based on the values of the variables and constraints at the initial point.
Broadly speaking, the initial working set will include equality constraints and bounds or inequality
constraints that violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance).

With a Warm Start, you must provide a valid definition of every element of the array ISTATE.
E04NFF/E04NFA will override your specification of ISTATE if necessary, so that a poor choice of the
working set will not cause a fatal error. For instance, any elements of ISTATE which are set to �2,
�1 or 4 will be reset to zero, as will any elements which are set to 3 when the corresponding elements
of BL and BU are not equal. A warm start will be advantageous if a good estimate of the initial
working set is available – for example, when E04NFF/E04NFA is called repeatedly to solve related
problems.

Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
E04NFF/E04NFA selects an initial working set. If 0 � r � 1, the initial working set will include (if
possible) bounds or general inequality constraints that lie within r of their bounds. In particular, a
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constraint of the form aTj x � l will be included in the initial working set if aTj x� l
			 			 � r 1þ lj jð Þ. If

r < 0 or r > 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Expand Frequency i Default ¼ 5

This option is part of an anti-cycling procedure designed to guarantee progress even on highly
degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the constraints by a
small amount. Suppose that the value of the optional parameter Feasibility Tolerance is �. Over a
period of i iterations, the feasibility tolerance actually used by E04NFF/E04NFA (i.e., the working
feasibility tolerance) increases from 0:5� to � (in steps of 0:5�=i).

At certain stages the following ‘resetting procedure’ is used to remove constraint infeasibilities. First,
all variables whose upper or lower bounds are in the working set are moved exactly onto their bounds.
A count is kept of the number of nontrivial adjustments made. If the count is positive, iterative
refinement is used to give variables that satisfy the working set to (essentially) machine precision.
Finally, the working feasibility tolerance is reinitialized to 0:5�.

If a problem requires more than i iterations, the resetting procedure is invoked and a new cycle of i
iterations is started with i incremented by 10. (The decision to resume the feasibility phase or optimality
phase is based on comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when E04NFF/E04NFA reaches an apparently optimal,
infeasible or unbounded solution, unless this situation has already occurred twice. If any nontrivial
adjustments are made, iterations are continued.

If i � 0, the default value is used. If i � 9999999, no anti-cycling procedure is invoked.

Feasibility Phase Iteration Limit i1 Default ¼ max 50; 5 nþmLð Þð Þ
Optimality Phase Iteration Limit i2 Default ¼ max 50; 5 nþmLð Þð Þ
For problems of type FP, the scalar i1 specifies the maximum number of iterations allowed before
temination. Setting i1 ¼ 0 and Print Level > 0 means that the workspace needed will be computed and
printed, but no iterations will be performed.

For problems of type LP, the maximum number of iterations allowed before temination is taken as
max i1; i2ð Þ. Setting i1 ¼ 0, i2 ¼ 0 and Print Level > 0 means that the workspace needed will be
computed and printed, but no iterations will be performed.

For problems of type QP, the scalars i1 and i2 specify the maximum number of iterations allowed in the
feasibility and optimality phases. Optimality Phase Iteration Limit is equivalent to Iteration Limit.
Setting i1 ¼ 0 and Print Level > 0 means that the workspace needed will be computed and printed, but
no iterations will be performed.

If i1 < 0 or i2 < 0, the default value is used.

Feasibility Tolerance r Default ¼
ffiffi
�
p

If r � �, r defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point.
For example, if the variables and the coefficients in the general constraints are of order unity, and the
latter are correct to about 6 decimal digits, it would be appropriate to specify r as 10�6. If 0 � r < �,
the default value is used.

E04NFF/E04NFA attempts to find a feasible solution before optimizing the objective function. If the
sum of infeasibilities cannot be reduced to zero, the optional parameter Minimum Sum of
Infeasibilities can be used to find the minimum value of the sum. Let Sinf be the corresponding
sum of infeasibilities. If Sinf is quite small, it may be appropriate to raise r by a factor of 10 or 100.
Otherwise, some error in the data should be suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the tolerance r.
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Hessian Rows i Default ¼ n
Note that this option does not apply to problems of type FP or LP.

This specifies m, the number of rows of the Hessian matrix H. The default value of m is n, the number
of variables of the problem.

If the problem is of type QP then m will usually be n, the number of variables. However, a value of m
less than n is appropriate for QP3 or QP4 if H is an upper trapezoidal matrix with m rows. Similarly,
m may be used to define the dimension of a leading block of nonzeros in the Hessian matrices of QP1
or QP2. In this case the last n�m rows and columns of H are assumed to be zero. In the QP case m
should not be greater than n; if it is, the last m� n rows of H are ignored.

If i < 0 or i > n, the default value is used.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r < 0, the default value is used.

Infinite Step Size r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is not positive
definite.) If the change in x during an iteration would exceed the value of r then the objective function
is considered to be unbounded below in the feasible region. If r � 0, the default value is used.

Iteration Limit i Default ¼ max 50; 5 nþmLð Þð Þ
Iters
Itns

See optional parameter Feasibility Phase Iteration Limit.

List Default for E04NFF ¼ List
Nolist Default for E04NFA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist
may be used to suppress the printing and optional parameter List may be used to restore printing.

Maximum Degrees of Freedom i Default ¼ n
Note that this option does not apply to problems of type FP or LP.

This places a limit on the storage allocated for the triangular factor R of the reduced Hessian HR.
Ideally, i should be set slightly larger than the value of nR expected at the solution. It need not be larger
than mN þ 1, where mN is the number of variables that appear nonlinearly in the quadratic objective
function. For many problems it can be much smaller than mN.

For quadratic problems, a minimizer may lie on any number of constraints, so that nR may vary
between 1 and n. The default value of i is therefore the number of variables n. If Hessian Rows m is
specified, the default value of i is the same number, m.

Minimum Sum of Infeasibilities a Default ¼ NO

If no feasible point exists for the constraints then this option is used to control whether or not E04NFF/
E04NFA wi l l c a l cu l a t e a po in t t h a t m in im ize s t he cons t r a i n t v i o l a t i on s . I f
Minimum Sum of Infeasibilities ¼ NO, E04NFF/E04NFA will terminate as soon as it is evident that
no feasible point exists for the constraints. The final point will generally not be the point at which the
sum of infeasibilities is minimized. If Minimum Sum of Infeasibilities ¼ YES, E04NFF/E04NFA will
continue until the sum of infeasibilities is minimized.
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Monitoring File i Default ¼ �1
If i > 6 and Print Level � 5, monitoring information produced by E04NFF/E04NFA at every iteration
is sent to a file with logical unit number i.

If i < 0 and/or Print Level < 5, no monitoring information is produced.

Optimality Tolerance r Default ¼ �0:5

If r � �, r defines the tolerance used to determine if the bounds and general constraints have the right
‘sign’ for the solution to be judged to be optimal.

If 0 � r < �, the default value is used.

Print Level i Default for E04NFF ¼ 10
Default for E04NFA ¼ 0

The value of i controls the amount of printout produced by E04NFF/E04NFA, as indicated below. A
detailed description of the printed output is given in Section 9.2 (summary output at each iteration and
the final solution) and Section 13 (monitoring information at each iteration). If i < 0, the default value
is used.

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.

1 The final solution only.

5 One line of summary output ( < 80 characters; see Section 9.2) for each iteration (no printout
of the final solution).

� 10 The final solution and one line of summary output for each iteration.

The following printout is sent to the logical unit number by the optional parameter Monitoring File:

i Output

< 5 No output.

� 5 One long line of output ( > 80 characters; see Section 13) for each iteration (no printout of the
final solution).

� 20 At each iteration: the Lagrange multipliers, the variables x, the constraint values Ax and the
constraint status (see ISTATE).

� 30 At each iteration: the diagonal elements of the upper triangular matrix T associated with the
TQ factorization (3) (see Section 11.2) of the working set and the diagonal elements of the
upper triangular matrix R.

If Print Level � 5 and the unit number defined by the optional parameter Monitoring File is the same
as that defined by X04ABF,then the summary output is suppressed.

Problem Type a Default ¼ QP2

This option specifies the type of objective function to be minimized during the optimality phase. The
following are the five optional keywords and the dimensions of the arrays that must be specified in
order to define the objective function:

LP H not referenced, CVECðNÞ required;
QP1 HðLDH; �Þ symmetric, CVEC not referenced;

QP2 HðLDH; �Þ symmetric, CVECðNÞ required;
QP3 HðLDH; �Þ upper trapezoidal, CVEC not referenced;
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QP4 HðLDH; �Þ upper trapezoidal, CVECðNÞ required.
For problems of type FP the objective function is omitted and neither H nor CVEC are referenced.

The following keywords are also acceptable. The minimum abbreviation of each keyword is underlined.

a Option
Quadratic QP2
Linear LP
Feasible FP

In addition, the keyword QP is equivalent to the default option QP2.

If H ¼ 0 (i.e., the objective function is purely linear), the efficiency of E04NFF/E04NFA may be
increased by specifying a as LP.

Rank Tolerance r Default ¼ 100�

Note that this option does not apply to problems of type FP or LP.

This optional parameter enables you to control the condition number of the triangular factor R (see
Section 11). If �i denotes the function �i ¼ max R11j j; R22j j; . . . ; Riij jf g, the dimension of R is defined
to be smallest index i such that Riþ1;iþ1

		 		 � ffiffiffi
r
p

�iþ1j j. If r � 0, the default value is used.

13 Description of Monitoring Information

This section describes the long line of output ( > 80 characters) which forms part of the monitoring
information produced by E04NFF/E04NFA. (See also the description of the optional parameters
Monitoring File and Print Level.) You can control the level of printed output.

To aid interpretation of the printed results the following convention is used for numbering the
constraints: indices 1 through n refer to the bounds on the variables and indices nþ 1 through nþmL

refer to the general constraints. When the status of a constraint changes, the index of the constraint is
printed, along with the designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed
variable) or A (artificial constraint).

When Print Level � 5 and Monitoring File � 0, the following line of output is produced at every
iteration on the unit number specified by the Monitoring File. In all cases the values of the quantities
printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no
constraint was added.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration, Step will be the step to the nearest constraint. When
the problem is of type LP, the step can be greater than one during the optimality
phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function of (1). The output line for the
final iteration of the feasibility phase (i.e., the first iteration for which Ninf is
zero) will give the value of the true objective at the first feasible point.

During the optimality phase the value of the objective function will be
nonincreasing. During the feasibility phase the number of constraint infeasibilities
will not increase until either a feasible point is found or the optimality of the
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multipliers implies that no feasible point exists. Once optimal multipliers are
obtained the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Art is the number of artificial constraints in the working set, i.e., the number of
columns of ZA (see Section 11.4).

Zr is the number of columns of Z1 (see Section 11.2). Zr is the dimension of the
subspace in which the objective function is currently being minimized. The value
of Zr is the number of variables minus the number of constraints in the working
set; i.e., Zr ¼ n� Bndþ Linþ Artð Þ.
The value of nZ , the number of columns of Z (see Section 11.2) can be calculated
as nZ ¼ n� Bndþ Linð Þ. A zero value of nZ implies that x lies at a vertex of the
feasible region.

Norm Gz is ZT
RgFR

�� ��, the Euclidean norm of the reduced gradient with respect to ZR. During
the optimality phase, this norm will be approximately zero after a unit step.

NOpt is the number of nonoptimal Lagrange multipliers at the current point. NOpt is not
printed if the current x is infeasible or no multipliers have been calculated. At a
minimizer, NOpt will be zero.

Min Lm is the value of the Lagrange multiplier associated with the deleted constraint. If
Min Lm is negative, a lower bound constraint has been deleted, if Min Lm is
positive, an upper bound constraint has been deleted. If no multipliers are
calculated during a given iteration Min Lm will be zero.

Cond T is a lower bound on the condition number of the working set.

Cond Rz is a lower bound on the condition number of the triangular factor R (the Cholesky
factor of the current reduced Hessian; see Section 11.2). If the problem is specified
to be of type LP then Cond Rz is not printed.

Rzz is the last diagonal element � of the matrix D associated with the RTDR
factorization of the reduced Hessian HR (see Section 11.2). Rzz is only printed if
HR is not positive definite (in which case � 6¼ 1). If the printed value of Rzz is
small in absolute value then HR is approximately singular. A negative value of Rzz
implies that the objective function has negative curvature on the current working
set.
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NAG Library Routine Document

E04NGF/E04NGA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply optional parameters to E04NFF/E04NFA from an external file. More precisely, E04NGF must
be used to supply optional parameters to E04NFF and E04NGA must be used to supply optional
parameters to E04NFA.

E04NGA is a version of E04NGF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04NGA.

2 Specification

2.1 Specification for E04NGF

SUBROUTINE E04NGF (IOPTNS, INFORM)

INTEGER IOPTNS, INFORM

2.2 Specification for E04NGA

SUBROUTINE E04NGA (IOPTNS, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IOPTNS, IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)

3 Description

E04NGF/E04NGA may be used to supply values for optional parameters to E04NFF/E04NFA.
E04NGF/E04NGA reads an external file and each line of the file defines a single optional parameter. It
is only necessary to supply values for those arguments whose values are to be different from their
default values.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print level = 5

End
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For E04NGF each line of the file is normally printed as it is read, on the current advisory message unit
(see X04ABF), but printing may be suppressed using the keyword Nolist. To suppress printing of
Begin, Nolist must be the first option supplied as in the file:

Begin
Nolist
Print level = 5

End

Printing will automatically be turned on again after a call to E04NFF or E04NGF and may be turned on
again at any time using the keyword List.

For E04NGA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04NFF/E04NFA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04NFF/E04NFA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NFF/E04NFA.

4 References

None.

5 Arguments

1: IOPTNS – INTEGER Input

On entry: the unit number of the options file to be read.

Constraint: 0 � IOPTNS � 99.

2: INFORM – INTEGER Output

Note: for E04NGA, INFORM does not occur in this position in the argument list. See the
additional arguments described below.

On exit: contains zero if the options file has been successfully read and a value > 0 otherwise
(see Section 6).

Note: the following are additional arguments for specific use with E04NGA. Users of E04NGF
therefore need not read the remainder of this description.

3: LWSAVð120Þ – LOGICAL array Communication Array
4: IWSAVð610Þ – INTEGER array Communication Array
5: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04NGA, E04NFA, E04NHA or E04WBF.

6: INFORM – INTEGER Output

Note: see the argument description for INFORM above.

6 Error Indicators and Warnings

INFORM ¼ 1

IOPTNS is not in the range 0; 99½ �.
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INFORM ¼ 2

Begin was found, but end-of-file was found before End was found.

INFORM ¼ 3

end-of-file was found before Begin was found.

INFORM ¼ 4

Not used.

INFORM ¼ 5

One or more lines of the options file is invalid. Check that all keywords are neither ambiguous
nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NGF/E04NGA is not threaded in any implementation.

9 Further Comments

E04NHF/E04NHA may also be used to supply optional parameters to E04NFF/E04NFA.

10 Example

This example solves the same problem as the example for E04NFF/E04NFA, but in addition illustrates
the use of E04NGF/E04NGA and E04NHF/E04NHA to set optional parameters for E04NFF/E04NFA.

In this example the options file read by E04NGF/E04NGA is appended to the data file for the program
(see Section 10.2). It would usually be more convenient in practice to keep the data file and the options
file separate.

10.1 Program Text

the following program illustrates the use of E04NGF. An equivalent program illustrating the use of
E04NGA is available with the supplied Library and is also available from the NAG web site.

! E04NGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04ngfe_mod

! E04NGF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: qphess

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, nin = 5, ninopt = 7, &

nout = 6
Contains

Subroutine qphess(n,jthcol,h,ldh,x,hx)
! In this version of QPHESS, the lower triangle of matrix H is
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! stored in packed form (by columns) in array H.
! More precisely, the lower triangle of matrix H must be stored with
! matrix element H(i,j) in array element H(i+(2*N-j)*(j-1)/2,1),
! for i .ge. j.
! Note that storing the lower triangle of matrix H in packed form (by
! columns) is equivalent to storing the upper triangle of matrix H in
! packed form (by rows).
! Note also that LDH is used to define the size of array H, and
! must therefore be at least N*(N+1)/2.

! .. Scalar Arguments ..
Integer, Intent (In) :: jthcol, ldh, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: h(ldh,*), x(n)
Real (Kind=nag_wp), Intent (Out) :: hx(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: s
Integer :: i, inc, j, l, lp1

! .. Executable Statements ..
If (jthcol/=0) Then

! Special case -- extract one column of H.

l = jthcol
inc = n

Do i = 1, jthcol
hx(i) = h(l,1)
inc = inc - 1
l = l + inc

End Do

l = l - inc + 1

If (jthcol<n) Then
lp1 = l

Do i = jthcol + 1, n
hx(i) = h(lp1,1)
lp1 = lp1 + 1

End Do

End If

Else

! Normal case.

l = 0

Do i = 1, n
s = 0.0E0_nag_wp

Do j = i, n
l = l + 1
s = s + h(l,1)*x(j)

End Do

hx(i) = s
End Do

l = 0

Do j = 1, n - 1
l = l + 1

Do i = j + 1, n
l = l + 1
hx(i) = hx(i) + h(l,1)*x(j)

End Do
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End Do

End If

Return

End Subroutine qphess
End Module e04ngfe_mod
Program e04ngfe

! E04NGF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04nff, e04ngf, e04nhf, nag_wp, x04abf, x04acf, &

x04baf
Use e04ngfe_mod, Only: iset, nin, ninopt, nout, qphess

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Character (*), Parameter :: fname = ’e04ngfe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj
Integer :: i, ifail, inform, iter, j, lda, ldh, &

liwork, lwork, mode, n, nclin, &
outchn, sda

Character (80) :: rec
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ax(:), bl(:), bu(:), &

clamda(:), cvec(:), h(:,:), work(:), &
x(:)

Integer, Allocatable :: istate(:), iwork(:)
! .. Intrinsic Procedures ..

Intrinsic :: max
! .. Executable Statements ..

Write (rec,99998) ’E04NGF Example Program Results’
Call x04baf(nout,rec)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, nclin
liwork = 2*n + 3
lda = max(1,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

! This particular example problem is of type QP2 with a nondefault QPHESS,
! so we allocate CVEC(N) and H(LDH,1), and define LDH and LWORK as below

ldh = n*(n+1)/2

If (nclin>0) Then
lwork = 2*n**2 + 8*n + 5*nclin

Else
lwork = n**2 + 8*n

End If

Allocate (istate(n+nclin),ax(max(1,nclin)),iwork(liwork),h(ldh,1),bl(n+ &
nclin),bu(n+nclin),cvec(n),x(n),a(lda,sda),clamda(n+nclin), &
work(lwork))

Read (nin,*) cvec(1:n)
Read (nin,*)(a(i,1:n),i=1,nclin)
Read (nin,*) bl(1:(n+nclin))
Read (nin,*) bu(1:(n+nclin))
Read (nin,*) x(1:n)
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Read (nin,*) uplo

If (uplo==’U’) Then

! Read the upper triangle of H

Read (nin,*)((h(j+(2*n-i)*(i-1)/2,1),j=i,n),i=1,n)
Else If (uplo==’L’) Then

! Read the lower triangle of H

Read (nin,*)((h(i+(2*n-j)*(j-1)/2,1),j=1,i),i=1,n)
End If

ldh = n*(n+1)/2

! Set the unit number for advisory messages to OUTCHN

outchn = nout
Call x04abf(iset,outchn)

! Set four options using E04NHF

Call e04nhf(’ Print Level = 1 ’)

Call e04nhf(’ Check Frequency = 10 ’)

Call e04nhf(’ Crash Tolerance = 0.05 ’)

Call e04nhf(’ Infinite Bound Size = 1.0D+25 ’)

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Read the options file for the remaining options

Call e04ngf(ninopt,inform)

If (inform/=0) Then
Write (rec,99999) ’E04NGF terminated with INFORM =’, inform
Call x04baf(nout,rec)
Go To 100

End If

! Solve the problem

ifail = 0
Call e04nff(n,nclin,a,lda,bl,bu,cvec,h,ldh,qphess,istate,x,iter,obj,ax, &

clamda,iwork,liwork,work,lwork,ifail)

100 Continue

99999 Format (1X,A,I5)
99998 Format (1X,A)

End Program e04ngfe
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10.2 Program Data

Begin Example options file for E04NGF
Feasibility Phase Iteration Limit = 5 * (Default = 70)
Optimality Phase Iteration Limit = 10 * (Default = 70)

End

E04NGF Example Program Data
7 7 :Values of N and NCLIN

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of CVEC
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.00
0.02 0.04 0.01 0.02 0.02 0.00 0.00
0.02 0.03 0.00 0.00 0.01 0.00 0.00
0.70 0.75 0.80 0.75 0.80 0.97 0.00
0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of matrix A

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01
-0.13 -1.0D+25 -1.0D+25 -1.0D+25 -1.0D+25 -9.92D-02 -3.0D-03 :End of BL
0.01 0.15 0.03 0.02 0.05 1.0D+25 1.0D+25

-0.13 -4.9D-03 -6.4D-03 -3.7D-03 -1.2D-03 1.0D+25 2.0D-03 :End of BU
-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of X
’L’ :End of UPLO
2.00
0.00 2.00
0.00 0.00 2.00
0.00 0.00 2.00 2.00
0.00 0.00 0.00 0.00 2.00
0.00 0.00 0.00 0.00 0.00 -2.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00 :End of matrix H

10.3 Program Results

E04NGF Example Program Results

Calls to E04NHF
---------------

Print Level = 1
Check Frequency = 10
Crash Tolerance = 0.05
Infinite Bound Size = 1.0D+25

OPTIONS file
------------

Begin Example options file for E04NGF
Feasibility Phase Iteration Limit = 5 * (Default = 70)
Optimality Phase Iteration Limit = 10 * (Default = 70)

End

*** E04NFF

Parameters
----------

Problem type........... QP2

Linear constraints..... 7 Feasibility tolerance.. 1.05E-08
Variables.............. 7 Optimality tolerance... 1.05E-08
Hessian rows........... 7 Rank tolerance......... 1.11E-14

Infinite bound size.... 1.00E+25 COLD start.............
Infinite step size..... 1.00E+25 EPS (machine precision) 1.11E-16

Check frequency........ 10 Expand frequency....... 5
Minimum sum of infeas.. NO Crash tolerance........ 5.00E-02

Max degrees of freedom. 7 Print level............ 1
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Feasibility phase itns. 5 Monitoring file........ -1
Optimality phase itns. 10

Workspace provided is IWORK( 17), WORK( 189).
To solve problem we need IWORK( 17), WORK( 189).

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 LL -1.000000E-02 -1.000000E-02 1.000000E-02 0.4700 .
V 2 FR -6.986465E-02 -0.100000 0.150000 . 3.0135E-02
V 3 FR 1.825915E-02 -1.000000E-02 3.000000E-02 . 1.1741E-02
V 4 FR -2.426081E-02 -4.000000E-02 2.000000E-02 . 1.5739E-02
V 5 FR -6.200564E-02 -0.100000 5.000000E-02 . 3.7994E-02
V 6 FR 1.380544E-02 -1.000000E-02 None . 2.3805E-02
V 7 FR 4.066496E-03 -1.000000E-02 None . 1.4066E-02

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 EQ -0.130000 -0.130000 -0.130000 -1.908 .
L 2 FR -5.879898E-03 None -4.900000E-03 . 9.7990E-04
L 3 UL -6.400000E-03 None -6.400000E-03 -0.3144 -2.6021E-18
L 4 FR -4.537323E-03 None -3.700000E-03 . 8.3732E-04
L 5 FR -2.915996E-03 None -1.200000E-03 . 1.7160E-03
L 6 LL -9.920000E-02 -9.920000E-02 None 1.955 4.1633E-17
L 7 LL -3.000000E-03 -3.000000E-03 2.000000E-03 1.972 1.7347E-18

Exit E04NFF - Optimal QP solution.

Final QP objective value = 0.3703165E-01

Exit from QP problem after 8 iterations.
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NAG Library Routine Document

E04NHF/E04NHA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply individual optional parameters to E04NFF/E04NFA. More precisely, E04NHF must be used
to supply optional parameters to E04NFF and E04NHA must be used to supply optional parameters to
E04NFA.

E04NHA is a version of E04NHF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04NHA.

2 Specification

2.1 Specification for E04NHF

SUBROUTINE E04NHF (STR)

CHARACTER(*) STR

2.2 Specification for E04NHA

SUBROUTINE E04NHA (STR, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)
CHARACTER(*) STR

3 Description

E04NHF/E04NHA may be used to supply values for optional parameters to E04NFF/E04NFA. It is only
necessary to call E04NHF/E04NHA for those arguments whose values are to be different from their
default values. One call to E04NHF/E04NHA sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

For E04NHF, each user-specified option is normally printed as it is defined, on the current advisory
message unit (see X04ABF), but this printing may be suppressed using the keyword Nolist. Thus the
statement

CALL E04NHF (’Nolist’)
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suppresses printing of this and subsequent options. Printing will automatically be turned on again after
a call to E04NFF and may be turned on again at any time using the keyword List.

For E04NHA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04NFF/E04NFA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04NFF/E04NFA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NFF/E04NFA.

4 References

None.

5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 and in Section 12 in E04NFF/
E04NFA).

Note: the following are additional arguments for specific use with E04NHA. Users of E04NHF
therefore need not read the remainder of this description.

2: LWSAVð120Þ – LOGICAL array Communication Array
3: IWSAVð610Þ – INTEGER array Communication Array
4: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04NHA, E04NKA, E04NLA or E04WBF.

5: INFORM – INTEGER Output

On exit: contains zero if a valid option string has been supplied and a value > 0 otherwise (see
Section 6).

6 Error Indicators and Warnings

INFORM ¼ 5

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NHF/E04NHA is not threaded in any implementation.

9 Further Comments

E04NGF/E04NGA may also be used to supply optional parameters to E04NFF/E04NFA.
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10 Example

See Section 10 in E04NGF/E04NGA.
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NAG Library Routine Document

E04NKF/E04NKA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

E04NKF/E04NKA solves sparse linear programming or convex quadratic programming problems.

E04NKA is a version of E04NKF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04NKA.

2 Specification

2.1 Specification for E04NKF

SUBROUTINE E04NKF (N, M, NNZ, IOBJ, NCOLH, QPHX, A, HA, KA, BL, BU,
START, NAMES, NNAME, CRNAME, NS, XS, ISTATE, MINIZ,
MINZ, NINF, SINF, OBJ, CLAMDA, IZ, LENIZ, Z, LENZ,
IFAIL)

&
&
&

INTEGER N, M, NNZ, IOBJ, NCOLH, HA(NNZ), KA(N+1), NNAME, NS,
ISTATE(N+M), MINIZ, MINZ, NINF, IZ(LENIZ), LENIZ,
LENZ, IFAIL

&
&

REAL (KIND=nag_wp) A(NNZ), BL(N+M), BU(N+M), XS(N+M), SINF, OBJ,
CLAMDA(N+M), Z(LENZ)

&

CHARACTER(1) START
CHARACTER(8) NAMES(5), CRNAME(NNAME)
EXTERNAL QPHX

2.2 Specification for E04NKA

SUBROUTINE E04NKA (N, M, NNZ, IOBJ, NCOLH, QPHX, A, HA, KA, BL, BU,
START, NAMES, NNAME, CRNAME, NS, XS, ISTATE, MINIZ,
MINZ, NINF, SINF, OBJ, CLAMDA, IZ, LENIZ, Z, LENZ,
IUSER, RUSER, LWSAV, IWSAV, RWSAV, IFAIL)

&
&
&

INTEGER N, M, NNZ, IOBJ, NCOLH, HA(NNZ), KA(N+1), NNAME, NS,
ISTATE(N+M), MINIZ, MINZ, NINF, IZ(LENIZ), LENIZ,
LENZ, IUSER(*), IWSAV(380), IFAIL

&
&

REAL (KIND=nag_wp) A(NNZ), BL(N+M), BU(N+M), XS(N+M), SINF, OBJ,
CLAMDA(N+M), Z(LENZ), RUSER(*), RWSAV(285)

&

LOGICAL LWSAV(20)
CHARACTER(1) START
CHARACTER(8) NAMES(5), CRNAME(NNAME)
EXTERNAL QPHX

Before calling E04NKA, or either of the option setting routines E04NLA or E04NMA, E04WBF must
be called. The specification for E04WBF is:

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
RWSAV, LRWSAV, IFAIL)

&

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV,
IFAIL

&

REAL (KIND=nag_wp) RWSAV(LRWSAV)
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LOGICAL LWSAV(LLWSAV)
CHARACTER(*) RNAME
CHARACTER(80) CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ E04NKA . LCWSAV, LLWSAV, LIWSAV and LRWSAV,
the declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 1

LLWSAV � 20

LIWSAV � 380

LRWSAV � 285

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04NKA, E04NLA, E04NMA and E04WBF.

3 Description

E04NKF/E04NKA is designed to solve a class of quadratic programming problems that are assumed to
be stated in the following general form:

minimize
x2Rn

f xð Þ subject to l � x
Ax


 �
� u; ð1Þ

where x is a set of variables, A is an m by n matrix and the objective function f xð Þ may be specified in
a variety of ways depending upon the particular problem to be solved. The optional parameter
Maximize may be used to specify an alternative problem in which f xð Þ is maximized. The possible
forms for f xð Þ are listed in Table 1, in which the prefixes FP, LP and QP stand for ‘feasible point’,
‘linear programming’ and ‘quadratic programming’ respectively, c is an n-element vector and H is the
n by n second-derivative matrix r2f xð Þ (the Hessian matrix).

Problem type Objective function f xð Þ Hessian matrix H

FP Not applicable Not applicable
LP cTx Not applicable
QP cTxþ 1

2x
THx Symmetric positive semidefinite

Table 1

For LP and QP problems, the unique global minimum value of f xð Þ is found. For FP problems, f xð Þ is
omitted and the routine attempts to find a feasible point for the set of constraints. For QP problems, you
must also provide a subroutine that computes Hx for any given vector x. (H need not be stored
explicitly.) If H is the zero matrix, the routine will still solve the resulting LP problem; however, this
can be accomplished more efficiently by setting NCOLH ¼ 0 (see Section 5).

The defining feature of a convex QP problem is that the matrix H must be positive semidefinite, i.e., it
must satisfy xTHx � 0 for all x. Otherwise, f xð Þ is said to be nonconvex and it may be more
appropriate to call E04UGF/E04UGA instead.

E04NKF/E04NKA is intended to solve large-scale linear and quadratic programming problems in which
the constraint matrix A is sparse (i.e., when the number of zero elements is sufficiently large that it is
worthwhile using algorithms which avoid computations and storage involving zero elements). The
routine also takes advantage of sparsity in c. (Sparsity in H can be exploited in the subroutine that
computes Hx.) For problems in which A can be treated as a dense matrix, it is usually more efficient to
use E04MFF/E04MFA, E04NCF/E04NCA or E04NFF/E04NFA.

The upper and lower bounds on the m elements of Ax are said to define the general constraints of the
problem. Internally, E04NKF/E04NKA converts the general constraints to equalities by introducing a
set of slack variables s, where s ¼ s1; s2; . . . ; smð ÞT. For example, the linear constraint
5 � 2x1 þ 3x2 � þ1 is replaced by 2x1 þ 3x2 � s1 ¼ 0, together with the bounded slack
5 � s1 � þ1. The problem defined by (1) can therefore be re-written in the following equivalent form:
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minimize
x2Rn;s2Rm

f xð Þ subject to Ax� s ¼ 0; l � x
s


 �
� u:

Since the slack variables s are subject to the same upper and lower bounds as the elements of Ax, the
bounds on Ax and x can simply be thought of as bounds on the combined vector x; sð Þ. (In order to
indicate their special role in QP problems, the original variables x are sometimes known as ‘column
variables’, and the slack variables s are known as ‘row variables’.)

Each LP or QP problem is solved using an active-set method. This is an iterative procedure with two
phases: a feasibility phase, in which the sum of infeasibilities is minimized to find a feasible point; and
an optimality phase, in which f xð Þ is minimized by constructing a sequence of iterations that lies within
the feasible region.

A constraint is said to be active or binding at x if the associated element of either x or Ax is equal to
one of its upper or lower bounds. Since an active constraint in Ax has its associated slack variable at a
bound, the status of both simple and general upper and lower bounds can be conveniently described in
terms of the status of the variables x; sð Þ. A variable is said to be nonbasic if it is temporarily fixed at
its upper or lower bound. It follows that regarding a general constraint as being active is equivalent to
thinking of its associated slack as being nonbasic.

At each iteration of an active-set method, the constraints Ax� s ¼ 0 are (conceptually) partitioned into
the form

BxB þ SxS þNxN ¼ 0;

where xN consists of the nonbasic elements of x; sð Þ and the basis matrix B is square and nonsingular.
The elements of xB and xS are called the basic and superbasic variables respectively; with xN they are
a permutation of the elements of x and s. At a QP solution, the basic and superbasic variables will lie
somewhere between their upper or lower bounds, while the nonbasic variables will be equal to one of
their bounds. At each iteration, xS is regarded as a set of independent variables that are free to move in
any desired direction, namely one that will improve the value of the objective function (or sum of
infeasibilities). The basic variables are then adjusted in order to ensure that x; sð Þ continues to satisfy
Ax� s ¼ 0. The number of superbasic variables (nS say) therefore indicates the number of degrees of
freedom remaining after the constraints have been satisfied. In broad terms, nS is a measure of how
nonlinear the problem is. In particular, nS will always be zero for FP and LP problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S, and the process is repeated with the value of nS increased by one.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made
nonbasic and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax� s ¼ 0 is a dual variable 	i. Similarly, each
variable in x; sð Þ has an associated reduced gradient dj (also known as a reduced cost). The reduced
gradients for the variables x are the quantities g�AT	, where g is the gradient of the QP objective
function; and the reduced gradients for the slack variables s are the dual variables 	. The QP
subproblem is optimal if dj � 0 for all nonbasic variables at their lower bounds, dj � 0 for all nonbasic
variables at their upper bounds and dj ¼ 0 for all superbasic variables. In practice, an approximate QP
solution is found by slightly relaxing these conditions on dj (see the description of the optional
parameter Optimality Tolerance).

The process of computing and comparing reduced gradients is known as pricing (a term first introduced
in the context of the simplex method for linear programming). To ‘price’ a nonbasic variable xj means
that the reduced gradient dj associated with the relevant active upper or lower bound on xj is computed
via the formula dj ¼ gj � aT	, where aj is the jth column of A �I

� �
. (The variable selected by such

a process and the corresponding value of dj (i.e., its reduced gradient) are the quantities +S and dj in
the monitoring file output; see Section 13.) If A has significantly more columns than rows (i.e.,
n� m), pricing can be computationally expensive. In this case, a strategy known as partial pricing can
be used to compute and compare only a subset of the dj's.

E04NKF/E04NKA is based on SQOPT, which is part of the SNOPT package described in Gill et al.
(2002), which in turn utilizes routines from the MINOS package (see Murtagh and Saunders (1995)). It
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uses stable numerical methods throughout and includes a reliable basis package (for maintaining sparse
LU factors of the basis matrix B), a practical anti-degeneracy procedure, efficient handling of linear
constraints and bounds on the variables (by an active-set strategy), as well as automatic scaling of the
constraints. Further details can be found in Section 11.

4 References

Fourer R (1982) Solving staircase linear programs by the simplex method Math. Programming 23 274–
313

Gill P E and Murray W (1978) Numerically stable methods for quadratic programming Math.
Programming 14 349–372

Gill P E, Murray W and Saunders M A (2002) SNOPT: An SQP Algorithm for Large-scale Constrained
Optimization 12 979–1006 SIAM J. Optim.

Gill P E, Murray W, Saunders M A and Wright M H (1987) Maintaining LU factors of a general sparse
matrix Linear Algebra and its Applics. 88/89 239–270

Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for
linearly constrained optimization Math. Programming 45 437–474

Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

Hall J A J and McKinnon K I M (1996) The simplest examples where the simplex method cycles and
conditions where EXPAND fails to prevent cycling Report MS 96–100 Department of Mathematics and
Statistics, University of Edinburgh

Murtagh B A and Saunders M A (1995) MINOS 5.4 users' guide Report SOL 83-20R Department of
Operations Research, Stanford University

5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables (excluding slacks). This is the number of columns in the
linear constraint matrix A.

Constraint: N � 1.

2: M – INTEGER Input

On entry: m, the number of general linear constraints (or slacks). This is the number of rows in
A, including the free row (if any; see IOBJ).

Constraint: M � 1.

3: NNZ – INTEGER Input

On entry: the number of nonzero elements in A.

Constraint: 1 � NNZ � N�M.

4: IOBJ – INTEGER Input

On entry: if IOBJ > 0, row IOBJ of A is a free row containing the nonzero elements of the
vector c appearing in the linear objective term cTx.

If IOBJ ¼ 0, there is no free row, i.e., the problem is either an FP problem (in which case IOBJ
must be set to zero), or a QP problem with c ¼ 0.

Constraint: 0 � IOBJ � M.
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5: NCOLH – INTEGER Input

On entry: nH , the number of leading nonzero columns of the Hessian matrix H. For FP and LP
problems, NCOLH must be set to zero.

Constraint: 0 � NCOLH � N.

6: QPHX – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

For QP problems, you must supply a version of QPHX to compute the matrix product Hx. If H

has zero rows and columns, it is most efficient to order the variables x ¼ y z
� �T

so that

Hx ¼ H1 0
0 0

� �
y
z

� �
¼ H1y

0

� �
;

where the nonlinear variables y appear first as shown. For FP and LP problems, QPHX will never
be called by E04NKF/E04NKA and hence QPHX may be the dummy routine E04NKU/E54NKU.

The specification of QPHX for E04NKF is:

SUBROUTINE QPHX (NSTATE, NCOLH, X, HX)

INTEGER NSTATE, NCOLH
REAL (KIND=nag_wp) X(NCOLH), HX(NCOLH)

The specification of QPHX for E04NKA is:

SUBROUTINE QPHX (NSTATE, NCOLH, X, HX, IUSER, RUSER)

INTEGER NSTATE, NCOLH, IUSER(*)
REAL (KIND=nag_wp) X(NCOLH), HX(NCOLH), RUSER(*)

1: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1, E04NKF/E04NKA is calling QPHX for the first time. This
argument setting allows you to save computation time if certain data must be read or
calculated only once.

If NSTATE � 2, E04NKF/E04NKA is calling QPHX for the last time. This argument
setting allows you to perform some additional computation on the final solution. In
general, the last call to QPHX is made with NSTATE ¼ 2þ IFAIL (see Section 6).

Otherwise, NSTATE ¼ 0.

2: NCOLH – INTEGER Input

On entry: this is the same argument NCOLH as supplied to E04NKF/E04NKA.

3: XðNCOLHÞ – REAL (KIND=nag_wp) array Input

On entry: the first NCOLH elements of the vector x.

4: HXðNCOLHÞ – REAL (KIND=nag_wp) array Output

On exit: the product Hx.

Note: the following are additional arguments for specific use with E04NKA. Users of
E04NKF therefore need not read the remainder of this description.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

QPHX is called with the arguments IUSER and RUSER as supplied to E04NKF/
E04NKA. You should use the arrays IUSER and RUSER to supply information to
QPHX.
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QPHX must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04NKF/E04NKA is called. Arguments denoted as Input must not be
changed by this procedure.

7: AðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements of A, ordered by increasing column index. Note that elements
with the same row and column indices are not allowed.

8: HAðNNZÞ – INTEGER array Input

On entry: HAðiÞ must contain the row index of the nonzero element stored in AðiÞ, for
i ¼ 1; 2; . . . ;NNZ. Note that the row indices for a column may be supplied in any order.

Constraint: 1 � HAðiÞ � M, for i ¼ 1; 2; . . . ;NNZ.

9: KAðNþ 1Þ – INTEGER array Input

On entry: KAðjÞ must contain the index in A of the start of the jth column, for j ¼ 1; 2; . . . ;N.
KAðNþ 1Þ must be set to NNZþ 1. To specify the jth column as empty, set KAðjÞ ¼ KAðjþ 1Þ.
As a consequence KAð1Þ is always 1.

Constraints:

KAð1Þ ¼ 1;
KAðjÞ � 1, for j ¼ 2; 3; . . . ;N;
KAðNþ 1Þ ¼ NNZþ 1;
0 � KAðj þ 1Þ � KAðjÞ � M, for j ¼ 1; 2; . . . ;N.

10: BLðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: l, the lower bounds for all the variables and general constraints, in the following order.
The first N elements of BL must contain the bounds on the variables x, and the next M elements
the bounds for the general linear constraints Ax (or slacks s) and the free row (if any). To specify
a nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, where bigbnd is the value of
the optional parameter Infinite Bound Size. To specify the jth constraint as an equality, set
BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd. Note that the lower bound corresponding to the
free row must be set to �1 and stored in BLðNþ IOBJÞ.
Constraint: if IOBJ > 0, BLðNþ IOBJÞ � �bigbnd
(See also the description for BU.)

11: BUðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: u, the upper bounds for all the variables and general constraints, in the following order.
The first N elements of BU must contain the bounds on the variables x, and the next M elements
the bounds for the general linear constraints Ax (or slacks s) and the free row (if any). To specify
a nonexistent upper bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd. Note that the upper bound
corresponding to the free row must be set to þ1 and stored in BUðNþ IOBJÞ.
Constraints:

if IOBJ > 0, BUðNþ IOBJÞ � bigbnd;
BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;NþM;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

12: START – CHARACTER(1) Input

On entry: indicates how a starting basis is to be obtained.

START ¼ C
An internal Crash procedure will be used to choose an initial basis matrix B.
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START ¼ W
A basis is already defined in ISTATE (probably from a previous call).

Constraint: START ¼ C or W.

13: NAMESð5Þ – CHARACTER(8) array Input

On entry: a set of names associated with the so-called MPSX form of the problem, as follows:

NAMESð1Þ
Must contain the name for the problem (or be blank).

NAMESð2Þ
Must contain the name for the free row (or be blank).

NAMESð3Þ
Must contain the name for the constraint right-hand side (or be blank).

NAMESð4Þ
Must contain the name for the ranges (or be blank).

NAMESð5Þ
Must contain the name for the bounds (or be blank).

(These names are used in the monitoring file output; see Section 13.)

14: NNAME – INTEGER Input

On entry: the number of column (i.e., variable) and row names supplied in CRNAME.

NNAME ¼ 1
There are no names. Default names will be used in the printed output.

NNAME ¼ NþM
All names must be supplied.

Constraint: NNAME ¼ 1 or NþM.

15: CRNAMEðNNAMEÞ – CHARACTER(8) array Input

On entry: the optional column and row names, respectively.

If NNAME ¼ 1, CRNAME is not referenced and the printed output will use default names for
the columns and rows.

If NNAME ¼ NþM, the first N elements must contain the names for the columns and the next
M elements must contain the names for the rows. Note that the name for the free row (if any)
must be stored in CRNAMEðNþ IOBJÞ.

16: NS – INTEGER Input/Output

On entry: nS , the number of superbasics. For QP problems, NS need not be specified if
START ¼ C , but must retain its value from a previous call when START ¼ W . For FP and LP
problems, NS need not be initialized.

On exit: the final number of superbasics. This will be zero for FP and LP problems.

17: XSðNþMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the variables and slacks x; sð Þ. (See the description for ISTATE.)

On exit: the final values of the variables and slacks x; sð Þ.

18: ISTATEðNþMÞ – INTEGER array Input/Output

On entry: if START ¼ C , the first N elements of ISTATE and XS must specify the initial states
and values, respectively, of the variables x. (The slacks s need not be initialized.) An internal
Crash procedure is then used to select an initial basis matrix B. The initial basis matrix will be
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triangular (neglecting certain small elements in each column). It is chosen from various rows and
columns of A �I

� �
. Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ State of XSðjÞ during Crash procedure

0 or 1 Eligible for the basis

2 Ignored

3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored

If nothing special is known about the problem, or there is no wish to provide special information,
you may set ISTATEðjÞ ¼ 0 and XSðjÞ ¼ 0:0, for j ¼ 1; 2; . . . ;N. All variables will then be
eligible for the initial basis. Less trivially, to say that the jth variable will probably be equal to
one of its bounds, set ISTATEðjÞ ¼ 4 and XSðjÞ ¼ BLðjÞ or ISTATEðjÞ ¼ 5 and XSðjÞ ¼ BUðjÞ
as appropriate.

Following the Crash procedure, variables for which ISTATEðjÞ ¼ 2 are made superbasic. Other
variables not selected for the basis are then made nonbasic at the value XSðjÞ if
BLðjÞ � XSðjÞ � BUðjÞ, or at the value BLðjÞ or BUðjÞ closest to XSðjÞ.
If START ¼ W , ISTATE and XS must specify the initial states and values, respectively, of the
variables and slacks x; sð Þ. If E04NKF/E04NKA has been called previously with the same values
of N and M, ISTATE already contains satisfactory information.

Constraints:

if START ¼ C , 0 � ISTATEðjÞ � 5, for j ¼ 1; 2; . . . ;N;
if START ¼ W , 0 � ISTATEðjÞ � 3, for j ¼ 1; 2; . . . ;NþM.

On exit: the final states of the variables and slacks x; sð Þ. The significance of each possible value
of ISTATEðjÞ is as follows:

ISTATEðjÞ State of variable j Normal value of XSðjÞ
0 Nonbasic BLðjÞ
1 Nonbasic BUðjÞ
2 Superbasic Between BLðjÞ and BUðjÞ
3 Basic Between BLðjÞ and BUðjÞ

If NINF ¼ 0, basic and superbasic variables may be outside their bounds by as much as the value
of the optional parameter Feasibility Tolerance. Note that unless the Scale Option ¼ 0 is
specified, the optional parameter Feasibility Tolerance applies to the variables of the scaled
problem. In this case, the variables of the original problem may be as much as 0:1 outside their
bounds, but this is unlikely unless the problem is very badly scaled.

Very occasionally some nonbasic variables may be outside their bounds by as much as the
optional parameter Feasibility Tolerance, and there may be some nonbasic variables for which
XSðjÞ lies strictly between its bounds.

If NINF > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by SINF if Scale Option ¼ 0).

19: MINIZ – INTEGER Output

On exit: the minimum value of LENIZ required to start solving the problem. If IFAIL ¼ 12,
E04NKF/E04NKA may be called again with LENIZ suitably larger than MINIZ. (The bigger the
better, since it is not certain how much workspace the basis factors need.)
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20: MINZ – INTEGER Output

On exit: the minimum value of LENZ required to start solving the problem. If IFAIL ¼ 13,
E04NKF/E04NKA may be called again with LENZ suitably larger than MINZ. (The bigger the
better, since it is not certain how much workspace the basis factors need.)

21: NINF – INTEGER Output

On exit: the number of infeasibilities. This will be zero if IFAIL ¼ 0 or 1.

22: SINF – REAL (KIND=nag_wp) Output

On exit: the sum of infeasibilities. This will be zero if NINF ¼ 0. (Note that E04NKF/E04NKA
does not attempt to compute the minimum value of SINF if IFAIL ¼ 3.)

23: OBJ – REAL (KIND=nag_wp) Output

On exit: the value of the objective function.

If NINF ¼ 0, OBJ includes the quadratic objective term 1
2x

THx (if any).

If NINF > 0, OBJ is just the linear objective term cTx (if any).

For FP problems, OBJ is set to zero.

24: CLAMDAðNþMÞ – REAL (KIND=nag_wp) array Output

On exit: a set of Lagrange multipliers for the bounds on the variables and the general constraints.
More precisely, the first N elements contain the multipliers (reduced costs) for the bounds on the
variables, and the next M elements contain the multipliers (shadow prices) for the general linear
constraints.

25: IZðLENIZÞ – INTEGER array Workspace

26: LENIZ – INTEGER Input

On entry: the dimension of the array IZ as declared in the (sub)program from which E04NKF/
E04NKA is called.

Constraint: LENIZ � 1.

27: ZðLENZÞ – REAL (KIND=nag_wp) array Workspace
28: LENZ – INTEGER Input

On entry: the dimension of the array Z as declared in the (sub)program from which E04NKF/
E04NKA is called.

Constraint: LENZ � 1.

The amounts of workspace provided (i.e., LENIZ and LENZ) and required (i.e., MINIZ and
MINZ) are (by default for E04NKF) output on the current advisory message unit NADV (as
defined by X04ABF). Since the minimum values of LENIZ and LENZ required to start solving
the problem are returned in MINIZ and MINZ, respectively, you may prefer to obtain appropriate
values from the output of a preliminary run with LENIZ and LENZ set to 1. (E04NKF/E04NKA
will then terminate with IFAIL ¼ 12.)

29: IFAIL – INTEGER Input/Output

Note: for E04NKA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04NKF/E04NKA returns with IFAIL ¼ 0 if the reduced gradient (Norm rg; see Section 9.1) is
negligible, the Lagrange multipliers (Lagr Mult; see Section 9.1) are optimal and x satisfies the
constraints to the accuracy requested by the value of the optional parameter Feasibility
Tolerance (default value ¼ max 10�6;

ffiffi
�
p� �

, where � is the machine precision).

Note: the following are additional arguments for specific use with E04NKA. Users of E04NKF
therefore need not read the remainder of this description.

30: IUSERð�Þ – INTEGER array User Workspace
31: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04NKF/E04NKA, but are passed directly to QPHX and
should be used to pass information to this routine.

32: LWSAVð20Þ – LOGICAL array Communication Array
33: IWSAVð380Þ – INTEGER array Communication Array
34: RWSAVð285Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04NKA, E04NLA, E04NMA or E04WBF.

35: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04NKF/E04NKA may return useful information for one or more of the following detected errors
or warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

Weak solution found. The final x is not unique, although x gives the global minimum value of
the objective function.

IFAIL ¼ 2

The problem is unbounded (or badly scaled). The objective function is not bounded below in the
feasible region.

IFAIL ¼ 3

The problem is infeasible. The general constraints cannot all be satisfied simultaneously to within
the value of the optional parameter Feasibility Tolerance (default value ¼ max 10�6;

ffiffi
�
p� �

, where
� is the machine precision).

IFAIL ¼ 4

Too many iterations. The value of the optional parameter Iteration Limit
(default value ¼ max 50; 5 nþmð Þð Þ) is too small.
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IFAIL ¼ 5

The reduced Hessian matrix ZTHZ (see Section 11.2) exceeds its assigned dimension. The value
of the optional parameter Superbasics Limit (default value ¼ min nH þ 1; nð Þ) is too small.

IFAIL ¼ 6

The Hessian matrix H appears to be indefinite. This sometimes occurs because the values of the
optional parameters LU Factor Tolerance (default value ¼ 100:0) and LU Update Tolerance
(default value ¼ 10:0) are too large. Check also that QPHX has been coded correctly and that all
relevant elements of Hx have been assigned their correct values.

IFAIL ¼ 7

An input argument is invalid.

IFAIL ¼ 8

Numerical error in trying to satisfy the general constraints. The basis is very ill-conditioned.

IFAIL ¼ 9

Not enough integer workspace for the basis factors. Increase LENIZ and rerun E04NKF/
E04NKA.

IFAIL ¼ 10

Not enough real workspace for the basis factors. Increase LENZ and rerun E04NKF/E04NKA.

IFAIL ¼ 11

The basis is singular after 15 attempts to factorize it (adding slacks where necessary). Either the
problem is badly scaled or the value of the optional parameter LU Factor Tolerance
(default value ¼ 100:0) is too large.

IFAIL ¼ 12

Not enough integer workspace to start solving the problem. Increase LENIZ to at least MINIZ
and rerun E04NKF/E04NKA.

IFAIL ¼ 13

Not enough real workspace to start solving the problem. Increase LENZ to at least MINZ and
rerun E04NKF/E04NKA.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

E04NKF/E04NKA implements a numerically stable active-set strategy and returns solutions that are as
accurate as the condition of the problem warrants on the machine.

8 Parallelism and Performance

E04NKF/E04NKA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This section contains a description of the printed output.

9.1 Description of the Printed Output

This section describes the intermediate printout and final printout produced by E04NKF/E04NKA. The
intermediate printout is a subset of the monitoring information produced by the routine at every
iteration (see Section 13). You can control the level of printed output (see the description of the
optional parameter Print Level). Note that the intermediate printout and final printout are produced
only if Print Level � 10 (the default for E04NKF, by default no output is produced by E04NKA).

The following line of summary output ( < 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives the
sum of the magnitudes of constraint violations. If x is feasible, Objective is the
value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the
value of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be
nonincreasing. During the feasibility phase, the number of constraint infeasi-
bilities will not increase until either a feasible point is found, or the optimality of
the multipliers implies that no feasible point exists.

Norm rg is dSk k, the Euclidean norm of the reduced gradient (see Section 11.3). During
the optimality phase, this norm will be approximately zero after a unit step. For
FP and LP problems, Norm rg is not printed.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Variable gives the name of the variable. If NNAME ¼ 1, a default name is assigned to the
jth variable, for j ¼ 1; 2; . . . ; n. If NNAME ¼ NþM, the name supplied in
CRNAMEðjÞ is assigned to the jth variable.

State gives the state of the variable (LL if nonbasic on its lower bound, UL if nonbasic
on its upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between
its bounds, BS if basic and SBS if superbasic).
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A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 (default value ¼ 2) is specified, the tests for assigning a key
are applied to the variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value
of the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal (or very
close) to one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the Feasibility Tolerance.

N Not precisely optimal. The variable is nonbasic or superbasic. If the value
of the reduced gradient for the variable exceeds the value of the optional
parameter Optimality Tolerance, the solution would not be declared
optimal because the reduced gradient for the variable would not be
considered negligible.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is
FR. If x is optimal, the multiplier should be non-negative if State is LL, non-
positive if State is UL and zero if State is BS or SBS.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for linear constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, CRNAMEðjÞ replaced by CRNAMEðnþ jÞ, BLðjÞ
and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ respectively, and with the following change in the
heading:

Constrnt gives the name of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This example minimizes the quadratic function f xð Þ ¼ cTxþ 1
2x

THx , where

c ¼ �200:0;�2000:0;�2000:0;�2000:0;�2000:0; 400:0; 400:0ð ÞT
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H ¼

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 2
0 0 0 0 0 2 2

0BBBBBBB@

1CCCCCCCA
subject to the bounds

0 � x1 � 200
0 � x2 � 2500

400 � x3 � 800
100 � x4 � 700

0 � x5 � 1500
0 � x6
0 � x7

and to the linear constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ 2000
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � 60
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 � 100
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � 40
0:02x1 þ 0:03x2 þ 0:01x5 � 30

1500 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
250 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 300

The initial point, which is infeasible, is

x0 ¼ 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0ð ÞT:

The optimal solution (to five figures) is

x� ¼ 0:0; 349:40; 648:85; 172:85; 407:52; 271:36; 150:02ð ÞT:

One bound constraint and four linear constraints are active at the solution. Note that the Hessian matrix
H is positive semidefinite.

10.1 Program Text

the following program illustrates the use of E04NKF. An equivalent program illustrating the use of
E04NKA is available with the supplied Library and is also available from the NAG web site.

! E04NKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04nkfe_mod

! E04NKF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: qphx

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine qphx(nstate,ncolh,x,hx)

! Routine to compute H*x. (In this version of QPHX, the Hessian
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! matrix H is not referenced explicitly.)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncolh, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hx(ncolh)
Real (Kind=nag_wp), Intent (In) :: x(ncolh)

! .. Executable Statements ..
hx(1) = 2.0E0_nag_wp*x(1)
hx(2) = 2.0E0_nag_wp*x(2)
hx(3) = 2.0E0_nag_wp*(x(3)+x(4))
hx(4) = hx(3)
hx(5) = 2.0E0_nag_wp*x(5)
hx(6) = 2.0E0_nag_wp*(x(6)+x(7))
hx(7) = hx(6)

Return

End Subroutine qphx
End Module e04nkfe_mod
Program e04nkfe

! E04NKF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04nkf, nag_wp
Use e04nkfe_mod, Only: nin, nout, qphx

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj, sinf
Integer :: i, icol, ifail, iobj, jcol, leniz, &

lenz, m, miniz, minz, n, ncolh, &
ninf, nname, nnz, ns

Character (1) :: start
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), bl(:), bu(:), clamda(:), &
xs(:), z(:)

Integer, Allocatable :: ha(:), istate(:), iz(:), ka(:)
Character (8), Allocatable :: crname(:)
Character (8) :: names(5)

! .. Executable Statements ..
Write (nout,*) ’E04NKF Example Program Results’
Flush (nout)

! Skip heading in data file.
Read (nin,*)

Read (nin,*) n, m
Read (nin,*) nnz, iobj, ncolh, start, nname
Allocate (ha(nnz),ka(n+1),istate(n+m),a(nnz),bl(n+m),bu(n+m),xs(n+m), &

clamda(n+m),crname(nname))

Read (nin,*) names(1:5)
Read (nin,*) crname(1:nname)

! Read the matrix A from data file. Set up KA.

jcol = 1
ka(jcol) = 1

Do i = 1, nnz

! Element ( HA( I ), ICOL ) is stored in A( I ).

Read (nin,*) a(i), ha(i), icol

If (icol<jcol) Then

! Elements not ordered by increasing column index.
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Write (nout,99999) ’Element in column’, icol, &
’ found after element in column’, jcol, ’. Problem’, ’ abandoned.’

Go To 100
Else If (icol==jcol+1) Then

! Index in A of the start of the ICOL-th column equals I.

ka(icol) = i
jcol = icol

Else If (icol>jcol+1) Then

! Index in A of the start of the ICOL-th column equals I,
! but columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
! corresponding elements of KA to I.

ka((jcol+1):icol) = i
jcol = icol

End If

End Do

ka(n+1) = nnz + 1

! Columns N,N-1,...,ICOL+1 are empty. Set the corresponding
! elements of KA accordingly.

Do i = n, icol + 1, -1
ka(i) = ka(i+1)

End Do

Read (nin,*) bl(1:(n+m))
Read (nin,*) bu(1:(n+m))

If (start==’C’) Then
Read (nin,*) istate(1:n)

Else If (start==’W’) Then
Read (nin,*) istate(1:(n+m))

End If

Read (nin,*) xs(1:n)

! Solve the QP problem.
! First call is a workspace query

leniz = 1
lenz = 1
Allocate (iz(leniz),z(lenz))

ifail = 1
Call e04nkf(n,m,nnz,iobj,ncolh,qphx,a,ha,ka,bl,bu,start,names,nname, &

crname,ns,xs,istate,miniz,minz,ninf,sinf,obj,clamda,iz,leniz,z,lenz, &
ifail)

If (ifail/=0 .And. ifail/=12 .And. ifail/=13) Then
Write (nout,99998) ’Query call to E04NKF failed with IFAIL =’, ifail
Go To 100

End If

Deallocate (iz,z)

lenz = minz
leniz = miniz
Allocate (iz(leniz),z(lenz))

ifail = 0
Call e04nkf(n,m,nnz,iobj,ncolh,qphx,a,ha,ka,bl,bu,start,names,nname, &

crname,ns,xs,istate,miniz,minz,ninf,sinf,obj,clamda,iz,leniz,z,lenz, &
ifail)
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100 Continue

99999 Format (/,1X,A,I5,A,I5,A,A)
99998 Format (1X,A,I5)

End Program e04nkfe

10.2 Program Data

E04NKF Example Program Data
7 8 :Values of N and M

48 8 7 ’C’ 15 :Values of NNZ, IOBJ, NCOLH, START and NNAME
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ :End of NAMES
’...X1...’ ’...X2...’ ’...X3...’ ’...X4...’ ’...X5...’
’...X6...’ ’...X7...’ ’..ROW1..’ ’..ROW2..’ ’..ROW3..’
’..ROW4..’ ’..ROW5..’ ’..ROW6..’ ’..ROW7..’ ’..COST..’ :End of CRNAME

0.02 7 1
0.02 5 1
0.03 3 1
1.00 1 1
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
0.04 2 4

-2000.00 8 4
0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7 :End of matrix A
0.0 0.0 4.0E+02 1.0E+02 0.0 0.0 0.0 2.0E+03

-1.0E+25 -1.0E+25 -1.0E+25 -1.0E+25 1.5E+03 2.5E+02 -1.0E+25 :End of BL
2.0E+02 2.5E+03 8.0E+02 7.0E+02 1.5E+03 1.0E+25 1.0E+25 2.0E+03
6.0E+01 1.0E+02 4.0E+01 3.0E+01 1.0E+25 3.0E+02 1.0E+25 :End of BU
0 0 0 0 0 0 0 0 :End of ISTATE
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 :End of XS
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10.3 Program Results

E04NKF Example Program Results

Workspace provided is IZ( 1), Z( 1).
To start solving the problem we need IZ( 428), Z( 358).

Exit E04NKF - Not enough integer workspace to start solving the problem.

*** E04NKF

Parameters
----------

Frequencies.
Check frequency......... 60 Expand frequency........ 10000
Factorization frequency. 100

LP Parameters.
Scale tolerance......... 9.00E-01 Feasibility tolerance... 1.00E-06
Iteration limit......... 75 Scale option............ 2
Optimality tolerance.... 1.00E-06 Partial price........... 10
Crash tolerance......... 1.00E-01 Pivot tolerance......... 2.04E-11
Crash option............ 2

QP objective.
Objective variables..... 7 Hessian columns......... 7
Superbasics limit....... 7

Miscellaneous.
Variables............... 7 Linear constraints...... 8
LU factor tolerance..... 1.00E+02 LU update tolerance..... 1.00E+01
LU singularity tolerance 2.04E-11 Monitoring file......... -1
EPS (machine precision). 1.11E-16 Print level............. 10
Infinite bound size..... 1.00E+20 Infinite step size...... 1.00E+20
COLD start.............. MINIMIZE................

Workspace provided is IZ( 428), Z( 358).
To start solving the problem we need IZ( 428), Z( 358).

Itn Step Ninf Sinf/Objective Norm rg
Itn 0 -- Infeasible.

0 0.0E+00 1 1.152891E+03 0.0E+00
1 4.3E+02 0 0.000000E+00 0.0E+00

Itn 1 -- Feasible point found (for 1 equality constraints).
1 0.0E+00 0 0.000000E+00 0.0E+00
1 0.0E+00 0 1.460000E+06 0.0E+00

Itn 1 -- Feasible QP solution.
2 8.7E-02 0 9.409959E+05 0.0E+00
3 5.3E-01 0 -1.056552E+06 0.0E+00
4 1.0E+00 0 -1.462190E+06 0.0E+00
5 1.0E+00 0 -1.698092E+06 1.8E-12
6 4.6E-02 0 -1.764906E+06 7.0E+02
7 1.0E+00 0 -1.811946E+06 1.4E-12
8 1.7E-02 0 -1.847325E+06 1.7E+02
9 1.0E+00 0 -1.847785E+06 9.1E-13

Variable State Value Lower Bound Upper Bound Lagr Mult Residual

...X1... LL 0.00000 . 200.00 2361. .

...X2... BS 349.399 . 2500.0 -1.2975E-12 349.4

...X3... SBS 648.853 400.00 800.00 -5.7329E-13 151.1

...X4... SBS 172.847 100.00 700.00 6.4970E-13 72.85

...X5... BS 407.521 . 1500.0 9.1881E-13 407.5

...X6... BS 271.356 . None -1.1928E-12 271.4

...X7... BS 150.023 . None -1.4130E-12 150.0

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual
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..ROW1.. EQ 2000.00 2000.0 2000.0 -1.2901E+04 .

..ROW2.. BS 49.2316 None 60.000 . -10.77

..ROW3.. UL 100.000 None 100.00 -2325. .

..ROW4.. BS 32.0719 None 40.000 . -7.928

..ROW5.. BS 14.5572 None 30.000 . -15.44

..ROW6.. LL 1500.00 1500.0 None 1.4455E+04 .

..ROW7.. LL 250.000 250.00 300.00 1.4581E+04 .

..COST.. BS -2.988690E+06 None None -1.000 -2.9887E+06

Exit E04NKF - Optimal QP solution found.

Final QP objective value = -1847785.

Exit from QP problem after 9 iterations.

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to E04NLF/E04NLA and/or
E04NMF/E04NMA. Section 13 describes the quantities which can be requested to monitor the course of
the computation.

11 Algorithmic Details

This section contains a detailed description of the method used by E04NKF/E04NKA.

11.1 Overview

E04NKF/E04NKA is based on an inertia-controlling method that maintains a Cholesky factorization of
the reduced Hessian (see below). The method is similar to that of Gill and Murray (1978), and is
described in detail by Gill et al. (1991). Here we briefly summarise the main features of the method.
Where possible, explicit reference is made to the names of variables that are arguments of the routine or
appear in the printed output.

The method used has two distinct phases: finding an initial feasible point by minimizing the sum of
infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the feasible
region (the optimality phase). The computations in both phases are performed by the same subroutines.
The two-phase nature of the algorithm is reflected by changing the function being minimized from the
sum of infeasibilities (the printed quantity Sinf; see Section 13) to the quadratic objective function (the
printed quantity Objective; see Section 13).

In general, an iterative process is required to solve a quadratic program. Given an iterate x; sð Þ in both
the original variables x and the slack variables s, a new iterate �x; �sð Þ is defined by

�x
�s

� �
¼ x

s

� �
þ �p; ð2Þ

where the step length � is a non-negative scalar (the printed quantity Step; see Section 13), and p is
called the search direction. (For simplicity, we shall consider a typical iteration and avoid reference to
the index of the iteration.) Once an iterate is feasible (i.e., satisfies the constraints), all subsequent
iterates remain feasible.

11.2 Definition of the Working Set and Search Direction

At each iterate x; sð Þ, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the value of the optional parameter Feasibility
Tolerance). The working set is the current prediction of the constraints that hold with equality at a
solution of the LP or QP problem. Let mW denote the number of constraints in the working set
(including bounds), and let W denote the associated mW by nþmð Þ working set matrix consisting of
the mW gradients of the working set constraints.

The search direction is defined so that constraints in the working set remain unaltered for any value of
the step length. It follows that p must satisfy the identity
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Wp ¼ 0: ð3Þ

This characterisation allows p to be computed using any n by nZ full-rank matrix Z that spans the null
space of W . (Thus, nZ ¼ n�mW and WZ ¼ 0.) The null space matrix Z is defined from a sparse LU
factorization of part of W (see (6) and (7)). The direction p will satisfy (3) if

p ¼ ZpZ; ð4Þ

where pZ is any nZ-vector.

The working set contains the constraints Ax� s ¼ 0 and a subset of the upper and lower bounds on the
variables x; sð Þ. Since the gradient of a bound constraint xj � lj or xj � uj is a vector of all zeros
except for 
1 in position j, it follows that the working set matrix contains the rows of A �I

� �
and

the unit rows associated with the upper and lower bounds in the working set.

The working set matrix W can be represented in terms of a certain column partition of the matrix
A �I
� �

by (conceptually) partitioning the constraints Ax� s ¼ 0 so that

BxB þ SxS þNxN ¼ 0; ð5Þ

where B is a square nonsingular basis and xB, xS and xN are the basic, superbasic and nonbasic
variables respectively. The nonbasic variables are equal to their upper or lower bounds at x; sð Þ, and the
superbasic variables are independent variables that are chosen to improve the value of the current
objective function. The number of superbasic variables is nS (the printed quantity Ns; see Section 13).
Given values of xN and xS , the basic variables xB are adjusted so that x; sð Þ satisfies (5).

If P is a permutation matrix such that A �I
� �

P ¼ B S N
� �

, then W satisfies

WP ¼ B S N
0 0 IN

� �
; ð6Þ

where IN is the identity matrix with the same number of columns as N .

The null space matrix Z is defined from a sparse LU factorization of part of W . In particular, Z is
maintained in ‘reduced gradient’ form, using the LUSOL package (see Gill et al. (1991)) to maintain
sparse LU factors of the basis matrix B that alters as the working set W changes. Given the
permutation P , the null space basis is given by

Z ¼ P
�B�1S

I
0

0@ 1A: ð7Þ

This matrix is used only as an operator, i.e., it is never computed explicitly. Products of the form Zv
and ZTg are obtained by solving with B or BT. This choice of Z implies that nZ , the number of
‘degrees of freedom’ at x; sð Þ, is the same as nS , the number of superbasic variables.

Let gZ and HZ denote the reduced gradient and reduced Hessian of the objective function:

gZ ¼ ZTg and HZ ¼ ZTHZ; ð8Þ

where g is the objective gradient at x; sð Þ. Roughly speaking, gZ and HZ describe the first and second
derivatives of an nS-dimensional unconstrained problem for the calculation of pZ . (The condition
estimator of HZ is the quantity Cond Hz in the monitoring file output; see Section 13.)

At each iteration, an upper triangular factor R is available such that HZ ¼ RTR. Normally, R is
computed from RTR ¼ ZTHZ at the start of the optimality phase and then updated as the QP working
set changes. For efficiency, the dimension of R should not be excessive (say, nS � 1000). This is
guaranteed if the number of nonlinear variables is ‘moderate’.

If the QP problem contains linear variables, H is positive semidefinite and R may be singular with at
least one zero diagonal element. However, an inertia-controlling strategy is used to ensure that only the
last diagonal element of R can be zero. (See Gill et al. (1991) for a discussion of a similar strategy for
indefinite quadratic programming.)
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If the initial R is singular, enough variables are fixed at their current value to give a nonsingular R. This
is equivalent to including temporary bound constraints in the working set. Thereafter, R can become
singular only when a constraint is deleted from the working set (in which case no further constraints are
deleted until R becomes nonsingular).

11.3 Main Iteration

If the reduced gradient is zero, x; sð Þ is a constrained stationary point on the working set. During the
feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
elsewhere in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective function when the constraints in the working
set are treated as equalities. At a constrained stationary point, Lagrange multipliers � are defined from
the equations

WT� ¼ g xð Þ: ð9Þ

A Lagrange multiplier �j corresponding to an inequality constraint in the working set is said to be
optimal if �j � � when the associated constraint is at its upper bound, or if �j � �� when the
associated constraint is at its lower bound, where � depends on the value of the optional parameter
Optimality Tolerance. If a multiplier is nonoptimal, the objective function (either the true objective or
the sum of infeasibilities) can be reduced by continuing the minimization with the corresponding
constraint excluded from the working set. (This step is sometimes referred to as ‘deleting’ a constraint
from the working set.) If optimal multipliers occur during the feasibility phase but the sum of
infeasibilities is nonzero, there is no feasible point and the routine terminates immediately with
IFAIL ¼ 3 (see Section 6).

The special form (6) of the working set allows the multiplier vector �, the solution of (9), to be written
in terms of the vector

d ¼ g
0

� �
� A �I
� �T

	 ¼ g�AT	
	

� �
; ð10Þ

where 	 satisfies the equations BT	 ¼ gB, and gB denotes the basic elements of g. The elements of 	
are the Lagrange multipliers �j associated with the equality constraints Ax� s ¼ 0. The vector dN of
nonbasic elements of d consists of the Lagrange multipliers �j associated with the upper and lower
bound constraints in the working set. The vector dS of superbasic elements of d is the reduced gradient
gZ in (8). The vector dB of basic elements of d is zero, by construction. (The Euclidean norm of dS and
the final values of dS , g and 	 are the quantities Norm rg, Reduced Gradnt, Obj Gradient and Dual

Activity in the monitoring file output; see Section 13.)

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the search direction
is given by p ¼ ZpZ (see (7) and (11)). The step length is chosen to maintain feasibility with respect to
the satisfied constraints.

There are two possible choices for pZ, depending on whether or not HZ is singular. If HZ is
nonsingular, R is nonsingular and pZ in (4) is computed from the equations

RTRpZ ¼ �gZ; ð11Þ

where gZ is the reduced gradient at x. In this case, x; sð Þ þ p is the minimizer of the objective function
subject to the working set constraints being treated as equalities. If x; sð Þ þ p is feasible, � is defined to
be unity. In this case, the reduced gradient at �x; �sð Þ will be zero, and Lagrange multipliers are computed
at the next iteration. Otherwise, � is set to �M, the step to the ‘nearest’ constraint along p. This
constraint is then added to the working set at the next iteration.

If HZ is singular, then R must also be singular, and an inertia-controlling strategy is used to ensure that
only the last diagonal element of R is zero. (See Gill et al. (1991) for a discussion of a similar strategy
for indefinite quadratic programming.) In this case, pZ satisfies

pTZHZpZ ¼ 0 and gTZpZ � 0; ð12Þ

which allows the objective function to be reduced by any step of the form x; sð Þ þ �p, where � > 0.
The vector p ¼ ZpZ is a direction of unbounded descent for the QP problem in the sense that the QP
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objective is linear and decreases without bound along p. If no finite step of the form x; sð Þ þ �p (where
� > 0) reaches a constraint not in the working set, the QP problem is unbounded and the routine
terminates immediately with IFAIL ¼ 2 (see Section 6). Otherwise, � is defined as the maximum
feasible step along p and a constraint active at x; sð Þ þ �p is added to the working set for the next
iteration.

11.4 Miscellaneous

If the basis matrix is not chosen carefully, the condition of the null space matrix Z in (7) could be
arbitrarily high. To guard against this, the routine implements a ‘basis repair’ feature in which the
LUSOL package (see Gill et al. (1991)) is used to compute the rectangular factorization

B S
� �T ¼ LU; ð13Þ

returning just the permutation P that makes PLPT unit lower triangular. The pivot tolerance is set to
require PLPTj jij � 2, and the permutation is used to define P in (6). It can be shown that Zk k is likely
to be little more than unity. Hence, Z should be well-conditioned regardless of the condition of W . This
feature is applied at the beginning of the optimality phase if a potential B� S ordering is known.

The EXPAND procedure (see Gill et al. (1989)) is used to reduce the possibility of cycling at a point
where the active constraints are nearly linearly dependent. Although there is no absolute guarantee that
cycling will not occur, the probability of cycling is extremely small (see Hall and McKinnon (1996)).
The main feature of EXPAND is that the feasibility tolerance is increased at the start of every iteration.
This allows a positive step to be taken at every iteration, perhaps at the expense of violating the bounds
on x; sð Þ by a small amount.

Suppose that the value of the optional parameter Feasibility Tolerance is �. Over a period of K
iterations (where K is the value of the optional parameter Expand Frequency), the feasibility tolerance
actually used by the routine (i.e., the working feasibility tolerance) increases from 0:5� to � (in steps of
0:5�=K).

At certain stages the following ‘resetting procedure’ is used to remove small constraint infeasibilities.
First, all nonbasic variables are moved exactly onto their bounds. A count is kept of the number of
nontrivial adjustments made. If the count is nonzero, the basic variables are recomputed. Finally, the
working feasibility tolerance is reinitialized to 0:5�.

If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle of
iterations is started. (The decision to resume the feasibility phase or optimality phase is based on
comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when the routine reaches an apparently optimal, infeasible or
unbounded solution, unless this situation has already occurred twice. If any nontrivial adjustments are
made, iterations are continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration, but also provides
a potential choice of constraints to be added to the working set. All constraints at a distance � (where
� � �M) along p from the current point are then viewed as acceptable candidates for inclusion in the
working set. The constraint whose normal makes the largest angle with the search direction is added to
the working set. This strategy helps keep the basis matrix B well-conditioned.

12 Optional Parameters

Several optional parameters in E04NKF/E04NKA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal arguments of E04NKF/E04NKA these optional
parameters have associated default values that are appropriate for most problems. Therefore, you need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.
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Check Frequency

Crash Option

Crash Tolerance

Defaults

Expand Frequency

Factorization Frequency

Feasibility Tolerance

Infinite Bound Size

Infinite Step Size

Iteration Limit

Iters

Itns

List

LU Factor Tolerance

LU Singularity Tolerance

LU Update Tolerance

Maximize

Minimize

Monitoring File

Nolist

Optimality Tolerance

Partial Price

Pivot Tolerance

Print Level

Rank Tolerance

Scale Option

Scale Tolerance

Superbasics Limit

Optional parameters may be specified by calling one, or both, of the routines E04NLF/E04NLA and
E04NMF/E04NMA before a call to E04NKF/E04NKA.

E04NLF/E04NLA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04NLF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04NLF/
E04NLA should be consulted for a full description of this method of supplying optional parameters.

E04NMF/E04NMA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04NMF (’Print Level = 5’)

E04NMF/E04NMA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by E04NKF/E04NKA (unless they define invalid values) and so remain
in effect for subsequent calls unless altered by you.
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12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value is used whenever the condition ij j � 100000000 is satisfied and where the
symbol � is a generic notation for machine precision (see X02AJF);

Keywords and character values are case and white space insensitive.

Check Frequency i Default ¼ 60

Every ith iteration after the most recent basis factorization, a numerical test is made to see if the current
solution x; sð Þ satisfies the linear constraints Ax� s ¼ 0. If the largest element of the residual vector
r ¼ Ax� s is judged to be too large, the current basis is refactorized and the basic variables
recomputed to satisfy the constraints more accurately. If i < 0, the default value is used. If i ¼ 0, the
value i ¼ 99999999 is used and effectively no checks are made.

Crash Option i Default ¼ 2

Note that this option does not apply when START ¼ W (see Section 5).

If START ¼ C , an internal Crash procedure is used to select an initial basis from various rows and
columns of the constraint matrix A �I

� �
. The value of i determines which rows and columns are

initially eligible for the basis, and how many times the Crash procedure is called. If i ¼ 0, the all-slack
basis B ¼ �I is chosen. If i ¼ 1, the Crash procedure is called once (looking for a triangular basis in
all rows and columns of the linear constraint matrix A). If i ¼ 2, the Crash procedure is called twice
(looking at any equality constraints first followed by any inequality constraints). If i < 0 or i > 2, the
default value is used.

If i ¼ 1 or 2, certain slacks on inequality rows are selected for the basis first. (If i ¼ 2, numerical
values are used to exclude slacks that are close to a bound.) The Crash procedure then makes several
passes through the columns of A, searching for a basis matrix that is essentially triangular. A column is
assigned to ‘pivot’ on a particular row if the column contains a suitably large element in a row that has
not yet been assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For
remaining unassigned rows, slack variables are inserted to complete the basis.

Crash Tolerance r Default ¼ 0:1

This value allows the Crash procedure to ignore certain ‘small’ nonzero elements in the constraint
matrix A while searching for a triangular basis. For each column of A, if amax is the largest element in
the column, other nonzeros in that column are ignored if they are less than (or equal to) amax � r.
When r > 0, the basis obtained by the Crash procedure may not be strictly triangular, but it is likely to
be nonsingular and almost triangular. The intention is to obtain a starting basis with more column
variables and fewer (arbitrary) slacks. A feasible solution may be reached earlier for some problems. If
r < 0 or r � 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Expand Frequency i Default ¼ 10000

This option is part of an anti-cycling procedure (see Section 11.4) designed to allow progress even on
highly degenerate problems.

E04NKF NAG Library Manual

E04NKF.24 Mark 26



For LP problems, the strategy is to force a positive step at every iteration, at the expense of violating
the constraints by a small amount. Suppose that the value of the optional parameter Feasibility
Tolerance is �. Over a period of i iterations, the feasibility tolerance actually used by E04NKF/
E04NKA (i.e., the working feasibility tolerance) increases from 0:5� to � (in steps of 0:5�=i).

For QP problems, the same procedure is used for iterations in which there is only one superbasic
variable. (Cycling can only occur when the current solution is at a vertex of the feasible region.) Thus,
zero steps are allowed if there is more than one superbasic variable, but otherwise positive steps are
enforced.

Increasing the value of i helps reduce the number of slightly infeasible nonbasic basic variables (most
of which are eliminated during the resetting procedure). However, it also diminishes the freedom to
choose a large pivot element (see optional parameter Pivot Tolerance).

If i < 0, the default value is used. If i ¼ 0, the value i ¼ 99999999 is used and effectively no anti-
cycling procedure is invoked.

Factorization Frequency i Default ¼ 100

If i > 0, at most i basis changes will occur between factorizations of the basis matrix. For LP problems,
the basis factors are usually updated at every iteration. For QP problems, fewer basis updates will occur
as the solution is approached. The number of iterations between basis factorizations will therefore
increase. During these iterations a test is made regularly according to the value of optional parameter
Check Frequency to ensure that the linear constraints Ax� s ¼ 0 are satisfied. If necessary, the basis
will be refactorized before the limit of i updates is reached. If i � 0, the default value is used.

Feasibility Tolerance r Default ¼ max 10�6;
ffiffi
�
p� �

If r � �, r defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point
(including slack variables). For example, if the variables and the coefficients in the linear constraints are
of order unity, and the latter are correct to about five decimal digits, it would be appropriate to specify r
as 10�5. If r < �, the default value is used.

E04NKF/E04NKA attempts to find a feasible solution before optimizing the objective function. If the
sum of infeasibilities cannot be reduced to zero, the problem is assumed to be infeasible. Let Sinf be
the corresponding sum of infeasibilities. If Sinf is quite small, it may be appropriate to raise r by a
factor of 10 or 100. Otherwise, some error in the data should be suspected. Note that the routine does
not attempt to find the minimum value of Sinf.

If the constraints and variables have been scaled (see Scale Option), then feasibility is defined in terms
of the scaled problem (since it is more likely to be meaningful).

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r � 0, the default value is used.

Infinite Step Size r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is not positive
definite.) If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

Iteration Limit i Default ¼ max 50; 5 nþmð Þð Þ
Iters
Itns

The value of i specifies the maximum number of iterations allowed before termination. Setting i ¼ 0
and Print Level > 0 means that the workspace needed to start solving the problem will be computed
and printed, but no iterations will be performed. If i < 0, the default value is used.

E04 – Minimizing or Maximizing a Function E04NKF

Mark 26 E04NKF.25



List Default for E04NKF ¼ List
Nolist Default for E04NKA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist
may be used to suppress the printing and optional parameter List may be used to restore printing.

LU Factor Tolerance r1 Default ¼ 100:0
LU Update Tolerance r2 Default ¼ 10:0

The values of r1 and r2 affect the stability and sparsity of the basis factorization B ¼ LU , during
refactorization and updates respectively. The lower triangular matrix L is a product of matrices of the
form

1
� 1

� �
where the multipliers � will satisfy �j j � ri. The default values of r1 and r2 usually strike a good
compromise between stability and sparsity. For large and relatively dense problems, setting r1 and r2 to
25 (say) may give a marked improvement in sparsity without impairing stability to a serious degree.

Note that for band matrices it may be necessary to set r1 in the range 1 � r1 < 2 in order to achieve
stability. If r1 < 1 or r2 < 1, the default value is used.

LU Singularity Tolerance r Default ¼ �0:67

If r > 0, r defines the singularity tolerance used to guard against ill-conditioned basis matrices.
Whenever the basis is refactorized, the diagonal elements of U are tested as follows. If ujj

		 		 � r or
ujj
		 		 < r�max

i
uij
		 		, the jth column of the basis is replaced by the corresponding slack variable. If

r � 0, the default value is used.

Minimize Default
Maximize

This option specifies the required direction of the optimization. It applies to both linear and nonlinear
terms (if any) in the objective function. Note that if two problems are the same except that one
minimizes f xð Þ and the other maximizes �f xð Þ, their solutions will be the same but the signs of the
dual variables 	i and the reduced gradients dj (see Section 11.3) will be reversed.

Monitoring File i Default ¼ �1
If i � 0 and Print Level > 0 (see Print Level), monitoring information produced by E04NKF/E04NKA
is sent to a file with logical unit number i. If i < 0 and/or Print Level ¼ 0, the default value is used and
hence no monitoring information is produced.

Optimality Tolerance r Default ¼ max 10�6;
ffiffi
�
p� �

If r � �, r is used to judge the size of the reduced gradients dj ¼ gj � 	Taj. By definition, the reduced
gradients for basic variables are always zero. Optimality is declared if the reduced gradients for any
nonbasic variables at their lower or upper bounds satisfy �r�max 1; 	k kð Þ � dj � r�max 1; 	k kð Þ,
and if dj

		 		 � r�max 1; 	k kð Þ for any superbasic variables. If r < �, the default value is used.

Partial Price i Default ¼ 10

Note that this option does not apply to QP problems.

This option is recommended for large FP or LP problems that have significantly more variables than
constraints (i.e., n� m). It reduces the work required for each pricing operation (i.e., when a nonbasic
variable is selected to enter the basis). If i ¼ 1, all columns of the constraint matrix A �I

� �
are

searched. If i > 1, A and �I are partitioned to give i roughly equal segments Aj ; Kj , for j ¼ 1; 2; . . . ; p
(modulo p). If the previous pricing search was successful on Aj�1; Kj�1, the next search begins on the
segments Aj;Kj. If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to enter the basis. If nothing is
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found, the search continues on the next segments Ajþ1; Kjþ1, and so on. If i � 0, the default value is
used.

Pivot Tolerance r Default ¼ �0:67

If r > 0, r is used to prevent columns entering the basis if they would cause the basis to become almost
singular. If r � 0, the default value is used.

Print Level i Default for E04NKF ¼ 10
Default for E04NKA ¼ 0

The value of i controls the amount of printout produced by E04NKF/E04NKA, as indicated below. A
detailed description of the printed output is given in Section 9.1 (summary output at each iteration and
the final solution) and Section 13 (monitoring information at each iteration). Note that the summary
output will not exceed 80 characters per line and that the monitoring information will not exceed 120
characters per line. If i < 0, the default value is used.

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.
1 The final solution only.
5 One line of summary output for each iteration (no printout of the final solution).

� 10 The final solution and one line of summary output for each iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File:

i Output

0 No output.
1 The final solution only.
5 One long line of output for each iteration (no printout of the final solution).

� 10 The final solution and one long line of output for each iteration.
� 20 The final solution, one long line of output for each iteration, matrix statistics (initial status of

rows and columns, number of elements, density, biggest and smallest elements, etc.), details of
the scale factors resulting from the scaling procedure (if Scale Option ¼ 1 or 2 (see the
description of the optional parameter Scale Option), basis factorization statistics and details of
the initial basis resulting from the Crash procedure (if START ¼ C ; see Section 5).

If Print Level > 0 and the unit number defined by optional parameter Monitoring File is the same as
that defined by X04ABF, then the summary output is suppressed.

Rank Tolerance r Default ¼ 100�

Scale Option i Default ¼ 2

This option enables you to scale the variables and constraints using an iterative procedure due to Fourer
(1982), which attempts to compute row scales ri and column scales cj such that the scaled matrix
coefficients �aij ¼ aij � cj=ri

� �
are as close as possible to unity. This may improve the overall efficiency

on some problems. (The lower and upper bounds on the variables and slacks for the scaled problem are
redefined as �lj ¼ lj=cj and �uj ¼ uj=cj respectively, where cj 	 rj�n if j > n.)

If i ¼ 0, no scaling is performed. If i ¼ 1, all rows and columns of the constraint matrix A are scaled. If
i ¼ 2, an additional scaling is performed that may be helpful when the solution x is large; it takes into
account columns of A �I

� �
that are fixed or have positive lower bounds or negative upper bounds. If

i < 0 or i > 2, the default value is used.

Scale Tolerance r Default ¼ 0:9

Note that this option does not apply when Scale Option ¼ 0.
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If 0 < r < 1, r is used to control the number of scaling passes to be made through the constraint matrix
A. At least 3 (and at most 10) passes will be made. More precisely, let ap denote the largest column

ratio (i.e., biggest element
smallest element

in some sense) after the pth scaling pass through A. The scaling procedure is

terminated if ap � ap�1 � r for some p � 3. Thus, increasing the value of r from 0:9 to 0:99 (say) will
probably increase the number of passes through A.

If r � 0 or r � 1, the default value is used.

Superbasics Limit i Default ¼ min nH þ 1; nð Þ
Note that this option does not apply to FP or LP problems.

The value of i specifies ‘how nonlinear’ you expect the QP problem to be. If i � 0, the default value is
used.

13 Description of Monitoring Information

This section describes the intermediate printout and final printout which constitutes the monitoring
information produced by E04NKF/E04NKA. (See also the description of the optional parameters
Monitoring File and Print Level.) You can control the level of printed output.

When Print Level ¼ 5 or � 10 and Monitoring File � 0, the following line of intermediate printout
( < 120 characters) is produced at every iteration on the unit number specified by optional parameter
Monitoring File. Unless stated otherwise, the values of the quantities printed are those in effect on
completion of the given iteration.

Itn is the iteration count.

pp is the partial price indicator. The variable selected by the last pricing operation
came from the ppth partition of A and �I. Note that pp is reset to zero whenever
the basis is refactorized.

dj is the value of the reduced gradient (or reduced cost) for the variable selected by
the pricing operation at the start of the current iteration.

+S is the variable selected by the pricing operation to be added to the superbasic set.

-S is the variable chosen to leave the superbasic set.

-BS is the variable removed from the basis (if any) to become nonbasic.

Step is the value of the step length � taken along the current search direction p. The
variables x have just been changed to xþ �p. If a variable is made superbasic
during the current iteration (i.e., +S is positive), Step will be the step to the
nearest bound. During the optimality phase, the step can be greater than unity
only if the reduced Hessian is not positive definite.

Pivot is the rth element of a vector y satisfying By ¼ aq whenever aq (the qth column
of the constraint matrix A �I

� �
) replaces the rth column of the basis matrix B.

Wherever possible, Step is chosen so as to avoid extremely small values of
Pivot (since they may cause the basis to be nearly singular). In extreme cases, it
may be necessary to increase the value of the optional parameter Pivot Tolerance
to exclude very small elements of y from consideration during the computation of
Step.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives the
sum of the magnitudes of constraint violations. If x is feasible, Objective is the
value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the
value of the true objective at the first feasible point.
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During the optimality phase, the value of the objective function will be
nonincreasing. During the feasibility phase, the number of constraint infeasi-
bilities will not increase until either a feasible point is found, or the optimality of
the multipliers implies that no feasible point exists.

L is the number of nonzeros in the basis factor L. Immediately after a basis
factorization B ¼ LU , this entry contains lenL. Further nonzeros are added to L
when various columns of B are later replaced. (Thus, L increases monotonically.)

U is the number of nonzeros in the basis factor U. Immediately after a basis
factorization B ¼ LU , this entry contains lenU. As columns of B are replaced,
the matrix U is maintained explicitly (in sparse form). The value of U may
fluctuate up or down; in general, it will tend to increase.

Ncp is the number of compressions required to recover workspace in the data structure
for U. This includes the number of compressions needed during the previous
basis factorization. Normally, Ncp should increase very slowly. If it does not,
increase LENIZ and LENZ by at least Lþ U and rerun E04NKF/E04NKA
(possibly using START ¼ W ; see Section 5).

Norm rg is dSk k, the Euclidean norm of the reduced gradient (see Section 11.3). During
the optimality phase, this norm will be approximately zero after a unit step. For
FP and LP problems, Norm rg is not printed.

Ns is the current number of superbasic variables. For FP and LP problems, Ns is not
printed.

Cond Hz is a lower bound on the condition number of the reduced Hessian (see
Section 11.2). The larger this number, the more difficult the problem. For FP and
LP
problems, Cond Hz is not printed.

When Print Level � 20 and Monitoring File � 0, the following lines of intermediate printout ( < 120
characters) are produced on the unit number specified by optional parameter Monitoring File whenever

the matrix B or BS ¼ B S
� �T

is factorized. Gaussian elimination is used to compute an LU

factorization of B or BS, where PLPT is a lower triangular matrix and PUQ is an upper triangular
matrix for some permutation matrices P and Q. The factorization is stabilized in the manner described
under the optional parameter LU Factor Tolerance (default value ¼ 100:0).

Factorize is the factorization count.

Demand is a code giving the reason for the present factorization as follows:

Code Meaning

0 First LU factorization.

1 The number of updates reached the value of the optional parameter
Factorization Frequency.

2 The number of nonzeros in the updated factors has increased
significantly.

7 Not enough storage to update factors.

10 Row residuals too large (see the description for the optional parameter
Check Frequency).

11 Ill-conditioning has caused inconsistent results.

Iteration is the iteration count.

Nonlinear is the number of nonlinear variables in the current basis B (not printed if BS is
factorized).

Linear is the number of linear variables in B (not printed if BS is factorized).

Slacks is the number of slack variables in B (not printed if BS is factorized).
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Elems is the number of nonzeros in B (not printed if BS is factorized).

Density is the percentage nonzero density of B (not printed if BS is factorized). More
precisely, Density ¼ 100� Elems= Nonlinearþ Linearþ Slacksð Þ2.

Compressns is the number of times the data structure holding the partially factorized matrix
needed to be compressed, in order to recover unused workspace. Ideally, it should
be zero. If it is more than 3 or 4, increase LENIZ and LENZ and rerun E04NKF/
E04NKA (possibly using START ¼ W ; see Section 5).

Merit is the average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be c� 1ð Þ r� 1ð Þ, where c and r are the
number of nonzeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of m such quantities. It
gives an indication of how much work was required to preserve sparsity during
the factorization.

lenL is the number of nonzeros in L.

lenU is the number of nonzeros in U .

Increase is the percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in B. More precisely, Increase ¼ 100� lenLþ lenU�ð
ElemsÞ=Elems.

m is the number of rows in the problem. Note that m ¼ Utþ Ltþ bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0:3.

Lmax is the maximum subdiagonal element in the columns of L. This will not exceed
the value of the optional parameter LU Factor Tolerance.

Bmax is the maximum nonzero element in B (not printed if BS is factorized).

BSmax is the maximum nonzero element in BS (not printed if B is factorized).

Umax is the maximum nonzero element in U , excluding elements of B that remain in U
unchanged. (For example, if a slack variable is in the basis, the corresponding
row of B will become a row of U without modification. Elements in such rows
will not contribute to Umax. If the basis is strictly triangular then none of the
elements of B will contribute and Umax will be zero.)

Ideally, Umax should not be significantly larger than Bmax. If it is several orders
of magnitude larger, it may be advisable to reset the optional parameter LU
Factor Tolerance to some value nearer unity.

Umax is not printed if BS is factorized.

Umin is the magnitude of the smallest diagonal element of PUQ (not printed if BS is
factorized).

Growth is the value of the ratio Umax/Bmax, which should not be too large.

Providing Lmax is not large (say, < 10:0), the ratio max Bmax; Umaxð Þ=Umin is an
estimate of the condition number of B. If this number is extremely large, the
basis is nearly singular and some numerical difficulties might occur. (However, an
effort is made to avoid near-singularity by using slacks to replace columns of B
that would have made Umin extremely small and the modified basis is
refactorized.)

Growth is not printed if BS is factorized.

Lt is the number of triangular columns of B at the left of L.

bp is the size of the ‘bump’ or block to be factorized nontrivially after the triangular
rows and columns of B have been removed.
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d2 is the number of columns remaining when the density of the basis matrix being
factorized has reached 0:6.

When Print Level � 20 and Monitoring File � 0, the following lines of intermediate printout ( < 80
characters) are produced on the unit number specified by optional parameter Monitoring File whenever
START ¼ C (see Section 5). They refer to the number of columns selected by the Crash procedure
during each of several passes through A, whilst searching for a triangular basis matrix.

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis, including those whose bounds are
rather far apart.

Preferred is the number of ‘preferred’ columns in the basis (i.e., ISTATEðjÞ ¼ 3 for some
j � n). It will be a subset of the columns for which ISTATEðjÞ ¼ 3 was
specified.

Unit is the number of unit columns in the basis.

Double is the number of double columns in the basis.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

When Print Level � 20 and Monitoring File � 0, the following lines of intermediate printout ( < 80
characters) are produced on the unit number specified by optional parameter Monitoring File. They
refer to the elements of the NAMES array (see Section 5).

Name gives the name for the problem (blank if problem unnamed).

Status gives the exit status for the problem (i.e., Optimal soln, Weak soln,
Unbounded, Infeasible, Excess itns, Error condn or Feasble soln)
followed by details of the direction of the optimization (i.e., (Min) or (Max)).

Objective gives the name of the free row for the problem (blank if objective unnamed).

RHS gives the name of the constraint right-hand side for the problem (blank if
objective unnamed).

Ranges gives the name of the ranges for the problem (blank if objective unnamed).

Bounds gives the name of the bounds for the problem (blank if objective unnamed).

When Print Level ¼ 1 or � 10 and Monitoring File � 0, the following lines of final printout ( < 120
characters) are produced on the unit number specified by optional parameter Monitoring File.

Let aj denote the jth column of A, for j ¼ 1; 2; . . . ; n. The following describes the printout for each
column (or variable). A full stop (.) is printed for any numerical value that is zero.

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj.

State gives the state of the variable (LL if nonbasic on its lower bound, UL if nonbasic
on its upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between
its bounds, BS if basic and SBS if superbasic).

A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value
of the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
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since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal (or very
close) to one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the Feasibility Tolerance.

N Not precisely optimal. The variable is nonbasic or superbasic. If the value
of the reduced gradient for the variable exceeds the value of the optional
parameter Optimality Tolerance, the solution would not be declared
optimal because the reduced gradient for the variable would not be
considered negligible.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Reduced Gradnt is the value of dj at the final iterate (see Section 11.3). For FP problems, dj is set
to zero.

m + j is the value of mþ j.
Let vi denote the ith row of A, for i ¼ 1; 2; . . . ;m. The following describes the printout for each row
(or constraint). A full stop (.) is printed for any numerical value that is zero.

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of �i.

State gives the state of vi (LL if active on its lower bound, UL if active on its upper
bound, EQ if active and fixed, BS if inactive when si is basic and SBS if inactive
when si is superbasic).

A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value
of the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal (or very
close) to one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the Feasibility Tolerance.

N Not precisely optimal. The variable is nonbasic or superbasic. If the value
of the reduced gradient for the variable exceeds the value of the optional
parameter Optimality Tolerance, the solution would not be declared
optimal because the reduced gradient for the variable would not be
considered negligible.

Activity is the value of vi at the final iterate.
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Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if
any), it is set to Activity.)

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Dual Activity is the value of the dual variable 	i (the Lagrange multiplier for �i; see
Section 11.3). For FP problems, 	i is set to zero.

i gives the index i of the ith row.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.
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NAG Library Routine Document

E04NLF/E04NLA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply optional parameters to E04NKF/E04NKA from an external file. More precisely, E04NLF
must be used to supply optional parameters to E04NKF and E04NLA must be used to supply optional
parameters to E04NKA.

E04NLA is a version of E04NLF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04NLA.

2 Specification

2.1 Specification for E04NLF

SUBROUTINE E04NLF (IOPTNS, INFORM)

INTEGER IOPTNS, INFORM

2.2 Specification for E04NLA

SUBROUTINE E04NLA (IOPTNS, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IOPTNS, IWSAV(380), INFORM
REAL (KIND=nag_wp) RWSAV(285)
LOGICAL LWSAV(20)

3 Description

E04NLF/E04NLA may be used to supply values for optional parameters to E04NKF/E04NKA.
E04NLF/E04NLA reads an external file and each line of the file defines a single optional parameter. It
is only necessary to supply values for those arguments whose values are to be different from their
default values.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print level = 5

End
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For E04NLF each line of the file is normally printed as it is read, on the current advisory message unit
(see X04ABF), but printing may be suppressed using the keyword Nolist. To suppress printing of
Begin, Nolist must be the first option supplied as in the file:

Begin
Nolist
Print level = 5

End

Printing will automatically be turned on again after a call to E04NKF or E04NLF and may be turned on
again at any time using the keyword List.

For E04NLA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04NKF/E04NKA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04NKF/E04NKA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NKF/E04NKA.

4 References

None.

5 Arguments

1: IOPTNS – INTEGER Input

On entry: the unit number of the options file to be read.

Constraint: 0 � IOPTNS � 99.

2: INFORM – INTEGER Output

Note: for E04NLA, INFORM does not occur in this position in the argument list. See the
additional arguments described below.

On exit: contains zero if the options file has been successfully read and a value > 0 otherwise
(see Section 6).

Note: the following are additional arguments for specific use with E04NLA. Users of E04NLF therefore
need not read the remainder of this description.

3: LWSAVð20Þ – LOGICAL array Communication Array
4: IWSAVð380Þ – INTEGER array Communication Array
5: RWSAVð285Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04NLA, E04NKA, E04NMA or E04WBF.

6: INFORM – INTEGER Output

Note: see the argument description for INFORM above.

6 Error Indicators and Warnings

INFORM ¼ 1

IOPTNS is not in the range 0; 99½ �.
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INFORM ¼ 2

Begin was found, but end-of-file was found before End was found.

INFORM ¼ 3

end-of-file was found before Begin was found.

INFORM ¼ 4

Not used.

INFORM ¼ 5

One or more lines of the options file is invalid. Check that all keywords are neither ambiguous
nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NLF/E04NLA is not threaded in any implementation.

9 Further Comments

E04NMF/E04NMA may also be used to supply optional parameters to E04NKF/E04NKA.

10 Example

This example solves the same problem as the example for E04NKF/E04NKA, but in addition illustrates
the use of E04NLF/E04NLA and E04NMF/E04NMA to set optional parameters for E04NKF/E04NKA.

In this example the options file read by E04NLF/E04NLA is appended to the data file for the program
(see Section 10.2). It would usually be more convenient in practice to keep the data file and the options
file separate.

10.1 Program Text

the following program illustrates the use of E04NLF. An equivalent program illustrating the use of
E04NLA is available with the supplied Library and is also available from the NAG web site.

! E04NLF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04nlfe_mod

! E04NLF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: qphx

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, nin = 5, ninopt = 7, &

nout = 6
Contains

Subroutine qphx(nstate,ncolh,x,hx)
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! Routine to compute H*x. (In this version of QPHX, the Hessian
! matrix H is not referenced explicitly.)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncolh, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hx(ncolh)
Real (Kind=nag_wp), Intent (In) :: x(ncolh)

! .. Executable Statements ..
If (nstate==1) Then

! First entry.

Write (nout,*)
Write (nout,99999) ncolh
Flush (nout)

End If

hx(1) = 2.0E0_nag_wp*x(1)
hx(2) = 2.0E0_nag_wp*x(2)
hx(3) = 2.0E0_nag_wp*(x(3)+x(4))
hx(4) = hx(3)
hx(5) = 2.0E0_nag_wp*x(5)
hx(6) = 2.0E0_nag_wp*(x(6)+x(7))
hx(7) = hx(6)

If (nstate>=2) Then

! Final entry.

Write (nout,*)
Write (nout,99998)
Flush (nout)

End If

Return

99999 Format (1X,’This is the E04NLF example. NCOLH =’,I4,’.’)
99998 Format (1X,’Finished the E04NLF example.’)

End Subroutine qphx
End Module e04nlfe_mod
Program e04nlfe

! E04NLF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04nkf, e04nlf, e04nmf, nag_wp, x04abf, x04acf
Use e04nlfe_mod, Only: iset, nin, ninopt, nout, qphx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Character (*), Parameter :: fname = ’e04nlfe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj, sinf
Integer :: i, icol, ifail, inform, iobj, jcol, &

leniz, lenz, m, miniz, minz, mode, &
n, ncolh, ninf, nname, nnz, ns, &
outchn

Character (1) :: start
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), bl(:), bu(:), clamda(:), &
xs(:), z(:)

Integer, Allocatable :: ha(:), istate(:), iz(:), ka(:)
Character (8), Allocatable :: crname(:)
Character (8) :: names(5)

! .. Executable Statements ..
Write (nout,99997) ’E04NLF Example Program Results’
Flush (nout)

! Skip heading in data file.
Read (nin,*)
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Read (nin,*) n, m
Read (nin,*) nnz, iobj, ncolh, start, nname

Allocate (ha(nnz),ka(n+1),istate(n+m),a(nnz),bl(n+m),bu(n+m),xs(n+m), &
clamda(n+m),crname(nname))

Read (nin,*) names(1:5)
Read (nin,*) crname(1:nname)

! Read the matrix A from data file. Set up KA.

jcol = 1
ka(jcol) = 1

Do i = 1, nnz

! Element ( HA( I ), ICOL ) is stored in A( I ).

Read (nin,*) a(i), ha(i), icol

If (icol<jcol) Then

! Elements not ordered by increasing column index.

Write (nout,*)
Flush (nout)
Write (nout,99998) ’Element in column’, icol, &

’ found after element in column’, jcol, ’. Problem’, ’ abandoned.’
Flush (nout)
Go To 100

Else If (icol==jcol+1) Then

! Index in A of the start of the ICOL-th column equals I.

ka(icol) = i
jcol = icol

Else If (icol>jcol+1) Then

! Index in A of the start of the ICOL-th column equals I,
! but columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
! corresponding elements of KA to I.

ka((jcol+1):icol) = i
jcol = icol

End If

End Do

ka(n+1) = nnz + 1

! Columns N,N-1,...,ICOL+1 are empty. Set the corresponding
! elements of KA accordingly.

Do i = n, icol + 1, -1
ka(i) = ka(i+1)

End Do

Read (nin,*) bl(1:(n+m))
Read (nin,*) bu(1:(n+m))

If (start==’C’) Then
Read (nin,*) istate(1:n)

Else If (start==’W’) Then
Read (nin,*) istate(1:(n+m))

End If

Read (nin,*) xs(1:n)

! Set the unit number for advisory messages to OUTCHN.
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outchn = nout
Call x04abf(iset,outchn)

! Set three options using E04NMF.

Call e04nmf(’ Check Frequency = 10 ’)

Call e04nmf(’ Crash Tolerance = 0.05 ’)

Call e04nmf(’ Infinite Bound Size = 1.0E+25 ’)

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Read the options file for the remaining options.

Call e04nlf(ninopt,inform)

If (inform/=0) Then
Write (nout,99999) ’E04NLF terminated with INFORM = ’, inform
Flush (nout)
Go To 100

End If

! Solve the QP problem.
! First call is a workspace query

leniz = 1
lenz = 1
Allocate (iz(leniz),z(lenz))

ifail = 1
Call e04nkf(n,m,nnz,iobj,ncolh,qphx,a,ha,ka,bl,bu,start,names,nname, &

crname,ns,xs,istate,miniz,minz,ninf,sinf,obj,clamda,iz,leniz,z,lenz, &
ifail)

If (ifail/=0 .And. ifail/=12 .And. ifail/=13) Then
Write (nout,99999) ’Query call to E04NKF failed with IFAIL =’, ifail
Go To 100

End If

Deallocate (iz,z)

lenz = minz
leniz = miniz
Allocate (iz(leniz),z(lenz))

ifail = 0
Call e04nkf(n,m,nnz,iobj,ncolh,qphx,a,ha,ka,bl,bu,start,names,nname, &

crname,ns,xs,istate,miniz,minz,ninf,sinf,obj,clamda,iz,leniz,z,lenz, &
ifail)

100 Continue

99999 Format (1X,A,I5)
99998 Format (1X,A,I5,A,I5,A,A)
99997 Format (1X,A)

End Program e04nlfe
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10.2 Program Data

Begin * Example options file for E04NLF
Iteration Limit = 25 * (Default = 75)

Print Level = 1 * (Default = 10)
End

E04NLF Example Program Data
7 8 :Values of N and M

48 8 7 ’C’ 15 :Values of NNZ, IOBJ, NCOLH, START and NNAME
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ :End of NAMES
’...X1...’ ’...X2...’ ’...X3...’ ’...X4...’ ’...X5...’
’...X6...’ ’...X7...’ ’..ROW1..’ ’..ROW2..’ ’..ROW3..’
’..ROW4..’ ’..ROW5..’ ’..ROW6..’ ’..ROW7..’ ’..COST..’ :End of CRNAME

0.02 7 1
0.02 5 1
0.03 3 1
1.00 1 1
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
0.04 2 4

-2000.00 8 4
0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7 :End of matrix A
0.0 0.0 4.0E+02 1.0E+02 0.0 0.0 0.0 2.0E+03

-1.0E+26 -1.0E+26 -1.0E+26 -1.0E+26 1.5E+03 2.5E+02 -1.0E+26 :End of BL
2.0E+02 2.5E+03 8.0E+02 7.0E+02 1.5E+03 1.0E+26 1.0E+26 2.0E+03
6.0E+01 1.0E+02 4.0E+01 3.0E+01 1.0E+26 3.0E+02 1.0E+26 :End of BU
0 0 0 0 0 0 0 0 :End of ISTATE
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 :End of XS
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10.3 Program Results

E04NLF Example Program Results

Calls to E04NMF
---------------

Check Frequency = 10
Crash Tolerance = 0.05
Infinite Bound Size = 1.0E+25

OPTIONS file
------------

Begin * Example options file for E04NLF
Iteration Limit = 25 * (Default = 75)

Print Level = 1 * (Default = 10)
End

Workspace provided is IZ( 1), Z( 1).
To start solving the problem we need IZ( 428), Z( 358).

Exit E04NKF - Not enough integer workspace to start solving the problem.

*** E04NKF

Parameters
----------

Frequencies.
Check frequency......... 10 Expand frequency........ 10000
Factorization frequency. 100

LP Parameters.
Scale tolerance......... 9.00E-01 Feasibility tolerance... 1.00E-06
Iteration limit......... 25 Scale option............ 2
Optimality tolerance.... 1.00E-06 Partial price........... 10
Crash tolerance......... 5.00E-02 Pivot tolerance......... 2.04E-11
Crash option............ 2

QP objective.
Objective variables..... 7 Hessian columns......... 7
Superbasics limit....... 7

Miscellaneous.
Variables............... 7 Linear constraints...... 8
LU factor tolerance..... 1.00E+02 LU update tolerance..... 1.00E+01
LU singularity tolerance 2.04E-11 Monitoring file......... -1
EPS (machine precision). 1.11E-16 Print level............. 1
Infinite bound size..... 1.00E+25 Infinite step size...... 1.00E+25
COLD start.............. MINIMIZE................

Workspace provided is IZ( 428), Z( 358).
To start solving the problem we need IZ( 428), Z( 358).

This is the E04NLF example. NCOLH = 7.

Variable State Value Lower Bound Upper Bound Lagr Mult Residual

...X1... LL 0.00000 . 200.00 2361. .

...X2... BS 349.399 . 2500.0 -1.2975E-12 349.4

...X3... SBS 648.853 400.00 800.00 -5.7329E-13 151.1

...X4... SBS 172.847 100.00 700.00 6.4970E-13 72.85

...X5... BS 407.521 . 1500.0 9.1881E-13 407.5

...X6... BS 271.356 . None -1.1928E-12 271.4

...X7... BS 150.023 . None -1.4130E-12 150.0

E04NLF NAG Library Manual

E04NLF.8 Mark 26



Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual

..ROW1.. EQ 2000.00 2000.0 2000.0 -1.2901E+04 .

..ROW2.. BS 49.2316 None 60.000 . -10.77

..ROW3.. UL 100.000 None 100.00 -2325. .

..ROW4.. BS 32.0719 None 40.000 . -7.928

..ROW5.. BS 14.5572 None 30.000 . -15.44

..ROW6.. LL 1500.00 1500.0 None 1.4455E+04 .

..ROW7.. LL 250.000 250.00 300.00 1.4581E+04 .

..COST.. BS -2.988690E+06 None None -1.000 -2.9887E+06

Finished the E04NLF example.

Exit E04NKF - Optimal QP solution found.

Final QP objective value = -1847785.

Exit from QP problem after 10 iterations.
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NAG Library Routine Document

E04NMF/E04NMA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply individual optional parameters to E04NKF/E04NKA. More precisely, E04NMF must be used
to supply optional parameters to E04NKF and E04NMA must be used to supply optional parameters to
E04NKA.

E04NMA is a version of E04NMF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04NMA.

2 Specification

2.1 Specification for E04NMF

SUBROUTINE E04NMF (STR)

CHARACTER(*) STR

2.2 Specification for E04NMA

SUBROUTINE E04NMA (STR, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IWSAV(380), INFORM
REAL (KIND=nag_wp) RWSAV(285)
LOGICAL LWSAV(20)
CHARACTER(*) STR

3 Description

E04NMF/E04NMA may be used to supply values for optional parameters to E04NKF/E04NKA. It is
only necessary to call E04NMF/E04NMA for those arguments whose values are to be different from
their default values. One call to E04NMF/E04NMA sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

For E04NMF, each user-specified option is normally printed as it is defined, on the current advisory
message unit (see X04ABF), but this printing may be suppressed using the keyword Nolist. Thus the
statement

CALL E04NMF (’Nolist’)
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suppresses printing of this and subsequent options. Printing will automatically be turned on again after
a call to E04NKF and may be turned on again at any time using the keyword List.

For E04NMA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04NKF/E04NKA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04NKF/E04NKA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NKF/E04NKA.

4 References

None.

5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 and in Section 12 in E04NKF/
E04NKA).

Note: the following are additional arguments for specific use with E04NMA. Users of E04NMF
therefore need not read the remainder of this description.

2: LWSAVð20Þ – LOGICAL array Communication Array
3: IWSAVð380Þ – INTEGER array Communication Array
4: RWSAVð285Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04NMA, E04NKA, E04NLA or E04WBF.

5: INFORM – INTEGER Output

On exit: contains zero if a valid option string has been supplied and a value > 0 otherwise (see
Section 6).

6 Error Indicators and Warnings

INFORM ¼ 5

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NMF/E04NMA is not threaded in any implementation.

9 Further Comments

E04NLF/E04NLA may also be used to supply optional parameters to E04NKF/E04NKA.
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10 Example

See Section 10 in E04NLF/E04NLA.

E04 – Minimizing or Maximizing a Function E04NMF

Mark 26 E04NMF.3 (last)





NAG Library Routine Document

E04NPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04NPF is used to initialize the routine E04NQF.

2 Specification

SUBROUTINE E04NPF (CW, LENCW, IW, LENIW, RW, LENRW, IFAIL)

INTEGER LENCW, IW(LENIW), LENIW, LENRW, IFAIL
REAL (KIND=nag_wp) RW(LENRW)
CHARACTER(8) CW(LENCW)

3 Description

E04NPF initializes the arrays CW, IW and RW for the routine E04NQF.

4 References

None.

5 Arguments

1: CWðLENCWÞ – CHARACTER(8) array Communication Array
2: LENCW – INTEGER Input

On entry: the dimension of the array CW as declared in the (sub)program from which E04NPF is
called.

Constraint: LENCW � 600, see routine E04NQF.

3: IWðLENIWÞ – INTEGER array Communication Array
4: LENIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04NPF is
called.

Constraint: LENIW � 600, see routine E04NQF.

5: RWðLENRWÞ – REAL (KIND=nag_wp) array Communication Array
6: LENRW – INTEGER Input

On entry: the dimension of the array RW as declared in the (sub)program from which E04NPF is
called.

Constraint: LENRW � 600, see routine E04NQF.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the communication array lengths LENCW, LENIW or LENRW is less than 600.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NPF is not threaded in any implementation.

9 Further Comments

The time taken by E04NPF is negligible.

10 Example

See Section 10 in E04NQF and E04NRF.
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NAG Library Routine Document

E04NQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

E04NQF solves sparse linear programming or convex quadratic programming problems. The
initialization routine E04NPF must have been called before calling E04NQF.

2 Specification

SUBROUTINE E04NQF (START, QPHX, M, N, NE, NNAME, LENC, NCOLH, IOBJ,
OBJADD, PROB, ACOL, INDA, LOCA, BL, BU, C, NAMES,
HELAST, HS, X, PI, RC, NS, NINF, SINF, OBJ, CW,
LENCW, IW, LENIW, RW, LENRW, CUSER, IUSER, RUSER,
IFAIL)

&
&
&
&

INTEGER M, N, NE, NNAME, LENC, NCOLH, IOBJ, INDA(NE),
LOCA(N+1), HELAST(N+M), HS(N+M), NS, NINF, LENCW,
IW(LENIW), LENIW, LENRW, IUSER(*), IFAIL

&
&

REAL (KIND=nag_wp) OBJADD, ACOL(NE), BL(N+M), BU(N+M), C(max(1,LENC)),
X(N+M), PI(M), RC(N+M), SINF, OBJ, RW(LENRW),
RUSER(*)

&
&

CHARACTER(1) START
CHARACTER(8) PROB, NAMES(NNAME), CW(LENCW), CUSER(*)
EXTERNAL QPHX

Before calling E04NQF or one of the option setting routines E04NRF, E04NSF, E04NTF or E04NUF,
E04NPF must be called.

The specification for E04NPF is:

SUBROUTINE E04NPF (CW, LENCW, IW, LENIW, RW, LENRW, IFAIL)

INTEGER LENCW, IW(LENIW), LENIW, LENRW, IFAIL
REAL (KIND=nag_wp) RW(LENRW)
CHARACTER(8) CW(LENCW)

LENCW, LENIW and LENRW, the declared lengths of CW, IW and RW respectively, must satisfy:

LENCW � 600

LENIW � 600

LENRW � 600

The contents of the arrays CW, IW and RW must not be altered between calling routines E04NPF,
E04NQF, E04NRF, E04NSF, E04NTF and E04NUF.

After calling E04NQF you can call one or both of the routines E04NXF or E04NYF to obtain the
current value of an optional parameter.
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3 Description

E04NQF is designed to solve large-scale linear or quadratic programming problems of the form:

minimize
x2Rn

f xð Þ subject to l � x
Ax

� �
� u; ð1Þ

where x is an n-vector of variables, l and u are constant lower and upper bounds, A is an m by n
sparse matrix and f xð Þ is a linear or quadratic objective function that may be specified in a variety of
ways, depending upon the particular problem being solved. The optional parameter Maximize may be
used to specify a problem in which f xð Þ is maximized instead of minimized.

Upper and lower bounds are specified for all variables and constraints. This form allows full generality
in specifying various types of constraint. In particular, the jth constraint may be defined as an equality
by setting lj ¼ uj. If certain bounds are not present, the associated elements of l or u may be set to
special values that are treated as �1 or þ1.

The possible forms for the function f xð Þ are summarised in Table 1. The most general form for f xð Þ is

f xð Þ ¼ q þ cTxþ 1

2
xTHx ¼ q þ

Xn
j¼1

cjxj þ
1

2

Xn
i¼1

Xn
j¼1

xiHijxj

where q is a constant, c is a constant n-vector and H is a constant symmetric n by n matrix with
elements Hij

� 
. In this form, f is a quadratic function of x and (1) is known as a quadratic program

(QP). E04NQF is suitable for all convex quadratic programs. The defining feature of a convex QP is that
the matrix H must be positive semidefinite, i.e., it must satisfy xTHx � 0 for all x. If not, f xð Þ is
nonconvex and E04NQF will terminate with the error indicator IFAIL ¼ 11. If f xð Þ is nonconvex it
may be more appropriate to call E04VHF instead.

Problem type Objective function f xð Þ Hessian matrix H

FP Not applicable q ¼ c ¼ H ¼ 0

LP q þ cTx H ¼ 0

QP q þ cTxþ 1
2x

THx Symmetric positive semidefinite

Table 1
Choices for the objective function f xð Þ

If H ¼ 0, then f xð Þ ¼ q þ cTx and the problem is known as a linear program (LP). In this case, rather
than defining an H with zero elements, you can define H to have no columns by setting NCOLH ¼ 0
(see Section 5).

If H ¼ 0, q ¼ 0, and c ¼ 0, there is no objective function and the problem is a feasible point problem
(FP), which is equivalent to finding a point that satisfies the constraints on x. In the situation where no
feasible point exists, several options are available for finding a point that minimizes the constraint
violations (see the description of the optional parameter Elastic Mode).

E04NQF is suitable for large LPs and QPs in which the matrix A is sparse, i.e., when the number of
zero elements is sufficiently large that it is worthwhile using algorithms which avoid computations and
storage involving zero elements. The matrix A is input to E04NQF by means of the three array
arguments ACOL, INDA and LOCA. This allows you to specify the pattern of nonzero elements in A.

E04NQF exploits structure in H by requiring H to be defined implicitly in a subroutine that computes
the product Hx for any given vector x. In many cases, the product Hx can be computed very efficiently
for any given x, e.g., H may be a sparse matrix, or a sum of matrices of rank-one.

For problems in which A can be treated as a dense matrix, it is usually more efficient to use E04MFF/
E04MFA, E04NCF/E04NCA or E04NFF/E04NFA.

E04NQF NAG Library Manual

E04NQF.2 Mark 26



There is considerable flexibility allowed in the definition of f xð Þ in Table 1. The vector c defining the
linear term cTx can be input in three ways: as a sparse row of A; as an explicit dense vector c; or as
both a sparse row and an explicit vector (in which case, cTx will be the sum of two linear terms). When
stored in A, c is the IOBJth row of A, which is known as the objective row. The objective row must
always be a free row of A in the sense that its lower and upper bounds must be �1 and þ1. Storing c
as part of A is recommended if c is a sparse vector. Storing c as an explicit vector is recommended for a
sequence of problems, each with a different objective (see arguments C and LENC).

The upper and lower bounds on the m elements of Ax are said to define the general constraints of the
problem. Internally, E04NQF converts the general constraints to equalities by introducing a set of slack
variables s, where s ¼ s1; s2; . . . ; smð ÞT. For example, the linear constraint 5 � 2x1 þ 3x2 � þ1 is
replaced by 2x1 þ 3x2 � s1 ¼ 0, together with the bounded slack 5 � s1 � þ1. The problem defined
by (1) can therefore be re-written in the following equivalent form:

minimize
x2Rn;s2Rm

f xð Þ subject to Ax� s ¼ 0; l � x
s

� �
� u:

Since the slack variables s are subject to the same upper and lower bounds as the elements of Ax, the
bounds on x and Ax can simply be thought of as bounds on the combined vector x; sð Þ. (In order to
indicate their special role in QP problems, the original variables x are sometimes known as ‘column
variables’, and the slack variables s are known as ‘row variables’.)

Each LP or QP problem is solved using a two-phase iterative procedure (in which the general
constraints are satisfied throughout): a feasibility phase (Phase 1), in which the sum of infeasibilities
with respect to the bounds on x and s is minimized to find a feasible point that satisfies all constraints
within a specified feasibility tolerance; and an optimality phase (Phase 2), in which f xð Þ is minimized
(or maximized) by constructing a sequence of iterates that lies within the feasible region.

Phase 1 involves solving a linear program of the form

Phase 1

minimize
x;s;v;w

Xnþm
j¼1

vj þ wj
� �

subject to Ax� s ¼ 0; l � x
s

� �
�vþ w � u; v � 0; w � 0

which is equivalent to minimizing the sum of the constraint violations. If the constraints are feasible (i.
e., at least one feasible point exists), eventually a point will be found at which both v and w are zero.
Then the associated value of x; sð Þ satisfies the original constraints and is used as the starting point for
the Phase 2 iterations for minimizing f xð Þ.
If the constraints are infeasible (i.e., v 6¼ 0 or w 6¼ 0 at the end of Phase 1), no solution exists for (1)
and you have the option of either terminating or continuing in so-called elastic mode (see the discussion
of the optional parameter Elastic Mode). In elastic mode, a ‘relaxed’ or ‘perturbed’ problem is solved
in which f xð Þ is minimized while allowing some of the bounds to become ‘elastic’, i.e., to change from
their specified values. Variables subject to elastic bounds are known as elastic variables. An elastic
variable is free to violate one or both of its original upper or lower bounds. You are able to assign
which bounds will become elastic if elastic mode is ever started (see the argument HELAST in
Section 5).

To make the relaxed problem meaningful, E04NQF minimizes f xð Þ while (in some sense) finding the
‘smallest’ violation of the elastic variables. In the situation where all the variables are elastic, the
relaxed problem has the form
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Phase 2 (�)

minimize
x;s;v;w

f xð Þ þ �
Xnþm
j¼1

vj þ wj
� �

subject to Ax� s ¼ 0; l � x
s

� �
�vþ w � u; v � 0; w � 0,

where � is a non-negative argument known as the elastic weight (see the description of the optional
parameter Elastic Weight), and f xð Þ þ �

P
j

vj þ wj
� �

is called the composite objective. In the more

general situation where only a subset of the bounds are elastic, the v's and w's for the non-elastic
bounds are fixed at zero.

The elastic weight can be chosen to make the composite objective behave like the original objective
f xð Þ, the sum of infeasibilities, or anything in-between. If � ¼ 0, E04NQF will attempt to minimize f
subject to the (true) upper and lower bounds on the non-elastic variables (and declare the problem
infeasible if the non-elastic variables cannot be made feasible).

At the other extreme, choosing � sufficiently large will have the effect of minimizing the sum of the
violations of the elastic variables subject to the original constraints on the non-elastic variables.
Choosing a large value of the elastic weight is useful for defining a ‘least-infeasible’ point for an
infeasible problem.

In Phase 1 and elastic mode, all calculations involving v and w are done implicitly in the sense that an
elastic variable xj is allowed to violate its lower bound (say) and an explicit value of v can be
recovered as vj ¼ lj � xj.
A constraint is said to be active or binding at x if the associated element of either x or Ax is equal to
one of its upper or lower bounds. Since an active constraint in Ax has its associated slack variable at a
bound, the status of both simple and general upper and lower bounds can be conveniently described in
terms of the status of the variables x; sð Þ. A variable is said to be nonbasic if it is temporarily fixed at
its upper or lower bound. It follows that regarding a general constraint as being active is equivalent to
thinking of its associated slack as being nonbasic.

At each iteration of an active-set method, the constraints Ax� s ¼ 0 are (conceptually) partitioned into
the form

BxB þ SxS þNxN ¼ 0;

where xN consists of the nonbasic elements of x; sð Þ and the basis matrix B is square and nonsingular.
The elements of xB and xS are called the basic and superbasic variables respectively; with xN they are
a permutation of the elements of x and s. At a QP solution, the basic and superbasic variables will lie
somewhere between their upper or lower bounds, while the nonbasic variables will be equal to one of
their bounds. At each iteration, xS is regarded as a set of independent variables that are free to move in
any desired direction, namely one that will improve the value of the objective function (or sum of
infeasibilities). The basic variables are then adjusted in order to ensure that x; sð Þ continues to satisfy
Ax� s ¼ 0. The number of superbasic variables (nS say) therefore indicates the number of degrees of
freedom remaining after the constraints have been satisfied. In broad terms, nS is a measure of how
nonlinear the problem is. In particular, nS will always be zero for FP and LP problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S, and the process is repeated with the value of nS increased by one.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made
nonbasic and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax� s ¼ 0 is a dual variable 	i. Similarly, each
variable in x; sð Þ has an associated reduced gradient dj (also known as a reduced cost). The reduced
gradients for the variables x are the quantities g�AT	, where g is the gradient of the QP objective
function, and the reduced gradients for the slack variables s are the dual variables 	. The QP
subproblem is optimal if dj � 0 for all nonbasic variables at their lower bounds, dj � 0 for all nonbasic
variables at their upper bounds and dj ¼ 0 for all superbasic variables. In practice, an approximate QP
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solution is found by slightly relaxing these conditions on dj (see the description of the optional
parameter Optimality Tolerance).

The process of computing and comparing reduced gradients is known as pricing (a term first introduced
in the context of the simplex method for linear programming). To ‘price’ a nonbasic variable xj means
that the reduced gradient dj associated with the relevant active upper or lower bound on xj is computed
via the formula dj ¼ gj � aTj 	, where aj is the jth column of A �I

� �
. (The variable selected by such

a process and the corresponding value of dj (i.e., its reduced gradient) are the quantities +SBS and dj in
the monitoring file output; see Section 9.1.) If A has significantly more columns than rows (i.e.,
n� m), pricing can be computationally expensive. In this case, a strategy known as partial pricing can
be used to compute and compare only a subset of the djs.

E04NQF is based on SQOPT, which is part of the SNOPT package described in Gill et al. (2005a). It
uses stable numerical methods throughout and includes a reliable basis package (for maintaining sparse
LU factors of the basis matrix B), a practical anti-degeneracy procedure, efficient handling of linear
constraints and bounds on the variables (by an active-set strategy), as well as automatic scaling of the
constraints. Further details can be found in Section 11.
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5 Arguments

The first n entries of the arguments BL, BU, HS and X refer to the variables x. The last m entries refer
to the slacks s.

1: START – CHARACTER(1) Input

On entry: indicates how a starting basis (and certain other items) will be obtained.

START ¼ C
Requests that an internal Crash procedure be used to choose an initial basis, unless a Basis
file is provided via optional parameters Old Basis File, Insert File or Load File.

START ¼ B
Is the same as START ¼ C but is more meaningful when a Basis file is given.
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START ¼ W
Means that a basis is already defined in HS and a start point is already defined in X
(probably from an earlier call).

Constraint: START ¼ B , C or W.

2: QPHX – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

For QP problems, you must supply a version of QPHX to compute the matrix product Hx for a
given vector x. If H has rows and columns of zeros, it is most efficient to order x so that the
nonlinear variables appear first. For example, if x ¼ y; zð ÞT and only y enters the objective
quadratically then

Hx ¼ H1 0
0 0

� �
y
z

� �
¼ H1y

0

� �
: ð2Þ

In this case, NCOLH should be the dimension of y, and QPHX should compute H1y. For FP and
LP problems, QPHX will never be called by E04NQF and hence QPHX may be the dummy
routine E04NSH.

The specification of QPHX is:

SUBROUTINE QPHX (NCOLH, X, HX, NSTATE, CUSER, IUSER, RUSER)

INTEGER NCOLH, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(NCOLH), HX(NCOLH), RUSER(*)
CHARACTER(8) CUSER(*)

1: NCOLH – INTEGER Input

On entry: this is the same argument NCOLH as supplied to E04NQF.

2: XðNCOLHÞ – REAL (KIND=nag_wp) array Input

On entry: the first NCOLH elements of the vector x.

3: HXðNCOLHÞ – REAL (KIND=nag_wp) array Output

On exit: the product Hx. If NCOLH is less than the input argument N, Hx is really the
product H1y in (2).

4: NSTATE – INTEGER Input

On entry: allows you to save computation time if certain data must be read or calculated
only once. To preserve this data for a subsequent calculation place it in one of CUSER,
RUSER or IUSER .

NSTATE ¼ 1
E04NQF is calling QPHX for the first time.

NSTATE ¼ 0
There is nothing special about the current call of QPHX.

NSTATE � 2
E04NQF is calling QPHX for the last time. This argument setting allows you to
perform some additional computation on the final solution.

NSTATE ¼ 2
The current x is optimal.

NSTATE ¼ 3
The problem appears to be infeasible.

NSTATE ¼ 4
The problem appears to be unbounded.
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NSTATE ¼ 5
The iterations limit was reached.

5: CUSERð�Þ – CHARACTER(8) array User Workspace

6: IUSERð�Þ – INTEGER array User Workspace

7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

QPHX must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04NQF is called. Arguments denoted as Input must not be changed by this
procedure.

3: M – INTEGER Input

On entry: m, the number of general linear constraints (or slacks). This is the number of rows in
the linear constraint matrix A, including the free row (if any; see IOBJ). Note that A must have
at least one row. If your problem has no constraints, or only upper or lower bounds on the
variables, then you must include a dummy row with sufficiently wide upper and lower bounds
(see also ACOL, INDA and LOCA).

Constraint: M � 1.

4: N – INTEGER Input

On entry: n, the number of variables (excluding slacks). This is the number of columns in the
linear constraint matrix A.

Constraint: N � 1.

5: NE – INTEGER Input

On entry: the number of nonzero elements in A.

Constraint: 1 � NE � N�M.

6: NNAME – INTEGER Input

On entry: the number of column (i.e., variable) and row names supplied in the array NAMES.

NNAME ¼ 1
There are no names. Default names will be used in the printed output.

NNAME ¼ NþM
All names must be supplied.

Constraint: NNAME ¼ 1 or NþM.

7: LENC – INTEGER Input

On entry: the number of elements in the constant objective vector c.

If LENC > 0, the first LENC elements of x belong to variables corresponding to the constant
objective term c.

Constraint: 0 � LENC � N.

8: NCOLH – INTEGER Input

On entry: nH , the number of leading nonzero columns of the Hessian matrix H. For FP and LP
problems, NCOLH must be set to zero.

The first NCOLH elements of x belong to variables corresponding to the nonzero block of the
QP Hessian.

Constraint: 0 � NCOLH � N.
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9: IOBJ – INTEGER Input

On entry: if IOBJ > 0, row IOBJ of A is a free row containing the nonzero elements of the
vector c appearing in the linear objective term cTx.

If IOBJ ¼ 0, there is no free row, and the linear objective vector should be supplied in array C.

Constraint: 0 � IOBJ � M.

10: OBJADD – REAL (KIND=nag_wp) Input

On entry: the constant q, to be added to the objective for printing purposes. Typically
OBJADD ¼ 0:0E0.

11: PROB – CHARACTER(8) Input

On entry: the name for the problem. It is used in the printed solution and in some routines that
output Basis files. A blank name may be used.

12: ACOLðNEÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements of A, ordered by increasing column index. Note that all elements
must be assigned a value in the calling program.

13: INDAðNEÞ – INTEGER array Input

On entry: INDAðiÞ must contain the row index of the nonzero element stored in ACOLðiÞ, for
i ¼ 1; 2; . . . ;NE. Thus a pair of values ACOLðiÞ; INDAðiÞð Þ contains a matrix element and its
corresponding row index.

Note that the row indices for a column may be supplied in any order.

Constraint: 1 � INDAðiÞ � M, for i ¼ 1; 2; . . . ;NE.

14: LOCAðNþ 1Þ – INTEGER array Input

On entry: LOCAðjÞ must contain the index in ACOL and INDA of the start of the jth column,
for j ¼ 1; 2; . . . ;N. Thus for j ¼ 1 : N, the entries of column j are held in ACOLðk : lÞ and their
corresponding row indices are in INDAðk : lÞ, where k ¼ LOCAðjÞ and l ¼ LOCAðjþ 1Þ � 1. To
specify the jth column as empty, set LOCAðjÞ ¼ LOCAðjþ 1Þ. Note that the first and last
elements of LOCA must be LOCAð1Þ ¼ 1 and LOCAðNþ 1Þ ¼ NEþ 1. If your problem has no
constraints, or just bounds on the variables, you may include a dummy ‘free’ row with a single
(zero) element by setting NE ¼ 1, ACOLð1Þ ¼ 0:0, INDAð1Þ ¼ 1, LOCAð1Þ ¼ 1, and
LOCAðjÞ ¼ 2, for j ¼ 2 : Nþ 1. This row is made ‘free’ by setting its bounds to be
BLðNþ 1Þ ¼ �bigbnd and BUðNþ 1Þ ¼ bigbnd, where bigbnd is the value of the optional
parameter Infinite Bound Size.

Constraints:

LOCAð1Þ ¼ 1;
LOCAðjÞ � 1, for j ¼ 2; 3; . . . ;N;
LOCAðNþ 1Þ ¼ NEþ 1;
0 � LOCAðj þ 1Þ � LOCAðjÞ � M, for j ¼ 1; 2; . . . ;N.

15: BLðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: l, the lower bounds for all the variables and general constraints, in the following order.
The first N elements of BL must contain the bounds on the variables x, and the next M elements
the bounds for the general linear constraints Ax (which, equivalently, are the bounds for the
slacks, s) and the free row (if any). To fix the jth variable, set BLðjÞ ¼ BUðjÞ ¼ �, say, where
�j j < bigbnd. To specify a nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd. Here,
bigbnd is the value of the optional parameter Infinite Bound Size. To specify the jth constraint
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as an equality, set BLðNþ jÞ ¼ BUðNþ jÞ ¼ �, say, where �j j < bigbnd. Note that the lower
bound corresponding to the free row must be set to �1 and stored in BLðNþ IOBJÞ.
Constraint: if IOBJ > 0, BLðNþ IOBJÞ � �bigbnd
(See also the description for BU.)

16: BUðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: u, the upper bounds for all the variables and general constraints, in the following order.
The first N elements of BU must contain the bounds on the variables x, and the next M elements
the bounds for the general linear constraints Ax (which, equivalently, are the bounds for the
slacks, s) and the free row (if any). To specify a nonexistent upper bound (i.e., uj ¼ þ1), set
BUðjÞ � bigbnd. Note that the upper bound corresponding to the free row must be set to þ1
and stored in BUðNþ IOBJÞ.
Constraints:

if IOBJ > 0, BUðNþ IOBJÞ � bigbnd;
otherwise BLðiÞ � BUðiÞ.

17: Cðmax 1;LENCð ÞÞ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array C must be at least max 1;LENCð Þ if IOBJ 6¼ 0, and at least 1
otherwise.

On entry: contains the explicit objective vector c (if any). If the problem is of type FP, or if
LENC ¼ 0, then C is not referenced. (In that case, C may be dimensioned (1), or it could be any
convenient array.)

18: NAMESðNNAMEÞ – CHARACTER(8) array Input

On entry: the optional column and row names, respectively.

If NNAME ¼ 1, NAMES is not referenced and the printed output will use default names for the
columns and rows.

If NNAME ¼ NþM, the first N elements must contain the names for the columns and the next
M elements must contain the names for the rows. Note that the name for the free row (if any)
must be stored in NAMESðNþ IOBJÞ.

19: HELASTðNþMÞ – INTEGER array Input

On entry: defines which variables are to be treated as being elastic in elastic mode. The allowed
values of HELAST are:

HELASTðjÞ Status in elastic mode
0 Variable j is non-elastic and cannot be infeasible
1 Variable j can violate its lower bound
2 Variable j can violate its upper bound
3 Variable j can violate either its lower or upper bound

HELAST need not be assigned if optional parameter Elastic Mode ¼ 0.

Constraint: if Elastic Mode 6¼ 0, HELASTðjÞ ¼ 0; 1; 2; 3, for j ¼ 1; 2; . . . ;NþM.

20: HSðNþMÞ – INTEGER array Input/Output

On entry: if START ¼ C or B , and a Basis file of some sort is to be input (see the description
of the optional parameters Old Basis File, Insert File or Load File), then HS and X need not be
set at all.

If START ¼ C or B and there is no Basis file, the first N elements of HS and X must specify
the initial states and values, respectively, of the variables x. (The slacks s need not be
initialized.) An internal Crash procedure is then used to select an initial basis matrix B. The
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initial basis matrix will be triangular (neglecting certain small elements in each column). It is
chosen from various rows and columns of A �I

� �
. Possible values for HSðjÞ are as follows:

HSðjÞ State of XðjÞ during Crash procedure

0 or 1 Eligible for the basis

2 Ignored

3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored

If nothing special is known about the problem, or there is no wish to provide special information,
you may set HSðjÞ ¼ 0 and XðjÞ ¼ 0:0, for j ¼ 1; 2; . . . ;N. All variables will then be eligible for
the initial basis. Less trivially, to say that the jth variable will probably be equal to one of its
bounds, set HSðjÞ ¼ 4 and XðjÞ ¼ BLðjÞ or HSðjÞ ¼ 5 and XðjÞ ¼ BUðjÞ as appropriate.

Following the Crash procedure, variables for which HSðjÞ ¼ 2 are made superbasic. Other
variables not selected for the basis are then made nonbasic at the value XðjÞ if
BLðjÞ � XðjÞ � BUðjÞ, or at the value BLðjÞ or BUðjÞ closest to XðjÞ.
If START ¼ W , HS and X must specify the initial states and values, respectively, of the
variables and slacks x; sð Þ. If E04NQF has been called previously with the same values of N and
M, HS already contains satisfactory information.

Constraints:

if START ¼ C or B , 0 � HSðjÞ � 5, for j ¼ 1; 2; . . . ;N;
if START ¼ W , 0 � HSðjÞ � 3, for j ¼ 1; 2; . . . ;NþM.

On exit: the final states of the variables and slacks x; sð Þ. The significance of each possible value
of HSðjÞ is as follows:

HSðjÞ State of variable j Normal value of XðjÞ
0 Nonbasic BLðjÞ
1 Nonbasic BUðjÞ
2 Superbasic Between BLðjÞ and BUðjÞ
3 Basic Between BLðjÞ and BUðjÞ

If NINF ¼ 0, basic and superbasic variables may be outside their bounds by as much as the value
of the optional parameter Feasibility Tolerance. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the optional parameter Feasibility Tolerance applies to the
variables of the scaled problem. In this case, the variables of the original problem may be as
much as 0:1 outside their bounds, but this is unlikely unless the problem is very badly scaled.

Very occasionally some nonbasic variables may be outside their bounds by as much as the
optional parameter Feasibility Tolerance, and there may be some nonbasic variables for which
XðjÞ lies strictly between its bounds.

If NINF > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by SINF if Scale Option ¼ 0).

21: XðNþMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the variables x, and, if START ¼ W , the slacks s, i.e., x; sð Þ. (See
the description for argument HS.)

On exit: the final values of the variables and slacks x; sð Þ.
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22: PIðMÞ – REAL (KIND=nag_wp) array Output

On exit: contains the dual variables 	 (a set of Lagrange multipliers (shadow prices) for the
general constraints).

23: RCðNþMÞ – REAL (KIND=nag_wp) array Output

On exit: contains the reduced costs, g� A �I
� �T

	. The vector g is the gradient of the
objective if X is feasible, otherwise it is the gradient of the Phase 1 objective. In the former case,
g ið Þ ¼ 0, for i ¼ Nþ 1 : M, hence RCðNþ 1 : MÞ ¼ 	.

24: NS – INTEGER Input/Output

On entry: nS , the number of superbasics. For QP problems, NS need not be specified if
START ¼ C , but must retain its value from a previous call when START ¼ W . For FP and LP
problems, NS need not be initialized.

On exit: the final number of superbasics. This will be zero for FP and LP problems.

25: NINF – INTEGER Output

On exit: the number of infeasibilities.

26: SINF – REAL (KIND=nag_wp) Output

On exit: the sum of the scaled infeasibilities. This will be zero if NINF ¼ 0, and is most
meaningful when Scale Option ¼ 0.

27: OBJ – REAL (KIND=nag_wp) Output

On exit: the value of the objective function.

If NINF ¼ 0, OBJ includes the quadratic objective term 1
2x

THx (if any).

If NINF > 0, OBJ is just the linear objective term cTx (if any).

For FP problems, OBJ is set to zero.

Note that OBJ does not include contributions from the constant term OBJADD or the objective
row, if any.

28: CWðLENCWÞ – CHARACTER(8) array Communication Array
29: LENCW – INTEGER Input

On entry: the dimension of the array CW as declared in the (sub)program from which E04NQF is
called.

Constraint: LENCW � 600.

30: IWðLENIWÞ – INTEGER array Communication Array
31: LENIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04NQF is
called.

Constraint: LENIW � 600.

32: RWðLENRWÞ – REAL (KIND=nag_wp) array Communication Array
33: LENRW – INTEGER Input

On entry: the dimension of the array RW as declared in the (sub)program from which E04NQF is
called.

Constraint: LENRW � 600.
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34: CUSERð�Þ – CHARACTER(8) array User Workspace

CUSER is not used by E04NQF, but is passed directly to QPHX and should be used to pass
information to this routine.

35: IUSERð�Þ – INTEGER array User Workspace

IUSER is not used by E04NQF, but is passed directly to QPHX and should be used to pass
information to this routine.

36: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by E04NQF, but is passed directly to QPHX and should be used to pass
information to this routine.

37: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04NQF returns with IFAIL ¼ 0 if the reduced gradient (rgNorm; see Section 9.1) is negligible,
the Lagrange multipliers (Lagr Mult; see Section 9.1) are optimal, x satisfies the constraints to
the accuracy requested by the value of the optional parameter Feasibility Tolerance and the
reduced Hessian factor R (see Section 11.2) is nonsingular.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04NQF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LENCW ¼ valueh i.
Constraint: LENCW � 600.

On entry, LENIW ¼ valueh i.
Constraint: LENIW � 600.

On entry, LENRW ¼ valueh i.
Constraint: LENRW � 600.

The initialization routine E04NPF has not been called.

IFAIL ¼ 2

An error has occurred in the basis package, perhaps indicating incorrect setup of arrays INDA
and LOCA. Set the optional parameter Print File and examine the output carefully for further
information.

Basis file dimensions do not match this problem.
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On entry, bounds BL and BU for valueh i are equal and infinite: BL ¼ BU ¼ valueh i and
infbnd ¼ valueh i.
On entry, bounds BL and BU for valueh i are equal and infinite. BL ¼ BU ¼ valueh i and
infbnd ¼ valueh i.
On entry, bounds for valueh i are inconsistent. BL ¼ valueh i and BU ¼ valueh i.
On entry, IOBJ ¼ valueh i and M ¼ valueh i.
Constraint: 0 � IOBJ � M.

On entry, LENC ¼ valueh i and N ¼ valueh i.
Constraint: 0 � LENC � N.

On entry, LOCAð1Þ ¼ valueh i, LOCAð valueh iÞ ¼ valueh i, NE ¼ valueh i.
Constraint: LOCAð1Þ ¼ 1 or LOCAð valueh iÞ ¼ NEþ 1.

On entry, M ¼ valueh i.
Constraint: M � valueh i.
On entry, N ¼ valueh i.
Constraint: N � valueh i.
On entry, NCOLH ¼ valueh i and N ¼ valueh i.
Constraint: 0 � NCOLH � N.

On entry, NE ¼ valueh i, N ¼ valueh i and M ¼ valueh i.
Constraint: 1 � NE � N�M.

On entry, NE is not equal to the number of nonzeros in ACOL. NE ¼ valueh i, nonzeros in
ACOL ¼ valueh i.
On entry, NNAME ¼ valueh i, N ¼ valueh i and M ¼ valueh i.
Constraint: NNAME ¼ 1 or NþM.

On entry, row index valueh i in INDAð valueh iÞ is outside the range 1 to M ¼ valueh i.
On entry, START ¼ valueh i.
Constraint: START ¼ B , C or W .

IFAIL ¼ 3

The requested accuracy could not be achieved.

IFAIL ¼ 4

Weak solution found – the solution is not unique.

IFAIL ¼ 5

The linear constraints appear to be infeasible.

The problem appears to be infeasible. Infeasibilites have been minimized.

The problem appears to be infeasible. Nonlinear infeasibilites have been minimized.

The problem appears to be infeasible. The linear equality constraints could not be satisfied.

The problem is infeasible. The general constraints cannot all be satisfied simultaneously to within
the value of the optional parameter Feasibility Tolerance.

Feasibility is measured with respect to the upper and lower bounds on the variables and slacks.
The message tells us that among all the points satisfying the general constraints Ax� s ¼ 0,
there is apparently no point that satisfies the bounds on x and s. Violations as small as the
Feasibility Tolerance are ignored, but at least one component of x or s violates a bound by more
than the tolerance.

Note: although the objective function is the sum of infeasibilities (when NINF > 0), this sum will
not necessarily have been minimized when Elastic Mode ¼ 1.
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If Elastic Mode 6¼ 0, E04NQF will optimize the QP objective and the sum of infeasibilities,
suitably weighted using the optional parameter Elastic Mode. The routine will tend to determine
a ‘good’ infeasible point if the elastic weight is sufficiently large.

IFAIL ¼ 6

The problem appears to be unbounded. The constraint violation limit has been reached.

The problem appears to be unbounded. The objective function is unbounded.

The problem is unbounded (or badly scaled). For a minimization problem, the objective function
is not bounded below in the feasible region.

For linear problems, unboundedness is detected by the simplex method when a nonbasic variable
can be increased or decreased by an arbitrary amount without causing a basic variable to violate
a bound. Consider adding an upper or lower bound to the variable. Also, examine the constraints
that have nonzeros in the associated column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an
erroneous indication of unboundedness. Consider using the optional parameter Scale Option.

IFAIL ¼ 7

Iteration limit reached.

Major iteration limit reached.

Too many iterations. The value of the optional parameter Iterations Limit is too small.

The Iterations limit was exceeded before the required solution could be found. Check the
iteration log to be sure that progress was being made. If so, restart the run using a Basis file that
was saved at the end of the run.

IFAIL ¼ 8

The value of the optional parameter Superbasics Limit is too small.

The current set of basic and superbasic variables have been optimized as much as possible and a
pricing operation is necessary to continue, but there are already Superbasics Limit superbasics
(and no room for any more).

In general, raise the Superbasics Limit s by a reasonable amount, bearing in mind the storage
needed for reduced Hessian (see Section 11.2). (The Reduced Hessian Dimension h will also
increase to s unless specified otherwise, and the associated storage will be about 1

2s
2 words.) In

some cases you may have to set h < s to conserve storage, but beware that the rate of
convergence will probably fall off severely.

IFAIL ¼ 9

The basis is singular after several attempts to factorize it (and add slacks where necessary).

Either the problem is badly scaled or the value of the optional parameter LU Factor Tolerance
is too large.

IFAIL ¼ 10

Numerical difficulties have been encountered and no further progress can be made.

Numerical error in trying to satisfy the general constraints. The basis is very ill-conditioned.

An LU factorization of the basis has just been obtained and used to recompute the basic
variables xB, given the present values of the superbasic and nonbasic variables. However, a row
check has revealed that the resulting solution does not satisfy the current constraints Ax� s ¼ 0
sufficiently well.

This probably means that the current basis is very ill-conditioned. Request the Scale Option if
there are any linear constraints and variables.
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For certain highly structured basis matrices (notably those with band structure), a systematic
growth may occur in the factor U. Consult the description of Umax, Umin and Growth in
Section 13, and set the optional parameter LU Factor Tolerance to 2:0 (or possibly even smaller,
but not less than 1:0).

IFAIL ¼ 11

Error in QPHX: the QP Hessian is indefinite.

An indefinite matrix was detected during the computation of the reduced Hessian factor R (see
Section 11.2). This may be caused by H being indefinite. Check also that QPHX has been coded
correctly and that all relevant elements of Hx have been assigned their correct values. If QPHX
is coded correctly and H is positive semidefinite, the failure may be caused by ill conditioning.
Try reducing the values of the optional parameters LU Factor Tolerance and LU Update
Tolerance. If there are very large values in H, check the scaling of the variables and constraints.

IFAIL ¼ 12

Internal memory allocation failed when attempting to obtain workspace sizes valueh i, valueh i and
valueh i. Please contact NAG.

IFAIL ¼ 13

Internal memory allocation was insufficient. Please contact NAG.

IFAIL ¼ 14

An error has occurred in the basis package, perhaps indicating incorrect setup of arrays INDA
and LOCA. Set the optional parameter Print File and examine the output carefully for further
information.

IFAIL ¼ 15

An unexpected error has occurred. Set the optional parameter Print File and examine the output
carefully for further information.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

E04NQF implements a numerically stable active-set strategy and returns solutions that are as accurate
as the condition of the problem warrants on the machine.

8 Parallelism and Performance

E04NQF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This section contains a description of the printed output.

9.1 Description of the Printed Output

If Print Level > 0, one line of information is output to the Print File every kth iteration, where k is the
specified Print Frequency. A heading is printed before the first such line following a basis
factorization. The heading contains the items described below. In this description, a pricing operation is
defined to be the process by which one or more nonbasic variables are selected to become superbasic
(in addition to those already in the superbasic set). The variable selected will be denoted by jq. If the
problem is purely linear, variable jq will usually become basic immediately (unless it should happen to
reach its opposite bound and return to the nonbasic set).

If optional parameter Partial Price is in effect, variable jq is selected from App or Ipp, the ppth
segments of the constraint matrix A �I

� �
.

Label Description

Itn is the iteration count.

pp is the partial-price indicator. The variable selected by the last pricing operation
came from the ppth partition of A and �I. Note that pp is reset to zero whenever
the basis is refactorized.

dj is the value of the reduced gradient (or reduced cost) for the variable selected by
the pricing operation at the start of the current iteration.

Algebraically, dj is dj ¼ gj � 	Taj, for j ¼ jq, where gj is the gradient of the
current objective function, 	 is the vector of dual variables, and aj is the jth
column of the constraint matrix A �I

� �
.

Note that dj is the norm of the reduced-gradient vector at the start of the
iteration, just after the pricing operation.

+SBS is the variable jq selected by the pricing operation to be added to the superbasic
set.

-SBS is the variable chosen to leave the superbasic set. It has become basic if the entry
under -B is nonzero, otherwise it becomes nonbasic.

-BS is the variable removed from the basis to become nonbasic.

Step is the value of the step length � taken along the current search direction p. The
variables x have just been changed to xþ �p. If a variable is made superbasic
during the current iteration (i.e., +SBS is positive), Step will be the step to the
nearest bound. During the optimality phase, the step can be greater than unity
only if the reduced Hessian is not positive definite.

Pivot is the rth element of a vector y satisfying By ¼ aq whenever aq (the qth column
of the constraint matrix A �I

� �
replaces the rth column of the basis matrix B.

Wherever possible, Step is chosen so as to avoid extremely small values of
Pivot (since they may cause the basis to be nearly singular). In extreme cases, it
may be necessary to increase the value of the optional parameter Pivot Tolerance
to exclude very small elements of y from consideration during the computation of
Step.

nInf is the number of violated constraints (infeasibilities) before the present iteration.
This number will not increase unless iterations are in elastic mode.
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sInf is the sum of infeasibilities before the present iteration. It will usually decrease at
each nonzero step, but if nInf decreases by 2 or more, sInf may occasionally
increase. However, in elastic mode it will decrease monotonically.

Objective is the value of the current objective function after the present iteration. Note, if
Elastic Mode is 2, the heading is Composite Obj.

L+U L is the number of nonzeros in the basis factor L. Immediately after a basis
factorization B ¼ LU , L contains lenL (see Section 13). Further nonzeros are
added to L when various columns of B are later replaced. (Thus, L increases
monotonically.) U is the number of nonzeros in the basis factor U. Immediately
after a basis factorization B ¼ LU , U contains lenU (see Section 13). As columns
of B are replaced, the matrix U is maintained explicitly (in sparse form). The
value of U may fluctuate up or down; in general, it will tend to increase.

ncp is the number of compressions required to recover workspace in the data structure
for U. This includes the number of compressions needed during the previous
basis factorization. Normally, ncp should increase very slowly.

The following will be output if the problem is QP or if the superbasic set is non-empty.

Label Description

rgNorm is the largest reduced-gradient among the superbasic variables after the current
iteration. During the optimality phase, this will be approximately zero after a unit
step.

nS is the current number of superbasic variables.

condHz is a lower bound on the condition number of the reduced Hessian (see
Section 11.2). The larger this number, the more difficult the problem. Attention
should be given to the scaling of the variables and the constraints to guard against
high values of condHz.

10 Example

This example minimizes the quadratic function f xð Þ ¼ cTxþ 1
2x

THx , where

c ¼ �200:0;�2000:0;�2000:0;�2000:0;�2000:0; 400:0; 400:0ð ÞT

H ¼

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 2
0 0 0 0 0 2 2

0BBBBBBB@

1CCCCCCCA
subject to the bounds

0 � x1 � 200
0 � x2 � 2500

400 � x3 � 800
100 � x4 � 700

0 � x5 � 1500
0 � x6
0 � x7

and to the linear constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ 2000
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � 60
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 þ 0:03x7 � 100
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � 40
0:02x1 þ 0:03x2 þ 0:01x5 � 30

1500 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
250 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 300
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The initial point, which is infeasible, is

x0 ¼ 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0ð ÞT:

The optimal solution (to five figures) is

x� ¼ 0:0; 349:40; 648:85; 172:85; 407:52; 271:36; 150:02ð ÞT:

One bound constraint and four linear constraints are active at the solution. Note that the Hessian matrix
H is positive semidefinite.

10.1 Program Text

! E04NQF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04nqfe_mod

! E04NQF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: qphx

! .. Parameters ..
Integer, Parameter, Public :: lencw = 600, leniw = 600, &

lenrw = 600, nin = 5, nout = 6
Contains

Subroutine qphx(ncolh,x,hx,nstate,cuser,iuser,ruser)
! Routine to compute H*x. (In this version of QPHX, the Hessian
! matrix H is not referenced explicitly.)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncolh, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hx(ncolh)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(ncolh)
Integer, Intent (Inout) :: iuser(*)
Character (8), Intent (Inout) :: cuser(*)

! .. Executable Statements ..
hx(1) = 2.0E0_nag_wp*x(1)
hx(2) = 2.0E0_nag_wp*x(2)
hx(3) = 2.0E0_nag_wp*(x(3)+x(4))
hx(4) = hx(3)
hx(5) = 2.0E0_nag_wp*x(5)
hx(6) = 2.0E0_nag_wp*(x(6)+x(7))
hx(7) = hx(6)

Return

End Subroutine qphx
End Module e04nqfe_mod
Program e04nqfe

! E04NQF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04npf, e04nqf, e04ntf, nag_wp
Use e04nqfe_mod, Only: lencw, leniw, lenrw, nin, nout, qphx

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj, objadd, sinf
Integer :: i, icol, ifail, iobj, jcol, lenc, m, &

n, ncolh, ne, ninf, nname, ns
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Logical :: verbose_output
Character (8) :: prob
Character (1) :: start

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: acol(:), bl(:), bu(:), c(:), pi(:), &

rc(:), x(:)
Real (Kind=nag_wp) :: ruser(1), rw(lenrw)
Integer, Allocatable :: helast(:), hs(:), inda(:), loca(:)
Integer :: iuser(1), iw(leniw)
Character (8) :: cuser(1), cw(lencw)
Character (8), Allocatable :: names(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04NQF Example Program Results’

! Skip heading in data file.
Read (nin,*)

Read (nin,*) n, m
Read (nin,*) ne, iobj, ncolh, start, nname
Allocate (inda(ne),loca(n+1),helast(n+m),hs(n+m),acol(ne),bl(n+m), &

bu(n+m),x(n+m),pi(m),rc(n+m),names(nname))

Read (nin,*) names(1:nname)

! Read the matrix ACOL from data file. Set up LOCA.

jcol = 1
loca(jcol) = 1

Do i = 1, ne

! Element ( INDA( I ), ICOL ) is stored in ACOL( I ).

Read (nin,*) acol(i), inda(i), icol

If (icol<jcol) Then

! Elements not ordered by increasing column index.

Write (nout,99998) ’Element in column’, icol, &
’ found after element in column’, jcol, ’. Problem’, ’ abandoned.’

Go To 100
Else If (icol==jcol+1) Then

! Index in ACOL of the start of the ICOL-th column equals I.

loca(icol) = i
jcol = icol

Else If (icol>jcol+1) Then

! Index in ACOL of the start of the ICOL-th column equals I,
! but columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
! corresponding elements of LOCA to I.

loca((jcol+1):icol) = i
jcol = icol

End If

End Do

loca(n+1) = ne + 1

! Columns N,N-1,...,ICOL+1 are empty. Set the corresponding
! elements of LOCA accordingly.

Do i = n, icol + 1, -1
loca(i) = loca(i+1)

End Do
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Read (nin,*) bl(1:(n+m))
Read (nin,*) bu(1:(n+m))

If (start==’C’) Then
Read (nin,*) hs(1:n)

Else If (start==’W’) Then
Read (nin,*) hs(1:(n+m))

End If

Read (nin,*) x(1:n)

Write (nout,99999) n, m

! Call E04NPF to initialize E04NQF.

ifail = 0
Call e04npf(cw,lencw,iw,leniw,rw,lenrw,ifail)

! Set this to .True. to cause e04nqf to produce intermediate
! progress output

verbose_output = .False.

If (verbose_output) Then
! By default e04nqf does not print monitoring
! information. Set the print file unit or the summary
! file unit to get information.

ifail = 0
Call e04ntf(’Print file’,nout,cw,iw,rw,ifail)

End If

! We have no explicit objective vector so set LENC = 0; the
! objective vector is stored in row IOBJ of ACOL.

lenc = 0
Allocate (c(max(1,lenc)))

objadd = 0.0E0_nag_wp
prob = ’ ’

! Do not allow any elastic variables (i.e. they cannot be
! infeasible). If we’d set optional argument "Elastic mode" to 0,
! we wouldn’t need to set the individual elements of array HELAST.

helast(1:(n+m)) = 0

! Solve the QP problem.

ifail = 0
Call e04nqf(start,qphx,m,n,ne,nname,lenc,ncolh,iobj,objadd,prob,acol, &

inda,loca,bl,bu,c,names,helast,hs,x,pi,rc,ns,ninf,sinf,obj,cw,lencw, &
iw,leniw,rw,lenrw,cuser,iuser,ruser,ifail)

Write (nout,*)
Write (nout,99997) obj
Write (nout,99996) x(1:n)

100 Continue

99999 Format (1X,/,1X,’QP problem contains ’,I3,’ variables and ’,I3, &
’ linear constraints’)

99998 Format (1X,A,I5,A,I5,A,A)
99997 Format (1X,’Final objective value = ’,1P,E11.3)
99996 Format (1X,’Optimal X = ’,7F9.2)

End Program e04nqfe
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10.2 Program Data

E04NQF Example Program Data
7 8 : Values of N and M

48 8 7 ’C’ 15 : Values of NNZ, IOBJ, NCOLH, START and NNAME

’...X1...’ ’...X2...’ ’...X3...’ ’...X4...’ ’...X5...’
’...X6...’ ’...X7...’ ’..ROW1..’ ’..ROW2..’ ’..ROW3..’
’..ROW4..’ ’..ROW5..’ ’..ROW6..’ ’..ROW7..’ ’..COST..’ : End of array NAMES

0.02 7 1 : Sparse matrix A, ordered by increasing column index;
0.02 5 1 : each row contains ACOL(i), INDA(i), ICOL (= column index)
0.03 3 1 : The row indices may be in any order. In this example
1.00 1 1 : row 8 defines the linear objective term transpose(C)*X.
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
0.04 2 4

-2000.00 8 4
0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7 : End of matrix A

0.0 0.0 4.0E+02 1.0E+02 0.0 0.0
0.0 2.0E+03 -1.0E+25 -1.0E+25 -1.0E+25 -1.0E+25
1.5E+03 2.5E+02 -1.0E+25 : End of lower bounds array BL

2.0E+02 2.5E+03 8.0E+02 7.0E+02 1.5E+03 1.0E+25
1.0E+25 2.0E+03 6.0E+01 1.0E+02 4.0E+01 3.0E+01
1.0E+25 3.0E+02 1.0E+25 : End of upper bounds array BU

0 0 0 0 0 0 0 : Initial array HS
0.0 0.0 0.0 0.0 0.0 0.0 0.0 : Initial vector X

E04 – Minimizing or Maximizing a Function E04NQF

Mark 26 E04NQF.21



10.3 Program Results
E04NQF Example Program Results

QP problem contains 7 variables and 8 linear constraints

Final objective value = -1.848E+06
Optimal X = 0.00 349.40 648.85 172.85 407.52 271.36 150.02

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to E04NRF, E04NSF, E04NTF
and/or E04NUF. Section 13 describes the quantities which can be requested to monitor the course of
the computation.

11 Algorithmic Details

This section contains a detailed description of the method used by E04NQF.

11.1 Overview

E04NQF is based on an inertia-controlling method that maintains a Cholesky factorization of the
reduced Hessian (see below). The method is similar to that of Gill and Murray (1978), and is described
in detail by Gill et al. (1991). Here we briefly summarise the main features of the method. Where
possible, explicit reference is made to the names of variables that are arguments of the routine or appear
in the printed output.

The method used has two distinct phases: finding an initial feasible point by minimizing the sum of
infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the feasible
region (the optimality phase). The computations in both phases are performed by the same subroutines.
The two-phase nature of the algorithm is reflected by changing the function being minimized from the
sum of infeasibilities (the printed quantity sInf; see Section 9.1) to the quadratic objective function
(the printed quantity Objective; see Section 9.1).

In general, an iterative process is required to solve a quadratic program. Given an iterate x; sð Þ in both
the original variables x and the slack variables s, a new iterate �x; �sð Þ is defined by

�x
�s

� �
¼ x

s

� �
þ �p; ð3Þ

where the step length � is a non-negative scalar (the printed quantity Step; see Section 13), and p is
called the search direction. (For simplicity, we shall consider a typical iteration and avoid reference to
the index of the iteration.) Once an iterate is feasible (i.e., satisfies the constraints), all subsequent
iterates remain feasible.

11.2 Definition of the Working Set and Search Direction

At each iterate x; sð Þ, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the value of the optional parameter Feasibility
Tolerance). The working set is the current prediction of the constraints that hold with equality at a
solution of the LP or QP problem. Let mW denote the number of constraints in the working set
(including bounds), and let W denote the associated mW by nþmð Þ working set matrix consisting of
the mW gradients of the working set constraints.

The search direction is defined so that constraints in the working set remain unaltered for any value of
the step length. It follows that p must satisfy the identity

Wp ¼ 0: ð4Þ

This characterisation allows p to be computed using any n by nZ full-rank matrix Z that spans the null
space of W . (Thus, nZ ¼ n�mW and WZ ¼ 0.) The null space matrix Z is defined from a sparse LU
factorization of part of W (see (7) and (8)). The direction p will satisfy (4) if
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p ¼ ZpZ; ð5Þ

where pZ is any nZ-vector.

The working set contains the constraints Ax� s ¼ 0 and a subset of the upper and lower bounds on the
variables x; sð Þ. Since the gradient of a bound constraint xj � lj or xj � uj is a vector of all zeros
except for 
1 in position j, it follows that the working set matrix contains the rows of A �I

� �
and

the unit rows associated with the upper and lower bounds in the working set.

The working set matrix W can be represented in terms of a certain column partition of the matrix
A �I
� �

by (conceptually) partitioning the constraints Ax� s ¼ 0 so that

BxB þ SxS þNxN ¼ 0; ð6Þ

where B is a square nonsingular basis and xB, xS and xN are the basic, superbasic and nonbasic
variables respectively. The nonbasic variables are equal to their upper or lower bounds at x; sð Þ, and the
superbasic variables are independent variables that are chosen to improve the value of the current
objective function. The number of superbasic variables is nS (the printed quantity nS; see Section 9.1).
Given values of xN and xS , the basic variables xB are adjusted so that x; sð Þ satisfies (6).

If P is a permutation matrix such that A �I
� �

P ¼ B S N
� �

, then W satisfies

WP ¼ B S N
0 0 IN

� �
; ð7Þ

where IN is the identity matrix with the same number of columns as N .

The null space matrix Z is defined from a sparse LU factorization of part of W . In particular, Z is
maintained in ‘reduced gradient’ form, using the LUSOL package (see Gill et al. (1991)) to maintain
sparse LU factors of the basis matrix B as the BSN partition changes. Given the permutation P , the
null space basis is given by

Z ¼ P
�B�1S

I
0

0@ 1A: ð8Þ

This matrix is used only as an operator, i.e., it is never computed explicitly. Products of the form Zv
and ZTg are obtained by solving with B or BT. This choice of Z implies that nZ , the number of
‘degrees of freedom’ at x; sð Þ, is the same as nS , the number of superbasic variables.

Let gZ and HZ denote the reduced gradient and reduced Hessian of the objective function:

gZ ¼ ZTg and HZ ¼ ZTHZ; ð9Þ

where g is the objective gradient at x; sð Þ. Roughly speaking, gZ and HZ describe the first and second
derivatives of an nS-dimensional unconstrained problem for the calculation of pZ . (The condition
estimator of HZ is the quantity condHz in the monitoring file output; see Section 9.1.)

At each iteration, an upper triangular factor R is available such that HZ ¼ RTR. Normally, R is
computed from RTR ¼ ZTHZ at the start of the optimality phase and then updated as the QP working
set changes. For efficiency, the dimension of R should not be excessive (say, nS � 1000). This is
guaranteed if the number of nonlinear variables is ‘moderate’.

If the QP problem contains linear variables, H is positive semidefinite and R may be singular with at
least one zero diagonal element. However, an inertia-controlling strategy is used to ensure that only the
last diagonal element of R can be zero. (See Gill et al. (1991) for a discussion of a similar strategy for
indefinite quadratic programming.)

If the initial R is singular, enough variables are fixed at their current value to give a nonsingular R. This
is equivalent to including temporary bound constraints in the working set. Thereafter, R can become
singular only when a constraint is deleted from the working set (in which case no further constraints are
deleted until R becomes nonsingular).
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11.3 Main Iteration

If the reduced gradient is zero, x; sð Þ is a constrained stationary point on the working set. During the
feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
elsewhere in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective function when the constraints in the working
set are treated as equalities. At a constrained stationary point, Lagrange multipliers � are defined from
the equations

WT� ¼ g xð Þ: ð10Þ

A Lagrange multiplier, �j, corresponding to an inequality constraint in the working set is said to be
optimal if �j � � when the associated constraint is at its upper bound, or if �j � �� when the
associated constraint is at its lower bound, where � depends on the value of the optional parameter
Optimality Tolerance. If a multiplier is nonoptimal, the objective function (either the true objective or
the sum of infeasibilities) can be reduced by continuing the minimization with the corresponding
constraint excluded from the working set. (This step is sometimes referred to as ‘deleting’ a constraint
from the working set.) If optimal multipliers occur during the feasibility phase but the sum of
infeasibilities is nonzero, there is no feasible point and the routine terminates immediately with
IFAIL ¼ 3.

The special form (7) of the working set allows the multiplier vector �, the solution of (10), to be written
in terms of the vector

d ¼ g
0

� �
� AT

�I

� �
	 ¼ g� AT	

	

� �
; ð11Þ

where 	 satisfies the equations BT	 ¼ gB, and gB denotes the basic elements of g. The elements of 	
are the Lagrange multipliers �j associated with the equality constraints Ax� s ¼ 0. The vector dN of
nonbasic elements of d consists of the Lagrange multipliers �j associated with the upper and lower
bound constraints in the working set. The vector dS of superbasic elements of d is the reduced gradient
gZ in (9). The vector dB of basic elements of d is zero, by construction. (The Euclidean norm of dS and
the final values of dS , g and 	 are the quantities rgNorm, Reduced Gradnt, Obj Gradient and Dual

Activity in the monitoring file output; see Section 13.)

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the search direction
is given by p ¼ ZpZ (see (8) and (12)). The step length is chosen to maintain feasibility with respect to
the satisfied constraints.

There are two possible choices for pZ, depending on whether or not HZ is singular. If HZ is
nonsingular, R is nonsingular and pZ in (5) is computed from the equations

RTRpZ ¼ �gZ; ð12Þ

where gZ is the reduced gradient at x. In this case, x; sð Þ þ p is the minimizer of the objective function
subject to the working set constraints being treated as equalities. If x; sð Þ þ p is feasible, � is defined to
be unity. In this case, the reduced gradient at �x; �sð Þ will be zero, and Lagrange multipliers are computed
at the next iteration. Otherwise, � is set to �N , the step to the ‘nearest’ constraint along p. This
constraint is then added to the working set at the next iteration.

If HZ is singular, then R must also be singular, and an inertia-controlling strategy is used to ensure that
only the last diagonal element of R is zero. (See Gill et al. (1991) for a discussion of a similar strategy
for indefinite quadratic programming.) In this case, pZ satisfies

pTZHZpZ ¼ 0 and gTZpZ � 0; ð13Þ

which allows the objective function to be reduced by any step of the form x; sð Þ þ �p, where � > 0.
The vector p ¼ ZpZ is a direction of unbounded descent for the QP problem in the sense that the QP
objective is linear and decreases without bound along p. If no finite step of the form x; sð Þ þ �p (where
� > 0) reaches a constraint not in the working set, the QP problem is unbounded and the routine
terminates immediately with IFAIL ¼ 6. Otherwise, � is defined as the maximum feasible step along p
and a constraint active at x; sð Þ þ �p is added to the working set for the next iteration.
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E04NQF makes explicit allowance for infeasible constraints. Infeasible linear constraints are detected
first by solving a problem of the form

minimize
x;v;w

eT vþ wð Þ subject to l � x
Gx� vþ w

� �
� u; v � 0; w � 0; ð14Þ

where eT ¼ 1; 1; . . . ; 1ð Þ. This is equivalent to minimizing the sum of the general linear constraint
violations subject to the simple bounds. (In the linear programming literature, the approach is often
called elastic programming.)

11.4 Miscellaneous

If the basis matrix is not chosen carefully, the condition of the null space matrix Z in (8) could be
arbitrarily high. To guard against this, the routine implements a ‘basis repair’ feature in which the
LUSOL package (see Gill et al. (1991)) is used to compute the rectangular factorization

B S
� �T ¼ LU; ð15Þ

returning just the permutation P that makes PLPT unit lower triangular. The pivot tolerance is set to
require PLPTj jij � 2, and the permutation is used to define P in (7). It can be shown that Zk k is likely
to be little more than unity. Hence, Z should be well-conditioned regardless of the condition of W . This
feature is applied at the beginning of the optimality phase if a potential B� S ordering is known.

The EXPAND procedure (see Gill et al. (1989)) is used to reduce the possibility of cycling at a point
where the active constraints are nearly linearly dependent. Although there is no absolute guarantee that
cycling will not occur, the probability of cycling is extremely small (see Hall and McKinnon (1996)).
The main feature of EXPAND is that the feasibility tolerance is increased at the start of every iteration.
This allows a positive step to be taken at every iteration, perhaps at the expense of violating the bounds
on x; sð Þ by a small amount.

Suppose that the value of the optional parameter Feasibility Tolerance is �. Over a period of K
iterations (where K is the value of the optional parameter Expand Frequency), the feasibility tolerance
actually used by the routine (i.e., the working feasibility tolerance) increases from 0:5� to � (in steps of
0:5�=K).

At certain stages the following ‘resetting procedure’ is used to remove small constraint infeasibilities.
First, all nonbasic variables are moved exactly onto their bounds. A count is kept of the number of
nontrivial adjustments made. If the count is nonzero, the basic variables are recomputed. Finally, the
working feasibility tolerance is reinitialized to 0:5�.

If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle of
iterations is started. (The decision to resume the feasibility phase or optimality phase is based on
comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when the routine reaches an apparently optimal, infeasible or
unbounded solution, unless this situation has already occurred twice. If any nontrivial adjustments are
made, iterations are continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration, but also provides
a potential choice of constraints to be added to the working set. All constraints at a distance � (where
� � �N ) along p from the current point are then viewed as acceptable candidates for inclusion in the
working set. The constraint whose normal makes the largest angle with the search direction is added to
the working set. This strategy helps keep the basis matrix B well-conditioned.

12 Optional Parameters

Several optional parameters in E04NQF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal arguments of E04NQF these optional parameters have
associated default values that are appropriate for most problems. Therefore, you need only specify those
optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.
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The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Backup Basis File

Check Frequency

Crash Option

Crash Tolerance

Defaults

Dump File

Elastic Mode

Elastic Objective

Elastic Weight

Expand Frequency

Factorization Frequency

Feasibility Tolerance

Feasible Point

Infinite Bound Size

Insert File

Iterations Limit

List

Load File

LU Complete Pivoting

LU Density Tolerance

LU Factor Tolerance

LU Partial Pivoting

LU Rook Pivoting

LU Singularity Tolerance

LU Update Tolerance

Maximize

Minimize

New Basis File

Nolist

Old Basis File

Optimality Tolerance

Partial Price

Pivot Tolerance

Print File

Print Frequency

Print Level

Punch File

QPSolver CG

QPSolver Cholesky

QPSolver QN

Reduced Hessian Dimension

Save Frequency

Scale Option

Scale Print

Scale Tolerance
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Solution File

Solution No

Solution Yes

Summary File

Summary Frequency

Superbasics Limit

Suppress Parameters

System Information No

System Information Yes

Timing Level

Unbounded Step Size

Optional parameters may be specified by calling one, or any, of the routines E04NRF, E04NSF,
E04NTF and E04NUF before a call to E04NQF, but after a call to E04NPF.

E04NRF reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04NRF (ISPECS, CW, IW, RW, IFAIL)

can then be used to read the file on unit ISPECS. IFAIL will be zero on successful exit. E04NRF should
be consulted for a full description of this method of supplying optional parameters.

E04NSF, E04NTF or E04NUF can be called to supply options directly, one call being necessary for
each optional parameter. E04NSF, E04NTF or E04NUF should be consulted for a full description of
this method of supplying optional parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by E04NQF (unless they define invalid values) and so remain in effect
for subsequent calls unless altered by you.

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value is used whenever the condition ij j � 100000000 is satisfied and where the
symbol � is a generic notation for machine precision (see X02AJF);

The variable bigbnd holds the value of Infinite Bound Size.

Keywords and character values are case and white space insensitive.

Check Frequency i Default ¼ 60

Every ith iteration after the most recent basis factorization, a numerical test is made to see if the current
solution x; sð Þ satisfies the linear constraints Ax� s ¼ 0. If the largest element of the residual vector
r ¼ Ax� s is judged to be too large, the current basis is refactorized and the basic variables
recomputed to satisfy the constraints more accurately. If i � 0, the value i ¼ 99999999 is used and
effectively no checks are made.
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Check Frequency ¼ 1 is useful for debugging purposes, but otherwise this option should not be
needed.

Crash Option i Default ¼ 3
Crash Tolerance r Default ¼ 0:1

Note that these options do not apply when START ¼ W (see Section 5).

If START ¼ C , an internal Crash procedure is used to select an initial basis from various rows and
columns of the constraint matrix A �I

� �
. The value of i determines which rows and columns of A

are initially eligible for the basis, and how many times the Crash procedure is called. Columns of �I
are used to pad the basis where necessary.

i Meaning

0 The initial basis contains only slack variables: B ¼ I.
1 The Crash procedure is called once, looking for a triangular basis in all rows and columns of

the matrix A.

2 The Crash procedure is called once, looking for a triangular basis in rows.

3 The Crash procedure is called twice, treating linear equalities and linear inequalities
separately.

If i � 1, certain slacks on inequality rows are selected for the basis first. (If i � 2, numerical values are
used to exclude slacks that are close to a bound.) The Crash procedure then makes several passes
through the columns of A, searching for a basis matrix that is essentially triangular. A column is
assigned to ‘pivot’ on a particular row if the column contains a suitably large element in a row that has
not yet been assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For
remaining unassigned rows, slack variables are inserted to complete the basis.

The Crash Tolerance allows the Crash procedure to ignore certain ‘small’ nonzero elements in each
column of A. If amax is the largest element in column j, other nonzeros aij in the column are ignored if
aij
		 		 � amax � r. (To be meaningful, r should be in the range 0 � r < 1.)

When r > 0:0, the basis obtained by the Crash procedure may not be strictly triangular, but it is likely
to be nonsingular and almost triangular. The intention is to obtain a starting basis containing more
columns of A and fewer (arbitrary) slacks. A feasible solution may be reached sooner on some
problems.

For example, suppose the first m columns of A form the matrix shown under LU Factor Tolerance; i.
e., a tridiagonal matrix with entries �1, 4, �1. To help the Crash procedure choose all m columns for
the initial basis, we would specify a Crash Tolerance of r for some value of r > 0:5.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Dump File i1 Default ¼ 0
Load File i2 Default ¼ 0

Optional parameters Dump File and Load File are similar to optional parameters Punch File and
Insert File, but they record solution information in a manner that is more direct and more easily
modified. A full description of information recorded in optional parameters Dump File and Load File
is given in Gill et al. (2005a).

If i1 > 0, the last solution obtained will be output to the file with unit number i.

If i2 > 0, the Load File containing basis information will be read. The file will usually have been
output previously as a Dump File. The file will not be accessed if optional parameters Old Basis File
or Insert File are specified.
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Elastic Mode i Default ¼ 1

This argument determines if (and when) elastic mode is to be started. Three elastic modes are available
as follows:

i Meaning

0 Elastic mode is never invoked. E04NQF will terminate as soon as infeasibility is detected.
There may be other points with significantly smaller sums of infeasibilities.

1 Elastic mode is invoked only if the constraints are found to be infeasible (the default). If the
constraints are infeasible, continue in elastic mode with the composite objective determined by
the values of the optional parameters Elastic Objective and Elastic Weight.

2 The iterations start and remain in elastic mode. This option allows you to minimize the
composite objective function directly without first performing Phase 1 iterations.

The success of this option will depend critically on your choice of Elastic Weight. If Elastic
Weight is sufficiently large and the constraints are feasible, the minimizer of the composite
objective and the solution of the original problem are identical. However, if the Elastic
Weight is not sufficiently large, the minimizer of the composite function may be infeasible,
even if a feasible point exists.

Elastic Objective i Default ¼ 1

This determines the form of the composite objective f xð Þ þ �
P
j

vj þ wj
� �

in Phase 2 (�). Three types of

composite objectives are available.

i Meaning

0 Include only the true objective f xð Þ in the composite objective. This option sets � ¼ 0 in the
composite objective and allows E04NQF to ignore the elastic bounds and find a solution that
minimizes f xð Þ subject to the non-elastic constraints. This option is useful if there are some
‘soft’ constraints that you would like to ignore if the constraints are infeasible.

1 Use a composite objective defined with � determined by the value of Elastic Weight. This
value is intended to be used in conjunction with Elastic Mode ¼ 2.

2 Include only the elastic variables in the composite objective. The elastics are weighted by
� ¼ 1. This choice minimizes the violations of the elastic variables at the expense of possibly
increasing the true objective. This option can be used to find a point that minimizes the sum of
the violations of a subset of constraints specified by the input array HELAST.

Elastic Weight r Default ¼ 1:0

This defines the value of � in the composite objective in Phase 2 (�).

At each iteration of elastic mode, the composite objective is defined to be

minimize � f xð Þ þ � ðsum of infeasibilitiesÞ;

where � ¼ 1 for Minimize, � ¼ �1 for Maximize, and f xð Þ is the quadratic objective.

Note that the effect of � is not disabled once a feasible point is obtained.

Expand Frequency i Default ¼ 10000

This option is part of an anti-cycling procedure (see Section 11.4) designed to allow progress even on
highly degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the constraints by a
small amount. Suppose that the value of the optional parameter Feasibility Tolerance is �. Over a
period of i iterations, the feasibility tolerance actually used by E04NQF (i.e., the working feasibility
tolerance) increases from 0:5� to � (in steps of 0:5�=i).
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Increasing the value of i helps reduce the number of slightly infeasible nonbasic variables (most of
which are eliminated during the resetting procedure). However, it also diminishes the freedom to choose
a large pivot element (see the description of the optional parameter Pivot Tolerance).

If i � 0, the value i ¼ 99999999 is used and effectively no anti-cycling procedure is invoked.

Factorization Frequency i Default ¼ 100 LPð Þ or 50 QPð Þ
If i > 0, at most i basis changes will occur between factorizations of the basis matrix.

For LP problems, the basis factors are usually updated at every iteration. Higher values of i may be
more efficient on problems that are extremely sparse and well scaled.

For QP problems, fewer basis updates will occur as the solution is approached. The number of
iterations between basis factorizations will therefore increase. During these iterations a test is made
regularly according to the value of optional parameter Check Frequency to ensure that the linear
constraints Ax� s ¼ 0 are satisfied. Occasionally, the basis will be refactorized before the limit of i
updates is reached. If i � 0, the default value is used.

Feasibility Tolerance r Default ¼ max 10�6;
ffiffi
�
p� 

A feasible problem is one in which all variables satisfy their upper and lower bounds to within the
absolute tolerance r. (This includes slack variables. Hence, the general constraints are also satisfied to
within r.)

E04NQF attempts to find a feasible solution before optimizing the objective function. If the sum of
infeasibilities cannot be reduced to zero, the problem is assumed to be infeasible. Let sInf be the
corresponding sum of infeasibilities. If sInf is quite small, it may be appropriate to raise r by a factor
of 10 or 100. Otherwise, some error in the data should be suspected.

Note that if sInf is not small and you have not asked E04NQF to minimize the violations of the elastic
variables (i.e., you have not specified Elastic Objective ¼ 2), there may be other points that have a
significantly smaller sum of infeasibilities. E04NQF will not attempt to find the solution that minimizes
the sum unless Elastic Objective ¼ 2.

If the constraints and variables have been scaled (see the description of the optional parameter Scale
Option), then feasibility is defined in terms of the scaled problem (since it is more likely to be
meaningful).

Infinite Bound Size r Default ¼ 1020

If r � 0, r defines the ‘infinite’ bound infbnd in the definition of the problem constraints. Any upper
bound greater than or equal to infbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �infbnd will be regarded as �1). If r < 0, the default value is used.

Iterations Limit i Default ¼ max 10000; 10max m;nf gf g
The value of i specifies the maximum number of iterations allowed before termination. Setting i ¼ 0
and Print Level > 0 means that: the workspace needed to start solving the problem will be computed
and printed; and feasibility and optimality will be checked. No iterations will be performed. If i < 0,
the default value is used.

LU Density Tolerance r1 Default ¼ 0:6
LU Singularity Tolerance r2 Default ¼ �23

The density tolerance r1 is used during LU factorization of the basis matrix. Columns of L and rows of
U are formed one at a time, and the remaining rows and columns of the basis are altered appropriately.
At any stage, if the density of the remaining matrix exceeds r1, the Markowitz strategy for choosing
pivots is terminated. The remaining matrix is factored by a dense LU procedure. Raising the density
tolerance towards 1:0 may give slightly sparser LU factors, with a slight increase in factorization time.

If r2 > 0, r2 defines the singularity tolerance used to guard against ill-conditioned basis matrices. After
B is refactorized, the diagonal elements of U are tested as follows. If ujj

		 		 � r2 or ujj
		 		 < r2max

i
uij
		 		,
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the jth column of the basis is replaced by the corresponding slack variable. If r2 � 0, the default value
is used.

LU Factor Tolerance r1 Default ¼ 100:0
LU Update Tolerance r2 Default ¼ 10:0

The values of r1 and r2 affect the stability and sparsity of the basis factorization B ¼ LU , during
refactorization and updates respectively. The lower triangular matrix L is a product of matrices of the
form

1
� 1

� �
where the multipliers � will satisfy �j j � ri. The default values of r1 and r2 usually strike a good
compromise between stability and sparsity. They must satisfy r1, r2 � 1:0.

For large and relatively dense problems, r1 ¼ 10:0 or 5:0 (say) may give a useful improvement in
stability without impairing sparsity to a serious degree.

For certain very regular structures (e.g., band matrices) it may be necessary to reduce r1 and=or r2 in
order to achieve stability. For example, if the columns of A include a sub-matrix of the form

4 �1
�1 4 �1

�1 4 �1
. . . . . . . . .

�1 4 �1
�1 4

0BBBBB@

1CCCCCA;

one should set both r1 and r2 to values in the range 1:0 � ri < 4:0.

LU Partial Pivoting Default
LU Complete Pivoting
LU Rook Pivoting

The LU factorization implements a Markowitz-type search for pivots that locally minimize the fill-in
subject to a threshold pivoting stability criterion. The default option is to use threshold partial pivoting.
The options LU Complete Pivoting and LU Rook Pivoting are more expensive but more stable and
better at revealing rank, as long as the LU Factor Tolerance is not too large (say < 2:0).

Minimize Default
Maximize
Feasible Point

This option specifies the required direction of the optimization. It applies to both linear and nonlinear
terms (if any) in the objective function. Note that if two problems are the same except that one
minimizes f xð Þ and the other maximizes �f xð Þ, their solutions will be the same but the signs of the
dual variables 	i and the reduced gradients dj (see Section 11.3) will be reversed.

The option Feasible Point means ‘ignore the objective function, while finding a feasible point for the
linear constraints’. It can be used to check that the constraints are feasible without altering the call to
E04NQF.

New Basis File i1 Default ¼ 0
Backup Basis File i2 Default ¼ 0
Save Frequency i3 Default ¼ 100

Optional parameters New Basis File and Backup Basis File are sometimes referred to as basis maps.
They contain the most compact representation of the state of each variable. They are intended for
restarting the solution of a problem at a point that was reached by an earlier run. For nontrivial
problems, it is advisable to save basis maps at the end of a run, in order to restart the run if necessary.
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If i1 > 0, a basis map will be saved on file i1 every i3th iteration, where i3 is the Save Frequency. The
first record of the file will contain the word PROCEEDING if the run is still in progress. A basis map will
also be saved at the end of a run, with some other word indicating the final solution status.

Use of i2 > 0 is intended as a safeguard against losing the results of a long run. Suppose that a New
Basis File is being saved every 100 (Save Frequency) iterations, and that E04NQF is about to save
such a basis at iteration 2000. It is conceivable that the run may be interrupted during the next few
milliseconds (in the middle of the save). In this case the Basis file will be corrupted and the run will
have been essentially wasted.

To eliminate this risk, both a New Basis File and a Backup Basis File may be specified. The following
would be suitable for the above example:

Backup Basis File 11
New Basis File 12

The current basis will then be saved every 100 iterations, first on File 12 and then immediately on
File 11. If the run is interrupted at iteration 2000 during the save on File 12, there will still be a
usable basis on File 11 (corresponding to iteration 1900).

Note that a new basis will be saved in New Basis File at the end of a run if it terminates normally, but
it will not be saved in Backup Basis File. In the above example, if an optimum solution is found at
iteration 2050 (or if the iteration limit is 2050), the final basis on File 12 will correspond to iteration
2050, but the last basis saved on File 11 will be the one for iteration 2000.

A full description of information recorded in New Basis File and Backup Basis File is given in Gill et
al. (2005a).

Nolist Default
List

Normally each optional parameter specification is printed to unit Print File as it is supplied. Optional
parameter Nolist may be used to suppress the printing and optional parameter List may be used to
restore printing.

Old Basis File i Default ¼ 0

If i > 0, the basis maps information will be obtained from this file. The file will usually have been
output previously as a New Basis File or Backup Basis File. A full description of information recorded
in New Basis File and Backup Basis File is given in Gill et al. (2005a).

The file will not be acceptable if the number of rows or columns in the problem has been altered.

Optimality Tolerance r Default ¼ max 10�6;
ffiffi
�
p� 

This is used to judge the size of the reduced gradients dj ¼ gj � aTj 	, where gj is the jth component of

the gradient, aj is the associated column of the constraint matrix A �I
� �

, and 	 is the set of dual
variables.

By construction, the reduced gradients for basic variables are always zero. The problem will be
declared optimal if the reduced gradients for nonbasic variables at their lower or upper bounds satisfy

dj= 	k k � �r or dj= 	k k � r

respectively, and if dj
		 		= 	k k � r for superbasic variables.

In the above tests, 	k k is a measure of the size of the dual variables. It is included to make the tests
independent of a scale factor on the objective function. The quantity 	k k actually used is defined by

	k k ¼ max �=
ffiffiffiffiffi
m
p

; 1
� �

; where � ¼
Xm
i¼1

	ij j;

so that only large scale factors are allowed for.

If the objective is scaled down to be very small, the optimality test reduces to comparing dj against
0:01r.
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Partial Price i Default ¼ 10 LPð Þ or 1 QPð Þ
This option is recommended for large FP or LP problems that have significantly more variables than
constraints (i.e., n� m). It reduces the work required for each pricing operation (i.e., when a nonbasic
variable is selected to enter the basis). If i ¼ 1, all columns of the constraint matrix A �I

� �
are

searched. If i > 1, A and I are partitioned to give i roughly equal segments Aj ; Ij , for j ¼ 1; 2; . . . ; i
(modulo i). If the previous pricing search was successful on Aj�1; Ij�1, the next search begins on the
segments Aj and Ij. If a reduced gradient is found that is larger than some dynamic tolerance, the
variable with the largest such reduced gradient (of appropriate sign) is selected to enter the basis. If
nothing is found, the search continues on the next segments Ajþ1; Ijþ1, and so on. If i � 0, the default
value is used.

Pivot Tolerance r Default ¼ �23

Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they would cause
the basis to become almost singular.

When x changes to xþ �p for some search direction p, a ‘ratio test’ determines which component of x
reaches an upper or lower bound first. The corresponding element of p is called the pivot element.
Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller than the pivot
tolerance r.

It is common for two or more variables to reach a bound at essentially the same time. In such cases, the
optional parameter Feasibility Tolerance (say t) provides some freedom to maximize the pivot element
and thereby improve numerical stability. Excessively small values of t should therefore not be specified.
To a lesser extent, the optional parameter Expand Frequency (say f) also provides some freedom to
maximize the pivot element. Excessively large values of f should therefore not be specified.

Print File i Default ¼ 0

If i > 0, the following information is output to i during the solution of each problem:

– a listing of the optional parameters;

– some statistics about the problem;

– the amount of storage available for the LU factorization of the basis matrix;

– notes about the initial basis resulting from a Crash procedure or a Basis file;

– the iteration log;

– basis factorization statistics;

– the exit IFAIL condition and some statistics about the solution obtained;

– the printed solution, if requested.

The last four items are described in Sections 9 and 13. Further brief output may be directed to the
Summary File.

Print Frequency i Default ¼ 100

If i > 0, one line of the iteration log will be printed every ith iteration. A value such as i ¼ 10 is
suggested for those interested only in the final solution. If i � 0, the value of i ¼ 99999999 is used and
effectively no checks are made.

Print Level i Default ¼ 1

This controls the amount of printing produced by E04NQF as follows.

i Meaning

0 No output except error messages. If you want to suppress all output, set Print File ¼ 0.
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¼ 1 The set of selected options, problem statistics, summary of the scaling procedure, information
about the initial basis resulting from a Crash or a Basis file, a single line of output at each
iteration (controlled by the optional parameter Print Frequency), and the exit condition with a
summary of the final solution.

� 10 Basis factorization statistics.

Punch File i1 Default ¼ 0
Insert File i2 Default ¼ 0

These files provide compatibility with commercial mathematical programming systems. The Punch File
from a previous run may be used as an Insert File for a later run on the same problem. A full
description of information recorded in Insert File and Punch File is given in Gill et al. (2005a).

If i1 > 0, the final solution obtained will be output to file i1. For linear programs, this format is
compatible with various commercial systems.

If i2 > 0, the Insert File containing basis information will be read. The file will usually have been
output previously as a Punch File. The file will not be accessed if Old Basis File is specified.

QPSolver Cholesky Default
QPSolver CG
QPSolver QN

Specifies the active-set algorithm used to solve the quadratic program in Phase 2 (�). QPSolver
Cholesky holds the full Cholesky factor R of the reduced Hessian ZTHZ. As the QP iterations
proceed, the dimension of R changes with the number of superbasic variables. If the number of
superbasic variables needs to increase beyond the value of Reduced Hessian Dimension, the reduced
Hessian cannot be stored and the solver switches to QPSolver CG. The Cholesky solver is reactivated
if the number of superbasics stabilizes at a value less than Reduced Hessian Dimension.

QPSolver QN solves the QP using a quasi-Newton method. In this case, R is the factor of a quasi-
Newton approximate Hessian.

QPSolver CG uses an active-set method similar to QPSolver QN, but uses the conjugate-gradient
method to solve all systems involving the reduced Hessian.

The Cholesky QP solver is the most robust, but may require a significant amount of computation if
there are many superbasics.

The quasi-Newton QP solver does not require computation of the exact R at the start of Phase 2 (�). It
may be appropriate when the number of superbasics is large but relatively few iterations are needed to
reach a solution (e.g., if E04NQF is called with a Warm Start).

The conjugate-gradient QP solver is appropriate for problems with many degrees of freedom (say, more
than 2000 superbasics).

Reduced Hessian Dimension i Default ¼ 1 LPð Þ or min 2000; nH þ 1; nð Þ QPð Þ
This specifies that an i by i triangular matrix R (to define the reduced Hessian according to
RTR ¼ ZTHZ). is to be available for use by the Cholesky QP solver.

Scale Option i Default ¼ 2
Scale Tolerance r Default ¼ 0:9
Scale Print

Three scale options are available as follows:

i Meaning

0 No scaling. This is recommended if it is known that x and the constraint matrix never have very
large elements (say, larger than 100).
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1 The constraints and variables are scaled by an iterative procedure that attempts to make the matrix
coefficients as close as possible to 1:0 (see Fourer (1982)). This will sometimes improve the
performance of the solution procedures.

2 The constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling
is performed that may be helpful if the right-hand side b or the solution x is large. This takes into
account columns of A �I

� �
that are fixed or have positive lower bounds or negative upper

bounds.

Optional parameter Scale Tolerance affects how many passes might be needed through the constraint
matrix. On each pass, the scaling procedure computes the ratio of the largest and smallest nonzero
coefficients in each column:

�j ¼ max
j

aij
		 		=min

i
aij
		 		 aij 6¼ 0

� �
:

If max
j
�j is less than r times its previous value, another scaling pass is performed to adjust the row and

column scales. Raising r from 0:9 to 0:99 (say) usually increases the number of scaling passes through
A. At most 10 passes are made. The value of r should lie in the range 0 < r < 1.

Scale Print causes the row scales r ið Þ and column scales c jð Þ to be printed to Print File, if System
Information Yes has been specified. The scaled matrix coefficients are �aij ¼ aijc jð Þ=r ið Þ, and the
scaled bounds on the variables and slacks are �lj ¼ lj=c jð Þ, �uj ¼ uj=c jð Þ, where c jð Þ ¼ r j� nð Þ if j > n.

Solution Yes Default
Solution No

This option determines if the final obtained solution is to be output to the Print File. Note that the
Solution File option operates independently.

Solution File i Default ¼ 0

If i > 0, the final solution will be output to file i (whether optimal or not).

To see more significant digits in the printed solution, it will sometimes be useful to make i refer to the
system Print File.

Summary File i1 Default ¼ 0
Summary Frequency i2 Default ¼ 100

If i1 > 0, the Summary File is output to file i1, including a line of the iteration log every i2th iteration.
In an interactive environment, it is useful to direct this output to the terminal, to allow a run to be
monitored online. (If something looks wrong, the run can be manually terminated.) Further details are
given in Section 13. If i2 � 0, the value of i2 ¼ 99999999 is used and effectively no checks are made.

Superbasics Limit i Default ¼ 1 LPð Þ or min nH þ 1; nf g QPð Þ
This places a limit on the storage allocated for superbasic variables. Ideally, i should be set slightly
larger than the ‘number of degrees of freedom’ expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom. (The number
of variables lying strictly between their bounds is no more than m, the number of general constraints.)
The default value of i is therefore 1.

For quadratic problems, the number of degrees of freedom is often called the ‘number of independent
variables’. Normally, i need not be greater than nH þ 1, where nH is the number of leading nonzero
columns of H. For many problems, i may be considerably smaller than nH . This will save storage if nH
is very large.

Suppress Parameters

Normally E04NQF prints the options file as it is being read, and then prints a complete list of the
available keywords and their final values. The optional parameter Suppress Parameters tells E04NQF
not to print the full list.
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System Information No Default
System Information Yes

This option prints additional information on the progress of major and minor iterations, and Crash
statistics. See Section 13.

Timing Level i Default ¼ 0

If i > 0, some timing information will be output to the Print file, if Print File > 0.

Unbounded Step Size r Default ¼ infbnd

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is not positive
definite.) If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used. See
Infinite Bound Size for the definition of infbnd.

13 Description of Monitoring Information

This section describes the intermediate printout and final printout which constitutes the monitoring
information produced by E04NQF. (See also the description of the optional parameters Print File and
Print Level.) You can control the level of printed output.

13.1 Crash Statistics

When Print Level � 10, Print File > 0 and System Information Yes has been specified, the following
lines of intermediate printout (less than 120 characters) are produced on the unit number specified by
optional parameter Print File whenever START ¼ C (see Section 5). They refer to the number of
columns selected by the Crash procedure during each of several passes through A, whilst searching for
a triangular basis matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis, including those whose bounds are
rather far apart.

Preferred is the number of ‘preferred’ columns in the basis (i.e., HSðjÞ ¼ 3 for some
j � n). It will be a subset of the columns for which HSðjÞ ¼ 3 was specified.

Unit is the number of unit columns in the basis.

Double is the number of double columns in the basis.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

13.2 Basis Factorization Statistics

When Print Level � 10 and Print File > 0, the first seven items of intermediate printout in the list
below are produced on the unit number specified by optional parameter Print File whenever the matrix

B or BS ¼ B S
� �T

is factorized. Gaussian elimination is used to compute an LU factorization of B
or BS, where PLPT is a lower triangular matrix and PUQ is an upper triangular matrix for some
permutation matrices P and Q. The factorization is stabilized in the manner described under the
optional parameter LU Factor Tolerance. In addition, if System Information Yes has been specified,
the entries from Elems onwards are also output.

Label Description

Factor the number of factorizations since the start of the run.

Demand a code giving the reason for the present factorization, as follows:
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Code Meaning
0 First LU factorization.
1 The number of updates reached the Factorization Frequency.
2 The nonzeros in the updated factors have increased significantly.
7 Not enough storage to update factors.
10 Row residuals are too large (see the description of the optional

parameter Check Frequency).
11 Ill-conditioning has caused inconsistent results.

Itn is the current minor iteration number.

Nonlin is the number of nonlinear variables in the current basis B.

Linear is the number of linear variables in B.

Slacks is the number of slack variables in B.

B, BR, BS or BT factorize
is the type of LU factorization.

B periodic factorization of the basis B.
BR more careful rank-revealing factorization of B using threshold rook

pivoting. This occurs mainly at the start, if the first basis factors seem
singular or ill-conditioned. Followed by a normal B factorize.

BS BS is factorized to choose a well-conditioned B from the current B Sð Þ.
Followed by a normal B factorize.

BT same as BS except the current B is tried first and accepted if it appears
to be not much more ill-conditioned than after the previous BS factorize.

m is the number of rows in B or BS.

n is the number of columns in B or BS. Preceded by ‘=’ or ‘>’ respectively.

Elems is the number of nonzero elements in B or BS.

Amax is the largest nonzero in B or BS.

Density is the percentage nonzero density of B or BS.

Merit/MerRP/MerCP Merit is the average Markowitz merit count for the elements chosen to be the
diagonals of PUQ. Each merit count is defined to be c� 1ð Þ r� 1ð Þ where c and r
are the number of nonzeros in the column and row containing the element at the
time it is selected to be the next diagonal. Merit is the average of n such
quantities. It gives an indication of how much work was required to preserve
sparsity during the factorization. If LU Complete Pivoting or LU Rook Pivoting
has been selected, this heading is changed to MerCP, respectively MerRP.

lenL is the number of nonzeros in L.

L+U is the number of nonzeros representing the basis factors L and U . Immediately
after a basis factorization B ¼ LU , this is lenL+lenU, the number of subdiagonal
elements in the columns of a lower triangular matrix and the number of diagonal
and superdiagonal elements in the rows of an upper-triangular matrix. Further
nonzeros are added to L when various columns of B are later replaced. As
columns of B are replaced, the matrix U is maintained explicitly (in sparse form).
The value of L will steadily increase, whereas the value of U may fluctuate up or
down. Thus the value of L+U may fluctuate up or down (in general, it will tend to
increase).

Cmpressns is the number of times the data structure holding the partially factored matrix
needed to be compressed to recover unused storage. Ideally this number should
be zero. If it is more than 3 or 4, the amount of workspace available to E04NQF
should be increased for efficiency.
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Incres is the percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in B or BS.

Utri is the number of triangular rows of B or BS at the top of U .

lenU the number of nonzeros in U , including its diagonals.

Ltol is the largest subdiagonal element allowed in L. This is the specified LU Factor
Tolerance or a smaller value that is currently being used for greater stability.

Umax the maximum nonzero element in U .

Ugrwth is the ratio Umax=Amax, which ideally should not be substantially larger than 10:0
or 100:0. If it is orders of magnitude larger, it may be advisable to reduce the LU
Factor Tolerance to 5:0, 4:0, 3:0 or 2:0, say (but bigger than 1:0).

As long as Lmax is not large (say 5:0 or less), max Amax; Umaxð Þ=DUmin gives an
estimate of the condition number B. If this is extremely large, the basis is nearly
singular. Slacks are used to replace suspect columns of B and the modified basis
is refactored.

Ltri is the number of triangular columns of B or BS at the left of L.

dense1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0:3.

Lmax is the actual maximum subdiagonal element in L (bounded by Ltol).

Akmax is the largest nonzero generated at any stage of the LU factorization. (Values
much larger than Amax indicate instability.) Akmax is not printed if LU Partial
Pivoting is selected.

Agrwth is the ratio Akmax=Amax. Values much larger than 100 (say) indicate instability.
Agrwth is not printed if LU Partial Pivoting is selected.

bump is the size of the block to be factorized nontrivially after the triangular rows and
columns of B or BS have been removed.

dense2 is the number of columns remaining when the density of the basis matrix being
factorized reached 0:6. (The Markowitz pivot strategy searches fewer columns at
that stage.)

DUmax is the largest diagonal of PUQ.

DUmin is the smallest diagonal of PUQ.

condU the ratio DUmax=DUmin, which estimates the condition number of U (and of B if
Ltol is less than 5:0, say).

13.3 Basis Map

When Print Level � 10 and Print File > 0, the following lines of intermediate printout (less than 80
characters) are produced on the unit number specified by optional parameter Print File. They refer to
the elements of the NAMES array (see Section 5).

Label Description

Name gives the name for the problem (blank if problem unnamed).

Infeasibilities gives the number of infeasibilities. Printed only if the final point is infeasible.

Objective Value gives the objective value at the final point (or the value of the sum of
infeasibilities). Printed only if the final point is feasible.

Status gives the exit status for the problem (i.e., Optimal soln, Weak soln,
Unbounded, Infeasible, Excess itns, Error condn or Feasble soln)
followed by details of the direction of the optimization (i.e., (Min) or (Max)).

Iteration gives the iteration number when the file was created.
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Superbasics gives the number of superbasic variables.

Objective gives the name of the free row for the problem (blank if objective unnamed).

RHS gives the name of the constraint right-hand side for the problem (blank if
objective unnamed).

Ranges gives the name of the ranges for the problem (blank if objective unnamed).

Bounds gives the name of the bounds for the problem (blank if objective unnamed).

13.4 Solution Output

At the end of a run, the final solution will be output to the Print file. Some header information appears
first to identify the problem and the final state of the optimization procedure. A ROWS section and a
COLUMNS section then follow, giving one line of information for each row and column.

13.4.1The ROWS section

General constraints take the form l � Ax � u. The ith constraint is therefore of the form

� � �ix � �;

where �i is the ith row of A.

Internally, the constraints take the form Ax� s ¼ 0, where s is the set of slack variables (which happen
to satisfy the bounds l � s � u). For the ith constraint, the slack variable si is directly available, and it
is sometimes convenient to refer to its state. It should satisfy � � si � �. A fullstop (.) is printed for
any numerical value that is exactly zero.

Label Description

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of �i.

State the state of �i (the state of si relative to the bounds � and �). The various states
possible are as follows:

LL si is nonbasic at its lower limit, �.

UL si is nonbasic at its upper limit, �.

EQ si is nonbasic and fixed at the value � ¼ �.
FR si is nonbasic and currently zero, even though it is free to take any value

between its bounds � and �.

BS si is basic.

SBS si is superbasic.

A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value
of the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal (or very
close) to one of its bounds.
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I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the Feasibility Tolerance.

N Not precisely optimal. If the slack is superbasic, the dual variable 	i is not
sufficiently small, as measured by the Optimality Tolerance. If the slack
is nonbasic, 	i is not sufficiently positive or negative. If a loose
Optimality Tolerance has been used, or if iterations were terminated
before optimality, this key might be helpful in deciding whether or not to
restart the run.

Activity is the value of �ix at the final iterate.

Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if
any), it is set to Activity.)

Lower Limit is �, the lower bound specified for the variable si. None indicates that
BLðjÞ � �infbnd.

Upper Limit is �, the upper bound specified for the variable si. None indicates that
BUðjÞ � infbnd.

Dual Activity is the value of the dual variable 	i (the Lagrange multiplier for �i; see
Section 11.3). For FP problems, 	i is set to zero.

i gives the index i of the ith row.

13.4.2The COLUMNS Section

Let the jth component of x be the variable xj and assume that it satisfies the bounds � � xj � �. A
fullstop (.) is printed for any numerical value that is exactly zero.

Label Description

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj.

State the state of xj relative to the bounds � and �. The various states possible are as
follows:

LL xj is nonbasic at its lower limit, �.

UL xj is nonbasic at its upper limit, �.

EQ xj is nonbasic and fixed at the value � ¼ �.
FR xj is nonbasic and currently zero, even though it is free to take any value

between its bounds � and �.

BS xj is basic.

SBS xj is superbasic.

A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value
of the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal (or very
close) to one of its bounds.
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I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the Feasibility Tolerance.

N Not precisely optimal. If the slack is superbasic, the dual variable 	i is not
sufficiently small, as measured by the Optimality Tolerance. If the slack
is nonbasic, 	i is not sufficiently positive or negative. If a loose
Optimality Tolerance has been used, or if iterations were terminated
before optimality, this key might be helpful in deciding whether or not to
restart the run.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.

Lower Limit is the lower bound specified for the variable. None indicates that
BLðjÞ � �infbnd.

Upper Limit is the upper bound specified for the variable. None indicates that BUðjÞ � infbnd.

Reduced Gradnt is the value of dj at the final iterate (see Section 11.3). For FP problems, dj is set
to zero.

m + j is the value of mþ j.
Note: if two problems are the same except that one minimizes f xð Þ and the other maximizes �f xð Þ,
their solutions will be the same but the signs of the dual variables 	i and the reduced gradients dj will
be reversed.

13.5 The Solution File

If a positive Solution File is specified, the information contained in a printed solution may also be
output to the relevant file (which may be the Print file if so desired). Infinite Upper and Lower limits
appear as 
1020 rather than None. Other real values are output with format 1pe16.6. The maximum
line length is 111 characters, including what would be the carriage-control character if the file were
printed.

A Solution file is intended to be read from disk by a self-contained program that extracts and saves
certain values as required for possible further computation. Typically the first 14 lines would be
ignored. Each subsequent line may be read using

FORMAT (i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a line that starts with a 1 and
is otherwise blank. If this and the next 4 lines are skipped, the COLUMNS section (see Section 13.4.2)
can then be read under the same format. (There should be no need to use any BACKSPACE
statements.)

13.6 The Summary File

If Summary File f is specified with f > 0, certain brief information will be output to unit f . When
E04NQF is run interactively, unit f will usually be the terminal. For batch jobs a disk file should be
used, to retain a concise log of each run if desired. (A Summary File is more easily perused than the
associated Print file).

A Summary file (like the Print file) is not rewound after a problem has been processed. The maximum
line length is 72 characters, including a carriage-control character in column 1.

The following information is included:

1. The optional parameters supplied via the option setting routines, if any;

2. The Basis file loaded, if any;

3. The status of the solution after each basis factorization (whether feasible; the objective value; the
number of function calls so far);

4. The same information every kth iteration, where k is the specified Summary Frequency;
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5. Warnings and error messages;

6. The exit condition and a summary of the final solution.

Item 4 is preceded by a blank line, but item 5 is not.

The meaning of the printout for linear constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, NAMESðjÞ replaced by NAMESðnþ jÞ, BLðjÞ
and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ respectively, and with the following change in the
heading:

Constrnt gives the name of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.
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NAG Library Routine Document

E04NRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04NRF may be used to supply optional parameters to E04NQF from an external file. The initialization
routine E04NPF must have been called before calling E04NRF.

2 Specification

SUBROUTINE E04NRF (ISPECS, CW, IW, RW, IFAIL)

INTEGER ISPECS, IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)
CHARACTER(8) CW(*)

3 Description

E04NRF may be used to supply values for optional parameters to E04NQF. E04NRF reads an external
file and each line of the file defines a single optional parameter. It is only necessary to supply values for
those arguments whose values are to be different from their default values.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print level = 5

End

Optional parameter settings are preserved following a call to E04NQF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04NQF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NQF.

4 References

None.
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5 Arguments

1: ISPECS – INTEGER Input

On entry: the unit number of the option file to be read.

Constraint: ISPECS is a valid unit open for reading.

2: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04NPF).

3: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04NPF).

4: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04NPF).

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04NPF has not been called.

IFAIL ¼ 2

At least one line of the options file is invalid.

Could not read options file on unit ISPECS ¼ valueh i.
Could not read options file on unit ISPECS. This may be due to:

(a) ISPECS is not a valid unit number;

(b) a file is not associated with unit ISPECS, or if it is, is unavailable for read access;

(c) one or more lines of the options file is invalid. Check that all keywords are neither
ambiguous nor misspelt;

(d) Begin was found, but end-of-file was found before End was found;

(e) end-of-file was found before Begin was found.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NRF is not threaded in any implementation.

9 Further Comments

E04NSF, E04NTF or E04NUF may also be used to supply optional parameters to E04NQF.

10 Example

This example minimizes the quadratic function f xð Þ ¼ cTxþ 1
2x

THx , where

c ¼ �200:0;�2000:0;�2000:0;�2000:0;�2000:0; 400:0; 400:0ð ÞT

and

H ¼

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 2
0 0 0 0 0 2 2

0BBBBBBB@

1CCCCCCCA
subject to the bounds

0 � x1 � 200
0 � x2 � 2500

400 � x3 � 800
100 � x4 � 700

0 � x5 � 1500
0 � x6
0 � x7

and to the linear constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ 2000
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � 60
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 � 100
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � 40
0:02x1 þ 0:03x2 þ 0:01x5 � 30

1500 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
250 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 300
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The initial point, which is infeasible, is

x0 ¼ 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0ð ÞT:
The optimal solution (to five figures) is

x� ¼ 0:0; 349:40; 648:85; 172:85; 407:52; 271:36; 150:02ð ÞT:
One bound constraint and four linear constraints are active at the solution. Note that the Hessian matrix
H is positive semidefinite.

10.1 Program Text

! E04NRF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04nrfe_mod

! E04NRF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: qphx

! .. Parameters ..
Integer, Parameter, Public :: lencw = 600, leniw = 600, &

lenrw = 600, nin = 5, ninopt = 7, &
nout = 6

Contains
Subroutine qphx(ncolh,x,hx,nstate,cuser,iuser,ruser)

! Routine to compute H*x. (In this version of QPHX, the Hessian
! matrix H is not referenced explicitly.)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncolh, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hx(ncolh)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(ncolh)
Integer, Intent (Inout) :: iuser(*)
Character (8), Intent (Inout) :: cuser(*)

! .. Executable Statements ..
hx(1) = 2.0E0_nag_wp*x(1)
hx(2) = 2.0E0_nag_wp*x(2)
hx(3) = 2.0E0_nag_wp*(x(3)+x(4))
hx(4) = hx(3)
hx(5) = 2.0E0_nag_wp*x(5)
hx(6) = 2.0E0_nag_wp*(x(6)+x(7))
hx(7) = hx(6)

Return

End Subroutine qphx
End Module e04nrfe_mod
Program e04nrfe

! E04NRF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04npf, e04nqf, e04nrf, e04nsf, e04ntf, e04nuf, &

e04nxf, e04nyf, nag_wp, x04acf
Use e04nrfe_mod, Only: lencw, leniw, lenrw, nin, ninopt, nout, qphx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Character (*), Parameter :: fname = ’e04nrfe.opt’
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! .. Local Scalars ..
Real (Kind=nag_wp) :: bndinf, featol, obj, objadd, sinf
Integer :: elmode, i, icol, ifail, iobj, jcol, &

lenc, m, mode, n, ncolh, ne, ninf, &
nname, ns

Logical :: verbose_output
Character (8) :: prob
Character (1) :: start

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: acol(:), bl(:), bu(:), c(:), pi(:), &

rc(:), x(:)
Real (Kind=nag_wp) :: ruser(1), rw(lenrw)
Integer, Allocatable :: helast(:), hs(:), inda(:), loca(:)
Integer :: iuser(1), iw(leniw)
Character (8) :: cuser(1), cw(lencw)
Character (8), Allocatable :: names(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04NRF Example Program Results’

! This program demonstrates the use of routines to set and
! get values of optional parameters associated with E04NQF.

! Skip heading in data file.
Read (nin,*)

Read (nin,*) n, m
Read (nin,*) ne, iobj, ncolh, start, nname

Allocate (inda(ne),loca(n+1),helast(n+m),hs(n+m),acol(ne),bl(n+m), &
bu(n+m),x(n+m),pi(m),rc(n+m),names(nname))

Read (nin,*) names(1:nname)

! Read the matrix ACOL from data file. Set up LOCA.

jcol = 1
loca(jcol) = 1

Do i = 1, ne

! Element ( INDA( I ), ICOL ) is stored in ACOL( I ).

Read (nin,*) acol(i), inda(i), icol

If (icol<jcol) Then

! Elements not ordered by increasing column index.

Write (nout,99999) ’Element in column’, icol, &
’ found after element in column’, jcol, ’. Problem’, ’ abandoned.’

Go To 100
Else If (icol==jcol+1) Then

! Index in ACOL of the start of the ICOL-th column equals I.

loca(icol) = i
jcol = icol

Else If (icol>jcol+1) Then

! Index in ACOL of the start of the ICOL-th column equals I,
! but columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
! corresponding elements of LOCA to I.

loca((jcol+1):icol) = i
jcol = icol

End If

End Do
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loca(n+1) = ne + 1

If (n>icol) Then

! Columns N,N-1,...,ICOL+1 are empty. Set the corresponding
! elements of LOCA accordingly.

Do i = n, icol + 1, -1
loca(i) = loca(i+1)

End Do

End If

Read (nin,*) bl(1:(n+m))
Read (nin,*) bu(1:(n+m))

If (start==’C’) Then
Read (nin,*) hs(1:n)

Else If (start==’W’) Then
Read (nin,*) hs(1:(n+m))

End If

Read (nin,*) x(1:n)

! We have no explicit objective vector so set LENC = 0; the
! objective vector is stored in row IOBJ of ACOL.

lenc = 0
Allocate (c(max(1,lenc)))

objadd = 0.0E0_nag_wp
prob = ’ ’

Write (nout,99998) n, m

! Call E04NPF to initialize E04NQF.

ifail = 0
Call e04npf(cw,lencw,iw,leniw,rw,lenrw,ifail)

! Set this to .True. to cause e04nqf to produce intermediate
! progress output

verbose_output = .False.

If (verbose_output) Then
! By default E04NQF does not print monitoring information.
! Use E04NTF to set the integer-valued option ’Print file’
! unit number to get information.

ifail = 0
Call e04ntf(’Print file’,nout,cw,iw,rw,ifail)

End If

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Use E04NRF to read the options file for the remaining
! options

ifail = 0
Call e04nrf(ninopt,cw,iw,rw,ifail)

Write (nout,*)

! Use E04NXF to find the value of integer-valued option
! ’Elastic mode’.

ifail = 0
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Call e04nxf(’Elastic mode’,elmode,cw,iw,rw,ifail)

Write (nout,99997) elmode

! If Elastic Mode is nonzero, set HELAST.

If (elmode/=0) Then
helast(1:(n+m)) = 0

End If

! Use E04NUF to set the value of real-valued option
! ’Infinite bound size’.

bndinf = 1.0E10_nag_wp

ifail = 0
Call e04nuf(’Infinite bound size’,bndinf,cw,iw,rw,ifail)

! Use E04NYF to find the value of real-valued option
! ’Feasibility tolerance’.

ifail = 0
Call e04nyf(’Feasibility tolerance’,featol,cw,iw,rw,ifail)

Write (nout,99996) featol

! Use E04NSF to set the option ’Iterations limit’.

ifail = 0
Call e04nsf(’Iterations limit 50’,cw,iw,rw,ifail)

! Solve the QP problem.

ifail = 0
Call e04nqf(start,qphx,m,n,ne,nname,lenc,ncolh,iobj,objadd,prob,acol, &

inda,loca,bl,bu,c,names,helast,hs,x,pi,rc,ns,ninf,sinf,obj,cw,lencw, &
iw,leniw,rw,lenrw,cuser,iuser,ruser,ifail)

Write (nout,*)
Write (nout,99995) obj
Write (nout,99994) x(1:n)

100 Continue

99999 Format (1X,A,I5,A,I5,A,A)
99998 Format (1X,/,1X,’QP problem contains ’,I3,’ variables and ’,I3, &

’ linear constraints’)
99997 Format (1X,’Option ’’Elastic mode’’ has the value ’,I3,’.’)
99996 Format (1X,’Option ’’Feasibility tolerance’’ has the value ’,1P,E11.3, &

’.’)
99995 Format (1X,’Final objective value = ’,1P,E11.3)
99994 Format (1X,’Optimal X = ’,7F9.2)

End Program e04nrfe
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10.2 Program Data

Begin example options file
* Comment lines like this begin with an asterisk.
* Switch off output of timing information:
Timing level 0
* Allow elastic variables:
Elastic mode 1
* Set the feasibility tolerance:
Feasibility tolerance 1.0D-4
End

E04NRF Example Program Data
7 8 : Values of N and M

48 8 7 ’C’ 15 : Values of NNZ, IOBJ, NCOLH, START and NNAME

’...X1...’ ’...X2...’ ’...X3...’ ’...X4...’ ’...X5...’
’...X6...’ ’...X7...’ ’..ROW1..’ ’..ROW2..’ ’..ROW3..’
’..ROW4..’ ’..ROW5..’ ’..ROW6..’ ’..ROW7..’ ’..COST..’ : End of array NAMES

0.02 7 1 : Sparse matrix A, ordered by increasing column index;
0.02 5 1 : each row contains ACOL(i), INDA(i), ICOL (= column index)
0.03 3 1 : The row indices may be in any order. In this example
1.00 1 1 : row 8 defines the linear objective term transpose(C)*X.
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
0.04 2 4

-2000.00 8 4
0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7 : End of matrix A

0.0 0.0 4.0E+02 1.0E+02 0.0 0.0
0.0 2.0E+03 -1.0E+25 -1.0E+25 -1.0E+25 -1.0E+25
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1.5E+03 2.5E+02 -1.0E+25 : End of lower bounds array BL

2.0E+02 2.5E+03 8.0E+02 7.0E+02 1.5E+03 1.0E+25
1.0E+25 2.0E+03 6.0E+01 1.0E+02 4.0E+01 3.0E+01
1.0E+25 3.0E+02 1.0E+25 : End of upper bounds array BU

0 0 0 0 0 0 0 : Initial array HS
0.0 0.0 0.0 0.0 0.0 0.0 0.0 : Initial vector X

10.3 Program Results
E04NRF Example Program Results

QP problem contains 7 variables and 8 linear constraints

Option ’Elastic mode’ has the value 1.
Option ’Feasibility tolerance’ has the value 1.000E-04.

Final objective value = -1.848E+06
Optimal X = 0.00 349.40 648.85 172.85 407.52 271.36 150.02
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NAG Library Routine Document

E04NSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04NSF may be used to supply individual optional parameters to E04NQF. The initialization routine
E04NPF must have been called before calling E04NSF.

2 Specification

SUBROUTINE E04NSF (STRING, CW, IW, RW, IFAIL)

INTEGER IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)
CHARACTER(*) STRING
CHARACTER(8) CW(*)

3 Description

E04NSF may be used to supply values for optional parameters to E04NQF. It is only necessary to call
E04NSF for those arguments whose values are to be different from their default values. One call to
E04NSF sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

For E04NSF, each user-specified option is not normally printed as it is defined, but this printing may be
turned on using the keyword List. Thus the statement

CALL E04NSF (’List’, CW, IW, RW, IFAIL)

turns on printing of this and subsequent options. Printing may be turned off again using the keyword
Nolist.

Optional parameter settings are preserved following a call to E04NQF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04NQF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NQF.

4 References

None.

E04 – Minimizing or Maximizing a Function E04NSF

Mark 26 E04NSF.1



5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid option string (see Section 3 in E04NSF and Section 12 in E04NQF).

2: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04NPF).

3: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04NPF).

4: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04NPF).

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04NPF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NSF is not threaded in any implementation.

9 Further Comments

E04NRF, E04NTF or E04NUF may also be used to supply optional parameters to E04NQF.

10 Example

See Section 10 in E04NRF.
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NAG Library Routine Document

E04NTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04NTF may be used to supply individual integer optional parameters to E04NQF. The initialization
routine E04NPF must have been called before calling E04NTF.

2 Specification

SUBROUTINE E04NTF (STRING, IVALUE, CW, IW, RW, IFAIL)

INTEGER IVALUE, IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)
CHARACTER(*) STRING
CHARACTER(8) CW(*)

3 Description

E04NTF may be used to supply values for integer optional parameters to E04NQF. It is only necessary
to call E04NTF for those arguments whose values are to be different from their default values. One call
to E04NTF sets one argument value.

Each integer optional parameter is defined by a single character string in STRING and the
corresponding value in IVALUE. For example, the following allows the iteration limit to be defined:

ITNLIM = 1000
IF (M > 500) ITNLIM = 500
CALL E04NTF (’Iterations’, ITNLIM, CW, IW, RW, IFAIL)

Optional parameter settings are preserved following a call to E04NQF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04NQF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NQF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of an integer optional parameter (as described in Section 12 in
E04NQF).

2: IVALUE – INTEGER Input

On entry: an integer value associated with the keyword in STRING.

3: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04NPF).
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4: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04NPF).

5: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04NPF).

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04NPF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NTF is not threaded in any implementation.
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9 Further Comments

E04NRF or E04NSF may also be used to supply integer optional parameters to E04NQF.

10 Example

See Section 10 in E04NQF and E04NRF.
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NAG Library Routine Document

E04NUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04NUF may be used to supply individual real optional parameters to E04NQF. The initialization
routine E04NPF must have been called before calling E04NUF.

2 Specification

SUBROUTINE E04NUF (STRING, RVALUE, CW, IW, RW, IFAIL)

INTEGER IW(*), IFAIL
REAL (KIND=nag_wp) RVALUE, RW(*)
CHARACTER(*) STRING
CHARACTER(8) CW(*)

3 Description

E04NUF may be used to supply values for real optional parameters to E04NQF. It is only necessary to
call E04NUF for those arguments whose values are to be different from their default values. One call to
E04NUF sets one argument value.

Each real optional parameter is defined by a single character string in STRING and the corresponding
value in RVALUE. For example the following illustrates how the LU stability tolerance could be
defined:

FACTOL = 100.0E0
IF (ILLCON) FACTOL = 5.0E0
CALL E04NUF (’LU Factor Tolerance’, FACTOL, CW, IW, RW, IFAIL)

Optional parameter settings are preserved following a call to E04NQF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04NQF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NQF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of a real optional parameter (as described in Section 12 in
E04NQF).

2: RVALUE – REAL (KIND=nag_wp) Input

On entry: the value associated with the keyword in STRING.

3: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04NPF).
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4: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04NPF).

5: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04NPF).

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04NPF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NUF is not threaded in any implementation.
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9 Further Comments

E04NRF or E04NSF may also be used to supply real optional parameters to E04NQF.

10 Example

See Section 10 in E04NRF.
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NAG Library Routine Document

E04NXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04NXF is used to get the value of an integer optional parameter. E04NXF can be used before or after
calling E04NQF.

2 Specification

SUBROUTINE E04NXF (STRING, IVALUE, CW, IW, RW, IFAIL)

INTEGER IVALUE, IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)
CHARACTER(*) STRING
CHARACTER(8) CW(*)

3 Description

E04NXF obtains the current value of an integer option. For example:

CALL E04NXF (’Iterations’, ITNLIM, CW, IW, RW, IFAIL)

will result in the value of the optional parameter Iterations Limit being output in ITNLIM.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NQF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of an integer optional parameter (as described in Section 12 in
E04NQF).

2: IVALUE – INTEGER Output

On exit: the integer value associated with the keyword in STRING.

3: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04NPF).

4: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04NPF).

5: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04NPF).
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04NPF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NXF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in E04NRF.
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NAG Library Routine Document

E04NYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04NYF is used to get the value of a real optional parameter. E04NYF can be used before or after
calling E04NQF.

2 Specification

SUBROUTINE E04NYF (STRING, RVALUE, CW, IW, RW, IFAIL)

INTEGER IW(*), IFAIL
REAL (KIND=nag_wp) RVALUE, RW(*)
CHARACTER(*) STRING
CHARACTER(8) CW(*)

3 Description

E04NYF obtains the current value of a real option. For example

CALL E04NYF (’Feasibility Tolerance’, FEATOL, CW, IW, RW, IFAIL)

will result in the value of the optional parameter Feasibility Tolerance being output in FEATOL.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04NQF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of a real optional parameter (as described in Section 12 in
E04NQF).

2: RVALUE – REAL (KIND=nag_wp) Output

On exit: the real value associated with the keyword in STRING.

3: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04NPF).

4: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04NPF).

5: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04NPF).
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04NPF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04NYF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in E04NRF.
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NAG Library Routine Document

E04PCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04PCF solves a linear least squares problem subject to fixed lower and upper bounds on the variables.

2 Specification

SUBROUTINE E04PCF (ITYPE, M, N, A, LDA, B, BL, BU, TOL, X, RNORM, NFREE,
W, INDX, IFAIL)

&

INTEGER ITYPE, M, N, LDA, NFREE, INDX(N), IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(M), BL(N), BU(N), TOL, X(N), RNORM, W(N)

3 Description

Given an m by n matrix A, an n-vector l of lower bounds, an n-vector u of upper bounds, and an
m-vector b, E04PCF computes an n-vector x that solves the least squares problem Ax ¼ b subject to xi
satisfying li � xi � ui.
A facility is provided to return a ‘regularized’ solution, which will closely approximate a minimal
length solution whenever A is not of full rank. A minimal length solution is the solution to the problem
which has the smallest Euclidean norm.

The algorithm works by applying orthogonal transformations to the matrix and to the right hand side to
obtain within the matrix an upper triangular matrix R. In general the elements of x corresponding to the
columns of R will be the candidate nonzero solutions. If a diagonal element of R is small compared to
the other members of R then this is undesirable. R will be nearly singular and the equations for x thus
ill-conditioned. You may specify the tolerance used to determine the relative linear dependence of a
column vector for a variable moved from its initial value.

4 References

Lawson C L and Hanson R J (1974) Solving Least Squares Problems Prentice–Hall

5 Arguments

1: ITYPE – INTEGER Input

On entry: provides the choice of returning a regularized solution if the matrix is not of full rank.

ITYPE ¼ 0
Specifies that a regularized solution is to be computed.

ITYPE ¼ 1
Specifies that no regularization is to take place.

Suggested value: unless there is a definite need for a minimal length solution we recommend that
ITYPE ¼ 1 is used.

Constraint: ITYPE ¼ 0 or 1.

2: M – INTEGER Input

On entry: m, the number of linear equations.

Constraint: M � 0.
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3: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

On exit: if ITYPE ¼ 1, A contains the product matrix QA, where Q is an m by m orthogonal
matrix generated by E04PCF; otherwise A is unchanged.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E04PCF
is called.

Constraint: LDA � M.

6: BðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the right-hand side vector b.

On exit: if ITYPE ¼ 1, the product of Q times the original vector b, where Q is as described in
argument A; otherwise B is unchanged.

7: BLðNÞ – REAL (KIND=nag_wp) array Input
8: BUðNÞ – REAL (KIND=nag_wp) array Input

On entry: BLðiÞ and BUðiÞ must specify the lower and upper bounds, li and ui respectively, to be
imposed on the solution vector xi.

Constraint: BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;N.

9: TOL – REAL (KIND=nag_wp) Input

On entry: TOL specifies a parameter used to determine the relative linear dependence of a
column vector for a variable moved from its initial value. It determines the computational rank of
the matrix. Increasing its value from

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

will increase the likelihood of
additional elements of x being set to zero. It may be worth experimenting with increasing values
of TOL to determine whether the nature of the solution, x, changes significantly. In practice a
value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

is recommended (see X02AJF).

If on entry TOL <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

, then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

is used.

Suggested value: TOL ¼ 0:0

10: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x.

11: RNORM – REAL (KIND=nag_wp) Output

On exit: the Euclidean norm of the residual vector b�Ax.

12: NFREE – INTEGER Output

On exit: indicates the number of components of the solution vector that are not at one of the
constraints.
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13: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: contains the dual solution vector. The magnitude of WðiÞ gives a measure of the
improvement in the objective value if the corresponding bound were to be relaxed so that xi
could take different values.

A value of WðiÞ equal to the special value �999:0 is indicative of the matrix A not having full
rank. It is only likely to occur when ITYPE ¼ 1. However a matrix may have less than full rank
without WðiÞ being set to �999:0. If ITYPE ¼ 1 then the values contained in W (other than those
set to �999:0) may be unreliable; the corresponding values in INDX may likewise be unreliable.
If you have any doubts set ITYPE ¼ 0. Otherwise the values of WðiÞ have the following
meaning:

WðiÞ ¼ 0
if xi is unconstrained.

WðiÞ < 0
if xi is constrained by its lower bound.

WðiÞ > 0
if xi is constrained by its upper bound.

WðiÞ
may be any value if li ¼ ui.

14: INDXðNÞ – INTEGER array Output

On exit: the contents of this array describe the components of the solution vector as follows:

INDXðiÞ, for i ¼ 1; 2; . . . ;NFREE
These elements of the solution have not hit a constraint; i.e., WðiÞ ¼ 0.

INDXðiÞ, for i ¼ NFREEþ 1; . . . ; k
These elements of the solution have been constrained by either the lower or upper bound.

INDXðiÞ, for i ¼ kþ 1; . . . ;N
These elements of the solution are fixed by the bounds; i.e., BLðiÞ ¼ BUðiÞ.

Here k is determined from NFREE and the number of fixed components. (Often the latter will be
0, so k will be N� NFREE.)

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04PCF may return useful information for one or more of the following detected errors or
warnings.
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Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 0.

On entry, M ¼ valueh i and LDA ¼ valueh i.
Constraint: LDA � M.

On entry, N ¼ valueh i.
Constraint: N � 0.

On entry, when i ¼ valueh i, BLðiÞ ¼ valueh i and BUðiÞ ¼ valueh i.
Constraint: BLðiÞ � BUðiÞ.

IFAIL ¼ 2

The routine failed to converge in 3� n iterations. This is not expected. Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Orthogonal rotations are used.

8 Parallelism and Performance

E04PCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If either M or N is zero on entry then E04PCF sets IFAIL ¼ 0 and simply returns without setting any
other output arguments.
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10 Example

The example minimizes Ax� bk k2 where

A ¼

0:05 0:05 0:25 �0:25
0:25 0:25 0:05 �0:05
0:35 0:35 1:75 �1:75
1:75 1:75 0:35 �0:35
0:30 �0:30 0:30 0:30
0:40 �0:40 0:40 0:40

0BBBBB@

1CCCCCA
and

b ¼ 1:0 2:0 3:0 4:0 5:0 6:0
� �T

subject to 1 � x � 5.

10.1 Program Text

Program e04pcfe
! E04PCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04pcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: tol = 0.0_nag_wp
Integer, Parameter :: itype = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm
Integer :: i, ifail, lda, lw, m, n, nfree

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), bl(:), bu(:), w(:), &

x(:)
Integer, Allocatable :: indx(:)

! .. Executable Statements ..
Write (nout,*) ’E04PCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lw = n
Allocate (a(lda,n),b(m),w(lw),bl(n),bu(n),x(n))
Allocate (indx(n))
Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)
Read (nin,*) bl(1:n)
Read (nin,*) bu(1:n)
ifail = 0
Call e04pcf(itype,m,n,a,lda,b,bl,bu,tol,x,rnorm,nfree,w,indx,ifail)

Write (nout,99999) ’Solution vector’, x(1:n)
Write (nout,*)
Write (nout,99999) ’Dual Solution’, w(1:n)
Write (nout,*)
Write (nout,99998) ’Residual’, rnorm

99999 Format (1X,A,/,1X,8F9.4)
99998 Format (1X,A,1X,1F9.4)

End Program e04pcfe
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10.2 Program Data

E04PCF Example Program Data
6 4 : m, n
0.05 0.05 0.25 -0.25
0.25 0.25 0.05 -0.05
0.35 0.35 1.75 -1.75
1.75 1.75 0.35 -0.35
0.30 -0.30 0.30 0.30
0.40 -0.40 0.40 0.40 : matrix A
1.0 2.0 3.0 4.0 5.0 6.0 : vector B
1.0 1.0 1.0 1.0 : Lower bounds
5.0 5.0 5.0 5.0 : Upper bounds

10.3 Program Results

E04PCF Example Program Results

Solution vector
1.8133 1.0000 5.0000 4.3467

Dual Solution
0.0000 -2.7200 2.7200 0.0000

Residual 3.4246
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NAG Library Routine Document

E04RAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RAF initializes a data structure for the NAG optimization modelling suite for problems such as,
quadratic programming (QP), nonlinear programming (NLP), linear semidefinite programming (SDP)
and semidefinite programming with bilinear matrix inequalities (BMI-SDP).

2 Specification

SUBROUTINE E04RAF (HANDLE, NVAR, IFAIL)

INTEGER NVAR, IFAIL
TYPE (C_PTR) HANDLE

3 Description

E04RAF initializes an empty problem with n decision variables, x, and returns a handle to the data
structure. This handle may then be passed to some of the routines E04REF, E04RFF, E04RGF,
E04RHF, E04RJF, E04RKF, E04RLF, E04RNF and E04RPF to formulate the problem (define the
objective function and constraints) and to a compatible solver, E04STF or E04SVF, to solve it. The
handle must not be changed between calls. When the handle is no longer needed, E04RZF must be
called to destroy it and deallocate all the allocated memory and data within. In addition, the suite
comprises auxiliary routines for printing (E04RYF), for setting optional parameters (E04ZMF and
E04ZPF), for retrieving them (E04ZNF) and for reading data files for linear semidefinite programming
(E04RDF).

The handle can store various problem formulations, including quadratic programming (QP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ
subject to lB � Bx � uB ðbÞ

lx � x � ux; ðcÞ
ð1Þ

nonlinear programming (NLP)

minimize
x2Rn

f xð Þ ðaÞ
subject to lg � g xð Þ � ug ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð2Þ

linear semidefinite programming (SDP)

minimize
x2Rn

cTx ðaÞ

subject to
Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð3Þ

or semidefinite programming with bilinear matrix inequalities (BMI-SDP)
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minimize
x2Rn

1
2x

THxþ cTx ðaÞ

subject to
Xn
i;j¼1

xixjQ
k
ij þ

Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux; ðdÞ

ð4Þ

where H, Ak
i and Qk

ij denote symmetric matrices, B is a general rectangular matrix, mA is the number
of semidefinite constraints (matrix inequalities) and c, l and u are vectors. The expression S � 0 stands
for a constraint on eigenvalues of a symmetric matrix S, namely, all the eigenvalues should be non-
negative, i.e., the matrix S should be positive semidefinite.

3.1 Life Cycle of the Handle

Each handle should pass four stages in its life as depicted in the diagram below. These are initialization,
problem formulation, problem solution and deallocation. The initialization by E04RAF and deallocation
by E04RZF mark the beginning and the end of the life of the handle. During this time the handle must
only be modified by the provided routines. Working with a handle which has not been properly
initialized will result in IFAIL ¼ 1 (uniform across the suite) and is potentially very dangerous as it
may cause unpredictable behaviour.

After the handle has been initialized, various routines are provided to add the following basic building
blocks to the problem formulation: objective function, simple variable bounds, (standard) linear
constraints and matrix constraints. Some of these can be defined at most once (e.g., objective function)
and an attempt to redefine them will cause IFAIL ¼ 3. Others (matrix constraints) may be composed by
several repetitive calls. The routines work in a tight cooperation, if the provided data is not compatible
with the previous information, IFAIL ¼ 4 is returned.

The handle may be passed to E04REF to define the linear objective function (3)(a), to E04RFF for the
quadratic objective function (1)(a), (4)(a), to E04RGF to declare the objective function as a nonlinear
function (2)(a) or neither of them if the problem is just to find a feasible point satisfying the constraints.
If present, the simple bounds on variables (box constraints, (1)(c), (2)(d), (3)(d), (4)(d)) may be defined
by E04RHF. The linear constraints ((1)(b), (2)(c), (3)(c) and (4)(c)) are set by E04RJF. The nonlinear
constraints (2)(b) may be declared by E04RKF. If the second derivatives of the nonlinear objective and
constraints are available they may be supplied via E04RLF. The linear matrix inequalities (3)(b) or the
linear part of (4)(b) are defined by E04RNF, and this call can be repeated several times if more matrix
inequality constraints are required. Any existing (already defined) linear matrix inequalities can be
extended by bilinear matrix terms in (4)(b) by one or more calls to E04RPF. The routines E04REF,
E04RFF, E04RGF, E04RHF, E04RJF, E04RKF, E04RLF, E04RNF and E04RPF may be called in an
arbitrary order, however, a call to E04RNF must precede a call to E04RPF for the matrix inequalities
with bilinear terms and the nonlinear objective or constraints (E04RGF or E04RKF) must precede the
definition of the second derivatives by E04RLF.

When the problem is fully formulated, the handle can be passed to a solver which is compatible with
the defined problem. At Mark 26 the NAG optimization modelling suite comprises of E04STF and
E04SVF. If the solver cannot deal with the given problem, IFAIL ¼ 2 is returned. Once the solver is
called, no further modifications of the problem formulation are allowed and calling any of the routines
defining the objective function or the constraints will result in IFAIL ¼ 2. The solver may be called
repetitively, for example, with various optional parameters and/or starting points.

Any optional parameters may be set by a call to E04ZMF at any time between the initialization by
E04RAF and the call to the solver or after the solver returns. Several optional parameters can be
modified at once by E04ZPF when an option file is used. The current value of the optional parameters
may be retrieved by E04ZNF.

For further details, see the documentation of the individual routines and the solvers which also contain
a description of all the optional parameters.
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4 References

None.

5 Arguments

1: HANDLE – TYPE (C_PTR) Output

Note: HANDLE does not need to be set on input.

On exit: holds a handle to the internal data structure where an empty problem with NVAR
variables is defined. You must not change the handle until the call to E04RZF (deallocation).

2: NVAR – INTEGER Input

On entry: n, the number of decision variables in the problem.

Constraint: NVAR > 0.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 6

On entry, NVAR ¼ valueh i.
Constraint: NVAR > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See examples associated with other routines of the suite:

– the example in Section 10 in E04RDF demonstrates how to use the SDPA file reader and how to
solve linear semidefinite programming problems, including printing of the matrix Lagrangian
multipliers,

– the example in Section 10 in E04RFF presents an alternative way to compute the nearest correlation
matrix by means of nonlinear semidefinite programming,

– a matrix completion problem (minimization of a rank of a partially unknown matrix) formulated as
SDP is demonsrated in Section 10 in E04RHF, the example also demonstrates monitoring mode of
the solver E04SVF,

– the example in Section 10 in E04RJF solves LP/QP problems read in from an MPS file by E04MXF,

– an application for statistics, E optimal design, solved as an SDP problem is shown in Section 10 in
E04RNF,

– the example in Section 10 in E04RPF reads BMI-SDP problem from a file which might be modified
by users, in this case it solves Static Output Feedback (SOF) problem,
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– the example in Section 10 in E04RYF walks through the life cycle of the handle in which a BMI-
SDP problem is formulated and solved,

– an example in Section 10 in E04STF is a small test from Hock and Schittkowski set to show how to
call the NLP solver,

– the simple example in Section 10 in E04SVF demonstrates on the LovÄsz # function eigenvalue
optimization problem formulated as SDP.
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NAG Library Routine Document

E04RDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RDF reads in a linear semidefinite programming problem (SDP) from a file in sparse SDPA format
and returns it in the form which is usable by routines E04RAF (initialization), E04REF (linear objective
function), E04RNF (linear matrix constraints), E04SVF (solver) and E04RZF (deallocation) from the
NAG optimization modelling suite.

2 Specification

SUBROUTINE E04RDF (INFILE, MAXNVAR, MAXNBLK, MAXNNZ, FILELST, NVAR,
NBLK, NNZ, CVEC, NNZA, IROWA, ICOLA, A, BLKSIZEA,
IFAIL)

&
&

INTEGER INFILE, MAXNVAR, MAXNBLK, MAXNNZ, FILELST, NVAR,
NBLK, NNZ, NNZA(MAXNVAR+1), IROWA(MAXNNZ),
ICOLA(MAXNNZ), BLKSIZEA(MAXNBLK), IFAIL

&
&

REAL (KIND=nag_wp) CVEC(MAXNVAR), A(MAXNNZ)

3 Description

E04RDF is capable of reading linear semidefinite programming problems (SDP) from a text file in
sparse SDPA format. The problem is captured and returned in the following form:

minimize
x2Rn

cTx ðaÞ

subject to
Xn
i¼1
xiAi �A0 � 0; ðbÞ

ð1Þ

where Ai denotes symmetric matrices and c is a vector. The expression S � 0 stands for a constraint on
the eigenvalues of a symmetric matrix S, namely, all the eigenvalues should be non-negative, i.e., the
matrix S should be positive semidefinite.

Please note that this form covers even general linear SDP formulations with multiple linear matrix
inequalities and a set of standard linear constraints. A set of mA linear matrix inequalitiesXn

i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ð2Þ

can be equivalently expressed as one matrix inequality (1)(b) in the following block diagonal form
where the matrices A1

i ; A
2
i ; . . . ; A

mA
i create the diagonal blocks of Ai:

Xn
i¼1
xi

A1
i

A2
i

. .
.

AmA

i

0BBB@
1CCCA�

A1
0

A2
0

. .
.

AmA

0

0BBB@
1CCCA � 0:

In addition, notice that if all matrices Ak
i belonging to the same block, say block k, are themselves

diagonal matrices (or have dimension 1� 1), the associated matrix inequalityXn
i¼1
xiA

k
i � Ak

0 � 0 ð3Þ

defines actually a standard linear constraint
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Bx � l

where l and columns of the matrix B are formed by the diagonals of matrices Ak
0 and Ak

1; . . . ; A
k
n,

respectively. Precisely, li ¼ Ak
0

� �
ii
and bij ¼ Ak

j

� �
ii
. See Section 10.

3.1 Sparse SDPA file format

The problem data is written in an ASCII input file in a SDPA sparse format which was first introduced
in Fujisawa et al. (1998). In the description below we follow closely the specification from Borchers
(1999).

The format is line oriented. If more elements are required on the line they need to be separated by a
space, a tab or any of the special characters ‘,’, ‘(’, ‘)’, ‘{’ or ‘}’. The file consists of six sections:

1. Comments. The file can begin with arbitrarily many lines of comments. Each line of comments
must begin with ‘"’ or ‘*’.

2. The first line after the comments contains integer n, the number of variables. The rest of this line is
ignored.

3. The second line after the comments contains integer mA, the number of blocks in the block
diagonal structure of the matrices. Additional text on this line after mA is ignored.

4. The third line after the comments contains a vector of mA integers that give the sizes of the
individual blocks. Negative numbers may be used to indicate that a block is actually a diagonal
submatrix. Thus a block size of ‘�5’ indicates a 5 by 5 block in which only the diagonal elements
are nonzero.

5. The fourth line after the comments contains an n-dimensional real vector defining the objective
function vector c.

6. The remaining lines of the file contain nonzero entries in the constraint matrices, with one entry per
line. The format for each line is

matno blkno i j entry

where matno is the number 0; . . . ; nð Þ of the matrix to which this entry belongs and blkno specifies
the block number k ¼ 1; 2; . . . ;mA within this matrix. Together, they uniquely identify the block
Ablkno

matno. Integers i and j are one-based indices which specify a location of the entry within the
block. Note that since all matrices are assumed to be symmetric, only entries in the upper triangle
of a matrix should be supplied. Finally, entry should give the real value of the entry in the matrix.
Precisely, Ablkno

matno

� �
ij ¼ Ablkno

matno

� �
ji ¼ entry.

In the text below and in the file listing (FILELST) we use the word ‘token’ as a reference to a group of
contiguous characters without a space or any other delimeters.

3.2 Recommendation on how best to use E04RDF

(a) The input file with the problem needs to be opened for reading by X04ACF (MODE ¼ 0). In this
way we avoid possible limitations of maximal lengths of lines inherited by Fortran I/O (X04ACF
uses the formatted stream access mode to bypass the restriction). If the file is opened by other
means or standard input is used instead, lines within the file might be truncated which would
produce a file format error message. This would most likely happen on the line defining the
objective function. Setting FILELST ¼ 1 might help with possible file formatting errors.

(b) Unless the dimension of the problem (or its overestimate) is known in advance, call E04RDF
initially with MAXNVAR ¼ 0, MAXNBLK ¼ 0 and MAXNNZ ¼ 0. In this case the exact size of
the problem is computed and returned in NVAR, NBLK and NNZ. No other data will be stored and
none of the arrays CVEC, NNZA, IROWA, ICOLA, A, BLKSIZEA will be referenced. Then the
exact storage can be allocated and the file reopened. When E04RDF is called for the second time,
the problem is read in and stored in appropriate arrays.
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(c) The example in Section 10 shows a typical sequence of calls to solve the problem read in by
E04RDF. First an empty handle needs to be initialized by E04RAF with NVAR variables. This
should be followed by calls to E04REF and E04RNF to formulate the objective function and the
constraints, respectively. The arguments of both routines use the same naming and storage as in
E04RDF so the variables can be passed unchanged; only DIMA in E04RNF is new and should
equal to SUM BLKSIZEAð1 : NBLKÞð Þ and NNZASUM in E04RNF is the same as NNZ in
E04RDF. You may at this point want to modify option settings using E04ZMF. If dual variables
(Lagrangian multipliers) are required from the solver, sufficient space needs to be allocated. The
size is equal to the sum of the number of elements of dense triangular matrices for each block. For
further details, see the argument UA of the solver E04SVF. The solver should be called and then
followed, finally, by a call to E04RZF to deallocate memory associated with the problem.

4 References

Borchers B (1999) SDPLIB 1.2, A Library of semidefinite programming test problems. Optimization
Methods and Software 11(1) 683–690 http://euler.nmt.edu/~brian/sdplib/

Fujisawa K, Kojima M and Nakata K (1998) SDPA (Semidefinite Programming Algorithm) User's
Manual Technical Report B-308 Department of Mathematical and Computing Sciences, Tokyo Institute
of Technology.

5 Arguments

1: INFILE – INTEGER Input

On entry: the unit number associated with the sparse SDPA data file. Note: that the file needs to
be opened in read mode by X04ACF with MODE ¼ 0.

Constraint: INFILE � 0.

2: MAXNVAR – INTEGER Input

On entry: the upper limit for the number of variables in the problem. If it is set to zero, CVEC
and NNZA will not be referenced.

Constraint: MAXNVAR � 0.

3: MAXNBLK – INTEGER Input

On entry: the upper limit for the number of matrix constraints (i.e., the number of diagonal
blocks within the matrix). If it is set to zero, BLKSIZEA will not be referenced.

Constraint: MAXNBLK � 0.

4: MAXNNZ – INTEGER Input

On entry: the upper limit on the sum of nonzeros in all matrices Ak
i , for i ¼ 0; 1; . . . ;NVAR and

k ¼ 1; 2; . . . ;NBLK. If it is set to zero, IROWA, ICOLA and A will not be referenced.

Constraint: MAXNNZ � 0.

5: FILELST – INTEGER Input

On entry: if FILELST 6¼ 0, a listing of the input data is sent to the current advisory message unit
(as defined by X04ABF). This can be useful for debugging the data file.

If FILELST ¼ 0, no listing is produced.
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6: NVAR – INTEGER Output
7: NBLK – INTEGER Output
8: NNZ – INTEGER Output

On exit: the actual number of the variables n, matrix constraints mA and number of nonzeros of
the problem in the file. This also indicates the exact memory needed in CVEC, NNZA, IROWA,
ICOLA, A and BLKSIZEA.

9: CVECðMAXNVARÞ – REAL (KIND=nag_wp) array Output

On exit: CVECðiÞ, for i ¼ 1; 2; . . . ;NVAR, stores the dense vector c of the linear objective
function.

10: NNZAðMAXNVAR þ 1Þ – INTEGER array Output

On exit: NNZAði þ 1Þ, for i ¼ 0; 1; . . . ;NVAR, stores the number of nonzero elements in
matrices Ai.

11: IROWAðMAXNNZÞ – INTEGER array Output
12: ICOLAðMAXNNZÞ – INTEGER array Output
13: AðMAXNNZÞ – REAL (KIND=nag_wp) array Output

On exit: IROWA, ICOLA and A store the nonzeros in the upper triangle of matrices Ai, for
i ¼ 0; 1; . . . ;NVAR, in the coordinate storage, i.e., IROWAðjÞ are one-based row indices,
ICOLAðjÞ are one-based column indices and AðjÞ are the values of the nonzero elements, for
j ¼ 1; 2; . . . ;NNZ. See Section 9.

14: BLKSIZEAðMAXNBLKÞ – INTEGER array Output

On exit: BLKSIZEAðkÞ, for k ¼ 1; 2; . . . ;NBLK, stores the sizes of the diagonal blocks in
matrices Ai from the top to the bottom.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04RDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

At least one of MAXNVAR, MAXNBLK or MAXNNZ is too small. Suggested values are
returned in NVAR, NBLK and NNZ, respectively.

IFAIL ¼ 2

The token on line valueh i at position valueh i to valueh i was not recognized as a valid integer.
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IFAIL ¼ 3

The token on line valueh i at position valueh i to valueh i was not recognized as a valid real
number.

IFAIL ¼ 4

The token on line valueh i starting at position valueh i was too long and was not recognized.

IFAIL ¼ 5

An invalid number of variables was given on line valueh i.
The number stated there is valueh i and needs to be at least 1.

IFAIL ¼ 6

An invalid number of blocks was given on line valueh i.
The number stated there is valueh i and needs to be at least 1.

IFAIL ¼ 7

An invalid size of the block number valueh i was given on line valueh i.
The number stated there is valueh i and needs to be nonzero.

IFAIL ¼ 8

Not enough data was given on line valueh i specifying block sizes.
Expected mA tokens but found only valueh i.

IFAIL ¼ 9

Not enough data was given on line valueh i specifying the objective function.
Expected n tokens but found only valueh i.

IFAIL ¼ 10

Not enough data was given on line valueh i specifying nonzero matrix elements.
Expected valueh i tokens but found only valueh i.

IFAIL ¼ 11

Invalid structural data found on line valueh i.
The given matrix number is out of bounds. Its value valueh i must be between 0 and n (inclusive).

IFAIL ¼ 12

Invalid structural data found on line valueh i.
The given block number is out of bounds. Its value valueh i must be between 1 and mA

(inclusive).

IFAIL ¼ 13

Invalid structural data found on line valueh i.
The given row index is out of bounds, it must respect the size of the block. Its value valueh i must
be between valueh i and valueh i (inclusive).

IFAIL ¼ 14

Invalid structural data found on line valueh i.
The given column index is out of bounds, it must respect the size of the block. Its value valueh i
must be between valueh i and valueh i (inclusive).
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IFAIL ¼ 15

Invalid structural data found on line valueh i.
The specified nonzero element is not in the upper triangle.
The row index is valueh i and column index is valueh i.

IFAIL ¼ 16

Invalid structural data found on line valueh i.
The specified element belongs to a diagonal block but is not diagonal.
The row index is valueh i and column index is valueh i.

IFAIL ¼ 17

An entry in the constraints with matno ¼ valueh i, blkno ¼ valueh i, row index valueh i and
column index valueh i was defined more than once. All entries need to be unique.

IFAIL ¼ 18

A premature end of the input stream. The part defining the dimensions of the blocks was not
found.

A premature end of the input stream. The part defining the nonzero entries was not found.

A premature end of the input stream. The part defining the number of blocks was not found.

A premature end of the input stream. The part defining the number of variables was not found.

A premature end of the input stream. The part defining the objective function was not found.

IFAIL ¼ 19

The input stream seems to be empty. No data was read. This might indicate a problem with
opening the file, check that X04ACF was used correctly.

IFAIL ¼ 20

Reading from the stream caused an unknown error on line valueh i.

IFAIL ¼ 21

On entry, INFILE ¼ valueh i.
Constraint: INFILE � 0.

On entry, MAXNBLK ¼ valueh i.
Constraint: MAXNBLK � 0.

On entry, MAXNNZ ¼ valueh i.
Constraint: MAXNNZ � 0.

On entry, MAXNVAR ¼ valueh i.
Constraint: MAXNVAR � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RDF is not threaded in any implementation.

9 Further Comments

The following artificial example demonstrates how the elements of Ai matrices are organized within
arrays NNZA, IROWA, ICOLA and A. For simplicity let us assume that NBLK ¼ 1,
BLKSIZEAð1Þ ¼ 3 and NVAR ¼ 4. Please note that the values of the elements were chosen to ease
readability rather than to define a valid problem.

Let the matrix constraint (1)(b) be defined by

A0 ¼
0 0:1 0
0:1 0 0:2
0 0:2 0:3

0@ 1A;
A1 ¼

1:1 0 0
0 1:2 1:3
0 1:3 1:4

0@ 1A;
A2 empty;

A3 ¼
0 0 0
0 3:1 0
0 0 3:2

0@ 1A;
A4 ¼

4:1 4:2 4:3
4:2 0 0
4:3 0 0

0@ 1A:
All matrices Ai have to be symmetric and therefore only the elements in the upper triangles are stored.
The table below shows how the arrays would be populated.

IROWA 1 2 3 1 2 2 3 2 3 1 2 3
ICOLA 2 3 3 1 2 3 3 2 3 1 1 1
A 0:1 0:2 0:3|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl} 1:1 1:2 1:3 1:4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflffl{zfflffl} 3:1 3:2|fflfflfflfflfflffl{zfflfflfflfflfflffl} 4:1 4:2 4:3|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A0 A1 A2 A3 A4

NNZA 3 4 0 2 3

See also Section 3 in E04RNF which accepts the same format.

10 Example

The following example comes from Fujisawa et al. (1998).
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Imagine that we want to store the following problem in a file in the SDPA format.

minimize
x2R2

10x1 þ 20x2

subject to 1 0
1 1

� �
x1
x2

� �
� 1

1:5

� �
5 2
2 6

� �
x2 � 3 0

0 4

� �
� 0:

There are two variables (n ¼ 2) in the problem. One linear matrix constraint and one block of linear
constraints can be formed as (1) with two diagonal blocks (mA ¼ 2). Both blocks have dimension 2 but
the first one (defining linear constraints) is only diagonal, thus the sizes will be stated as �2 2 .

The problem can be rewritten as

minimize
x2R2

cTx

subject to A1x1 þA2x2 �A0 � 0

where

c ¼ 10 20
� �T

,

A0 ¼
1 0 0 0
0 1:5 0 0
0 0 3 0
0 0 0 4

0B@
1CA,

A1 ¼
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0B@
1CA,

A2 ¼
0 0 0 0
0 1 0 0
0 0 5 2
0 0 2 6

0B@
1CA.

The optimal solution is x� ¼ 1:0 1:0
� �T

with the objective function value 30:0. The optimal

Lagrangian multipliers (dual variables) are 10:0, 0:0 and 20=7; �20=7
�20=7; 20=7

� �
.

See also Section 10 in E04RAF for links to further examples in the suite.

10.1 Program Text

Program e04rdfe

! E04RDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! Load a linear semidefinite programming problem from a sparse SDPA
! file, formulate the problem via a handle, pass it to the solver
! and print both primal and dual variables.

! .. Use Statements ..
Use nag_library, Only: e04raf, e04rdf, e04ref, e04rnf, e04ryf, e04rzf, &

e04svf, e04zmf, nag_wp, x04acf, x04adf, x04ccf
Use, Intrinsic :: iso_c_binding, Only: c_ptr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: filelst = 0, infile = 42, nout = 6
Character (*), Parameter :: fname_default = ’e04rdfe.opt’

! .. Local Scalars ..
Type (c_ptr) :: handle
Integer :: idblk, idx, ifail, ifail_e04rd, &
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inform, k, maxnblk, maxnnz, maxnvar, &
nblk, nnz, nnzu, nnzua, nnzuc, &
ntests, nvar

Character (256) :: fname
Character (60) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), cvec(:), u(:), ua(:), uc(:), &

x(:)
Real (Kind=nag_wp) :: rinfo(32), stats(32)
Integer, Allocatable :: blksizea(:), icola(:), irowa(:), &

nnza(:)
! .. Intrinsic Procedures ..

Intrinsic :: command_argument_count, &
get_command_argument, sum, trim

! .. Executable Statements ..
Continue

Write (nout,*) ’E04RDF Example Program Results’
Write (nout,*)

! Use the first command line argument as the filename or
! choose default hard-coded filename in ’fname_default’.

ntests = command_argument_count()
If (ntests==0) Then

! Assume the default filename.
fname = fname_default

Else
Call get_command_argument(1,fname)

End If

Write (nout,*) ’Reading SDPA file: ’, trim(fname)
Flush (nout)

! Open the input file.
ifail = 0
Call x04acf(infile,fname,0,ifail)

! Go through the file and find the dimension of the problem.
! Unless the file format is wrong, the routine should finish
! with IFAIL = 1 (not enough space).

maxnvar = 0
maxnblk = 0
maxnnz = 0
Allocate (cvec(maxnvar),nnza(maxnvar+1),irowa(maxnnz),icola(maxnnz), &

a(maxnnz),blksizea(maxnblk))
ifail_e04rd = -1
Call e04rdf(infile,maxnvar,maxnblk,maxnnz,filelst,nvar,nblk,nnz,cvec, &

nnza,irowa,icola,a,blksizea,ifail_e04rd)
Deallocate (cvec,nnza,irowa,icola,a,blksizea)

! Close the file, it will need to be reopened later.
ifail = 0
Call x04adf(infile,ifail)

If (ifail_e04rd/=1) Then
! Possible problem with formatting, etc.

Write (nout,99999) ’Reading the SDPA file failed with IFAIL = ’, ifail
99999 Format (1X,A,I3)

Write (nout,*) ’Terminating the example program.’
Go To 100

End If

! Allocate the right size of arrays for the data.
Write (nout,*) ’Allocating space for the problem.’
Write (nout,Fmt=99998) ’NVAR = ’, nvar
Write (nout,Fmt=99998) ’NBLK = ’, nblk
Write (nout,Fmt=99998) ’NNZ = ’, nnz

99998 Format (6X,A,I7)
Flush (nout)

maxnvar = nvar
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maxnblk = nblk
maxnnz = nnz

Allocate (cvec(maxnvar),nnza(maxnvar+1),irowa(maxnnz),icola(maxnnz), &
a(maxnnz),blksizea(maxnblk))

! Reopen the file.
ifail = 0
Call x04acf(infile,fname,0,ifail)

! Read the problem data, there should be enough space this time.
ifail = 0
Call e04rdf(infile,maxnvar,maxnblk,maxnnz,filelst,nvar,nblk,nnz,cvec, &

nnza,irowa,icola,a,blksizea,ifail)

! Close the file.
ifail = 0
Call x04adf(infile,ifail)

! Problem was successfully decoded.
Write (nout,*) &

’Linear SDP problem was read, start formulating the problem’
Flush (nout)

! Initialize the handle of the problem.
ifail = 0
Call e04raf(handle,nvar,ifail)

! Add the linear objective function to the formulation.
ifail = 0
Call e04ref(handle,nvar,cvec,ifail)

! Add all linear matrix constraints to the formulation.
idblk = 0
ifail = 0
Call e04rnf(handle,nvar,sum(blksizea(1:nblk)),nnza,nnz,irowa,icola,a, &

nblk,blksizea,idblk,ifail)

Write (nout,*) ’The problem formulation in a handle is completed.’
Write (nout,*)
Flush (nout)

! Print overview of the handle.
ifail = 0
Call e04ryf(handle,nout,’Overview’,ifail)

! Set optional arguments.
ifail = 0
Call e04zmf(handle,’DIMACS Measures = Check’,ifail)
ifail = 0
Call e04zmf(handle,’Initial X = Automatic’,ifail)

! Compute memory needed for primal & dual variables.

! There are no box constraints or linear constraints set
! by E04RHF or E04RJF, neither second order cone constraints.

nnzu = 0
nnzuc = 0

! Count size of the matrix multipliers, stored as packed
! triangle respecting the block structure.

nnzua = 0
Do k = 1, nblk

nnzua = nnzua + blksizea(k)*(blksizea(k)+1)/2
End Do

Allocate (x(nvar),ua(nnzua),u(nnzu),uc(nnzuc))

! Call the solver.
ifail = 0
Call e04svf(handle,nvar,x,nnzu,u,nnzuc,uc,nnzua,ua,rinfo,stats,inform, &
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ifail)

! Print results.

Write (nout,*)
Write (nout,*) ’Optimal solution:’
Write (nout,99997) x(1:nvar)

99997 Format (1X,’X = ’,2F9.2)
Flush (nout)

! Print packed lower triangles of the Lagrangian multipliers.
idx = 1
Do k = 1, nblk

Write (title,99996) ’Lagrangian multiplier for A_’, k
99996 Format (A,I0)

nnz = blksizea(k)*(blksizea(k)+1)/2
ifail = 0
Call x04ccf(’Lower’,’N’,blksizea(k),ua(idx:idx+nnz-1),title,ifail)
idx = idx + nnz

End Do

! Deallocate memory within the handle.
ifail = 0
Call e04rzf(handle,ifail)

100 Continue
End Program e04rdfe

10.2 Program Data

" E04RDF Example Program Data
2 =mdim
2 =nblocks
{-2, 2}
10.0 20.0
0 1 1 1 1.0
0 1 2 2 1.5
0 2 1 1 3.0
0 2 2 2 4.0
1 1 1 1 1.0
1 1 2 2 1.0
2 1 2 2 1.0
2 2 1 1 5.0
2 2 1 2 2.0
2 2 2 2 6.0

10.3 Program Results

E04RDF Example Program Results

Reading SDPA file: e04rdfe.opt
** At least one of MAXNVAR, MAXNBLK or MAXNNZ is too small.
** MAXNVAR should be at least 2, was 0.
** MAXNBLK should be at least 3, was 0.
** MAXNNZ should be at least 10, was 0.
** ABNORMAL EXIT from NAG Library routine E04RDF: IFAIL = 1
** NAG soft failure - control returned
Allocating space for the problem.

NVAR = 2
NBLK = 3
NNZ = 10

Linear SDP problem was read, start formulating the problem
The problem formulation in a handle is completed.

Overview
Status: Problem and option settings are editable.
No of variables: 2
Objective function: linear
Simple bounds: not defined yet
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Linear constraints: not defined yet
Nonlinear constraints: not defined yet
Matrix constraints: 3

E04SV, NLP-SDP Solver (Pennon)
------------------------------
Number of variables 2 [eliminated 0]

simple linear nonlin
(Standard) inequalities 0 2 0
(Standard) equalities 0 0
Matrix inequalities 1 0 [dense 1, sparse 0]

[max dimension 2]

Begin of Options
Outer Iteration Limit = 100 * d
Inner Iteration Limit = 100 * d
Infinite Bound Size = 1.00000E+20 * d
Initial X = Automatic * U
Initial U = Automatic * d
Initial P = Automatic * d
Hessian Density = Dense * S
Init Value P = 1.00000E+00 * d
Init Value Pmat = 1.00000E+00 * d
Presolve Block Detect = Yes * d
Print File = 6 * d
Print Level = 2 * d
Print Options = Yes * d
Monitoring File = -1 * d
Monitoring Level = 4 * d
Monitor Frequency = 0 * d
Stats Time = No * d
P Min = 1.05367E-08 * d
Pmat Min = 1.05367E-08 * d
U Update Restriction = 5.00000E-01 * d
Umat Update Restriction = 3.00000E-01 * d
Preference = Speed * d
Transform Constraints = No * S
Dimacs Measures = Check * U
Stop Criteria = Soft * d
Stop Tolerance 1 = 1.00000E-06 * d
Stop Tolerance 2 = 1.00000E-07 * d
Stop Tolerance Feasibility = 1.00000E-07 * d
Linesearch Mode = Fullstep * S
Inner Stop Tolerance = 1.00000E-02 * d
Inner Stop Criteria = Heuristic * d
Task = Minimize * d
P Update Speed = 12 * d

End of Options
--------------------------------------------------------------
it| objective | optim | feas | compl | pen min |inner

--------------------------------------------------------------
0 0.00000E+00 4.06E+01 4.00E+00 3.16E+01 1.00E+00 0
1 4.02661E+01 1.07E-01 2.78E-01 1.52E+01 1.00E+00 5
2 2.90783E+01 6.52E-02 9.77E-02 2.78E+00 4.65E-01 5
3 2.84228E+01 1.67E-01 2.39E-01 7.76E-01 2.16E-01 2
4 2.97263E+01 3.98E-02 4.39E-02 2.05E-01 1.01E-01 3
5 2.99618E+01 5.01E-02 6.40E-03 3.32E-02 4.68E-02 2
6 2.99934E+01 1.45E-01 1.25E-03 6.23E-03 2.18E-02 1
7 2.99999E+01 3.31E-02 1.28E-05 4.16E-04 1.01E-02 1
8 3.00001E+01 9.97E-05 3.01E-07 9.67E-05 4.71E-03 1
9 3.00000E+01 1.37E-04 3.25E-08 2.25E-05 2.19E-03 1

10 3.00000E+01 1.16E-05 3.52E-09 5.23E-06 1.02E-03 1
11 3.00000E+01 1.13E-06 3.81E-10 1.22E-06 4.74E-04 1

--------------------------------------------------------------
Status: converged, an optimal solution found
--------------------------------------------------------------
Final objective value 3.000000E+01
Relative precision 3.941484E-08
Optimality 1.133096E-06
Feasibility 3.806810E-10
Complementarity 1.216064E-06
DIMACS error 1 5.395697E-08
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DIMACS error 2 0.000000E+00
DIMACS error 3 0.000000E+00
DIMACS error 4 7.613621E-11
DIMACS error 5 4.324629E-09
DIMACS error 6 2.296238E-08
Iteration counts

Outer iterations 11
Inner iterations 23
Linesearch steps 50

Evaluation counts
Augm. Lagr. values 35
Augm. Lagr. gradient 35
Augm. Lagr. hessian 23

--------------------------------------------------------------

Optimal solution:
X = 1.00 1.00
Lagrangian multiplier for A_1

1
1 10.0000
Lagrangian multiplier for A_2

1
1 2.4321E-06
Lagrangian multiplier for A_3

1 2
1 2.8571
2 -2.8571 2.8571
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NAG Library Routine Document

E04REF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04REF is a part of the NAG optimization modelling suite and defines the linear objective function of
the problem.

2 Specification

SUBROUTINE E04REF (HANDLE, NVAR, CVEC, IFAIL)

INTEGER NVAR, IFAIL
REAL (KIND=nag_wp) CVEC(NVAR)
TYPE (C_PTR) HANDLE

3 Description

After the initialization routine E04RAF has been called, E04REF may be used to define the objective
function of the problem as a linear function cTx unless the objective function has already been defined
by E04REF, E04RFF or by E04RGF. This will typically be used for linear semidefinite programming
problems (SDP)

minimize
x2Rn

cTx ðaÞ

subject to
Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð1Þ

or SDP with bilinear matrix inequalities (BMI-SDP) where the objective function has only linear terms.
See E04RAF for more details.

4 References

None.

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: NVAR – INTEGER Input

On entry: n, the number of decision variables x in the problem. It must be unchanged from the
value set during the initialization of the handle by E04RAF.

3: CVECðNVARÞ – REAL (KIND=nag_wp) array Input

On entry: the dense vector c of the objective function.
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4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 2

The problem cannot be modified in this phase any more, the solver has already been called.

IFAIL ¼ 3

The objective function has already been defined.

IFAIL ¼ 4

On entry, NVAR ¼ valueh i, expected value ¼ valueh i.
Constraint: NVAR must match the value given during initialization of HANDLE.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04REF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

See Section 10 in E04RAF for links to all examples in the suite.
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NAG Library Routine Document

E04RFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RFF is a part of the NAG optimization modelling suite and defines the linear or the quadratic
objective function of the problem.

2 Specification

SUBROUTINE E04RFF (HANDLE, NNZC, IDXC, C, NNZH, IROWH, ICOLH, H, IFAIL)

INTEGER NNZC, IDXC(NNZC), NNZH, IROWH(NNZH), ICOLH(NNZH),
IFAIL

&

REAL (KIND=nag_wp) C(NNZC), H(NNZH)
TYPE (C_PTR) HANDLE

3 Description

After the initialization routine E04RAF has been called, E04RFF may be used to define the objective
function of the problem as a quadratic function cTxþ 1

2x
THx or a sparse linear function cTx unless the

objective function has been defined previously by E04REF, E04RFF or by E04RGF. This objective
function will typically be used for quadratic programming problems (QP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ
subject to lB � Bx � uB ðbÞ

lx � x � ux ðcÞ
ð1Þ

or for semidefinite programming problems with bilinear matrix inequalities (BMI-SDP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ

subject to
Xn
i;j¼1

xixjQ
k
ij þ

Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð2Þ

The matrix H is a sparse symmetric n by n matrix. It does not need to be positive definite. See
E04RAF for more details.

4 References

None.

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: NNZC – INTEGER Input

On entry: the number of nonzero elements in the sparse vector c.
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If NNZC ¼ 0, c is considered to be zero and the arrays IDXC and C will not be referenced.

Constraint: NNZC � 0.

3: IDXCðNNZCÞ – INTEGER array Input
4: CðNNZCÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements of the sparse vector c. IDXCðiÞ must contain the index of CðiÞ in
the vector, for i ¼ 1; 2; . . . ;NNZC. The elements are stored in ascending order. Note that n, the
number of variables in the problem, was set in NVAR during the initialization of the handle by
E04RAF.

Constraints:

1 � IDXCðiÞ � n, for i ¼ 1; 2; . . . ;NNZC;
IDXCðiÞ < IDXCði þ 1Þ, for i ¼ 1; 2; . . . ;NNZC� 1.

5: NNZH – INTEGER Input

On entry: the number of nonzero elements in the upper triangle of the matrix H.

If NNZH ¼ 0, the matrix H is considered to be zero, the objective function is linear and
IROWH, ICOLH and H will not be referenced.

Constraint: NNZH � 0.

6: IROWHðNNZHÞ – INTEGER array Input
7: ICOLHðNNZHÞ – INTEGER array Input
8: HðNNZHÞ – REAL (KIND=nag_wp) array Input

On entry: arrays IROWH, ICOLH and H store the nonzeros of the upper triangle of the matrix H
in coordinate storage (CS) format (see Section 2.1.1 in the F11 Chapter Introduction). IROWH
specifies one-based row indices, ICOLH specifies one-based column indices and H specifies the
values of the nonzero elements in such a way that hij ¼ HðlÞ where i ¼ IROWHðlÞ,
j ¼ ICOLHðlÞ, for l ¼ 1; 2; . . . ;NNZH. No particular order is expected, but elements should
not repeat.

Constraint: 1 � IROWHðlÞ � ICOLHðlÞ � n, for l ¼ 1; 2; . . . ;NNZH.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.
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IFAIL ¼ 2

The problem cannot be modified in this phase any more, the solver has already been called.

IFAIL ¼ 3

The objective function has already been defined.

IFAIL ¼ 6

On entry, NNZC ¼ valueh i.
Constraint: NNZC � 0.

On entry, NNZH ¼ valueh i.
Constraint: NNZH � 0.

IFAIL ¼ 7

On entry, i ¼ valueh i, IDXCðiÞ ¼ valueh i and IDXCðiþ 1Þ ¼ valueh i.
Constraint: IDXCðiÞ < IDXCðiþ 1Þ (ascending order).

On entry, i ¼ valueh i, IDXCðiÞ ¼ valueh i and n ¼ valueh i.
Constraint: 1 � IDXCðiÞ � n.

IFAIL ¼ 8

On entry, i ¼ valueh i, ICOLHðiÞ ¼ valueh i and n ¼ valueh i.
Constraint: 1 � ICOLHðiÞ � n.

On entry, i ¼ valueh i, IROWHðiÞ ¼ valueh i and ICOLHðiÞ ¼ valueh i.
Constraint: IROWHðiÞ � ICOLHðiÞ (elements within the upper triangle).

On entry, i ¼ valueh i, IROWHðiÞ ¼ valueh i and n ¼ valueh i.
Constraint: 1 � IROWHðiÞ � n.

On entry, more than one element of H has row index valueh i and column index valueh i.
Constraint: each element of H must have a unique row and column index.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RFF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example demonstrates how to use nonlinear semidefinite programming to find a nearest correlation
matrix satisfying additional requirements. This is a viable alternative to routines G02AAF, G02ABF,
G02AJF or G02ANF as it easily allows you to add further constraints on the correlation matrix. In this
case a problem with a linear matrix inequality and a quadratic objective function is formulated to find
the nearest correlation matrix in the Frobenius norm preserving the nonzero pattern of the original input
matrix. However, additional box bounds (E04RHF) or linear constraints (E04RJF) can be readily added
to further bind individual elements of the new correlation matrix or new matrix inequalities (E04RNF)
to restrict its eigenvalues.

The problem is as follows (to simplify the notation only the upper triangular parts are shown). To a
given m by m symmetric input matrix G

G ¼
g11 � � � g1m

. .
. ..

.

gmm

0B@
1CA

find correction terms x1; . . . ; xn which form symmetric matrix �G

�G ¼

�g11 �g12 � � � �g1m
�g22 � � � �g2m

. .
. ..

.

�gmm

0BBB@
1CCCA ¼

1 g12 þ x1 g13 þ x2 � � � g1m þ xi
1 g23 þ x3

1 ..
.

. .
.

1 gm�1m þ xn
1

0BBBBBBB@

1CCCCCCCA
so that the following requirements are met:

(a) It is a correlation matrix, i.e., symmetric positive semidefinite matrix with a unit diagonal. This is
achieved by the way �G is assembled and by a linear matrix inequality

�G ¼ x1

0 1 0 � � � 0
0 0 � � � 0

0 � � � 0

. .
. ..

.

0

0BBBB@
1CCCCAþ x2

0 0 1 � � � 0
0 0 � � � 0

0 � � � 0

. .
. ..

.

0

0BBBB@
1CCCCAþ x3

0 0 0 � � � 0
0 1 � � � 0

0 � � � 0

. .
. ..

.

0

0BBBB@
1CCCCAþ � � �

þxn

0 � � � 0 0 0

. .
. ..

. ..
. ..

.

0 0 0
0 1

0

0BBBB@
1CCCCA�

�1 �g12 �g13 � � � �g1m
�1 �g23 � � � �g2m

�1 � � � �g3m
. .
. ..

.

�1

0BBBB@
1CCCCA � 0:

(b) �G is nearest to G in the Frobenius norm, i.e., it minimizes the Frobenius norm of the difference
which is equivalent to:

minimize
1

2

X
i 6¼j

�gij � gij
� �2 ¼Xn

i¼1
x2i :

(c) �G preserves the nonzero structure of G. This is met by defining xi only for nonzero elements gij.
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For the input matrix

G ¼
2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

0B@
1CA

the result is

�G ¼
1:0000 �0:6823 0:0000 0:0000
�0:6823 1:0000 �0:5344 0:0000
0:0000 �0:5344 1:0000 �0:6823
0:0000 0:0000 �0:6823 1:0000

0B@
1CA:

See also Section 10 in E04RAF for links to further examples in the suite.

10.1 Program Text

Program e04rffe

! E04RFF Example Program Text

! Compute the nearest correlation matrix in Frobenius norm
! using nonlinear semidefinite programming. By default,
! preserve the nonzero structure of the input matrix
! (preserve_structure = .True.).

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04raf, e04rff, e04rnf, e04rzf, e04svf, e04zmf, &

nag_wp, x04caf
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &

c_ptr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
Logical, Parameter :: preserve_structure = .True.

! .. Local Scalars ..
Type (c_ptr) :: h
Integer :: dima, i, idblk, idx, ifail, inform, &

j, n, nblk, nnzasum, nnzc, nnzh, &
nnzu, nnzua, nnzuc, nvar

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), g(:,:), hmat(:), x(:)
Real (Kind=nag_wp) :: rdummy(1), rinfo(32), stats(32)
Integer, Allocatable :: blksizea(:), icola(:), icolh(:), &

irowa(:), irowh(:), nnza(:)
Integer :: idummy(1)

! .. Executable Statements ..
Continue

Write (nout,*) ’E04RFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file.
Read (nin,*)

! Read in the problem size.
Read (nin,*) n

Allocate (g(n,n))

! Read in the matrix G.
Read (nin,*)(g(i,1:n),i=1,n)

! Symmetrize G: G = (G + G’)/2
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Do j = 2, n
Do i = 1, j - 1

g(i,j) = (g(i,j)+g(j,i))/2.0_nag_wp
g(j,i) = g(i,j)

End Do
End Do

! Initialize handle.
h = c_null_ptr

! There are as many variables as nonzeros above the main diagonal in
! the input matrix. The variables are corrections of these elements.

nvar = 0
Do j = 2, n

Do i = 1, j - 1
If (.Not. preserve_structure .Or. g(i,j)/=0.0_nag_wp) Then

nvar = nvar + 1
End If

End Do
End Do
Allocate (x(nvar))

! Initialize an empty problem handle with NVAR variables.
ifail = 0
Call e04raf(h,nvar,ifail)

! Set up the objective - minimize Frobenius norm of the corrections.
! Our variables are stored as a vector thus, just minimize
! sum of squares of the corrections --> H is identity matrix, c = 0.

nnzc = 0
nnzh = nvar
Allocate (irowh(nnzh),icolh(nnzh),hmat(nnzh))
Do i = 1, nvar

irowh(i) = i
icolh(i) = i
hmat(i) = 1.0_nag_wp

End Do

! Add the quadratic objective to the handle.
ifail = 0
Call e04rff(h,nnzc,idummy,rdummy,nnzh,irowh,icolh,hmat,ifail)

! Construct linear matrix inequality to request that
! matrix G with corrections X is positive semidefinite.
! (Don’t forget the sign at A_0!)

! How many nonzeros do we need? Full triangle for A_0 and
! one nonzero element for each A_i.

nnzasum = n*(n+1)/2 + nvar

Allocate (nnza(nvar+1),irowa(nnzasum),icola(nnzasum),a(nnzasum))
nnza(1) = n*(n+1)/2
nnza(2:nvar+1) = 1

! Copy G to A_0, only upper triangle with different sign (because -A_0)
! and set the diagonal to 1.0 as that’s what we want independently
! of what was in G.

idx = 1
Do j = 1, n

Do i = 1, j - 1
irowa(idx) = i
icola(idx) = j
a(idx) = -g(i,j)
idx = idx + 1

End Do
! Unit diagonal.

irowa(idx) = j
icola(idx) = j
a(idx) = -1.0_nag_wp
idx = idx + 1

End Do
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! A_i has just one nonzero - it binds x_i with its position as
! a correction.

Do j = 2, n
Do i = 1, j - 1

If (.Not. preserve_structure .Or. g(i,j)/=0.0_nag_wp) Then
irowa(idx) = i
icola(idx) = j
a(idx) = 1.0_nag_wp
idx = idx + 1

End If
End Do

End Do

! Just one matrix inequality of the dimension of the original matrix.
nblk = 1
Allocate (blksizea(nblk))
dima = n
blksizea(:) = (/dima/)

! Add the constraint to the problem formulation.
idblk = 0
ifail = 0
Call e04rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,blksizea,idblk, &

ifail)

! Set optional arguments of the solver.
ifail = 0
Call e04zmf(h,’Print Options = No’,ifail)
ifail = 0
Call e04zmf(h,’Initial X = Automatic’,ifail)

! Pass the handle to the solver, we are not interested in
! Lagrangian multipliers.

nnzu = 0
nnzuc = 0
nnzua = 0
ifail = 0
Call e04svf(h,nvar,x,nnzu,rdummy,nnzuc,rdummy,nnzua,rdummy,rinfo,stats, &

inform,ifail)

! Destroy the handle.
ifail = 0
Call e04rzf(h,ifail)

! Form the new nearest correlation matrix as the sum
! of G and the correction X.

idx = 1
Do j = 1, n

Do i = 1, j - 1
If (.Not. preserve_structure .Or. g(i,j)/=0.0_nag_wp) Then

g(i,j) = g(i,j) + x(idx)
idx = idx + 1

End If
End Do
g(j,j) = 1.0_nag_wp

End Do

! Print the matrix.
ifail = 0
Call x04caf(’Upper’,’N’,n,n,g,n,’Nearest Correlation Matrix’,ifail)

End Program e04rffe
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10.2 Program Data

E04RFF Example Program Data
4 :: N
2.0 -1.0 0.0 0.0

-1.0 2.0 -1.0 0.0
0.0 -1.0 2.0 -1.0
0.0 0.0 -1.0 2.0 :: End of G

10.3 Program Results

E04RFF Example Program Results

E04SV, NLP-SDP Solver (Pennon)
------------------------------
Number of variables 3 [eliminated 0]

simple linear nonlin
(Standard) inequalities 0 0 0
(Standard) equalities 0 0
Matrix inequalities 1 0 [dense 1, sparse 0]

[max dimension 4]

--------------------------------------------------------------
it| objective | optim | feas | compl | pen min |inner

--------------------------------------------------------------
0 0.00000E+00 0.00E+00 6.19E-01 6.63E+00 1.00E+00 0
1 4.12017E-01 6.38E-04 0.00E+00 1.44E+00 1.00E+00 5
2 3.29642E-01 7.76E-04 0.00E+00 4.96E-01 4.65E-01 2
3 2.65315E-01 1.02E-04 0.00E+00 1.55E-01 2.16E-01 3
4 2.33229E-01 1.03E-03 0.00E+00 4.71E-02 1.01E-01 3
5 2.19082E-01 2.22E-03 0.00E+00 1.46E-02 4.68E-02 3
6 2.13121E-01 2.12E-03 0.00E+00 4.72E-03 2.18E-02 3
7 2.10698E-01 1.26E-03 0.00E+00 1.56E-03 1.01E-02 3
8 2.09756E-01 4.90E-04 0.00E+00 4.85E-04 4.71E-03 3
9 2.09413E-01 1.13E-04 0.00E+00 1.21E-04 2.19E-03 3

10 2.09310E-01 1.95E-03 0.00E+00 1.63E-05 1.02E-03 2
11 2.09297E-01 1.25E-05 0.00E+00 2.77E-06 4.74E-04 2
12 2.09294E-01 2.68E-07 0.00E+00 3.89E-07 2.21E-04 2
13 2.09294E-01 2.25E-09 0.00E+00 5.43E-08 1.03E-04 2

--------------------------------------------------------------
Status: converged, an optimal solution found
--------------------------------------------------------------
Final objective value 2.092940E-01
Relative precision 2.759238E-07
Optimality 2.249294E-09
Feasibility 0.000000E+00
Complementarity 5.426796E-08
Iteration counts

Outer iterations 13
Inner iterations 36
Linesearch steps 36

Evaluation counts
Augm. Lagr. values 50
Augm. Lagr. gradient 50
Augm. Lagr. hessian 36

--------------------------------------------------------------
Nearest Correlation Matrix

1 2 3 4
1 1.0000 -0.6823 0.0000 0.0000
2 1.0000 -0.5344 0.0000
3 1.0000 -0.6823
4 1.0000
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NAG Library Routine Document

E04RGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RGF is a part of the NAG optimization modelling suite and declares the objective function of the
problem as a nonlinear function with a particular gradient sparsity structure.

2 Specification

SUBROUTINE E04RGF (HANDLE, NNZFD, IDXFD, IFAIL)

INTEGER NNZFD, IDXFD(NNZFD), IFAIL
TYPE (C_PTR) HANDLE

3 Description

After the initialization routine E04RAF has been called (and unless the objective function has been
defined previously by E04REF, E04RFF or by E04RGF), E04RGF may be used to declare the objective
function of the problem as a nonlinear function and define the sparsity pattern (list of nonzero elements)
of its gradient. This objective function will typically be used for nonlinear programming problems
(NLP) of the kind:

minimize
x2Rn

f xð Þ ðaÞ
subject to lg � g xð Þ � ug ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð1Þ

The values of the nonlinear objective function f xð Þ and the nonzero values of its gradient
@f

@xi
(matching the sparsity pattern) evaluated at particular points in the decision variable space will be
communicated to the NLP solver by user-supplied functions (e.g., OBJFUN and OBJGRD). See
E04RAF for more details.

4 References

None.

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: NNZFD – INTEGER Input

On entry: the number of nonzero elements in the sparse gradient vector of the objective function.

Constraint: NNZFD � 0.

3: IDXFDðNNZFDÞ – INTEGER array Input

On entry: the one-based indices of the nonzero elements of the sparse gradient vector. The
indices must be stored in ascending order. Note that n, the number of decision variables in the
problem, was set in NVAR during the initialization of the handle by E04RAF.
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If NNZFD ¼ 0, the objective is assumed to be zero and the array IDXFD will not be referenced.

Constraints:

1 � IDXFDðiÞ � n, for i ¼ 1; 2; . . . ;NNZFD;
IDXFDðiÞ < IDXFDði þ 1Þ, for i ¼ 1; 2; . . . ;NNZFD� 1.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 2

The Hessians of nonlinear functions have already been defined, a nonlinear objective cannot be
added.

The problem cannot be modified in this phase any more, the solver has already been called.

IFAIL ¼ 3

The objective function has already been defined.

IFAIL ¼ 6

On entry, NNZFD ¼ valueh i.
Constraint: NNZFD � 0.

IFAIL ¼ 7

On entry, i ¼ valueh i, IDXFDðiÞ ¼ valueh i and IDXFDðiþ 1Þ ¼ valueh i.
Constraint: IDXFDðiÞ < IDXFDðiþ 1Þ (ascending order).

On entry, i ¼ valueh i, IDXFDðiÞ ¼ valueh i and n ¼ valueh i.
Constraint: 1 � IDXFDðiÞ � n.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RGF is not threaded in any implementation.

9 Further Comments

9.1 Additional Licensor

Parts of the code for E04STF are distributed according to terms imposed by another licensor. Please
refer to the list of Library licensors available on the NAG Website for further details.

10 Example

See Section 10 in E04STF.
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NAG Library Routine Document

E04RHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RHF is a part of the NAG optimization modelling suite and defines bounds on the variables of the
problem.

2 Specification

SUBROUTINE E04RHF (HANDLE, NVAR, BL, BU, IFAIL)

INTEGER NVAR, IFAIL
REAL (KIND=nag_wp) BL(NVAR), BU(NVAR)
TYPE (C_PTR) HANDLE

3 Description

After the initialization routine E04RAF has been called, E04RHF may be used to define the variable
bounds lx � x � ux of the problem unless the bounds have already been defined. This will typically be
used for problems, such as quadratic programming (QP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ
subject to lB � Bx � uB ðbÞ

lx � x � ux ðcÞ
ð1Þ

nonlinear programming (NLP)

minimize
x2Rn

f xð Þ ðaÞ
subject to lg � g xð Þ � ug ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð2Þ

linear semidefinite programming (SDP)

minimize
x2Rn

cTx ðaÞ

subject to
Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð3Þ

or semidefinite programming with bilinear matrix inequalities (BMI-SDP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ

subject to
Xn
i;j¼1

xixjQ
k
ij þ

Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð4Þ

where lx and ux are n-dimensional vectors. Note that upper and lower bounds are specified for all the
variables. This form allows full generality in specifying various types of constraint. If certain bounds
are not present, the associated elements of lx or ux may be set to special values that are treated as �1
or þ1. See the description of the optional parameter Infinite Bound Size of the solvers in the suite,
E04STF and E04SVF. Its value is denoted as bigbnd further in this text. Note that the bounds are
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interpreted based on its value at the time of calling this routine and any later alterations to Infinite
Bound Size will not affect these constraints.

See E04RAF for more details.

4 References

Candes E and Recht B (2009) Exact matrix completion via convex optimization Foundations of
Computation Mathematics (Volume 9) 717–772

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: NVAR – INTEGER Input

On entry: n, the number of decision variables x in the problem. It must be unchanged from the
value set during the initialization of the handle by E04RAF.

3: BLðNVARÞ – REAL (KIND=nag_wp) array Input
4: BUðNVARÞ – REAL (KIND=nag_wp) array Input

On entry: lx, BL and ux, BU define lower and upper bounds on the variables, respectively. To
specify a nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd; to specify a nonexistent
upper bound (i.e., uj ¼ 1), set BUðjÞ � bigbnd. Fixing of the variables is not allowed in this
release, however, this limitation will be removed in a future release.

Constraints:

BLðjÞ < BUðjÞ, for j ¼ 1; 2; . . . ;NVAR;
BLðjÞ < bigbnd, for j ¼ 1; 2; . . . ;NVAR;
BUðjÞ > �bigbnd, for j ¼ 1; 2; . . . ;NVAR.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.
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IFAIL ¼ 2

The problem cannot be modified in this phase any more, the solver has already been called.

IFAIL ¼ 3

Variable bounds have already been defined.

IFAIL ¼ 4

On entry, NVAR ¼ valueh i, expected value ¼ valueh i.
Constraint: NVAR must match the value given during initialization of HANDLE.

IFAIL ¼ 10

On entry, j ¼ valueh i, BLðjÞ ¼ valueh i, bigbnd ¼ valueh i.
Constraint: BLðjÞ < bigbnd.

On entry, j ¼ valueh i, BLðjÞ ¼ valueh i and BUðjÞ ¼ valueh i.
Constraint: BLðjÞ < BUðjÞ.
On entry, j ¼ valueh i, BUðjÞ ¼ valueh i, bigbnd ¼ valueh i.
Constraint: BUðjÞ > �bigbnd.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

There is a vast number of problems which can be reformulated as SDP. This example follows Candes
and Recht (2009) to show how a rank minimization problem can be approximated by SDP. In addition,
it demonstrates how to work with the monitor mode of E04SVF.

The problem can be stated as follows: Let's have m respondents answering k questions where they
express their preferences as a number between 0 and 1 or the question can be left unanswered. The task
is to fill in the missing entries, i.e., to guess the unexpressed preferences. This problem falls into the
category of matrix completion. The idea is to choose the missing entries to minimize the rank of the
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matrix as it is commonly believed that only a few factors contribute to an individual's tastes or
preferences.

Rank minimization is in general NP-hard but it can be approximated by a heuristic, minimizing the
nuclear norm of the matrix. The nuclear norm of a matrix is the sum of its singular values. A rank
deficient matrix must have (several) zero singular values. Given the fact that the singular values are
always non-negative, a minimization of the nuclear norm has the same effect as ‘1 norm in compress
sensing, i.e., it encourages many singular values to be zero and thus it can be considered as a heuristic
for the original rank minimization problem.

Let Ŷ denote the partially filled in m� k matrix with the valid responses on i; jð Þ 2 � positions. We
are looking for Y of the same size so that the valid responses are unchanged and the nuclear norm
(denoted here as �k k�) is minimal.

minimize
Y

Yk k�
subject to Yij ¼ Ŷij for all i; jð Þ 2 �:

This is equivalent to

minimize
W1;W2;Y

trace W1ð Þ þ trace W2ð Þ

subject to Yij ¼ Ŷij for all i; jð Þ 2 �
W1 Y
Y T W2

� �
� 0

which is the linear semidefinite problem solved in this example, see Candes and Recht (2009) and the
references therein for details.

This example has m ¼ 15 respondents and k ¼ 6 answers. The obtained answers are

Ŷ ¼

� � � � � 0:4
0:6 0:4 0:8 � � �
� � 0:8 � 0:2 �
0:8 0:2 � � � �
� 0:4 � 0:0 � 0:2
0:4 � � 0:2 � 0:2
� 0:8 0:2 0:6 � �
� � 0:2 � � �
� 0:4 � 0:6 0:0 �
� � 0:4 � � �
� � 0:2 0:2 0:4 0:4
� � � � 1:0 0:8
1:0 � 0:2 � � 0:6
� � � � � 0:2
0:6 � 0:2 0:4 � �

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA
where � denotes missing entries (�1:0 is used instead in the data file). The obtained matrix has rank 4
and it is shown below printed to 1-digit accuracy:

E04RHF NAG Library Manual

E04RHF.4 Mark 26



Y ¼

0:5 0:3 0:2 0:2 0:4 0:4
0:6 0:4 0:8 0:2 0:3 0:4
0:4 0:3 0:8 0:0 0:2 0:2
0:8 0:2 0:3 0:4 0:3 0:4
0:0 0:4 0:2 0:0 0:2 0:2
0:4 0:1 0:2 0:2 0:1 0:2
0:6 0:8 0:2 0:6 0:2 0:4
0:1 0:1 0:2 0:0 0:0 0:1
0:6 0:4 0:1 0:6 0:0 0:3
0:2 0:1 0:4 0:0 0:1 0:1
0:5 0:3 0:2 0:2 0:4 0:4
0:7 0:4 0:3 0:0 1:0 0:8
1:0 0:3 0:2 0:5 0:5 0:6
0:2 0:1 0:1 0:1 0:2 0:2
0:6 0:3 0:2 0:4 0:2 0:3

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

:

The example also turns on monitor mode of E04SVF, there is a time limit introduced for the solver
which is being checked at the end of every outer iteration. If the time limit is reached, the routine is
stopped by setting INFORM ¼ 0 within the monitor step.

See also Section 10 in E04RAF for links to further examples in the suite.

10.1 Program Text

Program e04rhfe

! E04RHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! Matrix completion problem (rank minimization) solved approximately
! by SDP via nuclear norm minimization formulated as:
! min trace(X1) + trace(X2)
! s.t. [ X1, Y; Y’, X2 ] >=0
! 0 <= Y_ij <= 1

! .. Use Statements ..
Use nag_library, Only: e04raf, e04rff, e04rhf, e04rnf, e04rzf, e04svf, &

e04zmf, f08kbf, nag_wp, x04cbf
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &

c_ptr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: stol = 1E-5_nag_wp
Real (Kind=nag_wp), Parameter :: time_limit = 120.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Type (c_ptr) :: h
Integer :: dima, i, idblk, idx, idxobj, idxx, &

ifail, info, inform, j, lwork, m, n, &
nblk, nnz, nnzasum, nnzc, nnzh, &
nnzu, nnzua, nnzuc, nvar, rank

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), bl(:), bu(:), c(:), s(:), &

work(:), x(:), y(:,:)
Real (Kind=nag_wp) :: rdummy(1), rinfo(32), stats(32)
Integer, Allocatable :: blksizea(:), icola(:), idxc(:), &

irowa(:), nnza(:)
Integer :: idummy(1)
Character (1) :: cdummy(1)

! .. Intrinsic Procedures ..
Intrinsic :: int, max, min, sum

! .. Executable Statements ..
Continue

Write (nout,*) ’E04RHF Example Program Results’
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Write (nout,*)
Flush (nout)

! Skip heading in data file.
Read (nin,*)

! Read in the problem size and allocate space for the input data.
Read (nin,*) m, n
Allocate (y(m,n))

! Read in the matrix Y.
Read (nin,*)(y(i,1:n),i=1,m)

! Count the number of specified elements (i.e., nonnegative)
nnz = 0
Do i = 1, m

Do j = 1, n
If (y(i,j)>=0.0_nag_wp) Then

nnz = nnz + 1
End If

End Do
End Do

! Initialize handle.
h = c_null_ptr

! There are as many variables as missing entries in the Y matrix
! plus two full symmetric matrices m x m and n x n.

nvar = m*(m+1)/2 + n*(n+1)/2 + m*n - nnz
Allocate (x(nvar),bl(nvar),bu(nvar))

! Initialize an empty problem handle with NVAR variables.
ifail = 0
Call e04raf(h,nvar,ifail)

! Create bounds for the missing entries in Y matrix to be between 0 and 1
bl(:) = -1E+20_nag_wp
bu(:) = 1E+20_nag_wp
bl(m*(m+1)/2+n*(n+1)/2+1:nvar) = 0.0_nag_wp
bu(m*(m+1)/2+n*(n+1)/2+1:nvar) = 1.0_nag_wp
ifail = 0
Call e04rhf(h,nvar,bl,bu,ifail)

! Allocate space for the objective - minimize trace of the matrix
! constraint. There is no quadratic part in the objective.

nnzc = m + n
nnzh = 0
Allocate (idxc(nnzc),c(nnzc))

! Construct linear matrix inequality to request that
! [ X1, Y; Y’, X2] is positive semidefinite.

! How many nonzeros do we need? As many as number of variables
! and the number of specified elements together.

nnzasum = m*(m+1)/2 + n*(n+1)/2 + m*n

Allocate (nnza(nvar+1),irowa(nnzasum),icola(nnzasum),a(nnzasum))
nnza(1) = nnz
nnza(2:nvar+1) = 1

! Copy Y to the upper block of A_0 with the different sign
! (because of the sign at A_0!)
! (upper triangle)

idx = 1
Do i = 1, m

Do j = 1, n
If (y(i,j)>=0.0_nag_wp) Then

irowa(idx) = i
icola(idx) = m + j
a(idx) = -y(i,j)
idx = idx + 1
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End If
End Do

End Do
! One matrix for each variable, A_i has just one nonzero - it binds
! x_i with its position in the matrix constraint. Set also the objective.
! 1,1 - block, X1 matrix (mxm)

idxobj = 1
idxx = 1
Do i = 1, m

! the next element is diagonal ==> part of the objective as a trace()
idxc(idxobj) = idxx
c(idxobj) = 1.0_nag_wp
idxobj = idxobj + 1
Do j = i, m

irowa(idx) = i
icola(idx) = j
a(idx) = 1.0_nag_wp
idx = idx + 1
idxx = idxx + 1

End Do
End Do

! 2,2 - block, X2 matrix (nxn)
Do i = 1, n

! the next element is diagonal ==> part of the objective as a trace()
idxc(idxobj) = idxx
c(idxobj) = 1.0_nag_wp
idxobj = idxobj + 1
Do j = i, n

irowa(idx) = m + i
icola(idx) = m + j
a(idx) = 1.0_nag_wp
idx = idx + 1
idxx = idxx + 1

End Do
End Do

! 1,2 - block, missing element in Y we are after
Do i = 1, m

Do j = 1, n
If (y(i,j)<0.0_nag_wp) Then

irowa(idx) = i
icola(idx) = m + j
a(idx) = 1.0_nag_wp
idx = idx + 1

End If
End Do

End Do

! Add the sparse linear objective to the handle.
ifail = 0
Call e04rff(h,nnzc,idxc,c,nnzh,idummy,idummy,rdummy,ifail)

! Just one matrix inequality of the dimension of the extended matrix.
nblk = 1
Allocate (blksizea(nblk))
dima = m + n
blksizea(:) = (/dima/)

! Add the constraint to the problem formulation.
idblk = 0
ifail = 0
Call e04rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,blksizea,idblk, &

ifail)

! Set optional arguments of the solver.
! Completely turn off printing, allow timing and
! turn on the monitor mode to stop every iteration.

ifail = 0
Call e04zmf(h,’Print File = -1’,ifail)
ifail = 0
Call e04zmf(h,’Stats Time = Yes’,ifail)
ifail = 0
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Call e04zmf(h,’Monitor Frequency = 1’,ifail)
ifail = 0
Call e04zmf(h,’Initial X = Automatic’,ifail)
ifail = 0
Call e04zmf(h,’Dimacs = Check’,ifail)

! Pass the handle to the solver, we are not interested in
! Lagrangian multipliers.

nnzu = 0
nnzuc = 0
nnzua = 0

loop: Do
ifail = -1
Call e04svf(h,nvar,x,nnzu,rdummy,nnzuc,rdummy,nnzua,rdummy,rinfo, &

stats,inform,ifail)

If (inform==1) Then
! Monitor stop

Write (nout,99998) int(stats(1)), rinfo(1), &
sum(rinfo(2:4))/3.0_nag_wp

Flush (nout)

! Check time limit and possibly stop the solver.
If (stats(8)>time_limit) Then

inform = 0
End If

Else
! Final exit, solver finished.

Write (nout,99997) int(stats(1)), rinfo(1), &
sum(rinfo(2:4))/3.0_nag_wp

Flush (nout)
Exit loop

End If

End Do loop

If (ifail==0 .Or. ifail==50) Then
! Successful run, fill the missing elements in the matrix Y.

idx = m*(m+1)/2 + n*(n+1)/2 + 1
Do i = 1, m

Do j = 1, n
If (y(i,j)<0.0_nag_wp) Then

y(i,j) = x(idx)
idx = idx + 1

End If
End Do

End Do

! Print the matrix.
ifail = 0
Call x04cbf(’General’,’N’,m,n,y,m,’F7.1’,’Completed Matrix’,’Integer’, &

cdummy,’Integer’,cdummy,80,0,ifail)

! Compute rank of the matrix via SVD, use the fact that the order
! of the singular values is descending.

lwork = 20*max(m,n)
Allocate (s(min(m,n)),work(lwork))
Call f08kbf(’No’,’No’,m,n,y,m,s,rdummy,1,rdummy,1,work,lwork,info)
If (info==0) Then

lp_rank: Do rank = 1, min(m,n)
If (s(rank)<=stol) Then

Exit lp_rank
End If

End Do lp_rank
Write (nout,99999) ’Rank is’, rank - 1

99999 Format (1X,A,I20)
End If

Else If (ifail==20) Then
Write (nout,*) ’The given time limit was reached, run aborted.’

End If
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! Destroy the handle.
ifail = 0
Call e04rzf(h,ifail)

99998 Format (1X,’Monitor at iteration ’,I2,’: objective ’,F7.2, &
’, avg.error ’,Es9.2e2)

99997 Format (1X,’Finished at iteration ’,I2,’: objective ’,F7.2, &
’, avg.error ’,Es9.2e2)

End Program e04rhfe

10.2 Program Data

E04RHF Example Program Data
15 6 :: m, n - number of respondents and questions

-1.0 -1.0 -1.0 -1.0 -1.0 0.4
0.6 0.4 0.8 -1.0 -1.0 -1.0

-1.0 -1.0 0.8 -1.0 0.2 -1.0
0.8 0.2 -1.0 -1.0 -1.0 -1.0

-1.0 0.4 -1.0 0.0 -1.0 0.2
0.4 -1.0 -1.0 0.2 -1.0 0.2

-1.0 0.8 0.2 0.6 -1.0 -1.0
-1.0 -1.0 0.2 -1.0 -1.0 -1.0
-1.0 0.4 -1.0 0.6 0.0 -1.0
-1.0 -1.0 0.4 -1.0 -1.0 -1.0
-1.0 -1.0 0.2 0.2 0.4 0.4
-1.0 -1.0 -1.0 -1.0 1.0 0.8
1.0 -1.0 0.2 -1.0 -1.0 0.6

-1.0 -1.0 -1.0 -1.0 -1.0 0.2
0.6 -1.0 0.2 0.4 -1.0 -1.0 :: -1.0 for missing entries

10.3 Program Results

E04RHF Example Program Results

Monitor at iteration 0: objective 0.00, avg.error 3.14E+01
Monitor at iteration 1: objective 154.74, avg.error 4.98E+01
Monitor at iteration 2: objective 71.71, avg.error 2.15E+01
Monitor at iteration 3: objective 36.88, avg.error 9.13E+00
Monitor at iteration 4: objective 22.50, avg.error 3.84E+00
Monitor at iteration 5: objective 16.47, avg.error 1.61E+00
Monitor at iteration 6: objective 13.88, avg.error 6.87E-01
Monitor at iteration 7: objective 12.76, avg.error 2.97E-01
Monitor at iteration 8: objective 12.27, avg.error 1.29E-01
Monitor at iteration 9: objective 12.06, avg.error 5.63E-02
Monitor at iteration 10: objective 11.97, avg.error 2.50E-02
Monitor at iteration 11: objective 11.93, avg.error 1.17E-02
Monitor at iteration 12: objective 11.91, avg.error 5.77E-03
Monitor at iteration 13: objective 11.91, avg.error 3.33E-03
Monitor at iteration 14: objective 11.90, avg.error 9.11E-04
Monitor at iteration 15: objective 11.90, avg.error 3.77E-04
Monitor at iteration 16: objective 11.90, avg.error 1.64E-04
Monitor at iteration 17: objective 11.90, avg.error 7.07E-05
Monitor at iteration 18: objective 11.90, avg.error 3.05E-05
Monitor at iteration 19: objective 11.90, avg.error 1.31E-05
Monitor at iteration 20: objective 11.90, avg.error 5.60E-06
Monitor at iteration 21: objective 11.90, avg.error 2.38E-06
Monitor at iteration 22: objective 11.90, avg.error 1.01E-06
Finished at iteration 23: objective 11.90, avg.error 4.31E-07
Completed Matrix

1 2 3 4 5 6
1 0.5 0.3 0.2 0.2 0.4 0.4
2 0.6 0.4 0.8 0.2 0.3 0.4
3 0.4 0.3 0.8 0.0 0.2 0.2
4 0.8 0.2 0.3 0.4 0.3 0.4
5 0.0 0.4 0.2 0.0 0.2 0.2
6 0.4 0.1 0.2 0.2 0.1 0.2
7 0.6 0.8 0.2 0.6 0.2 0.4
8 0.1 0.1 0.2 0.0 0.0 0.1
9 0.6 0.4 0.1 0.6 0.0 0.3

10 0.2 0.1 0.4 0.0 0.1 0.1
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11 0.5 0.3 0.2 0.2 0.4 0.4
12 0.7 0.4 0.3 0.0 1.0 0.8
13 1.0 0.3 0.2 0.5 0.5 0.6
14 0.2 0.1 0.1 0.1 0.2 0.2
15 0.6 0.3 0.2 0.4 0.2 0.3
Rank is 4
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NAG Library Routine Document

E04RJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RJF is a part of the NAG optimization modelling suite and defines the block of linear constraints of
the problem.

2 Specification

SUBROUTINE E04RJF (HANDLE, NCLIN, BL, BU, NNZB, IROWB, ICOLB, B, IDLC,
IFAIL)

&

INTEGER NCLIN, NNZB, IROWB(NNZB), ICOLB(NNZB), IDLC, IFAIL
REAL (KIND=nag_wp) BL(NCLIN), BU(NCLIN), B(NNZB)
TYPE (C_PTR) HANDLE

3 Description

After the initialization routine E04RAF has been called, E04RJF may be used to define the linear
constraints lB � Bx � uB of the problem unless the linear constraints have already been defined. This
will typically be used for problems, such as quadratic programming (QP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ
subject to lB � Bx � uB ðbÞ

lx � x � ux; ðcÞ
ð1Þ

nonlinear programming (NLP)

minimize
x2Rn

f xð Þ ðaÞ
subject to lg � g xð Þ � ug ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð2Þ

linear semidefinite programming (SDP)

minimize
x2Rn

cTx ðaÞ

subject to
Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð3Þ

or semidefinite programming with bilinear matrix inequalities (BMI-SDP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ

subject to
Xn
i;j¼1

xixjQ
k
ij þ

Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð4Þ

where n is the number of decision variables, B is a general mB � n rectangular matrix and lB and uB
are mB-dimensional vectors. Note that upper and lower bounds are specified for all the constraints. This
form allows full generality in specifying various types of constraint. In particular, the jth constraint may
be defined as an equality by setting lj ¼ uj. If certain bounds are not present, the associated elements of
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lB or uB may be set to special values that are treated as �1 or þ1. See the description of the optional
parameter Infinite Bound Size of the solvers in the suite, E04STF and E04SVF. Its value is denoted as
bigbnd further in this text. Note that the bounds are interpreted based on its value at the time of calling
this routine and any later alterations to Infinite Bound Size will not affect these constraints.

See E04RAF for more details.

4 References

None.

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: NCLIN – INTEGER Input

On entry: mB, the number of linear constraints (number of rows of the matrix B).

If NCLIN ¼ 0, no linear constraints will be defined and BL, BU, NNZB, IROWB, ICOLB and B
will not be referenced.

Constraint: NCLIN � 0.

3: BLðNCLINÞ – REAL (KIND=nag_wp) array Input
4: BUðNCLINÞ – REAL (KIND=nag_wp) array Input

On entry: BL and BU define lower and upper bounds of the linear constraints, lB and uB,
respectively. To define the jth constraint as equality, set BLðjÞ ¼ BUðjÞ ¼ �, where �j j < bigbnd.
To specify a nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd; to specify a
nonexistent upper bound, set BUðjÞ � bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;NCLIN;
BLðjÞ < bigbnd, for j ¼ 1; 2; . . . ;NCLIN;
BUðjÞ > �bigbnd, for j ¼ 1; 2; . . . ;NCLIN;
if BLðjÞ ¼ BUðjÞ, BLðjÞj j < bigbnd, for j ¼ 1; 2; . . . ;NCLIN.

5: NNZB – INTEGER Input

On entry: NNZB gives the number of nonzeros in matrix B.

Constraint: if NCLIN > 0, NNZB > 0.

6: IROWBðNNZBÞ – INTEGER array Input
7: ICOLBðNNZBÞ – INTEGER array Input
8: BðNNZBÞ – REAL (KIND=nag_wp) array Input

On entry: arrays IROWB, ICOLB and B store NNZB nonzeros of the sparse matrix B in
coordinate storage (CS) format (see Section 2.1.1 in the F11 Chapter Introduction). The matrix B
has dimensions mB � n, where n, the number of variables in the problem, was set in NVAR
during the initialization of the handle by E04RAF. IROWB specifies one-based row indices,
ICOLB specifies one-based column indices and B specifies the values of the nonzero elements in
such a way that bij ¼ BðlÞ where i ¼ IROWBðlÞ and j ¼ ICOLBðlÞ, for l ¼ 1; 2; . . . ;NNZB. No
particular order of elements is expected, but elements should not repeat.

Constraint: 1 � IROWBðlÞ � NCLIN, 1 � ICOLBðlÞ � n, for l ¼ 1; 2; . . . ;NNZB.
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9: IDLC – INTEGER Input/Output

Note: IDLC is reserved for future releases of the NAG Library.

On entry: if IDLC ¼ 0, new linear constraints are added to the problem definition. This is the
only value allowed at the moment.

Constraint: IDLC ¼ 0.

On exit: the number of the last linear constraint added, thus NCLIN.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 2

The problem cannot be modified in this phase any more, the solver has already been called.

IFAIL ¼ 3

A set of linear constraints has already been defined.

IFAIL ¼ 4

On entry, IDLC ¼ valueh i.
Constraint: IDLC ¼ 0.

IFAIL ¼ 6

On entry, NCLIN ¼ valueh i.
Constraint: NCLIN � 0.

On entry, NNZB ¼ valueh i.
Constraint: NNZB > 0.

IFAIL ¼ 8

On entry, i ¼ valueh i, ICOLBðiÞ ¼ valueh i and n ¼ valueh i.
Constraint: 1 � ICOLBðiÞ � n.
On entry, i ¼ valueh i, IROWBðiÞ ¼ valueh i and NCLIN ¼ valueh i.
Constraint: 1 � IROWBðiÞ � NCLIN.

On entry, more than one element of B has row index valueh i and column index valueh i.
Constraint: each element of B must have a unique row and column index.

E04 – Minimizing or Maximizing a Function E04RJF

Mark 26 E04RJF.3



IFAIL ¼ 10

On entry, j ¼ valueh i, BLðjÞ ¼ valueh i, bigbnd ¼ valueh i.
Constraint: BLðjÞ < bigbnd.

On entry, j ¼ valueh i, BLðjÞ ¼ valueh i and BUðjÞ ¼ valueh i.
Constraint: BLðjÞ � BUðjÞ.
On entry, j ¼ valueh i, BUðjÞ ¼ valueh i, bigbnd ¼ valueh i.
Constraint: BUðjÞ > �bigbnd.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RJF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example demonstrates how to use the MPS file reader E04MXF and this suite of routines to define
and solve a QP problem. E04MXF uses a different output format to the one required by E04RJF, in
particular, it uses the compressed column storage (CCS) (see Section 2.1.3 in the F11 Chapter
Introduction) instead of the coordinate storage and the linear objective vector is included in the system
matrix. Therefore a simple transformation is needed before calling E04RJF as demonstrated in the
example program.

The data file stores the following problem:

minimize cTxþ 1
2x

THx subject to lB � Bx � uB;
�2 � x � 2;

where

E04RJF NAG Library Manual

E04RJF.4 Mark 26



c ¼

�4:0
�1:0
�1:0
�1:0
�1:0
�1:0
�1:0
�0:1
�0:3

0BBBBBBBBBB@

1CCCCCCCCCCA
; H ¼

2 1 1 1 1 0 0 0 0
1 2 1 1 1 0 0 0 0
1 1 2 1 1 0 0 0 0
1 1 1 2 1 0 0 0 0
1 1 1 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0BBBBBBBBBB@

1CCCCCCCCCCA
;

B ¼
1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 4:0
1:0 2:0 3:0 4:0 �2:0 1:0 1:0 1:0 1:0
1:0 �1:0 1:0 �1:0 1:0 1:0 1:0 1:0 1:0

0@ 1A;
lB ¼

�2:0
�2:0
�2:0

0@ 1A and uB ¼
1:5
1:5
4:0

0@ 1A:
The optimal solution (to five figures) is

x� ¼ 2:0;�0:23333;�0:26667;�0:3;�0:1; 2:0; 2:0;�1:7777;�0:45555ð ÞT:
See also Section 10 in E04RAF for links to further examples in this suite.

10.1 Program Text

Program e04rjfe

! E04RJF Example Program Text

! Read in LP/QP problem stored in a MPS file, formulated it
! as a handle and pass it to the solver.

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04mxf, e04raf, e04rff, e04rhf, e04rjf, e04rzf, &

e04svf, e04zmf, nag_wp, x04acf, x04adf
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &

c_ptr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: mpslst = 1, nin = 7, nout = 6
Character (*), Parameter :: fname_default = ’e04rjfe.opt’

! .. Local Scalars ..
Type (c_ptr) :: handle
Integer :: idlc, idx, idx_c, idx_dest, ifail, &

inform, iobj, j, lintvar, m, &
maxlintvar, maxm, maxn, maxncolh, &
maxnnz, maxnnzh, minmax, mode, n, &
nargs, ncolh, nname, nnz, nnzc, &
nnzh, nnzu, nnzua, nnzuc

Character (256) :: fname
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), bl(:), bu(:), c(:), h(:), &
u(:), ua(:), uc(:), x(:)

Real (Kind=nag_wp) :: rinfo(32), stats(32)
Integer, Allocatable :: iccola(:), iccolh(:), icola(:), &

icolh(:), idxc(:), intvar(:), &
irowa(:), irowh(:)

Character (8), Allocatable :: crname(:)
Character (8) :: pnames(5)

! .. Intrinsic Procedures ..
Intrinsic :: command_argument_count, count, &

get_command_argument, trim
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! .. Executable Statements ..
Continue

Write (nout,*) ’E04RJF Example Program Results’
Write (nout,*)

! Use the first command line argument as the filename or
! choose default hard-coded filename in ’fname_default’.

nargs = command_argument_count()
If (nargs>=1) Then

Call get_command_argument(1,fname)
Else

fname = fname_default
End If

Write (nout,*) ’Reading MPS file: ’, trim(fname)
Flush (nout)

! Read the input MPS file.
pnames(1:5) = ’ ’
maxm = 0
maxn = 0
maxnnz = 0
maxnnzh = 0
maxncolh = 0
maxlintvar = -1

! Open the data file for reading.
mode = 0
ifail = 0
Call x04acf(nin,fname,mode,ifail)

! Call E04MXF in query mode to obtain an approximate problem size.
Allocate (a(maxnnz),irowa(maxnnz),iccola(maxn+1),bl(maxn+maxm), &

bu(maxn+maxm),crname(maxn+maxm),h(maxnnzh),irowh(maxnnzh), &
iccolh(maxncolh+1),intvar(maxlintvar))

ifail = 0
Call e04mxf(nin,maxn,maxm,maxnnz,maxncolh,maxnnzh,maxlintvar,mpslst,n,m, &

nnz,ncolh,nnzh,lintvar,iobj,a,irowa,iccola,bl,bu,pnames,nname,crname, &
h,irowh,iccolh,minmax,intvar,ifail)

Deallocate (a,irowa,iccola,bl,bu,crname,h,irowh,iccolh)

! Close the data file.
ifail = 0
Call x04adf(nin,ifail)

! Set maximal problem size.
maxm = m
maxn = n
maxnnz = nnz
maxnnzh = nnzh
maxncolh = ncolh

Allocate (irowa(maxnnz),iccola(maxn+1),a(maxnnz),bl(maxn+maxm), &
bu(maxn+maxm),crname(maxn+maxm),irowh(maxnnzh),iccolh(maxncolh+1), &
h(maxnnzh),x(maxn),icolh(maxnnzh),icola(maxnnz))

! Open the data file for reading.
mode = 0
ifail = 0
Call x04acf(nin,fname,mode,ifail)

! Call E04MXF to read the problem.
ifail = 0
Call e04mxf(nin,maxn,maxm,maxnnz,maxncolh,maxnnzh,maxlintvar,mpslst,n,m, &

nnz,ncolh,nnzh,lintvar,iobj,a,irowa,iccola,bl,bu,pnames,nname,crname, &
h,irowh,iccolh,minmax,intvar,ifail)

Write (nout,*) ’MPS/QPS file read’
Flush (nout)

E04RJF NAG Library Manual

E04RJF.6 Mark 26



! Close the data file.
ifail = 0
Call x04adf(nin,ifail)

! Data has been read. Set up the problem to the solver.

! Initialize handle.
handle = c_null_ptr
ifail = 0
Call e04raf(handle,n,ifail)

! Move linear objective from A to C.
If (iobj>0) Then

! Shift bounds.
Do j = iobj, m - 1

bl(n+j) = bl(n+j+1)
bu(n+j) = bu(n+j+1)

End Do
m = m - 1

! Extract row IOBJ.
! Count how many nonzeros will be needed in C.

nnzc = count(irowa(1:nnz)==iobj)
Allocate (idxc(nnzc),c(nnzc))
idx = 1
idx_c = 1
idx_dest = 1
Do j = 1, n

Do idx = idx, iccola(j+1) - 1
If (irowa(idx)<iobj) Then

a(idx_dest) = a(idx)
irowa(idx_dest) = irowa(idx)
idx_dest = idx_dest + 1

Else If (irowa(idx)==iobj) Then
idxc(idx_c) = j
c(idx_c) = a(idx)
idx_c = idx_c + 1

Else
a(idx_dest) = a(idx)
irowa(idx_dest) = irowa(idx) - 1
idx_dest = idx_dest + 1

End If
End Do
iccola(j+1) = idx_dest

End Do
nnz = idx_dest - 1

Else
! There is no linear part of the objective function.

nnzc = 0
Allocate (idxc(nnzc),c(nnzc))

End If
! Convert (decompress) ICCOLA() to ICOLA().

Do j = 1, n
icola(iccola(j):iccola(j+1)-1) = j

End Do

! Add objective function to the problem formulation.
If (nnzh==0) Then

! The objective is a (sparse) linear function.
ifail = 0
Call e04rff(handle,nnzc,idxc,c,nnzh,irowh,icolh,h,ifail)

Else
! The objective is a quadratic function.
! Transform (decompress) ICCOLH() -> ICOLH().

Do j = 1, ncolh
icolh(iccolh(j):iccolh(j+1)-1) = j

End Do
! E04MX returned L triangle, E04RFF needs U triangle -> swap.

ifail = 0
Call e04rff(handle,nnzc,idxc,c,nnzh,icolh,irowh,h,ifail)

End If
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! Add box constraints to the formulation.
ifail = 0
Call e04rhf(handle,n,bl,bu,ifail)

! Add linear constraints.
idlc = 0
ifail = 0
Call e04rjf(handle,m,bl(n+1:n+m),bu(n+1:n+m),nnz,irowa,icola,a,idlc, &

ifail)

Write (nout,*) ’The problem was set-up’
Flush (nout)

! Call the solver.

! Set optional arguments.
ifail = 0
Call e04zmf(handle,’Print Options = No’,ifail)

! Set up a starting point and call the solver.
! Let’s ignore Lagrangian multipliers U/UA.

x(:) = 0.0_nag_wp
nnzu = 0
nnzuc = 0
nnzua = 0
Allocate (u(nnzu),uc(nnzuc),ua(nnzua))

ifail = 0
Call e04svf(handle,n,x,nnzu,u,nnzuc,uc,nnzua,ua,rinfo,stats,inform, &

ifail)

Write (nout,*)
Write (nout,*) ’Optimal solution:’
Write (nout,99999) x(1:n)

99999 Format (1X,’X = ’,3F9.2)
Flush (nout)

! Destroy the handle.
ifail = 0
Call e04rzf(handle,ifail)

End Program e04rjfe

10.2 Program Data

NAME E04RJ.EX
ROWS
L ..ROW1..
L ..ROW2..
L ..ROW3..
N ..COST..

COLUMNS
...X1... ..ROW1.. 1.0 ..ROW2.. 1.0
...X1... ..ROW3.. 1.0 ..COST.. -4.0
...X2... ..ROW1.. 1.0 ..ROW2.. 2.0
...X2... ..ROW3.. -1.0 ..COST.. -1.0
...X3... ..ROW1.. 1.0 ..ROW2.. 3.0
...X3... ..ROW3.. 1.0 ..COST.. -1.0
...X4... ..ROW1.. 1.0 ..ROW2.. 4.0
...X4... ..ROW3.. -1.0 ..COST.. -1.0
...X5... ..ROW1.. 1.0 ..ROW2.. -2.0
...X5... ..ROW3.. 1.0 ..COST.. -1.0
...X6... ..ROW1.. 1.0 ..ROW2.. 1.0
...X6... ..ROW3.. 1.0 ..COST.. -1.0
...X7... ..ROW1.. 1.0 ..ROW2.. 1.0
...X7... ..ROW3.. 1.0 ..COST.. -1.0
...X8... ..ROW1.. 1.0 ..ROW2.. 1.0
...X8... ..ROW3.. 1.0 ..COST.. -0.1
...X9... ..ROW1.. 4.0 ..ROW2.. 1.0
...X9... ..ROW3.. 1.0 ..COST.. -0.3
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RHS
RHS1 ..ROW1.. 1.5
RHS1 ..ROW2.. 1.5
RHS1 ..ROW3.. 4.0
RHS1 ..COST.. 1000.0

RANGES
RANGE1 ..ROW1.. 3.5
RANGE1 ..ROW2.. 3.5
RANGE1 ..ROW3.. 6.0

BOUNDS
LO BOUND ...X1... -2.0
LO BOUND ...X2... -2.0
LO BOUND ...X3... -2.0
LO BOUND ...X4... -2.0
LO BOUND ...X5... -2.0
LO BOUND ...X6... -2.0
LO BOUND ...X7... -2.0
LO BOUND ...X8... -2.0
LO BOUND ...X9... -2.0
UP BOUND ...X1... 2.0
UP BOUND ...X2... 2.0
UP BOUND ...X3... 2.0
UP BOUND ...X4... 2.0
UP BOUND ...X5... 2.0
UP BOUND ...X6... 2.0
UP BOUND ...X7... 2.0
UP BOUND ...X8... 2.0
UP BOUND ...X9... 2.0

QUADOBJ
...X1... ...X1... 2.00000000E0 ...X2... 1.00000000E0
...X1... ...X3... 1.00000000E0 ...X4... 1.00000000E0
...X1... ...X5... 1.00000000E0
...X2... ...X2... 2.00000000E0 ...X3... 1.00000000E0
...X2... ...X4... 1.00000000E0 ...X5... 1.00000000E0
...X3... ...X3... 2.00000000E0 ...X4... 1.00000000E0
...X3... ...X5... 1.00000000E0
...X4... ...X4... 2.00000000E0 ...X5... 1.00000000E0
...X5... ...X5... 2.00000000E0

ENDATA

10.3 Program Results

E04RJF Example Program Results

Reading MPS file: e04rjfe.opt

MPSX INPUT LISTING
------------------
Searching for indicator line
Line 1: Found NAME indicator line

Query mode - Ignoring NAME data.
Line 2: Found ROWS indicator line

Query mode - Counting ROWS data.
Line 7: Found COLUMNS indicator line

Query mode - Counting COLUMNS data.
Line 26: Found RHS indicator line

Query mode - Ignoring RHS data.
Line 31: Found RANGES indicator line

Query mode - Ignoring RANGES data.
Line 35: Found BOUNDS indicator line

Query mode - Ignoring BOUNDS data.
Line 54: Found QUADOBJ indicator line

Query mode - Counting QUADOBJ data.
Query mode - End of QUADOBJ data. Exit

MPSX INPUT LISTING
------------------
Searching for indicator line
Line 1: Found NAME indicator line
Line 2: Found ROWS indicator line
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Line 7: Found COLUMNS indicator line
Line 26: Found RHS indicator line
Line 31: Found RANGES indicator line
Line 35: Found BOUNDS indicator line
Line 54: Found QUADOBJ indicator line
Line 64: Found ENDATA indicator line
MPS/QPS file read
The problem was set-up
E04SV, NLP-SDP Solver (Pennon)
------------------------------
Number of variables 9 [eliminated 0]

simple linear nonlin
(Standard) inequalities 18 6 0
(Standard) equalities 0 0
Matrix inequalities 0 0 [dense 0, sparse 0]

[max dimension 0]

--------------------------------------------------------------
it| objective | optim | feas | compl | pen min |inner

--------------------------------------------------------------
0 0.00000E+00 4.70E+00 0.00E+00 1.00E+01 1.00E+00 0
1 -6.76762E+00 9.46E-04 0.00E+00 6.25E-01 1.00E+00 4
2 -7.82467E+00 1.79E-03 3.69E-02 1.45E-01 4.65E-01 4
3 -8.02059E+00 7.27E-03 2.27E-02 3.38E-02 2.16E-01 4
4 -8.06187E+00 3.18E-03 5.75E-03 7.86E-03 1.01E-01 4
5 -8.06653E+00 1.30E-03 1.13E-03 1.83E-03 4.68E-02 5
6 -8.06739E+00 6.98E-03 1.42E-04 4.25E-04 2.18E-02 3
7 -8.06775E+00 2.16E-04 2.80E-05 9.89E-05 1.01E-02 2
8 -8.06778E+00 4.44E-05 6.94E-05 2.30E-05 4.71E-03 1
9 -8.06778E+00 1.88E-06 1.15E-05 5.35E-06 2.19E-03 1

10 -8.06778E+00 4.38E-08 1.52E-06 1.24E-06 1.02E-03 1
11 -8.06778E+00 6.52E-10 1.74E-07 2.90E-07 4.74E-04 1
12 -8.06778E+00 8.12E-12 1.90E-08 6.73E-08 2.21E-04 1

--------------------------------------------------------------
Status: converged, an optimal solution found
--------------------------------------------------------------
Final objective value -8.067778E+00
Relative precision 1.518278E-09
Optimality 8.116995E-12
Feasibility 1.900689E-08
Complementarity 6.734260E-08
Iteration counts

Outer iterations 12
Inner iterations 31
Linesearch steps 43

Evaluation counts
Augm. Lagr. values 56
Augm. Lagr. gradient 44
Augm. Lagr. hessian 31

--------------------------------------------------------------

Optimal solution:
X = 2.00 -0.23 -0.27
X = -0.30 -0.10 2.00
X = 2.00 -1.78 -0.46
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NAG Library Routine Document

E04RKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RKF is a part of the NAG optimization modelling suite and defines the number of nonlinear
constraints of the problem as well as the sparsity structure of their first derivatives.

2 Specification

SUBROUTINE E04RKF (HANDLE, NCNLN, BL, BU, NNZGD, IROWGD, ICOLGD, IFAIL)

INTEGER NCNLN, NNZGD, IROWGD(NNZGD), ICOLGD(NNZGD), IFAIL
REAL (KIND=nag_wp) BL(NCNLN), BU(NCNLN)
TYPE (C_PTR) HANDLE

3 Description

After the initialization routine E04RAF has been called, E04RKF may be used to define the nonlinear
constraints lg � g xð Þ � ug of the problem unless the nonlinear constraints have already been defined.
This will typically be used for nonlinear programming problems (NLP) of the kind:

minimize
x2Rn

f xð Þ ðaÞ
subject to lg � g xð Þ � ug ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð1Þ

where n is the number of the decision variables x, mg is the number of the nonlinear constraints (in (1)
(b)) and g xð Þ, lg and ug are mg-dimensional vectors. Linear constraints ((1)(c)), which require no
separate gradient information, can be introduced by E04RJF and Box constraints ((1)(d)) can be
introduced by E04RHF.

Note that upper and lower bounds are specified for all the constraints. This form allows full generality
in specifying various types of constraint. In particular, the jth constraint may be defined as an equality
by setting lj ¼ uj. If certain bounds are not present, the associated elements lj or uj may be set to
special values that are treated as �1 or þ1. See the description of the optional parameter Infinite
Bound Size of the solver E04STF. Its value is denoted as bigbnd further in this text. Note that the
bounds are interpreted based on its value at the time of calling this routine and any later alterations to
Infinite Bound Size will not affect these constraints.

Since each nonlinear constraint is most likely to involve a small subset of the decision variables, the
partial derivatives of the constraint functions with respect to those variables are best expressed as a
sparse Jacobian matrix of mg rows and n columns. The row and column positions of all the nonzero
derivatives must be registered with the handle through E04RKF.

The values of the nonlinear constraint functions and their nonzero gradients at particular points in the
decision variable space will be communicated to the NLP solver by user-supplied functions (e.g.,
CONFUN and CONGRD for E04STF).

See E04RAF for more details.

4 References

None.
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5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: NCNLN – INTEGER Input

On entry: mg, the number of nonlinear constraints (number of rows of the Jacobian matrix).

If NCNLN ¼ 0, no nonlinear constraints will be defined and BL, BU, NNZGD, IROWGD and
ICOLGD will not be referenced.

Constraint: NCNLN � 0.

3: BLðNCNLNÞ – REAL (KIND=nag_wp) array Input
4: BUðNCNLNÞ – REAL (KIND=nag_wp) array Input

On entry: BL and BU define lower and upper bounds of the nonlinear constraints, lg and ug,
respectively. To define the jth constraint as equality, set BLðjÞ ¼ BUðjÞ ¼ �, where �j j < bigbnd.
To specify a nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd; to specify a
nonexistent upper bound, set BUðjÞ � bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;NCNLN;
BLðjÞ < bigbnd, for j ¼ 1; 2; . . . ;NCNLN;
BUðjÞ > �bigbnd, for j ¼ 1; 2; . . . ;NCNLN.

5: NNZGD – INTEGER Input

On entry: NNZGD gives the number of nonzeros in the Jacobian matrix.

Constraint: if NCNLN > 0, NNZGD > 0.

6: IROWGDðNNZGDÞ – INTEGER array Input
7: ICOLGDðNNZGDÞ – INTEGER array Input

On entry: arrays IROWGD and ICOLGD store the sparsity structure (pattern) of the Jacobian
matrix as NNZGD nonzeros in coordinate storage (CS) format (see Section 2.1.1 in the F11
Chapter Introduction). The matrix has dimensions NCNLN� n. IROWGD specifies one-based
row indices and ICOLGD specifies one-based column indices. No particular order of elements is
expected, but elements should not repeat and the same order should be used when the Jacobian is

evaluated for the solver, e.g., the value of
@gi
@xj

where i ¼ IROWGDðlÞ and j ¼ ICOLGDðlÞ

should be stored in GDXðlÞ, for l ¼ 1; 2; . . . ;NNZGD.

Constraints:

1 � IROWGDðlÞ � NCNLN, for l ¼ 1; 2; . . . ;NNZGD;
1 � ICOLGDðlÞ � n, for l ¼ 1; 2; . . . ;NNZGD.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 2

The Hessian of the nonlinear objective has already been defined, nonlinear constraints cannot be
added.

The problem cannot be modified in this phase any more, the solver has already been called.

IFAIL ¼ 3

A set of nonlinear constraints has already been defined.

IFAIL ¼ 6

On entry, NCNLN ¼ valueh i.
Constraint: NCNLN � 0.

On entry, NNZGD ¼ valueh i.
Constraint: NNZGD > 0.

IFAIL ¼ 8

On entry, i ¼ valueh i, ICOLGDðiÞ ¼ valueh i and n ¼ valueh i.
Constraint: 1 � ICOLGDðiÞ � n.
On entry, i ¼ valueh i, IROWGDðiÞ ¼ valueh i and NCNLN ¼ valueh i.
Constraint: 1 � IROWGDðiÞ � NCNLN.

On entry, more than one element of structural Jacobian matrix has row index valueh i and column
index valueh i.
Constraint: each element of structural Jacobian matrix must have a unique row and column index.

IFAIL ¼ 10

On entry, j ¼ valueh i, BLðjÞ ¼ valueh i, bigbnd ¼ valueh i.
Constraint: BLðjÞ < bigbnd.

On entry, j ¼ valueh i, BLðjÞ ¼ valueh i and BUðjÞ ¼ valueh i.
Constraint: BLðjÞ � BUðjÞ.
On entry, j ¼ valueh i, BUðjÞ ¼ valueh i, bigbnd ¼ valueh i.
Constraint: BUðjÞ > �bigbnd.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RKF is not threaded in any implementation.

9 Further Comments

9.1 Additional Licensor

Parts of the code for E04STF are distributed according to terms imposed by another licensor. Please
refer to the list of Library licensors available on the NAG Website for further details.

10 Example

See Section 10 in E04STF.
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NAG Library Routine Document

E04RLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RLF is a part of the NAG optimization modelling suite and defines the structure of the Hessians of
the nonlinear objective and constraints, on assumption that they are present in the problem.
Alternatively, it may be used to define the Hessian of the Lagrangian.

2 Specification

SUBROUTINE E04RLF (HANDLE, IDF, NNZH, IROWH, ICOLH, IFAIL)

INTEGER IDF, NNZH, IROWH(NNZH), ICOLH(NNZH), IFAIL
TYPE (C_PTR) HANDLE

3 Description

After the initialization routine E04RAF has been called and an objective function f or nonlinear
constraint function gi has been registered with E04RGF and E04RKF, E04RLF can be used to define the
sparsity structure of the Hessians, H, of those functions (i.e., the second partial derivatives with respect
to the decision variables) or a linear combination of them, called the Lagrangian.

Defining r2f 	

@2f
@2x1

@2f
@x2@x1

. . . @2f
@xn@x1

@2f
@x1@x2

@2f
@2x2

. . . @2f
@xn@x2

..

. ..
. . .

. ..
.

@2f
@x1@xn

@2f
@x2@xn

. . . @2f
@2xn

0BBBB@
1CCCCA ;

the Hessian of the Lagrangian function 	 �r2f þ
Xm
i¼1
�ir2gi;

the Hessian of the objective function 	 r2f ;

the Hessian of the constraint functions 	 r2gi.

Each of the symmetric n� n Hessian matrices will have its own sparsity structure, in general. These
structures can be given in separate E04RLF calls, or merged together in the Lagrangian and given in
one call.

The nonzero values of the Hessians at particular points in the decision variable space will be
communicated to the NLP solver by user-supplied functions (e.g., HESS for E04STF).

Some NLP solvers (e.g., E04STF) expect either all of the Hessians (for objective and nonlinear
constraints) to be supplied by the user or none and they will terminate with an error indicator if only
some but not all of the Hessians have been introduced by E04RLF.

Some NLP solvers (e.g., E04STF, again) will automatically switch to using internal approximations for
the Hessians if none have been introduced by E04RLF. This usually results in a slower convergence
(more iterations to the solution) and might even result in no solution being attainable within the
ordinary tolerances.

4 References

None.

E04 – Minimizing or Maximizing a Function E04RLF

Mark 26 E04RLF.1



5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: IDF – INTEGER Input

On entry: specifies the quantities for which a sparsity structure is provided in NNZH, IROWH
and ICOLH.

IDF ¼ �1
The sparsity structure of the Hessian of the Lagrangian is provided.

IDF ¼ 0
The sparsity structure of the Hessian of the objective function is provided.

IDF > 0
The sparsity structure of the Hessian of the IDFth constraint function is provided.

The value of IDF will also determine how an NLP solver will call the user-supplied subroutines
that evaluate these nonzeros at particular points of the decision variable space, i.e., whether the
solver will expect the nonzero values of the objective and constraint Hessians in separate calls or
merged in the Lagrangian Hessian, in one call. See, for example, HESS of E04STF.

Constraint: �1 � IDF � ncnln.

Note: ncnln, the number of nonlinear constraints registered with the handle.

3: NNZH – INTEGER Input

On entry: the number of nonzero elements in the upper triangle of the matrix H.

Constraint: NNZH > 0.

4: IROWHðNNZHÞ – INTEGER array Input
5: ICOLHðNNZHÞ – INTEGER array Input

On entry: arrays IROWH and ICOLH store the nonzeros of the upper triangle of the matrix H in
coordinate storage (CS) format (see Section 2.1.1 in the F11 Chapter Introduction). IROWH
specifies one-based row indices, ICOLH specifies one-based column indices and specifies the
values of the nonzero elements in such a way that hij ¼ HðlÞ where i ¼ IROWHðlÞ and
j ¼ ICOLHðlÞ, for l ¼ 1; 2; . . . ;NNZH. No particular order is expected, but elements should not
repeat.

Constraint: 1 � IROWHðlÞ � ICOLHðlÞ � n, for l ¼ 1; 2; . . . ;NNZH.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 2

Neither nonlinear objective nor nonlinear constraints are present. The structure of the Hessian
cannot be defined.

No nonlinear objective has been defined, its Hessian cannot be set.

The problem cannot be modified in this phase any more, the solver has already been called.

IFAIL ¼ 3

On entry, IDF ¼ valueh i.
The structure of the Hessian of nonlinear function linked to the given IDF has already been
defined.

The structure of the Hessian of the Lagrangian has already been defined.

The structure of the individual Hessians has already been defined, the Hessian of the Lagrangian
cannot be defined.

IFAIL ¼ 6

On entry, NNZH ¼ valueh i.
Constraint: NNZH > 0.

IFAIL ¼ 7

On entry, IDF ¼ valueh i.
Constraint: valueh i � IDF � valueh i.

IFAIL ¼ 8

On entry, i ¼ valueh i, ICOLHðiÞ ¼ valueh i and n ¼ valueh i.
Constraint: 1 � ICOLHðiÞ � n.

On entry, i ¼ valueh i, IROWHðiÞ ¼ valueh i and ICOLHðiÞ ¼ valueh i.
Constraint: IROWHðiÞ � ICOLHðiÞ (elements within the upper triangle).

On entry, i ¼ valueh i, IROWHðiÞ ¼ valueh i and n ¼ valueh i.
Constraint: 1 � IROWHðiÞ � n.

On entry, more than one element of structural matrix H has row index valueh i and column index
valueh i.
Constraint: each element of structural matrix H must have a unique row and column index.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RLF is not threaded in any implementation.

9 Further Comments

9.1 Additional Licensor

Parts of the code for E04STF are distributed according to terms imposed by another licensor. Please
refer to the list of Library licensors available on the NAG Website for further details.

10 Example

See Section 10 in E04STF.
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NAG Library Routine Document

E04RNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RNF is a part of the NAG optimization modelling suite and defines one or more linear matrix
constraints of the problem.

2 Specification

SUBROUTINE E04RNF (HANDLE, NVAR, DIMA, NNZA, NNZASUM, IROWA, ICOLA, A,
NBLK, BLKSIZEA, IDBLK, IFAIL)

&

INTEGER NVAR, DIMA, NNZA(NVAR+1), NNZASUM, IROWA(NNZASUM),
ICOLA(NNZASUM), NBLK, BLKSIZEA(NBLK), IDBLK, IFAIL

&

REAL (KIND=nag_wp) A(NNZASUM)
TYPE (C_PTR) HANDLE

3 Description

After the initialization routine E04RAF has been called, E04RNF may be used to add one or more
linear matrix inequalities Xn

i¼1
xiAi �A0 � 0 ð1Þ

to the problem definition. Here Ai are d by d symmetric matrices. The expression S � 0 stands for a
constraint on eigenvalues of a symmetric matrix S, namely, all the eigenvalues should be non-negative,
i.e., the matrix S should be positive semidefinite.

Typically, this will be used in linear semidefinite programming problems (SDP)

minimize
x2Rn

cTx ðaÞ

subject to
Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð2Þ

or to define the linear part of bilinear matrix inequalities (3)(b) in (BMI-SDP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ

subject to
Xn
i;j¼1

xixjQ
k
ij þ

Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð3Þ

E04RNF can be called repeatedly to accumulate more matrix inequalities. See E04RAF for more
details.

3.1 Input data organization

All the matrices Ai, for i ¼ 0; 1; . . . ; n, are symmetric and thus only their upper triangles are passed to
the routine. They are stored in sparse coordinate storage format (see Section 2.1.1 in the F11 Chapter
Introduction), i.e., every nonzero from the upper triangles is coded as a triplet of row index, column
index and the numeric value. These triplets of all (upper triangle) nonzeros from all Ai matrices are
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passed to the routine in three arrays: IROWA for row indices, ICOLA for column indices and A for the
values. No particular order of nonzeros within one matrix is enforced but all nonzeros from A0 must be
stored first, followed by all nonzero from A1, followed by A2, etc.

The number of stored nonzeros from each Ai matrix is given in NNZAðiþ 1Þ, thus this array indicates
which section of arrays IROWA, ICOLA and A belongs to which Ai matrix. See Table 1 and the
example in Section 9. See also E04RDF which uses the same data organization.

IROWA upper triangle upper triangle upper triangle
ICOLA nonzeros nonzeros � � � nonzeros
A from A0|fflfflfflffl{zfflfflfflffl} from A1|fflfflfflffl{zfflfflfflffl} from An|fflfflfflfflffl{zfflfflfflfflffl}

NNZAð1Þ NNZAð2Þ NNZAðnþ 1Þ
Table 1

Coordinate storage format of matrices A0; A1; . . . ; An in input arrays

There are two possibilities for defining more matrix inequality constraintsXn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; 2; . . . ;mA ð4Þ

to the problem. The first is to call E04RNF mA times and define a single matrix inequality at a time.
This might be more straightforward and therefore it is recommended. Alternatively, it is possible to
merge all mA constraints into one inequality and pass them in a single call to E04RNF. It is easy to see
that (4) can be equivalently expressed as one bigger matrix inequality with the following block diagonal
structure

Xn
i¼1
xi

A1
i

A2
i

. .
.

AmA
i

0BBB@
1CCCA�

A1
0

A2
0

. .
.

AmA

0

0BBB@
1CCCA � 0:

If dk denotes the dimension of inequality k, the new merged inequality has dimension d ¼
XmA

k¼1
dk and

each of the Ai matrices is formed by A1
i ; A

2
i ; . . . ; A

mA
i stored as mA diagonal blocks. In such a case,

NBLK is set to mA and BLKSIZEAðkÞ to dk, the size of the kth diagonal blocks. This might be useful
in connection with E04RDF.

On the other hand, if there is no block structure and just one matrix inequality is provided, NBLK
should be set to 1 and BLKSIZEA is not referenced.

3.2 Definition of Bilinear Matrix Inequalities (BMI)

E04RNF is designed to be used together with E04RPF to define bilinear matrix inequalities (3)(b).
E04RNF sets the linear part of the constraint and E04RPF expands it by higher order terms. To
distinquish which linear matrix inequality (or more precisely, which block) is to be expanded, E04RPF
needs the number of the block, IDBLK. The blocks are numbered as they are added, starting from 1.

Whenever a matrix inequality (or a set of them expressed as diagonal blocks) is stored, the routine
returns IDBLK of the last inequality added. IDBLK is just the order of the inequality amongst all
matrix inequalities accumulated through the calls. The first inequality has IDBLK ¼ 1, the second one
IDBLK ¼ 2, etc. Therefore if you call E04RNF for the very first time with NBLK ¼ 42, it adds 42
inequalities with IDBLK from 1 to 42 and the routine returns IDBLK ¼ 42 (the number of the last one).
A subsequent call with NBLK ¼ 1 would add only one inequality, this time with IDBLK ¼ 43 which
would be returned.

4 References

None.
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5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: NVAR – INTEGER Input

On entry: n, the number of decision variables x in the problem. It must be unchanged from the
value set during the initialization of the handle by E04RAF.

3: DIMA – INTEGER Input

On entry: d, the dimension of the matrices Ai, for i ¼ 0; 1; . . . ;NVAR.

Constraint: DIMA > 0.

4: NNZAðNVAR þ 1Þ – INTEGER array Input

On entry: NNZAði þ 1Þ, for i ¼ 0; 1; . . . ;NVAR, gives the number of nonzero elements in the
upper triangle of matrix Ai. To define Ai as a zero matrix, set NNZAðiþ 1Þ ¼ 0. However, there
must be at least one matrix with at least one nonzero.

Constraints:

NNZAðiÞ � 0;Xnþ1
i¼1

NNZAðiÞ � 1.

5: NNZASUM – INTEGER Input

On entry: the dimension of the arrays IROWA, ICOLA and A, at least the total number of all
nonzeros in all matrices Ai.

Constraints:

NNZASUM > 0;Xnþ1
i¼1

NNZAðiÞ � NNZASUM.

6: IROWAðNNZASUMÞ – INTEGER array Input
7: ICOLAðNNZASUMÞ – INTEGER array Input
8: AðNNZASUMÞ – REAL (KIND=nag_wp) array Input

On entry: nonzero elements in upper triangle of matrices Ai stored in coordinate storage. The
first NNZAð1Þ elements belong to A0, the following NNZAð2Þ elements belong to A1, etc. See
explanation above.

Constraints:

1 � IROWAðiÞ � DIMA, IROWAðiÞ � ICOLAðiÞ � DIMA;
IROWA and ICOLA match the block diagonal pattern set by BLKSIZEA.

9: NBLK – INTEGER Input

On entry: mA, number of diagonal blocks in Ai matrices. As explained above it is equivalent to
the number of matrix inequalities supplied in this call.

Constraint: NBLK � 1.

10: BLKSIZEAðNBLKÞ – INTEGER array Input

On entry: if NBLK > 1, sizes dk of the diagonal blocks.

E04 – Minimizing or Maximizing a Function E04RNF

Mark 26 E04RNF.3



If NBLK ¼ 1, BLKSIZEA is not referenced.

Constraints:

BLKSIZEAðiÞ � 1;XmA

i¼1
BLKSIZEAðiÞ ¼ DIMA.

11: IDBLK – INTEGER Input/Output

On entry: if IDBLK ¼ 0, new matrix inequalities are created. This is the only value allowed at
the moment; nonzero values are reserved for future releases of the NAG Library.

Constraint: IDBLK ¼ 0.

On exit: the number of the last matrix inequality added. By definition, it is the number of the
matrix inequalities already defined plus NBLK.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 2

The problem cannot be modified in this phase any more, the solver has already been called.

IFAIL ¼ 4

On entry, IDBLK ¼ valueh i.
Constraint: IDBLK ¼ 0.

On entry, NVAR ¼ valueh i, expected value ¼ valueh i.
Constraint: NVAR must match the value given during initialization of HANDLE.

IFAIL ¼ 6

On entry, DIMA ¼ valueh i.
Constraint: DIMA > 0.

On entry, i ¼ valueh i and NNZAðiÞ ¼ valueh i.
Constraint: NNZAðiÞ � 0.

On entry, NNZASUM ¼ valueh i and sum NNZAð Þ ¼ valueh i.
Constraint: NNZASUM � sum NNZAð Þ.
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On entry, sum NNZAð Þ ¼ valueh i.
Constraint: sum NNZAð Þ � 1.

IFAIL ¼ 7

On entry, DIMA ¼ valueh i and sum BLKSIZEAð Þ ¼ valueh i.
Constraint: sum BLKSIZEAð Þ ¼ DIMA.

On entry, i ¼ valueh i and BLKSIZEAðiÞ ¼ valueh i.
Constraint: BLKSIZEAðiÞ � 1.

On entry, NBLK ¼ valueh i.
Constraint: NBLK > 0.

IFAIL ¼ 8

An error occurred in matrix Ai, i ¼ valueh i (counting indices 1 . . .NVARþ 1).
On entry, j ¼ valueh i, ICOLAðjÞ ¼ valueh i and DIMA ¼ valueh i.
Constraint: 1 � ICOLAðjÞ � DIMA.

An error occurred in matrix Ai, i ¼ valueh i (counting indices 1 . . .NVARþ 1).
On entry, j ¼ valueh i, IROWAðjÞ ¼ valueh i and DIMA ¼ valueh i.
Constraint: 1 � IROWAðjÞ � DIMA.

An error occurred in matrix Ai, i ¼ valueh i (counting indices 1 . . .NVARþ 1).
On entry, j ¼ valueh i, IROWAðjÞ ¼ valueh i and ICOLAðjÞ ¼ valueh i.
Constraint: IROWAðjÞ � ICOLAðjÞ (elements within the upper triangle).

An error occurred in matrix Ai, i ¼ valueh i (counting indices 1 . . .NVARþ 1).
On entry, j ¼ valueh i, IROWAðjÞ ¼ valueh i and ICOLAðjÞ ¼ valueh i. Maximum column index
in this row given by the block structure defined by BLKSIZEA is valueh i.
Constraint: all elements of Ai must respect the block structure given by BLKSIZEA.

An error occurred in matrix Ai, i ¼ valueh i (counting indices 1 . . .NVARþ 1).
On entry, more than one element of Ai has row index valueh i and column index valueh i.
Constraint: each element of Ai must have a unique row and column index.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RNF is not threaded in any implementation.
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9 Further Comments

The following example demonstrates how the elements of the Ak
i matrices are organized within the

input arrays. Let us assume that there are two blocks defined (NBLK ¼ 2). The first has dimension 3 by
3 (BLKSIZEAð1Þ ¼ 3) and the second 2 by 2 (BLKSIZEAð2Þ ¼ 2). For simplicity, the number of
variables is 2. Please note that the values were chosen to ease orientation rather than to define a valid
problem.

A1
0 ¼

0:1 0 0:3
0 0:2 0:4

0:3 0:4 0

0@ 1A; A1
1 empty A1

2 ¼
2:1 0 0
0 2:2 0
0 0 2:3

0@ 1A;
A2

0 ¼
0 �0:1

�0:1 0

� �
; A2

1 ¼
�1:1 0

0 �1:2

� �
; A2

2 ¼
�2:1 �2:2
�2:2 �2:3

� �
:

Both inequalities will be passed in a single call to E04RNF, therefore the matrices are merged into the
following block diagonal form:

A0 ¼

0:1 0 0:3
0 0:2 0:4

0:3 0:4 0
0 �0:1

�0:1 0

0BBB@
1CCCA;

A1 ¼

0 0 0
0 0 0
0 0 0

�1:1 0
0 �1:2

0BBB@
1CCCA;

A2 ¼

2:1 0 0
0 2:2 0
0 0 2:3

�2:1 �2:2
�2:2 �2:3

0BBB@
1CCCA:

All matrices are symmetric and therefore only the upper triangles are passed to the routine. The
coordinate storage format is used. Note that elements within the same matrix do not need to be in any
specific order. The table below shows one of the ways the arrays could be populated.

IROWA 2 2 4 1 1 4 5 1 2 3 4 4 5
ICOLA 2 3 5 1 3 4 5 1 2 3 4 5 5
A 0:2 0:4 �0:1 0:1 0:3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} �1:1 �1:2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} 2:1 2:2 2:3 �2:1 �2:2 �2:3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A0 A1 A2

NNZA 5 2 6

10 Example

There are various problems which can be successfully reformulated and solved as an SDP problem. The
following example shows how a maximization of the minimal eigenvalue of a matrix depending on
certain parameters can be utilized in statistics.

For further examples, please refer to Section 10 in E04RAF.
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Given a series of M vectors of length p, vi : i ¼ 1; 2; . . . ;Mf g this example solves the SDP problem:

maximize
�1;...;�M;t

t

subject to
XM
i¼1
�iviv

T
i � tIXM

i¼1
�i ¼ 1

�i � 0; k ¼ 1; . . . ;M:

This formulation comes from an area of statistics called experimental design and corresponds to finding
an approximate E optimal design for a linear regression.

A linear regression model has the form:

y ¼ X� þ �

where y is a vector of observed values, X is a design matrix of (known) independent variables and � is
a vector of errors. In experimental design it is assumed that each row of X is chosen from a set of M
possible vectors, vi : i ¼ 1; 2; . . . ;Mf g. The goal of experimental design is to choose the rows of X so
that the error covariance is ‘small’. For an E optimal design this is defined as the X that maximizes the
minimum eigenvalue of XTX.

In this example we construct the E optimal design for a polynomial regression model of the form:

y ¼ �0 þ �1xþ �2x2 þ �3x3 þ �4x4 þ �

where x 2 1� j� 0:05 : j ¼ 0; 1; . . . ; 40f g.

10.1 Program Text

Program e04rnfe

! E04RNF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! Compute E-optimal experiment design via semidefinite programming,
! this can be done as follows
! max {lambda_min(A) | A = sum x_i*v_i*v_i^T, x_i>=0, sum x_i = 1}
! where v_i are given vectors.

! Use nag_library

! .. Use Statements ..
Use nag_library, Only: e04raf, e04rff, e04rhf, e04rjf, e04rnf, e04rzf, &

e04svf, e04zmf, nag_wp
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &

c_ptr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: big = 1E+20_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Type (c_ptr) :: h
Real (Kind=nag_wp) :: tol
Integer :: dima, i, idblk, idlc, idx, ifail, &

inform, j, k, m, nblk, nnzasum, &
nnzb, nnzc, nnzu, nnzua, nnzuc, &
nvar, p

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), bl(:), bu(:), c(:), &

v(:,:), x(:)
Real (Kind=nag_wp) :: rdummy(1), rinfo(32), stats(32)
Integer, Allocatable :: blksizea(:), icola(:), icolb(:), &

idxc(:), irowa(:), irowb(:), nnza(:)
Integer :: idummy(1)

! .. Intrinsic Procedures ..
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Intrinsic :: repeat
! .. Executable Statements ..

Continue

Write (nout,*) ’E04RNF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file.
Read (nin,*)

! Read in the number of vectors and their size.
Read (nin,*) m
Read (nin,*) p

Allocate (v(p,m))

! Read in the vectors v_j.
Do j = 1, m

Read (nin,*)(v(i,j),i=1,p)
End Do

! Initialize handle.
h = c_null_ptr

! Variables of the problem will be x_1, ..., x_m (weights of the vectors)
! and t (artificial variable for minimum eigenvalue).

nvar = m + 1

! Initialize an empty problem handle with NVAR variables.
ifail = 0
Call e04raf(h,nvar,ifail)

! Add the objective function to the handle: max t.
nnzc = 1
Allocate (idxc(nnzc),c(nnzc))
idxc(:) = (/m+1/)
c(:) = (/1._nag_wp/)

ifail = 0
Call e04rff(h,nnzc,idxc,c,0,idummy,idummy,rdummy,ifail)

Allocate (bl(nvar),bu(nvar))
bl(1:m) = 0.0_nag_wp
bl(m+1) = -big
bu(1:m+1) = big

! Add simple bounds on variables, x_i>=0.
ifail = 0
Call e04rhf(h,nvar,bl,bu,ifail)

nnzb = m
Allocate (irowb(nnzb),icolb(nnzb),b(nnzb))
irowb(:) = 1
icolb(:) = (/(j,j=1,m)/)
b(:) = 1.0_nag_wp

! Add the linear constraint: sum x_i = 1.
idlc = 0
ifail = 0
Call e04rjf(h,1,(/1.0_nag_wp/),(/1.0_nag_wp/),nnzb,irowb,icolb,b,idlc, &

ifail)

! Generate matrix constraint as:
! sum_{i=1}^m x_i*v_i*v_i^T - t*I >=0

nblk = 1
dima = p

! Total number of nonzeros
nnzasum = p + m*(p+1)*p/2
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Allocate (nnza(nvar+1),irowa(nnzasum),icola(nnzasum),a(nnzasum),x(nvar))
! A_0 is empty

nnza(1) = 0
! A_1, A_2, ..., A_m are v_i*v_i^T

nnza(2:m+1) = (p+1)*p/2
idx = 0
Do k = 1, m

Do i = 1, p
Do j = i, p

idx = idx + 1
irowa(idx) = i
icola(idx) = j
a(idx) = v(i,k)*v(j,k)

End Do
End Do

End Do
! A_{m+1} is the -identity

nnza(m+2) = p
Do i = 1, p

idx = idx + 1
irowa(idx) = i
icola(idx) = i
a(idx) = -1.0_nag_wp

End Do

! Add the constraint to the problem formulation.
Allocate (blksizea(nblk))
blksizea(:) = (/dima/)

idblk = 0
ifail = 0
Call e04rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,blksizea,idblk, &

ifail)

! Set optional arguments of the solver.
ifail = 0
Call e04zmf(h,’Task = Maximize’,ifail)
ifail = 0
Call e04zmf(h,’Initial X = Automatic’,ifail)

! Pass the handle to the solver, we are not interested in
! Lagrangian multipliers.

nnzu = 0
nnzuc = 0
nnzua = 0

ifail = 0
Call e04svf(h,nvar,x,nnzu,rdummy,nnzuc,rdummy,nnzua,rdummy,rinfo,stats, &

inform,ifail)

! Print results
Write (nout,*)
tol = 0.00001_nag_wp
Write (nout,*) ’ Weight Row of design matrix’
Write (nout,*) repeat(’-’,13+p*8)
Do j = 1, m

If (x(j)>tol) Then
Write (*,99999) x(j), v(1:p,j)

End If
End Do
Write (nout,99998) ’only those rows with a weight > ’, tol, ’ are shown’

! Destroy the handle.
ifail = 0
Call e04rzf(h,ifail)

99999 Format (1X,F7.2,5X,10(1X,F7.2))
99998 Format (1X,A,E8.1,A)

End Program e04rnfe
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10.2 Program Data

E04RNF Example Program Data
41 : Number of vectors to choose from
5 : Length of vectors
1.00000000 -1.00000000 1.00000000 -1.00000000 1.00000000
1.00000000 -0.95000000 0.90250000 -0.85737500 0.81450625
1.00000000 -0.90000000 0.81000000 -0.72900000 0.65610000
1.00000000 -0.85000000 0.72250000 -0.61412500 0.52200625
1.00000000 -0.80000000 0.64000000 -0.51200000 0.40960000
1.00000000 -0.75000000 0.56250000 -0.42187500 0.31640625
1.00000000 -0.70000000 0.49000000 -0.34300000 0.24010000
1.00000000 -0.65000000 0.42250000 -0.27462500 0.17850625
1.00000000 -0.60000000 0.36000000 -0.21600000 0.12960000
1.00000000 -0.55000000 0.30250000 -0.16637500 0.09150625
1.00000000 -0.50000000 0.25000000 -0.12500000 0.06250000
1.00000000 -0.45000000 0.20250000 -0.09112500 0.04100625
1.00000000 -0.40000000 0.16000000 -0.06400000 0.02560000
1.00000000 -0.35000000 0.12250000 -0.04287500 0.01500625
1.00000000 -0.30000000 0.09000000 -0.02700000 0.00810000
1.00000000 -0.25000000 0.06250000 -0.01562500 0.00390625
1.00000000 -0.20000000 0.04000000 -0.00800000 0.00160000
1.00000000 -0.15000000 0.02250000 -0.00337500 0.00050625
1.00000000 -0.10000000 0.01000000 -0.00100000 0.00010000
1.00000000 -0.05000000 0.00250000 -0.00012500 0.00000625
1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
1.00000000 0.05000000 0.00250000 0.00012500 0.00000625
1.00000000 0.10000000 0.01000000 0.00100000 0.00010000
1.00000000 0.15000000 0.02250000 0.00337500 0.00050625
1.00000000 0.20000000 0.04000000 0.00800000 0.00160000
1.00000000 0.25000000 0.06250000 0.01562500 0.00390625
1.00000000 0.30000000 0.09000000 0.02700000 0.00810000
1.00000000 0.35000000 0.12250000 0.04287500 0.01500625
1.00000000 0.40000000 0.16000000 0.06400000 0.02560000
1.00000000 0.45000000 0.20250000 0.09112500 0.04100625
1.00000000 0.50000000 0.25000000 0.12500000 0.06250000
1.00000000 0.55000000 0.30250000 0.16637500 0.09150625
1.00000000 0.60000000 0.36000000 0.21600000 0.12960000
1.00000000 0.65000000 0.42250000 0.27462500 0.17850625
1.00000000 0.70000000 0.49000000 0.34300000 0.24010000
1.00000000 0.75000000 0.56250000 0.42187500 0.31640625
1.00000000 0.80000000 0.64000000 0.51200000 0.40960000
1.00000000 0.85000000 0.72250000 0.61412500 0.52200625
1.00000000 0.90000000 0.81000000 0.72900000 0.65610000
1.00000000 0.95000000 0.90250000 0.85737500 0.81450625
1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

10.3 Program Results

E04RNF Example Program Results

E04SV, NLP-SDP Solver (Pennon)
------------------------------
Number of variables 42 [eliminated 0]

simple linear nonlin
(Standard) inequalities 41 2 0
(Standard) equalities 0 0
Matrix inequalities 1 0 [dense 1, sparse 0]

[max dimension 5]

Begin of Options
Outer Iteration Limit = 100 * d
Inner Iteration Limit = 100 * d
Infinite Bound Size = 1.00000E+20 * d
Initial X = Automatic * U
Initial U = Automatic * d
Initial P = Automatic * d
Hessian Density = Dense * S
Init Value P = 1.00000E+00 * d
Init Value Pmat = 1.00000E+00 * d
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Presolve Block Detect = Yes * d
Print File = 6 * d
Print Level = 2 * d
Print Options = Yes * d
Monitoring File = -1 * d
Monitoring Level = 4 * d
Monitor Frequency = 0 * d
Stats Time = No * d
P Min = 1.05367E-08 * d
Pmat Min = 1.05367E-08 * d
U Update Restriction = 5.00000E-01 * d
Umat Update Restriction = 3.00000E-01 * d
Preference = Speed * d
Transform Constraints = Equalities * S
Dimacs Measures = Check * d
Stop Criteria = Soft * d
Stop Tolerance 1 = 1.00000E-06 * d
Stop Tolerance 2 = 1.00000E-07 * d
Stop Tolerance Feasibility = 1.00000E-07 * d
Linesearch Mode = Fullstep * S
Inner Stop Tolerance = 1.00000E-02 * d
Inner Stop Criteria = Heuristic * d
Task = Maximize * U
P Update Speed = 12 * d

End of Options
--------------------------------------------------------------
it| objective | optim | feas | compl | pen min |inner

--------------------------------------------------------------
0 0.00000E+00 4.80E+01 5.90E-01 2.37E+00 1.00E+00 0
1 -2.25709E+00 2.53E-03 7.15E-01 2.76E+00 1.00E+00 6
2 -9.90666E-01 1.29E-03 1.38E-02 1.25E+00 4.65E-01 5
3 -3.96590E-01 1.52E-03 2.07E-02 5.42E-01 2.16E-01 5
4 -1.52400E-01 6.63E-04 1.42E-02 2.26E-01 1.01E-01 5
5 -5.45545E-02 5.47E-03 9.33E-03 8.91E-02 4.68E-02 5
6 -1.62316E-02 1.05E-02 3.18E-03 3.33E-02 2.18E-02 5
7 -2.39571E-03 6.74E-03 3.90E-04 1.22E-02 1.01E-02 5
8 3.39831E-03 5.41E-04 4.33E-05 4.43E-03 4.71E-03 6
9 6.27924E-03 2.25E-03 3.47E-06 1.64E-03 2.19E-03 5

10 7.23641E-03 4.07E-03 4.79E-07 5.77E-04 1.02E-03 4
11 7.56230E-03 5.26E-04 1.76E-05 2.08E-04 4.74E-04 4
12 7.67523E-03 1.18E-02 2.18E-06 7.69E-05 2.21E-04 3
13 7.71758E-03 4.26E-03 2.51E-07 2.94E-05 1.03E-04 3
14 7.73491E-03 4.34E-06 2.95E-08 1.11E-05 4.77E-05 4

--------------------------------------------------------------
it| objective | optim | feas | compl | pen min |inner

--------------------------------------------------------------
15 7.74186E-03 8.50E-07 2.29E-09 3.96E-06 2.22E-05 4
16 7.74450E-03 7.25E-08 1.58E-10 1.29E-06 1.03E-05 4
17 7.74545E-03 2.51E-09 8.39E-12 3.32E-07 4.81E-06 4
18 7.74574E-03 5.19E-10 3.49E-13 4.73E-08 2.24E-06 4

--------------------------------------------------------------
Status: converged, an optimal solution found
--------------------------------------------------------------
Final objective value 7.745738E-03
Relative precision 2.815426E-07
Optimality 5.188682E-10
Feasibility 3.486927E-13
Complementarity 4.732416E-08
DIMACS error 1 2.594341E-10
DIMACS error 2 0.000000E+00
DIMACS error 3 0.000000E+00
DIMACS error 4 1.743464E-13
DIMACS error 5 4.676597E-08
DIMACS error 6 4.662494E-08
Iteration counts

Outer iterations 18
Inner iterations 81
Linesearch steps 186

Evaluation counts
Augm. Lagr. values 100
Augm. Lagr. gradient 100
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Augm. Lagr. hessian 81
--------------------------------------------------------------

Weight Row of design matrix
-----------------------------------------------------

0.09 1.00 -1.00 1.00 -1.00 1.00
0.25 1.00 -0.70 0.49 -0.34 0.24
0.32 1.00 0.00 0.00 0.00 0.00
0.25 1.00 0.70 0.49 0.34 0.24
0.09 1.00 1.00 1.00 1.00 1.00

only those rows with a weight > 0.1E-04 are shown
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NAG Library Routine Document

E04RPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RPF is a part of the NAG optimization modelling suite and defines bilinear matrix terms either in a
new matrix constraint or adds them to an existing linear matrix inequality.

2 Specification

SUBROUTINE E04RPF (HANDLE, NQ, QI, QJ, DIMQ, NNZQ, NNZQSUM, IROWQ,
ICOLQ, Q, IDBLK, IFAIL)

&

INTEGER NQ, QI(NQ), QJ(NQ), DIMQ, NNZQ(NQ), NNZQSUM,
IROWQ(NNZQSUM), ICOLQ(NNZQSUM), IDBLK, IFAIL

&

REAL (KIND=nag_wp) Q(NNZQSUM)
TYPE (C_PTR) HANDLE

3 Description

After the initialization routine E04RAF has been called, E04RPF may be used to define bilinear matrix
terms. It may be used in two ways, either to add to the problem formulation a new bilinear matrix
inequality (BMI) which does not have linear terms:Xn

i;j¼1
xixjQij � 0 ð1Þ

or to extend an existing linear matrix inequality constraint by bilinear terms:Xn
i;j¼1

xixjQ
k
ij: ð2Þ

Here Qk
ij are d by d (sparse) symmetric matrices and k, if present, is the number of the existing

constraint. This routine will typically be used on semidefinite programming problems with bilinear
matrix constraints (BMI-SDP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ

subject to
Xn
i;j¼1

xixjQ
k
ij þ

Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux: ðdÞ

ð3Þ

The routine can be called multiple times to define an additional matrix inequality or to extend an
existing one, but it cannot be called twice to extend the same matrix inequality. The argument IDBLK
is used to distinguish whether a new matrix constraint should be added (IDBLK ¼ 0) or if an existing
linear matrix inequality should be extended (IDBLK > 0). In the latter case, IDBLK should be set to k,
the number of the existing inequality. See E04RNF for details about formulation of linear matrix
constraints and their numbering and a further description of IDBLK. For a generic description of the
problem see E04RAF. In the further text, the index k will be omitted.
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3.1 Input data organization

It is expected that only some of the matrices Qij will be nonzero therefore only their index pairs i; j are
listed in arrays QI and QJ. Note that a pair i; j should not repeat, i.e., a matrix Qij should not be defined
more than once. No particular ordering of pairs i; j is expected but other input arrays IROWQ, ICOLQ,
Q and NNZQ need to respect the chosen order.

Note: the dimension of Qij must respect the size of the linear matrix inequality if they are supposed to
expand it (case IDBLK > 0).

Matrices Qij are symmetric and thus only their upper triangles are passed to the routine. They are
stored in sparse coordinate storage format (see Section 2.1.1 in the F11 Chapter Introduction), i.e.,
every nonzero from the upper triangles is coded as a triplet of row index, column index and the numeric
value. All these triplets from all Qij matrices are passed to the routine in three arrays: IROWQ for row
indices, ICOLQ for column indices and Q for the values. No particular order of nonzeros within one
matrix is enforced but all nonzeros belonging to one Qij matrix need to be stored next to each other.
The first NNZQð1Þ nonzeros belong to Qi1j1 where i1 ¼ QIð1Þ, j1 ¼ QJð1Þ, the following NNZQð2Þ
nonzeros to the next one given by QI, QJ and so on. The array NNZQ thus splits arrays IROWQ,
ICOLQ and Q into sections so that each section defines one Qij matrix. See Table 1 below. Routines
E04RDF and E04RNF use the same data organization so further examples can be found there.

IROWQ upper triangle upper triangle upper triangle
ICOLQ nonzeros nonzeros � � � nonzeros
Q from Qi1j1|fflfflfflfflfflffl{zfflfflfflfflfflffl} from Qi2j2|fflfflfflfflfflffl{zfflfflfflfflfflffl} from QiNQjNQ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

NNZQð1Þ NNZQð2Þ NNZQðNQÞ
i1 ¼ QIð1Þ i2 ¼ QIð2Þ iNQ ¼ QIðNQÞ
j1 ¼ QJð1Þ j2 ¼ QJð2Þ jNQ ¼ QJðNQÞ

Table 1
Coordinate storage format of Qij matrices in input arrays

4 References

Syrmos V L, Abdallah C T, Dorato P and Grigoriadis K (1997) Static output feedback – a survey
Journal Automatica (Journal of IFAC) (Volume 33) 2 125–137

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: NQ – INTEGER Input

On entry: the number of index pairs i; j of the nonzero matrices Qij.

Constraint: NQ > 0.

3: QIðNQÞ – INTEGER array Input
4: QJðNQÞ – INTEGER array Input

On entry: the index pairs i; j of the nonzero matrices Qij in any order.

Constraint: 1 � i; j � n where n is the number of decision variables in the problem set during
the initialization of the handle by E04RAF. The pairs do not repeat.

5: DIMQ – INTEGER Input

On entry: d, the dimension of matrices Qij.
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Constraints:

DIMQ > 0;
if IDBLK > 0, DIMQ needs to be identical to the dimension of matrices of the constraint
k.

6: NNZQðNQÞ – INTEGER array Input

On entry: the numbers of nonzero elements in the upper triangles of Qij matrices.

Constraint: NNZQðiÞ > 0.

7: NNZQSUM – INTEGER Input

On entry: the dimension of the arrays IROWQ, ICOLQ and Q, at least the total number of all
nonzeros in all Qij matrices.

Constraints:

NNZQSUM > 0;

NNZQSUM �
XNQ
k¼1

NNZQðkÞ.

8: IROWQðNNZQSUMÞ – INTEGER array Input
9: ICOLQðNNZQSUMÞ – INTEGER array Input
10: QðNNZQSUMÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements of the upper triangles of matrices Qij stored in coordinate storage
format. The first NNZQð1Þ elements belong to the first Qi1j1 , the following NNZQð2Þ to Qi2j2 ,
etc.

Constraint: 1 � IROWQðiÞ � DIMQ, IROWQðiÞ � ICOLQðiÞ � DIMQ.

11: IDBLK – INTEGER Input/Output

On entry: if IDBLK ¼ 0, a new matrix constraint is created; otherwise IDBLK ¼ k > 0, the
number of the existing linear matrix constraint to be expanded with the bilinear terms.

Constraint: IDBLK � 0.

On exit: if IDBLK ¼ 0 on entry, the number of the new matrix constraint is returned. By
definition, it is the number of the matrix inequalities already defined plus one. Otherwise,
IDBLK > 0 stays unchanged.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 2

The problem cannot be modified in this phase any more, the solver has already been called.

IFAIL ¼ 3

On entry, IDBLK ¼ valueh i.
Bilinear terms of the matrix inequality block with the given IDBLK have already been defined.

IFAIL ¼ 4

On entry, IDBLK ¼ valueh i.
The given IDBLK does not match with any existing matrix inequality block.
The maximum IDBLK is currently valueh i.
On entry, IDBLK ¼ valueh i.
The given IDBLK refers to a nonexistent matrix inequality block.
No matrix inequalities have been added yet.

IFAIL ¼ 5

On entry, DIMQ ¼ valueh i, IDBLK ¼ valueh i.
The correct dimension of the given IDBLK is valueh i.
Constraint: DIMQ must match the dimension of the block supplied earlier.

IFAIL ¼ 6

On entry, DIMQ ¼ valueh i.
Constraint: DIMQ > 0.

On entry, i ¼ valueh i and NNZQðiÞ ¼ valueh i.
Constraint: NNZQðiÞ > 0.

On entry, IDBLK ¼ valueh i.
Constraint: IDBLK � 0.

On entry, NNZQSUM ¼ valueh i and sum NNZQð Þ ¼ valueh i.
Constraint: NNZQSUM � sum NNZQð Þ.
On entry, NQ ¼ valueh i.
Constraint: NQ > 0.

IFAIL ¼ 8

On entry, an error occurred in matrix Qij of index k ¼ valueh i, QIðkÞ ¼ valueh i, QJðkÞ ¼ valueh i.
For j ¼ valueh i, ICOLQðjÞ ¼ valueh i and DIMQ ¼ valueh i.
Constraint: 1 � ICOLQðjÞ � DIMQ.

On entry, an error occurred in matrix Qij of index k ¼ valueh i, QIðkÞ ¼ valueh i, QJðkÞ ¼ valueh i.
For j ¼ valueh i, IROWQðjÞ ¼ valueh i and DIMQ ¼ valueh i.
Constraint: 1 � IROWQðjÞ � DIMQ.
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On entry, an error occurred in matrix Qij of index k ¼ valueh i, QIðkÞ ¼ valueh i, QJðkÞ ¼ valueh i.
For j ¼ valueh i, IROWQðjÞ ¼ valueh i and ICOLQðjÞ ¼ valueh i.
Constraint: IROWQðjÞ � ICOLQðjÞ (elements within the upper triangle).

On entry, an error occurred in matrix Qij of index k ¼ valueh i, QIðkÞ ¼ valueh i, QJðkÞ ¼ valueh i.
More than one element of Qij has row index valueh i and column index valueh i.
Constraint: each element of Qij must have a unique row and column index.

IFAIL ¼ 9

On entry, index pair with QI ¼ valueh i and QJ ¼ valueh i repeats.
Constraint: each index pair QI, QJ must be unique.

On entry, k ¼ valueh i, QIðkÞ ¼ valueh i and n ¼ valueh i.
Constraint: 1 � QIðkÞ � n.

On entry, k ¼ valueh i, QJðkÞ ¼ valueh i and n ¼ valueh i.
Constraint: 1 � QJðkÞ � n.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RPF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example demonstrates how semidefinite programming can be used in control theory. See also
Section 10 in E04RAF for links to further examples in the suite.

The problem, from static output feedback (SOF) control Syrmos et al. (1997), solved here is the linear
time-invariant (LTI) ‘test’ system

_x ¼ AxþBu
y ¼ Cx ð4Þ

subject to static output feedback

u ¼ Ky: ð5Þ
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Here A 2 R
n�n, B 2 R

n�m and C 2 R
p�n are given matrices, x 2 R

n is the vector of state variables,
u 2 R

m is the vector of control inputs, y 2 R
p is the vector of system outputs, and K 2 R

m�p is the
unknown feedback gain matrix.

The problem is to find K such that (4) is time-stable when subject to (5), i.e., all eigenvalues of the
closed-loop system matrix AþBKC belong to the left half-plane. From the Lyapunov stability theory,
this holds if and only if there exists a symmetric positive definite matrix P such that

AþBKCð ÞTP þ P AþBKCð Þ � 0:

Hence, by introducing the new variable, the Lyapunov matrix P , we can formulate the SOF problem as
a feasibility BMI-SDP problem in variables K and P . As we cannot formulate the problem with sharp
matrix inequalities, we can solve the following system instead (note that the objective function is added
to bound matrix P ):

minimize
K;P

trace Pð Þ

subject to AþBKCð ÞTP þ P AþBKCð Þ � �I
P � I:

ð6Þ

For n ¼ p ¼ 2, m ¼ 1,

A ¼ �1 2
�3 �4

� �
; B ¼ �1

�1

� �
; C ¼ I

and the unknown matrices expressed as

P ¼ x1 x2
x2 x3

� �
; K ¼ x4 x5

� �
;

the problem (6) can be rewritten in the form (3) as follows:

minimize
x2R5

x1 þ x3

subject to 2x1x4 þ 2x2x4 x1x5 þ x2x4 þ x2x5 þ x3x4
sym: 2x2x5 þ 2x3x5

� �
þ

2x1 þ 6x2 �2x1 þ 5x2 þ 3x3
sym: �4x2 þ 8x3

� �
� I � 0

x1 x2
sym: x3

� �
� I � 0:

This formulation has been stored in a generic BMI-SDP data file which is processed and solved by the
example program.

10.1 Program Text

Program e04rpfe

! E04RPF Example Program Text

! Read a ’generic’ LMI/BMI SDP problem from the input file,
! formulate the problem via a handle and pass it to the solver.

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04raf, e04ref, e04rff, e04rjf, e04rnf, e04rpf, &

e04ryf, e04rzf, e04svf, nag_wp
Use, Intrinsic :: iso_c_binding, Only: c_ptr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Type (c_ptr) :: handle
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Integer :: blkidx, dimaq, idblk, idlc, idx, &
idxend, ifail, inform, midx, nblk, &
nclin, nnzasum, nnzb, nnzc, nnzh, &
nnzqsum, nnzu, nnzua, nnzuc, nq, &
nvar

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), bl(:), bu(:), cvec(:), &

h(:), q(:), x(:)
Real (Kind=nag_wp) :: rdummy(1), rinfo(32), stats(32)
Integer, Allocatable :: icola(:), icolb(:), icolh(:), &

icolq(:), idxc(:), irowa(:), &
irowb(:), irowh(:), irowq(:), &
nnza(:), nnzq(:), qi(:), qj(:)

Integer :: idummy(1)
! .. Executable Statements ..

Continue

Write (nout,*) ’E04RPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in the data file.
Read (nin,*)

! Read the problem size.
Read (nin,*) nvar
Read (nin,*) nnzh
Read (nin,*) nclin, nnzb
Read (nin,*) nblk

! Initialize handle to an empty problem.
ifail = 0
Call e04raf(handle,nvar,ifail)

! Read the linear part of the objective function.
Allocate (cvec(nvar))
Read (nin,*) cvec(1:nvar)

If (nnzh==0) Then
! Add the linear objective function to the problem formulation.

ifail = 0
Call e04ref(handle,nvar,cvec,ifail)
Deallocate (cvec)

Else
! The linear part of the objective was read in as dense, E04RFF needs
! the sparse format.

nnzc = nvar
Allocate (idxc(nnzc))
Do idx = 1, nvar

idxc(idx) = idx
End Do

! Read nonzeros for H (quadratic part of the objective) if present.
Allocate (irowh(nnzh),icolh(nnzh),h(nnzh))
Do idx = 1, nnzh

Read (nin,*) h(idx), irowh(idx), icolh(idx)
End Do

! Add the quadratic objective function to the problem formulation.
ifail = 0
Call e04rff(handle,nnzc,idxc,cvec,nnzh,irowh,icolh,h,ifail)
Deallocate (idxc,cvec,irowh,icolh,h)

End If

! Read a block of linear constraints and its bounds if present.
If (nclin>0 .And. nnzb>0) Then

Allocate (irowb(nnzb),icolb(nnzb),b(nnzb),bl(nclin),bu(nclin))
Do idx = 1, nnzb

Read (nin,*) b(idx), irowb(idx), icolb(idx)
End Do
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Read (nin,*) bl(1:nclin)
Read (nin,*) bu(1:nclin)

! Add the block of linear constraints.
idlc = 0
ifail = 0
Call e04rjf(handle,nclin,bl,bu,nnzb,irowb,icolb,b,idlc,ifail)
Deallocate (irowb,icolb,b,bl,bu)

End If

! Read all matrix inequalities.
Do blkidx = 1, nblk

Read (nin,*) dimaq
Read (nin,*) nnzasum, nnzqsum
idblk = 0

If (nnzasum>0) Then
! Read a linear matrix inequality composed of (NVAR+1) matrices.

Allocate (nnza(nvar+1),irowa(nnzasum),icola(nnzasum),a(nnzasum))
idx = 1
Do midx = 1, nvar + 1

! Read matrix A_{midx-1}.
Read (nin,*) nnza(midx)
idxend = idx + nnza(midx) - 1
Do idx = idx, idxend

Read (nin,*) a(idx), irowa(idx), icola(idx)
End Do

End Do

! Add the linear matrix inequality to the problem formulation.
idblk = 0
ifail = 0
Call e04rnf(handle,nvar,dimaq,nnza,nnzasum,irowa,icola,a,1,idummy, &

idblk,ifail)
Deallocate (nnza,irowa,icola,a)

End If

If (nnzqsum>0) Then
! Read bilinear part of the matrix inequality composed of NQ matrices.

Read (nin,*) nq
Allocate (qi(nq),qj(nq),nnzq(nq),irowq(nnzqsum),icolq(nnzqsum), &

q(nnzqsum))
idx = 1
Do midx = 1, nq

! Read matrix Q_ij where i=QI(midx), j=QJ(midx).
Read (nin,*) qi(midx), qj(midx)
Read (nin,*) nnzq(midx)
idxend = idx + nnzq(midx) - 1
Do idx = idx, idxend

Read (nin,*) q(idx), irowq(idx), icolq(idx)
End Do

End Do

! Expand the existing linear matrix inequality with the bilinear terms
! or (if linear part was not present) create a new matrix inequality.

ifail = 0
Call e04rpf(handle,nq,qi,qj,dimaq,nnzq,nnzqsum,irowq,icolq,q,idblk, &

ifail)
Deallocate (qi,qj,nnzq,irowq,icolq,q)

End If

End Do

! Problem was successfully decoded.
Write (nout,*) ’SDP problem was read, passing it to the solver.’
Write (nout,*)
Flush (nout)

! Print overview of the handle.
ifail = 0
Call e04ryf(handle,nout,’Overview,Matrix Constraints’,ifail)
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! Allocate memory for the solver.
Allocate (x(nvar))

! Call the solver, ignore Lagrangian multipliers.
nnzu = 0
nnzuc = 0
nnzua = 0
inform = 0
x(:) = 0.0_nag_wp

ifail = 0
Call e04svf(handle,nvar,x,nnzu,rdummy,nnzuc,rdummy,nnzua,rdummy,rinfo, &

stats,inform,ifail)

! Destroy the handle.
ifail = 0
Call e04rzf(handle,ifail)

End Program e04rpfe

10.2 Program Data

E04RPF Example Program Data
5 : no of variables
0 : no of nonzeros in H matrix
0 0 : no of linear constraints and nnz in B
2 : no of matrix constraints

1.000000 0.000000 1.000000 0.000000
0.000000 : Linear obj. vector

2 : beginning of matrix constr 1, its dimension
9 8 : no of nonzeroes in all A_i, Q_ij

2 : number of nonzeros in A_0
1.000000 1 1 : Upper triangle of A_0
1.000000 2 2 : End of matrix A_0

2 : number of nonzeros in A_1
2.000000 1 1 : Upper triangle of A_1

-2.000000 1 2 : End of matrix A_1

3 : number of nonzeros in A_2
6.000000 1 1 : Upper triangle of A_2
5.000000 1 2 : in coordinate storage

-4.000000 2 2 : End of matrix A_2

2 : number of nonzeros in A_3
3.000000 1 2 : Upper triangle of A_3
8.000000 2 2 : End of matrix A_3

0 : number of nonzeros in A_4
0 : number of nonzeros in A_5

6 : number of Q_ij matrices

1 4 : indices giving i & j for Q_ij
1 : number of nonzeros in Q_{1,4}
2.000000 1 1 : End of matrix Q_{1,4}

2 4 : indices giving i & j for Q_ij
2 : number of nonzeros in Q_{2,4}
2.000000 1 1 : Upper triangle of Q_{2,4}
1.000000 1 2 : End of matrix Q_{2,4}

3 4 : indices giving i & j for Q_ij
1 : number of nonzeros in Q_{3,4}
1.000000 1 2 : End of matrix Q_{3,4}

1 5 : indices giving i & j for Q_ij
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1 : number of nonzeros in Q_{1,5}
1.000000 1 2 : End of matrix Q_{1,5}

2 5 : indices giving i & j for Q_ij
2 : number of nonzeros in Q_{2,5}
1.000000 1 2 : Upper triangle of Q_{2,5}
2.000000 2 2 : End of matrix Q_{2,5}

3 5 : indices giving i & j for Q_ij
1 : number of nonzeros in Q_{3,5}
2.000000 2 2 : End of matrix Q_{3,5}

2 : beginning of matrix constr 2, its dimension
5 0 : no of nonzeroes in all A_i, Q_ij

2 : number of nonzeros in A_0
1.000000 1 1 : Upper triangle of A_0
1.000000 2 2 : End of matrix A_0

1 : number of nonzeros in A_1
1.000000 1 1 : End of matrix A_1

1 : number of nonzeros in A_2
1.000000 1 2 : End of matrix A_2

1 : number of nonzeros in A_3
1.000000 2 2 : End of matrix A_3

0 : number of nonzeros in A_4
0 : number of nonzeros in A_5

10.3 Program Results

E04RPF Example Program Results

SDP problem was read, passing it to the solver.

Overview
Status: Problem and option settings are editable.
No of variables: 5
Objective function: linear
Simple bounds: not defined yet
Linear constraints: not defined yet
Nonlinear constraints: not defined yet
Matrix constraints: 2

Matrix constraints
IDblk = 1, size = 2 x 2, polynomial of order 2
IDblk = 2, size = 2 x 2, linear

E04SV, NLP-SDP Solver (Pennon)
------------------------------
Number of variables 5 [eliminated 0]

simple linear nonlin
(Standard) inequalities 0 0 0
(Standard) equalities 0 0
Matrix inequalities 1 1 [dense 2, sparse 0]

[max dimension 2]

Begin of Options
Outer Iteration Limit = 100 * d
Inner Iteration Limit = 100 * d
Infinite Bound Size = 1.00000E+20 * d
Initial X = User * d
Initial U = Automatic * d
Initial P = Automatic * d
Hessian Density = Dense * S
Init Value P = 1.00000E+00 * d
Init Value Pmat = 1.00000E+00 * d
Presolve Block Detect = Yes * d
Print File = 6 * d
Print Level = 2 * d
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Print Options = Yes * d
Monitoring File = -1 * d
Monitoring Level = 4 * d
Monitor Frequency = 0 * d
Stats Time = No * d
P Min = 1.05367E-08 * d
Pmat Min = 1.05367E-08 * d
U Update Restriction = 5.00000E-01 * d
Umat Update Restriction = 3.00000E-01 * d
Preference = Speed * d
Transform Constraints = No * S
Dimacs Measures = No * S
Stop Criteria = Soft * d
Stop Tolerance 1 = 1.00000E-06 * d
Stop Tolerance 2 = 1.00000E-07 * d
Stop Tolerance Feasibility = 1.00000E-07 * d
Linesearch Mode = Goldstein * S
Inner Stop Tolerance = 1.00000E-02 * d
Inner Stop Criteria = Heuristic * d
Task = Minimize * d
P Update Speed = 12 * d

End of Options
--------------------------------------------------------------
it| objective | optim | feas | compl | pen min |inner

--------------------------------------------------------------
0 0.00000E+00 1.82E+01 1.00E+00 4.00E+00 2.00E+00 0
1 4.11823E+00 3.85E-03 0.00E+00 1.73E+00 2.00E+00 6
2 2.58252E+00 5.36E-03 0.00E+00 4.93E-01 9.04E-01 4
3 2.06132E+00 1.02E-03 0.00E+00 7.70E-02 4.08E-01 4
4 2.00050E+00 3.00E-03 8.91E-03 1.78E-02 1.85E-01 3
5 1.99929E+00 1.55E-03 3.16E-03 3.65E-03 8.34E-02 2
6 1.99985E+00 1.03E-04 3.16E-04 7.19E-04 3.77E-02 4
7 1.99997E+00 7.04E-04 5.76E-05 1.41E-04 1.70E-02 1
8 2.00000E+00 1.32E-04 6.52E-06 2.76E-05 7.70E-03 1
9 2.00000E+00 8.49E-06 7.86E-07 5.37E-06 3.48E-03 1

10 2.00000E+00 5.88E-07 1.06E-07 1.04E-06 1.57E-03 1
11 2.00000E+00 5.55E-08 4.87E-08 2.02E-07 7.11E-04 1
12 2.00000E+00 5.34E-09 5.37E-09 3.93E-08 3.21E-04 1
13 2.00000E+00 5.03E-10 5.45E-09 7.62E-09 1.45E-04 1
14 2.00000E+00 4.45E-11 5.55E-09 1.48E-09 6.56E-05 1

--------------------------------------------------------------
it| objective | optim | feas | compl | pen min |inner

--------------------------------------------------------------
15 2.00000E+00 4.36E-12 5.67E-09 2.87E-10 2.96E-05 1
16 2.00000E+00 1.61E-11 5.82E-09 5.57E-11 1.34E-05 1
17 2.00000E+00 3.13E-11 6.00E-09 1.08E-11 6.06E-06 1
18 2.00000E+00 8.65E-11 6.22E-09 2.10E-12 2.74E-06 1
19 2.00000E+00 1.31E-10 6.48E-09 4.07E-13 1.24E-06 1

--------------------------------------------------------------
Status: converged, an optimal solution found
--------------------------------------------------------------
Final objective value 2.000000E+00
Relative precision 8.141636E-16
Optimality 1.310533E-10
Feasibility 6.484489E-09
Complementarity 4.066867E-13
Iteration counts

Outer iterations 19
Inner iterations 36
Linesearch steps 56

Evaluation counts
Augm. Lagr. values 76
Augm. Lagr. gradient 56
Augm. Lagr. hessian 36

--------------------------------------------------------------
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NAG Library Routine Document

E04RYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RYF is a part of the NAG optimization modelling suite. It allows you to print information about the
problem, stored as a handle, such as which parts have already been defined or details of the matrix
constraints.

2 Specification

SUBROUTINE E04RYF (HANDLE, NOUT, CMDSTR, IFAIL)

INTEGER NOUT, IFAIL
CHARACTER(*) CMDSTR
TYPE (C_PTR) HANDLE

3 Description

E04RYF prints information on a problem handle which has been previously initialized by E04RAF.
Various pieces of information can be retrieved and printed to the given output unit. This can be helpful
when the routine is interfaced from interactive environments, for debugging purposes or to help
familiarize you with the NAG optimization modelling suite.

The printer is guided by a command string which contains one or more of the following keywords:

Overview
Gives a brief overview of the problem handle, particularly, which phase it is in, if the problem or
optional parameters can be edited and which parts of the problem have already been set. This
might be helpful to clarify situations when IFAIL ¼ 2 or 3 (the problem cannot be altered
anymore, a certain part has already been defined) is obtained from routines, such as, E04REF,
E04RFF, E04RHF and E04RJF.

Objective
Prints the objective function as it was defined by E04REF or E04RFF if it is linear or quadratic.
Prints the sparsity structure of the objective function as it was defined by E04RGF if it is
nonlinear.

Simple bounds
Prints the variable bounds as defined by E04RHF. This might help you understand the effect of
the optional parameter Infinite Bound Size on the bounds.

Linear constraints bounds
Linear constraints detailed

Print bounds or linear constraint matrix as defined by E04RJF.

Matrix constraints
Gives a list of the matrix constraints as defined by E04RNF and E04RPF. For each matrix
constraint its IDBLK, dimension and order (e.g., linear, bilinear) are printed.

Matrix constraints detailed
Prints all the matrix constraints including all nonzeros of all the matrices as formulated by
E04RNF and E04RPF.

Nonlinear constraints bounds
Nonlinear constraints detailed

Print bounds or sparsity structure of the nonlinear constraints as defined by E04RKF.
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Multipliers sizes
Prints the expected dimensions of array arguments U and UA of the solver E04SVF which store
the Lagrangian multipliers for standard and matrix constraints, respectively. This might be
helpful in particular in connection with Overview and Matrix constraints to check the way the
sizes of the arrays are derived.

Options
Prints all the current optional parameters. It flags whether the argument is at its default choice,
whether you have set it or whether it is chosen by the solver (for example, options left on
‘AUTO’ setting after the solver has been called).

Note that the output data might not match your input exactly. The sparse matrices are typically
transposed, sorted and explicit zeros removed and in certain cases transformed as needed (for example,
matrices Qij and Qji are merged by E04RPF).

4 References

None.

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: NOUT – INTEGER Input

On entry: the Fortran unit number which identifies the file to be written to.

Constraint: NOUT � 0.

3: CMDSTR – CHARACTER(*) Input

On entry: a command string which contains one or more keywords which identify the piece of
information about the handle to be printed. Keywords are case-insensitive and space tolerant.
Multiple keywords in CMDSTR must be separated by commas or semicolons.

Constraint: CMDSTR can only contain one or more of the following accepted keywords:
overview, objective, simple bounds, linear constraints bounds, linear constraints detailed, matrix
constraints, matrix constraints detailed, nonlinear constraints bounds, nonlinear constraints
detailed, multipliers sizes, options.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 6

On entry, NOUT ¼ valueh i.
Constraint: NOUT � 0.

IFAIL ¼ 7

CMDSTR does not contain any keywords or is empty.

Keyword number valueh i is not recognized, it is too long.

Keyword number valueh i is not recognized.

IFAIL ¼ 199

An error occurred when writing to output.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RYF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example shows the life-cycle of a handle of a typical (BMI-SDP) problem by printing the
overview of the handle in various stages of the problem formulation and after the solution is found. It is
also helpful to notice how a linear matrix inequality is extended with the bilinear term, see E04RAF
and E04RPF for further details.

The problem is as follows:

minimize
x;y 2 R

y

subject to
1 x� 1 y
x� 1 3=4 0
y 0 16

0@ 1A � 0

x �xy
�xy 1

� �
� 0

x � 0
�3 � y � 3

The solution is x ¼ 1=4, y ¼ �2.
Note that the matrix constraints need to be supplied in the form of equation (3) in E04RPF, i.e.,Xn

i;j¼1
xixjQ

k
ij þ

Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA:

Therefore the first constraint is defined by matrices

A1
0 ¼

�1 1 0
�3=4 0

�16

0@ 1A; A1
1 ¼

0 1 0
0 0

0

0@ 1A; A1
2 ¼

0 0 1
0 0

0

0@ 1A
and the second one by

A2
0 ¼

0 0
�1

� �
; A2

1 ¼
1 0

0

� �
; A2

2 empty; Q2
12 ¼

0 �1
0 0

� �
:

See also Section 10 in E04RAF for links to further examples in the suite.

10.1 Program Text

Program e04ryfe

! E04RYF Example Program Text

! Demonstrate the life-cycle of a handle of a typical BMI-SDP problem
! by printing the evolution of the HANDLE in certain stages.

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04raf, e04ref, e04rhf, e04rnf, e04rpf, e04ryf, &

e04rzf, e04svf, e04zmf, nag_wp
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &

c_ptr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: maxnnz = 6, maxnvar = 2, nout = 6
! .. Local Scalars ..

Type (c_ptr) :: h
Integer :: dima, idblk, ifail, inform, nblk, &

nnzasum, nvar
! .. Local Arrays ..

Real (Kind=nag_wp) :: a(maxnnz), rdummy(1), rinfo(32), &
stats(32), x(maxnvar)

Integer :: icola(maxnnz), idummy(1), &
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irowa(maxnnz), nnza(maxnvar+1)
! .. Executable Statements ..

Continue

Write (nout,*) ’E04RYF Example Program Results’
Write (nout,*)
Flush (nout)

h = c_null_ptr

! Start a problem formulation with 2 variables.
nvar = 2
ifail = 0
Call e04raf(h,nvar,ifail)

! Anything can be defined at this phase.
Write (nout,*) ’Freshly created handle’
Flush (nout)
ifail = 0
Call e04ryf(h,nout,’Overview’,ifail)

! Define linear objective (min y).
ifail = 0
Call e04ref(h,nvar,(/0.0_nag_wp,1.0_nag_wp/),ifail)

! Add simple bounds (x>=0, -3<=y<=3).
ifail = 0
Call e04rhf(h,nvar,(/0.0_nag_wp,-3.0_nag_wp/), &

(/1E20_nag_wp,3.0_nag_wp/),ifail)

! The simple bounds and the objective are set and cannot be changed.
Write (nout,*)
Write (nout,*) &

’Handle after definition of simple bounds and the objective’
Flush (nout)
ifail = 0
Call e04ryf(h,nout,’Overview,Objective,Simple Bounds’,ifail)

! Definition of the first (linear) matrix constraint
! ( 1 x-1 y )
! (x-1 3/4 0 ) >= 0
! ( y 0 16 )
! only upper triangles, thus we have matrices
! ( 1 -1 0 ) ( 0 1 0 ) ( 0 0 1 )
! A0 = -( 3/4 0 ), A1 = ( 0 0 ), A2 = ( 0 0 )
! ( 16 ) ( 0 ) ( 0 )
! Note: don’t forget the minus at A0 term!

dima = 3
nnzasum = 6
nblk = 1

! A0
irowa(1:4) = (/1,1,2,3/)
icola(1:4) = (/1,2,2,3/)
a(1:4) = (/-1.0_nag_wp,1.0_nag_wp,-0.75_nag_wp,-16.0_nag_wp/)
nnza(1) = 4

! A1
irowa(5:5) = (/1/)
icola(5:5) = (/2/)
a(5:5) = (/1.0_nag_wp/)
nnza(2) = 1

! A2
irowa(6:6) = (/1/)
icola(6:6) = (/3/)
a(6:6) = (/1.0_nag_wp/)
nnza(3) = 1

idblk = 0
ifail = 0
Call e04rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,idummy,idblk, &

ifail)
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! It is possible to add or extend existing matrix constraints.
Write (nout,*)
Write (nout,*) ’Handle after definition of the 1st matrix constraint’
Flush (nout)
ifail = 0
Call e04ryf(h,nout,’Overview,Matrix Constraints’,ifail)

! Definition of the absolute term and linear part of BMI
! ( x -xy )
! (-xy 1 ) >= 0
! thus
! ( 0 0 ) ( 1 0 )
! A0 = -( 1 ), A1 = ( 0 ), A2 = zero
! Note: don’t forget the minus at A0 term!

dima = 2
nnzasum = 2
nblk = 1

! A0
irowa(1:1) = (/2/)
icola(1:1) = (/2/)
a(1:1) = (/-1.0_nag_wp/)
nnza(1) = 1

! A1
irowa(2:2) = (/1/)
icola(2:2) = (/1/)
a(2:2) = (/1.0_nag_wp/)
nnza(2) = 1

! A2
nnza(3) = 0

idblk = 0
ifail = 0
Call e04rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,idummy,idblk, &

ifail)

! It is possible to add or extend existing matrix constraints.
Write (nout,*)
Write (nout,*) &

’Handle after partial definition of the 2nd matrix constraint’
Flush (nout)
ifail = 0
Call e04ryf(h,nout,’Matrix Constraints’,ifail)

! Extending current matrix constraint (with IDBLK) by bilinear term
! ( 0 -1 )
! Q12 = ( 0 0 ).

dima = 2
nnzasum = 1
nnza(1) = 1
irowa(1:1) = (/1/)
icola(1:1) = (/2/)
a(1:1) = (/-1.0_nag_wp/)
ifail = 0
Call e04rpf(h,1,(/1/),(/2/),dima,nnza,nnzasum,irowa,icola,a,idblk,ifail)

! Our problem completely defined.
Write (nout,*)
Write (nout,*) ’Handle with the complete problem formulation’
Flush (nout)
ifail = 0
Call e04ryf(h,nout,’Overview,Matrix Constraints,Multipliers Sizes’, &

ifail)
ifail = 0
Call e04ryf(h,nout,’Matrix Constraints Detailed’,ifail)

! Set optional arguments for the solver.
ifail = 0
Call e04zmf(h,’Print Options = No’,ifail)
ifail = 0
Call e04zmf(h,’Initial X = Automatic’,ifail)
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! Options can be printed even outside the solver.
Write (nout,*)
Flush (nout)
ifail = 0
Call e04ryf(h,nout,’Options’,ifail)

! Call the solver.
ifail = 0
Call e04svf(h,nvar,x,0,rdummy,0,rdummy,0,rdummy,rinfo,stats,inform, &

ifail)

! After solver finished.
Write (nout,*)
Write (nout,*) ’Problem solved’
Flush (nout)
ifail = 0
Call e04ryf(h,nout,’Overview’,ifail)

! Print result.
Write (nout,*)
Write (nout,’(1X,A,F9.2)’) ’Final objective value = ’, rinfo(1)
Write (nout,’(1X,A,2F9.2)’) ’Final X = ’, x(1:nvar)

! release all memory held in the handle
ifail = 0
Call e04rzf(h,ifail)

End Program e04ryfe

10.2 Program Data

None.

10.3 Program Results

E04RYF Example Program Results

Freshly created handle
Overview

Status: Problem and option settings are editable.
No of variables: 2
Objective function: not defined yet
Simple bounds: not defined yet
Linear constraints: not defined yet
Nonlinear constraints: not defined yet
Matrix constraints: not defined yet

Handle after definition of simple bounds and the objective
Overview

Status: Problem and option settings are editable.
No of variables: 2
Objective function: linear
Simple bounds: defined
Linear constraints: not defined yet
Nonlinear constraints: not defined yet
Matrix constraints: not defined yet

Objective function
linear part
c( 2) = 1.00E+00,

Simple bounds
0.000E+00 <= X_ 1

-3.000E+00 <= X_ 2 <= 3.000E+00

Handle after definition of the 1st matrix constraint
Overview

Status: Problem and option settings are editable.
No of variables: 2
Objective function: linear
Simple bounds: defined
Linear constraints: not defined yet
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Nonlinear constraints: not defined yet
Matrix constraints: 1

Matrix constraints
IDblk = 1, size = 3 x 3, linear

Handle after partial definition of the 2nd matrix constraint
Matrix constraints

IDblk = 1, size = 3 x 3, linear
IDblk = 2, size = 2 x 2, linear

Handle with the complete problem formulation
Overview

Status: Problem and option settings are editable.
No of variables: 2
Objective function: linear
Simple bounds: defined
Linear constraints: not defined yet
Nonlinear constraints: not defined yet
Matrix constraints: 2

Matrix constraints
IDblk = 1, size = 3 x 3, linear
IDblk = 2, size = 2 x 2, polynomial of order 2

Lagrangian multipliers sizes
(Standard) multipliers U: 4 + 0 + 0
Matrix multipliers UA: 9

Matrix constraints (detailed)
Matrix inequality IDBLK = 1, dimension 3

multiindex k = 0
A_k( 1, 1) = -1.000E+00
A_k( 2, 1) = 1.000E+00
A_k( 2, 2) = -7.500E-01
A_k( 3, 3) = -1.600E+01

multiindex k = 1
A_k( 2, 1) = 1.000E+00

multiindex k = 2
A_k( 3, 1) = 1.000E+00

Matrix inequality IDBLK = 2, dimension 2
multiindex k = 0

A_k( 2, 2) = -1.000E+00

multiindex k = 1
A_k( 1, 1) = 1.000E+00

multiindex k = 1, 2
Q_k( 2, 1) = -1.000E+00

Option settings
Begin of Options

Outer Iteration Limit = 100 * d
Inner Iteration Limit = 100 * d
Infinite Bound Size = 1.00000E+20 * d
Initial X = Automatic * U
Initial U = Automatic * d
Initial P = Automatic * d
Hessian Density = Auto * d
Init Value P = 1.00000E+00 * d
Init Value Pmat = 1.00000E+00 * d
Presolve Block Detect = Yes * d
Print File = 6 * d
Print Level = 2 * d
Print Options = No * U
Monitoring File = -1 * d
Monitoring Level = 4 * d
Monitor Frequency = 0 * d
Stats Time = No * d
P Min = 1.05367E-08 * d
Pmat Min = 1.05367E-08 * d
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U Update Restriction = 5.00000E-01 * d
Umat Update Restriction = 3.00000E-01 * d
Preference = Speed * d
Transform Constraints = Auto * d
Dimacs Measures = Check * d
Stop Criteria = Soft * d
Stop Tolerance 1 = 1.00000E-06 * d
Stop Tolerance 2 = 1.00000E-07 * d
Stop Tolerance Feasibility = 1.00000E-07 * d
Linesearch Mode = Auto * d
Inner Stop Tolerance = 1.00000E-02 * d
Inner Stop Criteria = Heuristic * d
Task = Minimize * d
P Update Speed = 12 * d
Hessian Mode = Auto * d
Verify Derivatives = Auto * d
Time Limit = 1.00000E+06 * d

End of Options
E04SV, NLP-SDP Solver (Pennon)
------------------------------
Number of variables 2 [eliminated 0]

simple linear nonlin
(Standard) inequalities 3 0 0
(Standard) equalities 0 0
Matrix inequalities 1 1 [dense 2, sparse 0]

[max dimension 3]

--------------------------------------------------------------
it| objective | optim | feas | compl | pen min |inner

--------------------------------------------------------------
0 0.00000E+00 4.56E+00 1.23E-01 4.41E+01 1.00E+00 0
1 -3.01854E-01 1.21E-03 0.00E+00 1.89E+00 1.00E+00 7
2 -6.21230E-01 2.58E-03 0.00E+00 6.72E-01 4.65E-01 2
3 -2.11706E+00 4.31E-03 3.39E-02 6.07E-02 2.16E-01 5
4 -2.01852E+00 5.71E-03 6.05E-03 8.55E-03 1.01E-01 3
5 -2.00164E+00 3.36E-03 6.26E-04 1.02E-03 4.68E-02 2
6 -2.00022E+00 4.45E-03 8.37E-05 1.82E-04 2.18E-02 1
7 -2.00001E+00 4.73E-04 4.01E-06 3.96E-05 1.01E-02 1
8 -2.00000E+00 4.77E-06 2.25E-07 9.20E-06 4.71E-03 1
9 -2.00000E+00 4.52E-08 3.61E-08 2.14E-06 2.19E-03 1

10 -2.00000E+00 6.63E-09 3.19E-08 4.98E-07 1.02E-03 1
11 -2.00000E+00 8.80E-10 5.34E-09 1.16E-07 4.74E-04 1
12 -2.00000E+00 1.02E-10 5.41E-09 2.69E-08 2.21E-04 1

--------------------------------------------------------------
Status: converged, an optimal solution found
--------------------------------------------------------------
Final objective value -2.000000E+00
Relative precision 9.839057E-10
Optimality 1.019125E-10
Feasibility 5.406175E-09
Complementarity 2.693704E-08
Iteration counts

Outer iterations 12
Inner iterations 26
Linesearch steps 37

Evaluation counts
Augm. Lagr. values 50
Augm. Lagr. gradient 39
Augm. Lagr. hessian 26

--------------------------------------------------------------

Problem solved
Overview

Status: Solver finished, only options can be changed.
No of variables: 2
Objective function: linear
Simple bounds: defined
Linear constraints: not defined
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Nonlinear constraints: not defined
Matrix constraints: 2

Final objective value = -2.00
Final X = 0.25 -2.00
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NAG Library Routine Document

E04RZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RZF is a part of the NAG optimization modelling suite. It is used to deallocate the memory used
within the problem handle and to destroy the handle itself.

2 Specification

SUBROUTINE E04RZF (HANDLE, IFAIL)

INTEGER IFAIL
TYPE (C_PTR) HANDLE

3 Description

Each problem handle initialized by E04RAF should be deallocated to avoid memory leaks. Therefore
E04RZF should be called on all the handles which are no longer needed, typically after obtaining
results from the solver. Please note that passing a handle which has not been initialized by E04RAF
might cause unpredictable behaviour, including a crash of your program. See E04RAF for a generic
description of the suite.

4 References

None.

5 Arguments

1: HANDLE – TYPE (C_PTR) Input/Output

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed before the call to E04RZF.

On exit: the handle is destroyed and set to 0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04 – Minimizing or Maximizing a Function E04RZF

Mark 26 E04RZF.1



6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RZF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in E04RAF for links to all examples in the suite.
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NAG Library Routine Document

E04STF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm and to Section 12 for a detailed
description of the specification of the optional parameters.

1 Purpose

E04STF, an interior point method optimization solver, based on the IPOPT software package, is a solver
for the NAG optimization modelling suite and is suitable for large scale nonlinear programming (NLP)
problems.

2 Specification

SUBROUTINE E04STF (HANDLE, OBJFUN, OBJGRD, CONFUN, CONGRD, HESS, MON,
NVAR, X, NNZU, U, RINFO, STATS, IUSER, RUSER, CPUSER,
IFAIL)

&
&

INTEGER NVAR, NNZU, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(NVAR), U(NNZU), RINFO(32), STATS(32), RUSER(*)
EXTERNAL OBJFUN, OBJGRD, CONFUN, CONGRD, HESS, MON
TYPE (C_PTR) HANDLE, CPUSER

3 Description

E04STF will typically be used for nonlinear programming problems (NLP)

minimize
x2Rn

f xð Þ ðaÞ
subject to lg � g xð Þ � ug ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð1Þ

where

n is the number of the decision variables,

mg is the number of the nonlinear constraints and g xð Þ, lg and ug are mg-dimensional vectors,

mB is the number of the linear constraints and B is a mB by n matrix, lB and uB are
mB-dimensional vectors,

there are n box constraints and lx and ux are n-dimensional vectors.

The objective f xð Þ can be specified in a number of ways: E04REF for a dense linear function, E04RFF
for a sparse linear or quadratic function and E04RGF for a general nonlinear function. In the last case,
OBJFUN and OBJGRD will be used to compute values and gradients of the objective function. Variable
box bounds lx; ux can be specified with E04RHF. The special case of linear constraints lB; B; uB is
handled by E04RJF while general nonlinear constraints lg; g xð Þ; ug are specified by E04RKF (both can
be specified). Again, in the last case, CONFUN and CONGRD will be used to compute values and
gradients of the nonlinear constraint functions.

Finally, if the user is willing to calculate second derivatives, the sparsity structure of the second partial
derivatives of a nonlinear objective and/or of any nonlinear constraints is specified by E04RLF while
the values of these derivatives themselves will be computed by user-supplied HESS. While there is an
option (see Hessian Mode) that forces internal approximation of second derivatives, no such option
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exists for first derivatives which must be computed accurately. If E04RLF has been called and HESS is
used to calculate values for second derivatives, both the objective and all the constraints must be
included; it is not possible to provide a subset of these. If E04RLF is not called, then internal
approximation of second derivatives will take place.

3.1 Structure of the Lagrange Multipliers

For a problem consisting of n variable bounds, mB linear constraints and mg nonlinear constraints (as
specified in NVAR, NCLIN and NCNLN of E04RHF, E04RJF and E04RKF, respectively), the number
of Lagrange multipliers, and consequently the correct value for NNZU, will be
q ¼ 2 � nþ 2 �mB þ 2 �mg. The order these will be found in the U array is

z1L ; z1U ; z2L ; z2U . . . znL; znU ; �1L ; �1U ; �2L ; �2U . . .�mBL
; �mBU

; � mBþ1ð ÞL ; � mBþ1ð ÞU ; � mBþ2ð ÞL ; � mBþ2ð ÞU . . .

� mBþmgð Þ
L

; � mBþmgð Þ
U

where the L and U subscripts refer to lower and upper bounds, respectively, and the variable bound
constraint multipliers come first (if present, i.e., if E04RHF was called), followed by the linear
constraint multipliers (if present, i.e., if E04RJF was called) and the nonlinear constraint multipliers (if
present, i.e., if E04RKF was called).

Significantly nonzero values for any of these, after the solver has terminated, indicates that the
corresponding constraint is active. Significance is judged in the first instance by the relative scale of any
value compared to the smallest among them.

4 References

Byrd R H, Gilbert J Ch and Nocedal J (2000) A trust region method based on interior point techniques
for nonlinear programming Mathematical Programming 89 149–185

Byrd R H, Liu G and Nocedal J (1997) On the local behavior of an interior point method for nonlinear
programming Numerical Analysis (eds D F Griffiths and D J Higham) Addison–Wesley

Conn A R, Gould N I M, Orban D and Toint Ph L (2000) A primal-dual trust-region algorithm for non-
convex nonlinear programming Mathematical Programming 87 (2) 215–249

Conn A R, Gould N I M and Toint Ph L (2000) Trust Region Methods SIAM, Philadephia

Fiacco A V and McCormick G P (1990) Nonlinear Programming: Sequential Unconstrained
Minimization Techniques SIAM, Philadelphia

Gould N I M, Orban D, Sartenaer A and Toint Ph L (2001) Superlinear convergence of primal-dual
interior point algorithms for nonlinear programming SIAM Journal on Optimization 11 (4) 974–1002

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer–Verlag

Hogg J D and Scott J A (2011) HSL MA97: a bit-compatible multifrontal code for sparse symmetric
systems RAL Technical Report. RAL-TR-2011-024

WÌchter A and Biegler L T (2006) On the implementation of a primal-dual interior point filter line
search algorithm for large-scale nonlinear programming Mathematical Programming 106(1) 25–57

Williams P and Lang B (2013) A framework for the MR3 algorithm: theory and implementation SIAM
J. Sci. Comput. 35 740–766

Yamashita H (1998) A globally convergent primal-dual interior-point method for constrained
optimization Optimization Methods and Software 10 443–469

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and the problem
formulated by some of the routines E04REF, E04RFF, E04RGF, E04RHF, E04RJF, E04RKF and
E04RLF. It must not be changed between calls to the NAG optimization modelling suite.
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2: OBJFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

OBJFUN must calculate the value of the nonlinear objective function f xð Þ at a specified value of
the n-element vector of x variables. If there is no nonlinear objective (e.g., E04REF or E04RFF
was called to define a linear or quadratic objective function), OBJFUN will never be called by
E04STF and OBJFUN may be the dummy routine E04STV. (E04STV is included in the NAG
Library.)

The specification of OBJFUN is:

SUBROUTINE OBJFUN (NVAR, X, FX, INFORM, IUSER, RUSER, CPUSER)

INTEGER NVAR, INFORM, IUSER(*)
REAL (KIND=nag_wp) X(NVAR), FX, RUSER(*)
TYPE (C_PTR) CPUSER

1: NVAR – INTEGER Input

On entry: n, the number of variables in the problem. It must be unchanged from the
value set during the initialization of the handle by E04RAF.

2: XðNVARÞ – REAL (KIND=nag_wp) array Input

On entry: the vector x of variable values at which the objective function is to be
evaluated.

3: FX – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at x.

4: INFORM – INTEGER Input/Output

On entry: a non-negative value.

On exit: must be set to a value describing the action to be taken by the solver on return
from OBJFUN. Specifically, if the value is negative then the value of FX will be
discarded and the solver will either attempt to find a different trial point or terminate
immediately with IFAIL ¼ 25 (the same will happen if FX is Infinity or NaN);
otherwise, the solver will proceed normally.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace
7: CPUSER – TYPE (C_PTR) User Workspace

OBJFUN is called with the arguments IUSER, RUSER and CPUSER as supplied to
E04STF. You should use the arrays IUSER, RUSER and CPUSER to supply
information to OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04STF is called. Arguments denoted as Input must not be changed by this
procedure.

3: OBJGRD – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

OBJGRD must calculate the values of the nonlinear objective function gradients
@f

@x
at a specified

value of the n-element vector of x variables. If there is no nonlinear objective (e.g., E04REF or
E04RFF was called to define a linear or quadratic objective function), OBJGRD will never be
called by E04STF and OBJGRD may be the dummy subroutine E04STW. (E04STW is included
in the NAG Library.)
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The specification of OBJGRD is:

SUBROUTINE OBJGRD (NVAR, X, NNZFD, FDX, INFORM, IUSER, RUSER,
CPUSER)

&

INTEGER NVAR, NNZFD, INFORM, IUSER(*)
REAL (KIND=nag_wp) X(NVAR), FDX(NNZFD), RUSER(*)
TYPE (C_PTR) CPUSER

1: NVAR – INTEGER Input

On entry: n, the number of variables in the problem. It must be unchanged from the
value set during the initialization of the handle by E04RAF.

2: XðNVARÞ – REAL (KIND=nag_wp) array Input

On entry: the vector x of variable values at which the objective function gradient is to
be evaluated.

3: NNZFD – INTEGER Input

On entry: the number of nonzero elements in the sparse gradient vector of the objective
function, as was set in a previous call to E04RGF.

4: FDXðNNZFDÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the nonzero elements in the sparse gradient vector of the
objective function, in the order specified by IDXFD in a previous call to E04RGF.

FDXðiÞ will be the gradient
@f

@xIDXFDðiÞ
.

5: INFORM – INTEGER Input/Output

On entry: a non-negative value.

On exit: must be set to a value describing the action to be taken by the solver on return
from OBJGRD. Specifically, if the value is negative the solution of the current problem
will terminate immediately with IFAIL ¼ 25 (the same will happen if FDX contains
Infinity or NaN); otherwise, computations will continue.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace
8: CPUSER – TYPE (C_PTR) User Workspace

OBJGRD is called with the arguments IUSER, RUSER and CPUSER as supplied to
E04STF. You should use the arrays IUSER, RUSER and CPUSER to supply
information to OBJGRD.

OBJGRD must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04STF is called. Arguments denoted as Input must not be changed by
this procedure.

4: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate the values of the mg-element vector gi xð Þ of nonlinear constraint
functions at a specified value of the n-element vector of x variables. If no nonlinear constraints
were registered in this HANDLE, CONFUN will never be called by E04STF and CONFUN may
be the dummy subroutine E04STX. (E04STX is included in the NAG Library.)

The specification of CONFUN is:

SUBROUTINE CONFUN (NVAR, X, NCNLN, GX, INFORM, IUSER, RUSER,
CPUSER)

&
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INTEGER NVAR, NCNLN, INFORM, IUSER(*)
REAL (KIND=nag_wp) X(NVAR), GX(NCNLN), RUSER(*)
TYPE (C_PTR) CPUSER

1: NVAR – INTEGER Input

On entry: n, the number of variables in the problem. It must be unchanged from the
value set during the initialization of the handle by E04RAF.

2: XðNVARÞ – REAL (KIND=nag_wp) array Input

On entry: the vector x of variable values at which the constraint functions are to be
evaluated.

3: NCNLN – INTEGER Input

On entry: mg, the number of nonlinear constraints, as specified in an earlier call to
E04RKF.

4: GXðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: the mg values of the nonlinear constraint functions at x.

5: INFORM – INTEGER Input/Output

On entry: a non-negative value.

On exit: must be set to a value describing the action to be taken by the solver on return
from CONFUN. Specifically, if the value is negative then the value of GX will be
discarded and the solver will either attempt to find a different trial point or terminate
immediately with IFAIL ¼ 25 (the same will happen if GX contains Infinity or NaN);
otherwise, the solver will proceed normally.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace
8: CPUSER – TYPE (C_PTR) User Workspace

CONFUN is called with the arguments IUSER, RUSER and CPUSER as supplied to
E04STF. You should use the arrays IUSER, RUSER and CPUSER to supply
information to CONFUN.

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04STF is called. Arguments denoted as Input must not be changed by
this procedure.

5: CONGRD – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONGRD must calculate the nonzero values of the sparse Jacobian of the nonlinear constraint

functions
@gi
@x

at a specified value of the n-element vector of x variables. If there are no nonlinear

constraints (e.g., E04RKF was never called with the same HANDLE or it was called with
NCNLN ¼ 0), CONGRD will never be called by E04STF and CONGRD may be the dummy
subroutine E04STY. (E04STY is included in the NAG Library.)

The specification of CONGRD is:

SUBROUTINE CONGRD (NVAR, X, NNZGD, GDX, INFORM, IUSER, RUSER,
CPUSER)

&

INTEGER NVAR, NNZGD, INFORM, IUSER(*)
REAL (KIND=nag_wp) X(NVAR), GDX(NNZGD), RUSER(*)
TYPE (C_PTR) CPUSER
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1: NVAR – INTEGER Input

On entry: n, the number of variables in the problem. It must be unchanged from the
value set during the initialization of the handle by E04RAF.

2: XðNVARÞ – REAL (KIND=nag_wp) array Input

On entry: the vector x of variable values at which the Jacobian of the constraint
functions is to be evaluated.

3: NNZGD – INTEGER Input

On entry: is the number of nonzero elements in the sparse Jacobian of the constraint
functions, as was set in a previous call to E04RKF.

4: GDXðNNZGDÞ – REAL (KIND=nag_wp) array Output

On exit: the nonzero values of the Jacobian of the nonlinear constraints, in the order
specified by IROWGD and ICOLGD in an earlier call to E04RKF. GDXðiÞ will be the

gradient
@gIROWGDðiÞ
@xICOLGDðiÞ

.

5: INFORM – INTEGER Input/Output

On entry: a non-negative value.

On exit: must be set to a value describing the action to be taken by the solver on return
from CONGRD. Specifically, if the value is negative the solution of the current problem
will terminate immediately with IFAIL ¼ 25 (the same will happen if GDX contains
Infinity or NaN); otherwise, computations will continue.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace
8: CPUSER – TYPE (C_PTR) User Workspace

CONGRD is called with the arguments IUSER, RUSER and CPUSER as supplied to
E04STF. You should use the arrays IUSER, RUSER and CPUSER to supply
information to CONGRD.

CONGRD must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04STF is called. Arguments denoted as Input must not be changed by
this procedure.

6: HESS – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

HESS must calculate the nonzero values of one of a set of second derivative quantities:

the Hessian of the Lagrangian function �r2f þ
Xmg

i¼1
�ir2gi

the Hessian of the objective function r2f

the Hessian of the constraint functions r2gi

The value of argument IDF determines which one of these is to be computed and this, in turn, is
determined by earlier calls to E04RLF, when the nonzero sparsity structure of these Hessians was
registered. Please note that it is not possible to only supply a subset of the Hessians (see
IFAIL ¼ 6). If there were no calls to E04RLF, HESS will never be called by E04STF and HESS
may be the dummy subroutine E04STZ (E04STZ is included in the NAG Library). In this case,
the Hessian of the Lagrangian will be approximated by a limited-memory quasi-Newton method
(L-BFGS).
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The specification of HESS is:

SUBROUTINE HESS (NVAR, X, NCNLN, IDF, SIGMA, LAMBDA, NNZH, HX,
INFORM, IUSER, RUSER, CPUSER)

&

INTEGER NVAR, NCNLN, IDF, NNZH, INFORM, IUSER(*)
REAL (KIND=nag_wp) X(NVAR), SIGMA, LAMBDA(NCNLN), HX(NNZH),

RUSER(*)
&

TYPE (C_PTR) CPUSER

1: NVAR – INTEGER Input

On entry: n, the number of variables in the problem. It must be unchanged from the
value set during the initialization of the handle by E04RAF.

2: XðNVARÞ – REAL (KIND=nag_wp) array Input

On entry: the vector x of variable values at which the Hessian functions are to be
evaluated.

3: NCNLN – INTEGER Input

On entry: mg, the number of nonlinear constraints, as specified in an earlier call to
E04RKF.

4: IDF – INTEGER Input

On entry: specifies the quantities to be computed in HX.

IDF ¼ �1
The values of the Hessian of the Lagrangian will be computed in HX. This will
be the case if E04RLF has been called with IDF of the same value.

IDF ¼ 0
The values of the Hessian of the objective function will be computed in HX. This
will be the case if E04RLF has been called with IDF of the same value.

IDF > 0
The values of the Hessian of the IDFth constraint function will be computed in
HX. This will be the case if E04RLF has been called with IDF of the same value.

5: SIGMA – REAL (KIND=nag_wp) Input

On entry: if IDF ¼ �1, the value of the � quantity in the definition of the Hessian of
the Lagrangian. Otherwise, SIGMA should not be referenced.

6: LAMBDAðNCNLNÞ – REAL (KIND=nag_wp) array Input

On entry: if IDF ¼ �1, the values of the �i quantities in the definition of the Hessian of
the Lagrangian. Otherwise, LAMBDA should not be referenced.

7: NNZH – INTEGER Input

On entry: the number of nonzero elements in the Hessian to be computed.

8: HXðNNZHÞ – REAL (KIND=nag_wp) array Output

On exit: the nonzero values of the requested Hessian evaluated at x. For each value of
IDF, the ordering of nonzeros must follow the sparsity structure registered in the
HANDLE by earlier calls to E04RLF through the arguments IROWH and ICOLH.

9: INFORM – INTEGER Input/Output

On entry: a non-negative value.
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On exit: must be set to a value describing the action to be taken by the solver on return
from HESS. Specifically, if the value is negative the solution of the current problem
will terminate immediately with IFAIL ¼ 25 (the same will happen if HX contains
Infinity or NaN); otherwise, computations will continue.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace
12: CPUSER – TYPE (C_PTR) User Workspace

HESS is called with the arguments IUSER, RUSER and CPUSER as supplied to
E04STF. You should use the arrays IUSER, RUSER and CPUSER to supply
information to HESS.

HESS must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04STF is called. Arguments denoted as Input must not be changed by this
procedure.

7: MON – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MON is provided to enable you to monitor the progress of the optimization. A facility is
provided to halt the optimization process if necessary, using parameter INFORM.

MON may be the dummy subroutine E04STU (E04STU is included in the NAG Library).

The specification of MON is:

SUBROUTINE MON (NVAR, X, NNZU, U, INFORM, RINFO, STATS, IUSER,
RUSER, CPUSER)

&

INTEGER NVAR, NNZU, INFORM, IUSER(*)
REAL (KIND=nag_wp) X(NVAR), U(NNZU), RINFO(32), STATS(32),

RUSER(*)
&

TYPE (C_PTR) CPUSER

1: NVAR – INTEGER Input

On entry: n, the number of variables in the problem.

2: XðNVARÞ – REAL (KIND=nag_wp) array Input

On entry: xi, the values of the decision variables x at the current iteration.

3: NNZU – INTEGER Input

On entry: the dimension of array U.

4: UðNNZUÞ – REAL (KIND=nag_wp) array Input

On entry: if NNZU > 0, U holds the values at the current iteration of Lagrange
multipliers (dual variables) for the constraints. See Section 3.1 for layout information.

5: INFORM – INTEGER Input/Output

On entry: a non-negative value.

On exit: must be set to a value describing the action to be taken by the solver on return
from MON. Specifically, if the value is negative the solution of the current problem will
terminate immediately with IFAIL ¼ 20; otherwise, computations will continue.

6: RINFOð32Þ – REAL (KIND=nag_wp) array Input

On entry: error measures and various indicators at the end of the current iteration as
described in Section 9.1.
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7: STATSð32Þ – REAL (KIND=nag_wp) array Input

On entry: solver statistics at the end of the current iteration as described in Section 9.1.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace
10: CPUSER – TYPE (C_PTR) User Workspace

MON is called with the arguments IUSER, RUSER and CPUSER as supplied to
E04STF. You should use the arrays IUSER, RUSER and CPUSER to supply
information to MON.

MON must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04STF is called. Arguments denoted as Input must not be changed by this
procedure.

8: NVAR – INTEGER Input

On entry: n, the number of variables in the problem. It must be unchanged from the value set
during the initialization of the handle by E04RAF.

9: XðNVARÞ – REAL (KIND=nag_wp) array Input/Output

On entry: x0, the initial estimates of the variables x.

On exit: the final values of the variables x.

10: NNZU – INTEGER Input

On entry: the number of Lagrange multipliers that are to be returned in array U.

If NNZU ¼ 0, U will not be referenced; otherwise it needs to match the dimension q as explained
in Section 3.1.

Constraints:

NNZU � 0;
if NNZU > 0, NNZU ¼ q.

11: UðNNZUÞ – REAL (KIND=nag_wp) array Output

Note: if NNZU > 0, U holds Lagrange multipliers (dual variables) for the constraints. See
Section 3.1 for layout information. If NNZU ¼ 0, U will not be referenced.

On exit: the final value of Lagrange multipliers z; �.

12: RINFOð32Þ – REAL (KIND=nag_wp) array Output

On exit: error measures and various indicators at the end of the final iteration as given in the
table below:

1 objective function value f xð Þ
2 constraint violation (primal infeasibility) (8)

3 dual infeasibility (7)

4 complementarity

5 Karush–Kuhn–Tucker error

13: STATSð32Þ – REAL (KIND=nag_wp) array Output

On exit: solver statistics at the end of the final iteration as given in the table below:

1 number of the iterations

3 number of backtracking trial steps
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4 number of Hessian evaluations

5 number of objective gradient evaluations

8 total wall clock time elapsed

19 number of objective function evaluations

20 number of constraint function evaluations

21 number of constraint Jacobian evaluations

14: IUSERð�Þ – INTEGER array User Workspace
15: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace
16: CPUSER – TYPE (C_PTR) User Workspace

IUSER, RUSER and CPUSER are not used by E04STF, but are passed directly to OBJFUN,
OBJGRD, CONFUN, CONGRD, HESS and MON and should be used to pass information to
these routines.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04STF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 2

The problem is already being solved.

This solver does not support matrix inequality constraints.

IFAIL ¼ 3

A different solver from the suite has already been used. Initialize a new HANDLE using
E04RAF.

IFAIL ¼ 4

The information supplied does not match with that previously stored.
On entry, NVAR ¼ valueh i must match that given during initialization of the HANDLE, i.e.,
valueh i.
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IFAIL ¼ 5

On entry, NNZU ¼ valueh i.
Constraint: NNZU ¼ valueh i or 0.
On entry, NNZU ¼ valueh i.
Constraint: no constraints present, so NNZU must be 0.

IFAIL ¼ 6

Either all of the constraint and objective Hessian structures must be defined or none (in which
case, the Hessians will be approximated by a limited-memory quasi-Newton L-BFGS method).

On entry, a nonlinear objective function has been defined but no objective Hessian sparsity
structure has been defined through E04RLF.

On entry, a nonlinear constraint function has been defined but no constraint Hessian sparsity
structure has been defined through E04RLF, for constraint number valueh i.

IFAIL ¼ 7

The dummy CONFUN routine was called but the problem requires these values. Please provide a
proper CONFUN routine.

The dummy CONGRD routine was called but the problem requires these derivatives. Please
provide a proper CONGRD routine.

The dummy HESS routine was called but the problem requires these derivatives. Either change
the option Hessian Mode or provide a proper HESS routine.

The dummy OBJFUN routine was called but the problem requires these values. Please provide a
proper OBJFUN routine.

The dummy OBJGRD routine was called but the problem requires these derivatives. Please
provide a proper OBJGRD routine.

IFAIL ¼ 20

User requested termination during a monitoring step. INFORM was set to a negative value in
MON.

IFAIL ¼ 22

Maximum number of iterations exceeded.

IFAIL ¼ 23

The solver terminated after an error in the step computation. This message is printed if the solver
is unable to compute a search direction, despite several attempts to modify the iteration matrix.
Usually, the value of the regularization parameter then becomes too large. One situation where
this can happen is when values in the Hessian are invalid (NaN or Infinity). You can check
whether this is true by using the Verify Derivatives option.

The solver terminated after failure in the restoration phase. This indicates that the restoration
phase failed to find a feasible point that was acceptable to the filter line search for the original
problem. This could happen if the problem is highly degenerate, does not satisfy the constraint
qualification, or if your NLP code provides incorrect derivative information.

The solver terminated after the maximum time allowed was exceeded. Maximum number of
seconds exceeded. Use option Time Limit to reset the limit.

The solver terminated due to an invalid option. Please contact NAG with details of the call to
E04STF.

The solver terminated due to an invalid problem definition. Please contact NAG with details of
the call to E04STF.
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The solver terminated with not enough degrees of freedom. This indicates that your problem, as
specified, has too few degrees of freedom. This can happen if you have too many equality
constraints, or if you fix too many variables.

IFAIL ¼ 24

The solver terminated after the search direction became too small. This indicates that the solver
is calculating very small step sizes and is making very little progress. This could happen if the
problem has been solved to the best numerical accuracy possible given the current NLP scaling.

IFAIL ¼ 25

Invalid number detected in user function. Either INFORM was set to a negative value within the
user-supplied functions OBJFUN, OBJGRD, CONFUN, CONGRD or HESS, or an Infinity or
NaN was detected in values returned from them.

IFAIL ¼ 50

The solver reports NLP solved to acceptable level. This indicates that the algorithm did not
converge to the desired tolerances, but that it was able to obtain a point satisfying the acceptable
tolerance level. This may happen if the desired tolerances are too small for the current problem.

IFAIL ¼ 51

The solver detected an infeasible problem. The restoration phase converged to a point that is a
minimizer for the constraint violation (in the ‘1-norm), but is not feasible for the original
problem. This indicates that the problem may be infeasible (or at least that the algorithm is stuck
at a locally infeasible point). The returned point (the minimizer of the constraint violation) might
help you to find which constraint is causing the problem. If you believe that the NLP is feasible,
it might help to start the optimization from a different point.

IFAIL ¼ 54

The solver terminated due to diverging iterates. The max-norm of the iterates has become larger
than a preset value. This can happen if the problem is unbounded below and the iterates are
diverging.

IFAIL ¼ �199
This routine is not available in this implementation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the solution is driven by optional parameter Stop Tolerance 1.

If IFAIL ¼ 0 on the final exit, the returned point satisfies Karush–Kuhn–Tucker (KKT) conditions to
the requested accuracy (under the default settings close to

ffiffi
�
p

where � is the machine precision) and
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thus it is a good estimate of a local solution. If IFAIL ¼ 50, some of the convergence conditions were
not fully satisfied but the point still seems to be a reasonable estimate and should be usable. Please refer
to Section 11.1 and the description of the particular options.

8 Parallelism and Performance

E04STF is not threaded in any implementation.

9 Further Comments

9.1 Description of the Printed Output

The solver can print information to give an overview of the problem and of the progress of the
computation. The output may be sent to two independent streams (files) which are set by optional
parameters Print File and Monitoring File. Optional parameters Print Level and Monitoring Level
determine the exposed level of detail. This allows, for example, the generation of a detailed log in a file
while the condensed information is displayed on the screen. This section also describes what kind of
information is made available to the monitoring routine MON via RINFO and STATS.

There are four sections printed to the primary output with the default settings (level 2): a derivative
check, a header, an iteration log and a summary. At higher levels more information will be printed,
including any internal IPOPT options that have been changed from their default values.

Derivative Check

If Verify Derivatives is set, then information will appear about any errors detected in the user-supplied
derivative routines OBJGRD, CONGRD or HESS. It may look like this:

Starting derivative checker for first derivatives.

* grad_f[ 1] = -2.000000E+00 ~ 2.455000E+01 [ 1.081E+00]
* jac_g [ 1, 4] = 4.700969E+01 v ~ 5.200968E+01 [ 9.614E-02]
Starting derivative checker for second derivatives.

* obj_hess[ 1, 1] = 1.881000E+03 v ~ 1.882000E+03 [
5.314E-04]
* 1-th constr_hess[ 1, 3] = 2.988964E+00 v ~ -1.103543E-02 [

3.000E+00]

Derivative checker detected 3 error(s).

The first line indicates that the value for the partial derivative of the objective with respect to the first
variable as returned by OBJGRD (the first one printed) differs sufficiently from a finite difference
estimation derived from OBJFUN (the second one printed). The number in square brackets is the
relative difference between these two numbers.

The second line reports on a discrepancy for the partial derivative of the first constraint with respect to
the fourth variable. If the indicator v is absent, the discrepancy refers to a component that had not been
included in the sparsity structure, in which case the nonzero structure of the derivatives should be
corrected. Mistakes in the first derivatives should be corrected before attempting to correct mistakes in
the second derivatives.

The third line reports on a discrepancy in a second derivative of the objective function, differentiated
with respect to the first variable, twice.

The fourth line reports on a discrepancy in a second derivative of the first constraint, differentiated with
respect to the first and third variables.

Header

If Print Level � 1, the header will contain statistics about the size of the problem how the solver sees
it, i.e., it reflects any changes imposed by preprocessing and problem transformations. The header may
look like:

Number of nonzeros in equality constraint Jacobian...: 4Number of
nonzeros in inequality constraint Jacobian.: 8Number of nonzeros in
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Lagrangian Hessian.............: 10Total number of vari-
ables............................: 4 variables with
only lower bounds: 4 variables with lower and upper
bounds: 0 variables with only upper bounds:
0Total number of equality constraints.................: 1Total number
of inequality constraints...............: 2 inequality
constraints with only lower bounds: 2 inequality constraints with
lower and upper bounds: 0 inequality constraints with only upper
bounds: 0

It summarises what is known about the variables and the constraints. Simple bounds are set by E04RHF
and standard equalities and inequalities by E04RJF.

Iteration log

If Print Level ¼ 2, the status of each iteration is condensed to one line. The line shows:

iter The current iteration count. This includes regular iterations and iterations during
the restoration phase. If the algorithm is in the restoration phase, the letter r will
be appended to the iteration number. The iteration number 0 represents the
starting point. This quantity is also available as STATSð1Þ of MON.

objective The unscaled objective value at the current point (given the current NLP scaling).
During the restoration phase, this value remains the unscaled objective value for
the original problem. This quantity is also available as RINFOð1Þ of MON.

inf_pr The unscaled constraint violation at the current point (given the current NLP
scaling). This quantity is the infinity-norm (max) of the (unscaled) constraints gi.
During the restoration phase, this value remains the constraint violation of the
original problem at the current point. This quantity is also available as RINFOð2Þ
of MON.

inf_du The scaled dual infeasibility at the current point (given the current NLP scaling).
This quantity measure the infinity-norm (max) of the internal dual infeasibility, �i
of Eq. (4a) in the implementation paper WÌchter and Biegler (2006), including
inequality constraints reformulated using slack variables and NLP scaling. During
the restoration phase, this is the value of the dual infeasibility for the restoration
phase problem. This quantity is also available as RINFOð3Þ of MON.

lg(mu) log10 of the value of the barrier parameter �. � itself is also available as
RINFOð4Þ of MON.

||d|| The infinity norm (max) of the primal step (for the original variables x and the
internal slack variables s). During the restoration phase, this value includes the
values of additional variables, p

�
and n

�
(see Eq. (30) in WÌchter and Biegler

(2006)). This quantity is also available as RINFOð5Þ of MON.

lg(rg) log10 of the value of the regularization term for the Hessian of the Lagrangian in
the augmented system (�w of Eq. (26) and Section 3.1 in WÌchter and Biegler
(2006)). A dash (–) indicates that no regularization was done. The regularization
term itself is also available as RINFOð6Þ of MON.

alpha_du The stepsize for the dual variables (�zk of Eq. (14c) in WÌchter and Biegler
(2006)). This quantity is also available as RINFOð7Þ of MON.

alpha_pr The stepsize for the primal variables (�k of Eq. (14a) in WÌchter and Biegler
(2006)). This quantity is also available as RINFOð8Þ of MON. The number is
usually followed by a character for additional diagnostic information regarding
the step acceptance criterion.

ff-type iteration in the filter method without second order correction

Ff-type iteration in the filter method with second order correction

hh-type iteration in the filter method without second order correction

Hh-type iteration in the filter method with second order correction
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kpenalty value unchanged in merit function method without second order
correction

Kpenalty value unchanged in merit function method with second order
correction

npenalty value updated in merit function method without second order
correction

Npenalty value updated in merit function method with second order
correction

RRestoration phase just started

win watchdog procedure

sstep accepted in soft restoration phase

t/Ttiny step accepted without line search

rsome previous iterate restored

ls The number of backtracking line search steps (does not include second order
correction steps). This quantity is also available as STATSð2Þ of MON.

Note that the step acceptance mechanisms in IPOPT consider the barrier objective function (5) which is
usually different from the value reported in the objective column. Similarly, for the purposes of the
step acceptance, the constraint violation is measured for the internal problem formulation, which
includes slack variables for inequality constraints and potentially NLP scaling of the constraint
functions. This value, too, is usually different from the value reported in inf_pr. As a consequence, a
new iterate might have worse values both for the objective function and the constraint violation as
reported in the iteration output, seemingly contradicting globalization procedure.

No t e t h a t a l l t h e s e v a l u e s a r e a l s o a v a i l a b l e i n RINFOð1Þ; . . . ;RINFOð8Þ a n d
STATSð1Þ; . . . ; STATSð2Þof the monitoring routine MON.

The output might look as follows:

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr
ls

0 2.6603500E+05 1.55E+02 3.21E+01 -1.0 0.00E+00 - 0.00E+00 0.00E+00
0

1 1.5053889E+05 7.95E+01 1.43E+01 -1.0 1.16E+00 - 4.55E-01 1.00E+00f
1

2 8.9745785E+04 3.91E+01 6.45E+00 -1.0 3.07E+01 - 5.78E-03 1.00E+00f
1

3 3.9878595E+04 1.63E+01 3.47E+00 -1.0 5.19E+00 0.0 2.43E-01 1.00E
+00f 1

4 2.7780042E+04 1.08E+01 1.64E+00 -1.0 3.66E+01 - 7.24E-01 8.39E-01f
1

5 2.6194274E+04 1.01E+01 1.49E+00 -1.0 1.07E+01 - 1.00E+00 1.05E-01f
1

6 1.5422960E+04 4.75E+00 6.82E-01 -1.0 1.74E+01 - 1.00E+00 1.00E+00f
1

7 1.1975453E+04 3.14E+00 7.26E-01 -1.0 2.83E+01 - 1.00E+00 5.06E-01f
1

8 8.3508421E+03 1.34E+00 2.04E-01 -1.0 3.96E+01 - 9.27E-01 1.00E+00f
1

9 7.0657495E+03 4.85E-01 9.22E-02 -1.0 5.32E+01 - 1.00E+00 1.00E+00f
1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr

ls
10 6.8359393E+03 1.17E-01 1.28E-01 -1.7 4.69E+01 - 8.21E-01 1.00E+00h

1
11 6.6508917E+03 1.52E-02 1.52E-02 -2.5 1.87E+01 - 1.00E+00 1.00E+00h

1
12 6.4123213E+03 8.77E-03 1.49E-01 -3.8 1.85E+01 - 7.49E-01 1.00E+00f

1
13 6.3157361E+03 4.33E-03 1.90E-03 -3.8 2.07E+01 - 1.00E+00 1.00E+00f

1
14 6.2989280E+03 1.12E-03 4.06E-04 -3.8 1.54E+01 - 1.00E+00 1.00E+00h
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1
15 6.2996264E+03 9.90E-05 2.05E-04 -5.7 5.35E+00 - 9.63E-01 1.00E+00h

1
16 6.2998436E+03 0.00E+00 1.86E-07 -5.7 4.55E-01 - 1.00E+00 1.00E+00h

1
17 6.2998424E+03 0.00E+00 6.18E-12 -8.2 2.62E-03 - 1.00E+00 1.00E+00h

1

If Print Level > 2, each iteration produces significantly more detailed output comprising detailed error
measures and output from internal operations. The output is reasonably self-explanatory so it is not
featured here in detail.

Summary

Once the solver finishes, a detailed summary is produced if Print Level � 1. An example is shown
below:

Number of Iterations....: 6

(scaled) (unscaled)
Objective...............: 7.8692659500479623E-01 6.2324586324379867E

+00
Dual infeasibility......: 7.9744615766675617E-10 6.3157735687207093E-09
Constraint violation....: 8.3555384833289281E-12 8.3555384833289281E-12
Complementarity.........: 0.0000000000000000E+00 0.0000000000000000E

+00
Overall NLP error.......: 7.9744615766675617E-10 6.3157735687207093E-09

Number of objective function evaluations = 7
Number of objective gradient evaluations = 7
Number of equality constraint evaluations = 7
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 7
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 6
Total CPU secs in IPOPT (w/o function evaluations) = 0.724
Total CPU secs in NLP function evaluations = 0.343

EXIT: Optimal Solution Found.

It starts with the total number of iterations the algorithm went through. Then, five quantities are printed,
all evaluated at the termination point: the value of the objective function, the dual infeasibility, the
constraint violation, the complementarity and the NLP error.

This is followed by some statistics on the number of calls to user-supplied functions and CPU time
taken in user-supplied functions and the main algorithm. Lastly, status at exit is indicated by a short
message. Detailed timings of the algorithm are displayed only if Stats Time is set.

9.2 Additional Licensor

Parts of the code for E04STF are distributed according to terms imposed by another licensor. Please
refer to the list of Library licensors available on the NAG Website for further details.

10 Example

This example is based on Problem 73 in Hock and Schittkowski (1981) and involves the minimization
of the linear function

f xð Þ ¼ 24:55x1 þ 26:75x2 þ 39:00x3 þ 40:50x4

subject to the bounds
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0 � x1;
0 � x2;
0 � x3;
0 � x4;

to the nonlinear constraint

12x1 þ 11:9x2 þ 41:8x3 þ 52:1x4 � 21� 1:645
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:28x21 þ 0:19x22 þ 20:5x23 þ 0:62x24

q
� 0

and the linear constraints

2:3x1 þ 5:6x2 þ 11:1x3 þ 1:3x4 � 5;
x1 þ x2 þ x3 þ x4 � 1 ¼ 0:

The initial point, which is infeasible, is

x0 ¼ 1; 1; 1; 1
� �T

and f x0ð Þ ¼ 130:8. The optimal solution (to five significant figures) is

x� ¼ 0:63552; 0:0; 0:31270; 0:051777ð ÞT;

10.1 Program Text

! E04STF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! NLP example : Linear objective + Linear constraint + Non-Linear constraint

Module e04stfe_mod

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, congrd, hess, mon, objfun, &

objgrd
Contains

Subroutine objfun(nvar,x,fx,inform,iuser,ruser,cpuser)

! .. Use Statements ..
Use, Intrinsic :: iso_c_binding, Only: c_ptr
Use nag_library, Only: f06eaf

! .. Scalar Arguments ..
Type (c_ptr), Intent (Inout) :: cpuser
Real (Kind=nag_wp), Intent (Out) :: fx
Integer, Intent (Inout) :: inform
Integer, Intent (In) :: nvar

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(nvar)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
fx = f06eaf(4,x,1,ruser,1)
Return

End Subroutine objfun
Subroutine objgrd(nvar,x,nnzfd,fdx,inform,iuser,ruser,cpuser)

! .. Use Statements ..
Use, Intrinsic :: iso_c_binding, Only: c_ptr

! .. Scalar Arguments ..
Type (c_ptr), Intent (Inout) :: cpuser
Integer, Intent (Inout) :: inform
Integer, Intent (In) :: nnzfd, nvar

! .. Array Arguments ..
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Real (Kind=nag_wp), Intent (Out) :: fdx(nnzfd)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(nvar)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
Continue
fdx(1:nnzfd) = ruser(1:nnzfd)
Return

End Subroutine objgrd
Subroutine confun(nvar,x,ncnln,gx,inform,iuser,ruser,cpuser)

! .. Use Statements ..
Use, Intrinsic :: iso_c_binding, Only: c_ptr

! .. Scalar Arguments ..
Type (c_ptr), Intent (Inout) :: cpuser
Integer, Intent (Inout) :: inform
Integer, Intent (In) :: ncnln, nvar

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gx(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(nvar)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Continue
gx(1) = 12.0_nag_wp*x(1) + 11.9_nag_wp*x(2) + 41.8_nag_wp*x(3) + &

52.1_nag_wp*x(4) - 1.645_nag_wp*sqrt(.28_nag_wp*x(1)**2+.19_nag_wp*x &
(2)**2+20.5_nag_wp*x(3)**2+.62_nag_wp*x(4)**2)

Return
End Subroutine confun
Subroutine congrd(nvar,x,nnzgd,gdx,inform,iuser,ruser,cpuser)

! .. Use Statements ..
Use, Intrinsic :: iso_c_binding, Only: c_ptr

! .. Scalar Arguments ..
Type (c_ptr), Intent (Inout) :: cpuser
Integer, Intent (Inout) :: inform
Integer, Intent (In) :: nnzgd, nvar

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gdx(nnzgd)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(nvar)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: tmp

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Continue
tmp = sqrt(0.62_nag_wp*x(4)**2+20.5_nag_wp*x(3)**2+ &

0.19_nag_wp*x(2)**2+0.28_nag_wp*x(1)**2)
gdx(1) = (12.0_nag_wp*tmp-0.4606_nag_wp*x(1))/tmp
gdx(2) = (11.9_nag_wp*tmp-0.31255_nag_wp*x(2))/tmp
gdx(3) = (41.8_nag_wp*tmp-33.7225_nag_wp*x(3))/tmp
gdx(4) = (52.1_nag_wp*tmp-1.0199_nag_wp*x(4))/tmp
Return

End Subroutine congrd
Subroutine hess(nvar,x,ncnln,idf,sigma,lambda,nnzh,hx,inform,iuser, &

ruser,cpuser)

! .. Use Statements ..
Use, Intrinsic :: iso_c_binding, Only: c_ptr

! .. Scalar Arguments ..
Type (c_ptr), Intent (Inout) :: cpuser
Real (Kind=nag_wp), Intent (In) :: sigma
Integer, Intent (In) :: idf, ncnln, nnzh, nvar
Integer, Intent (Inout) :: inform

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hx(nnzh)
Real (Kind=nag_wp), Intent (In) :: lambda(ncnln), x(nvar)
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Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: tmp

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
inform = -1
hx = 0.0_nag_wp
Select Case (idf)
Case (0)

inform = 0
Case (1,-1)

tmp = sqrt(0.62_nag_wp*x(4)**2+20.5_nag_wp*x(3)**2+ &
0.19_nag_wp*x(2)**2+0.28_nag_wp*x(1)**2)

tmp = tmp*(x(4)**2+33.064516129032258064_nag_wp*x(3)**2+ &
0.30645161290322580645_nag_wp*x(2)**2+ &
0.45161290322580645161_nag_wp*x(1)**2)

! 1,1..4
hx(1) = (-0.4606_nag_wp*x(4)**2-15.229516129032258064_nag_wp*x(3)**2 &

-0.14115161290322580645_nag_wp*x(2)**2)/tmp
hx(2) = (0.14115161290322580645_nag_wp*x(1)*x(2))/tmp
hx(3) = (15.229516129032258064_nag_wp*x(1)*x(3))/tmp
hx(4) = (0.4606_nag_wp*x(1)*x(4))/tmp

! 2,2..4
hx(5) = (-0.31255_nag_wp*x(4)**2-10.334314516129032258_nag_wp*x(3)** &

2-0.14115161290322580645_nag_wp*x(1)**2)/tmp
hx(6) = (10.334314516129032258_nag_wp*x(2)*x(3))/tmp
hx(7) = (0.31255_nag_wp*x(2)*x(4))/tmp

! 3,3..4
hx(8) = (-33.7225_nag_wp*x(4)**2-10.334314516129032258_nag_wp*x(2)** &

2-15.229516129032258065_nag_wp*x(1)**2)/tmp
hx(9) = (33.7225_nag_wp*x(3)*x(4))/tmp

! 4,4
hx(10) = (-33.7225_nag_wp*x(3)**2-0.31255_nag_wp*x(2)**2- &

0.4606_nag_wp*x(1)**2)/tmp
If (idf==-1) Then

hx = lambda(1)*hx
End If
inform = 0

Case Default
End Select
Return

End Subroutine hess
Subroutine mon(nvar,x,nnzu,u,inform,rinfo,stats,iuser,ruser,cpuser)

! .. Use Statements ..
Use, Intrinsic :: iso_c_binding, Only: c_ptr

! .. Scalar Arguments ..
Type (c_ptr), Intent (Inout) :: cpuser
Integer, Intent (Inout) :: inform
Integer, Intent (In) :: nnzu, nvar

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: rinfo(32), stats(32), u(nnzu), &

x(nvar)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: i, io_unit

! .. Executable Statements ..
Continue
io_unit = iuser(2)
Write (io_unit,99999)
Write (io_unit,99998) x
Write (io_unit,99997)
Write (io_unit,99998) u
Write (io_unit,99996)
Write (io_unit,99995)(i,rinfo(i),i=1,32)
Write (io_unit,99994)
Write (io_unit,99995)(i,stats(i),i=1,32)

99999 Format (’Monitoring...’,/,’ X(*)’)
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99998 Format (1P,E14.6)
99997 Format (’ U(*)’)
99996 Format (’ RINFO(32)’)
99995 Format (4(I2,1P,E14.6,1X))
99994 Format (’ STATS(32)’)

Return
End Subroutine mon

End Module e04stfe_mod

Program e04stfe

! .. Use Statements ..
Use nag_library, Only: e04raf, e04ref, e04rgf, e04rhf, e04rjf, e04rkf, &

e04rlf, e04ryf, e04rzf, e04stf, e04zmf, nag_wp, &
x04acf

Use e04stfe_mod, Only: confun, congrd, hess, mon, objfun, objgrd
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &

c_ptr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: solve_timeout = 5._nag_wp
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Type (c_ptr) :: cpuser, handle
Real (Kind=nag_wp) :: bigbnd
Integer :: i, idlc, idx, ifail, ilinear, j, &

nclin, ncnln, nnzu, nvar, ry_ifail
Character (60) :: opt_s

! .. Local Arrays ..
Real (Kind=nag_wp) :: b(8), bl(4), bu(4), linbl(2), &

linbu(2), nlnbl(1), nlnbu(1), &
rinfo(32), ruser(4), stats(32), x(4)

Real (Kind=nag_wp), Allocatable :: u(:)
Integer :: icolb(8), icolgd(4), icolh(10), &

idxfd(4), irowb(8), irowgd(4), &
irowh(10), iuser(2)

! .. Intrinsic Procedures ..
Intrinsic :: int

! .. Executable Statements ..

Write (nout,*) ’E04STF Example Program Results’
Write (nout,*)
Flush (nout)

ifail = 0
Call x04acf(66,’e04stf.out’,1,ifail)
Call x04acf(67,’e04stf.mon’,1,ifail)
Call x04acf(68,’e04stf.umon’,1,ifail)

Do ilinear = 0, 1
handle = c_null_ptr
bigbnd = 1.0E40_nag_wp
nvar = 4
nnzu = 0
Call e04raf(handle,nvar,ifail)

Write (opt_s,99992) bigbnd
Call e04zmf(handle,opt_s,ifail)

! Add simple bounds (x_i>=0).
bl(1:4) = 0.0_nag_wp
bu(1:4) = bigbnd
nnzu = nnzu + 2*nvar
Call e04rhf(handle,nvar,bl,bu,ifail)

iuser(1) = ilinear

! Add linear objective
ruser(1:4) = (/24.55_nag_wp,26.75_nag_wp,39.00_nag_wp,40.50_nag_wp/)
If (ilinear==1) Then
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Call e04ref(handle,4,ruser(1:4),ifail)
Else

idxfd(1:4) = (/1,2,3,4/)
Call e04rgf(handle,4,idxfd,ifail)

End If

! Add two linear constraints
nclin = 2
nnzu = nnzu + 2*nclin
linbl(1:2) = (/5.0_nag_wp,1.0_nag_wp/)
linbu(1:2) = (/bigbnd,1.0_nag_wp/)
irowb(1:8) = (/1,1,1,1,2,2,2,2/)
icolb(1:8) = (/1,2,3,4,1,2,3,4/)
b(1:8) = (/2.3_nag_wp,5.6_nag_wp,11.1_nag_wp,1.3_nag_wp,1.0_nag_wp, &

1.0_nag_wp,1.0_nag_wp,1.0_nag_wp/)
idlc = 0
Call e04rjf(handle,nclin,linbl,linbu,nclin*nvar,irowb,icolb,b,idlc, &

ifail)

! Add one nonlinear constraint
ncnln = 1
nnzu = nnzu + 2*ncnln
nlnbl(1:1) = (/21.0_nag_wp/)
nlnbu(1:1) = (/bigbnd/)
irowgd(1:4) = (/1,1,1,1/)
icolgd(1:4) = (/1,2,3,4/)
Call e04rkf(handle,ncnln,nlnbl,nlnbu,4,irowgd,icolgd,ifail)

! Define dense structure of the Hessian
idx = 1
Do i = 1, nvar

Do j = i, nvar
icolh(idx) = j
irowh(idx) = i
idx = idx + 1

End Do
End Do

! Hessian of nonlinear constraint
Call e04rlf(handle,1,idx-1,irowh,icolh,ifail)
If (ilinear/=1) Then

Call e04rlf(handle,0,idx-1,irowh,icolh,ifail)
End If

Call e04ryf(handle,nout,’Overview’,ifail)

! call solver
x = (/1.0_nag_wp,1.0_nag_wp,1.0_nag_wp,1.0_nag_wp/)
Allocate (u(nnzu))

iuser(2) = 68
Call e04zmf(handle,’Monitoring File = 67’,ifail)
Call e04zmf(handle,’Monitoring Level = 5’,ifail)
Call e04zmf(handle,’Outer Iteration Limit = 26’,ifail)
Call e04zmf(handle,’Print File = 66’,ifail)
Call e04zmf(handle,’Print Level = 2’,ifail)
Call e04zmf(handle,’Stop Tolerance 1 = 2.5e-8’,ifail)
Call e04zmf(handle,’Time Limit = 60’,ifail)

ifail = -1
Call e04stf(handle,objfun,objgrd,confun,congrd,hess,mon,nvar,x,nnzu,u, &

rinfo,stats,iuser,ruser,cpuser,ifail)

ry_ifail = 0
Call e04ryf(handle,nout,’Options’,ry_ifail)

If (ifail==0) Then
Write (nout,99999)
Write (nout,99995)(i,x(i),i=1,nvar)
Write (nout,99998)
Write (nout,99993)(i,u(2*i-1),i,u(2*i),i=1,nvar)
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Write (nout,99997)
Write (nout,99994)(i,u(2*i-1+2*nvar),i,u(2*i+2*nvar),i=1,nclin)
Write (nout,99996)
Write (nout,99994)(i,u(2*i-1+2*nvar+2*nclin),i, &

u(2*i+2*nvar+2*nclin),i=1,ncnln)
Write (nout,99991) rinfo(1)
Write (nout,99990) rinfo(2)
Write (nout,99989) rinfo(3)
Write (nout,99988) rinfo(4)
Write (nout,99987) rinfo(5)
If (stats(8)<solve_timeout) Then

Write (nout,99986)
Else

Write (nout,99985) stats(8)
End If
Write (nout,99984) int(stats(1))
Write (nout,99983) int(stats(19))
Write (nout,99982) int(stats(5))
Write (nout,99981) int(stats(20))
Write (nout,99980) int(stats(21))
Write (nout,99979) int(stats(4))

End If

ifail = 0
Call e04ryf(handle,nout,’Overview’,ifail)

99999 Format (/,’Variables’)
99998 Format (’Variable bound Lagrange multipliers’)
99997 Format (’Linear constraints Lagrange multipliers’)
99996 Format (’Nonlinear constraints Lagrange multipliers’)
99995 Format (5X,’x(’,I10,’)’,17X,’=’,1P,E20.6)
99994 Format (5X,’l+(’,I10,’)’,16X,’=’,1P,E20.6,/,5X,’l-(’,I10,’)’,16X,’=’, &

1P,E20.6)
99993 Format (5X,’zL(’,I10,’)’,16X,’=’,1P,E20.6,/,5X,’zU(’,I10,’)’,16X,’=’, &

1P,E20.6)
99992 Format (’Infinite Bound Size = ’,1P,E14.6)
99991 Format (’At solution, Objective minimum =’,1P,E20.7)
99990 Format (’ Constraint violation =’,1P,E20.2)
99989 Format (’ Dual infeasibility =’,1P,E20.2)
99988 Format (’ Complementarity =’,1P,E20.2)
99987 Format (’ KKT error =’,1P,E20.2)
99986 Format (’Solved in allotted time limit’)
99985 Format (’Solution took ’,E10.3,’ sec, which is longer than expected’)
99984 Format (’ after iterations :’,I11)
99983 Format (’ after objective evaluations :’,I11)
99982 Format (’ after objective gradient evaluations :’,I11)
99981 Format (’ after constraint evaluations :’,I11)
99980 Format (’ after constraint gradient evaluations :’,I11)
99979 Format (’ after hessian evaluations :’,I11)

Deallocate (u)
! release all memory held in the handle

Call e04rzf(handle,ifail)
Write (nout,*) ’---------------------------------------------’

End Do
End Program e04stfe

10.2 Program Results

E04STF Example Program Results

Overview
Status: Problem and option settings are editable.
No of variables: 4
Objective function: nonlinear
Simple bounds: defined
Linear constraints: 2
Nonlinear constraints: 1
Matrix constraints: not defined yet

Option settings
Begin of Options
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Outer Iteration Limit = 26 * U
Infinite Bound Size = 1.00000E+40 * U
Print File = 66 * U
Print Level = 2 * U
Monitoring File = 67 * U
Monitoring Level = 5 * U
Stats Time = No * d
Stop Tolerance 1 = 2.50000E-08 * U
Hessian Mode = Exact * S
Verify Derivatives = Yes * S
Time Limit = 6.00000E+01 * U

End of Options

Variables
x( 1) = 6.355216E-01
x( 2) = 2.066279E-10
x( 3) = 3.127019E-01
x( 4) = 5.177655E-02

Variable bound Lagrange multipliers
zL( 1) = 3.916168E-09
zU( 1) = 0.000000E+00
zL( 2) = 2.433326E-01
zU( 2) = 0.000000E+00
zL( 3) = 7.974843E-09
zU( 3) = 0.000000E+00
zL( 4) = 4.944607E-08
zU( 4) = 0.000000E+00

Linear constraints Lagrange multipliers
l+( 1) = 0.000000E+00
l-( 1) = 4.105411E-01
l+( 2) = 0.000000E+00
l-( 2) = 5.803551E-01

Nonlinear constraints Lagrange multipliers
l+( 1) = 0.000000E+00
l-( 1) = 1.837124E+01

At solution, Objective minimum = 2.9894378E+01
Constraint violation = 1.11E-16
Dual infeasibility = 6.71E-12
Complementarity = 2.56E-09
KKT error = 2.56E-09

Solved in allotted time limit
after iterations : 8
after objective evaluations : 9
after objective gradient evaluations : 9
after constraint evaluations : 9
after constraint gradient evaluations : 9
after hessian evaluations : 8

Overview
Status: Solver finished, only options can be changed.
No of variables: 4
Objective function: nonlinear
Simple bounds: defined
Linear constraints: 2
Nonlinear constraints: 1
Matrix constraints: not defined

---------------------------------------------
Overview

Status: Problem and option settings are editable.
No of variables: 4
Objective function: linear
Simple bounds: defined
Linear constraints: 2
Nonlinear constraints: 1
Matrix constraints: not defined yet

Option settings
Begin of Options

Outer Iteration Limit = 26 * U
Infinite Bound Size = 1.00000E+40 * U
Print File = 66 * U
Print Level = 2 * U
Monitoring File = 67 * U
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Monitoring Level = 5 * U
Stats Time = No * d
Stop Tolerance 1 = 2.50000E-08 * U
Hessian Mode = Exact * S
Verify Derivatives = Yes * S
Time Limit = 6.00000E+01 * U

End of Options

Variables
x( 1) = 6.355216E-01
x( 2) = 2.066279E-10
x( 3) = 3.127019E-01
x( 4) = 5.177655E-02

Variable bound Lagrange multipliers
zL( 1) = 3.916168E-09
zU( 1) = 0.000000E+00
zL( 2) = 2.433326E-01
zU( 2) = 0.000000E+00
zL( 3) = 7.974843E-09
zU( 3) = 0.000000E+00
zL( 4) = 4.944607E-08
zU( 4) = 0.000000E+00

Linear constraints Lagrange multipliers
l+( 1) = 0.000000E+00
l-( 1) = 4.105411E-01
l+( 2) = 0.000000E+00
l-( 2) = 5.803551E-01

Nonlinear constraints Lagrange multipliers
l+( 1) = 0.000000E+00
l-( 1) = 1.837124E+01

At solution, Objective minimum = 2.9894378E+01
Constraint violation = 1.11E-16
Dual infeasibility = 6.71E-12
Complementarity = 2.56E-09
KKT error = 2.56E-09

Solved in allotted time limit
after iterations : 8
after objective evaluations : 9
after objective gradient evaluations : 9
after constraint evaluations : 9
after constraint gradient evaluations : 9
after hessian evaluations : 8

Overview
Status: Solver finished, only options can be changed.
No of variables: 4
Objective function: linear
Simple bounds: defined
Linear constraints: 2
Nonlinear constraints: 1
Matrix constraints: not defined

---------------------------------------------

11 Algorithmic Details

E04STF is an implementation of IPOPT (see WÌchter and Biegler (2006)) that is fully supported and
maintained by NAG. It uses Harwell packages MA97 for the underlying sparse linear algebra
factorization and MC68 approximate minimum degree algorithm for the ordering. Any issues relating to
E04STF should be directed to NAG who assume all responsibility for the E04STF routine and its
implementation.

In the remainder of this section, we repeat part of Section 2.1 of WÌchter and Biegler (2006).

To simplify notation, we describe the method for the problem formulation

minimize
x2Rn

f xð Þ ð2Þ

subject to g xð Þ ¼ 0 ð3Þ

E04STF NAG Library Manual

E04STF.24 Mark 26



x � 0: ð4Þ
Range constraints of the form l � c xð Þ � u can be expressed in this formulation by introducing slack
variables xs � 0, xt � 0 (increasing n by 2) and defining new equality constraints
g x; xsð Þ 	 c xð Þ � l� xs ¼ 0 and g x; xtð Þ 	 u� c xð Þ � xt ¼ 0.

E04STF, like the methods discussed in Williams and Lang (2013), Byrd et al. (2000), Conn et al.
(2000) and Fiacco and McCormick (1990), computes (approximate) solutions for a sequence of barrier
problems

minimize
x2Rn

’� xð Þf xð Þ � �
Xn
i¼1

ln x ið Þ� �
ð5Þ

subject to g xð Þ ¼ 0 ð6Þ

for a decreasing sequence of barrier parameters � converging to zero.

The algorithm may be interpreted as a homotopy method to the primal-dual equations,

rf xð Þ þ rg xð Þ�� z ¼ 0 ð7Þ

g xð Þ ¼ 0 ð8Þ

XZe� �e ¼ 0 ð9Þ

with the homotopy parameter �, which is driven to zero (see e.g., Byrd et al. (1997) and Gould et al.
(2001)). Here, Xdiag xð Þ for a vector x (similarly zdiag zð Þ, etc.), and e stands for the vector of all ones
for appropriate dimension, while � 2 R

m and z 2 R
n correspond to the Lagrange multipliers for the

equality constraints (3) and the bound constraints (4), respectively.

Note, that the equations (7), (8) and (9) for � ¼ 0 together with ‘x, z � 0’ are the Karush–Kuhn–
Tucker (KKT) conditions for the original problem (2), (3) and (4). Those are the first order optimality
conditions for (2), (3) and (4) if constraint qualifications are satisfied (Conn et al. (2000)).

Starting from an initial point supplied in X, E04STF computes an approximate solution to the barrier
problem (5) and (6) for a fixed value of � (by default, 0:1), then decreases the barrier parameter, and
continues the solution of the next barrier problem from the approximate solution of the previous one.

A sophisticated overall termination criterion for the algorithm is used to overcome potential difficulties
when the Lagrange multipliers become large. This can happen, for example, when the gradients of the
active constraints are nearly linear dependent. The termination criterion is described in detail by
WÌchter and Biegler (2006) (also see below Section 11.1).

11.1 Stopping Criteria

Using the individual parts of the primal-dual equations (7), (8) and (9), we define the optimality error
for the barrier problem as

E� x; �; zð Þmax
rf xð Þ þ rg xð Þ�� zk k1

sd
; g xð Þk k1;

XZe� �ek k1
sc


 �
ð10Þ

with scaling parameters sd, sc � 1 defined below (not to be confused with NLP scaling factors
described in Section 11.2). By E0 x; �; zð Þ we denote (10) with � ¼ 0; this measures the optimality error
for the original problem (2), (3) and (4). The overall algorithm terminates if an approximate solution
~x�; ~��; ~z�
� �

(including multiplier estimates) satisfying

E0 ~x�; ~��; ~z�
� �

� �tol ð11Þ

is found, where �tol > 0 is the user provided error tolerance in optional parameter Stop Tolerance 1.

Even if the original problem is well scaled, the multipliers � and z might become very large, for
example, when the gradients of the active constraints are (nearly) linearly dependent at a solution of (2),
(3) and (4). In this case, the algorithm might encounter numerical difficulties satisfying the unscaled
primal-dual equations (7), (8) and (9) to a tight tolerance. In order to adapt the termination criteria to
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handle such circumstances, we choose the scaling factors

sdmax smax ;
�k k1 þ zk k1
mþ nð Þ


 �
=smax scmax smax ;

zk k1
n


 �
=smax

in (10). In this way, a component of the optimality error is scaled, whenever the average value of the
multipliers becomes larger than a fixed number smax � 1 (smax ¼ 100 in our implementation). Also
note, in the case that the multipliers diverge, E0 x; �; zð Þ can only become small, if a Fritz John point for
(2), (3) and (4) is approached, or if the primal variables diverge as well.

11.2 Scaling the NLP

Ideally, the formulated problem should be scaled so that, near the solution, all function gradients
(objective and constraints), when nonzero, are of a similar order of a magnitude. E04STF will compute
automatic NLP scaling factors for the objective and constraint functions (but not the decision variables)
and apply them if large imbalances of scale are detected. This rescaling is only computed at the starting
point. References to scaled or unscaled objective or constraints in Section 9.1 and Section 11 should be
understood in this context.

12 Optional Parameters

Several optional parameters in E04STF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal arguments of E04STF these optional parameters have
associated default values that are appropriate for most problems. Therefore, you need only specify those
optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The optional parameters can be changed by calling E04ZMF anytime between the initialization of the
handle by E04RAF and the call to the solver. Modification of the arguments during intermediate
monitoring stops is not allowed. Once the solver finishes, the optional parameters can be altered again
for the next solve.

If any options are set by the solver (typically those with the choice of AUTO), their value can be
retrieved by E04ZNF. If the solver is called again, any such arguments are reset to their default values
and the decision is made again.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Defaults

Hessian Mode

Infinite Bound Size

Monitoring File

Monitoring Level

Outer Iteration Limit

Print File

Print Level

Stats Time

Stop Tolerance 1

Time Limit

Verify Derivatives

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:
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the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively.

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

All options accept the value DEFAULT to return single options to their default states.

Keywords and character values are case and white space insensitive.

Defaults

This special keyword may be used to reset all optional parameters to their default values. Any argument
value given with this keyword will be ignored.

Hessian Mode a Default ¼ AUTO

This argument specifies whether the Hessian will be supplied by the user (in HX) or approximated by
E04STF using a limited-memory quasi-Newton L-BFGS method. In the AUTO setting, if no Hessian
structure has been registered in the problem with a call to E04RLF, and there are explicitly nonlinear
user-supplied functions, then the Hessian will be approximated. Otherwise HESS will be called if and
only if any of E04RGF or E04RKF have been used to define the problem. Approximating the Hessian is
likely to require more iterations to achieve convergence but will reduce the time spent in user-supplied
functions.

Constraint: Hessian Mode ¼ AUTO, EXACT or APPROXIMATE.

Infinite Bound Size r Default ¼ 1020

This defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper bound
greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than or
equal to �bigbnd will be regarded as �1). Note that a modification of this optional parameter does not
influence constraints which have already been defined; only the constraints formulated after the change
will be affected.

It also serves as a limit for the objective function to be considered unbounded (IFAIL ¼ 54).

Constraint: Infinite Bound Size � 1000.

Monitoring File i Default ¼ �1
If i � 0, the unit number for the secondary (monitoring) output. If set to �1, no secondary output is
provided. The information output to this unit is controlled by Monitoring Level.

Constraint: Monitoring File � �1.

Monitoring Level i Default ¼ 4

This argument sets the amount of information detail that will be printed by the solver to the secondary
output. The meaning of the levels is the same as with Print Level.

Constraint: 0 �Monitoring Level � 5.

Outer Iteration Limit i Default ¼ 100

The maximum number of iterations to be performed by E04STF. Setting the option too low might lead
to IFAIL ¼ 22.

Constraint: Outer Iteration Limit � 0.

Print File i Default ¼ 6

If i � 0, the unit number for the primary output of the solver. If Print File ¼ �1, the primary output is
completely turned off independently of other settings. The information output to this unit is controlled
by Print Level.

Constraint: Print File � �1.
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Print Level i Default ¼ 2

This argument defines how detailed information should be printed by the solver to the primary output.

i Output

0 No output from the solver (except a one-time banner)

1 Additionally, derivative check information, the Header and Summary.

2 Additionally, the Iteration log.

3, 4 Additionally, details of each iteration with scalar quantities printed.

5 Additionally, individual components of arrays are printed resulting in large output.

Constraint: 0 � Print Level � 5.

Stats Time a Default ¼ NO

This argument allows you to turn on timings of various parts of the algorithm to give a better overview
of where most of the time is spent. This might be helpful for a choice of different solving approaches.

Constraint: Stats Time ¼ YES or NO.

Stop Tolerance 1 r Default ¼ max 10�6;
ffiffi
�
p� �

This option sets the value �tol which is used for optimality and complementarity tests from KKT
conditions See Section 11.1.

Constraint: Stop Tolerance 1 > �.

Time Limit r Default ¼ 106

A limit on seconds that the solver can use to solve one problem. If during the convergence check this
limit is exceeded, the solver will terminate with a corresponding error message.

Constraint: Time Limit > 0.

Verify Derivatives a Default ¼ AUTO

This argument specifies whether the routine should perform numerical checks on the consistency of the
user-supplied functions. It is recommended that such checks are enabled when first developing the
formulation of the problem. Option AUTO will perform the checks unless it is determined that there are
no explicitly nonlinear user-supplied functions.

Constraint: Verify Derivatives ¼ AUTO, YES or NO.
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NAG Library Routine Document

E04SVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04SVF is a solver from the NAG optimization modelling suite for problems such as, quadratic
programming (QP), linear semidefinite programming (SDP) and semidefinite programming with bilinear
matrix inequalities (BMI-SDP).

2 Specification

SUBROUTINE E04SVF (HANDLE, NVAR, X, NNZU, U, NNZUC, UC, NNZUA, UA,
RINFO, STATS, INFORM, IFAIL)

&

INTEGER NVAR, NNZU, NNZUC, NNZUA, INFORM, IFAIL
REAL (KIND=nag_wp) X(NVAR), U(NNZU), UC(NNZUC), UA(NNZUA), RINFO(32),

STATS(32)
&

TYPE (C_PTR) HANDLE

3 Description

E04SVF serves as a solver for compatible problems stored as a handle. The handle points to an internal
data structure which defines the problem and serves as means of communication for routines in the
suite. First, the problem handle is initialized by E04RAF. Then some of the routines E04REF, E04RFF,
E04RHF, E04RJF, E04RNF or E04RPF may be used to formulate the objective function, (standard)
constraints and matrix constraints of the problem. Once the problem is fully set, the handle may be
passed to the solver. When the handle is not needed anymore, E04RZF should be called to destroy it
and deallocate the memory held within. See E04RAF for more details.

Problems which can be defined this way are, for example, (generally nonconvex) quadratic
programming (QP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ
subject to lB � Bx � uB ðbÞ

lx � x � ux; ðcÞ
ð1Þ

linear semidefinite programming problems (SDP)

minimize
x2Rn

cTx ðaÞ

subject to
Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð2Þ

or semidefinite programming problems with bilinear matrix inequalities (BMI-SDP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ

subject to
Xn
i;j¼1

xixjQ
k
ij þ

Xn
i¼1
xiA

k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux: ðdÞ

ð3Þ

Here c, lx and ux are n-dimensional vectors, H is a symmetric n by n matrix, lB, uB are
mB-dimensional vectors, B is a general mB by n rectangular matrix and Ak

i , Q
k
ij are symmetric
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matrices. The expression S � 0 stands for a constraint on eigenvalues of a symmetric matrix S, namely,
all the eigenvalues should be non-negative, i.e., the matrix should be positive semidefinite. See relevant
routines of the suite for more details on the problem formulation.

The solver is based on a generalized Augmented Lagrangian method with a suitable choice of standard
and matrix penalty functions. For a detailed description of the algorithm see Section 11. Under standard
assumptions on the problem (Slater constraint qualification, boundedness of the objective function on
the feasible set, see Stingl (2006) for details) the algorithm converges to a local solution. In case of
convex problems such as linear SDP or convex QP, this is the global solution. The solver is suitable for
both small dense and large-scale sparse problems.

The algorithm behaviour and solver strategy can be modified by various optional parameters (see
Section 12) which can be set by E04ZMF and E04ZPF anytime between the initialization of the handle
by E04RAF and a call to the solver. Once the solver has finished, options may be modified for the next
solve. The solver may be called repeatedly with various starting points and/or optional parameters.

There are several optional parameters with a multiple choice where the default choice is AUTO (for
example, Hessian Density). This value means that the decision over the option is left to the solver
based on the structure of the problem. Option getter E04ZNF can be called to retrieve the choice of
these options as well as on any other options.

Optional parameter Task may be used to switch the problem to maximization or to ignore the objective
function and find only a feasible point.

Optional parameter Monitor Frequency may be used to turn on the monitor mode of the solver. The
solver invoked in this mode pauses regularly even before the optimal point is found to allow monitoring
the progress from the calling program. All the important error measures and statistics are available in
the calling program which may terminate the solver early if desired (see argument INFORM).

3.1 Structure of the Lagrangian Multipliers

The algorithm works internally with estimates of both the decision variables, denoted by x, and the
Lagrangian multipliers (dual variables) for standard and matrix constraints, denoted by u and U ,
respectively. You may provide initial estimates, request approximations during the run (the monitor
mode turned on) and obtain the final values. The Lagrangian multipliers are split into two arrays, the
multipliers u for (standard) constraints are stored in array U and multipliers U for matrix constraints in
array UA. Both arrays need to conform to the structure of the constraints.

If the simple bounds were defined (E04RHF was successfully called), the first 2n elements of U belong
to the corresponding Lagrangian multipliers, interleaving a multiplier for the lower and for the upper
bound for each xi. If any of the bounds were set to infinity, the corresponding Lagrangian multipliers
are set to 0 and may be ignored.

Similarly, the following 2mB elements of U belong to multipliers for the linear constraints, if
formulated by E04RJF. The organization is the same, i.e., the multipliers for each constraint for the
lower and upper bounds are alternated and zeroes are used for any missing (infinite bound) constraint.

A Lagrangian multiplier for a matrix constraint (one block) of dimension d by d is a dense symmetric
matrix of the same dimension. All multipliers U are stored next to each other in array UA in the same
order as the matrix constraints were defined by E04RNF and E04RPF. The lower triangle of each is
stored in the packed column order (see Section 3.3.2 in the F07 Chapter Introduction). For example, if
there are four matrix constraints of dimensions 7, 3, 1, 1, the dimension of array UA should be 36. The
first 28 elements d1 � d1 þ 1ð Þ=2ð Þ belong to the packed lower triangle of U1, followed by six elements
of U2 and one element for each U3 and U4. See for example Section 10 in E04RDF.

3.2 Approximation of the Lagrangian Multipliers

By the nature of the algorithm, all inequality Lagrangian multiplier u; U are always kept positive during
the computational process. This applies even to Lagrangian multipliers of inactive constraints at the
solution. They will only be close to zero although they would normally be equal to zero exactly. This is
one of the major differences between results from solvers based on the active set method (such as
E04NQF) and others, such as, E04SVF or interior point methods. As a consequence, the initial estimate
of the multipliers (if provided) might be adjusted by the solver to be sufficiently positive, also the
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estimates returned during the intermediate exits might only be a very crude approximation to their final
values as they do not satisfy all the Karush–Kuhn–Tucker (KKT) conditions.

Another difference is that E04NQF merges multipliers for both lower and upper inequality into one
element whose sign determines the inequality because there can be at most one active constraint and
multiplier for the inactive is exact zero. Negative multipliers are associated with the upper bounds and
positive with the lower bounds. On the other hand, E04SVF works with both multipliers at the same
time so they are returned in two elements, one for the lower bound, the other for the upper bound (see
Section 3.1). An equivalent result can be achieved by subtracting the upper bound multiplier from the
lower one. This holds even when equalities are interpreted as two inequalities (see optional parameter
Transform Constraints).
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programming Optimization Methods and Software 18(3) 317–333

Kocõvara M and Stingl M (2007) On the solution of large-scale SDP problems by the modified barrier
method using iterative solvers Math. Programming (Series B) 109(2–3) 413–444

Mittelmann H D (2003) An independent benchmarking of SDP and SOCP solvers Math. Programming
95 407–430

Stingl M (2006) On the Solution of Nonlinear Semidefinite Programs by Augmented Lagrangian
Methods, PhD thesis Institute of Applied Mathematics II, Friedrich–Alexander University of Erlangen–
Nuremberg

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and the problem
formulated by some of the routines E04REF, E04RFF, E04RHF, E04RJF, E04RNF and E04RPF.
It must not be changed between the calls.

2: NVAR – INTEGER Input

On entry: n, the number of decision variables x in the problem. It must be unchanged from the
value set during the initialization of the handle by E04RAF.

3: XðNVARÞ – REAL (KIND=nag_wp) array Input/Output

Note: intermediate stops take place only if Monitor Frequency > 0.

On entry: if Initial X ¼ USER (the default), x0, the initial estimate of the variables x, otherwise
X need not be set.

On intermediate exit: the value of the variables x at the end of the current outer iteration.

On intermediate re-entry: the input is ignored.

On final exit: the final value of the variables x.

4: NNZU – INTEGER Input

On entry: the dimension of array U.
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If NNZU ¼ 0, U will not be referenced; otherwise it needs to match the dimension of constraints
defined by E04RHF and E04RJF as explained in Section 3.1.

Constraint: NNZU � 0.

5: UðNNZUÞ – REAL (KIND=nag_wp) array Input/Output

Note: intermediate stops take place only if Monitor Frequency > 0.

If NNZU > 0, U holds Lagrangian multipliers (dual variables) for (standard) constraints, i.e.,
simple bounds defined by E04RHF and a set of mB linear constraints defined by E04RJF. Either
their initial estimates, intermediate approximations or final values, see Section 3.1.

If NNZU ¼ 0, U will not be referenced.

On entry: if Initial U ¼ USER (the default is AUTOMATIC), u0, the initial estimate of the
Lagrangian multipliers u, otherwise U need not be set.

On intermediate exit: the estimate of the multipliers u at the end of the current outer iteration.

On intermediate re-entry: the input is ignored.

On exit: the final value of multipliers u.

6: NNZUC – INTEGER Input

On entry: the dimension of array UC. If NNZUC ¼ 0, UC will not be referenced. This argument
is reserved for future releases of the NAG Library which will allow definition of second order
cone constraints. It needs to be set to 0 at the moment.

Constraint: NNZUC ¼ 0.

7: UCðNNZUCÞ – REAL (KIND=nag_wp) array Input/Output

UC is reserved for future releases of the NAG Library which will allow definition of second
order cone constraints. It is not referenced at the moment.

8: NNZUA – INTEGER Input

On entry: the dimension of array UA. If NNZUA ¼ 0, UA will not be referenced; otherwise it
needs to match the total number of nonzeros in all matrix Lagrangian multipliers (constraints
defined by E04RNF and E04RPF) as explained in Section 3.1.

Constraint: NNZUA � 0.

9: UAðNNZUAÞ – REAL (KIND=nag_wp) array Input/Output

Note: intermediate stops take place only if Monitor Frequency > 0.

If NNZUA > 0, UA holds the Lagrangian multipliers for matrix constraints defined by E04RNF
and E04RPF, see Section 3.1.

If NNZUA ¼ 0, UA will not be referenced.

On entry: if Initial U ¼ USER (the default is AUTOMATIC), U0, the initial estimate of the
matrix Lagrangian multipliers U , otherwise UA need not be set.

On intermediate exit: the estimate of the matrix multipliers U at the end of the outer iteration.

On intermediate re-entry: the input is ignored.

On final exit: the final estimate of the multipliers U .

10: RINFOð32Þ – REAL (KIND=nag_wp) array Output error measures and various indicators (see
Section 11 for details) at the end of the current (or final) outer iteration as given in the table below:

1 objective function value f xð Þ
2 optimality (12)
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3 feasibility (13)

4 complementarity (14)

5 minimum penalty

6 relative precision (11)

7 relative duality gap (10)

8 precision f x‘
� �

� f x‘þ1
� �		 		

9 duality gap

10 minimum penalty for (standard) inequalities p

11 minimum penalty for matrix inequalities P

12 feasibility of equality constraints

13 feasibility of (standard) inequalities

14 feasibility of matrix inequalities

15 complementarity of equality constraints

16 complementarity of (standard) inequalities

17 complementarity of matrix inequalities

18–23 DIMACS error measures (16) (only if turned on by DIMACS Measures)

24–32 reserved for future use

11: STATSð32Þ – REAL (KIND=nag_wp) array Output

On intermediate or final exit: solver statistics at the end of the current (or final) outer iteration as
given in the table below. Note that time statistics is provided only if Stats Time is set (the
default is NO), the measured time is returned in seconds.

1 number of the outer iterations

2 total number of the inner iterations

3 total number of the linesearch steps

4 number of evaluations of the augmented Lagrangian F ðÞ, (see (8))

5 number of evaluations of rF ðÞ

6 number of evaluations of r2F ðÞ
7 reserved for future use

8 total running time of the solver

9 total running time of the solver without evaluations of the user's functions and
monitoring stops

10 time spent in the inner iterations

11 time spent in Lagrangian multipliers updates

12 time spent in penalty parameters updates

13 time spent in matrix feasibility computation

14 time of evaluations of F ðÞ
15 time of evaluations of rF ðÞ

16 time of evaluations of r2F ðÞ
17 time of factorizations of the Newton system

18 time of factorizations of the matrix constraints
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19–32 reserved for future use

12: INFORM – INTEGER Input/Output

Note: intermediate stops take place only if Monitor Frequency > 0.

On initial entry: no effect.

On intermediate exit: INFORM ¼ 1.

On intermediate re-entry: if set to 0, solving the current problem is terminated and the routine
returns IFAIL ¼ 20; otherwise the routine continues.

On final exit: INFORM ¼ 0.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04SVF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 2

This solver does not support general nonlinear objective and constraints.

IFAIL ¼ 3

A different solver from the suite has already been used.

IFAIL ¼ 4

On entry, NVAR ¼ valueh i, expected value ¼ valueh i.
Constraint: NVAR must match the value given during initialization of HANDLE.

IFAIL ¼ 5

On entry, NNZU ¼ valueh i.
NNZU does not match the size of the Lagrangian multipliers for (standard) constraints.
The correct value is 0 for no (standard) constraints.

On entry, NNZU ¼ valueh i.
NNZU does not match the size of the Lagrangian multipliers for (standard) constraints.
The correct value is either 0 or valueh i.
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On entry, NNZUA ¼ valueh i.
NNZUA does not match the size of the Lagrangian multipliers for matrix constraints.
The correct value is 0 for no matrix constraints.

On entry, NNZUA ¼ valueh i.
NNZUA does not match the size of the Lagrangian multipliers for matrix constraints.
The correct value is either 0 or valueh i.
On entry, NNZUC ¼ valueh i.
NNZUC does not match the size of the Lagrangian multipliers for second order cone constraints.
The correct value is 0 for no such constraints.

IFAIL ¼ 20

User requested termination during a monitoring step.

IFAIL ¼ 21

The current starting point is unusable.

The starting point x0, either provided by the user (if Initial X ¼ USER, the default) or the
automatic estimate (if Initial X ¼ AUTOMATIC), must not be extremely infeasible in the matrix
constraints (infeasibility of order 106 and higher) and all the functions used in the problem
formulation must be evaluatable.

In the unlikely case this error is triggered, it is necessary to provide a better estimate of the
initial values.

IFAIL ¼ 22

Outer iteration limit has been reached.
The requested accuracy is not achieved.

If Outer Iteration Limit is left to the default, this error indicates numerical difficulties.
Consider whether the s topping tolerances (Stop Tolerance 1, Stop Tolerance 2,
Stop Tolerance Feasibility) are set too low or optional parameters affecting the behaviour of
the penalty updates (P Update Speed, P Min or Pmat Min) have been modified inadvisedly. The
iteration log should reveal more about the misbehaviour. Providing a different starting point
might be of help in certain situations.

IFAIL ¼ 23

The inner subproblem could not be solved to the required accuracy.
Inner iteration limit has been reached.

The inner subproblem could not be solved to the required accuracy.
Limited progress in the inner subproblem triggered a stop (heuristic inner stop criteria).

The inner subproblem could not be solved to the required accuracy.
Line search or another internal component failed.

A problem with the convergence of the inner subproblem is typically a sign of numerical
difficulties of the whole algorithm. The inner subproblem might be stopped before reaching the
required accuracy because of the Inner Iteration Limit, a heuristic detected no progress in the
inner iterations (if Inner Stop Criteria ¼ HEURISTIC, default) or if an internal component
failed (for example, line search was unable to find a suitable step). The algorithm tries to
recover, however, it might give up after several attempts with one of these error messages. If it
occurs in the very early iterations, consider increasing Inner Stop Tolerance and possibly
Init Value P or Init Value Pmat which should ease the first iterations. An occurrence in later
iterations indicates numerical difficulties typically due to scaling and/or ill-conditioning or the
problem is close to infeasible. Reducing the tolerance on the stopping criteria or increasing
P Update Speed might be of limited help.
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IFAIL ¼ 24

Unable to make progress, the algorithm was stopped.

This error is returned if the solver cannot decrease the duality gap over a range of iterations.
This can be due to the scaling of the problem or the problem might be close to primal or dual
infeasibility.

IFAIL ¼ 50

The algorithm converged to a suboptimal solution.
The full accuracy was not achieved. The solution should still be usable.

This error may be reported only if Stop Criteria ¼ SOFT (default). The solver predicted that it
is unable to reach a better estimate of the solution. However, the error measures indicate that the
point is a reasonable approximation. Typically, only the norm of the gradient of the Lagrangian
(optimality) does not fully satisfy the requested tolerance whereas the others are well below the
tolerance.

Setting Stop Criteria ¼ STRICT will disallow this error but it is unlikely that the algorithm
would reach a better solution.

IFAIL ¼ 51

The problem was found to be infeasible during preprocessing.

One or more of the constraints (or its part after preprocessing) violates the constraints by more
than �feas (Stop Tolerance Feasibility).

IFAIL ¼ 52

The problem was found unbounded during preprocessing.

The objective function consists of an unrestricted ray and thus the problem does not have a
solution.

IFAIL ¼ 53

The problem seems to be infeasible, the algorithm was stopped.

Whilst the algorithm cannot definitively detect that the problem is infeasible, several indirect
indicators suggest that it might be the case.

IFAIL ¼ 54

The problem seems to be unbounded, the algorithm was stopped.

Whilst the algorithm cannot definitively detect that the problem is unbounded, several indirect
indicators (such as a rapid decrease in the objective function and a lack of convergence in the
inner subproblem) suggest that this might be the case. A good scaling of the objective function is
always highly recommended to avoid situations when unusual behavior triggers falsely this error
exit.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the solution is driven by optional parameters Stop Tolerance 1, Stop Tolerance 2,
Stop Tolerance Feasibility and Stop Criteria and in certain cases DIMACS Measures.

If IFAIL ¼ 0 on the final exit, the returned point satisfies Karush–Kuhn–Tucker (KKT) conditions to
the requested accuracy (under the default settings close to

ffiffi
�
p

) and thus it is a good estimate of a local
solution. If IFAIL ¼ 50, some of the convergence conditions were not fully satisfied but the point still
seems to be a reasonable estimate and should be usable. Please refer to Section 11.2 and the description
of the particular options.

8 Parallelism and Performance

E04SVF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E04SVF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Description of the Printed Output

The solver can print information to give an overview of the problem and of the progress of the
computation. The output may be send to two independent unit numbers which are set by optional
parameters Print File and Monitoring File. Optional parameters Print Level, Print Options and
Monitoring Level determine the exposed level of detail. This allows, for example, to generate a
detailed log in a file while the condensed information is displayed on the screen.

By default (Print File ¼ 6, Print Level ¼ 2), four sections are printed to the standard output: a header,
a list of options, an iteration log and a summary.

Header

The header contains statistics about the size of the problem as represented internally, i.e., it reflects any
changes imposed by preprocessing and problem transformations (see, for example, Presolve Block
Detect and Transform Constraints). The header may look like:

E04SV, NLP-SDP Solver (Pennon)
---------------------------------------------------------------------------
Number of variables 2 [eliminated 0]

simple linear nonlin
(Standard) inequalities 3 0 0
(Standard) equalities 0 0
Matrix inequalities 1 1 [dense 2, sparse 0]

[max dimension 3]

It shows the total number of variables and how many of them were eliminated (e.g., fixed by a simple
equality). A constraint with both a lower and an upper bound counts as 2 inequalities. Simple bounds
are set by E04RHF, matrix inequalities by E04RNF and E04RPF and standard equalities and
inequalities by E04RJF. Note that matrix constraints of dimension 1 are extracted and treated as
(standard) inequalities as well. The header report concludes with the number of matrix constraints
factorized as dense and sparse matrices, together with the largest dimension of the matrix inequalities.
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Optional parameters list

The list shows all options of the solver, each displayed on one line. The line contains the option name,
its current value and an indicator for how it was set. The options left at their defaults are noted by (d),
the ones set by the user are noted by (U) and the options reset by the solver by (S). The solver will
automatically set options which are set to AUTO or options which are not possible to satisfy in the
given context (e.g., requesting DIMACS Measures for a nonlinear problem). Note that the output
format is compatible with the file format expected by E04ZPF. The output might look as follows:

Outer Iteration Limit = 20 * U
Stop Tolerance 1 = 1.00000E-06 * d
Stop Tolerance 2 = 1.00000E-07 * d
Hessian Density = Dense * S

Iteration log

If Print Level ¼ 2, the status of each major iteration is condensed to one line. The line shows the major
iteration number (0 represents the starting point), the current objective value, KKT measures
(optimality, feasibility and complementarity), minimal penalty and the number of inner iterations
performed. Note that all these values are also available in RINFOð1Þ; . . . ;RINFOð5Þ and STATSð1Þ.
The output might look as follows:

-----------------------------------------------------------------
it | objective | optim | feas | compl | pen min | inner

-----------------------------------------------------------------
0 0.00000E+00 7.34E+00 1.23E-01 4.41E+01 1.00E+00 0
1 -3.01998E-01 2.54E-03 0.00E+00 1.89E+00 1.00E+00 6
2 -2.53008E+00 1.06E-03 1.30E-01 3.22E-01 3.17E-01 8
3 -2.08172E+00 6.52E-03 1.85E-02 4.54E-02 1.01E-01 7
4 -2.01060E+00 6.47E-03 4.10E-03 1.02E-02 3.19E-02 3

Occasionally, a one letter flag is printed at the end of the line indicating that the inner subproblem was
not solved to the required accuracy. The possibilities are M for maximum number of inner iterations, L

for difficulties in the line search and ! when a heuristic stop took place. Repeated troubles in the
subproblems may lead to IFAIL ¼ 23. The output below had Inner Iteration Limit ¼ 5 which was not
enough in the first subproblem (first outer iteration).

----------------------------------------------------------------
it | objective | optim | feas | compl | pen min | inner

----------------------------------------------------------------
0 0.00000E+00 1.46E+03 5.01E+01 1.46E+03 6.40E+01 0
1 3.78981E+02 3.86E+01 0.00E+00 1.21E+04 6.40E+01 5 M
2 9.11724E+02 1.46E-02 0.00E+00 9.24E+02 4.45E+01 5

All KKT measures should normally converge to zero as the algorithm progresses and once the
requested accuracy (Stop Tolerance 2) is achieved, the solver stops. However, the convergence is not
necessarilly monotonic. The penalty parameters are decreased each major iteration which should
improve overall the feasibility of the problem. This also increases the ill-conditioning which might lead
to a higher number of inner iterations. A very high number of inner iterations usually signals numerical
difficulties. See Section 11 for the algorithmic details.

If Print Level > 2, each major iteration produces significantly more detailed output comprising detailed
error measures and output from every inner iteration. The output is self-explanatory so is not featured
here in detail.

Summary

Once the solver finishes, a detailed summary is produced. An example is shown below:

--------------------------------------------------------------
Status: converged, an optimal solution found
--------------------------------------------------------------
Final objective value 2.300000E+01
Relative precision 5.873755E-09
Optimality 1.756062E-10
Feasibility 9.048738E-08
Complementarity 1.855566E-08
DIMACS error 1 8.780308E-11
DIMACS error 2 0.000000E+00
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DIMACS error 3 0.000000E+00
DIMACS error 4 4.524369E-08
DIMACS error 5 4.065998E-10
DIMACS error 6 3.948012E-10
Iteration counts

Outer iterations 13
Inner iterations 82
Linesearch steps 95

Evaluation counts
Augm. Lagr. values 96
Augm. Lagr. gradient 96
Augm. Lagr. hessian 82

Timing
Total time 0 h 0 min 3 sec

Evaluations + monitoring 0.04 sec
Solver itself 3.09 sec

Inner minimization step 2.72 sec ( 87.1%)
Augm. Lagr. value 0.28 sec ( 9.0%)
Augm. Lagr. gradient 0.67 sec ( 21.6%)
Augm. Lagr. hessian 1.11 sec ( 35.4%)
system matr. factor. 0.64 sec ( 20.5%)
const. matr. factor. 0.40 sec ( 12.8%)

Multiplier update 0.01 sec ( 0.3%)
Penalty update 0.02 sec ( 0.5%)
Feasibility check 0.15 sec ( 4.7%)

--------------------------------------------------------------

It starts with the status line of the overall result which matches the IFAIL value. It is followed by the
final objective value and the error measures (including DIMACS Measures if turned on). Iteration
counters, numbers of evaluations of the Augmented Lagrangian function and timing of the routine
conclude the section. The timing of the algorithm is displayed only if Stats Time is set.

10 Example

Semidefinite Programming has many applications in several fields of mathematics, such as,
combinatorial optimization, finance, statistics, control theory or structural optimization. However,
these applications seldom come in the form of (2) or (3). Usually a reformulation is needed or even a
relaxation is employed to achieve the desired formulation. This is also the case of the LovÄsz #
function computed in this example. See also Section 10 in E04RAF for links to further examples in the
suite.

The LovÄsz # function (or also called # number) of an undirected graph G ¼ V ;Eð Þ is an important
quantity in combinatorial optimization. It gives an upper bound to Shannon capacity of the graph G and
is also related to the clique number and the chromatic number of the complement of G which are NP-
hard problems.

The # function can be expressed in various ways, here we use the following:

# Gð Þ ¼ minimize �max Hð Þ j H 2 S
n; sij ¼ 1 if i ¼ j or if ij =2 E

� 
where n ¼ Vj j and S

n denotes the space of real symmetric n by n matrices. This eigenvalue
optimization problem is easy to reformulate as an SDP problem by introducing an artificial variable t as
follows:

minimize
t;H

t

subject to H � tI
H 2 S

n; sij ¼ 1 if i ¼ j or if ij =2 E:
Finally, this can be written as (2)) which is formulated in the example:

minimize
t;x

t

subject to tI þ
P
ij2E

xijEij � J � 0

where J is a matrix of all ones and Eij is a matrix of all zeros except i; jð Þ and j; ið Þ.
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The example also demonstrates how to set the optional parameters and how to retrieve them.

The data file stores the Petersen graph whose # is 4.

10.1 Program Text

Program e04svfe

! E04SVF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! Compute Lovasz theta number of the given graph G on the input
! via semidefinite programming as
! min {lambda_max(H) | H is nv x nv symmetric matrix where
! h_ij=1 if ij is not an edge or if i==j}

! .. Use Statements ..
Use nag_library, Only: e04raf, e04rff, e04rnf, e04rzf, e04svf, e04zmf, &

e04znf, nag_wp
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &

c_ptr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Type (c_ptr) :: h
Real (Kind=nag_wp) :: rvalue
Integer :: dima, i, idblk, idx, ifail, inform, &

ivalue, j, maxe, nblk, ne, nnzasum, &
nnzu, nnzua, nnzuc, nv, nvar, optype

Character (40) :: cvalue
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), x(:)
Real (Kind=nag_wp) :: rdummy(1), rinfo(32), stats(32)
Integer, Allocatable :: blksizea(:), icola(:), irowa(:), &

nnza(:), va(:), vb(:)
Integer :: idummy(1)

! .. Intrinsic Procedures ..
Intrinsic :: trim

! .. Executable Statements ..
Continue

Write (nout,*) ’E04SVF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file.
Read (nin,*)

! Read in the number of vertices and edges of the graph.
Read (nin,*) nv
Read (nin,*) ne

Allocate (va(ne),vb(ne))

! Read in edges of the graph, accept only 1<=i<j<=nv.
maxe = ne
ne = 0
Do idx = 1, maxe

Read (nin,*) i, j
If (i>=1 .And. i<j .And. j<=nv) Then

ne = ne + 1
va(ne) = i
vb(ne) = j

End If
End Do

! Initialize handle.
h = c_null_ptr
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! Number of variables (same as edges in the graph plus one).
nvar = ne + 1

! Initialize an empty problem handle with NVAR variables.
ifail = 0
Call e04raf(h,nvar,ifail)

! Add the objective function to the handle.
ifail = 0
Call e04rff(h,1,(/1/),(/1.0_nag_wp/),0,idummy,idummy,rdummy,ifail)

! Generate matrix constraint as:
! sum_{ij is edge in G} x_ij*E_ij + t*I - J >=0
! where J is the all-ones matrix.

! Just one matrix inequality.
nblk = 1
dima = nv

! Total number of nonzeros
nnzasum = ne + nv + (nv+1)*nv/2

Allocate (nnza(nvar+1),irowa(nnzasum),icola(nnzasum),a(nnzasum),x(nvar))
! A_0 is all ones matrix

nnza(1) = (nv+1)*nv/2
idx = 0
Do i = 1, nv

Do j = i, nv
idx = idx + 1
irowa(idx) = i
icola(idx) = j
a(idx) = 1.0_nag_wp

End Do
End Do

! A_1 is the identity
nnza(2) = nv
Do i = 1, nv

idx = idx + 1
irowa(idx) = i
icola(idx) = i
a(idx) = 1.0_nag_wp

End Do
! A_2, A_3, ..., A_{ne+1} match the E_ij matrices

nnza(3:ne+2) = 1
Do i = 1, ne

idx = idx + 1
irowa(idx) = va(i)
icola(idx) = vb(i)
a(idx) = 1.0_nag_wp

End Do

! Add the constraint to the problem formulation.
Allocate (blksizea(nblk))
blksizea(:) = (/dima/)

idblk = 0
ifail = 0
Call e04rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,blksizea,idblk, &

ifail)

! Set optional arguments of the solver.
ifail = 0
Call e04zmf(h,’Initial X = Automatic’,ifail)

! Pass the handle to the solver, we are not interested in
! Lagrangian multipliers.

nnzu = 0
nnzuc = 0
nnzua = 0
ifail = -1
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Call e04svf(h,nvar,x,nnzu,rdummy,nnzuc,rdummy,nnzua,rdummy,rinfo,stats, &
inform,ifail)

If (ifail==0 .Or. ifail==50) Then
! Retrieve some of the settings

ifail = 0
Call e04znf(h,’Hessian Density’,ivalue,rvalue,cvalue,optype,ifail)
Write (nout,*) ’The solver chose to use ’, trim(cvalue), ’ hessian’
ifail = 0
Call e04znf(h,’Linesearch Mode’,ivalue,rvalue,cvalue,optype,ifail)
Write (nout,*) ’and ’, trim(cvalue), ’ as linesearch.’

Write (nout,Fmt=99999) ’Lovasz theta number of the given graph is’, &
rinfo(1)

End If

! Destroy the handle.
ifail = 0
Call e04rzf(h,ifail)

99999 Format (1X,A,1X,F7.2)
End Program e04svfe

10.2 Program Data

E04SVF Example Program Data
10 : Number of vertices (Petersen graph)
15 : Number of edges
1 2 : List of edges, one per line,
2 3 : given as pairs i j of vertices (i<j)
3 4
4 5
1 5
1 6
2 7
3 8
4 9
5 10
6 8
6 9
7 9
7 10
8 10

10.3 Program Results

E04SVF Example Program Results

E04SV, NLP-SDP Solver (Pennon)
------------------------------
Number of variables 16 [eliminated 0]

simple linear nonlin
(Standard) inequalities 0 0 0
(Standard) equalities 0 0
Matrix inequalities 1 0 [dense 1, sparse 0]

[max dimension 10]

Begin of Options
Outer Iteration Limit = 100 * d
Inner Iteration Limit = 100 * d
Infinite Bound Size = 1.00000E+20 * d
Initial X = Automatic * U
Initial U = Automatic * d
Initial P = Automatic * d
Hessian Density = Dense * S
Init Value P = 1.00000E+00 * d
Init Value Pmat = 1.00000E+00 * d
Presolve Block Detect = Yes * d
Print File = 6 * d
Print Level = 2 * d
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Print Options = Yes * d
Monitoring File = -1 * d
Monitoring Level = 4 * d
Monitor Frequency = 0 * d
Stats Time = No * d
P Min = 1.05367E-08 * d
Pmat Min = 1.05367E-08 * d
U Update Restriction = 5.00000E-01 * d
Umat Update Restriction = 3.00000E-01 * d
Preference = Speed * d
Transform Constraints = No * S
Dimacs Measures = Check * d
Stop Criteria = Soft * d
Stop Tolerance 1 = 1.00000E-06 * d
Stop Tolerance 2 = 1.00000E-07 * d
Stop Tolerance Feasibility = 1.00000E-07 * d
Linesearch Mode = Fullstep * S
Inner Stop Tolerance = 1.00000E-02 * d
Inner Stop Criteria = Heuristic * d
Task = Minimize * d
P Update Speed = 12 * d

End of Options
--------------------------------------------------------------
it| objective | optim | feas | compl | pen min |inner

--------------------------------------------------------------
0 0.00000E+00 4.71E+01 1.00E+01 4.81E+01 1.60E+01 0
1 9.55399E+01 9.29E-03 0.00E+00 9.52E+01 1.60E+01 8
2 3.93849E+01 1.16E-03 0.00E+00 3.81E+01 6.63E+00 5
3 1.68392E+01 1.19E-02 0.00E+00 1.52E+01 2.75E+00 3
4 8.50544E+00 7.32E-04 0.00E+00 5.78E+00 1.14E+00 4
5 5.62254E+00 1.56E-02 0.00E+00 2.07E+00 4.72E-01 3
6 4.63348E+00 7.66E-03 0.00E+00 7.33E-01 1.96E-01 4
7 4.25322E+00 2.99E-03 0.00E+00 2.72E-01 8.11E-02 4
8 4.10154E+00 2.41E-03 0.00E+00 1.05E-01 3.36E-02 4
9 4.04076E+00 1.87E-03 0.00E+00 4.14E-02 1.39E-02 4

10 4.01631E+00 6.25E-03 0.00E+00 1.65E-02 5.77E-03 5
11 4.00656E+00 3.23E-03 0.00E+00 6.59E-03 2.39E-03 5
12 4.00263E+00 2.89E-03 0.00E+00 2.64E-03 9.91E-04 5
13 4.00106E+00 2.08E-03 0.00E+00 1.06E-03 4.11E-04 5
14 4.00042E+00 1.53E-03 0.00E+00 4.25E-04 1.70E-04 5

--------------------------------------------------------------
it| objective | optim | feas | compl | pen min |inner

--------------------------------------------------------------
15 4.00017E+00 1.30E-06 0.00E+00 1.70E-04 7.05E-05 6
16 4.00007E+00 7.48E-07 0.00E+00 6.82E-05 2.92E-05 6
17 4.00003E+00 3.20E-07 0.00E+00 2.73E-05 1.21E-05 6
18 4.00001E+00 1.31E-07 0.00E+00 1.10E-05 5.02E-06 6
19 4.00000E+00 5.15E-08 0.00E+00 4.39E-06 2.08E-06 6
20 4.00000E+00 1.92E-08 0.00E+00 1.76E-06 8.62E-07 6
21 4.00000E+00 7.06E-09 0.00E+00 7.05E-07 3.57E-07 6
22 4.00000E+00 1.98E-09 0.00E+00 2.82E-07 1.48E-07 6

--------------------------------------------------------------
Status: converged, an optimal solution found
--------------------------------------------------------------
Final objective value 4.000000E+00
Relative precision 8.450361E-08
Optimality 1.983580E-09
Feasibility 0.000000E+00
Complementarity 2.822749E-07
DIMACS error 1 9.917898E-10
DIMACS error 2 0.000000E+00
DIMACS error 3 0.000000E+00
DIMACS error 4 0.000000E+00
DIMACS error 5 3.202984E-08
DIMACS error 6 3.136387E-08
Iteration counts

Outer iterations 22
Inner iterations 112
Linesearch steps 308

Evaluation counts
Augm. Lagr. values 135
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Augm. Lagr. gradient 135
Augm. Lagr. hessian 112

--------------------------------------------------------------
The solver chose to use DENSE hessian
and FULLSTEP as linesearch.
Lovasz theta number of the given graph is 4.00

11 Algorithmic Details

This section contains a description of the algorithm used in E04SVF which is based on the
implementation of the code called Pennon. For further details, see Kocõvara and Stingl (2003), Stingl
(2006) and Kocõvara and Stingl (2007).

For simplicity, we will use the following problem formulation; its connection to (SDP) and (BMI-SDP)
is easy to see:

minimize
x2Rn

f xð Þ
subject to gk xð Þ � 0; k ¼ 1; 2; . . . ;mg

hk xð Þ ¼ 0; k ¼ 1; 2; . . . ;mh

Ak xð Þ � 0; k ¼ 1; 2; . . . ;mA;

ð4Þ

where f , gk, hk are C2 functions from R
n to R and Ak is a C2 matrix function from R

n to S
mk . Here S

m

denotes the space of real symmetric matrices m�m and S 2 S
m, S � 0 stands for a constraint on

eigenvalues of S, namely the matrix S should be positive semidefinite. Furthermore, we define the inner
product on S

m by A;Bh i
S
m ¼ trace ABð Þ. The index S

m will be omitted whenever the dimension is clear
from the context. Finally, for � : Sm ! S

m and X;Y 2 S
m, D� X;Yð Þ denotes the directional derivative

of � with respect to X in direction Y .

11.1 Overview

The algorithm is based on a (generalized) augmented Lagrangian approach and on a suitable choice of
smooth penalty/barrier functions ’g : R! R for (standard) inequality constraints and ’A : R! R for
constraints on matrix eigenvalues. By means of ’A we define a penalty/barrier function for matrix
inequalities as follows.

Let A 2 S
m have an eigenvalue decomposition A ¼ ST�S where � ¼ diag �1; �2; . . . ; �mð ÞT. We define

matrix function �P : Sm ! S
m for P > 0 as

�P : A 7�!ST

P’A
�1
P

� �
0 � � � 0

0 P’A
�2
P

� �
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � P’A
�m
P

� �
0BBB@

1CCCAS: ð5Þ

Both ’g and ’A satisfy a number of assumptions (see Kocõvara and Stingl (2003)) guaranteeing, in
particular, that for any p, P > 0

gk xð Þ � 0 , p’g gk xð Þ=pð Þ � 0; k ¼ 1; 2; . . . ;mg;
Ak xð Þ � 0 , �P Ak xð Þð Þ � 0; k ¼ 1; 2; . . . ;mA:

ð6Þ

Further in the text, we use simplified notation ’p �ð Þ ¼ p’g �=pð Þ.
Thus for any p, P > 0, problem (4) has the same solution as the following augmented problem

minimize
x2Rn

f xð Þ
subject to ’p gk xð Þð Þ � 0; k ¼ 1; 2; . . . ;mg

hk xð Þ ¼ 0; k ¼ 1; 2; . . . ;mh

�P Ak xð Þð Þ � 0; k ¼ 1; 2; . . . ;mA:

ð7Þ
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The Lagrangian of (7) can be viewed as a (generalized) augmented Lagrangian of (4):

F x; u; v; U; p; Pð Þ ¼ f xð Þ �
Xmg

k¼1
uk’p gk xð Þð Þ

þ
Xmh

k¼1
vkhk xð Þ

�
XmA

k¼1
Uk; �P Ak xð Þð Þh i;

ð8Þ

where u 2 R
mg , v 2 R

mh and U ¼ U1; . . . ; UmA
ð Þ, Uk 2 S

pk , k ¼ 1; . . . ;mA are Lagrange multipliers
associated with the (standard) inequalities and equalities and the matrix inequality constraints,
respectively.

The algorithm combines ideas of the (exterior) penalty and (interior) barrier methods with the
augmented Lagrangian method, it can be defined as follows:

Algorithm 1 (Outer Loop)Let x0, u0, v0 and U0 be given. Let p0 > 0, P 0 > 0, �0 > 0. For ‘ ¼ 0; 1; . . .
repeat until a stopping criteria or maximum number of iterations is reached:

(i) Find x‘þ1, v‘þ1 satisfying

rxF x‘þ1; u‘; v‘þ1; U‘; p‘; P ‘
� ��� �� � �‘

h x‘þ1
� ��� �� � �‘ ð9Þ

(ii) Update Lagrangian multipliers

U‘þ1
k ¼ D�P Ak x‘þ1

� �
;U‘

k

� �
; k ¼ 1; 2; . . . ;mA

u‘þ1k ¼ u‘k’
0
g gk x

‘þ1� �
=p‘

� �
; k ¼ 1; 2; . . . ;mg

(iii) Update penalty parameters and inner problem stopping criteria

p‘þ1 < p‘; P ‘þ1 < P‘; �‘þ1 � �‘:
Step (i) of Algorithm 1, further referred as the inner problem, is the most time-consuming and thus the
choice of the solver for (9) is critical for the overall efficiency of the method. See Section 11.4 below.

The inequality Lagrangian multipliers update in step (ii) is motivated by the fact that if x‘þ1, v‘þ1 solve
(9) exactly in iteration ‘, we obtain

rxF x‘þ1; u‘þ1; v‘þ1; U‘þ1; p‘; P ‘
� �

¼ 0:

Details can be found, for example, in Stingl (2006).

In practise, numerical studies showed that it is not advantageous to do the full updates of multipliers u,
U . Firstly, big changes in the multipliers may lead to a large number of iterations in subsequent solution
of (9) and, secondly, the multipliers might become ill-conditioned after a few steps and the algorithm
suffers from numerical instabilities. To overcome these difficulties, a restricted update is performed
instead.

New Lagrangian multipliers for (standard) inequalities u‘þ1k , for k ¼ 1; 2; . . . ;mg are limited not to
violate the following bound

�g <
u‘þ1k

u‘k
<

1

�g

for a given 0 < �g < 1 (see U Update Restriction).

A similar strategy is applied to the matrix multipliers U‘þ1
k as well. For 0 < �A < 1 (see Umat Update

Restriction) set

Unew
k ¼ U‘þ1

k þ �A U‘
k � U‘þ1

k

� �
:

The penalty parameters p; P in step (iii) are updated by some constant factor dependent on the initial
penalty parameters p0; P 0 and P Update Speed. The update process is stopped when pmin and Pmin are
reached (see P Min, Pmat Min).
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Additional details about the multiplier and penalty update strategies, as well as local and global
convergence properties under standard assumptions can be found in an extensive study Stingl (2006).

11.2 Stopping Criteria

Algorithm 1 is stopped when all the stopping criteria are satisfied to the requested accuracy, these are:

f x‘
� �

� F x‘; u‘; v‘; U‘; p‘; P ‘
� �		 		
1þ f x‘ð Þj j � �1; relative duality gapð Þ ð10Þ

f x‘
� �

� f x‘�1
� �		 		

1þ f x‘ð Þj j � �1; relative precisionð Þ ð11Þ

and these based on Karush–Kuhn–Tucker (KKT) error measures, to keep the notation simple,
formulation (4) is assumed and iteration index ‘ is dropped:

rf xð Þ �
Xmg

k¼1
ukrgk xð Þ þ

Xmh

k¼1
vkrhk xð Þ �

XmA

k¼1
Uk;

@
@xi
Ak xð Þ

D Eh i
i¼1;...;n

�����
����� � �2; optimalityð Þ

ð12Þ

gk xð Þ � ��feas; hk xð Þj j � �feas; Ak xð Þ � ��feasI for all k; feasibilityð Þ ð13Þ

gk xð Þukj j � �2; hk xð Þvkj j � �2; Ak xð Þ; Ukh ij j � �2: complementarityð Þ ð14Þ
Here �1, �2, �feas may be set in the option settings as Stop Tolerance 1, Stop Tolerance 2 and Stop
Tolerance Feasibility, respectively.

Note that if Task ¼ FEASIBLE POINT, only the feasibility is taken into account.

There is an option for linear SDP problems to switch from stopping criteria based on the KKT
conditions to DIMACS Measures, see Mittelmann (2003). This is the default choice. To keep the
notation readable, these are defined here only for the following simpler formulation of linear SDP rather
than (2):

minimize
x2Rn

cTx

subject to A xð Þ ¼
Xn
i¼1
xiAi �A0 � 0:

ð15Þ

In this case the algorithm stops when:

Derr1 ¼ A� Uð Þ � ck k
1þ ck k

Derr2 ¼ max 0;
��min Uð Þ
1þ ck k

� �

Derr4 ¼ max 0;

��min

Xn
i¼1
xiAi �A0

 !
1þ A0k k

0BBBB@
1CCCCA

Derr5 ¼ A0; Uh i � cTx
1þ A0; Uh ij j þ cTx

Derr6 ¼

Xn
i¼1
xiAi �A0; U

* +
1þ A0; Uh ij j þ cTxj j

ð16Þ

where A� �ð Þ denote the adjoint operator to A �ð Þ, A� Uð Þ½ �i ¼ Ai; Uh i.
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They can be viewed as a scaled version of the KKT conditions. Derr1 represents the (scaled) norm of
the gradient of the Lagrangian, Derr2 and Derr4 the dual and primal infeasibility, respectively, and Derr5
and Derr6 measure the duality gap and the complementary slackness. Note that in this solver Derr2 ¼ 0
by definition and Derr3 is automaticaly zero because the formulation involves slack variables which are
not used here.

11.3 Choice of penalty functions ’g and ’A

To treat the (standard) inequality constraints gk xð Þ � 0, we use the penalty/barrier function proposed by
Ben–Tal and Zibulevsky (1997):

’g �ð Þ ¼
�� þ 1

2�
2 if � � ��

� 1� ��ð Þ2log 1�2��þ�
1���

� �
� �� þ 1

2��
2 if � > �� ;



with default �� ¼ 1

2 .

The choice of ’A (and thus of �P ) is motivated by the complexity of the evaluation of �P and its
derivatives. If ’A is defined as

’A �ð Þ ¼ 1

1þ � � 1;

it is possible to avoid the explicit eigenvalue decomposition in (5) as it can be seen in the formulae
below (note that index k is omitted):

�P A xð Þð Þ ¼ P 2Z xð Þ � PI

@

@xi
�P A xð Þð Þ ¼ �P 2Z xð Þ@A xð Þ

@xi
Z xð Þ

@2

@xi@xj
�P A xð Þð Þ ¼ P 2Z xð Þ @A xð Þ

@xi
Z xð Þ@A xð Þ

@xj
� @

2A xð Þ
@xi@xj

þ @A xð Þ
@xj

Z xð Þ@A xð Þ
@xi

� �
Z xð Þ

ð17Þ

where

Z xð Þ ¼ A xð Þ þ PIð Þ�1: ð18Þ
For details follow Kocõvara and Stingl (2003). Note that, in particular, formula (17) requires nontrivial
computational resources even if careful handling of the sparsity of partial derivatives of A xð Þ is
implemented. E04SVF uses a set of strategies described in Fujisawa et al. (1997) adapted for parallel
computation.

11.4 Solution of the inner problem

This section describes solving of the inner problem (step (i) of Algorithm 1). We attempt to find an
approximate solution of the following system (in x and v) up to the given precision �:

rxF x; u; v; U; p; Pð Þ ¼ 0
h xð Þ ¼ 0

ð19Þ

where the penalty parameters p; P , as well as the Lagrangian multipliers u and U are fixed.

A linesearch SQP framework is used due to its desirable convergence properties. It can be stated as
follows.

Algorithm 2 (Inner Loop)Let x0, v0 be given (typically as the solution from the previous outer
iteration), p, P , u, U and � > 0 fixed. For ‘ ¼ 0; 1; . . .
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(i) Find a descent direction d by solving

r2F x‘
� �

rh x‘
� �

rh x‘
� �T

0

� �
d
dv

� �
¼ � rF x‘

� �
h x‘
� �� �

ð20Þ

(ii) Find a suitable step length � and set

x‘þ1 ¼ x‘ þ �d
v‘þ1 ¼ v‘ þ �dv

(iii) Stop if Inner Iteration Limit is reached or if

rxF x‘þ1; u; v‘þ1; U; p; P
� ��� �� � �

h x‘þ1
� ��� �� � �:

System (20) is solved by the factorization routine MA97 (see Hogg and Scott (2011), in combination
with an inertia correction strategy described in Stingl (2006). The step length selection is guided by
Linesearch Mode.

If there are no equality constraints in the problem, the unconstrained minimization in Step (i) of
Algorithm 1 simplifies to the modified Newton method with line-search (for details, see Kocõvara and
Stingl (2003)). Alternatively, the equality constraints hk xð Þ ¼ 0 can be converted to two inequalities
which would be treated with the remaining constraints (see Transform Constraints).

12 Optional Parameters

Several optional parameters in E04SVF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal arguments of E04SVF these optional parameters have
associated default values that are appropriate for most problems. Therefore, you need only specify those
optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The optional parameters can be changed by calling E04ZMF anytime between the initialization of the
handle by E04RAF and the call to the solver. Modification of the arguments during intermediate
monitoring stops is not allowed. Once the solver finishes, the optional parameters can be altered again
for the next solve.

If any options are set by the solver (typically those with the choice of AUTO), their value can be
retrieved by E04ZNF. If the solver is called again, any such arguments are reset to their default values
and the decision is made again.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Defaults

DIMACS Measures

Hessian Density

Infinite Bound Size

Initial P

Initial U

Initial X

Init Value P

Init Value Pmat

Inner Iteration Limit

Inner Stop Criteria

Inner Stop Tolerance

Linesearch Mode

List
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Monitor Frequency

Monitoring File

Monitoring Level

Outer Iteration Limit

Pmat Min

P Min

Preference

Presolve Block Detect

Print File

Print Level

Print Options

P Update Speed

Stats Time

Stop Criteria

Stop Tolerance 1

Stop Tolerance 2

Stop Tolerance Feasibility

Task

Transform Constraints

Umat Update Restriction

U Update Restriction

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

All options accept the value DEFAULT to return single options to their default states.

Keywords and character values are case and white space insensitive.

Defaults

This special keyword may be used to reset all optional parameters to their default values. Any argument
value given with this keyword will be ignored.

DIMACS Measures a Default ¼ CHECK

If the problem is a linear semidefinite programming problem, this argument specifies if DIMACS error
measures (see Section 11.2) should be computed and/or checked. In other cases, this option reverts to
NO automatically.

Constraint: DIMACS Measures ¼ COMPUTE, CHECK or NO.

Hessian Density a Default ¼ AUTO

This optional parameter guides the solver on how the Hessian matrix of augmented Lagrangian
F x; u; v; U; p; Pð Þ should be built. Option AUTO leaves the decision to the solver and it is the
recommended option. Setting it to DENSE bypasses the autodetection and the Hessian is always built as
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a dense matrix. Option SPARSE instructs the solver to use a sparse storage and factorization of the
matrix if possible.

Constraint: Hessian Density ¼ AUTO, DENSE or SPARSE

Infinite Bound Size r Default ¼ 1020

This defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper bound
greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than or
equal to �bigbnd will be regarded as �1). Note that a modification of this optional parameter does not
influence constraints which have already been defined; only the constraints formulated after the change
will be affected.

Constraint: Infinite Bound Size � 1000.

Initial P a Default ¼ AUTOMATIC

This optional parameter defines the choice of the penalty optional parameters p0, P 0, see Algorithm 1.

Initial P ¼ AUTOMATIC
The penalty optional parameters are chosen automatically as set by optional parameter Init Value
P, Init Value Pmat and subject to automatic scaling. Note that P 0 might be increased so that the
penalty function �P ðÞ is defined for all matrix constraints at the starting point.

Initial P ¼ KEEP PREVIOUS
The penalty optional parameters are kept from the previous run of the solver if possible. If not,
this options reverts to AUTOMATIC. Note that even if the matrix penalty optional parameters
are the same as in the previous run, they are still subject to a possible increase so that the penalty
function �P ðÞ is well defined at the starting point.

Constraint: Initial P ¼ AUTOMATIC or KEEP PREVIOUS.

Initial U a Default ¼ AUTOMATIC

This argument guides the solver on which initial Lagrangian multipliers are to be used.

Initial U ¼ AUTOMATIC
The Lagrangian multipliers are chosen automatically as set by automatic scaling.

Initial U ¼ USER
The values of arrays U and UA (if provided) are used as the initial Lagrangian multipliers subject
to automatic adjustments. If one or the other array is not provided, the choice for missing data is
as in AUTOMATIC.

Initial U ¼ KEEP PREVIOUS
The Lagrangian multipliers are kept from the previous run of the solver. If this option is set for
the first run or optional parameters change the approach of the solver, the choice automatically
reverts to AUTOMATIC. This might be useful if the solver is hot started, for example, to achieve
higher precision of the solution.

Constraint: Initial U ¼ AUTOMATIC, USER or KEEP PREVIOUS.

Initial X a Default ¼ USER

This argument guides which starting point x0 is to be used.

Initial X ¼ AUTOMATIC
The starting point is chosen automatically so that it satisfies simple bounds on the variables or as
a zero vector. Input of argument X is ignored.

Initial X ¼ USER
Initial values of argument X are used as a starting point.

Constraint: Initial X ¼ AUTOMATIC or USER.
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Init Value P r Default ¼ 1:0

This argument defines the value p0, the initial penalty optional parameter for (standard) inequalities. A
low value of the penalty causes the solution of the inner problem to be closer to the feasible region and
thus to the desirable result. However, it also increases ill-conditioning of the system. It is not advisable
to set the penalty too low unless a good starting point is provided.

Constraint:
ffiffi
�4
p
� Init Value P � 104.

Init Value Pmat r Default ¼ 1:0

The value of this option suggests P 0, the initial penalty optional parameter for matrix inequalities. It is
similar to Init Value P (and the same advice applies), however, P 0 gets increased automatically if the
matrix constraints are more infeasible than the actual penalty optional parameter.

Constraint:
ffiffi
�4
p
� Init Value Pmat � 104.

Inner Iteration Limit i Default ¼ 100

The maximum number of the inner iterations (Newton steps) to be performed by Algorithm 2 in each
outer iteration. Setting the option too low might lead to IFAIL ¼ 23. Values higher than 100 are
unlikely to improve convergence.

Constraint: Inner Iteration Limit > 0.

Inner Stop Criteria a Default ¼ HEURISTIC

The precision � for the solution of the inner subproblem is determined in Algorithm 1 and under typical
circumstances Algorithm 2 is expected to reach this precision within the given Inner Iteration Limit.
If any problems are detected and Inner Stop Criteria ¼ HEURISTIC, Algorithm 2 is allowed to stop
before reaching the requested precision or the Inner Iteration Limit. This usually saves many
unfruitful iterations and the solver may recover in the following iterations. If you suspect that the
heuristic problem detection is not suitable for your problem, setting Inner Stop Criteria ¼ STRICT
disallows such behaviour.

Constraint: Inner Stop Criteria ¼ HEURISTIC or STRICT.

Inner Stop Tolerance r Default ¼ 10�2

This option sets the required precision �0 for the first inner problem solved by Algorithm 2. The
precison of the solution of the inner problem does not need to be very high in the first outer iterations
and it is automatically adjusted through the outer iterations to reach the optimality limit �2 in the last
one.

Setting �0 too restrictive (too low) causes an increase of the number of inner iterations needed in the
first outer iterations and might lead to IFAIL ¼ 23. In certain cases it might be helpful to use a more
relaxed (higher) �0 and increase P Update Speed which should reduce the number of inner iterations
needed at the beginning of the computation in exchange for a possibly higher number of the outer
iterations.

Constraint: � < Inner Stop Tolerance � 103.

Linesearch Mode a Default ¼ AUTO

This controls the step size selection in Algorithm 2. If Linesearch Mode ¼ FULLSTEP (the default for
linear problems), unit steps are taken where possible and the step shortening takes place only to avoid
undefined regions for the matrix penalty function �P ðÞ (see (17)). This may be used for linear problems
but it is not recommended for any nonlinear ones. If Linesearch Mode ¼ ARMIJO, Armijo
backtracking l inesearch is used ins tead which is a fa i r ly bas ic l inesearch. If
Linesearch Mode ¼ GOLDSTEIN, a cubic safe guarded linesearch based on Goldstein condition is
employed, this is the recommended (and default) choice for nonlinear problems.

Constraint: Linesearch Mode ¼ AUTO, FULLSTEP, ARMIJO or GOLDSTEIN.
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List a Default ¼ NO

This argument may be set to YES if you wish to turn on printing of each optional parameter
specification as it is supplied.

Constraint: List ¼ YES or NO

Monitor Frequency i Default ¼ 0

If Monitor Frequency > 0, the solver returns to you at the end of every ith outer iteration. During
these intermediate exits, the current point X and Lagrangian multipliers U, UA (if requested) are
provided as well as the statistics and error measures (RINFO, STATS). Argument INFORM helps to
distinguish between intermediate and final exits and also allows immediate termination.

If Monitor Frequency ¼ 0, the solver stops only once on the final point and no intermediate exits are
made.

Constraint: Monitor Frequency � 0.

Monitoring File i Default ¼ �1
If i � 0, the unit number for the secondary (monitoring) output. If set to �1, no secondary output is
provided. The following information is output to the unit:

– a listing of the optional parameters;

– problem statistics, the iteration log and the final status as set by Monitoring Level.

Constraint: Monitoring File � �1.

Monitoring Level i Default ¼ 4

This argument sets the amount of information detail that will be printed by the solver to the secondary
output. The meaning of the levels is the same as with Print Level.

Constraint: 0 �Monitoring Level � 5.

Outer Iteration Limit i Default ¼ 100

The maximum number of the outer iterations to be performed by Algorithm 1. If
Outer Iteration Limit ¼ 0, no iteration is performed, only quantities needed in the stopping criteria
are computed and returned in RINFO. This might be useful in connection with Initial X ¼ USER and
Initial U ¼ USER to check optimality of the given point. However, note that the rules for possible
modifications of the starting point still apply, see U and UA. Setting the option too low might lead to
IFAIL ¼ 22.

Constraint: Outer Iteration Limit � 0.

P Min r Default ¼
ffiffi
�
p

This controls pmin , the lowest possible penalty value p used for (standard) inequalities. In general, very
small values of the penalty optional parameters cause ill-conditioning which might lead to numerical
difficulties. On the other hand, very high pmin prevents the algorithm from reaching the requested
accuracy on the feasibility. Under normal circumstances, the default value is recommended.

Constraint: � � P Min � 10�2.

Pmat Min r Default ¼
ffiffi
�
p

This is an equivalent of P Min for the minimal matrix penalty optional parameter Pmin . The same
advice applies.

Constraint: � � Pmat Min � 10�2.
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Preference a Default ¼ SPEED

This option affects how contributions from the matrix constraints (17) to the system Hessian matrix are
computed. The default option of Preference ¼ SPEED should be suitable in most cases. However,
dealing with matrix constraints of a very high dimension may cause noticable memory overhead and
switching to Preference ¼ MEMORY may be required.

Constraint: Preference ¼ SPEED or MEMORY.

Presolve Block Detect a Default ¼ YES

If Presolve Block Detect ¼ YES, the matrix constraints are checked during preprocessoring to
determine if they can be split into smaller independent ones, thus speeding up the solver.

Constraint: Presolve Block Detect ¼ YES or NO.

Print File i Default ¼ 6

If i � 0, the unit number for the primary output of the solver. If Print File ¼ �1, the primary output is
completely turned off independently of other settings. The following information is output to the unit:

– a listing of optional parameters if set by Print Options;

– problem statistics, the iteration log and the final status from the solver as set by Print Level.

Constraint: Print File � �1.

Print Level i Default ¼ 2

This argument defines how detailed information should be printed by the solver to the primary output.

i Output

0 No output from the solver

1 Only the final status and the objective value

2 Problem statistics, one line per outer iteration showing the progress of the solution, final status
and statistics

3 As level 2 but detailed output of the outer iterations is provided and brief overview of the inner
iterations

4, 5 As level 3 but details of the inner iterations are printed as well

Constraint: 0 � Print Level � 5.

Print Options a Default ¼ YES

If Print Options ¼ YES, a listing of optional parameters will be printed to the primary output.

Constraint: Print Options ¼ YES or NO.

P Update Speed i Default ¼ 12

This option affects the rate at which the penalty optional parameters p; P are updated (Algorithm 1, step
(iii)) and thus indirectly influences the overall number of outer iterations. Its value can be interpretted
as the typical number of outer iterations needed to get from the initial penalty values p0, P 0 half-way to
the pmin and Pmin . Values smaller than 3 causes a very agressive penalty update strategy which might
lead to the increased number of inner iterations and possibly to numerical difficulties. On the other
hand, values higher than 15 produce a relatively conservative approach which leads to a higher number
of the outer iterations.

If the solver encounters difficulties on your problem, a higher value might help. If your problem is
working fine, setting a lower value might increase the speed.

Constraint: 1 � P Update Speed � 100.
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Stats Time a Default ¼ NO

This argument turns on timings of various parts of the algorithm to give a better overview of where
most of the time is spent. This might be helpful for a choice of different solving approaches. It is
possible to choose between CPU and wall clock time. Choice YES is equivalent to wall clock.

Constraint: Stats Time ¼ YES, NO, CPU or WALL CLOCK.

Stop Criteria a Default ¼ SOFT

If Stop Criteria ¼ SOFT, the solver is allowed to stop prematurely with a suboptimal solution,
IFAIL ¼ 50, if it predicts that a better estimate of the solution cannot be reached. This is the
recommended option.

Constraint: Stop Criteria ¼ SOFT or STRICT.

Stop Tolerance 1 r Default ¼ max 10�6;
ffiffi
�
p� �

This option defines �1 used as a tolerance for the relative duality gap (10) and the relative precision
(11), see Section 11.2.

Constraint: Stop Tolerance 1 > �.

Stop Tolerance 2 r Default ¼ max 10�7;
ffiffi
�
p� �

This option sets the value �2 which is used for optimality (12) and complementarity (14) tests from
KKT conditions or if DIMACS Measures ¼ Check for all DIMACS error measures instead. See
Section 11.2.

Constraint: Stop Tolerance 2 > �.

Stop Tolerance Feasibility r Default ¼ max 10�7;
ffiffi
�
p� �

This argument places an acceptance limit on the feasibility of the solution (13), �feas. See Section 11.2.

Constraint: Stop Tolerance Feasibility > �.

Task a Default ¼ MINIMIZE

This argument specifies the required direction of the optimization. If Task ¼ FEASIBLE POINT, the
objective function (if set) is ignored and the algorithm stops as soon as a feasible point is found with
respect to the given tolerance. If no objective function was set, Task reverts to FEASIBLE POINT
automatically.

Constraint: Task ¼ MINIMIZE, MAXIMIZE or FEASIBLE POINT.

Transform Constraints a Default ¼ AUTO

This argument controls how equal i ty const ra ints are t reated by the solver. I f
Transform Constraints ¼ EQUALITIES, all equality constraints hk xð Þ ¼ 0 from (4) are treated as
two inequalities hk xð Þ � 0 and hk xð Þ � 0, see Section 11.4. This is the default and the only option in
this release for equality constrained problems.

Constraint: Transform Constraints ¼ AUTO, NO or EQUALITIES.

U Update Restriction r Default ¼ 0:5

This defines the value �g giving the bounds on the updates of Lagrangian multipliers for (standard)
inequalities between the outer iterations. Values close to 1 limit the changes of the multipliers and serve
as a kind of smoothing, lower values allow more significant changes.

Based on numerical experience, big variation in the multipliers may lead to a large number of iterations
in the subsequent step and might disturb the convergence due to ill-conditioning.

It might be worth experimenting with the value on your particular problem. Mid range values are
recommended over the more extremal ones.
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Constraint: � < U Update Restriction < 1.

Umat Update Restriction r Default ¼ 0:3

This is an equivalent of U Update Restriction for matrix constraints, denoted as �A in Section 11.1.
The advice above applies equally.

Constraint: � < Umat Update Restriction < 1.
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NAG Library Routine Document

E04UCF/E04UCA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

E04UCF/E04UCA is designed to minimize an arbitrary smooth function subject to constraints (which
may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using
a sequential quadratic programming (SQP) method. As many first derivatives as possible should be
supplied by you; any unspecified derivatives are approximated by finite differences. It is not intended
for large sparse problems.

E04UCF/E04UCA may also be used for unconstrained, bound-constrained and linearly constrained
optimization.

E04UCF/E04UCA uses forward communication for evaluating the objective function, the nonlinear
constraint functions, and any of their derivatives.

E04UCA is a version of E04UCF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04UCA.

2 Specification

2.1 Specification for E04UCF

SUBROUTINE E04UCF (N, NCLIN, NCNLN, LDA, LDCJ, LDR, A, BL, BU, CONFUN,
OBJFUN, ITER, ISTATE, C, CJAC, CLAMDA, OBJF, OBJGRD,
R, X, IWORK, LIWORK, WORK, LWORK, IUSER, RUSER,
IFAIL)

&
&
&

INTEGER N, NCLIN, NCNLN, LDA, LDCJ, LDR, ITER,
ISTATE(N+NCLIN+NCNLN), IWORK(LIWORK), LIWORK,
LWORK, IUSER(*), IFAIL

&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),
C(max(1,NCNLN)), CJAC(LDCJ,*),
CLAMDA(N+NCLIN+NCNLN), OBJF, OBJGRD(N), R(LDR,N),
X(N), WORK(LWORK), RUSER(*)

&
&
&

EXTERNAL CONFUN, OBJFUN

2.2 Specification for E04UCA

SUBROUTINE E04UCA (N, NCLIN, NCNLN, LDA, LDCJ, LDR, A, BL, BU, CONFUN,
OBJFUN, ITER, ISTATE, C, CJAC, CLAMDA, OBJF, OBJGRD,
R, X, IWORK, LIWORK, WORK, LWORK, IUSER, RUSER,
LWSAV, IWSAV, RWSAV, IFAIL)

&
&
&

INTEGER N, NCLIN, NCNLN, LDA, LDCJ, LDR, ITER,
ISTATE(N+NCLIN+NCNLN), IWORK(LIWORK), LIWORK,
LWORK, IUSER(*), IWSAV(610), IFAIL

&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),
C(max(1,NCNLN)), CJAC(LDCJ,*),
CLAMDA(N+NCLIN+NCNLN), OBJF, OBJGRD(N), R(LDR,N),
X(N), WORK(LWORK), RUSER(*), RWSAV(475)

&
&
&
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LOGICAL LWSAV(120)
EXTERNAL CONFUN, OBJFUN

Before calling E04UCA, or either of the option setting routines E04UDA or E04UEA, E04WBF must
be called. The specification for E04WBF is:

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
RWSAV, LRWSAV, IFAIL)

&

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV,
IFAIL

&

REAL (KIND=nag_wp) RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER(*) RNAME
CHARACTER(80) CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ E04UCA . LCWSAV, LLWSAV, LIWSAV and LRWSAV,
the declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 1;

LLWSAV � 120;

LIWSAV � 610;

LRWSAV � 475.

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04UCA, E04UDA, E04UEA and E04WBF.

3 Description

E04UCF/E04UCA is designed to solve the nonlinear programming problem – the minimization of a
smooth nonlinear function subject to a set of constraints on the variables. The problem is assumed to be
stated in the following form:

minimize
x2Rn

F xð Þ subject to l �
x
ALx
c xð Þ

0@ 1A � u; ð1Þ

where F xð Þ (the objective function) is a nonlinear function, AL is an nL by n constant matrix, and c xð Þ
is an nN element vector of nonlinear constraint functions. (The matrix AL and the vector c xð Þ may be
empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at least
twice-continuously differentiable. (The method of E04UCF/E04UCA will usually solve (1) if there are
only isolated discontinuities away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear
constraints, we prefer to distinguish between them for reasons of computational efficiency. For the same
reason, the linear constraints should not be included in the definition of the nonlinear constraints. Upper
and lower bounds are specified for all the variables and for all the constraints. An equality constraint
can be specified by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u
can be set to special values that will be treated as �1 or þ1. (See the description of the optional
parameter Infinite Bound Size.)

If there are no nonlinear constraints in (1) and F is linear or quadratic, then it will generally be more
efficient to use one of E04MFF/E04MFA, E04NCF/E04NCA or E04NFF/E04NFA, or E04NKF/
E04NKA if the problem is large and sparse. If the problem is large and sparse and does have nonlinear
constraints, then E04UGF/E04UGA should be used, since E04UCF/E04UCA treats all matrices as
dense.

You must supply an initial estimate of the solution to (1), together with subroutines that define F xð Þ,
c xð Þ and as many first partial derivatives as possible; unspecified derivatives are approximated by finite
differences.

The objective function is defined by OBJFUN, and the nonlinear constraints are defined by CONFUN.
On every call, these subroutines must return appropriate values of the objective and nonlinear
constraints. You should also provide the available partial derivatives. Any unspecified derivatives are
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approximated by finite differences; see Section 12.1 for a discussion of the optional parameter
Derivative Level. Note that if there are any nonlinear constraints then the first call to CONFUN will
precede the first call to OBJFUN.

For maximum reliability, it is preferable for you to provide all partial derivatives (see Chapter 8 of Gill
et al. (1981), for a detailed discussion). If all gradients cannot be provided, it is similarly advisable to
provide as many as possible. While developing OBJFUN and CONFUN, the optional parameter Verify
should be used to check the calculation of any known gradients.

The method used by E04UCF/E04UCA is described in detail in Section 11.

E04UFF/E04UFA is an alternative routine which uses exactly the same method, but uses reverse
communication for evaluating the objective and constraint functions.
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.
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2: NCLIN – INTEGER Input

On entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.

3: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: NCNLN � 0.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
E04UCF/E04UCA is called.

Constraint: LDA � max 1;NCLINð Þ.

5: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
E04UCF/E04UCA is called.

Constraint: LDCJ � max 1;NCNLNð Þ.

6: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which
E04UCF/E04UCA is called.

Constraint: LDR � N.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0, and at least 1
otherwise.

On entry: the ith row of A contains the ith row of the matrix AL of general linear constraints in
(1). That is, the ith row contains the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0, the array A is not referenced.

8: BLðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input
9: BUðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds and BU the upper bounds for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
the next nL elements the bounds for the general linear constraints (if any) and the next nN
elements the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower
bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a nonexistent upper bound (i.e.,
uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this may be changed by
the optional parameter Infinite Bound Size. To specify the jth constraint as an equality, set
BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

10: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate the vector c xð Þ of nonlinear constraint functions and (optionally) its

Jacobian ( ¼ @c

@x
) for a specified n-element vector x. If there are no nonlinear constraints (i.e.,
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NCNLN ¼ 0), CONFUN will never be called by E04UCF/E04UCA and CONFUN may be the
dummy routine E04UDM. (E04UDM is included in the NAG Library.) If there are nonlinear
constraints, the first call to CONFUN will occur before the first call to OBJFUN.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCNLN, N, LDCJ, NEEDC, X, C, CJAC,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, NCNLN, N, LDCJ, NEEDC(NCNLN), NSTATE,
IUSER(*)

&

REAL (KIND=nag_wp) X(N), C(NCNLN), CJAC(LDCJ,N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of CONFUN. Only
the following values need be assigned, for each value of i such that NEEDCðiÞ > 0:

MODE ¼ 0
CðiÞ.

MODE ¼ 1
All available elements in the ith row of CJAC.

MODE ¼ 2
CðiÞ and all available elements in the ith row of CJAC.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem. In this case E04UCF/E04UCA will terminate with IFAIL set to
MODE.

2: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

3: N – INTEGER Input

On entry: n, the number of variables.

4: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from
which E04UCF/E04UCA is called.

5: NEEDCðNCNLNÞ – INTEGER array Input

On entry: the indices of the elements of C and/or CJAC that must be evaluated by
CONFUN. If NEEDCðiÞ > 0, the ith element of C and/or the available elements of the
ith row of CJAC (see argument MODE) must be evaluated at x.

6: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the constraint functions and/or the
available elements of the constraint Jacobian are to be evaluated.

7: CðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: if NEEDCðiÞ > 0 and MODE ¼ 0 or 2, CðiÞ must contain the value of the ith
constraint at x. The remaining elements of C, corresponding to the non-positive
elements of NEEDC, are ignored.

8: CJACðLDCJ;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: unless Derivative Level ¼ 2 or 3, the elements of CJAC are set to special
values which enable E04UCF/E04UCA to detect whether they are changed by
CONFUN.
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On exit: if NEEDCðiÞ > 0 and MODE ¼ 1 or 2, the ith row of CJAC must contain the
available elements of the vector rci given by

rci ¼
@ci
@x1

;
@ci
@x2

; . . . ;
@ci
@xn

� �T

;

where
@ci
@xj

is the partial derivative of the ith constraint with respect to the jth variable,

evaluated at the point x. See also the argument NSTATE. The remaining rows of CJAC,
corresponding to non-positive elements of NEEDC, are ignored.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3),
any constant elements may be assigned to CJAC one time only at the start of the
optimization. An element of CJAC that is not subsequently assigned in CONFUN will
retain its initial value throughout. Constant elements may be loaded into CJAC either
before the call to E04UCF/E04UCA or during the first call to CONFUN (signalled by
the value NSTATE ¼ 1). The ability to preload constants is useful when many Jacobian
elements are identically zero, in which case CJAC may be initialized to zero and
nonzero elements may be reset by CONFUN.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
CJACði; jÞ is set to a constant value, it need not be reset in subsequent calls to
CONFUN, but the value CJACði; jÞ � XðjÞ must nonetheless be added to CðiÞ. For
example, if CJACð1; 1Þ ¼ 2 and CJACð1; 2Þ ¼ �5 then the term 2� Xð1Þ � 5� Xð2Þ
must be included in the definition of Cð1Þ.
It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of CJAC
are not treated as constant; they are estimated by finite differences, at nontrivial
expense. If you do not supply a value for the optional parameter Difference Interval,
an interval for each element of x is computed automatically at the start of the
optimization. The automatic procedure can usually identify constant elements of CJAC,
which are then computed once only by finite differences.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E04UCF/E04UCA is calling CONFUN for the first
time. This argument setting allows you to save computation time if certain data must be
read or calculated only once.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN is called with the arguments IUSER and RUSER as supplied to E04UCF/
E04UCA. You should use the arrays IUSER and RUSER to supply information to
CONFUN.

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04UCF/E04UCA is called. Arguments denoted as Input must not be
changed by this procedure.

CONFUN should be tested separately before being used in conjunction with E04UCF/E04UCA.
See also the description of the optional parameter Verify.

11: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the objective function F xð Þ and (optionally) its gradient g xð Þ ¼ @F
@x

for a

specified n-vector x.
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The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER,
RUSER)

&

INTEGER MODE, N, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), OBJF, OBJGRD(N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0
OBJF.

MODE ¼ 1
All available elements of OBJGRD.

MODE ¼ 2
OBJF and all available elements of OBJGRD.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem. In this case E04UCF/E04UCA will terminate with IFAIL set to
MODE.

2: N – INTEGER Input

On entry: n, the number of variables.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the objective function and/or all available
elements of its gradient are to be evaluated.

4: OBJF – REAL (KIND=nag_wp) Output

On exit: if MODE ¼ 0 or 2, OBJF must be set to the value of the objective function at
x.

5: OBJGRDðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of OBJGRD are set to special values which enable E04UCF/
E04UCA to detect whether they are changed by OBJFUN.

On exit: if MODE ¼ 1 or 2, OBJGRD must return the available elements of the gradient
evaluated at x.

6: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E04UCF/E04UCA is calling OBJFUN for the first time.
This argument setting allows you to save computation time if certain data must be read
or calculated only once.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E04UCF/
E04UCA. You should use the arrays IUSER and RUSER to supply information to
OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04UCF/E04UCA is called. Arguments denoted as Input must not be
changed by this procedure.
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OBJFUN should be tested separately before being used in conjunction with E04UCF/E04UCA.
See also the description of the optional parameter Verify.

12: ITER – INTEGER Output

On exit: the number of major iterations performed.

13: ISTATEðNþ NCLINþ NCNLNÞ – INTEGER array Input/Output

On entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, the elements of ISTATE corresponding
to the bounds and linear constraints define the initial working set for the procedure that finds a
feasible point for the linear constraints and bounds. The active set at the conclusion of this
procedure and the elements of ISTATE corresponding to nonlinear constraints then define the
initial working set for the first QP subproblem. More precisely, the first n elements of ISTATE
refer to the upper and lower bounds on the variables, the next nL elements refer to the upper and
lower bounds on ALx, and the next nN elements refer to the upper and lower bounds on c xð Þ.
Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ Meaning

0 The corresponding constraint is not in the initial QP working set.

1 This inequality constraint should be in the working set at its lower bound.

2 This inequality constraint should be in the working set at its upper bound.

3 This equality constraint should be in the initial working set. This value must
not be specified unless BLðjÞ ¼ BUðjÞ.

The values �2, �1 and 4 are also acceptable but will be modified by the routine. If E04UCF/
E04UCA has been called previously with the same values of N, NCLIN and NCNLN, ISTATE
already contains satisfactory information. The routine also adjusts (if necessary) the values
supplied in X to be consistent with ISTATE.

Constraint: �2 � ISTATEðjÞ � 4, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN.

On exit: the status of the constraints in the QP working set at the point returned in X. The
significance of each possible value of ISTATEðjÞ is as follows:

ISTATEðjÞ Meaning

�2 This constraint violates its lower bound by more than the appropriate
feasibility tolerance (see the optional parameters Linear Feasibility
Tolerance and Nonlinear Feasibility Tolerance). This value can occur only
when no feasible point can be found for a QP subproblem.

�1 This constraint violates its upper bound by more than the appropriate
feasibility tolerance (see the optional parameters Linear Feasibility
Tolerance and Nonlinear Feasibility Tolerance). This value can occur only
when no feasible point can be found for a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the
QP working set.

1 This inequality constraint is included in the QP working set at its lower
bound.

2 This inequality constraint is included in the QP working set at its upper
bound.

3 This constraint is included in the QP working set as an equality. This value of
ISTATE can occur only when BLðjÞ ¼ BUðjÞ.

E04UCF NAG Library Manual

E04UCF.8 Mark 26



14: Cðmax 1;NCNLNð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: if NCNLN > 0, CðiÞ contains the value of the ith nonlinear constraint function ci at the
final iterate, for i ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0, the array C is not referenced.

15: CJACðLDCJ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array CJAC must be at least N if NCNLN > 0, and at least 1
otherwise.

On entry: in general, CJAC need not be initialized before the call to E04UCF/E04UCA.
However, if Derivative Level ¼ 2 or 3, you may optionally set the constant elements of CJAC
(see argument NSTATE in the description of CONFUN). Such constant elements need not be re-
assigned on subsequent calls to CONFUN.

On exit: if NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear constraint functions
at the final iterate, i.e., CJACði; jÞ contains the partial derivative of the ith constraint function
with respect to the jth variable, for i ¼ 1; 2; . . . ;NCNLN and j ¼ 1; 2; . . . ;N. (See the discussion
of argument CJAC under CONFUN.)

If NCNLN ¼ 0, the array CJAC is not referenced.

16: CLAMDAðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, CLAMDAðjÞ must contain a multiplier
estimate for each nonlinear constraint with a sign that matches the status of the constraint
specified by the ISTATE array, for j ¼ Nþ NCLINþ 1; . . . ;Nþ NCLINþ NCNLN. The
remaining elements need not be set. Note that if the jth constraint is defined as ‘inactive’ by
the initial value of ISTATE array (i.e., ISTATEðjÞ ¼ 0), CLAMDAðjÞ should be zero; if the jth
constraint is an inequality active at its lower bound (i.e., ISTATEðjÞ ¼ 1), CLAMDAðjÞ should
be non-negative; if the jth constraint is an inequality active at its upper bound (i.e.,
ISTATEðjÞ ¼ 2), CLAMDAðjÞ should be non-positive. If necessary, the routine will modify
CLAMDA to match these rules.

On exit: the values of the QP multipliers from the last QP subproblem. CLAMDAðjÞ should be
non-negative if ISTATEðjÞ ¼ 1 and non-positive if ISTATEðjÞ ¼ 2.

17: OBJF – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at the final iterate.

18: OBJGRDðNÞ – REAL (KIND=nag_wp) array Output

On exit: the gradient of the objective function at the final iterate (or its finite difference
approximation).

19: RðLDR;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: need not be initialized if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, R must contain the upper triangular
Cholesky factor R of the initial approximation of the Hessian of the Lagrangian function, with
the variables in the natural order. Elements not in the upper triangular part of R are assumed to
be zero and need not be assigned.

On exit: if Hessian ¼ NO, R contains the upper triangular Cholesky factor R of QT ~HQ, an
estimate of the transformed and reordered Hessian of the Lagrangian at x (see (6) in
Section 11.1). If Hessian ¼ YES, R contains the upper triangular Cholesky factor R of H, the
approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.
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20: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the solution.

On exit: the final estimate of the solution.

21: IWORKðLIWORKÞ – INTEGER array Workspace
22: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
E04UCF/E04UCA is called.

Constraint: LIWORK � 3� Nþ NCLINþ 2� NCNLN.

23: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
24: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
E04UCF/E04UCA is called.

Constraints:

if NCNLN ¼ 0 and NCLIN ¼ 0, LWORK � 20� N;
if NCNLN ¼ 0 and NCLIN > 0, LWORK � 2� N2 þ 20� Nþ 11� NCLIN;
if NCNLN > 0 and NCLIN � 0, LWORK � 2� N2 þ N� NCLINþ 2� N�
NCNLNþ 20� Nþ 11� NCLINþ 21� NCNLN.

The amounts of workspace provided and required are (by default) output on the current advisory
message unit (as defined by X04ABF). As an alternative to computing LIWORK and LWORK
from the formulas given above, you may prefer to obtain appropriate values from the output of a
preliminary run with LIWORK and LWORK set to 1. (E04UCF/E04UCA will then terminate
with IFAIL ¼ 9.)

25: IUSERð�Þ – INTEGER array User Workspace
26: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04UCF/E04UCA, but are passed directly to CONFUN and
OBJFUN and should be used to pass information to these routines.

27: IFAIL – INTEGER Input/Output

Note: for E04UCA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04UCF/E04UCA returns with IFAIL ¼ 0 if the iterates have converged to a point x that
satisfies the first-order Kuhn–Tucker (see Section 11.1) conditions to the accuracy requested by
the optional parameter Optimality Tolerance (default value ¼ �0:8R , where �r is the value of the
optional parameter Function Precision (default value ¼ �0:9, where � is the machine precision)),
i.e., the projected gradient and active constraint residuals are negligible at x.

You should check whether the following four conditions are satisfied:
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(i) the final value of Norm Gz (see Section 9.1) is significantly less than that at the starting
point;

(ii) during the final major iterations, the values of Step and Mnr (see Section 9.1) are both one;

(iii) the last few values of both Norm Gz and Violtn (see Section 9.1) become small at a fast
linear rate; and

(iv) Cond Hz (see Section 9.1) is small.

If all these conditions hold, x is almost certainly a local minimum of (1).

Note: the following are additional arguments for specific use with E04UCA. Users of E04UCF
therefore need not read the remainder of this description.

28: LWSAVð120Þ – LOGICAL array Communication Array
29: IWSAVð610Þ – INTEGER array Communication Array
30: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04UCA, E04UDA or E04UEA.

31: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04UCF/E04UCA may return useful information for one or more of the following detected errors
or warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04UCF/E04UCA because you set MODE < 0
in OBJFUN or CONFUN. The value of IFAIL will be the same as your setting of MODE.

IFAIL ¼ 1

The final iterate x satisfies the first-order Kuhn–Tucker conditions (see Section 11.1) to the
accuracy requested, but the sequence of iterates has not yet converged. E04UCF/E04UCA was
terminated because no further improvement could be made in the merit function (see
Section 9.1).

This value of IFAIL may occur in several circumstances. The most common situation is that you
ask for a solution with accuracy that is not attainable with the given precision of the problem (as
specified by the optional parameter Function Precision (default value ¼ �0:9, where � is the
machine precision)). This condition will also occur if, by chance, an iterate is an ‘exact’ Kuhn–
Tucker point, but the change in the variables was significant at the previous iteration. (This
situation often happens when minimizing very simple functions, such as quadratics.)

If the four conditions listed in Section 5 for IFAIL ¼ 0 are satisfied, x is likely to be a solution of
(1) even if IFAIL ¼ 1.

IFAIL ¼ 2

E04UCF/E04UCA has terminated without finding a feasible point for the linear constraints and
bounds, which means that either no feasible point exists for the given value of the optional
parameter Linear Feasibility Tolerance (default value ¼

ffiffi
�
p

, where � is the machine precision),
or no feasible point could be found in the number of iterations specified by the optional
parameter Minor Iteration Limit (default value ¼ max 50; 3 nþ nL þ nNð Þð Þ). You should check
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that there are no constraint redundancies. If the data for the constraints are accurate only to an
absolute precision �, you should ensure that the value of the optional parameter Linear
Feasibility Tolerance is greater than �. For example, if all elements of AL are of order unity and
are accurate to only three decimal places, Linear Feasibility Tolerance should be at least 10�3.

IFAIL ¼ 3

No feasible point could be found for the nonlinear constraints. The problem may have no feasible
solution. This means that there has been a sequence of QP subproblems for which no feasible
point could be found (indicated by I at the end of each line of intermediate printout produced by
the major iterations; see Section 9.1). This behaviour will occur if there is no feasible point for
the nonlinear constraints. (However, there is no general test that can determine whether a feasible
point exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the very
first major iteration, it is highly likely that no feasible point exists. If infeasibilities occur when
earlier subproblems have been feasible, small constraint inconsistencies may be present. You
should check the validity of constraints with negative values of ISTATE. If you are convinced
that a feasible point does exist, E04UCF/E04UCA should be restarted at a different starting point.

IFAIL ¼ 4

The limiting number of iterations (as determined by the optional parameter Major Iteration
Limit (default value ¼ max 50; 3 nþ nLð Þ þ 10nNð Þ)) has been reached.

If the algorithm appears to be making satisfactory progress, then Major Iteration Limit may be
too small. If so, either increase its value and rerun E04UCF/E04UCA or, alternatively, rerun
E04UCF/E04UCA using the optional parameter Warm Start. If the algorithm seems to be
making little or no progress however, then you should check for incorrect gradients or ill-
conditioning as described under IFAIL ¼ 6.

Note that ill-conditioning in the working set is sometimes resolved automatically by the
algorithm, in which case performing additional iterations may be helpful. However, ill-
conditioning in the Hessian approximation tends to persist once it has begun, so that allowing
additional iterations without altering R is usually inadvisable. If the quasi-Newton update of the
Hessian approximation was reset during the latter major iterations (i.e., an R occurs at the end of
each line of intermediate printout; see Section 9.1), it may be worthwhile to try a Warm Start at
the final point as suggested above.

IFAIL ¼ 5

Not used by this routine.

IFAIL ¼ 6

x does not satisfy the first-order Kuhn–Tucker conditions (see Section 11.1) and no improved
point for the merit function (see Section 9.1) could be found during the final linesearch.

This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value of
the optional parameter Optimality Tolerance (default value ¼ �0:8R , where �r is the value of the
optional parameter Function Precision (default value ¼ �0:9, where � is the machine precision))
is too small. In this case you should apply the four tests outlined in the description of the
argument IFAIL to determine whether or not the final solution is acceptable (see Gill et al.
(1981), for a discussion of the attainable accuracy).

If many iterations have occurred in which essentially no progress has been made and E04UCF/
E04UCA has failed completely to move from the initial point then user-supplied subroutines
OBJFUN and/or CONFUN may be incorrect. You should refer to comments under IFAIL ¼ 7
and check the gradients using the optional parameter Verify (default value ¼ 0). Unfortunately,
there may be small errors in the objective and constraint gradients that cannot be detected by the
verification process. Finite difference approximations to first derivatives are catastrophically
affected by even small inaccuracies. An indication of this situation is a dramatic alteration in the
iterates if the finite difference interval is altered. One might also suspect this type of error if a
switch is made to central differences even when Norm Gz and Violtn (see Section 9.1) are large.
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Another possibility is that the search direction has become inaccurate because of ill-conditioning
in the Hessian approximation or the matrix of constraints in the working set; either form of ill-
conditioning tends to be reflected in large values of Mnr (the number of iterations required to
solve each QP subproblem; see Section 9.1).

If the condition estimate of the projected Hessian (Cond Hz; see Section 9.1) is extremely large, it
may be worthwhile rerunning E04UCF/E04UCA from the final point with the optional parameter
Warm Start. In this situation, ISTATE and CLAMDA should be left unaltered and R should be
reset to the identity matrix.

If the matrix of constraints in the working set is ill-conditioned (i.e., Cond T is extremely large;
see Section 13), it may be helpful to run E04UCF/E04UCA with a relaxed value of the
Feasibility Tolerance (default value ¼

ffiffi
�
p

, where � is the machine precision). (Constraint
dependencies are often indicated by wide variations in size in the diagonal elements of the matrix
T , whose diagonals will be printed if Major Print Level � 30).

IFAIL ¼ 7

The user-supplied derivatives of the objective function and/or nonlinear constraints appear to be
incorrect.

Large errors were found in the derivatives of the objective function and/or nonlinear constraints.
This value of IFAIL will occur if the verification process indicated that at least one gradient or
Jacobian element had no correct figures. You should refer to the printed output to determine
which elements are suspected to be in error.

As a first-step, you should check that the code for the objective and constraint values is correct –
for example, by computing the function at a point where the correct value is known. However,
care should be taken that the chosen point fully tests the evaluation of the function. It is
remarkable how often the values x ¼ 0 or x ¼ 1 are used to test function evaluation procedures,
and how often the special properties of these numbers make the test meaningless.

Special care should be used in this test if computation of the objective function involves
subsidiary data communicated in COMMON storage. Although the first evaluation of the
function may be correct, subsequent calculations may be in error because some of the subsidiary
data has accidentally been overwritten.

Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed before each function evaluation.

Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the
function; since some compilers do not convert such constants to double precision, half the correct
figures may be lost by such a seemingly trivial error.

IFAIL ¼ 8

Not used by this routine.

IFAIL ¼ 9

An input argument is invalid.

Overflow

If the printed output before the overflow error contains a warning about serious ill-conditioning
in the working set when adding the jth constraint, it may be possible to avoid the difficulty by
increasing the magnitude of the optional parameter Linear Feasibility Tolerance and/or the
optional parameter Nonlinear Feasibility Tolerance and rerunning the program. If the message
recurs even after this change then the offending linearly dependent constraint (with index ‘j’)
must be removed from the problem. If overflow occurs in one of the user-supplied subroutines (e.
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g., if the nonlinear functions involve exponentials or singularities), it may help to specify tighter
bounds for some of the variables (i.e., reduce the gap between the appropriate lj and uj).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 on exit, then the vector returned in the array X is an estimate of the solution to an
accuracy of approximately Optimality Tolerance (default value ¼ �0:8, where � is the machine
precision).

8 Parallelism and Performance

E04UCF/E04UCA is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

E04UCF/E04UCA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Description of the Printed Output

This section describes the intermediate printout and final printout produced by E04UCF/E04UCA. The
intermediate printout is a subset of the monitoring information produced by the routine at every
iteration (see Section 13). You can control the level of printed output (see the description of the
optional parameter Major Print Level). Note that the intermediate printout and final printout are
produced only if Major Print Level � 10 (the default for E04UCF, by default no output is produced by
E04UCA).

The following line of summary output ( < 80 characters) is produced at every major iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11).

Note that Mnr may be greater than the optional parameter Minor Iteration Limit
if some iterations are required for the feasibility phase.
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Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Merit Function is the value of the augmented Lagrangian merit function (12) at the current
iterate. This function will decrease at each iteration unless it was necessary to
increase the penalty parameters (see Section 11.3). As the solution is approached,
Merit Function will converge to the value of the objective function at the
solution.

If the QP subproblem does not have a feasible point (signified by I at the end of
the current output line) then the merit function is a large multiple of the
constraint violations, weighted by the penalty parameters. During a sequence of
major iterations with infeasible subproblems, the sequence of Merit Function
values will decrease monotonically until either a feasible subproblem is obtained
or E04UCF/E04UCA terminates with IFAIL ¼ 3 (no feasible point could be
found for the nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN ¼ 0) then this entry
contains Objective, the value of the objective function F xð Þ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is ZTgFRk k, the Euclidean norm of the projected gradient (see Section 11.2). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Violtn will be
approximately zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ ¼ ZTHFRZ ¼ RT

ZRZ ; see (6)). The larger this number, the more difficult
the problem.

M is printed if the quasi-Newton update has been modified to ensure that the
Hessian approximation is positive definite (see Section 11.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified
objective and constraint gradients. If the value of Step is zero then the switch to
central differences was made because no lower point could be found in the
linesearch. (In this case, the QP subproblem is resolved with the central
difference gradient and Jacobian.) If the value of Step is nonzero then central
differences were computed because Norm Gz and Violtn imply that x is close to
a Kuhn–Tucker point (see Section 11.1 in E04UFF/E04UFA).

L is printed if the linesearch has produced a relative change in x greater than the
value defined by the optional parameter Step Limit. If this output occurs
frequently during later iterations of the run, optional parameter Step Limit should
be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly
conditioned then the approximate Hessian is refactorized using column
interchanges. If necessary, R is modified so that its diagonal condition estimator
is bounded.

The final printout includes a listing of the status of every variable and constraint. The following
describes the printout for each variable. A full stop (.) is printed for any numerical value that is zero.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if
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temporarily fixed at its current value). If Value lies outside the upper or lower
bounds by more than the Feasibility Tolerance, State will be ++ or --
respectively. (The latter situation can occur only when there is no feasible point
for the bounds and linear constraints.)

A key is sometimes printed before State.

A Alternative optimum possible. The variable is active at one of its bounds,
but its Lagrange multiplier is essentially zero. This means that if the
variable were allowed to start moving away from its bound then there
would be no change to the objective function. The values of the other free
variables might change, giving a genuine alternative solution. However, if
there are any degenerate variables (labelled D), the actual change might
prove to be zero, since one of them could encounter a bound immediately.
In either case the values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is
FR unless BLðjÞ � �bigbnd and BUðjÞ � bigbnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL and
non-positive if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ are replaced by BLðnþ jÞ and
BUðnþ jÞ respectively, and with the following changes in the heading:

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL, of the linear constraint.

N Con gives the name (N) and index (j � nL), for j ¼ nL þ 1; . . . ; nL þ nN , of the
nonlinear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This is based on Problem 71 in Hock and Schittkowski (1981) and involves the minimization of the
nonlinear function

F xð Þ ¼ x1x4 x1 þ x2 þ x3ð Þ þ x3
subject to the bounds

1 � x1 � 5
1 � x2 � 5
1 � x3 � 5
1 � x4 � 5
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to the general linear constraint

x1 þ x2 þ x3 þ x4 � 20;

and to the nonlinear constraints

x21 þ x22 þ x23 þ x24 � 40;
x1x2x3x4 � 25:

The initial point, which is infeasible, is

x0 ¼ 1; 5; 5; 1ð ÞT;

and F x0ð Þ ¼ 16.

The optimal solution (to five figures) is

x� ¼ 1:0; 4:7430; 3:8211; 1:3794ð ÞT;

and F x�ð Þ ¼ 17:014. One bound constraint and both nonlinear constraints are active at the solution.

The document for E04UDF/E04UDA includes an example program to solve the same problem using
some of the optional parameters described in Section 12.

10.1 Program Text

the following program illustrates the use of E04UCF. An equivalent program illustrating the use of
E04UCA is available with the supplied Library and is also available from the NAG web site.

! E04UCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04ucfe_mod

! E04UCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, objfun

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine objfun(mode,n,x,objf,objgrd,nstate,iuser,ruser)

! Routine to evaluate objective function and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: objgrd(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
If (mode==0 .Or. mode==2) Then

objf = x(1)*x(4)*(x(1)+x(2)+x(3)) + x(3)
End If

If (mode==1 .Or. mode==2) Then
objgrd(1) = x(4)*(2.0E0_nag_wp*x(1)+x(2)+x(3))
objgrd(2) = x(1)*x(4)
objgrd(3) = x(1)*x(4) + 1.0E0_nag_wp
objgrd(4) = x(1)*(x(1)+x(2)+x(3))

End If
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Return

End Subroutine objfun
Subroutine confun(mode,ncnln,n,ldcj,needc,x,c,cjac,nstate,iuser,ruser)

! Routine to evaluate the nonlinear constraints and their 1st
! derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcj, n, ncnln, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjac(ldcj,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncnln)

! .. Executable Statements ..
If (nstate==1) Then

! First call to CONFUN. Set all Jacobian elements to zero.
! Note that this will only work when ’Derivative Level = 3’
! (the default; see Section 11.2).

cjac(1:ncnln,1:n) = 0.0E0_nag_wp
End If

If (needc(1)>0) Then

If (mode==0 .Or. mode==2) Then
c(1) = x(1)**2 + x(2)**2 + x(3)**2 + x(4)**2

End If

If (mode==1 .Or. mode==2) Then
cjac(1,1) = 2.0E0_nag_wp*x(1)
cjac(1,2) = 2.0E0_nag_wp*x(2)
cjac(1,3) = 2.0E0_nag_wp*x(3)
cjac(1,4) = 2.0E0_nag_wp*x(4)

End If

End If

If (needc(2)>0) Then

If (mode==0 .Or. mode==2) Then
c(2) = x(1)*x(2)*x(3)*x(4)

End If

If (mode==1 .Or. mode==2) Then
cjac(2,1) = x(2)*x(3)*x(4)
cjac(2,2) = x(1)*x(3)*x(4)
cjac(2,3) = x(1)*x(2)*x(4)
cjac(2,4) = x(1)*x(2)*x(3)

End If

End If

Return

End Subroutine confun
End Module e04ucfe_mod
Program e04ucfe

! E04UCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04ucf, nag_wp
Use e04ucfe_mod, Only: confun, nin, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: objf
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Integer :: i, ifail, iter, lda, ldcj, ldr, &
liwork, lwork, n, nclin, ncnln, sda, &
sdcjac

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), c(:), &

cjac(:,:), clamda(:), objgrd(:), &
r(:,:), work(:), x(:)

Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: istate(:), iwork(:)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04UCF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, nclin, ncnln
liwork = 3*n + nclin + 2*ncnln
lda = max(1,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

ldcj = max(1,ncnln)

If (ncnln>0) Then
sdcjac = n

Else
sdcjac = 1

End If

ldr = n

If (ncnln==0 .And. nclin>0) Then
lwork = 2*n**2 + 20*n + 11*nclin

Else If (ncnln>0 .And. nclin>=0) Then
lwork = 2*n**2 + n*nclin + 2*n*ncnln + 20*n + 11*nclin + 21*ncnln

Else
lwork = 20*n

End If

Allocate (istate(n+nclin+ncnln),iwork(liwork),a(lda,sda), &
bl(n+nclin+ncnln),bu(n+nclin+ncnln),c(max(1, &
ncnln)),cjac(ldcj,sdcjac),clamda(n+nclin+ncnln),objgrd(n),r(ldr,n), &
x(n),work(lwork))

If (nclin>0) Then
Read (nin,*)(a(i,1:sda),i=1,nclin)

End If

Read (nin,*) bl(1:(n+nclin+ncnln))
Read (nin,*) bu(1:(n+nclin+ncnln))
Read (nin,*) x(1:n)

ifail = 0
Call e04ucf(n,nclin,ncnln,lda,ldcj,ldr,a,bl,bu,confun,objfun,iter, &

istate,c,cjac,clamda,objf,objgrd,r,x,iwork,liwork,work,lwork,iuser, &
ruser,ifail)

End Program e04ucfe
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10.2 Program Data

E04UCF Example Program Data
4 1 2 :Values of N, NCLIN and NCNLN
1.0 1.0 1.0 1.0 :End of matrix A
1.0 1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 :End of BL
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25 :End of BU
1.0 5.0 5.0 1.0 :End of X

10.3 Program Results

E04UCF Example Program Results

*** E04UCF

Parameters
----------

Linear constraints..... 1 Variables.............. 4
Nonlinear constraints.. 2

Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16
Step limit............. 2.00E+00 Hessian................ NO

Linear feasibility..... 1.05E-08 Crash tolerance........ 1.00E-02
Nonlinear feasibility.. 1.05E-08 Optimality tolerance... 3.26E-12
Line search tolerance.. 9.00E-01 Function precision..... 4.37E-15

Derivative level....... 3 Monitoring file........ -1
Verify level........... 0

Major iterations limit. 50 Major print level...... 10
Minor iterations limit. 50 Minor print level...... 0

Start point
1.000000E+00 5.000000E+00 5.000000E+00 1.000000E+00

Workspace provided is IWORK( 17), WORK( 185).
To solve problem we need IWORK( 17), WORK( 185).

Verification of the constraint gradients.
-----------------------------------------

The constraint Jacobian seems to be ok.

The largest relative error was 2.29E-07 in constraint 2

Verification of the objective gradients.
----------------------------------------

The objective gradients seem to be ok.

Directional derivative of the objective 8.15250000E-01
Difference approximation 8.15249734E-01

Maj Mnr Step Merit Function Norm Gz Violtn Cond Hz
0 4 0.0E+00 1.738281E+01 7.1E-01 1.2E+01 1.0E+00
1 1 1.0E+00 1.703169E+01 4.6E-02 1.9E+00 1.0E+00
2 1 1.0E+00 1.701442E+01 2.1E-02 8.8E-02 1.0E+00
3 1 1.0E+00 1.701402E+01 3.1E-04 5.4E-04 1.0E+00
4 1 1.0E+00 1.701402E+01 7.0E-06 9.9E-08 1.0E+00
5 1 1.0E+00 1.701402E+01 1.1E-08 4.6E-11 1.0E+00

Exit from NP problem after 5 major iterations,
9 minor iterations.
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Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 LL 1.00000 1.00000 5.00000 1.088 .
V 2 FR 4.74300 1.00000 5.00000 . 0.2570
V 3 FR 3.82115 1.00000 5.00000 . 1.179
V 4 FR 1.37941 1.00000 5.00000 . 0.3794

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 FR 10.9436 None 20.0000 . 9.056

N Con State Value Lower Bound Upper Bound Lagr Mult Slack

N 1 UL 40.0000 None 40.0000 -0.1615 -3.5264E-11
N 2 LL 25.0000 25.0000 None 0.5523 -2.8791E-11

Exit E04UCF - Optimal solution found.

Final objective value = 17.01402

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to E04UDF/E04UDA and/or
E04UEF/E04UEA. Section 13 describes the quantities which can be requested to monitor the course of
the computation.

11 Algorithmic Details

This section contains a detailed description of the method used by E04UCF/E04UCA.

11.1 Overview

E04UCF/E04UCA is essentially identical to the subroutine NPSOL described in Gill et al. (1986b).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. An active simple
bound constraint implies that the corresponding variable is fixed at its bound, and hence the variables
are partitioned into fixed and free variables. Let C denote the m by n matrix of gradients of the active
general linear and nonlinear constraints. The number of fixed variables will be denoted by nFX, with
nFR nFR ¼ n� nFXð Þ the number of free variables. The subscripts ‘FX’ and ‘FR’ on a vector or matrix
will denote the vector or matrix composed of the elements corresponding to fixed or free variables.

A point x is a first-order Kuhn–Tucker point for (1) (see Powell (1974)) if the following conditions
hold:

(i) x is feasible;

(ii) there exist vectors � and � (the Lagrange multiplier vectors for the bound and general constraints)
such that

g ¼ CT�þ � ð2Þ

where g is the gradient of F evaluated at x, and �j ¼ 0 if the jth variable is free.

(iii) The Lagrange multiplier corresponding to an inequality constraint active at its lower bound must be
non-negative, and non-positive for an inequality constraint active at its upper bound.

Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to the rows of CFR;
i.e., CFRZ ¼ 0. An equivalent statement of the condition (2) in terms of Z is

ZTgFR ¼ 0:
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The vector ZTgFR is termed the projected gradient of F at x. Certain additional conditions must be
satisfied in order for a first-order Kuhn–Tucker point to be a solution of (1) (see Powell (1974)).

E04UCF/E04UCA implements a sequential quadratic programming (SQP) method. For an overview of
SQP methods, see, for example, Fletcher (1987), Gill et al. (1981) and Powell (1983).

The basic structure of E04UCF/E04UCA involves major and minor iterations. The major iterations
generate a sequence of iterates xkf g that converge to x�, a first-order Kuhn–Tucker point of (1). At a
typical major iteration, the new iterate �x is defined by

�x ¼ xþ �p ð3Þ

where x is the current iterate, the non-negative scalar � is the step length, and p is the search direction.
(For simplicity, we shall always consider a typical iteration and avoid reference to the index of the
iteration.) Also associated with each major iteration are estimates of the Lagrange multipliers and a
prediction of the active set.

The search direction p in (3) is the solution of a quadratic programming subproblem of the form

minimize
p

gTpþ 1
2p

THp subject to �l �
p
ALp
ANp

8<:
9=; � �u; ð4Þ

where g is the gradient of F at x, the matrix H is a positive definite quasi-Newton approximation to the
Hessian of the Lagrangian function (see Section 11.4), and AN is the Jacobian matrix of c evaluated at
x. (Finite difference estimates may be used for g and AN ; see the optional parameter Derivative Level.)
Let l in (1) be partitioned into three sections: lB, lL and lN , corresponding to the bound, linear and
nonlinear constraints. The vector �l in (4) is similarly partitioned, and is defined as

�lB ¼ lB � x; �lL ¼ lL �ALx; and �lN ¼ lN � c;

where c is the vector of nonlinear constraints evaluated at x. The vector �u is defined in an analogous
fashion.

The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from the
subproblem (4) (and similarly for the predicted active set). (The numbers of bounds, general linear and
nonlinear constraints in the QP active set are the quantities Bnd, Lin and Nln in the monitoring file
output of E04UCF/E04UCA; see Section 13.) In E04UCF/E04UCA, (4) is solved using E04NCF/
E04NCA. Since solving a quadratic program is itself an iterative procedure, the minor iterations of
E04UCF/E04UCA are the iterations of E04NCF/E04NCA. (More details about solving the subproblem
are given in Section 11.2.)

Certain matrices associated with the QP subproblem are relevant in the major iterations. Let the
subscripts ‘FX’ and ‘FR’ refer to the predicted fixed and free variables, and let C denote the m by n
matrix of gradients of the general linear and nonlinear constraints in the predicted active set. First, we
have available the TQ factorization of CFR:

CFRQFR ¼ 0 T
� �

; ð5Þ

where T is a nonsingular m by m reverse-triangular matrix (i.e., tij ¼ 0 if iþ j < m), and the
nonsingular nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al.
(1984b)). Second, we have the upper triangular Cholesky factor R of the transformed and reordered
Hessian matrix

RTR ¼ HQ 	 QT ~HQ; ð6Þ

where ~H is the Hessian H with rows and columns permuted so that the free variables are first, and Q is
the n by n matrix

Q ¼ QFR
IFX

� �
ð7Þ

with IFX the identity matrix of order nFX. If the columns of QFR are partitioned so that

QFR ¼ Z Y
� �

;
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the nZ (nZ 	 nFR �m) columns of Z form a basis for the null space of CFR. The matrix Z is used to
compute the projected gradient ZTgFR at the current iterate. (The values Nz and Norm Gz printed by
E04UCF/E04UCA give nZ and ZTgFRk k; see Section 13.)

A theoretical characteristic of SQP methods is that the predicted active set from the QP subproblem (4)
is identical to the correct active set in a neighbourhood of x�. In E04UCF/E04UCA, this feature is
exploited by using the QP active set from the previous iteration as a prediction of the active set for the
next QP subproblem, which leads in practice to optimality of the subproblems in only one iteration as
the solution is approached. Separate treatment of bound and linear constraints in E04UCF/E04UCA also
saves computation in factorizing CFR and HQ.

Once p has been computed, the major iteration proceeds by determining a step length � that produces a
‘sufficient decrease’ in an augmented Lagrangian merit function (see Section 11.3). Finally, the
approximation to the transformed Hessian matrix HQ is updated using a modified BFGS quasi-Newton
update (see Section 11.4) to incorporate new curvature information obtained in the move from x to �x.

On entry to E04UCF/E04UCA, an iterative procedure from E04NCF/E04NCA is executed, starting with
the user-supplied initial point, to find a point that is feasible with respect to the bounds and linear
constraints (using the tolerance specified by optional parameter Linear Feasibility Tolerance). If no
feasible point exists for the bound and linear constraints, (1) has no solution and E04UCF/E04UCA
terminates. Otherwise, the problem functions will thereafter be evaluated only at points that are feasible
with respect to the bounds and linear constraints. The only exception involves variables whose bounds
differ by an amount comparable to the finite difference interval (see the discussion of optional
parameter Difference Interval). In contrast to the bounds and linear constraints, it must be emphasized
that the nonlinear constraints will not generally be satisfied until an optimal point is reached.

Facilities are provided to check whether the user-supplied gradients appear to be correct (see the
description of the optional parameter Verify). In general, the check is provided at the first point that is
feasible with respect to the linear constraints and bounds. However, you may request that the check be
performed at the initial point.

In summary, the method of E04UCF/E04UCA first determines a point that satisfies the bound and linear
constraints. Thereafter, each iteration includes:

(a) the solution of a quadratic programming subproblem;

(b) a linesearch with an augmented Lagrangian merit function; and

(c) a quasi-Newton update of the approximate Hessian of the Lagrangian function.

These three procedures are described in more detail in Sections 11.2 to 11.4.

11.2 Solution of the Quadratic Programming Subproblem

The search direction p is obtained by solving (4) using E04NCF/E04NCA (see Gill et al. (1986)), which
was specifically designed to be used within an SQP algorithm for nonlinear programming.

E04NCF/E04NCA is based on a two-phase (primal) quadratic programming method. The two phases of
the method are: finding an initial feasible point by minimizing the sum of infeasibilities (the feasibility
phase), and minimizing the quadratic objective function within the feasible region (the optimality
phase). The computations in both phases are performed by the same subroutines. The two-phase nature
of the algorithm is reflected by changing the function being minimized from the sum of infeasibilities to
the quadratic objective function.

In general, a quadratic program must be solved by iteration. Let p denote the current estimate of the
solution of (4); the new iterate �p is defined by

�p ¼ pþ �d ð8Þ

where, as in (3), � is a non-negative step length and d is a search direction.

At the beginning of each iteration of E04NCF/E04NCA, a working set is defined of constraints (general
and bound) that are satisfied exactly. The vector d is then constructed so that the values of constraints in
the working set remain unaltered for any move along d. For a bound constraint in the working set, this
property is achieved by setting the corresponding element of d to zero, i.e., by fixing the variable at its
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bound. As before, the subscripts ‘FX’ and ‘FR’ denote selection of the elements associated with the
fixed and free variables.

Let C denote the sub-matrix of rows of

AL

AN

� �
corresponding to general constraints in the working set. The general constraints in the working set will
remain unaltered if

CFRdFR ¼ 0; ð9Þ

which is equivalent to defining dFR as

dFR ¼ ZdZ ð10Þ

for some vector dZ, where Z is the matrix associated with the TQ factorization (5) of CFR.

The definition of dZ in (10) depends on whether the current p is feasible. If not, dZ is zero except for an
element � in the jth position, where j and � are chosen so that the sum of infeasibilities is decreasing
along d. (For further details, see Gill et al. (1986).) In the feasible case, dZ satisfies the equations

RT
ZRZdZ ¼ �ZTqFR; ð11Þ

where RZ is the Cholesky factor of ZTHFRZ and q is the gradient of the quadratic objective function
q ¼ gþHpð Þ. (The vector ZTqFR is the projected gradient of the QP.) With (11), pþ d is the minimizer
of the quadratic objective function subject to treating the constraints in the working set as equalities.

If the QP projected gradient is zero, the current point is a constrained stationary point in the subspace
defined by the working set. During the feasibility phase, the projected gradient will usually be zero only
at a vertex (although it may vanish at non-vertices in the presence of constraint dependencies). During
the optimality phase, a zero projected gradient implies that p minimizes the quadratic objective function
when the constraints in the working set are treated as equalities. In either case, Lagrange multipliers are
computed. Given a positive constant � of the order of the machine precision, the Lagrange multiplier �j
corresponding to an inequality constraint in the working set is said to be optimal if �j � � when the jth
constraint is at its upper bound, or if �j � �� when the associated constraint is at its lower bound. If
any multiplier is nonoptimal, the current objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, no
feasible point exists. The QP algorithm will then continue iterating to determine the minimum sum of
infeasibilities. At this point, the Lagrange multiplier �j will satisfy � 1þ �ð Þ � �j � � for an inequality
constraint at its upper bound, and �� � �j � 1þ �ð Þ for an inequality at its lower bound. The Lagrange
multiplier for an equality constraint will satisfy �j

		 		 � 1þ �.

The choice of step length � in the QP iteration (8) is based on remaining feasible with respect to the
satisfied constraints. During the optimality phase, if pþ d is feasible, � will be taken as unity. (In this
case, the projected gradient at �p will be zero.) Otherwise, � is set to �M, the step to the ‘nearest’
constraint, which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to CFR: if the status of a general constraint
changes, a row of CFR is altered; if a bound constraint enters or leaves the working set, a column of CFR

changes. Explicit representations are recurred of the matrices T , QFR and R, and of the vectors QTq and
QTg.

11.3 The Merit Function

After computing the search direction as described in Section 11.2, each major iteration proceeds by
determining a step length � in (3) that produces a ‘sufficient decrease’ in the augmented Lagrangian
merit function

L x; �; sð Þ ¼ F xð Þ �
X
i

�i ci xð Þ � sið Þ þ 1
2

X
i

�i ci xð Þ � sið Þ2; ð12Þ
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where x, � and s vary during the linesearch. The summation terms in (12) involve only the nonlinear
constraints. The vector � is an estimate of the Lagrange multipliers for the nonlinear constraints of (1).
The non-negative slack variables sif g allow nonlinear inequality constraints to be treated without
introducing discontinuities. The solution of the QP subproblem (4) provides a vector triple that serves
as a direction of search for the three sets of variables. The non-negative vector � of penalty parameters
is initialized to zero at the beginning of the first major iteration. Thereafter, selected elements are
increased whenever necessary to ensure descent for the merit function. Thus, the sequence of norms of
� (the printed quantity Penalty; see Section 13) is generally nondecreasing, although each �i may be
reduced a limited number of times.

The merit function (12) and its global convergence properties are described in Gill et al. (1986a).

11.4 The Quasi-Newton Update

The matrix H in (4) is a positive definite quasi-Newton approximation to the Hessian of the Lagrangian
function. (For a review of quasi-Newton methods, see Dennis and Schnabel (1983).) At the end of each
major iteration, a new Hessian approximation �H is defined as a rank-two modification of H. In
E04UCF/E04UCA, the BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton update is used:

�H ¼ H � 1

sTHs
HssTH þ 1

yTs
yyT; ð13Þ

where s ¼ �x� x (the change in x).

In E04UCF/E04UCA, H is required to be positive definite. If H is positive definite, �H defined by (13)
will be positive definite if and only if yTs is positive (see Dennis and Moré (1977)). Ideally, y in (13)
would be taken as yL, the change in gradient of the Lagrangian function

yL ¼ �g� �AT
N�N � gþAT

N�N; ð14Þ

where �N denotes the QP multipliers associated with the nonlinear constraints of the original problem.
If yTLs is not sufficiently positive, an attempt is made to perform the update with a vector y of the form

y ¼ yL þ
XmN

i¼1
!i ai x̂ð Þci x̂ð Þ � ai xð Þci xð Þð Þ;

where !i � 0. If no such vector can be found, the update is performed with a scaled yL; in this case, M
is printed to indicate that the update was modified.

Rather than modifying H itself, the Cholesky factor of the transformed Hessian HQ (6) is updated,
where Q is the matrix from (5) associated with the active set of the QP subproblem. The update (13) is
equivalent to the following update to HQ:

�HQ ¼ HQ �
1

sTQHQsQ
HQsQs

T
QHQ þ

1

yTQsQ
yQy

T
Q; ð15Þ

where yQ ¼ QTy, and sQ ¼ QTs. This update may be expressed as a rank-one update to R (see Dennis
and Schnabel (1981)).

12 Optional Parameters

Several optional parameters in E04UCF/E04UCA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal arguments of E04UCF/E04UCA these optional
parameters have associated default values that are appropriate for most problems. Therefore you need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.
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Central Difference Interval

Cold Start

Crash Tolerance

Defaults

Derivative Level

Difference Interval

Feasibility Tolerance

Function Precision

Hessian

Infinite Bound Size

Infinite Step Size

Iteration Limit

Iters

Itns

Linear Feasibility Tolerance

Line Search Tolerance

List

Major Iteration Limit

Major Print Level

Minor Iteration Limit

Minor Print Level

Monitoring File

Nolist

Nonlinear Feasibility Tolerance

Optimality Tolerance

Print Level

Start Constraint Check At Variable

Start Objective Check At Variable

Step Limit

Stop Constraint Check At Variable

Stop Objective Check At Variable

Verify

Verify Constraint Gradients

Verify Gradients

Verify Level

Verify Objective Gradients

Warm Start

Optional parameters may be specified by calling one, or both, of E04UDF/E04UDA and E04UEF/
E04UEA before a call to E04UCF/E04UCA.

E04UDF/E04UDA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print level = 1

End

The call can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit.
E04UDF/E04UDA should be consulted for a full description of this method of supplying optional
parameters.
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E04UEF/E04UEA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04UEF (’Print Level = 1’)

E04UEF/E04UEA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by E04UCF/E04UCA (unless they define invalid values) and so remain
in effect for subsequent calls to E04UCF/E04UCA, unless altered by you.

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
and �r denotes the relative precision of the objective function Function Precision, and bigbnd
signifies the value of Infinite Bound Size.

Keywords and character values are case and white space insensitive.

Central Difference Interval r Default values are computed

If the algorithm switches to central differences because the forward-difference approximation is not
sufficiently accurate, the value of r is used as the difference interval for every element of x. The switch
to central differences is indicated by C at the end of each line of intermediate printout produced by the
major iterations (see Section 9.1). The use of finite differences is discussed further under the optional
parameter Difference Interval.

If you supply a value for this optional parameter, a small value between 0:0 and 1:0 is appropriate.

Cold Start Default
Warm Start

This option controls the specification of the initial working set in both the procedure for finding a
feasible point for the linear constraints and bounds and in the first QP subproblem thereafter. With a
Cold Start, the first working set is chosen by E04UCF/E04UCA based on the values of the variables
and constraints at the initial point. Broadly speaking, the initial working set will include equality
constraints and bounds or inequality constraints that violate or ‘nearly’ satisfy their bounds (to within
Crash Tolerance).

With a Warm Start, you must set the ISTATE array and define CLAMDA and R as discussed in
Section 5. ISTATE values associated with bounds and linear constraints determine the initial working
set of the procedure to find a feasible point with respect to the bounds and linear constraints. ISTATE
values associated with nonlinear constraints determine the initial working set of the first QP subproblem
after such a feasible point has been found. E04UCF/E04UCA will override your specification of
ISTATE if necessary, so that a poor choice of the working set will not cause a fatal error. For instance,
any elements of ISTATE which are set to �2, �1 or 4 will be reset to zero, as will any elements which
are set to 3 when the corresponding elements of BL and BU are not equal. A warm start will be
advantageous if a good estimate of the initial working set is available – for example, when E04UCF/
E04UCA is called repeatedly to solve related problems.
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Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
E04UCF/E04UCA selects an initial working set. If 0 � r � 1, the initial working set will include (if
possible) bounds or general inequality constraints that lie within r of their bounds. In particular, a

constraint of the form aTj x � l will be included in the initial working set if aTj x� l
			 			 � r 1þ lj jð Þ. If

r < 0 or r > 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Derivative Level i Default ¼ 3

This parameter indicates which derivatives are provided in user-supplied subroutines OBJFUN and
CONFUN. The possible choices for i are the following.

i Meaning

3 All elements of the objective gradient and the constraint Jacobian are provided.

2 All elements of the constraint Jacobian are provided, but some elements of the objective gradient
are not specified.

1 All elements of the objective gradient are provided, but some elements of the constraint Jacobian
are not specified.

0 Some elements of both the objective gradient and the constraint Jacobian are not specified.

The value i ¼ 3 should be used whenever possible, since E04UCF/E04UCA is more reliable (and will
usually be more efficient) when all derivatives are exact.

If i ¼ 0 or 2, E04UCF/E04UCA will estimate the unspecified elements of the objective gradient, using
finite differences. The computation of finite difference approximations usually increases the total run-
time, since a call to OBJFUN is required for each unspecified element. Furthermore, less accuracy can
be attained in the solution (see Chapter 8 of Gill et al. (1981), for a discussion of limiting accuracy).

If i ¼ 0 or 1, E04UCF/E04UCA will approximate unspecified elements of the constraint Jacobian. One
call to CONFUN is needed for each variable for which partial derivatives are not available. For
example, if the Jacobian has the form

� � � �
� ? ? �
� � ? �
� � � �

0B@
1CA

where ‘�’ indicates an element provided by you and ‘?’ indicates an unspecified element, E04UCF/
E04UCA will call CONFUN twice: once to estimate the missing element in column 2, and again to
estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they require no
calls to CONFUN.)

At times, central differences are used rather than forward differences, in which case twice as many calls
to OBJFUN and CONFUN are needed. (The switch to central differences is not under your control.)

If i < 0 or i > 3, the default value is used.

Difference Interval r Default values are computed

This option defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional
parameter Verify).

(b) For estimating unspecified elements of the objective gradient or the constraint Jacobian.
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In general, a derivative with respect to the jth variable is approximated using the interval �j, where
�j ¼ r 1þ x̂j

		 		� �
, with x̂ the first point feasible with respect to the bounds and linear constraints. If the

functions are well scaled, the resulting derivative approximation should be accurate to O rð Þ. See Gill et
al. (1981) for a discussion of the accuracy in finite difference approximations.

If a difference interval is not specified by you, a finite difference interval will be computed
automatically for each variable by a procedure that requires up to six calls of CONFUN and OBJFUN
for each element. This option is recommended if the function is badly scaled or you wish to have
E04UCF/E04UCA determine constant elements in the objective and constraint gradients (see the
descriptions of CONFUN and OBJFUN in Section 5).

If you supply a value for this optional parameter, a small value between 0:0 and 1:0 is appropriate.

Feasibility Tolerance r Default ¼
ffiffi
�
p

The scalar r defines the maximum acceptable absolute violations in linear and nonlinear constraints at a
‘feasible’ point; i.e., a constraint is considered satisfied if its violation does not exceed r. If r < � or
r � 1, the default value is used. Using this keyword sets both optional parameters Linear Feasibility
Tolerance and Nonlinear Feasibility Tolerance to r, if � � r < 1. (Additional details are given under
the descriptions of these optional parameters.)

Function Precision r Default ¼ �0:9

This parameter defines �r, which is intended to be a measure of the accuracy with which the problem
functions F xð Þ and c xð Þ can be computed. If r < � or r � 1, the default value is used.

The value of �r should reflect the relative precision of 1þ F xð Þj j; i.e., �r acts as a relative precision
when Fj j is large and as an absolute precision when Fj j is small. For example, if F xð Þ is typically of
order 1000 and the first six significant digits are known to be correct, an appropriate value for �r would
be 10�6. In contrast, if F xð Þ is typically of order 10�4 and the first six significant digits are known to be
correct, an appropriate value for �r would be 10�10. The choice of �r can be quite complicated for badly
scaled problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However, when the
accuracy of the computed function values is known to be significantly worse than full precision, the
value of �r should be large enough so that E04UCF/E04UCA will not attempt to distinguish between
function values that differ by less than the error inherent in the calculation.

Hessian No Default ¼ NO

This option controls the contents of the upper triangular matrix R (see Section 5). E04UCF/E04UCA
works exclusively with the transformed and reordered Hessian HQ (6), and hence extra computation is
required to form the Hessian itself. If Hessian ¼ NO, R contains the Cholesky factor of the transformed
and reordered Hessian. If Hessian ¼ YES, the Cholesky factor of the approximate Hessian itself is
formed and stored in R. You should select Hessian ¼ YES if a Warm Start will be used for the next
call to E04UCF/E04UCA.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r < 0, the default value is used.

Infinite Step Size r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that is treated as a step to an unbounded
solution. If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

Line Search Tolerance r Default ¼ 0:9

The value r (0 � r < 1) controls the accuracy with which the step � taken during each iteration
approximates a minimum of the merit function along the search direction (the smaller the value of r, the
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more accurate the linesearch). The default value r ¼ 0:9 requests an inaccurate search and is
appropriate for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to
reduce the number of major iterations – for example, if the objective function is cheap to evaluate, or if
a substantial number of derivatives are unspecified. If r < 0 or r � 1, the default value is used.

Linear Feasibility Tolerance r1 Default ¼
ffiffi
�
p

Nonlinear Feasibility Tolerance r2 Default ¼ �0:33 or
ffiffi
�
p

The default value of r2 is �0:33 if Derivative Level ¼ 0 or 1, and
ffiffi
�
p

otherwise.

The scalars r1 and r2 define the maximum acceptable absolute violations in linear and nonlinear
constraints at a ‘feasible’ point; i.e., a linear constraint is considered satisfied if its violation does not
exceed r1, and similarly for a nonlinear constraint and r2. If rm < � or rm � 1, the default value is used,
for m ¼ 1; 2.

On entry to E04UCF/E04UCA, an iterative procedure is executed in order to find a point that satisfies
the linear constraints and bounds on the variables to within the tolerance r1. All subsequent iterates will
satisfy the linear constraints to within the same tolerance (unless r1 is comparable to the finite
difference interval).

For nonlinear constraints, the feasibility tolerance r2 defines the largest constraint violation that is
acceptable at an optimal point. Since nonlinear constraints are generally not satisfied until the final
iterate, the value of optional parameter Nonlinear Feasibility Tolerance acts as a partial termination
criterion for the iterative sequence generated by E04UCF/E04UCA (see the discussion of optional
parameter Optimality Tolerance).

These tolerances should reflect the precision of the corresponding constraints. For example, if the
variables and the coefficients in the linear constraints are of order unity, and the latter are correct to
about 6 decimal digits, it would be appropriate to specify r1 as 10�6.

List Default for E04UCF
Nolist Default for E04UCA

For E04UCF, normally each optional parameter specification is printed as it is supplied. Optional
parameter Nolist may be used to suppress the printing and optional parameter List may be used to turn
on printing.

Major Iteration Limit i Default ¼ max 50; 3 nþ nLð Þ þ 10nNð Þ
Iteration Limit
Iters
Itns

The value of i specifies the maximum number of major iterations allowed before termination. Setting
i ¼ 0 and Major Print Level > 0 means that the workspace needed will be computed and printed, but
no iterations will be performed. If i < 0, the default value is used.

Major Print Level i Default for E04UCF ¼ 10
Print Level i Default for E04UCA ¼ 0

The value of i controls the amount of printout produced by the major iterations of E04UCF/E04UCA,
as indicated below. A detailed description of the printed output is given in Section 9.1 (summary output
at each major iteration and the final solution) and Section 13 (monitoring information at each major
iteration). (See also the description of the optional parameter Minor Print Level.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.

1 The final solution only.
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5 One line of summary output ( < 80 characters; see Section 9.1) for each major iteration (no
printout of the final solution).

� 10 The final solution and one line of summary output for each major iteration.

The following printout is sent to the logical unit number by the optional parameter Monitoring File:

i Output

< 5 No output.

� 5 One long line of output ( > 80 characters; see Section 13) for each major iteration (no printout
of the final solution).

� 20 At each major iteration, the objective function, the Euclidean norm of the nonlinear constraint
violations, the values of the nonlinear constraints (the vector c), the values of the linear
constraints (the vector ALx), and the current values of the variables (the vector x).

� 30 At each major iteration, the diagonal elements of the matrix T associated with the TQ
factorization (5) (see Section 11.1) of the QP working set, and the diagonal elements of R, the
triangular factor of the transformed and reordered Hessian (6) (see Section 11.1).

If Major Print Level � 5 and the unit number defined by the optional parameter Monitoring File is
the same as that defined by X04ABF,then the summary output for each major iteration is suppressed.

Minor Iteration Limit i Default ¼ max 50; 3 nþ nL þ nNð Þð Þ
The value of i specifies the maximum number of iterations for finding a feasible point with respect to
the bounds and linear constraints (if any). The value of i also specifies the maximum number of minor
iterations for the optimality phase of each QP subproblem. If i � 0, the default value is used.

Minor Print Level i Default ¼ 0

The value of i controls the amount of printout produced by the minor iterations of E04UCF/E04UCA (i.
e., the iterations of the quadratic programming algorithm), as indicated below. A detailed description of
the printed output is given in Section 9.1 (summary output at each minor iteration and the final QP
solution) and Section 13 in E04NCF/E04NCA (monitoring information at each minor iteration). (See
also the description of the optional parameter Major Print Level.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.

1 The final QP solution only.

5 One line of summary output ( < 80 characters; see Section 9.2 in E04NCF/E04NCA) for each
minor iteration (no printout of the final QP solution).

� 10 The final QP solution and one line of summary output for each minor iteration.

The following printout is sent to the logical unit number by the optional parameter Monitoring File:

i Output

< 5 No output.

� 5 One long line of output ( > 80 characters; see Section 9.2 in E04NCF/E04NCA) for each minor
iteration (no printout of the final QP solution).

� 20 At each minor iteration, the current estimates of the QP multipliers, the current estimate of the
QP search direction, the QP constraint values, and the status of each QP constraint.

� 30 At each minor iteration, the diagonal elements of the matrix T associated with the TQ
factorization (5) (see Section 11.1) of the QP working set, and the diagonal elements of the
Cholesky factor R of the transformed Hessian (6) (see Section 11.1).
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If Major Print Level � 5 and the unit number defined by the optional parameter Monitoring File is
the same as that defined by X04ABF,then the summary output for each major iteration is suppressed.

Monitoring File i Default ¼ �1
If i � 0 and Major Print Level � 5 or i � 0 and Minor Print Level � 5, monitoring information
produced by E04UCF/E04UCA at every iteration is sent to a file with logical unit number i. If i < 0
and/or Major Print Level < 5 and Minor Print Level < 5, no monitoring information is produced.

Optimality Tolerance r Default ¼ �0:8R
The parameter r (�r � r < 1) specifies the accuracy to which you wish the final iterate to approximate a
solution of the problem. Broadly speaking, r indicates the number of correct figures desired in the
objective function at the solution. For example, if r is 10�6 and E04UCF/E04UCA terminates
successfully, the final value of F should have approximately six correct figures. If r < �r or r � 1, the
default value is used.

E04UCF/E04UCA will terminate successfully if the iterative sequence of x values is judged to have
converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section 11.1). The
sequence of iterates is considered to have converged at x if

� pk k �
ffiffiffi
r
p

1þ xk kð Þ; ð16Þ

where p is the search direction and � the step length from (3). An iterate is considered to satisfy the
first-order conditions for a minimum if

ZTgFR
�� �� � ffiffiffi

r
p

1þmax 1þ F xð Þj j; gFRk kð Þð Þ ð17Þ

and

resj
		 		 � ftol for all j; ð18Þ

where ZTgFR is the projected gradient (see Section 11.1), gFR is the gradient of F xð Þ with respect to the
free variables, resj is the violation of the jth active nonlinear constraint, and ftol is the Nonlinear
Feasibility Tolerance.

Start Objective Check At Variable i1 Default ¼ 1
Stop Objective Check At Variable i2 Default ¼ n
Start Constraint Check At Variable i3 Default ¼ 1
Stop Constraint Check At Variable i4 Default ¼ n
These keywords take effect only if Verify Level > 0. They may be used to control the verification of
gradient elements computed by OBJFUN and/or Jacobian elements computed by CONFUN. For
example, if the first 30 elements of the objective gradient appeared to be correct in an earlier run, so
t h a t o n l y e l em e n t 31 r em a i n s q u e s t i o n a b l e , i t i s r e a s o n a b l e t o s p e c i f y
Start Objective Check At Variable ¼ 31. If the first 30 variables appear linearly in the objective,
so that the corresponding gradient elements are constant, the above choice would also be appropriate.

If i2m�1 � 0 or i2m�1 > min n; i2mð Þ, the default value is used, for m ¼ 1; 2. If i2m � 0 or i2m > n, the
default value is used, for m ¼ 1; 2.

Step Limit r Default ¼ 2:0

If r > 0; r specifies the maximum change in variables at the first step of the linesearch. In some cases,
such as F xð Þ ¼ aebx or F xð Þ ¼ axb, even a moderate change in the elements of x can lead to floating-
point overflow. The parameter r is therefore used to encourage evaluation of the problem functions at
meaningful points. Given any major iterate x, the first point ~x at which F and c are evaluated during the
linesearch is restricted so that

~x� xk k2 � r 1þ xk k2
� �

:

The linesearch may go on and evaluate F and c at points further from x if this will result in a lower
value of the merit function (indicated by L at the end of each line of output produced by the major
iterations; see Section 9.1). If L is printed for most of the iterations, r should be set to a larger value.
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Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at wild values. The default value Step Limit ¼ 2:0 should not affect progress on well-
behaved functions, but values such as 0:1 or 0:01 may be helpful when rapidly varying functions are
present. If a small value of Step Limit is selected, a good starting point may be required. An important
application is to the class of nonlinear least squares problems. If r � 0, the default value is used.

Verify Level i Default ¼ 0
Verify i
Verify Constraint Gradients i
Verify Gradients i
Verify Objective Gradients i

These keywords refer to finite difference checks on the gradient elements computed by OBJFUN and
CONFUN. The possible choices for i are as follows:

i Meaning

�1 No checks are performed.

0 Only a ‘cheap’ test will be performed.

� 1 Individual gradient elements will also be checked using a reliable (but more expensive) test.

It is possible to specify Verify Level ¼ 0 to 3 in several ways. For example, the nonlinear objective
gradient (if any) will be verified if either Verify Objective Gradients or Verify Level ¼ 1 is specified.
The constraint gradients will be verified if Verify ¼ YES or Verify Level ¼ 2 or Verify is specified.
Similarly, the objective and the constraint gradients will be verified if Verify ¼ YES or
Verify Level ¼ 3 or Verify is specified.

If 0 � i � 3, gradients will be verified at the first point that satisfies the linear constraints and bounds.

If i ¼ 0, only a ‘cheap’ test will be performed, requiring one call to OBJFUN and (if appropriate) one
call to CONFUN.

If 1 � i � 3, a more reliable (but more expensive) check will be made on individual gradient elements,
within the ranges specified by the Start Constraint Check At Variable and Stop Constraint Check
At Variable keywords. A result of the form OK or BAD? is printed by E04UCF/E04UCA to indicate
whether or not each element appears to be correct.

If 10 � i � 13, the action is the same as for i� 10, except that it will take place at the user-specified
initial value of x.

If i < �1 or 4 � i � 9 or i > 13, the default value is used.

We suggest that Verify Level ¼ 3 be used whenever a new function routine is being developed.

13 Description of Monitoring Information

This section describes the long line of output ( > 80 characters) which forms part of the monitoring
information produced by E04UCF/E04UCA. (See also the description of the optional parameters Major
Print Level, Minor Print Level and Monitoring File.) You can control the level of printed output.

When Major Print Level � 5 and Monitoring File � 0, the following line of output is produced at
every major iteration of E04UCF/E04UCA on the unit number specified by Monitoring File. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11).

Note that Mnr may be greater than the optional parameter Minor Iteration Limit
if some iterations are required for the feasibility phase.
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Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Nfun is the cumulative number of evaluations of the objective function needed for the
linesearch. Evaluations needed for the estimation of the gradients by finite
differences are not included. Nfun is printed as a guide to the amount of work
required for the linesearch.

Merit Function is the value of the augmented Lagrangian merit function (12) at the current
iterate. This function will decrease at each iteration unless it was necessary to
increase the penalty parameters (see Section 11.3). As the solution is approached,
Merit Function will converge to the value of the objective function at the
solution.

If the QP subproblem does not have a feasible point (signified by I at the end of
the current output line) then the merit function is a large multiple of the
constraint violations, weighted by the penalty parameters. During a sequence of
major iterations with infeasible subproblems, the sequence of Merit Function
values will decrease monotonically until either a feasible subproblem is obtained
or E04UCF/E04UCA terminates with IFAIL ¼ 3 (no feasible point could be
found for the nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN ¼ 0) then this entry
contains Objective, the value of the objective function F xð Þ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is ZTgFRk k, the Euclidean norm of the projected gradient (see Section 11.2). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Violtn will be
approximately zero in the neighbourhood of a solution.

Nz is the number of columns of Z (see Section 11.2). The value of Nz is the number
of variables minus the number of constraints in the predicted active set; i.e.,
Nz ¼ n� Bndþ Linþ Nlnð Þ.

Bnd is the number of simple bound constraints in the predicted active set.

Lin is the number of general linear constraints in the predicted working set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if
NCNLN is zero).

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if NCNLN is zero).

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ ¼ ZTHFRZ ¼ RT

ZRZ ; see (6)). The larger this number, the more difficult
the problem.

Cond T is a lower bound on the condition number of the matrix of predicted active
constraints.

Conv is a three-letter indication of the status of the three convergence tests (16)–(18)
defined in the description of the optional parameter Optimality Tolerance. Each
letter is T if the test is satisfied and F otherwise. The three tests indicate whether:

(i) the sequence of iterates has converged;

(ii) the projected gradient (Norm Gz) is sufficiently small; and
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(iii) the norm of the residuals of constraints in the predicted active set (Violtn)
is small enough.

If any of these indicators is F when E04UCF/E04UCA terminates with
IFAIL ¼ 0, you should check the solution carefully.

M is printed if the quasi-Newton update has been modified to ensure that the
Hessian approximation is positive definite (see Section 11.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified
objective and constraint gradients. If the value of Step is zero then the switch to
central differences was made because no lower point could be found in the
linesearch. (In this case, the QP subproblem is resolved with the central
difference gradient and Jacobian.) If the value of Step is nonzero then central
differences were computed because Norm Gz and Violtn imply that x is close to
a Kuhn–Tucker point (see Section 11.1 in E04UFF/E04UFA).

L is printed if the linesearch has produced a relative change in x greater than the
value defined by the optional parameter Step Limit. If this output occurs
frequently during later iterations of the run, optional parameter Step Limit should
be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly
conditioned then the approximate Hessian is refactorized using column
interchanges. If necessary, R is modified so that its diagonal condition estimator
is bounded.
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NAG Library Routine Document

E04UDF/E04UDA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply optional parameters to E04UCF/E04UCA from an external file. More precisely, E04UDF
must be used to supply optional parameters to E04UCF and E04UDA must be used to supply optional
parameters to E04UCA.

E04UDA is a version of E04UDF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04UDA.

E04UDF/E04UDA can also be used to supply optional parameters to E04UFF/E04UFA.

2 Specification

2.1 Specification for E04UDF

SUBROUTINE E04UDF (IOPTNS, INFORM)

INTEGER IOPTNS, INFORM

2.2 Specification for E04UDA

SUBROUTINE E04UDA (IOPTNS, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IOPTNS, IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)

3 Description

E04UDF/E04UDA may be used to supply values for optional parameters to E04UCF/E04UCA.
E04UDF/E04UDA reads an external file and each line of the file defines a single optional parameter. It
is only necessary to supply values for those arguments whose values are to be different from their
default values.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:
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Begin * Example options file
Print level = 5

End

For E04UDF each line of the file is normally printed as it is read, on the current advisory message unit
(see X04ABF), but printing may be suppressed using the keyword Nolist. To suppress printing of
Begin, Nolist must be the first option supplied as in the file:

Begin
Nolist
Print level = 5

End

Printing will automatically be turned on again after a call to E04UCF or E04UDF and may be turned on
again at any time using the keyword List.

For E04UDA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04UCF/E04UCA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04UCF/E04UCA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04UCF/E04UCA.

4 References

None.

5 Arguments

1: IOPTNS – INTEGER Input

On entry: the unit number of the options file to be read.

Constraint: 0 � IOPTNS � 99.

2: INFORM – INTEGER Output

Note: for E04UDA, INFORM does not occur in this position in the argument list. See the
additional arguments described below.

On exit: contains zero if the options file has been successfully read and a value > 0 otherwise
(see Section 6).

Note: the following are additional arguments for specific use with E04UDA. Users of E04UDF
therefore need not read the remainder of this description.

3: LWSAVð120Þ – LOGICAL array Communication Array
4: IWSAVð610Þ – INTEGER array Communication Array
5: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04UDA, E04UCA, E04UEA and E04WBF.

6: INFORM – INTEGER Output

Note: see the argument description for INFORM above.

6 Error Indicators and Warnings

INFORM ¼ 1

IOPTNS is not in the range 0; 99½ �.
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INFORM ¼ 2

Begin was found, but end-of-file was found before End was found.

INFORM ¼ 3

end-of-file was found before Begin was found.

INFORM ¼ 4

Not used.

INFORM ¼ 5

One or more lines of the options file is invalid. Check that all keywords are neither ambiguous
nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04UDF/E04UDA is not threaded in any implementation.

9 Further Comments

E04UEF/E04UEA may also be used to supply optional parameters to E04UCF/E04UCA.

10 Example

This example solves the same problem as the example for E04UCF/E04UCA, but in addition illustrates
the use of E04UDF/E04UDA and E04UEF/E04UEA to set optional parameters for E04UCF/E04UCA.

In this example the options file read by E04UDF/E04UDA is appended to the data file for the program
(see Section 10.2). It would usually be more convenient in practice to keep the data file and the options
file separate.

10.1 Program Text

the following program illustrates the use of E04UDF. An equivalent program illustrating the use of
E04UDA is available with the supplied Library and is also available from the NAG web site.

! E04UDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04udfe_mod

! E04UDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, objfun

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, nin = 5, ninopt = 7, &

nout = 6
Contains

Subroutine objfun(mode,n,x,objf,objgrd,nstate,iuser,ruser)
! Routine to evaluate objective function and its 1st derivatives.
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! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: objgrd(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
If (mode==0 .Or. mode==2) Then

objf = x(1)*x(4)*(x(1)+x(2)+x(3)) + x(3)
End If

If (mode==1 .Or. mode==2) Then
objgrd(1) = x(4)*(2.0E0_nag_wp*x(1)+x(2)+x(3))
objgrd(2) = x(1)*x(4)
objgrd(3) = x(1)*x(4) + 1.0E0_nag_wp
objgrd(4) = x(1)*(x(1)+x(2)+x(3))

End If

Return

End Subroutine objfun
Subroutine confun(mode,ncnln,n,ldcj,needc,x,c,cjac,nstate,iuser,ruser)

! Routine to evaluate the nonlinear constraints and their 1st
! derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcj, n, ncnln, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjac(ldcj,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncnln)

! .. Executable Statements ..
If (nstate==1) Then

! First call to CONFUN. Set all Jacobian elements to zero.
! Note that this will only work when ’Derivative Level = 3’
! (the default; see Section 11.2).

cjac(1:ncnln,1:n) = 0.0E0_nag_wp
End If

If (needc(1)>0) Then

If (mode==0 .Or. mode==2) Then
c(1) = x(1)**2 + x(2)**2 + x(3)**2 + x(4)**2

End If

If (mode==1 .Or. mode==2) Then
cjac(1,1) = 2.0E0_nag_wp*x(1)
cjac(1,2) = 2.0E0_nag_wp*x(2)
cjac(1,3) = 2.0E0_nag_wp*x(3)
cjac(1,4) = 2.0E0_nag_wp*x(4)

End If

End If

If (needc(2)>0) Then

If (mode==0 .Or. mode==2) Then
c(2) = x(1)*x(2)*x(3)*x(4)

End If

If (mode==1 .Or. mode==2) Then
cjac(2,1) = x(2)*x(3)*x(4)
cjac(2,2) = x(1)*x(3)*x(4)
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cjac(2,3) = x(1)*x(2)*x(4)
cjac(2,4) = x(1)*x(2)*x(3)

End If

End If

Return

End Subroutine confun
End Module e04udfe_mod
Program e04udfe

! E04UDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04ucf, e04udf, e04uef, nag_wp, x04abf, x04acf, &

x04baf
Use e04udfe_mod, Only: confun, iset, nin, ninopt, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Character (*), Parameter :: fname = ’e04udfe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: objf
Integer :: i, ifail, inform, iter, lda, ldcj, &

ldr, liwork, lwork, mode, n, nclin, &
ncnln, outchn, sda, sdcjac

Character (80) :: rec
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), c(:), &
cjac(:,:), clamda(:), objgrd(:), &
r(:,:), work(:), x(:)

Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: istate(:), iwork(:)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (rec,99998) ’E04UDF Example Program Results’
Call x04baf(nout,rec)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, nclin, ncnln
liwork = 3*n + nclin + 2*ncnln
lda = max(1,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

ldcj = max(1,ncnln)

If (ncnln>0) Then
sdcjac = n

Else
sdcjac = 1

End If

ldr = n

If (ncnln==0 .And. nclin>0) Then
lwork = 2*n**2 + 20*n + 11*nclin

Else If (ncnln>0 .And. nclin>=0) Then
lwork = 2*n**2 + n*nclin + 2*n*ncnln + 20*n + 11*nclin + 21*ncnln

Else
lwork = 20*n

End If
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Allocate (istate(n+nclin+ncnln),iwork(liwork),a(lda,sda), &
bl(n+nclin+ncnln),bu(n+nclin+ncnln),c(max(1, &
ncnln)),cjac(ldcj,sdcjac),clamda(n+nclin+ncnln),objgrd(n),r(ldr,n), &
x(n),work(lwork))

If (nclin>0) Then
Read (nin,*)(a(i,1:sda),i=1,nclin)

End If

Read (nin,*) bl(1:(n+nclin+ncnln))
Read (nin,*) bu(1:(n+nclin+ncnln))
Read (nin,*) x(1:n)

! Set the unit number for advisory messages to OUTCHN

outchn = nout
Call x04abf(iset,outchn)

! Set three options using E04UEF

Call e04uef(’ Infinite Bound Size = 1.0D+25 ’)

Call e04uef(’ Print Level = 1 ’)

Call e04uef(’ Verify Level = -1 ’)

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Read the options file for the remaining options

Call e04udf(ninopt,inform)

If (inform/=0) Then
Write (rec,99999) ’E04UDF terminated with ’ // ’INFORM = ’, inform
Call x04baf(nout,rec)

End If

! Solve the problem

ifail = 0
Call e04ucf(n,nclin,ncnln,lda,ldcj,ldr,a,bl,bu,confun,objfun,iter, &

istate,c,cjac,clamda,objf,objgrd,r,x,iwork,liwork,work,lwork,iuser, &
ruser,ifail)

99999 Format (1X,A,I5)
99998 Format (1X,A)

End Program e04udfe

10.2 Program Data

Begin Example options file for E04UDF
Major Iteration Limit = 15 * (Default = 50)
Minor Iteration Limit = 10 * (Default = 50)

End

E04UDF Example Program Data
4 1 2 :Values of N, NCLIN and NCNLN
1.0 1.0 1.0 1.0 :End of matrix A
1.0 1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 :End of BL
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25 :End of BU
1.0 5.0 5.0 1.0 :End of X
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10.3 Program Results

E04UDF Example Program Results

Calls to E04UEF
---------------

Infinite Bound Size = 1.0D+25
Print Level = 1
Verify Level = -1

OPTIONS file
------------

Begin Example options file for E04UDF
Major Iteration Limit = 15 * (Default = 50)
Minor Iteration Limit = 10 * (Default = 50)

End

*** E04UCF

Parameters
----------

Linear constraints..... 1 Variables.............. 4
Nonlinear constraints.. 2

Infinite bound size.... 1.00E+25 COLD start.............
Infinite step size..... 1.00E+25 EPS (machine precision) 1.11E-16
Step limit............. 2.00E+00 Hessian................ NO

Linear feasibility..... 1.05E-08 Crash tolerance........ 1.00E-02
Nonlinear feasibility.. 1.05E-08 Optimality tolerance... 3.26E-12
Line search tolerance.. 9.00E-01 Function precision..... 4.37E-15

Derivative level....... 3 Monitoring file........ -1
Verify level........... -1

Major iterations limit. 15 Major print level...... 1
Minor iterations limit. 10 Minor print level...... 0

Start point
1.000000E+00 5.000000E+00 5.000000E+00 1.000000E+00

Workspace provided is IWORK( 17), WORK( 185).
To solve problem we need IWORK( 17), WORK( 185).

Exit from NP problem after 5 major iterations,
9 minor iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 LL 1.00000 1.00000 5.00000 1.088 .
V 2 FR 4.74300 1.00000 5.00000 . 0.2570
V 3 FR 3.82115 1.00000 5.00000 . 1.179
V 4 FR 1.37941 1.00000 5.00000 . 0.3794

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 FR 10.9436 None 20.0000 . 9.056

N Con State Value Lower Bound Upper Bound Lagr Mult Slack

N 1 UL 40.0000 None 40.0000 -0.1615 -3.5264E-11
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N 2 LL 25.0000 25.0000 None 0.5523 -2.8791E-11

Exit E04UCF - Optimal solution found.

Final objective value = 17.01402
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NAG Library Routine Document

E04UEF/E04UEA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply individual optional parameters to E04UCF/E04UCA. More precisely, E04UEF must be used
to supply optional parameters to E04UCF and E04UEA must be used to supply optional parameters to
E04UCA.

E04UEA is a version of E04UEF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04UEA.

E04UEF/E04UEA can also be used to supply individual optional parameters to E04UFF/E04UFA.

2 Specification

2.1 Specification for E04UEF

SUBROUTINE E04UEF (STR)

CHARACTER(*) STR

2.2 Specification for E04UEA

SUBROUTINE E04UEA (STR, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)
CHARACTER(*) STR

3 Description

E04UEF/E04UEA may be used to supply values for optional parameters to E04UCF/E04UCA. It is
only necessary to call E04UEF/E04UEA for those arguments whose values are to be different from
their default values. One call to E04UEF/E04UEA sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

For E04UEF, each user-specified option is normally printed as it is defined, on the current advisory
message unit (see X04ABF), but this printing may be suppressed using the keyword Nolist. Thus the
statement
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CALL E04EUF (’Nolist’)

suppresses printing of this and subsequent options. Printing will automatically be turned on again after
a call to E04UCF and may be turned on again at any time using the keyword List.

For E04UEA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04UCF/E04UCA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04UCF/E04UCA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04UCF/E04UCA.

4 References

None.

5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 and in Section 12 in E04UCF/
E04UCA).

Note: the following are additional arguments for specific use with E04UEA. Users of E04UEF
therefore need not read the remainder of this description.

2: LWSAVð120Þ – LOGICAL array Communication Array
3: IWSAVð610Þ – INTEGER array Communication Array
4: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04UEA, E04UCA, E04UDA and E04WBF.

5: INFORM – INTEGER Output

On exit: contains zero if a valid option string has been supplied and a value > 0 otherwise (see
Section 6).

6 Error Indicators and Warnings

INFORM ¼ 5

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04UEF/E04UEA is not threaded in any implementation.

9 Further Comments

E04UDF/E04UDA may also be used to supply optional parameters to E04UCF/E04UCA.
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10 Example

See Section 10 in E04UDF/E04UDA.
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NAG Library Routine Document

E04UFF/E04UFA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

E04UFF/E04UFA is designed to minimize an arbitrary smooth function subject to constraints (which
may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using
a sequential quadratic programming (SQP) method. You should supply as many first derivatives as
possible; any unspecified derivatives are approximated by finite differences. It is not intended for large
sparse problems.

E04UFF/E04UFA may also be used for unconstrained, bound-constrained and linearly constrained
optimization.

E04UFF/E04UFA uses reverse communication for evaluating the objective function, the nonlinear
constraint functions and any of their derivatives.

E04UFA is a version of E04UFF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04UFA.

2 Specification

2.1 Specification for E04UFF

SUBROUTINE E04UFF (IREVCM, N, NCLIN, NCNLN, LDA, LDCJ, LDR, A, BL, BU,
ITER, ISTATE, C, CJAC, CLAMDA, OBJF, OBJGRD, R, X,
NEEDC, IWORK, LIWORK, WORK, LWORK, IFAIL)

&
&

INTEGER IREVCM, N, NCLIN, NCNLN, LDA, LDCJ, LDR, ITER,
ISTATE(N+NCLIN+NCNLN), NEEDC(max(1,NCNLN)),
IWORK(LIWORK), LIWORK, LWORK, IFAIL

&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),
C(*), CJAC(LDCJ,*), CLAMDA(N+NCLIN+NCNLN), OBJF,
OBJGRD(N), R(LDR,N), X(N), WORK(LWORK)

&
&

2.2 Specification for E04UFA

SUBROUTINE E04UFA (IREVCM, N, NCLIN, NCNLN, LDA, LDCJ, LDR, A, BL, BU,
ITER, ISTATE, C, CJAC, CLAMDA, OBJF, OBJGRD, R, X,
NEEDC, IWORK, LIWORK, WORK, LWORK, CWSAV, LWSAV,
IWSAV, RWSAV, IFAIL)

&
&
&

INTEGER IREVCM, N, NCLIN, NCNLN, LDA, LDCJ, LDR, ITER,
ISTATE(N+NCLIN+NCNLN), NEEDC(max(1,NCNLN)),
IWORK(LIWORK), LIWORK, LWORK, IWSAV(610), IFAIL

&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),
C(*), CJAC(LDCJ,*), CLAMDA(N+NCLIN+NCNLN), OBJF,
OBJGRD(N), R(LDR,N), X(N), WORK(LWORK), RWSAV(475)

&
&

LOGICAL LWSAV(120)
CHARACTER(80) CWSAV(5)
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Before calling E04UFA, or either of the option setting routines E04UDA or E04UEA, E04WBF must
be called. The specification for E04WBF is:

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
RWSAV, LRWSAV, IFAIL)

&

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV,
IFAIL

&

REAL (KIND=nag_wp) RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER(*) RNAME
CHARACTER(80) CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ E04UFA . CWSAV must have a length of LCWSAV while
the lengths of LWSAV, IWSAV and RWSAV should be LLWSAV, LIWSAV and LRWSAV, respectively.
These arguments must satisfy the following constraints:

LCWSAV � 5

LLWSAV � 120

LIWSAV � 610

LRWSAV � 475

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04UDA, E04UEA, E04UFA or E04WBF.

3 Description

E04UFF/E04UFA is designed to solve the nonlinear programming problem – the minimization of a
smooth nonlinear function subject to a set of constraints on the variables. The problem is assumed to be
stated in the following form:

minimize
x2Rn

F xð Þ subject to l �
x
ALx
c xð Þ

0@ 1A � u; ð1Þ

where F xð Þ (the objective function) is a nonlinear function, AL is an nL by n constant matrix, and c xð Þ
is an nN element vector of nonlinear constraint functions. (The matrix AL and the vector c xð Þ may be
empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at least
twice-continuously differentiable. (The method of E04UFF/E04UFA will usually solve (1) if there are
only isolated discontinuities away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear
constraints, we prefer to distinguish between them for reasons of computational efficiency. For the same
reason, the linear constraints should not be included in the definition of the nonlinear constraints. Upper
and lower bounds are specified for all the variables and for all the constraints. An equality constraint
can be specified by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u
can be set to special values that will be treated as �1 or þ1. (See the description of the optional
parameter Infinite Bound Size.)

If there are no nonlinear constraints in (1) and F is linear or quadratic then it will generally be more
efficient to use one of E04MFF/E04MFA, E04NCF/E04NCA or E04NFF/E04NFA, or E04NQF if the
problem is large and sparse. If the problem is large and sparse and does have nonlinear constraints,
E04UGF/E04UGA should be used, since E04UFF/E04UFA treats all matrices as dense.

E04UFF/E04UFA uses reverse communication for evaluating F xð Þ, c xð Þ and as many of their first
partial derivatives as possible; any remaining derivatives are approximated by finite differences. See the
description of the optional parameter Derivative Level.

On initial entry, you must supply an initial estimate of the solution to (1).

On intermediate exits, the calling program must compute appropriate values for the objective function,
the nonlinear constraints or their derivatives, as specified by the argument IREVCM, and then re-enter
the routine.
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For maximum reliability, it is preferable to provide all partial derivatives (see Chapter 8 of Gill et al.
(1981), for a detailed discussion). If they cannot all be provided, it is advisable to provide as many as
possible. While developing code to evaluate the objective function and the constraints, the optional
parameter Verify should be used to check the calculation of any known derivatives.

The method used by E04UFF/E04UFA is described in detail in Section 11.

E04WDF is an alternative routine which uses a similar method, but with direct communication: that is,
the objective and constraint functions are evaluated by subroutines, supplied as arguments to the
routine.

4 References

Dennis J E Jr and Moré J J (1977) Quasi-Newton methods, motivation and theory SIAM Rev. 19 46–89

Dennis J E Jr and Schnabel R B (1981) A new derivation of symmetric positive-definite secant updates
nonlinear programming (eds O L Mangasarian, R R Meyer and S M Robinson) 4 167–199 Academic
Press

Dennis J E Jr and Schnabel R B (1983) Numerical Methods for Unconstrained Optimization and
Nonlinear Equations Prentice–Hall

Fletcher R (1987) Practical Methods of Optimization (2nd Edition) Wiley

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users' guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1984a) Procedures for optimization problems
with a mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

Gill P E, Murray W, Saunders M A and Wright M H (1984b) Users' guide for SOL/QPSOL version 3.2
Report SOL 84–5 Department of Operations Research, Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1986a) Some theoretical properties of an
augmented Lagrangian merit function Report SOL 86–6R Department of Operations Research, Stanford
University

Gill P E, Murray W, Saunders M A and Wright M H (1986b) Users' guide for NPSOL (Version 4.0): a
Fortran package for nonlinear programming Report SOL 86-2 Department of Operations Research,
Stanford University

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer–Verlag

Murtagh B A and Saunders M A (1983) MINOS 5.0 user's guide Report SOL 83-20 Department of
Operations Research, Stanford University

Powell M J D (1974) Introduction to constrained optimization Numerical Methods for Constrained
Optimization (eds P E Gill and W Murray) 1–28 Academic Press

Powell M J D (1983) Variable metric methods in constrained optimization Mathematical Programming:
the State of the Art (eds A Bachem, M GrÎtschel and B Korte) 288–311 Springer–Verlag

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than those specified by the value of IREVCM must remain
unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: must be set to 0.
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On intermediate exit: specifies what values the calling program must assign to arguments of
E04UFF/E04UFA before re-entering the routine.

IREVCM ¼ 1
Set OBJF to the value of the objective function F xð Þ.

IREVCM ¼ 2

Set OBJGRDðjÞ to the value
@F

@xj
if available, for j ¼ 1; 2; . . . ; n.

IREVCM ¼ 3
Set OBJF and OBJGRDðjÞ as for IREVCM ¼ 1 and IREVCM ¼ 2.

IREVCM ¼ 4
Set CðiÞ to the value of the constraint function ci xð Þ, for each i such that NEEDCðiÞ > 0.

IREVCM ¼ 5

Set CJACði; jÞ to the value
@ci
@xj

if available, for each i such that NEEDCðiÞ > 0 and

j ¼ 1; 2; . . . ; n.

IREVCM ¼ 6
Set CðiÞ and CJACði; jÞ as for IREVCM ¼ 4 and IREVCM ¼ 5.

On intermediate re-entry: must remain unchanged, unless you wish to terminate the solution to
the current problem. In this case IREVCM may be set to a negative value and then E04UFF/
E04UFA will take a final exit with IFAIL set to this value of IREVCM.

On final exit: IREVCM ¼ 0.

Constraint: IREVCM � 6.

2: N – INTEGER Input

On initial entry: n, the number of variables.

Constraint: N > 0.

3: NCLIN – INTEGER Input

On initial entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.

4: NCNLN – INTEGER Input

On initial entry: nN , the number of nonlinear constraints.

Constraint: NCNLN � 0.

5: LDA – INTEGER Input

On initial entry: the first dimension of the array A as declared in the (sub)program from which
E04UFF/E04UFA is called.

Constraint: LDA � max 1;NCLINð Þ.

6: LDCJ – INTEGER Input

On initial entry: the first dimension of the array CJAC as declared in the (sub)program from
which E04UFF/E04UFA is called.

Constraint: LDCJ � max 1;NCNLNð Þ.
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7: LDR – INTEGER Input

On initial entry: the first dimension of the array R as declared in the (sub)program from which
E04UFF/E04UFA is called.

Constraint: LDR � N.

8: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0, and at least 1
otherwise.

On initial entry: the ith row of the matrix AL of general linear constraints in (1) must be stored
in Aði; jÞ, for i ¼ 1; 2; . . . ;NCLIN and j ¼ 1; 2; . . . ;N. That is, the ith row contains the
coefficients of the ith general linear constraint, for i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0, the array A is not referenced.

9: BLðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input
10: BUðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input

On initial entry: BL must contain the lower bounds and BU the upper bounds, for all the
constraints in the following order. The first n elements of each array must contain the bounds on
the variables, the next nL elements the bounds for the general linear constraints (if any) and the
next nN elements the bounds for the general nonlinear constraints (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a nonexistent
upper bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this
may be changed by the optional parameter Infinite Bound Size. To specify the jth constraint as
an equality, set BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

11: ITER – INTEGER Input/Output

On intermediate re-entry: must remain unchanged from a previous call to E04UFF/E04UFA.

On final exit: the number of major iterations performed.

12: ISTATEðNþ NCLINþ NCNLNÞ – INTEGER array Input/Output

On initial entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, the elements of ISTATE corresponding
to the bounds and linear constraints define the initial working set for the procedure that finds a
feasible point for the linear constraints and bounds. The active set at the conclusion of this
procedure and the elements of ISTATE corresponding to nonlinear constraints then define the
initial working set for the first QP subproblem. More precisely, the first n elements of ISTATE
refer to the upper and lower bounds on the variables, the next nL elements refer to the upper and
lower bounds on ALx, and the next nN elements refer to the upper and lower bounds on c xð Þ.
Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ Meaning

0 The corresponding constraint is not in the initial QP working set.

1 This inequality constraint should be in the working set at its lower bound.

2 This inequality constraint should be in the working set at its upper bound.

3 This equality constraint should be in the initial working set. This value must not be
specified unless BLðjÞ ¼ BUðjÞ.
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The values �2, �1 and 4 are also acceptable but will be modified by the routine. If E04UFF/
E04UFA has been called previously with the same values of N, NCLIN and NCNLN, ISTATE
already contains satisfactory information. (See also the description of the optional parameter
Warm Start.) The routine also adjusts (if necessary) the values supplied in X to be consistent
with ISTATE.

Constraint: �2 � ISTATEðjÞ � 4, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN.

On final exit: the status of the constraints in the QP working set at the point returned in X. The
significance of each possible value of ISTATEðjÞ is as follows:

ISTATEðjÞ Meaning

�2 This constraint violates its lower bound by more than the appropriate feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance and
Nonlinear Feasibility Tolerance). This value can occur only when no feasible
point can be found for a QP subproblem.

�1 This constraint violates its upper bound by more than the appropriate feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance and
Nonlinear Feasibility Tolerance). This value can occur only when no feasible
point can be found for a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP
working set.

1 This inequality constraint is included in the QP working set at its lower bound.

2 This inequality constraint is included in the QP working set at its upper bound.

3 This constraint is included in the QP working set as an equality. This value of
ISTATE can occur only when BLðjÞ ¼ BUðjÞ.

13: Cð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array C must be at least max 1;NCNLNð Þ.
On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 4 or 6 and NEEDCðiÞ > 0, CðiÞ must contain the value
of the ith constraint at x. The remaining elements of C, corresponding to the non-positive
elements of NEEDC, are ignored.

On final exit: if NCNLN > 0, CðiÞ contains the value of the ith nonlinear constraint function ci at
the final iterate, for i ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0, the array C is not referenced.

14: CJACðLDCJ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array CJAC must be at least N if NCNLN > 0, and at least 1
otherwise.

On initial entry: in general, CJAC need not be initialized before the call to E04UFF/E04UFA.
However, if the optional parameter Derivative Level ¼ 2 or 3, you may optionally set the
constant elements of CJAC. Such constant elements need not be re-assigned on subsequent
intermediate exits.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3), any
constant elements may be assigned to CJAC one time only at the start of the optimization. An
element of CJAC that is not subsequently assigned during an intermediate exit will retain its
initial value throughout. Constant elements may be loaded into CJAC either before the call to
E04UFF/E04UFA or during the first intermediate exit. The ability to preload constants is useful
when many Jacobian elements are identically zero, in which case CJAC may be initialized to
zero and nonzero elements may be reset during intermediate exits.
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On intermediate re-entry: if IREVCM ¼ 5 or 6 and NEEDCðiÞ > 0, the ith row of CJAC must
contain the available elements of the vector rci given by

rci ¼
@ci
@x1

;
@ci
@x2

; . . . ;
@ci
@xn

� �T

;

where
@ci
@xj

is the partial derivative of the ith constraint with respect to the jth variable, evaluated

at the point x. The remaining rows of CJAC, corresponding to non-positive elements of NEEDC,
are ignored. The ith row of the Jacobian should be stored in elements CJACði; jÞ, for
i ¼ 1; 2; . . . ;NCNLN and j ¼ 1; 2; . . . ;N.

Note that constant nonzero elements do affect the values of the constraints. Thus, if CJACði; jÞ is
set to a constant value, it need not be reset during subsequent intermediate exits, but the value
CJACði; jÞ � XðjÞ must nonetheless be added to CðiÞ. For example, if CJACð1; 1Þ ¼ 2 and
CJACð1; 2Þ ¼ �5, then the term 2� Xð1Þ � 5� Xð2Þ must be included in the definition of Cð1Þ.
It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of CJAC are not
treated as constant; they are estimated by finite differences, at nontrivial expense. If you do not
supply a value for the optional parameter Difference Interval, an interval for each element of x
is computed automatically at the start of the optimization. The automatic procedure can usually
identify constant elements of CJAC, which are then computed once only by finite differences.

See also the description of the optional parameter Verify.

On final exit: if NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear constraint
functions at the final iterate, i.e., CJACði; jÞ contains the partial derivative of the ith constraint
function with respect to the jth variable, for i ¼ 1; 2; . . . ;NCNLN and j ¼ 1; 2; . . . ;N.

If NCNLN ¼ 0, the array CJAC is not referenced.

15: CLAMDAðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, CLAMDAðjÞ must contain a multiplier
estimate for each nonlinear constraint with a sign that matches the status of the constraint
specified by the ISTATE array, for j ¼ Nþ NCLINþ 1; . . . ;Nþ NCLINþ NCNLN. The
remaining elements need not be set. Note that if the jth constraint is defined as ‘inactive’ by
the initial value of the ISTATE array (i.e. ISTATEðjÞ ¼ 0), CLAMDAðjÞ should be zero; if the
jth constraint is an inequality active at its lower bound (i.e. ISTATEðjÞ ¼ 1), CLAMDAðjÞ
should be non-negative; if the jth constraint is an inequality active at its upper bound (i.e.
ISTATEðjÞ ¼ 2), CLAMDAðjÞ should be non-positive. If necessary, the routine will modify
CLAMDA to match these rules.

On final exit: the values of the QP multipliers from the last QP subproblem. CLAMDAðjÞ should
be non-negative if ISTATEðjÞ ¼ 1 and non-positive if ISTATEðjÞ ¼ 2.

16: OBJF – REAL (KIND=nag_wp) Input/Output

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 1 or 3, OBJF must be set to the value of the objective
function at x.

On final exit: the value of the objective function at the final iterate.

17: OBJGRDðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 2 or 3, OBJGRD must contain the available elements of
the gradient evaluated at x.

See also the description of the optional parameter Verify.
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On final exit: the gradient of the objective function at the final iterate (or its finite difference
approximation).

18: RðLDR;NÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be initialized if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, R must contain the upper triangular
Cholesky factor R of the initial approximation of the Hessian of the Lagrangian function, with
the variables in the natural order. Elements not in the upper triangular part of R are assumed to
be zero and need not be assigned.

On final exit: if Hessian ¼ NO, R contains the upper triangular Cholesky factor R of QT ~HQ, an
estimate of the transformed and reordered Hessian of the Lagrangian at x (see (6) in
Section 11.1).

If Hessian ¼ YES, R contains the upper triangular Cholesky factor R of H, the approximate
(untransformed) Hessian of the Lagrangian, with the variables in the natural order.

19: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: an initial estimate of the solution.

On intermediate exit: the point x at which the objective function, constraint functions or their
derivatives are to be evaluated.

On final exit: the final estimate of the solution.

20: NEEDCðmax 1;NCNLNð ÞÞ – INTEGER array Output

On intermediate exit: if IREVCM � 4, NEEDC specifies the indices of the elements of C and/or
CJAC that must be assigned. If NEEDCðiÞ > 0, then the ith element of C and/or the available
elements of the ith row of CJAC must be evaluated at x.

21: IWORKðLIWORKÞ – INTEGER array Communication Array
22: LIWORK – INTEGER Input

On initial entry: the dimension of the array IWORK as declared in the (sub)program from which
E04UFF/E04UFA is called.

Constraint: LIWORK � 3� Nþ NCLINþ 2� NCNLN.

23: WORKðLWORKÞ – REAL (KIND=nag_wp) array Communication Array
24: LWORK – INTEGER Input

On initial entry: the dimension of the array WORK as declared in the (sub)program from which
E04UFF/E04UFA is called.

Constraints:

if NCNLN ¼ 0 and NCLIN ¼ 0, LWORK � 21� Nþ 2;
if NCNLN ¼ 0 and NCLIN > 0, LWORK � 2� N2 þ 21� Nþ 11� NCLINþ 2;
if NCNLN > 0 and NCLIN � 0,
LWORK � 2� N2 þ N� NCLINþ 2� N� NCNLNþ 21� Nþ 11� NCLINþ
22� NCNLNþ 1.

The amounts of workspace provided and required may be (by default for E04UFF) output on the
current advisory message unit (as defined by X04ABF). As an alternative to computing LIWORK
and LWORK from the formulae given above, you may prefer to obtain appropriate values from
the output of a preliminary run with LIWORK and LWORK set to 1. (E04UFF/E04UFA will then
terminate with IFAIL ¼ 9.)
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25: IFAIL – INTEGER Input/Output

Note: for E04UFA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04UFF/E04UFA returns with IFAIL ¼ 0 if the iterates have converged to a point x that satisfies
the first-order Kuhn–Tucker conditions (see Section 11.1) to the accuracy requested by the
optional parameter Optimality Tolerance. This has default value ¼ �0:8r , where �r is the value of
the optional parameter Function Precision (default value ¼ �0:9, where � is the machine
precision). That is IFAIL ¼ 0 when the projected gradient and active constraint residuals are
negligible at x.

You should check whether the following four conditions are satisfied:

(i) the final value of Norm Gz (see Section 9.1) is significantly less than that at the starting
point;

(ii) during the final major iterations, the values of Step and Mnr (see Section 9.1) are both one;

(iii) the last few values of both Norm Gz and Violtn (see Section 9.1) become small at a fast
linear rate; and

(iv) Cond Hz (see Section 9.1) is small.

If all these conditions hold, x is almost certainly a local minimum of (1).

Note: the following are additional arguments for specific use with E04UFA. Users of E04UFF
therefore need not read the remainder of this description.

26: CWSAVð5Þ – CHARACTER(80) array Communication Array
27: LWSAVð120Þ – LOGICAL array Communication Array
28: IWSAVð610Þ – INTEGER array Communication Array
29: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV, RWSAV and CWSAV must not be altered between calls to any of
the routines E04WBF, E04UFA, E04UDA or E04UEA.

30: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04UFF/E04UFA may return useful information for one or more of the following detected errors
or warnings.
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Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04UFF/E04UFA because you set
IREVCM < 0 during an intermediate exit. The value of IFAIL will be the same as your setting
of IREVCM.

IFAIL ¼ 1

The final iterate x satisfies the first-order Kuhn–Tucker conditions (see Section 11.1) to the
accuracy requested, but the sequence of iterates has not yet converged. E04UFF/E04UFA was
terminated because no further improvement could be made in the merit function (see
Section 9.1).

This value of IFAIL may occur in several circumstances. The most common situation is that you
ask for a solution with accuracy that is not attainable with the given precision of the problem (as
specified by the optional parameter Function Precision). This condition will also occur if, by
chance, an iterate is an ‘exact’ Kuhn–Tucker point, but the change in the variables was
significant at the previous iteration. (This situation often happens when minimizing very simple
functions, such as quadratics.)

If the four conditions listed in Section 5 for IFAIL ¼ 0 are satisfied, x is likely to be a solution of
(1) even if IFAIL ¼ 1.

IFAIL ¼ 2

E04UFF/E04UFA has terminated without finding a feasible point for the linear constraints and
bounds, which means that either no feasible point exists for the given value of the optional
parameter Linear Feasibility Tolerance, or no feasible point could be found in the number of
iterations specified by the optional parameter Minor Iteration Limit. You should check that
there are no constraint redundancies. If the data for the constraints are accurate only to an
absolute precision �, you should ensure that the value of the optional parameter Linear
Feasibility Tolerance is greater than �. For example, if all elements of AL are of order unity and
are accurate to only three decimal places, Linear Feasibility Tolerance should be at least 10�3.

IFAIL ¼ 3

No feasible point could be found for the nonlinear constraints. The problem may have no feasible
solution. This means that there has been a sequence of QP subproblems for which no feasible
point could be found (indicated by I at the end of each line of intermediate printout produced by
the major iterations; see Section 9.1). This behaviour will occur if there is no feasible point for
the nonlinear constraints. (However, there is no general test that can determine whether a feasible
point exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the very
first major iteration, it is highly likely that no feasible point exists. If infeasibilities occur when
earlier subproblems have been feasible, small constraint inconsistencies may be present. You
should check the validity of constraints with negative values of ISTATE. If you are convinced
that a feasible point does exist, E04UFF/E04UFA should be restarted at a different starting point.

IFAIL ¼ 4

The limiting number of iterations (as determined by the optional parameter Major Iteration
Limit) has been reached.

If the algorithm appears to be making satisfactory progress, then optional parameter Major
Iteration Limit may be too small. If so, either increase its value and rerun E04UFF/E04UFA or,
alternatively, rerun E04UFF/E04UFA using the optional parameter Warm Start. If the algorithm
seems to be making little or no progress however, then you should check for incorrect gradients
or ill-conditioning as described under IFAIL ¼ 6.

Note that ill-conditioning in the working set is sometimes resolved automatically by the
algorithm, in which case performing additional iterations may be helpful. However, ill-
conditioning in the Hessian approximation tends to persist once it has begun, so that allowing
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additional iterations without altering R is usually inadvisable. If the quasi-Newton update of the
Hessian approximation was reset during the latter major iterations (i.e., an R occurs at the end of
each line of intermediate printout; see Section 9.1), it may be worthwhile to try a Warm Start at
the final point as suggested above.

IFAIL ¼ 5

Not used by this routine.

IFAIL ¼ 6

x does not satisfy the first-order Kuhn–Tucker conditions (see Section 11.1), and no improved
point for the merit function (see Section 9.1) could be found during the final linesearch.

This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value of
the optional parameter Optimality Tolerance (default value ¼ �0:8r , where �r is the value of the
optional parameter Function Precision) is too small. In this case you should apply the four tests
described under IFAIL ¼ 0 to determine whether or not the final solution is acceptable (see Gill
et al. (1981), for a discussion of the attainable accuracy).

If many iterations have occurred in which essentially no progress has been made and E04UFF/
E04UFA has failed completely to move from the initial point, then values set by the calling
program for the objective or constraint functions or their derivatives during intermediate exits
may be incorrect. You should refer to comments under IFAIL ¼ 7 and check the gradients using
the optional parameter Verify. Unfortunately, there may be small errors in the objective and
constraint gradients that cannot be detected by the verification process. Finite difference
approximations to first derivatives are catastrophically affected by even small inaccuracies. An
indication of this situation is a dramatic alteration in the iterates if the finite difference interval is
altered. One might also suspect this type of error if a switch is made to central differences even
when Norm Gz and Violtn (see Section 9.1) are large.

Another possibility is that the search direction has become inaccurate because of ill-conditioning
in the Hessian approximation or the matrix of constraints in the working set; either form of ill-
conditioning tends to be reflected in large values of Mnr (the number of iterations required to
solve each QP subproblem; see Section 9.1).

If the condition estimate of the projected Hessian (Cond Hz; see Section 9.1) is extremely large, it
may be worthwhile rerunning E04UFF/E04UFA from the final point with the optional parameter
Warm Start. In this situation, ISTATE and CLAMDA should be left unaltered and R should be
reset to the identity matrix.

If the matrix of constraints in the working set is ill-conditioned (i.e., Cond T is extremely large;
see Section 13), it may be helpful to run E04UFF/E04UFA with a relaxed value of the optional
parameter Feasibility Tolerance. (Constraint dependencies are often indicated by wide variations
in size in the diagonal elements of the matrix T , whose diagonals will be printed if
Major Print Level � 30.)

IFAIL ¼ 7

The user-supplied derivatives of the objective function and/or nonlinear constraints appear to be
incorrect.

Large errors were found in the derivatives of the objective function and/or nonlinear constraints.
This value of IFAIL will occur if the verification process indicated that at least one gradient or
Jacobian element had no correct figures. You should refer to the printed output to determine
which elements are suspected to be in error.

As a first-step, you should check that the code for the objective and constraint values is correct –
for example, by computing the function at a point where the correct value is known. However,
care should be taken that the chosen point fully tests the evaluation of the function. It is
remarkable how often the values x ¼ 0 or x ¼ 1 are used in such a test, and how often the
special properties of these numbers make the test meaningless.
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Special care should be used in the test if computation of the objective function involves
subsidiary data communicated in COMMON storage. Although the first evaluation of the
function may be correct, subsequent calculations may be in error because some of the subsidiary
data has accidentally been overwritten.

Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed before each function evaluation.

Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the
function; since some compilers do not convert such constants to double precision, half the correct
figures may be lost by such a seemingly trivial error.

IFAIL ¼ 8

Not used by this routine.

IFAIL ¼ 9

An input argument is invalid.

Overflow

If the printed output before the overflow error contains a warning about serious ill-conditioning
in the working set when adding the jth constraint, it may be possible to avoid the difficulty by
increasing the magnitude of the Linear Feasibility Tolerance and/or the optional parameter
Nonlinear Feasibility Tolerance and rerunning the program. If the message recurs even after
this change, the offending linearly dependent constraint (with index ‘j’) must be removed from
the problem. If overflow occurs in one of the user-supplied subroutines (e.g., if the nonlinear
functions involve exponentials or singularities), it may help to specify tighter bounds for some of
the variables (i.e., reduce the gap between the appropriate lj and uj).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 on final exit then the vector returned in the array X is an estimate of the solution to an
accuracy of approximately Optimality Tolerance (default value ¼ �0:8, where � is the machine
precision).

8 Parallelism and Performance

E04UFF/E04UFA is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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E04UFF/E04UFA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Description of the Printed Output

This section describes the intermediate printout and final printout produced by E04UFF/E04UFA. The
intermediate printout is a subset of the monitoring information produced by E04UFF/E04UFA at every
iteration (see Section 13). You can control the level of printed output (see the description of the
optional parameter Major Print Level). Note that the intermediate printout and final printout are
produced only if Major Print Level � 10 (the default for E04UFF, by default no output is produced by
E04UFA).

The following line of summary output ( < 80 characters) is produced at every major iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11).

Note that Mnr may be greater than the optional parameter Minor Iteration Limit
if some iterations are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Merit Function is the value of the augmented Lagrangian merit function (12) at the current
iterate. This function will decrease at each iteration unless it was necessary to
increase the penalty parameters (see Section 11.3). As the solution is approached,
Merit Function will converge to the value of the objective function at the
solution.

If the QP subproblem does not have a feasible point (signified by I at the end of
the current output line) then the merit function is a large multiple of the
constraint violations, weighted by the penalty parameters. During a sequence of
major iterations with infeasible subproblems, the sequence of Merit Function
values will decrease monotonically until either a feasible subproblem is obtained
or E04UFF/E04UFA terminates with IFAIL ¼ 3 (no feasible point could be found
for the nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN ¼ 0) then this entry
contains Objective, the value of the objective function F xð Þ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is ZTgFRk k, the Euclidean norm of the projected gradient (see Section 11.2). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Violtn will be
approximately zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ ¼ ZTHFRZ ¼ RT

ZRZ ; see (6)). The larger this number, the more difficult
the problem.
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M is printed if the quasi-Newton update has been modified to ensure that the
Hessian approximation is positive definite (see Section 11.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified
objective and constraint gradients. If the value of Step is zero then the switch to
central differences was made because no lower point could be found in the
linesearch. (In this case, the QP subproblem is resolved with the central
difference gradient and Jacobian.) If the value of Step is nonzero then central
differences were computed because Norm Gz and Violtn imply that x is close to
a Kuhn–Tucker point (see Section 11.1).

L is printed if the linesearch has produced a relative change in x greater than the
value defined by the optional parameter Step Limit. If this output occurs
frequently during later iterations of the run, optional parameter Step Limit should
be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly
conditioned then the approximate Hessian is refactorized using column
interchanges. If necessary, R is modified so that its diagonal condition estimator
is bounded.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if
temporarily fixed at its current value). If Value lies outside the upper or lower
bounds by more than the Feasibility Tolerance, State will be ++ or --
respectively.

A key is sometimes printed before State.

A Alternative optimum possible. The variable is active at one of its bounds,
but its Lagrange multiplier is essentially zero. This means that if the
variable were allowed to start moving away from its bound then there
would be no change to the objective function. The values of the other free
variables might change, giving a genuine alternative solution. However, if
there are any degenerate variables (labelled D), the actual change might
prove to be zero, since one of them could encounter a bound immediately.
In either case the values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is
FR unless BLðjÞ � �bigbnd and BUðjÞ � bigbnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL and
non-positive if State is UL.
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Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ replaced by BLðnþ jÞ and
BUðnþ jÞ respectively and with the following changes in the heading:

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL, of the linear constraint.

N Con gives the name (N) and index (j � nL), for j ¼ nL þ 1; . . . ; nL þ nN , of the
nonlinear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This is based on Problem 71 in Murtagh and Saunders (1983) and involves the minimization of the
nonlinear function

F xð Þ ¼ x1x4 x1 þ x2 þ x3ð Þ þ x3
subject to the bounds

1 � x1 � 5
1 � x2 � 5
1 � x3 � 5
1 � x4 � 5

to the general linear constraint

x1 þ x2 þ x3 þ x4 � 20;

and to the nonlinear constraints

x21 þ x22 þ x23 þ x24 � 40;
x1x2x3x4 � 25:

The initial point, which is infeasible, is

x0 ¼ 1; 5; 5; 1ð ÞT;

and F x0ð Þ ¼ 16.

The optimal solution (to five figures) is

x� ¼ 1:0; 4:7430; 3:8211; 1:3794ð ÞT;

and F x�ð Þ ¼ 17:014. One bound constraint and both nonlinear constraints are active at the solution.

10.1 Program Text

the following program illustrates the use of E04UFF. An equivalent program illustrating the use of
E04UFA is available with the supplied Library and is also available from the NAG web site.

Program e04uffe

! E04UFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04uff, nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: objf
Integer :: i, ifail, irevcm, iter, lda, ldcj, &

ldr, liwork, lwork, n, nclin, ncnln, &
sda, sdcjac

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), c(:), &

cjac(:,:), clamda(:), objgrd(:), &
r(:,:), work(:), x(:)

Integer, Allocatable :: istate(:), iwork(:), needc(:)
! .. Intrinsic Procedures ..

Intrinsic :: max
! .. Executable Statements ..

Write (nout,*) ’E04UFF Example Program Results’
Flush (nout)

! Skip heading in data file.
Read (nin,*)

Read (nin,*) n, nclin, ncnln
liwork = 3*n + nclin + 2*ncnln
lda = max(1,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

ldcj = max(1,ncnln)

If (ncnln>0) Then
sdcjac = n

Else
sdcjac = 1

End If

ldr = n

If (ncnln==0 .And. nclin>0) Then
lwork = 2*n**2 + 21*n + 11*nclin + 2

Else If (ncnln>0 .And. nclin>=0) Then
lwork = 2*n**2 + n*nclin + 2*n*ncnln + 21*n + 11*nclin + 22*ncnln + 1

Else
lwork = 21*n + 2

End If

Allocate (istate(n+nclin+ncnln),iwork(liwork),a(lda,sda), &
bl(n+nclin+ncnln),bu(n+nclin+ncnln),c(max(1, &
ncnln)),cjac(ldcj,sdcjac),clamda(n+nclin+ncnln),objgrd(n),r(ldr,n), &
x(n),work(lwork),needc(max(1,ncnln)))

If (nclin>0) Then
Read (nin,*)(a(i,1:n),i=1,nclin)

End If

Read (nin,*) bl(1:(n+nclin+ncnln))
Read (nin,*) bu(1:(n+nclin+ncnln))
Read (nin,*) x(1:n)

! Set all constraint Jacobian elements to zero.
! Note that this will only work when ’Derivative Level = 3’
! (the default; see Section 11.2).

cjac(1:ncnln,1:n) = 0.0E0_nag_wp

! Solve the problem.
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irevcm = 0
ifail = 0

revcomm: Do

Call e04uff(irevcm,n,nclin,ncnln,lda,ldcj,ldr,a,bl,bu,iter,istate,c, &
cjac,clamda,objf,objgrd,r,x,needc,iwork,liwork,work,lwork,ifail)

! On intermediate exit IFAIL should not have been changed
! and IREVCM should be > 0.

If (irevcm==0) Then
Exit revcomm

End If

If (irevcm==1 .Or. irevcm==3) Then

! Evaluate the objective function.

objf = x(1)*x(4)*(x(1)+x(2)+x(3)) + x(3)
End If

If (irevcm==2 .Or. irevcm==3) Then

! Evaluate the objective gradient.

objgrd(1) = x(4)*(2.0E0_nag_wp*x(1)+x(2)+x(3))
objgrd(2) = x(1)*x(4)
objgrd(3) = x(1)*x(4) + 1.0E0_nag_wp
objgrd(4) = x(1)*(x(1)+x(2)+x(3))

End If

If (irevcm==4 .Or. irevcm==6) Then

! Evaluate the nonlinear constraint functions.

If (needc(1)>0) Then
c(1) = x(1)**2 + x(2)**2 + x(3)**2 + x(4)**2

End If

If (needc(2)>0) Then
c(2) = x(1)*x(2)*x(3)*x(4)

End If

End If

If (irevcm==5 .Or. irevcm==6) Then

! Evaluate the constraint Jacobian.

If (needc(1)>0) Then
cjac(1,1) = 2.0E0_nag_wp*x(1)
cjac(1,2) = 2.0E0_nag_wp*x(2)
cjac(1,3) = 2.0E0_nag_wp*x(3)
cjac(1,4) = 2.0E0_nag_wp*x(4)

End If

If (needc(2)>0) Then
cjac(2,1) = x(2)*x(3)*x(4)
cjac(2,2) = x(1)*x(3)*x(4)
cjac(2,3) = x(1)*x(2)*x(4)
cjac(2,4) = x(1)*x(2)*x(3)

End If

End If

End Do revcomm

End Program e04uffe
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10.2 Program Data

E04UFF Example Program Data
4 1 2 :Values of N, NCLIN and NCNLN
1.0 1.0 1.0 1.0 :End of matrix A
1.0 1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 :End of BL
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25 :End of BU
1.0 5.0 5.0 1.0 :End of X

10.3 Program Results

E04UFF Example Program Results

*** E04UFF

Parameters
----------

Linear constraints..... 1 Variables.............. 4
Nonlinear constraints.. 2

Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16
Step limit............. 2.00E+00 Hessian................ NO

Linear feasibility..... 1.05E-08 Crash tolerance........ 1.00E-02
Nonlinear feasibility.. 1.05E-08 Optimality tolerance... 3.26E-12
Line search tolerance.. 9.00E-01 Function precision..... 4.37E-15

Derivative level....... 3 Monitoring file........ -1
Verify level........... 0

Major iterations limit. 50 Major print level...... 10
Minor iterations limit. 50 Minor print level...... 0

Workspace provided is IWORK( 17), WORK( 192).
To solve problem we need IWORK( 17), WORK( 192).

Verification of the constraint gradients.
-----------------------------------------

The constraint Jacobian seems to be ok.

The largest relative error was 2.29E-07 in constraint 2

Verification of the objective gradients.
----------------------------------------

The objective gradients seem to be ok.

Directional derivative of the objective 8.15250000E-01
Difference approximation 8.15249734E-01

Maj Mnr Step Merit Function Norm Gz Violtn Cond Hz
0 4 0.0E+00 1.738281E+01 7.1E-01 1.2E+01 1.0E+00
1 1 1.0E+00 1.703169E+01 4.6E-02 1.9E+00 1.0E+00
2 1 1.0E+00 1.701442E+01 2.1E-02 8.8E-02 1.0E+00
3 1 1.0E+00 1.701402E+01 3.1E-04 5.4E-04 1.0E+00
4 1 1.0E+00 1.701402E+01 7.0E-06 9.9E-08 1.0E+00
5 1 1.0E+00 1.701402E+01 1.1E-08 4.6E-11 1.0E+00

Exit from NP problem after 5 major iterations,
9 minor iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack
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V 1 LL 1.00000 1.00000 5.00000 1.088 .
V 2 FR 4.74300 1.00000 5.00000 . 0.2570
V 3 FR 3.82115 1.00000 5.00000 . 1.179
V 4 FR 1.37941 1.00000 5.00000 . 0.3794

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 FR 10.9436 None 20.0000 . 9.056

N Con State Value Lower Bound Upper Bound Lagr Mult Slack

N 1 UL 40.0000 None 40.0000 -0.1615 -3.5264E-11
N 2 LL 25.0000 25.0000 None 0.5523 -2.8791E-11

Exit E04UFF - Optimal solution found.

Final objective value = 17.01402

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to E04UDF/E04UDA and/or
E04UEF/E04UEA. Section 13 describes the quantities which can be requested to monitor the course of
the computation.

11 Algorithmic Details

This section contains a detailed description of the method used by E04UFF/E04UFA.

11.1 Overview

E04UFF/E04UFA is essentially identical to the subroutine NPSOL described in Gill et al. (1986b).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. An active simple
bound constraint implies that the corresponding variable is fixed at its bound, and hence the variables
are partitioned into fixed and free variables. Let C denote the m by n matrix of gradients of the active
general linear and nonlinear constraints. The number of fixed variables will be denoted by nFX, with
nFR (nFR ¼ n� nFX) the number of free variables. The subscripts ‘FX’ and ‘FR’ on a vector or matrix
will denote the vector or matrix composed of the elements corresponding to fixed or free variables.

A point x is a first-order Kuhn–Tucker point for (1) (see Powell (1974)) if the following conditions
hold:

(i) x is feasible;

(ii) there exist vectors � and � (the Lagrange multiplier vectors for the bound and general constraints)
such that

g ¼ CT�þ � ð2Þ

where g is the gradient of F evaluated at x and �j ¼ 0 if the jth variable is free.

(iii) the Lagrange multiplier corresponding to an inequality constraint active at its lower bound must be
non-negative. It is non-positive for an inequality constraint active at its upper bound.

Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to the rows of CFR;
i.e., CFRZ ¼ 0. An equivalent statement of the condition (2) in terms of Z is

ZTgFR ¼ 0:

The vector ZTgFR is termed the projected gradient of F at x. Certain additional conditions must be
satisfied in order for a first-order Kuhn–Tucker point to be a solution of (1) (see Powell (1974)).
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E04UFF/E04UFA implements a sequential quadratic programming (SQP) method. For an overview of
SQP methods, see Fletcher (1987), Gill et al. (1981) and Powell (1983).

The basic structure of E04UFF/E04UFA involves major and minor iterations. The major iterations
generate a sequence of iterates xkf g that converge to x�, a first-order Kuhn–Tucker point of (1). At a
typical major iteration, the new iterate �x is defined by

�x ¼ xþ �p ð3Þ

where x is the current iterate, the non-negative scalar � is the step length, and p is the search direction.
(For simplicity, we shall always consider a typical iteration and avoid reference to the index of the
iteration.) Also associated with each major iteration are estimates of the Lagrange multipliers and a
prediction of the active set.

The search direction p in (3) is the solution of a quadratic programming subproblem of the form

minimize
p

gTpþ 1
2p

THp subject to �l �
p
ALp
ANp

8<:
9=; � �u; ð4Þ

where g is the gradient of F at x, the matrix H is a positive definite quasi-Newton approximation to the
Hessian of the Lagrangian function (see Section 11.4), and AN is the Jacobian matrix of c evaluated at
x. (Finite difference estimates may be used for g and AN ; see the optional parameter Derivative Level.)
Let l in (1) be partitioned into three sections: lB, lL and lN , corresponding to the bound, linear and
nonlinear constraints. The vector �l in (4) is similarly partitioned and is defined as

�lB ¼ lB � x; �lL ¼ lL �ALx; and �lN ¼ lN � c;

where c is the vector of nonlinear constraints evaluated at x. The vector �u is defined in an analogous
fashion.

The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from the
subproblem (4) (and similarly for the predicted active set). (The numbers of bounds, general linear and
nonlinear constraints in the QP active set are the quantities Bnd, Lin and Nln in the monitoring file
output of E04UFF/E04UFA; see Section 13.) In E04UFF/E04UFA, (4) is solved using E04NCF/
E04NCA. Since solving a quadratic program is itself an iterative procedure, the minor iterations of
E04UFF/E04UFA are the iterations of E04NCF/E04NCA. (More details about solving the subproblem
are given in Section 11.2.)

Certain matrices associated with the QP subproblem are relevant in the major iterations. Let the
subscripts ‘FX’ and ‘FR’ refer to the predicted fixed and free variables, and let C denote the m by n
matrix of gradients of the general linear and nonlinear constraints in the predicted active set. Firstly, we
have available the TQ factorization of CFR:

CFRQFR ¼ 0 Tð Þ; ð5Þ

where T is a nonsingular m by m reverse-triangular matrix (i.e., tij ¼ 0 if iþ j < m), and the
nonsingular nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al.
(1984b)). Secondly, we have the upper triangular Cholesky factor R of the transformed and reordered
Hessian matrix

RTR ¼ HQ 	 QT ~HQ; ð6Þ

where ~H is the Hessian H with rows and columns permuted so that the free variables are first and Q is
the n by n matrix

Q ¼ QFR
IFX

� �
ð7Þ

with IFX the identity matrix of order nFX. If the columns of QFR are partitioned so that

QFR ¼ Z Y
� �

;

then the nZ (nZ 	 nFR �m) columns of Z form a basis for the null space of CFR. The matrix Z is used
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to compute the projected gradient ZTgFR at the current iterate. (The values Nz and Norm Gz printed by
E04UFF/E04UFA give nZ and ZTgFRk k, see Section 13.)

A theoretical characteristic of SQP methods is that the predicted active set from the QP subproblem (4)
is identical to the correct active set in a neighbourhood of x�. In E04UFF/E04UFA, this feature is
exploited by using the QP active set from the previous iteration as a prediction of the active set for the
next QP subproblem, which leads in practice to optimality of the subproblems in only one iteration as
the solution is approached. Separate treatment of bound and linear constraints in E04UFF/E04UFA also
saves computation in factorizing CFR and HQ.

Once p has been computed, the major iteration proceeds by determining a step length � that produces a
‘sufficient decrease’ in an augmented Lagrangian merit function (see Section 11.3). Finally, the
approximation to the transformed Hessian matrix HQ is updated using a modified BFGS quasi-Newton
update (see Section 11.4) to incorporate new curvature information obtained in the move from x to �x.

On entry to E04UFF/E04UFA, an iterative procedure from E04NCF/E04NCA is executed, starting with
the user-supplied initial point, to find a point that is feasible with respect to the bounds and linear
constraints (using the tolerance specified by the optional parameter Linear Feasibility Tolerance). If no
feasible point exists for the bound and linear constraints, (1) has no solution and E04UFF/E04UFA
terminates. Otherwise, the problem functions will thereafter be evaluated only at points that are feasible
with respect to the bounds and linear constraints. The only exception involves variables whose bounds
differ by an amount comparable to the finite difference interval (see the discussion of the optional
parameter Difference Interval). In contrast to the bounds and linear constraints, it must be emphasized
that the nonlinear constraints will not generally be satisfied until an optimal point is reached.

Facilities are provided to check whether the user-supplied gradients appear to be correct (see the
description of the optional parameter Verify). In general, the check is provided at the first point that is
feasible with respect to the linear constraints and bounds. However, you may request that the check be
performed at the initial point.

In summary, the method of E04UFF/E04UFA first determines a point that satisfies the bound and linear
constraints. Thereafter, each iteration includes:

(a) the solution of a quadratic programming subproblem;

(b) a linesearch with an augmented Lagrangian merit function; and

(c) a quasi-Newton update of the approximate Hessian of the Lagrangian function.

These three procedures are described in more detail in Sections 11.2 to 11.4.

11.2 Solution of the Quadratic Programming Subproblem

The search direction p is obtained by solving (4) using E04NCF/E04NCA (see Gill et al. (1986)), which
was specifically designed to be used within an SQP algorithm for nonlinear programming.

E04NCF/E04NCA is based on a two-phase (primal) quadratic programming method. The two phases of
the method are: finding an initial feasible point by minimizing the sum of infeasibilities (the feasibility
phase) and minimizing the quadratic objective function within the feasible region (the optimality
phase). The computations in both phases are performed by the same subroutines. The two-phase nature
of the algorithm is reflected by changing the function being minimized from the sum of infeasibilities to
the quadratic objective function.

In general, a quadratic program must be solved by iteration. Let p denote the current estimate of the
solution of (4); the new iterate �p is defined by

�p ¼ pþ �d ð8Þ

where, as in (3), � is a non-negative step length and d is a search direction.

At the beginning of each iteration of E04NCF/E04NCA, a working set is defined of constraints (general
and bound) that are satisfied exactly. The vector d is then constructed so that the values of constraints in
the working set remain unaltered for any move along d. For a bound constraint in the working set, this
property is achieved by setting the corresponding element of d to zero, i.e., by fixing the variable at its
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bound. As before, the subscripts ‘FX’ and ‘FR’ denote selection of the elements associated with the
fixed and free variables.

Let C denote the sub-matrix of rows of

AL

AN

� �
corresponding to general constraints in the working set. The general constraints in the working set will
remain unaltered if

CFRdFR ¼ 0; ð9Þ

which is equivalent to defining dFR as

dFR ¼ ZdZ ð10Þ

for some vector dZ, where Z is the matrix associated with the TQ factorization (5) of CFR.

The definition of dZ in (10) depends on whether the current p is feasible. If not, dZ is zero except for an
element � in the jth position, where j and � are chosen so that the sum of infeasibilities is decreasing
along d. (For further details, see Gill et al. (1986).) In the feasible case, dZ satisfies the equations

RT
ZRZdZ ¼ �ZTqFR; ð11Þ

where RZ is the Cholesky factor of ZTHFRZ and q is the gradient of the quadratic objective function
q ¼ gþHpð Þ. (The vector ZTqFR is the projected gradient of the QP.) With (11), pþ d is the minimizer
of the quadratic objective function subject to treating the constraints in the working set as equalities.

If the QP projected gradient is zero, the current point is a constrained stationary point in the subspace
defined by the working set. During the feasibility phase, the projected gradient will usually be zero only
at a vertex (although it may vanish at non-vertices in the presence of constraint dependencies). During
the optimality phase, a zero projected gradient implies that p minimizes the quadratic objective function
when the constraints in the working set are treated as equalities. In either case, Lagrange multipliers are
computed. Given a positive constant � of the order of the machine precision, the Lagrange multiplier �j
corresponding to an inequality constraint in the working set is said to be optimal if �j � � when the jth
constraint is at its upper bound, or if �j � �� when the associated constraint is at its lower bound. If
any multiplier is nonoptimal, the current objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, no
feasible point exists. The QP algorithm will then continue iterating to determine the minimum sum of
infeasibilities. At this point, the Lagrange multiplier �j will satisfy � 1þ �ð Þ � �j � � for an inequality
constraint at its upper bound, and �� � �j � 1þ �ð Þ for an inequality at its lower bound. The Lagrange
multiplier for an equality constraint will satisfy �j

		 		 � 1þ �.

The choice of step length � in the QP iteration (8) is based on remaining feasible with respect to the
satisfied constraints. During the optimality phase, if pþ d is feasible, � will be taken as unity. (In this
case, the projected gradient at �p will be zero.) Otherwise, � is set to �M, the step to the ‘nearest’
constraint, which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to CFR: if the status of a general constraint
changes, a row of CFR is altered; if a bound constraint enters or leaves the working set, a column of CFR

changes. Explicit representations are recurred of the matrices T , QFR and R, and of the vectors QTq and
QTg.

11.3 The Merit Function

After computing the search direction as described in Section 11.2, each major iteration proceeds by
determining a step length � in (3) that produces a ‘sufficient decrease’ in the augmented Lagrangian
merit function

L x; �; sð Þ ¼ F xð Þ �
X
i

�i ci xð Þ � sið Þ þ 1
2

X
i

�i ci xð Þ � sið Þ2; ð12Þ
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where x, � and s vary during the linesearch. The summation terms in (12) involve only the nonlinear
constraints. The vector � is an estimate of the Lagrange multipliers for the nonlinear constraints of (1).
The non-negative slack variables sif g allow nonlinear inequality constraints to be treated without
introducing discontinuities. The solution of the QP subproblem (4) provides a vector triple that serves
as a direction of search for the three sets of variables. The non-negative vector � of penalty parameters
is initialized to zero at the beginning of the first major iteration. Thereafter, selected elements are
increased whenever necessary to ensure descent for the merit function. Thus, the sequence of norms of
� (the printed quantity Penalty; see Section 13) is generally nondecreasing, although each �i may be
reduced a limited number of times.

The merit function (12) and its global convergence properties are described in Gill et al. (1986a).

11.4 The Quasi-Newton Update

The matrix H in (4) is a positive definite quasi-Newton approximation to the Hessian of the Lagrangian
function. (For a review of quasi-Newton methods, see Dennis and Schnabel (1983).) At the end of each
major iteration, a new Hessian approximation �H is defined as a rank-two modification of H. In
E04UFF/E04UFA, the BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton update is used:

�H ¼ H � 1

sTHs
HssTH þ 1

yTs
yyT; ð13Þ

where s ¼ �x� x (the change in x).

In E04UFF/E04UFA, H is required to be positive definite. If H is positive definite, �H defined by (13)
will be positive definite if and only if yTs is positive (see Dennis and Moré (1977)). Ideally, y in (13)
would be taken as yL, the change in gradient of the Lagrangian function

yL ¼ �g� �AT
N�N � gþAT

N�N; ð14Þ

where �N denotes the QP multipliers associated with the nonlinear constraints of the original problem.
If yTLs is not sufficiently positive, an attempt is made to perform the update with a vector y of the form

y ¼ yL þ
XmN

i¼1
!i ai x̂ð Þci x̂ð Þ � ai xð Þci xð Þð Þ;

where !i � 0. If no such vector can be found, the update is performed with a scaled yL. In this case, M
is printed to indicate that the update was modified.

Rather than modifying H itself, the Cholesky factor of the transformed Hessian HQ (6) is updated,
where Q is the matrix from (5) associated with the active set of the QP subproblem. The update (13) is
equivalent to the following update to HQ:

�HQ ¼ HQ �
1

sTQHQsQ
HQsQs

T
QHQ þ

1

yTQsQ
yQy

T
Q; ð15Þ

where yQ ¼ QTy, and sQ ¼ QTs. This update may be expressed as a rank-one update to R (see Dennis
and Schnabel (1981)).

12 Optional Parameters

Several optional parameters in E04UFF/E04UFA define choices in the problem specification or the
algorithm logic. In order to reduce the complexity of using E04UFF/E04UFA these optional parameters
have associated default values that are appropriate for most problems. Therefore you need only specify
those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.
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Central Difference Interval

Cold Start

Crash Tolerance

Defaults

Derivative Level

Difference Interval

Feasibility Tolerance

Function Precision

Hessian

Infinite Bound Size

Infinite Step Size

Iteration Limit

Iters

Itns

Linear Feasibility Tolerance

Line Search Tolerance

List

Major Iteration Limit

Major Print Level

Minor Iteration Limit

Minor Print Level

Monitoring File

Nolist

Nonlinear Feasibility Tolerance

Optimality Tolerance

Print Level

Start Constraint Check At Variable

Start Objective Check At Variable

Step Limit

Stop Constraint Check At Variable

Stop Objective Check At Variable

Verify

Verify Constraint Gradients

Verify Gradients

Verify Level

Verify Objective Gradients

Warm Start

Optional parameters may be specified by calling one, or both, of E04UDF/E04UDA and E04UEF/
E04UEA before a call to E04UFF/E04UFA.

E04UDF/E04UDA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin * Example options file
Print level = 5

End

The call

CALL E04UDF (IOPTNS, INFORM)
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can then be used to read the file on unit IOPTNS. INFORM ¼ 0 on successful exit. E04UDF/E04UDA
should be consulted for a full description of this method of supplying optional parameters.

E04UEF/E04UEA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04UEF (’Print Level = 1’)

E04UEF/E04UEA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified are set to their default values. Optional parameters specified are
unaltered by E04UFF/E04UFA (unless they define invalid values) and so remain in effect for
subsequent calls to E04UFF/E04UFA.

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
and �r denotes the relative precision of the objective function Function Precision.

Keywords and character values are case and white space insensitive.

Central Difference Interval r Default values are computed

If the algorithm switches to central differences because the forward-difference approximation is not
sufficiently accurate, the value of r is used as the difference interval for every element of x. The switch
to central differences is indicated by C at the end of each line of intermediate printout produced by the
major iterations (see Section 9.1). The use of finite differences is discussed further under the optional
parameter Difference Interval.

If you supply a value for this optional parameter, a small value between 0:0 and 1:0 is appropriate.

Cold Start Default
Warm Start

This option controls the specification of the initial working set in both the procedure for finding a
feasible point for the linear constraints and bounds and in the first QP subproblem thereafter. With a
Cold Start, the first working set is chosen by E04UFF/E04UFA based on the values of the variables
and constraints at the initial point. Broadly speaking, the initial working set will include equality
constraints and bounds or inequality constraints that violate or ‘nearly’ satisfy their bounds (to within
Crash Tolerance).

With a Warm Start, you must set the ISTATE array and define CLAMDA and R as discussed in
Section 5. ISTATE values associated with bounds and linear constraints determine the initial working
set of the procedure to find a feasible point with respect to the bounds and linear constraints. ISTATE
values associated with nonlinear constraints determine the initial working set of the first QP subproblem
after such a feasible point has been found. E04UFF/E04UFA will override your specification of ISTATE
if necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any
elements of ISTATE which are set to �2, �1 or 4 will be reset to zero, as will any elements which are
set to 3 when the corresponding elements of BL and BU are not equal. A warm start will be
advantageous if a good estimate of the initial working set is available – for example, when E04UFF/
E04UFA is called repeatedly to solve related problems.
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Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
E04UFF/E04UFA selects an initial working set. If 0 � r � 1, the initial working set will include (if
possible) bounds or general inequality constraints that lie within r of their bounds. In particular, a

constraint of the form aTj x � l will be included in the initial working set if aTj x� l
			 			 � r 1þ lj jð Þ. If

r < 0 or r > 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Derivative Level i Default ¼ 3

This parameter indicates which derivatives are provided during intermediate exits. The possible choices
for i are the following.

i Meaning

3 All elements of the objective gradient and the constraint Jacobian are provided.

2 All elements of the constraint Jacobian are provided, but some elements of the objective gradient
are not specified.

1 All elements of the objective gradient are provided, but some elements of the constraint Jacobian
are not specified.

0 Some elements of both the objective gradient and the constraint Jacobian are not specified.

The value i ¼ 3 should be used whenever possible, since E04UFF/E04UFA is more reliable (and will
usually be more efficient) when all derivatives are exact.

If i ¼ 0 or 2, E04UFF/E04UFA will estimate the unspecified elements of the objective gradient, using
finite differences. The computation of finite difference approximations usually increases the total run-
time, since an intermediate exit to the calling program is required for each unspecified element.
Furthermore, less accuracy can be attained in the solution (see Chapter 8 of Gill et al. (1981), for a
discussion of limiting accuracy).

If i ¼ 0 or 1, E04UFF/E04UFA will approximate unspecified elements of the constraint Jacobian. One
intermediate exit is needed for each variable for which partial derivatives are not available. For
example, if the Jacobian has the form

� � � �
� ? ? �
� � ? �
� � � �

0B@
1CA

where ‘�’ indicates an element provided and ‘?’ indicates an unspecified element, E04UFF/E04UFA will
make an intermediate exit to the calling program twice: once to estimate the missing element in column
2, and again to estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they
require no intermediate exits for information.)

At times, central differences are used rather than forward differences, in which case twice as many
intermediate exits are needed. (The switch to central differences is not under your control.)

If i < 0 or i > 3, the default value is used.

Difference Interval r Default values are computed

This option defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional
parameter Verify).

(b) For estimating unspecified elements of the objective gradient or the constraint Jacobian.
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In general, a derivative with respect to the jth variable is approximated using the interval �j, where
�j ¼ r 1þ x̂j

		 		� �
, with x̂ the first point feasible with respect to the bounds and linear constraints. If the

functions are well scaled then the resulting derivative approximation should be accurate to O rð Þ. See
Gill et al. (1981) for a discussion of the accuracy in finite difference approximations.

If a difference interval is not specified then a finite difference interval will be computed automatically
for each variable by a procedure that requires up to six intermediate exits for each element. This option
is recommended if the function is badly scaled or you wish to have E04UFF/E04UFA determine
constant elements in the objective and constraint gradients.

If you supply a value for this optional parameter, a small value between 0:0 and 1:0 is appropriate.

Feasibility Tolerance r Default ¼
ffiffi
�
p

The scalar r defines the maximum acceptable absolute violations in linear and nonlinear constraints at a
‘feasible’ point; i.e., a constraint is considered satisfied if its violation does not exceed r. If r < � or
r � 1, the default value is used. Using this keyword sets both optional parameters Linear Feasibility
Tolerance and Nonlinear Feasibility Tolerance to r, if � � r < 1. (Additional details are given under
the descriptions of these optional parameters.)

Function Precision r Default ¼ �0:9

This parameter defines �r, which is intended to be a measure of the accuracy with which the problem
functions F xð Þ and c xð Þ can be computed. If r < � or r � 1, the default value is used.

The value of �r should reflect the relative precision of 1þ F xð Þj j; i.e., �r acts as a relative precision
when Fj j is large and as an absolute precision when Fj j is small. For example, if F xð Þ is typically of
order 1000 and the first six significant digits are known to be correct, an appropriate value for �r would
be 10�6. In contrast, if F xð Þ is typically of order 10�4 and the first six significant digits are known to be
correct, an appropriate value for �r would be 10�10. The choice of �r can be quite complicated for badly
scaled problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However, when the
accuracy of the computed function values is known to be significantly worse than full precision, the
value of �r should be large enough so that E04UFF/E04UFA will not attempt to distinguish between
function values that differ by less than the error inherent in the calculation.

Hessian Default ¼ NO

This option controls the contents of the upper triangular matrix R (see Section 5). E04UFF/E04UFA
works exclusively with the transformed and reordered Hessian HQ (6), and hence extra computation is
required to form the Hessian itself. If Hessian ¼ NO, R contains the Cholesky factor of the transformed
and reordered Hessian. If Hessian ¼ YES, the Cholesky factor of the approximate Hessian itself is
formed and stored in R. You should select Hessian ¼ YES if a Warm Start will be used for the next
call to E04UFF/E04UFA.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r < 0, the default value is used.

Infinite Step Size r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that is treated as a step to an unbounded
solution. If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

Line Search Tolerance r Default ¼ 0:9

The value r (0 � r < 1) controls the accuracy with which the step � taken during each iteration
approximates a minimum of the merit function along the search direction (the smaller the value of r, the
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more accurate the linesearch). The default value r ¼ 0:9 requests an inaccurate search and is
appropriate for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to
reduce the number of major iterations – for example, if the objective function is cheap to evaluate, or if
a substantial number of derivatives are unspecified. If r < 0 or r � 1, the default value is used.

Linear Feasibility Tolerance r1 Default ¼
ffiffi
�
p

Nonlinear Feasibility Tolerance r2 Default ¼ �0:33 or
ffiffi
�
p

The default value of r2 is �0:33 if Derivative Level ¼ 0 or 1, and
ffiffi
�
p

otherwise.

The scalars r1 and r2 define the maximum acceptable absolute violations in linear and nonlinear
constraints at a ‘feasible’ point; i.e., a linear constraint is considered satisfied if its violation does not
exceed r1. Similarly a nonlinear constraint is considered satisfied if its violation does not exceed r2. If
rm < � or rm � 1, the default value is used, for m ¼ 1; 2.

On entry to E04UFF/E04UFA, an iterative procedure is executed in order to find a point that satisfies
the linear constraints and bounds on the variables to within the tolerance r1. All subsequent iterates will
satisfy the linear constraints to within the same tolerance (unless r1 is comparable to the finite
difference interval).

For nonlinear constraints, the feasibility tolerance r2 defines the largest constraint violation that is
acceptable at an optimal point. Since nonlinear constraints are generally not satisfied until the final
iterate, the value of optional parameter Nonlinear Feasibility Tolerance acts as a partial termination
criterion for the iterative sequence generated by E04UFF/E04UFA (see the discussion of optional
parameter Optimality Tolerance).

These tolerances should reflect the precision of the corresponding constraints. For example, if the
variables and the coefficients in the linear constraints are of order unity, and the latter are correct to
about 6 decimal digits, it would be appropriate to specify r1 as 10�6.

List Default for E04UFF
Nolist Default for E04UFA

Optional parameter List may be used to turn on printing of each optional parameter specification as it is
supplied. Nolist may then be used to suppress this printing again.

Major Iteration Limit i Default ¼ max 50; 3 nþ nLð Þ þ 10nNð Þ
Iteration Limit
Iters
Itns

The value of i specifies the maximum number of major iterations allowed before termination. Setting
i ¼ 0 and Major Print Level > 0 means that the workspace needed will be computed and printed, but
no iterations will be performed. If i < 0, the default value is used.

Major Print Level i Default for E04UFF ¼ 10
Print Level Default for E04UFA ¼ 0

The value of i controls the amount of printout produced by the major iterations of E04UFF/E04UFA, as
indicated below. A detailed description of the printed output is given in Section 9.1 (summary output at
each major iteration and the final solution) and Section 13 (monitoring information at each major
iteration). (See also the description of the optional parameter Minor Print Level.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.

1 The final solution only.
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5 One line of summary output ( < 80 characters; see Section 9.1) for each major iteration (no
printout of the final solution).

� 10 The final solution and one line of summary output for each major iteration.

The following printout is sent to the logical unit number by the optional parameter Monitoring File:

i Output

< 5 No output.

� 5 One long line of output ( > 80 characters; see Section 13) for each major iteration (no printout
of the final solution).

� 20 At each major iteration, the objective function, the Euclidean norm of the nonlinear constraint
violations, the values of the nonlinear constraints (the vector c), the values of the linear
constraints (the vector ALx), and the current values of the variables (the vector x).

� 30 At each major iteration, the diagonal elements of the matrix T associated with the TQ
factorization (5) (see Section 11.1) of the QP working set, and the diagonal elements of R, the
triangular factor of the transformed and reordered Hessian (6) (see Section 11.1).

If Major Print Level � 5 and the unit number defined by the optional parameter Monitoring File is
the same as that defined by X04ABF,then the summary output for each major iteration is suppressed.

Minor Iteration Limit i Default ¼ max 50; 3 nþ nL þ nNð Þð Þ
The value of i specifies the maximum number of iterations for finding a feasible point with respect to
the bounds and linear constraints (if any). The value of i also specifies the maximum number of minor
iterations for the optimality phase of each QP subproblem. If i � 0, the default value is used.

Minor Print Level i Default ¼ 0

The value of i controls the amount of printout produced by the minor iterations of E04UFF/E04UFA (i.
e., the iterations of the quadratic programming algorithm), as indicated below. A detailed description of
the printed output is given in Section 9.2 in E04NCF/E04NCA (summary output at each minor iteration
and the final QP solution) and Section 13 in E04NCF/E04NCA) (monitoring information at each minor
iteration). (See also the description of the optional parameter Major Print Level.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.

1 The final QP solution only.

5 One line of summary output ( < 80 characters; see Section 9.2 in E04NCF/E04NCA) for each
minor iteration (no printout of the final QP solution).

� 10 The final QP solution and one line of summary output for each minor iteration.

The following printout is sent to the logical unit number by the optional parameter Monitoring File:

i Output

< 5 No output.

� 5 One long line of output ( > 80 characters; see Section 9.2 in E04NCF/E04NCA) for each minor
iteration (no printout of the final QP solution).

� 20 At each minor iteration, the current estimates of the QP multipliers, the current estimate of the
QP search direction, the QP constraint values and the status of each QP constraint.

� 30 At each minor iteration, the diagonal elements of the matrix T associated with the TQ
factorization (5) (see Section 11.1) of the QP working set and the diagonal elements of the
Cholesky factor R of the transformed Hessian (6) (see Section 11.1).
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If Major Print Level � 5 and the unit number defined by the optional parameter Monitoring File is
the same as that defined by X04ABF,then the summary output for each major iteration is suppressed.

Monitoring File i Default ¼ �1
If i � 0 and Major Print Level � 5 or i � 0 and Minor Print Level � 5, monitoring information
produced by E04UFF/E04UFA at every iteration is sent to a file with logical unit number i. If i < 0
and/or Major Print Level < 5 and Minor Print Level < 5, no monitoring information is produced.

Optimality Tolerance r Default ¼ �0:8r
The parameter r (�r � r < 1) specifies the accuracy to which you wish the final iterate to approximate a
solution of the problem. Broadly speaking, r indicates the number of correct figures desired in the
objective function at the solution. For example, if r is 10�6 and E04UFF/E04UFA terminates
successfully, the final value of F should have approximately six correct figures. If r < �r or r � 1, the
default value is used.

E04UFF/E04UFA will terminate successfully if the iterative sequence of x values is judged to have
converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section 11.1). The
sequence of iterates is considered to have converged at x if

� pk k �
ffiffiffi
r
p

1þ xk kð Þ; ð16Þ

where p is the search direction and � the step length from (3). An iterate is considered to satisfy the
first-order conditions for a minimum if

ZTgFR
�� �� � ffiffiffi

r
p

1þmax 1þ F xð Þj j; gFRk kð Þð Þ ð17Þ

and

resj
		 		 � ftol for all j; ð18Þ

where ZTgFR is the projected gradient (see Section 11.1), gFR is the gradient of F xð Þ with respect to the
free variables, resj is the violation of the jth active nonlinear constraint, and ftol is the Nonlinear
Feasibility Tolerance.

Start Objective Check At Variable i1 Default ¼ 1
Stop Objective Check At Variable i2 Default ¼ n
Start Constraint Check At Variable i3 Default ¼ 1
Stop Constraint Check At Variable i4 Default ¼ n
These keywords take effect only if Verify Level > 0. They may be used to control the verification of
gradient elements and/or Jacobian elements computed by the calling program during intermediate exits.
For example, if the first 30 elements of the objective gradient appeared to be correct in an earlier run,
s o t h a t on l y e l emen t 31 r ema i n s que s t i on ab l e , i t i s r e a sonab l e t o sp e c i f y
Start Objective Check At Variable ¼ 31. If the first 30 variables appear linearly in the objective,
so that the corresponding gradient elements are constant, the above choice would also be appropriate.

If i2m�1 � 0 or i2m�1 > min n; i2mð Þ, the default value is used, for m ¼ 1; 2. If i2m � 0 or i2m > n, the
default value is used, for m ¼ 1; 2.

Step Limit r Default ¼ 2:0

If r > 0; r specifies the maximum change in variables at the first step of the linesearch. In some cases,
such as F xð Þ ¼ aebx or F xð Þ ¼ axb, even a moderate change in the elements of x can lead to floating-
point overflow. The parameter r is therefore used to encourage evaluation of the problem functions at
meaningful points. Given any major iterate x, the first point ~x at which F and c are evaluated during the
linesearch is restricted so that

~x� xk k2 � r 1þ xk k2
� �

:

The linesearch may go on and evaluate F and c at points further from x if this will result in a lower
value of the merit function (indicated by L at the end of each line of output produced by the major
iterations; see Section 9.1). If L is printed for most of the iterations, r should be set to a larger value.
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Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at wild values. The default value Step Limit ¼ 2:0 should not affect progress on well-
behaved functions, but values such as 0:1 or 0:01 may be helpful when rapidly varying functions are
present. If a small value of Step Limit is selected then a good starting point may be required. An
important application is to the class of nonlinear least squares problems. If r � 0, the default value is
used.

Verify Level i Default ¼ 0
Verify
Verify Constraint Gradients
Verify Gradients
Verify Objective Gradients

These keywords refer to finite difference checks on the gradient elements computed by the calling
program during intermediate exits. (Unspecified gradient elements are not checked.) The possible
choices for i are as follows:

i Meaning

�1 No checks are performed.

0 Only a ‘cheap’ test will be performed.

� 1 In addition to the ‘cheap’ test, individual gradient elements will also be checked using a reliable
(but more expensive) test.

It is possible to specify Verify Level ¼ 0 to 3 in several ways. For example, the objective gradient will
be verified if Verify, Verify ¼ YES, Verify Gradients, Verify Objective Gradients or
Verify Level ¼ 1 is specified. The constraint gradients will be verified if Verify ¼ YES or
Verify Level ¼ 2 or Verify is specified. Similarly, the objective and the constraint gradients will be
verified if Verify ¼ YES or Verify Level ¼ 3 or Verify is specified.

If 0 � i � 3, gradients will be verified at the first point that satisfies the linear constraints and bounds.

If i ¼ 0, only a ‘cheap’ test will be performed, requiring one intermediate exit for the objective function
gradients and (if appropriate) one intermediate exit for the partial derivatives of the constraints.

If 1 � i � 3, a more reliable (but more expensive) check will be made on individual gradient elements,
within the ranges specified by the Start Objective Check At Variable and Stop Objective Check At
Variable keywords. A result of the form OK or BAD? is printed by E04UFF/E04UFA to indicate whether
or not each element appears to be correct.

If 10 � i � 13, the action is the same as for i < 10, except that it will take place at the user-specified
initial value of x.

If i < �1 or 4 � i � 9 or i > 13, the default value is used.

We suggest that Verify Level ¼ 3 be used whenever a new calling program is being developed.

13 Description of Monitoring Information

This section describes the long line of output ( > 80 characters) which forms part of the monitoring
information produced by E04UFF/E04UFA. (See also the description of the optional parameters Major
Print Level, Minor Print Level and Monitoring File.) You can control the level of printed output (see
the description of the optional parameter Major Print Level).

When Major Print Level � 5 and Monitoring File � 0, the following line of output is produced at
every major iteration of E04UFF/E04UFA on the unit number specified by Monitoring File. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
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theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11).

Note that Mnr may be greater than the optional parameter Minor Iteration Limit
if some iterations are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Nfun is the cumulative number of evaluations of the objective function needed for the
linesearch. Evaluations needed for the estimation of the gradients by finite
differences are not included. Nfun is printed as a guide to the amount of work
required for the linesearch.

Merit Function is the value of the augmented Lagrangian merit function (12) at the current
iterate. This function will decrease at each iteration unless it was necessary to
increase the penalty parameters (see Section 11.3). As the solution is approached,
Merit Function will converge to the value of the objective function at the
solution.

If the QP subproblem does not have a feasible point (signified by I at the end of
the current output line) then the merit function is a large multiple of the
constraint violations, weighted by the penalty parameters. During a sequence of
major iterations with infeasible subproblems, the sequence of Merit Function
values will decrease monotonically until either a feasible subproblem is obtained
or E04UFF/E04UFA terminates with IFAIL ¼ 3 (no feasible point could be found
for the nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN ¼ 0) then this entry
contains Objective, the value of the objective function F xð Þ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is ZTgFRk k, the Euclidean norm of the projected gradient (see Section 11.2). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Violtn will be
approximately zero in the neighbourhood of a solution.

Nz is the number of columns of Z (see Section 11.2). The value of Nz is the number
of variables minus the number of constraints in the predicted active set; i.e.,
Nz ¼ n� Bndþ Linþ Nlnð Þ.

Bnd is the number of simple bound constraints in the predicted active set.

Lin is the number of general linear constraints in the predicted working set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if
NCNLN is zero).

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if NCNLN is zero).

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ ¼ ZTHFRZ ¼ RT

ZRZ ; see (6)). The larger this number, the more difficult
the problem.

Cond T is a lower bound on the condition number of the matrix of predicted active
constraints.

Conv is a three-letter indication of the status of the three convergence tests (16)–(18)
defined in the description of the optional parameter Optimality Tolerance. Each
letter is T if the test is satisfied and F otherwise. The three tests indicate whether:
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(i) the sequence of iterates has converged;

(ii) the projected gradient (Norm Gz) is sufficiently small; and

(iii) the norm of the residuals of constraints in the predicted active set (Violtn)
is small enough.

If any of these indicators is F when E04UFF/E04UFA terminates with IFAIL ¼ 0,
you should check the solution carefully.

M is printed if the quasi-Newton update has been modified to ensure that the
Hessian approximation is positive definite (see Section 11.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified
objective and constraint gradients. If the value of Step is zero then the switch to
central differences was made because no lower point could be found in the
linesearch. (In this case, the QP subproblem is resolved with the central
difference gradient and Jacobian.) If the value of Step is nonzero then central
differences were computed because Norm Gz and Violtn imply that x is close to
a Kuhn–Tucker point (see Section 11.1).

L is printed if the linesearch has produced a relative change in x greater than the
value defined by the optional parameter Step Limit. If this output occurs
frequently during later iterations of the run, optional parameter Step Limit should
be set to a larger value.

On entry: need not be initialized if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, R must contain the upper
triangular Cholesky factor R of the initial approximation of the Hessian of the
Lagrangian function, with the variables in the natural order. Elements not in the
upper triangular part of R are assumed to be zero and need not be assigned.

On exit: if Hessian ¼ NO, R contains the upper triangular Cholesky factor R of
QT ~HQ, an estimate of the transformed and reordered Hessian of the Lagrangian
at x (see (6) in Section 11.1). If Hessian ¼ YES, R contains the upper triangular
Cholesky factor R of H, the approximate (untransformed) Hessian of the
Lagrangian, with the variables in the natural order.
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NAG Library Routine Document

E04UGF/E04UGA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

E04UGF/E04UGA solves sparse nonlinear programming problems.

E04UGA is a version of E04UGF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04UGA.

2 Specification

2.1 Specification for E04UGF

SUBROUTINE E04UGF (CONFUN, OBJFUN, N, M, NCNLN, NONLN, NJNLN, IOBJ, NNZ,
A, HA, KA, BL, BU, START, NNAME, NAMES, NS, XS,
ISTATE, CLAMDA, MINIZ, MINZ, NINF, SINF, OBJ, IZ,
LENIZ, Z, LENZ, IUSER, RUSER, IFAIL)

&
&
&

INTEGER N, M, NCNLN, NONLN, NJNLN, IOBJ, NNZ, HA(NNZ),
KA(N+1), NNAME, NS, ISTATE(N+M), MINIZ, MINZ, NINF,
IZ(LENIZ), LENIZ, LENZ, IUSER(*), IFAIL

&
&

REAL (KIND=nag_wp) A(NNZ), BL(N+M), BU(N+M), XS(N+M), CLAMDA(N+M),
SINF, OBJ, Z(LENZ), RUSER(*)

&

CHARACTER(1) START
CHARACTER(8) NAMES(NNAME)
EXTERNAL CONFUN, OBJFUN

2.2 Specification for E04UGA

SUBROUTINE E04UGA (CONFUN, OBJFUN, N, M, NCNLN, NONLN, NJNLN, IOBJ, NNZ,
A, HA, KA, BL, BU, START, NNAME, NAMES, NS, XS,
ISTATE, CLAMDA, MINIZ, MINZ, NINF, SINF, OBJ, IZ,
LENIZ, Z, LENZ, IUSER, RUSER, LWSAV, IWSAV, RWSAV,
IFAIL)

&
&
&
&

INTEGER N, M, NCNLN, NONLN, NJNLN, IOBJ, NNZ, HA(NNZ),
KA(N+1), NNAME, NS, ISTATE(N+M), MINIZ, MINZ, NINF,
IZ(LENIZ), LENIZ, LENZ, IUSER(*), IWSAV(550), IFAIL

&
&

REAL (KIND=nag_wp) A(NNZ), BL(N+M), BU(N+M), XS(N+M), CLAMDA(N+M),
SINF, OBJ, Z(LENZ), RUSER(*), RWSAV(550)

&

LOGICAL LWSAV(20)
CHARACTER(1) START
CHARACTER(8) NAMES(NNAME)
EXTERNAL CONFUN, OBJFUN

Before calling E04UGA, or either of the option setting routines E04UHA or E04UJA, E04WBF must
be called. The specification for E04WBF is:

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
RWSAV, LRWSAV, IFAIL)

&
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INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV,
IFAIL

&

REAL (KIND=nag_wp) RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER(*) RNAME
CHARACTER(80) CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ E04UGA . LCWSAV, LLWSAV, LIWSAV and LRWSAV,
the declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 1

LLWSAV � 20

LIWSAV � 550

LRWSAV � 550

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04UGA, E04UHA, E04UJA and E04WBF.

3 Description

E04UGF/E04UGA is designed to solve a class of nonlinear programming problems that are assumed to
be stated in the following general form:

minimize
x2Rn

f xð Þ subject to l �
x

F xð Þ
Gx

8<:
9=; � u; ð1Þ

where x ¼ x1; x2; . . . ; xnð ÞT is a set of variables, f xð Þ is a smooth scalar objective function, l and u are
constant lower and upper bounds, F xð Þ is a vector of smooth nonlinear constraint functions Fi xð Þf g and
G is a sparse matrix.

The constraints involving F and Gx are called the general constraints. Note that upper and lower
bounds are specified for all variables and constraints. This form allows full generality in specifying
various types of constraint. In particular, the jth constraint can be defined as an equality by setting
lj ¼ uj. If certain bounds are not present, the associated elements of l or u can be set to special values
that will be treated as �1 or þ1. (See the description of the optional parameter Infinite Bound Size.)

E04UGF/E04UGA converts the upper and lower bounds on the m elements of F and Gx to equalities
by introducing a set of slack variables s, where s ¼ s1; s2; . . . ; smð ÞT. For example, the linear constraint
5 � 2x1 þ 3x2 � þ1 is replaced by 2x1 þ 3x2 � s1 ¼ 0, together with the bounded slack
5 � s1 � þ1. The problem defined by (1) can therefore be re-written in the following equivalent form:

minimize
x2Rn;s2Rm

f xð Þ subject to Gx
� 

� s ¼ 0; l � x
s


 �
� u: ð2Þ

Since the slack variables s are subject to the same upper and lower bounds as the elements of F and
Gx, the bounds on F and Gx can simply be thought of as bounds on the combined vector x; sð Þ. The
elements of x and s are partitioned into basic, nonbasic and superbasic variables defined as follows:

– a basic variable (xj say) is the jth variable associated with the jth column of the basis matrix B;

– a nonbasic variable is a variable that is temporarily fixed at its current value (usually its upper or
lower bound);

– a superbasic variable is a nonbasic variable which is not at one of its bounds that is free to move in
any desired direction (namely one that will improve the value of the objective function or reduce the
sum of infeasibilities).

For example, in the simplex method (see Gill et al. (1981)) the elements of x can be partitioned at each
vertex into a set of m basic variables (all non-negative) and a set of n�mð Þ nonbasic variables (all
zero). This is equivalent to partitioning the columns of the constraint matrix as B N

� �
, where B

contains the m columns that correspond to the basic variables and N contains the n�mð Þ columns that
correspond to the nonbasic variables. Note that B is square and nonsingular.
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The optional parameter Maximize may be used to specify an alternative problem in which f xð Þ is
maximized. If the objective function is nonlinear and all the constraints are linear, F is absent and the
problem is said to be linearly constrained. In general, the objective and constraint functions are
structured in the sense that they are formed from sums of linear and nonlinear functions. This structure
can be exploited by the routine during the solution process as follows.

Consider the following nonlinear optimization problem with four variables (u; v; z; w):

minimize
u;v;z;w

uþ vþ zð Þ2 þ 3zþ 5w

subject to the constraints

u2 þ v2 þ z ¼ 2
u4 þ v4 þ w ¼ 4
2uþ 4v � 0

and to the bounds

z � 0
w � 0:

This problem has several characteristics that can be exploited by the routine:

– the objective function is nonlinear. It is the sum of a nonlinear function of the variables (u; v; z) and
a linear function of the variables (z; w);

– the first two constraints are nonlinear. The third is linear;

– each nonlinear constraint function is the sum of a nonlinear function of the variables (u; v) and a
linear function of the variables (z; w).

The nonlinear terms are defined by OBJFUN and CONFUN (see Section 5), which involve only the
appropriate subset of variables.

For the objective, we define the function f u; v; zð Þ ¼ uþ vþ zð Þ2 to include only the nonlinear part of
the objective. The three variables (u; v; z) associated with this function are known as the nonlinear
objective variables. The number of them is given by NONLN (see Section 5) and they are the only
variables needed in OBJFUN. The linear part 3zþ 5w of the objective is stored in row IOBJ (see
Section 5) of the (constraint) Jacobian matrix A (see below).

Thus, if x0 and y0 denote the nonlinear and linear objective variables, respectively, the objective may be
re-written in the form

f x0ð Þ þ cTx0 þ dTy0;

where f x0ð Þ is the nonlinear part of the objective and c and d are constant vectors that form a row of A.
In this example, x0 ¼ u; v; zð Þ and y0 ¼ w.
Similarly for the constraints, we define a vector function F u; vð Þ to include just the nonlinear terms. In
this example, F1 u; vð Þ ¼ u2 þ v2 and F2 u; vð Þ ¼ u4 þ v4, where the two variables (u; v) are known as
the nonlinear Jacobian variables. The number of them is given by NJNLN (see Section 5) and they are
the only variables needed in CONFUN. Thus, if x00 and y00 denote the nonlinear and linear Jacobian
variables, respectively, the constraint functions and the linear part of the objective have the form

F x00ð Þ þA2y
00

A3x
00 þA4y

00

� �
; ð3Þ

where x00 ¼ u; vð Þ and y00 ¼ z; wð Þ in this example. This ensures that the Jacobian is of the form

A ¼ J x00ð Þ A2
A3 A4

� �
;

where J x00ð Þ ¼ @F x00ð Þ
@x

. Note that J x00ð Þ always appears in the top left-hand corner of A.
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The inequalities l1 � F x00ð Þ þA2y
00 � u1 and l2 � A3x

00 þA4y
00 � u2 implied by the constraint

functions in (3) are known as the nonlinear and linear constraints, respectively. The nonlinear
constraint vector F x00ð Þ in (3) and (optionally) its partial derivative matrix J x00ð Þ are set in CONFUN.
The matrices A2, A3 and A4 contain any (constant) linear terms. Along with the sparsity pattern of
J x00ð Þ they are stored in the arrays A, HA and KA (see Section 5).

In general, the vectors x0 and x00 have different dimensions, but they always overlap, in the sense that
the shorter vector is always the beginning of the other. In the above example, the nonlinear Jacobian
variables u; vð Þ are an ordered subset of the nonlinear objective variables u; v; zð Þ. In other cases it
could be the other way round (whichever is the most convenient), but the first way keeps J x00ð Þ as small
as possible.

Note that the nonlinear objective function f x0ð Þ may involve either a subset or superset of the variables
appearing in the nonlinear constraint functions F x00ð Þ. Thus, NONLN � NJNLN (or vice-versa).
Sometimes the objective and constraints really involve disjoint sets of nonlinear variables. In such
cases the variables should be ordered so that NONLN > NJNLN and x0 ¼ x00; x000ð Þ, where the objective
is nonlinear in just the last vector x000. The first NJNLN elements of the gradient array OBJGRD should
also be set to zero in OBJFUN. This is illustrated in Section 10.

If all elements of the constraint Jacobian are known (i.e., the optional parameter Derivative Level ¼ 2
or 3), any constant elements may be assigned their correct values in A, HA and KA. The corresponding
elements of the constraint Jacobian array FJAC need not be reset in CONFUN. This includes values
that are identically zero as constraint Jacobian elements are assumed to be zero unless specified
otherwise. It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of FJAC are
not treated as constant; they are estimated by finite differences, at nontrivial expense.

If there are no nonlinear constraints in (1) and f xð Þ is linear or quadratic, then it may be more efficient
to use E04NQF to solve the resulting linear or quadratic programming problem, or one of E04MFF/
E04MFA, E04NCF/E04NCA or E04NFF/E04NFA if G is a dense matrix. If the problem is dense and
does have nonlinear constraints then one of E04UFF/E04UFA, E04USF/E04USA or E04WDF (as
appropriate) should be used instead.

You must supply an initial estimate of the solution to (1), together with versions of OBJFUN and
CONFUN that define f x0ð Þ and F x00ð Þ, respectively, and as many first partial derivatives as possible.
Note that if there are any nonlinear constraints, then the first call to CONFUN will precede the first call
to OBJFUN.

E04UGF/E04UGA is based on the SNOPT package described in Gill et al. (2002), which in turn
utilizes routines from the MINOS package (see Murtagh and Saunders (1995)). It incorporates a
sequential quadratic programming (SQP) method that obtains search directions from a sequence of
quadratic programming (QP) subproblems. Each QP subproblem minimizes a quadratic model of a
certain Lagrangian function subject to a linearization of the constraints. An augmented Lagrangian
merit function is reduced along each search direction to ensure convergence from any starting point.
Further details can be found in Section 11.

Throughout this document the symbol � is used to represent the machine precision (see X02AJF).
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5 Arguments

1: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate the vector F xð Þ of nonlinear constraint functions and (optionally) its

Jacobian ¼ @F
@x

� �
for a specified n001 ( � n) element vector x. If there are no nonlinear

constraints (i.e., NCNLN ¼ 0), CONFUN will never be called by E04UGF/E04UGA and
CONFUN may be the dummy routine E04UGM. (E04UGM is included in the NAG Library.) If
there are nonlinear constraints, the first call to CONFUN will occur before the first call to
OBJFUN.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCNLN, NJNLN, NNZJAC, X, F, FJAC,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, NCNLN, NJNLN, NNZJAC, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(NJNLN), F(NCNLN), FJAC(NNZJAC), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of CONFUN. Only
the following values need be assigned:

MODE ¼ 0
F.

MODE ¼ 1
All available elements of FJAC.

MODE ¼ 2
F and all available elements of FJAC.

On exit: you may set to a negative value as follows:

MODE � �2
The solution to the current problem is terminated and in this case E04UGF/
E04UGA will terminate with IFAIL set to MODE.
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MODE ¼ �1
The nonlinear constraint functions cannot be calculated at the current x.
E04UGF/E04UGA will then terminate with IFAIL ¼ �1 unless this occurs
during the linesearch; in this case, the linesearch will shorten the step and try
again.

2: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints. These must be the first NCNLN
constraints in the problem.

3: NJNLN – INTEGER Input

On entry: n001, the number of nonlinear variables. These must be the first NJNLN
variables in the problem.

4: NNZJAC – INTEGER Input

On entry: the number of nonzero elements in the constraint Jacobian. Note that
NNZJAC will usually be less than NCNLN� NJNLN.

5: XðNJNLNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of nonlinear Jacobian variables at which the nonlinear constraint
functions and/or the available elements of the constraint Jacobian are to be evaluated.

6: FðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: if MODE ¼ 0 or 2, FðiÞ must contain the value of the ith nonlinear constraint
function at x.

7: FJACðNNZJACÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of FJAC are set to special values which enable E04UGF/
E04UGA to detect whether they are changed by CONFUN.

On exit: if MODE ¼ 1 or 2, FJAC must return the available elements of the constraint
Jacobian evaluated at x. These elements must be stored in exactly the same positions as
implied by the definitions of the arrays A, HA and KA. If optional parameter
Derivative Level ¼ 2 or 3, the value of any constant Jacobian element not defined by
CONFUN will be obtained directly from A. Note that the routine does not perform any
internal checks for consistency (except indirectly via the optional parameter Verify
Level), so great care is essential.

8: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1, then E04UGF/E04UGA is calling CONFUN for the first
time. This argument setting allows you to save computation time if certain data must be
read or calculated only once.

If NSTATE � 2, then E04UGF/E04UGA is calling CONFUN for the last time. This
argument setting allows you to perform some additional computation on the final
solution. In general, the last call to CONFUN is made with NSTATE ¼ 2þ IFAIL (see
Section 6).

Otherwise, NSTATE ¼ 0.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN is called with the arguments IUSER and RUSER as supplied to E04UGF/
E04UGA. You should use the arrays IUSER and RUSER to supply information to
CONFUN.
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CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04UGF/E04UGA is called. Arguments denoted as Input must not be
changed by this procedure.

2: OBJFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

OBJFUN must calculate the nonlinear part of the objective function f xð Þ and (optionally) its

gradient ¼ @f
@x

� �
for a specified n01 ( � n) element vector x. If there are no nonlinear objective

variables (i.e., NONLN ¼ 0), OBJFUN will never be called by E04UGF/E04UGA and OBJFUN
may be the dummy routine E04UGN. (E04UGN is included in the NAG Library.)

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, NONLN, X, OBJF, OBJGRD, NSTATE, IUSER,
RUSER)

&

INTEGER MODE, NONLN, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(NONLN), OBJF, OBJGRD(NONLN), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0
OBJF.

MODE ¼ 1
All available elements of OBJGRD.

MODE ¼ 2
OBJF and all available elements of OBJGRD.

On exit: you may set to a negative value as follows:

MODE � �2
The solution to the current problem is terminated and in this case E04UGF/
E04UGA will terminate with IFAIL set to MODE.

MODE ¼ �1
The nonlinear part of the objective function cannot be calculated at the current x.
E04UGF/E04UGA will then terminate with IFAIL ¼ �1 unless this occurs
during the linesearch; in this case, the linesearch will shorten the step and try
again.

2: NONLN – INTEGER Input

On entry: n01, the number of nonlinear objective variables. These must be the first
NONLN variables in the problem.

3: XðNONLNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of nonlinear variables at which the nonlinear part of the
objective function and/or all available elements of its gradient are to be evaluated.

4: OBJF – REAL (KIND=nag_wp) Output

On exit: if MODE ¼ 0 or 2, OBJF must be set to the value of the objective function at
x.

5: OBJGRDðNONLNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of OBJGRD are set to special values which enable E04UGF/
E04UGA to detect whether they are changed by OBJFUN.
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On exit: if MODE ¼ 1 or 2, OBJGRD must return the available elements of the gradient
evaluated at x.

6: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1, E04UGF/E04UGA is calling OBJFUN for the first time.
This argument setting allows you to save computation time if certain data must be read
or calculated only once.

If NSTATE � 2, E04UGF/E04UGA is calling OBJFUN for the last time. This argument
setting allows you to perform some additional computation on the final solution. In
general, the last call to OBJFUN is made with NSTATE ¼ 2þ IFAIL (see Section 6).

Otherwise, NSTATE ¼ 0.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E04UGF/
E04UGA. You should use the arrays IUSER and RUSER to supply information to
OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04UGF/E04UGA is called. Arguments denoted as Input must not be
changed by this procedure.

3: N – INTEGER Input

On entry: n, the number of variables (excluding slacks). This is the number of columns in the full
Jacobian matrix A.

Constraint: N � 1.

4: M – INTEGER Input

On entry: m, the number of general constraints (or slacks). This is the number of rows in A,
including the free row (if any; see IOBJ). Note that A must contain at least one row. If your
problem has no constraints, or only upper and lower bounds on the variables, then you must
include a dummy ‘free’ row consisting of a single (zero) element subject to ‘infinite’ upper and
lower bounds. Further details can be found under the descriptions for IOBJ, NNZ, A, HA, KA,
BL and BU.

Constraint: M � 1.

5: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: 0 � NCNLN � M.

6: NONLN – INTEGER Input

On entry: n01, the number of nonlinear objective variables. If the objective function is nonlinear,
the leading n01 columns of A belong to the nonlinear objective variables. (See also the description
for NJNLN.)

Constraint: 0 � NONLN � N.

7: NJNLN – INTEGER Input

On entry: n001, the number of nonlinear Jacobian variables. If there are any nonlinear constraints,
the leading n001 columns of A belong to the nonlinear Jacobian variables. If n01 > 0 and n001 > 0,
the nonlinear objective and Jacobian variables overlap. The total number of nonlinear variables is
given by �n ¼ max n01; n

00
1

� �
.
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Constraints:

if NCNLN ¼ 0, NJNLN ¼ 0;
if NCNLN > 0, 1 � NJNLN � N.

8: IOBJ – INTEGER Input

On entry: if IOBJ > NCNLN, row IOBJ of A is a free row containing the nonzero elements of
the linear part of the objective function.

IOBJ ¼ 0
There is no free row.

IOBJ ¼ �1
There is a dummy ‘free’ row.

Constraints:

if IOBJ > 0, NCNLN < IOBJ � M;
otherwise IOBJ � �1.

9: NNZ – INTEGER Input

On entry: the number of nonzero elements in A (including the Jacobian for any nonlinear
constraints). If IOBJ ¼ �1, set NNZ ¼ 1.

Constraint: 1 � NNZ � N�M.

10: AðNNZÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the nonzero elements of the Jacobian matrix A, ordered by increasing column index.
Since the constraint Jacobian matrix J x00ð Þ must always appear in the top left-hand corner of A,
those elements in a column associated with any nonlinear constraints must come before any
elements belonging to the linear constraint matrix G and the free row (if any; see IOBJ).

In general, A is partitioned into a nonlinear part and a linear part corresponding to the nonlinear
variables and linear variables in the problem. Elements in the nonlinear part may be set to any
value (e.g., zero) because they are initialized at the first point that satisfies the linear constraints
and the upper and lower bounds.

If Derivative Level ¼ 2 or 3, the nonlinear part may also be used to store any constant Jacobian
elements. Note that if CONFUN does not define the constant Jacobian element FJACðiÞ then the
missing value will be obtained directly from AðjÞ for some j � i.
If Derivative Level ¼ 0 or 1, unassigned elements of FJAC are not treated as constant; they are
estimated by finite differences, at nontrivial expense.

The linear part must contain the nonzero elements of G and the free row (if any). If IOBJ ¼ �1,
set Að1Þ ¼ 0. Elements with the same row and column indices are not allowed. (See also the
descriptions for HA and KA.)

On exit: elements in the nonlinear part corresponding to nonlinear Jacobian variables are
overwritten.

11: HAðNNZÞ – INTEGER array Input

On entry: HAðiÞ must contain the row index of the nonzero element stored in AðiÞ, for
i ¼ 1; 2; . . . ;NNZ. The row indices for a column may be supplied in any order subject to the
condition that those elements in a column associated with any nonlinear constraints must appear
before those elements associated with any linear constraints (including the free row, if any). Note
that CONFUN must define the Jacobian elements in the same order. If IOBJ ¼ �1, set
HAð1Þ ¼ 1.

Constraint: 1 � HAðiÞ � M, for i ¼ 1; 2; . . . ;NNZ.
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12: KAðNþ 1Þ – INTEGER array Input

On entry: KAðjÞ must contain the index in A of the start of the jth column, for j ¼ 1; 2; . . . ;N.
To specify the jth column as empty, set KAðjÞ ¼ KAðj þ 1Þ. Note that the first and last elements
of KA must be such that KAð1Þ ¼ 1 and KAðNþ 1Þ ¼ NNZþ 1. If IOBJ ¼ �1, set KAðjÞ ¼ 2,
for j ¼ 2; 3; . . . ;N.

Constraints:

KAð1Þ ¼ 1;
KAðjÞ � 1, for j ¼ 2; 3; . . . ;N;
KAðNþ 1Þ ¼ NNZþ 1;
0 � KAðj þ 1Þ � KAðjÞ � M, for j ¼ 1; 2; . . . ;N.

13: BLðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: l, the lower bounds for all the variables and general constraints, in the following order.
The first N elements of BL must contain the bounds on the variables x, the next NCNLN
elements the bounds for the nonlinear constraints F xð Þ (if any) and the next (M� NCNLN)
elements the bounds for the linear constraints Gx and the free row (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd. To specify the jth constraint as
an equal i ty, se t BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd. I f IOBJ ¼ �1, se t
BLðNþ abs IOBJð ÞÞ �
� bigbnd.

Constraint: if NCNLN < IOBJ � M or IOBJ ¼ �1, BLðNþ abs IOBJð ÞÞ � �bigbnd
(See also the description for BU.)

14: BUðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: u, the upper bounds for all the variables and general constraints, in the following order.
The first N elements of BU must contain the bounds on the variables x, the next NCNLN
elements the bounds for the nonlinear constraints F xð Þ (if any) and the next (M� NCNLN)
elements the bounds for the linear constraints Gx and the free row (if any). To specify a
nonexistent upper bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd. To specify the jth constraint as an
e q u a l i t y , s e t BUðjÞ ¼ BLðjÞ ¼ �, s a y, w h e r e �j j < bigbnd. I f IOBJ ¼ �1, s e t
BUðNþ abs IOBJð ÞÞ � bigbnd.

Constraints:

if NCNLN < IOBJ � M or IOBJ ¼ �1, BUðNþ abs IOBJð ÞÞ � bigbnd;
BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;NþM;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

15: START – CHARACTER(1) Input

On entry: indicates how a starting basis is to be obtained.

START ¼ C
An internal Crash procedure will be used to choose an initial basis.

START ¼ W
A basis is already defined in ISTATE and NS (probably from a previous call).

Constraint: START ¼ C or W.

16: NNAME – INTEGER Input

On entry: the number of column (i.e., variable) and row (i.e., constraint) names supplied in
NAMES.

NNAME ¼ 1
There are no names. Default names will be used in the printed output.
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NNAME ¼ NþM
All names must be supplied.

Constraint: NNAME ¼ 1 or NþM.

17: NAMESðNNAMEÞ – CHARACTER(8) array Input

On entry: specifies the column and row names to be used in the printed output.

If NNAME ¼ 1, NAMES is not referenced and the printed output will use default names for the
columns and rows.

If NNAME ¼ NþM, the first N elements must contain the names for the columns, the next
NCNLN elements must contain the names for the nonlinear rows (if any) and the next
M� NCNLNð Þ elements must contain the names for the linear rows (if any) to be used in the
printed output. Note that the name for the free row or dummy ‘free’ row must be stored in
NAMESðNþ abs IOBJð ÞÞ.

18: NS – INTEGER Input/Output

On entry: nS , the number of superbasics. It need not be specified if START ¼ C , but must retain
its value from a previous call when START ¼ W .

On exit: the final number of superbasics.

19: XSðNþMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the variables and slacks x; sð Þ. (See the description for ISTATE.)

On exit: the final values of the variables and slacks x; sð Þ.

20: ISTATEðNþMÞ – INTEGER array Input/Output

On entry: if START ¼ C , the first N elements of ISTATE and XS must specify the initial states
and values, respectively, of the variables x. (The slacks s need not be initialized.) An internal
Crash procedure is then used to select an initial basis matrix B. The initial basis matrix will be
triangular (neglecting certain small elements in each column). It is chosen from various rows and
columns of A �I

� �
. Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ State of XSðjÞ during Crash procedure

0 or 1 Eligible for the basis

2 Ignored

3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored

If nothing special is known about the problem, or there is no wish to provide special information,
you may set ISTATEðjÞ ¼ 0 and XSðjÞ ¼ 0:0, for j ¼ 1; 2; . . . ;N. All variables will then be
eligible for the initial basis. Less trivially, to say that the jth variable will probably be equal to
one of its bounds, set ISTATEðjÞ ¼ 4 and XSðjÞ ¼ BLðjÞ or ISTATEðjÞ ¼ 5 and XSðjÞ ¼ BUðjÞ
as appropriate.

Following the Crash procedure, variables for which ISTATEðjÞ ¼ 2 are made superbasic. Other
variables not selected for the basis are then made nonbasic at the value XSðjÞ if
BLðjÞ � XSðjÞ � BUðjÞ, or at the value BLðjÞ or BUðjÞ closest to XSðjÞ.
If START ¼ W , ISTATE and XS must specify the initial states and values, respectively, of the
variables and slacks x; sð Þ. If the routine has been called previously with the same values of N
and M, ISTATE already contains satisfactory information.

Constraints:

if START ¼ C , 0 � ISTATEðjÞ � 5, for j ¼ 1; 2; . . . ;N;
if START ¼ W , 0 � ISTATEðjÞ � 3, for j ¼ 1; 2; . . . ;NþM.
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On exit: the final states of the variables and slacks x; sð Þ. The significance of each possible value
of ISTATEðjÞ is as follows:

ISTATEðjÞ State of variable j Normal value of XSðjÞ
0 Nonbasic BLðjÞ
1 Nonbasic BUðjÞ
2 Superbasic Between BLðjÞ and BUðjÞ
3 Basic Between BLðjÞ and BUðjÞ

If NINF ¼ 0, basic and superbasic variables may be outside their bounds by as much as the value
of the optional parameter Minor Feasibility Tolerance. Note that if scaling is specified, the
optional parameter Minor Feasibility Tolerance applies to the variables of the scaled problem.
In this case, the variables of the original problem may be as much as 0:1 outside their bounds,
but this is unlikely unless the problem is very badly scaled.

Very occasionally some nonbasic variables may be outside their bounds by as much as the
optional parameter Minor Feasibility Tolerance and there may be some nonbasic variables for
which XSðjÞ lies strictly between its bounds.

If NINF > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by SINF if scaling was not used).

21: CLAMDAðNþMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if NCNLN > 0, CLAMDAðjÞ must contain a Lagrange multiplier estimate for the jth
nonlinear constraint Fj xð Þ, for j ¼ Nþ 1; . . . ;Nþ NCNLN. If nothing special is known about the
problem, or there is no wish to provide special information, you may set CLAMDAðjÞ ¼ 0:0.
The remaining elements need not be set.

On exit: a set of Lagrange multipliers for the bounds on the variables (reduced costs) and the
general constraints (shadow costs). More precisely, the first N elements contain the multipliers
for the bounds on the variables, the next NCNLN elements contain the multipliers for the
nonlinear constraints F xð Þ (if any) and the next (M� NCNLN) elements contain the multipliers
for the linear constraints Gx and the free row (if any).

22: MINIZ – INTEGER Output

On exit: the minimum value of LENIZ required to start solving the problem. If IFAIL ¼ 12,
E04UGF/E04UGA may be called again with LENIZ suitably larger than MINIZ. (The bigger the
better, since it is not certain how much workspace the basis factors need.)

23: MINZ – INTEGER Output

On exit: the minimum value of LENZ required to start solving the problem. If IFAIL ¼ 13,
E04UGF/E04UGA may be called again with LENZ suitably larger than MINZ. (The bigger the
better, since it is not certain how much workspace the basis factors need.)

24: NINF – INTEGER Output

On exit: the number of constraints that lie outside their bounds by more than the value of the
optional parameter Minor Feasibility Tolerance.

If the linear constraints are infeasible, the sum of the infeasibilities of the linear constraints is
minimized subject to the upper and lower bounds being satisfied. In this case, NINF contains the
number of elements of Gx that lie outside their upper or lower bounds. Note that the nonlinear
constraints are not evaluated.

Otherwise, the sum of the infeasibilities of the nonlinear constraints is minimized subject to the
linear constraints and the upper and lower bounds being satisfied. In this case, NINF contains the
number of elements of F xð Þ that lie outside their upper or lower bounds.
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25: SINF – REAL (KIND=nag_wp) Output

On exit: the sum of the infeasibilities of constraints that lie outside their bounds by more than the
value of the optional parameter Minor Feasibility Tolerance.

26: OBJ – REAL (KIND=nag_wp) Output

On exit: the value of the objective function.

27: IZðLENIZÞ – INTEGER array Workspace

28: LENIZ – INTEGER Input

On entry: the dimension of the array IZ as declared in the (sub)program from which E04UGF/
E04UGA is called.

Constraint: LENIZ � max 500;NþMð Þ.

29: ZðLENZÞ – REAL (KIND=nag_wp) array Workspace
30: LENZ – INTEGER Input

On entry: the dimension of the array Z as declared in the (sub)program from which E04UGF/
E04UGA is called.

Constraint: LENZ � 500.

The amounts of workspace provided (i.e., LENIZ and LENZ) and required (i.e., MINIZ and
MINZ) are (by default) output on the current advisory message unit (as defined by X04ABF).
Since the minimum values of LENIZ and LENZ required to start solving the problem are
returned in MINIZ and MINZ respectively, you may prefer to obtain appropriate values from the
output of a preliminary run with LENIZ set to max 500;NþMð Þ and/or LENZ set to 500.
(E04UGF/E04UGA will then terminate with IFAIL ¼ 15 or 16.)

31: IUSERð�Þ – INTEGER array User Workspace
32: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04UGF/E04UGA, but are passed directly to CONFUN and
OBJFUN and should be used to pass information to these routines.

33: IFAIL – INTEGER Input/Output

Note: for E04UGA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04UGF/E04UGA returns with IFAIL ¼ 0 if the iterates have converged to a point x that
satisfies the first-order Kuhn–Karesh–Tucker conditions (see Section 9.1) to the accuracy
requested by the optional parameters Major Feasibility Tolerance (default value ¼

ffiffi
�
p

) and
Major Optimality Tolerance (default value ¼

ffiffi
�
p

).
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Note: the following are additional arguments for specific use with E04UGA. Users of E04UGF
therefore need not read the remainder of this description.

34: LWSAVð20Þ – LOGICAL array Communication Array
35: IWSAVð550Þ – INTEGER array Communication Array
36: RWSAVð550Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04UGA, E04UHA or E04UJA.

37: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04UGF/E04UGA may return useful information for one or more of the following detected errors
or warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04UGF/E04UGA because you set MODE < 0
in OBJFUN or CONFUN. The value of IFAIL will be the same as your setting of MODE.

IFAIL ¼ 1

The problem is infeasible. The general constraints cannot all be satisfied simultaneously to within
the values of the optional parameters Major Feasibility Tolerance (default value ¼

ffiffi
�
p

) and
Minor Feasibility Tolerance (default value ¼

ffiffi
�
p

).

IFAIL ¼ 2

The problem is unbounded (or badly scaled). The objective function is not bounded below (or
above in the case of maximization) in the feasible region because a nonbasic variable can
apparently be increased or decreased by an arbitrary amount without causing a basic variable to
violate a bound. Add an upper or lower bound to the variable (whose index is printed by default
by E04UGF) and rerun E04UGF/E04UGA.

IFAIL ¼ 3

The problem may be unbounded. Check that the values of the optional parameters Unbounded
Objective (default value ¼ 1015) and Unbounded Step Size (default value ¼ max bigbnd; 1020

� �
)

are not too small. This exit also implies that the objective function is not bounded below (or
above in the case of maximization) in the feasible region defined by expanding the bounds by the
value of the optional parameter Violation Limit (default value ¼ 10:0).

IFAIL ¼ 4

Too many iterations. The values of the optional parameters Major Iteration Limit
(default value ¼ 1000) and/or Iteration Limit (default value ¼ 10000) are too small.

IFAIL ¼ 5

Feasible solution found, but requested accuracy could not be achieved. Check that the value of
the optional parameter Major Optimality Tolerance (default value ¼

ffiffi
�
p

) is not too small (say,
< �).
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IFAIL ¼ 6

The value of the optional parameter Superbasics Limit (default value ¼ min 500; �nþ 1ð Þ) is too
small.

IFAIL ¼ 7

An input argument is invalid.

IFAIL ¼ 8

The user-supplied derivatives of the objective function computed by OBJFUN appear to be
incorrect. Check that OBJFUN has been coded correctly and that all relevant elements of the
objective gradient have been assigned their correct values.

IFAIL ¼ 9

The user-supplied derivatives of the nonlinear constraint functions computed by CONFUN appear
to be incorrect. Check that CONFUN has been coded correctly and that all relevant elements of
the nonlinear constraint Jacobian have been assigned their correct values.

IFAIL ¼ 10

The current point cannot be improved upon. Check that OBJFUN and CONFUN have been coded
correctly and that they are consistent with the value of the optional parameter Derivative Level
(default value ¼ 3).

IFAIL ¼ 11

Numerical error in trying to satisfy the linear constraints (or the linearized nonlinear constraints).
The basis is very ill-conditioned.

IFAIL ¼ 12

Not enough integer workspace for the basis factors. Increase LENIZ and rerun E04UGF/
E04UGA.

IFAIL ¼ 13

Not enough real workspace for the basis factors. Increase LENZ and rerun E04UGF/E04UGA.

IFAIL ¼ 14

The basis is singular after 15 attempts to factorize it (and adding slacks where necessary). Either
the problem is badly scaled or the value of the optional parameter LU Factor Tolerance
(default value ¼ 5:0 or 100:0) is too large.

IFAIL ¼ 15

Not enough integer workspace to start solving the problem. Increase LENIZ to at least MINIZ
and rerun E04UGF/E04UGA.

IFAIL ¼ 16

Not enough real workspace to start solving the problem. Increase LENZ to at least MINZ and
rerun E04UGF/E04UGA.

IFAIL ¼ 17

An unexpected error has occurred. Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If the value of the optional parameter Major Optimality Tolerance is set to 10�d (default value ¼
ffiffi
�
p

)
and IFAIL ¼ 0 on exit, then the final value of f xð Þ should have approximately d correct significant
digits.

8 Parallelism and Performance

E04UGF/E04UGA is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

E04UGF/E04UGA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This section contains a description of the printed output.

9.1 Major Iteration Printout

This section describes the intermediate printout and final printout produced by the major iterations of
E04UGF/E04UGA. The intermediate printout is a subset of the monitoring information produced by the
routine at every iteration (see Section 13). You can control the level of printed output (see the
description of the optional parameter Major Print Level). Note that the intermediate printout and final
printout are produced only if Major Print Level � 10 (the default for E04UGF, by default no output is
produced by E04UGA).

The following line of summary output ( < 80 characters) is produced at every major iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11).

Note that Mnr may be greater than the optional parameter Minor Iteration Limit
if some iterations are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Merit Function is the value of the augmented Lagrangian merit function (6) at the current iterate.
This function will decrease at each iteration unless it was necessary to increase

E04UGF NAG Library Manual

E04UGF.16 Mark 26



the penalty parameters (see Section 9.1). As the solution is approached, Merit
Function will converge to the value of the objective function at the solution.

In elastic mode (see Section 11.2) then the merit function is a composite function
involving the constraint violations weighted by the value of the optional
parameter Elastic Weight.

If there are no nonlinear constraints present then this entry contains Objective,
the value of the objective function f xð Þ. In this case, f xð Þ will decrease
monotonically to its optimal value.

Feasibl is the value of rowerr, the largest element of the scaled nonlinear constraint
residual vector defined in the description of the optional parameter Major
Feasibility Tolerance. The solution is regarded as ‘feasible’ if Feasibl is less
than (or equal to) the optional parameter Major Feasibility Tolerance. Feasibl
will be approximately zero in the neighbourhood of a solution.

If there are no nonlinear constraints present, all iterates are feasible and this entry
is not printed.

Optimal is the value of maxgap, the largest element of the maximum complementarity gap
vector defined in the description of the optional parameter Major Optimality
Tolerance. The Lagrange multipliers are regarded as ‘optimal’ if Optimal is less
than (or equal to) the optional parameter Major Optimality Tolerance. Optimal
will be approximately zero in the neighbourhood of a solution.

Cond Hz is an estimate of the condition number of the reduced Hessian of the Lagrangian
(not printed if NCNLN and NONLN are both zero). It is the square of the ratio
between the largest and smallest diagonal elements of the upper triangular matrix
R. This constitutes a lower bound on the condition number of the matrix RTR
that approximates the reduced Hessian. The larger this number, the more difficult
the problem.

PD is a two-letter indication of the status of the convergence tests involving the
feasibility and optimality of the iterates defined in the descriptions of the optional
parameters Major Feasibility Tolerance and Major Optimality Tolerance. Each
letter is T if the test is satisfied and F otherwise. The tests indicate whether the
values of Feasibl and Optimal are sufficiently small. For example, TF or TT is
printed if there are no nonlinear constraints present (since all iterates are
feasible). If either indicator is F when E04UGF/E04UGA terminates with
IFAIL ¼ 0, you should check the solution carefully.

M is printed if an extra evaluation of user-supplied subroutines OBJFUN and
CONFUN was needed in order to define an acceptable positive definite quasi-
Newton update to the Hessian of the Lagrangian. This modification is only
performed when there are nonlinear constraints present.

m is printed if, in addition, it was also necessary to modify the update to include an
augmented Lagrangian term.

s is printed if a self-scaled BFGS (Broyden–Fletcher–Goldfarb–Shanno) update
was performed. This update is always used when the Hessian approximation is
diagonal and hence always follows a Hessian reset.

S is printed if, in addition, it was also necessary to modify the self-scaled update in
order to maintain positive-definiteness.

n is printed if no positive definite BFGS update could be found, in which case the
approximate Hessian is unchanged from the previous iteration.

r is printed if the approximate Hessian was reset after 10 consecutive major
iterations in which no BFGS update could be made. The diagonal elements of the
approximate Hessian are retained if at least one update has been performed since
the last reset. Otherwise, the approximate Hessian is reset to the identity matrix.
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R is printed if the approximate Hessian has been reset by discarding all but its
diagonal elements. This reset will be forced periodically by the values of the
optional parameters Hessian Frequency and Hessian Updates. However, it may
also be necessary to reset an ill-conditioned Hessian from time to time.

l is printed if the change in the norm of the variables was greater than the value
defined by the optional parameter Major Step Limit. If this output occurs
frequently during later iterations, it may be worthwhile increasing the value of
Major Step Limit.

c is printed if central differences have been used to compute the unknown elements
of the objective and constraint gradients. A switch to central differences is made
if either the linesearch gives a small step, or x is close to being optimal. In some
cases, it may be necessary to re-solve the QP subproblem with the central
difference gradient and Jacobian.

u is printed if the QP subproblem was unbounded.

t is printed if the minor iterations were terminated after the number of iterations
specified by the value of the optional parameter Minor Iteration Limit was
reached.

i is printed if the QP subproblem was infeasible when the routine was not in elastic
mode. This event triggers the start of nonlinear elastic mode, which remains in
effect for all subsequent iterations. Once in elastic mode, the QP subproblems are
associated with the elastic problem (8) (see Section 11.2). It is also printed if the
minimizer of the elastic subproblem does not satisfy the linearized constraints
when the routine is already in elastic mode. (In this case, a feasible point for the
usual QP subproblem may or may not exist.)

w is printed if a weak solution of the QP subproblem was found.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Variable gives the name of the variable. If NNAME ¼ 1, a default name is assigned to the
jth variable, for j ¼ 1; 2; . . . ; n. If NNAME ¼ NþM, the name supplied in
NAMESðjÞ is assigned to the jth variable.

State gives the state of the variable (LL if nonbasic on its lower bound, UL if nonbasic
on its upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between
its bounds, BS if basic and SBS if superbasic).

A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its current value, there would be no change in the
value of the objective function. The values of the basic and superbasic
variables might change, giving a genuine alternative solution. The values of
the Lagrange multipliers might also change.

D Degenerate. The variable is basic, but it is equal to (or very close to) one
of its bounds.

I Infeasible. The variable is basic and is currently violating one of its bounds
by more than the value of the optional parameter Minor Feasibility
Tolerance.

N Not precisely optimal. The variable is nonbasic. Its reduced gradient is
larger than the value of the optional parameter Major Feasibility
Tolerance.
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Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is
FR. If x is optimal, the multiplier should be non-negative if State is LL, non-
positive if State is UL and zero if State is BS or SBS.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, NAMESðjÞ replaced by NAMESðnþ jÞ, BLðjÞ
and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ respectively. The heading is changed as follows:

Constrnt gives the name of the general constraint.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

9.2 Minor Iteration Printout

This section describes the printout produced by the minor iterations of E04UGF/E04UGA, which
involve solving a QP subproblem at every major iteration. (Further details can be found in Section 9.1.)
The printout is a subset of the monitoring information produced by the routine at every iteration (see
Section 13). You can control the level of printed output (see the description of the optional parameter
Minor Print Level). Note that the printout is produced only if Minor Print Level � 1
(default value ¼ 0, which produces no output).

The following line of summary output ( < 80 characters) is produced at every minor iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration of the
QP subproblem.

Itn is the iteration count.

Step is the step taken along the computed search direction.

Ninf is the number of infeasibilities. This will not increase unless the iterations are in
elastic mode. Ninf will be zero during the optimality phase.

Sinf is the value of the sum of infeasibilities if Ninf is nonzero. This will be zero
during the optimality phase.

Objective is the value of the current QP objective function when Ninf is zero and the
iterations are not in elastic mode. The switch to elastic mode is indicated by a
change in the heading to Composite Obj.

Composite Obj is the value of the composite objective function (9) when the iterations are in
elastic mode. This function will decrease monotonically at each iteration.

Norm rg is the Euclidean norm of the reduced gradient of the QP objective function.
During the optimality phase, this norm will be approximately zero after a unit
step.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This is a reformulation of Problem 74 in Hock and Schittkowski (1981) and involves the minimization
of the nonlinear function

f xð Þ ¼ 10�6x33 þ 2
3� 10�6x34 þ 3x3 þ 2x4
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subject to the bounds

�0:55 � x1 � 0:55;
�0:55 � x2 � 0:55;

0 � x3 � 1200;
0 � x4 � 1200;

to the nonlinear constraints

1000 sin �x1 � 0:25ð Þ þ 1000 sin �x2 � 0:25ð Þ � x3 ¼ �894:8;
1000 sin x1 � 0:25ð Þ þ 1000 sin x1 � x2 � 0:25ð Þ � x4 ¼ �894:8;
1000 sin x2 � 0:25ð Þ þ 1000 sin x2 � x1 � 0:25ð Þ ¼ �1294:8;

and to the linear constraints

�x1 þ x2 � �0:55;
x1 � x2 � �0:55:

The initial point, which is infeasible, is

x0 ¼ 0; 0; 0; 0
� �T

;

and f x0ð Þ ¼ 0.

The optimal solution (to five figures) is

x� ¼ 0:11887;�0:39623; 679:94; 1026:0ð ÞT;

and f x�ð Þ ¼ 5126:4. All the nonlinear constraints are active at the solution.

The document for E04UHF/E04UHA includes an example program to solve Problem 45 from Hock and
Schittkowski (1981) using some of the optional parameters described in Section 12.

10.1 Program Text

the following program illustrates the use of E04UGF. An equivalent program illustrating the use of
E04UGA is available with the supplied Library and is also available from the NAG web site.

! E04UGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04ugfe_mod

! E04UGF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, objfun

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine confun(mode,ncnln,njnln,nnzjac,x,f,fjac,nstate,iuser,ruser)

! Computes the nonlinear constraint functions and their Jacobian.

! .. Scalar Arguments ..
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: ncnln, njnln, nnzjac, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: fjac(nnzjac), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(njnln)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin
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! .. Executable Statements ..
If (mode==0 .Or. mode==2) Then

f(1) = 1000.0E+0_nag_wp*sin(-x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(-x(2)-0.25E+0_nag_wp)

f(2) = 1000.0E+0_nag_wp*sin(x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(x(1)-x(2)-0.25E+0_nag_wp)

f(3) = 1000.0E+0_nag_wp*sin(x(2)-x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(x(2)-0.25E+0_nag_wp)

End If

If (mode==1 .Or. mode==2) Then

! Nonlinear Jacobian elements for column 1.

fjac(1) = -1000.0E+0_nag_wp*cos(-x(1)-0.25E+0_nag_wp)
fjac(2) = 1000.0E+0_nag_wp*cos(x(1)-0.25E+0_nag_wp) + &

1000.0E+0_nag_wp*cos(x(1)-x(2)-0.25E+0_nag_wp)
fjac(3) = -1000.0E+0_nag_wp*cos(x(2)-x(1)-0.25E+0_nag_wp)

! Nonlinear Jacobian elements for column 2.

fjac(4) = -1000.0E+0_nag_wp*cos(-x(2)-0.25E+0_nag_wp)
fjac(5) = -1000.0E+0_nag_wp*cos(x(1)-x(2)-0.25E+0_nag_wp)
fjac(6) = 1000.0E+0_nag_wp*cos(x(2)-x(1)-0.25E+0_nag_wp) + &

1000.0E+0_nag_wp*cos(x(2)-0.25E+0_nag_wp)
End If

Return

End Subroutine confun
Subroutine objfun(mode,nonln,x,objf,objgrd,nstate,iuser,ruser)

! Computes the nonlinear part of the objective function and its
! gradient

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: nonln, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: objgrd(nonln), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(nonln)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
If (mode==0 .Or. mode==2) Then

objf = 1.0E-6_nag_wp*x(3)**3 + 2.0E-6_nag_wp*x(4)**3/3.0E+0_nag_wp
End If

If (mode==1 .Or. mode==2) Then
objgrd(1) = 0.0E+0_nag_wp
objgrd(2) = 0.0E+0_nag_wp
objgrd(3) = 3.0E-6_nag_wp*x(3)**2
objgrd(4) = 2.0E-6_nag_wp*x(4)**2

End If

Return

End Subroutine objfun
End Module e04ugfe_mod
Program e04ugfe

! E04UGF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04ugf, nag_wp
Use e04ugfe_mod, Only: confun, nin, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj, sinf
Integer :: i, icol, ifail, iobj, jcol, leniz, &

lenz, m, miniz, minz, n, ncnln, &
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ninf, njnln, nname, nnz, nonln, ns
Character (1) :: start

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), bl(:), bu(:), clamda(:), &

xs(:), z(:)
Real (Kind=nag_wp) :: user(1)
Integer, Allocatable :: ha(:), istate(:), iz(:), ka(:)
Integer :: iuser(1)
Character (8), Allocatable :: names(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04UGF Example Program Results’
Flush (nout)

! Skip heading in data file.
Read (nin,*)

Read (nin,*) n, m
Read (nin,*) ncnln, nonln, njnln
Read (nin,*) nnz, iobj, start, nname
Allocate (ha(nnz),ka(n+1),istate(n+m),a(nnz),bl(n+m),bu(n+m),xs(n+m), &

clamda(n+m),names(nname))

Read (nin,*) names(1:nname)

! Read the matrix A from data file. Set up KA.

jcol = 1
ka(jcol) = 1

Do i = 1, nnz

! Element ( HA( I ), ICOL ) is stored in A( I ).

Read (nin,*) a(i), ha(i), icol

If (icol<jcol) Then

! Elements not ordered by increasing column index.

Write (nout,99999) ’Element in column’, icol, &
’ found after element in column’, jcol, ’. Problem’, ’ abandoned.’

Go To 100
Else If (icol==jcol+1) Then

! Index in A of the start of the ICOL-th column equals I.

ka(icol) = i
jcol = icol

Else If (icol>jcol+1) Then

! Index in A of the start of the ICOL-th column equals I,
! but columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
! corresponding elements of KA to I.

ka((jcol+1):icol) = i
jcol = icol

End If

End Do

ka(n+1) = nnz + 1

! Columns N,N-1,...,ICOL+1 are empty. Set the corresponding
! elements of KA accordingly.

Do i = n, icol + 1, -1
ka(i) = ka(i+1)

End Do
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Read (nin,*) bl(1:(n+m))
Read (nin,*) bu(1:(n+m))

If (start==’C’) Then
Read (nin,*) istate(1:n)

Else If (start==’W’) Then
Read (nin,*) istate(1:(n+m))

End If

Read (nin,*) xs(1:n)

If (ncnln>0) Then
Read (nin,*) clamda((n+1):(n+ncnln))

End If

! Solve the problem.
! First call is a workspace query

leniz = max(500,n+m)
lenz = 500
Allocate (iz(leniz),z(lenz))

ifail = 1
Call e04ugf(confun,objfun,n,m,ncnln,nonln,njnln,iobj,nnz,a,ha,ka,bl,bu, &

start,nname,names,ns,xs,istate,clamda,miniz,minz,ninf,sinf,obj,iz, &
leniz,z,lenz,iuser,user,ifail)

If (ifail/=0 .And. ifail/=15 .And. ifail/=16) Then
Write (nout,99998) ’Query call to E04UGF failed with IFAIL =’, ifail
Go To 100

End If

Deallocate (iz,z)

! The length of the workspace required for the basis factors in this
! problem is longer than the minimum returned by the query

lenz = 2*minz
leniz = 2*miniz
Allocate (iz(leniz),z(lenz))

ifail = -1
Call e04ugf(confun,objfun,n,m,ncnln,nonln,njnln,iobj,nnz,a,ha,ka,bl,bu, &

start,nname,names,ns,xs,istate,clamda,miniz,minz,ninf,sinf,obj,iz, &
leniz,z,lenz,iuser,user,ifail)

100 Continue

99999 Format (/,1X,A,I5,A,I5,A,A)
99998 Format (1X,A,I5)

End Program e04ugfe

10.2 Program Data

E04UGF Example Program Data
4 6 :Values of N and M
3 4 2 :Values of NCNLN, NONLN and NJNLN

14 6 ’C’ 10 :Values of NNZ, IOBJ, START and NNAME
’Varble 1’ ’Varble 2’ ’Varble 3’ ’Varble 4’ ’NlnCon 1’
’NlnCon 2’ ’NlnCon 3’ ’LinCon 1’ ’LinCon 2’ ’Free Row’ :End of NAMES
1.0E+25 1 1
1.0E+25 2 1
1.0E+25 3 1

1.0 5 1
-1.0 4 1

1.0E+25 1 2
1.0E+25 2 2
1.0E+25 3 2

-1.0 5 2
1.0 4 2
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3.0 6 3
-1.0 1 3
-1.0 2 4
2.0 6 4 :End of matrix A

-0.55 -0.55 0.0 0.0 -894.8 -894.8 -1294.8 -0.55
-0.55 -1.0E+25 :End of BL
0.55 0.55 1200.0 1200.0 -894.8 -894.8 -1294.8 1.0E+25
1.0E+25 1.0E+25 :End of BU
0 0 0 0 :End of ISTATE
0.0 0.0 0.0 0.0 :End of XS
0.0 0.0 0.0 :End of CLAMDA

10.3 Program Results

E04UGF Example Program Results

Workspace provided is IZ( 500), Z( 500).
To start solving the problem we need IZ( 628), Z( 758).

Exit E04UGF - Not enough integer workspace to start solving the problem.

*** E04UGF

Parameters
----------

Frequencies.
Check frequency......... 60 Expand frequency....... 10000
Factorization frequency. 50

QP subproblems.
Scale tolerance......... 9.00E-01 Minor feasibility tol.. 1.05E-08
Scale option............ 1 Minor optimality tol... 1.05E-08
Partial price........... 1 Crash tolerance........ 1.00E-01
Pivot tolerance......... 2.04E-11 Minor print level...... 0
Crash option............ 0 Elastic weight......... 1.00E+02

The SQP method.
Minimize................
Nonlinear objective vars 4 Major optimality tol... 1.05E-08
Function precision...... 1.72E-13 Unbounded step size.... 1.00E+20
Superbasics limit....... 4 Forward difference int. 4.15E-07
Unbounded objective..... 1.00E+15 Central difference int. 5.56E-05
Major step limit........ 2.00E+00 Derivative linesearch..
Derivative level........ 3 Major iteration limit.. 1000
Linesearch tolerance.... 9.00E-01 Verify level........... 0
Minor iteration limit... 500 Major print level...... 10
Infinite bound size..... 1.00E+20 Iteration limit........ 10000

Hessian approximation.
Hessian full memory..... Hessian updates........ 99999999
Hessian frequency....... 99999999

Nonlinear constraints.
Nonlinear constraints... 3 Major feasibility tol.. 1.05E-08
Nonlinear Jacobian vars. 2 Violation limit........ 1.00E+01

Miscellaneous.
Variables............... 4 Linear constraints..... 3
Nonlinear variables..... 4 Linear variables....... 0
LU factor tolerance..... 5.00E+00 LU singularity tol..... 2.04E-11
LU update tolerance..... 5.00E+00 LU density tolerance... 6.00E-01
eps (machine precision). 1.11E-16 Monitoring file........ -1
COLD start.............. Infeasible exit........

Workspace provided is IZ( 1256), Z( 1516).
To start solving the problem we need IZ( 628), Z( 758).

Itn 0 -- Scale option reduced from 1 to 0.
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Itn 0 -- Feasible linear rows.

Itn 0 -- Norm(x-x0) minimized. Sum of infeasibilities = 0.00E+00.

confun sets 6 out of 6 constraint gradients.
objfun sets 4 out of 4 objective gradients.

Cheap test on confun...

The Jacobian seems to be OK.

The largest discrepancy was 4.41E-08 in constraint 2.

Cheap test on objfun...

The objective gradients seem to be OK.
Gradient projected in two directions 0.00000000000E+00 0.00000000000E+00
Difference approximations 1.74111992322E-19 4.48742248252E-21

Itn 0 -- All-slack basis B = I selected.

Itn 7 -- Large multipliers.
Elastic mode started with weight = 2.0E+02.

Maj Mnr Step Merit Function Feasibl Optimal Cond Hz PD
0 12 0.0E+00 3.199952E+05 1.7E+00 8.0E-01 2.1E+06 FF R i
1 2 1.0E+00 2.463016E+05 1.2E+00 3.2E+03 4.5E+00 FF s
2 1 1.0E+00 1.001802E+04 3.3E-02 9.2E+01 4.5E+00 FF
3 1 1.0E+00 5.253418E+03 6.6E-04 2.5E+01 4.8E+00 FF
4 1 1.0E+00 5.239444E+03 2.0E-06 2.8E+01 1.0E+02 FF
5 1 1.0E+00 5.126208E+03 6.0E-04 5.9E-01 1.1E+02 FF
6 1 1.0E+00 5.126498E+03 4.7E-07 2.9E-02 1.0E+02 FF
7 1 1.0E+00 5.126498E+03 5.9E-10 1.5E-03 1.1E+02 TF
8 1 1.0E+00 5.126498E+03 1.2E-12 7.6E-09 1.1E+02 TT

Exit from NP problem after 8 major iterations,
21 minor iterations.

Variable State Value Lower Bound Upper Bound Lagr Mult Residual

Varble 1 BS 0.118876 -0.55000 0.55000 -1.2529E-07 0.4311
Varble 2 BS -0.396234 -0.55000 0.55000 1.9245E-08 0.1538
Varble 3 BS 679.945 . 1200.0 1.7001E-10 520.1
Varble 4 SBS 1026.07 . 1200.0 -2.1918E-10 173.9

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual

NlnCon 1 EQ -894.800 -894.80 -894.80 -4.387 3.3644E-09
NlnCon 2 EQ -894.800 -894.80 -894.80 -4.106 6.0049E-10
NlnCon 3 EQ -1294.80 -1294.8 -1294.8 -5.463 3.3551E-09
LinCon 1 BS -0.515110 -0.55000 None . 3.4890E-02
LinCon 2 BS 0.515110 -0.55000 None . 1.065
Free Row BS 4091.97 None None -1.000 4092.

Exit E04UGF - Optimal solution found.

Final objective value = 5126.498

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to E04UHF/E04UHA and/or
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E04UJF/E04UJA. Section 13 describes the quantities which can be requested to monitor the course of
the computation.

11 Algorithmic Details

This section contains a detailed description of the method used by E04UGF/E04UGA.

11.1 Overview

Here we briefly summarise the main features of the method and introduce some terminology. Where
possible, explicit reference is made to the names of variables that are arguments of the routine or appear
in the printed output. Further details can be found in Gill et al. (2002).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. Let

r xð Þ ¼
x

F xð Þ
Gx

0@ 1A
and G denote the set of indices of r xð Þ corresponding to active constraints at an arbitrary point x. Let
r0j xð Þ denote the usual derivative of rj xð Þ, which is the row vector of first partial derivatives of rj xð Þ
(see Ortega and Rheinboldt (1970)). The vector r0j xð Þ comprises the jth row of r0 xð Þ so that

r0 xð Þ ¼
I

J xð Þ
G

0@ 1A;
where J xð Þ is the Jacobian of F xð Þ.
A point x is a first-order Kuhn–Karesh–Tucker (KKT) point for (1) (see Powell (1974)) if the following
conditions hold:

(a) x is feasible;

(b) there exists a vector � (the Lagrange multiplier vector for the bound and general constraints) such
that

g xð Þ ¼ r0 xð ÞT� ¼ I J xð ÞT GT
� �

�; ð4Þ

where g is the gradient of f evaluated at x;

(c) the Lagrange multiplier �j associated with the jth constraint satisfies �j ¼ 0 if lj < rj xð Þ < uj;
�j � 0 if lj ¼ rj xð Þ; �j � 0 if rj xð Þ ¼ uj; and �j can have any value if lj ¼ uj.

An equivalent statement of the condition (4) is

ZTg xð Þ ¼ 0;

where Z is a matrix defined as follows. Consider the set N of vectors orthogonal to the gradients of the
active constraints, i.e.,

N ¼ z j r0j xð Þz ¼ 0 for all j 2 G
n o

:

The columns of Z may then be taken as any basis for the vector space N . The vector ZTg is termed the
reduced gradient of f at x. Certain additional conditions must be satisfied in order for a first-order KKT
point to be a solution of (1) (see Powell (1974)).

The basic structure of E04UGF/E04UGA involves major and minor iterations. The major iterations
generate a sequence of iterates xkf g that satisfy the linear constraints and converge to a point x� that
satisfies the first-order KKT optimality conditions. At each iterate a QP subproblem is used to generate
a search direction towards the next iterate (xkþ1). The constraints of the subproblem are formed from
the linear constraints Gx� sL ¼ 0 and the nonlinear constraint linearization

F xkð Þ þ F 0 xkð Þ x� xkð Þ � sN ¼ 0;
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where F 0 xkð Þ denotes the Jacobian matrix, whose rows are the first partial derivatives of F xð Þ
evaluated at the point xk. The QP constraints therefore comprise the m linear constraints

F 0 xkð Þx� sN ¼ �F xkð Þ þ F 0 xkð Þxk;
Gx � sL ¼ 0;

where x and s ¼ sN; sLð ÞT are bounded above and below by u and l as before. If the m by n matrix A
and m element vector b are defined as

A ¼ F 0 xkð Þ
G

� �
and b ¼ �F xkð Þ þ F 0 xkð Þxk

0

� �
;

then the QP subproblem can be written as

minimize
x;s

q xð Þ subject to Ax� s ¼ b; l � x
s


 �
� u; ð5Þ

where q xð Þ is a quadratic approximation to a modified Lagrangian function (see Gill et al. (2002)).

The linear constraint matrix A is stored in the arrays A, HA and KA (see Section 5). This allows you to
specify the sparsity pattern of nonzero elements in F 0 xð Þ and G and to identify any nonzero elements
that remain constant throughout the minimization.

Solving the QP subproblem is itself an iterative procedure, with the minor iterations of an SQP method
being the iterations of the QP method. At each minor iteration, the constraints Ax� s ¼ b are
(conceptually) partitioned into the form

BxB þ SxS þNxN ¼ b;

where the basis matrix B is square and nonsingular. The elements of xB, xS and xN are called the
basic, superbasic and nonbasic variables respectively; they are a permutation of the elements of x and
s. At a QP solution, the basic and superbasic variables will lie somewhere between their bounds, while
the nonbasic variables will be equal to one of their upper or lower bounds. At each minor iteration, xS
is regarded as a set of independent variables that are free to move in any desired direction, namely one
that will improve the value of the QP objective function q xð Þ or sum of infeasibilities (as appropriate).
The basic variables are then adjusted in order to ensure that (x; s) continues to satisfy Ax� s ¼ b. The
number of superbasic variables (nS say) therefore indicates the number of degrees of freedom
remaining after the constraints have been satisfied. In broad terms, nS is a measure of how nonlinear
the problem is. In particular, nS will always be zero if there are no nonlinear constraints in (1) and f xð Þ
is linear.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S and the process is repeated with the value of nS increased by one.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made
nonbasic and the value of nS decreased by one.

Associated with each of the m equality constraints Ax� s ¼ b is a dual variable 	i. Similarly, each
variable in x; sð Þ has an associated reduced gradient dj (also known as a reduced cost). The reduced
gradients for the variables x are the quantities g�AT	, where g is the gradient of the QP objective
function q xð Þ; the reduced gradients for the slack variables s are the dual variables 	. The QP
subproblem (5) is optimal if dj � 0 for all nonbasic variables at their lower bounds, dj � 0 for all
nonbasic variables at their upper bounds and dj ¼ 0 for other variables (including superbasics). In
practice, an approximate QP solution is found by slightly relaxing these conditions on dj (see the
description of the optional parameter Minor Optimality Tolerance).

After a QP subproblem has been solved, new estimates of the solution to (1) are computed using a
linesearch on the augmented Lagrangian merit function

M x; s; 	ð Þ ¼ f xð Þ � 	T F xð Þ � sNð Þ þ 1
2 F xð Þ � sNð ÞTD F xð Þ � sNð Þ; ð6Þ

where D is a diagonal matrix of penalty parameters. If (xk; sk; 	k) denotes the current estimate of the
solution and (x̂; ŝ; 	̂) denotes the optimal QP solution, the linesearch determines a step �k (where
0 < �k � 1) such that the new point
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xkþ1
skþ1
	kþ1

0@ 1A ¼ xk
sk
	k

0@ 1Aþ �k x̂k � xk
ŝk � sk
	̂k � 	k

0@ 1A
produces a sufficient decrease in the merit function (6). When necessary, the penalties in D are
increased by the minimum-norm perturbation that ensures descent forM (see Gill et al. (1992)). As in
E04WDF, sN is adjusted to minimize the merit function as a function of s before the solution of the QP
subproblem. Further details can be found in Eldersveld (1991) and Gill et al. (1986).

11.2 Treatment of Constraint Infeasibilities

E04UGF/E04UGA makes explicit allowance for infeasible constraints. Infeasible linear constraints are
detected first by solving a problem of the form

minimize
x;v;w

eT vþ wð Þ subject to l � x
Gx� vþ w


 �
� u; v � 0; w � 0; ð7Þ

where e ¼ 1; 1; . . . ; 1ð ÞT. This is equivalent to minimizing the sum of the general linear constraint
violations subject to the simple bounds. (In the linear programming literature, the approach is often
called elastic programming.)

If the linear constraints are infeasible (i.e., v 6¼ 0 or w 6¼ 0), the routine terminates without computing
the nonlinear functions.

If the linear constraints are feasible, all subsequent iterates will satisfy the linear constraints. (Such a
strategy allows linear constraints to be used to define a region in which f xð Þ and F xð Þ can be safely
evaluated.) The routine then proceeds to solve (1) as given, using search directions obtained from a
sequence of QP subproblems (5). Each QP subproblem minimizes a quadratic model of a certain
Lagrangian function subject to linearized constraints. An augmented Lagrangian merit function (6) is
reduced along each search direction to ensure convergence from any starting point.

The routine enters ‘elastic’ mode if the QP subproblem proves to be infeasible or unbounded (or if the
dual variables 	 for the nonlinear constraints become ‘large’) by solving a problem of the form

minimize
x;v;w

�f x; v; wð Þ subject to l �
x

F xð Þ � vþ w
Gx

8<:
9=; � u; v � 0; w � 0; ð8Þ

where

�f x; v; wð Þ ¼ f xð Þ þ �eT vþ wð Þ ð9Þ

is called a composite objective and � is a non-negative argument (the elastic weight). If � is sufficiently
large, this is equivalent to minimizing the sum of the nonlinear constraint violations subject to the linear
constraints and bounds. A similar l1 formulation of (1) is fundamental to the Sl1QP algorithm of
Fletcher (1984). See also Conn (1973).

12 Optional Parameters

Several optional parameters in E04UGF/E04UGA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal arguments of E04UGF/E04UGA these optional
parameters have associated default values that are appropriate for most problems. Therefore, you need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Central Difference Interval

Check Frequency
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Crash Option

Crash Tolerance

Defaults

Derivative Level

Derivative Linesearch

Elastic Weight

Expand Frequency

Factorization Frequency

Feasibility Tolerance

Feasible Exit

Feasible Point

Forward Difference Interval

Function Precision

Hessian Frequency

Hessian Full Memory

Hessian Limited Memory

Hessian Updates

Infeasible Exit

Infinite Bound Size

Iteration Limit

Linesearch Tolerance

List

LU Density Tolerance

LU Factor Tolerance

LU Singularity Tolerance

LU Update Tolerance

Major Feasibility Tolerance

Major Iteration Limit

Major Optimality Tolerance

Major Print Level

Major Step Limit

Maximize

Minimize

Minor Feasibility Tolerance

Minor Iteration Limit

Minor Optimality Tolerance

Minor Print Level

Monitoring File

Nolist

Nonderivative Linesearch

Optimality Tolerance

Partial Price

Pivot Tolerance

Print Level

Scale Option

Scale Tolerance

Start Constraint Check At Column
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Start Objective Check At Column

Stop Constraint Check At Column

Stop Objective Check At Column

Superbasics Limit

Unbounded Objective

Unbounded Step Size

Verify Level

Violation Limit

Optional parameters may be specified by calling one, or both, of the routines E04UHF/E04UHA and
E04UJF/E04UJA before a call to E04UGF/E04UGA.

E04UHF/E04UHA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

Call E04UHF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04UHF/
E04UHA should be consulted for a full description of this method of supplying optional parameters.

E04UJF/E04UJA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04UJF (’Print Level = 5’)

E04UJF/E04UJA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by E04UGF/E04UGA (unless they define invalid values) and so remain
in effect for subsequent calls to E04UGF/E04UGA from the calling program (unless altered by you).

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value is used whenever the condition ij j � 100000000 is satisfied and where the
symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Central Difference Interval r Default ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Function Precision3
p

Note that this option does not apply when Derivative Level ¼ 3.

The value of r is used near an optimal solution in order to obtain more accurate (but more expensive)
estimates of gradients. This requires twice as many function evaluations as compared to using forward
differences (see optional parameter Forward Difference Interval). The interval used for the jth
variable is hj ¼ r 1þ xj

		 		� �
. The resulting gradient estimates should be accurate to O r2

� �
, unless the

functions are badly scaled. The switch to central differences is indicated by c at the end of each line of
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intermediate printout produced by the major iterations (see Section 9.1). See Gill et al. (1981) for a
discussion of the accuracy in finite difference approximations.

If r � 0, the default value is used.

Check Frequency i Default ¼ 60

Every ith minor iteration after the most recent basis factorization, a numerical test is made to see if the
current solution x; sð Þ satisfies the general linear constraints (including any linearized nonlinear
constraints). The constraints are of the form Ax� s ¼ b, where s is the set of slack variables. If the
largest element of the residual vector r ¼ b�Axþ s is judged to be too large, the current basis is
refactorized and the basic variables recomputed to satisfy the general constraints more accurately.

If i < 0, the default value is used. If i ¼ 0, the value i ¼ 99999999 is used and effectively no checks
are made.

Crash Option i Default ¼ 0 or 3

The default value of i is 0 if there are any nonlinear constraints and 3 otherwise. Note that this option
does not apply when START ¼ W (see Section 5).

If START ¼ C , an internal Crash procedure is used to select an initial basis from various rows and
columns of the constraint matrix A �I

� �
. The value of i determines which rows and columns of A

are initially eligible for the basis and how many times the Crash procedure is called. Columns of �I are
used to pad the basis where necessary. The possible choices for i are the following.

i Meaning

0 The initial basis contains only slack variables: B ¼ I.
1 The Crash procedure is called once (looking for a triangular basis in all rows and columns of A).

2 The Crash procedure is called twice (if there are any nonlinear constraints). The first call looks for a
triangular basis in linear rows and the iteration proceeds with simplex iterations until the linear
constraints are satisfied. The Jacobian is then evaluated for the first major iteration and the Crash
procedure is called again to find a triangular basis in the nonlinear rows (whilst retaining the current
basis for linear rows).

3 The Crash procedure is called up to three times (if there are any nonlinear constraints). The first
two calls treat linear equality constraints and linear inequality constraints separately. The Jacobian
is then evaluated for the first major iteration and the Crash procedure is called again to find a
triangular basis in the nonlinear rows (whilst retaining the current basis for linear rows).

If i < 0 or i > 3, the default value is used.

If i � 1, certain slacks on inequality rows are selected for the basis first. (If i � 2, numerical values are
used to exclude slacks that are close to a bound.) The Crash procedure then makes several passes
through the columns of A, searching for a basis matrix that is essentially triangular. A column is
assigned to ‘pivot’ on a particular row if the column contains a suitably large element in a row that has
not yet been assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For
remaining unassigned rows, slack variables are inserted to complete the basis.

Crash Tolerance r Default ¼ 0:1

The value r (0 � r < 1) allows the Crash procedure to ignore certain ‘small’ nonzero elements in the
columns of A while searching for a triangular basis. If amax is the largest element in the jth column,
other nonzeros aij in the column are ignored if aij

		 		 � amax � r.

When r > 0, the basis obtained by the Crash procedure may not be strictly triangular, but it is likely to
be nonsingular and almost triangular. The intention is to obtain a starting basis containing more
columns of A and fewer (arbitrary) slacks. A feasible solution may be reached earlier on some
problems.

If r < 0 or r � 1, the default value is used.
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Defaults

This special keyword may be used to reset all optional parameters to their default values.

Derivative Level i Default ¼ 3

This parameter indicates which nonlinear function gradients are provided in user-supplied subroutines
OBJFUN and CONFUN. The possible choices for i are the following.

i Meaning

3 All elements of the objective gradient and the constraint Jacobian are provided.

2 All elements of the constraint Jacobian are provided, but some (or all) elements of the objective
gradient are not specified.

1 All elements of the objective gradient are provided, but some (or all) elements of the constraint
Jacobian are not specified.

0 Some (or all) elements of both the objective gradient and the constraint Jacobian are not specified.

The default value i ¼ 3 should be used whenever possible. It is the most reliable and will usually be the
most efficient.

If i ¼ 0 or 2, E04UGF/E04UGA will estimate the unspecified elements of the objective gradient, using
finite differences. This may simplify the coding of OBJFUN. However, the computation of finite
difference approximations usually increases the total run-time substantially (since a call to OBJFUN is
required for each unspecified element) and there is less assurance that an acceptable solution will be
found.

If i ¼ 0 or 1, E04UGF/E04UGA will approximate unspecified elements of the constraint Jacobian. For
each column of the Jacobian, one call to CONFUN is needed to estimate all unspecified elements in that
column (if any). For example, if the sparsity pattern of the Jacobian has the form

� � �
? ?

� ?
� �

0B@
1CA

where ‘�’ indicates an element provided and ‘?’ indicates an unspecified element, E04UGF/E04UGA
will call CONFUN twice: once to estimate the missing element in column 2 and again to estimate the
two missing elements in column 3. (Since columns 1 and 4 are known, they require no calls to
CONFUN.)

At times, central differences are used rather than forward differences, in which case twice as many calls
to OBJFUN and CONFUN are needed. (The switch to central differences is not under your control.)

If i < 0 or i > 3, the default value is used.

Derivative Linesearch Default
Nonderivative Linesearch

At each major iteration, a linesearch is used to improve the value of the Lagrangian merit function (6).
The default linesearch uses safeguarded cubic interpolation and requires both function and gradient
values in order to compute estimates of the step �k. If some analytic derivatives are not provided or
optional parameter Nonderivative Linesearch is specified, a linesearch based upon safeguarded
quadratic interpolation (which does not require the evaluation or approximation of any gradients) is
used instead.

A nonderivative linesearch can be slightly less robust on difficult problems and it is recommended that
the default be used if the functions and their derivatives can be computed at approximately the same
cost. If the gradients are very expensive to compute relative to the functions however, a nonderivative
linesearch may result in a significant decrease in the total run-time.

If optional parameter Nonderivative Linesearch is selected, E04UGF/E04UGA signals the evaluation
of the linesearch by calling OBJFUN and CONFUN with MODE ¼ 0. Once the linesearch is complete,
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the nonlinear functions are re-evaluated with MODE ¼ 2. If the potential savings offered by a
nonderivative linesearch are to be fully realised, it is essential that OBJFUN and CONFUN be coded so
that no derivatives are computed when MODE ¼ 0.

Elastic Weight r Default ¼ 1:0 or 100:0

The default value of r is 100:0 if there are any nonlinear constraints and 1:0 otherwise.

This option defines the initial weight � associated with problem (8).

At any given major iteration k, elastic mode is entered if the QP subproblem is infeasible or the QP
dual variables (Lagrange multipliers) are larger in magnitude than r� 1þ g xkð Þk k2

� �
, where g is the

objective gradient. In either case, the QP subproblem is resolved in elastic mode with
� ¼ r� 1þ g xkð Þk k2

� �
.

Thereafter, � is increased (subject to a maximum allowable value) at any point that is optimal for
problem (8), but not feasible for problem (1). After the pth increase, � ¼ r� 10p � 1þ g xk1ð Þk k2

� �
,

where xk1 is the iterate at which � was first needed.

If r < 0, the default value is used.

Expand Frequency i Default ¼ 10000

This option is part of the EXPAND anti-cycling procedure due to Gill et al. (1989), which is designed
to make progress even on highly degenerate problems.

For linear models, the strategy is to force a positive step at every iteration, at the expense of violating
the constraints by a small amount. Suppose that the value of optional parameter Minor Feasibility
Tolerance is �. Over a period of i iterations, the feasibility tolerance actually used by E04UGF/
E04UGA (i.e., the working feasibility tolerance) increases from 0:5� to � (in steps of 0:5�=i).

For nonlinear models, the same procedure is used for iterations in which there is only one superbasic
variable. (Cycling can only occur when the current solution is at a vertex of the feasible region.) Thus,
zero steps are allowed if there is more than one superbasic variable, but otherwise positive steps are
enforced.

Increasing the value of i helps reduce the number of slightly infeasible nonbasic basic variables (most
of which are eliminated during the resetting procedure). However, it also diminishes the freedom to
choose a large pivot element (see optional parameter Pivot Tolerance).

If i < 0, the default value is used. If i ¼ 0, the value i ¼ 99999999 is used and effectively no anti-
cycling procedure is invoked.

Factorization Frequency i Default ¼ 50 or 100

The default value of i is 50 if there are any nonlinear constraints and 100 otherwise.

If i > 0, at most i basis changes will occur between factorizations of the basis matrix.

For linear problems, the basis factors are usually updated at every iteration. The default value i ¼ 100
is reasonable for typical problems, particularly those that are extremely sparse and well-scaled.

When the objective function is nonlinear, fewer basis updates will occur as the solution is approached.
The number of iterations between basis factorizations will therefore increase. During these iterations a
test is made regularly according to the value of optional parameter Check Frequency to ensure that the
general constraints are satisfied. If necessary, the basis will be refactorized before the limit of i updates
is reached.

If i � 0, the default value is used.

Infeasible Exit Default
Feasible Exit

Note that this option is ignored if the value of optional parameter Major Iteration Limit is exceeded,
or the linear constraints are infeasible.
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If termination is about to occur at a point that does not satisfy the nonlinear constraints and optional
parameter Feasible Exit is selected, this option requests that additional iterations be performed in order
to find a feasible point (if any) for the nonlinear constraints. This involves solving a feasible point
problem in which the objective function is omitted.

Otherwise, this option requests no additional iterations be performed.

Minimize Default
Maximize
Feasible Point

If optional parameter Feasible Point is selected, this option attempts to find a feasible point (if any) for
the nonlinear constraints by omitting the objective function. It can also be used to check whether the
nonlinear constraints are feasible.

Otherwise, this option specifies the required direction of the optimization. It applies to both linear and
nonlinear terms (if any) in the objective function. Note that if two problems are the same except that
one minimizes f xð Þ and the other maximizes �f xð Þ, their solutions will be the same but the signs of
the dual variables 	i and the reduced gradients dj will be reversed.

Forward Difference Interval r Default ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Function Precision
p

This option defines an interval used to estimate derivatives by forward differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional
parameter Verify Level).

(b) For estimating unspecified elements of the objective gradient and/or the constraint Jacobian.

A derivative with respect to xj is estimated by perturbing that element of x to the value
xj þ r 1þ xj

		 		� �
and then evaluating f xð Þ and/or F xð Þ (as appropriate) at the perturbed point. The

resulting gradient estimates should be accurate to O rð Þ, unless the functions are badly scaled. Judicious
alteration of r may sometimes lead to greater accuracy. See Gill et al. (1981) for a discussion of the
accuracy in finite difference approximations.

If r � 0, the default value is used.

Function Precision r Default ¼ �0:8

This parameter defines the relative function precision �r, which is intended to be a measure of the
relative accuracy with which the nonlinear functions can be computed. For example, if f xð Þ (or Fi xð Þ)
is computed as 1000:56789 for some relevant x and the first 6 significant digits are known to be correct
then the appropriate value for �r would be 10�6.

Ideally the functions f xð Þ or Fi xð Þ should have magnitude of order 1. If all functions are substantially
less than 1 in magnitude, �r should be the absolute precision. For example, if f xð Þ (or Fi xð Þ) is
computed as 1:23456789� 10�4 for some relevant x and the first 6 significant digits are known to be
correct then the appropriate value for �r would be 10�10.

The choice of �r can be quite complicated for badly scaled problems; see Chapter 8 of Gill et al. (1981)
for a discussion of scaling techniques. The default value is appropriate for most simple functions that
are computed with full accuracy.

In some cases the function values will be the result of extensive computation, possibly involving an
iterative procedure that can provide few digits of precision at reasonable cost. Specifying an appropriate
value of r may therefore lead to savings, by allowing the linesearch procedure to terminate when the
difference between function values along the search direction becomes as small as the absolute error in
the values.

If r < � or r � 1, the default value is used.
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Hessian Frequency i Default ¼ 99999999

This option forces the approximate Hessian formed from i BFGS updates to be reset to the identity
matrix upon completion of a major iteration. It is intended to be used in conjunction with optional
parameter Hessian Full Memory.

If i � 0, the default value is used and effectively no resets occur.

Hessian Full Memory Default when �n < 75
Hessian Limited Memory Default when �n � 75

These options specify the method for storing and updating the quasi-Newton approximation to the
Hessian of the Lagrangian function.

If Hessian Full Memory is specified, the approximate Hessian is treated as a dense matrix and BFGS
quasi-Newton updates are applied explicitly. This is most efficient when the total number of nonlinear
variables is not too large (say, �n < 75). In this case, the storage requirement is fixed and you can expect
1-step Q-superlinear convergence to the solution.

Hessian Limited Memory should only be specified when �n is very large. In this case a limited memory
procedure is used to update a diagonal Hessian approximation Hr a limited number of times. (Updates
are accumulated as a list of vector pairs. They are discarded at regular intervals after Hr has been reset
to their diagonal.)

Note that if Hessian Frequency ¼ 20 is used in conjunction with Hessian Full Memory, the effect will
be similar to using Hessian Limited Memory in conjunction with Hessian Updates ¼ 20, except that
the latter will retain the current diagonal during resets.

Hessian Updates i Default ¼ 20 or 99999999

The default value of i is 20 when Hessian Limited Memory is in effect and 99999999 when Hessian
Full Memory is in effect, in which case no updates are performed.

If Hessian Limited Memory is in effect, this option defines the maximum number of pairs of Hessian
update vectors that are to be used to define the quasi-Newton approximate Hessian. Once the limit of i
updates is reached, all but the diagonal elements of the accumulated updates are discarded and the
process starts again. Broadly speaking, the more updates that are stored, the better the quality of the
approximate Hessian. On the other hand, the more vectors that are stored, the greater the cost of each
QP iteration.

The default value of i is likely to give a robust algorithm without significant expense, but faster
convergence may be obtained with far fewer updates (e.g., i ¼ 5).

If i < 0, the default value is used.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1).

If r � 0, the default value is used.

Iteration Limit i Default ¼ 10000

The value of i specifies the maximum number of minor iterations allowed (i.e., iterations of the simplex
method or the QP algorithm), summed over all major iterations. (See also the description of the optional
parameters Major Iteration Limit and Minor Iteration Limit.)

If i < 0, the default value is used.

Linesearch Tolerance r Default ¼ 0:9

This option controls the accuracy with which a step length will be located along the direction of search
at each iteration. At the start of each linesearch a target directional derivative for the Lagrangian merit
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function is identified. The value of r therefore determines the accuracy to which this target value is
approximated.

The default value r ¼ 0:9 requests an inaccurate search and is appropriate for most problems,
particularly those with any nonlinear constraints.

If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate; try
r ¼ 0:1; 0:01 or 0:001. The number of major iterations required to solve the problem might decrease.

If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate. If
Derivative Level ¼ 3, try r ¼ 0:99. (The number of major iterations required to solve the problem
might increase, but the total number of function evaluations may decrease enough to compensate.)

If Derivative Level < 3, a moderately accurate search may be appropriate; try r ¼ 0:5. Each search will
(typically) require only 1� 5 function values, but many function calls will then be needed to estimate
the missing gradients for the next iteration.

If r < 0 or r � 1, the default value is used.

List Default for E04UGF ¼ List
Nolist Default for E04UGA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist
may be used to suppress the printing and optional parameter List may be used to restore printing.

LU Density Tolerance r1 Default ¼ 0:6
LU Singularity Tolerance r2 Default ¼ �0:67

If r1 > 0, r1 defines the density tolerance used during the LU factorization of the basis matrix. Columns
of L and rows of U are formed one at a time and the remaining rows and columns of the basis are
altered appropriately. At any stage, if the density of the remaining matrix exceeds r1, the Markowitz
strategy for choosing pivots is terminated. The remaining matrix is then factorized using a dense LU
procedure. Increasing the value of r1 towards unity may give slightly sparser LU factors, with a slight
increase in factorization time. If r1 � 0, the default value is used.

If r2 > 0, r2 defines the singularity tolerance used to guard against ill-conditioned basis matrices.
Whenever the basis is refactorized, the diagonal elements of U are tested as follows. If ujj

		 		 � r2 or
ujj
		 		 < r2 �max

i
uij
		 		, the jth column of the basis is replaced by the corresponding slack variable. This

is most likely to occur when START ¼ W (see Section 5), or at the start of a major iteration. If r2 � 0,
the default value is used.

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular (e.g., a
whole row of the Jacobian matrix could be zero at an optimal solution). Before exact singularity occurs,
the basis could become very ill-conditioned and the optimization could progress very slowly (if at all).
Setting r2 ¼ 0:00001 (say) may therefore help cause a judicious change of basis in such situations.

LU Factor Tolerance r1 Default ¼ 5:0 or 100:0
LU Update Tolerance r2 Default ¼ 5:0 or 10:0

The default value of r1 is 5:0 if there are any nonlinear constraints and 100:0 otherwise. The default
value of r2 is 5:0 if there are any nonlinear constraints and 10:0 otherwise.

If r1 � 1 and r2 � 1, the values of r1 and r2 affect the stability and sparsity of the basis factorization
B ¼ LU , during refactorization and updating, respectively. The lower triangular matrix L is a product
of matrices of the form

1
� 1

� �
;

where the multipliers � satisfy �j j � ri. Smaller values of ri favour stability, while larger values favour
sparsity. The default values of r1 and r2 usually strike a good compromise. For large and relatively
dense problems, setting r1 ¼ 10:0 or 5:0 (say) may give a marked improvement in sparsity without
impairing stability to a serious degree. Note that for problems involving band matrices, it may be
necessary to reduce r1 and/or r2 in order to achieve stability.
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If r1 < 1 or r2 < 1, the appropriate default value is used.

Major Feasibility Tolerance r Default ¼
ffiffi
�
p

This option specifies how accurately the nonlinear constraints should be satisfied. The default value is
appropriate when the linear and nonlinear constraints contain data to approximately that accuracy. A
larger value may be appropriate if some of the problem functions are known to be of low accuracy.

Let rowerr be defined as the maximum nonlinear constraint violation normalized by the size of the
solution. It is required to satisfy

rowerr ¼ max
i

violi
x; sð Þk k � r;

where violi is the violation of the ith nonlinear constraint.

If r � �, the default value is used.

Major Iteration Limit i Default ¼ 1000

The value of i specifies the maximum number of major iterations allowed before termination. It is
intended to guard against an excessive number of linearizations of the nonlinear constraints. Setting
i ¼ 0 and Major Print Level > 0 means that the objective and constraint gradients will be checked if
Verify Level > 0 and the workspace needed to start solving the problem will be computed and printed,
but no iterations will be performed.

If i < 0, the default value is used.

Major Optimality Tolerance r Default ¼
ffiffi
�
p

Optimality Tolerance r

This option specifies the final accuracy of the dual variables. If E04UGF/E04UGA terminates with
IFAIL ¼ 0, a primal and dual solution (x; s; 	) will have been computed such that

maxgap ¼ max
j

gapj
	k k � r;

where gapj is an estimate of the complementarity gap for the jth variable and 	k k is a measure of the
size of the QP dual variables (or Lagrange multipliers) given by

	k k ¼ max
�ffiffiffiffiffi
m
p ; 1

� �
; where � ¼

Xm
i¼1

	ij j:

It is included to make the tests independent of a scale factor on the objective function. Specifically, gapj
is computed from the final QP solution using the reduced gradients dj ¼ gj � 	Taj, where gj is the jth
element of the objective gradient and aj is the associated column of the constraint matrix A �I

� �
:

gapj ¼
djmin xj � lj; 1

� �
if dj � 0;

�djmin uj � xj; 1
� �

if dj < 0:



If r � 0, the default value is used.

Major Print Level i Default for E04UGF ¼ 10
Default for E04UGA ¼ 0
Print Level

The value of i controls the amount of printout produced by the major iterations of E04UGF/E04UGA,
as indicated below. A detailed description of the printed output is given in Section 9.1 (summary output
at each major iteration and the final solution) and Section 13 (monitoring information at each major
iteration). (See also the description of the optional parameter Minor Print Level.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):
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i Output

0 No output.

1 The final solution only.

5 One line of summary output ( < 80 characters; see Section 9.1) for each major iteration (no
printout of the final solution).

� 10 The final solution and one line of summary output for each major iteration.

The following printout is sent to the logical unit number by the optional parameter Monitoring File:

i Output

0 No output.

1 The final solution only.

5 One long line of output ( < 120 characters; see Section 13) for each major iteration (no printout
of the final solution).

� 10 The final solution and one long line of output for each major iteration.

� 20 The final solution, one long line of output for each major iteration, matrix statistics (initial
status of rows and columns, number of elements, density, biggest and smallest elements, etc.),
details of the scale factors resulting from the scaling procedure (if Scale Option ¼ 1 or 2),
basis factorization statistics and details of the initial basis resulting from the Crash procedure
(if START ¼ C ; see Section 5).

If Major Print Level � 5 and the unit number defined by the optional parameter Monitoring File is
the same as that defined by X04ABF,then the summary output for each major iteration is suppressed.

Major Step Limit r Default ¼ 2:0

If r > 0; r limits the change in x during a linesearch. It applies to all nonlinear problems once a
‘feasible solution’ or ‘feasible subproblem’ has been found.

A linesearch determines a step � in the interval 0 < � � �, where � ¼ 1 if there are any nonlinear
constraints, or the step to the nearest upper or lower bound on x if all the constraints are linear.
Normally, the first step attempted is �1 ¼ min 1; �ð Þ.

In some cases, such as f xð Þ ¼ aebx or f xð Þ ¼ axb, even a moderate change in the elements of x can
lead to floating-point overflow. The parameter r is therefore used to define a step limit �� given by

�� ¼
r 1þ xk k2
� �

pk k2
;

where p is the search direction and the first evaluation of f xð Þ is made at the (potentially) smaller step
length �1 ¼ min 1; ��; �

� �
.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at meaningless points. The default value r ¼ 2:0 should not affect progress on well-behaved
functions, but values such as r ¼ 0:1 or 0:01 may be helpful when rapidly varying functions are
present. If a small value of r is selected, a ‘good’ starting point may be required. An important
application is to the class of nonlinear least squares problems.

If r � 0, the default value is used.

Minor Feasibility Tolerance r Default ¼
ffiffi
�
p

Feasibility Tolerance r

This option attempts to ensure that all variables eventually satisfy their upper and lower bounds to
within the tolerance r. Since this includes slack variables, general linear constraints should also be
satisfied to within r. Note that feasibility with respect to nonlinear constraints is judged by the value of
optional parameter Major Feasibility Tolerance and not by r.
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If the bounds and linear constraints cannot be satisfied to within r, the problem is declared infeasible.
Let Sinf be the corresponding sum of infeasibilities. If Sinf is quite small, it may be appropriate to
raise r by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

If Scale Option � 1, feasibility is defined in terms of the scaled problem (since it is more likely to be
meaningful).

Nonlinear functions will only be evaluated at points that satisfy the bounds and linear constraints. If
there are regions where a function is undefined, every effort should be made to eliminate these regions
from the problem. For example, if f x1; x2ð Þ ¼ ffiffiffiffiffi

x1
p þ log x2ð Þ, it is essential to place lower bounds on

both x1 and x2. If the value r ¼ 10�6 is used, the bounds x1 � 10�5 and x2 � 10�4 might be
appropriate. (The log singularity is more serious; in general, you should attempt to keep x as far away
from singularities as possible.)

In reality, r is used as a feasibility tolerance for satisfying the bounds on x and s in each QP
subproblem. If the sum of infeasibilities cannot be reduced to zero, the QP subproblem is declared
infeasible and the routine is then in elastic mode thereafter (with only the linearized nonlinear
constraints defined to be elastic). (See also the description of Elastic Weight.)

If r � �, the default value is used.

Minor Iteration Limit i Default ¼ 500

The value of i specifies the maximum number of iterations allowed between successive linearizations of
the nonlinear constraints. A value in the range 10 � i � 50 prevents excessive effort being expended on
early major iterations, but allows later QP subproblems to be solved to completion. Note that an extra
m minor iterations are allowed if the first QP subproblem to be solved starts with the all-slack basis
B ¼ I. (See the description of the optional parameter Crash Option.)

In general, it is unsafe to specify values as small as i ¼ 1 or 2 (because even when an optimal solution
has been reached, a few minor iterations may be needed for the corresponding QP subproblem to be
recognized as optimal).

If i � 0, the default value is used.

Minor Optimality Tolerance r Default ¼
ffiffi
�
p

This option is used to judge optimality for each QP subproblem. Let the QP reduced gradients be
dj ¼ gj � 	Taj, where gj is the jth element of the QP gradient, aj is the associated column of the QP
constraint matrix and 	 is the set of QP dual variables.

By construction, the reduced gradients for basic variables are always zero. The QP subproblem will be
declared optimal if the reduced gradients for nonbasic variables at their upper or lower bounds satisfy

dj
	k k � �r or

dj
	k k � r

respectively, and if
dj
		 		
	k k � r for superbasic variables.

Note that 	k k is a measure of the size of the dual variables. It is included to make the tests independent
of a scale factor on the objective function. (The value of 	k k actually used is defined in the description
for optional parameter Major Optimality Tolerance.)

If the objective is scaled down to be very small, the optimality test reduces to comparing dj against r.

If r � 0, the default value is used.

Minor Print Level i Default ¼ 0

The value of i controls the amount of printout produced by the minor iterations of E04UGF/E04UGA
(i.e., the iterations of the quadratic programming algorithm), as indicated below. A detailed description
of the printed output is given in Section 9.2 (summary output at each minor iteration) and Section 13
(monitoring information at each minor iteration). (See also the description of the optional parameter
Major Print Level.)
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The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.

� 1 One line of summary output ( < 80 characters; see Section 9.2) for each minor iteration.

The following printout is sent to the logical unit number by the optional parameter Monitoring File:

i Output

0 No output.

� 1 One long line of output ( < 120 characters; see Section 13) for each minor iteration.

If Major Print Level � 5 and the unit number defined by the optional parameter Monitoring File is
the same as that defined by X04ABF,then the summary output for each major iteration is suppressed.

Monitoring File i Default ¼ �1
If i � 0 and Major Print Level � 5 or i � 0 and Minor Print Level � 1 then monitoring information
is produced by E04UGF/E04UGA at every iteration is sent to a file with logical unit number i. If i < 0
and/or Major Print Level < 5 and Minor Print Level < 1 then no monitoring information is
produced.

Partial Price i Default ¼ 1 or 10

The default value of i is 1 if there are any nonlinear constraints and 10 otherwise.

This option is recommended for large problems that have significantly more variables than constraints
(i.e., n� m). It reduces the work required for each ‘pricing’ operation (i.e., when a nonbasic variable
is selected to become superbasic). The possible choices for i are the following.

i Meaning

1 All columns of the constraint matrix A �I
� �

are searched.

� 2 Both A and I are partitioned to give i roughly equal segments Aj ; Ij , for j ¼ 1; 2; . . . ; p (modulo
p). If the previous pricing search was successful on Aj; Ij, the next search begins on the
segments Ajþ1; Ijþ1. If a reduced gradient is found that is larger than some dynamic tolerance,
the variable with the largest such reduced gradient (of appropriate sign) is selected to enter the
basis. If nothing is found, the search continues on the next segments Ajþ2; Ijþ2 and so on.

If i � 0, the default value is used.

Pivot Tolerance r Default ¼ �0:67

If r > 0, r is used during the solution of QP subproblems to prevent columns entering the basis if they
would cause the basis to become almost singular.

When x changes to xþ �p for some specified search direction p, a ‘ratio test’ is used to determine
which element of x reaches an upper or lower bound first. The corresponding element of p is called the
pivot element. Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than r.

It is common in practice for two (or more) variables to reach a bound at essentially the same time. In
such cases, the Minor Feasibility Tolerance provides some freedom to maximize the pivot element and
thereby improve numerical stability. Excessively small values of Minor Feasibility Tolerance should
therefore not be specified. To a lesser extent, the Expand Frequency also provides some freedom to
maximize the pivot element. Excessively large values of Expand Frequency should therefore not be
specified.

If r � 0, the default value is used.
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Scale Option i Default ¼ 1 or 2

The default value of i is 1 if there are any nonlinear constraints and 2 otherwise.

This option enables you to scale the variables and constraints using an iterative procedure due to Fourer
(1982), which attempts to compute row scales ri and column scales cj such that the scaled matrix
coefficients �aij ¼ aij � cj=ri

� �
are as close as possible to unity. (The lower and upper bounds on the

variables and slacks for the scaled problem are redefined as �lj ¼ lj=cj and �uj ¼ uj=cj respectively,
where cj 	 rj�n if j > n.) The possible choices for i are the following.

i Meaning

0 No scaling is performed. This is recommended if it is known that the elements of x and the
constraint matrix A (along with its Jacobian) never become large (say, > 1000).

1 All linear constraints and variables are scaled. This may improve the overall efficiency of the
routine on some problems.

2 All constraints and variables are scaled. Also, an additional scaling is performed that takes into
account columns of A �I

� �
that are fixed or have positive lower bounds or negative upper

bounds.

If there are any nonlinear constraints present, the scale factors depend on the Jacobian at the first point
that satisfies the linear constraints and the upper and lower bounds. The setting i ¼ 2 should therefore
be used only if a ‘good’ starting point is available and the problem is not highly nonlinear.

If i < 0 or i > 2, the default value is used.

Scale Tolerance r Default ¼ 0:9

Note that this option does not apply when Scale Option ¼ 0.

The value r (0 < r < 1) is used to control the number of scaling passes to be made through the
constraint matrix A. At least 3 (and at most 10) passes will be made. More precisely, let ap denote the

largest column ratio (i.e., biggest element
smallest element

in some sense) after the pth scaling pass through A. The scaling

procedure is terminated if ap � ap�1 � r for some p � 3. Thus, increasing the value of r from 0:9 to
0:99 (say) will probably increase the number of passes through A.

If r � 0 or r � 1, the default value is used.

Start Objective Check At Column i1 Default ¼ 1
Stop Objective Check At Column i2 Default ¼ n01
Start Constraint Check At Column i3 Default ¼ 1
Stop Constraint Check At Column i4 Default ¼ n001
These keywords take effect only if Verify Level > 0. They may be used to control the verification of
gradient elements computed by OBJFUN and/or Jacobian elements computed by CONFUN. For
example, if the first 30 elements of the objective gradient appeared to be correct in an earlier run, so
tha t on ly e l emen t 31 rema in s ques t i onab l e then i t i s r ea sonab l e to spec i fy
Start Objective Check At Column ¼ 31. Similarly for columns of the Jacobian. If the first 30
variables occur nonlinearly in the constraints but the remaining variables are nonlinear only in the
objective, then OBJFUN must set the first 30 elements of the array OBJGRD to zero, but these hardly
need to be verified. Again it is reasonable to specify Start Objective Check At Column ¼ 31.

If i2 � 0 or i2 > n01, the default value is used.

If i1 � 0 or i1 > min n01; i2
� �

, the default value is used.

If i4 � 0 or i4 > n001, the default value is used.

If i3 � 0 or i3 > min n001; i4
� �

, the default value is used.
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Superbasics Limit i Default ¼ min 500; �nþ 1ð Þ
Note that this option does not apply to linear problems.

It places a limit on the storage allocated for superbasic variables. Ideally, the value of i should be set
slightly larger than the ‘number of degrees of freedom’ expected at the solution.

For nonlinear problems, the number of degrees of freedom is often called the ‘number of independent
variables’. Normally, the value of i need not be greater than �nþ 1, but for many problems it may be
considerably smaller. (This will save storage if �n is very large.)

If i � 0, the default value is used.

Unbounded Objective r1 Default ¼ 1015

Unbounded Step Size r2 Default ¼ max bigbnd; 1020
� �

These options are intended to detect unboundedness in nonlinear problems. During the linesearch, the
objective function f is evaluated at points of the form xþ �p, where x and p are fixed and � varies. If
fj j exceeds r1 or � exceeds r2, the iterations are terminated and the routine returns with IFAIL ¼ 3.

If singularities are present, unboundedness in f xð Þ may manifest itself by a floating-point overflow
during the evaluation of f xþ �pð Þ, before the test against r1 can be made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.

If r1 � 0 or r2 � 0, the appropriate default value is used.

Verify Level i Default ¼ 0

This option refers to finite difference checks on the gradient elements computed by OBJFUN and
CONFUN. Gradients are verified at the first point that satisfies the linear constraints and the upper and
lower bounds. Unspecified gradient elements are not checked and hence they result in no overhead. The
possible choices for i are the following.

i Meaning

�1 No checks are performed.

0 Only a ‘cheap’ test will be performed, requiring three calls to OBJFUN and two calls to
CONFUN. Note that no checks are carried out if every column of the constraint gradients
(Jacobian) contains a missing element.

1 Individual objective gradient elements will be checked using a reliable (but more expensive) test.
If Major Print Level > 0, a key of the form OK or BAD? indicates whether or not each element
appears to be correct.

2 Individual columns of the constraint gradients (Jacobian) will be checked using a reliable (but
more expensive) test. If Major Print Level > 0, a key of the form OK or BAD? indicates whether
or not each element appears to be correct.

3 Check both constraint and objective gradients (in that order) as described above for i ¼ 2 and
i ¼ 1 respectively.

The value i ¼ 3 should be used whenever a new function routine is being developed. The Start
Objective Check At Column and Stop Objective Check At Column keywords may be used to limit
the number of nonlinear variables to be checked.

If i < �1 or i > 3, the default value is used.

Violation Limit r Default ¼ 10:0

This option defines an absolute limit on the magnitude of the maximum constraint violation after the
linesearch. Upon completion of the linesearch, the new iterate xkþ1 satisfies the condition

vi xkþ1ð Þ � r�max 1; vi x0ð Þð Þ;
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where x0 is the point at which the nonlinear constraints are first evaluated and vi xð Þ is the ith nonlinear
constraint violation vi xð Þ ¼ max 0; li � Fi xð Þ; Fi xð Þ � uið Þ.
The effect of the violation limit is to restrict the iterates to lie in an expanded feasible region whose size
depends on the magnitude of r. This makes it possible to keep the iterates within a region where the
objective function is expected to be well-defined and bounded below (or above in the case of
maximization). If the objective function is bounded below (or above in the case of maximization) for all
values of the variables, then r may be any large positive value.

If r � 0, the default value is used.

13 Description of Monitoring Information

This section describes the intermediate printout and final printout which constitutes the monitoring
information produced by E04UGF/E04UGA. (See also the description of the optional parameters
Monitoring File, Major Print Level and Minor Print Level.) You can control the level of printed
output.

When Major Print Level � 20 and Monitoring File � 0, the following line of intermediate printout
( < 120 characters) is produced at every major iteration on the unit number specified by optional
parameter Monitoring File. Unless stated otherwise, the values of the quantities printed are those in
effect on completion of the given iteration.

Major is the major iteration count.

Minor is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Minor will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11).

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

nObj is the number of times OBJFUN has been called to evaluate the nonlinear part of
the objective function. Evaluations needed for the estimation of the gradients by
finite differences are not included. nObj is printed as a guide to the amount of
work required for the linesearch.

nCon is the number of times CONFUN has been called to evaluate the nonlinear
constraint functions (not printed if NCNLN is zero).

Merit is the value of the augmented Lagrangian merit function (6) at the current iterate.
This function will decrease at each iteration unless it was necessary to increase
the penalty parameters (see Section 9.1). As the solution is approached, Merit
will converge to the value of the objective function at the solution.

In elastic mode (see Section 11.2), the merit function is a composite function
involving the constraint violations weighted by the value of the optional
parameter Elastic Weight.

If there are no nonlinear constraints present, this entry contains Objective, the
value of the objective function f xð Þ. In this case, f xð Þ will decrease
monotonically to its optimal value.

Feasibl is the value of rowerr, the largest element of the scaled nonlinear constraint
residual vector defined in the description of the optional parameter Major
Feasibility Tolerance. The solution is regarded as ‘feasible’ if Feasibl is less
than (or equal to) the optional parameter Major Feasibility Tolerance. Feasibl
will be approximately zero in the neighbourhood of a solution.

If there are no nonlinear constraints present, all iterates are feasible and this entry
is not printed.
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Optimal is the value of maxgap, the largest element of the maximum complementarity gap
vector defined in the description of the optional parameter Major Optimality
Tolerance. The Lagrange multipliers are regarded as ‘optimal’ if Optimal is less
than (or equal to) the optional parameter Major Optimality Tolerance. Optimal
will be approximately zero in the neighbourhood of a solution.

nS is the current number of superbasic variables.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if NCNLN is zero).

LU is the number of nonzeros representing the basis factors L and U on completion
of the QP subproblem.

If there are nonlinear constraints present, the basis factorization B ¼ LU is
computed at the start of the first minor iteration. At this stage, LU ¼ lenLþ lenU,
where lenL is the number of subdiagonal elements in the columns of a lower
triangular matrix and lenU is the number of diagonal and superdiagonal elements
in the rows of an upper triangular matrix. As columns of B are replaced during
the minor iterations, the value of LU may fluctuate up or down (but in general will
tend to increase). As the solution is approached and the number of minor
iterations required to solve each QP subproblem decreases towards zero, LU will
reflect the number of nonzeros in the LU factors at the start of each QP
subproblem.

If there are no nonlinear constraints present, refactorization is subject only to the
value of the optional parameter Factorization Frequency and hence LU will tend
to increase between factorizations.

Swp is the number of columns of the basis matrix B that were swapped with columns
of S in order to improve the condition number of B (not printed if NCNLN is
zero). The swaps are determined by an LU factorization of the rectangular matrix

BS ¼ B S
� �T

, with stability being favoured more than sparsity.

Cond Hz is an estimate of the condition number of the reduced Hessian of the Lagrangian
(not printed if NCNLN and NONLN are both zero). It is the square of the ratio
between the largest and smallest diagonal elements of the upper triangular matrix
R. This constitutes a lower bound on the condition number of the matrix RTR
that approximates the reduced Hessian. The larger this number, the more difficult
the problem.

PD is a two-letter indication of the status of the convergence tests involving the
feasibility and optimality of the iterates defined in the descriptions of the optional
parameters Major Feasibility Tolerance and Major Optimality Tolerance. Each
letter is T if the test is satisfied and F otherwise. The tests indicate whether the
values of Feasibl and Optimal are sufficiently small. For example, TF or TT is
printed if there are no nonlinear constraints present (since all iterates are
feasible). If either indicator is F when E04UGF/E04UGA terminates with
IFAIL ¼ 0, you should check the solution carefully.

M is printed if an extra evaluation of user-supplied subroutines OBJFUN and
CONFUN was needed in order to define an acceptable positive definite quasi-
Newton update to the Hessian of the Lagrangian. This modification is only
performed when there are nonlinear constraints present.

m is printed if, in addition, it was also necessary to modify the update to include an
augmented Lagrangian term.

s is printed if a self-scaled BFGS (Broyden–Fletcher–Goldfarb–Shanno) update
was performed. This update is always used when the Hessian approximation is
diagonal and hence always follows a Hessian reset.

S is printed if, in addition, it was also necessary to modify the self-scaled update in
order to maintain positive-definiteness.
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n is printed if no positive definite BFGS update could be found, in which case the
approximate Hessian is unchanged from the previous iteration.

r is printed if the approximate Hessian was reset after 10 consecutive major
iterations in which no BFGS update could be made. The diagonal elements of the
approximate Hessian are retained if at least one update has been performed since
the last reset. Otherwise, the approximate Hessian is reset to the identity matrix.

R is printed if the approximate Hessian has been reset by discarding all but its
diagonal elements. This reset will be forced periodically by the values of the
optional parameters Hessian Frequency and Hessian Updates. However, it may
also be necessary to reset an ill-conditioned Hessian from time to time.

l is printed if the change in the norm of the variables was greater than the value
defined by the optional parameter Major Step Limit. If this output occurs
frequently during later iterations, it may be worthwhile increasing the value of
Major Step Limit.

c is printed if central differences have been used to compute the unknown elements
of the objective and constraint gradients. A switch to central differences is made
if either the linesearch gives a small step, or x is close to being optimal. In some
cases, it may be necessary to re-solve the QP subproblem with the central
difference gradient and Jacobian.

u is printed if the QP subproblem was unbounded.

t is printed if the minor iterations were terminated after the number of iterations
specified by the value of the optional parameter Minor Iteration Limit was
reached.

i is printed if the QP subproblem was infeasible when the routine was not in elastic
mode. This event triggers the start of nonlinear elastic mode, which remains in
effect for all subsequent iterations. Once in elastic mode, the QP subproblems are
associated with the elastic problem (8) (see Section 11.2). It is also printed if the
minimizer of the elastic subproblem does not satisfy the linearized constraints
when the routine is already in elastic mode. (In this case, a feasible point for the
usual QP subproblem may or may not exist.)

w is printed if a weak solution of the QP subproblem was found.

When Minor Print Level � 1 and Monitoring File � 0, the following line of intermediate printout
( < 120 characters) is produced at every minor iteration on the unit number specified by optional
parameter Monitoring File. Unless stated otherwise, the values of the quantities printed are those in
effect on completion of the given iteration.

In the description below, a ‘pricing’ operation is defined to be the process by which a nonbasic variable
is selected to become superbasic (in addition to those already in the superbasic set). If the problem is
purely linear, the variable selected will usually become basic immediately (unless it happens to reach its
opposite bound and return to the nonbasic set).

Itn is the iteration count.

pp is the partial price indicator. The variable selected by the last pricing operation
came from the ppth partition of A and �I. Note that pp is reset to zero whenever
the basis is refactorized.

dj is the value of the reduced gradient (or reduced cost) for the variable selected by
the pricing operation at the start of the current iteration.

+SBS is the variable selected by the pricing operation to be added to the superbasic set.

-SBS is the variable chosen to leave the superbasic set. It has become basic if the entry
under -B is nonzero; otherwise it has become nonbasic.

-BS is the variable removed from the basis (if any) to become nonbasic.
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-B is the variable removed from the basis (if any) to swap with a slack variable
made superbasic by the latest pricing operation. The swap is done to ensure that
there are no superbasic slacks.

Step is the value of the step length � taken along the current search direction p. The
variables x have just been changed to xþ �p. If a variable is made superbasic
during the current iteration (i.e., +SBS is positive), Step will be the step to the
nearest bound. During the optimality phase, the step can be greater than unity
only if the reduced Hessian is not positive definite.

Pivot is the rth element of a vector y satisfying By ¼ aq whenever aq (the qth column
of the constraint matrix A �I

� �
) replaces the rth column of the basis matrix B.

Wherever possible, Step is chosen so as to avoid extremely small values of
Pivot (since they may cause the basis to be nearly singular). In extreme cases, it
may be necessary to increase the value of the optional parameter Pivot Tolerance
to exclude very small elements of y from consideration during the computation of
Step.

Ninf is the number of infeasibilities. This will not increase unless the iterations are in
elastic mode. Ninf will be zero during the optimality phase.

Sinf/Objective is the value of the current objective function. If x is infeasible, Sinf gives the
value of the sum of infeasibilities at the start of the current iteration. It will
usually decrease at each nonzero value of Step, but may occasionally increase if
the value of Ninf decreases by a factor of 2 or more. However, in elastic mode
this entry gives the value of the composite objective function (9), which will
decrease monotonically at each iteration. If x is feasible, Objective is the value
of the current QP objective function.

L is the number of nonzeros in the basis factor L. Immediately after a basis
factorization B ¼ LU , this entry contains lenL. Further nonzeros are added to L
when various columns of B are later replaced. (Thus, L increases monotonically.)

U is the number of nonzeros in the basis factor U. Immediately after a basis
factorization B ¼ LU , this entry contains lenU. As columns of B are replaced,
the matrix U is maintained explicitly (in sparse form). The value of U may
fluctuate up or down; in general, it will tend to increase.

Ncp is the number of compressions required to recover workspace in the data structure
for U. This includes the number of compressions needed during the previous
basis factorization. Normally, Ncp should increase very slowly. If it does not,
increase LENIZ and LENZ by at least Lþ U and rerun E04UGF/E04UGA
(possibly using START ¼ W ; see Section 5).

The following items are printed only if the problem is nonlinear or the superbasic set is non-empty (i.e.,
if the current solution is nonbasic).

Norm rg is the Euclidean norm of the reduced gradient of the QP objective function.
During the optimality phase, this norm will be approximately zero after a unit
step.

nS is the current number of superbasic variables.

Cond Hz is an estimate of the condition number of the reduced Hessian of the Lagrangian
(not printed if NCNLN and NONLN are both zero). It is the square of the ratio
between the largest and smallest diagonal elements of the upper triangular matrix
R. This constitutes a lower bound on the condition number of the matrix RTR
that approximates the reduced Hessian. The larger this number, the more difficult
the problem.

When Major Print Level � 20 and Monitoring File � 0, the following lines of intermediate printout
( < 120 characters) are produced on the unit number specified by optional parameter Monitoring File
whenever the matrix B or BS ¼ B Sð ÞT is factorized before solving the next QP subproblem.
Gaussian elimination is used to compute a sparse LU factorization of B or BS, where PLPT is a lower
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triangular matrix and PUQ is an upper triangular matrix for some permutation matrices P and Q. The
factorization is stabilized in the manner described under the optional parameter LU Factor Tolerance
(default value ¼ 5:0 or 100:0).

Note that BS may be factorized at the beginning of just some of the major iterations. It is immediately
followed by a factorization of B itself.

Factorize is the factorization count.

Iteration is the iteration count.

Nonlinear is the number of nonlinear variables in the current basis B (not printed if BS is
factorized).

Linear is the number of linear variables in B (not printed if BS is factorized).

Slacks is the number of slack variables in B (not printed if BS is factorized).

Elems is the number of nonzeros in B (not printed if BS is factorized).

Density is the percentage nonzero density of B (not printed if BS is factorized). More
precisely, Density ¼ 100� Elems= Nonlinearþ Linearþ Slacksð Þ2.

Compressns is the number of times the data structure holding the partially factorized matrix
needed to be compressed, in order to recover unused workspace. Ideally, it should
be zero. If it is more than 3 or 4, increase LENIZ and LENZ and rerun E04UGF/
E04UGA (possibly using START ¼ W ; see Section 5).

Merit is the average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be c� 1ð Þ r� 1ð Þ, where c and r are the
number of nonzeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of m such quantities. It
gives an indication of how much work was required to preserve sparsity during
the factorization.

lenL is the number of nonzeros in L.

lenU is the number of nonzeros in U .

Increase is the percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in B. More precisely, Increase ¼ 100� lenLþ lenU�ð
ElemsÞ=Elems.

m is the number of rows in the problem. Note that m ¼ Utþ Ltþ bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0:3.

Lmax is the maximum subdiagonal element in the columns of L. This will not exceed
the value of the optional parameter LU Factor Tolerance.

Bmax is the maximum nonzero element in B (not printed if BS is factorized).

BSmax is the maximum nonzero element in BS (not printed if B is factorized).

Umax is the maximum nonzero element in U , excluding elements of B that remain in U
unchanged. (For example, if a slack variable is in the basis, the corresponding
row of B will become a row of U without modification. Elements in such rows
will not contribute to Umax. If the basis is strictly triangular then none of the
elements of B will contribute and Umax will be zero.)

Ideally, Umax should not be significantly larger than Bmax. If it is several orders
of magnitude larger, it may be advisable to reset the optional parameter LU
Factor Tolerance to some value nearer unity.

Umax is not printed if BS is factorized.

Umin is the magnitude of the smallest diagonal element of PUQ.
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Growth is the value of the ratio Umax/Bmax, which should not be too large.

Providing Lmax is not large (say, < 10:0), the ratio max Bmax; Umaxð Þ=Umin is an
estimate of the condition number of B. If this number is extremely large, the
basis is nearly singular and some numerical difficulties might occur. (However, an
effort is made to avoid near-singularity by using slacks to replace columns of B
that would have made Umin extremely small and the modified basis is
refactorized.)

Lt is the number of triangular columns of B at the left of L.

bp is the size of the ‘bump’ or block to be factorized nontrivially after the triangular
rows and columns of B have been removed.

d2 is the number of columns remaining when the density of the basis matrix being
factorized has reached 0:6.

When Major Print Level � 20, Monitoring File � 0 and Crash Option > 0 (default value ¼ 0 or 3),
the following lines of intermediate printout ( < 80 characters) are produced on the unit number
specified by optional parameter Monitoring File whenever START ¼ C (see Section 5). They refer to
the number of columns selected by the Crash procedure during each of several passes through A while
searching for a triangular basis matrix.

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis, including those whose bounds are
rather far apart.

Preferred is the number of ‘preferred’ columns in the basis (i.e., ISTATEðjÞ ¼ 3 for some
j � n). It will be a subset of the columns for which ISTATEðjÞ ¼ 3 was
specified.

Unit is the number of unit columns in the basis.

Double is the number of columns in the basis containing two nonzeros.

Triangle is the number of triangular columns in the basis with three (or more) nonzeros.

Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

When Major Print Level ¼ 1 or � 10 and Monitoring File � 0, the following lines of final printout
( < 120 characters) are produced on the unit number specified by optional parameter Monitoring File.

Let xj denote the jth ‘column variable’, for j ¼ 1; 2; . . . ; n. We assume that a typical variable xj has
bounds � � xj � �.
The following describes the printout for each column (or variable). A full stop (.) is printed for any
numerical value that is zero.

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj.

State gives the state of xj relative to the bounds � and �.

The various possible states are as follows:

LL xj is nonbasic at its lower limit, �.

UL xj is nonbasic at its upper limit, �.

EQ xj is nonbasic and fixed at the value � ¼ �.
FR xj is nonbasic at some value strictly between its bounds: � < xj < �.

BS xj is basic. Usually � < xj < �.

A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the tests for assigning a key are applied to the
variables of the scaled problem.
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A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its current value, there would be no change in the
value of the objective function. The values of the basic and superbasic
variables might change, giving a genuine alternative solution. The values of
the Lagrange multipliers might also change.

D Degenerate. The variable is basic, but it is equal to (or very close to) one
of its bounds.

I Infeasible. The variable is basic and is currently violating one of its bounds
by more than the value of the optional parameter Minor Feasibility
Tolerance.

N Not precisely optimal. The variable is nonbasic. Its reduced gradient is
larger than the value of the optional parameter Major Feasibility
Tolerance.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. (If any xj is infeasible, gj is the gradient of
the sum of infeasibilities.)

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Reduced Gradnt is the value of dj at the final iterate.

m + j is the value of mþ j.
General linear constraints take the form l � Ax � u. The ith constraint is therefore of the form
� � aTi x � � and the value of aTi x is called the row activity. Internally, the linear constraints take the
form Ax� s ¼ 0, where the slack variables s should satisfy the bounds l � s � u. For the ith ‘row’, it
is the slack variable si that is directly available and it is sometimes convenient to refer to its state.
Slacks may be basic or nonbasic (but not superbasic).

Nonlinear constraints � � Fi xð Þ þ aTi x � � are treated similarly, except that the row activity and degree
of infeasibility are computed directly from Fi xð Þ þ aTi x rather than from si.

The following describes the printout for each row (or constraint). A full stop (.) is printed for any
numerical value that is zero.

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of the ith row.

State gives the state of the ith row relative to the bounds � and �.

The various possible states are as follows:

LL The row is at its lower limit, �.

UL The row is at its upper limit, �.

EQ The limits are the same � ¼ �ð Þ.
BS The constraint is not binding. si is basic.

A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its current value, there would be no change in the
value of the objective function. The values of the basic and superbasic
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variables might change, giving a genuine alternative solution. The values of
the Lagrange multipliers might also change.

D Degenerate. The variable is basic, but it is equal to (or very close to) one
of its bounds.

I Infeasible. The variable is basic and is currently violating one of its bounds
by more than the value of the optional parameter Minor Feasibility
Tolerance.

N Not precisely optimal. The variable is nonbasic. Its reduced gradient is
larger than the value of the optional parameter Major Feasibility
Tolerance.

Activity is the value of aTi x (or Fi xð Þ þ aTi x for nonlinear rows) at the final iterate.

Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if
any), it is set to Activity.)

Lower Bound is �, the lower bound specified for the ith row. None indicates that
BLðnþ iÞ � �bigbnd.

Upper Bound is �, the upper bound specified for the ith row. None indicates that
BUðnþ iÞ � bigbnd.

Dual Activity is the value of the dual variable 	i.

i gives the index i of the ith row.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.
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NAG Library Routine Document

E04UHF/E04UHA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply optional parameters to E04UGF/E04UGA from an external file. More precisely, E04UHF
must be used to supply optional parameters to E04UGF and E04UHA must be used to supply optional
parameters to E04UGA.

E04UHA is a version of E04UHF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04UHA.

2 Specification

2.1 Specification for E04UHF

SUBROUTINE E04UHF (IOPTNS, INFORM)

INTEGER IOPTNS, INFORM

2.2 Specification for E04UHA

SUBROUTINE E04UHA (IOPTNS, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IOPTNS, IWSAV(550), INFORM
REAL (KIND=nag_wp) RWSAV(550)
LOGICAL LWSAV(20)

3 Description

E04UHF/E04UHA may be used to supply values for optional parameters to E04UGF/E04UGA.
E04UHF/E04UHA reads an external file and each line of the file defines a single optional parameter. It
is only necessary to supply values for those arguments whose values are to be different from their
default values.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print level = 5

End
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For E04UHF each line of the file is normally printed as it is read, on the current advisory message unit
(see X04ABF), but printing may be suppressed using the keyword Nolist. To suppress printing of
Begin, Nolist must be the first option supplied as in the file:

Begin
Nolist
Print level = 5

End

Printing will automatically be turned on again after a call to E04UGF or E04UHF and may be turned on
again at any time using the keyword List.

For E04UHA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04UGF/E04UGA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04UGF/E04UGA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04UGF/E04UGA.

4 References

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer–Verlag

5 Arguments

1: IOPTNS – INTEGER Input

On entry: the unit number of the options file to be read.

Constraint: 0 � IOPTNS � 99.

2: INFORM – INTEGER Output

Note: for E04UHA, INFORM does not occur in this position in the argument list. See the
additional arguments described below.

On exit: contains zero if the options file has been successfully read and a value > 0 otherwise
(see Section 6).

Note: the following are additional arguments for specific use with E04UHA. Users of E04UHF
therefore need not read the remainder of this description.

3: LWSAVð20Þ – LOGICAL array Communication Array
4: IWSAVð550Þ – INTEGER array Communication Array
5: RWSAVð550Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04UHA, E04UGA, E04UJA or E04WBF.

6: INFORM – INTEGER Output

Note: see the argument description for INFORM above.

6 Error Indicators and Warnings

INFORM ¼ 1

IOPTNS is not in the range 0; 99½ �.
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INFORM ¼ 2

Begin was found, but end-of-file was found before End was found.

INFORM ¼ 3

end-of-file was found before Begin was found.

INFORM ¼ 4

Not used.

INFORM ¼ 5

One or more lines of the options file is invalid. Check that all keywords are neither ambiguous
nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04UHF/E04UHA is not threaded in any implementation.

9 Further Comments

E04UJF/E04UJA may also be used to supply optional parameters to E04UGF/E04UGA.

10 Example

This is Problem 45 from Hock and Schittkowski (1981) and involves the minimization of the nonlinear
function

f xð Þ ¼ 2� 1
120� x1x2x3x4x5

subject to the bounds

0 � x1 � 1;
0 � x2 � 2;
0 � x3 � 3;
0 � x4 � 4;
0 � x5 � 5:

The initial point, which is infeasible, is

x0 ¼ 2; 2; 2; 2; 2ð ÞT;

and f x0ð Þ ¼ 1:7333 (to five figures).

The optimal solution is

x� ¼ 1; 2; 3; 4; 5ð ÞT;

and f x�ð Þ ¼ 1. All the bounds are active at the solution.

In this example the options file read by E04UHF/E04UHA is appended to the data file for the program
(see Section 10.2). It would usually be more convenient in practice to keep the data file and the options
file separate.
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10.1 Program Text

the following program illustrates the use of E04UHF. An equivalent program illustrating the use of
E04UHA is available with the supplied Library and is also available from the NAG web site.

! E04UHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04uhfe_mod

! E04UHF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: objfun

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, nin = 5, ninopt = 7, &

nout = 6
Contains

Subroutine objfun(mode,nonln,x,objf,objgrd,nstate,iuser,ruser)
! Computes the nonlinear part of the objective function and its
! gradient

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: nonln, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: objgrd(nonln), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(nonln)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
If (mode==0 .Or. mode==2) Then

objf = 2.0E+0_nag_wp - x(1)*x(2)*x(3)*x(4)*x(5)/120.0E+0_nag_wp
End If

If (mode==1 .Or. mode==2) Then
objgrd(1) = -x(2)*x(3)*x(4)*x(5)/120.0E+0_nag_wp
objgrd(2) = -x(1)*x(3)*x(4)*x(5)/120.0E+0_nag_wp
objgrd(3) = -x(1)*x(2)*x(4)*x(5)/120.0E+0_nag_wp
objgrd(4) = -x(1)*x(2)*x(3)*x(5)/120.0E+0_nag_wp
objgrd(5) = -x(1)*x(2)*x(3)*x(4)/120.0E+0_nag_wp

End If

Return

End Subroutine objfun
End Module e04uhfe_mod
Program e04uhfe

! E04UHF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04ugf, e04ugm, e04uhf, e04ujf, nag_wp, x04abf, &

x04acf, x04baf
Use e04uhfe_mod, Only: iset, nin, ninopt, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Character (*), Parameter :: fname = ’e04uhfe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj, sinf
Integer :: ifail, inform, iobj, leniz, lenz, m, &

miniz, minz, mode, n, ncnln, ninf, &
njnln, nname, nnz, nonln, ns, outchn

Character (80) :: rec
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Character (1) :: start
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), bl(:), bu(:), clamda(:), &
xs(:), z(:)

Real (Kind=nag_wp) :: user(1)
Integer, Allocatable :: ha(:), istate(:), iz(:), ka(:)
Integer :: iuser(1)
Character (8), Allocatable :: names(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (rec,99998) ’E04UHF Example Program Results’
Call x04baf(nout,rec)

! Skip heading in data file.
Read (nin,*)
Read (nin,*) n, m
Read (nin,*) ncnln, nonln, njnln
Read (nin,*) start, nname
nnz = 1
Allocate (ha(nnz),ka(n+1),istate(n+m),a(nnz),bl(n+m),bu(n+m),xs(n+m), &

clamda(n+m),names(nname))

Read (nin,*) names(1:nname)

! Define the matrix A to contain a dummy ‘free’ row that consists
! of a single (zero) element subject to ‘infinite’ upper and
! lower bounds. Set up KA.

iobj = -1

ka(1) = 1

a(1) = 0.0E+0_nag_wp
ha(1) = 1

! Columns 2,3,...,N of A are empty. Set the corresponding element
! of KA to 2.

ka(2:n) = 2
ka(n+1) = nnz + 1

Read (nin,*) bl(1:(n+m))
Read (nin,*) bu(1:(n+m))

If (start==’C’) Then
Read (nin,*) istate(1:n)

Else If (start==’W’) Then
Read (nin,*) istate(1:(n+m))

End If

Read (nin,*) xs(1:n)

! Set the unit number for advisory messages to OUTCHN.

outchn = nout
Call x04abf(iset,outchn)

! Set three options using E04UJF.

Call e04ujf(’ Verify Level = -1 ’)

Call e04ujf(’ Major Iteration Limit = 25 ’)

Call e04ujf(’ Infinite Bound Size = 1.0D+25 ’)

! Open the options file for reading

mode = 0

ifail = 0
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Call x04acf(ninopt,fname,mode,ifail)

! Read the options file for the remaining options.

Call e04uhf(ninopt,inform)

If (inform/=0) Then
Write (rec,99999) ’E04UJF terminated with INFORM = ’, inform
Call x04baf(nout,rec)
Go To 100

End If

! Solve the problem.
! First call is a workspace query

leniz = max(500,n+m)
lenz = 500
Allocate (iz(leniz),z(lenz))

ifail = 1
Call e04ugf(e04ugm,objfun,n,m,ncnln,nonln,njnln,iobj,nnz,a,ha,ka,bl,bu, &

start,nname,names,ns,xs,istate,clamda,miniz,minz,ninf,sinf,obj,iz, &
leniz,z,lenz,iuser,user,ifail)

If (ifail/=0 .And. ifail/=15 .And. ifail/=16) Then
Write (nout,99999) ’Query call to E04UGF failed with IFAIL =’, ifail
Go To 100

End If

Deallocate (iz,z)

! The length of the workspace required for the basis factors in this
! problem is longer than the minimum returned by the query

lenz = 2*minz
leniz = 2*miniz
Allocate (iz(leniz),z(lenz))

ifail = 0
Call e04ugf(e04ugm,objfun,n,m,ncnln,nonln,njnln,iobj,nnz,a,ha,ka,bl,bu, &

start,nname,names,ns,xs,istate,clamda,miniz,minz,ninf,sinf,obj,iz, &
leniz,z,lenz,iuser,user,ifail)

100 Continue

99999 Format (1X,A,I5)
99998 Format (1X,A)

End Program e04uhfe

10.2 Program Data

Begin * Example options file for E04UHF
Check Frequency = 25 * (Default = 60 )
Crash Tolerance = 0.05 * (Default = 0.1)

End

E04UHF Example Program Data
5 1 :Values of N and M
0 5 0 :Values of NCNLN, NONLN and NJNLN

’C’ 6 :Values of START and NNAME
’Varble 1’ ’Varble 2’ ’Varble 3’ ’Varble 4’ ’Varble 5’ ’DummyRow’ :End of NAMES
0.0 0.0 0.0 0.0 0.0 -1.0E+26 :End of BL
1.0 2.0 3.0 4.0 5.0 1.0E+26 :End of BU
0 0 0 0 0 :End of ISTATE
2.0 2.0 2.0 2.0 2.0 :End of XS
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10.3 Program Results

E04UHF Example Program Results

Calls to E04UJF
---------------

Verify Level = -1
Major Iteration Limit = 25
Infinite Bound Size = 1.0D+25

OPTIONS file
------------

Begin * Example options file for E04UHF
Check Frequency = 25 * (Default = 60 )
Crash Tolerance = 0.05 * (Default = 0.1)

End

Workspace provided is IZ( 500), Z( 500).
To start solving the problem we need IZ( 566), Z( 670).

Exit E04UGF - Not enough integer workspace to start solving the problem.

*** E04UGF

Parameters
----------

Frequencies.
Check frequency......... 25 Expand frequency....... 10000
Factorization frequency. 100

QP subproblems.
Scale tolerance......... 9.00E-01 Minor feasibility tol.. 1.05E-08
Scale option............ 2 Minor optimality tol... 1.05E-08
Partial price........... 10 Crash tolerance........ 5.00E-02
Pivot tolerance......... 2.04E-11 Minor print level...... 0
Crash option............ 3 Elastic weight......... 1.00E+00

The SQP method.
Minimize................
Nonlinear objective vars 5 Major optimality tol... 1.05E-08
Function precision...... 1.72E-13 Unbounded step size.... 1.00E+20
Superbasics limit....... 5 Forward difference int. 4.15E-07
Unbounded objective..... 1.00E+15 Central difference int. 5.56E-05
Major step limit........ 2.00E+00 Derivative linesearch..
Derivative level........ 3 Major iteration limit.. 25
Linesearch tolerance.... 9.00E-01 Verify level........... -1
Minor iteration limit... 500 Major print level...... 10
Infinite bound size..... 1.00E+25 Iteration limit........ 10000

Hessian approximation.
Hessian full memory..... Hessian updates........ 99999999
Hessian frequency....... 99999999

Nonlinear constraints.
Nonlinear constraints... 0 Nonlinear Jacobian vars 0

Miscellaneous.
Variables............... 5 Linear constraints..... 1
Nonlinear variables..... 5 Linear variables....... 0
LU factor tolerance..... 1.00E+02 LU singularity tol..... 2.04E-11
LU update tolerance..... 1.00E+01 LU density tolerance... 6.00E-01
eps (machine precision). 1.11E-16 Monitoring file........ -1
COLD start.............. Infeasible exit........

Workspace provided is IZ( 1132), Z( 1340).
To start solving the problem we need IZ( 566), Z( 670).
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Itn 0 -- Partial price reduced from 10 to 1.

Itn 0 -- Feasible linear rows.

Itn 0 -- Norm(x-x0) minimized. Sum of infeasibilities = 0.00E+00.

objfun sets 5 out of 5 objective gradients.

Maj Mnr Step Objective Optimal Cond Hz PD
0 3 0.0E+00 1.866667E+00 3.3E-02 1.0E+00 TF R
1 2 1.5E+01 1.550000E+00 7.5E-02 1.0E+00 TF n
2 2 6.7E+00 1.200000E+00 1.0E-01 1.0E+00 TF n
3 1 5.0E+00 1.000000E+00 0.0E+00 1.0E+00 TT n

Exit from NP problem after 3 major iterations,
8 minor iterations.

Variable State Value Lower Bound Upper Bound Lagr Mult Residual

Varble 1 UL 1.00000 . 1.0000 -1.000 .
Varble 2 UL 2.00000 . 2.0000 -0.5000 .
Varble 3 UL 3.00000 . 3.0000 -0.3333 .
Varble 4 UL 4.00000 . 4.0000 -0.2500 .
Varble 5 UL 5.00000 . 5.0000 -0.2000 .

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual

DummyRow BS 0.00000 None None -1.000 .

Exit E04UGF - Optimal solution found.

Final objective value = 1.000000
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NAG Library Routine Document

E04UJF/E04UJA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply individual optional parameters to E04UGF/E04UGA. More precisely, E04UJF must be used
to supply optional parameters to E04UGF and E04UJA must be used to supply optional parameters to
E04UGA.

E04UJA is a version of E04UJF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04UJA.

2 Specification

2.1 Specification for E04UJF

SUBROUTINE E04UJF (STR)

CHARACTER(*) STR

2.2 Specification for E04UJA

SUBROUTINE E04UJA (STR, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IWSAV(550), INFORM
REAL (KIND=nag_wp) RWSAV(550)
LOGICAL LWSAV(20)
CHARACTER(*) STR

3 Description

E04UJF/E04UJA may be used to supply values for optional parameters to E04UGF/E04UGA. It is only
necessary to call E04UJF/E04UJA for those arguments whose values are to be different from their
default values. One call to E04UJF/E04UJA sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

For E04UJF, each user-specified option is normally printed as it is defined, on the current advisory
message unit (see X04ABF), but this printing may be suppressed using the keyword Nolist. Thus the
statement

CALL E04UJF (’Nolist’)
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suppresses printing of this and subsequent options. Printing will automatically be turned on again after
a call to E04UGF and may be turned on again at any time using the keyword List.

For E04UJA printing is turned off by default, but may be turned on at any time using the keyword List.

Optional parameter settings are preserved following a call to E04UGF/E04UGA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04UGF/E04UGA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04UGF/E04UGA.

4 References

None.

5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 and in Section 12 in E04UGF/
E04UGA).

Note: the following are additional arguments for specific use with E04UJA. Users of E04UJF therefore
need not read the remainder of this description.

2: LWSAVð20Þ – LOGICAL array Communication Array
3: IWSAVð550Þ – INTEGER array Communication Array
4: RWSAVð550Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04UJA, E04UGA, E04UHA or E04WBF.

5: INFORM – INTEGER Output

On exit: contains zero if a valid option string has been supplied and a value > 0 otherwise (see
Section 6).

6 Error Indicators and Warnings

INFORM ¼ 5

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04UJF/E04UJA is not threaded in any implementation.

9 Further Comments

E04UHF/E04UHA may also be used to supply optional parameters to E04UGF/E04UGA.
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10 Example

See Section 10 in E04UHF/E04UHA.
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NAG Library Routine Document

E04UQF/E04UQA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply optional parameters to E04USF/E04USA from an external file. More precisely, E04UQF
must be used to supply optional parameters to E04USF and E04UQA must be used to supply optional
parameters to E04USA.

E04UQA is a version of E04UQF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04UQA.

2 Specification

2.1 Specification for E04UQF

SUBROUTINE E04UQF (IOPTNS, INFORM)

INTEGER IOPTNS, INFORM

2.2 Specification for E04UQA

SUBROUTINE E04UQA (IOPTNS, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IOPTNS, IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)

3 Description

E04UQF/E04UQA may be used to supply values for optional parameters to the corresponding routines
E04USF/E04USA. E04UQF/E04UQA reads an external file and each line of the file defines a single
optional parameter. It is only necessary to supply values for those arguments whose values are to be
different from their default values.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print level = 5

End
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For E04UQF each line of the file is normally printed as it is read, on the current advisory message unit
(see X04ABF), but printing may be suppressed using the keyword Nolist. To suppress printing of
Begin, Nolist must be the first option supplied as in the file:

Begin
Nolist
Print level = 5

End

Printing will automatically be turned on again after a call to E04USF/E04USA or E04UQF and may be
turned on again at any time using the keyword List.

For E04UQA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04USF/E04USA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04USF/E04USA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04USF/E04USA.

4 References

None.

5 Arguments

1: IOPTNS – INTEGER Input

On entry: the unit number of the options file to be read.

Constraint: 0 � IOPTNS � 99.

2: INFORM – INTEGER Output

Note: for E04UQA, INFORM does not occur in this position in the argument list. See the
additional arguments described below.

On exit: contains zero if the options file has been successfully read and a value > 0 otherwise
(see Section 6).

Note: the following are additional arguments for specific use with E04UQA. Users of E04UQF
therefore need not read the remainder of this description.

3: LWSAVð120Þ – LOGICAL array Communication Array
4: IWSAVð610Þ – INTEGER array Communication Array
5: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04UQA, E04URA, E04USA or E04WBF.

6: INFORM – INTEGER Output

Note: see the argument description for INFORM above.

6 Error Indicators and Warnings

INFORM ¼ 1

IOPTNS is not in the range 0; 99½ �.
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INFORM ¼ 2

Begin was found, but end-of-file was found before End was found.

INFORM ¼ 3

end-of-file was found before Begin was found.

INFORM ¼ 4

Not used.

INFORM ¼ 5

One or more lines of the options file is invalid. Check that all keywords are neither ambiguous
nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04UQF/E04UQA is not threaded in any implementation.

9 Further Comments

E04URF/E04URA may also be used to supply optional parameters to E04USF/E04USA.

10 Example

This example solves the same problem as the example for E04USF/E04USA, but in addition illustrates
the use of E04UQF/E04UQA and E04URF/E04URA to set optional parameters for E04USF/E04USA.

In this example the options file read by E04UQF/E04UQA is appended to the data file for the program
(see Section 10.2). It would usually be more convenient in practice to keep the data file and the options
file separate.

10.1 Program Text

the following program illustrates the use of E04UQF. An equivalent program illustrating the use of
E04UQA is available with the supplied Library and is also available from the NAG web site.

! E04UQF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04uqfe_mod

! E04UQF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, objfun

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, nin = 5, ninopt = 7, &

nout = 6
Contains

Subroutine objfun(mode,m,n,ldfj,needfi,x,f,fjac,nstate,iuser,ruser)
! Routine to evaluate the subfunctions and their 1st derivatives.
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! .. Parameters ..
Real (Kind=nag_wp), Parameter :: a(44) = (/8.0E0_nag_wp,8.0E0_nag_wp, &

10.0E0_nag_wp,10.0E0_nag_wp, &
10.0E0_nag_wp,10.0E0_nag_wp, &
12.0E0_nag_wp,12.0E0_nag_wp, &
12.0E0_nag_wp,12.0E0_nag_wp, &
14.0E0_nag_wp,14.0E0_nag_wp, &
14.0E0_nag_wp,16.0E0_nag_wp, &
16.0E0_nag_wp,16.0E0_nag_wp, &
18.0E0_nag_wp,18.0E0_nag_wp, &
20.0E0_nag_wp,20.0E0_nag_wp, &
20.0E0_nag_wp,22.0E0_nag_wp, &
22.0E0_nag_wp,22.0E0_nag_wp, &
24.0E0_nag_wp,24.0E0_nag_wp, &
24.0E0_nag_wp,26.0E0_nag_wp, &
26.0E0_nag_wp,26.0E0_nag_wp, &
28.0E0_nag_wp,28.0E0_nag_wp, &
30.0E0_nag_wp,30.0E0_nag_wp, &
30.0E0_nag_wp,32.0E0_nag_wp, &
32.0E0_nag_wp,34.0E0_nag_wp, &
36.0E0_nag_wp,36.0E0_nag_wp, &
38.0E0_nag_wp,38.0E0_nag_wp, &
40.0E0_nag_wp,42.0E0_nag_wp/)

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfj, m, n, needfi, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(m)
Real (Kind=nag_wp), Intent (Inout) :: fjac(ldfj,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: ai, temp, x1, x2
Integer :: i
Logical :: mode02, mode12

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
x1 = x(1)
x2 = x(2)

mode02 = (mode==0 .Or. mode==2)
mode12 = (mode==1 .Or. mode==2)

loop: Do i = 1, m

If (needfi==i) Then
f(i) = x1 + (0.49E0_nag_wp-x1)*exp(-x2*(a(i)-8.0E0_nag_wp))
Exit loop

End If

ai = a(i)
temp = exp(-x2*(ai-8.0E0_nag_wp))

If (mode02) Then
f(i) = x1 + (0.49E0_nag_wp-x1)*temp

End If

If (mode12) Then
fjac(i,1) = 1.0E0_nag_wp - temp
fjac(i,2) = -(0.49E0_nag_wp-x1)*(ai-8.0E0_nag_wp)*temp

End If

End Do loop

Return

End Subroutine objfun
Subroutine confun(mode,ncnln,n,ldcj,needc,x,c,cjac,nstate,iuser,ruser)

! Routine to evaluate the nonlinear constraint and its 1st
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! derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcj, n, ncnln, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjac(ldcj,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncnln)

! .. Executable Statements ..
If (nstate==1) Then

! First call to CONFUN. Set all Jacobian elements to zero.
! Note that this will only work when ’Derivative Level = 3’
! (the default; see Section 11.2).

cjac(1:ncnln,1:n) = 0.0E0_nag_wp
End If

If (needc(1)>0) Then

If (mode==0 .Or. mode==2) Then
c(1) = -0.09E0_nag_wp - x(1)*x(2) + 0.49E0_nag_wp*x(2)

End If

If (mode==1 .Or. mode==2) Then
cjac(1,1) = -x(2)
cjac(1,2) = -x(1) + 0.49E0_nag_wp

End If

End If

Return

End Subroutine confun
End Module e04uqfe_mod
Program e04uqfe

! E04UQF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04uqf, e04urf, e04usf, nag_wp, x04abf, x04acf, &

x04baf
Use e04uqfe_mod, Only: confun, iset, nin, ninopt, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Character (*), Parameter :: fname = ’e04uqfe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: objf
Integer :: i, ifail, inform, iter, lda, ldcj, &

ldfj, ldr, liwork, lwork, m, mode, &
n, nclin, ncnln, outchn, sda, sdcjac

Character (80) :: rec
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), c(:), &
cjac(:,:), clamda(:), f(:), &
fjac(:,:), r(:,:), work(:), x(:), &
y(:)

Real (Kind=nag_wp) :: user(1)
Integer, Allocatable :: istate(:), iwork(:)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (rec,99998) ’E04UQF Example Program Results’
Call x04baf(nout,rec)

! Skip heading in data file
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Read (nin,*)

Read (nin,*) m, n
Read (nin,*) nclin, ncnln
liwork = 3*n + nclin + 2*ncnln
lda = max(1,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

ldcj = max(1,ncnln)

If (ncnln>0) Then
sdcjac = n

Else
sdcjac = 1

End If

ldfj = m
ldr = n

If (ncnln==0 .And. nclin>0) Then
lwork = 2*n**2 + 20*n + 11*nclin + m*(n+3)

Else If (ncnln>0 .And. nclin>=0) Then
lwork = 2*n**2 + n*nclin + 2*n*ncnln + 20*n + 11*nclin + 21*ncnln + &

m*(n+3)
Else

lwork = 20*n + m*(n+3)
End If

Allocate (istate(n+nclin+ncnln),iwork(liwork),a(lda,sda), &
bl(n+nclin+ncnln),bu(n+nclin+ncnln),y(m),c(max(1, &
ncnln)),cjac(ldcj,sdcjac),f(m),fjac(ldfj,n),clamda(n+nclin+ncnln), &
r(ldr,n),x(n),work(lwork))

If (nclin>0) Then
Read (nin,*)(a(i,1:sda),i=1,nclin)

End If

Read (nin,*) y(1:m)
Read (nin,*) bl(1:(n+nclin+ncnln))
Read (nin,*) bu(1:(n+nclin+ncnln))
Read (nin,*) x(1:n)

! Set the unit number for advisory messages to OUTCHN

outchn = nout
Call x04abf(iset,outchn)

! Set three options using E04URF

Call e04urf(’ Infinite Bound Size = 1.0D+25 ’)

Call e04urf(’ Print Level = 1 ’)

Call e04urf(’ Verify Level = -1 ’)

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Read the options file for the remaining options

Call e04uqf(ninopt,inform)
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If (inform/=0) Then
Write (rec,99999) ’E04UQF terminated with INFORM = ’, inform
Call x04baf(nout,rec)
Go To 100

End If

! Solve the problem

ifail = 0
Call e04usf(m,n,nclin,ncnln,lda,ldcj,ldfj,ldr,a,bl,bu,y,confun,objfun, &

iter,istate,c,cjac,f,fjac,clamda,objf,r,x,iwork,liwork,work,lwork, &
iuser,user,ifail)

100 Continue

99999 Format (1X,A,I5)
99998 Format (1X,A)

End Program e04uqfe

10.2 Program Data

Begin Example options file for E04UQF
Major Iteration Limit = 15 * (Default = 50)
Minor Iteration Limit = 10 * (Default = 50)

End

E04UQF Example Program Data
44 2 :Values of M and N
1 1 :Values of NCLIN and NCNLN
1.0 1.0 :End of matrix A
0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45
0.43 0.43 0.44 0.43 0.43 0.46 0.45 0.42 0.42 0.43 0.41
0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41 0.40 0.40
0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39 :End of Y
0.4 -4.0 1.0 0.0 :End of BL
1.0E+25 1.0E+25 1.0E+25 1.0E+25 :End of BU
0.4 0.0 :End of X

10.3 Program Results

E04UQF Example Program Results

Calls to E04URF
---------------

Infinite Bound Size = 1.0D+25
Print Level = 1
Verify Level = -1

OPTIONS file
------------

Begin Example options file for E04UQF
Major Iteration Limit = 15 * (Default = 50)
Minor Iteration Limit = 10 * (Default = 50)

End

*** E04USF

Parameters
----------

Linear constraints..... 1 Variables.............. 2
Nonlinear constraints.. 1 Subfunctions........... 44

Infinite bound size.... 1.00E+25 COLD start.............
Infinite step size..... 1.00E+25 EPS (machine precision) 1.11E-16
Step limit............. 2.00E+00 Hessian................ NO

E04 – Minimizing or Maximizing a Function E04UQF

Mark 26 E04UQF.7



Linear feasibility..... 1.05E-08 Crash tolerance........ 1.00E-02
Nonlinear feasibility.. 1.05E-08 Optimality tolerance... 3.26E-12
Line search tolerance.. 9.00E-01 Function precision..... 4.37E-15

Derivative level....... 3 Monitoring file........ -1
Verify level........... -1

Major iterations limit. 15 Major print level...... 1
Minor iterations limit. 10 Minor print level...... 0

J’J initial Hessian.... Reset frequency........ 2

Workspace provided is IWORK( 9), WORK( 306).
To solve problem we need IWORK( 9), WORK( 306).

Exit from NP problem after 6 major iterations,
8 minor iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 FR 0.419953 0.400000 None . 1.9953E-02
V 2 FR 1.28485 -4.00000 None . 5.285

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 FR 1.70480 1.00000 None . 0.7048

N Con State Value Lower Bound Upper Bound Lagr Mult Slack

N 1 LL -9.767742E-13 . None 3.3358E-02 -9.7677E-13

Exit E04USF - Optimal solution found.

Final objective value = 0.1422983E-01
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NAG Library Routine Document

E04URF/E04URA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply individual optional parameters to E04USF/E04USA. More precisely, E04URF must be used
to supply optional parameters to E04USF and E04URA must be used to supply optional parameters to
E04USA.

E04URA is a version of E04URF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04URA.

2 Specification

2.1 Specification for E04URF

SUBROUTINE E04URF (STR)

CHARACTER(*) STR

2.2 Specification for E04URA

SUBROUTINE E04URA (STR, LWSAV, IWSAV, RWSAV, INFORM)

INTEGER IWSAV(610), INFORM
REAL (KIND=nag_wp) RWSAV(475)
LOGICAL LWSAV(120)
CHARACTER(*) STR

3 Description

E04URF/E04URA may be used to supply values for optional parameters to E04USF/E04USA. It is only
necessary to call E04URF/E04URA for those arguments whose values are to be different from their
default values. One call to E04URF/E04URA sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

For E04URF, each user-specified option is normally printed as it is defined, on the current advisory
message unit (see X04ABF), but this printing may be suppressed using the keyword Nolist. Thus the
statement

CALL E04URF (’Nolist’)
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suppresses printing of this and subsequent options. Printing will automatically be turned on again after
a call to E04USF and may be turned on again at any time using the keyword List.

For E04URA printing is turned off by default, but may be turned on at any time using the keyword
List.

Optional parameter settings are preserved following a call to E04USF/E04USA and so the keyword
Defaults is provided to allow you to reset all the optional parameters to their default values before a
subsequent call to E04USF/E04USA.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04USF/E04USA.

4 References

None.

5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 and in Section 12 in E04USF/
E04USA.

Note: the following are additional arguments for specific use with E04URA. Users of E04URF
therefore need not read the remainder of this description.

2: LWSAVð120Þ – LOGICAL array Communication Array
3: IWSAVð610Þ – INTEGER array Communication Array
4: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04URA, E04UQA or E04URA.

5: INFORM – INTEGER Output

On exit: contains zero if a valid option string has been supplied and a value > 0 otherwise (see
Section 6).

6 Error Indicators and Warnings

INFORM ¼ 5

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04URF/E04URA is not threaded in any implementation.

9 Further Comments

E04UQF/E04UQA may also be used to supply optional parameters to E04USF/E04USA.
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10 Example

See Section 10 in E04UQF/E04UQA.
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NAG Library Routine Document

E04USF/E04USA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

E04USF/E04USA is designed to minimize an arbitrary smooth sum of squares function subject to
constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear
constraints) using a sequential quadratic programming (SQP) method. As many first derivatives as
possible should be supplied by you; any unspecified derivatives are approximated by finite differences.
See the description of the optional parameter Derivative Level, in Section 12.1. It is not intended for
large sparse problems.

E04USF/E04USA may also be used for unconstrained, bound-constrained and linearly constrained
optimization.

E04USA is a version of E04USF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5). The initialization routine E04WBF must have been called
before calling E04USA.

2 Specification

2.1 Specification for E04USF

SUBROUTINE E04USF (M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, A, BL, BU,
Y, CONFUN, OBJFUN, ITER, ISTATE, C, CJAC, F, FJAC,
CLAMDA, OBJF, R, X, IWORK, LIWORK, WORK, LWORK,
IUSER, RUSER, IFAIL)

&
&
&

INTEGER M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, ITER,
ISTATE(N+NCLIN+NCNLN), IWORK(LIWORK), LIWORK,
LWORK, IUSER(*), IFAIL

&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),
Y(M), C(max(1,NCNLN)), CJAC(LDCJ,*), F(M),
FJAC(LDFJ,N), CLAMDA(N+NCLIN+NCNLN), OBJF,
R(LDR,N), X(N), WORK(LWORK), RUSER(*)

&
&
&

EXTERNAL CONFUN, OBJFUN

2.2 Specification for E04USA

SUBROUTINE E04USA (M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, A, BL, BU,
Y, CONFUN, OBJFUN, ITER, ISTATE, C, CJAC, F, FJAC,
CLAMDA, OBJF, R, X, IWORK, LIWORK, WORK, LWORK,
IUSER, RUSER, LWSAV, IWSAV, RWSAV, IFAIL)

&
&
&

INTEGER M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, ITER,
ISTATE(N+NCLIN+NCNLN), IWORK(LIWORK), LIWORK,
LWORK, IUSER(*), IWSAV(610), IFAIL

&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),
Y(M), C(max(1,NCNLN)), CJAC(LDCJ,*), F(M),
FJAC(LDFJ,N), CLAMDA(N+NCLIN+NCNLN), OBJF,
R(LDR,N), X(N), WORK(LWORK), RUSER(*), RWSAV(475)

&
&
&

LOGICAL LWSAV(120)
EXTERNAL CONFUN, OBJFUN
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Before calling E04USA, or either of the option setting routines E04UQA or E04URA, E04WBF must
be called. The specification for E04WBF is:

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
RWSAV, LRWSAV, IFAIL)

&

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV,
IFAIL

&

REAL (KIND=nag_wp) RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER(*) RNAME
CHARACTER(80) CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ E04USA . LCWSAV, LLWSAV, LIWSAV and LRWSAV,
the declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 1

LLWSAV � 120

LIWSAV � 610

LRWSAV � 475

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04UQA, E04URA, E04USA and E04WBF.

3 Description

E04USF/E04USA is designed to solve the nonlinear least squares programming problem – the
minimization of a smooth nonlinear sum of squares function subject to a set of constraints on the
variables. The problem is assumed to be stated in the following form:

minimize
x2Rn

F xð Þ ¼ 1
2

Xm
i¼1

yi � fi xð Þð Þ2 subject to l �
x
ALx
c xð Þ

8<:
9=; � u; ð1Þ

where F xð Þ (the objective function) is a nonlinear function which can be represented as the sum of
squares of m subfunctions y1 � f1 xð Þð Þ; y2 � f2 xð Þð Þ; . . . ; ym � fm xð Þð Þ, the yi are constant, AL is an nL
by n constant matrix, and c xð Þ is an nN element vector of nonlinear constraint functions. (The matrix
AL and the vector c xð Þ may be empty.) The objective function and the constraint functions are assumed
to be smooth, i.e., at least twice-continuously differentiable. (The method of E04USF/E04USA will
usually solve (1) if any isolated discontinuities are away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear
constraints, we prefer to distinguish between them for reasons of computational efficiency. For the same
reason, the linear constraints should not be included in the definition of the nonlinear constraints. Upper
and lower bounds are specified for all the variables and for all the constraints. An equality constraint
can be specified by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u
can be set to special values that will be treated as �1 or þ1. (See the description of the optional
parameter Infinite Bound Size.)

You must supply an initial estimate of the solution to (1), together with subroutines that define
f xð Þ ¼ f1 xð Þ; f2 xð Þ; . . . ; fm xð Þð ÞT, c xð Þ and as many first partial derivatives as possible; unspecified
derivatives are approximated by finite differences.

The subfunctions are defined by the array Y and OBJFUN, and the nonlinear constraints are defined by
CONFUN. On every call, these subroutines must return appropriate values of f xð Þ and c xð Þ. You should
also provide the available partial derivatives. Any unspecified derivatives are approximated by finite
differences for a discussion of the optional parameter Derivative Level. Note that if there are any
nonlinear constraints, then the first call to CONFUN will precede the first call to OBJFUN.

For maximum reliability, it is preferable for you to provide all partial derivatives (see Chapter 8 of Gill
et al. (1981) for a detailed discussion). If all gradients cannot be provided, it is similarly advisable to
provide as many as possible. While developing OBJFUN and CONFUN, the optional parameter Verify
should be used to check the calculation of any known gradients.
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4 References

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer–Verlag

5 Arguments

1: M – INTEGER Input

On entry: m, the number of subfunctions associated with F xð Þ.
Constraint: M > 0.

2: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

3: NCLIN – INTEGER Input

On entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.

4: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: NCNLN � 0.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
E04USF/E04USA is called.

Constraint: LDA � max 1;NCLINð Þ.

6: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
E04USF/E04USA is called.

Constraint: LDCJ � max 1;NCNLNð Þ.

7: LDFJ – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which
E04USF/E04USA is called.

Constraint: LDFJ � M.

8: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which E04USF/
E04USA is called.

Constraint: LDR � N.
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9: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0, and at least 1
otherwise.

On entry: the ith row of A contains the ith row of the matrix AL of general linear constraints in
(1). That is, the ith row contains the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0, the array A is not referenced.

10: BLðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input
11: BUðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input

On entry: must contain the lower bounds and BU the upper bounds, for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, the
next nL elements the bounds for the general linear constraints (if any) and the next nN elements
the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower bound (i.
e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a nonexistent upper bound (i.e., uj ¼ þ1),
set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this may be changed by the optional
parameter Infinite Bound Size. To specify the jth constraint as an equality, set
BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

12: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: the coefficients of the constant vector y of the objective function.

13: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate the vector c xð Þ of nonlinear constraint functions and (optionally) its

Jacobian ( ¼ @c

@x
) for a specified n-element vector x. If there are no nonlinear constraints (i.e.,

NCNLN ¼ 0), CONFUN will never be called by E04USF/E04USA and CONFUN may be the
dummy routine E04UDM. (E04UDM is included in the NAG Library.) If there are nonlinear
constraints, the first call to CONFUN will occur before the first call to OBJFUN.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCNLN, N, LDCJ, NEEDC, X, C, CJAC,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, NCNLN, N, LDCJ, NEEDC(NCNLN), NSTATE,
IUSER(*)

&

REAL (KIND=nag_wp) X(N), C(NCNLN), CJAC(LDCJ,N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of CONFUN. Only
the following values need be assigned, for each value of i such that NEEDCðiÞ > 0:

MODE ¼ 0
CðiÞ.

MODE ¼ 1
All available elements in the ith row of CJAC.

MODE ¼ 2
CðiÞ and all available elements in the ith row of CJAC.
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On exit: may be set to a negative value if you wish to terminate the solution to the
current problem, and in this case E04USF/E04USA will terminate with IFAIL set to
MODE.

2: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

3: N – INTEGER Input

On entry: n, the number of variables.

4: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from
which E04USF/E04USA is called.

5: NEEDCðNCNLNÞ – INTEGER array Input

On entry: the indices of the elements of C and/or CJAC that must be evaluated by
CONFUN. If NEEDCðiÞ > 0, then the ith element of C and/or the available elements of
the ith row of CJAC (see argument MODE) must be evaluated at x.

6: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the constraint functions and/or all available
elements of the constraint Jacobian are to be evaluated.

7: CðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: if NEEDCðiÞ > 0 and MODE ¼ 0 or 2, CðiÞ must contain the value of the ith
constraint at x. The remaining elements of C, corresponding to the non-positive
elements of NEEDC, are ignored.

8: CJACðLDCJ;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: is set to a special value.

On exit: if NEEDCðiÞ > 0 and MODE ¼ 1 or 2, the ith row of CJAC must contain the
available elements of the vector rci given by

rci ¼
@ci
@x1

;
@ci
@x2

; . . . ;
@ci
@xn

� �T

;

where
@ci
@xj

is the partial derivative of the ith constraint with respect to the jth variable,

evaluated at the point x. See also the argument NSTATE. The remaining rows of CJAC,
corresponding to non-positive elements of NEEDC, are ignored.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3),
any constant elements may be assigned to CJAC one time only at the start of the
optimization. An element of CJAC that is not subsequently assigned in CONFUN will
retain its initial value throughout. Constant elements may be loaded into CJAC either
before the call to E04USF/E04USA or during the first call to CONFUN (signalled by
the value NSTATE ¼ 1). The ability to preload constants is useful when many Jacobian
elements are identically zero, in which case CJAC may be initialized to zero and
nonzero elements may be reset by CONFUN.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
CJACði; jÞ is set to a constant value, it need not be reset in subsequent calls to
CONFUN, but the value CJACði; jÞ � XðjÞ must nonetheless be added to CðiÞ. For
example, if CJACð1; 1Þ ¼ 2 and CJACð1; 2Þ ¼ �5, then the term 2� Xð1Þ � 5� Xð2Þ
must be included in the definition of Cð1Þ.
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It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of CJAC
are not treated as constant; they are estimated by finite differences, at nontrivial
expense. If you do not supply a value for the optional parameter Difference Interval,
an interval for each element of x is computed automatically at the start of the
optimization. The automatic procedure can usually identify constant elements of CJAC,
which are then computed once only by finite differences.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E04USF/E04USA is calling CONFUN for the first time.
This argument setting allows you to save computation time if certain data must be read
or calculated only once.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN is called with the arguments IUSER and RUSER as supplied to E04USF/
E04USA. You should use the arrays IUSER and RUSER to supply information to
CONFUN.

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04USF/E04USA is called. Arguments denoted as Input must not be
changed by this procedure.

Note: CONFUN should be tested separately before being used in conjunction with E04USF/
E04USA. See also the description of the optional parameter Verify.

14: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate either the ith element of the vector f xð Þ ¼ f1 xð Þ; f2 xð Þ; . . . ; fm xð Þð ÞT or

all m elements of f xð Þ and (optionally) its Jacobian ( ¼ @f
@x

) for a specified n-element vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, M, N, LDFJ, NEEDFI, X, F, FJAC, NSTATE,
IUSER, RUSER)

&

INTEGER MODE, M, N, LDFJ, NEEDFI, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), F(M), FJAC(LDFJ,N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0 and NEEDFI ¼ i, where i > 0
FðiÞ.

MODE ¼ 0 and NEEDFI < 0
F.

MODE ¼ 1 and NEEDFI < 0
All available elements of FJAC.

MODE ¼ 2 and NEEDFI < 0
F and all available elements of FJAC.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem, and in this case E04USF/E04USA will terminate with IFAIL set to
MODE.

2: M – INTEGER Input

On entry: m, the number of subfunctions.
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3: N – INTEGER Input

On entry: n, the number of variables.

4: LDFJ – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from
which E04USF/E04USA is called.

5: NEEDFI – INTEGER Input

On entry: if NEEDFI ¼ i > 0, only the ith element of f xð Þ needs to be evaluated at x;
the remaining elements need not be set. This can result in significant computational
savings when m� n.

6: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which f xð Þ and/or all available elements of its
Jacobian are to be evaluated.

7: FðMÞ – REAL (KIND=nag_wp) array Output

On exit: if MODE ¼ 0 and NEEDFI ¼ i > 0, FðiÞ must contain the value of fi at x.

If MODE ¼ 0 or 2 and NEEDFI < 0, FðiÞ must contain the value of fi at x, for
i ¼ 1; 2; . . . ;m.

8: FJACðLDFJ;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: is set to a special value.

On exit: if MODE ¼ 1 or 2 and NEEDFI < 0, the ith row of FJAC must contain the
available elements of the vector rfi given by

rfi ¼
@fi
@x1

;
@fi
@x2

; . . . ;
@fi
@xn

� �T

;

evaluated at the point x. See also the argument NSTATE.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E04USF/E04USA is calling OBJFUN for the first time.
This argument setting allows you to save computation time if certain data must be read
or calculated only once.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E04USF/
E04USA. You should use the arrays IUSER and RUSER to supply information to
OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04USF/E04USA is called. Arguments denoted as Input must not be
changed by this procedure.

Note: OBJFUN should be tested separately before being used in conjunction with E04USF/
E04USA. See also the description of the optional parameter Verify.

15: ITER – INTEGER Output

On exit: the number of major iterations performed.
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16: ISTATEðNþ NCLINþ NCNLNÞ – INTEGER array Input/Output

On entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, the elements of ISTATE corresponding
to the bounds and linear constraints define the initial working set for the procedure that finds a
feasible point for the linear constraints and bounds. The active set at the conclusion of this
procedure and the elements of ISTATE corresponding to nonlinear constraints then define the
initial working set for the first QP subproblem. More precisely, the first n elements of ISTATE
refer to the upper and lower bounds on the variables, the next nL elements refer to the upper and
lower bounds on ALx, and the next nN elements refer to the upper and lower bounds on c xð Þ.
Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ Meaning

0 The corresponding constraint is not in the initial QP working set.

1 This inequality constraint should be in the working set at its lower bound.

2 This inequality constraint should be in the working set at its upper bound.

3 This equality constraint should be in the initial working set. This value must not be
specified unless BLðjÞ ¼ BUðjÞ.

The values �2, �1 and 4 are also acceptable but will be modified by the routine. If E04USF/
E04USA has been called previously with the same values of N, NCLIN and NCNLN, ISTATE
already contains satisfactory information. (See also the description of the optional parameter
Warm Start.) The routine also adjusts (if necessary) the values supplied in X to be consistent
with ISTATE.

Constraint: �2 � ISTATEðjÞ � 4, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN.

On exit: the status of the constraints in the QP working set at the point returned in X. The
significance of each possible value of ISTATEðjÞ is as follows:

ISTATEðjÞ Meaning

�2 This constraint violates its lower bound by more than the appropriate feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance and
Nonlinear Feasibility Tolerance). This value can occur only when no feasible
point can be found for a QP subproblem.

�1 This constraint violates its upper bound by more than the appropriate feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance and
Nonlinear Feasibility Tolerance). This value can occur only when no feasible
point can be found for a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP
working set.

1 This inequality constraint is included in the QP working set at its lower bound.

2 This inequality constraint is included in the QP working set at its upper bound.

3 This constraint is included in the QP working set as an equality. This value of
ISTATE can occur only when BLðjÞ ¼ BUðjÞ.

17: Cðmax 1;NCNLNð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: if NCNLN > 0, CðiÞ contains the value of the ith nonlinear constraint function ci at the
final iterate, for i ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0, the array C is not referenced.
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18: CJACðLDCJ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array CJAC must be at least N if NCNLN > 0, and at least 1
otherwise.

On entry: in general, CJAC need not be initialized before the call to E04USF/E04USA. However,
if Derivative Level ¼ 3, you may optionally set the constant elements of CJAC (see argument
NSTATE in the description of CONFUN). Such constant elements need not be re-assigned on
subsequent calls to CONFUN.

On exit: if NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear constraint functions
at the final iterate, i.e., CJACði; jÞ contains the partial derivative of the ith constraint function
with respect to the jth variable, for i ¼ 1; 2; . . . ;NCNLN and j ¼ 1; 2; . . . ;N. (See the discussion
of argument CJAC under CONFUN.)

If NCNLN ¼ 0, the array CJAC is not referenced.

19: FðMÞ – REAL (KIND=nag_wp) array Output

On exit: FðiÞ contains the value of the ith function fi at the final iterate, for i ¼ 1; 2; . . . ;M.

20: FJACðLDFJ;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: in general, FJAC need not be initialized before the call to E04USF/E04USA. However,
if Derivative Level ¼ 3, you may optionally set the constant elements of FJAC (see argument
NSTATE in the description of OBJFUN). Such constant elements need not be re-assigned on
subsequent calls to OBJFUN.

On exit: the Jacobian matrix of the functions f1; f2; . . . ; fm at the final iterate, i.e., FJACði; jÞ
contains the partial derivative of the ith function with respect to the jth variable, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N. (See also the discussion of argument FJAC under OBJFUN.)

21: CLAMDAðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, CLAMDAðjÞ must contain a multiplier
estimate for each nonlinear constraint with a sign that matches the status of the constraint
specified by the ISTATE array, for j ¼ Nþ NCLINþ 1; . . . ;Nþ NCLINþ NCNLN. The
remaining elements need not be set. Note that if the jth constraint is defined as ‘inactive’ by
the initial value of the ISTATE array (i.e., ISTATEðjÞ ¼ 0), CLAMDAðjÞ should be zero; if the
jth constraint is an inequality active at its lower bound (i.e., ISTATEðjÞ ¼ 1), CLAMDAðjÞ
should be non-negative; if the jth constraint is an inequality active at its upper bound (i.e.,
ISTATEðjÞ ¼ 2, CLAMDAðjÞ should be non-positive. If necessary, the routine will modify
CLAMDA to match these rules.

On exit: the values of the QP multipliers from the last QP subproblem. CLAMDAðjÞ should be
non-negative if ISTATEðjÞ ¼ 1 and non-positive if ISTATEðjÞ ¼ 2.

22: OBJF – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at the final iterate.

23: RðLDR;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: need not be initialized if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, R must contain the upper triangular
Cholesky factor R of the initial approximation of the Hessian of the Lagrangian function, with
the variables in the natural order. Elements not in the upper triangular part of R are assumed to
be zero and need not be assigned.

On exit: if Hessian ¼ NO, R contains the upper triangular Cholesky factor R of QT ~HQ, an
estimate of the transformed and reordered Hessian of the Lagrangian at x (see (6) in E04UFF/
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E04UFA). If Hessian ¼ YES, R contains the upper triangular Cholesky factor R of H, the
approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.

24: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the solution.

On exit: the final estimate of the solution.

25: IWORKðLIWORKÞ – INTEGER array Workspace
26: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
E04USF/E04USA is called.

Constraint: LIWORK � 3� Nþ NCLINþ 2� NCNLN.

27: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
28: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
E04USF/E04USA is called.

Constraints:

if NCNLN ¼ 0 and NCLIN ¼ 0, LWORK � 20� NþM� Nþ 3ð Þ;
if NCNLN ¼ 0 and NCLIN > 0, LWORK � 2� N2 þ 20� Nþ 11� NCLINþ
M� Nþ 3ð Þ;
if NCNLN > 0 and NCLIN � 0, LWORK � 2� N2 þ N� NCLINþ 2� N�
NCNLNþ 20� Nþ 11� NCLINþ 21� NCNLNþM� Nþ 3ð Þ.

The amounts of workspace provided and required are (by default) output on the current advisory
message unit (as defined by X04ABF). As an alternative to computing LIWORK and LWORK
from the formulas given above, you may prefer to obtain appropriate values from the output of a
preliminary run with LIWORK and LWORK set to 1. (E04USF/E04USA will then terminate with
IFAIL ¼ 9.)

29: IUSERð�Þ – INTEGER array User Workspace
30: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04USF/E04USA, but are passed directly to CONFUN and
OBJFUN and should be used to pass information to these routines.

31: IFAIL – INTEGER Input/Output

Note: for E04USA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04USF/E04USA returns with IFAIL ¼ 0 if the iterates have converged to a point x that satisfies
the first-order Kuhn–Tucker conditions (see Section 11.1 in E04UFF/E04UFA) to the accuracy
requested by the optional parameter Optimality Tolerance (default value ¼ �0:8r , where �r is the
value of the optional parameter Function Precision (default value ¼ �0:9, where � is the machine
precision)), i.e., the projected gradient and active constraint residuals are negligible at x.
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You should check whether the following four conditions are satisfied:

(i) the final value of Norm Gz (see Section 9.1) is significantly less than that at the starting
point;

(ii) during the final major iterations, the values of Step and Mnr (see Section 9.1) are both one;

(iii) the last few values of both Norm Gz and Violtn (see Section 9.1) become small at a fast
linear rate; and

(iv) Cond Hz (see Section 9.1) is small.

If all these conditions hold, x is almost certainly a local minimum of (1).

Note: the following are additional arguments for specific use with E04USA. Users of E04USF therefore
need not read the remainder of this description.

32: LWSAVð120Þ – LOGICAL array Communication Array
33: IWSAVð610Þ – INTEGER array Communication Array
34: RWSAVð475Þ – REAL (KIND=nag_wp) array Communication Array

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the
routines E04USA, E04UQA or E04URA.

35: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04USF/E04USA may return useful information for one or more of the following detected errors
or warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04USF/E04USA because you set MODE < 0
in OBJFUN or CONFUN. The value of IFAIL will be the same as your setting of MODE.

IFAIL ¼ 1

The final iterate x satisfies the first-order Kuhn–Tucker conditions (see Section 11.1 in E04UFF/
E04UFA) to the accuracy requested, but the sequence of iterates has not yet converged. E04USF/
E04USA was terminated because no further improvement could be made in the merit function
(see Section 9.1).

This value of IFAIL may occur in several circumstances. The most common situation is that you
ask for a solution with accuracy that is not attainable with the given precision of the problem (as
specified by the optional parameter Function Precision (default value ¼ �0:9, where � is the
machine precision)). This condition will also occur if, by chance, an iterate is an ‘exact’ Kuhn–
Tucker point, but the change in the variables was significant at the previous iteration. (This
situation often happens when minimizing very simple functions, such as quadratics.)

If the four conditions listed in Section 5 for IFAIL ¼ 0 are satisfied, x is likely to be a solution of
(1) even if IFAIL ¼ 1.

IFAIL ¼ 2

E04USF/E04USA has terminated without finding a feasible point for the linear constraints and
bounds, which means that either no feasible point exists for the given value of the optional
parameter Linear Feasibility Tolerance (default value ¼

ffiffi
�
p

, where � is the machine precision),
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or no feasible point could be found in the number of iterations specified by the optional
parameter Minor Iteration Limit (default value ¼ max 50; 3 nþ nL þ nNð Þð Þ). You should check
that there are no constraint redundancies. If the data for the constraints are accurate only to an
absolute precision �, you should ensure that the value of the optional parameter Linear
Feasibility Tolerance is greater than �. For example, if all elements of AL are of order unity and
are accurate to only three decimal places, Linear Feasibility Tolerance should be at least 10�3.

IFAIL ¼ 3

No feasible point could be found for the nonlinear constraints. The problem may have no feasible
solution. This means that there has been a sequence of QP subproblems for which no feasible
point could be found (indicated by I at the end of each line of intermediate printout produced by
the major iterations; see Section 9.1). This behaviour will occur if there is no feasible point for
the nonlinear constraints. (However, there is no general test that can determine whether a feasible
point exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the very
first major iteration, it is highly likely that no feasible point exists. If infeasibilities occur when
earlier subproblems have been feasible, small constraint inconsistencies may be present. You
should check the validity of constraints with negative values of ISTATE. If you are convinced
that a feasible point does exist, E04USF/E04USA should be restarted at a different starting point.

IFAIL ¼ 4

The limiting number of iterations (as determined by the optional parameter Major Iteration
Limit (default value ¼ max 50; 3 nþ nLð Þ þ 10nNð Þ) has been reached.

If the algorithm appears to be making satisfactory progress, then Major Iteration Limit may be
too small. If so, either increase its value and rerun E04USF/E04USA or, alternatively, rerun
E04USF/E04USA using the optional parameter Warm Start. If the algorithm seems to be
making little or no progress however, then you should check for incorrect gradients or ill-
conditioning as described under IFAIL ¼ 6.

Note that ill-conditioning in the working set is sometimes resolved automatically by the
algorithm, in which case performing additional iterations may be helpful. However, ill-
conditioning in the Hessian approximation tends to persist once it has begun, so that allowing
additional iterations without altering R is usually inadvisable. If the quasi-Newton update of the
Hessian approximation was reset during the latter major iterations (i.e., an R occurs at the end of
each line of intermediate printout; see Section 9.1), it may be worthwhile to try a Warm Start at
the final point as suggested above.

IFAIL ¼ 5

Not used by this routine.

IFAIL ¼ 6

x does not satisfy the first-order Kuhn–Tucker conditions (see Section 11.1 in E04UFF/
E04UFA), and no improved point for the merit function (see Section 9.1) could be found during
the final linesearch.

This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value of
the optional parameter Optimality Tolerance (default value ¼ �0:8r , where �r is the value of the
optional parameter Function Precision (default value ¼ �0:9, where � is the machine precision))
is too small. In this case you should apply the four tests described under IFAIL ¼ 0 to determine
whether or not the final solution is acceptable (see Gill et al. (1981), for a discussion of the
attainable accuracy).

If many iterations have occurred in which essentially no progress has been made and E04USF/
E04USA has failed completely to move from the initial point then user-supplied subroutines
OBJFUN and/or CONFUN may be incorrect. You should refer to comments under IFAIL ¼ 7
and check the gradients using the optional parameter Verify (default value ¼ 0). Unfortunately,
there may be small errors in the objective and constraint gradients that cannot be detected by the
verification process. Finite difference approximations to first derivatives are catastrophically
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affected by even small inaccuracies. An indication of this situation is a dramatic alteration in the
iterates if the finite difference interval is altered. One might also suspect this type of error if a
switch is made to central differences even when Norm Gz and Violtn (see Section 9.1) are large.

Another possibility is that the search direction has become inaccurate because of ill-conditioning
in the Hessian approximation or the matrix of constraints in the working set; either form of ill-
conditioning tends to be reflected in large values of Mnr (the number of iterations required to
solve each QP subproblem; see Section 9.1).

If the condition estimate of the projected Hessian (Cond Hz; see Section 13) is extremely large, it
may be worthwhile rerunning E04USF/E04USA from the final point with the optional parameter
Warm Start. In this situation, ISTATE and CLAMDA should be left unaltered and R should be
reset to the identity matrix.

If the matrix of constraints in the working set is ill-conditioned (i.e., Cond T is extremely large;
see Section 13), it may be helpful to run E04USF/E04USA with a relaxed value of the optional
parameter Feasibility Tolerance (default value ¼

ffiffi
�
p

, where � is the machine precision).
(Constraint dependencies are often indicated by wide variations in size in the diagonal elements
of the matrix T , whose diagonals will be printed if Major Print Level � 30).

IFAIL ¼ 7

The user-supplied derivatives of the subfunctions and/or nonlinear constraints appear to be
incorrect.

Large errors were found in the derivatives of the subfunctions and/or nonlinear constraints. This
value of IFAIL will occur if the verification process indicated that at least one Jacobian element
had no correct figures. You should refer to the printed output to determine which elements are
suspected to be in error.

As a first-step, you should check that the code for the subfunction and constraint values is correct
– for example, by computing the subfunctions at a point where the correct value of F xð Þ is
known. However, care should be taken that the chosen point fully tests the evaluation of the
subfunctions. It is remarkable how often the values x ¼ 0 or x ¼ 1 are used to test function
evaluation procedures, and how often the special properties of these numbers make the test
meaningless.

Special care should be used in this test if computation of the subfunctions involves subsidiary
data communicated in COMMON storage. Although the first evaluation of the subfunctions may
be correct, subsequent calculations may be in error because some of the subsidiary data has
accidentally been overwritten.

Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed before each function evaluation.

Errors in programming the subfunctions may be quite subtle in that the subfunction values are
‘almost’ correct. For example, a subfunction may not be accurate to full precision because of the
inaccurate calculation of a subsidiary quantity, or the limited accuracy of data upon which the
subfunction depends. A common error on machines where numerical calculations are usually
performed in double precision is to include even one single precision constant in the calculation
of the subfunction; since some compilers do not convert such constants to double precision, half
the correct figures may be lost by such a seemingly trivial error.

IFAIL ¼ 8

Not used by this routine.

IFAIL ¼ 9

An input argument is invalid.

overflow

If overflow occurs then either an element of C is very large, or the singular values or singular
vectors have been incorrectly supplied.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 on exit, then the vector returned in the array X is an estimate of the solution to an
accuracy of approximately Optimality Tolerance (default value ¼ �0:8, where � is the machine
precision).

8 Parallelism and Performance

E04USF/E04USA is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

E04USF/E04USA makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Description of the Printed Output

This section describes the intermediate printout and final printout produced by E04USF/E04USA. The
intermediate printout is a subset of the monitoring information produced by the routine at every
iteration (see Section 13). You can control the level of printed output (see the description of the
optional parameter Major Print Level). Note that the intermediate printout and final printout are
produced only if Major Print Level � 10 (the default for E04USF, by default no output is produced by
E04USA). (by default no output is produced by E04USF).

The following line of summary output ( < 80 characters) is produced at every major iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11 in E04UFF/E04UFA).

Note that Mnr may be greater than the optional parameter Minor Iteration Limit
if some iterations are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.
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Merit Function is the value of the augmented Lagrangian merit function (see (12) in E04UFF/
E04UFA) at the current iterate. This function will decrease at each iteration
unless it was necessary to increase the penalty parameters (see Section 11.3 in
E04UFF/E04UFA). As the solution is approached, Merit Function will
converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of
the current output line) then the merit function is a large multiple of the
constraint violations, weighted by the penalty parameters. During a sequence of
major iterations with infeasible subproblems, the sequence of Merit Function
values will decrease monotonically until either a feasible subproblem is obtained
or E04USF/E04USA terminates with IFAIL ¼ 3 (no feasible point could be found
for the nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN ¼ 0) then this entry
contains Objective, the value of the objective function F xð Þ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is ZTgFRk k, the Euclidean norm of the projected gradient (see Section 11.2 in
E04UFF/E04UFA). Norm Gz will be approximately zero in the neighbourhood of
a solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Violtn will be
approximately zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ ¼ ZTHFRZ ¼ RT

ZRZ ; see (6) and (11) in E04UFF/E04UFA). The larger
this number, the more difficult the problem.

M is printed if the quasi-Newton update has been modified to ensure that the
Hessian approximation is positive definite (see Section 11.4 in E04UFF/
E04UFA).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified
objective and constraint gradients. If the value of Step is zero then the switch to
central differences was made because no lower point could be found in the
linesearch. (In this case, the QP subproblem is resolved with the central
difference gradient and Jacobian.) If the value of Step is nonzero then central
differences were computed because Norm Gz and Violtn imply that x is close to
a Kuhn–Tucker point (see Section 11.1 in E04UFF/E04UFA).

L is printed if the linesearch has produced a relative change in x greater than the
value defined by the optional parameter Step Limit. If this output occurs
frequently during later iterations of the run, optional parameter Step Limit should
be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly
conditioned then the approximate Hessian is refactorized using column
interchanges. If necessary, R is modified so that its diagonal condition estimator
is bounded.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if
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temporarily fixed at its current value). If Value lies outside the upper or lower
bounds by more than the Feasibility Tolerance, State will be ++ or --
respectively.

A key is sometimes printed before State.

A Alternative optimum possible. The variable is active at one of its bounds,
but its Lagrange multiplier is essentially zero. This means that if the
variable were allowed to start moving away from its bound then there
would be no change to the objective function. The values of the other free
variables might change, giving a genuine alternative solution. However, if
there are any degenerate variables (labelled D), the actual change might
prove to be zero, since one of them could encounter a bound immediately.
In either case the values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is
FR unless BLðjÞ � �bigbnd and BUðjÞ � bigbnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL and
non-positive if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ are replaced by BLðnþ jÞ and
BUðnþ jÞ respectively, and with the following changes in the heading:

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL, of the linear constraint.

N Con gives the name (N) and index (j � nL), for j ¼ nL þ 1; . . . ; nL þ nN , of the
nonlinear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This example is based on Problem 57 in Hock and Schittkowski (1981) and involves the minimization
of the sum of squares function

F xð Þ ¼ 1
2

X44
i¼1

yi � fi xð Þð Þ2;

where

fi xð Þ ¼ x1 þ 0:49� x1ð Þe�x2 ai�8ð Þ

and
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i yi ai i yi ai
1 0:49 8 23 0:41 22
2 0:49 8 24 0:40 22
3 0:48 10 25 0:42 24
4 0:47 10 26 0:40 24
5 0:48 10 27 0:40 24
6 0:47 10 28 0:41 26
7 0:46 12 29 0:40 26
8 0:46 12 30 0:41 26
9 0:45 12 31 0:41 28

10 0:43 12 32 0:40 28
11 0:45 14 33 0:40 30
12 0:43 14 34 0:40 30
13 0:43 14 35 0:38 30
14 0:44 16 36 0:41 32
15 0:43 16 37 0:40 32
16 0:43 16 38 0:40 34
17 0:46 18 39 0:41 36
18 0:45 18 40 0:38 36
19 0:42 20 41 0:40 38
20 0:42 20 42 0:40 38
21 0:43 20 43 0:39 40
22 0:41 22 44 0:39 42

subject to the bounds

x1 � 0:4
x2 � �4:0

to the general linear constraint

x1 þ x2 � 1:0

and to the nonlinear constraint

0:49x2 � x1x2 � 0:09:

The initial point, which is infeasible, is

x0 ¼ 0:4; 0:0ð ÞT

and F x0ð Þ ¼ 0:002241.

The optimal solution (to five figures) is

x� ¼ 0:41995; 1:28484ð ÞT;

and F x�ð Þ ¼ 0:01423. The nonlinear constraint is active at the solution.

The document for E04UQF/E04UQA includes an example program to solve the same problem using
some of the optional parameters described in Section 12.

10.1 Program Text

the following program illustrates the use of E04USF. An equivalent program illustrating the use of
E04USA is available with the supplied Library and is also available from the NAG web site.

! E04USF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04usfe_mod

! E04USF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, objfun
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! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine objfun(mode,m,n,ldfj,needfi,x,f,fjac,nstate,iuser,ruser)

! Routine to evaluate the subfunctions and their 1st derivatives.

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: a(44) = (/8.0E0_nag_wp,8.0E0_nag_wp, &

10.0E0_nag_wp,10.0E0_nag_wp, &
10.0E0_nag_wp,10.0E0_nag_wp, &
12.0E0_nag_wp,12.0E0_nag_wp, &
12.0E0_nag_wp,12.0E0_nag_wp, &
14.0E0_nag_wp,14.0E0_nag_wp, &
14.0E0_nag_wp,16.0E0_nag_wp, &
16.0E0_nag_wp,16.0E0_nag_wp, &
18.0E0_nag_wp,18.0E0_nag_wp, &
20.0E0_nag_wp,20.0E0_nag_wp, &
20.0E0_nag_wp,22.0E0_nag_wp, &
22.0E0_nag_wp,22.0E0_nag_wp, &
24.0E0_nag_wp,24.0E0_nag_wp, &
24.0E0_nag_wp,26.0E0_nag_wp, &
26.0E0_nag_wp,26.0E0_nag_wp, &
28.0E0_nag_wp,28.0E0_nag_wp, &
30.0E0_nag_wp,30.0E0_nag_wp, &
30.0E0_nag_wp,32.0E0_nag_wp, &
32.0E0_nag_wp,34.0E0_nag_wp, &
36.0E0_nag_wp,36.0E0_nag_wp, &
38.0E0_nag_wp,38.0E0_nag_wp, &
40.0E0_nag_wp,42.0E0_nag_wp/)

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfj, m, n, needfi, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(m)
Real (Kind=nag_wp), Intent (Inout) :: fjac(ldfj,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: ai, temp, x1, x2
Integer :: i
Logical :: mode02, mode12

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
x1 = x(1)
x2 = x(2)

If (mode==0 .And. needfi>0) Then
f(needfi) = x1 + (0.49E0_nag_wp-x1)*exp(-x2*(a(needfi)-8.0E0_nag_wp) &

)
Else

mode02 = (mode==0 .Or. mode==2)
mode12 = (mode==1 .Or. mode==2)

Do i = 1, m

ai = a(i)
temp = exp(-x2*(ai-8.0E0_nag_wp))

If (mode02) Then
f(i) = x1 + (0.49E0_nag_wp-x1)*temp

End If

If (mode12) Then
fjac(i,1) = 1.0E0_nag_wp - temp
fjac(i,2) = -(0.49E0_nag_wp-x1)*(ai-8.0E0_nag_wp)*temp

End If

End Do
End If
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Return

End Subroutine objfun
Subroutine confun(mode,ncnln,n,ldcj,needc,x,c,cjac,nstate,iuser,ruser)

! Routine to evaluate the nonlinear constraint and its 1st
! derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcj, n, ncnln, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjac(ldcj,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncnln)

! .. Executable Statements ..
If (nstate==1) Then

! First call to CONFUN. Set all Jacobian elements to zero.
! Note that this will only work when ’Derivative Level = 3’
! (the default; see Section 11.2).

cjac(1:ncnln,1:n) = 0.0E0_nag_wp
End If

If (needc(1)>0) Then

If (mode==0 .Or. mode==2) Then
c(1) = -0.09E0_nag_wp - x(1)*x(2) + 0.49E0_nag_wp*x(2)

End If

If (mode==1 .Or. mode==2) Then
cjac(1,1) = -x(2)
cjac(1,2) = -x(1) + 0.49E0_nag_wp

End If

End If

Return

End Subroutine confun
End Module e04usfe_mod
Program e04usfe

! E04USF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04usf, nag_wp
Use e04usfe_mod, Only: confun, nin, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: objf
Integer :: i, ifail, iter, lda, ldcj, ldfj, &

ldr, liwork, lwork, m, n, nclin, &
ncnln, sda, sdcjac

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), c(:), &

cjac(:,:), clamda(:), f(:), &
fjac(:,:), r(:,:), work(:), x(:), &
y(:)

Real (Kind=nag_wp) :: user(1)
Integer, Allocatable :: istate(:), iwork(:)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04USF Example Program Results’
Flush (nout)
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! Skip heading in data file
Read (nin,*)

Read (nin,*) m, n
Read (nin,*) nclin, ncnln
liwork = 3*n + nclin + 2*ncnln
lda = max(1,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

ldcj = max(1,ncnln)

If (ncnln>0) Then
sdcjac = n

Else
sdcjac = 1

End If

ldfj = m
ldr = n

If (ncnln==0 .And. nclin>0) Then
lwork = 2*n**2 + 20*n + 11*nclin + m*(n+3)

Else If (ncnln>0 .And. nclin>=0) Then
lwork = 2*n**2 + n*nclin + 2*n*ncnln + 20*n + 11*nclin + 21*ncnln + &

m*(n+3)
Else

lwork = 20*n + m*(n+3)
End If

Allocate (istate(n+nclin+ncnln),iwork(liwork),a(lda,sda), &
bl(n+nclin+ncnln),bu(n+nclin+ncnln),y(m),c(max(1, &
ncnln)),cjac(ldcj,sdcjac),f(m),fjac(ldfj,n),clamda(n+nclin+ncnln), &
r(ldr,n),x(n),work(lwork))

If (nclin>0) Then
Read (nin,*)(a(i,1:sda),i=1,nclin)

End If

Read (nin,*) y(1:m)
Read (nin,*) bl(1:(n+nclin+ncnln))
Read (nin,*) bu(1:(n+nclin+ncnln))
Read (nin,*) x(1:n)

! Solve the problem

ifail = 0
Call e04usf(m,n,nclin,ncnln,lda,ldcj,ldfj,ldr,a,bl,bu,y,confun,objfun, &

iter,istate,c,cjac,f,fjac,clamda,objf,r,x,iwork,liwork,work,lwork, &
iuser,user,ifail)

End Program e04usfe

10.2 Program Data

E04USF Example Program Data
44 2 :Values of M and N
1 1 :Values of NCLIN and NCNLN
1.0 1.0 :End of matrix A
0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45
0.43 0.43 0.44 0.43 0.43 0.46 0.45 0.42 0.42 0.43 0.41
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0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41 0.40 0.40
0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39 :End of Y
0.4 -4.0 1.0 0.0 :End of BL
1.0E+25 1.0E+25 1.0E+25 1.0E+25 :End of BU
0.4 0.0 :End of X

10.3 Program Results

E04USF Example Program Results

*** E04USF

Parameters
----------

Linear constraints..... 1 Variables.............. 2
Nonlinear constraints.. 1 Subfunctions........... 44

Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16
Step limit............. 2.00E+00 Hessian................ NO

Linear feasibility..... 1.05E-08 Crash tolerance........ 1.00E-02
Nonlinear feasibility.. 1.05E-08 Optimality tolerance... 3.26E-12
Line search tolerance.. 9.00E-01 Function precision..... 4.37E-15

Derivative level....... 3 Monitoring file........ -1
Verify level........... 0

Major iterations limit. 50 Major print level...... 10
Minor iterations limit. 50 Minor print level...... 0

J’J initial Hessian.... Reset frequency........ 2

Workspace provided is IWORK( 9), WORK( 306).
To solve problem we need IWORK( 9), WORK( 306).

Verification of the constraint gradients.
-----------------------------------------

The constraint Jacobian seems to be ok.

The largest relative error was 1.89E-08 in constraint 1

Verification of the objective gradients.
----------------------------------------

The objective Jacobian seems to be ok.

The largest relative error was 1.04E-08 in subfunction 3

Maj Mnr Step Merit Function Norm Gz Violtn Cond Hz
0 2 0.0E+00 2.224070E-02 8.5E-02 3.6E-02 1.0E+00
1 1 1.0E+00 1.455402E-02 1.5E-03 9.8E-03 1.0E+00
2 1 1.0E+00 1.436491E-02 4.9E-03 7.2E-04 1.0E+00
3 1 1.0E+00 1.427013E-02 2.9E-03 9.2E-06 1.0E+00
4 1 1.0E+00 1.422989E-02 1.6E-04 3.6E-05 1.0E+00
5 1 1.0E+00 1.422983E-02 5.4E-07 6.4E-08 1.0E+00
6 1 1.0E+00 1.422983E-02 3.4E-09 9.8E-13 1.0E+00

Exit from NP problem after 6 major iterations,
8 minor iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack
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V 1 FR 0.419953 0.400000 None . 1.9953E-02
V 2 FR 1.28485 -4.00000 None . 5.285

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 FR 1.70480 1.00000 None . 0.7048

N Con State Value Lower Bound Upper Bound Lagr Mult Slack

N 1 LL -9.767742E-13 . None 3.3358E-02 -9.7677E-13

Exit E04USF - Optimal solution found.

Final objective value = 0.1422983E-01

Note: the remainder of this document is intended for more advanced users. Section 12 describes the
optional parameters which may be set by calls to E04UQF/E04UQA and/or E04URF/E04URA.
Section 13 describes the quantities which can be requested to monitor the course of the computation.

11 Algorithmic Details

E04USF/E04USA implements a sequential quadratic programming (SQP) method incorporating an
augmented Lagrangian merit function and a BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-
Newton approximation to the Hessian of the Lagrangian, and is based on E04WDF. The documents for
E04NCF/E04NCA, E04UFF/E04UFA and E04WDF should be consulted for details of the method.

12 Optional Parameters

Several optional parameters in E04USF/E04USA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal arguments of E04USF/E04USA these optional
parameters have associated default values that are appropriate for most problems. Therefore you need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Central Difference Interval

Cold Start

Crash Tolerance

Defaults

Derivative Level

Difference Interval

Feasibility Tolerance

Function Precision

Hessian

Infinite Bound Size

Infinite Step Size

Iteration Limit

Iters

Itns

JTJ Initial Hessian

Linear Feasibility Tolerance
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Line Search Tolerance

List

Major Iteration Limit

Major Print Level

Minor Iteration Limit

Minor Print Level

Monitoring File

Nolist

Nonlinear Feasibility Tolerance

Optimality Tolerance

Print Level

Reset Frequency

Start Constraint Check At Variable

Start Objective Check At Variable

Step Limit

Stop Constraint Check At Variable

Stop Objective Check At Variable

Unit Initial Hessian

Verify

Verify Constraint Gradients

Verify Gradients

Verify Level

Verify Objective Gradients

Warm Start

Optional parameters may be specified by calling one, or both, of E04UQF/E04UQA and E04URF/
E04URA before a call to E04USF/E04USA.

E04UQF/E04UQA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print level = 1

End

The call

CALL E04UQF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04UQF/
E04UQA should be consulted for a full description of this method of supplying optional parameters.

E04URF/E04URA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04URF (’Print Level = 1’)

E04URF/E04URA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by E04USF/E04USA (unless they define invalid values) and so remain in
effect for subsequent calls to E04USF/E04USA, unless altered by you.

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.
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The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
and �r denotes the relative precision of the objective function Function Precision.

Keywords and character values are case and white space insensitive.

Further details of other quantities not explicitly defined in this section may be found by consulting the
document for E04UFF/E04UFA.

Central Difference Interval r Default values are computed

If the algorithm switches to central differences because the forward-difference approximation is not
sufficiently accurate, the value of r is used as the difference interval for every element of x. The switch
to central differences is indicated by C at the end of each line of intermediate printout produced by the
major iterations (see Section 9.1). The use of finite differences is discussed further under the optional
parameter Difference Interval.

If you supply a value for this optional parameter, a small value between 0:0 and 1:0 is appropriate.

Cold Start Default
Warm Start

This option controls the specification of the initial working set in both the procedure for finding a
feasible point for the linear constraints and bounds, and in the first QP subproblem thereafter. With a
Cold Start, the first working set is chosen by E04USF/E04USA based on the values of the variables
and constraints at the initial point. Broadly speaking, the initial working set will include equality
constraints and bounds or inequality constraints that violate or ‘nearly’ satisfy their bounds (to within
Crash Tolerance).

With a Warm Start, you must set the ISTATE array and define CLAMDA and R as discussed in
Section 5. ISTATE values associated with bounds and linear constraints determine the initial working
set of the procedure to find a feasible point with respect to the bounds and linear constraints. ISTATE
values associated with nonlinear constraints determine the initial working set of the first QP subproblem
after such a feasible point has been found. E04USF/E04USA will override your specification of ISTATE
if necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any
elements of ISTATE which are set to �2, �1 or 4 will be reset to zero, as will any elements which are
set to 3 when the corresponding elements of BL and BU are not equal. A Warm Start will be
advantageous if a good estimate of the initial working set is available – for example, when E04USF/
E04USA is called repeatedly to solve related problems.

Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
E04USF/E04USA selects an initial working set. If 0 � r � 1, the initial working set will include (if
possible) bounds or general inequality constraints that lie within r of their bounds. In particular, a

constraint of the form aTj x � l will be included in the initial working set if aTj x� l
			 			 � r 1þ lj jð Þ. If

r < 0 or r > 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Derivative Level i Default ¼ 3

This parameter indicates which derivatives are provided in user-supplied subroutines OBJFUN and
CONFUN. The possible choices for i are the following.
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i Meaning

3 All elements of the objective Jacobian and the constraint Jacobian are provided by you.

2 All elements of the constraint Jacobian are provided, but some elements of the objective Jacobian
are not specified by you.

1 All elements of the objective Jacobian are provided, but some elements of the constraint Jacobian
are not specified by you.

0 Some elements of both the objective Jacobian and the constraint Jacobian are not specified by you.

The value i ¼ 3 should be used whenever possible, since E04USF/E04USA is more reliable (and will
usually be more efficient) when all derivatives are exact.

If i ¼ 0 or 2, E04USF/E04USA will approximate unspecified elements of the objective Jacobian, using
finite differences. The computation of finite difference approximations usually increases the total run-
time, since a call to OBJFUN is required for each unspecified element. Furthermore, less accuracy can
be attained in the solution (see Chapter 8 of Gill et al. (1981), for a discussion of limiting accuracy).

If i ¼ 0 or 1, E04USF/E04USA will approximate unspecified elements of the constraint Jacobian. One
call to CONFUN is needed for each variable for which partial derivatives are not available. For
example, if the constraint Jacobian has the form

� � � �
� ? ? �
� � ? �
� � � �

0B@
1CA

where ‘�’ indicates an element provided by you and ‘?’ indicates an unspecified element, E04USF/
E04USA will call CONFUN twice: once to estimate the missing element in column 2, and again to
estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they require no
calls to CONFUN.)

At times, central differences are used rather than forward differences, in which case twice as many calls
to OBJFUN and CONFUN are needed. (The switch to central differences is not under your control.)

If i < 0 or i > 3, the default value is used.

Difference Interval r Default values are computed

This option defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional
parameter Verify).

(b) For estimating unspecified elements of the objective and/or constraint Jacobian matrix.

In general, a derivative with respect to the jth variable is approximated using the interval �j, where
�j ¼ r 1þ x̂j

		 		� �
, with x̂ the first point feasible with respect to the bounds and linear constraints. If the

functions are well scaled, the resulting derivative approximation should be accurate to O rð Þ. See Gill et
al. (1981) for a discussion of the accuracy in finite difference approximations.

If a difference interval is not specified, a finite difference interval will be computed automatically for
each variable by a procedure that requires up to six calls of CONFUN and OBJFUN for each element.
This option is recommended if the function is badly scaled or you wish to have E04USF/E04USA
determine constant elements in the objective and constraint gradients (see the descriptions of CONFUN
and OBJFUN in Section 5).

If you supply a value for this optional parameter, a small value between 0:0 and 1:0 is appropriate.

Feasibility Tolerance r Default ¼
ffiffi
�
p

The scalar r defines the maximum acceptable absolute violations in linear and nonlinear constraints at a
‘feasible’ point; i.e., a constraint is considered satisfied if its violation does not exceed r. If r < � or
r � 1, the default value is used. Using this keyword sets both optional parameters Linear Feasibility
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Tolerance and Nonlinear Feasibility Tolerance to r, if � � r < 1. (Additional details are given under
the descriptions of these optional parameters.)

Function Precision r Default ¼ �0:9

This parameter defines �r, which is intended to be a measure of the accuracy with which the problem
functions F xð Þ and c xð Þ can be computed. If r < � or r � 1, the default value is used.

The value of �r should reflect the relative precision of 1þ F xð Þj j; i.e., �r acts as a relative precision
when Fj j is large and as an absolute precision when Fj j is small. For example, if F xð Þ is typically of
order 1000 and the first six significant digits are known to be correct, an appropriate value for �r would
be 10�6. In contrast, if F xð Þ is typically of order 10�4 and the first six significant digits are known to be
correct, an appropriate value for �r would be 10�10. The choice of �r can be quite complicated for badly
scaled problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However, when the
accuracy of the computed function values is known to be significantly worse than full precision, the
value of �r should be large enough so that E04USF/E04USA will not attempt to distinguish between
function values that differ by less than the error inherent in the calculation.

Hessian No Default ¼ NO

This option controls the contents of the upper triangular matrix R (see Section 5). E04USF/E04USA
works exclusively with the transformed and reordered Hessian HQ, and hence extra computation is
required to form the Hessian itself. If Hessian ¼ NO, R contains the Cholesky factor of the transformed
and reordered Hessian. If Hessian ¼ YES, the Cholesky factor of the approximate Hessian itself is
formed and stored in R. You should select Hessian ¼ YES if a Warm Start will be used for the next
call to E04USF/E04USA.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r < 0, the default value is used.

Infinite Step Size r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that is treated as a step to an unbounded
solution. If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

JTJ Initial Hessian Default
Unit Initial Hessian

This option controls the initial value of the upper triangular matrix R. If J denotes the objective
Jacobian matrix rf xð Þ, then JTJ is often a good approximation to the objective Hessian matrix
r2F xð Þ (see also optional parameter Reset Frequency).

Line Search Tolerance r Default ¼ 0:9

The value r (0 � r < 1) controls the accuracy with which the step � taken during each iteration
approximates a minimum of the merit function along the search direction (the smaller the value of r, the
more accurate the linesearch). The default value r ¼ 0:9 requests an inaccurate search and is
appropriate for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to
reduce the number of major iterations – for example, if the objective function is cheap to evaluate, or if
a substantial number of derivatives are unspecified. If r < 0 or r � 1, the default value is used.

Linear Feasibility Tolerance r1 Default ¼
ffiffi
�
p

Nonlinear Feasibility Tolerance r2 Default ¼ �0:33 or
ffiffi
�
p

The default value of r2 is �0:33 if Derivative Level ¼ 0 or 1, and
ffiffi
�
p

otherwise.
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The scalars r1 and r2 define the maximum acceptable absolute violations in linear and nonlinear
constraints at a ‘feasible’ point; i.e., a linear constraint is considered satisfied if its violation does not
exceed r1, and similarly for a nonlinear constraint and r2. If rm < � or rm � 1, the default value is used,
for m ¼ 1; 2.

On entry to E04USF/E04USA, an iterative procedure is executed in order to find a point that satisfies
the linear constraints and bounds on the variables to within the tolerance r1. All subsequent iterates will
satisfy the linear constraints to within the same tolerance (unless r1 is comparable to the finite
difference interval).

For nonlinear constraints, the feasibility tolerance r2 defines the largest constraint violation that is
acceptable at an optimal point. Since nonlinear constraints are generally not satisfied until the final
iterate, the value of optional parameter Nonlinear Feasibility Tolerance acts as a partial termination
criterion for the iterative sequence generated by E04USF/E04USA (see also optional parameter
Optimality Tolerance).

These tolerances should reflect the precision of the corresponding constraints. For example, if the
variables and the coefficients in the linear constraints are of order unity, and the latter are correct to
about 6 decimal digits, it would be appropriate to specify r1 as 10�6.

List Default for E04USF ¼ List
Nolist Default for E04USA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist
may be used to suppress the printing and optional parameter List may be used to restore printing.

Major Iteration Limit i Default ¼ max 50; 3 nþ nLð Þ þ 10nNð Þ
Iteration Limit
Iters
Itns

The value of i specifies the maximum number of major iterations allowed before termination. Setting
i ¼ 0 and Major Print Level > 0 means that the workspace needed will be computed and printed, but
no iterations will be performed. If i < 0, the default value is used.

Major Print Level i Default for E04USF ¼ 10
Print Level Default for E04USA ¼ 0

The value of i controls the amount of printout produced by the major iterations of E04USF/E04USA, as
indicated below. A detailed description of the printed output is given in Section 9.1 (summary output at
each major iteration and the final solution) and Section 13 (monitoring information at each major
iteration). (See also the description of the optional parameter Minor Print Level.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.

1 The final solution only.

5 One line of summary output ( < 80 characters; see Section 9.1) for each major iteration (no
printout of the final solution).

� 10 The final solution and one line of summary output for each major iteration.

The following printout is sent to the logical unit number by the optional parameter Monitoring File:

i Output

< 5 No output.

� 5 One long line of output ( > 80 characters; see Section 13) for each major iteration (no printout
of the final solution).
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� 20 At each major iteration, the objective function, the Euclidean norm of the nonlinear constraint
violations, the values of the nonlinear constraints (the vector c), the values of the linear
constraints (the vector ALx), and the current values of the variables (the vector x).

� 30 At each major iteration, the diagonal elements of the matrix T associated with the TQ
factorization (see (5) in E04UFF/E04UFA) of the QP working set, and the diagonal elements of
R, the triangular factor of the transformed and reordered Hessian (see (6) in E04UFF/E04UFA).

If Major Print Level � 5 and the unit number defined by the optional parameter Monitoring File is
the same as that defined by X04ABF,then the summary output for each major iteration is suppressed.

Minor Iteration Limit i Default ¼ max 50; 3 nþ nL þ nNð Þð Þ
The value of i specifies the maximum number of iterations for finding a feasible point with respect to
the bounds and linear constraints (if any). The value of i also specifies the maximum number of minor
iterations for the optimality phase of each QP subproblem. If i � 0, the default value is used.

Minor Print Level i Default ¼ 0

The value of i controls the amount of printout produced by the minor iterations of E04USF/E04USA (i.
e., the iterations of the quadratic programming algorithm), as indicated below. A detailed description of
the printed output is given in Section 9.1 (summary output at each minor iteration and the final QP
solution) and Section 13 (monitoring information at each minor iteration). (See also the description of
the optional parameter Major Print Level.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.

1 The final QP solution only.

5 One line of summary output ( < 80 characters; see Section 9.1) for each minor iteration (no
printout of the final QP solution).

� 10 The final QP solution and one line of summary output for each minor iteration.

The following printout is sent to the logical unit number by the optional parameter Monitoring File:

i Output

< 5 No output.

� 5 One long line of output ( > 80 characters; see Section 13) for each minor iteration (no printout
of the final QP solution).

� 20 At each minor iteration, the current estimates of the QP multipliers, the current estimate of the
QP search direction, the QP constraint values, and the status of each QP constraint.

� 30 At each minor iteration, the diagonal elements of the matrix T associated with the TQ
factorization (see (5) in E04UFF/E04UFA) of the QP working set, and the diagonal elements of
the Cholesky factor R of the transformed Hessian (see (6) in E04UFF/E04UFA).

If Major Print Level � 5 and the unit number defined by the optional parameter Monitoring File is
the same as that defined by X04ABF,then the summary output for each major iteration is suppressed.

Monitoring File i Default ¼ �1
If i � 0 and Major Print Level � 5 or i � 0 and Minor Print Level � 5, monitoring information
produced by E04USF/E04USA at every iteration is sent to a file with logical unit number i. If i < 0
and/or Major Print Level < 5 and Minor Print Level < 5, no monitoring information is produced.
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Optimality Tolerance r Default ¼ �0:8R
The parameter r (�R � r < 1) specifies the accuracy to which you wish the final iterate to approximate a
solution of the problem. Broadly speaking, r indicates the number of correct figures desired in the
objective function at the solution. For example, if r is 10�6 and E04USF/E04USA terminates
successfully, the final value of F should have approximately six correct figures. If r < �R or r � 1, the
default value is used.

E04USF/E04USA will terminate successfully if the iterative sequence of x values is judged to have
converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section 11.1 in
E04UFF/E04UFA). The sequence of iterates is considered to have converged at x if

� pk k �
ffiffiffi
r
p

1þ xk kð Þ; ð2Þ

where p is the search direction and � the step length. An iterate is considered to satisfy the first-order
conditions for a minimum if

ZTgFR
�� �� � ffiffiffi

r
p

1þmax 1þ F xð Þj j; gFRk kð Þð Þ ð3Þ

and

resj
		 		 � ftol for all j; ð4Þ

where ZTgFR is the projected gradient, gFR is the gradient of F xð Þ with respect to the free variables,
resj is the violation of the jth active nonlinear constraint, and ftol is the Nonlinear Feasibility
Tolerance.

Reset Frequency i Default ¼ 2

If i > 0, this parameter allows you to reset the approximate Hessian matrix to JTJ every i iterations,
where J is the objective Jacobian matrix rf xð Þ (see also the description of the optional parameter JTJ
Initial Hessian).

At any point where there are no nonlinear constraints active and the values of f are small in magnitude
compared to the norm of J , JTJ will be a good approximation to the objective Hessian r2F xð Þ. Under
these circumstances, frequent resetting can significantly improve the convergence rate of E04USF/
E04USA.

Resetting is suppressed at any iteration during which there are nonlinear constraints active.

If i � 0, the default value is used.

Start Objective Check At Variable i1 Default ¼ 1
Stop Objective Check At Variable i2 Default ¼ n
Start Constraint Check At Variable i3 Default ¼ 1
Stop Constraint Check At Variable i4 Default ¼ n
These keywords take effect only if Verify Level > 0. They may be used to control the verification of
Jacobian elements computed by user-supplied subroutines OBJFUN and CONFUN. For example, if the
first 30 columns of the objective Jacobian appeared to be correct in an earlier run, so that only column
31 remains questionable, it is reasonable to specify Start Objective Check At Variable ¼ 31. If the
first 30 variables appear linearly in the subfunctions, so that the corresponding Jacobian elements are
constant, the above choice would also be appropriate.

If i2m�1 � 0 or i2m�1 > min n; i2mð Þ, the default value is used, for m ¼ 1; 2. If i2m � 0 or i2m > n, the
default value is used, for m ¼ 1; 2.

Step Limit r Default ¼ 2:0

If r > 0; r specifies the maximum change in variables at the first step of the linesearch. In some cases,
such as F xð Þ ¼ aebx or F xð Þ ¼ axb, even a moderate change in the elements of x can lead to floating-
point overflow. The parameter r is therefore used to encourage evaluation of the problem functions at
meaningful points. Given any major iterate x, the first point ~x at which F and c are evaluated during the
linesearch is restricted so that
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~x� xk k2 � r 1þ xk k2
� �

:

The linesearch may go on and evaluate F and c at points further from x if this will result in a lower
value of the merit function (indicated by L at the end of each line of output produced by the major
iterations; see Section 9.1). If L is printed for most of the iterations, r should be set to a larger value.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at wild values. The default value Step Limit ¼ 2:0 should not affect progress on well-
behaved functions, but values such as 0:1 or 0:01 may be helpful when rapidly varying functions are
present. If a small value of Step Limit is selected, a good starting point may be required. An important
application is to the class of nonlinear least squares problems. If r � 0, the default value is used.

Verify Level i Default ¼ 0
Verify
Verify Constraint Gradients
Verify Gradients
Verify Objective Gradients

These keywords refer to finite difference checks on the gradient elements computed by OBJFUN and
CONFUN. (Unspecified gradient elements are not checked.) The possible choices for i are the
following:

i Meaning

�1 No checks are performed.

0 Only a ‘cheap’ test will be performed, requiring one call to OBJFUN.

1 Individual gradient elements will also be checked using a reliable (but more expensive) test.

For example, the nonlinear objective gradient (if any) will be verified if either Verify Objective
Gradients or Verify Level ¼ 1 is specified. Similarly, the objective and the constraint gradients will be
verified if Verify ¼ YES or Verify Level ¼ 3 or Verify is specified.

If i ¼ �1, no checking will be performed.

If 0 � i � 3, gradients will be verified at the first point that satisfies the linear constraints and bounds. If
i ¼ 0, only a ‘cheap’ test will be performed, requiring one call to OBJFUN and (if appropriate) one call
to CONFUN. If 1 � i � 3, a more reliable (but more expensive) check will be made on individual
gradient elements, within the ranges specified by the Start Objective Check At Variable and Stop
Objective Check At Variable keywords. A result of the form OK or BAD? is printed by E04USF/
E04USA to indicate whether or not each element appears to be correct.

If 10 � i � 13, the action is the same as for i� 10, except that it will take place at the user-specified
initial value of x.

If i < �1 or 4 � i � 9 or i > 13, the default value is used.

We suggest that Verify Level ¼ 3 be used whenever a new function routine is being developed.

13 Description of Monitoring Information

This section describes the long line of output ( > 80 characters) which forms part of the monitoring
information produced by E04USF/E04USA. (See also the description of the optional parameters Major
Print Level, Minor Print Level and Monitoring File.) You can control the level of printed output.

When Major Print Level � 5 and Monitoring File � 0, the following line of output is produced at
every major iteration of E04USF/E04USA on the unit number specified by optional parameter
Monitoring File. In all cases, the values of the quantities printed are those in effect on completion of
the given iteration.
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Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11 in E04UFF/E04UFA).

Note that Mnr may be greater than the optional parameter Minor Iteration Limit
if some iterations are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Nfun is the cumulative number of evaluations of the objective function needed for the
linesearch. Evaluations needed for the estimation of the gradients by finite
differences are not included. Nfun is printed as a guide to the amount of work
required for the linesearch.

Merit Function is the value of the augmented Lagrangian merit function (see (12) in E04UFF/
E04UFA) at the current iterate. This function will decrease at each iteration
unless it was necessary to increase the penalty parameters (see Section 11.3 in
E04UFF/E04UFA). As the solution is approached, Merit Function will
converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of
the current output line) then the merit function is a large multiple of the
constraint violations, weighted by the penalty parameters. During a sequence of
major iterations with infeasible subproblems, the sequence of Merit Function
values will decrease monotonically until either a feasible subproblem is obtained
or E04USF/E04USA terminates with IFAIL ¼ 3 (no feasible point could be found
for the nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN ¼ 0) then this entry
contains Objective, the value of the objective function F xð Þ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is ZTgFRk k, the Euclidean norm of the projected gradient (see Section 11.2 in
E04UFF/E04UFA). Norm Gz will be approximately zero in the neighbourhood of
a solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Violtn will be
approximately zero in the neighbourhood of a solution.

Nz is the number of columns of Z (see Section 11.2 in E04UFF/E04UFA). The value
of Nz is the number of variables minus the number of constraints in the predicted
active set; i.e., Nz ¼ n� Bndþ Linþ Nlnð Þ.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if
NCNLN is zero).

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if NCNLN is zero).

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ ¼ ZTHFRZ ¼ RT

ZRZ ; see (6) and (11) in E04UFF/E04UFA). The larger
this number, the more difficult the problem.
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Cond T is a lower bound on the condition number of the matrix of predicted active
constraints.

Conv is a three-letter indication of the status of the three convergence tests (2)–(4)
defined in the description of the optional parameter Optimality Tolerance. Each
letter is T if the test is satisfied and F otherwise. The three tests indicate whether:

(i) the sequence of iterates has converged;

(ii) the projected gradient (Norm Gz) is sufficiently small; and

(iii) the norm of the residuals of constraints in the predicted active set (Violtn)
is small enough.

If any of these indicators is F when E04USF/E04USA terminates with IFAIL ¼ 0,
you should check the solution carefully.

M is printed if the quasi-Newton update has been modified to ensure that the
Hessian approximation is positive definite (see Section 11.4 in E04UFF/
E04UFA).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified
objective and constraint gradients. If the value of Step is zero then the switch to
central differences was made because no lower point could be found in the
linesearch. (In this case, the QP subproblem is resolved with the central
difference gradient and Jacobian.) If the value of Step is nonzero then central
differences were computed because Norm Gz and Violtn imply that x is close to
a Kuhn–Tucker point (see Section 11.1 in E04UFF/E04UFA).

L is printed if the linesearch has produced a relative change in x greater than the
value defined by the optional parameter Step Limit. If this output occurs
frequently during later iterations of the run, optional parameter Step Limit should
be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly
conditioned then the approximate Hessian is refactorized using column
interchanges. If necessary, R is modified so that its diagonal condition estimator
is bounded.
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NAG Library Routine Document

E04VGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04VGF is used to initialize the routine E04VHF.

2 Specification

SUBROUTINE E04VGF (CW, LENCW, IW, LENIW, RW, LENRW, IFAIL)

INTEGER LENCW, IW(LENIW), LENIW, LENRW, IFAIL
REAL (KIND=nag_wp) RW(LENRW)
CHARACTER(8) CW(LENCW)

3 Description

E04VGF initializes the arrays CW, IW and RW for the routine E04VHF.

4 References

None.

5 Arguments

1: CWðLENCWÞ – CHARACTER(8) array Communication Array
2: LENCW – INTEGER Input

On entry: the dimension of the array CW as declared in the (sub)program from which E04VGF is
called.

Constraint: LENCW � 600, see routine E04VHF.

3: IWðLENIWÞ – INTEGER array Communication Array
4: LENIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04VGF is
called.

Constraint: LENIW � 600, see routine E04VHF.

5: RWðLENRWÞ – REAL (KIND=nag_wp) array Communication Array
6: LENRW – INTEGER Input

On entry: the dimension of the array RW as declared in the (sub)program from which E04VGF is
called.

Constraint: LENRW � 600, see routine E04VHF.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the communication array lengths LENCW, LENIW or LENRW is less than 600.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04VGF is not threaded in any implementation.

9 Further Comments

The time taken by E04VGF is negligible.

10 Example

See Section 10 in E04VHF and E04VKF.
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NAG Library Routine Document

E04VHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

E04VHF solves sparse linear and nonlinear programming problems.

2 Specification

SUBROUTINE E04VHF (START, NF, N, NXNAME, NFNAME, OBJADD, OBJROW, PROB,
USRFUN, IAFUN, JAVAR, A, LENA, NEA, IGFUN, JGVAR,
LENG, NEG, XLOW, XUPP, XNAMES, FLOW, FUPP, FNAMES, X,
XSTATE, XMUL, F, FSTATE, FMUL, NS, NINF, SINF, CW,
LENCW, IW, LENIW, RW, LENRW, CUSER, IUSER, RUSER,
IFAIL)

&
&
&
&
&

INTEGER START, NF, N, NXNAME, NFNAME, OBJROW, IAFUN(LENA),
JAVAR(LENA), LENA, NEA, IGFUN(LENG), JGVAR(LENG),
LENG, NEG, XSTATE(N), FSTATE(NF), NS, NINF, LENCW,
IW(LENIW), LENIW, LENRW, IUSER(*), IFAIL

&
&
&

REAL (KIND=nag_wp) OBJADD, A(LENA), XLOW(N), XUPP(N), FLOW(NF),
FUPP(NF), X(N), XMUL(N), F(NF), FMUL(NF), SINF,
RW(LENRW), RUSER(*)

&
&

CHARACTER(8) PROB, XNAMES(NXNAME), FNAMES(NFNAME), CW(LENCW),
CUSER(*)

&

EXTERNAL USRFUN

Before calling E04VHF, or one of the option setting routines E04VKF, E04VLF, E04VMF or E04VNF,
routine E04VGF must be called. The specification for E04VGF is:

SUBROUTINE E04VGF (CW, LENCW, IW, LENIW, RW, LENRW, IFAIL)

INTEGER LENCW, IW(LENIW), LENIW, LENRW, IFAIL
REAL (KIND=nag_wp) RW(LENRW)
CHARACTER(8) CW(LENCW)

E04VGF should be called with LENCW, LENIW and LENRW, the declared lengths of CW, IW and RW
respectively, must satisfy:

LENCW � 600

LENIW � 600

LENRW � 600

The contents of the arrays CW, IW and RW must not be altered between calling routines E04VGF,
E04VHF, E04VJF, E04VKF, E04VLF, E04VMF and E04VNF.

3 Description

E04VHF is designed to minimize a linear or nonlinear function subject to bounds on the variables and
sparse linear or nonlinear constraints. It is suitable for large-scale linear and quadratic programming and
for linearly constrained optimization, as well as for general nonlinear programs of the form
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minimize
x

f0 xð Þ subject to l �
x

f xð Þ
ALx

0@ 1A � u; ð1Þ

where x is an n-vector of variables, l and u are constant lower and upper bounds, f0 xð Þ is a smooth
scalar objective function, AL is a sparse matrix, and f xð Þ is a vector of smooth nonlinear constraint
functions fi xð Þf g. The optional parameter Maximize specifies that f0 xð Þ should be maximized instead
of minimized.

Ideally, the first derivatives (gradients) of f0 xð Þ and fi xð Þ should be known and coded by you. If only
some of the gradients are known, E04VHF estimates the missing ones by finite differences.

If f0 xð Þ is linear and f xð Þ is absent, (1) is a linear program (LP) and E04VHF applies the primal
simplex method (see Dantzig (1963)). Sparse basis factors are maintained by LUSOL (see Gill et al.
(1987)) as in MINOS (see Murtagh and Saunders (1995)).

If only the objective is nonlinear, the problem is linearly constrained (LC) and tends to solve more
easily than the general case with nonlinear constraints (NC). For both nonlinear cases, E04VHF applies
a sparse sequential quadratic programming (SQP) method (see Gill et al. (2002)), using limited-memory
quasi-Newton approximations to the Hessian of the Lagrangian. The merit function for step-length
control is an augmented Lagrangian, as in the dense SQP solver E04WDF (see Gill et al. (1986) and
Gill et al. (1992)).

E04VHF is suitable for nonlinear problems with thousands of constraints and variables, and is most
efficient if only some of the variables enter nonlinearly, or there are relatively few degrees of freedom
at a solution (i.e., many constraints are active). However, there is no limit on the number of degrees of
freedom.

E04VHF allows linear and nonlinear constraints and variables to be entered in an arbitrary order, and
uses one subroutine to define all the nonlinear functions.

The optimization problem is assumed to be in the form

minimize
x

Fobj xð Þ subject to lx � x � ux; lF � F xð Þ � uF ; ð2Þ

where the upper and lower bounds are constant, F xð Þ is a vector of smooth linear and nonlinear
constraint functions Fi xð Þf g, and Fobj xð Þ is one of the components of F to be minimized, as specified
by the input argument OBJROW. E04VHF reorders the variables and constraints so that the problem is
in the form (1).

Upper and lower bounds are specified for all variables and functions. The jth constraint may be defined
as an equality by setting lj ¼ uj. If certain bounds are not present, the associated elements of l or u
should be set to special values that are treated as �1 or þ1. Free variables and free constraints (‘free
rows’) have both bounds infinite.

In general, the components of F are structured in the sense that they are formed from sums of linear
and nonlinear functions of just some of the variables. This structure can be exploited by E04VHF.

In many cases, the vector F xð Þ is a sum of linear and nonlinear functions. E04VHF allows these terms
to be specified separately, so that the linear part is defined just once by the input arguments IAFUN,
JAVAR and A. Only the nonlinear part is recomputed at each x.

Suppose that each component of F xð Þ is of the form

Fi xð Þ ¼ fi xð Þ þ
Xn
j¼1

Aijxj;

where fi xð Þ is a nonlinear function (possibly zero) and the elements Aij are constant. The nf by n
Jacobian of F xð Þ is the sum of two sparse matrices of the same size: F 0 xð Þ ¼ G xð Þ þA, where
G xð Þ ¼ f 0 xð Þ and A is the matrix with elements Aij

� 
. The two matrices must be non-overlapping in

the sense that each element of the Jacobian F 0 xð Þ ¼ G xð Þ þA comes from G xð Þ or A, but not both.
The element cannot be split between G xð Þ and A.
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For example, the function

F xð Þ ¼
3x1 þ ex2x4 þ x22 þ 4x4 � x3 þ x5

x2 þ x23 þ sinx4 � 3x5
x1 � x3

0@ 1A
can be written as

F xð Þ ¼ f xð Þ þAx ¼
ex2x4 þ x22 þ 4x4
x23 þ sinx4

0

0@ 1Aþ 3x1 � x3 þ x5
x2 � 3x5
x1 � x3

0@ 1A;
in which case

F 0 xð Þ ¼
3 ex2x4 þ 2x2 �1 ex2 þ 4 1
0 1 2x3 cos x4 �3
1 0 �1 0 0

0@ 1A
can be written as F 0 xð Þ ¼ f 0 xð Þ þA ¼ G xð Þ þA, where

G xð Þ ¼
0 ex2x4 þ 2x2 0 ex2 þ 4 0
0 0 2x3 cosx4 0
0 0 0 0 0

0@ 1A; A ¼
3 0 �1 0 1
0 1 0 0 �3
1 0 �1 0 0

0@ 1A:
Note: the element ex2 þ 4 of F 0 xð Þ appears in G xð Þ and is not split between G xð Þ and A although it
contains a linear term.

The nonzero elements of A and G are provided to E04VHF in coordinate form. The elements of A are
entered as triples i; j; Aij

� �
in the arrays IAFUN, JAVAR and A. The sparsity pattern G is entered as

pairs i; jð Þ in the arrays IGFUN and JGVAR. The corresponding entries Gij (any that are known) are
assigned to appropriate array elements G kð Þ in USRFUN.

The elements of A and G may be stored in any order. Duplicate entries are ignored. IGFUN and
JGVAR may be defined automatically by subroutine E04VJF when Derivative Option ¼ 0 is specified
and USRFUN does not provide any gradients.

Throughout this document the symbol � is used to represent the machine precision (see X02AJF).

E04VHF is based on SNOPTA, which is part of the SNOPT package described in Gill et al. (2005b).
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5 Arguments

1: START – INTEGER Input

On entry: indicates how a starting point is to be obtained.

START ¼ 0
Requests that the Crash procedure be used, unless a Basis file is provided via optional
parameters Old Basis File, Insert File or Load File.

START ¼ 1
Is the same as START ¼ 0 but is more meaningful when a Basis file is given.

START ¼ 2
Means that XSTATE and FSTATE define a valid starting point (probably from an earlier
call, though not necessarily).

Constraint: START ¼ 0, 1 or 2.

2: NF – INTEGER Input

On entry: nf , the number of problem functions in F xð Þ, including the objective function (if any)
and the linear and nonlinear constraints. Upper and lower bounds on x can be defined using the
arguments XLOW and XUPP and should not be included in F .

Constraint: NF > 0.

3: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

4: NXNAME – INTEGER Input

On entry: the number of names provided in the array XNAMES.

NXNAME ¼ 1
There are no names provided and generic names will be used in the output.

NXNAME ¼ N
Names for all variables must be provided and will be used in the output.

Constraint: NXNAME ¼ 1 or N.
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5: NFNAME – INTEGER Input

On entry: the number of names provided in the array FNAMES.

NFNAME ¼ 1
There are no names provided and generic names will be used in the output.

NFNAME ¼ NF
Names for all functions must be provided and will be used in the output.

Constraint: NFNAME ¼ 1 or NF.

Note: if NXNAME ¼ 1 then NFNAME must also be 1 (and vice versa). Similarly, if
NXNAME ¼ N then NFNAME must be NF (and vice versa).

6: OBJADD – REAL (KIND=nag_wp) Input

On entry: is a constant that will be added to the objective row Fobj for printing purposes.
Typically, OBJADD ¼ 0:0Eþ 0.

7: OBJROW – INTEGER Input

On entry: says which row of F xð Þ is to act as the objective function. If there is no such row, set
OBJROW ¼ 0. Then E04VHF will seek a feasible point such that lF � F xð Þ � uF and
lx � x � ux.
Constraint: 1 � OBJROW � NF or OBJROW ¼ 0 (or a feasible point problem).

8: PROB – CHARACTER(8) Input

On entry: is an 8-character name for the problem. PROB is used in the printed solution and in
some routines that output Basis files. A blank name may be used.

9: USRFUN – SUBROUTINE, supplied by the user. External Procedure

USRFUN must define the nonlinear portion f xð Þ of the problem functions F xð Þ ¼ f xð Þ þAx,

along with its gradient elements Gij xð Þ ¼
@fi xð Þ
@xj

. (A dummy subroutine is needed even if f 	 0

and all functions are linear.)

In general, USRFUN should return all function and gradient values on every entry except perhaps
the last. This provides maximum reliability and corresponds to the default option setting,
Derivative Option ¼ 1.

The elements of G xð Þ are stored in the array G 1 : LENGð Þ in the order specified by the input
arrays IGFUN and JGVAR.

In practice it is often convenient not to code gradients. E04VHF is able to estimate them by finite

differences, using a call to USRFUN for each variable xj for which some
@fi xð Þ
@xj

needs to be

estimated. However, this reduces the reliability of the optimization algorithm, and it can be very
expensive if there are many such variables xj.

As a compromise, E04VHF allows you to code as many gradients as you like. This option is
implemented as follows. Just before USRFUN is called, each element of the derivative array G is
initialized to a specific value. On exit, any element retaining that value must be estimated by
finite differences.

Some rules of thumb follow:

(i) for maximum reliability, compute all gradients;

(ii) if the gradients are expensive to compute, specify optional parameter Nonderivative
Linesearch and use the value of the input argument NEEDG to avoid computing them on
certain entries. (There is no need to compute gradients if NEEDG ¼ 0 on entry to
USRFUN.);
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(iii) if not all gradients are known, you must specify Derivative Option ¼ 0. You should still
compute as many gradients as you can. (It often happens that some of them are constant or
zero.);

(iv) again, if the known gradients are expensive, don't compute them if NEEDG ¼ 0 on entry
to USRFUN;

(v) use the input argument STATUS to test for special actions on the first or last entries;

(vi) while USRFUN is being developed, use the optional parameter Verify Level to check the
computation of gradients that are supposedly known;

(vii) USRFUN is not called until the linear constraints and bounds on x are satisfied. This helps
confine x to regions where the functions fi xð Þ are likely to be defined. However, be aware
of the optional parameter Minor Feasibility Tolerance if the functions have singularities
on the constraint boundaries;

(viii) set STATUS ¼ �1 if some of the functions are undefined. The linesearch will shorten the
step and try again;

(ix) set STATUS � �2 if you want E04VHF to stop.

The specification of USRFUN is:

SUBROUTINE USRFUN (STATUS, N, X, NEEDF, NF, F, NEEDG, LENG, G,
CUSER, IUSER, RUSER)

&

INTEGER STATUS, N, NEEDF, NF, NEEDG, LENG, IUSER(*)
REAL (KIND=nag_wp) X(N), F(NF), G(LENG), RUSER(*)
CHARACTER(8) CUSER(*)

1: STATUS – INTEGER Input/Output

On entry: indicates the first and last calls to USRFUN.

STATUS ¼ 0
There is nothing special about the current call to USRFUN.

STATUS ¼ 1
E04VHF is calling your subroutine for the first time. You may wish to do
something special such as read data from a file.

STATUS � 2
E04VHF is calling your subroutine for the last time. This argument setting
allows you to perform some additional computation on the final solution.

STATUS ¼ 2
The current X is optimal.

STATUS ¼ 3
The problem appears to be infeasible.

STATUS ¼ 4
The problem appears to be unbounded.

STATUS ¼ 5
An iterations limit was reached.

If the functions are expensive to evaluate, it may be desirable to do nothing on the last
call. The first executable statement could be

IF (STATUS .GE. 2) RETURN.

On exit: may be used to indicate that you are unable to evaluate f or its gradients at the
current x. (For example, the problem functions may not be defined there.)

During the linesearch, f xð Þ is evaluated at points x ¼ xk þ �pk for various step lengths
�, where f xkð Þ has already been evaluated satisfactorily. For any such x, if you set
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STATUS ¼ �1, E04VHF will reduce � and evaluate f again (closer to xk, where f xkð Þ
is more likely to be defined).

If for some reason you wish to terminate the current problem, set STATUS � �2.

2: N – INTEGER Input

On entry: n, the number of variables, as defined in the call to E04VHF.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the variables x at which the problem functions are to be calculated. The array
x must not be altered.

4: NEEDF – INTEGER Input

On entry: indicates whether F must be assigned during this call of USRFUN.

NEEDF ¼ 0
F is not required and is ignored.

NEEDF > 0
The components of f xð Þ corresponding to the nonlinear part of F xð Þ must be
calculated and assigned to F.

If Fi xð Þ is linear and completely defined by the ith row of A, A0i, then the associated
value fi xð Þ is ignored and need not be assigned. However, if Fi xð Þ has a nonlinear
portion fi xð Þ that happens to be zero at x, then it is still necessary to set fi xð Þ ¼ 0. If
the linear part A0i of a nonlinear Fi xð Þ is provided using the arrays IAFUN, JAVAR and
A, then it must not be computed again as part of fi xð Þ.
To simplify the code, you may ignore the value of NEEDF and compute f xð Þ on every
entry to USRFUN.

NEEDF may also be ignored with Derivative Linesearch and Derivative Option ¼ 1.
In this case, NEEDF is always 1, and F must always be assigned.

5: NF – INTEGER Input

On entry: is the length of the full vector F xð Þ ¼ f xð Þ þ Ax as defined in the call to
E04VHF.

6: FðNFÞ – REAL (KIND=nag_wp) array Input/Output

On entry: concerns the calculation of f xð Þ.
On exit: F contains the computed functions f xð Þ (except perhaps if NEEDF ¼ 0).

7: NEEDG – INTEGER Input

On entry: indicates whether G must be assigned during this call of USRFUN.

NEEDG ¼ 0
G is not required and is ignored.

NEEDG > 0
The partial derivatives of f xð Þ must be calculated and assigned to G. The value

of GðkÞ should be
@fi xð Þ
@xj

, where i ¼ IGFUNðkÞ, j ¼ JGVARðkÞ and

k ¼ 1; 2; . . . ;LENG.

8: LENG – INTEGER Input

On entry: is the length of the coordinate arrays JGVAR and IGFUN in the call to
E04VHF.
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9: GðLENGÞ – REAL (KIND=nag_wp) array Input/Output

On entry: concerns the calculations of the derivatives of the function f xð Þ.
On exit: contains the computed derivatives G xð Þ (unless NEEDG ¼ 0).

These derivative elements must be stored in G in exactly the same positions as implied
by the definitions of arrays IGFUN and JGVAR. There is no internal check for
consistency (except indirectly via the optional parameter Verify Level), so great care is
essential.

10: CUSERð�Þ – CHARACTER(8) array User Workspace

USRFUN is called with the argument CUSER as supplied to E04VHF. You should use
the array CUSER to supply information to USRFUN.

11: IUSERð�Þ – INTEGER array User Workspace

USRFUN is called with the argument IUSER as supplied to E04VHF. You should use
the array IUSER to supply information to USRFUN.

12: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

USRFUN is called with the argument RUSER as supplied to E04VHF. You should use
the array RUSER to supply information to USRFUN.

USRFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04VHF is called. Arguments denoted as Input must not be changed
by this procedure.

10: IAFUNðLENAÞ – INTEGER array Input
11: JAVARðLENAÞ – INTEGER array Input
12: AðLENAÞ – REAL (KIND=nag_wp) array Input

On entry: define the coordinates i; jð Þ and values Aij of the nonzero elements of the linear part A
of the function F xð Þ ¼ f xð Þ þAx.
In particular, NEA triples IAFUNðkÞ; JAVARðkÞ;AðkÞð Þ define the row and column indices
i ¼ IAFUNðkÞ and j ¼ JAVARðkÞ of the element Aij ¼ AðkÞ.
The coordinates may define the elements of A in any order.

13: LENA – INTEGER Input

On entry: the dimension of the arrays IAFUN, JAVAR and A that hold i; j; Aij

� �
as declared in

the (sub)program from which E04VHF is called.

Constraint: LENA � 1.

14: NEA – INTEGER Input

On entry: is the number of nonzero entries in A such that F xð Þ ¼ f xð Þ þAx.
Constraint: 0 � NEA � LENA.

15: IGFUNðLENGÞ – INTEGER array Input
16: JGVARðLENGÞ – INTEGER array Input

On entry: define the coordinates i; jð Þ of the nonzero elements of G, the nonlinear part of the
derivative J xð Þ ¼ G xð Þ þ A of the function F xð Þ ¼ f xð Þ þAx. E04VJF may be used to define
these two arrays.

The coordinates can define the elements of G in any order. However, USRFUN must define the
actual elements of G in exactly the same order as defined by the coordinates IGFUN; JGVARð Þ.
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17: LENG – INTEGER Input

On entry: the dimension of the arrays IGFUN and JGVAR that define the varying Jacobian
elements i; j; Gij

� �
as declared in the (sub)program from which E04VHF is called.

Constraint: LENG � 1.

18: NEG – INTEGER Input

On entry: the number of nonzero entries in G.

Constraint: 0 � NEG � LENG.

19: XLOWðNÞ – REAL (KIND=nag_wp) array Input
20: XUPPðNÞ – REAL (KIND=nag_wp) array Input

On entry: contain the lower and upper bounds lx and ux on the variables x.

To specify a nonexistent lower bound lx½ �j ¼ �1, set XLOWðjÞ � �bigbnd, where bigbnd is the
optional parameter Infinite Bound Size. To specify a nonexistent upper bound ux½ �j ¼ 1, set
XUPPðjÞ � bigbnd.

To fix the jth variable at xj ¼ �, where �j j < bigbnd, set XLOWðjÞ ¼ XUPPðjÞ ¼ �.
Constraint: XLOWðiÞ � XUPPðiÞ, for i ¼ 1; 2; . . . ;N.

21: XNAMESðNXNAMEÞ – CHARACTER(8) array Input

On entry: the optional names for the variables.

If NXNAME ¼ 1, XNAMES is not referenced and default names will be used for output.

If NXNAME ¼ N, XNAMESðjÞ should contain the 8-character name of the jth variable.

22: FLOWðNFÞ – REAL (KIND=nag_wp) array Input
23: FUPPðNFÞ – REAL (KIND=nag_wp) array Input

On entry: contain the lower and upper bounds lF and uF on F xð Þ.
To specify a nonexistent lower bound lF½ �i ¼ �1, set FLOWðiÞ � �bigbnd. For a nonexistent
upper bound uF½ �i ¼ 1, set FUPPðiÞ � bigbnd.

To make the ith cons t ra in t an equal i t y a t Fi ¼ �, where �j j < bigbnd, s e t
FLOWðiÞ ¼ FUPPðiÞ ¼ �.
Constraint: FLOWðiÞ � FUPPðiÞ, for i ¼ 1; 2; . . . ;N.

24: FNAMESðNFNAMEÞ – CHARACTER(8) array Input

On entry: the optional names for the problem functions.

If NFNAME ¼ 1, FNAMES is not referenced and default names will be used for output.

If NFNAME ¼ NF, FNAMESðiÞ should contain the 8-character name of the ith row of F .

25: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the variables x. See the following description of XSTATE.

On exit: the final values of the variable x.

26: XSTATEðNÞ – INTEGER array Input/Output

On entry: the initial state for each variable x.

If START ¼ 0 or 1 and no basis information is provided (the optional parameters Old Basis File,
Insert File and Load File are all set to 0; the default) X and XSTATE must be defined.
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If nothing special is known about the problem, or if there is no wish to provide special
information, you may set XðjÞ ¼ 0:0, XSTATEðjÞ ¼ 0, for all j ¼ 1; 2; . . . ;N. If you set
XðjÞ ¼ XLOWðjÞ set XSTATEðjÞ ¼ 4; if you set XðjÞ ¼ XUPPðjÞ then set XSTATEðjÞ ¼ 5. In
this case a Crash procedure is used to select an initial basis.

If START ¼ 0 or 1 and basis information is provided (at least one of the optional parameters Old
Basis File, Insert File and Load File is nonzero) X and XSTATE need not be set.

If START ¼ 2 (Warm Start), X and XSTATE must be set (probably from a previous call). In this
case XSTATEðjÞ must be 0, 1, 2 or 3, for j ¼ 1; 2; . . . ;N.

On exit: the final state of the variables.

XSTATEðjÞ State of variable j Usual value of XðjÞ
0 nonbasic XLOWðjÞ
1 nonbasic XUPPðjÞ
2 superbasic Between XLOWðjÞ and XUPPðjÞ
3 basic Between XLOWðjÞ and XUPPðjÞ

Basic and superbasic variables may be outside their bounds by as much as the optional parameter
Minor Feasibility Tolerance. Note that if scaling is specified, the feasibility tolerance applies to
the variables of the scaled problem. In this case, the variables of the original problem may be as
much as 0:1 outside their bounds, but this is unlikely unless the problem is very badly scaled.
Check the value of Primal infeasibility output to the unit number associated with the
optional parameter Print File.

Very occasionally some nonbasic variables may be outside their bounds by as much as the
optional parameter Minor Feasibility Tolerance, and there may be some nonbasics for which
XðjÞ lies strictly between its bounds.

If NINF > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by SINF if scaling was not used).

Constraint: 0 � XSTATEðjÞ � 5; for j ¼ 1; 2; . . . ;N.

27: XMULðNÞ – REAL (KIND=nag_wp) array Output

On exit: the vector of the dual variables (Lagrange multipliers) for the simple bounds
lx � x � ux.

28: FðNFÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial value for the problem functions F . See the following description of FSTATE.

On exit: the final values for the problem functions F (the values F at the final point X).

29: FSTATEðNFÞ – INTEGER array Input/Output

On entry: the initial state for the problem functions F .

If START ¼ 0 or 1 and no basis information is provided (the optional parameters Old Basis File,
Insert File and Load File are all set to 0; the default, F and FSTATE must be defined.

If nothing special is known about the problem, or if there is no wish to provide special
information, you may set FðiÞ ¼ 0:0, FSTATEðiÞ ¼ 0, for all i ¼ 1; 2; . . . ;NF. Less trivially, to
say that the optimal value of function FðiÞ will probably be equal to one of its bounds, set
FðiÞ ¼ FLOWðiÞ and FSTATEðiÞ ¼ 4 or FðiÞ ¼ FUPPðiÞ and FSTATEðiÞ ¼ 5 as appropriate. In
this case a Crash procedure is used to select an initial basis.

If START ¼ 0 or 1 and basis information is provided (at least one of the optional parameters Old
Basis File, Insert File and Load File is nonzero), F and FSTATE need not be set.
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If START ¼ 2 (Warm Start), F and FSTATE must be set (probably from a previous call). In this
case FSTATEðiÞ must be 0, 1, 2 or 3, for i ¼ 1; 2; . . . ;NF.

On exit: the final state of the variables. The elements of FSTATE have the following meaning:

FSTATEðiÞ State of the corresponding
slack variable

Usual value of FðiÞ

0 nonbasic FLOWðiÞ
1 nonbasic FUPPðiÞ
2 superbasic Between FLOWðiÞ and FUPPðiÞ
3 basic Between FLOWðiÞ and FUPPðiÞ

Basic and superbasic slack variables may lead to the corresponding functions being outside their
bounds by as much as the optional parameter Minor Feasibility Tolerance.

Very occasionally some functions may be outside their bounds by as much as the optional
parameter Minor Feasibility Tolerance, and there may be some nonbasics for which FðiÞ lies
strictly between its bounds.

If NINF > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by SINF if scaling was not used).

Constraint: 0 � FSTATEðiÞ � 5; for i ¼ 1; 2; . . . ;NF.

30: FMULðNFÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an estimate of �, the vector of Lagrange multipliers (shadow prices) for the constraints
lF � F xð Þ � uF . All NF components must be defined. If nothing is known about �, set
FMULðiÞ ¼ 0:0, for i ¼ 1; 2; . . . ;NF. For warm start use the values from a previous call.

On exit: the vector of the dual variables (Lagrange multipliers) for the general constraints
lF � F xð Þ � uF

31: NS – INTEGER Input/Output

On entry: the number of superbasic variables. NS need not be specified for cold starts, but should
retain its value from a previous call when warm start is used.

On exit: the final number of superbasic variables.

32: NINF – INTEGER Output
33: SINF – REAL (KIND=nag_wp) Output

On exit: are the number and the sum of the infeasibilities of constraints that lie outside one of
their bounds by more than the optional parameter Minor Feasibility Tolerance before the
solution is unscaled.

If any linear constraints are infeasible, x minimizes the sum of the infeasibilities of the linear
constraints subject to the upper and lower bounds being satisfied. In this case NINF gives the
number of variables and linear constraints lying outside their upper or lower bounds. The
nonlinear constraints are not evaluated.

Otherwise, x minimizes the sum of infeasibilities of the nonlinear constraints subject to the linear
constraints and upper and lower bounds being satisfied. In this case NINF gives the number of
components of F xð Þ lying outside their bounds by more than the optional parameter Minor
Feasibility Tolerance. Again this is before the solution is unscaled.
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34: CWðLENCWÞ – CHARACTER(8) array Communication Array
35: LENCW – INTEGER Input

On entry: the dimension of the array CW as declared in the (sub)program from which E04VHF is
called.

Constraint: LENCW � 600.

36: IWðLENIWÞ – INTEGER array Communication Array
37: LENIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04VHF is
called.

Constraint: LENIW � 600.

38: RWðLENRWÞ – REAL (KIND=nag_wp) array Communication Array
39: LENRW – INTEGER Input

On entry: the dimension of the array RW as declared in the (sub)program from which E04VHF is
called.

Constraint: LENRW � 600.

40: CUSERð�Þ – CHARACTER(8) array User Workspace
41: IUSERð�Þ – INTEGER array User Workspace
42: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CUSER, IUSER and RUSER are not used by E04VHF, but are passed directly to USRFUN and
should be used to pass information to this routine.

43: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04VHF returns with IFAIL ¼ 0 if the iterates have converged to a point x that satisfies the first-
order Kuhn–Tucker (see Section 13.2) conditions to the accuracy requested by the optional
parameter Major Optimality Tolerance, i.e., the projected gradient and active constraint
residuals are negligible at x.

You should check whether the following four conditions are satisfied:

(i) the final value of rgNorm (see Section 13.2) is significantly less than that at the starting
point;

(ii) during the final major iterations, the values of Step and Minors (see Section 13.1) are both
one;

(iii) the last few values of both rgNorm and SumInf (see Section 13.2) become small at a fast
linear rate; and

(iv) condHz (see Section 13.1) is small.

If all these conditions hold, x is almost certainly a local minimum of (1).

One caution about ‘Optimal solutions’. Some of the variables or slacks may lie outside their
bounds more than desired, especially if scaling was requested. Max Primal infeas in the Print
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file (see Section 13) refers to the largest bound infeasibility and which variable is involved. If it
is too large, consider restarting with a smaller Minor Feasibility Tolerance (say 10 times
smaller) and perhaps Scale Option ¼ 0.

Similarly, Max Dual infeas in the Print file indicates which variable is most likely to be at a
nonoptimal value. Broadly speaking, if

Max Dual infeas=Max pi ¼ 10�d;

then the objective function would probably change in the dth significant digit if optimization
could be continued. If d seems too large, consider restarting with a smaller Major Optimality
Tolerance.

Finally, Nonlinear constraint violn in the Print file shows the maximum infeasibility for
nonlinear rows. If it seems too large, consider restarting with a smaller Major Feasibility
Tolerance.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04VHF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LENCW ¼ valueh i.
Constraint: LENCW � 600.

On entry, LENIW ¼ valueh i.
Constraint: LENIW � 600.

On entry, LENRW ¼ valueh i.
Constraint: LENRW � 600.

The initialization routine E04VGF has not been called.

IFAIL ¼ 2

Array element IGFUNð valueh iÞ ¼ valueh i is out of range 1 to NF ¼ valueh i, or array element
JGVARð valueh iÞ ¼ valueh i is out of range 1 to N ¼ valueh i.
Basis file dimensions do not match this problem.

On entry, bounds FLOW and FUPP for valueh i are equal and infinite. FLOW ¼ FUPP ¼ valueh i
and infbnd ¼ valueh i.
On entry, bounds FLOW and FUPP for variable valueh i are equal and infinite.
FLOW ¼ FUPP ¼ valueh i and infbnd ¼ valueh i.
On entry, bounds for valueh i are inconsistent. FLOW ¼ valueh i and FUPP ¼ valueh i.
On entry, bounds for valueh i are inconsistent. XLOW ¼ valueh i and XUPP ¼ valueh i.
On entry, bounds for variable valueh i are inconsistent. FLOW ¼ valueh i and FUPP ¼ valueh i.
On entry, bounds for variable valueh i are inconsistent. XLOW ¼ valueh i and XUPP ¼ valueh i.
On entry, bounds XLOW and XUPP for valueh i are equal and infinite. XLOW ¼ XUPP ¼ valueh i
and infbnd ¼ valueh i.
On entry, bounds XLOW and XUPP for variable valueh i are equal and infinite.
XLOW ¼ XUPP ¼ valueh i and infbnd ¼ valueh i.
On entry, LENA ¼ valueh i.
Constraint: LENA � 1.
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On entry, LENG ¼ valueh i.
Constraint: LENG � 1.

On entry, N ¼ valueh i.
Constraint: N � 1.

On entry, NEA ¼ valueh i, N ¼ valueh i and NF ¼ valueh i.
Constraint: NEA � N� NF.

On entry, NEA ¼ valueh i.
Constraint: NEA � 0.

On entry, NEG ¼ valueh i, N ¼ valueh i and NF ¼ valueh i.
Constraint: NEG � N� NF.

On entry, NEG ¼ valueh i.
Constraint: NEG � 0.

On entry, NF ¼ valueh i.
Constraint: NF � 1.

On entry, NFNAME ¼ valueh i and NF ¼ valueh i.
Constraint: NFNAME ¼ 1 or NF.

On entry, NXNAME ¼ valueh i and N ¼ valueh i.
Constraint: NXNAME ¼ 1 or N.

On entry, OBJROW ¼ valueh i and NF ¼ valueh i.
Constraint: 0 � OBJROW � NF.

On entry, one but not both of NXNAME and NFNAME is equal to 1. NXNAME ¼ valueh i and
NFNAME ¼ valueh i.
On entry, START ¼ valueh i.
Constraint: START ¼ 0, 1 or 2.

IFAIL ¼ 3

The requested accuracy could not be achieved.

A feasible solution has been found, but the requested accuracy in the dual infeasibilities could
not be achieved. An abnormal termination has occurred, but E04VHF is within 10�2 of satisfying
the Major Optimality Tolerance. Check that the Major Optimality Tolerance is not too small.

IFAIL ¼ 4

The linear constraints appear to be infeasible.

The problem appears to be infeasible. Infeasibilites have been minimized.

The problem appears to be infeasible. Nonlinear infeasibilites have been minimized.

The problem appears to be infeasible. The linear equality constraints could not be satisfied.

When the constraints are linear, this message is based on a relatively reliable indicator of
infeasibility. Feasibility is measured with respect to the upper and lower bounds on the variables
and slacks. Among all the points satisfying the general constraints Ax� s ¼ 0 (see (6) and (7) in
Section 11.2), there is apparently no point that satisfies the bounds on x and s. Violations as
small as the Minor Feasibility Tolerance are ignored, but at least one component of x or s
violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly. Even
if a feasible solution exists, the current linearization of the constraints may not contain a feasible
point. In an attempt to deal with this situation, when solving each QP subproblem, E04VHF is
prepared to relax the bounds on the slacks associated with nonlinear rows.

If a QP subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier estimates
for the nonlinear constraints become large), E04VHF enters so-called ‘nonlinear elastic’ mode.
The subproblem includes the original QP objective and the sum of the infeasibilities – suitably
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weighted using the optional parameter Elastic Weight. In elastic mode, some of the bounds on
the nonlinear rows are ‘elastic’ – i.e., they are allowed to violate their specific bounds. Variables
subject to elastic bounds are known as elastic variables. An elastic variable is free to violate one
or both of its original upper or lower bounds. If the original problem has a feasible solution and
the elastic weight is sufficiently large, a feasible point eventually will be obtained for the
perturbed constraints, and optimization can continue on the subproblem. If the nonlinear problem
has no feasible solution, E04VHF will tend to determine a ‘good’ infeasible point if the elastic
weight is sufficiently large. (If the elastic weight were infinite, E04VHF would locally minimize
the nonlinear constraint violations subject to the linear constraints and bounds.)

Unfortunately, even though E04VHF locally minimizes the nonlinear constraint violations, there
may still exist other regions in which the nonlinear constraints are satisfied. Wherever possible,
nonlinear constraints should be defined in such a way that feasible points are known to exist
when the constraints are linearized.

IFAIL ¼ 5

The problem appears to be unbounded. The constraint violation limit has been reached.

The problem appears to be unbounded. The objective function is unbounded.

The problem appears to be unbounded (or badly scaled).

For linear problems, unboundedness is detected by the simplex method when a nonbasic variable
can be increased or decreased by an arbitrary amount without causing a basic variable to violate
a bound. Consider adding an upper or lower bound to the variable. Also, examine the constraints
that have nonzeros in the associated column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an
erroneous indication of unboundedness. Consider using the optional parameter Scale Option.

For nonlinear problems, E04VHF monitors both the size of the current objective function and the
size of the change in the variables at each step. If either of these is very large (as judged by the
‘Unbounded’ optional parameters (see Section 12)), the problem is terminated and declared
unbounded. To avoid large function values, it may be necessary to impose bounds on some of the
variables in order to keep them away from singularities in the nonlinear functions.

The message may indicate an abnormal termination while enforcing the limit on the constraint
violations. This exit implies that the objective is not bounded below in the feasible region defined
by expanding the bounds by the value of the Violation Limit.

IFAIL ¼ 6

Iteration limit reached.

Major iteration limit reached.

The value of the optional parameter Superbasics Limit is too small.

Either the Iterations Limit or the Major Iterations Limit was exceeded before the required
solution could be found. Check the iteration log to be sure that progress was being made. If so,
and if you caused a basis file to be saved by using the optional parameter New Basis File,
consider restarting the run using the optional parameter Old Basis File to see whether further
progress can be made. If you have no basis file available, you might rerun the problem after
increasing the optional parameters Minor Iterations Limit and/or Major Iterations Limit.

If none of the above limits have been reached, this error may mean that the problem appears to
be more nonlinear than anticipated. The current set of basic and superbasic variables have been
optimized as much as possible and a pricing operation (where a nonbasic variable is selected to
become superbasic) is necessary to continue, but it can't continue as the number of superbasic
variables has already reached the limit specified by the optional parameter Superbasics Limit. In
general, raise the Superbasics Limit s by a reasonable amount, bearing in mind the storage
needed for the reduced Hessian.
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IFAIL ¼ 7

Numerical difficulties have been encountered and no further progress can be made.

Several circumstances could lead to this exit.

1. USRFUN could be returning accurate function values but inaccurate gradients (or vice
versa). This is the most likely cause. Study the comments given for IFAIL ¼ 8, and do your
best to ensure that the coding is correct.

2. The function and gradient values could be consistent, but their precision could be too low.
For example, accidental use of a low precision data type when a higher precision was
intended would lead to a relative function precision of about 10�6 instead of something like
10�15. The default Major Optimality Tolerance of 2� 10�6 would need to be raised to
about 10�3 for optimality to be declared (at a rather suboptimal point). Of course, it is better
to revise the function coding to obtain as much precision as economically possible.

3. If function values are obtained from an expensive iterative process, they may be accurate to
rather few significant figures, and gradients will probably not be available. One should
specify

Function Precision t

Major Optimality Tolerance
ffiffi
t
p

but even then, if t is as large as 10�5 or 10�6 (only 5 or 6 significant figures), the same exit
condition may occur. At present the only remedy is to increase the accuracy of the function
calculation.

4. An LU factorization of the basis has just been obtained and used to recompute the basic
variables xB, given the present values of the superbasic and nonbasic variables. A step of
‘iterative refinement’ has also been applied to increase the accuracy of xB. However, a row
check has revealed that the resulting solution does not satisfy the current constraints
Ax� s ¼ 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. If there are some linear
constraints and variables, try Scale Option ¼ 1 if scaling has not yet been used.

For certain highly structured basis matrices (notably those with band structure), a systematic
growth may occur in the factor U. Consult the description of Umax and Growth in
Section 13.4 and set the LU Factor Tolerance to 2:0 (or possibly even smaller, but not less
than 1:0).

5. The first factorization attempt will have found the basis to be structurally or numerically
singular. (Some diagonals of the triangular matrix U were respectively zero or smaller than a
certain tolerance.) The associated variables are replaced by slacks and the modified basis is
refactorized, but singularity persists. This must mean that the problem is badly scaled, or the
LU Factor Tolerance is too much larger than 1:0. This is highly unlikely to occur.

IFAIL ¼ 8

User-supplied function computes incorrect constraint derivatives.

User-supplied function computes incorrect objective derivatives.

A check has been made on some elements of the Jacobian as returned in the argument G of
USRFUN. At least one value disagrees remarkably with its associated forward difference
estimate (the relative difference between the computed and estimated values is 1:0 or more). This
exit is a safeguard, since E04VHF will usually fail to make progress when the computed
gradients are seriously inaccurate. In the process it may expend considerable effort before
terminating with IFAIL ¼ 7.

Check the function and Jacobian computation very carefully in USRFUN. A simple omission
could explain everything. If a component is very large, then give serious thought to scaling the
function or the nonlinear variables.
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If you feel certain that the computed Jacobian is correct (and that the forward-difference
estimate is therefore wrong), you can specify Verify Level ¼ 0 to prevent individual elements
from being checked. However, the optimization procedure may have difficulty.

IFAIL ¼ 9

Unable to proceed into undefined region of user-supplied function.

User-supplied function is undefined at the first feasible point.

User-supplied function is undefined at the initial point.

You have indicated that the problem functions are undefined by assigning the value
STATUS ¼ �1 on exit from USRFUN. E04VHF attempts to evaluate the problem functions
closer to a point at which the functions are already known to be defined. This exit occurs if
E04VHF is unable to find a point at which the functions are defined. This will occur in the case
of:

– undefined functions with no recovery possible;

– undefined functions at the first point;

– undefined functions at the first feasible point; or

– undefined functions when checking derivatives.

IFAIL ¼ 10

User-supplied function requested termination.

User requested termination.

You have indicated the wish to terminate solution of the current problem by setting STATUS to a
value < �1 on exit from USRFUN.

IFAIL ¼ 11

Internal error: memory allocation failed when attempting to allocate workspace sizes valueh i,
valueh i and valueh i. Please contact NAG.

IFAIL ¼ 12

Internal memory allocation was insufficient. Please contact NAG.

IFAIL ¼ 13

An error has occurred in the basis package. Check that arrays IAFUN, JAVAR, IGFUN and
JGVAR contain values in the appropriate ranges and do not define duplicate elements of A or G.
Set the optional parameter Print File and examine the output carefully for further information.

IFAIL ¼ 14

An unexpected error has occurred. Set the optional parameter Print File and examine the output
carefully for further information.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If the value of the optional parameter Major Optimality Tolerance is set to 10�d (default value ¼
ffiffi
�
p

)
and IFAIL ¼ 0 on exit, then the final value of f xð Þ should have approximately d correct significant
digits.

8 Parallelism and Performance

E04VHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This section describes the final output produced by E04VHF. Intermediate and other output are given in
Section 13.

9.1 The Final Output

If Print File > 0, the final output, including a listing of the status of every variable and constraint will
be sent to the Print File. The following describes the output for each constraint (row) and variable
(column).

9.1.1 The ROWS section

General linear constraints take the form l � ALx � u. The ith constraint is therefore of the form

� � �ix � �;

where �i is the ith row of AL.

Internally, the constraints take the form ALx� s ¼ 0, where s is the set of slack variables (which
satisfy the bounds l � s � u). For the ith row it is the slack variable si that is directly available and it is
sometimes convenient to refer to its state. Nonlinear constraints � � fi xð Þ þ �ix � � are treated
similarly, except that the row activity and degree of infeasibility are computed directly from
fi xð Þ þ �ix, rather than si.
A full stop (.) is printed for any numerical value that is exactly zero.

Label Description

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of the ith row.

State the state of the ith row relative to the bounds � and �. The various states possible
are as follows:

LL the row is at its lower limit, �.

UL the row is at its upper limit, �.

EQ the limits are the same (� ¼ �).
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FR si is nonbasic and currently zero, even though it is free to take any value
between its bounds � and �.

BS si is basic.

SBS si is superbasic.

A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value
of the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal (or very
close) to one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the Feasibility Tolerance.

N Not precisely optimal. The variable is nonbasic or superbasic. If the value
of the reduced gradient for the variable exceeds the value of the optional
parameter Major Optimality Tolerance, the solution would not be
declared optimal because the reduced gradient for the variable would not
be considered negligible.

Activity is the value of �ix (or fi xð Þ þ �ix for nonlinear rows) at the final iterate.

Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if
any), it is set to Activity.)

Lower Limit is �, the lower bound on the row.

Upper Limit is �, the upper bound on the row.

Dual Activity is the value of the dual variable 	i (the Lagrange multiplier for the ith constraint).
The full vector 	 always satisfies BT	 ¼ gB, where B is the current basis matrix
and gB contains the associated gradients for the current objective function. For FP
problems, 	i is set to zero.

i gives the index i of the ith row.

9.1.2 The COLUMNS section

Let the jth component of x be the variable xj and assume that it satisfies the bounds � � xj � �. A
fullstop (.) is printed for any numerical value that is exactly zero.

Label Description

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj.

State the state of xj relative to the bounds � and �. The various states possible are as
follows:

LL xj is nonbasic at its lower limit, �.

UL xj is nonbasic at its upper limit, �.

EQ xj is nonbasic and fixed at the value � ¼ �.
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FR xj is nonbasic at some value strictly between its bounds: � < xj < �.

BS xj is basic. Usually � < xj < �.

SBS xj is superbasic. Usually � < xj < �.

A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value
of the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal (or very
close) to one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the Feasibility Tolerance.

N Not precisely optimal. The variable is nonbasic or superbasic. If the value
of the reduced gradient for the variable exceeds the value of the optional
parameter Major Optimality Tolerance, the solution would not be
declared optimal because the reduced gradient for the variable would not
be considered negligible.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.

Lower Limit is the lower bound specified for the variable. None indicates that
XLOWðjÞ � �infbnd.

Upper Limit is the upper bound specified for the variable. None indicates that
XUPPðjÞ � infbnd.

Reduced Gradnt is the value of the reduced gradient dj ¼ gj � 	Taj where aj is the jth column of
the constraint matrix. For FP problems, dj is set to zero.

m + j is the value of mþ j.
Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack Activity column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This example is a reformulation of Problem 74 from Hock and Schittkowski (1981) and involves the
minimization of the nonlinear function

f xð Þ ¼ 10�6x33 þ 2
3� 10�6x34 þ 3x3 þ 2x4

subject to the bounds

�0:55 � x1 � 0:55;
�0:55 � x2 � 0:55;

0 � x3 � 1200;
0 � x4 � 1200;

to the nonlinear constraints
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1000 sin �x1 � 0:25ð Þ þ 1000 sin �x2 � 0:25ð Þ � x3 ¼ �894:8;
1000 sin x1 � 0:25ð Þ þ 1000 sin x1 � x2 � 0:25ð Þ � x4 ¼ �894:8;

1000 sin x2 � 0:25ð Þ þ 1000 sin x2 � x1 � 0:25ð Þ ¼ �1294:8;

and to the linear constraints

�x1 þ x2 � �0:55;
x1 � x2 � �0:55:

The initial point, which is infeasible, is

x0 ¼ 0; 0; 0; 0
� �T

;

and f x0ð Þ ¼ 0.

The optimal solution (to five figures) is

x� ¼ 0:11887;�0:39623; 679:94; 1026:0ð ÞT;

and f x�ð Þ ¼ 5126:4. All the nonlinear constraints are active at the solution.

The example in the document for E04VJF solves the above problem. It first calls E04VJF to determine
the sparsity pattern before calling E04VHF.

The example in the document for E04VKF solves the above problem using some of the optional
parameters described in Section 12.

The formulation of the problem combines the constraints and the objective into a single vector (F )
which is split into linear part (ALx) and a nonlinear part (f). For example we could write

F ¼

1000 sin �x1 � 0:25ð Þ þ 1000 sin �x2 � 0:25ð Þ � x3
1000 sin x1 � 0:25ð Þ þ 1000 sin x1 � x2 � 0:25ð Þ � x4

1000 sin x2 � 0:25ð Þ þ 1000 sin x2 � x1 � 0:25ð Þ
�x1 þ x2
x1 � x2

10�6x33 þ 2
3� 10�6x34 þ 3x3 þ 2x4

0BBBBB@

1CCCCCA ¼ f þALx

where

f ¼

1000 sin �x1 � 0:25ð Þ þ 1000 sin �x2 � 0:25ð Þ
1000 sin x1 � 0:25ð Þ þ 1000 sin x1 � x2 � 0:25ð Þ
1000 sin x2 � 0:25ð Þ þ 1000 sin x2 � x1 � 0:25ð Þ

0
0

10�6x33 þ 2
3� 10�6x34

0BBBBB@

1CCCCCA
and

AL ¼

0 0 �1 0
0 0 0 �1
0 0 0 0
�1 1 0 0
1 �1 0 0
0 0 3 2

0BBBBB@

1CCCCCA:
The nonzero elements of AL need to be stored in the triples IAFUNðkÞ; JAVARðkÞ;AðkÞð Þ in any order.
For example

k 1 2 3 4 5 6 7 8

IAFUNðkÞ 1 2 4 4 5 5 6 6
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JAVARðkÞ 3 4 1 2 1 2 3 4

AðkÞ �1 �1 �1 1 1 �1 3 2

The nonlinear functions f and the Jacobian need to be supplied in USRFUN. Please note that there is
no need to assign any value to f4 or f5 as there is no nonlinear part in F4 or F5.

The nonzero entries of the Jacobian of f are

@f1
@x1
¼ �1000 cos �x1 � 0:25ð Þ

@f1
@x2
¼ �1000 cos �x2 � 0:25ð Þ

@f2
@x1
¼ 1000 cos x1 � 0:25ð Þ þ 1000 cos x1 � x2 � 0:25ð Þ

@f2
@x2
¼ �1000 cos x1 � x2 � 0:25ð Þ

@f3
@x1
¼ �1000 cos x2 � x1 � 0:25ð Þ

@f3
@x2
¼ 1000 cos x2 � 0:25ð Þ þ 1000 cos x2 � x1 � 0:25ð Þ

@f6
@x3
¼ 3� 10�6x23

@f6
@x4
¼ 2� 10�6x24

So the arrays IGFUN and JGVAR must contain:

k 1 2 3 4 5 6 7 8

IGFUNðkÞ 1 1 2 2 3 3 6 6

JGVARðkÞ 1 2 1 2 1 2 3 4

and USRFUN must return in GðkÞ the value of @fi
@xj

, where i ¼ IGFUNðkÞ and j ¼ JGVARðkÞ.

10.1 Program Text

! E04VHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04vhfe_mod

! E04VHF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: usrfun

! .. Parameters ..
Integer, Parameter, Public :: lencw = 600, leniw = 600, &

lenrw = 600, nin = 5, nout = 6
Contains

Subroutine usrfun(status,n,x,needf,nf,f,needg,leng,g,cuser,iuser,ruser)

! .. Scalar Arguments ..
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Integer, Intent (In) :: leng, n, needf, needg, nf
Integer, Intent (Inout) :: status

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: f(nf), g(leng), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Character (8), Intent (Inout) :: cuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
If (needf>0) Then

! The nonlinear components of f_i(x) need to be assigned,
! for i = 1 to NF

f(1) = 1000.0E+0_nag_wp*sin(-x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(-x(2)-0.25E+0_nag_wp)

f(2) = 1000.0E+0_nag_wp*sin(x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(x(1)-x(2)-0.25E+0_nag_wp)

f(3) = 1000.0E+0_nag_wp*sin(x(2)-x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(x(2)-0.25E+0_nag_wp)

! N.B. in this example there is no need to assign for the wholly
! linear components f_4(x) and f_5(x).

f(6) = 1.0E-6_nag_wp*x(3)**3 + 2.0E-6_nag_wp*x(4)**3/3.0E+0_nag_wp
End If

If (needg>0) Then

! The derivatives of the function f_i(x) need to be assigned.
! G(k) should be set to partial derivative df_i(x)/dx_j where
! i = IGFUN(k) and j = IGVAR(k), for k = 1 to LENG.

g(1) = -1000.0E+0_nag_wp*cos(-x(1)-0.25E+0_nag_wp)
g(2) = -1000.0E+0_nag_wp*cos(-x(2)-0.25E+0_nag_wp)
g(3) = 1000.0E+0_nag_wp*cos(x(1)-0.25E+0_nag_wp) + &

1000.0E+0_nag_wp*cos(x(1)-x(2)-0.25E+0_nag_wp)
g(4) = -1000.0E+0_nag_wp*cos(x(1)-x(2)-0.25E+0_nag_wp)
g(5) = -1000.0E+0_nag_wp*cos(x(2)-x(1)-0.25E+0_nag_wp)
g(6) = 1000.0E+0_nag_wp*cos(x(2)-x(1)-0.25E+0_nag_wp) + &

1000.0E+0_nag_wp*cos(x(2)-0.25E+0_nag_wp)
g(7) = 3.0E-6_nag_wp*x(3)**2
g(8) = 2.0E-6_nag_wp*x(4)**2

End If

Return

End Subroutine usrfun
End Module e04vhfe_mod
Program e04vhfe

! E04VHF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04vgf, e04vhf, e04vmf, nag_wp
Use e04vhfe_mod, Only: lencw, leniw, lenrw, nin, nout, usrfun

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: objadd, sinf
Integer :: i, ifail, lena, leng, n, nea, neg, &

nf, nfname, ninf, ns, nxname, &
objrow, start

Logical :: verbose_output
Character (8) :: prob

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), f(:), flow(:), fmul(:), &

fupp(:), x(:), xlow(:), xmul(:), &
xupp(:)

Real (Kind=nag_wp) :: ruser(1), rw(lenrw)
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Integer, Allocatable :: fstate(:), iafun(:), igfun(:), &
javar(:), jgvar(:), xstate(:)

Integer :: iuser(1), iw(leniw)
Character (8) :: cuser(1), cw(lencw)
Character (8), Allocatable :: fnames(:), xnames(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04VHF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, nf
Read (nin,*) nea, neg, objrow, start
lena = max(1,nea)
leng = max(1,neg)
nxname = n
nfname = nf
Allocate (iafun(lena),javar(lena),igfun(leng),jgvar(leng),xstate(n), &

fstate(nf),a(lena),xlow(n),xupp(n),flow(nf),fupp(nf),x(n),xmul(n), &
f(nf),fmul(nf),xnames(nxname),fnames(nfname))

! Read the variable names

Read (nin,*) xnames(1:nxname)

! Read the function names

Read (nin,*) fnames(1:nfname)

! Read the sparse matrix A, the linear part of F

Do i = 1, nea

! For each element read row, column, A(row,column)

Read (nin,*) iafun(i), javar(i), a(i)
End Do

! Read the structure of sparse matrix G, the nonlinear part of F

Do i = 1, neg

! For each element read row, column

Read (nin,*) igfun(i), jgvar(i)
End Do

! Read the lower and upper bounds on the variables

Do i = 1, n
Read (nin,*) xlow(i), xupp(i)

End Do

! Read the lower and upper bounds on the functions

Do i = 1, nf
Read (nin,*) flow(i), fupp(i)

End Do

! Initialize X, XSTATE, XMUL, F, FSTATE, FMUL

Read (nin,*) x(1:n)
Read (nin,*) xstate(1:n)
Read (nin,*) xmul(1:n)
Read (nin,*) f(1:nf)
Read (nin,*) fstate(1:nf)
Read (nin,*) fmul(1:nf)

objadd = 0.0E0_nag_wp

E04VHF NAG Library Manual

E04VHF.24 Mark 26



prob = ’ ’

Write (nout,99999) n

! Call E04VGF to initialize E04VHF.

ifail = 0
Call e04vgf(cw,lencw,iw,leniw,rw,lenrw,ifail)

! Set this to .True. to cause e04nqf to produce intermediate
! progress output

verbose_output = .False.

If (verbose_output) Then
! By default e04vhf does not print monitoring
! information. Set the print file unit or the summary
! file unit to get information.

ifail = 0
Call e04vmf(’Print file’,nout,cw,iw,rw,ifail)

End If

! Solve the problem.

ifail = 0
Call e04vhf(start,nf,n,nxname,nfname,objadd,objrow,prob,usrfun,iafun, &

javar,a,lena,nea,igfun,jgvar,leng,neg,xlow,xupp,xnames,flow,fupp, &
fnames,x,xstate,xmul,f,fstate,fmul,ns,ninf,sinf,cw,lencw,iw,leniw,rw, &
lenrw,cuser,iuser,ruser,ifail)

Write (nout,*)
Write (nout,99998) f(objrow)
Write (nout,99997) x(1:n)

99999 Format (1X,/,1X,’NLP problem contains ’,I3,’ variables’)
99998 Format (1X,’Final objective value = ’,F11.1)
99997 Format (1X,’Optimal X = ’,7F10.3)

End Program e04vhfe

10.2 Program Data

E04VHF Example Program Data
4 6 : Values of N and NF
8 8 6 0 : Values of NEA, NEG, OBJROW and START

’X1’ ’X2’ ’X3’ ’X4’ : XNAMES
’NlnCon 1’ ’NlnCon 2’ ’NlnCon 3’ ’LinCon 1’ ’LinCon 2’ ’Objectiv’ : FNAMES

1 3 -1.0E0 : Nonzero elements of sparse matrix A, the linear part of F.
2 4 -1.0E0 : Each row IAFUN(i), JAVAR(i), A(IAFUN(i),JAVAR(i)), i = 1 to NEA
4 1 -1.0E0
4 2 1.0E0
5 1 1.0E0
5 2 -1.0E0
6 3 3.0E0
6 4 2.0E0

1 1 : Nonzero row/column structure of G, IGFUN(i), JGVAR(i), i = 1 to NEG
1 2
2 1
2 2
3 1
3 2
6 3
6 4

-0.55E0 0.55E0 : Bounds on the variables, XLOW(i), XUPP(i), for i = 1 to N
-0.55E0 0.55E0
0.0E0 1200.0E0
0.0E0 1200.0E0
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-894.8E0 -894.8E0 : Bounds on the functions, FLOW(i), FUPP(i), for i = 1 to NF
-894.8E0 -894.8E0

-1294.8E0 -1294.8E0
-0.55E0 1.0E25
-0.55E0 1.0E25
-1.0E25 1.0E25

0.0 0.0 0.0 0.0 : Initial values of X(i), for i = 1 to N
0 0 0 0 : Initial values of XSTATE(i), for i = 1 to N
0.0 0.0 0.0 0.0 : Initial values of XMUL(i), for i = 1 to N

0.0 0.0 0.0 0.0 0.0 0.0 : Initial values of F(i), for i = 1 to NF
0 0 0 0 0 0 : Initial values of FSTATE(i), for i = 1 to NF
0.0 0.0 0.0 0.0 0.0 0.0 : Initial values of FMUL(i), for i = 1 to NF

10.3 Program Results
E04VHF Example Program Results

NLP problem contains 4 variables

Final objective value = 5126.5
Optimal X = 0.119 -0.396 679.945 1026.067

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to E04VKF, E04VLF, E04VMF
and/or E04VNF. Section 13 describes the quantities which can be requested to monitor the course of the
computation.

11 Algorithmic Details

Here we summarise the main features of the SQP algorithm used in E04VHF and introduce some
terminology used in the description of the subroutine and its arguments. The SQP algorithm is fully
described in Gill et al. (2002).

11.1 Constraints and Slack Variables

Problem (1) contains n variables in x. Let m be the number of components of f xð Þ and ALx combined.
The upper and lower bounds on those terms define the general constraints of the problem. E04VHF
converts the general constraints to equalities by introducing a set of slack variables
s ¼ s1; s2; . . . ; smð ÞT. For example, the linear constraint 5 � 2x1 þ 3x2 � 1 is replaced by
2x1 þ 3x2 � s1 ¼ 0 together with the bounded slack 5 � s1 � 1. The minimization problem (1) can
therefore be written in the equivalent form

minimize
x;s

f0 xð Þ subject to f xð Þ
ALx

� �
� s ¼ 0; l � x

s

� �
� u: ð3Þ

The general constraints become the equalities f xð Þ � sN ¼ 0 and ALx� sL ¼ 0, where sL and sN are
the linear and nonlinear slacks.

11.2 Major Iterations

The basic structure of the SQP algorithm involves major and minor iterations. The major iterations
generate a sequence of iterates xkf g that satisfy the linear constraints and converge to a point that
satisfies the nonlinear constraints and the first-order conditions for optimality. At each iterate xk a QP
subproblem is used to generate a search direction towards the next iterate xkþ1. The constraints of the
subproblem are formed from the linear constraints ALx� sL ¼ 0 and the linearized constraint

f xkð Þ þ f 0 xkð Þ x� xkð Þ � sN ¼ 0; ð4Þ

where f 0 xkð Þ denotes the Jacobian matrix, whose elements are the first derivatives of f xð Þ evaluated at
xk. The QP constraints therefore comprise the m linear constraints
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f 0 xkð Þx� sN ¼ �f xkð Þ þ f 0 xkð Þxk;
ALx � sL ¼ 0;

ð5Þ

where x and s are bounded above and below by u and l as before. If the m by n matrix A and m-vector
b are defined as

A ¼ f 0 xkð Þ
AL

� �
and b ¼ �f xkð Þ þ f 0 xkð Þxk

0

� �
; ð6Þ

then the QP subproblem can be written as

minimize
x;s

q x; xkð Þ ¼ gTk x� xkð Þ þ 1

2
x� xkð ÞTHk x� xkð Þ subject to Ax� s ¼ b; l � x

s

� �
� u; ð7Þ

where q x; xkð Þ is a quadratic approximation to a modified Lagrangian function (see Gill et al. (2002)).
The matrix Hk is a quasi-Newton approximation to the Hessian of the Lagrangian. A BFGS update is
applied after each major iteration. If some of the variables enter the Lagrangian linearly the Hessian
will have some zero rows and columns. If the nonlinear variables appear first, then only the n1 rows
and columns of the Hessian need to be approximated, where n1 is the number of nonlinear variables.
This quantity is determined by the implicit values of the number of nonlinear objective and Jacobian
variables determined after the constraints and variables are reordered.

11.3 Minor Iterations

Solving the QP subproblem is itself an iterative procedure. Here, the iterations of the QP solver
E04NQF form the minor iterations of the SQP method. E04NQF uses a reduced-Hessian active-set
method implemented as a reduced-gradient method. At each minor iteration, the constraints Ax� s ¼ b
are partitioned into the form

BxB þ SxS þNxN ¼ b; ð8Þ

where the basis matrix B is square and nonsingular, and the matrices S and N are the remaining
columns of A �I

� �
. The vectors xB, xS and xN are the associated basic, superbasic and nonbasic

variables respectively; they are a permutation of the elements of x and s. At a QP subproblem, the basic
and superbasic variables will lie somewhere between their bounds, while the nonbasic variables will
normally be equal to one of their bounds. At each iteration, xS is regarded as a set of independent
variables that are free to move in any desired direction, namely one that will improve the value of the
QP objective (or the sum of infeasibilities). The basic variables are then adjusted in order to ensure that
x; sð Þ continues to satisfy Ax� s ¼ b. The number of superbasic variables (nS , say) therefore indicates
the number of degrees of freedom remaining after the constraints have been satisfied. In broad terms,
nS is a measure of how nonlinear the problem is. In particular, nS will always be zero for LP problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S, and the process is repeated with the value of nS increased by one.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made
nonbasic and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax� s ¼ b are the dual variables 	. Similarly, each
variable in x; sð Þ has an associated reduced gradient dj. The reduced gradients for the variables x are
the quantities g�AT	, where g is the gradient of the QP objective, and the reduced gradients for the
slacks are the dual variables 	. The QP subproblem is optimal if dj � 0 for all nonbasic variables at
their lower bounds, dj � 0 for all nonbasic variables at their upper bounds, and dj ¼ 0 for other
variables, including superbasics. In practice, an approximate QP solution x̂k; ŝk; 	̂kð Þ is found by
relaxing these conditions.
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11.4 The Merit Function

After a QP subproblem has been solved, new estimates of the solution are computed using a linesearch
on the augmented Lagrangian merit function

M x; s; 	ð Þ ¼ f0 xð Þ � 	T f xð Þ � sNð Þ þ 1

2
f xð Þ � sNð ÞTD f xð Þ � sNð Þ; ð9Þ

where D is a diagonal matrix of penalty parameters Dii � 0ð Þ, and 	 now refers to dual variables for
the nonlinear constraints in (1). If xk; sk; 	kð Þ denotes the current solution estimate and x̂k; ŝk; 	̂kð Þ
denotes the QP solution, the linesearch determines a step �k 0 < �k � 1ð Þ such that the new point

xkþ1
skþ1
	kþ1

0@ 1A ¼ xk
sk
	k

0@ 1Aþ �k x̂k � xk
ŝk � sk
	̂k � 	k

0@ 1A ð10Þ

gives a sufficient decrease in the merit functionM. When necessary, the penalties in D are increased by
the minimum-norm perturbation that ensures descent forM (see Gill et al. (1992)). The value of sN is
adjusted to minimize the merit function as a function of s before the solution of the QP subproblem (see
Gill et al. (1986) and Eldersveld (1991)).

11.5 Treatment of Constraint Infeasibilities

E04VHF makes explicit allowance for infeasible constraints. First, infeasible linear constraints are
detected by solving the linear program

minimize
x;v;w

eT vþ wð Þ subject to l � x
ALx� vþ w

� �
� u; v � 0; w � 0; ð11Þ

where e is a vector of ones, and the nonlinear constraint bounds are temporarily excluded from l and u.
This is equivalent to minimizing the sum of the general linear constraint violations subject to the
bounds on x. (The sum is the ‘1-norm of the linear constraint violations. In the linear programming
literature, the approach is called elastic programming.)

The linear constraints are infeasible if the optimal solution of (11) has v 6¼ 0 or w 6¼ 0. E04VHF then
terminates without computing the nonlinear functions.

Otherwise, all subsequent iterates satisfy the linear constraints. (Such a strategy allows linear
constraints to be used to define a region in which the functions can be safely evaluated.) E04VHF
proceeds to solve nonlinear problems as given, using search directions obtained from the sequence of
QP subproblems (see (7)).

If a QP subproblem proves to be infeasible or unbounded (or if the dual variables 	 for the nonlinear
constraints become large), E04VHF enters ‘elastic’ mode and thereafter solves the problem

minimize
x;v;w

f0 xð Þ þ �eT vþ wð Þ subject to l �
x

f xð Þ � vþ w
ALx

0@ 1A � u; v � 0; w � 0; ð12Þ

where � is a non-negative argument (the elastic weight), and f0 xð Þ þ �eT vþ wð Þ is called a composite
objective (the ‘1 penalty function for the nonlinear constraints).

The value of � may increase automatically by multiples of 10 if the optimal v and w continue to be
nonzero. If � is sufficiently large, this is equivalent to minimizing the sum of the nonlinear constraint
violations subject to the linear constraints and bounds.

The initial value of � is controlled by the optional parameter Elastic Weight.

12 Optional Parameters

Several optional parameters in E04VHF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal arguments of E04VHF these optional parameters have
associated default values that are appropriate for most problems. Therefore, you need only specify those
optional parameters whose values are to be different from their default values.
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The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Backup Basis File

Central Difference Interval

Check Frequency

Crash Option

Crash Tolerance

Defaults

Derivative Linesearch

Derivative Option

Difference Interval

Dump File

Elastic Weight

Expand Frequency

Factorization Frequency

Feasibility Tolerance

Feasible Point

Function Precision

Hessian Frequency

Hessian Full Memory

Hessian Limited Memory

Hessian Updates

Infinite Bound Size

Insert File

Iterations Limit

Linesearch Tolerance

List

Load File

LU Complete Pivoting

LU Density Tolerance

LU Factor Tolerance

LU Partial Pivoting

LU Rook Pivoting

LU Singularity Tolerance

LU Update Tolerance

Major Feasibility Tolerance

Major Iterations Limit

Major Optimality Tolerance

Major Print Level

Major Step Limit

Maximize

Minimize

Minor Feasibility Tolerance

Minor Iterations Limit

Minor Print Level
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New Basis File

New Superbasics Limit

Nolist

Nonderivative Linesearch

Old Basis File

Partial Price

Pivot Tolerance

Print File

Print Frequency

Proximal Point Method

Punch File

Save Frequency

Scale Option

Scale Print

Scale Tolerance

Solution File

Summary File

Summary Frequency

Superbasics Limit

Suppress Parameters

System Information No

System Information Yes

Timing Level

Unbounded Objective

Unbounded Step Size

Verify Level

Violation Limit

Optional parameters may be specified by calling one, or more, of the routines E04VKF, E04VLF,
E04VMF and E04VNF before a call to E04VHF.

E04VKF reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04VKF (ISPECS, CW, IW, RW, IFAIL)

can then be used to read the file on unit ISPECS. IFAIL ¼ 0 on successful exit. E04VKF should be
consulted for a full description of this method of supplying optional parameters.

E04VLF, E04VMF and E04VNF can be called to supply options directly, one call being necessary for
each optional parameter. For example,

CALL E04VLF (’Print Level = 5’, CW, IW, RW, IFAIL)

E04VLF, E04VMF and E04VNF should be consulted for a full description of this method of supplying
optional parameters.

All optional parameters you do not specify are set to their default values. Optional parameters you
specify are unaltered by E04VHF (unless they define invalid values) and so remain in effect for
subsequent calls to E04VHF, unless you alter them.
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12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
and �r denotes the relative precision of the objective function Function Precision, and bigbnd
signifies the value of Infinite Bound Size.

Keywords and character values are case and white space insensitive.

Central Difference Interval r Default ¼ �
1
3
r

When Derivative Option ¼ 0, the central-difference interval r is used near an optimal solution to
obtain more accurate (but more expensive) estimates of gradients. Twice as many function evaluations
are required compared to forward differencing. The interval used for the jth variable is
hj ¼ r 1þ xj

		 		� �
. The resulting derivative estimates should be accurate to O r2

� �
, unless the functions

are badly scaled.

If you supply a value for this optional parameter, a small value between 0:0 and 1:0 is appropriate.

Check Frequency i Default ¼ 60

Every ith minor iteration after the most recent basis factorization, a numerical test is made to see if the
current solution x satisfies the general linear constraints (the linear constraints and the linearized
nonlinear constraints, if any). The constraints are of the form Ax� s ¼ b, where s is the set of slack
variables. To perform the numerical test, the residual vector r ¼ b�Axþ s is computed. If the largest
component of r is judged to be too large, the current basis is refactorized and the basic variables are
recomputed to satisfy the general constraints more accurately. If i � 0, the value of i ¼ 99999999 is
used and effectively no checks are made.

Check Frequency ¼ 1 is useful for debugging purposes, but otherwise this option should not be
needed.

Crash Option i Default ¼ 3
Crash Tolerance r Default ¼ 0:1

Except on restarts, an internal Crash procedure is used to select an initial basis from certain rows and
columns of the constraint matrix A �I

� �
. The Crash Option i determines which rows and columns

of A are eligible initially, and how many times the Crash procedure is called. Columns of �I are used
to pad the basis where necessary.

i Meaning

0 The initial basis contains only slack variables: B ¼ I.
1 The Crash procedure is called once, looking for a triangular basis in all rows and columns of A.

2 The Crash procedure is called twice (if there are nonlinear constraints). The first call looks for a
triangular basis in linear rows, and the iteration proceeds with simplex iterations until the linear
constraints are satisfied. The Jacobian is then evaluated for the first major iteration and the Crash
procedure is called again to find a triangular basis in the nonlinear rows (retaining the current basis
for linear rows).

3 The Crash procedure is called up to three times (if there are nonlinear constraints). The first two
calls treat linear equalities and linear inequalities separately. As before, the last call treats nonlinear
rows before the first major iteration.
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If i � 1, certain slacks on inequality rows are selected for the basis first. (If i � 2, numerical values are
used to exclude slacks that are close to a bound). The Crash procedure then makes several passes
through the columns of A, searching for a basis matrix that is essentially triangular. A column is
assigned to ‘pivot’ on a particular row if the column contains a suitably large element in a row that has
not yet been assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For
remaining unassigned rows, slack variables are inserted to complete the basis.

The Crash Tolerance r allows the starting Crash procedure to ignore certain ‘small’ nonzeros in each
column of A. If amax is the largest element in column j, other nonzeros of aij in the columns are
ignored if aij

		 		 � amax � r. (To be meaningful, r should be in the range 0 � r < 1.)

When r > 0:0, the basis obtained by the Crash procedure may not be strictly triangular, but it is likely
to be nonsingular and almost triangular. The intention is to obtain a starting basis containing more
columns of A and fewer (arbitrary) slacks. A feasible solution may be reached sooner on some
problems.

For example, suppose the first m columns of A form the matrix shown under LU Factor Tolerance; i.
e., a tridiagonal matrix with entries �1, 4, �1. To help the Crash procedure choose all m columns for
the initial basis, we would specify a Crash Tolerance of r for some value of r > 0:5.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Derivative Option i Default ¼ 1

Optional parameter Derivative Option specifies which nonlinear function gradients are known
analytically and will be supplied to E04VHF by USRFUN.

i Meaning

0 Some problem derivatives are unknown.

1 All problem derivatives are known.

The value i ¼ 1 should be used whenever possible. It is the most reliable and will usually be the most
efficient.

If i ¼ 0, E04VHF will estimate the missing components of G xð Þ using finite differences. This may
simplify the coding of USRFUN. However, it could increase the total run-time substantially (since a
special call to USRFUN is required for each column of the Jacobian that has a missing element), and
there is less assurance that an acceptable solution will be located. If the nonlinear variables are not well
scaled, it may be necessary to specify a nonstandard optional parameter Difference Interval.

For each column of the Jacobian, one call to USRFUN is needed to estimate all missing elements in
that column, if any.

At times, central differences are used rather than forward differences. Twice as many calls to USRFUN
are needed. (This is not under your control.)

Derivative Linesearch Default
Nonderivative Linesearch

At each major iteration a linesearch is used to improve the merit function. Optional parameter
Derivative Linesearch uses safeguarded cubic interpolation and requires both function and gradient
values to compute estimates of the step �k. If some analytic derivatives are not provided, or optional
parameter Nonderivative Linesearch is specified, E04VHF employs a linesearch based upon
safeguarded quadratic interpolation, which does not require gradient evaluations.

A nonderivative linesearch can be slightly less robust on difficult problems, and it is recommended that
the default be used if the functions and derivatives can be computed at approximately the same cost. If
the gradients are very expensive relative to the functions, a nonderivative linesearch may give a
significant decrease in computation time.
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If Nonderivative Linesearch is selected, E04VHF signals the evaluation of the linesearch by calling
USRFUN with NEEDG ¼ 0. Once the linesearch is completed, the problem functions are called again
with NEEDF ¼ 0 and NEEDG ¼ 0. If the potential saving provided by a nonderivative linesearch is to
be realised, it is essential that USRFUN be coded so that derivatives are not computed when
NEEDG ¼ 0.

Difference Interval r Default ¼ ffiffiffiffi
�r
p

This alters the interval r used to estimate gradients by forward differences. It does so in the following
circumstances:

– in the interval (‘cheap’) phase of verifying the problem derivatives;

– for verifying the problem derivatives;

– for estimating missing derivatives.

In all cases, a derivative with respect to xj is estimated by perturbing that component of x to the value
xj þ r 1þ xj

		 		� �
, and then evaluating Fobj xð Þ or f xð Þ at the perturbed point. The resulting gradient

estimates should be accurate to O rð Þ unless the functions are badly scaled. Judicious alteration of r may
sometimes lead to greater accuracy.

If you supply a value for this optional parameter, a small value between 0:0 and 1:0 is appropriate.

Dump File i1 Default ¼ 0
Load File i2 Default ¼ 0

Optional parameters Dump File and Load File are similar to optional parameters Punch File and
Insert File, but they record solution information in a manner that is more direct and more easily
modified. A full description of information recorded in optional parameters Dump File and Load File
is given in Gill et al. (2005a).

If i1 > 0, the last solution obtained will be output to the file with unit number i1.

If i2 > 0, the Load File, containing basis information, will be read. The file will usually have been
output previously as a Dump File. The file will not be accessed if optional parameters Old Basis File
or Insert File are specified.

Elastic Weight r Default ¼ 104

This keyword determines the initial weight � associated with the problem (12) (see Section 11.5).

At major iteration k, if elastic mode has not yet started, a scale factor �k ¼ 1þ g xkð Þk k1 is defined
from the current objective gradient. Elastic mode is then started if the QP subproblem is infeasible, or
the QP dual variables are larger in magnitude than �kr. The QP is resolved in elastic mode with
� ¼ �kr.
Thereafter, major iterations continue in elastic mode until they converge to a point that is optimal for
(12) (see Section 11.5). If the point is feasible for equation (1) v ¼ w ¼ 0ð Þ, it is declared locally
optimal. Otherwise, � is increased by a factor of 10 and major iterations continue. If � has already
reached a maximum allowable value, equation (1) is declared locally infeasible.

Expand Frequency i Default ¼ 10000

This option is part of the anti-cycling procedure designed to make progress even on highly degenerate
problems.

For linear models, the strategy is to force a positive step at every iteration, at the expense of violating
the bounds on the variables by a small amount. Suppose that the optional parameter Minor Feasibility
Tolerance is �. Over a period of i iterations, the tolerance actually used by E04VHF increases from
0:5� to � (in steps of 0:5�=i).

For nonlinear models, the same procedure is used for iterations in which there is only one superbasic
variable. (Cycling can occur only when the current solution is at a vertex of the feasible region.) Thus,
zero steps are allowed if there is more than one superbasic variable, but otherwise positive steps are
enforced.
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Increasing i helps reduce the number of slightly infeasible nonbasic variables (most of which are
eliminated during a resetting procedure). However, it also diminishes the freedom to choose a large
pivot element (see optional parameter Pivot Tolerance).

Factorization Frequency i Default ¼ 50

At most i basis changes will occur between factorizations of the basis matrix.

With linear programs, the basis factors are usually updated every iteration. The default i is reasonable
for typical problems. Higher values up to i ¼ 100 (say) may be more efficient on well-scaled problems.

When the objective function is nonlinear, fewer basis updates will occur as an optimum is approached.
The number of iterations between basis factorizations will therefore increase. During these iterations a
test is made regularly (according to the optional parameter Check Frequency) to ensure that the
general constraints are satisfied. If necessary the basis will be refactorized before the limit of i updates
is reached.

Function Precision r Default ¼ �0:8

The relative function precision �r is intended to be a measure of the relative accuracy with which the
nonlinear functions can be computed. For example, if f xð Þ is computed as 1000:56789 for some
relevant x and if the first 6 significant digits are known to be correct, the appropriate value for �r would
be 1:0E�6.
Ideally the functions fi xð Þ should have magnitude of order 1. If all functions are substantially less than
1 in magnitude, �r should be the absolute precision. For example, if f xð Þ ¼ 1:23456789E�4 at some
point and if the first 6 significant digits are known to be correct, the appropriate value for �r would be
1:0E�10.)
The default value of �r is appropriate for simple analytic functions.

In some cases the function values will be the result of extensive computation, possibly involving a
costly iterative procedure that can provide few digits of precision. Specifying an appropriate Function
Precision may lead to savings, by allowing the linesearch procedure to terminate when the difference
between function values along the search direction becomes as small as the absolute error in the values.

Hessian Full Memory Default if n1 � 75
Hessian Limited Memory Default if n1 > 75

These options select the method for storing and updating the approximate Hessian. (E04VHF uses a
quasi-Newton approximation to the Hessian of the Lagrangian. A BFGS update is applied after each
major iteration.)

If Hessian Full Memory is specified, the approximate Hessian is treated as a dense matrix and the
BFGS updates are applied explicitly. This option is most efficient when the number of variables n is not
too large (say, less than 75). In this case, the storage requirement is fixed and one can expect 1-step Q-
superlinear convergence to the solution.

Hessian Limited Memory should be used on problems where n is very large. In this case a limited-
memory procedure is used to update a diagonal Hessian approximation Hr a limited number of times.
(Updates are accumulated as a list of vector pairs. They are discarded at regular intervals after Hr has
been reset to their diagonal.)

Hessian Frequency i Default ¼ 99999999

If optional parameter Hessian Full Memory is in effect and i BFGS updates have already been carried
out, the Hessian approximation is reset to the identity matrix. (For certain problems, occasional resets
may improve convergence, but in general they should not be necessary.)

Hessian Full Memory and Hessian Frequency ¼ 10 have a similar effect to Hessian Limited
Memory and Hessian Updates ¼ 10 (except that the latter retains the current diagonal during resets).
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Hessian Updates i Default ¼ Hessian Frequency if Hessian Full
Memory, 10 otherwise

If optional parameter Hessian Limited Memory is in effect and i BFGS updates have already been
carried out, all but the diagonal elements of the accumulated updates are discarded and the updating
process starts again.

Broadly speaking, the more updates stored, the better the quality of the approximate Hessian. However,
the more vectors stored, the greater the cost of each QP iteration. The default value is likely to give a
robust algorithm without significant expense, but faster convergence can sometimes be obtained with
significantly fewer updates (e.g., i ¼ 5).

Infinite Bound Size r Default ¼ 1020

If r � 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r < 0, the default value is used.

Iterations Limit i Default ¼ max 10000; 10max N;NFð Þð Þ
The value of i specifies the maximum number of minor iterations allowed (i.e., iterations of the simplex
method or the QP algorithm), summed over all major iterations. (See also the description of the optional
parameter Minor Iterations Limit.)

Linesearch Tolerance r Default ¼ 0:9

This tolerance, r, controls the accuracy with which a step length will be located along the direction of
search each iteration. At the start of each linesearch a target directional derivative for the merit function
is identified. This parameter determines the accuracy to which this target value is approximated, and it
must be a value in the range 0:0 � r � 1:0.

The default value r ¼ 0:9 requests just moderate accuracy in the linesearch.

If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate; try
r ¼ 0:1; 0:01 or 0:001.

If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate. If all
gradients are known, try r ¼ 0:99. (The number of major iterations might increase, but the total number
of function evaluations may decrease enough to compensate.)

If not all gradients are known, a moderately accurate search remains appropriate. Each search will
require only 1–5 function values (typically), but many function calls will then be needed to estimate
missing gradients for the next iteration.

LU Density Tolerance r1 Default ¼ 0:6
LU Singularity Tolerance r2 Default ¼ �23

The density tolerance, r1, is used during LU factorization of the basis matrix B. Columns of L and
rows of U are formed one at a time, and the remaining rows and columns of the basis are altered
appropriately. At any stage, if the density of the remaining matrix exceeds r1, the Markowitz strategy
for choosing pivots is terminated, and the remaining matrix is factored by a dense LU procedure.
Raising the density tolerance towards 1:0 may give slightly sparser LU factors, with a slight increase in
factorization time.

The singularity tolerance, r2, helps guard against ill-conditioned basis matrices. After B is refactorized,
the diagonal elements of U are tested as follows: if ujj

		 		 � r2 or ujj
		 		 < r2max

i
uij
		 		, the jth column of

the basis is replaced by the corresponding slack variable. (This is most likely to occur after a restart.)

LU Factor Tolerance r1 Default ¼ 3:99
LU Update Tolerance r2 Default ¼ 3:99

The values of r1 and r2 affect the stability of the basis factorization B ¼ LU , during refactorization and
updates respectively. The lower triangular matrix L is a product of matrices of the form
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1
� 1

� �
where the multipliers � will satisfy �j j � ri. The default values of r1 and r2 usually strike a good
compromise between stability and sparsity. They must satisfy r1, r2 � 1:0.

For large and relatively dense problems, r1 ¼ 10:0 or 5:0 (say) may give a useful improvement in
stability without impairing sparsity to a serious degree.

For certain very regular structures (e.g., band matrices) it may be necessary to reduce r1 and=or r2 in
order to achieve stability. For example, if the columns of A include a sub-matrix of the form

4 �1
�1 4 �1

�1 4 �1
. . . . . . . . .

�1 4 �1
�1 4

0BBBBB@

1CCCCCA;

one should set both r1 and r2 to values in the range 1:0 � ri < 4:0.

LU Partial Pivoting Default
LU Complete Pivoting
LU Rook Pivoting

The LU factorization implements a Markowitz-type search for pivots that locally minimize the fill-in
subject to a threshold pivoting stability criterion. The default option is to use threshhold partial
pivoting. The optional parameters LU Rook Pivoting and LU Complete Pivoting are more expensive
than partial pivoting but are more stable and better at revealing rank, as long as LU Factor Tolerance
is not too large (say < 2:0). When numerical difficulties are encountered, E04VHF automatically
reduces the LU tolerance towards 1:0 and switches (if necessary) to rook or complete pivoting, before
reverting to the default or specified options at the next refactorization (with System Information Yes,
relevant messages are output to the Print File).

Major Feasibility Tolerance r Default ¼ max 10�6;
ffiffi
�
p� �

This tolerance, r, specifies how accurately the nonlinear constraints should be satisfied. The default
value is appropriate when the linear and nonlinear constraints contain data to about that accuracy.

Let vmax be the maximum nonlinear constraint violation, normalized by the size of the solution, which
is required to satisfy

vmax ¼ max
i
vi = xk k � r; ð13Þ

where vi is the violation of the ith nonlinear constraint, for i ¼ 1; 2; . . . ;NF.

In the major iteration log (see Section 13.2), vmax appears as the quantity labelled ‘Feasible’. If some of
the problem functions are known to be of low accuracy, a larger Major Feasibility Tolerance may be
appropriate.

Major Optimality Tolerance r Default ¼ 2max 10�6;
ffiffi
�
p� �

This tolerance, r, specifies the final accuracy of the dual variables. On successful termination, E04VHF
will have computed a solution x; s; 	ð Þ such that

cmax ¼ max
j
cj = 	k k � r; ð14Þ

where cj is an estimate of the complementarity slackness for variable j, for j ¼ 1; 2; . . . ; nþ nf . The
values ci are computed from the final QP solution using the reduced gradients dj ¼ gj � 	Taj (where gj
is the jth component of the objective gradient, aj is the associated column of the constraint matrix
A �I
� �

, and 	 is the set of QP dual variables):
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cj ¼ djmin xj � lj; 1
� �

if dj � 0;
�djmin uj � xj; 1

� �
if dj < 0:


 �
ð15Þ

In the Print File, cmax appears as the quantity labelled ‘Optimal’.

Major Iterations Limit i Default ¼ max 1000; 3max n; nfð Þð Þ

This is the maximum number of major iterations allowed. It is intended to guard against an excessive
number of linearizations of the constraints. If i ¼ 0, optimality and feasibility are checked.

Major Print Level i Default ¼ 1

This controls the amount of output to the optional parameters Print File and Summary File at each
major iteration. Major Print Level ¼ 0 suppresses most output, except for error messages.
Major Print Level ¼ 1 gives normal output for l inear and nonlinear problems, and
Major Print Level ¼ 11 gives additional details of the Jacobian factorization that commences each
major iteration.

In general, the value being specified may be thought of as a binary number of the form

Major Print Level JFDXbs

where each letter stands for a digit that is either 0 or 1 as follows:

s a single line that gives a summary of each major iteration. (This entry in JFDXbs is not strictly
binary since the summary line is printed whenever JFDXbs � 1);

b basis statistics, i.e., information relating to the basis matrix whenever it is refactorized. (This
output is always provided if JFDXbs � 10);

X xk, the nonlinear variables involved in the objective function or the constraints. These appear
under the heading ‘Jacobian variables’;

D 	k, the dual variables for the nonlinear constraints. These appear under the heading ‘Multiplier
estimates’;

F f xkð Þ, the values of the nonlinear constraint functions;

J J xkð Þ, the Jacobian matrix. This appears under the heading ‘x and Jacobian’.

To obtain output of any items JFDXbs, set the corresponding digit to 1, otherwise to 0.

If J ¼ 1, the Jacobian matrix will be output column-wise at the start of each major iteration. Column j
will be preceded by the value of the corresponding variable xj and a key to indicate whether the
variable is basic, superbasic or nonbasic. (Hence if J ¼ 1, there is no reason to specify X ¼ 1 unless
the objective contains more nonlinear variables than the Jacobian.) A typical line of output is

3 1.250000E+01 BS 1 1.00000E+00 4 2.00000E+00

which would mean that x3 is basic at value 12:5, and the third column of the Jacobian has elements of
1:0 and 2:0 in rows 1 and 4.

Major Step Limit r Default ¼ 2:0

This parameter limits the change in x during a linesearch. It applies to all nonlinear problems, once a
‘feasible solution’ or ‘feasible subproblem’ has been found.

1. A linesearch determines a step � over the range 0 < � � �, where � is 1 if there are nonlinear
constraints or is the step to the nearest upper or lower bound on x if all the constraints are linear.
Normally, the first step length tried is �1 ¼ min 1; �ð Þ.

2. In some cases, such as f xð Þ ¼ aebx or f xð Þ ¼ axb, even a moderate change in the components of x
can lead to floating-point overflow. The parameter r is therefore used to define a limit
�� ¼ r 1þ xk kð Þ= pk k (where p is the search direction), and the first evaluation of f xð Þ is at the
potentially smaller step length �1 ¼ min 1; ��; �

� �
.
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3. Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at meaningless points. The optional parameter Major Step Limit provides an additional
safeguard. The default value r ¼ 2:0 should not affect progress on well behaved problems, but
setting r ¼ 0:1 or 0:01 may be helpful when rapidly varying functions are present. A ‘good’
starting point may be required. An important application is to the class of nonlinear least squares
problems.

4. In cases where several local optima exist, specifying a small value for r may help locate an
optimum near the starting point.

Minimize Default
Maximize
Feasible Point

The keywords Minimize and Maximize specify the required direction of optimization. It applies to both
linear and nonlinear terms in the objective.

The keyword Feasible Point means ‘Ignore the objective function, while finding a feasible point for the
linear and nonlinear constraints’. It can be used to check that the nonlinear constraints are feasible
without altering the call to E04VHF.

Minor Feasibility Tolerance r Default ¼ max 10�6;
ffiffi
�
p� �

Feasibility Tolerance r Default ¼ max 10�6;
ffiffi
�
p� 

E04VHF tries to ensure that all variables eventually satisfy their upper and lower bounds to within this
tolerance, r. This includes slack variables. Hence, general linear constraints should also be satisfied to
within r.

Feasibility with respect to nonlinear constraints is judged by the optional parameter Major Feasibility
Tolerance (not by r).

If the bounds and linear constraints cannot be satisfied to within r, the problem is declared infeasible. If
SINF is quite small, it may be appropriate to raise r by a factor of 10 or 100. Otherwise, some error in
the data should be suspected.

Nonlinear functions will be evaluated only at points that satisfy the bounds and linear constraints. If
there are regions where a function is undefined, every attempt should be made to eliminate these
regions from the problem.

For example, if f xð Þ ¼ ffiffiffiffiffi
x1
p þ log x2ð Þ, it is essential to place lower bounds on both variables. If

r ¼ 1:0E�6, the bounds x1 � 10�5 and x2 � 10�4 might be appropriate. (The log singularity is more
serious. In general, keep x as far away from singularities as possible.)

If Scale Option � 1, feasibility is defined in terms of the scaled problem (since it is then more likely to
be meaningful).

In reality, E04VHF uses r as a feasibility tolerance for satisfying the bounds on x and s in each QP
subproblem. If the sum of infeasibilities cannot be reduced to zero, the QP subproblem is declared
infeasible. E04VHF is then in elastic mode thereafter (with only the linearized nonlinear constraints
defined to be elastic). See the description of the optional parameter Elastic Weight.

Minor Iterations Limit i Default ¼ 500

If the number of minor iterations for the optimality phase of the QP subproblem exceeds i, then all
nonbasic QP variables that have not yet moved are frozen at their current values and the reduced QP is
solved to optimality.

Note that more than i minor iterations may be necessary to solve the reduced QP to optimality. These
extra iterations are necessary to ensure that the terminated point gives a suitable direction for the
linesearch.

In the major iteration log (see Section 13.2) a t at the end of a line indicates that the corresponding QP
was artificially terminated using the limit i.
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Compare with the optional parameter Iterations Limit, which defines an independent absolute limit on
the total number of minor iterations (summed over all QP subproblems).

Minor Print Level i Default ¼ 1

This controls the amount of output to the Print File and Summary File during solution of the QP
subproblems. The value of i has the following effect:

i Meaning

0 No minor iteration output except error messages.

� 1 A single line of output at each minor iteration (controlled by optional parameters Print
Frequency and Summary Frequency.

� 10 Basis factorization statistics generated during the periodic refactorization of the basis (see the
optional parameter Factorization Frequency). Statistics for the first factorization each major
iteration are controlled by the optional parameter Major Print Level.

New Basis File i1 Default ¼ 0
Backup Basis File i2 Default ¼ 0
Save Frequency i3 Default ¼ 100

New Basis File and Backup Basis File are sometimes referred to as basis maps. They contain the most
compact representation of the state of each variable. They are intended for restarting the solution of a
problem at a point that was reached by an earlier run. For nontrivial problems, it is advisable to save
basis maps at the end of a run, in order to restart the run if necessary.

If i1 > 0, a basis map will be saved in the file associated with unit i1 every i3th iteration. The first
record of the file will contain the word PROCEEDING if the run is still in progress. A basis map will also
be saved at the end of a run, with some other word indicating the final solution status.

Use of i2 > 0 is intended as a safeguard against losing the results of a long run. Suppose that a New
Basis File is being saved every 100 (Save Frequency) iterations, and that E04VHF is about to save
such a basis at iteration 2000. It is conceivable that the run may be interrupted during the next few
milliseconds (in the middle of the save). In this case the Basis file will be corrupted and the run will
have been essentially wasted.

To eliminate this risk, both a New Basis File and a Backup Basis File may be specified. The following
would be suitable for the above example:

Backup Basis File 11
New Basis File 12

The current basis will then be saved every 100 iterations, first in the file associated with unit 12 and
then immediately in the file associated with unit 11. If the run is interrupted at iteration 2000 during the
save in the file associated with unit 12, there will still be a usable basis in the file associated with unit
11 (corresponding to iteration 1900).

Note that a new basis will be saved in New Basis File at the end of a run if it terminates normally, but
it will not be saved in Backup Basis File. In the above example, if an optimum solution is found at
iteration 2050 (or if the iteration limit is 2050), the final basis in the file associated with unit 12 will
correspond to iteration 2050, but the last basis saved in the file associated with unit 11 will be the one
for iteration 2000.

A full description of information recorded in New Basis File and Backup Basis File is given in Gill et
al. (2005a).

New Superbasics Limit i Default ¼ 99

This option causes early termination of the QP subproblems if the number of free variables has
increased significantly since the first feasible point. If the number of new superbasics is greater than i,
the nonbasic variables that have not yet moved are frozen and the resulting smaller QP is solved to
optimality.
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In the major iteration log (see Section 13.1), a t at the end of a line indicates that the QP was
terminated early in this way.

Nolist Default
List

For E04VHF, normally each optional parameter specification is printed as it is supplied. Optional
parameter Nolist may be used to suppress the printing and optional parameter List may be used to turn
on printing.

Old Basis File i Default ¼ 0

If i > 0, the basis maps information will be obtained from this file. The file will usually have been
output previously as a New Basis File or Backup Basis File. A full description of information recorded
in New Basis File and Backup Basis File is given in Gill et al. (2005a).

The file will not be acceptable if the number of rows or columns in the problem has been altered.

Partial Price i Default ¼ 1

This parameter is recommended for large problems that have significantly more variables than
constraints. It reduces the work required for each ‘pricing’ operation (where a nonbasic variable is
selected to become superbasic). When i ¼ 1, all columns of the constraint matrix A �I

� �
are

searched. Otherwise, A and I are partitioned to give i roughly equal segments Aj and Ij , for
j ¼ 1; 2; . . . ; i. If the previous pricing search was successful on Aj�1 and Ij�1, the next search begins on
the segments Aj and Ij. (All subscripts here are modulo i.) If a reduced gradient is found that is larger
than some dynamic tolerance, the variable with the largest such reduced gradient (of appropriate sign) is
selected to become superbasic. If nothing is found, the search continues on the next segments Ajþ1 and
Ijþ1, and so on.

For time-stage models having t time periods, Partial Price t (or t=2 or t=3) may be appropriate.

Pivot Tolerance r Default ¼ �23

During the solution of QP subproblems, the pivot tolerance is used to prevent columns entering the
basis if they would cause the basis to become almost singular.

When x changes to xþ �p for some search direction p, a ‘ratio test’ determines which component of x
reaches an upper or lower bound first. The corresponding element of p is called the pivot element.
Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller than the pivot
tolerance r.

It is common for two or more variables to reach a bound at essentially the same time. In such cases, the
Minor Feasibility Tolerance (say, t) provides some freedom to maximize the pivot element and
thereby improve numerical stability. Excessively small values of t should therefore not be specified. To
a lesser extent, the Expand Frequency (say, f) also provides some freedom to maximize the pivot
element. Excessively large values of f should therefore not be specified.

Print File i Default ¼ 0

If i > 0, the following information is output to a file associated with unit i during the solution of each
problem:

– a listing of the optional parameters;

– some statistics about the problem;

– the amount of storage available for the LU factorization of the basis matrix;

– notes about the initial basis resulting from a Crash procedure or a Basis file;

– the iteration log;

– basis factorization statistics;

– the exit IFAIL condition and some statistics about the solution obtained;
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– the printed solution, if requested.

These items are described in Sections 9 and 13. Further brief output may be directed to the Summary
File.

Print Frequency i Default ¼ 100

If i > 0, one line of the iteration log will be printed every ith iteration. A value such as i ¼ 10 is
suggested for those interested only in the final solution. If i � 0, the value of i ¼ 99999999 is used and
effectively no checks are made.

Proximal Point Method i Default ¼ 1

i ¼ 1 or 2 specifies minimization of x� x0k k1 or 1
2 x� x0k k22 when the starting point x0 is changed to

satisfy the linear constraints (where x0 refers to nonlinear variables).

Punch File i1 Default ¼ 0
Insert File i2 Default ¼ 0

The Punch File from a previous run may be used as an Insert File for a later run on the same problem.
A full description of information recorded in Insert File and Punch File is given in Gill et al. (2005a).

If i1 > 0, the final solution obtained will be output to the file. For linear programs, this format is
compatible with various commercial systems.

If i2 > 0 the Insert File containing basis information will be read from unit i2. The file will usually
have been output previously as a Punch File. The file will not be accessed if Old Basis File is
specified.

Scale Option i Default ¼ 0
Scale Tolerance r Default ¼ 0:9
Scale Print

Three scale options are available as follows:

i Meaning

0 No scaling. This is recommended if it is known that x and the constraint matrix never have very
large elements (say, larger than 100).

1 The constraints and variables are scaled by an iterative procedure that attempts to make the matrix
coefficients as close as possible to 1:0 (see Fourer (1982)). This will sometimes improve the
performance of the solution procedures.

2 The constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling
is performed that may be helpful if the right-hand side b or the solution x is large. This takes into
account columns of A �I

� �
that are fixed or have positive lower bounds or negative upper

bounds.

Optional parameter Scale Tolerance affects how many passes might be needed through the constraint
matrix. On each pass, the scaling procedure computes the ratio of the largest and smallest nonzero
coefficients in each column:

�j ¼ max
j

aij
		 		=min

i
aij
		 		 aij 6¼ 0

� �
:

If max
j
�j is less than r times its previous value, another scaling pass is performed to adjust the row and

column scales. Raising r from 0:9 to 0:99 (say) usually increases the number of scaling passes through
A. At most 10 passes are made. The value of r should lie in the range 0 < r < 1.

Scale Print causes the row scales r ið Þ and column scales c jð Þ to be printed to Print File, if System
Information Yes has been specified. The scaled matrix coefficients are �aij ¼ aijc jð Þ=r ið Þ, and the
scaled bounds on the variables and slacks are �lj ¼ lj=c jð Þ, �uj ¼ uj=c jð Þ, where c jð Þ ¼ r j� nð Þ if j > n.
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Solution File i Default ¼ 0

If i > 0, the final solution will be output to file i (whether optimal or not). All numbers are printed in
1pe16.6 format.

To see more significant digits in the printed solution, it will sometimes be useful to make i refer to
Print File.

Summary File i1 Default ¼ 0
Summary Frequency i2 Default ¼ 100

If i1 > 0, a brief log will be output to the file associated with unit i1, including one line of information
every i2th iteration. In an interactive environment, it is useful to direct this output to the terminal, to
allow a run to be monitored online. (If something looks wrong, the run can be manually terminated.)
Further details are given in Section 13.6.

Superbasics Limit i Default ¼ n1
This option places a limit on the storage allocated for superbasic variables. Ideally, i should be set
slightly larger than the ‘number of degrees of freedom’ expected at an optimal solution.

For nonlinear problems, the number of degrees of freedom is often called the ‘number of independent
variables’. Normally, i need not be greater than nþ 1, where n1 is the number of nonlinear variables.
For many problems, i may be considerably smaller than n. This will save storage if n is very large.

Suppress Parameters

Normally E04VHF prints the options file as it is being read, and then prints a complete list of the
available keywords and their final values. The optional parameter Suppress Parameters tells E04VHF
not to print the full list.

System Information No Default
System Information Yes

This option prints additional information on the progress of major and minor iterations, and Crash
statistics. See Section 13.

Timing Level i Default ¼ 0

If i > 0, some timing information will be output to the Print file, if Print File > 0.

Unbounded Objective r1 Default ¼ 1:0Eþ 15
Unbounded Step Size r2 Default ¼ infbnd

These parameters are intended to detect unboundedness in nonlinear problems. During a linesearch, Fobj

is evaluated at points of the form xþ �p, where x and p are fixed and � varies. If Fobj

		 		 exceeds r1 or �
exceeds r2, iterations are terminated with the exit message IFAIL ¼ 5.

If singularities are present, unboundedness in Fobj xð Þ may be manifested by a floating-point overflow
(during the evaluation of Fobj xþ �pð Þ), before the test against r1 can be made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.

Verify Level i Default ¼ 0

This option refers to finite difference checks on the derivatives computed by the user-supplied routines.
Derivatives are checked at the first point that satisfies all bounds and linear constraints.

i Meaning

0 Only a ‘cheap’ test will be performed, requiring two calls to USRFUN.

1 Individual gradients will be checked (with a more reliable test). A key of the form OK or Bad?
indicates whether or not each component appears to be correct.
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2 Individual columns of the problem Jacobian will be checked.

3 Options 2 and 1 will both occur (in that order).

�1 Derivative checking is disabled.

Verify Level ¼ 3 should be specified whenever a new USRFUN is being developed.

Violation Limit r Default ¼ 1:0Eþ 6

This keyword defines an absolute limit on the magnitude of the maximum constraint violation, r, after
the linesearch. On completion of the linesearch, the new iterate xkþ1 satisfies the condition

vi xkþ1ð Þ � r max 1; vi x0ð Þð Þ;

where x0 is the point at which the nonlinear constraints are first evaluated and vi xð Þ is the ith nonlinear
constraint violation vi xð Þ ¼ max 0; li � fi xð Þ; fi xð Þ � uið Þ.
The effect of this violation limit is to restrict the iterates to lie in an expanded feasible region whose
size depends on the magnitude of r. This makes it possible to keep the iterates within a region where
the objective is expected to be well-defined and bounded below. If the objective is bounded below for
all values of the variables, then r may be any large positive value.

13 Description of Monitoring Information

E04VHF produces monitoring information, statistical information and information about the solution.
Section 9.1 contains details of the final output information sent to the unit specified by the optional
parameter Print File. This section contains other details of output information.

13.1 Major Iteration Log

This section describes the output to unit Print File if Major Print Level > 0. One line of information
is output every kth major iteration, where k is Print Frequency.

Label Description

Itns is the cumulative number of minor iterations.

Major is the current major iteration number.

Minors is the number of iterations required by both the feasibility and optimality phases
of the QP subproblem. Generally, Minors will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11).

Step is the step length � taken along the current search direction p. The variables x
have just been changed to xþ �p. On reasonably well-behaved problems, the unit
step will be taken as the solution is approached.

nCon the number of times USRFUN has been called to evaluate the nonlinear problem
functions. Evaluations needed for the estimation of the derivatives by finite
differences are not included. nCon is printed as a guide to the amount of work
required for the linesearch.

Feasible is the value of vmax (see (13)), the maximum component of the scaled nonlinear
constraint residual (see optional parameter Major Feasibility Tolerance). The
solution is regarded as acceptably feasible if Feasible is less than the Major
Feasibility Tolerance. In this case, the entry is contained in parentheses.

If the constraints are linear, all iterates are feasible and this entry is not printed.

Optimal is the value of cmax (see (14)), the maximum complementary gap (see optional
parameter Major Optimality Tolerance). It is an estimate of the degree of
nonoptimality of the reduced costs. Both Feasible and Optimal are small in the
neighbourhood of a solution.
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MeritFunction is the value of the augmented Lagrangian merit function (see (8)). This function
will decrease at each iteration unless it was necessary to increase the penalty
parameters (see Section 11.4). As the solution is approached, MeritFunction
will converge to the value of the objective at the solution.

In elastic mode, the merit function is a composite function involving the
constraint violations weighted by the elastic weight.

If the constraints are linear, this item is labelled Objective, the value of the
objective function. It will decrease monotonically to its optimal value.

L+U is the number of nonzeros representing the basis factors L and U on completion
of the QP subproblem.

If nonlinear constraints are present, the basis factorization B ¼ LU is computed
at the start of the first minor iteration. At this stage, L+U ¼ lenL+lenU, where
lenL (see Section 13.4) is the number of subdiagonal elements in the columns of
a lower triangular matrix and lenU (see Section 13.4) is the number of diagonal
and superdiagonal elements in the rows of an upper-triangular matrix.

As columns of B are replaced during the minor iterations, L+U may fluctuate up
or down but, in general, will tend to increase. As the solution is approached and
the minor iterations decrease towards zero, L+U will reflect the number of
nonzeros in the LU factors at the start of the QP subproblem.

If the constraints are linear, refactorization is subject only to the Factorization
Frequency, and L+U will tend to increase between factorizations.

BSwap is the number of columns of the basis matrix B that were swapped with columns
of S to improve the condition of B. The swaps are determined by an LU

factorization of the rectangular matrix BS ¼ B Sð ÞT with stability being favoured
more than sparsity.

nS is the current number of superbasic variables.

condHz is an estimate of the condition number of RTR, itself an estimate of ZTHZ, the
reduced Hessian of the Lagrangian. The condition number is the square of the
ratio of the largest and smallest diagonals of the upper triangular matrix R, this
being a lower bound on the condition number of RTR. condHz gives a rough
indication of whether or not the optimization procedure is having difficulty. If � is
the relative machine precision being used, the SQP algorithm will make slow
progress if condHz becomes as large as ��1=2 � 108, and will probably fail to find
a better solution if condHz reaches ��3=4 � 1012.

To guard against high values of condHz, attention should be given to the scaling
of the variables and the constraints. In some cases it may be necessary to add
upper or lower bounds to certain variables to keep them a reasonable distance
from singularities in the nonlinear functions or their derivatives.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if there are no nonlinear constraints).

The summary line may include additional code characters that indicate what happened during the course
of the major iteration. These will follow the separator ‘_’ in the output

Label Description

c central differences have been used to compute the unknown components of the
objective and constraint gradients. A switch to central differences is made if
either the linesearch gives a small step, or x is close to being optimal. In some
cases, it may be necessary to re-solve the QP subproblem with the central
difference gradient and Jacobian.

d during the linesearch it was necessary to decrease the step in order to obtain a
maximum constraint violation conforming to the value of the optional parameter
Violation Limit.
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D you set STATUS ¼ �1 on exit from USRFUN, indicating that the linesearch
needed to be done with a smaller value of the step length �.

l the norm wise change in the variables was limited by the value of the optional
parameter Major Step Limit. If this output occurs repeatedly during later
iterations, it may be worthwhile increasing the value of the optional parameter
Major Step Limit.

i if E04VHF is not in elastic mode, an i signifies that the QP subproblem is
infeasible. This event triggers the start of nonlinear elastic mode, which remains
in effect for all subsequent iterations. Once in elastic mode, the QP subproblems
are associated with the elastic problem (12) (see Section 11.5).

If E04VHF is already in elastic mode, an i indicates that the minimizer of the
elastic subproblem does not satisfy the linearized constraints. (In this case, a
feasible point for the usual QP subproblem may or may not exist.)

M an extra evaluation of the problem functions was needed to define an acceptable
positive definite quasi-Newton update to the Lagrangian Hessian. This modifica-
tion is only done when there are nonlinear constraints.

m this is the same as M except that it was also necessary to modify the update to
include an augmented Lagrangian term.

n no positive definite BFGS update could be found. The approximate Hessian is
unchanged from the previous iteration.

R the approximate Hessian has been reset by discarding all but the diagonal
elements. This reset will be forced periodically by the Hessian Frequency and
Hessian Updates keywords. However, it may also be necessary to reset an ill-
conditioned Hessian from time to time.

r the approximate Hessian was reset after ten consecutive major iterations in which
no BFGS update could be made. The diagonals of the approximate Hessian are
retained if at least one update has been done since the last reset. Otherwise, the
approximate Hessian is reset to the identity matrix.

s a self-scaled BFGS update was performed. This update is used when the Hessian
approximation is diagonal, and hence always follows a Hessian reset.

t the minor iterations were terminated because of the Minor Iterations Limit.

T the minor iterations were terminated because of the New Superbasics Limit.

u the QP subproblem was unbounded.

w a weak solution of the QP subproblem was found.

z the Superbasics Limit was reached.

13.2 Minor Iteration Log

If Minor Print Level > 0, one line of information is output to the Print file every kth minor iteration,
where k is the specified Print Frequency. A heading is printed before the first such line following a
basis factorization. The heading contains the items described below. In this description, a pricing
operation is the process by which a nonbasic variable is selected to become superbasic (in addition to
those already in the superbasic set). The selected variable is denoted by jq. Variable jq often becomes
basic immediately. Otherwise it remains superbasic, unless it reaches its opposite bound and returns to
the nonbasic set.

If Partial Price is in effect, variable jq is selected from App or Ipp, the ppth segments of the
constraint matrix A �I

� �
.

Label Description

Itn the current iteration number.
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LPmult or QPmult is the reduced cost (or reduced gradient) of the variable jq selected by the pricing
procedure at the start of the present iteration. Algebraically, the reduced gradient
is dj ¼ gj � 	Taj for j ¼ jq, where gj is the gradient of the current objective
function, 	 is the vector of dual variables for the QP subproblem, and aj is the jth
column of A �I

� �
.

Note that the reduced cost is the 1-norm of the reduced-gradient vector at the
start of the iteration, just after the pricing procedure.

LPstep or QPstep is the step length � taken along the current search direction p. The variables x
have just been changed to xþ �p. Write Step to stand for LPStep or QPStep,
depending on the problem. If a variable is made superbasic during the current
iteration (+SBS > 0), Step will be the step to the nearest bound. During Phase 2,
the step can be greater than one only if the reduced Hessian is not positive
definite.

nInf is the number of infeasibilities after the present iteration. This number will not
increase unless the iterations are in elastic mode.

SumInf is the sum of infeasibilities after the present iteration, if nInf > 0. The value
usually decreases at each nonzero Step, but if it decreases by 2 or more, SumInf
may occasionally increase.

rgNorm is the norm of the reduced-gradient vector at the start of the iteration. (It is the
norm of the vector with elements dj for variables j in the superbasic set.) During
Phase 2 this norm will be approximately zero after a unit step. (The heading is
not printed if the problem is linear.)

LPobjective or QPobjective
the QP objective function after the present iteration. In elastic mode, the heading
is changed to Elastic QPobj. In either case, the value printed decreases
monotonically.

+SBS is the variable jq selected by the pricing operation to be added to the superbasic
set.

-SBS is the superbasic variable chosen to become nonbasic.

-BS is the basis variable removed (if any) to become nonbasic.

Pivot if column aq replaces the rth column of the basis B, Pivot is the rth element of a
vector y satisfying By ¼ aq. Wherever possible, Step is chosen to avoid
extremely small values of Pivot (since they cause the basis to be nearly
singular). In rare cases, it may be necessary to increase the Pivot Tolerance to
exclude very small elements of y from consideration during the computation of
Step.

L+U is the number of nonzeros representing the basis factors L and U . Immediately
after a basis factorization B ¼ LU , L+U is lenL+lenU, the number of subdiagonal
elements in the columns of a lower triangular matrix and the number of diagonal
and superdiagonal elements in the rows of an upper-triangular matrix. Further
nonzeros are added to L when various columns of B are later replaced. As
columns of B are replaced, the matrix U is maintained explicitly (in sparse form).
The value of L will steadily increase, whereas the value of U may fluctuate up or
down. Thus the value of L+U may fluctuate up or down (in general, it will tend to
increase).

ncp is the number of compressions required to recover storage in the data structure for
U . This includes the number of compressions needed during the previous basis
factorization.

nS is the current number of superbasic variables. (The heading is not printed if the
problem is linear.)

condHz see Section 13.1. (The heading is not printed if the problem is linear.)
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13.3 Crash Statistics

If Major Print Level � 10 and System Information Yes has been specified, the following items are
output to the Print file when START ¼ 0 and no Basis file is loaded. They refer to the number of
columns that the Crash procedure selects during selected passes through A while searching for a
triangular basis matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis.

Preferred is the number of ‘preferred’ columns in the basis (i.e., XSTATEðjÞ ¼ 3 for some
j � n).

Unit is the number of unit columns in the basis.

Double is the number of columns in the basis containing 2 nonzeros.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

13.4 Basis Factorization Statistics

If Major Print Level � 10, the first seven items listed below are output to the Print file whenever the
basis B or the rectangular matrix BS ¼ B Sð ÞT is factorized before solution of the next QP subproblem
(see Section 12.1).

Note that BS may be factorized at the start of just some of the major iterations. It is immediately
followed by a factorization of B itself.

Gaussian elimination is used to compute a sparse LU factorization of B or BS, where PLPT and PUQ
are lower and upper triangular matrices, for some permutation matrices P and Q. Stability is ensured as
described under optional parameter LU Factor Tolerance.

If Minor Print Level � 10, the same items are printed during the QP solution whenever the current B
is factorized. In addition, if System Information Yes has been specified, the entries from Elems
onwards are also printed.

Label Description

Factor the number of factorizations since the start of the run.

Demand a code giving the reason for the present factorization, as follows:

Code Meaning
0 First LU factorization.
1 The number of updates reached the Factorization Frequency.
2 The nonzeros in the updated factors have increased sig-

nificantly.
7 Not enough storage to update factors.
10 Row residuals are too large (see the description of the

optional parameter Check Frequency).
11 Ill-conditioning has caused inconsistent results.

Itn is the current minor iteration number.

Nonlin is the number of nonlinear variables in the current basis B.

Linear is the number of linear variables in B.

Slacks is the number of slack variables in B.

B, BR, BS or BT factorize is the type of LU factorization.
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B periodic factorization of the basis B.
BR more careful rank-revealing factorization of B using threshold

rook pivoting. This occurs mainly at the start, if the first basis
factors seem singular or ill-conditioned. Followed by a normal
B factorize.

BS BS is factorized to choose a well-conditioned B from the
current B Sð Þ. Followed by a normal B factorize.

BT same as BS except the current B is tried first and accepted if it
appears to be not much more ill-conditioned than after the
previous BS factorize.

m is the number of rows in B or BS.

n is the number of columns in B or BS. Preceded by ‘=’ or ‘>’
respectively.

Elems is the number of nonzero elements in B or BS.

Amax is the largest nonzero in B or BS.

Density is the percentage nonzero density of B or BS.

Merit/MerRP/MerCP Merit is the average Markowitz merit count for the elements chosen to
be the diagonals of PUQ. Each merit count is defined to be
c� 1ð Þ r� 1ð Þ where c and r are the number of nonzeros in the
column and row containing the element at the time it is selected to be
the next diagonal. Merit is the average of n such quantities. It gives an
indication of how much work was required to preserve sparsity during
the factorization. If LU Complete Pivoting or LU Rook Pivoting has
been selected, this heading is changed to MerCP, respectively MerRP.

lenL is the number of nonzeros in L.

L+U is the number of nonzeros representing the basis factors L and U .
Immediately after a basis factorization B ¼ LU , this is lenL+lenU, the
number of subdiagonal elements in the columns of a lower triangular
matrix and the number of diagonal and superdiagonal elements in the
rows of an upper-triangular matrix. Further nonzeros are added to L
when various columns of B are later replaced. As columns of B are
replaced, the matrix U is maintained explicitly (in sparse form). The
value of L will steadily increase, whereas the value of U may fluctuate
up or down. Thus the value of L+U may fluctuate up or down (in
general, it will tend to increase).

Cmpressns is the number of times the data structure holding the partially factored
matrix needed to be compressed to recover unused storage. Ideally this
number should be zero. If it is more than 3 or 4, the amount of
workspace available to E04VHF should be increased for efficiency.

Incres is the percentage increase in the number of nonzeros in L and U
relative to the number of nonzeros in B or BS.

Utri is the number of triangular rows of B or BS at the top of U .

lenU the number of nonzeros in U , including its diagonals.

Ltol is the largest subdiagonal element allowed in L. This is the specified
LU Factor Tolerance or a smaller value that is currently being used
for greater stability.

Umax the maximum nonzero element in U .

Ugrwth is the ratio Umax=Amax, which ideally should not be substantially larger
than 10:0 or 100:0. If it is orders of magnitude larger, it may be
advisable to reduce the LU Factor Tolerance to 5:0, 4:0, 3:0 or 2:0,
say (but bigger than 1:0).
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As long as Lmax is not large (say 5:0 or less), max Amax; Umaxð Þ=DUmin
gives an estimate of the condition number B. If this is extremely large,
the basis is nearly singular. Slacks are used to replace suspect columns
of B and the modified basis is refactored.

Ltri is the number of triangular columns of B or BS at the left of L.

dense1 is the number of columns remaining when the density of the basis
matrix being factorized reached 0:3.

Lmax is the actual maximum subdiagonal element in L (bounded by Ltol).

Akmax is the largest nonzero generated at any stage of the LU factorization.
(Values much larger than Amax indicate instability.) Akmax is not
printed if LU Partial Pivoting is selected.

Agrwth is the ratio Akmax=Amax. Values much larger than 100 (say) indicate
instability. Agrwth is not printed if LU Partial Pivoting is selected.

bump is the size of the block to be factorized nontrivially after the triangular
rows and columns of B or BS have been removed.

dense2 is the number of columns remaining when the density of the basis
matrix being factorized reached 0:6. (The Markowitz pivot strategy
searches fewer columns at that stage.)

DUmax is the largest diagonal of PUQ.

DUmin is the smallest diagonal of PUQ.

condU the ratio DUmax=DUmin, which estimates the condition number of U
(and of B if Ltol is less than 5:0, say).

13.5 The Solution File

At the end of a run, the final solution may be output as a Solution file, according to Solution File.
Some header information appears first to identify the problem and the final state of the optimization
procedure. A ROWS section and a COLUMNS section then follow, giving one line of information for
each row and column. The format used is similar to certain commercial systems, though there is no
industry standard.

In general, numerical values are output with format f16.5. The maximum record length is 111
characters, including the first (carriage-control) character.

To reduce clutter, a full stop (.) is printed for any numerical value that is exactly zero. The values 
1
are also printed specially as 1:0 and �1:0. Infinite bounds (
1020 or larger) are printed as None.

A Solution file is intended to be read from disk by a self-contained program that extracts and saves
certain values as required for possible further computation. Typically, the first 14 records would be
ignored. Each subsequent record may be read using

format(i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that starts with a 1
and is otherwise blank. If this and the next 4 records are skipped, the COLUMNS section can then be
read under the same format. (There should be no need for backspace statements.)

A full description of the ROWS section and the COLUMNS section is given in Sections 9.1.1 and
9.1.2.

13.6 The Summary File

If Summary File > 0, the following information is output to the unit number associated with
Summary File. (It is a brief summary of the output directed to unit Print File):

– the optional parameters supplied via the option setting routines, if any;

– the Basis file loaded, if any;
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– a brief major iteration log (see Section 13.1);

– a brief minor iteration log (see Section 13.2);

– the exit condition, IFAIL;

– a summary of the final iterate.
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NAG Library Routine Document

E04VJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04VJF may be used before E04VHF to determine the sparsity pattern for the Jacobian.

2 Specification

SUBROUTINE E04VJF (NF, N, USRFUN, IAFUN, JAVAR, A, LENA, NEA, IGFUN,
JGVAR, LENG, NEG, X, XLOW, XUPP, CW, LENCW, IW,
LENIW, RW, LENRW, CUSER, IUSER, RUSER, IFAIL)

&
&

INTEGER NF, N, IAFUN(LENA), JAVAR(LENA), LENA, NEA,
IGFUN(LENG), JGVAR(LENG), LENG, NEG, LENCW,
IW(LENIW), LENIW, LENRW, IUSER(*), IFAIL

&
&

REAL (KIND=nag_wp) A(LENA), X(N), XLOW(N), XUPP(N), RW(LENRW),
RUSER(*)

&

CHARACTER(8) CW(LENCW), CUSER(*)
EXTERNAL USRFUN

3 Description

When using E04VHF, if you set the optional parameter Derivative Option ¼ 0 and USRFUN provides
none of the derivatives, you may need to call E04VJF to determine the input arrays IAFUN, JAVAR, A,
IGFUN and JGVAR. These arrays define the pattern of nonzeros in the Jacobian matrix. A typical
sequence of calls could be

CALL E04VGF (CW, LENCW, ... )
CALL E04VJF (NF, N, ... )
CALL E04VLF (’Derivative Option = 0’, CW, ... )
CALL E04VHF (START, NF, ... )

E04VJF determines the sparsity pattern for the Jacobian and identifies the constant elements
automatically. To do so, E04VJF approximates the problem functions, F xð Þ, at three random
perturbations of the given initial point x. If an element of the approximate Jacobian is the same at all
three points, then it is taken to be constant. If it is zero, it is taken to be identically zero. Since the
random points are not chosen close together, the heuristic will correctly classify the Jacobian elements
in the vast majority of cases. In general, E04VJF finds that the Jacobian can be permuted to the form:

G xð Þ A3
A2 A4

� �
;

where A2, A3 and A4 are constant. Note that G xð Þ might contain elements that are also constant, but
E04VJF must classify them as nonlinear. This is because E04VHF ‘removes’ linear variables from the
calculation of F by setting them to zero before calling USRFUN. A knowledgeable user would be able
to move such elements from F xð Þ in USRFUN and enter them as part of IAFUN, JAVAR and A for
E04VHF.

4 References

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer–Verlag

5 Arguments

Note: all optional parameters are described in detail in Section 12.1 in E04VHF.
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1: NF – INTEGER Input

On entry: nf , the number of problem functions in F xð Þ, including the objective function (if any)
and the linear and nonlinear constraints. Simple upper and lower bounds on x can be defined
using the arguments XLOW and XUPP and should not be included in F .

Constraint: NF > 0.

2: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

3: USRFUN – SUBROUTINE, supplied by the user. External Procedure

USRFUN must define the problem functions F xð Þ. This subroutine is passed to E04VJF as the
external argument USRFUN.

The specification of USRFUN is:

SUBROUTINE USRFUN (STATUS, N, X, NEEDF, NF, F, NEEDG, LENG, G,
CUSER, IUSER, RUSER)

&

INTEGER STATUS, N, NEEDF, NF, NEEDG, LENG, IUSER(*)
REAL (KIND=nag_wp) X(N), F(NF), G(LENG), RUSER(*)
CHARACTER(8) CUSER(*)

1: STATUS – INTEGER Input/Output

On entry: indicates the first call to USRFUN.

STATUS ¼ 0
There is nothing special about the current call to USRFUN.

STATUS ¼ 1
E04VJF is calling your subroutine for the first time. Some data may need to be
input or computed and saved.

On exit: may be used to indicate that you are unable to evaluate F at the current x. (For
example, the problem functions may not be defined there).

E04VJF evaluates F xð Þ at random perturbation of the initial point x, say xp. If the
functions cannot be evaluated at xp, you can set STATUS ¼ �1, E04VJF will use
another random perturbation.

If for some reason you wish to terminate the current problem, set STATUS � �2.

2: N – INTEGER Input

On entry: n, the number of variables, as defined in the call to E04VJF.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the variables x at which the problem functions are to be calculated. The array
x must not be altered.

4: NEEDF – INTEGER Input

On entry: indicates if F must be assigned during the call to USRFUN (see F).

5: NF – INTEGER Input

On entry: nf , the number of problem functions.
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6: FðNFÞ – REAL (KIND=nag_wp) array Input/Output

On entry: this will be set by E04VJF.

On exit: the computed F xð Þ according to the setting of NEEDF.

If NEEDF ¼ 0, F is not required and is ignored.

If NEEDF > 0, the components of F xð Þ must be calculated and assigned to F. E04VJF
will always call USRFUN with NEEDF > 0.

To simplify the code, you may ignore the value of NEEDF and compute F xð Þ on every
entry to USRFUN.

7: NEEDG – INTEGER Input

On entry: E04VJF will call USRFUN with NEEDG ¼ 0 to indicate that G is not
required.

8: LENG – INTEGER Input

On entry: the dimension of the array G as declared in the (sub)program from which
E04VJF is called.

9: GðLENGÞ – REAL (KIND=nag_wp) array Input/Output

On entry: concerns the calculations of the derivatives of the function f xð Þ.
On exit: E04VJF will always call USRFUN with NEEDG ¼ 0: G is not required to be
set on exit but must be declared correctly.

10: CUSERð�Þ – CHARACTER(8) array User Workspace
11: IUSERð�Þ – INTEGER array User Workspace
12: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

USRFUN is called with the arguments CUSER, IUSER and RUSER as supplied to
E04VJF. You should use the arrays CUSER, IUSER and RUSER to supply information
to USRFUN.

USRFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04VJF is called. Arguments denoted as Input must not be changed by
this procedure.

4: IAFUNðLENAÞ – INTEGER array Output
5: JAVARðLENAÞ – INTEGER array Output
6: AðLENAÞ – REAL (KIND=nag_wp) array Output

On exit: define the coordinates i; jð Þ and values Aij of the nonzero elements of the linear part A
of the function F xð Þ ¼ f xð Þ þAx.
In particular, NEA triples IAFUNðkÞ; JAVARðkÞ;AðkÞð Þ define the row and column indices
i ¼ IAFUNðkÞ and j ¼ JAVARðkÞ of the element Aij ¼ AðkÞ.

7: LENA – INTEGER Input

On entry: the dimension of the arrays IAFUN, JAVAR and A that hold i; j; Aij

� �
as declared in

the (sub)program from which E04VJF is called. LENA should be an overestimate of the number
of elements in the linear part of the Jacobian.

Constraint: LENA � 1.

8: NEA – INTEGER Output

On exit: is the number of nonzero entries in A such that F xð Þ ¼ f xð Þ þ Ax.
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9: IGFUNðLENGÞ – INTEGER array Output
10: JGVARðLENGÞ – INTEGER array Output

On exit: define the coordinates i; jð Þ of the nonzero elements of G, the nonlinear part of the
derivatives J xð Þ ¼ G xð Þ þA of the function F xð Þ ¼ f xð Þ þAx.

11: LENG – INTEGER Input

On entry: the dimension of the arrays IGFUN and JGVAR that define the varying Jacobian
elements i; j; Gij

� �
as declared in the (sub)program from which E04VJF is called. LENG should

be an overestimate of the number of elements in the nonlinear part of the Jacobian.

Constraint: LENG � 1.

12: NEG – INTEGER Output

On exit: the number of nonzero entries in G.

13: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: an initial estimate of the variables x. The contents of x will be used by E04VJF in the
call of USRFUN, and so each element of X should be within the bounds given by XLOW and
XUPP.

14: XLOWðNÞ – REAL (KIND=nag_wp) array Input
15: XUPPðNÞ – REAL (KIND=nag_wp) array Input

On entry: contain the lower and upper bounds lx and ux on the variables x.

To specify a nonexistent lower bound lx½ �j ¼ �1, set XLOWðjÞ � �bigbnd, where bigbnd is the
optional parameter Infinite Bound Size. To specify a nonexistent upper bound
XUPPðjÞ � bigbnd.

To fix the jth variable (say, xj ¼ �, where �j j < bigbnd), set XLOWðjÞ ¼ XUPPðjÞ ¼ �.

16: CWðLENCWÞ – CHARACTER(8) array Communication Array
17: LENCW – INTEGER Input

On entry: the dimension of the array CW as declared in the (sub)program from which E04VJF is
called.

Constraint: LENCW � 600.

18: IWðLENIWÞ – INTEGER array Communication Array
19: LENIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04VJF is
called.

Constraint: LENIW � 600.

20: RWðLENRWÞ – REAL (KIND=nag_wp) array Communication Array
21: LENRW – INTEGER Input

On entry: the dimension of the array RW as declared in the (sub)program from which E04VJF is
called.

Constraint: LENRW � 600.
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22: CUSERð�Þ – CHARACTER(8) array User Workspace
23: IUSERð�Þ – INTEGER array User Workspace
24: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CUSER, IUSER and RUSER are not used by E04VJF, but are passed directly to USRFUN and
should be used to pass information to this routine.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LENCW ¼ valueh i.
Constraint: LENCW � 600.

On entry, LENIW ¼ valueh i.
Constraint: LENIW � 600.

On entry, LENRW ¼ valueh i.
Constraint: LENRW � 600.

The initialization routine E04VGF has not been called.

IFAIL ¼ 2

On entry, LENA ¼ valueh i.
Constraint: LENA � 1.

On entry, LENG ¼ valueh i.
Constraint: LENG � 1.

IFAIL ¼ 3

User-supplied routine USRFUN indicates that functions are undefined near given point X.

You have indicated that the problem functions are undefined by setting STATUS ¼ �1 on exit
from USRFUN. This exit occurs if E04VJF is unable to find a point at which the functions are
defined.

IFAIL ¼ 4

User-supplied routine USRFUN requested termination.

You have indicated the wish to terminate the call to E04VJF by setting STATUS to a value < �1
on exit from USRFUN.
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IFAIL ¼ 5

Either LENA or LENG is too small. Increase both of them and corresponding array sizes.
LENA ¼ valueh i and LENG ¼ valueh i.

IFAIL ¼ 6

Cannot estimate Jacobian structure at given point X.

IFAIL ¼ 7

Internal error: memory allocation failed when attempting to allocate workspace sizes valueh i,
valueh i and valueh i. Please contact NAG.

IFAIL ¼ 8

Internal memory allocation was insufficient. Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04VJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example shows how to call E04VJF to determine the sparsity pattern of the Jacobian before calling
E04VHF to solve a sparse nonlinear programming problem without providing the Jacobian information
in USRFUN.

It is a reformulation of Problem 74 from Hock and Schittkowski (1981) and involves the minimization
of the nonlinear function

f xð Þ ¼ 10�6x33 þ 2
3� 10�6x34 þ 3x3 þ 2x4
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subject to the bounds

�0:55 � x1 � 0:55;
�0:55 � x2 � 0:55;

0 � x3 � 1200;
0 � x4 � 1200;

to the nonlinear constraints

1000 sin �x1 � 0:25ð Þ þ 1000 sin �x2 � 0:25ð Þ � x3 ¼ �894:8;
1000 sin x1 � 0:25ð Þ þ 1000 sin x1 � x2 � 0:25ð Þ � x4 ¼ �894:8;
1000 sin x2 � 0:25ð Þ þ 1000 sin x2 � x1 � 0:25ð Þ ¼ �1294:8;

and to the linear constraints

�x1 þ x2 � �0:55;
x1 � x2 � �0:55:

The initial point, which is infeasible, is

x0 ¼ 0; 0; 0; 0
� �T

;

and f x0ð Þ ¼ 0.

The optimal solution (to five figures) is

x� ¼ 0:11887;�0:39623; 679:94; 1026:0ð ÞT;

and f x�ð Þ ¼ 5126:4. All the nonlinear constraints are active at the solution.

The formulation of the problem combines the constraints and the objective into a single vector (F ).

F ¼

1000 sin �x1 � 0:25ð Þ þ 1000 sin �x2 � 0:25ð Þ � x3
1000 sin x1 � 0:25ð Þ þ 1000 sin x1 � x2 � 0:25ð Þ � x4
1000 sin x2 � 0:25ð Þ þ 1000 sin x2 � x1 � 0:25ð Þ

�x1 þ x2
x1 � x2

10�6x33 þ 2
3� 10�6x34 þ 3x3 þ 2x4

0BBBBB@

1CCCCCA
10.1 Program Text

! E04VJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04vjfe_mod

! E04VJF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: usrfun

! .. Parameters ..
Integer, Parameter, Public :: lencw = 600, leniw = 600, &

lenrw = 600, nin = 5, nout = 6
Contains

Subroutine usrfun(status,n,x,needf,nf,f,needg,leng,g,cuser,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: leng, n, needf, needg, nf
Integer, Intent (Inout) :: status

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: f(nf), g(leng), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
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Integer, Intent (Inout) :: iuser(*)
Character (8), Intent (Inout) :: cuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
If (needf>0) Then

f(1) = 1000.0E+0_nag_wp*sin(-x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(-x(2)-0.25E+0_nag_wp) - x(3)

f(2) = 1000.0E+0_nag_wp*sin(x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(x(1)-x(2)-0.25E+0_nag_wp) - x(4)

f(3) = 1000.0E+0_nag_wp*sin(x(2)-x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(x(2)-0.25E+0_nag_wp)

f(4) = -x(1) + x(2)
f(5) = x(1) - x(2)
f(6) = 1.0E-6_nag_wp*x(3)**3 + 2.0E-6_nag_wp*x(4)**3/3.0E+0_nag_wp + &

3.0E0_nag_wp*x(3) + 2.0E0_nag_wp*x(4)
End If

Return

End Subroutine usrfun
End Module e04vjfe_mod
Program e04vjfe

! E04VJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04vgf, e04vhf, e04vjf, e04vlf, e04vmf, nag_wp
Use e04vjfe_mod, Only: lencw, leniw, lenrw, nin, nout, usrfun

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: objadd, sinf
Integer :: i, ifail, lena, leng, n, nea, neg, &

nf, nfname, ninf, ns, nxname, &
objrow, start

Logical :: verbose_output
Character (8) :: prob

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), f(:), flow(:), fmul(:), &

fupp(:), x(:), xlow(:), xmul(:), &
xupp(:)

Real (Kind=nag_wp) :: ruser(1), rw(lenrw)
Integer, Allocatable :: fstate(:), iafun(:), igfun(:), &

javar(:), jgvar(:), xstate(:)
Integer :: iuser(1), iw(leniw)
Character (8) :: cuser(1), cw(lencw)
Character (8), Allocatable :: fnames(:), xnames(:)

! .. Executable Statements ..
Write (nout,*) ’E04VJF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, nf
lena = 300
leng = 300
nxname = 1
nfname = 1
Allocate (iafun(lena),javar(lena),igfun(leng),jgvar(leng),xstate(n), &

fstate(nf),a(lena),xlow(n),xupp(n),flow(nf),fupp(nf),x(n),xmul(n), &
f(nf),fmul(nf),xnames(nxname),fnames(nfname))

Write (nout,99999) n

! Call E04VGF to initialise E04VJF.

ifail = 0
Call e04vgf(cw,lencw,iw,leniw,rw,lenrw,ifail)

! Read the bounds on the variables.
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Do i = 1, n
Read (nin,*) xlow(i), xupp(i)

End Do

x(1:n) = 0.0E0_nag_wp

! Determine the Jacobian structure.

ifail = 0
Call e04vjf(nf,n,usrfun,iafun,javar,a,lena,nea,igfun,jgvar,leng,neg,x, &

xlow,xupp,cw,lencw,iw,leniw,rw,lenrw,cuser,iuser,ruser,ifail)

! Print the Jacobian structure.

Write (nout,*)
Write (nout,99998) nea
Write (nout,99997)
Write (nout,99996)

Do i = 1, nea
Write (nout,99995) i, iafun(i), javar(i), a(i)

End Do

Write (nout,*)
Write (nout,99994) neg
Write (nout,99993)
Write (nout,99992)

Do i = 1, neg
Write (nout,99991) i, igfun(i), jgvar(i)

End Do

! Now that we have the determined the structure of the
! Jacobian, set up the information necessary to solve
! the optimization problem.

start = 0
prob = ’ ’
objadd = 0.0E0_nag_wp
x(1:n) = 0.0E0_nag_wp
xstate(1:n) = 0
xmul(1:n) = 0.0E0_nag_wp
f(1:nf) = 0.0E0_nag_wp
fstate(1:nf) = 0
fmul(1:nf) = 0.0E0_nag_wp

! The row containing the objective function.

Read (nin,*) objrow

! Read the bounds on the functions.

Do i = 1, nf
Read (nin,*) flow(i), fupp(i)

End Do

! Set this to .True. to cause e04nqf to produce intermediate
! progress output

verbose_output = .False.

If (verbose_output) Then
! By default E04VHF does not print monitoring
! information. Set the print file unit or the summary
! file unit to get information.

ifail = 0
Call e04vmf(’Print file’,nout,cw,iw,rw,ifail)

End If

! Tell E04VHF that we supply no derivatives in USRFUN.
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ifail = 0
Call e04vlf(’Derivative option 0’,cw,iw,rw,ifail)

! Solve the problem.

ifail = -1
Call e04vhf(start,nf,n,nxname,nfname,objadd,objrow,prob,usrfun,iafun, &

javar,a,lena,nea,igfun,jgvar,leng,neg,xlow,xupp,xnames,flow,fupp, &
fnames,x,xstate,xmul,f,fstate,fmul,ns,ninf,sinf,cw,lencw,iw,leniw,rw, &
lenrw,cuser,iuser,ruser,ifail)

Select Case (ifail)
Case (0,4)

Write (nout,*)
Write (nout,99990) f(objrow)
Write (nout,99989)(x(i),i=1,n)

End Select

99999 Format (1X,/,1X,’NLP problem contains ’,I3,’ variables’)
99998 Format (1X,’NEA (the number of nonzero entries in A) = ’,I3)
99997 Format (1X,’ I IAFUN(I) JAVAR(I) A(I)’)
99996 Format (1X,’---- -------- -------- -----------’)
99995 Format (1X,I3,2I10,1P,E18.4)
99994 Format (1X,’NEG (the number of nonzero entries in G) = ’,I3)
99993 Format (1X,’ I IGFUN(I) JGVAR(I)’)
99992 Format (1X,’---- -------- --------’)
99991 Format (1X,I3,2I10)
99990 Format (1X,’Final objective value = ’,F11.1)
99989 Format (1X,’Optimal X = ’,1P,7E12.3)

End Program e04vjfe

10.2 Program Data

E04VJF Example Program Data
4 6 : Values of N and NF

-0.55D0 0.55D0 : Bounds on the variables, XLOW(i), XUPP(i), for i = 1 to N
-0.55D0 0.55D0
0.0D0 1200.0D0
0.0D0 1200.0D0

6 : Value of OBJROW
-894.8D0 -894.8D0 : Bounds on the functions, FLOW(i), FUPP(i), for i = 1 to NF
-894.8D0 -894.8D0

-1294.8D0 -1294.8D0
-0.55D0 1.0D25
-0.55D0 1.0D25
-1.0D25 1.0D25

10.3 Program Results
E04VJF Example Program Results

NLP problem contains 4 variables

NEA (the number of nonzero entries in A) = 4
I IAFUN(I) JAVAR(I) A(I)

---- -------- -------- -----------
1 4 1 -1.0000E+00
2 5 1 1.0000E+00
3 4 2 1.0000E+00
4 5 2 -1.0000E+00

NEG (the number of nonzero entries in G) = 10
I IGFUN(I) JGVAR(I)

---- -------- --------
1 1 1
2 2 1
3 3 1
4 1 2
5 2 2
6 3 2
7 6 3
8 6 4
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9 1 3
10 2 4

Final objective value = 5126.5
Optimal X = 1.189E-01 -3.962E-01 6.799E+02 1.026E+03
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NAG Library Routine Document

E04VKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04VKF may be used to supply optional parameters to E04VHF from an external file. The initialization
routine E04VGF must have been called before calling E04VKF.

2 Specification

SUBROUTINE E04VKF (ISPECS, CW, IW, RW, IFAIL)

INTEGER ISPECS, IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)
CHARACTER(8) CW(*)

3 Description

E04VKF may be used to supply values for optional parameters to E04VHF. E04VKF reads an external
file and each line of the file defines a single optional parameter. It is only necessary to supply values for
those arguments whose values are to be different from their default values.

Each optional parameter is defined by a single character string consisting of one or more items. The
items associated with a given option must be separated by spaces, or equals signs ¼½ �. Alphabetic
characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword.

– a phrase that qualifies the keyword.

– a number that specifies an integer or real value. Such numbers may be up to 16 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print level = 5

End

Optional parameter settings are preserved following a call to E04VHF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04VHF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04VHF.

4 References

None.
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5 Arguments

1: ISPECS – INTEGER Input

On entry: the unit number of the option file to be read.

Constraint: ISPECS is a valid unit open for reading.

2: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04VGF).

3: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04VGF).

4: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04VGF).

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04VGF has not been called.

IFAIL ¼ 2

At least one line of the options file is invalid.

Could not read options file on unit ISPECS ¼ valueh i.
Could not read options file on unit ISPECS. This may be due to:

(a) ISPECS is not a valid unit number;

(b) a file is not associated with unit ISPECS, or if it is, is unavailable for read access;

(c) one or more lines of the options file is invalid. Check that all keywords are neither
ambiguous nor misspelt;

(d) Begin was found, but end-of-file was found before End was found;

(e) end-of-file was found before Begin was found.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04VKF is not threaded in any implementation.

9 Further Comments

E04VLF, E04VMF or E04VNF may also be used to supply optional parameters to E04VHF.

10 Example

This example solves the same problem as the example in the document for E04VHF, but sets and reads
some optional parameters first. See Section 10 in E04VHF for further details.

The example in the document for E04VJF also solves the same problem (see Section 10 in E04VJF),
but it first calls E04VJF to determine the sparsity pattern before calling E04VKF.

10.1 Program Text

! E04VKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04vkfe_mod

! E04VKF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: usrfun

! .. Parameters ..
Integer, Parameter, Public :: lencw = 600, leniw = 600, &

lenrw = 600, nin = 5, ninopt = 7, &
nout = 6

Contains
Subroutine usrfun(status,n,x,needf,nf,f,needg,leng,g,cuser,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: leng, n, needf, needg, nf
Integer, Intent (Inout) :: status

! .. Array Arguments ..
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Real (Kind=nag_wp), Intent (Inout) :: f(nf), g(leng), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Character (8), Intent (Inout) :: cuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
If (needf>0) Then

! The nonlinear components of f_i(x) need to be assigned,
! for i = 1 to NF

f(1) = 1000.0E+0_nag_wp*sin(-x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(-x(2)-0.25E+0_nag_wp)

f(2) = 1000.0E+0_nag_wp*sin(x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(x(1)-x(2)-0.25E+0_nag_wp)

f(3) = 1000.0E+0_nag_wp*sin(x(2)-x(1)-0.25E+0_nag_wp) + &
1000.0E+0_nag_wp*sin(x(2)-0.25E+0_nag_wp)

! N.B. in this example there is no need to assign for the wholly
! linear components f_4(x) and f_5(x).

f(6) = 1.0E-6_nag_wp*x(3)**3 + 2.0E-6_nag_wp*x(4)**3/3.0E+0_nag_wp
End If

If (needg>0) Then

! The derivatives of the function f_i(x) need to be assigned.
! G(k) should be set to partial derivative df_i(x)/dx_j where
! i = IGFUN(k) and j = IGVAR(k), for k = 1 to LENG.

g(1) = -1000.0E+0_nag_wp*cos(-x(1)-0.25E+0_nag_wp)
g(2) = -1000.0E+0_nag_wp*cos(-x(2)-0.25E+0_nag_wp)
g(3) = 1000.0E+0_nag_wp*cos(x(1)-0.25E+0_nag_wp) + &

1000.0E+0_nag_wp*cos(x(1)-x(2)-0.25E+0_nag_wp)
g(4) = -1000.0E+0_nag_wp*cos(x(1)-x(2)-0.25E+0_nag_wp)
g(5) = -1000.0E+0_nag_wp*cos(x(2)-x(1)-0.25E+0_nag_wp)
g(6) = 1000.0E+0_nag_wp*cos(x(2)-x(1)-0.25E+0_nag_wp) + &

1000.0E+0_nag_wp*cos(x(2)-0.25E+0_nag_wp)
g(7) = 3.0E-6_nag_wp*x(3)**2
g(8) = 2.0E-6_nag_wp*x(4)**2

End If

Return

End Subroutine usrfun
End Module e04vkfe_mod
Program e04vkfe

! E04VKF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04vgf, e04vhf, e04vkf, e04vlf, e04vmf, e04vnf, &

e04vrf, e04vsf, nag_wp, x04acf
Use e04vkfe_mod, Only: lencw, leniw, lenrw, nin, ninopt, nout, usrfun

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Character (*), Parameter :: fname = ’e04vkfe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: bndinf, featol, objadd, sinf
Integer :: elmode, i, ifail, lena, leng, mode, &

n, nea, neg, nf, nfname, ninf, ns, &
nxname, objrow, start

Logical :: verbose_output
Character (8) :: prob

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), f(:), flow(:), fmul(:), &

fupp(:), x(:), xlow(:), xmul(:), &
xupp(:)

Real (Kind=nag_wp) :: ruser(1), rw(lenrw)
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Integer, Allocatable :: fstate(:), iafun(:), igfun(:), &
javar(:), jgvar(:), xstate(:)

Integer :: iuser(1), iw(leniw)
Character (8) :: cuser(1), cw(lencw)
Character (8), Allocatable :: fnames(:), xnames(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04VKF Example Program Results’

! This program demonstrates the use of routines to set and
! get values of optional parameters associated with E04VHF.

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, nf
Read (nin,*) nea, neg, objrow, start
lena = max(1,nea)
leng = max(1,neg)
nxname = n
nfname = nf
Allocate (iafun(lena),javar(lena),igfun(leng),jgvar(leng),xstate(n), &

fstate(nf),a(lena),xlow(n),xupp(n),flow(nf),fupp(nf),x(n),xmul(n), &
f(nf),fmul(nf),xnames(nxname),fnames(nfname))

! Read the variable names

Read (nin,*) xnames(1:nxname)

! Read the function names

Read (nin,*) fnames(1:nfname)

! Read the sparse matrix A, the linear part of F

Do i = 1, nea

! For each element read row, column, A(row,column)

Read (nin,*) iafun(i), javar(i), a(i)
End Do

! Read the structure of sparse matrix G, the nonlinear part of F

Do i = 1, neg

! For each element read row, column

Read (nin,*) igfun(i), jgvar(i)
End Do

! Read the lower and upper bounds on the variables

Do i = 1, n
Read (nin,*) xlow(i), xupp(i)

End Do

! Read the lower and upper bounds on the functions

Do i = 1, nf
Read (nin,*) flow(i), fupp(i)

End Do

! Initialize X, XSTATE, XMUL, F, FSTATE, FMUL

Read (nin,*) x(1:n)
Read (nin,*) xstate(1:n)
Read (nin,*) xmul(1:n)
Read (nin,*) f(1:nf)
Read (nin,*) fstate(1:nf)
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Read (nin,*) fmul(1:nf)

objadd = 0.0E0_nag_wp
prob = ’ ’

Write (nout,99999) n

! Call E04VGF to initialize E04VHF.

ifail = 0
Call e04vgf(cw,lencw,iw,leniw,rw,lenrw,ifail)

! Set this to .True. to cause e04nqf to produce intermediate
! progress output

verbose_output = .False.

If (verbose_output) Then
! By default E04VHF does not print monitoring
! information. Set the print file unit or the summary
! file unit to get information.

ifail = 0
Call e04vmf(’Print file’,nout,cw,iw,rw,ifail)

End If

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Use E04VKF to read some options from the options file

ifail = 0
Call e04vkf(ninopt,cw,iw,rw,ifail)

Write (nout,*)

! Use E04VRF to find the value of integer-valued option
! ’Elastic mode’.

ifail = 0
Call e04vrf(’Elastic mode’,elmode,cw,iw,rw,ifail)

Write (nout,99998) elmode

! Use E04VNF to set the value of real-valued option
! ’Infinite bound size’.

bndinf = 1.0E10_nag_wp

ifail = 0
Call e04vnf(’Infinite bound size’,bndinf,cw,iw,rw,ifail)

! Use E04VSF to find the value of real-valued option
! ’Feasibility tolerance’.

ifail = 0
Call e04vsf(’Feasibility tolerance’,featol,cw,iw,rw,ifail)

Write (nout,99997) featol

! Use E04VLF to set the option ’Major iterations limit’.

ifail = 0
Call e04vlf(’Major iterations limit 50’,cw,iw,rw,ifail)

! Solve the problem.

ifail = 0
Call e04vhf(start,nf,n,nxname,nfname,objadd,objrow,prob,usrfun,iafun, &
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javar,a,lena,nea,igfun,jgvar,leng,neg,xlow,xupp,xnames,flow,fupp, &
fnames,x,xstate,xmul,f,fstate,fmul,ns,ninf,sinf,cw,lencw,iw,leniw,rw, &
lenrw,cuser,iuser,ruser,ifail)

Write (nout,*)
Write (nout,99996) f(objrow)
Write (nout,99995) x(1:n)

99999 Format (1X,/,1X,’NLP problem contains ’,I3,’ variables’)
99998 Format (1X,’Option ’’Elastic mode’’ has the value ’,I3,’.’)
99997 Format (1X,’Option ’’Feasibility tolerance’’ has the value ’,1P,E11.3, &

’.’)
99996 Format (1X,’Final objective value = ’,F11.1)
99995 Format (1X,’Optimal X = ’,1P,7E12.3)

End Program e04vkfe

10.2 Program Data

Begin example options file
* Comment lines like this begin with an asterisk.
* Switch off output of timing information:
Timing level 0
* Allow elastic variables:
Elastic mode 1
* Set the feasibility tolerance:
Feasibility tolerance 1.0D-4
End

E04VKF Example Program Data
4 6 : Values of N and NF
8 8 6 0 : Values of NEA, NEG, OBJROW and START

’X1’ ’X2’ ’X3’ ’X4’ : XNAMES
’NlnCon 1’ ’NlnCon 2’ ’NlnCon 3’ ’LinCon 1’ ’LinCon 2’ ’Objectiv’ : FNAMES

1 3 -1.0D0 : Nonzero elements of sparse matrix A, the linear part of F.
2 4 -1.0D0 : Each row IAFUN(i), JAVAR(i), A(IAFUN(i),JAVAR(i)), i = 1 to NEA
4 1 -1.0D0
4 2 1.0D0
5 1 1.0D0
5 2 -1.0D0
6 3 3.0D0
6 4 2.0D0

1 1 : Nonzero row/column structure of G, IGFUN(i), JGVAR(i), i = 1 to NEG
1 2
2 1
2 2
3 1
3 2
6 3
6 4

-0.55D0 0.55D0 : Bounds on the variables, XLOW(i), XUPP(i), for i = 1 to N
-0.55D0 0.55D0
0.0D0 1200.0D0
0.0D0 1200.0D0

-894.8D0 -894.8D0 : Bounds on the functions, FLOW(i), FUPP(i), for i = 1 to NF
-894.8D0 -894.8D0

-1294.8D0 -1294.8D0
-0.55D0 1.0D25
-0.55D0 1.0D25
-1.0D25 1.0D25

0.0 0.0 0.0 0.0 : Initial values of X(i), for i = 1 to N
0 0 0 0 : Initial values of XSTATE(i), for i = 1 to N
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0.0 0.0 0.0 0.0 : Initial values of XMUL(i), for i = 1 to N

0.0 0.0 0.0 0.0 0.0 0.0 : Initial values of F(i), for i = 1 to NF
0 0 0 0 0 0 : Initial values of FSTATE(i), for i = 1 to NF
0.0 0.0 0.0 0.0 0.0 0.0 : Initial values of FMUL(i), for i = 1 to NF

10.3 Program Results
E04VKF Example Program Results

NLP problem contains 4 variables

Option ’Elastic mode’ has the value 1.
Option ’Feasibility tolerance’ has the value 1.000E-04.

Final objective value = 5126.5
Optimal X = 1.189E-01 -3.962E-01 6.799E+02 1.026E+03
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NAG Library Routine Document

E04VLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04VLF may be used to supply individual optional parameters to E04VHF. The initialization routine
E04VGF must have been called before calling E04VLF.

2 Specification

SUBROUTINE E04VLF (STRING, CW, IW, RW, IFAIL)

INTEGER IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)
CHARACTER(*) STRING
CHARACTER(8) CW(*)

3 Description

E04VLF may be used to supply values for optional parameters to E04VHF. It is only necessary to call
E04VLF for those arguments whose values are to be different from their default values. One call to
E04VLF sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

For E04VLF, each user-specified option is not normally printed as it is defined, but this printing may be
turned on using the keyword List. Thus the statement

CALL E04VLF (’List’, CW, IW, RW, IFAIL)

turns on printing of this and subsequent options. Printing may be turned off again using the keyword
Nolist.

Optional parameter settings are preserved following a call to E04VHF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04VHF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04VHF.

4 References

None.
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5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid option string (see Section 3 in E04VLF and Section 12 in E04VHF).

2: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04VGF).

3: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04VGF).

4: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04VGF).

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04VGF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

E04VLF is not threaded in any implementation.

9 Further Comments

E04VKF, E04VMF or E04VNF may also be used to supply optional parameters to E04VHF.

10 Example

See Section 10 in E04VKF.
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NAG Library Routine Document

E04VMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04VMF may be used to supply individual integer optional parameters to E04VHF. The initialization
routine E04VGF must have been called before calling E04VMF.

2 Specification

SUBROUTINE E04VMF (STRING, IVALUE, CW, IW, RW, IFAIL)

INTEGER IVALUE, IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)
CHARACTER(*) STRING
CHARACTER(8) CW(*)

3 Description

E04VMF may be used to supply values for integer optional parameters to E04VHF. It is only necessary
to call E04VMF for those arguments whose values are to be different from their default values. One call
to E04VMF sets one argument value.

Each integer optional parameter is defined by a single character string in STRING and the
corresponding value in IVALUE. For example, the following allows the iteration limit to be defined:

ITNLIM = 1000
IF (M > 500) ITNLIM = 500
CALL E04VMF (’Major Iterations’, ITNLIM, CW, IW, RW, IFAIL)

Optional parameter settings are preserved following a call to E04VHF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04VHF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04VHF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of an integer optional parameter (as described in Section 12 in
E04VHF).

2: IVALUE – INTEGER Input

On entry: an integer value associated with the keyword in STRING.

3: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04VGF).
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4: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04VGF).

5: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04VGF).

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04VGF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04VMF is not threaded in any implementation.
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9 Further Comments

E04VKF or E04VLF may also be used to supply integer optional parameters to E04VHF.

10 Example

See Section 10 in E04VHF and E04VKF.
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NAG Library Routine Document

E04VNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04VNF may be used to supply individual real optional parameters to E04VHF. The initialization
routine E04VGF must have been called before calling E04VNF.

2 Specification

SUBROUTINE E04VNF (STRING, RVALUE, CW, IW, RW, IFAIL)

INTEGER IW(*), IFAIL
REAL (KIND=nag_wp) RVALUE, RW(*)
CHARACTER(*) STRING
CHARACTER(8) CW(*)

3 Description

E04VNF may be used to supply values for real optional parameters to E04VHF. It is only necessary to
call E04VNF for those arguments whose values are to be different from their default values. One call to
E04VNF sets one argument value.

Each real optional parameter is defined by a single character string in STRING and the corresponding
value in RVALUE. For example the following illustrates how the LU stability tolerance could be
defined:

FACTOL = 100.0E0
IF (ILLCON) FACTOL = 5.0E0
CALL E04VNF (’LU Factor Tolerance’, FACTOL, CW, IW, RW, IFAIL)

Optional parameter settings are preserved following a call to E04VHF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04VHF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04VHF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of a real optional parameter (as described in Section 12 in
E04VHF).

2: RVALUE – REAL (KIND=nag_wp) Input

On entry: the value associated with the keyword in STRING.

3: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04VGF).
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4: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04VGF).

5: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04VGF).

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04VGF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04VNF is not threaded in any implementation.
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9 Further Comments

E04VKF or E04VLF may also be used to supply real optional parameters to E04VHF.

10 Example

See Section 10 in E04VKF.
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NAG Library Routine Document

E04VRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04VRF is used to get the value of an integer optional parameter. E04VRF can be used before or after
calling E04VHF.

2 Specification

SUBROUTINE E04VRF (STRING, IVALUE, CW, IW, RW, IFAIL)

INTEGER IVALUE, IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)
CHARACTER(*) STRING
CHARACTER(8) CW(*)

3 Description

E04VRF obtains the current value of an integer option. For example

CALL E04VRF (’Major Iterations’, ITNLIM, CW, IW, RW, IFAIL)

will result in the value of the optional parameter Major Iterations Limit being output in ITNLIM.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04VHF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of an integer optional parameter (as described in Section 12 in
E04VHF).

2: IVALUE – INTEGER Output

On exit: the integer value associated with the keyword in STRING.

3: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04VGF).

4: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04VGF).

5: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04VGF).
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04VGF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04VRF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in E04VKF.
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NAG Library Routine Document

E04VSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04VSF is used to get the value of a real optional parameter. E04VSF can be used before or after
calling E04VHF.

2 Specification

SUBROUTINE E04VSF (STRING, RVALUE, CW, IW, RW, IFAIL)

INTEGER IW(*), IFAIL
REAL (KIND=nag_wp) RVALUE, RW(*)
CHARACTER(*) STRING
CHARACTER(8) CW(*)

3 Description

E04VSF obtains the current value of a real option. For example

CALL E04VSF (’Feasibility Tolerance’, FEATOL, CW, IW, RW, IFAIL)

will result in the value of the optional parameter Feasibility Tolerance being output in FEATOL.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04VHF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of a real optional parameter (as described in Section 12 in
E04VHF).

2: RVALUE – REAL (KIND=nag_wp) Output

On exit: the real value associated with the keyword in STRING.

3: CWð�Þ – CHARACTER(8) array Communication Array

Note: the dimension of the array CW must be at least LENCW (see E04VGF).

4: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04VGF).

5: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04VGF).
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04VGF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04VSF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in E04VKF.
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NAG Library Routine Document

E04WBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04WBF is used to initialize routines E04DGA, E04MFA, E04NCA, E04NFA, E04NKA, E04UCA,
E04UFA, E04UGA and E04USA.

2 Specification

SUBROUTINE E04WBF (RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
RWSAV, LRWSAV, IFAIL)

&

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV,
IFAIL

&

REAL (KIND=nag_wp) RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER(*) RNAME
CHARACTER(80) CWSAV(LCWSAV)

3 Description

E04WBF initializes some or all of the arrays CWSAV, LWSAV, IWSAV and RWSAV for the routine
specified by RNAME, and any associated option setting routines.

4 References

None.

5 Arguments

1: RNAME – CHARACTER(*) Input

On entry: the name of the routine to be initialized.

Constraint: RNAME must be the name of one of the routines initialized by E04WBF.

2: CWSAVðLCWSAVÞ – CHARACTER(80) array Communication Array

3: LCWSAV – INTEGER Input

On entry: the dimension of the array CWSAV as declared in the (sub)program from which
E04WBF is called.

Constraints:

if RNAME ¼ E04UFF or E04UFA , LCWSAV � 5;
otherwise LCWSAV � 1.

4: LWSAVðLLWSAVÞ – LOGICAL array Communication Array

5: LLWSAV – INTEGER Input

On entry: the dimension of the array LWSAV as declared in the (sub)program from which
E04WBF is called.
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Constraints:

if RNAME ¼ E04NKF or E04NKA , LLWSAV � 20;
if RNAME ¼ E04UGF or E04UGA , LLWSAV � 20;
otherwise LLWSAV � 120.

6: IWSAVðLIWSAVÞ – INTEGER array Communication Array

7: LIWSAV – INTEGER Input

On entry: the dimension of the array IWSAV as declared in the (sub)program from which
E04WBF is called.

Constraints:

if RNAME ¼ E04NKF or E04NKA , LIWSAV � 380;
if RNAME ¼ E04UGF or E04UGA , LIWSAV � 550;
otherwise LIWSAV � 610.

8: RWSAVðLRWSAVÞ – REAL (KIND=nag_wp) array Communication Array

9: LRWSAV – INTEGER Input

On entry: the dimension of the array RWSAV as declared in the (sub)program from which
E04WBF is called.

Constraints:

if RNAME ¼ E04NKF or E04NKA , LRWSAV � 285;
if RNAME ¼ E04UGF or E04UGA , LRWSAV � 550;
otherwise LRWSAV � 475.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The routine name supplied in RNAME is invalid

IFAIL ¼ 2

One or more of the workspace array lengths LCWSAV, LLWSAV, LIWSAV or LRWSAV is too
small.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04WBF is not threaded in any implementation.

9 Further Comments

The time taken by E04WBF is negligible.

10 Example

The use of E04WBF is illustrated by the example programs of the routines listed in Section 1.
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NAG Library Routine Document

E04WCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04WCF is used to initialize the routine E04WDF.

2 Specification

SUBROUTINE E04WCF (IW, LENIW, RW, LENRW, IFAIL)

INTEGER IW(LENIW), LENIW, LENRW, IFAIL
REAL (KIND=nag_wp) RW(LENRW)

3 Description

E04WCF initializes the arrays IW and RW for the routine E04WDF.

4 References

None.

5 Arguments

1: IWðLENIWÞ – INTEGER array Communication Array
2: LENIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04WCF is
called.

Constraint: LENIW � 600, see routine E04WDF.

3: RWðLENRWÞ – REAL (KIND=nag_wp) array Communication Array
4: LENRW – INTEGER Input

On entry: the dimension of the array RW as declared in the (sub)program from which E04WCF is
called.

Constraint: LENRW � 600, see routine E04WDF.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the communication array lengths LENIW or LENRW is less than 600.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04WCF is not threaded in any implementation.

9 Further Comments

The time taken by E04WCF is negligible.

10 Example

See Section 10 in E04WDF and E04WEF.
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NAG Library Routine Document

E04WDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

E04WDF is designed to minimize an arbitrary smooth function subject to constraints (which may
include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using a
sequential quadratic programming (SQP) method. As many first derivatives as possible should be
supplied by you; any unspecified derivatives are approximated by finite differences. It is not intended
for large sparse problems.

E04WDF may also be used for unconstrained, bound-constrained and linearly constrained optimization.

E04WDF uses forward communication for evaluating the objective function, the nonlinear constraint
functions, and any of their derivatives.

The initialization routine E04WCF must have been called before to calling E04WDF.

2 Specification

SUBROUTINE E04WDF (N, NCLIN, NCNLN, LDA, LDCJ, LDH, A, BL, BU, CONFUN,
OBJFUN, MAJITS, ISTATE, CCON, CJAC, CLAMDA, OBJF,
GRAD, H, X, IW, LENIW, RW, LENRW, IUSER, RUSER,
IFAIL)

&
&
&

INTEGER N, NCLIN, NCNLN, LDA, LDCJ, LDH, MAJITS,
ISTATE(N+NCLIN+NCNLN), IW(LENIW), LENIW, LENRW,
IUSER(*), IFAIL

&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),
CCON(max(1,NCNLN)), CJAC(LDCJ,*),
CLAMDA(N+NCLIN+NCNLN), OBJF, GRAD(N), H(LDH,*),
X(N), RW(LENRW), RUSER(*)

&
&
&

EXTERNAL CONFUN, OBJFUN

Before calling E04WDF, or any of the option setting routines E04WEF, E04WFF, E04WGF or
E04WHF, E04WCF must be called. The specification for E04WCF is:

SUBROUTINE E04WCF (IW, LENIW, RW, LENRW, IFAIL)

INTEGER IW(LENIW), LENIW, LENRW, IFAIL
REAL (KIND=nag_wp) RW(LENRW)

E04WCF must be called with LENIW and LENRW, the declared lengths of IW and RW respectively,
satisfying:

LENIW � 600;

LENRW � 600.

The contents of the arrays IW and RW must not be altered between calls of the routines E04WCF,
E04WDF, E04WEF, E04WGF or E04WHF.
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3 Description

E04WDF is designed to solve nonlinear programming problems – the minimization of a smooth
nonlinear function subject to a set of constraints on the variables. E04WDF is suitable for small dense
problems. The problem is assumed to be stated in the following form:

minimize
x2Rn

F xð Þ subject to l �
x
ALx
c xð Þ

0@ 1A � u; ð1Þ

where F xð Þ (the objective function) is a nonlinear scalar function, AL is an nL by n constant matrix,
and c xð Þ is an nN -vector of nonlinear constraint functions. (The matrix AL and the vector c xð Þ may be
empty.) The objective function and the constraint functions are assumed to be smooth, here meaning at
least twice-continuously differentiable. (The method of E04WDF will usually solve (1) if there are only
isolated discontinuities away from the solution.) We also write r xð Þ for the vector of combined
functions:

r xð Þ ¼ x ALx c xð Þ
� �T

:

Note that although the bounds on the variables could be included in the definition of the linear
constraints, we prefer to distinguish between them for reasons of computational efficiency. For the same
reason, the linear constraints should not be included in the definition of the nonlinear constraints. Upper
and lower bounds are specified for all the variables and for all the constraints. An equality constraint on
ri can be specified by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u
can be set to special values that will be treated as �1 or þ1. (See the description of the optional
parameter Infinite Bound Size.)

A typical invocation of E04WDF is:

CALL E04WCF (IW, LENIW, ...)
CALL E04WEF (ISPECS, IW, ...)
CALL E04WDF (N, NCLIN, NCNLN, ...)

where E04WEF reads a set of optional parameter definitions from the file with unit number ISPECS.

Figure 1 illustrates the feasible region for the jth pair of constraints lj � rj xð Þ � uj. The quantity of � is
the Feasibility Tolerance, which can be set by you (see Section 12). The constraints lj � rj � uj are
considered ‘satisfied’ if rj lies in Regions 2, 3 or 4, and ‘inactive’ if rj lies in Region 3. The constraint
rj � lj is considered ‘active’ in Region 2, and ‘violated’ in Region 1. Similarly, rj � uj is active in
Region 4, and violated in Region 5. For equality constraints (lj ¼ uj), Regions 2 and 4 are the same and
Region 3 is empty.

� � ��

ujlj rjðxÞ

violated active free (inactive) active violated

1 2 3 4 5

Figure 1
Illustration of the constraints lj � rj xð Þ � uj

If there are no nonlinear constraints in (1) and F is linear or quadratic, then it will generally be more
efficient to use one of E04MFF/E04MFA, E04NCF/E04NCA or E04NFF/E04NFA. If the problem is
large and sparse and does have nonlinear constraints, then E04VHF should be used, since E04WDF
treats all matrices as dense.

You must supply an initial estimate of the solution to (1), together with subroutines that define F xð Þ
and c xð Þ with as many first partial derivatives as possible; unspecified derivatives are approximated by
finite differences; see Section 12.1 for a discussion of the optional parameter Derivative Level.
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The objective function is defined by OBJFUN, and the nonlinear constraints are defined by CONFUN.
Note that if there are any nonlinear constraints then the first call to CONFUN will precede the first call
to OBJFUN.

For maximum reliability, it is preferable for you to provide all partial derivatives (see Chapter 8 of Gill
et al. (1981), for a detailed discussion). If all gradients cannot be provided, it is similarly advisable to
provide as many as possible. While developing OBJFUN and CONFUN, the optional parameter Verify
Level should be used to check the calculation of any known gradients.

The method used by E04WDF is based on NPOPT, which is part of the SNOPT package described in
Gill et al. (2005b), and the algorithm it uses is described in detail in Section 11.

4 References
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: NCLIN – INTEGER Input

On entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.

3: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: NCNLN � 0.
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4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
E04WDF is called.

Constraint: LDA � max 1;NCLINð Þ.

5: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
E04WDF is called.

Constraint: LDCJ � max 1;NCNLNð Þ.

6: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which
E04WDF is called.

Constraint: LDH � N unless optional parameter Hessian Limited Memory is in effect.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0, and at least 1
otherwise.

On entry: the ith row of A contains the ith row of the matrix AL of general linear constraints in
(1). That is, the ith row contains the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0, the array A is not referenced.

8: BLðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input
9: BUðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds and BU the upper bounds for all the constraints, in
the following order. The first n elements of each array must contain the bounds on the variables,
the next nL elements the bounds for the general linear constraints (if any) and the next nN
elements the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower
bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a nonexistent upper bound (i.e.,
uj ¼ þ1), set BUðjÞ � bigbnd; where bigbnd is the optional parameter Infinite Bound Size. To
specify the jth constraint as an equality, set BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

10: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate the vector c xð Þ of nonlinear constraint functions and (optionally) its

Jacobian,
@c

@x
, for a specified n-vector x. If there are no nonlinear constraints (i.e., NCNLN ¼ 0),

E04WDF will never call CONFUN, so it may be the dummy routine E04WDP. (E04WDP is
included in the NAG Library). If there are nonlinear constraints, the first call to CONFUN will
occur before the first call to OBJFUN.

If all constraint gradients (Jacobian elements) are known (i.e., Derivative Level ¼ 2 or 3), any
constant elements may be assigned to CJAC once only at the start of the optimization. An
element of CJAC that is not subsequently assigned in CONFUN will retain its initial value
throughout. Constant elements may be loaded in CJAC during the first call to CONFUN
(signalled by the value of NSTATE ¼ 1). The ability to preload constants is useful when many
Jacobian elements are identically zero, in which case CJAC may be initialized to zero and
nonzero elements may be reset by CONFUN.
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It must be emphasized that, if Derivative Level < 2, unassigned elements of CJAC are not
treated as constant; they are estimated by finite differences, at nontrivial expense.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCNLN, N, LDCJ, NEEDC, X, CCON, CJAC,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, NCNLN, N, LDCJ, NEEDC(NCNLN), NSTATE,
IUSER(*)

&

REAL (KIND=nag_wp) X(N), CCON(max(1,NCNLN)), CJAC(LDCJ,N),
RUSER(*)

&

1: MODE – INTEGER Input/Output

On entry: is set by E04WDF to indicate which values must be assigned during each call
of CONFUN. Only the following values need be assigned, for each value of i such that
NEEDCðiÞ > 0:

MODE ¼ 0
The components of CCON corresponding to positive values in NEEDC must be
set. Other components and the array CJAC are ignored.

MODE ¼ 1
The known components of the rows of CJAC corresponding to positive values in
NEEDC must be set. Other rows of CJAC and the array CCON will be ignored.

MODE ¼ 2
Only the elements of CCON corresponding to positive values of NEEDC need to
be set (and similarly for the known components of the rows of CJAC).

On exit: may be used to indicate that you are unable or unwilling to evaluate the
constraint functions at the current x.

During the linesearch, the constraint functions are evaluated at points of the form
x ¼ xk þ �pk after they have already been evaluated satisfactorily at xk. At any such �,
if you set MODE ¼ �1, E04WDF will evaluate the functions at some point closer to xk
(where they are more likely to be defined).

If for some reason you wish to terminate the current problem, set MODE < �1.

2: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

3: N – INTEGER Input

On entry: n, the number of variables.

4: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from
which E04WDF is called.

5: NEEDCðNCNLNÞ – INTEGER array Input

On entry: the indices of the elements of CCON and/or CJAC that must be evaluated by
CONFUN. If NEEDCðiÞ > 0, the ith element of CCON and/or the available elements of
the ith row of CJAC (see argument MODE) must be evaluated at x.

6: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the constraint functions and/or the
available elements of the constraint Jacobian are to be evaluated.
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7: CCONðmax 1;NCNLNð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: if NEEDCðiÞ > 0 and MODE ¼ 0 or 2, CCONðiÞ must contain the value of the
ith constraint at x. The remaining elements of CCON, corresponding to the non-positive
elements of NEEDC, are ignored.

8: CJACðLDCJ;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of CJAC are set to special values that enable E04WDF to detect
whether they are reset by CONFUN.

On exit: if NEEDCðiÞ > 0 and MODE ¼ 1 or 2, the ith row of CJAC must contain the
available elements of the vector rci given by

rci ¼
@ci
@x1

;
@ci
@x2

; . . . ;
@ci
@xn

� �T

;

where
@ci
@xj

is the partial derivative of the ith constraint with respect to the jth variable,

evaluated at the point x. See also the argument NSTATE. The remaining rows of CJAC,
corresponding to non-positive elements of NEEDC, are ignored.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3),
any constant elements may be assigned to CJAC one time only at the start of the
optimization. An element of CJAC that is not subsequently assigned in CONFUN will
retain its initial value throughout. Constant elements may be loaded into CJAC during
the first call to CONFUN (signalled by the value NSTATE ¼ 1). The ability to preload
constants is useful when many Jacobian elements are identically zero, in which case
CJAC may be initialized to zero and nonzero elements may be reset by CONFUN.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
CJACði; jÞ is set to a constant value, it need not be reset in subsequent calls to
CONFUN, but the value CJACði; jÞ � XðjÞ must nonetheless be added to CCONðiÞ. For
example, if CJACð1; 1Þ ¼ 2 and CJACð1; 2Þ ¼ �5 then the term 2� Xð1Þ � 5� Xð2Þ
must be included in the definition of CCONð1Þ.
It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of CJAC
are not treated as constant; they are estimated by finite differences, at nontrivial
expense. If you do not supply a value for the optional parameter Difference Interval,
an interval for each element of x is computed automatically at the start of the
optimization. The automatic procedure can usually identify constant elements of CJAC,
which are then computed once only by finite differences.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E04WDF is calling CONFUN for the first time. This
argument setting allows you to save computation time if certain data must be read or
calculated only once.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN is called with the arguments IUSER and RUSER as supplied to E04WDF.
You should use the arrays IUSER and RUSER to supply information to CONFUN.

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04WDF is called. Arguments denoted as Input must not be changed
by this procedure.

CONFUN should be tested separately before being used in conjunction with E04WDF. See also
the description of the optional parameter Verify Level.
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11: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the objective function F xð Þ and (optionally) its gradient g xð Þ ¼ @F
@x

for a

specified n-vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, N, X, OBJF, GRAD, NSTATE, IUSER, RUSER)

INTEGER MODE, N, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), OBJF, GRAD(N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: is set by E04WDF to indicate which values must be assigned during each call
of OBJFUN. Only the following values need be assigned:

MODE ¼ 0
OBJF.

MODE ¼ 1
All available elements of GRAD.

MODE ¼ 2
OBJF and all available elements of GRAD.

On exit: may be used to indicate that you are unable or unwilling to evaluate the
objective function at the current x.

During the linesearch, the function is evaluated at points of the form x ¼ xk þ �pk after
they have already been evaluated satisfactorily at xk. For any such x, if you set
MODE ¼ �1, E04WDF will reduce � and evaluate the functions again (closer to xk,
where they are more likely to be defined).

If for some reason you wish to terminate the current problem, set MODE < �1.

2: N – INTEGER Input

On entry: n, the number of variables.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the objective function and/or all available
elements of its gradient are to be evaluated.

4: OBJF – REAL (KIND=nag_wp) Output

On exit: if MODE ¼ 0 or 2, OBJF must be set to the value of the objective function at
x.

5: GRADðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of GRAD are set to special values.

On exit: if MODE ¼ 1 or 2, GRAD must return the available elements of the gradient

evaluated at x, i.e., GRADðiÞ contains the partial derivative
@F

@xi
.

6: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E04WDF is calling OBJFUN for the first time. This
argument setting allows you to save computation time if certain data must be read or
calculated only once.
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7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E04WDF.
You should use the arrays IUSER and RUSER to supply information to OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04WDF is called. Arguments denoted as Input must not be changed by
this procedure.

OBJFUN should be tested separately before being used in conjunction with E04WDF. See also
the description of the optional parameter Verify Level.

12: MAJITS – INTEGER Output

On exit: the number of major iterations performed.

13: ISTATEðNþ NCLINþ NCNLNÞ – INTEGER array Input/Output

On entry: is an integer array that need not be initialized if E04WDF is called with the Cold Start
option (the default).

If optional parameter Warm Start has been chosen, every element of ISTATE must be set. If
E04WDF has just been called on a problem with the same dimensions, ISTATE already contains
valid values. Otherwise, ISTATEðjÞ should indicate whether either of the constraints rj xð Þ � lj
or rj xð Þ � uj is expected to be active at a solution of (1).

The ordering of ISTATE is the same as for BL, BU and r xð Þ, i.e., the first N components of
ISTATE refer to the upper and lower bounds on the variables, the next NCLIN refer to the
bounds on ALx, and the last NCNLN refer to the bounds on c xð Þ. Possible values of ISTATEðiÞ
follow:

0 Neither rj xð Þ � lj nor rj xð Þ � uj is expected to be active.
1 rj xð Þ � lj is expected to be active.
2 rj xð Þ � uj is expected to be active.
3 This may be used if lj ¼ uj. Normally an equality constraint rj xð Þ ¼ lj ¼ uj is active at a

solution.

The values 1, 2 or 3 all have the same effect when BLðjÞ ¼ BUðjÞ. If necessary, E04WDF will
override your specification of ISTATE, so that a poor choice will not cause the algorithm to fail.

On exit: describes the status of the constraints l � r xð Þ � u. For the jth lower or upper bound,
j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN, the possible values of ISTATEðjÞ are as follows (see
Figure 1). � is the appropriate feasibility tolerance.

�2 (Region 1) The lower bound is violated by more than �.
�1 (Region 5) The upper bound is violated by more than �.
0 (Region 3) Both bounds are satisfied by more than �.
1 (Region 2) The lower bound is active (to within �).
2 (Region 4) The upper bound is active (to within �).
3 (Region 2 ¼ Region 4) The bounds are equal and the equality constraint is satisfied (to

within �).

These values of ISTATE are labelled in the printed solution according to Table 1.

Region 1 2 3 4 5

2 	 4
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ISTATEðjÞ �2 1 0 2 �1 3

Printed solution -- LL FR UL ++ EQ

Table 1
Labels used in the printed solution for the regions in Figure 1

14: CCONðmax 1;NCNLNð ÞÞ – REAL (KIND=nag_wp) array Input/Output

On entry: CCON need not be initialized if the (default) optional parameter Cold Start is used.

For a Warm Start, and if NCNLN > 0, CCON contains values of the nonlinear constraint
functions ci, for i ¼ 1; 2; . . . ;NCNLN, calculated in a previous call to E04WDF.

On exit: if NCNLN > 0, CCONðiÞ contains the value of the ith nonlinear constraint function ci at
the final iterate, for i ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0, the array CCON is not referenced.

15: CJACðLDCJ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array CJAC must be at least N if NCNLN > 0, and at least 1
otherwise.

On entry: in general, CJAC need not be initialized before the call to E04WDF. However, if
Derivative Level ¼ 2 or 3, any constant elements of CJAC may be initialized. Such elements
need not be reassigned on subsequent calls to CONFUN.

On exit: if NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear constraint functions
at the final iterate, i.e., CJACði; jÞ contains the partial derivative of the ith constraint function
with respect to the jth variable, for i ¼ 1; 2; . . . ;NCNLN and j ¼ 1; 2; . . . ;N. (See the discussion
of argument CJAC under CONFUN.)

If NCNLN ¼ 0, the array CJAC is not referenced.

16: CLAMDAðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, CLAMDAðjÞ must contain a multiplier
estimate for each nonlinear constraint, with a sign that matches the status of the constraint
specified by the ISTATE array, for j ¼ Nþ NCLINþ 1; . . . ;Nþ NCLINþ NCNLN. The
remaining elements need not be set. If the jth constraint is defined as ‘inactive’ by the initial
value of the ISTATE array (i.e., ISTATEðjÞ ¼ 0), CLAMDAðjÞ should be zero; if the jth
constraint is an inequality active at its lower bound (i.e., ISTATEðjÞ ¼ 1), CLAMDAðjÞ should
be non-negative; if the jth constraint is an inequality active at its upper bound (i.e.,
ISTATEðjÞ ¼ 2), CLAMDAðjÞ should be non-positive. If necessary, the routine will modify
CLAMDA to match these rules.

On exit: the values of the QP multipliers from the last QP subproblem. CLAMDAðjÞ should be
non-negative if ISTATEðjÞ ¼ 1 and non-positive if ISTATEðjÞ ¼ 2.

17: OBJF – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at the final iterate.

18: GRADðNÞ – REAL (KIND=nag_wp) array Output

On exit: the gradient of the objective function (or its finite difference approximation) at the final
iterate.
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19: HðLDH; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array H must be at least N unless the optional parameter
Hessian Limited Memory is in effect. If Hessian Limited Memory is in effect, array H is not
referenced.

On entry: H need not be initialized if the (default) optional parameter Cold Start is used, and
will be set to the identity.

If the optional parameter Warm Start has been chosen, H provides the initial approximation of

the Hessian of the Lagrangian, i.e., Hði; jÞ � @2L x;�ð Þ
@xi@xj

, where L x; �ð Þ ¼ F xð Þ � c xð ÞT� and � is an

estimate of the Lagrange multipliers. H must be a positive definite matrix.

On exit: contains the Hessian of the Lagrangian at the final estimate x.

20: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the solution.

On exit: the final estimate of the solution.

21: IWðLENIWÞ – INTEGER array Communication Array
22: LENIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04WDF is
called.

Constraint: LENIW � 600.

23: RWðLENRWÞ – REAL (KIND=nag_wp) array Communication Array
24: LENRW – INTEGER Input

On entry: the dimension of the array RW as declared in the (sub)program from which E04WDF is
called.

Constraint: LENRW � 600.

25: IUSERð�Þ – INTEGER array User Workspace
26: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04WDF, but are passed directly to CONFUN and OBJFUN
and should be used to pass information to these routines.

27: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E04WDF returns with IFAIL ¼ 0 if the iterates have converged to a point x that satisfies the
first-order Kuhn–Tucker (see Section 13.2) conditions to the accuracy requested by the Major
Optimality Tolerance, i.e., the projected gradient and active constraint residuals are negligible at
x.

You should check whether the following four conditions are satisfied:

E04WDF NAG Library Manual

E04WDF.10 Mark 26



(i) the final value of rgNorm (see Section 13.2) is significantly less than that at the starting
point;

(ii) during the final major iterations, the values of Step and Minors (see Section 13.1) are both
one;

(iii) the last few values of both rgNorm and SumInf (see Section 13.2) become small at a fast
linear rate; and

(iv) condHz (see Section 13.1) is small.

If all these conditions hold, x is almost certainly a local minimum of (1).

One caution about ‘Optimal solutions’. Some of the variables or slacks may lie outside their
bounds more than desired, especially if scaling was requested. Max Primal infeas in the Print
file refers to the largest bound infeasibility and which variable is involved. If it is too large,
consider restarting with a smaller Minor Feasibility Tolerance (say 10 times smaller) and
perhaps Scale Option ¼ 0.

Similarly, Max Dual infeas in the Print file indicates which variable is most likely to be at a
nonoptimal value. Broadly speaking, if

Max Dual infeas=Max pi ¼ 10�d;

then the objective function would probably change in the dth significant digit if optimization
could be continued. If d seems too large, consider restarting with a smaller Major Optimality
Tolerance.

Finally, Nonlinear constraint violn in the Print file shows the maximum infeasibility for
nonlinear rows. If it seems too large, consider restarting with a smaller Major Feasibility
Tolerance.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04WDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LENIW ¼ valueh i.
Constraint: LENIW � 600.

On entry, LENRW ¼ valueh i.
Constraint: LENRW � 600.

The initialization routine E04WCF has not been called.

IFAIL ¼ 2

Basis file dimensions do not match this problem.

On entry, bounds BL and BU for valueh i are equal and infinite. BL ¼ BU ¼ valueh i and
bigbnd ¼ valueh i.
On entry, bounds for valueh i are inconsistent. BL ¼ valueh i and BU ¼ valueh i.
On entry, LDA ¼ valueh i and NCLIN ¼ valueh i.
Constraint: LDA � NCLIN.

On entry, LDCJ ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDCJ � NCNLN.
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On entry, LDH ¼ valueh i and N ¼ valueh i.
Constraint: LDH � N.

On entry, N ¼ valueh i.
Constraint: N � valueh i.
On entry, NCLIN ¼ valueh i.
Constraint: NCLIN � valueh i.
On entry, NCNLN ¼ valueh i.
Constraint: NCNLN � valueh i.

IFAIL ¼ 3

The requested accuracy could not be achieved.

A feasible solution has been found, but the requested accuracy in the dual infeasibilities could
not be achieved. An abnormal termination has occurred, but E04WDF is within 10�2 of satisfying
the Major Optimality Tolerance. Check that the Major Optimality Tolerance is not too small.

IFAIL ¼ 4

The linear constraints appear to be infeasible.

The problem appears to be infeasible. Infeasibilites have been minimized.

The problem appears to be infeasible. Nonlinear infeasibilites have been minimized.

The problem appears to be infeasible. The linear equality constraints could not be satisfied.

When the constraints are linear, this message is based on a relatively reliable indicator of
infeasibility. Feasibility is measured with respect to the upper and lower bounds on the variables
and slacks. Among all the points satisfying the general constraints Ax� s ¼ 0 (see (5) and (6) in
Section 11.2), there is apparently no point that satisfies the bounds on x and s. Violations as
small as the Minor Feasibility Tolerance are ignored, but at least one component of x or s
violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly. Even
if a feasible solution exists, the current linearization of the constraints may not contain a feasible
point. In an attempt to deal with this situation, when solving each QP subproblem, E04WDF is
prepared to relax the bounds on the slacks associated with nonlinear rows.

If a QP subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier estimates
for the nonlinear constraints become large), E04WDF enters so-called ‘nonlinear elastic’ mode.
The subproblem includes the original QP objective and the sum of the infeasibilities – suitably
weighted using the optional parameter Elastic Weight. In elastic mode, some of the bounds on
the nonlinear rows are ‘elastic’ – i.e., they are allowed to violate their specific bounds. Variables
subject to elastic bounds are known as elastic variables. An elastic variable is free to violate one
or both of its original upper or lower bounds. If the original problem has a feasible solution and
the elastic weight is sufficiently large, a feasible point eventually will be obtained for the
perturbed constraints, and optimization can continue on the subproblem. If the nonlinear problem
has no feasible solution, E04WDF will tend to determine a ‘good’ infeasible point if the elastic
weight is sufficiently large. (If the elastic weight were infinite, E04WDF would locally minimize
the nonlinear constraint violations subject to the linear constraints and bounds.)

Unfortunately, even though E04WDF locally minimizes the nonlinear constraint violations, there
may still exist other regions in which the nonlinear constraints are satisfied. Wherever possible,
nonlinear constraints should be defined in such a way that feasible points are known to exist
when the constraints are linearized.

IFAIL ¼ 5

The problem appears to be unbounded. The constraint violation limit has been reached.

The problem appears to be unbounded. The objective function is unbounded.

The problem appears to be unbounded (or badly scaled).
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For linear problems, unboundedness is detected by the simplex method when a nonbasic variable
can be increased or decreased by an arbitrary amount without causing a basic variable to violate
a bound. Consider adding an upper or lower bound to the variable. Also, examine the constraints
that have nonzeros in the associated column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an
erroneous indication of unboundedness. Consider using the optional parameter Scale Option.

For nonlinear problems, E04WDF monitors both the size of the current objective function and
the size of the change in the variables at each step. If either of these is very large (as judged by
the ‘Unbounded’ parameters (see Section 12)), the problem is terminated and declared
unbounded. To avoid large function values, it may be necessary to impose bounds on some of the
variables in order to keep them away from singularities in the nonlinear functions.

The message may indicate an abnormal termination while enforcing the limit on the constraint
violations. This exit implies that the objective is not bounded below in the feasible region defined
by expanding the bounds by the value of the Violation Limit.

IFAIL ¼ 6

Iteration limit reached.

Major iteration limit reached.

The value of the optional parameter Superbasics Limit is too small.

Either the Iterations Limit or the Major Iterations Limit was exceeded before the required
solution could be found. Check the iteration log to be sure that progress was being made. If so,
and if you caused a basis file to be saved by using the optional parameter New Basis File,
consider restarting the run using the optional parameter Old Basis File to see whether further
progress can be made. If you have no basis file available, you might rerun the problem after
increasing the optional parameters Minor Iterations Limit and/or Major Iterations Limit.

If none of the above limits have been reached, this error may mean that the problem appears to
be more nonlinear than anticipated. The current set of basic and superbasic variables have been
optimized as much as possible and a pricing operation (where a nonbasic variable is selected to
become superbasic) is necessary to continue, but it can't continue as the number of superbasic
variables has already reached the limit specified by the optional parameter Superbasics Limit. In
general, raise the Superbasics Limit s by a reasonable amount, bearing in mind the storage
needed for the reduced Hessian. (The Reduced Hessian Dimension h will also increase to s
unless specified otherwise, and the associated storage will be about 1

2s
2 words.) In some cases

you may have to set h < s to conserve storage, but beware that the rate of convergence will
probably fall off severely.

IFAIL ¼ 7

Numerical difficulties have been encountered and no further progress can be made.

Numerical difficulties have been encountered and no further progress can be made.

Several circumstances could lead to this exit.

1. The user-supplied subroutines OBJFUN or CONFUN could be returning accurate function
values but inaccurate gradients (or vice versa). This is the most likely cause. Study the
comments given for IFAIL ¼ 8, and do your best to ensure that the coding is correct.

2. The function and gradient values could be consistent, but their precision could be too low.
For example, accidental use of a real data type when double precision was intended would
lead to a relative function precision of about 10�6 instead of something like 10�15. The
default Major Optimality Tolerance of 2� 10�6 would need to be raised to about 10�3 for
optimality to be declared (at a rather suboptimal point). Of course, it is better to revise the
function coding to obtain as much precision as economically possible.
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3. If function values are obtained from an expensive iterative process, they may be accurate to
rather few significant figures, and gradients will probably not be available. One should
specify

Function Precision t

Major Optimality Tolerance
ffiffi
t
p

but even then, if t is as large as 10�5 or 10�6 (only 5 or 6 significant figures), the same exit
condition may occur. At present the only remedy is to increase the accuracy of the function
calculation.

4. An LU factorization of the basis has just been obtained and used to recompute the basic
variables xB, given the present values of the superbasic and nonbasic variables. A step of
‘iterative refinement’ has also been applied to increase the accuracy of xB. However, a row
check has revealed that the resulting solution does not satisfy the current constraints
Ax� s ¼ 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. If there are some linear
constraints and variables, try Scale Option ¼ 1 if scaling has not yet been used.

For certain highly structured basis matrices (notably those with band structure), a systematic
growth may occur in the factor U. Consult the description of Umax and Growth in
Section 13.4 and set the LU Factor Tolerance to 2:0 (or possibly even smaller, but not less
than 1:0).

5. The first factorization attempt will have found the basis to be structurally or numerically
singular. (Some diagonals of the triangular matrix U were respectively zero or smaller than a
certain tolerance.) The associated variables are replaced by slacks and the modified basis is
refactorized, but singularity persists. This must mean that the problem is badly scaled, or the
LU Factor Tolerance is too much larger than 1:0. This is highly unlikely to occur.

IFAIL ¼ 8

User-supplied function computes incorrect constraint derivatives.

User-supplied function computes incorrect objective derivatives.

If the message refers to the derivatives of the objective function, then a check has been made on
some individual elements of the objective gradient array at the first point that satisfies the linear
constraints. At least one component GRADj is being set to a value that disagrees markedly with
its associated forward-difference estimate @F

@xj
. (The relative difference between the computed and

estimated values is 1:0 or more.) This exit is a safeguard, since E04WDF will usually fail to
make progress when the computed gradients are seriously inaccurate. In the process it may
expend considerable effort before terminating with IFAIL ¼ 7.

Check the function and gradient computation very carefully in OBJFUN. A simple omission could
explain everything. If F or a component @F@xj is very large, then give serious thought to scaling the

function or the nonlinear variables.

If you feel certain that the computed GRADðjÞ is correct (and that the forward-difference
estimate is therefore wrong), you can specify Verify Level ¼ 0 to prevent individual elements
from being checked. However, the optimization procedure may have difficulty.

If the message refers to derivatives of the constraints, then at least one of the computed
constraint derivatives is significantly different from an estimate obtained by forward-differencing
the vector c xð Þ. Follow the advice given above, trying to ensure that the arrays CCON and CJAC
are being set correctly in CONFUN.

IFAIL ¼ 9

Unable to proceed into undefined region of user-supplied function.

User-supplied function is undefined at the first feasible point.

User-supplied function is undefined at the initial point.
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You have indicated that the problem functions are undefined by assigning the value MODE ¼ �1
on exit from OBJFUN or CONFUN. E04WDF attempts to evaluate the problem functions closer
to a point at which the functions are already known to be defined. This exit occurs if E04WDF is
unable to find a point at which the functions are defined. This will occur in the case of:

– undefined functions with no recovery possible;

– undefined functions at the first point;

– undefined functions at the first feasible point; or

– undefined functions when checking derivatives.

IFAIL ¼ 10

User-supplied constraint function requested termination.

User-supplied objective function requested termination.

You have indicated the wish to terminate solution of the current problem by setting MODE to a
value < �1 on exit from OBJFUN or CONFUN.

IFAIL ¼ 11

Internal error: memory allocation failed when attempting to allocate workspace sizes valueh i and
valueh i. Please contact NAG.

IFAIL ¼ 12

Internal memory allocation was insufficient. Please contact NAG.

IFAIL ¼ 13

An error has occurred in the basis package, perhaps indicating incorrect setup of arrays. Set the
optional parameter Print File and examine the output carefully for further information.

IFAIL ¼ 14

An unexpected error has occurred. Set the optional parameter Print File and examine the output
carefully for further information.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 on exit, then the vector returned in the array X is an estimate of the solution to an
accuracy of approximately Major Optimality Tolerance.
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8 Parallelism and Performance

E04WDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This section describes the final output produced by E04WDF. Intermediate and other output are given in
Section 13.

9.1 The Final Output

If Print File > 0, the final output, including a listing of the status of every variable and constraint will
be sent to the Print File. The following describes the output for each variable. A full stop (.) is printed
for any numerical value that is zero.

Variable gives the name (Variable) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if
temporarily fixed at its current value). If Value lies outside the upper or lower
bounds by more than the Feasibility Tolerance, State will be ++ or --
respectively. (The latter situation can occur only when there is no feasible point
for the bounds and linear constraints.)

A key is sometimes printed before State.

A Alternative optimum possible. The variable is active at one of its bounds,
but its Lagrange multiplier is essentially zero. This means that if the
variable were allowed to start moving away from its bound then there
would be no change to the objective function. The values of the other free
variables might change, giving a genuine alternative solution. However, if
there are any degenerate variables (labelled D), the actual change might
prove to be zero, since one of them could encounter a bound immediately.
In either case the values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr multiplier is the Lagrange multiplier for the associated bound. This will be zero if State is
FR unless BLðjÞ � �bigbnd and BUðjÞ � bigbnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL and
non-positive if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).
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The meaning of the output for linear and nonlinear constraints is the same as that given above for
variables, with BLðjÞ and BUðjÞ replaced by BLðnþ jÞ and BUðnþ jÞ respectively, and with the
following changes in the heading:

Linear constrnt gives the name (lincon) and index j, for j ¼ 1; 2; . . . ; nL, of the linear constraint.

Nonlin constrnt gives the name (nlncon) and index (j � nL), for j ¼ nL þ 1; . . . ; nL þ nN , of the
nonlinear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This example is based on Problem 71 in Hock and Schittkowski (1981) and involves the minimization
of the nonlinear function

F xð Þ ¼ x1x4 x1 þ x2 þ x3ð Þ þ x3
subject to the bounds

1 � x1 � 5
1 � x2 � 5
1 � x3 � 5
1 � x4 � 5;

to the general linear constraint

x1 þ x2 þ x3 þ x4 � 20;

and to the nonlinear constraints

x21 þ x22 þ x23 þ x24 � 40;
x1x2x3x4 � 25:

The initial point, which is infeasible, is

x0 ¼ 1; 5; 5; 1ð ÞT;

with F x0ð Þ ¼ 16.

The optimal solution (to five figures) is

x� ¼ 1:0; 4:7430; 3:8211; 1:3794ð ÞT;

and F x�ð Þ ¼ 17:014. One bound constraint and both nonlinear constraints are active at the solution.

10.1 Program Text

! E04WDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04wdfe_mod

! E04WDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, objfun

! .. Parameters ..
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Integer, Parameter, Public :: leniw = 600, lenrw = 600, nin = 5, &
nout = 6

Contains
Subroutine objfun(mode,n,x,objf,grad,nstate,iuser,ruser)

! Routine to evaluate objective function and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: grad(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
If (mode==0 .Or. mode==2) Then

objf = x(1)*x(4)*(x(1)+x(2)+x(3)) + x(3)
End If

If (mode==1 .Or. mode==2) Then
grad(1) = x(4)*(2.0E0_nag_wp*x(1)+x(2)+x(3))
grad(2) = x(1)*x(4)
grad(3) = x(1)*x(4) + 1.0E0_nag_wp
grad(4) = x(1)*(x(1)+x(2)+x(3))

End If

Return

End Subroutine objfun
Subroutine confun(mode,ncnln,n,ldcj,needc,x,ccon,cjac,nstate,iuser, &

ruser)
! Routine to evaluate the nonlinear constraints and their 1st
! derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcj, n, ncnln, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: ccon(max(1,ncnln))
Real (Kind=nag_wp), Intent (Inout) :: cjac(ldcj,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncnln)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
If (nstate==1) Then

! First call to CONFUN. Set all Jacobian elements to zero.
! Note that this will only work when ’Derivative Level = 3’
! (the default; see Section 11.2).

cjac(1:ncnln,1:n) = 0.0E0_nag_wp
End If

If (needc(1)>0) Then

If (mode==0 .Or. mode==2) Then
ccon(1) = x(1)**2 + x(2)**2 + x(3)**2 + x(4)**2

End If

If (mode==1 .Or. mode==2) Then
cjac(1,1) = 2.0E0_nag_wp*x(1)
cjac(1,2) = 2.0E0_nag_wp*x(2)
cjac(1,3) = 2.0E0_nag_wp*x(3)
cjac(1,4) = 2.0E0_nag_wp*x(4)

End If

End If

If (needc(2)>0) Then
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If (mode==0 .Or. mode==2) Then
ccon(2) = x(1)*x(2)*x(3)*x(4)

End If

If (mode==1 .Or. mode==2) Then
cjac(2,1) = x(2)*x(3)*x(4)
cjac(2,2) = x(1)*x(3)*x(4)
cjac(2,3) = x(1)*x(2)*x(4)
cjac(2,4) = x(1)*x(2)*x(3)

End If

End If

Return

End Subroutine confun
End Module e04wdfe_mod
Program e04wdfe

! E04WDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04wcf, e04wdf, e04wgf, nag_wp
Use e04wdfe_mod, Only: confun, leniw, lenrw, nin, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: objf
Integer :: i, ifail, lda, ldcj, ldh, majits, n, &

nclin, ncnln, sda, sdcjac
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), ccon(:), &
cjac(:,:), clamda(:), grad(:), &
h(:,:), x(:)

Real (Kind=nag_wp) :: ruser(1), rw(lenrw)
Integer, Allocatable :: istate(:)
Integer :: iuser(1), iw(leniw)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04WDF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, nclin, ncnln
lda = max(1,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

ldcj = max(1,ncnln)

If (ncnln>0) Then
sdcjac = n

Else
sdcjac = 1

End If

ldh = n
Allocate (istate(n+nclin+ncnln),a(lda,sda),bl(n+nclin+ncnln), &

bu(n+nclin+ncnln),ccon(max(1,ncnln)),cjac(ldcj,sdcjac),clamda(n+nclin+ &
ncnln),grad(n),h(ldh,n),x(n))

If (nclin>0) Then
Read (nin,*)(a(i,1:sda),i=1,nclin)
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End If

Read (nin,*) bl(1:(n+nclin+ncnln))
Read (nin,*) bu(1:(n+nclin+ncnln))
Read (nin,*) x(1:n)

! Call E04WCF to initialize E04WDF.

ifail = 0
Call e04wcf(iw,leniw,rw,lenrw,ifail)

! By default E04WDF does not print monitoring
! information. Set the print file unit or the summary
! file unit to get information.

ifail = 0
Call e04wgf(’Print file’,nout,iw,rw,ifail)

! Solve the problem.

ifail = 0
Call e04wdf(n,nclin,ncnln,lda,ldcj,ldh,a,bl,bu,confun,objfun,majits, &

istate,ccon,cjac,clamda,objf,grad,h,x,iw,leniw,rw,lenrw,iuser,ruser, &
ifail)

Write (nout,*)
Write (nout,99999) objf
Write (nout,99998) x(1:n)

99999 Format (1X,’Final objective value = ’,F11.3)
99998 Format (1X,’Optimal X = ’,7F9.2)

End Program e04wdfe

10.2 Program Data

E04WDF Example Program Data
4 1 2 : N, NCLIN and NCNLN
1.0 1.0 1.0 1.0 : Matrix A
1.0 1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 : Lower bounds BL
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25 : Upper bounds BU
1.0 5.0 5.0 1.0 : Initial vector X

10.3 Program Results
E04WDF Example Program Results

Parameters
==========

Files
-----
Solution file.......... 0 Old basis file ........ 0 (Print file)........... 6
Insert file............ 0 New basis file ........ 0 (Summary file)......... 0
Punch file............. 0 Backup basis file...... 0
Load file.............. 0 Dump file.............. 0

Frequencies
-----------
Print frequency........ 100 Check frequency........ 60 Save new basis map..... 100
Summary frequency...... 100 Factorization frequency 50 Expand frequency....... 10000

QP subproblems
--------------
QPsolver Cholesky......
Scale tolerance........ 0.900 Minor feasibility tol.. 1.00E-06 Iteration limit........ 10000
Scale option........... 0 Minor optimality tol.. 1.00E-06 Minor print level...... 1
Crash tolerance........ 0.100 Pivot tolerance........ 2.04E-11 Partial price.......... 1
Crash option........... 3 Elastic weight......... 1.00E+04 Prtl price section ( A) 4

New superbasics........ 99 Prtl price section (-I) 3

The SQP Method
--------------
Minimize............... Cold start............. Proximal Point method.. 1
Nonlinear objectiv vars 4 Major optimality tol... 2.00E-06 Function precision..... 1.72E-13
Unbounded step size.... 1.00E+20 Superbasics limit...... 4 Difference interval.... 4.15E-07
Unbounded objective.... 1.00E+15 Reduced Hessian dim.... 4 Central difference int. 5.57E-05
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Major step limit....... 2.00E+00 Derivative linesearch.. Derivative level....... 3
Major iterations limit. 1000 Linesearch tolerance... 0.90000 Verify level........... 0
Minor iterations limit. 500 Penalty parameter...... 0.00E+00 Major Print Level...... 1

Hessian Approximation
---------------------
Full-Memory Hessian.... Hessian updates........ 99999999 Hessian frequency...... 99999999

Hessian flush.......... 99999999

Nonlinear constraints
---------------------
Nonlinear constraints.. 2 Major feasibility tol.. 1.00E-06 Violation limit........ 1.00E+06
Nonlinear Jacobian vars 4

Miscellaneous
-------------
LU factor tolerance.... 1.10 LU singularity tol..... 2.04E-11 Timing level........... 0
LU update tolerance.... 1.10 LU swap tolerance...... 1.03E-04 Debug level............ 0
LU partial pivoting... eps (machine precision) 1.11E-16 System information..... No

Matrix statistics
-----------------

Total Normal Free Fixed Bounded
Rows 3 3 0 0 0
Columns 4 0 0 0 4

No. of matrix elements 12 Density 100.000
Biggest 1.0000E+00 (excluding fixed columns,
Smallest 0.0000E+00 free rows, and RHS)

No. of objective coefficients 0

Nonlinear constraints 2 Linear constraints 1
Nonlinear variables 4 Linear variables 0
Jacobian variables 4 Objective variables 4
Total constraints 3 Total variables 4

The user has defined 8 out of 8 constraint gradients.
The user has defined 4 out of 4 objective gradients.

Cheap test of user-supplied problem derivatives...

The constraint gradients seem to be OK.

--> The largest discrepancy was 1.84E-07 in constraint 6

The objective gradients seem to be OK.

Gradient projected in one direction 4.99993000077E+00
Difference approximation 4.99993303560E+00

Itns Major Minors Step nCon Feasible Optimal MeritFunction L+U BSwap nS condHz Penalty
2 0 2 1 1.7E+00 2.8E+00 1.6000000E+01 7 2 1.0E+00 _ r
4 1 2 1.0E+00 2 1.3E-01 3.2E-01 1.7726188E+01 8 1 6.2E+00 8.3E-02 _n r
5 2 1 1.0E+00 3 3.7E-02 1.7E-01 1.7099571E+01 7 1 2.0E+00 8.3E-02 _s
6 3 1 1.0E+00 4 2.2E-02 1.1E-02 1.7014005E+01 7 1 1.8E+00 8.3E-02 _
7 4 1 1.0E+00 5 1.5E-04 6.0E-04 1.7014018E+01 7 1 1.8E+00 9.2E-02 _
8 5 1 1.0E+00 6 ( 3.3E-07) 2.3E-05 1.7014017E+01 7 1 1.9E+00 3.6E-01 _
9 6 1 1.0E+00 7 ( 4.2E-10)( 2.4E-08) 1.7014017E+01 7 1 1.9E+00 3.6E-01 _

E04WDM EXIT 0 -- finished successfully
E04WDM INFO 1 -- optimality conditions satisfied

Problem name NLP
No. of iterations 9 Objective value 1.7014017287E+01
No. of major iterations 6 Linear objective 0.0000000000E+00
Penalty parameter 3.599E-01 Nonlinear objective 1.7014017287E+01
No. of calls to funobj 8 No. of calls to funcon 8
No. of superbasics 1 No. of basic nonlinears 2
No. of degenerate steps 0 Percentage 0.00
Max x 2 4.7E+00 Max pi 2 5.5E-01
Max Primal infeas 0 0.0E+00 Max Dual infeas 3 4.8E-08
Nonlinear constraint violn 2.7E-09

Variable State Value Lower bound Upper bound Lagr multiplier Slack

variable 1 LL 1.000000 1.000000 5.000000 1.087871 .
variable 2 FR 4.743000 1.000000 5.000000 . 0.2570
variable 3 FR 3.821150 1.000000 5.000000 . 1.179
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variable 4 FR 1.379408 1.000000 5.000000 . 0.3794

Linear constrnt State Value Lower bound Upper bound Lagr multiplier Slack

lincon 1 FR 10.94356 None 20.00000 . 9.056

Nonlin constrnt State Value Lower bound Upper bound Lagr multiplier Slack

nlncon 1 UL 40.00000 None 40.00000 -0.1614686 -0.2700E-08
nlncon 2 LL 25.00000 25.00000 None 0.5522937 -0.2215E-08

Final objective value = 17.014
Optimal X = 1.00 4.74 3.82 1.38

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to E04WFF, E04WGF and/or
E04WHF. Section 13 describes the quantities which can be requested to monitor the course of the
computation.

11 Algorithmic Details

Here we summarise the main features of the SQP algorithm used in E04WDF and introduce some
terminology used in the description of the subroutine and its arguments. The SQP algorithm is fully
described in Gill et al. (2002).

11.1 Constraints and Slack Variables

The upper and lower bounds on the nL þ nN components of ALx
c xð Þ

� �
are said to define the general

constraints of the problem. E04WDF converts the general constraints to equalities by introducing a set
of slack variables s ¼ s1; s2; . . . ; snLþnNð ÞT. For example, the linear constraint 5 � 2x1 þ 3x2 � 1 is
replaced by 2x1 þ 3x2 � s1 ¼ 0 together with the bounded slack 5 � s1 � 1. The minimization
problem (1) can therefore be written in the equivalent form

minimize
x;s

F xð Þ subject to ALx
c xð Þ

� �
� s ¼ 0; l � x

s

� �
� u: ð2Þ

The general constraints become the equalities ALx� sL ¼ 0 and c xð Þ � sN ¼ 0, where sL and sN are
the linear and nonlinear slacks.

11.2 Major Iterations

The basic structure of the SQP algorithm involves major and minor iterations. The major iterations
generate a sequence of iterates xkf g that satisfy the linear constraints and converge to a point that
satisfies the nonlinear constraints and the first-order conditions for optimality. At each iterate xk a QP
subproblem is used to generate a search direction towards the next iterate xkþ1. The constraints of the
subproblem are formed from the linear constraints ALx� sL ¼ 0 and the linearized constraint

c xkð Þ þ c0 xkð Þ x� xkð Þ � sN ¼ 0; ð3Þ

where c0 xkð Þ denotes the Jacobian matrix, whose elements are the first derivatives of c xð Þ evaluated at
xk. The QP constraints therefore comprise the nL þ nN linear constraints

ALx� sL ¼ 0;
c0 xkð Þx� sN ¼ �c xkð Þ þ c0 xkð Þxk;

ð4Þ

where x and s are bounded above and below by u and l as before. If the nL þ nNð Þ � n matrix A and
nL þ nNð Þ-vector b are defined as

A ¼ AL

c0 xkð Þ

� �
and b ¼ 0

�c xkð Þ þ c0 xkð Þxk

� �
; ð5Þ

then the QP subproblem can be written as
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minimize
x;s

q x; xkð Þ ¼ gTk x� xkð Þ þ 1

2
x� xkð ÞHk x� xkð Þ subject to Ax� s ¼ b; l � x

s

� �
� u; ð6Þ

where q x; xkð Þ is a quadratic approximation to a modified Lagrangian function (see Gill et al. (2002)).
The matrix Hk is a quasi-Newton approximation to the Hessian of the Lagrangian. A BGFS update is
applied after each major iteration. If some of the variables enter the Lagrangian linearly the Hessian
will have some zero rows and columns. If the nonlinear variables appear first, then only the leading nN
rows and columns of the Hessian need to be approximated.

11.3 Minor Iterations

Solving the QP subproblem is itself an iterative procedure. Here, the iterations of the QP solver
E04NQF form the minor iterations of the SQP method. E04NQF uses a reduced-Hessian active-set
method implemented as a reduced-gradient method. At each minor iteration, the constraints Ax� s ¼ b
are partitioned into the form

BxB þ SxS þNxN ¼ b; ð7Þ

where the basis matrix B is square and nonsingular, and the matrices S and N are the remaining
columns of A �I

� �
. The vectors xB, xS and xN are the associated basic, superbasic and nonbasic

variables respectively; they are a permutation of the elements of x and s. At a QP subproblem, the basic
and superbasic variables will lie somewhere between their bounds, while the nonbasic variables will
normally be equal to one of their bounds. At each iteration, xS is regarded as a set of independent
variables that are free to move in any desired direction, namely one that will improve the value of the
QP objective (or the sum of infeasibilities). The basic variables are then adjusted in order to ensure that
x; sð Þ continues to satisfy Ax� s ¼ b. The number of superbasic variables (nS , say) therefore indicates
the number of degrees of freedom remaining after the constraints have been satisfied. In broad terms,
nS is a measure of how nonlinear the problem is. In particular, nS will always be zero for LP problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S, and the process is repeated with the value of nS increased by one.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made
nonbasic and the value of nS is decreased by one.

Associated with each of the nL þ nN equality constraints Ax� s ¼ b are the dual variables 	.
Similarly, each variable in x; sð Þ has an associated reduced gradient dj. The reduced gradients for the
variables x are the quantities g�AT	, where g is the gradient of the QP objective, and the reduced
gradients for the slacks are the dual variables 	. The QP subproblem is optimal if dj � 0 for all
nonbasic variables at their lower bounds, dj � 0 for all nonbasic variables at their upper bounds, and
dj ¼ 0 for other variables, including superbasics. In practice, an approximate QP solution x̂k; ŝk; 	̂kð Þ is
found by relaxing these conditions.

11.4 The Merit Function

After a QP subproblem has been solved, new estimates of the solution are computed using a linesearch
on the augmented Lagrangian merit function

M x; s; 	ð Þ ¼ F xð Þ � 	T c xð Þ � sNð Þ þ 1

2
c xð Þ � sNð ÞTD c xð Þ � sNð Þ; ð8Þ

where D is a diagonal matrix of penalty parameters Dii � 0ð Þ, and 	 now refers to dual variables for
the nonlinear constraints in (1). If xk; sk; 	kð Þ denotes the current solution estimate and x̂k; ŝk; 	̂kð Þ
denotes the QP solution, the linesearch determines a step �k 0 < �k � 1ð Þ such that the new point

xkþ1
skþ1
	kþ1

0@ 1A ¼ xk
sk
	k

0@ 1Aþ �k x̂k � xk
ŝk � sk
	̂k � 	k

0@ 1A ð9Þ

gives a sufficient decrease in the merit functionM. When necessary, the penalties in D are increased by
the minimum-norm perturbation that ensures descent forM (see Gill et al. (1992)). The value of sN is
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adjusted to minimize the merit function as a function of s before the solution of the QP subproblem (see
Gill et al. (1986) and Eldersveld (1991)).

11.5 Treatment of Constraint Infeasibilities

E04WDF makes explicit allowance for infeasible constraints. First, infeasible linear constraints are
detected by solving the linear program

minimize
x;v;w

eT vþ wð Þ subject to l � x
ALx� vþ w

� �
� u; v � 0; w � 0; ð10Þ

where e is a vector of ones, and the nonlinear constraint bounds are temporarily excluded from l and u.
This is equivalent to minimizing the sum of the general linear constraint violations subject to the
bounds on x. (The sum is the ‘1-norm of the linear constraint violations. In the linear programming
literature, the approach is called elastic programming.)

The linear constraints are infeasible if the optimal solution of (10) has v 6¼ 0 or w 6¼ 0. E04WDF then
terminates without computing the nonlinear functions.

Otherwise, all subsequent iterates satisfy the linear constraints. (Such a strategy allows linear
constraints to be used to define a region in which the functions can be safely evaluated.) E04WDF
proceeds to solve nonlinear problems as given, using search directions obtained from the sequence of
QP subproblems (see (6)).

If a QP subproblem proves to be infeasible or unbounded (or if the dual variables 	 for the nonlinear
constraints become large), E04WDF enters ‘elastic’ mode and thereafter solves the problem

minimize
x;v;w

F xð Þ þ �eT vþ wð Þ subject to l �
x
ALx

c xð Þ � vþ w

0@ 1A � u; v � 0; w � 0; ð11Þ

where � is a non-negative argument (the elastic weight), and F xð Þ þ �eT vþ wð Þ is called a composite
objective (the ‘1 penalty function for the nonlinear constraints).

The value of � may increase automatically by multiples of 10 if the optimal v and w continue to be
nonzero. If � is sufficiently large, this is equivalent to minimizing the sum of the nonlinear constraint
violations subject to the linear constraints and bounds.

The initial value of � is controlled by the optional parameter Elastic Weight.

12 Optional Parameters

Several optional parameters in E04WDF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal arguments of E04WDF these optional parameters have
associated default values that are appropriate for most problems. Therefore, you need only specify those
optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Backup Basis File

Central Difference Interval

Check Frequency

Cold Start

Crash Option

Crash Tolerance

Defaults

Derivative Level

Derivative Linesearch
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Difference Interval

Dump File

Elastic Weight

Expand Frequency

Factorization Frequency

Feasibility Tolerance

Feasible Point

Function Precision

Hessian Frequency

Hessian Full Memory

Hessian Limited Memory

Hessian Updates

Infinite Bound Size

Insert File

Iterations Limit

Linesearch Tolerance

List

Load File

LU Complete Pivoting

LU Density Tolerance

LU Factor Tolerance

LU Partial Pivoting

LU Rook Pivoting

LU Singularity Tolerance

LU Update Tolerance

Major Feasibility Tolerance

Major Iterations Limit

Major Optimality Tolerance

Major Print Level

Major Step Limit

Maximize

Minimize

Minor Feasibility Tolerance

Minor Iterations Limit

Minor Print Level

New Basis File

New Superbasics Limit

Nolist

Nonderivative Linesearch

Old Basis File

Partial Price

Pivot Tolerance

Print File

Print Frequency

Proximal Point Method

Punch File

QPSolver CG
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QPSolver Cholesky

QPSolver QN

Reduced Hessian Dimension

Save Frequency

Scale Option

Scale Print

Scale Tolerance

Solution File

Start Constraint Check At Variable

Start Objective Check At Variable

Stop Constraint Check At Variable

Stop Objective Check At Variable

Summary File

Summary Frequency

Superbasics Limit

Suppress Parameters

System Information No

System Information Yes

Timing Level

Unbounded Objective

Unbounded Step Size

Verify Level

Violation Limit

Warm Start

Optional parameters may be specified by calling one, or more, of the routines E04WEF, E04WFF and
E04WGF before a call to E04WDF.

E04WEF reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04WEF (ISPECS, IW, RW, IFAIL)

can then be used to read the file on unit ISPECS. IFAIL will be zero on successful exit. E04WEF
should be consulted for a full description of this method of supplying optional parameters.

E04WFF, E04WGF or E04WHF can be called to supply options directly, one call being necessary for
each optional parameter. E04WFF, E04WGF or E04WHF should be consulted for a full description of
this method of supplying optional parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by E04WDF (unless they define invalid values) and so remain in effect
for subsequent calls to E04WDF, unless altered by you.

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:
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the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
and �r denotes the relative precision of the objective function Function Precision, and bigbnd
signifies the value of Infinite Bound Size.

Keywords and character values are case and white space insensitive.

Central Difference Interval r Default ¼ �
1
3
r

When Derivative Level < 3, the central-difference interval r is used near an optimal solution to obtain
more accurate (but more expensive) estimates of gradients. Twice as many function evaluations are
required compared to forward differencing. The interval used for the jth variable is hj ¼ r 1þ xj

		 		� �
.

The resulting derivative estimates should be accurate to O r2
� �

, unless the functions are badly scaled.

If you supply a value for this optional parameter, a small value between 0:0 and 1:0 is appropriate.

Check Frequency i Default ¼ 60

Every ith minor iteration after the most recent basis factorization, a numerical test is made to see if the
current solution x satisfies the general linear constraints (the linear constraints and the linearized
nonlinear constraints, if any). The constraints are of the form Ax� s ¼ b, where s is the set of slack
variables. To perform the numerical test, the residual vector r ¼ b�Axþ s is computed. If the largest
component of r is judged to be too large, the current basis is refactorized and the basic variables are
recomputed to satisfy the general constraints more accurately. If i � 0, the value of i ¼ 99999999 is
used and effectively no checks are made.

Check Frequency ¼ 1 is useful for debugging purposes, but otherwise this option should not be
needed.

Cold Start Default
Warm Start

This option controls the specification of the initial working set in the procedure for finding a feasible
point for the linear constraints and bounds and in the first QP subproblem thereafter. With a Cold Start,
the first working set is chosen by E04WDF based on the values of the variables and constraints at the
initial point. Broadly speaking, the initial working set will include equality constraints and bounds or
inequality constraints that violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance).

With a Warm Start, you must set the ISTATE array and define CLAMDA and H as discussed in
Section 5. ISTATE values associated with bounds and linear constraints determine the initial working
set of the procedure to find a feasible point with respect to the bounds and linear constraints. ISTATE
values associated with nonlinear constraints determine the initial working set of the first QP subproblem
after such a feasible point has been found. E04WDF will override your specification of ISTATE if
necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any
elements of ISTATE which are set to �2, �1 or 4 will be reset to zero, as will any elements which are
set to 3 when the corresponding elements of BL and BU are not equal. A warm start will be
advantageous if a good estimate of the initial working set is available – for example, when E04WDF is
called repeatedly to solve related problems.

Crash Option i Default ¼ 3
Crash Tolerance r Default ¼ 0:1

If a Cold Start is specified, an internal Crash procedure is used to select an initial basis from certain
rows and columns of the constraint matrix A �I

� �
. The optional parameter Crash Option i

determines which rows and columns of A are eligible initially, and how many times the Crash
procedure is called. Columns of �I are used to pad the basis where necessary.
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i Meaning

0 The initial basis contains only slack variables: B ¼ I.
1 The Crash procedure is called once, looking for a triangular basis in all rows and columns of A.

2 The Crash procedure is called twice (if there are nonlinear constraints). The first call looks for a
triangular basis in linear rows, and the iteration proceeds with simplex iterations until the linear
constraints are satisfied. The Jacobian is then evaluated for the first major iteration and the Crash
procedure is called again to find a triangular basis in the nonlinear rows (retaining the current basis
for linear rows).

3 The Crash procedure is called up to three times (if there are nonlinear constraints). The first two
calls treat linear equalities and linear inequalities separately. As before, the last call treats nonlinear
rows before the first major iteration.

If i � 1, certain slacks on inequality rows are selected for the basis first. (If i � 2, numerical values are
used to exclude slacks that are close to a bound). The Crash procedure then makes several passes
through the columns of A, searching for a basis matrix that is essentially triangular. A column is
assigned to ‘pivot’ on a particular row if the column contains a suitably large element in a row that has
not yet been assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For
remaining unassigned rows, slack variables are inserted to complete the basis.

The Crash Tolerance r allows the starting Crash procedure to ignore certain ‘small’ nonzeros in each
column of A. If amax is the largest element in column j, other nonzeros of aij in the columns are
ignored if aij

		 		 � amax � r. (To be meaningful, r must be in the range 0 � r < 1.)

When r > 0:0, the basis obtained by the Crash procedure may not be strictly triangular, but it is likely
to be nonsingular and almost triangular. The intention is to obtain a starting basis containing more
columns of A and fewer (arbitrary) slacks. A feasible solution may be reached sooner on some
problems.

For example, suppose the first m columns of A form the matrix shown under LU Factor Tolerance; i.
e., a tridiagonal matrix with entries �1, 4, �1. To help the Crash procedure choose all m columns for
the initial basis, we would specify a Crash Tolerance of r for some value of r > 0:5.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Derivative Level i Default ¼ 3

Optional parameter Derivative Level specifies which nonlinear function gradients are known
analytically and will be supplied to E04WDF by user-supplied subroutines OBJFUN and CONFUN.

i Meaning

3 All objective and constraint gradients are known.

2 All constraint gradients are known, but some or all components of the objective gradient are
unknown.

1 The objective gradient is known, but some or all of the constraint gradients are unknown.

0 Some components of the objective gradient are unknown and some of the constraint gradients are
unknown.

The value i ¼ 3 should be used whenever possible. It is the most reliable and will usually be the most
efficient.

If i ¼ 0 or 2, E04WDF will estimate the missing components of the objective gradient, using finite
differences. This may simplify the coding of OBJFUN. However, it could increase the total run-time
substantially (since a special call to OBJFUN is required for each missing element), and there is less
assurance that an acceptable solution will be located. If the nonlinear variables are not well scaled, it
may be necessary to specify a non-default optional parameter Difference Interval.

E04WDF NAG Library Manual

E04WDF.28 Mark 26



If i ¼ 0 or 1, E04WDF will estimate missing elements of the Jacobian. For each column of the
Jacobian, one call to CONFUN is needed to estimate all missing elements in that column, if any.

At times, central differences are used rather than forward differences. (This is not under your control.)

Derivative Linesearch Default
Nonderivative Linesearch

At each major iteration a linesearch is used to improve the merit function. Optional parameter
Derivative Linesearch uses safeguarded cubic interpolation and requires both function and gradient
values to compute estimates of the step �k. If some analytic derivatives are not provided, or optional
parameter Nonderivative Linesearch is specified, E04WDF employs a linesearch based upon
safeguarded quadratic interpolation, which does not require gradient evaluations.

A nonderivative linesearch can be slightly less robust on difficult problems, and it is recommended that
the default be used if the functions and derivatives can be computed at approximately the same cost. If
the gradients are very expensive relative to the functions, a nonderivative linesearch may give a
significant decrease in computation time.

If Nonderivative Linesearch is selected, E04WDF signals the evaluation of the linesearch by calling
OBJFUN with MODE ¼ 0. If the potential saving provided by a nonderivative linesearch is to be
realised, it is essential that OBJFUN be coded so that derivatives are not computed when MODE ¼ 0.

Difference Interval r Default ¼ ffiffiffiffi
�r
p

This alters the interval r used to estimate gradients by forward differences. It does so in the following
circumstances:

– in the interval (‘cheap’) phase of verifying the problem derivatives;

– for verifying the problem derivatives;

– for estimating missing derivatives.

In all cases, a derivative with respect to xj is estimated by perturbing that component of x to the value
xj þ r 1þ xj

		 		� �
, and then evaluating F xð Þ or c xð Þ at the perturbed point. The resulting gradient

estimates should be accurate to O rð Þ unless the functions are badly scaled. Judicious alteration of r may
sometimes lead to greater accuracy.

If you supply a value for this optional parameter, a small value between 0:0 and 1:0 is appropriate.

Dump File i1 Default ¼ 0
Load File i2 Default ¼ 0

Optional parameters Dump File and Load File are similar to optional parameters Punch File and
Insert File, but they record solution information in a manner that is more direct and more easily
modified. A full description of information recorded in optional parameters Dump File and Load File
is given in Gill et al. (2005a).

If i1 > 0, the last solution obtained will be output to the file with unit number i1.

If i2 > 0, the Load File, containing basis information, will be read. The file will usually have been
output previously as a Dump File. The file will not be accessed if optional parameters Old Basis File
or Insert File are specified.

Elastic Weight r Default ¼ 104

This keyword determines the initial weight � associated with the problem (11) (see Section 11.5).

At major iteration k, if elastic mode has not yet started, a scale factor �k ¼ 1þ g xkð Þk k1 is defined
from the current objective gradient. Elastic mode is then started if the QP subproblem is infeasible, or
the QP dual variables are larger in magnitude than �kr. The QP is resolved in elastic mode with
� ¼ �kr.
Thereafter, major iterations continue in elastic mode until they converge to a point that is optimal for
(11) (see Section 11.5). If the point is feasible for equation (1) v ¼ w ¼ 0ð Þ, it is declared locally
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optimal. Otherwise, � is increased by a factor of 10 and major iterations continue. If � has already
reached a maximum allowable value, equation (1) is declared locally infeasible.

Expand Frequency i Default ¼ 10000

This option is part of the anti-cycling procedure designed to make progress even on highly degenerate
problems.

For linear models, the strategy is to force a positive step at every iteration, at the expense of violating
the bounds on the variables by a small amount. Suppose that the optional parameter Minor Feasibility
Tolerance is �. Over a period of i iterations, the tolerance actually used by E04WDF increases from
0:5� to � (in steps of 0:5�=i).

For nonlinear models, the same procedure is used for iterations in which there is only one superbasic
variable. (Cycling can occur only when the current solution is at a vertex of the feasible region.) Thus,
zero steps are allowed if there is more than one superbasic variable, but otherwise positive steps are
enforced.

Increasing i helps reduce the number of slightly infeasible nonbasic variables (most of which are
eliminated during a resetting procedure). However, it also diminishes the freedom to choose a large
pivot element (see optional parameter Pivot Tolerance).

Factorization Frequency i Default ¼ 50

At most i basis changes will occur between factorizations of the basis matrix.

With linear programs, the basis factors are usually updated every iteration. The default i is reasonable
for typical problems. Higher values up to i ¼ 100 (say) may be more efficient on well-scaled problems.

When the objective function is nonlinear, fewer basis updates will occur as an optimum is approached.
The number of iterations between basis factorizations will therefore increase. During these iterations a
test is made regularly (according to the optional parameter Check Frequency) to ensure that the
general constraints are satisfied. If necessary the basis will be refactorized before the limit of i updates
is reached.

Function Precision r Default ¼ �0:8

The relative function precision �r is intended to be a measure of the relative accuracy with which the
functions can be computed. For example, if F xð Þ is computed as 1000:56789 for some relevant x and if
the first 6 significant digits are known to be correct, the appropriate value for �r would be 1:0E�6.
(Ideally the functions F xð Þ or ci xð Þ should have magnitude of order 1. If all functions are substantially
less than 1 in magnitude, �r should be the absolute precision. For example, if F xð Þ ¼ 1:23456789E�4
at some point and if the first 6 significant digits are known to be correct, the appropriate value for �r
would be 1:0E�10.)
The default value of �r is appropriate for simple analytic functions.

In some cases the function values will be the result of extensive computation, possibly involving a
costly iterative procedure that can provide few digits of precision. Specifying an appropriate Function
Precision may lead to savings, by allowing the linesearch procedure to terminate when the difference
between function values along the search direction becomes as small as the absolute error in the values.

Hessian Full Memory Default if n � 75
Hessian Limited Memory Default if n > 75

These options select the method for storing and updating the approximate Hessian. (E04WDF uses a
quasi-Newton approximation to the Hessian of the Lagrangian. A BFGS update is applied after each
major iteration.)

If Hessian Full Memory is specified, the approximate Hessian is treated as a dense matrix and the
BFGS updates are applied explicitly. This option is most efficient when the number of variables n is not
too large (say, less than 75). In this case, the storage requirement is fixed and one can expect 1-step Q-
superlinear convergence to the solution.
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Hessian Limited Memory should be used on problems where n is very large. In this case a limited-
memory procedure is used to update a diagonal Hessian approximation Hr a limited number of times.
(Updates are accumulated as a list of vector pairs. They are discarded at regular intervals after Hr has
been reset to their diagonal.)

Hessian Frequency i Default ¼ 99999999

If optional parameter Hessian Full Memory is in effect and i BFGS updates have already been carried
out, the Hessian approximation is reset to the identity matrix. (For certain problems, occasional resets
may improve convergence, but in general they should not be necessary.)

Hessian Full Memory and Hessian Frequency ¼ 10 have a similar effect to Hessian Limited
Memory and Hessian Updates ¼ 10 (except that the latter retains the current diagonal during resets).

Hessian Updates i Default ¼ Hessian Frequency if Hessian Full
Memory, 10 otherwise

If optional parameter Hessian Limited Memory is in effect and i BFGS updates have already been
carried out, all but the diagonal elements of the accumulated updates are discarded and the updating
process starts again.

Broadly speaking, the more updates stored, the better the quality of the approximate Hessian. However,
the more vectors stored, the greater the cost of each QP iteration. The default value is likely to give a
robust algorithm without significant expense, but faster convergence can sometimes be obtained with
significantly fewer updates (e.g., i ¼ 5).

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r < 0, the default value is used.

Iterations Limit i Default ¼ max 10000; 10max n; nL þ nNð Þð Þ
The value of i specifies the maximum number of minor iterations allowed (i.e., iterations of the simplex
method or the QP algorithm), summed over all major iterations. (See also the description of the optional
parameter Minor Iterations Limit.)

Linesearch Tolerance r Default ¼ 0:9

This tolerance, r, controls the accuracy with which a step length will be located along the direction of
search each iteration. At the start of each linesearch a target directional derivative for the merit function
is identified. This parameter determines the accuracy to which this target value is approximated, and it
must be a value in the range 0:0 � r � 1:0.

The default value r ¼ 0:9 requests just moderate accuracy in the linesearch.

If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate; try
r ¼ 0:1; 0:01 or 0:001.

If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate. If all
gradients are known, try r ¼ 0:99. (The number of major iterations might increase, but the total number
of function evaluations may decrease enough to compensate.)

If not all gradients are known, a moderately accurate search remains appropriate. Each search will
require only 1–5 function values (typically), but many function calls will then be needed to estimate
missing gradients for the next iteration.

Nolist Default
List

For E04WDF, normally each optional parameter specification is printed as it is supplied. Optional
parameter Nolist may be used to suppress the printing and optional parameter List may be used to turn
on printing.
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LU Density Tolerance r1 Default ¼ 0:6
LU Singularity Tolerance r2 Default ¼ �23

The density tolerance, r1, is used during LU factorization of the basis matrix B. Columns of L and
rows of U are formed one at a time, and the remaining rows and columns of the basis are altered
appropriately. At any stage, if the density of the remaining matrix exceeds r1, the Markowitz strategy
for choosing pivots is terminated, and the remaining matrix is factored by a dense LU procedure.
Raising the density tolerance towards 1:0 may give slightly sparser LU factors, with a slight increase in
factorization time.

The singularity tolerance, r2, helps guard against ill-conditioned basis matrices. After B is refactorized,
the diagonal elements of U are tested as follows: if ujj

		 		 � r2 or ujj
		 		 < r2max

i
uij
		 		, the jth column of

the basis is replaced by the corresponding slack variable. (This is most likely to occur after a restart.)

LU Factor Tolerance r1 Default ¼ 1:10
LU Update Tolerance r2 Default ¼ 1:10

The values of r1 and r2 affect the stability of the basis factorization B ¼ LU , during refactorization and
updates respectively. The lower triangular matrix L is a product of matrices of the form

1
� 1

� �
where the multipliers � will satisfy �j j � ri. The default values of r1 and r2 usually strike a good
compromise between stability and sparsity. They must satisfy r1, r2 � 1:0.

For large and relatively dense problems, r1 ¼ 10:0 or 5:0 (say) may give a useful improvement in
stability without impairing sparsity to a serious degree.

For certain very regular structures (e.g., band matrices) it may be necessary to reduce r1 and=or r2 in
order to achieve stability. For example, if the columns of A include a sub-matrix of the form

4 �1
�1 4 �1

�1 4 �1
. . . . . . . . .

�1 4 �1
�1 4

0BBBBB@

1CCCCCA;

one should set both r1 and r2 to values in the range 1:0 � ri < 4:0.

LU Partial Pivoting Default
LU Complete Pivoting
LU Rook Pivoting

The LU factorization implements a Markowitz-type search for pivots that locally minimize the fill-in
subject to a threshold pivoting stability criterion. The default option is to use threshhold partial
pivoting. The optional parameters LU Rook Pivoting and LU Complete Pivoting are more expensive
than partial pivoting but are more stable and better at revealing rank, as long as LU Factor Tolerance
is not too large (say < 2:0). When numerical difficulties are encountered, E04WDF automatically
reduces the LU tolerance towards 1:0 and switches (if necessary) to rook or complete pivoting, before
reverting to the default or specified options at the next refactorization (with System Information Yes,
relevant messages are output to the Print File).

Major Feasibility Tolerance r Default ¼ max 10�6;
ffiffi
�
p� �

This tolerance, r, specifies how accurately the nonlinear constraints should be satisfied. The default
value is appropriate when the linear and nonlinear constraints contain data to about that accuracy.

Let vmax be the maximum nonlinear constraint violation, normalized by the size of the solution, which
is required to satisfy
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vmax= ¼ max
i
vi= xk k � r; ð12Þ

where vi is the violation of the ith nonlinear constraint i ¼ 1 : nLð Þ.
In the major iteration log (see Section 13.2, vmax appears as the quantity labelled ‘Feasible’. If some of
the problem functions are known to be of low accuracy, a larger Major Feasibility Tolerance may be
appropriate.

Major Optimality Tolerance r Default ¼ 2max 10�6;
ffiffi
�
p� �

This tolerance, r, specifies the final accuracy of the dual variables. On successful termination, E04WDF
will have computed a solution x; s; 	ð Þ such that

cmax ¼ max
j
cj= 	k k � r; ð13Þ

where cj is an estimate of the complementarity slackness for variable j where j ¼ 1 : nþ nL þ nN . The
values ci are computed from the final QP solution using the reduced gradients dj ¼ gj � 	Taj (where gj
is the jth component of the objective gradient, aj is the associated column of the constraint matrix
A �I
� �

, and 	 is the set of QP dual variables):

cj ¼ djmin xj � lj; 1
� �

if dj � 0;
�djmin uj � xj; 1

� �
if dj < 0:


 �
ð14Þ

In the Print File, cmax appears as the quantity labelled ‘Optimal’.

Major Iterations Limit i Default ¼ max 1000; 3max n; nL þ nNð Þð Þ

This is the maximum number of major iterations allowed. It is intended to guard against an excessive
number of linearizations of the constraints. If i ¼ 0, optimality and feasibility are checked.

Major Print Level i Default ¼ 000001

This controls the amount of output to the optional parameters Print File and Summary File at each
major iteration. Major Print Level ¼ 0 suppresses most output, except for error messages.
Major Print Level ¼ 1 gives normal output for l inear and nonlinear problems, and
Major Print Level ¼ 11 gives additional details of the Jacobian factorization that commences each
major iteration.

In general, the value being specified may be thought of as a binary number of the form

Major Print Level JFDXbs

where each letter stands for a digit that is either 0 or 1 as follows:

s a single line that gives a summary of each major iteration. (This entry in JFDXbs is not strictly
binary since the summary line is printed whenever JFDXbs � 1);

b basis statistics, i.e., information relating to the basis matrix whenever it is refactorized. (This
output is always provided if JFDXbs � 10);

X xk, the nonlinear variables involved in the objective function or the constraints. These appear
under the heading ‘Jacobian variables’;

D 	k, the dual variables for the nonlinear constraints. These appear under the heading ‘Multiplier
estimates’;

F c xkð Þ, the values of the nonlinear constraint functions;

J J xkð Þ, the Jacobian matrix. This appears under the heading ‘x and Jacobian’.

To obtain output of any items JFDXbs, set the corresponding digit to 1, otherwise to 0.

If J ¼ 1, the Jacobian matrix will be output column-wise at the start of each major iteration. Column j
will be preceded by the value of the corresponding variable xj and a key to indicate whether the
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variable is basic, superbasic or nonbasic. (Hence if J ¼ 1, there is no reason to specify X ¼ 1 unless
the objective contains more nonlinear variables than the Jacobian.) A typical line of output is

3 1.250000E+01 BS 1 1.00000E+00 4 2.00000E+00

which would mean that x3 is basic at value 12:5, and the third column of the Jacobian has elements of
1:0 and 2:0 in rows 1 and 4.

Major Step Limit r Default ¼ 2:0

This parameter limits the change in x during a linesearch. It applies to all nonlinear problems, once a
‘feasible solution’ or ‘feasible subproblem’ has been found. A linesearch determines a step � over the
range 0 < � � �, where � is 1 if there are nonlinear constraints, or is the step to the nearest upper or
lower bound on x if all the constraints are linear. Normally, the first step length tried is �1 ¼ min 1; �ð Þ.

1. In some cases, such as f xð Þ ¼ aebx or f xð Þ ¼ axb, even a moderate change in the components of x
can lead to floating-point overflow. The parameter r is therefore used to define a limit
�� ¼ r 1þ xk kð Þ= pk k (where p is the search direction), and the first evaluation of f xð Þ is at the
potentially smaller step length �1 ¼ min 1; ��; �

� �
.

2. Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at meaningless points. The optional parameter Major Step Limit provides an additional
safeguard. The default value r ¼ 2:0 should not affect progress on well behaved problems, but
setting r ¼ 0:1 or 0:01 may be helpful when rapidly varying functions are present. A ‘good’
starting point may be required. An important application is to the class of nonlinear least squares
problems.

3. In cases where several local optima exist, specifying a small value for r may help locate an
optimum near the starting point.

Minimize Default
Maximize
Feasible Point

The keywords Minimize and Maximize specify the required direction of optimization. It applies to both
linear and nonlinear terms in the objective.

The keyword Feasible Point means ‘Ignore the objective function, while finding a feasible point for the
linear and nonlinear constraints’. It can be used to check that the nonlinear constraints are feasible
without altering the call to E04WDF.

Minor Feasibility Tolerance
Feasibility Tolerance r Default ¼ max 10�6;

ffiffi
�
p� 

E04WDF tries to ensure that all variables eventually satisfy their upper and lower bounds to within this
tolerance, r. This includes slack variables. Hence, general linear constraints should also be satisfied to
within r.

Feasibility with respect to nonlinear constraints is judged by the optional parameter Major Feasibility
Tolerance (not by r).

If the bounds and linear constraints cannot be satisfied to within r, the problem is declared infeasible. If
the corresponding sum of infeasibilities is quite small, it may be appropriate to raise r by a factor of 10
or 100. Otherwise, some error in the data should be suspected.

Nonlinear functions will be evaluated only at points that satisfy the bounds and linear constraints. If
there are regions where a function is undefined, every attempt should be made to eliminate these
regions from the problem.

For example, if f xð Þ ¼ ffiffiffiffiffi
x1
p þ log x2ð Þ, it is essential to place lower bounds on both variables. If

r ¼ 1:0E�6, the bounds x1 � 10�5 and x2 � 10�4 might be appropriate. (The log singularity is more
serious. In general, keep x as far away from singularities as possible.)

If Scale Option � 1, feasibility is defined in terms of the scaled problem (since it is then more likely to
be meaningful).
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In reality, E04WDF uses r as a feasibility tolerance for satisfying the bounds on x and s in each QP
subproblem. If the sum of infeasibilities cannot be reduced to zero, the QP subproblem is declared
infeasible. E04WDF is then in elastic mode thereafter (with only the linearized nonlinear constraints
defined to be elastic). See the description of the optional parameter Elastic Weight.

Minor Iterations Limit i Default ¼ 500

If the number of minor iterations for the optimality phase of the QP subproblem exceeds i, then all
nonbasic QP variables that have not yet moved are frozen at their current values and the reduced QP is
solved to optimality.

Note that more than i minor iterations may be necessary to solve the reduced QP to optimality. These
extra iterations are necessary to ensure that the terminated point gives a suitable direction for the
linesearch.

In the major iteration log (see Section 13.2) a t at the end of a line indicates that the corresponding QP
was artificially terminated using the limit i.

Compare with the optional parameter Iterations Limit, which defines an independent absolute limit on
the total number of minor iterations (summed over all QP subproblems).

Minor Print Level i Default ¼ 1

This controls the amount of output to the Print File and the Summary File during solution of the QP
subproblems. The value of i has the following effect:

i Output

0 No minor iteration output except error messages.

� 1 A single line of output at each minor iteration (controlled by optional parameters Print
Frequency and Summary Frequency.

� 10 Basis factorization statistics generated during the periodic refactorization of the basis (see the
optional parameter Factorization Frequency). Statistics for the first factorization each major
iteration are controlled by the optional parameter Major Print Level.

New Basis File i1 Default ¼ 0
Backup Basis File i2 Default ¼ 0
Save Frequency i3 Default ¼ 100

New Basis File and Backup Basis File are sometimes referred to as basis maps. They contain the most
compact representation of the state of each variable. They are intended for restarting the solution of a
problem at a point that was reached by an earlier run. For nontrivial problems, it is advisable to save
basis maps at the end of a run, in order to restart the run if necessary.

If i1 > 0, a basis map will be saved on the file associated with unit i1 every i3th iteration. The first
record of the file will contain the word PROCEEDING if the run is still in progress. A basis map will also
be saved at the end of a run, with some other word indicating the final solution status.

Use of i2 > 0 is intended as a safeguard against losing the results of a long run. Suppose that a New
Basis File is being saved every 100 (Save Frequency) iterations, and that E04WDF is about to save
such a basis at iteration 2000. It is conceivable that the run may be interrupted during the next few
milliseconds (in the middle of the save). In this case the Basis file will be corrupted and the run will
have been essentially wasted.

To eliminate this risk, both a New Basis File and a Backup Basis File may be specified. The following
would be suitable for the above example:

Backup Basis File 11
New Basis File 12

The current basis will then be saved every 100 iterations, first on the file associated with unit 12 and
then immediately on the file associated with unit 11. If the run is interrupted at iteration 2000 during the
save on the file associated with unit 12, there will still be a usable basis on the file associated with unit
11 (corresponding to iteration 1900).
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Note that a new basis will be saved in New Basis File at the end of a run if it terminates normally, but
it will not be saved in Backup Basis File. In the above example, if an optimum solution is found at
iteration 2050 (or if the iteration limit is 2050), the final basis in the file associated with unit 12 will
correspond to iteration 2050, but the last basis saved in the file associated with unit 11 will be the one
for iteration 2000.

A full description of information recorded in New Basis File and Backup Basis File is given in Gill et
al. (2005a).

New Superbasics Limit i Default ¼ 99

This option causes early termination of the QP subproblems if the number of free variables has
increased significantly since the first feasible point. If the number of new superbasics is greater than i,
the nonbasic variables that have not yet moved are frozen and the resulting smaller QP is solved to
optimality.

In the major iteration log (see Section 13.1), a t at the end of a line indicates that the QP was
terminated early in this way.

Old Basis File i Default ¼ 0

If i > 0, the basis maps information will be obtained from this file. The file will usually have been
output previously as a New Basis File or Backup Basis File. A full description of information recorded
in New Basis File and Backup Basis File is given in Gill et al. (2005a).

The file will not be acceptable if the number of rows or columns in the problem has been altered.

Partial Price i Default ¼ 1

This parameter is recommended for large problems that have significantly more variables than
constraints. It reduces the work required for each ‘pricing’ operation (where a nonbasic variable is
selected to become superbasic). When i ¼ 1, all columns of the constraint matrix A �I

� �
are

searched. Otherwise, A and I are partitioned to give i roughly equal segments Aj and Ij , for
j ¼ 1; 2; . . . ; i. If the previous pricing search was successful on Aj�1 and Ij�1, the next search begins on
the segments Aj and Ij. (All subscripts here are modulo i.) If a reduced gradient is found that is larger
than some dynamic tolerance, the variable with the largest such reduced gradient (of appropriate sign) is
selected to become superbasic. If nothing is found, the search continues on the next segments Ajþ1 and
Ijþ1, and so on.

For time-stage models having t time periods, Partial Price t (or t=2 or t=3) may be appropriate.

Pivot Tolerance r Default ¼ �23

During the solution of QP subproblems, the pivot tolerance is used to prevent columns entering the
basis if they would cause the basis to become almost singular.

When x changes to xþ �p for some search direction p, a ‘ratio test’ determines which component of x
reaches an upper or lower bound first. The corresponding element of p is called the pivot element.
Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller than the pivot
tolerance r.

It is common for two or more variables to reach a bound at essentially the same time. In such cases, the
Minor Feasibility Tolerance (say, t) provides some freedom to maximize the pivot element and
thereby improve numerical stability. Excessively small values of t should therefore not be specified. To
a lesser extent, the Expand Frequency (say, f) also provides some freedom to maximize the pivot
element. Excessively large values of f should therefore not be specified.

Print File i Default ¼ 0

If i > 0, the following information is output to a file associated with unit i during the solution of each
problem:

– a listing of the optional parameters;

– some statistics about the problem;
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– the amount of storage available for the LU factorization of the basis matrix;

– notes about the initial basis resulting from a Crash procedure or a Basis file;

– the iteration log;

– basis factorization statistics;

– the exit IFAIL condition and some statistics about the solution obtained;

– the printed solution, if requested.

These items are described in Sections 9 and 13. Further brief output may be directed to the Summary
File.

Print Frequency i Default ¼ 100

If i > 0, one line of the iteration log will be printed every ith iteration. A value such as i ¼ 10 is
suggested for those interested only in the final solution. If i � 0, the value of i ¼ 99999999 is used and
effectively no checks are made.

Proximal Point Method i Default ¼ 1

i ¼ 1 or 2 specifies minimization of x� x0k k1 or 1
2 x� x0k k22 when the starting point x0 is changed to

satisfy the linear constraints (where x0 refers to nonlinear variables).

Punch File i1 Default ¼ 0
Insert File i2 Default ¼ 0

The Punch File from a previous run may be used as an Insert File for a later run on the same problem.
A full description of information recorded in Insert File and Punch File is given in Gill et al. (2005a).

If i1 > 0, the final solution obtained will be output to the file. For linear programs, this format is
compatible with various commercial systems.

If i2 > 0 the Insert File containing basis information will be read from unit i2. The file will usually
have been output previously as a Punch File. The file will not be accessed if Old Basis File is
specified.

QPSolver Cholesky Default
QPSolver CG
QPSolver QN

Specifies the active-set algorithm used to solve subproblem (11) (see Section 11.5). QPSolver
Cholesky holds the full Cholesky factor R of the reduced Hessian ZTHZ. As the QP iterations
proceed, the dimension of R changes with the number of superbasic variables. If the number of
superbasic variables needs to increase beyond the value of Reduced Hessian Dimension, the reduced
Hessian cannot be stored and the solver switches to QPSolver CG. The Cholesky solver is reactivated
if the number of superbasics stabilizes at a value less than Reduced Hessian Dimension.

QPSolver QN solves the QP using a quasi-Newton method. In this case, R is the factor of a quasi-
Newton approximate Hessian.

QPSolver CG uses an active-set method similar to QPSolver QN, but uses the conjugate-gradient
method to solve all systems involving the reduced Hessian.

The Cholesky QP solver is the most robust, but may require a significant amount of computation if
there are many superbasics.

The quasi-Newton QP solver does not require computation of the exact R at the start of the subproblem
in (11). It may be appropriate when the number of superbasics is large but relatively few iterations are
needed to reach a solution (e.g., if E04WDF is called with a Warm Start).

The conjugate-gradient QP solver is appropriate for problems with many degrees of freedom (say, more
than 2000 superbasics).
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Reduced Hessian Dimension i Default ¼ min 2000; nð Þ
This specifies that an i by i triangular matrix R (to define the reduced Hessian according to
RTR ¼ ZTHZ) is to be available for use by the Cholesky QP solver.

Scale Option i Default ¼ 0
Scale Tolerance r Default ¼ 0:9
Scale Print

Three scale options are available as follows:

i Meaning

0 No scaling. This is recommended if it is known that x and the constraint matrix never have very
large elements (say, larger than 100).

1 The constraints and variables are scaled by an iterative procedure that attempts to make the matrix
coefficients as close as possible to 1:0 (see Fourer (1982)). This will sometimes improve the
performance of the solution procedures.

2 The constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling
is performed that may be helpful if the right-hand side b or the solution x is large. This takes into
account columns of A �I

� �
that are fixed or have positive lower bounds or negative upper

bounds.

Optional parameter Scale Tolerance affects how many passes might be needed through the constraint
matrix. On each pass, the scaling procedure computes the ratio of the largest and smallest nonzero
coefficients in each column:

�j ¼ max
j

aij
		 		=min

i
aij
		 		 aij 6¼ 0

� �
:

If max
j
�j is less than r times its previous value, another scaling pass is performed to adjust the row and

column scales. Raising r from 0:9 to 0:99 (say) usually increases the number of scaling passes through
A. At most 10 passes are made. The value of r should lie in the range 0 < r < 1.

Scale Print causes the row scales r ið Þ and column scales c jð Þ to be printed to Print File, if System
Information Yes has been specified. The scaled matrix coefficients are �aij ¼ aijc jð Þ=r ið Þ, and the
scaled bounds on the variables and slacks are �lj ¼ lj=c jð Þ, �uj ¼ uj=c jð Þ, where c jð Þ ¼ r j� nð Þ if j > n.

Solution File i Default ¼ 0

If i > 0, the final solution will be output to file i (whether optimal or not). All numbers are printed in
1pe16.6 format.

To see more significant digits in the printed solution, it will sometimes be useful to make i refer to
Print File.

Start Objective Check At Variable i Default ¼ 1
Stop Objective Check At Variable i Default ¼ n
Start Constraint Check At Variable i Default ¼ 1
Stop Constraint Check At Variable i Default ¼ n
These keywords take effect only if Verify Level > 0. They may be used to contol the verification of
gradient elements computed by function OBJFUN and/or Jacobian elements computed by function
CONFUN. For eample, if the first 30 elements of the objective gradient appeared to be correct in an
earlier run, so that only element 31 remains questionable, it is reasonable to specify
Start Objective Check At Variable ¼ 31. If the first 30 variables appear linearly in the objective,
so that the corresponding gradient elements are constant, the above choice would also be appropriate.
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Summary File i1 Default ¼ 0
Summary Frequency i2 Default ¼ 100

If i1 > 0, a brief log will be output to the file associated with unit i1, including one line of information
every i2th iteration. In an interactive environment, it is useful to direct this output to the terminal, to
allow a run to be monitored online. (If something looks wrong, the run can be manually terminated.)
Further details are given in Section 13.6.

Superbasics Limit i Default ¼ n
This option places a limit on the storage allocated for superbasic variables. Ideally, i should be set
slightly larger than the ‘number of degrees of freedom’ expected at an optimal solution.

For nonlinear problems, the number of degrees of freedom is often called the ‘number of independent
variables’. Normally, i need not be greater than nN þ 1, where nN is the number of nonlinear variables.
For many problems, i may be considerably smaller than nN . This will save storage if nN is very large.

Suppress Parameters

Normally E04WDF prints the options file as it is being read, and then prints a complete list of the
available keywords and their final values. The optional parameter Suppress Parameters tells E04WDF
not to print the full list.

System Information No Default
System Information Yes

This option prints additional information on the progress of major and minor iterations, and Crash
statistics. See Section 13.

Timing Level i Default ¼ 0

If i > 0, some timing information will be output to the Print file, if Print File > 0.

Unbounded Objective r1 Default ¼ 1:0Eþ 15
Unbounded Step Size r2 Default ¼ bigbnd

These parameters are intended to detect unboundedness in nonlinear problems. During a linesearch, F
is evaluated at points of the form xþ �p, where x and p are fixed and � varies. If Fj j exceeds r1 or �
exceeds r2, iterations are terminated with the exit message IFAIL ¼ 5.

If singularities are present, unboundedness in F xð Þ may be manifested by a floating-point overflow
(during the evaluation of F xþ �pð Þ), before the test against r1 can be made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.

Verify Level i Default ¼ 0

This option refers to finite difference checks on the derivatives computed by the user-supplied routines.
Derivatives are checked at the first point that satisfies all bounds and linear constraints.

i Meaning

0 Only a ‘cheap’ test will be performed, requiring two calls to CONFUN.

1 Individual gradients will be checked (with a more reliable test). A key of the form OK or Bad?
indicates whether or not each component appears to be correct.

2 Individual columns of the problem Jacobian will be checked.

3 Options 2 and 1 will both occur (in that order).

�1 Derivative checking is disabled.

Verify Level ¼ 3 should be specified whenever a new function routine is being developed. Missing
derivatives are not checked, so they result in no overhead.
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Violation Limit r Default ¼ 1:0Eþ 6

This keyword defines an absolute limit on the magnitude of the maximum constraint violation, r, after
the linesearch. On completion of the linesearch, the new iterate xkþ1 satisfies the condition

vi xkþ1ð Þ � r max 1; vi x0ð Þð Þ;

where x0 is the point at which the nonlinear constraints are first evaluated and vi xð Þ is the ith nonlinear
constraint violation vi xð Þ ¼ max 0; li � ci xð Þ; ci xð Þ � uið Þ.
The effect of this violation limit is to restrict the iterates to lie in an expanded feasible region whose
size depends on the magnitude of r. This makes it possible to keep the iterates within a region where
the objective is expected to be well defined and bounded below. If the obective is bounded below for all
values of the variables, then r may be any large positive value.

13 Description of Monitoring Information

E04WDF produces monitoring information, statistical information and information about the solution.
Section 9.1 contains the final output information sent to unit Print File. This section contains other
output information.

13.1 Major Iteration Log

This section describes the output to unit Print File if Major Print Level > 0. One line of information
is output every kth major iteration, where k is Print Frequency.

Label Description

Itns is the cumulative number of minor iterations.

Major is the current major iteration number.

Minors is the number of iterations required by both the feasibility and optimality phases
of the QP subproblem. Generally, Minors will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11).

Step is the step length � taken along the current search direction p. The variables x
have just been changed to xþ �p. On reasonably well-behaved problems, the unit
step will be taken as the solution is approached.

nCon or nObj nCon is the number of times CONFUN has been called to evaluate the nonlinear
problem functions. Evaluations needed for the estimation of the derivatives by
finite differences are not included. nCon is printed as a guide to the amount of
work required for the linesearch. If nN , the number of nonlinear constraints, is
zero, nCon does not appear, but is replaced by nObj. This quantity is the number
of calls made to OBJFUN.

Feasible is the value of vmax (see (12)), the maximum component of the scaled nonlinear
constraint residual (see the description of the optional parameter Major
Feasibility Tolerance). The solution is regarded as acceptably feasible if
Feasible is less than the Major Feasibility Tolerance. In this case, the entry is
contained in parentheses.

If the constraints are linear, all iterates are feasible and this entry is not printed.

Optimal is the value of cmax (see (13)), the maximum complementary gap (see the
description of the optional parameter Major Optimality Tolerance). It is an
estimate of the degree of nonoptimality of the reduced costs. Both Feasible and
Optimal are small in the neighbourhood of a solution.

MeritFunction or Objective
is the value of the augmented Lagrangian merit function (see (8)). This function
will decrease at each iteration unless it was necessary to increase the penalty
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parameters (see Section 11.4). As the solution is approached, MeritFunction
will converge to the value of the objective at the solution.

In elastic mode, the merit function is a composite function involving the
constraint violations weighted by the elastic weight.

If the constraints are linear, this item is labelled Objective, the value of the
objective function. It will decrease monotonically to its optimal value.

L+U is the number of nonzeros representing the basis factors L and U on completion
of the QP subproblem.

If nonlinear constraints are present, the basis factorization B ¼ LU is computed
at the start of the first minor iteration. At this stage, L+U ¼ lenLþ lenU, where
lenL (see Section 13.4) is the number of subdiagonal elements in the columns of
a lower triangular matrix and lenU (see Section 13.4) is the number of diagonal
and superdiagonal elements in the rows of an upper-triangular matrix.

As columns of B are replaced during the minor iterations, L+U may fluctuate up
or down but, in general, will tend to increase. As the solution is approached and
the minor iterations decrease towards zero, L+U will reflect the number of
nonzeros in the LU factors at the start of the QP subproblem.

If the constraints are linear, refactorization is subject only to the Factorization
Frequency, and L+U will tend to increase between factorizations.

BSwap is the number of columns of the basis matrix B that were swapped with columns
of S to improve the condition of B. The swaps are determined by an LU

factorization of the rectangular matrix BS ¼ B S
� �T

with stability being
favoured more than sparsity.

nS is the current number of superbasic variables.

condHz is an estimate of the condition number of RTR, itself an estimate of ZTHZ, the
reduced Hessian of the Lagrangian. The condition number is the square of the
ratio of the largest and smallest diagonals of the upper triangular matrix R, this
being a lower bound on the condition number of RTR. condHz gives a rough
indication of whether or not the optimization procedure is having difficulty. If � is
the relative machine precision being used, the SQP algorithm will make slow
progress if condHz becomes as large as ��1=2 � 108, and will probably fail to find
a better solution if condHz reaches ��3=4 � 1012.

To guard against high values of condHz, attention should be given to the scaling
of the variables and the constraints. In some cases it may be necessary to add
upper or lower bounds to certain variables to keep them a reasonable distance
from singularities in the nonlinear functions or their derivatives.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if there are no nonlinear constraints).

The summary line may include additional code characters that indicate what happened during the course
of the major iteration. These will follow the separator ‘_’ in the output.

Label Description

c central differences have been used to compute the unknown components of the
objective and constraint gradients. A switch to central differences is made if
either the linesearch gives a small step, or x is close to being optimal. In some
cases, it may be necessary to re-solve the QP subproblem with the central
difference gradient and Jacobian.

d during the linesearch it was necessary to decrease the step in order to obtain a
maximum constraint violation conforming to the value of Violation Limit.

D you set MODE ¼ �1 on exit from OBJFUN, indicating that the linesearch needed
to be done with a smaller value of the step length �.
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l the norm wise change in the variables was limited by the value of the Major
Step Limit. If this output occurs repeatedly during later iterations, it may be
worthwhile increasing the value of Major Step Limit.

i if E04WDF is not in elastic mode, an i signifies that the QP subproblem is
infeasible. This event triggers the start of nonlinear elastic mode, which remains
in effect for all subsequent iterations. Once in elastic mode, the QP subproblems
are associated with the elastic problem (11) (see Section 11.5).

If E04WDF is already in elastic mode, an i indicates that the minimizer of the
elastic subproblem does not satisfy the linearized constraints. (In this case, a
feasible point for the usual QP subproblem may or may not exist.)

M an extra evaluation of the problem functions was needed to define an acceptable
positive definite quasi-Newton update to the Lagrangian Hessian. This modifica-
tion is only done when there are nonlinear constraints.

m this is the same as M except that it was also necessary to modify the update to
include an augmented Lagrangian term.

n no positive definite BFGS update could be found. The approximate Hessian is
unchanged from the previous iteration.

R the approximate Hessian has been reset by discarding all but the diagonal
elements. This reset will be forced periodically by the Hessian Frequency and
Hessian Updates keywords. However, it may also be necessary to reset an ill-
conditioned Hessian from time to time.

r the approximate Hessian was reset after ten consecutive major iterations in which
no BFGS update could be made. The diagonals of the approximate Hessian are
retained if at least one update has been done since the last reset. Otherwise, the
approximate Hessian is reset to the identity matrix.

s a self-scaled BFGS update was performed. This update is used when the Hessian
approximation is diagonal, and hence always follows a Hessian reset.

t the minor iterations were terminated because of the Minor Iterations Limit.

T the minor iterations were terminated because of the New Superbasics Limit.

u the QP subproblem was unbounded.

w a weak solution of the QP subproblem was found.

z the Superbasics Limit was reached.

13.2 Minor Iteration Log

If Minor Print Level > 0, one line of information is output to the Print file every kth minor iteration,
where k is the specified Print Frequency. A heading is printed before the first such line following a
basis factorization. The heading contains the items described below. In this description, a pricing
operation is the process by which a nonbasic variable is selected to become superbasic (in addition to
those already in the superbasic set). The selected variable is denoted by jq. Variable jq often becomes
basic immediately. Otherwise it remains superbasic, unless it reaches its opposite bound and returns to
the nonbasic set.

If Partial Price is in effect, variable jq is selected from App or Ipp, the ppth segments of the
constraint matrix A �I

� �
.

Label Description

Itn the current iteration number.

LPmult or QPmult is the reduced cost (or reduced gradient) of the variable jq selected
by the pricing procedure at the start of the present iteration.
Algebraically, the reduced gradient is dj ¼ gj � 	Taj for j ¼ jq,
where gj is the gradient of the current objective function, 	 is the
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vector of dual variables for the QP subproblem, and aj is the jth
column of A �I

� �
.

Note that the reduced cost is the 1-norm of the reduced-gradient
vector at the start of the iteration, just after the pricing procedure.

LPstep or QPstep is the step length � taken along the current search direction p. The
variables x have just been changed to xþ �p. Write Step to stand
for LPStep or QPStep, depending on the problem. If a variable is
made superbasic during the current iteration (+SBS > 0), Step will
be the step to the nearest bound. During the solution of (11), the
step can be greater than one only if the reduced Hessian is not
positive definite.

nInf is the number of infeasibilities after the present iteration. This
number will not increase unless the iterations are in elastic mode.

SumInf is the sum of infeasibilities after the present iteration, if nInf > 0.
The value usually decreases at each nonzero Step, but if it
decreases by 2 or more, SumInf may occasionally increase.

rgNorm is the norm of the reduced-gradient vector at the start of the
iteration. (It is the norm of the vector with elements dj for variables
j in the superbasic set.) During the solution of subproblem (11) this
norm will be approximately zero after a unit step. (The heading is
not printed if the problem is linear.)

LPobjective, QPobjective or Elastic QPobj
the QP objective function after the present iteration. In elastic
mode, the heading is changed to Elastic QPobj. In either case, the
value printed decreases monotonically.

+SBS is the variable jq selected by the pricing operation to be added to
the superbasic set.

-SBS is the superbasic variable chosen to become nonbasic.

-BS is the basis variable removed (if any) to become nonbasic.

Pivot if column aq replaces the rth column of the basis B, Pivot is the
rth element of a vector y satisfying By ¼ aq. Wherever possible,
Step is chosen to avoid extremely small values of Pivot (since
they cause the basis to be nearly singular). In rare cases, it may be
necessary to increase the Pivot Tolerance to exclude very small
elements of y from consideration during the computation of Step.

L+U is the number of nonzeros representing the basis factors L and U .
Immediately after a basis factorization B ¼ LU , L+U is lenL+lenU,
the number of subdiagonal elements in the columns of a lower
triangular matrix and the number of diagonal and superdiagonal
elements in the rows of an upper-triangular matrix. Further
nonzeros are added to L when various columns of B are later
replaced. As columns of B are replaced, the matrix U is maintained
explicitly (in sparse form). The value of L will steadily increase,
whereas the value of U may fluctuate up or down. Thus the value of
L+U may fluctuate up or down (in general, it will tend to increase).

ncp is the number of compressions required to recover storage in the
data structure for U. This includes the number of compressions
needed during the previous basis factorization.

nS is the current number of superbasic variables. (The heading is not
printed if the problem is linear.)
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condHz see Section 13.1. (The heading is not printed if the problem is
linear.)

13.3 Crash Statistics

If Major Print Level � 10 and System Information Yes has been specified, the following items are
output to the Print file when Cold Start and no Backup Basis file is loaded. They refer to the number of
columns that the Crash procedure selects during selected passes through A while searching for a
triangular basis matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis.

Preferred is the number of ‘preferred’ columns in the basis (i.e., ISTATEðjÞ ¼ 3 for some
j � n).

Unit is the number of unit columns in the basis.

Double is the number of columns in the basis containing 2 nonzeros.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

13.4 Basis Factorization Statistics

If Major Print Level � 10, the first seven items in the list below are output to the Print file whenever

the basis B or the rectangular matrix BS ¼ B S
� �T

is factorized before solution of the next QP
subproblem. See Section 12.1 for a full description of an optional parameter.

Gaussian elimination is used to compute a sparse LU factorization of B or BS, where PLPT and PUQ
are lower and upper triangular matrices for some permutation matrices P and Q. Stability is ensured as
described under the optional parameter LU Factor Tolerance.

If Minor Print Level � 10, the same items are printed during the QP solution whenever the current B
is factorized. In addition, if System Information Yes has been specified, the entries from Elems
onwards are also printed.

Label Description

Factor the number of factorizations since the start of the run.

Demand a code giving the reason for the present factorization, as follows:

Code Meaning
0 First LU factorization.
1 The number of updates reached the Factorization Frequency.
2 The nonzeros in the updated factors have increased significantly.
7 Not enough storage to update factors.
10 Row residuals too large (see the description of the optional parameter

Check Frequency).
11 Ill-conditioning has caused inconsistent results.

Itn is the current minor iteration number.

Nonlin is the number of nonlinear variables in the current basis B.

Linear is the number of linear variables in B.

Slacks is the number of slack variables in B.

B BR BS or BT factorize
is the type of LU factorization.
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B periodic factorization of the basis B.
BR more careful rank-revealing factorization of B using threshold rook

pivoting. This occurs mainly at the start, if the first basis factors seem
singular or ill-conditioned. Followed by a normal B factorize.

BS BS is factorized to choose a well-conditioned B from the current B Sð Þ.
Followed by a normal B factorize.

BT same as BS except the current B is tried first and accepted if it appears
to be not much more ill-conditioned than after the previous BS factorize.

m is the number of rows in B or BS.

n is the number of columns in B or BS. Preceded by ‘=’ or ‘>’ respectively.

Elems is the number of nonzero elements in B or BS.

Amax is the largest nonzero in B or BS.

Density is the percentage nonzero density of B or BS.

Merit/MerRP/MerCP is the average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be c� 1ð Þ r� 1ð Þ where c and r are the
number of nonzeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of n such quantities. It
gives an indication of how much work was required to preserve sparsity during
the factorization. If LU Complete Pivoting or LU Rook Pivoting has been
selected, this heading is changed to MerCP, respectively MerRP.

lenL is the number of nonzeros in L.

L+U is the number of nonzeros representing the basis factors L and U . Immediately
after a basis factorization B ¼ LU , L+U is lenL+lenU, the number of subdiagonal
elements in the columns of a lower triangular matrix and the number of diagonal
and superdiagonal elements in the rows of an upper-triangular matrix. Further
nonzeros are added to L when various columns of B are later replaced. As
columns of B are replaced, the matrix U is maintained explicitly (in sparse form).
The value of L will steadily increase, whereas the value of U may fluctuate up or
down. Thus the value of L+U may fluctuate up or down (in general, it will tend to
increase).

Cmpressns is the number of times the data structure holding the partially factored matrix
needed to be compressed to recover unused storage. Ideally this number should
be zero. If it is more than 3 or 4, the amount of workspace available to E04WDF
should be increased for efficiency.

Incres is the percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in B or BS.

Utri is the number of triangular rows of B or BS at the top of U .

lenU the number of nonzeros in U , including its diagonals.

Ltol is the largest subdiagonal element allowed in L. This is the specified LU Factor
Tolerance or a smaller value that is currently being used for greater stability.

Umax the maximum nonzero element in U .

Ugrwth is the ratio Umax=Amax, which ideally should not be substantially larger than 10:0
or 100:0. If it is orders of magnitude larger, it may be advisable to reduce the LU
Factor Tolerance to 5:0, 4:0, 3:0 or 2:0, say (but bigger than 1:0).

As long as Lmax is not large (say 5:0 or less), max Amax; Umaxð Þ=DUmin gives an
estimate of the condition number B. If this is extremely large, the basis is nearly
singular. Slacks are used to replace suspect columns of B and the modified basis
is refactored.

Ltri is the number of triangular columns of B or BS at the left of L.
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dense1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0:3.

Lmax is the actual maximum subdiagonal element in L (bounded by Ltol).

Akmax is the largest nonzero generated at any stage of the LU factorization. (Values
much larger than Amax indicate instability.) Akmax is not printed if LU Partial
Pivoting is selected.

Agrwth is the ratio Akmax=Amax. Values much larger than 100 (say) indicate instability.
Growth is not printed if LU Partial Pivoting is selected.

bump is the size of the block to be factorized nontrivially after the triangular rows and
columns of B or BS have been removed.

dense2 is the number of columns remaining when the density of the basis matrix being
factorized reached 0:6. (The Markowitz pivot strategy searches fewer columns at
that stage.)

DUmax is the largest diagonal of PUQ.

DUmin is the smallest diagonal of PUQ.

condU the ratio DUmax=DUmin, which estimates the condition number of U (and of B if
Ltol is less than 5:0, say).

13.5 The Solution File

At the end of a run, the final solution may be output as a Solution file, according to Solution File.
Some header information appears first to identify the problem and the final state of the optimization
procedure. A ROWS section and a COLUMNS section then follow, giving one line of information for
each row and column. The format used is similar to certain commercial systems, though there is no
industry standard.

In general, numerical values are output with format f16.5. The maximum record length is 111
characters, including the first (carriage-control) character.

To reduce clutter, a full stop (.) is printed for any numerical value that is exactly zero. The values 
1
are also printed specially as 1:0 and �1:0. Infinite bounds (
1020 or larger) are printed as None.

A Solution file is intended to be read from disk by a self-contained program that extracts and saves
certain values as required for possible further computation. Typically, the first 14 records would be
ignored. Each subsequent record may be read using

format(i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that starts with a 1
and is otherwise blank. If this and the next 4 records are skipped, the COLUMNS section can then be
read under the same format. (There should be no need for backspace statements.)

13.5.1The ROWS section

General linear constraints take the form l � Ax � u. The ith constraint is therefore of the form

� � �ix � �;

where �i is the ith row of A.

Internally, the constraints take the form Ax� s ¼ 0, where s is the set of slack variables (which happen
to satisfy the bounds l � s � u). For the ith constraint it is the slack variable si that is directly
available, and it is sometimes convenient to refer to its state. Nonlinear constraints � � ci xð Þ þ vix � �
are treated similarly, except that the row activity and degree of infeasibility are computed directly from
ci xð Þ þ vix rather than si. A fullstop (.) is printed for any numerical value that is exactly zero.

Label Description

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)
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Row gives the name of the ith row.

State the state of the ith row relative to the bounds � and �. The various states possible
are as follows:

LL the row is at its lower limit, �.

UL the row is at its upper limit, �.

EQ the limits are the same (� ¼ �).
FR si is nonbasic and currently zero, even though it is free to take any value

between its bounds � and �.

BS si is basic.

SBS si is superbasic.

A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value
of the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal (or very
close) to one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the Feasibility Tolerance.

N Not precisely optimal. The variable is nonbasic or superbasic. If the value
of the reduced gradient for the variable exceeds the value of the optional
parameter Major Optimality Tolerance, the solution would not be
declared optimal because the reduced gradient for the variable would not
be considered negligible.

Activity is the value of vix (or ci xð Þ þ vix for nonlinear rows) at the final iterate.

Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if
any), it is set to Activity.)

Lower Limit is �, the lower bound on the row.

Upper Limit is �, the upper bound on the row.

Dual Activity is the value of the dual variable 	i (the Lagrange multiplier for the ith constraint).
The full vector 	 always satisfies BT	 ¼ gB, where B is the current basis matrix
and gB contains the associated gradients for the current objective function. For FP
problems, 	i is set to zero.

i gives the index i of the ith row.

13.5.2The COLUMNS section

Let the jth component of x be the variable xj and assume that it satisfies the bounds � � xj � �. A
fullstop (.) is printed for any numerical value that is exactly zero.

Label Description

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)
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Column gives the name of xj.

State the state of xj relative to the bounds � and �. The various states possible are as
follows:

LL xj is nonbasic at its lower limit, �.

UL xj is nonbasic at its upper limit, �.

EQ xj is nonbasic and fixed at the value � ¼ �.
FR xj is nonbasic at some value strictly between its bounds: � < xj < �.

BS xj is basic. Usually � < xj < �.

SBS xj is superbasic. Usually � < xj < �.

A key is sometimes printed before State. Note that unless the optional parameter
Scale Option ¼ 0 is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value
of the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal (or very
close) to one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the Feasibility Tolerance.

N Not precisely optimal. The variable is nonbasic or superbasic. If the value
of the reduced gradient for the variable exceeds the value of the optional
parameter Major Optimality Tolerance, the solution would not be
declared optimal because the reduced gradient for the variable would not
be considered negligible.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.

Lower Limit is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Limit is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Reduced Gradnt is the value of the reduced gradient dj ¼ gj � 	Taj where aj is the jth column of
the constraint matrix. For FP problems, dj is set to zero.

m + j is the value of mþ j.
Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack Activity column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

13.6 The Summary File

If Summary File > 0, the following information is output to the unit number associated with
Summary File. (It is a brief summary of the output directed to unit Print File):
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– the optional parameters supplied via the option setting routines, if any;

– the Basis file loaded, if any;

– a brief major iteration log (see Section 13.1);

– a brief minor iteration log (see Section 13.2);

– the exit condition, IFAIL;

– a summary of the final iterate.
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NAG Library Routine Document

E04WEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04WEF may be used to supply optional parameters to E04WDF from an external file. The
initialization routine E04WCF must have been called before calling E04WEF.

2 Specification

SUBROUTINE E04WEF (ISPECS, IW, RW, IFAIL)

INTEGER ISPECS, IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)

3 Description

E04WEF may be used to supply values for optional parameters to E04WDF. E04WEF reads an external
file and each line of the file defines a single optional parameter. It is only necessary to supply values for
those arguments whose values are to be different from their default values.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print level = 5

End

Optional parameter settings are preserved following a call to E04WDF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04WDF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04WDF.

4 References

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer–Verlag
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5 Arguments

1: ISPECS – INTEGER Input

On entry: the unit number of the option file to be read.

Constraint: ISPECS is a valid unit open for reading.

2: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04WCF).

3: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04WCF).

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04WCF has not been called.

IFAIL ¼ 2

At least one line of the options file is invalid.

Could not read options file on unit ISPECS ¼ valueh i.
Could not read options file on unit ISPECS. This may be due to:

(a) ISPECS is not a valid unit number;

(b) a file is not associated with unit ISPECS, or if it is, is unavailable for read access;

(c) one or more lines of the options file is invalid. Check that all keywords are neither
ambiguous nor misspelt;

(d) Begin was found, but end-of-file was found before End was found;

(e) end-of-file was found before Begin was found.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04WEF is not threaded in any implementation.

9 Further Comments

E04WFF, E04WGF or E04WHF may also be used to supply optional parameters to E04WDF.

10 Example

This example is based on Problem 71 in Hock and Schittkowski (1981) and involves the minimization
of the nonlinear function

F xð Þ ¼ x1x4 x1 þ x2 þ x3ð Þ þ x3
subject to the bounds

1 � x1 � 5
1 � x2 � 5
1 � x3 � 5
1 � x4 � 5

to the general linear constraint

x1 þ x2 þ x3 þ x4 � 20;

and to the nonlinear constraints

x21 þ x22 þ x23 þ x24 � 40;
x1x2x3x4 � 25:

The initial point, which is infeasible, is

x0 ¼ 1; 5; 5; 1ð ÞT;

and F x0ð Þ ¼ 16.

The optimal solution (to five figures) is

x� ¼ 1:0; 4:7430; 3:8211; 1:3794ð ÞT;

and F x�ð Þ ¼ 17:014. One bound constraint and both nonlinear constraints are active at the solution.

The document for E04WEF includes an example program to solve the same problem using some of the
optional parameters described in Section 12 in E04WDF.
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10.1 Program Text

! E04WEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04wefe_mod

! E04WEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, objfun

! .. Parameters ..
Integer, Parameter, Public :: leniw = 600, lenrw = 600, nin = 5, &

ninopt = 7, nout = 6
Contains

Subroutine objfun(mode,n,x,objf,grad,nstate,iuser,ruser)
! Routine to evaluate objective function and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: grad(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
If (mode==0 .Or. mode==2) Then

objf = x(1)*x(4)*(x(1)+x(2)+x(3)) + x(3)
End If

If (mode==1 .Or. mode==2) Then
grad(1) = x(4)*(2.0E0_nag_wp*x(1)+x(2)+x(3))
grad(2) = x(1)*x(4)
grad(3) = x(1)*x(4) + 1.0E0_nag_wp
grad(4) = x(1)*(x(1)+x(2)+x(3))

End If

Return

End Subroutine objfun
Subroutine confun(mode,ncnln,n,ldcj,needc,x,ccon,cjac,nstate,iuser, &

ruser)
! Routine to evaluate the nonlinear constraints and their 1st
! derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcj, n, ncnln, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: ccon(max(1,ncnln))
Real (Kind=nag_wp), Intent (Inout) :: cjac(ldcj,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncnln)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
If (nstate==1) Then

! First call to CONFUN. Set all Jacobian elements to zero.
! Note that this will only work when ’Derivative Level = 3’
! (the default; see Section 11.2).

cjac(1:ncnln,1:n) = 0.0E0_nag_wp
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End If

If (needc(1)>0) Then

If (mode==0 .Or. mode==2) Then
ccon(1) = x(1)**2 + x(2)**2 + x(3)**2 + x(4)**2

End If

If (mode==1 .Or. mode==2) Then
cjac(1,1) = 2.0E0_nag_wp*x(1)
cjac(1,2) = 2.0E0_nag_wp*x(2)
cjac(1,3) = 2.0E0_nag_wp*x(3)
cjac(1,4) = 2.0E0_nag_wp*x(4)

End If

End If

If (needc(2)>0) Then

If (mode==0 .Or. mode==2) Then
ccon(2) = x(1)*x(2)*x(3)*x(4)

End If

If (mode==1 .Or. mode==2) Then
cjac(2,1) = x(2)*x(3)*x(4)
cjac(2,2) = x(1)*x(3)*x(4)
cjac(2,3) = x(1)*x(2)*x(4)
cjac(2,4) = x(1)*x(2)*x(3)

End If

End If

Return

End Subroutine confun
End Module e04wefe_mod
Program e04wefe

! E04WEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04wcf, e04wdf, e04wef, e04wff, e04wgf, e04whf, &

e04wkf, e04wlf, nag_wp, x04acf, x04baf
Use e04wefe_mod, Only: confun, leniw, lenrw, nin, ninopt, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Character (*), Parameter :: fname = ’e04wefe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: bndinf, featol, objf
Integer :: elmode, i, ifail, lda, ldcj, ldh, &

majits, mode, n, nclin, ncnln, sda, &
sdcjac

Character (80) :: rec
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), ccon(:), &
cjac(:,:), clamda(:), grad(:), &
h(:,:), x(:)

Real (Kind=nag_wp) :: ruser(1), rw(lenrw)
Integer, Allocatable :: istate(:)
Integer :: iuser(1), iw(leniw)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (rec,99995) ’E04WEF Example Program Results’
Call x04baf(nout,rec)

! This program demonstrates the use of routines to set and
! get values of optional parameters associated with E04WDF.

! Skip heading in data file
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Read (nin,*)

Read (nin,*) n, nclin, ncnln
lda = max(1,nclin)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

ldcj = max(1,ncnln)

If (ncnln>0) Then
sdcjac = n

Else
sdcjac = 1

End If

ldh = n
Allocate (istate(n+nclin+ncnln),a(lda,sda),bl(n+nclin+ncnln), &

bu(n+nclin+ncnln),ccon(max(1,ncnln)),cjac(ldcj,sdcjac),clamda(n+nclin+ &
ncnln),grad(n),h(ldh,n),x(n))

If (nclin>0) Then
Read (nin,*)(a(i,1:sda),i=1,nclin)

End If

Read (nin,*) bl(1:(n+nclin+ncnln))
Read (nin,*) bu(1:(n+nclin+ncnln))
Read (nin,*) x(1:n)

! Call E04WCF to initialize E04WDF.

ifail = 0
Call e04wcf(iw,leniw,rw,lenrw,ifail)

! By default E04WDF does not print monitoring
! information. Set the print file unit or the summary
! file unit to get information.

ifail = 0
Call e04wgf(’Print file’,nout,iw,rw,ifail)

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Use E04WEF to read some options from the options file

ifail = 0
Call e04wef(ninopt,iw,rw,ifail)

Write (rec,’()’)
Call x04baf(nout,rec)

! Use E04WKF to find the value of integer-valued option
! ’Elastic mode’.

ifail = 0
Call e04wkf(’Elastic mode’,elmode,iw,rw,ifail)

Write (rec,99999) elmode
Call x04baf(nout,rec)

! Use E04WHF to set the value of real-valued option
! ’Infinite bound size’.
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bndinf = 1.0E10_nag_wp

ifail = 0
Call e04whf(’Infinite bound size’,bndinf,iw,rw,ifail)

! Use E04WLF to find the value of real-valued option
! ’Feasibility tolerance’.

ifail = 0
Call e04wlf(’Feasibility tolerance’,featol,iw,rw,ifail)

Write (rec,99998) featol
Call x04baf(nout,rec)

! Use E04WFF to set the option ’Major iterations limit’.

ifail = 0
Call e04wff(’Major iterations limit 50’,iw,rw,ifail)

! Solve the problem.

ifail = 0
Call e04wdf(n,nclin,ncnln,lda,ldcj,ldh,a,bl,bu,confun,objfun,majits, &

istate,ccon,cjac,clamda,objf,grad,h,x,iw,leniw,rw,lenrw,iuser,ruser, &
ifail)

Write (rec,’()’)
Call x04baf(nout,rec)
Write (rec,99997) objf
Call x04baf(nout,rec)
Write (rec,99996)(x(i),i=1,n)
Call x04baf(nout,rec)

99999 Format (1X,’Option ’’Elastic mode’’ has the value ’,I3,’.’)
99998 Format (1X,’Option ’’Feasibility tolerance’’ has the value ’,1P,E13.5, &

’.’)
99997 Format (1X,’Final objective value = ’,F11.3)
99996 Format (1X,’Optimal X = ’,7F9.2)
99995 Format (1X,A)

End Program e04wefe

10.2 Program Data

Begin example options file
* Comment lines like this begin with an asterisk.
* Switch off output of timing information:
Timing level 0
* Allow elastic variables:
Elastic mode 1
* Set the feasibility tolerance:
Feasibility tolerance 1.0D-4
End

E04WEF Example Program Data
4 1 2 : N, NCLIN and NCNLN
1.0 1.0 1.0 1.0 : Matrix A
1.0 1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 : Lower bounds BL
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25 : Upper bounds BU
1.0 5.0 5.0 1.0 : Initial vector X

10.3 Program Results
E04WEF Example Program Results

OPTIONS file
------------

Begin example options file
* Comment lines like this begin with an asterisk.
* Switch off output of timing information:
Timing level 0
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* Allow elastic variables:
Elastic mode 1
* Set the feasibility tolerance:
Feasibility tolerance 1.0D-4
End

E04WEZ EXIT 100 -- finished successfully
E04WEZ INFO 101 -- OPTIONS file read

Option ’Elastic mode’ has the value 1.
Option ’Feasibility tolerance’ has the value 1.00000E-04.

Parameters
==========

Files
-----
Solution file.......... 0 Old basis file ........ 0 (Print file)........... 6
Insert file............ 0 New basis file ........ 0 (Summary file)......... 0
Punch file............. 0 Backup basis file...... 0
Load file.............. 0 Dump file.............. 0

Frequencies
-----------
Print frequency........ 100 Check frequency........ 60 Save new basis map..... 100
Summary frequency...... 100 Factorization frequency 50 Expand frequency....... 10000

QP subproblems
--------------
QPsolver Cholesky......
Scale tolerance........ 0.900 Minor feasibility tol.. 1.00E-04 Iteration limit........ 10000
Scale option........... 0 Minor optimality tol.. 1.00E-06 Minor print level...... 1
Crash tolerance........ 0.100 Pivot tolerance........ 2.04E-11 Partial price.......... 1
Crash option........... 3 Elastic weight......... 1.00E+04 Prtl price section ( A) 4

New superbasics........ 99 Prtl price section (-I) 3

The SQP Method
--------------
Minimize............... Cold start............. Proximal Point method.. 1
Nonlinear objectiv vars 4 Major optimality tol... 2.00E-06 Function precision..... 1.72E-13
Unbounded step size.... 1.00E+10 Superbasics limit...... 4 Difference interval.... 4.15E-07
Unbounded objective.... 1.00E+15 Reduced Hessian dim.... 4 Central difference int. 5.57E-05
Major step limit....... 2.00E+00 Derivative linesearch.. Derivative level....... 3
Major iterations limit. 50 Linesearch tolerance... 0.90000 Verify level........... 0
Minor iterations limit. 500 Penalty parameter...... 0.00E+00 Major Print Level...... 1

Hessian Approximation
---------------------
Full-Memory Hessian.... Hessian updates........ 99999999 Hessian frequency...... 99999999

Hessian flush.......... 99999999

Nonlinear constraints
---------------------
Nonlinear constraints.. 2 Major feasibility tol.. 1.00E-06 Violation limit........ 1.00E+06
Nonlinear Jacobian vars 4

Miscellaneous
-------------
LU factor tolerance.... 1.10 LU singularity tol..... 2.04E-11 Timing level........... 0
LU update tolerance.... 1.10 LU swap tolerance...... 1.03E-04 Debug level............ 0
LU partial pivoting... eps (machine precision) 1.11E-16 System information..... No

Matrix statistics
-----------------

Total Normal Free Fixed Bounded
Rows 3 3 0 0 0
Columns 4 0 0 0 4

No. of matrix elements 12 Density 100.000
Biggest 1.0000E+00 (excluding fixed columns,
Smallest 0.0000E+00 free rows, and RHS)

No. of objective coefficients 0

Nonlinear constraints 2 Linear constraints 1
Nonlinear variables 4 Linear variables 0
Jacobian variables 4 Objective variables 4
Total constraints 3 Total variables 4

The user has defined 8 out of 8 constraint gradients.
The user has defined 4 out of 4 objective gradients.

Cheap test of user-supplied problem derivatives...
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The constraint gradients seem to be OK.

--> The largest discrepancy was 1.84E-07 in constraint 6

The objective gradients seem to be OK.

Gradient projected in one direction 4.99993000077E+00
Difference approximation 4.99993303560E+00

Itns Major Minors Step nCon Feasible Optimal MeritFunction L+U BSwap nS condHz Penalty
2 0 2 1 1.7E+00 2.8E+00 1.6000000E+01 7 2 1.0E+00 _ r
4 1 2 1.0E+00 2 1.3E-01 3.2E-01 1.7726188E+01 8 1 6.2E+00 8.3E-02 _n r
5 2 1 1.0E+00 3 3.7E-02 1.7E-01 1.7099571E+01 7 1 2.0E+00 8.3E-02 _s
6 3 1 1.0E+00 4 2.2E-02 1.1E-02 1.7014005E+01 7 1 1.8E+00 8.3E-02 _
7 4 1 1.0E+00 5 1.5E-04 6.0E-04 1.7014018E+01 7 1 1.8E+00 9.2E-02 _
8 5 1 1.0E+00 6 ( 3.3E-07) 2.3E-05 1.7014017E+01 7 1 1.9E+00 3.6E-01 _
9 6 1 1.0E+00 7 ( 4.2E-10)( 2.4E-08) 1.7014017E+01 7 1 1.9E+00 3.6E-01 _

E04WDM EXIT 0 -- finished successfully
E04WDM INFO 1 -- optimality conditions satisfied

Problem name NLP
No. of iterations 9 Objective value 1.7014017287E+01
No. of major iterations 6 Linear objective 0.0000000000E+00
Penalty parameter 3.599E-01 Nonlinear objective 1.7014017287E+01
No. of calls to funobj 8 No. of calls to funcon 8
No. of superbasics 1 No. of basic nonlinears 2
No. of degenerate steps 0 Percentage 0.00
Max x 2 4.7E+00 Max pi 2 5.5E-01
Max Primal infeas 0 0.0E+00 Max Dual infeas 3 4.8E-08
Nonlinear constraint violn 2.7E-09

Variable State Value Lower bound Upper bound Lagr multiplier Slack

variable 1 LL 1.000000 1.000000 5.000000 1.087871 .
variable 2 FR 4.743000 1.000000 5.000000 . 0.2570
variable 3 FR 3.821150 1.000000 5.000000 . 1.179
variable 4 FR 1.379408 1.000000 5.000000 . 0.3794

Linear constrnt State Value Lower bound Upper bound Lagr multiplier Slack

lincon 1 FR 10.94356 None 20.00000 . 9.056

Nonlin constrnt State Value Lower bound Upper bound Lagr multiplier Slack

nlncon 1 UL 40.00000 None 40.00000 -0.1614686 -0.2700E-08
nlncon 2 LL 25.00000 25.00000 None 0.5522937 -0.2215E-08

Final objective value = 17.014
Optimal X = 1.00 4.74 3.82 1.38
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NAG Library Routine Document

E04WFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04WFF may be used to supply individual optional parameters to E04WDF. The initialization routine
E04WCF must have been called before calling E04WFF.

2 Specification

SUBROUTINE E04WFF (STRING, IW, RW, IFAIL)

INTEGER IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)
CHARACTER(*) STRING

3 Description

E04WFF may be used to supply values for optional parameters to E04WDF. It is only necessary to call
E04WFF for those arguments whose values are to be different from their default values. One call to
E04WFF sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equals signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous characters
in Fortran's I, F, E or D formats, terminated by a space if this is not the last item on the line.

For E04WFF, each user-specified option is not normally printed as it is defined, but this printing may be
turned on using the keyword List. Thus the statement

CALL E04WFF (’List’, IW, RW, IFAIL)

turns on printing of this and subsequent options. Printing may be turned off again using the keyword
Nolist.

Optional parameter settings are preserved following a call to E04WDF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04WDF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04WDF.

4 References

None.
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5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid option string (see Section 3 in E04WFF and Section 12 in E04WDF).

2: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04WCF).

3: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04WCF).

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04WCF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

E04WFF is not threaded in any implementation.

9 Further Comments

E04WEF, E04WGF or E04WHF may also be used to supply optional parameters to E04WDF.

10 Example

See Section 10 in E04WEF.
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NAG Library Routine Document

E04WGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04WGF may be used to supply individual integer optional parameters to E04WDF. The initialization
routine E04WCF must have been called before calling E04WGF.

2 Specification

SUBROUTINE E04WGF (STRING, IVALUE, IW, RW, IFAIL)

INTEGER IVALUE, IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)
CHARACTER(*) STRING

3 Description

E04WGF may be used to supply values for integer optional parameters to E04WDF. It is only necessary
to call E04WGF for those arguments whose values are to be different from their default values. One
call to E04WGF sets one argument value.

Each integer optional parameter is defined by a single character string in STRING and the
corresponding value in IVALUE. For example, the following allows the iteration limit to be defined:

ITNLIM = 1000
IF (M > 500) ITNLIM = 500
CALL E04WGF (’Iterations’, ITNLIM, IW, RW, IFAIL)

Optional parameter settings are preserved following a call to E04WDF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04WDF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04WDF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of an integer optional parameter (as described in Section 12 in
E04WDF).

2: IVALUE – INTEGER Input

On entry: an integer value associated with the keyword in STRING.

3: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04WCF).

4: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04WCF).
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5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04WCF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04WGF is not threaded in any implementation.

9 Further Comments

E04WEF or E04WFF may also be used to supply integer optional parameters to E04WDF.

10 Example

See Section 10 in E04WDF and E04WEF.
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NAG Library Routine Document

E04WHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04WHF may be used to supply individual real optional parameters to E04WDF. The initialization
routine E04WCF must have been called before calling E04WHF.

2 Specification

SUBROUTINE E04WHF (STRING, RVALUE, IW, RW, IFAIL)

INTEGER IW(*), IFAIL
REAL (KIND=nag_wp) RVALUE, RW(*)
CHARACTER(*) STRING

3 Description

E04WHF may be used to supply values for real optional parameters to E04WDF. It is only necessary to
call E04WHF for those arguments whose values are to be different from their default values. One call
to E04WHF sets one argument value.

Each real optional parameter is defined by a single character string in STRING and the corresponding
value in RVALUE. For example the following illustrates how the LU stability tolerance could be
defined:

FACTOL = 100.0E0
IF (ILLCON) FACTOL = 5.0E0
CALL E04WHF (’LU Factor Tolerance’, FACTOL, IW, RW, IFAIL)

Optional parameter settings are preserved following a call to E04WDF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E04WDF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04WDF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of a real optional parameter (as described in Section 12 in
E04WDF).

2: RVALUE – REAL (KIND=nag_wp) Input

On entry: the value associated with the keyword in STRING.

3: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04WCF).
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4: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04WCF).

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04WCF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04WHF is not threaded in any implementation.

9 Further Comments

E04WEF or E04WFF may also be used to supply real optional parameters to E04WDF.
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10 Example

See Section 10 in E04WEF.
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NAG Library Routine Document

E04WKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04WKF is used to get the value of an integer optional parameter. E04WKF can be used before or after
calling E04WDF.

2 Specification

SUBROUTINE E04WKF (STRING, IVALUE, IW, RW, IFAIL)

INTEGER IVALUE, IW(*), IFAIL
REAL (KIND=nag_wp) RW(*)
CHARACTER(*) STRING

3 Description

E04WKF obtains the current value of an integer option. For example

CALL E04WKF (’Iterations’, ITNLIM, IW, RW, IFAIL)

will result in the value of the optional parameter Major Iterations Limit being output in ITNLIM.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04WDF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of an integer optional parameter (as described in Section 12 in
E04WDF).

2: IVALUE – INTEGER Output

On exit: the integer value associated with the keyword in STRING.

3: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04WCF).

4: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04WCF).

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04WCF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04WKF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in E04WEF.
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E04WLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04WLF is used to get the value of a real optional parameter. E04WLF can be used before or after
calling E04WDF.

2 Specification

SUBROUTINE E04WLF (STRING, RVALUE, IW, RW, IFAIL)

INTEGER IW(*), IFAIL
REAL (KIND=nag_wp) RVALUE, RW(*)
CHARACTER(*) STRING

3 Description

E04WLF obtains the current value of a real option. For example

CALL E04WLF (’LU Factor Tolerance’, FACTOL, IW, RW, IFAIL)

will result in the value of the optional parameter LU Factor Tolerance being output in FACTOL.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in E04WDF.

4 References

None.

5 Arguments

1: STRING – CHARACTER(*) Input

On entry: a single valid keyword of a real optional parameter (as described in Section 12 in
E04WDF).

2: RVALUE – REAL (KIND=nag_wp) Output

On exit: the real value associated with the keyword in STRING.

3: IWð�Þ – INTEGER array Communication Array

Note: the dimension of the array IW must be at least LENIW (see E04WCF).

4: RWð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RW must be at least LENRW (see E04WCF).

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04WCF has not been called.

IFAIL ¼ 2

The supplied option is invalid. Check that the keywords are neither ambiguous nor misspelt.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04WLF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in E04WEF.
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NAG Library Routine Document

E04XAF/E04XAA

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04XAF/E04XAA computes an approximation to the gradient vector and/or the Hessian matrix for use
in conjunction with, or following the use of an optimization routine (such as E04UFF/E04UFA).

E04XAA is a version of E04XAF that has additional arguments in order to make it safe for use in
multithreaded applications (see Section 5).

2 Specification

2.1 Specification for E04XAF

SUBROUTINE E04XAF (MSGLVL, N, EPSRF, X, MODE, OBJFUN, LDH, HFORW, OBJF,
OBJGRD, HCNTRL, H, IWARN, WORK, IUSER, RUSER, INFO,
IFAIL)

&
&

INTEGER MSGLVL, N, MODE, LDH, IWARN, IUSER(*), INFO(N),
IFAIL

&

REAL (KIND=nag_wp) EPSRF, X(N), HFORW(N), OBJF, OBJGRD(N), HCNTRL(N),
H(LDH,*), WORK(*), RUSER(*)

&

EXTERNAL OBJFUN

2.2 Specification for E04XAA

SUBROUTINE E04XAA (MSGLVL, N, EPSRF, X, MODE, OBJFUN, LDH, HFORW, OBJF,
OBJGRD, HCNTRL, H, IWARN, WORK, IUSER, RUSER, INFO,
LWSAV, IWSAV, RWSAV, IFAIL)

&
&

INTEGER MSGLVL, N, MODE, LDH, IWARN, IUSER(*), INFO(N),
IWSAV(1), IFAIL

&

REAL (KIND=nag_wp) EPSRF, X(N), HFORW(N), OBJF, OBJGRD(N), HCNTRL(N),
H(LDH,*), WORK(*), RUSER(*), RWSAV(1)

&

LOGICAL LWSAV(1)
EXTERNAL OBJFUN

3 Description

E04XAF/E04XAA is similar to routine FDCALC described in Gill et al. (1983a). It should be noted
that this routine aims to compute sufficiently accurate estimates of the derivatives for use with an
optimization algorithm. If you require more accurate estimates you should refer to Chapter D04.

E04XAF/E04XAA computes finite difference approximations to the gradient vector and the Hessian
matrix for a given function. The simplest approximation involves the forward-difference formula, in
which the derivative f 0 xð Þ of a univariate function f xð Þ is approximated by the quantity

�F f; hð Þ ¼ f xþ hð Þ � f xð Þ
h

for some interval h > 0, where the subscript `F' denotes ‘forward-difference’ (see Gill et al. (1983b)).

To summarise the procedure used by E04XAF/E04XAA (for the case when the objective function is
available and you require estimates of gradient values and Hessian matrix diagonal values, i.e.,
MODE ¼ 0) consider a univariate function f at the point x. (In order to obtain the gradient of a
multivariate function F xð Þ, where x is an n-vector, the procedure is applied to each component of x,
keeping the other components fixed.) Roughly speaking, the method is based on the fact that the bound
on the relative truncation error in the forward-difference approximation tends to be an increasing
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function of h, while the relative condition error bound is generally a decreasing function of h, hence
changes in h will tend to have opposite effects on these errors (see Gill et al. (1983b)).

The ‘best’ interval h is given by

hF ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f xð Þj jð ÞeR

�j j

s
ð1Þ

where � is an estimate of f 00 xð Þ, and eR is an estimate of the relative error associated with computing
the function (see Chapter 8 of Gill et al. (1981)). Given an interval h, � is defined by the second-order
approximation

� ¼ f xþ hð Þ � 2f xð Þ þ f x� hð Þ
h2

:

The decision as to whether a given value of � is acceptable involves ĉ �ð Þ, the following bound on the
relative condition error in �:

ĉ �ð Þ ¼ 4eR 1þ fj jð Þ
h2 �j j

(When � is zero, ĉ �ð Þ is taken as an arbitrary large number.)

The procedure selects the interval h
 (to be used in computing �) from a sequence of trial intervals
hkð Þ. The initial trial interval is taken as 10 �h, where

�h ¼ 2 1þ xj jð Þ ffiffiffiffiffieRp
unless you specify the initial value to be used.

The value of ĉ �ð Þ for a trial value hk is defined as ‘acceptable’ if it lies in the interval 0:001; 0:1½ �. In
this case h
 is taken as hk, and the current value of � is used to compute hF from (1). If ĉ �ð Þ is
unacceptable, the next trial interval is chosen so that the relative condition error bound will either
decrease or increase, as required. If the bound on the relative condition error is too large, a larger
interval is used as the next trial value in an attempt to reduce the condition error bound. On the other
hand, if the relative condition error bound is too small, hk is reduced.

The procedure will fail to produce an acceptable value of ĉ �ð Þ in two situations. Firstly, if f 00 xð Þ is
extremely small, then ĉ �ð Þ may never become small, even for a very large value of the interval.
Alternatively, ĉ �ð Þ may never exceed 0:001, even for a very small value of the interval. This usually
implies that f 00 xð Þ is extremely large, and occurs most often near a singularity.

As a check on the validity of the estimated first derivative, the procedure provides a comparison of the
forward-difference approximation computed with hF (as above) and the central-difference approxima-
tion computed with h
. Using the central-difference formula the first derivative can be approximated by

�c f; hð Þ ¼ f xþ hð Þ � f x� hð Þ
2h

where h > 0. If the values hF and h
 do not display some agreement, neither can be considered
reliable.

When both function and gradients are available and you require the Hessian matrix (i.e., MODE ¼ 1)
E04XAF/E04XAA follows a similar procedure to the case above with the exception that the gradient
function g xð Þ is substituted for the objective function and so the forward-difference interval for the first
derivative of g xð Þ with respect to variable xj is computed. The jth column of the approximate Hessian
matrix is then defined as in Chapter 2 of Gill et al. (1981), by

g xþ hjej
� �

� g xð Þ
hj

where hj is the best forward-difference interval associated with the jth component of g and ej is the
vector with unity in the jth position and zeros elsewhere.
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When only the objective function is available and you require the gradients and Hessian matrix (i.e.,
MODE ¼ 2) E04XAF/E04XAA again follows the same procedure as the case for MODE ¼ 0 except
that this time the value of ĉ �ð Þ for a trial value hk is defined as acceptable if it lies in the interval
0:0001; 0:01½ � and the initial trial interval is taken as

�h ¼ 2 1þ xj jð Þ ffiffiffiffiffieR4
p

:

The approximate Hessian matrix G is then defined as in Chapter 2 of Gill et al. (1981), by

Gij xð Þ ¼
1

hihj
f xþ hiei þ hjej
� �

� f xþ hieið Þ � f xþ hjej
� �

þ f xð Þ
� �

:

4 References

Gill P E, Murray W, Saunders M A and Wright M H (1983a) Documentation for FDCALC and
FDCORE Technical Report SOL 83–6 Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1983b) Computing forward-difference intervals
for numerical optimization SIAM J. Sci. Statist. Comput. 4 310–321

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Arguments

1: MSGLVL – INTEGER Input

On entry: must indicate the amount of intermediate output desired (see Section 9.1 for a
description of the printed output). All output is written on the current advisory message unit (see
X04ABF).

Value Definition

0 No printout

1 A summary is printed out for each variable plus any warning messages.

Other Values other than 0 and 1 should normally be used only at the direction of NAG.

2: N – INTEGER Input

On entry: the number n of independent variables.

Constraint: N � 1.

3: EPSRF – REAL (KIND=nag_wp) Input

On entry: must define eR, which is intended to be a measure of the accuracy with which the
problem function F can be computed. The value of eR should reflect the relative precision of
1þ F xð Þj j, i.e., acts as a relative precision when Fj j is large, and as an absolute precision when
Fj j is small. For example, if F xð Þ is typically of order 1000 and the first six significant digits are
known to be correct, an appropriate value for eR would be 1:0E�6.
A discussion of EPSRF is given in Chapter 8 of Gill et al. (1981). If EPSRF is either too small
or too large on entry a warning will be printed if MSGLVL ¼ 1, the argument IWARN set to the
appropriate value on exit and E04XAF/E04XAA will use a default value of e0:9M , where eM is the
machine precision.

If EPSRF � 0:0 on entry then E04XAF/E04XAA will use the default value internally. The default
value will be appropriate for most simple functions that are computed with full accuracy.

4: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the derivatives are to be computed.
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5: MODE – INTEGER Input/Output

On entry: indicates which derivatives are required.

MODE ¼ 0
The gradient and Hessian diagonal values having supplied the objective function via
OBJFUN.

MODE ¼ 1
The Hessian matrix having supplied both the objective function and gradients via
OBJFUN.

MODE ¼ 2
The gradient values and Hessian matrix having supplied the objective function via
OBJFUN.

On exit: is changed only if you set MODE negative in OBJFUN, i.e., you have requested
termination of E04XAF/E04XAA.

6: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

If MODE ¼ 0 or 2, OBJFUN must calculate the objective function; otherwise if MODE ¼ 1,
OBJFUN must calculate the objective function and the gradients.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER,
RUSER)

&

INTEGER MODE, N, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), OBJF, OBJGRD(N), RUSER(*)

1: MODE – INTEGER Input/Output

MODE indicates which argument values within OBJFUN need to be set.

On entry: to OBJFUN, MODE is always set to the value that you set it to before the
call to E04XAF/E04XAA.

On exit: its value must not be altered unless you wish to indicate a failure within
OBJFUN, in which case it should be set to a negative value. If MODE is negative on
exit from OBJFUN, the execution of E04XAF/E04XAA is terminated with IFAIL set to
MODE.

2: N – INTEGER Input

On entry: the number n of variables as input to E04XAF/E04XAA.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the objective function (and gradients if MODE ¼ 1) is to
be evaluated.

4: OBJF – REAL (KIND=nag_wp) Output

On exit: must be set to the value of the objective function.

5: OBJGRDðNÞ – REAL (KIND=nag_wp) array Output

On exit: if MODE ¼ 1, OBJGRDðjÞ must contain the value of the first derivative with
respect to x.

If MODE 6¼ 1, OBJGRD need not be set.
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6: NSTATE – INTEGER Input

On entry: will be set to 1 on the first call of OBJFUN by E04XAF/E04XAA, and is 0
for all subsequent calls. Thus, if you wish, NSTATE may be tested within OBJFUN in
order to perform certain calculations once only. For example you may read data.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E04XAF/
E04XAA. You should use the arrays IUSER and RUSER to supply information to
OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04XAF/E04XAA is called. Arguments denoted as Input must not be
changed by this procedure.

7: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which
E04XAF/E04XAA is called.

Constraint: LDH � N.

8: HFORWðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial trial interval for computing the appropriate partial derivative to the jth
variable.

If HFORWðjÞ � 0:0, then the initial trial interval is computed by E04XAF/E04XAA (see
Section 3).

On exit: HFORWðjÞ is the best interval found for computing a forward-difference approximation
to the appropriate partial derivative for the jth variable.

9: OBJF – REAL (KIND=nag_wp) Output

On exit: the value of the objective function evaluated at the input vector in X.

10: OBJGRDðNÞ – REAL (KIND=nag_wp) array Output

On exit: if MODE ¼ 0 or 2, OBJGRDðjÞ contains the best estimate of the first partial derivative
for the jth variable.

If MODE ¼ 1, OBJGRDðjÞ contains the first partial derivative for the jth variable evaluated at
the input vector in X.

11: HCNTRLðNÞ – REAL (KIND=nag_wp) array Output

On exit: HCNTRLðjÞ is the best interval found for computing a central-difference approximation
to the appropriate partial derivative for the jth variable.

12: HðLDH; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array H must be at least 1 if MODE ¼ 0 and at least N if
MODE ¼ 1 or 2.

On exit: if MODE ¼ 0, the estimated Hessian diagonal elements are contained in the first column
of this array.

If MODE ¼ 1 or 2, the estimated Hessian matrix is contained in the leading n by n part of this
array.
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13: IWARN – INTEGER Output

On exit: IWARN ¼ 0 on successful exit.

If the value of EPSRF on entry is too small or too large then IWARN is set to 1 or 2 respectively
on exit and the default value for EPSRF is used within E04XAF/E04XAA.

If MSGLVL > 0 then warnings will be printed if EPSRF is too small or too large.

14: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least N if MODE ¼ 0 and at least
N� Nþ 1ð Þ if MODE ¼ 1 or 2.

15: IUSERð�Þ – INTEGER array User Workspace
16: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04XAF/E04XAA, but are passed directly to OBJFUN and
should be used to pass information to this routine.

17: INFOðNÞ – INTEGER array Output

On exit: INFOðjÞ represents diagnostic information on variable j. (See Section 6 for more
details.)

18: IFAIL – INTEGER Input/Output

Note: for E04XAA, IFAIL does not occur in this position in the argument list. See the additional
arguments described below.

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Note: the following are additional arguments for specific use with E04XAA. Users of E04XAF therefore
need not read the remainder of this description.

19: LWSAVð1Þ – LOGICAL array Communication Array
20: IWSAVð1Þ – INTEGER array Communication Array
21: RWSAVð1Þ – REAL (KIND=nag_wp) array Communication Array

These arguments are no longer required by E04XAF/E04XAA.

22: IFAIL – INTEGER Input/Output

Note: see the argument description for IFAIL above.

6 Error Indicators and Warnings

On exit from E04XAF/E04XAA both diagnostic arguments INFO and IFAIL should be tested. IFAIL
represents an overall diagnostic indicator, whereas the integer array INFO represents diagnostic
information on each variable.
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If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04XAF/E04XAA because you set MODE
negative in OBJFUN. The value of IFAIL will be the same as your setting of MODE.

IFAIL ¼ 1

On entry, one or more of the following conditions are satisfied: N < 1, LDH < N or MODE is
invalid.

IFAIL ¼ 2

One or more variables have a nonzero INFO value. This may not necessarily represent an
unsuccessful exit – see diagnostic information on INFO.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

Diagnostic information returned via INFO is as follows:

INFO ¼ 1

The appropriate function appears to be constant. HFORWðiÞ is set to the initial trial interval
value (see Section 3) corresponding to a well-scaled problem and Error est. in the printed
output is set to zero. This value occurs when the estimated relative condition error in the first
derivative approximation is unacceptably large for every value of the finite difference interval. If
this happens when the function is not constant the initial interval may be too small; in this case,
it may be worthwhile to rerun E04XAF/E04XAA with larger initial trial interval values supplied
in HFORW (see Section 3). This error may also occur if the function evaluation includes an
inordinately large constant term or if EPSRF is too large.

INFO ¼ 2

The appropriate function appears to be linear or odd. HFORWðiÞ is set to the smallest interval
with acceptable bounds on the relative condition error in the forward- and backward-difference
estimates. In this case, the estimated relative condition error in the second derivative
approximation remained large for every trial interval, but the estimated error in the first
derivative approximation was acceptable for at least one interval. If the function is not linear or
odd the relative condition error in the second derivative may be decreasing very slowly, it may be
worthwhile to rerun E04XAF/E04XAA with larger initial trial interval values supplied in
HFORW (see Section 3).

INFO ¼ 3

The second derivative of the appropriate function appears to be so large that it cannot be reliably
estimated (i.e., near a singularity). HFORWðiÞ is set to the smallest trial interval.
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This value occurs when the relative condition error estimate in the second derivative remained
very small for every trial interval.

If the second derivative is not large the relative condition error in the second derivative may be
increasing very slowly. It may be worthwhile to rerun E04XAF/E04XAA with smaller initial trial
interval values supplied in HFORW (see Section 3). This error may also occur when the given
value of EPSRF is not a good estimate of a bound on the absolute error in the appropriate
function (i.e., EPSRF is too small).

INFO ¼ 4

The algorithm terminated with an apparently acceptable estimate of the second derivative.
However the forward-difference estimates of the appropriate first derivatives (computed with the
final estimate of the ‘optimal’ forward-difference interval) and the central difference estimates
(computed with the interval used to compute the final estimate of the second derivative) do not
agree to half a decimal place. The usual reason that the forward- and central-difference estimates
fail to agree is that the first derivative is small.

If the first derivative is not small, it may be helpful to execute the procedure at a different point.

7 Accuracy

If IFAIL ¼ 0 on exit the algorithm terminated successfully, i.e., the forward-difference estimates of the
appropriate first derivatives (computed with the final estimate of the ‘optimal’ forward-difference
interval hF ) and the central-difference estimates (computed with the interval h
 used to compute the
final estimate of the second derivative) agree to at least half a decimal place.

In short word length implementations when computing the full Hessian matrix given function values
only (i.e., MODE ¼ 2) the elements of the computed Hessian will have at best 1 to 2 figures of
accuracy.

8 Parallelism and Performance

E04XAF/E04XAA is not threaded in any implementation.

9 Further Comments

To evaluate an acceptable set of finite difference intervals for a well-scaled problem, the routine will
require around two function evaluations per variable; in a badly scaled problem however, as many as
six function evaluations per variable may be needed.

If you request the full Hessian matrix supplying both function and gradients (i.e., MODE ¼ 1) or
function only (i.e., MODE ¼ 2) then a further N or 3� N� Nþ 1ð Þ=2 function evaluations respectively
are required.

9.1 Description of the Printed Output

The following is a description of the printed output from E04XAF/E04XAA as controlled by the
argument MSGLVL.

Output when MSGLVL ¼ 1 is as follows:

J number of variable for which the difference interval has been computed.

X jð Þ jth variable of x as set by you.

F. dif. int. the best interval found for computing a forward-difference approximation to
the appropriate partial derivative with respect to the jth variable.

C. dif. int. the best interval found for computing a central-difference approximation to
the appropriate partial derivative with respect to the jth variable.

Error est. a bound on the estimated error in the final forward-difference approximation.
When INFOðjÞ ¼ 1, Error est. is set to zero.
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Grad. est. best estimate of the first partial derivative with respect to the jth variable.

Hess diag est. best estimate of the second partial derivative with respect to the jth variable.

fun evals. the number of function evaluations used to compute the final difference
intervals for the jth variable.

info jð Þ the value of INFO for the jth variable.

10 Example

This example computes the gradient vector and the Hessian matrix of the following function:

F xð Þ ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

at the point 2;�1; 1; 1ð Þ.

10.1 Program Text

the following program illustrates the use of E04XAF. An equivalent program illustrating the use of
E04XAA is available with the supplied Library and is also available from the NAG web site.

! E04XAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04xafe_mod

! E04XAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: objfun

! .. Parameters ..
Integer, Parameter, Public :: n = 4, nout = 6
Integer, Parameter, Public :: lhes = n
Integer, Parameter, Public :: lwork = n*n + n

Contains
Subroutine objfun(mode,n,x,objf,objgrd,nstate,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objgrd(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, c, d

! .. Executable Statements ..
a = x(1) + 10.0E0_nag_wp*x(2)
b = x(3) - x(4)
c = x(2) - 2.0E0_nag_wp*x(3)
d = x(1) - x(4)
objf = a**2 + 5.0E0_nag_wp*b**2 + c**4 + 10.0E0_nag_wp*d**4

If (mode==1) Then
objgrd(1) = 4.0E1_nag_wp*x(1)**3 + 2.0E0_nag_wp*x(1) - &

1.2E2_nag_wp*x(4)*x(1)**2 + 1.2E2_nag_wp*x(1)*x(4)**2 + &
2.0E1_nag_wp*x(2) - 4.0E1_nag_wp*x(4)**3

objgrd(2) = 2.0E2_nag_wp*x(2) + 2.0E1_nag_wp*x(1) + &
4.0E0_nag_wp*x(2)**3 + 4.8E1_nag_wp*x(2)*x(3)**2 - &
2.4E1_nag_wp*x(3)*x(2)**2 - 32.0E0_nag_wp*x(3)**3
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objgrd(3) = 1.0E1_nag_wp*x(3) - 1.0E1_nag_wp*x(4) - &
8.0E0_nag_wp*x(2)**3 + 4.8E1_nag_wp*x(3)*x(2)**2 - &
9.6E1_nag_wp*x(2)*x(3)**2 + 6.4E1_nag_wp*x(3)**3

objgrd(4) = 1.0E1_nag_wp*x(4) - 1.0E1_nag_wp*x(3) - &
4.0E1_nag_wp*x(1)**3 + 1.2E2_nag_wp*x(4)*x(1)**2 - &
1.2E2_nag_wp*x(1)*x(4)**2 + 4.0E1_nag_wp*x(4)**3

End If

Return

End Subroutine objfun
End Module e04xafe_mod
Program e04xafe

! E04XAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04xaf, nag_wp
Use e04xafe_mod, Only: lhes, lwork, n, nout, objfun

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: epsrf, objf
Integer :: i, ifail, imode, iwarn, mode, msglvl

! .. Local Arrays ..
Real (Kind=nag_wp) :: hcntrl(n), hesian(lhes,n), hforw(n), &

objgrd(n), user(1), work(lwork), &
x(n)

Integer :: info(n), iuser(1)
Character (80) :: rc(3)

! .. Executable Statements ..
Write (nout,*) ’E04XAF Example Program Results’

msglvl = 0

! Set the point at which the derivatives are to be estimated.

x(1:n) = (/2.0E0_nag_wp,-1.0E0_nag_wp,1.0E0_nag_wp,1.0E0_nag_wp/)

rc(1) = ’Find gradients and Hessian diagonals given function only’
rc(2) = ’Find Hessian matrix given function and gradients’
rc(3) = ’Find gradients and Hessian matrix given function only’

! Take default value of EPSRF.

epsrf = -1.0E0_nag_wp

! Illustrate the different values of MODE.

loop: Do imode = 0, 2
mode = imode

! Set HFORW(I) = -1.0 so that E04XAF computes the initial trial
! interval.

hforw(1:n) = -1.0E0_nag_wp

ifail = -1
Call e04xaf(msglvl,n,epsrf,x,mode,objfun,lhes,hforw,objf,objgrd, &

hcntrl,hesian,iwarn,work,iuser,user,info,ifail)

Select Case (ifail)
Case (0,2)

Write (nout,99999) rc(mode+1), mode
Write (nout,99998) ’Function value is ’, objf

If (mode==1) Then
Write (nout,*) ’Gradient vector is’
Write (nout,99997) objgrd(1:n)

Else
Write (nout,*) ’Estimated gradient vector is’
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Write (nout,99997) objgrd(1:n)
End If

If (mode==0) Then
Write (nout,*) ’Estimated Hessian matrix diagonal is’
Write (nout,99997) hesian(1:n,1)

Else
Write (nout,*) ’Estimated Hessian matrix (machine dependent) is’
Write (nout,99997)(hesian(i,1:n),i=1,n)

End If

Case Default
Exit loop

End Select

End Do loop

99999 Format (1X,/,1X,A,/,1X,’( i.e. MODE =’,I2,’ ).’)
99998 Format (1X,A,1P,E12.3)
99997 Format (4(1X,1P,E12.3))

End Program e04xafe

10.2 Program Data

None.

10.3 Program Results

E04XAF Example Program Results

Find gradients and Hessian diagonals given function only
( i.e. MODE = 0 ).
Function value is 1.550E+02
Estimated gradient vector is

2.400E+01 -2.680E+02 2.160E+02 -4.000E+01
Estimated Hessian matrix diagonal is

1.220E+02 3.080E+02 4.420E+02 1.300E+02

Find Hessian matrix given function and gradients
( i.e. MODE = 1 ).
Function value is 1.550E+02
Gradient vector is

2.400E+01 -2.680E+02 2.160E+02 -4.000E+01
Estimated Hessian matrix (machine dependent) is

1.220E+02 2.000E+01 0.000E+00 -1.200E+02
2.000E+01 3.080E+02 -2.160E+02 0.000E+00
0.000E+00 -2.160E+02 4.420E+02 -1.000E+01

-1.200E+02 0.000E+00 -1.000E+01 1.300E+02

Find gradients and Hessian matrix given function only
( i.e. MODE = 2 ).
Function value is 1.550E+02
Estimated gradient vector is

2.400E+01 -2.680E+02 2.160E+02 -4.000E+01
Estimated Hessian matrix (machine dependent) is

1.220E+02 2.000E+01 -4.404E-03 -1.200E+02
2.000E+01 3.080E+02 -2.160E+02 6.605E-03

-4.404E-03 -2.160E+02 4.420E+02 -1.000E+01
-1.200E+02 6.605E-03 -1.000E+01 1.300E+02
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NAG Library Routine Document

E04YAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04YAF checks that a user-supplied subroutine for evaluating a vector of functions and the matrix of
their first derivatives produces derivative values which are consistent with the function values
calculated.

2 Specification

SUBROUTINE E04YAF (M, N, LSQFUN, X, FVEC, FJAC, LDFJAC, IW, LIW, W, LW,
IFAIL)

&

INTEGER M, N, LDFJAC, IW(LIW), LIW, LW, IFAIL
REAL (KIND=nag_wp) X(N), FVEC(M), FJAC(LDFJAC,N), W(LW)
EXTERNAL LSQFUN

3 Description

Routines for minimizing a sum of squares of m nonlinear functions (or ‘residuals’), fi x1; x2; . . . ; xnð Þ,
for i ¼ 1; 2; . . . ;m and m � n, may require you to supply a subroutine to evaluate the fi and their first
derivatives. E04YAF checks the derivatives calculated by such user-supplied subroutines, e.g., routines
of the form required for E04GBF, E04GDF and E04HEF. As well as the routine to be checked
(LSQFUN), you must supply a point x ¼ x1; x2; . . . ; xnð ÞT at which the check will be made. E04YAF is
essentially identical to CHKLSJ in the NPL Algorithms Library.

E04YAF first calls LSQFUN to evaluate the fi xð Þ and their first derivatives, and uses these to calculate

the sum of squares F xð Þ ¼
Xm
i¼1

fi xð Þ½ �2, and its first derivatives gj ¼
@F

@xj

				
x

, for j ¼ 1; 2; . . . ; n. The

components of g along two orthogonal directions (defined by unit vectors p1 and p2, say) are then
calculated; these will be gTp1 and gTp2 respectively. The same components are also estimated by finite
differences, giving quantities

vk ¼
F xþ hpkð Þ � F xð Þ

h
; k ¼ 1; 2

where h is a small positive scalar. If the relative difference between v1 and gTp1 or between v2 and gTp2
is judged too large, an error indicator is set.

4 References

None.

5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number m of residuals, fi xð Þ, and the number n of variables, xj.

Constraint: 1 � N � M.
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3: LSQFUN – SUBROUTINE, supplied by the user. External Procedure

LSQFUN must calculate the vector of values fi xð Þ and their first derivatives
@fi
@xj

at any point x.

(The minimization routines mentioned in Section 3 give you the option of resetting an argument
to terminate immediately. E04YAF will also terminate immediately, without finishing the
checking process, if the argument in question is reset.)

The specification of LSQFUN is:

SUBROUTINE LSQFUN (IFLAG, M, N, XC, FVEC, FJAC, LDFJAC, IW, LIW,
W, LW)

&

INTEGER IFLAG, M, N, LDFJAC, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: to LSQFUN, IFLAG will be set to 2.

On exit: if you reset IFLAG to some negative number in LSQFUN and return control to
E04YAF, the routine will terminate immediately with IFAIL set to your setting of
IFLAG.

2: M – INTEGER Input

On entry: the numbers m of residuals.

3: N – INTEGER Input

On entry: the numbers n of variables.

4: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the point at which the values of the fi and the
@fi
@xj

are required.

5: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset to a negative number, FVECðiÞ must contain the value
of fi at the point x, for i ¼ 1; 2; . . . ;m.

6: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset to a negative number, FJACði; jÞ must contain the value

of
@fi
@xj

at the point x, for i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n.

7: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from
which E04YAF is called.

8: IWðLIWÞ – INTEGER array Workspace
9: LIW – INTEGER Input
10: WðLWÞ – REAL (KIND=nag_wp) array Workspace
11: LW – INTEGER Input

These arguments are present so that LSQFUN will be of the form required by the
minimization routines mentioned in Section 3. LSQFUN is called with the same
arguments IW, LIW, W, LW as in the call to E04YAF. If the recommendation in the
minimization routine document is followed, you will have no reason to examine or
change the elements of IW or W. In any case, LSQFUN must not change the first
3� NþMþM� N elements of W.

E04YAF NAG Library Manual

E04YAF.2 Mark 26



LSQFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04YAF is called. Arguments denoted as Input must not be changed
by this procedure.

4: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðjÞ, for j ¼ 1; 2; . . . ; n, must be set to the coordinates of a suitable point at which to
check the derivatives calculated by LSQFUN. ‘Obvious’ settings, such as 0 or 1, should not be
used since, at such particular points, incorrect terms may take correct values (particularly zero),
so that errors can go undetected. For a similar reason, it is preferable that no two elements of X
should have the same value.

5: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: unless you set IFLAG negative in the first call of LSQFUN, FVECðiÞ contains the value
of fi at the point supplied by you in X, for i ¼ 1; 2; . . . ;m.

6: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: unless you set IFLAG negative in the first call of LSQFUN, FJACði; jÞ contains the

value of the first derivative
@fi
@xj

at the point given in X, as calculated by LSQFUN, for

i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n.

7: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which
E04YAF is called.

Constraint: LDFJAC � M.

8: IWðLIWÞ – INTEGER array Communication Array

This array appears in the argument list purely so that, if E04YAF is called by another library
routine, the library routine can pass quantities to LSQFUN via IW. IW is not examined or
changed by E04YAF. In general you must provide an array IW, but are advised not to use it.

9: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04YAF is
called.

Constraint: LIW � 1.

10: WðLWÞ – REAL (KIND=nag_wp) array Communication Array
11: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04YAF is
called.

Constraint: LW � 3� NþMþM� N.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04YAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04YAF because you have set IFLAG negative
in LSQFUN. The setting of IFAIL will be the same as your setting of IFLAG. The check on
LSQFUN will not have been completed.

IFAIL ¼ 1

On entry, M < N,
or N < 1,
or LDFJAC < M,
or LIW < 1,
or LW < 3� NþMþM� N.

IFAIL ¼ 2

You should check carefully the derivation and programming of expressions for the
@fi
@xj

, because

it is very unlikely that LSQFUN is calculating them correctly.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

IFAIL is set to 2 if

vk � gTpk
� �2 � h� gTpk

� �2 þ 1
� �

for k ¼ 1 or 2. (See Section 3 for definitions of the quantities involved.) The scalar h is set equal to
ffiffi
�
p

,
where � is the machine precision as given by X02AJF.

8 Parallelism and Performance

E04YAF is not threaded in any implementation.

E04YAF NAG Library Manual

E04YAF.4 Mark 26



9 Further Comments

E04YAF calls LSQFUN three times.

Before using E04YAF to check the calculation of the first derivatives, you should be confident that
LSQFUN is calculating the residuals correctly.

E04YAF only checks the derivatives calculated by a user-supplied routine when IFLAG ¼ 2. So, if
LSQFUN is intended for use in conjunction with a minimization routine which may set IFLAG to 1,

you must check that, for given settings of the XCðjÞ, LSQFUN produces the same values for the
@fi
@xj

when IFLAG is set to 1 as when IFLAG is set to 2.

10 Example

Suppose that it is intended to use E04GBF or E04GDF to find least squares estimates of x1; x2 and x3
in the model

y ¼ x1 þ
t1

x2t2 þ x3t3
using the 15 sets of data given in the following table.

y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

The following program could be used to check the first derivatives calculated by LSQFUN. (The tests
of whether IFLAG ¼ 0 or 1 in LSQFUN are present ready for when LSQFUN is called by E04GBF or
E04GDF. E04YAF will always call LSQFUN with IFLAG set to 2.)

10.1 Program Text

! E04YAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04yafe_mod

! E04YAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: lsqfun

! .. Parameters ..
Integer, Parameter, Public :: liw = 1, mdec = 15, ndec = 3, &

nin = 5, nout = 6
Integer, Parameter, Public :: ldfjac = mdec
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Integer, Parameter, Public :: lw = 3*ndec + mdec + mdec*ndec
! .. Local Arrays ..

Real (Kind=nag_wp), Public, Save :: t(mdec,ndec), y(mdec)
Contains

Subroutine lsqfun(iflag,m,n,xc,fvec,fjac,ldfjac,iw,liw,w,lw)

! Routine to evaluate the residuals and their 1st derivatives

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: ldfjac, liw, lw, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(ldfjac,n), w(lw)
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Real (Kind=nag_wp) :: denom, dummy
Integer :: i

! .. Executable Statements ..
Do i = 1, m

denom = xc(2)*t(i,2) + xc(3)*t(i,3)

If (iflag/=1) Then
fvec(i) = xc(1) + t(i,1)/denom - y(i)

End If

If (iflag/=0) Then
fjac(i,1) = 1.0E0_nag_wp
dummy = -1.0E0_nag_wp/(denom*denom)
fjac(i,2) = t(i,1)*t(i,2)*dummy
fjac(i,3) = t(i,1)*t(i,3)*dummy

End If

End Do

Return

End Subroutine lsqfun
End Module e04yafe_mod
Program e04yafe

! E04YAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04yaf, nag_wp
Use e04yafe_mod, Only: ldfjac, liw, lsqfun, lw, mdec, ndec, nin, nout, &

t, y
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Integer :: i, ifail, m, n
! .. Local Arrays ..

Real (Kind=nag_wp) :: fjac(ldfjac,ndec), fvec(mdec), &
w(lw), x(ndec)

Integer :: iw(liw)
! .. Executable Statements ..

Write (nout,*) ’E04YAF Example Program Results’

! Skip heading in data file
Read (nin,*)

n = ndec
m = mdec

! Observations of TJ (J = 1, 2, ..., n) are held in T(I, J)
! (I = 1, 2, ..., m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:n)

End Do
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! Set up an arbitrary point at which to check the 1st
! derivatives

x(1:n) = (/0.19E0_nag_wp,-1.34E0_nag_wp,0.88E0_nag_wp/)

Write (nout,*)
Write (nout,*) ’The test point is’
Write (nout,99999) x(1:n)

ifail = -1
Call e04yaf(m,n,lsqfun,x,fvec,fjac,ldfjac,iw,liw,w,lw,ifail)

If (ifail>=0 .And. ifail/=1) Then

Select Case (ifail)
Case (0)

Write (nout,*)
Write (nout,*) ’1st derivatives are consistent with residual values’

Case (2)
Write (nout,*)
Write (nout,*) ’Probable error in calculation of 1st derivatives’

End Select

Write (nout,*)
Write (nout,*) ’At the test point, LSQFUN gives’
Write (nout,*)
Write (nout,*) ’ Residuals 1st derivatives’
Write (nout,99998)(fvec(i),fjac(i,1:n),i=1,m)

End If

99999 Format (1X,4F10.5)
99998 Format (1X,1P,4E15.3)

End Program e04yafe

10.2 Program Data

E04YAF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

10.3 Program Results

E04YAF Example Program Results

The test point is
0.19000 -1.34000 0.88000

1st derivatives are consistent with residual values

At the test point, LSQFUN gives

Residuals 1st derivatives
-2.029E-03 1.000E+00 -4.061E-02 -2.707E-03
-1.076E-01 1.000E+00 -9.689E-02 -1.384E-02
-2.330E-01 1.000E+00 -1.785E-01 -4.120E-02
-3.785E-01 1.000E+00 -3.043E-01 -1.014E-01
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-5.836E-01 1.000E+00 -5.144E-01 -2.338E-01
-8.689E-01 1.000E+00 -9.100E-01 -5.460E-01
-1.346E+00 1.000E+00 -1.810E+00 -1.408E+00
-2.374E+00 1.000E+00 -4.726E+00 -4.726E+00
-2.975E+00 1.000E+00 -6.076E+00 -6.076E+00
-4.013E+00 1.000E+00 -7.876E+00 -7.876E+00
-5.323E+00 1.000E+00 -1.040E+01 -1.040E+01
-7.292E+00 1.000E+00 -1.418E+01 -1.418E+01
-1.057E+01 1.000E+00 -2.048E+01 -2.048E+01
-1.713E+01 1.000E+00 -3.308E+01 -3.308E+01
-3.681E+01 1.000E+00 -7.089E+01 -7.089E+01
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NAG Library Routine Document

E04YBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04YBF checks that a user-supplied subroutine for evaluating the second derivative term of the Hessian
matrix of a sum of squares is consistent with a user-supplied subroutine for calculating the
corresponding first derivatives.

2 Specification

SUBROUTINE E04YBF (M, N, LSQFUN, LSQHES, X, FVEC, FJAC, LDFJAC, B, LB,
IW, LIW, W, LW, IFAIL)

&

INTEGER M, N, LDFJAC, LB, IW(LIW), LIW, LW, IFAIL
REAL (KIND=nag_wp) X(N), FVEC(M), FJAC(LDFJAC,N), B(LB), W(LW)
EXTERNAL LSQFUN, LSQHES

3 Description

Routines for minimizing a sum of squares of m nonlinear functions (or ‘residuals’), fi x1; x2; . . . ; xnð Þ,
for i ¼ 1; 2; . . . ;m and m � n, may require you to supply a subroutine to evaluate the quantities

bjk ¼
Xm
i¼1
fi

@2fi
@xj@xk

for j ¼ 1; 2; . . . ; n and k ¼ 1; 2; . . . ; j. E04YBF is designed to check the bjk calculated by such user-
supplied subroutines. As well as the routine to be checked (LSQHES), you must supply a subroutine
(LSQFUN) to evaluate the fi and their first derivatives, and a point x ¼ x1; x2; . . . ; xnð ÞT at which the
checks will be made. Note that E04YBF checks routines of the form required by E04HEF. E04YBF is
essentially identical to CHKLSH in the NPL Algorithms Library.

E04YBF first calls user-supplied subroutines LSQFUN and LSQHES to evaluate the first derivatives
and the bjk at x. Let J denote the m by n matrix of first derivatives of the residuals. The Hessian matrix
of the sum of squares,

G ¼ JTJ þB;

is calculated and projected onto two orthogonal vectors y and z to give the scalars yTGy and zTGz
respectively. The same projections of the Hessian matrix are also estimated by finite differences, giving

p ¼ yTg xþ hyð Þ � yTg xð Þð Þ=h and
q ¼ zTg xþ hzð Þ � zTg xð Þð Þ=h

respectively, where gðÞ denotes the gradient vector of the sum of squares at the point in brackets and h
is a small positive scalar. If the relative difference between p and yTGy or between q and zTGz is
judged too large, an error indicator is set.

4 References

None.
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5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number m of residuals, fi xð Þ, and the number n of variables, xj.

Constraint: 1 � N � M.

3: LSQFUN – SUBROUTINE, supplied by the user. External Procedure

LSQFUN must calculate the vector of values fi xð Þ and their first derivatives
@fi
@xj

at any point x.

(E04HEF gives you the option of resetting arguments of LSQFUN to cause the minimization
process to terminate immediately. E04YBF will also terminate immediately, without finishing the
checking process, if the argument in question is reset.)

The specification of LSQFUN is:

SUBROUTINE LSQFUN (IFLAG, M, N, XC, FVEC, FJAC, LDFJAC, IW, LIW,
W, LW)

&

INTEGER IFLAG, M, N, LDFJAC, IW(LIW), LIW, LW
REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: to LSQFUN, IFLAG will be set to 2.

On exit: if you reset IFLAG to some negative number in LSQFUN and return control to
E04YBF, the routine will terminate immediately with IFAIL set to your setting of
IFLAG.

2: M – INTEGER Input

On entry: the numbers m of residuals.

3: N – INTEGER Input

On entry: the numbers n of variables.

4: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the values of the fi and the
@fi
@xj

are required.

5: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset to a negative number, FVECðiÞ must contain the value
of fi at the point x, for i ¼ 1; 2; . . . ;m.

6: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset to a negative number, FJACði; jÞ must contain the value

of
@fi
@xj

at the point x, for i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n.

7: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from
which E04YBF is called.
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8: IWðLIWÞ – INTEGER array Workspace
9: LIW – INTEGER Input
10: WðLWÞ – REAL (KIND=nag_wp) array Workspace
11: LW – INTEGER Input

These arguments are present so that LSQFUN will be of the form required by E04HEF.
LSQFUN is called with E04YBF's arguments IW, LIW, W, LW as these arguments. If
the recommendation in E04HEF is followed, you will have no reason to examine or
change the elements of IW or W. In any case, LSQFUN must not change the first
5� NþMþM� Nþ N� N� 1ð Þ=2 (or 6þ 2�M if N ¼ 1) elements of W.

LSQFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04YBF is called. Arguments denoted as Input must not be changed
by this procedure.

Note: E04YAF should be used to check the first derivatives calculated by LSQFUN before
E04YBF is used to check the bjk since E04YBF assumes that the first derivatives are correct.

4: LSQHES – SUBROUTINE, supplied by the user. External Procedure

LSQHES must calculate the elements of the symmetric matrix

B xð Þ ¼
Xm
i¼1
fi xð ÞGi xð Þ;

at any point x, where Gi xð Þ is the Hessian matrix of fi xð Þ. (As with LSQFUN, an argument can
be set to cause immediate termination.)

The specification of LSQHES is:

SUBROUTINE LSQHES (IFLAG, M, N, FVEC, XC, B, LB, IW, LIW, W, LW)

INTEGER IFLAG, M, N, LB, IW(LIW), LIW, LW
REAL (KIND=nag_wp) FVEC(M), XC(N), B(LB), W(LW)

1: IFLAG – INTEGER Input/Output

On entry: is set to a non-negative number.

On exit: if LSQHES resets IFLAG to some negative number, E04YBF will terminate
immediately, with IFAIL set to your setting of IFLAG.

2: M – INTEGER Input

On entry: the numbers m of residuals.

3: N – INTEGER Input

On entry: the numbers n of variables.

4: FVECðMÞ – REAL (KIND=nag_wp) array Input

On entry: the value of the residual fi at the point x, for i ¼ 1; 2; . . . ;m, so that the
values of the fi can be used in the calculation of the elements of B.

5: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the elements of B are to be evaluated.

6: BðLBÞ – REAL (KIND=nag_wp) array Output

On exit: unless IFLAG is reset to a negative number B must contain the lower triangle
of the matrix B xð Þ, evaluated at the point in XC, stored by rows. (The upper triangle is
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not needed because the matrix is symmetric.) More precisely, Bðj j � 1ð Þ=2þ kÞ must

contain
Xm
i¼1
fi

@2fi
@xj@xk

evaluated at the point x, for j ¼ 1; 2; . . . ; n and k ¼ 1; 2; . . . ; j.

7: LB – INTEGER Input

On entry: gives the length of the array B.

8: IWðLIWÞ – INTEGER array Workspace
9: LIW – INTEGER Input
10: WðLWÞ – REAL (KIND=nag_wp) array Workspace
11: LW – INTEGER Input

As in LSQFUN, these arguments correspond to the arguments IW, LIW, W, LW of
E04YBF. LSQHES must not change the first 5� NþM� Nþ N� N� 1ð Þ=2 (or
6þ 2�M if N ¼ 1) elements of W.

LSQHES must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E04YBF is called. Arguments denoted as Input must not be changed by this
procedure.

5: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðjÞ, for j ¼ 1; 2; . . . ; n, must be set to the coordinates of a suitable point at which to
check the bjk calculated by LSQHES. ‘Obvious’ settings, such as 0 or 1, should not be used since,
at such particular points, incorrect terms may take correct values (particularly zero), so that errors
could go undetected. For a similar reason, it is preferable that no two elements of X should have
the same value.

6: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: unless you set IFLAG negative in the first call of LSQFUN, FVECðiÞ contains the value
of fi at the point supplied by you in X, for i ¼ 1; 2; . . . ;m.

7: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: unless you set IFLAG negative in the first call of LSQFUN, FJACði; jÞ contains the

value of the first derivative
@fi
@xj

at the point given in X, as calculated by LSQFUN, for

i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n.

8: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which
E04YBF is called.

Constraint: LDFJAC � M.

9: BðLBÞ – REAL (KIND=nag_wp) array Output

On exit: unless you set IFLAG negative in LSQHES, Bðj � j � 1ð Þ=2þ kÞ contains the value of
bjk at the point given in X as calculated by LSQHES, for j ¼ 1; 2; . . . ; n and k ¼ 1; 2; . . . ; j.

10: LB – INTEGER Input

On entry: the dimension of the array B as declared in the (sub)program from which E04YBF is
called.

Constraint: LB � Nþ 1ð Þ � N=2.

E04YBF NAG Library Manual

E04YBF.4 Mark 26



11: IWðLIWÞ – INTEGER array Workspace

This array appears in the argument list purely so that, if E04YBF is called by another library
routine, the library routine can pass quantities to user-supplied subroutines LSQFUN and
LSQHES via IW. IW is not examined or changed by E04YBF. In general you must provide an
array IW, but are advised not to use it.

12: LIW – INTEGER Input

On entry: the actual length of IW as declared in the subroutine from which E04YBF is called.

Constraint: LIW � 1.

13: WðLWÞ – REAL (KIND=nag_wp) array Workspace
14: LW – INTEGER Input

On entry: the actual length of W as declared in the subroutine from which E04YBF is called.

Constraints:

if N > 1, LW � 5� NþMþM� Nþ N� N� 1ð Þ=2;
if N ¼ 1, LW � 6þ 2�M.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04YBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04YBF because you have set IFLAG negative
in user-supplied subroutines LSQFUN or LSQHES. The setting of IFAIL will be the same as
your setting of IFLAG. The check on LSQHES will not have been completed.

IFAIL ¼ 1

On entry, M < N,
or N < 1,
or LDFJAC < M,
or LB < Nþ 1ð Þ � N=2,
or LIW < 1,
or LW < 5� NþMþM� Nþ N� N� 1ð Þ=2, if N > 1,
or LW < 6þ 2�M, if N ¼ 1.
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IFAIL ¼ 2

You should check carefully the derivation and programming of expressions for the bjk, because it
is very unlikely that LSQHES is calculating them correctly.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

IFAIL is set to 2 if

yTGy� pj j �
ffiffiffi
h
p

yTGyj j þ 1:0ð Þ or
zTGz� qj j �

ffiffiffi
h
p

zTGzj j þ 1:0ð Þ

where h is set equal to
ffiffi
�
p

(� being the machine precision as given by X02AJF) and other quantities are
defined as in Section 3.

8 Parallelism and Performance

E04YBF is not threaded in any implementation.

9 Further Comments

E04YBF calls LSQHES once and LSQFUN three times.

10 Example

Suppose that it is intended to use E04HEF to find least squares estimates of x1; x2 and x3 in the model

y ¼ x1 þ
t1

x2t2 þ x3t3
using the 15 sets of data given in the following table.
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y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

This example program could be used to check the bjk calculated by LSQHES required. (The call of
E04YBF is preceded by a call of E04YAF to check LSQFUN which calculates the first derivatives.)

10.1 Program Text

! E04YBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04ybfe_mod

! E04YBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: lsqfun, lsqhes

! .. Parameters ..
Integer, Parameter, Public :: liw = 1, mdec = 15, ndec = 3, &

nin = 5, nout = 6
Integer, Parameter, Public :: lb = ndec*(ndec+1)/2
Integer, Parameter, Public :: ldfjac = mdec
Integer, Parameter, Public :: lw = 5*ndec + mdec + mdec*ndec + &

ndec*(ndec-1)/2
! .. Local Arrays ..

Real (Kind=nag_wp), Public, Save :: t(mdec,ndec), y(mdec)
Contains

Subroutine lsqfun(iflag,m,n,xc,fvec,fjac,ldfjac,iw,liw,w,lw)

! Routine to evaluate the residuals and their 1st derivatives

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: ldfjac, liw, lw, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(ldfjac,n), w(lw)
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Real (Kind=nag_wp) :: denom, dummy
Integer :: i

! .. Executable Statements ..
Do i = 1, m

denom = xc(2)*t(i,2) + xc(3)*t(i,3)
fvec(i) = xc(1) + t(i,1)/denom - y(i)
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fjac(i,1) = 1.0E0_nag_wp
dummy = -1.0E0_nag_wp/(denom*denom)
fjac(i,2) = t(i,1)*t(i,2)*dummy
fjac(i,3) = t(i,1)*t(i,3)*dummy

End Do

Return

End Subroutine lsqfun
Subroutine lsqhes(iflag,m,n,fvec,xc,b,lb,iw,liw,w,lw)

! Routine to compute the lower triangle of the matrix B
! (stored by rows in the array B)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: lb, liw, lw, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: b(lb)
Real (Kind=nag_wp), Intent (In) :: fvec(m), xc(n)
Real (Kind=nag_wp), Intent (Inout) :: w(lw)
Integer, Intent (Inout) :: iw(liw)

! .. Local Scalars ..
Real (Kind=nag_wp) :: dummy, sum22, sum32, sum33
Integer :: i

! .. Executable Statements ..
b(1) = 0.0E0_nag_wp
b(2) = 0.0E0_nag_wp
sum22 = 0.0E0_nag_wp
sum32 = 0.0E0_nag_wp
sum33 = 0.0E0_nag_wp

Do i = 1, m
dummy = 2.0E0_nag_wp*t(i,1)/(xc(2)*t(i,2)+xc(3)*t(i,3))**3
sum22 = sum22 + fvec(i)*dummy*t(i,2)**2
sum32 = sum32 + fvec(i)*dummy*t(i,2)*t(i,3)
sum33 = sum33 + fvec(i)*dummy*t(i,3)**2

End Do

b(3) = sum22
b(4) = 0.0E0_nag_wp
b(5) = sum32
b(6) = sum33

Return

End Subroutine lsqhes
End Module e04ybfe_mod
Program e04ybfe

! E04YBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04yaf, e04ybf, nag_wp
Use e04ybfe_mod, Only: lb, ldfjac, liw, lsqfun, lsqhes, lw, mdec, ndec, &

nin, nout, t, y
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Integer :: i, ifail, k, m, n
! .. Local Arrays ..

Real (Kind=nag_wp) :: b(lb), fjac(ldfjac,ndec), &
fvec(mdec), w(lw), x(ndec)

Integer :: iw(liw)
! .. Executable Statements ..

Write (nout,*) ’E04YBF Example Program Results’

! Skip heading in data file
Read (nin,*)

m = mdec
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n = ndec

! Observations of TJ (J = 1, 2, ..., n) are held in T(I, J)
! (I = 1, 2, ..., m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:n)

End Do

! Set up an arbitrary point at which to check the derivatives

x(1:n) = (/0.19E0_nag_wp,-1.34E0_nag_wp,0.88E0_nag_wp/)

! Check the 1st derivatives

ifail = 0
Call e04yaf(m,n,lsqfun,x,fvec,fjac,ldfjac,iw,liw,w,lw,ifail)

Write (nout,*)
Write (nout,*) ’The test point is’
Write (nout,99999) x(1:n)

! Check the evaluation of B

ifail = -1
Call e04ybf(m,n,lsqfun,lsqhes,x,fvec,fjac,ldfjac,b,lb,iw,liw,w,lw,ifail)

If (ifail>=0 .And. ifail/=1) Then

Select Case (ifail)
Case (0)

Write (nout,*)
Write (nout,*) ’The matrix B is consistent with 1st derivatives’

Case (2)
Write (nout,*)
Write (nout,*) ’Probable error in calculation of the matrix B’

End Select

Write (nout,*)
Write (nout,*) ’At the test point, LSQFUN gives’
Write (nout,*)
Write (nout,*) ’ Residuals 1st derivatives’
Write (nout,99998)(fvec(i),fjac(i,1:n),i=1,m)
Write (nout,*)
Write (nout,*) ’and LSQHES gives the lower triangle of the matrix B’
Write (nout,*)

k = 1

Do i = 1, n
Write (nout,99998) b(k:(k+i-1))
k = k + i

End Do

End If

99999 Format (1X,4F10.5)
99998 Format (1X,1P,4E15.3)

End Program e04ybfe

10.2 Program Data

E04YBF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
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0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

10.3 Program Results

E04YBF Example Program Results

The test point is
0.19000 -1.34000 0.88000

The matrix B is consistent with 1st derivatives

At the test point, LSQFUN gives

Residuals 1st derivatives
-2.029E-03 1.000E+00 -4.061E-02 -2.707E-03
-1.076E-01 1.000E+00 -9.689E-02 -1.384E-02
-2.330E-01 1.000E+00 -1.785E-01 -4.120E-02
-3.785E-01 1.000E+00 -3.043E-01 -1.014E-01
-5.836E-01 1.000E+00 -5.144E-01 -2.338E-01
-8.689E-01 1.000E+00 -9.100E-01 -5.460E-01
-1.346E+00 1.000E+00 -1.810E+00 -1.408E+00
-2.374E+00 1.000E+00 -4.726E+00 -4.726E+00
-2.975E+00 1.000E+00 -6.076E+00 -6.076E+00
-4.013E+00 1.000E+00 -7.876E+00 -7.876E+00
-5.323E+00 1.000E+00 -1.040E+01 -1.040E+01
-7.292E+00 1.000E+00 -1.418E+01 -1.418E+01
-1.057E+01 1.000E+00 -2.048E+01 -2.048E+01
-1.713E+01 1.000E+00 -3.308E+01 -3.308E+01
-3.681E+01 1.000E+00 -7.089E+01 -7.089E+01

and LSQHES gives the lower triangle of the matrix B

0.000E+00
0.000E+00 1.571E+04
0.000E+00 1.571E+04 1.571E+04
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NAG Library Routine Document

E04YCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04YCF returns estimates of elements of the variance-covariance matrix of the estimated regression
coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the
function f xð Þ at the solution.

This routine may be used following any one of the nonlinear least squares routines E04FCF, E04FYF,
E04GBF, E04GDF, E04GYF, E04GZF, E04HEF or E04HYF.

2 Specification

SUBROUTINE E04YCF (JOB, M, N, FSUMSQ, S, V, LDV, CJ, WORK, IFAIL)

INTEGER JOB, M, N, LDV, IFAIL
REAL (KIND=nag_wp) FSUMSQ, S(N), V(LDV,N), CJ(N), WORK(N)

3 Description

E04YCF is intended for use when the nonlinear least squares function, F xð Þ ¼ fT xð Þf xð Þ, represents
the goodness-of-fit of a nonlinear model to observed data. The routine assumes that the Hessian of
F xð Þ, at the solution, can be adequately approximated by 2JTJ, where J is the Jacobian of f xð Þ at the
solution. The estimated variance-covariance matrix C is then given by

C ¼ �2 JTJ
� ��1

; JTJ nonsingular;

where �2 is the estimated variance of the residual at the solution, �x, given by

�2 ¼ F �xð Þ
m� n;

m being the number of observations and n the number of variables.

The diagonal elements of C are estimates of the variances of the estimated regression coefficients. See
the E04 Chapter Introduction, Bard (1974) and Wolberg (1967) for further information on the use of C.

When JTJ is singular then C is taken to be

C ¼ �2 JTJ
� �y

;

where JTJð Þy is the pseudo-inverse of JTJ , and

�2 ¼ F �xð Þ
m� k; k ¼ rank Jð Þ

but in this case the argument IFAIL is returned as nonzero as a warning to you that J has linear
dependencies in its columns. The assumed rank of J can be obtained from IFAIL.

The routine can be used to find either the diagonal elements of C, or the elements of the jth column of
C, or the whole of C.

E04YCF must be preceded by one of the nonlinear least squares routines mentioned in Section 1, and
requires the arguments FSUMSQ, S and V to be supplied by those routines (e.g., see E04FCF).
FSUMSQ is the residual sum of squares F �xð Þ and S and V contain the singular values and right
singular vectors respectively in the singular value decomposition of J . S and V are returned directly by
the comprehensive routines E04FCF, E04GBF, E04GDF and E04HEF, but are returned as part of the
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workspace argument W (from one of the easy-to-use routines). In the case of E04FYF, S starts at
WðNSÞ, where

NS ¼ 6� Nþ 2�MþM� Nþ 1þmax 1;N� N� 1ð Þ=2ð Þ

and in the cases of the remaining easy-to-use routines, S starts at WðNSÞ, where
NS ¼ 7� Nþ 2�MþM� Nþ N� Nþ 1ð Þ=2þ 1þmax 1;N� N� 1ð Þ=2ð Þ:

The argument V starts immediately following the elements of S, so that V starts at WðNV Þ, where
NV ¼ NS þ N:

For all the easy-to-use routines the argument LDV must be supplied as N. Thus a call to E04YCF
following E04FYF can be illustrated as

.
.
.
CALL E04FYF (M, N, LFUN1, X, FSUMSQ, W, LW, IUSER, RUSER, IFAIL)
.
.
.
NS = 6*N _ 2*M + M*N + 1 MAX((1,(N*(N-1))/2)
NV = NS + N;
CALL E04YCF (JOB, M, N, FSUMSQ, W(NS), W(NV), N, CJ, WORK, IFAIL)

where the arguments M, N, FSUMSQ and the nþ n2
� �

elements WðNSÞ;WðNS þ 1Þ; . . . ;
WðNV þ N2 � 1Þ must not be altered between the calls to E04FYF and E04YCF. The above illustration
also holds for a call to E04YCF following a call to one of E04GYF, E04GZF or E04HYF, except that
NS must be computed as

NS ¼ 7� Nþ 2�MþM� Nþ N� Nþ 1ð Þð Þ=2þ 1þmax 1;N� N� 1ð Þð Þ=2ð Þ:

4 References

Bard Y (1974) Nonlinear Parameter Estimation Academic Press

Wolberg J R (1967) Prediction Analysis Van Nostrand

5 Arguments

1: JOB – INTEGER Input

On entry: which elements of C are returned as follows:

JOB ¼ �1
The n by n symmetric matrix C is returned.

JOB ¼ 0
The diagonal elements of C are returned.

JOB > 0
The elements of column JOB of C are returned.

Constraint: �1 � JOB � N.

2: M – INTEGER Input

On entry: the number m of observations (residuals fi xð Þ).
Constraint: M � N.

3: N – INTEGER Input

On entry: the number n of variables xj
� �

.

Constraint: 1 � N � M.
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4: FSUMSQ – REAL (KIND=nag_wp) Input

On entry: the sum of squares of the residuals, F �xð Þ, at the solution �x, as returned by the
nonlinear least squares routine.

Constraint: FSUMSQ � 0:0.

5: SðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n singular values of the Jacobian as returned by the nonlinear least squares routine.
See Section 3 for information on supplying S following one of the easy-to-use routines.

6: VðLDV;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the n by n right-hand orthogonal matrix (the right singular vectors) of J as returned by
the nonlinear least squares routine. See Section 3 for information on supplying V following one
of the easy-to-use routines.

On exit: if JOB � 0, V is unchanged.

If JOB ¼ �1, the leading n by n part of V is overwritten by the n by n matrix C. When E04YCF
is called with JOB ¼ �1 following an easy-to-use routine this means that C is returned, column
by column, in the n2 elements of W given by WðNV Þ;WðNV þ 1Þ; . . . ;WðNV þ N2 � 1Þ. (See
Section 3 for the definition of NV .)

7: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which E04YCF
is called. When V is passed in the workspace argument W (following one of the easy-to-use least
square routines), LDV must be the value N.

Constraint: if JOB ¼ �1, LDV � N.

8: CJðNÞ – REAL (KIND=nag_wp) array Output

On exit: if JOB ¼ 0, CJ returns the n diagonal elements of C.

If JOB ¼ j > 0, CJ returns the n elements of the jth column of C.

If JOB ¼ �1, CJ is not referenced.

9: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

If JOB ¼ �1 or 0, WORK is used as internal workspace.

If JOB > 0, WORK is not referenced.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04YCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, JOB < �1,
or JOB > N,
or N < 1,
or M < N,
or FSUMSQ < 0:0,
or LDV < N.

IFAIL ¼ 2

The singular values are all zero, so that at the solution the Jacobian matrix J has rank 0.

IFAIL > 2

At the solution the Jacobian matrix contains linear, or near linear, dependencies amongst its
columns. In this case the required elements of C have still been computed based upon J having
an assumed rank given by IFAIL� 2. The rank is computed by regarding singular values SV jð Þ
that are not larger than 10�� SV 1ð Þ as zero, where � is the machine precision (see X02AJF). If
you expect near linear dependencies at the solution and are happy with this tolerance in
determining rank you should call E04YCF with IFAIL ¼ 1 in order to prevent termination (see
the description of IFAIL). It is then essential to test the value of IFAIL on exit from E04YCF.

Overflow

If overflow occurs then either an element of C is very large, or the singular values or singular
vectors have been incorrectly supplied.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed elements of C will be the exact covariances corresponding to a closely neighbouring
Jacobian matrix J .
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8 Parallelism and Performance

E04YCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E04YCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When JOB ¼ �1 the time taken by E04YCF is approximately proportional to n3. When JOB � 0 the
time taken by the routine is approximately proportional to n2.

10 Example

This example estimates the variance-covariance matrix C for the least squares estimates of x1, x2 and
x3 in the model

y ¼ x1 þ
t1

x2t2 þ x3t3
using the 15 sets of data given in the following table:

y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

The program uses 0:5; 1:0; 1:5ð Þ as the initial guess at the position of the minimum and computes the
least squares solution using E04FYF. See the routine document E04FYF for further information.

10.1 Program Text

! E04YCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e04ycfe_mod

! E04YCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
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Public :: lsfun1
! .. Parameters ..

Integer, Parameter, Public :: mdec = 15, ndec = 3, nin = 5, &
nout = 6

Integer, Parameter, Public :: lwork = 7*ndec + ndec*ndec + 2*mdec* &
ndec + 3*mdec + ndec*(ndec-1)/2

! .. Local Arrays ..
Real (Kind=nag_wp), Public, Save :: t(mdec,ndec), y(mdec)

Contains
Subroutine lsfun1(m,n,xc,fvec,iuser,ruser)

! Routine to evaluate the residuals

! .. Scalar Arguments ..
Integer, Intent (In) :: m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
fvec(1:m) = xc(1) + t(1:m,1)/(xc(2)*t(1:m,2)+xc(3)*t(1:m,3)) - y(1:m)

Return

End Subroutine lsfun1
End Module e04ycfe_mod
Program e04ycfe

! E04YCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04fyf, e04ycf, nag_wp
Use e04ycfe_mod, Only: lsfun1, lwork, mdec, ndec, nin, nout, t, y

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fsumsq
Integer :: i, ifail, job, ldv, m, n, ns, nv

! .. Local Arrays ..
Real (Kind=nag_wp) :: cj(ndec), ruser(1), work(lwork), &

x(ndec)
Integer :: iuser(1)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E04YCF Example Program Results’

! Skip heading in data file
Read (nin,*)

m = mdec
n = ndec

! Observations of TJ (J = 1, 2, ..., n) are held in T(I, J)
! (I = 1, 2, ..., m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:n)

End Do

x(1:n) = (/0.5E0_nag_wp,1.0E0_nag_wp,1.5E0_nag_wp/)

ifail = -1
Call e04fyf(m,n,lsfun1,x,fsumsq,work,lwork,iuser,ruser,ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’On exit, the sum of squares is’, fsumsq
Write (nout,*) ’at the point’
Write (nout,99998) x(1:n)
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! Compute estimates of the variances of the sample regression
! coefficients at the final point.
! Since NS is greater than N we can use the first N elements
! of the array WORK for the dummy argument WORK.

ns = 6*n + 2*m + m*n + 1 + max(1,(n*(n-1))/2)
nv = ns + n
job = 0
ldv = n

ifail = -1
Call e04ycf(job,m,n,fsumsq,work(ns),work(nv),ldv,cj,work,ifail)

Select Case (ifail)
Case (0,3:)

Write (nout,*)
Write (nout,*) ’and estimates of the variances of the sample’
Write (nout,*) ’regression coefficients are’
Write (nout,99998) cj(1:n)

End Select

End Select

99999 Format (1X,A,F12.4)
99998 Format (1X,3F12.4)

End Program e04ycfe

10.2 Program Data

E04YCF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

10.3 Program Results

E04YCF Example Program Results

On exit, the sum of squares is 0.0082
at the point

0.0824 1.1330 2.3437

and estimates of the variances of the sample
regression coefficients are

0.0002 0.0948 0.0878
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NAG Library Routine Document

E04ZMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04ZMF is an option setting routine for solvers from the NAG optimization modelling suite, namely
E04STF and E04SVF. It can set a single optional parameter or reset all of them to their default.

2 Specification

SUBROUTINE E04ZMF (HANDLE, OPTSTR, IFAIL)

INTEGER IFAIL
CHARACTER(*) OPTSTR
TYPE (C_PTR) HANDLE

3 Description

E04ZMF can only be called on handles which have been initialized by E04RAF and not during the call
to the solver. It has two purposes: to reset all optional parameters to their default values; or to set a
single optional parameter to a user-supplied value.

Optional parameters and their values are, in general, presented as a character string, OPTSTR, of the
form ‘option ¼ optval’; alphabetic characters can be supplied in either upper or lower case. Both
option and optval may consist of one or more tokens separated by white space. The tokens that
comprise optval will normally be either an integer, real or character value as defined in the description
of the specific optional argument. In addition all optional parameters can take an optval DEFAULT
which resets the optional parameter to its default value.

Information relating to available option names and their corresponding valid values is given in the
documentation of the particular solver. See also E04RAF for a generic description of the suite.

4 References

None.

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option and its value to be set.

Defaults
Resets all options to their default values.

Option ¼ optval
See the documentation of the particular solver for details of valid values for option and
optval. The equals sign (¼) delimiter must be used to separate the option from its optval
value.

Option ¼ Default
Resets the given option back to its default value.
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OPTSTR is case insensitive. Each token in the option and optval component must be separated
by at least one space.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 2

The options cannot be modified in this phase.

IFAIL ¼ 11

On entry, the option supplied in OPTSTR was not recognized: OPTSTR ¼ valueh i.

IFAIL ¼ 12

On entry, the expected delimiter ‘¼’ was not found in OPTSTR: OPTSTR ¼ valueh i.

IFAIL ¼ 13

On entry, could not convert the specified optval to an integer: optval ¼ valueh i.
On entry, could not convert the specified optval to a real: optval ¼ valueh i.

IFAIL ¼ 15

On entry, the optval supplied for the integer optional parameter is not valid.
option ¼ valueh i, optval ¼ valueh i.
Constraint: optval < valueh i.
On entry, the optval supplied for the integer optional parameter is not valid.
option ¼ valueh i, optval ¼ valueh i.
Constraint: optval > valueh i.
On entry, the optval supplied for the integer optional parameter is not valid.
option ¼ valueh i, optval ¼ valueh i.
Constraint: optval � valueh i.
On entry, the optval supplied for the integer optional parameter is not valid.
option ¼ valueh i, optval ¼ valueh i.
Constraint: optval � valueh i.
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IFAIL ¼ 16

On entry, the optval supplied for the real optional parameter is not valid.
option ¼ valueh i, optval ¼ valueh i.
Constraint: optval < valueh i.
On entry, the optval supplied for the real optional parameter is not valid.
option ¼ valueh i, optval ¼ valueh i.
Constraint: optval > valueh i.
On entry, the optval supplied for the real optional parameter is not valid.
option ¼ valueh i, optval ¼ valueh i.
Constraint: optval � valueh i.
On entry, the optval supplied for the real optional parameter is not valid.
option ¼ valueh i, optval ¼ valueh i.
Constraint: optval � valueh i.

IFAIL ¼ 17

On entry, the optval supplied for the character optional parameter is not valid.
option ¼ valueh i, optval ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04ZMF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See the example programs associated with the solvers E04STF and E04SVF for a demonstration of how
to use E04ZMF. See also Section 10 in E04RAF for links to all examples in this suite.
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NAG Library Routine Document

E04ZNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04ZNF is an option getting routine for solvers from the NAG optimization modelling suite, namely
E04STF and E04SVF. It is used to query the value of optional parameters.

2 Specification

SUBROUTINE E04ZNF (HANDLE, OPTSTR, IVALUE, RVALUE, CVALUE, OPTYPE,
IFAIL)

&

INTEGER IVALUE, OPTYPE, IFAIL
REAL (KIND=nag_wp) RVALUE
CHARACTER(*) OPTSTR, CVALUE
TYPE (C_PTR) HANDLE

3 Description

E04ZNF is used to query the current values of options. It can be especially useful to retrieve the
optional parameters left for automatic choice by the solver.

This routine will normally return either an integer, real or character value dependent upon the type
associated with the optional parameter being queried. This is indicated by the returned value of
OPTYPE.

Information relating to available option names is given in the documentation of the particular solver.
See also E04RAF for a generic description of the suite.

4 References

None.

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option whose current value is required. See the documentation
of the particular solver for information on valid options.

3: IVALUE – INTEGER Output

On exit: if the optional parameter supplied in OPTSTR is an integer-valued argument, IVALUE
will hold its current value.

4: RVALUE – REAL (KIND=nag_wp) Output

On exit: if the optional parameter supplied in OPTSTR is a real-valued argument, RVALUE will
hold its current value.
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5: CVALUE – CHARACTER(*) Output

Note: the string returned in CVALUE will never exceed 40 characters in length.

On exit: if the optional parameter supplied in OPTSTR is a character-valued argument, CVALUE
will hold its current value.

6: OPTYPE – INTEGER Output

On exit: indicates whether the optional parameter supplied in OPTSTR is an integer, real or
character-valued argument and hence which of IVALUE, RVALUE or CVALUE holds the current
value.

OPTYPE ¼ 1
OPTSTR is an integer-valued optional parameter; its current value has been returned in
IVALUE.

OPTYPE ¼ 2
OPTSTR is a real-valued optional parameter; its current value has been returned in
RVALUE.

OPTYPE ¼ 3
OPTSTR is a character-valued optional parameter; its current value has been returned in
CVALUE.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 11

On entry, the option supplied in OPTSTR was not recognized: OPTSTR ¼ valueh i.

IFAIL ¼ 41

On entry, OPTSTR indicates a character optional parameter, but CVALUE is too short to hold the
stored value. The returned value will be truncated.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04ZNF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See the example program associated with the solver E04SVF for a demonstration of how to use
E04ZNF to query options. See also Section 10 in E04RAF for links to all examples in the suite.
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NAG Library Routine Document

E04ZPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04ZPF is an option setting routine for solvers from the NAG optimization modelling suite, namely
E04STF and E04SVF. It can set one or more optional parameters from an external file.

2 Specification

SUBROUTINE E04ZPF (HANDLE, INFILE, IFAIL)

INTEGER INFILE, IFAIL
TYPE (C_PTR) HANDLE

3 Description

E04ZPF may be used to supply values for optional parameters to the solver from an external file. It can
only be called on handles which have been initialized by E04RAF and before the call to the solver.
E04ZPF looks in the file for a specific section containing the optional parameters. The section must start
with a line Begin and must finish with a line End. Anything outside the section is ignored. If there is
more than one section like this, only the first one is processed. Any line within the section is either
blank or a comment which is ignored or defines a single optional parameter as if it had been set by
E04ZMF. The implied data type (character, integer or real) of each value to be set must match that
expected by the corresponding optional parameter. It is only necessary to supply values for those
arguments whose values are to be different from their default values. A comment begins with an
asterisk (*) and all subsequent characters to the end of the line are ignored. Comments can also be
placed after the optional parameter. The file is case insensitive.

Note that the optional parameters printed by the solver or by E04RYF are in the compatible format. An
example of a valid options file is:

Begin * Example options file
Print Level = 3
Monitoring Level = 5 * output all details
Monitoring File = 42 * to this file

End

4 References

None.

5 Arguments

1: HANDLE – TYPE (C_PTR) Input

On entry: the handle to the problem. It needs to be initialized by E04RAF and must not be
changed.

2: INFILE – INTEGER Input

On entry: the file identifier associated with the argument data file. Note: that the file needs to be
opened in read mode by X04ACF with MODE ¼ 0.

Constraint: INFILE � 0.
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3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by E04RAF or it has been corrupted.

IFAIL ¼ 2

The options cannot be modified in this phase.

IFAIL ¼ 3

On entry, INFILE ¼ valueh i.
Constraint: INFILE � 0.

IFAIL ¼ 4

BEGIN found, but end-of-file found before END. All optional parameters that were set from the
file before this error was encountered will remain set on exit.

End-of-file or read error detected before BEGIN was found.

IFAIL ¼ 11

The option provided on line valueh i was not recognized.

IFAIL ¼ 12

The expected delimiter ‘¼’ was not found on line valueh i.

IFAIL ¼ 13

The optval provided on line valueh i could not be converted to the expected numerical type.

IFAIL ¼ 15

The optval provided on line valueh i for the integer optional parameter is out of bounds.

IFAIL ¼ 16

The optval provided on line valueh i for the real optional parameter is out of bounds.

IFAIL ¼ 17

The optval provided on line valueh i for the character optional parameter is not valid.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04ZPF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in E04RAF for links to all examples in the suite.
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NAG Library Chapter Contents

E05 – Global Optimization of a Function

E05 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

E05JAF 22 nagf_glopt_bnd_mcs_init
Initialization routine for E05JBF

E05JBF 22 nagf_glopt_bnd_mcs_solve
Global optimization by multi-level coordinate search, simple bounds, using
function values only

E05JCF 22 nagf_glopt_bnd_mcs_optset_file
Supply optional parameter values for E05JBF from external file

E05JDF 22 nagf_glopt_bnd_mcs_optset_string
Set a single optional parameter for E05JBF from a character string

E05JEF 22 nagf_glopt_bnd_mcs_optset_char
Set a single optional parameter for E05JBF from an ‘ON’/‘OFF’-valued
character argument

E05JFF 22 nagf_glopt_bnd_mcs_optset_int
Set a single optional parameter for E05JBF from an integer argument

E05JGF 22 nagf_glopt_bnd_mcs_optset_real
Set a single optional parameter for E05JBF from a real argument

E05JHF 22 nagf_glopt_bnd_mcs_option_check
Determine whether an optional parameter for E05JBF has been set by you or
not

E05JJF 22 nagf_glopt_bnd_mcs_optget_char
Get the setting of an ‘ON’/‘OFF’-valued character optional parameter of
E05JBF

E05JKF 22 nagf_glopt_bnd_mcs_optget_int
Get the setting of an integer valued optional parameter of E05JBF

E05JLF 22 nagf_glopt_bnd_mcs_optget_real
Get the setting of a real valued optional parameter of E05JBF

E05SAF 23 nagf_glopt_bnd_pso
Global optimization using particle swarm algorithm (PSO), bound
constraints only

E05SBF 23 nagf_glopt_nlp_pso
Global optimization using particle swarm algorithm (PSO), comprehensive

E05UCF 24 nagf_glopt_nlp_multistart_sqp
Global optimization using multi-start, nonlinear constraints

E05USF 24 nagf_glopt_nlp_multistart_sqp_lsq
Global optimization of a sum of squares problem using multi-start, nonlinear
constraints

E05ZKF 23 nagf_glopt_optset
Option setting routine for E05SAF, E05SBF, E05UCF and E05USF

E05ZLF 23 nagf_glopt_optget
Option getting routine for E05SAF, E05SBF, E05UCF and E05USF
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1 Scope of the Chapter

Global optimization involves finding the absolute maximum or minimum value of a function (the
objective function) of several variables, possibly subject to restrictions (defined by a set of bounds or
constraint functions) on the values of the variables. Such problems can be much harder to solve than
local optimization problems (which are discussed in Chapter E04) because it is difficult to determine
whether a potential optimum found is global, and because of the nonlocal methods required to avoid
becoming trapped near local optima. Most optimization routines in the NAG Library are concerned with
function minimization only, since the problem of maximizing a given objective function F is
equivalent to minimizing �F . In E05JBF, E05SAF and E05SBF, you may specify whether you are
solving a minimization or maximization problem; in the latter case, the required transformation of the
objective function will be carried out automatically. In what follows we refer exclusively to
minimization problems.

This introduction is a brief guide to the subject of global optimization, designed for the casual user. For
further details you may find it beneficial to consult a more detailed text, see Neumaier (2004).
Furthermore, much of the material in the E04 Chapter Introduction is also relevant in this context and it
is strongly recommended that you read Section 2.6 in the E04 Chapter Introduction.

2 Background to the Problems

2.1 Problem Formulation

For the purposes of this Library, the global optimization problem is

minimize
x2Rn

F xð Þ subject to lx � x � ux and lc � c xð Þ � uc; ð1Þ

where F xð Þ (the objective function) is a real function; the vectors lx and ux are elements of �Rn, where
�R denotes the extended reals R [ �1;1f g; and where c is a vector of m constraint functions
c1; . . . ; cm, with lc and uc defining the constraints on c xð Þ. If m ¼ 0 the problem is said to be bound
constrained. Relational operators between vectors are interpreted elementwise. The feasible region � is
the set of all points (feasible points) that satisfy all of the constraints. A solution of (1) is a feasible
point x̂ 2 � satisfying

F x̂ð Þ ¼ min
x2�

F xð Þ:

A local minimum minimizes F only on some neighbourhood of x̂. If a local minimum has the smallest
objective value over all the local minima, then it is a global minimum.

2.2 Terminology

2.2.1 Complete Methods

A global optimization algorithm is called asymptotically complete if

(i) assuming indefinitely long run-time and exact computations, a global minimum will be found with
certainty (probability one), but

(ii) the algorithm has no way of knowing when a global minimum has been found.

In comparison, a complete method satisfies (i) as well as the algorithm being able to recognize a global
minimum (to prescribed tolerances) within a finite amount of time.

It is important to appreciate that, for finding a solution exactly, bounds on the amount of work may be
very pessimistic. What complete methods guarantee is the absence of any deficiency that would prevent
a global minimum from eventually being found. To achieve termination with certainty in a finite
amount of time, the algorithm requires access to global information about the problem. In the case
where only function values are available, as in E05JBF, stopping criteria based on heuristics are present.
This is because such a class of method can only terminate with certainty by performing an expensive
dense search.

In contrast, incomplete methods have intuitive heuristics for searching but no guarantee of not getting
stuck near nonglobal, local, minima. Often, to make incomplete methods efficient, expert knowledge on
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the particular problem class to be solved is required. Examples of incomplete methods include Particle
Swarm Optimization (PSO), Genetic Algorithms (GA), Simulated Annealing (SA), Ant Colony
Optimization (ACO) and Covariance Matrix Adaptation Evolutionary Strategies (CMA-ES). PSO has
been implemented in the routines E05SAF and E05SBF. Such routines must also use heuristics to stop
the algorithm as again an expensive, dense search would be required to guarantee that no superior
optima are present.

The heuristic nature of incomplete algorithms can make them very efficiently parallelizable. This is the
case for E05SAF and E05SBF, which use a heavily asynchronous implementation of the particle swarm
heuristic to be efficient in achieving a good solution in multi-threaded implementations of NAG
Library.

2.2.2 Branching

Most complete methods recursively split the original problem into smaller, more manageable
subproblems. This technique is called branching. Branching is usually accompanied by a selection
process that splits favourable branches more frequently than others. For example, with branch and
bound methods, bounds on the objective function for each subproblem are computed in an attempt to
eliminate those subregions where no improvement will occur.

Branching methods use a branching scheme to generate sequences of sub-boxes that eventually cover
the feasible region. At least one function evaluation is made for every sub-box, and new sub-boxes are
generated by splitting existing ones. Using appropriate splitting rules, convergence to zero of the
diameters of sub-boxes is assured. For example, always splitting the oldest box along the oldest side,
provided the children do not have too small a volume compared with the parent, guarantees
convergence of the method, in the sense described in Neumaier (2004).

Efficiency can be enhanced by carefully balancing global and local searches. While the global part of
the search splits sub-boxes with large unexplored territory, the local part usually entails splitting boxes
with good function values. For example, the sub-box with the best function value should always be
split. A method may also be improved by launching local searches from appropriate candidate local
minima.

2.3 Methods of Global Optimization

2.3.1 Multi-level Coordinate Search (MCS)

The routine E05JBF searches for a global minimizer using branching to recursively split the search
space in a nonuniform manner. It divides, or splits, the root box of the search into smaller sub-boxes.
Each sub-box contains a distinguished basepoint at which the objective function is sampled. We shall
sometimes say ‘the function value of the (sub)box’ as shorthand for ‘the function value of the basepoint
of the (sub)box’. The splitting procedure biases the search in favour of those sub-boxes where low
function values are expected.

The global part of the algorithm entails splitting sub-boxes that enclose large unexplored territory, while
the local part of the algorithm entails splitting sub-boxes that have good function values. A balance
between the global and local part is achieved using a multi-level approach, where every sub-box is
assigned a level s 2 0; 1; . . . ; smaxf g. You can control the value of smax using the optional parameter
Splits Limit. Whenever a sub-box of intermediate level 0 < s < smax is split each descendant will be
given a new level, and the original sub-box's level is set to 0: a sub-box with level 0 has already been
split; a sub-box with level smax will be split no further. This entire process is described in more detail in
Section 11.1 in E05JBF, where the initialization procedure used to produce an initial set of sub-boxes is
outlined, and the method by which the algorithm sweeps through levels is discussed. Each sweep starts
with the sub-boxes at the lowest level, a process thus forming the global part of the algorithm. At each
level the sub-box with the best function value is selected for splitting; this forms the local part of the
algorithm.

The process by which sub-boxes are split is explained in Section 11.2 in E05JBF. It is a variant of the
standard coordinate search method: the solver splits along a single coordinate at a time, at adaptively
chosen points. In most cases one new function evaluation is needed to split a sub-box into two or three
children. Each child is given a basepoint chosen to differ from the basepoint of the parent in at most
one coordinate, and safeguards are present to ensure a degree of symmetry in the splits.
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If you set the optional parameter Local Searches to be OFF, then the basepoints and function values of
sub-boxes of maximum level smax are put into a ‘shopping basket’ of candidate minima. Turning Local
Searches ON (the default setting) will enable local searches to be started from these basepoints before
they go into the shopping basket. The local search will go ahead providing the basepoint is not likely to
be in the basin of attraction of a previously-found local minimum. The search itself uses a trust region
approach, and is explained in Section 11.3 in E05JBF: local quadratic models are built by a triple
search, then a linesearch is made along the direction obtained by minimizing the quadratic on a region
where it is a good approximation to the objective function. The quadratic need not be positive definite,
so the general nonlinear optimizer E04VHF is used to minimize the model.

2.3.2 Particle Swarm Optimization

The routines E05SAF and E05SBF search for a global optimum using a variant of the Particle Swarm
Optimization (PSO) algorithm. PSO is an heuristic algorithm similar in its behaviour to GA, ACO, SA
and others. A set of particles (the swarm) is generated in the search space, and advances at each
iteration following an heuristic velocity based upon the best candidate found by an individual particle
(cognitive memory), the best candidate found by all the particles (global memory) and inertia. The
inertia is provided by a decreasingly weighted contribution from a particle's current velocity. This mix
allows for a global search of the domain in question.

The rate at which the swarm contracts and expands about potential optima is user controllable, allowing
expert knowledge to be used when available. Furthermore, the algorithm may be coupled with a
selection of local optimizers. These may be called during the iterations of the heuristic algorithm (the
interior phase) to hasten the discovery of locally optimal points. They may also be called following the
heuristic iterations (the exterior phase) to attempt to refine the final solution. Different options may be
set for the local optimizer in each phase. For further details see Section 11 in E05SAF and E05SBF.

These routines are most effectively used when multiple cores are available for computation, since very
many function evaluations are required for a typical problem. In multi-threaded implementations of the
NAG Library the algorithm has been parallelized to allow for high levels of asynchronicity between
threads. This allows individual threads to continue searching without the requirement for all threads to
have returned solutions, and leads to excellent parallel speedup.

2.3.3 Multiple Start

Routine E05UCF attempts to find the global minimum of an arbitrary smooth function subject to
constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear
constraints) by generating a number of different starting points and using the local minimizer E04UCA.
Routine E05USF takes the same approach in attempting to find the global minimum of an arbitrary
smooth sum of squares function using the local minimizer E04USA.

The more starting points chosen, the greater the degree of confidence that you might have in the
returned results. Facilities are provided to allow you to specify the starting points and to provide for
subsequent runs with different starting points as an additional means of gaining confidence in the
results.

You may also request that a number of solutions be provided, ordered in increasing value of the local
optima. This may be useful if a local solution has a desirable property not exhibited by the best local
optimum computed, the putative global optimum.

3 Recommendations on Choice and Use of Available Routines

The suite of multi-level coordinate search routines consists of:

an initialization routine:

E05JAF;

optional parameter setting routines:

E05JCF,

E05JDF,
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E05JEF,

E05JFF,

E05JGF;

an optional parameter checking routine:

E05JHF;

optional parameter getting routines:

E05JKF,

E05JLF;

and the solver:

E05JBF.

E05JBF is based on the multi-level coordinate search method of Huyer and Neumaier (1999). It is an
asymptotically complete method for bound constrained problems based on local information (function
values) only, employing branching and local searches to accelerate convergence.

If the problem has nonlinear constraints and is sufficiently smooth then you are advised to consider a
multiple start technique. E05UCF and E05USF are provided for this purpose. Both E05UCF and
E05USF use the routines E05ZKF and E05ZLF for initialization and option setting.

The suite of particle swarm optimization (PSO) routines are to be considered as experimental and are
not recommended for production or mission-critical applications. They are only recommended as a last
resort (should other methods fail) or for comparitive purposes.

The suite consists of the solver routines:

E05SAF;

E05SBF.

Both E05SAF and E05SBF use the routines E05ZKF and E05ZLF for initialization and option setting.
These routines predominantly use function values only, although derivatives can be provided for
coupled local minimization routines. They are designed for use primarily with multi-threaded
implementations of the NAG Library (although they may also be used in serial implementations). In
such implementations, a minimal knowledge of OpenMP parallel programming is required, specifically
the use of basic OpenMP commands and operators such as OMP_GET_THREAD_NUM and CRITICAL

sections to ensure the thread safety of provided callback routines. Additional example programs are
provided to demonstrate how this may be done (see Section 10 in E05SAF and E05SBF).

E05SAF is a simplified version of E05SBF with less functionality. In particular, E05SAF does not
support general constraint handling whereas E05SBF does support general nonlinear, non-equality
constraints.

If the objective function is smooth and the problem has only simple bound constraints then both
algorithms are applicable. For low dimensional problems (up to 20) E05JBF is preferred. With
increasing dimension the multi-start methods may be better, especially when parallelism can be
exploited by using multi-threaded implementations of the NAG Library.

The particle swarm methods are potentially useful when there is no smoothness in the objective
function (e.g., due to noise) and, for the simple-bound constrained problem, E05SAF may be
appropriate.

Currently there is no routine in this chapter using a complete method that can handle constraints that are
not bound constraints.
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4 Functionality Index

Global optimization, function of several real variables, general constraints,
multi-start......................................................................................................................... E05UCF
using function values predominantly, and optional derivative information, PSO............. E05SBF

Global optimization, function of several real variables, sum of squares, general constraints,
multi-start......................................................................................................................... E05USF

Global optimum, function of several variables, bound constraints,
using function values only ............................................................................................... E05JBF
using function values predominantly, and optional derivative information, PSO............. E05SAF

Service routines,
check whether optional parameter has been set for E05JBF ........................................... E05JHF
initialization routine for E05JBF...................................................................................... E05JAF
optional parameter getting routine for use with E05SAF, E05SBF, E05UCF and E05USF E05ZLF
optional parameter setting routine for use with E05SAF, E05SBF, E05UCF and E05USF E05ZKF
retrieve integer optional parameter values used by E05JBF ............................................ E05JKF
retrieve real optional parameter values used by E05JBF ................................................. E05JLF
retrieve value of ‘ON’/‘OFF’-valued character optional parameter used by E05JBF....... E05JJF
supply integer optional parameter values to E05JBF....................................................... E05JFF
supply ‘ON’/‘OFF’-valued character optional parameter values to E05JBF .................... E05JEF
supply optional parameter values from character string to E05JBF................................. E05JDF
supply optional parameter values from external file for E05JBF..................................... E05JCF
supply real optional parameter values to E05JBF............................................................ E05JGF

5 Auxiliary Routines Associated with Library Routine Arguments

E05JBK nagf_glopt_bnd_mcs_dummy_monit
See the description of the argument MONIT in E05JBF.

E05SXM nagf_glopt_bnd_pso_dummy_monmod
See the description of the argument MONMOD in E05SAF.

E05SYM nagf_glopt_nlp_pso_dummy_monmod
See the description of the argument MONMOD in E05SBF.

E05SZM nagf_glopt_nlp_pso_dummy_confun
See the description of the argument CONFUN in E05SBF.

E05UCZ nagf_glopt_multistart_start_points
See the description of the argument START in E05UCF.

6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References
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NAG Library Routine Document

E05JAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05JAF is used to initialize communication data for the suite of multi-level coordinate search routines:
E05JBF, E05JCF, E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF and E05JLF.

2 Specification

SUBROUTINE E05JAF (N_R, COMM, LCOMM, IFAIL)

INTEGER N_R, LCOMM, IFAIL
REAL (KIND=nag_wp) COMM(LCOMM)

3 Description

E05JAF initializes the communication array COMM for the solver E05JBF and the optional-argument
handlers E05JCF, E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF and E05JLF.

4 References

None.

5 Arguments

1: N R – INTEGER Dummy

This argument is no longer accessed by E05JAF.

2: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On exit: COMM must not be altered between calls to any of the routines E05JBF, E05JCF,
E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF and E05JLF.

3: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
E05JAF is called.

Constraint: LCOMM � 100.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E05JAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by E05JAF is negligible.

10 Example

See Section 10 in E05JBF and E05JCF.
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NAG Library Routine Document

E05JBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, and to Section 12 for a detailed
description of the specification of the optional parameters.

1 Purpose

E05JBF is designed to find the global minimum or maximum of an arbitrary function, subject to simple
bound-constraints using a multi-level coordinate search method. Derivatives are not required, but
convergence is only guaranteed if the objective function is continuous in a neighbourhood of a global
optimum. It is not intended for large problems.

The initialization routine E05JAF must have been called before calling E05JBF.

2 Specification

SUBROUTINE E05JBF (N, OBJFUN, IBOUND, IINIT, BL, BU, SDLIST, LIST,
NUMPTS, INITPT, MONIT, X, OBJ, COMM, LCOMM, IUSER,
RUSER, IFAIL)

&
&

INTEGER N, IBOUND, IINIT, SDLIST, NUMPTS(N), INITPT(N),
LCOMM, IUSER(*), IFAIL

&

REAL (KIND=nag_wp) BL(N), BU(N), LIST(N,SDLIST), X(N), OBJ,
COMM(LCOMM), RUSER(*)

&

EXTERNAL OBJFUN, MONIT

E05JAF must be called before calling E05JBF, or any of the option-setting or option-getting routines
E05JCF, E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF or E05JLF.

You must not alter the number of non-fixed variables in your problem or the contents of the array
COMM between calls of the routines E05JAF, E05JBF, E05JCF, E05JDF, E05JEF, E05JFF, E05JGF,
E05JHF, E05JJF, E05JKF or E05JLF.

3 Description

E05JBF is designed to solve modestly sized global optimization problems having simple bound-
constraints only; it finds the global optimum of a nonlinear function subject to a set of bound
constraints on the variables. Without loss of generality, the problem is assumed to be stated in the
following form:

minimize
x2Rn

F xð Þ subject to l � x � u and l � u;

where F xð Þ (the objective function) is a nonlinear scalar function (assumed to be continuous in a
neighbourhood of a global minimum), and the bound vectors are elements of �Rn, where �R denotes the
extended reals R [ �1;1f g. Relational operators between vectors are interpreted elementwise.

The optional parameter Maximize should be set if you wish to solve maximization, rather than
minimization, problems.

If certain bounds are not present, the associated elements of l or u can be set to special values that will
be treated as �1 or þ1. See the description of the optional parameter Infinite Bound Size. Phrases in
this document containing terms like ‘unbounded values’ should be understood to be taken relative to
this optional parameter.
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Fixing variables (that is, setting li ¼ ui for some i) is allowed in E05JBF.

A typical excerpt from a routine calling E05JBF is:

CALL E05JAF (N_R, COMM, LCOMM, ...)
CALL E05JDF (OPTSTR, COMM, LCOMM, ...)
CALL E05JBF (N, OBJFUN, ...)

where E05JDF sets the optional parameter and value specified in OPTSTR.

The initialization routine E05JAF does not need to be called before each invocation of E05JBF. You
should be aware that a call to the initialization routine will reset each optional parameter to its default
value, and, if you are using repeatable randomized initialization lists (see the description of the
argument IINIT), the random state stored in the array COMM will be destroyed.

You must supply a subroutine that evaluates F xð Þ; derivatives are not required.

The method used by E05JBF is based on MCS, the Multi-level Coordinate Search method described in
Huyer and Neumaier (1999), and the algorithm it uses is described in detail in Section 11.

4 References

Huyer W and Neumaier A (1999) Global optimization by multi-level coordinate search Journal of
Global Optimization 14 331–355

5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must evaluate the objective function F xð Þ for a specified n-vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (N, X, F, NSTATE, IUSER, RUSER, INFORM)

INTEGER N, NSTATE, IUSER(*), INFORM
REAL (KIND=nag_wp) X(N), F, RUSER(*)

1: N – INTEGER Input

On entry: n, the number of variables.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector at which the objective function is to be evaluated.

3: F – REAL (KIND=nag_wp) Output

On exit: must be set to the value of the objective function at x, unless you have
specified termination of the current problem using INFORM.

4: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E05JBF is calling OBJFUN for the first time. This
argument setting allows you to save computation time if certain data must be read or
calculated only once.
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5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E05JBF. You
should use the arrays IUSER and RUSER to supply information to OBJFUN.

7: INFORM – INTEGER Output

On exit: must be set to a value describing the action to be taken by the solver on return
from OBJFUN. Specifically, if the value is negative the solution of the current problem
will terminate immediately; otherwise, computations will continue.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E05JBF is called. Arguments denoted as Input must not be changed by this
procedure.

3: IBOUND – INTEGER Input

On entry: indicates whether the facility for dealing with bounds of special forms is to be used.
IBOUND must be set to one of the following values.

IBOUND ¼ 0
You will supply l and u individually.

IBOUND ¼ 1
There are no bounds on x.

IBOUND ¼ 2
There are semi-infinite bounds 0 � x.

IBOUND ¼ 3
There are constant bounds l ¼ ‘1 and u ¼ u1.

Note that it only makes sense to fix any components of x when IBOUND ¼ 0.

Constraint: IBOUND ¼ 0, 1, 2 or 3.

4: IINIT – INTEGER Input

On entry: selects which initialization method to use.

IINIT ¼ 0
Simple initialization (boundary and midpoint), with
NUMPTSðiÞ ¼ 3, INITPTðiÞ ¼ 2 and
LISTði; jÞ ¼ BLðiÞ; BLðiÞ þ BUðiÞð Þ=2;BUðiÞð Þ,
for i ¼ 1; 2; . . . ;N and j ¼ 1; 2; 3.

IINIT ¼ 1
Simple initialization (off-boundary and midpoint), with
NUMPTSðiÞ ¼ 3, INITPTðiÞ ¼ 2 and
LISTði; jÞ ¼
5BLðiÞ þ BUðiÞð Þ=6; BLðiÞ þ BUðiÞð Þ=2; BLðiÞ þ 5BUðiÞð Þ=6ð Þ,

for i ¼ 1; 2; . . . ;N and j ¼ 1; 2; 3.

IINIT ¼ 2
Initialization using linesearches.

IINIT ¼ 3
You are providing your own initialization list.

IINIT ¼ 4
Generate a random initialization list.

For more information on methods IINIT ¼ 2, 3 or 4 see Section 11.1.
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If ‘infinite’ values (as determined by the value of the optional parameter Infinite Bound Size) are
detected by E05JBF when you are using a simple initialization method (IINIT ¼ 0 or 1), a
safeguarded initialization procedure will be attempted, to avoid overflow.

Suggested value: IINIT ¼ 0.

Constraint: IINIT ¼ 0, 1, 2, 3 or 4.

5: BLðNÞ – REAL (KIND=nag_wp) array Input/Output
6: BUðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: BL is l, the array of lower bounds. BU is u, the array of upper bounds.

If IBOUND ¼ 0, you must set BLðiÞ to ‘i and BUðiÞ to ui, for i ¼ 1; 2; . . . ;N. If a particular xi is
to be unbounded below, the corresponding BLðiÞ should be set to �infbnd, where infbnd is the
value of the optional parameter Infinite Bound Size. Similarly, if a particular xi is to be
unbounded above, the corresponding BUðiÞ should be set to infbnd.

If IBOUND ¼ 1 or 2, arrays BL and BU need not be set on input.

If IBOUND ¼ 3, you must set BLð1Þ to ‘1 and BUð1Þ to u1. The remaining elements of BL and
BU will then be populated by these initial values.

On exit: unless IFAIL ¼ 1 or 2 on exit, BL and BU are the actual arrays of bounds used by
E05JBF.

Constraints:

if IBOUND ¼ 0, BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;N;
if IBOUND ¼ 3, BLð1Þ < BUð1Þ.

7: SDLIST – INTEGER Input

On entry: the second dimension of the array LIST as declared in the (sub)program from which
E05JBF is called. SDLIST is, at least, the maximum over i of the number of points in coordinate
i at which to split according to the initialization list LIST; that is, SDLIST � max

i
NUMPTSðiÞ.

Internally, E05JBF uses LIST to determine sets of points along each coordinate direction to
which it fits quadratic interpolants. Since fitting a quadratic requires at least three distinct points,
this puts a lower bound on SDLIST. Furthermore, in the case of initialization by linesearches
(IINIT ¼ 2) internal storage considerations require that SDLIST be at least 192, but not all of this
space may be used.

Constraints:

if IINIT 6¼ 2, SDLIST � 3;
if IINIT ¼ 2, SDLIST � 192;
if IINIT ¼ 3, SDLIST � max

i
NUMPTSðiÞf g.

8: LISTðN; SDLISTÞ – REAL (KIND=nag_wp) array Input/Output

On entry: this argument need not be set on entry if you wish to use one of the preset initialization
methods (IINIT 6¼ 3).

LIST is the ‘initialization list’: whenever a sub-box in the algorithm is split for the first time
(either during the initialization procedure or later), for each non-fixed coordinate i the split is
done at the values LISTði; 1 : NUMPTSðiÞÞ, as well as at some adaptively chosen intermediate
points. The array sections LISTði; 1 : NUMPTSðiÞÞ, for i ¼ 1; 2; . . . ;N, must be in ascending
order with each entry being distinct. In this context, ‘distinct’ should be taken to mean relative to
the safe-range argument (see X02AMF).
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On exit: unless IFAIL ¼ 1, 2 or �999 on exit, the actual initialization data used by E05JBF. If
you wish to monitor the contents of LIST you are advised to do so solely through MONIT, not
through the output value here.

Constraint: if XðiÞ is not fixed, LISTði; 1 : NUMPTSðiÞÞ is in ascending order with each entry
be ing dis t inc t , fo r i ¼ 1; 2; . . . ;NBLðiÞ � LISTði; jÞ � BUðiÞ, fo r i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;NUMPTSðiÞ.

9: NUMPTSðNÞ – INTEGER array Input/Output

On entry: this argument need not be set on entry if you wish to use one of the preset initialization
methods (IINIT 6¼ 3).

NUMPTS encodes the number of splitting points in each non-fixed dimension.

On exit: unless IFAIL ¼ 1, 2 or �999 on exit, the actual initialization data used by E05JBF.

Constraints:

if XðiÞ is not fixed, NUMPTSðiÞ � SDLIST;
NUMPTSðiÞ � 3, for i ¼ 1; 2; . . . ;N.

10: INITPTðNÞ – INTEGER array Input/Output

On entry: this argument need not be set on entry if you wish to use one of the preset initialization
methods (IINIT 6¼ 3).

You must designate a point stored in LIST that you wish E05JBF to consider as an ‘initial point’
for the purposes of the splitting procedure. Call this initial point x�. The coordinates of x�

correspond to a set of indices Ji, for i ¼ 1; 2; . . . ; n, such that x�i is stored in LISTði; JiÞ, for
i ¼ 1; 2; . . . ; n. You must set INITPTðiÞ ¼ Ji, for i ¼ 1; 2; . . . ; n.

On exit: unless IFAIL ¼ 1, 2 or �999 on exit, the actual initialization data used by E05JBF.

Constraint: if XðiÞ is not fixed, 1 � INITPTðiÞ � SDLIST, for i ¼ 1; 2; . . . ;N.

11: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT may be used to monitor the optimization process. It is invoked upon every successful
completion of the procedure in which a sub-box is considered for splitting. It will also be called
just before E05JBF exits if that splitting procedure was not successful.

If no monitoring is required, MONIT may be the dummy monitoring routine E05JBK supplied by
the NAG Library.

The specification of MONIT is:

SUBROUTINE MONIT (N, NCALL, XBEST, ICOUNT, NINIT, LIST, NUMPTS,
INITPT, NBASKT, XBASKT, BOXL, BOXU, NSTATE,
IUSER, RUSER, INFORM)

&
&

INTEGER N, NCALL, ICOUNT(6), NINIT, NUMPTS(N),
INITPT(N), NBASKT, NSTATE, IUSER(*), INFORM

&

REAL (KIND=nag_wp) XBEST(N), LIST(N,NINIT), XBASKT(N,NBASKT),
BOXL(N), BOXU(N), RUSER(*)

&

1: N – INTEGER Input

On entry: n, the number of variables.

2: NCALL – INTEGER Input

On entry: the cumulative number of calls to OBJFUN.

3: XBESTðNÞ – REAL (KIND=nag_wp) array Input

On entry: the current best point.
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4: ICOUNTð6Þ – INTEGER array Input

On entry: an array of counters.

ICOUNTð1Þ
nboxes, the current number of sub-boxes.

ICOUNTð2Þ
ncloc, the cumulative number of calls to OBJFUN made in local searches.

ICOUNTð3Þ
nloc, the cumulative number of points used as start points for local searches.

ICOUNTð4Þ
nsweep, the cumulative number of sweeps through levels.

ICOUNTð5Þ
m, the cumulative number of splits by initialization list.

ICOUNTð6Þ
s, the current lowest level containing non-split boxes.

5: NINIT – INTEGER Input

On entry: the maximum over i of the number of points in coordinate i at which to split
according to the initialization list LIST. See also the description of the argument
NUMPTS.

6: LISTðN;NINITÞ – REAL (KIND=nag_wp) array Input

On entry: the initialization list.

7: NUMPTSðNÞ – INTEGER array Input

On entry: the number of points in each coordinate at which to split according to the
initialization list LIST.

8: INITPTðNÞ – INTEGER array Input

On entry: a pointer to the ‘initial point’ in LIST. Element INITPTðiÞ is the column
index in LIST of the ith coordinate of the initial point.

9: NBASKT – INTEGER Input

On entry: the number of points in the ‘shopping basket’ XBASKT.

10: XBASKTðN;NBASKTÞ – REAL (KIND=nag_wp) array Input

Note: the jth candidate minimum has its ith coordinate stored in XBASKTðj; iÞ, for
i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;NBASKT.

On entry: the ‘shopping basket’ of candidate minima.

11: BOXLðNÞ – REAL (KIND=nag_wp) array Input

On entry: the array of lower bounds of the current search box.

12: BOXUðNÞ – REAL (KIND=nag_wp) array Input

On entry: the array of upper bounds of the current search box.
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13: NSTATE – INTEGER Input

On entry: is set by E05JBF to indicate at what stage of the minimization MONIT was
called.

NSTATE ¼ 1
This is the first time that MONIT has been called.

NSTATE ¼ �1
This is the last time MONIT will be called.

NSTATE ¼ 0
This is the first and last time MONIT will be called.

14: IUSERð�Þ – INTEGER array User Workspace
15: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONIT is called with the arguments IUSER and RUSER as supplied to E05JBF. You
should use the arrays IUSER and RUSER to supply information to MONIT.

16: INFORM – INTEGER Output

On exit: must be set to a value describing the action to be taken by the solver on return
from MONIT. Specifically, if the value is negative the solution of the current problem
will terminate immediately; otherwise, computations will continue.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E05JBF is called. Arguments denoted as Input must not be changed by this
procedure.

12: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0, contains an estimate of the global optimum (see also Section 7).

13: OBJ – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0, contains the function value at X.

If you request early termination of E05JBF using INFORM in OBJFUN or the analogous
INFORM in MONIT, there is no guarantee that the function value at X equals OBJ.

14: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On exit: COMM must not be altered between calls to any of the routines E05JBF, E05JCF,
E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF and E05JLF.

15: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
E05JBF is called.

Constraint: LCOMM � 100.

16: IUSERð�Þ – INTEGER array User Workspace
17: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E05JBF, but are passed directly to OBJFUN and MONIT
and should be used to pass information to these routines.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E05JBF returns with IFAIL ¼ 0 if your termination criterion has been met: either a target value
has been found to the required relative error (as determined by the values of the optional
parameters Target Objective Value, Target Objective Error and Target Objective Safeguard),
or the best function value was static for the number of sweeps through levels given by the
optional parameter Static Limit. The latter criterion is the default.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Initialization routine E05JAF has not been called.

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ 2

A value of Splits Limit (smax) smaller than nr þ 3 was set: smax ¼ valueh i, nr ¼ valueh i.
On entry, IBOUND ¼ valueh i.
Constraint: IBOUND ¼ 0, 1, 2 or 3.

On entry, IBOUND ¼ 0 or 3 and BLðiÞ ¼ valueh i, BUðiÞ ¼ valueh i and i ¼ valueh i.
Constraint: if IBOUND ¼ 0 then BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;N; if IBOUND ¼ 3 then
BLð1Þ < BUð1Þ.
On entry, IBOUND ¼ 3 and BLð1Þ ¼ BUð1Þ ¼ valueh i.
Constraint: if IBOUND ¼ 3 then BLð1Þ < BUð1Þ.
On entry, IINIT ¼ valueh i.
Constraint: IINIT ¼ 0, 1, 2, 3 or 4.

On entry, IINIT ¼ 2 and SDLIST ¼ valueh i.
Constraint: if IINIT ¼ 2 then SDLIST � 192.

On entry, IINIT ¼ valueh i and SDLIST ¼ valueh i.
Constraint: if IINIT 6¼ 2 then SDLIST � 3.

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, user-supplied INITPTðiÞ ¼ valueh i, i ¼ valueh i.
Constraint: if XðiÞ is not fixed then INITPTðiÞ � 1, for i ¼ 1; 2; . . . ;N.

On entry, user-supplied INITPTðiÞ ¼ valueh i, i ¼ valueh i and SDLIST ¼ valueh i.
Constraint: if XðiÞ is not fixed then INITPTðiÞ � SDLIST, for i ¼ 1; 2; . . . ;N.

On entry, user-supplied LISTði; jÞ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, and BLðiÞ ¼ valueh i.
Constra int : i f XðiÞ i s not fixed then LISTði; jÞ � BLðiÞ, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;NUMPTSðiÞ.
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On entry, user-supplied LISTði; jÞ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, and BUðiÞ ¼ valueh i.
Constraint : i f XðiÞ is not fixed then LISTði; jÞ � BUðiÞ, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;NUMPTSðiÞ.
On entry, user-supplied NUMPTSðiÞ ¼ valueh i, i ¼ valueh i.
Constraint: if XðiÞ is not fixed then NUMPTSðiÞ � 3, for i ¼ 1; 2; . . . ;N.

On entry, user-supplied NUMPTSðiÞ ¼ valueh i, i ¼ valueh i and SDLIST ¼ valueh i.
Constraint: if XðiÞ is not fixed then NUMPTSðiÞ � SDLIST, for i ¼ 1; 2; . . . ;N.

On entry, user-supplied section LISTði; 1 : NUMPTSðiÞÞ contained ndist distinct elements, and
ndist < NUMPTSðiÞ: ndist ¼ valueh i, NUMPTSðiÞ ¼ valueh i, i ¼ valueh i.
On entry, user-supplied section LISTði; 1 : NUMPTSðiÞÞ was not in ascending order:
NUMPTSðiÞ ¼ valueh i, i ¼ valueh i.
The number of non-fixed variables nr ¼ 0.
Constraint: nr > 0.

IFAIL ¼ 3

A finite initialization list could not be computed internally. Consider reformulating the bounds on
the problem, try providing your own initialization list, use the randomization option (IINIT ¼ 4)
or vary the value of Infinite Bound Size.

The user-supplied initialization list contained infinite values, as determined by the optional
parameter Infinite Bound Size.

IFAIL ¼ 4

The division procedure completed but your target value could not be reached.
Despite every sub-box being processed Splits Limit times, the target value you provided in
Target Objective Value could not be found to the tolerances given in Target Objective Error
and Target Objective Safeguard. You could try reducing Splits Limit or the objective
tolerances.

IFAIL ¼ 5

The function evaluations limit was exceeded.
Approximately Function Evaluations Limit function calls have been made without your chosen
termination criterion being satisfied.

IFAIL ¼ 6

User-supplied monitoring routine requested termination.

User-supplied objective function requested termination.

IFAIL ¼ 7

An error occurred during initialization. It is likely that points from the initialization list are very
close together. Try relaxing the bounds on the variables or use a different initialization method.

An error occurred during linesearching. It is likely that your objective function is badly scaled:
try rescaling it. Also, try relaxing the bounds or use a different initialization method. If the
problem persists, please contact NAG quoting error code valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 on exit, then the vector returned in the array X is an estimate of the solution x whose
function value satisfies your termination criterion: the function value was static for Static Limit sweeps
through levels, or

F xð Þ � objval � max objerr � objvalj j; objsfgð Þ;

where objval is the value of the optional parameter Target Objective Value, objerr is the value of the
optional parameter Target Objective Error, and objsfg is the value of the optional parameter Target
Objective Safeguard.

8 Parallelism and Performance

E05JBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E05JBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each invocation of E05JBF, local workspace arrays of fixed length are allocated internally. The total
size of these arrays amounts to 13nr þ smax � 1 integer elements, where smax is the value of the
optional parameter Splits Limit and nr is the number of non-fixed variables, and
2þ nrð ÞSDLISTþ 2Nþ 22nr þ 3n2r þ 1 real elements. In addition, if you are using randomized
initialization lists (see the description of the argument IINIT), a further 21 integer elements are
allocated internally.

In order to keep track of the regions of the search space that have been visited while looking for a
global optimum, E05JBF internally allocates arrays of increasing sizes depending on the difficulty of
the problem. Two of the main factors that govern the amount allocated are the number of sub-boxes
(call this quantity nboxes) and the number of points in the ‘shopping basket’ (the argument NBASKT
on entry to MONIT). Safe, pessimistic upper bounds on these two quantities are so large as to be
impractical. In fact, the worst-case number of sub-boxes for even the most simple initialization list
(when NINIT ¼ 3 on entry to MONIT) grows like nrnr . Thus E05JBF does not attempt to estimate in
advance the final values of nboxes or NBASKT for a given problem. There are a total of 5 integer
arrays and 4þ nr þ NINIT real arrays whose lengths depend on nboxes, and there are a total of 2
integer arrays and 3þ Nþ nr real arrays whose lengths depend on NBASKT. E05JBF makes a fixed
initial guess that the maximum number of sub-boxes required will be 10000 and that the maximum
number of points in the ‘shopping basket’ will be 1000. If ever a greater amount of sub-boxes or more
room in the ‘shopping basket’ is required, E05JBF performs reallocation, usually doubling the size of
the inadequately-sized arrays. Clearly this process requires periods where the original array and its
extension exist in memory simultaneously, so that the data within can be copied, which compounds the
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complexity of E05JBF's memory usage. It is possible (although not likely) that if your problem is
particularly difficult to solve, or of a large size (hundreds of variables), you may run out of memory.

One array that could be dynamically resized by E05JBF is the ‘shopping basket’ (XBASKT on entry to
MONIT). If the initial attempt to allocate 1000nr reals for this array fails, MONIT will not be called on
exit from E05JBF.

E05JBF performs better if your problem is well-scaled. It is worth trying (by guesswork perhaps) to
rescale the problem if necessary, as sensible scaling will reduce the difficulty of the optimization
problem, so that E05JBF will take less computer time.

10 Example

This example finds the global minimum of the ‘peaks’ function in two dimensions

F x; yð Þ ¼ 3 1� xð Þ2 exp �x2 � yþ 1ð Þ2
� �

� 10
x

5
� x3 � y5

� �
exp �x2 � y2
� �

� 1

3
exp � xþ 1ð Þ2 � y2
� �

on the box �3; 3½ � � �3; 3½ �.
The function F has several local minima and one global minimum in the given box. The global
minimum is approximately located at 0:23;�1:63ð Þ, where the function value is approximately �6:55.
We use default values for all the optional parameters, and we instruct E05JBF to use the simple
initialization list corresponding to IINIT ¼ 0. In particular, this will set for us the initial point 0; 0ð Þ (see
Section 10.3).

10.1 Program Text

! E05JBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e05jbfe_mod

! E05JBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: monit, objfun

! .. Parameters ..
Integer, Parameter, Public :: lcomm = 100, nin = 5, nout = 6

! .. Local Scalars ..
Logical, Public, Save :: plot

Contains
Subroutine outbox(boxl,boxu)

! Displays edges of box with bounds BOXL and BOXU in format suitable
! for plotting.

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: boxl(2), boxu(2)

! .. Executable Statements ..
Write (nout,99999) boxl(1), boxl(2)
Write (nout,99999) boxl(1), boxu(2)
Write (nout,99998)
Write (nout,99999) boxl(1), boxl(2)
Write (nout,99999) boxu(1), boxl(2)
Write (nout,99998)
Write (nout,99999) boxl(1), boxu(2)
Write (nout,99999) boxu(1), boxu(2)
Write (nout,99998)
Write (nout,99999) boxu(1), boxl(2)
Write (nout,99999) boxu(1), boxu(2)
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Write (nout,99998)

Return

99999 Format (F20.15,1X,F20.15)
99998 Format (A)

End Subroutine outbox
Subroutine objfun(n,x,f,nstate,iuser,ruser,inform)

! Routine to evaluate E05JBF objective function.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f
Integer, Intent (Out) :: inform
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: x1, x2

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..

! This is a two-dimensional objective function.
! As an example of using the inform mechanism,
! terminate if any other problem size is supplied.

If (n/=2) Then
inform = -1

Else
inform = 0

If (inform>=0) Then

! If INFORM>=0 then we’re prepared to evaluate OBJFUN
! at the current X

If (nstate==1) Then

! This is the first call to OBJFUN

Write (nout,*)
Write (nout,99999)

End If

x1 = x(1)
x2 = x(2)

f = 3.0E0_nag_wp*(1.0E0_nag_wp-x1)**2*exp(-(x1**2)-(x2+ &
1.0E0_nag_wp)**2) - 1.0E1_nag_wp*(x1/5.0E0_nag_wp-x1**3-x2**5)* &
exp(-x1**2-x2**2) - 1.0E0_nag_wp/3.0E0_nag_wp*exp(-(x1+ &
1.0E0_nag_wp)**2-x2**2)

End If

End If

Return

99999 Format (1X,’(OBJFUN was just called for the first time)’)
End Subroutine objfun
Subroutine monit(n,ncall,xbest,icount,ninit,list,numpts,initpt,nbaskt, &

xbaskt,boxl,boxu,nstate,iuser,ruser,inform)

! Monitoring routine for E05JBF.

! .. Scalar Arguments ..
Integer, Intent (Out) :: inform
Integer, Intent (In) :: n, nbaskt, ncall, ninit, nstate

! .. Array Arguments ..
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Real (Kind=nag_wp), Intent (In) :: boxl(n), boxu(n), list(n,ninit), &
xbaskt(n,nbaskt), xbest(n)

Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (In) :: icount(6), initpt(n), numpts(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
inform = 0

If (inform>=0) Then

! We are going to allow the iterations to continue.

If (nstate==0 .Or. nstate==1) Then

! When NSTATE==1, MONIT is called for the first time. When
! NSTATE==0, MONIT is called for the first AND last time.
! Display a welcome message

Write (nout,*)
Write (nout,99999)
Write (nout,*)

Write (nout,99998)

Do i = 1, n
Write (nout,99997)
Write (nout,99996) i
Write (nout,99995) numpts(i)
Write (nout,99994)
Write (nout,99993) list(i,1:numpts(i))
Write (nout,99992) initpt(i)

End Do

If (plot .And. (n==2)) Then
Write (nout,99991)
Write (nout,*)

End If

End If

If (plot .And. (n==2)) Then

! Display the coordinates of the edges of the current search
! box

Call outbox(boxl,boxu)

End If

If (nstate<=0) Then

! MONIT is called for the last time

If (plot .And. (n==2)) Then
Write (nout,99990)
Write (nout,*)

End If

Write (nout,99989) icount(1)
Write (nout,99988) 10*((ncall+5)/10)
Write (nout,99987) 10*((icount(2)+5)/10)
Write (nout,99986) icount(3)
Write (nout,99985) icount(4)
Write (nout,99984) icount(5)
Write (nout,99983) icount(6)
Write (nout,99982) nbaskt
Write (nout,99981)

Do i = 1, n
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Write (nout,99980) i, xbaskt(i,1:nbaskt)
End Do

Write (nout,99979)
Write (nout,99978) xbest(1:n)

Write (nout,*)
Write (nout,99977)
Write (nout,*)

End If

End If

Return

99999 Format (1X,’*** Begin monitoring information ***’)
99998 Format (1X,’Values controlling initial splitting of a box:’)
99997 Format (1X,’**’)
99996 Format (1X,’In dimension ’,I5)
99995 Format (1X,’Extent of initialization list in this dimension =’,I5)
99994 Format (1X,’Initialization points in this dimension:’)
99993 Format (1X,’LIST(I,1:NUMPTS(I)) =’,(6F9.5))
99992 Format (1X,’Initial point in this dimension: LIST(I,’,I5,’)’)
99991 Format (1X,’<Begin displaying search boxes>’)
99990 Format (1X,’<End displaying search boxes>’)
99989 Format (1X,’Total sub-boxes =’,I5)
99988 Format (1X,’Total function evaluations (rounded to nearest 10) =’,I5)
99987 Format (1X,’Total function evaluations used in local search (rounded’, &

/,3X,’to nearest 10) =’,I5)
99986 Format (1X,’Total points used in local search =’,I5)
99985 Format (1X,’Total sweeps through levels =’,I5)
99984 Format (1X,’Total splits by init. list =’,I5)
99983 Format (1X,’Lowest level with nonsplit boxes =’,I5)
99982 Format (1X,’Number of candidate minima in the "shopping basket’,’" =’, &

I5)
99981 Format (1X,’Shopping basket:’)
99980 Format (1X,’XBASKT(’,I3,’,:) =’,(6F9.5))
99979 Format (1X,’Best point:’)
99978 Format (1X,’XBEST =’,(6F9.5))
99977 Format (1X,’*** End monitoring information ***’)

End Subroutine monit
End Module e05jbfe_mod
Program e05jbfe

! E05JBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e05jaf, e05jbf, nag_wp
Use e05jbfe_mod, Only: lcomm, monit, nin, nout, objfun, plot

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 2

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj
Integer :: i, ibound, ifail, iinit, sdlist

! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(n), bu(n), comm(lcomm), ruser(1), &

x(n)
Real (Kind=nag_wp), Allocatable :: list(:,:)
Integer :: initpt(n), iuser(1), numpts(n)

! .. Executable Statements ..
Write (nout,*) ’E05JBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) sdlist
Allocate (list(n,sdlist))

Read (nin,*) ibound
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If (ibound==0) Then

! Read in the whole of each bound

Read (nin,*)(bl(i),i=1,n)
Read (nin,*)(bu(i),i=1,n)

Else If (ibound==3) Then

! Bounds are uniform: read in only the first entry of each

Read (nin,*) bl(1)
Read (nin,*) bu(1)

End If

Read (nin,*) iinit

! PLOT determines whether MONIT displays information on the
! current search box:

Read (nin,*) plot

! The first argument to E05JAF is a legacy argument and has no
! significance.

ifail = 0
Call e05jaf(0,comm,lcomm,ifail)

! Solve the problem.

ifail = 0
Call e05jbf(n,objfun,ibound,iinit,bl,bu,sdlist,list,numpts,initpt,monit, &

x,obj,comm,lcomm,iuser,ruser,ifail)

Write (nout,*)
Write (nout,99999) obj
Write (nout,99998)(x(i),i=1,n)

99999 Format (1X,’Final objective value =’,F11.5)
99998 Format (1X,’Global optimum X =’,2F9.5)

End Program e05jbfe

10.2 Program Data

E05JBF Example Program Data
3 : SDLIST
0 : IBOUND
-3.0 -3.0 : Lower bounds BL
3.0 3.0 : Upper bounds BU
0 : IINIT
.FALSE. : PLOT

10.3 Program Results

E05JBF Example Program Results

(OBJFUN was just called for the first time)

*** Begin monitoring information ***

Values controlling initial splitting of a box:
**
In dimension 1
Extent of initialization list in this dimension = 3
Initialization points in this dimension:
LIST(I,1:NUMPTS(I)) = -3.00000 0.00000 3.00000
Initial point in this dimension: LIST(I, 2)
**
In dimension 2
Extent of initialization list in this dimension = 3
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Initialization points in this dimension:
LIST(I,1:NUMPTS(I)) = -3.00000 0.00000 3.00000
Initial point in this dimension: LIST(I, 2)
Total sub-boxes = 228
Total function evaluations (rounded to nearest 10) = 200
Total function evaluations used in local search (rounded

to nearest 10) = 90
Total points used in local search = 13
Total sweeps through levels = 12
Total splits by init. list = 5
Lowest level with nonsplit boxes = 7
Number of candidate minima in the "shopping basket" = 2
Shopping basket:
XBASKT( 1,:) = -1.34740 0.22828
XBASKT( 2,:) = 0.20452 -1.62553
Best point:
XBEST = 0.22828 -1.62553

*** End monitoring information ***

Final objective value = -6.55113
Global optimum X = 0.22828 -1.62553

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Example Program
The Peaks Function F and Search Boxes

The global minimum is denoted by GM, while our start point is labelled with X

GM

X

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm. This information may be needed in order to understand
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Section 12, which describes the optional parameters that can be set by calls to E05JCF, E05JDF,
E05JEF, E05JFF and/or E05JGF.

11 Algorithmic Details

Here we summarise the main features of the MCS algorithm used in E05JBF, and we introduce some
terminology used in the description of the subroutine and its arguments. We assume throughout that we
will only do any work in coordinates i in which xi is free to vary. The MCS algorithm is fully described
in Huyer and Neumaier (1999).

11.1 Initialization and Sweeps

Each sub-box is determined by a basepoint x and an opposite point y. We denote such a sub-box by
B x; y½ �. The basepoint is allowed to belong to more than one sub-box, is usually a boundary point, and
is often a vertex.

An initialization procedure produces an initial set of sub-boxes. Whenever a sub-box is split along a
coordinate i for the first time (in the initialization procedure or later), the splitting is done at three or

more user-defined values xji

n o
j
at which the objective function is sampled, and at some adaptively

chosen intermediate points. At least four children are generated. More precisely, we assume that we are
given

‘i � x1i < x2i < � � � < xLii � ui; Li � 3; for i ¼ 1; 2; . . . ; n

and a vector p that, for each i, locates within xji

n o
j
the ith coordinate of an initial point x0; that is, if

x0i ¼ x
j
i for some j ¼ 1; 2; . . . ; Li, then pi ¼ j. A good guess for the global optimum can be used as x0.

The initialization points and the vectors l and p are collectively called the initialization list (and
sometimes we will refer to just the initialization points as ‘the initialization list’, whenever this causes
no confusion). The initialization data may be input by you, or they can be set to sensible default values
by E05JBF: if you provide them yourself, LISTði; jÞ should contain xji , NUMPTSðiÞ should contain Li,
and INITPTðiÞ should contain pi, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; Li; if you wish E05JBF to use one
of its preset initialization methods, you could choose one of two simple, three-point methods (see
Figure 1). If the list generated by one of these methods contains infinite values, attempts are made to
generate a safeguarded list using the function subint x; yð Þ (which is also used during the splitting
procedure, and is described in Section 11.2). If infinite values persist, E05JBF exits with IFAIL ¼ 3.
There is also the option to generate an initialization list with the aid of linesearches (by setting
IINIT ¼ 2). Starting with the absolutely smallest point in the root box, linesearches are made along
each coordinate. For each coordinate, the local minimizers found by the linesearches are put into the
initialization list. If there were fewer than three minimizers, they are augmented by close-by values. The
final preset initialization option (IINIT ¼ 4) generates a randomized list, so that independent multiple
runs may be made if you suspect a global optimum has not been found. Each call to the initialization
routine E05JAF resets the initial-state vector for the Wichmann–Hill base-generator that is used.
Depending on whether you set the optional parameter Repeatability to ON or OFF, the random state is
initialized to give a repeatable or non-repeatable sequence. Then, a random integer between 3 and
SDLIST is selected, which is then used to determine the number of points to be generated in each
coordinate; that is, NUMPTS becomes a constant vector, set to this value. The components of LIST are
then generated, from a uniform distribution on the root box if the box is finite, or else in a safeguarded
fashion if any bound is infinite. The array INITPT is set to point to the best point in LIST.

Given an initialization list (preset or otherwise), E05JBF evaluates F at x0, and sets the initial estimate
of the global minimum, x�, to x0. Then, for i ¼ 1; 2; . . . ; n, the objective function F is evaluated at

Li � 1 points that agree with x� in all but the ith coordinate. We obtain pairs x̂j ; f ji

� �
, for

j ¼ 1; 2; . . . ; Li, with: x� ¼ x̂j1 , say; with, for j 6¼ j1,

x̂jk ¼
x�k if k 6¼ i;
xjk otherwise;
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and with

fji ¼ F x̂j
� �

:

The point having the smallest function value is renamed x� and the procedure is repeated with the next
coordinate.

Once E05JBF has a full set of initialization points and function values, it can generate an initial set of
sub-boxes. Recall that the root box is B x; y½ � ¼ l; u½ �, having basepoint x ¼ x0. The opposite point y is a
corner of l;u½ � farthest away from x, in some sense. The point x need not be a vertex of l; u½ �, and y is
entitled to have infinite coordinates. We loop over each coordinate i, splitting the current box along
coordinate i into 2Li � 2, 2Li � 1 or 2Li sub-intervals with exactly one of the x̂ji as endpoints,

depending on whether two, one or none of the x̂ji are on the boundary. Thus, as well as splitting at x̂ji,

for j ¼ 1; 2; . . . ; Li, we split at additional points zji, for j ¼ 2; 3; . . . ; Li. These additional zji are such that

zji ¼ x̂
j�1
i þ qm x̂ji � x̂

j�1
i

� �
; j ¼ 2; . . . ; Li;

where q is the golden-section ratio
ffiffiffi
5
p
� 1

� �
=2, and the exponent m takes the value 1 or 2, chosen so

that the sub-box with the smaller function value gets the larger fraction of the interval. Each child sub-
box gets as basepoint the point obtained from x� by changing x�i to the xji that is a boundary point of

the corresponding ith coordinate interval; this new basepoint therefore has function value fji . The
opposite point is derived from y by changing yi to the other end of that interval.

E05JBF can now rank the coordinates based on an estimated variability of F . For each i we compute
the union of the ranges of the quadratic interpolant through any three consecutive x̂ji , taking the
difference between the upper and lower bounds obtained as a measure of the variability of F in
coordinate i. A vector 	 is populated in such a way that coordinate i has the 	ith highest estimated
variability. For tiebreaks, when the x� obtained after splitting coordinate i belongs to two sub-boxes, the
one that contains the minimizer of the quadratic models is designated the current sub-box for coordinate
iþ 1.

Boxes are assigned levels in the following manner. The root box is given level 1. When a sub-box of
level s is split, the child with the smaller fraction of the golden-section split receives level sþ 2; all
other children receive level sþ 1. The box with the better function value is given the larger fraction of
the splitting interval and the smaller level because then it is more likely to be split again more quickly.
We see that after the initialization procedure the first level is empty and the non-split boxes have levels
2; . . . ; nr þ 2, so it is meaningful to choose smax much larger than nr. Note that the internal structure of
E05JBF demands that smax be at least nr þ 3.

Examples of initializations in two dimensions are given in Figure 1. In both cases the initial point is
x0 ¼ l þ uð Þ=2; on the left the initialization points are

x1 ¼ l; x2 ¼ l þ uð Þ=2; x3 ¼ u;

while on the right the points are

x1 ¼ 5l þ uð Þ=6; x2 ¼ lþ uð Þ=2; x3 ¼ l þ 5uð Þ=6:
In Figure 1, basepoints and levels after initialization are displayed. Note that these initialization lists
correspond to IINIT ¼ 0 and IINIT ¼ 1, respectively.
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Figure 2
Examples of the initialization procedure

After initialization, a series of sweeps through levels is begun. A sweep is defined by three steps:

(i) scan the list of non-split sub-boxes. Fill a record list b according to bs ¼ 0 if there is no box at
level s, and with bs pointing to a sub-box with the lowest function value among all sub-boxes with
level s otherwise, for 0 < s < smax ;

(ii) the sub-box with label bs is a candidate for splitting. If the sub-box is not to be split, according to
the rules described in Section 11.2, increase its level by 1 and update bsþ1 if necessary. If the sub-
box is split, mark it so, insert its children into the list of sub-boxes, and update b if any child with
level s0 yields a strict improvement of F over those sub-boxes at level s0;

(iii) increment s by 1. If s ¼ smax then displaying monitoring information and start a new sweep; else if
bs ¼ 0 then repeat this step; else display monitoring information and go to the previous step.

Clearly, each sweep ends after at most smax � 1 visits of the third step.

11.2 Splitting

Each sub-box is stored by E05JBF as a set of information about the history of the sub-box: the label of
its parent, a label identifying which child of the parent it is, etc. Whenever a sub-box B x; y½ � of level
s < smax is a candidate for splitting, as described in Section 11.1, we recover x, y, and the number, nj,
of times coordinate j has been split in the history of B. Sub-box B could be split in one of two ways.

(i) Splitting by rank

If s > 2nr minnj þ 1
� �

, the box is always split. The splitting index is set to a coordinate i such that
ni ¼ minnj.

(ii) Splitting by expected gain

If s � 2nr minnj þ 1
� �

, the sub-box could be split along a coordinate where a maximal gain in
function value is expected. This gain is estimated according to a local separable quadratic model
obtained by fitting to 2nr þ 1 function values. If the expected gain is too small the sub-box is not
split at all, and its level is increased by 1.

Eventually, a sub-box that is not eligible for splitting by expected gain will reach level
2nr minnj þ 1
� �

þ 1 and then be split by rank, as long as smax is large enough. As smax !1, the
rule for splitting by rank ensures that each coordinate is split arbitrarily often.

Before describing the details of each splitting method, we introduce the procedure for correctly
handling splitting at adaptive points and for dealing with unbounded intervals. Suppose we want to split
the ith coordinate interval tu xi; yif g, where we define tu xi; yif g ¼ min xi; yið Þ;max xi; yið Þ½ �, for xi 2 R
and yi 2 �R, and where x is the basepoint of the sub-box being considered. The descendants of the sub-
box should shrink sufficiently fast, so we should not split too close to xi. Moreover, if yi is large we
want the new splitting value to not be too large, so we force it to belong to some smaller interval
tu �0; �00f g, determined by

�00 ¼ subint xi; yið Þ; �0 ¼ xi þ �00 � xið Þ=10;

where the function subint is defined by
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subint x; yð Þ ¼
sign yð Þ if 1000 xj j < 1 and yj j > 1000;
10sign yð Þ xj j if 1000 xj j � 1 and yj j > 1000 xj j;
y otherwise:

8<:
11.2.1 Splitting by rank

Consider a sub-box B with level s > 2nr minnj þ 1
� �

. Although the sub-box has reached a high level,
there is at least one coordinate along which it has not been split very often. Among the i such that
ni ¼ minnj for B, select the splitting index to be the coordinate with the lowest 	i (and hence highest
variability rank). ‘Splitting by rank’ refers to the ranking of the coordinates by ni and 	i.

If ni ¼ 0, so that B has never been split along coordinate i, the splitting is done according to the
initialization list and the adaptively chosen golden-section split points, as described in Section 11.1.
Also as covered there, new basepoints and opposite points are generated. The children having the
smaller fraction of the golden-section split (that is, those with larger function values) are given level
min sþ 2; smaxf g. All other children are given level sþ 1.

Otherwise, B ranges between xi and yi in the ith coordinate direction. The splitting value is selected to
be zi ¼ xi þ 2 subint xi; yið Þ � xið Þ=3; we are not attempting to split based on a large reduction in
function value, merely in order to reduce the size of a large interval, so zi may not be optimal. Sub-box
B is split at zi and the golden-section split point, producing three parts and requiring only one
additional function evaluation, at the point x0 obtained from x by changing the ith coordinate to zi. The
child with the smaller fraction of the golden-section split is given level min sþ 2; smaxf g, while the
other two parts are given level sþ 1. Basepoints are assigned as follows: the basepoint of the first child
is taken to be x, and the basepoint of the second and third children is the point x0. Opposite points are
obtained by changing yi to the other end of the ith coordinate-interval of the corresponding child.

11.2.2 Splitting by expected gain

When a sub-box B has level s � 2nr minnj þ 1
� �

, we compute the optimal splitting index and splitting
value from a local separable quadratic used as a simple local approximation of the objective function.
To fit this curve, for each coordinate we need two additional points and their function values. Such data
may be recoverable from the history of B: whenever the ith coordinate was split in the history of B, we
obtained values that can be used for the current quadratic interpolation in coordinate i.

We loop over i; for each coordinate we pursue the history of B back to the root box, and we take the
first two points and function values we find, since these are expected to be closest to the current
basepoint x. If the current coordinate has not yet been split we use the initialization list. Then we
generate a local separable model e �ð Þ for F �ð Þ by interpolation at x and the 2nr additional points just
collected:

e �ð Þ ¼ F xð Þ þ
Xn
i¼1
ei �ið Þ:

We define the expected gain êi in function value when we evaluate at a new point obtained by changing
coordinate i in the basepoint, for each i, based on two cases:

(i) ni ¼ 0. We compute the expected gain as

êi ¼ min
1�j�Li

fji

n o
� fpii :

Again, we split according to the initialization list, with the new basepoints and opposite points
being as before.

(ii) ni > 0. Now, the ith component of our sub-box ranges from xi to yi. Using the quadratic partial
correction function

ei �ið Þ ¼ �i �i � xið Þ þ �i �i � xið Þ2
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we can approximate the maximal gain expected when changing xi only. We will choose the
splitting value from tu �0; �00f g. We compute

êi ¼ min
�i2tu �0;�00f g

ei �ið Þ

and call zi the minimizer in tu �0; �00f g.
If the expected best function value fexp satisfies

fexp ¼ F xð Þ þ min
1�i�n

êi < fbest; ð1Þ

where fbest is the current best function value (including those function values obtained by local
optimization), we expect the sub-box to contain a better point and so we split it, using as splitting
index the component with minimal êi. Equation (1) prevents wasting function calls by avoiding
splitting sub-boxes whose basepoints have bad function values. These sub-boxes will eventually be
split by rank anyway.

We now have a splitting index and a splitting value zi. The sub-box is split at zi as long as zi 6¼ yi,
and at the golden-section split point; two or three children are produced. The larger fraction of the
golden-section split receives level sþ 1, while the smaller fraction receives level min sþ 2; smaxf g.
If it is the case that zi 6¼ yi and the third child is larger than the smaller of the two children from
the golden-section split, the third child receives level sþ 1. Otherwise it is given the level
min sþ 2; smaxf g. The basepoint of the first child is set to x, and the basepoint of the second (and
third if it exists) is obtained by changing the ith coordinate of x to zi. The opposite points are again
derived by changing yi to the other end of the ith coordinate interval of B.

If equation (1) does not hold, we expect no improvement. We do not split, and we increase the
level of B by 1.

11.3 Local Search

The local optimization algorithm used by E05JBF uses linesearches along directions that are determined
by minimizing quadratic models, all subject to bound constraints. Triples of vectors are computed using
coordinate searches based on linesearches. These triples are used in triple search procedures to build
local quadratic models for F. A trust-region-type approach to minimize these models is then carried out,
and more information about the coordinate search and the triple search can be found in Huyer and
Neumaier (1999).

The local search starts by looking for better points without being too local, by making a triple search
using points found by a coordinate search. This yields a new point and function value, an
approximation of the gradient of the objective, and an approximation of the Hessian of the objective.
Then the quadratic model for F is minimized over a small box, with the solution to that minimization
problem then being used as a linesearch direction to minimize the objective. A measure r is computed
to quantify the predictive quality of the quadratic model.

The third stage is the checking of termination criteria. The local search will stop if more than loclim
visits to this part of the local search have occurred, where loclim is the value of the optional parameter
Local Searches Limit. If that is not the case, it will stop if the limit on function calls has been
exceeded (see the description of the optional parameter Function Evaluations Limit). The final
criterion checks if no improvement can be made to the function value, or whether the approximated
gradient g is small, in the sense that

gj jT max xj j; xoldj jð Þ < loctol f0 � fð Þ:
The vector xold is the best point at the start of the current loop in this iterative local-search procedure,
the constant loctol is the value of the optional parameter Local Searches Tolerance, f is the objective
value at x, and f0 is the smallest function value found by the initialization procedure.

Next, E05JBF attempts to move away from the boundary, if any components of the current point lie
there, using linesearches along the offending coordinates. Local searches are terminated if no
improvement could be made.

The fifth stage carries out another triple search, but this time it does not use points from a coordinate
search, rather points lying within the trust-region box are taken.
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The final stage modifies the trust-region box to be bigger or smaller, depending on the quality of the
quadratic model, minimizes the new quadratic model on that box, and does a linesearch in the direction
of the minimizer. The value of r is updated using the new data, and then we go back to the third stage
(checking of termination criteria).

The Hessians of the quadratic models generated by the local search may not be positive definite, so
E05JBF uses the general nonlinear optimizer E04VHF to minimize the models.

12 Optional Parameters

Several optional parameters in E05JBF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal arguments of E05JBF these optional parameters have
associated default values that are appropriate for most problems. Therefore, you need only specify those
optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Defaults

Function Evaluations Limit

Infinite Bound Size

List

Local Searches

Local Searches Limit

Local Searches Tolerance

Maximize

Minimize

Nolist

Repeatability

Splits Limit

Static Limit

Target Objective Error

Target Objective Safeguard

Target Objective Value

Optional parameters may be specified by calling one, or more, of the routines E05JCF, E05JDF,
E05JEF, E05JFF and E05JGF before a call to E05JBF.

E05JCF reads options from an external options file, with Begin and End as the first and last lines
respectively, and with each intermediate line defining a single optional parameter. For example,

Begin
Static Limit = 50

End

The call

CALL E05JCF (IOPTS, COMM, LCOMM, IFAIL)

can then be used to read the file on unit IOPTS. IFAIL will be zero on successful exit. E05JCF should
be consulted for a full description of this method of supplying optional parameters.

E05JDF, E05JEF, E05JFF or E05JGF can be called to supply options directly, one call being necessary
for each optional parameter. E05JDF, E05JEF, E05JFF or E05JGF should be consulted for a full
description of this method of supplying optional parameters.
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All optional parameters not specified by you are set to their default values. Valid values of optional
parameters specified by you are unaltered by E05JBF and so remain in effect for subsequent calls to
E05JBF, unless you explicitly change them.

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively, and where the letter a denotes an option that takes an ON or OFF value;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
the symbol rmax stands for the largest positive model number (see X02ALF), nr represents the
number of non-fixed variables, and the symbol d stands for the maximum number of decimal
digits that can be represented (see X02BEF).

Option names are case-insensitive and must be provided in full; abbreviations are not recognized.

Defaults

This special keyword is used to reset all optional parameters to their default values, and any random
state stored in the array COMM will be destroyed.

Any option value given with this keyword will be ignored. This optional parameter cannot be queried or
got.

Function Evaluations Limit i Default ¼ 100n2r

This puts an approximate limit on the number of function calls allowed. The total number of calls made
is checked at the top of an internal iteration loop, so it is possible that a few calls more than nf may be
made.

Constraint: nf > 0.

Infinite Bound Size r Default ¼ r
1
4
max

This defines the ‘infinite’ bound infbnd in the definition of the problem constraints. Any upper bound
greater than or equal to infbnd will be regarded as 1 (and similarly any lower bound less than or equal
to �infbnd will be regarded as �1).

Constraint: r
1
4
max � infbnd � r

1
2
max .

Local Searches a Default ¼ ON

If you want to try to accelerate convergence of E05JBF by starting local searches from candidate
minima, you will require lcsrch to be ON.

Constraint: lcsrch ¼ ON or OFF.

Local Searches Limit i Default ¼ 50

This defines the maximal number of iterations to be used in the trust-region loop of the local-search
procedure.

Constraint: loclim > 0.

Local Searches Tolerance r Default ¼ 2�

The value of loctol is the multiplier used during local searches as a stopping criterion for when the
approximated gradient is small, in the sense described in Section 11.3.

Constraint: loctol � 2�.
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Minimize Default
Maximize

These keywords specify the required direction of optimization. Any option value given with these
keywords will be ignored.

Nolist Default
List

These options control the echoing of each optional parameter specification as it is supplied. List turns
printing on, Nolist turns printing off. The output is sent to the current advisory message unit (as defined
by X04ABF).

Any option value given with these keywords will be ignored. This optional parameter cannot be queried
or got.

Repeatability a Default ¼ OFF

For use with random initialization lists (IINIT ¼ 4). When set to ON, an internally-initialized random
state is stored in the array COMM for use in subsequent calls to E05JBF.

Constraint: repeat ¼ ON or OFF.

Splits Limit i Default ¼ d nr þ 2ð Þ=3b c
Along with the initialization list LIST, this defines a limit on the number of times the root box will be
split along any single coordinate direction. If Local Searches is OFF you may find the default value to
be too small.

Constraint: smax > nr þ 2.

Static Limit i Default ¼ 3nr

As the default termination criterion, computation stops when the best function value is static for stclim
sweeps through levels. This parameter is ignored if you have specified a target value to reach in Target
Objective Value.

Constraint: stclim > 0.

Target Objective Error r Default ¼ �14

If you have given a target objective value to reach in objval (the value of the optional parameter Target
Objective Value), objerr sets your desired relative error (from above if Minimize is set, from below if
Maximize is set) between OBJ and objval, as described in Section 7. See also the description of the
optional parameter Target Objective Safeguard.

Constraint: objerr � 2�.

Target Objective Safeguard r Default ¼ �12

If you have given a target objective value to reach in objval (the value of the optional parameter Target
Objective Value), objsfg sets your desired safeguarded termination tolerance, for when objval is close
to zero.

Constraint: objsfg � 2�.

Target Objective Value r

This parameter may be set if you wish E05JBF to use a specific value as the target function value to
reach during the optimization. Setting objval overrides the default termination criterion determined by
the optional parameter Static Limit.
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NAG Library Routine Document

E05JCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05JCF may be used to supply optional parameters to E05JBF from an external file. The initialization
routine E05JAF must have been called before calling E05JCF.

2 Specification

SUBROUTINE E05JCF (IOPTS, COMM, LCOMM, IFAIL)

INTEGER IOPTS, LCOMM, IFAIL
REAL (KIND=nag_wp) COMM(LCOMM)

3 Description

E05JCF may be used to supply values for optional parameters to E05JBF. E05JCF reads an external file
and each line of the file defines a single optional parameter. It is only necessary to supply values for
those arguments whose values are to be different from their default values.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given optional parameter must be separated by spaces, or
equals signs ¼½ �. Alphabetic characters may be upper or lower case. The string

Static Limit = 100

is an example of a string used to set an optional parameter. For each optional parameter the string
contains one or more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous
characters.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The implied data type (character, integer or real) of each value to set must match that expected by the
corresponding optional parameter.

The file containing the optional parameters must start with Begin and must finish with End. An
example of a valid options file is:

Begin * Example options file
Static Limit = 500

End

Optional parameter settings are preserved following a call to E05JBF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E05JBF.

A complete list of optional parameters, their symbolic names and default values is given in Section 12
in E05JBF.

4 References

None.
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5 Arguments

1: IOPTS – INTEGER Input

On entry: the unit number of the option file to be read.

Constraint: IOPTS is a valid unit open for reading.

2: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On exit: COMM must not be altered between calls to any of the routines E05JBF, E05JCF,
E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF and E05JLF.

3: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
E05JCF is called.

Constraint: LCOMM � 100.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Initialization routine E05JAF has not been called.

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ 2

At least one optional parameter from the options file could not be recognized. All optional
parameters that were set from the file before this error was encountered will remain set on exit.

BEGIN found, but end-of-file found before END. All optional parameters that were set from the
file before this error was encountered will remain set on exit.

Could not read options file.

End-of-file found before BEGIN.

IFAIL ¼ 3

Attempt to assign an illegal value of Local Searches (lcsrch): lcsrch ¼ valueh i.
Attempt to assign an illegal value of Repeatability (repeat): repeat ¼ valueh i.
Attempt to assign a non-positive value of Function Evaluations Limit (nf ): nf ¼ valueh i.
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Attempt to assign a non-positive value of Local Searches Limit (loclim): loclim ¼ valueh i.
Attempt to assign a non-positive value of Static Limit (stclim): stclim ¼ valueh i.
Attempt to assign an out-of-bounds value of Infinite Bound Size (infbnd): infbnd ¼ valueh i.
Attempt to assign too small a value of Local Searches Tolerance (loctol): loctol ¼ valueh i.
Attempt to assign too small a value of Target Objective Error (objerr): objerr ¼ valueh i.
Attempt to assign too small a value of Target Objective Safeguard (objsfg): objsfg ¼ valueh i.

IFAIL ¼ 5

One of the numeric values to be set could not be parsed. Check that all such strings specify valid
integer or real values.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E05JCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

E05JDF, E05JEF, E05JFF or E05JGF may also be used to supply optional parameters to E05JBF.

10 Example

This example finds the global minimum of the ‘peaks’ function in two dimensions

F x; yð Þ ¼ 3 1� xð Þ2 exp �x2 � yþ 1ð Þ2
� �

� 10
x

5
� x3 � y5

� �
exp �x2 � y2
� �

� 1

3
exp � xþ 1ð Þ2 � y2
� �

on the box �3; 3½ � � �3; 3½ �.
The function F has several local minima and one global minimum in the given box. The global
minimum is approximately located at 0:23;�1:63ð Þ, where the function value is approximately �6:55.
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By specifying an initialization list via LIST, NUMPTS and INITPT we can start E05JBF looking close
to one of the local minima and check that it really does move away from that point to one of the global
minima.

More precisely, we choose �1; 0ð Þ as our initial point (see Section 10.3), and let the initialization list be

�3 �1 3
�3 0 3

� �
:

This example solves the optimization problem using some of the optional parameters described in
Section 12 in E05JBF.

10.1 Program Text

! E05JCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e05jcfe_mod

! E05JCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04baf

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: monit, objfun

! .. Parameters ..
Integer, Parameter, Public :: lcomm = 100, nin = 5, ninopt = 7, &

nout = 6
! .. Local Scalars ..

Logical, Public, Save :: plot
Contains

Subroutine outbox(boxl,boxu)

! Displays edges of box with bounds BOXL and BOXU in format suitable
! for plotting.

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: boxl(2), boxu(2)

! .. Local Scalars ..
Character (80) :: rec

! .. Executable Statements ..
Write (rec,99999) boxl(1), boxl(2)
Call x04baf(nout,rec)
Write (rec,99999) boxl(1), boxu(2)
Call x04baf(nout,rec)
Write (rec,’()’)
Call x04baf(nout,rec)
Write (rec,99999) boxl(1), boxl(2)
Call x04baf(nout,rec)
Write (rec,99999) boxu(1), boxl(2)
Call x04baf(nout,rec)
Write (rec,’()’)
Call x04baf(nout,rec)
Write (rec,99999) boxl(1), boxu(2)
Call x04baf(nout,rec)
Write (rec,99999) boxu(1), boxu(2)
Call x04baf(nout,rec)
Write (rec,’()’)
Call x04baf(nout,rec)
Write (rec,99999) boxu(1), boxl(2)
Call x04baf(nout,rec)
Write (rec,99999) boxu(1), boxu(2)
Call x04baf(nout,rec)
Write (rec,’()’)
Call x04baf(nout,rec)
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Return

99999 Format (F20.15,1X,F20.15)
End Subroutine outbox
Subroutine objfun(n,x,f,nstate,iuser,ruser,inform)

! Routine to evaluate E05JBF objective function.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f
Integer, Intent (Out) :: inform
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: x1, x2
Character (80) :: rec

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..

! This is a two-dimensional objective function.
! As an example of using the inform mechanism,
! terminate if any other problem size is supplied.

If (n/=2) Then
inform = -1

Else
inform = 0

If (inform>=0) Then

! If INFORM >= 0 then we’re prepared to evaluate OBJFUN
! at the current X

If (nstate==1) Then

! This is the first call to OBJFUN

Write (rec,’()’)
Call x04baf(nout,rec)
Write (rec,99999)
Call x04baf(nout,rec)

End If

x1 = x(1)
x2 = x(2)

f = 3.0E0_nag_wp*(1.0E0_nag_wp-x1)**2*exp(-(x1**2)-(x2+ &
1.0E0_nag_wp)**2) - 1.0E1_nag_wp*(x1/5.0E0_nag_wp-x1**3-x2**5)* &
exp(-x1**2-x2**2) - 1.0E0_nag_wp/3.0E0_nag_wp*exp(-(x1+ &
1.0E0_nag_wp)**2-x2**2)

End If

End If

Return

99999 Format (1X,’(OBJFUN was just called for the first time)’)
End Subroutine objfun
Subroutine monit(n,ncall,xbest,icount,ninit,list,numpts,initpt,nbaskt, &

xbaskt,boxl,boxu,nstate,iuser,ruser,inform)

! Monitoring routine for E05JBF.

! .. Scalar Arguments ..
Integer, Intent (Out) :: inform
Integer, Intent (In) :: n, nbaskt, ncall, ninit, nstate
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! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: boxl(n), boxu(n), list(n,ninit), &

xbaskt(n,nbaskt), xbest(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (In) :: icount(6), initpt(n), numpts(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: i
Character (80) :: rec

! .. Executable Statements ..
inform = 0

If (inform>=0) Then

! We are going to allow the iterations to continue.

If (nstate==0 .Or. nstate==1) Then

! When NSTATE==1, MONIT is called for the first time. When
! NSTATE==0, MONIT is called for the first AND last time.
! Display a welcome message

Write (rec,’()’)
Call x04baf(nout,rec)
Write (rec,99999)
Call x04baf(nout,rec)
Write (rec,’()’)
Call x04baf(nout,rec)

Write (rec,99998)
Call x04baf(nout,rec)

Do i = 1, n
Write (rec,99997)
Call x04baf(nout,rec)
Write (rec,99996) i
Call x04baf(nout,rec)
Write (rec,99995) numpts(i)
Call x04baf(nout,rec)
Write (rec,99994)
Call x04baf(nout,rec)
Write (rec,99993) list(i,1:numpts(i))
Call x04baf(nout,rec)
Write (rec,99992) initpt(i)
Call x04baf(nout,rec)

End Do

If (plot .And. (n==2)) Then
Write (rec,99991)
Call x04baf(nout,rec)
Write (rec,’()’)
Call x04baf(nout,rec)

End If

End If

If (plot .And. (n==2)) Then

! Display the coordinates of the edges of the current search
! box

Call outbox(boxl,boxu)

End If

If (nstate<=0) Then

! MONIT is called for the last time

If (plot .And. (n==2)) Then
Write (rec,99990)
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Call x04baf(nout,rec)
Write (rec,’()’)
Call x04baf(nout,rec)

End If

Write (rec,99989) icount(1)
Call x04baf(nout,rec)
Write (rec,99988) 10*((ncall+5)/10)
Call x04baf(nout,rec)
Write (rec,99987)
Call x04baf(nout,rec)
Write (rec,99986) 10*((icount(2)+5)/10)
Call x04baf(nout,rec)
Write (rec,99985) icount(3)
Call x04baf(nout,rec)
Write (rec,99984) icount(4)
Call x04baf(nout,rec)
Write (rec,99983) icount(5)
Call x04baf(nout,rec)
Write (rec,99982) icount(6)
Call x04baf(nout,rec)
Write (rec,99981) nbaskt
Call x04baf(nout,rec)
Write (rec,99980)
Call x04baf(nout,rec)

Do i = 1, n
Write (rec,99979) i, xbaskt(i,1:nbaskt)
Call x04baf(nout,rec)

End Do

Write (rec,99978)
Call x04baf(nout,rec)
Write (rec,99977) xbest(1:n)
Call x04baf(nout,rec)

Write (rec,’()’)
Call x04baf(nout,rec)
Write (rec,99976)
Call x04baf(nout,rec)
Write (rec,’()’)
Call x04baf(nout,rec)

End If

End If

Return

99999 Format (1X,’*** Begin monitoring information ***’)
99998 Format (1X,’Values controlling initial splitting of a box:’)
99997 Format (1X,’**’)
99996 Format (1X,’In dimension ’,I5)
99995 Format (1X,’Extent of initialization list in this dimension =’,I5)
99994 Format (1X,’Initialization points in this dimension:’)
99993 Format (1X,’LIST(I,1:NUMPTS(I)) =’,(6F9.5))
99992 Format (1X,’Initial point in this dimension: LIST(I,’,I5,’)’)
99991 Format (1X,’<Begin displaying search boxes>’)
99990 Format (1X,’<End displaying search boxes>’)
99989 Format (1X,’Total sub-boxes =’,I5)
99988 Format (1X,’Total function evaluations (rounded to nearest 10) =’,I5)
99987 Format (1X,’Total function evaluations used in local search (rounded’)
99986 Format (3X,’to nearest 10) =’,I5)
99985 Format (1X,’Total points used in local search =’,I5)
99984 Format (1X,’Total sweeps through levels =’,I5)
99983 Format (1X,’Total splits by init. list =’,I5)
99982 Format (1X,’Lowest level with nonsplit boxes =’,I5)
99981 Format (1X,’Number of candidate minima in the "shopping basket’,’" =’, &

I5)
99980 Format (1X,’Shopping basket:’)
99979 Format (1X,’XBASKT(’,I3,’,:) =’,(6F9.5))
99978 Format (1X,’Best point:’)
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99977 Format (1X,’XBEST =’,(6F9.5))
99976 Format (1X,’*** End monitoring information ***’)

End Subroutine monit
End Module e05jcfe_mod
Program e05jcfe

! E05JCF Example Main Program

! This program demonstrates the use of routines to set and get
! values of optional parameters associated with E05JBF

! .. Use Statements ..
Use nag_library, Only: e05jaf, e05jbf, e05jcf, e05jdf, e05jef, e05jff, &

e05jgf, e05jhf, e05jjf, e05jkf, e05jlf, nag_wp, &
x04acf, x04baf

Use e05jcfe_mod, Only: lcomm, monit, nin, ninopt, nout, objfun, plot
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: n = 2
Character (*), Parameter :: fname = ’e05jcfe.opt’

! .. Local Scalars ..
Real (Kind=nag_wp) :: loctol, obj
Integer :: i, ibdchk, ibound, ifail, iinit, j, &

loclim, mode, n_r, sdlist, stclim
Character (3) :: lcsrch
Character (80) :: rec

! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(n), bu(n), comm(lcomm), ruser(1), &

x(n)
Real (Kind=nag_wp), Allocatable :: list(:,:)
Integer :: initpt(n), iuser(1), numpts(n)

! .. Intrinsic Procedures ..
Intrinsic :: count, sqrt, trim

! .. Executable Statements ..
Write (rec,99992) ’E05JCF Example Program Results’
Call x04baf(nout,rec)

! Skip heading in data file
Read (nin,*)

Read (nin,*) sdlist
Allocate (list(n,sdlist))

Read (nin,*) ibound

If (ibound==0) Then

! Read in the whole of each bound

Read (nin,*)(bl(i),i=1,n)
Read (nin,*)(bu(i),i=1,n)

Else If (ibound==3) Then

! Bounds are uniform: read in only the first entry of each

Read (nin,*) bl(1)
Read (nin,*) bu(1)

End If

Read (nin,*) iinit

If (iinit==3) Then

! User is specifying the initialization list

Read (nin,*)(numpts(i),i=1,n)
Read (nin,*)((list(i,j),j=1,numpts(i)),i=1,n)
Read (nin,*)(initpt(i),i=1,n)

End If
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! PLOT determines whether MONIT displays information on
! the current search box:

Read (nin,*) plot

! The first argument to E05JAF is a legacy argument and has no
! significance.

ifail = 0
Call e05jaf(0,comm,lcomm,ifail)

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Use E05JCF to read some options from the options file

ifail = 0
Call e05jcf(ninopt,comm,lcomm,ifail)

Write (rec,’()’)
Call x04baf(nout,rec)

! Use E05JKF to find the value of the integer-valued option
! ’Local Searches Limit’

ifail = 0
Call e05jkf(’Local Searches Limit’,loclim,comm,lcomm,ifail)

Write (rec,99999) loclim
Call x04baf(nout,rec)

! Compute the number of free variables, then use E05JFF to set the value
! of the integer-valued option ’Static Limit’

n_r = count(bl(1:n)/=bu(1:n))
stclim = 4*n_r

ifail = 0
Call e05jff(’Static Limit’,stclim,comm,lcomm,ifail)

! Use E05JHF to determine whether the real-valued option
! ’Infinite Bound Size’ has been set by us (in which case
! E05JHF returns 1) or whether it holds its default value
! (E05JHF returns 0)

ifail = 0
ibdchk = e05jhf(’Infinite Bound Size’,comm,lcomm,ifail)

If (ibdchk==1) Then
Write (rec,99998)
Call x04baf(nout,rec)

Else If (ibdchk==0) Then
Write (rec,99997)
Call x04baf(nout,rec)

End If

! Use E05JLF/E05JGF to set the real-valued option
! ’Local Searches Tolerance’ to the square root of its default

ifail = 0
Call e05jlf(’Local Searches Tolerance’,loctol,comm,lcomm,ifail)

ifail = 0
Call e05jgf(’Local Searches Tolerance’,sqrt(loctol),comm,lcomm,ifail)

! Use E05JLF to get the new value of ’Local Searches Tolerance’
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ifail = 0
Call e05jlf(’Local Searches Tolerance’,loctol,comm,lcomm,ifail)

Write (rec,99996) loctol
Call x04baf(nout,rec)

! Use E05JDF to set the option ’Minimize’ (which is the default)

ifail = 0
Call e05jdf(’Minimize’,comm,lcomm,ifail)

! Use E05JEF to set the option ’Local Searches’ to ’On’ (also
! the default)

lcsrch = ’On’

ifail = 0
Call e05jef(’Local Searches’,lcsrch,comm,lcomm,ifail)

! Get that value of ’Local Searches’ using E05JJF

ifail = 0
Call e05jjf(’Local Searches’,lcsrch,comm,lcomm,ifail)

Write (rec,99995) trim(lcsrch)
Call x04baf(nout,rec)

! Solve the problem.

ifail = 0
Call e05jbf(n,objfun,ibound,iinit,bl,bu,sdlist,list,numpts,initpt,monit, &

x,obj,comm,lcomm,iuser,ruser,ifail)

Write (rec,’()’)
Call x04baf(nout,rec)
Write (rec,99994) obj
Call x04baf(nout,rec)
Write (rec,99993)(x(i),i=1,n)
Call x04baf(nout,rec)

99999 Format (1X,’Option "Local Searches Limit" has the value ’,I6,’.’)
99998 Format (1X,’Option "Infinite Bound Size" has been set by us.’)
99997 Format (1X,’Option "Infinite Bound Size" holds its default value.’)
99996 Format (1X,’Option "Local Searches Tolerance" has the value ’,E13.5,’.’)
99995 Format (1X,’Option "Local Searches" has the value "’,A,’".’)
99994 Format (1X,’Final objective value =’,F11.5)
99993 Format (1X,’Global optimum X =’,2F9.5)
99992 Format (1X,A)

End Program e05jcfe

10.2 Program Data

Begin example options file
* Comment lines like this begin with an asterisk
* Set the maximum number of function evaluations
Function Evaluations Limit = 100000
* Set the local search iteration limit
Local Searches Limit = 40
End

E05JCF Example Program Data
3 : SDLIST
0 : IBOUND
-3.0 -3.0 : Lower bounds BL
3.0 3.0 : Upper bounds BU
3 : IINIT
3 3 3 : NUMPTS
-3.0 -1.0 3.0 -3.0 0.0 3.0 : Matrix LIST
2 2 2 : INITPT
.FALSE. : PLOT
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10.3 Program Results

E05JCF Example Program Results

Option "Local Searches Limit" has the value 40.
Option "Infinite Bound Size" holds its default value.
Option "Local Searches Tolerance" has the value 0.14901E-07.
Option "Local Searches" has the value "ON".

(OBJFUN was just called for the first time)

*** Begin monitoring information ***

Values controlling initial splitting of a box:
**
In dimension 1
Extent of initialization list in this dimension = 3
Initialization points in this dimension:
LIST(I,1:NUMPTS(I)) = -3.00000 -1.00000 3.00000
Initial point in this dimension: LIST(I, 2)
**
In dimension 2
Extent of initialization list in this dimension = 3
Initialization points in this dimension:
LIST(I,1:NUMPTS(I)) = -3.00000 0.00000 3.00000
Initial point in this dimension: LIST(I, 2)
Total sub-boxes = 180
Total function evaluations (rounded to nearest 10) = 190
Total function evaluations used in local search (rounded

to nearest 10) = 100
Total points used in local search = 9
Total sweeps through levels = 9
Total splits by init. list = 5
Lowest level with nonsplit boxes = 6
Number of candidate minima in the "shopping basket" = 2
Shopping basket:
XBASKT( 1,:) = 0.22828 -1.34740
XBASKT( 2,:) = -1.62553 0.20452
Best point:
XBEST = 0.22828 -1.62553

*** End monitoring information ***

Final objective value = -6.55113
Global optimum X = 0.22828 -1.62553

E05 – Global Optimization of a Function E05JCF

Mark 26 E05JCF.11



-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Example Program
The Peaks Function F and Search Boxes

The global minimum is denoted by *, while our start point is labelled with X

*

X

E05JCF NAG Library Manual

E05JCF.12 (last) Mark 26



NAG Library Routine Document

E05JDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05JDF may be used to supply individual optional parameters to E05JBF. The initialization routine
E05JAF must have been called before calling E05JDF.

2 Specification

SUBROUTINE E05JDF (OPTSTR, COMM, LCOMM, IFAIL)

INTEGER LCOMM, IFAIL
REAL (KIND=nag_wp) COMM(LCOMM)
CHARACTER(*) OPTSTR

3 Description

E05JDF may be used to supply values for optional parameters to E05JBF. It is only necessary to call
E05JDF for those arguments whose values are to be different from their default values. One call to
E05JDF sets one argument value.

Each optional parameter is defined by a single character string, of up to 72 characters, consisting of one
or more items. The items associated with a given optional parameter must be separated by spaces, or
equals signs ¼½ �. Alphabetic characters may be upper or lower case. The string

Static Limit = 100

is an example of a string used to set an optional parameter. For each optional parameter the string
contains one or more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 40 contiguous
characters.

For E05JDF, each user-specified optional parameter is not normally printed as it is defined, but this
printing may be turned on using the keyword List. Thus the statement

CALL E05JDF (’List’, COMM, LCOMM, IFAIL)

turns on printing of this and subsequent options. Printing may be turned off again using the keyword
Nolist.

Optional parameter settings are preserved following a call to E05JBF and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values before a subsequent
call to E05JBF.

A complete list of optional parameters, their symbolic names and default values is given in Section 12
in E05JBF.

4 References

None.
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5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string defining a single optional parameter (as described in Section 3 and in
Section 12 in E05JBF). The implied data type (character, integer or real) of each value to set
must match that expected by the optional parameter.

2: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On exit: COMM must not be altered between calls to any of the routines E05JBF, E05JCF,
E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF and E05JLF.

3: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
E05JDF is called.

Constraint: LCOMM � 100.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Initialization routine E05JAF has not been called.

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ 2

The supplied optional parameter is invalid. A keyword or keyword combination was not
recognized.

IFAIL ¼ 3

Attempt to assign an illegal value of Local Searches (lcsrch): lcsrch ¼ valueh i.
Attempt to assign an illegal value of Repeatability (repeat): repeat ¼ valueh i.
Attempt to assign a non-positive value of Function Evaluations Limit (nf ): nf ¼ valueh i.
Attempt to assign a non-positive value of Local Searches Limit (loclim): loclim ¼ valueh i.
Attempt to assign a non-positive value of Static Limit (stclim): stclim ¼ valueh i.
Attempt to assign an out-of-bounds value of Infinite Bound Size (infbnd): infbnd ¼ valueh i.
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Attempt to assign too small a value of Local Searches Tolerance (loctol): loctol ¼ valueh i.
Attempt to assign too small a value of Target Objective Error (objerr): objerr ¼ valueh i.
Attempt to assign too small a value of Target Objective Safeguard (objsfg): objsfg ¼ valueh i.

IFAIL ¼ 5

The value to be set could not be parsed. Check that it specifies a valid integer or real value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E05JDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

E05JCF, E05JEF, E05JFF or E05JGF may also be used to supply optional parameters to E05JBF.

10 Example

See Section 10 in E05JCF.
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NAG Library Routine Document

E05JEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05JEF may be used to supply individual ‘ON’/‘OFF’-valued character optional parameters to E05JBF.
The initialization routine E05JAF must have been called before calling E05JEF.

2 Specification

SUBROUTINE E05JEF (OPTSTR, CVALUE, COMM, LCOMM, IFAIL)

INTEGER LCOMM, IFAIL
REAL (KIND=nag_wp) COMM(LCOMM)
CHARACTER(*) OPTSTR, CVALUE

3 Description

E05JEF may be used to supply values for ‘ON’/‘OFF’-valued character optional parameters to E05JBF.
It is only necessary to call E05JEF for those arguments whose values are to be different from their
default values. One call to E05JEF sets one argument value.

Each ‘ON’/‘OFF’-valued character optional parameter is defined by a single character string in
OPTSTR and the corresponding value in CVALUE. For example, the following allows local searches to
be turned off:

LCSRCH = ’off’
CALL E05JEF (’Local Searches’, LCSRCH, COMM, LCOMM, IFAIL)

A complete list of optional parameters, their symbolic names and default values is given in Section 12
in E05JBF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string defining a single ‘ON’/‘OFF’-valued character optional parameter (as described
in Section 12 in E05JBF).

2: CVALUE – CHARACTER(*) Input

On entry: the ‘ON’/‘OFF’ value associated with the keyword in OPTSTR.

3: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On exit: COMM must not be altered between calls to any of the routines E05JBF, E05JCF,
E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF and E05JLF.
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4: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
E05JEF is called.

Constraint: LCOMM � 100.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Initialization routine E05JAF has not been called.

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ 2

The supplied optional parameter is invalid. A keyword or keyword combination was not
recognized.

IFAIL ¼ 3

Attempt to assign an illegal value of Local Searches (lcsrch): lcsrch ¼ valueh i.
Attempt to assign an illegal value of Repeatability (repeat): repeat ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

E05JEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

E05JCF or E05JDF may also be used to supply ‘ON’/‘OFF’-valued character optional parameters to
E05JBF.

10 Example

See Section 10 in E05JCF.
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NAG Library Routine Document

E05JFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05JFF may be used to supply individual integer optional parameters to E05JBF. The initialization
routine E05JAF must have been called before calling E05JFF.

2 Specification

SUBROUTINE E05JFF (OPTSTR, IVALUE, COMM, LCOMM, IFAIL)

INTEGER IVALUE, LCOMM, IFAIL
REAL (KIND=nag_wp) COMM(LCOMM)
CHARACTER(*) OPTSTR

3 Description

E05JFF may be used to supply values for integer optional parameters to E05JBF. It is only necessary to
call E05JFF for those arguments whose values are to be different from their default values. One call to
E05JFF sets one argument value.

Each integer optional parameter is defined by a single character string in OPTSTR and the
corresponding value in IVALUE. For example, the following allows the function evaluations limit to be
defined:

NF = 1000
CALL E05JFF (’Function Evaluations Limit’, NF, COMM, LCOMM, IFAIL)

A complete list of optional parameters, their symbolic names and default values is given in Section 12
in E05JBF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying an integer-valued optional parameter (as described in Section 12 in
E05JBF).

2: IVALUE – INTEGER Input

On entry: an integer value associated with the optional parameter in OPTSTR.

3: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On exit: COMM must not be altered between calls to any of the routines E05JBF, E05JCF,
E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF and E05JLF.
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4: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which E05JFF
is called.

Constraint: LCOMM � 100.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Initialization routine E05JAF has not been called.

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ 2

The supplied optional parameter is invalid. A keyword or keyword combination was not
recognized.

IFAIL ¼ 3

Attempt to assign a non-positive value of Function Evaluations Limit (nf ): nf ¼ valueh i.
Attempt to assign a non-positive value of Local Searches Limit (loclim): loclim ¼ valueh i.
Attempt to assign a non-positive value of Static Limit (stclim): stclim ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

E05JFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

E05JCF or E05JDF may also be used to supply integer optional parameters to E05JBF.

10 Example

See Section 10 in E05JCF.
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NAG Library Routine Document

E05JGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05JGF may be used to supply individual real optional parameters to E05JBF. The initialization routine
E05JAF must have been called before calling E05JGF.

2 Specification

SUBROUTINE E05JGF (OPTSTR, RVALUE, COMM, LCOMM, IFAIL)

INTEGER LCOMM, IFAIL
REAL (KIND=nag_wp) RVALUE, COMM(LCOMM)
CHARACTER(*) OPTSTR

3 Description

E05JGF may be used to supply values for real optional parameters to E05JBF. It is only necessary to
call E05JGF for those arguments whose values are to be different from their default values. One call to
E05JGF sets one argument value.

Each real optional parameter is defined by a single character string in OPTSTR and the corresponding
value in RVALUE. For example the following illustrates how the local searches tolerance could be
defined:

LOCTOL = 1.0E-10
CALL E05JGF (’Local Searches Tolerance’, LOCTOL, COMM, LCOMM, IFAIL)

A complete list of optional parameters, their symbolic names and default values is given in Section 12
in E05JBF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying a real-valued optional parameter (as described in Section 12 in
E05JBF).

2: RVALUE – REAL (KIND=nag_wp) Input

On entry: the value associated with the optional parameter in OPTSTR.

3: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On exit: COMM must not be altered between calls to any of the routines E05JBF, E05JCF,
E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF and E05JLF.
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4: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
E05JGF is called.

Constraint: LCOMM � 100.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Initialization routine E05JAF has not been called.

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ 2

The supplied optional parameter is invalid. A keyword or keyword combination was not
recognized.

IFAIL ¼ 3

Attempt to assign an out-of-bounds value of Infinite Bound Size (infbnd): infbnd ¼ valueh i.
Attempt to assign too small a value of Local Searches Tolerance (loctol): loctol ¼ valueh i.
Attempt to assign too small a value of Target Objective Error (objerr): objerr ¼ valueh i.
Attempt to assign too small a value of Target Objective Safeguard (objsfg): objsfg ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

E05JGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

E05JCF or E05JDF may also be used to supply real optional parameters to E05JBF.

10 Example

See Section 10 in E05JCF.
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NAG Library Routine Document

E05JHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05JHF is used to check if you have set an optional parameter of E05JBF. The initialization routine
E05JAF must have been called before calling E05JHF.

2 Specification

FUNCTION E05JHF (OPTSTR, COMM, LCOMM, IFAIL)
INTEGER E05JHF

INTEGER LCOMM, IFAIL
REAL (KIND=nag_wp) COMM(LCOMM)
CHARACTER(*) OPTSTR

3 Description

E05JHF returns 1 if you have previously set the optional parameter contained in OPTSTR, otherwise it
returns 0.

A complete list of optional parameters, their symbolic names and default values is given in Section 12
in E05JBF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying an optional parameter (as described in Section 12 in E05JBF).

2: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: communication data as initialized by E05JAF.

3: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
E05JHF is called.

Constraint: LCOMM � 100.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Initialization routine E05JAF has not been called.

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ 2

The supplied optional parameter is invalid. A keyword or keyword combination was not
recognized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E05JHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in E05JCF.

E05JHF NAG Library Manual

E05JHF.2 (last) Mark 26



NAG Library Routine Document

E05JJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05JJF is used to get the value of an ‘ON’/‘OFF’-valued character E05JBF optional parameter. E05JJF
can be used before or after calling E05JBF, but the initialization routine E05JAF must have been called
before calling E05JJF.

2 Specification

SUBROUTINE E05JJF (OPTSTR, CVALUE, COMM, LCOMM, IFAIL)

INTEGER LCOMM, IFAIL
REAL (KIND=nag_wp) COMM(LCOMM)
CHARACTER(*) OPTSTR, CVALUE

3 Description

E05JJF obtains the current value of an ‘ON’/‘OFF’-valued character optional parameter. For example

CALL E05JJF (’Local Searches’, LCSRCH, COMM, LCOMM, IFAIL)

will result in the ‘ON’/‘OFF’ value of the optional parameter Local Searches being output in LCSRCH.

A complete list of optional parameters, their symbolic names and default values is given in Section 12
in E05JBF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string defining a single ‘ON’/‘OFF’-valued character optional parameter (as described
in Section 12 in E05JBF).

2: CVALUE – CHARACTER(*) Output

On exit: if IFAIL ¼ 0 on exit, CVALUE contains the ‘ON’/‘OFF’ value associated with the
keyword in OPTSTR.

3: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: communication data as initialized by E05JAF.

4: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which E05JJF
is called.

Constraint: LCOMM � 100.
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5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Initialization routine E05JAF has not been called.

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ 2

The supplied optional parameter is invalid. A keyword or keyword combination was not
recognized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E05JJF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

See Section 10 in E05JCF.
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NAG Library Routine Document

E05JKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05JKF is used to get the value of an integer E05JBF optional parameter. E05JKF can be used before
or after calling E05JBF, but the initialization routine E05JAF must have been called before calling
E05JKF.

2 Specification

SUBROUTINE E05JKF (OPTSTR, IVALUE, COMM, LCOMM, IFAIL)

INTEGER IVALUE, LCOMM, IFAIL
REAL (KIND=nag_wp) COMM(LCOMM)
CHARACTER(*) OPTSTR

3 Description

E05JKF obtains the current value of an integer-valued optional parameter. For example

CALL E05JKF (’Local Searches Limit’, LOCLIM, COMM, LCOMM, IFAIL)

will result in the value of the optional parameter Local Searches Limit being output in LOCLIM.

The default values of the optional parameters Function Evaluations Limit, Splits Limit and Static
Limit depend on the problem parameter nr (the number of non-fixed variables). A default value for
each of these optional parameters will be set in the first call to the solver E05JBF: before that time,
getting the value of any of these optional parameters using E05JKF will not return a meaningful result.

A complete list of optional parameters, their symbolic names and default values is given in Section 12
in E05JBF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying an integer-valued optional parameter (as described in Section 12 in
E05JBF).

2: IVALUE – INTEGER Output

On exit: if IFAIL ¼ 0 on exit, IVALUE contains the integer value associated with the optional
parameter in OPTSTR.

3: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: communication data as initialized by E05JAF.
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4: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
E05JKF is called.

Constraint: LCOMM � 100.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Initialization routine E05JAF has not been called.

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ 2

The supplied optional parameter is invalid. A keyword or keyword combination was not
recognized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E05JKF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

See Section 10 in E05JCF.
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E05JLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05JLF is used to get the value of a real E05JBF optional parameter. E05JLF can be used before or
after calling E05JBF, but the initialization routine E05JAF must have been called before calling
E05JLF.

2 Specification

SUBROUTINE E05JLF (OPTSTR, RVALUE, COMM, LCOMM, IFAIL)

INTEGER LCOMM, IFAIL
REAL (KIND=nag_wp) RVALUE, COMM(LCOMM)
CHARACTER(*) OPTSTR

3 Description

E05JLF obtains the current value of a real-valued optional parameter. For example

CALL E05JLF (’Local Searches Tolerance’, LOCTOL, COMM, LCOMM, IFAIL)

will result in the value of the optional parameter Local Searches Tolerance being output in LOCTOL.

A complete list of optional parameters, their symbolic names and default values is given in Section 12
in E05JBF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying a real-valued optional parameter (as described in Section 12 in
E05JBF).

2: RVALUE – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 on exit, RVALUE contains the real value associated with the optional
parameter in OPTSTR.

3: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: communication data as initialized by E05JAF.

4: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
E05JLF is called.

Constraint: LCOMM � 100.
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5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Initialization routine E05JAF has not been called.

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ 2

The supplied optional parameter is invalid. A keyword or keyword combination was not
recognized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E05JLF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

See Section 10 in E05JCF.
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NAG Library Routine Document

E05SAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm and to Section 12 for a detailed
description of the specification of the optional parameters.

1 Purpose

E05SAF is designed to search for the global minimum or maximum of an arbitrary function, using
Particle Swarm Optimization (PSO). Derivatives are not required, although these may be used by an
accompanying local minimization routine if desired. E05SAF is essentially identical to E05SBF, but
with a simpler interface and with various optional parameters removed; otherwise most arguments are
identical. In particular, E05SAF does not handle general constraints.

2 Specification

SUBROUTINE E05SAF (NDIM, NPAR, XB, FB, BL, BU, OBJFUN, MONMOD, IOPTS,
OPTS, IUSER, RUSER, ITT, INFORM, IFAIL)

&

INTEGER NDIM, NPAR, IOPTS(*), IUSER(*), ITT(6), INFORM,
IFAIL

&

REAL (KIND=nag_wp) XB(NDIM), FB, BL(NDIM), BU(NDIM), OPTS(*), RUSER(*)
EXTERNAL OBJFUN, MONMOD

Before calling E05SAF, E05ZKF must be called with OPTSTR set to ‘Initialize = e05saf’.
Optional parameters may also be specified by calling E05ZKF before the call to E05SAF.

3 Description

E05SAF uses a stochastic method based on Particle Swarm Optimization (PSO) to search for the global
optimum of a nonlinear function F , subject to a set of bound constraints on the variables. In the PSO
algorithm (see Section 11), a set of particles is generated in the search space, and advances each
iteration to (hopefully) better positions using a heuristic velocity based upon inertia, cognitive memory
and global memory. The inertia is provided by a decreasingly weighted contribution from a particles
current velocity, the cognitive memory refers to the best candidate found by an individual particle and
the global memory refers to the best candidate found by all the particles. This allows for a global search
of the domain in question.

Further, this may be coupled with a selection of local minimization routines, which may be called
during the iterations of the heuristic algorithm, the interior phase, to hasten the discovery of locally
optimal points, and after the heuristic phase has completed to attempt to refine the final solution, the
exterior phase. Different options may be set for the local optimizer in each phase.

Without loss of generality, the problem is assumed to be stated in the following form:

minimize
x2Rndim

F xð Þ subject to l � x � u;

where the objective F xð Þ is a scalar function, x is a vector in Rndim and the vectors l � u are lower and
upper bounds respectively for the ndim variables. The objective function may be nonlinear. Continuity
of F is not essential. For functions which are smooth and primarily unimodal, faster solutions will
almost certainly be achieved by using Chapter E04 routines directly.

For functions which are smooth and multi-modal, gradient dependent local minimization routines may
be coupled with E05SAF.
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For multi-modal functions for which derivatives cannot be provided, particularly functions with a
significant level of noise in their evaluation, E05SAF should be used either alone, or coupled with
E04CBF.

The ndim lower and upper box bounds on the variable x are included to initialize the particle swarm
into a finite hypervolume, although their subsequent influence on the algorithm is user determinable
(see the option Boundary in Section 12). It is strongly recommended that sensible bounds are provided
for all variables.

E05SAF may also be used to maximize the objective function (see the option Optimize).

Due to the nature of global optimization, unless a predefined target is provided, there is no definitive
way of knowing when to end a computation. As such several stopping heuristics have been
implemented into the algorithm. If any of these is achieved, E05SAF will exit with IFAIL ¼ 1, and the
parameter INFORM will indicate which criteria was reached. See INFORM for more information.

In addition, you may provide your own stopping criteria through MONMOD and OBJFUN.

E05SBF provides a comprehensive interface, allowing for the inclusion of general nonlinear constraints.

4 References

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Kennedy J and Eberhart R C (1995) Particle Swarm Optimization Proceedings of the 1995 IEEE
International Conference on Neural Networks 1942–1948

Koh B, George A D, Haftka R T and Fregly B J (2006) Parallel Asynchronous Particle Swarm
Optimization International Journal for Numerical Methods in Engineering 67(4) 578–595

Vaz A I and Vicente L N (2007) A Particle Swarm Pattern Search Method for Bound Constrained
Global Optimization Journal of Global Optimization 39(2) 197–219 Kluwer Academic Publishers

5 Arguments

Note: for descriptions of the symbolic variables, see Section 11.

1: NDIM – INTEGER Input

On entry: ndim, the number of dimensions.

Constraint: NDIM � 1.

2: NPAR – INTEGER Input

On entry: npar , the number of particles to be used in the swarm. Assuming all particles remain
within bounds, each complete iteration will perform at least NPAR function evaluations.
Otherwise, significantly fewer objective function evaluations may be performed.

Suggested value: NPAR ¼ 10� NDIM.

Constraint: NPAR � 5� num threads, where num_threads is the value returned by the
OpenMP environment variable OMP_NUM_THREADS, or num_threads is 1 for a serial version of
this routine.

3: XBðNDIMÞ – REAL (KIND=nag_wp) array Output

On exit: the location of the best solution found, ~x, in Rndim.

4: FB – REAL (KIND=nag_wp) Output

On exit: the objective value of the best solution, ~f ¼ F ~xð Þ.
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5: BLðNDIMÞ – REAL (KIND=nag_wp) array Input
6: BUðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: BL is l, the array of lower bounds, BU is u, the array of upper bounds. The NDIM
entries in BL and BU must contain the lower and upper simple (box) bounds of the variables
respectively. These must be provided to initialize the sample population into a finite
hypervolume, although their subsequent influence on the algorithm is user determinable (see
the option Boundary in Section 12).

If BLðiÞ ¼ BUðiÞ for any i 2 1; . . . ;NDIMf g, variable i will remain locked to BLðiÞ regardless of
the Boundary option selected.

It is strongly advised that you place sensible lower and upper bounds on all variables, even if
your model allows for variables to be unbounded (using the option Boundary ¼ ignore) since
these define the initial search space.

Constraints:

BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;NDIM;
BLðiÞ 6¼ BUðiÞ for at least one i 2 1; . . . ;NDIMf g.

7: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must, depending on the value of MODE, calculate the objective function and/or
calculate the gradient of the objective function for a ndim-variable vector x. Gradients are only
required if a local minimizer has been chosen which requires gradients. See the option Local
Minimizer for more information.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, NDIM, X, OBJF, VECOUT, NSTATE, IUSER,
RUSER)

&

INTEGER MODE, NDIM, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(NDIM), OBJF, VECOUT(NDIM), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which functionality is required.

MODE ¼ 0
F xð Þ should be returned in OBJF. The value of OBJF on entry may be used as an
upper bound for the calculation. Any expected value of F xð Þ that is greater than
OBJF may be approximated by this upper bound; that is OBJF can remain
unaltered.

MODE ¼ 1
Local Minimizer ¼ E04UCF only
First derivatives can be evaluated and returned in VECOUT. Any unaltered
elements of VECOUT will be approximated using finite differences.

MODE ¼ 2
Local Minimizer ¼ E04UCF only
F xð Þ must be calculated and returned in OBJF, and available first derivatives can
be evaluated and returned in VECOUT. Any unaltered elements of VECOUT will
be approximated using finite differences.

MODE ¼ 5
F xð Þ must be calculated and returned in OBJF. The value of OBJF on entry may
not be used as an upper bound.

MODE ¼ 6
Local Minimizer ¼ E04DGF or E04KZF only
All first derivatives must be evaluated and returned in VECOUT.

E05 – Global Optimization of a Function E05SAF

Mark 26 E05SAF.3



MODE ¼ 7
Local Minimizer ¼ E04DGF or E04KZF only
F xð Þ must be calculated and returned in OBJF, and all first derivatives must be
evaluated and returned in VECOUT.

On exit: if the value of MODE is set to be negative, then E05SAF will exit as soon as
possible with IFAIL ¼ 3 and INFORM ¼ MODE.

2: NDIM – INTEGER Input

On entry: the number of dimensions.

3: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: x, the point at which the objective function and/or its gradient are to be
evaluated.

4: OBJF – REAL (KIND=nag_wp) Input/Output

On entry: the value of OBJF passed to OBJFUN varies with the argument MODE.

MODE ¼ 0
OBJF is an upper bound for the value of F xð Þ, often equal to the best value of
F xð Þ found so far by a given particle. Only objective function values less than
the value of OBJF on entry will be used further. As such this upper bound may
be used to stop further evaluation when this will only increase the objective
function value above the upper bound.

MODE ¼ 1, 2, 5, 6 or 7
OBJF is meaningless on entry.

On exit: the value of OBJF returned varies with the argument MODE.

MODE ¼ 0
OBJF must be the value of F xð Þ. Only values of F xð Þ strictly less than OBJF on
entry need be accurate.

MODE ¼ 1 or 6
Need not be set.

MODE ¼ 2, 5 or 7
F xð Þ must be calculated and returned in OBJF. The entry value of OBJF may not
be used as an upper bound.

5: VECOUTðNDIMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if Local Minimizer ¼ E04UCF or E04UCA, the values of VECOUT are used
internally to indicate whether a finite difference approximation is required. See
E04UCF/E04UCA.

On exit: the required values of VECOUT returned to the calling routine depend on the
value of MODE.

MODE ¼ 0 or 5
The value of VECOUT need not be set.

MODE ¼ 1 or 2
VECOUT can contain components of the gradient of the objective function @F

@xi
for

some i ¼ 1; 2; . . .NDIM, or acceptable approximations. Any unaltered elements
of VECOUT will be approximated using finite differences.

MODE ¼ 6 or 7
VECOUT must contain the gradient of the objective function @F

@xi
for all

i ¼ 1; 2; . . .NDIM. Approximation of the gradient is strongly discouraged, and no
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finite difference approximations will be performed internally (see E04DGF/
E04DGA and E04KZF).

6: NSTATE – INTEGER Input

On entry: NSTATE indicates various stages of initialization throughout the routine. This
allows for permanent global arguments to be initialized the least number of times. For
example, you may initialize a random number generator seed.

NSTATE ¼ 3
SMP users only. OBJFUN is called for the first time in a parallel region on a new
thread other than the master thread. You may use this opportunity to set up any
thread-dependent information in IUSER and RUSER.

NSTATE ¼ 2
OBJFUN is called for the very first time. You may save computational time if
certain data must be read or calculated only once.

NSTATE ¼ 1
OBJFUN is called for the first time by a NAG local minimization routine. You
may save computational time if certain data required for the local minimizer need
only be calculated at the initial point of the local minimization.

NSTATE ¼ 0
Used in all other cases.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E05SAF. You
should use the arrays IUSER and RUSER to supply information to OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E05SAF is called. Arguments denoted as Input must not be changed by this
procedure.

8: MONMOD – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

A user-specified monitoring and modification function. MONMOD is called once every complete
iteration after a finalization check. It may be used to modify the particle locations that will be
evaluated at the next iteration. This permits the incorporation of algorithmic modifications such
as including additional advection heuristics and genetic mutations. MONMOD is only called
during the main loop of the algorithm, and as such will be unaware of any further improvement
from the final local minimization. If no monitoring and/or modification is required, MONMOD
may be the dummy monitoring routine E05SXM. (E05SXM is included in the NAG Library) .

The specification of MONMOD is:

SUBROUTINE MONMOD (NDIM, NPAR, X, XB, FB, XBEST, FBEST, ITT,
IUSER, RUSER, INFORM)

&

INTEGER NDIM, NPAR, ITT(6), IUSER(*), INFORM
REAL (KIND=nag_wp) X(NDIM,NPAR), XB(NDIM), FB,

XBEST(NDIM,NPAR), FBEST(NPAR), RUSER(*)
&

1: NDIM – INTEGER Input

On entry: the number of dimensions.

2: NPAR – INTEGER Input

On entry: the number of particles.

E05 – Global Optimization of a Function E05SAF

Mark 26 E05SAF.5



3: XðNDIM;NPARÞ – REAL (KIND=nag_wp) array Input/Output

Note: the ith component of the jth particle, xj ið Þ, is stored in Xði; jÞ.
On entry: the NPAR particle locations, xj, which will currently be used during the next
iteration unless altered in MONMOD.

On exit: the particle locations to be used during the next iteration.

4: XBðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the location, ~x, of the best solution yet found.

5: FB – REAL (KIND=nag_wp) Input

On entry: the objective value, ~f ¼ F ~xð Þ, of the best solution yet found.

6: XBESTðNDIM;NPARÞ – REAL (KIND=nag_wp) array Input

Note: the ith component of the position of the jth particle's cognitive memory, x̂j ið Þ, is
stored in XBESTði; jÞ.
On entry: the locations currently in the cognitive memory, x̂j , for j ¼ 1; 2; . . . ;NPAR
(see Section 11).

7: FBESTðNPARÞ – REAL (KIND=nag_wp) array Input

On entry: the objective values currently in the cognitive memory, F x̂j
� �

, for
j ¼ 1; 2; . . . ;NPAR.

8: ITTð6Þ – INTEGER array Input

On entry: iteration and function evaluation counters (see description of ITT below).

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONMOD is called with the arguments IUSER and RUSER as supplied to E05SAF.
You should use the arrays IUSER and RUSER to supply information to MONMOD.

11: INFORM – INTEGER Input/Output

On entry: INFORM ¼ thread num, where thread_num is the value returned by a call
of the OpenMP function OMP_GET_THREAD_NUM(). If running in serial this will always
be zero.

On exit: setting INFORM < 0 will cause near immediate exit from E05SAF. This value
will be returned as INFORM with IFAIL ¼ 3. You need not set INFORM unless you
wish to force an exit.

MONMOD must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05SAF is called. Arguments denoted as Input must not be changed
by this procedure.

9: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to E05ZKF.

On entry: optional parameter array as generated and possibly modified by calls to E05ZKF. The
contents of IOPTS must not be modified directly between calls to E05SAF, E05ZKF or E05ZLF.
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10: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to E05ZKF.

On entry: optional parameter array as generated and possibly modified by calls to E05ZKF. The
contents of OPTS must not be modified directly between calls to E05SAF, E05ZKF or E05ZLF.

11: IUSERð�Þ – INTEGER array User Workspace

IUSER is not used by E05SAF, but is passed directly to OBJFUN and MONMOD and should be
used to pass information to these routines.

With care, you may also write information back into IUSER. This might be useful, for example,
should there be a need to preserve the state of a random number generator.

With SMP-enabled versions of E05SAF the array IUSER provided are classified as OpenMP
shared memory. Use of IUSER has to take account of this in order to preserve thread safety
whenever information is written back to either of these arrays.

12: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by E05SAF, but is passed directly to OBJFUN and MONMOD and should be
used to pass information to these routines.

With care, you may also write information back into RUSER. This might be useful, for example,
should there be a need to preserve the state of a random number generator.

With SMP-enabled versions of E05SAF the array RUSER provided are classified as OpenMP
shared memory. Use of RUSER has to take account of this in order to preserve thread safety
whenever information is written back to either of these arrays.

13: ITTð6Þ – INTEGER array Output

On exit: integer iteration counters for E05SAF.

ITTð1Þ
Number of complete iterations.

ITTð2Þ
Number of complete iterations without improvement to the current optimum.

ITTð3Þ
Number of particles converged to the current optimum.

ITTð4Þ
Number of improvements to the optimum.

ITTð5Þ
Number of function evaluations performed.

ITTð6Þ
Number of particles reset.

14: INFORM – INTEGER Output

On exit: indicates which finalization criterion was reached. The possible values of INFORM are:

INFORM Meaning

< 0 Exit from a user-supplied subroutine.

0 E05SAF has detected an error and terminated.

1 The provided objective target has been achieved. (Target Objective Value).
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2 The standard deviation of the location of all the particles is below the set
threshold (Swarm Standard Deviation). If the solution returned is not
satisfactory, you may try setting a smaller value of Swarm Standard
Deviation, or try adjusting the options governing the repulsive phase
(Repulsion Initialize, Repulsion Finalize).

3 The total number of particles converged (Maximum Particles Converged) to
the current global optimum has reached the set limit. This is the number of
particles which have moved to a distance less than Distance Tolerance from
the optimum with regard to the L2 norm. If the solution is not satisfactory,
you may consider lowering the Distance Tolerance. However, this may
hinder the global search capability of the algorithm.

4 The maximum number of iterations without improvement (Maximum
Iterations Static) has been reached, and the required number of particles
(Maximum Iterations Static Particles) have converged to the current
optimum. Increasing either of these options will allow the algorithm to
continue searching for longer. Alternatively if the solution is not satisfactory,
re-starting the application several times with Repeatability ¼ OFF may lead
to an improved solution.

5 The maximum number of iterations (Maximum Iterations Completed) has
been reached. If the number of iterations since improvement is small, then a
better solution may be found by increasing this limit, or by using the option
Local Minimizer with corresponding exterior options. Otherwise if the
solution is not satisfactory, you may try re-running the application several
times with Repeatability ¼ OFF and a lower iteration limit, or adjusting the
options governing the repulsive phase (Repulsion Initialize, Repulsion
Finalize).

6 The maximum allowed number of function evaluations (Maximum Function
Evaluations) has been reached. As with INFORM ¼ 5, increasing this limit if
the number of iterations without improvement is small, or decreasing this limit
and running the algorithm multiple times with Repeatability ¼ OFF, may
provide a superior result.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

On exit: the most common exit will be IFAIL ¼ 1.

For this reason, the value �1 or 1 is recommended. If the output of error messages is
undesirable, then the value 1 is recommended; otherwise, the recommended value is �1. When
the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

E05SAF will return IFAIL ¼ 0 if and only if a finalization criterion has been reached which can
guarantee success. This may only happen if the option Target Objective Value has been set and
reached at a point within the search domain. The finalization criterion Target Objective Value is
not activated using default option settings, and must be explicitly set using E05ZKF if required.

E05SAF will return IFAIL ¼ 1 if no error has been detected, and a finalization criterion has been
achieved which cannot guarantee success. This does not indicate that the routine has failed,
merely that the returned solution cannot be guaranteed to be the true global optimum.

The value of INFORM should be examined to determine which finalization criterion was reached.

Other positive values of IFAIL indicate that either an error or a warning has been triggered. See
Sections 6, 7 and 11 for more information.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A finalization criterion was reached that cannot guarantee success.
On exit, INFORM ¼ valueh i.

IFAIL ¼ 2

If the option Target Warning has been activated, this indicates that the Target Objective Value
has been achieved to specified tolerances at a sufficiently constrained point, either during the
initialization phase, or during the first two iterations of the algorithm. While this is not
necessarily an error, it may occur if:

(i) The target was achieved at the first point sampled by the routine. This will be the mean of
the lower and upper bounds.

(ii) The target may have been achieved at a randomly generated sample point. This will always
be a possibility provided that the domain under investigation contains a point with a target
objective value.

(iii) If the Local Minimizer has been set, then a sample point may have been inside the basin of
attraction of a satisfactory point. If this occurs repeatedly when the routine is called, it may
imply that the objective is largely unimodal, and that it may be more efficient to use the
routine selected as the Local Minimizer directly.

Assuming that OBJFUN is correct, you may wish to set a better Target Objective Value, or a
stricter Target Objective Tolerance.

IFAIL ¼ 3

User requested exit valueh i during call to MONMOD.

User requested exit valueh i during call to OBJFUN.

IFAIL ¼ 11

On entry, NDIM ¼ valueh i.
Constraint: NDIM � 1.

IFAIL ¼ 12

On entry, NPAR ¼ valueh i.
Constraint: NPAR � 5� num threads, where num_threads is the value returned by the
OpenMP environment variable OMP_NUM_THREADS, or num_threads is 1 for a serial version of
this routine.

IFAIL ¼ 14

On entry, BLð valueh iÞ ¼ valueh i and BUð valueh iÞ ¼ valueh i.
Constraint: BUðiÞ � BLðiÞ for all i.
On entry, BLðiÞ ¼ BUðiÞ for all i.
Constraint: BUðiÞ > BLðiÞ for at least one i.

IFAIL ¼ 19

Error valueh i occurred whilst adjusting to exterior local minimizer options.

Error valueh i occurred whilst adjusting to interior local minimizer options.

E05 – Global Optimization of a Function E05SAF

Mark 26 E05SAF.9



IFAIL ¼ 21

Either the option arrays have not been initialized for E05SAF, or they have become corrupted.

IFAIL ¼ 32

Derivative checks indicate possible errors in the supplied derivatives. Gradient checks may be
disabled by setting Verify Gradients ¼ OFF.

IFAIL ¼ 51

Multiple SMP threads have been detected; however, the option SMP Callback Thread Safe has
not been set.
Set SMP Callback Thread Safe ¼ YES if the provided callbacks are thread safe.
Set SMP Callback Thread Safe ¼ NO if the provided callbacks are not thread safe, to force
serial execution.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 (or IFAIL ¼ 2) or IFAIL ¼ 1 on exit, either a Target Objective Value or finalization
criterion has been reached, depending on user selected options. As with all global optimization
software, the solution achieved may not be the true global optimum. Various options allow for either
greater search diversity or faster convergence to a (local) optimum (See Sections 11 and 12).

Provided the objective function and constraints are sufficiently well behaved, if a local minimizer is
used in conjunction with E05SAF, then it is more likely that the final result will at least be in the near
vicinity of a local optimum, and due to the global search characteristics of the particle swarm, this
solution should be superior to many other local optima.

Caution should be used in accelerating the rate of convergence, as with faster convergence, less of the
domain will remain searchable by the swarm, making it increasingly difficult for the algorithm to detect
the basin of attraction of superior local optima. Using the options Repulsion Initialize and Repulsion
Finalize described in Section 12 will help to overcome this, by causing the swarm to diverge away
from the current optimum once no more local improvement is likely.

On successful exit with guaranteed success, IFAIL ¼ 0. This may only happen if a Target Objective
Value is assigned and is reached by the algorithm.

On successful exit without guaranteed success, IFAIL ¼ 1 is returned. This will happen if another
finalization criterion is achieved without the detection of an error.

In both cases, the value of INFORM provides further information as to the cause of the exit.

8 Parallelism and Performance

E05SAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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E05SAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

The algorithm has been parallelized to allow for a high degree of asynchronicity between threads. Each
thread is assigned a static number of the NPAR particles requested, and performs a sub-iteration using
these particles and a private copy of ~x. The thread only updates this private copy if a superior solution
is found. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation.

Once a thread has completed a sub-iteration, it enters a brief critical section where it compares this
private ~x to a globally accessible version. If either is superior, the inferior version is updated and the
thread continues into a new sub-iteration.

Parallelizing the algorithm in this way allows for individual threads to continue searching even if other
threads are completing sub-iterations in inferior times. The optional argument SMP Thread Overrun
allows you to force a synchronization across the team of threads once one thread completes sufficiently
more sub-iterations than the slowest thread. In particular, this may be used to force synchronization
after every sub-iteration if so desired.

When using an SMP parallel version of this routine, you must indicate that the callback routines are
thread safe by setting the optional argument SMP Callback Thread Safe before calling E05SAF in a
multi-threaded environment. See Section 12.2 for more information on this and other SMP options.

Note: the stochastic method used in E05SAF will not produce repeatable answers when run on
multiple threads.

9 Further Comments

The memory used by E05SAF is relatively static throughout. As such, E05SAF may be used in
problems with high dimension number (NDIM > 100) without the concern of computational resource
exhaustion, although the probability of successfully locating the global optimum will decrease
dramatically with the increase in dimensionality.

Due to the stochastic nature of the algorithm, the result will vary over multiple runs. This is particularly
true if arguments and options are chosen to accelerate convergence at the expense of the global search.
However, the option Repeatability ¼ ON may be set to initialize the internal random number generator
using a preset seed, which will result in identical solutions being obtained.

(For SMP users only) The option Repeatability ¼ ON will use preset seeds to initialize the random
number generator on each thread, however due to the unpredictable nature of parallel communication,
this cannot ensure repeatable results when running on multiple threads, even with SMP Thread
Overrun set to force synchronization every iteration.

10 Example

This example uses a particle swarm to find the global minimum of the Schwefel function:

minimize
x2Rndim

f ¼
Xndim
i¼1

xisin
ffiffiffiffiffiffiffi
xij j

p� �
xi 2 �500; 500ð Þ; for i ¼ 1; 2; . . . ;NDIM:

In two dimensions the optimum is fmin ¼ �837:966, located at x ¼ �420:97;�420:97ð Þ.
The example demonstrates how to initialize and set the options arrays using E05ZKF, how to query
options using E05ZLF, and finally how to search for the global optimum using E05SAF. The function is
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minimized several times to demonstrate using E05SAF alone, and coupled with local minimizers. This
program uses the non-default option Repeatability ¼ ON to produce repeatable solutions.

Note: for users of multi-threaded implementations of the NAG Library example program does not
include the setting of the optional parameter SMP Callback Thread Safe, and as such if run on
multiple threads it will issue an error message. An additional example program, e05safe_smp.f90, is
included with the distribution material of all implementations of multi-threaded implementations of the
NAG Library to illustrate how to safely access independent subsections of the provided IUSER and
RUSER arrays from multiple threads and how to use E05ZKF to set additional SMP threading related
options.

10.1 Program Text

! E05SAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e05safe_mod

! E05SAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: display_option, display_result, &

monmod, objfun_schwefel
! .. Parameters ..

Real (Kind=nag_wp), Parameter, Public :: f_target = &
-837.9657745448674_nag_wp

Integer, Parameter :: detail_level = 0, report_freq = 100
Integer, Parameter, Public :: liopts = 100, liuser = 1, &

lopts = 100, lruser = 1, ndim = 2, &
nout = 6, npar = 5

Real (Kind=nag_wp), Parameter :: x_target(ndim) = &
-420.9687463599820_nag_wp

Contains
Subroutine objfun_schwefel(mode,ndim,x,objf,vecout,nstate,iuser,ruser)

! Objfun routine for the Schwefel function for E05SAF.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: ndim, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*), vecout(ndim)
Real (Kind=nag_wp), Intent (In) :: x(ndim)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Logical :: evalobjf, evalobjg

! .. Intrinsic Procedures ..
Intrinsic :: abs, cos, sin, sqrt, sum

! .. Executable Statements ..
! Test NSTATE to indicate what stage of computation has been reached.

Select Case (nstate)
Case (2)

! OBJFUN is called for the very first time.
Case (1)

! OBJFUN is called on entry to a NAG local minimizer.
Case Default

! This will be the normal value of NSTATE.
End Select

! Test MODE to determine whether to calculate OBJF and/or OBJGRD.
evalobjf = .False.
evalobjg = .False.
Select Case (mode)
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Case (0,5)
! Only the value of the objective function is needed.

evalobjf = .True.
Case (1,6)

! Only the values of the NDIM gradients are required.
evalobjg = .True.

Case (2,7)
! Both the objective function and the NDIM gradients are required.

evalobjf = .True.
evalobjg = .True.

End Select

If (evalobjf) Then
! Evaluate the objective function.

objf = sum(x(1:ndim)*sin(sqrt(abs(x(1:ndim)))))
End If

If (evalobjg) Then
! Calculate the gradient of the objective function,
! and return the result in VECOUT.

vecout = sqrt(abs(x))
vecout = sin(vecout) + 0.5E0_nag_wp*vecout*cos(vecout)

End If

Return

End Subroutine objfun_schwefel
Subroutine monmod(ndim,npar,x,xb,fb,xbest,fbest,itt,iuser,ruser,inform)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: fb
Integer, Intent (Inout) :: inform
Integer, Intent (In) :: ndim, npar

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: fbest(npar), xb(ndim), &

xbest(ndim,npar)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*), x(ndim,npar)
Integer, Intent (In) :: itt(6)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: indent, j

! .. Intrinsic Procedures ..
Intrinsic :: modulo, repeat

! .. Executable Statements ..
If (detail_level>=2) Then

! Report on the first iteration, and every report_freq iterations.
If (itt(1)==1 .Or. modulo(itt(1),report_freq)==0) Then

Write (nout,*) ’* Locations of particles’
indent = 2
Do j = 1, npar

Write (nout,99999) repeat(’ ’,indent), j
Write (nout,99998) repeat(’ ’,indent), x(1:ndim,j)

End Do
Write (nout,*) ’* Cognitive memory’
Do j = 1, npar

Write (nout,99999) repeat(’ ’,indent), j
Write (nout,*) repeat(’ ’,indent*2), ’* Best position’
Write (nout,99998) repeat(’ ’,indent*2), xbest(1:ndim,j)
Write (nout,*) repeat(’ ’,indent*2), &

’* Function value at best position’
Write (nout,99997) repeat(’ ’,indent*2), fbest(j)

End Do
Write (nout,*) ’* Current global optimum candidate’
Write (nout,99998) repeat(’ ’,indent), xb(1:ndim)
Write (nout,*) ’* Current global optimum value’
Write (nout,99997) repeat(’ ’,indent), fb

End If
End If

! If required set INFORM<0 to force exit
inform = 0
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Flush (nout)

Return
99999 Format (1X,A,’* Particle ’,I3)
99998 Format (1X,A,(6F13.5))
99997 Format (1X,A,F13.5)

End Subroutine monmod
Subroutine display_option(optstr,optype,ivalue,rvalue,cvalue)

! Subroutine to query optype and print the appropriate option values

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rvalue
Integer, Intent (In) :: ivalue, optype
Character (*), Intent (In) :: cvalue, optstr

! .. Executable Statements ..
Select Case (optype)
Case (1)

Write (nout,99999) optstr, ivalue
Case (2)

Write (nout,99998) optstr, rvalue
Case (3)

Write (nout,99997) optstr, cvalue
Case (4)

Write (nout,99996) optstr, ivalue, cvalue
Case (5)

Write (nout,99995) optstr, rvalue, cvalue
Case Default
End Select

Flush (nout)

Return
99999 Format (3X,A36,’ : ’,I13)
99998 Format (3X,A36,’ : ’,F13.4)
99997 Format (3X,A36,’ : ’,16X,A16)
99996 Format (3X,A36,’ : ’,I13,3X,A16)
99995 Format (3X,A36,’ : ’,F13.4,3X,A16)

End Subroutine display_option

Subroutine display_result(ndim,xb,fb,itt,inform)
! Display final results in comparison to known global optimum.

! .. Use Statements ..
Use nag_library, Only: x04cbf

! .. Parameters ..
Integer, Parameter :: indent = 1, ncols = 79
Character (10), Parameter :: clabs(1:2) = (/’x_target ’, &

’xb ’/)
Character (1), Parameter :: diag = ’N’, labcol = ’C’, &

labrow = ’I’, matrix = ’G’
Character (5), Parameter :: form = ’F12.2’

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: fb
Integer, Intent (In) :: inform, ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: xb(ndim)
Integer, Intent (In) :: itt(6)

! .. Local Scalars ..
Integer :: ifail, ldxcom
Character (ncols) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: xcom(:,:)

! .. Executable Statements ..
! Display final counters.

Write (nout,*) ’ Algorithm Statistics’
Write (nout,*) ’ --------------------’
Write (nout,99997) ’Total complete iterations : ’, itt(1)
Write (nout,99997) ’Complete iterations since improvement : ’, itt(2)
Write (nout,99997) ’Total particles converged to xb : ’, itt(3)
Write (nout,99997) ’Total improvements to global optimum : ’, itt(4)
Write (nout,99997) ’Total function evaluations : ’, itt(5)
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Write (nout,99997) ’Total particles re-initialized : ’, itt(6)

! Display why finalization occurred.
Write (nout,*)
Select Case (inform)
Case (1)

Write (nout,99996) ’Target value achieved’
Case (2)

Write (nout,99996) ’Minimum swarm standard deviation obtained’
Case (3)

Write (nout,99996) ’Sufficient particles converged’
Case (4)

Write (nout,99996) ’Maximum static iterations attained’
Case (5)

Write (nout,99996) ’Maximum complete iterations attained’
Case (6)

Write (nout,99996) ’Maximum function evaluations exceeded’
Case (:-1)

Write (nout,99995) inform
Case Default
End Select

! Display final objective value and location.
Write (nout,*)
Write (nout,99999) f_target
Write (nout,99998) fb
Flush (nout)

ldxcom = ndim
Allocate (xcom(ldxcom,2))
xcom(1:ndim,1) = x_target(1:ndim)
xcom(1:ndim,2) = xb(1:ndim)

Write (nout,*)
title = ’Comparison between known and achieved optima.’
ifail = 0
Call x04cbf(matrix,diag,ndim,2,xcom,ldxcom,form,title,labrow,clabs, &

labcol,clabs,ncols,indent,ifail)

Deallocate (xcom)

Write (nout,*)

Return
99999 Format (’ Known objective optimum ’,13X,’ : ’,F13.5)
99998 Format (’ Achieved objective value’,13X,’ : ’,F13.5)
99997 Format (2X,A40,I13)
99996 Format (2X,’Solution Status : ’,A43)
99995 Format (’ User termination case :’,I16)

End Subroutine display_result
End Module e05safe_mod
Program e05safe

! E05SAF Example Main Program

! This example program demonstrates how to use E05SAF in standard
! execution, and with a selection of coupled local minimizers.
! The non-default option ’REPEATABILITY ON’ is used here, giving
! repeatable results.

! .. Use Statements ..
Use nag_library, Only: e05saf, e05zkf, e05zlf, nag_wp
Use e05safe_mod, Only: display_option, display_result, f_target, liopts, &

liuser, lopts, lruser, monmod, ndim, nout, npar, &
objfun_schwefel

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fb, rvalue
Integer :: ifail, inform, ivalue, optype
Character (16) :: cvalue
Character (80) :: optstr
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! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(ndim), bu(ndim), opts(lopts), &

ruser(lruser), xb(ndim)
Integer :: iopts(liopts), itt(6), iuser(liuser)

! .. Executable Statements ..
! Print advisory information.

Write (nout,*) ’E05SAF Example Program Results’
Write (nout,*)
Write (nout,*) ’Minimization of the Schwefel function.’
Write (nout,*)

! Set problem specific values.
! Set box bounds.

bl(1:ndim) = -500.0_nag_wp
bu(1:ndim) = 500.0_nag_wp

! Initialize the option arrays for E05SAF.
ifail = 0
Call e05zkf(’Initialize = E05SAF’,iopts,liopts,opts,lopts,ifail)

! Query some default option values.
Write (nout,*) ’ Default Option Queries:’
Write (nout,*)
ifail = 0
optstr = ’Boundary’
Call e05zlf(optstr,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)
Call display_option(optstr,optype,ivalue,rvalue,cvalue)

ifail = 0
optstr = ’Maximum Iterations Completed’
Call e05zlf(optstr,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)
Call display_option(optstr,optype,ivalue,rvalue,cvalue)

ifail = 0
optstr = ’Distance Tolerance’
Call e05zlf(optstr,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)
Call display_option(optstr,optype,ivalue,rvalue,cvalue)
Write (nout,*)

! ------------------------------------------------------------------
Write (nout,*) ’1. Solution without using coupled local minimizer.’
Write (nout,*)

! Set various options to non-default values if required.
ifail = 0
Call e05zkf(’Repeatability = On’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Verify Gradients = Off’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Boundary = Hyperspherical’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Maximum iterations static = 150’,iopts,liopts,opts,lopts, &

ifail)
ifail = 0
Call e05zkf(’Repulsion Initialize = 30’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Repulsion Finalize = 30’,iopts,liopts,opts,lopts,ifail)

! Call E05SAF to search for the global optimum.
! Non-zero IFAIL expected on exit here, so use IFAIL=1 (quiet) on entry.

ifail = 1
Call e05saf(ndim,npar,xb,fb,bl,bu,objfun_schwefel,monmod,iopts,opts, &

iuser,ruser,itt,inform,ifail)

! It is essential to test IFAIL on exit.
Select Case (ifail)
Case (0,1)

! No errors, best found optimum at xb returned in fb.
Call display_result(ndim,xb,fb,itt,inform)

Case (3)
! Exit flag set in OBJFUN or MONMOD and returned in INFORM.
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Call display_result(ndim,xb,fb,itt,inform)
Case Default

! An error was detected. Print message since IFAIL=1 on entry.
Write (nout,99998) ’** E05SAF returned with an error, IFAIL = ’, ifail
Continue

End Select

! ------------------------------------------------------------------
Write (nout,*) ’2. Solution using coupled local minimizer E04CBF’
Write (nout,*)

! Set an objective target.
ifail = 0
Write (optstr,99999) ’Target Objective Value’, f_target
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Target Objective Tolerance’, 1.0E-5_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Target Objective Safeguard’, 1.0E-8_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)

! Set the local minimizer to be E04CBF and set corresponding options.
ifail = 0
Call e05zkf(’Local Minimizer = E04CBF’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Local Interior Iterations = 10’,iopts,liopts,opts,lopts, &

ifail)
ifail = 0
Call e05zkf(’Local Exterior Iterations = 20’,iopts,liopts,opts,lopts, &

ifail)
ifail = 0
Write (optstr,99999) ’Local Interior Tolerance’, 1.0E-4_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Local Exterior Tolerance’, 1.0E-4_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)

! Call E05SAF to search for the global optimum.
ifail = -1
Call e05saf(ndim,npar,xb,fb,bl,bu,objfun_schwefel,monmod,iopts,opts, &

iuser,ruser,itt,inform,ifail)

! It is essential to test IFAIL on exit.
Select Case (ifail)
Case (0,1)

! No errors, best found optimum at xb returned in fb.
Call display_result(ndim,xb,fb,itt,inform)

Case (3)
! Exit flag set in OBJFUN or MONMOD and returned in INFORM.

Call display_result(ndim,xb,fb,itt,inform)
Case Default

! An error was detected.
Continue

End Select

! -----------------------------------------------------------------
Write (nout,*) ’3. Solution using coupled local minimizer E04DGF’
Write (nout,*)

! Set the local minimizer to be E04DGF and set corresponding options.
ifail = 0
Call e05zkf(’Local Minimizer = E04DGF’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Local Interior Iterations = 5’,iopts,liopts,opts,lopts, &

ifail)
ifail = 0
Call e05zkf(’Local Exterior Iterations = 20’,iopts,liopts,opts,lopts, &

ifail)

! Call E05SAF to search for the global optimum.
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ifail = -1
Call e05saf(ndim,npar,xb,fb,bl,bu,objfun_schwefel,monmod,iopts,opts, &

iuser,ruser,itt,inform,ifail)

! It is essential to test IFAIL on exit.
Select Case (ifail)
Case (0,1)

! No errors, best found optimum at xb returned in fb.
Call display_result(ndim,xb,fb,itt,inform)

Case (3)
! Exit flag set in OBJFUN or MONMOD and returned in INFORM.

Call display_result(ndim,xb,fb,itt,inform)
Case Default

! An error was detected.
Continue

End Select

99999 Format (A,’ = ’,E32.16)
99998 Format (1X,A,I6)

End Program e05safe

10.2 Program Data

None.

10.3 Program Results

E05SAF Example Program Results

Minimization of the Schwefel function.

Default Option Queries:

Boundary : FLOATING
Maximum Iterations Completed : 1000 DEFAULT
Distance Tolerance : 0.0001

1. Solution without using coupled local minimizer.

Algorithm Statistics
--------------------
Total complete iterations : 395
Complete iterations since improvement : 152
Total particles converged to xb : 2
Total improvements to global optimum : 59
Total function evaluations : 2773
Total particles re-initialized : 2

Solution Status : Maximum static iterations attained

Known objective optimum : -837.96577
Achieved objective value : -837.96567

Comparison between known and achieved optima.
x_target xb

1 -420.97 -420.95
2 -420.97 -420.94

2. Solution using coupled local minimizer E04CBF

Algorithm Statistics
--------------------
Total complete iterations : 51
Complete iterations since improvement : 1
Total particles converged to xb : 0
Total improvements to global optimum : 12
Total function evaluations : 537
Total particles re-initialized : 0

Solution Status : Target value achieved
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Known objective optimum : -837.96577
Achieved objective value : -837.96577

Comparison between known and achieved optima.
x_target xb

1 -420.97 -420.97
2 -420.97 -420.97

3. Solution using coupled local minimizer E04DGF

Algorithm Statistics
--------------------
Total complete iterations : 123
Complete iterations since improvement : 1
Total particles converged to xb : 0
Total improvements to global optimum : 10
Total function evaluations : 898
Total particles re-initialized : 0

Solution Status : Target value achieved

Known objective optimum : -837.96577
Achieved objective value : -837.96568

Comparison between known and achieved optima.
x_target xb

1 -420.97 -420.95
2 -420.97 -420.95
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11 Algorithmic Details

The following pseudo-code describes the algorithm used with the repulsion mechanism.

INITIALIZE for j ¼ 1; np
xj ¼ R 2 U lbox; uboxð Þ
x̂j ¼ R 2 U lbox; uboxð Þ
vj ¼ R 2 U �Vmax ;Vmaxð Þ
f̂j ¼ F x̂j

� �
initialize wj

wj ¼
Wmax Weight Initialize ¼ MAXIMUM
Wini Weight Initialize ¼ INITIAL
R 2 U Wmin ;Wmaxð Þ Weight Initialize ¼ RANDOMIZED

8<:
end for
~x ¼ 1

2 lbox þ uboxð Þ
~f ¼ F ~xð Þ
Ic ¼ Is ¼ 0

SWARM while ðnot finalizedÞ;
Ic ¼ Ic þ 1
for j ¼ 1; np

xj ¼ BOUNDARY xj; lbox; ubox
� �

fj ¼ F xj
� �

if fj < f̂j

� �
f̂j ¼ fj; x̂j ¼ xj

if fj < ~f
� �

~f ¼ fj; ~x ¼ xj
end for
if new ~f

� �� �
LOCMIN ~x; ~f;Oi

� �
; Is ¼ 0

½see note on repulsion below for code insertion�
else

Is ¼ Is þ 1
for j ¼ 1; np

vj ¼ wjvj þ CsD1 x̂j � xj
� �

þ CgD2 ~x� xj
� �

xj ¼ xj þ vj
if xj � ~x
�� �� < dtol
� �
reset xj; vj; wj; x̂j ¼ xj

else
update wj

� �
end for
if ðtarget achieved or termination criterion satisfiedÞ

finalized ¼ true
MONMOD xj

� �
end
LOCMIN ~x; ~f;Oe

� �
The definition of terms used in the above pseudo-code are as follows.

np the number of particles, NPAR

lbox array of NDIM lower box bounds

ubox array of NDIM upper box bounds

xj position of particle j

x̂j best position found by particle j

~x best position found by any particle

fj F xj
� �
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f̂j F x̂j
� �

, best value found by particle j

~f F ~xð Þ, best value found by any particle

vj velocity of particle j

wj weight on vj for velocity update, decreasing according to Weight Decrease

Vmax maximum absolute velocity, dependent upon Maximum Variable Velocity

Ic swarm iteration counter

Is iterations since ~x was updated

D1,D2 diagonal matrices with random elements in range 0; 1ð Þ
Cs the cognitive advance coefficient which weights velocity towards x̂j, adjusted using

Advance Cognitive

Cg the global advance coefficient which weights velocity towards ~x, adjusted using Advance
Global

dtol the Distance Tolerance for resetting a converged particle

R 2 U lbox; uboxð Þ
an array of random numbers whose ith element is drawn from a uniform distribution in the
range lboxi; uboxið Þ, for i ¼ 1; 2; . . . ;NDIM

Oi local optimizer interior options

Oe local optimizer exterior options

LOCMIN x; f; Oð Þ
apply local optimizer using the set of options O using the solution x; fð Þ as the starting
point, if used (not default)

MONMODmonitor progress and possibly modify xj

BOUNDARY
apply required behaviour for xj outside bounding box, (see Boundary)

new ( ~f) true if ~x, ~c, ~f were updated at this iteration

Additionally a repulsion phase can be introduced by changing from the default values of options
Repulsion Finalize (rf ), Repulsion Initialize (ri) and Repulsion Particles (rp). If the number of static

particles is denoted ns then the following can be inserted after the new( ~f) check in the pseudo-code
above.

else if ðns � rp and ri � Is � ri þ rfÞ
LOCMIN ~x; ~f;Oi

� �
use �Cg instead of Cg in velocity updates

if Is ¼ ri þ rf
� �
Is ¼ 0

12 Optional Parameters

This section can be skipped if you wish to use the default values for all optional parameters, otherwise,
the following is a list of the optional parameters available and a full description of each optional
parameter is provided in Section 12.1.

Advance Cognitive

Advance Global

Boundary

Distance Scaling

Distance Tolerance

Function Precision
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Local Boundary Restriction

Local Exterior Iterations

Local Exterior Major Iterations

Local Exterior Minor Iterations

Local Exterior Tolerance

Local Interior Iterations

Local Interior Major Iterations

Local Interior Minor Iterations

Local Interior Tolerance

Local Minimizer

Maximum Function Evaluations

Maximum Iterations Completed

Maximum Iterations Static

Maximum Iterations Static Particles

Maximum Particles Converged

Maximum Particles Reset

Maximum Variable Velocity

Optimize

Repeatability

Repulsion Finalize

Repulsion Initialize

Repulsion Particles

SMP Callback Thread Safe

SMP Local Minimizer External

SMP Monitor

SMP Monmod

SMP Subswarm

SMP Thread Overrun

Swarm Standard Deviation

Target Objective

Target Objective Safeguard

Target Objective Tolerance

Target Objective Value

Target Warning

Verify Gradients

Weight Decrease

Weight Initial

Weight Initialize

Weight Maximum

Weight Minimum

Weight Reset

Weight Value

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:
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the keywords;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
and Imax represents the largest representable integer value (see X02BBF).

All options accept the value ‘DEFAULT’ in order to return single options to their default states.

Keywords and character values are case insensitive, however they must be separated by at least one
space.

For E05SAF the maximum length of the argument CVALUE used by E05ZLF is 15.

Advance Cognitive r Default ¼ 2:0

The cognitive advance coefficient, Cs. When larger than the global advance coefficient, this will cause
particles to be attracted toward their previous best positions. Setting r ¼ 0:0 will cause E05SAF to act
predominantly as a local optimizer. Setting r > 2:0 may cause the swarm to diverge, and is generally
inadvisable. At least one of the global and cognitive coefficients must be nonzero.

Advance Global r Default ¼ 2:0

The global advance coefficient, Cg. When larger than the cognitive coefficient this will encourage
convergence toward the best solution yet found. Values r 2 0; 1ð Þ will inhibit particles overshooting the
optimum. Values r 2 1; 2½ Þ cause particles to fly over the optimum some of the time. Larger values can
prohibit convergence. Setting r ¼ 0:0 will remove any attraction to the current optimum, effectively
generating a Monte–Carlo multi-start optimization algorithm. At least one of the global and cognitive
coefficients must be nonzero.

Boundary a Default ¼ FLOATING

Determines the behaviour if particles leave the domain described by the box bounds. This only affects
the general PSO algorithm, and will not pass down to any NAG local minimizers chosen.

This option is only effective in those dimensions for which BLðiÞ 6¼ BUðiÞ, i ¼ 1; 2; . . . ;NDIM.

IGNORE
The box bounds are ignored. The objective function is still evaluated at the new particle position.

RESET
The particle is re-initialized inside the domain. x̂j and f̂j are not affected.

FLOATING
The particle position remains the same, however the objective function will not be evaluated at
the next iteration. The particle will probably be advected back into the domain at the next
advance due to attraction by the cognitive and global memory.

HYPERSPHERICAL
The box bounds are wrapped around an ndim-dimensional hypersphere. As such a particle
leaving through a lower bound will immediately re-enter through the corresponding upper bound
and vice versa. The standard distance between particles is also modified accordingly.

FIXED
The particle rests on the boundary, with the corresponding dimensional velocity set to 0:0.

E05 – Global Optimization of a Function E05SAF

Mark 26 E05SAF.23



Distance Scaling a Default ¼ ON

Determines whether distances should be scaled by box widths.

ON
When a distance is calculated between x and y, a scaled L2 norm is used.

L2 x; yð Þ ¼
X

ijui 6¼li;i�ndimf g

xi � yi
ui � li

� �2
0@ 1A1

2

:

OFF
Distances are calculated as the standard L2 norm without any rescaling.

L2 x; yð Þ ¼
Xndim
i¼1

xi � yið Þ2
 !1

2

:

Distance Tolerance r Default ¼ 10�4

This is the distance, dtol between particles and the global optimum which must be reached for the
particle to be considered converged, i.e., that any subsequent movement of such a particle cannot
significantly alter the global optimum. Once achieved the particle is reset into the box bounds to
continue searching.

Constraint: r > 0:0.

Function Precision r Default ¼ �0:9

The parameter defines �r, which is intended to be a measure of the accuracy with which the problem
function F xð Þ can be computed. If r < � or r � 1, the default value is used.

The value of �r should reflect the relative precision of 1þ F xð Þj j; i.e., �r acts as a relative precision
when Fj j is large, and as an absolute precision when Fj j is small. For example, if F xð Þ is typically of
order 1000 and the first six significant digits are known to be correct, an appropriate value for �r would
be 10�6. In contrast, if F xð Þ is typically of order 10�4 and the first six significant digits are known to be
correct, an appropriate value for �r would be 10�10. The choice of �r can be quite complicated for badly
scaled problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However when the
accuracy of the computed function values is known to be significantly worse than full precision, the
value of �r should be large enough so that no attempt will be made to distinguish between function
values that differ by less than the error inherent in the calculation.

Local Boundary Restriction r Default ¼ 0:5

Contracts the box boundaries used by a box constrained local minimizer to, �l; �u½ �, containing the start
point x, where

@i ¼ r� ui � lið Þ
�il ¼ max li; xi � @i

2

� �
�iu ¼ min ui; xi þ @i

2

� �
; i ¼ 1; . . . ;NDIM:

Smaller values of r thereby restrict the size of the domain exposed to the local minimizer, possibly
reducing the amount of work done by the local minimizer.

Constraint: 0:0 � r � 1:0.

Local Interior Iterations i1
Local Interior Major Iterations i1
Local Exterior Iterations i2
Local Exterior Major Iterations i2

The maximum number of iterations or function evaluations the chosen local minimizer will perform
inside (outside) the main loop if applicable. For the NAG minimizers these correspond to:
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Minimizer Parameter/option Default Interior Default Exterior
E04CBF MAXCAL NDIMþ 10 2� NDIMþ 15
E04DGF/E04DGA Iteration Limit max 30; 3� NDIMð Þ max 50; 5� NDIMð Þ
E04UCF/E04UCA Major Iteration Limit max 10; 2� NDIMð Þ max 30; 3� NDIMð Þ

Unless set, these are functions of the parameters passed to E05SAF.

Setting i ¼ 0 will disable the local minimizer in the corresponding algorithmic region. For example,
setting Local Interior Iterations ¼ 0 and Local Exterior Iterations ¼ 30 will cause the algorithm to
perform no local minimizations inside the main loop of the algorithm, and a local minimization with
upto 30 iterations after the main loop has been exited.

Note: currently E04JYF or E04KZF are restricted to using 400� NDIM and 50� NDIM as function
evaluation limits respectively. This applies to both local minimizations inside and outside the main
loop. They may still be deactivated in either phase by setting i ¼ 0, and may subsequently be
reactivated in either phase by setting i > 0.

Constraint: i1 � 0, i2 � 0.

Local Interior Tolerance r1 Default ¼ 10�4

Local Exterior Tolerance r2 Default ¼ 10�4

This is the tolerance provided to a local minimizer in the interior (exterior) of the main loop of the
algorithm.

Constraint: r1 > 0:0, r2 > 0:0.

Local Interior Minor Iterations i1
Local Exterior Minor Iterations i2

Where applicable, the secondary number of iterations the chosen local minimizer will use inside
(outside) the main loop. Currently the relevant default values are:

Minimizer Parameter/option Default Interior Default Exterior
E04UCF/E04UCA Minor Iteration Limit max 10; 2� NDIMð Þ max 30; 3� NDIMð Þ

Constraint: i1 � 0, i2 � 0.

Local Minimizer a Default ¼ OFF

Allows for a choice of Chapter E04 routines to be used as a coupled, dedicated local minimizer.

OFF
No local minimization will be performed in either the INTERIOR or EXTERIOR sections of the
algorithm.

E04CBF
Use E04CBF as the local minimizer. This does not require the calculation of derivatives.

On a call to OBJFUN during a local minimization, MODE ¼ 5.

E04KZF
Use E04KZF as the local minimizer. This requires the calculation of derivatives in OBJFUN, as
indicated by MODE.

The box bounds forwarded to this routine from E05SAF will have been acted upon by Local Boundary
Restriction. As such, the domain exposed may be greatly smaller than that provided to E05SAF.

Accurate derivatives must be provided to this routine, and will not be approximated internally. Each
iteration of this local minimizer also requires the calculation of both the objective function and its
derivative. Hence on a call to OBJFUN during a local minimization, MODE ¼ 7.

E04JYF
Use E04JYF as the local minimizer. This does not require the calculation of derivatives.

On a call to OBJFUN during a local minimization, MODE ¼ 5.
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The box bounds forwarded to this routine from E05SAF will have been acted upon by Local Boundary
Restriction. As such, the domain exposed may be greatly smaller than that provided to E05SAF.

E04DGF
E04DGA

Use E04DGA as the local minimizer.

Accurate derivatives must be provided, and will not be approximated internally. Additionally, each call
to OBJFUN during a local minimization will require either the objective to be evaluated alone, or both
the objective and its gradient to be evaluated. Hence on a call to OBJFUN, MODE ¼ 5 or 7.

E04UCF
E04UCA

Use E04UCA as the local minimizer. This operates such that any derivatives of the objective
function that you cannot supply, will be approximated internally using finite differences.

Either, the objective, objective gradient, or both may be requested during a local minimization, and as
such on a call to OBJFUN, MODE ¼ 1, 2 or 5.

The box bounds forwarded to this routine from E05SAF will have been acted upon by Local Boundary
Restriction. As such, the domain exposed may be greatly smaller than that provided to E05SAF.

Maximum Function Evaluations i Default ¼ Imax

The maximum number of evaluations of the objective function. When reached this will return
IFAIL ¼ 1 and INFORM ¼ 6.

Constraint: i > 0.

Maximum Iterations Completed i Default ¼ 1000� NDIM

The maximum number of complete iterations that may be performed. Once exceeded E05SAF will exit
with IFAIL ¼ 1 and INFORM ¼ 5.

Unless set, this adapts to the parameters passed to E05SAF.

Constraint: i � 1.

Maximum Iterations Static i Default ¼ 100

The maximum number of iterations without any improvement to the current global optimum. If
exceeded E05SAF will exit with IFAIL ¼ 1 and INFORM ¼ 4. This exit will be hindered by setting
Maximum Iterations Static Particles to larger values.

Constraint: i � 1.

Maximum Iterations Static Particles i Default ¼ 0

The minimum number of particles that must have converged to the current optimum before the routine
may exit due to Maximum Iterations Static with IFAIL ¼ 1 and INFORM ¼ 4.

Constraint: i � 0.

Maximum Particles Converged i Default ¼ Imax

The maximum number of particles that may converge to the current optimum. When achieved, E05SAF
will exit with IFAIL ¼ 1 and INFORM ¼ 3. This exit will be hindered by setting ‘Repulsion’ options,
as these cause the swarm to re-expand.

Constraint: i > 0.

Maximum Particles Reset i Default ¼ Imax

The maximum number of particles that may be reset after converging to the current optimum. Once
achieved no further particles will be reset, and any particles within Distance Tolerance of the global
optimum will continue to evolve as normal.

Constraint: i > 0.
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Maximum Variable Velocity r Default ¼ 0:25

Along any dimension j, the absolute velocity is bounded above by vj
		 		 � r� uj � lj

� �
¼ Vmax . Very

low values will greatly increase convergence time. There is no upper limit, although larger values will
allow more particles to be advected out of the box bounds, and values greater than 4:0 may cause
significant and potentially unrecoverable swarm divergence.

Constraint: r > 0:0.

Optimize a Default ¼ MINIMIZE

Determines whether to maximize or minimize the objective function.

MINIMIZE
The objective function will be minimized.

MAXIMIZE
The objective function will be maximized. This is accomplished by minimizing the negative of
the objective.

Repeatability a Default ¼ OFF

Allows for the same random number generator seed to be used for every call to E05SAF.
Repeatability ¼ OFF is recommended in general.

OFF
The internal generation of random numbers will be nonrepeatable.

ON
The same seed will be used.

Repulsion Finalize i Default ¼ Imax

The number of iterations performed in a repulsive phase before re-contraction. This allows a re-
diversified swarm to contract back toward the current optimum, allowing for a finer search of the near
optimum space.

Constraint: i � 2.

Repulsion Initialize i Default ¼ Imax

The number of iterations without any improvement to the global optimum before the algorithm begins a
repulsive phase. This phase allows the particle swarm to re-expand away from the current optimum,
allowing more of the domain to be investigated. The repulsive phase is automatically ended if a
superior optimum is found.

Constraint: i � 2.

Repulsion Particles i Default ¼ 0

The number of particles required to have converged to the current optimum before any repulsive phase
may be initialized. This will prevent repulsion before a satisfactory search of the near optimum area has
been performed, which may happen for large dimensional problems.

Constraint: i � 0.

Swarm Standard Deviation r Default ¼ 0:1

The target standard deviation of the particle distances from the current optimum. Once the standard
deviation is below this level, E05SAF will exit with IFAIL ¼ 1 and INFORM ¼ 2. This criterion will
be penalized by the use of ‘Repulsion’ options, as these cause the swarm to re-expand, increasing the
standard deviation of the particle distances from the best point.

In SMP parallel implementations of E05SAF, the standard deviation will be calculated based only on
the particles local to the particular thread that checks for finalization. Considerably fewer particles may
be used in this calculation than when the algorithm is run in serial. It is therefore recommended that

E05 – Global Optimization of a Function E05SAF

Mark 26 E05SAF.27



you provide a smaller value of Swarm Standard Deviation when running in parallel than when
running in serial.

Constraint: r � 0:0.

Target Objective a Default ¼ OFF
Target Objective Value r Default ¼ 0:0

Activate or deactivate the use of a target value as a finalization criterion. If active, then once the
supplied target value for the objective function is found (beyond the first iteration if Target Warning is
active) E05SAF will exit with IFAIL ¼ 0 and INFORM ¼ 1. Other than checking for feasibility only
(Optimize ¼ CONSTRAINTS), this is the only finalization criterion that guarantees that the algorithm
has been successful. If the target value was achieved at the initialization phase or first iteration and
Target Warning is active, E05SAF will exit with IFAIL ¼ 2. This option may take any real value r, or
the character ON/OFF as well as DEFAULT. If this option is queried using E05ZLF, the current value
of r will be returned in RVALUE, and CVALUE will indicate whether this option is ON or OFF. The
behaviour of the option is as follows:

r
Once a point is found with an objective value within the Target Objective Tolerance of r,
E05SAF will exit successfully with IFAIL ¼ 0 and INFORM ¼ 1.

OFF
The current value of r will remain stored, however it will not be used as a finalization criterion.

ON
The current value of r stored will be used as a finalization criterion.

DEFAULT
The stored value of r will be reset to its default value (0:0), and this finalization criterion will be
deactivated.

Target Objective Safeguard r Default ¼ 100:0�

If you have given a target objective value to reach in objval (the value of the optional parameter Target
Objective Value), objsfg sets your desired safeguarded termination tolerance, for when objval is close
to zero.

Constraint: objsfg � 2�.

Target Objective Tolerance r Default ¼ 0:0

The optional tolerance to a user-specified target value.

Constraint: r � 0:0.

Target Warning a Default ¼ OFF

Activates or deactivates the error exit associated with the target value being achieved before entry into
the main loop of the algorithm, IFAIL ¼ 2.

OFF
No error will be returned, and the routine will exit normally.

ON
An error will be returned if the target objective is reached prematurely, and the routine will exit
with IFAIL ¼ 2.

Verify Gradients a Default ¼ ON

Adjusts the level of gradient checking performed when gradients are required. Gradient checks are only
performed on the first call to the chosen local minimizer if it requires gradients. There is no guarantee
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that the gradient check will be correct, as the finite differences used in the gradient check are
themselves subject to inaccuracies.

OFF
No gradient checking will be performed.

ON
A cheap gradient check will be performed on both the gradients corresponding to the objective
through OBJFUN.

OBJECTIVE
FULL

A more expensive gradient check will be performed on the gradients corresponding to the
objective OBJFUN.

Weight Decrease a Default ¼ INTEREST

Determines how particle weights decrease.

OFF
Weights do not decrease.

INTEREST
Weights decrease through compound interest as wITþ1 ¼ wIT 1�Wvalð Þ, where Wval is the
Weight Value and IT is the current number of iterations.

LINEAR
Weights decrease linearly following wITþ1 ¼ wIT � IT � Wmax �Wminð Þ=ITmax , where IT is
the iteration number and ITmax is the maximum number of iterations as set by Maximum
Iterations Completed.

Weight Initial r Default ¼Wmax

The initial value of any particle's inertial weight, Wini, or the minimum possible initial value if initial
weights are randomized. When set, this will override Weight Initialize ¼ RANDOMIZED or
MAXIMUM, and as such these must be set afterwards if so desired.

Constraint: Wmin � r � Wmax .

Weight Initialize a Default ¼ MAXIMUM

Determines how the initial weights are distributed.

INITIAL
All weights are initialized at the initial weight, Wini, if set. If Weight Initial has not been set,
this will be the maximum weight, Wmax .

MAXIMUM
All weights are initialized at the maximum weight, Wmax .

RANDOMIZED
Weights are uniformly distributed in Wmin ;Wmaxð Þ or Wini;Wmaxð Þ if Weight Initial has been
set.

Weight Maximum r Default ¼ 1:0

The maximum particle weight, Wmax .

Constraint: 1:0 � r �Wmin (If Wini has been set then 1:0 � r �Wini.)

Weight Minimum r Default ¼ 0:1

The minimum achievable weight of any particle, Wmin . Once achieved, no further weight reduction is
possible.

Constraint: 0:0 � r �Wmax (If Wini has been set then 0:0 � r � Wini.)
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Weight Reset a Default ¼ MAXIMUM

Determines how particle weights are re-initialized.

INITIAL
Weights are re-initialized at the initial weight if set. If Weight Initial has not been set, this will
be the maximum weight.

MAXIMUM
Weights are re-initialized at the maximum weight.

RANDOMIZED
Weights are uniformly distributed in Wmin ;Wmaxð Þ or Wini;Wmaxð Þ if Weight Initial has been
set.

Weight Value r Default ¼ 0:01

The constant Wval used with Weight Decrease ¼ INTEREST.

Constraint: 0:0 � r � 1
3 .

12.2 Description of the SMP optional parameters

This section details additional options available to users of multi-threaded implementations of the NAG
Library. In particular it includes the option SMP Callback Thread Safe, which must be set before
calling E05SAF with multiple threads.

SMP Callback Thread Safe a Default ¼WARNING

Declare that the callback routines you provide are or are not thread safe. In particular, this indicates that
access to the shared memory arrays IUSER and RUSER from within your provided callbacks is done in
a thread safe manner. If these arrays are just used to pass constant data, then you may assume they are
thread safe. If these are also used for workspace, or passing variable data such as random number
generator seeds, then you must ensure these are accessed and updated safely. Whilst this can be done
using OpenMP critical sections, we suggest their use is minimized to prevent unnecessary bottlenecks,
and that instead individual threads have access to independent subsections of the provided arrays where
possible.

YES
The callback routines have been programmed in a thread safe way. The algorithm will use
OMP_NUM_THREADS threads.

NO
The callback routines are not thread safe. Setting this option will force the algorithm to run on a
single thread only, and is advisable only for debugging purposes, or if you wish to parallelize
your callback functions.

WARNING
This will cause an immediate exit from E05SAF with IFAIL ¼ 51 if multiple threads are
detected. This is to inform you that you have not declared the callback functions either to be
thread safe, or that they are thread unsafe and you wish the algorithm to run in serial.

An additional example program, e05safe_smp.f90, is included with the distribution material of multi-
threaded implementations of the NAG Library to illustrate how to safely access independent subsections
of the provided IUSER and RUSER arrays from multiple threads.

SMP Local Minimizer External a Default ¼ ALL

Determines how many threads will attempt to locally minimize the best found solution after the routine
has exited the main loop.

MASTER
Only the master thread will attempt to find any improvement. The local minimization will be
launched from the best known solution. All other threads will remain effectively idle.
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ALL
The master thread will perform a local minimization from the best known solution, while all
other threads will perform a local minimization from randomly generated perturbations of the
best known solution, increasing the chance of an improvement. Assuming all local minimizations
will take approximately the same amount of computation, this will be effectively free in terms of
real time. It will however increase the number of function evaluations performed.

SMP Monitor a Default ¼ SINGLE
SMP Monmod a

Determines whether the user-supplied function MONMOD is invoked once every sub-iteration each
thread performs, or only once by a single thread after all threads have completed at least one sub-
iteration.

SINGLE
Only one thread will invoke MONMOD, after all threads have performed at least one sub-
iteration.

ALL
Each thread will invoke MONMOD each time it completes a sub-iteration. If you wish to alter X
using MONMOD you should use this option, as MONMOD will only receive the arrays X,
XBEST and FBEST private to the calling thread.

SMP Subswarm i Default ¼ 1

Determines how many threads support a particle subswarm. This is an extra collection of particles
constrained to search only within a hypercube of edge length 10:0� Distance Tolerance of the best
point known to an individual thread. This may improve the number of iterations required to find a
provided target, particularly if no local minimizer is in use.

If i � 0, then this will be disabled on all the threads.

If i � OMP NUM THREADS, then all the threads will support a particle subswarm.

SMP Thread Overrun i Default ¼ Imax

This option provides control over the level of asynchronicity present in a simulation. In particular, a
barrier synchronization between all threads is performed if any thread completes i sub-iterations more
than the slowest thread, causing all threads to be exposed to the current best solution. Allowing
asynchronous behaviour does however allow individual threads to focus on different global optimum
candidates some of the time, which can inhibit convergence to unwanted sub-optima. It also allows for
threads to continue searching when other threads are completing sub-iterations at a slower rate.

If i < 1, then the algorithm will force a synchronization between threads at the end of each iteration.
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NAG Library Routine Document

E05SBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm and to Section 12 for a detailed
description of the specification of the optional parameters.

1 Purpose

E05SBF is designed to search for the global minimum or maximum of an arbitrary function, subject to
general nonlinear constraints, using Particle Swarm Optimization (PSO). Derivatives are not required,
although these may be used by an accompanying local minimization routine if desired. E05SBF is
essentially identical to E05SAF, with an expert interface and various additional arguments added;
otherwise most arguments are identical. In particular, E05SAF does not handle general constraints.

2 Specification

SUBROUTINE E05SBF (NDIM, NCON, NPAR, XB, FB, CB, BL, BU, XBEST, FBEST,
CBEST, OBJFUN, CONFUN, MONMOD, IOPTS, OPTS, IUSER,
RUSER, ITT, INFORM, IFAIL)

&
&

INTEGER NDIM, NCON, NPAR, IOPTS(*), IUSER(*), ITT(7),
INFORM, IFAIL

&

REAL (KIND=nag_wp) XB(NDIM), FB, CB(NCON), BL(NDIM+NCON),
BU(NDIM+NCON), XBEST(NDIM,NPAR), FBEST(NPAR),
CBEST(NCON,NPAR), OPTS(*), RUSER(*)

&
&

EXTERNAL OBJFUN, CONFUN, MONMOD

Before calling E05SBF, E05ZKF must be called with OPTSTR set to ‘Initialize = e05sbf’.
Optional parameters may also be specified by calling E05ZKF before the call to E05SBF.

3 Description

E05SBF uses a stochastic method based on Particle Swarm Optimization (PSO) to search for the global
optimum of a nonlinear function F , subject to a set of bound constraints on the variables, and
optionally a set of general nonlinear constraints. In the PSO algorithm (see Section 11), a set of
particles is generated in the search space, and advances each iteration to (hopefully) better positions
using a heuristic velocity based upon inertia, cognitive memory and global memory. The inertia is
provided by a decreasingly weighted contribution from a particles current velocity, the cognitive
memory refers to the best candidate found by an individual particle and the global memory refers to the
best candidate found by all the particles. This allows for a global search of the domain in question.

Further, this may be coupled with a selection of local minimization routines, which may be called
during the iterations of the heuristic algorithm, the interior phase, to hasten the discovery of locally
optimal points, and after the heuristic phase has completed to attempt to refine the final solution, the
exterior phase. Different options may be set for the local optimizer in each phase.

Without loss of generality, the problem is assumed to be stated in the following form:

minimize
x2Rndim

F xð Þ subject to l � x
c xð Þ

� �
� u;

where the objective F xð Þ is a scalar function, c xð Þ is a vector of scalar constraint functions, x is a
vector in Rndim and the vectors l � u are lower and upper bounds respectively for the ndim variables
and ncon constraints. Both the objective function and the ncon constraints may be nonlinear.
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Continuity of F , and the functions c xð Þ, is not essential. For functions which are smooth and primarily
unimodal, faster solutions will almost certainly be achieved by using Chapter E04 routines directly.

For functions which are smooth and multi-modal, gradient dependent local minimization routines may
be coupled with E05SBF.

For multi-modal functions for which derivatives cannot be provided, particularly functions with a
significant level of noise in their evaluation, E05SBF should be used either alone, or coupled with
E04CBF.

For heavily constrained problems, E05SBF should either be used alone, or coupled with E04UCF/
E04UCA provided the function and the constraints are sufficiently smooth.

The ndim lower and upper box bounds on the variable x are included to initialize the particle swarm
into a finite hypervolume, although their subsequent influence on the algorithm is user determinable
(see the option Boundary in Section 12). It is strongly recommended that sensible bounds are provided
for all variables and constraints.

E05SBF may also be used to maximize the objective function, or to search for a feasible point
satisfying the simple bounds and general constraints (see the option Optimize).

Due to the nature of global optimization, unless a predefined target is provided, there is no definitive
way of knowing when to end a computation. As such several stopping heuristics have been
implemented into the algorithm. If any of these is achieved, E05SBF will exit with IFAIL ¼ 1, and the
parameter INFORM will indicate which criteria was reached. See INFORM for more information.

In addition, you may provide your own stopping criteria through MONMOD, OBJFUN and CONFUN.

E05SAF provides a simpler interface, without the inclusion of general nonlinear constraints.

4 References

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Kennedy J and Eberhart R C (1995) Particle Swarm Optimization Proceedings of the 1995 IEEE
International Conference on Neural Networks 1942–1948

Koh B, George A D, Haftka R T and Fregly B J (2006) Parallel Asynchronous Particle Swarm
Optimization International Journal for Numerical Methods in Engineering 67(4) 578–595

Vaz A I and Vicente L N (2007) A Particle Swarm Pattern Search Method for Bound Constrained
Global Optimization Journal of Global Optimization 39(2) 197–219 Kluwer Academic Publishers

5 Arguments

Note: for descriptions of the symbolic variables, see Section 11.

1: NDIM – INTEGER Input

On entry: ndim, the number of dimensions.

Constraint: NDIM � 1.

2: NCON – INTEGER Input

On entry: ncon, the number of constraints, not including box constraints.

Constraint: NCON � 0.

3: NPAR – INTEGER Input

On entry: npar , the number of particles to be used in the swarm. Assuming all particles remain
within constraints, each complete iteration will perform at least NPAR function evaluations.
Otherwise, significantly fewer objective function evaluations may be performed.
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Suggested value: NPAR ¼ 10� NDIM.

Constraint: NPAR � 5� num threads, where num_threads is the value returned by the
OpenMP environment variable OMP_NUM_THREADS, or num_threads is 1 for a serial version of
this routine.

4: XBðNDIMÞ – REAL (KIND=nag_wp) array Output

On exit: the location of the best solution found, ~x, in Rndim.

5: FB – REAL (KIND=nag_wp) Output

On exit: the objective value of the best solution, ~f ¼ F ~xð Þ.

6: CBðNCONÞ – REAL (KIND=nag_wp) array Output

On exit: the constraint violations of the best solution found, ~e ¼ e ~xð Þ. These may have been
deemed to be acceptable given the tolerance and scaling of the constraints. See Sections 11 and
12.

7: BLðNDIMþ NCONÞ – REAL (KIND=nag_wp) array Input
8: BUðNDIMþ NCONÞ – REAL (KIND=nag_wp) array Input

On entry: BL is l, the array of lower bounds, BU is u, the array of upper bounds. The first NDIM
entries in BL and BU must contain the lower and upper simple (box) bounds of the variables
respectively. These must be provided to initialize the sample population into a finite
hypervolume, although their subsequent influence on the algorithm is user determinable (see
the option Boundary in Section 12).

The next NCON entries must contain the lower and upper bounds for any general constraints
respectively.

If BLðiÞ ¼ BUðiÞ for any i 2 1; . . . ;NDIMf g, variable i will remain locked to BLðiÞ regardless of
the Boundary option selected.

It is strongly advised that you place sensible lower and upper bounds on all variables and
constraints, even if your model allows for unbounded variables or constraints.

Constraints:

BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;NDIMþ NCON;
BLðiÞ 6¼ BUðiÞ for at least one i 2 1; . . . ;NDIMf g.

9: XBESTðNDIM;NPARÞ – REAL (KIND=nag_wp) array Input/Output

Note: the ith component of the best position of the jth particle, x̂j ið Þ, is stored in XBESTði; jÞ.

On entry: if using Start ¼WARM, the initial particle positions, x̂0j .

On exit: the best positions found, x̂j, by the NPAR particles in the swarm.

10: FBESTðNPARÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if using Start ¼WARM, objective function values, f̂0j ¼ F x̂0j

� �
, corresponding to the

NPAR particle locations stored in XBEST.

On exit: objective function values, f̂j ¼ F x̂j
� �

, corresponding to the locations returned in
XBEST.

11: CBESTðNCON;NPARÞ – REAL (KIND=nag_wp) array Input/Output

Note: the kth constraint violation of the jth particle is stored in CBESTðk; jÞ.
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On entry: if using Start ¼WARM, the initial constraint violations, ê0j ¼ e x̂0j

� �
, corresponding to

the NPAR particle locations.

On exit: the final constraint violations, êj, corresponding to the locations returned in XBEST.

12: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must, depending on the value of MODE, calculate the objective function and/or
calculate the gradient of the objective function for a ndim-variable vector x. Gradients are only
required if a local minimizer has been chosen which requires gradients. See the option Local
Minimizer for more information.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, NDIM, X, OBJF, VECOUT, NSTATE, IUSER,
RUSER)

&

INTEGER MODE, NDIM, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(NDIM), OBJF, VECOUT(NDIM), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which functionality is required.

MODE ¼ 0
F xð Þ should be returned in OBJF. The value of OBJF on entry may be used as an
upper bound for the calculation. Any expected value of F xð Þ that is greater than
OBJF may be approximated by this upper bound; that is OBJF can remain
unaltered.

MODE ¼ 1
Local Minimizer ¼ E04UCF only
First derivatives can be evaluated and returned in VECOUT. Any unaltered
elements of VECOUT will be approximated using finite differences.

MODE ¼ 2
Local Minimizer ¼ E04UCF only
F xð Þ must be calculated and returned in OBJF, and available first derivatives can
be evaluated and returned in VECOUT. Any unaltered elements of VECOUT will
be approximated using finite differences.

MODE ¼ 5
F xð Þ must be calculated and returned in OBJF. The value of OBJF on entry may
not be used as an upper bound.

MODE ¼ 6
Local Minimizer ¼ E04DGF or E04KZF only
All first derivatives must be evaluated and returned in VECOUT.

MODE ¼ 7
Local Minimizer ¼ E04DGF or E04KZF only
F xð Þ must be calculated and returned in OBJF, and all first derivatives must be
evaluated and returned in VECOUT.

On exit: if the value of MODE is set to be negative, then E05SBF will exit as soon as
possible with IFAIL ¼ 3 and INFORM ¼ MODE.

2: NDIM – INTEGER Input

On entry: the number of dimensions.

3: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: x, the point at which the objective function and/or its gradient are to be
evaluated.
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4: OBJF – REAL (KIND=nag_wp) Input/Output

On entry: the value of OBJF passed to OBJFUN varies with the argument MODE.

MODE ¼ 0
OBJF is an upper bound for the value of F xð Þ, often equal to the best constraint
penalised value of F xð Þ found so far by a given particle if the objective function
is strictly positive (see Section 11). Only objective function values less than the
value of OBJF on entry will be used further. As such this upper bound may be
used to stop further evaluation when this will only increase the objective function
value above the upper bound.

MODE ¼ 1, 2, 5, 6 or 7
OBJF is meaningless on entry.

On exit: the value of OBJF returned varies with the argument MODE.

MODE ¼ 0
OBJF must be the value of F xð Þ. Only values of F xð Þ strictly less than OBJF on
entry need be accurate.

MODE ¼ 1 or 6
Need not be set.

MODE ¼ 2, 5 or 7
F xð Þ must be calculated and returned in OBJF. The entry value of OBJF may not
be used as an upper bound.

5: VECOUTðNDIMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if Local Minimizer ¼ E04UCF or E04UCA, the values of VECOUT are used
internally to indicate whether a finite difference approximation is required. See
E04UCF/E04UCA.

On exit: the required values of VECOUT returned to the calling routine depend on the
value of MODE.

MODE ¼ 0 or 5
The value of VECOUT need not be set.

MODE ¼ 1 or 2
VECOUT can contain components of the gradient of the objective function @F

@xi
for

some i ¼ 1; 2; . . .NDIM, or acceptable approximations. Any unaltered elements
of VECOUT will be approximated using finite differences.

MODE ¼ 6 or 7
VECOUT must contain the gradient of the objective function @F

@xi
for all

i ¼ 1; 2; . . .NDIM. Approximation of the gradient is strongly discouraged, and no
finite difference approximations will be performed internally (see E04DGF/
E04DGA and E04KZF).

6: NSTATE – INTEGER Input

On entry: NSTATE indicates various stages of initialization throughout the routine. This
allows for permanent global arguments to be initialized the least number of times. For
example, you may initialize a random number generator seed.

NSTATE ¼ 3
SMP users only. OBJFUN is called for the first time in a parallel region on a new
thread other than the master thread. You may use this opportunity to set up any
thread-dependent information in IUSER and RUSER.

NSTATE ¼ 2
OBJFUN is called for the very first time. You may save computational time if
certain data must be read or calculated only once.
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NSTATE ¼ 1
OBJFUN is called for the first time by a NAG local minimization routine. You
may save computational time if certain data required for the local minimizer need
only be calculated at the initial point of the local minimization.

NSTATE ¼ 0
Used in all other cases.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E05SBF. You
should use the arrays IUSER and RUSER to supply information to OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E05SBF is called. Arguments denoted as Input must not be changed by this
procedure.

13: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate any constraints other than the box constraints. If no constraints are
required, CONFUN may be the dummy constraint routine E05SZM. (E05SZM is included in the
NAG Library). For information on how a NAG local minimizer will use CONFUN see the
documentation for E04UCA.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCON, NDIM, LDCJ, NEEDC, X, C, CJAC,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, NCON, NDIM, LDCJ, NEEDC(NCON), NSTATE,
IUSER(*)

&

REAL (KIND=nag_wp) X(NDIM), C(NCON), CJAC(LDCJ,NDIM), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of CONFUN. Only
the following values need be assigned, for each value of k 2 1; . . . ;NCONf g such that
NEEDCðkÞ > 0:

MODE ¼ 0
the constraint values ck xð Þ.

MODE ¼ 1
rows of the constraint Jacobian, @ck@xi

xð Þ , for i ¼ 1; 2; . . . ;NDIM.

MODE ¼ 2
the constraint values ck xð Þ and the corresponding rows of the constraint Jacobian,
@ck
@xi

xð Þ , for i ¼ 1; 2; . . . ;NDIM.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem. In this case E05SBF will terminate with IFAIL ¼ 3 and
INFORM ¼ MODE as soon as possible.

2: NCON – INTEGER Input

On entry: the number of constraints, not including box bounds.

3: NDIM – INTEGER Input

On entry: the number of variables.
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4: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from
which E05SBF is called.

5: NEEDCðNCONÞ – INTEGER array Input

On entry: the indices of the elements of C and/or CJAC that must be evaluated by
CONFUN. If NEEDCðkÞ > 0, the kth element of C, corresponding to the values of the
kth constraint, and/or the available elements of the kth row of CJAC, corresponding to
the derivatives of the kth constraint, must be evaluated at x (see argument MODE).

6: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the constraint functions and/or the
available elements of the constraint Jacobian are to be evaluated.

7: CðNCONÞ – REAL (KIND=nag_wp) array Output

On exit: if NEEDCðkÞ > 0 and MODE ¼ 0 or 2, CðkÞ must contain the value of ck xð Þ.
The remaining elements of C, corresponding to the non-positive elements of NEEDC,
need not be set.

8: CJACðLDCJ;NDIMÞ – REAL (KIND=nag_wp) array Input/Output

Note: the derivative of the kth constraint with respect to the ith component,
@ck
@xi

, is

stored in CJACðk; iÞ.
On entry: the elements of CJAC are set to special values which enable E05SBF to
detect whether they are changed by CONFUN.

On exit: if NEEDCðkÞ > 0 and MODE ¼ 1 or 2, the elements of CJAC corresponding
to the kth row of the constraint Jacobian should contain the available elements of the
vector rck given by

rck ¼
@ck
@x1

;
@ck
@x2

; . . . ;
@ck
@xn

� �
;

where
@ck
@xi

is the partial derivative of the kth constraint with respect to the ith variable,

evaluated at the point x; elements of CJAC that remain unaltered will be approximated
internally using finite differences. The remaining rows of CJAC, corresponding to non-
positive elements of NEEDC, need not be set.

It must be emphasized that unassigned elements of CJAC are not treated as constant;
they are estimated by finite differences, at nontrivial expense. An interval for each
element of x is computed automatically at the start of the optimization. The automatic
procedure can usually identify constant elements of CJAC, which are then computed
once only by finite differences.

9: NSTATE – INTEGER Input

On entry: NSTATE indicates various stages of initialization throughout the routine. This
allows for permanent global arguments to be initialized a minimum number of times.
For example, you may initialize a random number generator seed. Note that unless the
option Optimize ¼ CONSTRAINTS has been set, OBJFUN will be called before
CONFUN.

NSTATE ¼ 3
SMP users only. OBJFUN is called for the first time in a parallel region on a new
thread other than the master thread. You may use this opportunity to set up any
thread-dependent information in IUSER and RUSER.
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NSTATE ¼ 2
CONFUN is called for the very first time. This argument setting allows you to
save computational time if certain data must be read or calculated only once.

NSTATE ¼ 1
CONFUN is called for the first time during a NAG local minimization routine.
This argument setting allows you to save computational time if certain data
required for the local minimizer need only be calculated at the initial point of the
local minimization.

NSTATE ¼ 0
Used in all other cases.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN is called with the arguments IUSER and RUSER as supplied to E05SBF. You
should use the arrays IUSER and RUSER to supply information to CONFUN.

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05SBF is called. Arguments denoted as Input must not be changed by
this procedure.

CONFUN should be tested separately before being used in conjunction with E05SBF.

14: MONMOD – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

A user-specified monitoring and modification function. MONMOD is called once every complete
iteration after a finalization check. It may be used to modify the particle locations that will be
evaluated at the next iteration. This permits the incorporation of algorithmic modifications such
as including additional advection heuristics and genetic mutations. MONMOD is only called
during the main loop of the algorithm, and as such will be unaware of any further improvement
from the final local minimization. If no monitoring and/or modification is required, MONMOD
may be the dummy monitoring routine E05SYM. (E05SYM is included in the NAG Library) .

The specification of MONMOD is:

SUBROUTINE MONMOD (NDIM, NCON, NPAR, X, XB, FB, CB, XBEST, FBEST,
CBEST, ITT, IUSER, RUSER, INFORM)

&

INTEGER NDIM, NCON, NPAR, ITT(7), IUSER(*), INFORM
REAL (KIND=nag_wp) X(NDIM,NPAR), XB(NDIM), FB, CB(NCON),

XBEST(NDIM,NPAR), FBEST(NPAR),
CBEST(NCON,NPAR), RUSER(*)

&
&

1: NDIM – INTEGER Input

On entry: the number of dimensions.

2: NCON – INTEGER Input

On entry: the number of constraints.

3: NPAR – INTEGER Input

On entry: the number of particles.

4: XðNDIM;NPARÞ – REAL (KIND=nag_wp) array Input/Output

Note: the ith component of the jth particle, xj ið Þ, is stored in Xði; jÞ.
On entry: the NPAR particle locations, xj, which will currently be used during the next
iteration unless altered in MONMOD.

On exit: the particle locations to be used during the next iteration.
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5: XBðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the location, ~x, of the best solution yet found.

6: FB – REAL (KIND=nag_wp) Input

On entry: the objective value, ~f ¼ F ~xð Þ, of the best solution yet found.

7: CBðNCONÞ – REAL (KIND=nag_wp) array Input

On entry: the constraint violations, ~e ¼ e ~xð Þ, of the best solution yet found.

8: XBESTðNDIM;NPARÞ – REAL (KIND=nag_wp) array Input

Note: the ith component of the position of the jth particle's cognitive memory, x̂j ið Þ, is
stored in XBESTði; jÞ.
On entry: the locations currently in the cognitive memory, x̂j , for j ¼ 1; 2; . . . ;NPAR
(see Section 11).

9: FBESTðNPARÞ – REAL (KIND=nag_wp) array Input

On entry: the objective values currently in the cognitive memory, F x̂j
� �

, for
j ¼ 1; 2; . . . ;NPAR.

10: CBESTðNCON;NPARÞ – REAL (KIND=nag_wp) array Input

Note: the kth constraint violation of the jth particle's cognitive memory is stored in
CBESTðk; jÞ.

On entry: the constraint violations currently in the cognitive memory, ê ¼ e x̂j
� �

, for
j ¼ 1; 2; . . . ;NPAR, evaluated at x̂j.

11: ITTð7Þ – INTEGER array Input

On entry: iteration and function evaluation counters (see description of ITT below).

12: IUSERð�Þ – INTEGER array User Workspace
13: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONMOD is called with the arguments IUSER and RUSER as supplied to E05SBF.
You should use the arrays IUSER and RUSER to supply information to MONMOD.

14: INFORM – INTEGER Input/Output

On entry: INFORM ¼ thread num, where thread_num is the value returned by a call
of the OpenMP function OMP_GET_THREAD_NUM(). If running in serial this will always
be zero.

On exit: setting INFORM < 0 will cause near immediate exit from E05SBF. This value
will be returned as INFORM with IFAIL ¼ 3. You need not set INFORM unless you
wish to force an exit.

MONMOD must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05SBF is called. Arguments denoted as Input must not be changed by
this procedure.

15: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to E05ZKF.
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On entry: optional parameter array as generated and possibly modified by calls to E05ZKF. The
contents of IOPTS must not be modified directly between calls to E05SBF, E05ZKF or E05ZLF.

16: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to E05ZKF.

On entry: optional parameter array as generated and possibly modified by calls to E05ZKF. The
contents of OPTS must not be modified directly between calls to E05SBF, E05ZKF or E05ZLF.

17: IUSERð�Þ – INTEGER array User Workspace

IUSER is not used by E05SBF, but is passed directly to OBJFUN, CONFUN and MONMOD and
should be used to pass information to these routines.

With care, you may also write information back into IUSER. This might be useful, for example,
should there be a need to preserve the state of a random number generator.

With SMP-enabled versions of E05SBF the array IUSER provided are classified as OpenMP
shared memory. Use of IUSER has to take account of this in order to preserve thread safety
whenever information is written back to either of these arrays.

18: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by E05SBF, but is passed directly to OBJFUN, CONFUN and MONMOD
and should be used to pass information to these routines.

With care, you may also write information back into RUSER. This might be useful, for example,
should there be a need to preserve the state of a random number generator.

With SMP-enabled versions of E05SBF the array RUSER provided are classified as OpenMP
shared memory. Use of RUSER has to take account of this in order to preserve thread safety
whenever information is written back to either of these arrays.

19: ITTð7Þ – INTEGER array Output

On exit: integer iteration counters for E05SBF.

ITTð1Þ
Number of complete iterations.

ITTð2Þ
Number of complete iterations without improvement to the current optimum.

ITTð3Þ
Number of particles converged to the current optimum.

ITTð4Þ
Number of improvements to the optimum.

ITTð5Þ
Number of function evaluations performed.

ITTð6Þ
Number of particles reset.

ITTð7Þ
Number of violated constraints at completion. Note this is always calculated using the L1

norm and a nonzero result does not necessarily mean that the algorithm did not find a
suitably constrained point with respect to the single norm used.

20: INFORM – INTEGER Output

On exit: indicates which finalization criterion was reached. The possible values of INFORM are:
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INFORM Meaning

< 0 Exit from a user-supplied subroutine.

0 E05SBF has detected an error and terminated.

1 The provided objective target has been achieved. (Target Objective Value).

2 The standard deviation of the location of all the particles is below the set
threshold (Swarm Standard Deviation). If the solution returned is not
satisfactory, you may try setting a smaller value of Swarm Standard
Deviation, or try adjusting the options governing the repulsive phase
(Repulsion Initialize, Repulsion Finalize).

3 The total number of particles converged (Maximum Particles Converged) to
the current global optimum has reached the set limit. This is the number of
particles which have moved to a distance less than Distance Tolerance from
the optimum with regard to the L2 norm. If the solution is not satisfactory,
you may consider lowering the Distance Tolerance. However, this may
hinder the global search capability of the algorithm.

4 The maximum number of iterations without improvement (Maximum
Iterations Static) has been reached, and the required number of particles
(Maximum Iterations Static Particles) have converged to the current
optimum. Increasing either of these options will allow the algorithm to
continue searching for longer. Alternatively if the solution is not satisfactory,
re-starting the application several times with Repeatability ¼ OFF may lead
to an improved solution.

5 The maximum number of iterations (Maximum Iterations Completed) has
been reached. If the number of iterations since improvement is small, then a
better solution may be found by increasing this limit, or by using the option
Local Minimizer with corresponding exterior options. Otherwise if the
solution is not satisfactory, you may try re-running the application several
times with Repeatability ¼ OFF and a lower iteration limit, or adjusting the
options governing the repulsive phase (Repulsion Initialize, Repulsion
Finalize).

6 The maximum allowed number of function evaluations (Maximum Function
Evaluations) has been reached. As with INFORM ¼ 5, increasing this limit if
the number of iterations without improvement is small, or decreasing this limit
and running the algorithm multiple times with Repeatability ¼ OFF, may
provide a superior result.

7 A feasible point has been found. The objective has not been minimized,
although it has been evaluated at the final solutions given in XB and XBEST
(Optimize ¼ CONSTRAINTS).

If you wish to continue from the final position gained from a previous simulation with adjusted
options, you may set the option Start ¼WARM, and pass back in the returned arrays XBEST,
FBEST, and CBEST. You should either record the returned values of XB, FB and CB for
comparison, as these will not be re-used by the algorithm, or include them in XBEST, FBEST
and CBEST respectively by overwriting the entries corresponding to one particle with the
relevant information.

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

On exit: the most common exit will be IFAIL ¼ 1.
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For this reason, the value �1 or 1 is recommended. If the output of error messages is
undesirable, then the value 1 is recommended; otherwise, the recommended value is �1. When
the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

E05SBF returns IFAIL ¼ 0 if and only if a finalization criterion has been reached which can
guarantee success. This may only happen if:

(i) The option Target Objective Value has been set and has been reached at a sufficiently
constrained point within the search domain.

(ii) The option Optimize ¼ CONSTRAINTS has been set, and a sufficiently constrained point
has been found within the search domain.

These finalization criteria are not active using default option settings, and must be explicitly set
using E05ZKF if required.

E05SBF will return IFAIL ¼ 1 if no error has been detected, and a finalization criterion has been
achieved which cannot guarantee success. This does not indicate that the routine has failed,
merely that the returned solution cannot be guaranteed to be the true global optimum.

The value of INFORM should be examined to determine which finalization criterion was reached.

Other positive values of IFAIL indicate that either an error or a warning has been triggered. See
Sections 6, 7 and 11 for more information.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A finalization criterion was reached that cannot guarantee success.
On exit, INFORM ¼ valueh i.

IFAIL ¼ 2

If the option Target Warning has been activated, this indicates that the Target Objective Value
has been achieved to specified tolerances at a sufficiently constrained point, either during the
initialization phase, or during the first two iterations of the algorithm. While this is not
necessarily an error, it may occur if:

(i) The target was achieved at the first point sampled by the routine. This will be the mean of
the lower and upper bounds.

(ii) The target may have been achieved at a randomly generated sample point. This will always
be a possibility provided that the domain under investigation contains a point with a target
objective value.

(iii) If the Local Minimizer has been set, then a sample point may have been inside the basin of
attraction of a satisfactory point. If this occurs repeatedly when the routine is called, it may
imply that the objective is largely unimodal, and that it may be more efficient to use the
routine selected as the Local Minimizer directly.

Assuming that OBJFUN is correct, you may wish to set a better Target Objective Value, or a
stricter Target Objective Tolerance.

IFAIL ¼ 3

User requested exit valueh i during call to CONFUN.

User requested exit valueh i during call to MONMOD.

User requested exit valueh i during call to OBJFUN.
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IFAIL ¼ 4

Unable to locate strictly feasible point. valueh i constraints remain violated. This exit may be
suppressed using the option Constraint Warning.

IFAIL ¼ 11

On entry, NDIM ¼ valueh i.
Constraint: NDIM � 1.

IFAIL ¼ 12

On entry, NPAR ¼ valueh i.
Constraint: NPAR � 5� num threads, where num_threads is the value returned by the
OpenMP environment variable OMP_NUM_THREADS, or num_threads is 1 for a serial version of
this routine.

IFAIL ¼ 13

On entry, NCON ¼ valueh i.
Constraint: NCON � 0.

IFAIL ¼ 14

On entry, BLð valueh iÞ ¼ valueh i and BUð valueh iÞ ¼ valueh i.
Constraint: BUðiÞ � BLðiÞ for all i.
On entry, BLðiÞ ¼ BUðiÞ for all box bounds i.
Constraint: BUðiÞ > BLðiÞ for at least one box bound i.

IFAIL ¼ 17

E05SBF has been called with NCON > 0 and the dummy constraint function E05SZM. Only use
E05SZM with NCON ¼ 0.

IFAIL ¼ 18

The option Optimize ¼ CONSTRAINTS is active, however NCON ¼ 0.

IFAIL ¼ 19

Error valueh i occurred whilst adjusting to exterior local minimizer options.

Error valueh i occurred whilst adjusting to interior local minimizer options.

IFAIL ¼ 21

Either the option arrays have not been initialized for E05SBF, or they have become corrupted.

IFAIL ¼ 32

Derivative checks indicate possible errors in the supplied derivatives. Gradient checks may be
disabled by setting Verify Gradients ¼ OFF.

IFAIL ¼ 51

Multiple SMP threads have been detected; however, the option SMP Callback Thread Safe has
not been set.
Set SMP Callback Thread Safe ¼ YES if the provided callbacks are thread safe.
Set SMP Callback Thread Safe ¼ NO if the provided callbacks are not thread safe, to force
serial execution.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 (or IFAIL ¼ 2) or IFAIL ¼ 1 on exit, a criterion will have been reached depending on
user selected options. As with all global optimization software, the solution achieved may not be the
true global optimum. Various options allow for either greater search diversity or faster convergence to a
(local) optimum (See Sections 11 and 12).

Provided the objective function and constraints are sufficiently well behaved, if a local minimizer is
used in conjunction with E05SBF, then it is more likely that the final result will at least be in the near
vicinity of a local optimum, and due to the global search characteristics of the particle swarm, this
solution should be superior to many other local optima.

Caution should be used in accelerating the rate of convergence, as with faster convergence, less of the
domain will remain searchable by the swarm, making it increasingly difficult for the algorithm to detect
the basins of attraction of superior local optima. Using the options Repulsion Initialize and Repulsion
Finalize described in Section 12 will help to overcome this, by causing the swarm to diverge away
from the current optimum once no more local improvement is likely.

On successful exit with guaranteed success, IFAIL ¼ 0 (or IFAIL ¼ 2). This may happen if a Target
Objective Value is assigned and is reached by the algorithm at a satisfactorily constrained point. It will
also occur if a constrained point is found when Optimize ¼ CONSTRAINTS is set.

On successful exit without guaranteed success, IFAIL ¼ 1 is returned. This will happen if another
finalization criterion is achieved without the detection of an error.

In both cases, the value of INFORM provides further information as to the cause of the exit.

8 Parallelism and Performance

E05SBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E05SBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

The algorithm has been parallelized to allow for a high degree of asynchronicity between threads. Each
thread is assigned a static number of the NPAR particles requested, and performs a sub-iteration using
these particles and a private copy of ~x. The thread only updates this private copy if a superior solution
is found. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation.
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Once a thread has completed a sub-iteration, it enters a brief critical section where it compares this
private ~x to a globally accessible version. If either is superior, the inferior version is updated and the
thread continues into a new sub-iteration.

Parallelizing the algorithm in this way allows for individual threads to continue searching even if other
threads are completing sub-iterations in inferior times. The optional argument SMP Thread Overrun
allows you to force a synchronization across the team of threads once one thread completes sufficiently
more sub-iterations than the slowest thread. In particular, this may be used to force synchronization
after every sub-iteration if so desired.

When using an SMP parallel version of this routine, you must indicate that the callback routines are
thread safe by setting the optional argument SMP Callback Thread Safe before calling E05SBF in a
multi-threaded environment. See Section 12.2 for more information on this and other SMP options.

Note: the stochastic method used in E05SBF will not produce repeatable answers when run on multiple
threads.

9 Further Comments

The memory used by E05SBF is relatively static throughout. Indeed, most of the memory required is
used to store the current particle locations, the cognitive particle memories, the particle velocities and
the particle weights. As such, E05SBF may be used in problems with high dimension number
(NDIM > 100) without the concern of computational resource exhaustion, although the probability of
successfully locating the global optimum will decrease dramatically with the increase in dimensionality.

Due to the stochastic nature of the algorithm, the result will vary over multiple runs. This is particularly
true if arguments and options are chosen to accelerate convergence at the expense of the global search.
However, the option Repeatability ¼ ON may be set to initialize the internal random number generator
using a preset seed, which will result in identical solutions being obtained.

(For SMP users only) The option Repeatability ¼ ON will use preset seeds to initialize the random
number generator on each thread, however due to the unpredictable nature of parallel communication,
this cannot ensure repeatable results when running on multiple threads, even with SMP Thread
Overrun set to force synchronization every iteration.

10 Example

This example uses a particle swarm to find the global minimum of the two-dimensional Schwefel
function:

minimize
x2R2

f ¼
X2
j¼1

xjsin
ffiffiffiffiffiffiffiffi
xj
		 		q� �

subject to the constraints:

3:0x1 � 2:0x2 < 10:0;
�1:0 < x21 � x22 þ 3:0x1x2 < 50000:0;

�0:9 < cos x1=200ð Þ2 þ x2=100ð Þ
� �

< 0:9;

�500 � x1 � 500;
�500 � x2 � 500:

The global optimum has an objective value of fmin ¼ �731:707, located at x ¼ �394:15;�433:48ð Þ.
Only the third constraint is active at this point.

The example demonstrates how to initialize and set the options arrays using E05ZKF, how to query
options using E05ZLF, and finally how to search for the global optimum using E05SBF. The problem is
solved twice, first using E05SBF alone, and secondly by coupling E05SBF with E04UCF/E04UCA as a
dedicated local minimizer. In both cases the default option Repeatability ¼ ON is used to produce
repeatable solutions.

Note: for users of multi-threaded implementations of the NAG Library the following example program
does not include the setting of the optional parameter SMP Callback Thread Safe, and as such if run
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on multiple threads it will issue an error message. See the additional example program provided for
E05SAF for more information on how to safely access independent subsections of the provided IUSER
and RUSER arrays from multiple threads and how to use E05ZKF to set additional SMP threading
related options.

10.1 Program Text

! E05SBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e05sbfe_mod

! E05SBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun_non_linear, display_option, &

display_result, monmod, &
objfun_schwefel

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: f_target_c = &

-731.70709230672696_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Real (Kind=nag_wp), Parameter :: f_target_u = &

-837.9657745448674_nag_wp
Real (Kind=nag_wp), Parameter :: x_target = -420.9687463599820_nag_wp
Integer, Parameter :: detail_level = 0, report_freq = 100
Integer, Parameter, Public :: liopts = 100, liuser = 1, &

lopts = 100, lruser = 1, ncon = 3, &
ndim = 2, nout = 6, npar = 20

Real (Kind=nag_wp), Parameter :: c_scale(ncon) = (/2490.0_nag_wp, &
750000.0_nag_wp,0.1_nag_wp/)

Real (Kind=nag_wp), Parameter :: c_target_c(ncon) = 0._nag_wp
Real (Kind=nag_wp), Parameter :: c_target_u(ncon) = (/zero, &

31644.05623568455_nag_wp, &
0.07574889943398055_nag_wp/)

Real (Kind=nag_wp), Parameter :: x_target_c(ndim) = (/ &
-394.1470221120988_nag_wp, &
-433.48214189947606_nag_wp/)

Real (Kind=nag_wp), Parameter :: x_target_u(ndim) = (/x_target, &
x_target/)

Contains
Subroutine objfun_schwefel(mode,ndim,x,objf,vecout,nstate,iuser,ruser)

! Objfun routine for the Schwefel function for E05SBF.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: ndim, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*), vecout(ndim)
Real (Kind=nag_wp), Intent (In) :: x(ndim)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Logical :: evalobjf, evalobjg

! .. Intrinsic Procedures ..
Intrinsic :: abs, cos, sin, sqrt, sum

! .. Executable Statements ..
! Test NSTATE to indicate what stage of computation has been reached.

Select Case (nstate)
Case (2)

! OBJFUN is called for the very first time.
Case (1)

! OBJFUN is called on entry to a NAG local minimizer.
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Case (0)
! This will be the normal value of NSTATE.

End Select

! Test MODE to determine whether to calculate OBJF and/or OBJGRD.
evalobjf = .False.
evalobjg = .False.
Select Case (mode)
Case (0,5)

! Only the value of the objective function is needed.
evalobjf = .True.

Case (1,6)
! Only the values of the NDIM gradients are required.

evalobjg = .True.
Case (2,7)

! Both the objective function and the NDIM gradients are required.
evalobjf = .True.
evalobjg = .True.

End Select

If (evalobjf) Then
! Evaluate the objective function.

objf = sum(x(1:ndim)*sin(sqrt(abs(x(1:ndim)))))
End If

If (evalobjg) Then
! Calculate the gradient of the objective function.

vecout = sqrt(abs(x))
vecout = sin(vecout) + 0.5E0_nag_wp*vecout*cos(vecout)

End If

Return

End Subroutine objfun_schwefel
Subroutine confun_non_linear(mode,ncon,ndim,ldcj,needc,x,c,cjac,nstate, &

iuser,ruser)
! Subroutine used to supply constraints

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcj, ncon, ndim, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncon)
Real (Kind=nag_wp), Intent (Inout) :: cjac(ldcj,ndim), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(ndim)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncon)

! .. Local Scalars ..
Integer :: k
Logical :: evalc, evalcjac

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
! Test NSTATE to determine whether the local minimizer is being called
! for the first time from a new start point

If (nstate==1) Then
! Set any constant elements of the Jacobian matrix.

cjac(1,1) = 3.0_nag_wp
cjac(1,2) = -2.0_nag_wp

End If

! MODE: are constraints, derivatives, or both are required?
evalc = mode == 0 .Or. mode == 2
evalcjac = mode == 1 .Or. mode == 2

loop_constraints: Do k = 1, ncon
! Only those for which needc is nonzero need be set.

If (needc(k)<=0) Then
Cycle loop_constraints

End If
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If (evalc) Then
! Constraint values are required.

Select Case (k)
Case (1)

c(k) = 3.0_nag_wp*x(1) - 2.0_nag_wp*x(2)
Case (2)

c(k) = x(1)**2 - x(2)**2 + 3.0_nag_wp*x(1)*x(2)
Case (3)

c(k) = cos((x(1)/200.0_nag_wp)**2+(x(2)/100.0_nag_wp))
Case Default

! This constraint is not coded (there are only three).
! Terminate.

mode = -1
Exit loop_constraints

End Select
End If

If (evalcjac) Then
! Constraint derivatives (CJAC) are required.

Select Case (k)
Case (1)

! Constant derivatives set when NSTATE=1 remain throughout
! the local minimization.

Continue
Case (2)

! If the constraint derivatives are known and are readily
! calculated, populate CJAC when required.

cjac(k,1) = 2.0_nag_wp*x(1) + 3.0_nag_wp*x(2)
cjac(k,2) = -2.0_nag_wp*x(2) + 3.0_nag_wp*x(1)

Case Default
! Any elements of CJAC left unaltered will be approximated
! using finite differences when required.

Continue
End Select

End If

End Do loop_constraints

Return

End Subroutine confun_non_linear
Subroutine monmod(ndim,ncon,npar,x,xb,fb,cb,xbest,fbest,cbest,itt,iuser, &

ruser,inform)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: fb
Integer, Intent (Inout) :: inform
Integer, Intent (In) :: ncon, ndim, npar

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: cb(ncon), cbest(ncon,npar), &

fbest(npar), xb(ndim), &
xbest(ndim,npar)

Real (Kind=nag_wp), Intent (Inout) :: ruser(*), x(ndim,npar)
Integer, Intent (In) :: itt(7)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: indent, j

! .. Intrinsic Procedures ..
Intrinsic :: modulo, repeat

! .. Executable Statements ..
If (detail_level>=2) Then

! Report on the first iteration, and every report_freq iterations.
If (itt(1)==1 .Or. modulo(itt(1),report_freq)==0) Then

Write (nout,*) ’* Locations of particles’
indent = 2
Do j = 1, npar

Write (nout,99999) repeat(’ ’,indent), j
Write (nout,99998) repeat(’ ’,indent), x(1:ndim,j)

End Do
Write (nout,*) ’* Cognitive memory’
Do j = 1, npar

E05SBF NAG Library Manual

E05SBF.18 Mark 26



Write (nout,99999) repeat(’ ’,indent), j
Write (nout,*) repeat(’ ’,indent*2), ’* Best position’
Write (nout,99998) repeat(’ ’,indent*2), xbest(1:ndim,j)
Write (nout,*) repeat(’ ’,indent*2), &

’* Function value at best position’
Write (nout,99997) repeat(’ ’,indent*2), fbest(j)
Write (nout,*) repeat(’ ’,indent*2), &

’* Best constraint violations’
Write (nout,99998) repeat(’ ’,indent*2), cbest(1:ncon,j)

End Do
Write (nout,*) ’* Current global optimum candidate’
Write (nout,99998) repeat(’ ’,indent), xb(1:ndim)
Write (nout,*) ’* Current global optimum value’
Write (nout,99997) repeat(’ ’,indent), fb
Write (nout,*) ’* Constraint violations of candidate’
Write (nout,99998) repeat(’ ’,indent), cb(1:ncon)

End If
End If

! If required set INFORM<0 to force exit
inform = 0

Return
99999 Format (1X,A,’* Particle ’,I3)
99998 Format (1X,A,(6F13.5))
99997 Format (1X,A,F13.5)

End Subroutine monmod
Subroutine display_option(optstr,optype,ivalue,rvalue,cvalue)

! Subroutine to query optype and print the appropriate option values

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rvalue
Integer, Intent (In) :: ivalue, optype
Character (*), Intent (In) :: cvalue, optstr

! .. Executable Statements ..
Select Case (optype)
Case (1)

Write (nout,99999) optstr, ivalue
Case (2)

Write (nout,99998) optstr, rvalue
Case (3)

Write (nout,99997) optstr, cvalue
Case (4)

Write (nout,99996) optstr, ivalue, cvalue
Case (5)

Write (nout,99995) optstr, rvalue, cvalue
End Select

Flush (nout)

Return
99999 Format (3X,A39,’ : ’,I13)
99998 Format (3X,A39,’ : ’,F13.4)
99997 Format (3X,A39,’ : ’,16X,A16)
99996 Format (3X,A39,’ : ’,I13,3X,A16)
99995 Format (3X,A39,’ : ’,F13.4,3X,A16)

End Subroutine display_option

Subroutine display_result(ndim,ncon,xb,fb,cb,itt,inform)
! Display final results in comparison to known global optimum.

! .. Use Statements ..
Use nag_library, Only: x04cbf

! .. Parameters ..
Integer, Parameter :: indent = 1, ncols = 79
Character (11), Parameter :: clabs(1:6) = (/’x_target_u ’, &

’x_target_c ’,’xb ’, &
’c_target_u ’,’c_target_c ’, &
’cb ’/)

Character (1), Parameter :: diag = ’D’, labcol = ’C’, &
labrow = ’I’, matrix = ’G’

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.19



Character (5), Parameter :: fmtc = ’f12.5’, fmtx = ’f12.2’
! .. Scalar Arguments ..

Real (Kind=nag_wp), Intent (In) :: fb
Integer, Intent (In) :: inform, ncon, ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: cb(ncon), xb(ndim)
Integer, Intent (In) :: itt(7)

! .. Local Scalars ..
Integer :: ifail, ldcom
Character (ncols) :: titlec, titlex

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ccom(:,:), xcom(:,:)

! .. Executable Statements ..
! Display final counters.

Write (nout,*) ’ Algorithm Statistics’
Write (nout,*) ’ --------------------’
Write (nout,99994) ’Total complete iterations ’, itt(1)
Write (nout,99994) ’Complete iterations since improvement ’, itt(2)
Write (nout,99994) ’Total particles converged to xb ’, itt(3)
Write (nout,99994) ’Total improvements to global optimum ’, itt(4)
Write (nout,99994) ’Total function evaluations ’, itt(5)
Write (nout,99994) ’Total particles re-initialized ’, itt(6)
Write (nout,99994) ’Total constraints violated ’, itt(7)

! Display why finalization occurred.
Write (nout,*)
Select Case (inform)
Case (1)

Write (nout,99999) ’Target value achieved’
Case (2)

Write (nout,99999) ’Minimum swarm standard deviation obtained’
Case (3)

Write (nout,99999) ’Sufficient particles converged’
Case (4)

Write (nout,99999) ’No improvement in preset iteration limit’
Case (5)

Write (nout,99999) ’Maximum complete iterations attained’
Case (6)

Write (nout,99999) ’Maximum function evaluations exceeded’
Case (7)

Write (nout,99999) ’Constrained point located’
Case (:-1)

Write (nout,99998) inform
Go To 100

End Select

! Display final objective value and location.
Write (nout,*)
Write (nout,99997) f_target_u
Write (nout,99996) f_target_c
Write (nout,99995) fb
Flush (nout)

ldcom = ndim
Allocate (xcom(ldcom,3))
xcom(1:ndim,1) = x_target_u(1:ndim)
xcom(1:ndim,2) = x_target_c(1:ndim)
xcom(1:ndim,3) = xb(1:ndim)

Write (nout,*)
titlex = ’Comparison between known and achieved optima.’
ifail = 0
Call x04cbf(matrix,diag,ndim,3,xcom,ldcom,fmtx,titlex,labrow,clabs, &

labcol,clabs,ncols,indent,ifail)

Deallocate (xcom)

If (ncon>0) Then
ldcom = ncon
Allocate (ccom(ldcom,3))
ccom(1:ncon,1) = c_target_u(1:ncon)/c_scale(1:ncon)
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ccom(1:ncon,2) = c_target_c(1:ncon)/c_scale(1:ncon)
ccom(1:ncon,3) = cb(1:ncon)/c_scale(1:ncon)

Write (nout,*)
Flush (nout)
titlec = ’Comparison between scaled constraint violations.’
ifail = 0
Call x04cbf(matrix,diag,ncon,3,ccom,ldcom,fmtc,titlec,labrow,clabs, &

labcol,clabs(4:6),ncols,indent,ifail)

Deallocate (ccom)
End If

100 Continue

Write (nout,*)

Return
99999 Format (2X,’Solution Status : ’,A38)
99998 Format (’ User termination case : ’,I13)
99997 Format (’ Known unconstrained objective minimum : ’,F13.3)
99996 Format (’ Best Known constrained objective minimum : ’,F13.3)
99995 Format (’ Achieved objective value : ’,F13.3)
99994 Format (2X,A40,’ :’,I13)

End Subroutine display_result
End Module e05sbfe_mod
Program e05sbfe

! E05SBF Example Main Program

! This example program demonstrates how to use E05SBF in standard
! execution, and with E04UCF as a coupled local minimizer.
! The non-default option ’REPEATABILITY ON’ is used here, giving
! repeatable results.

! .. Use Statements ..
Use nag_library, Only: e05sbf, e05zkf, e05zlf, nag_wp
Use e05sbfe_mod, Only: confun_non_linear, display_option, &

display_result, f_target_c, liopts, liuser, &
lopts, lruser, monmod, ncon, ndim, nout, npar, &
objfun_schwefel, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fb, rvalue
Integer :: ifail, inform, ivalue, optype
Character (16) :: cvalue
Character (80) :: optstr

! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(ndim+ncon), bu(ndim+ncon), &

cb(ncon), cbest(ncon,npar), &
fbest(ndim,npar), opts(lopts), &
ruser(lruser), xb(ndim), &
xbest(ndim,npar)

Integer :: iopts(liopts), itt(7), iuser(liuser)
! .. Executable Statements ..
! Print advisory information.

Write (nout,*) ’E05SBF Example Program Results’
Write (nout,*)
Write (nout,*) ’Minimization of the Schwefel function.’
Write (nout,*) ’Subject to one linear and two nonlinear constraints.’
Write (nout,*)

xbest = zero
fbest = zero
cbest = zero

! Set problem specific values.
! Set box bounds.

bl(1:ndim) = -500.0_nag_wp
bu(1:ndim) = 500.0_nag_wp

! Set constraint bounds.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.21



bl((ndim+1):(ndim+ncon)) = (/-1.0E6_nag_wp,-1.0_nag_wp,-0.9_nag_wp/)
bu((ndim+1):(ndim+ncon)) = (/10.0_nag_wp,5.0E5_nag_wp,0.9_nag_wp/)

! Initialize the option arrays for E05SBF.
ifail = 0
Call e05zkf(’Initialize = E05SBF’,iopts,liopts,opts,lopts,ifail)

! Query some default option values.
Write (nout,*) ’ Default Option Queries:’
Write (nout,*)
ivalue = 0
rvalue = 0.0_nag_wp
ifail = 0
optstr = ’Constraint Norm’
Call e05zlf(optstr,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)
Call display_option(optstr,optype,ivalue,rvalue,cvalue)

ifail = 0
optstr = ’Maximum Iterations Completed’
Call e05zlf(optstr,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)
Call display_option(optstr,optype,ivalue,rvalue,cvalue)

ifail = 0
optstr = ’Distance Tolerance’
Call e05zlf(optstr,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)
Call display_option(optstr,optype,ivalue,rvalue,cvalue)

! ------------------------------------------------------------------
Write (nout,*)
Write (nout,*) ’1. Solution without using coupled local minimizer’
Write (nout,*)

! Set various options to non-default values if required.
ifail = 0
Write (optstr,99999) ’Distance Tolerance’, rvalue*0.1_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Constraint Tolerance’, 1.0E-4_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Constraint Norm = Euclidean’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Repeatability = On’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Target Objective Value’, f_target_c
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Target Objective Tolerance’, 1.0E-4_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)

! Call E05SBF to search for the global optimum.
! Non-zero IFAIL expected on exit here, so use IFAIL=1 (quiet) on entry.

ifail = 1
Call e05sbf(ndim,ncon,npar,xb,fb,cb,bl,bu,xbest,fbest,cbest, &

objfun_schwefel,confun_non_linear,monmod,iopts,opts,iuser,ruser,itt, &
inform,ifail)

! It is essential to test IFAIL on exit.
Select Case (ifail)
Case (0,1)

! No errors, best found optimum at xb returned in fb.
Call display_result(ndim,ncon,xb,fb,cb,itt,inform)

Case (3)
! Exit flag set in OBJFUN, CONFUN or MONMOD and returned in INFORM.

Call display_result(ndim,ncon,xb,fb,cb,itt,inform)
Case Default

! An error was detected. Print message since IFAIL=1 on entry.
Write (nout,99998) ’** E05SBF returned with an error, IFAIL = ’, ifail
Continue

End Select

! ------------------------------------------------------------------
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Write (nout,*) ’2. Solution using coupled local minimizer E04UCF’
Write (nout,*)

! Set the local minimizer to be E04UCF and set corresponding options.
ifail = 0
Call e05zkf(’Local Minimizer = E04UCF’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Local Interior Major Iterations = 15’,iopts,liopts,opts, &

lopts,ifail)
ifail = 0
Call e05zkf(’Local Interior Minor Iterations = 5’,iopts,liopts,opts, &

lopts,ifail)
ifail = 0
Call e05zkf(’Local Exterior Major Iterations = 50’,iopts,liopts,opts, &

lopts,ifail)
ifail = 0
Call e05zkf(’Local Exterior Minor Iterations = 15’,iopts,liopts,opts, &

lopts,ifail)

! Query the option Distance Tolerance
ifail = 0
optstr = ’Distance Tolerance’
Call e05zlf(optstr,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)

! Adjust Distance Tolerance dependent upon its current value
Write (optstr,99999) ’Distance Tolerance’, rvalue*10.0_nag_wp
ifail = 0
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Local Interior Tolerance’, rvalue
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Local Exterior Tolerance’, rvalue*1.0E-4_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)

! Call E05SBF to search for the global optimum.
ifail = 1
Call e05sbf(ndim,ncon,npar,xb,fb,cb,bl,bu,xbest,fbest,cbest, &

objfun_schwefel,confun_non_linear,monmod,iopts,opts,iuser,ruser,itt, &
inform,ifail)

! It is essential to test IFAIL on exit.
Select Case (ifail)
Case (0,1)

! E05SBF encountered no errors during operation,
! and will have returned the best found optimum.

Call display_result(ndim,ncon,xb,fb,cb,itt,inform)
Case (3)

! Exit flag set in OBJFUN, CONFUN or MONMOD and returned in INFORM.
Call display_result(ndim,ncon,xb,fb,cb,itt,inform)

Case Default
! An error was detected. Print message since IFAIL=1 on entry.

Write (nout,99998) ’** E05SBF returned with an error, IFAIL = ’, ifail
Continue

End Select

99999 Format (A,’ = ’,E32.16)
99998 Format (1X,A,I6)

End Program e05sbfe

10.2 Program Data

None.
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10.3 Program Results

E05SBF Example Program Results

Minimization of the Schwefel function.
Subject to one linear and two nonlinear constraints.

Default Option Queries:

Constraint Norm : L1
Maximum Iterations Completed : 1000 DEFAULT
Distance Tolerance : 0.0001

1. Solution without using coupled local minimizer

Algorithm Statistics
--------------------
Total complete iterations : 277
Complete iterations since improvement : 1
Total particles converged to xb : 0
Total improvements to global optimum : 117
Total function evaluations : 4222
Total particles re-initialized : 0
Total constraints violated : 0

Solution Status : Target value achieved

Known unconstrained objective minimum : -837.966
Best Known constrained objective minimum : -731.707
Achieved objective value : -731.708

Comparison between known and achieved optima.
x_target_u x_target_c xb

1 -420.97 -394.15 -394.17
2 -420.97 -433.48 -433.53

Comparison between scaled constraint violations.
c_target_u c_target_c cb

1 0.00000 0.00000 0.00000
2 0.04219 0.00000 0.00000
3 0.75749 0.00000 0.00002

2. Solution using coupled local minimizer E04UCF

Algorithm Statistics
--------------------
Total complete iterations : 4
Complete iterations since improvement : 1
Total particles converged to xb : 0
Total improvements to global optimum : 7
Total function evaluations : 155
Total particles re-initialized : 0
Total constraints violated : 0

Solution Status : Target value achieved

Known unconstrained objective minimum : -837.966
Best Known constrained objective minimum : -731.707
Achieved objective value : -731.706

Comparison between known and achieved optima.
x_target_u x_target_c xb

1 -420.97 -394.15 -394.15
2 -420.97 -433.48 -433.49

Comparison between scaled constraint violations.
c_target_u c_target_c cb

1 0.00000 0.00000 0.00000
2 0.04219 0.00000 0.00000
3 0.75749 0.00000 0.00000
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11 Algorithmic Details

The following pseudo-code describes the algorithm used with the repulsion mechanism.

INITIALIZE for j ¼ 1; np
xj ¼ R 2 U lbox; uboxð Þ

x̂j ¼ R 2 U lbox; uboxð Þ Start ¼ COLD
x̂0j Start ¼WARM



vj ¼ R 2 U �Vmax ;Vmaxð Þ

f̂j ¼
F x̂j
� �

Start ¼ COLD
f̂0j Start ¼WARM



êj ¼ e x̂j

� �
Start ¼ COLD

ê0j Start ¼WARM



wj ¼

Wmax Weight Initialize ¼ MAXIMUM
Wini Weight Initialize ¼ INITIAL
R 2 U Wmin ;Wmaxð Þ Weight Initialize ¼ RANDOMIZED

8<:
end for
~x ¼ 1

2 lbox þ uboxð Þ
~f ¼ F ~xð Þ
~e ¼ e ~xð Þ
Ic ¼ Is ¼ 0

SWARM while ðnot finalizedÞ;
Ic ¼ Ic þ 1
for j ¼ 1; np

xj ¼ BOUNDARY xj; lbox; ubox
� �

fj ¼ F xj
� �

ej ¼ e xj
� �

if fj=fscale þ 
 wj
� �

ej
�� �� < f̂j=fscale þ 
 wj

� �
êj
�� ��� �

f̂j ¼ fj; x̂j ¼ xj
if ej

�� �� < ~ek k
� �

or ej
�� �� � ~ek k and fj < ~f
� �� �

~f ¼ fj; ~x ¼ xj
end for
if new ~f

� �� �
LOCMIN ~x; ~f;~e; Oi

� �
; Is ¼ 0

½see note on repulsion below for code insertion�
else

Is ¼ Is þ 1
for j ¼ 1; np

vj ¼ wjvj þ CsD1 x̂j � xj
� �

þ CgD2 ~x� xj
� �

xj ¼ xj þ vj
if xj � ~x
�� �� < dtol
� �
reset xj; vj; wj; x̂j ¼ xj

else
update wj

� �
end for
if ðtarget achieved or termination criterion satisfiedÞ

finalized ¼ true
MONMOD xj

� �
end
LOCMIN ~x; ~f;~e; Oe

� �
The definition of terms used in the above pseudo-code are as follows.

np the number of particles, NPAR

lbox array of NDIM lower box bounds

ubox array of NDIM upper box bounds

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.25



xj position of particle j

x̂j best position found by particle j

~x best position found by any particle

fj F xj
� �

f̂j F x̂j
� �

, best value found by particle j

~f F ~xð Þ, best value found by any particle

ek xð Þ kth (scaled) constraint violation at x, evaluated as
min ck xð Þ � lNDIMþk; 0:0ð Þ þmax ck xð Þ � uNDIMþk; 0:0ð Þ; this may be scaled by the maximum
kth constraint found thus far

e xð Þ the array of NCON constraint violations, ek xð Þ, for k ¼ 1; 2; . . . ;NCON, at a point x

ej e xj
� �

, the array of constraint violations evaluated at xj

êj e x̂j
� �

, the array of constraint violations evaluated at x̂j

~e e ~xð Þ, the array of constraint violations evaluated at ~x

vj velocity of particle j

wj weight on vj for velocity update, decreasing according to Weight Decrease

Vmax maximum absolute velocity, dependent upon Maximum Variable Velocity

Ic swarm iteration counter

Is iterations since ~x was updated

fscale objective function scaling defined by the options Constraint Scaling, Objective Scaling
and Objective Scale.

D1,D2 diagonal matrices with random elements in range 0; 1ð Þ
Cs the cognitive advance coefficient which weights velocity towards x̂j, adjusted using

Advance Cognitive

Cg the global advance coefficient which weights velocity towards ~x, adjusted using Advance
Global

dtol the Distance Tolerance for resetting a converged particle

R 2 U lbox; uboxð Þ
an array of random numbers whose ith element is drawn from a uniform distribution in the
range lboxi; uboxið Þ, for i ¼ 1; 2; . . . ;NDIM

Oi local optimizer interior options

Oe local optimizer exterior options


 wj
� �

a function of wj designed to increasingly weight towards minimizing constraint violations as
wj decreases

LOCMIN x; f; e; Oð Þ
apply local optimizer using the set of options O using the solution x; f; eð Þ as the starting
point, if used (not default)

MONMODmonitor progress and possibly modify xj

BOUNDARY
apply required behaviour for xj outside bounding box, (see Boundary)

new ( ~f) true if ~x, ~c, ~f were updated at this iteration

Additionally a repulsion phase can be introduced by changing from the default values of options
Repulsion Finalize (rf ), Repulsion Initialize (ri) and Repulsion Particles (rp). If the number of static
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particles is denoted ns then the following can be inserted after the new( ~f) check in the pseudo-code
above.

else if ðns � rp and ri � Is � ri þ rfÞ
LOCMIN ~x; ~f;~e; Oi

� �
use �Cg instead of Cg in velocity updates

if Is ¼ ri þ rf
� �
Is ¼ 0

12 Optional Parameters

This section can be skipped if you wish to use the default values for all optional parameters, otherwise,
the following is a list of the optional parameters available and a full description of each optional
parameter is provided in Section 12.1.

Advance Cognitive

Advance Global

Boundary

Constraint Norm

Constraint Scale Maximum

Constraint Scaling

Constraint Superiority

Constraint Tolerance

Constraint Warning

Distance Scaling

Distance Tolerance

Function Precision

Local Boundary Restriction

Local Exterior Iterations

Local Exterior Major Iterations

Local Exterior Minor Iterations

Local Exterior Tolerance

Local Interior Iterations

Local Interior Major Iterations

Local Interior Minor Iterations

Local Interior Tolerance

Local Minimizer

Maximum Function Evaluations

Maximum Iterations Completed

Maximum Iterations Static

Maximum Iterations Static Particles

Maximum Particles Converged

Maximum Particles Reset

Maximum Variable Velocity

Objective Scale

Objective Scaling

Optimize

Repeatability

Repulsion Finalize

Repulsion Initialize
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Repulsion Particles

SMP Callback Thread Safe

SMP Local Minimizer External

SMP Monitor

SMP Monmod

SMP Subswarm

SMP Thread Overrun

Start

Swarm Standard Deviation

Target Objective

Target Objective Safeguard

Target Objective Tolerance

Target Objective Value

Target Warning

Verify Gradients

Weight Decrease

Weight Initial

Weight Initialize

Weight Maximum

Weight Minimum

Weight Reset

Weight Value

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
and Imax represents the largest representable integer value (see X02BBF).

All options accept the value ‘DEFAULT’ in order to return single options to their default states.

Keywords and character values are case insensitive, however they must be separated by at least one
space.

For E05SBF the maximum length of the argument CVALUE used by E05ZLF is 15.

Advance Cognitive r Default ¼ 2:0

The cognitive advance coefficient, Cs. When larger than the global advance coefficient, this will cause
particles to be attracted toward their previous best positions. Setting r ¼ 0:0 will cause E05SBF to act
predominantly as a local optimizer. Setting r > 2:0 may cause the swarm to diverge, and is generally
inadvisable. At least one of the global and cognitive coefficients must be nonzero.

Advance Global r Default ¼ 2:0

The global advance coefficient, Cg. When larger than the cognitive coefficient this will encourage
convergence toward the best solution yet found. Values r 2 0; 1ð Þ will inhibit particles overshooting the
optimum. Values r 2 1; 2½ Þ cause particles to fly over the optimum some of the time. Larger values can
prohibit convergence. Setting r ¼ 0:0 will remove any attraction to the current optimum, effectively
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generating a Monte–Carlo multi-start optimization algorithm. At least one of the global and cognitive
coefficients must be nonzero.

Boundary a Default ¼ FLOATING

Determines the behaviour if particles leave the domain described by the box bounds. This only affects
the general PSO algorithm, and will not pass down to any NAG local minimizers chosen.

This option is only effective in those dimensions for which BLðiÞ 6¼ BUðiÞ, i ¼ 1; 2; . . . ;NDIM.

IGNORE
The box bounds are ignored. The objective function is still evaluated at the new particle position.

RESET
The particle is re-initialized inside the domain. x̂j, f̂j and êj are not affected.

FLOATING
The particle position remains the same, however the objective function will not be evaluated at
the next iteration. The particle will probably be advected back into the domain at the next
advance due to attraction by the cognitive and global memory.

HYPERSPHERICAL
The box bounds are wrapped around an ndim-dimensional hypersphere. As such a particle
leaving through a lower bound will immediately re-enter through the corresponding upper bound
and vice versa. The standard distance between particles is also modified accordingly.

FIXED
The particle rests on the boundary, with the corresponding dimensional velocity set to 0:0.

Constraint Norm a Default ¼ L1

Determines with respect to which norm the constraint residuals should be constructed. These are
automatically scaled with respect to NCON as stated. For the set of (scaled) violations e, these may be,

L1

The L1 norm will be used, ek k1 ¼ 1
NCON

XNCON
1

ekj j

L2

The L2 norm will be used, ek k2 ¼ 1
NCON

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNCON
1

e2k

vuut
L2SQ

The square of the L2 norm will be used, ek k22 ¼ 1
NCON

XNCON
1

e2k

LMAX
The L1 norm will be used, ek k1 ¼ max

0<k�NCON
ekj jð Þ

Constraint Scale Maximum r Default ¼ 1:0E6

Internally, each constraint violation is scaled with respect to the maximum violation yet achieved for
that constraint. This option acts as a ceiling for this scale.

Constraint: r > 1:0.
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Constraint Scaling a Default ¼ INITIAL

Determines whether to scale the constraints and objective function when constructing the penalty
function.

OFF
Neither the constraint violations nor the objective will be scaled automatically. This should only
be used if the constraints and objective are similarly scaled everywhere throughout the domain.

INITIAL
The maximum of the initial cognitive memories, f̂j and êj, will be used to scale the objective
function and constraint violations respectively.

ADAPTIVE
Initially, the maximum of the initial cognitive memories, f̂j and êj, will be used to scale the
objective function and constraint violations respectively. If a significant change is detected in the
behaviour of the constraints or the objective, these will be rescaled with respect to the current
state of the cognitive memory.

Constraint Superiority r Default ¼ 0:01

The minimum scaled improvement in the constraint violation for a location to be immediately superior
to that in memory, regardless of the objective value.

Constraint: r > 0:0.

Constraint Tolerance r Default ¼ 10�4

The maximum scaled violation of the constraints for which a sample particle is considered comparable
to the current global optimum. Should this not be exceeded, then the current global optimum will be
updated if the value of the objective function of the sample particle is superior.

Constraint Warning a Default ¼ ON

Activates or deactivates the error exit associated with the inability to completely satisfy all constraints,
IFAIL ¼ 4. It is advisable to deactivate this option if IFAIL ¼ 0 on entry and the satisfaction of all
constraints is not program critical.

OFF
No error will be returned.

ON
An error will be returned if any constraints are sufficiently violated at the end of the simulation.

Distance Scaling a Default ¼ ON

Determines whether distances should be scaled by box widths.

ON
When a distance is calculated between x and y, a scaled L2 norm is used.

L2 x; yð Þ ¼
X

ijui 6¼li;i�ndimf g

xi � yi
ui � li

� �2
0@ 1A1

2

:

OFF
Distances are calculated as the standard L2 norm without any rescaling.

L2 x; yð Þ ¼
Xndim
i¼1

xi � yið Þ2
 !1

2

:
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Distance Tolerance r Default ¼ 10�4

This is the distance, dtol between particles and the global optimum which must be reached for the
particle to be considered converged, i.e., that any subsequent movement of such a particle cannot
significantly alter the global optimum. Once achieved the particle is reset into the box bounds to
continue searching.

Constraint: r > 0:0.

Function Precision r Default ¼ �0:9

The parameter defines �r, which is intended to be a measure of the accuracy with which the problem
function F xð Þ can be computed. If r < � or r � 1, the default value is used.

The value of �r should reflect the relative precision of 1þ F xð Þj j; i.e., �r acts as a relative precision
when Fj j is large, and as an absolute precision when Fj j is small. For example, if F xð Þ is typically of
order 1000 and the first six significant digits are known to be correct, an appropriate value for �r would
be 10�6. In contrast, if F xð Þ is typically of order 10�4 and the first six significant digits are known to be
correct, an appropriate value for �r would be 10�10. The choice of �r can be quite complicated for badly
scaled problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However when the
accuracy of the computed function values is known to be significantly worse than full precision, the
value of �r should be large enough so that no attempt will be made to distinguish between function
values that differ by less than the error inherent in the calculation.

Local Boundary Restriction r Default ¼ 0:5

Contracts the box boundaries used by a box constrained local minimizer to, �l; �u½ �, containing the start
point x, where

@i ¼ r� ui � lið Þ
�il ¼ max li; xi � @i

2

� �
�iu ¼ min ui; xi þ @i

2

� �
; i ¼ 1; . . . ;NDIM:

Smaller values of r thereby restrict the size of the domain exposed to the local minimizer, possibly
reducing the amount of work done by the local minimizer.

Constraint: 0:0 � r � 1:0.

Local Interior Iterations i1
Local Interior Major Iterations i1
Local Exterior Iterations i2
Local Exterior Major Iterations i2

The maximum number of iterations or function evaluations the chosen local minimizer will perform
inside (outside) the main loop if applicable. For the NAG minimizers these correspond to:

Minimizer Parameter/option Default Interior Default Exterior
E04CBF MAXCAL NDIMþ 10 2� NDIMþ 15
E04DGF/E04DGA Iteration Limit max 30; 3� NDIMð Þ max 50; 5� NDIMð Þ
E04UCF/E04UCA Major Iteration Limit max 10; 2� NDIMð Þ max 30; 3� NDIMð Þ

Unless set, these are functions of the parameters passed to E05SBF.

Setting i ¼ 0 will disable the local minimizer in the corresponding algorithmic region. For example,
setting Local Interior Iterations ¼ 0 and Local Exterior Iterations ¼ 30 will cause the algorithm to
perform no local minimizations inside the main loop of the algorithm, and a local minimization with
upto 30 iterations after the main loop has been exited.

Note: currently E04JYF or E04KZF are restricted to using 400� NDIM and 50� NDIM as function
evaluation limits respectively. This applies to both local minimizations inside and outside the main
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loop. They may still be deactivated in either phase by setting i ¼ 0, and may subsequently be
reactivated in either phase by setting i > 0.

Constraint: i1 � 0, i2 � 0.

Local Interior Tolerance r1 Default ¼ 10�4

Local Exterior Tolerance r2 Default ¼ 10�4

This is the tolerance provided to a local minimizer in the interior (exterior) of the main loop of the
algorithm.

Constraint: r1 > 0:0, r2 > 0:0.

Local Interior Minor Iterations i1
Local Exterior Minor Iterations i2

Where applicable, the secondary number of iterations the chosen local minimizer will use inside
(outside) the main loop. Currently the relevant default values are:

Minimizer Parameter/option Default Interior Default Exterior
E04UCF/E04UCA Minor Iteration Limit max 10; 2� NDIMð Þ max 30; 3� NDIMð Þ

Constraint: i1 � 0, i2 � 0.

Local Minimizer a Default ¼ OFF

Allows for a choice of Chapter E04 routines to be used as a coupled, dedicated local minimizer.

OFF
No local minimization will be performed in either the INTERIOR or EXTERIOR sections of the
algorithm.

E04CBF
Use E04CBF as the local minimizer. This does not require the calculation of derivatives.

On a call to OBJFUN during a local minimization, MODE ¼ 5.

E04KZF
Use E04KZF as the local minimizer. This requires the calculation of derivatives in OBJFUN, as
indicated by MODE.

The box bounds forwarded to this routine from E05SBF will have been acted upon by Local Boundary
Restriction. As such, the domain exposed may be greatly smaller than that provided to E05SBF.

Accurate derivatives must be provided to this routine, and will not be approximated internally. Each
iteration of this local minimizer also requires the calculation of both the objective function and its
derivative. Hence on a call to OBJFUN during a local minimization, MODE ¼ 7.

E04JYF
Use E04JYF as the local minimizer. This does not require the calculation of derivatives.

On a call to OBJFUN during a local minimization, MODE ¼ 5.

The box bounds forwarded to this routine from E05SBF will have been acted upon by Local Boundary
Restriction. As such, the domain exposed may be greatly smaller than that provided to E05SBF.

E04DGF
E04DGA

Use E04DGA as the local minimizer.

Accurate derivatives must be provided, and will not be approximated internally. Additionally, each call
to OBJFUN during a local minimization will require either the objective to be evaluated alone, or both
the objective and its gradient to be evaluated. Hence on a call to OBJFUN, MODE ¼ 5 or 7.
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E04UCF
E04UCA

Use E04UCA as the local minimizer. This operates such that any derivatives of either the
objective function or the constraint Jacobian, which you cannot supply, will be approximated
internally using finite differences.

Either, the objective, objective gradient, or both may be requested during a local minimization, and as
such on a call to OBJFUN, MODE ¼ 1, 2 or 5.

The box bounds forwarded to this routine from E05SBF will have been acted upon by Local Boundary
Restriction. As such, the domain exposed may be greatly smaller than that provided to E05SBF.

Maximum Function Evaluations i Default ¼ Imax

The maximum number of evaluations of the objective function. When reached this will return
IFAIL ¼ 1 and INFORM ¼ 6.

Constraint: i > 0.

Maximum Iterations Completed i Default ¼ 1000� NDIM

The maximum number of complete iterations that may be performed. Once exceeded E05SBF will exit
with IFAIL ¼ 1 and INFORM ¼ 5.

Unless set, this adapts to the parameters passed to E05SBF.

Constraint: i � 1.

Maximum Iterations Static i Default ¼ 100

The maximum number of iterations without any improvement to the current global optimum. If
exceeded E05SBF will exit with IFAIL ¼ 1 and INFORM ¼ 4. This exit will be hindered by setting
Maximum Iterations Static Particles to larger values.

Constraint: i � 1.

Maximum Iterations Static Particles i Default ¼ 0

The minimum number of particles that must have converged to the current optimum before the routine
may exit due to Maximum Iterations Static with IFAIL ¼ 1 and INFORM ¼ 4.

Constraint: i � 0.

Maximum Particles Converged i Default ¼ Imax

The maximum number of particles that may converge to the current optimum. When achieved, E05SBF
will exit with IFAIL ¼ 1 and INFORM ¼ 3. This exit will be hindered by setting ‘Repulsion’ options,
as these cause the swarm to re-expand.

Constraint: i > 0.

Maximum Particles Reset i Default ¼ Imax

The maximum number of particles that may be reset after converging to the current optimum. Once
achieved no further particles will be reset, and any particles within Distance Tolerance of the global
optimum will continue to evolve as normal.

Constraint: i > 0.

Maximum Variable Velocity r Default ¼ 0:25

Along any dimension j, the absolute velocity is bounded above by vj
		 		 � r� uj � lj

� �
¼ Vmax . Very

low values will greatly increase convergence time. There is no upper limit, although larger values will
allow more particles to be advected out of the box bounds, and values greater than 4:0 may cause
significant and potentially unrecoverable swarm divergence.

Constraint: r > 0:0.
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Objective Scale r Default ¼ 1:0

The initial scale for the objective function. This will remain fixed if Objective Scaling ¼ USER is
selected.

Objective Scaling a Default ¼ MAXIMUM

The method of (re)scaling applied to the objective function when the routine detects a significant
difference between the scale and the global and cognitive memory ( ~f and f̂j). This only has an effect
when NCON > 0 and Constraint Scaling is active.

MAXIMUM
The objective is rescaled with respect to the maximum absolute value of the objective in the
cognitive and global memory.

MEAN
The objective is rescaled with respect to the mean absolute value of the objective in the cognitive
and global memory.

USER
The scale remains fixed at the value set using Objective Scale.

Optimize a Default ¼ MINIMIZE

Determines whether to maximize or minimize the objective function, or ignore the objective and search
for a constrained point.

MINIMIZE
The objective function will be minimized.

MAXIMIZE
The objective function will be maximized. This is accomplished by minimizing the negative of
the objective.

CONSTRAINTS
The objective function will be ignored, and the algorithm will attempt to find a feasible point
given the provided constraints. The objective function will be evaluated at the best point found
with regards to constraint violations, and the final positions returned in XBEST. The objective
will be calculated at the best point found in terms of constraints only. Should a constrained point
be found, E05SBF will exit with IFAIL ¼ 0 and INFORM ¼ 6.

Constraint: if Optimize ¼ CONSTRAINTS, NCON > 0 is required.

Repeatability a Default ¼ OFF

Allows for the same random number generator seed to be used for every call to E05SBF.
Repeatability ¼ OFF is recommended in general.

OFF
The internal generation of random numbers will be nonrepeatable.

ON
The same seed will be used.

Repulsion Finalize i Default ¼ Imax

The number of iterations performed in a repulsive phase before re-contraction. This allows a re-
diversified swarm to contract back toward the current optimum, allowing for a finer search of the near
optimum space.

Constraint: i � 2.

Repulsion Initialize i Default ¼ Imax

The number of iterations without any improvement to the global optimum before the algorithm begins a
repulsive phase. This phase allows the particle swarm to re-expand away from the current optimum,
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allowing more of the domain to be investigated. The repulsive phase is automatically ended if a
superior optimum is found.

Constraint: i � 2.

Repulsion Particles i Default ¼ 0

The number of particles required to have converged to the current optimum before any repulsive phase
may be initialized. This will prevent repulsion before a satisfactory search of the near optimum area has
been performed, which may happen for large dimensional problems.

Constraint: i � 0.

Start a Default ¼ COLD

Used to affect the initialization of the routine.

COLD
The random number generators and all initialization data will be generated internally. The
variables XBEST, FBEST and CBEST need not be set.

WARM
You must supply the initial best location, function and constraint violation values XBEST,
FBEST and CBEST. This option is recommended if you already have a data set you wish to
improve upon.

Swarm Standard Deviation r Default ¼ 0:1

The target standard deviation of the particle distances from the current optimum. Once the standard
deviation is below this level, E05SBF will exit with IFAIL ¼ 1 and INFORM ¼ 2. This criterion will
be penalized by the use of ‘Repulsion’ options, as these cause the swarm to re-expand, increasing the
standard deviation of the particle distances from the best point.

In SMP parallel implementations of E05SBF, the standard deviation will be calculated based only on
the particles local to the particular thread that checks for finalization. Considerably fewer particles may
be used in this calculation than when the algorithm is run in serial. It is therefore recommended that
you provide a smaller value of Swarm Standard Deviation when running in parallel than when
running in serial.

Constraint: r � 0:0.

Target Objective a Default ¼ OFF
Target Objective Value r Default ¼ 0:0

Activate or deactivate the use of a target value as a finalization criterion. If active, then once the
supplied target value for the objective function is found (beyond the first iteration if Target Warning is
active) E05SBF will exit with IFAIL ¼ 0 and INFORM ¼ 1. Other than checking for feasibility only
(Optimize ¼ CONSTRAINTS), this is the only finalization criterion that guarantees that the algorithm
has been successful. If the target value was achieved at the initialization phase or first iteration and
Target Warning is active, E05SBF will exit with IFAIL ¼ 2. This option may take any real value r, or
the character ON/OFF as well as DEFAULT. If this option is queried using E05ZLF, the current value
of r will be returned in RVALUE, and CVALUE will indicate whether this option is ON or OFF. The
behaviour of the option is as follows:

r
Once a point is found with an objective value within the Target Objective Tolerance of r,
E05SBF will exit successfully with IFAIL ¼ 0 and INFORM ¼ 1.

OFF
The current value of r will remain stored, however it will not be used as a finalization criterion.

ON
The current value of r stored will be used as a finalization criterion.
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DEFAULT
The stored value of r will be reset to its default value (0:0), and this finalization criterion will be
deactivated.

Target Objective Safeguard r Default ¼ 10:0�

If you have given a target objective value to reach in objval (the value of the optional parameter Target
Objective Value), objsfg sets your desired safeguarded termination tolerance, for when objval is close
to zero.

Constraint: objsfg � 2�.

Target Objective Tolerance r Default ¼ 0:0

The optional tolerance to a user-specified target value.

Constraint: r � 0:0.

Target Warning a Default ¼ OFF

Activates or deactivates the error exit associated with the target value being achieved before entry into
the main loop of the algorithm, IFAIL ¼ 2.

OFF
No error will be returned, and the routine will exit normally.

ON
An error will be returned if the target objective is reached prematurely, and the routine will exit
with IFAIL ¼ 2.

Verify Gradients a Default ¼ ON

Adjusts the level of gradient checking performed when gradients are required. Gradient checks are only
performed on the first call to the chosen local minimizer if it requires gradients. There is no guarantee
that the gradient check will be correct, as the finite differences used in the gradient check are
themselves subject to inaccuracies.

OFF
No gradient checking will be performed.

ON
A cheap gradient check will be performed on both the gradients corresponding to the objective
through OBJFUN and those provided via the constraint Jacobian through CONFUN.

OBJECTIVE
A more expensive gradient check will be performed on the gradients corresponding to the
objective OBJFUN. The gradients of the constraints will not be checked.

CONSTRAINTS
A more expensive check will be performed on the elements of CJAC provided via CONFUN.
The objective gradient will not be checked.

FULL
A more expensive check will be performed on both the gradient of the objective and the
constraint Jacobian.

Weight Decrease a Default ¼ INTEREST

Determines how particle weights decrease.

OFF
Weights do not decrease.

INTEREST
Weights decrease through compound interest as wITþ1 ¼ wIT 1�Wvalð Þ, where Wval is the
Weight Value and IT is the current number of iterations.
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LINEAR
Weights decrease linearly following wITþ1 ¼ wIT � IT � Wmax �Wminð Þ=ITmax , where IT is
the iteration number and ITmax is the maximum number of iterations as set by Maximum
Iterations Completed.

Weight Initial r Default ¼Wmax

The initial value of any particle's inertial weight, Wini, or the minimum possible initial value if initial
weights are randomized. When set, this will override Weight Initialize ¼ RANDOMIZED or
MAXIMUM, and as such these must be set afterwards if so desired.

Constraint: Wmin � r � Wmax .

Weight Initialize a Default ¼ MAXIMUM

Determines how the initial weights are distributed.

INITIAL
All weights are initialized at the initial weight, Wini, if set. If Weight Initial has not been set,
this will be the maximum weight, Wmax .

MAXIMUM
All weights are initialized at the maximum weight, Wmax .

RANDOMIZED
Weights are uniformly distributed in Wmin ;Wmaxð Þ or Wini;Wmaxð Þ if Weight Initial has been
set.

Weight Maximum r Default ¼ 1:0

The maximum particle weight, Wmax .

Constraint: 1:0 � r �Wmin (If Wini has been set then 1:0 � r �Wini.)

Weight Minimum r Default ¼ 0:1

The minimum achievable weight of any particle, Wmin . Once achieved, no further weight reduction is
possible.

Constraint: 0:0 � r �Wmax (If Wini has been set then 0:0 � r � Wini.)

Weight Reset a Default ¼ MAXIMUM

Determines how particle weights are re-initialized.

INITIAL
Weights are re-initialized at the initial weight if set. If Weight Initial has not been set, this will
be the maximum weight.

MAXIMUM
Weights are re-initialized at the maximum weight.

RANDOMIZED
Weights are uniformly distributed in Wmin ;Wmaxð Þ or Wini;Wmaxð Þ if Weight Initial has been
set.

Weight Value r Default ¼ 0:01

The constant Wval used with Weight Decrease ¼ INTEREST.

Constraint: 0:0 � r � 1
3 .

12.2 Description of the SMP optional parameters

This section details additional options available to users of multi-threaded implementations of the NAG
Library. In particular it includes the option SMP Callback Thread Safe, which must be set before
calling E05SBF with multiple threads.
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SMP Callback Thread Safe a Default ¼WARNING

Declare that the callback routines you provide are or are not thread safe. In particular, this indicates that
access to the shared memory arrays IUSER and RUSER from within your provided callbacks is done in
a thread safe manner. If these arrays are just used to pass constant data, then you may assume they are
thread safe. If these are also used for workspace, or passing variable data such as random number
generator seeds, then you must ensure these are accessed and updated safely. Whilst this can be done
using OpenMP critical sections, we suggest their use is minimized to prevent unnecessary bottlenecks,
and that instead individual threads have access to independent subsections of the provided arrays where
possible.

YES
The callback routines have been programmed in a thread safe way. The algorithm will use
OMP_NUM_THREADS threads.

NO
The callback routines are not thread safe. Setting this option will force the algorithm to run on a
single thread only, and is advisable only for debugging purposes, or if you wish to parallelize
your callback functions.

WARNING
This will cause an immediate exit from E05SBF with IFAIL ¼ 51 if multiple threads are
detected. This is to inform you that you have not declared the callback functions either to be
thread safe, or that they are thread unsafe and you wish the algorithm to run in serial.

SMP Local Minimizer External a Default ¼ ALL

Determines how many threads will attempt to locally minimize the best found solution after the routine
has exited the main loop.

MASTER
Only the master thread will attempt to find any improvement. The local minimization will be
launched from the best known solution. All other threads will remain effectively idle.

ALL
The master thread will perform a local minimization from the best known solution, while all
other threads will perform a local minimization from randomly generated perturbations of the
best known solution, increasing the chance of an improvement. Assuming all local minimizations
will take approximately the same amount of computation, this will be effectively free in terms of
real time. It will however increase the number of function evaluations performed.

SMP Monitor a Default ¼ SINGLE
SMP Monmod a

Determines whether the user-supplied function MONMOD is invoked once every sub-iteration each
thread performs, or only once by a single thread after all threads have completed at least one sub-
iteration.

SINGLE
Only one thread will invoke MONMOD, after all threads have performed at least one sub-
iteration.

ALL
Each thread will invoke MONMOD each time it completes a sub-iteration. If you wish to alter X
using MONMOD you should use this option, as MONMOD will only receive the arrays X,
XBEST, FBEST and CBEST private to the calling thread.

SMP Subswarm i Default ¼ 1

Determines how many threads support a particle subswarm. This is an extra collection of particles
constrained to search only within a hypercube of edge length 10:0� Distance Tolerance of the best
point known to an individual thread. This may improve the number of iterations required to find a
provided target, particularly if no local minimizer is in use.
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If i � 0, then this will be disabled on all the threads.

If i � OMP NUM THREADS, then all the threads will support a particle subswarm.

SMP Thread Overrun i Default ¼ Imax

This option provides control over the level of asynchronicity present in a simulation. In particular, a
barrier synchronization between all threads is performed if any thread completes i sub-iterations more
than the slowest thread, causing all threads to be exposed to the current best solution. Allowing
asynchronous behaviour does however allow individual threads to focus on different global optimum
candidates some of the time, which can inhibit convergence to unwanted sub-optima. It also allows for
threads to continue searching when other threads are completing sub-iterations at a slower rate.

If i < 1, then the algorithm will force a synchronization between threads at the end of each iteration.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.39 (last)





NAG Library Routine Document

E05UCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05UCF is designed to find the global minimum of an arbitrary smooth function subject to constraints
(which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints)
by generating a number of different starting points and performing a local search from each using
sequential quadratic programming.

2 Specification

SUBROUTINE E05UCF (N, NCLIN, NCNLN, A, LDA, BL, BU, CONFUN, OBJFUN,
NPTS, X, LDX, START, REPEAT, NB, OBJF, OBJGRD,
LDOBJD, ITER, C, LDC, CJAC, LDCJAC, SDCJAC, R, LDR,
SDR, CLAMDA, LDCLDA, ISTATE, LISTAT, IOPTS, OPTS,
IUSER, RUSER, INFO, IFAIL)

&
&
&
&

INTEGER N, NCLIN, NCNLN, LDA, NPTS, LDX, NB, LDOBJD,
ITER(NB), LDC, LDCJAC, SDCJAC, LDR, SDR, LDCLDA,
ISTATE(LISTAT,NB), LISTAT, IOPTS(740), IUSER(*),
INFO(NB), IFAIL

&
&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),
X(LDX,NB), OBJF(NB), OBJGRD(LDOBJD,NB), C(LDC,NB),
CJAC(LDCJAC,SDCJAC,NB), R(LDR,SDR,NB),
CLAMDA(LDCLDA,NB), OPTS(485), RUSER(*)

&
&
&

LOGICAL REPEAT
EXTERNAL CONFUN, OBJFUN, START

Before calling E05UCF, the optional parameter arrays IOPTS and OPTS must be initialized for use
with E05UCF by calling E05ZKF with OPTSTR set to ‘Initialize = e05ucf’. Optional parameters
may be specified by calling E05ZKF before the call to E05UCF.

3 Description

The problem is assumed to be stated in the following form:

minimize
x2Rn

F xð Þ subject to l �
x
ALx
c xð Þ

0@ 1A � u; ð1Þ

where F xð Þ (the objective function) is a nonlinear function, AL is an nL by n linear constraint matrix,
and c xð Þ is an nN element vector of nonlinear constraint functions. (The matrix AL and the vector c xð Þ
may be empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at
least twice-continuously differentiable. (This routine will usually solve (1) if there are only isolated
discontinuities away from the solution.)

E05UCF solves a user-specified number of local optimization problems with different starting points.
You may specify the starting points via the subroutine START. If a random number generator is used to
generate the starting points then the argument REPEAT allows you to specify whether a repeatable set
of points are generated or whether different starting points are generated on different calls. The
resulting local minima are ordered and the best NB results returned in order of ascending values of the
resulting objective function values at the minima. Thus the value returned in position 1 will be the best
result obtained. If a sufficient number of different points are chosen then this is likely to be be the
global minimum. Please note that the default version of START uses a random number generator to
generate the starting points.
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: NCLIN – INTEGER Input

On entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.

3: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: NCNLN � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0, and at least 1
otherwise.

On entry: the matrix AL of general linear constraints in (1). That is, the ith row contains the
coefficients of the ith general linear constraint, for i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0, the array A is not referenced.
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5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E05UCF
is called.

Constraint: LDA � NCLIN.

6: BLðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input
7: BUðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds and BU the upper bounds for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
the next nL elements the bounds for the general linear constraints (if any) and the next nN
elements the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower
bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a nonexistent upper bound (i.e.,
uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this may be changed by
the optional parameter Infinite Bound Size. To specify the jth constraint as an equality, set
BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

8: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate the vector c xð Þ of nonlinear constraint functions and (optionally) its

Jacobian ( ¼ @c

@x
) for a specified n-element vector x. If there are no nonlinear constraints (i.e.,

NCNLN ¼ 0), CONFUN will never be called by E05UCF and CONFUN may be the dummy
routine E04UDM. (E04UDM is included in the NAG Library.) If there are nonlinear constraints,
the first call to CONFUN will occur before the first call to OBJFUN.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCNLN, N, LDCJSL, NEEDC, X, C, CJSL,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, NCNLN, N, LDCJSL, NEEDC(NCNLN), NSTATE,
IUSER(*)

&

REAL (KIND=nag_wp) X(N), C(NCNLN), CJSL(LDCJSL,N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of CONFUN. Only
the following values need be assigned, for each value of i such that NEEDCðiÞ > 0:

MODE ¼ 0
CðiÞ.

MODE ¼ 1
All available elements in the ith row of CJSL.

MODE ¼ 2
CðiÞ and all available elements in the ith row of CJSL.

On exit: may be set to a negative value if you wish to abandon the solution to the
current local minimization problem. In this case E05UCF will move to the next local
minimization problem.

2: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.
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3: N – INTEGER Input

On entry: n, the number of variables.

4: LDCJSL – INTEGER Input

On entry: LDCJSL is the same value as LDCJAC in the call to E05UCF.

5: NEEDCðNCNLNÞ – INTEGER array Input

On entry: the indices of the elements of C and/or CJSL that must be evaluated by
CONFUN. If NEEDCðiÞ > 0, CðiÞ and/or the available elements of the ith row of CJSL
(see argument MODE) must be evaluated at x.

6: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the constraint functions and/or the
available elements of the constraint Jacobian are to be evaluated.

7: CðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: if NEEDCðkÞ > 0 and MODE ¼ 0 or 2, CðkÞ must contain the value of ck xð Þ.
The remaining elements of C, corresponding to the non-positive elements of NEEDC,
need not be set.

8: CJSLðLDCJSL;NÞ – REAL (KIND=nag_wp) array Input/Output

CJSL may be regarded as a two-dimensional ‘slice’ of the three-dimensional array
CJAC of E05UCF.

On en t r y : u n l e s s Derivative Level ¼ 2 o r 3 ( t h e d e f a u l t s e t t i n g i s
Derivative Level ¼ 3, the elements of CJSL are set to special values which enable
E05UCF to detect whether they are changed by CONFUN.

On exit: if NEEDCðkÞ > 0 and MODE ¼ 1 or 2, the kth row of CJSL must contain the
available elements of the vector rck given by

rck ¼
@ck
@x1

;
@ck
@x2

; . . . ;
@ck
@xn

� �T

;

where
@ck
@xj

is the partial derivative of the kth constraint with respect to the jth variable,

evaluated at the point x. See also the argument NSTATE. The remaining rows of CJSL,
corresponding to non-positive elements of NEEDC, need not be set.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3),
any constant elements may be assigned to CJSL one time only at the start of each local
optimization. An element of CJSL that is not subsequently assigned in CONFUN will
retain its initial value throughout the local optimization. Constant elements may be
loaded into CJSL during the first call to CONFUN for the local optimization (signalled
by the value NSTATE ¼ 1). The ability to preload constants is useful when many
Jacobian elements are identically zero, in which case CJSL may be initialized to zero
and nonzero elements may be reset by CONFUN.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
CJSLðk; jÞ is set to a constant value, it need not be reset in subsequent calls to
CONFUN, but the value CJSLðk; jÞ � XðjÞ must nonetheless be added to CðkÞ. For
example, if CJSLð1; 1Þ ¼ 2 and CJSLð1; 2Þ ¼ �5 then the term 2� Xð1Þ � 5� Xð2Þ
must be included in the definition of Cð1Þ.
It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of CJSL
are not treated as constant; they are estimated by finite differences, at nontrivial
expense. If you do not supply a value for the optional parameter Difference Interval,
an interval for each element of x is computed automatically at the start of each local
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optimization. The automatic procedure can usually identify constant elements of CJSL,
which are then computed once only by finite differences.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E05UCF is calling CONFUN for the first time on the
current local optimization problem. This argument setting allows you to save
computation time if certain data must be calculated only once.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN is called with the arguments IUSER and RUSER as supplied to E05UCF.
You should use the arrays IUSER and RUSER to supply information to CONFUN.

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05UCF is called. Arguments denoted as Input must not be changed
by this procedure.

CONFUN should be tested separately before being used in conjunction with E05UCF. See also
the description of the optional parameter Verify.

9: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the objective function F xð Þ and (optionally) its gradient g xð Þ ¼ @F
@x

for a

specified n-vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER,
RUSER)

&

INTEGER MODE, N, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), OBJF, OBJGRD(N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0
OBJF.

MODE ¼ 1
All available elements of OBJGRD.

MODE ¼ 2
OBJF and all available elements of OBJGRD.

On exit: may be set to a negative value if you wish to abandon the solution to the
current local minimization problem. In this case E05UCF will move to the next local
minimization problem.

2: N – INTEGER Input

On entry: n, the number of variables.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the objective function and/or all available
elements of its gradient are to be evaluated.
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4: OBJF – REAL (KIND=nag_wp) Output

On exit: if MODE ¼ 0 or 2, OBJF must be set to the value of the objective function at
x.

5: OBJGRDðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of OBJGRD are set to special values which enable E05UCF to
detect whether they are changed by OBJFUN.

On exit: if MODE ¼ 1 or 2, OBJGRD must return the available elements of the gradient
evaluated at x.

6: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E05UCF is calling OBJFUN for the first time on the
current local optimization problem. This argument setting allows you to save
computation time if certain data must be calculated only once.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E05UCF. You
should use the arrays IUSER and RUSER to supply information to OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E05UCF is called. Arguments denoted as Input must not be changed by this
procedure.

OBJFUN should be tested separately before being used in conjunction with E05UCF. See also
the description of the optional parameter Verify.

10: NPTS – INTEGER Input

On entry: the number of different starting points to be generated and used. The more points used,
the more likely that the best returned solution will be a global minimum.

Constraint: 1 � NB � NPTS.

11: XðLDX;NBÞ – REAL (KIND=nag_wp) array Output

On exit: Xðj; iÞ contains the final estimate of the ith solution, for j ¼ 1; 2; . . . ;N.

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which E05UCF
is called.

Constraint: LDX � N.

13: START – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

START must calculate the NPTS starting points to be used by the local optimizer. If you do not
wish to write a routine specific to your problem then E05UCZ may be used as the actual
argument. E05UCZ is supplied in the NAG Library and uses the NAG quasi-random number
generators to distribute starting points uniformly across the domain. It is affected by the value of
REPEAT.

The specification of START is:

SUBROUTINE START (NPTS, QUAS, N, REPEAT, BL, BU, IUSER, RUSER,
MODE)

&
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INTEGER NPTS, N, IUSER(*), MODE
REAL (KIND=nag_wp) QUAS(N,NPTS), BL(N), BU(N), RUSER(*)
LOGICAL REPEAT

1: NPTS – INTEGER Input

On entry: indicates the number of starting points.

2: QUASðN;NPTSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: all elements of QUAS will have been set to zero, so only nonzero values need
be set subsequently.

On exit: must contain the starting points for the NPTS local minimizations, i.e.,
QUASðj; iÞ must contain the jth component of the ith starting point.

3: N – INTEGER Input

On entry: the number of variables.

4: REPEAT – LOGICAL Input

On entry: specifies whether a repeatable or non-repeatable sequence of points are to be
generated.

5: BLðNÞ – REAL (KIND=nag_wp) array Input

On entry: the lower bounds on the variables. These may be used to ensure that the
starting points generated in some sense ‘cover’ the region, but there is no requirement
that a starting point be feasible.

6: BUðNÞ – REAL (KIND=nag_wp) array Input

On entry: the upper bounds on the variables. (See BL.)

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

START is called with the arguments IUSER and RUSER as supplied to E05UCF. You
should use the arrays IUSER and RUSER to supply information to START.

9: MODE – INTEGER Input/Output

On entry: MODE will contain 0.

On exit: if you set MODE to a negative value then E05UCF will terminate immediately
with IFAIL ¼ 9.

START must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E05UCF is called. Arguments denoted as Input must not be changed by this
procedure.

14: REPEAT – LOGICAL Input

On entry: is passed as an argument to START and may be used to initialize a random number
generator to a repeatable, or non-repeatable, sequence.

15: NB – INTEGER Input

On entry: the number of solutions to be returned. The routine saves up to NB local minima
ordered by increasing value of the final objective function. If the defining criterion for ‘best
solution’ is only that the value of the objective function is as small as possible then NB should
be set to 1. However, if you want to look at other solutions that may have desirable properties
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then setting NB > 1 will produce NB local minima, ordered by increasing value of their objective
functions at the minima.

Constraint: 1 � NB � NPTS.

16: OBJFðNBÞ – REAL (KIND=nag_wp) array Output

On exit: OBJFðiÞ contains the value of the objective function at the final iterate for the ith
solution.

17: OBJGRDðLDOBJD;NBÞ – REAL (KIND=nag_wp) array Output

On exit: OBJGRDðj; iÞ contains the gradient of the objective function for the ith solution at the
final iterate (or its finite difference approximation), for j ¼ 1; 2; . . . ;N.

18: LDOBJD – INTEGER Input

On entry: the first dimension of the array OBJGRD as declared in the (sub)program from which
E05UCF is called.

Constraint: LDOBJD � N.

19: ITERðNBÞ – INTEGER array Output

On exit: ITERðiÞ contains the number of major iterations performed to obtain the ith solution. If
less than NB solutions are returned then ITERðNBÞ contains the number of starting points that
have resulted in a converged solution. If this is close to NPTS then this might be indicative that
fewer than NB local minima exist.

20: CðLDC;NBÞ – REAL (KIND=nag_wp) array Output

On exit: if NCNLN > 0, Cðj; iÞ contains the value of the jth nonlinear constraint function cj at
the final iterate, for the ith solution, for j ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0, the array C is not referenced.

21: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which E05UCF
is called.

Constraint: LDC � NCNLN.

22: CJACðLDCJAC; SDCJAC;NBÞ – REAL (KIND=nag_wp) array Output

On exit: if NCNLN > 0, CJAC contains the Jacobian matrices of the nonlinear constraint
functions at the final iterate for each of the returned solutions, i.e., CJACðk; j; iÞ contains the
partial derivative of the kth constraint function with respect to the jth variable, for
k ¼ 1; 2; . . . ;NCNLN and j ¼ 1; 2; . . . ;N, for the ith solution. (See the discussion of argument
CJSL under CONFUN.)

If NCNLN ¼ 0, the array CJAC is not referenced.

23: LDCJAC – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
E05UCF is called.

Constraint: LDCJAC � NCNLN.

24: SDCJAC – INTEGER Input

On entry: the second dimension of the array CJAC as declared in the (sub)program from which
E05UCF is called.

Constraint: if NCNLN > 0, SDCJAC � N.
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25: RðLDR; SDR;NBÞ – REAL (KIND=nag_wp) array Output

On exit: for each of the NB solutions R will contain a form of the Hessian; for the ith returned
solution RðLDR; SDR; iÞ contains the Hessian that would be returned from the local minimizer. If
Hessian ¼ NO, the default, each RðLDR;SDR; iÞ contains the upper triangular Cholesky factor R
of QTHQ, an estimate of the transformed and reordered Hessian of the Lagrangian at x. If
Hessian ¼ YES, RðLDR;SDR; iÞ contains the upper triangular Cholesky factor R of H, the
approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.

26: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which E05UCF
is called.

Constraint: LDR � N.

27: SDR – INTEGER Input

On entry: the second dimension of the array R as declared in the (sub)program from which
E05UCF is called.

Constraint: SDR � N.

28: CLAMDAðLDCLDA;NBÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the QP multipliers from the last QP subproblem solved for the ith solution.
CLAMDAðj; iÞ should be non-negat ive i f ISTATEðj; iÞ ¼ 1 and non-posi t ive i f
ISTATEðj; iÞ ¼ 2.

29: LDCLDA – INTEGER Input

On entry: the first dimension of the array CLAMDA as declared in the (sub)program from which
E05UCF is called.

Constraint: LDCLDA � Nþ NCLINþ NCNLN.

30: ISTATEðLISTAT;NBÞ – INTEGER array Output

On exit: ISTATEðj; iÞ contains the status of the constraints in the QP working set for the ith
solution. The significance of each possible value of ISTATEðj; iÞ is as follows:

ISTATEðj; iÞ Meaning

0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP
working set.

1 This inequality constraint is included in the QP working set at its lower bound.

2 This inequality constraint is included in the QP working set at its upper bound.

3 This constraint is included in the QP working set as an equality. This value of
ISTATE can occur only when BLðjÞ ¼ BUðjÞ.

31: LISTAT – INTEGER Input

On entry: the first dimension of the array ISTATE as declared in the (sub)program from which
E05UCF is called.

Constraint: LISTAT � Nþ NCLINþ NCNLN.

32: IOPTSð740Þ – INTEGER array Communication Array
33: OPTSð485Þ – REAL (KIND=nag_wp) array Communication Array

The arrays IOPTS and OPTS must not be altered between calls to any of the routines E05UCF
and E05ZKF.
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34: IUSERð�Þ – INTEGER array User Workspace
35: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E05UCF, but are passed directly to CONFUN, OBJFUN and
START and should be used to pass information to these routines.

With care, you may also write information back into IUSER and RUSER. This might be useful,
for example, should there be a need to preserve the state of a random number generator.

With SMP-enabled versions of E05UCF the arrays IUSER and RUSER provided are classified as
OpenMP shared memory. Use of IUSER and RUSER has to take account of this in order to
preserve thread safety whenever information is written back to either of these arrays.

36: INFOðNBÞ – INTEGER array Output

On exit: INFOðiÞ contains one of 0, 1 or 6. Please see the description of each corresponding
value of IFAIL on exit from E04UCF/E04UCA for detailed explanations of these exit values. As
usual 0 denotes success.

If IFAIL ¼ 8 on exit, then not all NB solutions have been found, and INFOðNBÞ contains the
number of solutions actually found.

37: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E05UCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

An input value is incorrect. One or more of the following constraints are violated.

On entry, BLðiÞ > BUðiÞ: i ¼ valueh i.
Constraint: BLðiÞ � BUðiÞ, for all i.
On entry, LDA ¼ valueh i and NCLIN ¼ valueh i.
Constraint: LDA � NCLIN.

On entry, LDC ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDC � NCNLN.

On entry, LDCJAC ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDCJAC � NCNLN.

On entry, LDCLDA ¼ valueh i, N ¼ valueh i, NCLIN ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDCLDA � Nþ NCLINþ NCNLN.

On entry, LDOBJD ¼ valueh i and N ¼ valueh i.
Constraint: LDOBJD � N.
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On entry, LDR ¼ valueh i and N ¼ valueh i.
Constraint: LDR � N.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

On entry, LISTAT ¼ valueh i, N ¼ valueh i, NCLIN ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LISTAT � Nþ NCLINþ NCNLN.

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, NB ¼ valueh i and NPTS ¼ valueh i.
Constraint: 1 � NB � NPTS.

On entry, NCLIN ¼ valueh i.
Constraint: NCLIN � 0.

On entry, NCNLN ¼ valueh i.
Constraint: NCNLN � 0.

On entry, NCNLN > 0, SDCJAC ¼ valueh i and N ¼ valueh i.
Constraint: if NCNLN > 0, SDCJAC � N.

On entry, SDR ¼ valueh i and N ¼ valueh i.
Constraint: SDR � N.

IFAIL ¼ 2

No solution obtained. Linear constraints may be infeasible.

E05UCF has terminated without finding any solutions. The majority of calls to the local
optimizer have failed to find a feasible point for the linear constraints and bounds, which means
that either no feasible point exists for the given value of the optional parameter Linear
Feasibility Tolerance (default value

ffiffi
�
p

, where � is the machine precision), or no feasible point
could be found in the number of iterations specified by the optional parameter Minor Iteration
Limit. You should check that there are no constraint redundancies. If the data for the constraints
are accurate only to an absolute precision �, you should ensure that the value of the optional
parameter Linear Feasibility Tolerance is greater than �. For example, if all elements of AL are
of order unity and are accurate to only three decimal places, Linear Feasibility Tolerance should
be at least 10�3.

IFAIL ¼ 3

E05UCF has failed to find any solutions. The majority of local optimizations could not find a
feasible point for the nonlinear constraints. The problem may have no feasible solution. This
behaviour will occur if there is no feasible point for the nonlinear constraints. (However, there is
no general test that can determine whether a feasible point exists for a set of nonlinear
constraints.)

No solution obtained. Nonlinear constraints may be infeasible.

IFAIL ¼ 4

No solution obtained. Many potential solutions reach iteration limit.

The Iteration Limit may be changed using E05ZKF.

IFAIL ¼ 7

User-supplied derivatives probably wrong.

The user-supplied derivatives of the objective function and/or nonlinear constraints appear to be
incorrect.

Large errors were found in the derivatives of the objective function and/or nonlinear constraints.
This value of IFAIL will occur if the verification process indicated that at least one gradient or
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Jacobian element had no correct figures. You should refer to or enable the printed output to
determine which elements are suspected to be in error.

As a first-step, you should check that the code for the objective and constraint values is correct –
for example, by computing the function at a point where the correct value is known. However,
care should be taken that the chosen point fully tests the evaluation of the function. It is
remarkable how often the values x ¼ 0 or x ¼ 1 are used to test function evaluation procedures,
and how often the special properties of these numbers make the test meaningless.

Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed before each function evaluation.

Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the
function; since some compilers do not convert such constants to double precision, half the correct
figures may be lost by such a seemingly trivial error.

IFAIL ¼ 8

Only valueh i solutions obtained.

Not all NB solutions have been found. INFOðNBÞ contains the number actually found.

IFAIL ¼ 9

User terminated computation from START procedure: MODE ¼ valueh i.
If E05UCZ has been used as an actual argument for START then the message displayed, when
IFAIL ¼ 0 or �1 on entry to E05UCF, will have the following meaning:

998 failure to allocate space, a smaller value of NPTS should be tried.

997 an internal error has occurred. Please contact NAG for assistance.

IFAIL ¼ 10

Failed to initialize optional parameter arrays.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 on exit and the value of INFOðiÞ ¼ 0, then the vector returned in the array X for solution
i is an estimate of the solution to an accuracy of approximately Optimality Tolerance.
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8 Parallelism and Performance

E05UCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

E05UCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

You should be wary of requesting much intermediate output from the local optimizer, since large
volumes may be produced if NPTS is large.

The auxiliary routine E05UCZ makes use of the NAG quasi-random Sobol generator (G05YLF and
G05YMF). If E05UCZ is used as an argument for START (see the description of START) and
REPEAT ¼ :FALSE: then a randomly chosen value for ISKIP is used, otherwise ISKIP is set to 100. If
REPEAT is set to .FALSE. and the program is executed several times, each time producing the same
best answer, then there is increased probability that this answer is a global minimum. However, if it is
important that identical results be obtained on successive runs, then REPEAT should be set to .TRUE..

9.1 Description of the Printed Output

See Section 9.1 in E04UCF/E04UCA.

10 Example

This example finds the global minimum of the two-dimensional Schwefel function:

minimize
x2R2

f ¼
X2
j¼1

xjsin
ffiffiffiffiffiffiffiffi
xj
		 		q� �

subject to the constraints:

�10000 < 3:0x1 � 2:0x2 < 10:0;
�1:0 < x21 � x22 þ 3:0x1x2 < 500000:0;

�0:9 < cos x1=200ð Þ2 þ x2=100ð Þ
� �

< 0:9;

�500 � x1 � 500;
�500 � x2 � 500:

10.1 Program Text

! E05UCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e05ucfe_mod

! E05UCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
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Use nag_library, Only: nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Accessibility Statements ..

Private
Public :: mystart, schwefel_confun, &

schwefel_obj
Contains

Subroutine schwefel_obj(mode,n,x,objf,objgrd,nstate,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: objgrd(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cos, sin, sqrt, sum

! .. Executable Statements ..
If (nstate==1) Then

! This is the first call.
! Take any special action here if desired.

Continue
End If
If (mode==0 .Or. mode==2) Then

! Evaluate the objective function.
objf = sum(x(1:n)*sin(sqrt(abs(x(1:n)))))

End If

If (mode==1 .Or. mode==2) Then
! Calculate the gradient of the objective function.

objgrd(1:n) = sin(sqrt(abs(x(1:n)))) + 0.5_nag_wp*sqrt(abs(x(1:n)))* &
cos(sqrt(abs(x(1:n))))

End If

Return
End Subroutine schwefel_obj
Subroutine schwefel_confun(mode,ncnln,n,ldcjsl,needc,x,c,cjsl,nstate, &

iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcjsl, n, ncnln, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjsl(ldcjsl,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncnln)

! .. Local Scalars ..
Real (Kind=nag_wp) :: t1, t2
Integer :: k
Logical :: evalc, evalcjsl

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
If (nstate==1) Then

! This is the first call.
! Take any special action here if desired.

Continue
End If

! mode: what is required - constraints, derivatives, or both?
evalc = (mode==0 .Or. mode==2)
evalcjsl = (mode==1 .Or. mode==2)

loop_constraints: Do k = 1, ncnln

If (needc(k)<=0) Then
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Cycle loop_constraints
End If

If (evalc) Then
! Constraint values are required.

Select Case (k)
Case (1)

c(k) = x(1)**2 - x(2)**2 + 3.0_nag_wp*x(1)*x(2)
Case (2)

c(k) = cos((x(1)/200.0_nag_wp)**2+(x(2)/100.0_nag_wp))
Case Default

! This constraint is not coded (there are only two).
! Terminate.

mode = -1
Exit loop_constraints

End Select
End If

If (evalcjsl) Then
! Constraint derivatives are required.

Select Case (k)
Case (1)

cjsl(k,1) = 2.0_nag_wp*x(1) + 3.0_nag_wp*x(2)
cjsl(k,2) = -2.0_nag_wp*x(2) + 3.0_nag_wp*x(1)

Case (2)
t1 = x(1)/200.0_nag_wp
t2 = x(2)/100.0_nag_wp
cjsl(k,1) = -sin(t1**2+t2)*2.0_nag_wp*t1/200.0_nag_wp
cjsl(k,2) = -sin(t1**2+t2)/100.0_nag_wp

End Select
End If

End Do loop_constraints

Return
End Subroutine schwefel_confun
Subroutine mystart(npts,quas,n,repeat,bl,bu,iuser,ruser,mode)

! Sets the initial points.
! A typical user-defined start procedure.
! Only nonzero elements of quas need to be specified here.

! .. Use Statements ..
Use nag_library, Only: g05kgf, g05saf

! .. Scalar Arguments ..
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, npts
Logical, Intent (In) :: repeat

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: bl(n), bu(n)
Real (Kind=nag_wp), Intent (Inout) :: quas(n,npts), ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: genid, i, ifail, lstate, subid

! .. Local Arrays ..
Integer, Allocatable :: state(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
If (repeat) Then

! Generate a uniform spread of points between bl and bu.
Do i = 1, npts

quas(1:n,i) = bl(1:n) + (bu(1:n)-bl(1:n))*real(i-1,kind=nag_wp)/ &
real(npts-1,kind=nag_wp)

End Do
Else

! Generate a non-repeatable spread of points between bl and bu.
genid = 2
subid = 53
lstate = -1
Allocate (state(lstate))
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ifail = 0
Call g05kgf(genid,subid,state,lstate,ifail)
Deallocate (state)
Allocate (state(lstate))
ifail = 0
Call g05kgf(genid,subid,state,lstate,ifail)
Do i = 1, npts

ifail = 0
Call g05saf(n,state,quas(1,i),ifail)
quas(1:n,i) = bl(1:n) + (bu(1:n)-bl(1:n))*quas(1:n,i)

End Do
Deallocate (state)

End If
! Set mode negative to terminate execution for any reason.

mode = 0
Return

End Subroutine mystart
End Module e05ucfe_mod
Program e05ucfe

! E05UCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgemv, e05ucf, e05zkf, nag_wp
Use e05ucfe_mod, Only: mystart, schwefel_confun, schwefel_obj

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 2, nclin = 1, ncnln = 2, &

nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, j, k, l, lda, ldc, ldcjac, &
ldclda, ldobjd, ldr, ldx, liopts, &
listat, lopts, nb, npts, sda, &
sdcjac, sdr

Logical :: repeat
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), c(:,:), &
cjac(:,:,:), clamda(:,:), objf(:), &
objgrd(:,:), opts(:), r(:,:,:), &
work(:), x(:,:)

Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: info(:), iopts(:), istate(:,:), &

iter(:)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’E05UCF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) nb, npts
Read (nin,*) repeat

lda = nclin

If (nclin>0) Then
sda = n

Else
sda = 1

End If

ldx = n
ldobjd = n
ldc = ncnln
ldcjac = ncnln

If (ncnln>0) Then
sdcjac = n

Else
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sdcjac = 0
End If

ldr = n
sdr = n
ldclda = n + nclin + ncnln
listat = n + nclin + ncnln
liopts = 740
lopts = 485
Allocate (a(lda,sda),bl(n+nclin+ncnln),bu(n+nclin+ncnln),x(ldx,nb), &

objf(nb),objgrd(ldobjd,nb),iter(nb),c(ldc,nb),cjac(ldcjac,sdcjac,nb), &
r(ldr,sdr,nb),clamda(ldclda,nb),istate(listat,nb),iopts(liopts), &
opts(lopts),info(nb),work(nclin))

bl(1:n+nclin+ncnln) = (/-500.0_nag_wp,-500.0_nag_wp,-10000.0_nag_wp, &
-1.0_nag_wp,-0.9_nag_wp/)

bu(1:n+nclin+ncnln) = (/500.0_nag_wp,500.0_nag_wp,10.0_nag_wp, &
500000.0_nag_wp,0.9_nag_wp/)

a(1,1) = 3.0_nag_wp
a(1,2) = -2.0_nag_wp

! Initialize the solver.

ifail = 0
Call e05zkf(’Initialize = E05UCF’,iopts,liopts,opts,lopts,ifail)

! Solve the problem.

ifail = -1
Call e05ucf(n,nclin,ncnln,a,lda,bl,bu,schwefel_confun,schwefel_obj,npts, &

x,ldx,mystart,repeat,nb,objf,objgrd,ldobjd,iter,c,ldc,cjac,ldcjac, &
sdcjac,r,ldr,sdr,clamda,ldclda,istate,listat,iopts,opts,iuser,ruser, &
info,ifail)

Select Case (ifail)
Case (0)

l = nb
Case (8)

l = info(nb)
Write (nout,99992) iter(nb)

Case Default
Go To 100

End Select

loop: Do i = 1, l
Write (nout,99999) i
Write (nout,99998) info(i)
Write (nout,99997) ’Varbl’
Do j = 1, n

Write (nout,99996) ’V’, j, istate(j,i), x(j,i), clamda(j,i)
End Do
If (nclin>0) Then

Write (nout,99997) ’L Con’

! Below is a call to the level 2 BLAS routine DGEMV.
! This performs the matrix vector multiplication A*X
! (linear constraint values) and puts the result in
! the first NCLIN locations of WORK.

Call dgemv(’N’,nclin,n,1.0_nag_wp,a,lda,x(1,i),1,0.0_nag_wp,work,1)

Do k = n + 1, n + nclin
j = k - n
Write (nout,99996) ’L’, j, istate(k,i), work(j), clamda(k,i)

End Do
End If
If (ncnln>0) Then

Write (nout,99997) ’N Con’
Do k = n + nclin + 1, n + nclin + ncnln

j = k - n - nclin
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Write (nout,99996) ’N’, j, istate(k,i), c(j,i), clamda(k,i)
End Do

End If
Write (nout,99995) objf(i)
Write (nout,99994)
Write (nout,99993)(clamda(k,i),k=1,n+nclin+ncnln)

If (l==1) Then
Exit loop

End If

Write (nout,*)

Write (nout,*) &
’ ------------------------------------------------------ ’

End Do loop

100 Continue

99999 Format (/,1X,’Solution number’,I16)
99998 Format (/,1X,’Local minimization exited with code’,I5)
99997 Format (/,1X,A,2X,’Istate’,3X,’Value’,9X,’Lagr Mult’,/)
99996 Format (1X,A,2(1X,I3),4X,F12.4,2X,F12.4)
99995 Format (/,1X,’Final objective value = ’,1X,F12.4)
99994 Format (/,1X,’QP multipliers’)
99993 Format (1X,F12.4)
99992 Format (1X,I16,’ starting points converged’)

End Program e05ucfe

10.2 Program Data

E05UCF Example Program Data
2 1000 : NB, NPTS
T : REPEAT

10.3 Program Results

E05UCF Example Program Results

Solution number 1

Local minimization exited with code 0

Varbl Istate Value Lagr Mult

V 1 0 -394.1514 0.0000
V 2 0 -433.4910 0.0000

L Con Istate Value Lagr Mult

L 1 0 -315.4722 0.0000

N Con Istate Value Lagr Mult

N 1 0 480024.1075 0.0000
N 2 2 0.9000 -718.9448

Final objective value = -731.7064

QP multipliers
0.0000
0.0000
0.0000
0.0000

-718.9448

------------------------------------------------------

Solution number 2
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Local minimization exited with code 0

Varbl Istate Value Lagr Mult

V 1 0 -394.1504 0.0000
V 2 0 -433.4891 0.0000

L Con Istate Value Lagr Mult

L 1 0 -315.4731 0.0000

N Con Istate Value Lagr Mult

N 1 0 480021.5064 0.0000
N 2 2 0.9000 -718.9558

Final objective value = -731.7064

QP multipliers
0.0000
0.0000
0.0000
0.0000

-718.9558

------------------------------------------------------

11 Algorithmic Details

See Section 11 in E04UCF/E04UCA.

12 Optional Parameters

Several optional parameters in E05UCF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal arguments of E05UCF these optional parameters have
associated default values that are appropriate for most problems. Therefore you need only specify those
optional parameters whose values are to be different from their default values.

Optional parameters may be specified by calling E05ZKF before a call to E05UCF. Before calling
E05UCF, the optional parameter arrays IOPTS and OPTS must be initialized for use with E05UCF by
calling E05ZKF with OPTSTR set to ‘Initialize = e05ucf’.

All optional parameters not specified are set to their default values. Optional parameters specified are
unaltered by E05UCF (unless they define invalid values) and so remain in effect for subsequent calls to
E05UCF.

12.1 Description of the Optional Parameters

E05UCF supports two options that are distinct from those of E04UCF/E04UCA:

Punch Unit i Default ¼ 6

This option allows you to send information arising from an appropriate setting of Out_Level to be sent
to the Fortran unit number defined by Punch Unit. If you wish this file to be different to the standard
output unit (6) where other output is displayed then this file should be attached by calling X04ACF
prior to calling E05UCF.

Out Level i Default ¼ 0

This option defines the amount of extra information to be sent to the Fortran unit number defined by
Punch Unit. The possible choices for i are the following:
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i Meaning

0 No extra output.

1 Updated solutions only. This is useful during long runs to observe progress.

2 Successful start points only. This is useful to save the starting points that gave rise to the final
solution.

3 Both updated solutions and successful start points.

See Section 12 in E04UCF/E04UCA for details of the other options.

The Warm Start option of E04UCF/E04UCA is not a valid option for use with E05UCF.

13 Description of Monitoring Information

See Section 13 in E04UCF/E04UCA.
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NAG Library Routine Document

E05USF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05USF is designed to find the global minimum of an arbitrary smooth sum of squares function subject
to constraints (which may include simple bounds on the variables, linear constraints and smooth
nonlinear constraints) by generating a number of different starting points and performing a local search
from each using sequential quadratic programming.

2 Specification

SUBROUTINE E05USF (M, N, NCLIN, NCNLN, A, LDA, BL, BU, Y, CONFUN,
OBJFUN, NPTS, X, LDX, START, REPEAT1, NB, OBJF, F,
FJAC, LDFJAC, SDFJAC, ITER, C, LDC, CJAC, LDCJAC,
SDCJAC, CLAMDA, LDCLDA, ISTATE, LISTAT, IOPTS, OPTS,
IUSER, RUSER, INFO, IFAIL)

&
&
&
&

INTEGER M, N, NCLIN, NCNLN, LDA, NPTS, LDX, NB, LDFJAC,
SDFJAC, ITER(NB), LDC, LDCJAC, SDCJAC, LDCLDA,
ISTATE(LISTAT,*), LISTAT, IOPTS(740), IUSER(*),
INFO(NB), IFAIL

&
&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),
Y(M), X(LDX,*), OBJF(NB), F(M,*),
FJAC(LDFJAC,SDFJAC,*), C(LDC,*),
CJAC(LDCJAC,SDCJAC,*), CLAMDA(LDCLDA,*), OPTS(485),
RUSER(*)

&
&
&
&

LOGICAL REPEAT1
EXTERNAL CONFUN, OBJFUN, START

Before calling E05USF, the optional parameter arrays IOPTS and OPTS must be initialized for use with
E05USF by calling E05ZKF with OPTSTR set to ‘Initialize = e05usf’. Optional parameters may
subsequently be specified by calling E05ZKF before the call to E05USF.

3 Description

The local minimization method is E04USA. The problem is assumed to be stated in the following form:

minimize
x2Rn

F xð Þ ¼ 1
2

Xm
i¼1

yi � fi xð Þð Þ2 subject to l �
x
ALx
c xð Þ

0@ 1A � u; ð1Þ

where F xð Þ (the objective function) is a nonlinear function which can be represented as the sum of
squares of m subfunctions y1 � f1 xð Þð Þ; y2 � f2 xð Þð Þ; . . . ; ym � fm xð Þð Þ, the yi are constant, AL is an nL
by n constant linear constraint matrix, and c xð Þ is an nN element vector of nonlinear constraint
functions. (The matrix AL and the vector c xð Þ may be empty.) The objective function and the constraint
functions are assumed to be smooth, i.e., at least twice-continuously differentiable. (This routine will
usually solve (1) if any isolated discontinuities are away from the solution.)

E05USF solves a user-specified number of local optimization problems with different starting points.
You may specify the starting points via the subroutine START. If a random number generator is used to
generate the starting points then the argument REPEAT1 allows you to specify whether a repeatable set
of points are generated or whether different starting points are generated on different calls. The
resulting local minima are ordered and the best NB results returned in order of ascending values of the
resulting objective function values at the minima. Thus the value returned in position 1 will be the best
result obtained. If a sufficiently high number of different points are chosen then this is likely to be the
global minimum.
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4 References

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer–Verlag

5 Arguments

1: M – INTEGER Input

On entry: m, the number of subfunctions associated with F xð Þ.
Constraint: M > 0.

2: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

3: NCLIN – INTEGER Input

On entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.

4: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: NCNLN � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0, and at least 1
otherwise.

On entry: the matrix AL of general linear constraints in (1). That is, the ith row contains the
coefficients of the ith general linear constraint, for i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0, the array A is not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E05USF
is called.

Constraint: LDA � NCLIN.

7: BLðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input
8: BUðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds and BU the upper bounds for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
the next nL elements the bounds for the general linear constraints (if any) and the next nN
elements the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower
bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a nonexistent upper bound (i.e.,
uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this may be changed by
the optional parameter Infinite Bound Size. To specify the jth constraint as an equality, set
BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.
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9: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: the coefficients of the constant vector y of the objective function.

10: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate the vector c xð Þ of nonlinear constraint functions and (optionally) its

Jacobian ( ¼ @c

@x
) for a specified n-element vector x. If there are no nonlinear constraints (i.e.,

NCNLN ¼ 0), CONFUN will never be called by E05USF and CONFUN may be the dummy
routine E04UDM. (E04UDM is included in the NAG Library.) If there are nonlinear constraints,
the first call to CONFUN will occur before the first call to OBJFUN.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCNLN, N, LDCJSL, NEEDC, X, C, CJSL,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, NCNLN, N, LDCJSL, NEEDC(NCNLN), NSTATE,
IUSER(*)

&

REAL (KIND=nag_wp) X(N), C(NCNLN), CJSL(LDCJSL,*), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of CONFUN. Only
the following values need be assigned, for each value of i such that NEEDCðiÞ > 0:

MODE ¼ 0
CðiÞ, the ith nonlinear constraint.

MODE ¼ 1
All available elements in the ith row of CJSL.

MODE ¼ 2
CðiÞ and all available elements in the ith row of CJSL.

On exit: may be set to a negative value if you wish to abandon the solution to the
current local minimization problem. In this case E05USF will move to the next local
minimization problem.

2: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

3: N – INTEGER Input

On entry: n, the number of variables.

4: LDCJSL – INTEGER Input

On entry: LDCJSL is the first dimension of the array CJSL.

5: NEEDCðNCNLNÞ – INTEGER array Input

On entry: the indices of the elements of C and/or CJSL that must be evaluated by
CONFUN. If NEEDCðiÞ > 0, CðiÞ and/or the available elements of the ith row of CJSL
(see argument MODE) must be evaluated at x.

6: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the constraint functions and/or the
available elements of the constraint Jacobian are to be evaluated.
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7: CðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: if NEEDCðiÞ > 0 and MODE ¼ 0 or 2, CðiÞ must contain the value of ci xð Þ.
The remaining elements of C, corresponding to the non-positive elements of NEEDC,
need not be set.

8: CJSLðLDCJSL; �Þ – REAL (KIND=nag_wp) array Input/Output

CJSL may be regarded as a two-dimensional ‘slice’ of the three-dimensional array
CJAC of E05USF.

On entry: unless Derivative Level ¼ 2 or 3, the elements of CJSL are set to special
values which enable E05USF to detect whether they are changed by CONFUN.

On exit: if NEEDCðiÞ > 0 and MODE ¼ 1 or 2, the ith row of CJSL must contain the
available elements of the vector rci given by

rci ¼
@ci
@x1

;
@ci
@x2

; . . . ;
@ci
@xn

� �T

;

where
@ci
@xj

is the partial derivative of the ith constraint with respect to the jth variable,

evaluated at the point x. See also the argument NSTATE. The remaining rows of CJSL,
corresponding to non-positive elements of NEEDC, need not be set.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3;
note the default is Derivative Level ¼ 3), any constant elements may be assigned to
CJSL one time only at the start of each local optimization. An element of CJSL that is
not subsequently assigned in CONFUN will retain its initial value throughout the local
optimization. Constant elements may be loaded into CJSL during the first call to
CONFUN for the local optimization (signalled by the value NSTATE ¼ 1). The ability
to preload constants is useful when many Jacobian elements are identically zero, in
which case CJSL may be initialized to zero and nonzero elements may be reset by
CONFUN.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
CJSLði; jÞ is set to a constant value, it need not be reset in subsequent calls to
CONFUN, but the value CJSLði; jÞ � XðjÞ must nonetheless be added to CðiÞ. For
example, if CJSLð1; 1Þ ¼ 2 and CJSLð1; 2Þ ¼ �5 then the term 2� Xð1Þ � 5� Xð2Þ
must be included in the definition of Cð1Þ.
It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of CJSL
are not treated as constant; they are estimated by finite differences, at nontrivial
expense. If you do not supply a value for the optional parameter Difference Interval,
an interval for each element of x is computed automatically at the start of each local
optimization. The automatic procedure can usually identify constant elements of CJSL,
which are then computed once only by finite differences.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E05USF is calling CONFUN for the first time on the
current local optimization problem. This argument setting allows you to save
computation time if certain data must be read or calculated only once.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN is called with the arguments IUSER and RUSER as supplied to E05USF. You
should use the arrays IUSER and RUSER to supply information to CONFUN.

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05USF is called. Arguments denoted as Input must not be changed
by this procedure.
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CONFUN should be tested separately before being used in conjunction with E05USF. See also
the description of the optional parameter Verify.

11: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate either the ith element of the vector f xð Þ ¼ f1 xð Þ; f2 xð Þ; . . . ; fm xð Þð ÞT or

all m elements of f xð Þ and (optionally) its Jacobian ( ¼ @f
@x

) for a specified n-element vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, M, N, LDFJSL, NEEDFI, X, F, FJSL,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, M, N, LDFJSL, NEEDFI, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), F(M), FJSL(LDFJSL,*), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0 and NEEDFI ¼ i, where i > 0
FðiÞ.

MODE ¼ 0 and NEEDFI < 0
F.

MODE ¼ 1 and NEEDFI < 0
All available elements of FJSL.

MODE ¼ 2 and NEEDFI < 0
F and all available elements of FJSL.

On exit: may be set to a negative value if you wish to abandon the solution to the
current local minimization problem. In this case E05USF will move to the next local
minimization problem.

2: M – INTEGER Input

On entry: m, the number of subfunctions.

3: N – INTEGER Input

On entry: n, the number of variables.

4: LDFJSL – INTEGER Input

On entry: LDFJSL is the first dimension of the array FJSL.

5: NEEDFI – INTEGER Input

On entry: if NEEDFI ¼ i > 0, only the ith element of f xð Þ needs to be evaluated at x;
the remaining elements need not be set. This can result in significant computational
savings when m� n.

6: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the objective function and/or all available
elements of its gradient are to be evaluated.

7: FðMÞ – REAL (KIND=nag_wp) array Output

On exit: if MODE ¼ 0 and NEEDFI ¼ i > 0, FðiÞ must contain the value of fi at x.
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If MODE ¼ 0 or 2 and NEEDFI < 0, FðiÞ must contain the value of fi at x, for
i ¼ 1; 2; . . . ;m.

8: FJSLðLDFJSL; �Þ – REAL (KIND=nag_wp) array Input/Output

FJSL may be regarded as a two-dimensional ‘slice’ of the three-dimensional array
FJAC of E05USF.

On entry: is set to a special value.

On exit: if MODE ¼ 1 or 2 and NEEDFI < 0, the ith row of FJSL must contain the
available elements of the vector rfi given by

rfi ¼ @fi=@x1; @fi=@x2; . . . ; @fi=@xnð ÞT;

evaluated at the point x. See also the argument NSTATE.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E05USF is calling OBJFUN for the first time on the
current local optimization problem. This argument setting allows you to save
computation time if certain data must be read or calculated only once.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E05USF. You
should use the arrays IUSER and RUSER to supply information to OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E05USF is called. Arguments denoted as Input must not be changed by this
procedure.

OBJFUN should be tested separately before being used in conjunction with E05USF. See also the
description of the optional parameter Verify.

12: NPTS – INTEGER Input

On entry: the number of different starting points to be generated and used. The more points used,
the more likely that the best returned solution will be a global minimum.

Constraint: 1 � NB � NPTS.

13: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least NB.

On exit: Xðj; iÞ contains the final estimate of the ith solution, for j ¼ 1; 2; . . . ;N.

14: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which E05USF
is called.

Constraint: LDX � N.

15: START – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

START must calculate the NPTS starting points to be used by the local optimizer. If you do not
wish to write a routine specific to your problem then E05UCZ may be used as the actual
argument. E05UCZ is supplied in the NAG Library and uses the NAG quasi-random number
generators to distribute starting points uniformly across the domain. It is affected by the value of
REPEAT1.
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The specification of START is:

SUBROUTINE START (NPTS, QUAS, N, REPEAT1, BL, BU, IUSER, RUSER,
MODE)

&

INTEGER NPTS, N, IUSER(*), MODE
REAL (KIND=nag_wp) QUAS(N,NPTS), BL(N), BU(N), RUSER(*)
LOGICAL REPEAT1

1: NPTS – INTEGER Input

On entry: indicates the number of starting points.

2: QUASðN;NPTSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: all elements of QUAS will have been set to zero, so only nonzero values need
be set subsequently.

On exit: must contain the starting points for the NPTS local minimizations, i.e.,
QUASðj; iÞ must contain the jth component of the ith starting point.

3: N – INTEGER Input

On entry: the number of variables.

4: REPEAT1 – LOGICAL Input

On entry: specifies whether a repeatable or non-repeatable sequence of points are to be
generated.

5: BLðNÞ – REAL (KIND=nag_wp) array Input

On entry: the lower bounds on the variables. These may be used to ensure that the
starting points generated in some sense ‘cover’ the region, but there is no requirement
that a starting point be feasible.

6: BUðNÞ – REAL (KIND=nag_wp) array Input

On entry: the upper bounds on the variables. (See BL.)

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

START is called with the arguments IUSER and RUSER as supplied to E05USF. You
should use the arrays IUSER and RUSER to supply information to START.

9: MODE – INTEGER Input/Output

On entry: MODE will contain 0.

On exit: if you set MODE to a negative value then E05USF will terminate immediately
with IFAIL ¼ 9.

START must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E05USF is called. Arguments denoted as Input must not be changed by this
procedure.

16: REPEAT1 – LOGICAL Input

On entry: is passed as an argument to START and may be used to initialize a random number
generator to a repeatable, or non-repeatable, sequence. See Section 9 for more detail.
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17: NB – INTEGER Input

On entry: the number of solutions to be returned. The routine saves up to NB local minima
ordered by increasing value of the final objective function. If the defining criterion for ‘best
solution’ is only that the value of the objective function is as small as possible then NB should
be set to 1. However, if you want to look at other solutions that may have desirable properties
then setting NB > 1 will produce NB local minima, ordered by increasing value of their objective
functions at the minima.

Constraint: 1 � NB � NPTS.

18: OBJFðNBÞ – REAL (KIND=nag_wp) array Output

On exit: OBJFðiÞ contains the value of the objective function at the final iterate for the ith
solution.

19: FðM; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array F must be at least NB.

On exit: Fðj; iÞ contains the value of the jth function fj at the final iterate, for j ¼ 1; 2; . . . ;M, for
the ith solution, for i ¼ 1; 2; . . . ;NB.

20: FJACðLDFJAC; SDFJAC; �Þ – REAL (KIND=nag_wp) array Output

Note: the last dimension of the array FJAC must be at least NB.

On exit: for the ith returned solution, the Jacobian matrix of the functions f1; f2; . . . ; fm at the
final iterate, i.e., FJACðk; j; iÞ contains the partial derivative of the kth function with respect to
the jth variable, for k ¼ 1; 2; . . . ;M, j ¼ 1; 2; . . . ;N and i ¼ 1; 2; . . . ;NB. (See also the discussion
of argument FJSL under OBJFUN.)

21: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which
E05USF is called.

Constraint: LDFJAC � M.

22: SDFJAC – INTEGER Input

On entry: the second dimension of the array FJAC as declared in the (sub)program from which
E05USF is called.

Constraint: SDFJAC � N.

23: ITERðNBÞ – INTEGER array Output

On exit: ITERðiÞ contains the number of major iterations performed to obtain the ith solution. If
less than NB solutions are returned then ITERðNBÞ contains the number of starting points that
have resulted in a converged solution. If this is close to NPTS then this might be indicative that
fewer than NB local minima exist.

24: CðLDC; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array C must be at least NB.

On exit: if NCNLN > 0, Cðj; iÞ contains the value of the jth nonlinear constraint function cj at
the final iterate, for the ith solution, for j ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0, the array C is not referenced.
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25: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which E05USF
is called.

Constraint: LDC � NCNLN.

26: CJACðLDCJAC; SDCJAC; �Þ – REAL (KIND=nag_wp) array Output

Note: the last dimension of the array CJAC must be at least NB.

On exit: if NCNLN > 0, CJAC contains the Jacobian matrices of the nonlinear constraint
functions at the final iterate for each of the returned solutions, i.e., CJACðk; j; iÞ contains the
partial derivative of the kth constraint function with respect to the jth variable, for
k ¼ 1; 2; . . . ;NCNLN and j ¼ 1; 2; . . . ;N, for the ith solution. (See the discussion of argument
CJSL under CONFUN.)

If NCNLN ¼ 0, the array CJAC is not referenced.

27: LDCJAC – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
E05USF is called.

Constraint: LDCJAC � NCNLN.

28: SDCJAC – INTEGER Input

On entry: the second dimension of the array CJAC as declared in the (sub)program from which
E05USF is called.

Constraint: if NCNLN > 0, SDCJAC � N.

29: CLAMDAðLDCLDA; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CLAMDA must be at least NB.

On exit: the values of the QP multipliers from the last QP subproblem solved for the ith solution.
CLAMDAðj; iÞ should be non-negat ive i f ISTATEðj; iÞ ¼ 1 and non-posi t ive i f
ISTATEðj; iÞ ¼ 2.

30: LDCLDA – INTEGER Input

On entry: the first dimension of the array CLAMDA as declared in the (sub)program from which
E05USF is called.

Constraint: LDCLDA � Nþ NCLINþ NCNLN.

31: ISTATEðLISTAT; �Þ – INTEGER array Output

Note: the second dimension of the array ISTATE must be at least NB.

On exit: ISTATEðj; iÞ contains the status of the constraints in the QP working set for the ith
solution. The significance of each possible value of ISTATEðj; iÞ is as follows:

ISTATEðj; iÞ Meaning

0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP
working set.

1 This inequality constraint is included in the QP working set at its lower bound.

2 This inequality constraint is included in the QP working set at its upper bound.

3 This constraint is included in the QP working set as an equality. This value of
ISTATE can occur only when BLðjÞ ¼ BUðjÞ.
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32: LISTAT – INTEGER Input

On entry: the first dimension of the array ISTATE as declared in the (sub)program from which
E05USF is called.

Constraint: LISTAT � Nþ NCLINþ NCNLN.

33: IOPTSð740Þ – INTEGER array Communication Array
34: OPTSð485Þ – REAL (KIND=nag_wp) array Communication Array

The arrays IOPTS and OPTS must not be altered between calls to any of the routines E05USF
and E05ZKF.

35: IUSERð�Þ – INTEGER array User Workspace
36: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E05USF, but are passed directly to CONFUN, OBJFUN and
START and should be used to pass information to these routines.

With SMP-enabled versions of E05USF the arrays IUSER and RUSER provided are classified as
OpenMP shared memory. Use of IUSER and RUSER has to take account of this in order to
preserve thread safety whenever information is written back to either of these arrays.

37: INFOðNBÞ – INTEGER array Output

On exit: if IFAIL ¼ 0, INFOðiÞ does not contain an error value returned by E04USF/E04USA .

If IFAIL ¼ 8 on exit, then not all NB solutions have been found, and INFOðNBÞ contains the
number of solutions actually found.

38: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E05USF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

An input value is incorrect. One or more of the following requirements are violated:

On entry, BLðiÞ > BUðiÞ: i ¼ valueh i.
Constraint: BLðiÞ � BUðiÞ, for all i.
On entry, LDA ¼ valueh i and NCLIN ¼ valueh i.
Constraint: LDA � NCLIN.

On entry, LDC ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDC � NCNLN.

E05USF NAG Library Manual

E05USF.10 Mark 26



On entry, LDCJAC ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDCJAC � NCNLN.

On entry, LDCLDA ¼ valueh i, N ¼ valueh i, NCLIN ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDCLDA � Nþ NCLINþ NCNLN.

On entry, LDFJAC ¼ valueh i and M ¼ valueh i.
Constraint: LDFJAC � M.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

On entry, LISTAT ¼ valueh i, N ¼ valueh i, NCLIN ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LISTAT � Nþ NCLINþ NCNLN.

On entry, M ¼ valueh i.
Constraint: M > 0.

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, NB ¼ valueh i and NPTS ¼ valueh i.
Constraint: 1 � NB � NPTS.

On entry, NCLIN ¼ valueh i.
Constraint: NCLIN � 0.

On entry, NCNLN ¼ valueh i.
Constraint: NCNLN � 0.

On entry, NCNLN > 0, SDCJAC ¼ valueh i and N ¼ valueh i.
Constraint: if NCNLN > 0, SDCJAC � N.

On entry, SDFJAC ¼ valueh i and N ¼ valueh i.
Constraint: SDFJAC � N.

IFAIL ¼ 2

E05USF has terminated without finding any solutions. The majority of calls to the local optimizer
have failed to find a feasible point for the linear constraints and bounds, which means that either
no feasible point exists for the given value of the optional parameter Linear Feasibility
Tolerance (default value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
macheps
p

, where macheps is the machine precision), or no feasible
point could be found in the number of iterations specified by the optional parameter Minor
Iteration Limit. You should check that there are no constraint redundancies. If the data for the
constraints are accurate only to an absolute precision �, you should ensure that the value of the
optional parameter Linear Feasibility Tolerance is greater than �. For example, if all elements
of AL are of order unity and are accurate to only three decimal places, Linear Feasibility
Tolerance should be at least 10�3.

No solution obtained. Linear constraints may be infeasible.

IFAIL ¼ 3

E05USF has failed to find any solutions. The majority of local optimizations could not find a
feasible point for the nonlinear constraints. The problem may have no feasible solution. This
behaviour will occur if there is no feasible point for the nonlinear constraints. (However, there is
no general test that can determine whether a feasible point exists for a set of nonlinear
constraints.)

No solution obtained. Nonlinear constraints may be infeasible.

IFAIL ¼ 4

E05USF has failed to find any solutions. The majority of local optimizations have failed because
the limiting number of iterations have been reached.

No solution obtained. Many potential solutions reach iteration limit.
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IFAIL ¼ 7

The user-supplied derivatives of the objective function and/or nonlinear constraints appear to be
incorrect.

Large errors were found in the derivatives of the objective function and/or nonlinear constraints.
This value of IFAIL will occur if the verification process indicated that at least one gradient or
Jacobian element had no correct figures. You should refer to or enable the printed output to
determine which elements are suspected to be in error.

As a first-step, you should check that the code for the objective and constraint values is correct –
for example, by computing the function at a point where the correct value is known. However,
care should be taken that the chosen point fully tests the evaluation of the function. It is
remarkable how often the values x ¼ 0 or x ¼ 1 are used to test function evaluation procedures,
and how often the special properties of these numbers make the test meaningless.

Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed before each function evaluation.

Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the
function; since some compilers do not convert such constants to double precision, half the correct
figures may be lost by such a seemingly trivial error.

IFAIL ¼ 8

Only valueh i solutions obtained.

Not all NB solutions have been found. INFOðNBÞ contains the number actually found.

IFAIL ¼ 9

User terminated computation from START procedure: MODE ¼ valueh i.
If E05UCZ has been used as an actual argument for START then the message displayed, when
IFAIL ¼ 0 or �1 on entry to E05USF, will have the following meaning:

998 failure to allocate space, a smaller value of NPTS should be tried.

997 an internal error has occurred. Please contact NAG for assistance.

IFAIL ¼ 10

Failed to initialize optional parameter arrays.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

If IFAIL ¼ 0 on exit and the value of INFOðiÞ ¼ 0, then the vector returned in the array X for solution
i is an estimate of the solution to an accuracy of approximately Optimality Tolerance.

8 Parallelism and Performance

E05USF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

E05USF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

You should be wary of requesting much intermediate output from the local optimizer, since large
volumes may be produced if NPTS is large.

The auxiliary routine E05UCZ makes use of the NAG quasi-random Sobol generator (G05YLF and
G05YMF). If E05UCZ is used as the actual argument for START and REPEAT1 ¼ :FALSE: then a
randomly chosen value for ISKIP is used, otherwise ISKIP is set to 100. If REPEAT1 is set to .FALSE.
and the program is executed several times, each time producing the same best answer, then there is
increased probability that this answer is a global minimum. However, if it is important that identical
results be obtained on successive runs, then REPEAT1 should be set to .TRUE..

9.1 Description of the Printed Output

See Section 9.1 in E04USF/E04USA.

10 Example

This example is based on Problem 57 in Hock and Schittkowski (1981) and involves the minimization
of the sum of squares function

F xð Þ ¼ 1
2

X44
i¼1

yi � fi xð Þð Þ2;

where

fi xð Þ ¼ x1 þ 0:49� x1ð Þe�x2 ai�8ð Þ

and
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i yi ai i yi ai
1 0:49 8 23 0:41 22
2 0:49 8 24 0:40 22
3 0:48 10 25 0:42 24
4 0:47 10 26 0:40 24
5 0:48 10 27 0:40 24
6 0:47 10 28 0:41 26
7 0:46 12 29 0:40 26
8 0:46 12 30 0:41 26
9 0:45 12 31 0:41 28

10 0:43 12 32 0:40 28
11 0:45 14 33 0:40 30
12 0:43 14 34 0:40 30
13 0:43 14 35 0:38 30
14 0:44 16 36 0:41 32
15 0:43 16 37 0:40 32
16 0:43 16 38 0:40 34
17 0:46 18 39 0:41 36
18 0:45 18 40 0:38 36
19 0:42 20 41 0:40 38
20 0:42 20 42 0:40 38
21 0:43 20 43 0:39 40
22 0:41 22 44 0:39 42

subject to the bounds

x1 � 0:4
x2 � �4:0

to the general linear constraint

x1 þ x2 � 1:0

and to the nonlinear constraint

0:49x2 � x1x2 � 0:09:

The optimal solution (to five figures) is

x� ¼ 0:41995; 1:28484ð ÞT;

and F x�ð Þ ¼ 0:01423. The nonlinear constraint is active at the solution.

The document for E04UQF/E04UQA includes an example program to solve the same problem using
some of the optional parameters described in Section 12.

10.1 Program Text

! E05USF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e05usfe_mod

! E05USF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, objfun, start

Contains
Subroutine objfun(mode,m,n,ldfjsl,needfi,x,f,fjsl,nstate,iuser,ruser)

! Evaluates the subfunctions and their 1st derivatives.

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: a(44) = (/8._nag_wp,8._nag_wp, &

10._nag_wp,10._nag_wp,10._nag_wp, &
10._nag_wp,12._nag_wp,12._nag_wp, &
12._nag_wp,12._nag_wp,14._nag_wp, &
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14._nag_wp,14._nag_wp,16._nag_wp, &
16._nag_wp,16._nag_wp,18._nag_wp, &
18._nag_wp,20._nag_wp,20._nag_wp, &
20._nag_wp,22._nag_wp,22._nag_wp, &
22._nag_wp,24._nag_wp,24._nag_wp, &
24._nag_wp,26._nag_wp,26._nag_wp, &
26._nag_wp,28._nag_wp,28._nag_wp, &
30._nag_wp,30._nag_wp,30._nag_wp, &
32._nag_wp,32._nag_wp,34._nag_wp, &
36._nag_wp,36._nag_wp,38._nag_wp, &
38._nag_wp,40._nag_wp,42._nag_wp/)

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfjsl, m, n, needfi, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(m)
Real (Kind=nag_wp), Intent (Inout) :: fjsl(ldfjsl,*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: temp
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..

! This is a two-dimensional objective function.
! As an example of using the mode mechanism,
! terminate if any other problem size is supplied.

If (n/=2) Then
mode = -1

End If

If (nstate==1) Then
! This is the first call.
! Take any special action here if desired.

Continue
End If

If (mode==0 .And. needfi>0) Then
f(needfi) = x(1) + (0.49_nag_wp-x(1))*exp(-x(2)*(a(needfi)- &

8.0_nag_wp))
Else

Do i = 1, m
temp = exp(-x(2)*(a(i)-8._nag_wp))

If (mode==0 .Or. mode==2) Then
f(i) = x(1) + (0.49_nag_wp-x(1))*temp

End If

If (mode==1 .Or. mode==2) Then
fjsl(i,1) = 1._nag_wp - temp
fjsl(i,2) = -(0.49_nag_wp-x(1))*(a(i)-8._nag_wp)*temp

End If

End Do
End If

Return
End Subroutine objfun
Subroutine confun(mode,ncnln,n,ldcjsl,needc,x,c,cjsl,nstate,iuser,ruser)

! Evaluates the nonlinear constraints and their 1st derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcjsl, n, ncnln, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjsl(ldcjsl,*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
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Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncnln)

! .. Executable Statements ..

! This problem has only one constraint.
! As an example of using the mode mechanism,
! terminate if any other size is supplied.

If (ncnln/=1) Then
mode = -1

End If

If (nstate==1) Then

! First call to CONFUN. Set all Jacobian elements to zero.
! Note that this will only work when ’Derivative Level = 3’
! (the default; see Section 11.1 of the E04USA document).

cjsl(1:ncnln,1:n) = 0._nag_wp
End If

If (needc(1)>0) Then

If (mode==0 .Or. mode==2) Then
c(1) = -0.09_nag_wp - x(1)*x(2) + 0.49_nag_wp*x(2)

End If

If (mode==1 .Or. mode==2) Then
cjsl(1,1) = -x(2)
cjsl(1,2) = -x(1) + 0.49_nag_wp

End If

End If

Return
End Subroutine confun
Subroutine start(npts,quas,n,repeat1,bl,bu,iuser,ruser,mode)

! Sets the initial points.
! A typical user-defined start procedure.

! .. Use Statements ..
Use nag_library, Only: g05kgf, g05saf

! .. Scalar Arguments ..
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, npts
Logical, Intent (In) :: repeat1

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: bl(n), bu(n)
Real (Kind=nag_wp), Intent (Inout) :: quas(n,npts), ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: genid, i, ifail, lstate, subid

! .. Local Arrays ..
Integer, Allocatable :: state(:)

! .. Executable Statements ..
! quas is pre-assigned to zero.

If (repeat1) Then
quas(1,1) = 0.4_nag_wp
quas(2,2) = 1._nag_wp

Else
! Generate a non-repeatable spread of points between bl and bu.

genid = 2
subid = 53
lstate = -1
Allocate (state(lstate))
ifail = 0
Call g05kgf(genid,subid,state,lstate,ifail)
Deallocate (state)
Allocate (state(lstate))
ifail = 0
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Call g05kgf(genid,subid,state,lstate,ifail)
Do i = 1, npts

ifail = 0
Call g05saf(n,state,quas(1,i),ifail)
quas(1:n,i) = bl(1:n) + (bu(1:n)-bl(1:n))*quas(1:n,i)

End Do
Deallocate (state)

End If
! Set mode negative to terminate execution for any reason.

mode = 0
Return

End Subroutine start
End Module e05usfe_mod
Program e05usfe

! E05USF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgemv, e05usf, e05zkf, nag_wp
Use e05usfe_mod, Only: confun, objfun, start

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: liopts = 740, lopts = 485, m = 44, &

n = 2, nb = 1, nclin = 1, ncnln = 1, &
nin = 5, nout = 6, npts = 3

Integer, Parameter :: sdfjac = n
Integer, Parameter :: lda = nclin
Integer, Parameter :: ldc = ncnln
Integer, Parameter :: ldcjac = ncnln
Integer, Parameter :: ldclda = n + nclin + ncnln
Integer, Parameter :: ldfjac = m
Integer, Parameter :: ldx = n
Integer, Parameter :: listat = n + nclin + ncnln
Logical, Parameter :: repeat1 = .True.

! .. Local Scalars ..
Integer :: i, ifail, j, k, l, sda, sdcjac

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), c(:,:), &

cjac(:,:,:), clamda(:,:), f(:,:), &
fjac(:,:,:), work(:), x(:,:), y(:)

Real (Kind=nag_wp) :: objf(nb), opts(lopts), ruser(1)
Integer :: info(nb), iopts(liopts), iter(nb), &

iuser(1)
Integer, Allocatable :: istate(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E05USF Example Program Results’
Flush (nout)

! Skip heading in data file.
Read (nin,*)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

If (ncnln>0) Then
sdcjac = n

Else
sdcjac = 0

End If

Allocate (a(lda,sda),bl(n+nclin+ncnln),bu(n+nclin+ncnln),y(m),c(ldc,nb), &
cjac(ldcjac,sdcjac,nb),f(m,nb),fjac(ldfjac,sdfjac,nb), &
clamda(ldclda,nb),istate(listat,nb),x(ldx,nb),work(max(1,nclin)))

If (nclin>0) Then
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Read (nin,*)(a(i,1:sda),i=1,nclin)
End If

Read (nin,*) y(1:m)
Read (nin,*) bl(1:(n+nclin+ncnln))
Read (nin,*) bu(1:(n+nclin+ncnln))

! Initialize the solver.

ifail = 0
Call e05zkf(’Initialize = E05USF’,iopts,liopts,opts,lopts,ifail)

! Solve the problem.

ifail = -1
Call e05usf(m,n,nclin,ncnln,a,lda,bl,bu,y,confun,objfun,npts,x,ldx, &

start,repeat1,nb,objf,f,fjac,ldfjac,sdfjac,iter,c,ldc,cjac,ldcjac, &
sdcjac,clamda,ldclda,istate,listat,iopts,opts,iuser,ruser,info,ifail)

Select Case (ifail)
Case (0)

l = nb
Case (8)

l = info(nb)
Write (nout,99999) iter(nb)

Case Default
Go To 100

End Select

loop: Do i = 1, l
Write (nout,99998) i
Write (nout,99997) info(i)
Write (nout,99996) ’Varbl’
Do j = 1, n

Write (nout,99995) ’V’, j, istate(j,i), x(j,i), clamda(j,i)
End Do
If (nclin>0) Then

Write (nout,99996) ’L Con’

! Below is a call to the level 2 BLAS routine DGEMV.
! This performs the matrix vector multiplication A*X
! (linear constraint values) and puts the result in
! the first NCLIN locations of WORK.

Call dgemv(’N’,nclin,n,1.0_nag_wp,a,lda,x(1,i),1,0.0_nag_wp,work,1)

Do k = n + 1, n + nclin
j = k - n
Write (nout,99995) ’L’, j, istate(k,i), work(j), clamda(k,i)

End Do
End If
If (ncnln>0) Then

Write (nout,99996) ’N Con’
Do k = n + nclin + 1, n + nclin + ncnln

j = k - n - nclin
Write (nout,99995) ’N’, j, istate(k,i), c(j,i), clamda(k,i)

End Do
End If
Write (nout,99994) objf(i)
Write (nout,99993)
Write (nout,99992)(clamda(k,i),k=1,n+nclin+ncnln)

If (l==1) Then
Exit loop

End If

Write (nout,*)

Write (nout,*) &
’ ------------------------------------------------------ ’
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End Do loop

100 Continue

99999 Format (1X,I20,’starting points converged’)
99998 Format (/,1X,’Solution number’,I16)
99997 Format (/,1X,’Local minimization exited with code’,I5)
99996 Format (/,1X,A,2X,’Istate’,3X,’Value’,9X,’Lagr Mult’,/)
99995 Format (1X,A,2(1X,I3),4X,F12.4,2X,F12.4)
99994 Format (/,1X,’Final objective value = ’,1X,F12.4)
99993 Format (/,1X,’QP multipliers’)
99992 Format (1X,F12.4)

End Program e05usfe

10.2 Program Data

E05USF Example Program Data
1.0 1.0 :End of matrix A
0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45
0.43 0.43 0.44 0.43 0.43 0.46 0.45 0.42 0.42 0.43 0.41
0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41 0.40 0.40
0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39 :End of Y
0.4 -4.0 1.0 0.0 :End of BL
1.0E+25 1.0E+25 1.0E+25 1.0E+25 :End of BU

10.3 Program Results

E05USF Example Program Results

Solution number 1

Local minimization exited with code 0

Varbl Istate Value Lagr Mult

V 1 0 0.4200 0.0000
V 2 0 1.2848 0.0000

L Con Istate Value Lagr Mult

L 1 0 1.7048 0.0000

N Con Istate Value Lagr Mult

N 1 1 -0.0000 0.0334

Final objective value = 0.0142

QP multipliers
0.0000
0.0000
0.0000
0.0334

11 Algorithmic Details

See Section 11 in E04USF/E04USA.

12 Optional Parameters

Several optional parameters in E05USF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal arguments of E05USF these optional parameters have
associated default values that are appropriate for most problems. Therefore you need only specify those
optional parameters whose values are to be different from their default values.
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Optional parameters may be specified by calling E05ZKF before a call to E05USF. Before calling
E05USF, the optional parameter arrays IOPTS and OPTS must be initialized for use with E05USF by
calling E05ZKF with OPTSTR set to ‘Initialize = e05usf’.

All optional parameters not specified are set to their default values. Optional parameters specified are
unaltered by E05USF (unless they define invalid values) and so remain in effect for subsequent calls to
E05USF.

See Section 12 in E04USF/E04USA for full details.

The Warm Start option of E04USF/E04USA is not a valid option for use with E05USF.

E05USF supports two options that are distinct from those of E04USF/E04USA:

Punch Unit i Default ¼ 6

This option allows you to send information arising from an appropriate setting of Out_Level to be sent
to the Fortran unit number defined by Punch Unit. If you wish this file to be different to the standard
output unit (6) where other output is displayed then this file should be attached by calling X04ACF
prior to calling E05USF.

Out Level i Default ¼ 0

This option defines the amount of extra information to be sent to the Fortran unit number defined by
Punch Unit. The possible choices for i are the following:

i Meaning

0 No extra output.

1 Updated solutions only. This is useful during long runs to observe progress.

2 Successful start points only. This is useful to save the starting points that gave rise to the final
solution.

3 Both updated solutions and successful start points.

13 Description of Monitoring Information

See Section 13 in E04USF/E04USA.
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NAG Library Routine Document

E05ZKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05ZKF either initializes or resets the optional parameter arrays or sets a single optional parameter for
supported problem solving routines in Chapter E05. The following routines are supported:

E05SAF,

E05SBF,

E05UCF,

E05USF.

2 Specification

SUBROUTINE E05ZKF (OPTSTR, IOPTS, LIOPTS, OPTS, LOPTS, IFAIL)

INTEGER IOPTS(LIOPTS), LIOPTS, LOPTS, IFAIL
REAL (KIND=nag_wp) OPTS(LOPTS)
CHARACTER(*) OPTSTR

3 Description

E05ZKF has three purposes: to initialize optional parameter arrays; to reset all optional parameters to
their default values; or to set a single optional parameter to a user-supplied value.

Optional parameters and their values are, in general, presented as a character string, OPTSTR, of the
form ‘option ¼ optval’; alphabetic characters can be supplied in either upper or lower case. Both
option and optval may consist of one or more tokens separated by white space. The tokens that
comprise optval will normally be either an integer, real or character value as defined in the description
of the specific optional argument. In addition all optional parameters can take an optval DEFAULT
which resets the optional parameter to its default value.

It is imperative that optional parameter arrays are initialized before any options are set, before the
relevant problem solving routine is called and before any options are queried using E05ZLF. To
initialize the optional parameter arrays IOPTS and OPTS for a specific problem solving routine, the
option Initialize is used with optval identifying the problem solving routine to be called, via its short
name. For example, to initialize optional parameter arrays to be passed to E05SAF, E05ZKF is called as
follows:

call E05ZKF(’Initialize = e05saf’, IOPTS, LIOPTS, OPTS, LOPTS, IFAIL)

Information relating to available option names and their corresponding valid values is given in Section
12 in E05SAF, E05SBF, E05UCF and E05USF.

4 References

None.

E05 – Global Optimization of a Function E05ZKF

Mark 26 E05ZKF.1



5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option to be set.

Initialize ¼ routine name
Initialize the optional parameter arrays IOPTS and OPTS for use with routine
routine name, where routine name is the short name associated with the routine of
interest.

Defaults
Resets all options to their default values.

option ¼ optval
See Section 12 in E05SAF, E05SBF, E05UCF and E05USF for details of valid values for
option and optval. The equals sign (¼) delimiter must be used to separate the option from
its optval value.

OPTSTR is case insensitive. Each token in the option and optval component must be separated
by at least one space.

2: IOPTSðLIOPTSÞ – INTEGER array Communication Array

On entry: optional parameter array.

If OPTSTR has the form Initialize ¼ routine name, the contents of IOPTS need not be set.

Otherwise, IOPTS must not have been altered since the last call to E05ZKF, E05ZLF or the
selected problem solving routine.

On exit: dependent on the contents of OPTSTR, either an initialized, reset or updated version of
the optional parameter array.

3: LIOPTS – INTEGER Input

On entry: the length of the array IOPTS.

Constraint: unless otherwise stated in the documentation for a specific, supported, problem
solving routine, LIOPTS � 100.

4: OPTSðLOPTSÞ – REAL (KIND=nag_wp) array Communication Array

On entry: optional parameter array.

If OPTSTR has the form Initialize ¼ routine name, the contents of OPTS need not be set.

Otherwise, OPTS must not have been altered since the last call to E05ZKF, E05ZLF or the
selected problem solving routine.

On exit: dependent on the contents of OPTSTR, either an initialized, reset or updated version of
the optional parameter array.

5: LOPTS – INTEGER Input

On entry: the length of the array OPTS.

Constraint: unless otherwise stated in the documentation for a specific, supported, problem
solving routine, LOPTS � 100.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, the optional parameter in OPTSTR was not recognized: OPTSTR ¼ valueh i.

IFAIL ¼ 12

On entry, the expected delimiter ‘¼’ was not found in OPTSTR: OPTSTR ¼ valueh i.

IFAIL ¼ 13

On entry, could not convert the specified optval to an integer: OPTSTR ¼ valueh i.
On entry, could not convert the specified optval to a real: OPTSTR ¼ valueh i.
The option in OPTSTR is associated with a numerical value. However, the optval, valueh i,
present in OPTSTR could not be fully interpreted.

IFAIL ¼ 14

On entry, the option in OPTSTR has been detected as Initialize, however the optval, valueh i,
associated with OPTSTR has not been recognized as a valid routine name.

IFAIL ¼ 15

On entry, the optval supplied for the integer optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 16

On entry, the optval supplied for the real optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 17

On entry, the optional parameter in OPTSTR was not recognized: OPTSTR ¼ valueh i.
On entry, the optval supplied for the character optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 21

On entry, either the option arrays have not been initialized or they have been corrupted.

On entry, the optional parameter in OPTSTR was not recognized: OPTSTR ¼ valueh i.

IFAIL ¼ 31

On entry, LIOPTS ¼ valueh i.
Constraint: LIOPTS � valueh i.
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IFAIL ¼ 51

On entry, LOPTS ¼ valueh i.
Constraint: LOPTS � valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E05ZKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Some options have default values which are problem dependent. For example the option Maximum
Iterations Completed for E05SAF has the default value 1000� NDIM. If options such as this are set,
they may only be set to constant values. If such an option is reset to its DEFAULT value its dependence
on the specific problem will be restored.

10 Example

See the example programs associated with the problem solving routine you wish to use for a
demonstration of how to use E05ZKF to initialize option arrays and set options.
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NAG Library Routine Document

E05ZLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05ZLF is used to query the value of optional parameters available to supported problem solving
routines in Chapter E05. Currently the following routines are supported:

E05SAF,

E05SBF,

E05UCF,

E05USF.

2 Specification

SUBROUTINE E05ZLF (OPTSTR, IVALUE, RVALUE, CVALUE, OPTYPE, IOPTS, OPTS,
IFAIL)

&

INTEGER IVALUE, OPTYPE, IOPTS(*), IFAIL
REAL (KIND=nag_wp) RVALUE, OPTS(*)
CHARACTER(*) OPTSTR, CVALUE

3 Description

E05ZLF is used to query the current values of options. It is necessary to initialize optional parameter
arrays using E05ZKF before any options are queried.

E05ZLF will normally return either an integer, real or character value dependent upon the type
associated with the optional parameter being queried. Some real and integer options also return
additional information in CVALUE. Whether the option queried is of integer, real or character type, and
whether additional information is returned in CVALUE, is indicated by the returned value of OPTYPE.

Information on optional parameter names and whether these options are real, integer or character can be
found in Section 12 in E05SAF, E05SBF, E05UCF and E05USF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option whose current value is required. See Section 12 in
E05SAF and E05SBF for information on valid options. In addition, the following is a valid
option:

Identify
E05ZLF returns in CVALUE the routine name supplied to E05ZKF when the optional
parameter arrays IOPTS and OPTS were initialized.

2: IVALUE – INTEGER Output

On exit: if the optional parameter supplied in OPTSTR is an integer valued argument, IVALUE
will hold its current value.
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3: RVALUE – REAL (KIND=nag_wp) Output

On exit: if the optional parameter supplied in OPTSTR is a real valued argument, RVALUE will
hold its current value.

4: CVALUE – CHARACTER(*) Output

Note: the string returned in CVALUE will never exceed 40 characters in length.

On exit: if the optional parameter supplied in OPTSTR is a character valued argument, CVALUE
will hold its current value. CVALUE will also contain additional information for some integer
and real valued arguments, as indicated by OPTYPE.

5: OPTYPE – INTEGER Output

On exit: indicates whether the optional parameter supplied in OPTSTR is an integer, real or
character valued argument and hence which of IVALUE, RVALUE or CVALUE holds the current
value.

OPTYPE ¼ 1
OPTSTR is an integer valued optional parameter, its current value has been returned in
IVALUE.

OPTYPE ¼ 2
OPTSTR is a real valued optional parameter, its current value has been returned in
RVALUE.

OPTYPE ¼ 3
OPTSTR is a character valued optional parameter, its current value has been returned in
CVALUE.

OPTYPE ¼ 4
OPTSTR is an integer valued optional parameter, its current value has been returned in
IVALUE. Additional information has been returned in CVALUE.

OPTYPE ¼ 5
OPTSTR is a real valued optional parameter, its current value has been returned in
RVALUE. Additional information has been returned in CVALUE.

6: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to E05ZKF.

7: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to E05ZKF.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, the option in OPTSTR has not been recognized.

IFAIL ¼ 41

On entry, OPTSTR indicates a character optional parameter, but CVALUE is too short to hold the
stored value. The returned value will be truncated.

IFAIL ¼ 61

The arrays IOPTS and OPTS have either not been initialized, have become corrupted, or are not
compatible with this option setting routine.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E05ZLF is not threaded in any implementation.

9 Further Comments

Some options have default values which are problem dependent. For example the option Maximum
Iterations Completed for E05SAF has the default value 1000� NDIM. If options such as this are
queried before being set, or before the problem solving routine has been called, they will return
misleading information in IVALUE or RVALUE. In some cases, the value of CVALUE will be set to
DEFAULT to indicate that the real or integer valued optional parameter supplied in OPTSTR is at its
default value.

10 Example

See the example programs associated with the problem solving routine you wish to use for a
demonstration of how to use E05ZLF to query options.
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1 Introduction

The F Chapters of the Library are concerned with linear algebra and cover a large area. This general
introduction is intended to help you decide which particular F Chapter is relevant to your problem. The
following Chapters are currently available:

Chapter F01 – Matrix Operations, Including Inversion

Chapter F02 – Eigenvalues and Eigenvectors

Chapter F03 – Determinants

Chapter F04 – Simultaneous Linear Equations

Chapter F05 – Orthogonalization

Chapter F06 – Linear Algebra Support Routines

Chapter F07 – Linear Equations (LAPACK)

Chapter F08 – Least Squares and Eigenvalue Problems (LAPACK)

Chapter F11 – Large Scale Linear Systems

Chapter F12 – Large Scale Eigenproblems

Chapter F16 – Further Linear Algebra Support Routines

The principal problem areas addressed by the above Chapters are

Systems of linear equations

Linear least squares problems

Eigenvalue and singular value problems

The solution of these problems usually involves several matrix operations, such as a matrix
factorization followed by the solution of the factorized form, and the routines for these operations
themselves utilize lower level support routines, typically from Chapters F06 and F16. You will not
normally need to be concerned with these support routines.

NAG has been involved in a project, called LAPACK (see Anderson et al. (1999)), to develop a linear
algebra package for modern high-performance computers, and the routines developed within that project
are incorporated into the Library as Chapters F07 and F08. It should be emphasized that, while the
LAPACK project has been concerned with high-performance computers, the routines do not
compromise efficiency on conventional machines.

Chapters F11 and F12 contain routines for solving large scale problems, but a few earlier routines are
still located in Chapters F01, F02 and F04.

For background information on numerical algorithms for the solution of linear algebra problems see
Golub and Van Loan (1996). For the three main problem areas listed above you generally have the
choice of selecting a single routine to solve the problem, a so-called Black Box routine, or selecting
more than one routine to solve the problem, such as a factorization routine followed by a solve routine,
so-called General Purpose routines. The following sections indicate which chapters are relevant to
particular problem areas.

2 Linear Equations

The Black Box routines for solving linear equations of the form

Ax ¼ b and AX ¼ B;

where A is an n by n real or complex nonsingular matrix, are to be found in Chapters F04 and F07.
Such equations can also be solved by selecting a general purpose factorization routine from Chapter
F01 or Chapter F03 and combining them with a solve routine in Chapter F04, or by selecting a
factorization and a solve routine from Chapter F07. For large sparse problems, routines from Chapter
F11 should be used. In addition there are routines to estimate condition numbers in Chapters F04 and
F07, and routines to give error estimates in Chapters F02, F04 and F07.
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There are routines to cater for a variety of types of matrix, including general, symmetric or Hermitian,
symmetric or Hermitian positive definite, banded, skyline and sparse matrices.

In order to select the appropriate routine, you are recommended to consult the F04 Chapter Introduction
in the first instance, although the decision trees will often in fact point to a routine in Chapters F07 or
F11.

3 Linear Least Squares

The Black Box routines for solving linear least squares problems of the form

minimize
x

rTr; where r ¼ b�Ax;

and A is an m by n, possibly rank deficient, matrix, are to be found in Chapters F04 and F08. Such
problems can also be solved by selecting one or more general purpose factorization routines from
Chapters F02 or F08 and combining them with a solve routine in Chapter F04, which also contains a
routine to compute covariance matrices, or Chapter F08. Linear least squares problems can also be
solved by routines in the statistical Chapter G02.

In order to select the appropriate routine, you are recommended to consult the F04 Chapter Introduction
in the first instance, but if you have additional statistical requirements you may prefer to consult
Section 2.2 in the G02 Chapter Introduction.

Chapter F08 also contains routines for solving linear equality constrained least squares problems, and
the general Gauss–Markov linear model problem. Chapter E04 contains a routine to solve general
linearly constrained linear least squares problems.

4 Eigenvalue Problems and Singular Value Problems

The Black Box routines for solving standard matrix eigenvalue problems of the form

Ax ¼ �x;

where A is an n by n real or complex matrix, and generalized matrix eigenvalue problems of the form

Ax ¼ �Bx and ABx ¼ �x;

where B is also an n by n matrix, are to be found in Chapters F02, F08 and F12. These eigenvalue
problems can also be solved by a combination of General Purpose routines (which are mostly in
Chapter F08, but a few are in Chapter F02).

There are routines to cater for various types of matrices, including general, symmetric or Hermitian, and
banded and sparse matrices.

Similarly, the Black Box routines for finding singular values and/or singular vectors of an m by n real
or complex matrix A are to be found in Chapters F02 and F08, and such problems may also be solved
by routines from Chapter F12, and by combining routines from Chapter F08.

In order to select the appropriate routine, you are recommended to consult Chapters F02 and F08 in the
first instance.

5 Inversion and Determinants

Routines for matrix inversion are to be found in Chapters F01 and F07. You are recommended to
consult Chapter F01 in the first instance, although the decision tree will often in fact point to a routine
in Chapter F07. It should be noted that you are strongly encouraged not to use matrix inversion routines
for the solution of linear equations, since these can be solved more efficiently and accurately using
routines directed specifically at such problems. Indeed many problems, which superficially appear to be
matrix inversion, can be posed as the solution of a system of linear equations and this is almost
invariably preferable.

Routines to compute determinants of matrices are to be found in Chapter F03. You are recommended to
consult Chapter F03 in the first instance.
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6 Matrix Operations

Routines for various sorts of matrix operation are to be found in Chapter F01, including matrix
transposition, addition and multiplication, and conversion between different matrix representation
storage formats. Facilities for matrix manipulation can also be found in Chapter F06 (see next section).

7 Support Routines

Chapters F06 and F16 contain contain a variety of routines to perform elementary algebraic operations
involving scalars, vectors and matrices, such as setting up a plane rotation, performing a dot product
and computing a matrix norm. Chapters F06 and F16 contain routines that meet the specification of the
BLAS (Basic Linear Algebra Subprograms) (see Lawson et al. (1979), Dodson et al. (1991), Dongarra
et al. (1988), Dongarra et al. (1990) and Blackford et al. (2002)). The routines in these chapters will not
normally be required by the general user, but are intended for use by those who require to build
specialist linear algebra modules. These routines, especially the BLAS, are extensively used by other
NAG Library routines.
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NAG Library Chapter Contents

F01 – Matrix Operations, Including Inversion

F01 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

F01ABF 1 nagf_matop_real_symm_posdef_inv
Inverse of real symmetric positive definite matrix using iterative
refinement

F01ADF 2 nagf_matop_real_symm_posdef_inv_noref
Inverse of real symmetric positive definite matrix

F01BLF 5 nagf_matop_real_gen_pseudinv
Pseudo-inverse and rank of real m by n matrix m � nð Þ

F01BRF 7 nagf_matop_real_gen_sparse_lu
LU factorization of real sparse matrix

F01BSF 7 nagf_matop_real_gen_sparse_lu_reuse
LU factorization of real sparse matrix with known sparsity
pattern

F01BUF 7 nagf_matop_real_symm_posdef_fac
ULDLTUT factorization of real symmetric positive definite band
matrix

F01BVF 7 nagf_matop_real_symm_posdef_geneig
Reduction to standard form, generalized real symmetric-definite
banded eigenproblem

F01CKF 2 nagf_matop_real_gen_matmul
Multiplication of real matrices

F01CRF 7 nagf_matop_real_gen_trans_inplace
Transposition of a real matrix

F01CTF 14 nagf_matop_real_addsub
Sum or difference of two real matrices, optional scaling and
transposition

F01CWF 14 nagf_matop_complex_addsub
Sum or difference of two complex matrices, optional scaling and
transposition

F01ECF 22 nagf_matop_real_gen_matrix_exp
Real matrix exponential

F01EDF 23 nagf_matop_real_symm_matrix_exp
Real symmetric matrix exponential

F01EFF 23 nagf_matop_real_symm_matrix_fun
Function of a real symmetric matrix

F01EJF 24 nagf_matop_real_gen_matrix_log
Real matrix logarithm

F01EKF 24 nagf_matop_real_gen_matrix_fun_std
Exponential, sine, cosine, sinh or cosh of a real matrix (Schur–
Parlett algorithm)

F01ELF 24 nagf_matop_real_gen_matrix_fun_num
Function of a real matrix (using numerical differentiation)

F01EMF 24 nagf_matop_real_gen_matrix_fun_usd
Function of a real matrix (using user-supplied derivatives)

F01ENF 25 nagf_matop_real_gen_matrix_sqrt
Real matrix square root

F01EPF 25 nagf_matop_real_tri_matrix_sqrt
Real upper quasi-triangular matrix square root
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F01EQF 25 nagf_matop_real_gen_matrix_pow
General power of a real matrix

F01FCF 23 nagf_matop_complex_gen_matrix_exp
Complex matrix exponential

F01FDF 23 nagf_matop_complex_herm_matrix_exp
Complex Hermitian matrix exponential

F01FFF 23 nagf_matop_complex_herm_matrix_fun
Function of a complex Hermitian matrix

F01FJF 24 nagf_matop_complex_gen_matrix_log
Complex matrix logarithm

F01FKF 24 nagf_matop_complex_gen_matrix_fun_std
Exponential, sine, cosine, sinh or cosh of a complex matrix
(Schur–Parlett algorithm)

F01FLF 24 nagf_matop_complex_gen_matrix_fun_num
Function of a complex matrix (using numerical differentiation)

F01FMF 24 nagf_matop_complex_gen_matrix_fun_usd
Function of a complex matrix (using user-supplied derivatives)

F01FNF 25 nagf_matop_complex_gen_matrix_sqrt
Complex matrix square root

F01FPF 25 nagf_matop_complex_tri_matrix_sqrt
Complex upper triangular matrix square root

F01FQF 25 nagf_matop_complex_gen_matrix_pow
General power of a complex matrix

F01GAF 24 nagf_matop_real_gen_matrix_actexp
Action of a real matrix exponential on a real matrix

F01GBF 24 nagf_matop_real_gen_matrix_actexp_rcomm
Action of a real matrix exponential on a real matrix (reverse
communication)

F01HAF 24 nagf_matop_complex_gen_matrix_actexp
Action of a complex matrix exponential on a complex matrix

F01HBF 24 nagf_matop_complex_gen_matrix_actexp_rcomm
Action of a complex matrix exponential on a complex matrix
(reverse communication)

F01JAF 24 nagf_matop_real_gen_matrix_cond_std
Condition number for the exponential, logarithm, sine, cosine,
sinh or cosh of a real matrix

F01JBF 24 nagf_matop_real_gen_matrix_cond_num
Condition number for a function of a real matrix (using
numerical differentiation)

F01JCF 24 nagf_matop_real_gen_matrix_cond_usd
Condition number for a function of a real matrix (using user-
supplied derivatives)

F01JDF 25 nagf_matop_real_gen_matrix_cond_sqrt
Condition number for square root of real matrix

F01JEF 25 nagf_matop_real_gen_matrix_cond_pow
Condition number for real matrix power

F01JFF 25 nagf_matop_real_gen_matrix_frcht_pow
Fréchet derivative of real matrix power

F01JGF 25 nagf_matop_real_gen_matrix_cond_exp
Condition number for real matrix exponential

F01JHF 25 nagf_matop_real_gen_matrix_frcht_exp
Fréchet derivative of real matrix exponential

F01JJF 25 nagf_matop_real_gen_matrix_cond_log
Condition number for real matrix logarithm

F01JKF 25 nagf_matop_real_gen_matrix_frcht_log
Fréchet derivative of real matrix logarithm

F01KAF 24 nagf_matop_complex_gen_matrix_cond_std
Condition number for the exponential, logarithm, sine, cosine,
sinh or cosh of a complex matrix
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F01KBF 24 nagf_matop_complex_gen_matrix_cond_num
Condition number for a function of a complex matrix (using
numerical differentiation)

F01KCF 24 nagf_matop_complex_gen_matrix_cond_usd
Condition number for a function of a complex matrix (using
user-supplied derivatives)

F01KDF 25 nagf_matop_complex_gen_matrix_cond_sqrt
Condition number for square root of complex matrix

F01KEF 25 nagf_matop_complex_gen_matrix_cond_pow
Condition number for complex matrix power

F01KFF 25 nagf_matop_complex_gen_matrix_frcht_pow
Fréchet derivative of complex matrix power

F01KGF 25 nagf_matop_complex_gen_matrix_cond_exp
Condition number for complex matrix exponential

F01KHF 25 nagf_matop_complex_gen_matrix_frcht_exp
Fréchet derivative of complex matrix exponential

F01KJF 25 nagf_matop_complex_gen_matrix_cond_log
Condition number for complex matrix logarithm

F01KKF 25 nagf_matop_complex_gen_matrix_frcht_log
Fréchet derivative of complex matrix logarithm

F01LEF 11 nagf_matop_real_gen_tridiag_lu
LU factorization of real tridiagonal matrix

F01LHF 13 nagf_matop_real_gen_blkdiag_lu
LU factorization of real almost block diagonal matrix

F01MCF 8 nagf_matop_real_vband_posdef_fac
LDLT factorization of real symmetric positive definite variable-
bandwidth matrix

F01QGF 14 nagf_matop_real_trapez_rq
RQ factorization of real m by n upper trapezoidal matrix
m � nð Þ

F01QJF 14 nagf_matop_real_gen_rq
RQ factorization of real m by n matrix m � nð Þ

F01QKF 14 nagf_matop_real_gen_rq_formq
Operations with orthogonal matrices, form rows of Q, after RQ
factorization by F01QJF

F01RGF 14 nagf_matop_complex_trapez_rq
RQ factorization of complex m by n upper trapezoidal matrix
m � nð Þ

F01RJF 14 nagf_matop_complex_gen_rq
RQ factorization of complex m by n matrix m � nð Þ

F01RKF 14 nagf_matop_complex_gen_rq_formq
Operations with unitary matrices, form rows of Q, after RQ
factorization by F01RJF

F01VAF (DTRTTP) 23 DTRTTP
nagf_matop_dtrttp
Copies a real triangular matrix from full format to packed
format

F01VBF (ZTRTTP) 23 ZTRTTP
nagf_matop_ztrttp
Copies a complex triangular matrix from full format to packed
format

F01VCF (DTPTTR) 23 DTPTTR
nagf_matop_dtpttr
Copies a real triangular matrix from packed format to full
format
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F01VDF (ZTPTTR) 23 ZTPTTR
nagf_matop_ztpttr
Copies a complex triangular matrix from packed format to full
format

F01VEF (DTRTTF) 23 DTRTTF
nagf_matop_dtrttf
Copies a real triangular matrix from full format to Rectangular
Full Packed format

F01VFF (ZTRTTF) 23 ZTRTTF
nagf_matop_ztrttf
Copies a complex triangular matrix from full format to
Rectangular Full Packed format

F01VGF (DTFTTR) 23 DTFTTR
nagf_matop_dtfttr
Copies a real triangular matrix from Rectangular Full Packed
format to full format

F01VHF (ZTFTTR) 23 ZTFTTR
nagf_matop_ztfttr
Copies a complex triangular matrix from Rectangular Full
Packed format to full format

F01VJF (DTPTTF) 23 DTPTTF
nagf_matop_dtpttf
Copies a real triangular matrix from packed format to
Rectangular Full Packed format

F01VKF (ZTPTTF) 23 ZTPTTF
nagf_matop_ztpttf
Copies a complex triangular matrix from packed format to
Rectangular Full Packed format

F01VLF (DTFTTP) 23 DTFTTP
nagf_matop_dtfttp
Copies a real triangular matrix from Rectangular Full Packed
format to packed format

F01VMF (ZTFTTP) 23 ZTFTTP
nagf_matop_ztfttp
Copies a complex triangular matrix from Rectangular Full
Packed format to packed format

F01ZAF 14 nagf_matop_real_tri_pack
Convert real matrix between packed triangular and square
storage formats

F01ZBF 14 nagf_matop_complex_tri_pack
Convert complex matrix between packed triangular and square
storage formats

F01ZCF 14 nagf_matop_real_band_pack
Convert real matrix between packed banded and rectangular
storage formats

F01ZDF 14 nagf_matop_complex_band_pack
Convert complex matrix between packed banded and rectangular
storage formats
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1 Scope of the Chapter

This chapter provides facilities for four types of problem:

(i) Matrix Inversion

(ii) Matrix Factorizations

(iii) Matrix Arithmetic and Manipulation

(iv) Matrix Functions

See Sections 2.1, 2.2, 2.3 and 2.4 where these problems are discussed.

2 Background to the Problems

2.1 Matrix Inversion

(i) Nonsingular square matrices of order n.

If A, a square matrix of order n, is nonsingular (has rank n), then its inverse X exists and satisfies
the equations AX ¼ XA ¼ I (the identity or unit matrix).

It is worth noting that if AX � I ¼ R, so that R is the ‘residual’ matrix, then a bound on the
relative error is given by Rk k, i.e.,

X �A�1
�� ��

A�1k k � Rk k:

(ii) General real rectangular matrices.

A real matrix A has no inverse if it is square (n by n) and singular (has rank < n), or if it is of
shape (m by n) with m 6¼ n, but there is a Generalized or Pseudo-inverse Aþ which satisfies the
equations

AAþA ¼ A; AþAAþ ¼ Aþ; AAþð ÞT ¼ AAþ; AþAð ÞT ¼ AþA

(which of course are also satisfied by the inverse X of A if A is square and nonsingular).

(a) if m � n and rank Að Þ ¼ n then A can be factorized using a QR factorization, given by

A ¼ Q R
0

� �
;

where Q is an m by m orthogonal matrix and R is an n by n, nonsingular, upper triangular
matrix. The pseudo-inverse of A is then given by

Aþ ¼ R�1 ~QT;

where ~Q consists of the first n columns of Q.

(b) if m � n and rank Að Þ ¼ m then A can be factorized using an RQ factorization, given by

A ¼ R 0ð ÞQT

where Q is an n by n orthogonal matrix and R is an m by m, nonsingular, upper triangular
matrix. The pseudo-inverse of A is then given by

Aþ ¼ ~QR�1;

where ~Q consists of the first m columns of Q.

(c) if m � n and rank Að Þ ¼ r � n then A can be factorized using a QR factorization, with
column interchanges, as

A ¼ Q R
0

� �
PT;

where Q is an m by m orthogonal matrix, R is an r by n upper trapezoidal matrix and P is an
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n by n permutation matrix. The pseudo-inverse of A is then given by

Aþ ¼ PRT RRT
� ��1 ~QT;

where ~Q consists of the first r columns of Q.

(d) if rank Að Þ ¼ r � k ¼ min m;nð Þ, then A can be factorized as the singular value decomposi-
tion

A ¼ U�V T;

where U is an m by m orthogonal matrix, V is an n by n orthogonal matrix and � is an m by
n diagonal matrix with non-negative diagonal elements �. The first k columns of U and V are
the left- and right-hand singular vectors of A respectively and the k diagonal elements of �
are the singular values of A. � may be chosen so that

�1 � �2 � � � � � �k � 0

and in this case if rank Að Þ ¼ r then

�1 � �2 � � � � � �r > 0; �rþ1 ¼ � � � ¼ �k ¼ 0:

If ~U and ~V consist of the first r columns of U and V respectively and ~� is an r by r diagonal
matrix with diagonal elements �1; �2; . . . ; �r then A is given by

A ¼ ~U ~� ~V T

and the pseudo-inverse of A is given by

Aþ ¼ ~V ~��1 ~UT:

Notice that

ATA ¼ V �T�
� �

V T

which is the classical eigenvalue (spectral) factorization of ATA.

(e) if A is complex then the above relationships are still true if we use ‘unitary’ in place of
‘orthogonal’ and conjugate transpose in place of transpose. For example, the singular value
decomposition of A is

A ¼ U�V H;

where U and V are unitary, V H the conjugate transpose of V and � is as in (d) above.

2.2 Matrix Factorizations

The routines in this section perform matrix factorizations which are required for the solution of systems
of linear equations with various special structures. A few routines which perform associated
computations are also included.

Other routines for matrix factorizations are to be found in Chapters F07, F08 and F11.

This section also contains a few routines associated with eigenvalue problems (see Chapter F02).
(Historical note: this section used to contain many more such routines, but they have now been
superseded by routines in Chapter F08.)

2.3 Matrix Arithmetic and Manipulation

The intention of routines in this section (sub-chapters F01C, F01V and F01Z) is to cater for some of the
commonly occurring operations in matrix manipulation, i.e., transposing a matrix or adding part of one
matrix to another, and for conversion between different storage formats,such as conversion between
rectangular band matrix storage and packed band matrix storage. For vector or matrix-vector or matrix-
matrix operations refer to Chapters F06 and F16.
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2.4 Matrix Functions

Given a square matrix A, the matrix function f Að Þ is a matrix with the same dimensions as A which
provides a generalization of the scalar function f .

If A has a full set of eigenvectors V then A can be factorized as

A ¼ VDV �1;

where D is the diagonal matrix whose diagonal elements, di, are the eigenvalues of A. f Að Þ is given by

f Að Þ ¼ V f Dð ÞV �1;

where f Dð Þ is the diagonal matrix whose ith diagonal element is f dið Þ.
In general, A may not have a full set of eigenvectors. The matrix function can then be defined via a
Cauchy integral. For A 2 C

n�n,

f Að Þ ¼ 1

2	i

Z


f zð Þ zI �Að Þ�1dz;

where  is a closed contour surrounding the eigenvalues of A, and f is analytic within  .

Some matrix functions are defined implicitly. A matrix logarithm is a solution X to the equation

eX ¼ A:
In general X is not unique, but if A has no eigenvalues on the closed negative real line then a unique
principal logarithm exists whose eigenvalues have imaginary part between 	 and �	. Similarly, a
matrix square root is a solution X to the equation

X2 ¼ A:
If A has no eigenvalues on the closed negative real line then a unique principal square root exists with
eigenvalues in the right half-plane. If A has a vanishing eigenvalue then log Að Þ cannot be computed. If
the vanishing eigenvalue is defective (its algebraic multiplicity exceeds its geometric multiplicity, or
equivalently it occurs in a Jordan block of size greater than 1) then the square root cannot be computed.
If the vanishing eigenvalue is semisimple (its algebraic and geometric multiplicities are equal, or
equivalently it occurs only in Jordan blocks of size 1) then a square root can be computed.

Algorithms for computing matrix functions are usually tailored to a specific function. Currently Chapter
F01 contains routines for calculating the exponential, logarithm, sine, cosine, sinh, cosh, square root
and general real power of both real and complex matrices. In addition there are routines to compute a
general function of real symmetric and complex Hermitian matrices and a general function of general
real and complex matrices.

The Fréchet derivative of a matrix function f Að Þ in the direction of the matrix E is the linear function
mapping E to Lf A;Eð Þ such that

f Aþ Eð Þ � f Að Þ � Lf A;Eð Þ ¼ O Ek kð Þ:
The Fréchet derivative measures the first-order effect on f Að Þ of perturbations in A. Chapter F01
contains routines for calculating the Fréchet derivative of the exponential, logarithm and real powers of
both real and complex matrices.

The condition number of a matrix function is a measure of its sensitivity to perturbations in the data.
The absolute condition number measures these perturbations in an absolute sense, and is defined by

condabs f; Að Þlim�!0sup Ek k!0f g
f Aþ Eð Þ � f Að Þk k

�
:

The relative condition number, which is usually of more interest, measures these perturbations in a
relative sense, and is defined by

condrel f;Að Þ ¼ condabs f; Að Þ Ak k
f Að Þk k:

The absolute and relative condition numbers can be expressed in terms of the norm of the Fréchet
derivative by
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condabs f; Að Þ ¼ max E 6¼0
L A;Eð Þk k

Ek k ;

condrel f; Að Þ ¼ Ak k
f Að Þk kmax E 6¼0

L A;Eð Þk k
Ek k :

Chapter F01 contains routines for calculating the condition number of the matrix exponential,
logarithm, sine, cosine, sinh, cosh, square root and general real power of both real and complex
matrices. It also contains routines for estimating the condition number of a general function of a real or
complex matrix.

3 Recommendations on Choice and Use of Available Routines

3.1 Matrix Inversion

Note: before using any routine for matrix inversion, consider carefully whether it is really needed.

Although the solution of a set of linear equations Ax ¼ b can be written as x ¼ A�1b, the solution
should never be computed by first inverting A and then computing A�1b; the routines in Chapters F04
or F07 should always be used to solve such sets of equations directly; they are faster in execution, and
numerically more stable and accurate. Similar remarks apply to the solution of least squares problems
which again should be solved by using the routines in Chapters F04 and F08 rather than by computing a
pseudo-inverse.

(a) Nonsingular square matrices of order n

This chapter describes techniques for inverting a general real matrix A and matrices which are
positive definite (have all eigenvalues positive) and are either real and symmetric or complex and
Hermitian. It is wasteful and uneconomical not to use the appropriate routine when a matrix is
known to have one of these special forms. A general routine must be used when the matrix is not
known to be positive definite. In most routines the inverse is computed by solving the linear
equations Axi ¼ ei, for i ¼ 1; 2; . . . ; n, where ei is the ith column of the identity matrix.

Routines are given for calculating the approximate inverse, that is solving the linear equations just
once, and also for obtaining the accurate inverse by successive iterative corrections of this first
approximation. The latter, of course, are more costly in terms of time and storage, since each
correction involves the solution of n sets of linear equations and since the original A and its LU
decomposition must be stored together with the first and successively corrected approximations to
the inverse. In practice the storage requirements for the ‘corrected’ inverse routines are about
double those of the ‘approximate’ inverse routines, though the extra computer time is not
prohibitive since the same matrix and the same LU decomposition is used in every linear equation
solution.

Despite the extra work of the ‘corrected’ inverse routines they are superior to the ‘approximate’
inverse routines. A correction provides a means of estimating the number of accurate figures in the
inverse or the number of ‘meaningful’ figures relating to the degree of uncertainty in the
coefficients of the matrix.

The residual matrix R ¼ AX � I, where X is a computed inverse of A, conveys useful
information. Firstly Rk k is a bound on the relative error in X and secondly Rk k < 1

2 guarantees the
convergence of the iterative process in the ‘corrected’ inverse routines.

The decision trees for inversion show which routines in Chapter F04 and Chapter F07 should be
used for the inversion of other special types of matrices not treated in the chapter.

(b) General real rectangular matrices

For real matrices F08AEF (DGEQRF) and F01QJF return QR and RQ factorizations of A
respectively and F08BFF (DGEQP3) returns the QR factorization with column interchanges. The
corresponding complex routines are F08ASF (ZGEQRF), F01RJF and F08BTF (ZGEQP3)
respectively. Routines are also provided to form the orthogonal matrices and transform by the
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orthogonal matrices following the use of the above routines. F01QGF and F01RGF form the RQ
factorization of an upper trapezoidal matrix for the real and complex cases respectively.

F01BLF uses the QR factorization as described in Section 2.1(ii)(a) and is the only routine that
explicitly returns a pseudo-inverse. If m � n, then the routine will calculate the pseudo-inverse Aþ

of the matrix A. If m < n, then the n by m matrix AT should be used. The routine will calculate
the pseudo-inverse Z ¼ ATð Þþ ¼ Aþð ÞT of AT and the required pseudo-inverse will be ZT. The
routine also attempts to calculate the rank, r, of the matrix given a tolerance to decide when
elements can be regarded as zero. However, should this routine fail due to an incorrect
determination of the rank, the singular value decomposition method (described below) should be
used.

F08KBF (DGESVD) and F08KPF (ZGESVD) compute the singular value decomposition as
described in Section 2 for real and complex matrices respectively. If A has rank r � k ¼ min m;nð Þ
then the k� r smallest singular values will be negligible and the pseudo-inverse of A can be
obtained as Aþ ¼ V��1UT as described in Section 2. If the rank of A is not known in advance it
can be estimated from the singular values (see Section 2.4 in the F04 Chapter Introduction). In the
real case with m � n, F08AEF (DGEQRF) followed by F02WUF provide details of the QR
factorization or the singular value decomposition depending on whether or not A is of full rank and
for some problems provides an attractive alternative to F08KBF (DGESVD). For large sparse
matrices, leading terms in the singular value decomposition can be computed using routines from
Chapter F12.

3.2 Matrix Factorizations

Each of these routines serves a special purpose required for the solution of sets of simultaneous linear
equations or the eigenvalue problem. For further details you should consult Sections 3 or 4 in the F02
Chapter Introduction or Sections 3 or 4 in the F04 Chapter Introduction.

F01BRF and F01BSF are provided for factorizing general real sparse matrices. A more recent algorithm
for the same problem is available through F11MEF. For factorizing real symmetric positive definite
sparse matrices, see F11JAF. These routines should be used only when A is not banded and when the
total number of nonzero elements is less than 10% of the total number of elements. In all other cases
either the band routines or the general routines should be used.

3.3 Matrix Arithmetic and Manipulation

The routines in the F01C section are designed for the general handling of m by n matrices. Emphasis
has been placed on flexibility in the argument specifications and on avoiding, where possible, the use of
internally declared arrays. They are therefore suited for use with large matrices of variable row and
column dimensions. Routines are included for the addition and subtraction of sub-matrices of larger
matrices, as well as the standard manipulations of full matrices. Those routines involving matrix
multiplication may use additional-precision arithmetic for the accumulation of inner products. See also
Chapter F06.

The routines in the F01V (LAPACK) and F01Z section are designed to allow conversion between full
storage format and one of the packed storage schemes required by some of the routines in Chapters
F02, F04, F06, F07 and F08.

3.3.1 NAG Names and LAPACK Names

Routines with NAG name beginning F01V may be called either by their NAG names or by their
LAPACK names. When using the NAG Library, the double precision form of the LAPACK name must
be used (beginning with D- or Z-).

References to Chapter F01 routines in the manual normally include the LAPACK double precision
names, for example, F01VEF (DTRTTF).

The LAPACK routine names follow a simple scheme (which is similar to that used for the BLAS in
Chapter F06). Most names have the structure XYYTZZ, where the components have the following
meanings:
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–the initial letter, X, indicates the data type (real or complex) and precision:

S – real, single precision (in Fortran, 4 byte length REAL)

D – real, double precision (in Fortran, 8 byte length REAL)

C – complex, single precision (in Fortran, 8 byte length COMPLEX)

Z – complex, double precision (in Fortran, 16 byte length COMPLEX)

–the fourth letter, T, indicates that the routine is performing a storage scheme transformation
(conversion)

–the letters YY indicate the original storage scheme used to store a triangular part of the matrix A,
while the letters ZZ indicate the target storage scheme of the conversion (YY cannot equal ZZ since
this would do nothing):

TF – Rectangular Full Packed Format (RFP)

TP – Packed Format

TR – Full Format

3.4 Matrix Functions

F01ECF and F01FCF compute the matrix exponential, eA, of a real and complex square matrix A
respectively. If estimates of the condition number of the matrix exponential are required then F01JGF
and F01KGF should be used. If Fréchet derivatives are required then F01JHF and F01KHF should be
used.

F01EDF and F01FDF compute the matrix exponential, eA, of a real symmetric and complex Hermitian
matrix respectively. If the matrix is real symmetric, or complex Hermitian then it is recommended that
F01EDF, or F01FDF be used as they are more efficient and, in general, more accurate than F01ECF and
F01FCF.

F01EJF and F01FJF compute the principal matrix logarithm, log Að Þ, of a real and complex square
matrix A respectively. If estimates of the condition number of the matrix logarithm are required then
F01JJF and F01KJF should be used. If Fréchet derivatives are required then F01JKF and F01KKF
should be used.

F01EKF and F01FKF compute the matrix exponential, sine, cosine, sinh or cosh of a real and complex
square matrix A respectively. If the matrix exponential is required then it is recommended that F01ECF
or F01FCF be used as they are, in general, more accurate than F01EKF and F01FKF. If estimates of the
condition number of the matrix function are required then F01JAF and F01KAF should be used.

F01ELF and F01EMF compute the matrix function, f Að Þ, of a real square matrix. F01FLF and F01FMF
compute the matrix function of a complex square matrix. The derivatives of f are required for these
computations. F01ELF and F01FLF use numerical differentiation to obtain the derivatives of f .
F01EMF and F01FMF use derivatives you have supplied. If estimates of the condition number are
required but you are not supplying derivatives then F01JBF and F01KBF should be used. If estimates of
the condition number of the matrix function are required and you are supplying derivatives of f , then
F01JCF and F01KCF should be used.

If the matrix A is real symmetric or complex Hermitian then it is recommended that to compute the
matrix function, f Að Þ, F01EFF and F01FFF are used respectively as they are more efficient and, in
general, more accurate than F01ELF, F01EMF, F01FLF and F01FMF.

F01GAF and F01HAF compute the matrix function etAB for explicitly stored dense real and complex
matrices A and B respectively while F01GBF and F01HBF compute the same using reverse
communication. In the latter case, control is returned to you. You should calculate any required matrix-
matrix products and then call the routine again. See Section 3.3.3 in How to Use the NAG Library and
its Documentation for further information.

F01ENF and F01FNF compute the principal square root A1=2 of a real and complex square matrix A
respectively. If A is complex and upper triangular then F01FPF should be used. If A is real and upper
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quasi-triangular then F01EPF should be used. If estimates of the condition number of the matrix square
root are required then F01JDF and F01KDF should be used.

F01EQF and F01FQF compute the matrix power Ap, where p 2 R, of real and complex matrices
respectively. If estimates of the condition number of the matrix power are required then F01JEF and
F01KEF should be used. If Fréchet derivatives are required then F01JFF and F01KFF should be used.

4 Decision Trees

The decision trees show the routines in this chapter and in Chapter F04, Chapter F07 and Chapter F08
that should be used for inverting matrices of various types. They also show which routine should be
used to calculate various matrix functions.

(i) Matrix Inversion:

Tree 1

Is A an n by n matrix of rank n?
yes

Is A a real matrix?
yes

see Tree 2

no

see Tree 3

no

see Tree 4

Tree 2: Inverse of a real n by n matrix of full rank

Is A a band matrix?
yes

See Note 1.

no

Is A symmetric?
yes

Is A positive definite?
yes

Do you want guaranteed
accuracy? (See Note 2) yes

F01ABF

no

Is one triangle of A stored
as a linear array? yes

F07GDF and F07GJF

no

F01ADF or F07FDF and
F07FJF

no

Is one triangle of A stored
as a linear array? yes

F07PDF and F07PJF

no

F07MDF and F07MJF

no

Is A triangular?
yes

Is A stored as a linear array?
yes

F07UJF

no

F07TJF

no

Do you want guaranteed
accuracy? (See Note 2) yes

F07ABF

no

F07ADF and F07AJF
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Tree 3: Inverse of a complex n by n matrix of full rank

Is A a band matrix?
yes

See Note 1.

no

Is A Hermitian?
yes

Is A positive definite?
yes

Is one triangle of A stored
as a linear array? yes

F07GRF and F07GWF

no

F07FRF and F07FWF

no

Is one triangle A stored as a
linear array? yes

F07PRF and F07PWF

no

F07MRF and F07MWF

no

Is A symmetric?
yes

Is one triangle of A stored
as a linear array? yes

F07QRF and F07QWF

no

F07NRF and F07NWF

no

Is A triangular?
yes

Is A stored as a linear array?
yes

F07UWF

no

F07TWF

no

F07ANF or F07ARF and
F07AWF

Tree 4: Pseudo-inverses

Is A a complex matrix?
yes

Is A of full rank?
yes

Is A an m by n matrix with
m < n? yes

F01RJF and F01RKF

no

F08ASF and F08AUF or
F08ATF

no

F08KPF

no

Is A of full rank?
yes

Is A an m by n matrix with
m < n? yes

F01QJF and F01QKF

no

F08AEF and F08AGF or
F08AFF

no

Is A an m by n matrix with
m < n? yes

F08KBF

no

Is reliability more important
than efficiency? yes

F08KBF

no

F01BLF

Note 1: the inverse of a band matrix A does not in general have the same shape as A, and no routines
are provided specifically for finding such an inverse. The matrix must either be treated as a full matrix,
or the equations AX ¼ B must be solved, where B has been initialized to the identity matrix I. In the
latter case, see the decision trees in Section 4 in the F04 Chapter Introduction.

Note 2: by ‘guaranteed accuracy’ we mean that the accuracy of the inverse is improved by use of the
iterative refinement technique using additional precision.

F01 – Matrix Operations, Including Inversion Introduction – F01

Mark 26 F01.9



(ii) Matrix Factorizations: see the decision trees in Section 4 in the F02 and F04 Chapter
Introductions.

(iii) Matrix Arithmetic and Manipulation: not appropriate.

(iv) Matrix Functions:
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Tree 5: Matrix functions f Að Þ of an n by n real matrix A

Is etAB required? yes
Is A stored in dense format?

yes
F01GAF

no

F01GBF

no

Is A real symmetric?
yes Is eA required? yes

F01EDF

no

F01EFF

no

Is cos Að Þ or cosh Að Þ or sin Að Þ or
sinh Að Þ required? yes

Is the condition number of the matrix
function required? yes

F01JAF

no

F01EKF

no

Is log Að Þ required?
yes

Is the condition number of the matrix
logarithm required? yes

F01JJF

no

Is the Fréchet derivative of the matrix
logarithm required? yes

F01JKF

no

F01EJF

no

Is exp Að Þ required?
yes

Is the condition number of the matrix
exponential required? yes

F01JGF

no

Is the Fréchet derivative of the matrix
exponential required? yes

F01JHF

no

F01ECF

no

Is A1=2 required? yes
Is the condition number of the matrix
square root required? yes

F01JDF

no

Is the matrix upper quasi-triangular?
yes

F01EPF

no

F01ENF

no

Is Ap required?
yes

Is the condition number of the matrix
power required? yes

F01JEF

no

Is the Fréchet derivative of the matrix
power required? yes

F01JFF

no

F01EQF

no

f Að Þ will be computed. Will derivatives
of f be supplied by the user? yes

Is the condition number of the matrix
function required? yes

F01JCF

no

F01EMF

no

Is the condition number of the matrix
function required? yes

F01JBF

no

F01ELF
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Tree 6: Matrix functions f Að Þ of an n by n complex matrix A

Is etAB required? yes
Is A stored in dense format?

yes
F01HAF

no

F01HBF

no

Is A complex Hermitian?
yes Is eA required? yes

F01FDF

no

F01FFF

no

Is cos Að Þ or cosh Að Þ or sin Að Þ or
sinh Að Þ required? yes

Is the condition number of the matrix
function required? yes

F01KAF

no

F01FKF

no

Is log Að Þ required?
yes

Is the condition number of the matrix
logarithm required? yes

F01KJF

no

Is the Fréchet derivative of the matrix
logarithm required? yes

F01KKF

no

F01FJF

no

Is exp Að Þ required?
yes

Is the condition number of the matrix
exponential required? yes

F01KGF

no

Is the Fréchet derivative of the matrix
exponential required? yes

F01KHF

no

F01FCF

no

Is A1=2 required? yes
Is the condition number of the matrix
square root required? yes

F01KDF

no

Is the matrix upper triangular?
yes

F01FPF

no

F01FNF

no

Is Ap required?
yes

Is the condition number of the matrix
power required? yes

F01KEF

no

Is the Fréchet derivative of the matrix
power required? yes

F01KFF

no

F01FQF

no

f Að Þ will be computed. Will derivatives
of f be supplied by the user? yes

Is the condition number of the matrix
function required? yes

F01KCF

no

F01FMF

no

Is the condition number of the matrix
function required? yes

F01KBF

no

F01FLF
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5 Functionality Index

Action of the matrix exponential on a complex matrix ...................................... F01HAF

Action of the matrix exponential on a complex matrix (reverse communication) F01HBF

Action of the matrix exponential on a real matrix ............................................. F01GAF

Action of the matrix exponential on a real matrix (reverse communication) ..... F01GBF

Inversion (also see Chapter F07),
real m by n matrix,

pseudo-inverse........................................................................................... F01BLF
real symmetric positive definite matrix,

accurate inverse......................................................................................... F01ABF
approximate inverse .................................................................................. F01ADF

Matrix Arithmetic and Manipulation,
matrix addition,

complex matrices ...................................................................................... F01CWF
real matrices.............................................................................................. F01CTF

matrix multiplication ...................................................................................... F01CKF
matrix storage conversion,

full to packed triangular storage,
complex matrices ................................................................................. F01VBF (ZTRTTP)
real matrices......................................................................................... F01VAF (DTRTTP)

full to Rectangular Full Packed storage,
complex matrix .................................................................................... F01VFF (ZTRTTF)
real matrix............................................................................................ F01VEF (DTRTTF)

packed band $ rectangular storage, special provision for diagonal
complex matrices ................................................................................. F01ZDF
real matrices......................................................................................... F01ZCF

packed triangular to full storage,
complex matrices ................................................................................. F01VDF (ZTPTTR)
real matrices......................................................................................... F01VCF (DTPTTR)

packed triangular to Rectangular Full Packed storage,
complex matrices ................................................................................. F01VKF (ZTPTTF)
real matrices......................................................................................... F01VJF (DTPTTF)

packed triangular $ square storage, special provision for diagonal
complex matrices ................................................................................. F01ZBF
real matrices......................................................................................... F01ZAF

Rectangular Full Packed to full storage,
complex matrices ................................................................................. F01VHF (ZTFTTR)
real matrices......................................................................................... F01VGF (DTFTTR)

Rectangular Full Packed to packed triangular storage,
complex matrices ................................................................................. F01VMF (ZTFTTP)
real matrices......................................................................................... F01VLF (DTFTTP)

matrix subtraction,
complex matrices ...................................................................................... F01CWF
real matrices.............................................................................................. F01CTF

matrix transpose ............................................................................................. F01CRF

Matrix function,
complex Hermitian n by n matrix,

matrix exponential..................................................................................... F01FDF
matrix function.......................................................................................... F01FFF

complex n by n matrix,
condition number for a matrix exponential ............................................... F01KGF
condition number for a matrix exponential, logarithm, sine, cosine, sinh or
cosh...........................................................................................................

F01KAF

condition number for a matrix function, using numerical differentiation.. F01KBF
condition number for a matrix function, using user-supplied derivatives . F01KCF
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condition number for a matrix logarithm.................................................. F01KJF
condition number for a matrix power ....................................................... F01KEF
condition number for the matrix square root, logarithm, sine, cosine, sinh
or cosh ......................................................................................................

F01KDF

Fréchet derivative
matrix exponential................................................................................ F01KHF
matrix logarithm................................................................................... F01KKF
matrix power........................................................................................ F01KFF

general power
matrix................................................................................................... F01FQF

matrix exponential..................................................................................... F01FCF
matrix exponential, sine, cosine, sinh or cosh .......................................... F01FKF
matrix function, using numerical differentiation ....................................... F01FLF
matrix function, using user-supplied derivatives ....................................... F01FMF
matrix logarithm........................................................................................ F01FJF
matrix square root..................................................................................... F01FNF
upper triangular

matrix square root................................................................................ F01FPF
real n by n matrix,

condition number for a matrix exponential ............................................... F01JGF
condition number for a matrix function, using numerical differentiation.. F01JBF
condition number for a matrix function, using user-supplied derivatives . F01JCF
condition number for a matrix logarithm.................................................. F01JJF
condition number for a matrix power ....................................................... F01JEF
condition number for the matrix exponential, logarithm, sine, cosine, sinh
or cosh ......................................................................................................

F01JAF

condition number for the matrix square root, logarithm, sine, cosine, sinh
or cosh ......................................................................................................

F01JDF

Fréchet derivative
matrix exponential................................................................................ F01JHF
matrix logarithm................................................................................... F01JKF
matrix power........................................................................................ F01JFF

general power
matrix exponential................................................................................ F01EQF

matrix exponential..................................................................................... F01ECF
matrix exponential, sine, cosine, sinh or cosh .......................................... F01EKF
matrix function, using numerical differentiation ....................................... F01ELF
matrix function, using user-supplied derivatives ....................................... F01EMF
matrix logarithm........................................................................................ F01EJF
matrix square root..................................................................................... F01ENF
upper quasi-triangular

matrix square root................................................................................ F01EPF
real symmetric n by n matrix,

matrix exponential..................................................................................... F01EDF
matrix function.......................................................................................... F01EFF

Matrix Transformations,
complex matrix, form unitary matrix ............................................................. F01RKF
complex m by n m � nð Þ matrix,

RQ factorization ........................................................................................ F01RJF
complex upper trapezoidal matrix,

RQ factorization ........................................................................................ F01RGF
eigenproblem Ax ¼ �Bx, A, B banded,

reduction to standard symmetric problem ................................................. F01BVF
real almost block-diagonal matrix,

LU factorization ........................................................................................ F01LHF
real band symmetric positive definite matrix,

ULDLTUT factorization............................................................................ F01BUF
variable bandwidth, LDLT factorization ................................................... F01MCF
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real matrix,
form orthogonal matrix ............................................................................. F01QKF

real m by n m � nð Þ matrix,
RQ factorization ........................................................................................ F01QJF

real sparse matrix,
factorization .............................................................................................. F01BRF
factorization, known sparsity pattern......................................................... F01BSF

real upper trapezoidal matrix,
RQ factorization ........................................................................................ F01QGF

tridiagonal matrix,
LU factorization ........................................................................................ F01LEF

6 Auxiliary Routines Associated with Library Routine Arguments

None.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

F01MAF 19 F11JAF
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NAG Library Routine Document

F01ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01ABF calculates the accurate inverse of a real symmetric positive definite matrix, using a Cholesky
factorization and iterative refinement.

2 Specification

SUBROUTINE F01ABF (A, LDA, N, B, LDB, Z, IFAIL)

INTEGER LDA, N, LDB, IFAIL
REAL (KIND=nag_wp) A(LDA,N), B(LDB,N), Z(N)

3 Description

To compute the inverse X of a real symmetric positive definite matrix A, F01ABF first computes a
Cholesky factorization of A as A ¼ LLT, where L is lower triangular. An approximation to X is found
by computing L�1 and then the product L�TL�1. The residual matrix R ¼ I �AX is calculated using
additional precision, and a correction D to X is found by solving LLTD ¼ R. X is replaced by X þD,
and this iterative refinement of the inverse is repeated until full machine accuracy has been obtained.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the upper triangle of the n by n positive definite symmetric matrix A. The elements of
the array below the diagonal need not be set.

On exit: the lower triangle of the inverse matrix X is stored in the elements of the array below
the diagonal, in rows 2 to nþ 1; xij is stored in Aðiþ 1; jÞ for i � j. The upper triangle of the
original matrix is unchanged.

2: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01ABF
is called.

Constraint: LDA � Nþ 1.

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

4: BðLDB;NÞ – REAL (KIND=nag_wp) array Output

On exit: the lower triangle of the inverse matrix X, with xij stored in Bði; jÞ, for i � j.
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5: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F01ABF
is called.

Constraint: LDB � N.

6: ZðNÞ – REAL (KIND=nag_wp) array Workspace

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The matrix A is not positive definite, possibly due to rounding errors.

IFAIL ¼ 2

The refinement process fails to converge, i.e., the matrix A is ill-conditioned.

IFAIL ¼ 3

N < 1, or LDA < Nþ 1, or LDB < N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed inverse should be correct to full machine accuracy. For a detailed error analysis see page
40 of Wilkinson and Reinsch (1971).
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8 Parallelism and Performance

F01ABF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01ABF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F01ABF is approximately proportional to n3.

10 Example

This example finds the inverse of the 4 by 4 matrix:

5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

0B@
1CA:

10.1 Program Text

Program f01abfe

! F01ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01abf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, ldb, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), z(:)

! .. Executable Statements ..
Write (nout,*) ’F01ABF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n + 1
ldb = n
Allocate (a(lda,n),b(ldb,n),z(n))
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01abf(a,lda,n,b,ldb,z,ifail)

! Print the result matrix B
Call x04caf(’L’,’N’,ldb,n,b,ldb,’Lower triangle of inverse’,ifail)

End Program f01abfe
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10.2 Program Data

F01ABF Example Program Data
4 : n
5. 7. 6. 5.
7. 10. 8. 7.
6. 8. 10. 9.
5. 7. 9. 10. : a

10.3 Program Results

F01ABF Example Program Results

Lower triangle of inverse
1 2 3 4

1 68.0000
2 -41.0000 25.0000
3 -17.0000 10.0000 5.0000
4 10.0000 -6.0000 -3.0000 2.0000
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NAG Library Routine Document

F01ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01ADF calculates the approximate inverse of a real symmetric positive definite matrix, using a
Cholesky factorization.

2 Specification

SUBROUTINE F01ADF (N, A, LDA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*)

3 Description

To compute the inverse X of a real symmetric positive definite matrix A, F01ADF first computes a
Cholesky factorization of A as A ¼ LLT, where L is lower triangular. It then computes L�1 and finally
forms X as the product L�TL�1.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the upper triangle of the n by n positive definite symmetric matrix A. The elements of
the array below the diagonal need not be set.

On exit: the lower triangle of the inverse matrix X is stored in the elements of the array below
the diagonal, in rows 2 to nþ 1; xij is stored in Aðiþ 1; jÞ for i � j. The upper triangle of the
original matrix is unchanged.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01ADF
is called.

Constraint: LDA � Nþ 1.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The matrix A is not positive definite, possibly due to rounding errors.

IFAIL ¼ 2

On entry, N < 0,
or LDA < Nþ 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the computed inverse depends on the conditioning of the original matrix. For a detailed
error analysis see page 39 of Wilkinson and Reinsch (1971).

8 Parallelism and Performance

F01ADF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01ADF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The time taken by F01ADF is approximately proportional to n3. F01ADF calls routines F07FDF
(DPOTRF) and F07FJF (DPOTRI) from LAPACK.

10 Example

This example finds the inverse of the 4 by 4 matrix:

5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

0B@
1CA:

10.1 Program Text

Program f01adfe

! F01ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01adf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01ADF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n + 1
Allocate (a(lda,n))
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01adf(n,a,lda,ifail)

! Print the result matrix A
Call x04caf(’L’,’B’,lda,n,a,lda,’Lower triangle of inverse’,ifail)

End Program f01adfe

10.2 Program Data

F01ADF Example Program Data
4 : n
5. 7. 6. 5.
7. 10. 8. 7.
6. 8. 10. 9.
5. 7. 9. 10. : a
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10.3 Program Results

F01ADF Example Program Results

Lower triangle of inverse
1 2 3 4

1
2 68.0000
3 -41.0000 25.0000
4 -17.0000 10.0000 5.0000
5 10.0000 -6.0000 -3.0000 2.0000
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NAG Library Routine Document

F01BLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01BLF calculates the rank and pseudo-inverse of an m by n real matrix, m � n, using a QR
factorization with column interchanges.

2 Specification

SUBROUTINE F01BLF (M, N, T, A, LDA, AIJMAX, IRANK, INC, D, U, LDU, DU,
IFAIL)

&

INTEGER M, N, LDA, IRANK, INC(N), LDU, IFAIL
REAL (KIND=nag_wp) T, A(LDA,N), AIJMAX(N), D(M), U(LDU,N), DU(N)

3 Description

Householder's factorization with column interchanges is used in the decomposition F ¼ QU , where F
is A with its columns permuted, Q is the first r columns of an m by m orthogonal matrix and U is an r
by n upper-trapezoidal matrix of rank r. The pseudo-inverse of F is given by X where

X ¼ UT UUT
� ��1

QT:

If the matrix is found to be of maximum rank, r ¼ n, U is a nonsingular n by n upper-triangular matrix
and the pseudo-inverse of F simplifies to X ¼ U�1QT. The transpose of the pseudo-inverse of A is
overwritten on A.

4 References

Peters G and Wilkinson J H (1970) The least squares problem and pseudo-inverses Comput. J. 13 309–
316

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: m and n, the number of rows and columns in the matrix A.

Constraint: M � N.

3: T – REAL (KIND=nag_wp) Input

On entry: the tolerance used to decide when elements can be regarded as zero (see Section 9).

4: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the m by n rectangular matrix A.

On exit: the transpose of the pseudo-inverse of A.
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5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01BLF
is called.

Constraint: LDA � M.

6: AIJMAXðNÞ – REAL (KIND=nag_wp) array Output

On exit: AIJMAXðiÞ contains the element of largest modulus in the reduced matrix at the ith
stage. If r < n, then only the first rþ 1 elements of AIJMAX have values assigned to them; the
remaining elements are unused. The ratio AIJMAXð1Þ=AIJMAXðrÞ usually gives an indication of
the condition number of the original matrix (see Section 9).

7: IRANK – INTEGER Output

On exit: r, the rank of A as determined using the tolerance T.

8: INCðNÞ – INTEGER array Output

On exit: the record of the column interchanges in the Householder factorization.

9: DðMÞ – REAL (KIND=nag_wp) array Workspace
10: UðLDU;NÞ – REAL (KIND=nag_wp) array Workspace

11: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F01BLF
is called.

Constraint: LDU � N.

12: DUðNÞ – REAL (KIND=nag_wp) array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Inverse not found, due to an incorrect determination of IRANK (see Section 9).

IFAIL ¼ 2

Invalid tolerance, due to
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(i) T is negative, IRANK ¼ �1;
(ii) T too large, IRANK ¼ 0;

(iii) T too small, IRANK > 0.

IFAIL ¼ 3

On entry, M < N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For most matrices the pseudo-inverse is the best possible having regard to the condition of A and the
choice of T. Note that only the singular value decomposition method can be relied upon to give
maximum accuracy for the precision of computation used and correct determination of the condition of
a matrix (see Wilkinson and Reinsch (1971)).

The computed factors Q and U satisfy the relation QU ¼ F þ E where

Ek k2 < c� Ak k2 þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� rð Þ n� rð Þ

p
in which c is a modest function of m and n, � is the value of T, and � is the machine precision.

8 Parallelism and Performance

F01BLF is not threaded in any implementation.

9 Further Comments

The time taken by F01BLF is approximately proportional to mnr.

The most difficult practical problem is the determination of the rank of the matrix (see pages 314–315
of Peters and Wilkinson (1970)); only the singular value decomposition method gives a reliable
indication of rank deficiency (see pages 134–151 of Wilkinson and Reinsch (1971) and F08KBF
(DGESVD)). In F01BLF a tolerance, T, is used to recognize ‘zero’ elements in the remaining matrix at
each step in the factorization. The value of T should be set at n times the bound on possible errors in
individual elements of the original matrix. If the elements of A vary widely in their orders of
magnitude, of course this presents severe difficulties. Sound decisions can only be made by somebody
who appreciates the underlying physical problem.

If the condition number of A is 10p we expect to get p figures wrong in the pseudo-inverse. An estimate
of the condition number is usually given by AIJMAXð1Þ=AIJMAXðrÞ.
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10 Example

A complete program follows which outputs the maximum of the moduli of the ‘remaining’ elements at
each step in the factorization, the rank, as determined by the given value of T, and the transposed
pseudo-inverse. Data and results are given for an example which is a 6 by 5 matrix of deficient rank in
which the last column is a linear combination of the other four. Setting T to � times the norm of the
matrix, the rank is correctly determined as 4 and the pseudo-inverse is computed to full implementation
accuracy.

10.1 Program Text

Program f01blfe

! F01BLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01blf, f06raf, nag_wp, x02ajf, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: indent = 0, ncols = 80, nin = 5, &

nout = 6
Character (1), Parameter :: diag = ’N’, matrix = ’G’, &

nolabel = ’N’
Character (8), Parameter :: form = ’1P,E12.4’

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, t
Integer :: i, ifail, irank, lda, ldu, m, n
Character (9) :: norm
Character (27) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), aijmax(:), d(:), du(:), &

u(:,:)
Real (Kind=nag_wp) :: work(1)
Integer, Allocatable :: inc(:)
Character (1) :: dummy(1)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’F01BLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldu = n
Allocate (a(lda,n),aijmax(n),d(m),du(n),u(ldu,n),inc(n))
Read (nin,*)(a(i,1:n),i=1,m)

! Set t = eps times norm of A.
norm = ’Frobenius’
anorm = f06raf(norm,m,n,a,lda,work)
t = anorm*x02ajf()

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01blf(m,n,t,a,lda,aijmax,irank,inc,d,u,ldu,du,ifail)

Write (nout,*) ’Maximum element in A(K) for I.GE.K and J.GE.K’
Write (nout,*)
Write (nout,*) ’ K Modulus’
Write (nout,99999)(i,aijmax(i),i=1,min(n,irank+1))
Write (nout,*)
Write (nout,99998) ’Rank = ’, irank
Write (nout,*)
Write (nout,99997) ’T = ’, t, ’ (machine dependent)’
Write (nout,*)
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Flush (nout)
! Print the result matrix A.

title = ’Transpose of pseudo-inverse’
ifail = 0
Call x04cbf(matrix,diag,m,n,a,lda,form,title,nolabel,dummy,nolabel, &

dummy,ncols,indent,ifail)

99999 Format (1X,I4,2X,1P,E12.4)
99998 Format (1X,A,I5)
99997 Format (1X,A,1P,E11.4,A)

End Program f01blfe

10.2 Program Data

F01BLF Example Program Data
6 5 : m, n
7.0 -2.0 4.0 9.0 1.8
3.0 8.0 -4.0 6.0 1.3
9.0 6.0 1.0 5.0 2.1

-8.0 7.0 5.0 2.0 0.6
4.0 -1.0 2.0 8.0 1.3
1.0 6.0 3.0 -5.0 0.5 : a

10.3 Program Results

F01BLF Example Program Results

Maximum element in A(K) for I.GE.K and J.GE.K

K Modulus
1 9.0000E+00
2 9.3101E+00
3 8.7461E+00
4 5.6832E+00
5 2.8449E-16

Rank = 4

T = 2.9948E-15 (machine dependent)

Transpose of pseudo-inverse
1.7807E-02 -2.1565E-02 5.2029E-02 2.3686E-02 7.1957E-03

-1.1826E-02 4.3417E-02 -8.1265E-02 3.5717E-02 -1.3957E-03
4.7157E-02 2.9446E-02 1.3926E-02 -1.3808E-02 7.6720E-03

-5.6636E-02 2.9132E-02 4.7442E-02 3.0478E-02 5.0415E-03
-3.6741E-03 -1.3781E-02 1.6647E-02 3.5665E-02 3.4857E-03
3.8408E-02 3.4256E-02 5.7594E-02 -5.7134E-02 7.3123E-03
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NAG Library Routine Document

F01BRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01BRF factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation
of the entire matrix, or, optionally, first permutes the matrix to block lower triangular form and then
only factorizes the diagonal blocks.

2 Specification

SUBROUTINE F01BRF (N, NZ, A, LICN, IRN, LIRN, ICN, PIVOT, IKEEP, IW, W,
LBLOCK, GROW, ABORT, IDISP, IFAIL)

&

INTEGER N, NZ, LICN, IRN(LIRN), LIRN, ICN(LICN), IKEEP(5*N),
IW(8*N), IDISP(10), IFAIL

&

REAL (KIND=nag_wp) A(LICN), PIVOT, W(N)
LOGICAL LBLOCK, GROW, ABORT(4)

3 Description

Given a real sparse matrix A, F01BRF may be used to obtain the LU factorization of a permutation of
A,

PAQ ¼ LU

where P and Q are permutation matrices, L is unit lower triangular and U is upper triangular. The
routine uses a sparse variant of Gaussian elimination, and the pivotal strategy is designed to
compromise between maintaining sparsity and controlling loss of accuracy through round-off.

Optionally the routine first permutes the matrix into block lower triangular form and then only
factorizes the diagonal blocks. For some matrices this gives a considerable saving in storage and
execution time.

Extensive data checks are made; duplicated nonzeros can be accumulated.

The factorization is intended to be used by F04AXF to solve sparse systems of linear equations Ax ¼ b
or ATx ¼ b. If several matrices of the same sparsity pattern are to be factorized, F01BSF should be used
for the second and subsequent matrices.

The method is fully described in Duff (1977).

A more recent algorithm for the same calculation is provided by F11MEF.

4 References

Duff I S (1977) MA28 – a set of Fortran subroutines for sparse unsymmetric linear equations AERE
Report R8730 HMSO

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.
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2: NZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: NZ > 0.

3: AðLICNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: AðiÞ, for i ¼ 1; 2; . . . ;NZ, must contain the nonzero elements of the sparse matrix A.
They can be in any order since F01BRF will reorder them.

On exit: the nonzero elements in the LU factorization. The array must not be changed by you
between a call of F01BRF and a call of F04AXF.

4: LICN – INTEGER Input

On entry: the dimension of the arrays A and ICN as declared in the (sub)program from which
F01BRF is called. Since the factorization is returned in A and ICN, LICN should be large enough
to accommodate this and should ordinarily be 2 to 4 times as large as NZ.

Constraint: LICN � NZ.

5: IRNðLIRNÞ – INTEGER array Input/Output

On entry: IRNðiÞ, for i ¼ 1; 2; . . . ;NZ, must contain the row index of the nonzero element stored
in AðiÞ.
On exit: IRN is overwritten and is not needed for subsequent calls of F01BSF or F04AXF.

6: LIRN – INTEGER Input

On entry: the dimension of the array IRN as declared in the (sub)program from which F01BRF is
called. It need not be as large as LICN; normally it will not need to be very much greater than
NZ.

Constraint: LIRN � NZ.

7: ICNðLICNÞ – INTEGER array Communication Array

ICNðiÞ, for i ¼ 1; 2; . . . ;NZ, must contain, on entry, the column index of the nonzero element
stored in AðiÞ. ICN contains, on exit, the column indices of the nonzero elements in the
factorization. The array must not be changed by you between a call of F01BRF and subsequent
calls of F01BSF or F04AXF.

8: PIVOT – REAL (KIND=nag_wp) Input

On entry: should have a value in the range 0:0 � PIVOT � 0:9999 and is used to control the
choice of pivots. If PIVOT < 0:0, the value 0:0 is assumed, and if PIVOT > 0:9999, the value
0:9999 is assumed. When searching a row for a pivot, any element is excluded which is less than
PIVOT times the largest of those elements in the row available as pivots. Thus decreasing
PIVOT biases the algorithm to maintaining sparsity at the expense of stability.

Suggested value: PIVOT ¼ 0:1 has been found to work well on test examples.

9: IKEEPð5� NÞ – INTEGER array Communication Array

On exit: indexing information about the factorization.

You must not change IKEEP between a call of F01BRF and subsequent calls to F01BSF or
F04AXF.
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10: IWð8� NÞ – INTEGER array Workspace

11: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: if GROW ¼ :TRUE:, Wð1Þ contains an estimate (an upper bound) of the increase in size
of elements encountered during the factorization (see GROW); the rest of the array is used as
workspace.

If GROW ¼ :FALSE:, the array is not used.

12: LBLOCK – LOGICAL Input

On entry: if LBLOCK ¼ :TRUE:, the matrix is preordered into block lower triangular form
before the LU factorization is performed; otherwise the entire matrix is factorized.

Suggested value: LBLOCK ¼ :TRUE: unless the matrix is known to be irreducible, or is singular
and an upper bound on the rank is required.

13: GROW – LOGICAL Input

On entry: if GROW ¼ :TRUE:, then on exit Wð1Þ contains an estimate (an upper bound) of the
increase in size of elements encountered during the factorization. If the matrix is well-scaled (see
Section 9.2), then a high value for Wð1Þ indicates that the LU factorization may be inaccurate
and you should be wary of the results and perhaps increase the argument PIVOT for subsequent
runs (see Section 7).

Suggested value: GROW ¼ :TRUE:.

14: ABORTð4Þ – LOGICAL array Input

On entry: if ABORTð1Þ ¼ :TRUE:, F01BRF will exit immediately on detecting a structural
singularity (one that depends on the pattern of nonzeros) and return IFAIL ¼ 1; otherwise it will
complete the factorization (see Section 9.3).

If ABORTð2Þ ¼ :TRUE:, F01BRF will exit immediately on detecting a numerical singularity
(one that depends on the numerical values) and return IFAIL ¼ 2; otherwise it will complete the
factorization (see Section 9.3).

If ABORTð3Þ ¼ :TRUE:, F01BRF will exit immediately (with IFAIL ¼ 5) when the arrays A and
ICN are filled up by the previously factorized, active and unfactorized parts of the matrix;
otherwise it continues so that better guidance on necessary array sizes can be given in IDISPð6Þ
and IDISPð7Þ, and will exit with IFAIL in the range 4 to 6. Note that there is always an
immediate error exit if the array IRN is too small.

If ABORTð4Þ ¼ :TRUE:, F01BRF exits immediately (with IFAIL ¼ 13) if it finds duplicate
elements in the input matrix.

If ABORTð4Þ ¼ :FALSE:, F01BRF proceeds using a value equal to the sum of the duplicate
elements. In either case details of each duplicate element are output on the current advisory
message unit (see X04ABF), unless suppressed by the value of IFAIL on entry.

Suggested value:

ABORTð1Þ ¼ :TRUE:;
ABORTð2Þ ¼ :TRUE:;
ABORTð3Þ ¼ :FALSE:;
ABORTð4Þ ¼ :TRUE:.

15: IDISPð10Þ – INTEGER array Communication Array

On exit: contains information about the factorization.

IDISPð1Þ and IDISPð2Þ indicate the position in arrays A and ICN of the first and last elements in
the LU factorization of the diagonal blocks. (IDISPð2Þ gives the number of nonzeros in the
factorization.) IDISPð1Þ and IDISPð2Þ must not be changed by you between a call of F01BRF
and subsequent calls to F01BSF or F04AXF.
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IDISPð3Þ and IDISPð4Þ monitor the adequacy of ‘elbow room’ in the arrays IRN and A (and
ICN) respectively, by giving the number of times that the data in these arrays has been
compressed during the factorization to release more storage. If either IDISPð3Þ or IDISPð4Þ is
quite large (say greater than 10), it will probably pay you to increase the size of the
corresponding array(s) for subsequent runs. If either is very low or zero, then you can perhaps
save storage by reducing the size of the corresponding array(s).

IDISPð5Þ, when LBLOCK ¼ :FALSE:, gives an upper bound on the rank of the matrix; when
LBLOCK ¼ :TRUE:, gives an upper bound on the sum of the ranks of the lower triangular
blocks.

IDISPð6Þ and IDISPð7Þ give the minimum size of arrays IRN and A (and ICN) respectively
which would enable a successful run on an identical matrix (but some ‘elbow-room’ should be
allowed – see Section 9).

IDISPð8Þ to 10ð Þ are only used if LBLOCK ¼ :TRUE:.
IDISPð8Þ gives the structural rank of the matrix.

IDISPð9Þ gives the number of diagonal blocks.

IDISPð10Þ gives the size of the largest diagonal block.

You must not change IDISP between a call of F01BRF and subsequent calls to F01BSF or
F04AXF.

16: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Section 3.4 in How to Use the NAG
Library and its Documentation).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the
decimal digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages
printed).

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �2
Successful factorization of a numerically singular matrix (which may also be structurally
singular) (see Section 9.3).

IFAIL ¼ �1
Successful factorization of a structurally singular matrix (see Section 9.3).

IFAIL ¼ 1

The matrix is structurally singular and the factorization has been abandoned (ABORTð1Þ was
.TRUE. on entry).
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IFAIL ¼ 2

The matrix is numerically singular and the factorization has been abandoned (ABORTð2Þ was
.TRUE. on entry).

IFAIL ¼ 3

LIRN is too small: there is not enough space in the array IRN to continue the factorization. You
are recommended to try again with LIRN (and the length of IRN) equal to at least
IDISPð6Þ þ N=2.

IFAIL ¼ 4

LICN is much too small: there is much too little space in the arrays A and ICN to continue the
factorization.

IFAIL ¼ 5

LICN is too small: there is not enough space in the arrays A and ICN to store the factorization. If
ABORTð3Þ was .FALSE. on entry, the factorization has been completed but some of the LU
factors have been discarded to create space; IDISPð7Þ then gives the minimum value of LICN (i.
e., the minimum length of A and ICN) required for a successful factorization of the same matrix.

IFAIL ¼ 6

LICN and LIRN are both too small: effectively this is a combination of IFAIL ¼ 3 and 5 (with
ABORTð3Þ ¼ :FALSE:).

IFAIL ¼ 7

LICN is too small: there is not enough space in the arrays A and ICN for the permutation to
block triangular form.

IFAIL ¼ 8

On entry, N � 0.

IFAIL ¼ 9

On entry, NZ � 0.

IFAIL ¼ 10

On entry, LICN < NZ.

IFAIL ¼ 11

On entry, LIRN < NZ.

IFAIL ¼ 12

On entry, an element of the input matrix has a row or column index (i.e., an element of IRN or
ICN) outside the range 1 to N.

IFAIL ¼ 13

Duplicate elements have been found in the input matrix and the factorization has been abandoned
(ABORTð4Þ ¼ :TRUE: on entry).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The factorization obtained is exact for a perturbed matrix whose i; jð Þth element differs from aij by less
than 3��mij where � is the machine precision, � is the growth value returned in Wð1Þ if
GROW ¼ :TRUE:, and mij the number of Gaussian elimination operations applied to element i; jð Þ.
The value of mij is not greater than n and is usually much less. Small � values therefore guarantee
accurate results, but unfortunately large � values may give a very pessimistic indication of accuracy.

8 Parallelism and Performance

F01BRF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time required may be estimated very roughly from the number � of nonzeros in the factorized form
(output as IDISPð2Þ) and for F01BRF and its associates is

F01BRF: 5�2=n units
F01BSF: �2=n units
F04AXF: 2� units

where our unit is the time for the inner loop of a full matrix code (e.g., solving a full set of equations
takes about 1

3n
3 units). Note that the faster F01BSF time makes it well worthwhile to use this for a

sequence of problems with the same pattern.

It should be appreciated that � varies widely from problem to problem. For network problems it may be
little greater than NZ, the number of nonzeros in A; for discretization of two-dimensional and three-
dimensional partial differential equations it may be about 3nlog2 n and 1

2n
5=3 , respectively.

The time taken by F01BRF to find the block lower triangular form (LBLOCK ¼ :TRUE:) is typically
5�15% of the time taken by the routine when it is not found (LBLOCK ¼ :FALSE:). If the matrix is
irreducible (IDISPð9Þ ¼ 1 after a call with LBLOCK ¼ :TRUE:) then this time is wasted. Otherwise,
particularly if the largest block is small (IDISPð10Þ  n), the consequent savings are likely to be
greater.

The time taken to estimate growth (GROW ¼ :TRUE:) is typically under 20% of the overall time.

The overall time may be substantially increased if there is inadequate ‘elbow-room’ in the arrays A,
IRN and ICN. When the sizes of the arrays are minimal (IDISPð6Þ and IDISPð7Þ) it can execute as
much as three times slower. Values of IDISPð3Þ and IDISPð4Þ greater than about 10 indicate that it may
be worthwhile to increase array sizes.

9.2 Scaling

The use of a relative pivot tolerance PIVOT essentially presupposes that the matrix is well-scaled, i.e.,
that the matrix elements are broadly comparable in size. Practical problems are often naturally well-
scaled but particular care is needed for problems containing mixed types of variables (for example
millimetres and neutron fluxes).
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9.3 Singular and Rectangular Systems

It is envisaged that F01BRF will almost always be called for square nonsingular matrices and that
singularity indicates an error condition. However, even if the matrix is singular it is possible to
complete the factorization. It is even possible for F04AXF to solve a set of equations whose matrix is
singular provided the set is consistent.

Two forms of singularity are possible. If the matrix would be singular for any values of the nonzeros (e.
g., if it has a whole row of zeros), then we say it is structurally singular, and continue only if
ABORTð1Þ ¼ :FALSE:. If the matrix is nonsingular by virtue of the particular values of the nonzeros,
then we say that it is numerically singular and continue only if ABORTð2Þ ¼ :FALSE:, in which case
an upper bound on the rank of the matrix is returned in IDISPð5Þ when LBLOCK ¼ :FALSE:.
Rectangular matrices may be treated by setting N to the larger of the number of rows and numbers of
columns and setting ABORTð1Þ ¼ :FALSE:.
Note: the soft failure option should be used (last digit of IFAIL ¼ 1) if you wish to factorize singular
matrices with ABORTð1Þ or ABORTð2Þ set to .FALSE..

9.4 Duplicated Nonzeros

The matrix A may consist of a sum of contributions from different sub-systems (for example finite
elements). In such cases you may rely on F01BRF to perform assembly, since duplicated elements are
summed.

9.5 Determinant

The following code may be used to compute the determinant of A (as the real variable DET) after a call
of F01BRF:

DET = 1.0
ID = IDISP(1)
DO 10 I = 1, N

IDG = ID + IKEEP(3*N+I)
DET = DET*A(IDG)
IF (IKEEP(N+I).NE.I)DET = -DET
IF (IKEEP(2*N+I).NE.I)DET = -DET
ID = ID + IKEEP(I)

10 CONTINUE

10 Example

This example factorizes the real sparse matrix:

5 0 0 0 0 0
0 2 �1 2 0 0
0 0 3 0 0 0
�2 0 0 1 1 0
�1 0 0 �1 2 �3
�1 �1 0 0 0 6

0BBBBB@

1CCCCCA:

This example program simply prints out some information about the factorization as returned by
F01BRF in Wð1Þ and IDISP. Normally the call of F01BRF would be followed by a call of F04AXF (see
Section 10 in F04AXF).

10.1 Program Text

Program f01brfe

! F01BRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01brf, nag_wp, x04abf
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: pivot
Integer :: i, ifail, licn, lirn, n, nz, outchn
Logical :: grow, lblock

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), w(:)
Integer, Allocatable :: icn(:), ikeep(:,:), irn(:), iw(:,:)
Integer :: idisp(10)
Logical :: abort(4)

! .. Executable Statements ..
Write (nout,*) ’F01BRF Example Program Results’
outchn = nout

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nz
licn = 3*nz
lirn = 3*nz/2
Allocate (a(licn),w(n),icn(licn),ikeep(n,5),irn(lirn),iw(n,8))
Call x04abf(iset,outchn)
Read (nin,*)(a(i),irn(i),icn(i),i=1,nz)
pivot = 0.1E0_nag_wp
lblock = .True.
grow = .True.
abort(1) = .True.
abort(2) = .True.
abort(3) = .False.
abort(4) = .True.

! ifail: behaviour on error exit
! =110 for noisy, hard exit

ifail = 110
Call f01brf(n,nz,a,licn,irn,lirn,icn,pivot,ikeep,iw,w,lblock,grow,abort, &

idisp,ifail)

Write (nout,*)
Write (nout,99999) ’Number of nonzeros in decomposition =’, &

idisp(2)
Write (nout,99999) ’Minimum size of array IRN =’, &

idisp(6)
Write (nout,99999) ’Minimum size of arrays A and ICN =’, &

idisp(7)
Write (nout,99999) ’Number of compresses on IRN (IDISP(3)) =’, &

idisp(3)
Write (nout,99999) ’Number of compresses on A and ICN (IDISP(4)) =’, &

idisp(4)
If (grow) Then

Write (nout,*)
Write (nout,99998) ’Value of W(1) =’, w(1)

End If
If (lblock) Then

Write (nout,*)
Write (nout,99999) ’Structural rank =’, idisp(8)
Write (nout,99999) ’Number of diagonal blocks =’, idisp(9)
Write (nout,99999) ’Size of largest diagonal block =’, idisp(10)

End If

99999 Format (1X,A,I5,A,I5)
99998 Format (1X,A,F8.4)

End Program f01brfe
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10.2 Program Data

F01BRF Example Program Data
6 15 : n, nz
5.0 1 1 2.0 2 2 -1.0 2 3 2.0 2 4 3.0 3 3

-2.0 4 1 1.0 4 4 1.0 4 5 -1.0 5 1 -1.0 5 4
2.0 5 5 -3.0 5 6 -1.0 6 1 -1.0 6 2 6.0 6 6 : a

10.3 Program Results

F01BRF Example Program Results

Number of nonzeros in decomposition = 16
Minimum size of array IRN = 15
Minimum size of arrays A and ICN = 19
Number of compresses on IRN (IDISP(3)) = 0
Number of compresses on A and ICN (IDISP(4)) = 0

Value of W(1) = 18.0000

Structural rank = 6
Number of diagonal blocks = 3
Size of largest diagonal block = 4
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NAG Library Routine Document

F01BSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01BSF factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF
when a matrix of the same sparsity pattern was factorized.

2 Specification

SUBROUTINE F01BSF (N, NZ, A, LICN, IVECT, JVECT, ICN, IKEEP, IW, W,
GROW, ETA, RPMIN, ABORT, IDISP, IFAIL)

&

INTEGER N, NZ, LICN, IVECT(NZ), JVECT(NZ), ICN(LICN),
IKEEP(5*N), IW(5*N), IDISP(2), IFAIL

&

REAL (KIND=nag_wp) A(LICN), W(N), ETA, RPMIN
LOGICAL GROW, ABORT

3 Description

F01BSF accepts as input a real sparse matrix of the same sparsity pattern as a matrix previously
factorized by a call of F01BRF. It first applies to the matrix the same permutations as were used by
F01BRF, both for permutation to block triangular form and for pivoting, and then performs Gaussian
elimination to obtain the LU factorization of the diagonal blocks.

Extensive data checks are made; duplicated nonzeros can be accumulated.

The factorization is intended to be used by F04AXF to solve sparse systems of linear equations Ax ¼ b
or ATx ¼ b.
F01BSF is much faster than F01BRF and in some applications it is expected that there will be many
calls of F01BSF for each call of F01BRF.

The method is fully described in Duff (1977).

A more recent algorithm for the same calculation is provided by F11MEF.

4 References

Duff I S (1977) MA28 – a set of Fortran subroutines for sparse unsymmetric linear equations AERE
Report R8730 HMSO

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

2: NZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: NZ > 0.
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3: AðLICNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: AðiÞ, for i ¼ 1; 2; . . . ;NZ, must contain the nonzero elements of the sparse matrix A.
They can be in any order since F01BSF will reorder them.

On exit: the nonzero elements in the LU factorization. The array must not be changed by you
between a call of F01BSF and a call of F04AXF.

4: LICN – INTEGER Input

On entry: the dimension of the arrays A and ICN as declared in the (sub)program from which
F01BSF is called. It should have the same value as it had for F01BRF.

Constraint: LICN � NZ.

5: IVECTðNZÞ – INTEGER array Input
6: JVECTðNZÞ – INTEGER array Input

On entry: IVECTðiÞ and JVECTðiÞ, for i ¼ 1; 2; . . . ;NZ, must contain the row index and the
column index respectively of the nonzero element stored in AðiÞ.

7: ICNðLICNÞ – INTEGER array Input

ICN contains, on entry, the same information as output by F01BRF. It must not be changed by
you between a call of F01BSF and a call of F04AXF.

ICN is used as internal workspace prior to being restored on exit and hence is unchanged.

8: IKEEPð5� NÞ – INTEGER array Communication Array

On entry: the same indexing information about the factorization as output in IKEEP by F01BRF.

You must not change IKEEP between a call of F01BSF and subsequent calls to F04AXF.

9: IWð5� NÞ – INTEGER array Workspace

10: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: if GROW ¼ :TRUE:, Wð1Þ contains an estimate (an upper bound) of the increase in size
of elements encountered during the factorization (see GROW); the rest of the array is used as
workspace.

If GROW ¼ :FALSE:, the array is not used.

11: GROW – LOGICAL Input

On entry: if GROW ¼ :TRUE:, then on exit Wð1Þ contains an estimate (an upper bound) of the
increase in size of elements encountered during the factorization. If the matrix is well-scaled (see
Section 9), then a high value for Wð1Þ indicates that the LU factorization may be inaccurate and
you should be wary of the results and perhaps increase the argument PIVOT for subsequent runs
(see Section 7).

12: ETA – REAL (KIND=nag_wp) Input

On entry: the relative pivot threshold below which an error diagnostic is provoked and IFAIL is
set to IFAIL ¼ 7. If ETA is greater than 1:0, then no check on pivot size is made.

Suggested value: ETA ¼ 10�4.

13: RPMIN – REAL (KIND=nag_wp) Output

On exit: if ETA is less than 1:0, then RPMIN gives the smallest ratio of the pivot to the largest
element in the row of the corresponding upper triangular factor thus monitoring the stability of
the factorization. If RPMIN is very small it may be advisable to perform a new factorization
using F01BRF.
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14: ABORT – LOGICAL Input

On entry: if ABORT ¼ :TRUE:, F01BSF exits immediately (with IFAIL ¼ 8) if it finds duplicate
elements in the input matrix.

If ABORT ¼ :FALSE:, F01BSF proceeds using a value equal to the sum of the duplicate
elements.

In either case details of each duplicate element are output on the current advisory message unit
(see X04ABF), unless suppressed by the value of IFAIL on entry.

Suggested value: ABORT ¼ :TRUE:.

15: IDISPð2Þ – INTEGER array Communication Array

On entry: IDISPð1Þ and IDISPð2Þ must be as output in IDISP by the previous call of F01BRF.

16: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Section 3.4 in How to Use the NAG
Library and its Documentation).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the
decimal digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages
printed).

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 0.

IFAIL ¼ 2

On entry, NZ � 0.

IFAIL ¼ 3

On entry, LICN < NZ.

IFAIL ¼ 4

On entry, an element of the input matrix has a row or column index (i.e., an element of IVECT or
JVECT) outside the range 1 to N.

IFAIL ¼ 5

The input matrix is incompatible with the matrix factorized by the previous call of F01BRF (see
Section 9).
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IFAIL ¼ 6

The input matrix is numerically singular.

IFAIL ¼ 7

A very small pivot has been detected (see Section 5, ETA). The factorization has been completed
but is potentially unstable.

IFAIL ¼ 8

Duplicate elements have been found in the input matrix and the factorization has been abandoned
(ABORT ¼ :TRUE: on entry).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The factorization obtained is exact for a perturbed matrix whose i; jð Þth element differs from aij by less
than 3��mij where � is the machine precision, � is the growth value returned in Wð1Þ if
GROW ¼ :TRUE:, and mij the number of Gaussian elimination operations applied to element i; jð Þ.
If � ¼Wð1Þ is very large or RPMIN is very small, then a fresh call of F01BRF is recommended.

8 Parallelism and Performance

F01BSF is not threaded in any implementation.

9 Further Comments

If you have a sequence of problems with the same sparsity pattern then F01BSF is recommended after
F01BRF has been called for one such problem. It is typically 4 to 7 times faster but is potentially
unstable since the previous pivotal sequence is used. Further details on timing are given in the
document for F01BRF.

If growth estimation is performed (GROW ¼ :TRUE:), then the time increases by between 5% and
10%. Pivot size monitoring (ETA � 1:0) involves a similar overhead.

We normally expect this routine to be entered with a matrix having the same pattern of nonzeros as was
earlier presented to F01BRF. However there is no record of this pattern, but rather a record of the
pattern including all fill-ins. Therefore we permit additional nonzeros in positions corresponding to fill-
ins.

If singular matrices are being treated then it is also required that the present matrix be sufficiently like
the previous one for the same permutations to be suitable for factorization with the same set of zero
pivots.
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10 Example

This example factorizes the real sparse matrices

5 0 0 0 0 0
0 2 �1 2 0 0
0 0 3 0 0 0
�2 0 0 1 1 0
�1 0 0 �1 2 �3
�1 �1 0 0 0 6

0BBBBB@

1CCCCCA
and

10 0 0 0 0 0
0 12 �3 �1 0 0
0 0 15 0 0 0
�2 0 0 10 �1 0
�1 0 0 �5 1 �1
�1 �2 0 0 0 6

0BBBBB@

1CCCCCA:

This example program simply prints the values of Wð1Þ and RPMIN returned by F01BSF. Normally the
calls of F01BRF and F01BSF would be followed by calls of F04AXF.

10.1 Program Text

Program f01bsfe

! F01BSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01brf, f01bsf, nag_wp, x04abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eta, rpmin, u
Integer :: i, ifail, licn, lirn, n, nz, outchn
Logical :: grow, lblock

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), w(:)
Integer, Allocatable :: icn(:), ikeep(:,:), irn(:), &

ivect(:), iw(:,:), jvect(:)
Integer :: idisp(10)
Logical :: abort(4)

! .. Executable Statements ..
Write (nout,*) ’F01BSF Example Program Results’
outchn = nout

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nz
licn = 3*nz
lirn = 3*nz/2
Allocate (a(licn),w(n),icn(licn),ikeep(n,5),irn(lirn),ivect(nz),iw(n,8), &

jvect(nz))
Call x04abf(iset,outchn)
Write (nout,*)
Read (nin,*)(a(i),irn(i),icn(i),i=1,nz)
u = 0.1E0_nag_wp
lblock = .True.
grow = .True.
abort(1) = .True.
abort(2) = .True.
abort(3) = .False.
abort(4) = .True.
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! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01brf(n,nz,a,licn,irn,lirn,icn,u,ikeep,iw,w,lblock,grow,abort, &

idisp,ifail)

If (grow) Then
Write (nout,*) ’On exit from F01BRF’
Write (nout,99999) ’Value of W(1) = ’, w(1)

End If
Read (nin,*)(a(i),ivect(i),jvect(i),i=1,nz)
eta = 0.1E0_nag_wp

! ifail: behaviour on error exit
! =110 for noisy, hard exit

ifail = 110
Call f01bsf(n,nz,a,licn,ivect,jvect,icn,ikeep,iw,w,grow,eta,rpmin, &

abort(4),idisp,ifail)

If (grow) Then
Write (nout,*)
Write (nout,*) ’On exit from F01BSF’
Write (nout,99999) ’Value of W(1) = ’, w(1)

End If
If (eta<1.0E0_nag_wp) Then

Write (nout,*)
Write (nout,99999) ’Value of RPMIN = ’, rpmin

End If

99999 Format (1X,A,F7.4)
End Program f01bsfe

10.2 Program Data

F01BSF Example Program Data
6 15 : n, nz
5.0 1 1 2.0 2 2 -1.0 2 3 2.0 2 4 3.0 3 3

-2.0 4 1 1.0 4 4 1.0 4 5 -1.0 5 1 -1.0 5 4
2.0 5 5 -3.0 5 6 -1.0 6 1 -1.0 6 2 6.0 6 6

10.0 1 1 12.0 2 2 -3.0 2 3 -1.0 2 4 15.0 3 3
-2.0 4 1 10.0 4 4 -1.0 4 5 -1.0 5 1 -5.0 5 4
1.0 5 5 -1.0 5 6 -1.0 6 1 -2.0 6 2 6.0 6 6 : a

10.3 Program Results

F01BSF Example Program Results

On exit from F01BRF
Value of W(1) = 18.0000

On exit from F01BSF
Value of W(1) = 51.0000

Value of RPMIN = 0.1000
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NAG Library Routine Document

F01BUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01BUF performs a ULDLTUT decomposition of a real symmetric positive definite band matrix.

2 Specification

SUBROUTINE F01BUF (N, M1, K, A, LDA, W, IFAIL)

INTEGER N, M1, K, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,N), W(M1)

3 Description

The symmetric positive definite matrix A, of order n and bandwidth 2mþ 1, is divided into the leading
principal sub-matrix of order k and its complement, where m � k � n. A UDUT decomposition of the
latter and an LDLT decomposition of the former are obtained by means of a sequence of elementary
transformations, where U is unit upper triangular, L is unit lower triangular and D is diagonal. Thus if
k ¼ n, an LDLT decomposition of A is obtained.

This routine is specifically designed to precede F01BVF for the transformation of the symmetric-
definite eigenproblem Ax ¼ �Bx by the method of Crawford where A and B are of band form. In this
context, k is chosen to be close to n=2 and the decomposition is applied to the matrix B.

4 References

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

2: M1 – INTEGER Input

On entry: mþ 1, where m is the number of nonzero superdiagonals in A. Normally M1 N.

3: K – INTEGER Input

On entry: k, the change-over point in the decomposition.

Constraint: M1� 1 � K � N.

4: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the upper triangle of the n by n symmetric band matrix A, with the diagonal of the
matrix stored in the mþ 1ð Þth row of the array, and the m superdiagonals within the band stored
in the first m rows of the array. Each column of the matrix is stored in the corresponding column
of the array. For example, if n ¼ 6 and m ¼ 2, the storage scheme is
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� � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66

Elements in the top left corner of the array are not used. The following code assigns the matrix
elements within the band to the correct elements of the array:

DO 20 J = 1, N
DO 10 I = MAX(1,J-M1+1), J

A(I-J+M1,J) = matrix(I,J)
10 CONTINUE
20 CONTINUE

On exit: A is overwritten by the corresponding elements of L, D and U .

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01BUF
is called.

Constraint: LDA � M1.

6: WðM1Þ – REAL (KIND=nag_wp) array Workspace

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < M1� 1 or K > N.

IFAIL ¼ 2
IFAIL ¼ 3

The matrix A is not positive definite, perhaps as a result of rounding errors, giving an element of
D which is zero or negative. IFAIL ¼ 3 when the failure occurs in the leading principal sub-
matrix of order K and IFAIL ¼ 2 when it occurs in the complement.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The Cholesky decomposition of a positive definite matrix is known for its remarkable numerical
stability (see Wilkinson (1965)). The computed U , L and D satisfy the relation ULDLTUT ¼ Aþ E
where the 2-norms of A and E are related by Ek k � c mþ 1ð Þ2� Ak k where c is a constant of order
unity and � is the machine precision. In practice, the error is usually appreciably smaller than this.

8 Parallelism and Performance

F01BUF is not threaded in any implementation.

9 Further Comments

The time taken by F01BUF is approximately proportional to nm2 þ 3nm.

This routine is specifically designed for use as the first stage in the solution of the generalized
symmetric eigenproblem Ax ¼ �Bx by Crawford's method which preserves band form in the
transformation to a similar standard problem. In this context, for maximum efficiency, k should be
chosen as the multiple of m nearest to n=2.

The matrix U is such that U�1AU�T is diagonal in its last n� k rows and columns, L is such that
L�1U�1AU�TL�T ¼ D and D is diagonal. To find U , L and D where A ¼ ULDLTUT requires
nm mþ 3ð Þ=2�m mþ 1ð Þ mþ 2ð Þ=3 multiplications and divisions which, is independent of k.

10 Example

This example finds a ULDLTUT decomposition of the real symmetric positive definite matrix

3 �9 6
�9 31 �2 �4
6 �2 123 �66 15
�4 �66 145 �24 4

15 �24 61 �74 �18
4 �74 98 24
�18 24 6

0BBBBBBB@

1CCCCCCCA
:

10.1 Program Text

Program f01bufe

! F01BUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01buf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Integer :: i, ifail, j, k, lda, m, m1, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), w(:)
! .. Intrinsic Procedures ..

Intrinsic :: max
! .. Executable Statements ..

Write (nout,*) ’F01BUF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n, m1
lda = m1
Allocate (a(lda,n),w(m1))
Read (nin,*)((a(j,i),j=max(1,m1+1-i),m1),i=1,n)
m = m1 - 1
k = ((n+m)/(2*m))*m

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01buf(n,m1,k,a,lda,w,ifail)

Write (nout,*)
Write (nout,*) ’Computed upper triangular matrix’
Write (nout,*)
Do i = 1, n

Write (nout,99999)(a(j,i),j=max(1,m1+1-i),m1)
End Do

99999 Format (1X,8F9.4)
End Program f01bufe

10.2 Program Data

F01BUF Example Program Data
7 3 : n, m1

3
-9 31
6 -2 123

-4 -66 145
15 -24 61
4 -74 98

-18 24 6 : a

10.3 Program Results

F01BUF Example Program Results

Computed upper triangular matrix

3.0000
-3.0000 4.0000
2.0000 4.0000 2.0000

-1.0000 5.0000 3.0000
3.0000 -4.0000 5.0000
2.0000 -1.0000 2.0000

-3.0000 4.0000 6.0000
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NAG Library Routine Document

F01BVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01BVF transforms the generalized symmetric-definite eigenproblem Ax ¼ �Bx to the equivalent
standard eigenproblem Cy ¼ �y, where A, B and C are symmetric band matrices and B is positive
definite. B must have been decomposed by F01BUF.

2 Specification

SUBROUTINE F01BVF (N, MA1, MB1, M3, K, A, LDA, B, LDB, V, LDV, W, IFAIL)

INTEGER N, MA1, MB1, M3, K, LDA, LDB, LDV, IFAIL
REAL (KIND=nag_wp) A(LDA,N), B(LDB,N), V(LDV,M3), W(M3)

3 Description

A is a symmetric band matrix of order n and bandwidth 2mA þ 1. The positive definite symmetric band
matrix B, of order n and bandwidth 2mB þ 1, must have been previously decomposed by F01BUF as
ULDLTUT. F01BVF applies U , L and D to A, mA rows at a time, restoring the band form of A at each
stage by plane rotations. The argument k defines the change-over point in the decomposition of B as
used by F01BUF and is also used as a change-over point in the transformations applied by this routine.
For maximum efficiency, k should be chosen to be the multiple of mA nearest to n=2. The resulting
symmetric band matrix C is overwritten on A. The eigenvalues of C, and thus of the original problem,
may be found using F08HEF (DSBTRD) and F08JFF (DSTERF). For selected eigenvalues, use
F08HEF (DSBTRD) and F08JJF (DSTEBZ).

4 References

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41–44

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrices A, B and C.

2: MA1 – INTEGER Input

On entry: mA þ 1, where mA is the number of nonzero superdiagonals in A. Normally
MA1 N.

3: MB1 – INTEGER Input

On entry: mB þ 1, where mB is the number of nonzero superdiagonals in B.

Constraint: MB1 � MA1.

4: M3 – INTEGER Input

On entry: the value of 3mA þmB.
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5: K – INTEGER Input

On entry: k, the change-over point in the transformations. It must be the same as the value used
by F01BUF in the decomposition of B.

Suggested value: the optimum value is the multiple of mA nearest to n=2.

Constraint: MB1� 1 � K � N.

6: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the upper triangle of the n by n symmetric band matrix A, with the diagonal of the
matrix stored in the mA þ 1ð Þth row of the array, and the mA superdiagonals within the band
stored in the first mA rows of the array. Each column of the matrix is stored in the corresponding
column of the array. For example, if n ¼ 6 and mA ¼ 2, the storage scheme is

� � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66

Elements in the top left corner of the array need not be set. The following code assigns the
matrix elements within the band to the correct elements of the array:

DO 20 J = 1, N
DO 10 I = MAX(1,J-MA1+1), J

A(I-J+MA1,J) = matrix (I,J)
10 CONTINUE
20 CONTINUE

On exit: is overwritten by the corresponding elements of C.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01BVF
is called.

Constraint: LDA � MA1.

8: BðLDB;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of the decomposition of matrix B as returned by F01BUF.

On exit: the elements of B will have been permuted.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F01BVF
is called.

Constraint: LDB � MB1.

10: VðLDV;M3Þ – REAL (KIND=nag_wp) array Workspace
11: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F01BVF
is called.

Constraint: LDV � mA þmB.

12: WðM3Þ – REAL (KIND=nag_wp) array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MB1 > MA1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In general the computed system is exactly congruent to a problem Aþ Eð Þx ¼ � Bþ Fð Þx, where Ek k
and Fk k are of the order of �� Bð Þ Ak k and �� Bð Þ Bk k respectively, where � Bð Þ is the condition number
of B with respect to inversion and � is the machine precision. This means that when B is positive
definite but not well-conditioned with respect to inversion, the method, which effectively involves the
inversion of B, may lead to a severe loss of accuracy in well-conditioned eigenvalues.

8 Parallelism and Performance

F01BVF is not threaded in any implementation.

9 Further Comments

The time taken by F01BVF is approximately proportional to n2m2
B and the distance of k from n=2, e.g.,

k ¼ n=4 and k ¼ 3n=4 take 502% longer.

When B is positive definite and well-conditioned with respect to inversion, the generalized symmetric
eigenproblem can be reduced to the standard symmetric problem Py ¼ �y where P ¼ L�1AL�T and
B ¼ LLT, the Cholesky factorization.

When A and B are of band form, especially if the bandwidth is small compared with the order of the
matrices, storage considerations may rule out the possibility of working with P since it will be a full
matrix in general. However, for any factorization of the form B ¼ SST, the generalized symmetric
problem reduces to the standard form

S�1AS�T STx
� �

¼ � STx
� �
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and there does exist a factorization such that S�1AS�T is still of band form (see Crawford (1973)).
Writing

C ¼ S�1AS�T and y ¼ STx

the standard form is Cy ¼ �y and the bandwidth of C is the maximum bandwidth of A and B.

Each stage in the transformation consists of two phases. The first reduces a leading principal sub-matrix
of B to the identity matrix and this introduces nonzero elements outside the band of A. In the second,
further transformations are applied which leave the reduced part of B unaltered and drive the extra
elements upwards and off the top left corner of A. Alternatively, B may be reduced to the identity
matrix starting at the bottom right-hand corner and the extra elements introduced in A can be driven
downwards.

The advantage of the ULDLTUT decomposition of B is that no extra elements have to be pushed over
the whole length of A. If k is taken as approximately n=2, the shifting is limited to halfway. At each
stage the size of the triangular bumps produced in A depends on the number of rows and columns of B
which are eliminated in the first phase and on the bandwidth of B. The number of rows and columns
over which these triangles are moved at each step in the second phase is equal to the bandwidth of A.

In this routine, A is defined as being at least as wide as B and must be filled out with zeros if necessary
as it is overwritten with C. The number of rows and columns of B which are effectively eliminated at
each stage is mA.

10 Example

This example finds the three smallest eigenvalues of Ax ¼ �Bx, where

A ¼

11 12
12 12 13

13 13 14
14 14 15

15 15 16
16 16 17

17 17 18
18 18 19

19 19

0BBBBBBBBBB@

1CCCCCCCCCCA

B ¼

101 22
22 102 23

23 103 24
24 104 25

25 105 26
26 106 27

27 107 28
28 108 29

29 109

0BBBBBBBBBB@

1CCCCCCCCCCA
:

10.1 Program Text

Program f01bvfe

! F01BVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsbtrd, dstebz, f01buf, f01bvf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: inc1 = 1, nin = 5, nout = 6

! .. Local Scalars ..
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Real (Kind=nag_wp) :: abstol
Integer :: i, ifail, info, j, k, lda, ldb, ldv, &

m, m1, m2, m3, ma1, mb1, n, nsplit
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), d(:), e(:), r(:), &
v(:,:), w(:), work(:)

Integer, Allocatable :: iblock(:), isplit(:), iwork(:)
! .. Intrinsic Procedures ..

Intrinsic :: max
! .. Executable Statements ..

Write (nout,*) ’F01BVF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n, ma1, mb1
lda = ma1
ldb = mb1
ldv = ma1 + mb1 - 2
m3 = 3*ma1 + mb1 - 4
Allocate (a(lda,n),b(ldb,n),d(n),e(n),r(n),v(ldv,m3),w(m3),work(4*n), &

iblock(n),isplit(n),iwork(3*n))
Read (nin,*)((a(j,i),j=max(1,ma1+1-i),ma1),i=1,n)
Read (nin,*)((b(j,i),j=max(1,mb1+1-i),mb1),i=1,n)
k = n/2

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01buf(n,mb1,k,b,ldb,w,ifail)

ifail = 0
Call f01bvf(n,ma1,mb1,m3,k,a,lda,b,ldb,v,ldv,w,ifail)

! The NAG name equivalent of dsbtrd is f08hef
Call dsbtrd(’N’,’U’,n,ma1-1,a,lda,d,e,w,inc1,work,info)

abstol = zero
Read (nin,*) m1, m2

! The NAG name equivalent of dstebz is f08jjf
Call dstebz(’I’,’E’,n,zero,zero,m1,m2,abstol,d,e,m,nsplit,r,iblock, &

isplit,work,iwork,info)

Write (nout,*)
Write (nout,*) ’Selected eigenvalues’
Write (nout,99999) r(1:m)

99999 Format (1X,8F9.4)
End Program f01bvfe

10.2 Program Data

F01BVF Example Program Data
9 2 2 : n, ma1, mb1

11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19 : a

101
22 102
23 103
24 104
25 105
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26 106
27 107
28 108
29 109 : b

1 3 : m1, m2

10.3 Program Results

F01BVF Example Program Results

Selected eigenvalues
-0.2643 -0.1530 -0.0418
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NAG Library Routine Document

F01CKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01CKF returns with the result of the multiplication of two matrices B and C in the matrix A, with the
option to overwrite B or C.

2 Specification

SUBROUTINE F01CKF (A, B, C, N, P, M, Z, IZ, OPT, IFAIL)

INTEGER N, P, M, IZ, OPT, IFAIL
REAL (KIND=nag_wp) A(N,P), B(N,M), C(M,P), Z(IZ)

3 Description

The n by m matrix B is post-multiplied by the m by p matrix C. If OPT ¼ 1 the result is formed in the
n by p matrix A. If OPT ¼ 2, m must equal p, and the result is written back to B. If OPT ¼ 3, n must
equal m, and the result is written back to C.

4 References

None.

5 Arguments

1: AðN;PÞ – REAL (KIND=nag_wp) array Output

On exit: if OPT ¼ 1, A contains the result of the matrix multiplication.

2: BðN;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the n by m matrix B.

On exit: if OPT ¼ 2, B contains the result of the multiplication.

3: CðM; PÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the m by p matrix C.

On exit: if OPT ¼ 3, C contains the result of the multiplication.

4: N – INTEGER Input

On entry: n, the number of rows of the array A and of the array B.

Constraints:

if OPT ¼ 3, N ¼ M;
otherwise N � 1.

5: P – INTEGER Input

On entry: p, the number of columns of the array A and of the array C.
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Constraints:

if OPT ¼ 2, P ¼ M;
otherwise P � 1.

6: M – INTEGER Input

On entry: m, the number of columns of the array B and rows of the array C.

Constraints:

if OPT ¼ 2, M ¼ P;
if OPT ¼ 3, M ¼ N;
if OPT 6¼ 1, M � IZ;
otherwise M � 1.

7: ZðIZÞ – REAL (KIND=nag_wp) array Workspace
8: IZ – INTEGER Input

On entry: the dimension of the array Z as declared in the (sub)program from which F01CKF is
called.

Constraints:

if OPT ¼ 1, IZ � 1;
if OPT 6¼ 1, IZ � M.

9: OPT – INTEGER Input

On entry: the value of OPT determines which array is to contain the final result.

OPT ¼ 1
A must be distinct from B and C and, on exit, contains the result. B and C need not be
distinct in this case.

OPT ¼ 2
B must be distinct from C and on exit, contains the result. A is not used in this case and
need not be distinct from B or C.

OPT ¼ 3
C must be distinct from B and on exit, contains the result. A is not used in this case and
need not be distinct from B or C.

Constraint: 1 � OPT � 3.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M or P or N � 0.

IFAIL ¼ 2

OPT ¼ 2 and M 6¼ P.

IFAIL ¼ 3

OPT ¼ 3 and N 6¼ M.

IFAIL ¼ 4

OPT 6¼ 1 and IZ < M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Each element of the result is effectively computed as an inner product using basic precision.

8 Parallelism and Performance

F01CKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F01CKF is approximately proportional to mnp.

10 Example

This example multiplies the 2 by 3 matrix B and the 3 by 2 matrix C together and places the result in
the 2 by 2 matrix A.
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10.1 Program Text

Program f01ckfe

! F01CKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01ckf, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: indent = 0, iz = 1, ncols = 80, &

nin = 5, nout = 6, opt = 1
Character (1), Parameter :: diag = ’N’, matrix = ’G’, &

nolabel = ’N’
Character (4), Parameter :: form = ’F7.1’

! .. Local Scalars ..
Integer :: i, ifail, j, m, n, p
Character (8) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:)
Real (Kind=nag_wp) :: z(iz)
Character (1) :: dummy(1)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F01CKF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, p, m

Allocate (a(n,p),b(n,m),c(m,p))

! Set up example B and C matrices
Do i = 1, m

Do j = 1, n
b(j,i) = real(i+j-2,kind=nag_wp)

End Do
Do j = 1, p

c(i,j) = real(i+j-2,kind=nag_wp)
End Do

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01ckf(a,b,c,n,p,m,z,iz,opt,ifail)

! Print the result matrix A
title = ’Matrix A’
Write (nout,*)
Flush (nout)
ifail = 0
Call x04cbf(matrix,diag,n,p,a,n,form,title,nolabel,dummy,nolabel,dummy, &

ncols,indent,ifail)

End Program f01ckfe

10.2 Program Data

F01CKF Example Program Data
2 2 3 : n, p, m
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10.3 Program Results

F01CKF Example Program Results

Matrix A
5.0 8.0
8.0 14.0
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NAG Library Routine Document

F01CRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01CRF transposes a rectangular matrix in-situ.

2 Specification

SUBROUTINE F01CRF (A, M, N, MN, MOVE, LMOVE, IFAIL)

INTEGER M, N, MN, MOVE(LMOVE), LMOVE, IFAIL
REAL (KIND=nag_wp) A(MN)

3 Description

F01CRF requires that the elements of an m by n matrix A are stored consecutively by columns in a
one-dimensional array. It reorders the elements so that on exit the array holds the transpose of A stored
in the same way. For example, if m ¼ 4 and n ¼ 3, on entry the array must hold:

a11 a21 a31 a41 a12 a22 a32 a42 a13 a23 a33 a43

and on exit it holds

a11 a12 a13 a21 a22 a23 a31 a32 a33 a41 a42 a43:

4 References

Cate E G and Twigg D W (1977) Algorithm 513: Analysis of in-situ transposition ACM Trans. Math.
Software 3 104–110

5 Arguments

1: AðMNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of the m by n matrix A, stored by columns.

On exit: the elements of the transpose matrix, also stored by columns.

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

4: MN – INTEGER Input

On entry: n, the value m� n.

5: MOVEðLMOVEÞ – INTEGER array Workspace
6: LMOVE – INTEGER Input

On entry: the dimension of the array MOVE as declared in the (sub)program from which
F01CRF is called.
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Suggested value: LMOVE ¼ mþ nð Þ=2.
Constraint: LMOVE � 1.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MN 6¼ M� N.

IFAIL ¼ 2

On entry, LMOVE � 0.

IFAIL < 0

A serious error has occurred. Check all subroutine calls and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Exact results are produced.

8 Parallelism and Performance

F01CRF is not threaded in any implementation.
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9 Further Comments

The time taken by F01CRF is approximately proportional to mn.

10 Example

This example transposes a 7 by 3 matrix and prints out, for convenience, its transpose.

10.1 Program Text

Program f01crfe

! F01CRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01crf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lmove, m, mn, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:)
Integer, Allocatable :: move(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F01CRF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
mn = m*n
lmove = (m+n)/2
Allocate (a(mn),move(lmove))
Do i = 1, mn

a(i) = real(i,kind=nag_wp)
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01crf(a,m,n,mn,move,lmove,ifail)

Write (nout,*)
Write (nout,99999) a(1:mn)

99999 Format (1X,7F7.1)
End Program f01crfe

10.2 Program Data

F01CRF Example Program Data
3 7 : m, n

10.3 Program Results

F01CRF Example Program Results

1.0 4.0 7.0 10.0 13.0 16.0 19.0
2.0 5.0 8.0 11.0 14.0 17.0 20.0
3.0 6.0 9.0 12.0 15.0 18.0 21.0
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NAG Library Routine Document

F01CTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01CTF adds two real matrices, each one optionally transposed and multiplied by a scalar.

2 Specification

SUBROUTINE F01CTF (TRANSA, TRANSB, M, N, ALPHA, A, LDA, BETA, B, LDB, C,
LDC, IFAIL)

&

INTEGER M, N, LDA, LDB, LDC, IFAIL
REAL (KIND=nag_wp) ALPHA, A(LDA,*), BETA, B(LDB,*), C(LDC,*)
CHARACTER(1) TRANSA, TRANSB

3 Description

F01CTF performs one of the operations

C�Aþ �B,

C�AT þ �B,
C�Aþ �BT or

C�AT þ �BT,

where A, B and C are matrices, and � and � are scalars. For efficiency, the routine contains special
code for the cases when one or both of �, � is equal to zero, unity or minus unity. The matrices, or their
transposes, must be compatible for addition. A and B are either m by n or n by m matrices, depending
on whether they are to be transposed before addition. C is an m by n matrix.

4 References

None.

5 Arguments

1: TRANSA – CHARACTER(1) Input
2: TRANSB – CHARACTER(1) Input

On entry: TRANSA and TRANSB must specify whether or not the matrix A and the matrix B,
respectively, are to be transposed before addition.

TRANSA or TRANSB ¼ N
The matrix will not be transposed.

TRANSA or TRANSB ¼ T or C
The matrix will be transposed.

Constraint: TRANSA or TRANSB ¼ N , T or C .

3: M – INTEGER Input

On entry: m, the number of rows of the matrices A and B or their transposes. Also the number of
rows of the matrix C.

Constraint: M � 0.
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4: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B or their transposes. Also the
number of columns of the matrix C.

Constraint: N � 0.

5: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �, by which matrix A is multiplied before addition.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ if TRANSA ¼ N , and at
least max 1;Mð Þ otherwise.
On entry: if � ¼ 0:0, the elements of array A need not be assigned. If � 6¼ 0:0, then if
TRANSA ¼ N , the leading m by n part of A must contain the matrix A, otherwise the leading n
by m part of A must contain the matrix A.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01CTF
is called.

Constraints:

if TRANSA ¼ N , LDA � max 1;Mð Þ;
otherwise LDA � max 1;Nð Þ.

8: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �, by which matrix B is multiplied before addition.

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ if TRANSB ¼ N , and at
least max 1;Mð Þ otherwise.
On entry: if � ¼ 0:0, the elements of array B need not be assigned. If � 6¼ 0:0, then if
TRANSA ¼ N , the leading m by n part of B must contain the matrix B, otherwise the leading n
by m part of B must contain the matrix B.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F01CTF
is called.

Constraints:

if TRANSB ¼ N , LDB � max 1;Mð Þ;
otherwise LDB � max 1;Nð Þ.

11: CðLDC; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On exit: the elements of the m by n matrix C.

12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F01CTF
is called.

Constraint: LDC � max 1;Mð Þ.
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13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, one or both of TRANSA or TRANSB is not equal to `N', `T' or `C'.

IFAIL ¼ 2

On entry, one or both of M or N is less than 0.

IFAIL ¼ 3

On entry, LDA < max 1; Pð Þ, where P ¼ M if TRANSA ¼ N , and P ¼ N otherwise.

IFAIL ¼ 4

On entry, LDB < max 1; Pð Þ, where P ¼ M if TRANSB ¼ N , and P ¼ N otherwise.

IFAIL ¼ 5

On entry, LDC < max 1;Mð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The results returned by F01CTF are accurate to machine precision.
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8 Parallelism and Performance

F01CTF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken for a call of F01CTF varies with M, N and the values of � and �. The routine is
quickest if either or both of � and � are equal to zero, or plus or minus unity.

10 Example

The following program reads in a pair of matrices A and B, along with values for TRANSA, TRANSB,
ALPHA and BETA, and adds them together, printing the result matrix C. The process is continued until
the end of the input stream is reached.

10.1 Program Text

Program f01ctfe

! F01CTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01ctf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, beta
Integer :: i, ifail, lda, ldb, ldc, m, n, &

ncola, ncolb, nrowa, nrowb
Character (1) :: transa, transb

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’F01CTF Example Program Results’

! Skip heading in data file
Read (nin,*)

100 Continue
! Skip Subexample heading

Read (nin,*,End=110)
Read (nin,*) nrowa, ncola, transa, alpha
Read (nin,*) nrowb, ncolb, transb, beta
lda = max(nrowa,ncola)
ldb = max(nrowb,ncolb)
ldc = lda
Allocate (a(lda,max(nrowa,ncola)),b(ldb,max(nrowb, &

ncolb)),c(ldc,max(nrowa,ncola)))
! Read matrices A and B.

Do i = 1, nrowa
Read (nin,*) a(i,1:ncola)

End Do
Do i = 1, nrowb

Read (nin,*) b(i,1:ncolb)
End Do
If (transa==’N’ .Or. transa==’n’) Then

m = nrowa
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n = ncola
Else

m = ncola
n = nrowa

End If

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Add the two matrices A and B.

Call f01ctf(transa,transb,m,n,alpha,a,lda,beta,b,ldb,c,ldc,ifail)

! Print the result matrix C.
Write (nout,99999) transa, transb, alpha, beta
Flush (nout)
Call x04caf(’G’,’X’,m,n,c,ldc,’Matrix C:’,ifail)
Write (nout,*)
Deallocate (a,b,c)
Go To 100

110 Continue

99999 Format (1X,/,1X,’TRANSA = ’’’,A,’’’, TRANSB = ’’’,A,’’’, ALPHA = ’,1P, &
E11.3,’, BETA = ’,E11.3)

End Program f01ctfe

10.2 Program Data

F01CTF Example Program Data
Example 1:
4 3 ’N’ 1.0 : nrowa, ncola, transa, alpha
4 3 ’N’ 1.0 : nrowb, ncolb, transb, beta

1.0 2.5 3.0 : Matrix A
-2.0 2.0 -1.5
3.5 2.0 -2.5
1.5 -2.0 1.0
2.0 -2.5 -2.0 : Matrix B
1.0 1.0 1.0

-1.5 2.5 -2.5
2.0 -2.0 1.0

Example 2:
3 5 ’N’ 1.0 : nrowa, ncola, transa, alpha
5 3 ’T’ -1.0 : nrowb, ncolb, transb, beta

1.0 2.5 3.0 1.5 2.5 : Matrix A
-2.0 2.0 -1.5 -2.0 -1.0
3.5 2.0 -2.5 -1.5 2.5
2.0 -2.5 -2.0 : Matrix B
1.0 1.0 1.0

-1.5 2.5 -2.5
2.0 -2.0 1.0
1.0 1.0 2.5

10.3 Program Results

F01CTF Example Program Results

TRANSA = ’N’, TRANSB = ’N’, ALPHA = 1.000E+00, BETA = 1.000E+00
Matrix C:

1 2 3
1 3.0000 0.0000 1.0000
2 -1.0000 3.0000 -0.5000
3 2.0000 4.5000 -5.0000
4 3.5000 -4.0000 2.0000

TRANSA = ’N’, TRANSB = ’T’, ALPHA = 1.000E+00, BETA = -1.000E+00
Matrix C:
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1 2 3 4 5
1 -1.0000 1.5000 4.5000 -0.5000 1.5000
2 0.5000 1.0000 -4.0000 0.0000 -2.0000
3 5.5000 1.0000 0.0000 -2.5000 0.0000

F01CTF NAG Library Manual

F01CTF.6 (last) Mark 26



NAG Library Routine Document

F01CWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01CWF adds two complex matrices, each one optionally transposed and multiplied by a scalar.

2 Specification

SUBROUTINE F01CWF (TRANSA, TRANSB, M, N, ALPHA, A, LDA, BETA, B, LDB, C,
LDC, IFAIL)

&

INTEGER M, N, LDA, LDB, LDC, IFAIL
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), BETA, B(LDB,*), C(LDC,*)
CHARACTER(1) TRANSA, TRANSB

3 Description

F01CWF performs one of the operations

C�Aþ �B,

C�AT þ �B,
C�AH þ �B,
C�Aþ �BT,

C�AT þ �BT,

C�AH þ �BT,

C�Aþ �BH,

C�AT þ �BH or

C�AH þ �BH,

where A, B and C are matrices, � and � are scalars, T denotes transposition and H denotes conjugate
transposition. For efficiency, the routine contains special code for the cases when one or both of �, � is
equal to zero, unity or minus unity. The matrices, or their transposes, must be compatible for addition.
A and B are either m by n or n by m matrices, depending on whether they are to be transposed before
addition. C is an m by n matrix.

4 References

None.

5 Arguments

1: TRANSA – CHARACTER(1) Input
2: TRANSB – CHARACTER(1) Input

On entry: TRANSA and TRANSB must specify whether or not the matrix A and the matrix B,
respectively, are to be transposed before addition.

TRANSA or TRANSB ¼ N
The matrix will not be transposed.
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TRANSA or TRANSB ¼ T
The matrix will be transposed.

TRANSA or TRANSB ¼ C
The matrix will be transposed and conjugated.

Constraint: TRANSA or TRANSB ¼ N , T or C .

3: M – INTEGER Input

On entry: m, the number of rows of the matrices A and B or their transposes. Also the number of
rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B or their transposes. Also the
number of columns of the matrix C.

Constraint: N � 0.

5: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �, by which matrix A is multiplied before addition.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ if ALPHA 6¼ 0 and
TRANSA ¼ N , max 1;Mð Þ if ALPHA 6¼ 0 and TRANSA ¼ T or C and at least 1 if
ALPHA ¼ 0.

On entry: the matrix A. If � ¼ 0, the array A is not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F01CWF is called.

Constraints:

if TRANSA ¼ N , LDA � max 1;Mð Þ;
otherwise LDA � max 1;Nð Þ.

8: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �, by which matrix B is multiplied before addition.

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ if BETA 6¼ 0 and
TRANSB ¼ N , max 1;Mð Þ if BETA 6¼ 0 and TRANSB ¼ T or C and at least 1 if BETA ¼ 0.

On entry: the matrix B. If � ¼ 0, the array B is not referenced.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F01CWF
is called.

Constraints:

if TRANSB ¼ N , LDB � max 1;Mð Þ;
otherwise LDB � max 1;Nð Þ.
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11: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On exit: the elements of the m by n matrix C.

12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F01CWF
is called.

Constraint: LDC � max 1;Mð Þ.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, one or both of TRANSA or TRANSB is not equal to `N', `T' or `C'.

IFAIL ¼ 2

On entry, one or both of M or N is less than 0.

IFAIL ¼ 3

On entry, LDA < max 1; Pð Þ, where P ¼ M if TRANSA ¼ N , and P ¼ N otherwise.

IFAIL ¼ 4

On entry, LDB < max 1; Pð Þ, where P ¼ M if TRANSB ¼ N , and P ¼ N otherwise.

IFAIL ¼ 5

On entry, LDC < max 1;Mð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The results returned by F01CWF are accurate to machine precision.

8 Parallelism and Performance

F01CWF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken for a call of F01CWF varies with M, N and the values of � and �. The routine is
quickest if either or both of � and � are equal to zero, or plus or minus unity.

10 Example

The following program reads in a pair of matrices A and B, along with values for TRANSA, TRANSB,
ALPHA and BETA, and adds them together, printing the result matrix C. The process is continued until
the end of the input stream is reached.

10.1 Program Text

Program f01cwfe

! F01CWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01cwf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: alpha, beta
Integer :: i, ifail, lda, ldb, ldc, m, n, &

ncola, ncolb, nrowa, nrowb
Character (1) :: transa, transb

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’F01CWF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

100 Continue
! Skip Subexample heading

Read (nin,*,End=110)
Read (nin,*) nrowa, ncola, transa, alpha
Read (nin,*) nrowb, ncolb, transb, beta
lda = max(nrowa,ncola)
ldb = max(nrowb,ncolb)
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ldc = lda
Allocate (a(lda,max(nrowa,ncola)),b(ldb,max(nrowb, &

ncolb)),c(ldc,max(nrowa,ncola)))
! Read matrices A and B.

Do i = 1, nrowa
Read (nin,*) a(i,1:ncola)

End Do
Do i = 1, nrowb

Read (nin,*) b(i,1:ncolb)
End Do
If (transa==’N’ .Or. transa==’n’) Then

m = nrowa
n = ncola

Else
m = ncola
n = nrowa

End If

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Add the two matrices A and B.

Call f01cwf(transa,transb,m,n,alpha,a,lda,beta,b,ldb,c,ldc,ifail)

! Print the result matrix C.
Write (nout,99999) transa, transb
Write (nout,99998) alpha, beta
Flush (nout)
Call x04daf(’G’,’X’,m,n,c,ldc,’Matrix C:’,ifail)
Write (nout,*)
Deallocate (a,b,c)
Go To 100

110 Continue

99999 Format (1X,’TRANSA = ’’’,A,’’’, TRANSB = ’’’,A,’’’,’)
99998 Format (1X,’ALPHA = (’,1P,E11.4,’,’,E11.4,’), BETA = (’,E11.4,’,’,E11.4, &

’)’)
End Program f01cwfe

10.2 Program Data

F01CWF Example Program Data
Example 1:
4 3 ’N’ (1.0, 0.0) : nrowa, ncola, transa, alpha
4 3 ’N’ (1.0, 0.0) : nrowb, ncolb, transb, beta

( 1.0, 2.0) ( 2.5,-1.5) ( 2.5,-1.0) : Matrix A
(-2.0,-2.0) ( 2.0,-1.0) (-1.5,-1.0)
( 3.5,-1.5) ( 2.0, 1.5) ( 2.0, 3.0)
(-2.5, 0.0) (-3.0, 2.5) (-2.0, 2.0)
( 2.0, 1.0) (-2.5, 3.0) (-0.5, 0.0) : Matrix B
( 1.0, 0.0) ( 1.0,-1.5) ( 1.5,-1.5)
(-1.5,-0.5) ( 2.5,-2.0) (-0.5, 1.0)
( 2.5,-1.5) (-1.0, 1.5) ( 2.0, 3.0)

Example 2:
2 3 ’N’ (1.0, 0.0) : nrowa, ncola, transa, alpha
3 2 ’T’ (-1.0, 0.0) : nrowb, ncolb, transb, beta

( 1.0, 1.0) ( 2.5,-1.5) ( 3.0, 1.5) : Matrix A
(-2.0,-0.5) ( 2.0, 1.5) (-1.5,-2.5)
( 2.0, 1.0) (-2.5, 2.0) : Matrix B
( 1.0, 0.0) ( 1.0, 1.5)
(-1.5,-0.5) ( 2.5,-1.0)

10.3 Program Results

F01CWF Example Program Results

TRANSA = ’N’, TRANSB = ’N’,
ALPHA = ( 1.0000E+00, 0.0000E+00), BETA = ( 1.0000E+00, 0.0000E+00)
Matrix C:

1 2 3
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1 3.0000 0.0000 2.0000
3.0000 1.5000 -1.0000

2 -1.0000 3.0000 0.0000
-2.0000 -2.5000 -2.5000

3 2.0000 4.5000 1.5000
-2.0000 -0.5000 4.0000

4 0.0000 -4.0000 0.0000
-1.5000 4.0000 5.0000

TRANSA = ’N’, TRANSB = ’T’,
ALPHA = ( 1.0000E+00, 0.0000E+00), BETA = (-1.0000E+00, 0.0000E+00)
Matrix C:

1 2 3
1 -1.0000 1.5000 4.5000

0.0000 -1.5000 2.0000

2 0.5000 1.0000 -4.0000
-2.5000 0.0000 -1.5000
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NAG Library Routine Document

F01ECF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01ECF computes the matrix exponential, eA, of a real n by n matrix A.

2 Specification

SUBROUTINE F01ECF (N, A, LDA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*)

3 Description

eA is computed using a Padé approximant and the scaling and squaring method described in Al–Mohy
and Higham (2009).

4 References

Al–Mohy A H and Higham N J (2009) A new scaling and squaring algorithm for the matrix
exponential SIAM J. Matrix Anal. 31(3) 970–989

Higham N J (2005) The scaling and squaring method for the matrix exponential revisited SIAM J.
Matrix Anal. Appl. 26(4) 1179–1193

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Moler C B and Van Loan C F (2003) Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later SIAM Rev. 45 3–49

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix exponential eA.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01ECF
is called.

Constraint: LDA � N.
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4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The linear equations to be solved for the Padé approximant are singular; it is likely that this
routine has been called incorrectly.

IFAIL ¼ 2

The linear equations to be solved are nearly singular and the Padé approximant probably has no
correct figures; it is likely that this routine has been called incorrectly.

IFAIL ¼ 3

eA has been computed using an IEEE double precision Padé approximant, although the arithmetic
precision is higher than IEEE double precision.

IFAIL ¼ 4

An unexpected internal error has occurred. Please contact NAG.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which ATA ¼ AAT) the computed matrix, eA, is guaranteed to be close to
the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-normal
matrices. See Al–Mohy and Higham (2009) and Section 10.3 of Higham (2008) for details and further
discussion.

If estimates of the condition number of the matrix exponential are required then F01JGF should be
used.

8 Parallelism and Performance

F01ECF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01ECF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is N, and the real allocatable memory required is
approximately 6� N2.

The cost of the algorithm is O n3
� �

; see Section 5 of of Al–Mohy and Higham (2009). The real
allocatable memory required is approximately 6 � n2.
If the Fréchet derivative of the matrix exponential is required then F01JHF should be used.

As well as the excellent book cited above, the classic reference for the computation of the matrix
exponential is Moler and Van Loan (2003).

10 Example

This example finds the matrix exponential of the matrix

A ¼
1 2 2 2
3 1 1 2
3 2 1 2
3 3 3 1

0B@
1CA:

10.1 Program Text

Program f01ecfe

! F01ECF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01ecf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01ECF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Find exp( A )

Call f01ecf(n,a,lda,ifail)

! Print solution
Call x04caf(’General’,’ ’,n,n,a,lda,’Exp(A)’,ifail)

End Program f01ecfe

10.2 Program Data

F01ECF Example Program Data

4 : n

1.0 2.0 2.0 2.0
3.0 1.0 1.0 2.0
3.0 2.0 1.0 2.0
3.0 3.0 3.0 1.0 : a

10.3 Program Results

F01ECF Example Program Results

Exp(A)
1 2 3 4

1 740.7038 610.8500 542.2743 549.1753
2 731.2510 603.5524 535.0884 542.2743
3 823.7630 679.4257 603.5524 610.8500
4 998.4355 823.7630 731.2510 740.7038

F01ECF NAG Library Manual

F01ECF.4 (last) Mark 26



NAG Library Routine Document

F01EDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01EDF computes the matrix exponential, eA, of a real symmetric n by n matrix A.

2 Specification

SUBROUTINE F01EDF (UPLO, N, A, LDA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*)
CHARACTER(1) UPLO

3 Description

eA is computed using a spectral factorization of A

A ¼ QDQT;

where D is the diagonal matrix whose diagonal elements, di, are the eigenvalues of A, and Q is an
orthogonal matrix whose columns are the eigenvectors of A. eA is then given by

eA ¼ QeDQT;

where eD is the diagonal matrix whose ith diagonal element is edi . See for example Section 4.5 of
Higham (2008).

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Moler C B and Van Loan C F (2003) Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later SIAM Rev. 45 3–49

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if IFAIL ¼ 0, the upper or lower triangular part of the n by n matrix exponential, eA.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EDF
is called.

Constraint: LDA � max 1;Nð Þ.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0

The computation of the spectral factorization failed to converge.

IFAIL ¼ �1
On entry, UPLO ¼ valueh i.
Constraint: UPLO ¼ L or U .

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
An internal error occurred when computing the spectral factorization. Please contact NAG.

IFAIL ¼ �4
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a symmetric matrix A, the matrix eA, has the relative condition number

� Að Þ ¼ Ak k2;

which is the minimum possible for the matrix exponential and so the computed matrix exponential is
guaranteed to be close to the exact matrix. See Section 10.2 of Higham (2008) for details and further
discussion.

8 Parallelism and Performance

F01EDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01EDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is N, and the real allocatable memory required is
approximately Nþ nbþ 4ð Þ � N, where nb is the block size required by F08FAF (DSYEV).

The cost of the algorithm is O n3
� �

.

As well as the excellent book cited above, the classic reference for the computation of the matrix
exponential is Moler and Van Loan (2003).

10 Example

This example finds the matrix exponential of the symmetric matrix

A ¼
1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

0B@
1CA
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10.1 Program Text

Program f01edfe

! F01EDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01edf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01EDF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Read (nin,*) uplo
lda = n
Allocate (a(lda,n))

! Read A from data file
If (uplo==’U’ .Or. uplo==’u’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else

Read (nin,*)(a(i,1:i),i=1,n)
End If

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Find exp( A )

Call f01edf(uplo,n,a,lda,ifail)

! Print solution
Call x04caf(uplo,’N’,n,n,a,lda,’Symmetric Exp(A)’,ifail)

End Program f01edfe

10.2 Program Data

F01EDF Example Program Data

4 : n
’U’ : uplo

1.0 2.0 3.0 4.0
1.0 2.0 3.0

1.0 2.0
1.0 : a
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10.3 Program Results

F01EDF Example Program Results

Symmetric Exp(A)
1 2 3 4

1 2675.3899 2193.0210 2193.2062 2675.2803
2 1798.3297 1797.8497 2193.2062
3 1798.3297 2193.0210
4 2675.3899
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NAG Library Routine Document

F01EFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01EFF computes the matrix function, f Að Þ, of a real symmetric n by n matrix A. f Að Þ must also be a
real symmetric matrix.

2 Specification

SUBROUTINE F01EFF (UPLO, N, A, LDA, F, IUSER, RUSER, IFLAG, IFAIL)

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) A(LDA,*), RUSER(*)
CHARACTER(1) UPLO
EXTERNAL F

3 Description

f Að Þ is computed using a spectral factorization of A

A ¼ QDQT;

where D is the diagonal matrix whose diagonal elements, di, are the eigenvalues of A, and Q is an
orthogonal matrix whose columns are the eigenvectors of A. f Að Þ is then given by

f Að Þ ¼ Qf Dð ÞQT;

where f Dð Þ is the diagonal matrix whose ith diagonal element is f dið Þ. See for example Section 4.5 of
Higham (2008). f dið Þ is assumed to be real.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n symmetric matrix A.
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If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if IFAIL ¼ 0, the upper or lower triangular part of the n by n matrix function, f Að Þ.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EFF
is called.

Constraint: LDA � max 1;Nð Þ.

5: F – SUBROUTINE, supplied by the user. External Procedure

The subroutine F evaluates f zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (IFLAG, N, X, FX, IUSER, RUSER)

INTEGER IFLAG, N, IUSER(*)
REAL (KIND=nag_wp) X(N), FX(N), RUSER(*)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f xð Þ; for instance
f xð Þ may not be defined, or may be complex. If IFLAG is returned as nonzero then
F01EFF will terminate the computation, with IFAIL ¼ �6.

2: N – INTEGER Input

On entry: n, the number of function values required.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n points x1; x2; . . . ; xn at which the function f is to be evaluated.

4: FXðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n function values. FXðiÞ should return the value f xið Þ, for i ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to F01EFF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F01EFF is called. Arguments denoted as Input must not be changed by this
procedure.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01EFF, but are passed directly to F and should be used to
pass information to this routine.
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8: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless you have set IFLAG nonzero inside F, in which case IFLAG will be
the value you set and IFAIL will be set to IFAIL ¼ �6.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0

The computation of the spectral factorization failed to converge.

IFAIL ¼ �1
On entry, UPLO ¼ valueh i.
Constraint: UPLO ¼ L or U .

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
An internal error occurred when computing the spectral factorization. Please contact NAG.

IFAIL ¼ �4
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �6
IFLAG was set to a nonzero value in F.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Provided that f Dð Þ can be computed accurately then the computed matrix function will be close to the
exact matrix function. See Section 10.2 of Higham (2008) for details and further discussion.

8 Parallelism and Performance

F01EFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01EFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is N, and the real allocatable memory required is
approximately Nþ nbþ 4ð Þ � N, where nb is the block size required by F08FAF (DSYEV).

The cost of the algorithm is O n3
� �

plus the cost of evaluating f Dð Þ. If �̂i is the ith computed

eigenvalue of A, then the user-supplied subroutine F will be asked to evaluate the function f at f �̂i

� �
,

i ¼ 1; 2; . . . ; n.

For further information on matrix functions, see Higham (2008).

F01FFF can be used to find the matrix function f Að Þ for a complex Hermitian matrix A.

10 Example

This example finds the matrix cosine, cos Að Þ, of the symmetric matrix

A ¼
1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

0B@
1CA:

10.1 Program Text

! F01EFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f01effe_mod

! F01EFF Example Program Module:
! Parameters and User-defined Routines

! nin: the input channel number
! nout: the output channel number

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None
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! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine f(iflag,n,x,fx,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fx(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
fx(1:n) = cos(x(1:n))

Return
End Subroutine f

End Module f01effe_mod
Program f01effe

! F01EFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01eff, nag_wp, x04caf
Use f01effe_mod, Only: f, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ierr, ifail, iflag, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01EFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Read (nin,*) uplo

lda = n
Allocate (a(lda,n))

! Read A from data file

If (uplo==’U’ .Or. uplo==’u’) Then
Read (nin,*)(a(i,i:n),i=1,n)

Else
Read (nin,*)(a(i,1:i),i=1,n)

End If

! Find f( A )

ifail = 0
Call f01eff(uplo,n,a,lda,f,iuser,ruser,iflag,ifail)

! Print solution

ierr = 0
Call x04caf(uplo,’N’,n,n,a,lda,’Symmetric f(A)’,ierr)

End Program f01effe
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10.2 Program Data

F01EFF Example Program Data

4 :Value of N
’U’ :Value of UPLO

1.0 2.0 3.0 4.0
1.0 2.0 3.0

1.0 2.0
1.0 :End of matrix A

10.3 Program Results

F01EFF Example Program Results

Symmetric f(A)
1 2 3 4

1 -0.5420 -0.6612 -0.0261 0.1580
2 0.2306 -0.3396 -0.0261
3 0.2306 -0.6612
4 -0.5420
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NAG Library Routine Document

F01EJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01EJF computes the principal matrix logarithm, log Að Þ, of a real n by n matrix A, with no
eigenvalues on the closed negative real line.

2 Specification

SUBROUTINE F01EJF (N, A, LDA, IMNORM, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), IMNORM

3 Description

Any nonsingular matrix A has infinitely many logarithms. For a matrix with no eigenvalues on the
closed negative real line, the principal logarithm is the unique logarithm whose spectrum lies in the
strip z : �	 < Im zð Þ < 	f g.
log Að Þ is computed using the inverse scaling and squaring algorithm for the matrix logarithm described
in Al–Mohy and Higham (2011), adapted to real matrices by Al–Mohy et al. (2012).

4 References

Al–Mohy A H and Higham N J (2011) Improved inverse scaling and squaring algorithms for the matrix
logarithm SIAM J. Sci. Comput. 34(4) C152–C169

Al–Mohy A H, Higham N J and Relton S D (2012) Computing the Fréchet derivative of the matrix
logarithm and estimating the condition number SIAM J. Sci. Comput. 35(4) C394–C410

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix logarithm, log Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EJF
is called.

Constraint: LDA � N.
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4: IMNORM – REAL (KIND=nag_wp) Output

On exit: if the routine has given a reliable answer then IMNORM ¼ 0:0. If IMNORM differs
from 0:0 by more than unit roundoff (as returned by X02AJF) then the computed matrix
logarithm is unreliable.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A is singular so the logarithm cannot be computed.

IFAIL ¼ 2

A was found to have eigenvalues on the negative real line. The principal logarithm is not defined
in this case. F01FJF can be used to find a complex non-principal logarithm.

IFAIL ¼ 3

log Að Þ has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.

IFAIL ¼ 4

An unexpected internal error occurred. Please contact NAG.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which ATA ¼ AAT), the Schur decomposition is diagonal and the algorithm
reduces to evaluating the logarithm of the eigenvalues of A and then constructing log Að Þ using the
Schur vectors. This should give a very accurate result. In general, however, no error bounds are
available for the algorithm. See Al–Mohy and Higham (2011) and Section 9.4 of Higham (2008) for
details and further discussion.

The sensitivity of the computation of log Að Þ is worst when A has an eigenvalue of very small modulus
or has a complex conjugate pair of eigenvalues lying close to the negative real axis.

If estimates of the condition number of the matrix logarithm are required then F01JJF should be used.

8 Parallelism and Performance

F01EJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01EJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is O n3
� �

floating-point operations (see Al–Mohy and Higham (2011)). The
real allocatable memory required is approximately 3� n2.
If the Fréchet derivative of the matrix logarithm is required then F01JKF should be used.

F01FJF can be used to find the principal logarithm of a complex matrix. It can also be used to return a
complex, non-principal logarithm if a real matrix has no principal logarithm due to the presence of
negative eigenvalues.

10 Example

This example finds the principal matrix logarithm of the matrix

A ¼
3 �3 1 1
2 1 �2 1
1 1 3 �1
2 0 2 0

0B@
1CA:

10.1 Program Text

Program f01ejfe

! F01EJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01ejf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: imnorm
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01EJF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find log( A )
Call f01ejf(n,a,lda,imnorm,ifail)

! Print solution
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’log(A)’,ifail)

End Program f01ejfe

10.2 Program Data

F01EJF Example Program Data

4 :Value of N

3.0 -3.0 1.0 1.0
2.0 1.0 -2.0 1.0
1.0 1.0 3.0 -1.0
2.0 0.0 2.0 0.0 :End of matrix A

10.3 Program Results

F01EJF Example Program Results

log(A)
1 2 3 4

1 1.1957 -1.2076 -0.5802 1.0872
2 0.8464 1.0133 -0.5985 -0.1641
3 0.4389 0.6701 1.8449 -1.2111
4 1.2792 0.6177 2.1448 -1.9743
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NAG Library Routine Document

F01EKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01EKF computes the matrix exponential, sine, cosine, sinh or cosh, of a real n by n matrix A using
the Schur–Parlett algorithm.

2 Specification

SUBROUTINE F01EKF (FUN, N, A, LDA, IMNORM, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), IMNORM
CHARACTER(*) FUN

3 Description

f Að Þ, where f is either the exponential, sine, cosine, sinh or cosh, is computed using the Schur–Parlett
algorithm described in Higham (2008) and Davies and Higham (2003).

4 References

Davies P I and Higham N J (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J.
Matrix Anal. Appl. 25(2) 464–485

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: FUN – CHARACTER(*) Input

On entry: indicates which matrix function will be computed.

FUN ¼ EXP
The matrix exponential, eA, will be computed.

FUN ¼ SIN
The matrix sine, sin Að Þ, will be computed.

FUN ¼ COS
The matrix cosine, cos Að Þ, will be computed.

FUN ¼ SINH
The hyperbolic matrix sine, sinh Að Þ, will be computed.

FUN ¼ COSH
The hyperbolic matrix cosine, cosh Að Þ, will be computed.

Constraint: FUN ¼ EXP , SIN , COS , SINH or COSH.

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EKF
is called.

Constraint: LDA � N.

5: IMNORM – REAL (KIND=nag_wp) Output

On exit: if A has complex eigenvalues, F01EKF will use complex arithmetic to compute the
matrix function. The imaginary part is discarded at the end of the computation, because it will
theoretically vanish. IMNORM contains the 1-norm of the imaginary part, which should be used
to check that the routine has given a reliable answer.

If A has real eigenvalues, F01EKF uses real arithmetic and IMNORM ¼ 0.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A Taylor series failed to converge.

IFAIL ¼ 2

An unexpected internal error occurred when evaluating the function at a point. Please contact
NAG.

IFAIL ¼ 3

There was an error whilst reordering the Schur form of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 4

The routine was unable to compute the Schur decomposition of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.
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IFAIL ¼ 5

An unexpected internal error occurred. Please contact NAG.

IFAIL ¼ 6

The linear equations to be solved are nearly singular and the Padé approximant used to compute
the exponential may have no correct figures.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ �1
On entry, FUN ¼ valueh i was an illegal value.

IFAIL ¼ �2
Input argument number valueh i is invalid.

IFAIL ¼ �4
On entry, argument LDA is invalid.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which ATA ¼ AAT), the Schur decomposition is diagonal and the algorithm
reduces to evaluating f at the eigenvalues of A and then constructing f Að Þ using the Schur vectors.
This should give a very accurate result. In general, however, no error bounds are available for the
algorithm.

For further discussion of the Schur–Parlett algorithm see Section 9.4 of Higham (2008).

8 Parallelism and Performance

F01EKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation.

F01EKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The integer allocatable memory required is n. If A has real eigenvalues then up to 9n2 of real
allocatable memory may be required. If A has complex eigenvalues then up to 9n2 of complex
allocatable memory may be required.

The cost of the Schur–Parlett algorithm depends on the spectrum of A, but is roughly between 28n3

and n4=3 floating-point operations; see Algorithm 9.6 of Higham (2008).

If the matrix exponential is required then it is recommended that F01ECF be used. F01ECF uses an
algorithm which is, in general, more accurate than the Schur–Parlett algorithm used by F01EKF.

If estimates of the condition number of the matrix function are required then F01JAF should be used.

F01FKF can be used to find the matrix exponential, sin, cos, sinh or cosh of a complex matrix.

10 Example

This example finds the matrix cosine of the matrix

A ¼
2 0 1 0
0 2 �2 1
0 2 3 1
1 4 0 0

0B@
1CA:

10.1 Program Text

Program f01ekfe

! F01EKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01ekf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: imnorm
Integer :: i, ifail, lda, n
Character (4) :: fun
Character (20) :: fun_name

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01EKF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, fun

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Find f( A )
ifail = 0
Call f01ekf(fun,n,a,lda,imnorm,ifail)

! Print solution
Write (fun_name,Fmt=’(3(A))’) ’F(A) = ’, fun, ’(A)’
Write (nout,*)

ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,fun_name,ifail)
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! Print the norm of the imaginary part to check it is small
Write (nout,*)
Write (nout,Fmt=’(1X,A,F6.2)’) ’Imnorm =’, imnorm

End Program f01ekfe

10.2 Program Data

F01EKF Example Program Data

4 COS :Values of N and FUN

2.0 0.0 1.0 0.0
0.0 2.0 -2.0 1.0
0.0 2.0 3.0 1.0
1.0 4.0 0.0 0.0 :End of matrix A

10.3 Program Results

F01EKF Example Program Results

F(A) = COS (A)
1 2 3 4

1 -0.2998 1.5003 -0.7849 0.4677
2 -0.2385 -3.2657 0.5812 -1.1460
3 0.4677 0.3008 -4.0853 -0.2200
4 -0.2107 -2.8199 -1.2964 -0.8325

Imnorm = 0.00
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NAG Library Routine Document

F01ELF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01ELF computes the matrix function, f Að Þ, of a real n by n matrix A. Numerical differentiation is
used to evaluate the derivatives of f when they are required.

2 Specification

SUBROUTINE F01ELF (N, A, LDA, F, IUSER, RUSER, IFLAG, IMNORM, IFAIL)

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) A(LDA,*), RUSER(*), IMNORM
EXTERNAL F

3 Description

f Að Þ is computed using the Schur–Parlett algorithm described in Higham (2008) and Davies and
Higham (2003). The coefficients of the Taylor series used in the algorithm are evaluated using the
numerical differentiation algorithm of Lyness and Moler (1967).

The scalar function f is supplied via subroutine F which evaluates f zið Þ at a number of points zi.

4 References

Davies P I and Higham N J (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J.
Matrix Anal. Appl. 25(2) 464–485

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Lyness J N and Moler C B (1967) Numerical differentiation of analytic functions SIAM J. Numer. Anal.
4(2) 202–210

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01ELF
is called.

Constraint: LDA � N.
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4: F – SUBROUTINE, supplied by the user. External Procedure

The subroutine F evaluates f zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (IFLAG, NZ, Z, FZ, IUSER, RUSER)

INTEGER IFLAG, NZ, IUSER(*)
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) Z(NZ), FZ(NZ)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f zið Þ; for instance
f zið Þ may not be defined. If IFLAG is returned as nonzero then F01ELF will terminate
the computation, with IFAIL ¼ 2.

2: NZ – INTEGER Input

On entry: nz, the number of function values required.

3: ZðNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nz points z1; z2; . . . ; znz at which the function f is to be evaluated.

4: FZðNZÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the nz function values. FZðiÞ should return the value f zið Þ, for i ¼ 1; 2; . . . ; nz.
If zi lies on the real line, then so must f zið Þ.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to F01ELF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F01ELF is called. Arguments denoted as Input must not be changed by this
procedure.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01ELF, but are passed directly to F and should be used to
pass information to this routine.

7: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless IFLAG has been set nonzero inside F, in which case IFLAG will be
the value set and IFAIL will be set to IFAIL ¼ 2.

8: IMNORM – REAL (KIND=nag_wp) Output

On exit: if A has complex eigenvalues, F01ELF will use complex arithmetic to compute f Að Þ.
The imaginary part is discarded at the end of the computation, because it will theoretically
vanish. IMNORM contains the 1-norm of the imaginary part, which should be used to check that
the routine has given a reliable answer.

If A has real eigenvalues, F01ELF uses real arithmetic and IMNORM ¼ 0.
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9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A Taylor series failed to converge after 40 terms. Further Taylor series coefficients can no longer
reliably be obtained by numerical differentiation.

IFAIL ¼ 2

IFLAG has been set nonzero by the user.

IFAIL ¼ 3

There was an error whilst reordering the Schur form of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 4

The routine was unable to compute the Schur decomposition of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 5

An unexpected internal error occurred. Please contact NAG.

IFAIL ¼ �1
Input argument number valueh i is invalid.

IFAIL ¼ �3
On entry, argument LDA is invalid.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which ATA ¼ AAT) the Schur decomposition is diagonal and the algorithm
reduces to evaluating f at the eigenvalues of A and then constructing f Að Þ using the Schur vectors. See
Section 9.4 of Higham (2008) for further discussion of the Schur–Parlett algorithm, and Lyness and
Moler (1967) for a discussion of numerical differentiation.

8 Parallelism and Performance

F01ELF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

F01ELF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is n. If A has real eigenvalues then up to 6n2 of real
allocatable memory may be required. If A has complex eigenvalues then up to 6n2 of complex
allocatable memory may be required.

The cost of the Schur–Parlett algorithm depends on the spectrum of A, but is roughly between 28n3

and n4=3 floating-point operations. There is an additional cost in numerically differentiating f , in order
to obtain the Taylor series coefficients. If the derivatives of f are known analytically, then F01EMF can
be used to evaluate f Að Þ more accurately. If A is real symmetric then it is recommended that F01EFF
be used as it is more efficient and, in general, more accurate than F01ELF.

For any z on the real line, f zð Þ must be real. f must also be complex analytic on the spectrum of A.
These conditions ensure that f Að Þ is real for real A.

For further information on matrix functions, see Higham (2008).

If estimates of the condition number of the matrix function are required then F01JBF should be used.

F01FLF can be used to find the matrix function f Að Þ for a complex matrix A.

10 Example

This example finds cos 2A where

A ¼
3 0 1 2
�1 1 3 1
0 2 2 1
2 1 �1 1

0B@
1CA:
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10.1 Program Text

! F01ELF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Module f01elfe_mod

! F01ELF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcos2

Contains
Subroutine fcos2(iflag,nz,z,fz,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: nz

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: fz(nz)
Complex (Kind=nag_wp), Intent (In) :: z(nz)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
Continue
fz(1:nz) = cos((2.0E0_nag_wp,0.0E0_nag_wp)*z(1:nz))

! Set iflag nonzero to terminate execution for any reason.
iflag = 0
Return

End Subroutine fcos2
End Module f01elfe_mod
Program f01elfe

! F01ELF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01elf, nag_wp, x04caf
Use f01elfe_mod, Only: fcos2

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: imnorm
Integer :: i, ifail, iflag, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01ELF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)
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! Find f( A )
ifail = 0
Call f01elf(n,a,lda,fcos2,iuser,ruser,iflag,imnorm,ifail)

! Print solution
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’F(A) = COS(2A)’,ifail)

! Print the norm of the imaginary part to check it is small
Write (nout,*)
Write (nout,Fmt=’(1X,A,F6.2)’) ’Imnorm =’, imnorm

End Program f01elfe

10.2 Program Data

F01ELF Example Program Data

4 :Value of N

3.0 0.0 1.0 2.0
-1.0 1.0 3.0 1.0
0.0 2.0 2.0 1.0
2.0 1.0 -1.0 1.0 :End of matrix A

10.3 Program Results

F01ELF Example Program Results

F(A) = COS(2A)
1 2 3 4

1 -0.1704 -1.1597 -0.1878 -0.7307
2 -0.3950 -0.4410 0.7606 0.0655
3 -0.0950 -0.0717 0.0619 -0.4351
4 -0.1034 0.6424 -1.3964 0.1042

Imnorm = 0.00
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NAG Library Routine Document

F01EMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01EMF computes the matrix function, f Að Þ, of a real n by n matrix A, using analytical derivatives of
f you have supplied.

2 Specification

SUBROUTINE F01EMF (N, A, LDA, F, IUSER, RUSER, IFLAG, IMNORM, IFAIL)

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) A(LDA,*), RUSER(*), IMNORM
EXTERNAL F

3 Description

f Að Þ is computed using the Schur–Parlett algorithm described in Higham (2008) and Davies and
Higham (2003).

The scalar function f , and the derivatives of f , are returned by the subroutine F which, given an integer
m, should evaluate f mð Þ zið Þ at a number of (generally complex) points zi, for i ¼ 1; 2; . . . ; nz. For any z
on the real line, f zð Þ must also be real. F01EMF is therefore appropriate for functions that can be
evaluated on the complex plane and whose derivatives, of arbitrary order, can also be evaluated on the
complex plane.

4 References

Davies P I and Higham N J (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J.
Matrix Anal. Appl. 25(2) 464–485

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EMF
is called.

Constraint: LDA � N.
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4: F – SUBROUTINE, supplied by the user. External Procedure

Given an integer m, the subroutine F evaluates f mð Þ zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (M, IFLAG, NZ, Z, FZ, IUSER, RUSER)

INTEGER M, IFLAG, NZ, IUSER(*)
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) Z(NZ), FZ(NZ)

1: M – INTEGER Input

On entry: the order, m, of the derivative required.

If M ¼ 0, f zið Þ should be returned. For M > 0, f mð Þ zið Þ should be returned.

2: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f zð Þ; for instance
f zið Þ may not be defined for a particular zi. If IFLAG is returned as nonzero then
F01EMF will terminate the computation, with IFAIL ¼ 2.

3: NZ – INTEGER Input

On entry: nz, the number of function or derivative values required.

4: ZðNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nz points z1; z2; . . . ; znz at which the function f is to be evaluated.

5: FZðNZÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the nz function or derivative values. FZðiÞ should return the value f mð Þ zið Þ, for
i ¼ 1; 2; . . . ; nz. If zi lies on the real line, then so must f mð Þ zið Þ.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to F01EMF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F01EMF is called. Arguments denoted as Input must not be changed by this
procedure.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01EMF, but are passed directly to F and should be used to
pass information to this routine.

7: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless IFLAG has been set nonzero inside F, in which case IFLAG will be
the value set and IFAIL will be set to IFAIL ¼ 2.

8: IMNORM – REAL (KIND=nag_wp) Output

On exit: if A has complex eigenvalues, F01EMF will use complex arithmetic to compute f Að Þ.
The imaginary part is discarded at the end of the computation, because it will theoretically
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vanish. IMNORM contains the 1-norm of the imaginary part, which should be used to check that
the routine has given a reliable answer.

If A has real eigenvalues, F01EMF uses real arithmetic and IMNORM ¼ 0.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A Taylor series failed to converge.

IFAIL ¼ 2

IFLAG has been set nonzero by the user.

IFAIL ¼ 3

There was an error whilst reordering the Schur form of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 4

The routine was unable to compute the Schur decomposition of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 5

An unexpected internal error occurred. Please contact NAG.

IFAIL ¼ �1
Input argument number valueh i is invalid.

IFAIL ¼ �3
On entry, argument LDA is invalid.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which ATA ¼ AAT), the Schur decomposition is diagonal and the algorithm
reduces to evaluating f at the eigenvalues of A and then constructing f Að Þ using the Schur vectors.
This should give a very accurate result. In general, however, no error bounds are available for the
algorithm. See Section 9.4 of Higham (2008) for further discussion of the Schur–Parlett algorithm.

8 Parallelism and Performance

F01EMF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

F01EMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If A has real eigenvalues then up to 6n2 of real allocatable memory may be required. If A has complex
eigenvalues then up to 6n2 of complex allocatable memory may be required.

The cost of the Schur–Parlett algorithm depends on the spectrum of A, but is roughly between 28n3

and n4=3 floating-point operations. There is an additional cost in evaluating f and its derivatives. If the
derivatives of f are not known analytically, then F01ELF can be used to evaluate f Að Þ using numerical
differentiation. If A is real symmetric then it is recommended that F01EFF be used as it is more
efficient and, in general, more accurate than F01EMF.

For any z on the real line, f zð Þ must be real. f must also be complex analytic on the spectrum of A.
These conditions ensure that f Að Þ is real for real A.

For further information on matrix functions, see Higham (2008).

If estimates of the condition number of the matrix function are required then F01JCF should be used.

F01FMF can be used to find the matrix function f Að Þ for a complex matrix A.

F01EMF NAG Library Manual

F01EMF.4 Mark 26



10 Example

This example finds the e2A where

A ¼
1 0 �2 1
�1 2 0 1
2 0 1 0
1 0 �1 2

0B@
1CA:

10.1 Program Text

! F01EMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Module f01emfe_mod

! F01EMF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fexp2

Contains
Subroutine fexp2(m,iflag,nz,z,fz,iuser,ruser)

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: two = (2.0E0_nag_wp,0.0E0_nag_wp)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: m, nz

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: fz(nz)
Complex (Kind=nag_wp), Intent (In) :: z(nz)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Continue
fz(1:nz) = (two**m)*exp(two*z(1:nz))

! Set iflag nonzero to terminate execution for any reason.
iflag = 0
Return

End Subroutine fexp2
End Module f01emfe_mod
Program f01emfe

! F01EMF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01emf, nag_wp, x04caf
Use f01emfe_mod, Only: fexp2

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: imnorm
Integer :: i, ifail, iflag, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
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Write (nout,*) ’F01EMF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Find f( A )
ifail = 0
Call f01emf(n,a,lda,fexp2,iuser,ruser,iflag,imnorm,ifail)

! Print solution
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’F(A) = EXP(2A)’,ifail)

! Print the norm of the imaginary part to check it is small
Write (nout,*)
Write (nout,Fmt=’(1X,A,F6.2)’) ’Imnorm =’, imnorm

End Program f01emfe

10.2 Program Data

F01EMF Example Program Data

4 :Value of N

1.0 0.0 -2.0 1.0
-1.0 2.0 0.0 1.0
2.0 0.0 1.0 0.0
1.0 0.0 -1.0 2.0 :End of matrix A

10.3 Program Results

F01EMF Example Program Results

F(A) = EXP(2A)
1 2 3 4

1 -12.1880 0.0000 -3.4747 8.3697
2 -13.7274 54.5982 -23.9801 82.8593
3 -9.7900 0.0000 -25.4527 26.5294
4 -18.1597 0.0000 -34.8991 49.2404

Imnorm = 0.00

F01EMF NAG Library Manual

F01EMF.6 (last) Mark 26



NAG Library Routine Document

F01ENF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01ENF computes the principal matrix square root, A1=2, of a real n by n matrix A.

2 Specification

SUBROUTINE F01ENF (N, A, LDA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*)

3 Description

A square root of a matrix A is a solution X to the equation X2 ¼ A. A nonsingular matrix has multiple
square roots. For a matrix with no eigenvalues on the closed negative real line, the principal square
root, denoted by A1=2, is the unique square root whose eigenvalues lie in the open right half-plane.

A1=2 is computed using the algorithm described in Higham (1987). This is a real arithmetic version of
the algorithm of BjÎrck and Hammarling (1983). In addition a blocking scheme described in Deadman
et al. (2013) is used.

4 References

BjÎrck Ð and Hammarling S (1983) A Schur method for the square root of a matrix Linear Algebra
Appl. 52/53 127–140

Deadman E, Higham N J and Ralha R (2013) Blocked Schur Algorithms for Computing the Matrix
Square Root Applied Parallel and Scientific Computing: 11th International Conference, (PARA 2012,
Helsinki, Finland) P. Manninen and P. Úster, Eds Lecture Notes in Computer Science 7782 171–181
Springer–Verlag

Higham N J (1987) Computing real square roots of a real matrix Linear Algebra Appl. 88/89 405–430

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: contains, if IFAIL ¼ 0, the n by n principal matrix square root, A1=2. Alternatively, if
IFAIL ¼ 1, contains an n by n non-principal square root of A.
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3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01ENF
is called.

Constraint: LDA � N.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has a semisimple vanishing eigenvalue. A non-principal square root is returned.

IFAIL ¼ 2

A has a defective vanishing eigenvalue. The square root cannot be found in this case.

IFAIL ¼ 3

A has a negative real eigenvalue. The principal square root is not defined. F01FNF can be used
to return a complex, non-principal square root.

IFAIL ¼ 4

An internal error occurred. It is likely that the routine was called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed square root X̂ satisfies X̂2 ¼ Aþ�A, where �Ak kF � O �ð Þn3 X̂
�� ��2

F
, where � is

machine precision.

For further discussion of the condition of the matrix square root see Section 6.1 of Higham (2008).

8 Parallelism and Performance

F01ENF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01ENF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is 85n3=3 floating-point operations; see Algorithm 6.7 of Higham (2008).
O 2� n2
� �

of real allocatable memory is required by the routine.

If condition number and residual bound estimates are required, then F01JDF should be used.

10 Example

This example finds the principal matrix square root of the matrix

A ¼
507 622 300 �202
237 352 126 �60
751 950 440 �286
�286 �326 �192 150

0B@
1CA:

10.1 Program Text

Program f01enfe

! F01ENF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01enf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01ENF Example Program Results’
Write (nout,*)

! Skip heading in data file
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Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find sqrt(A)
Call f01enf(n,a,lda,ifail)

! Print solution
If (ifail==0) Then

ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’sqrt(A)’,ifail)

End If

End Program f01enfe

10.2 Program Data

F01ENF Example Program Data

4 :Value of N

507.0 622.0 300.0 -202.0
237.0 352.0 126.0 -60.0
751.0 950.0 440.0 -286.0

-286.0 -326.0 -192.0 150.0 :End of matrix A

10.3 Program Results

F01ENF Example Program Results

sqrt(A)
1 2 3 4

1 1.5000E+01 1.4000E+01 8.0000E+00 -6.0000E+00
2 6.0000E+00 1.4000E+01 3.0000E+00 9.6589E-15
3 2.1000E+01 2.4000E+01 1.2000E+01 -8.0000E+00
4 -5.0000E+00 -4.0000E+00 -7.0000E+00 8.0000E+00
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NAG Library Routine Document

F01EPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01EPF computes the principal matrix square root, A1=2, of a real upper quasi-triangular n by n matrix
A.

2 Specification

SUBROUTINE F01EPF (N, A, LDA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*)

3 Description

A square root of a matrix A is a solution X to the equation X2 ¼ A. A nonsingular matrix has multiple
square roots. For a matrix with no eigenvalues on the closed negative real line, the principal square
root, denoted by A1=2, is the unique square root whose eigenvalues lie in the open right half-plane.

F01EPF computes A1=2, where A is an upper quasi-triangular matrix, with 1� 1 and 2� 2 blocks on
the diagonal. Such matrices arise from the Schur factorization of a real general matrix, as computed by
F08PEF (DHSEQR), for example. F01EPF does not require A to be in the canonical Schur form
described in F08PEF (DHSEQR), it merely requires A to be upper quasi-triangular. A1=2 then has the
same block triangular structure as A.

The algorithm used by F01EPF is described in Higham (1987). In addition a blocking scheme described
in Deadman et al. (2013) is used.

4 References

BjÎrck Ð and Hammarling S (1983) A Schur method for the square root of a matrix Linear Algebra
Appl. 52/53 127–140

Deadman E, Higham N J and Ralha R (2013) Blocked Schur Algorithms for Computing the Matrix
Square Root Applied Parallel and Scientific Computing: 11th International Conference, (PARA 2012,
Helsinki, Finland) P. Manninen and P. Úster, Eds Lecture Notes in Computer Science 7782 171–181
Springer–Verlag

Higham N J (1987) Computing real square roots of a real matrix Linear Algebra Appl. 88/89 405–430

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper quasi-triangular matrix A.
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On exit: the n by n principal matrix square root A1=2.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EPF
is called.

Constraint: LDA � N.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has negative or vanishing eigenvalues. The principal square root is not defined in this case.
F01ENF or F01FNF may be able to provide further information.

IFAIL ¼ 2

An internal error occurred. It is likely that the routine was called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The computed square root X̂ satisfies X̂2 ¼ Aþ�A, where �Ak kF � O �ð Þn X̂
�� ��2

F
, where � is

machine precision.

8 Parallelism and Performance

F01EPF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01EPF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is n3=3 floating-point operations; see Algorithm 6.7 of Higham (2008). O nð Þ
of integer allocatable memory is required by the routine.

If A is a full matrix, then F01ENF should be used to compute the square root. If A has negative real
eigenvalues then F01FNF can be used to return a complex, non-principal square root.

If condition number and residual bound estimates are required, then F01JDF should be used. For further
discussion of the condition of the matrix square root see Section 6.1 of Higham (2008).

10 Example

This example finds the principal matrix square root of the matrix

A ¼
6 4 �5 15
8 6 �3 10
0 0 3 �4
0 0 4 3

0B@
1CA:

10.1 Program Text

Program f01epfe

! F01EPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01epf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01EPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
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Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find sqrt(A)
Call f01epf(n,a,lda,ifail)

! Print solution
If (ifail==0) Then

ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’sqrt(A)’,ifail)

End If

End Program f01epfe

10.2 Program Data

F01EPF Example Program Data

4 :Value of N

6.0 4.0 -5.0 15.0
8.0 6.0 -3.0 10.0
0.0 0.0 3.0 -4.0
0.0 0.0 4.0 3.0 :End of matrix A

10.3 Program Results

F01EPF Example Program Results

sqrt(A)
1 2 3 4

1 2.0000E+00 1.0000E+00 -2.0000E+00 3.0000E+00
2 2.0000E+00 2.0000E+00 3.1721E-16 1.0000E+00
3 0.0000E+00 0.0000E+00 2.0000E+00 -1.0000E+00
4 0.0000E+00 0.0000E+00 1.0000E+00 2.0000E+00
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NAG Library Routine Document

F01EQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01EQF computes the principal real power Ap, for arbitrary p, of a real n by n matrix A.

2 Specification

SUBROUTINE F01EQF (N, A, LDA, P, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), P

3 Description

For a matrix A with no eigenvalues on the closed negative real line, Ap (p 2 R) can be defined as

Ap ¼ exp plog Að Þð Þ

where log Að Þ is the principal logarithm of A (the unique logarithm whose spectrum lies in the strip
z : �	 < Im zð Þ < 	f g).
Ap is computed using the real version of the Schur–Padé algorithm described in Higham and Lin (2011)
and Higham and Lin (2013).

The real number p is expressed as p ¼ q þ r where q 2 �1; 1ð Þ and r 2 Z. Then Ap ¼ AqAr. The
integer power Ar is found using a combination of binary powering and, if necessary, matrix inversion.
The fractional power Aq is computed, entirely in real arithmetic, using a real Schur decomposition and
a Padé approximant.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Higham N J and Lin L (2011) A Schur–Padé algorithm for fractional powers of a matrix SIAM J.
Matrix Anal. Appl. 32(3) 1056–1078

Higham N J and Lin L (2013) An improved Schur–Padé algorithm for fractional powers of a matrix
and their Fréchet derivatives SIAM J. Matrix Anal. Appl. 34(3) 1341–1360

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix pth power, Ap.
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3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EQF
is called.

Constraint: LDA � N.

4: P – REAL (KIND=nag_wp) Input

On entry: the required power of A.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has eigenvalues on the negative real line. The principal pth power is not defined. F01FQF can
be used to find a complex, non-principal pth power.

IFAIL ¼ 2

A is singular so the pth power cannot be computed.

IFAIL ¼ 3

Ap has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.

IFAIL ¼ 4

An unexpected internal error occurred. This failure should not occur and suggests that the routine
has been called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For positive integer p, the algorithm reduces to a sequence of matrix multiplications. For negative
integer p, the algorithm consists of a combination of matrix inversion and matrix multiplications.

For a normal matrix A (for which ATA ¼ AAT) and non-integer p, the Schur decomposition is diagonal
and the algorithm reduces to evaluating powers of the eigenvalues of A and then constructing Ap using
the Schur vectors. This should give a very accurate result. In general however, no error bounds are
available for the algorithm.

8 Parallelism and Performance

F01EQF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01EQF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is O n3
� �

. The exact cost depends on the matrix A but if p 2 �1; 1ð Þ then the
cost is independent of p. O 4� n2

� �
of real allocatable memory is required by the routine.

If estimates of the condition number of Ap are required then F01JEF should be used.

10 Example

This example finds Ap where p ¼ 0:2 and

A ¼
3 3 2 1
3 1 0 2
1 1 4 3
3 0 3 1

0B@
1CA:

10.1 Program Text

Program f01eqfe

! F01EQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01eqf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: p
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01EQF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, p
lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find A^p
Call f01eqf(n,a,lda,p,ifail)

! Print solution
If (ifail==0) Then

ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’A^p’,ifail)

End If

End Program f01eqfe

10.2 Program Data

F01EQF Example Program Data

4 0.2 : Values of N and P

3.0 3.0 2.0 1.0
3.0 1.0 0.0 2.0
1.0 1.0 4.0 3.0
3.0 0.0 3.0 1.0 : End of matrix A

10.3 Program Results

F01EQF Example Program Results

A^p
1 2 3 4

1 1.2446 0.2375 0.2172 -0.1359
2 0.0925 1.1239 -0.1453 0.3731
3 -0.0769 0.1972 1.3131 0.1837
4 0.3985 -0.2902 0.1085 1.1560

F01EQF NAG Library Manual

F01EQF.4 (last) Mark 26



NAG Library Routine Document

F01FCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01FCF computes the matrix exponential, eA, of a complex n by n matrix A.

2 Specification

SUBROUTINE F01FCF (N, A, LDA, IFAIL)

INTEGER N, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*)

3 Description

eA is computed using a Padé approximant and the scaling and squaring method described in Al–Mohy
and Higham (2009).

4 References

Al–Mohy A H and Higham N J (2009) A new scaling and squaring algorithm for the matrix
exponential SIAM J. Matrix Anal. 31(3) 970–989

Higham N J (2005) The scaling and squaring method for the matrix exponential revisited SIAM J.
Matrix Anal. Appl. 26(4) 1179–1193

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Moler C B and Van Loan C F (2003) Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later SIAM Rev. 45 3–49

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: with IFAIL ¼ 0, the n by n matrix exponential eA.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FCF
is called.

Constraint: LDA � N.
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4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The linear equations to be solved for the Padé approximant are singular; it is likely that this
routine has been called incorrectly.

IFAIL ¼ 2

The linear equations to be solved are nearly singular and the Padé approximant probably has no
correct figures; it is likely that this routine has been called incorrectly.

IFAIL ¼ 3

eA has been computed using an IEEE double precision Padé approximant, although the arithmetic
precision is higher than IEEE double precision.

IFAIL ¼ 4

An unexpected internal error has occurred. Please contact NAG.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which AHA ¼ AAH) the computed matrix, eA, is guaranteed to be close to
the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-normal
matrices. See Al–Mohy and Higham (2009) and Section 10.3 of Higham (2008) for details and further
discussion.

If estimates of the condition number of the matrix exponential are required then F01KGF should be
used.

8 Parallelism and Performance

F01FCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01FCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is N, and the complex allocatable memory required is
approximately 6� N2.

The cost of the algorithm is O n3
� �

; see Section 5 of Al–Mohy and Higham (2009). The complex
allocatable memory required is approximately 6 � n2.
If the Fréchet derivative of the matrix exponential is required then F01KHF should be used.

As well as the excellent book cited above, the classic reference for the computation of the matrix
exponential is Moler and Van Loan (2003).

10 Example

This example finds the matrix exponential of the matrix

A ¼
1þ i 2þ i 2þ i 2þ i
3þ 2i 1 1 2þ i
3þ 2i 2þ i 1 2þ i
3þ 2i 3þ 2i 3þ 2i 1þ i

0B@
1CA:

10.1 Program Text

Program f01fcfe

! F01FCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01fcf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Integer :: i, ierr, ifail, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01FCF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find exp( A )
Call f01fcf(n,a,lda,ifail)

! Print solution

ierr = 0
Call x04daf(’General’,’ ’,n,n,a,lda,’Exp(A)’,ierr)

End Program f01fcfe

10.2 Program Data

F01FCF Example Program Data

4 :Value of N

(1.0,1.0) (2.0,1.0) (2.0,1.0) (2.0,1.0)
(3.0,2.0) (1.0,0.0) (1.0,0.0) (2.0,1.0)
(3.0,2.0) (2.0,1.0) (1.0,0.0) (2.0,1.0)
(3.0,2.0) (3.0,2.0) (3.0,2.0) (1.0,1.0) :End of matrix A

10.3 Program Results

F01FCF Example Program Results

Exp(A)
1 2 3 4

1 -157.9003 -194.6526 -186.5627 -155.7669
-754.3717 -555.0507 -475.4533 -520.1876

2 -206.8899 -225.4985 -212.4414 -186.5627
-694.7443 -505.3938 -431.0611 -475.4533

3 -208.7476 -238.4962 -225.4985 -194.6526
-808.2090 -590.8045 -505.3938 -555.0507

4 -133.3958 -208.7476 -206.8899 -157.9003
-1085.5496 -808.2090 -694.7443 -754.3717
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NAG Library Routine Document

F01FDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01FDF computes the matrix exponential, eA, of a complex Hermitian n by n matrix A.

2 Specification

SUBROUTINE F01FDF (UPLO, N, A, LDA, IFAIL)

INTEGER N, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) UPLO

3 Description

eA is computed using a spectral factorization of A

A ¼ QDQH;

where D is the diagonal matrix whose diagonal elements, di, are the eigenvalues of A, and Q is a
unitary matrix whose columns are the eigenvectors of A. eA is then given by

eA ¼ QeDQH;

where eD is the diagonal matrix whose ith diagonal element is edi . See for example Section 4.5 of
Higham (2008).

4 References

Higham N J (2005) The scaling and squaring method for the matrix exponential revisited SIAM J.
Matrix Anal. Appl. 26(4) 1179–1193

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Moler C B and Van Loan C F (2003) Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later SIAM Rev. 45 3–49

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if IFAIL ¼ 0, the upper or lower triangular part of the n by n matrix exponential, eA.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FDF
is called.

Constraint: LDA � N.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0

The computation of the spectral factorization failed to converge.

IFAIL ¼ �1
On entry, UPLO was invalid.

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
An internal error occurred when computing the spectral factorization. Please contact NAG.

IFAIL ¼ �4
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For an Hermitian matrix A, the matrix eA, has the relative condition number

� Að Þ ¼ Ak k2;

which is the minimal possible for the matrix exponential and so the computed matrix exponential is
guaranteed to be close to the exact matrix. See Section 10.2 of Higham (2008) for details and further
discussion.

8 Parallelism and Performance

F01FDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01FDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is N, the real allocatable memory required is N and the
complex allocatable memory required is approximately N þ nbþ 1ð Þ � N, where nb is the block size
required by F08FNF (ZHEEV).

The cost of the algorithm is O n3
� �

.

As well as the excellent book cited above, the classic reference for the computation of the matrix
exponential is Moler and Van Loan (2003).

10 Example

This example finds the matrix exponential of the Hermitian matrix

A ¼
1 2þ i 3þ 2i 4þ 3i
2� i 1 2þ i 3þ 2i
3� 2i 2� i 1 2þ i
4� 3i 3� 2i 2� i 1

0B@
1CA:
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10.1 Program Text

Program f01fdfe

! F01FDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01fdf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ierr, ifail, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01FDF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Read (nin,*) uplo

lda = n
Allocate (a(lda,n))

! Read A from data file

If (uplo==’U’ .Or. uplo==’u’) Then
Read (nin,*)(a(i,i:n),i=1,n)

Else
Read (nin,*)(a(i,1:i),i=1,n)

End If

! Find exp( A )

ifail = 0
Call f01fdf(uplo,n,a,lda,ifail)

! Print solution

ierr = 0
Call x04daf(uplo,’N’,n,n,a,lda,’Hermitian Exp(A)’,ierr)

End Program f01fdfe

10.2 Program Data

F01FDF Example Program Data

4 :Value of N
’U’ :Value of UPLO

(1.0, 0.0) (2.0, 1.0) (3.0, 2.0) (4.0, 3.0)
(1.0, 0.0) (2.0, 1.0) (3.0, 2.0)

(1.0, 0.0) (2.0, 1.0)
(1.0, 0.0) :End of matrix A

10.3 Program Results

F01FDF Example Program Results

Hermitian Exp(A)
1 2 3 4

1 1.1457E+04 8.7983E+03 7.8120E+03 8.3103E+03
0.0000E+00 2.0776E+03 4.5500E+03 7.8871E+03
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2 7.1339E+03 6.8242E+03 7.8120E+03
0.0000E+00 2.0776E+03 4.5500E+03

3 7.1339E+03 8.7983E+03
0.0000E+00 2.0776E+03

4 1.1457E+04
0.0000E+00
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NAG Library Routine Document

F01FFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01FFF computes the matrix function, f Að Þ, of a complex Hermitian n by n matrix A. f Að Þ must also
be a complex Hermitian matrix.

2 Specification

SUBROUTINE F01FFF (UPLO, N, A, LDA, F, IUSER, RUSER, IFLAG, IFAIL)

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) UPLO
EXTERNAL F

3 Description

f Að Þ is computed using a spectral factorization of A

A ¼ QDQH;

where D is the real diagonal matrix whose diagonal elements, di, are the eigenvalues of A, Q is a
unitary matrix whose columns are the eigenvectors of A and QH is the conjugate transpose of Q. f Að Þ
is then given by

f Að Þ ¼ Qf Dð ÞQH;

where f Dð Þ is the diagonal matrix whose ith diagonal element is f dið Þ. See for example Section 4.5 of
Higham (2008). f dið Þ is assumed to be real.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n Hermitian matrix A.
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If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if IFAIL ¼ 0, the upper or lower triangular part of the n by n matrix function, f Að Þ.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FFF
is called.

Constraint: LDA � max 1;Nð Þ.

5: F – SUBROUTINE, supplied by the user. External Procedure

The subroutine F evaluates f zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (IFLAG, N, X, FX, IUSER, RUSER)

INTEGER IFLAG, N, IUSER(*)
REAL (KIND=nag_wp) X(N), FX(N), RUSER(*)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f xð Þ; for instance
f xð Þ may not be defined, or may be complex. If IFLAG is returned as nonzero then
F01FFF will terminate the computation, with IFAIL ¼ �6.

2: N – INTEGER Input

On entry: n, the number of function values required.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n points x1; x2; . . . ; xn at which the function f is to be evaluated.

4: FXðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n function values. FXðiÞ should return the value f xið Þ, for i ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to F01FFF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F01FFF is called. Arguments denoted as Input must not be changed by this
procedure.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01FFF, but are passed directly to F and should be used to
pass information to this routine.
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8: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless you have set IFLAG nonzero inside F, in which case IFLAG will be
the value you set and IFAIL will be set to IFAIL ¼ �6.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0

The computation of the spectral factorization failed to converge.

IFAIL ¼ �1
On entry, UPLO ¼ valueh i.
Constraint: UPLO ¼ L or U .

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
An internal error occurred when computing the spectral factorization. Please contact NAG.

IFAIL ¼ �4
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �6
IFLAG was set to a nonzero value in F.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Provided that f Dð Þ can be computed accurately then the computed matrix function will be close to the
exact matrix function. See Section 10.2 of Higham (2008) for details and further discussion.

8 Parallelism and Performance

F01FFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01FFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is N, the real allocatable memory required is 4� N� 2 and
the complex allocatable memory required is approximately Nþ nbþ 1ð Þ � N, where nb is the block
size required by F08FNF (ZHEEV).

The cost of the algorithm is O n3
� �

plus the cost of evaluating f Dð Þ. If �̂i is the ith computed

eigenvalue of A, then the user-supplied subroutine F will be asked to evaluate the function f at f �̂i

� �
,

for i ¼ 1; 2; . . . ; n.

For further information on matrix functions, see Higham (2008).

F01EFF can be used to find the matrix function f Að Þ for a real symmetric matrix A.

10 Example

This example finds the matrix cosine, cos Að Þ, of the Hermitian matrix

A ¼
1 2þ i 3þ 2i 4þ 3i

2� i 1 2þ i 3þ 2i
3� 2i 2� i 1 2þ i
4� 3i 3� 2i 2� i 1

0B@
1CA:

10.1 Program Text

! F01FFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f01fffe_mod

! F01FFF Example Program Module:
! Parameters and User-defined Routines

! nin: the input channel number
! nout: the output channel number

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Accessibility Statements ..

Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine f(iflag,n,x,fx,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fx(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
fx(1:n) = cos(x(1:n))

Return
End Subroutine f

End Module f01fffe_mod
Program f01fffe

! F01FFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01fff, nag_wp, x04daf
Use f01fffe_mod, Only: f, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ierr, ifail, iflag, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01FFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Read (nin,*) uplo

lda = n
Allocate (a(lda,n))

! Read A from data file

If (uplo==’U’ .Or. uplo==’u’) Then
Read (nin,*)(a(i,i:n),i=1,n)

Else
Read (nin,*)(a(i,1:i),i=1,n)

End If

! Find f( A )

ifail = 0
Call f01fff(uplo,n,a,lda,f,iuser,ruser,iflag,ifail)

! Print solution
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ierr = 0
Call x04daf(uplo,’N’,n,n,a,lda,’Hermitian f(A)’,ierr)

End Program f01fffe

10.2 Program Data

F01FFF Example Program Data

4 :Value of N
’U’ :Value of UPLO

(1.0, 0.0) (2.0, 1.0) (3.0, 2.0) (4.0, 3.0)
(1.0, 0.0) (2.0, 1.0) (3.0, 2.0)

(1.0, 0.0) (2.0, 1.0)
(1.0, 0.0) :End of matrix A

10.3 Program Results

F01FFF Example Program Results

Hermitian f(A)
1 2 3 4

1 0.0904 -0.3377 -0.1009 -0.1092
0.0000 -0.0273 -0.0594 -0.1586

2 0.4265 -0.3139 -0.1009
0.0000 -0.0273 -0.0594

3 0.4265 -0.3377
0.0000 -0.0273

4 0.0904
0.0000
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NAG Library Routine Document

F01FJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01FJF computes the principal matrix logarithm, log Að Þ, of a complex n by n matrix A, with no
eigenvalues on the closed negative real line.

2 Specification

SUBROUTINE F01FJF (N, A, LDA, IFAIL)

INTEGER N, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*)

3 Description

Any nonsingular matrix A has infinitely many logarithms. For a matrix with no eigenvalues on the
closed negative real line, the principal logarithm is the unique logarithm whose spectrum lies in the
strip z : �	 < Im zð Þ < 	f g. If A is nonsingular but has eigenvalues on the negative real line, the
principal logarithm is not defined, but F01FJF will return a non-principal logarithm.

log Að Þ is computed using the inverse scaling and squaring algorithm for the matrix logarithm described
in Al–Mohy and Higham (2011).

4 References

Al–Mohy A H and Higham N J (2011) Improved inverse scaling and squaring algorithms for the matrix
logarithm SIAM J. Sci. Comput. 34(4) C152–C169

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix logarithm, log Að Þ, unless IFAIL ¼ 2, in which case a non-
principal logarithm is returned.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FJF
is called.

Constraint: LDA � N.
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4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A is singular so the logarithm cannot be computed.

IFAIL ¼ 2

A was found to have eigenvalues on the negative real line. The principal logarithm is not defined
in this case, so a non-principal logarithm was returned.

IFAIL ¼ 3

log Að Þ has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.

IFAIL ¼ 4

An unexpected internal error has occurred. Please contact NAG.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

For a normal matrix A (for which AHA ¼ AAH), the Schur decomposition is diagonal and the algorithm
reduces to evaluating the logarithm of the eigenvalues of A and then constructing log Að Þ using the
Schur vectors. This should give a very accurate result. In general, however, no error bounds are
available for the algorithm. See Al–Mohy and Higham (2011) and Section 9.4 of Higham (2008) for
details and further discussion.

The sensitivity of the computation of log Að Þ is worst when A has an eigenvalue of very small modulus
or has a complex conjugate pair of eigenvalues lying close to the negative real axis.

If estimates of the condition number of the matrix logarithm are required then F01KJF should be used.

8 Parallelism and Performance

F01FJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01FJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is O n3
� �

floating-point operations (see Al–Mohy and Higham (2011)). The
complex allocatable memory required is approximately 3� n2.
If the Fréchet derivative of the matrix logarithm is required then F01KKF should be used.

F01EJF can be used to find the principal logarithm of a real matrix.

10 Example

This example finds the principal matrix logarithm of the matrix

A ¼
1:0þ 2:0i 0:0þ 1:0i 1:0þ 0:0i 3:0þ 2:0i
0:0þ 3:0i �2:0þ 0:0i 0:0þ 0:0i 1:0þ 0:0i
1:0þ 0:0i �2:0þ 0:0i 3:0þ 2:0i 0:0þ 3:0i
2:0þ 0:0i 0:0þ 1:0i 0:0þ 1:0i 2:0þ 3:0i

0B@
1CA:

10.1 Program Text

Program f01fjfe

! F01FJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01fjf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01FJF Example Program Results’
Write (nout,*)
Flush (nout)
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! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find log( A )
Call f01fjf(n,a,lda,ifail)

! Print solution
ifail = 0
Call x04daf(’G’,’N’,n,n,a,lda,’log(A)’,ifail)

End Program f01fjfe

10.2 Program Data

F01FJF Example Program Data

4 :Value of N

(1.0, 2.0) ( 0.0, 1.0) (1.0, 0.0) (3.0, 2.0)
(0.0, 3.0) (-2.0, 0.0) (0.0, 0.0) (1.0, 0.0)
(1.0, 0.0) (-2.0, 0.0) (3.0, 2.0) (0.0, 3.0)
(2.0, 0.0) ( 0.0, 1.0) (0.0, 1.0) (2.0, 3.0) :End of matrix A

10.3 Program Results

F01FJF Example Program Results

log(A)
1 2 3 4

1 1.0390 0.2859 0.0516 0.7586
1.1672 0.3998 -0.2562 -0.4678

2 -2.7481 1.1898 0.1369 2.1771
2.6187 -2.2287 -0.9128 -1.0118

3 -0.8514 -0.2517 1.3839 1.1920
0.3927 -0.4791 0.2129 0.4240

4 1.1970 -0.6813 0.0051 0.7867
-0.1242 0.3969 0.3511 0.7502
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NAG Library Routine Document

F01FKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01FKF computes the matrix exponential, sine, cosine, sinh or cosh, of a complex n by n matrix A
using the Schur–Parlett algorithm.

2 Specification

SUBROUTINE F01FKF (FUN, N, A, LDA, IFAIL)

INTEGER N, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(*) FUN

3 Description

f Að Þ, where f is either the exponential, sine, cosine, sinh or cosh, is computed using the Schur–Parlett
algorithm described in Higham (2008) and Davies and Higham (2003).

4 References

Davies P I and Higham N J (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J.
Matrix Anal. Appl. 25(2) 464–485

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: FUN – CHARACTER(*) Input

On entry: indicates which matrix function will be computed.

FUN ¼ EXP
The matrix exponential, eA, will be computed.

FUN ¼ SIN
The matrix sine, sin Að Þ, will be computed.

FUN ¼ COS
The matrix cosine, cos Að Þ, will be computed.

FUN ¼ SINH
The hyperbolic matrix sine, sinh Að Þ, will be computed.

FUN ¼ COSH
The hyperbolic matrix cosine, cosh Að Þ, will be computed.

Constraint: FUN ¼ EXP , SIN , COS , SINH or COSH.

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FKF
is called.

Constraint: LDA � N.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A Taylor series failed to converge.

IFAIL ¼ 2

An unexpected internal error occurred when evaluating the function at a point. Please contact
NAG.

IFAIL ¼ 3

There was an error whilst reordering the Schur form of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 4

The routine was unable to compute the Schur decomposition of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 5

An unexpected internal error occurred. Please contact NAG.

IFAIL ¼ 6

The linear equations to be solved are nearly singular and the Padé approximant used to compute
the exponential may have no correct figures.
Note: this failure should not occur and suggests that the routine has been called incorrectly.
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IFAIL ¼ �1
On entry, FUN ¼ valueh i was an illegal value.

IFAIL ¼ �2
Input argument number valueh i is invalid.

IFAIL ¼ �4
On entry, argument LDA is invalid.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which AHA ¼ AAH), the Schur decomposition is diagonal and the algorithm
reduces to evaluating f at the eigenvalues of A and then constructing f Að Þ using the Schur vectors.
This should give a very accurate result. In general, however, no error bounds are available for the
algorithm.

For further discussion of the Schur–Parlett algorithm see Section 9.4 of Higham (2008).

8 Parallelism and Performance

F01FKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation.

F01FKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is n, and the complex allocatable memory required is
approximately 9n2.

The cost of the Schur–Parlett algorithm depends on the spectrum of A, but is roughly between 28n3

and n4=3 floating-point operations; see Algorithm 9.6 of Higham (2008).
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If the matrix exponential is required then it is recommended that F01FCF be used. F01FCF uses an
algorithm which is, in general, more accurate than the Schur–Parlett algorithm used by F01FKF.

If estimates of the condition number of the matrix function are required then F01KAF should be used.

F01EKF can be used to find the matrix exponential, sin, cos, sinh or cosh of a real matrix A.

10 Example

This example finds the matrix sinh of the matrix

A ¼
1:0þ 1:0i 0:0þ 0:0i 1:0þ 3:0i 0:0þ 0:0i
0:0þ 0:0i 2:0þ 0:0i 0:0þ 0:0i 1:0þ 2:0i
3:0þ 1:0i 0:0þ 4:0i 1:0þ 1:0i 0:0þ 0:0i
1:0þ 1:0i 0:0þ 2:0i 0:0þ 0:0i 1:0þ 0:0i

0B@
1CA:

10.1 Program Text

Program f01fkfe

! F01FKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01fkf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, n
Character (4) :: fun
Character (20) :: fun_name

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01FKF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, fun

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Find f( A )
ifail = 0
Call f01fkf(fun,n,a,lda,ifail)

! Print solution
Write (fun_name,Fmt=’(3(A))’) ’F(A) = ’, fun, ’(A)’
Write (nout,*)

ifail = 0
Call x04daf(’G’,’N’,n,n,a,lda,fun_name,ifail)

End Program f01fkfe

F01FKF NAG Library Manual

F01FKF.4 Mark 26



10.2 Program Data

F01FKF Example Program Data

4 SINH :Values of N and FUN

(1.0, 1.0) ( 0.0, 0.0) ( 1.0, 3.0) (0.0, 0.0)
(0.0, 0.0) ( 2.0, 0.0) ( 0.0, 0.0) (1.0, 2.0)
(3.0, 1.0) ( 0.0, 4.0) ( 1.0, 1.0) (0.0, 0.0)
(1.0, 1.0) ( 0.0, 2.0) ( 0.0, 0.0) (1.0, 0.0) :End of matrix A

10.3 Program Results

F01FKF Example Program Results

F(A) = SINH(A)
1 2 3 4

1 -4.3015 -1.4918 -4.4242 1.4438
-1.8117 -8.7793 -1.3925 -6.5287

2 -1.7976 1.4211 -1.2712 1.2118
-0.2935 -0.1993 -1.9931 2.8506

3 -4.4968 -5.7934 -4.3015 -3.0082
-0.1964 -4.7166 -1.8117 -4.1821

4 -2.1506 -0.6103 -1.5163 0.0385
-0.3911 -1.4408 -1.9317 -0.2847
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NAG Library Routine Document

F01FLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01FLF computes the matrix function, f Að Þ, of a complex n by n matrix A. Numerical differentiation
is used to evaluate the derivatives of f when they are required.

2 Specification

SUBROUTINE F01FLF (N, A, LDA, F, IUSER, RUSER, IFLAG, IFAIL)

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) A(LDA,*)
EXTERNAL F

3 Description

f Að Þ is computed using the Schur–Parlett algorithm described in Higham (2008) and Davies and
Higham (2003). The coefficients of the Taylor series used in the algorithm are evaluated using the
numerical differentiation algorithm of Lyness and Moler (1967).

The scalar function f is supplied via subroutine F which evaluates f zið Þ at a number of points zi.

4 References

Davies P I and Higham N J (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J.
Matrix Anal. Appl. 25(2) 464–485

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Lyness J N and Moler C B (1967) Numerical differentiation of analytic functions SIAM J. Numer. Anal.
4(2) 202–210

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FLF
is called.

Constraint: LDA � N.
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4: F – SUBROUTINE, supplied by the user. External Procedure

The subroutine F evaluates f zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (IFLAG, NZ, Z, FZ, IUSER, RUSER)

INTEGER IFLAG, NZ, IUSER(*)
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) Z(NZ), FZ(NZ)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f zið Þ; for instance
f zið Þ may not be defined. If IFLAG is returned as nonzero then F01FLF will terminate
the computation, with IFAIL ¼ 2.

2: NZ – INTEGER Input

On entry: nz, the number of function values required.

3: ZðNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nz points z1; z2; . . . ; znz at which the function f is to be evaluated.

4: FZðNZÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the nz function values. FZðiÞ should return the value f zið Þ, for i ¼ 1; 2; . . . ; nz.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to F01FLF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F01FLF is called. Arguments denoted as Input must not be changed by this
procedure.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01FLF, but are passed directly to F and should be used to
pass information to this routine.

7: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless IFLAG has been set nonzero inside F, in which case IFLAG will be
the value set and IFAIL will be set to IFAIL ¼ 2.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A Taylor series failed to converge after 40 terms. Further Taylor series coefficients can no longer
reliably be obtained by numerical differentiation.

IFAIL ¼ 2

IFLAG has been set nonzero by the user.

IFAIL ¼ 3

The function was unable to compute the Schur decomposition of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

There was an error whilst reordering the Schur form of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 5

An unexpected internal error occurred. Please contact NAG.

IFAIL ¼ �1
Input argument number valueh i is invalid.

IFAIL ¼ �3
On entry, argument LDA is invalid.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which AHA ¼ AAH) Schur decomposition is diagonal and the algorithm
reduces to evaluating f at the eigenvalues of A and then constructing f Að Þ using the Schur vectors. See
Section 9.4 of Higham (2008) for further discussion of the Schur–Parlett algorithm, and Lyness and
Moler (1967) for a discussion of numerical differentiation.
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8 Parallelism and Performance

F01FLF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

F01FLF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is n, and up to 6n2 of complex allocatable memory is required.

The cost of the Schur–Parlett algorithm depends on the spectrum of A, but is roughly between 28n3

and n4=3 floating-point operations. There is an additional cost in numerically differentiating f , in order
to obtain the Taylor series coefficients. If the derivatives of f are known analytically, then F01FMF can
be used to evaluate f Að Þ more accurately. If A is complex Hermitian then it is recommended that
F01FFF be used as it is more efficient and, in general, more accurate than F01FLF.

Note that f must be analytic in the region of the complex plane containing the spectrum of A.

For further information on matrix functions, see Higham (2008).

If estimates of the condition number of the matrix function are required then F01KBF should be used.

F01ELF can be used to find the matrix function f Að Þ for a real matrix A.

10 Example

This example finds sin 2A where

A ¼
1:0þ 0:0i 0:0þ 1:0i 1:0þ 0:0i 0:0þ 1:0i
�1:0þ 0:0i 0:0þ 0:0i 2:0þ 1:0i 0:0þ 0:0i
0:0þ 0:0i 2:0þ 1:0i 0:0þ 2:0i 0:0þ 1:0i
1:0þ 0:0i 1:0þ 1:0i �1:0þ 0:0i 2:0þ 1:0i

0B@
1CA:

10.1 Program Text

! F01FLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Module f01flfe_mod

! F01FLF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fsin2
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Contains
Subroutine fsin2(iflag,nz,z,fz,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: nz

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: fz(nz)
Complex (Kind=nag_wp), Intent (In) :: z(nz)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
Continue
fz(1:nz) = sin((2.0E0_nag_wp,0.0E0_nag_wp)*z(1:nz))

! Set iflag nonzero to terminate execution for any reason.
iflag = 0
Return

End Subroutine fsin2
End Module f01flfe_mod
Program f01flfe

! F01FLF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01flf, nag_wp, x04daf
Use f01flfe_mod, Only: fsin2

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, iflag, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01FLF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Find f( A )
ifail = 0
Call f01flf(n,a,lda,fsin2,iuser,ruser,iflag,ifail)

! Print solution
ifail = 0
Call x04daf(’G’,’N’,n,n,a,lda,’F(A) = SIN(2A)’,ifail)

End Program f01flfe
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10.2 Program Data

F01FLF Example Program Data

4 :Value of N

( 1.0, 0.0) (0.0, 1.0) ( 1.0, 0.0) (0.0, 1.0)
(-1.0, 0.0) (0.0, 0.0) ( 2.0, 1.0) (0.0, 0.0)
( 0.0, 0.0) (2.0, 1.0) ( 0.0, 2.0) (0.0, 1.0)
( 1.0, 0.0) (1.0, 1.0) (-1.0, 0.0) (2.0, 1.0) :End of matrix A

10.3 Program Results

F01FLF Example Program Results

F(A) = SIN(2A)
1 2 3 4

1 1.1960 -21.0733 -15.4159 -12.4279
-3.2270 -9.6441 -14.1977 -11.9638

2 3.2957 -14.6084 -6.7764 -5.1338
-3.6334 -21.4846 -24.1726 -17.0926

3 5.0928 -14.6839 -0.9231 -2.0715
-3.7806 -34.5063 -35.4729 -26.3460

4 -1.8349 -8.2484 -6.0093 -7.1318
0.0808 -0.4014 -1.6831 -1.9396
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NAG Library Routine Document

F01FMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01FMF computes the matrix function, f Að Þ, of a complex n by n matrix A, using analytical
derivatives of f you have supplied.

2 Specification

SUBROUTINE F01FMF (N, A, LDA, F, IUSER, RUSER, IFLAG, IFAIL)

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) A(LDA,*)
EXTERNAL F

3 Description

f Að Þ is computed using the Schur–Parlett algorithm described in Higham (2008) and Davies and
Higham (2003).

The scalar function f , and the derivatives of f , are returned by the subroutine F which, given an integer
m, should evaluate f mð Þ zið Þ at a number of points zi, for i ¼ 1; 2; . . . ; nz, on the complex plane.
F01FMF is therefore appropriate for functions that can be evaluated on the complex plane and whose
derivatives, of arbitrary order, can also be evaluated on the complex plane.

4 References

Davies P I and Higham N J (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J.
Matrix Anal. Appl. 25(2) 464–485

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FMF
is called.

Constraint: LDA � N.
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4: F – SUBROUTINE, supplied by the user. External Procedure

Given an integer m, the subroutine F evaluates f mð Þ zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (M, IFLAG, NZ, Z, FZ, IUSER, RUSER)

INTEGER M, IFLAG, NZ, IUSER(*)
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) Z(NZ), FZ(NZ)

1: M – INTEGER Input

On entry: the order, m, of the derivative required.

If M ¼ 0, f zið Þ should be returned. For M > 0, f mð Þ zið Þ should be returned.

2: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f zð Þ; for instance
f zið Þ may not be defined for a particular zi. If IFLAG is returned as nonzero then
F01FMF will terminate the computation, with IFAIL ¼ 2.

3: NZ – INTEGER Input

On entry: nz, the number of function or derivative values required.

4: ZðNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nz points z1; z2; . . . ; znz at which the function f is to be evaluated.

5: FZðNZÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the nz function or derivative values. FZðiÞ should return the value f mð Þ zið Þ, for
i ¼ 1; 2; . . . ; nz.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to F01FMF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F01FMF is called. Arguments denoted as Input must not be changed by this
procedure.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01FMF, but are passed directly to F and should be used to
pass information to this routine.

7: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless IFLAG has been set nonzero inside F, in which case IFLAG will be
the value set and IFAIL will be set to IFAIL ¼ 2.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A Taylor series failed to converge.

IFAIL ¼ 2

IFLAG has been set nonzero by the user.

IFAIL ¼ 3

There was an error whilst reordering the Schur form of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 4

The routine was unable to compute the Schur decomposition of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 5

An unexpected internal error occurred. Please contact NAG.

IFAIL ¼ �1
Input argument number valueh i is invalid.

IFAIL ¼ �3
On entry, argument LDA is invalid.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

For a normal matrix A (for which AHA ¼ AAH), the Schur decomposition is diagonal and the algorithm
reduces to evaluating f at the eigenvalues of A and then constructing f Að Þ using the Schur vectors.
This should give a very accurate result. In general, however, no error bounds are available for the
algorithm. See Section 9.4 of Higham (2008) for further discussion of the Schur–Parlett algorithm.

8 Parallelism and Performance

F01FMF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

F01FMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Up to 6n2 of complex allocatable memory is required.

The cost of the Schur–Parlett algorithm depends on the spectrum of A, but is roughly between 28n3

and n4=3 floating-point operations. There is an additional cost in evaluating f and its derivatives. If the
derivatives of f are not known analytically, then F01FLF can be used to evaluate f Að Þ using numerical
differentiation. If A is complex Hermitian then it is recommended that F01FFF be used as it is more
efficient and, in general, more accurate than F01FMF.

Note that f must be analytic in the region of the complex plane containing the spectrum of A.

For further information on matrix functions, see Higham (2008).

If estimates of the condition number of the matrix function are required then F01KCF should be used.

F01EMF can be used to find the matrix function f Að Þ for a real matrix A.

10 Example

This example finds the e3A where

A ¼
1:0þ 0:0i 0:0þ 0:0i 1:0þ 0:0i 0:0þ 2:0i
0:0þ 1:0i 1:0þ 0:0i �1:0þ 0:0i 1:0þ 0:0i
�1:0þ 0:0i 0:0þ 1:0i 0:0þ 1:0i 0:0þ 1:0i
1:0þ 1:0i 0:0þ 2:0i �1:0þ 0:0i 0:0þ 1:0i

0B@
1CA:

10.1 Program Text

! F01FMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Module f01fmfe_mod

! F01FMF Example Program Module:
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! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fexp3

Contains
Subroutine fexp3(m,iflag,nz,z,fz,iuser,ruser)

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: three = (3.0E0_nag_wp,0.0E0_nag_wp &

)
! .. Scalar Arguments ..

Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: m, nz

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: fz(nz)
Complex (Kind=nag_wp), Intent (In) :: z(nz)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Continue
fz(1:nz) = (three**m)*exp(three*z(1:nz))

! Set iflag nonzero to terminate execution for any reason.
iflag = 0
Return

End Subroutine fexp3
End Module f01fmfe_mod
Program f01fmfe

! F01FMF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01fmf, nag_wp, x04daf
Use f01fmfe_mod, Only: fexp3

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, iflag, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01FMF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Find f( A )
ifail = 0
Call f01fmf(n,a,lda,fexp3,iuser,ruser,iflag,ifail)
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! Print solution
ifail = 0
Call x04daf(’G’,’N’,n,n,a,lda,’F(A) = EXP(3A)’,ifail)

End Program f01fmfe

10.2 Program Data

F01FMF Example Program Data

4 :Value of N

( 1.0, 0.0) (0.0, 0.0) ( 1.0, 0.0) (0.0, 2.0)
( 0.0, 1.0) (1.0, 0.0) (-1.0, 0.0) (1.0, 0.0)
(-1.0, 0.0) (0.0, 1.0) ( 0.0, 1.0) (0.0, 1.0)
( 1.0, 1.0) (0.0, 2.0) (-1.0, 0.0) (0.0, 1.0) :End of matrix A

10.3 Program Results

F01FMF Example Program Results

F(A) = EXP(3A)
1 2 3 4

1 -10.3264 -1.4883 -12.1206 41.5622
14.8082 74.3369 -47.0956 32.2927

2 63.3909 -21.0117 16.5106 -5.1725
-40.5336 -62.7073 35.2787 17.9413

3 -6.3954 25.4246 -14.4937 -20.3167
56.4708 13.8034 -9.2397 2.8647

4 31.4957 28.6003 -23.8034 23.9841
23.2757 21.4573 -11.6547 18.7737
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NAG Library Routine Document

F01FNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01FNF computes the principal matrix square root, A1=2, of a complex n by n matrix A.

2 Specification

SUBROUTINE F01FNF (N, A, LDA, IFAIL)

INTEGER N, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*)

3 Description

A square root of a matrix A is a solution X to the equation X2 ¼ A. A nonsingular matrix has multiple
square roots. For a matrix with no eigenvalues on the closed negative real line, the principal square
root, denoted by A1=2, is the unique square root whose eigenvalues lie in the open right half-plane.

A1=2 is computed using the algorithm described in BjÎrck and Hammarling (1983). In addition a
blocking scheme described in Deadman et al. (2013) is used.

4 References

BjÎrck Ð and Hammarling S (1983) A Schur method for the square root of a matrix Linear Algebra
Appl. 52/53 127–140

Deadman E, Higham N J and Ralha R (2013) Blocked Schur Algorithms for Computing the Matrix
Square Root Applied Parallel and Scientific Computing: 11th International Conference, (PARA 2012,
Helsinki, Finland) P. Manninen and P. Úster, Eds Lecture Notes in Computer Science 7782 171–181
Springer–Verlag

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: contains, if IFAIL ¼ 0, the n by n principal matrix square root, A1=2. Alternatively, if
IFAIL ¼ 1, contains an n by n non-principal square root of A.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FNF
is called.

Constraint: LDA � N.
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4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has a negative or semisimple vanishing eigenvalue. A non-principal square root is returned.

IFAIL ¼ 2

A has a defective vanishing eigenvalue. The square root cannot be found in this case.

IFAIL ¼ 3

An internal error occurred. It is likely that the routine was called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed square root X̂ satisfies X̂2 ¼ Aþ�A, where �Ak kF � O �ð Þn3 X̂
�� ��2

F
, where � is

machine precision.
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8 Parallelism and Performance

F01FNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01FNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is 85n3=3 complex floating-point operations; see Algorithm 6.3 in Higham
(2008). O 2� n2

� �
of complex allocatable memory is required by the routine.

If condition number and residual bound estimates are required, then F01KDF should be used. For
further discussion of the condition of the matrix square root see Section 6.1 of Higham (2008).

10 Example

This example finds the principal matrix square root of the matrix

A ¼
105þ 121i �21þ 157i 42þ 18i �4� 2i
174þ 72i 28þ 236i 51þ 31i 16� 6i
176þ 52i 37þ 177i 23þ 27i 25þ 13i
�9þ 125i �111þ 67i �8þ 30i 8i

0B@
1CA:

10.1 Program Text

Program f01fnfe

! F01FNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01fnf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01FNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find sqrt(A)
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Call f01fnf(n,a,lda,ifail)

! Print solution
If (ifail==0) Then

ifail = 0
Call x04daf(’G’,’N’,n,n,a,lda,’sqrt(A)’,ifail)

End If

End Program f01fnfe

10.2 Program Data

F01FNF Example Program Data

4 :Value of N

(105.0, 121.0) ( -21.0, 157.0) ( 42.0, 18.0) ( -4.0, -2.0)
(174.0, 72.0) ( 28.0, 236.0) ( 51.0, 31.0) ( 16.0, -6.0)
(176.0, 52.0) ( 37.0, 177.0) ( 23.0, 27.0) ( 25.0, 13.0)
( -9.0, 125.0) (-111.0, 67.0) ( -8.0, 30.0) ( 0.0, 8.0) :End of matrix A

10.3 Program Results

F01FNF Example Program Results

sqrt(A)
1 2 3 4

1 10.0000 3.0000 2.0000 -1.0000
5.0000 6.0000 -1.0000 1.0000

2 7.0000 9.0000 3.0000 -0.0000
-1.0000 10.0000 -0.0000 -1.0000

3 7.0000 5.0000 3.0000 4.0000
-4.0000 5.0000 3.0000 -1.0000

4 2.0000 -2.0000 -1.0000 2.0000
5.0000 5.0000 2.0000 -0.0000
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NAG Library Routine Document

F01FPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01FPF computes the principal matrix square root, A1=2, of a complex upper triangular n by n matrix
A.

2 Specification

SUBROUTINE F01FPF (N, A, LDA, IFAIL)

INTEGER N, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*)

3 Description

A square root of a matrix A is a solution X to the equation X2 ¼ A. A nonsingular matrix has multiple
square roots. For a matrix with no eigenvalues on the closed negative real line, the principal square
root, denoted by A1=2, is the unique square root whose eigenvalues lie in the open right half-plane.

F01FPF computes A1=2, where A is an upper triangular matrix. A1=2 is also upper triangular.

The algorithm used by F01FPF is described in BjÎrck and Hammarling (1983). In addition a blocking
scheme described in Deadman et al. (2013) is used.

4 References

BjÎrck Ð and Hammarling S (1983) A Schur method for the square root of a matrix Linear Algebra
Appl. 52/53 127–140

Deadman E, Higham N J and Ralha R (2013) Blocked Schur Algorithms for Computing the Matrix
Square Root Applied Parallel and Scientific Computing: 11th International Conference, (PARA 2012,
Helsinki, Finland) P. Manninen and P. Úster, Eds Lecture Notes in Computer Science 7782 171–181
Springer–Verlag

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix A.

On exit: contains, if IFAIL ¼ 0, the n by n principal matrix square root, A1=2. Alternatively, if
IFAIL ¼ 1, contains an n by n non-principal square root of A.
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3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FPF
is called.

Constraint: LDA � N.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has negative or semisimple, vanishing eigenvalues. The principal square root is not defined in
this case; a non-principal square root is returned.

IFAIL ¼ 2

A has a defective vanishing eigenvalue. The square root cannot be found in this case.

IFAIL ¼ 3

An internal error occurred. It is likely that the routine was called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed square root X̂ satisfies X̂2 ¼ Aþ�A, where �Aj j � O �ð Þn X̂
		 		2, where � is machine

precision. The order of the change in A is to be interpreted elementwise.

8 Parallelism and Performance

F01FPF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01FPF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is n3=3 complex floating-point operations; see Algorithm 6.3 in Higham
(2008). O 2� n2

� �
of complex allocatable memory is required by the routine.

If A is a full matrix, then F01FNF should be used to compute the principal square root.

If condition number and residual bound estimates are required, then F01KDF should be used. For
further discussion of the condition of the matrix square root see Section 6.1 of Higham (2008).

10 Example

This example finds the principal matrix square root of the matrix

A ¼
2i 14þ 2i 12þ 3i 6þ 4i

0 �5þ 12i 6þ 18i 9þ 16i
0 0 3� 4i 16� 4i
0 0 0 4

0B@
1CA:

10.1 Program Text

Program f01fpfe

! F01FPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01fpf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
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Write (nout,*) ’F01FPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))
a(1:lda,1:n) = cmplx(0,kind=nag_wp)

! Read A from data file
Read (nin,*)(a(i,i:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find sqrt(A)
Call f01fpf(n,a,lda,ifail)

! Print solution
If (ifail==0) Then

ifail = 0
Call x04daf(’G’,’N’,n,n,a,lda,’sqrt(A)’,ifail)

End If

End Program f01fpfe

10.2 Program Data

F01FPF Example Program Data

4 :Value of N

( 0.0, 2.0) ( 14.0, 2.0) ( 12.0, 3.0) ( 6.0, 4.0)
(-5.0, 12.0) ( 6.0, 18.0) ( 9.0, 16.0)
( 3.0, -4.0) ( 16.0, -4.0)
( 4.0, 0.0) :End of matrix A

10.3 Program Results

F01FPF Example Program Results

sqrt(A)
1 2 3 4

1 1.0000 2.0000 -0.0000 1.0000
1.0000 -2.0000 1.0000 -1.0000

2 0.0000 2.0000 3.0000 0.0000
0.0000 3.0000 3.0000 1.0000

3 0.0000 0.0000 2.0000 4.0000
0.0000 0.0000 -1.0000 0.0000

4 0.0000 0.0000 0.0000 2.0000
0.0000 0.0000 0.0000 0.0000
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NAG Library Routine Document

F01FQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01FQF computes an abitrary real power Ap of a complex n by n matrix A.

2 Specification

SUBROUTINE F01FQF (N, A, LDA, P, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) P
COMPLEX (KIND=nag_wp) A(LDA,*)

3 Description

For a matrix A with no eigenvalues on the closed negative real line, Ap (p 2 R) can be defined as

Ap ¼ exp plog Að Þð Þ

where log Að Þ is the principal logarithm of A (the unique logarithm whose spectrum lies in the strip
z : �	 < Im zð Þ < 	f g).
Ap is computed using the Schur–Padé algorithm described in Higham and Lin (2011) and Higham and
Lin (2013).

The real number p is expressed as p ¼ q þ r where q 2 �1; 1ð Þ and r 2 Z. Then Ap ¼ AqAr. The
integer power Ar is found using a combination of binary powering and, if necessary, matrix inversion.
The fractional power Aq is computed using a Schur decomposition and a Padé approximant.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Higham N J and Lin L (2011) A Schur–Padé algorithm for fractional powers of a matrix SIAM J.
Matrix Anal. Appl. 32(3) 1056–1078

Higham N J and Lin L (2013) An improved Schur–Padé algorithm for fractional powers of a matrix
and their Fréchet derivatives SIAM J. Matrix Anal. Appl. 34(3) 1341–1360

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: if IFAIL ¼ 0, the n by n matrix pth power, Ap. Alternatively, if IFAIL ¼ 1, contains an
n by n non-principal power of A.
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3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FQF
is called.

Constraint: LDA � N.

4: P – REAL (KIND=nag_wp) Input

On entry: the required power of A.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has eigenvalues on the negative real line. The principal pth power is not defined so a non-
principal power is returned.

IFAIL ¼ 2

A is singular so the pth power cannot be computed.

IFAIL ¼ 3

Ap has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.

IFAIL ¼ 4

An unexpected internal error occurred. This failure should not occur and suggests that the routine
has been called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For positive integer p, the algorithm reduces to a sequence of matrix multiplications. For negative
integer p, the algorithm consists of a combination of matrix inversion and matrix multiplications.

For a normal matrix A (for which AHA ¼ AAH) and non-integer p, the Schur decomposition is diagonal
and the algorithm reduces to evaluating powers of the eigenvalues of A and then constructing Ap using
the Schur vectors. This should give a very accurate result. In general however, no error bounds are
available for the algorithm.

8 Parallelism and Performance

F01FQF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01FQF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is O n3
� �

. The exact cost depends on the matrix A but if p 2 �1; 1ð Þ then the
cost is independent of p. O 4� n2

� �
complex allocatable memory is required by the routine.

If estimates of the condition number of Ap are required then F01KEF should be used.

10 Example

This example finds Ap where p ¼ 0:2 and

A ¼
2 3 2 1þ 3i
2þ i 1 1 2þ 2i
2þ i 2þ 2i 2i 2þ 4i
3 2þ 2i 3 1

0B@
1CA:

10.1 Program Text

Program f01fqfe

! F01FQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01fqf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: p
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01FQF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, p
lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find A^p
Call f01fqf(n,a,lda,p,ifail)

! Print solution
If (ifail==0) Then

ifail = 0
Call x04daf(’G’,’N’,n,n,a,lda,’A^p’,ifail)

End If

End Program f01fqfe

10.2 Program Data

F01FQF Example Program Data

4 0.2 : Values of N and P

(2.0,0.0) (3.0,0.0) (2.0,0.0) (1.0,3.0)
(2.0,1.0) (1.0,0.0) (1.0,0.0) (2.0,2.0)
(2.0,1.0) (2.0,2.0) (0.0,2.0) (2.0,4.0)
(3.0,0.0) (2.0,2.0) (3.0,0.0) (1.0,0.0) : End of matrix A

10.3 Program Results

F01FQF Example Program Results

A^p
1 2 3 4

1 1.1766 0.1375 0.2742 -0.1435
-0.0758 0.2241 -0.2223 0.0816

2 0.2074 1.1118 -0.1343 0.1794
-0.0998 -0.0039 -0.0404 0.3590

3 -0.0859 0.5224 1.0616 0.2308
-0.0824 -0.0530 0.3921 0.1856

4 0.3313 -0.1507 0.2178 1.1710
0.1303 0.0982 -0.0061 -0.2136
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NAG Library Routine Document

F01GAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01GAF computes the action of the matrix exponential etA, on the matrix B, where A is a real n by n
matrix, B is a real n by m matrix and t is a real scalar.

2 Specification

SUBROUTINE F01GAF (N, M, A, LDA, B, LDB, T, IFAIL)

INTEGER N, M, LDA, LDB, IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), T

3 Description

etAB is computed using the algorithm described in Al–Mohy and Higham (2011) which uses a
truncated Taylor series to compute the product etAB without explicitly forming etA.

4 References

Al–Mohy A H and Higham N J (2011) Computing the action of the matrix exponential, with an
application to exponential integrators SIAM J. Sci. Statist. Comput. 33(2) 488-511

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: M – INTEGER Input

On entry: m, the number of columns of the matrix B.

Constraint: M � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: A is overwritten during the computation.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01GAF
is called.

Constraint: LDA � N.
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5: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least M.

On entry: the n by m matrix B.

On exit: the n by m matrix etAB.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F01GAF
is called.

Constraint: LDB � N.

7: T – REAL (KIND=nag_wp) Input

On entry: the scalar t.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

etAB has been computed using an IEEE double precision Taylor series, although the arithmetic
precision is higher than IEEE double precision.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �2
On entry, M ¼ valueh i.
Constraint: M � 0.

IFAIL ¼ �4
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �6
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � N.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a symmetric matrix A (for which AT ¼ A) the computed matrix etAB is guaranteed to be close to
the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-
symmetric matrices. See Section 4 of Al–Mohy and Higham (2011) for details and further discussion.

8 Parallelism and Performance

F01GAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01GAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The matrix etAB could be computed by explicitly forming etA using F01ECF and multiplying B by the
result. However, experiments show that it is usually both more accurate and quicker to use F01GAF.

The cost of the algorithm is O n2m
� �

. The precise cost depends on A since a combination of balancing,
shifting and scaling is used prior to the Taylor series evaluation.

Approximately n2 þ 2mþ 8ð Þn of real allocatable memory is required by F01GAF.

F01HAF can be used to compute etAB for complex A, B, and t. F01GBF provides an implementation
of the algorithm with a reverse communication interface, which returns control to the user when matrix
multiplications are required. This should be used if A is large and sparse.

10 Example

This example computes etAB, where

A ¼
0:7 �0:2 1:0 0:3
0:3 0:7 1:2 1:0
0:9 0:0 0:2 0:7
2:4 0:1 0:0 0:2

0B@
1CA;
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B ¼
0:1 1:2
1:3 0:2
0:0 1:0
0:4 �0:9

0B@
1CA

and

t ¼ 1:2:

10.1 Program Text

Program f01gafe

! F01GAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01gaf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: t
Integer :: i, ifail, lda, ldb, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01GAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, t

lda = n
ldb = n

Allocate (a(lda,n))
Allocate (b(ldb,m))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Read B from data file
Read (nin,*)(b(i,1:m),i=1,n)

! Find exp(tA)B
ifail = 0
Call f01gaf(n,m,a,lda,b,ldb,t,ifail)

If (ifail==0) Then
! Print solution

ifail = 0
Call x04caf(’G’,’N’,n,m,b,ldb,’exp(tA)B’,ifail)

End If

End Program f01gafe

10.2 Program Data

F01GAF Example Program Data

4 2 1.2 :Values of N, M and T

0.7 -0.2 1.0 0.3
0.3 0.7 1.2 1.0
0.9 0.0 0.2 0.7
2.4 0.1 0.0 0.2 :End of matrix A
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0.1 1.2
1.3 0.2
0.0 1.0
0.4 -0.9 :End of matrix B

10.3 Program Results

F01GAF Example Program Results

exp(tA)B
1 2

1 0.2138 7.6756
2 4.9980 11.6051
3 0.8307 7.5468
4 1.2406 9.7261
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NAG Library Routine Document

F01GBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01GBF computes the action of the matrix exponential etA, on the matrix B, where A is a real n by n
matrix, B is a real n by m matrix and t is a real scalar. It uses reverse communication for evaluating
matrix products, so that the matrix A is not accessed explicitly.

2 Specification

SUBROUTINE F01GBF (IREVCM, N, M, B, LDB, T, TR, B2, LDB2, X, LDX, Y,
LDY, P, R, Z, COMM, ICOMM, IFAIL)

&

INTEGER IREVCM, N, M, LDB, LDB2, LDX, LDY, ICOMM(2*N+40),
IFAIL

&

REAL (KIND=nag_wp) B(LDB,*), T, TR, B2(LDB2,*), X(LDX,*), Y(LDY,*),
P(N), R(N), Z(N), COMM(N*M+3*N+12)

&

3 Description

etAB is computed using the algorithm described in Al–Mohy and Higham (2011) which uses a
truncated Taylor series to compute the etAB without explicitly forming etA.

The algorithm does not explicity need to access the elements of A; it only requires the result of matrix
multiplications of the form AX or ATY . A reverse communication interface is used, in which control is
returned to the calling program whenever a matrix product is required.

4 References

Al–Mohy A H and Higham N J (2011) Computing the action of the matrix exponential, with an
application to exponential integrators SIAM J. Sci. Statist. Comput. 33(2) 488-511

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than B2, X, Y, P and R must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: must be set to 0.

On intermediate exit: IREVCM ¼ 1, 2, 3, 4 or 5. The calling program must:

(a) if IREVCM ¼ 1: evaluate B2 ¼ AB, where B2 is an n by m matrix, and store the result in
B2;
if IREVCM ¼ 2: evaluate Y ¼ AX, where X and Y are n by 2 matrices, and store the result
in Y;
if IREVCM ¼ 3: evaluate X ¼ ATY and store the result in X;
if IREVCM ¼ 4: evaluate p ¼ Az and store the result in P;
if IREVCM ¼ 5: evaluate r ¼ ATz and store the result in R.

(b) call F01GBF again with all other parameters unchanged.
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On final exit: IREVCM ¼ 0.

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: M – INTEGER Input

On entry: the number of columns of the matrix B.

Constraint: M � 0.

4: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least M.

On initial entry: the n by m matrix B.

On intermediate exit: if IREVCM ¼ 1, contains the n by m matrix B.

On intermediate re-entry: must not be changed.

On final exit: the n by m matrix etAB.

5: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F01GBF
is called.

Constraint: LDB � N.

6: T – REAL (KIND=nag_wp) Input

On entry: the scalar t.

7: TR – REAL (KIND=nag_wp) Input

On entry: the trace of A. If this is not available then any number can be supplied (0 is a
reasonable default); however, in the trivial case, n ¼ 1, the result eTRtB is immediately returned
in the first row of B. See Section 9.

8: B2ðLDB2; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B2 must be at least M.

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 1, must contain AB.

On final exit: the array is undefined.

9: LDB2 – INTEGER Input

On initial entry: the first dimension of the array B2 as declared in the (sub)program from which
F01GBF is called.

Constraint: LDB2 � N.

10: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least 2.

On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 2, contains the current n by 2 matrix X.

On intermediate re-entry: if IREVCM ¼ 3, must contain ATY .
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On final exit: the array is undefined.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F01GBF
is called.

Constraint: LDX � N.

12: YðLDY; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Y must be at least 2.

On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 3, contains the current n by 2 matrix Y .

On intermediate re-entry: if IREVCM ¼ 2, must contain AX.

On final exit: the array is undefined.

13: LDY – INTEGER Input

On entry: the first dimension of the array Y as declared in the (sub)program from which F01GBF
is called.

Constraint: LDY � N.

14: PðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 4, must contain Az.

On final exit: the array is undefined.

15: RðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 5, must contain ATz.

On final exit: the array is undefined.

16: ZðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 4 or 5, contains the vector z.

On intermediate re-entry: must not be changed.

On final exit: the array is undefined.

17: COMMðN�Mþ 3� Nþ 12Þ – REAL (KIND=nag_wp) array Communication Array

18: ICOMMð2� Nþ 40Þ – INTEGER array Communication Array

19: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.
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On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

etAB has been computed using an IEEE double precision Taylor series, although the arithmetic
precision is higher than IEEE double precision.

IFAIL ¼ �1
On initial entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0.

On intermediate re-entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 1, 2, 3, 4 or 5.

IFAIL ¼ �2
On initial entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On initial entry, M ¼ valueh i.
Constraint: M � 0.

IFAIL ¼ �5
On initial entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � N.

IFAIL ¼ �9
On initial entry, LDB2 ¼ valueh i and N ¼ valueh i.
Constraint: LDB2 � N.

IFAIL ¼ �11
On initial entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ �13
On initial entry, LDY ¼ valueh i and N ¼ valueh i.
Constraint: LDY � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a symmetric matrix A (for which AT ¼ A) the computed matrix etAB is guaranteed to be close to
the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-
symmetric matrices. See Section 4 of Al–Mohy and Higham (2011) for details and further discussion.

8 Parallelism and Performance

F01GBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Use of Tr Að Þ
The elements of A are not explicitly required by F01GBF. However, the trace of A is used in the
preprocessing phase of the algorithm. If Tr Að Þ is not available to the calling subroutine then any
number can be supplied (0 is recommended). This will not affect the stability of the algorithm, but it
may reduce its efficiency.

9.2 When to use F01GBF

F01GBF is designed to be used when A is large and sparse. Whenever a matrix multiplication is
required, the routine will return control to the calling program so that the multiplication can be done in
the most efficient way possible. Note that etAB will not, in general, be sparse even if A is sparse.

If A is small and dense then F01GAF can be used to compute etAB without the use of a reverse
communication interface.

The complex analog of F01GBF is F01HBF.

9.3 Use in Conjunction with NAG Library Routines

To compute etAB, the following skeleton code can normally be used:

revcm: Do
Call F01GBF(IREVCM,N,M,B,LDB,T,TR,B2,LDB2,X,LDX,Y,LDY,P,R,Z, &

COMM,ICOMM,IFAIL)
If (IREVCM == 0) Then

Exit revcm
Else If (IREVCM == 1) Then

.. Code to compute B2=AB ..
Else If (IREVCM == 2) Then

.. Code to compute Y=AX ..
Else If (IREVCM == 3) Then

.. Code to compute X=A^T Y ..
Else If (IREVCM == 4) Then

.. Code to compute P=AZ ..
Else If (IREVCM == 5) Then

.. Code to compute R=A^T Z ..
End If

End Do revcm

F01 – Matrix Operations, Including Inversion F01GBF

Mark 26 F01GBF.5



The code used to compute the matrix products will vary depending on the way A is stored. If all the
elements of A are stored explicitly, then F06YAF (DGEMM)) can be used. If A is triangular then
F06YFF (DTRMM) should be used. If A is symmetric, then F06YCF (DSYMM) should be used. For
sparse A stored in coordinate storage format F11XAF and F11XEF can be used. Alternatively if A is
stored in compressed column format F11MKF can be used.

10 Example

This example computes etAB, where

A ¼
0:4 �0:2 1:3 0:6
0:3 0:8 1:0 1:0
3:0 4:8 0:2 0:7
0:5 0:0 �5:0 0:7

0B@
1CA;

B ¼
0:1 1:1
1:7 �0:2
0:5 1:0
0:4 �0:2

0B@
1CA;

and

t ¼ �0:2:

10.1 Program Text

Program f01gbfe

! F01GBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgemm, f01gbf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: t, tr
Integer :: i, ifail, irevcm, lda, ldb, ldb2, &

ldx, ldy, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), b2(:,:), comm(:), &
p(:), r(:), x(:,:), y(:,:), z(:)

Integer, Allocatable :: icomm(:)
! .. Executable Statements ..

Write (nout,*) ’F01GBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, t

lda = n
ldb = n
ldb2 = n
ldx = n
ldy = n

! Allocate required memory
Allocate (a(lda,n))
Allocate (b(ldb,m))
Allocate (b2(ldb2,m))
Allocate (comm(n*m+3*n+12))
Allocate (x(ldx,2))
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Allocate (y(ldy,2))
Allocate (icomm(2*n+40))
Allocate (p(n))
Allocate (r(n))
Allocate (z(n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Read B from data file
Read (nin,*)(b(i,1:m),i=1,n)

! Compute the trace of A
tr = 0.0_nag_wp
Do i = 1, n

tr = tr + a(i,i)
End Do

! Find exp(tA)B
irevcm = 0
ifail = 0

! Initial call to f01gbf reverse communication interface
revcm: Do

Call f01gbf(irevcm,n,m,b,ldb,t,tr,b2,ldb2,x,ldx,y,ldy,p,r,z,comm, &
icomm,ifail)

If (irevcm==0) Then
Exit revcm

Else If (irevcm==1) Then
! Compute AB and store in B2

Call dgemm(’N’,’N’,n,m,n,1.0_nag_wp,a,lda,b,ldb,0.0_nag_wp,b2,ldb2)

Else If (irevcm==2) Then
! Compute AX and store in Y

Call dgemm(’N’,’N’,n,2,n,1.0_nag_wp,a,lda,x,ldx,0.0_nag_wp,y,ldy)

Else If (irevcm==3) Then
! Compute A^T Y and store in X

Call dgemm(’T’,’N’,n,2,n,1.0_nag_wp,a,lda,y,ldy,0.0_nag_wp,x,ldx)

Else If (irevcm==4) Then
! Compute AZ and store in P

Call dgemm(’N’,’N’,n,1,n,1.0_nag_wp,a,lda,z,n,0.0_nag_wp,p,n)

Else
! Compute A^T Z and store in R

Call dgemm(’T’,’N’,n,1,n,1.0_nag_wp,a,lda,z,n,0.0_nag_wp,r,n)
End If

End Do revcm

If (ifail==0) Then
! Print solution

ifail = 0
Call x04caf(’G’,’N’,n,m,b,ldb,’exp(tA)B’,ifail)

End If

End Program f01gbfe

10.2 Program Data

F01GBF Example Program Data

4 2 -0.2 :Values of N, M, and T

0.4 -0.2 1.3 0.6
0.3 0.8 1.0 1.0
3.0 4.8 0.2 0.7
0.5 0.0 -5.0 0.7 :End of matrix A
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0.1 1.1
1.7 -0.2
0.5 1.0
0.4 -0.2 :End of matrix B

10.3 Program Results

F01GBF Example Program Results

exp(tA)B
1 2

1 0.1933 0.7812
2 1.4423 -0.4055
3 -1.0756 0.6686
4 0.0276 0.4900
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NAG Library Routine Document

F01HAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01HAF computes the action of the matrix exponential etA, on the matrix B, where A is a complex n
by n matrix, B is a complex n by m matrix and t is a complex scalar.

2 Specification

SUBROUTINE F01HAF (N, M, A, LDA, B, LDB, T, IFAIL)

INTEGER N, M, LDA, LDB, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), T

3 Description

etAB is computed using the algorithm described in Al–Mohy and Higham (2011) which uses a
truncated Taylor series to compute the product etAB without explicitly forming etA.

4 References

Al–Mohy A H and Higham N J (2011) Computing the action of the matrix exponential, with an
application to exponential integrators SIAM J. Sci. Statist. Comput. 33(2) 488-511

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: M – INTEGER Input

On entry: m, the number of columns of the matrix B.

Constraint: M � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: A is overwritten during the computation.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01HAF
is called.

Constraint: LDA � N.
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5: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least M.

On entry: the n by m matrix B.

On exit: the n by m matrix etAB.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F01HAF
is called.

Constraint: LDB � N.

7: T – COMPLEX (KIND=nag_wp) Input

On entry: the scalar t.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

etAB has been computed using an IEEE double precision Taylor series, although the arithmetic
precision is higher than IEEE double precision.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �2
On entry, M ¼ valueh i.
Constraint: M � 0.

IFAIL ¼ �4
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �6
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � N.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a Hermitian matrix A (for which AH ¼ A) the computed matrix etAB is guaranteed to be close to
the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-
Hermitian matrices. See Section 4 of Al–Mohy and Higham (2011) for details and further discussion.

8 Parallelism and Performance

F01HAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01HAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The matrix etAB could be computed by explicitly forming etA using F01FCF and multiplying B by the
result. However, experiments show that it is usually both more accurate and quicker to use F01HAF.

The cost of the algorithm is O n2m
� �

. The precise cost depends on A since a combination of balancing,
shifting and scaling is used prior to the Taylor series evaluation.

Approximately n2 þ 2mþ 8ð Þn of complex allocatable memory is required by F01HAF.

F01GAF can be used to compute etAB for real A, B, and t. F01HBF provides an implementation of the
algorithm with a reverse communication interface, which returns control to the user when matrix
multiplications are required. This should be used if A is large and sparse.

10 Example

This example computes etAB, where

A ¼
0:5þ 0:0i �0:2þ 0:0i 1:0þ 0:1i 0:0þ 0:4i
0:3þ 0:0i 0:5þ 1:2i 3:1þ 0:0i 1:0þ 0:2i
0:0þ 2:0i 0:1þ 0:0i 1:2þ 0:2i 0:5þ 0:0i
1:0þ 0:3i 0:0þ 0:2i 0:0þ 0:9i 0:5þ 0:0i

0B@
1CA;
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B ¼
0:4þ 0:0i 1:2þ 0:0i
1:3þ 0:0i �0:2þ 0:1i
0:0þ 0:3i 2:1þ 0:0i
0:4þ 0:0i �0:9þ 0:0i

0B@
1CA

and

t ¼ �0:5þ 0:0i:

10.1 Program Text

Program f01hafe

! F01HAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01haf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: t
Integer :: i, ifail, lda, ldb, m, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01HAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, t

lda = n
ldb = n

Allocate (a(lda,n))
Allocate (b(ldb,m))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Read B from data file
Read (nin,*)(b(i,1:m),i=1,n)

! Find exp(tA)B
ifail = 0
Call f01haf(n,m,a,lda,b,ldb,t,ifail)

If (ifail==0) Then
! Print solution

ifail = 0
Call x04daf(’G’,’N’,n,m,b,ldb,’exp(tA)B’,ifail)

End If
End Program f01hafe

F01HAF NAG Library Manual

F01HAF.4 Mark 26



10.2 Program Data

F01HAF Example Program Data

4 2 (-0.5,0.0) :Values of N, M and T

(0.5,0.0) (-0.2,0.0) (1.0,0.1) (0.0,0.4)
(0.3,0.0) ( 0.5,1.2) (3.1,0.0) (1.0,0.2)
(0.0,2.0) ( 0.1,0.0) (1.2,0.2) (0.5,0.0)
(1.0,0.3) ( 0.0,0.2) (0.0,0.9) (0.5,0.0) :End of matrix A

(0.4,0.0) ( 1.2,0.0)
(1.3,0.0) (-0.2,0.1)
(0.0,0.3) ( 2.1,0.0)
(0.4,0.0) (-0.9,0.0) :End of matrix B

10.3 Program Results

F01HAF Example Program Results

exp(tA)B
1 2

1 0.4251 -0.0220
-0.1061 0.3289

2 0.7229 -1.7931
-0.5940 1.4952

3 -0.1394 1.4781
-0.1151 -0.4514

4 0.1054 -1.0059
-0.0786 -0.7079
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NAG Library Routine Document

F01HBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01HBF computes the action of the matrix exponential etA, on the matrix B, where A is a complex n
by n matrix, B is a complex n by m matrix and t is a complex scalar. It uses reverse communication
for evaluating matrix products, so that the matrix A is not accessed explicitly.

2 Specification

SUBROUTINE F01HBF (IREVCM, N, M, B, LDB, T, TR, B2, LDB2, X, LDX, Y,
LDY, P, R, Z, CCOMM, COMM, ICOMM, IFAIL)

&

INTEGER IREVCM, N, M, LDB, LDB2, LDX, LDY, ICOMM(2*N+40),
IFAIL

&

REAL (KIND=nag_wp) COMM(3*N+14)
COMPLEX (KIND=nag_wp) B(LDB,*), T, TR, B2(LDB2,*), X(LDX,*), Y(LDY,*),

P(N), R(N), Z(N), CCOMM(N*(M+2))
&

3 Description

etAB is computed using the algorithm described in Al–Mohy and Higham (2011) which uses a
truncated Taylor series to compute the etAB without explicitly forming etA.

The algorithm does not explicity need to access the elements of A; it only requires the result of matrix
multiplications of the form AX or AHY . A reverse communication interface is used, in which control is
returned to the calling program whenever a matrix product is required.

4 References

Al–Mohy A H and Higham N J (2011) Computing the action of the matrix exponential, with an
application to exponential integrators SIAM J. Sci. Statist. Comput. 33(2) 488-511

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than B2, X, Y, P and R must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: must be set to 0.

On intermediate exit: IREVCM ¼ 1, 2, 3, 4 or 5. The calling program must:

(a) if IREVCM ¼ 1: evaluate B2 ¼ AB, where B2 is an n by m matrix, and store the result in
B2;
if IREVCM ¼ 2: evaluate Y ¼ AX, where X and Y are n by 2 matrices, and store the result
in Y;
if IREVCM ¼ 3: evaluate X ¼ AHY and store the result in X;
if IREVCM ¼ 4: evaluate p ¼ Az and store the result in P;
if IREVCM ¼ 5: evaluate r ¼ AHz and store the result in R.

(b) call F01HBF again with all other parameters unchanged.
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On final exit: IREVCM ¼ 0.

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: M – INTEGER Input

On entry: the number of columns of the matrix B.

Constraint: M � 0.

4: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least M.

On initial entry: the n by m matrix B.

On intermediate exit: if IREVCM ¼ 1, contains the n by m matrix B.

On intermediate re-entry: must not be changed.

On final exit: the n by m matrix etAB.

5: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F01HBF
is called.

Constraint: LDB � N.

6: T – COMPLEX (KIND=nag_wp) Input

On entry: the scalar t.

7: TR – COMPLEX (KIND=nag_wp) Input

On entry: the trace of A. If this is not available then any number can be supplied (0 is a
reasonable default); however, in the trivial case, n ¼ 1, the result eTRtB is immediately returned
in the first row of B. See Section 9.

8: B2ðLDB2; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B2 must be at least M.

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 1, must contain AB.

On final exit: the array is undefined.

9: LDB2 – INTEGER Input

On initial entry: the first dimension of the array B2 as declared in the (sub)program from which
F01HBF is called.

Constraint: LDB2 � N.

10: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least 2.

On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 2, contains the current n by 2 matrix X.

On intermediate re-entry: if IREVCM ¼ 3, must contain AHY .
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On final exit: the array is undefined.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F01HBF
is called.

Constraint: LDX � N.

12: YðLDY; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Y must be at least 2.

On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 3, contains the current n by 2 matrix Y .

On intermediate re-entry: if IREVCM ¼ 2, must contain AX.

On final exit: the array is undefined.

13: LDY – INTEGER Input

On entry: the first dimension of the array Y as declared in the (sub)program from which F01HBF
is called.

Constraint: LDY � N.

14: PðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 4, must contain Az.

On final exit: the array is undefined.

15: RðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate re-entry: if IREVCM ¼ 5, must contain AHz.

On final exit: the array is undefined.

16: ZðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 4 or 5, contains the vector z.

On intermediate re-entry: must not be changed.

On final exit: the array is undefined.

17: CCOMMðN� Mþ 2ð ÞÞ – COMPLEX (KIND=nag_wp) array Communication Array

18: COMMð3� Nþ 14Þ – REAL (KIND=nag_wp) array Communication Array

19: ICOMMð2� Nþ 40Þ – INTEGER array Communication Array

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

etAB has been computed using an IEEE double precision Taylor series, although the arithmetic
precision is higher than IEEE double precision.

IFAIL ¼ �1
On initial entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0.

On intermediate re-entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 1, 2, 3, 4 or 5.

IFAIL ¼ �2
On initial entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On initial entry, M ¼ valueh i.
Constraint: M � 0.

IFAIL ¼ �5
On initial entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � N.

IFAIL ¼ �9
On initial entry, LDB2 ¼ valueh i and N ¼ valueh i.
Constraint: LDB2 � N.

IFAIL ¼ �11
On initial entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ �13
On initial entry, LDY ¼ valueh i and N ¼ valueh i.
Constraint: LDY � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For an Hermitian matrix A (for which AH ¼ A) the computed matrix etAB is guaranteed to be close to
the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-
Hermitian matrices. See Section 4 of Al–Mohy and Higham (2011) for details and further discussion.

8 Parallelism and Performance

F01HBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Use of Tr Að Þ
The elements of A are not explicitly required by F01HBF. However, the trace of A is used in the
preprocessing phase of the algorithm. If Tr Að Þ is not available to the calling subroutine then any
number can be supplied (0 is recommended). This will not affect the stability of the algorithm, but it
may reduce its efficiency.

9.2 When to use F01HBF

F01HBF is designed to be used when A is large and sparse. Whenever a matrix multiplication is
required, the routine will return control to the calling program so that the multiplication can be done in
the most efficient way possible. Note that etAB will not, in general, be sparse even if A is sparse.

If A is small and dense then F01HAF can be used to compute etAB without the use of a reverse
communication interface.

The real analog of F01HBF is F01GBF.

9.3 Use in Conjunction with NAG Library Routines

To compute etAB, the following skeleton code can normally be used:

revcm: Do
Call F01HBF(IREVCM,N,M,B,LDB,T,TR,B2,LDB2,X,LDX,Y,LDX,P,R,Z, &

CCOMM,COMM,ICOMM,IFAIL)
If (IREVCM == 0) Then

Exit revcm
Else If (IREVCM == 1) Then

.. Code to compute B2=AB ..
Else If (IREVCM == 2) Then

.. Code to compute Y=AX ..
Else If (IREVCM == 3) Then

.. Code to compute X=A^H Y ..
Else If (IREVCM == 4) Then

.. Code to compute P=AZ ..
Else If (IREVCM == 5) Then
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.. Code to compute R=A^H Z ..
End If

End Do revcm

The code used to compute the matrix products will vary depending on the way A is stored. If all the
elements of A are stored explicitly, then F06ZAF (ZGEMM) can be used. If A is triangular then
F06ZFF (ZTRMM) should be used. If A is Hermitian, then F06ZCF (ZHEMM) should be used. If A is
symmetric, then F06ZTF (ZSYMM) should be used. For sparse A stored in coordinate storage format
F11XNF and F11XSF can be used. For sparse A stored in compressed column storage format (CCS) the
program text of Section 10 contains the routine matmul to perform matrix products.

10 Example

This example computes etAB where

A ¼
0:7þ 0:8i �0:2þ 0:0i 1:0þ 0:0i 0:6þ 0:5i
0:3þ 0:7i 0:7þ 0:0i 0:9þ 3:0i 1:0þ 0:8i
0:3þ 3:0i �0:7þ 0:0i 0:2þ 0:6i 0:7þ 0:5i
0:0þ 0:9i 4:0þ 0:0i 0:0þ 0:0i 0:2þ 0:0i

0B@
1CA;

B ¼
0:1þ 0:0i 1:2þ 0:1i
1:3þ 0:9i �0:2þ 2:0i
4:0þ 0:6i �1:0þ 0:8i
0:4þ 0:0i �0:9þ 0:0i

0B@
1CA

and

t ¼ 1:1þ 0:0i:

A is stored in compressed column storage format (CCS) and matrix multiplications are performed using
the routine matmul.

10.1 Program Text

Program f01hbfe

! F01HBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01hbf, nag_wp, x04daf, zgemm

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: t, tr
Integer :: i, ifail, irevcm, lda, ldb, ldb2, &

ldx, ldy, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), b2(:,:), ccomm(:), &
p(:), r(:), x(:,:), y(:,:), z(:)

Real (Kind=nag_wp), Allocatable :: comm(:)
Integer, Allocatable :: icomm(:)

! .. Executable Statements ..
Write (nout,*) ’F01HBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, t

lda = n
ldb = n
ldb2 = n
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ldx = n
ldy = n

! Allocate required space
Allocate (a(lda,n))
Allocate (b(ldb,m))
Allocate (b2(ldb2,m))
Allocate (ccomm(n*(m+2)))
Allocate (x(ldx,2))
Allocate (y(ldy,2))
Allocate (icomm(2*n+40))
Allocate (comm(14+3*n))
Allocate (p(n))
Allocate (r(n))
Allocate (z(n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Read B from data file
Read (nin,*)(b(i,1:m),i=1,n)

! Compute the trace of A
tr = (0.0_nag_wp,0.0_nag_wp)
Do i = 1, n

tr = tr + a(i,i)
End Do

! Find exp(tA)B

irevcm = 0
ifail = 0

! Initial call to reverse communication interface f01hbf
revcm: Do

Call f01hbf(irevcm,n,m,b,ldb,t,tr,b2,ldb2,x,ldx,y,ldy,p,r,z,ccomm, &
comm,icomm,ifail)

If (irevcm==0) Then
Exit revcm

Else If (irevcm==1) Then
! Compute AB and store in B2

Call zgemm(’N’,’N’,n,m,n,(1.0_nag_wp,0.0_nag_wp),a,lda,b,ldb, &
(0.0_nag_wp,0.0_nag_wp),b2,ldb2)

Else If (irevcm==2) Then
! Compute AX and store in Y

Call zgemm(’N’,’N’,n,2,n,(1.0_nag_wp,0.0_nag_wp),a,lda,x,ldx, &
(0.0_nag_wp,0.0_nag_wp),y,ldy)

Else If (irevcm==3) Then
! Compute A^H Y and store in X

Call zgemm(’C’,’N’,n,2,n,(1.0_nag_wp,0.0_nag_wp),a,lda,y,ldy, &
(0.0_nag_wp,0.0_nag_wp),x,ldx)

Else If (irevcm==4) Then
! Compute Az and store in p

Call zgemm(’N’,’N’,n,1,n,(1.0_nag_wp,0.0_nag_wp),a,lda,z,n, &
(0.0_nag_wp,0.0_nag_wp),p,n)

Else If (irevcm==5) Then
! Compute A^H z and store in r

Call zgemm(’C’,’N’,n,1,n,(1.0_nag_wp,0.0_nag_wp),a,lda,z,n, &
(0.0_nag_wp,0.0_nag_wp),r,n)

End If

! Return to f01hbf
End Do revcm

If (ifail==0) Then
! Print solution
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ifail = 0
Call x04daf(’G’,’N’,n,m,b,ldb,’exp(tA)B’,ifail)

End If

End Program f01hbfe

10.2 Program Data

F01HBF Example Program Data

4 2 (1.1,0.0) :Values of N, M, T

(0.7,0.8) (-0.2,0.0) (1.0,0.0) (0.6,0.5)
(0.3,0.7) ( 0.7,0.0) (0.9,3.0) (1.0,0.8)
(0.3,3.0) (-7.0,0.0) (0.2,0.6) (0.7,0.5)
(0.0,0.9) ( 4.0,0.0) (0.0,0.0) (0.2,0.0) :End of matrix A

(0.1,0.0) ( 1.2,0.1)
(1.3,0.9) (-0.2,2.0)
(4.0,0.6) (-1.0,0.8)
(0.4,0.0) (-0.9,0.0) :End of matrix B

10.3 Program Results

F01HBF Example Program Results

exp(tA)B
1 2

1 -15.3125 -4.5605
5.9123 -2.4288

2 12.3396 9.2005
-50.6993 -10.3632

3 -65.4353 -17.6075
34.3271 -1.0019

4 45.6506 11.3339
-28.3253 0.1127

F01HBF NAG Library Manual

F01HBF.8 (last) Mark 26



NAG Library Routine Document

F01JAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01JAF computes an estimate of the absolute condition number of a matrix function f at a real n by n
matrix A in the 1-norm, where f is either the exponential, logarithm, sine, cosine, hyperbolic sine (sinh)
or hyperbolic cosine (cosh). The evaluation of the matrix function, f Að Þ, is also returned.

2 Specification

SUBROUTINE F01JAF (FUN, N, A, LDA, CONDA, NORMA, NORMFA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), CONDA, NORMA, NORMFA
CHARACTER(*) FUN

3 Description

The absolute condition number of f at A, condabs f; Að Þ is given by the norm of the Fréchet derivative
of f , L Að Þ, which is defined by

L Xð Þk k :¼ max E 6¼0
L X;Eð Þk k

Ek k ;

where L X;Eð Þ is the Fréchet derivative in the direction E. L X;Eð Þ is linear in E and can therefore be
written as

vec L X;Eð Þð Þ ¼ K Xð Þvec Eð Þ;

where the vec operator stacks the columns of a matrix into one vector, so that K Xð Þ is n2 � n2.
F01JAF computes an estimate � such that � � K Xð Þk k1, where K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
.

The relative condition number can then be computed via

condrel f; Að Þ ¼ condabs f; Að Þ Ak k1
f Að Þk k1

:

The algorithm used to find � is detailed in Section 3.4 of Higham (2008).

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: FUN – CHARACTER(*) Input

On entry: indicates which matrix function will be used.

FUN ¼ EXP
The matrix exponential, eA, will be used.

FUN ¼ SIN
The matrix sine, sin Að Þ, will be used.

FUN ¼ COS
The matrix cosine, cos Að Þ, will be used.
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FUN ¼ SINH
The hyperbolic matrix sine, sinh Að Þ, will be used.

FUN ¼ COSH
The hyperbolic matrix cosine, cosh Að Þ, will be used.

FUN ¼ LOG
The matrix logarithm, log Að Þ, will be used.

Constraint: FUN ¼ EXP , SIN , COS , SINH , COSH or LOG .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01JAF
is called.

Constraint: LDA � N.

5: CONDA – REAL (KIND=nag_wp) Output

On exit: an estimate of the absolute condition number of f at A.

6: NORMA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of A.

7: NORMFA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of f Að Þ.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

F01JAF NAG Library Manual

F01JAF.2 Mark 26



6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An internal error occurred when evaluating the matrix function f Að Þ. Please contact NAG.

IFAIL ¼ 2

An internal error occurred when estimating the norm of the Fréchet derivative of f at A. Please
contact NAG.

IFAIL ¼ �1
On entry, FUN ¼ valueh i was an illegal value.

IFAIL ¼ �2
On entry, N < 0.
Input argument number valueh i is invalid.

IFAIL ¼ �4
On entry, argument LDA is invalid.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01JAF uses the norm estimation routine F04YDF to estimate a quantity �, where � � K Xð Þk k1 and
K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
. For further details on the accuracy of norm estimation, see the

documentation for F04YDF.

8 Parallelism and Performance

F01JAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation.

F01JAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The matrix function is computed using one of three underlying matrix function routines:

if FUN ¼ EXP , F01ECF is used;

if FUN ¼ LOG , F01EJF is used;

else, F01EKF is used.

Approximately 6n2 of real allocatable memory is required by the routine, in addition to the memory
used by these underlying matrix function routines.

If only f Að Þ is required, without an estimate of the condition number, then it is far more efficient to use
the appropriate matrix function routine listed above.

F01KAF can be used to find the condition number of the exponential, logarithm, sine, cosine, sinh or
cosh matrix functions at a complex matrix.

10 Example

This example estimates the absolute and relative condition numbers of the matrix sinh function where

A ¼
2 1 3 1
3 �1 0 2
1 0 3 1
1 2 0 3

0B@
1CA:

10.1 Program Text

Program f01jafe

! F01JAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01jaf, nag_wp, x02ajf, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: conda, cond_rel, eps, norma, normfa
Integer :: i, ifail, lda, n
Character (4) :: fun

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01JAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, fun

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Display A
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’A’,ifail)
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! Find absolute condition number estimate
ifail = 0
Call f01jaf(fun,n,a,lda,conda,norma,normfa,ifail)

If (ifail==0) Then
! Print solution

Write (nout,*)
Write (nout,*) ’F(A) = ’, fun, ’(A)’
Write (nout,99999) ’Estimated absolute condition number is: ’, conda

! Find relative condition number estimate
eps = x02ajf()
If (normfa>eps) Then

cond_rel = conda*norma/normfa
Write (nout,99999) ’Estimated relative condition number is: ’, &

cond_rel
Else

Write (nout,99998) ’The estimated norm of f(A) is effectively zero’, &
’and so the relative condition number is undefined.’

End If
End If

99999 Format (1X,A,F7.2)
99998 Format (/,1X,A,/,1X,A)

End Program f01jafe

10.2 Program Data

F01JAF Example Program Data

4 SINH :Value of N and FUN

2.0 1.0 3.0 1.0
3.0 -1.0 0.0 2.0
1.0 0.0 3.0 1.0
1.0 2.0 0.0 3.0 :End of matrix A

10.3 Program Results

F01JAF Example Program Results

A
1 2 3 4

1 2.0000 1.0000 3.0000 1.0000
2 3.0000 -1.0000 0.0000 2.0000
3 1.0000 0.0000 3.0000 1.0000
4 1.0000 2.0000 0.0000 3.0000

F(A) = SINH(A)
Estimated absolute condition number is: 204.45
Estimated relative condition number is: 7.90
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NAG Library Routine Document

F01JBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01JBF computes an estimate of the absolute condition number of a matrix function f at a real n by n
matrix A in the 1-norm. Numerical differentiation is used to evaluate the derivatives of f when they are
required.

2 Specification

SUBROUTINE F01JBF (N, A, LDA, F, IUSER, RUSER, IFLAG, CONDA, NORMA,
NORMFA, IFAIL)

&

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) A(LDA,*), RUSER(*), CONDA, NORMA, NORMFA
EXTERNAL F

3 Description

The absolute condition number of f at A, condabs f; Að Þ is given by the norm of the Fréchet derivative
of f , L Að Þ, which is defined by

L Xð Þk k :¼ max E 6¼0
L X;Eð Þk k

Ek k ;

where L X;Eð Þ is the Fréchet derivative in the direction E. L X;Eð Þ is linear in E and can therefore be
written as

vec L X;Eð Þð Þ ¼ K Xð Þvec Eð Þ;

where the vec operator stacks the columns of a matrix into one vector, so that K Xð Þ is n2 � n2. F01JBF
computes an estimate � such that � � K Xð Þk k1, where K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
. The

relative condition number can then be computed via

condrel f; Að Þ ¼ condabs f; Að Þ Ak k1
f Að Þk k1

:

The algorithm used to find � is detailed in Section 3.4 of Higham (2008).

The function f is supplied via subroutine F which evaluates f zið Þ at a number of points zi.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01JBF
is called.

Constraint: LDA � N.

4: F – SUBROUTINE, supplied by the user. External Procedure

The subroutine F evaluates f zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (IFLAG, NZ, Z, FZ, IUSER, RUSER)

INTEGER IFLAG, NZ, IUSER(*)
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) Z(NZ), FZ(NZ)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f zð Þ; for instance
f zð Þ may not be defined. If IFLAG is returned as nonzero then F01JBF will terminate
the computation, with IFAIL ¼ 3.

2: NZ – INTEGER Input

On entry: nz, the number of function values required.

3: ZðNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nz points z1; z2; . . . ; znz at which the function f is to be evaluated.

4: FZðNZÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the nz function values. FZðiÞ should return the value f zið Þ, for i ¼ 1; 2; . . . ; nz.
If zi lies on the real line, then so must f zið Þ.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to F01JBF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F01JBF is called. Arguments denoted as Input must not be changed by this
procedure.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01JBF, but are passed directly to F and should be used to
pass information to this routine.
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7: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless IFLAG has been set nonzero inside F, in which case IFLAG will be
the value set and IFAIL will be set to IFAIL ¼ 3.

8: CONDA – REAL (KIND=nag_wp) Output

On exit: an estimate of the absolute condition number of f at A.

9: NORMA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of A.

10: NORMFA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of f Að Þ.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An internal error occurred when estimating the norm of the Fréchet derivative of f at A. Please
contact NAG.

IFAIL ¼ 2

An internal error occurred when evaluating the matrix function f Að Þ. You can investigate further
by calling F01ELF with the matrix A and the function f .

IFAIL ¼ 3

IFLAG has been set nonzero by the user-supplied subroutine.

IFAIL ¼ �1
On entry, N < 0.
Input argument number valueh i is invalid.

IFAIL ¼ �3
On entry, argument LDA is invalid.
Constraint: LDA � N.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01JBF uses the norm estimation routine F04YDF to estimate a quantity �, where � � K Xð Þk k1 and
K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
. For further details on the accuracy of norm estimation, see the

documentation for F04YDF.

8 Parallelism and Performance

F01JBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

F01JBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The matrix function is computed using the underlying matrix function routine F01ELF. Approximately
6n2 of real allocatable memory is required by the routine, in addition to the memory used by the
underlying matrix function routine.

If only f Að Þ is required, without an estimate of the condition number, then it is far more efficient to use
the underlying matrix function routine.

The complex analogue of this routine is F01KBF.

10 Example

This example estimates the absolute and relative condition numbers of the matrix function cos 2A where

A ¼
�1 �1 �2 1
0 1 �1 0
�1 �2 1 �1
0 �1 0 �1

0B@
1CA:
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10.1 Program Text

! F01JBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f01jbfe_mod

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcos2

Contains
Subroutine fcos2(iflag,nz,z,fz,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: nz

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: fz(nz)
Complex (Kind=nag_wp), Intent (In) :: z(nz)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
Continue
fz(1:nz) = cos((2.0E0_nag_wp,0.0E0_nag_wp)*z(1:nz))

! Set iflag nonzero to terminate execution for any reason.
iflag = 0
Return

End Subroutine fcos2
End Module f01jbfe_mod
Program f01jbfe

! F01JBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01jbf, nag_wp, x02ajf, x04caf
Use f01jbfe_mod, Only: fcos2

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: conda, cond_rel, eps, norma, normfa
Integer :: i, ifail, iflag, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01JBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Display A
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’A’,ifail)
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! Find absolute condition number estimate
ifail = 0
Call f01jbf(n,a,lda,fcos2,iuser,ruser,iflag,conda,norma,normfa,ifail)

If (ifail==0) Then
! Print solution

Write (nout,*)
Write (nout,*) ’F(A) = cos(2A)’
Write (nout,99999) ’Estimated absolute condition number is: ’, conda

! Find relative condition number estimate
eps = x02ajf()
If (normfa>eps) Then

cond_rel = conda*norma/normfa
Write (nout,99999) ’Estimated relative condition number is: ’, &

cond_rel
Else

Write (nout,99998) ’The estimated norm of f(A) is effectively zero’, &
’and so the relative condition number is undefined.’

End If

End If

99999 Format (1X,A,F6.2)
99998 Format (/,1X,A,/,1X,A)

End Program f01jbfe

10.2 Program Data

F01JBF Example Program Data

4 :Value of N

-1.0 -1.0 -2.0 1.0
0.0 1.0 -1.0 0.0

-1.0 -2.0 1.0 -1.0
0.0 -1.0 0.0 -1.0 :End of matrix A

10.3 Program Results

F01JBF Example Program Results

A
1 2 3 4

1 -1.0000 -1.0000 -2.0000 1.0000
2 0.0000 1.0000 -1.0000 0.0000
3 -1.0000 -2.0000 1.0000 -1.0000
4 0.0000 -1.0000 0.0000 -1.0000

F(A) = cos(2A)
Estimated absolute condition number is: 4.10
Estimated relative condition number is: 14.48
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NAG Library Routine Document

F01JCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01JCF computes an estimate of the absolute condition number of a matrix function f at a real n by n
matrix A in the 1-norm, using analytical derivatives of f you have supplied.

2 Specification

SUBROUTINE F01JCF (N, A, LDA, F, IUSER, RUSER, IFLAG, CONDA, NORMA,
NORMFA, IFAIL)

&

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) A(LDA,*), RUSER(*), CONDA, NORMA, NORMFA
EXTERNAL F

3 Description

The absolute condition number of f at A, condabs f; Að Þ is given by the norm of the Fréchet derivative
of f , L Að Þ, which is defined by

L Xð Þk k :¼ max E 6¼0
L X;Eð Þk k

Ek k ;

where L X;Eð Þ is the Fréchet derivative in the direction E. L X;Eð Þ is linear in E and can therefore be
written as

vec L X;Eð Þð Þ ¼ K Xð Þvec Eð Þ;

where the vec operator stacks the columns of a matrix into one vector, so that K Xð Þ is n2 � n2. F01JCF
computes an estimate � such that � � K Xð Þk k1, where K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
. The

relative condition number can then be computed via

condrel f; Að Þ ¼ condabs f; Að Þ Ak k1
f Að Þk k1

:

The algorithm used to find � is detailed in Section 3.4 of Higham (2008).

The function f , and the derivatives of f , are returned by subroutine F which, given an integer m,
evaluates f mð Þ zið Þ at a number of (generally complex) points zi, for i ¼ 1; 2; . . . ; nz. For any z on the
real line, f zð Þ must also be real. F01JCF is therefore appropriate for routines that can be evaluated on
the complex plane and whose derivatives, of arbitrary order, can also be evaluated on the complex
plane.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01JCF
is called.

Constraint: LDA � N.

4: F – SUBROUTINE, supplied by the user. External Procedure

Given an integer m, the subroutine F evaluates f mð Þ zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (M, IFLAG, NZ, Z, FZ, IUSER, RUSER)

INTEGER M, IFLAG, NZ, IUSER(*)
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) Z(NZ), FZ(NZ)

1: M – INTEGER Input

On entry: the order, m, of the derivative required.

If M ¼ 0, f zið Þ should be returned. For M > 0, f mð Þ zið Þ should be returned.

2: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f zð Þ; for instance
f zð Þ may not be defined. If IFLAG is returned as nonzero then F01JCF will terminate
the computation, with IFAIL ¼ 3.

3: NZ – INTEGER Input

On entry: nz, the number of function or derivative values required.

4: ZðNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nz points z1; z2; . . . ; znz at which the function f is to be evaluated.

5: FZðNZÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the nz function or derivative values. FZðiÞ should return the value f mð Þ zið Þ, for
i ¼ 1; 2; . . . ; nz. If zi lies on the real line, then so must f mð Þ zið Þ.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to F01JCF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F01JCF is called. Arguments denoted as Input must not be changed by this
procedure.
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5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01JCF, but are passed directly to F and should be used to
pass information to this routine.

7: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless IFLAG has been set nonzero inside F, in which case IFLAG will be
the value set and IFAIL will be set to IFAIL ¼ 3.

8: CONDA – REAL (KIND=nag_wp) Output

On exit: an estimate of the absolute condition number of f at A.

9: NORMA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of A.

10: NORMFA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of f Að Þ.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An internal error occurred when estimating the norm of the Fréchet derivative of f at A. Please
contact NAG.

IFAIL ¼ 2

An internal error occurred when evaluating the matrix function f Að Þ. You can investigate further
by calling F01EMF with the matrix A and the function f .

IFAIL ¼ 3

IFLAG has been set nonzero by the user-supplied subroutine.

IFAIL ¼ �1
On entry, N < 0.
Input argument number valueh i is invalid.
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IFAIL ¼ �3
On entry, argument LDA is invalid.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01JCF uses the norm estimation routine F04YDF to estimate a quantity �, where � � K Xð Þk k1 and
K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
. For further details on the accuracy of norm estimation, see the

documentation for F04YDF.

8 Parallelism and Performance

F01JCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

F01JCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The matrix function is computed using the underlying matrix function routine F01EMF. Approximately
6n2 of real allocatable memory is required by the routine, in addition to the memory used by the
underlying matrix function routine.

If only f Að Þ is required, without an estimate of the condition number, then it is far more efficient to use
the underlying matrix function routine directly.

The complex analogue of this routine is F01KCF.
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10 Example

This example estimates the absolute and relative condition numbers of the matrix function e2A where

A ¼
0 �1 �1 1
�2 0 1 �1
2 �1 2 �2
�1 �2 0 �1

0B@
1CA:

10.1 Program Text

! F01JCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f01jcfe_mod

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fexp2

Contains
Subroutine fexp2(m,iflag,nz,z,fz,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: m, nz

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: fz(nz)
Complex (Kind=nag_wp), Intent (In) :: z(nz)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, exp

! .. Executable Statements ..
Continue
fz(1:nz) = (cmplx(2.0E0_nag_wp,0.0_nag_wp,kind=nag_wp)**m)* &

exp((2.0E0_nag_wp,0.0E0_nag_wp)*z(1:nz))
! Set iflag nonzero to terminate execution for any reason.

iflag = 0
Return

End Subroutine fexp2
End Module f01jcfe_mod
Program f01jcfe

! F01JCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01jcf, nag_wp, x02ajf, x04caf
Use f01jcfe_mod, Only: fexp2

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: conda, cond_rel, eps, norma, normfa
Integer :: i, ifail, iflag, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01JCF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
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Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Display A
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’A’,ifail)

! Find absolute condition number estimate
ifail = 0
Call f01jcf(n,a,lda,fexp2,iuser,ruser,iflag,conda,norma,normfa,ifail)

If (ifail==0) Then
! Print solution

Write (nout,*)
Write (nout,*) ’F(A) = exp(2A)’
Write (nout,99999) ’Estimated absolute condition number is: ’, conda

! Find relative condition number estimate
eps = x02ajf()
If (normfa>eps) Then

cond_rel = conda*norma/normfa
Write (nout,99999) ’Estimated relative condition number is: ’, &

cond_rel
Else

Write (nout,99998) ’The estimated norm of f(A) is effectively zero’, &
’and so the relative condition number is undefined.’

End If

End If

99999 Format (1X,A,F7.2)
99998 Format (/,1X,A,/,1X,A)

End Program f01jcfe

10.2 Program Data

F01JCF Example Program Data

4 :Value of N

0.0 -1.0 -1.0 1.0
-2.0 0.0 1.0 -1.0
2.0 -1.0 2.0 -2.0

-1.0 -2.0 0.0 -1.0 :End of matrix A

10.3 Program Results

F01JCF Example Program Results

A
1 2 3 4

1 0.0000 -1.0000 -1.0000 1.0000
2 -2.0000 0.0000 1.0000 -1.0000
3 2.0000 -1.0000 2.0000 -2.0000
4 -1.0000 -2.0000 0.0000 -1.0000

F(A) = exp(2A)
Estimated absolute condition number is: 183.90
Estimated relative condition number is: 13.90
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NAG Library Routine Document

F01JDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01JDF computes an estimate of the relative condition number �A1=2 and a bound on the relative
residual, in the Frobenius norm, for the square root of a real n by n matrix A. The principal square root,
A1=2, of A is also returned.

2 Specification

SUBROUTINE F01JDF (N, A, LDA, ALPHA, CONDSA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), ALPHA, CONDSA

3 Description

For a matrix with no eigenvalues on the closed negative real line, the principal matrix square root, A1=2,
of A is the unique square root with eigenvalues in the right half-plane.

The Fréchet derivative of a matrix function A1=2 in the direction of the matrix E is the linear function
mapping E to L A;Eð Þ such that

Aþ Eð Þ1=2 �A1=2 � L A;Eð Þ ¼ o Ak kð Þ:
The absolute condition number is given by the norm of the Fréchet derivative which is defined by

L Að Þk k :¼ max
E 6¼0

L A;Eð Þk k
Ek k :

The Fréchet derivative is linear in E and can therefore be written as

vec L A;Eð Þð Þ ¼ K Að Þvec Eð Þ;

where the vec operator stacks the columns of a matrix into one vector, so that K Að Þ is n2 � n2.
F01JDF uses Algorithm 3.20 from Higham (2008) to compute an estimate � such that � � K Xð Þk kF .
The quantity of � provides a good approximation to L Að Þk kF . The relative condition number, �A1=2 , is
then computed via

�A1=2 ¼ L Að Þk kF Ak kF
A1=2k kF

:

�A1=2 is returned in the argument CONDSA.

A1=2 is computed using the algorithm described in Higham (1987). This is a real arithmetic version of
the algorithm of BjÎrck and Hammarling (1983). In addition, a blocking scheme described in Deadman
et al. (2013) is used.

The computed quantity � is a measure of the stability of the relative residual (see Section 7). It is
computed via

� ¼
A1=2
�� ��2

F

Ak kF
:
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4 References

BjÎrck Ð and Hammarling S (1983) A Schur method for the square root of a matrix Linear Algebra
Appl. 52/53 127–140

Deadman E, Higham N J and Ralha R (2013) Blocked Schur Algorithms for Computing the Matrix
Square Root Applied Parallel and Scientific Computing: 11th International Conference, (PARA 2012,
Helsinki, Finland) P. Manninen and P. Úster, Eds Lecture Notes in Computer Science 7782 171–181
Springer–Verlag

Higham N J (1987) Computing real square roots of a real matrix Linear Algebra Appl. 88/89 405–430

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: contains, if IFAIL ¼ 0, the n by n principal matrix square root, A1=2. Alternatively, if
IFAIL ¼ 1, contains an n by n non-principal square root of A.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01JDF
is called.

Constraint: LDA � N.

4: ALPHA – REAL (KIND=nag_wp) Output

On exit: an estimate of the stability of the relative residual for the computed principal (if
IFAIL ¼ 0) or non-principal (if IFAIL ¼ 1) matrix square root, �.

5: CONDSA – REAL (KIND=nag_wp) Output

On exit: an estimate of the relative condition number, in the Frobenius norm, of the principal (if
IFAIL ¼ 0) or non-principal (if IFAIL ¼ 1) matrix square root at A, �A1=2 .

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has a semisimple vanishing eigenvalue. A non-principal square root was returned.

IFAIL ¼ 2

A has a defective vanishing eigenvalue. The square root and condition number cannot be found
in this case.

IFAIL ¼ 3

A has a negative real eigenvalue. The principal square root is not defined. F01KDF can be used
to return a complex, non-principal square root.

IFAIL ¼ 4

An error occurred when computing the matrix square root. Consequently, ALPHA and CONDSA
could not be computed. It is likely that the routine was called incorrectly.

IFAIL ¼ 5

An error occurred when computing the condition number. The matrix square root was still
returned but you should use F01ENF to check if it is the principal matrix square root.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

If the computed square root is ~X, then the relative residual

A� ~X2
�� ��

F

Ak kF
;

is bounded approximately by n��, where � is machine precision. The relative error in ~X is bounded
approximately by n��A1=2�.

8 Parallelism and Performance

F01JDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01JDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Approximately 3� n2 of real allocatable memory is required by the routine.

The cost of computing the matrix square root is 85n3=3 floating-point operations. The cost of
computing the condition number depends on how fast the algorithm converges. It typically takes over
twice as long as computing the matrix square root.

If condition estimates are not required then it is more efficient to use F01ENF to obtain the matrix
square root alone. Condition estimates for the square root of a complex matrix can be obtained via
F01KDF.

10 Example

This example estimates the matrix square root and condition number of the matrix

A ¼
�5 2 �1 1
�2 �3 19 27
�9 0 15 24
7 8 11 16

0B@
1CA:

10.1 Program Text

Program f01jdfe

! F01JDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01jdf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, condsa
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01JDF Example Program Results’
Write (nout,*)
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! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find sqrt(A)
Call f01jdf(n,a,lda,alpha,condsa,ifail)

! Print solution
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’sqrt(A)’,ifail)

Write (nout,*)
Write (nout,99999) ’Estimated relative condition number is: ’, condsa
Write (nout,99999) ’Condition number for the relative residual is: ’, &

alpha

99999 Format (1X,A,F6.2)

End Program f01jdfe

10.2 Program Data

F01JDF Example Program Data

4 :Value of N

-5.0 2.0 -1.0 1.0
-2.0 -3.0 19.0 27.0
-9.0 0.0 15.0 24.0
7.0 8.0 11.0 16.0 :End of matrix A

10.3 Program Results

F01JDF Example Program Results

sqrt(A)
1 2 3 4

1 1.0000 2.0000 -1.0000 -1.0000
2 -3.0000 1.0000 2.0000 4.0000
3 -2.0000 3.0000 1.0000 2.0000
4 2.0000 -1.0000 3.0000 4.0000

Estimated relative condition number is: 77.10
Condition number for the relative residual is: 1.70
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NAG Library Routine Document

F01JEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01JEF computes an estimate of the relative condition number �Ap of the pth power (where p is real) of
a real n by n matrix A, in the 1-norm. The principal matrix power Ap is also returned.

2 Specification

SUBROUTINE F01JEF (N, A, LDA, P, CONDPA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), P, CONDPA

3 Description

For a matrix A with no eigenvalues on the closed negative real line, Ap (p 2 R) can be defined as

Ap ¼ exp plog Að Þð Þ

where log Að Þ is the principal logarithm of A (the unique logarithm whose spectrum lies in the strip
z : �	 < Im zð Þ < 	f g).
The Fréchet derivative of the matrix pth power of A is the unique linear mapping E 7!L A;Eð Þ such
that for any matrix E

AþEð Þp �Ap � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first-order effect of perturbations in A on the matrix power Ap.

The relative condition number of the matrix pth power can be defined by

�Ap ¼ L Að Þk k Ak k
Apk k ;

where L Að Þk k is the norm of the Fréchet derivative of the matrix power at A.

F01JEF uses the algorithms of Higham and Lin (2011) and Higham and Lin (2013) to compute �Ap and
Ap. The real number p is expressed as p ¼ q þ r where q 2 �1; 1ð Þ and r 2 Z. Then Ap ¼ AqAr. The
integer power Ar is found using a combination of binary powering and, if necessary, matrix inversion.
The fractional power Aq is computed using a Schur decomposition, a Padé approximant and the scaling
and squaring method.

To obtain an estimate of �Ap , F01JEF first estimates L Að Þk k by computing an estimate � of a quantity
K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K. This requires multiple Fréchet derivatives to be

computed. Fréchet derivatives of Aq are obtained by differentiating the Padé approximant. Fréchet
derivatives of Ap are then computed using a combination of the chain rule and the product rule for
Fréchet derivatives.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Higham N J and Lin L (2011) A Schur–Padé algorithm for fractional powers of a matrix SIAM J.
Matrix Anal. Appl. 32(3) 1056–1078

Higham N J and Lin L (2013) An improved Schur–Padé algorithm for fractional powers of a matrix
and their Fréchet derivatives SIAM J. Matrix Anal. Appl. 34(3) 1341–1360
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix pth power, Ap.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01JEF
is called.

Constraint: LDA � N.

4: P – REAL (KIND=nag_wp) Input

On entry: the required power of A.

5: CONDPA – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or 3, an estimate of the relative condition number of the matrix pth power,
�Ap . Alternatively, if IFAIL ¼ 4, the absolute condition number of the matrix pth power.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has eigenvalues on the negative real line. The principal pth power is not defined in this case;
F01KEF can be used to find a complex, non-principal pth power.

IFAIL ¼ 2

A is singular so the pth power cannot be computed.

IFAIL ¼ 3

Ap has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.
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IFAIL ¼ 4

The relative condition number is infinite. The absolute condition number was returned instead.

IFAIL ¼ 5

An unexpected internal error occurred. This failure should not occur and suggests that the routine
has been called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01JEF uses the norm estimation routine F04YDF to produce an estimate � of a quantity
K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K. For further details on the accuracy of norm

estimation, see the documentation for F04YDF.

For a normal matrix A (for which ATA ¼ AAT), the Schur decomposition is diagonal and the
computation of the fractional part of the matrix power reduces to evaluating powers of the eigenvalues
of A and then constructing Ap using the Schur vectors. This should give a very accurate result. In
general, however, no error bounds are available for the algorithm. See Higham and Lin (2011) and
Higham and Lin (2013) for details and further discussion.

8 Parallelism and Performance

F01JEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01JEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The amount of real allocatable memory required by the algorithm is typically of the order 10� n2.

The cost of the algorithm is O n3
� �

floating-point operations; see Higham and Lin (2013).

If the matrix pth power alone is required, without an estimate of the condition number, then F01EQF
should be used. If the Fréchet derivative of the matrix power is required then F01JFF should be used. If
A has negative real eigenvalues then F01KEF can be used to return a complex, non-principal pth power
and its condition number.

10 Example

This example estimates the relative condition number of the matrix power Ap, where p ¼ 0:2 and

A ¼
3 3 2 1
1 1 0 2
1 4 4 2
3 1 3 1

0B@
1CA:

10.1 Program Text

Program f01jefe

! F01JEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01jef, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: condpa, p
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01JEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, p
lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find A^p
Call f01jef(n,a,lda,p,condpa,ifail)

! Print solution
Call x04caf(’General’,’ ’,n,n,a,lda,’A^p’,ifail)

Write (nout,*)
Write (nout,99999) ’Estimated condition number is: ’, condpa

99999 Format (1X,A,F6.2)
End Program f01jefe
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10.2 Program Data

F01JEF Example Program Data

4 0.2 : Values of N and P

3.0 3.0 2.0 1.0
1.0 1.0 0.0 2.0
1.0 4.0 4.0 2.0
3.0 1.0 3.0 1.0 : End of matrix A

10.3 Program Results

F01JEF Example Program Results

A^p
1 2 3 4

1 1.2368 0.1977 0.1749 -0.0314
2 -0.0543 1.1643 -0.0947 0.3145
3 0.0537 0.3514 1.3254 0.0214
4 0.3339 -0.2125 0.1880 1.0581

Estimated condition number is: 2.75
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F01JFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01JFF computes the Fréchet derivative L A;Eð Þ of the pth power (where p is real) of the real n by n
matrix A applied to the real n by n matrix E. The principal matrix power Ap is also returned.

2 Specification

SUBROUTINE F01JFF (N, A, LDA, E, LDE, P, IFAIL)

INTEGER N, LDA, LDE, IFAIL
REAL (KIND=nag_wp) A(LDA,*), E(LDE,*), P

3 Description

For a matrix A with no eigenvalues on the closed negative real line, Ap (p 2 R) can be defined as

Ap ¼ exp plog Að Þð Þ

where log Að Þ is the principal logarithm of A (the unique logarithm whose spectrum lies in the strip
z : �	 < Im zð Þ < 	f g).
The Fréchet derivative of the matrix pth power of A is the unique linear mapping E 7!L A;Eð Þ such
that for any matrix E

AþEð Þp �Ap � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first-order effect of perturbations in A on the matrix power Ap.

F01JFF uses the algorithms of Higham and Lin (2011) and Higham and Lin (2013) to compute Ap and
L A;Eð Þ. The real number p is expressed as p ¼ q þ r where q 2 �1; 1ð Þ and r 2 Z. Then Ap ¼ AqAr.
The integer power Ar is found using a combination of binary powering and, if necessary, matrix
inversion. The fractional power Aq is computed using a Schur decomposition, a Padé approximant and
the scaling and squaring method. The Padé approximant is differentiated in order to obtain the Fréchet
derivative of Aq and L A;Eð Þ is then computed using a combination of the chain rule and the product
rule for Fréchet derivatives.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Higham N J and Lin L (2011) A Schur–Padé algorithm for fractional powers of a matrix SIAM J.
Matrix Anal. Appl. 32(3) 1056–1078

Higham N J and Lin L (2013) An improved Schur–Padé algorithm for fractional powers of a matrix
and their Fréchet derivatives SIAM J. Matrix Anal. Appl. 34(3) 1341–1360

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix pth power, Ap.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01JFF
is called.

Constraint: LDA � N.

4: EðLDE; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array E must be at least N.

On entry: the n by n matrix E.

On exit: the Fréchet derivative L A;Eð Þ.

5: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which F01JFF
is called.

Constraint: LDE � N.

6: P – REAL (KIND=nag_wp) Input

On entry: the required power of A.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has eigenvalues on the negative real line. The principal pth power is not defined in this case;
F01KFF can be used to find a complex, non-principal pth power.

IFAIL ¼ 2

A is singular so the pth power cannot be computed.
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IFAIL ¼ 3

Ap has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.

IFAIL ¼ 4

An unexpected internal error occurred. This failure should not occur and suggests that the routine
has been called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �5
On entry, LDE ¼ valueh i and N ¼ valueh i.
Constraint: LDE � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which ATA ¼ AAT), the Schur decomposition is diagonal and the
computation of the fractional part of the matrix power reduces to evaluating powers of the eigenvalues
of A and then constructing Ap using the Schur vectors. This should give a very accurate result. In
general, however, no error bounds are available for the algorithm. See Higham and Lin (2011) and
Higham and Lin (2013) for details and further discussion.

If the condition number of the matrix power is required then F01JEF should be used.

8 Parallelism and Performance

F01JFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01JFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The real allocatable memory required by the algorithm is approximately 6� n2.

The cost of the algorithm is O n3
� �

floating-point operations; see Higham and Lin (2011) and Higham
and Lin (2013).

If the matrix pth power alone is required, without the Fréchet derivative, then F01EQF should be used.
If the condition number of the matrix power is required then F01JEF should be used. If A has negative
real eigenvalues then F01KFF can be used to return a complex, non-principal pth power and its Fréchet
derivative L A;Eð Þ.

10 Example

This example finds Ap and the Fréchet derivative of the matrix power L A;Eð Þ, where p ¼ 0:2,

A ¼
3 3 2 1
3 1 0 2
1 1 4 3
3 0 3 1

0B@
1CA and E ¼

1 0 2 1
0 4 5 2
1 0 0 0
2 3 3 0

0B@
1CA:

10.1 Program Text

Program f01jffe

! F01JFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01jff, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p
Integer :: i, ifail, lda, lde, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), e(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01JFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, p
lda = n
lde = n
Allocate (a(lda,n))
Allocate (e(lde,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Read E from data file
Read (nin,*)(e(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find A^p and L_p(A,E)
Call f01jff(n,a,lda,e,lde,p,ifail)

! Print solution
Call x04caf(’General’,’ ’,n,n,a,lda,’A^p’,ifail)
Write (nout,*)
Call x04caf(’General’,’ ’,n,n,e,lde,’L_p(A,E)’,ifail)

End Program f01jffe
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10.2 Program Data

F01JFF Example Program Data

4 0.2 :Values of N and P

3.0 3.0 2.0 1.0
3.0 1.0 0.0 2.0
1.0 1.0 4.0 3.0
3.0 0.0 3.0 1.0 :End of matrix A

1.0 0.0 2.0 1.0
0.0 4.0 5.0 2.0
1.0 0.0 0.0 0.0
2.0 3.0 3.0 0.0 :End of matrix E

10.3 Program Results

F01JFF Example Program Results

A^p
1 2 3 4

1 1.2446 0.2375 0.2172 -0.1359
2 0.0925 1.1239 -0.1453 0.3731
3 -0.0769 0.1972 1.3131 0.1837
4 0.3985 -0.2902 0.1085 1.1560

L_p(A,E)
1 2 3 4

1 0.2189 -0.2004 0.0509 0.0290
2 -0.3177 0.4143 0.3044 0.0760
3 -0.0033 -0.1335 -0.2789 0.2699
4 0.1972 0.3333 0.5379 -0.5228
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F01JGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01JGF computes an estimate of the relative condition number �exp Að Þ of the exponential of a real n by
n matrix A, in the 1-norm. The matrix exponential eA is also returned.

2 Specification

SUBROUTINE F01JGF (N, A, LDA, CONDEA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), CONDEA

3 Description

The Fréchet derivative of the matrix exponential of A is the unique linear mapping E 7!L A;Eð Þ such
that for any matrix E

eAþE � eA � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first-order effect of perturbations in A on the exponential eA.

The relative condition number of the matrix exponential can be defined by

�exp Að Þ ¼
L Að Þk k Ak k
exp Að Þk k ;

where L Að Þk k is the norm of the Fréchet derivative of the matrix exponential at A.

To obtain the estimate of �exp Að Þ, F01JGF first estimates L Að Þk k by computing an estimate � of a
quantity K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K.

The algorithms used to compute �exp Að Þ are detailed in the Al–Mohy and Higham (2009a) and Al–
Mohy and Higham (2009b).

The matrix exponential eA is computed using a Padé approximant and the scaling and squaring method.
The Padé approximant is differentiated to obtain the Fréchet derivatives L A;Eð Þ which are used to
estimate the condition number.

4 References

Al–Mohy A H and Higham N J (2009a) A new scaling and squaring algorithm for the matrix
exponential SIAM J. Matrix Anal. 31(3) 970–989

Al–Mohy A H and Higham N J (2009b) Computing the Fréchet derivative of the matrix exponential,
with an application to condition number estimation SIAM J. Matrix Anal. Appl. 30(4) 1639–1657

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Moler C B and Van Loan C F (2003) Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later SIAM Rev. 45 3–49
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix exponential eA.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01JGF
is called.

Constraint: LDA � N.

4: CONDEA – REAL (KIND=nag_wp) Output

On exit: an estimate of the relative condition number of the matrix exponential �exp Að Þ.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The linear equations to be solved for the Padé approximant are singular; it is likely that this
routine has been called incorrectly.

IFAIL ¼ 2

eA has been computed using an IEEE double precision Padé approximant, although the arithmetic
precision is higher than IEEE double precision.

IFAIL ¼ 3

An unexpected internal error has occurred. Please contact NAG.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.
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IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01JGF uses the norm estimation routine F04YDF to produce an estimate � of a quantity
K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K. For further details on the accuracy of norm

estimation, see the documentation for F04YDF.

For a normal matrix A (for which ATA ¼ AAT) the computed matrix, eA, is guaranteed to be close to
the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-normal
matrices. See Section 10.3 of Higham (2008) for details and further discussion.

For further discussion of the condition of the matrix exponential see Section 10.2 of Higham (2008).

8 Parallelism and Performance

F01JGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01JGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F01JAF uses a similar algorithm to F01JGF to compute an estimate of the absolute condition number
(which is related to the relative condition number by a factor of Ak k= exp Að Þk k). However, the required
Fréchet derivatives are computed in a more efficient and stable manner by F01JGF and so its use is
recommended over F01JAF.

The cost of the algorithm is O n3
� �

and the real allocatable memory required is approximately 15n2; see
Al–Mohy and Higham (2009a) and Al–Mohy and Higham (2009b) for further details.

If the matrix exponential alone is required, without an estimate of the condition number, then F01ECF
should be used. If the Fréchet derivative of the matrix exponential is required then F01JHF should be
used.

As well as the excellent book Higham (2008), the classic reference for the computation of the matrix
exponential is Moler and Van Loan (2003).
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10 Example

This example estimates the relative condition number of the matrix exponential eA, where

A ¼
2 2 1 2
3 1 4 0
2 3 1 2
0 1 3 3

0B@
1CA:

10.1 Program Text

Program f01jgfe

! F01JGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01jgf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: condea
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01JGF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Find exp( A ) and the condition estimate

Call f01jgf(n,a,lda,condea,ifail)

! Print solution
Call x04caf(’General’,’ ’,n,n,a,lda,’Exp(A)’,ifail)

Write (nout,*)
Write (nout,99999) ’Estimated condition number is: ’, condea

99999 Format (1X,A,F6.2)
End Program f01jgfe

10.2 Program Data

F01JGF Example Program Data

4 : N

2.0 2.0 1.0 2.0
3.0 1.0 4.0 0.0
2.0 3.0 1.0 2.0
0.0 1.0 3.0 3.0 : A
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10.3 Program Results

F01JGF Example Program Results

Exp(A)
1 2 3 4

1 404.4441 412.6036 496.7221 398.3043
2 474.4388 482.8457 579.1310 460.6474
3 466.9764 477.2769 574.3994 458.3804
4 407.7005 420.8935 510.1939 410.4808

Estimated condition number is: 9.40
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NAG Library Routine Document

F01JHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01JHF computes the Fréchet derivative L A;Eð Þ of the matrix exponential of a real n by n matrix A
applied to the real n by n matrix E. The matrix exponential eA is also returned.

2 Specification

SUBROUTINE F01JHF (N, A, LDA, E, LDE, IFAIL)

INTEGER N, LDA, LDE, IFAIL
REAL (KIND=nag_wp) A(LDA,*), E(LDE,*)

3 Description

The Fréchet derivative of the matrix exponential of A is the unique linear mapping E 7!L A;Eð Þ such
that for any matrix E

eAþE � eA � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first-order effect of perturbations in A on the exponential eA.

F01JHF uses the algorithms of Al–Mohy and Higham (2009a) and Al–Mohy and Higham (2009b) to
compute eA and L A;Eð Þ. The matrix exponential eA is computed using a Padé approximant and the
scaling and squaring method. The Padé approximant is then differentiated in order to obtain the Fréchet
derivative L A;Eð Þ.

4 References

Al–Mohy A H and Higham N J (2009a) A new scaling and squaring algorithm for the matrix
exponential SIAM J. Matrix Anal. 31(3) 970–989

Al–Mohy A H and Higham N J (2009b) Computing the Fréchet derivative of the matrix exponential,
with an application to condition number estimation SIAM J. Matrix Anal. Appl. 30(4) 1639–1657

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Moler C B and Van Loan C F (2003) Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later SIAM Rev. 45 3–49

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix exponential eA.
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3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01JHF
is called.

Constraint: LDA � N.

4: EðLDE; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array E must be at least N.

On entry: the n by n matrix E

On exit: the Fréchet derivative L A;Eð Þ

5: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which F01JHF
is called.

Constraint: LDE � N.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The linear equations to be solved for the Padé approximant are singular; it is likely that this
routine has been called incorrectly.

IFAIL ¼ 2

eA has been computed using an IEEE double precision Padé approximant, although the arithmetic
precision is higher than IEEE double precision.

IFAIL ¼ 3

An unexpected internal error has occurred. Please contact NAG.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.
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IFAIL ¼ �5
On entry, LDE ¼ valueh i and N ¼ valueh i.
Constraint: LDE � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which ATA ¼ AAT) the computed matrix, eA, is guaranteed to be close to
the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-normal
matrices. See Section 10.3 of Higham (2008), Al–Mohy and Higham (2009a) and Al–Mohy and
Higham (2009b) for details and further discussion.

8 Parallelism and Performance

F01JHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01JHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is O n3
� �

and the real allocatable memory required is approximately 9n2; see
Al–Mohy and Higham (2009a) and Al–Mohy and Higham (2009b).

If the matrix exponential alone is required, without the Fréchet derivative, then F01ECF should be used.

If the condition number of the matrix exponential is required then F01JGF should be used.

As well as the excellent book Higham (2008), the classic reference for the computation of the matrix
exponential is Moler and Van Loan (2003).

10 Example

This example finds the matrix exponential eA and the Fréchet derivative L A;Eð Þ, where

A ¼
1 2 2 2
3 1 1 2
3 2 1 2
3 3 3 1

0B@
1CA and E ¼

1 0 1 2
0 0 0 1
4 2 1 2
0 3 2 1

0B@
1CA:
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10.1 Program Text

Program f01jhfe

! F01JHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01jhf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, lde, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), e(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01JHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lde = n
Allocate (a(lda,n))
Allocate (e(lde,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Read E from data file
Read (nin,*)(e(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find exp( A ) and L_exp(A,E)
Call f01jhf(n,a,lda,e,lde,ifail)

! Print solution
Call x04caf(’General’,’ ’,n,n,a,lda,’Exp(A)’,ifail)
Write (nout,*)
Call x04caf(’General’,’ ’,n,n,e,lde,’L_exp(A,E)’,ifail)

End Program f01jhfe

10.2 Program Data

F01JHF Example Program Data

4 :Value of N

1.0 2.0 2.0 2.0
3.0 1.0 1.0 2.0
3.0 2.0 1.0 2.0
3.0 3.0 3.0 1.0 :End of matrix A

1.0 0.0 1.0 2.0
0.0 0.0 0.0 1.0
4.0 2.0 1.0 2.0
0.0 3.0 2.0 1.0 :End of matrix E

10.3 Program Results

F01JHF Example Program Results

Exp(A)
1 2 3 4

1 740.7038 610.8500 542.2743 549.1753
2 731.2510 603.5524 535.0884 542.2743
3 823.7630 679.4257 603.5524 610.8500
4 998.4355 823.7630 731.2510 740.7038
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L_exp(A,E)
1 2 3 4

1 3571.5724 2989.2581 2652.3449 2818.7416
2 3202.0590 2684.2631 2381.4500 2542.7976
3 4341.3950 3628.9329 3219.3516 3408.1831
4 4821.2945 4035.9700 3580.0124 3804.4690
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NAG Library Routine Document

F01JJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01JJF computes an estimate of the relative condition number �log Að Þ of the logarithm of a real n by n
matrix A, in the 1-norm. The principal matrix logarithm log Að Þ is also returned.

2 Specification

SUBROUTINE F01JJF (N, A, LDA, CONDLA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), CONDLA

3 Description

For a matrix with no eigenvalues on the closed negative real line, the principal matrix logarithm log Að Þ
is the unique logarithm whose spectrum lies in the strip z : �	 < Im zð Þ < 	f g.
The Fréchet derivative of the matrix logarithm of A is the unique linear mapping E 7!L A;Eð Þ such that
for any matrix E

log Aþ Eð Þ � log Að Þ � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first order effect of perturbations in A on the logarithm log Að Þ.
The relative condition number of the matrix logarithm can be defined by

�log Að Þ ¼
L Að Þk k Ak k
log Að Þk k ;

where L Að Þk k is the norm of the Fréchet derivative of the matrix logarithm at A.

To obtain the estimate of �log Að Þ, F01JJF first estimates L Að Þk k by computing an estimate � of a
quantity K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K.

The algorithms used to compute �log Að Þ and log Að Þ are based on a Schur decomposition, the inverse
scaling and squaring method and Padé approximants. Further details can be found in Al–Mohy and
Higham (2011) and Al–Mohy et al. (2012).

4 References

Al–Mohy A H and Higham N J (2011) Improved inverse scaling and squaring algorithms for the matrix
logarithm SIAM J. Sci. Comput. 34(4) C152–C169

Al–Mohy A H, Higham N J and Relton S D (2012) Computing the Fréchet derivative of the matrix
logarithm and estimating the condition number SIAM J. Sci. Comput. 35(4) C394–C410

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix logarithm, log Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01JJF
is called.

Constraint: LDA � N.

4: CONDLA – REAL (KIND=nag_wp) Output

On exit: with IFAIL ¼ 0 or 3, an estimate of the relative condition number of the matrix
logarithm, �log Að Þ. Alternatively, if IFAIL ¼ 4, contains the absolute condition number of the
matrix logarithm.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A is singular so the logarithm cannot be computed.

IFAIL ¼ 2

A has eigenvalues on the negative real line. The principal logarithm is not defined in this case;
F01KJF can be used to return a complex, non-principal log.

IFAIL ¼ 3

log Að Þ has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.

IFAIL ¼ 4

The relative condition number is infinite. The absolute condition number was returned instead.

IFAIL ¼ 5

An unexpected internal error occurred. This failure should not occur and suggests that the routine
has been called incorrectly.
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IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01JJF uses the norm estimation routine F04YDF to produce an estimate � of a quantity
K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K. For further details on the accuracy of norm

estimation, see the documentation for F04YDF.

For a normal matrix A (for which ATA ¼ AAT), the Schur decomposition is diagonal and the
computation of the matrix logarithm reduces to evaluating the logarithm of the eigenvalues of A and
then constructing log Að Þ using the Schur vectors. This should give a very accurate result. In general,
however, no error bounds are available for the algorithm. The sensitivity of the computation of log Að Þ
is worst when A has an eigenvalue of very small modulus or has a complex conjugate pair of
eigenvalues lying close to the negative real axis. See Al–Mohy and Higham (2011) and Section 11.2 of
Higham (2008) for details and further discussion.

8 Parallelism and Performance

F01JJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01JJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F01JAF uses a similar algorithm to F01JJF to compute an estimate of the absolute condition number
(which is related to the relative condition number by a factor of Ak k= log Að Þk k). However, the required
Fréchet derivatives are computed in a more efficient and stable manner by F01JJF and so its use is
recommended over F01JAF.

The amount of real allocatable memory required by the algorithm is typically of the order 10n2.
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The cost of the algorithm is O n3
� �

floating-point operations; see Al–Mohy et al. (2012).

If the matrix logarithm alone is required, without an estimate of the condition number, then F01EJF
should be used. If the Fréchet derivative of the matrix logarithm is required then F01JKF should be
used. If A has negative real eigenvalues then F01KJF can be used to return a complex, non-principal
matrix logarithm and its condition number.

10 Example

This example estimates the relative condition number of the matrix logarithm log Að Þ, where

A ¼
4 �1 0 1
2 5 �2 2
1 1 3 �1
2 0 2 8

0B@
1CA:

10.1 Program Text

Program f01jjfe

! F01JJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01jjf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: condla
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01JJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find log( A )
Call f01jjf(n,a,lda,condla,ifail)

! Print solution
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’log(A)’,ifail)

Write (nout,*)
Write (nout,99999) ’Estimated condition number is: ’, condla

99999 Format (1X,A,F6.2)
End Program f01jjfe
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10.2 Program Data

F01JJF Example Program Data

4 :Value of N

4.0 -1.0 0.0 1.0
2.0 5.0 -2.0 2.0
1.0 1.0 3.0 -1.0
2.0 0.0 2.0 8.0 :End of matrix A

10.3 Program Results

F01JJF Example Program Results

log(A)
1 2 3 4

1 1.4081 -0.2051 -0.1071 0.1904
2 0.4396 1.7096 -0.5147 0.2226
3 0.2560 0.2613 1.2485 -0.2413
4 0.3030 -0.0107 0.3834 2.0891

Estimated condition number is: 5.50
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NAG Library Routine Document

F01JKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01JKF computes the Fréchet derivative L A;Eð Þ of the matrix logarithm of the real n by n matrix A
applied to the real n by n matrix E. The principal matrix logarithm log Að Þ is also returned.

2 Specification

SUBROUTINE F01JKF (N, A, LDA, E, LDE, IFAIL)

INTEGER N, LDA, LDE, IFAIL
REAL (KIND=nag_wp) A(LDA,*), E(LDE,*)

3 Description

For a matrix with no eigenvalues on the closed negative real line, the principal matrix logarithm log Að Þ
is the unique logarithm whose spectrum lies in the strip z : �	 < Im zð Þ < 	f g.
The Fréchet derivative of the matrix logarithm of A is the unique linear mapping E 7!L A;Eð Þ such that
for any matrix E

log Aþ Eð Þ � log Að Þ � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first order effect of perturbations in A on the logarithm log Að Þ.
F01JKF uses the algorithm of Al–Mohy et al. (2012) to compute log Að Þ and L A;Eð Þ. The principal
matrix logarithm log Að Þ is computed using a Schur decomposition, a Padé approximant and the inverse
scaling and squaring method. The Padé approximant is then differentiated in order to obtain the Fréchet
derivative L A;Eð Þ.

4 References

Al–Mohy A H and Higham N J (2011) Improved inverse scaling and squaring algorithms for the matrix
logarithm SIAM J. Sci. Comput. 34(4) C152–C169

Al–Mohy A H, Higham N J and Relton S D (2012) Computing the Fréchet derivative of the matrix
logarithm and estimating the condition number SIAM J. Sci. Comput. 35(4) C394–C410

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix logarithm, log Að Þ.
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3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01JKF
is called.

Constraint: LDA � N.

4: EðLDE; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array E must be at least N.

On entry: the n by n matrix E

On exit: the Fréchet derivative L A;Eð Þ

5: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which F01JKF
is called.

Constraint: LDE � N.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A is singular so the logarithm cannot be computed.

IFAIL ¼ 2

A has eigenvalues on the negative real line. The principal logarithm is not defined in this case;
F01KKF can be used to return a complex, non-principal log.

IFAIL ¼ 3

log Að Þ has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.

IFAIL ¼ 4

An unexpected internal error occurred. This failure should not occur and suggests that the routine
has been called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.
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IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �5
On entry, LDE ¼ valueh i and N ¼ valueh i.
Constraint: LDE � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which ATA ¼ AAT), the Schur decomposition is diagonal and the
computation of the matrix logarithm reduces to evaluating the logarithm of the eigenvalues of A and
then constructing log Að Þ using the Schur vectors. This should give a very accurate result. In general,
however, no error bounds are available for the algorithm. The sensitivity of the computation of log Að Þ
and L A;Eð Þ is worst when A has an eigenvalue of very small modulus or has a complex conjugate pair
of eigenvalues lying close to the negative real axis. See Al–Mohy and Higham (2011), Al–Mohy et al.
(2012) and Section 11.2 of Higham (2008) for details and further discussion.

8 Parallelism and Performance

F01JKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01JKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is O n3
� �

floating-point operations. The real allocatable memory required is
approximately 5n2; see Al–Mohy et al. (2012) for further details.

If the matrix logarithm alone is required, without the Fréchet derivative, then F01EJF should be used. If
the condition number of the matrix logarithm is required then F01JJF should be used. If A has negative
real eigenvalues then F01KKF can be used to return a complex, non-principal matrix logarithm and its
Fréchet derivative L A;Eð Þ.
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10 Example

This example finds the principal matrix logarithm log Að Þ and the Fréchet derivative L A;Eð Þ, where

A ¼
4 2 0 2
3 3 1 1
3 2 1 0
3 3 1 2

0B@
1CA and E ¼

1 2 2 2
0 0 3 1
1 2 1 2
1 3 1 1

0B@
1CA:

10.1 Program Text

Program f01jkfe

! F01JKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01jkf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, lde, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), e(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01JKF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lde = n
Allocate (a(lda,n))
Allocate (e(lde,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Read E from data file
Read (nin,*)(e(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find log( A ) and L_log(A,E)
Call f01jkf(n,a,lda,e,lde,ifail)

! Print solution
Call x04caf(’General’,’ ’,n,n,a,lda,’Log(A)’,ifail)
Write (nout,*)
Call x04caf(’General’,’ ’,n,n,e,lde,’L_log(A,E)’,ifail)

End Program f01jkfe

10.2 Program Data

F01JKF Example Program Data

4 :Value N

4.0 2.0 0.0 2.0
3.0 3.0 1.0 1.0
3.0 2.0 1.0 0.0
3.0 3.0 1.0 2.0 :End of matrix A

1.0 2.0 2.0 2.0
0.0 0.0 3.0 1.0
1.0 2.0 1.0 2.0
1.0 3.0 1.0 1.0 :End of matrix E
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10.3 Program Results

F01JKF Example Program Results

Log(A)
1 2 3 4

1 1.1165 0.5296 -0.4079 0.6962
2 0.6996 0.2025 0.8192 0.4745
3 1.3114 1.5867 -0.1433 -1.1720
4 0.5272 1.2856 0.4055 0.2106

L_log(A,E)
1 2 3 4

1 -0.1211 0.1974 0.1463 0.8268
2 -1.2615 -4.1260 3.4035 2.4651
3 1.2387 5.7968 -3.6489 -2.7203
4 0.6231 3.7059 -1.9334 -1.8540
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NAG Library Routine Document

F01KAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01KAF computes an estimate of the absolute condition number of a matrix function f of a complex n
by n matrix A in the 1-norm, where f is either the exponential, logarithm, sine, cosine, hyperbolic sine
(sinh) or hyperbolic cosine (cosh). The evaluation of the matrix function, f Að Þ, is also returned.

2 Specification

SUBROUTINE F01KAF (FUN, N, A, LDA, CONDA, NORMA, NORMFA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) CONDA, NORMA, NORMFA
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(*) FUN

3 Description

The absolute condition number of f at A, condabs f; Að Þ is given by the norm of the Fréchet derivative
of f , L Að Þ, which is defined by

L Xð Þk k :¼ max E 6¼0
L X;Eð Þk k

Ek k ;

where L X;Eð Þ is the Fréchet derivative in the direction E. L X;Eð Þ is linear in E and can therefore be
written as

vec L X;Eð Þð Þ ¼ K Xð Þvec Eð Þ;

where the vec operator stacks the columns of a matrix into one vector, so that K Xð Þ is n2 � n2.
F01KAF computes an estimate � such that � � K Xð Þk k1, where K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
.

The relative condition number can then be computed via

condrel f; Að Þ ¼ condabs f; Að Þ Ak k1
f Að Þk k1

:

The algorithm used to find � is detailed in Section 3.4 of Higham (2008).

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: FUN – CHARACTER(*) Input

On entry: indicates which matrix function will be used.

FUN ¼ EXP
The matrix exponential, eA, will be used.

FUN ¼ SIN
The matrix sine, sin Að Þ, will be used.
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FUN ¼ COS
The matrix cosine, cos Að Þ, will be used.

FUN ¼ SINH
The hyperbolic matrix sine, sinh Að Þ, will be used.

FUN ¼ COSH
The hyperbolic matrix cosine, cosh Að Þ, will be used.

FUN ¼ LOG
The matrix logarithm, log Að Þ, will be used.

Constraint: FUN ¼ EXP , SIN , COS , SINH , COSH or LOG .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01KAF
is called.

Constraint: LDA � N.

5: CONDA – REAL (KIND=nag_wp) Output

On exit: an estimate of the absolute condition number of f at A.

6: NORMA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of A.

7: NORMFA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of f Að Þ.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An internal error occurred when estimating the norm of the Fréchet derivative of f at A. Please
contact NAG.

IFAIL ¼ 2

An internal error occurred when evaluating the matrix function f Að Þ. You can investigate further
by calling F01FCF, F01FJF or F01FKF with the matrix A.

IFAIL ¼ �1
On entry, FUN ¼ valueh i was an illegal value.

IFAIL ¼ �2
On entry, N < 0.
Input argument number valueh i is invalid.

IFAIL ¼ �4
On entry, argument LDA is invalid.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01KAF uses the norm estimation routine F04ZDF to estimate a quantity �, where � � K Xð Þk k1 and
K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
. For further details on the accuracy of norm estimation, see the

documentation for F04ZDF.

8 Parallelism and Performance

F01KAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation.
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F01KAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Approximately 6n2 of complex allocatable memory is required by the routine, in addition to the
memory used by the underlying matrix function routines F01FCF, F01FJF or F01FKF.

F01KAF returns the matrix function f Að Þ. This is computed using F01FCF if FUN ¼ EXP , F01FJF if
FUN ¼ LOG and F01FKF otherwise. If only f Að Þ is required, without an estimate of the condition
number, then it is far more efficient to use F01FCF, F01FJF or F01FKF directly.

F01JAF can be used to find the condition number of the exponential, logarithm, sine, cosine, sinh or
cosh at a real matrix.

10 Example

This example estimates the absolute and relative condition numbers of the matrix sinh function for

A ¼
0:0þ 1:0i �1:0þ 0:0i 1:0þ 0:0i 2:0þ 0:0i
2:0þ 1:0i 0:0� 1:0i 0:0þ 0:0i 1:0þ 0:0i
0:0þ 1:0i 0:0þ 0:0i 1:0þ 1:0i 0:0þ 2:0i
1:0þ 0:0i 2:0þ 0:0i �2:0þ 3:0i 0:0þ 1:0i

0B@
1CA:

10.1 Program Text

Program f01kafe

! F01KAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01kaf, nag_wp, x02ajf, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: conda, cond_rel, eps, norma, normfa
Integer :: i, ifail, lda, n
Character (4) :: fun

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01KAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, fun

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Display A
ifail = 0
Call x04daf(’G’,’N’,n,n,a,lda,’A’,ifail)

! Find absolute condition number estimate
ifail = 0
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Call f01kaf(fun,n,a,lda,conda,norma,normfa,ifail)

If (ifail==0) Then
! Print solution

Write (nout,*)
Write (nout,*) ’F(A) = ’, fun, ’(A)’
Write (nout,99999) ’Estimated absolute condition number is: ’, conda

! Find relative condition number estimate
eps = x02ajf()
If (normfa>eps) Then

cond_rel = conda*norma/normfa
Write (nout,99999) ’Estimated relative condition number is: ’, &

cond_rel
Else

Write (nout,99998) ’The estimated norm of f(A) is effectively zero’, &
’and so the relative condition number is undefined.’

End If
End If

99999 Format (1X,A,F6.2)
99998 Format (/,1X,A,/,1X,A)

End Program f01kafe

10.2 Program Data

F01KAF Example Program Data

4 SINH :Values of N and FUN

(0.0, 1.0) (-1.0, 0.0) ( 1.0, 0.0) (2.0, 0.0)
(2.0, 1.0) ( 0.0,-1.0) ( 0.0, 0.0) (1.0, 0.0)
(0.0, 1.0) ( 0.0, 0.0) ( 1.0, 1.0) (0.0, 2.0)
(1.0, 0.0) ( 2.0, 0.0) (-2.0, 3.0) (0.0, 1.0) :End of matrix A

10.3 Program Results

F01KAF Example Program Results

A
1 2 3 4

1 0.0000 -1.0000 1.0000 2.0000
1.0000 0.0000 0.0000 0.0000

2 2.0000 0.0000 0.0000 1.0000
1.0000 -1.0000 0.0000 0.0000

3 0.0000 0.0000 1.0000 0.0000
1.0000 0.0000 1.0000 2.0000

4 1.0000 2.0000 -2.0000 0.0000
0.0000 0.0000 3.0000 1.0000

F(A) = SINH(A)
Estimated absolute condition number is: 7.33
Estimated relative condition number is: 4.94
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NAG Library Routine Document

F01KBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01KBF computes an estimate of the absolute condition number of a matrix function f of a complex n
by n matrix A in the 1-norm. Numerical differentiation is used to evaluate the derivatives of f when
they are required.

2 Specification

SUBROUTINE F01KBF (N, A, LDA, F, IUSER, RUSER, IFLAG, CONDA, NORMA,
NORMFA, IFAIL)

&

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) RUSER(*), CONDA, NORMA, NORMFA
COMPLEX (KIND=nag_wp) A(LDA,*)
EXTERNAL F

3 Description

The absolute condition number of f at A, condabs f; Að Þ is given by the norm of the Fréchet derivative
of f , L Að Þ, which is defined by

L Xð Þk k :¼ max E 6¼0
L X;Eð Þk k

Ek k ;

where L X;Eð Þ is the Fréchet derivative in the direction E. L X;Eð Þ is linear in E and can therefore be
written as

vec L X;Eð Þð Þ ¼ K Xð Þvec Eð Þ;

where the vec operator stacks the columns of a matrix into one vector, so that K Xð Þ is n2 � n2.
F01KBF computes an estimate � such that � � K Xð Þk k1, where K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
.

The relative condition number can then be computed via

condrel f; Að Þ ¼ condabs f; Að Þ Ak k1
f Að Þk k1

:

The algorithm used to find � is detailed in Section 3.4 of Higham (2008).

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01KBF
is called.

Constraint: LDA � N.

4: F – SUBROUTINE, supplied by the user. External Procedure

The subroutine F evaluates f zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (IFLAG, NZ, Z, FZ, IUSER, RUSER)

INTEGER IFLAG, NZ, IUSER(*)
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) Z(NZ), FZ(NZ)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f zð Þ; for instance
f zð Þ may not be defined. If IFLAG is returned as nonzero then F01KBF will terminate
the computation, with IFAIL ¼ 3.

2: NZ – INTEGER Input

On entry: nz, the number of function values required.

3: ZðNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nz points z1; z2; . . . ; znz at which the function f is to be evaluated.

4: FZðNZÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the nz function values. FZðiÞ should return the value f zið Þ, for i ¼ 1; 2; . . . ; nz.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to F01KBF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F01KBF is called. Arguments denoted as Input must not be changed by this
procedure.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01KBF, but are passed directly to F and should be used to
pass information to this routine.
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7: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless IFLAG has been set nonzero inside F, in which case IFLAG will be
the value set and IFAIL will be set to IFAIL ¼ 3.

8: CONDA – REAL (KIND=nag_wp) Output

On exit: an estimate of the absolute condition number of f at A.

9: NORMA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of A.

10: NORMFA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of f Að Þ.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An internal error occurred when estimating the norm of the Fréchet derivative of f at A. Please
contact NAG.

IFAIL ¼ 2

An internal error occurred while evaluating the matrix function f Að Þ. You can investigate further
by calling F01FLF with the matrix A and the function f .

IFAIL ¼ 3

IFLAG has been set nonzero by the user-supplied subroutine.

IFAIL ¼ �1
On entry, N < 0.

IFAIL ¼ �3
On entry, argument LDA is invalid.
Constraint: LDA � N.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01KBF uses the norm estimation routine F04ZDF to estimate a quantity �, where � � K Xð Þk k1 and
K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
. For further details on the accuracy of norm estimation, see the

documentation for F04ZDF.

8 Parallelism and Performance

F01KBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

F01KBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Approximately 6n2 of complex allocatable memory is required by the routine, in addition to the
memory used by the underlying matrix function routine F01FLF.

F01KBF returns the matrix function f Að Þ. This is computed using F01FLF. If only f Að Þ is required,
without an estimate of the condition number, then it is far more efficient to use F01FLF directly.

The real analogue of this routine is F01JBF.

10 Example

This example estimates the absolute and relative condition numbers of the matrix function sin 2A where

A ¼
2:0þ 0:0i 0:0þ 1:0i 1:0þ 1:0i 0:0þ 3:0i
1:0þ 1:0i 0:0þ 2:0i 2:0þ 2:0i 0:0þ 0:0i
0:0þ 0:0i 2:0þ 0:0i 1:0þ 2:0i 1:0þ 0:0i
1:0þ 1:0i 3:0þ 0:0i 0:0þ 0:0i 1:0þ 2:0i
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10.1 Program Text

! F01KBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f01kbfe_mod

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fsin2

Contains
Subroutine fsin2(iflag,nz,z,fz,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: nz

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: fz(nz)
Complex (Kind=nag_wp), Intent (In) :: z(nz)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
Continue
fz(1:nz) = sin((2.0E0_nag_wp,0.0E0_nag_wp)*z(1:nz))

! Set iflag nonzero to terminate execution for any reason.
iflag = 0
Return

End Subroutine fsin2
End Module f01kbfe_mod
Program f01kbfe

! F01KBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01kbf, nag_wp, x02ajf, x04daf
Use f01kbfe_mod, Only: fsin2

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: conda, cond_rel, eps, norma, normfa
Integer :: i, ifail, iflag, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01KBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Display A
ifail = 0
Call x04daf(’G’,’N’,n,n,a,lda,’A’,ifail)
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! Find absolute condition number estimate
ifail = 0
Call f01kbf(n,a,lda,fsin2,iuser,ruser,iflag,conda,norma,normfa,ifail)

If (ifail==0) Then
! Print solution

Write (nout,*)
Write (nout,*) ’F(A) = sin(2A)’
Write (nout,99999) ’Estimated absolute condition number is: ’, conda

! Find relative condition number estimate
eps = x02ajf()
If (normfa>eps) Then

cond_rel = conda*norma/normfa
Write (nout,99999) ’Estimated relative condition number is: ’, &

cond_rel
Else

Write (nout,99998) ’The estimated norm of f(A) is effectively zero’, &
’and so the relative condition number is undefined.’

End If

End If

99999 Format (1X,A,F7.2)
99998 Format (/,1X,A,/,1X,A)

End Program f01kbfe

10.2 Program Data

F01KBF Example Program Data

4 :Value of N

(2.0, 0.0) (0.0, 1.0) (1.0, 1.0) (0.0, 3.0)
(1.0, 1.0) (0.0, 2.0) (2.0, 2.0) (0.0, 0.0)
(0.0, 0.0) (2.0, 0.0) (1.0, 2.0) (1.0, 0.0)
(1.0, 1.0) (3.0, 0.0) (0.0, 0.0) (1.0, 2.0) :End of matrix A

10.3 Program Results

F01KBF Example Program Results

A
1 2 3 4

1 2.0000 0.0000 1.0000 0.0000
0.0000 1.0000 1.0000 3.0000

2 1.0000 0.0000 2.0000 0.0000
1.0000 2.0000 2.0000 0.0000

3 0.0000 2.0000 1.0000 1.0000
0.0000 0.0000 2.0000 0.0000

4 1.0000 3.0000 0.0000 1.0000
1.0000 0.0000 0.0000 2.0000

F(A) = sin(2A)
Estimated absolute condition number is: 2016.99
Estimated relative condition number is: 12.86
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NAG Library Routine Document

F01KCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01KCF computes an estimate of the absolute condition number of a matrix function f of a complex n
by n matrix A in the 1-norm, using analytical derivatives of f you have supplied.

2 Specification

SUBROUTINE F01KCF (N, A, LDA, F, IUSER, RUSER, IFLAG, CONDA, NORMA,
NORMFA, IFAIL)

&

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) RUSER(*), CONDA, NORMA, NORMFA
COMPLEX (KIND=nag_wp) A(LDA,*)
EXTERNAL F

3 Description

The absolute condition number of f at A, condabs f; Að Þ is given by the norm of the Fréchet derivative
of f , L Að Þ, which is defined by

L Xð Þk k :¼ max E 6¼0
L X;Eð Þk k

Ek k ;

where L X;Eð Þ is the Fréchet derivative in the direction E. L X;Eð Þ is linear in E and can therefore be
written as

vec L X;Eð Þð Þ ¼ K Xð Þvec Eð Þ;

where the vec operator stacks the columns of a matrix into one vector, so that K Xð Þ is n2 � n2.
F01KCF computes an estimate � such that � � K Xð Þk k1, where K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
.

The relative condition number can then be computed via

condrel f; Að Þ ¼ condabs f; Að Þ Ak k1
f Að Þk k1

:

The algorithm used to find � is detailed in Section 3.4 of Higham (2008).

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.
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On exit: the n by n matrix, f Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01KCF
is called.

Constraint: LDA � N.

4: F – SUBROUTINE, supplied by the user. External Procedure

Given an integer m, the subroutine F evaluates f mð Þ zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (M, IFLAG, NZ, Z, FZ, IUSER, RUSER)

INTEGER M, IFLAG, NZ, IUSER(*)
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) Z(NZ), FZ(NZ)

1: M – INTEGER Input

On entry: the order, m, of the derivative required.

If M ¼ 0, f zið Þ should be returned. For M > 0, f mð Þ zið Þ should be returned.

2: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f zð Þ; for instance
f zð Þ may not be defined. If IFLAG is returned as nonzero then F01KCF will terminate
the computation, with IFAIL ¼ 3.

3: NZ – INTEGER Input

On entry: nz, the number of function or derivative values required.

4: ZðNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nz points z1; z2; . . . ; znz at which the function f is to be evaluated.

5: FZðNZÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the nz function or derivative values. FZðiÞ should return the value f mð Þ zið Þ, for
i ¼ 1; 2; . . . ; nz.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to F01KCF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F01KCF is called. Arguments denoted as Input must not be changed by this
procedure.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01KCF, but are passed directly to F and should be used to
pass information to this routine.
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7: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless IFLAG has been set nonzero inside F, in which case IFLAG will be
the value set and IFAIL will be set to IFAIL ¼ 3.

8: CONDA – REAL (KIND=nag_wp) Output

On exit: an estimate of the absolute condition number of f at A.

9: NORMA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of A.

10: NORMFA – REAL (KIND=nag_wp) Output

On exit: the 1-norm of f Að Þ.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An internal error occurred when estimating the norm of the Fréchet derivative of f at A. Please
contact NAG.

IFAIL ¼ 2

An internal error occurred when evaluating the matrix function f Að Þ. You can investigate further
by calling F01FMF with the matrix A and the function f .

IFAIL ¼ 3

IFLAG has been set nonzero by the user-supplied subroutine.

IFAIL ¼ �1
On entry, N < 0.

IFAIL ¼ �3
On entry, argument LDA is invalid.
Constraint: LDA � N.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01KCF uses the norm estimation routine F04ZDF to estimate a quantity �, where � � K Xð Þk k1 and
K Xð Þk k1 2 n�1 L Xð Þk k1; n L Xð Þk k1

� �
. For further details on the accuracy of norm estimation, see the

documentation for F04ZDF.

8 Parallelism and Performance

F01KCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

F01KCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Approximately 6n2 of complex allocatable memory is required by the routine, in addition to the
memory used by the underlying matrix function routine F01FMF.

F01KCF returns the matrix function f Að Þ. This is computed using F01FMF. If only f Að Þ is required,
without an estimate of the condition number, then it is far more efficient to use F01FMF directly.

The real analogue of this routine is F01JCF.

10 Example

This example estimates the absolute and relative condition numbers of the matrix function e3A where

A ¼
1:0þ 1:0i 0:0þ 1:0i 1:0þ 0:0i 2:0þ 0:0i
0:0þ 0:0i 2:0þ 0:0i 0:0þ 2:0i 1:0þ 0:0i
0:0þ 1:0i 0:0þ 1:0i 0:0þ 0:0i 2:0þ 0:0i
1:0þ 0:0i 0:0þ 1:0i 1:0þ 0:0i 0:0þ 1:0i

0B@
1CA:
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10.1 Program Text

! F01KCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f01kcfe_mod

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fexp3

Contains
Subroutine fexp3(m,iflag,nz,z,fz,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: m, nz

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: fz(nz)
Complex (Kind=nag_wp), Intent (In) :: z(nz)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, exp

! .. Executable Statements ..
Continue
fz(1:nz) = (cmplx(3.0E0_nag_wp,0.0_nag_wp,kind=nag_wp)**m)* &

exp((3.0E0_nag_wp,0.0E0_nag_wp)*z(1:nz))
! Set iflag nonzero to terminate execution for any reason.

iflag = 0
Return

End Subroutine fexp3
End Module f01kcfe_mod
Program f01kcfe

! F01KCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01kcf, nag_wp, x02ajf, x04daf
Use f01kcfe_mod, Only: fexp3

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: conda, cond_rel, eps, norma, normfa
Integer :: i, ifail, iflag, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01KCF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Display A
ifail = 0
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Call x04daf(’G’,’N’,n,n,a,lda,’A’,ifail)

! Find absolute condition number estimate
ifail = 0
Call f01kcf(n,a,lda,fexp3,iuser,ruser,iflag,conda,norma,normfa,ifail)

If (ifail==0) Then
! Print solution

Write (nout,*)
Write (nout,*) ’F(A) = exp(3A)’
Write (nout,99999) ’Estimated absolute condition number is: ’, conda

! Find relative condition number estimate
eps = x02ajf()
If (normfa>eps) Then

cond_rel = conda*norma/normfa
Write (nout,99999) ’Estimated relative condition number is: ’, &

cond_rel
Else

Write (nout,99998) ’The estimated norm of f(A) is effectively zero’, &
’and so the relative condition number is undefined.’

End If

End If

99999 Format (1X,A,F7.2)
99998 Format (/,1X,A,/,1X,A)

End Program f01kcfe

10.2 Program Data

F01KCF Example Program Data

4 :Value of N

(1.0, 1.0) (0.0, 1.0) (1.0, 0.0) (2.0, 0.0)
(0.0, 0.0) (2.0, 0.0) (0.0, 2.0) (1.0, 0.0)
(0.0, 1.0) (0.0, 1.0) (0.0, 0.0) (2.0, 0.0)
(1.0, 0.0) (0.0, 1.0) (1.0, 0.0) (0.0, 1.0) :End of matrix A

10.3 Program Results

F01KCF Example Program Results

A
1 2 3 4

1 1.0000 0.0000 1.0000 2.0000
1.0000 1.0000 0.0000 0.0000

2 0.0000 2.0000 0.0000 1.0000
0.0000 0.0000 2.0000 0.0000

3 0.0000 0.0000 0.0000 2.0000
1.0000 1.0000 0.0000 0.0000

4 1.0000 0.0000 1.0000 0.0000
0.0000 1.0000 0.0000 1.0000

F(A) = exp(3A)
Estimated absolute condition number is: 9474.43
Estimated relative condition number is: 13.74
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NAG Library Routine Document

F01KDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01KDF computes an estimate of the relative condition number, �A1=2 , and a bound on the relative
residual, in the Frobenius norm, for the square root of a complex n by n matrix A. The principal square
root, A1=2, of A is also returned.

2 Specification

SUBROUTINE F01KDF (N, A, LDA, ALPHA, CONDSA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) ALPHA, CONDSA
COMPLEX (KIND=nag_wp) A(LDA,*)

3 Description

For a matrix with no eigenvalues on the closed negative real line, the principal matrix square root, A1=2,
of A is the unique square root with eigenvalues in the right half-plane.

The Fréchet derivative of a matrix function A1=2 in the direction of the matrix E is the linear function
mapping E to L A;Eð Þ such that

Aþ Eð Þ1=2 �A1=2 � L A;Eð Þ ¼ o Ak kð Þ:
The absolute condition number is given by the norm of the Fréchet derivative which is defined by

L Að Þk k :¼ max
E 6¼0

L A;Eð Þk k
Ek k :

The Fréchet derivative is linear in E and can therefore be written as

vec L A;Eð Þð Þ ¼ K Að Þvec Eð Þ;

where the vec operator stacks the columns of a matrix into one vector, so that K Að Þ is n2 � n2.
F01KDF uses Algorithm 3.20 from Higham (2008) to compute an estimate � such that � � K Xð Þk kF .
The quantity of � provides a good approximation to L Að Þk kF . The relative condition number, �A1=2 , is
then computed via

�A1=2 ¼ L Að Þk kF Ak kF
A1=2k kF

:

�A1=2 is returned in the argument CONDSA.

A1=2 is computed using the algorithm described in Higham (1987). This is a version of the algorithm of
BjÎrck and Hammarling (1983). In addition, a blocking scheme described in Deadman et al. (2013) is
used.

The computed quantity � is a measure of the stability of the relative residual (see Section 7). It is
computed via

� ¼
A1=2
�� ��2

F

Ak kF
:
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4 References

BjÎrck Ð and Hammarling S (1983) A Schur method for the square root of a matrix Linear Algebra
Appl. 52/53 127–140

Deadman E, Higham N J and Ralha R (2013) Blocked Schur Algorithms for Computing the Matrix
Square Root Applied Parallel and Scientific Computing: 11th International Conference, (PARA 2012,
Helsinki, Finland) P. Manninen and P. Úster, Eds Lecture Notes in Computer Science 7782 171–181
Springer–Verlag

Higham N J (1987) Computing real square roots of a real matrix Linear Algebra Appl. 88/89 405–430

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix square root A1=2. Alternatively, if IFAIL ¼ 1, contains an n
by n non-principal square root of A.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01KDF
is called.

Constraint: LDA � N.

4: ALPHA – REAL (KIND=nag_wp) Output

On exit: an estimate of the stability of the relative residual for the computed principal (if
IFAIL ¼ 0) or non-principal (if IFAIL ¼ 1) matrix square root, �.

5: CONDSA – REAL (KIND=nag_wp) Output

On exit: an estimate of the relative condition number, in the Frobenius norm, of the principal (if
IFAIL ¼ 0) or non-principal (if IFAIL ¼ 1) matrix square root at A, �A1=2 .

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has a negative or semisimple vanishing eigenvalue. A non-principal square root was returned.

IFAIL ¼ 2

A has a defective vanishing eigenvalue. The square root and condition number cannot be found
in this case.

IFAIL ¼ 3

An error occurred when computing the matrix square root. Consequently, ALPHA and CONDSA
could not be computed. It is likely that the routine was called incorrectly.

IFAIL ¼ 4

An error occurred when computing the condition number. The matrix square root was still
returned but you should use F01FNF to check if it is the principal matrix square root.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If the computed square root is ~X, then the relative residual

A� ~X2
�� ��

F

Ak kF
;

is bounded approximately by n��, where � is machine precision. The relative error in ~X is bounded
approximately by n��A1=2�.
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8 Parallelism and Performance

F01KDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01KDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Approximately 3� n2 of complex allocatable memory is required by the routine.

The cost of computing the matrix square root is 85n3=3 floating-point operations. The cost of
computing the condition number depends on how fast the algorithm converges. It typically takes over
twice as long as computing the matrix square root.

If condition estimates are not required then it is more efficient to use F01FNF to obtain the matrix
square root alone. Condition estimates for the square root of a real matrix can be obtained via F01JDF.

10 Example

This example estimates the matrix square root and condition number of the matrix

A ¼
29þ 35i 31þ 61i �38þ 49i �17� 6i
52� 59i 58� 29i 97þ 39i �32þ 15i
20� 31i 44� i 37þ 19i �26þ 19i
�70þ 72i �90þ 8i �87� 43i 47� 5i

0B@
1CA:

10.1 Program Text

Program f01kdfe

! F01KDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01kdf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, condsa
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01KDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find sqrt(A)
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Call f01kdf(n,a,lda,alpha,condsa,ifail)

! Print solution
ifail = 0
Call x04daf(’G’,’N’,n,n,a,lda,’sqrt(A)’,ifail)

Write (nout,*)
Write (nout,99999) ’Estimated relative condition number is: ’, condsa
Write (nout,99999) ’Condition number for the relative residual is: ’, &

alpha

99999 Format (1X,A,F6.2)

End Program f01kdfe

10.2 Program Data

F01KDF Example Program Data

4 :Value of N

( 29.0, 35.0) ( 31.0, 61.0) (-38.0, 49.0) (-17.0, -6.0)
( 52.0,-59.0) ( 58.0,-29.0) ( 97.0, 39.0) (-32.0, 15.0)
( 20.0,-31.0) ( 44.0, -1.0) ( 37.0, 19.0) (-26.0, 19.0)
(-70.0, 72.0) (-90.0, 8.0) (-87.0,-43.0) ( 47.0, -5.0) :End of matrix A

10.3 Program Results

F01KDF Example Program Results

sqrt(A)
1 2 3 4

1 2.0000E+00 1.0000E+00 -2.0000E+00 -2.0000E+00
3.0000E+00 8.0000E+00 -7.5495E-15 1.0000E+00

2 5.0000E+00 7.0000E+00 7.0000E+00 3.9968E-15
-4.0000E+00 -6.0000E+00 6.0000E+00 3.5527E-15

3 1.0000E+00 2.0000E+00 4.0000E+00 -2.0000E+00
-2.0000E+00 1.0000E+00 1.0000E+00 2.0000E+00

4 -3.0000E+00 -2.0000E+00 -7.0000E+00 6.0000E+00
7.0000E+00 2.0000E+00 -1.0000E+00 2.0000E+00

Estimated relative condition number is: 21.17
Condition number for the relative residual is: 1.86
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NAG Library Routine Document

F01KEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01KEF computes an estimate of the relative condition number �Ap of the pth power (where p is real)
of a complex n by n matrix A, in the 1-norm. The principal matrix power Ap is also returned.

2 Specification

SUBROUTINE F01KEF (N, A, LDA, P, CONDPA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) P, CONDPA
COMPLEX (KIND=nag_wp) A(LDA,*)

3 Description

For a matrix A with no eigenvalues on the closed negative real line, Ap (p 2 R) can be defined as

Ap ¼ exp plog Að Þð Þ

where log Að Þ is the principal logarithm of A (the unique logarithm whose spectrum lies in the strip
z : �	 < Im zð Þ < 	f g).
The Fréchet derivative of the matrix pth power of A is the unique linear mapping E 7!L A;Eð Þ such
that for any matrix E

AþEð Þp �Ap � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first-order effect of perturbations in A on the matrix power Ap.

The relative condition number of the matrix pth power can be defined by

�Ap ¼ L Að Þk k Ak k
Apk k ;

where L Að Þk k is the norm of the Fréchet derivative of the matrix power at A.

F01KEF uses the algorithms of Higham and Lin (2011) and Higham and Lin (2013) to compute �Ap and
Ap. The real number p is expressed as p ¼ q þ r where q 2 �1; 1ð Þ and r 2 Z. Then Ap ¼ AqAr. The
integer power Ar is found using a combination of binary powering and, if necessary, matrix inversion.
The fractional power Aq is computed using a Schur decomposition, a Padé approximant and the scaling
and squaring method.

To obtain the estimate of �Ap , F01KEF first estimates L Að Þk k by computing an estimate � of a quantity
K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K. This requires multiple Fréchet derivatives to be

computed. Fréchet derivatives of Aq are obtained by differentiating the Padé approximant. Fréchet
derivatives of Ap are then computed using a combination of the chain rule and the product rule for
Fréchet derivatives.

If A is nonsingular but has negative real eigenvalues F01KEF will return a non-principal matrix pth
power and its condition number.
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4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Higham N J and Lin L (2011) A Schur–Padé algorithm for fractional powers of a matrix SIAM J.
Matrix Anal. Appl. 32(3) 1056–1078

Higham N J and Lin L (2013) An improved Schur–Padé algorithm for fractional powers of a matrix
and their Fréchet derivatives SIAM J. Matrix Anal. Appl. 34(3) 1341–1360

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix pth power, Ap, unless IFAIL ¼ 1, in which case a non-
principal pth power is returned.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01KEF
is called.

Constraint: LDA � N.

4: P – REAL (KIND=nag_wp) Input

On entry: the required power of A.

5: CONDPA – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or 3, an estimate of the relative condition number of the matrix pth power,
�Ap . Alternatively, if IFAIL ¼ 4, the absolute condition number of the matrix pth power.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has eigenvalues on the negative real line. The principal pth power is not defined in this case,
so a non-principal power was returned.

IFAIL ¼ 2

A is singular so the pth power cannot be computed.

IFAIL ¼ 3

Ap has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.

IFAIL ¼ 4

The relative condition number is infinite. The absolute condition number was returned instead.

IFAIL ¼ 5

An unexpected internal error occurred. This failure should not occur and suggests that the routine
has been called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01KEF uses the norm estimation routine F04ZDF to produce an estimate � of a quantity
K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K. For further details on the accuracy of norm

estimation, see the documentation for F04ZDF.

For a normal matrix A (for which AHA ¼ AAH), the Schur decomposition is diagonal and the
computation of the fractional part of the matrix power reduces to evaluating powers of the eigenvalues
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of A and then constructing Ap using the Schur vectors. This should give a very accurate result. In
general, however, no error bounds are available for the algorithm. See Higham and Lin (2011) and
Higham and Lin (2013) for details and further discussion.

8 Parallelism and Performance

F01KEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01KEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The amount of complex allocatable memory required by the algorithm is typically of the order 10� n2.

The cost of the algorithm is O n3
� �

floating-point operations; see Higham and Lin (2013).

If the matrix pth power alone is required, without an estimate of the condition number, then F01FQF
should be used. If the Fréchet derivative of the matrix power is required then F01KFF should be used.
The real analogue of this routine is F01JEF.

10 Example

This example estimates the relative condition number of the matrix power Ap, where p ¼ 0:4 and

A ¼
1þ 2i 3 2 1þ 3i
1þ i 1 1 2þ i
1 2 1 2i
3 i 2þ i 1

0B@
1CA:

10.1 Program Text

Program f01kefe

! F01KEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01kef, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: condpa, p
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01KEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, p
lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
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! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0

! Find A^p
Call f01kef(n,a,lda,p,condpa,ifail)

! Print solution
Call x04daf(’General’,’ ’,n,n,a,lda,’A^p’,ifail)

Write (nout,*)
Write (nout,99999) ’Estimated condition number is: ’, condpa

99999 Format (1X,A,F6.2)
End Program f01kefe

10.2 Program Data

F01KEF Example Program Data

4 0.4 : Values of N and P

(1.0,2.0) (3.0,0.0) (2.0,0.0) (1.0,3.0)
(1.0,1.0) (1.0,0.0) (1.0,0.0) (2.0,1.0)
(1.0,0.0) (2.0,0.0) (1.0,0.0) (0.0,2.0)
(3.0,0.0) (0.0,1.0) (2.0,1.0) (1.0,0.0) : End of matrix A

10.3 Program Results

F01KEF Example Program Results

A^p
1 2 3 4

1 0.9742 0.8977 0.6389 0.0975
0.5211 -0.1170 -0.3900 0.6205

2 0.1586 1.0176 0.0623 0.6431
0.2763 -0.0250 -0.3471 0.2560

3 0.2589 0.5633 1.1470 -0.3771
-0.5817 0.3969 0.4042 0.3113

4 0.8713 -0.5734 0.2816 1.3568
-0.0270 0.0868 0.3739 -0.2709

Estimated condition number is: 6.86
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NAG Library Routine Document

F01KFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01KFF computes the Fréchet derivative L A;Eð Þ of the pth power (where p is real) of the complex n
by n matrix A applied to the complex n by n matrix E. The principal matrix power Ap is also returned.

2 Specification

SUBROUTINE F01KFF (N, A, LDA, E, LDE, P, IFAIL)

INTEGER N, LDA, LDE, IFAIL
REAL (KIND=nag_wp) P
COMPLEX (KIND=nag_wp) A(LDA,*), E(LDE,*)

3 Description

For a matrix A with no eigenvalues on the closed negative real line, Ap (p 2 R) can be defined as

Ap ¼ exp plog Að Þð Þ

where log Að Þ is the principal logarithm of A (the unique logarithm whose spectrum lies in the strip
z : �	 < Im zð Þ < 	f g). If A is nonsingular but has negative real eigenvalues, the principal logarithm is
not defined, but a non-principal pth power can be defined by using a non-principal logarithm.

The Fréchet derivative of the matrix pth power of A is the unique linear mapping E 7!L A;Eð Þ such
that for any matrix E

AþEð Þp �Ap � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first-order effect of perturbations in A on the matrix power Ap.

F01KFF uses the algorithms of Higham and Lin (2011) and Higham and Lin (2013) to compute Ap and
L A;Eð Þ. The real number p is expressed as p ¼ q þ r where q 2 �1; 1ð Þ and r 2 Z. Then Ap ¼ AqAr.
The integer power Ar is found using a combination of binary powering and, if necessary, matrix
inversion. The fractional power Aq is computed using a Schur decomposition, a Padé approximant and
the scaling and squaring method. The Padé approximant is differentiated in order to obtain the Fréchet
derivative of Aq and L A;Eð Þ is then computed using a combination of the chain rule and the product
rule for Fréchet derivatives.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Higham N J and Lin L (2011) A Schur–Padé algorithm for fractional powers of a matrix SIAM J.
Matrix Anal. Appl. 32(3) 1056–1078

Higham N J and Lin L (2013) An improved Schur–Padé algorithm for fractional powers of a matrix
and their Fréchet derivatives SIAM J. Matrix Anal. Appl. 34(3) 1341–1360

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix pth power, Ap. Alternatively if IFAIL ¼ 1, a non-principal
pth power is returned.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01KFF
is called.

Constraint: LDA � N.

4: EðLDE; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array E must be at least N.

On entry: the n by n matrix E.

On exit: the Fréchet derivative L A;Eð Þ.

5: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which F01KFF
is called.

Constraint: LDE � N.

6: P – REAL (KIND=nag_wp) Input

On entry: the required power of A.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A has eigenvalues on the negative real line. The principal pth power is not defined in this case,
so a non-principal power was returned.

IFAIL ¼ 2

A is singular so the pth power cannot be computed.
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IFAIL ¼ 3

Ap has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.

IFAIL ¼ 4

An unexpected internal error occurred. This failure should not occur and suggests that the routine
has been called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �5
On entry, LDE ¼ valueh i and N ¼ valueh i.
Constraint: LDE � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which AHA ¼ AAH), the Schur decomposition is diagonal and the
computation of the fractional part of the matrix power reduces to evaluating powers of the eigenvalues
of A and then constructing Ap using the Schur vectors. This should give a very accurate result. In
general, however, no error bounds are available for the algorithm. See Higham and Lin (2011) and
Higham and Lin (2013) for details and further discussion.

If the condition number of the matrix power is required then F01KEF should be used.

8 Parallelism and Performance

F01KFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01KFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

F01 – Matrix Operations, Including Inversion F01KFF

Mark 26 F01KFF.3



9 Further Comments

The complex allocatable memory required by the algorithm is approximately 6� n2.

The cost of the algorithm is O n3
� �

floating-point operations; see Higham and Lin (2011) and Higham
and Lin (2013).

If the matrix pth power alone is required, without the Fréchet derivative, then F01FQF should be used.
If the condition number of the matrix power is required then F01KEF should be used. The real analogue
of this routine is F01JFF.

10 Example

This example finds Ap and the Fréchet derivative of the matrix power L A;Eð Þ, where p ¼ 0:2,

A ¼
2 3 2 1þ 3i
2þ i 1 1 2þ i
0þ i 2þ 2i 0þ 2i 0þ 4i
3 0þ i 3 1

0B@
1CA and E ¼

0þ i 3 2 1þ 3i
0þ i 1 3þ 3i 0þ i
0þ i 2þ 2i 0þ 2i 0
2 0þ i 1 1

0B@
1CA:

10.1 Program Text

Program f01kffe

! F01KFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01kff, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p
Integer :: i, ifail, lda, lde, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), e(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01KFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, p
lda = n
lde = n
Allocate (a(lda,n))
Allocate (e(lde,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Read E from data file
Read (nin,*)(e(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find A^p and L_p(A,E)
Call f01kff(n,a,lda,e,lde,p,ifail)

! Print solution
Call x04daf(’General’,’ ’,n,n,a,lda,’A^p’,ifail)
Write (nout,*)
Call x04daf(’General’,’ ’,n,n,e,lde,’L_p(A,E)’,ifail)

End Program f01kffe
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10.2 Program Data

F01KFF Example Program Data

4 0.2 :Values of N and P

(2.0,0.0) (3.0,0.0) (2.0,0.0) (1.0,3.0)
(2.0,1.0) (1.0,0.0) (1.0,0.0) (2.0,1.0)
(0.0,1.0) (2.0,2.0) (0.0,2.0) (0.0,4.0)
(3.0,0.0) (0.0,1.0) (3.0,0.0) (1.0,0.0) :End of matrix A

(0.0,1.0) (3.0,0.0) (2.0,0.0) (1.0,3.0)
(0.0,1.0) (1.0,0.0) (3.0,3.0) (0.0,1.0)
(0.0,1.0) (2.0,2.0) (0.0,2.0) (0.0,0.0)
(2.0,0.0) (0.0,1.0) (1.0,0.0) (1.0,0.0) :End of matrix E

10.3 Program Results

F01KFF Example Program Results

A^p
1 2 3 4

1 1.2029 0.0810 0.2374 -0.0520
-0.0424 0.0428 -0.1718 0.0976

2 0.1311 1.1054 -0.0757 0.2308
-0.0378 0.1091 0.0066 0.1373

3 -0.0305 0.4878 1.0822 -0.1050
-0.1948 0.2846 0.2620 0.3131

4 0.3401 -0.3005 0.1838 1.2347
0.1792 -0.0857 -0.0261 -0.1571

L_p(A,E)
1 2 3 4

1 0.0980 -0.0980 0.0410 0.0136
-0.0926 0.2759 -0.2629 0.1853

2 -0.0644 -0.2093 0.4315 0.1337
0.3359 -0.3976 0.0395 -0.0976

3 0.1912 0.2279 -0.0963 -0.0925
0.0032 0.3308 0.1146 -0.3254

4 -0.0907 -0.0153 0.1299 0.2238
0.1255 -0.4022 0.0694 0.1179
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NAG Library Routine Document

F01KGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01KGF computes an estimate of the relative condition number �exp Að Þ of the exponential of a
complex n by n matrix A, in the 1-norm. The matrix exponential eA is also returned.

2 Specification

SUBROUTINE F01KGF (N, A, LDA, CONDEA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) CONDEA
COMPLEX (KIND=nag_wp) A(LDA,*)

3 Description

The Fréchet derivative of the matrix exponential of A is the unique linear mapping E 7!L A;Eð Þ such
that for any matrix E

eAþE � eA � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first-order effect of perturbations in A on the exponential eA.

The relative condition number of the matrix exponential can be defined by

�exp Að Þ ¼
L Að Þk k Ak k
exp Að Þk k ;

where L Að Þk k is the norm of the Fréchet derivative of the matrix exponential at A.

To obtain the estimate of �exp Að Þ, F01KGF first estimates L Að Þk k by computing an estimate � of a
quantity K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K.

The algorithms used to compute �exp Að Þ are detailed in the Al–Mohy and Higham (2009a) and Al–
Mohy and Higham (2009b).

The matrix exponential eA is computed using a Padé approximant and the scaling and squaring method.
The Padé approximant is differentiated to obtain the Fréchet derivatives L A;Eð Þ which are used to
estimate the condition number.

4 References

Al–Mohy A H and Higham N J (2009a) A new scaling and squaring algorithm for the matrix
exponential SIAM J. Matrix Anal. 31(3) 970–989

Al–Mohy A H and Higham N J (2009b) Computing the Fréchet derivative of the matrix exponential,
with an application to condition number estimation SIAM J. Matrix Anal. Appl. 30(4) 1639–1657

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Moler C B and Van Loan C F (2003) Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later SIAM Rev. 45 3–49
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix exponential eA.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01KGF
is called.

Constraint: LDA � N.

4: CONDEA – REAL (KIND=nag_wp) Output

On exit: an estimate of the relative condition number of the matrix exponential �exp Að Þ.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The linear equations to be solved for the Padé approximant are singular; it is likely that this
routine has been called incorrectly.

IFAIL ¼ 2

eA has been computed using an IEEE double precision Padé approximant, although the arithmetic
precision is higher than IEEE double precision.

IFAIL ¼ 3

An unexpected internal error has occurred. Please contact NAG.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.
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IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01KGF uses the norm estimation routine F04ZDF to produce an estimate � of a quantity
K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K. For further details on the accuracy of norm estimation,

see the documentation for F04ZDF.

For a normal matrix A (for which AHA ¼ AAH) the computed matrix, eA, is guaranteed to be close to
the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-normal
matrices. See Section 10.3 of Higham (2008) for details and further discussion.

For further discussion of the condition of the matrix exponential see Section 10.2 of Higham (2008).

8 Parallelism and Performance

F01KGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01KGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F01KAF uses a similar algorithm to F01KGF to compute an estimate of the absolute condition number
(which is related to the relative condition number by a factor of Ak k= exp Að Þk k). However, the required
Fréchet derivatives are computed in a more efficient and stable manner by F01KGF and so its use is
recommended over F01KAF.

The cost of the algorithm is O n3
� �

and the complex allocatable memory required is approximately
15n2; see Al–Mohy and Higham (2009a) and Al–Mohy and Higham (2009b) for further details.

If the matrix exponential alone is required, without an estimate of the condition number, then F01FCF
should be used. If the Fréchet derivative of the matrix exponential is required then F01KHF should be
used.

As well as the excellent book Higham (2008), the classic reference for the computation of the matrix
exponential is Moler and Van Loan (2003).

F01 – Matrix Operations, Including Inversion F01KGF
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10 Example

This example estimates the relative condition number of the matrix exponential eA, where

A ¼
1þ i 2þ i 2þ i 2þ i
3þ 2i 1 1 2þ i
3þ 2i 2þ i 1 2þ i
3þ 2i 3þ 2i 3þ 2i 1þ i

0B@
1CA:

10.1 Program Text

Program f01kgfe

! F01KGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01kgf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: condea
Integer :: i, ierr, ifail, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01KGF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Find exp( A ) and the condition estimate

ifail = 0
Call f01kgf(n,a,lda,condea,ifail)

! Print solution

ierr = 0
Call x04daf(’General’,’ ’,n,n,a,lda,’Exp(A)’,ierr)

Write (nout,*)
Write (nout,99999) ’Estimated condition number is: ’, condea

99999 Format (1X,A,F6.2)
End Program f01kgfe

10.2 Program Data

F01KGF Example Program Data

4 :Value of N

(1.0,1.0) (2.0,1.0) (2.0,1.0) (2.0,1.0)
(3.0,2.0) (1.0,0.0) (1.0,0.0) (2.0,1.0)
(3.0,2.0) (2.0,1.0) (1.0,0.0) (2.0,1.0)
(3.0,2.0) (3.0,2.0) (3.0,2.0) (1.0,1.0) :End of matrix A
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10.3 Program Results

F01KGF Example Program Results

Exp(A)
1 2 3 4

1 -157.9003 -194.6526 -186.5627 -155.7669
-754.3717 -555.0507 -475.4533 -520.1876

2 -206.8899 -225.4985 -212.4414 -186.5627
-694.7443 -505.3938 -431.0611 -475.4533

3 -208.7476 -238.4962 -225.4985 -194.6526
-808.2090 -590.8045 -505.3938 -555.0507

4 -133.3958 -208.7476 -206.8899 -157.9003
-1085.5496 -808.2090 -694.7443 -754.3717

Estimated condition number is: 15.29

F01 – Matrix Operations, Including Inversion F01KGF
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NAG Library Routine Document

F01KHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01KHF computes the Fréchet derivative L A;Eð Þ of the matrix exponential of a complex n by n

matrix A applied to the complex n by n matrix E. The matrix exponential eA is also returned.

2 Specification

SUBROUTINE F01KHF (N, A, LDA, E, LDE, IFAIL)

INTEGER N, LDA, LDE, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*), E(LDE,*)

3 Description

The Fréchet derivative of the matrix exponential of A is the unique linear mapping E 7!L A;Eð Þ such
that for any matrix E

eAþE � eA � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first-order effect of perturbations in A on the exponential eA.

F01KHF uses the algorithms of Al–Mohy and Higham (2009a) and Al–Mohy and Higham (2009b) to
compute eA and L A;Eð Þ. The matrix exponential eA is computed using a Padé approximant and the
scaling and squaring method. The Padé approximant is then differentiated in order to obtain the Fréchet
derivative L A;Eð Þ.

4 References

Al–Mohy A H and Higham N J (2009a) A new scaling and squaring algorithm for the matrix
exponential SIAM J. Matrix Anal. 31(3) 970–989

Al–Mohy A H and Higham N J (2009b) Computing the Fréchet derivative of the matrix exponential,
with an application to condition number estimation SIAM J. Matrix Anal. Appl. 30(4) 1639–1657

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Moler C B and Van Loan C F (2003) Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later SIAM Rev. 45 3–49

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix exponential eA.

F01 – Matrix Operations, Including Inversion F01KHF
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3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01KHF
is called.

Constraint: LDA � N.

4: EðLDE; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array E must be at least N.

On entry: the n by n matrix E

On exit: the Fréchet derivative L A;Eð Þ

5: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which F01KHF
is called.

Constraint: LDE � N.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The linear equations to be solved for the Padé approximant are singular; it is likely that this
routine has been called incorrectly.

IFAIL ¼ 2

eA has been computed using an IEEE double precision Padé approximant, although the arithmetic
precision is higher than IEEE double precision.

IFAIL ¼ 3

An unexpected internal error has occurred. Please contact NAG.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.
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IFAIL ¼ �5
On entry, LDE ¼ valueh i and N ¼ valueh i.
Constraint: LDE � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which AHA ¼ AAH) the computed matrix, eA, is guaranteed to be close to
the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-normal
matrices. See Section 10.3 of Higham (2008), Al–Mohy and Higham (2009a) and Al–Mohy and
Higham (2009b) for details and further discussion.

8 Parallelism and Performance

F01KHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01KHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is O n3
� �

and the complex allocatable memory required is approximately 9n2;
see Al–Mohy and Higham (2009a) and Al–Mohy and Higham (2009b).

If the matrix exponential alone is required, without the Fréchet derivative, then F01FCF should be used.

If the condition number of the matrix exponential is required then F01KGF should be used.

As well as the excellent book Higham (2008), the classic reference for the computation of the matrix
exponential is Moler and Van Loan (2003).

10 Example

This example finds the matrix exponential eA and the Fréchet derivative L A;Eð Þ, where

A ¼
1þ i 2þ i 2þ i 2þ i
3þ 2i 1 1 2þ i
3þ 2i 2þ i 1 2þ i
3þ 2i 3þ 2i 3þ 2i 1þ i

0B@
1CA and E ¼

1 2þ i 2 4þ i
3þ 2i 0 1 0þ i
0þ 2i 0þ i 1 0
1þ i 2þ 2i 0þ 3i 1

0B@
1CA:
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10.1 Program Text

Program f01khfe

! F01KHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01khf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ierr, ifail, lda, lde, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), e(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01KHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
lde = n
Allocate (a(lda,n))
Allocate (e(lde,n))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Read E from data file

Read (nin,*)(e(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find exp( A ) and L_exp(A,E)
Call f01khf(n,a,lda,e,lde,ifail)

! Print solution

ierr = 0
Call x04daf(’General’,’ ’,n,n,a,lda,’Exp(A)’,ierr)
Write (nout,*)
Call x04daf(’General’,’ ’,n,n,e,lde,’L_exp(A,E)’,ierr)

End Program f01khfe

10.2 Program Data

F01KHF Example Program Data

4 :Value of N

(1.0,1.0) (2.0,1.0) (2.0,1.0) (2.0,1.0)
(3.0,2.0) (1.0,0.0) (1.0,0.0) (2.0,1.0)
(3.0,2.0) (2.0,1.0) (1.0,0.0) (2.0,1.0)
(3.0,2.0) (3.0,2.0) (3.0,2.0) (1.0,1.0) :End of matrix A

(1.0,0.0) (2.0,1.0) (2.0,0.0) (4.0,1.0)
(3.0,2.0) (0.0,0.0) (1.0,0.0) (0.0,1.0)
(0.0,2.0) (0.0,1.0) (1.0,0.0) (0.0,0.0)
(1.0,1.0) (2.0,2.0) (0.0,3.0) (1.0,0.0) :End of matrix E
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10.3 Program Results

F01KHF Example Program Results

Exp(A)
1 2 3 4

1 -157.9003 -194.6526 -186.5627 -155.7669
-754.3717 -555.0507 -475.4533 -520.1876

2 -206.8899 -225.4985 -212.4414 -186.5627
-694.7443 -505.3938 -431.0611 -475.4533

3 -208.7476 -238.4962 -225.4985 -194.6526
-808.2090 -590.8045 -505.3938 -555.0507

4 -133.3958 -208.7476 -206.8899 -157.9003
-1085.5496 -808.2090 -694.7443 -754.3717

L_exp(A,E)
1 2 3 4

1 1571.5852 778.4238 500.2085 740.7485
-4640.2429 -3719.8308 -3246.0234 -3424.1963

2 1472.7846 731.6608 473.2569 692.0895
-4273.5048 -3432.5961 -2990.9285 -3148.4635

3 1996.4848 1107.9174 782.1266 1031.5808
-4568.8881 -3714.9923 -3249.1926 -3400.8557

4 3327.1347 2015.2763 1514.3130 1873.9421
-5829.0773 -4810.2591 -4234.6812 -4404.0163
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NAG Library Routine Document

F01KJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01KJF computes an estimate of the relative condition number �log Að Þ of the logarithm of a complex n
by n matrix A, in the 1-norm. The principal matrix logarithm log Að Þ is also returned.

2 Specification

SUBROUTINE F01KJF (N, A, LDA, CONDLA, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) CONDLA
COMPLEX (KIND=nag_wp) A(LDA,*)

3 Description

For a matrix with no eigenvalues on the closed negative real line, the principal matrix logarithm log Að Þ
is the unique logarithm whose spectrum lies in the strip z : �	 < Im zð Þ < 	f g.
The Fréchet derivative of the matrix logarithm of A is the unique linear mapping E 7!L A;Eð Þ such that
for any matrix E

log Aþ Eð Þ � log Að Þ � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first order effect of perturbations in A on the logarithm log Að Þ.
The relative condition number of the matrix logarithm can be defined by

�log Að Þ ¼
L Að Þk k Ak k
log Að Þk k ;

where L Að Þk k is the norm of the Fréchet derivative of the matrix logarithm at A.

To obtain the estimate of �log Að Þ, F01KJF first estimates L Að Þk k by computing an estimate � of a
quantity K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K.

The algorithms used to compute �log Að Þ and log Að Þ are based on a Schur decomposition, the inverse
scaling and squaring method and Padé approximants. Further details can be found in Al–Mohy and
Higham (2011) and Al–Mohy et al. (2012).

If A is nonsingular but has negative real eigenvalues, the principal logarithm is not defined, but F01KJF
will return a non-principal logarithm and its condition number.

4 References

Al–Mohy A H and Higham N J (2011) Improved inverse scaling and squaring algorithms for the matrix
logarithm SIAM J. Sci. Comput. 34(4) C152–C169

Al–Mohy A H, Higham N J and Relton S D (2012) Computing the Fréchet derivative of the matrix
logarithm and estimating the condition number SIAM J. Sci. Comput. 35(4) C394–C410

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n principal matrix logarithm, log Að Þ. Alternatively, if IFAIL ¼ 2, a non-
principal logarithm is returned.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01KJF
is called.

Constraint: LDA � N.

4: CONDLA – REAL (KIND=nag_wp) Output

On exit: with IFAIL ¼ 0, 2 or 3, an estimate of the relative condition number of the matrix
logarithm, �log Að Þ. Alternatively, if IFAIL ¼ 4, contains the absolute condition number of the
matrix logarithm.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A is singular so the logarithm cannot be computed.

IFAIL ¼ 2

A has eigenvalues on the negative real line. The principal logarithm is not defined in this case, so
a non-principal logarithm was returned.

IFAIL ¼ 3

log Að Þ has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.
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IFAIL ¼ 4

The relative condition number is infinite. The absolute condition number was returned instead.

IFAIL ¼ 5

An unexpected internal error occurred. This failure should not occur and suggests that the routine
has been called incorrectly.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

F01KJF uses the norm estimation routine F04ZDF to produce an estimate � of a quantity
K 2 n�1 L Að Þk k1; n L Að Þk k1

� �
, such that � � K. For further details on the accuracy of norm

estimation, see the documentation for F04ZDF.

For a normal matrix A (for which AHA ¼ AAH), the Schur decomposition is diagonal and the
computation of the matrix logarithm reduces to evaluating the logarithm of the eigenvalues of A and
then constructing log Að Þ using the Schur vectors. This should give a very accurate result. In general,
however, no error bounds are available for the algorithm. The sensitivity of the computation of log Að Þ
is worst when A has an eigenvalue of very small modulus or has a complex conjugate pair of
eigenvalues lying close to the negative real axis. See Al–Mohy and Higham (2011) and Section 11.2 of
Higham (2008) for details and further discussion.

8 Parallelism and Performance

F01KJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01KJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

F01KAF uses a similar algorithm to F01KJF to compute an estimate of the absolute condition number
(which is related to the relative condition number by a factor of Ak k= log Að Þk k). However, the required
Fréchet derivatives are computed in a more efficient and stable manner by F01KJF and so its use is
recommended over F01KAF.

The amount of complex allocatable memory required by the algorithm is typically of the order 10n2.

The cost of the algorithm is O n3
� �

floating-point operations; see Al–Mohy et al. (2012).

If the matrix logarithm alone is required, without an estimate of the condition number, then F01FJF
should be used. If the Fréchet derivative of the matrix logarithm is required then F01KKF should be
used. The real analogue of this routine is F01JJF.

10 Example

This example estimates the relative condition number of the matrix logarithm log Að Þ, where

A ¼
3þ 2i 1 1 1þ 2i
0þ 2i �4 0 0

1 �2 3þ 2i 0þ i
1 i 1 2þ 3i

0B@
1CA:

10.1 Program Text

Program f01kjfe

! F01KJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01kjf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: condla
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01KJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find log( A )
Call f01kjf(n,a,lda,condla,ifail)

! Print solution
ifail = 0
Call x04daf(’G’,’N’,n,n,a,lda,’log(A)’,ifail)

Write (nout,*)
Write (nout,99999) ’Estimated condition number is: ’, condla

99999 Format (1X,A,F6.2)
End Program f01kjfe
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10.2 Program Data

F01KJF Example Program Data

4 :Value of N

(3.0, 2.0) ( 1.0, 0.0) (1.0, 0.0) (1.0, 2.0)
(0.0, 2.0) (-4.0, 0.0) (0.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (-2.0, 0.0) (3.0, 2.0) (0.0, 1.0)
(1.0, 0.0) ( 0.0, 1.0) (1.0, 0.0) (2.0, 3.0) :End of matrix A

10.3 Program Results

F01KJF Example Program Results

log(A)
1 2 3 4

1 1.4498 0.3665 0.1358 0.4890
0.5154 0.6955 -0.1097 0.1622

2 -0.9351 1.2908 0.1010 0.3128
0.2859 -2.8365 -0.0672 0.2538

3 -0.1399 -0.3208 1.2738 0.2658
-0.1083 -0.8912 0.5775 0.3127

4 0.3049 -0.4858 0.1797 1.1843
-0.0019 0.3215 -0.1922 0.9427

Estimated condition number is: 2.25
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F01KKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01KKF computes the Fréchet derivative L A;Eð Þ of the matrix logarithm of the complex n by n
matrix A applied to the complex n by n matrix E. The principal matrix logarithm log Að Þ is also
returned.

2 Specification

SUBROUTINE F01KKF (N, A, LDA, E, LDE, IFAIL)

INTEGER N, LDA, LDE, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*), E(LDE,*)

3 Description

For a matrix with no eigenvalues on the closed negative real line, the principal matrix logarithm log Að Þ
is the unique logarithm whose spectrum lies in the strip z : �	 < Im zð Þ < 	f g.
The Fréchet derivative of the matrix logarithm of A is the unique linear mapping E 7!L A;Eð Þ such that
for any matrix E

log Aþ Eð Þ � log Að Þ � L A;Eð Þ ¼ o Ek kð Þ:
The derivative describes the first order effect of perturbations in A on the logarithm log Að Þ.
F01KKF uses the algorithm of Al–Mohy et al. (2012) to compute log Að Þ and L A;Eð Þ. The principal
matrix logarithm log Að Þ is computed using a Schur decomposition, a Padé approximant and the inverse
scaling and squaring method. The Padé approximant is then differentiated in order to obtain the Fréchet
derivative L A;Eð Þ. If A is nonsingular but has negative real eigenvalues, the principal logarithm is not
defined, but F01KKF will return a non-principal logarithm and Fréchet derivative.

4 References

Al–Mohy A H and Higham N J (2011) Improved inverse scaling and squaring algorithms for the matrix
logarithm SIAM J. Sci. Comput. 34(4) C152–C169

Al–Mohy A H, Higham N J and Relton S D (2012) Computing the Fréchet derivative of the matrix
logarithm and estimating the condition number SIAM J. Sci. Comput. 35(4) C394–C410

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.
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On exit: the n by n principal matrix logarithm, log Að Þ. Alterntively, if IFAIL ¼ 2, a non-
principal logarithm is returned.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01KKF
is called.

Constraint: LDA � N.

4: EðLDE; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array E must be at least N.

On entry: the n by n matrix E

On exit: with IFAIL ¼ 0, 2 or 3, the Fréchet derivative L A;Eð Þ

5: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which F01KKF
is called.

Constraint: LDE � N.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A is singular so the logarithm cannot be computed.

IFAIL ¼ 2

A has eigenvalues on the negative real line. The principal logarithm is not defined in this case, so
a non-principal logarithm was returned.

IFAIL ¼ 3

log Að Þ has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.

IFAIL ¼ 4

An unexpected internal error occurred. This failure should not occur and suggests that the routine
has been called incorrectly.
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IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �5
On entry, LDE ¼ valueh i and N ¼ valueh i.
Constraint: LDE � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which AHA ¼ AAH), the Schur decomposition is diagonal and the
computation of the matrix logarithm reduces to evaluating the logarithm of the eigenvalues of A and
then constructing log Að Þ using the Schur vectors. This should give a very accurate result. In general,
however, no error bounds are available for the algorithm. The sensitivity of the computation of log Að Þ
and L A;Eð Þ is worst when A has an eigenvalue of very small modulus or has a complex conjugate pair
of eigenvalues lying close to the negative real axis. See Al–Mohy and Higham (2011), Al–Mohy et al.
(2012) and Section 11.2 of Higham (2008) for details and further discussion.

8 Parallelism and Performance

F01KKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01KKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is O n3
� �

floating-point operations. The complex allocatable memory required
is approximately 5n2; see Al–Mohy et al. (2012) for further details.

If the matrix logarithm alone is required, without the Fréchet derivative, then F01FJF should be used. If
the condition number of the matrix logarithm is required then F01KJF should be used. The real
analogue of this routine is F01JKF.

F01 – Matrix Operations, Including Inversion F01KKF

Mark 26 F01KKF.3



10 Example

This example finds the principal matrix logarithm log Að Þ and the Fréchet derivative L A;Eð Þ, where

A ¼
1þ 4i 3i i 2

2i 3 1 1þ i
i 2þ i 2 i

1þ 2i 3þ 2i 1þ 2i 3þ i

0B@
1CA and E ¼

1 1þ 2i 2 2þ i
1þ 3i i 1 0

2i 4þ i 1 1
1 2þ 2i 3i 1

0B@
1CA:

10.1 Program Text

Program f01kkfe

! F01KKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01kkf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ierr, ifail, lda, lde, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), e(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01KKF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
lde = n
Allocate (a(lda,n))
Allocate (e(lde,n))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Read E from data file

Read (nin,*)(e(i,1:n),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

! Find log( A ) and L_log(A,E)
Call f01kkf(n,a,lda,e,lde,ifail)

! Print solution

ierr = 0
Call x04daf(’General’,’ ’,n,n,a,lda,’Log(A)’,ierr)
Write (nout,*)
Call x04daf(’General’,’ ’,n,n,e,lde,’L_log(A,E)’,ierr)

End Program f01kkfe
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10.2 Program Data

F01KKF Example Program Data

4 :Value of N

(1.0,4.0) (0.0,3.0) (0.0,1.0) (2.0,0.0)
(0.0,2.0) (3.0,0.0) (1.0,0.0) (1.0,1.0)
(0.0,1.0) (2.0,1.0) (2.0,0.0) (0.0,1.0)
(1.0,2.0) (3.0,2.0) (1.0,2.0) (3.0,1.0) :End of matrix A

(1.0,0.0) (1.0,2.0) (2.0,0.0) (2.0,1.0)
(1.0,3.0) (0.0,1.0) (1.0,0.0) (0.0,0.0)
(0.0,2.0) (4.0,1.0) (1.0,0.0) (1.0,0.0)
(1.0,0.0) (2.0,2.0) (0.0,3.0) (1.0,0.0) :End of matrix E

10.3 Program Results

F01KKF Example Program Results

Log(A)
1 2 3 4

1 1.4188 0.2758 -0.2240 0.4528
1.2438 1.0040 0.0826 -0.5887

2 0.2299 1.0702 0.5292 0.1976
0.4825 -0.3306 -0.0422 0.1532

3 0.1328 0.9235 0.6051 -0.1211
-0.0462 0.3060 -0.0973 0.2966

4 0.4704 1.0779 0.2724 0.9612
-0.0891 0.0538 0.7627 0.2680

L_log(A,E)
1 2 3 4

1 0.1620 -0.0593 -0.1543 0.5534
-0.6532 0.8434 -1.3537 0.0869

2 0.6673 0.0637 0.3421 -0.4639
0.7351 -0.0911 0.1136 -0.3399

3 -0.2500 1.4898 -0.1547 0.3319
-0.0433 0.6186 -0.0495 -0.3078

4 -0.4004 0.5834 -0.5153 0.4407
-0.5893 -0.5926 1.4107 0.1236
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NAG Library Routine Document

F01LEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01LEF computes an LU factorization of a real tridiagonal matrix, using Gaussian elimination with
partial pivoting.

2 Specification

SUBROUTINE F01LEF (N, A, LAMBDA, B, C, TOL, D, IPIV, IFAIL)

INTEGER N, IPIV(N), IFAIL
REAL (KIND=nag_wp) A(N), LAMBDA, B(N), C(N), TOL, D(N)

3 Description

The matrix T � �I, where T is a real n by n tridiagonal matrix, is factorized as

T � �I ¼ PLU;

where P is a permutation matrix, L is a unit lower triangular matrix with at most one nonzero
subdiagonal element per column, and U is an upper triangular matrix with at most two nonzero
superdiagonal elements per column.

The factorization is obtained by Gaussian elimination with partial pivoting and implicit row scaling.

An indication of whether or not the matrix T � �I is nearly singular is returned in the nth element of
the array IPIV. If it is important that T � �I is nonsingular, as is usually the case when solving a
system of tridiagonal equations, then it is strongly recommended that IPIVðnÞ is inspected on return
from F01LEF. (See the argument IPIV and Section 9 for further details.)

The argument � is included in the routine so that F01LEF may be used, in conjunction with F04LEF, to
obtain eigenvectors of T by inverse iteration.

4 References

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 1.

2: AðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the diagonal elements of T .

On exit: the diagonal elements of the upper triangular matrix U .
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3: LAMBDA – REAL (KIND=nag_wp) Input

On entry: the scalar �. F01LEF factorizes T � �I.

4: BðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the superdiagonal elements of T , stored in Bð2Þ to BðnÞ; Bð1Þ is not used.

On exit: the elements of the first superdiagonal of U , stored in Bð2Þ to BðnÞ.

5: CðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the subdiagonal elements of T , stored in Cð2Þ to CðnÞ; Cð1Þ is not used.

On exit: the subdiagonal elements of L, stored in Cð2Þ to CðnÞ.

6: TOL – REAL (KIND=nag_wp) Input

On entry: a relative tolerance used to indicate whether or not the matrix (T � �I) is nearly
singular. TOL should normally be chosen as approximately the largest relative error in the
elements of T . For example, if the elements of T are correct to about 4 significant figures, then
TOL should be set to about 5� 10�4. See Section 9 for further details on how TOL is used. If
TOL is supplied as less than �, where � is the machine precision, then the value � is used in place
of TOL.

7: DðNÞ – REAL (KIND=nag_wp) array Output

On exit: the elements of the second superdiagonal of U , stored in Dð3Þ to DðnÞ; Dð1Þ and Dð2Þ
are not used.

8: IPIVðNÞ – INTEGER array Output

On exit: details of the permutation matrix P . If an interchange occurred at the kth step of the
elimination, then IPIVðkÞ ¼ 1, otherwise IPIVðkÞ ¼ 0. If a diagonal element of U is small,
indicating that T � �Ið Þ is nearly singular, then the element IPIVðnÞ is returned as positive.
Otherwise IPIVðnÞ is returned as 0. See Section 9 for further details. If the application is such
that it is important that T � �Ið Þ is not nearly singular, then it is strongly recommended that
IPIVðnÞ is inspected on return.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed factorization will satisfy the equation

PLU ¼ T � �Ið Þ þ E;

where

Ek k1 � 9�max i�j lij
		 		; lij		 		2� �

� T � �Ik k1

where � is the machine precision.

8 Parallelism and Performance

F01LEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F01LEF is approximately proportional to n.

The factorization of a tridiagonal matrix proceeds in n� 1ð Þ steps, each step eliminating one
subdiagonal element of the tridiagonal matrix. In order to avoid small pivot elements and to prevent
growth in the size of the elements of L, rows k and (kþ 1) will, if necessary, be interchanged at the kth
step prior to the elimination.

The element IPIVðnÞ returns the smallest integer, j, for which

ujj
		 		 � T � �Ið Þj

��� ���
1
� TOL;

where T � �Ið Þj
��� ���

1
denotes the sum of the absolute values of the jth row of the matrix (T � �I). If no

such j exists, then IPIVðnÞ is returned as zero. If such a j exists, then ujj
		 		 is small and hence (T � �I)

is singular or nearly singular.

This routine may be followed by F04LEF to solve systems of tridiagonal equations. If you wish to solve
single systems of tridiagonal equations you should be aware of F07CAF (DGTSV), which solves
tridiagonal systems with a single call. F07CAF (DGTSV) requires less storage and will generally be
faster than the combination of F01LEF and F04LEF, but no test for near singularity is included in
F07CAF (DGTSV) and so it should only be used when the equations are known to be nonsingular.
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10 Example

This example factorizes the tridiagonal matrix T where

T ¼

3:0 2:1 0 0 0
3:4 2:3 �1:0 0 0
0 3:6 �5:0 1:9 0
0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0BBB@
1CCCA

and then to solve the equations Tx ¼ y, where

y ¼

2:7
�0:5
2:6
0:6
2:7

0BBB@
1CCCA

by a call to F04LEF. The example program sets TOL ¼ 5� 10�5 and, of course, sets LAMBDA ¼ 0.

10.1 Program Text

Program f01lefe

! F01LEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01lef, f04lef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: lambda, tol
Integer :: ifail, job, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), c(:), d(:), y(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F01LEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Allocate (a(n),b(n),c(n),d(n),y(n),ipiv(n))
Read (nin,*) a(1:n)
Read (nin,*) b(2:n)
Read (nin,*) c(2:n)
tol = 0.00005E0_nag_wp
lambda = 0.0E0_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01lef(n,a,lambda,b,c,tol,d,ipiv,ifail)

If (ipiv(n)/=0) Then
Write (nout,*) ’Matrix is singular or nearly singular’
Write (nout,99999) ’Diagonal element’, ipiv(n), ’is small’

Else
Write (nout,*) ’Details of factorization’
Write (nout,*)
Write (nout,*) ’ Main diagonal of U’
Write (nout,99998) a(1:n)
Write (nout,*)
Write (nout,*) ’ First superdiagonal of U’
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Write (nout,99998) b(2:n)
Write (nout,*)
Write (nout,*) ’ Second superdiagonal of U’
Write (nout,99998) d(3:n)
Write (nout,*)
Write (nout,*) ’ Multipliers’
Write (nout,99998) c(2:n)
Write (nout,*)
Write (nout,*) ’ Vector of interchanges’
Write (nout,99997) ipiv(1:(n-1))

Read (nin,*) y(1:n)
job = 1

ifail = 0
Call f04lef(job,n,a,b,c,d,ipiv,y,tol,ifail)

Write (nout,*)
Write (nout,*) ’ Solution vector’
Write (nout,99998) y(1:n)

End If

99999 Format (1X,A,I4,A)
99998 Format (1X,8F9.4)
99997 Format (1X,5I9)

End Program f01lefe

10.2 Program Data

F01LEF Example Program Data
5 : n

3.0 2.3 -5.0 -0.9 7.1 : a
2.1 -1.0 1.9 8.0 : b
3.4 3.6 7.0 -6.0 : c
2.7 -0.5 2.6 0.6 2.7 : y

10.3 Program Results

F01LEF Example Program Results

Details of factorization

Main diagonal of U
3.0000 3.6000 7.0000 -6.0000 1.1508

First superdiagonal of U
2.1000 -5.0000 -0.9000 7.1000

Second superdiagonal of U
0.0000 1.9000 8.0000

Multipliers
1.1333 -0.0222 -0.1587 0.0168

Vector of interchanges
0 1 1 1

Solution vector
-4.0000 7.0000 3.0000 -4.0000 -3.0000
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NAG Library Routine Document

F01LHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01LHF factorizes a real almost block diagonal matrix.

2 Specification

SUBROUTINE F01LHF (N, NBLOKS, BLKSTR, A, LENA, PIVOT, TOL, KPIVOT,
IFAIL)

&

INTEGER N, NBLOKS, BLKSTR(3,NBLOKS), LENA, PIVOT(N),
KPIVOT, IFAIL

&

REAL (KIND=nag_wp) A(LENA), TOL

3 Description

F01LHF factorizes a real almost block diagonal matrix, A, by row elimination with alternate row and
column pivoting such that no ‘fill-in’ is produced. The code, which is derived from ARCECO described
in Diaz et al. (1983), uses Level 1 and Level 2 BLAS. No three successive diagonal blocks may have
columns in common and therefore the almost block diagonal matrix must have the form shown in the
following diagram:

NBLOKS      

NBLOKS-1    

3           

2           

1           

Figure 1

This routine may be followed by F04LHF, which is designed to solve sets of linear equations AX ¼ B
or ATX ¼ B.

4 References

Diaz J C, Fairweather G and Keast P (1983) Fortran packages for solving certain almost block diagonal
linear systems by modified alternate row and column elimination ACM Trans. Math. Software 9 358–
375
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

2: NBLOKS – INTEGER Input

On entry: n, the total number of blocks of the matrix A.

Constraint: 0 < NBLOKS � N.

3: BLKSTRð3;NBLOKSÞ – INTEGER array Input

On entry: information which describes the block structure of A as follows:

BLKSTRð1; kÞ must contain the number of rows in the kth block, k ¼ 1; 2; . . . ;NBLOKS;

BLKSTRð2; kÞ must conta in the number of columns in the kth block,
k ¼ 1; 2; . . . ;NBLOKS;

BLKSTRð3; kÞ must contain the number of columns of overlap between the kth and
kþ 1ð Þth blocks, k ¼ 1; 2; . . . ;NBLOKS� 1. BLKSTRð3;NBLOKSÞ need not be set.

The following conditions delimit the structure of A:

BLKSTRð1; kÞ;BLKSTRð2; kÞ > 0; k ¼ 1; 2; . . . ;NBLOKS,

BLKSTRð3; kÞ � 0; k ¼ 1; 2; . . . ;NBLOKS� 1,

(there must be at least one column and one row in each block and a non-negative number of
columns of overlap);

BLKSTRð3; k� 1Þ þ BLKSTRð3; kÞ � BLKSTRð2; kÞ; k ¼ 2; 3; . . . ;NBLOKS� 1,

(the total number of columns in overlaps in each block must not exceed the number of columns
in that block);

BLKSTRð2; 1Þ � BLKSTRð1; 1Þ,

BLKSTRð2; 1Þ þ
Xj
k¼2

BLKSTRð2; kÞ � BLKSTRð3; k� 1Þ½ � �
Xj
k¼1

BLKSTRð1; kÞ,

j ¼ 2; 3; . . . ;NBLOKS� 1,Xj
k¼1

BLKSTRð2; kÞ � BLKSTRð3; kÞ½ � �
Xj
k¼1

BLKSTRð1; kÞ; j ¼ 1; 2; . . . ;NBLOKS� 1,

(the index of the first column of the overlap between the jth and jþ 1ð Þth blocks must be � the
index of the last row of the jth block, and the index of the last column of overlap must be � the
index of the last row of the jth block);XNBLOKS

k¼1
BLKSTRð1; kÞ ¼ n,

BLKSTRð2; 1Þ þ
XNBLOKS

k¼2
BLKSTRð2; kÞ � BLKSTRð3; k� 1Þ½ � ¼ nk,

(both the number of rows and the number of columns of A must equal n).

4: AðLENAÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of the almost block diagonal matrix stored block by block, with each
block stored column by column. The sizes of the blocks and the overlaps are defined by the
argument BLKSTR.
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If ars is the first element in the kth block, then an arbitrary element aij in the kth block must be
stored in the array element:

Aðpk þ j� rð Þmk þ i� sð Þ þ 1Þ

where

pk ¼
Xk�1
l¼1

BLKSTRð1; lÞ � BLKSTRð2; lÞ

is the base address of the kth block, and

mk ¼ BLKSTRð1; kÞ

is the number of rows of the kth block.

See Section 9 for comments on scaling.

On exit: the factorized form of the matrix.

5: LENA – INTEGER Input

On entry: the dimension of the array A as declared in the (sub)program from which F01LHF is
called.

Constraint: LENA �
XNBLOKS

k¼1
BLKSTRð1; kÞ � BLKSTRð2; kÞ½ �.

6: PIVOTðNÞ – INTEGER array Output

On exit: details of the interchanges.

7: TOL – REAL (KIND=nag_wp) Input/Output

On entry: a relative tolerance to be used to indicate whether or not the matrix is singular. For a
discussion on how TOL is used see Section 9. If TOL is non-positive, then TOL is reset to 10�,
where � is the machine precision.

On exit: unchanged unless TOL � 0:0 on entry, in which case it is set to 10�.

8: KPIVOT – INTEGER Output

On exit: if IFAIL ¼ 2, KPIVOT contains the value k, where k is the first position on the diagonal
of the matrix A where too small a pivot was detected. Otherwise KPIVOT is set to 0.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or NBLOKS < 1,
or N < NBLOKS,
or LENA is too small,
or illegal values detected in BLKSTR.

IFAIL ¼ 2

The factorization has been completed, but a small pivot has been detected.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of F01LHF depends on the conditioning of the matrix A.

8 Parallelism and Performance

F01LHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Singularity or near singularity in A is determined by the argument TOL. If the absolute value of any
pivot is less than TOL� amax , where amax is the maximum absolute value of an element of A, then A is
said to be singular. The position on the diagonal of A of the first of any such pivots is indicated by the
argument KPIVOT. The factorization, and the test for near singularity, will be more accurate if before
entry A is scaled so that the 1-norms of the rows and columns of A are all of approximately the same
order of magnitude. (The 1-norm is the maximum absolute value of any element in the row or
column.)
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10 Example

This example solves the set of linear equations Ax ¼ b where

A ¼

�1:00 �0:98 �0:79 �0:15
�1:00 �0:25 �0:87 0:35

0:78 0:31 �0:85 0:89 �0:69 �0:98 �0:76
�0:82 0:12 �0:01 0:75 0:32 �1:00 �0:53
�0:83 �0:98 �0:58 0:04 0:87 0:38 �1:00
�0:21 �0:93 �0:84 0:37 �0:94 �0:96 �1:00

�0:99 �0:91 �0:28 �0:90 0:78 �0:93 �0:76 0:48
�0:87 �0:14 �1:00 �0:59 �0:99 0:21 �0:73 �0:48
�0:93 �0:91 0:10 �0:89 �0:68 �0:09 �0:58 �0:21
0:85 �0:39 0:79 �0:71 0:39 �0:99 �0:12 �0:75
0:17 �1:37 1:29 �1:59 1:10 �1:63 �1:01 �0:27

0:08 0:61 0:54 �0:41 0:16 �0:46
�0:67 0:56 �0:99 0:16 �0:16 0:98
�0:24 �0:41 0:40 �0:93 0:70 0:43

0:71 �0:97 �0:60 �0:30 0:18
�0:47 �0:98 �0:73 0:07 0:04
�0:25 �0:92 �0:52 �0:46 �0:58
�0:89 �0:94 �0:54 �1:00 �0:36

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA

and

b ¼

�2:92
�1:17
�1:30
�1:17
�2:10
�4:51
�1:71
�4:59
�4:19
�0:93
�3:31
0:52
�0:12
�0:05
�0:98
�2:07
�2:73
�1:95

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA

The exact solution is

x ¼ 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1ð ÞT:

10.1 Program Text

Program f01lhfe

! F01LHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01lhf, f04lhf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lena = 200, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, ir, j, k, kpivot, ldb, n, &

nbasek, nbloks
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), b(:,:)
Integer, Allocatable :: blkstr(:,:), pivot(:)

! .. Executable Statements ..
Write (nout,*) ’F01LHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) nbloks
Allocate (a(lena),blkstr(3,nbloks))
nbasek = 0
n = 0
Do i = 1, nbloks

Read (nin,*) blkstr(1:3,i)
If (nbasek+blkstr(2,i)*blkstr(1,i)>lena) Then

Write (nout,*) ’ Array A is too small for this problem’
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Go To 100
Else

Do k = 1, blkstr(1,i)
Read (nin,*)(a(nbasek+(j-1)*blkstr(1,i)+k),j=1,blkstr(2,i))

End Do
End If
nbasek = nbasek + blkstr(2,i)*blkstr(1,i)
n = n + blkstr(1,i)

End Do
ldb = n
Read (nin,*) ir
Allocate (b(ldb,ir),pivot(n))
tol = 0.0E0_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01lhf(n,nbloks,blkstr,a,lena,pivot,tol,kpivot,ifail)

Read (nin,*)(b(1:n,j),j=1,ir)

ifail = 0
Call f04lhf(’N’,n,nbloks,blkstr,a,lena,pivot,b,ldb,ir,ifail)

Call x04caf(’G’,’X’,n,ir,b,ldb,’Component Solution’,ifail)
100 Continue

End Program f01lhfe

10.2 Program Data

F01LHF Example Program Data
5 : nbloks
2 4 3 : Number of rows, columns and column overlap, block 1

-1.00 -0.98 -0.79 -0.15
-1.00 0.25 -0.87 0.35 : End block 1

4 7 4 : Number of rows, columns and column overlap, block 2
0.78 0.31 -0.85 0.89 -0.69 -0.98 -0.76

-0.82 0.12 -0.01 0.75 0.32 -1.00 -0.53
-0.83 -0.98 -0.58 0.04 0.87 0.38 -1.00
-0.21 -0.93 -0.84 0.37 -0.94 -0.96 -1.00 : End block 2

5 8 2 : Number of rows, columns and column overlap, block 3
-0.99 -0.91 -0.28 0.90 0.78 -0.93 -0.76 0.48
-0.87 -0.14 -1.00 -0.59 -0.99 0.21 -0.73 -0.48
-0.93 -0.91 0.10 -0.89 -0.68 -0.09 -0.58 -0.21
0.85 -0.39 0.79 -0.71 0.39 -0.99 -0.12 -0.75
0.17 -1.37 1.29 -1.59 1.10 -1.63 -1.01 -0.27 : End block 3
3 6 3 : Number of rows, columns and column overlap, block 4

0.08 0.61 0.54 -0.41 0.16 -0.46
-0.67 0.56 -0.99 0.16 -0.16 0.98
-0.24 -0.41 0.40 -0.93 0.70 0.43 : End block 4

4 5 0 : Number of rows, columns and column overlap, block 5
0.71 -0.97 -0.60 -0.30 0.18

-0.47 -0.98 -0.73 0.07 0.04
-0.25 -0.92 -0.52 -0.46 -0.58
0.89 -0.94 -0.54 -1.00 -0.36 : End block 5
1 : Number of right hand sides

-2.92 -1.27 -1.30 -1.17 -2.10 -4.51 -1.71 -4.59
-4.19 -0.93 -3.31 0.52 -0.12 -0.05 -0.98 -2.07
-2.73 -1.95 : End right hand side 1

10.3 Program Results

F01LHF Example Program Results

Component Solution
1

1 1.0000
2 1.0000
3 1.0000
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4 1.0000
5 1.0000
6 1.0000
7 1.0000
8 1.0000
9 1.0000

10 1.0000
11 1.0000
12 1.0000
13 1.0000
14 1.0000
15 1.0000
16 1.0000
17 1.0000
18 1.0000
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NAG Library Routine Document

F01MCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01MCF computes the Cholesky factorization of a real symmetric positive definite variable-bandwidth
matrix.

2 Specification

SUBROUTINE F01MCF (N, A, LAL, NROW, AL, D, IFAIL)

INTEGER N, LAL, NROW(N), IFAIL
REAL (KIND=nag_wp) A(LAL), AL(LAL), D(N)

3 Description

F01MCF determines the unit lower triangular matrix L and the diagonal matrix D in the Cholesky
factorization A ¼ LDLT of a symmetric positive definite variable-bandwidth matrix A of order n. (Such
a matrix is sometimes called a ‘sky-line’ matrix.)

The matrix A is represented by the elements lying within the envelope of its lower triangular part, that
is, between the first nonzero of each row and the diagonal (see Section 10 for an example). The width
NROWðiÞ of the ith row is the number of elements between the first nonzero element and the element
on the diagonal, inclusive. Although, of course, any matrix possesses an envelope as defined, this
routine is primarily intended for the factorization of symmetric positive definite matrices with an
average bandwidth which is small compared with n (also see Section 9).

The method is based on the property that during Cholesky factorization there is no fill-in outside the
envelope.

The determination of L and D is normally the first of two steps in the solution of the system of
equations Ax ¼ b. The remaining step, viz. the solution of LDLTx ¼ b, may be carried out using
F04MCF.

4 References

Jennings A (1966) A compact storage scheme for the solution of symmetric linear simultaneous
equations Comput. J. 9 281–285

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: AðLALÞ – REAL (KIND=nag_wp) array Input

On entry: the elements within the envelope of the lower triangle of the positive definite
symmetric matrix A, taken in row by row order. The following code assigns the matrix elements
within the envelope to the correct elements of the array:
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K = 0
DO 20 I = 1, N

DO 10 J = I-NROW(I)+1, I
K = K + 1
A(K) = matrix (I,J)

10 CONTINUE
20 CONTINUE

See also Section 9.

3: LAL – INTEGER Input

On entry: the dimension of the arrays A and AL as declared in the (sub)program from which
F01MCF is called.

Constraint: LAL � NROWð1Þ þ NROWð2Þ þ . . .þ NROWðnÞ.

4: NROWðNÞ – INTEGER array Input

On entry: NROWðiÞ must contain the width of row i of the matrix A, i.e., the number of
elements between the first (leftmost) nonzero element and the element on the diagonal, inclusive.

Constraint: 1 � NROWðiÞ � i, for i ¼ 1; 2; . . . ; n.

5: ALðLALÞ – REAL (KIND=nag_wp) array Output

On exit: the elements within the envelope of the lower triangular matrix L, taken in row by row
order. The envelope of L is identical to that of the lower triangle of A. The unit diagonal
elements of L are stored explicitly. See also Section 9.

6: DðNÞ – REAL (KIND=nag_wp) array Output

On exit: the diagonal elements of the diagonal matrix D. Note that the determinant of A is equal
to the product of these diagonal elements. If the value of the determinant is required it should not
be determined by forming the product explicitly, because of the possibility of overflow or
underflow. The logarithm of the determinant may safely be formed from the sum of the
logarithms of the diagonal elements.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or for some i, NROWðiÞ < 1 or NROWðiÞ > i,
or LAL < NROWð1Þ þ NROWð2Þ þ . . .þ NROWðNÞ.
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IFAIL ¼ 2

A is not positive definite, or this property has been destroyed by rounding errors. The
factorization has not been completed.

IFAIL ¼ 3

A is not positive definite, or this property has been destroyed by rounding errors. The
factorization has not been completed.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 on exit, then the computed L and D satisfy the relation LDLT ¼ Aþ F , where

Fk k2 � km2��max
i
aii

and

Fk k2 � km2�� Ak k2;

where k is a constant of order unity, m is the largest value of NROWðiÞ, and � is the machine
precision. See pages 25–27 and 54–55 of Wilkinson and Reinsch (1971).

8 Parallelism and Performance

F01MCF is not threaded in any implementation.

9 Further Comments

The time taken by F01MCF is approximately proportional to the sum of squares of the values of
NROWðiÞ.
The distribution of row widths may be very non-uniform without undue loss of efficiency. Moreover,
the routine has been designed to be as competitive as possible in speed with routines designed for full
or uniformly banded matrices, when applied to such matrices.

Unless otherwise stated in the Users' Note for your implementation, the routine may be called with the
same actual array supplied for arguments A and AL, in which case L overwrites the lower triangle of
A. However this is not standard Fortran and may not work in all implementations.
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10 Example

This example obtains the Cholesky factorization of the symmetric matrix, whose lower triangle is:

1
2 5
0 3 13
0 0 0 16
5 14 18 8 55
0 0 0 24 17 77

0BBBBB@

1CCCCCA:

For this matrix, the elements of NROW must be set to 1, 2, 2, 1, 5, 3, and the elements within the
envelope must be supplied in row order as:

1; 2; 5; 3; 13; 16; 5; 14; 18; 8; 55; 24; 17; 77:

10.1 Program Text

Program f01mcfe

! F01MCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01mcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, k1, k2, lal, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), al(:), d(:)
Integer, Allocatable :: nrow(:)

! .. Executable Statements ..
Write (nout,*) ’F01MCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Allocate (d(n),nrow(n))
Read (nin,*) nrow(1:n)
lal = 0
Do i = 1, n

lal = lal + nrow(i)
End Do
Allocate (a(lal),al(lal))
k2 = 0
Do i = 1, n

k1 = k2 + 1
k2 = k2 + nrow(i)
Read (nin,*) a(k1:k2)

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01mcf(n,a,lal,nrow,al,d,ifail)

Write (nout,*)
Write (nout,*) ’ I D(I) Row I of unit lower triangle’
Write (nout,*)
k2 = 0
Do i = 1, n

k1 = k2 + 1
k2 = k2 + nrow(i)
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Write (nout,99999) i, d(i), al(k1:k2)
End Do

99999 Format (1X,I3,7F8.3)
End Program f01mcfe

10.2 Program Data

F01MCF Example Program Data
6 : n
1 2 2 1 5 3 : nrow
1.0
2.0 5.0
3.0 13.0

16.0
5.0 14.0 18.0 8.0 55.0

24.0 17.0 77.0 : a

10.3 Program Results

F01MCF Example Program Results

I D(I) Row I of unit lower triangle

1 1.000 1.000
2 1.000 2.000 1.000
3 4.000 3.000 1.000
4 16.000 1.000
5 1.000 5.000 4.000 1.500 0.500 1.000
6 16.000 1.500 5.000 1.000
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NAG Library Routine Document

F01QGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01QGF reduces the m by n (m � n) real upper trapezoidal matrix A to upper triangular form by
means of orthogonal transformations.

2 Specification

SUBROUTINE F01QGF (M, N, A, LDA, ZETA, IFAIL)

INTEGER M, N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), ZETA(M)

3 Description

The m by n (m � n) real upper trapezoidal matrix A given by

A ¼ U X
� �

;

where U is an m by m upper triangular matrix, is factorized as

A ¼ R 0
� �

P T;

where P is an n by n orthogonal matrix and R is an m by m upper triangular matrix.

P is given as a sequence of Householder transformation matrices

P ¼ Pm � � �P2P1;

the m� kþ 1ð Þth transformation matrix, Pk, being used to introduce zeros into the kth row of A. Pk
has the form

Pk ¼ I 0
0 Tk

� �
;

where

Tk ¼ I � ukuTk ;

uk ¼
�k
0
zk

0@ 1A;
�k is a scalar and zk is an (n�m) element vector. �k and zk are chosen to annihilate the elements of the
kth row of X.

The vector uk is returned in the kth element of the array ZETA and in the kth row of A, such that �k is
in ZETAðkÞ and the elements of zk are in Aðk;mþ 1Þ; . . . ;Aðk; nÞ. The elements of R are returned in
the upper triangular part of A.

For further information on this factorization and its use see Section 6.5 of Golub and Van Loan (1996).
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

When M ¼ 0 then an immediate return is effected.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � M.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the leading m by n upper trapezoidal part of the array A must contain the matrix to be
factorized.

On exit: the m by m upper triangular part of A will contain the upper triangular matrix R, and
the m by n�mð Þ upper trapezoidal part of A will contain details of the factorization as
described in Section 3.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01QGF
is called.

Constraint: LDA � max 1;Mð Þ.

5: ZETAðMÞ – REAL (KIND=nag_wp) array Output

On exit: ZETAðkÞ contains the scalar �k for the m� kþ 1ð Þth transformation. If Tk ¼ I then
ZETAðkÞ ¼ 0:0, otherwise ZETAðkÞ contains �k as described in Section 3 and �k is always in the
range 1:0;

ffiffiffiffiffiffiffi
2:0
p� �

.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, M < 0,
or N < M,
or LDA < M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed factors R and P satisfy the relation

R0ð ÞPT ¼ Aþ E;

where

Ek k � c� Ak k;

� is the machine precision (see X02AJF), c is a modest function of m and n and :k k denotes the
spectral (two) norm.

8 Parallelism and Performance

F01QGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The approximate number of floating-point operations is given by 2�m2 n�mð Þ.
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10 Example

This example reduces the 3 by 5 matrix

A ¼
2:4 0:8 �1:4 3:0 �0:8
0:0 1:6 0:8 0:4 �0:8
0:0 0:0 1:0 2:0 2:0

0@ 1A
to upper triangular form.

10.1 Program Text

Program f01qgfe

! F01QGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01qgf, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: indent = 0, ncols = 80, nin = 5, &

nout = 6
Character (1), Parameter :: diag = ’N’, matrix = ’G’, &

nolabel = ’N’
Character (4), Parameter :: form = ’F8.4’

! .. Local Scalars ..
Integer :: i, ifail, lda, m, n
Character (63) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), zeta(:)
Character (1) :: dummy(1)

! .. Executable Statements ..
Write (nout,*) ’F01QGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
Allocate (a(lda,n),zeta(m))
Read (nin,*)(a(i,1:n),i=1,m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Find the RQ factorization of A

Call f01qgf(m,n,a,lda,zeta,ifail)

Write (nout,*) ’RQ factorization of A’
Write (nout,*)
Write (nout,*) ’Vector ZETA’
Write (nout,99999) zeta(1:m)
Write (nout,*)
Flush (nout)
title = &

’Matrix A after factorization (R is in left-hand upper triangle)’
ifail = 0
Call x04cbf(matrix,diag,m,n,a,lda,form,title,nolabel,dummy,nolabel, &

dummy,ncols,indent,ifail)

99999 Format (5(1X,F8.4))
End Program f01qgfe
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10.2 Program Data

F01QGF Example Program Data
3 5 : m, n
2.4 0.8 -1.4 3.0 -0.8
0 1.6 0.8 0.4 -0.8
0 0 1.0 2.0 2.0 : a

10.3 Program Results

F01QGF Example Program Results

RQ factorization of A

Vector ZETA
1.2649 1.3416 1.1547

Matrix A after factorization (R is in left-hand upper triangle)
-4.0000 -1.0000 -1.0000 0.6325 -0.0000
0.0000 -2.0000 0.0000 0.0000 -0.4472
0.0000 0.0000 -3.0000 0.5774 0.5774
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NAG Library Routine Document

F01QJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01QJF finds the RQ factorization of the real m by n (m � n) matrix A, so that A is reduced to upper
triangular form by means of orthogonal transformations from the right.

2 Specification

SUBROUTINE F01QJF (M, N, A, LDA, ZETA, IFAIL)

INTEGER M, N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), ZETA(M)

3 Description

The m by n matrix A is factorized as

A ¼ R 0
� �

PT when m < n;

A ¼ RPT when m ¼ n;

where P is an n by n orthogonal matrix and R is an m by m upper triangular matrix.

P is given as a sequence of Householder transformation matrices

P ¼ Pm . . .P2P1;

the (m� kþ 1)th transformation matrix, Pk, being used to introduce zeros into the kth row of A. Pk
has the form

Pk ¼ I � ukuTk ;

where

uk ¼
wk
�k
0
zk

0B@
1CA;

�k is a scalar, wk is an k� 1ð Þ element vector and zk is an n�mð Þ element vector. uk is chosen to
annihilate the elements in the kth row of A.

The vector uk is returned in the kth element of ZETA and in the kth row of A, such that �k is in
ZETAðkÞ, the elements of wk are in Aðk; 1Þ; . . . ;Aðk; k� 1Þ and the elements of zk are in
Aðk;mþ 1Þ; . . . ;Aðk; nÞ. The elements of R are returned in the upper triangular part of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

When M ¼ 0 then an immediate return is effected.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � M.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the leading m by n part of the array A must contain the matrix to be factorized.

On exit: the m by m upper triangular part of A will contain the upper triangular matrix R, and
the m by m strictly lower triangular part of A and the m by n�mð Þ rectangular part of A to the
right of the upper triangular part will contain details of the factorization as described in
Section 3.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01QJF
is called.

Constraint: LDA � max 1;Mð Þ.

5: ZETAðMÞ – REAL (KIND=nag_wp) array Output

On exit: ZETAðkÞ contains the scalar �k for the m� kþ 1ð Þth transformation. If Pk ¼ I then
ZETAðkÞ ¼ 0:0, otherwise ZETAðkÞ contains �k as described in Section 3 and �k is always in the
range 1:0;

ffiffiffiffiffiffiffi
2:0
p� �

.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, M < 0,
or N < M,
or LDA < M.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed factors R and P satisfy the relation

R 0
� �

P T ¼ Aþ E;

where

Ek k � c� Ak k;

� is the machine precision (see X02AJF), c is a modest function of m and n, and :k k denotes the
spectral (two) norm.

8 Parallelism and Performance

F01QJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The approximate number of floating-point operations is given by 2�m2 3n�mð Þ=3.
The first k rows of the orthogonal matrix PT can be obtained by calling F01QKF, which overwrites the
k rows of PT on the first k rows of the array A. P T is obtained by the call:

IFAIL = 0
CALL F01QKF(’Separate’,M,N,K,A,LDA,ZETA,WORK,IFAIL)

WORK must be a max m� 1; k�m; 1ð Þ element array. If K is larger than M, then A must have been
declared to have at least K rows.

Operations involving the matrix R can readily be performed by the Level 2 BLAS routines F06PFF
(DTRMV) and F06PJF (DTRSV) (see Chapter F06), but note that no test for near singularity of R is
incorporated into F06PJF (DTRSV). If R is singular, or nearly singular then F02WUF can be used to
determine the singular value decomposition of R.
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10 Example

This example obtains the RQ factorization of the 3 by 5 matrix

A ¼
2:0 2:0 1:6 2:0 1:2
2:5 2:5 �0:4 �0:5 �0:3
2:5 2:5 2:8 0:5 �2:9

0@ 1A:
10.1 Program Text

Program f01qjfe

! F01QJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01qjf, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), zeta(:)
Character (1) :: dummy(1)

! .. Executable Statements ..
Write (nout,*) ’F01QJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = n
Allocate (a(lda,n),zeta(m))
Read (nin,*)(a(i,1:n),i=1,m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Find the RQ factorization of A

Call f01qjf(m,n,a,lda,zeta,ifail)

Write (nout,*) ’RQ factorization of A’
Write (nout,*)
Write (nout,*) ’Vector ZETA’
Write (nout,99999) zeta(1:m)
Write (nout,*)
Flush (nout)
Call x04cbf(’G’,’ ’,m,n,a,lda,’F8.4’, &

’Matrix A after factorization (R is in left-hand upper triangle)’,’N’, &
dummy,’N’,dummy,80,0,ifail)

99999 Format (5(1X,F8.4))
End Program f01qjfe

10.2 Program Data

F01QJF Example Program Data
3 5 : m, n
2.0 2.0 1.6 2.0 1.2
2.5 2.5 -0.4 -0.5 -0.3
2.5 2.5 2.8 0.5 -2.9 : a
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10.3 Program Results

F01QJF Example Program Results

RQ factorization of A

Vector ZETA
1.0092 1.2981 1.2329

Matrix A after factorization (R is in left-hand upper triangle)
-3.1446 -1.0705 -2.2283 0.6333 0.7619
0.5277 -2.8345 -2.2283 -0.1662 0.0945
0.3766 0.3766 -5.3852 0.0753 -0.4368
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NAG Library Routine Document

F01QKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01QKF returns the first ‘ rows of the real n by n orthogonal matrix PT, where P is given as the
product of Householder transformation matrices.

This routine is intended for use following F01QJF.

2 Specification

SUBROUTINE F01QKF (WHERET, M, N, NROWP, A, LDA, ZETA, WORK, IFAIL)

INTEGER M, N, NROWP, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), ZETA(*), WORK(max(M-1,NROWP-M,1))
CHARACTER(1) WHERET

3 Description

P is assumed to be given by

P ¼ PmPm�1 � � �P1

where

Pk ¼ I � ukuTk ;

uk ¼
wk
�k
0
zk

0B@
1CA;

�k is a scalar, wk is a (k� 1) element vector and zk is an (n�m) element vector. wk must be supplied
in the kth row of A in elements Aðk; 1Þ; . . . ;Aðk; k� 1Þ. zk must be supplied in the kth row of A in
elements Aðk;mþ 1Þ; . . . ;Aðk; nÞ and �k must be supplied either in Aðk; kÞ or in ZETAðkÞ, depending
upon the argument WHERET.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Arguments

1: WHERET – CHARACTER(1) Input

On entry: indicates where the elements of � are to be found.

WHERET ¼ I (In A)
The elements of � are in A.

WHERET ¼ S (Separate)
The elements of � are separate from A, in ZETA.

Constraint: WHERET ¼ I or S .

F01 – Matrix Operations, Including Inversion F01QKF
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2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � M.

4: NROWP – INTEGER Input

On entry: ‘, the required number of rows of P .

If NROWP ¼ 0, an immediate return is effected.

Constraint: 0 � NROWP � N.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the leading m by m strictly lower triangular part of the array A, and the m by n�mð Þ
rectangular part of A with top left-hand corner at element Að1;Mþ 1Þ must contain details of the
matrix P . In addition, if WHERET ¼ I , the diagonal elements of A must contain the elements of
�.

On exit: the first NROWP rows of the array A are overwritten by the first NROWP rows of the n
by n orthogonal matrix P T.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01QKF
is called.

Constraint: LDA � max 1;M;NROWPð Þ.

7: ZETAð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ZETA must be at least max 1;Mð Þ if WHERET ¼ S , and at
least 1 otherwise.

On entry: with WHERET ¼ S , the array ZETA must contain the elements of �. If
ZETAðkÞ ¼ 0:0 then Pk is assumed to be I, otherwise ZETAðkÞ is assumed to contain �k.

When WHERET ¼ I , the array ZETA is not referenced.

8: WORKðmax M� 1;NROWP�M; 1ð ÞÞ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max M� 1;NROWP�M; 1ð Þ.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, WHERET 6¼ I or S ,
or M < 0,
or N < M,
or NROWP < 0 or NROWP > N,
or LDA < max M;NROWPð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed matrix P satisfies the relation

P ¼ Qþ E;

where Q is an exactly orthogonal matrix and

Ek k � c�;

� is the machine precision (see X02AJF), c is a modest function of n, and :k k denotes the spectral
(two) norm. See also Section 7 in F01QJF.

8 Parallelism and Performance

F01QKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The approximate number of floating-point operations is given by

2
3m 3n�mð Þ 2‘�mð Þ �m ‘�mð Þf g; if ‘ � m; and

2
3‘

2 3n� ‘ð Þ; if ‘ < m:
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10 Example

This example obtains the 5 by 5 orthogonal matrix P following the RQ factorization of the 3 by 5
matrix A given by

A ¼
2:0 2:0 1:6 2:0 1:2
2:5 2:5 �0:4 �0:5 �0:3
2:5 2:5 2:8 0:5 �2:9

0@ 1A:
10.1 Program Text

Program f01qkfe

! F01QKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01qjf, f01qkf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, ldpt, m, n, nrowp

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), pt(:,:), work(:), zeta(:)

! .. Executable Statements ..
Write (nout,*) ’F01QKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldpt = n
Allocate (a(lda,n),pt(ldpt,n),work(n),zeta(n))
Read (nin,*)(a(i,1:n),i=1,m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Find the RQ factorization of A

Call f01qjf(m,n,a,lda,zeta,ifail)

! Copy array A into PT and form the n by n matrix conjg(P’)
pt(1:m,1:n) = a(1:m,1:n)
nrowp = n

ifail = 0
Call f01qkf(’Separate’,m,n,nrowp,pt,ldpt,zeta,work,ifail)

Write (nout,*) ’Matrix P’
Write (nout,99999) pt(1:nrowp,1:n)

99999 Format (5(1X,F8.4))
End Program f01qkfe

10.2 Program Data

F01QKF Example Program Data
3 5 : m, n
2.0 2.0 1.6 2.0 1.2
2.5 2.5 -0.4 -0.5 -0.3
2.5 2.5 2.8 0.5 -2.9 : a
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10.3 Program Results

F01QKF Example Program Results

Matrix P
-0.1310 -0.5170 -0.4642 -0.5054 -0.4946
-0.1310 -0.5170 -0.4642 0.5054 0.4946
-0.3276 0.5499 -0.5199 -0.3957 0.4043
-0.6551 0.2494 -0.0928 0.4946 -0.5054
-0.6551 -0.3175 0.5385 -0.2967 0.3032
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NAG Library Routine Document

F01RGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01RGF reduces the complex m by n (m � n) upper trapezoidal matrix A to upper triangular form by
means of unitary transformations.

2 Specification

SUBROUTINE F01RGF (M, N, A, LDA, THETA, IFAIL)

INTEGER M, N, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*), THETA(M)

3 Description

The m by n m � nð Þ upper trapezoidal matrix A given by

A ¼ U X
� �

;

where U is an m by m upper triangular matrix, is factorized as

A ¼ R 0
� �

PH;

where P is an n by n unitary matrix and R is an m by m upper triangular matrix.

P is given as a sequence of Householder transformation matrices

P ¼ Pm � � �P2P1;

the m� kþ 1ð Þth transformation matrix, Pk, being used to introduce zeros into the kth row of A. Pk
has the form

Pk ¼ I 0
0 Tk

� �
;

where

Tk ¼ I � �kukuHk ;

uk ¼
�k
0
zk
cr

0B@
1CA;

�k is a scalar for which Re �kð Þ ¼ 1:0, �k is a real scalar and zk is an n�mð Þ element vector. �k, �k and
zk are chosen to annihilate the elements of the kth row of X and to make the diagonal elements of R
real.

The scalar �k and the vector uk are returned in the kth element of the array THETA and in the kth row
of A, such that �k, given by

�k ¼ �k; Im �kð Þð Þ;

is in THETAðkÞ and the elements of zk are in Aðk;mþ 1Þ; . . . ;Aðk; nÞ. The elements of R are returned
in the upper triangular part of A.

For further information on this factorization and its use see Section 6.5 of Golub and Van Loan (1996).
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

When M ¼ 0 then an immediate return is effected.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � M.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the leading m by n upper trapezoidal part of the array A must contain the matrix to be
factorized.

On exit: the m by m upper triangular part of A will contain the upper triangular matrix R, and
the m by n�mð Þ upper trapezoidal part of A will contain details of the factorization as
described in Section 3.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01RGF
is called.

Constraint: LDA � max 1;Mð Þ.

5: THETAðMÞ – COMPLEX (KIND=nag_wp) array Output

On exit: THETAðkÞ contains the scalar �k for the m� kþ 1ð Þth transformation. If Tk ¼ I then
THETAðkÞ ¼ 0:0; if

Tk ¼ � 0
0 I

� �
; Re �ð Þ < 0:0

then THETAðkÞ ¼ �, otherwise THETAðkÞ contains �k as described in Section 3 and Re �kð Þ is
always in the range 1:0;

ffiffiffiffiffiffiffi
2:0
p� �

.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, M < 0,
or N < M,
or LDA < M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed factors R and P satisfy the relation

R 0
� �

PH ¼ Aþ E;

where

Ek k � c� Ak k;

� is the machine precision (see X02AJF), c is a modest function of m and n, and :k k denotes the
spectral (two) norm.

8 Parallelism and Performance

F01RGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The approximate number of floating-point operations is given by 8�m2 n�mð Þ.
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10 Example

This example reduces the 3 by 4 matrix

2:4 0:8þ 0:8i �1:4þ 0:6i 3:0� 1:0i
0 1:6 0:8þ 0:3i 0:4þ 0:5i
0 0 1:0 2:0� 1:0i

0@ 1A
to upper triangular form.

10.1 Program Text

Program f01rgfe

! F01RGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01rgf, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, m, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), theta(:)
Character (1) :: dummy(1)

! .. Executable Statements ..
Write (nout,*) ’F01RGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
Write (nout,*)
lda = m
Allocate (a(lda,n),theta(m))
Read (nin,*)(a(i,1:n),i=1,m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Find the RQ factorization of A

Call f01rgf(m,n,a,lda,theta,ifail)

Write (nout,*)
Write (nout,*) ’RQ factorization of A’
Write (nout,*)
Write (nout,*) ’Vector THETA’
Write (nout,99999) theta(1:m)
Write (nout,*)
Flush (nout)

Call x04dbf(’G’,’ ’,m,n,a,lda,’B’,’F7.4’, &
’Matrix A after factorization (R is in left-hand upper triangle)’,’N’, &
dummy,’N’,dummy,80,0,ifail)

99999 Format (1X,4(’ (’,F7.4,’,’,F8.4,’)’,:))
End Program f01rgfe

10.2 Program Data

F01RGF Example Program Data
3 4 : m, n

( 2.4, 0.0 ) ( 0.8, 0.8 ) (-1.4, 0.6 ) ( 3.0,-1.0 )
( 0 , 0 ) ( 1.6, 0.0 ) ( 0.8, 0.3 ) ( 0.4, 0.5 )
( 0 , 0 ) ( 0 , 0 ) ( 1.0, 0.0 ) ( 2.0,-1.0 ) : a
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10.3 Program Results

F01RGF Example Program Results

RQ factorization of A

Vector THETA
( 1.2924, -0.0000) ( 1.3861, -0.0000) ( 1.1867, -0.0000)

Matrix A after factorization (R is in left-hand upper triangle)
(-3.5808, 0.0000) ( 0.2533,-0.9059) (-2.2862,-0.6532) ( 0.5120, 0.2601)
( 0.0000, 0.0000) (-1.7369, 0.0000) (-0.4491,-0.6940) (-0.2544,-0.1187)
( 0.0000, 0.0000) ( 0.0000, 0.0000) (-2.4495, 0.0000) ( 0.6880, 0.3440)
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F01RJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01RJF finds the RQ factorization of the complex m by n (m � n), matrix A, so that A is reduced to
upper triangular form by means of unitary transformations from the right.

2 Specification

SUBROUTINE F01RJF (M, N, A, LDA, THETA, IFAIL)

INTEGER M, N, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*), THETA(M)

3 Description

The m by n matrix A is factorized as

A ¼ R 0
� �

PH when m < n;

A ¼ RPH when m ¼ n;

where P is an n by n unitary matrix and R is an m by m upper triangular matrix.

P is given as a sequence of Householder transformation matrices

P ¼ Pm � � �P2P1;

the m� kþ 1ð Þth transformation matrix, Pk, being used to introduce zeros into the kth row of A. Pk
has the form

Pk ¼ I � �kukuHk ;

where

uk ¼
wk
�k
0
zk

0B@
1CA:

�k is a scalar for which Re �kð Þ ¼ 1:0, �k is a real scalar, wk is a k� 1ð Þ element vector and zk is an
n�mð Þ element vector. �k and uk are chosen to annihilate the elements in the kth row of A.

The scalar �k and the vector uk are returned in the kth element of THETA and in the kth row of A, such
that �k, given by

�k ¼ �k; Im �kð Þð Þ:

is in THETAðkÞ, the elements of wk are in Aðk; 1Þ; . . . ;Aðk; k� 1Þ and the elements of zk are in
Aðk;mþ 1Þ; . . . ;Aðk; nÞ. The elements of R are returned in the upper triangular part of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

When M ¼ 0 then an immediate return is effected.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � M.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the leading m by n part of the array A must contain the matrix to be factorized.

On exit: the m by m upper triangular part of A will contain the upper triangular matrix R, and
the m by m strictly lower triangular part of A and the m by n�mð Þ rectangular part of A to the
right of the upper triangular part will contain details of the factorization as described in
Section 3.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01RJF
is called.

Constraint: LDA � max 1;Mð Þ.

5: THETAðMÞ – COMPLEX (KIND=nag_wp) array Output

On exit: THETAðkÞ contains the scalar �k for the m� kþ 1ð Þth transformation. If Pk ¼ I then
THETAðkÞ ¼ 0:0; if

Tk ¼
I 0 0
0 � 0
0 0 I

0@ 1A; Re �ð Þ < 0:0

then THETAðkÞ ¼ �, otherwise THETAðkÞ contains �k as described in Section 3 and �k is
always in the range 1:0;

ffiffiffiffiffiffiffi
2:0
p� �

.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, M < 0,
or N < M,
or LDA < M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed factors R and P satisfy the relation

R0ð ÞPH ¼ Aþ E;

where

Ek k � c� Ak k;

� is the machine precision (see X02AJF), c is a modest function of m and n, and :k k denotes the
spectral (two) norm.

8 Parallelism and Performance

F01RJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The approximate number of floating-point operations is given by 8�m2 3n�mð Þ=3.
The first k rows of the unitary matrix PH can be obtained by calling F01RKF, which overwrites the k
rows of PH on the first k rows of the array A. PH is obtained by the call:

IFAIL = 0
CALL F01RKF(’Separate’,M,N,K,A,LDA,THETA,WORK,IFAIL)

WORK must be a max m� 1; k�m; 1ð Þ element array. If K is larger than M, then A must have been
declared to have at least K rows.
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Operations involving the matrix R can readily be performed by the Level 2 BLAS routines F06SFF
(ZTRMV) and F06SJF (ZTRSV), (see Chapter F06), but note that no test for near singularity of R is
incorporated into F06SFF (ZTRMV). If R is singular, or nearly singular then F02XUF can be used to
determine the singular value decomposition of R.

10 Example

This example obtains the RQ factorization of the 3 by 5 matrix

A ¼
�0:5i 0:4� 0:3i 0:4 0:3� 0:4i 0:3i

�0:5� 1:5i 0:9� 1:3i �0:4� 0:4i 0:1� 0:7i 0:3� 0:3i
�1:0� 1:0i 0:2� 1:4i 1:8 0:0 �2:4i

0@ 1A:
10.1 Program Text

Program f01rjfe

! F01RJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01rjf, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, m, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), theta(:)
Character (1) :: dummy(1)

! .. Executable Statements ..
Write (nout,*) ’F01RJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
Write (nout,*)
lda = m
Allocate (a(lda,n),theta(m))
Read (nin,*)(a(i,1:n),i=1,m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Find the RQ factorization of A

Call f01rjf(m,n,a,lda,theta,ifail)

Write (nout,*) ’RQ factorization of A’
Write (nout,*)
Write (nout,*) ’Vector THETA’
Write (nout,99999) theta(1:m)
Write (nout,*)
Flush (nout)

Call x04dbf(’G’,’ ’,m,n,a,lda,’B’,’F6.3’, &
’Matrix A after factorization (R is in left-hand upper triangle)’,’N’, &
dummy,’N’,dummy,132,0,ifail)

99999 Format (5(’ (’,F6.3,’,’,F6.3,’)’,:))
End Program f01rjfe
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10.2 Program Data

F01RJF Example Program Data
3 5 : m, n

( 0.00,-0.50) ( 0.40,-0.30) ( 0.40, 0.00) ( 0.30, 0.40) ( 0.00, 0.30)
(-0.50,-1.50) ( 0.90,-1.30) (-0.40,-0.40) ( 0.10,-0.70) ( 0.30,-0.30)
(-1.00,-1.00) ( 0.20,-1.40) ( 1.80, 0.00) ( 0.00, 0.00) ( 0.00,-2.40) : a

10.3 Program Results

F01RJF Example Program Results

RQ factorization of A

Vector THETA
( 1.039,-0.101) ( 1.181, 0.381) ( 1.224,-0.000)

Matrix A after factorization (R is in left-hand upper triangle)
( 0.788, 0.000) (-0.255,-0.401) (-0.277,-0.277) (-0.285, 0.559) ( 0.115, 0.703)
( 0.040, 0.522) (-2.112, 0.000) (-1.109,-0.555) ( 0.128, 0.232) ( 0.079,-0.036)
(-0.227, 0.227) ( 0.045, 0.317) (-3.606, 0.000) ( 0.000,-0.000) ( 0.000, 0.544)
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NAG Library Routine Document

F01RKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01RKF returns the first ‘ rows of the n by n unitary matrix PH, where P is given as the product of
Householder transformation matrices.

This routine is intended for use following F01RJF.

2 Specification

SUBROUTINE F01RKF (WHERET, M, N, NROWP, A, LDA, THETA, WORK, IFAIL)

INTEGER M, N, NROWP, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*), THETA(*), WORK(max(M-1,NROWP-M,1))
CHARACTER(1) WHERET

3 Description

P is assumed to be given by

P ¼ PmPm�1 � � �P1;

where

Pk ¼ I � �kukuHk ;

uk ¼
wk
�k
0
zk

0B@
1CA

�k is a scalar for which Re �kð Þ ¼ 1:0, �k is a real scalar, wk is a k� 1ð Þ element vector and zk is an
n�mð Þ element vector. wk must be supplied in the kth row of A in elements Aðk; 1Þ; . . . ;Aðk; k� 1Þ.
zk must be supplied in the kth row of A in elements Aðk;mþ 1Þ; . . . ;Aðk; nÞ and �k, given by

�k ¼ �k; Im �kð Þð Þ;

must be supplied either in Aðk; kÞ or in THETAðkÞ, depending upon the argument WHERET.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Arguments

1: WHERET – CHARACTER(1) Input

On entry: indicates where the elements of � are to be found.

WHERET ¼ I (In A)
The elements of � are in A.
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WHERET ¼ S (Separate)
The elements of � are separate from A, in THETA.

Constraint: WHERET ¼ I or S .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � M.

4: NROWP – INTEGER Input

On entry: ‘, the required number of rows of P .

If NROWP ¼ 0, an immediate return is effected.

Constraint: 0 � NROWP � N.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the leading m by m strictly lower triangular part of the array A, and the m by n�mð Þ
rectangular part of A with top left-hand corner at element Að1;Mþ 1Þ must contain details of the
matrix P . In addition, if WHERET ¼ I , the diagonal elements of A must contain the elements of
�.

On exit: the first NROWP rows of the array A are overwritten by the first NROWP rows of the n
by n unitary matrix PH.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01RKF
is called.

Constraint: LDA � max 1;M;NROWPð Þ.

7: THETAð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array THETA must be at least max 1;Mð Þ if WHERET ¼ S , and at
least 1 otherwise.

On entry: if WHERET ¼ S , the array THETA must contain the elements of �. If
THETAðkÞ ¼ 0:0, Pk is assumed to be I, if THETAðkÞ ¼ � and Re �ð Þ < 0:0, Pk is assumed
to be of the form

Pk ¼
I 0 0
0 � 0
0 0 I

0@ 1A;
otherwise THETAðkÞ is assumed to contain �k given by

�k ¼ �k; Im �kð Þð Þ:

If WHERET ¼ I , the array THETA is not referenced.

8: WORKðmax M� 1;NROWP�M; 1ð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace
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9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, WHERET 6¼ I or S ,
or M < 0,
or N < M,
or NROWP < 0 or NROWP > N,
or LDA < max 1;M;NROWPð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed matrix P satisfies the relation

P ¼ Qþ E;

where Q is an exactly unitary matrix and

Ek k � c�;

where � the machine precision (see X02AJF), c is a modest function of n, and :k k denotes the spectral
(two) norm. See also Section 7 in F01RJF.

8 Parallelism and Performance

F01RKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The approximate number of floating-point operations is given by

8
3n 3n�mð Þ 2‘�mð Þ �m ‘�mð Þ½ �; if ‘ � m; and

8
3‘

2 3n� ‘ð Þ; if ‘ < m:

10 Example

This example obtains the 5 by 5 unitary matrix P following the RQ factorization of the 3 by 5 matrix A
given by

A ¼
�0:5i 0:4� 0:3i 0:4 0:3� 0:4i 0:3i

�0:5� 1:5i 0:9� 1:3i �0:4� 0:4i 0:1� 0:7i 0:3� 0:3i
�1:0� 1:0i 0:2� 1:4i 1:8 0:0 �2:4i

0@ 1A:
10.1 Program Text

Program f01rkfe

! F01RKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01rjf, f01rkf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, ldph, m, n, nrowp

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ph(:,:), theta(:), work(:)

! .. Intrinsic Procedures ..
Intrinsic :: conjg

! .. Executable Statements ..
Write (nout,*) ’F01RKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldph = n
Allocate (a(lda,n),ph(ldph,n),theta(n),work(n))
Read (nin,*)(a(i,1:n),i=1,m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Find the RQ factorization of A

Call f01rjf(m,n,a,lda,theta,ifail)

! Copy array A into PH and form the n by n matrix conjg(P’)
ph(1:m,1:n) = a(1:m,1:n)
nrowp = n

ifail = 0
Call f01rkf(’Separate’,m,n,nrowp,ph,ldph,theta,work,ifail)
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Write (nout,*) ’Matrix P’
Write (nout,99999)(conjg(ph(1:nrowp,i)),i=1,n)

99999 Format (5(’ (’,F6.3,’,’,F6.3,’)’,:))
End Program f01rkfe

10.2 Program Data

F01RKF Example Program Data
3 5 : m, n

( 0.00,-0.50) ( 0.40,-0.30) ( 0.40, 0.00) ( 0.30, 0.40) ( 0.00, 0.30)
(-0.50,-1.50) ( 0.90,-1.30) (-0.40,-0.40) ( 0.10,-0.70) ( 0.30,-0.30)
(-1.00,-1.00) ( 0.20,-1.40) ( 1.80, 0.00) ( 0.00, 0.00) ( 0.00,-2.40) : a

10.3 Program Results

F01RKF Example Program Results

Matrix P
(-0.197, 0.197) ( 0.164,-0.492) ( 0.277,-0.277) ( 0.364, 0.321) ( 0.012, 0.514)
( 0.039, 0.276) (-0.295,-0.426) (-0.055,-0.388) (-0.475, 0.098) (-0.419,-0.299)
( 0.315,-0.158) ( 0.452,-0.320) (-0.499,-0.000) (-0.276,-0.305) (-0.034, 0.387)
( 0.197,-0.591) (-0.047,-0.331) ( 0.000, 0.000) ( 0.512,-0.047) (-0.361,-0.324)
(-0.118,-0.565) ( 0.033, 0.208) (-0.000,-0.666) (-0.229, 0.207) ( 0.290, 0.025)
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F01VAF (DTRTTP)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VAF (DTRTTP) copies a real triangular matrix, stored in a full format array, to a standard packed
format array.

2 Specification

SUBROUTINE F01VAF (UPLO, N, A, LDA, AP, INFO)

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) A(LDA,*), AP(N*(N+1)/2)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dtrttp.

3 Description

F01VAF (DTRTTP) packs a real n by n triangular matrix A, stored conventionally in a full format
array, into an array of length n nþ 1ð Þ=2. The matrix is packed by columns. This routine is intended for
possible use in conjunction with routines from Chapters F06, F07, F08 and F16 where some routines
use triangular matrices stored in the packed form. Packed storage format is described in Section 3.3.2 in
the F07 Chapter Introduction.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the triangular matrix A.
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If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01VAF
(DTRTTP) is called.

Constraint: LDA � max 1;Nð Þ.

5: APðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A is stored with element Aij in APðiþ j j� 1ð Þ=2Þ
for i � j;
i f UPLO ¼ L , the lower tr iangle of A is s tored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VAF (DTRTTP) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix and copies it to packed format.

10.1 Program Text

Program f01vafe

! F01VAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtrttp, nag_wp, x04cbf

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &
nin = 5, nout = 6

Character (1), Parameter :: diag = ’N’, intlabel = ’I’, &
matrix = ’G’, nolabel = ’N’

Character (4), Parameter :: form = ’F5.2’
! .. Local Scalars ..

Integer :: i, ifail, info, lda, lenap, n
Character (18) :: title
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ap(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VAF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo
lda = n
lenap = (n*(n+1))/2
Allocate (a(lda,n),ap(lenap))

! Read a triangular matrix of order n
Do i = 1, n

Read (nin,*) a(i,1:n)
End Do

! Print the unpacked matrix
title = ’Unpacked Matrix A:’
ifail = 0
Call x04cbf(uplo,diag,n,n,a,lda,form,title,intlabel,rlabs,intlabel, &

clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert to packed vector form
! The NAG name equivalent of dtrttp is f01vaf

Call dtrttp(uplo,n,a,lda,ap,info)

! Print the packed vector
title = ’Packed Matrix AP: ’
ifail = 0
Call x04cbf(matrix,diag,lenap,inc1,ap,lenap,form,title,intlabel,rlabs, &

nolabel,clabs,ncols,indent,ifail)

End Program f01vafe

10.2 Program Data

F01VAF Example Program Data
4 ’U’ : n, uplo
1.1 1.2 1.3 1.4 : Unpacked Matrix A
0.0 2.2 2.3 2.4
0.0 0.0 3.3 3.4
0.0 0.0 0.0 4.4

10.3 Program Results

F01VAF Example Program Results

Unpacked Matrix A:
1 2 3 4

1 1.10 1.20 1.30 1.40
2 2.20 2.30 2.40
3 3.30 3.40
4 4.40
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Packed Matrix AP:
1 1.10
2 1.20
3 2.20
4 1.30
5 2.30
6 3.30
7 1.40
8 2.40
9 3.40

10 4.40
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NAG Library Routine Document

F01VBF (ZTRTTP)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VBF (ZTRTTP) copies a complex triangular matrix, stored in a full format array, to a packed format
array.

2 Specification

SUBROUTINE F01VBF (UPLO, N, A, LDA, AP, INFO)

INTEGER N, LDA, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), AP(N*(N+1)/2)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name ztrttp.

3 Description

F01VBF (ZTRTTP) packs a complex n by n triangular matrix A, stored conventionally in a full format
array, into an array of length n nþ 1ð Þ=2. The matrix is packed by columns. This routine is intended for
possible use in conjunction with routines from Chapters F06, F07, F08 and F16 where some routines
use triangular matrices stored in the packed form. Packed storage format is described in Section 3.3.2 in
the F07 Chapter Introduction.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the triangular matrix A.
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If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01VBF
(ZTRTTP) is called.

Constraint: LDA � max 1;Nð Þ.

5: APðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Output

On exit: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A is stored with element Aij in APðiþ j j� 1ð Þ=2Þ
for i � j;
i f UPLO ¼ L , the lower tr iangle of A is s tored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VBF (ZTRTTP) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix and copies it to packed format.

10.1 Program Text

Program f01vbfe

! F01VBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztrttp

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &
nin = 5, nout = 6

Character (1), Parameter :: brac = ’B’, diag = ’N’, &
intlabel = ’I’, matrix = ’G’, &
nolabel = ’N’

Character (4), Parameter :: form = ’F5.2’
! .. Local Scalars ..

Integer :: i, ifail, info, lda, lenap, n
Character (18) :: title
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ap(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VBF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo
lda = n
lenap = (n*(n+1))/2
Allocate (a(lda,n),ap(lenap))

! Read a triangular matrix of order n
Do i = 1, n

Read (nin,*) a(i,1:n)
End Do

! Print the unpacked matrix
title = ’Unpacked Matrix A:’
ifail = 0
Call x04dbf(uplo,diag,n,n,a,lda,brac,form,title,intlabel,rlabs,intlabel, &

clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert to packed vector form
! The NAG name equivalent of ztrttp is f01vbf

Call ztrttp(uplo,n,a,lda,ap,info)

! Print the packed vector
title = ’Packed Matrix AP: ’
ifail = 0
Call x04dbf(matrix,diag,lenap,inc1,ap,lenap,brac,form,title,intlabel, &

rlabs,nolabel,clabs,ncols,indent,ifail)

End Program f01vbfe

10.2 Program Data

F01VBF Example Program Data
4 ’U’ : n, uplo
(1.1,1.1) (1.2,1.2) (1.3,1.3) (1.4,1.4) : Unpacked Matrix A
(0.0,0.0) (2.2,2.2) (2.3,2.3) (2.4,2.4)
(0.0,0.0) (0.0,0.0) (3.3,3.3) (3.4,3.4)
(0.0,0.0) (0.0,0.0) (0.0,0.0) (4.4,4.4)

10.3 Program Results

F01VBF Example Program Results

Unpacked Matrix A:
1 2 3 4

1 ( 1.10, 1.10) ( 1.20, 1.20) ( 1.30, 1.30) ( 1.40, 1.40)
2 ( 2.20, 2.20) ( 2.30, 2.30) ( 2.40, 2.40)
3 ( 3.30, 3.30) ( 3.40, 3.40)
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4 ( 4.40, 4.40)

Packed Matrix AP:
1 ( 1.10, 1.10)
2 ( 1.20, 1.20)
3 ( 2.20, 2.20)
4 ( 1.30, 1.30)
5 ( 2.30, 2.30)
6 ( 3.30, 3.30)
7 ( 1.40, 1.40)
8 ( 2.40, 2.40)
9 ( 3.40, 3.40)

10 ( 4.40, 4.40)
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NAG Library Routine Document

F01VCF (DTPTTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VCF (DTPTTR) unpacks a real triangular matrix, stored in a standard packed format array, to a full
format array.

2 Specification

SUBROUTINE F01VCF (UPLO, N, AP, A, LDA, INFO)

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) AP(N*(N+1)/2), A(LDA,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dtpttr.

3 Description

F01VCF (DTPTTR) unpacks a real n by n triangular matrix A, stored in an array of length n nþ 1ð Þ=2,
to conventional storage in a full format array. This routine is intended for possible use in conjunction
with routines from Chapters F06, F07, F08 and F16 where some routines use triangular matrices stored
in the packed form. Packed storage format is described in Section 3.3.2 in the F07 Chapter Introduction.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: APðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the n by n triangular matrix A, packed by columns.

More precisely,
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if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array A must be at least N.

On exit: the triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01VCF
(DTPTTR) is called.

Constraint: LDA � max 1;Nð Þ.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VCF (DTPTTR) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix packed by columns and unpacks it to full format.

10.1 Program Text

Program f01vcfe

! F01VCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtpttr, nag_wp, x04cbf

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &
nin = 5, nout = 6

Character (1), Parameter :: diag = ’N’, intlabel = ’I’, &
matrix = ’G’, nolabel = ’N’

Character (4), Parameter :: form = ’F5.2’
! .. Local Scalars ..

Integer :: i, ifail, info, lda, lenap, n
Character (18) :: title
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ap(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo
lda = n
lenap = (n*(n+1))/2
Allocate (a(lda,n),ap(lenap))

! Read a packed vector of order n
Do i = 1, lenap

Read (nin,*) ap(i)
End Do

! Print the packed vector
title = ’Packed Matrix AP: ’
ifail = 0
Call x04cbf(matrix,diag,lenap,inc1,ap,lenap,form,title,intlabel,rlabs, &

nolabel,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert to triangular form
! The NAG name equivalent of dtpttr is f01vcf

Call dtpttr(uplo,n,ap,a,lda,info)

! Print the unpacked matrix
title = ’Unpacked Matrix A:’
ifail = 0
Call x04cbf(uplo,diag,n,n,a,lda,form,title,intlabel,rlabs,intlabel, &

clabs,ncols,indent,ifail)

End Program f01vcfe

10.2 Program Data

F01VCF Example Program Data
4 ’U’ : n, uplo
1.1 : Packed Matrix AP
1.2
2.2
1.3
2.3
3.3
1.4
2.4
3.4
4.4
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10.3 Program Results

F01VCF Example Program Results

Packed Matrix AP:
1 1.10
2 1.20
3 2.20
4 1.30
5 2.30
6 3.30
7 1.40
8 2.40
9 3.40

10 4.40

Unpacked Matrix A:
1 2 3 4

1 1.10 1.20 1.30 1.40
2 2.20 2.30 2.40
3 3.30 3.40
4 4.40
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NAG Library Routine Document

F01VDF (ZTPTTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VDF (ZTPTTR) unpacks a complex triangular matrix, stored in a standard packed format array, to a
full format array.

2 Specification

SUBROUTINE F01VDF (UPLO, N, AP, A, LDA, INFO)

INTEGER N, LDA, INFO
COMPLEX (KIND=nag_wp) AP(N*(N+1)/2), A(LDA,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name ztpttr.

3 Description

F01VDF (ZTPTTR) unpacks a complex n by n triangular matrix A, stored in an array of length
n nþ 1ð Þ=2, to conventional storage in a full format array. This routine is intended for possible use in
conjunction with routines from Chapters F06, F07, F08 and F16 where some routines use triangular
matrices stored in the packed form. Packed storage format is described in Section 3.3.2 in the F07
Chapter Introduction.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: APðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Input

On entry: the n by n triangular matrix A, packed by columns.

More precisely,
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if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array A must be at least N.

On exit: the triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01VDF
(ZTPTTR) is called.

Constraint: LDA � max 1;Nð Þ.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VDF (ZTPTTR) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix packed by columns and unpacks it to full format.

10.1 Program Text

Program f01vdfe

! F01VDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztpttr

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &
nin = 5, nout = 6

Character (1), Parameter :: brac = ’B’, diag = ’N’, &
intlabel = ’I’, matrix = ’G’, &
nolabel = ’N’

Character (4), Parameter :: form = ’F5.2’
! .. Local Scalars ..

Integer :: i, ifail, info, lda, lenap, n
Character (18) :: title
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ap(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo
lda = n
lenap = (n*(n+1))/2
Allocate (a(lda,n),ap(lenap))

! Read a packed vector of order n
Do i = 1, lenap

Read (nin,*) ap(i)
End Do

! Print the packed vector
title = ’Packed Matrix AP: ’
ifail = 0
Call x04dbf(matrix,diag,lenap,inc1,ap,lenap,brac,form,title,intlabel, &

rlabs,nolabel,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert to triangular form
! The NAG name equivalent of ztpttr is f01vdf

Call ztpttr(uplo,n,ap,a,lda,info)

! Print the unpacked matrix
title = ’Unpacked Matrix A:’
ifail = 0
Call x04dbf(uplo,diag,n,n,a,lda,brac,form,title,intlabel,rlabs,intlabel, &

clabs,ncols,indent,ifail)

End Program f01vdfe

10.2 Program Data

F01VDF Example Program Data
4 ’U’ : n, uplo
(1.1,1.1) : Packed Matrix AP
(1.2,1.2)
(2.2,2.2)
(1.3,1.3)
(2.3,2.3)
(3.3,3.3)
(1.4,1.4)
(2.4,2.4)
(3.4,3.4)
(4.4,4.4)
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10.3 Program Results

F01VDF Example Program Results

Packed Matrix AP:
1 ( 1.10, 1.10)
2 ( 1.20, 1.20)
3 ( 2.20, 2.20)
4 ( 1.30, 1.30)
5 ( 2.30, 2.30)
6 ( 3.30, 3.30)
7 ( 1.40, 1.40)
8 ( 2.40, 2.40)
9 ( 3.40, 3.40)

10 ( 4.40, 4.40)

Unpacked Matrix A:
1 2 3 4

1 ( 1.10, 1.10) ( 1.20, 1.20) ( 1.30, 1.30) ( 1.40, 1.40)
2 ( 2.20, 2.20) ( 2.30, 2.30) ( 2.40, 2.40)
3 ( 3.30, 3.30) ( 3.40, 3.40)
4 ( 4.40, 4.40)
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NAG Library Routine Document

F01VEF (DTRTTF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VEF (DTRTTF) copies a real triangular matrix, stored in a full format array, to a Rectangular Full
Packed (RFP) format array.

2 Specification

SUBROUTINE F01VEF (TRANSR, UPLO, N, A, LDA, AR, INFO)

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) A(LDA,*), AR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name dtrttf.

3 Description

F01VEF (DTRTTF) packs a real n by n triangular matrix A, stored conventionally in a full format
array, into RFP format. This routine is intended for possible use in conjunction with routines from
Chapters F06, F07 and F16 where some routines that use triangular matrices store them in RFP format.
The RFP storage format is described in Section 3.3.3 in the F07 Chapter Introduction.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its transpose is stored.

TRANSR ¼ N
The RFP representation of the matrix A is stored.

TRANSR ¼ T
The transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or T .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01VEF
(DTRTTF) is called.

Constraint: LDA � max 1;Nð Þ.

6: ARðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper or lower n by n triangular matrix A (as specified by UPLO) in either normal
or transposed RFP format (as specified by TRANSR). The storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VEF (DTRTTF) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix and copies it to RFP format.
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10.1 Program Text

Program f01vefe

! F01VEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtrttf, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &

nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, intlabel = ’I’, &

matrix = ’G’, nolabel = ’N’
Character (4), Parameter :: form = ’F5.2’

! .. Local Scalars ..
Integer :: i, ifail, info, k, lar1, lar2, lda, &

lenar, n, q
Character (47) :: title
Character (1) :: transr, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ar(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo, transr
lda = n
lenar = n*(n+1)/2
Allocate (a(lda,n),ar(lenar))

! Read a triangular matrix of order n into array A
Do i = 1, n

Read (nin,*) a(i,i:n)
End Do

! Print the unpacked array A
title = ’Unpacked Matrix A:’
ifail = 0
Call x04cbf(uplo,diag,n,n,a,lda,form,title,intlabel,rlabs,intlabel, &

clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert to Rectangular Full Packed form
! The NAG name equivalent of dtrttf is f01vef

Call dtrttf(transr,uplo,n,a,lda,ar,info)

! Print the Rectangular Full Packed array
title = ’RFP Packed Array AR:’
ifail = 0
Call x04cbf(matrix,diag,lenar,inc1,ar,lenar,form,title,intlabel,rlabs, &

nolabel,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print the Rectangular Full Packed array showing how the elements are
! arranged.

title = ’RFP Packed Array AR (graphical representation):’
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
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lar2 = q
Else

lar1 = q
lar2 = 2*k + 1

End If

ifail = 0
Call x04cbf(matrix,diag,lar1,lar2,ar,lar1,form,title,intlabel,rlabs, &

intlabel,clabs,ncols,indent,ifail)

End Program f01vefe

10.2 Program Data

F01VEF Example Program Data
4 ’U’ ’N’ : n, uplo, transr
1.1 1.2 1.3 1.4

2.2 2.3 2.4
3.3 3.4

4.4 : Upper matrix A

10.3 Program Results

F01VEF Example Program Results

Unpacked Matrix A:
1 2 3 4

1 1.10 1.20 1.30 1.40
2 2.20 2.30 2.40
3 3.30 3.40
4 4.40

RFP Packed Array AR:
1 1.30
2 2.30
3 3.30
4 1.10
5 1.20
6 1.40
7 2.40
8 3.40
9 4.40

10 2.20

RFP Packed Array AR (graphical representation):
1 2

1 1.30 1.40
2 2.30 2.40
3 3.30 3.40
4 1.10 4.40
5 1.20 2.20
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NAG Library Routine Document

F01VFF (ZTRTTF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VFF (ZTRTTF) copies a complex triangular matrix, stored in a full format array, to a Rectangular
Full Packed (RFP) format array.

2 Specification

SUBROUTINE F01VFF (TRANSR, UPLO, N, A, LDA, AR, INFO)

INTEGER N, LDA, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), AR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name ztrttf.

3 Description

F01VFF (ZTRTTF) packs a complex n by n triangular matrix A, stored conventionally in a full format
array, into RFP format. This routine is intended for possible use in conjunction with routines from
Chapters F06, F07 and F16 where some routines that use triangular matrices store them in RFP format.
The RFP storage format is described in Section 3.3.3 in the F07 Chapter Introduction.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its conjugate transpose is
stored.

TRANSR ¼ N
The RFP representation of the matrix A is stored.

TRANSR ¼ C
The conjugate transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or C .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01VFF
(ZTRTTF) is called.

Constraint: LDA � max 1;Nð Þ.

6: ARðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Output

On exit: the upper or lower n by n triangular matrix A (as specified by UPLO) in either normal
or transposed RFP format (as specified by TRANSR). The storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VFF (ZTRTTF) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix and copies it to RFP format.
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10.1 Program Text

Program f01vffe

! F01VFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztrttf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &

nin = 5, nout = 6
Character (1), Parameter :: brac = ’B’, diag = ’N’, &

intlabel = ’I’, matrix = ’G’, &
nolabel = ’N’

Character (4), Parameter :: form = ’F5.2’
! .. Local Scalars ..

Integer :: i, ifail, info, k, lar1, lar2, lda, &
lenar, n, q

Character (47) :: title
Character (1) :: transr, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ar(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, uplo, transr
lda = n
lenar = n*(n+1)/2
Allocate (a(lda,n),ar(lenar))

! Read a triangular matrix of order n into array A
Do i = 1, n

Read (nin,*) a(i,i:n)
End Do

! Print the unpacked array
title = ’Unpacked Matrix A:’
ifail = 0
Call x04dbf(uplo,diag,n,n,a,lda,brac,form,title,intlabel,rlabs,intlabel, &

clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert to Rectangular Full Packed form
! The NAG name equivalent of ztrttf is f01vff

Call ztrttf(transr,uplo,n,a,lda,ar,info)

! Print the Rectangular Full Packed array
title = ’RFP Packed Array AR:’
ifail = 0
Call x04dbf(matrix,diag,lenar,inc1,ar,lenar,brac,form,title,intlabel, &

rlabs,nolabel,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print the Rectangular Full Packed array showing how the elements are
! arranged.

title = ’RFP Packed Array AR (graphical representation):’
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then
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lar1 = 2*k + 1
lar2 = q

Else
lar1 = q
lar2 = 2*k + 1

End If

ifail = 0
Call x04dbf(matrix,diag,lar1,lar2,ar,lar1,brac,form,title,intlabel, &

rlabs,intlabel,clabs,ncols,indent,ifail)

End Program f01vffe

10.2 Program Data

F01VFF Example Program Data
4 ’U’ ’N’ : n, uplo, transr

(1.1,1.1) (1.2,1.2) (1.3,1.3) (1.4,1.4)
(2.2,2.2) (2.3,2.3) (2.4,2.4)

(3.3,3.3) (3.4,3.4)
(4.4,4.4) : Upper Matrix A

10.3 Program Results

F01VFF Example Program Results

Unpacked Matrix A:
1 2 3 4

1 ( 1.10, 1.10) ( 1.20, 1.20) ( 1.30, 1.30) ( 1.40, 1.40)
2 ( 2.20, 2.20) ( 2.30, 2.30) ( 2.40, 2.40)
3 ( 3.30, 3.30) ( 3.40, 3.40)
4 ( 4.40, 4.40)

RFP Packed Array AR:
1 ( 1.30, 1.30)
2 ( 2.30, 2.30)
3 ( 3.30, 3.30)
4 ( 1.10,-1.10)
5 ( 1.20,-1.20)
6 ( 1.40, 1.40)
7 ( 2.40, 2.40)
8 ( 3.40, 3.40)
9 ( 4.40, 4.40)

10 ( 2.20,-2.20)

RFP Packed Array AR (graphical representation):
1 2

1 ( 1.30, 1.30) ( 1.40, 1.40)
2 ( 2.30, 2.30) ( 2.40, 2.40)
3 ( 3.30, 3.30) ( 3.40, 3.40)
4 ( 1.10,-1.10) ( 4.40, 4.40)
5 ( 1.20,-1.20) ( 2.20,-2.20)
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NAG Library Routine Document

F01VGF (DTFTTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VGF (DTFTTR) unpacks a real triangular matrix, stored in a Rectangular Full Packed (RFP) format
array, to a full format array.

2 Specification

SUBROUTINE F01VGF (TRANSR, UPLO, N, AR, A, LDA, INFO)

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) AR(N*(N+1)/2), A(LDA,*)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name dtfttr.

3 Description

F01VGF (DTFTTR) unpacks a real n by n triangular matrix A, stored in RFP format to conventional
storage in a full format array. This routine is intended for possible use in conjunction with routines from
Chapters F06, F07 and F16 where some routines that use triangular matrices store them in RFP format.
The RFP storage format is described in Section 3.3.3 in the F07 Chapter Introduction.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its transpose is stored.

TRANSR ¼ N
The RFP representation of the matrix A is stored.

TRANSR ¼ T
The transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or T .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: ARðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the upper or lower n by n triangular matrix A (as specified by UPLO) in either normal
or transposed RFP format (as specified by TRANSR). The storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array A must be at least N.

On exit: the triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01VGF
(DTFTTR) is called.

Constraint: LDA � max 1;Nð Þ.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VGF (DTFTTR) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix in RFP format and unpacks it to full format.
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10.1 Program Text

Program f01vgfe

! F01VGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtfttr, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &

nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, intlabel = ’I’, &

matrix = ’G’, nolabel = ’N’
Character (4), Parameter :: form = ’F5.2’

! .. Local Scalars ..
Integer :: i, ifail, info, k, lar1, lda, lenar, &

n, q
Character (21) :: title
Character (1) :: transr, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ar(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo, transr
lda = n
lenar = n*(n+1)/2
Allocate (a(lda,n),ar(lenar))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Print the Rectangular Full Packed array
title = ’RFP Packed Array AR:’
ifail = 0
Call x04cbf(matrix,diag,lenar,inc1,ar,lenar,form,title,intlabel,rlabs, &

nolabel,clabs,ncols,indent,ifail)
Write (nout,*)
Flush (nout)

! Convert to triangular form
! The NAG name equivalent of dtfttr is f01vgf

Call dtfttr(transr,uplo,n,ar,a,lda,info)

! Print the unpacked array
ifail = 0
title = ’Unpacked Matrix A:’
ifail = 0
Call x04cbf(uplo,diag,n,n,a,lda,form,title,intlabel,rlabs,intlabel, &

clabs,ncols,indent,ifail)

End Program f01vgfe
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10.2 Program Data

F01VGF Example Program Data
4 ’U’ ’N’ : n, uplo, transr
1.30 1.40
2.30 2.40
3.30 3.40
1.10 4.40
1.20 2.20 : RFP Matrix AR

10.3 Program Results

F01VGF Example Program Results

RFP Packed Array AR:
1 1.30
2 2.30
3 3.30
4 1.10
5 1.20
6 1.40
7 2.40
8 3.40
9 4.40

10 2.20

Unpacked Matrix A:
1 2 3 4

1 1.10 1.20 1.30 1.40
2 2.20 2.30 2.40
3 3.30 3.40
4 4.40
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NAG Library Routine Document

F01VHF (ZTFTTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VHF (ZTFTTR) unpacks a complex triangular matrix, stored in a Rectangular Full Packed (RFP)
format array, to a full format array.

2 Specification

SUBROUTINE F01VHF (TRANSR, UPLO, N, AR, A, LDA, INFO)

INTEGER N, LDA, INFO
COMPLEX (KIND=nag_wp) AR(N*(N+1)/2), A(LDA,*)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name ztfttr.

3 Description

F01VHF (ZTFTTR) unpacks a complex n by n triangular matrix A, stored in RFP format to
conventional storage in a full format array. This routine is intended for possible use in conjunction with
routines from Chapters F06, F07 and F16 where some routines that use triangular matrices store them in
RFP format. The RFP storage format is described in Section 3.3.3 in the F07 Chapter Introduction.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its conjugate transpose is
stored.

TRANSR ¼ N
The RFP representation of the matrix A is stored.

TRANSR ¼ C
The conjugate transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or C .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: ARðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Input

On entry: the upper or lower n by n triangular matrix A (as specified by UPLO) in either normal
or transposed RFP format (as specified by TRANSR). The storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array A must be at least N.

On exit: the triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01VHF
(ZTFTTR) is called.

Constraint: LDA � max 1;Nð Þ.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VHF (ZTFTTR) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix in RFP format and unpacks it to full format.
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10.1 Program Text

Program f01vhfe

! F01VHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztfttr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &

nin = 5, nout = 6
Character (1), Parameter :: brac = ’B’, diag = ’N’, &

intlabel = ’I’, matrix = ’G’, &
nolabel = ’N’

Character (4), Parameter :: form = ’F5.2’
! .. Local Scalars ..

Integer :: i, ifail, info, k, lar1, lda, lenar, &
n, q

Character (21) :: title
Character (1) :: transr, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ar(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VHF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo, transr
lda = n
lenar = n*(n+1)/2
Allocate (a(lda,n),ar(lenar))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Print the Rectangular Full Packed array
title = ’RFP Packed Array AR:’
ifail = 0
Call x04dbf(matrix,diag,lenar,inc1,ar,lenar,brac,form,title,intlabel, &

rlabs,nolabel,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert to triangular form
! The NAG name equivalent of ztfttr is f01vhf

Call ztfttr(transr,uplo,n,ar,a,lda,info)

! Print the unpacked array
title = ’Unpacked Matrix A:’
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ifail = 0
Call x04dbf(uplo,diag,n,n,a,lda,brac,form,title,intlabel,rlabs,intlabel, &

clabs,ncols,indent,ifail)

End Program f01vhfe

10.2 Program Data

F01VHF Example Program Data
4 ’U’ ’N’ : n, uplo, transr

( 1.30, 1.30) ( 1.40, 1.40)
( 2.30, 2.30) ( 2.40, 2.40)
( 3.30, 3.30) ( 3.40, 3.40)
( 1.10,-1.10) ( 4.40, 4.40)
( 1.20,-1.20) ( 2.20,-2.20) : RFP Matrix AR

10.3 Program Results

F01VHF Example Program Results

RFP Packed Array AR:
1 ( 1.30, 1.30)
2 ( 2.30, 2.30)
3 ( 3.30, 3.30)
4 ( 1.10,-1.10)
5 ( 1.20,-1.20)
6 ( 1.40, 1.40)
7 ( 2.40, 2.40)
8 ( 3.40, 3.40)
9 ( 4.40, 4.40)

10 ( 2.20,-2.20)

Unpacked Matrix A:
1 2 3 4

1 ( 1.10, 1.10) ( 1.20, 1.20) ( 1.30, 1.30) ( 1.40, 1.40)
2 ( 2.20, 2.20) ( 2.30, 2.30) ( 2.40, 2.40)
3 ( 3.30, 3.30) ( 3.40, 3.40)
4 ( 4.40, 4.40)
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NAG Library Routine Document

F01VJF (DTPTTF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VJF (DTPTTF) copies a real triangular matrix, stored in a standard packed format array, to a
Rectangular Full Packed (RFP) format array.

2 Specification

SUBROUTINE F01VJF (TRANSR, UPLO, N, AP, AR, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) AP(N*(N+1)/2), AR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name dtpttf.

3 Description

F01VJF (DTPTTF) copies a real n by n triangular matrix, A, stored in packed format, to RFP format.
This routine is intended for possible use in conjunction with routines from Chapters F06, F07 and F16
where some routines that use triangular matrices store them in RFP format. The RFP storage format is
described in Section 3.3.3 in the F07 Chapter Introduction and the packed storage format is described in
Section 3.3.2 in the F07 Chapter Introduction.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its transpose is stored.

TRANSR ¼ N
The RFP representation of the matrix A is stored.

TRANSR ¼ T
The transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or T .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: APðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

5: ARðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper or lower n by n triangular matrix A (as specified by UPLO) in either normal
or transposed RFP format (as specified by TRANSR). The storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

�999 < INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VJF (DTPTTF) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix in packed format and copies it to RFP format.
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10.1 Program Text

Program f01vjfe

! F01VJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtpttf, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &

nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, intlabel = ’I’, &

matrix = ’G’, nolabel = ’N’
Character (4), Parameter :: form = ’F5.2’

! .. Local Scalars ..
Integer :: ifail, info, k, lar1, lar2, lenap, &

lenar, n, q
Character (47) :: title
Character (1) :: transr, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), ar(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo, transr
lenap = (n*(n+1))/2
lenar = lenap

Allocate (ap(lenap),ar(lenar))

! Read an order n matrix packed into a 1-D array
Read (nin,*) ap(1:lenap)

! Print the packed array
title = ’Packed Array AP:’
ifail = 0
Call x04cbf(matrix,diag,lenap,inc1,ap,lenap,form,title,intlabel,rlabs, &

nolabel,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert to Rectangular Full Packed form
! The NAG name equivalent of dtpttf is f01vjf

Call dtpttf(transr,uplo,n,ap,ar,info)

! Print the Rectangular Full Packed array
title = ’RFP Packed Array AR:’
ifail = 0
Call x04cbf(matrix,diag,lenar,inc1,ar,lenar,form,title,intlabel,rlabs, &

nolabel,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print the Rectangular Full Packed array showing how the elements are
! arranged.

title = ’RFP Packed Array AR (graphical representation):’
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
lar2 = q
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Else
lar1 = q
lar2 = 2*k + 1

End If

ifail = 0
Call x04cbf(matrix,diag,lar1,lar2,ar,lar1,form,title,intlabel,rlabs, &

intlabel,clabs,ncols,indent,ifail)

End Program f01vjfe

10.2 Program Data

F01VJF Example Program Data
4 ’U’ ’N’ : n, uplo, transr
1.1
1.2
2.2
1.3
2.3
3.3
1.4
2.4
3.4
4.4 : Packed Matrix AP

10.3 Program Results

F01VJF Example Program Results

Packed Array AP:
1 1.10
2 1.20
3 2.20
4 1.30
5 2.30
6 3.30
7 1.40
8 2.40
9 3.40

10 4.40

RFP Packed Array AR:
1 1.30
2 2.30
3 3.30
4 1.10
5 1.20
6 1.40
7 2.40
8 3.40
9 4.40

10 2.20

RFP Packed Array AR (graphical representation):
1 2

1 1.30 1.40
2 2.30 2.40
3 3.30 3.40
4 1.10 4.40
5 1.20 2.20
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NAG Library Routine Document

F01VKF (ZTPTTF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VKF (ZTPTTF) copies a complex triangular matrix, stored in a standard packed format array, to a
Rectangular Full Packed (RFP) format array.

2 Specification

SUBROUTINE F01VKF (TRANSR, UPLO, N, AP, AR, INFO)

INTEGER N, INFO
COMPLEX (KIND=nag_wp) AP(N*(N+1)/2), AR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name ztpttf.

3 Description

F01VKF (ZTPTTF) copies a complex n by n triangular matrix, A, stored in packed format, to RFP
format. This routine is intended for possible use in conjunction with routines from Chapters F06, F07
and F16 where some routines that use triangular matrices store them in RFP format. The RFP storage
format is described in Section 3.3.3 in the F07 Chapter Introduction and the packed storage format is
described in Section 3.3.2 in the F07 Chapter Introduction.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its conjugate transpose is
stored.

TRANSR ¼ N
The RFP representation of the matrix A is stored.

TRANSR ¼ C
The conjugate transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or C .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: APðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Input

On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

5: ARðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Output

On exit: the upper or lower n by n triangular matrix A (as specified by UPLO) in either normal
or transposed RFP format (as specified by TRANSR). The storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

�999 < INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VKF (ZTPTTF) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix in packed format and copies it to RFP format.
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10.1 Program Text

Program f01vkfe

! F01VKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztpttf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &

nin = 5, nout = 6
Character (1), Parameter :: brac = ’B’, diag = ’N’, &

intlabel = ’I’, matrix = ’G’, &
nolabel = ’N’

Character (4), Parameter :: form = ’F5.2’
! .. Local Scalars ..

Integer :: ifail, info, k, lar1, lar2, lenap, &
lenar, n, q

Character (47) :: title
Character (1) :: transr, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), ar(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VKF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo, transr
lenap = (n*(n+1))/2
lenar = lenap

Allocate (ap(lenap),ar(lenar))

! Read an order n matrix packed into a 1-D array
Read (nin,*) ap

! Print the packed vector
title = ’Packed Array AP:’
ifail = 0
Call x04dbf(matrix,diag,lenap,inc1,ap,lenap,brac,form,title,intlabel, &

rlabs,nolabel,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert to Rectangular Full Packed form
! The NAG name equivalent of ztpttf is f01vkf

Call ztpttf(transr,uplo,n,ap,ar,info)

! Print the Rectangular Full Packed array
title = ’RFP Packed Array AR:’
ifail = 0
Call x04dbf(matrix,diag,lenar,inc1,ar,lenar,brac,form,title,intlabel, &

rlabs,nolabel,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print the Rectangular Full Packed array showing how the elements are
! arranged.

title = ’RFP Packed Array AR (graphical representation):’
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1

F01 – Matrix Operations, Including Inversion F01VKF

Mark 26 F01VKF.3



lar2 = q
Else

lar1 = q
lar2 = 2*k + 1

End If

ifail = 0
Call x04dbf(matrix,diag,lar1,lar2,ar,lar1,brac,form,title,intlabel, &

rlabs,intlabel,clabs,ncols,indent,ifail)

End Program f01vkfe

10.2 Program Data

F01VKF Example Program Data
4 ’U’ ’N’ : n, uplo, transr
(1.1,1.1)
(1.2,1.2)
(2.2,2.2)
(1.3,1.3)
(2.3,2.3)
(3.3,3.3)
(1.4,1.4)
(2.4,2.4)
(3.4,3.4)
(4.4,4.4) : Packed Matrix AP

10.3 Program Results

F01VKF Example Program Results

Packed Array AP:
1 ( 1.10, 1.10)
2 ( 1.20, 1.20)
3 ( 2.20, 2.20)
4 ( 1.30, 1.30)
5 ( 2.30, 2.30)
6 ( 3.30, 3.30)
7 ( 1.40, 1.40)
8 ( 2.40, 2.40)
9 ( 3.40, 3.40)

10 ( 4.40, 4.40)

RFP Packed Array AR:
1 ( 1.30, 1.30)
2 ( 2.30, 2.30)
3 ( 3.30, 3.30)
4 ( 1.10,-1.10)
5 ( 1.20,-1.20)
6 ( 1.40, 1.40)
7 ( 2.40, 2.40)
8 ( 3.40, 3.40)
9 ( 4.40, 4.40)

10 ( 2.20,-2.20)

RFP Packed Array AR (graphical representation):
1 2

1 ( 1.30, 1.30) ( 1.40, 1.40)
2 ( 2.30, 2.30) ( 2.40, 2.40)
3 ( 3.30, 3.30) ( 3.40, 3.40)
4 ( 1.10,-1.10) ( 4.40, 4.40)
5 ( 1.20,-1.20) ( 2.20,-2.20)
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NAG Library Routine Document

F01VLF (DTFTTP)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VLF (DTFTTP) copies a real triangular matrix, stored in a Rectangular Full Packed (RFP) format
array, to a standard packed format array.

2 Specification

SUBROUTINE F01VLF (TRANSR, UPLO, N, AR, AP, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) AR(N*(N+1)/2), AP(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name dtfttp.

3 Description

F01VLF (DTFTTP) packs a real n by n triangular matrix A, stored in RFP format, to packed format.
This routine is intended for possible use in conjunction with routines from Chapters F06, F07 and F16
where some routines that use triangular matrices store them in RFP format. The RFP storage format is
described in Section 3.3.3 in the F07 Chapter Introduction and the packed storage format is described in
Section 3.3.2 in the F07 Chapter Introduction.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its transpose is stored.

TRANSR ¼ N
The RFP representation of the matrix A is stored.

TRANSR ¼ T
The transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or T .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: ARðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the upper or lower n by n triangular matrix A (as specified by UPLO) in either normal
or transposed RFP format (as specified by TRANSR). The storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.

5: APðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A is stored with element Aij in APðiþ j j� 1ð Þ=2Þ
for i � j;
i f UPLO ¼ L , the lower tr iangle of A is s tored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

�999 < INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VLF (DTFTTP) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix in RFP format and copies it to packed format.

F01VLF NAG Library Manual

F01VLF.2 Mark 26



10.1 Program Text

Program f01vlfe

! F01VLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtfttp, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &

nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, intlabel = ’I’, &

matrix = ’G’, nolabel = ’N’
Character (4), Parameter :: form = ’F5.2’

! .. Local Scalars ..
Integer :: i, ifail, info, k, lar1, lenap, &

lenar, n, q
Character (21) :: title
Character (1) :: transr, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), ar(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VLF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo, transr
lenap = (n*(n+1))/2
lenar = lenap

Allocate (ap(lenap),ar(lenar))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Print the Rectangular Full Packed array
title = ’RFP Packed Array AR:’
ifail = 0
Call x04cbf(matrix,diag,lenar,inc1,ar,lenar,form,title,intlabel,rlabs, &

nolabel,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert to packed vector form
! The NAG name equivalent of dtfttp is f01vlf

Call dtfttp(transr,uplo,n,ar,ap,info)

! Print the packed vector
title = ’Packed Array AP:’
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ifail = 0
Call x04cbf(matrix,diag,lenap,inc1,ap,lenap,form,title,intlabel,rlabs, &

nolabel,clabs,ncols,indent,ifail)

End Program f01vlfe

10.2 Program Data

F01VLF Example Program Data
4 ’U’ ’N’ : n, uplo, transr
1.30 1.40
2.30 2.40
3.30 3.40
1.10 4.40
1.20 2.20 : RFP Matrix AR

10.3 Program Results

F01VLF Example Program Results

RFP Packed Array AR:
1 1.30
2 2.30
3 3.30
4 1.10
5 1.20
6 1.40
7 2.40
8 3.40
9 4.40

10 2.20

Packed Array AP:
1 1.10
2 1.20
3 2.20
4 1.30
5 2.30
6 3.30
7 1.40
8 2.40
9 3.40

10 4.40
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NAG Library Routine Document

F01VMF (ZTFTTP)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01VMF (ZTFTTP) copies a complex triangular matrix, stored in a Rectangular Full Packed (RFP)
format array, to a standard packed format array.

2 Specification

SUBROUTINE F01VMF (TRANSR, UPLO, N, AR, AP, INFO)

INTEGER N, INFO
COMPLEX (KIND=nag_wp) AR(N*(N+1)/2), AP(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name ztfttp.

3 Description

F01VMF (ZTFTTP) packs a complex n by n triangular matrix A, stored in RFP format, to packed
format. This routine is intended for possible use in conjunction with routines from Chapters F06, F07
and F16 where some routines that use triangular matrices store them in RFP format. The RFP storage
format is described in Section 3.3.3 in the F07 Chapter Introduction and the packed storage format is
described in Section 3.3.2 in the F07 Chapter Introduction.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its conjugate transpose is
stored.

TRANSR ¼ N
The RFP representation of the matrix A is stored.

TRANSR ¼ C
The conjugate transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or C .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: ARðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Input

On entry: the upper or lower n by n triangular matrix A (as specified by UPLO) in either normal
or transposed RFP format (as specified by TRANSR). The storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.

5: APðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Output

On exit: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A is stored with element Aij in APðiþ j j� 1ð Þ=2Þ
for i � j;
i f UPLO ¼ L , the lower tr iangle of A is s tored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

�999 < INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01VMF (ZTFTTP) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix in RFP format and copies it to packed format.
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10.1 Program Text

Program f01vmfe

! F01VMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztfttp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: inc1 = 1, indent = 0, ncols = 80, &

nin = 5, nout = 6
Character (1), Parameter :: brac = ’B’, diag = ’N’, &

intlabel = ’I’, matrix = ’G’, &
nolabel = ’N’

Character (4), Parameter :: form = ’F5.2’
! .. Local Scalars ..

Integer :: i, ifail, info, k, lar1, lenap, &
lenar, n, q

Character (21) :: title
Character (1) :: transr, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), ar(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01VMF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo, transr
lenap = (n*(n+1))/2
lenar = lenap

Allocate (ap(lenap),ar(lenar))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Print the Rectangular Full Packed array
title = ’RFP Packed Array AR:’
ifail = 0
Call x04dbf(matrix,diag,lenar,inc1,ar,lenar,brac,form,title,intlabel, &

rlabs,nolabel,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert to packed vector form
! The NAG name equivalent of ztfttp is f01vmf

Call ztfttp(transr,uplo,n,ar,ap,info)

! Print the packed vector
title = ’Packed Array AP:’

F01 – Matrix Operations, Including Inversion F01VMF

Mark 26 F01VMF.3



ifail = 0
Call x04dbf(matrix,diag,lenap,inc1,ap,lenap,brac,form,title,intlabel, &

rlabs,nolabel,clabs,ncols,indent,ifail)

End Program f01vmfe

10.2 Program Data

F01VMF Example Program Data
4 ’U’ ’N’ : n, uplo, ’N’

( 1.30, 1.30) ( 1.40, 1.40)
( 2.30, 2.30) ( 2.40, 2.40)
( 3.30, 3.30) ( 3.40, 3.40)
( 1.10,-1.10) ( 4.40, 4.40)
( 1.20,-1.20) ( 2.20,-2.20) : RFP array AR

10.3 Program Results

F01VMF Example Program Results

RFP Packed Array AR:
1 ( 1.30, 1.30)
2 ( 2.30, 2.30)
3 ( 3.30, 3.30)
4 ( 1.10,-1.10)
5 ( 1.20,-1.20)
6 ( 1.40, 1.40)
7 ( 2.40, 2.40)
8 ( 3.40, 3.40)
9 ( 4.40, 4.40)

10 ( 2.20,-2.20)

Packed Array AP:
1 ( 1.10, 1.10)
2 ( 1.20, 1.20)
3 ( 2.20, 2.20)
4 ( 1.30, 1.30)
5 ( 2.30, 2.30)
6 ( 3.30, 3.30)
7 ( 1.40, 1.40)
8 ( 2.40, 2.40)
9 ( 3.40, 3.40)

10 ( 4.40, 4.40)
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NAG Library Routine Document

F01ZAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01ZAF copies a real triangular matrix stored in a packed one-dimensional array into an unpacked two-
dimensional array, or vice versa.

2 Specification

SUBROUTINE F01ZAF (JOB, UPLO, DIAG, N, A, LDA, B, IFAIL)

INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,N), B((N*(N+1))/2)
CHARACTER(1) JOB, UPLO, DIAG

3 Description

F01ZAF unpacks a triangular matrix stored in a vector into a two-dimensional array, or packs a
triangular matrix stored in a two-dimensional array into a vector. The matrix is packed by column. This
routine is intended for possible use in conjunction with routines from Chapters F06, F07 and F08 where
some routines that use triangular matrices store them in the packed form described below.

4 References

None.

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies whether the triangular matrix is to be packed or unpacked.

JOB ¼ P (Pack)
The matrix is to be packed into array B.

JOB ¼ U (Unpack)
The matrix is to be unpacked into array A.

Constraint: JOB ¼ P or U .

2: UPLO – CHARACTER(1) Input

On entry: specifies the type of the matrix to be copied

UPLO ¼ L (Lower)
The matrix is lower triangular. In this case the packed vector holds, or will hold on exit,
the matrix elements in the following order: 1; 1ð Þ; 2; 1ð Þ; . . . ; N; 1ð Þ; 2; 2ð Þ; 3; 2ð Þ; . . . ; N; 2ð Þ,
etc..

UPLO ¼ U (Upper)
The matrix is upper triangular. In this case the packed vector holds, or will hold on exit,
the matrix elements in the following order: 1; 1ð Þ, 1; 2ð Þ, 2; 2ð Þ, 1; 3ð Þ, 2; 3ð Þ, 3; 3ð Þ, 1; 4ð Þ,
etc..

Constraint: UPLO ¼ L or U .
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3: DIAG – CHARACTER(1) Input

On entry: must specify whether the diagonal elements of the matrix are to be copied.

DIAG ¼ B (Blank)
The diagonal elements of the matrix are not referenced and not copied.

DIAG ¼ U (Unit diagonal)
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are copied as such.

DIAG ¼ N (Non-unit diagonal)
The diagonal elements of the matrix are referenced and copied.

Constraint: DIAG ¼ B , U or N .

4: N – INTEGER Input

On entry: n, the number of rows and columns of the triangular matrix.

Constraint: N > 0.

5: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if JOB ¼ P , then the leading N by N part of A must contain the matrix to be copied,
stored in unpacked form, in the upper or lower triangle depending on argument UPLO. The
opposite triangle of A is not referenced and need not be assigned.

On exit: if JOB ¼ U , then the leading N by N part of array A contains the copied matrix, stored
in unpacked form, in the upper or lower triangle depending on argument UPLO. The opposite
triangle of A is not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01ZAF
is called.

Constraint: LDA � N.

7: Bð N� Nþ 1ð Þð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if JOB ¼ U , then B must contain the triangular matrix packed by column.

On exit: if JOB ¼ P , then B contains the triangular matrix packed by column.

Note that B must have space for the diagonal elements of the matrix, even if these are not stored.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, JOB 6¼ P or U .

IFAIL ¼ 2

On entry, UPLO 6¼ L or U .

IFAIL ¼ 3

On entry, DIAG 6¼ N , U or B .

IFAIL ¼ 4

On entry, N < 1.

IFAIL ¼ 5

On entry, LDA < N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01ZAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix A, and copies it to the packed matrix B.
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10.1 Program Text

Program f01zafe

! F01ZAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01zaf, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lb, lda, lenb, n
Character (1) :: diag, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01ZAF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo, diag
lda = n
lenb = (n*(n+1))/2
Allocate (a(lda,n),b(lenb))

! Read a triangular matrix of order n
Do i = 1, n

Read (nin,*) a(i,1:n)
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Print the unpacked matrix

Call x04cbf(uplo,diag,n,n,a,lda,’F5.2’,’Unpacked Matrix A:’,’I’,rlabs, &
’I’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

! Convert to packed vector form
ifail = 0
Call f01zaf(’Pack’,uplo,diag,n,a,lda,b,ifail)

lb = n*(n+1)/2

! Print the packed vector
ifail = 0
Call x04cbf(’G’,’X’,lb,1,b,lb,’F5.2’,’Packed Vector B:’,’I’,rlabs,’N’, &

clabs,80,0,ifail)

End Program f01zafe

10.2 Program Data

F01ZAF Example Program Data
4 ’U’ ’N’ : n, uplo, diag
1.1 1.2 1.3 1.4 : Unpacked Matrix A
0.0 2.2 2.3 2.4
0.0 0.0 3.3 3.4
0.0 0.0 0.0 4.4
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10.3 Program Results

F01ZAF Example Program Results

Unpacked Matrix A:
1 2 3 4

1 1.10 1.20 1.30 1.40
2 2.20 2.30 2.40
3 3.30 3.40
4 4.40

Packed Vector B:
1 1.10
2 1.20
3 2.20
4 1.30
5 2.30
6 3.30
7 1.40
8 2.40
9 3.40

10 4.40

F01 – Matrix Operations, Including Inversion F01ZAF

Mark 26 F01ZAF.5 (last)





NAG Library Routine Document

F01ZBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01ZBF copies a complex triangular matrix stored in a packed one-dimensional array into an unpacked
two-dimensional array, or vice versa.

2 Specification

SUBROUTINE F01ZBF (JOB, UPLO, DIAG, N, A, LDA, B, IFAIL)

INTEGER N, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,N), B((N*(N+1))/2)
CHARACTER(1) JOB, UPLO, DIAG

3 Description

F01ZBF unpacks a triangular matrix stored in a vector into a two-dimensional array, or packs a
triangular matrix stored in a two-dimensional array into a vector. The matrix is packed by column. This
routine is intended for possible use in conjunction with routines from Chapters F06, F07 and F08,
where some routines that use triangular matrices store them in the packed form described below.

4 References

None.

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies whether the triangular matrix is to be packed or unpacked.

JOB ¼ P (Pack)
The matrix is to be packed into array B.

JOB ¼ U (Unpack)
The matrix is to be unpacked into array A.

Constraint: JOB ¼ P or U .

2: UPLO – CHARACTER(1) Input

On entry: specifies the type of the matrix to be copied

UPLO ¼ L (Lower)
The matrix is lower triangular. In this case the packed vector holds, or will hold on exit,
the matrix elements in the following order: 1; 1ð Þ; 2; 1ð Þ; . . . ; N; 1ð Þ; 2; 2ð Þ; 3; 2ð Þ; . . . ; N; 2ð Þ,
etc..

UPLO ¼ U (Upper)
The matrix is upper triangular. In this case the packed vector holds, or will hold on exit,
the matrix elements in the following order: 1; 1ð Þ, 1; 2ð Þ, 2; 2ð Þ, 1; 3ð Þ, 2; 3ð Þ, 3; 3ð Þ, 1; 4ð Þ,
etc..

Constraint: UPLO ¼ L or U .
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3: DIAG – CHARACTER(1) Input

On entry: must specify whether the diagonal elements of the matrix are to be copied.

DIAG ¼ B (Blank)
The diagonal elements of the matrix are not referenced and not copied.

DIAG ¼ U (Unit diagonal)
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are copied as such.

DIAG ¼ N (Non-unit diagonal)
The diagonal elements of the matrix are referenced and copied.

Constraint: DIAG ¼ B , U or N .

4: N – INTEGER Input

On entry: N must specify the number of rows and columns of the triangular matrix.

Constraint: N > 0.

5: AðLDA;NÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: if JOB ¼ P , then the leading N by N part of A must contain the matrix to be copied,
stored in unpacked form, in the upper or lower triangle depending on argument UPLO. The
opposite triangle of A is not referenced and need not be assigned.

On exit: if JOB ¼ U , then the leading N by N part of array A contains the copied matrix, stored
in unpacked form, in the upper or lower triangle depending on argument UPLO. The opposite
triangle of A is not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01ZBF
is called.

Constraint: LDA � N.

7: Bð N� Nþ 1ð Þð Þ=2Þ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: if JOB ¼ U , then B must contain the triangular matrix packed by column.

On exit: if JOB ¼ P , then B contains the triangular matrix packed by column.

Note that B must have space for the diagonal elements of the matrix, even if these are not stored.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, JOB 6¼ P or U .

IFAIL ¼ 2

On entry, UPLO 6¼ L or U .

IFAIL ¼ 3

On entry, DIAG 6¼ N , U or B .

IFAIL ¼ 4

On entry, N < 1.

IFAIL ¼ 5

On entry, LDA < N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01ZBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a triangular matrix A, and copies it to the packed matrix B.
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10.1 Program Text

Program f01zbfe

! F01ZBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01zbf, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lb, lda, lenb, n
Character (1) :: diag, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F01ZBF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) n, uplo, diag
lda = n
lenb = (n*(n+1))/2
Allocate (a(lda,n),b(lenb))

! Read a triangular matrix of order n
Do i = 1, n

Read (nin,*) a(i,1:n)
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Print the unpacked matrix

Call x04dbf(uplo,diag,n,n,a,lda,’B’,’F5.2’,’Unpacked Matrix A:’,’I’, &
rlabs,’I’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

! Convert to packed vector form
ifail = 0
Call f01zbf(’Pack’,uplo,diag,n,a,lda,b,ifail)

lb = n*(n+1)/2

! Print the packed vector
ifail = 0
Call x04dbf(’G’,’X’,lb,1,b,lb,’B’,’F5.2’,’Packed Vector B:’,’I’,rlabs, &

’N’,clabs,80,0,ifail)

End Program f01zbfe

10.2 Program Data

F01ZBF Example Program Data
4 ’U’ ’N’ : n, uplo, diag
(1.1,1.1) (1.2,1.2) (1.3,1.3) (1.4,1.4) : Unpacked Matrix A
(0.0,0.0) (2.2,2.2) (2.3,2.3) (2.4,2.4)
(0.0,0.0) (0.0,0.0) (3.3,3.3) (3.4,3.4)
(0.0,0.0) (0.0,0.0) (0.0,0.0) (4.4,4.4)

F01ZBF NAG Library Manual

F01ZBF.4 Mark 26



10.3 Program Results

F01ZBF Example Program Results

Unpacked Matrix A:
1 2 3 4

1 ( 1.10, 1.10) ( 1.20, 1.20) ( 1.30, 1.30) ( 1.40, 1.40)
2 ( 2.20, 2.20) ( 2.30, 2.30) ( 2.40, 2.40)
3 ( 3.30, 3.30) ( 3.40, 3.40)
4 ( 4.40, 4.40)

Packed Vector B:
1 ( 1.10, 1.10)
2 ( 1.20, 1.20)
3 ( 2.20, 2.20)
4 ( 1.30, 1.30)
5 ( 2.30, 2.30)
6 ( 3.30, 3.30)
7 ( 1.40, 1.40)
8 ( 2.40, 2.40)
9 ( 3.40, 3.40)

10 ( 4.40, 4.40)
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NAG Library Routine Document

F01ZCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01ZCF copies a real band matrix stored in a packed array into an unpacked array, or vice versa.

2 Specification

SUBROUTINE F01ZCF (JOB, M, N, KL, KU, A, LDA, B, LDB, IFAIL)

INTEGER M, N, KL, KU, LDA, LDB, IFAIL
REAL (KIND=nag_wp) A(LDA,N), B(LDB,*)
CHARACTER(1) JOB

3 Description

F01ZCF unpacks a band matrix that is stored in a packed array, or packs a band matrix that is stored in
an unpacked array. The band matrix has m rows, n columns, kl nonzero subdiagonals, and ku nonzero
superdiagonals. This routine is intended for possible use in conjunction with routines from Chapters
F06, F07 and F08, where routines that use band matrices store them in the packed form described
below.

4 References

None.

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies whether the band matrix is to be packed or unpacked.

JOB ¼ P (Pack)
The band matrix is to be packed into array B.

JOB ¼ U (Unpack)
The band matrix is to be unpacked into array A.

Constraint: JOB ¼ P or U .

2: M – INTEGER Input
3: N – INTEGER Input

On entry: m and n, the number of rows and columns of the band matrix, respectively.

Constraints:

M > 0;
N > 0.

4: KL – INTEGER Input

On entry: kl, the number of subdiagonals of the band matrix.

Constraint: KL � 0.
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5: KU – INTEGER Input

On entry: ku, the number of superdiagonals of the band matrix.

Constraint: KU � 0.

6: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if JOB ¼ P , then the leading m by n part of A must contain the band matrix stored in
unpacked form. Elements of the array that lie outside the banded part of the matrix are not
referenced and need not be assigned.

On exit: if JOB ¼ U , then the leading m by n part of A contains the band matrix stored in
unpacked form. Elements of the leading m by n part of A that are not within the banded part of
the matrix are assigned the value zero.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01ZCF
is called.

Constraint: LDA � M.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least min Mþ KU;Nð Þ.
On entry: if JOB ¼ U , then B must contain the band matrix in packed form, in the leading
kl þ ku þ 1ð Þ by min mþ ku; nð Þ part of the array. The matrix is packed column by column, with
the leading diagonal of the matrix in row ku þ 1ð Þ of B, the first superdiagonal starting at
position 2 in row ku, the first subdiagonal starting at position 1 in row ku þ 2ð Þ, and so on.
Elements of B that are not needed to store the band matrix, for instance the leading ku by ku
triangle, are not referenced and need not be assigned.

On exit: if JOB ¼ P , then B contains the band matrix stored in packed form. Elements of B that
are not needed to store the band matrix are not referenced.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F01ZCF
is called.

Constraint: LDB � KLþ KUþ 1ð Þ.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, JOB 6¼ P or U .

IFAIL ¼ 2

On entry, KL < 0.

IFAIL ¼ 3

On entry, KU < 0.

IFAIL ¼ 4

On entry, LDA < M.

IFAIL ¼ 5

On entry, LDB < KLþ KUþ 1.

IFAIL ¼ 6

On entry, M < 1,
or N < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01ZCF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example reads a matrix A in unpacked form, and copies it to the packed matrix B.

10.1 Program Text

Program f01zcfe

! F01ZCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01zcf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, kl, ku, lda, ldb, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01ZCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) m, n, kl, ku
lda = n
ldb = lda
Allocate (a(lda,n),b(ldb,n))

! Read a banded matrix of size m by n. kl is the number of
! subdiagonals, ku the number of superdiagonals.

Do i = 1, n
Read (nin,*) a(i,1:n)

End Do
! Clear the packed matrix array B, so that no elements are
! unassigned when we print B later.

b(1:(kl+ku+1),1:n) = 0.0E+0_nag_wp
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Print the unpacked matrix

Call x04caf(’G’,’X’,n,n,a,lda,’Unpacked Matrix A:’,ifail)

Write (nout,*)
Flush (nout)

! Convert to packed matrix form
ifail = 0
Call f01zcf(’Pack’,m,n,kl,ku,a,lda,b,ldb,ifail)

! Print the packed matrix
ifail = 0
Call x04caf(’G’,’X’,kl+ku+1,n,b,ldb,’Packed Matrix B:’,ifail)

End Program f01zcfe

10.2 Program Data

F01ZCF Example Program Data
5 5 1 1 : m, n, kl, ku
1.1 1.2 0.0 0.0 0.0 : Unpacked Matrix A
2.1 2.2 2.3 0.0 0.0
0.0 3.2 3.3 3.4 0.0
0.0 0.0 4.3 4.4 4.5
0.0 0.0 0.0 5.4 5.5
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10.3 Program Results

F01ZCF Example Program Results

Unpacked Matrix A:
1 2 3 4 5

1 1.1000 1.2000 0.0000 0.0000 0.0000
2 2.1000 2.2000 2.3000 0.0000 0.0000
3 0.0000 3.2000 3.3000 3.4000 0.0000
4 0.0000 0.0000 4.3000 4.4000 4.5000
5 0.0000 0.0000 0.0000 5.4000 5.5000

Packed Matrix B:
1 2 3 4 5

1 0.0000 1.2000 2.3000 3.4000 4.5000
2 1.1000 2.2000 3.3000 4.4000 5.5000
3 2.1000 3.2000 4.3000 5.4000 0.0000
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NAG Library Routine Document

F01ZDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01ZDF copies a complex band matrix stored in a packed array into an unpacked array, or vice versa.

2 Specification

SUBROUTINE F01ZDF (JOB, M, N, KL, KU, A, LDA, B, LDB, IFAIL)

INTEGER M, N, KL, KU, LDA, LDB, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,N), B(LDB,*)
CHARACTER(1) JOB

3 Description

F01ZDF unpacks a band matrix that is stored in a packed array, or packs a band matrix that is stored in
an unpacked array. The band matrix has m rows, n columns, kl nonzero subdiagonals, and ku nonzero
superdiagonals. This routine is intended for possible use in conjunction with routines from Chapters
F06, F07 and F08, where routines that use band matrices store them in the packed form described
below.

4 References

None.

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies whether the band matrix is to be packed or unpacked.

JOB ¼ P (Pack)
The band matrix is to be packed into array B.

JOB ¼ U (Unpack)
The band matrix is to be unpacked into array A.

Constraint: JOB ¼ P or U .

2: M – INTEGER Input
3: N – INTEGER Input

On entry: m and n, the number of rows and columns of the band matrix, respectively.

Constraints:

M > 0;
N > 0.

4: KL – INTEGER Input

On entry: kl, the number of subdiagonals of the band matrix.

Constraint: KL � 0.
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5: KU – INTEGER Input

On entry: ku, the number of superdiagonals of the band matrix.

Constraint: KU � 0.

6: AðLDA;NÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: if JOB ¼ P , then the leading m by n part of A must contain the band matrix stored in
unpacked form. Elements of the array that lie outside the banded part of the matrix are not
referenced and need not be assigned.

On exit: if JOB ¼ U , then the leading m by n part of A contains the band matrix stored in
unpacked form. Elements of the leading m by n part of A that are not within the banded part of
the matrix are assigned the value zero.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01ZDF
is called.

Constraint: LDA � M.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least min Mþ KU;Nð Þ.
On entry: if JOB ¼ U , then B must contain the band matrix in packed form, in the leading
kl þ ku þ 1ð Þ by min mþ ku; nð Þ part of the array. The matrix is packed column by column, with
the leading diagonal of the matrix in row ku þ 1ð Þ of B, the first superdiagonal starting at
position 2 in row ku, the first subdiagonal starting at position 1 in row ku þ 2ð Þ, and so on.
Elements of B that are not needed to store the band matrix, for instance the leading ku by ku
triangle, are not referenced and need not be assigned.

On exit: if JOB ¼ P , then B contains the band matrix stored in packed form. Elements of B that
are not needed to store the band matrix are not referenced.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F01ZDF
is called.

Constraint: LDB � KLþ KUþ 1ð Þ.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, JOB 6¼ P or U .

IFAIL ¼ 2

On entry, KL < 0.

IFAIL ¼ 3

On entry, KU < 0.

IFAIL ¼ 4

On entry, LDA < M.

IFAIL ¼ 5

On entry, LDB < KLþ KUþ 1.

IFAIL ¼ 6

On entry, M < 1,
or N < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F01ZDF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example reads a matrix A in unpacked form, and copies it to the packed matrix B.

10.1 Program Text

Program f01zdfe

! F01ZDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01zdf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, kl, ku, lda, ldb, m, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)

! .. Executable Statements ..
Write (nout,*) ’F01ZDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Write (nout,*)
Flush (nout)
Read (nin,*) m, n, kl, ku
lda = n
ldb = lda
Allocate (a(lda,n),b(ldb,n))

! Read a banded matrix of size m by n. kl is the number of
! subdiagonals, ku the number of superdiagonals.

Do i = 1, n
Read (nin,*) a(i,1:n)

End Do
! Clear the packed matrix array B, so that no elements are
! unassigned when we print B later.

b(1:(kl+ku+1),1:n) = (0.0E+0_nag_wp,0.0E+0_nag_wp)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Print the unpacked matrix

Call x04daf(’G’,’X’,n,n,a,lda,’Unpacked Matrix A:’,ifail)

Write (nout,*)
Flush (nout)

! Convert to packed matrix form
ifail = 0
Call f01zdf(’Pack’,m,n,kl,ku,a,lda,b,ldb,ifail)

! Print the packed matrix
ifail = 0
Call x04daf(’G’,’X’,kl+ku+1,n,b,ldb,’Packed Matrix B:’,ifail)

End Program f01zdfe

10.2 Program Data

F01ZDF Example Program Data
5 5 1 1 : m, n, kl, ku
(1.1,-1.1) (1.2,-1.2) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) : Unpacked Matrix A
(2.1,-2.1) (2.2,-2.2) (2.3,-2.3) (0.0, 0.0) (0.0, 0.0)
(0.0, 0.0) (3.2,-3.2) (3.3,-3.3) (3.4,-3.4) (0.0, 0.0)
(0.0, 0.0) (0.0, 0.0) (4.3,-4.3) (4.4,-4.4) (4.5,-4.5)
(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (5.4,-5.4) (5.5,-5.5)
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10.3 Program Results

F01ZDF Example Program Results

Unpacked Matrix A:
1 2 3 4 5

1 1.1000 1.2000 0.0000 0.0000 0.0000
-1.1000 -1.2000 0.0000 0.0000 0.0000

2 2.1000 2.2000 2.3000 0.0000 0.0000
-2.1000 -2.2000 -2.3000 0.0000 0.0000

3 0.0000 3.2000 3.3000 3.4000 0.0000
0.0000 -3.2000 -3.3000 -3.4000 0.0000

4 0.0000 0.0000 4.3000 4.4000 4.5000
0.0000 0.0000 -4.3000 -4.4000 -4.5000

5 0.0000 0.0000 0.0000 5.4000 5.5000
0.0000 0.0000 0.0000 -5.4000 -5.5000

Packed Matrix B:
1 2 3 4 5

1 0.0000 1.2000 2.3000 3.4000 4.5000
0.0000 -1.2000 -2.3000 -3.4000 -4.5000

2 1.1000 2.2000 3.3000 4.4000 5.5000
-1.1000 -2.2000 -3.3000 -4.4000 -5.5000

3 2.1000 3.2000 4.3000 5.4000 0.0000
-2.1000 -3.2000 -4.3000 -5.4000 0.0000
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NAG Library Chapter Contents

F02 – Eigenvalues and Eigenvectors

F02 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

F02ECF 17 nagf_eigen_real_gen_eigsys
Selected eigenvalues and eigenvectors of real nonsymmetric matrix (Black
Box)

F02EKF 24 nagf_eigen_real_gen_sparse_arnoldi
Selected eigenvalues and eigenvectors of a real sparse general matrix

F02FJF 11 nagf_eigen_real_symm_sparse_eigsys
Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem
(Black Box)

F02FKF 25 nagf_eigen_real_symm_sparse_arnoldi
Selected eigenvalues and eigenvectors of a real symmetric sparse matrix

F02GCF 17 nagf_eigen_complex_gen_eigsys
Selected eigenvalues and eigenvectors of complex nonsymmetric matrix
(Black Box)

F02JCF 25 nagf_eigen_real_gen_quad
Solves the quadratic eigenvalue problem for real matrices

F02JQF 25 nagf_eigen_complex_gen_quad
Solves the quadratic eigenvalue problem for complex matrices

F02SDF 8 nagf_eigen_withdraw_real_band_geneig
Eigenvector of generalized real banded eigenproblem by inverse iteration
Note: this routine is scheduled for withdrawal at Mark 27, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

F02WDF 8 nagf_eigen_withdraw_real_gen_qu_svd
Returns the Householder factorization of a real rectangular m by n matrix.
Part or all of the singular value decomposition may also be returned
Note: this routine is scheduled for withdrawal at Mark 27, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

F02WGF 22 nagf_eigen_real_gen_partialsvd
Computes leading terms in the singular value decomposition of a real
general matrix; also computes corresponding left and right singular vectors

F02WUF 14 nagf_eigen_real_triang_svd
SVD of real upper triangular matrix (Black Box)

F02XUF 13 nagf_eigen_complex_triang_svd
SVD of complex upper triangular matrix (Black Box)
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NAG Library Chapter Introduction

F02 – Eigenvalues and Eigenvectors
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1 Scope of the Chapter

This chapter provides routines for various types of matrix eigenvalue problem:

standard eigenvalue problems (finding eigenvalues and eigenvectors of a square matrix A);

singular value problems (finding singular values and singular vectors of a rectangular matrix A);

generalized eigenvalue problems (finding eigenvalues and eigenvectors of a matrix pencil
A� �B).
quadratic eigenvalue problems (finding eigenvalues and eigenvectors of the quadratic
�2Aþ �Bþ C).

Routines are provided for both real and complex data.

The majority of routines for these problems can be found in Chapter F08 which contains software
derived from LAPACK (see Anderson et al. (1999)). However, you should read the the F02 Chapter
Introduction before turning to Chapter F08, especially if you are a new user. Chapter F12 contains
routines for large sparse eigenvalue problems, although one such routine is also available in this
chapter.

Chapters F02 and F08 contain Black Box (or Driver) routines that enable many problems to be solved
by a call to a single routine, and the decision trees in Section 4 direct you to the most appropriate
routines in Chapters F02 and F08. The Chapter F02 routines call routines in Chapters F07 and F08
wherever possible to perform the computations, and there are pointers in Section 4 to the relevant
decision trees in Chapter F08.

2 Background to the Problems

Here we describe the different types of problem which can be tackled by the routines in this chapter,
and give a brief outline of the methods used to solve them. If you have one specific type of problem to
solve, you need only read the relevant sub-section and then turn to Section 3. Consult a standard
textbook for a more thorough discussion, for example Golub and Van Loan (1996) or Parlett (1998).

In each sub-section, we first describe the problem in terms of real matrices. The changes needed to
adapt the discussion to complex matrices are usually simple and obvious: a matrix transpose such as QT

must be replaced by its conjugate transpose QH; symmetric matrices must be replaced by Hermitian
matrices, and orthogonal matrices by unitary matrices. Any additional changes are noted at the end of
the sub-section.

2.1 Standard Eigenvalue Problems

Let A be a square matrix of order n. The standard eigenvalue problem is to find eigenvalues, �, and
corresponding eigenvectors, x 6¼ 0, such that

Ax ¼ �x: ð1Þ

(The phrase ‘eigenvalue problem’ is sometimes abbreviated to eigenproblem.)

2.1.1 Standard symmetric eigenvalue problems

If A is real symmetric, the eigenvalue problem has many desirable features, and it is advisable to take
advantage of symmetry whenever possible.

The eigenvalues � are all real, and the eigenvectors can be chosen to be mutually orthogonal. That is,
we can write

Azi ¼ �izi for i ¼ 1; 2; . . . ; n

or equivalently:

AZ ¼ Z� ð2Þ

where � is a real diagonal matrix whose diagonal elements �i are the eigenvalues, and Z is a real
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orthogonal matrix whose columns zi are the eigenvectors. This implies that zTi zj ¼ 0 if i 6¼ j, and
zik k2 ¼ 1.

Equation (2) can be rewritten

A ¼ Z�ZT: ð3Þ

This is known as the eigen-decomposition or spectral factorization of A.

Eigenvalues of a real symmetric matrix are well-conditioned, that is, they are not unduly sensitive to
perturbations in the original matrix A. The sensitivity of an eigenvector depends on how small the gap
is between its eigenvalue and any other eigenvalue: the smaller the gap, the more sensitive the
eigenvector. More details on the accuracy of computed eigenvalues and eigenvectors are given in the
routine documents, and in the F08 Chapter Introduction.

For dense or band matrices, the computation of eigenvalues and eigenvectors proceeds in the following
stages:

1. A is reduced to a symmetric tridiagonal matrix T by an orthogonal similarity transformation:
A ¼ QTQT, where Q is orthogonal. (A tridiagonal matrix is zero except for the main diagonal and
the first subdiagonal and superdiagonal on either side.) T has the same eigenvalues as A and is
easier to handle.

2. Eigenvalues and eigenvectors of T are computed as required. If all eigenvalues (and optionally
eigenvectors) are required, they are computed by the QR algorithm, which effectively factorizes T
as T ¼ S�ST, where S is orthogonal, or by the divide-and-conquer method. If only selected
eigenvalues are required, they are computed by bisection, and if selected eigenvectors are required,
they are computed by inverse iteration. If s is an eigenvector of T , then Qs is an eigenvector of A.

All the above remarks also apply – with the obvious changes – to the case when A is a complex
Hermitian matrix. The eigenvectors are complex, but the eigenvalues are all real, and so is the
tridiagonal matrix T .

If A is large and sparse, the methods just described would be very wasteful in both storage and
computing time, and therefore an alternative algorithm, known as subspace iteration, is provided (for
real problems only) to find a (usually small) subset of the eigenvalues and their corresponding
eigenvectors. Chapter F12 contains routines based on the Lanczos method for real symmetric large
sparse eigenvalue problems, and these routines are usually more efficient than subspace iteration.

2.1.2 Standard nonsymmetric eigenvalue problems

A real nonsymmetric matrix A may have complex eigenvalues, occurring as complex conjugate pairs. If
x is an eigenvector corresponding to a complex eigenvalue �, then the complex conjugate vector �x is
the eigenvector corresponding to the complex conjugate eigenvalue ��. Note that the vector x defined in
equation (1) is sometimes called a right eigenvector; a left eigenvector y is defined by

yHA ¼ �yH or ATy ¼ ��y:

Routines in this chapter only compute right eigenvectors (the usual requirement), but routines in
Chapter F08 can compute left or right eigenvectors or both.

The eigenvalue problem can be solved via the Schur factorization of A, defined as

A ¼ ZTZT;

where Z is an orthogonal matrix and T is a real upper quasi-triangular matrix, with the same
eigenvalues as A. T is called the Schur form of A. If all the eigenvalues of A are real, then T is upper
triangular, and its diagonal elements are the eigenvalues of A. If A has complex conjugate pairs of
eigenvalues, then T has 2 by 2 diagonal blocks, whose eigenvalues are the complex conjugate pairs of
eigenvalues of A. (The structure of T is simpler if the matrices are complex – see below.)
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For example, the following matrix is in quasi-triangular form

1 � � �
0 2 �1 �
0 1 2 �
0 0 0 3

0B@
1CA

and has eigenvalues 1, 2
 i, and 3. (The elements indicated by ‘�’ may take any values.)

The columns of Z are called the Schur vectors. For each k 1 � k � nð Þ, the first k columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal of
T . (An invariant subspace (for A) is a subspace S such that for any vector v in S, Av is also in S.)
Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather
than eigenvectors. It is possible to order the Schur factorization so that any desired set of k eigenvalues
occupy the k leading positions on the diagonal of T , and routines for this purpose are provided in
Chapter F08.

Note that if A is symmetric, the Schur vectors are the same as the eigenvectors, but if A is
nonsymmetric, they are distinct, and the Schur vectors, being orthonormal, are often more satisfactory
to work with in numerical computation.

Eigenvalues and eigenvectors of a nonsymmetric matrix may be ill-conditioned, that is, sensitive to
perturbations in A. Chapter F08 contains routines which compute or estimate the condition numbers of
eigenvalues and eigenvectors, and the F08 Chapter Introduction gives more details about the error
analysis of nonsymmetric eigenproblems. The accuracy with which eigenvalues and eigenvectors can be
obtained is often improved by balancing a matrix. This is discussed further in Section 3.4.

Computation of eigenvalues, eigenvectors or the Schur factorization proceeds in the following stages:

1. A is reduced to an upper Hessenberg matrix H by an orthogonal similarity transformation:
A ¼ QHQT, where Q is orthogonal. (An upper Hessenberg matrix is zero below the first
subdiagonal.) H has the same eigenvalues as A, and is easier to handle.

2. The upper Hessenberg matrix H is reduced to Schur form T by the QR algorithm, giving the Schur
factorization H ¼ STST. The eigenvalues of A are obtained from the diagonal blocks of T . The
matrix Z of Schur vectors (if required) is computed as Z ¼ QS.

3. After the eigenvalues have been found, eigenvectors may be computed, if required, in two different
ways. Eigenvectors of H can be computed by inverse iteration, and then pre-multiplied by Q to
give eigenvectors of A; this approach is usually preferred if only a few eigenvectors are required.
Alternatively, eigenvectors of T can be computed by back-substitution, and pre-multiplied by Z to
give eigenvectors of A.

All the above remarks also apply – with the obvious changes – to the case when A is a complex
matrix. The eigenvalues are in general complex, so there is no need for special treatment of complex
conjugate pairs, and the Schur form T is simply a complex upper triangular matrix.

As for the symmetric eigenvalue problem, if A and is large and sparse then it is generally preferable to
use an alternative method. Chapter F12 provides routines based on Arnoldi's method for both real and
complex matrices, intended to find a subset of the eigenvalues and vectors.

2.2 The Singular Value Decomposition

The singular value decomposition (SVD) of a real m by n matrix A is given by

A ¼ U�V T;

where U and V are orthogonal and � is an m by n diagonal matrix with real diagonal elements, �i,
such that

�1 � �2 � � � � � �min m;nð Þ � 0:

The �i are the singular values of A and the first min m;nð Þ columns of U and V are, respectively, the
left and right singular vectors of A. The singular values and singular vectors satisfy
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Avi ¼ �iui and ATui ¼ �ivi
where ui and vi are the ith columns of U and V respectively.

The singular value decomposition of A is closely related to the eigen-decompositions of the symmetric
matrices ATA or AAT, because:

ATAvi ¼ �2i vi and AATui ¼ �2i ui:

However, these relationships are not recommended as a means of computing singular values or vectors
unless A is sparse and routines from Chapter F12 are to be used.

If Uk, Vk denote the leading k columns of U and V respectively, and if �k denotes the leading principal
submatrix of �, then

Ak 	 Uk�kV
T
k

is the best rank-k approximation to A in both the 2-norm and the Frobenius norm.

Singular values are well-conditioned; that is, they are not unduly sensitive to perturbations in A. The
sensitivity of a singular vector depends on how small the gap is between its singular value and any
other singular value: the smaller the gap, the more sensitive the singular vector. More details on the
accuracy of computed singular values and vectors are given in the routine documents and in the F08
Chapter Introduction.

The singular value decomposition is useful for the numerical determination of the rank of a matrix, and
for solving linear least squares problems, especially when they are rank-deficient (or nearly so). See
Chapter F04.

Computation of singular values and vectors proceeds in the following stages:

1. A is reduced to an upper bidiagonal matrix B by an orthogonal transformation A ¼ U1BV
T
1 , where

U1 and V1 are orthogonal. (An upper bidiagonal matrix is zero except for the main diagonal and
the first superdiagonal.) B has the same singular values as A, and is easier to handle.

2. The SVD of the bidiagonal matrix B is computed as B ¼ U2�V
T
2 , where U2 and V2 are orthogonal

and � is diagonal as described above. Then in the SVD of A, U ¼ U1U2 and V ¼ V1V2.
All the above remarks also apply – with the obvious changes – to the case when A is a complex
matrix. The singular vectors are complex, but the singular values are real and non-negative, and the
bidiagonal matrix B is also real.

By formulating the problems appropriately, real large sparse singular value problems may be solved
using the symmetric eigenvalue routines in Chapter F12.

2.3 Generalized Eigenvalue Problems

Let A and B be square matrices of order n. The generalized eigenvalue problem is to find eigenvalues,
�, and corresponding eigenvectors, x 6¼ 0, such that

Ax ¼ �Bx: ð4Þ

For given A and B, the set of all matrices of the form A� �B is called a pencil, and � and x are said to
be an eigenvalue and eigenvector of the pencil A� �B.

When B is nonsingular, equation (4) is mathematically equivalent to B�1Að Þx ¼ �x, and when A is
nonsingular, it is equivalent to A�1Bð Þx ¼ 1=�ð Þx. Thus, in theory, if one of the matrices A or B is
known to be nonsingular, the problem could be reduced to a standard eigenvalue problem.

However, for this reduction to be satisfactory from the point of view of numerical stability, it is
necessary not only that B (or A) should be nonsingular, but that it should be well-conditioned with
respect to inversion. The nearer B is to singularity, the more unsatisfactory B�1A will be as a vehicle
for determining the required eigenvalues. Well-determined eigenvalues of the original problem (4) may
be poorly determined even by the correctly rounded version of B�1A.
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We consider first a special class of problems in which B is known to be nonsingular, and then return to
the general case in the following sub-section.

2.3.1 Generalized symmetric-definite eigenvalue problems

If A and B are symmetric and B is positive definite, then the generalized eigenvalue problem has
desirable properties similar to those of the standard symmetric eigenvalue problem. The eigenvalues are
all real, and the eigenvectors, while not orthogonal in the usual sense, satisfy the relations zTi Bzj ¼ 0
for i 6¼ j and can be normalized so that zTi Bzi ¼ 1.

Note that it is not enough for A and B to be symmetric; B must also be positive definite, which implies
nonsingularity. Eigenproblems with these properties are referred to as symmetric-definite problems.

If � is the diagonal matrix whose diagonal elements are the eigenvalues, and Z is the matrix whose
columns are the eigenvectors, then

ZTAZ ¼ � and ZTBZ ¼ I:

To compute eigenvalues and eigenvectors, the problem can be reduced to a standard symmetric
eigenvalue problem, using the Cholesky factorization of B as LLT or UTU (see Chapter F07). Note,
however, that this reduction does implicitly involve the inversion of B, and hence this approach should
not be used if B is ill-conditioned with respect to inversion.

For example, with B ¼ LLT, we have

Az ¼ �Bz, L�1AL�T
� �

LTz
� �

¼ � LTz
� �

:

Hence the eigenvalues of Az ¼ �Bz are those of Cy ¼ �y, where C is the symmetric matrix
C ¼ L�1AL�T and y ¼ LTz. The standard symmetric eigenproblem Cy ¼ �y may be solved by the
methods described in Section 2.1.1. The eigenvectors z of the original problem may be recovered by
computing z ¼ L�Ty.
Most of the routines which solve this class of problems can also solve the closely related problems

ABx ¼ �x or BAx ¼ �x

where again A and B are symmetric and B is positive definite. See the routine documents for details.

All the above remarks also apply – with the obvious changes – to the case when A and B are complex
Hermitian matrices. Such problems are called Hermitian-definite. The eigenvectors are complex, but the
eigenvalues are all real.

If A and B are large and sparse, reduction to an equivalent standard eigenproblem as described above
would almost certainly result in a large dense matrix C, and hence would be very wasteful in both
storage and computing time. The methods of subspace iteration and Lanczos type methods, mentioned
in Section 2.1.1, can also be used for large sparse generalized symmetric-definite problems.

2.3.2 Generalized nonsymmetric eigenvalue problems

Any generalized eigenproblem which is not symmetric-definite with well-conditioned B must be
handled as if it were a general nonsymmetric problem.

If B is singular, the problem has infinite eigenvalues. These are not a problem; they are equivalent to
zero eigenvalues of the problem Bx ¼ �Ax. Computationally they appear as very large values.

If A and B are both singular and have a common null space, then A� �B is singular for all �; in other
words, any value � can be regarded as an eigenvalue. Pencils with this property are called singular.

As with standard nonsymmetric problems, a real problem may have complex eigenvalues, occurring as
complex conjugate pairs.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of A and B:

A ¼ QUZT; B ¼ QVZT

where Q and Z are orthogonal, V is upper triangular, and U is upper quasi-triangular (defined just as in
Section 2.1.2).
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If all the eigenvalues are real, then U is upper triangular; the eigenvalues are given by �i ¼ uii=vii. If
there are complex conjugate pairs of eigenvalues, then U has 2 by 2 diagonal blocks.

Eigenvalues and eigenvectors of a generalized nonsymmetric problem may be ill-conditioned; that is,
sensitive to perturbations in A or B.

Particular care must be taken if, for some i, uii ¼ vii ¼ 0, or in practical terms if uii and vii are both
small; this means that the pencil is singular, or approximately so. Not only is the particular value �i
undetermined, but also no reliance can be placed on any of the computed eigenvalues. See also the
routine documents.

Computation of eigenvalues and eigenvectors proceeds in the following stages.

1. The pencil A� �B is reduced by an orthogonal transformation to a pencil H � �K in which H is
upper Hessenberg and K is upper triangular: A ¼ Q1HZ

T
1 and B ¼ Q1KZ

T
1 . The pencil H � �K

has the same eigenvalues as A� �B, and is easier to handle.

2. The upper Hessenberg matrix H is reduced to upper quasi-triangular form, while K is maintained
in upper triangular form, using the QZ algorithm. This gives the generalized Schur factorization:
H ¼ Q2UZ2 and K ¼ Q2V Z2.

3. Eigenvectors of the pencil U � �V are computed (if required) by back-substitution, and pre-
multiplied by Z1Z2 to give eigenvectors of A.

All the above remarks also apply – with the obvious changes – to the case when A and B are complex
matrices. The eigenvalues are in general complex, so there is no need for special treatment of complex
conjugate pairs, and the matrix U in the generalized Schur factorization is simply a complex upper
triangular matrix.

As for the generalized symmetric-definite eigenvalue problem, if A and B are large and sparse then it is
generally preferable to use an alternative method. Chapter F12 provides routines based on Arnoldi's
method for both real and complex matrices, intended to find a subset of the eigenvalues and vectors.

2.4 Quadratic eigenvalue problems

Let A, B and C be square matrices of order n. The quadratic eigenvalue problem (QEP) is to find
eigenvalues, �, and corresponding eigenvectors, x 6¼ 0, such that

�2Aþ �Bþ C
� �

x ¼ 0:

More specifically, x is a right eigenvector and a left eigenvector, y, is such that

yH �2Aþ �Bþ C
� �

¼ 0;

where yH is the conjugate transpose of y (transpose when y is real).

In general the QEP has 2n eigenvalues and corresponding eigenvectors.

QEPs are generally solved by linearizing the problem to produce a 2n by 2n generalized eigenvalue
problem. For example,

C1 �ð Þ ¼ B C
�I 0

� �
� � �A 0

0 �I

� �
;

which is called the first companion form and has the same 2n eigenvalues as the QEP.

If

det �2Aþ �Bþ C
� �

6	 0;

then the QEP is said to be regular, or non-singular. For a regular QEP, when C is singular the QEP has
one or more zero eigenvalues and when A is singular the QEP has one or more infinite eigenvalues. As
with the generalized problem particular care must be taken when the problem is singular (see
Section 2.3.2).

As with generalized nonsymmetric problems, a real QEP may have complex eigenvalues, occurring as
complex conjugate pairs.
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For further information on QEPs, see the survey article by Tisseur and Meerbergen (2001), and for
details on solving the dense QEP see Hammarling et al. (2013).

3 Recommendations on Choice and Use of Available Routines

3.1 Black Box Routines and General Purpose Routines

Routines in the NAG Library for solving eigenvalue problems fall into two categories.

1. Black Box Routines: these are designed to solve a standard type of problem in a single call – for
example, to compute all the eigenvalues and eigenvectors of a real symmetric matrix. You are
recommended to use a black box routine if there is one to meet your needs; refer to the decision
tree in Section 4.1 or the index in Section 5.

2. General Purpose Routines: these perform the computational subtasks which make up the separate
stages of the overall task, as described in Section 2 – for example, reducing a real symmetric
matrix to tridiagonal form. General purpose routines are to be found, for historical reasons, some in
this chapter, a few in Chapter F01, but most in Chapter F08. If there is no black box routine that
meets your needs, you will need to use one or more general purpose routines.

The decision trees in Section 4.2 list the combinations of general purpose routines which are needed to
solve many common types of problem.

Sometimes a combination of a black box routine and one or more general purpose routines will be the
most convenient way to solve your problem: the black box routine can be used to compute most of the
results, and a general purpose routine can be used to perform a subsidiary computation, such as
computing condition numbers of eigenvalues and eigenvectors.

3.2 Computing Selected Eigenvalues and Eigenvectors

The decision trees and the routine documents make a distinction between routines which compute all
eigenvalues or eigenvectors, and routines which compute selected eigenvalues or eigenvectors; the two
classes of routine use different algorithms.

It is difficult to give clear guidance on which of these two classes of routine to use in a particular case,
especially with regard to computing eigenvectors. If you only wish to compute a very few eigenvectors,
then a routine for selected eigenvectors will be more economical, but if you want to compute a
substantial subset (an old rule of thumb suggested more than 25%), then it may be more economical to
compute all of them. Conversely, if you wish to compute all the eigenvectors of a sufficiently large
symmetric tridiagonal matrix, the routine for selected eigenvectors may be faster.

The choice depends on the properties of the matrix and on the computing environment; if it is critical,
you should perform your own timing tests.

For dense nonsymmetric eigenproblems, there are no algorithms provided for computing selected
eigenvalues; it is always necessary to compute all the eigenvalues, but you can then select specific
eigenvectors for computation by inverse iteration.

3.3 Storage Schemes for Symmetric Matrices

Routines which handle symmetric matrices are usually designed to use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower triangle
is stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining
elements of the array can be used to store other useful data. However, that is not always convenient,
and if it is important to economize on storage, the upper or lower triangle can be stored in a one-
dimensional array of length n nþ 1ð Þ=2; in other words, the storage is almost halved. This storage
format is referred to as packed storage.

Routines designed for packed storage are usually less efficient, especially on high-performance
computers, so there is a trade-off between storage and efficiency.

A band matrix is one whose nonzero elements are confined to a relatively small number of subdiagonals
or superdiagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required.
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Routines which take advantage of packed storage or bandedness are provided for both standard
symmetric eigenproblems and generalized symmetric-definite eigenproblems.

3.4 Balancing for Nonsymmmetric Eigenproblems

There are two preprocessing steps which one may perform on a nonsymmetric matrix A in order to
make its eigenproblem easier. Together they are referred to as balancing.

1. Permutation: this involves reordering the rows and columns to make A more nearly upper
triangular (and thus closer to Schur form): A0 ¼ PAPT, where P is a permutation matrix. If A has
a significant number of zero elements, this preliminary permutation can reduce the amount of work
required, and also improve the accuracy of the computed eigenvalues. In the extreme case, if A is
permutable to upper triangular form, then no floating-point operations are needed to reduce it to
Schur form.

2. Scaling: a diagonal matrix D is used to make the rows and columns of A0 more nearly equal in
norm: A00 ¼ DA0D�1. Scaling can make the matrix norm smaller with respect to the eigenvalues,
and so possibly reduce the inaccuracy contributed by roundoff (see Chapter II/11 of Wilkinson and
Reinsch (1971)).

Routines are provided in Chapter F08 for performing either or both of these preprocessing steps, and
also for transforming computed eigenvectors or Schur vectors back to those of the original matrix.

The black box routines in this chapter which compute eigenvectors perform both forms of balancing.

3.5 Non-uniqueness of Eigenvectors and Singular Vectors

Eigenvectors, as defined by equations (1) or (4), are not uniquely defined. If x is an eigenvector, then so
is kx where k is any nonzero scalar. Eigenvectors computed by different algorithms, or on different
computers, may appear to disagree completely, though in fact they differ only by a scalar factor (which
may be complex). These differences should not be significant in any application in which the
eigenvectors will be used, but they can arouse uncertainty about the correctness of computed results.

Even if eigenvectors x are normalized so that xk k2 ¼ 1, this is not sufficient to fix them uniquely, since
they can still be multiplied by a scalar factor k such that kj j ¼ 1. To counteract this inconvenience, most
of the routines in this chapter, and in Chapter F08, normalize eigenvectors (and Schur vectors) so that
xk k2 ¼ 1 and the component of x with largest absolute value is real and positive. (There is still a
possible indeterminacy if there are two components of equal largest absolute value – or in practice if
they are very close – but this is rare.)

In symmetric problems the computed eigenvalues are sorted into ascending order, but in nonsymmetric
problems the order in which the computed eigenvalues are returned is dependent on the detailed
working of the algorithm and may be sensitive to rounding errors. The Schur form and Schur vectors
depend on the ordering of the eigenvalues and this is another possible cause of non-uniqueness when
they are computed. However, it must be stressed again that variations in the results from this cause
should not be significant. (Routines in Chapter F08 can be used to transform the Schur form and Schur
vectors so that the eigenvalues appear in any given order if this is important.)

In singular value problems, the left and right singular vectors u and v which correspond to a singular
value � cannot be normalized independently: if u is multiplied by a factor k such that kj j ¼ 1, then v
must also be multiplied by k.

Non-uniqueness also occurs among eigenvectors which correspond to a multiple eigenvalue, or among
singular vectors which correspond to a multiple singular value. In practice, this is more likely to be
apparent as the extreme sensitivity of eigenvectors which correspond to a cluster of close eigenvalues
(or of singular vectors which correspond to a cluster of close singular values).

4 Decision Trees

4.1 Black Box Routines

The decision tree for this section is divided into three sub-trees.
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Tree 1 Eigenvalues and Eigenvectors of Real Matrices

Tree 2 Eigenvalues and Eigenvectors of Complex Matrices

Tree 3 Singular Values and Singular Vectors

Note: for the Chapter F08 routines there is generally a choice of simple and comprehensive routine. The
comprehensive routines return additional information such as condition and/or error estimates.

Tree 1: Eigenvalues and Eigenvectors of Real Matrices

Is this a sparse
eigenproblem Ax ¼ �x or
Ax ¼ �Bx? yes

Is the problem symmetric?
yes

F02FJF or F02FKF

no

F02EKF

no

Is the eigenproblem
�2Aþ �Bþ C
� �

x ¼ 0? yes
F02JCF

no

Is the eigenproblem
Ax ¼ �Bx? yes

Are A and B symmetric
with B positive definite and
well-conditioned w.r.t
inversion?

yes
Are A and B band matrices?

yes
F08UAF, F08UBF or
F12FFF and F12AGF

no

F08SAF or F08SBF

no

Are A and B band matrices?
yes

F12AFF and F12AGF

no

Is the generalized Schur
factorization required? yes

F08XAF

no

F08WAF or F08WBF

no

The eigenproblem is
Ax ¼ �x. Is A symmetric? yes

Are all eigenvalues or all
eigenvectors required? yes

F08FAF

no

F08FBF

no

Are eigenvalues only
required? yes

F08NAF or F08NBF

no

Is the Schur factorization
required? yes

F08PAF or F08PBF

no

Are all eigenvectors
required? yes

F08NAF or F08NBF

no

F02ECF
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Tree 2: Eigenvalues and Eigenvectors of Complex Matrices

Is this a sparse eigenproblem Ax ¼ �x
or Ax ¼ �Bx? yes

Are A and B banded matrices?
yes

F12ATF and F12AUF

no

See Chapter F12

no

Is the eigenproblem
�2Aþ �Bþ C
� �

x ¼ 0? yes
F02JQF

no

Is the eigenproblem Ax ¼ �Bx?
yes

Are A and B Hermitian with B positive
definite and well-conditioned w.r.t.
inversion?

yes
F08UNF or F08UPF

no

Is the generalized Schur factorization
required? yes

F08XNF

no

F08WNF

no

The eigenproblem is Ax ¼ �x. Is A
Hermitian? yes

Are all eigenvalues and eigenvectors
required? yes

F08FNF or F08FPF

no

F08FPF

no

Are eigenvalues only required?
yes

F08NNF or F08NPF

no

Is the Schur factorization required?
yes

F08PNF or F08PPF

no

Are all eigenvectors required?
yes

F08NNF or F08NPF

no

F02GCF

Tree 3: Singular Values and Singular Vectors

Is A a complex matrix?
yes

Is A upper triangular?
yes

F02XUF

no

F08KPF

no

Is A upper triangular?
yes

F02WUF

no

Are only the leading terms required?
yes

F02WGF

no

F08KBF

4.2 General Purpose Routines (Eigenvalues and Eigenvectors)

Routines for large sparse eigenvalue problems are to be found in Chapter F12, see the F12 Chapter
Introduction.

The decision tree for this section addressing dense problems, is divided into eight sub-trees:

Tree 1 Real Symmetric Eigenvalue Problems in the F08 Chapter Introduction

Tree 2 Real Generalized Symmetric-definite Eigenvalue Problems in the F08 Chapter
Introduction

Tree 3 Real Nonsymmetric Eigenvalue Problems in the F08 Chapter Introduction

Tree 4 Real Generalized Nonsymmetric Eigenvalue Problems in the F08 Chapter Introduction
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Tree 5 Complex Hermitian Eigenvalue Problems in the F08 Chapter Introduction

Tree 6 Complex Generalized Hermitian-definite Eigenvalue Problems in the F08 Chapter
Introduction

Tree 7 Complex non-Hermitian Eigenvalue Problems in the F08 Chapter Introduction

Tree 8 Complex Generalized non-Hermitian Eigenvalue Problems in the F08 Chapter
Introduction

As it is very unlikely that one of the routines in this section will be called on its own, the other routines
required to solve a given problem are listed in the order in which they should be called.

4.3 General Purpose Routines (Singular Value Decomposition)

See Section 4.2 in the F08 Chapter Introduction. For real sparse matrices where only selected singular
values are required (possibly with their singular vectors), routines from Chapter F12 may be applied to
the symmetric matrix ATA; see Section 10 in F12FBF.

5 Functionality Index

Black Box routines,
complex eigenproblem,

selected eigenvalues and eigenvectors........................................................................ F02GCF
complex quadratic eigenproblem,

all eigenvalues and optionally eigenvectors, backward,
errors and eigenvalue condition numbers.............................................................. F02JQF

complex upper triangular matrix,
singular values and, optionally, left and/or right singular vectors ............................. F02XUF

generalized real sparse symmetric-definite eigenproblem,
selected eigenvalues and eigenvectors........................................................................ F02FJF

real eigenproblem,
selected eigenvalues and eigenvectors........................................................................ F02ECF

real quadratic eigenproblem,
all eigenvalues and optionally eigenvectors, backward,

errors and eigenvalue condition numbers.............................................................. F02JCF
real sparse eigenproblem,

selected eigenvalues and eigenvectors........................................................................ F02EKF
real sparse symmetric matrix,

driver,
selected eigenvalues and eigenvectors................................................................... F02FKF

selected eigenvalues and eigenvectors........................................................................ F02FJF
real upper triangular matrix,

singular values and, optionally, left and/or right singular vectors ............................. F02WUF

General Purpose routines (see also Chapter F12),
real m by n matrix, leading terms SVD......................................................................... F02WGF

6 Auxiliary Routines Associated with Library Routine Arguments

F02EKY nagf_eigen_arnoldi_option
See the description of the argument OPTION in F02EKF.

F02EKZ nagf_eigen_arnoldi_monit_gen
See the description of the argument MONIT in F02EKF.

F02FJZ nagf_eigen_monit
See the description of the argument MONIT in F02FJF.

F02FKZ nagf_eigen_arnoldi_monit_symm
See the description of the argument MONIT in F02FKF.
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7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

F02BBF 19 F08FBF (DSYEVX)
F02BCF 19 F02ECF
F02BDF 19 F02GCF
F02BJF 23 F08WAF (DGGEV)
F02EAF 23 F08PAF (DGEES)
F02EBF 23 F08NAF (DGEEV)
F02FAF 23 F08FAF (DSYEV)
F02FCF 23 F08FBF (DSYEVX)
F02FDF 23 F08SAF (DSYGV)
F02FHF 23 F08UAF (DSBGV)
F02GAF 23 F08PNF (ZGEES)
F02GBF 23 F08NNF (ZGEEV)
F02GJF 23 F08WNF (ZGGEV)
F02HAF 23 F08FNF (ZHEEV)
F02HCF 23 F08FPF (ZHEEVX)
F02HDF 23 F08SNF (ZHEGV)
F02SDF 27 F12AGF and F12FGF
F02WDF 27 F02WUF and F08AEF (DGEQRF)
F02WEF 23 F08KBF (DGESVD)
F02XEF 23 F08KPF (ZGESVD)
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NAG Library Routine Document

F02ECF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02ECF computes selected eigenvalues and eigenvectors of a real general matrix.

2 Specification

SUBROUTINE F02ECF (CRIT, N, A, LDA, WL, WU, MEST, M, WR, WI, VR, LDVR,
VI, LDVI, WORK, LWORK, IWORK, BWORK, IFAIL)

&

INTEGER N, LDA, MEST, M, LDVR, LDVI, LWORK, IWORK(N), IFAIL
REAL (KIND=nag_wp) A(LDA,N), WL, WU, WR(N), WI(N), VR(LDVR,MEST),

VI(LDVI,MEST), WORK(LWORK)
&

LOGICAL BWORK(N)
CHARACTER(1) CRIT

3 Description

F02ECF computes selected eigenvalues and the corresponding right eigenvectors of a real general
matrix A:

Axi ¼ �ixi:

Eigenvalues �i may be selected either by modulus, satisfying:

wl � �ij j � wu;

or by real part, satisfying:

wl � Re �ið Þ � wu:
Note that even though A is real, �i and xi may be complex. If xi is an eigenvector corresponding to a
complex eigenvalue �i, then the complex conjugate vector �xi is the eigenvector corresponding to the
complex conjugate eigenvalue ��i. The eigenvalues in a complex conjugate pair �i and ��i are either both
selected or both not selected.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: CRIT – CHARACTER(1) Input

On entry: indicates the criterion for selecting eigenvalues.

CRIT ¼ M
Eigenvalues are selected according to their moduli: wl � �ij j � wu.

CRIT ¼ R
Eigenvalues are selected according to their real parts: wl � Re �ið Þ � wu.

Constraint: CRIT ¼ M or R .

F02 – Eigenvalues and Eigenvectors F02ECF

Mark 26 F02ECF.1



2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the n by n general matrix A.

On exit: contains the Hessenberg form of the balanced input matrix A0 (see Section 9).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F02ECF
is called.

Constraint: LDA � max 1;Nð Þ.

5: WL – REAL (KIND=nag_wp) Input
6: WU – REAL (KIND=nag_wp) Input

On entry: wl and wu, the lower and upper bounds on the criterion for the selected eigenvalues
(see CRIT).

Constraint: WU >WL.

7: MEST – INTEGER Input

On entry: the second dimension of the arrays VR and VI as declared in the (sub)program from
which F02ECF is called. MEST must be an upper bound on m, the number of eigenvalues and
eigenvectors selected. No eigenvectors are computed if MEST < m.

Constraint: MEST � max 1;mð Þ.

8: M – INTEGER Output

On exit: m, the number of eigenvalues actually selected.

9: WRðNÞ – REAL (KIND=nag_wp) array Output
10: WIðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first M elements of WR and WI hold the real and imaginary parts, respectively, of
the selected eigenvalues; elements Mþ 1 to N contain the other eigenvalues. Complex conjugate
pairs of eigenvalues are stored in consecutive elements of the arrays, with the eigenvalue having
positive imaginary part first. See also Section 9.

11: VRðLDVR;MESTÞ – REAL (KIND=nag_wp) array Output

On exit: contains the real parts of the selected eigenvectors, with the ith column holding the real
part of the eigenvector associated with the eigenvalue �i (stored in WRðiÞ and WIðiÞ).

12: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F02ECF is called.

Constraint: LDVR � max 1;Nð Þ.

13: VIðLDVI;MESTÞ – REAL (KIND=nag_wp) array Output

On exit: contains the imaginary parts of the selected eigenvectors, with the ith column holding
the imaginary part of the eigenvector associated with the eigenvalue �i (stored in WRðiÞ and
WIðiÞ).
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14: LDVI – INTEGER Input

On entry: the first dimension of the array VI as declared in the (sub)program from which
F02ECF is called.

Constraint: LDVI � max 1;Nð Þ.

15: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
16: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F02ECF is called.

Constraint: LWORK � max 1;N� Nþ 4ð Þð Þ.

17: IWORKðNÞ – INTEGER array Workspace

18: BWORKðNÞ – LOGICAL array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CRIT 6¼ M or R ,
or N < 0,
or LDA < max 1;Nð Þ,
or WU �WL,
or MEST < 1,
or LDVR < max 1;Nð Þ,
or LDVI < max 1;Nð Þ,
or LWORK < max 1;N� Nþ 4ð Þð Þ.

IFAIL ¼ 2

The QR algorithm failed to compute all the eigenvalues. No eigenvectors have been computed.

IFAIL ¼ 3

There are more than MEST eigenvalues in the specified range. The actual number of eigenvalues
in the range is returned in M. No eigenvectors have been computed. Rerun with the second
dimension of VR and VI ¼ MEST � M.
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IFAIL ¼ 4

Inverse iteration failed to compute all the specified eigenvectors. If an eigenvector failed to
converge, the corresponding column of VR and VI is set to zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If �i is an exact eigenvalue, and ~�i is the corresponding computed value, then

~�i � �i
		 		 � c nð Þ� A0k k2

si
;

where c nð Þ is a modestly increasing function of n, � is the machine precision, and si is the reciprocal
condition number of �i; A0 is the balanced form of the original matrix A (see Section 9), and
A0k k � Ak k.
If xi is the corresponding exact eigenvector, and ~xi is the corresponding computed eigenvector, then the
angle � ~xi; xið Þ between them is bounded as follows:

� ~xi; xið Þ � c nð Þ� A
0k k2

sepi
;

where sepi is the reciprocal condition number of xi.

The condition numbers si and sepi may be computed from the Hessenberg form of the balanced matrix
A0 which is returned in the array A. This requires calling F08PEF (DHSEQR) with JOB ¼ S to
compute the Schur form of A0, followed by F08QLF (DTRSNA).

8 Parallelism and Performance

F02ECF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02ECF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F02ECF calls routines from LAPACK in Chapter F08. It first balances the matrix, using a diagonal
similarity transformation to reduce its norm; and then reduces the balanced matrix A0 to upper
Hessenberg form H, using an orthogonal similarity transformation: A0 ¼ QHQT. The routine uses the
Hessenberg QR algorithm to compute all the eigenvalues of H, which are the same as the eigenvalues
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of A. It computes the eigenvectors of H which correspond to the selected eigenvalues, using inverse
iteration. It premultiplies the eigenvectors by Q to form the eigenvectors of A0; and finally transforms
the eigenvectors to those of the original matrix A.

Each eigenvector x (real or complex) is normalized so that xk k2 ¼ 1, and the element of largest
absolute value is real and positive.

The inverse iteration routine may make a small perturbation to the real parts of close eigenvalues, and
this may shift their moduli just outside the specified bounds. If you are relying on eigenvalues being
within the bounds, you should test them on return from F02ECF.

The time taken by the routine is approximately proportional to n3.

The routine can be used to compute all eigenvalues and eigenvectors, by setting WL large and negative,
and WU large and positive.

10 Example

This example computes those eigenvalues of the matrix A whose moduli lie in the range 0:2; 0:5½ �, and
their corresponding eigenvectors, where

A ¼
0:35 0:45 �0:14 �0:17
0:09 0:07 �0:54 0:35
�0:44 �0:33 �0:03 0:17
0:25 �0:32 �0:13 0:11

0B@
1CA:

10.1 Program Text

Program f02ecfe

! F02ECF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f02ecf, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: wl, wu
Integer :: i, ifail, j, lda, ldv, ldvi, ldvr, &

lwork, m, mest, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: v(:,:)
Real (Kind=nag_wp), Allocatable :: a(:,:), vi(:,:), vr(:,:), wi(:), &

work(:), wr(:)
Integer, Allocatable :: iwork(:)
Logical, Allocatable :: bwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
Write (nout,*) ’F02ECF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, mest, wl, wu
lda = n
ldv = n
ldvi = n
ldvr = n
lwork = 64*n
Allocate (v(ldv,n),a(lda,n),vi(ldvi,mest),vr(ldvr,mest),wi(n), &

work(lwork),wr(n),iwork(n),bwork(n))

! Read A from data file
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Read (nin,*)(a(i,1:n),i=1,n)

! Compute selected eigenvalues and eigenvectors of A

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f02ecf(’Moduli’,n,a,lda,wl,wu,mest,m,wr,wi,vr,ldvr,vi,ldvi,work, &

lwork,iwork,bwork,ifail)

Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99999)(’ (’,wr(i),’,’,wi(i),’)’,i=1,m)
Write (nout,*)
Flush (nout)
Do j = 1, m

Do i = 1, n
v(i,j) = cmplx(vr(i,j),vi(i,j),kind=nag_wp)

End Do
End Do

ifail = 0
Call x04dbf(’General’,’ ’,n,m,v,ldv,’Bracketed’,’F7.4’,’Eigenvectors’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

99999 Format ((3X,4(A,F7.4,A,F7.4,A,:)))
End Program f02ecfe

10.2 Program Data

F02ECF Example Program Data
4 3 0.2 0.5 : n, mest wl, wu
0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35

-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 : matrix A

10.3 Program Results

F02ECF Example Program Results

Eigenvalues
(-0.0994, 0.4008) (-0.0994,-0.4008)

Eigenvectors
1 2

1 (-0.1933, 0.2546) (-0.1933,-0.2546)
2 ( 0.2519,-0.5224) ( 0.2519, 0.5224)
3 ( 0.0972,-0.3084) ( 0.0972, 0.3084)
4 ( 0.6760, 0.0000) ( 0.6760,-0.0000)
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NAG Library Routine Document

F02EKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, you need only read Sections 1 to 10 of this
document. If, however, you wish to reset some or all of the settings this must be done by calling the
option setting routine F12ADF from the user-supplied subroutine OPTION. Please refer to Section 11
for a detailed description of the specification of the optional parameters.

1 Purpose

F02EKF computes selected eigenvalues and eigenvectors of a real sparse general matrix.

2 Specification

SUBROUTINE F02EKF (N, NNZ, A, ICOLZP, IROWIX, NEV, NCV, SIGMA, MONIT,
OPTION, NCONV, W, V, LDV, RESID, IUSER, RUSER, IFAIL)

&

INTEGER N, NNZ, ICOLZP(N+1), IROWIX(NNZ), NEV, NCV,
NCONV, LDV, IUSER(*), IFAIL

&

REAL (KIND=nag_wp) A(NNZ), SIGMA, V(LDV,*), RESID(NEV+1), RUSER(*)
COMPLEX (KIND=nag_wp) W(NCV)
EXTERNAL MONIT, OPTION

3 Description

F02EKF computes selected eigenvalues and the corresponding right eigenvectors of a real sparse
general matrix A:

Awi ¼ �iwi:
A specified number, nev, of eigenvalues �i, or the shifted inverses �i ¼ 1= �i � �ð Þ, may be selected
either by largest or smallest modulus, largest or smallest real part, or, largest or smallest imaginary part.
Convergence is generally faster when selecting larger eigenvalues, smaller eigenvalues can always be
selected by choosing a zero inverse shift (� ¼ 0:0). When eigenvalues closest to a given real value are
required then the shifted inverses of largest magnitude should be selected with shift equal to the
required real value.

Note that even though A is real, �i and wi may be complex. If wi is an eigenvector corresponding to a
complex eigenvalue �i, then the complex conjugate vector �wi is the eigenvector corresponding to the
complex conjugate eigenvalue ��i. The eigenvalues in a complex conjugate pair �i and ��i are either both
selected or both not selected.

The sparse matrix A is stored in compressed column storage (CCS) format. See Section 2.1.3 in the F11
Chapter Introduction.

F02EKF uses an implicitly restarted Arnoldi iterative method to converge approximations to a set of
required eigenvalues and corresponding eigenvectors. Further algorithmic information is given in
Section 9 while a fuller discussion is provided in the F12 Chapter Introduction. If shifts are to be
performed then operations using shifted inverse matrices are performed using a direct sparse solver;
further information on the solver used is provided in the F11 Chapter Introduction.
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: NNZ – INTEGER Input

On entry: the dimension of the array A and The number of nonzero elements of the matrix A
and, if a nonzero shifted inverse is to be applied, all diagonal elements. Each nonzero is counted
once in the latter case.

Constraint: 0 � NNZ � N2.

3: AðNNZÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the array of nonzero elements (and diagonal elements if a nonzero inverse shift is to be
applied) of the n by n general matrix A.

On exit: if a nonzero shifted inverse is to be applied then the diagonal elements of A have the
shift value, as supplied in SIGMA, subtracted.

4: ICOLZPðNþ 1Þ – INTEGER array Input

On entry: ICOLZPðiÞ contains the index in A of the start of column i, for i ¼ 1; 2; . . . ; n;
ICOLZPðNþ 1Þ must contain the value NNZþ 1. Thus the number of nonzero elements in
column i of A is ICOLZPðiþ 1Þ � ICOLZPðiÞ; when shifts are applied this includes diagonal
elements irrespective of value. See Section 2.1.3 in the F11 Chapter Introduction.

5: IROWIXðNNZÞ – INTEGER array Input

On entry: IROWIXðiÞ contains the row index for each entry in A. See Section 2.1.3 in the F11
Chapter Introduction.

6: NEV – INTEGER Input

On entry: the number of eigenvalues to be computed.

Constraint: 0 < NEV < N� 1.

7: NCV – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which F02EKF is
called. The number of Arnoldi basis vectors to use during the computation.

At present there is no a priori analysis to guide the selection of NCV relative to NEV. However,
it is recommended that NCV � 2� NEVþ 1. If many problems of the same type are to be
solved, you should experiment with increasing NCV while keeping NEV fixed for a given test
problem. This will usually decrease the required number of matrix-vector operations but it also
increases the work and storage required to maintain the orthogonal basis vectors. The optimal
‘cross-over’ with respect to CPU time is problem dependent and must be determined empirically.

Constraint: NEVþ 1 < NCV � N.
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8: SIGMA – REAL (KIND=nag_wp) Input

On entry: if the Shifted Inverse Real mode has been selected then SIGMA contains the real shift
used; otherwise SIGMA is not referenced. This mode can be selected by setting the appropriate
options in the user-supplied subroutine OPTION.

9: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT is used to monitor the progress of F02EKF. MONIT may be the dummy subroutine
F02EKZ if no monitoring is actually required. (F02EKZ is included in the NAG Library.)
MONIT is called after the solution of each eigenvalue sub-problem and also just prior to return
from F02EKF.

The specification of MONIT is:

SUBROUTINE MONIT (NCV, NITER, NCONV, W, RZEST, ISTAT, IUSER,
RUSER)

&

INTEGER NCV, NITER, NCONV, ISTAT, IUSER(*)
REAL (KIND=nag_wp) RZEST(NCV), RUSER(*)
COMPLEX (KIND=nag_wp) W(NCV)

1: NCV – INTEGER Input

On entry: the dimension of the arrays W and RZEST. The number of Arnoldi basis
vectors used during the computation.

2: NITER – INTEGER Input

On entry: the number of the current Arnoldi iteration.

3: NCONV – INTEGER Input

On entry: the number of converged eigenvalues so far.

4: WðNCVÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the first NCONV elements of W contain the converged approximate
eigenvalues.

5: RZESTðNCVÞ – REAL (KIND=nag_wp) array Input

On entry: the first NCONV elements of RZEST contain the Ritz estimates (error
bounds) on the converged approximate eigenvalues.

6: ISTAT – INTEGER Input/Output

On entry: set to zero.

On exit: if set to a nonzero value F02EKF returns immediately with IFAIL ¼ 9.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONIT is called with the arguments IUSER and RUSER as supplied to F02EKF. You
should use the arrays IUSER and RUSER to supply information to MONIT.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02EKF is called. Arguments denoted as Input must not be changed by this
procedure.

10: OPTION – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

You can supply non-default options to the Arnoldi eigensolver by repeated calls to F12ADF from
within OPTION. (Please note that it is only necessary to call F12ADF; no call to F12AAF is

F02 – Eigenvalues and Eigenvectors F02EKF

Mark 26 F02EKF.3



required from within OPTION.) For example, you can set the mode to Shifted Inverse Real, you
can increase the Iteration Limit beyond its default and you can print varying levels of detail on
the iterative process using Print Level.

If only the default options (including that the eigenvalues of largest magnitude are sought) are to
be used then OPTION may be the dummy subroutine F02EKY (F02EKY is included in the NAG
Library). See Section 10 for an example of using OPTION to set some non-default options.

The specification of OPTION is:

SUBROUTINE OPTION (ICOMM, COMM, ISTAT, IUSER, RUSER)

INTEGER ICOMM(*), ISTAT, IUSER(*)
REAL (KIND=nag_wp) COMM(*), RUSER(*)

1: ICOMMð�Þ – INTEGER array Communication Array

On entry: contains details of the default option set. This array must be passed as
argument ICOMM in any call to F12ADF.

On exit: contains data on the current options set which may be altered from the default
set via calls to F12ADF.

2: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

On entry: contains details of the default option set. This array must be passed as
argument COMM in any call to F12ADF.

On exit: contains data on the current options set which may be altered from the default
set via calls to F12ADF.

3: ISTAT – INTEGER Input/Output

On entry: set to zero.

On exit: if set to a nonzero value F02EKF returns immediately with IFAIL ¼ 10.

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OPTION is called with the arguments IUSER and RUSER as supplied to F02EKF. You
should use the arrays IUSER and RUSER to supply information to OPTION.

OPTION must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02EKF is called.

11: NCONV – INTEGER Output

On exit: the number of converged approximations to the selected eigenvalues. On successful exit,
this will normally be either NEV or NEVþ 1 depending on the number of complex conjugate
pairs of eigenvalues returned.

12: WðNCVÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the first NCONV elements contain the converged approximations to the selected
eigenvalues. Since complex conjugate pairs of eigenvalues appear together, it is possible (given
an odd number of converged real eigenvalues) for F02EKF to return one more eigenvalue than
requested.

13: VðLDV; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least NCV.

On exit: contains the eigenvectors associated with the eigenvalue �i, for i ¼ 1; 2; . . . ;NCONV
(stored in W). For a real eigenvalue, �j, the corresponding eigenvector is real and is stored in
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Vði; jÞ, for i ¼ 1; 2; . . . ; n. For complex conjugate pairs of eigenvalues, wjþ1 ¼ �wj, the real and
imaginary parts of the corresponding eigenvectors are stored, respectively, in Vði; jÞ and Vði; jÞ,
for i ¼ 1; 2; . . . ; n. The imaginary parts stored are for the first of the conjugate pair of
eigenvectors; the other eigenvector in the pair is obtained by negating these imaginary parts.

14: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F02EKF
is called.

Constraint: LDV � N.

15: RESIDðNEVþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the residual Awi � �iwik k2 for the estimates to the eigenpair �i and wi is returned in
RESIDðiÞ, for i ¼ 1; 2; . . . ;NCONV.

16: IUSERð�Þ – INTEGER array User Workspace

IUSER is not used by F02EKF, but is passed directly to MONIT and OPTION and should be
used to pass information to these routines.

17: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by F02EKF, but is passed directly to MONIT and OPTION and should be
used to pass information to these routines.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

On entry, NNZ ¼ valueh i.
Constraint: NNZ > 0.

On entry, NNZ ¼ valueh i and N ¼ valueh i.
Constraint: NNZ � N� N.

IFAIL ¼ 3

On entry, in shifted inverse mode, the jth diagonal element of A is not defined, for j ¼ valueh i.
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IFAIL ¼ 4

On entry, for i ¼ valueh i, ICOLZPðiÞ ¼ valueh i and ICOLZPðiþ 1Þ ¼ valueh i.
Constraint: ICOLZPðiÞ < ICOLZPðiþ 1Þ.
On entry, ICOLZPð1Þ ¼ valueh i.
Constraint: ICOLZPð1Þ ¼ 1.

On entry, ICOLZPðNþ 1Þ ¼ valueh i and NNZ ¼ valueh i.
Constraint: ICOLZPðNþ 1Þ ¼ NNZþ 1.

IFAIL ¼ 5

On entry, in specification of column valueh i, and for j ¼ valueh i, IROWIXðjÞ ¼ valueh i and
IROWIXðjþ 1Þ ¼ valueh i.
Constraint: IROWIXðjÞ < IROWIXðjþ 1Þ.

IFAIL ¼ 6

On entry, NEV ¼ valueh i.
Constraint: NEV > 0.

IFAIL ¼ 7

On entry, NCV ¼ valueh i and N ¼ valueh i.
Constraint: NCV � N.

On entry, NCV ¼ valueh i and NEV ¼ valueh i.
Constraint: NCV > NEVþ 1.

IFAIL ¼ 8

On entry, the matrix A� �� I is nearly numerically singular and could not be inverted. Try
perturbing the value of �. Norm of matrix ¼ valueh i, Reciprocal condition number ¼ valueh i.
On entry, the matrix A� �� I is numerically singular and could not be inverted. Try perturbing
the value of �.

IFAIL ¼ 9

User requested termination in MONIT, ISTAT ¼ valueh i.

IFAIL ¼ 10

User requested termination in OPTION, ISTAT ¼ valueh i.

IFAIL ¼ 14

On entry, LDV ¼ valueh i and N ¼ valueh i.
Constraint: LDV � N.

IFAIL ¼ 21

The maximum number of iterations � 0, the optional parameter Iteration Limit has been set to
valueh i.

IFAIL ¼ 22

An internal call to F12ABF returned with IFAIL ¼ 2.
This error should not occur. Please contact NAG.

IFAIL ¼ 23

An internal call to F12ABF returned with IFAIL ¼ 3.
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IFAIL ¼ 24

The maximum number of iterations has been reached.
The maximum number of iterations ¼ valueh i.
The number of converged eigenvalues ¼ valueh i.
See the routine document for further details.

IFAIL ¼ 25

No shifts could be applied during a cycle of the implicitly restarted Arnoldi iteration.

IFAIL ¼ 26

Could not build an Arnoldi factorization. The size of the current Arnoldi factorization ¼ valueh i.

IFAIL ¼ 27

Error in internal call to compute eigenvalues and corresponding error bounds of the current upper
Hessenberg matrix.
Please contact NAG.

IFAIL ¼ 32

An internal call to F12ACF returned with IFAIL ¼ 2.

IFAIL ¼ 33

The number of eigenvalues found to sufficient accuracy is zero.

IFAIL ¼ 34

Internal inconsistency in the number of converged Ritz values. Number counted ¼ valueh i,
number expected ¼ valueh i.

IFAIL ¼ 35

During calculation of a real Schur form, there was a failure to compute valueh i eigenvalues in a
total of valueh i iterations.

IFAIL ¼ 36

The computed Schur form could not be reordered by an internal call.
This routine returned with IFAIL ¼ valueh i.
Please contact NAG.

IFAIL ¼ 37

In calculating eigenvectors, an internal call returned with an error.
Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The relative accuracy of a Ritz value (eigenvalue approximation), �, is considered acceptable if its Ritz
estimate � Tolerance� �. The default value for Tolerance is the machine precision given by X02AJF.
The Ritz estimates are available via the MONIT subroutine at each iteration in the Arnoldi process, or
can be printed by setting option Print Level to a positive value.

8 Parallelism and Performance

F02EKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02EKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F02EKF calls routines based on the ARPACK suite in Chapter F12. These routines use an implicitly
restarted Arnoldi iterative method to converge to approximations to a set of required eigenvalues (see
the F12 Chapter Introduction).

In the default Regular mode, only matrix-vector multiplications are performed using the sparse matrix
A during the Arnoldi process. Each iteration is therefore cheap computationally, relative to the
alternative, Shifted Inverse Real, mode described below. It is most efficient (i.e., the total number of
iterations required is small) when the eigenvalues of largest magnitude are sought and these are distinct.

Although there is an option for returning the smallest eigenvalues using this mode (see Smallest
Magnitude option), the number of iterations required for convergence will be far greater or the method
may not converge at all. However, where convergence is achieved, Regular mode may still prove to be
the most efficient since no inversions are required. Where smallest eigenvalues are sought and Regular
mode is not suitable, or eigenvalues close to a given real value are sought, the Shifted Inverse Real
mode should be used.

If the Shifted Inverse Real mode is used (via a call to F12ADF in OPTION) then the matrix A� �I is
used in linear system solves by the Arnoldi process. This is first factorized internally using the direct
LU factorization routine F11MEF. The condition number of A� �I is then calculated by a call to
F11MGF. If the condition number is too big then the matrix is considered to be nearly singular, i.e., � is
an approximate eigenvalue of A, and the routine exits with an error. In this situation it is normally
sufficient to perturb � by a small amount and call F02EKF again. After successful factorization,
subsequent solves are performed by calls to F11MFF.

Finally, F02EKF transforms the eigenvectors. Each eigenvector w (real or complex) is normalized so
that wk k2 ¼ 1, and the element of largest absolute value is real.

The monitoring routine MONIT provides some basic information on the convergence of the Arnoldi
iterations. Much greater levels of detail on the Arnoldi process are available via option Print Level. If
this is set to a positive value then information will be printed, by default, to standard output. The
Monitoring option may be used to select a monitoring file by setting the option to a file identification
(unit) number associated with Monitoring (see X04ACF).
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10 Example

This example computes the four eigenvalues of the matrix A which lie closest to the value � ¼ 5:5 on
the real line, and their corresponding eigenvectors, where A is the tridiagonal matrix with elements

aij ¼
2þ i; j ¼ i

3; j ¼ i� 1
�1þ �= 2nþ 2ð Þ; j ¼ iþ 1 with � ¼ 10:0:

8<:
10.1 Program Text

! F02EKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f02ekfe_mod

! F02EKF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: mymonit, myoption

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine myoption(icomm,comm,istat,iuser,ruser)

! .. Use Statements ..
Use nag_library, Only: f12adf

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (Inout) :: istat

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: comm(*), ruser(*)
Integer, Intent (Inout) :: icomm(*), iuser(*)

! .. Local Scalars ..
Integer :: ifail1
Character (25) :: rec

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Continue

istat = 0

If (iuser(1)>0) Then
Write (rec,99999) ’Print Level=’, iuser(1)
ifail1 = 1
Call f12adf(rec,icomm,comm,ifail1)
istat = max(istat,ifail1)

End If
If (iuser(2)>100) Then

Write (rec,99999) ’Iteration Limit=’, iuser(2)
ifail1 = 1
Call f12adf(rec,icomm,comm,ifail1)
istat = max(istat,ifail1)

End If
If (iuser(3)>0) Then

ifail1 = 1
Call f12adf(’Shifted Inverse Real’,icomm,comm,ifail1)
istat = max(istat,ifail1)

End If
99999 Format (A,I5)

End Subroutine myoption
Subroutine mymonit(ncv,niter,nconv,w,rzest,istat,iuser,ruser)

F02 – Eigenvalues and Eigenvectors F02EKF

Mark 26 F02EKF.9



! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (Inout) :: istat
Integer, Intent (In) :: nconv, ncv, niter

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: w(ncv)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: rzest(ncv)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
Continue

If (iuser(4)>0) Then
If (niter==1 .And. iuser(3)>0) Then

Write (nout,99999) ’ Arnoldi basis vectors used:’, ncv
Write (nout,*) &

’ The following Ritz values (mu) are related to the’
Write (nout,*) &

’ true eigenvalues (lambda) by lambda = sigma + 1/mu’
End If
Write (nout,*)
Write (nout,99999) ’ Iteration number ’, niter
Write (nout,99998) ’ Ritz values converged so far (’, nconv, &

’) and their Ritz estimates:’
Do i = 1, nconv

Write (nout,99997) i, w(i), rzest(i)
End Do
Write (nout,*) ’ Next (unconverged) Ritz value:’
Write (nout,99996) nconv + 1, w(nconv+1)

End If
istat = 0

99999 Format (1X,A,I4)
99998 Format (1X,A,I4,A)
99997 Format (1X,1X,I4,1X,’(’,E13.5,’,’,E13.5,’)’,1X,E13.5)
99996 Format (1X,1X,I4,1X,’(’,E13.5,’,’,E13.5,’)’)

End Subroutine mymonit
End Module f02ekfe_mod
Program f02ekfe

! Example problem for F02EKF.

! .. Use Statements ..
Use nag_library, Only: f02ekf, nag_wp, x02ajf
Use f02ekfe_mod, Only: mymonit, myoption, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: three = 3.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, rho, s, sigma
Integer :: i, ifail, imon, k, ldv, maxit, mode, &

n, nconv, ncv, nev, nnz, nx, prtlvl
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: w(:)
Real (Kind=nag_wp), Allocatable :: a(:), resid(:), v(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icolzp(:), irowix(:)
Integer :: iuser(4)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F02EKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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Read (nin,*) nx
Read (nin,*) nev
Read (nin,*) ncv
Read (nin,*) rho
Read (nin,*) sigma

n = nx*nx
nnz = 3*n - 2
ldv = n

Allocate (resid(ncv),a(nnz),icolzp(n+1),irowix(nnz),w(ncv),v(ldv,ncv))

! Construct A in compressed column storage (CCS) format where:
! A_{i,i} = 2 + i
! A_{i+1,i) = 3
! A_{i,i+1} = rho/(2n+2) - 1

h = one/real(n+1,kind=nag_wp)
s = rho*h/two - one

a(1) = two + one
a(2) = three
icolzp(1) = 1
irowix(1) = 1
irowix(2) = 2
k = 3
Do i = 2, n - 1

icolzp(i) = k
irowix(k) = i - 1
irowix(k+1) = i
irowix(k+2) = i + 1
a(k) = s
a(k+1) = two + real(i,kind=nag_wp)
a(k+2) = three
k = k + 3

End Do
icolzp(n) = k
icolzp(n+1) = k + 2
irowix(k) = n - 1
irowix(k+1) = n
a(k) = s
a(k+1) = two + real(n,kind=nag_wp)

! Set some options via iuser array and routine argument OPTION.
! iuser(1) = print level, iuser(2) = iteration limit,
! iuser(3)>0 means shifted-invert mode
! iuser(4)>0 means print monitoring info

Read (nin,*) prtlvl
Read (nin,*) maxit
Read (nin,*) mode
Read (nin,*) imon

If (prtlvl>0) Then
imon = 0

End If

iuser(1) = prtlvl
iuser(2) = maxit
iuser(3) = mode
iuser(4) = imon

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f02ekf(n,nnz,a,icolzp,irowix,nev,ncv,sigma,mymonit,myoption,nconv, &

w,v,ldv,resid,iuser,ruser,ifail)

Write (nout,99999) nconv, sigma
Do i = 1, nconv

If (resid(i)>real(100*n,kind=nag_wp)*x02ajf()) Then
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Write (nout,99998) i, w(i), resid(i)
Else

Write (nout,99998) i, w(i)
End If

End Do

99999 Format (1X,/,’ The ’,I4,’ Ritz values of closest to ’,E13.5,’ are:’,/)
99998 Format (1X,I8,5X,’( ’,E13.5,’ , ’,E13.5,’ )’,5X,E13.5)

End Program f02ekfe

10.2 Program Data

F02EKF Example Program Data
10 : nx, matrix order n = nx*nx
4 : nev, number of eigenvalues requested
20 : ncv, size of subspace
10.0 : rho, parameter for determining A
5.5 : sigma, shift (want eigenvalues close to sigma)
0 : print level
500 : maximum number of itrerations
1 : mode (0 = regular, 1 = shifted inverse)
1 : imon (0 = no monitoring, 1 = monitoring on)

10.3 Program Results

F02EKF Example Program Results

Arnoldi basis vectors used: 20
The following Ritz values (mu) are related to the
true eigenvalues (lambda) by lambda = sigma + 1/mu

Iteration number 1
Ritz values converged so far ( 2) and their Ritz estimates:

1 ( 0.56992E+00, 0.88081E+00) 0.13008E-19
2 ( 0.56992E+00, -0.88081E+00) 0.13008E-19

Next (unconverged) Ritz value:
3 ( 0.60777E+00, 0.00000E+00)

The 5 Ritz values of closest to 0.55000E+01 are:

1 ( 0.60178E+01 , -0.80028E+00 )
2 ( 0.60178E+01 , 0.80028E+00 )
3 ( 0.43431E+01 , -0.19456E+01 )
4 ( 0.43431E+01 , 0.19456E+01 )
5 ( 0.71453E+01 , 0.00000E+00 )

11 Optional Parameters

Internally F02EKF calls routines from the suite F12AAF, F12ABF, F12ACF, F12ADF and F12AEF.
Several optional parameters for these computational routines define choices in the problem specification
or the algorithm logic. In order to reduce the number of formal arguments of F02EKF these optional
parameters are also used here and have associated default values that are usually appropriate. Therefore,
you need only specify those optional parameters whose values are to be different from their default
values.

Optional parameters may be specified via the user-supplied subroutine OPTION in the call to F02EKF.
OPTION must be coded such that one call to F12ADF is necessary to set each optional parameter. All
optional parameters you do not specify are set to their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 11.1.

Advisory

Defaults
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Iteration Limit

Largest Imaginary

Largest Magnitude

Largest Real

List

Monitoring

Nolist

Print Level

Regular

Shifted Inverse Real

Smallest Imaginary

Smallest Magnitude

Smallest Real

Tolerance

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Advisory i Default ¼ 0

If the optional parameter List is set then optional parameter specifications are listed in a List file by
setting the option to a file identification (unit) number associated with Advisory messages (see
X04ABF and X04ACF).

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Iteration Limit i Default ¼ 300

The limit on the number of Arnoldi iterations that can be performed before F02EKF exits with
IFAIL 6¼ 0.

Largest Magnitude Default
Largest Imaginary
Largest Real
Smallest Imaginary
Smallest Magnitude
Smallest Real

The Arnoldi iterative method converges on a number of eigenvalues with given properties. The default
is to compute the eigenvalues of largest magnitude using Largest Magnitude. Alternatively,
eigenvalues may be chosen which have Largest Real part, Largest Imaginary part, Smallest
Magnitude, Smallest Real part or Smallest Imaginary part.

Note that these options select the eigenvalue properties for eigenvalues of OP the linear operator
determined by the computational mode and problem type.
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Nolist Default
List

Normally each optional parameter specification is not printed to the advisory channel as it is supplied.
Optional parameter List may be used to enable printing and optional parameter Nolist may be used to
suppress the printing.

Monitoring i Default ¼ �1
If i > 0, monitoring information is output to channel number i during the solution of each problem; this
may be the same as the Advisory channel number. The type of information produced is dependent on
the value of Print Level, see the description of the optional parameter Print Level for details of the
information produced. Please see X04ACF to associate a file with a given channel number.

Print Level i Default ¼ 0

This controls the amount of printing produced by F02EKF as follows.

¼ 0 No output except error messages.

> 0 The set of selected options.

¼ 2 Problem and timing statistics when all calls to F12ABF have been completed.

� 5 A single line of summary output at each Arnoldi iteration.

� 10 If Monitoring > 0, then at each iteration, the length and additional steps of the current
Arnoldi factorization and the number of converged Ritz values; during re-orthogonalization,
the norm of initial/restarted starting vector.

� 20 Problem and timing statistics on final exit from F12ABF. If Monitoring > 0, then at each
iteration, the number of shifts being applied, the eigenvalues and estimates of the Hessenberg
matrix H, the size of the Arnoldi basis, the wanted Ritz values and associated Ritz estimates
and the shifts applied; vector norms prior to and following re-orthogonalization.

� 30 If Monitoring > 0, then on final iteration, the norm of the residual; when computing the Schur
form, the eigenvalues and Ritz estimates both before and after sorting; for each iteration, the
norm of residual for compressed factorization and the compressed upper Hessenberg matrix
H; during re-orthogonalization, the initial/restarted starting vector; during the Arnoldi iteration
loop, a restart is flagged and the number of the residual requiring iterative refinement; while
applying shifts, the indices of the shifts being applied.

� 40 If Monitoring > 0, then during the Arnoldi iteration loop, the Arnoldi vector number and
norm of the current residual; while applying shifts, key measures of progress and the order of
H; while computing eigenvalues of H, the last rows of the Schur and eigenvector matrices;
when computing implicit shifts, the eigenvalues and Ritz estimates of H.

� 50 If Monitoring > 0, then during Arnoldi iteration loop: norms of key components and the
active column of H, norms of residuals during iterative refinement, the final upper Hessenberg
matrix H; while applying shifts: number of shifts, shift values, block indices, updated matrix
H; while computing eigenvalues of H: the matrix H, the computed eigenvalues and Ritz
estimates.

Regular Default
Shifted Inverse Real

These options define the computational mode which in turn defines the form of operation OP xð Þ to be
performed.

Given a standard eigenvalue problem in the form Ax ¼ �x then the following modes are available with
the appropriate operator OP xð Þ.

Regular OP ¼ A
Shifted Inverse Real OP ¼ A� �Ið Þ�1 where � is real
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Tolerance r Default ¼ �
An approximate eigenvalue has deemed to have converged when the corresponding Ritz estimate is
within Tolerance relative to the magnitude of the eigenvalue.
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NAG Library Routine Document

F02FJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02FJF finds eigenvalues and eigenvectors of a real sparse symmetric or generalized symmetric
eigenvalue problem.

2 Specification

SUBROUTINE F02FJF (N, M, K, NOITS, TOL, DOT, IMAGE, MONIT, NOVECS, X,
LDX, D, WORK, LWORK, RUSER, LRUSER, IUSER, LIUSER,
IFAIL)

&
&

INTEGER N, M, K, NOITS, NOVECS, LDX, LWORK, LRUSER,
IUSER(LIUSER), LIUSER, IFAIL

&

REAL (KIND=nag_wp) TOL, DOT, X(LDX,K), D(K), WORK(LWORK),
RUSER(LRUSER)

&

EXTERNAL DOT, IMAGE, MONIT

3 Description

F02FJF finds the m eigenvalues of largest absolute value and the corresponding eigenvectors for the
real eigenvalue problem

Cx ¼ �x ð1Þ

where C is an n by n matrix such that

BC ¼ CTB ð2Þ

for a given positive definite matrix B. C is said to be B-symmetric. Different specifications of C allow
for the solution of a variety of eigenvalue problems. For example, when

C ¼ A and B ¼ I where A ¼ AT

the routine finds the m eigenvalues of largest absolute magnitude for the standard symmetric eigenvalue
problem

Ax ¼ �x: ð3Þ

The routine is intended for the case where A is sparse.

As a second example, when

C ¼ B�1A

where

A ¼ AT

the routine finds the m eigenvalues of largest absolute magnitude for the generalized symmetric
eigenvalue problem

Ax ¼ �Bx: ð4Þ

The routine is intended for the case where A and B are sparse.

The routine does not require C explicitly, but C is specified via IMAGE which, given an n-element
vector z, computes the image w given by
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w ¼ Cz:

For instance, in the above example, where C ¼ B�1A, IMAGE will need to solve the positive definite
system of equations Bw ¼ Az for w.

To find the m eigenvalues of smallest absolute magnitude of (3) we can choose C ¼ A�1 and hence find
the reciprocals of the required eigenvalues, so that IMAGE will need to solve Aw ¼ z for w, and
correspondingly for (4) we can choose C ¼ A�1B and solve Aw ¼ Bz for w.

A table of examples of choice of IMAGE is given in Table 1. It should be remembered that the routine
also returns the corresponding eigenvectors and that B is positive definite. Throughout A is assumed to
be symmetric and, where necessary, nonsingularity is also assumed.

Eigenvalues
Required

Problem

Ax ¼ �x B ¼ Ið Þ Ax ¼ �Bx ABx ¼ �x

Largest Compute w ¼ Az Solve Bw ¼ Az Compute w ¼ ABz

Smallest (Find 1=�) Solve Aw ¼ z Solve Aw ¼ Bz Solve Av ¼ z, Bw ¼ v

Furthest from �
(Find �� �)

Compute
w ¼ A� �Ið Þz

Solve Bw ¼ A� �Bð Þz Compute
w ¼ AB� �Ið Þz

Closest to �
(Find 1= �� �ð Þ)

Solve A� �Ið Þw ¼ z Solve A� �Bð Þw ¼ Bz Solve AB� �Ið Þw ¼ z

Table 1
The Requirement of IMAGE for Various Problems.

The matrix B also need not be supplied explicitly, but is specified via DOT which, given n-element
vectors z and w, computes the generalized dot product wTBz.

F02FJF is based upon routine SIMITZ (see Nikolai (1979)), which is itself a derivative of the Algol
procedure ritzit (see Rutishauser (1970)), and uses the method of simultaneous (subspace) iteration.
(See Parlett (1998) for a description, analysis and advice on the use of the method.)

The routine performs simultaneous iteration on k > m vectors. Initial estimates to p � k eigenvectors,
corresponding to the p eigenvalues of C of largest absolute value, may be supplied to F02FJF. When
possible k should be chosen so that the kth eigenvalue is not too close to the m required eigenvalues,
but if k is initially chosen too small then F02FJF may be re-entered, supplying approximations to the k
eigenvectors found so far and with k then increased.

At each major iteration F02FJF solves an r by r (r � k) eigenvalue sub-problem in order to obtain an
approximation to the eigenvalues for which convergence has not yet occurred. This approximation is
refined by Chebyshev acceleration.

4 References

Nikolai P J (1979) Algorithm 538: Eigenvectors and eigenvalues of real generalized symmetric matrices
by simultaneous iteration ACM Trans. Math. Software 5 118–125

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

Rutishauser H (1969) Computational aspects of F L Bauer's simultaneous iteration method Numer.
Math. 13 4–13

Rutishauser H (1970) Simultaneous iteration method for symmetric matrices Numer. Math. 16 205–223
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix C.

Constraint: N � 1.

2: M – INTEGER Input/Output

On entry: m, the number of eigenvalues required.

Constraint: M � 1.

On exit: m0, the number of eigenvalues actually found. It is equal to m if IFAIL ¼ 0 on exit, and
is less than m if IFAIL ¼ 2, 3 or 4. See Sections 6 and 9 for further information.

3: K – INTEGER Input

On entry: the number of simultaneous iteration vectors to be used. Too small a value of K may
inhibit convergence, while a larger value of K incurs additional storage and additional work per
iteration.

Suggested value: K ¼ Mþ 4 will often be a reasonable choice in the absence of better
information.

Constraint: M < K � N.

4: NOITS – INTEGER Input/Output

On entry: the maximum number of major iterations (eigenvalue sub-problems) to be performed.
If NOITS � 0, the value 100 is used in place of NOITS.

On exit: the number of iterations actually performed.

5: TOL – REAL (KIND=nag_wp) Input

On entry: a relative tolerance to be used in accepting eigenvalues and eigenvectors. If the
eigenvalues are required to about t significant figures, TOL should be set to about 10�t. di is
accepted as an eigenvalue as soon as two successive approximations to di differ by less than
~di
		 		� TOL
� �

=10, where ~di is the latest approximation to di. Once an eigenvalue has been
accepted, an eigenvector is accepted as soon as difið Þ= di � dkð Þ < TOL, where fi is the
normalized residual of the current approximation to the eigenvector (see Section 9 for further
information). The values of the fi and di can be printed from MONIT. If TOL is supplied outside
the range (�; 1:0), where � is the machine precision, the value � is used in place of TOL.

6: DOT – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

DOT must return the value wTBz for given vectors w and z. For the standard eigenvalue
problem, where B ¼ I, DOT must return the dot product wTz.

The specification of DOT is:

FUNCTION DOT (IFLAG, N, Z, W, RUSER, LRUSER, IUSER, LIUSER)
REAL (KIND=nag_wp) DOT

INTEGER IFLAG, N, LRUSER, IUSER(LIUSER), LIUSER
REAL (KIND=nag_wp) Z(N), W(N), RUSER(LRUSER)

1: IFLAG – INTEGER Input/Output

On entry: is always non-negative.

On exit: may be used as a flag to indicate a failure in the computation of wTBz. If
IFLAG is negative on exit from DOT, F02FJF will exit immediately with IFAIL set to
IFLAG. Note that in this case DOT must still be assigned a value.
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2: N – INTEGER Input

On entry: the number of elements in the vectors z and w and the order of the matrix B.

3: ZðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector z for which wTBz is required.

4: WðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector w for which wTBz is required.

5: RUSERðLRUSERÞ – REAL (KIND=nag_wp) array User Workspace

DOT is called with the argument RUSER as supplied to F02FJF. You should use the
array RUSER to supply information to DOT.

6: LRUSER – INTEGER Input

On entry: the dimension of the array RUSER as declared in the (sub)program from
which F02FJF is called.

7: IUSERðLIUSERÞ – INTEGER array User Workspace

DOT is called with the argument IUSER as supplied to F02FJF. You should use the
array IUSER to supply information to DOT.

8: LIUSER – INTEGER Input

On entry: the dimension of the array IUSER as declared in the (sub)program from
which F02FJF is called.

DOT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02FJF is called. Arguments denoted as Input must not be changed by this
procedure.

7: IMAGE – SUBROUTINE, supplied by the user. External Procedure

IMAGE must return the vector w ¼ Cz for a given vector z.

The specification of IMAGE is:

SUBROUTINE IMAGE (IFLAG, N, Z, W, RUSER, LRUSER, IUSER, LIUSER)

INTEGER IFLAG, N, LRUSER, IUSER(LIUSER), LIUSER
REAL (KIND=nag_wp) Z(N), W(N), RUSER(LRUSER)

1: IFLAG – INTEGER Input/Output

On entry: is always non-negative.

On exit: may be used as a flag to indicate a failure in the computation of w. If IFLAG is
negative on exit from IMAGE, F02FJF will exit immediately with IFAIL set to IFLAG.

2: N – INTEGER Input

On entry: n, the number of elements in the vectors w and z, and the order of the matrix
C.

3: ZðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector z for which Cz is required.
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4: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the vector w ¼ Cz.

5: RUSERðLRUSERÞ – REAL (KIND=nag_wp) array User Workspace

IMAGE is called with the argument RUSER as supplied to F02FJF. You should use the
array RUSER to supply information to IMAGE.

6: LRUSER – INTEGER Input

On entry: the dimension of the array RUSER as declared in the (sub)program from
which F02FJF is called.

7: IUSERðLIUSERÞ – INTEGER array User Workspace

IMAGE is called with the argument IUSER as supplied to F02FJF. You should use the
array IUSER to supply information to IMAGE.

8: LIUSER – INTEGER Input

On entry: the dimension of the array IUSER as declared in the (sub)program from
which F02FJF is called.

IMAGE must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02FJF is called. Arguments denoted as Input must not be changed by this
procedure.

8: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT is used to monitor the progress of F02FJF. MONIT may be the dummy subroutine
F02FJZ if no monitoring is actually required. (F02FJZ is included in the NAG Library.) MONIT
is called after the solution of each eigenvalue sub-problem and also just prior to return from
F02FJF. The arguments ISTATE and NEXTIT allow selective printing by MONIT.

The specification of MONIT is:

SUBROUTINE MONIT (ISTATE, NEXTIT, NEVALS, NEVECS, K, F, D)

INTEGER ISTATE, NEXTIT, NEVALS, NEVECS, K
REAL (KIND=nag_wp) F(K), D(K)

1: ISTATE – INTEGER Input

On entry: specifies the state of F02FJF.

ISTATE ¼ 0
No eigenvalue or eigenvector has just been accepted.

ISTATE ¼ 1
One or more eigenvalues have been accepted since the last call to MONIT.

ISTATE ¼ 2
One or more eigenvectors have been accepted since the last call to MONIT.

ISTATE ¼ 3
One or more eigenvalues and eigenvectors have been accepted since the last call
to MONIT.

ISTATE ¼ 4
Return from F02FJF is about to occur.

2: NEXTIT – INTEGER Input

On entry: the number of the next iteration.
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3: NEVALS – INTEGER Input

On entry: the number of eigenvalues accepted so far.

4: NEVECS – INTEGER Input

On entry: the number of eigenvectors accepted so far.

5: K – INTEGER Input

On entry: k, the number of simultaneous iteration vectors.

6: FðKÞ – REAL (KIND=nag_wp) array Input

On entry: a vector of error quantities measuring the state of convergence of the
simultaneous iteration vectors. See TOL and Section 9 for further details. Each element
of F is initially set to the value 4:0 and an element remains at 4:0 until the
corresponding vector is tested.

7: DðKÞ – REAL (KIND=nag_wp) array Input

On entry: DðiÞ contains the latest approximation to the absolute value of the ith
eigenvalue of C.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02FJF is called. Arguments denoted as Input must not be changed by this
procedure.

9: NOVECS – INTEGER Input

On entry: the number of approximate vectors that are being supplied in X. If NOVECS is outside
the range 0;Kð Þ, the value 0 is used in place of NOVECS.

10: XðLDX;KÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if 0 < NOVECS � K, the first NOVECS columns of X must contain approximations to
the eigenvectors corresponding to the NOVECS eigenvalues of largest absolute value of C.
Supplying approximate eigenvectors can be useful when reasonable approximations are known,
or when F02FJF is being restarted with a larger value of K. Otherwise it is not necessary to
supply approximate vectors, as simultaneous iteration vectors will be generated randomly by
F02FJF.

On exit: if IFAIL ¼ 0, 2, 3 or 4, the first m0 columns contain the eigenvectors corresponding to
the eigenvalues returned in the first m0 elements of D; and the next k�m0 � 1 columns contain
approximations to the eigenvectors corresponding to the approximate eigenvalues returned in the
next k�m0 � 1 elements of D. Here m0 is the value returned in M, the number of eigenvalues
actually found. The kth column is used as workspace.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F02FJF
is called.

Constraint: LDX � N.

12: DðKÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0, 2, 3 or 4, the first m0 elements contain the first m0 eigenvalues in
decreasing order of magnitude; and the next k�m0 � 1 elements contain approximations to the
next k�m0 � 1 eigenvalues. Here m0 is the value returned in M, the number of eigenvalues
actually found. DðkÞ contains the value e where �e; eð Þ is the latest interval over which
Chebyshev acceleration is performed.
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13: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
14: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F02FJF
is called.

Constraint: LWORK � 3� K þmax K � K; 2� Nð Þ.

15: RUSERðLRUSERÞ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by F02FJF, but is passed directly to DOT and IMAGE and should be used to
pass information to these routines.

16: LRUSER – INTEGER Input

On entry: the dimension of the array RUSER as declared in the (sub)program from which F02FJF
is called.

Constraint: LRUSER � 1.

17: IUSERðLIUSERÞ – INTEGER array User Workspace

IUSER is not used by F02FJF, but is passed directly to DOT and IMAGE and should be used to
pass information to these routines.

18: LIUSER – INTEGER Input

On entry: the dimension of the array IUSER as declared in the (sub)program from which F02FJF
is called.

Constraint: LIUSER � 1.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from F02FJF because you have set IFLAG negative
in DOT or IMAGE. The value of IFAIL will be the same as your setting of IFLAG.

IFAIL ¼ 1

On entry, N < 1,
or M < 1,
or M � K,
or K > N,
or LDX < N,
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or LWORK < 3� K þmax K � K; 2� Nð Þ,
or LRUSER < 1,
or LIUSER < 1.

IFAIL ¼ 2

Not all the requested eigenvalues and vectors have been obtained. Approximations to the rth
eigenvalue are oscillating rapidly indicating that severe cancellation is occurring in the rth
eigenvector and so M is returned as r� 1ð Þ. A restart with a larger value of K may permit
convergence.

IFAIL ¼ 3

Not all the requested eigenvalues and vectors have been obtained. The rate of convergence of the
remaining eigenvectors suggests that more than NOITS iterations would be required and so the
input value of M has been reduced. A restart with a larger value of K may permit convergence.

IFAIL ¼ 4

Not all the requested eigenvalues and vectors have been obtained. NOITS iterations have been
performed. A restart, possibly with a larger value of K, may permit convergence.

IFAIL ¼ 5

This error is very unlikely to occur, but indicates that convergence of the eigenvalue sub-problem
has not taken place. Restarting with a different set of approximate vectors may allow
convergence. If this error occurs you should check carefully that F02FJF is being called correctly.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Eigenvalues and eigenvectors will normally be computed to the accuracy requested by the argument
TOL, but eigenvectors corresponding to small or to close eigenvalues may not always be computed to
the accuracy requested by the argument TOL. Use of the MONIT to monitor acceptance of eigenvalues
and eigenvectors is recommended.

8 Parallelism and Performance

F02FJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02FJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F02FJF will be principally determined by the time taken to solve the eigenvalue sub-
problem and the time taken by DOT and IMAGE. The time taken to solve an eigenvalue sub-problem is
approximately proportional to nk2. It is important to be aware that several calls to DOT and IMAGE
may occur on each major iteration.

As can be seen from Table 1, many applications of F02FJF will require the IMAGE to solve a system
of linear equations. For example, to find the smallest eigenvalues of Ax ¼ �Bx, IMAGE needs to solve
equations of the form Aw ¼ Bz for w and routines from Chapters F01 and F04 will frequently be useful
in this context. In particular, if A is a positive definite variable band matrix, F04MCF may be used after
A has been factorized by F01MCF. Thus factorization need be performed only once prior to calling
F02FJF. An illustration of this type of use is given in the example program.

An approximation ~dh, to the ith eigenvalue, is accepted as soon as ~dh and the previous approximation
differ by less than ~dh

		 		� TOL=10. Eigenvectors are accepted in groups corresponding to clusters of
eigenvalues that are equal, or nearly equal, in absolute value and that have already been accepted. If dr
is the last eigenvalue in such a group and we define the residual rj as

rj ¼ Cxj � yr
where yr is the projection of Cxj, with respect to B, onto the space spanned by x1; x2; . . . ; xr, and xj is
the current approximation to the jth eigenvector, then the value fi returned in MONIT is given by

fi ¼ max rj
�� ��

B
= Cxj
�� ��

B
xk k2B ¼ xTBx

and each vector in the group is accepted as an eigenvector if

drj jfrð Þ= drj j � eð Þ < TOL;

where e is the current approximation to ~dk
		 		. The values of the fi are systematically increased if the

convergence criteria appear to be too strict. See Rutishauser (1970) for further details.

The algorithm implemented by F02FJF differs slightly from SIMITZ (see Nikolai (1979)) in that the
eigenvalue sub-problem is solved using the singular value decomposition of the upper triangular matrix
R of the Gram–Schmidt factorization of Cxr, rather than forming RTR.
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10 Example

This example finds the four eigenvalues of smallest absolute value and corresponding eigenvectors for
the generalized symmetric eigenvalue problem Ax ¼ �Bx, where A and B are the 16 by 16 matrices

A ¼ �1
4

�4 1 1
1 �4 1 1

1 �4 1 1
1 �4 1 1

1 1 �4 1 1
1 1 �4 1 1

1 1 �4 1 1
1 1 �4 1 1

1 1 �4 1 1
1 1 �4 1 1

1 1 �4 1 1
1 1 �4 1 1

1 1 �4 1
1 1 �4 1

1 1 �4 1
1 1 �4

0BBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCA

B ¼ �1
2

�2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2

0BBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCA
TOL is taken as 0:0001 and 6 iteration vectors are used. F11JAF is used to factorize the matrix A, prior
to calling F02FJF, and F11JCF is used within IMAGE to solve the equations Aw ¼ Bz for w.

Output from MONIT occurs each time ISTATE is nonzero. Note that the required eigenvalues are the
reciprocals of the eigenvalues returned by F02FJF.

10.1 Program Text

! F02FJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f02fjfe_mod

! F02FJF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: dot, image, monit

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: half = 0.5_nag_wp
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Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function dot(iflag,n,z,w,ruser,lruser,iuser,liuser)

! This function implements the dot product - transpose(W)*B*Z.
! DOT assumes that N is at least 3.

! .. Function Return Value ..
Real (Kind=nag_wp) :: dot

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: liuser, lruser, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(lruser)
Real (Kind=nag_wp), Intent (In) :: w(n), z(n)
Integer, Intent (Inout) :: iuser(liuser)

! .. Local Scalars ..
Real (Kind=nag_wp) :: s
Integer :: i

! .. Executable Statements ..
s = zero
s = s + (z(1)-half*z(2))*w(1)
s = s + (-half*z(n-1)+z(n))*w(n)
Do i = 2, n - 1

s = s + (-half*z(i-1)+z(i)-half*z(i+1))*w(i)
End Do
dot = s

! Set iflag negative to terminate execution for any reason.
iflag = 0
Return

End Function dot
Subroutine image(iflag,n,z,w,ruser,lruser,iuser,liuser)

! This routine solves A*W = B*Z for W.
! The routine assumes that N is at least 3.

! The data A, NNZ, LA, IROW, ICOL, IPIV and ISTR on exit from
! F11JAF have been packed into the xUSER communication arrays in
! the following way:
! IUSER(1:2) = (/NNZ, LA/)
! RUSER(1:LA) = A
! IUSER(3:(2*LA+2*N+3)) = (/IROW, ICOL, IPIV, ISTR/)
! We’ll also use RUSER((LA+1):(LA+N)) as space for F11JCF’s dummy
! arg. B, and RUSER((LA+N+1):(LA+7*N+120)) as space for F11JCF’s
! dummy arg. WORK

! .. Use Statements ..
Use nag_library, Only: f11jcf, x02ajf

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: liuser, lruser, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(lruser)
Real (Kind=nag_wp), Intent (Out) :: w(n)
Real (Kind=nag_wp), Intent (In) :: z(n)
Integer, Intent (Inout) :: iuser(liuser)

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm, tol
Integer :: ifail, itn, j, la, lwork, maxitn, &

nnz
Character (2) :: method

! .. Executable Statements ..
nnz = iuser(1)
la = iuser(2)

! Form B*Z in RUSER((LA+1):(LA+N)) and initialize W to
! zero.

w(1:n) = zero
ruser(la+1) = z(1) - half*z(2)
Do j = 2, n - 1

ruser(la+j) = -half*z(j-1) + z(j) - half*z(j+1)
End Do
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ruser(la+n) = -half*z(n-1) + z(n)

! Call F11JCF to solve the equations A*W = B*Z.
method = ’CG’
tol = x02ajf()
maxitn = 100
lwork = 6*n + 120

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f11jcf(method,n,nnz,ruser,la,iuser(3),iuser(la+3),iuser(2*la+3), &

iuser(2*la+n+3),ruser(la+1),tol,maxitn,w,rnorm,itn,ruser(la+n+1), &
lwork,ifail)

If (ifail>0) Then
iflag = -ifail

End If
Return

End Subroutine image
Subroutine monit(istate,nextit,nevals,nevecs,k,f,d)

! Monitoring routine for F02FJF.

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Scalar Arguments ..
Integer, Intent (In) :: istate, k, nevals, nevecs, nextit

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: d(k), f(k)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
If (istate/=0) Then

Write (nout,*)
Write (nout,99999) ’ ISTATE = ’, istate, ’ NEXTIT = ’, nextit
Write (nout,99999) ’ NEVALS = ’, nevals, ’ NEVECS = ’, nevecs
Write (nout,*) ’ F D’
Write (nout,99998)(f(i),d(i),i=1,k)

End If
Return

99999 Format (1X,A,I4,A,I4)
99998 Format (1X,1P,E11.3,3X,E11.3)

End Subroutine monit
End Module f02fjfe_mod
Program f02fjfe

! F02FJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f02fjf, f06fef, f11jaf, nag_wp, x04cbf
Use f02fjfe_mod, Only: dot, image, monit, nin, nout, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: dscale, dtol, tol
Integer :: i, ifail, k, l, la, ldx, lfill, &

liuser, lruser, lwork, m, n, nnz, &
nnzc, noits, novecs, npivm

Character (1) :: mic, pstrat
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), d(:), ruser(:), work(:), &
x(:,:)

Integer, Allocatable :: icol(:), ipiv(:), irow(:), istr(:), &
iuser(:)

Character (1) :: clabs(1), rlabs(1)
! .. Executable Statements ..

Write (nout,*) ’F02FJF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
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Read (nin,*)
Read (nin,*) n, m, k, tol
la = 10*n
ldx = n
liuser = 2*la + 2*n + 3
lruser = la + 7*n + 120
lwork = 5*k + 2*n
Allocate (a(la),d(n),ruser(lruser),work(lwork),x(ldx,k),icol(la), &

ipiv(n),irow(la),istr(n+1),iuser(liuser))

! Set up the sparse symmetric coefficient matrix A.
l = 0
Do i = 1, n

If (i>=5) Then
l = l + 1
a(l) = -0.25_nag_wp
irow(l) = i
icol(l) = i - 4

End If
If (i>=2) Then

l = l + 1
a(l) = -0.25_nag_wp
irow(l) = i
icol(l) = i - 1

End If
l = l + 1
a(l) = 1.0_nag_wp
irow(l) = i
icol(l) = i

End Do
nnz = l

! Call F11JAF to find an incomplete Cholesky factorization of A.
lfill = 2
dtol = zero
mic = ’M’
dscale = zero
pstrat = ’M’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jaf(n,nnz,a,la,irow,icol,lfill,dtol,mic,dscale,pstrat,ipiv,istr, &

nnzc,npivm,iuser,liuser,ifail)

! Call F02FJF to find eigenvalues and eigenvectors.

noits = 1000
novecs = 0

! Communicate A, NNZ, LA, IROW, ICOL, IPIV and ISTR to IMAGE
! thread-safely using RUSER and IUSER.
! In addition to using RUSER for storing A, we’ll also use
! 7*N+120 elements of RUSER in place of local arrays in IMAGE.

! Initialized A goes into ruser.
ruser(1:nnz+nnzc) = a(1:nnz+nnzc)

! NNZ, LA, IROW, ICOL, IPIV and ISTR go into IUSER, in that order.
! Only the first NNZ+NNZC elements of IROW and ICOL will have been
! initialized:

iuser(1) = nnz
iuser(2) = la
iuser(3:2+nnz+nnzc) = irow(1:nnz+nnzc)
iuser(la+3:la+2+nnz+nnzc) = icol(1:nnz+nnzc)
iuser(2*la+3:2*la+2+n) = ipiv(1:n)
iuser(liuser-n:liuser) = istr(1:n+1)

ifail = -1
Call f02fjf(n,m,k,noits,tol,dot,image,monit,novecs,x,ldx,d,work,lwork, &

ruser,lruser,iuser,liuser,ifail)
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If (ifail>=0) Then
If (ifail/=1 .And. ifail<=4 .And. m>=1) Then

Do i = 1, m
d(i) = 1.0_nag_wp/d(i)

End Do
Write (nout,*) ’Final results’
Write (nout,*)
Write (nout,*) ’ Eigenvalues’
Write (nout,99999) d(1:m)
Write (nout,*)
Flush (nout)

! Normalize eigenvectors
Do i = 1, m

Call f06fef(n,x(1,i),x(1,i),1)
End Do
Call x04cbf(’General’,’ ’,n,m,x,ldx,’1P,E12.3’,’ Eigenvectors’,’N’, &

rlabs,’N’,clabs,80,0,ifail)
End If

End If

99999 Format (1X,1P,4E12.3)
End Program f02fjfe

10.2 Program Data

F02FJF Example Program Data
16 4 6 0.0001 : n, m, k, tol

10.3 Program Results

F02FJF Example Program Results

ISTATE = 3 NEXTIT = 17
NEVALS = 1 NEVECS = 1

F D
1.246E-07 1.822E+00
4.000E+00 1.695E+00
4.000E+00 1.668E+00
4.000E+00 1.460E+00
4.000E+00 1.275E+00
4.000E+00 1.132E+00

ISTATE = 4 NEXTIT = 30
NEVALS = 4 NEVECS = 4

F D
1.246E-07 1.822E+00
2.450E-09 1.695E+00
7.922E-09 1.668E+00
3.210E-07 1.460E+00
4.000E+00 1.275E+00
4.000E+00 1.153E+00

Final results

Eigenvalues
5.488E-01 5.900E-01 5.994E-01 6.850E-01

Eigenvectors
1.000E+00 1.000E+00 1.000E+00 1.000E+00

-1.159E+00 -8.089E-01 1.127E+00 -1.237E+00
1.168E+00 -7.555E-01 -1.070E+00 1.925E+00

-1.130E+00 7.444E-01 -1.351E+00 -1.318E+00
1.692E+00 1.494E+00 1.827E+00 8.027E-01

-1.880E+00 -1.283E+00 1.793E+00 -4.766E-01
1.885E+00 -1.251E+00 -1.759E+00 1.481E+00

-1.760E+00 1.354E+00 -2.015E+00 -6.525E-01
1.760E+00 1.354E+00 2.015E+00 -6.525E-01

-1.885E+00 -1.251E+00 1.759E+00 1.481E+00
1.880E+00 -1.283E+00 -1.793E+00 -4.766E-01
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-1.692E+00 1.494E+00 -1.827E+00 8.027E-01
1.130E+00 7.444E-01 1.351E+00 -1.318E+00

-1.168E+00 -7.555E-01 1.070E+00 1.925E+00
1.159E+00 -8.089E-01 -1.127E+00 -1.237E+00

-1.000E+00 1.000E+00 -1.000E+00 1.000E+00
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NAG Library Routine Document

F02FKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, you need only read Sections 1 to 10 of this
document. If, however, you wish to reset some or all of the settings this must be done by calling the
option setting routine F12FDF from the user-supplied subroutine OPTION. Please refer to Section 11
for a detailed description of the specification of the optional parameters.

1 Purpose

F02FKF computes selected eigenvalues and eigenvectors of a real sparse symmetric matrix.

2 Specification

SUBROUTINE F02FKF (N, NNZ, A, IROW, ICOL, NEV, NCV, SIGMA, MONIT,
OPTION, NCONV, W, V, LDV, RESID, IUSER, RUSER, IFAIL)

&

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), NEV, NCV, NCONV, LDV,
IUSER(*), IFAIL

&

REAL (KIND=nag_wp) A(NNZ), SIGMA, W(NCV), V(LDV,*), RESID(NEV),
RUSER(*)

&

EXTERNAL MONIT, OPTION

3 Description

F02FKF computes selected eigenvalues and the corresponding right eigenvectors of a real sparse
symmetric matrix A:

Avi ¼ �ivi:
A specified number, nev, of eigenvalues �i, or the shifted inverses �i ¼ 1= �i � �ð Þ, may be selected
either by largest or smallest modulus, largest or smallest value, or, largest and smallest values (both
ends). Convergence is generally faster when selecting larger eigenvalues, smaller eigenvalues can
always be selected by choosing a zero inverse shift (� ¼ 0:0). When eigenvalues closest to a given
value are required then the shifted inverses of largest magnitude should be selected with shift equal to
the required value.

The sparse matrix A is stored in symmetric coordinate storage (SCS) format. See Section 2.1.2 in the
F11 Chapter Introduction.

F02FKF uses an implicitly restarted Arnoldi (Lanczos) iterative method to converge approximations to
a set of required eigenvalues and corresponding eigenvectors. Further algorithmic information is given
in Section 9 while a fuller discussion is provided in the F12 Chapter Introduction. If shifts are to be
performed then operations using shifted inverse matrices are performed using a direct sparse solver.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

HSL (2011) A collection of Fortran codes for large-scale scientific computation http://www.hsl.rl.ac.uk/

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

2: NNZ – INTEGER Input

On entry: the dimension of the array A as declared in the (sub)program from which F02FKF is
called.The number of nonzero elements in the lower triangular part of the matrix A.

Constraint: 1 � NNZ � N� Nþ 1ð Þ=2.

3: AðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: the array of nonzero elements of the lower triangular part of the n by n symmetric
matrix A.

4: IROWðNNZÞ – INTEGER array Input
5: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the elements supplied in array A.

If IROWðkÞ ¼ i and ICOLðkÞ ¼ j then Aij is stored in AðkÞ. IROW does not need to be ordered,
an internal call to F11ZBF forces the correct ordering.

Constraint:

IROW and ICOL must satisfy these constraints:1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ,
for i ¼ 1; 2; . . . ;NNZ.

6: NEV – INTEGER Input

On entry: the number of eigenvalues to be computed.

Constraint: 0 < NEV < N� 1.

7: NCV – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which F02FKF is
called. The number of Arnoldi basis vectors to use during the computation.

At present there is no a priori analysis to guide the selection of NCV relative to NEV. However,
it is recommended that NCV � 2� NEVþ 1. If many problems of the same type are to be
solved, you should experiment with increasing NCV while keeping NEV fixed for a given test
problem. This will usually decrease the required number of matrix-vector operations but it also
increases the work and storage required to maintain the orthogonal basis vectors. The optimal
‘cross-over’ with respect to computation time is problem dependent and must be determined
empirically.

Constraint: NEV < NCV � N.

8: SIGMA – REAL (KIND=nag_wp) Input

On entry: if the Shifted Inverse mode has been selected then SIGMA contains the real shift
used; otherwise SIGMA is not referenced. This mode can be selected by setting the appropriate
options in the user-supplied subroutine OPTION.

9: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT is used to monitor the progress of F02FKF. MONIT may be the dummy subroutine
F02FKZ if no monitoring is actually required. (F02FKZ is included in the NAG Library.)
MONIT is called after the solution of each eigenvalue sub-problem and also just prior to return
from F02FKF.
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The specification of MONIT is:

SUBROUTINE MONIT (NCV, NITER, NCONV, W, RZEST, ISTAT, IUSER,
RUSER)

&

INTEGER NCV, NITER, NCONV, ISTAT, IUSER(*)
REAL (KIND=nag_wp) W(NCV), RZEST(NCV), RUSER(*)

1: NCV – INTEGER Input

On entry: the dimension of the arrays W and RZEST. The number of Arnoldi basis
vectors used during the computation.

2: NITER – INTEGER Input

On entry: the number of the current Arnoldi iteration.

3: NCONV – INTEGER Input

On entry: the number of converged eigenvalues so far.

4: WðNCVÞ – REAL (KIND=nag_wp) array Input

On entry: the first NCONV elements of W contain the converged approximate
eigenvalues.

5: RZESTðNCVÞ – REAL (KIND=nag_wp) array Input

On entry: the first NCONV elements of RZEST contain the Ritz estimates (error
bounds) on the converged approximate eigenvalues.

6: ISTAT – INTEGER Input/Output

On entry: set to zero.

On exit: if set to a nonzero value F02FKF returns immediately with IFAIL ¼ 9.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONIT is called with the arguments IUSER and RUSER as supplied to F02FKF. You
should use the arrays IUSER and RUSER to supply information to MONIT.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02FKF is called. Arguments denoted as Input must not be changed by this
procedure.

10: OPTION – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

You can supply non-default options to the Arnoldi eigensolver by repeated calls to F12FDF from
within OPTION. (Please note that it is only necessary to call F12FDF; no call to F12FAF is
required from within OPTION.) For example, you can set the mode to Shifted Inverse, you can
increase the Iteration Limit beyond its default and you can print varying levels of detail on the
iterative process using Print Level.

If only the default options (including that the eigenvalues of largest magnitude are sought) are to
be used then OPTION may be the dummy subroutine F02EKY (F02EKY is included in the NAG
Library). See Section 10 for an example of using OPTION to set some non-default options.

The specification of OPTION is:

SUBROUTINE OPTION (ICOMM, COMM, ISTAT, IUSER, RUSER)

INTEGER ICOMM(*), ISTAT, IUSER(*)
REAL (KIND=nag_wp) COMM(*), RUSER(*)

F02 – Eigenvalues and Eigenvectors F02FKF

Mark 26 F02FKF.3



1: ICOMMð�Þ – INTEGER array Communication Array

On entry: contains details of the default option set. This array must be passed as
argument ICOMM in any call to F12FDF.

On exit: contains data on the current options set which may be altered from the default
set via calls to F12FDF.

2: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

On entry: contains details of the default option set. This array must be passed as
argument COMM in any call to F12FDF.

On exit: contains data on the current options set which may be altered from the default
set via calls to F12FDF.

3: ISTAT – INTEGER Input/Output

On entry: set to zero.

On exit: if set to a nonzero value F02FKF returns immediately with IFAIL ¼ 10.

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OPTION is called with the arguments IUSER and RUSER as supplied to F02FKF. You
should use the arrays IUSER and RUSER to supply information to OPTION.

OPTION must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02FKF is called.

11: NCONV – INTEGER Output

On exit: the number of converged approximations to the selected eigenvalues. On successful exit,
this will normally be NEV.

12: WðNCVÞ – REAL (KIND=nag_wp) array Output

On exit: the first NCONV elements contain the converged approximations to the selected
eigenvalues.

13: VðLDV; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least NCV.

On exit: contains the eigenvectors associated with the eigenvalue �i, for i ¼ 1; 2; . . . ;NCONV
(stored in W). For eigenvalue, �j, the corresponding eigenvector is stored in Vði; jÞ, for
i ¼ 1; 2; . . . ; n.

14: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F02FKF
is called.

Constraint: LDV � N.

15: RESIDðNEVÞ – REAL (KIND=nag_wp) array Output

On exit: the residual Awi � �iwik k2 for the estimates to the eigenpair �i and wi is returned in
RESIDðiÞ, for i ¼ 1; 2; . . . ;NCONV.

16: IUSERð�Þ – INTEGER array User Workspace

IUSER is not used by F02FKF, but is passed directly to MONIT and OPTION and should be
used to pass information to these routines.

F02FKF NAG Library Manual

F02FKF.4 Mark 26



17: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by F02FKF, but is passed directly to MONIT and OPTION and should be
used to pass information to these routines.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

On entry, NNZ ¼ valueh i.
Constraint: NNZ > 0.

On entry, NNZ ¼ valueh i and N ¼ valueh i.
Constraint: NNZ � N� Nþ 1ð Þ=2.

IFAIL ¼ 4

On entry, for i ¼ valueh i, IROWðiÞ ¼ valueh i.
Constraint: 1 � IROWðiÞ � N.

IFAIL ¼ 5

On entry, for i ¼ valueh i, ICOLðiÞ ¼ valueh i, IROWðiÞ ¼ valueh i.
Constraint: 1 � ICOLðiÞ � IROWðiÞ.

IFAIL ¼ 6

On entry, NEV ¼ valueh i.
Constraint: NEV > 0.

On entry, NEV ¼ valueh i and N ¼ valueh i.
Constraint: NEV < N� 1ð Þ.

IFAIL ¼ 7

On entry, NCV ¼ valueh i and N ¼ valueh i.
Constraint: NCV � N.

On entry, NCV ¼ valueh i and NEV ¼ valueh i.
Constraint: NCV > NEV.
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IFAIL ¼ 8

On entry, the matrix A� �Ið Þ is numerically singular and could not be inverted. Try perturbing
the value of �.

IFAIL ¼ 9

User requested termination in MONIT, ISTAT ¼ valueh i.

IFAIL ¼ 10

User requested termination in OPTION, ISTAT ¼ valueh i.

IFAIL ¼ 14

On entry, LDV ¼ valueh i and N ¼ valueh i.
Constraint: LDV � N.

IFAIL ¼ 20

The maximum number of iterations, through the optional parameter Iteration Limit, has been set
to a non-positive value.

IFAIL ¼ 21

The option Both Ends has been set but only 1 eigenvalue is requested.

IFAIL ¼ 22

The maximum number of iterations has been reached.
The maximum number of iterations ¼ valueh i.
The number of converged eigenvalues ¼ valueh i.
See the routine document for further details.

IFAIL ¼ 30

A serious error, code valueh i, has occurred in an internal call to valueh i. Check all subroutine
calls and array sizes. If the call is correct then please contact NAG for assistance.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy of a Ritz value (eigenvalue approximation), �, is considered acceptable if its Ritz
estimate � Tolerance� �. The default value for Tolerance is the machine precision given by X02AJF.
The Ritz estimates are available via the MONIT subroutine at each iteration in the Arnoldi process, or
can be printed by setting option Print Level to a positive value.

F02FKF NAG Library Manual

F02FKF.6 Mark 26



8 Parallelism and Performance

F02FKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02FKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F02FKF calls routines based on the ARPACK suite in Chapter F12. These routines use an implicitly
restarted Lanczos iterative method to converge to approximations to a set of required eigenvalues (see
the F12 Chapter Introduction).

In the default Regular mode, only matrix-vector multiplications are performed using the sparse matrix
A during the Lanczos process; F11XEF can be used to perform this task. Each iteration is therefore
cheap computationally, relative to the alternative, Shifted Inverse, mode described below. It is most
efficient (i.e., the total number of iterations required is small) when the eigenvalues of largest
magnitude are sought and these are distinct.

Although there is an option for returning the smallest eigenvalues using this mode (see Smallest
Magnitude option), the number of iterations required for convergence will be far greater or the method
may not converge at all. However, where convergence is achieved, Regular mode may still prove to be
the most efficient since no inversions are required. Where smallest eigenvalues are sought and Regular
mode is not suitable, or eigenvalues close to a given real value are sought, the Shifted Inverse mode
should be used.

If the Shifted Inverse mode is used (via a call to F12FDF in OPTION) then the matrix A� �I is used
in linear system solves by the Lanczos process. This is first factorized internally using a direct sparse
LDLT factorization under the assumption that the matrix is indefinite. If the factorization determines
that the matrix is numerically singular then the routine exits with an error. In this situation it is
normally sufficient to perturb � by a small amount and call F02FKF again. After successful
factorization, subsequent solves are performed by backsubstitution using the sparse factorization.

Finally, F02FKF transforms the eigenvectors. Each eigenvector w is normalized so that wk k2 ¼ 1.

The monitoring routine MONIT provides some basic information on the convergence of the Lanczos
iterations. Much greater levels of detail on the Lanczos process are available via option Print Level. If
this is set to a positive value then information will be printed, by default, to standard output. The
destination of monitoring information can be changed using the Monitoring option.

9.1 Additional Licensor

The direct sparse LDLT factorization performed in Shifted Inverse mode is performed by an
implementation of HSL_MA97 (see HSL (2011)).

10 Example

This example solves Ax ¼ �x in Shifted Inverse mode, where A is obtained from the standard central
difference discretization of the one-dimensional Laplacian operator @2u

@x2
on 0; 1½ �, with zero Dirichlet

boundary conditions.
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10.1 Program Text

! F02FKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f02fkfe_mod

! F02FKF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: mymonit, myoption

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine myoption(icomm,comm,istat,iuser,ruser)

! .. Use Statements ..
Use nag_library, Only: f12fdf

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (Inout) :: istat

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: comm(*), ruser(*)
Integer, Intent (Inout) :: icomm(*), iuser(*)

! .. Local Scalars ..
Integer :: ifail1
Character (25) :: rec

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Continue

istat = 0

If (iuser(1)>0) Then
Write (rec,99999) ’Print Level=’, iuser(1)
ifail1 = 1
Call f12fdf(rec,icomm,comm,ifail1)
istat = max(istat,ifail1)

End If
If (iuser(2)>100) Then

Write (rec,99999) ’Iteration Limit=’, iuser(2)
ifail1 = 1
Call f12fdf(rec,icomm,comm,ifail1)
istat = max(istat,ifail1)

End If
If (iuser(3)>0) Then

ifail1 = 1
Call f12fdf(’Shifted Inverse’,icomm,comm,ifail1)
istat = max(istat,ifail1)

End If
99999 Format (A,I5)

End Subroutine myoption

Subroutine mymonit(ncv,niter,nconv,w,rzest,istat,iuser,ruser)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (Inout) :: istat
Integer, Intent (In) :: nconv, ncv, niter

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: rzest(ncv), w(ncv)
Integer, Intent (Inout) :: iuser(*)
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! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
Continue

If (iuser(4)>0) Then
If (niter==1 .And. iuser(3)>0) Then

Write (nout,99999) ’ Arnoldi basis vectors used:’, ncv
Write (nout,*) &

’ The following Ritz values (mu) are related to the’
Write (nout,*) &

’ true eigenvalues (lambda) by lambda = sigma + 1/mu’
End If
Write (nout,*)
Write (nout,99999) ’ Iteration number ’, niter
Write (nout,99998) ’ Ritz values converged so far (’, nconv, &

’) and their Ritz estimates:’
Do i = 1, nconv

Write (nout,99997) i, w(i), rzest(i)
End Do
Write (nout,*) ’ Next (unconverged) Ritz value:’
Write (nout,99996) nconv + 1, w(nconv+1)

End If
istat = 0

99999 Format (1X,A,I4)
99998 Format (1X,A,I4,A)
99997 Format (1X,1X,I4,1X,E13.5,1X,E13.5)
99996 Format (1X,1X,I4,1X,E13.5)

End Subroutine mymonit
End Module f02fkfe_mod
Program f02fkfe

! Example problem for F02FKF.

! .. Use Statements ..
Use nag_library, Only: f02fkf, nag_wp, x04abf, x04caf
Use f02fkfe_mod, Only: mymonit, myoption, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Integer, Parameter :: iset = 1

! .. Local Scalars ..
Real (Kind=nag_wp) :: h2, sigma
Integer :: i, ifail, imon, j, k, ldv, lo, &

maxit, mode, n, nconv, ncv, nev, &
nnz, nx, outchn, prtlvl

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), d_print(:,:), resid(:), &

v(:,:), w(:)
Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icol(:), irow(:)
Integer :: iuser(4)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F02FKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

Read (nin,*) nx
Read (nin,*) nev
Read (nin,*) ncv
Read (nin,*) sigma

! Construct the matrix A in sparse form and store in A.
! The main diagonal of A is full and there are two subdiagonals of A:
! the first and the nx-th.
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n = nx*nx
nnz = 3*n - 2*nx
Allocate (a(nnz),irow(nnz),icol(nnz))

! Zero out A.

a(1:nnz) = 0.0_nag_wp

! Main diagonal of A.
h2 = one/real((nx+1)*(nx+1),kind=nag_wp)
a(1:n) = 4.0_nag_wp/h2
Do i = 1, n

irow(i) = i
icol(i) = i

End Do

! First subdiagonal of A.
k = n
Do i = 1, nx

lo = (i-1)*nx
Do j = lo + 1, lo + nx - 1

k = k + 1
irow(k) = j + 1
icol(k) = j
a(k) = -one/h2

End Do
End Do

! nx-th subdiagonal
Do i = 1, nx - 1

lo = (i-1)*nx
Do j = lo + 1, lo + nx

k = k + 1
irow(k) = j + nx
icol(k) = j
a(k) = -one/h2

End Do
End Do

! Set some options via iuser array and routine argument OPTION.
! iuser(1) = print level, iuser(2) = iteration limit,
! iuser(3)>0 means shifted-invert mode
! iuser(4)>0 means print monitoring info

Read (nin,*) prtlvl
Read (nin,*) maxit
Read (nin,*) mode
Read (nin,*) imon
ruser(1) = one
iuser(1) = prtlvl
iuser(2) = maxit
iuser(3) = mode
iuser(4) = imon

! Find eigenvalues of largest magnitude and the corresponding
! eigenvectors.

ldv = n
Allocate (w(ncv),v(ldv,ncv),resid(n))

ifail = -1
Call f02fkf(n,nnz,a,irow,icol,nev,ncv,sigma,mymonit,myoption,nconv,w,v, &

ldv,resid,iuser,ruser,ifail)

If (ifail/=0) Then
Go To 100

End If

! Print Eigenvalues and the residual norm ||A*x - lambda*x||.

Allocate (d_print(nconv,2))
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d_print(1:nconv,1) = w(1:nconv)
d_print(1:nconv,2) = resid(1:nconv)

Write (nout,*)
Flush (nout)

outchn = nout
Call x04abf(iset,outchn)

ifail = 0
Call x04caf(’G’,’N’,nconv,2,d_print,nconv,’ Ritz values and residuals’, &

ifail)

100 Continue
End Program f02fkfe

10.2 Program Data

F02FKF Example Program Data
20 : nx, matrix order n = nx*nx
8 : nev, number of eigenvalues requested
20 : ncv, size of subspace
1.0 : sigma, shift (want eigenvalues close to sigma)
0 : print level
500 : maximum number of itrerations
1 : mode (0 = regular, 1 = shifted inverse)
0 : imon (0 = no monitoring, 1 = monitoring on)

10.3 Program Results

F02FKF Example Program Results

Ritz values and residuals
1 2

1 1.9702E+01 5.6583E-13
2 4.9036E+01 7.2456E-13
3 4.9036E+01 7.0022E-13
4 7.8370E+01 8.8089E-13
5 9.7197E+01 8.7693E-13
6 9.7197E+01 8.7672E-13
7 1.2653E+02 6.8423E-13
8 1.2653E+02 9.8310E-13

11 Optional Parameters

Internally F02FKF calls routines from the suite F12FAF, F12FBF, F12FCF, F12FDF and F12FEF.
Several optional parameters for these computational routines define choices in the problem specification
or the algorithm logic. In order to reduce the number of formal arguments of F02FKF these optional
parameters are also used here and have associated default values that are usually appropriate. Therefore,
you need only specify those optional parameters whose values are to be different from their default
values.

Optional parameters may be specified via the user-supplied subroutine OPTION in the call to F02FKF.
OPTION must be coded such that one call to F12FDF is necessary to set each optional parameter. All
optional parameters you do not specify are set to their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 11.1.

Advisory

Both Ends

Defaults
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Iteration Limit

Largest Algebraic

Largest Magnitude

List

Monitoring

Nolist

Print Level

Regular

Regular Inverse

Shifted Inverse

Smallest Algebraic

Smallest Magnitude

Tolerance

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Advisory i Default ¼ the value returned by X04ABF

If the optional parameter List is set then optional parameter specifications are listed in a List file by
setting the option to a file identification (unit) number associated with Advisory messages (see
X04ABF and X04ACF).

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Iteration Limit i Default ¼ 300

The limit on the number of Lanczos iterations that can be performed before F12FBF exits. If not all
requested eigenvalues have converged to within Tolerance and the number of Lanczos iterations has
reached this limit then F12FBF exits with an error; F12FCF can still be called subsequently to return
the number of converged eigenvalues, the converged eigenvalues and, if requested, the corresponding
eigenvectors.

Largest Magnitude Default
Both Ends
Largest Algebraic
Smallest Algebraic
Smallest Magnitude

The Lanczos iterative method converges on a number of eigenvalues with given properties. The default
is for F12FBF to compute the eigenvalues of largest magnitude using Largest Magnitude.
Alternatively, eigenvalues may be chosen which have Largest Algebraic part, Smallest Magnitude,
or Smallest Algebraic part; or eigenvalues which are from Both Ends of the algebraic spectrum.
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Nolist Default
List

Normally each optional parameter specification is not listed as it is supplied. This behaviour can be
changed using the List and Nolist options.

Monitoring i Default ¼ �1
If i > 0, monitoring information is output to channel number i during the solution of each problem; this
may be the same as the Advisory channel number. The type of information produced is dependent on
the value of Print Level, see the description of the optional parameter Print Level for details of the
information produced. Please see X04ACF to associate a file with a given channel number.

Print Level i Default ¼ 0

This controls the amount of printing produced by F02FKF as follows.

¼ 0 No output except error messages. If you want to suppress all output, set Print Level ¼ 0.

> 0 The set of selected options.

¼ 2 Problem and timing statistics on final exit from F12FBF.

� 5 A single line of summary output at each Lanczos iteration.

� 10 If Monitoring is set, then at each iteration, the length and additional steps of the current
Lanczos factorization and the number of converged Ritz values; during re-orthogonalization,
the norm of initial/restarted starting vector; on a final Lanczos iteration, the number of update
iterations taken, the number of converged eigenvalues, the converged eigenvalues and their
Ritz estimates.

� 20 Problem and timing statistics on final exit from F12FBF. If Monitoring > 0, Monitoring is
set, then at each iteration, the number of shifts being applied, the eigenvalues and estimates of
the symmetric tridiagonal matrix H, the size of the Lanczos basis, the wanted Ritz values and
associated Ritz estimates and the shifts applied; vector norms prior to and following re-
orthogonalization.

� 30 If Monitoring > 0, Monitoring is set, then on final iteration, the norm of the residual; when
computing the Schur form, the eigenvalues and Ritz estimates both before and after sorting;
for each iteration, the norm of residual for compressed factorization and the symmetric
tridiagonal matrix H; during re-orthogonalization, the initial/restarted starting vector; during
the Lanczos iteration loop, a restart is flagged and the number of the residual requiring
iterative refinement; while applying shifts, some indices.

� 40 If Monitoring > 0, Monitoring is set, then during the Lanczos iteration loop, the Lanczos
vector number and norm of the current residual; while applying shifts, key measures of
progress and the order of H; while computing eigenvalues of H, the last rows of the Schur
and eigenvector matrices; when computing implicit shifts, the eigenvalues and Ritz estimates
of H.

� 50 If Monitoring is set, then during Lanczos iteration loop: norms of key components and the
active column of H, norms of residuals during iterative refinement, the final symmetric
tridiagonal matrix H; while applying shifts: number of shifts, shift values, block indices,
updated tridiagonal matrix H; while computing eigenvalues of H: the diagonals of H, the
computed eigenvalues and Ritz estimates.

Note that setting Print Level � 30 can result in very lengthy Monitoring output.

Regular Default
Regular Inverse
Shifted Inverse

These options define the computational mode which in turn defines the form of operation OP xð Þ to be
performed.
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Regular OP ¼ A
Shifted Inverse OP ¼ A� �Ið Þ�1 where � is real
Regular Inverse OP ¼ A�1

Tolerance r Default ¼ �
An approximate eigenvalue has deemed to have converged when the corresponding Ritz estimate is
within Tolerance relative to the magnitude of the eigenvalue.
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NAG Library Routine Document

F02GCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02GCF computes selected eigenvalues and eigenvectors of a complex general matrix.

2 Specification

SUBROUTINE F02GCF (CRIT, N, A, LDA, WL, WU, MEST, M, W, V, LDV, WORK,
LWORK, RWORK, IWORK, BWORK, IFAIL)

&

INTEGER N, LDA, MEST, M, LDV, LWORK, IWORK(N), IFAIL
REAL (KIND=nag_wp) WL, WU, RWORK(2*N)
COMPLEX (KIND=nag_wp) A(LDA,*), W(N), V(LDV,MEST), WORK(LWORK)
LOGICAL BWORK(N)
CHARACTER(1) CRIT

3 Description

F02GCF computes selected eigenvalues and the corresponding right eigenvectors of a complex general
matrix A:

Axi ¼ �ixi:

Eigenvalues �i may be selected either by modulus, satisfying

wl � �ij j � wu;

or by real part, satisfying

wl � Re �ið Þ � wu:

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: CRIT – CHARACTER(1) Input

On entry: indicates the criterion for selecting eigenvalues.

CRIT ¼ M
Eigenvalues are selected according to their moduli: wl � �ij j � wu.

CRIT ¼ R
Eigenvalues are selected according to their real parts: wl � Re �ið Þ � wu.

Constraint: CRIT ¼ M or R .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n general matrix A.

On exit: contains the Hessenberg form of the balanced input matrix A0 (see Section 9).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F02GCF
is called.

Constraint: LDA � max 1;Nð Þ.

5: WL – REAL (KIND=nag_wp) Input
6: WU – REAL (KIND=nag_wp) Input

On entry: wl and wu, the lower and upper bounds on the criterion for the selected eigenvalues
(see CRIT).

Constraint: WU >WL.

7: MEST – INTEGER Input

On entry: the second dimension of the array V as declared in the (sub)program from which
F02GCF is called. MEST must be an upper bound on m, the number of eigenvalues and
eigenvectors selected. No eigenvectors are computed if MEST < m.

Constraint: MEST � max 1;mð Þ.

8: M – INTEGER Output

On exit: m, the number of eigenvalues actually selected.

9: WðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the first M elements of W hold the selected eigenvalues; elements Mþ 1 to N contain
the other eigenvalues.

10: VðLDV;MESTÞ – COMPLEX (KIND=nag_wp) array Output

On exit: contains the selected eigenvectors, with the ith column holding the eigenvector
associated with the eigenvalue �i (stored in WðiÞ).

11: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F02GCF
is called.

Constraint: LDV � max 1;Nð Þ.

12: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Workspace
13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F02GCF is called.

Constraint: LWORK � max 1;N� Nþ 2ð Þð Þ.

14: RWORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

15: IWORKðNÞ – INTEGER array Workspace
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16: BWORKðNÞ – LOGICAL array Workspace

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CRIT 6¼ M or R ,
or N < 0,
or LDA < max 1;Nð Þ,
or WU �WL,
or MEST < 1,
or LDV < max 1;Nð Þ,
or LWORK < max 1;N� Nþ 2ð Þð Þ.

IFAIL ¼ 2

The QR algorithm failed to compute all the eigenvalues. No eigenvectors have been computed.

IFAIL ¼ 3

There are more than MEST eigenvalues in the specified range. The actual number of eigenvalues
in the range is returned in M. No eigenvectors have been computed. Rerun with the second
dimension of V ¼ MEST � M.

IFAIL ¼ 4

Inverse iteration failed to compute all the specified eigenvectors. If an eigenvector failed to
converge, the corresponding column of V is set to zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

If �i is an exact eigenvalue, and ~�i is the corresponding computed value, then

~�i � �i
		 		 � c nð Þ� A0k k2

si
;

where c nð Þ is a modestly increasing function of n, � is the machine precision, and si is the reciprocal
condition number of �i; A0 is the balanced form of the original matrix A (see Section 9), and
A0k k � Ak k.
If xi is the corresponding exact eigenvector, and ~xi is the corresponding computed eigenvector, then the
angle � ~xi; xið Þ between them is bounded as follows:

� ~xi; xið Þ � c nð Þ� A
0k k2

sepi

where sepi is the reciprocal condition number of xi.

The condition numbers si and sepi may be computed from the Hessenberg form of the balanced matrix
A0 which is returned in the array A. This requires calling F08PSF (ZHSEQR) with JOB ¼ S to
compute the Schur form of A0, followed by F08QYF (ZTRSNA).

8 Parallelism and Performance

F02GCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02GCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F02GCF calls routines from LAPACK in Chapter F08. It first balances the matrix, using a diagonal
similarity transformation to reduce its norm; and then reduces the balanced matrix A0 to upper
Hessenberg form H, using a unitary similarity transformation: A0 ¼ QHQH. The routine uses the
Hessenberg QR algorithm to compute all the eigenvalues of H, which are the same as the eigenvalues
of A. It computes the eigenvectors of H which correspond to the selected eigenvalues, using inverse
iteration. It premultiplies the eigenvectors by Q to form the eigenvectors of A0; and finally transforms
the eigenvectors to those of the original matrix A.

Each eigenvector x is normalized so that xk k2 ¼ 1, and the element of largest absolute value is real.

The inverse iteration routine may make a small perturbation to the real parts of close eigenvalues, and
this may shift their moduli just outside the specified bounds. If you are relying on eigenvalues being
within the bounds, you should test them on return from F02GCF.

The time taken by the routine is approximately proportional to n3.

The routine can be used to compute all eigenvalues and eigenvectors, by setting WL large and negative,
and WU large and positive.
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10 Example

This example computes those eigenvalues of the matrix A which lie in the range �5:5;þ5:5½ �, and their
corresponding eigenvectors, where

A ¼
�3:97� 5:04i �4:11þ 3:70i �0:34þ 1:01i 1:29� 0:86i
0:34� 1:50i 1:52� 0:43i 1:88� 5:38i 3:36þ 0:65i
3:31� 3:85i 2:50þ 3:45i 0:88� 1:08i 0:64� 1:48i
�1:10þ 0:82i 1:81� 1:59i 3:25þ 1:33i 1:57� 3:44i

0B@
1CA:

10.1 Program Text

Program f02gcfe

! F02GCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f02gcf, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: wl, wu
Integer :: i, ifail, lda, ldv, lwork, m, mest, &

n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), v(:,:), w(:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: iwork(:)
Logical, Allocatable :: bwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F02GCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, mest, wl, wu
lda = n
ldv = n
lwork = 64*n
Allocate (a(lda,n),v(ldv,n),w(n),work(lwork),rwork(2*n),iwork(n), &

bwork(n))
! Read A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Compute selected eigenvalues and eigenvectors of A

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f02gcf(’Moduli’,n,a,lda,wl,wu,mest,m,w,v,ldv,work,lwork,rwork, &

iwork,bwork,ifail)

Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:m)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04dbf(’General’,’ ’,n,m,v,ldv,’Bracketed’,’F7.4’,’Eigenvectors’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
End Program f02gcfe
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10.2 Program Data

F02GCF Example Program Data
4 3 -5.5 5.5 : n, mest, wl, wu

(-3.97,-5.04) (-4.11, 3.70) (-0.34, 1.01) ( 1.29,-0.86)
( 0.34,-1.50) ( 1.52,-0.43) ( 1.88,-5.38) ( 3.36, 0.65)
( 3.31,-3.85) ( 2.50, 3.45) ( 0.88,-1.08) ( 0.64,-1.48)
(-1.10, 0.82) ( 1.81,-1.59) ( 3.25, 1.33) ( 1.57,-3.44) : matrix A

10.3 Program Results

F02GCF Example Program Results

Eigenvalues
(-5.0000, 2.0060) ( 3.0023,-3.9998)

Eigenvectors
1 2

1 (-0.3865, 0.1732) (-0.0356,-0.1782)
2 (-0.3539, 0.4529) ( 0.1264, 0.2666)
3 ( 0.6124, 0.0000) ( 0.0129,-0.2966)
4 (-0.0859,-0.3284) ( 0.8898, 0.0000)
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NAG Library Routine Document

F02JCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02JCF solves the quadratic eigenvalue problem

�2Aþ �Bþ C
� �

x ¼ 0;

where A, B and C are real n by n matrices.

The routine returns the 2n eigenvalues, �j , for j ¼ 1; 2; . . . ; 2n, and can optionally return the
corresponding right eigenvectors, xj and/or left eigenvectors, yj as well as estimates of the condition
numbers of the computed eigenvalues and backward errors of the computed right and left eigenvectors.
A left eigenvector satisfies the equation

yH �2Aþ �Bþ C
� �

¼ 0;

where yH is the complex conjugate transpose of y.

� is represented as the pair �; �ð Þ, such that � ¼ �=�. Note that the computation of �=� may overflow
and indeed � may be zero.

2 Specification

SUBROUTINE F02JCF (SCAL, JOBVL, JOBVR, SENSE, TOL, N, A, LDA, B, LDB, C,
LDC, ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, S,
BEVL, BEVR, IWARN, IFAIL)

&
&

INTEGER SCAL, SENSE, N, LDA, LDB, LDC, LDVL, LDVR, IWARN,
IFAIL

&

REAL (KIND=nag_wp) TOL, A(LDA,*), B(LDB,*), C(LDC,*), ALPHAR(2*N),
ALPHAI(2*N), BETA(2*N), VL(LDVL,*), VR(LDVR,*),
S(*), BEVL(*), BEVR(*)

&
&

CHARACTER(1) JOBVL, JOBVR

3 Description

The quadratic eigenvalue problem is solved by linearizing the problem and solving the resulting 2n by
2n generalized eigenvalue problem. The linearization is chosen to have favourable conditioning and
backward stability properties. An initial preprocessing step is performed that reveals and deflates the
zero and infinite eigenvalues contributed by singular leading and trailing matrices.

The algorithm is backward stable for problems that are not too heavily damped, that is
Bk k � 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak k � Ck k

p
.

Further details on the algorithm are given in Hammarling et al. (2013).

4 References

Fan H -Y, Lin W.-W and Van Dooren P. (2004) Normwise scaling of second order polynomial matrices.
SIAM J. Matrix Anal. Appl. 26, 1 252–256

Gaubert S and Sharify M (2009) Tropical scaling of polynomial matrices Lecture Notes in Control and
Information Sciences Series 389 291–303 Springer–Verlag

Hammarling S, Munro C J and Tisseur F (2013) An algorithm for the complete solution of quadratic
eigenvalue problems. ACM Trans. Math. Software. 39(3):18:1–18:119 http://eprints.ma.man.ac.uk/1815/
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5 Arguments

1: SCAL – INTEGER Input

On entry: determines the form of scaling to be performed on A, B and C.

SCAL ¼ 0
No scaling.

SCAL ¼ 1 (the recommended value)

Fan, Lin and Van Dooren scaling if Bk kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak k� Ck k

p < 10 and no scaling otherwise where Zk k is
the Frobenius norm of Z.

SCAL ¼ 2
Fan, Lin and Van Dooren scaling.

SCAL ¼ 3
Tropical scaling with largest root.

SCAL ¼ 4
Tropical scaling with smallest root.

Constraint: SCAL ¼ 0, 1, 2, 3 or 4.

2: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , do not compute left eigenvectors.

If JOBVL ¼ V , compute the left eigenvectors.

If SENSE ¼ 1, 2, 4, 5, 6 or 7, JOBVL must be set to `V'.

Constraint: JOBVL ¼ N or V .

3: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , do not compute right eigenvectors.

If JOBVR ¼ V , compute the right eigenvectors.

If SENSE ¼ 1, 3, 4, 5, 6 or 7, JOBVR must be set to `V'.

Constraint: JOBVR ¼ N or V .

4: SENSE – INTEGER Input

On entry: determines whether, or not, condition numbers and backward errors are computed.

SENSE ¼ 0
Do not compute condition numbers, or backward errors.

SENSE ¼ 1
Just compute condition numbers for the eigenvalues.

SENSE ¼ 2
Just compute backward errors for the left eigenpairs.

SENSE ¼ 3
Just compute backward errors for the right eigenpairs.

SENSE ¼ 4
Compute backward errors for the left and right eigenpairs.

SENSE ¼ 5
Compute condition numbers for the eigenvalues and backward errors for the left
eigenpairs.
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SENSE ¼ 6
Compute condition numbers for the eigenvalues and backward errors for the right
eigenpairs.

SENSE ¼ 7
Compute condition numbers for the eigenvalues and backward errors for the left and right
eigenpairs.

Constraint: SENSE ¼ 0, 1, 2, 3, 4, 5, 6 or 7.

5: TOL – REAL (KIND=nag_wp) Input

On entry: TOL is used as the tolerance for making decisions on rank in the deflation procedure.
If TOL is zero on entry then n�machine precision is used in place of TOL, where machine
precision is as returned by routine X02AJF. A diagonal element of a triangular matrix, R, is
regarded as zero if rjj

		 		 � TOL� size Xð Þ, or n�machine precision� size Xð Þ when TOL is
zero, where size Xð Þ is based on the size of the absolute values of the elements of the matrix X
containing the matrix R. See Hammarling et al. (2013) for the motivation. If TOL is �1:0 on
entry then no deflation is attempted. The recommended value for TOL is zero.

6: N – INTEGER Input

On entry: the order of the matrices A, B and C.

Constraint: N � 0.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: A is used as internal workspace, but if JOBVL ¼ V or JOBVR ¼ V , then A is restored
on exit.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F02JCF
is called.

Constraint: LDA � N.

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least N.

On entry: the n by n matrix B.

On exit: B is used as internal workspace, but is restored on exit.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F02JCF
is called.

Constraint: LDB � N.

11: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least N.

On entry: the n by n matrix C.

On exit: C is used as internal workspace, but if JOBVL ¼ V or JOBVR ¼ V , C is restored on
exit.
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12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F02JCF
is called.

Constraint: LDC � N.

13: ALPHARð2� NÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHARðjÞ, for j ¼ 1; 2; . . . ; 2n, contains the real part of �j for the jth eigenvalue pair
�j; �j
� �

of the quadratic eigenvalue problem.

14: ALPHAIð2� NÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHAIðjÞ, for j ¼ 1; 2; . . . ; 2n, contains the imaginary part of �j for the jth eigenvalue
pair �j; �j

� �
of the quadratic eigenvalue problem. If ALPHAIðjÞ is zero then the jth eigenvalue is

real; if ALPHAIðjÞ is positive then the jth and jþ 1ð Þth eigenvalues are a complex conjugate
pair, with ALPHAIðjþ 1Þ negative.

15: BETAð2� NÞ – REAL (KIND=nag_wp) array Output

On exit: BETAðjÞ, for j ¼ 1; 2; . . . ; 2n, contains the second part of the jth eigenvalue pair
�j; �j
� �

of the quadratic eigenvalue problem, with �j � 0. Infinite eigenvalues have �j set to
zero.

16: VLðLDVL; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least 2� N if JOBVL ¼ V .

On exit: if JOBVL ¼ V , the left eigenvectors yj are stored one after another in the columns of
VL, in the same order as the corresponding eigenvalues. If the jth eigenvalue is real, then
yj ¼ VLð:; jÞ, the jth column of VL. If the jth and jþ 1ð Þth eigenvalues form a complex
conjugate pair, then yj ¼ VLð:; jÞ þ i� VLð:; jþ 1Þ and yjþ1 ¼ VLð:; jÞ � i� VLð:; jþ 1Þ. Each
eigenvector will be normalized with length unity and with the element of largest modulus real
and positive.

If JOBVL ¼ N , VL is not referenced.

17: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F02JCF is called.

Constraint: LDVL � N.

18: VRðLDVR; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least 2� N if JOBVR ¼ V .

On exit: if JOBVR ¼ V , the right eigenvectors xj are stored one after another in the columns of
VR, in the same order as the corresponding eigenvalues. If the jth eigenvalue is real, then
xj ¼ VRð:; jÞ, the jth column of VR. If the jth and jþ 1ð Þth eigenvalues form a complex
conjugate pair, then xj ¼ VRð:; jÞ þ i� VRð:; jþ 1Þ and xjþ1 ¼ VRð:; jÞ � i� VRð:; jþ 1Þ. Each
eigenvector will be normalized with length unity and with the element of largest modulus real
and positive.

If JOBVR ¼ N , VR is not referenced.

19: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F02JCF is called.

Constraint: LDVR � N.
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20: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least 2� N if SENSE ¼ 1, 5, 6 or 7.

Note: also: computing the condition numbers of the eigenvalues requires that both the left and
right eigenvectors be computed.

On exit: if SENSE ¼ 1, 5, 6 or 7, SðjÞ contains the condition number estimate for the jth
eigenvalue (large condition numbers imply that the problem is near one with multiple
eigenvalues). Infinite condition numbers are returned as the largest model real number
(X02ALF).

If SENSE ¼ 0, 2, 3 or 4, S is not referenced.

21: BEVLð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array BEVL must be at least 2� N if SENSE ¼ 2, 4, 5 or 7.

On exit: if SENSE ¼ 2, 4, 5 or 7, BEVLðjÞ contains the backward error estimate for the
computed left eigenpair �j; yj

� �
.

If SENSE ¼ 0, 1, 3 or 6, BEVL is not referenced.

22: BEVRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array BEVR must be at least 2� N if SENSE ¼ 3, 4, 6 or 7.

On exit: if SENSE ¼ 3, 4, 6 or 7, BEVRðjÞ contains the backward error estimate for the
computed right eigenpair �j; xj

� �
.

If SENSE ¼ 0, 1, 2 or 5, BEVR is not referenced.

23: IWARN – INTEGER Output

On exit: IWARN will be positive if there are warnings, otherwise IWARN will be 0.

If IFAIL ¼ 0 then:

if IWARN ¼ 1 then one, or both, of the matrices A and C is zero. In this case no scaling
is performed, even if SCAL > 0;

if IWARN ¼ 2 then the matrices A and C are singular, or nearly singular, so the problem
is potentially ill-posed;

if IWARN ¼ 3 then both the conditions for IWARN ¼ 1 and IWARN ¼ 2 above, apply. If
IWARN ¼ 4, Bk k � 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak k � Ck k

p
and backward stability cannot be guaranteed.

If IFAIL ¼ 2, IWARN returns the value of INFO from F08XAF (DGGES).

If IFAIL ¼ 3, IWARN returns the value of INFO from F08WAF (DGGEV).

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The quadratic matrix polynomial is nonregular (singular).

IFAIL ¼ 2

The QZ iteration failed in F08XAF (DGGES).
IWARN returns the value of INFO returned by F08XAF (DGGES). This failure is unlikely to
happen, but if it does, please contact NAG.

IFAIL ¼ 3

The QZ iteration failed in F08WAF (DGGEV).
IWARN returns the value of INFO returned by F08WAF (DGGEV). This failure is unlikely to
happen, but if it does, please contact NAG.

IFAIL ¼ �1
On entry, SCAL ¼ valueh i.
Constraint: SCAL ¼ 0, 1, 2, 3 or 4.

IFAIL ¼ �2
On entry, JOBVL ¼ valueh i.
Constraint: JOBVL ¼ N or V .

On entry, SENSE ¼ valueh i and JOBVL ¼ valueh i.
Constraint: when JOBVL ¼ N , SENSE ¼ 0 or 3,
when JOBVL ¼ V , SENSE ¼ 1, 2, 4, 5, 6 or 7.

IFAIL ¼ �3
On entry, JOBVR ¼ valueh i.
Constraint: JOBVR ¼ N or V .

On entry, SENSE ¼ valueh i and JOBVR ¼ valueh i.
Constraint: when JOBVR ¼ N , SENSE ¼ 0 or 2,
when JOBVR ¼ V , SENSE ¼ 1, 3, 4, 5, 6 or 7.

IFAIL ¼ �4
On entry, SENSE ¼ valueh i.
Constraint: SENSE ¼ 0, 1, 2, 3, 4, 5, 6 or 7.

IFAIL ¼ �6
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �8
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �10
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � N.
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IFAIL ¼ �12
On entry, LDC ¼ valueh i and N ¼ valueh i.
Constraint: LDC � N.

IFAIL ¼ �17
On entry, LDVL ¼ valueh i, N ¼ valueh i and JOBVL ¼ valueh i.
Constraint: when JOBVL ¼ V , LDVL � N.

IFAIL ¼ �19
On entry, LDVR ¼ valueh i, N ¼ valueh i and JOBVR ¼ valueh i.
Constraint: when JOBVR ¼ V , LDVR � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The algorithm is backward stable for problems that are not too heavily damped, that is
Bk k � 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak k � Ck k

p
.

8 Parallelism and Performance

F02JCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02JCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

To solve the quadratic eigenvalue problem

�2Aþ �Bþ C
� �

x ¼ 0

where
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A ¼
1 2 2
3 1 1
3 2 1

0@ 1A; B ¼
3 2 1
2 1 3
1 3 2

0@ 1A and C ¼
1 1 2
2 3 1
3 1 2

0@ 1A:
The example also returns the left eigenvectors, condition numbers for the computed eigenvalues and
backward errors of the computed right and left eigenpairs.

10.1 Program Text

Program f02jcfe

! F02JCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f02jcf, x02alf, x04caf
Use nag_precisions, Only: wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=wp), Parameter :: one = 1.0_wp
Real (Kind=wp), Parameter :: tol = 0.0E0_wp
Real (Kind=wp), Parameter :: zero = 0.0_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=wp) :: inf, tmp
Integer :: i, ifail, iwarn, j, lda, ldb, ldc, &

ldvl, ldvr, n, scal, sense, tdvl, &
tdvr

! .. Local Arrays ..
Real (Kind=wp), Allocatable :: a(:,:), alphai(:), alphar(:), &

b(:,:), beta(:), bevl(:), bevr(:), &
c(:,:), ei(:), er(:), s(:), vl(:,:), &
vr(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F02JCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldc = n
ldvl = n
ldvr = n
tdvl = 2*n
tdvr = 2*n
Allocate (a(lda,n),b(ldb,n),c(ldc,n),alphai(2*n),alphar(2*n),beta(2*n), &

ei(2*n),er(2*n),vl(ldvl,tdvl),vr(ldvr,tdvr),s(2*n),bevr(2*n), &
bevl(2*n))

! Read in the matrices A, B and C
Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)
Read (nin,*)(c(i,1:n),i=1,n)

! Use default scaling and compute eigenvalue condition numbers and
! backward errors for both left and right eigenpairs

scal = 1
sense = 7

! Solve the quadratic eigenvalue problem

ifail = -1
Call f02jcf(scal,’V’,’V’,sense,tol,n,a,lda,b,ldb,c,ldc,alphar,alphai, &

beta,vl,ldvl,vr,ldvr,s,bevl,bevr,iwarn,ifail)
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If (iwarn/=0) Then
Write (nout,*)
Write (nout,99999) ’Warning from f02jcf. IWARN =’, iwarn

End If

Write (nout,*)
If (ifail/=0) Then

Write (nout,99999) ’Failure in f02jcf. IFAIL =’, ifail
Else

! Infinity
inf = x02alf()
Do j = 1, 2*n

If (beta(j)>=one) Then
er(j) = alphar(j)/beta(j)
ei(j) = alphai(j)/beta(j)

Else
tmp = inf*beta(j)
If ((abs(alphar(j))<tmp) .And. (abs(alphai(j))<tmp)) Then

er(j) = alphar(j)/beta(j)
ei(j) = alphai(j)/beta(j)

Else
er(j) = inf
ei(j) = zero

End If
End If
If (er(j)<inf) Then

Write (nout,99998) ’Eigenvalue(’, j, ’) = (’, er(j), ’, ’, ei(j), &
’)’

Else
Write (nout,99997) ’Eigenvalue(’, j, ’) is infinite’

End If
End Do

Write (nout,*)
ifail = 0
Call x04caf(’General’,’ ’,n,2*n,vr,ldvr, &

’Right eigenvectors (matrix VR)’,ifail)

Write (nout,*)
ifail = 0
Call x04caf(’General’,’ ’,n,2*n,vl,ldvl, &

’Left eigenvectors (matrix VL)’,ifail)

Write (nout,*)
Write (nout,*) ’Eigenvalue Condition numbers’
Do j = 1, 2*n

Write (nout,99996) s(j)
End Do

Write (nout,*)
Write (nout,*) &

’Backward errors for eigenvalues and right eigenvectors’
Do j = 1, 2*n

Write (nout,99996) bevr(j)
End Do

Write (nout,*)
Write (nout,*) ’Backward errors for eigenvalues and left eigenvectors’
Do j = 1, 2*n

Write (nout,99996) bevl(j)
End Do

End If

99999 Format (1X,A,I4)
99998 Format (1X,A,I3,A,1P,E11.4,A,1P,E11.4,A)
99997 Format (1X,A,I3,A)
99996 Format (1X,1P,E11.4)

End Program f02jcfe
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10.2 Program Data

F02JCF Example Program Data

3 : n

1.0 2.0 2.0
3.0 1.0 1.0
3.0 2.0 1.0 : A

3.0 2.0 1.0
2.0 1.0 3.0
1.0 3.0 2.0 : B

1.0 1.0 2.0
2.0 3.0 1.0
3.0 1.0 2.0 : C

10.3 Program Results

F02JCF Example Program Results

Eigenvalue( 1) = (-3.8513E+00, 0.0000E+00)
Eigenvalue( 2) = (-5.9217E-01, 8.0280E-01)
Eigenvalue( 3) = (-5.9217E-01, -8.0280E-01)
Eigenvalue( 4) = ( 5.2326E-01, 6.2251E-01)
Eigenvalue( 5) = ( 5.2326E-01, -6.2251E-01)
Eigenvalue( 6) = ( 7.8909E-01, 0.0000E+00)

Right eigenvectors (matrix VR)
1 2 3 4 5 6

1 -0.2108 0.3751 -0.1877 -0.6593 0.0424 -0.3478
2 0.7695 0.5020 -0.2433 0.0302 0.0197 0.8277
3 -0.6028 0.7162 0.0000 0.7498 0.0000 -0.4405

Left eigenvectors (matrix VL)
1 2 3 4 5 6

1 0.1052 0.7816 0.0000 0.8079 0.0000 0.0358
2 0.7381 0.5075 -0.1352 -0.1124 -0.0314 0.7072
3 -0.6664 0.3202 -0.1038 -0.5704 0.0913 -0.7061

Eigenvalue Condition numbers
2.3092E+00
7.0275E-01
7.0275E-01
2.7013E+00
2.7013E+00
2.0144E+00

Backward errors for eigenvalues and right eigenvectors
1.1321E-16
5.1930E-16
5.1930E-16
2.4397E-16
2.4397E-16
1.3853E-16

Backward errors for eigenvalues and left eigenvectors
9.5738E-17
5.2313E-16
5.2313E-16
1.8837E-16
1.8837E-16
3.7483E-16
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NAG Library Routine Document

F02JQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02JQF solves the quadratic eigenvalue problem

�2Aþ �Bþ C
� �

x ¼ 0;

where A, B and C are complex n by n matrices.

The routine returns the 2n eigenvalues, �j , for j ¼ 1; 2; . . . ; 2n, and can optionally return the
corresponding right eigenvectors, xj and/or left eigenvectors, yj as well as estimates of the condition
numbers of the computed eigenvalues and backward errors of the computed right and left eigenvectors.
A left eigenvector satisfies the equation

yH �2Aþ �Bþ C
� �

¼ 0;

where yH is the complex conjugate transpose of y.

� is represented as the pair �; �ð Þ, such that � ¼ �=�. Note that the computation of �=� may overflow
and indeed � may be zero.

2 Specification

SUBROUTINE F02JQF (SCAL, JOBVL, JOBVR, SENSE, TOL, N, A, LDA, B, LDB, C,
LDC, ALPHA, BETA, VL, LDVL, VR, LDVR, S, BEVL, BEVR,
IWARN, IFAIL)

&
&

INTEGER SCAL, SENSE, N, LDA, LDB, LDC, LDVL, LDVR, IWARN,
IFAIL

&

REAL (KIND=nag_wp) TOL, S(*), BEVL(*), BEVR(*)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), C(LDC,*), ALPHA(2*N),

BETA(2*N), VL(LDVL,*), VR(LDVR,*)
&

CHARACTER(1) JOBVL, JOBVR

3 Description

The quadratic eigenvalue problem is solved by linearizing the problem and solving the resulting 2n by
2n generalized eigenvalue problem. The linearization is chosen to have favourable conditioning and
backward stability properties. An initial preprocessing step is performed that reveals and deflates the
zero and infinite eigenvalues contributed by singular leading and trailing matrices.

The algorithm is backward stable for problems that are not too heavily damped, that is
Bk k � 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak k � Ck k

p
.

Further details on the algorithm are given in Hammarling et al. (2013).

4 References

Fan H -Y, Lin W.-W and Van Dooren P. (2004) Normwise scaling of second order polynomial matrices.
SIAM J. Matrix Anal. Appl. 26, 1 252–256

Gaubert S and Sharify M (2009) Tropical scaling of polynomial matrices Lecture Notes in Control and
Information Sciences Series 389 291–303 Springer–Verlag

Hammarling S, Munro C J and Tisseur F (2013) An algorithm for the complete solution of quadratic
eigenvalue problems. ACM Trans. Math. Software. 39(3):18:1–18:119 http://eprints.ma.man.ac.uk/1815/

F02 – Eigenvalues and Eigenvectors F02JQF

Mark 26 F02JQF.1

http://eprints.ma.man.ac.uk/1815/


5 Arguments

1: SCAL – INTEGER Input

On entry: determines the form of scaling to be performed on A, B and C.

SCAL ¼ 0
No scaling.

SCAL ¼ 1 (the recommended value)

Fan, Lin and Van Dooren scaling if Bk kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak k� Ck k

p < 10 and no scaling otherwise where Zk k is
the Frobenius norm of Z.

SCAL ¼ 2
Fan, Lin and Van Dooren scaling.

SCAL ¼ 3
Tropical scaling with largest root.

SCAL ¼ 4
Tropical scaling with smallest root.

Constraint: SCAL ¼ 0, 1, 2, 3 or 4.

2: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , do not compute left eigenvectors.

If JOBVL ¼ V , compute the left eigenvectors.

If SENSE ¼ 1, 2, 4, 5, 6 or 7, JOBVL must be set to `V'.

Constraint: JOBVL ¼ N or V .

3: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , do not compute right eigenvectors.

If JOBVR ¼ V , compute the right eigenvectors.

If SENSE ¼ 1, 3, 4, 5, 6 or 7, JOBVR must be set to `V'.

Constraint: JOBVR ¼ N or V .

4: SENSE – INTEGER Input

On entry: determines whether, or not, condition numbers and backward errors are computed.

SENSE ¼ 0
Do not compute condition numbers, or backward errors.

SENSE ¼ 1
Just compute condition numbers for the eigenvalues.

SENSE ¼ 2
Just compute backward errors for the left eigenpairs.

SENSE ¼ 3
Just compute backward errors for the right eigenpairs.

SENSE ¼ 4
Compute backward errors for the left and right eigenpairs.

SENSE ¼ 5
Compute condition numbers for the eigenvalues and backward errors for the left
eigenpairs.
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SENSE ¼ 6
Compute condition numbers for the eigenvalues and backward errors for the right
eigenpairs.

SENSE ¼ 7
Compute condition numbers for the eigenvalues and backward errors for the left and right
eigenpairs.

Constraint: SENSE ¼ 0, 1, 2, 3, 4, 5, 6 or 7.

5: TOL – REAL (KIND=nag_wp) Input

On entry: TOL is used as the tolerance for making decisions on rank in the deflation procedure.
If TOL is zero on entry then n�machine precision is used in place of TOL, where machine
precision is as returned by routine X02AJF. A diagonal element of a triangular matrix, R, is
regarded as zero if rjj

		 		 � TOL� size Xð Þ, or n�machine precision� size Xð Þ when TOL is
zero, where size Xð Þ is based on the size of the absolute values of the elements of the matrix X
containing the matrix R. See Hammarling et al. (2013) for the motivation. If TOL is �1:0 on
entry then no deflation is attempted. The recommended value for TOL is zero.

6: N – INTEGER Input

On entry: the order of the matrices A, B and C.

Constraint: N � 0.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: A is used as internal workspace, but if JOBVL ¼ V or JOBVR ¼ V , then A is restored
on exit.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F02JQF
is called.

Constraint: LDA � N.

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least N.

On entry: the n by n matrix B.

On exit: B is used as internal workspace, but is restored on exit.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F02JQF
is called.

Constraint: LDB � N.

11: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least N.

On entry: the n by n matrix C.

On exit: C is used as internal workspace, but if JOBVL ¼ V or JOBVR ¼ V , C is restored on
exit.
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12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F02JQF
is called.

Constraint: LDC � N.

13: ALPHAð2� NÞ – COMPLEX (KIND=nag_wp) array Output

On exit: ALPHAðjÞ, for j ¼ 1; 2; . . . ; 2n, contains the first part of the the jth eigenvalue pair
�j; �j
� �

of the quadratic eigenvalue problem.

14: BETAð2� NÞ – COMPLEX (KIND=nag_wp) array Output

On exit: BETAðjÞ, for j ¼ 1; 2; . . . ; 2n, contains the second part of the jth eigenvalue pair
�j; �j
� �

of the quadratic eigenvalue problem. Although BETA is declared complex, it is actually
real and non-negative. Infinite eigenvalues have �j set to zero.

15: VLðLDVL; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least 2� N if JOBVL ¼ V .

On exit: if JOBVL ¼ V , the left eigenvectors yj are stored one after another in the columns of
VL, in the same order as the corresponding eigenvalues. Each eigenvector will be normalized
with length unity and with the element of largest modulus real and positive.

If JOBVL ¼ N , VL is not referenced.

16: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F02JQF is called.

Constraint: LDVL � N.

17: VRðLDVR; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least 2� N if JOBVR ¼ V .

On exit: if JOBVR ¼ V , the right eigenvectors xj are stored one after another in the columns of
VR, in the same order as the corresponding eigenvalues. Each eigenvector will be normalized
with length unity and with the element of largest modulus real and positive.

If JOBVR ¼ N , VR is not referenced.

18: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F02JQF is called.

Constraint: LDVR � N.

19: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least 2� N if SENSE ¼ 1, 5, 6 or 7.

Note: also: computing the condition numbers of the eigenvalues requires that both the left and
right eigenvectors be computed.

On exit: if SENSE ¼ 1, 5, 6 or 7, SðjÞ contains the condition number estimate for the jth
eigenvalue (large condition numbers imply that the problem is near one with multiple
eigenvalues). Infinite condition numbers are returned as the largest model real number
(X02ALF).

If SENSE ¼ 0, 2, 3 or 4, S is not referenced.
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20: BEVLð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array BEVL must be at least 2� N if SENSE ¼ 2, 4, 5 or 7.

On exit: if SENSE ¼ 2, 4, 5 or 7, BEVLðjÞ contains the backward error estimate for the
computed left eigenpair �j; yj

� �
.

If SENSE ¼ 0, 1, 3 or 6, BEVL is not referenced.

21: BEVRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array BEVR must be at least 2� N if SENSE ¼ 3, 4, 6 or 7.

On exit: if SENSE ¼ 3, 4, 6 or 7, BEVRðjÞ contains the backward error estimate for the
computed right eigenpair �j; xj

� �
.

If SENSE ¼ 0, 1, 2 or 5, BEVR is not referenced.

22: IWARN – INTEGER Output

On exit: IWARN will be positive if there are warnings, otherwise IWARN will be 0.

If IFAIL ¼ 0 then:

if IWARN ¼ 1 then one, or both, of the matrices A and C is zero. In this case no scaling
is performed, even if SCAL > 0;

if IWARN ¼ 2 then the matrices A and C are singular, or nearly singular, so the problem
is potentially ill-posed;

if IWARN ¼ 3 then both the conditions for IWARN ¼ 1 and IWARN ¼ 2 above, apply. If
IWARN ¼ 4, Bk k � 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak k � Ck k

p
and backward stability cannot be guaranteed.

If IFAIL ¼ 2, IWARN returns the value of INFO from F08XNF (ZGGES).

If IFAIL ¼ 3, IWARN returns the value of INFO from F08WNF (ZGGEV).

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The quadratic matrix polynomial is nonregular (singular).

IFAIL ¼ 2

The QZ iteration failed in F08XNF (ZGGES).
IWARN returns the value of INFO returned by F08XNF (ZGGES). This failure is unlikely to
happen, but if it does, please contact NAG.
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IFAIL ¼ 3

The QZ iteration failed in F08WNF (ZGGEV).
IWARN returns the value of INFO returned by F08WNF (ZGGEV). This failure is unlikely to
happen, but if it does, please contact NAG.

IFAIL ¼ �1
On entry, SCAL ¼ valueh i.
Constraint: SCAL ¼ 0, 1, 2, 3 or 4.

IFAIL ¼ �2
On entry, JOBVL ¼ valueh i.
Constraint: JOBVL ¼ N or V .

On entry, SENSE ¼ valueh i and JOBVL ¼ valueh i.
Constraint: when JOBVL ¼ N , SENSE ¼ 0 or 3,
when JOBVL ¼ V , SENSE ¼ 1, 2, 4, 5, 6 or 7.

IFAIL ¼ �3
On entry, JOBVR ¼ valueh i.
Constraint: JOBVR ¼ N or V .

On entry, SENSE ¼ valueh i and JOBVR ¼ valueh i.
Constraint: when JOBVR ¼ N , SENSE ¼ 0 or 2,
when JOBVR ¼ V , SENSE ¼ 1, 3, 4, 5, 6 or 7.

IFAIL ¼ �4
On entry, SENSE ¼ valueh i.
Constraint: SENSE ¼ 0, 1, 2, 3, 4, 5, 6 or 7.

IFAIL ¼ �6
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �8
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �10
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � N.

IFAIL ¼ �12
On entry, LDC ¼ valueh i and N ¼ valueh i.
Constraint: LDC � N.

IFAIL ¼ �16
On entry, LDVL ¼ valueh i, N ¼ valueh i and JOBVL ¼ valueh i.
Constraint: when JOBVL ¼ V , LDVL � N.

IFAIL ¼ �18
On entry, LDVR ¼ valueh i, N ¼ valueh i and JOBVR ¼ valueh i.
Constraint: when JOBVR ¼ V , LDVR � N.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The algorithm is backward stable for problems that are not too heavily damped, that is
Bk k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak k � Ck k

p
.

8 Parallelism and Performance

F02JQF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02JQF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

To solve the quadratic eigenvalue problem

�2Aþ �Bþ C
� �

x ¼ 0

where

A ¼
2i 4i 4i
6i 2i 2i
6i 4i 2i

0@ 1A; B ¼
3þ 3i 2þ 2i 1þ i
2þ 2i 1þ i 3þ 3i
1þ i 3þ 3i 2þ 2i

0@ 1A and C ¼
1 1 2
2 3 1
3 1 2

0@ 1A:
The example also returns the left eigenvectors, condition numbers for the computed eigenvalues and the
maximum backward errors of the computed right and left eigenpairs.

10.1 Program Text

Program f02jqfe

! F02JQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: f02jqf, m01def, m01edf, nag_wp, x04caf, x04daf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: tol = 0.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: t0, t1
Integer :: i, ifail, iwarn, j, lda, ldb, ldc, &

ldvl, ldvr, n, scal, sense, tdvl, &
tdvr

Character (1) :: jobvl, jobvr
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &
c(:,:), cvr(:), e(:), vl(:,:), &
vr(:,:)

Real (Kind=nag_wp), Allocatable :: bevl(:), bevr(:), ea(:,:), s(:)
Integer, Allocatable :: irank(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, all, maxval, real

! .. Executable Statements ..
Write (nout,*) ’F02JQF Example Program Results’

! Skip heading in data file and read in n, scal, sense, jobVL and jobVR
Read (nin,*)
Read (nin,*) n, scal, sense
Read (nin,*) jobvl, jobvr

lda = n
ldb = n
ldc = n
ldvl = n
ldvr = n
tdvl = 2*n
tdvr = 2*n
Allocate (a(lda,n),b(ldb,n),c(ldc,n),alpha(2*n),beta(2*n),e(2*n), &

vl(ldvl,tdvl),vr(ldvr,tdvr),s(2*n),bevr(2*n),bevl(2*n),cvr(n), &
ea(2*n,2),irank(2*n))

! Read in the matrices A, B and C

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)
Read (nin,*)(c(i,1:n),i=1,n)

! Solve the quadratic eigenvalue problem
ifail = -1
Call f02jqf(scal,jobvl,jobvr,sense,tol,n,a,lda,b,ldb,c,ldc,alpha,beta, &

vl,ldvl,vr,ldvr,s,bevl,bevr,iwarn,ifail)
If (iwarn/=0) Then

Write (nout,*)
Write (nout,99999) ’Warning from f02jqf. IWARN =’, iwarn

End If

Write (nout,*)
If (ifail/=0) Then

Write (nout,99999) ’Failure in f02jqf. IFAIL =’, ifail
Go To 100

End If

If (all(real(beta(1:2*n))>zero)) Then
e(1:2*n) = alpha(1:2*n)/beta(1:2*n)

! Sort eigenvalues by absolute value and then by real part.
! Add 1000.0 to tie differences of small orders of epsilon.

ea(1:2*n,1) = 1000.0_nag_wp + abs(e(1:2*n))
ea(1:2*n,2) = real(e(1:2*n))
ifail = 0
Call m01def(ea,2*n,1,2*n,1,2,’Descending’,irank,ifail)
Call m01edf(e,1,2*n,irank,ifail)

! Print Eigenvalues
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ifail = 0
Call x04daf(’General’,’ ’,1,2*n,e,1,’Eigenvalues:’,ifail)

If (jobvr==’V’ .Or. jobvr==’v’) Then
! Sort right eigenvectors using irank

Do j = 1, n
e(1:2*n) = vr(j,1:2*n)
Call m01edf(e,1,2*n,irank,ifail)
vr(j,1:2*n) = e(1:2*n)

End Do
End If
If (jobvl==’V’ .Or. jobvl==’v’) Then

! Sort left eigenvectors using irank
Do j = 1, n

e(1:2*n) = vl(j,1:2*n)
Call m01edf(e,1,2*n,irank,ifail)
vl(j,1:2*n) = e(1:2*n)

End Do
End If

Else
! Some eigenvalues are infinite
! Print alpha and beta

ifail = 0
Call x04daf(’General’,’ ’,1,2*n,alpha,1,’Alpha:’,ifail)
ifail = 0
Call x04daf(’General’,’ ’,1,2*n,beta,1,’Beta:’,ifail)

End If
If (jobvr==’V’ .Or. jobvr==’v’) Then

! Print Right Eigenvectors
Write (nout,*)
ifail = 0
Call x04daf(’G’,’ ’,n,2*n,vr,n,’Right Eigenvectors (columns):’,ifail)

End If
If (jobvl==’V’ .Or. jobvl==’v’) Then

! Print Left Eigenvectors
Write (nout,*)
ifail = 0
Call x04daf(’G’,’ ’,n,2*n,vl,n,’Left Eigenvectors (columns):’,ifail)

End If

If (sense==1 .Or. sense>4) Then
Write (nout,*)

! Print Eigenvalues
ifail = 0
Call x04caf(’G’,’ ’,1,2*n,s,1,’Eigenvalue Condition numbers:’,ifail)

End If

If (sense==3 .Or. sense==4 .Or. sense>5) Then
t0 = maxval(bevr)
Write (nout,*)
Write (nout,99998) &

’Max backward error for eigenvalues and right eigenvectors’, t0
End If

If (sense==2 .Or. sense==4 .Or. sense==5 .Or. sense==7) Then
t1 = maxval(bevl)
Write (nout,*)
Write (nout,99998) &

’Max backward error for eigenvalues and left eigenvectors ’, t1
End If

100 Continue

99999 Format (1X,3(A,I4))
99998 Format (1X,A,1P,E11.1)

End Program f02jqfe
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10.2 Program Data

F02JQF Example Program Data
3 1 7 : n, scal, sense
’V’ ’V’ : jobVL, jobVR

(0.0, 2.0) (0.0, 4.0) (0.0, 4.0)
(0.0, 6.0) (0.0, 2.0) (0.0, 2.0)
(0.0, 6.0) (0.0, 4.0) (0.0, 2.0) : A

(3.0, 3.0) (2.0, 2.0) (1.0, 1.0)
(2.0, 2.0) (1.0, 1.0) (3.0, 3.0)
(1.0, 1.0) (3.0, 3.0) (2.0, 2.0) : B

(1.0, 0.0) (1.0, 0.0) (2.0, 0.0)
(2.0, 0.0) (3.0, 0.0) (1.0, 0.0)
(3.0, 0.0) (1.0, 0.0) (2.0, 0.0) : C

10.3 Program Results

F02JQF Example Program Results

Eigenvalues:
1 2 3 4 5 6

1 -1.9256 0.1053 -0.6975 0.5729 -0.0496 0.3945
1.9256 0.6975 -0.1053 0.0496 -0.5729 -0.3945

Right Eigenvectors (columns):
1 2 3 4 5 6

1 -0.2108 0.3751 0.3751 -0.6593 -0.6593 -0.3478
0.0000 -0.1877 0.1877 0.0424 -0.0424 0.0000

2 0.7695 0.5020 0.5020 0.0302 0.0302 0.8277
0.0000 -0.2433 0.2433 0.0197 -0.0197 0.0000

3 -0.6028 0.7162 0.7162 0.7498 0.7498 -0.4405
-0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000

Left Eigenvectors (columns):
1 2 3 4 5 6

1 0.1052 0.7816 0.7816 0.8079 0.8079 0.0358
-0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.7381 0.5075 0.5075 -0.1124 -0.1124 0.7072
0.0000 -0.1352 0.1352 -0.0314 0.0314 0.0000

3 -0.6664 0.3202 0.3202 -0.5704 -0.5704 -0.7061
0.0000 -0.1038 0.1038 0.0913 -0.0913 -0.0000

Eigenvalue Condition numbers:
1 2 3 4 5 6

1 3.0717 0.6620 0.6620 2.3848 2.3848 1.7625

Max backward error for eigenvalues and right eigenvectors 5.4E-16

Max backward error for eigenvalues and left eigenvectors 5.5E-16
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NAG Library Routine Document

F02SDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02SDF finds the eigenvector corresponding to a given real eigenvalue for the generalized problem
Ax ¼ �Bx, or for the standard problem Ax ¼ �x, where A and B are real band matrices.

2 Specification

SUBROUTINE F02SDF (N, MA1, MB1, A, LDA, B, LDB, SYM, RELEP, RMU, VEC, D,
IWORK, WORK, LWORK, IFAIL)

&

INTEGER N, MA1, MB1, LDA, LDB, IWORK(N), LWORK, IFAIL
REAL (KIND=nag_wp) A(LDA,N), B(LDB,N), RELEP, RMU, VEC(N), D(30),

WORK(LWORK)
&

LOGICAL SYM

3 Description

Given an approximation � to a real eigenvalue � of the generalized eigenproblem Ax ¼ �Bx, F02SDF
attempts to compute the corresponding eigenvector by inverse iteration.

F02SDF first computes lower and upper triangular factors, L and U , of A� �B, using Gaussian
elimination with interchanges, and then solves the equation Ux ¼ e, where e ¼ 1; 1; 1; . . . ; 1ð ÞT – this is
the first half iteration.

There are then three possible courses of action depending on the input value of Dð1Þ.
1. Dð1Þ ¼ 0.

This setting should be used if � is an ill-conditioned eigenvalue (provided the matrix elements do
not vary widely in order of magnitude). In this case it is essential to accept only a vector found
after one half iteration, and � must be a very good approximation to �. If acceptable growth is
achieved in the solution of Ux ¼ e, then the normalized x is accepted as the eigenvector. If not,
columns of an orthogonal matrix are tried in turn in place of e. If none of these give acceptable
growth, the routine fails, indicating that � was not a sufficiently good approximation to �.

2. Dð1Þ > 0.

This setting should be used if � is moderately close to an eigenvalue which is not ill-conditioned
(provided the matrix elements do not differ widely in order of magnitude). If acceptable growth is
achieved in the solution of Ux ¼ e, the normalized x is accepted as the eigenvector. If not, inverse
iteration is performed. Up to 30 iterations are allowed to achieve a vector and a correction to �
which together give acceptably small residuals.

3. Dð1Þ < 0.

This setting should be used if the elements of A and B vary widely in order of magnitude. Inverse
iteration is performed, but a different convergence criterion is used.

See Section 9.3 for further details.

Note that the bandwidth of the matrix A must not be less than the bandwidth of B. If this is not so,
either A must be filled out with zeros, or matrices A and B may be reversed and 1=� supplied as an
approximation to the eigenvalue 1=�. Also it is assumed that A and B each have the same number of
subdiagonals as superdiagonals. If this is not so, they must be filled out with zeros. If A and B are both
symmetric, only the upper triangles need be supplied.
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 1.

2: MA1 – INTEGER Input

On entry: the value mA þ 1, where mA is the number of nonzero lines on each side of the
diagonal of A. Thus the total bandwidth of A is 2mA þ 1.

Constraint: 1 � MA1 � N.

3: MB1 – INTEGER Input

On entry: if MB1 � 0, B is assumed to be the unit matrix. Otherwise MB1 must specify the
value mB þ 1, where mB is the number of nonzero lines on each side of the diagonal of B. Thus
the total bandwidth of B is 2mB þ 1.

Constraint: MB1 � MA1.

4: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the n by n band matrix A. The mA subdiagonals must be stored in the first mA rows of
the array; the diagonal in the (mA þ 1)th row; and the mA superdiagonals in rows mA þ 2 to
2mA þ 1. Each row of the matrix must be stored in the corresponding column of the array. For
example, if n ¼ 6 and mA ¼ 2 the storage scheme is:

� � a31 a42 a53 a64
� a21 a32 a43 a54 a65
a11 a22 a33 a44 a55 a66
a12 a23 a34 a45 a56 �
a13 a24 a35 a46 � �

:

Elements of the array marked � need not be set. The following code assigns the matrix elements
within the band to the correct elements of the array:

DO 20 J = 1, N
DO 10 I = MAX(1,J-MA1+1), MIN(N,J+MA1-1)
A(I-J+MA1,J) = matrix(J,I)
10 CONTINUE
20 CONTINUE

If SYM ¼ :TRUE: (i.e., both A and B are symmetric), only the lower triangle of A need be
stored in the first MA1 rows of the array.

On exit: details of the factorization of A� ��B, where �� is an estimate of the eigenvalue.
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5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F02SDF
is called.

Constraint: LDA � 2�MA1� 1.

6: BðLDB;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MB1 > 0, B must contain the n by n band matrix B, stored in the same way as A. If
SYM ¼ :TRUE:, only the lower triangle of B need be stored in the first MB1 rows of the array.

If MB1 � 0, the array is not used.

On exit: elements in the top-left corner, and in the bottom right corner if SYM ¼ :FALSE:, are
set to zero; otherwise the array is unchanged.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F02SDF
is called.

Constraints:

if SYM ¼ :FALSE:, LDB � 2�MB1� 1;
if SYM ¼ :TRUE:, LDB � MB1.

8: SYM – LOGICAL Input

On entry: if SYM ¼ :TRUE:, both A and B are assumed to be symmetric and only their upper
triangles need be stored. Otherwise SYM must be set to .FALSE..

9: RELEP – REAL (KIND=nag_wp) Input

On entry: the relative error of the coefficients of the given matrices A and B. If the value of
RELEP is less than the machine precision, the machine precision is used instead.

10: RMU – REAL (KIND=nag_wp) Input

On entry: �, an approximation to the eigenvalue for which the corresponding eigenvector is
required.

11: VECðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvector, normalized so that the largest element is unity, corresponding to the
improved eigenvalue RMUþ Dð30Þ.

12: Dð30Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Dð1Þ must be set to indicate the type of problem (see Section 3):

Dð1Þ > 0:0
Indicates a well-conditioned eigenvalue.

Dð1Þ ¼ 0:0
Indicates an ill-conditioned eigenvalue.

Dð1Þ < 0:0
Indicates that the matrices have elements varying widely in order of magnitude.

On exit: if Dð1Þ 6¼ 0:0 on entry, the successive corrections to � are given in DðiÞ, for
i ¼ 1; 2; . . . ; k, where kþ 1 is the total number of iterations performed. The final correction is
also given in the last position, Dð30Þ, of the array. The remaining elements of D are set to zero.

If Dð1Þ ¼ 0:0 on entry, no corrections to � are computed and DðiÞ is set to 0:0, for
i ¼ 1; 2; . . . ; 30. Thus in all three cases the best available approximation to the eigenvalue is
RMUþ Dð30Þ.
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13: IWORKðNÞ – INTEGER array Workspace
14: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F02SDF is called.

Constraints:

if Dð1Þ 6¼ 0:0, LWORK � N� MA1þ 1ð Þ;
if Dð1Þ ¼ 0:0, LWORK � 2� N.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or MA1 < 1,
or MA1 > N,
or LDA < 2�MA1� 1,
or LDB < MB1 when SYM ¼ :TRUE:,
or LDB < 2�MB1 � 1 when SYM ¼ :FALSE: (LDB is not checked if MB1 � 0).

IFAIL ¼ 2

On entry, MA1 < MB1. Either fill out A with zeros, or reverse the roles of A and B, and replace
RMU by its reciprocal, i.e., solve Bx ¼ ��1Ax:

IFAIL ¼ 3

On entry, LWORK < 2� N when Dð1Þ ¼ 0:0,
or LWORK < N� MA1þ 1ð Þ when Dð1Þ 6¼ 0:0.

IFAIL ¼ 4

A is null. If B is nonsingular, all the eigenvalues are zero and any set of N orthogonal vectors
forms the eigensolution.

IFAIL ¼ 5

B is null. If A is nonsingular, all the eigenvalues are infinite, and the columns of the unit matrix
are eigenvectors.

IFAIL ¼ 6

On entry, A and B are both null. The eigensolution is arbitrary.
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IFAIL ¼ 7

Dð1Þ 6¼ 0:0 on entry and convergence is not achieved in 30 iterations. Either the eigenvalue is ill-
conditioned or RMU is a poor approximation to the eigenvalue. See Section 9.3.

IFAIL ¼ 8

Dð1Þ ¼ 0:0 on entry and no eigenvector has been found after min N; 5ð Þ back-substitutions. RMU
is not a sufficiently good approximation to the eigenvalue.

IFAIL ¼ 9

Dð1Þ < 0:0 on entry and RMU is too inaccurate for the solution to converge.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The eigensolution is exact for some problem

Aþ Eð Þx ¼ � Bþ Fð Þx;

where Ek k; Fk k are of the order of � Ak k þ � Bk kð Þ, where � is the value used for RELEP.

8 Parallelism and Performance

F02SDF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken by F02SDF is approximately proportional to n 2mA þ 1ð Þ2 for factorization, and to
n 2mA þ 1ð Þ for each iteration.

9.2 Storage

The storage of the matrices A and B is designed for efficiency on a paged machine.

F02SDF will work with full matrices but it will do so inefficiently, particularly in respect of storage
requirements.

9.3 Algorithmic Details

Inverse iteration is performed according to the rule

A� �Bð Þyrþ1 ¼ Bxr
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xrþ1 ¼
1

�rþ1
yrþ1

where �rþ1 is the element of yrþ1 of largest magnitude.

Thus:

A� �Bð Þxrþ1 ¼
1

�rþ1
Bxr:

Hence the residual corresponding to xrþ1 is very small if �rþ1j j is very large (see Peters and Wilkinson
(1979)). The first half iteration, Uy1 ¼ e, corresponds to taking L�1PBx0 ¼ e.
If � is a very accurate eigenvalue, then there should always be an initial vector x0 such that one half
iteration gives a small residual and thus a good eigenvector. If the eigenvalue is ill-conditioned, then
second and subsequent iterated vectors may not be even remotely close to an eigenvector of a
neighbouring problem (see pages 374–376 of Wilkinson (1972) and Wilkinson (1974)). In this case it is
essential to accept only a vector obtained after one half iteration.

However, for well-conditioned eigenvalues, there is no loss in performing more than one iteration (see
page 376 of Wilkinson (1972)), and indeed it will be necessary to iterate if � is not such a good
approximation to the eigenvalue. When the iteration has converged, yrþ1 will be some multiple of xr,
yrþ1 ¼ �rþ1xr, say.
Therefore

A� �Bð Þ�rþ1xr ¼ Bxr;

giving

A� �þ 1

�rþ1

� �
B

� �
xr ¼ 0:

Thus �þ 1

�rþ1
is a better approximation to the eigenvalue. �rþ1 is obtained as the element of yrþ1

which corresponds to the element of largest magnitude, þ1, in xr. The routine terminates when

A� �þ 1

�r

� �
B

� �
xr

���� ���� is of the order of the machine precision relative to Ak k þ �j j Bk k.

If the elements of A and B vary widely in order of magnitude, then Ak k and Bk k are excessively large
and a different convergence test is required. The routine terminates when the difference between
successive corrections to � is small relative to �.

In practice one does not necessarily know if the given problem is well-conditioned or ill-conditioned. In
order to provide some information on the condition of the eigenvalue or the accuracy of � in the event

of failure, successive values of
1

�r
are stored in the vector D when Dð1Þ is nonzero on input. If these

values appear to be converging steadily, then it is likely that � was a poor approximation to the
eigenvalue and it is worth trying again with RMU þ Dð30Þ as the initial approximation. If the values in
D vary considerably in magnitude, then the eigenvalue is ill-conditioned.

A discussion of the significance of the singularity of A and/or B is given in relation to the QZ
algorithm in Wilkinson (1979).
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10 Example

Given the generalized eigenproblem Ax ¼ �Bx where

A ¼

1 1 2
�1 2 1 2

�1 3 1 2
�1 4 1

�1 5

0BBB@
1CCCA and B ¼

5 1
1 4 2

2 3 2
2 2 1

1 1

0BBB@
1CCCA

find the eigenvector corresponding to the approximate eigenvalue �12:33.
Although B is symmetric, A is not, so SYM must be set to .FALSE. and all the elements of B in the
band must be supplied to the routine. A (as written above) has 1 subdiagonal and 2 superdiagonals, so
MA1 must be set to 3 and A filled out with an additional subdiagonal of zeros. Each row of the
matrices is read in as data in turn.

10.1 Program Text

Program f02sdfe

! F02SDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f02sdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: relep, rmu
Integer :: i, ifail, j, k, k1, k2, lda, ldb, &

lwork, ma, mb, n
Logical :: sym

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), vec(:), work(:)
Real (Kind=nag_wp) :: d(30)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’F02SDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ma, mb
lda = 2*ma + 1
ldb = 2*mb + 1
lwork = n*(ma+2)
Allocate (a(lda,n),b(ldb,n),vec(n),work(lwork),iwork(n))
Do i = 1, n

k1 = ma + 1 - min(ma,i-1)
k2 = ma + 1 + min(ma,n-i)
Read (nin,*)(a(k,i),k=k1,k2)

End Do
Do i = 1, n

k1 = mb + 1 - min(mb,i-1)
k2 = mb + 1 + min(mb,n-i)
Read (nin,*)(b(k,i),k=k1,k2)

End Do
Read (nin,*) rmu, d(1)
sym = .False.
relep = 0.0E0_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f02sdf(n,ma+1,mb+1,a,lda,b,ldb,sym,relep,rmu,vec,d,iwork,work, &
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lwork,ifail)

Write (nout,*)
If (ifail==0) Then

Write (nout,99999) ’Corrected eigenvalue = ’, rmu + d(30)
Write (nout,*)
Write (nout,*) ’Eigenvector is’
Write (nout,99998) vec(1:n)

Else If (ifail>0) Then
Write (nout,99997) ’Error in F02SDF. IFAIL =’, ifail
If (ifail==7 .Or. ifail==9) Then

Write (nout,*)
Write (nout,*) ’Successive corrections to RMU were’
Write (nout,*)
Do j = 1, 29

If (d(j)==0.0E0_nag_wp) Then
Go To 100

End If
Write (nout,99996) d(j)

End Do
End If

Else
Write (nout,99995) ifail

End If
100 Continue

99999 Format (1X,A,F8.4)
99998 Format (1X,5F9.4)
99997 Format (1X,A,I5)
99996 Format (1X,E20.4)
99995 Format (1X,’ ** F02SDF returned with IFAIL = ’,I5)

End Program f02sdfe

10.2 Program Data

F02SDF Example Program Data
5 2 1 : n, ma, mb
1.0 1.0 2.0

-1.0 2.0 1.0 2.0
0.0 -1.0 3.0 1.0 2.0
0.0 -1.0 4.0 1.0
0.0 -1.0 5.0 : matrix A
5.0 1.0
1.0 4.0 2.0
2.0 3.0 2.0
2.0 2.0 1.0
1.0 1.0 : matrix B

-12.33 1.0 : rmu, d(1)

10.3 Program Results

F02SDF Example Program Results

Corrected eigenvalue = -12.3394

Eigenvector is
-0.0572 0.3951 -0.8427 1.0000 -0.6540
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NAG Library Routine Document

F02WDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02WDF returns the Householder QU factorization of a real rectangular m by n m � nð Þ matrix A.
Further, on request or if A is not of full rank, part or all of the singular value decomposition of A is
returned.

2 Specification

SUBROUTINE F02WDF (M, N, A, LDA, WANTB, B, TOL, SVD, IRANK, Z, SV,
WANTR, R, LDR, WANTPT, PT, LDPT, WORK, LWORK, IFAIL)

&

INTEGER M, N, LDA, IRANK, LDR, LDPT, LWORK, IFAIL
REAL (KIND=nag_wp) A(LDA,N), B(M), TOL, Z(N), SV(N), R(LDR,N),

PT(LDPT,N), WORK(LWORK)
&

LOGICAL WANTB, SVD, WANTR, WANTPT

3 Description

The real m by n m � nð Þ matrix A is first factorized as

A ¼ Q U
0

� �
;

where Q is an m by m orthogonal matrix and U is an n by n upper triangular matrix.

If either U is singular or SVD is supplied as .TRUE., then the singular value decomposition (SVD) of
U is obtained so that U is factorized as

U ¼ RDPT;

where R and P are n by n orthogonal matrices and D is the n by n diagonal matrix

D ¼ diag sv1; sv2; . . . ; svnð Þ;

with sv1 � sv2 � � � � � svn � 0:

Note that the SVD of A is then given by

A ¼ Q1
D
0

� �
P T where Q1 ¼ Q R 0

0 I

� �
;

the diagonal elements of D being the singular values of A.

The option to form a vector QTb, or if appropriate QT
1b, is also provided.

The rank of the matrix A, based upon a user-supplied argument TOL, is also returned.

The QU factorization of A is obtained by Householder transformations. To obtain the SVD of U the
matrix is first reduced to bidiagonal form by means of plane rotations and then the QR algorithm is
used to obtain the SVD of the bidiagonal form.

4 References

Wilkinson J H (1978) Singular Value Decomposition – Basic Aspects Numerical Software – Needs and
Availability (ed D A H Jacobs) Academic Press
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � N.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: 1 � N � M.

3: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the leading m by n part of A must contain the matrix to be factorized.

On exit: the leading m by n part of A, together with the n-element vector Z, contains details of
the Householder QU factorization.

Details of the storage of the QU factorization are given in Section 9.4.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F02WDF is called.

Constraint: LDA � M.

5: WANTB – LOGICAL Input

On entry: must be .TRUE. if QTb or QT
1b is required.

If on entry WANTB ¼ :FALSE:, B is not referenced.

6: BðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if WANTB is supplied as .TRUE., B must contain the m element vector b. Otherwise,
B is not referenced.

On exit: contains QT
1b if SVD is returned as .TRUE. and QTb if SVD is returned as .FALSE..

7: TOL – REAL (KIND=nag_wp) Input

On entry: must specify a relative tolerance to be used to determine the rank of A. TOL should be
chosen as approximately the largest relative error in the elements of A. For example, if the
elements of A are correct to about 4 significant figures, TOL should be set to about 5� 10�4. See
Section 9.3 for a description of how TOL is used to determine rank.

If TOL is outside the range �; 1:0ð Þ, where � is the machine precision, the value � is used in place
of TOL. For most problems this is unreasonably small.

8: SVD – LOGICAL Input/Output

On entry: must be .TRUE. if the singular values are to be found even if A is of full rank.

If before entry, SVD ¼ :FALSE: and A is determined to be of full rank, only the QU
factorization of A is computed.

On exit: is returned as .FALSE. if only the QU factorization of A has been obtained and is
returned as .TRUE. if the singular values of A have been obtained.
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9: IRANK – INTEGER Output

On exit: returns the rank of the matrix A. (It should be noted that it is possible for IRANK to be
returned as n and SVD to be returned as .TRUE., even if SVD was supplied as .FALSE.. This
means that the matrix U only just failed the test for nonsingularity.)

10: ZðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n-element vector Z contains some details of the Householder transformations. See
Section 9.4 for further information.

11: SVðNÞ – REAL (KIND=nag_wp) array Output

On exit: if SVD is returned as .TRUE., SV contains the n singular values of A arranged in
descending order.

12: WANTR – LOGICAL Input

On entry: must be .TRUE. if the orthogonal matrix R is required when the singular values are
computed.

If on entry WANTR ¼ :FALSE:, R is not referenced.

13: RðLDR;NÞ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array R must be at least N if WANTR ¼ :TRUE:, and at least
1 otherwise.

On exit: if SVD is returned as .TRUE. and WANTR was supplied as .TRUE., the leading n by n
part of R will contain the left-hand orthogonal matrix of the SVD of U .

14: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which
F02WDF is called.

Constraints:

if WANTR ¼ :TRUE:, LDR � N;
otherwise LDR � 1.

15: WANTPT – LOGICAL Input

On entry: must be .TRUE. if the orthogonal matrix PT is required when the singular values are
computed.

Note that if SVD is returned as .TRUE., PT is referenced even if WANTPT is supplied as
.FALSE., but see argument PT.

16: PTðLDPT;NÞ – REAL (KIND=nag_wp) array Output

On exit: if SVD is returned as .TRUE. and WANTPT was supplied as .TRUE., the leading n by n
part of PT contains the orthogonal matrix PT.

If SVD is returned as .TRUE., but WANTPT was supplied as .FALSE., the leading n by n part of
PT is used for internal workspace.

17: LDPT – INTEGER Input

On entry: the first dimension of the array PT as declared in the (sub)program from which
F02WDF is called.

Constraint: LDPT � N.
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18: WORKðLWORKÞ – REAL (KIND=nag_wp) array Output

On exit: if SVD is returned as .FALSE., WORKð1Þ contains the condition number Uk kE U�1
�� ��

E

of the upper triangular matrix U .

If SVD is returned as .TRUE., WORKð1Þ will contain the total number of iterations taken by the
QR algorithm.

The rest of the array is used as workspace and so contains no meaningful information.

19: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F02WDF is called.

Constraint: LWORK � 3� N.

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or M < N,
or LDA < M,
or LDR < N when WANTR ¼ :TRUE:,
or LDPT < N
or LWORK < 3� N.

(The routine only checks LDR if WANTR is supplied as .TRUE..)

IFAIL > 1

The QR algorithm has failed to converge to the singular values in 50� N iterations. In this case
SVð1Þ; SVð2Þ; . . . ; SVðIFAIL� 1Þ may not have been correctly found and the remaining singular
values may not be the smallest singular values. The matrix A has nevertheless been factorized as
A ¼ Q1CP

T, where C is an upper bidiagonal matrix with SVð1Þ; SVð2Þ; . . . ; SVðnÞ as its
diagonal elements and WORKð2Þ;WORKð3Þ; . . . ;WORKðnÞ as its superdiagonal elements.

This failure cannot occur if SVD is returned as .FALSE. and in any case is extremely rare.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed factors Q, U , R, D and PT satisfy the relations

Q
U
0

� �
¼ Aþ E;

Q
R 0
0 I

� �
D
0

� �
PT ¼ Aþ F

where Ek k2 � c1� Ak k2, Fk k2 � c2� Ak k2,
� being the machine precision and c1 and c2 are modest functions of m and n. Note that Ak k2 ¼ sv1.

8 Parallelism and Performance

F02WDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02WDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken by F02WDF to obtain the Householder QU factorization is approximately proportional
to n2 3m� nð Þ.
The additional time taken to obtain the singular value decomposition is approximately proportional to
n3, where the constant of proportionality depends upon whether or not the orthogonal matrices R and
PT are required.

9.2 General Remarks

Singular vectors associated with a zero or multiple singular value, are not uniquely determined, even in
exact arithmetic, and very different results may be obtained if they are computed on different machines.

Unless otherwise stated in the Users' Note for your implementation, the routine may be called with the
same array for arguments Z and SV, in which case, if SVD is returned as .TRUE., the singular values
will overwrite the original contents of Z; also, if WANTPT ¼ :FALSE:, it may be called with the same
array for arguments R and PT. However this is not standard Fortran, and may not work on all systems.

This routine is called by the least squares routine F04JGF.
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9.3 Determining the Rank of A

Following the QU factorization of A, if SVD is supplied as .FALSE., then the condition number of U
given by

C Uð Þ ¼ Uk kF U�1
�� ��

F

is found, where :k kF denotes the Frobenius norm, and if C Uð Þ is such that

C Uð Þ � TOL > 1:0

then U is regarded as singular and the singular values of A are computed. If this test is not satisfied,
then the rank of A is set to n. Note that if SVD is supplied as .TRUE. then this test is omitted.

When the singular values are computed, then the rank of A, r, is returned as the largest integer such
that

svr > TOL� sv1;

unless sv1 ¼ 0 in which case r is returned as zero. That is, singular values which satisfy
svi � TOL� sv1 are regarded as negligible because relative perturbations of order TOL can make
such singular values zero.

9.4 Storage Details of the QU Factorization

The kth Householder transformation matrix, Tk, used in the QU factorization is chosen to introduce the
zeros into the kth column and has the form

Tk ¼ I � 2 0
u

� �
0 uT
� �

; uTu ¼ 1;

where u is an m� kþ 1ð Þ element vector.

In place of u the routine actually computes the vector z given by

z ¼ 2u1u:

The first element of z is stored in ZðkÞ and the remaining elements of z are overwritten on the
subdiagonal elements of the kth column of A. The upper triangular matrix U is overwritten on the n by
n upper triangular part of A.

10 Example

This example obtains the rank and the singular value decomposition of the 6 by 4 matrix A given by

A ¼

22:25 31:75 �38:25 65:50
20:00 26:75 28:50 �26:50
�15:25 24:25 27:75 18:50
27:25 10:00 3:00 2:00
�17:25 �30:75 11:25 7:50
17:25 30:75 �11:25 �7:50

0BBBBB@

1CCCCCA
the value TOL to be taken as 5� 10�4.

10.1 Program Text

Program f02wdfe

! F02WDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f02wdf, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None
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! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, irank, lda, ldpt, ldr, &

lwork, m, n
Logical :: svd, wantb, wantpt, wantr

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), pt(:,:), r(:,:), sv(:), &

work(:), z(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F02WDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
Write (nout,*)
lda = m
ldpt = n
ldr = n
lwork = 3*n
Allocate (a(lda,n),pt(ldpt,n),r(ldr,n),sv(n),work(lwork),z(n))
svd = .True.
tol = 5.0E-4_nag_wp
Read (nin,*)(a(i,1:n),i=1,m)
wantb = .False.
wantr = .True.
wantpt = .True.

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f02wdf(m,n,a,lda,wantb,work,tol,svd,irank,z,sv,wantr,r,ldr,wantpt, &

pt,ldpt,work,lwork,ifail)

Write (nout,99999) ’Rank of A is’, irank
Write (nout,*)
Flush (nout)

ifail = 0
Call x04cbf(’General’,’ ’,m,n,a,lda,’F9.3’,’Details of QU factorization’ &

,’N’,rlabs,’N’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Vector Z’
Write (nout,99998) z(1:n)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04cbf(’General’,’ ’,n,n,r,ldr,’F9.3’,’Matrix R’,’N’,rlabs,’N’, &

clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Singular values’
Write (nout,99998) sv(1:n)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04cbf(’General’,’ ’,n,n,pt,ldpt,’F9.3’,’Matrix P**T’,’N’,rlabs, &

’N’,clabs,80,0,ifail)

99999 Format (1X,A,I5,A,I5)
99998 Format (1X,8F9.3)

End Program f02wdfe
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10.2 Program Data

F02WDF Example Program Data
6 4 : m, n
22.25 31.75 -38.25 65.50
20.00 26.75 28.50 -26.50

-15.25 24.25 27.75 18.50
27.25 10.00 3.00 2.00

-17.25 -30.75 11.25 7.50
17.25 30.75 -11.25 -7.50 : matrix A

10.3 Program Results

F02WDF Example Program Results

Rank of A is 4

Details of QU factorization
-49.652 -44.409 20.354 -8.882

0.403 -48.277 -9.589 -20.376
-0.307 0.837 52.927 -48.881
0.549 -0.391 -0.836 -50.674

-0.347 -0.258 -0.185 0.632
0.347 0.258 0.185 -0.632

Vector Z
1.448 1.115 1.482 1.448

Matrix R
-0.564 0.634 0.423 0.317
-0.351 0.395 -0.679 -0.509
-0.640 -0.569 0.309 -0.413
-0.386 -0.343 -0.514 0.685

Singular values
91.000 68.250 45.500 22.750

Matrix P**T
0.308 0.462 -0.462 0.692

-0.462 -0.692 -0.308 0.462
-0.462 0.308 0.692 0.462
-0.692 0.462 -0.462 -0.308
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NAG Library Routine Document

F02WGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02WGF returns leading terms in the singular value decomposition (SVD) of a real general matrix and
computes the corresponding left and right singular vectors.

2 Specification

SUBROUTINE F02WGF (M, N, K, NCV, AV, NCONV, SIGMA, U, LDU, V, LDV,
RESID, IUSER, RUSER, IFAIL)

&

INTEGER M, N, K, NCV, NCONV, LDU, LDV, IUSER(*), IFAIL
REAL (KIND=nag_wp) SIGMA(NCV), U(LDU,NCV), V(LDV,NCV), RESID(NCV),

RUSER(*)
&

EXTERNAL AV

3 Description

F02WGF computes a few, k, of the largest singular values and corresponding vectors of an m by n
matrix A. The value of k should be small relative to m and n, for example k � O min m;nð Þð Þ. The full
singular value decomposition (SVD) of an m by n matrix A is given by

A ¼ U�V T;

where U and V are orthogonal and � is an m by n diagonal matrix with real diagonal elements, �i,
such that

�1 � �2 � � � � � �min m;nð Þ � 0:

The �i are the singular values of A and the first min m;nð Þ columns of U and V are the left and right
singular vectors of A.

If Uk, Vk denote the leading k columns of U and V respectively, and if �k denotes the leading principal
submatrix of �, then

Ak 	 Uk�kV
T
k

is the best rank-k approximation to A in both the 2-norm and the Frobenius norm.

The singular values and singular vectors satisfy

Avi ¼ �iui and ATui ¼ �ivi so that ATA�i ¼ �2i �i and AATui ¼ �2i ui;

where ui and vi are the ith columns of Uk and Vk respectively.

Thus, for m � n, the largest singular values and corresponding right singular vectors are computed by
finding eigenvalues and eigenvectors for the symmetric matrix ATA. For m < n, the largest singular
values and corresponding left singular vectors are computed by finding eigenvalues and eigenvectors for
the symmetric matrix AAT. These eigenvalues and eigenvectors are found using routines from Chapter
F12. You should read the F12 Chapter Introduction for full details of the method used here.

The real matrix A is not explicitly supplied to F02WGF. Instead, you are required to supply a routine,
AV, that must calculate one of the requested matrix-vector products Ax or ATx for a given real vector x
(of length n or m respectively).
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4 References

Wilkinson J H (1978) Singular Value Decomposition – Basic Aspects Numerical Software – Needs and
Availability (ed D A H Jacobs) Academic Press

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

If M ¼ 0, an immediate return is effected.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

If N ¼ 0, an immediate return is effected.

3: K – INTEGER Input

On entry: k, the number of singular values to be computed.

Constraint: 0 < K < min M;Nð Þ � 1.

4: NCV – INTEGER Input

On entry: the dimension of the arrays SIGMA and RESID and the second dimension of the
arrays U and V as declared in the (sub)program from which F02WGF is called. This is the
number of Lanczos basis vectors to use during the computation of the largest eigenvalues of ATA
(m � n) or AAT (m < n).

At present there is no a priori analysis to guide the selection of NCV relative to K. However, it is
recommended that NCV � 2� K þ 1. If many problems of the same type are to be solved, you
should experiment with varying NCV while keeping K fixed for a given test problem. This will
usually decrease the required number of matrix-vector operations but it also increases the internal
storage required to maintain the orthogonal basis vectors. The optimal ‘cross-over’ with respect
to CPU time is problem dependent and must be determined empirically.

Constraint: K < NCV � min M;Nð Þ.

5: AV – SUBROUTINE, supplied by the user. External Procedure

AV must return the vector result of the matrix-vector product Ax or ATx, as indicated by the
input value of IFLAG, for the given vector x.

AV is called from F02WGF with the argument IUSER and RUSER as supplied to F02WGF. You
are free to use these arrays to supply information to AV.

The specification of AV is:

SUBROUTINE AV (IFLAG, M, N, X, AX, IUSER, RUSER)

INTEGER IFLAG, M, N, IUSER(*)
REAL (KIND=nag_wp) X(*), AX(*), RUSER(*)

1: IFLAG – INTEGER Input/Output

On entry: if IFLAG ¼ 1, AX must return the m-vector result of the matrix-vector
product Ax.

If IFLAG ¼ 2, AX must return the n-vector result of the matrix-vector product ATx.
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On exit: may be used as a flag to indicate a failure in the computation of Ax or ATx. If
IFLAG is negative on exit from AV, F02WGF will exit immediately with IFAIL set to
IFLAG.

2: M – INTEGER Input

On entry: the number of rows of the matrix A.

3: N – INTEGER Input

On entry: the number of columns of the matrix A.

4: Xð�Þ – REAL (KIND=nag_wp) array Input

On entry: the vector to be pre-multiplied by the matrix A or AT.

5: AXð�Þ – REAL (KIND=nag_wp) array Output

On exit: if IFLAG ¼ 1, contains the m-vector result of the matrix-vector product Ax.

If IFLAG ¼ 2, contains the n-vector result of the matrix-vector product ATx.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

AV is called with the arguments IUSER and RUSER as supplied to F02WGF. You
should use the arrays IUSER and RUSER to supply information to AV.

AV must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02WGF is called. Arguments denoted as Input must not be changed by
this procedure.

6: NCONV – INTEGER Output

On exit: the number of converged singular values found.

7: SIGMAðNCVÞ – REAL (KIND=nag_wp) array Output

On exit: the NCONV converged singular values are stored in the first NCONV elements of
SIGMA.

8: UðLDU;NCVÞ – REAL (KIND=nag_wp) array Output

On exit: the left singular vectors corresponding to the singular values stored in SIGMA.

The ith element of the jth left singular vector uj is stored in Uði; jÞ, for i ¼ 1; 2; . . . ;m and
j ¼ 1; 2; . . . ;NCONV.

9: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which
F02WGF is called.

Constraint: LDU � max 1;Mð Þ.

10: VðLDV;NCVÞ – REAL (KIND=nag_wp) array Output

On exit: the right singular vectors corresponding to the singular values stored in SIGMA.

The ith element of the jth right singular vector vj is stored in Vði; jÞ, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ;NCONV.

F02 – Eigenvalues and Eigenvectors F02WGF

Mark 26 F02WGF.3



11: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F02WGF
is called.

Constraint: LDV � max 1;Nð Þ.

12: RESIDðNCVÞ – REAL (KIND=nag_wp) array Output

On exit: the residual Avj � �juj
�� ��, for m � n, or ATuj � �jvj

�� ��, for m < n, for each of the
converged singular values �j and corresponding left and right singular vectors uj and vj.

13: IUSERð�Þ – INTEGER array User Workspace
14: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F02WGF, but are passed directly to AV and should be used
to pass information to this routine.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

F02WGF returns with IFAIL ¼ 0 if at least k singular values have converged and the
corresponding left and right singular vectors have been computed.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 0.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, K ¼ valueh i.
Constraint: K > 0.

IFAIL ¼ 4

On entry, K ¼ valueh i, NCV ¼ valueh i, M ¼ valueh i and N ¼ valueh i.
Constraint: K < NCV � min M;Nð Þ.
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IFAIL ¼ 5

On entry, LDU ¼ valueh i and M ¼ valueh i.
Constraint: LDU � M.

IFAIL ¼ 6

On entry, LDV ¼ valueh i and N ¼ valueh i.
Constraint: LDV � N.

IFAIL ¼ 8

The maximum number of iterations has been reached. The maximum number of iterations
¼ valueh i. The number of converged eigenvalues ¼ valueh i.

IFAIL ¼ 9

No shifts could be applied during a cycle of the implicitly restarted Lanczos iteration.

IFAIL ¼ 10

Could not build a full Lanczos factorization.

IFAIL ¼ 11

The number of eigenvalues found to sufficient accuracy is zero.

IFAIL ¼ 20

An error occurred during an internal call. Consider increasing the size of NCV relative to K.

IFAIL < 0

On output from user-defined routine AV, IFLAG was set to a negative value, IFLAG ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

See Section 2.14.2 in the F08 Chapter Introduction.

8 Parallelism and Performance

F02WGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02WGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example finds the four largest singular values (�) and corresponding right and left singular vectors
for the matrix A, where A is the m by n real matrix derived from the simplest finite difference
discretization of the two-dimensional kernel k s; tð Þdt where

k s; tð Þ ¼ s t� 1ð Þ if 0 � s � t � 1
t s� 1ð Þ if 0 � t < s � 1



:

10.1 Program Text

! F02WGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f02wgfe_mod

! F02WGF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: av

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
! Matrix vector subroutines

Subroutine av(iflag,m,n,x,ax,iuser,ruser)

! Computes w <- A*x or w <- Trans(A)*x.

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ax(*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, k, s, t
Integer :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: min, real

! .. Executable Statements ..
h = one/real(m+1,kind=nag_wp)
k = one/real(n+1,kind=nag_wp)
If (iflag==1) Then

ax(1:m) = zero
t = zero

Do j = 1, n
t = t + k
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s = zero
Do i = 1, min(j,m)

s = s + h
ax(i) = ax(i) + k*s*(t-one)*x(j)

End Do
Do i = j + 1, m

s = s + h
ax(i) = ax(i) + k*t*(s-one)*x(j)

End Do
End Do

Else
ax(1:n) = zero
t = zero

Do j = 1, n
t = t + k
s = zero
Do i = 1, min(j,m)

s = s + h
ax(j) = ax(j) + k*s*(t-one)*x(i)

End Do
Do i = j + 1, m

s = s + h
ax(j) = ax(j) + k*t*(s-one)*x(i)

End Do
End Do

End If

Return
End Subroutine av

End Module f02wgfe_mod
Program f02wgfe

! F02WGF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f02wgf, nag_wp
Use f02wgfe_mod, Only: av, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ifail, k, ldu, ldv, m, n, nconv, &

ncv
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: resid(:), sigma(:), u(:,:), v(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F02WGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, k, ncv
ldu = m
ldv = n
Allocate (resid(ncv),sigma(ncv),u(ldu,ncv),v(ldv,ncv))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f02wgf(m,n,k,ncv,av,nconv,sigma,u,ldu,v,ldv,resid,iuser,ruser, &

ifail)

! Print computed residuals
Write (nout,*) ’ Singular Value Residual’
Write (nout,99999)(sigma(i),resid(i),i=1,nconv)

99999 Format (1X,F10.5,8X,G10.2)
End Program f02wgfe
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10.2 Program Data

F02WGF Example Program Data
100 500 4 10 : m, n, k, ncv

10.3 Program Results

F02WGF Example Program Results

Singular Value Residual
0.00830 0.27E-18
0.01223 0.59E-17
0.02381 0.12E-16
0.11274 0.78E-16
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NAG Library Routine Document

F02WUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02WUF returns all, or part, of the singular value decomposition of a real upper triangular matrix.

2 Specification

SUBROUTINE F02WUF (N, A, LDA, NCOLB, B, LDB, WANTQ, Q, LDQ, SV, WANTP,
WORK, IFAIL)

&

INTEGER N, LDA, NCOLB, LDB, LDQ, IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), Q(LDQ,*), SV(N), WORK(*)
LOGICAL WANTQ, WANTP

3 Description

The n by n upper triangular matrix R is factorized as

R ¼ QSPT;

where Q and P are n by n orthogonal matrices and S is an n by n diagonal matrix with non-negative
diagonal elements, �1; �2; . . . ; �n, ordered such that

�1 � �2 � . . . � �n � 0:

The columns of Q are the left-hand singular vectors of R, the diagonal elements of S are the singular
values of R and the columns of P are the right-hand singular vectors of R.

Either or both of Q and PT may be requested and the matrix C given by

C ¼ QTB;

where B is an n by ncolb given matrix, may also be requested.

The routine obtains the singular value decomposition by first reducing R to bidiagonal form by means
of Givens plane rotations and then using the QR algorithm to obtain the singular value decomposition
of the bidiagonal form.

Good background descriptions to the singular value decomposition are given in Chan (1982), Dongarra
et al. (1979), Golub and Van Loan (1996), Hammarling (1985) and Wilkinson (1978).

Note that if K is any orthogonal diagonal matrix so that

KKT ¼ I

(that is the diagonal elements of K are þ1 or �1) then

A ¼ QKð ÞS PKð ÞT

is also a singular value decomposition of A.

4 References

Chan T F (1982) An improved algorithm for computing the singular value decomposition ACM Trans.
Math. Software 8 72–83

Dongarra J J, Moler C B, Bunch J R and Stewart G W (1979) LINPACK Users' Guide SIAM,
Philadelphia
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Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

Wilkinson J H (1978) Singular Value Decomposition – Basic Aspects Numerical Software – Needs and
Availability (ed D A H Jacobs) Academic Press

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix R.

If N ¼ 0, an immediate return is effected.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the leading n by n upper triangular part of the array A must contain the upper
triangular matrix R.

On exit: if WANTP ¼ :TRUE:, the n by n part of A will contain the n by n orthogonal matrix
PT, otherwise the n by n upper triangular part of A is used as internal workspace, but the strictly
lower triangular part of A is not referenced.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F02WUF is called.

Constraint: LDA � max 1;Nð Þ.

4: NCOLB – INTEGER Input

On entry: ncolb, the number of columns of the matrix B.

If NCOLB ¼ 0, the array B is not referenced.

Constraint: NCOLB � 0.

5: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NCOLBð Þ.
On entry: with NCOLB > 0, the leading n by ncolb part of the array B must contain the matrix
to be transformed.

On exit: the leading n by ncolb part of the array B is overwritten by the matrix QTB.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which
F02WUF is called.

Constraints:

if NCOLB > 0, LDB � max 1;Nð Þ;
otherwise LDB � 1.

7: WANTQ – LOGICAL Input

On entry: must be .TRUE. if the matrix Q is required.
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If WANTQ ¼ :FALSE:, the array Q is not referenced.

8: QðLDQ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if WANTQ ¼ :TRUE:, and
at least 1 otherwise.

On exit: with WANTQ ¼ :TRUE:, the leading n by n part of the array Q will contain the
orthogonal matrix Q. Otherwise the array Q is not referenced.

9: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which
F02WUF is called.

Constraints:

if WANTQ ¼ :TRUE:, LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

10: SVðNÞ – REAL (KIND=nag_wp) array Output

On exit: the array SV will contain the n diagonal elements of the matrix S.

11: WANTP – LOGICAL Input

On entry: must be .TRUE. if the matrix PT is required, in which case PT is overwritten on the
array A, otherwise WANTP must be .FALSE..

12: WORKð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array WORK must be at least max 1; 2� N� 1ð Þð Þ if NCOLB ¼ 0 and
WANTQ ¼ :FALSE: and WANTP ¼ :FALSE:, max 1; 3� N� 1ð Þð Þ if (NCOLB ¼ 0 and
WANTQ ¼ :FALSE: and WANTP ¼ :TRUE:) or (WANTP ¼ :FALSE: and (NCOLB > 0 or
WANTQ ¼ :TRUE:)), and at least max 1; 5� N� 1ð Þð Þ otherwise.
On exit: WORKðNÞ contains the total number of iterations taken by the QR algorithm.

The rest of the array is used as internal workspace.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, N < 0,
or LDA < N,
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or NCOLB < 0,
or LDB < N and NCOLB > 0,
or LDQ < N and WANTQ ¼ :TRUE:.

IFAIL > 0

The QR algorithm has failed to converge in 50� N iterations. In this case
SVð1Þ; SVð2Þ; . . . ; SVðIFAILÞ may not have been found correctly and the remaining singular
values may not be the smallest. The matrix R will nevertheless have been factorized as
R ¼ QEPT, where E is a bidiagonal matrix with SVð1Þ; SVð2Þ; . . . ; SVðnÞ as the diagonal
elements and WORKð1Þ;WORKð2Þ; . . . ;WORKðn� 1Þ as the superdiagonal elements.

This failure is not likely to occur.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed factors Q, S and P satisfy the relation

QSPT ¼ Rþ E;

where

Ek k � c� Ak k;

� is the machine precision, c is a modest function of n and :k k denotes the spectral (two) norm. Note
that Ak k ¼ SVð1Þ.
A similar result holds for the computed matrix QTB.

The computed matrix Q satisfies the relation

Q ¼ T þ F;

where T is exactly orthogonal and

Fk k � d�;

where d is a modest function of n. A similar result holds for P.

8 Parallelism and Performance

F02WUF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02WUF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For given values of NCOLB, WANTQ and WANTP, the number of floating-point operations required is
approximately proportional to n3.

Following the use of this routine the rank of R may be estimated by a call to the INTEGER
FUNCTION F06KLF. The statement

IRANK = F06KLF(N,SV,1,TOL)

returns the value k� 1ð Þ in IRANK , where k is the smallest integer for which SVðkÞ < tol � SVð1Þ,
and tol is the tolerance supplied in TOL, so that IRANK is an estimate of the rank of S and thus also
of R. If TOL is supplied as negative then the machine precision is used in place of TOL.

10 Example

This example finds the singular value decomposition of the 3 by 3 upper triangular matrix

A ¼
�4 �2 �3
0 �3 �2
0 0 �4

0@ 1A;
together with the vector QTb for the vector

b ¼
�1
�1
�1

0@ 1A:
10.1 Program Text

Program f02wufe

! F02WUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f02wuf, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, ldb, ldq, lwork, n, &

ncolb
Logical :: wantp, wantq

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), q(:,:), sv(:), work(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F02WUF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ncolb
lda = n
ldb = n
ldq = n
lwork = 5*(n-1)
Allocate (a(lda,n),b(ldb),q(ldq,n),sv(n),work(lwork))
Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*) b(1:n)
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wantq = .True.
wantp = .True.

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Find the SVD of A

Call f02wuf(n,a,lda,ncolb,b,ldb,wantq,q,ldq,sv,wantp,work,ifail)

Write (nout,*) ’Singular value decomposition of A’
Write (nout,*)
Write (nout,*) ’Singular values’
Write (nout,99999) sv(1:n)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04cbf(’General’,’ ’,n,n,q,ldq,’F8.4’, &

’Left-hand singular vectors, by column’,’N’,rlabs,’N’,clabs,80,0, &
ifail)

Write (nout,*)
Write (nout,*) ’Right-hand singular vectors, by column’
Do i = 1, n

Write (nout,99999) a(1:n,i)
End Do
Write (nout,*)
Write (nout,*) ’Vector Q’’*B’
Write (nout,99999) b(1:n)

99999 Format (1X,3(1X,F8.4))
End Program f02wufe

10.2 Program Data

F02WUF Example Program Data
3, 1 : n, ncolb

-4.0 -2.0 -3.0
-3.0 -2.0

-4.0 : matrix A
-1.0 -1.0 -1.0 : vector B

10.3 Program Results

F02WUF Example Program Results

Singular value decomposition of A

Singular values
6.5616 3.0000 2.4384

Left-hand singular vectors, by column
0.7699 -0.5883 0.2471
0.4324 0.1961 -0.8801
0.4694 0.7845 0.4054

Right-hand singular vectors, by column
-0.4694 0.7845 -0.4054
-0.4324 0.1961 0.8801
-0.7699 -0.5883 -0.2471

Vector Q’*B
-1.6716 -0.3922 0.2276
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NAG Library Routine Document

F02XUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02XUF returns all, or part, of the singular value decomposition of a complex upper triangular matrix.

2 Specification

SUBROUTINE F02XUF (N, A, LDA, NCOLB, B, LDB, WANTQ, Q, LDQ, SV, WANTP,
RWORK, CWORK, IFAIL)

&

INTEGER N, LDA, NCOLB, LDB, LDQ, IFAIL
REAL (KIND=nag_wp) SV(N), RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), Q(LDQ,*), CWORK(max(1,N-1))
LOGICAL WANTQ, WANTP

3 Description

The n by n upper triangular matrix R is factorized as

R ¼ QSPH;

where Q and P are n by n unitary matrices and S is an n by n diagonal matrix with real non-negative
diagonal elements, sv1; sv2; . . . ; svn, ordered such that

sv1 � sv2 � � � � � svn � 0:

The columns of Q are the left-hand singular vectors of R, the diagonal elements of S are the singular
values of R and the columns of P are the right-hand singular vectors of R.

Either or both of Q and PH may be requested and the matrix C given by

C ¼ QHB;

where B is an n by ncolb given matrix, may also be requested.

F02XUF obtains the singular value decomposition by first reducing R to bidiagonal form by means of
Givens plane rotations and then using the QR algorithm to obtain the singular value decomposition of
the bidiagonal form.

Good background descriptions to the singular value decomposition are given in Dongarra et al. (1979),
Hammarling (1985) and Wilkinson (1978).

Note that if K is any unitary diagonal matrix so that

KKH ¼ I;

then

A ¼ QKð ÞS PKð ÞH

is also a singular value decomposition of A.
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4 References

Dongarra J J, Moler C B, Bunch J R and Stewart G W (1979) LINPACK Users' Guide SIAM,
Philadelphia

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

Wilkinson J H (1978) Singular Value Decomposition – Basic Aspects Numerical Software – Needs and
Availability (ed D A H Jacobs) Academic Press

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix R.

If N ¼ 0, an immediate return is effected.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the leading n by n upper triangular part of the array A must contain the upper
triangular matrix R.

On exit: if WANTP ¼ :TRUE:, the n by n part of A will contain the n by n unitary matrix PH,
otherwise the n by n upper triangular part of A is used as internal workspace, but the strictly
lower triangular part of A is not referenced.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F02XUF
is called.

Constraint: LDA � max 1;Nð Þ.

4: NCOLB – INTEGER Input

On entry: ncolb, the number of columns of the matrix B.

If NCOLB ¼ 0, the array B is not referenced.

Constraint: NCOLB � 0.

5: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NCOLBð Þ.
On entry: if NCOLB > 0, the leading n by ncolb part of the array B must contain the matrix to
be transformed.

On exit: is overwritten by the n by ncolb matrix QHB.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F02XUF
is called.

Constraints:

if NCOLB > 0, LDB � max 1;Nð Þ;
otherwise LDB � 1.
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7: WANTQ – LOGICAL Input

On entry: must be .TRUE. if the matrix Q is required.

If WANTQ ¼ :FALSE: then the array Q is not referenced.

8: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if WANTQ ¼ :TRUE:, and
at least 1 otherwise.

On exit: if WANTQ ¼ :TRUE:, the leading n by n part of the array Q will contain the unitary
matrix Q. Otherwise the array Q is not referenced.

9: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F02XUF
is called.

Constraints:

if WANTQ ¼ :TRUE:, LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

10: SVðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n diagonal elements of the matrix S.

11: WANTP – LOGICAL Input

On entry: must be .TRUE. if the matrix PH is required, in which case PH is returned in the array
A, otherwise WANTP must be .FALSE..

12: RWORKð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RWORK must be at least max 1; 2� N� 1ð Þð Þ if NCOLB ¼ 0
and WANTQ ¼ :FALSE: and WANTP ¼ :FALSE:, max 1; 3� N� 1ð Þð Þ if NCOLB ¼ 0 and
WANTQ ¼ :FALSE: and WANTP ¼ :TRUE: or NCOLB > 0 and WANTP ¼ :FALSE: or
WANTQ ¼ :TRUE: and WANTP ¼ :FALSE:, and at least max 1; 5� N� 1ð Þð Þ otherwise.
On exit: RWORK(N) contains the total number of iterations taken by the QR algorithm.

The rest of the array is used as workspace.

13: CWORKðmax 1;N� 1ð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, N < 0,
or LDA < N,
or NCOLB < 0,
or LDB < N and NCOLB > 0,
or LDQ < N and WANTQ ¼ :TRUE:

IFAIL > 0

The QR algorithm has failed to converge in 50� N iterations. In this case
SVð1Þ; SVð2Þ; . . . ; SVðIFAILÞ may not have been found correctly and the remaining singular
values may not be the smallest. The matrix R will nevertheless have been factorized as
R ¼ QEPH, where E is a bidiagonal matrix with SVð1Þ; SVð2Þ; . . . ; SVðnÞ as the diagonal
elements and RWORKð1Þ;RWORKð2Þ; . . . ;RWORKðn� 1Þ as the superdiagonal elements.

This failure is not likely to occur.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed factors Q, S and P satisfy the relation

QSPH ¼ Aþ E;

where

Ek k � c� Ak k;

� is the machine precision, c is a modest function of n and :k k denotes the spectral (two) norm. Note
that Ak k ¼ sv1.

8 Parallelism and Performance

F02XUF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02XUF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For given values of NCOLB, WANTQ and WANTP, the number of floating-point operations required is
approximately proportional to n3.

Following the use of this routine the rank of R may be estimated by a call to the INTEGER
FUNCTION F06KLF. The statement

IRANK = F06KLF(N,SV,1,TOL)

returns the value k� 1ð Þ in IRANK , where k is the smallest integer for which sv kð Þ < tol � sv 1ð Þ,
where tol is the tolerance supplied in TOL, so that IRANK is an estimate of the rank of S and thus
also of R. If TOL is supplied as negative then the machine precision is used in place of TOL.

10 Example

This example finds the singular value decomposition of the 3 by 3 upper triangular matrix

A ¼
1 1þ i 1þ i
0 �2 �1� i
0 0 �3

0@ 1A
together with the vector QHb for the vector

b ¼
1þ 1i
�1
�1þ 1i

0@ 1A:
10.1 Program Text

Program f02xufe

! F02XUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f02xuf, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lcwork, lda, ldb, ldq, &

lrwork, n, ncolb
Logical :: wantp, wantq

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:), cwork(:), q(:,:)
Real (Kind=nag_wp), Allocatable :: rwork(:), sv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: conjg

! .. Executable Statements ..
Write (nout,*) ’F02XUF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ncolb
lcwork = n - 1
lda = n
ldb = n
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ldq = n
lrwork = 5*(n-1)
Allocate (a(lda,n),b(ldb),cwork(lcwork),q(ldq,n),rwork(lrwork),sv(n))
Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*) b(1:n)

! Find the SVD of A.
wantq = .True.
wantp = .True.

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f02xuf(n,a,lda,ncolb,b,ldb,wantq,q,ldq,sv,wantp,rwork,cwork,ifail)

Write (nout,*) ’Singular value decomposition of A’
Write (nout,*)
Write (nout,*) ’Singular values’
Write (nout,99999) sv(1:n)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,n,n,q,ldq,’Bracketed’,’F7.4’, &

’Left-hand singular vectors, by column’,’N’,rlabs,’N’,clabs,80,0, &
ifail)

Write (nout,*)
Write (nout,*) ’Right-hand singular vectors, by column’
Do i = 1, n

Write (nout,99998) conjg(a(1:n,i))
End Do
Write (nout,*)
Write (nout,*) ’Vector conjg( Q’’ )*B’
Write (nout,99998) b(1:n)

99999 Format (1X,3F9.4)
99998 Format (3X,3(’(’,F7.4,’,’,F8.4,’) ’,:))

End Program f02xufe

10.2 Program Data

F02XUF Example Program Data

3 1 : n, ncolb

(1.0, 0.0) ( 1.0, 1.0) ( 1.0, 1.0)
(-2.0, 0.0) (-1.0, -1.0)

(-3.0, 0.0) : matrix A

(1.0, 1.0) (-1.0, 0.0) (-1.0, 1.0) : vector B

10.3 Program Results

F02XUF Example Program Results

Singular value decomposition of A

Singular values
3.9263 2.0000 0.7641

Left-hand singular vectors, by column
( 0.5005, 0.0000) ( 0.4529, 0.0000) (-0.7378, 0.0000)
(-0.5152, 0.1514) (-0.1132, 0.5661) (-0.4190, 0.4502)
(-0.4041, 0.5457) (-0.0000,-0.6794) (-0.2741,-0.0468)

Right-hand singular vectors, by column
( 0.1275, 0.0000) ( 0.2265, 0.0000) (-0.9656, 0.0000)
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( 0.3899, -0.2046) ( 0.3397, -0.7926) ( 0.1311, -0.2129)
( 0.5289, -0.7142) ( 0.0000, 0.4529) ( 0.0698, 0.0119)

Vector conjg( Q’ )*B
( 1.9656, 0.7935) (-0.1132, 0.3397) (-0.0915, -0.6086)
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NAG Library Chapter Contents

F03 – Determinants

F03 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

F03BAF 23 nagf_det_real_gen
Determinant of real matrix, matrix already factorized by F07ADF
(DGETRF)

F03BFF 23 nagf_det_real_sym
Determinant of real symmetric positive definite matrix

F03BHF 23 nagf_det_real_band_sym
Determinant of real symmetric positive definite banded matrix previously
factorized by F07HDF (DPBTRF)

F03BNF 23 nagf_det_complex_gen
Determinant of complex matrix previously LU factorized
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1 Scope of the Chapter

This chapter is concerned with the calculation of determinants of square matrices.

2 Background to the Problems

The routines in this chapter compute the determinant of a square matrix A. The matrix is assumed to
have first been decomposed into triangular factors

A ¼ LU;

using routines from Chapter F07.

If A is positive definite, then U ¼ LT, and the determinant is the product of the squares of the diagonal
elements of L. Otherwise, the routines in this chapter use the Dolittle form of the LU decomposition,
where L has unit elements on its diagonal. The determinant is then the product of the diagonal elements
of U , taking account of possible sign changes due to row interchanges.

To avoid overflow or underflow in the computation of the determinant, some scaling is associated with
each multiplication in the product of the relevant diagonal elements. The final value is represented by

detA ¼ d� 2id

where id is an integer and

1
16 � dj j < 1:

For complex valued determinants the real and imaginary parts are scaled separately.

3 Recommendations on Choice and Use of Available Routines

It is extremely wasteful of computer time and storage to use an inappropriate routine, for example to
use a routine requiring a complex matrix when A is real. Most programmers will know whether their
matrix is real or complex, but may be less certain whether or not a real symmetric matrix A is positive
definite, i.e., all eigenvalues of A > 0. A real symmetric matrix A not known to be positive definite
must be treated as a general real matrix. In all other cases either the band routine or the general routines
must be used.

The routines in this chapter are general purpose routines. These give the value of the determinant in its
scaled form, d and id, given the triangular decomposition of the matrix from a suitable routine from
Chapter F07.

4 Decision Trees

Tree 1

Is A a real matrix?
yes

Is A a symmetric positive
definite matrix? yes

Is A a band matrix?
yes

F07HDF and F03BHF

no

F07FDF and F03BFF

no

F07ADF and F03BAF

no

F07ARF and F03BNF

5 Functionality Index

Determinants of factorized matrices,
complex matrix ................................................................................................................ F03BNF
real matrix........................................................................................................................ F03BAF
real symmetric band positive definite matrix ................................................................... F03BHF
real symmetric positive definite matrix ............................................................................ F03BFF
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6 Auxiliary Routines Associated with Library Routine Arguments

None.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

F03AAF 25 F07ADF (DGETRF) and F03BAF
F03ABF 25 F07FDF (DPOTRF) and F03BFF
F03ACF 25 F07HDF (DPBTRF) and F03BHF
F03ADF 25 F07ARF (ZGETRF) and F03BNF
F03AEF 25 F07FDF (DPOTRF) and F03BFF
F03AFF 25 F07ADF (DGETRF) and F03BAF

8 References

Fox L (1964) An Introduction to Numerical Linear Algebra Oxford University Press

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag
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NAG Library Routine Document

F03BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F03BAF computes the determinant of a real n by n matrix A. F07ADF (DGETRF) must be called first
to supply the matrix A in factorized form.

2 Specification

SUBROUTINE F03BAF (N, A, LDA, IPIV, D, ID, IFAIL)

INTEGER N, LDA, IPIV(N), ID, IFAIL
REAL (KIND=nag_wp) A(LDA,*), D

3 Description

F03BAF computes the determinant of a real n by n matrix A that has been factorized by a call to
F07ADF (DGETRF). The determinant of A is the product of the diagonal elements of U with the
correct sign determined by the row interchanges.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A in factorized form as returned by F07ADF (DGETRF).

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F03BAF
is called.

Constraint: LDA � N.

4: IPIVðNÞ – INTEGER array Input

On entry: the row interchanges used to factorize matrix A as returned by F07ADF (DGETRF).

5: D – REAL (KIND=nag_wp) Output
6: ID – INTEGER Output

On exit: the determinant of A is given by D� 2:0ID. It is given in this form to avoid overflow or
underflow.
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7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 3

On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ 4

The matrix A is approximately singular.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the determinant depends on the conditioning of the original matrix. For a detailed error
analysis, see page 107 of Wilkinson and Reinsch (1971).

8 Parallelism and Performance

F03BAF is not threaded in any implementation.
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9 Further Comments

The time taken by F03BAF is approximately proportional to n.

10 Example

This example computes the LU factorization with partial pivoting, and calculates the determinant, of
the real matrix

33 16 72
�24 �10 �57
�8 �4 �17

0@ 1A:
10.1 Program Text

Program f03bafe

! F03BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgetrf, f03baf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: d
Integer :: i, id, ifail, info, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F03BAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
lda = n
Allocate (a(lda,n),ipiv(n))

Read (nin,*)(a(i,1:n),i=1,n)

! LU Factorize A
! The NAG name equivalent of dgetrf is f07adf

Call dgetrf(n,n,a,lda,ipiv,info)

Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’Array A after factorization’,ifail)

Write (nout,*)
Write (nout,*) ’Pivots’
Write (nout,99999) ipiv(1:n)
Write (nout,*)
Flush (nout)

ifail = 0
Call f03baf(n,a,lda,ipiv,d,id,ifail)

Write (nout,99998) d, id
Write (nout,*)
Write (nout,99997) d*2.0_nag_wp**id
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99999 Format (1X,8(1X,I13))
99998 Format (1X,’D = ’,F13.5,’ ID = ’,I12)
99997 Format (1X,’Value of determinant = ’,E13.5)

End Program f03bafe

10.2 Program Data

F03BAF Example Program Data
3 : N
33 16 72

-24 -10 -57
-8 -4 -17 : A

10.3 Program Results

F03BAF Example Program Results

Array A after factorization
1 2 3

1 33.0000 16.0000 72.0000
2 -0.7273 1.6364 -4.6364
3 -0.2424 -0.0741 0.1111

Pivots
1 2 3

D = 0.37500 ID = 4

Value of determinant = 0.60000E+01
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NAG Library Routine Document

F03BFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F03BFF computes the determinant of a real n by n symmetric positive definite matrix A. F07FDF
(DPOTRF) must be called first to supply the symmetric matrix A in Cholesky factorized form. The
storage (upper or lower triangular) used by F07FDF (DPOTRF) is not relevant to F03BFF since only
the diagonal elements of the factorized A are referenced.

2 Specification

SUBROUTINE F03BFF (N, A, LDA, D, ID, IFAIL)

INTEGER N, LDA, ID, IFAIL
REAL (KIND=nag_wp) A(LDA,*), D

3 Description

F03BFF computes the determinant of a real n by n symmetric positive definite matrix A that has been
factorized as A ¼ UTU , where U is upper triangular, or A ¼ LLT, where L is lower triangular. The
determinant is the product of the squares of the diagonal elements of U or L. The Cholesky factorized
form of the matrix must be supplied; this is returned by a call to F07FDF (DPOTRF).

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the lower or upper triangle of the Cholesky factorized form of the n by n positive
definite symmetric matrix A. Only the diagonal elements are referenced.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F03BFF
is called.

Constraint: LDA � N.

4: D – REAL (KIND=nag_wp) Output
5: ID – INTEGER Output

On exit: the determinant of A is given by D� 2:0ID. It is given in this form to avoid overflow or
underflow.
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 3

On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ 4

The matrix A is not positive definite.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the determinant depends on the conditioning of the original matrix. For a detailed error
analysis see page 25 of Wilkinson and Reinsch (1971).

8 Parallelism and Performance

F03BFF is not threaded in any implementation.
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9 Further Comments

The time taken by F03BFF is approximately proportional to n.

10 Example

This example computes a Cholesky factorization and calculates the determinant of the real symmetric
positive definite matrix

6 7 6 5
7 11 8 7
6 8 11 9
5 7 9 11

0B@
1CA:

10.1 Program Text

Program f03bffe

! F03BFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpotrf, f03bff, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’l’

! .. Local Scalars ..
Real (Kind=nag_wp) :: d
Integer :: i, id, ifail, info, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F03BFF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
lda = n
Allocate (a(lda,n))

Read (nin,*)(a(i,1:n),i=1,n)

! Factorize A
! The NAG name equivalent of dpotrf is f07fdf

Call dpotrf(uplo,n,a,lda,info)

Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’L’,’N’,n,n,a,lda,’Array A after factorization’,ifail)

ifail = 0
Call f03bff(n,a,lda,d,id,ifail)

Write (nout,*)
Write (nout,99999) d, id
Write (nout,*)
Write (nout,99998) d*2.0_nag_wp**id

99999 Format (1X,’D = ’,F13.5,’ ID = ’,I12)
99998 Format (1X,’Value of determinant = ’,E13.5)

End Program f03bffe
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10.2 Program Data

F03BFF Example Program Data
4 : N

6 7 6 5
7 11 8 7
6 8 11 9
5 7 9 11 : A

10.3 Program Results

F03BFF Example Program Results

Array A after factorization
1 2 3 4

1 2.4495
2 2.8577 1.6833
3 2.4495 0.5941 2.1557
4 2.0412 0.6931 1.6645 1.8927

D = 0.06909 ID = 12

Value of determinant = 0.28300E+03
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NAG Library Routine Document

F03BHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F03BHF computes the determinant of a n by n symmetric positive definite banded matrix A that has
been stored in band-symmetric storage. F07HDF (DPBTRF) must be called first to supply the Cholesky
factorized form. The storage (upper or lower triangular) used by F07HDF (DPBTRF) is relevant as this
determines which elements of the stored factorized form are referenced.

2 Specification

SUBROUTINE F03BHF (UPLO, N, KD, AB, LDAB, D, ID, IFAIL)

INTEGER N, KD, LDAB, ID, IFAIL
REAL (KIND=nag_wp) AB(LDAB,*), D
CHARACTER(1) UPLO

3 Description

The determinant of A is calculated using the Cholesky factorization A ¼ UTU , where U is an upper
triangular band matrix, or A ¼ LLT, where L is a lower triangular band matrix. The determinant of A is
the product of the squares of the diagonal elements of U or L.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A was stored and how it was
factorized. This should not be altered following a call to F07HDF (DPBTRF).

UPLO ¼ U
The upper triangular part of A was originally stored and A was factorized as UTU where
U is upper triangular.

UPLO ¼ L
The lower triangular part of A was originally stored and A was factorized as LLT where L
is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

3: KD – INTEGER Input

On entry: kd, the number of superdiagonals or subdiagonals of the matrix A.

Constraint: KD � 0.
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4: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07HDF (DPBTRF).

5: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the subprogram from which F03BHF
is called.

Constraint: LDAB � KDþ 1.

6: D – REAL (KIND=nag_wp) Output
7: ID – INTEGER Output

On exit: the determinant of A is given by D� 2:0ID. It is given in this form to avoid overflow or
underflow.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, UPLO ¼ valueh i.
Constraint: UPLO ¼ L or U .

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 3

On entry, KD ¼ valueh i.
Constraint: KD � 0.

IFAIL ¼ 5

On entry, LDAB ¼ valueh i and KD ¼ valueh i.
Constraint: LDAB � KDþ 1.

IFAIL ¼ 6

The matrix A is not positive definite.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the determinant depends on the conditioning of the original matrix. For a detailed error
analysis see page 54 of Wilkinson and Reinsch (1971).

8 Parallelism and Performance

F03BHF is not threaded in any implementation.

9 Further Comments

The time taken by F03BHF is approximately proportional to n.

This routine should only be used when m n since as m approaches n, it becomes less efficient to
take advantage of the band form.

10 Example

This example calculates the determinant of the real symmetric positive definite band matrix

5 �4 1
�4 6 �4 1
1 �4 6 �4 1

1 �4 6 �4 1
1 �4 6 �4 1

1 �4 6 �4
1 �4 5

0BBBBBBB@

1CCCCCCCA
:

10.1 Program Text

Program f03bhfe

! F03BHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpbtrf, f03bhf, nag_wp, x04cef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: d
Integer :: i, id, ifail, info, j, kd, kl, ku, &

ldab, n
Character (1) :: uplo

F03 – Determinants F03BHF

Mark 26 F03BHF.3



! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: index, max, min

! .. Executable Statements ..
Write (nout,*) ’F03BHF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) uplo

Read (nin,*) n, kd
ldab = kd + 1
Allocate (ab(ldab,n))

If (index(’Ll’,uplo)<=0) Then
! Read in upper triangular banded matrix

ku = kd
kl = 0
Do i = 1, n

Read (nin,*)(ab(kd+1+i-j,j),j=i,min(i+kd,n))
End Do

Else
! Read in lower triangular banded matrix

ku = 0
kl = kd
Do i = 1, n

Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)
End Do

End If
! Factorize A
! The NAG name equivalent of dpbtrf is f07hdf

Call dpbtrf(uplo,n,kd,ab,ldab,info)

If (info==0) Then
Write (nout,*)
Flush (nout)
ifail = 0
Call x04cef(n,n,kl,ku,ab,ldab,’Array AB after factorization’,ifail)

ifail = 0
Call f03bhf(uplo,n,kd,ab,ldab,d,id,ifail)

Write (nout,*)
Write (nout,99999) d, id
Write (nout,*)
Write (nout,99998) d*2.0E0_nag_wp**id

Else
Write (nout,99997) info

End If

99999 Format (1X,’D = ’,F13.5,’ ID = ’,I0)
99998 Format (1X,’Value of determinant = ’,E13.5)
99997 Format (’ ** Factorization routine return error flag info = ’,I0,’.’)

End Program f03bhfe

10.2 Program Data

F03BHF Example Program Data
L : UPLO
7 2 : N, KD

5
-4 6
1 -4 6

1 -4 6
1 -4 6

1 -4 6
1 -4 5 : AB
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10.3 Program Results

F03BHF Example Program Results

Array AB after factorization
1 2 3 4 5 6 7

1 2.2361
2 -1.7889 1.6733
3 0.4472 -1.9124 1.4639
4 0.5976 -1.9518 1.3540
5 0.6831 -1.9695 1.2863
6 0.7385 -1.9789 1.2403
7 0.7774 -1.9846 0.6761

D = 0.25000 ID = 8

Value of determinant = 0.64000E+02
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NAG Library Routine Document

F03BNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F03BNF computes the determinant of a complex n by n matrix A. F07ARF (ZGETRF) must be called
first to supply the matrix A in factorized form.

2 Specification

SUBROUTINE F03BNF (N, A, LDA, IPIV, D, ID, IFAIL)

INTEGER N, LDA, IPIV(N), ID(2), IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*), D

3 Description

F03BNF computes the determinant of a complex n by n matrix A that has been factorized by a call to
F07ARF (ZGETRF). The determinant of A is the product of the diagonal elements of U with the
correct sign determined by the row interchanges.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A in factorized form as returned by F07ARF (ZGETRF).

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F03BNF
is called.

Constraint: LDA � N.

4: IPIVðNÞ – INTEGER array Input

On entry: the row interchanges used to factorize matrix A as returned by F07ARF (ZGETRF).

5: D – COMPLEX (KIND=nag_wp) Output

On exit: the mantissa of the real and imaginary parts of the determinant.
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6: IDð2Þ – INTEGER array Output

On exit: the exponents for the real and imaginary parts of the determinant. The determinant,
d ¼ dr; dið Þ, is returned as dr ¼ Dr � 2j and di ¼ Di � 2k, where D ¼ Dr;Dið Þ and j and k are
stored in the first and second elements respectively of the array ID on successful exit.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 3

On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ 4

The matrix A is approximately singular.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the determinant depends on the conditioning of the original matrix. For a detailed error
analysis, see page 107 of Wilkinson and Reinsch (1971).
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8 Parallelism and Performance

F03BNF is not threaded in any implementation.

9 Further Comments

The time taken by F03BNF is approximately proportional to n.

10 Example

This example calculates the determinant of the complex matrix

1 1þ 2i 2þ 10i
1þ i 3i �5þ 14i
1þ i 5i �8þ 20i

0@ 1A:
10.1 Program Text

Program f03bnfe

! F03BNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f03bnf, nag_wp, x04daf, zgetrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: d
Integer :: i, ifail, info, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Integer :: id(2)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: aimag, real

! .. Executable Statements ..
Write (nout,*) ’F03BNF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
lda = n
Allocate (a(lda,n),ipiv(n))

Read (nin,*)(a(i,1:n),i=1,n)

! LU Factorize A
! The NAG name equivalent of zgetrf is f07arf

Call zgetrf(n,n,a,lda,ipiv,info)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04daf(’g’,’n’,n,n,a,lda,’Array A after factorization’,ifail)

Write (nout,*)
Write (nout,*) ’Pivots’
Write (nout,99999) ipiv(1:n)
Write (nout,*)
Flush (nout)
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ifail = 0
Call f03bnf(n,a,lda,ipiv,d,id,ifail)

Write (nout,99998) d, id
Write (nout,*)
Write (nout,99997) two**id(1)*real(d), two**id(2)*aimag(d)

99999 Format (1X,8(1X,I13))
99998 Format (1X,’D = (’,F13.5,’,’,F13.5,’), ID = (’,I0,’, ’,I0,’)’)
99997 Format (1X,’Value of determinant = (’,E13.5,’,’,E13.5,’)’)

End Program f03bnfe

10.2 Program Data

F03BNF Example Program Data
3

(1.0, 0.0) (1.0, 2.0) (2.0,10.0)
(1.0, 1.0) (0.0, 3.0) (-5.0,14.0)
(1.0, 1.0) (0.0, 5.0) (-8.0,20.0)

10.3 Program Results

F03BNF Example Program Results

Array A after factorization
1 2 3

1 1.0000 0.0000 -5.0000
1.0000 3.0000 14.0000

2 1.0000 0.0000 -3.0000
0.0000 2.0000 6.0000

3 0.5000 0.2500 -0.2500
-0.5000 0.2500 -0.2500

Pivots
2 3 3

D = ( 0.06250, 0.00000), ID = (4, 0)

Value of determinant = ( 0.10000E+01, 0.00000E+00)
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NAG Library Chapter Contents

F04 – Simultaneous Linear Equations

F04 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

F04ABF 2 nagf_linsys_withdraw_real_posdef_solve_ref
Solution of real symmetric positive definite simultaneous linear equations
with multiple right-hand sides using iterative refinement (Black Box)
Note: this routine is scheduled for withdrawal at Mark 28, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

F04AEF 2 nagf_linsys_withdraw_real_square_solve_ref
Solution of real simultaneous linear equations with multiple right-hand
sides using iterative refinement (Black Box)
Note: this routine is scheduled for withdrawal at Mark 28, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

F04AMF 2 nagf_linsys_real_gen_lsqsol
Least squares solution of m real equations in n unknowns, rank ¼ n,
m � n using iterative refinement (Black Box)

F04ASF 4 nagf_linsys_withdraw_real_posdef_solve_1rhs
Solution of real symmetric positive definite simultaneous linear equations,
one right-hand side using iterative refinement (Black Box)
Note: this routine is scheduled for withdrawal at Mark 28, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

F04ATF 4 nagf_linsys_withdraw_real_square_solve_1rhs
Solution of real simultaneous linear equations, one right-hand side using
iterative refinement (Black Box)
Note: this routine is scheduled for withdrawal at Mark 28, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

F04AXF 7 nagf_linsys_real_sparse_fac_solve
Solution of real sparse simultaneous linear equations (coefficient matrix
already factorized)

F04BAF 21 nagf_linsys_real_square_solve
Computes the solution, estimated condition number and error-bound to a
real system of linear equations

F04BBF 21 nagf_linsys_real_band_solve
Computes the solution, estimated condition number and error-bound to a
real banded system of linear equations

F04BCF 21 nagf_linsys_real_tridiag_solve
Computes the solution, estimated condition number and error-bound to a
real tridiagonal system of linear equations

F04BDF 21 nagf_linsys_real_posdef_solve
Computes the solution, estimated condition number and error-bound to a
real symmetric positive definite system of linear equations

F04BEF 21 nagf_linsys_real_posdef_packed_solve
Computes the solution, estimated condition number and error-bound to a
real symmetric positive definite system of linear equations, packed storage

F04BFF 21 nagf_linsys_real_posdef_band_solve
Computes the solution, estimated condition number and error-bound to a
real symmetric positive definite banded system of linear equations
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F04BGF 21 nagf_linsys_real_posdef_tridiag_solve
Computes the solution, estimated condition number and error-bound to a
real symmetric positive definite tridiagonal system of linear equations

F04BHF 21 nagf_linsys_real_symm_solve
Computes the solution, estimated condition number and error-bound to a
real symmetric system of linear equations

F04BJF 21 nagf_linsys_real_symm_packed_solve
Computes the solution, estimated condition number and error-bound to a
real symmetric system of linear equations, packed storage

F04CAF 21 nagf_linsys_complex_square_solve
Computes the solution, estimated condition number and error-bound to a
complex system of linear equations

F04CBF 21 nagf_linsys_complex_band_solve
Computes the solution, estimated condition number and error-bound to a
complex banded system of linear equations

F04CCF 21 nagf_linsys_complex_tridiag_solve
Computes the solution, estimated condition number and error-bound to a
complex tridiagonal system of linear equations

F04CDF 21 nagf_linsys_complex_posdef_solve
Computes the solution, estimated condition number and error-bound to a
complex Hermitian positive definite system of linear equations

F04CEF 21 nagf_linsys_complex_posdef_packed_solve
Computes the solution, estimated condition number and error-bound to a
complex Hermitian positive definite system of linear equations, packed
storage

F04CFF 21 nagf_linsys_complex_posdef_band_solve
Computes the solution, estimated condition number and error-bound to a
complex Hermitian positive definite banded system of linear equations

F04CGF 21 nagf_linsys_complex_posdef_tridiag_solve
Computes the solution, estimated condition number and error-bound to a
complex Hermitian positive definite tridiagonal system of linear equations

F04CHF 21 nagf_linsys_complex_herm_solve
Computes the solution and error-bound to a complex Hermitian system of
linear equations

F04CJF 21 nagf_linsys_complex_herm_packed_solve
Computes the solution, estimated condition number and error-bound to a
complex Hermitian system of linear equations, packed storage

F04DHF 21 nagf_linsys_complex_symm_solve
Computes the solution, estimated condition number and error-bound to a
complex symmetric system of linear equations

F04DJF 21 nagf_linsys_complex_symm_packed_solve
Computes the solution, estimated condition number and error-bound to a
complex symmetric system of linear equations, packed storage

F04FEF 15 nagf_linsys_real_toeplitz_yule
Solution of the Yule–Walker equations for real symmetric positive definite
Toeplitz matrix, one right-hand side

F04FFF 15 nagf_linsys_real_toeplitz_solve
Solution of real symmetric positive definite Toeplitz system, one right-hand
side

F04JGF 8 nagf_linsys_real_gen_solve
Least squares (if rank ¼ n) or minimal least squares (if rank < n) solution
of m real equations in n unknowns, m � n

F04LEF 11 nagf_linsys_real_tridiag_fac_solve
Solution of real tridiagonal simultaneous linear equations (coefficient matrix
already factorized by F01LEF)

F04LHF 13 nagf_linsys_real_blkdiag_fac_solve
Solution of real almost block diagonal simultaneous linear equations
(coefficient matrix already factorized by F01LHF)
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F04MCF 8 nagf_linsys_real_posdef_vband_solve
Solution of real symmetric positive definite variable-bandwidth
simultaneous linear equations (coefficient matrix already factorized by
F01MCF)

F04MEF 15 nagf_linsys_real_toeplitz_yule_update
Update solution of the Yule–Walker equations for real symmetric positive
definite Toeplitz matrix

F04MFF 15 nagf_linsys_real_toeplitz_update
Update solution of real symmetric positive definite Toeplitz system

F04QAF 11 nagf_linsys_real_gen_sparse_lsqsol
Sparse linear least squares problem, m real equations in n unknowns

F04YAF 11 nagf_linsys_real_gen_lsq_covmat
Covariance matrix for linear least squares problems, m real equations in n
unknowns

F04YDF 24 nagf_linsys_real_gen_norm_rcomm
Norm estimation (for use in condition estimation), real rectangular matrix

F04ZDF 24 nagf_linsys_complex_gen_norm_rcomm
Norm estimation (for use in condition estimation), complex rectangular
matrix
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1 Scope of the Chapter

This chapter is concerned with the solution of the matrix equation AX ¼ B, where B may be a single
vector or a matrix of multiple right-hand sides. The matrix A may be real, complex, symmetric,
Hermitian, positive definite, positive definite Toeplitz or banded. It may also be rectangular, in which
case a least squares solution is obtained.

Much of the functionality of this chapter has been superseded by routines from Chapters F07 and F08
(LAPACK routines) as those chapters have grown and have included driver and expert driver routines.

For a general introduction to sparse systems of equations, see the F11 Chapter Introduction, which
provides routines for large sparse systems. Some routines for sparse problems are also included in this
chapter; they are described in Section 3.4.

2 Background to the Problems

A set of linear equations may be written in the form

Ax ¼ b

where the known matrix A, with real or complex coefficients, is of size m by n (m rows and n
columns), the known right-hand vector b has m components (m rows and one column), and the required
solution vector x has n components (n rows and one column). There may also be p vectors bi, for
i ¼ 1; 2; . . . ; p, on the right-hand side and the equations may then be written as

AX ¼ B;

the required matrix X having as its p columns the solutions of Axi ¼ bi, for i ¼ 1; 2; . . . ; p. Some
routines deal with the latter case, but for clarity only the case p ¼ 1 is discussed here.

The most common problem, the determination of the unique solution of Ax ¼ b, occurs when m ¼ n
and A is not singular, that is rank Að Þ ¼ n. This is discussed in Section 2.1 below. The next most
common problem, discussed in Section 2.2 below, is the determination of the least squares solution of
Ax ’ b required when m > n and rank Að Þ ¼ n, i.e., the determination of the vector x which minimizes
the norm of the residual vector r ¼ b� Ax. All other cases are rank deficient, and they are treated in
Section 2.3.

2.1 Unique Solution of Ax ¼ b

Most routines in this chapter solve this particular problem. The computation starts with the triangular
decomposition A ¼ PLU , where L and U are respectively lower and upper triangular matrices and P is
a permutation matrix, chosen so as to ensure that the decomposition is numerically stable. The solution
is then obtained by solving in succession the simpler equations

Ly ¼ PTb
Ux ¼ y

the first by forward-substitution and the second by back-substitution.

If A is real symmetric and positive definite, U ¼ LT, while if A is complex Hermitian and positive
definite, U ¼ LH; in both these cases P is the identity matrix (i.e., no permutations are necessary). In all
other cases either U or L has unit diagonal elements.

Due to rounding errors the computed ‘solution’ x0, say, is only an approximation to the true solution x.
This approximation will sometimes be satisfactory, agreeing with x to several figures, but if the
problem is ill-conditioned then x and x0 may have few or even no figures in common, and at this stage
there is no means of estimating the ‘accuracy’ of x0.

There are three possible approaches to estimating the accuracy of a computed solution.

One way to do so, and to ‘correct’ x0 when this is meaningful (see next paragraph), involves computing
the residual vector r ¼ b� Ax0 in extended precision arithmetic, and obtaining a correction vector d by
solving PLUd ¼ r. The new approximate solution x0 þ d is usually more accurate and the correcting
process is repeated until (a) further corrections are negligible or (b) they show no further decrease.
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It must be emphasized that the ‘true’ solution x may not be meaningful, that is correct to all figures
quoted, if the elements of A and b are known with certainty only to say p figures, where p is less than
full precision. The first correction vector d will then give some useful information about the number of
figures in the ‘solution’ which probably remain unchanged with respect to maximum possible
uncertainties in the coefficients.

An alternative approach to assessing the accuracy of the solution is to compute or estimate the
condition number of A, defined as

� Að Þ ¼ Ak k: A�1
�� ��:

Roughly speaking, errors or uncertainties in A or b may be amplified in the solution by a factor � Að Þ.
Thus, for example, if the data in A and b are only accurate to 5 digits and � Að Þ � 103, then the solution
cannot be guaranteed to have more than 2 correct digits. If � Að Þ � 105, the solution may have no
meaningful digits.

To be more precise, suppose that

Ax ¼ b and Aþ �Að Þ xþ �xð Þ ¼ bþ �b:

Here �A and �b represent perturbations to the matrices A and b which cause a perturbation �x in the
solution. We can define measures of the relative sizes of the perturbations in A, b and x as

�A ¼
�Ak k
Ak k ; �b ¼

�bk k
bk k and �x ¼

�xk k
xk k respectively:

Then

�x �
� Að Þ

1� � Að Þ�A
�A þ �bð Þ

provided that � Að Þ�A < 1. Often � Að Þ�A  1 and then the bound effectively simplifies to

�x � � Að Þ �A þ �bð Þ:

Hence, if we know � Að Þ, �A and �b, we can compute a bound on the relative errors in the solution. Note
that �A, �b and �x are defined in terms of the norms of A, b and x. If A, b or x contains elements of
widely differing magnitude, then �A, �b and �x will be dominated by the errors in the larger elements,
and �x will give no information about the relative accuracy of smaller elements of x.

A third way to obtain useful information about the accuracy of a solution is to solve two sets of
equations, one with the given coefficients, which are assumed to be known with certainty to p figures,
and one with the coefficients rounded to (p� 1) figures, and to count the number of figures to which the
two solutions agree. In ill-conditioned problems this can be surprisingly small and even zero.

2.2 The Least Squares Solution of Ax ’ b, m > n, rank Að Þ ¼ n

The least squares solution is the vector x̂ which minimizes the sum of the squares of the residuals,

S ¼ b� Ax̂ð ÞT b�Ax̂ð Þ ¼ b� Ax̂k k22:

The solution is obtained in two steps.

(a) Householder transformations are used to reduce A to ‘simpler form’ via the equation QA ¼ R,
where R has the appearance

R̂

0

 !

with R̂ a nonsingular upper triangular n by n matrix and 0 a zero matrix of shape m� nð Þ by n.
Similar operations convert b to Qb ¼ c, where
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c ¼ c1
c2

� �
with c1 having n rows and c2 having (m� n) rows.

(b) The required least squares solution is obtained by back-substitution in the equation

R̂x̂ ¼ c1:
Again due to rounding errors the computed x̂0 is only an approximation to the required x̂, but as in
Section 2.1, this can be improved by ‘iterative refinement’. The first correction d is the solution of the
least squares problem

Ad ¼ b�Ax̂0 ¼ r

and since the matrix A is unchanged, this computation takes less time than that of the original x̂0. The
process can be repeated until further corrections are (a) negligible or (b) show no further decrease.

2.3 Rank-deficient Cases

If, in the least squares problem just discussed, rank Að Þ < n, then a least squares solution exists but it is
not unique. In this situation it is usual to ask for the least squares solution ‘of minimal length’, i.e., the
vector x which minimizes xk k2, among all those x for which b�Axk k2 is a minimum.

This can be computed from the Singular Value Decomposition (SVD) of A, in which A is factorized as

A ¼ QDPT

where Q is an m by n matrix with orthonormal columns, P is an n by n orthogonal matrix and D is an
n by n diagonal matrix. The diagonal elements of D are called the ‘singular values’ of A; they are non-
negative and can be arranged in decreasing order of magnitude:

d1 � d2 � � � � � dn � 0:

The columns of Q and P are called respectively the left and right singular vectors of A. If the singular
values drþ1; . . . ; dn are zero or negligible, but dr is not negligible, then the rank of A is taken to be r
(see also Section 2.4) and the minimal length least squares solution of Ax ’ b is given by

x̂ ¼ DyQTb

where Dy is the diagonal matrix with diagonal elements d�11 ; d�12 ; . . . ; d�1r ; 0; . . . ; 0.

The SVD may also be used to find solutions to the homogeneous system of equations Ax ¼ 0, where A
is m by n. Such solutions exist if and only if rank Að Þ < n, and are given by

x ¼
Xn
i¼rþ1

�ipi

where the �i are arbitrary numbers and the pi are the columns of P which correspond to negligible
elements of D.

The general solution to the rank-deficient least squares problem is given by x̂þ x, where x̂ is the
minimal length least squares solution and x is any solution of the homogeneous system of equations
Ax ¼ 0.

2.4 The Rank of a Matrix

In theory the rank is r if n� r elements of the diagonal matrix D of the singular value decomposition
are exactly zero. In practice, due to rounding and/or experimental errors, some of these elements have
very small values which usually can and should be treated as zero.
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For example, the following 5 by 8 matrix has rank 3 in exact arithmetic:

22 14 �1 �3 9 9 2 4
10 7 13 �2 8 1 �6 5
2 10 �1 13 1 �7 6 0
3 0 �11 �2 �2 5 5 �2
7 8 3 4 4 �1 1 2

0BBB@
1CCCA:

On a computer with 7 decimal digits of precision the computed singular values were

3:5� 101; 2:0� 101; 2:0� 101; 1:3� 10�6; 5:5� 10�7

and the rank would be correctly taken to be 3.

It is not, however, always certain that small computed singular values are really zero. With the 7 by 7
Hilbert matrix, for example, where aij ¼ 1= iþ j� 1ð Þ, the singular values are

1:7; 2:7� 10�1; 2:1� 10�2; 1:0� 10�3; 2:9� 10�5; 4:9� 10�7; 3:5� 10�9:

Here there is no clear cut-off between small (i.e., negligible) singular values and larger ones. In fact, in
exact arithmetic, the matrix is known to have full rank and none of its singular values is zero. On a
computer with 7 decimal digits of precision, the matrix is effectively singular, but should its rank be
taken to be 6, or 5, or 4?

It is therefore impossible to give an infallible rule, but generally the rank can be taken to be the number
of singular values which are neither zero nor very small compared with other singular values. For
example, if there is a sharp decrease in singular values from numbers of order unity to numbers of order
10�7, then the latter will almost certainly be zero in a machine in which 7 significant decimal figures is
the maximum accuracy. Similarly for a least squares problem in which the data is known to about four
significant figures and the largest singular value is of order unity then a singular value of order 10�4 or
less should almost certainly be regarded as zero.

It should be emphasized that rank determination and least squares solutions can be sensitive to the
scaling of the matrix. If at all possible the units of measurement should be chosen so that the elements
of the matrix have data errors of approximately equal magnitude.

2.5 Generalized Linear Least Squares Problems

The simple type of linear least squares problem described in Section 2.2 can be generalized in various
ways.

1. Linear least squares problems with equality constraints:

find x to minimize S ¼ c�Axk k22 subject to Bx ¼ d;

where A is m by n and B is p by n, with p � n � mþ p. The equations Bx ¼ d may be regarded
as a set of equality constraints on the problem of minimizing S. Alternatively the problem may be
regarded as solving an overdetermined system of equations

A
B

� �
x ¼ c

d

� �
;

where some of the equations (those involving B) are to be solved exactly, and the others (those
involving A) are to be solved in a least squares sense. The problem has a unique solution on the

assumptions that B has full row rank p and the matrix A
B

� �
has full column rank n. (For linear

least squares problems with inequality constraints, refer to Chapter E04.)

2. General Gauss–Markov linear model problems:

minimize yk k2 subject to d ¼ AxþBy;

where A is m by n and B is m by p, with n � m � nþ p. When B ¼ I, the problem reduces to an
ordinary linear least squares problem. When B is square and nonsingular, it is equivalent to a
weighted linear least squares problem:
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find x to minimize B�1 d�Axð Þ
�� ��

2
:

The problem has a unique solution on the assumptions that A has full column rank n, and the
matrix A;Bð Þ has full row rank m.

2.6 Calculating the Inverse of a Matrix

The routines in this chapter can also be used to calculate the inverse of a square matrix A by solving
the equation

AX ¼ I

where I is the identity matrix. However, solving the equations AX ¼ B by calculation of the inverse of
the coefficient matrix A, i.e., by X ¼ A�1B, is definitely not recommended.

Similar remarks apply to the calculation of the pseudo-inverse of a singular or rectangular matrix.

2.7 Estimating the 1-norm of a Matrix

The 1-norm of a matrix A is defined to be:

Ak k1 ¼ max
1�j�n

Xm
i¼1

aij
		 		 ð1Þ

Typically it is useful to calculate the condition number of a matrix with respect to the solution of linear
equations, or inversion. The higher the condition number the less accuracy might be expected from a
numerical computation. A condition number for the solution of linear equations is Ak k: A�1

�� ��. Since
this might be a relatively expensive computation it often suffices to estimate the norm of each matrix.

3 Recommendations on Choice and Use of Available Routines

See also Section 3 in the F07 Chapter Introduction for recommendations on the choice of available
routines from that chapter.

3.1 Black Box and General Purpose Routines

Most of the routines in this chapter are categorised either as Black Box routines or general purpose
routines.

Black Box routines solve the equations Axi ¼ bi, for i ¼ 1; 2; . . . ; p, in a single call with the matrix A
and the right-hand sides, bi, being supplied as data. These are the simplest routines to use and are
suitable when all the right-hand sides are known in advance and do not occupy too much storage.

General purpose routines, in general, require a previous call to a routine in Chapters F01 or F07 to
factorize the matrix A. This factorization can then be used repeatedly to solve the equations for one or
more right-hand sides which may be generated in the course of the computation. The Black Box
routines simply call a factorization routine and then a general purpose routine to solve the equations.

The routine F04QAF which uses an iterative method for sparse systems of equations does not fit easily
into this categorization, but is classified as a general purpose routine in the decision trees and indexes.

3.2 Systems of Linear Equations

Most of the routines in this chapter solve linear equations Ax ¼ b when A is n by n and a unique
solution is expected (see Section 2.1). The matrix A may be ‘general’ real or complex, or may have
special structure or properties, e.g., it may be banded, tridiagonal, almost block-diagonal, sparse,
symmetric, Hermitian, positive definite (or various combinations of these).

It must be emphasized that it is a waste of computer time and space to use an inappropriate routine, for
example one for the complex case when the equations are real. It is also unsatisfactory to use the
special routines for a positive definite matrix if this property is not known in advance.
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Routines are given for calculating the approximate solution, that is solving the linear equations just
once, and also for obtaining the accurate solution by successive iterative corrections of this first
approximation using additional precision arithmetic, as described in Section 2.1. The latter, of course,
are more costly in terms of time and storage, since each correction involves the solution of n sets of
linear equations and since the original A and its LU decomposition must be stored together with the
first and successively corrected approximations to the solution. In practice the storage requirements for
the ‘corrected’ routines are about double those of the ‘approximate’ routines, though the extra computer
time may not be prohibitive since the same matrix and the same LU decomposition is used in every
linear equation solution.

A number of the Black Box routines in this chapter return estimates of the condition number and the
forward error, along with the solution of the equations. But for those routines that do not return a
condition estimate two routines are provided – F04YDF for real matrices, F04ZDF for complex
matrices – which can return a cheap but reliable estimate of A�1

�� ��, and hence an estimate of the
condition number � Að Þ (see Section 2.1). These routines can also be used in conjunction with most of
the linear equation solving routines in Chapter F11: further advice is given in the routine documents.

Other routines for solving linear equation systems, computing inverse matrices, and estimating
condition numbers can be found in Chapter F07, which contains LAPACK software.

3.3 Linear Least Squares Problems

The majority of the routines for solving linear least squares problems are to be found in Chapter F08.

For the case described in Section 2.2, when m � n and a unique least squares solution is expected,
there are two routines for a general real A, one of which (F04JGF) computes a first approximation and
the other (F04AMF) computes iterative corrections. If it transpires that rank Að Þ < n, so that the least
squares solution is not unique, then F04AMF takes a failure exit, but F04JGF proceeds to compute the
minimal length solution by using the SVD (see below).

If A is expected to be of less than full rank then one of the routines for calculating the minimal length
solution may be used.

For m� n the use of the SVD is not significantly more expensive than the use of routines based upon
the QR factorization.

Problems with linear equality constraints can be solved by F08ZAF (DGGLSE) (for real data) or by
F08ZNF (ZGGLSE) (for complex data), provided that the problems are of full rank. Problems with
linear inequality constraints can be solved by E04NCF/E04NCA in Chapter E04.

General Gauss–Markov linear model problems, as formulated in Section 2.5, can be solved by F08ZBF
(DGGGLM) (for real data) or by F08ZPF (ZGGGLM) (for complex data).

3.4 Sparse Matrix Routines

Routines specifically for sparse matrices are appropriate only when the number of nonzero elements is
very small, less than, say, 10% of the n2 elements of A, and the matrix does not have a relatively small
band width.

Chapter F11 contains routines for both the direct and iterative solution of sparse linear systems. There
are two routines in Chapter F04 for solving sparse linear equations (F04AXF and F04QAF). F04AXF
utilizes a factorization of the matrix A obtained from F01BRF or F01BSF, while F04QAF uses an
iterative technique and requires a user-supplied function to compute matrix-vector products Ac and ATc
for any given vector c.

F04QAF solves sparse least squares problems by an iterative technique, and also allows the solution of
damped (regularized) least squares problems (see the routine document for details).

4 Decision Trees

The name of the routine (if any) that should be used to factorize the matrix A is given in brackets after
the name of the routine for solving the equations.
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Tree 1: Black Box routines for unique solution of Ax ¼ b (Real matrix)

Is A symmetric?
yes

Is A positive
definite? yes

Is A a band matrix?
yes

Is A tridiagonal?
yes

F04BGF (see Note 1)
or F07JAF or

F07JBF (see Note 2)

no

F04BFF (see Note 1)
or F07HAF or

F07HBF (see Note 2)

no

Is A a Toeplitz
matrix? yes

Are the equations the
Yule–Walker
equations?

yes
F04FEF

no

F04FFF

no

Do you require an
accurate solution
using iterative
refinement?

yes
F07FBF

no

Is one triangle of A
stored as a linear
array?

yes

F04BEF (see Note 1)
or F07GAF or

F07GBF (see Note 2)

no

F04BDF (see Note 1)
or F07FAF or

F07FBF (see Note 2)

no

Is one triangle of A
stored as a linear
array?

yes

F04BJF (see Note 1)
or F07PAF or

F07PBF (see Note 2)

no

F04BHF (see Note 1)
or F07MAF or

F07MBF (see Note
2)

no

Is A a band matrix?
yes

Is A tridiagonal?
yes

F04BCF (see Note 1)
or F07CAF or

F07CBF (see Note 2)

no

F04BBF (see Note 1)
or F07BAF or

F07BBF (see Note 2)

no

Do you require an
accurate solution
using iterative
refinement?

yes
F07ABF

no

F04BAF (see Note 1)
or F07AAF or

F07ABF (see Note 2)
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Tree 2: Black Box routines for unique solution of Ax ¼ b (Complex matrix)

Is A Hermitian?
yes

Is A positive
definite? yes

Is A a band matrix?
yes

Is A tridiagonal?
yes

F04CGF (see Note 1)
or

F07JNF or F07JPF
(see Note 2)

no

F04CFF (see Note 1)
or F07HNF or

F07HPF (see Note 2)

no

Is one triangle of A
stored as a linear
array?

yes

F04CEF (see Note 1)
or F07GNF or

F07GPF (see Note 2)

no

F04CDF (see Note 1)
or F07FNF or

F07FPF (see Note 2)

no

Is one triangle of A
stored as a linear
array?

yes

F04CJF (see Note 1)
or F07PNF or

F07PPF (see Note 2)

no

F04CHF (see Note 1)
or F07MNF or

F07MPF (see Note 2)

no

Is A symmetric?
yes

Is one triangle of A
stored as a linear
array?

yes

F04DJF (see Note 1)
or F07QNF or

F07QPF (see Note 2)

no

F04DHF (see Note 1)
or F07NNF or

F07NPF (see Note 2)

no

Is A a band matrix?
yes

Is A tridiagonal?
yes

F04CCF (see Note 1)
or F07CNF or

F07CPF (see Note 2)

no

F04CBF (see Note 1)
or F07BNF or

F07BPF (see Note 2)

no

F04CAF (see Note 1)
or F07ANF or

F07APF (see Note 2)
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Tree 3: General purpose routines for unique solution of Ax ¼ b (Real matrix)

Is A a sparse matrix
and not banded? yes

Chapter F11 or
F04AXF (F01BRF or
F01BSF) or F04QAF

no

Is A symmetric?
yes

Is A positive
definite? yes

Is A band matrix?
yes

Is A tridiagonal?
yes

F07JEF (F07JDF)

no

Is A variable band
width? yes

F04MCF (F01MCF)

no

F07HEF (F07HDF)

no

Is A a Toeplitz
matrix? yes

Are the equations the
Yule–Walker
equations?

yes
F04MEF

no

F04MFF

no

Is one triangle of A
stored as a linear
array?

yes
F07GEF (F07GDF)

no

F07FEF (F07FDF)

no

Is one triangle of A
stored as a linear
array?

yes
F07PEF (F07PDF)

no

F07MEF (F07MDF)

no

Is A triangular?
yes

Is A a band matrix?
yes

F07VEF

no

Is A stored as a
linear array? yes

F07UEF

no

F07TEF

no

Is A a band matrix?
yes

Is A tridiagonal?
yes

F04LEF (F01LEF) or
F07CEF (F07CDF)

no

Is A almost block
diagonal? yes

F04LHF (F01LHF)

no

F07BEF (F07BDF)

no

F07AEF (F07ADF)
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Tree 4: General purpose routines for unique solution of Ax ¼ b (Complex matrix)

Is A a sparse matrix
and not banded? yes

Chapter F11

no

Is A Hermitian?
yes

Is A positive
definite? yes

Is A a band matrix?
yes

Is A tridiagonal?
yes

F07JSF (F07JRF)

no

F07HSF (F07HRF)

no

Is one triangle of A
stored as a linear
array?

yes
F07GSF (F07GRF)

no

F07FSF (F07FRF)

no

Is one triangle of A
stored as a linear
array?

yes
F07PSF (F07PRF)

no

F07MSF (F07MRF)

no

Is A symmetric?
yes

Is one triangle of A
stored as a linear
array?

yes
F07QSF (F07QRF)

no

F07NSF (F07NRF)

no

Is A triangular?
yes

Is A a band matrix?
yes

F07VSF

no

Is A stored as a
linear array? yes

F07USF

no

F07TSF

no

Is A a band matrix?
yes

Is A tridiagonal?
yes

F07CSF (F07CRF)

no

F07BSF (F07BRF)

no

F07ASF (F07ARF)
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Tree 5: General purpose routines for least squares and homogeneous equations (without
constraints)

Note: there are also routines in Chapter F08 for solving least squares problems.

Is the problem Ax ¼ 0?
yes

F08KAF

no

Is A sparse?
yes

F04QAF

no

Is rank Að Þ ¼ n?
yes

Are storage and time more important
than accuracy? yes

F04JGF

no

F04AMF

no

Is m > n?
yes

F04JGF or F08KAF

no

F08KAF

Note 1: also returns an estimate of the condition number and the forward error.

Note 2: also returns an estimate of the condition number, the forward error and the backward error.
Requires additional workspace.

5 Functionality Index

Black Box routines, Ax ¼ b,
complex general band matrix.......................................................................................... F04CBF
complex general matrix................................................................................................... F04CAF
complex general tridiagonal matrix................................................................................. F04CCF
complex Hermitian matrix,

packed matrix format ................................................................................................. F04CJF
standard matrix format ............................................................................................... F04CHF

complex Hermitian positive definite band matrix ........................................................... F04CFF
complex Hermitian positive definite matrix,

packed matrix format ................................................................................................. F04CEF
standard matrix format ............................................................................................... F04CDF

complex Hermitian positive definite tridiagonal matrix .................................................. F04CGF
complex symmetric matrix,

packed matrix format ................................................................................................. F04DJF
standard matrix format ............................................................................................... F04DHF

real general band matrix ................................................................................................. F04BBF
real general matrix,

multiple right-hand sides, standard precision ............................................................. F04BAF
real general tridiagonal matrix ........................................................................................ F04BCF
real symmetric matrix,

packed matrix format ................................................................................................. F04BJF
standard matrix format ............................................................................................... F04BHF

real symmetric positive definite band matrix .................................................................. F04BFF
real symmetric positive definite matrix,

multiple right-hand sides, standard precision ............................................................. F04BDF
packed matrix format ................................................................................................. F04BEF

real symmetric positive definite Toeplitz matrix,
general right-hand side............................................................................................... F04FFF
Yule–Walker equations .............................................................................................. F04FEF

real symmetric positive definite tridiagonal matrix ......................................................... F04BGF

General Purpose routines, Ax ¼ b,
real almost block-diagonal matrix................................................................................... F04LHF
real band symmetric positive definite matrix, variable bandwidth .................................. F04MCF
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real sparse matrix,
direct method ............................................................................................................. F04AXF
iterative method ......................................................................................................... F04QAF

real symmetric positive definite Toeplitz matrix,
general right-hand side, update solution .................................................................... F04MFF
Yule–Walker equations, update solution .................................................................... F04MEF

real tridiagonal matrix..................................................................................................... F04LEF

Least squares and Homogeneous Equations,
real m by n matrix,

m � n, rank ¼ n or minimal solution ...................................................................... F04JGF
rank ¼ n, iterative refinement................................................................................... F04AMF

real sparse matrix............................................................................................................ F04QAF

Service Routines,
complex rectangular matrix,

norm and condition number estimation...................................................................... F04ZDF
real matrix,

covariance matrix for linear least squares problems .................................................. F04YAF
real rectangular matrix,

norm and condition number estimation...................................................................... F04YDF

6 Auxiliary Routines Associated with Library Routine Arguments

None.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

F04AAF 23 F07AAF (DGESV)
F04ABF 28 F07FBF (DPOSVX)
F04ACF 23 F07HAF (DPBSV)
F04ADF 23 F07ANF (ZGESV)
F04AEF 28 F07ABF (DGESVX)
F04AFF 25 No replacement routine required
F04AGF 25 No replacement routine required
F04AHF 25 No replacement routine required
F04AJF 25 No replacement routine required
F04ARF 23 F07AAF (DGESV)
F04ASF 28 F07FBF (DPOSVX)
F04ATF 28 F07ABF (DGESVX)
F04EAF 23 F07CAF (DGTSV)
F04FAF 23 F07JAF (DPTSV), or F07JDF (DPTTRF) and F07JEF (DPTTRS)
F04JAF 23 F08KAF (DGELSS)
F04JDF 23 F08KAF (DGELSS)
F04JLF 23 F08ZBF (DGGGLM)
F04JMF 23 F08ZAF (DGGLSE)
F04KLF 23 F08ZPF (ZGGGLM)
F04KMF 23 F08ZNF (ZGGLSE)
F04MAF 19 F11JCF
F04MBF 19 F11GDF, F11GEF and F11GFF (or F11JCF or F11JEF)
F04YCF 26 F04YDF
F04ZCF 26 F04ZDF
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NAG Library Routine Document

F04ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04ABF calculates the accurate solution of a set of real symmetric positive definite linear equations
with multiple right-hand sides, using a Cholesky factorization and iterative refinement.

2 Specification

SUBROUTINE F04ABF (A, LDA, B, LDB, N, M, C, LDC, WKSPCE, BB, LDBB,
IFAIL)

&

INTEGER LDA, LDB, N, M, LDC, LDBB, IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), C(LDC,M), WKSPCE(N), BB(LDBB,M)

3 Description

Given a set of real linear equations AX ¼ B, where A is symmetric positive definite, F04ABF first
computes a Cholesky factorization of A as A ¼ LLT, where L is lower triangular. An approximation to
X is found by forward and backward substitution. The residual matrix R ¼ B�AX is then calculated
using additional precision, and a correction D to X is found by solving LLTD ¼ R. X is replaced by
X þD, and this iterative refinement of the solution is repeated until full machine accuracy has been
obtained.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the upper triangle of the n by n positive definite symmetric matrix A. The elements of
the array below the diagonal need not be set.

On exit: the elements of the array below the diagonal are overwritten; the upper triangle of A is
unchanged.

2: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04ABF
is called.

Constraint: LDA � max 1;Nð Þ.

3: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Mð Þ.
On entry: the n by m right-hand side matrix B.
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4: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04ABF
is called.

Constraint: LDB � max 1;Nð Þ.

5: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

6: M – INTEGER Input

On entry: m, the number of right-hand sides.

Constraint: M � 0.

7: CðLDC;MÞ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array C must be at least max 1;Mð Þ.
On exit: the n by m solution matrix X.

8: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F04ABF
is called.

Constraint: LDC � max 1;Nð Þ.

9: WKSPCEðNÞ – REAL (KIND=nag_wp) array Workspace

10: BBðLDBB;MÞ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array BB must be at least max 1;Mð Þ.
On exit: the final n by m residual matrix R ¼ B�AX.

11: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F04ABF is called.

Constraint: LDBB � max 1;Nð Þ.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The matrix A is not positive definite, possibly due to rounding errors.

IFAIL ¼ 2

Iterative refinement fails to improve the solution, i.e., the matrix A is too ill-conditioned.

IFAIL ¼ 3

On entry, N < 0,
or M < 0,
or LDA < max 1;Nð Þ,
or LDB < max 1;Nð Þ,
or LDC < max 1;Nð Þ,
or LDBB < max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solutions should be correct to full machine accuracy. For a detailed error analysis see
page 39 of Wilkinson and Reinsch (1971).

8 Parallelism and Performance

F04ABF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04ABF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F04ABF is approximately proportional to n3.

If there is only one right-hand side, it is simpler to use F04ASF.

F04 – Simultaneous Linear Equations F04ABF

Mark 26 F04ABF.3



10 Example

This example solves the set of linear equations AX ¼ B where

A ¼
5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

0B@
1CA and B ¼

23
32
33
31

0B@
1CA:

10.1 Program Text

Program f04abfe

! F04ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04abf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, ldb, ldbb, ldc, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), bb(:,:), c(:,:), &

wkspce(:)
! .. Executable Statements ..

Write (nout,*) ’F04ABF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m
lda = n
ldb = n
ldbb = n
ldc = n
Allocate (a(lda,n),b(ldb,m),bb(ldbb,m),c(ldc,m),wkspce(n))
Read (nin,*)(a(i,1:n),i=1,n), (b(i,1:m),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f04abf(a,lda,b,ldb,n,m,c,ldc,wkspce,bb,ldbb,ifail)

Write (nout,*) ’ Solution’
Write (nout,99999)(c(i,1:m),i=1,n)

99999 Format (1X,F9.4)
End Program f04abfe

10.2 Program Data

F04ABF Example Program Data
4 1 : n, m
5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

23 32 33 31 : matrices A and B
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10.3 Program Results

F04ABF Example Program Results

Solution
1.0000
1.0000
1.0000
1.0000
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NAG Library Routine Document

F04AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04AEF calculates the accurate solution of a set of real linear equations with multiple right-hand sides
using an LU factorization with partial pivoting, and iterative refinement.

2 Specification

SUBROUTINE F04AEF (A, LDA, B, LDB, N, M, C, LDC, WKSPCE, AA, LDAA, BB,
LDBB, IFAIL)

&

INTEGER LDA, LDB, N, M, LDC, LDAA, LDBB, IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), C(LDC,*), WKSPCE(max(1,N)),

AA(LDAA,*), BB(LDBB,*)
&

3 Description

Given a set of real linear equations AX ¼ B, the routine first computes an LU factorization of A with
partial pivoting, PA ¼ LU , where P is a permutation matrix, L is lower triangular and U is unit upper
triangular. An approximation to X is found by forward and backward substitution. The residual matrix
R ¼ B�AX is then calculated using additional precision, and a correction D to X is found by solving
LUD ¼ PR. X is replaced by X þD and this iterative refinement of the solution is repeated until full
machine accuracy has been obtained.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

2: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04AEF
is called.

Constraint: LDA � max 1;Nð Þ.

3: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Mð Þ.
On entry: the n by m right-hand side matrix B.
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4: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04AEF
is called.

Constraint: LDB � max 1;Nð Þ.

5: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

6: M – INTEGER Input

On entry: m, the number of right-hand sides.

Constraint: M � 0.

7: CðLDC; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array C must be at least max 1;Mð Þ.
On exit: the n by m solution matrix X.

8: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F04AEF
is called.

Constraint: LDC � max 1;Nð Þ.

9: WKSPCEðmax 1;Nð ÞÞ – REAL (KIND=nag_wp) array Workspace

10: AAðLDAA; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array AA must be at least max 1;Nð Þ.
On exit: the triangular factors L and U , except that the unit diagonal elements of U are not
stored.

11: LDAA – INTEGER Input

On entry: the first dimension of the array AA as declared in the (sub)program from which
F04AEF is called.

Constraint: LDAA � max 1;Nð Þ.

12: BBðLDBB; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array BB must be at least max 1;Mð Þ.
On exit: the final n by m residual matrix R ¼ B�AX.

13: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F04AEF is called.

Constraint: LDBB � max 1;Nð Þ.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The matrix A is singular, possibly due to rounding errors.

IFAIL ¼ 2

Iterative refinement fails to improve the solution, i.e., the matrix A is too ill-conditioned.

IFAIL ¼ 3

On entry, N < 0,
or M < 0,
or LDA < max 1;Nð Þ,
or LDB < max 1;Nð Þ,
or LDC < max 1;Nð Þ,
or LDAA < max 1;Nð Þ,
or LDBB < max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solutions should be correct to full machine accuracy. For a detailed error analysis see
page 107 of Wilkinson and Reinsch (1971).

8 Parallelism and Performance

F04AEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04AEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F04AEF is approximately proportional to n3.

If there is only one right-hand side, it is simpler to use F04ATF.

10 Example

This example solves the set of linear equations AX ¼ B where

A ¼
33 16 72
�24 �10 �57
�8 �4 �17

0@ 1A and B ¼
�359
281
85

0@ 1A:
10.1 Program Text

Program f04aefe

! F04AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04aef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, ldaa, ldb, ldbb, ldc, &

m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), aa(:,:), b(:,:), bb(:,:), &
c(:,:), wkspce(:)

! .. Executable Statements ..
Write (nout,*) ’F04AEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldaa = n
ldb = n
ldbb = n
ldc = n
m = 1
Allocate (a(lda,n),aa(ldaa,n),b(ldb,1),bb(ldbb,1),c(ldc,1),wkspce(n))
Read (nin,*)(a(i,1:n),i=1,n), (b(i,1),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f04aef(a,lda,b,ldb,n,m,c,ldc,wkspce,aa,ldaa,bb,ldbb,ifail)

Write (nout,*) ’ Solution’
Write (nout,99999)(c(i,1),i=1,n)

99999 Format (1X,F9.4)
End Program f04aefe
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10.2 Program Data

F04AEF Example Program Data
3 : n
33 16 72

-24 -10 -57
-8 -4 -17

-359 281 85 : matrices A and B

10.3 Program Results

F04AEF Example Program Results

Solution
1.0000

-2.0000
-5.0000
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NAG Library Routine Document

F04AMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04AMF calculates the accurate least squares solution of a set of m linear equations in n unknowns,
m � n and rank ¼ n, with multiple right-hand sides, AX ¼ B, using a QR factorization and iterative
refinement.

2 Specification

SUBROUTINE F04AMF (A, LDA, X, LDX, B, LDB, M, N, IR, EPS, QR, LDQR,
ALPHA, E, Y, Z, R, IPIV, IFAIL)

&

INTEGER LDA, LDX, LDB, M, N, IR, LDQR, IPIV(N), IFAIL
REAL (KIND=nag_wp) A(LDA,N), X(LDX,IR), B(LDB,IR), EPS, QR(LDQR,N),

ALPHA(N), E(N), Y(N), Z(N), R(M)
&

3 Description

To compute the least squares solution to a set of m linear equations in n unknowns m � nð Þ AX ¼ B,
F04AMF first computes a QR factorization of A with column pivoting, AP ¼ QR, where R is upper
triangular, Q is an m by m orthogonal matrix, and P is a permutation matrix. QT is applied to the m by
r right-hand side matrix B to give C ¼ QTB, and the n by r solution matrix X is calculated, to a first
approximation, by back-substitution in RX ¼ C. The residual matrix S ¼ B�AX is calculated using
additional precision, and a correction D to X is computed as the least squares solution to AD ¼ S. X
is replaced by X þD and this iterative refinement of the solution is repeated until full machine
accuracy has been obtained.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: AðLDA;NÞ – REAL (KIND=nag_wp) array Input

On entry: the m by n matrix A.

2: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F04AMF is called.

Constraint: LDA � M.

3: XðLDX; IRÞ – REAL (KIND=nag_wp) array Output

On exit: the n by r solution matrix X.
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4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
F04AMF is called.

Constraint: LDX � N.

5: BðLDB; IRÞ – REAL (KIND=nag_wp) array Input

On entry: the m by r right-hand side matrix B.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04AMF
is called.

Constraint: LDB � M.

7: M – INTEGER Input

On entry: m, the number of rows of the matrix A, i.e., the number of equations.

Constraint: M � 1.

8: N – INTEGER Input

On entry: n, the number of columns of the matrix A, i.e., the number of unknowns.

Constraint: 0 � N � M.

9: IR – INTEGER Input

On entry: r, the number of right-hand sides.

10: EPS – REAL (KIND=nag_wp) Input

On entry: must be set to the value of the machine precision.

11: QRðLDQR;NÞ – REAL (KIND=nag_wp) array Output

On exit: details of the QR factorization.

12: LDQR – INTEGER Input

On entry: the first dimension of the array QR as declared in the (sub)program from which
F04AMF is called.

Constraint: LDQR � M.

13: ALPHAðNÞ – REAL (KIND=nag_wp) array Output

On exit: the diagonal elements of the upper triangular matrix R.

14: EðNÞ – REAL (KIND=nag_wp) array Workspace

15: YðNÞ – REAL (KIND=nag_wp) array Workspace

16: ZðNÞ – REAL (KIND=nag_wp) array Workspace

17: RðMÞ – REAL (KIND=nag_wp) array Workspace

18: IPIVðNÞ – INTEGER array Output

On exit: details of the column interchanges.
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19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The rank of A is less than n; the problem does not have a unique solution.

IFAIL ¼ 2

The iterative refinement fails to converge, i.e., the matrix A is too ill-conditioned.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Although the correction process is continued until the solution has converged to full machine accuracy,
all the figures in the final solution may not be correct since the correction D to X is itself the solution
to a linear least squares problem. For a detailed error analysis see page 116 of Wilkinson and Reinsch
(1971).

8 Parallelism and Performance

F04AMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The time taken by F04AMF is approximately proportional to n2 3m� nð Þ, provided r is small compared
with n.

10 Example

This example calculates the accurate least squares solution of the equations

1:1x1 þ 0:9x2 ¼ 2:2
1:2x1 þ 1:0x2 ¼ 2:3
1:0x1 þ 1:0x2 ¼ 2:1

10.1 Program Text

Program f04amfe

! F04AMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04amf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps
Integer :: i, ifail, ir, lda, ldb, ldqr, ldx, &

m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), e(:), &
qr(:,:), r(:), x(:,:), y(:), z(:)

Integer, Allocatable :: ipiv(:)
! .. Executable Statements ..

Write (nout,*) ’F04AMF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
ir = 1
lda = m
ldb = m
ldqr = m
ldx = n
Allocate (a(lda,n),alpha(n),b(ldb,ir),e(n),qr(ldqr,n),r(m),x(ldx,ir), &

y(n),z(n),ipiv(n))
Read (nin,*)(a(i,1:n),b(i,1:ir),i=1,m)
eps = x02ajf()

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f04amf(a,lda,x,ldx,b,ldb,m,n,ir,eps,qr,ldqr,alpha,e,y,z,r,ipiv, &

ifail)

Write (nout,*) ’ Solution’
Do i = 1, n

Write (nout,99999) x(i,1:ir)
End Do

99999 Format (1X,8F9.4)
End Program f04amfe
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10.2 Program Data

F04AMF Example Program Data
3 2 : m, n
1.1 0.9 2.2
1.2 1.0 2.3
1.0 1.0 2.1 : matrices A and B

10.3 Program Results

F04AMF Example Program Results

Solution
1.3010
0.7935
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NAG Library Routine Document

F04ASF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04ASF calculates the accurate solution of a set of real symmetric positive definite linear equations
with a single right-hand side, Ax ¼ b, using a Cholesky factorization and iterative refinement.

2 Specification

SUBROUTINE F04ASF (A, LDA, B, N, C, WK1, WK2, IFAIL)

INTEGER LDA, N, IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(max(1,N)), C(max(1,N)), WK1(max(1,N)),

WK2(max(1,N))
&

3 Description

Given a set of real linear equations Ax ¼ b, where A is a symmetric positive definite matrix, F04ASF
first computes a Cholesky factorization of A as A ¼ LLT where L is lower triangular. An
approximation to x is found by forward and backward substitution. The residual vector r ¼ b�Ax
is then calculated using additional precision and a correction d to x is found by solving LLTd ¼ r. x is
then replaced by xþ d, and this iterative refinement of the solution is repeated until machine accuracy
is obtained.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the upper triangle of the n by n positive definite symmetric matrix A. The elements of
the array below the diagonal need not be set.

On exit: the elements of the array below the diagonal are overwritten; the upper triangle of A is
unchanged.

2: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04ASF
is called.

Constraint: LDA � max 1;Nð Þ.

3: Bðmax 1;Nð ÞÞ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array B must be at least max 1;Nð Þ.
On entry: the right-hand side vector b.
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4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: Cðmax 1;Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x.

6: WK1ðmax 1;Nð ÞÞ – REAL (KIND=nag_wp) array Workspace

7: WK2ðmax 1;Nð ÞÞ – REAL (KIND=nag_wp) array Workspace

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The matrix A is not positive definite, possibly due to rounding errors.

IFAIL ¼ 2

Iterative refinement fails to improve the solution, i.e., the matrix A is too ill-conditioned.

IFAIL ¼ 3

On entry, N < 0,
or LDA < max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The computed solutions should be correct to full machine accuracy. For a detailed error analysis see
page 39 of Wilkinson and Reinsch (1971).

8 Parallelism and Performance

F04ASF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04ASF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F04ASF is approximately proportional to n3.

The routine must not be called with the same name for arguments B and C.

10 Example

This example solves the set of linear equations Ax ¼ b where

A ¼
5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

0B@
1CA and b ¼

23
32
33
31

0B@
1CA:

10.1 Program Text

Program f04asfe

! F04ASF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04asf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), c(:), wk1(:), wk2(:)

! .. Executable Statements ..
Write (nout,*) ’F04ASF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),b(n),c(n),wk1(n),wk2(n))
Read (nin,*)(a(i,1:n),i=1,n), b(1:n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f04asf(a,lda,b,n,c,wk1,wk2,ifail)
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Write (nout,*) ’ Solution’
Write (nout,99999) c(1:n)

99999 Format (1X,F9.4)
End Program f04asfe

10.2 Program Data

F04ASF Example Program Data
4 : n

5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

23 32 33 31 : matrices A and B

10.3 Program Results

F04ASF Example Program Results

Solution
1.0000
1.0000
1.0000
1.0000
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NAG Library Routine Document

F04ATF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04ATF calculates the accurate solution of a set of real linear equations with a single right-hand side,
using an LU factorization with partial pivoting, and iterative refinement.

2 Specification

SUBROUTINE F04ATF (A, LDA, B, N, C, AA, LDAA, WKS1, WKS2, IFAIL)

INTEGER LDA, N, LDAA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(*), C(N), AA(LDAA,N), WKS1(N), WKS2(N)

3 Description

Given a set of real linear equations, Ax ¼ b, the routine first computes an LU factorization of A with
partial pivoting, PA ¼ LU , where P is a permutation matrix, L is lower triangular and U is unit upper
triangular. An approximation to x is found by forward and backward substitution in Ly ¼ Pb and
Ux ¼ y. The residual vector r ¼ b�Ax is then calculated using additional precision, and a correction
d to x is found by solving LUd ¼ r. x is replaced by xþ d, and this iterative refinement of the solution
is repeated until full machine accuracy is obtained.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

2: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04ATF
is called.

Constraint: LDA � max 1;Nð Þ.

3: Bð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array B must be at least max 1;Nð Þ.
On entry: the right-hand side vector b.

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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5: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x.

6: AAðLDAA;NÞ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array AA must be at least max 1;Nð Þ.
On exit: the triangular factors L and U , except that the unit diagonal elements of U are not
stored.

7: LDAA – INTEGER Input

On entry: the first dimension of the array AA as declared in the (sub)program from which
F04ATF is called.

Constraint: LDAA � max 1;Nð Þ.

8: WKS1ðNÞ – REAL (KIND=nag_wp) array Workspace

9: WKS2ðNÞ – REAL (KIND=nag_wp) array Workspace

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The matrix A is singular, possibly due to rounding errors.

IFAIL ¼ 2

Iterative refinement fails to improve the solution, i.e., the matrix A is too ill-conditioned.

IFAIL ¼ 3

On entry, N < 0,
or LDA < max 1;Nð Þ,
or LDAA < max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solutions should be correct to full machine accuracy. For a detailed error analysis see
page 107 of Wilkinson and Reinsch (1971).

8 Parallelism and Performance

F04ATF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04ATF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F04ATF is approximately proportional to n3.

The routine must not be called with the same name for arguments B and C.

10 Example

This example solves the set of linear equations Ax ¼ b where

A ¼
33 16 72
�24 �10 �57
�8 �4 �17

0@ 1A and b ¼
�359
281
85

0@ 1A:
10.1 Program Text

Program f04atfe

! F04ATF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04atf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lda, ldaa, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), aa(:,:), b(:), c(:), &

wks1(:), wks2(:)
! .. Executable Statements ..

Write (nout,*) ’F04ATF Example Program Results’
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Write (nout,*)
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
lda = n
ldaa = n
Allocate (a(lda,n),aa(ldaa,n),b(n),c(n),wks1(n),wks2(n))
Read (nin,*)(a(i,1:n),i=1,n), b(1:n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f04atf(a,lda,b,n,c,aa,ldaa,wks1,wks2,ifail)

Write (nout,*) ’ Solution’
Write (nout,99999) c(1:n)

99999 Format (1X,F9.4)
End Program f04atfe

10.2 Program Data

F04ATF Example Program Data
3 : n
33 16 72

-24 -10 -57
-8 -4 -17

-359 281 85 : matrices A and B

10.3 Program Results

F04ATF Example Program Results

Solution
1.0000

-2.0000
-5.0000
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NAG Library Routine Document

F04AXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04AXF calculates the approximate solution of a set of real sparse linear equations with a single right-
hand side, Ax ¼ b or ATx ¼ b, where A has been factorized by F01BRF or F01BSF.

2 Specification

SUBROUTINE F04AXF (N, A, LICN, ICN, IKEEP, RHS, W, MTYPE, IDISP, RESID)

INTEGER N, LICN, ICN(LICN), IKEEP(5*N), MTYPE, IDISP(2)
REAL (KIND=nag_wp) A(LICN), RHS(N), W(N), RESID

3 Description

To solve a system of real linear equations Ax ¼ b or ATx ¼ b, where A is a general sparse matrix, A
must first be factorized by F01BRF or F01BSF. F04AXF then computes x by block forward or
backward substitution using simple forward and backward substitution within each diagonal block.

The method is fully described in Duff (1977).

A more recent method is available through solver routine F11MFF and factorization routine F11MEF.

4 References

Duff I S (1977) MA28 – a set of Fortran subroutines for sparse unsymmetric linear equations AERE
Report R8730 HMSO

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLICNÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements in the factorization of the matrix A, as returned by F01BRF or
F01BSF.

3: LICN – INTEGER Input

On entry: the dimension of the arrays A and ICN as declared in the (sub)program from which
F04AXF is called.

4: ICNðLICNÞ – INTEGER array Communication Array

On entry: the column indices of the nonzero elements of the factorization, as returned by
F01BRF or F01BSF.

5: IKEEPð5� NÞ – INTEGER array Input

IKEEP provides, on entry, indexing information about the factorization, as returned by F01BRF
or F01BSF. Used as internal workspace prior to being restored and hence is unchanged.
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6: RHSðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the right-hand side vector b.

On exit: RHS is overwritten by the solution vector x.

7: WðNÞ – REAL (KIND=nag_wp) array Workspace

8: MTYPE – INTEGER Input

On entry: MTYPE specifies the task to be performed.

MTYPE ¼ 1
Solve Ax ¼ b.

MTYPE 6¼ 1
Solve ATx ¼ b.

9: IDISPð2Þ – INTEGER array Communication Array

On entry: the values returned in IDISP by F01BRF.

10: RESID – REAL (KIND=nag_wp) Output

On exit: the value of the maximum residual, max bi �
X
j

aijxj

					
					

 !
, over all the unsatisfied

equations, in case F01BRF or F01BSF has been used to factorize a singular or rectangular
matrix.

6 Error Indicators and Warnings

If an error is detected in an input argument F04AXF will act as if a soft noisy exit has been requested
(see Section 3.4.4 in How to Use the NAG Library and its Documentation).

7 Accuracy

The accuracy of the computed solution depends on the conditioning of the original matrix. Since
F04AXF is always used with either F01BRF or F01BSF, you are recommended to set
GROW ¼ :TRUE: on entry to these routines and to examine the value of Wð1Þ on exit (see F01BRF
and F01BSF). For a detailed error analysis see page 17 of Duff (1977).

If storage for the original matrix is available then the error can be estimated by calculating the residual

r ¼ b�Ax or b�ATx
� �

and calling F04AXF again to find a correction � for x by solving

A� ¼ r or AT� ¼ r
� �

:

8 Parallelism and Performance

F04AXF is not threaded in any implementation.

9 Further Comments

If the factorized form contains � nonzeros (IDISPð2Þ ¼ �) then the time taken is very approximately 2�
times longer than the inner loop of full matrix code. Some advantage is taken of zeros in the right-hand
side when solving ATx ¼ b (MTYPE 6¼ 1).
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10 Example

This example solves the set of linear equations Ax ¼ b where

A ¼

5 0 0 0 0 0
0 2 �1 2 0 0
0 0 3 0 0 0
�2 0 0 1 1 0
�1 0 0 �1 2 �3
�1 �1 0 0 0 6

0BBBBB@

1CCCCCA and b ¼

15
12
18
3
�6
0

0BBBBB@

1CCCCCA:

The nonzero elements of A and indexing information are read in by the program, as described in the
document for F01BRF.

10.1 Program Text

Program f04axfe

! F04AXF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01brf, f04axf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: resid, u
Integer :: i, ifail, licn, lirn, mtype, n, nz
Logical :: grow, lblock

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), rhs(:), w(:)
Integer, Allocatable :: icn(:), ikeep(:,:), irn(:), iw(:,:)
Integer :: idisp(10)
Logical :: abort(4)

! .. Executable Statements ..
Write (nout,*) ’F04AXF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nz
licn = 3*nz
lirn = 3*nz/2
Allocate (a(licn),rhs(n),w(n),icn(licn),ikeep(n,5),irn(lirn),iw(n,8))
Read (nin,*)(a(i),irn(i),icn(i),i=1,nz)
u = 0.1E0_nag_wp
lblock = .True.
grow = .True.
abort(1) = .True.
abort(2) = .True.
abort(3) = .False.
abort(4) = .True.

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! Decomposition of sparse matrix

Call f01brf(n,nz,a,licn,irn,lirn,icn,u,ikeep,iw,w,lblock,grow,abort, &
idisp,ifail)

If (grow) Then
Write (nout,*) ’On exit from F01BRF’
Write (nout,99999) ’Value of W(1) = ’, w(1)

End If
Read (nin,*) rhs(1:n)
mtype = 1
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! Approximate solution of sparse linear equations
Call f04axf(n,a,licn,icn,ikeep,rhs,w,mtype,idisp,resid)

Write (nout,*)
Write (nout,*) ’On exit from F04AXF’
Write (nout,*) ’ Solution’
Write (nout,99998) rhs(1:n)

99999 Format (1X,A,F9.4)
99998 Format (1X,F9.4)

End Program f04axfe

10.2 Program Data

F04AXF Example Program Data
6 15 : n, nz
5.0 1 1 2.0 2 2 -1.0 2 3 2.0 2 4 3.0 3 3

-2.0 4 1 1.0 4 4 1.0 4 5 -1.0 5 1 -1.0 5 4
2.0 5 5 -3.0 5 6 -1.0 6 1 -1.0 6 2 6.0 6 6 : a

15.0 12.0 18.0 3.0 -6.0 0.0 : rhs

10.3 Program Results

F04AXF Example Program Results

On exit from F01BRF
Value of W(1) = 18.0000

On exit from F04AXF
Solution

3.0000
3.0000
6.0000
6.0000
3.0000
1.0000
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NAG Library Routine Document

F04BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04BAF computes the solution to a real system of linear equations AX ¼ B, where A is an n by n
matrix and X and B are n by r matrices. An estimate of the condition number of A and an error bound
for the computed solution are also returned.

2 Specification

SUBROUTINE F04BAF (N, NRHS, A, LDA, IPIV, B, LDB, RCOND, ERRBND, IFAIL)

INTEGER N, NRHS, LDA, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), RCOND, ERRBND

3 Description

The LU decomposition with partial pivoting and row interchanges is used to factor A as A ¼ PLU ,
where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n coefficient matrix A.

On exit: if IFAIL � 0, the factors L and U from the factorization A ¼ PLU . The unit diagonal
elements of L are not stored.
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4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04BAF
is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVðNÞ – INTEGER array Output

On exit: if IFAIL � 0, the pivot indices that define the permutation matrix P ; at the ith step row i
of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ ¼ i indicates a row interchange was not
required.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04BAF
is called.

Constraint: LDB � max 1;Nð Þ.

8: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of

the matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

9: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

Diagonal element valueh i of the upper triangular factor is zero. The factorization has been
completed, but the solution could not be computed.

F04BAF NAG Library Manual

F04BAF.2 Mark 26



IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �2
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �4
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � max 1;Nð Þ.

IFAIL ¼ �7
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The integer allocatable memory required is N, and the real allocatable memory required is
4� N. In this case the factorization and the solution X have been computed, but RCOND and
ERRBND have not been computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04BAF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.
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8 Parallelism and Performance

F04BAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04BAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
2
3n

3 þ n2r
� �

. The condition number estimation typically requires between four and five solves and never
more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of F04BAF is F04CAF.

10 Example

This example solves the equations

AX ¼ B;

where

A ¼
1:80 2:88 2:05 �0:89
5:25 �2:95 �0:95 �3:80
1:58 �2:69 �2:90 �1:04
�1:11 �0:66 �0:59 0:80

0B@
1CA and B ¼

9:52 18:47
24:35 2:25
0:77 �13:28
�6:22 �6:21

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04bafe

! F04BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04baf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, lda, ldb, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F04BAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
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Read (nin,*) n, nrhs
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,nrhs),ipiv(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04baf(n,nrhs,a,lda,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*)
Flush (nout)

ierr = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Details of factorization’,ierr)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ifail

End If

99999 Format (6X,1P,E9.1)
99998 Format ((1X,7I11))
99997 Format (1X,’ ** F04BAF returned with IFAIL = ’,I5)

End Program f04bafe
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10.2 Program Data

F04BAF Example Program Data

4 2 : n, nrhs

1.80 2.88 2.05 -0.89
5.25 -2.95 -0.95 -3.80
1.58 -2.69 -2.90 -1.04

-1.11 -0.66 -0.59 0.80 : matrix A

9.52 18.47
24.35 2.25
0.77 -13.28

-6.22 -6.21 : matrix B

10.3 Program Results

F04BAF Example Program Results

Solution
1 2

1 1.0000 3.0000
2 -1.0000 2.0000
3 3.0000 4.0000
4 -5.0000 1.0000

Estimate of condition number
1.5E+02

Estimate of error bound for computed solutions
1.7E-14
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NAG Library Routine Document

F04BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04BBF computes the solution to a real system of linear equations AX ¼ B, where A is an n by n
band matrix, with kl subdiagonals and ku superdiagonals, and X and B are n by r matrices. An estimate
of the condition number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04BBF (N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, RCOND,
ERRBND, IFAIL)

&

INTEGER N, KL, KU, NRHS, LDAB, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) AB(LDAB,*), B(LDB,*), RCOND, ERRBND

3 Description

The LU decomposition with partial pivoting and row interchanges is used to factor A as A ¼ PLU ,
where P is a permutation matrix, L is the product of permutation matrices and unit lower triangular
matrices with kl subdiagonals, and U is upper triangular with kl þ kuð Þ superdiagonals. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

2: KL – INTEGER Input

On entry: the number of subdiagonals kl, within the band of A.

Constraint: KL � 0.

3: KU – INTEGER Input

On entry: the number of superdiagonals ku, within the band of A.

Constraint: KU � 0.

4: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

The matrix is stored in rows kl þ 1 to 2kl þ ku þ 1; the first kl rows need not be set, more
precisely, the element Aij must be stored in

ABðkl þ ku þ 1þ i� j; jÞ ¼ Aij for max 1; j� kuð Þ � i � min n; jþ klð Þ:
See Section 9 for further details.

On exit: if IFAIL � 0, AB is overwritten by details of the factorization.

The upper triangular band matrix U , with kl þ ku superdiagonals, is stored in rows 1 to
kl þ ku þ 1 of the array, and the multipliers used to form the matrix L are stored in rows
kl þ ku þ 2 to 2kl þ ku þ 1.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F04BBF is called.

Constraint: LDAB � 2� KLþ KUþ 1.

7: IPIVðNÞ – INTEGER array Output

On exit: if IFAIL � 0, the pivot indices that define the permutation matrix P ; at the ith step row i
of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ ¼ i indicates a row interchange was not
required.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04BBF
is called.

Constraint: LDB � max 1;Nð Þ.

10: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of

the matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

11: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

Diagonal element valueh i of the upper triangular factor is zero. The factorization has been
completed, but the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �2
On entry, KL ¼ valueh i.
Constraint: KL � 0.

IFAIL ¼ �3
On entry, KU ¼ valueh i.
Constraint: KU � 0.

IFAIL ¼ �4
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �6
On entry, LDAB ¼ valueh i, KL ¼ valueh i and KU ¼ valueh i.
Constraint: LDAB � 2� KLþ KUþ 1.

IFAIL ¼ �9
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

The integer allocatable memory required is N, and the real allocatable memory required is
3� N. In this case the factorization and the solution X have been computed, but RCOND and
ERRBND have not been computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04BBF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04BBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04BBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The band storage scheme for the array AB is illustrated by the following example, when n ¼ 6, kl ¼ 1,
and ku ¼ 2. Storage of the band matrix A in the array AB:

� � � þ þ þ
� � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 �

Array elements marked � need not be set and are not referenced by the routine. Array elements marked
+ need not be set, but are defined on exit from the routine and contain the elements u14, u25 and u36.

The total number of floating-point operations required to solve the equations AX ¼ B depends upon the
pivoting required, but if n� kl þ ku then it is approximately bounded by O nkl kl þ kuð Þð Þ for the
factorization and O n 2kl þ kuð Þrð Þ for the solution following the factorization. The condition number
estimation typically requires between four and five solves and never more than eleven solves, following
the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.
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The complex analogue of F04BBF is F04CBF.

10 Example

This example solves the equations

AX ¼ B;

where A is the band matrix

A ¼
�0:23 2:54 �3:66 0
�6:98 2:46 �2:73 �2:13

0 2:56 2:46 4:07
0 0 �4:78 �3:82

0B@
1CA and B ¼

4:42 �36:01
27:13 �31:67
�6:14 �1:16
10:50 �25:82

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04bbfe

! F04BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04bbf, nag_wp, x04caf, x04cef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, j, k, kl, ku, ldab, &

ldb, n, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F04BBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kl, ku, nrhs
ldab = 2*kl + ku + 1
ldb = n
Allocate (ab(ldab,n),b(ldb,nrhs),ipiv(n))

! Read A and B from data file
k = kl + ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04bbf(n,kl,ku,nrhs,ab,ldab,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then

! Print solution, estimate of condition number and approximate
! error bound
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ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then

! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Else If (ifail>0 .And. ifail<=n) Then

! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*)
Flush (nout)

ierr = 0
Call x04cef(n,n,kl,kl+ku,ab,ldab,’Details of factorization’,ierr)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ifail

End If

99999 Format (6X,1P,E9.1)
99998 Format ((1X,7I11))
99997 Format (1X,’ ** F04BBF returned with IFAIL = ’,I5)

End Program f04bbfe

10.2 Program Data

F04BBF Example Program Data

4 1 2 2 : n, kl, ku, nrhs

-0.23 2.54 -3.66
-6.98 2.46 -2.73 -2.13

2.56 2.46 4.07
-4.78 -3.82 : matrix A

4.42 -36.01
27.13 -31.67
-6.14 -1.16
10.50 -25.82 : matrix B

10.3 Program Results

F04BBF Example Program Results

Solution
1 2

1 -2.0000 1.0000
2 3.0000 -4.0000
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3 1.0000 7.0000
4 -4.0000 -2.0000

Estimate of condition number
5.6E+01

Estimate of error bound for computed solutions
6.3E-15
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NAG Library Routine Document

F04BCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04BCF computes the solution to a real system of linear equations AX ¼ B, where A is an n by n
tridiagonal matrix and X and B are n by r matrices. An estimate of the condition number of A and an
error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04BCF (N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, RCOND, ERRBND,
IFAIL)

&

INTEGER N, NRHS, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) DL(*), D(*), DU(*), DU2(N-2), B(LDB,*), RCOND,

ERRBND
&

3 Description

The LU decomposition with partial pivoting and row interchanges is used to factor A as A ¼ PLU ,
where P is a permutation matrix, L is unit lower triangular with at most one nonzero subdiagonal
element, and U is an upper triangular band matrix with two superdiagonals. The factored form of A is
then used to solve the system of equations AX ¼ B.

Note that the equations ATX ¼ B may be solved by interchanging the order of the arguments DU and
DL.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: DLð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the matrix A.

On exit: if IFAIL � 0, DL is overwritten by the n� 1ð Þ multipliers that define the matrix L from
the LU factorization of A.
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4: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix A.

On exit: if IFAIL � 0, D is overwritten by the n diagonal elements of the upper triangular matrix
U from the LU factorization of A.

5: DUð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ superdiagonal elements of the matrix A

On exit: if IFAIL � 0, DU is overwritten by the n� 1ð Þ elements of the first superdiagonal of U .

6: DU2ðN� 2Þ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL � 0, DU2 returns the n� 2ð Þ elements of the second superdiagonal of U .

7: IPIVðNÞ – INTEGER array Output

On exit: if IFAIL � 0, the pivot indices that define the permutation matrix P ; at the ith step row i
of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ will always be either i or iþ 1ð Þ;
IPIVðiÞ ¼ i indicates a row interchange was not required.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04BCF
is called.

Constraint: LDB � max 1;Nð Þ.

10: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of

the matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

11: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL ¼ N

Diagonal element valueh i of the upper triangular factor is zero. The factorization has been
completed, but the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �2
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �9
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The integer allocatable memory required is N, and the real allocatable memory required is
2� N. In this case the factorization and the solution X have been computed, but RCOND and
ERRBND have not been computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
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and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04BCF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04BCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr. The condition number estimation typically requires between four and five solves and never more
than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of F04BCF is F04CCF.

10 Example

This example solves the equations

AX ¼ B;

where A is the tridiagonal matrix

A ¼

3:0 2:1 0 0 0
3:4 2:3 �1:0 0 0
0 3:6 �5:0 1:9 0
0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0BBB@
1CCCA and B ¼

2:7 6:6
�0:5 10:8
2:6 �3:2
0:6 �11:2
2:7 19:1

0BBB@
1CCCA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04bcfe

! F04BCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04bcf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, ldb, n, nrhs
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), d(:), dl(:), du(:), du2(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F04BCF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (b(ldb,nrhs),d(n),dl(n-1),du(n-1),du2(n-2),ipiv(n))

! Read A and B from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04bcf(n,nrhs,dl,d,du,du2,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond

Write (nout,*)
Flush (nout)
ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*) ’Details of factorization’
Write (nout,*)
Write (nout,*) ’ Second superdiagonal of U’
Write (nout,99998) du2(1:n-2)
Write (nout,*)
Write (nout,*) ’ First superdiagonal of U’
Write (nout,99998) du(1:n-1)
Write (nout,*)
Write (nout,*) ’ Main diagonal of U’
Write (nout,99998) d(1:n)
Write (nout,*)
Write (nout,*) ’ Multipliers’
Write (nout,99998) dl(1:n-1)
Write (nout,*)
Write (nout,*) ’ Vector of interchanges’
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Write (nout,99997) ipiv(1:n)
Else

Write (nout,99996) ifail
End If

99999 Format (6X,1P,E9.1)
99998 Format (1X,8F9.4)
99997 Format (1X,8I9)
99996 Format (1X,’ ** F04BCF returned with IFAIL = ’,I5)

End Program f04bcfe

10.2 Program Data

F04BCF Example Program Data

5 2 : n, nrhs

2.1 -1.0 1.9 8.0 : superdiagonal du
3.0 2.3 -5.0 -0.9 7.1 : diagonal d
3.4 3.6 7.0 -6.0 : subdiagonal dl

2.7 6.6
-0.5 10.8
2.6 -3.2
0.6 -11.2
2.7 19.1 : matrix B

10.3 Program Results

F04BCF Example Program Results

Solution
1 2

1 -4.0000 5.0000
2 7.0000 -4.0000
3 3.0000 -3.0000
4 -4.0000 -2.0000
5 -3.0000 1.0000

Estimate of condition number
9.3E+01

Estimate of error bound for computed solutions
1.0E-14
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NAG Library Routine Document

F04BDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04BDF computes the solution to a real system of linear equations AX ¼ B, where A is an n by n
symmetric positive definite matrix and X and B are n by r matrices. An estimate of the condition
number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04BDF (UPLO, N, NRHS, A, LDA, B, LDB, RCOND, ERRBND, IFAIL)

INTEGER N, NRHS, LDA, LDB, IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), RCOND, ERRBND
CHARACTER(1) UPLO

3 Description

The Cholesky factorization is used to factor A as A ¼ UTU , if UPLO ¼ U , or A ¼ LLT, if
UPLO ¼ L , where U is an upper triangular matrix and L is a lower triangular matrix. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.
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If UPLO ¼ U , the leading N by N upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A is not referenced.

If UPLO ¼ L , the leading N by N lower triangular part of A contains the lower triangular part
of the matrix A, and the strictly upper triangular part of A is not referenced.

On exit: if IFAIL ¼ 0 or Nþ 1, the factor U or L from the Cholesky factorization A ¼ UTU or
A ¼ LLT.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04BDF
is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04BDF
is called.

Constraint: LDB � max 1;Nð Þ.

8: RCOND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the reciprocal of the condition number of the

matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

9: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

The principal minor of order valueh i of the matrix A is not positive definite. The factorization
has not been completed and the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, UPLO 6¼ U or L : UPLO ¼ valueh i.

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �5
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � max 1;Nð Þ.

IFAIL ¼ �7
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The integer allocatable memory required is N, and the real allocatable memory required is
3� N. Allocation failed before the solution could be computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04BDF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04BDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04BDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
1
3n

3 þ n2r
� �

. The condition number estimation typically requires between four and five solves and never
more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of F04BDF is F04CDF.

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric positive definite matrix

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA and B ¼

8:70 8:30
�13:35 2:13

1:89 1:61
�4:14 5:00

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.
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10.1 Program Text

Program f04bdfe

! F04BDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04bdf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, lda, ldb, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)

! .. Executable Statements ..
Write (nout,*) ’F04BDF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,nrhs))

! Read the upper triangular part of A from data file
Read (nin,*)(a(i,i:n),i=1,n)

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04bdf(’Upper’,n,nrhs,a,lda,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The matrix A is not positive definite to working precision

Write (nout,99998) ’The leading minor of order ’, ifail, &
’ is not positive definite’
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Else
Write (nout,99997) ifail

End If

99999 Format (6X,1P,E9.1)
99998 Format (1X,A,I3,A)
99997 Format (1X,’ ** F04BDF returned with IFAIL = ’,I5)

End Program f04bdfe

10.2 Program Data

F04BDF Example Program Data

4 2 :Values of N and NRHS

4.16 -3.12 0.56 -0.10
5.03 -0.83 1.18

0.76 0.34
1.18 :End of matrix A

8.70 8.30
-13.35 2.13

1.89 1.61
-4.14 5.00 :End of matrix B

10.3 Program Results

F04BDF Example Program Results

Solution
1 2

1 1.0000 4.0000
2 -1.0000 3.0000
3 2.0000 2.0000
4 -3.0000 1.0000

Estimate of condition number
9.7E+01

Estimate of error bound for computed solutions
1.1E-14
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NAG Library Routine Document

F04BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04BEF computes the solution to a real system of linear equations AX ¼ B, where A is an n by n
symmetric positive definite matrix, stored in packed format, and X and B are n by r matrices. An
estimate of the condition number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04BEF (UPLO, N, NRHS, AP, B, LDB, RCOND, ERRBND, IFAIL)

INTEGER N, NRHS, LDB, IFAIL
REAL (KIND=nag_wp) AP(*), B(LDB,*), RCOND, ERRBND
CHARACTER(1) UPLO

3 Description

The Cholesky factorization is used to factor A as A ¼ UTU , if UPLO ¼ U , or A ¼ LLT, if
UPLO ¼ L , where U is an upper triangular matrix and L is a lower triangular matrix. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A. The upper or lower triangular part of the symmetric
matrix is packed column-wise in a linear array. The jth column of A is stored in the array AP as
follows:

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: if IFAIL ¼ 0 or Nþ 1, the factor U or L from the Cholesky factorization A ¼ UTU or
A ¼ LLT, in the same storage format as A.

5: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04BEF
is called.

Constraint: LDB � max 1;Nð Þ.

7: RCOND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the reciprocal of the condition number of the

matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

8: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

The principal minor of order valueh i of the matrix A is not positive definite. The factorization
has not been completed and the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, UPLO not one of `U' or `u' or `L' or `l': UPLO ¼ valueh i.

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �6
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The integer allocatable memory required is N, and the real allocatable memory required is
3� N. Allocation failed before the solution could be computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
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and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04BEF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04BEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04BEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The packed storage scheme is illustrated by the following example when n ¼ 4 and UPLO ¼ U . Two-
dimensional storage of the symmetric matrix A:

a11 a12 a13 a14
a22 a23 a24

a33 a34
a44

aij ¼ aji
� �

Packed storage of the upper triangle of A:

AP ¼ a11; a12; a22; a13; a23; a33; a14; a24; a34; a44
� �

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
1
3n

3 þ n2r
� �

. The condition number estimation typically requires between four and five solves and never
more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of F04BEF is F04CEF.

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric positive definite matrix

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA and B ¼

8:70 8:30
�13:35 2:13

1:89 1:61
�4:14 5:00

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.
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10.1 Program Text

Program f04befe

! F04BEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04bef, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, j, ldb, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), b(:,:)

! .. Executable Statements ..
Write (nout,*) ’F04BEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap((n*(n+1))/2),b(ldb,nrhs))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04bef(uplo,n,nrhs,ap,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)
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ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The matrix A is not positive definite to working precision

Write (nout,99998) ’The leading minor of order ’, ifail, &
’ is not positive definite’

Else
Write (nout,99997) ifail

End If

99999 Format (6X,1P,E9.1)
99998 Format (1X,A,I3,A)
99997 Format (1X,’ ** F04BEF returned with IFAIL = ’,I5)

End Program f04befe

10.2 Program Data

F04BEF Example Program Data

4 2 : n, nrhs

4.16 -3.12 0.56 -0.10
5.03 -0.83 1.18

0.76 0.34
1.18 : matrix A

8.70 8.30
-13.35 2.13

1.89 1.61
-4.14 5.00 : matrix B

10.3 Program Results

F04BEF Example Program Results

Solution
1 2

1 1.0000 4.0000
2 -1.0000 3.0000
3 2.0000 2.0000
4 -3.0000 1.0000

Estimate of condition number
9.7E+01

Estimate of error bound for computed solutions
1.1E-14
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NAG Library Routine Document

F04BFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04BFF computes the solution to a real system of linear equations AX ¼ B, where A is an n by n
symmetric positive definite band matrix of band width 2kþ 1, and X and B are n by r matrices. An
estimate of the condition number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04BFF (UPLO, N, KD, NRHS, AB, LDAB, B, LDB, RCOND, ERRBND,
IFAIL)

&

INTEGER N, KD, NRHS, LDAB, LDB, IFAIL
REAL (KIND=nag_wp) AB(LDAB,*), B(LDB,*), RCOND, ERRBND
CHARACTER(1) UPLO

3 Description

The Cholesky factorization is used to factor A as A ¼ UTU , if UPLO ¼ U , or A ¼ LLT, if
UPLO ¼ L , where U is an upper triangular band matrix with k superdiagonals, and L is a lower
triangular band matrix with k subdiagonals. The factored form of A is then used to solve the system of
equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: KD – INTEGER Input

On entry: the number of superdiagonals k (and the number of subdiagonals) of the band matrix
A.

Constraint: KD � 0.
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4: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n symmetric band matrix A. The upper or lower triangular part of the
symmetric matrix is stored in the first KDþ 1 rows of the array. The jth column of A is stored in
the jth column of the array AB as follows:

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kð Þ:

See Section 9 below for further details.

On exit: if IFAIL ¼ 0 or Nþ 1, the factor U or L from the Cholesky factorization A ¼ UTU or
A ¼ LLT, in the same storage format as A.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F04BFF is called.

Constraint: LDAB � KDþ 1.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04BFF
is called.

Constraint: LDB � max 1;Nð Þ.

9: RCOND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the reciprocal of the condition number of the

matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

10: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

F04BFF NAG Library Manual

F04BFF.2 Mark 26



For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

The principal minor of order valueh i of the matrix A is not positive definite. The factorization
has not been completed and the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, UPLO not one of `U' or `u' or `L' or `l': UPLO ¼ valueh i.

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, KD ¼ valueh i.
Constraint: KD � 0.

IFAIL ¼ �4
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �6
On entry, LDAB ¼ valueh i and KD ¼ valueh i.
Constraint: LDAB � KDþ 1.

IFAIL ¼ �8
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The integer allocatable memory required is N, and the real allocatable memory required is
3� N. Allocation failed before the solution could be computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04BFF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04BFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04BFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The band storage scheme for the array AB is illustrated by the following example, when n ¼ 6, k ¼ 2,
and UPLO ¼ U :

On entry:

� � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66

On exit:

� � u13 u24 u35 u46
� u12 u23 u34 u45 u56
u11 u22 u33 u44 u55 u66

Similarly, if UPLO ¼ L the format of AB is as follows:
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On entry:

a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 �
a31 a42 a53 a64 � �

On exit:

l11 l22 l33 l44 l55 l66
l21 l32 l43 l54 l65 �
l31 l42 l53 l64 � �

Array elements marked � need not be set and are not referenced by the routine.

Assuming that n� k, the total number of floating-point operations required to solve the equations
AX ¼ B is approximately n kþ 1ð Þ2 for the factorization and 4nkr for the solution following the
factorization. The condition number estimation typically requires between four and five solves and
never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of F04BFF is F04CFF.

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric positive definite band matrix

A ¼
5:49 2:68 0 0
2:68 5:63 �2:39 0

0 �2:39 2:60 �2:22
0 0 �2:22 5:17

0B@
1CA and B ¼

22:09 5:10
9:31 30:81
�5:24 �25:82
11:83 22:90

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04bffe

! F04BFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04bff, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, j, kd, ldab, ldb, n, &

nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min
! .. Executable Statements ..

Write (nout,*) ’F04BFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
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Read (nin,*)
Read (nin,*) n, kd, nrhs
ldab = kd + 1
ldb = n
Allocate (ab(ldab,n),b(ldb,nrhs))

! Read the upper or lower triangular part of the band matrix A
! from data file

If (uplo==’U’) Then
Do i = 1, n

Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))
End Do

Else If (uplo==’L’) Then
Do i = 1, n

Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)
End Do

End If

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04bff(uplo,n,kd,nrhs,ab,ldab,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The matrix A is not positive definite to working precision

Write (nout,99998) ’The leading minor of order ’, ifail, &
’ is not positive definite’

Else
Write (nout,99997) ifail

End If

99999 Format (6X,1P,E9.1)
99998 Format (1X,A,I3,A)
99997 Format (1X,’ ** F04BFF returned with IFAIL = ’,I5)

End Program f04bffe
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10.2 Program Data

F04BFF Example Program Data

4 1 2 : n, kd, nrhs

5.49 2.68
5.63 -2.39

2.60 -2.22
5.17 : matrix A

22.09 5.10
9.31 30.81

-5.24 -25.82
11.83 22.90 : matrix B

10.3 Program Results

F04BFF Example Program Results

Solution
1 2

1 5.0000 -2.0000
2 -2.0000 6.0000
3 -3.0000 -1.0000
4 1.0000 4.0000

Estimate of condition number
7.4E+01

Estimate of error bound for computed solutions
8.2E-15
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NAG Library Routine Document

F04BGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04BGF computes the solution to a real system of linear equations AX ¼ B, where A is an n by n
symmetric positive definite tridiagonal matrix and X and B are n by r matrices. An estimate of the
condition number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04BGF (N, NRHS, D, E, B, LDB, RCOND, ERRBND, IFAIL)

INTEGER N, NRHS, LDB, IFAIL
REAL (KIND=nag_wp) D(*), E(*), B(LDB,*), RCOND, ERRBND

3 Description

A is factorized as A ¼ LDLT, where L is a unit lower bidiagonal matrix and D is diagonal, and the
factored form of A is then used to solve the system of equations.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the tridiagonal matrix A.

On exit: if IFAIL ¼ 0 or Nþ 1, D is overwritten by the n diagonal elements of the diagonal
matrix D from the LDLT factorization of A.

4: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the tridiagonal matrix A.
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On exit: if IFAIL ¼ 0 or Nþ 1, E is overwritten by the n� 1ð Þ subdiagonal elements of the unit
lower bidiagonal matrix L from the LDLT factorization of A. (E can also be regarded as the
superdiagonal of the unit upper bidiagonal factor U from the UTDU factorization of A.)

5: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04BGF
is called.

Constraint: LDB � max 1;Nð Þ.

7: RCOND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the reciprocal of the condition number of the

matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

8: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

The principal minor of order valueh i of the matrix A is not positive definite. The factorization
has not been completed and the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.
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IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �2
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �6
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The real allocatable memory required is N. In this case the factorization and the solution X have
been computed, but RCOND and ERRBND have not been computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04BGF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04BGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr. The condition number estimation requires O nð Þ floating-point operations.
See Section 15.3 of Higham (2002) for further details on computing the condition number of tridiagonal
matrices.

The complex analogue of F04BGF is F04CGF.

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric positive definite tridiagonal matrix

A ¼

4:0 �2:0 0 0 0
�2:0 10:0 �6:0 0 0

0 �6:0 29:0 15:0 0
0 0 15:0 25:0 8:0
0 0 0 8:0 5:0

0BBB@
1CCCA and B ¼

6:0 10:0
9:0 4:0
2:0 9:0

14:0 65:0
7:0 23:0

0BBB@
1CCCA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04bgfe

! F04BGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04bgf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, ldb, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), d(:), e(:)

! .. Executable Statements ..
Write (nout,*) ’F04BGF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (b(ldb,nrhs),d(n),e(n-1))

! Read A from data file
Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04bgf(n,nrhs,d,e,b,ldb,rcond,errbnd,ifail)

F04BGF NAG Library Manual

F04BGF.4 Mark 26



If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Else If (ifail>0 .And. ifail<=n) Then
Write (nout,99998) ’The leading minor of order ’, ifail, &

’ is not positive definite’
Else

Write (nout,99997) ifail
End If

99999 Format (6X,1P,E9.1)
99998 Format (1X,A,I3,A)
99997 Format (1X,’ ** F04BGF returned with IFAIL = ’,I5)

End Program f04bgfe

10.2 Program Data

F04BGF Example Program Data

5 2 :Values of N and NRHS

4.0 10.0 29.0 25.0 5.0 :End of diagonal D
-2.0 -6.0 15.0 8.0 :End of sub-diagonal E

6.0 10.0
9.0 4.0
2.0 9.0

14.0 65.0
7.0 23.0 :End of matrix B

10.3 Program Results

F04BGF Example Program Results

Solution
1 2

1 2.5000 2.0000
2 2.0000 -1.0000
3 1.0000 -3.0000
4 -1.0000 6.0000
5 3.0000 -5.0000
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Estimate of condition number
1.1E+02

Estimate of error bound for computed solutions
1.2E-14
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NAG Library Routine Document

F04BHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04BHF computes the solution to a real system of linear equations AX ¼ B, where A is an n by n
symmetric matrix and X and B are n by r matrices. An estimate of the condition number of A and an
error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04BHF (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, RCOND, ERRBND,
IFAIL)

&

INTEGER N, NRHS, LDA, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), RCOND, ERRBND
CHARACTER(1) UPLO

3 Description

The diagonal pivoting method is used to factor A as A ¼ UDUT, if UPLO ¼ U , or A ¼ LDLT, if
UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and
D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form of A is
then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the leading N by N upper triangular part of the array A contains the upper
triangular part of the matrix A, and the strictly lower triangular part of A is not referenced.

If UPLO ¼ L , the leading N by N lower triangular part of the array A contains the lower
triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.

On exit: if IFAIL � 0, the block diagonal matrix D and the multipliers used to obtain the factor
U or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by F07MDF (DSYTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04BHF
is called.

Constraint: LDA � max 1;Nð Þ.

6: IPIVðNÞ – INTEGER array Output

On exit: if IFAIL � 0, details of the interchanges and the block structure of D, as determined by
F07MDF (DSYTRF).

IPIVðkÞ > 0
Rows and columns k and IPIVðkÞ were interchanged, and dkk is a 1 by 1 diagonal block.

UPLO ¼ U and IPIVðkÞ ¼ IPIVðk� 1Þ < 0
Rows and columns k� 1 and �IPIVðkÞ were interchanged and dk�1:k;k�1:k is a 2 by 2
diagonal block.

UPLO ¼ L and IPIVðkÞ ¼ IPIVðkþ 1Þ < 0
Rows and columns kþ 1 and �IPIVðkÞ were interchanged and dk:kþ1;k:kþ1 is a 2 by 2
diagonal block.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04BHF
is called.

Constraint: LDB � max 1;Nð Þ.

9: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of

the matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

10: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.
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11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

Diagonal block valueh i of the block diagonal matrix is zero. The factorization has been
completed, but the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, UPLO not one of `U' or `u' or `L' or `l': UPLO ¼ valueh i.

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �5
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � max 1;Nð Þ.

IFAIL ¼ �8
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

The integer allocatable memory required is N, and the real allocatable memory required is
max 2� N ; LWORKð Þ, where LWORK is the optimum workspace required by F07MAF (DSYSV).
If this failure occurs it may be possible to solve the equations by calling the packed storage
version of F04BHF, F04BJF, or by calling F07MAF (DSYSV) directly with less than the optimum
workspace (see Chapter F07).

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04BHF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04BHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
1
3n

3 þ 2n2r
� �

. The condition number estimation typically requires between four and five solves and
never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogues of F04BHF are F04CHF for complex Hermitian matrices, and F04DHF for
complex symmetric matrices.

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric indefinite matrix
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A ¼
�1:81 2:06 0:63 �1:15
2:06 1:15 1:87 4:20
0:63 1:87 �0:21 3:87
�1:15 4:20 3:87 2:07

0B@
1CA and B ¼

0:96 3:93
6:07 19:25
8:38 9:90
9:50 27:85

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04bhfe

! F04BHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04bhf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, lda, ldb, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F04BHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,nrhs),ipiv(n))

! Read the upper triangular part of A from data file
Read (nin,*)(a(i,i:n),i=1,n)

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04bhf(’Upper’,n,nrhs,a,lda,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
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Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*)
Flush (nout)

ierr = 0
Call x04caf(’Upper’,’Non-unit diagonal’,n,n,a,lda, &

’Details of factorization’,ierr)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ifail

End If

99999 Format (6X,1P,E9.1)
99998 Format ((1X,7I11))
99997 Format (1X,’ ** F04BHF returned with IFAIL = ’,I5)

End Program f04bhfe

10.2 Program Data

F04BHF Example Program Data

4 2 : n, nrhs

-1.81 2.06 0.63 -1.15
1.15 1.87 4.20

-0.21 3.87
2.07 : matrix A

0.96 3.93
6.07 19.25
8.38 9.90
9.50 27.85 : matrix B

10.3 Program Results

F04BHF Example Program Results

Solution
1 2

1 -5.0000 2.0000
2 -2.0000 3.0000
3 1.0000 4.0000
4 4.0000 1.0000

Estimate of condition number
7.6E+01

Estimate of error bound for computed solutions
8.4E-15
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NAG Library Routine Document

F04BJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04BJF computes the solution to a real system of linear equations AX ¼ B, where A is an n by n
symmetric matrix, stored in packed format and X and B are n by r matrices. An estimate of the
condition number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04BJF (UPLO, N, NRHS, AP, IPIV, B, LDB, RCOND, ERRBND,
IFAIL)

&

INTEGER N, NRHS, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) AP(*), B(LDB,*), RCOND, ERRBND
CHARACTER(1) UPLO

3 Description

The diagonal pivoting method is used to factor A as A ¼ UDUT, if UPLO ¼ U , or A ¼ LDLT, if
UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and
D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form of A is
then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed column-wise in a linear array. The jth column
of the matrix A is stored in the array AP as follows:

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: if IFAIL � 0, the block diagonal matrix D and the multipliers used to obtain the factor
U or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by F07PDF (DSPTRF),
stored as a packed triangular matrix in the same storage format as A.

5: IPIVðNÞ – INTEGER array Output

On exit: if IFAIL � 0, details of the interchanges and the block structure of D, as determined by
F07PDF (DSPTRF).

If IPIVðkÞ > 0, then rows and columns k and IPIVðkÞ were interchanged, and dkk is a 1 by
1 diagonal block;

if UPLO ¼ U and IPIVðkÞ ¼ IPIVðk� 1Þ < 0, then rows and columns k� 1 and
�IPIVðkÞ were interchanged and dk�1:k;k�1:k is a 2 by 2 diagonal block;

if UPLO ¼ L and IPIVðkÞ ¼ IPIVðkþ 1Þ < 0, then rows and columns kþ 1 and
�IPIVðkÞ were interchanged and dk:kþ1;k:kþ1 is a 2 by 2 diagonal block.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04BJF
is called.

Constraint: LDB � max 1;Nð Þ.

8: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of

the matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

9: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

Diagonal block valueh i of the block diagonal matrix is zero. The factorization has been
completed, but the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, UPLO not one of `U' or `u' or `L' or `l': UPLO ¼ valueh i.

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �7
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The integer allocatable memory required is N, and the real allocatable memory required is
2� N. Allocation failed before the solution could be computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04BJF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04BJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The packed storage scheme is illustrated by the following example when n ¼ 4 and UPLO ¼ U . Two-
dimensional storage of the symmetric matrix A:

a11 a12 a13 a14
a22 a23 a24

a33 a34
a44

aij ¼ aji
� �

Packed storage of the upper triangle of A:

AP ¼ a11; a12; a22; a13; a23; a33; a14; a24; a34; a44
� �

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
1
3n

3 þ 2n2r
� �

. The condition number estimation typically requires between four and five solves and
never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogues of F04BJF are F04CJF for complex Hermitian matrices, and F04DJF for
complex symmetric matrices.

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric indefinite matrix
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A ¼
�1:81 2:06 0:63 �1:15
2:06 1:15 1:87 4:20
0:63 1:87 �0:21 3:87
�1:15 4:20 3:87 2:07

0B@
1CA and B ¼

0:96 3:93
6:07 19:25
8:38 9:90
9:50 27:85

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04bjfe

! F04BJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04bjf, nag_wp, x04caf, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, j, ldb, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), b(:,:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F04BJF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap((n*(n+1))/2),b(ldb,nrhs),ipiv(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04bjf(uplo,n,nrhs,ap,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
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Write (nout,99999) errbnd
Else If (ifail==n+1) Then

! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution’,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*)
Flush (nout)

ierr = 0
Call x04ccf(uplo,’Non-unit diagonal’,n,ap,’Details of factorization’, &

ierr)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ifail

End If

99999 Format (6X,1P,E9.1)
99998 Format ((3X,7I11))
99997 Format (1X,’ ** F04BJF returned with IFAIL = ’,I5)

End Program f04bjfe

10.2 Program Data

F04BJF Example Program Data

4 2 :Values of N and NRHS

-1.81 2.06 0.63 -1.15
1.15 1.87 4.20

-0.21 3.87
2.07 :End of matrix A

0.96 3.93
6.07 19.25
8.38 9.90
9.50 27.85 :End of matrix B

10.3 Program Results

F04BJF Example Program Results

Solution
1 2

1 -5.0000 2.0000
2 -2.0000 3.0000
3 1.0000 4.0000
4 4.0000 1.0000

Estimate of condition number
7.6E+01

Estimate of error bound for computed solutions
8.4E-15
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NAG Library Routine Document

F04CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04CAF computes the solution to a complex system of linear equations AX ¼ B, where A is an n by n
matrix and X and B are n by r matrices. An estimate of the condition number of A and an error bound
for the computed solution are also returned.

2 Specification

SUBROUTINE F04CAF (N, NRHS, A, LDA, IPIV, B, LDB, RCOND, ERRBND, IFAIL)

INTEGER N, NRHS, LDA, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) RCOND, ERRBND
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)

3 Description

The LU decomposition with partial pivoting and row interchanges is used to factor A as A ¼ PLU ,
where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n coefficient matrix A.

On exit: if IFAIL � 0, the factors L and U from the factorization A ¼ PLU . The unit diagonal
elements of L are not stored.
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4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04CAF
is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVðNÞ – INTEGER array Output

On exit: if IFAIL � 0, the pivot indices that define the permutation matrix P ; at the ith step row i
of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ ¼ i indicates a row interchange was not
required.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04CAF
is called.

Constraint: LDB � max 1;Nð Þ.

8: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of

the matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

9: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

Diagonal element valueh i of the upper triangular factor is zero. The factorization has been
completed, but the solution could not be computed.
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IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �2
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �4
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � max 1;Nð Þ.

IFAIL ¼ �7
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The complex allocatable memory required is 2� N, and the real allocatable memory required is
2� N. In this case the factorization and the solution X have been computed, but RCOND and
ERRBND have not been computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04CAF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.
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8 Parallelism and Performance

F04CAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04CAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
2
3n

3 þ n2r
� �

. The condition number estimation typically requires between four and five solves and never
more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The real analogue of F04CAF is F04BAF.

10 Example

This example solves the equations

AX ¼ B;

where

A ¼
�1:34þ 2:55i 0:28þ 3:17i �6:39� 2:20i 0:72� 0:92i
�0:17� 1:41i 3:31� 0:15i �0:15þ 1:34i 1:29þ 1:38i
�3:29� 2:39i �1:91þ 4:42i �0:14� 1:35i 1:72þ 1:35i
2:41þ 0:39i �0:56þ 1:47i �0:83� 0:69i �1:96þ 0:67i

0B@
1CA

and

B ¼
26:26þ 51:78i 31:32� 6:70i
6:43� 8:68i 15:86� 1:42i
�5:75þ 25:31i �2:15þ 30:19i
1:16þ 2:57i �2:56þ 7:55i

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04cafe

! F04CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04caf, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, lda, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
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Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F04CAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,nrhs),ipiv(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04caf(n,nrhs,a,lda,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ierr)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ifail

End If
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99999 Format (8X,1P,E9.1)
99998 Format ((1X,7I11))
99997 Format (1X,’ ** F04CAF returned with IFAIL = ’,I5)

End Program f04cafe

10.2 Program Data

F04CAF Example Program Data

4 2 : n, nrhs

(-1.34, 2.55) ( 0.28, 3.17) (-6.39, -2.20) ( 0.72, -0.92)
(-0.17, -1.41) ( 3.31, -0.15) (-0.15, 1.34) ( 1.29, 1.38)
(-3.29, -2.39) (-1.91, 4.42) (-0.14, -1.35) ( 1.72, 1.35)
( 2.41, 0.39) (-0.56, 1.47) (-0.83, -0.69) (-1.96, 0.67) : matrix A

(26.26, 51.78) (31.32, -6.70)
( 6.43, -8.68) (15.86, -1.42)
(-5.75, 25.31) (-2.15, 30.19)
( 1.16, 2.57) (-2.56, 7.55) : matrix B

10.3 Program Results

F04CAF Example Program Results

Solution
1 2

1 ( 1.0000, 1.0000) ( -1.0000, -2.0000)
2 ( 2.0000, -3.0000) ( 5.0000, 1.0000)
3 ( -4.0000, -5.0000) ( -3.0000, 4.0000)
4 ( 0.0000, 6.0000) ( 2.0000, -3.0000)

Estimate of condition number
1.5E+02

Estimate of error bound for computed solutions
1.7E-14
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NAG Library Routine Document

F04CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04CBF computes the solution to a complex system of linear equations AX ¼ B, where A is an n by n
band matrix, with kl subdiagonals and ku superdiagonals, and X and B are n by r matrices. An estimate
of the condition number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04CBF (N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, RCOND,
ERRBND, IFAIL)

&

INTEGER N, KL, KU, NRHS, LDAB, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) RCOND, ERRBND
COMPLEX (KIND=nag_wp) AB(LDAB,*), B(LDB,*)

3 Description

The LU decomposition with partial pivoting and row interchanges is used to factor A as A ¼ PLU ,
where P is a permutation matrix, L is the product of permutation matrices and unit lower triangular
matrices with kl subdiagonals, and U is upper triangular with kl þ kuð Þ superdiagonals. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

2: KL – INTEGER Input

On entry: the number of subdiagonals kl, within the band of A.

Constraint: KL � 0.

3: KU – INTEGER Input

On entry: the number of superdiagonals ku, within the band of A.

Constraint: KU � 0.

4: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

The matrix is stored in rows kl þ 1 to 2kl þ ku þ 1; the first kl rows need not be set, more
precisely, the element Aij must be stored in

ABðkl þ ku þ 1þ i� j; jÞ ¼ Aij for max 1; j� kuð Þ � i � min n; jþ klð Þ:
See Section 9 for further details.

On exit: if IFAIL � 0, AB is overwritten by details of the factorization.

The upper triangular band matrix U , with kl þ ku superdiagonals, is stored in rows 1 to
kl þ ku þ 1 of the array, and the multipliers used to form the matrix L are stored in rows
kl þ ku þ 2 to 2kl þ ku þ 1.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F04CBF is called.

Constraint: LDAB � 2� KLþ KUþ 1.

7: IPIVðNÞ – INTEGER array Output

On exit: if IFAIL � 0, the pivot indices that define the permutation matrix P ; at the ith step row i
of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ ¼ i indicates a row interchange was not
required.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04CBF
is called.

Constraint: LDB � max 1;Nð Þ.

10: RCOND – REAL (KIND=nag_wp) Output

On exit: if IFAIL � 0, an estimate of the reciprocal of the condition number of the matrix A,

computed as RCOND ¼ Ak k1 A�1
�� ��

1

� �
.

11: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

Diagonal element valueh i of the upper triangular factor is zero. The factorization has been
completed, but the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �2
On entry, KL ¼ valueh i.
Constraint: KL � 0.

IFAIL ¼ �3
On entry, KU ¼ valueh i.
Constraint: KU � 0.

IFAIL ¼ �4
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �6
On entry, LDAB ¼ valueh i, KL ¼ valueh i and KU ¼ valueh i.
Constraint: LDAB � 2� KLþ KUþ 1.

IFAIL ¼ �9
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

The real allocatable memory required is N, and the complex allocatable memory required is
2� N. In this case the factorization and the solution X have been computed, but RCOND and
ERRBND have not been computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04CBF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04CBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04CBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The band storage scheme for the array AB is illustrated by the following example, when n ¼ 6, kl ¼ 1,
and ku ¼ 2. Storage of the band matrix A in the array AB:

� � � þ þ þ
� � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 �

Array elements marked � need not be set and are not referenced by the routine. Array elements marked
+ need not be set, but are defined on exit from the routine and contain the elements u14, u25 and u36.

The total number of floating-point operations required to solve the equations AX ¼ B depends upon the
pivoting required, but if n� kl þ ku then it is approximately bounded by O nkl kl þ kuð Þð Þ for the
factorization and O n 2kl þ kuð Þ; rð Þ for the solution following the factorization. The condition number
estimation typically requires between four and five solves and never more than eleven solves, following
the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.
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The real analogue of F04CBF is F04BBF.

10 Example

This example solves the equations

AX ¼ B;

where A is the band matrix

A ¼
�1:65þ 2:26i �2:05� 0:85i 0:97� 2:84i 0
0:00þ 6:30i �1:48� 1:75i �3:99þ 4:01i 0:59� 0:48i
0 �0:77þ 2:83i �1:06þ 1:94i 3:33� 1:04i
0 0 4:48� 1:09i �0:46� 1:72i

0B@
1CA

and

B ¼
�1:06þ 21:50i 12:85þ 2:84i
�22:72� 53:90i �70:22þ 21:57i
28:24� 38:60i �20:73� 1:23i
�34:56þ 16:73i 26:01þ 31:97i

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04cbfe

! F04CBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04cbf, nag_wp, x04dbf, x04dff

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, j, k, kl, ku, ldab, &

ldb, n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F04CBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kl, ku, nrhs
ldab = 2*kl + ku + 1
ldb = n
Allocate (ab(ldab,n),b(ldb,nrhs),ipiv(n))

! Read A and B from data file

k = kl + ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
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! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 1
Call f04cbf(n,kl,ku,nrhs,ab,ldab,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*)
Flush (nout)

ierr = 0
Call x04dff(n,n,kl,kl+ku,ab,ldab,’Bracketed’,’F7.4’, &

’Details of factorization’,’None’,rlabs,’None’,clabs,80,0,ierr)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ifail

End If

99999 Format (4X,1P,E9.1)
99998 Format ((1X,7I11))
99997 Format (1X,’ ** F04CBF returned with IFAIL = ’,I5)

End Program f04cbfe

10.2 Program Data

F04CBF Example Program Data

4 1 2 2 : n, kl, ku, nrhs

( -1.65, 2.26) ( -2.05, -0.85) ( 0.97, -2.84)
( 0.00, 6.30) ( -1.48, -1.75) ( -3.99, 4.01) ( 0.59, -0.48)

( -0.77, 2.83) ( -1.06, 1.94) ( 3.33, -1.04)
( 4.48, -1.09) ( -0.46, -1.72) : matrix A

( -1.06, 21.50) ( 12.85, 2.84)
(-22.72,-53.90) (-70.22, 21.57)
( 28.24,-38.60) (-20.73, -1.23)
(-34.56, 16.73) ( 26.01, 31.97) : matrix B
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10.3 Program Results

F04CBF Example Program Results

Solution
1 2

1 (-3.0000, 2.0000) ( 1.0000, 6.0000)
2 ( 1.0000,-7.0000) (-7.0000,-4.0000)
3 (-5.0000, 4.0000) ( 3.0000, 5.0000)
4 ( 6.0000,-8.0000) (-8.0000, 2.0000)

Estimate of condition number
1.0E+02

Estimate of error bound for computed solutions
1.2E-14
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NAG Library Routine Document

F04CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04CCF computes the solution to a complex system of linear equations AX ¼ B, where A is an n by n
tridiagonal matrix and X and B are n by r matrices. An estimate of the condition number of A and an
error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04CCF (N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, RCOND, ERRBND,
IFAIL)

&

INTEGER N, NRHS, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) RCOND, ERRBND
COMPLEX (KIND=nag_wp) DL(*), D(*), DU(*), DU2(N-2), B(LDB,*)

3 Description

The LU decomposition with partial pivoting and row interchanges is used to factor A as A ¼ PLU ,
where P is a permutation matrix, L is unit lower triangular with at most one nonzero subdiagonal
element, and U is an upper triangular band matrix with two superdiagonals. The factored form of A is
then used to solve the system of equations AX ¼ B.

Note that the equations ATX ¼ B may be solved by interchanging the order of the arguments DU and
DL.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: DLð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the matrix A.

On exit: if IFAIL � 0, DL is overwritten by the n� 1ð Þ multipliers that define the matrix L from
the LU factorization of A.
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4: Dð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix A.

On exit: if IFAIL � 0, D is overwritten by the n diagonal elements of the upper triangular matrix
U from the LU factorization of A.

5: DUð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ superdiagonal elements of the matrix A

On exit: if IFAIL � 0, DU is overwritten by the n� 1ð Þ elements of the first superdiagonal of U .

6: DU2ðN� 2Þ – COMPLEX (KIND=nag_wp) array Output

On exit: if IFAIL � 0, DU2 returns the n� 2ð Þ elements of the second superdiagonal of U .

7: IPIVðNÞ – INTEGER array Output

On exit: if IFAIL � 0, the pivot indices that define the permutation matrix P ; at the ith step row i
of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ will always be either i or iþ 1ð Þ;
IPIVðiÞ ¼ i indicates a row interchange was not required.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04CCF
is called.

Constraint: LDB � max 1;Nð Þ.

10: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of

the matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

11: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

Diagonal element valueh i of the upper triangular factor is zero. The factorization has been
completed, but the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �2
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �9
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The complex allocatable memory required is 2� N. In this case the factorization and the solution
X have been computed, but RCOND and ERRBND have not been computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
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and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04CCF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04CCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr. The condition number estimation typically requires between four and five solves and never more
than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The real analogue of F04CCF is F04BCF.

10 Example

This example solves the equations

AX ¼ B;

where A is the tridiagonal matrix

A ¼

�1:3þ 1:3i 2:0� 1:0i 0 0 0
1:0� 2:0i �1:3þ 1:3i 2:0þ 1:0i 0 0
0 1:0þ 1:0i �1:3þ 3:3i �1:0þ 1:0i 0
0 0 2:0� 3:0i �0:3þ 4:3i 1:0� 1:0i
0 0 0 1:0þ 1:0i �3:3þ 1:3i

0BBB@
1CCCA

and

B ¼

2:4� 5:0i 2:7þ 6:9i
3:4þ 18:2i �6:9� 5:3i

�14:7þ 9:7i �6:0� 0:6i
31:9� 7:7i �3:9þ 9:3i
�1:0þ 1:6i �3:0þ 12:2i

0BBB@
1CCCA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04ccfe

! F04CCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: f04ccf, nag_wp, x04dbf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: b(:,:), d(:), dl(:), du(:), du2(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F04CCF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (b(ldb,nrhs),d(n),dl(n-1),du(n-1),du2(n-2),ipiv(n))

! Read A and B from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04ccf(n,nrhs,dl,d,du,du2,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*) ’Details of factorization’
Write (nout,*)
Write (nout,*) ’ Second superdiagonal of U’
Write (nout,99998) du2(1:n-2)
Write (nout,*)
Write (nout,*) ’ First superdiagonal of U’
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Write (nout,99998) du(1:n-1)
Write (nout,*)
Write (nout,*) ’ Main diagonal of U’
Write (nout,99998) d(1:n)
Write (nout,*)
Write (nout,*) ’ Multipliers’
Write (nout,99998) dl(1:n-1)
Write (nout,*)
Write (nout,*) ’ Vector of interchanges’
Write (nout,99997) ipiv(1:n)

Else
Write (nout,99996) ifail

End If

99999 Format (8X,1P,E9.1)
99998 Format (4(1X,’(’,F7.4,’,’,F7.4,’)’,:))
99997 Format (1X,8I9)
99996 Format (1X,’ ** F04CCF returned with IFAIL = ’,I5)

End Program f04ccfe

10.2 Program Data

F04CCF Example Program Data

5 2 : n, nrhs

( 2.0, -1.0) ( 2.0, 1.0) ( -1.0, 1.0) ( 1.0, -1.0) : du

( -1.3, 1.3) ( -1.3, 1.3) ( -1.3, 3.3) ( -0.3, 4.3)
( -3.3, 1.3) : d

( 1.0, -2.0) ( 1.0 , 1.0) ( 2.0, -3.0) ( 1.0, 1.0) : dl

( 2.4, -5.0) ( 2.7, 6.9)
( 3.4, 18.2) ( -6.9, -5.3)
(-14.7, 9.7) ( -6.0, -0.6)
( 31.9, -7.7) ( -3.9, 9.3)
( -1.0, 1.6) ( -3.0, 12.2) : b

10.3 Program Results

F04CCF Example Program Results

Solution
1 2

1 ( 1.0000, 1.0000) ( 2.0000, -1.0000)
2 ( 3.0000, -1.0000) ( 1.0000, 2.0000)
3 ( 4.0000, 5.0000) ( -1.0000, 1.0000)
4 ( -1.0000, -2.0000) ( 2.0000, 1.0000)
5 ( 1.0000, -1.0000) ( 2.0000, -2.0000)

Estimate of condition number
1.8E+02

Estimate of error bound for computed solutions
2.0E-14
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NAG Library Routine Document

F04CDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04CDF computes the solution to a complex system of linear equations AX ¼ B, where A is an n by n
Hermitian positive definite matrix and X and B are n by r matrices. An estimate of the condition
number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04CDF (UPLO, N, NRHS, A, LDA, B, LDB, RCOND, ERRBND, IFAIL)

INTEGER N, NRHS, LDA, LDB, IFAIL
REAL (KIND=nag_wp) RCOND, ERRBND
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

3 Description

The Cholesky factorization is used to factor A as A ¼ UHU , if UPLO ¼ U , or A ¼ LLH, if
UPLO ¼ L , where U is an upper triangular matrix and L is a lower triangular matrix. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the leading N by N upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A is not referenced.

If UPLO ¼ L , the leading N by N lower triangular part of A contains the lower triangular part
of the matrix A, and the strictly upper triangular part of A is not referenced.

On exit: if IFAIL ¼ 0 or Nþ 1, the factor U or L from the Cholesky factorization A ¼ UHU or
A ¼ LLH.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04CDF
is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04CDF
is called.

Constraint: LDB � max 1;Nð Þ.

8: RCOND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the reciprocal of the condition number of the

matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

9: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

The principal minor of order valueh i of the matrix A is not positive definite. The factorization
has not been completed and the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, UPLO not one of `U' or `u' or `L' or `l': UPLO ¼ valueh i.

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �5
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � max 1;Nð Þ.

IFAIL ¼ �7
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The real allocatable memory required is N, and the complex allocatable memory required is
2� N. Allocation failed before the solution could be computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04CDF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04CDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04CDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
1
3n

3 þ n2r
� �

. The condition number estimation typically requires between four and five solves and never
more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The real analogue of F04CDF is F04BDF.

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite matrix

A ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA

and

B ¼
3:93� 6:14i 1:48þ 6:58i
6:17þ 9:42i 4:65� 4:75i
�7:17� 21:83i �4:91þ 2:29i
1:99� 14:38i 7:64� 10:79i

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.
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10.1 Program Text

Program f04cdfe

! F04CDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04cdf, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, lda, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F04CDF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,nrhs))

! Read the upper triangular part of A from data file
Read (nin,*)(a(i,i:n),i=1,n)

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04cdf(’Upper’,n,nrhs,a,lda,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Else If (ifail>0 .And. ifail<=n) Then
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! The matrix A is not positive definite to working precision
Write (nout,99998) ’The leading minor of order ’, ifail, &

’ is not positive definite’
Else

Write (nout,99997) ifail
End If

99999 Format (8X,1P,E9.1)
99998 Format (1X,A,I3,A)
99997 Format (1X,’ ** F04CDF returned with IFAIL = ’,I5)

End Program f04cdfe

10.2 Program Data

F04CDF Example Program Data

4 2 : n, nrhs

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) : matrix A

( 3.93, -6.14) ( 1.48, 6.58)
( 6.17, 9.42) ( 4.65, -4.75)
(-7.17,-21.83) (-4.91, 2.29)
( 1.99,-14.38) ( 7.64,-10.79) : matrix B

10.3 Program Results

F04CDF Example Program Results

Solution
1 2

1 ( 1.0000, -1.0000) ( -1.0000, 2.0000)
2 ( -0.0000, 3.0000) ( 3.0000, -4.0000)
3 ( -4.0000, -5.0000) ( -2.0000, 3.0000)
4 ( 2.0000, 1.0000) ( 4.0000, -5.0000)

Estimate of condition number
1.5E+02

Estimate of error bound for computed solutions
1.7E-14
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NAG Library Routine Document

F04CEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04CEF computes the solution to a complex system of linear equations AX ¼ B, where A is an n by n
Hermitian positive definite matrix, stored in packed format, and X and B are n by r matrices. An
estimate of the condition number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04CEF (UPLO, N, NRHS, AP, B, LDB, RCOND, ERRBND, IFAIL)

INTEGER N, NRHS, LDB, IFAIL
REAL (KIND=nag_wp) RCOND, ERRBND
COMPLEX (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

3 Description

The Cholesky factorization is used to factor A as A ¼ UHU , if UPLO ¼ U , or A ¼ LLH, if
UPLO ¼ L , where U is an upper triangular matrix and L is a lower triangular matrix. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n Hermitian matrix A. The upper or lower triangular part of the Hermitian
matrix is packed column-wise in a linear array. The jth column of A is stored in the array AP as
follows:

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: if IFAIL ¼ 0 or Nþ 1, the factor U or L from the Cholesky factorization A ¼ UHU or
A ¼ LLH, in the same storage format as A.

5: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04CEF
is called.

Constraint: LDB � max 1;Nð Þ.

7: RCOND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the reciprocal of the condition number of the

matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

8: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0 and IFAIL 6¼ �999
If IFAIL ¼ �i, the ith argument had an illegal value.

IFAIL > 0 and IFAIL � N

If IFAIL ¼ i, the leading minor of order i of A is not positive definite. The factorization could
not be completed, and the solution has not been computed.

IFAIL ¼ Nþ 1

RCOND is less than machine precision, so that the matrix A is numerically singular. A solution
to the equations AX ¼ B has nevertheless been computed.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04CEF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04CEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04CEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The packed storage scheme is illustrated by the following example when n ¼ 4 and UPLO ¼ U . Two-
dimensional storage of the Hermitian matrix A:

a11 a12 a13 a14
a22 a23 a24

a33 a34
a44

aij ¼ �aji
� �

Packed storage of the upper triangle of A:

AP ¼ a11; a12; a22; a13; a23; a33; a14; a24; a34; a44
� �

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
1
3n

3 þ n2r
� �

. The condition number estimation typically requires between four and five solves and never
more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The real analogue of F04CEF is F04BEF.

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite matrix

A ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA

and

B ¼
3:93� 6:14i 1:48þ 6:58i
6:17þ 9:42i 4:65� 4:75i
�7:17� 21:83i �4:91þ 2:29i
1:99� 14:38i 7:64� 10:79i

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04cefe

! F04CEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04cef, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
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Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, j, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), b(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F04CEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap((n*(n+1))/2),b(ldb,nrhs))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04cef(uplo,n,nrhs,ap,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The matrix A is not positive definite to working precision

Write (nout,99998) ’The leading minor of order ’, ifail, &
’ is not positive definite’

Else
Write (nout,99997) ifail

End If

99999 Format (4X,1P,E9.1)
99998 Format (1X,A,I3,A)
99997 Format (1X,’ ** F04CEF returned with IFAIL = ’,I5)

End Program f04cefe
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10.2 Program Data

F04CEF Example Program Data

4 2 : n, nrhs

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) : matrix A

( 3.93, -6.14) ( 1.48, 6.58)
( 6.17, 9.42) ( 4.65, -4.75)
(-7.17,-21.83) (-4.91, 2.29)
( 1.99,-14.38) ( 7.64,-10.79) : matrix B

10.3 Program Results

F04CEF Example Program Results

Solution
1 2

1 ( 1.0000,-1.0000) (-1.0000, 2.0000)
2 (-0.0000, 3.0000) ( 3.0000,-4.0000)
3 (-4.0000,-5.0000) (-2.0000, 3.0000)
4 ( 2.0000, 1.0000) ( 4.0000,-5.0000)

Estimate of condition number
1.5E+02

Estimate of error bound for computed solutions
1.7E-14

F04CEF NAG Library Manual

F04CEF.6 (last) Mark 26



NAG Library Routine Document

F04CFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04CFF computes the solution to a complex system of linear equations AX ¼ B, where A is an n by n
Hermitian positive definite band matrix of band width 2kþ 1, and X and B are n by r matrices. An
estimate of the condition number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04CFF (UPLO, N, KD, NRHS, AB, LDAB, B, LDB, RCOND, ERRBND,
IFAIL)

&

INTEGER N, KD, NRHS, LDAB, LDB, IFAIL
REAL (KIND=nag_wp) RCOND, ERRBND
COMPLEX (KIND=nag_wp) AB(LDAB,*), B(LDB,*)
CHARACTER(1) UPLO

3 Description

The Cholesky factorization is used to factor A as A ¼ UHU , if UPLO ¼ U , or A ¼ LLH, if
UPLO ¼ L , where U is an upper triangular band matrix with k superdiagonals, and L is a lower
triangular band matrix with k subdiagonals. The factored form of A is then used to solve the system of
equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: KD – INTEGER Input

On entry: the number of superdiagonals k (and the number of subdiagonals) of the band matrix
A.

Constraint: KD � 0.
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4: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n Hermitian band matrix A. The upper or lower triangular part of the
Hermitian matrix is stored in the first KDþ 1 rows of the array. The jth column of A is stored in
the jth column of the array AB as follows:

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kð Þ:

See Section 9 below for further details.

On exit: if IFAIL ¼ 0 or Nþ 1, the factor U or L from the Cholesky factorization A ¼ UHU or
A ¼ LLH, in the same storage format as A.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F04CFF is called.

Constraint: LDAB � KDþ 1.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04CFF
is called.

Constraint: LDB � max 1;Nð Þ.

9: RCOND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the reciprocal of the condition number of the

matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

10: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0 and IFAIL 6¼ �999
If IFAIL ¼ �i, the ith argument had an illegal value.

IFAIL > 0 and IFAIL � N

If IFAIL ¼ i, the leading minor of order i of A is not positive definite. The factorization could
not be completed, and the solution has not been computed.

IFAIL ¼ Nþ 1

RCOND is less than machine precision, so that the matrix A is numerically singular. A solution
to the equations AX ¼ B has nevertheless been computed.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04CFF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.
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8 Parallelism and Performance

F04CFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04CFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The band storage scheme for the array AB is illustrated by the following example, when n ¼ 6, k ¼ 2,
and UPLO ¼ U :

On entry:

� � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66

On exit:

� � u13 u24 u35 u46
� u12 u23 u34 u45 u56
u11 u22 u33 u44 u55 u66

Similarly, if UPLO ¼ L the format of AB is as follows:

On entry:

a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 �
a31 a42 a53 a64 � �

On exit:

l11 l22 l33 l44 l55 l66
l21 l32 l43 l54 l65 �
l31 l42 l53 l64 � �

Array elements marked � need not be set and are not referenced by the routine.

Assuming that n� k, the total number of floating-point operations required to solve the equations
AX ¼ B is approximately n kþ 1ð Þ2 for the factorization and 4nkr for the solution following the
factorization. The condition number estimation typically requires between four and five solves and
never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The real analogue of F04CFF is F04BFF.

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite band matrix
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A ¼
9:39 1:08� 1:73i 0 0
1:08þ 1:73i 1:69 �0:04þ 0:29i 0
0 �0:04� 0:29i 2:65 �0:33þ 2:24i
0 0 �0:33� 2:24i 2:17

0B@
1CA

and

B ¼
�12:42þ 68:42i 54:30� 56:56i
�9:93þ 0:88i 18:32þ 4:76i
�27:30� 0:01i �4:40þ 9:97i

5:31þ 23:63i 9:43þ 1:41i

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04cffe

! F04CFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04cff, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, j, kd, ldab, ldb, n, &

nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F04CFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd, nrhs
ldab = kd + 1
ldb = n
Allocate (ab(ldab,n),b(ldb,nrhs))

! Read the upper or lower triangular part of the band matrix A
! from data file

If (uplo==’U’) Then
Do i = 1, n

Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))
End Do

Else If (uplo==’L’) Then
Do i = 1, n

Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)
End Do

End If

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
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! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 1
Call f04cff(uplo,n,kd,nrhs,ab,ldab,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The matrix A is not positive definite to working precision

Write (nout,99998) ’The leading minor of order ’, ifail, &
’ is not positive definite’

Else
Write (nout,99997) ifail

End If

99999 Format (4X,1P,E9.1)
99998 Format (1X,A,I3,A)
99997 Format (1X,’ ** F04CFF returned with IFAIL = ’,I5)

End Program f04cffe

10.2 Program Data

F04CFF Example Program Data

4 1 2 : n, kd, nrhs

( 9.39, 0.00) ( 1.08, -1.73)
( 1.69, 0.00) ( -0.04, 0.29)

( 2.65, 0.00) ( -0.33, 2.24)
( 2.17, 0.00) : matrix A

(-12.42, 68.42) ( 54.30,-56.56)
( -9.93, 0.88) ( 18.32, 4.76)
(-27.30, -0.01) ( -4.40, 9.97)
( 5.31, 23.63) ( 9.43, 1.41) : matrix B

10.3 Program Results

F04CFF Example Program Results

Solution
1 2

1 (-1.0000, 8.0000) ( 5.0000,-6.0000)
2 ( 2.0000,-3.0000) ( 2.0000, 3.0000)
3 (-4.0000,-5.0000) (-8.0000, 4.0000)
4 ( 7.0000, 6.0000) (-1.0000,-7.0000)
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Estimate of condition number
1.3E+02

Estimate of error bound for computed solutions
1.5E-14
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NAG Library Routine Document

F04CGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04CGF computes the solution to a complex system of linear equations AX ¼ B, where A is an n by n
Hermitian positive definite tridiagonal matrix and X and B are n by r matrices. An estimate of the
condition number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04CGF (N, NRHS, D, E, B, LDB, RCOND, ERRBND, IFAIL)

INTEGER N, NRHS, LDB, IFAIL
REAL (KIND=nag_wp) D(*), RCOND, ERRBND
COMPLEX (KIND=nag_wp) E(*), B(LDB,*)

3 Description

A is factorized as A ¼ LDLH, where L is a unit lower bidiagonal matrix and D is a real diagonal
matrix, and the factored form of A is then used to solve the system of equations.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the tridiagonal matrix A.

On exit: if IFAIL ¼ 0 or Nþ 1, D is overwritten by the n diagonal elements of the diagonal
matrix D from the LDLH factorization of A.

4: Eð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the tridiagonal matrix A.
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On exit: if IFAIL ¼ 0 or Nþ 1, E is overwritten by the n� 1ð Þ subdiagonal elements of the unit
lower bidiagonal matrix L from the LDLH factorization of A. (E can also be regarded as the
conjugate of the superdiagonal of the unit upper bidiagonal factor U from the UHDU
factorization of A.)

5: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04CGF
is called.

Constraint: LDB � max 1;Nð Þ.

7: RCOND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the reciprocal of the condition number of the

matrix A, computed as RCOND ¼ 1= Ak k1; A�1
�� ��

1

� �
.

8: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

The principal minor of order valueh i of the matrix A is not positive definite. The factorization
has not been completed and the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.
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IFAIL ¼ �1
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �2
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �6
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The real allocatable memory required is N. In this case the factorization and the solution X have
been computed, but RCOND and ERRBND have not been computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04CGF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04CGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr. The condition number estimation requires O nð Þ floating-point operations.
See Section 15.3 of Higham (2002) for further details on computing the condition number of tridiagonal
matrices.

The real analogue of F04CGF is F04BGF.

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite tridiagonal matrix

A ¼
16:0 16:0þ 16:0i 0 0
16:0� 16:0i 41:0 18:0� 9:0i 0
0 18:0þ 9:0i 46:0 1:0� 4:0i
0 0 1:0þ 4:0i 21:0

0B@
1CA

and

B ¼
64:0þ 16:0i �16:0� 32:0i
93:0þ 62:0i 61:0� 66:0i
78:0� 80:0i 71:0� 74:0i
14:0� 27:0i 35:0þ 15:0i

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04cgfe

! F04CGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04cgf, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: b(:,:), e(:)
Real (Kind=nag_wp), Allocatable :: d(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F04CGF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (b(ldb,nrhs),e(n-1),d(n))

! Read A from data file
Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Read B from data file
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Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04cgf(n,nrhs,d,e,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Else If (ifail>0 .And. ifail<=n) Then
Write (nout,99998) ’The leading minor of order ’, ifail, &

’ is not positive definite’
Else

Write (nout,99997) ifail
End If

99999 Format (8X,1P,E9.1)
99998 Format (1X,A,I3,A)
99997 Format (1X,’ ** F04CGF returned with IFAIL = ’,I5)

End Program f04cgfe

10.2 Program Data

F04CGF Example Program Data

4 2 : n, nrhs

16.0 41.0 46.0 21.0 : diagonal d
( 16.0, 16.0) ( 18.0, -9.0) ( 1.0, -4.0) : sub-diagonal e

( 64.0, 16.0) (-16.0,-32.0)
( 93.0, 62.0) ( 61.0,-66.0)
( 78.0,-80.0) ( 71.0,-74.0)
( 14.0,-27.0) ( 35.0, 15.0) : matrix B

10.3 Program Results

F04CGF Example Program Results

Solution
1 2

1 ( 2.0000, 1.0000) ( -3.0000, -2.0000)
2 ( 1.0000, 1.0000) ( 1.0000, 1.0000)
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3 ( 1.0000, -2.0000) ( 1.0000, -2.0000)
4 ( 1.0000, -1.0000) ( 2.0000, 1.0000)

Estimate of condition number
9.2E+03

Estimate of error bound for computed solutions
1.0E-12

F04CGF NAG Library Manual

F04CGF.6 (last) Mark 26



NAG Library Routine Document

F04CHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04CHF computes the solution to a complex system of linear equations AX ¼ B, where A is an n by n
Hermitian matrix and X and B are n by r matrices. An estimate of the condition number of A and an
error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04CHF (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, RCOND, ERRBND,
IFAIL)

&

INTEGER N, NRHS, LDA, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) RCOND, ERRBND
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

3 Description

The diagonal pivoting method is used to factor A as A ¼ UDUH, if UPLO ¼ U , or A ¼ LDLH, if
UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and
D is Hermitian and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form of A is
then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the leading N by N upper triangular part of the array A contains the upper
triangular part of the matrix A, and the strictly lower triangular part of A is not referenced.

If UPLO ¼ L , the leading N by N lower triangular part of the array A contains the lower
triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.

On exit: if IFAIL � 0, the block diagonal matrix D and the multipliers used to obtain the factor
U or L from the factorization A ¼ UDUH or A ¼ LDLH as computed by F07MRF (ZHETRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04CHF
is called.

Constraint: LDA � max 1;Nð Þ.

6: IPIVðNÞ – INTEGER array Output

On exit: if IFAIL � 0, details of the interchanges and the block structure of D, as determined by
F07MRF (ZHETRF).

If IPIVðkÞ > 0, then rows and columns k and IPIVðkÞ were interchanged, and dkk is a 1 by
1 diagonal block;

if UPLO ¼ U and IPIVðkÞ ¼ IPIVðk� 1Þ < 0, then rows and columns k� 1 and
�IPIVðkÞ were interchanged and dk�1:k;k�1:k is a 2 by 2 diagonal block;

if UPLO ¼ L and IPIVðkÞ ¼ IPIVðkþ 1Þ < 0, then rows and columns kþ 1 and
�IPIVðkÞ were interchanged and dk:kþ1;k:kþ1 is a 2 by 2 diagonal block.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04CHF
is called.

Constraint: LDB � max 1;Nð Þ.

9: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of

the matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

10: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

Diagonal block valueh i of the block diagonal matrix is zero. The factorization has been
completed, but the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, UPLO not one of `U' or `u' or `L' or `l': UPLO ¼ valueh i.

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �5
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � max 1;Nð Þ.

IFAIL ¼ �8
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

F04 – Simultaneous Linear Equations F04CHF

Mark 26 F04CHF.3



The real allocatable memory required is N, and the complex allocatable memory required is
max 2� N ; LWORKð Þ, where LWORK is the optimum workspace required by F07MNF (ZHESV).
If this failure occurs it may be possible to solve the equations by calling the packed storage
version of F04CHF, F04CJF, or by calling F07MNF (ZHESV) directly with less than the optimum
workspace (see Chapter F07).

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04CHF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04CHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
1
3n

3 þ 2n2r
� �

. The condition number estimation typically requires between four and five solves and
never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

Routine F04DHF is for complex symmetric matrices, and the real analogue of F04CHF is F04BHF.

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian indefinite matrix

A ¼
�1:84 0:11� 0:11i �1:78� 1:18i 3:91� 1:50i
0:11þ 0:11i �4:63 �1:84þ 0:03i 2:21þ 0:21i
�1:78þ 1:18i �1:84� 0:03i �8:87 1:58� 0:90i
3:91þ 1:50i 2:21� 0:21i 1:58þ 0:90i �1:36

0B@
1CA

and
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B ¼
2:98� 10:18i 28:68� 39:89i
�9:58þ 3:88i �24:79� 8:40i
�0:77� 16:05i 4:23� 70:02i
7:79þ 5:48i �35:39þ 18:01i

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04chfe

! F04CHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04chf, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, lda, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F04CHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,nrhs),ipiv(n))

! Read the upper triangular part of A from data file
Read (nin,*)(a(i,i:n),i=1,n)

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04chf(’Upper’,n,nrhs,a,lda,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
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! reciprocal of condition number and solution
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’Upper’,’Non-unit diagonal’,n,n,a,lda,’Bracketed’,’ ’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ierr)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ifail

End If

99999 Format (8X,1P,E9.1)
99998 Format ((1X,7I11))
99997 Format (1X,’ ** F04CHF returned with IFAIL = ’,I5)

End Program f04chfe

10.2 Program Data

F04CHF Example Program Data

4 2 : n, nrhs

( -1.84, 0.00) ( 0.11, -0.11) ( -1.78, -1.18) ( 3.91, -1.50)
( -4.63 , 0.00) ( -1.84, 0.03) ( 2.21, 0.21)

( -8.87, 0.00) ( 1.58, -0.90)
( -1.36 , 0.00) : matrix A

( 2.98,-10.18) ( 28.68,-39.89)
( -9.58, 3.88) (-24.79, -8.40)
( -0.77,-16.05) ( 4.23,-70.02)
( 7.79, 5.48) (-35.39, 18.01) : matrix B

10.3 Program Results

F04CHF Example Program Results

Solution
1 2

1 ( 2.0000, 1.0000) ( -8.0000, 6.0000)
2 ( 3.0000, -2.0000) ( 7.0000, -2.0000)
3 ( -1.0000, 2.0000) ( -1.0000, 5.0000)
4 ( 1.0000, -1.0000) ( 3.0000, -4.0000)

Estimate of condition number
6.7E+00

Estimate of error bound for computed solutions
7.4E-16

F04CHF NAG Library Manual

F04CHF.6 (last) Mark 26



NAG Library Routine Document

F04CJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04CJF computes the solution to a complex system of linear equations AX ¼ B, where A is an n by n
complex Hermitian matrix, stored in packed format and X and B are n by r matrices. An estimate of
the condition number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04CJF (UPLO, N, NRHS, AP, IPIV, B, LDB, RCOND, ERRBND,
IFAIL)

&

INTEGER N, NRHS, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) RCOND, ERRBND
COMPLEX (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

3 Description

The diagonal pivoting method is used to factor A as A ¼ UDUH, if UPLO ¼ U , or A ¼ LDLH, if
UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and
D is Hermitian and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form of A is
then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n Hermitian matrix A, packed column-wise in a linear array. The jth column
of the matrix A is stored in the array AP as follows:

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: if IFAIL � 0, the block diagonal matrix D and the multipliers used to obtain the factor
U or L from the factorization A ¼ UDUH or A ¼ LDLH as computed by F07PRF (ZHPTRF),
stored as a packed triangular matrix in the same storage format as A.

5: IPIVðNÞ – INTEGER array Output

On exit: if IFAIL � 0, details of the interchanges and the block structure of D, as determined by
F07PRF (ZHPTRF).

If IPIVðkÞ > 0, then rows and columns k and IPIVðkÞ were interchanged, and dkk is a 1 by
1 diagonal block;

if UPLO ¼ U and IPIVðkÞ ¼ IPIVðk� 1Þ < 0, then rows and columns k� 1 and
�IPIVðkÞ were interchanged and dk�1:k;k�1:k is a 2 by 2 diagonal block;

if UPLO ¼ L and IPIVðkÞ ¼ IPIVðkþ 1Þ < 0, then rows and columns kþ 1 and
�IPIVðkÞ were interchanged and dk:kþ1;k:kþ1 is a 2 by 2 diagonal block.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04CJF
is called.

Constraint: LDB � max 1;Nð Þ.

8: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of

the matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

9: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

Diagonal block valueh i of the block diagonal matrix is zero. The factorization has been
completed, but the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, UPLO 6¼ U or L : UPLO ¼ valueh i.

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �7
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The real allocatable memory required is N, and the complex allocatable memory required is
2� N. Allocation failed before the solution could be computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04CJF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04CJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The packed storage scheme is illustrated by the following example when n ¼ 4 and UPLO ¼ U . Two-
dimensional storage of the Hermitian matrix A:

a11 a12 a13 a14
a22 a23 a24

a33 a34
a44

aij ¼ �aji
� �

:

Packed storage of the upper triangle of A:

AP ¼ a11; a12; a22; a13; a23; a33; a14; a24; a34; a44
� �

:

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
1
3n

3 þ 2n2r
� �

. The condition number estimation typically requires between four and five solves and
never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

Routine F04DJF is for complex symmetric matrices, and the real analogue of F04CJF is F04BJF.

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian indefinite matrix

A ¼
�1:84 0:11� 0:11i �1:78� 1:18i 3:91� 1:50i
0:11þ 0:11i �4:63 �1:84þ 0:03i 2:21þ 0:21i
�1:78þ 1:18i �1:84� 0:03i �8:87 1:58� 0:90i
3:91þ 1:50i 2:21� 0:21i 1:58þ 0:90i �1:36

0B@
1CA
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and

B ¼
2:98� 10:18i 28:68� 39:89i
�9:58þ 3:88i �24:79� 8:40i
�0:77� 16:05i 4:23� 70:02i
7:79þ 5:48i �35:39þ 18:01i

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04cjfe

! F04CJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04cjf, nag_wp, x04dbf, x04ddf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, j, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), b(:,:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F04CJF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap((n*(n+1))/2),b(ldb,nrhs),ipiv(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04cjf(uplo,n,nrhs,ap,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
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Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*)
Flush (nout)

ierr = 0
Call x04ddf(uplo,’Non-unit diagonal’,n,ap,’Bracketed’,’ ’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ierr)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ifail

End If

99999 Format (8X,1P,E9.1)
99998 Format ((1X,7I11))
99997 Format (1X,’ ** F04CJF returned with IFAIL = ’,I5)

End Program f04cjfe

10.2 Program Data

F04CJF Example Program Data

4 2 : n, nrhs

( -1.84, 0.00) ( 0.11, -0.11) ( -1.78, -1.18) ( 3.91, -1.50)
( -4.63 , 0.00) ( -1.84, 0.03) ( 2.21, 0.21)

( -8.87, 0.00) ( 1.58, -0.90)
( -1.36 , 0.00) : matrix A

( 2.98,-10.18) ( 28.68,-39.89)
( -9.58, 3.88) (-24.79, -8.40)
( -0.77,-16.05) ( 4.23,-70.02)
( 7.79, 5.48) (-35.39, 18.01) : matrix B

10.3 Program Results

F04CJF Example Program Results

Solution
1 2

1 ( 2.0000, 1.0000) ( -8.0000, 6.0000)
2 ( 3.0000, -2.0000) ( 7.0000, -2.0000)
3 ( -1.0000, 2.0000) ( -1.0000, 5.0000)
4 ( 1.0000, -1.0000) ( 3.0000, -4.0000)
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Estimate of condition number
6.7E+00

Estimate of error bound for computed solutions
7.4E-16
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NAG Library Routine Document

F04DHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04DHF computes the solution to a complex system of linear equations AX ¼ B, where A is an n by n
complex symmetric matrix and X and B are n by r matrices. An estimate of the condition number of A
and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04DHF (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, RCOND, ERRBND,
IFAIL)

&

INTEGER N, NRHS, LDA, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) RCOND, ERRBND
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

3 Description

The diagonal pivoting method is used to factor A as A ¼ UDUT, if UPLO ¼ U , or A ¼ LDLT, if
UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and
D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form of A is
then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n complex symmetric matrix A.

If UPLO ¼ U , the leading N by N upper triangular part of the array A contains the upper
triangular part of the matrix A, and the strictly lower triangular part of A is not referenced.

If UPLO ¼ L , the leading N by N lower triangular part of the array A contains the lower
triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.

On exit: if IFAIL � 0, the block diagonal matrix D and the multipliers used to obtain the factor
U or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by F07NRF (ZSYTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04DHF
is called.

Constraint: LDA � max 1;Nð Þ.

6: IPIVðNÞ – INTEGER array Output

On exit: if IFAIL � 0, details of the interchanges and the block structure of D, as determined by
F07NRF (ZSYTRF).

If IPIVðkÞ > 0, then rows and columns k and IPIVðkÞ were interchanged, and dkk is a 1 by
1 diagonal block;

if UPLO ¼ U and IPIVðkÞ ¼ IPIVðk� 1Þ < 0, then rows and columns k� 1 and
�IPIVðkÞ were interchanged and dk�1:k;k�1:k is a 2 by 2 diagonal block;

if UPLO ¼ L and IPIVðkÞ ¼ IPIVðkþ 1Þ < 0, then rows and columns kþ 1 and
�IPIVðkÞ were interchanged and dk:kþ1;k:kþ1 is a 2 by 2 diagonal block.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04DHF
is called.

Constraint: LDB � max 1;Nð Þ.

9: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of

the matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

10: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

Diagonal block valueh i of the block diagonal matrix is zero. The factorization has been
completed, but the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, UPLO not one of `U' or `u' or `L' or `l': UPLO ¼ valueh i.

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �5
On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � max 1;Nð Þ.

IFAIL ¼ �8
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

F04 – Simultaneous Linear Equations F04DHF

Mark 26 F04DHF.3



The real allocatable memory required is N, and the complex allocatable memory required is
max 2� N ; LWORKð Þ, where LWORK is the optimum workspace required by F07NNF (ZSYSV). If
this failure occurs it may be possible to solve the equations by calling the packed storage version
of F04DHF, F04DJF, or by calling F07NNF (ZSYSV) directly with less than the optimum
workspace (see Chapter F07).

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04DHF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04DHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
1
3n

3 þ 2n2r
� �

. The condition number estimation typically requires between four and five solves and
never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

Routine F04CHF is for complex Hermitian matrices, and the real analogue of F04DHF is F04BHF.

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric indefinite matrix

A ¼
�0:56þ 0:12i �1:54� 2:86i 5:32� 1:59i 3:80þ 0:92i
�1:54� 2:86i �2:83� 0:03i �3:52þ 0:58i �7:86� 2:96i
5:32� 1:59i �3:52þ 0:58i 8:86þ 1:81i 5:14� 0:64i
3:80þ 0:92i �7:86� 2:96i 5:14� 0:64i �0:39� 0:71i

0B@
1CA

and
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B ¼
�6:43þ 19:24i �4:59� 35:53i
�0:49� 1:47i 6:95þ 20:49i
�48:18þ 66:00i �12:08� 27:02i
�55:64þ 41:22i �19:09� 35:97i

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04dhfe

! F04DHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04dhf, nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, lda, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F04DHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,nrhs),ipiv(n))

! Read the upper triangular part of A from data file
Read (nin,*)(a(i,i:n),i=1,n)

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04dhf(’Upper’,n,nrhs,a,lda,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of

F04 – Simultaneous Linear Equations F04DHF

Mark 26 F04DHF.5



! reciprocal of condition number and solution
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’Upper’,’Non-unit diagonal’,n,n,a,lda,’Bracketed’,’ ’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ierr)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ifail

End If

99999 Format (8X,1P,E9.1)
99998 Format ((3X,7I11))
99997 Format (1X,’ ** F04DHF returned with IFAIL = ’,I5)

End Program f04dhfe

10.2 Program Data

F04DHF Example Program Data

4 2 : n, nrhs

( -0.56, 0.12) ( -1.54, -2.86) ( 5.32, -1.59) ( 3.80, 0.92)
( -2.83 ,-0.03) ( -3.52, 0.58) ( -7.86, -2.96)

( 8.86, 1.81) ( 5.14, -0.64)
( -0.39 ,-0.71) : matrix A

( -6.43, 19.24) ( -4.59,-35.53)
( -0.49, -1.47) ( 6.95, 20.49)
(-48.18, 66.00) (-12.08,-27.02)
(-55.64, 41.22) (-19.09,-35.97) : matrix B

10.3 Program Results

F04DHF Example Program Results

Solution
1 2

1 ( -4.0000, 3.0000) ( -1.0000, 1.0000)
2 ( 3.0000, -2.0000) ( 3.0000, 2.0000)
3 ( -2.0000, 5.0000) ( 1.0000, -3.0000)
4 ( 1.0000, -1.0000) ( -2.0000, -1.0000)

Estimate of condition number
2.1E+01

Estimate of error bound for computed solutions
2.3E-15
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NAG Library Routine Document

F04DJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04DJF computes the solution to a complex system of linear equations AX ¼ B, where A is an n by n
complex symmetric matrix, stored in packed format and X and B are n by r matrices. An estimate of
the condition number of A and an error bound for the computed solution are also returned.

2 Specification

SUBROUTINE F04DJF (UPLO, N, NRHS, AP, IPIV, B, LDB, RCOND, ERRBND,
IFAIL)

&

INTEGER N, NRHS, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) RCOND, ERRBND
COMPLEX (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

3 Description

The diagonal pivoting method is used to factor A as A ¼ UDUT, if UPLO ¼ U , or A ¼ LDLT, if
UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and
D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form of A is
then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed column-wise in a linear array. The jth column
of the matrix A is stored in the array AP as follows:

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: if IFAIL � 0, the block diagonal matrix D and the multipliers used to obtain the factor
U or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by F07QRF (ZSPTRF),
stored as a packed triangular matrix in the same storage format as A.

5: IPIVðNÞ – INTEGER array Output

On exit: if no constraints are violated, details of the interchanges and the block structure of D, as
determined by F07QRF (ZSPTRF).

If IPIVðkÞ > 0, then rows and columns k and IPIVðkÞ were interchanged, and dkk is a 1 by
1 diagonal block;

if UPLO ¼ U and IPIVðkÞ ¼ IPIVðk� 1Þ < 0, then rows and columns k� 1 and
�IPIVðkÞ were interchanged and dk�1:k;k�1:k is a 2 by 2 diagonal block;

if UPLO ¼ L and IPIVðkÞ ¼ IPIVðkþ 1Þ < 0, then rows and columns kþ 1 and
�IPIVðkÞ were interchanged and dk:kþ1;k:kþ1 is a 2 by 2 diagonal block.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: if IFAIL ¼ 0 or Nþ 1, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04DJF
is called.

Constraint: LDB � max 1;Nð Þ.

8: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of

the matrix A, computed as RCOND ¼ 1= Ak k1 A�1
�� ��

1

� �
.

9: ERRBND – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or Nþ 1, an estimate of the forward error bound for a computed solution
x̂, such that x̂� xk k1= xk k1 � ERRBND, where x̂ is a column of the computed solution returned
in the array B and x is the corresponding column of the exact solution X. If RCOND is less than
machine precision, then ERRBND is returned as unity.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0 and IFAIL � N

Diagonal block valueh i of the block diagonal matrix is zero. The factorization has been
completed, but the solution could not be computed.

IFAIL ¼ Nþ 1

A solution has been computed, but RCOND is less than machine precision so that the matrix A
is numerically singular.

IFAIL ¼ �1
On entry, UPLO 6¼ U or L : UPLO ¼ valueh i.

IFAIL ¼ �2
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3
On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

IFAIL ¼ �7
On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

The real allocatable memory required is N, and the complex allocatable memory required is
2� N. Allocation failed before the solution could be computed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

F04 – Simultaneous Linear Equations F04DJF

Mark 26 F04DJF.3



7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. F04DJF uses the approximation Ek k1 ¼ � Ak k1 to estimate ERRBND. See Section 4.4 of
Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04DJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The packed storage scheme is illustrated by the following example when n ¼ 4 and UPLO ¼ U . Two-
dimensional storage of the symmetric matrix A:

a11 a12 a13 a14
a22 a23 a24

a33 a34
a44

aij ¼ aji
� �

Packed storage of the upper triangle of A:

AP ¼ a11; a12; a22; a13; a23; a33; a14; a24; a34; a44
� �

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
1
3n

3 þ 2n2r
� �

. The condition number estimation typically requires between four and five solves and
never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

Routine F04CJF is for complex Hermitian matrices, and the real analogue of F04DJF is F04BJF.

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric indefinite matrix

A ¼
�0:56þ 0:12i �1:54� 2:86i 5:32� 1:59i 3:80þ 0:92i
�1:54� 2:86i �2:83� 0:03i �3:52þ 0:58i �7:86� 2:96i
5:32� 1:59i �3:52þ 0:58i 8:86þ 1:81i 5:14� 0:64i
3:80þ 0:92i �7:86� 2:96i 5:14� 0:64i �0:39� 0:71i

0B@
1CA
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and

B ¼
�6:43þ 19:24i �4:59� 35:53i
�0:49� 1:47i 6:95þ 20:49i
�48:18þ 66:00i �12:08� 27:02i
�55:64þ 41:22i �19:09� 35:97i

0B@
1CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

Program f04djfe

! F04DJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04djf, nag_wp, x04dbf, x04ddf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, j, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), b(:,:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F04DJF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap((n*(n+1))/2),b(ldb,nrhs),ipiv(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04djf(uplo,n,nrhs,ap,ipiv,b,ldb,rcond,errbnd,ifail)

If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Write (nout,*)
Write (nout,*) ’Estimate of condition number’
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Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) ’Estimate of error bound for computed solutions’
Write (nout,99999) errbnd

Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal of condition number’
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)

ierr = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ierr)

Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization

Write (nout,*)
Flush (nout)

ierr = 0
Call x04ddf(uplo,’Non-unit diagonal’,n,ap,’Bracketed’,’ ’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ierr)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ifail

End If

99999 Format (8X,1P,E9.1)
99998 Format ((1X,7I11))
99997 Format (1X,’ ** F04DJF returned with IFAIL = ’,I5)

End Program f04djfe

10.2 Program Data

F04DJF Example Program Data

4 2 : n, nrhs

( -0.56, 0.12) ( -1.54, -2.86) ( 5.32, -1.59) ( 3.80, 0.92)
( -2.83 ,-0.03) ( -3.52, 0.58) ( -7.86, -2.96)

( 8.86, 1.81) ( 5.14, -0.64)
( -0.39 ,-0.71) : matrix A

( -6.43, 19.24) ( -4.59,-35.53)
( -0.49, -1.47) ( 6.95, 20.49)
(-48.18, 66.00) (-12.08,-27.02)
(-55.64, 41.22) (-19.09,-35.97) : matrix B

10.3 Program Results

F04DJF Example Program Results

Solution
1 2

1 ( -4.0000, 3.0000) ( -1.0000, 1.0000)
2 ( 3.0000, -2.0000) ( 3.0000, 2.0000)
3 ( -2.0000, 5.0000) ( 1.0000, -3.0000)
4 ( 1.0000, -1.0000) ( -2.0000, -1.0000)
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Estimate of condition number
2.1E+01

Estimate of error bound for computed solutions
2.3E-15
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NAG Library Routine Document

F04FEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04FEF solves the Yule–Walker equations for a real symmetric positive definite Toeplitz system.

2 Specification

SUBROUTINE F04FEF (N, T, X, WANTP, P, WANTV, V, VLAST, WORK, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) T(0:N), X(N), P(*), V(*), VLAST, WORK(N-1)
LOGICAL WANTP, WANTV

3 Description

F04FEF solves the equations

Tx ¼ �t;

where T is the n by n symmetric positive definite Toeplitz matrix

T ¼

�0 �1 �2 . . . �n�1
�1 �0 �1 . . . �n�2
�2 �1 �0 . . . �n�3
: : : :
�n�1 �n�2 �n�3 . . . �0

0BBB@
1CCCA

and t is the vector

tT ¼ �1; �2 . . . �nð Þ:

The routine uses the method of Durbin (see Durbin (1960) and Golub and Van Loan (1996)). Optionally
the mean square prediction errors and/or the partial correlation coefficients for each step can be
returned.

4 References

Bunch J R (1985) Stability of methods for solving Toeplitz systems of equations SIAM J. Sci. Statist.
Comput. 6 349–364

Bunch J R (1987) The weak and strong stability of algorithms in numerical linear algebra Linear
Algebra Appl. 88/89 49–66

Cybenko G (1980) The numerical stability of the Levinson–Durbin algorithm for Toeplitz systems of
equations SIAM J. Sci. Statist. Comput. 1 303–319

Durbin J (1960) The fitting of time series models Rev. Inst. Internat. Stat. 28 233

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: N – INTEGER Input

On entry: the order of the Toeplitz matrix T .

Constraint: N � 0. When N ¼ 0, then an immediate return is effected.

2: Tð0 : NÞ – REAL (KIND=nag_wp) array Input

On entry: Tð0Þ must contain the value �0 of the diagonal elements of T , and the remaining N
elements of T must contain the elements of the vector t.

Constraint: Tð0Þ > 0:0. Note that if this is not true, then the Toeplitz matrix cannot be positive
definite.

3: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x.

4: WANTP – LOGICAL Input

On entry: must be set to .TRUE. if the partial (auto)correlation coefficients are required, and
must be set to .FALSE. otherwise.

5: Pð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array P must be at least max 1;Nð Þ if WANTP ¼ :TRUE:, and at least
1 otherwise.

On exit: with WANTP as .TRUE., the ith element of P contains the partial (auto)correlation
coefficient, or reflection coefficient, pi for the ith step. (See Section 9 and Chapter G13.) If
WANTP is .FALSE., then P is not referenced. Note that in any case, xn ¼ pn.

6: WANTV – LOGICAL Input

On entry: must be set to .TRUE. if the mean square prediction errors are required, and must be
set to .FALSE. otherwise.

7: Vð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array V must be at least max 1;Nð Þ if WANTV ¼ :TRUE:, and at least
1 otherwise.

On exit: with WANTV as .TRUE., the ith element of V contains the mean square prediction error,
or predictor error variance ratio, vi, for the ith step. (See Section 9 and Chapter G13.) If WANTV
is .FALSE., then V is not referenced.

8: VLAST – REAL (KIND=nag_wp) Output

On exit: the value of vn, the mean square prediction error for the final step.

9: WORKðN� 1Þ – REAL (KIND=nag_wp) array Workspace

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: F04FEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, N < 0,
or Tð0Þ � 0:0.

IFAIL > 0

The principal minor of order (IFAILþ 1) of the Toeplitz matrix is not positive definite to
working accuracy. If, on exit, xIFAIL is close to unity, then the principal minor was close to being
singular, and the sequence �0; �1; . . . ; �IFAIL may be a valid sequence nevertheless. The first IFAIL
elements of X return the solution of the equations

TIFAILx ¼ � �1; �2; . . . ; �IFAILð ÞT;

where TIFAIL is the IFAILth principal minor of T . Similarly, if WANTP and/or WANTV are true,
then P and/or V return the first IFAIL elements of P and V respectively and VLAST returns
vIFAIL. In particular if IFAIL ¼ N, then the solution of the equations Tx ¼ �t is returned in X,
but �N is such that TNþ1 would not be positive definite to working accuracy.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution of the equations certainly satisfies

r ¼ Txþ t;

where rk k1 is approximately bounded by

rk k1 � c�
Yn
i¼1

1þ pij jð Þ � 1

 !
;

c being a modest function of n and � being the machine precision. This bound is almost certainly
pessimistic, but it has not yet been established whether or not the method of Durbin is backward stable.
If pnj j is close to one, then the Toeplitz matrix is probably ill-conditioned and hence only just positive
definite. For further information on stability issues see Bunch (1985), Bunch (1987), Cybenko (1980)
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and Golub and Van Loan (1996). The following bounds on T�1
�� ��

1
hold:

max
1

vn�1
;

1Yn�1
i¼1

1� pið Þ

0BBBB@
1CCCCA � T�1

�� ��
1
�
Yn�1
i¼1

1þ pij j
1� pij j

� �
:

Note: vn < vn�1. The norm of T�1 may also be estimated using routine F04YDF.

8 Parallelism and Performance

F04FEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of floating-point operations used by F04FEF is approximately 2n2, independent of the
values of WANTP and WANTV.

The mean square prediction error, vi, is defined as

vi ¼ �0 þ �1�2 . . . �i�1ð Þyi�1ð Þ=�0;

where yi is the solution of the equations

Tiyi ¼ � �1�2 . . . �ið ÞT

and the partial correlation coefficient, pi, is defined as the ith element of yi. Note that vi ¼ 1� p2i
� �

vi�1.

10 Example

This example finds the solution of the Yule–Walker equations Tx ¼ �t, where

T ¼
4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4

0B@
1CA and t ¼

3
2
1
0

0B@
1CA:

10.1 Program Text

Program f04fefe

! F04FEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04fef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: vlast
Integer :: ifail, n
Logical :: wantp, wantv

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:), t(:), v(:), work(:), x(:)
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! .. Executable Statements ..
Write (nout,*) ’F04FEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Write (nout,*)

Allocate (p(n),t(0:n),v(n),work(n-1),x(n))
Read (nin,*) t(0:n)
wantp = .True.
wantv = .True.

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04fef(n,t,x,wantp,p,wantv,v,vlast,work,ifail)

If (ifail==0) Then
Write (nout,*)
Write (nout,*) ’Solution vector’
Write (nout,99998) x(1:n)
If (wantp) Then

Write (nout,*)
Write (nout,*) ’Reflection coefficients’
Write (nout,99998) p(1:n)

End If
If (wantv) Then

Write (nout,*)
Write (nout,*) ’Mean square prediction errors’
Write (nout,99998) v(1:n)

End If
Else If (ifail>0) Then

Write (nout,*)
Write (nout,99999) ’Solution for system of order’, ifail
Write (nout,99998) x(1:ifail)
If (wantp) Then

Write (nout,*)
Write (nout,*) ’Reflection coefficients’
Write (nout,99998) p(1:ifail)

End If
If (wantv) Then

Write (nout,*)
Write (nout,*) ’Mean square prediction errors’
Write (nout,99998) v(1:ifail)

End If
Else

Write (nout,99997) ifail
End If

99999 Format (1X,A,I5)
99998 Format (1X,5F9.4)
99997 Format (1X,’ ** F04FEF returned with IFAIL = ’,I5)

End Program f04fefe

10.2 Program Data

F04FEF Example Program Data

4 : n
4.0 3.0 2.0 1.0 0.0 : vector T

10.3 Program Results

F04FEF Example Program Results

Solution vector
-0.8000 0.0000 -0.0000 0.2000
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Reflection coefficients
-0.7500 0.1429 0.1667 0.2000

Mean square prediction errors
0.4375 0.4286 0.4167 0.4000

F04FEF NAG Library Manual

F04FEF.6 (last) Mark 26



NAG Library Routine Document

F04FFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04FFF solves the equations Tx ¼ b, where T is a real symmetric positive definite Toeplitz matrix.

2 Specification

SUBROUTINE F04FFF (N, T, B, X, WANTP, P, WORK, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) T(0:*), B(*), X(N), P(*), WORK(2*(N-1))
LOGICAL WANTP

3 Description

F04FFF solves the equations

Tx ¼ b;

where T is the n by n symmetric positive definite Toeplitz matrix

T ¼

�0 �1 �2 . . . �n�1
�1 �0 �1 . . . �n�2
�2 �1 �0 . . . �n�3
: : : :
�n�1 �n�2 �n�3 . . . �0

0BBB@
1CCCA

and b is an n-element vector.

The routine uses the method of Levinson (see Levinson (1947) and Golub and Van Loan (1996)).
Optionally, the reflection coefficients for each step may also be returned.

4 References

Bunch J R (1985) Stability of methods for solving Toeplitz systems of equations SIAM J. Sci. Statist.
Comput. 6 349–364

Bunch J R (1987) The weak and strong stability of algorithms in numerical linear algebra Linear
Algebra Appl. 88/89 49–66

Cybenko G (1980) The numerical stability of the Levinson–Durbin algorithm for Toeplitz systems of
equations SIAM J. Sci. Statist. Comput. 1 303–319

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Levinson N (1947) The Weiner RMS error criterion in filter design and prediction J. Math. Phys. 25
261–278

5 Arguments

1: N – INTEGER Input

On entry: the order of the Toeplitz matrix T .

Constraint: N � 0. When N ¼ 0, then an immediate return is effected.
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2: Tð0 : �Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array T must be at least max 1;Nð Þ.
On entry: TðiÞ must contain the value �i, for i ¼ 0; 1; . . . ;N� 1.

Constraint: Tð0Þ > 0:0. Note that if this is not true, then the Toeplitz matrix cannot be positive
definite.

3: Bð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array B must be at least max 1;Nð Þ.
On entry: the right-hand side vector b.

4: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x.

5: WANTP – LOGICAL Input

On entry: must be set to .TRUE. if the reflection coefficients are required, and must be set to .
FALSE. otherwise.

6: Pð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array P must be at least max 1;N� 1ð Þ if WANTP ¼ :TRUE:, and at
least 1 otherwise.

On exit: with WANTP as .TRUE., the ith element of P contains the reflection coefficient, pi, for
the ith step, for i ¼ 1; 2; . . . ;N� 1. (See Section 9.) If WANTP is .FALSE., then P is not
referenced.

7: WORKð2� N� 1ð ÞÞ – REAL (KIND=nag_wp) array Workspace

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: F04FFF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, N < 0,
or Tð0Þ � 0:0.
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IFAIL > 0

The principal minor of order IFAIL of the Toeplitz matrix is not positive definite to working
accuracy. The first (IFAIL� 1) elements of X return the solution of the equations

TIFAIL�1x ¼ b1; b2; . . . ; bIFAIL�1ð ÞT;

where Tk is the kth principal minor of T .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution of the equations certainly satisfies

r ¼ Tx� b;

where rk k is approximately bounded by

rk k � c�C Tð Þ;

c being a modest function of n, � being the machine precision and C Tð Þ being the condition number of
T with respect to inversion. This bound is almost certainly pessimistic, but it seems unlikely that the
method of Levinson is backward stable, so caution should be exercised when T is ill-conditioned. The
following bound on T�1 holds:

max
1Yn�1

i¼1
1� p2i
� �; 1Yn�1

i¼1
1� pið Þ

0BBBB@
1CCCCA � T�1

�� ��
1
�
Yn�1
i¼1

1þ pij j
1� pij j

� �
:

(See Golub and Van Loan (1996).) The norm of T�1 may also be estimated using routine F04YDF. For
further information on stability issues see Bunch (1985), Bunch (1987), Cybenko (1980) and Golub and
Van Loan (1996).

8 Parallelism and Performance

F04FFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

F04 – Simultaneous Linear Equations F04FFF

Mark 26 F04FFF.3



9 Further Comments

The number of floating-point operations used by F04FFF is approximately 4n2.

If yi is the solution of the equations

Tiyi ¼ � �1�2 . . . �ið ÞT;

then the partial correlation coefficient pi is defined as the ith element of yi.

10 Example

This example finds the solution of the equations Tx ¼ b, where

T ¼
4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4

0B@
1CA and b ¼

1
1
1
1

0B@
1CA:

10.1 Program Text

Program f04fffe

! F04FFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04fff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, n
Logical :: wantp

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), p(:), t(:), work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’F04FFF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Write (nout,*)
Allocate (b(n),p(n-1),t(0:n-1),work(2*(n-1)),x(n))
Read (nin,*) t(0:n-1)
Read (nin,*) b(1:n)
wantp = .True.

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f04fff(n,t,b,x,wantp,p,work,ifail)

If (ifail==0) Then
Write (nout,*)
Write (nout,*) ’Solution vector’
Write (nout,99998) x(1:n)
If (wantp) Then

Write (nout,*)
Write (nout,*) ’Reflection coefficients’
Write (nout,99998) p(1:n-1)

End If
Else If (ifail>0) Then

Write (nout,*)
Write (nout,99999) ’Solution for system of order’, ifail - 1
Write (nout,99998) x(1:ifail-1)
If (wantp) Then

F04FFF NAG Library Manual

F04FFF.4 Mark 26



Write (nout,*)
Write (nout,*) ’Reflection coefficients’
Write (nout,99998) p(1:ifail-1)

End If
Else

Write (nout,99997) ifail
End If

99999 Format (1X,A,I5)
99998 Format (1X,5F9.4)
99997 Format (1X,’ ** F04FFF returned with IFAIL = ’,I5)

End Program f04fffe

10.2 Program Data

F04FFF Example Program Data

4 : n
4.0 3.0 2.0 1.0 : vector T
1.0 1.0 1.0 1.0 : vector B

10.3 Program Results

F04FFF Example Program Results

Solution vector
0.2000 0.0000 -0.0000 0.2000

Reflection coefficients
-0.7500 0.1429 0.1667
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NAG Library Routine Document

F04JGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04JGF finds the solution of a linear least squares problem, Ax ¼ b, where A is a real m by n m � nð Þ
matrix and b is an m element vector. If the matrix of observations is not of full rank, then the minimal
least squares solution is returned.

2 Specification

SUBROUTINE F04JGF (M, N, A, LDA, B, TOL, SVD, SIGMA, IRANK, WORK, LWORK,
IFAIL)

&

INTEGER M, N, LDA, IRANK, LWORK, IFAIL
REAL (KIND=nag_wp) A(LDA,N), B(M), TOL, SIGMA, WORK(LWORK)
LOGICAL SVD

3 Description

The minimal least squares solution of the problem Ax ¼ b is the vector x of minimum (Euclidean)
length which minimizes the length of the residual vector r ¼ b�Ax.
The real m by n m � nð Þ matrix A is factorized as

A ¼ Q R
0

� �
where Q is an m by m orthogonal matrix and R is an n by n upper triangular matrix. If R is of full
rank, then the least squares solution is given by

x ¼ R�1 0
� �

QTb:

If R is not of full rank, then the singular value decomposition of R is obtained so that R is factorized as

R ¼ UDV T;

where U and V are n by n orthogonal matrices and D is the n by n diagonal matrix

D ¼ diag �1; �2; . . . ; �nð Þ;

with �1 � �2 � . . . � �n � 0, these being the singular values of A. If the singular values �kþ1; . . . ; �n
are negligible, but �k is not negligible, relative to the data errors in A, then the rank of A is taken to be
k and the minimal least squares solution is given by

x ¼ V S�1 0
0 0

� �
UT 0
0 I

� �
QTb;

where S ¼ diag �1; �2; . . . ; �kð Þ.
The routine also returns the value of the standard error

� ¼
ffiffiffiffiffiffiffiffi
rTr
m�k

q
; if m > k;

¼ 0; if m ¼ k;

rTr being the residual sum of squares and k the rank of A.
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4 References

Lawson C L and Hanson R J (1974) Solving Least Squares Problems Prentice–Hall

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of A.

Constraint: M � N.

2: N – INTEGER Input

On entry: n, the number of columns of A.

Constraint: 1 � N � M.

3: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the m by n matrix A.

On exit: if SVD is returned as .FALSE., A is overwritten by details of the QR factorization of A.

If SVD is returned as .TRUE., the first n rows of A are overwritten by the right-hand singular
vectors, stored by rows; and the remaining rows of the array are used as workspace.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04JGF
is called.

Constraint: LDA � M.

5: BðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the right-hand side vector b.

On exit: the first n elements of B contain the minimal least squares solution vector x. The
remaining m� n elements are used for workspace.

6: TOL – REAL (KIND=nag_wp) Input

On entry: a relative tolerance to be used to determine the rank of A. TOL should be chosen as
approximately the largest relative error in the elements of A. For example, if the elements of A
are correct to about 4 significant figures then TOL should be set to about 5� 10�4. See Section 9
for a description of how TOL is used to determine rank. If TOL is outside the range �; 1:0ð Þ,
where � is the machine precision, then the value � is used in place of TOL. For most problems
this is unreasonably small.

7: SVD – LOGICAL Output

On exit: is returned as .FALSE. if the least squares solution has been obtained from the QR
factorization of A. In this case A is of full rank. SVD is returned as .TRUE. if the least squares
solution has been obtained from the singular value decomposition of A.

8: SIGMA – REAL (KIND=nag_wp) Output

On exit: the standard error, i.e., the value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rTr= m� kð Þ

p
when m > k, and the value zero when

m ¼ k. Here r is the residual vector b�Ax and k is the rank of A.
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9: IRANK – INTEGER Output

On exit: k, the rank of the matrix A. It should be noted that it is possible for IRANK to be
returned as n and SVD to be returned as .TRUE.. This means that the matrix R only just failed
the test for nonsingularity.

10: WORKðLWORKÞ – REAL (KIND=nag_wp) array Output

On exit: if SVD is returned as .FALSE., then the first n elements of WORK contain information
on the QR factorization of A (see argument A above), and WORKðnþ 1Þ contains the condition
number Rk kE R�1

�� ��
E
of the upper triangular matrix R.

If SVD is returned as .TRUE., then the first n elements of WORK contain the singular values of
A arranged in descending order and WORKðnþ 1Þ contains the total number of iterations taken
by the QR algorithm. The rest of WORK is used as workspace.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F04JGF
is called.

Constraint: LWORK � 4� N.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDA ¼ valueh i and M ¼ valueh i.
Constraint: LDA � M.

On entry, LWORK is too small. Minimum size required: valueh i.
On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: M � N.

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 2

The QR algorithm has failed to converge to the singular values in 50� N iterations. This failure
can only happen when the singular value decomposition is employed, but even then it is not
likely to occur.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed factors Q, R, U , D and V T satisfy the relations

Q
R
0

� �
¼ Aþ E;

Q
U 0
0 I

� �
D
0

� �
V T ¼ Aþ F;

where

Ek k2 � c1� Ak k2;
Fk k2 � c2� Ak k2;

� being the machine precision, and c1 and c2 being modest functions of m and n. Note that Ak k2 ¼ �1.
For a fuller discussion, covering the accuracy of the solution x see Lawson and Hanson (1974),
especially pages 50 and 95.

8 Parallelism and Performance

F04JGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F04JGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If the least squares solution is obtained from the QR factorization then the time taken by the routine is
approximately proportional to n2 3m� nð Þ. If the least squares solution is obtained from the singular
value decomposition then the time taken is approximately proportional to n2 3mþ 19nð Þ. The
approximate proportionality factor is the same in each case.

This routine is column biased and so is suitable for use in paged environments.

Following the QR factorization of A the condition number

c Rð Þ ¼ Rk kE R�1
�� ��

E

is determined and if c Rð Þ is such that
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c Rð Þ � TOL > 1:0

then R is regarded as singular and the singular values of A are computed. If this test is not satisfied, R
is regarded as nonsingular and the rank of A is set to n. When the singular values are computed the
rank of A, say k, is returned as the largest integer such that

�k > TOL� �1;

unless �1 ¼ 0 in which case k is returned as zero. That is, singular values which satisfy �i � TOL� �1
are regarded as negligible because relative perturbations of order TOL can make such singular values
zero.

10 Example

This example obtains a least squares solution for r ¼ b�Ax, where

A ¼

0:05 0:05 0:25 �0:25
0:25 0:25 0:05 �0:05
0:35 0:35 1:75 �1:75
1:75 1:75 0:35 �0:35
0:30 �0:30 0:30 0:30
0:40 �0:40 0:40 0:40

0BBBBB@

1CCCCCA; b ¼

1
2
3
4
5
6

0BBBBB@

1CCCCCA
and the value TOL is to be taken as 5� 10�4.

10.1 Program Text

Program f04jgfe

! F04JGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04jgf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: sigma, tol
Integer :: i, ifail, irank, lda, lwork, m, n
Logical :: svd

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F04JGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
tol = 5.0E-4_nag_wp
lda = m
lwork = 4*n
Allocate (a(lda,n),b(m),work(lwork))
Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f04jgf(m,n,a,lda,b,tol,svd,sigma,irank,work,lwork,ifail)

Write (nout,*) ’Solution vector’
Write (nout,99997) b(1:n)
Write (nout,*)
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Write (nout,99999) ’Standard error = ’, sigma, ’ Rank = ’, irank
Write (nout,*)
Write (nout,99998) ’SVD = ’, svd

99999 Format (1X,A,F6.3,A,I2)
99998 Format (1X,A,L2)
99997 Format (1X,8F9.3)

End Program f04jgfe

10.2 Program Data

F04JGF Example Program Data
6 4 : m, n
0.05 0.05 0.25 -0.25
0.25 0.25 0.05 -0.05
0.35 0.35 1.75 -1.75
1.75 1.75 0.35 -0.35
0.30 -0.30 0.30 0.30
0.40 -0.40 0.40 0.40 : matrix A
1.0 2.0 3.0 4.0 5.0 6.0 : vector B

10.3 Program Results

F04JGF Example Program Results

Solution vector
4.967 -2.833 4.567 3.233

Standard error = 0.909 Rank = 3

SVD = T
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NAG Library Routine Document

F04LEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04LEF solves a system of tridiagonal equations following the factorization by F01LEF. This routine is
intended for applications such as inverse iteration as well as straightforward linear equation
applications.

2 Specification

SUBROUTINE F04LEF (JOB, N, A, B, C, D, IPIV, Y, TOL, IFAIL)

INTEGER JOB, N, IPIV(N), IFAIL
REAL (KIND=nag_wp) A(N), B(N), C(N), D(N), Y(N), TOL

3 Description

Following the factorization of the n by n tridiagonal matrix T � �Ið Þ as
T � �I ¼ PLU

by F01LEF, F04LEF may be used to solve any of the equations

T � �Ið Þx ¼ y; T � �Ið ÞTx ¼ y; Ux ¼ y

for x, the choice of equation being controlled by the argument JOB. In each case there is an option to
perturb zero or very small diagonal elements of U , this option being intended for use in applications
such as inverse iteration.

4 References

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: JOB – INTEGER Input

On entry: must specify the equations to be solved.

JOB ¼ 1
The equations T � �Ið Þx ¼ y are to be solved, but diagonal elements of U are not to be
perturbed.

JOB ¼ �1
The equations T � �Ið Þx ¼ y are to be solved and, if overflow would otherwise occur,
diagonal elements of U are to be perturbed. See argument TOL.

JOB ¼ 2
The equations T � �Ið ÞTx ¼ y are to be solved, but diagonal elements of U are not to be
perturbed.
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JOB ¼ �2
The equations T � �Ið ÞTx ¼ y are to be solved and, if overflow would otherwise occur,
diagonal elements of U are to be perturbed. See argument TOL.

JOB ¼ 3
The equations Ux ¼ y are to be solved, but diagonal elements of U are not to be
perturbed.

JOB ¼ �3
The equations Ux ¼ y are to be solved and, if overflow would otherwise occur, diagonal
elements of U are to be perturbed. See argument TOL.

2: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 1.

3: AðNÞ – REAL (KIND=nag_wp) array Input

On entry: the diagonal elements of U as returned by F04LEF.

4: BðNÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of the first superdiagonal of U as returned by F04LEF.

5: CðNÞ – REAL (KIND=nag_wp) array Input

On entry: the subdiagonal elements of L as returned by F04LEF.

6: DðNÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of the second superdiagonal of U as returned by F04LEF.

7: IPIVðNÞ – INTEGER array Input

On entry: details of the matrix P as returned by F01LEF.

8: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the right-hand side vector y.

On exit: Y is overwritten by the solution vector x.

9: TOL – REAL (KIND=nag_wp) Input/Output

On entry: the minimum perturbation to be made to very small diagonal elements of U . TOL is
only referenced when JOB is negative. TOL should normally be chosen as about � Uk k, where �
is the machine precision, but if TOL is supplied as non-positive, then it is reset to �max uij

		 		.
On exit: if on entry TOL is non-positive, it is reset as just described. Otherwise TOL is
unchanged.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or JOB ¼ 0,
or JOB < �3 or JOB > 3.

IFAIL > 1

Overflow would occur when computing the (IFAIL� 1)th element of the solution vector x. This
can only occur when JOB is supplied as positive and either means that a diagonal element of U is
very small or that elements of the right-hand side vector y are very large.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution of the equations T � �Ið Þx ¼ y, say �x, will satisfy an equation of the form

T � �I þ Eð Þ�x ¼ y;

where E can be expected to satisfy a bound of the form

Ek k � �� T � �Ik k;

� being a modest constant and � being the machine precision. The computed solution of the equations
T � �Ið ÞTx ¼ y and Ux ¼ y will satisfy similar results. The above result implies that the relative error
in �x satisfies

�x� xk k
�xk k � c T � �Ið Þ��;

where c T � �Ið Þ is the condition number of T � �Ið Þ with respect to inversion. Thus if T � �Ið Þ is
nearly singular, �x can be expected to have a large relative error. Note that F01LEF incorporates a test
for near singularity.

8 Parallelism and Performance

F04LEF is not threaded in any implementation.
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9 Further Comments

The time taken by F04LEF is approximately proportional to n.

If you have single systems of tridiagonal equations to solve you are advised that F07CAF (DGTSV)
requires less storage and will normally be faster than the combination of F01LEF and F04LEF, but
F07CAF (DGTSV) does not incorporate a test for near singularity.

10 Example

This example solves the two sets of tridiagonal equations

Tx ¼ y and TTx ¼ y

where

T ¼

3:0 2:1 0 0 0
3:4 2:3 �1:0 0 0
0 3:6 �5:0 1:9 0
0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0BBB@
1CCCA and y ¼

2:7
�0:5
2:6
0:6
2:7

0BBB@
1CCCA:

The example program first calls F01LEF to factorize T and then two calls are made to F04LEF, one to
solve Tx ¼ y and the second to solve TTx ¼ y.

10.1 Program Text

Program f04lefe

! F04LEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01lef, f04lef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: lambda, tol
Integer :: ifail, job, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), c(:), d(:), y(:), z(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F04LEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Allocate (a(n),b(n),c(n),d(n),y(n),z(n),ipiv(n))
Read (nin,*) a(1:n)
If (n>1) Then

Read (nin,*) b(2:n)
Read (nin,*) c(2:n)

End If
tol = 5.0E-5_nag_wp
lambda = 0.0E0_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01lef(n,a,lambda,b,c,tol,d,ipiv,ifail)

If (ipiv(n)/=0) Then
Write (nout,*) ’Matrix is singular or nearly singular’
Write (nout,99999) ’Diagonal element’, ipiv(n), ’is small’
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Else
Read (nin,*) y(1:n)
z(1:n) = y(1:n)
job = 1

ifail = 0
Call f04lef(job,n,a,b,c,d,ipiv,y,tol,ifail)

Write (nout,*)
Write (nout,*) ’Solution vector for T*X = Y’
Write (nout,99998) y(1:n)
job = 2

ifail = 0
Call f04lef(job,n,a,b,c,d,ipiv,z,tol,ifail)

Write (nout,*)
Write (nout,*) ’Solution vector for transpose(T)*X = Y’
Write (nout,99998) z(1:n)

End If

99999 Format (1X,A,I4,A)
99998 Format (1X,5F9.3)

End Program f04lefe

10.2 Program Data

F04LEF Example Program Data
5 : n

3.0 2.3 -5.0 -0.9 7.1 : vector A
2.1 -1.0 1.9 8.0 : vector B
3.4 3.6 7.0 -6.0 : vector C
2.7 -0.5 2.6 0.6 2.7 : vector Y

10.3 Program Results

F04LEF Example Program Results

Solution vector for T*X = Y
-4.000 7.000 3.000 -4.000 -3.000

Solution vector for transpose(T)*X = Y
-4.630 4.880 -0.555 0.672 -0.377
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NAG Library Routine Document

F04LHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04LHF calculates the approximate solution of a set of real linear equations with multiple right-hand
sides, AX ¼ B or ATX ¼ B, where A is an almost block-diagonal matrix which has been factorized by
F01LHF.

2 Specification

SUBROUTINE F04LHF (TRANS, N, NBLOKS, BLKSTR, A, LENA, PIVOT, B, LDB, IR,
IFAIL)

&

INTEGER N, NBLOKS, BLKSTR(3,NBLOKS), LENA, PIVOT(N), LDB,
IR, IFAIL

&

REAL (KIND=nag_wp) A(LENA), B(LDB,IR)
CHARACTER(1) TRANS

3 Description

F04LHF solves a set of real linear equations AX ¼ B or ATX ¼ B, where A is almost block-diagonal.
A must first be factorized by F01LHF. F04LHF then computes X by forward and backward substitution
over the blocks.

4 References

Diaz J C, Fairweather G and Keast P (1983) Fortran packages for solving certain almost block diagonal
linear systems by modified alternate row and column elimination ACM Trans. Math. Software 9 358–
375

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies the equations to be solved.

TRANS ¼ N
Solve AX ¼ B.

TRANS ¼ T
Solve ATX ¼ B.

Constraint: TRANS ¼ N or T .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

3: NBLOKS – INTEGER Input

On entry: the total number of blocks of the matrix A, as supplied to F04LHF.

Constraint: 0 < NBLOKS � N.
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4: BLKSTRð3;NBLOKSÞ – INTEGER array Input

On entry: information which describes the block structure of A, as supplied to F04LHF.

5: AðLENAÞ – REAL (KIND=nag_wp) array Input

On entry: the elements in the factorization of A, as returned by F04LHF.

6: LENA – INTEGER Input

On entry: the dimension of the array A as declared in the (sub)program from which F04LHF is
called.

Constraint: LENA �
XNBLOKS

k¼1
BLKSTRð1; kÞ � BLKSTRð2; kÞ.

7: PIVOTðNÞ – INTEGER array Input

On entry: details of the interchanges in the factorization, as returned by F04LHF.

8: BðLDB; IRÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the n by r right-hand side matrix B.

On exit: B is overwritten by the n by r solution matrix X.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04LHF
is called.

Constraint: LDB � N.

10: IR – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: IR > 0.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or NBLOKS < 1,
or IR < 1,
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or LDB < N,
or N < NBLOKS,
or LENA is too small,
or illegal values detected in BLKSTR,
or TRANS 6¼ N or T .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the computed solution depends on the conditioning of the original matrix A.

8 Parallelism and Performance

F04LHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example solves the set of linear equations Ax ¼ b where

A ¼

�1:00 �0:98 �0:79 �0:15
�1:00 �0:25 �0:87 0:35

0:78 0:31 �0:85 0:89 �0:69 �0:98 �0:76
�0:82 0:12 �0:01 0:75 0:32 �1:00 �0:53
�0:83 �0:98 �0:58 0:04 0:87 0:38 �1:00
�0:21 �0:93 �0:84 0:37 �0:94 �0:96 �1:00

�0:99 �0:91 �0:28 0:90 0:78 �0:93 �0:76 0:48
�0:87 �0:14 �1:00 �0:59 �0:99 0:21 �0:73 �0:48
�0:93 �0:91 0:10 �0:89 �0:68 �0:09 �0:58 �0:21
0:85 �0:39 0:79 �0:71 0:39 �0:99 �0:12 �0:75
0:17 �1:37 1:29 �1:59 1:10 �1:63 �1:01 �0:27

0:08 0:61 0:54 �0:41 0:16 �0:46
�0:67 0:56 �0:99 0:16 �0:16 0:98
�0:24 �0:41 0:40 �0:93 0:70 0:43

0:71 �0:97 �0:60 �0:30 0:18
�0:47 �0:98 �0:73 0:07 0:04
�0:25 �0:92 �0:52 �0:46 �0:58
0:89 �0:94 �0:54 �1:00 �0:36

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA

and
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b ¼

�2:92
�1:17
�1:30
�1:17
�2:10
�4:51
�1:71
�4:59
�4:19
�0:93
�3:31
0:52
�0:12
�0:05
�0:98
�2:07
�2:73
�1:95

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA
The exact solution is

x ¼ 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1ð ÞT:

10.1 Program Text

Program f04lhfe

! F04LHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01lhf, f04lhf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lena = 200, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, index, ir, j, k, ldb, n, &

nbasek, nbloks
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), b(:,:)
Integer, Allocatable :: blkstr(:,:), pivot(:)

! .. Executable Statements ..
Write (nout,*) ’F04LHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) nbloks
Allocate (a(lena),blkstr(3,nbloks))
nbasek = 0
n = 0
Do i = 1, nbloks

Read (nin,*) blkstr(1:3,i)
Do k = 1, blkstr(1,i)

If (nbasek+blkstr(2,i)*blkstr(1,i)>lena) Then
Write (nout,*) ’ Array A is too small for this problem’
Go To 100

Else
Read (nin,*)(a(nbasek+(j-1)*blkstr(1,i)+k),j=1,blkstr(2,i))

End If
End Do
nbasek = nbasek + blkstr(2,i)*blkstr(1,i)
n = n + blkstr(1,i)

End Do
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Read (nin,*) ir
ldb = n
Allocate (b(ldb,ir),pivot(n))
tol = 0.0E0_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01lhf(n,nbloks,blkstr,a,lena,pivot,tol,index,ifail)

Read (nin,*)(b(1:n,j),j=1,ir)

ifail = 0
Call f04lhf(’N’,n,nbloks,blkstr,a,lena,pivot,b,ldb,ir,ifail)

Write (nout,*) ’Component Solution’
Do i = 1, n

Write (nout,99999) i, b(i,1:ir)
End Do

100 Continue

99999 Format (1X,I5,6X,5F7.4)
End Program f04lhfe

10.2 Program Data

F04LHF Example Program Data
5 : Number of blocks
2 4 3 : Number of rows, columns and column overlap, block 1

-1.00 -0.98 -0.79 -0.15
-1.00 0.25 -0.87 0.35 : End block 1

4 7 4 : Number of rows, columns and column overlap, block 2
0.78 0.31 -0.85 0.89 -0.69 -0.98 -0.76

-0.82 0.12 -0.01 0.75 0.32 -1.00 -0.53
-0.83 -0.98 -0.58 0.04 0.87 0.38 -1.00
-0.21 -0.93 -0.84 0.37 -0.94 -0.96 -1.00 : End block 2

5 8 2 : Number of rows, columns and column overlap, block 3
-0.99 -0.91 -0.28 0.90 0.78 -0.93 -0.76 0.48
-0.87 -0.14 -1.00 -0.59 -0.99 0.21 -0.73 -0.48
-0.93 -0.91 0.10 -0.89 -0.68 -0.09 -0.58 -0.21
0.85 -0.39 0.79 -0.71 0.39 -0.99 -0.12 -0.75
0.17 -1.37 1.29 -1.59 1.10 -1.63 -1.01 -0.27 : End block 3
3 6 3 : Number of rows, columns and column overlap, block 4

0.08 0.61 0.54 -0.41 0.16 -0.46
-0.67 0.56 -0.99 0.16 -0.16 0.98
-0.24 -0.41 0.40 -0.93 0.70 0.43 : End block 4

4 5 0 : Number of rows, columns and column overlap, block 5
0.71 -0.97 -0.60 -0.30 0.18

-0.47 -0.98 -0.73 0.07 0.04
-0.25 -0.92 -0.52 -0.46 -0.58
0.89 -0.94 -0.54 -1.00 -0.36 : End block 5
1 : Number of right hand sides

-2.92 -1.27 -1.30 -1.17 -2.10 -4.51 -1.71 -4.59
-4.19 -0.93 -3.31 0.52 -0.12 -0.05 -0.98 -2.07
-2.73 -1.95 : End right hand side 1

10.3 Program Results

F04LHF Example Program Results

Component Solution
1 1.0000
2 1.0000
3 1.0000
4 1.0000
5 1.0000
6 1.0000
7 1.0000
8 1.0000
9 1.0000
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10 1.0000
11 1.0000
12 1.0000
13 1.0000
14 1.0000
15 1.0000
16 1.0000
17 1.0000
18 1.0000
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NAG Library Routine Document

F04MCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04MCF computes the approximate solution of a system of real linear equations with multiple right-
hand sides, AX ¼ B, where A is a symmetric positive definite variable-bandwidth matrix, which has
previously been factorized by F01MCF. Related systems may also be solved.

2 Specification

SUBROUTINE F04MCF (N, AL, LAL, D, NROW, IR, B, LDB, ISELCT, X, LDX,
IFAIL)

&

INTEGER N, LAL, NROW(N), IR, LDB, ISELCT, LDX, IFAIL
REAL (KIND=nag_wp) AL(LAL), D(*), B(LDB,IR), X(LDX,IR)

3 Description

The normal use of this routine is the solution of the systems AX ¼ B, following a call of F01MCF to
determine the Cholesky factorization A ¼ LDLT of the symmetric positive definite variable-bandwidth
matrix A.

However, the routine may be used to solve any one of the following systems of linear algebraic
equations:

1. LDLTX ¼ B (usual system),

2. LDX ¼ B (lower triangular system),

3. DLTX ¼ B (upper triangular system),

4. LLTX ¼ B
5. LX ¼ B (unit lower triangular system),

6. LTX ¼ B (unit upper triangular system).

L denotes a unit lower triangular variable-bandwidth matrix of order n, D a diagonal matrix of order n,
and B a set of right-hand sides.

The matrix L is represented by the elements lying within its envelope, i.e., between the first nonzero of
each row and the diagonal (see Section 10 for an example). The width NROWðiÞ of the ith row is the
number of elements between the first nonzero element and the element on the diagonal inclusive.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix L.

Constraint: N � 1.

F04 – Simultaneous Linear Equations F04MCF
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2: ALðLALÞ – REAL (KIND=nag_wp) array Input

On entry: the elements within the envelope of the lower triangular matrix L, taken in row by row
order, as returned by F01MCF. The unit diagonal elements of L must be stored explicitly.

3: LAL – INTEGER Input

On entry: the dimension of the array AL as declared in the (sub)program from which F04MCF is
called.

Constraint: LAL � NROWð1Þ þ NROWð2Þ þ . . .þ NROWðnÞ.

4: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least 1 if ISELCT � 4, and at least N otherwise.

On entry: the diagonal elements of the diagonal matrix D. D is not referenced if ISELCT � 4.

5: NROWðNÞ – INTEGER array Input

On entry: NROWðiÞ must contain the width of row i of L, i.e., the number of elements between
the first (leftmost) nonzero element and the element on the diagonal, inclusive.

Constraint: 1 � NROWðiÞ � i.

6: IR – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: IR � 1.

7: BðLDB; IRÞ – REAL (KIND=nag_wp) array Input

On entry: the n by r right-hand side matrix B. See also Section 9.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04MCF
is called.

Constraint: LDB � N.

9: ISELCT – INTEGER Input

On entry: must specify the type of system to be solved, as follows:

ISELCT ¼ 1
Solve LDLTX ¼ B.

ISELCT ¼ 2
Solve LDX ¼ B.

ISELCT ¼ 3
Solve DLTX ¼ B.

ISELCT ¼ 4
Solve LLTX ¼ B.

ISELCT ¼ 5
Solve LX ¼ B.

ISELCT ¼ 6
Solve LTX ¼ B.

Constraint: ISELCT ¼ 1, 2, 3, 4, 5 or 6.
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10: XðLDX; IRÞ – REAL (KIND=nag_wp) array Output

On exit: the n by r solution matrix X. See also Section 9.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F04MCF
is called.

Constraint: LDX � N.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or for some i, NROWðiÞ < 1 or NROWðiÞ > i,
or LAL < NROWð1Þ þ NROWð2Þ þ � � � þ NROWðNÞ.

IFAIL ¼ 2

On entry, IR < 1,
or LDB < N,
or LDX < N.

IFAIL ¼ 3

On entry, ISELCT < 1,
or ISELCT > 6.

IFAIL ¼ 4

The diagonal matrix D is singular, i.e., at least one of the elements of D is zero. This can only
occur if ISELCT � 3.

IFAIL ¼ 5

At least one of the diagonal elements of L is not equal to unity.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The usual backward error analysis of the solution of triangular system applies: each computed solution
vector is exact for slightly perturbed matrices L and D, as appropriate (see pages 25–27 and 54–55 of
Wilkinson and Reinsch (1971)).

8 Parallelism and Performance

F04MCF is not threaded in any implementation.

9 Further Comments

Th e t im e t a k e n b y F 0 4MCF i s a p p r o x im a t e l y p r o p o r t i o n a l t o pr, w h e r e
p ¼ NROWð1Þ þ NROWð2Þ þ � � � þ NROWðnÞ.
Unless otherwise stated in the Users' Note for your implementation, the routine may be called with the
same actual array supplied for the arguments B and X, in which case the solution matrix will overwrite
the right-hand side matrix. However this is not standard Fortran and may not work in all
implementations.

10 Example

This example solves the system of equations AX ¼ B, where

A ¼

1 2 0 0 5 0
2 5 3 0 14 0
0 3 13 0 18 0
0 0 0 16 8 24
5 14 18 8 55 17
0 0 0 24 17 77

0BBBBB@

1CCCCCA and B ¼

6 �10
15 �21
11 �3
0 24

51 �39
46 67

0BBBBB@

1CCCCCA
Here A is symmetric and positive definite and must first be factorized by F01MCF.

10.1 Program Text

Program f04mcfe

! F04MCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01mcf, f04mcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ir, iselct, k1, k2, lal, &

ldb, ldx, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), al(:), b(:,:), d(:), x(:,:)
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Integer, Allocatable :: nrow(:)
! .. Executable Statements ..

Write (nout,*) ’F04MCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ir
ldb = n
ldx = n
Allocate (b(ldb,ir),d(n),x(ldx,ir),nrow(n))
Read (nin,*) nrow(1:n)
lal = 0
Do i = 1, n

lal = lal + nrow(i)
End Do
Allocate (a(lal),al(lal))
k2 = 0
Do i = 1, n

k1 = k2 + 1
k2 = k2 + nrow(i)
Read (nin,*) a(k1:k2)

End Do
Read (nin,*)(b(i,1:ir),i=1,n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01mcf(n,a,lal,nrow,al,d,ifail)

iselct = 1

ifail = 0
Call f04mcf(n,al,lal,d,nrow,ir,b,ldb,iselct,x,ldx,ifail)

Write (nout,*) ’ Solution’
Do i = 1, n

Write (nout,99999) x(i,1:ir)
End Do

99999 Format (1X,8F9.3)
End Program f04mcfe

10.2 Program Data

F04MCF Example Program Data
6 2 : n, ir
1 2 2 1 5 3 : vector NROW
1.0
2.0 5.0
3.0 13.0

16.0
5.0 14.0 18.0 8.0 55.0

24.0 17.0 77.0 : vector A
6.0 -10.0

15.0 -21.0
11.0 -3.0
0.0 24.0

51.0 -39.0
46.0 67.0 : matrix B
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10.3 Program Results

F04MCF Example Program Results

Solution
-3.000 4.000
2.000 -2.000

-1.000 3.000
-2.000 1.000
1.000 -2.000
1.000 1.000
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NAG Library Routine Document

F04MEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04MEF updates the solution to the Yule–Walker equations for a real symmetric positive definite
Toeplitz system.

2 Specification

SUBROUTINE F04MEF (N, T, X, V, WORK, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) T(0:N), X(*), V, WORK(N-1)

3 Description

F04MEF solves the equations

Tnxn ¼ �tn;

where Tn is the n by n symmetric positive definite Toeplitz matrix

Tn ¼

�0 �1 �2 . . . �n�1
�1 �0 �1 . . . �n�2
�2 �1 �0 . . . �n�3
: : : :
�n�1 �n�2 �n�3 . . . �0

0BBB@
1CCCA

and tn is the vector

tTn ¼ �1�2 . . . �nð Þ;

given the solution of the equations

Tn�1xn�1 ¼ �tn�1:

The routine will normally be used to successively solve the equations

Tkxk ¼ �tk; k ¼ 1; 2; . . . ; n:

If it is desired to solve the equations for a single value of n, then routine F04FEF may be called. This
routine uses the method of Durbin (see Durbin (1960) and Golub and Van Loan (1996)).

4 References

Bunch J R (1985) Stability of methods for solving Toeplitz systems of equations SIAM J. Sci. Statist.
Comput. 6 349–364

Bunch J R (1987) The weak and strong stability of algorithms in numerical linear algebra Linear
Algebra Appl. 88/89 49–66

Cybenko G (1980) The numerical stability of the Levinson–Durbin algorithm for Toeplitz systems of
equations SIAM J. Sci. Statist. Comput. 1 303–319

Durbin J (1960) The fitting of time series models Rev. Inst. Internat. Stat. 28 233

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: N – INTEGER Input

On entry: the order of the Toeplitz matrix T .

Constraint: N � 0. When N ¼ 0, then an immediate return is effected.

2: Tð0 : NÞ – REAL (KIND=nag_wp) array Input

On entry: Tð0Þ must contain the value �0 of the diagonal elements of T , and the remaining N
elements of T must contain the elements of the vector tn.

Constraint: Tð0Þ > 0:0. Note that if this is not true, then the Toeplitz matrix cannot be positive
definite.

3: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1;Nð Þ.
On entry: with N > 1 the (n� 1) elements of the solution vector xn�1 as returned by a previous
call to F04MEF. The element XðNÞ need not be specified.

Constraint: XðN� 1Þj j < 1:0. Note that this is the partial (auto)correlation coefficient, or
reflection coefficient, for the n� 1ð Þth step. If the constraint does not hold, then Tn cannot be
positive definite.

On exit: the solution vector xn. The element XðNÞ returns the partial (auto)correlation coefficient,
or reflection coefficient, for the nth step. If XðNÞj j � 1:0, then the matrix Tnþ1 will not be
positive definite to working accuracy.

4: V – REAL (KIND=nag_wp) Input/Output

On entry: with N > 1 the mean square prediction error for the (n� 1)th step, as returned by a
previous call to F04MEF.

On exit: the mean square prediction error, or predictor error variance ratio, �n, for the nth step.
(See Section 9 and the Introduction to Chapter G13.)

5: WORKðN� 1Þ – REAL (KIND=nag_wp) array Workspace

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, N < 0,
or Tð0Þ � 0:0,
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or N > 1 and XðN� 1Þj j � 1:0.

IFAIL ¼ 1

The Toeplitz matrix Tnþ1 is not positive definite to working accuracy. If, on exit, XðNÞ is close to
unity, then the principal minor was probably close to being singular, and the sequence
�0; �1; . . . ; �N may be a valid sequence nevertheless. X returns the solution of the equations

Tnxn ¼ �tn;

and V returns vn, but it may not be positive.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution of the equations certainly satisfies

r ¼ Tnxn þ tn;

where rk k1 is approximately bounded by

rk k1 � c�
Yn
i¼1

1þ pij jð Þ � 1

 !
;

c being a modest function of n, � being the machine precision and pk being the kth element of xk. This
bound is almost certainly pessimistic, but it has not yet been established whether or not the method of
Durbin is backward stable. For further information on stability issues see Bunch (1985), Bunch (1987),
Cybenko (1980) and Golub and Van Loan (1996). The following bounds on T�1n

�� ��
1
hold:

max
1

vn�1
;

1Yn�1
i¼1

1� pið Þ

0BBBB@
1CCCCA � T�1n

�� ��
1
�
Yn�1
i¼1

1þ pij j
1� pij j

� �
;

where vn is the mean square prediction error for the nth step. (See Cybenko (1980).) Note that
vn < vn�1. The norm of T�1n may also be estimated using routine F04YDF.

8 Parallelism and Performance

F04MEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The number of floating-point operations used by this routine is approximately 4n.

The mean square prediction errors, vi, is defined as

vi ¼ �0 þ tTi�1xi�1
� �

=�0:

Note that vi ¼ 1� p2i
� �

vi�1.

10 Example

This example finds the solution of the Yule–Walker equations Tkxk ¼ �tk, k ¼ 1; 2; 3; 4 where

T4 ¼
4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4

0B@
1CA and t4 ¼

3
2
1
0

0B@
1CA:

10.1 Program Text

Program f04mefe

! F04MEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04mef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: v
Integer :: ifail, k, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: t(:), work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’F04MEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Allocate (t(0:n),work(n-1),x(n))
Read (nin,*) t(0:n)

Do k = 1, n

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f04mef(k,t,x,v,work,ifail)

Write (nout,*)
Write (nout,99999) ’Solution for system of order’, k
Write (nout,99998) x(1:k)
Write (nout,*) ’Mean square prediction error’
Write (nout,99998) v

End Do

99999 Format (1X,A,I5)
99998 Format (1X,5F9.4)

End Program f04mefe
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10.2 Program Data

F04MEF Example Program Data

4 : n
4.0 3.0 2.0 1.0 0.0 : vector T

10.3 Program Results

F04MEF Example Program Results

Solution for system of order 1
-0.7500

Mean square prediction error
0.4375

Solution for system of order 2
-0.8571 0.1429

Mean square prediction error
0.4286

Solution for system of order 3
-0.8333 0.0000 0.1667

Mean square prediction error
0.4167

Solution for system of order 4
-0.8000 0.0000 -0.0000 0.2000

Mean square prediction error
0.4000
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NAG Library Routine Document

F04MFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04MFF updates the solution of the equations Tx ¼ b, where T is a real symmetric positive definite
Toeplitz matrix.

2 Specification

SUBROUTINE F04MFF (N, T, B, X, P, WORK, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) T(0:*), B(*), X(*), P, WORK(*)

3 Description

F04MFF solves the equations

Tnxn ¼ bn;

where Tn is the n by n symmetric positive definite Toeplitz matrix

Tn ¼

�0 �1 �2 . . . �n�1
�1 �0 �1 . . . �n�2
�2 �1 �0 . . . �n�3
: : : :
�n�1 �n�2 �n�3 . . . �0

0BBB@
1CCCA

and bn is the n-element vector bn ¼ �1�2 . . . �nð ÞT, given the solution of the equations

Tn�1xn�1 ¼ bn�1:

This routine will normally be used to successively solve the equations

Tkxk ¼ bk; k ¼ 1; 2; . . . ; n:

If it is desired to solve the equations for a single value of n, then routine F04FFF may be called. This
routine uses the method of Levinson (see Levinson (1947) and Golub and Van Loan (1996)).

4 References

Bunch J R (1985) Stability of methods for solving Toeplitz systems of equations SIAM J. Sci. Statist.
Comput. 6 349–364

Bunch J R (1987) The weak and strong stability of algorithms in numerical linear algebra Linear
Algebra Appl. 88/89 49–66

Cybenko G (1980) The numerical stability of the Levinson–Durbin algorithm for Toeplitz systems of
equations SIAM J. Sci. Statist. Comput. 1 303–319

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Levinson N (1947) The Weiner RMS error criterion in filter design and prediction J. Math. Phys. 25
261–278
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5 Arguments

1: N – INTEGER Input

On entry: the order of the Toeplitz matrix T .

Constraint: N � 0. When N ¼ 0, then an immediate return is effected.

2: Tð0 : �Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array T must be at least max 1;Nð Þ.
On entry: TðiÞ must contain the value �i, for i ¼ 0; 1; . . . ;N� 1.

Constraint: Tð0Þ > 0:0. Note that if this is not true, then the Toeplitz matrix cannot be positive
definite.

3: Bð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array B must be at least max 1;Nð Þ.
On entry: the right-hand side vector bn.

4: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1;Nð Þ.
On entry: with N > 1 the (n� 1) elements of the solution vector xn�1 as returned by a previous
call to F04MFF. The element XðNÞ need not be specified.

On exit: the solution vector xn.

5: P – REAL (KIND=nag_wp) Output

On exit: the reflection coefficient pn�1. (See Section 9.)

6: WORKð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array WORK must be at least max 1; 2� N� 1ð Þ.
On entry: with N > 2 the elements of WORK should be as returned from a previous call to
F04MFF with (N� 1) as the argument N.

On exit: the first (N� 1) elements of WORK contain the solution to the Yule–Walker equations

Tn�1yn�1 ¼ �tn�1;

where tn�1 ¼ �1�2 . . . �n�1ð ÞT.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
On entry, N < 0,
or Tð0Þ � 0:0.

IFAIL ¼ 1

The Toeplitz matrix Tn is not positive definite to working accuracy. If, on exit, P is close to unity,
then Tn was probably close to being singular.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution of the equations certainly satisfies

r ¼ Tnxn � bn;

where rk k1 is approximately bounded by

rk k1 � c�C Tnð Þ;

c being a modest function of n, � being the machine precision and C Tð Þ being the condition number of
T with respect to inversion. This bound is almost certainly pessimistic, but it seems unlikely that the
method of Levinson is backward stable, so caution should be exercised when Tn is ill-conditioned. The
following bound on T�1n holds:

max
1Yn�1

i¼1
1� p2i
� �; 1Yn�1

i¼1
1� pið Þ

0BBBB@
1CCCCA � T�1n

�� ��
1
�
Yn�1
i¼1

1þ pij j
1� pij j

� �
:

(See Golub and Van Loan (1996).) The norm of T�1n may also be estimated using routine F04YDF. For
further information on stability issues see Bunch (1985), Bunch (1987), Cybenko (1980) and Golub and
Van Loan (1996).

8 Parallelism and Performance

F04MFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of floating-point operations used by this routine is approximately 8n.

If yi is the solution of the equations

Tiyi ¼ � �1�2 . . . �ið ÞT;

then the reflection coefficient pi is defined as the ith element of yi.

10 Example

This example finds the solution of the equations Tkxk ¼ bk, k ¼ 1; 2; 3; 4, where

T4 ¼
4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4

0B@
1CA and b4 ¼

1
1
1
1

0B@
1CA:

10.1 Program Text

Program f04mffe

! F04MFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04mff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p
Integer :: ifail, k, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), t(:), work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’F04MFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Allocate (b(n),t(0:n-1),work(2*n-1),x(n))
Read (nin,*) t(0:n-1)
Read (nin,*) b(1:n)
Do k = 1, n

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f04mff(k,t,b,x,p,work,ifail)

Write (nout,*)
Write (nout,99999) ’Solution for system of order’, k
Write (nout,99998) x(1:k)
If (k>1) Then

Write (nout,*) ’Reflection coefficient’
Write (nout,99998) p

End If
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End Do

99999 Format (1X,A,I5)
99998 Format (1X,5F9.4)

End Program f04mffe

10.2 Program Data

F04MFF Example Program Data

4 : n
4.0 3.0 2.0 1.0 : vector T
1.0 1.0 1.0 1.0 : vector B

10.3 Program Results

F04MFF Example Program Results

Solution for system of order 1
0.2500

Solution for system of order 2
0.1429 0.1429

Reflection coefficient
-0.7500

Solution for system of order 3
0.1667 0.0000 0.1667

Reflection coefficient
0.1429

Solution for system of order 4
0.2000 0.0000 -0.0000 0.2000

Reflection coefficient
0.1667
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NAG Library Routine Document

F04QAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04QAF solves sparse nonsymmetric equations, sparse linear least squares problems and sparse damped
linear least squares problems, using a Lanczos algorithm.

2 Specification

SUBROUTINE F04QAF (M, N, B, X, SE, APROD, DAMP, ATOL, BTOL, CONLIM,
ITNLIM, MSGLVL, ITN, ANORM, ACOND, RNORM, ARNORM,
XNORM, WORK, RUSER, LRUSER, IUSER, LIUSER, INFORM,
IFAIL)

&
&
&

INTEGER M, N, ITNLIM, MSGLVL, ITN, LRUSER, IUSER(LIUSER),
LIUSER, INFORM, IFAIL

&

REAL (KIND=nag_wp) B(M), X(N), SE(N), DAMP, ATOL, BTOL, CONLIM, ANORM,
ACOND, RNORM, ARNORM, XNORM, WORK(N,2),
RUSER(LRUSER)

&
&

EXTERNAL APROD

3 Description

F04QAF can be used to solve a system of linear equations

Ax ¼ b ð1Þ

where A is an n by n sparse nonsymmetric matrix, or can be used to solve linear least squares
problems, so that F04QAF minimizes the value � given by

� ¼ rk k; r ¼ b�Ax ð2Þ

where A is an m by n sparse matrix and rk k denotes the Euclidean length of r so that rk k2 ¼ rTr. A
damping argument, �, may be included in the least squares problem in which case F04QAF minimizes
the value � given by

�2 ¼ rk k2 þ �2 xk k2: ð3Þ

� is supplied as the argument DAMP and should of course be zero if the solution to problems (1) or (2)
is required. Minimizing � in (3) is often called ridge regression.

F04QAF is based upon algorithm LSQR (see Paige and Saunders (1982a) and Paige and Saunders
(1982b)) and solves the problems by an algorithm based upon the Lanczos process. The routine does
not require A explicitly, but A is specified via APROD which must perform the operations yþAxð Þ
and xþATyð Þ for a given n-element vector x and m element vector y. A argument to APROD specifies
which of the two operations is required on a given entry.

The routine also returns estimates of the standard errors of the sample regression coefficients (xi, for
i ¼ 1; 2; . . . ; n) given by the diagonal elements of the estimated variance-covariance matrix V . When
problem (2) is being solved and A is of full rank, then V is given by

V ¼ s2 ATA
� ��1

; s2 ¼ �2= m� nð Þ; m > n

and when problem (3) is being solved then V is given by

V ¼ s2 ATAþ �2I
� ��1

; s2 ¼ �2=m; � 6¼ 0:

Let �A denote the matrix
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�A ¼ A; � ¼ 0; �A ¼ A
�I

� �
; � 6¼ 0; ð4Þ

let �r denote the residual vector

�r ¼ r; � ¼ 0; �r ¼ b
0

� �
� �Ax; � 6¼ 0 ð5Þ

corresponding to an iterate x, so that � ¼ �rk k is the function being minimized, and let Ak k denote the
Frobenius (Euclidean) norm of A. Then the routine accepts x as a solution if it is estimated that one of
the following two conditions is satisfied:

� � tol1 �A
�� ��: xk k þ tol2 bk k ð6Þ

�AT�r
�� �� � tol1 �A

�� ��� ð7Þ

where tol1 and tol2 are user-supplied tolerances which estimate the relative errors in A and b
respectively. Condition (6) is appropriate for compatible problems where, in theory, we expect the
residual to be zero and will be satisfied by an acceptable solution x to a compatible problem. Condition
(7) is appropriate for incompatible systems where we do not expect the residual to be zero and is based
on the observation that, in theory,

�AT�r ¼ 0

when x is a solution to the least squares problem, and so (7) will be satisfied by an acceptable solution
x to a linear least squares problem.

The routine also includes a test to prevent convergence to solutions, x, with unacceptably large
elements. This can happen if A is nearly singular or is nearly rank deficient. If we let the singular
values of �A be

�1 � �2 � � � � � �n � 0

then the condition number of �A is defined as

cond �A
� �
¼ �1=�k

where �k is the smallest nonzero singular value of �A and hence k is the rank of �A. When k < n, then �A
is rank deficient, the least squares solution is not unique and F04QAF will normally converge to the
minimal length solution. In practice �A will not have exactly zero singular values, but may instead have
small singular values that we wish to regard as zero.

The routine provides for this possibility by terminating if

cond �A
� �
� clim ð8Þ

where clim is a user-supplied limit on the condition number of �A. For problem (1) termination with this
condition indicates that A is nearly singular and for problem (2) indicates that A is nearly rank deficient
and so has near linear dependencies in its columns. In this case inspection of rk k, ATrk k and xk k,
which are all returned by the routine, will indicate whether or not an acceptable solution has been
found. Condition (8), perhaps in conjunction with � 6¼ 0, can be used to try and ‘regularize’ least
squares solutions. A full discussion of the stopping criteria is given in Section 6 of Paige and Saunders
(1982a).

Introduction of a nonzero damping argument � tends to reduce the size of the computed solution and to
make its components less sensitive to changes in the data, and F04QAF is applicable when a value of �
is known a priori. To have an effect, � should normally be at least

ffiffi
�
p

Ak k where � is the machine
precision. For further discussion see Paige and Saunders (1982b) and the references given there.

Whenever possible the matrix A should be scaled so that the relative errors in the elements of A are all
of comparable size. Such a scaling helps to prevent the least squares problem from being unnecessarily
sensitive to data errors and will normally reduce the number of iterations required. At the very least, in
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the absence of better information, the columns of A should be scaled to have roughly equal column
length.

4 References

Paige C C and Saunders M A (1982a) LSQR: An algorithm for sparse linear equations and sparse least
squares ACM Trans. Math. Software 8 43–71

Paige C C and Saunders M A (1982b) Algorithm 583 LSQR: Sparse linear equations and least squares
problems ACM Trans. Math. Software 8 195–209

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 1.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 1.

3: BðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the right-hand side vector b.

On exit: B is overwritten.

4: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x.

5: SEðNÞ – REAL (KIND=nag_wp) array Output

On exit: the estimates of the standard errors of the components of x. Thus SEðiÞ contains an
estimate of

ffiffiffiffiffi
�ii
p

, where �ii is the ith diagonal element of the estimated variance-covariance
matrix V . The estimates returned in SE will be the lower bounds on the actual estimated standard
errors, but will usually be correct to at least one significant figure.

6: APROD – SUBROUTINE, supplied by the user. External Procedure

APROD must perform the operations y :¼ yþAx and x :¼ xþATy for given vectors x and y.

The specification of APROD is:

SUBROUTINE APROD (MODE, M, N, X, Y, RUSER, LRUSER, IUSER, LIUSER)

INTEGER MODE, M, N, LRUSER, IUSER(LIUSER), LIUSER
REAL (KIND=nag_wp) X(N), Y(M), RUSER(LRUSER)

1: MODE – INTEGER Input/Output

On entry: specifies which operation is to be performed.

MODE ¼ 1
APROD must compute yþAx.

MODE ¼ 2
APROD must compute xþATy.

On exit: may be used as a flag to indicate a failure in the computation of yþAx or
xþATy. If MODE is negative on exit from APROD, F04QAF will exit immediately
with IFAIL set to MODE.
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2: M – INTEGER Input

On entry: m, the number of rows of A.

3: N – INTEGER Input

On entry: n, the number of columns of A.

4: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the vector x.

On exit: if MODE ¼ 1, X must be unchanged.

If MODE ¼ 2, X must contain xþATy.

5: YðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the vector y.

On exit: if MODE ¼ 1, Y must contain yþAx.
If MODE ¼ 2, Y must be unchanged.

6: RUSERðLRUSERÞ – REAL (KIND=nag_wp) array User Workspace
7: LRUSER – INTEGER Input
8: IUSERðLIUSERÞ – INTEGER array User Workspace
9: LIUSER – INTEGER Input

APROD is called with the arguments RUSER, LRUSER, IUSER and LIUSER as
supplied to F04QAF. You should use the arrays RUSER, LRUSER, IUSER and
LIUSER to supply information to APROD.

APROD must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F04QAF is called. Arguments denoted as Input must not be changed by this
procedure.

7: DAMP – REAL (KIND=nag_wp) Input

On entry: the value �. If either problem (1) or problem (2) is to be solved, then DAMP must be
supplied as zero.

8: ATOL – REAL (KIND=nag_wp) Input

On entry: the tolerance, tol1, of the convergence criteria (6) and (7); it should be an estimate of
the largest relative error in the elements of A. For example, if the elements of A are correct to
about 4 significant figures, then ATOL should be set to about 5� 10�4. If ATOL is supplied as
less than �, where � is the machine precision, then the value � is used instead of ATOL.

9: BTOL – REAL (KIND=nag_wp) Input

On entry: the tolerance, tol2, of the convergence criterion (6); it should be an estimate of the
largest relative error in the elements of B. For example, if the elements of B are correct to about
4 significant figures, then BTOL should be set to about 5� 10�4. If BTOL is supplied as less
than �, then the value � is used instead of BTOL.

10: CONLIM – REAL (KIND=nag_wp) Input

On entry: the value clim of equation (8); it should be an upper limit on the condition number of
�A. CONLIM should not normally be chosen much larger than 1:0=ATOL. If CONLIM is
supplied as zero, then the value 1:0=� is used instead of CONLIM.
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11: ITNLIM – INTEGER Input/Output

On entry: an upper limit on the number of iterations. If ITNLIM � 0, then the value N is used in
place of ITNLIM, but for ill-conditioned problems a higher value of ITNLIM is likely to be
necessary.

On exit: unchanged unless ITNLIM � 0 on entry, in which case it is set to N.

12: MSGLVL – INTEGER Input

On entry: the level of printing from F04QAF. If MSGLVL � 0, then no printing occurs, but
otherwise messages will be output on the advisory message channel (see X04ABF). A description
of the printed output is given in Section 9.1. The level of printing is determined as follows:

MSGLVL � 0
No printing.

MSGLVL ¼ 1
A brief summary is printed just prior to return from F04QAF.

MSGLVL � 2
A summary line is printed periodically to monitor the progress of F04QAF, together with a
brief summary just prior to return from F04QAF.

13: ITN – INTEGER Output

On exit: the number of iterations performed.

14: ANORM – REAL (KIND=nag_wp) Output

On exit: an estimate of �A
�� �� for the matrix �A of (4).

15: ACOND – REAL (KIND=nag_wp) Output

On exit: an estimate of cond �A
� �

which is a lower bound.

16: RNORM – REAL (KIND=nag_wp) Output

On exit: an estimate of �rk k for the residual, �r, of (5) corresponding to the solution x returned in
X. Note that �rk k is the function being minimized.

17: ARNORM – REAL (KIND=nag_wp) Output

On exit: an estimate of the �AT�r
�� �� corresponding to the solution x returned in X.

18: XNORM – REAL (KIND=nag_wp) Output

On exit: an estimate of xk k for the solution x returned in X.

19: WORKðN; 2Þ – REAL (KIND=nag_wp) array Workspace

20: RUSERðLRUSERÞ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by F04QAF, but is passed directly to APROD and should be used to pass
information to this routine.

21: LRUSER – INTEGER Input

On entry: the dimension of the array RUSER as declared in the (sub)program from which
F04QAF is called.

Constraint: LRUSER � 1.
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22: IUSERðLIUSERÞ – INTEGER array User Workspace

IUSER is not used by F04QAF, but is passed directly to APROD and should be used to pass
information to this routine.

23: LIUSER – INTEGER Input

On entry: the dimension of the array IUSER as declared in the (sub)program from which
F04QAF is called.

Constraint: LIUSER � 1.

24: INFORM – INTEGER Output

On exit: the reason for termination of F04QAF.

INFORM ¼ 0
The exact solution is x ¼ 0. No iterations are performed in this case.

INFORM ¼ 1
The termination criterion of (6) has been satisfied with tol1 and tol2 as the values supplied
in ATOL and BTOL respectively.

INFORM ¼ 2
The termination criterion of (7) has been satisfied with tol1 as the value supplied in ATOL.

INFORM ¼ 3
The termination criterion of (6) has been satisfied with tol1 and/or tol2 as the value �,
where � is the machine precision. One or both of the values supplied in ATOL and BTOL
must have been less than � and was too small for this machine.

INFORM ¼ 4
The termination criterion of (7) has been satisfied with tol1 as the value �. The value
supplied in ATOL must have been less than � and was too small for this machine.

The values INFORM ¼ 5, 6 and 7 correspond to failure with IFAIL ¼ 2, 3 and 4 respectively
(see Section 6) and when IFAIL is negative INFORM will be set to the same negative value.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from F04QAF because you have set MODE negative
in APROD. The value of IFAIL will be the same as your setting of MODE.

F04QAF NAG Library Manual

F04QAF.6 Mark 26



IFAIL ¼ 1

On entry, M < 1,
or N < 1,
or LRUSER < 1,
or LIUSER < 1.

IFAIL ¼ 2

The condition of (8) has been satisfied for the value of clim supplied in CONLIM. If this failure is
unexpected you should check that APROD is working correctly. Although conditions (6) or (7)
have not been satisfied, the values returned in RNORM, ARNORM and XNORM may
nevertheless indicate that an acceptable solution has been reached.

IFAIL ¼ 3

The condition of (8) has been satisfied for the value clim ¼ 1:0=�, where � is the machine
precision. The matrix �A is nearly singular or rank deficient and the problem is too ill-conditioned
for this machine. If this failure is unexpected, you should check that APROD is working
correctly.

IFAIL ¼ 4

The limit on the number of iterations has been reached. The number of iterations required by
F04QAF and the condition of the matrix �A can depend strongly on the scaling of the problem.
Poor scaling of the rows and columns of A should be avoided whenever possible.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

When the problem is compatible, the computed solution x will satisfy the equation

r ¼ b�Ax;

where an estimate of rk k is returned in the argument RNORM. When the problem is incompatible, the
computed solution x will satisfy the equation

�AT�r ¼ e;

where an estimate of ek k is returned in the argument ARNORM. See also Section 6.2 of Paige and
Saunders (1982b).

8 Parallelism and Performance

F04QAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F04QAF is likely to be principally determined by the time taken in APROD, which
is called twice on each iteration, once with MODE ¼ 1 and once with MODE ¼ 2. The time taken per
iteration by the remaining operations in F04QAF is approximately proportional to max m;nð Þ.
The Lanczos process will usually converge more quickly if A is pre-conditioned by a nonsingular
matrix M that approximates A in some sense and is also chosen so that equations of the form My ¼ c
can efficiently be solved for y. For a discussion of preconditioning, see the F11 Chapter Introduction. In
the context of F04QAF, problem (1) is equivalent to

AM�1� �
y ¼ b; Mx ¼ y

and problem (2) is equivalent to minimizing

� ¼ rk k; r ¼ b� AM�1� �
y; Mx ¼ y:

Note that the normal matrix AM�1ð ÞT AM�1ð Þ ¼M�T ATAð ÞM�1 so that the preconditioning AM�1 is
equivalent to the preconditioning M�T ATAð ÞM�1 of the normal matrix ATA.

Pre-conditioning can be incorporated into F04QAF simply by coding APROD to compute yþAM�1x
and xþM�TATy in place of yþAx and xþATy respectively, and then solving the equations Mx ¼ y
for x on return from F04QAF. The quantity yþAM�1x should be computed by solving Mz ¼ x for z
and then computing yþAz, and xþM�TATy should be computed by solving MTz ¼ ATy for z and
then forming xþ z.

9.1 Description of the Printed Output

When MSGLVL > 0, then F04QAF will produce output (except in the case where the routine fails with
IFAIL ¼ 1) on the advisory message channel (see X04ABF).

When MSGLVL � 2 then a summary line is printed periodically giving the following information:

Output Meaning

ITN Iteration number, k.

X(1) The first element of the current iterate xk.

FUNCTION The current value of the function, �, being minimized.

COMPAT An estimate of �rkk k= bk k, where �rk is the residual corresponding to xk. This value
should converge to zero (in theory) if and only if the problem is compatible. COMPAT
decreases monotonically.

INCOMPAT An estimate of �AT�rk
�� ��= �A

�� �� �rkk k
� �

which should converge to zero if and only if at
the solution � is nonzero. INCOMPAT is not usually monotonic.

NRM(ABAR) A monotonically increasing estimate of �A
�� ��.

COND(ABAR) A monotonically increasing estimate of the condition number cond �A
� �

.

10 Example

This example solves the linear least squares problem

min � ¼ rk k; r ¼ b�Ax

where A is the 13 by 12 matrix and b is the 13 element vector given by
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A ¼

1 0 0 �1 0 0 0 0 0 0 0 0
0 1 0 0 �1 0 0 0 0 0 0 0
0 0 1 �1 0 0 0 0 0 0 0 0
�1 0 �1 4 �1 0 0 �1 0 0 0 0
0 �1 0 �1 4 �1 0 0 �1 0 0 0
0 0 0 0 �1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 �1 0 0 0 0
0 0 0 �1 0 0 �1 4 �1 0 �1 0
0 0 0 0 �1 0 0 �1 4 �1 0 �1
0 0 0 0 0 0 0 0 �1 1 0 0
0 0 0 0 0 0 0 �1 0 0 1 0
0 0 0 0 0 0 0 0 �1 0 0 1
1 1 1 0 0 1 1 0 0 1 1 1

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

; b ¼ �h2

0
0
0
1
1
0
0
1
1
0
0
0
�h�3

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA
with h ¼ 0:1.

Such a problem can arise by considering the Neumann problem on a rectangle

�u
�n ¼ 0

�u
�n ¼ 0 r2u ¼ g x; yð Þ �u

�n ¼ 0
R
cu ¼ 1

�u
�n ¼ 0

where C is the boundary of the rectangle, and discretizing as illustrated below with the square mesh

1 2

3 4 5 6

7 8 9 10

11 12

Figure 1

The 12 by 12 symmetric part of A represents the difference equations and the final row comes from the
normalizing condition. The example program has g x; yð Þ ¼ 1 at all the internal mesh points, but apart
from this is written in a general manner so that the number of rows (NROWS) and columns (NCOLS)
in the grid can readily be altered.
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10.1 Program Text

! F04QAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f04qafe_mod
! F04QAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: aprod

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, liuser = 1, lruser = 1, &

nin = 5, nout = 6
! .. Local Scalars ..

Integer, Public, Save :: ncols, nrows
Contains

Subroutine atimes(n,x,y)
! Called by routine aprod. Returns Y = Y + A*X,
! where A is not stored explicitly.

! .. Scalar Arguments ..
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(n)
Real (Kind=nag_wp), Intent (Inout) :: y(n)

! .. Local Scalars ..
Integer :: i, i1, i2, i3, il, j

! .. Executable Statements ..
Do j = 1, nrows - 2

y(j) = y(j) + x(j) - x(j+nrows-1)
End Do
Do j = 1, ncols - 2

i = j*nrows - 1
y(i) = y(i) + x(i) - x(i+1)
i1 = i + 1
il = i1 + nrows - 3
Do i = i1, il

i2 = i - nrows
If (j==1) Then

i2 = i2 + 1
End If
i3 = i + nrows
If (j==ncols-2) Then

i3 = i3 - 1
End If
y(i) = y(i) - x(i2) - x(i-1) + 4.0_nag_wp*x(i) - x(i+1) - x(i3)

End Do
i = il + 1
y(i) = y(i) - x(i-1) + x(i)

End Do
Do j = n - nrows + 3, n

y(j) = y(j) - x(j-nrows+1) + x(j)
End Do
Return

End Subroutine atimes
Subroutine aprod(mode,m,n,x,y,ruser,lruser,iuser,liuser)

! APROD returns
! Y = Y + A*X when MODE = 1
! X = X + ( A**T )*Y when MODE = 2
! for a given X and Y.

! .. Scalar Arguments ..
Integer, Intent (In) :: liuser, lruser, m, n
Integer, Intent (Inout) :: mode
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! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(lruser), x(n), y(m)
Integer, Intent (Inout) :: iuser(liuser)

! .. Local Scalars ..
Integer :: j, j1, j2

! .. Executable Statements ..
If (mode/=2) Then

Call atimes(n,x,y)
Do j = 1, nrows - 2

y(m) = y(m) + x(j)
End Do
Do j = 1, ncols - 2

y(m) = y(m) + x(j*nrows-1) + x(j*nrows+nrows-2)
End Do
Do j = m - nrows + 2, n

y(m) = y(m) + x(j)
End Do

Else
Call atimes(n,y,x)
Do j = 1, nrows - 2

x(j) = x(j) + y(m)
End Do
Do j = 1, ncols - 2

j1 = j*nrows - 1
j2 = j1 + nrows - 1
x(j1) = x(j1) + y(m)
x(j2) = x(j2) + y(m)

End Do
Do j = m - nrows + 2, n

x(j) = x(j) + y(m)
End Do

End If
Return

End Subroutine aprod
End Module f04qafe_mod
Program f04qafe

! F04QAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f04qaf, nag_wp, x04abf
Use f04qafe_mod, Only: aprod, iset, liuser, lruser, ncols, nin, nout, &

nrows
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: acond, anorm, arnorm, atol, btol, c, &
conlim, damp, h, rnorm, xnorm

Integer :: i1, ifail, inform, itn, itnlim, k, &
m, msglvl, n, outchn

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), se(:), work(:,:), x(:)
Real (Kind=nag_wp) :: ruser(lruser)
Integer :: iuser(liuser)

! .. Executable Statements ..
Write (nout,*) ’F04QAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) nrows, ncols
n = ncols*nrows - 4
m = n + 1
Allocate (b(m),se(n),work(n,2),x(n))
outchn = nout
Call x04abf(iset,outchn)

h = 0.1_nag_wp
! Initialize rhs and other quantities required by F04QAF.
! Convergence will be sooner if we do not regard A as exact,
! so atol is not set to zero.

F04 – Simultaneous Linear Equations F04QAF

Mark 26 F04QAF.11



b(1:n) = 0.0_nag_wp
c = -h**2
i1 = nrows
Do k = 3, ncols

b(i1:(i1+nrows-3)) = c
i1 = i1 + nrows

End Do
b(m) = 1.0_nag_wp/h
damp = 0.0_nag_wp
atol = 1.0E-5_nag_wp
btol = 1.0E-4_nag_wp
conlim = 1.0_nag_wp/atol
itnlim = 100

! * Set msglvl to 2 to get output at each iteration *
msglvl = 1

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f04qaf(m,n,b,x,se,aprod,damp,atol,btol,conlim,itnlim,msglvl,itn, &

anorm,acond,rnorm,arnorm,xnorm,work,ruser,lruser,iuser,liuser,inform, &
ifail)

Write (nout,*)
Write (nout,*) ’Solution returned by F04QAF’
Write (nout,99999) x(1:n)
Write (nout,*)
Write (nout,99998) ’Norm of the residual = ’, rnorm

99999 Format (1X,5F9.3)
99998 Format (1X,A,1P,E12.2)

End Program f04qafe

10.2 Program Data

F04QAF Example Program Data
4 4 : nrows, ncols

10.3 Program Results

F04QAF Example Program Results

Output from sparse linear least squares solver.

Least squares solution of A*x = b

The matrix A has 13 rows and 12 cols
The damping parameter is damp = 0.00E+00

atol = 1.00E-05 conlim = 1.00E+05
btol = 1.00E-04 itnlim = 100

No. of iterations = 2
stopping condition = 2
( The least squares solution is good enough, given atol )

Actual norm(rbar), norm(x) 1.15E-02 4.33E+00
Norm(transpose(Abar)*rbar) 9.16E-15

Estimates of norm(Abar), cond(Abar) 4.12E+00 2.45E+00

Solution returned by F04QAF
1.250 1.250 1.250 1.247 1.247
1.250 1.250 1.247 1.247 1.250
1.250 1.250

Norm of the residual = 1.15E-02
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NAG Library Routine Document

F04YAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04YAF returns elements of the estimated variance-covariance matrix of the sample regression
coefficients for the solution of a linear least squares problem.

The routine can be used to find the estimated variances of the sample regression coefficients.

2 Specification

SUBROUTINE F04YAF (JOB, P, SIGMA, A, LDA, SVD, IRANK, SV, CJ, WORK,
IFAIL)

&

INTEGER JOB, P, LDA, IRANK, IFAIL
REAL (KIND=nag_wp) SIGMA, A(LDA,P), SV(P), CJ(P), WORK(P)
LOGICAL SVD

3 Description

The estimated variance-covariance matrix C of the sample regression coefficients is given by

C ¼ �2 XTX
� ��1

; XTX nonsingular;

where XTX is the normal matrix for the linear least squares regression problem

min : y�Xbk k2; ð1Þ

�2 is the estimated variance of the residual vector r ¼ y�Xb, and X is an n by p observation matrix.

When XTX is singular, C is taken to be

C ¼ �2 XTX
� �y

;

where XTXð Þy is the pseudo-inverse of XTX; this assumes that the minimal least squares solution of
(1) has been found.

The diagonal elements of C are the estimated variances of the sample regression coefficients, b.

The routine can be used to find either the diagonal elements of C, or the elements of the jth column of
C, or the upper triangular part of C.

This routine must be preceded by a routine that returns either the upper triangular matrix U of the QU
factorization of X or of the Cholesky factorization of XTX, or the singular values and right singular
vectors of X. In particular this routine can be preceded by one of the routines F04JGF or F08KAF
(DGELSS), which return the arguments IRANK, SIGMA, A and SV in the required form. F04JGF
returns the argument SVD, but when this routine is used following routine F08KAF (DGELSS) the
argument SVD should be set to .TRUE.. The argument P of this routine corresponds to the argument N
in routines F04JGF and F08KAF (DGELSS).

4 References

Anderson T W (1958) An Introduction to Multivariate Statistical Analysis Wiley

Lawson C L and Hanson R J (1974) Solving Least Squares Problems Prentice–Hall
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5 Arguments

1: JOB – INTEGER Input

On entry: specifies which elements of C are required.

JOB ¼ �1
The upper triangular part of C is required.

JOB ¼ 0
The diagonal elements of C are required.

JOB > 0
The elements of column JOB of C are required.

Constraint: �1 � JOB � P.

2: P – INTEGER Input

On entry: p, the order of the variance-covariance matrix C.

Constraint: P � 1.

3: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the standard error of the residual vector given by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rTr= n� kð Þ

p
; n > k

� ¼ 0; n ¼ k;

where k is the rank of X.

Constraint: SIGMA � 0:0.

4: AðLDA; PÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if SVD ¼ :FALSE:, A must contain the upper triangular matrix U of the QU
factorization of X, or of the Cholesky factorization of XTX; elements of the array below the
diagonal need not be set.

If SVD ¼ :TRUE:, A must contain the first k rows of the matrix V T, where k is the rank of X
and V is the right-hand orthogonal matrix of the singular value decomposition of X. Thus the ith
row must contain the ith right-hand singular vector of X.

On exit: if JOB � 0, A is unchanged.

If JOB ¼ �1, A contains the upper triangle of the symmetric matrix C.

If SVD ¼ :TRUE:, elements of the array below the diagonal are used as workspace.

If SVD ¼ :FALSE:, they are unchanged.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04YAF
is called.

Constraints:

if SVD ¼ :FALSE: or JOB ¼ �1, LDA � P;
if SVD ¼ :TRUE: and JOB � 0, LDA � max 1; IRANKð Þ.

6: SVD – LOGICAL Input

On entry: must be .TRUE. if the least squares solution was obtained from a singular value
decomposition of X. SVD must be .FALSE. if the least squares solution was obtained from either
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a QU factorization of X or a Cholesky factorization of XTX. In the latter case the rank of X is
assumed to be p and so is applicable only to full rank problems with n � p.

7: IRANK – INTEGER Input

On entry: if SVD ¼ :TRUE:, IRANK must specify the rank k of the matrix X.

If SVD ¼ :FALSE:, IRANK is not referenced and the rank of X is assumed to be p.

Constraint: 0 < IRANK � min n;Pð Þ.

8: SVðPÞ – REAL (KIND=nag_wp) array Input

On entry: if SVD ¼ :TRUE:, SV must contain the first IRANK singular values of X.

If SVD ¼ :FALSE:, SV is not referenced.

9: CJðPÞ – REAL (KIND=nag_wp) array Output

On exit: if JOB ¼ 0, CJ returns the diagonal elements of C.

If JOB ¼ j > 0, CJ returns the jth column of C.

If JOB ¼ �1, CJ is not referenced.

10: WORKðPÞ – REAL (KIND=nag_wp) array Workspace

If JOB > 0, WORK is not referenced.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, P < 1,
or SIGMA < 0:0,
or JOB < �1,
or JOB > P,
or SVD ¼ :TRUE: and (IRANK < 0 or IRANK > P)

or (JOB � 0 and LDA < max 1; IRANKð Þ)
or (JOB ¼ �1 and LDA < P)),

or SVD ¼ :FALSE: and LDA < P.

IFAIL ¼ 2

On entry, SVD ¼ :TRUE: and IRANK ¼ 0.
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IFAIL ¼ 3

On entry, SVD ¼ :FALSE: and overflow would occur in computing an element of C. The upper
triangular matrix U must be very nearly singular.

IFAIL ¼ 4

On entry, SVD ¼ :TRUE: and one of the first IRANK singular values is zero. Either the first
IRANK singular values or IRANK must be incorrect.

overflow

If overflow occurs then either an element of C is very large, or more likely, either the rank, or the
upper triangular matrix, or the singular values or vectors have been incorrectly supplied.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed elements of C will be the exact covariances of a closely neighbouring least squares
problem, so long as a numerically stable method has been used in the solution of the least squares
problem.

8 Parallelism and Performance

F04YAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When JOB ¼ �1 the time taken by F04YAF is approximately proportional to pk2, where k is the rank
of X. When JOB ¼ 0 and SVD ¼ :FALSE:, the time taken by the routine is approximately proportional
to pk2, otherwise the time taken is approximately proportional to pk.

10 Example

This example finds the estimated variances of the sample regression coefficients (the diagonal elements
of C) for the linear least squares problem

min rTr; where r ¼ y�Xb and
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X ¼

0:6 1:2 3:9
5:0 4:0 2:5
1:0 �4:0 �5:5
�1:0 �2:0 �6:5
�4:2 �8:4 �4:8

0BBB@
1CCCA; b ¼

3:0
4:0
�1:0
�5:0
�1:0

0BBB@
1CCCA;

following a solution obtained by F04JGF. See the routine document for F04JGF for further information.

10.1 Program Text

Program f04yafe

! F04YAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04jgf, f04yaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: sigma, tol
Integer :: i, ifail, irank, job, lda, lwork, n, &

p
Logical :: svd

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), cj(:), work(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’F04YAF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, p
lda = n
lwork = 4*p
Allocate (a(lda,p),cj(p),work(lwork),y(n))
tol = 5.0E-4_nag_wp
Read (nin,*)(a(i,1:p),i=1,n)
Read (nin,*) y(1:n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f04jgf(n,p,a,lda,y,tol,svd,sigma,irank,work,lwork,ifail)

Write (nout,*)
Write (nout,99999) ’SIGMA =’, sigma, ’ Rank =’, irank, ’ SVD =’, svd
Write (nout,*)
Write (nout,*) ’Solution vector’
Write (nout,99998) y(1:p)
job = 0

ifail = 0
Call f04yaf(job,p,sigma,a,lda,svd,irank,work,cj,work(p+1),ifail)

Write (nout,*)
Write (nout,*) ’Estimated variances of regression coefficients’
Write (nout,99998) cj(1:p)

99999 Format (1X,A,F9.4,A,I3,A,L3)
99998 Format (1X,7F9.4)

End Program f04yafe
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10.2 Program Data

F04YAF Example Program Data
5 3 : n, p

0.60 1.20 3.90
5.00 4.00 2.50
1.00 -4.00 -5.50

-1.00 -2.00 -6.50
-4.20 -8.40 -4.80 : matrix A
3.0 4.0 -1.0 -5.0 -1.0 : vector Y

10.3 Program Results

F04YAF Example Program Results

SIGMA = 0.4123 Rank = 3 SVD = F

Solution vector
0.9533 -0.8433 0.9067

Estimated variances of regression coefficients
0.0106 0.0093 0.0045
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NAG Library Routine Document

F04YDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04YDF estimates the 1-norm of a real rectangular matrix without accessing the matrix explicitly. It
uses reverse communication for evaluating matrix products. The routine may be used for estimating
condition numbers of square matrices.

2 Specification

SUBROUTINE F04YDF (IREVCM, M, N, X, LDX, Y, LDY, ESTNRM, T, SEED, WORK,
IWORK, IFAIL)

&

INTEGER IREVCM, M, N, LDX, LDY, T, SEED, IWORK(2*N+5*T+20),
IFAIL

&

REAL (KIND=nag_wp) X(LDX,*), Y(LDY,*), ESTNRM, WORK(M*T)

3 Description

F04YDF computes an estimate (a lower bound) for the 1-norm

Ak k1 ¼ max
1�j�n

Xm
i¼1

aij
		 		 ð1Þ

of an m by n real matrix A ¼ aij
� �

. The routine regards the matrix A as being defined by a user-
supplied ‘Black Box’ which, given an n� t matrix X (with t n) or an m� t matrix Y , can return
AX or ATY . A reverse communication interface is used; thus control is returned to the calling program
whenever a matrix product is required.

Note: this routine is not recommended for use when the elements of A are known explicitly; it is then
more efficient to compute the 1-norm directly from formula (1) above.

The main use of the routine is for estimating B�1
�� ��

1
for a square matrix, B, and hence the condition

number �1 Bð Þ ¼ Bk k1 B�1
�� ��

1
, without forming B�1 explicitly (A ¼ B�1 above).

If, for example, an LU factorization of B is available, the matrix products B�1X and B�TY required by
F04YDF may be computed by back- and forward-substitutions, without computing B�1.

The routine can also be used to estimate 1-norms of matrix products such as A�1B and ABC, without
forming the products explicitly. Further applications are described by Higham (1988).

Since Ak k1 ¼ ATk k1, F04YDF can be used to estimate the 1-norm of A by working with AT instead
of A.

The algorithm used is described in Higham and Tisseur (2000).

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

Higham N J and Tisseur F (2000) A block algorithm for matrix 1-norm estimation, with an application
to 1-norm pseudospectra SIAM J. Matrix. Anal. Appl. 21 1185–1201
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5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than X and Y must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: must be set to 0.

On intermediate exit: IREVCM ¼ 1 or 2, and X contains the n� t matrix X and Y contains the
m� t matrix Y . The calling program must

(a) if IREVCM ¼ 1, evaluate AX and store the result in Y
or
if IREVCM ¼ 2, evaluate ATY and store the result in X,

(b) call F04YDF once again, with all the other arguments unchanged.

On intermediate re-entry: IREVCM must be unchanged.

On final exit: IREVCM ¼ 0.

2: M – INTEGER Input

On entry: the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;Tð Þ.
On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 1, contains the current matrix X.

On intermediate re-entry: if IREVCM ¼ 2, must contain ATY .

On final exit: the array is undefined.

5: LDX – INTEGER Input

On initial entry: the leading dimension of the array X as declared in the (sub)program from
which F04YDF is called.

Constraint: LDX � N.

6: YðLDY; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Y must be at least max 1;Tð Þ.
On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 2, contains the current matrix Y .

On intermediate re-entry: if IREVCM ¼ 1, must contain AX.

On final exit: the array is undefined.
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7: LDY – INTEGER Input

On initial entry: the leading dimension of the array Y as declared in the (sub)program from
which F04YDF is called.

Constraint: LDY � M.

8: ESTNRM – REAL (KIND=nag_wp) Input/Output

On initial entry: need not be set.

On intermediate re-entry: must not be changed.

On final exit: an estimate (a lower bound) for Ak k1.

9: T – INTEGER Input

On entry: the number of columns t of the matrices X and Y . This is an argument that can be
used to control the accuracy and reliability of the estimate and corresponds roughly to the
number of columns of A that are visited during each iteration of the algorithm.

If T � 2 then a partly random starting matrix is used in the algorithm.

Suggested value: T ¼ 2.

Constraint: 1 � T � M.

10: SEED – INTEGER Input

On entry: the seed used for random number generation.

If T ¼ 1, SEED is not used.

Constraint: if T > 1, SEED � 1.

11: WORKðM� TÞ – REAL (KIND=nag_wp) array Communication Array
12: IWORKð2� Nþ 5� Tþ 20Þ – INTEGER array Communication Array

On initial entry: need not be set.

On intermediate re-entry: must not be changed.

13: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Internal error; please contact NAG.

F04 – Simultaneous Linear Equations F04YDF

Mark 26 F04YDF.3



IFAIL ¼ �1
On entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0, 1 or 2.

On initial entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0.

IFAIL ¼ �2
On entry, M ¼ valueh i.
Constraint: M � 0.

IFAIL ¼ �3
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �5
On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ �7
On entry, LDY ¼ valueh i and M ¼ valueh i.
Constraint: LDY � M.

IFAIL ¼ �9
On entry, M ¼ valueh i and T ¼ valueh i.
Constraint: 1 � T � M.

IFAIL ¼ �10
On entry, T ¼ valueh i and SEED ¼ valueh i.
Constraint: if T > 1, SEED � 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In extensive tests on random matrices of size up to m ¼ n ¼ 450 the estimate ESTNRM has been
found always to be within a factor two of Ak k1; often the estimate has many correct figures. However,
matrices exist for which the estimate is smaller than Ak k1 by an arbitrary factor; such matrices are very
unlikely to arise in practice. See Higham and Tisseur (2000) for further details.
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8 Parallelism and Performance

F04YDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

For most problems the time taken during calls to F04YDF will be negligible compared with the time
spent evaluating matrix products between calls to F04YDF.

The number of matrix products required depends on the matrix A. At most six products of the form
Y ¼ AX and five products of the form X ¼ ATY will be required. The number of iterations is
independent of the choice of t.

9.2 Overflow

It is your responsibility to guard against potential overflows during evaluation of the matrix products. In
particular, when estimating B�1

�� ��
1
using a triangular factorization of B, F04YDF should not be called

if one of the factors is exactly singular – otherwise division by zero may occur in the substitutions.

9.3 Choice of t

The argument t controls the accuracy and reliability of the estimate. For t ¼ 1, the algorithm behaves
similarly to the LAPACK estimator xLACON. Increasing t typically improves the estimate, without
increasing the number of iterations required.

For t � 2, random matrices are used in the algorithm, so for repeatable results the same value of SEED
should be used each time.

A value of t ¼ 2 is recommended for new users.

9.4 Use in Conjunction with NAG Library Routines

To estimate the 1-norm of the inverse of a matrix A, the following skeleton code can normally be used:

... code to factorize A ...
IF (A is not singular) THEN

IREVCM = 0
10 CALL F04YDF (IREVCM,M,N,X,LDX,Y,LDY,ESTNRM,T,SEED,WORK, &

IWORK,IFAIL)
IF (IREVCM.NE.0) THEN

IF (IREVCM.EQ.1) THEN
... code to compute Y=inv(A)X ...

ELSE
... code to compute X=inv(transpose(A))Y ...

END IF
GO TO 10

END IF
END IF

To compute A�1X or A�TY , solve the equation AY ¼ X or ATX ¼ Y , storing the result in Y or X
respectively. The code will vary, depending on the type of the matrix A, and the NAG routine used to
factorize A.

The factorization will normally have been performed by a suitable routine from Chapters F01, F03 or
F07. Note also that many of the ‘Black Box’ routines in Chapter F04 for solving systems of equations
also return a factorization of the matrix. The example program in Section 10 illustrates how F04YDF
can be used in conjunction with NAG Library routines for LU factorization of a real matrix F07ADF
(DGETRF).
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It is straightforward to use F04YDF for the following other types of matrix, using the named routines
for factorization and solution:

nonsymmetric tridiagonal (F01LEF and F04LEF);

nonsymmetric almost block-diagonal (F01LHF and F04LHF);

nonsymmetric band (F07BDF (DGBTRF) and F07BEF (DGBTRS));

symmetric positive definite (F07FDF (DPOTRF) and F07FEF (DPOTRS));

symmetric positive definite band (F07HDF (DPBTRF) and F07HEF (DPBTRS));

symmetric positive definite tridiagonal (F07JAF (DPTSV), F07JDF (DPTTRF) and F07JEF
(DPTTRS));

symmetric positive definite variable bandwidth (F01MCF and F04MCF);

symmetric positive definite sparse (F11JAF and F11JBF);

symmetric indefinite (F07PDF (DSPTRF) and F07PEF (DSPTRS));

nonsymmetric sparse (F11MEF and F11MFF; note that F11MGF can also be used here).

For upper or lower triangular matrices, no factorization routine is needed: Y ¼ A�1X and X ¼ A�TY
may be computed by calls to F06PJF (DTRSV) (or F06PKF (DTBSV) if the matrix is banded, or
F06PLF (DTPSV) if the matrix is stored in packed form).

10 Example

For this routine two examples are provided. There is a single example program for F04YDF, with a
main program and the code to solve the two example problems is given in Example 1 (EX1) and
Example 2 (EX2).

Example 1 (EX1)

This example estimates the condition number Ak k1 A�1
�� ��

1
of the matrix A given by

A ¼

0:7 �0:2 1:0 0:0 2:0 0:1
0:3 0:7 0:0 1:0 0:9 0:2
0:0 0:0 0:2 0:7 0:0 �1:1
0:0 3:4 �0:7 0:2 0:1 0:1
0:0 �4:0 0:0 1:0 9:0 0:0
0:4 1:2 4:3 0:0 6:2 5:9

0BBBBB@

1CCCCCA:
Example 2 (EX2)

This example estimates the condition number of the sparse matrix A (stored in symmetric coordinate
storage format) given by

A ¼

0:0 0:0 0:0 1:0 0:0
3:0 1:0 0:0 0:0 0:0
0:0 2:0 0:0 2:0 0:0
2:0 0:0 4:0 0:0 5:0
0:0 1:0 2:0 0:0 0:0

0BBB@
1CCCA:

10.1 Program Text

Program f04ydfe

! F04YDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Executable Statements ..
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Write (nout,*) ’F04YDF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: dgetrf, dgetrs, f04ydf, f06raf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: cond, nrma, nrminv
Integer :: i, ifail, irevcm, lda, ldx, ldy, m, &

n, seed, t
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), work(:), x(:,:), y(:,:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’Example 1’
Write (nout,*)

! Skip heading in data file
Read (nin,’(///A)’)
Read (nin,*) m, n, t

lda = m
ldx = n
ldy = m
Allocate (a(lda,n),x(ldx,t),y(ldy,t),work(m*t),iwork(2*n+5*t+20), &

ipiv(n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,m)

! Compute 1-norm of A
nrma = f06raf(’1’,m,n,a,lda,work)
Write (nout,99999) ’The norm of A is: ’, nrma

! Estimate the norm of A^(-1) without explicitly forming A^(-1)

! Perform an LU factorization so that A=LU where L and U are lower
! and upper triangular.

ifail = 0

! The NAG name equivalent of dgetrf is f07adf
Call dgetrf(m,n,a,lda,ipiv,ifail)

seed = 354
irevcm = 0

loop: Do
Call f04ydf(irevcm,m,n,x,ldx,y,ldy,nrminv,t,seed,work,iwork,ifail)
If (irevcm==0) Then

Exit loop
Else If (irevcm==1) Then

! Compute y = inv(A)*x

! The NAG name equivalent of dgetrs is f07aef
Call dgetrs(’N’,n,t,a,lda,ipiv,x,ldx,ifail)

! x was overwritten by dgetrs, so set y=x
y(1:n,1:t) = x(1:n,1:t)

Else
! Compute x = transpose(inv(A))*y

! The NAG name equivalent of dgetrs is f07aef
Call dgetrs(’T’,n,t,a,lda,ipiv,y,ldy,ifail)

! y was overwritten by dgetrs so set x=y
x(1:n,1:t) = y(1:n,1:t)
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End If
End Do loop

Write (nout,99999) ’The estimated norm of inverse(A) is: ’, nrminv

! Compute and print the estimated condition number
cond = nrminv*nrma
Write (nout,*)
Write (nout,99999) ’Estimated condition number of A: ’, cond
Write (nout,*)

99999 Format (1X,A,F6.2)

End Subroutine ex1

Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: f01brf, f04axf, f04ydf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp

! .. Local Scalars ..
Real (Kind=nag_wp) :: asum, cond, nrma, nrminv, pivot, &

resid
Integer :: i, ifail, irevcm, j, ldx, ldy, licn, &

lirn, n, nin, nout, nz, seed, t
Logical :: grow, lblock

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), w(:), work(:), x(:,:), y(:,:)
Integer, Allocatable :: icn(:), ikeep(:), irn(:), iw(:), &

iwork(:)
Integer :: idisp(10)
Logical :: abort(4)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max

! .. Executable Statements ..
Continue
nout = 6
nin = 5
Write (nout,’(//1X,A/)’) ’Example 2’

! Skip heading in data file
Read (nin,’(//A)’)

! Input N, the order of the matrix A, and NZ the number of nonzero
! elements of A, together with t the norm estimation parameter.

Read (nin,*) n, nz, t
licn = 4*nz
lirn = 2*nz
ldx = n
ldy = n

! Allocate the required memory
Allocate (a(licn),icn(licn),irn(lirn),x(ldx,t),y(ldy,t),work(n*t), &

ikeep(5*n),iwork(2*n+5*t+20),iw(8*n),w(n))

! Input the elements of A, along with row and column information.
Read (nin,*)(a(i),irn(i),icn(i),i=1,nz)

! Compute 1-norm of A
nrma = zero
Do i = 1, n

asum = zero
Do j = 1, nz

If (icn(j)==i) Then
asum = asum + abs(a(j))

End If
End Do
nrma = max(nrma,asum)
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End Do
Write (nout,99999) ’The norm of A is: ’, nrma

! Perform an LU factorization so that A=LU where L and U are lower
! and upper triangular, using F01BRF

pivot = 0.1_nag_wp
grow = .True.
lblock = .True.
abort(1) = .True.
abort(2) = .True.
abort(3) = .False.
abort(4) = .True.

ifail = 0
Call f01brf(n,nz,a,licn,irn,lirn,icn,pivot,ikeep,iw,w,lblock,grow, &

abort,idisp,ifail)

! Compute an estimate of the 1-norm of inv(A)
seed = 412
irevcm = 0

loop: Do
Call f04ydf(irevcm,n,n,x,ldx,y,ldy,nrminv,t,seed,work,iwork,ifail)
If (irevcm==0) Then

Exit loop
Else If (irevcm==1) Then

! Compute y = inv(A)*x
Do i = 1, t

Call f04axf(n,a,licn,icn,ikeep,x(1,i),w,irevcm,idisp,resid)
End Do

! x was overwritten by f04axf, so set y=x
y(1:n,1:t) = x(1:n,1:t)

Else
! Compute x = transpose(inv(A))*y

Do i = 1, t
Call f04axf(n,a,licn,icn,ikeep,y(1,i),w,irevcm,idisp,resid)

End Do
! y was overwritten by f04axf so set x=y

x(1:n,1:t) = y(1:n,1:t)
End If

End Do loop

Write (nout,99999) ’The estimated norm of inverse(A) is: ’, nrminv

! Compute and print the estimated condition number
cond = nrminv*nrma
Write (nout,*)
Write (nout,99999) ’Estimated condition number of A: ’, cond
Write (nout,*)

99999 Format (1X,A,F6.2)

End Subroutine ex2
End Program f04ydfe

10.2 Program Data

F04YDF Example Program Data

Example 1

6 6 2 :Values of M, N and t

0.7 -0.2 1.0 0.0 2.0 0.1
0.3 0.7 0.0 1.0 0.9 0.2
0.0 0.0 0.2 0.7 0.0 -1.1
0.0 3.4 -0.7 0.2 0.1 0.1
0.0 -4.0 0.0 1.0 9.0 0.0
0.4 1.2 4.3 0.0 6.2 5.9 :End of matrix A

Example 2
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5 10 2 :Values of N, NZ and t

3.0 2 1
2.0 4 1
1.0 2 2
2.0 3 2
1.0 5 2
4.0 4 3
2.0 5 3
1.0 1 4
2.0 3 4
5.0 4 5 :End of matrix A

10.3 Program Results

F04YDF Example Program Results
Example 1

The norm of A is: 18.20
The estimated norm of inverse(A) is: 2.97

Estimated condition number of A: 54.14

Example 2

The norm of A is: 6.00
The estimated norm of inverse(A) is: 3.37

Estimated condition number of A: 20.20
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NAG Library Routine Document

F04ZDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F04ZDF estimates the 1-norm of a complex rectangular matrix without accessing the matrix explicitly.
It uses reverse communication for evaluating matrix products. The routine may be used for estimating
condition numbers of square matrices.

2 Specification

SUBROUTINE F04ZDF (IREVCM, M, N, X, LDX, Y, LDY, ESTNRM, T, SEED, WORK,
RWORK, IWORK, IFAIL)

&

INTEGER IREVCM, M, N, LDX, LDY, T, SEED,
IWORK(2*N+5*T+20), IFAIL

&

REAL (KIND=nag_wp) ESTNRM, RWORK(2*N)
COMPLEX (KIND=nag_wp) X(LDX,*), Y(LDY,*), WORK(M*T)

3 Description

F04ZDF computes an estimate (a lower bound) for the 1-norm

Ak k1 ¼ max
1�j�n

Xm
i¼1

aij
		 		 ð1Þ

of an m by n complex matrix A ¼ aij
� �

. The routine regards the matrix A as being defined by a user-
supplied ‘Black Box’ which, given an n� t matrix X (with t n) or an m� t matrix Y , can return
AX or AHY , where AH is the complex conjugate transpose. A reverse communication interface is used;
thus control is returned to the calling program whenever a matrix product is required.

Note: this routine is not recommended for use when the elements of A are known explicitly; it is then
more efficient to compute the 1-norm directly from the formula (1) above.

The main use of the routine is for estimating B�1
�� ��

1
for a square matrix B, and hence the condition

number �1 Bð Þ ¼ Bk k1 B�1
�� ��

1
, without forming B�1 explicitly (A ¼ B�1 above).

If, for example, an LU factorization of B is available, the matrix products B�1X and B�HY required by
F04ZDF may be computed by back- and forward-substitutions, without computing B�1.

The routine can also be used to estimate 1-norms of matrix products such as A�1B and ABC, without
forming the products explicitly. Further applications are described in Higham (1988).

Since Ak k1 ¼ AHk k1, F04ZDF can be used to estimate the 1-norm of A by working with AH instead
of A.

The algorithm used is described in Higham and Tisseur (2000).

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

Higham N J and Tisseur F (2000) A block algorithm for matrix 1-norm estimation, with an application
to 1-norm pseudospectra SIAM J. Matrix. Anal. Appl. 21 1185–1201
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5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than X and Y must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: must be set to 0.

On intermediate exit: IREVCM ¼ 1 or 2, and X contains the n� t matrix X and Y contains the
m� t matrix Y . The calling program must

(a) if IREVCM ¼ 1, evaluate AX and store the result in Y
or
if IREVCM ¼ 2, evaluate AHY and store the result in X, where AH is the complex conjugate
transpose;

(b) call F04ZDF once again, with all the arguments unchanged.

On intermediate re-entry: IREVCM must be unchanged.

On final exit: IREVCM ¼ 0.

2: M – INTEGER Input

On entry: the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On initial entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;Tð Þ.
On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 1, contains the current matrix X.

On intermediate re-entry: if IREVCM ¼ 2, must contain AHY .

On final exit: the array is undefined.

5: LDX – INTEGER Input

On initial entry: the leading dimension of the array X as declared in the (sub)program from
which F04ZDF is called.

Constraint: LDX � N.

6: YðLDY; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Y must be at least max 1;Tð Þ.
On initial entry: need not be set.

On intermediate exit: if IREVCM ¼ 2, contains the current matrix Y .

On intermediate re-entry: if IREVCM ¼ 1, must contain AX.

On final exit: the array is undefined.
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7: LDY – INTEGER Input

On initial entry: the leading dimension of the array Y as declared in the (sub)program from
which F04ZDF is called.

Constraint: LDY � M.

8: ESTNRM – REAL (KIND=nag_wp) Input/Output

On initial entry: need not be set.

On intermediate re-entry: must not be changed.

On final exit: an estimate (a lower bound) for Ak k1.

9: T – INTEGER Input

On entry: the number of columns t of the matrices X and Y . This is an argument that can be
used to control the accuracy and reliability of the estimate and corresponds roughly to the
number of columns of A that are visited during each iteration of the algorithm.

If T � 2 then a partly random starting matrix is used in the algorithm.

Suggested value: T ¼ 2.

Constraint: 1 � T � M.

10: SEED – INTEGER Input

On entry: the seed used for random number generation.

If T ¼ 1, SEED is not used.

Constraint: if T > 1, SEED � 1.

11: WORKðM� TÞ – COMPLEX (KIND=nag_wp) array Communication Array
12: RWORKð2� NÞ – REAL (KIND=nag_wp) array Communication Array
13: IWORKð2� Nþ 5� Tþ 20Þ – INTEGER array Communication Array

On initial entry: need not be set.

On intermediate re-entry: must not be changed.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Internal error; please contact NAG.
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IFAIL ¼ �1
On entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0, 1 or 2.

On initial entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0.

IFAIL ¼ �2
On entry, M ¼ valueh i.
Constraint: M � 0.

IFAIL ¼ �3
On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �5
On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ �7
On entry, LDY ¼ valueh i and M ¼ valueh i.
Constraint: LDY � M.

IFAIL ¼ �9
On entry, M ¼ valueh i and T ¼ valueh i.
Constraint: 1 � T � M.

IFAIL ¼ �10
On entry, T ¼ valueh i and SEED ¼ valueh i.
Constraint: if T > 1, SEED � 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In extensive tests on random matrices of size up to m ¼ n ¼ 450 the estimate ESTNRM has been
found always to be within a factor two of Ak k1; often the estimate has many correct figures. However,
matrices exist for which the estimate is smaller than Ak k1 by an arbitrary factor; such matrices are very
unlikely to arise in practice. See Higham and Tisseur (2000) for further details.
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8 Parallelism and Performance

F04ZDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

For most problems the time taken during calls to F04ZDF will be negligible compared with the time
spent evaluating matrix products between calls to F04ZDF.

The number of matrix products required depends on the matrix A. At most six products of the form
Y ¼ AX and five products of the form X ¼ AHY will be required. The number of iterations is
independent of the choice of t.

9.2 Overflow

It is your responsibility to guard against potential overflows during evaluation of the matrix products. In
particular, when estimating B�1

�� ��
1
using a triangular factorization of B, F04ZDF should not be called

if one of the factors is exactly singular – otherwise division by zero may occur in the substitutions.

9.3 Choice of t

The argument t controls the accuracy and reliability of the estimate. For t ¼ 1, the algorithm behaves
similarly to the LAPACK estimator xLACON. Increasing t typically improves the estimate, without
increasing the number of iterations required.

For t � 2, random matrices are used in the algorithm, so for repeatable results the same value of SEED
should be used each time.

A value of t ¼ 2 is recommended for new users.

9.4 Use in Conjunction with NAG Library Routines

To estimate the 1-norm of the inverse of a matrix A, the following skeleton code can normally be used:

... code to factorize A ...
IF (A is not singular) THEN

IREVCM = 0
10 CALL F04ZDF (IREVCM,M,N,X,LDX,Y,LDY,ESTNRM,T,SEED,WORK, &

RWORK,IWORK,IFAIL)
IF (IREVCM.NE.0) THEN

IF (IREVCM.EQ.1) THEN
... code to compute Y=inv(A)X ...

ELSE
... code to compute X=inv(herm(A))Y ...

END IF
GO TO 10

END IF
END IF

To compute A�1X or A�HY , solve the equation AY ¼ X or AHX ¼ Y storing the result in Y or X
respectively. The code will vary, depending on the type of the matrix A, and the NAG routine used to
factorize A.

The example program in Section 10 illustrates how F04ZDF can be used in conjunction with NAG
Library routine for LU factorization of complex matrices F07ARF (ZGETRF)).

It is also straightforward to use F04ZDF for Hermitian positive definite matrices, using F06TFF,
F07FRF (ZPOTRF) and F07FSF (ZPOTRS) for factorization and solution.
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For upper or lower triangular square matrices, no factorization routine is needed: Y ¼ A�1X and
X ¼ A�HY may be computed by calls to F06SJF (ZTRSV) (or F06SKF (ZTBSV) if the matrix is
banded, or F06SLF (ZTPSV) if the matrix is stored in packed form).

10 Example

This example estimates the condition number Ak k1 A�1
�� ��

1
of the matrix A given by

A ¼

0:7þ 0:1i �0:2þ 0:0i 1:0þ 0:0i 0:0þ 0:0i 0:0þ 0:0i 0:1þ 0:0i
0:3þ 0:0i 0:7þ 0:0i 0:0þ 0:0i 1:0þ 0:2i 0:9þ 0:0i 0:2þ 0:0i
0:0þ 5:9i 0:0þ 0:0i 0:2þ 0:0i 0:7þ 0:0i 0:4þ 6:1i 1:1þ 0:4i
0:0þ 0:1i 0:0þ 0:1i �0:7þ 0:0i 0:2þ 0:0i 0:1þ 0:0i 0:1þ 0:0i
0:0þ 0:0i 4:0þ 0:0i 0:0þ 0:0i 1:0þ 0:0i 9:0þ 0:0i 0:0þ 0:1i
4:5þ 6:7i 0:1þ 0:4i 0:0þ 3:2i 1:2þ 0:0i 0:0þ 0:0i 7:8þ 0:2i

0BBBBB@

1CCCCCA:

10.1 Program Text

Program f04zdfe

! F04ZDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f04zdf, f06uaf, nag_wp, zgetrf, zgetrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: cond, nrma, nrminv
Integer :: i, ifail, irevcm, lda, ldx, ldy, m, &

n, seed, t
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:), x(:,:), y(:,:)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Real (Kind=nag_wp) :: workr(1)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F04ZDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, t

lda = m
ldx = n
ldy = m
Allocate (a(lda,n))
Allocate (x(ldx,t))
Allocate (y(ldy,t))
Allocate (work(m*t))
Allocate (rwork(2*n))
Allocate (iwork(2*n+5*t+20))
Allocate (ipiv(n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,m)

! Compute 1-norm of A
nrma = f06uaf(’1’,m,n,a,lda,workr)
Write (nout,99999) ’The norm of A is: ’, nrma

! Estimate the norm of A^(-1) without forming A^(-1)
irevcm = 0
ifail = 0
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seed = 652

! Perform an LU factorization so that A=LU where L and U are lower
! and upper triangular.

! The NAG name equivalent of zgetrf is f07arf
Call zgetrf(m,n,a,lda,ipiv,ifail)

loop: Do
Call f04zdf(irevcm,m,n,x,ldx,y,ldy,nrminv,t,seed,work,rwork,iwork, &

ifail)
If (irevcm/=0) Then

If (irevcm==1) Then
! Compute Y = inv(A)*X

! The NAG name equivalent of zgetrf is f07asf
Call zgetrs(’N’,n,t,a,lda,ipiv,x,ldx,ifail)

! X was overwritten by ZGETRS, so set Y=X
y(1:n,1:t) = x(1:n,1:t)

Else
! Compute X = herm(inv(A))*Y

! The NAG name equivalent of zgetrf is f07asf
Call zgetrs(’C’,n,t,a,lda,ipiv,y,ldy,ifail)

! Y was overwritten by ZGETRS, so set X=Y
x(1:n,1:t) = y(1:n,1:t)

End If
Else

Write (nout,99999) ’The estimated norm of inverse(A) is: ’, nrminv

! Compute and print the estimated condition number
cond = nrminv*nrma
Write (nout,*)
Write (nout,99999) ’Estimated condition number of A: ’, cond
Write (nout,*)
Exit loop

End If
End Do loop

99999 Format (1X,A,F6.2)

End Program f04zdfe

10.2 Program Data

F04ZDF Example Program Data

6 6 2 :Values of M, N, t

(0.7,0.1) (-0.2,0.0) ( 1.0,0.0) (0.0,0.0) (0.0,0.0) (0.1,0.0)
(0.3,0.0) ( 0.7,0.0) ( 0.0,0.0) (1.0,0.2) (0.9,0.0) (0.2,0.0)
(0.0,5.9) ( 0.0,0.0) ( 0.2,0.0) (0.7,0.0) (0.4,6.1) (1.1,0.4)
(0.0,0.1) ( 0.0,0.1) (-0.7,0.0) (0.2,0.0) (0.1,0.0) (0.1,0.0)
(0.0,0.0) ( 4.0,0.0) ( 0.0,0.0) (1.0,0.0) (9.0,0.0) (0.0,0.1)
(4.5,6.7) ( 0.1,0.4) ( 0.0,3.2) (1.2,0.0) (0.0,0.0) (7.8,0.2) :End of matrix A

10.3 Program Results

F04ZDF Example Program Results

The norm of A is: 16.11
The estimated norm of inverse(A) is: 24.02

Estimated condition number of A: 387.08
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NAG Library Chapter Contents

F05 – Orthogonalization

F05 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

F05AAF 5 nagf_orthog_real_gram_schmidt
Gram–Schmidt orthogonalization of n vectors of order m
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NAG Library Chapter Introduction
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1 Scope of the Chapter

This chapter is concerned with the orthogonalization of vectors in a finite dimensional space.

2 Background to the Problems

Let a1; a2; . . . ; an be a set of n linearly independent vectors in m-dimensional space; m � n.
We wish to construct a set of n vectors q1; q2; . . . ; qn such that:

– the vectors qif g form an orthonormal set; that is, qTi qj ¼ 0 for i 6¼ j, and qik k2 ¼ 1;

– each ai is linearly dependent on the set qif g.

2.1 Gram–Schmidt Orthogonalization

The classical Gram–Schmidt orthogonalization process is described in many textbooks; see for example
Chapter 5 of Golub and Van Loan (1996).

It constructs the orthonormal set progressively. Suppose it has computed orthonormal vectors
q1; q2; . . . ; qk which orthogonalise the first k vectors a1; a2; . . . ; ak. It then uses akþ1 to compute qkþ1 as
follows:

zkþ1 ¼ akþ1 �
Xk
i¼1

qTi akþ1
� �

qi

qkþ1 ¼ zkþ1= zkþ1k k2:

In finite precision computation, this process can result in a set of vectors qif g which are far from being
orthogonal. This is caused by zkþ1j j being small compared with akþ1j j. If this situation is detected, it
can be remedied by reorthogonalising the computed qkþ1 against q1; q2; . . . ; qk, that is, repeating the
process with the computed qkþ1 instead of akþ1. See Danial et al. (1976).

2.2 Householder Orthogonalization

An alternative approach to orthogonalising a set of vectors is based on the QR factorization (see the
F08 Chapter Introduction), which is usually performed by Householder's method. See Chapter 5 of
Golub and Van Loan (1996).

Let A be the m by n matrix whose columns are the n vectors to be orthogonalised. The QR
factorization gives

A ¼ QR

where R is an n by n upper triangular matrix and Q is an m by n matrix, whose columns are the
required orthonormal set.

Moreover, for any k such that 1 � k � n, the first k columns of Q are an orthonormal basis for the first
k columns of A.

Householder's method requires twice as much work as the Gram–Schmidt method, provided that no re-
orthogonalization is required in the latter. However, it has satisfactory numerical properties and yields
vectors which are close to orthogonality even when the original vectors ai are close to being linearly
dependent.

3 Recommendations on Choice and Use of Available Routines

The single routine in this chapter, F05AAF, uses the Gram–Schmidt method, with re-orthogonalization
to ensure that the computed vectors are close to being exactly orthogonal. This method is only available
for real vectors.

To apply Householder's method, you must use routines in Chapter F08:

for real vectors: F08AEF (DGEQRF), followed by F08AFF (DORGQR)

for complex vectors: F08ASF (ZGEQRF), followed by F08ATF (ZUNGQR)
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The example programs for F08AEF (DGEQRF) or F08ASF (ZGEQRF) illustrate the necessary calls to
these routines.

4 Routines Withdrawn or Scheduled for Withdrawal

None.

5 References

Danial J W, Gragg W B, Kaufman L and Stewart G W (1976) Reorthogonalization and stable
algorithms for updating the Gram–Schmidt QR factorization Math. Comput. 30 772–795

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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NAG Library Routine Document

F05AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F05AAF applies the Schmidt orthogonalization process to n vectors in m-dimensional space, n � m.

2 Specification

SUBROUTINE F05AAF (A, LDA, M, N1, N2, S, CC, ICOL, IFAIL)

INTEGER LDA, M, N1, N2, ICOL, IFAIL
REAL (KIND=nag_wp) A(LDA,N2), S(N2), CC

3 Description

F05AAF applies the Schmidt orthogonalization process to n linearly independent vectors in
m-dimensional space, n � m. The effect of this process is to replace the original n vectors by n
orthonormal vectors which have the property that the rth vector is linearly dependent on the first r of
the original vectors, and that the sum of squares of the elements of the rth vector is equal to 1, for
r ¼ 1; 2; . . . ; n. Inner-products are accumulated using additional precision.

4 References

None.

5 Arguments

1: AðLDA;N2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: columns N1 to N2 contain the vectors to be orthogonalized. The vectors are stored by
columns in elements 1 to m.

On exit: these vectors are overwritten by the orthonormal vectors.

2: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F05AAF
is called.

Constraint: LDA � M.

3: M – INTEGER Input

On entry: m, the number of elements in each vector.

4: N1 – INTEGER Input
5: N2 – INTEGER Input

On entry: the indices of the first and last columns of A to be orthogonalized.

Constraint: N1 � N2.

6: SðN2Þ – REAL (KIND=nag_wp) array Workspace

F05 – Orthogonalisation F05AAF
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7: CC – REAL (KIND=nag_wp) Output

On exit: is used to indicate linear dependence of the original vectors. The nearer CC is to 1:0, the
more likely vector ICOL is dependent on vectors N1 to ICOL� 1. See Section 9.

8: ICOL – INTEGER Output

On exit: the column number corresponding to CC. See Section 9.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 > N2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Innerproducts are accumulated using additional precision arithmetic and full machine accuracy should
be obtained except when CC > 0:99999. (See Section 9.)

8 Parallelism and Performance

F05AAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The time taken by F05AAF is approximately proportional to nm2, where n ¼ N2� N1þ 1.

Arguments CC and ICOL have been included to give some indication of whether or not the vectors are
nearly linearly independent, and their values should always be tested on exit from the routine. CC will
be in the range 0:0; 1:0½ � and the closer CC is to 1:0, the more likely the vector ICOL is to be linearly
dependent on vectors N1 to ICOL� 1. Theoretically, when the vectors are linearly dependent, CC
should be exactly 1:0. In practice, because of rounding errors, it may be difficult to decide whether or
not a value of CC close to 1:0 indicates linear dependence. As a general guide a value of CC > 0:99999
usually indicates linear dependence, but examples exist which give CC > 0:99999 for linearly
independent vectors. If one of the original vectors is zero or if, possibly due to rounding errors, an
exactly zero vector is produced by the Gram–Schmidt process, then CC is set exactly to 1:0 and the
vector is not, of course, normalized. If more than one such vector occurs then ICOL references the last
of these vectors.

If you are concerned about testing for near linear dependence in a set of vectors you may wish to
consider using routine F08KBF (DGESVD).

10 Example

This example orthonormalizes columns 2, 3 and 4 of the matrix:

1 �2 3 1
�2 1 �2 �1
3 �2 1 5
4 1 5 3

0B@
1CA:

10.1 Program Text

Program f05aafe

! F05AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f05aaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: cc
Integer :: i, icol, ifail, lda, m, n1, n2

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), s(:)

! .. Executable Statements ..
Write (nout,*) ’F05AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m, n1, n2
lda = m
Allocate (a(lda,n2),s(n2))

Read (nin,*)(a(i,1:n2),i=1,m)

ifail = 0
Call f05aaf(a,lda,m,n1,n2,s,cc,icol,ifail)

Write (nout,*)
Write (nout,99999) ’N1 = ’, n1, ’ N2 = ’, n2
Write (nout,*)
Write (nout,99998) ’CC = ’, cc, ’ ICOL = ’, icol
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Write (nout,*)
Write (nout,*) ’Final vectors’
Write (nout,99997)(a(i,n1:n2),i=1,m)

99999 Format (1X,A,I2,A,I2)
99998 Format (1X,A,F7.4,A,I2)
99997 Format (1X,3F9.4)

End Program f05aafe

10.2 Program Data

F05AAF Example Program Data
4 2 4
1 -2 3 1

-2 1 -2 -1
3 -2 1 5
4 1 5 3

10.3 Program Results

F05AAF Example Program Results

N1 = 2 N2 = 4

CC = 0.5822 ICOL = 4

Final vectors
-0.6325 0.3310 -0.5404
0.3162 -0.2483 0.2119

-0.6325 -0.0000 0.7735
0.3162 0.9104 0.2543
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NAG Library Chapter Contents

F06 – Linear Algebra Support Routines

F06 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

F06AAF (DROTG) 12 DROTG
nagf_blas_drotg
Generate real plane rotation

F06BAF 12 nagf_blas_drotgc
Generate real plane rotation, storing tangent

F06BCF 12 nagf_blas_dcsg
Recover cosine and sine from given real tangent

F06BEF 12 nagf_blas_drotj
Generate real Jacobi plane rotation

F06BHF 12 nagf_blas_drot2
Apply real similarity rotation to 2 by 2 symmetric matrix

F06BLF 12 nagf_blas_ddiv
Compute quotient of two real scalars, with overflow flag

F06BMF 12 nagf_blas_dnorm
Compute Euclidean norm from scaled form

F06BNF 12 nagf_blas_dpyth
Compute square root of a2 þ b2

� �
, real a and b

F06BPF 12 nagf_blas_deig2
Compute eigenvalue of 2 by 2 real symmetric matrix

F06CAF 12 nagf_blas_zrotgc
Generate complex plane rotation, storing tangent, real cosine

F06CBF 12 nagf_blas_zrotgs
Generate complex plane rotation, storing tangent, real sine

F06CCF 12 nagf_blas_zcsg
Recover cosine and sine from given complex tangent, real
cosine

F06CDF 12 nagf_blas_zcsgs
Recover cosine and sine from given complex tangent, real sine

F06CHF 12 nagf_blas_zrot2
Apply complex similarity rotation to 2 by 2 Hermitian matrix

F06CLF 12 nagf_blas_zdiv
Compute quotient of two complex scalars, with overflow flag

F06DBF 12 nagf_blas_iload
Broadcast scalar into integer vector

F06DFF 12 nagf_blas_icopy
Copy integer vector

F06EAF (DDOT) 12 DDOT
nagf_blas_ddot
Dot product of two real vectors

F06ECF (DAXPY) 12 DAXPY
nagf_blas_daxpy
Add scalar times real vector to real vector

F06EDF (DSCAL) 12 DSCAL
nagf_blas_dscal
Multiply real vector by scalar

F06EFF (DCOPY) 12 DCOPY
nagf_blas_dcopy
Copy real vector
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F06EGF (DSWAP) 12 DSWAP
nagf_blas_dswap
Swap two real vectors

F06EJF (DNRM2) 12 DNRM2
nagf_blas_dnrm2
Compute Euclidean norm of real vector

F06EKF (DASUM) 12 DASUM
nagf_blas_dasum
Sum absolute values of real vector elements

F06EPF (DROT) 12 DROT
nagf_blas_drot
Apply real plane rotation

F06ERF (DDOTI) 14 DDOTI
nagf_blas_ddoti
Dot product of a real sparse and a full vector

F06ETF (DAXPYI) 14 DAXPYI
nagf_blas_daxpyi
Add scalar times real sparse vector to a full vector

F06EUF (DGTHR) 14 DGTHR
nagf_blas_dgthr
Gather real sparse vector

F06EVF (DGTHRZ) 14 DGTHRZ
nagf_blas_dgthrz
Gather and set to zero real sparse vector

F06EWF (DSCTR) 14 DSCTR
nagf_blas_dsctr
Scatter real sparse vector

F06EXF (DROTI) 14 DROTI
nagf_blas_droti
Apply plane rotation to a real sparse and a full vector

F06FAF 12 nagf_blas_dvcos
Compute cosine of angle between two real vectors

F06FBF 12 nagf_blas_dload
Broadcast scalar into real vector

F06FCF 12 nagf_blas_ddscl
Multiply real vector by diagonal matrix

F06FDF 12 nagf_blas_axpzy
Multiply real vector by scalar, preserving input vector

F06FEF 21 nagf_blas_drscl
Multiply real vector by reciprocal of scalar

F06FGF 12 nagf_blas_dnegv
Negate real vector

F06FJF 12 nagf_blas_dssq
Update Euclidean norm of real vector in scaled form

F06FKF 12 nagf_blas_dnrm2w
Compute weighted Euclidean norm of real vector

F06FLF 12 nagf_blas_darang
Elements of real vector with largest and smallest absolute value

F06FPF 12 nagf_blas_drots
Apply real symmetric plane rotation to two vectors

F06FQF 12 nagf_blas_dsrotg
Generate sequence of real plane rotations

F06FRF 12 nagf_blas_dnhousg
Generate real elementary reflection, NAG style

F06FSF 12 nagf_blas_dlhousg
Generate real elementary reflection, LINPACK style

F06FTF 12 nagf_blas_dnhous
Apply real elementary reflection, NAG style
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F06FUF 12 nagf_blas_dlhous
Apply real elementary reflection, LINPACK style

F06GAF (ZDOTU) 12 ZDOTU
nagf_blas_zdotu
Dot product of two complex vectors, unconjugated

F06GBF (ZDOTC) 12 ZDOTC
nagf_blas_zdotc
Dot product of two complex vectors, conjugated

F06GCF (ZAXPY) 12 ZAXPY
nagf_blas_zaxpy
Add scalar times complex vector to complex vector

F06GDF (ZSCAL) 12 ZSCAL
nagf_blas_zscal
Multiply complex vector by complex scalar

F06GFF (ZCOPY) 12 ZCOPY
nagf_blas_zcopy
Copy complex vector

F06GGF (ZSWAP) 12 ZSWAP
nagf_blas_zswap
Swap two complex vectors

F06GRF (ZDOTUI) 14 ZDOTUI
nagf_blas_zdotui
Dot product of a complex sparse and a full vector,
unconjugated

F06GSF (ZDOTCI) 14 ZDOTCI
nagf_blas_zdotci
Dot product of a complex sparse and a full vector, conjugated

F06GTF (ZAXPYI) 14 ZAXPYI
nagf_blas_zaxpyi
Add scalar times complex sparse vector to a full vector

F06GUF (ZGTHR) 14 ZGTHR
nagf_blas_zgthr
Gather complex sparse vector

F06GVF (ZGTHRZ) 14 ZGTHRZ
nagf_blas_zgthrz
Gather and set to zero complex sparse vector

F06GWF (ZSCTR) 14 ZSCTR
nagf_blas_zsctr
Scatter complex sparse vector

F06HBF 12 nagf_blas_zload
Broadcast scalar into complex vector

F06HCF 12 nagf_blas_zdscl
Multiply complex vector by complex diagonal matrix

F06HDF 12 nagf_blas_zaxpzy
Multiply complex vector by complex scalar, preserving input
vector

F06HGF 12 nagf_blas_znegv
Negate complex vector

F06HMF (ZROT) 21 ZROT
nagf_blas_zrot
Apply plane rotation with real cosine and complex sine

F06HPF 12 nagf_blas_zcrot
Apply complex plane rotation

F06HQF 12 nagf_blas_zsrotg
Generate sequence of complex plane rotations

F06HRF 12 nagf_blas_zhousg
Generate complex elementary reflection

F06HTF 12 nagf_blas_zhous
Apply complex elementary reflection
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F06JDF (ZDSCAL) 12 ZDSCAL
nagf_blas_zdscal
Multiply complex vector by real scalar

F06JJF (DZNRM2) 12 DZNRM2
nagf_blas_dznrm2
Compute Euclidean norm of complex vector

F06JKF (DZASUM) 12 DZASUM
nagf_blas_dzasum
Sum absolute values of complex vector elements

F06JLF (IDAMAX) 12 IDAMAX
nagf_blas_idamax
Index, real vector element with largest absolute value

F06JMF (IZAMAX) 12 IZAMAX
nagf_blas_izamax
Index, complex vector element with largest absolute value

F06KCF 12 nagf_blas_zddscl
Multiply complex vector by real diagonal matrix

F06KDF 12 nagf_blas_zdaxpzy
Multiply complex vector by real scalar, preserving input vector

F06KEF 21 nagf_blas_zdrscl
Multiply complex vector by reciprocal of real scalar

F06KFF 12 nagf_blas_zdcopy
Copy real vector to complex vector

F06KJF 12 nagf_blas_dzssq
Update Euclidean norm of complex vector in scaled form

F06KLF 12 nagf_blas_idrank
Last non-negligible element of real vector

F06KPF (ZDROT) 12 ZDROT
nagf_blas_zdrot
Apply real plane rotation to two complex vectors

F06PAF (DGEMV) 12 DGEMV
nagf_blas_dgemv
Matrix-vector product, real rectangular matrix

F06PBF (DGBMV) 12 DGBMV
nagf_blas_dgbmv
Matrix-vector product, real rectangular band matrix

F06PCF (DSYMV) 12 DSYMV
nagf_blas_dsymv
Matrix-vector product, real symmetric matrix

F06PDF (DSBMV) 12 DSBMV
nagf_blas_dsbmv
Matrix-vector product, real symmetric band matrix

F06PEF (DSPMV) 12 DSPMV
nagf_blas_dspmv
Matrix-vector product, real symmetric packed matrix

F06PFF (DTRMV) 12 DTRMV
nagf_blas_dtrmv
Matrix-vector product, real triangular matrix

F06PGF (DTBMV) 12 DTBMV
nagf_blas_dtbmv
Matrix-vector product, real triangular band matrix

F06PHF (DTPMV) 12 DTPMV
nagf_blas_dtpmv
Matrix-vector product, real triangular packed matrix

F06PJF (DTRSV) 12 DTRSV
nagf_blas_dtrsv
System of equations, real triangular matrix
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F06PKF (DTBSV) 12 DTBSV
nagf_blas_dtbsv
System of equations, real triangular band matrix

F06PLF (DTPSV) 12 DTPSV
nagf_blas_dtpsv
System of equations, real triangular packed matrix

F06PMF (DGER) 12 DGER
nagf_blas_dger
Rank-1 update, real rectangular matrix

F06PPF (DSYR) 12 DSYR
nagf_blas_dsyr
Rank-1 update, real symmetric matrix

F06PQF (DSPR) 12 DSPR
nagf_blas_dspr
Rank-1 update, real symmetric packed matrix

F06PRF (DSYR2) 12 DSYR2
nagf_blas_dsyr2
Rank-2 update, real symmetric matrix

F06PSF (DSPR2) 12 DSPR2
nagf_blas_dspr2
Rank-2 update, real symmetric packed matrix

F06QFF 13 nagf_blas_dmcopy
Matrix copy, real rectangular or trapezoidal matrix

F06QHF 13 nagf_blas_dmload
Matrix initialization, real rectangular matrix

F06QJF 13 nagf_blas_dgeap
Permute rows or columns, real rectangular matrix, permutations
represented by an integer array

F06QKF 13 nagf_blas_dgeapr
Permute rows or columns, real rectangular matrix, permutations
represented by a real array

F06QMF 13 nagf_blas_dsysrc
Orthogonal similarity transformation of real symmetric matrix
as a sequence of plane rotations

F06QPF 13 nagf_blas_dutr1
QR factorization by sequence of plane rotations, rank-1 update
of real upper triangular matrix

F06QQF 13 nagf_blas_dutupd
QR factorization by sequence of plane rotations, real upper
triangular matrix augmented by a full row

F06QRF 13 nagf_blas_duhqr
QR or RQ factorization by sequence of plane rotations, real
upper Hessenberg matrix

F06QSF 13 nagf_blas_dusqr
QR or RQ factorization by sequence of plane rotations, real
upper spiked matrix

F06QTF 13 nagf_blas_dutsqr
QR factorization of UP or RQ factorization of PU , U real
upper triangular, P a sequence of plane rotations

F06QVF 13 nagf_blas_dutsrh
Compute upper Hessenberg matrix by sequence of plane
rotations, real upper triangular matrix

F06QWF 13 nagf_blas_dutsrs
Compute upper spiked matrix by sequence of plane rotations,
real upper triangular matrix

F06QXF 13 nagf_blas_dgesrc
Apply sequence of plane rotations, real rectangular matrix
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F06RAF 15 nagf_blas_dlange
1-norm, 1-norm, Frobenius norm, largest absolute element,
real general matrix

F06RBF 15 nagf_blas_dlangb
1-norm, 1-norm, Frobenius norm, largest absolute element,
real band matrix

F06RCF 15 nagf_blas_dlansy
1-norm, 1-norm, Frobenius norm, largest absolute element,
real symmetric matrix

F06RDF 15 nagf_blas_dlansp
1-norm, 1-norm, Frobenius norm, largest absolute element,
real symmetric matrix, packed storage

F06REF 15 nagf_blas_dlansb
1-norm, 1-norm, Frobenius norm, largest absolute element,
real symmetric band matrix

F06RJF 15 nagf_blas_dlantr
1-norm, 1-norm, Frobenius norm, largest absolute element,
real trapezoidal/triangular matrix

F06RKF 15 nagf_blas_dlantp
1-norm, 1-norm, Frobenius norm, largest absolute element,
real triangular matrix, packed storage

F06RLF 15 nagf_blas_dlantb
1-norm, 1-norm, Frobenius norm, largest absolute element,
real triangular band matrix

F06RMF 15 nagf_blas_dlanhs
1-norm, 1-norm, Frobenius norm, largest absolute element,
real upper Hessenberg matrix

F06RNF 21 nagf_blas_dlangt
1-norm, 1-norm, Frobenius norm, largest absolute element,
real tridiagonal matrix

F06RPF 21 nagf_blas_dlanst
1-norm, 1-norm, Frobenius norm, largest absolute element,
real symmetric tridiagonal matrix

F06SAF (ZGEMV) 12 ZGEMV
nagf_blas_zgemv
Matrix-vector product, complex rectangular matrix

F06SBF (ZGBMV) 12 ZGBMV
nagf_blas_zgbmv
Matrix-vector product, complex rectangular band matrix

F06SCF (ZHEMV) 12 ZHEMV
nagf_blas_zhemv
Matrix-vector product, complex Hermitian matrix

F06SDF (ZHBMV) 12 ZHBMV
nagf_blas_zhbmv
Matrix-vector product, complex Hermitian band matrix

F06SEF (ZHPMV) 12 ZHPMV
nagf_blas_zhpmv
Matrix-vector product, complex Hermitian packed matrix

F06SFF (ZTRMV) 12 ZTRMV
nagf_blas_ztrmv
Matrix-vector product, complex triangular matrix

F06SGF (ZTBMV) 12 ZTBMV
nagf_blas_ztbmv
Matrix-vector product, complex triangular band matrix

F06SHF (ZTPMV) 12 ZTPMV
nagf_blas_ztpmv
Matrix-vector product, complex triangular packed matrix
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F06SJF (ZTRSV) 12 ZTRSV
nagf_blas_ztrsv
System of equations, complex triangular matrix

F06SKF (ZTBSV) 12 ZTBSV
nagf_blas_ztbsv
System of equations, complex triangular band matrix

F06SLF (ZTPSV) 12 ZTPSV
nagf_blas_ztpsv
System of equations, complex triangular packed matrix

F06SMF (ZGERU) 12 ZGERU
nagf_blas_zgeru
Rank-1 update, complex rectangular matrix, unconjugated
vector

F06SNF (ZGERC) 12 ZGERC
nagf_blas_zgerc
Rank-1 update, complex rectangular matrix, conjugated vector

F06SPF (ZHER) 12 ZHER
nagf_blas_zher
Rank-1 update, complex Hermitian matrix

F06SQF (ZHPR) 12 ZHPR
nagf_blas_zhpr
Rank-1 update, complex Hermitian packed matrix

F06SRF (ZHER2) 12 ZHER2
nagf_blas_zher2
Rank-2 update, complex Hermitian matrix

F06SSF (ZHPR2) 12 ZHPR2
nagf_blas_zhpr2
Rank-2 update, complex Hermitian packed matrix

F06TAF 21 nagf_blas_zsymv
Matrix-vector product, complex symmetric matrix

F06TBF 21 nagf_blas_zsyr
Rank-1 update, complex symmetric matrix

F06TCF 21 nagf_blas_zspmv
Matrix-vector product, complex symmetric packed matrix

F06TDF 21 nagf_blas_zspr
Rank-1 update, complex symmetric packed matrix

F06TFF 13 nagf_blas_zmcopy
Matrix copy, complex rectangular or trapezoidal matrix

F06THF 13 nagf_blas_zmload
Matrix initialization, complex rectangular matrix

F06TMF 13 nagf_blas_zhesrc
Unitary similarity transformation of Hermitian matrix as a
sequence of plane rotations

F06TPF 13 nagf_blas_zutr1
QR factorization by sequence of plane rotations, rank-1 update
of complex upper triangular matrix

F06TQF 13 nagf_blas_zutupd
QR factorization by sequence of plane rotations, complex
upper triangular matrix augmented by a full row

F06TRF 13 nagf_blas_zuhqr
QR or RQ factorization by sequence of plane rotations,
complex upper Hessenberg matrix

F06TSF 13 nagf_blas_zusqr
QR or RQ factorization by sequence of plane rotations,
complex upper spiked matrix

F06TTF 13 nagf_blas_zutsqr
QR factorization of UP or RQ factorization of PU , U complex
upper triangular, P a sequence of plane rotations

F06 – Linear Algebra Support Routines Contents – F06

Mark 26 f06conts.7



F06TVF 13 nagf_blas_zutsrh
Compute upper Hessenberg matrix by sequence of plane
rotations, complex upper triangular matrix

F06TWF 13 nagf_blas_zutsrs
Compute upper spiked matrix by sequence of plane rotations,
complex upper triangular matrix

F06TXF 13 nagf_blas_zgesrc
Apply sequence of plane rotations, complex rectangular matrix,
real cosine and complex sine

F06TYF 13 nagf_blas_zgesrs
Apply sequence of plane rotations, complex rectangular matrix,
complex cosine and real sine

F06UAF 15 nagf_blas_zlange
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex general matrix

F06UBF 15 nagf_blas_zlangb
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex band matrix

F06UCF 15 nagf_blas_zlanhe
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex Hermitian matrix

F06UDF 15 nagf_blas_zlanhp
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex Hermitian matrix, packed storage

F06UEF 15 nagf_blas_zlanhb
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex Hermitian band matrix

F06UFF 15 nagf_blas_zlansy
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex symmetric matrix

F06UGF 15 nagf_blas_zlansp
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex symmetric matrix, packed storage

F06UHF 15 nagf_blas_zlansb
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex symmetric band matrix

F06UJF 15 nagf_blas_zlantr
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex trapezoidal/triangular matrix

F06UKF 15 nagf_blas_zlantp
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex triangular matrix, packed storage

F06ULF 15 nagf_blas_zlantb
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex triangular band matrix

F06UMF 15 nagf_blas_zlanhs
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex Hessenberg matrix

F06UNF 21 nagf_blas_zlangt
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex tridiagonal matrix

F06UPF 21 nagf_blas_zlanht
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex Hermitian tridiagonal matrix

F06VJF 13 nagf_blas_zgeap
Permute rows or columns, complex rectangular matrix,
permutations represented by an integer array
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F06VKF 13 nagf_blas_zgeapr
Permute rows or columns, complex rectangular matrix,
permutations represented by a real array

F06VXF 13 nagf_blas_zsgesr
Apply sequence of plane rotations, complex rectangular matrix,
real cosine and sine

F06WAF (DLANSF) 23 DLANSF
nagf_blas_dlansf
1-norm, 1-norm, Frobenius norm, largest absolute element,
real symmetric matrix, Rectangular Full Packed format

F06WBF (DTFSM) 23 DTFSM
nagf_blas_dtfsm
Solves a system of equations with multiple right-hand sides,
real triangular coefficient matrix, Rectangular Full Packed
format

F06WCF (DSFRK) 23 DSFRK
nagf_blas_dsfrk
Rank-k update of a real symmetric matrix, Rectangular Full
Packed format

F06WNF (ZLANHF) 23 ZLANHF
nagf_blas_zlanhf
1-norm, 1-norm, Frobenius norm, largest absolute element,
complex Hermitian matrix, Rectangular Full Packed format

F06WPF (ZTFSM) 23 ZTFSM
nagf_blas_ztfsm
Solves system of equations with multiple right-hand sides,
complex triangular coefficient matrix, Rectangular Full Packed
format

F06WQF (ZHFRK) 23 ZHFRK
nagf_blas_zhfrk
Rank-k update of a complex Hermitian matrix, Rectangular Full
Packed format

F06YAF (DGEMM) 14 DGEMM
nagf_blas_dgemm
Matrix-matrix product, two real rectangular matrices

F06YCF (DSYMM) 14 DSYMM
nagf_blas_dsymm
Matrix-matrix product, one real symmetric matrix, one real
rectangular matrix

F06YFF (DTRMM) 14 DTRMM
nagf_blas_dtrmm
Matrix-matrix product, one real triangular matrix, one real
rectangular matrix

F06YJF (DTRSM) 14 DTRSM
nagf_blas_dtrsm
Solves a system of equations with multiple right-hand sides,
real triangular coefficient matrix

F06YPF (DSYRK) 14 DSYRK
nagf_blas_dsyrk
Rank-k update of a real symmetric matrix

F06YRF (DSYR2K) 14 DSYR2K
nagf_blas_dsyr2k
Rank-2k update of a real symmetric matrix

F06ZAF (ZGEMM) 14 ZGEMM
nagf_blas_zgemm
Matrix-matrix product, two complex rectangular matrices
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F06ZCF (ZHEMM) 14 ZHEMM
nagf_blas_zhemm
Matrix-matrix product, one complex Hermitian matrix, one
complex rectangular matrix

F06ZFF (ZTRMM) 14 ZTRMM
nagf_blas_ztrmm
Matrix-matrix product, one complex triangular matrix, one
complex rectangular matrix

F06ZJF (ZTRSM) 14 ZTRSM
nagf_blas_ztrsm
Solves system of equations with multiple right-hand sides,
complex triangular coefficient matrix

F06ZPF (ZHERK) 14 ZHERK
nagf_blas_zherk
Rank-k update of a complex Hermitian matrix

F06ZRF (ZHER2K) 14 ZHER2K
nagf_blas_zher2k
Rank-2k update of a complex Hermitian matrix

F06ZTF (ZSYMM) 14 ZSYMM
nagf_blas_zsymm
Matrix-matrix product, one complex symmetric matrix, one
complex rectangular matrix

F06ZUF (ZSYRK) 14 ZSYRK
nagf_blas_zsyrk
Rank-k update of a complex symmetric matrix

F06ZWF (ZSYR2K) 14 ZSYR2K
nagf_blas_zsyr2k
Rank-2k update of a complex symmetric matrix
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1 Scope of the Chapter

This chapter is concerned with basic linear algebra routines which perform elementary algebraic
operations involving scalars, vectors and matrices. It includes routines which conform to the
specifications of the BLAS (Basic Linear Algebra Subprograms).

2 Background to the Problems

A number of the routines in this chapter meet the specification of the Basic Linear Algebra
Subprograms (BLAS) as described in Lawson et al. (1979), Dodson et al. (1991), Dongarra et al.
(1988) and Dongarra et al. (1990). The first reference describes a set of routines concerned with
operations on scalars and vectors: these will be referred to here as the Level-0 and the Level-1 BLAS;
the second reference describes a set of routines concerned with operations on sparse vectors: these will
be referred to here as the Level-1 Sparse BLAS; the third reference describes a set of routines
concerned with matrix-vector operations: these will be referred to here as the Level-2 BLAS; and the
fourth reference describes a set of routines concerned with matrix-matrix operations: these will be
referred to here as the Level-3 BLAS.

More generally we refer to the scalar routines in the chapter as Level-0 routines, to the vector routines
as Level-1 routines, to the matrix-vector and matrix routines as Level-2 routines, and to the matrix-
matrix routines as Level-3 routines. The terminology reflects the number of operations involved. For
example, a Level-2 routine involves O n2

� �
operations for an n� n matrix.

2.1 The Use of BLAS Names

Many of the routines in other chapters of the Library call the routines in this chapter, and in particular a
number of the BLAS are called. These routines are usually called by the BLAS name and so, for correct
operation of the Library, it is essential that you do not attempt to link your own versions of these
routines. If you are in any doubt about how to avoid this, please consult your computer centre or the
NAG Response Centre.

The BLAS names are used in order to make use of efficient implementations of the routines when these
exist. Such implementations are stringently tested before being used, to ensure that they correctly meet
the specification of the BLAS, and that they return the desired accuracy (see, for example, Dodson et al.
(1991), Dongarra et al. (1988) and Dongarra et al. (1990)).

2.2 Background Information

Most of the routines in this chapter implement straightforward scalar, vector and matrix operations that
need no further explanation beyond a statement of the purpose of the routine. In this section we give
some additional background information to those few cases where additional explanation may be
necessary. A sub-section is devoted to each topic.

2.2.1 Real plane rotations

There are a number of routines in the chapter concerned with setting up and applying plane rotations.
This section discusses the real case and the next section looks at the complex case. For further
background information see Golub and Van Loan (1996).

A plane rotation matrix for the i; jð Þ plane, Rij, is an orthogonal matrix that is different from the unit
matrix only in the elements rii, rjj, rij and rji. If we put

R ¼ rii rij
rji rjj

� �
; ð1Þ

then, in the real case, it is usual to choose Rij so that

R ¼ c s
�s c

� �
; c ¼ cos �; s ¼ sin �:

An exception is routine F06FPF which applies the so-called symmetric rotation for which
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R ¼ c s
s �c

� �
: ð2Þ

The application of plane rotations is straightforward and needs no further elaboration, so further
comment is made only on the construction of plane rotations.

The most common use of plane rotations is to choose c and s so that for given a and b,

c s
�s c

� �
a
b

� �
¼ d

0

� �
: ð3Þ

In such an application the matrix R is often termed a Givens rotation matrix. There are two approaches
to the construction of real Givens rotations in Chapter F06.

The BLAS routine F06AAF (DROTG), see Lawson et al. (1979) and Dodson and Grimes (1982),
computes c, s and d as

d ¼ � a2 þ b2
� �1=2

;

c ¼ a=d; d 6¼ 0;
1; d ¼ 0;



s ¼ b=d; d 6¼ 0;

0; d ¼ 0;



ð4Þ

where � ¼ sign a; aj j > bj j
sign b; aj j � bj j



:

The value z defined as

z ¼ s; sj j < c or c ¼ 0
1=c; 0 < cj j � s



ð5Þ

is also computed and this enables c and s to be reconstructed from the single value z as

c ¼
0; z ¼ 1

1� z2
� �1=2

; zj j < 1
1=z; zj j > 1

8<: s ¼
1; z ¼ 1
z; zj j < 1

1� c2
� �1=2

; zj j > 1

8<: :

The other Chapter F06 routines for constructing Givens rotations are based on the computation of the
tangent, t ¼ tan �. t is computed as

t ¼
0; b ¼ 0
b=a; bj j � aj j:flmax; b 6¼ 0
sign b=að Þ:flmax; bj j > aj j:flmax
sign bð Þ:flmax; b 6¼ 0; a ¼ 0

8><>: ð6Þ

where flmax ¼ 1=flmin and flmin is the small positive value returned by X02AMF. The values of c and
s are then computed or reconstructed via t as

c ¼
1= 1þ t2
� �1=2

;
ffiffiffiffiffiffiffi
eps
p � tj j � 1=

ffiffiffiffiffiffiffi
eps
p

1; tj j < ffiffiffiffiffiffiffi
eps
p

1= tj j; tj j > 1=
ffiffiffiffiffiffiffi
eps
p

8<: s ¼
c:t;

ffiffiffiffiffiffiffi
eps
p � tj j � 1=

ffiffiffiffiffiffiffi
eps
p

t; tj j < ffiffiffiffiffiffiffi
eps
p

sign t; tj j > 1=
ffiffiffiffiffiffiffi
eps
p

8<: ð7Þ

where eps is the machine precision. Note that c is always non-negative in this scheme and that the
same expressions are used in the initial computation of c and s from a and b as in any subsequent
recovery of c and s via t. This is the approach used by many of the NAG Library routines that require
plane rotations. d is computed simply as

d ¼ c:aþ s:b:

You need not be too concerned with the above detail, since routines are provided for setting up,
recovering and applying such rotations.
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Another use of plane rotations is to choose c and s so that for given x, y and z

c s
�s c

� �
x y
y z

� �
c �s
s c

� �
¼ a 0

0 b

� �
: ð8Þ

In such an application the matrix R is often termed a Jacobi rotation matrix. The routine that generates
a Jacobi rotation (F06BEF) first computes the tangent t and then computes c and s via t as described
above for the Givens rotation.

2.2.2 Complex plane rotations

In the complex case a plane rotation matrix for the i; jð Þ plane, Rij is a unitary matrix and, analogously
to the real case, it is usual to choose Rij so that

R ¼ �c �s
�s c

� �
; cj j2 þ sj j2 ¼ 1; ð9Þ

where �a denotes the complex conjugate of a.

The BLAS (see Lawson et al. (1979)) do not contain a routine for the generation of complex rotations,
and so the routines in Chapter F06 are all based upon computing c and s via t ¼ b=a in an analogous
manner to the real case. R can be chosen to have either c real, or s real and there are routines for both
cases.

When c is real then it is non-negative and the transformation

c �s
�s c

� �
a
b

� �
¼ d

0

� �
ð10Þ

is such that if a is real then d is also real.

When s is real then the transformation

�c s
�s c

� �
a
b

� �
¼ d

0

� �
ð11Þ

is such that if b is real then d is also real.

2.2.3 Elementary real (Householder) reflections

There are a number of routines in the chapter concerned with setting up and applying Householder
transformations. This section discusses the real case and the next section looks at the complex case. For
further background information see Golub and Van Loan (1996).

A real elementary reflector, P , is a matrix of the form

P ¼ I � �uuT; �uTu ¼ 2; ð12Þ

where � is a scalar and u is a vector, and P is both symmetric and orthogonal. In the routines in
Chapter F06, u is expressed in the form

u ¼ �
z

� �
; � a scalar ð13Þ

because in many applications � and z are not contiguous elements. The usual use of elementary
reflectors is to choose � and u so that for given � and x

P
�
x

� �
¼ �

0

� �
; � and � scalars: ð14Þ

Such a transformation is often termed a Householder transformation. There are two choices of � and
u available in Chapter F06.

The first form of the Householder transformation is compatible with that used by LINPACK (see
Dongarra et al. (1979)) and has
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� ¼ 1=�: ð15Þ
This choice makes � satisfy

1 � � � 2:

The second form, and the form used by many of the NAG Library routines, has

� ¼ 1 ð16Þ

which makes

1 � � �
ffiffiffi
2
p

:

In both cases the special setting

� ¼ 0 ð17Þ

is used by the routines to flag the case where P ¼ I.
Note that while there are routines to apply an elementary reflector to a vector, there are no routines
available in Chapter F06 to apply an elementary reflector to a matrix. This is because such
transformations can readily and efficiently be achieved by calls to the matrix-vector Level 2 BLAS
routines. For example, to form PA for a given matrix

PA ¼ I � �uuTð ÞA ¼ A� �uuTA
¼ A� �ubT; b ¼ ATu;

ð18Þ

and so we can call a matrix-vector product routine to form b ¼ ATu and then call a rank-one update
routine to form A� �ubTð Þ. Of course, we must skip the transformation when � has been set to zero.

2.2.4 Elementary complex (Householder) reflections

A complex elementary reflector, P , is a matrix of the form

P ¼ I � �uuH; �uHu ¼ 2; � real;

where uH denotes the complex conjugate of uT, and P is both Hermitian and unitary. For convenience
in a number of applications this definition can be generalized slightly by allowing � to be complex and
so defining the generalized elementary reflector as

P ¼ I � �uuH; �j j2uHu ¼ �þ �� ð19Þ

for which P is still unitary, but is no longer Hermitian.

The Chapter F06 routines choose � and � so that

Re �ð Þ ¼ 1; Im �ð Þ ¼ 0 ð20Þ

and this reduces to (12) with the choice (16) when � and u are real. This choice is used because � and
u can now be chosen so that in the Householder transformation (14) we can make

Im �ð Þ ¼ 0

and, as in the real case,

1 � � �
ffiffiffi
2
p

:

Rather than returning � and � as separate arguments the Chapter F06 routines return the single complex
value � defined as

� ¼ � þ i: Im �ð Þ; i ¼
ffiffiffiffiffiffiffi
�1
p

:

Obviously � and � can be recovered as

� ¼ Re �ð Þ; � ¼ 1þ i: Im �ð Þ:

The special setting
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� ¼ 0

is used to flag the case where P ¼ I, and
Re �ð Þ � 0; Im �ð Þ 6¼ 0

is used to flag the case where

P ¼ � 0
0 I

� �
; � a scalar ð21Þ

and in this case � actually contains the value of �. Notice that with both (18) and (21) we merely have
to supply �� rather than � in order to represent PH.

3 Recommendations on Choice and Use of Available Routines

3.1 Naming Scheme

3.1.1 NAG names

Table 1 shows the naming scheme for the routines in this chapter.

Level-0 Level-1 Level-2 Level-3

integer Chapter F06 routine – F06D_F – –
‘real’ BLAS routine F06A_F F06E_F F06P_F F06Y_F
‘real’ Chapter F06 routine F06B_F F06F_F F06Q_F –

F06R_F
‘complex’ BLAS routine – F06G_F F06S_F F06Z_F
‘complex’ Chapter F06 routine F06C_F F06H_F F06T_F –

F06U_F
‘mixed type’ BLAS routine – F06J_F – –
‘mixed type’ Chapter F06 routine – F06K_F F06V_F –
‘real’ and ‘complex’ LAPACK routines – – F06W_F F06W_F

Table 1

The heading ‘mixed type’ is for routines where a mixture of data types is involved, such as a routine
that returns the real Euclidean length of a complex vector. In future marks of the Library, routines may
be included in categories that are currently empty and further categories may be introduced.

3.1.2 BLAS names

Those routines which conform to the specifications of the BLAS may be called either by their NAG
names or by their BLAS names.

In many implementations of the NAG Library, references to BLAS names may be linked to an efficient
machine-specific implementation of the BLAS, usually provided by the vendor of the machine. Such
implementations are stringently tested before being used with the NAG Library, to ensure that they
correctly meet the specifications of the BLAS, and that they return the desired accuracy. Use of BLAS
names is recommended for efficiency.

References to NAG routine names (beginning F06-) are always linked to the code provided in the NAG
Library and may be significantly slower than the equivalent BLAS routine.

The names of the Level-2 and Level-3 BLAS follow a simple scheme (which is similar to that used for
LAPACK routines in Chapters F07 and F08). Each name has the structure XYYZZZ, where the
components have the following meanings:

– the initial letter X indicates the data type (real or complex) and precision:

S real, single precision (in Fortran, REAL)

D real, double precision (in Fortran, DOUBLE PRECISION)
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C complex, single precision (in Fortran, COMPLEX)

Z complex, double precision (in Fortran, COMPLEX*16 or DOUBLE COMPLEX)

– the second and third letters YY indicate the type of the matrix A (and in some cases its storage
scheme):

GE general

GB general band

SY symmetric

SP symmetric (packed storage)

SB symmetric band

HE (complex) Hermitian

HP (complex) Hermitian (packed storage)

HB (complex) Hermitian band

TR triangular

TP triangular (packed storage)

TB triangular band

– the remaining 1, 2 or 3 letters ZZZ indicate the computation performed:

MV matrix-vector product

MM matrix-matrix product

R rank-1 update

R2 rank-2 update

RK rank-k update

R2K rank-2k update

SV solve a system of linear equations

SM solve a system of linear equations with a matrix of right-hand sides

Thus the routine DGEMV performs a matrix-vector product involving a real general matrix in double
precision; the corresponding routine for a complex general matrix is ZGEMV.

The names of the Level-1 BLAS mostly follow the same convention for the initial letter (S-, C-, D- or
Z-), except for a few involving data of mixed type, where the first two characters are precision-
dependent.

3.1.3 LAPACK names

There are some LAPACK routines in this chapter that have BLAS-like functionalty. Four are equivalent
to BLAS routines but for matrices stored in Rectangular Full Packed (RFP) format. The naming
convention for these is as above with the addition of the matrix types:

HF (complex) Hermitian (RFP storage)

TF triangular (RFP storage)

SF symmetric (RFP storage)

There are an additonal two that compute norms of RFP matrices. These have second and third letters
LA (signifying LAPACK), fourth letter N (signifying norm), and fifth and sixth letter signifying matrix
type as above. For example ZLANHF computes the norm of a Hermitian matrix in RFP format.

3.2 The Level-0 Scalar Routines

The Level-0 routines perform operations on scalars or on vectors or matrices of order 2.
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3.3 The Level-1 Vector Routines

The Level-1 routines perform operations either on a single vector or on a pair of vectors.

3.4 The Level-2 Matrix-vector and Matrix Routines

The Level-2 routines perform operations involving either a matrix on its own, or a matrix and one or
more vectors.

3.5 The Level-3 Matrix-matrix Routines

The Level-3 routines perform operations involving matrix-matrix products.

3.6 Vector Arguments

Vector arguments (except in the Level-1 Sparse BLAS) are represented by a one-dimensional array,
immediately followed by an increment argument whose name consists of the three characters INC
followed by the name of the array. For example, a vector x is represented by the two arguments X and
INCX. The length of the vector, n say, is passed as a separate argument, N.

The increment argument is the spacing (stride) in the array between the elements of the vector. For
instance, if INCX ¼ 2, then the elements of x are in locations x 1ð Þ; x 3ð Þ; . . . ; x 2n� 1ð Þ of the array X
and the intermediate locations x 2ð Þ; x 4ð Þ; . . . ; x 2n� 2ð Þ are not referenced.

When INCX > 0, the vector element xi is in the array element X 1þ i� 1ð Þ � INCXð Þ. When
INCX � 0, the elements are stored in the reverse order so that the vector element xi is in the array
element X 1� n� ið Þ � INCXð Þ and hence, in particular, the element xn is in X 1ð Þ. The declared length
of the array X in the calling subroutine must be at least 1þ N� 1ð Þ � INCXj jð Þ.
Negative increments are permitted only for:

Level-1 routines which have more than one vector argument;

Level-2 BLAS routines (but not for other Level-2 routines)

Zero increments are formally permitted for Level-1 routines with more than one argument (in which
case the element X 1ð Þ is accessed repeatedly), but their use is strongly discouraged since the effect may
be implementation-dependent. There is usually an alternative routine in this chapter, with a simplified
argument list, to achieve the required purpose. Zero increments are not permitted in the Level-2 BLAS.

In the Level-1 Sparse BLAS, each routine operates on two vectors x and y. The vector x is stored as a
compressed sparse vector, and is represented by the three arguments NZ, X and INDX; NZ is the
number of ‘interesting’ (usually nonzero) elements of x, and INDX is a one-dimensional index array
such that

x INDXðkÞð Þ ¼ XðkÞ; k ¼ 1; 2; . . . ;NZ:

The (mathematical) length of the vector, n say, does not need to be supplied; it is assumed that
1 � INDXðkÞ � n. For example, the vector

x ¼ 0; 4; 0; 0; 1; 0; 0; 0; 6; 0ð Þ

could be represented with NZ ¼ 3, X ¼ 4; 1; 6ð Þ, INDX ¼ 2; 5; 9ð Þ. The second vector y is stored
conventionally, and is represented simply by the one-dimensional array Y, with yi in Y ið Þ; the
increment is assumed to be 1. Only the elements Y INDX kð Þð Þ are referenced.

Non-positive values of NZ are permitted, in which case the routines return immediately — except that
functions set their value to zero before returning. For those routines where Y is an output argument the
values in the array INDX must be distinct; violating this condition may yield incorrect results.

3.7 Matrix Arguments and Storage Schemes

In this chapter the following different storage schemes are used for matrices:
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– conventional storage in a two-dimensional array;

– packed and RFP storage for symmetric, Hermitian or triangular matrices;

– band storage for band matrices;

– storage for spiked matrices.

These storage schemes are compatible with those used in Chapters F07 and F08. (Different schemes for
packed or band storage are used in a few older routines in Chapters F01, F02, F03 and F04.)

Chapter F01 provides some utility routines for conversion between storage schemes.

In the examples, � indicates an array element which need not be set and is not referenced by the
routines. The examples illustrate only the relevant leading rows and columns of the arrays; array
arguments may of course have additional rows or columns, according to the usual rules for passing
array arguments in Fortran.

3.7.1 Conventional storage

Please see Section 3.3.1 in the F07 Chapter Introduction for full details.

3.7.2 Packed storage

Please see Section 3.3.2 in the F07 Chapter Introduction for full details.

3.7.3 Rectangular Full Packed (RFP) storage

Please see Section 3.3.3 in the F07 Chapter Introduction for full details.

3.7.4 Band storage

Please see Section 3.3.4 in the F07 Chapter Introduction for full details.

3.7.5 Unit triangular matrices

Please see Section 3.3.5 in the F07 Chapter Introduction for full details.

3.7.6 Real diagonal elements of complex Hermitian matrices

Please see Section 3.3.6 in the F07 Chapter Introduction for full details.

3.7.7 Spiked matrices

A few routines in this chapter (F06QSF, F06QWF, F06TSF and F06TWF) deal with upper spiked
matrices. These are upper triangular matrices with an additional nonzero row or column below the
diagonal.

The position of the spike is defined by indices k1 and k2; it is assumed that k1 < k2. A row spike has
nonzero elements in the k2th row, ak2;k for k ¼ k1; k1 þ 1; . . . ; k2 � 1; a column spike has nonzero
elements in the k1th column, akþ1;k1 for k ¼ k1; k1 þ 1; . . . ; k2 � 1. For example, when n ¼ 6, k1 ¼ 2
and k2 ¼ 5:

Row spike Column spike

a11 a12 a13 a14 a15 a16
a22 a23 a24 a25 a26

a33 a34 a35 a36
a44 a45 a46

a52 a53 a54 a55 a56
a66

0BBBBB@

1CCCCCA
a11 a12 a13 a14 a15 a16

a22 a23 a24 a25 a26
a32 a33 a34 a35 a36
a42 a44 a45 a46
a52 a55 a56

a66

0BBBBB@

1CCCCCA
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The storage scheme adopted by the routines in this chapter is for the upper triangular part of the spiked
matrix to be stored conventionally in a two-dimensional array A, with the subdiagonal elements of the
spike stored in a separate vector.

3.8 Option Parameters

Many of the routines in this chapter have one or more option arguments, of type CHARACTER. The
descriptions in the routine documents refer only to upper-case values (for example UPLO ¼ U or
UPLO ¼ L ); however, in every case, the corresponding lower-case characters may be supplied (with
the same meaning). Any other value is illegal.

A longer character string can be passed as the actual argument, making the calling program more
readable, but only the first character is significant. (This is a feature of Fortran.) For example:

CALL DTRSV(’Upper’,’Transpose’,’Non-unit’,...)

The following option arguments are used in this chapter:

If TRANS ¼ N , operate with the matrix (Not transposed);

if TRANS ¼ T , operate with the Transpose of the matrix;

if TRANS ¼ C , operate with the Conjugate transpose of the matrix.

If UPLO ¼ U , upper triangle or trapezoid of matrix;

if UPLO ¼ L , lower triangle or trapezoid of matrix.

If DIAG ¼ U , unit triangular;

if DIAG ¼ N , nonunit triangular.

If SIDE ¼ L , operate from the left-hand side;

if SIDE ¼ R , operate from the right-hand side.

If PIVOT ¼ V , variable pivot (in applying a sequence of plane rotations);

if PIVOT ¼ B , bottom pivot;

if PIVOT ¼ T , top pivot;

if PIVOT ¼ F , fixed pivot.

If DIRECT ¼ B , backward sequence of plane rotations;

if DIRECT ¼ F , forward sequence of plane rotations.

If NORM ¼ 1 or O , 1-norm of a matrix;

if NORM ¼ I , 1-norm of a matrix;

if NORM ¼ F or E , Frobenius or Euclidean norm of a matrix;

if NORM ¼ M , maximum absolute value of the elements of a matrix (not strictly a norm).

If MATRIX ¼ G , general (rectangular or square) matrix;

if MATRIX ¼ U , upper trapezoidal or triangular matrix;

if MATRIX ¼ L , lower trapezoidal or triangular matrix.

if TRANSR ¼ N , matrix stored in normal RFP format (Not transposed).

if TRANSR ¼ T , transpose of the matrix stored in RFP format.

if TRANSR ¼ C , conjugate transpose of the matrix stored in RFP format.

3.8.1 Matrix norms

The option argument NORM specifies different matrix norms whose definitions are given here for
reference (for a general m by n matrix A):
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One-norm (NORM ¼ O or 1 ):

Ak k1 ¼ max
j

Xm
i¼1

aij
		 		;

Infinity-norm (NORM ¼ I ):

Ak k1 ¼ max
i

Xn
j¼1

aij
		 		;

Frobenius or Euclidean norm (NORM ¼ F or E ):

Ak kF ¼
Xm
i¼1

Xn
j¼1

aij
		 		2 !1=2

:

If A is symmetric or Hermitian, Ak k1 ¼ Ak k1.

The argument NORM can also be used to specify the maximum absolute value max i;j aij
		 		 (if

NORM ¼ M ), but this is not a norm in the strict mathematical sense.

3.9 Error Handling

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving the
argument IFAIL.

If one of the Level-2 or Level-3 BLAS routines is called with an invalid value of one of its arguments,
then an error message is output on the error message unit (see X04AAF), giving the name of the routine
and the number of the first invalid argument, and execution of the program is terminated. The following
values of arguments are invalid:

– any value of the character arguments TRANS, TRANSA, TRANSB, UPLO, SIDE or DIAG,
whose meaning is not specified;

– a negative value of any of the arguments M, N, K, KL or KU;

– too small a value for any of the leading dimension arguments;

– a zero value for the increment arguments INCX and INCY.

Zero values for the matrix dimensions M, N or K are considered valid.

The other routines in this chapter do not report any errors in their arguments. Normally, if called, for
example, with an unspecified value for one of the option arguments, or with a negative value of one of
the problem dimensions M or N, they simply do nothing and return immediately.

4 Functionality Index

Level 0 (Scalar) operations,
complex numbers,

apply similarity rotation to 2 by 2 Hermitian matrix ............................. F06CHF
generate a plane rotation, storing the tangent, real cosine...................... F06CAF
generate a plane rotation, storing the tangent, real sine ......................... F06CBF
quotient of two numbers, with overflow flag.......................................... F06CLF
recover cosine and sine from given tangent, real cosine ........................ F06CCF
recover cosine and sine from given tangent, real sine............................ F06CDF

real numbers,
apply similarity rotation to 2 by 2 symmetric matrix............................. F06BHF
compute a2þ b2ð Þ1=2 ............................................................................. F06BNF
compute Euclidean norm from scaled form ............................................ F06BMF
eigenvalue of 2 by 2 symmetric matrix .................................................. F06BPF
generate a Jacobi plane rotation.............................................................. F06BEF
generate a plane rotation......................................................................... F06AAF (DROTG)
generate a plane rotation storing the tangent .......................................... F06BAF
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quotient of two numbers, with overflow flag.......................................... F06BLF
recover cosine and sine from given tangent ........................................... F06BCF

Level 1 (Vector) operations,
complex vector(s),

add scalar times a vector to another vector ............................................ F06GCF (ZAXPY)
apply a complex plane rotation............................................................... F06HPF
apply an elementary reflection to a vector.............................................. F06HTF
apply a real plane rotation ...................................................................... F06KPF (ZDROT)
broadcast a scalar into a vector .............................................................. F06HBF
copy a real vector to a complex vector .................................................. F06KFF
copy a vector .......................................................................................... F06GFF (ZCOPY)
dot product of two vectors, conjugated................................................... F06GBF (ZDOTC)
dot product of two vectors, unconjugated............................................... F06GAF (ZDOTU)
Euclidean norm of a vector .................................................................... F06JJF (DZNRM2)
generate an elementary reflection............................................................ F06HRF
generate a sequence of plane rotations ................................................... F06HQF
index of element of largest absolute value ............................................. F06JMF (IZAMAX)
multiply vector by a complex scalar....................................................... F06GDF (ZSCAL)
multiply vector by a complex scalar, preserving input vector ................ F06HDF
multiply vector by a real scalar .............................................................. F06JDF (ZDSCAL)
multiply vector by a real scalar, preserving input vector........................ F06KDF
multiply vector by complex diagonal matrix .......................................... F06HCF
multiply vector by real diagonal matrix.................................................. F06KCF
multiply vector by reciprocal of a real scalar......................................... F06KEF
negate a vector........................................................................................ F06HGF
sum of absolute values of vector-elements ............................................. F06JKF (DZASUM)
swap two vectors .................................................................................... F06GGF (ZSWAP)
update Euclidean norm in scaled form ................................................... F06KJF

Complex vector(s),
apply plane rotation,

real cosine, complex sine................................................................... F06HMF (ZROT)
integer vector(s),

broadcast a scalar into a vector .............................................................. F06DBF
copy a vector .......................................................................................... F06DFF

real vector(s),
add scalar times a vector to another vector ............................................ F06ECF (DAXPY)
apply an elementary reflection to a vector (Linpack style)..................... F06FUF
apply an elementary reflection to a vector (NAG style) ......................... F06FTF
apply a symmetric plane rotation to two vectors.................................... F06FPF
apply plane rotation ................................................................................ F06EPF (DROT)
broadcast a scalar into a vector .............................................................. F06FBF
copy a vector .......................................................................................... F06EFF (DCOPY)
cosine of angle between two vectors ...................................................... F06FAF
dot product of two vectors...................................................................... F06EAF (DDOT)
elements of largest and smallest absolute value ..................................... F06FLF
Euclidean norm of a vector .................................................................... F06EJF (DNRM2)
generate an elementary reflection (Linpack style)................................... F06FSF
generate an elementary reflection (NAG style) ....................................... F06FRF
generate a sequence of plane rotations ................................................... F06FQF
index of element of largest absolute value ............................................. F06JLF (IDAMAX)
index of last non-negligible element ....................................................... F06KLF
multiply vector by a scalar ..................................................................... F06EDF (DSCAL)
multiply vector by a scalar, preserving input vector............................... F06FDF
multiply vector by diagonal matrix......................................................... F06FCF
multiply vector by reciprocal of a scalar ................................................ F06FEF
negate a vector........................................................................................ F06FGF
sum of absolute values of vector-elements ............................................. F06EKF (DASUM)
swap two vectors .................................................................................... F06EGF (DSWAP)
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update Euclidean norm in scaled form ................................................... F06FJF
weighted Euclidean norm of a vector ..................................................... F06FKF

Level 2 (Matrix-vector and matrix) operations,
complex matrix and vector(s),

apply sequence of plane rotations to a rectangular matrix,
complex cosine, real sine................................................................... F06TYF
real cosine, complex sine................................................................... F06TXF
real cosine and sine ........................................................................... F06VXF

compute a norm or the element of largest absolute value,
band matrix ........................................................................................ F06UBF
general matrix .................................................................................... F06UAF
Hermitian band matrix ....................................................................... F06UEF
Hermitian matrix ................................................................................ F06UCF
Hermitian matrix, packed form .......................................................... F06UDF
Hermitian matrix, RFP format ........................................................... F06WNF (ZLANHF)
Hermitian tridiagonal matrix .............................................................. F06UPF
Hessenberg matrix.............................................................................. F06UMF
symmetric band matrix ...................................................................... F06UHF
symmetric matrix ............................................................................... F06UFF
symmetric matrix, packed form ......................................................... F06UGF
trapezoidal matrix .............................................................................. F06UJF
triangular band matrix........................................................................ F06ULF
triangular matrix, packed form........................................................... F06UKF
tridiagonal matrix............................................................................... F06UNF

compute upper Hessenberg matrix by applying sequence of plane
rotations to an upper triangular matrix ...................................................

F06TVF

compute upper spiked matrix by applying sequence of plane rotations to
an upper triangular matrix ......................................................................

F06TWF

matrix initialization ................................................................................. F06THF
matrix-vector product,

Hermitian band matrix ....................................................................... F06SDF (ZHBMV)
Hermitian matrix ................................................................................ F06SCF (ZHEMV)
Hermitian packed matrix.................................................................... F06SEF (ZHPMV)
rectangular band matrix ..................................................................... F06SBF (ZGBMV)
rectangular matrix .............................................................................. F06SAF (ZGEMV)
symmetric matrix ............................................................................... F06TAF
symmetric packed matrix ................................................................... F06TCF
triangular band matrix........................................................................ F06SGF (ZTBMV)
triangular matrix ................................................................................ F06SFF (ZTRMV)
triangular packed matrix .................................................................... F06SHF (ZTPMV)

permute rows or columns of a matrix,
permutations represented by an integer array .................................... F06VJF
permutations represented by a real array ........................................... F06VKF

QR factorization by sequence of plane rotations,
of rank-1 update of upper triangular matrix ...................................... F06TPF
of upper triangular matrix augmented by a full row ......................... F06TQF

QR factorization of UZ or RQ factorization of ZU , where U is upper
triangular and Z is a sequence of plane rotations ..................................

F06TTF

QR or RQ factorization by sequence of plane rotations,
of upper Hessenberg matrix ............................................................... F06TRF
of upper spiked matrix....................................................................... F06TSF

rank-1 update,
Hermitian matrix ................................................................................ F06SPF (ZHER)
Hermitian packed matrix.................................................................... F06SQF (ZHPR)
rectangular matrix, conjugated vector ................................................ F06SNF (ZGERC)
rectangular matrix, unconjugated vector............................................. F06SMF (ZGERU)
symmetric matrix ............................................................................... F06TBF
symmetric packed matrix ................................................................... F06TDF
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rank-2 update,
Hermitian matrix ................................................................................ F06SRF (ZHER2)
Hermitian packed matrix.................................................................... F06SSF (ZHPR2)
matrix copy, rectangular or trapezoidal.............................................. F06TFF

solution of a system of equations,
triangular band matrix........................................................................ F06SKF (ZTBSV)
triangular matrix ................................................................................ F06SJF (ZTRSV)
triangular packed matrix .................................................................... F06SLF (ZTPSV)

unitary similarity transformation of a Hermitian matrix,
as sequence of plane rotations ........................................................... F06TMF

real matrix and vector(s),
apply sequence of plane rotations to a rectangular matrix ..................... F06QXF
compute a norm or the element of largest absolute value,

band matrix ........................................................................................ F06RBF
general matrix .................................................................................... F06RAF
Hessenberg matrix.............................................................................. F06RMF
matrix initialization ............................................................................ F06QHF
symmetric band matrix ...................................................................... F06REF
symmetric matrix ............................................................................... F06RCF
symmetric matrix, packed form ......................................................... F06RDF
symmetric matrix, RFP format........................................................... F06WAF (DLANSF)
symmetric tridiagonal matrix ............................................................. F06RPF
trapezoidal matrix .............................................................................. F06RJF
triangular band matrix........................................................................ F06RLF
triangular matrix, packed form........................................................... F06RKF
tridiagonal matrix............................................................................... F06RNF

compute upper Hessenberg matrix by applying sequence of plane
rotations to an upper triangular matrix ...................................................

F06QVF

compute upper spiked matrix by applying sequence of plane rotations to
an upper triangular matrix ......................................................................

F06QWF

matrix-vector product,
rectangular band matrix ..................................................................... F06PBF (DGBMV)
rectangular matrix .............................................................................. F06PAF (DGEMV)
symmetric band matrix ...................................................................... F06PDF (DSBMV)
symmetric matrix ............................................................................... F06PCF (DSYMV)
symmetric packed matrix ................................................................... F06PEF (DSPMV)
triangular band matrix........................................................................ F06PGF (DTBMV)
triangular matrix ................................................................................ F06PFF (DTRMV)
triangular packed matrix .................................................................... F06PHF (DTPMV)

orthogonal similarity transformation of a symmetric matrix,
as sequence of plane rotations ........................................................... F06QMF

permute rows or columns of a matrix,
permutations represented by an integer array .................................... F06QJF
permutations represented by a real array ........................................... F06QKF

QR factorization by sequence of plane rotations,
of rank-1 update of upper triangular matrix ...................................... F06QPF
of upper triangular matrix augmented by a full row ......................... F06QQF

QR factorization of UZ or RQ factorization of ZU , where U is upper
triangular and Z is a sequence of plane rotations ..................................

F06QTF

QR or RQ factorization by sequence of plane rotations,
of upper Hessenberg matrix ............................................................... F06QRF
of upper spiked matrix....................................................................... F06QSF

rank-1 update,
rectangular matrix .............................................................................. F06PMF (DGER)
symmetric matrix ............................................................................... F06PPF (DSYR)
symmetric packed matrix ................................................................... F06PQF (DSPR)

rank-2 update,
matrix copy, rectangular or trapezoidal.............................................. F06QFF
symmetric matrix ............................................................................... F06PRF (DSYR2)
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symmetric packed matrix ................................................................... F06PSF (DSPR2)
solution of a system of equations,

triangular band matrix........................................................................ F06PKF (DTBSV)
triangular matrix ................................................................................ F06PJF (DTRSV)
triangular packed matrix .................................................................... F06PLF (DTPSV)

Level 3 (Matrix-matrix) operations,
complex matrices,

matrix-matrix product,
one matrix Hermitian ......................................................................... F06ZCF (ZHEMM)
one matrix symmetric ........................................................................ F06ZTF (ZSYMM)
one matrix triangular.......................................................................... F06ZFF (ZTRMM)
two rectangular matrices .................................................................... F06ZAF (ZGEMM)

rank-2k update,
of a Hermitian matrix ........................................................................ F06ZRF (ZHER2K)
of a symmetric matrix........................................................................ F06ZWF (ZSYR2K)

rank-k update,
of a Hermitian matrix ........................................................................ F06ZPF (ZHERK)
of a Hermitian matrix, RFP format ................................................... F06WQF (ZHFRK)
of a symmetric matrix........................................................................ F06ZUF (ZSYRK)

solution of triangular systems of equations............................................. F06ZJF (ZTRSM)
solution of triangular systems of equations, RFP format ........................ F06WPF (ZTFSM)

real matrices,
matrix-matrix product,

one matrix symmetric ........................................................................ F06YCF (DSYMM)
one matrix triangular.......................................................................... F06YFF (DTRMM)
rectangular matrices ........................................................................... F06YAF (DGEMM)

rank-2k update of a symmetric matrix.................................................... F06YRF (DSYR2K)
rank-k update,

of a symmetric matrix........................................................................ F06YPF (DSYRK)
of a symmetric matrix, RFP format ................................................... F06WCF (DSFRK)

solution of triangular systems of equations............................................. F06YJF (DTRSM)
solution of triangular systems of equations, RFP format ........................ F06WBF (DTFSM)

Sparse level 1 (vector) operations,
complex vector(s),

add scalar times sparse vector to a full vector ....................................... F06GTF (ZAXPYI)
dot product of a sparse and a full vector (conjugated)........................... F06GSF (ZDOTCI)
dot product of a sparse and a full vector (unconjugated) ....................... F06GRF (ZDOTUI)
gather and set to zero a sparse vector .................................................... F06GVF (ZGTHRZ)
gather sparse vector ................................................................................ F06GUF (ZGTHR)
scatter sparse vector................................................................................ F06GWF (ZSCTR)

real vector(s),
add scalar times sparse vector to a full vector ....................................... F06ETF (DAXPYI)
apply plane rotation to a sparse and a full vector .................................. F06EXF (DROTI)
dot product of a sparse and a full vector ............................................... F06ERF (DDOTI)
gather and set to zero a sparse vector .................................................... F06EVF (DGTHRZ)
gather sparse vector ................................................................................ F06EUF (DGTHR)
scatter sparse vector................................................................................ F06EWF (DSCTR)
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BLAS Routines

Real Matrices

single precision double precision NAG

ISAMAX IDAMAX F06JLF (IDAMAX)

SASUM DASUM F06EKF (DASUM)

SAXPY DAXPY F06ECF (DAXPY)

SAXPYI DAXPYI F06ETF (DAXPYI)

SCASUM DZASUM F06JKF (DZASUM)

SCNRM2 DZNRM2 F06JJF (DZNRM2)

SCOPY DCOPY F06EFF (DCOPY)

SDOT DDOT F06EAF (DDOT)

SDOTI DDOTI F06ERF (DDOTI)

SGBMV DGBMV F06PBF (DGBMV)

SGEMM DGEMM F06YAF (DGEMM)

SGEMV DGEMV F06PAF (DGEMV)

SGER DGER F06PMF (DGER)

SGTHR DGTHR F06EUF (DGTHR)

SGTHRZ DGTHRZ F06EVF (DGTHRZ)

SNRM2 DNRM2 F06EJF (DNRM2)

SROT DROT F06EPF (DROT)

SROTG DROTG F06AAF (DROTG)

SROTI DROTI F06EXF (DROTI)

SSBMV DSBMV F06PDF (DSBMV)

SSCAL DSCAL F06EDF (DSCAL)

SSCTR DSCTR F06EWF (DSCTR)

SSPMV DSPMV F06PEF (DSPMV)

SSPR DSPR F06PQF (DSPR)

SSPR2 DSPR2 F06PSF (DSPR2)

SSWAP DSWAP F06EGF (DSWAP)

SSYMM DSYMM F06YCF (DSYMM)

SSYMV DSYMV F06PCF (DSYMV)

SSYR DSYR F06PPF (DSYR)

SSYR2 DSYR2 F06PRF (DSYR2)

SSYR2K DSYR2K F06YRF (DSYR2K)

SSYRK DSYRK F06YPF (DSYRK)

STBMV DTBMV F06PGF (DTBMV)

STBSV DTBSV F06PKF (DTBSV)

STPMV DTPMV F06PHF (DTPMV)

STPSV DTPSV F06PLF (DTPSV)

STRMM DTRMM F06YFF (DTRMM)

STRMV DTRMV F06PFF (DTRMV)

STRSM DTRSM F06YJF (DTRSM)

STRSV DTRSV F06PJF (DTRSV)

SLANSF DLANSF F06WAF (DLANSF)

STFSM DTFSM F06WBF (DTFSM)

SSFRK DSFRK F06WCF (DSFRK)

Complex Matrices

single precision double precision NAG

ICAMAX IZAMAX F06JMF (IZAMAX)

CAXPY ZAXPY F06GCF (ZAXPY)

CAXPYI ZAXPYI F06GTF (ZAXPYI)

CCOPY ZCOPY F06GFF (ZCOPY)

CDOTC ZDOTC F06GBF (ZDOTC)

CDOTCI ZDOTCI F06GSF (ZDOTCI)

CDOTU ZDOTU F06GAF (ZDOTU)

CDOTUI ZDOTUI F06GRF (ZDOTUI)

CGBMV ZGBMV F06SBF (ZGBMV)

CGEMM ZGEMM F06ZAF (ZGEMM)

CGEMV ZGEMV F06SAF (ZGEMV)

CGERC ZGERC F06SNF (ZGERC)

CGERU ZGERU F06SMF (ZGERU)

CGTHR ZGTHR F06GUF (ZGTHR)

CGTHRZ ZGTHRZ F06GVF (ZGTHRZ)

CHBMV ZHBMV F06SDF (ZHBMV)

CHEMM ZHEMM F06ZCF (ZHEMM)

CHEMV ZHEMV F06SCF (ZHEMV)

CHER ZHER F06SPF (ZHER)

CHER2 ZHER2 F06SRF (ZHER2)

CHER2K ZHER2K F06ZRF (ZHER2K)

CHERK ZHERK F06ZPF (ZHERK)

CHPMV ZHPMV F06SEF (ZHPMV)

CHPR ZHPR F06SQF (ZHPR)

CHPR2 ZHPR2 F06SSF (ZHPR2)

CSCAL ZSCAL F06GDF (ZSCAL)

CSCTR ZSCTR F06GWF (ZSCTR)

CSSCAL ZDSCAL F06JDF (ZDSCAL)

CSWAP ZSWAP F06GGF (ZSWAP)

CSYMM ZSYMM F06ZTF (ZSYMM)

CSYR2K ZSYR2K F06ZWF (ZSYR2K)

CSYRK ZSYRK F06ZUF (ZSYRK)

CTBMV ZTBMV F06SGF (ZTBMV)

CTBSV ZTBSV F06SKF (ZTBSV)

CTPMV ZTPMV F06SHF (ZTPMV)

CTPSV ZTPSV F06SLF (ZTPSV)

CTRMM ZTRMM F06ZFF (ZTRMM)

CTRMV ZTRMV F06SFF (ZTRMV)

CTRSM ZTRSM F06ZJF (ZTRSM)

CTRSV ZTRSV F06SJF (ZTRSV)

CLANHF ZLANHF F 0 6 W N F
(ZLANHF)

CHFRK ZHFRK F06WQF (ZHFRK)

CTFSM ZTFSM F06WPF (ZTFSM)
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5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References
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NAG Library Routine Document

F06AAF (DROTG)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06AAF (DROTG) generates a real Givens plane rotation.

2 Specification

SUBROUTINE F06AAF (A, B, C, S)

REAL (KIND=nag_wp) A, B, C, S

The routine may be called by its BLAS name drotg.

3 Description

F06AAF (DROTG) generates a real Givens plane rotation with parameters c and s, such that, given real
a and b:

c s
�s c

� �
a
b

� �
¼ d

0

� �
:

The routine computes c, s and d as follows:

d ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
;

c ¼ a=d; if d 6¼ 0;
1; if d ¼ 0;



s ¼ b=d; if d 6¼ 0;

0; if d ¼ 0;



where � ¼ sign a; if aj j > bj j;

sign b; if aj j � bj j:



The routine also computes the value z defined as

z ¼ s; if sj j < c or c ¼ 0;
1=c; if 0 < cj j � s:



This enables c and s to be reconstructed from the single value z as

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

; if zj j � 1;
1=z; if zj j > 1;



s ¼ z; if zj j � 1;ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2
p

; if zj j > 1:



To apply the plane rotation to a pair of real vectors, call F06EPF (DROT); to apply it to a pair of
complex vectors, call F06KPF (ZDROT).

4 References

None.

5 Arguments

1: A – REAL (KIND=nag_wp) Input/Output

On entry: the value a, the first element of the vector which determines the rotation.

On exit: the value d.
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2: B – REAL (KIND=nag_wp) Input/Output

On entry: the value b, the second element of the vector which determines the rotation.

On exit: the value z, from which c and s can be reconstructed.

3: C – REAL (KIND=nag_wp) Output

On exit: the value c, the cosine of the rotation.

4: S – REAL (KIND=nag_wp) Output

On exit: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06AAF (DROTG) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06BAF generates a real Givens plane rotation and the tangent of that rotation.

2 Specification

SUBROUTINE F06BAF (A, B, C, S)

REAL (KIND=nag_wp) A, B, C, S

3 Description

F06BAF generates a real Givens plane rotation with parameters c ( � 0) and s, such that, given real a
and b:

c s
�s c

� �
a
b

� �
¼ d

0

� �
:

On exit, b is overwritten by t, the tangent of the rotation; c and s can be reconstructed from the single
stored value t, by a subsequent call to F06BCF.

If bj j <
ffiffi
�
p

aj j, where � is the machine precision, the routine sets c ¼ 1 and s ¼ 0; if aj j <
ffiffi
�
p

bj j, the
routine sets c ¼ 0 and s ¼ sign b=a.

Note that t is always set to b=a, unless this would overflow, in which case the value flmax � sign b=a is
returned, where flmax is the value given by 1= X02AMFð Þ.
To apply the plane rotation to a pair of real vectors, call F06EPF (DROT); to apply it to a pair of
complex vectors, call F06KPF (ZDROT).

4 References

None.

5 Arguments

1: A – REAL (KIND=nag_wp) Input/Output

On entry: the value a, the first element of the vector which determines the rotation.

On exit: the value d.

2: B – REAL (KIND=nag_wp) Input/Output

On entry: the value b, the second element of the vector which determines the rotation.

On exit: the value t, the tangent of the rotation.

3: C – REAL (KIND=nag_wp) Output

On exit: the value c, the cosine of the rotation.

4: S – REAL (KIND=nag_wp) Output

On exit: the value s, the sine of the rotation.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06BAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06BCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06BCF reconstructs the parameters c and s of a real plane rotation from the tangent of that rotation.

2 Specification

SUBROUTINE F06BCF (T, C, S)

REAL (KIND=nag_wp) T, C, S

3 Description

F06BCF reconstructs the parameters c and s of a real plane rotation from the value of the tangent t, as
returned by F06BAF:

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p ; s ¼ ct;

so that c � 0 and s has the same sign as t.

If tj j <
ffiffi
�
p

, where � is the machine precision, the routine sets c ¼ 1 and s ¼ t; if tj j > 1=
ffiffi
�
p

, the

routine sets c ¼ 1

tj j and s ¼ sign t.

4 References

None.

5 Arguments

1: T – REAL (KIND=nag_wp) Input

On entry: the value t, the tangent of the rotation.

2: C – REAL (KIND=nag_wp) Output

On exit: the value c, the cosine of the rotation.

3: S – REAL (KIND=nag_wp) Output

On exit: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06BCF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06BEF generates a real Jacobi plane rotation.

2 Specification

SUBROUTINE F06BEF (JOB, X, Y, Z, C, S)

REAL (KIND=nag_wp) X, Y, Z, C, S
CHARACTER(1) JOB

3 Description

F06BEF generates a real Jacobi plane rotation with parameters c and s, which diagonalizes a given 2 by
2 real symmetric matrix:

c s
�s c

� �
x y
y z

� �
c �s
s c

� �
¼ a 0

0 b

� �
:

4 References

None.

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies the property which determines the precise form of the rotation.

JOB ¼ B
c � 1=

ffiffiffi
2
p

.

JOB ¼ S
0 � c � 1=

ffiffiffi
2
p

.

JOB ¼ M
aj j � bj j.

Constraint: JOB ¼ B , S or M.

2: X – REAL (KIND=nag_wp) Input/Output

On entry: the value x, the 1; 1ð Þ element of the input matrix.

On exit: the value a.

3: Y – REAL (KIND=nag_wp) Input/Output

On entry: the value y, the 1; 2ð Þ or 2; 1ð Þ element of the input matrix.

On exit: the value t, the tangent of the rotation.

4: Z – REAL (KIND=nag_wp) Input/Output

On entry: the value z. the 2; 2ð Þ element of the input matrix.
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On exit: the value b.

5: C – REAL (KIND=nag_wp) Output

On exit: the value c, the cosine of the rotation.

6: S – REAL (KIND=nag_wp) Output

On exit: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06BEF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06BHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06BHF applies a real similarity rotation to a 2 by 2 real symmetric matrix.

2 Specification

SUBROUTINE F06BHF (X, Y, Z, C, S)

REAL (KIND=nag_wp) X, Y, Z, C, S

3 Description

F06BHF applies a real similarity rotation, with parameters c and s, to a given 2 by 2 real symmetric
matrix; that is, it performs the operation:

x y
y z

� �
 c s

�s c

� �
x y
y z

� �
c �s
s c

� �
:

4 References

None.

5 Arguments

1: X – REAL (KIND=nag_wp) Input/Output

On entry: the value x, the 1; 1ð Þ element of the input matrix.

On exit: the transformed value x.

2: Y – REAL (KIND=nag_wp) Input/Output

On entry: the value y, the 1; 2ð Þ or 2; 1ð Þ element of the input matrix.

On exit: the transformed value y.

3: Z – REAL (KIND=nag_wp) Input/Output

On entry: the value z, the 2; 2ð Þ element of the input matrix.

On exit: the transformed value z.

4: C – REAL (KIND=nag_wp) Input

On entry: the value c, the cosine of the rotation.

5: S – REAL (KIND=nag_wp) Input

On entry: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06BHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06BLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06BLF computes the quotient of two real scalars.

2 Specification

FUNCTION F06BLF (A, B, FAIL)
REAL (KIND=nag_wp) F06BLF

REAL (KIND=nag_wp) A, B
LOGICAL FAIL

3 Description

F06BLF returns the value q via the function name, where

q ¼
a=b; if a=b does not overflow;
0; if a ¼ 0;
flmax � sign a=bð Þ; if a 6¼ 0 and a=b would overflow:

8<:
Here flmax is the large value given by 1= X02AMFð Þ, and sign a=0ð Þ is taken as sign a.

4 References

None.

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: the value a.

2: B – REAL (KIND=nag_wp) Input

On entry: the value b.

3: FAIL – LOGICAL Output

On exit: .TRUE. if a=b would overflow (in which case qj j ¼ flmax) or a ¼ b ¼ 0 (in which case
q ¼ 0); otherwise .FALSE..

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06BLF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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F06BMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06BMF completes the safe computation of the Euclidean length of a vector, following a call to F06FJF
or F06KJF.

2 Specification

FUNCTION F06BMF (SCAL, SSQ)
REAL (KIND=nag_wp) F06BMF

REAL (KIND=nag_wp) SCAL, SSQ

3 Description

F06BMF completes the safe computation of the Euclidean length of a vector, following a call to F06FJF
or F06KJF which return values � and � such that

xk k22 ¼ �2�:

F06BMF returns, via the function name, the value

min �
ffiffiffi
�

p
; flmax

� �
;

where flmax is the value given by 1= X02AMFð Þ.

4 References

None.

5 Arguments

1: SCAL – REAL (KIND=nag_wp) Input

On entry: the scaling factor �, returned by F06FJF or F06KJF.

Constraint: SCAL � 0:0.

2: SSQ – REAL (KIND=nag_wp) Input

On entry: the scaled sum of squares �, returned by F06FJF or F06KJF.

Constraint: SSQ � 1:0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06BMF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06BNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06BNF returns the value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

via the function name.

2 Specification

FUNCTION F06BNF (A, B)
REAL (KIND=nag_wp) F06BNF

REAL (KIND=nag_wp) A, B

3 Description

None.

4 References

None.

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: the value a.

2: B – REAL (KIND=nag_wp) Input

On entry: the value b.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06BNF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06BPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06BPF returns an eigenvalue of a 2 by 2 real symmetric matrix.

2 Specification

FUNCTION F06BPF (A, B, C)
REAL (KIND=nag_wp) F06BPF

REAL (KIND=nag_wp) A, B, C

3 Description

F06BPF returns an eigenvalue of the 2 by 2 real symmetric matrix

a b
b c

� �
;

via the function name. The result is intended for use as a shift in symmetric eigenvalue routines.

The eigenvalue is computed as

c� b

f þ sign f �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

p ;

where f ¼ a�c
2b .

This is the eigenvalue nearer to c if a 6¼ c, and is equal to c� b if a ¼ c.

4 References

None.

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: the value a, the 1; 1ð Þ element of the input matrix.

2: B – REAL (KIND=nag_wp) Input

On entry: the value b, the 1; 2ð Þ or 2; 1ð Þ element of the input matrix.

3: C – REAL (KIND=nag_wp) Input

On entry: the value c, the 2; 2ð Þ element of the input matrix.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06BPF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06CAF generates a complex Givens plane rotation having real cosine.

2 Specification

SUBROUTINE F06CAF (A, B, C, S)

REAL (KIND=nag_wp) C
COMPLEX (KIND=nag_wp) A, B, S

3 Description

F06CAF generates a complex Givens plane rotation with parameters c (real � 0) and s (complex), such
that, given complex a and b:

c �s
�s c

� �
a
b

� �
¼ d

0

� �
:

If a is real, then d is also real. On exit, b is overwritten by t, the tangent of the rotation; c and s can be
reconstructed from the single stored value t, by a subsequent call to F06CCF.

If bj j < � aj j, where � is the machine precision, the routine sets c ¼ 1 and s ¼ t.
Note that t is always set to b=a, unless overflow would occur, in which case the routine returns the
value of the expression

CMPLX flmax � sign Re bð Þ=að Þ; flmax � sign Im bð Þ=að Þð Þ;

flmax is the real value given by 1= X02AMFð Þ.

4 References

None.

5 Arguments

1: A – COMPLEX (KIND=nag_wp) Input/Output

On entry: the value a, the first element of the vector which determines the rotation.

On exit: the value d.

2: B – COMPLEX (KIND=nag_wp) Input/Output

On entry: the value b, the second element of the vector which determines the rotation.

On exit: the value t, the tangent of the rotation.

3: C – REAL (KIND=nag_wp) Output

On exit: the value c, the cosine of the rotation.
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4: S – COMPLEX (KIND=nag_wp) Output

On exit: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06CAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06CBF generates a complex Givens plane rotation having real sine.

2 Specification

SUBROUTINE F06CBF (A, B, C, S)

REAL (KIND=nag_wp) S
COMPLEX (KIND=nag_wp) A, B, C

3 Description

F06CBF generates a complex Givens plane rotation with parameters c (complex) and s (real), such that,
given complex a and b:

�c s
�s c

� �
a
b

� �
¼ d

0

� �
;

If b is real, then d is also real. On exit, b is overwritten by t, the tangent of the rotation; c and s can be
reconstructed from the single stored value t, by a subsequent call to F06CDF.

If bj j < � aj j and Im að Þ ¼ 0, where � is the machine precision, the routine sets c ¼ 1 and s ¼ tj j.
If bj j < � aj j and Im að Þ 6¼ 0, the routine sets

c ¼ sign Re að Þð Þa
aj j and s ¼ tj j

Note that t is always set to b=a, unless overflow would occur, in which case the routine returns the
value of the expression

CMPLX flmax � sign Re bð Þ=að Þ; flmax � sign Im bð Þ=að Þð Þ;

flmax is the real value given by 1= X02AMFð Þ.

4 References

None.

5 Arguments

1: A – COMPLEX (KIND=nag_wp) Input/Output

On entry: the value a, the first element of the vector which determines the rotation.

On exit: the value d.

2: B – COMPLEX (KIND=nag_wp) Input/Output

On entry: the value b, the second element of the vector which determines the rotation.

On exit: the value t, the tangent of the rotation.

F06 – Linear Algebra Support Routines F06CBF

Mark 26 F06CBF.1



3: C – COMPLEX (KIND=nag_wp) Output

On exit: the value c, the cosine of the rotation.

4: S – REAL (KIND=nag_wp) Output

On exit: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06CBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06CCF reconstructs the parameters c (real) and s (complex) of a complex plane rotation from the
tangent of that rotation.

2 Specification

SUBROUTINE F06CCF (T, C, S)

REAL (KIND=nag_wp) C
COMPLEX (KIND=nag_wp) T, S

3 Description

F06CCF reconstructs the parameters c (real) and s (complex) of a complex plane rotation, from the
value of the tangent t, as returned by F06CAF:

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tj j2

q ; s ¼ ct;

so that c is always real and non-negative.

If tj j <
ffiffi
�
p

, where � is the machine precision, the routine sets c ¼ 1 and s ¼ t.

4 References

None.

5 Arguments

1: T – COMPLEX (KIND=nag_wp) Input

On entry: the value t, the tangent of the rotation.

2: C – REAL (KIND=nag_wp) Output

On exit: the value c, the cosine of the rotation.

3: S – COMPLEX (KIND=nag_wp) Output

On exit: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06CCF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06CDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06CDF reconstructs the parameters c (complex) and s (real) of a complex plane rotation from the
tangent of that rotation.

2 Specification

SUBROUTINE F06CDF (T, C, S)

REAL (KIND=nag_wp) S
COMPLEX (KIND=nag_wp) T, C

3 Description

F06CDF reconstructs the parameters c (complex) and s (real) of a complex plane rotation, from the
value of the tangent t, as returned by F06CBF:

c ¼ sign Re tð Þð Þ tj j

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tj j2

q ; s ¼ ct:

If tj j <
ffiffi
�
p

, where � is the machine precision, the routine sets:

c ¼ sign Re tð Þð Þ tj j
t

; s ¼ sign Re tð Þð Þ tj j:

4 References

None.

5 Arguments

1: T – COMPLEX (KIND=nag_wp) Input

On entry: the value t, the tangent of the rotation.

2: C – COMPLEX (KIND=nag_wp) Output

On exit: the value c, the cosine of the rotation.

3: S – REAL (KIND=nag_wp) Output

On exit: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06CDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06CHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06CHF applies a complex similarity rotation having real cosine and complex sine to a 2 by 2 complex
Hermitian matrix.

2 Specification

SUBROUTINE F06CHF (X, Y, Z, C, S)

REAL (KIND=nag_wp) C
COMPLEX (KIND=nag_wp) X, Y, Z, S

3 Description

F06CHF applies a complex similarity rotation, with parameters c (real) and s (complex), to a given 2 by
2 complex Hermitian matrix; that is, it performs the operation:

x y
�y z

� �
 c �s

�s c

� �
x y
�y z

� �
c ��s
s c

� �
;

where x and z are real.

The argument X and Z which hold x and z are declared complex for convenience when using the
routine to operate on submatrices of larger Hermitian matrices.

Note that:

z �y
y x

� �
 c �w

�w c

� �
z �y
y x

� �
c � �w
w c

� �
;

where w ¼ ��s, so to use F06CHF when y is the 2; 1ð Þ element of the matrix, you can make the call

CALL F06CHF(Z, Y, X, C, -CONJG(S))

4 References

None.

5 Arguments

1: X – COMPLEX (KIND=nag_wp) Input/Output

On entry: the value x, the 1; 1ð Þ element of the input matrix.

On exit: the transformed value x.

2: Y – COMPLEX (KIND=nag_wp) Input/Output

On entry: the value y, the 1; 2ð Þ element of the input matrix.

On exit: the transformed value y.

3: Z – COMPLEX (KIND=nag_wp) Input/Output

On entry: the value z, the 2; 2ð Þ element of the input matrix.
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On exit: the transformed value z.

4: C – REAL (KIND=nag_wp) Input

On entry: the value c, the cosine of the rotation.

5: S – COMPLEX (KIND=nag_wp) Input

On entry: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06CHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.

F06CHF NAG Library Manual

F06CHF.2 (last) Mark 26



NAG Library Routine Document

F06CLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06CLF computes the quotient of two complex scalars.

2 Specification

FUNCTION F06CLF (A, B, FAIL)
COMPLEX (KIND=nag_wp) F06CLF

COMPLEX (KIND=nag_wp) A, B
LOGICAL FAIL

3 Description

F06CLF returns the value q via the function name, where

q ¼
a=b; if a=b does not overflow;
0; if a ¼ 0;
cflmax; if a 6¼ 0 and a=b would overflow:

8<:
Here cflmax is a large complex value, given by

cflmax ¼ flmax � sign Re að Þ=bð Þ; flmax � sign Im að Þ=bð Þð Þ;

flmax is the real value given by 1= X02AMFð Þ, and for real x, sign x=0ð Þ is taken as signx.

4 References

None.

5 Arguments

1: A – COMPLEX (KIND=nag_wp) Input

On entry: the value a.

2: B – COMPLEX (KIND=nag_wp) Input

On entry: the value b.

3: FAIL – LOGICAL Output

On exit: .TRUE. if a=b would overflow (in which case Re qð Þj j ¼ Im qð Þj j ¼ flmax) or a ¼ b ¼ 0
(in which case q ¼ 0); otherwise .FALSE..

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06CLF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06DBF broadcasts an integer scalar into an integer vector.

2 Specification

SUBROUTINE F06DBF (N, CON, X, INCX)

INTEGER N, CON, X(*), INCX

3 Description

F06DBF performs the operation

x �; �; . . . ; �ð ÞT;

where x is an n-element integer vector scattered with stride INCX.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: CON – INTEGER Input

On entry: the scalar �.

3: Xð�Þ – INTEGER array Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On exit: the vector x. xi will be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are unchanged.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

F06 – Linear Algebra Support Routines F06DBF

Mark 26 F06DBF.1



8 Parallelism and Performance

F06DBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06DFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06DFF copies an integer vector.

2 Specification

SUBROUTINE F06DFF (N, X, INCX, Y, INCY)

INTEGER N, X(*), INCX, Y(*), INCY

3 Description

F06DFF performs the operation

y x

where x and y are n-element integer vectors scattered with stride INCX and INCY respectively.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – INTEGER array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

4: Yð�Þ – INTEGER array Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On exit: the vector y.

If INCY > 0, yi will be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi will be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are unchanged.
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5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06DFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06EAF (DDOT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06EAF (DDOT) computes the scalar product of two real vectors.

2 Specification

FUNCTION F06EAF (N, X, INCX, Y, INCY)
REAL (KIND=nag_wp) F06EAF

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name ddot.

3 Description

F06EAF (DDOT) returns, via the function name, the value of the scalar product

xTy

where x and y are n-element real vectors scattered with stride INCX and INCY respectively.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

4: Yð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.
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If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06EAF (DDOT) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06ECF (DAXPY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ECF (DAXPY) adds a scaled real vector to an unscaled real vector.

2 Specification

SUBROUTINE F06ECF (N, ALPHA, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) ALPHA, X(*), Y(*)

The routine may be called by its BLAS name daxpy.

3 Description

F06ECF (DAXPY) performs the operation

y �xþ y

where x and y are n-element real vectors scattered with stride INCX and INCY respectively, and � is a
real scalar.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.
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5: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

Intermediate elements of Y are unchanged.

6: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ECF (DAXPY) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06EDF (DSCAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06EDF (DSCAL) multiplies a real vector by a real scalar.

2 Specification

SUBROUTINE F06EDF (N, ALPHA, X, INCX)

INTEGER N, INCX
REAL (KIND=nag_wp) ALPHA, X(*)

The routine may be called by its BLAS name dscal.

3 Description

F06EDF (DSCAL) performs the operation

x �x

where x is an n-element real vector scattered with stride INCX, and � is a real scalar.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the vector �x stored in the array elements used to supply the original vector x.

Intermediate elements of X are unchanged.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06EDF (DSCAL) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06EFF (DCOPY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06EFF (DCOPY) makes a copy of a real vector.

2 Specification

SUBROUTINE F06EFF (N, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name dcopy.

3 Description

F06EFF (DCOPY) performs the operation

y x

where x and y are n-element real vectors scattered with stride INCX and INCY respectively.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

4: Yð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On exit: the vector y.

If INCY > 0, yi will be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi will be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.
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Intermediate elements of Y are unchanged.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06EFF (DCOPY) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06EGF (DSWAP)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06EGF (DSWAP) interchanges two n-element real vectors x and y.

2 Specification

SUBROUTINE F06EGF (N, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name dswap.

3 Description

F06EGF (DSWAP) interchanges the elements of real vectors x and y scattered with stride INCX and
INCY respectively.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the original vector y stored in the array elements used to supply the original vector x.

Intermediate elements of X are unchanged.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

4: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.
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If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

On exit: the original vector x stored in the array elements used to supply the original vector y.

Intermediate elements of Y are unchanged.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06EGF (DSWAP) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06EJF (DNRM2)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06EJF (DNRM2) returns the Euclidean norm of the n-element real vector x.

2 Specification

FUNCTION F06EJF (N, X, INCX)
REAL (KIND=nag_wp) F06EJF

INTEGER N, INCX
REAL (KIND=nag_wp) X(*)

The routine may be called by its BLAS name dnrm2.

3 Description

F06EJF (DNRM2) returns, via the function name, the Euclidean norm

xk k2 ¼
ffiffiffiffiffiffiffiffi
xTx
p

of the n-element real vector x scattered with stride INCX.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06EJF (DNRM2) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06EKF (DASUM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06EKF (DASUM) returns the 1-norm of the n-element real vector x.

2 Specification

FUNCTION F06EKF (N, X, INCX)
REAL (KIND=nag_wp) F06EKF

INTEGER N, INCX
REAL (KIND=nag_wp) X(*)

The routine may be called by its BLAS name dasum.

3 Description

F06EKF (DASUM), returns via the function name, the 1-norm

x1j j þ x2j j þ � � � þ xnj j

of the n-element real vector x scattered with stride INCX.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06EKF (DASUM) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06EPF (DROT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06EPF (DROT) applies a real plane rotation to two real vectors.

2 Specification

SUBROUTINE F06EPF (N, X, INCX, Y, INCY, C, S)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) X(*), Y(*), C, S

The routine may be called by its BLAS name drot.

3 Description

F06EPF (DROT) applies a real plane rotation to two n-element real vectors x and y:

xT

yT

� �
 c s

�s c

� �
xT

yT

� �
:

with stride INCX and INCY respectively. The plane rotation has the form generated by F06AAF
(DROTG) or F06BAF.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the transformed vector x stored in the array elements used to supply the original vector
x.

Intermediate elements of X are unchanged.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.
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4: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

On exit: the transformed vector y stored in the array elements used to supply the original vector
y.

Intermediate elements of Y are unchanged.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6: C – REAL (KIND=nag_wp) Input

On entry: the value c, the cosine of the rotation.

7: S – REAL (KIND=nag_wp) Input

On entry: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06EPF (DROT) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06ERF (DDOTI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ERF (DDOTI) computes the scalar product of a sparse real vector, stored in compressed form, with
a real vector.

2 Specification

FUNCTION F06ERF (NZ, X, INDX, Y)
REAL (KIND=nag_wp) F06ERF

INTEGER NZ, INDX(*)
REAL (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name ddoti.

3 Description

F06ERF (DDOTI) returns, via the function name, the value of the scalar product

xTy ¼ x 1ð Þ � y indx 1ð Þð Þ þ x 2ð Þ � y indy 2ð Þð Þ þ � � � þ x nzð Þ � y indx nzð Þð Þ

where x is a sparse real vector, stored in compressed form and y is a real vector in full storage format.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the sparse vector x.

2: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1;NZð Þ.
On entry: the nonzero elements of the sparse vector x.

3: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: INDXðiÞ must contain the index of XðiÞ in the sparse vector x, for i ¼ 1; 2; . . . ;NZ.

4: Yð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On entry: the vector y. Only elements corresponding to indices in INDX are accessed.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ERF (DDOTI) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06ETF (DAXPYI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ETF (DAXPYI) adds a scaled sparse real vector, stored in compressed form, to an unscaled real
vector.

2 Specification

SUBROUTINE F06ETF (NZ, A, X, INDX, Y)

INTEGER NZ, INDX(*)
REAL (KIND=nag_wp) A, X(*), Y(*)

The routine may be called by its BLAS name daxpyi.

3 Description

F06ETF (DAXPYI) performs the operation

y �xþ y

where x is a sparse real vector, stored in compressed form, and y is a real vector in full storage form.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the sparse vector x.

2: A – REAL (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1;NZð Þ.
On entry: the nonzero elements of the sparse vector x.

4: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: INDXðiÞ must contain the index of XðiÞ in the sparse vector x, for i ¼ 1; 2; . . . ;NZ.

Constraint: the indices must be distinct.
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5: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On entry: the vector y. Only elements corresponding to indices in INDX are accessed.

On exit: the updated vector y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ETF (DAXPYI) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06EUF (DGTHR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06EUF (DGTHR) gathers specified (usually nonzero) elements of a real vector y in full storage form
into a sparse real vector x in compressed form.

2 Specification

SUBROUTINE F06EUF (NZ, Y, X, INDX)

INTEGER NZ, INDX(*)
REAL (KIND=nag_wp) Y(*), X(*)

The routine may be called by its BLAS name dgthr.

3 Description

F06EUF (DGTHR) gathers the specified elements of a vector, y, in full storage form, into x, the
equivalent sparse vector compressed form.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the compressed sparse vector x.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On entry: the vector y. Only elements corresponding to indices in INDX are accessed.

3: Xð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array X must be at least max 1;NZð Þ.
On exit: the compressed vector x.

4: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: INDXðiÞ must contain the index YðiÞ, for i ¼ 1; 2; . . . ;NZ, which is to be gathered into
x.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06EUF (DGTHR) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06EVF (DGTHRZ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06EVF (DGTHRZ) gathers specified (usually nonzero) elements of a real vector y in full storage form
into a sparse real vector x in compressed form. The specified elements of y are set to zero.

2 Specification

SUBROUTINE F06EVF (NZ, Y, X, INDX)

INTEGER NZ, INDX(*)
REAL (KIND=nag_wp) Y(*), X(*)

The routine may be called by its BLAS name dgthrz.

3 Description

F06EVF (DGTHRZ) gathers the specified elements of a vector, y, in full storage form, into the
equivalent sparse vector compressed form. The gathered elements of y are set to zero.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the compressed sparse vector x.

2: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On entry: the vector y. Only elements corresponding to indices in INDX are accessed.

On exit: the elements of y corresponding to indices in INDX are set to zero.

3: Xð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array X must be at least max 1;NZð Þ.
On exit: the compressed vector x.

4: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: INDXðiÞ must contain the index YðiÞ, for i ¼ 1; 2; . . . ;NZ, which is to be gathered into
x.

Constraint: the indices must be distinct.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06EVF (DGTHRZ) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06EWF (DSCTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06EWF (DSCTR) scatters the elements of a sparse real vector x stored in compressed form, into a real
vector y in full storage form.

2 Specification

SUBROUTINE F06EWF (NZ, X, INDX, Y)

INTEGER NZ, INDX(*)
REAL (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name dsctr.

3 Description

F06EWF (DSCTR) scatters the elements of a vector x, stored in compressed form, into a vector, y, in
full storage form.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the sparse vector x.

2: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1;NZð Þ.
On entry: the nonzero elements of the sparse vector x.

3: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: INDXðiÞ must contain the index of XðiÞ in the sparse vector x, for i ¼ 1; 2; . . . ;NZ.

Constraint: the indices must be distinct.

4: Yð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On exit: the vector y. Only elements corresponding to indices in INDX are altered.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06EWF (DSCTR) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06EXF (DROTI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06EXF (DROTI) applies a real plane rotation to a sparse real vector and a real vector.

2 Specification

SUBROUTINE F06EXF (NZ, X, INDX, Y, C, S)

INTEGER NZ, INDX(*)
REAL (KIND=nag_wp) X(*), Y(*), C, S

The routine may be called by its BLAS name droti.

3 Description

F06EXF (DROTI) applies a real plane rotation to a sparse real vector x stored in compressed form and
a real vector y in full storage form:

xT

yT

� �
 c s

�s c

� �
xT

yT

� �
:

The plane rotation has the form generated by F06AAF (DROTG) or F06BAF.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the sparse vector x.

2: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1;NZð Þ.
On entry: the nonzero elements of the sparse vector x.

On exit: the transformed vector x.

3: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: INDXðiÞ must contain the index of XðiÞ in the sparse vector x, for i ¼ 1; 2; . . . ;NZ.

Constraint: the indices must be distinct.

4: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On entry: the vector y. Only the elements corresponding to indices in INDX are referenced.
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On exit: the transformed vector y. Only elements corresponding to indices in INDX are altered.

5: C – REAL (KIND=nag_wp) Input

On entry: the value c, the cosine of the rotation.

6: S – REAL (KIND=nag_wp) Input

On entry: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06EXF (DROTI) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06FAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FAF computes the cosine of the angle between two real vectors.

2 Specification

FUNCTION F06FAF (N, J, TOLX, X, INCX, TOLY, Y, INCY)
REAL (KIND=nag_wp) F06FAF

INTEGER N, J, INCX, INCY
REAL (KIND=nag_wp) TOLX, X(*), TOLY, Y(*)

3 Description

F06FAF returns, via the function name, the cosine of the angle between two n-element real vectors x
and y, given by the expression

xTy

xk k2 yk k2
:

If 1 � j � n, y is taken to be the unit vector ej, in which case the array Y is not referenced.

If xk k2 � tolx, the routine returns 2:0; if xk k2 > tolx but yk k2 � toly, the routine returns �2:0;
otherwise the value returned is in the range �1:0; 1:0ð Þ.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: J – INTEGER Input

On entry: if the vector y is supplied in Y, J should be set to 0. Otherwise, J specifies the index j
of the unit vector ej to be used as y.

3: TOLX – REAL (KIND=nag_wp) Input

On entry: the value tolx, used to determine whether xk k2 is effectively zero.

If TOLX is negative, the value zero is used.

4: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.
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Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

6: TOLY – REAL (KIND=nag_wp) Input

On entry: the value toly, used to determine whether yk k2 is effectively zero.

If TOLY is negative, the value zero is used.

7: Yð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: if 1 � J � N, Y is not referenced. Otherwise, Y holds the vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

8: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06FBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FBF broadcasts a real scalar into a real vector.

2 Specification

SUBROUTINE F06FBF (N, CON, X, INCX)

INTEGER N, INCX
REAL (KIND=nag_wp) CON, X(*)

3 Description

F06FBF performs the operation

x �; �; . . . ; �ð ÞT;

where x is an n-element real vector.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: CON – REAL (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On exit: the vector x. xi will be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are unchanged.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06FBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06FCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FCF multiplies a real vector by a real diagonal matrix.

2 Specification

SUBROUTINE F06FCF (N, D, INCD, X, INCX)

INTEGER N, INCD, INCX
REAL (KIND=nag_wp) D(*), X(*)

3 Description

F06FCF performs the operation

x Dx

where x is an n-element real vector and D ¼ diag dð Þ is a real diagonal matrix.

Equivalently, the routine performs the element-by-element product of the vectors x and d

xi ¼ dixi; i ¼ 1; 2; . . . ; n:

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in d and x.

2: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1; 1þ N� 1ð Þ � INCDj jð Þ.
On entry: the vector d.

If INCD > 0, di must be stored in Dð i � 1ð Þ � INCDþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCD < 0, di must be stored in Dð1� N� ið Þ � INCDÞ, for i ¼ 1; 2; . . . ;N.

3: INCD – INTEGER Input

On entry: the increment in the subscripts of D between successive elements of d.

4: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the array X must contain the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.
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On exit: the updated vector x stored in the array elements used to supply the original vector x.

Intermediate elements of X are unchanged.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06FDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FDF multiplies a real vector by a scalar, preserving the input vector.

2 Specification

SUBROUTINE F06FDF (N, ALPHA, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) ALPHA, X(*), Y(*)

3 Description

F06FDF performs the operation

y �x

where x and y are n-element real vectors scattered with stride INCX and INCY respectively, and � is a
real scalar.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

5: Yð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On exit: the vector y.
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If INCY > 0, yi will be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi will be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are unchanged.

6: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06FEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FEF multiplies a real vector by the reciprocal of a scalar.

2 Specification

SUBROUTINE F06FEF (N, ALPHA, X, INCX)

INTEGER N, INCX
REAL (KIND=nag_wp) ALPHA, X(*)

3 Description

F06FEF performs the operation

x 1

�
x

where x is an n-element real vector scattered with stride INCX and � is a real nonzero scalar.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

Constraint: ALPHA 6¼ 0:0.

3: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the updated vector x, stored in the same array elements used to supply the original
vector.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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F06FGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FGF negates a real vector.

2 Specification

SUBROUTINE F06FGF (N, X, INCX)

INTEGER N, INCX
REAL (KIND=nag_wp) X(*)

3 Description

F06FGF performs the operation

x �x

where x is an n-element real vector scattered with stride INCX.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the vector �x stored in the array elements used to supply the original vector x.

Intermediate elements of X are unchanged.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FGF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06FJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FJF updates the Euclidean norm of real vector in scaled form.

2 Specification

SUBROUTINE F06FJF (N, X, INCX, SCAL, SUMSQ)

INTEGER N, INCX
REAL (KIND=nag_wp) X(*), SCAL, SUMSQ

3 Description

Given an n-element real vector x, and real scalars � and �, F06FJF returns updated values ~� and ~� such
that

~�2~� ¼ x21 þ x22 þ � � � þ x2n þ �2�:

F06FJF is designed for use in the safe computation of the Euclidean norm of a real vector, without
unnecessary overflow or destructive underflow. An initial call to F06FJF (with � ¼ 1 and � ¼ 0) may be
followed by further calls to F06FJF and finally a call to F06BMF to complete the computation. Multiple
calls of F06FJF may be needed if the elements of the vector cannot all be accessed in a single array X.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

4: SCAL – REAL (KIND=nag_wp) Input/Output

On entry: the scaling factor �. On the first call to F06FJF SCAL ¼ 0:0.

Constraint: SCAL � 0:0.

On exit: the updated scaling factor ~� ¼ max
i

�; xij jð Þ.
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5: SUMSQ – REAL (KIND=nag_wp) Input/Output

On entry: the scaled sum of squares �. On the first call to F06FJF SUMSQ ¼ 1:0.

Constraint: SUMSQ � 1:0.

On exit: the updated scaled sum of squares ~�, satisfying: 1 � ~� � � þ n.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FJF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06FKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FKF computes the weighted Euclidean norm of a real vector.

2 Specification

FUNCTION F06FKF (N, W, INCW, X, INCX)
REAL (KIND=nag_wp) F06FKF

INTEGER N, INCW, INCX
REAL (KIND=nag_wp) W(*), X(*)

3 Description

F06FKF returns, via the function name, the weighted Euclidean normffiffiffiffiffiffiffiffiffiffiffiffiffi
xTWx
p

of the n-element real vector x scattered with stride INCW and INCX respectively, where W ¼ diag wð Þ
and w is a vector of weights scattered with stride INCW.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Wð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array W must be at least max 1; 1þ N� 1ð Þ � INCWj jð Þ.
On entry: w, the vector of weights.

If INCW > 0, wi must be stored in Wð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCW < 0, wi must be stored in Wð1� N� ið Þ � INCWÞ, for i ¼ 1; 2; . . . ;N.

Constraint: All weights must be non-negative.

3: INCW – INTEGER Input

On entry: the increment in the subscripts of W between successive elements of w.

4: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.
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Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FKF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.

F06FKF NAG Library Manual

F06FKF.2 (last) Mark 26



NAG Library Routine Document

F06FLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FLF returns the absolutely largest and absolutely smallest values from a real vector.

2 Specification

SUBROUTINE F06FLF (N, X, INCX, XMAX, XMIN)

INTEGER N, INCX
REAL (KIND=nag_wp) X(*), XMAX, XMIN

3 Description

F06FLF returns the values xmax and xmin given by

xmax ¼ max
i
xij j; xmin ¼ min

i
xij j;

where x is an n-element real vector scattered with stride INCX. If n < 1, then xmax and xmin are
returned as zero.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

4: XMAX – REAL (KIND=nag_wp) Output

On exit: the value xmax ¼ max
i
xij j.

5: XMIN – REAL (KIND=nag_wp) Output

On exit: the value xmin ¼ min
i
xij j.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FLF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06FPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FPF applies a real symmetric plane rotation to two real vectors.

2 Specification

SUBROUTINE F06FPF (N, X, INCX, Y, INCY, C, S)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) X(*), Y(*), C, S

3 Description

F06FPF applies a symmetric real plane rotation to two n-element real vectors x and y scattered with
stride INCX and INCY respectively:

xT

yT

� �
 c s

s �c

� �
xT

yT

� �
:

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the original vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the transformed vector x stored in the same elements used to supply the original vector
x.

Intermediate elements of X are unchanged.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

4: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the original vector y.
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If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

On exit: the transformed vector y stored in the same elements used to supply the original vector
y.

Intermediate elements of Y are unchanged.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6: C – REAL (KIND=nag_wp) Input

On entry: the value c, the cosine of the rotation.

7: S – REAL (KIND=nag_wp) Input

On entry: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FPF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06FQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FQF generates a sequence of real plane rotations.

2 Specification

SUBROUTINE F06FQF (PIVOT, DIRECT, N, ALPHA, X, INCX, C, S)

INTEGER N, INCX
REAL (KIND=nag_wp) ALPHA, X(*), C(N), S(N)
CHARACTER(1) PIVOT, DIRECT

3 Description

F06FQF generates the parameters of a real orthogonal matrix P , of order nþ 1, chosen so as to set to
zero the elements of a supplied n-element real vector x.

If PIVOT ¼ F and DIRECT ¼ F , or if PIVOT ¼ V and DIRECT ¼ B ,

P
�
x

� �
¼ �

0

� �
;

If PIVOT ¼ F and DIRECT ¼ B , or if PIVOT ¼ V and DIRECT ¼ F ,

P
x
�

� �
¼ 0

�

� �
:

Here � and � are real scalars.

P is represented as a sequence of n plane rotations Pk, as specified by PIVOT and DIRECT; Pk is
chosen to annihilate xk, and its 2 by 2 plane rotation part has the form

ck sk
�sk ck

� �
:

The tangent of the rotation, tk, is overwritten on xk.

4 References

None.

5 Arguments

1: PIVOT – CHARACTER(1) Input

On entry: specifies the plane rotated by Pk.

PIVOT ¼ V (variable pivot)
Pk rotates the k; kþ 1ð Þ plane.

PIVOT ¼ F (fixed pivot)
Pk rotates the 1; kþ 1ð Þ plane if DIRECT ¼ F , or the k; nþ 1ð Þ plane if DIRECT ¼ B .

Constraint: PIVOT ¼ V or F .
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2: DIRECT – CHARACTER(1) Input

On entry: specifies the sequence direction.

DIRECT ¼ F (forward sequence)
P ¼ Pn � � �P2P1.

DIRECT ¼ B (backward sequence)
P ¼ P1P2 � � �Pn.

Constraint: DIRECT ¼ F or B .

3: N – INTEGER Input

On entry: n, the number of elements in x.

4: ALPHA – REAL (KIND=nag_wp) Input/Output

On entry: the scalar �.

On exit: the scalar �.

5: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the referenced elements are overwritten by details of the sequence of plane rotations.

6: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

7: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values ck, the cosines of the rotations.

8: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values sk, the sines of the rotations.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FQF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

None.
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NAG Library Routine Document

F06FRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FRF generates a real elementary reflection in the NAG (as opposed to LINPACK) style.

2 Specification

SUBROUTINE F06FRF (N, ALPHA, X, INCX, TOL, ZETA)

INTEGER N, INCX
REAL (KIND=nag_wp) ALPHA, X(*), TOL, ZETA

3 Description

F06FRF generates details of a real elementary reflection (Householder matrix), P , such that

P
�
x

� �
¼ �

0

� �
where P is orthogonal, � and � are real scalars, and x is an n-element real vector.

P is given in the form

P ¼ I � �
z

� �
� zT
� �

;

where z is an n-element real vector and � is a real scalar.

If x is such that

max xij j � max tol; � �j jð Þ

where � is the machine precision and tol is a user-supplied tolerance, then � is set to 0, and P can be
taken to be the unit matrix. Otherwise 1 � � �

ffiffiffi
2
p

.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and z.

2: ALPHA – REAL (KIND=nag_wp) Input/Output

On entry: the scalar �.

On exit: the scalar �.
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3: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the referenced elements are overwritten by details of the real elementary reflection.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

5: TOL – REAL (KIND=nag_wp) Input

On entry: the value tol.

6: ZETA – REAL (KIND=nag_wp) Output

On exit: the scalar �.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FRF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.

F06FRF NAG Library Manual

F06FRF.2 (last) Mark 26



NAG Library Routine Document

F06FSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FSF generates a real elementary reflection in the LINPACK (as opposed to NAG) style.

2 Specification

SUBROUTINE F06FSF (N, ALPHA, X, INCX, TOL, Z1)

INTEGER N, INCX
REAL (KIND=nag_wp) ALPHA, X(*), TOL, Z1

3 Description

F06FSF generates details of a real elementary reflection (Householder matrix), P , such that

P
�
x

� �
¼ �

0

� �
where P is orthogonal, � and � are real scalars, and x is an n-element real vector.

P is given in the form

P ¼ I � 1

�
�
z

� �
� zT
� �

;

where z is an n-element real vector and � is a real scalar. (This form is compatible with that used by
LINPACK.)

If the elements of x are all zero, or if the elements of x are all less than tol � �j j in absolute value, then
� is set to 0 and P can be taken to be the unit matrix. Otherwise � always lies in the range 1; 2ð Þ.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and z.

2: ALPHA – REAL (KIND=nag_wp) Input/Output

On entry: the scalar �.

On exit: the scalar �.

3: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.
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On exit: the referenced elements are overwritten by details of the real elementary reflection.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

5: TOL – REAL (KIND=nag_wp) Input

On entry: the value tol.

If TOL is not in the range 0; 1ð Þ, then the value 0 is used for tol.

6: Z1 – REAL (KIND=nag_wp) Output

On exit: the scalar �.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06FTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FTF applies a NAG (as opposed to LINPACK) style real elementary reflection to a real vector.

2 Specification

SUBROUTINE F06FTF (N, DELTA, Y, INCY, ZETA, Z, INCZ)

INTEGER N, INCY, INCZ
REAL (KIND=nag_wp) DELTA, Y(*), ZETA, Z(*)

3 Description

F06FTF applies a real elementary reflection (Householder matrix) P , as generated by F06FRF, to a
given real vector:

�
y

� �
 P

�
y

� �
;

where y is an n-element real vector and � a real scalar.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in y and z.

2: DELTA – REAL (KIND=nag_wp) Input/Output

On entry: the original scalar �.

On exit: the transformed scalar �.

3: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the original vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the transformed stored in the same array elements used to supply the original vector y.

4: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

F06 – Linear Algebra Support Routines F06FTF

Mark 26 F06FTF.1



5: ZETA – REAL (KIND=nag_wp) Input

On entry: the scalar �, as returned by F06FRF.

If � ¼ 0, P is assumed to be the unit matrix and the transformation is skipped.

Constraint: if ZETA ¼ 0:0, N ¼ 0.

6: Zð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Z must be at least max 1; 1þ N� 1ð Þ � INCZj jð Þ.
On entry: the vector z, as returned by F06FRF.

If INCZ > 0, zi must be stored in Zð1þ i � 1ð Þ � INCZÞ, for i ¼ 1; 2; . . . ;N.

If INCZ < 0, zi must be stored in Zð1� N� ið Þ � INCZÞ, for i ¼ 1; 2; . . . ;N.

7: INCZ – INTEGER Input

On entry: the increment in the subscripts of Z between successive elements of z.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FTF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.

F06FTF NAG Library Manual

F06FTF.2 (last) Mark 26



NAG Library Routine Document

F06FUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06FUF applies a LINPACK (as opposed to NAG) style real elementary reflection to a real vector.

2 Specification

SUBROUTINE F06FUF (N, Z, INCZ, Z1, ALPHA, X, INCX)

INTEGER N, INCZ, INCX
REAL (KIND=nag_wp) Z(*), Z1, ALPHA, X(*)

3 Description

F06FUF applies a real elementary reflection (Householder matrix) P , as generated by F06FSF, to a
given real vector:

�
x

� �
 P

�
x

� �
where x is an n-element real vector and � a real scalar.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and z.

2: Zð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Z must be at least max 1; 1þ N� 1ð Þ � INCZj jð Þ.
On entry: the vector z, as returned by F06FSF.

If INCZ > 0, zi must be stored in Zð1þ i � 1ð Þ � INCZÞ, for i ¼ 1; 2; . . . ;N.

If INCZ < 0, zi must be stored in Zð1� N� ið Þ � INCZÞ, for i ¼ 1; 2; . . . ;N.

3: INCZ – INTEGER Input

On entry: the increment in the subscripts of Z between successive elements of z.

4: Z1 – REAL (KIND=nag_wp) Input

On entry: the scalar �, as returned by F06FSF.

If � ¼ 0, P is assumed to be the unit matrix and the transformation is skipped.

5: ALPHA – REAL (KIND=nag_wp) Input/Output

On entry: the original scalar �.
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On exit: the transformed scalar �.

6: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the original vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the transformed vector x stored in the same array elements used to supply the original
vector x.

7: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06FUF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06GAF (ZDOTU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GAF (ZDOTU) computes the scalar product of two complex vectors.

2 Specification

FUNCTION F06GAF (N, X, INCX, Y, INCY)
COMPLEX (KIND=nag_wp) F06GAF

INTEGER N, INCX, INCY
COMPLEX (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name zdotu.

3 Description

F06GAF (ZDOTU) returns, via the function name, the value of the scalar product

xTy

where x and y are n-element complex vectors scattered with stride INCX and INCY respectively.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

4: Yð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.
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If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GAF (ZDOTU) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06GBF (ZDOTC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GBF (ZDOTC) computes the scalar product of two complex vectors.

2 Specification

FUNCTION F06GBF (N, X, INCX, Y, INCY)
COMPLEX (KIND=nag_wp) F06GBF

INTEGER N, INCX, INCY
COMPLEX (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name zdotc.

3 Description

F06GBF (ZDOTC) returns, via the function name, the value of the scalar product

xHy

where x and y are n-element complex vectors scattered with stride INCX and INCY respectively.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

4: Yð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.
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If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GBF (ZDOTC) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06GCF (ZAXPY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GCF (ZAXPY) adds a scaled complex vector to an unscaled complex vector.

2 Specification

SUBROUTINE F06GCF (N, ALPHA, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
COMPLEX (KIND=nag_wp) ALPHA, X(*), Y(*)

The routine may be called by its BLAS name zaxpy.

3 Description

F06GCF (ZAXPY) performs the operation

y �xþ y

where x and y are n-element complex vectors scattered with stride INCX and INCY respectively, and �
is a complex scalar.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.
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5: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

On exit: the updated vector y.

6: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GCF (ZAXPY) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06GDF (ZSCAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GDF (ZSCAL) scales a complex vector by a complex scalar.

2 Specification

SUBROUTINE F06GDF (N, ALPHA, X, INCX)

INTEGER N, INCX
COMPLEX (KIND=nag_wp) ALPHA, X(*)

The routine may be called by its BLAS name zscal.

3 Description

F06GDF (ZSCAL) performs the operation

x �x

where x is an n-element complex vector scattered with stride INCX, and � is a complex scalar.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the vector �x stored in the array elements used to supply the original vector x yð Þ.
Intermediate elements of X are unchanged.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GDF (ZSCAL) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06GFF (ZCOPY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GFF (ZCOPY) copies a complex vector to a complex vector.

2 Specification

SUBROUTINE F06GFF (N, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
COMPLEX (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name zcopy.

3 Description

F06GFF (ZCOPY) performs the operation

y x

where x and y are n-element complex vectors scattered with stride INCX and INCY respectively.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

4: Yð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On exit: the vector y.

If INCY > 0, yi will be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi will be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.
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Intermediate elements of Y are unchanged.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GFF (ZCOPY) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06GGF (ZSWAP)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GGF (ZSWAP) interchanges two n-element complex vectors x and y.

2 Specification

SUBROUTINE F06GGF (N, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
COMPLEX (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name zswap.

3 Description

F06GGF (ZSWAP) interchanges the elements of complex vectors x and y scattered with stride INCX
and INCY respectively.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the original vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX � 0, xi must be stored in Xð1þ N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the original vector y stored in the array elements used to store the original vector x.
Intermediate elements of X are unchanged.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

4: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the original vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY � 0, yi must be stored in Yð1þ N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.
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On exit: the original vector x stored in the array elements used to store the original vector y.
Intermediate elements of Y are unchanged.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GGF (ZSWAP) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06GRF (ZDOTUI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GRF (ZDOTUI) computes the scalar product of an unconjugated sparse complex vector with a
complex vector.

2 Specification

FUNCTION F06GRF (NZ, X, INDX, Y)
COMPLEX (KIND=nag_wp) F06GRF

INTEGER NZ, INDX(*)
COMPLEX (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name zdotui.

3 Description

F06GRF (ZDOTUI) returns, via the function name, the value of the scalar product

xTy

where x is a sparse complex vector stored in compressed form, and y is a complex vector in full storage
form.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the sparse vector x.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1;NZð Þ.
On entry: the compressed vector x. X contains xi for i 2 J.

3: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: INDX must contain the set of indices J .

4: Yð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On entry: the vector y. Only elements corresponding to indices in INDX are accessed.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GRF (ZDOTUI) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06GSF (ZDOTCI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GSF (ZDOTCI) computes the scalar product of a conjugated sparse complex vector with a complex
vector.

2 Specification

FUNCTION F06GSF (NZ, X, INDX, Y)
COMPLEX (KIND=nag_wp) F06GSF

INTEGER NZ, INDX(*)
COMPLEX (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name zdotci.

3 Description

F06GSF (ZDOTCI) returns, via the function name, the value of the scalar product

xHy

where x is a sparse complex vector stored in compressed form, and y is a complex vector in full storage
form.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the sparse vector x.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1;NZð Þ.
On entry: the compressed vector x. X contains xi for i 2 J.

3: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: INDX must contain the set of indices J .

4: Yð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On entry: the vector y. Only elements corresponding to indices in INDX are accessed.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GSF (ZDOTCI) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06GTF (ZAXPYI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GTF (ZAXPYI) adds a scaled sparse complex vector to an unscaled complex vector.

2 Specification

SUBROUTINE F06GTF (NZ, A, X, INDX, Y)

INTEGER NZ, INDX(*)
COMPLEX (KIND=nag_wp) A, X(*), Y(*)

The routine may be called by its BLAS name zaxpyi.

3 Description

F06GTF (ZAXPYI) performs the operation

y �xþ y

where x is a sparse complex vector stored in compressed form, and y is a complex vector in full storage
form.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the sparse vector x.

2: A – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1;NZð Þ.
On entry: the compressed vector x. X contains xi for i 2 J.

4: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: the indices of the elements in the compressed vector x.

Constraint: the indices must be distinct.

F06 – Linear Algebra Support Routines F06GTF

Mark 26 F06GTF.1



5: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On entry: the vector y. Only elements corresponding to indices in INDX are accessed.

On exit: the updated vector y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GTF (ZAXPYI) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06GUF (ZGTHR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GUF (ZGTHR) gathers specified (usually nonzero) elements of a complex vector y in full storage
form into a sparse complex vector x in compressed form.

2 Specification

SUBROUTINE F06GUF (NZ, Y, X, INDX)

INTEGER NZ, INDX(*)
COMPLEX (KIND=nag_wp) Y(*), X(*)

The routine may be called by its BLAS name zgthr.

3 Description

None.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the sparse vector x.

2: Yð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On entry: the vector y. Only elements corresponding to indices in INDX are accessed.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array X must be at least max 1;NZð Þ.
On exit: the compressed vector x.

4: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: INDX must contain the set of indices J .

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GUF (ZGTHR) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06GVF (ZGTHRZ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GVF (ZGTHRZ) gathers specified (usually nonzero) elements of a complex vector y in full storage
form into a sparse complex vector x in compressed form. The specified elements of y are set to zero.

2 Specification

SUBROUTINE F06GVF (NZ, Y, X, INDX)

INTEGER NZ, INDX(*)
COMPLEX (KIND=nag_wp) Y(*), X(*)

The routine may be called by its BLAS name zgthrz.

3 Description

None.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the sparse vector x.

2: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On entry: the vector y. Only elements corresponding to indices in INDX are accessed.

On exit: the elements of y corresponding to indices in INDX are set to zero.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array X must be at least max 1;NZð Þ.
On exit: the compressed vector x.

4: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: INDX must contain the set of indices J .

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GVF (ZGTHRZ) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06GWF (ZSCTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06GWF (ZSCTR) scatters the elements of a sparse complex vector x stored in compressed form, into a
complex vector y in full storage form.

2 Specification

SUBROUTINE F06GWF (NZ, X, INDX, Y)

INTEGER NZ, INDX(*)
COMPLEX (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name zsctr.

3 Description

None.

4 References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

5 Arguments

1: NZ – INTEGER Input

On entry: the number of nonzeros in the sparse vector x.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1;NZð Þ.
On entry: the compressed vector x. X contains xi for i 2 J.

3: INDXð�Þ – INTEGER array Input

Note: the dimension of the array INDX must be at least max 1;NZð Þ.
On entry: the indices of the elements in the compressed vector x.

Constraint: the indices must be distinct.

4: Yð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array Y must be at least max
k

INDXðkÞf g.

On exit: the vector y. Only elements corresponding to indices in INDX are altered.

6 Error Indicators and Warnings

None.

F06 – Linear Algebra Support Routines F06GWF

Mark 26 F06GWF.1



7 Accuracy

Not applicable.

8 Parallelism and Performance

F06GWF (ZSCTR) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06HBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06HBF broadcasts a complex scalar into a complex vector.

2 Specification

SUBROUTINE F06HBF (N, CON, X, INCX)

INTEGER N, INCX
COMPLEX (KIND=nag_wp) CON, X(*)

3 Description

F06HBF performs the operation

x �; �; . . . ; �ð ÞT;

where x is an n-element complex vector scattered with stride INCX.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: CON – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On exit: the vector x, xi is stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are unchanged.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06HBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06HCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06HCF multiplies a complex vector by a complex diagonal matrix.

2 Specification

SUBROUTINE F06HCF (N, D, INCD, X, INCX)

INTEGER N, INCD, INCX
COMPLEX (KIND=nag_wp) D(*), X(*)

3 Description

F06HCF performs the operation

x Dx

where x is an n-element complex vector and D ¼ diag dð Þ is a complex diagonal matrix.

Equivalently, the routine performs the element-by-element product of the vectors x and d

xi ¼ dixi; i ¼ 1; 2; . . . ; n:

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in d and x.

2: Dð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1; 1þ N� 1ð Þ � INCDj jð Þ.
On entry: the vector d.

If INCD > 0, di must be stored in Dð i � 1ð Þ � INCDþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCD < 0, di must be stored in Dð1� N� ið Þ � INCDÞ, for i ¼ 1; 2; . . . ;N.

3: INCD – INTEGER Input

On entry: the increment in the subscripts of D between successive elements of d.

4: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the array X must contain the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.
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On exit: the updated vector x stored in the array elements used to supply the original vector x.

Intermediate elements of X are unchanged.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06HCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06HDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06HDF multiplies a complex vector by a scalar, preserving the input vector.

2 Specification

SUBROUTINE F06HDF (N, ALPHA, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
COMPLEX (KIND=nag_wp) ALPHA, X(*), Y(*)

3 Description

F06HDF performs the operation

y �x

where x and y are n-element complex vectors scattered with stride INCX and INCY respectively, and �
is a complex scalar.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

5: Yð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On exit: the vector y.
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If INCY > 0, yi will be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi will be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are unchanged.

6: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06HDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06HGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06HGF negates a complex vector.

2 Specification

SUBROUTINE F06HGF (N, X, INCX)

INTEGER N, INCX
COMPLEX (KIND=nag_wp) X(*)

3 Description

F06HGF performs the operation

x �x

where x is an n-element complex vector scattered with stride INCX.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the vector �x stored in the array elements used to supply the original vector x.

Intermediate elements of X are unchanged.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06HGF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06HMF (ZROT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06HMF (ZROT) applies a plane rotation with a real cosine and complex sine to two complex vectors.

2 Specification

SUBROUTINE F06HMF (N, CX, INCX, CY, INCY, C, S)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) C
COMPLEX (KIND=nag_wp) CX(*), CY(*), S

The routine may be called by its LAPACK name zrot.

3 Description

F06HMF (ZROT) applies a plane rotation, where the cosine is real and the sine is complex, to two
n-element complex vectors x and y:

xT

yT

� �
 c s

��s c

� �
xT

yT

� �
:

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: CXð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array CX must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in CXð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in CXð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of CX are not referenced.

On exit: the transformed vector x stored in the array elements used to supply the original vector
x.

Intermediate elements of CX are unchanged.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of CX between successive elements of x.

F06 – Linear Algebra Support Routines F06HMF

Mark 26 F06HMF.1



4: CYð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array CY must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in CYð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in CYð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of CY are not referenced.

On exit: the transformed vector y.

Intermediate elements of CY are unchanged.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of CY between successive elements of y.

6: C – REAL (KIND=nag_wp) Input

On entry: the value c, the cosine of the rotation.

7: S – COMPLEX (KIND=nag_wp) Input

On entry: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06HMF (ZROT) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06HPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06HPF applies a complex plane rotation to two complex vectors.

2 Specification

SUBROUTINE F06HPF (N, X, INCX, Y, INCY, C, S)

INTEGER N, INCX, INCY
COMPLEX (KIND=nag_wp) X(*), Y(*), C, S

3 Description

F06HPF applies a complex plane rotation to two n-element complex vectors x and y:

xT

yT

� �
 c s

��s �c

� �
xT

yT

� �
:

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the transformed vector x stored in the array elements used to supply the original vector
x.

Intermediate elements of X are unchanged.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

4: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

F06 – Linear Algebra Support Routines F06HPF

Mark 26 F06HPF.1



If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

On exit: the transformed vector y.

Intermediate elements of Y are unchanged.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6: C – COMPLEX (KIND=nag_wp) Input

On entry: the value c, the cosine of the rotation.

7: S – COMPLEX (KIND=nag_wp) Input

On entry: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06HPF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.

F06HPF NAG Library Manual

F06HPF.2 (last) Mark 26



NAG Library Routine Document

F06HQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06HQF generates a sequence of complex plane rotations.

2 Specification

SUBROUTINE F06HQF (PIVOT, DIRECT, N, ALPHA, X, INCX, C, S)

INTEGER N, INCX
REAL (KIND=nag_wp) C(N)
COMPLEX (KIND=nag_wp) ALPHA, X(*), S(N)
CHARACTER(1) PIVOT, DIRECT

3 Description

F06HQF generates the parameters of a complex unitary matrix P , of order nþ 1, chosen so as to set to
zero the elements of a supplied n-element complex vector x.

If PIVOT ¼ F and DIRECT ¼ F , or if PIVOT ¼ V and DIRECT ¼ B ,

P
�
x

� �
¼ �

0

� �
;

If PIVOT ¼ F and DIRECT ¼ B , or if PIVOT ¼ V and DIRECT ¼ F ,

P
x
�

� �
¼ 0

�

� �
:

Here � and � are complex scalars.

P is represented as a sequence of n plane rotations Pk, as specified by PIVOT and DIRECT; Pk is
chosen to annihilate xk, and its 2 by 2 plane rotation part has the form

ck �sk
�sk ck

� �
;

with ck real. The tangent of the rotation, tk, is overwritten on xk.

4 References

None.

5 Arguments

1: PIVOT – CHARACTER(1) Input

On entry: specifies the plane rotated by Pk.

PIVOT ¼ V (variable pivot)
Pk rotates the k; kþ 1ð Þ plane.

PIVOT ¼ F (fixed pivot)
Pk rotates the 1; kþ 1ð Þ plane if DIRECT ¼ F , or the k; nþ 1ð Þ plane if DIRECT ¼ B .

Constraint: PIVOT ¼ V or F .
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2: DIRECT – CHARACTER(1) Input

On entry: specifies the sequence direction.

DIRECT ¼ F (forward sequence)
P ¼ Pn � � �P2P1.

DIRECT ¼ B (backward sequence)
P ¼ P1P2 � � �Pn.

Constraint: DIRECT ¼ F or B .

3: N – INTEGER Input

On entry: n, the number of elements in x.

4: ALPHA – COMPLEX (KIND=nag_wp) Input/Output

On entry: the scalar �.

On exit: the scalar �.

5: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the referenced elements are overwritten by details of the plane rotations.

6: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

7: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values ck, the cosines of the rotations.

8: SðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the values sk, the sines of the rotations.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06HQF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

None.
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NAG Library Routine Document

F06HRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06HRF generates a complex elementary reflection.

2 Specification

SUBROUTINE F06HRF (N, ALPHA, X, INCX, TOL, THETA)

INTEGER N, INCX
REAL (KIND=nag_wp) TOL
COMPLEX (KIND=nag_wp) ALPHA, X(*), THETA

3 Description

F06HRF generates details of a complex elementary reflection (Householder matrix), P , such that

P
�
x

� �
¼ �

0

� �
where P is unitary, � is a complex scalar, � is a real scalar, and x is an n-element complex vector.

P is given in the form

P ¼ I � � �
z

� �
� zH
� �

;

where z is an n-element complex vector, � is a complex scalar such that Re �ð Þ ¼ 1, and � is a real
scalar. � and � are returned in a single complex value � ¼ �; Im �ð Þð Þ. Thus � ¼ Re �ð Þ and
� ¼ 1; Im �ð Þð Þ.
If x is such that

max Re xið Þj j; Im xið Þj jð Þ � max tol; �max Re �ð Þj j; Im �ð Þj jð Þð Þ;

where � is the machine precision and tol is a user-supplied tolerance, then:

either � is set to 0, in which case P can be taken to be the unit matrix;

or � is set so that Re �ð Þ � 0 and � 6¼ 0, in which case

P ¼ � 0
0 I

� �
:

Otherwise 1 � Re �ð Þ �
ffiffiffi
2
p

.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and z.
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2: ALPHA – COMPLEX (KIND=nag_wp) Input/Output

On entry: the scalar �.

On exit: the scalar �.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the referenced elements are overwritten by details of the complex elementary reflection.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

5: TOL – REAL (KIND=nag_wp) Input

On entry: the value tol.

6: THETA – COMPLEX (KIND=nag_wp) Output

On exit: the scalar �.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06HRF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06HTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06HTF applies a complex elementary reflection to a complex vector.

2 Specification

SUBROUTINE F06HTF (N, DELTA, Y, INCY, THETA, Z, INCZ)

INTEGER N, INCY, INCZ
COMPLEX (KIND=nag_wp) DELTA, Y(*), THETA, Z(*)

3 Description

F06HTF applies a complex elementary reflection (Householder matrix) P , as generated by F06HRF, to
a given complex vector:

�
y

� �
 P

�
y

� �
where y is an n-element complex vector and � is a complex scalar.

To apply the conjugate transpose matrix PH, call F06HTF with �� in place of �.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in y and z.

2: DELTA – COMPLEX (KIND=nag_wp) Input/Output

On entry: the original scalar �.

On exit: the transformed scalar �.

3: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the original vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the transformed stored in the same array elements used to supply the original vector y.

4: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.
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5: THETA – COMPLEX (KIND=nag_wp) Input

On entry: the value �, as returned by F06HRF.

If � ¼ 0, P is assumed to be the unit matrix and the transformation is skipped.

Constraint: if THETA � 0, n ¼ 0.

6: Zð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array Z must be at least max 1; 1þ N� 1ð Þ � INCZj jð Þ.
On entry: the vector z, as returned by F06HRF.

If INCZ > 0, zi must be stored in Zð1þ i � 1ð Þ � INCZÞ, for i ¼ 1; 2; . . . ;N.

If INCZ < 0, zi must be stored in Zð1� N� ið Þ � INCZÞ, for i ¼ 1; 2; . . . ;N.

7: INCZ – INTEGER Input

On entry: the increment in the subscripts of Z between successive elements of z.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06HTF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06JDF (ZDSCAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06JDF (ZDSCAL) scales a complex vector by a real scalar.

2 Specification

SUBROUTINE F06JDF (N, ALPHA, X, INCX)

INTEGER N, INCX
REAL (KIND=nag_wp) ALPHA
COMPLEX (KIND=nag_wp) X(*)

The routine may be called by its BLAS name zdscal.

3 Description

F06JDF (ZDSCAL) performs the operation

x �x

where x is an n-element complex vector scattered with stride INCX, and � is a real scalar.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the vector �x stored in the array elements used to supply the original vector x.

Intermediate elements of X are unchanged.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06JDF (ZDSCAL) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06JJF (DZNRM2)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06JJF (DZNRM2) computes the Euclidean norm of a complex vector.

2 Specification

FUNCTION F06JJF (N, X, INCX)
REAL (KIND=nag_wp) F06JJF

INTEGER N, INCX
COMPLEX (KIND=nag_wp) X(*)

The routine may be called by its BLAS name dznrm2.

3 Description

F06JJF (DZNRM2) returns the Euclidean norm

xk k2 ¼
ffiffiffiffiffiffiffiffiffi
xHx
p

of the n-element complex vector x scattered with stride INCX, via the function name.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06JJF (DZNRM2) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06JKF (DZASUM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06JKF (DZASUM) returns the sum of the absolute values of the real and imaginary parts of the
elements in a complex vector.

2 Specification

FUNCTION F06JKF (N, X, INCX)
REAL (KIND=nag_wp) F06JKF

INTEGER N, INCX
COMPLEX (KIND=nag_wp) X(*)

The routine may be called by its BLAS name dzasum.

3 Description

F06JKF (DZASUM) returns the norm

Re x1ð Þj j þ Im x1ð Þj j þ � � � þ Re xnð Þj j þ Im xnð Þj j

of the n-element complex vector x scattered with stride INCX, via the function name.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06JKF (DZASUM) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06JLF (IDAMAX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06JLF (IDAMAX) computes the index of the absolutely largest component of a real vector.

2 Specification

FUNCTION F06JLF (N, X, INCX)
INTEGER F06JLF

INTEGER N, INCX
REAL (KIND=nag_wp) X(*)

The routine may be called by its BLAS name idamax.

3 Description

F06JLF (IDAMAX) returns, via the function name, the smallest index i such that

xij j ¼ max
j

xj
		 		

where x is an n-element real vector scattered with stride INCX.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06JLF (IDAMAX) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06JMF (IZAMAX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06JMF (IZAMAX) computes the index of the absolutely largest component of a complex vector.

2 Specification

FUNCTION F06JMF (N, X, INCX)
INTEGER F06JMF

INTEGER N, INCX
COMPLEX (KIND=nag_wp) X(*)

The routine may be called by its BLAS name izamax.

3 Description

F06JMF (IZAMAX) returns, via the function name, the smallest index i such that

Re xið Þj j þ Im xið Þj j ¼ max
j

Re xj
� �		 		þ Im xj

� �		 		� �
where x is an n-element complex vector scattered with stride INCX.

4 References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06JMF (IZAMAX) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06KCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06KCF multiplies a complex vector by a real diagonal matrix.

2 Specification

SUBROUTINE F06KCF (N, D, INCD, X, INCX)

INTEGER N, INCD, INCX
REAL (KIND=nag_wp) D(*)
COMPLEX (KIND=nag_wp) X(*)

3 Description

F06KCF performs the operation

x Dx

where x is an n-element complex vector and D ¼ diag dð Þ is a real diagonal matrix.

Equivalently, the routine performs the element-by-element product of the vectors x and d

xi ¼ dixi; i ¼ 1; 2; . . . ; n:

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in d and x.

2: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1; 1þ N� 1ð Þ � INCDj jð Þ.
On entry: the vector d.

If INCD > 0, di must be stored in Dð i � 1ð Þ � INCDþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCD < 0, di must be stored in Dð1� N� ið Þ � INCDÞ, for i ¼ 1; 2; . . . ;N.

3: INCD – INTEGER Input

On entry: the increment in the subscripts of D between successive elements of d.

4: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the array X must contain the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.
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On exit: the updated vector x stored in the array elements used to supply the original vector x.

Intermediate elements of X are unchanged.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06KCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06KDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06KDF multiplies a complex vector by a real scalar, preserving the input vector.

2 Specification

SUBROUTINE F06KDF (N, ALPHA, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) ALPHA
COMPLEX (KIND=nag_wp) X(*), Y(*)

3 Description

F06KDF performs the operation

y �x

where x and y are n-element complex vectors, and � is a real scalar scattered with stride INCX and
INCY respectively.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

5: Yð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On exit: the vector y.
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If INCY > 0, yi will be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi will be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are unchanged.

6: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06KDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06KEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06KEF multiplies a complex vector by the reciprocal of a real scalar.

2 Specification

SUBROUTINE F06KEF (N, ALPHA, X, INCX)

INTEGER N, INCX
REAL (KIND=nag_wp) ALPHA
COMPLEX (KIND=nag_wp) X(*)

3 Description

F06KEF performs the operation

x 1

�
x

where x is an n-element complex vector and � is a real nonzero scalar scattered with stride INCX.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

Constraint: ALPHA 6¼ 0:0.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the updated vector x, stored in the same array elements used to supply the original
vector.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

F06 – Linear Algebra Support Routines F06KEF

Mark 26 F06KEF.1



6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06KEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06KFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06KFF copies a real vector to a complex vector.

2 Specification

SUBROUTINE F06KFF (N, X, INCX, Y, INCY)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) X(*)
COMPLEX (KIND=nag_wp) Y(*)

3 Description

F06KFF performs the operation

y x

where x is an n-element real vector, and y is an n-element complex vector scattered with stride INCX
and INCY respectively.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

4: Yð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On exit: the vector y.

If INCY > 0, yi will be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi will be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.
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Intermediate elements of Y are unchanged.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06KFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06KJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06KJF updates the Euclidean norm of complex vector in scaled form.

2 Specification

SUBROUTINE F06KJF (N, X, INCX, SCAL, SUMSQ)

INTEGER N, INCX
REAL (KIND=nag_wp) SCAL, SUMSQ
COMPLEX (KIND=nag_wp) X(*)

3 Description

Given an n-element complex vector x, and real scalars � and �, F06KJF returns updated values ~� and ~�
such that

~�2~� ¼ x1j j2 þ x2j j2 þ � � � þ xnj j2 þ �2�:

F06KJF is designed for use in the safe computation of the Euclidean norm of a complex vector, without
unnecessary overflow or destructive underflow. An initial call to F06KJF (with � ¼ 1 and � ¼ 0) may
be followed by further calls to F06KJF and finally a call to F06BMF to complete the computation.
Multiple calls of F06KJF may be needed if the elements of the vector cannot all be accessed in a single
array X.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

4: SCAL – REAL (KIND=nag_wp) Input/Output

On entry: the scaling factor �. On the first call to F06KJF SCAL ¼ 0:0.

Constraint: SCAL � 0.
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On exit: the updated scaling factor ~� ¼ max
i

�; Re xið Þj j; Im xið Þj jð Þ.

5: SUMSQ – REAL (KIND=nag_wp) Input/Output

On entry: the scaled sum of squares �. On the first call to F06KJF SUMSQ ¼ 1:0.

Constraint: SUMSQ � 1.

On exit: the updated scaled sum of squares ~�, satisfying: 1 � ~� � � þ 2n.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06KJF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06KLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06KLF determines the index of the first negligible element of a real vector.

2 Specification

FUNCTION F06KLF (N, X, INCX, TOL)
INTEGER F06KLF

INTEGER N, INCX
REAL (KIND=nag_wp) X(*), TOL

3 Description

F06KLF finds the first element of the n-element real vector x for which

xkþ1j j � tol max x1j j; . . .; xkj jð Þ

and returns the index k via the function name. If no such k exists, then the value n is returned. If a
negative value of tol is supplied, the value of machine precision is used in place of tol.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

4: TOL – REAL (KIND=nag_wp) Input

On entry: the value tol.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06KLF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06KPF (ZDROT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06KPF (ZDROT) applies a real plane rotation to two complex vectors.

2 Specification

SUBROUTINE F06KPF (N, X, INCX, Y, INCY, C, S)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) C, S
COMPLEX (KIND=nag_wp) X(*), Y(*)

The routine may be called by its BLAS name zdrot.

3 Description

F06KPF (ZDROT) applies a real plane rotation to two n-element complex vectors x and y scattered
with stride INCX and INCY respectively:

xT

yT

� �
 c s

�s c

� �
xT

yT

� �
:

The plane rotation has the form generated by F06AAF (DROTG) or F06BAF.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the transformed vector x stored in the array elements used to supply the original vector
x.

Intermediate elements of X are unchanged.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.
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4: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

On exit: the transformed vector y.

Intermediate elements of Y are unchanged.

5: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

6: C – REAL (KIND=nag_wp) Input

On entry: the value c, the cosine of the rotation.

7: S – REAL (KIND=nag_wp) Input

On entry: the value s, the sine of the rotation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06KPF (ZDROT) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.

F06KPF NAG Library Manual

F06KPF.2 (last) Mark 26



NAG Library Routine Document

F06PAF (DGEMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PAF (DGEMV) computes the matrix-vector product for a real general matrix or its transpose.

2 Specification

SUBROUTINE F06PAF (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER M, N, LDA, INCX, INCY
REAL (KIND=nag_wp) ALPHA, A(LDA,*), X(*), BETA, Y(*)
CHARACTER(1) TRANS

The routine may be called by its BLAS name dgemv.

3 Description

F06PAF (DGEMV) performs one of the matrix-vector operations

y �Axþ �y; or y �ATxþ �y;

where A is an m by n real matrix, x and y are real vectors, and � and � are real scalars.

If m ¼ 0 or n ¼ 0, no operation is performed.

4 References

None.

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
y �Axþ �y.

TRANS ¼ T or C
y �ATxþ �y.

Constraint: TRANS ¼ N , T or C .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.
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4: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06PAF
(DGEMV) is called.

Constraint: LDA � max 1;Mð Þ.

7: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ if
TRANS ¼ N and at least max 1; 1þ M� 1ð Þ � INCXj jð Þ if TRANS ¼ T or C .

On entry: the vector x.

If TRANS ¼ N ,

if INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N;

if INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If TRANS ¼ T or C ,

if INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;M;

if INCX < 0, xi must be stored in Xð1� M� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;M.

8: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

9: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

10: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ M� 1ð Þ � INCYj jð Þ if
TRANS ¼ N and at least max 1; 1þ N� 1ð Þ � INCYj jð Þ if TRANS ¼ T or C .

On entry: the vector y, if BETA ¼ 0:0, Y need not be set.

If TRANS ¼ N ,

if INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;M;

if INCY < 0, yi must be stored in Yð1� M� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;M.

If TRANS ¼ T or C ,

if INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N;

if INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector y stored in the array elements used to supply the original vector y.
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11: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PAF (DGEMV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PBF (DGBMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PBF (DGBMV) computes the matrix-vector product for a real general band matrix or its transpose.

2 Specification

SUBROUTINE F06PBF (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y,
INCY)

&

INTEGER M, N, KL, KU, LDA, INCX, INCY
REAL (KIND=nag_wp) ALPHA, A(LDA,*), X(*), BETA, Y(*)
CHARACTER(1) TRANS

The routine may be called by its BLAS name dgbmv.

3 Description

F06PBF (DGBMV) performs one of the matrix-vector operations

y �Axþ �y or y �ATxþ �y;

where A is an m by n real band matrix with kl subdiagonals and ku superdiagonals, x and y are real
vectors, and � and � are real scalars.

If m ¼ 0 or n ¼ 0, no operation is performed.

4 References

None.

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
y �Axþ �y.

TRANS ¼ T or C
y �ATxþ �y.

Constraint: TRANS ¼ N , T or C .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.
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4: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of A.

Constraint: KL � 0.

5: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of A.

Constraint: KU � 0.

6: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the m by n band matrix A.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

Aðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06PBF
(DGBMV) is called.

Constraint: LDA � KLþ KUþ 1.

9: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ if
TRANS ¼ N and at least max 1; 1þ M� 1ð Þ � INCXj jð Þ if TRANS ¼ T or C .

On entry: the vector x.

If TRANS ¼ N ,

if INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N;

if INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If TRANS ¼ T or C ,

if INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;M;

if INCX < 0, xi must be stored in Xð1� M� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;M.

10: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

11: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

12: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ M� 1ð Þ � INCYj jð Þ if
TRANS ¼ N and at least max 1; 1þ N� 1ð Þ � INCYj jð Þ if TRANS ¼ T or C .

On entry: the vector y, if BETA ¼ 0:0, Y need not be set.

If TRANS ¼ N ,
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if INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;M;

if INCY < 0, yi must be stored in Yð1� M� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;M.

If TRANS ¼ T or C ,

if INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N;

if INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

13: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PBF (DGBMV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PCF (DSYMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PCF (DSYMV) the matrix-vector product for a real symmetric matrix.

2 Specification

SUBROUTINE F06PCF (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER N, LDA, INCX, INCY
REAL (KIND=nag_wp) ALPHA, A(LDA,*), X(*), BETA, Y(*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name dsymv.

3 Description

F06PCF (DSYMV) performs the matrix-vector operation

y �Axþ �y;

where A is an n by n real symmetric matrix, x and y are n-element real vectors, and � and � are real
scalars.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.
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If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06PCF
(DSYMV) is called.

Constraint: LDA � max 1;Nð Þ.

6: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

7: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

8: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

9: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y, if BETA ¼ 0:0 Y need not be set.

If INCY > 0, yi must be stored in Yð1þ i�1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N�ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

10: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PCF (DSYMV) is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PDF (DSBMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PDF (DSBMV) computes the matrix-vector product for a real symmetric band matrix.

2 Specification

SUBROUTINE F06PDF (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER N, K, LDA, INCX, INCY
REAL (KIND=nag_wp) ALPHA, A(LDA,*), X(*), BETA, Y(*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name dsbmv.

3 Description

F06PDF (DSBMV) performs the matrix-vector operation

y �Axþ �y;

where A is an n by n real symmetric band matrix with k subdiagonals and k superdiagonals, x and y
are n-element real vectors, and � and � are real scalars.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: K – INTEGER Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: K � 0.

4: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.
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5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n symmetric band matrix A.

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in Aðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in Að1þ i� j; jÞ for j � i � min n; jþ kð Þ:

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06PDF
(DSBMV) is called.

Constraint: LDA � K þ 1.

7: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

8: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

9: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

10: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y, if BETA ¼ 0:0 Y need not be set.

If INCY > 0, yi must be stored in Yð1þ i�1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N�ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

11: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06PDF (DSBMV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PEF (DSPMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PEF (DSPMV) computes the matrix-vector product for a real symmetric matrix stored in packed
form.

2 Specification

SUBROUTINE F06PEF (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) ALPHA, AP(*), X(*), BETA, Y(*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name dspmv.

3 Description

F06PEF (DSPMV) performs the matrix-vector operation

y �Axþ �y;

where A is an n by n real symmetric matrix stored in packed form, x and y are n-element real vectors,
and � and � are real scalars.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.
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4: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

5: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

6: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

7: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

8: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y, if BETA ¼ 0:0 Y need not be set.

If INCY > 0, yi must be stored in Yð1þ i�1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N�ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

9: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PEF (DSPMV) is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PFF (DTRMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PFF (DTRMV) computes the matrix-vector product for a real triangular matrix or its transpose.

2 Specification

SUBROUTINE F06PFF (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)

INTEGER N, LDA, INCX
REAL (KIND=nag_wp) A(LDA,*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name dtrmv.

3 Description

F06PFF (DTRMV) performs one of the matrix-vector operations

x Ax or x ATx;

where A is an n by n real triangular matrix, and x is an n-element real vector.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x Ax.

TRANS ¼ T or C
x ATx.

Constraint: TRANS ¼ N , T or C .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06PFF
(DTRMV) is called.

Constraint: LDA � max 1;Nð Þ.

7: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

8: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06PFF (DTRMV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PGF (DTBMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PGF (DTBMV) computes the matrix-vector product for a real triangular band matrix or its
transpose.

2 Specification

SUBROUTINE F06PGF (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)

INTEGER N, K, LDA, INCX
REAL (KIND=nag_wp) A(LDA,*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name dtbmv.

3 Description

F06PGF (DTBMV) performs one of the matrix-vector operations

x Ax or x ATx;

where A is an n by n real triangular band matrix with k subdiagonals or superdiagonals, and x is an
n-element real vector.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x Ax.

TRANS ¼ T or C
x ATx.

Constraint: TRANS ¼ N , T or C .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: K � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n triangular band matrix A

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in Aðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in Að1þ i� j; jÞ for j � i � min n; jþ kð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06PGF
(DTBMV) is called.

Constraint: LDA � K þ 1.

8: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

9: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PGF (DTBMV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PHF (DTPMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PHF (DTPMV) computes the matrix-vector product for a real triangular matrix, or its transpose,
stored in packed form.

2 Specification

SUBROUTINE F06PHF (UPLO, TRANS, DIAG, N, AP, X, INCX)

INTEGER N, INCX
REAL (KIND=nag_wp) AP(*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name dtpmv.

3 Description

F06PHF (DTPMV) performs one of the matrix-vector operations

x Ax or x ATx;

where A is an n by n real triangular matrix, stored in packed form, and x is an n-element real vector.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x Ax.

TRANS ¼ T or C
x ATx.

Constraint: TRANS ¼ N , T or C .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

6: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

7: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PHF (DTPMV) is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PJF (DTRSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PJF (DTRSV) solves a real triangular system of equations with a single right hand side.

2 Specification

SUBROUTINE F06PJF (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)

INTEGER N, LDA, INCX
REAL (KIND=nag_wp) A(LDA,*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name dtrsv.

3 Description

F06PJF (DTRSV) performs one of the matrix-vector operations

x A�1x or x A�Tx;

where A is an n by n real triangular matrix, and x is an n-element real vector. A�T denotes ATð Þ�1 or

equivalently A�1ð ÞT.
No test for singularity or near-singularity of A is included in this routine. Such tests must be performed
before calling this routine.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x A�1x.

TRANS ¼ T or C
x A�Tx.

Constraint: TRANS ¼ N , T or C .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06PJF
(DTRSV) is called.

Constraint: LDA � max 1;Nð Þ.

7: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

8: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06PJF (DTRSV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PKF (DTBSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PKF (DTBSV) solves a real triangular banded system of equations with a single right hand side.

2 Specification

SUBROUTINE F06PKF (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)

INTEGER N, K, LDA, INCX
REAL (KIND=nag_wp) A(LDA,*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name dtbsv.

3 Description

F06PKF (DTBSV) performs one of the matrix-vector operations

x A�1x or x A�Tx;

where A is an n by n real triangular band matrix with k subdiagonals or superdiagonals, and x is an

n-element real vector. A�T denotes ATð Þ�1 or equivalently A�1ð ÞT.
No test for singularity or near-singularity of A is included in this routine. Such tests must be performed
before calling this routine.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x A�1x.

TRANS ¼ T or C
x A�Tx.

Constraint: TRANS ¼ N , T or C .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: K � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n triangular band matrix A

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in Aðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in Að1þ i� j; jÞ for j � i � min n; jþ kð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06PKF
(DTBSV) is called.

Constraint: LDA � K þ 1.

8: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

9: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PKF (DTBSV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PLF (DTPSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PLF (DTPSV) solves a real triangular system of equations, stored in packed form, with a single
right hand side.

2 Specification

SUBROUTINE F06PLF (UPLO, TRANS, DIAG, N, AP, X, INCX)

INTEGER N, INCX
REAL (KIND=nag_wp) AP(*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name dtpsv.

3 Description

F06PLF (DTPSV) performs one of the matrix-vector operations

x A�1x or x A�Tx;

where A is an n by n real triangular matrix, stored in packed form, and x is an n-element real vector.
A�T denotes A�T or equivalently A�T.

No test for singularity or near-singularity of A is included in this routine. Such tests must be performed
before calling this routine.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x A�1x.

TRANS ¼ T or C
x A�Tx.

Constraint: TRANS ¼ N , T or C .

F06 – Linear Algebra Support Routines F06PLF

Mark 26 F06PLF.1



3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

6: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

7: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PLF (DTPSV) is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PMF (DGER)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PMF (DGER) computes the rank-1 update of a real general matrix.

2 Specification

SUBROUTINE F06PMF (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

INTEGER M, N, INCX, INCY, LDA
REAL (KIND=nag_wp) ALPHA, X(*), Y(*), A(LDA,*)

The routine may be called by its BLAS name dger.

3 Description

F06PMF (DGER) performs the rank-1 update operation

A �xyT þA;

where A is an m by n real matrix, x is an m element real vector, y is an n-element real vector, and � is
a real scalar.

4 References

None.

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ M� 1ð Þ � INCXj jð Þ.
On entry: the m element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;M.

If INCX < 0, xi must be stored in Xð1� M� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;M.

Intermediate elements of X are not referenced.
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5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: Yð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

7: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

8: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

On exit: the updated matrix A.

9: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06PMF
(DGER) is called.

Constraint: LDA � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PMF (DGER) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PPF (DSYR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PPF (DSYR) computes the rank-1 update of a real symmetric matrix.

2 Specification

SUBROUTINE F06PPF (UPLO, N, ALPHA, X, INCX, A, LDA)

INTEGER N, INCX, LDA
REAL (KIND=nag_wp) ALPHA, X(*), A(LDA,*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name dsyr.

3 Description

F06PPF (DSYR) performs the symmetric rank-1 update operation

A �xxT þ A;

where A is an n by n real symmetric matrix, x is an n-element real vector, and � is a real scalar.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.
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If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the updated matrix A.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06PPF
(DSYR) is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PPF (DSYR) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PQF (DSPR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PQF (DSPR) computes the rank-1 update of a real symmetric matrix stored in packed form.

2 Specification

SUBROUTINE F06PQF (UPLO, N, ALPHA, X, INCX, AP)

INTEGER N, INCX
REAL (KIND=nag_wp) ALPHA, X(*), AP(*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name dspr.

3 Description

F06PQF (DSPR) performs the symmetric rank-1 update operation

A �xxT þ A;

where A is an n by n real symmetric matrix, stored in packed form, x is an n-element real vector, and
� is a real scalar.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.
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If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the updated matrix A.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PQF (DSPR) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06PRF (DSYR2)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PRF (DSYR2) computes the rank-2 update of a real symmetric matrix.

2 Specification

SUBROUTINE F06PRF (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)

INTEGER N, INCX, INCY, LDA
REAL (KIND=nag_wp) ALPHA, X(*), Y(*), A(LDA,*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name dsyr2.

3 Description

F06PRF (DSYR2) performs the symmetric rank-2 update operation

A �xyT þ �yxT þA;

where A is an n by n real symmetric matrix, x and y are n-element real vectors, and � is a real scalar.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.
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If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: Yð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

7: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

8: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the updated matrix A.

9: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06PRF
(DSYR2) is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PRF (DSYR2) is not threaded in any implementation.

9 Further Comments

None.
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10 Example

None.
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NAG Library Routine Document

F06PSF (DSPR2)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06PSF (DSPR2) computes the rank-2 update of a real symmetric matrix stored in packed form.

2 Specification

SUBROUTINE F06PSF (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) ALPHA, X(*), Y(*), AP(*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name dspr2.

3 Description

F06PSF (DSPR2) performs the symmetric rank-2 update operation

A �xyT þ �yxT þA;

where A is an n by n real symmetric matrix, stored in packed form, x and y are n-element real vectors,
and � is a real scalar.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.
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If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: Yð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

7: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

8: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the updated matrix A.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06PSF (DSPR2) is not threaded in any implementation.

9 Further Comments

None.
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10 Example

None.
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NAG Library Routine Document

F06QFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QFF performs the matrix-copy operation

B A

where A and B are m by n real general or trapezoidal matrices.

2 Specification

SUBROUTINE F06QFF (MATRIX, M, N, A, LDA, B, LDB)

INTEGER M, N, LDA, LDB
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) MATRIX

3 Description

None.

4 References

None.

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: the matrix type.

MATRIX ¼ G
General matrix.

MATRIX ¼ U
Upper trapezoidal matrix (upper triangular if m ¼ n).

MATRIX ¼ L
Lower trapezoidal matrix (lower triangular if m ¼ n).

Constraint: MATRIX ¼ G , U or L .

2: M – INTEGER Input

On entry: m, the number of rows of the matrices A and B.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.
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4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the m by n general or trapezoidal matrix A.

If MATRIX ¼ U , A is upper trapezoidal and the elements of the array below the diagonal
are not referenced.

If MATRIX ¼ L , A is lower trapezoidal and the elements of the array above the diagonal
are not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06QFF
is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array B must be at least N.

On exit: the m by n general or trapezoidal matrix B.

If MATRIX ¼ U , B is upper trapezoidal and the elements of the array below the diagonal
are not referenced.

If MATRIX ¼ L , B is lower trapezoidal and the elements of the array above the diagonal
are not referenced.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06QFF
is called.

Constraint: LDB � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06QHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QHF forms the real m by n rectangular or trapezoidal matrix A given by

aij ¼ diag if i ¼ j
const if i 6¼ j



:

2 Specification

SUBROUTINE F06QHF (MATRIX, M, N, CON, DIAG, A, LDA)

INTEGER M, N, LDA
REAL (KIND=nag_wp) CON, DIAG, A(LDA,*)
CHARACTER(1) MATRIX

3 Description

None.

4 References

None.

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: the matrix type.

MATRIX ¼ G
General matrix.

MATRIX ¼ U
Upper trapezoidal matrix (upper triangular if m ¼ n).

MATRIX ¼ L
Lower trapezoidal matrix (lower triangular if m ¼ n).

Constraint: MATRIX ¼ G , U or L .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: CON – REAL (KIND=nag_wp) Input

On entry: the value to be assigned to the off-diagonal elements of A.
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5: DIAG – REAL (KIND=nag_wp) Input

On entry: the value to be assigned to the diagonal elements of A.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array A must be at least N.

On exit: the m by n general or trapezoidal matrix A.

If MATRIX ¼ U , A is upper trapezoidal and the elements of the array below the diagonal
are not referenced.

If MATRIX ¼ L , A is lower trapezoidal and the elements of the array above the diagonal
are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06QHF
is called.

Constraint: LDA � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.

F06QHF NAG Library Manual

F06QHF.2 (last) Mark 26



NAG Library Routine Document

F06QJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QJF permutes the rows or columns of a real rectangular matrix using an integer array of
permutations.

2 Specification

SUBROUTINE F06QJF (SIDE, TRANS, N, PERM, K, B, LDB)

INTEGER N, PERM(*), K, LDB
REAL (KIND=nag_wp) B(LDB,*)
CHARACTER(1) SIDE, TRANS

3 Description

F06QJF performs one of the permutation operations

B PTB; B PB;
B BPT or B BP;

where B is a real matrix, and P is a permutation matrix.

P is represented in the form

P ¼ P1;p1P2;p2 � � �Pn;pn ;

where Pi;j is the permutation matrix that interchanges items i and j; that is, Pi;j is the unit matrix with
rows and columns i and j interchanged. If i ¼ j, Pi;j ¼ I.
Let m denote the number of rows of B if SIDE ¼ L , or the number of columns of B if SIDE ¼ R : the
routine does not require m to be passed as an argument, but assumes that m � pi, for i ¼ 1; 2; . . . ; n.

This routine requires the indices pi to be supplied in an integer array; F06QKF performs the same
operation with the indices supplied in a real array.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input
2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

SIDE ¼ L and TRANS ¼ T
B PTB.

SIDE ¼ L and TRANS ¼ N
B PB.

SIDE ¼ R and TRANS ¼ T
B BPT.
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SIDE ¼ R and TRANS ¼ N
B BP .

Constraints:

SIDE ¼ L or R ;
TRANS ¼ N or T .

3: N – INTEGER Input

On entry: n, the number of interchanges in the representation of P .

Constraint: N � 0.

4: PERMð�Þ – INTEGER array Input

Note: the dimension of the array PERM must be at least max 1;Nð Þ.
On entry: the n indices pi which define the interchanges in the representation of P . It is usual to
have pi � i, but this is not necessary.

Constraint: 1 � PERMðiÞ � m.

5: K – INTEGER Input

On entry: k, the number of columns of B if SIDE ¼ L , or the number of rows of B if
SIDE ¼ R .

Constraint: K � 0.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Kð Þ if SIDE ¼ L and at least

max 1;max
k

PERMðkÞf g
� �

if SIDE ¼ R .

On entry: the original matrix B; B is m by k if SIDE ¼ L , or k by m if SIDE ¼ R .

On exit: the permuted matrix B.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06QJF
is called.

Constraints:

if SIDE ¼ L , LDB � max 1;mð Þ;
if SIDE ¼ R , LDB � max 1;Kð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QJF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06QKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QKF permutes the rows or columns of a real rectangular matrix using a real array of permutations.

2 Specification

SUBROUTINE F06QKF (SIDE, TRANS, N, PERM, K, B, LDB)

INTEGER N, K, LDB
REAL (KIND=nag_wp) PERM(*), B(LDB,*)
CHARACTER(1) SIDE, TRANS

3 Description

F06QKF performs one of the permutation operations

B PTB; B PB;
B BPT or B BP;

where B is a real matrix, and P is a permutation matrix.

P is represented in the form

P ¼ P1;p1P2;p2 � � �Pn;pn ;

where Pi;j is the permutation matrix that interchanges items i and j; that is, Pi;j is the unit matrix with
rows and columns i and j interchanged. If i ¼ j, Pi;j ¼ I.
Let m denote the number of rows of B if SIDE ¼ L , or the number of columns of B if SIDE ¼ R : the
routine does not require m to be passed as an argument, but assumes that m � pi, for i ¼ 1; 2; . . . ; n.

This routine requires the indices pi to be supplied in a real array (the routine takes the integer part of
the array elements); F06QJF performs the same operation with the indices supplied in an integer array.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input
2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

SIDE ¼ L and TRANS ¼ T
B PTB.

SIDE ¼ L and TRANS ¼ N
B PB.

SIDE ¼ R and TRANS ¼ T
B BPT.

SIDE ¼ R and TRANS ¼ N
B BP .
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Constraints:

SIDE ¼ L or R ;
TRANS ¼ N or T .

3: N – INTEGER Input

On entry: n, the number of interchanges in the representation of P .

Constraint: N � 0.

4: PERMð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array PERM must be at least max 1;Nð Þ.
On entry: the n indices pi which define the interchanges in the representation of P . It is usual to
have pi � i, but this is not necessary.

Constraint: 1 � PERMðiÞ � m.

5: K – INTEGER Input

On entry: k, the number of columns of B if SIDE ¼ L , or the number of rows of B if
SIDE ¼ R .

Constraint: K � 0.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Kð Þ if SIDE ¼ L and at least

max 1;max
k

int PERMðkÞf g
� �

if SIDE ¼ R .

On entry: the original matrix B; B is m by k if SIDE ¼ L , or k by m if SIDE ¼ R .

On exit: the permuted matrix B.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06QKF
is called.

Constraints:

if SIDE ¼ L , LDB � max 1;mð Þ;
if SIDE ¼ R , LDB � max 1;Kð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QKF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

None.
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NAG Library Routine Document

F06QMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QMF performs an orthogonal similarity transformation (as a sequence of plane rotations) of a real
symmetric matrix.

2 Specification

SUBROUTINE F06QMF (UPLO, PIVOT, DIRECT, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) C(*), S(*), A(LDA,*)
CHARACTER(1) UPLO, PIVOT, DIRECT

3 Description

F06QMF performs the transformation

A PAPT

where A is an n by n real symmetric matrix, and P is a real orthogonal matrix defined as a sequence of
plane rotations, Pk, applied in planes k1 to k2.

The 2 by 2 plane rotation part of Pk is assumed to have the form

ck sk
�sk ck

� �
:

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: PIVOT – CHARACTER(1) Input

On entry: specifies the plane rotated by Pk.

PIVOT ¼ V (variable pivot)
Pk rotates the k; kþ 1ð Þ plane.

PIVOT ¼ T (top pivot)
Pk rotates the k1; kþ 1ð Þ plane.
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PIVOT ¼ B (bottom pivot)
Pk rotates the k; k2ð Þ plane.

Constraint: PIVOT ¼ V , T or B .

3: DIRECT – CHARACTER(1) Input

On entry: specifies the sequence direction.

DIRECT ¼ F (forward sequence)
P ¼ Pk2�1 � � �Pk1þ1Pk1 .

DIRECT ¼ B (backward sequence)
P ¼ Pk1Pk1þ1 � � �Pk2�1.

Constraint: DIRECT ¼ F or B .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: K1 – INTEGER Input
6: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

7: Cð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array C must be at least K2� K1.

On entry: CðkÞ must hold ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

8: Sð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array S must be at least K2� K1.

On entry: SðkÞ must hold sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

9: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the transformed matrix A.

10: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F06QMF is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

F06QMF NAG Library Manual

F06QMF.2 Mark 26



7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QMF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06QPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QPF performs a QR factorization (as a sequence of plane rotations) of a real upper triangular matrix
that has been modified by a rank-1 update.

2 Specification

SUBROUTINE F06QPF (N, ALPHA, X, INCX, Y, INCY, A, LDA, C, S)

INTEGER N, INCX, INCY, LDA
REAL (KIND=nag_wp) ALPHA, X(*), Y(*), A(LDA,*), C(N-1), S(N-1)

3 Description

F06QPF performs a QR factorization of an upper triangular matrix which has been modified by a rank-
1 update:

�xyT þ U ¼ QR

where U and R are n by n real upper triangular matrices, x and y are n-element real vectors, � is a real
scalar, and Q is an n by n real orthogonal matrix.

Q is formed as the product of two sequences of plane rotations:

QT ¼ Qn�1 � � �Q2Q1P1P2 � � �Pn�1
where

Pk is a rotation in the k; nð Þ plane, chosen to annihilate xk: thus Px ¼ �en, where
P ¼ P1P2 � � �Pn�1 and en is the last column of the unit matrix;

Qk is a rotation in the k; nð Þ plane, chosen to annihilate the n; kð Þ element of ��eny
T þ PUð Þ,

and thus restore it to upper triangular form.

The 2 by 2 plane rotation part of Pk or Qk has the form

ck sk
�sk ck

� �
:

The tangents of the rotations Pk are returned in the array X; the cosines and sines of these rotations can
be recovered by calling F06BCF. The cosines and sines of the rotations Qk are returned directly in the
arrays C and S.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrices U and R.

Constraint: N � 0.
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2: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the referenced elements are overwritten by details of the sequence of plane rotations.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

5: Yð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYð Þ.
On entry: the n-element vector y. yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

6: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY > 0.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix U .

On exit: the upper triangular matrix R.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06QPF
is called.

Constraint: LDA � max 1;Nð Þ.

9: CðN� 1Þ – REAL (KIND=nag_wp) array Output

On exit: the cosines of the rotations Qk , for k ¼ 1; 2; . . . ; n� 1.

10: SðN� 1Þ – REAL (KIND=nag_wp) array Output

On exit: the sines of the rotations Qk , for k ¼ 1; 2; . . . ; n� 1.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06QPF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06QQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QQF performs a QR factorization (as a sequence of plane rotations) of a real upper triangular
matrix that has been augmented by a full row.

2 Specification

SUBROUTINE F06QQF (N, ALPHA, X, INCX, A, LDA, C, S)

INTEGER N, INCX, LDA
REAL (KIND=nag_wp) ALPHA, X(*), A(LDA,*), C(N), S(N)

3 Description

F06QQF performs the factorization

U
�xT

� �
¼ Q R

0

� �
where U and R are n by n real upper triangular matrices, x is an n-element real vector, � is a real
scalar, and Q is a real orthogonal matrix.

Q is formed as a sequence of plane rotations

QT ¼ Qn � � �Q2Q1

where Qk is a rotation in the k; nþ 1ð Þ plane, chosen to annihilate xk.

The 2 by 2 plane rotation part of Qk has the form

ck sk
�sk ck

� �
:

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrices U and R.

Constraint: N � 0.

2: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the vector x. xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.
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On exit: the referenced elements are overwritten by the tangents of the rotations Qk , for
k ¼ 1; 2; . . . ; n.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix U .

On exit: the upper triangular matrix R.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06QQF
is called.

Constraint: LDA � max 1;Nð Þ.

7: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values ck , the cosines of the rotations Qk , for k ¼ 1; 2; . . . ; n.

8: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values sk , the sines of the rotations Qk , for k ¼ 1; 2; . . . ; n.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QQF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06QRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QRF performs a QR or RQ factorization (as a sequence of plane rotations) of a real upper
Hessenberg matrix.

2 Specification

SUBROUTINE F06QRF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) C(K2-1), S(K2-1), A(LDA,*)
CHARACTER(1) SIDE

3 Description

F06QRF transforms an n by n real upper Hessenberg matrix H to upper triangular form R by applying
an orthogonal matrix P from the left or the right. H is assumed to have nonzero subdiagonal elements
hkþ1;k , for k ¼ k1; . . . ; k2 � 1, only. P is formed as a sequence of plane rotations in planes k1 to k2.

If SIDE ¼ L , the rotations are applied from the left:

PH ¼ R;

where P ¼ Pk2�1 � � �Pk1þ1Pk1 .
If SIDE ¼ R , the rotations are applied from the right:

HPT ¼ R;

where P ¼ Pk1Pk1þ1 � � �Pk2�1.
In either case, Pk is a rotation in the k; kþ 1ð Þ plane, chosen to annihilate hkþ1;k.

The 2 by 2 plane rotation part of Pk has the form

ck sk
�sk ck

� �
:

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether H is operated on from the left or the right.

SIDE ¼ L
H is pre-multiplied from the left.

SIDE ¼ R
H is post-multiplied from the right.

Constraint: SIDE ¼ L or R .
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2: N – INTEGER Input

On entry: n, the order of the matrix H.

Constraint: N � 0.

3: K1 – INTEGER Input
4: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

5: CðK2� 1Þ – REAL (KIND=nag_wp) array Output

On exit: CðkÞ holds ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

6: SðK2� 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the nonzero subdiagonal elements of H: SðkÞ must hold hkþ1;k , for k ¼ k1; . . . ; k2 � 1.

On exit: SðkÞ holds sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the upper triangular part of the n by n upper Hessenberg matrix H.

On exit: the upper triangular matrix R.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06QRF
is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QRF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06QSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QSF performs a QR or RQ factorization (as a sequence of plane rotations) of a real upper spiked
matrix.

2 Specification

SUBROUTINE F06QSF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) C(K2-1), S(*), A(LDA,*)
CHARACTER(1) SIDE

3 Description

F06QSF transforms an n by n real upper spiked matrix H to upper triangular form R by applying a real
orthogonal matrix P from the left or the right. P is formed as a sequence of plane rotations in planes k1
to k2.

If SIDE ¼ L , H is assumed to have a row spike, with nonzero elements hk2;k , for k ¼ k1; . . . ; k2 � 1.
The rotations are applied from the left:

PH ¼ R;

where P ¼ Pk2�1 � � �Pk1þ1Pk1 and Pk is a rotation in the k; k2ð Þ plane.
If SIDE ¼ R , H is assumed to have a column spike, with nonzero elements hkþ1;k1 , for
k ¼ k1; . . . ; k2 � 1. The rotations are applied from the right:

HPT ¼ R;

where P ¼ Pk1Pk1þ1 � � �Pk2�1 and Pk is a rotation in the k1; kþ 1ð Þ plane.
The 2 by 2 plane rotation part of Pk has the form

ck sk
�sk ck

� �
:

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether H is operated on from the left or the right.

SIDE ¼ L
H is pre-multiplied from the left.

SIDE ¼ R
H is post-multiplied from the right.

Constraint: SIDE ¼ L or R .
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2: N – INTEGER Input

On entry: n, the order of the matrix H.

Constraint: N � 0.

3: K1 – INTEGER Input
4: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

5: CðK2� 1Þ – REAL (KIND=nag_wp) array Output

On exit: CðkÞ holds ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

6: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least K2� K1.

On entry: the nonzero elements of the spike of H: SðkÞ must hold hk2;k if SIDE ¼ L , and hkþ1;k1
if SIDE ¼ R , for k ¼ k1; . . . ; k2 � 1.

On exit: SðkÞ holds sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the upper triangular part of the n by n upper spiked matrix H.

On exit: the upper triangular matrix R.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06QSF
is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QSF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06QTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QTF performs a QR or RQ factorization of the product of a real upper triangular matrix and a real
matrix of plane rotations.

2 Specification

SUBROUTINE F06QTF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) C(*), S(*), A(LDA,*)
CHARACTER(1) SIDE

3 Description

F06QTF performs one of the transformations

R PUQT or R QUPT;

where U is a given n by n real upper triangular matrix, P is a given real orthogonal matrix, and Q is a
real orthogonal matrix chosen to make R upper triangular. Both P and Q are represented as sequences
of plane rotations in planes k1 to k2.

If SIDE ¼ L ,

R PUQT;

where P ¼ Pk2�1 . . .Pk1þ1Pk1 and Q ¼ Qk2�1 . . .Qk1þ1Qk1 .

If SIDE ¼ R ,

R QUPT;

where P ¼ Pk1Pk1þ1 . . .Pk2�1 and Q ¼ Qk1Qk1þ1 . . .Qk2�1.

In either case Pk and Qk are rotations in the k; kþ 1ð Þ plane.
The 2 by 2 rotation part of Pk or Qk has the form

ck sk
�sk ck

� �
:

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether P is applied from the left or the right in the transformation.

SIDE ¼ L
P is applied from the left.
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SIDE ¼ R
P is applied from the right.

Constraint: SIDE ¼ L or R .

2: N – INTEGER Input

On entry: n, the order of the matrices U and R.

Constraint: N � 0.

3: K1 – INTEGER Input
4: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

5: Cð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array C must be at least K2� K1.

On entry: CðkÞ must hold the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

On exit: CðkÞ holds the cosine of the rotation Qk , for k ¼ k1; . . . ; k2 � 1.

6: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least K2� K1.

On entry: SðkÞ must hold the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

On exit: SðkÞ holds the sine of the rotation Qk , for k ¼ k1; . . . ; k2 � 1.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix U .

On exit: the upper triangular matrix R.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06QTF
is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QTF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

None.
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NAG Library Routine Document

F06QVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QVF transforms a real upper triangular matrix to an upper Hessenberg matrix by applying a given
sequence of plane rotations.

2 Specification

SUBROUTINE F06QVF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) C(*), S(*), A(LDA,*)
CHARACTER(1) SIDE

3 Description

F06QVF transforms an n by n real upper triangular matrix U to an upper Hessenberg matrix H, by
applying a given sequence of plane rotations from either the left or the right, in planes k1 to k2; H has
nonzero subdiagonal elements hkþ1;k , for k ¼ k1; . . . ; k2 � 1 only.

If SIDE ¼ L , the rotations are applied from the left:

H ¼ PU;

where P ¼ Pk1Pk1þ1 � � �Pk2�1.
If SIDE ¼ R , the rotations are applied from the right:

H ¼ UPT;

where P ¼ Pk2�1 � � �Pk1þ1Pk1 .
In either case, Pk is a rotation in the k; kþ 1ð Þ plane.
The 2 by 2 plane rotation part of Pk has the form

ck sk
�sk ck

� �
:

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether U is operated on from the left or the right.

SIDE ¼ L
U is pre-multiplied from the left.

SIDE ¼ R
U is post-multiplied from the right.

Constraint: SIDE ¼ L or R .
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2: N – INTEGER Input

On entry: n, the order of the matrices U and H.

Constraint: N � 0.

3: K1 – INTEGER Input
4: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

5: Cð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array C must be at least K2� K1.

On entry: CðkÞ must hold ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

6: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least K2� K1.

On entry: SðkÞ must hold sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

On exit: SðkÞ holds hkþ1;k , the subdiagonal element of H, for k ¼ k1; . . . ; k2 � 1.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix U .

On exit: the upper triangular part of the upper Hessenberg matrix H.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06QVF
is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QVF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06QWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QWF transforms a real upper triangular matrix to an upper spiked matrix by applying a given
sequence of plane rotations.

2 Specification

SUBROUTINE F06QWF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) C(*), S(*), A(LDA,*)
CHARACTER(1) SIDE

3 Description

F06QWF transforms an n by n real upper triangular matrix U to an upper spiked matrix H, by applying
a given sequence of plane rotations from either the left or the right, in planes k1 to k2.

If SIDE ¼ L , H has a row spike, with nonzero elements hk2;k, for k ¼ k1; k1 þ 1; . . . ; k2 � 1. The
rotations are applied from the left:

H ¼ PU;

where P ¼ Pk1Pk1þ1 � � �Pk2�1 and Pk is a rotation in the k; k2ð Þ plane.
If SIDE ¼ R , H has a column spike, with nonzero elements hkþ1;k1 , for k ¼ k1; k1 þ 1; . . . ; k2 � 1. The
rotations are applied from the right:

HPT ¼ R;

where P ¼ Pk2�1 � � �Pk1þ1Pk1 and Pk is a rotation in the k1; kþ 1ð Þ plane.
The 2 by 2 plane rotation part of Pk has the form

ck sk
�sk ck

� �
:

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether U is operated on from the left or the right.

SIDE ¼ L
U is pre-multiplied from the left.

SIDE ¼ R
U is post-multiplied from the right.

Constraint: SIDE ¼ L or R .
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2: N – INTEGER Input

On entry: n, the order of the matrices U and H.

Constraint: N � 0.

3: K1 – INTEGER Input
4: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

5: Cð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array C must be at least K2� K1.

On entry: CðkÞ must hold ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

6: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least K2� K1.

On entry: SðkÞ must hold sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

On exit: SðkÞ holds a nonzero element of the spike of H: hk2;k if SIDE ¼ L , or hkþ1;k1 if
SIDE ¼ R , for k ¼ k1; . . . ; k2 � 1.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix U .

On exit: the upper triangular part of the upper spiked matrix H.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F06QWF is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QWF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06QXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06QXF applies a sequence of plane rotations to a real rectangular matrix.

2 Specification

SUBROUTINE F06QXF (SIDE, PIVOT, DIRECT, M, N, K1, K2, C, S, A, LDA)

INTEGER M, N, K1, K2, LDA
REAL (KIND=nag_wp) C(K2-1), S(K2-1), A(LDA,*)
CHARACTER(1) SIDE, PIVOT, DIRECT

3 Description

F06QXF performs the transformation

A PA or A APT;

where A is an m by n real matrix and P is a real orthogonal matrix, defined as a sequence of plane
rotations, Pk, applied in planes k1 to k2.

The 2 by 2 plane rotation part of Pk is assumed to have the form

ck sk
�sk ck

� �
:

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether A is operated on from the left or the right.

SIDE ¼ L
A is pre-multiplied from the left.

SIDE ¼ R
A is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: PIVOT – CHARACTER(1) Input

On entry: specifies the plane rotated by Pk.

PIVOT ¼ V (variable pivot)
Pk rotates the k; kþ 1ð Þ plane.

PIVOT ¼ T (top pivot)
Pk rotates the k1; kþ 1ð Þ plane.
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PIVOT ¼ B (bottom pivot)
Pk rotates the k; k2ð Þ plane.

Constraint: PIVOT ¼ V , T or B .

3: DIRECT – CHARACTER(1) Input

On entry: specifies the sequence direction.

DIRECT ¼ F (forward sequence)
P ¼ Pk2�1 � � �Pk1þ1Pk1 .

DIRECT ¼ B (backward sequence)
P ¼ Pk1Pk1þ1 � � �Pk2�1.

Constraint: DIRECT ¼ F or B .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

If M < 1, an immediate return is effected.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

If N < 1, an immediate return is effected.

Constraint: N � 0.

6: K1 – INTEGER Input
7: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1, or SIDE ¼ L and K2 > M, or SIDE ¼ R and K2 > N, an immediate
return is effected.

8: CðK2� 1Þ – REAL (KIND=nag_wp) array Input

On entry: CðkÞ must hold ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

9: SðK2� 1Þ – REAL (KIND=nag_wp) array Input

On entry: SðkÞ must hold sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

10: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

On exit: the transformed matrix A.

11: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06QXF
is called.

Constraint: LDA � max 1;Mð Þ.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06QXF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06RAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06RAF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a real m by n matrix.

2 Specification

FUNCTION F06RAF (NORM, M, N, A, LDA, WORK)
REAL (KIND=nag_wp) F06RAF

INTEGER M, N, LDA
REAL (KIND=nag_wp) A(LDA,*), WORK(*)
CHARACTER(1) NORM

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

When M ¼ 0, F06RAF is set to zero.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.
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When N ¼ 0, F06RAF is set to zero.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06RAF
is called.

Constraint: LDA � max 1;Mð Þ.

6: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Mð Þ if NORM ¼ I , and at least
1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06RAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06RBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06RBF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a real n by n band matrix.

2 Specification

FUNCTION F06RBF (NORM, N, KL, KU, AB, LDAB, WORK)
REAL (KIND=nag_wp) F06RBF

INTEGER N, KL, KU, LDAB
REAL (KIND=nag_wp) AB(LDAB,*), WORK(*)
CHARACTER(1) NORM

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06RBF returns zero.

Constraint: N � 0.

3: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of A.

Constraint: KL � 0.
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4: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of A.

Constraint: KU � 0.

5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least N.

On entry: the n by n band matrix A.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min n; jþ klð Þ:

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F06RBF is called.

Constraint: LDAB � KLþ KUþ 1.

7: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ I , and at least 1
otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06RBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06RCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06RCF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a real n by n symmetric matrix.

2 Specification

FUNCTION F06RCF (NORM, UPLO, N, A, LDA, WORK)
REAL (KIND=nag_wp) F06RCF

INTEGER N, LDA
REAL (KIND=nag_wp) A(LDA,*), WORK(*)
CHARACTER(1) NORM, UPLO

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm (= the 1-norm for a symmetric matrix).

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max i;j aij

		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06RCF returns zero.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06RCF
is called.

Constraint: LDA � max 1;Nð Þ.

6: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ 1 , O or I , and
at least 1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06RCF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06RDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06RDF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a real n by n symmetric matrix, stored in packed form.

2 Specification

FUNCTION F06RDF (NORM, UPLO, N, AP, WORK)
REAL (KIND=nag_wp) F06RDF

INTEGER N
REAL (KIND=nag_wp) AP(*), WORK(*)
CHARACTER(1) NORM, UPLO

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm (= the 1-norm for a symmetric matrix).

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max i;j aij

		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06RDF returns zero.

Constraint: N � 0.

4: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

5: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ 1 , O or I , and
at least 1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06RDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06REF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06REF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a real n by n symmetric band matrix.

2 Specification

FUNCTION F06REF (NORM, UPLO, N, K, AB, LDAB, WORK)
REAL (KIND=nag_wp) F06REF

INTEGER N, K, LDAB
REAL (KIND=nag_wp) AB(LDAB,*), WORK(*)
CHARACTER(1) NORM, UPLO

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm (= the 1-norm for a symmetric matrix).

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max i;j aij

		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06REF returns zero.

Constraint: N � 0.

4: K – INTEGER Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: K � 0.

5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least N.

On entry: the n by n symmetric band matrix A.

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kð Þ:

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F06REF is called.

Constraint: LDAB � K þ 1.

7: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ 1 , O or I , and
at least 1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06REF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06RJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06RJF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a real m by n trapezoidal matrix (triangular if m ¼ n).

2 Specification

FUNCTION F06RJF (NORM, UPLO, DIAG, M, N, A, LDA, WORK)
REAL (KIND=nag_wp) F06RJF

INTEGER M, N, LDA
REAL (KIND=nag_wp) A(LDA,*), WORK(*)
CHARACTER(1) NORM, UPLO, DIAG

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower trapezoidal.

UPLO ¼ U
A is upper trapezoidal.

UPLO ¼ L
A is lower trapezoidal.

Constraint: UPLO ¼ U or L .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

When M ¼ 0, F06RJF is set to zero.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

When N ¼ 0, F06RJF is set to zero.

Constraint: N � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the m by n trapezoidal matrix A.

If UPLO ¼ U , A is upper trapezoidal and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower trapezoidal and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06RJF
is called.

Constraint: LDA � max 1;Mð Þ.

8: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Mð Þ if NORM ¼ I , and at least
1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06RJF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06RKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06RKF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a real n by n triangular matrix, stored in packed form.

2 Specification

FUNCTION F06RKF (NORM, UPLO, DIAG, N, AP, WORK)
REAL (KIND=nag_wp) F06RKF

INTEGER N
REAL (KIND=nag_wp) AP(*), WORK(*)
CHARACTER(1) NORM, UPLO, DIAG

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06RKF returns zero.

Constraint: N � 0.

5: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

6: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ I , and at least 1
otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06RKF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06RLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06RLF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a real n by n triangular band matrix.

2 Specification

FUNCTION F06RLF (NORM, UPLO, DIAG, N, K, AB, LDAB, WORK)
REAL (KIND=nag_wp) F06RLF

INTEGER N, K, LDAB
REAL (KIND=nag_wp) AB(LDAB,*), WORK(*)
CHARACTER(1) NORM, UPLO, DIAG

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06RLF returns zero.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: K � 0.

6: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least N.

On entry: the n by n triangular band matrix A

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F06RLF is called.

Constraint: LDAB � K þ 1.

8: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ I , and at least 1
otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06RLF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.

F06 – Linear Algebra Support Routines F06RLF

Mark 26 F06RLF.3 (last)





NAG Library Routine Document

F06RMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06RMF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a real n by n upper Hessenberg matrix.

2 Specification

FUNCTION F06RMF (NORM, N, A, LDA, WORK)
REAL (KIND=nag_wp) F06RMF

INTEGER N, LDA
REAL (KIND=nag_wp) A(LDA,*), WORK(*)
CHARACTER(1) NORM

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06RMF returns zero.

Constraint: N � 0.
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3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper Hessenberg matrix A; elements of the array below the first
subdiagonal are not referenced.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06RMF
is called.

Constraint: LDA � max 1;Nð Þ.

5: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ I , and at least 1
otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06RMF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06RNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06RNF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a real n by n tridiagonal matrix A.

2 Specification

FUNCTION F06RNF (NORM, N, DL, D, DU)
REAL (KIND=nag_wp) F06RNF

INTEGER N
REAL (KIND=nag_wp) DL(*), D(*), DU(*)
CHARACTER(1) NORM

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06RNF returns zero.

Constraint: N � 0.

3: DLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: the (n� 1) subdiagonal elements of A.
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4: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of A.

5: DUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: the (n� 1) superdiagonal elements of A.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06RNF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.

F06RNF NAG Library Manual

F06RNF.2 (last) Mark 26



NAG Library Routine Document

F06RPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06RPF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a real n by n symmetric tridiagonal matrix A.

2 Specification

FUNCTION F06RPF (NORM, N, D, E)
REAL (KIND=nag_wp) F06RPF

INTEGER N
REAL (KIND=nag_wp) D(*), E(*)
CHARACTER(1) NORM

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06RPF returns zero.

Constraint: N � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix A.
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4: Eð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the (n� 1) subdiagonal or superdiagonal elements of the tridiagonal matrix A.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06RPF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SAF (ZGEMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SAF (ZGEMV) computes the matrix-vector product for a complex general matrix, its transpose or
its conjugate transpose.

2 Specification

SUBROUTINE F06SAF (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER M, N, LDA, INCX, INCY
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), X(*), BETA, Y(*)
CHARACTER(1) TRANS

The routine may be called by its BLAS name zgemv.

3 Description

F06SAF (ZGEMV) performs one of the matrix-vector operations

y �Axþ �y; y �ATxþ �y or y �AHxþ �y;

where A is an m by n complex matrix, x and y are complex vectors, and � and � are complex scalars.

If m ¼ 0 or n ¼ 0, no operation is performed.

4 References

None.

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
y �Axþ �y.

TRANS ¼ T
y �ATxþ �y.

TRANS ¼ C
y �AHxþ �y.

Constraint: TRANS ¼ N , T or C .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.
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3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SAF
(ZGEMV) is called.

Constraint: LDA � max 1;Mð Þ.

7: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ if
TRANS ¼ N and at least max 1; 1þ M� 1ð Þ � INCXj jð Þ if TRANS ¼ T or C .

On entry: the vector x.

If TRANS ¼ N ,

if INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N;

if INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If TRANS ¼ T or C ,

if INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;M;

if INCX < 0, xi must be stored in Xð1� M� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;M.

8: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

9: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

10: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ M� 1ð Þ � INCYj jð Þ if
TRANS ¼ N and at least max 1; 1þ N� 1ð Þ � INCYj jð Þ if TRANS ¼ T or C .

On entry: the vector y, if BETA ¼ 0:0, Y need not be set.

If TRANS ¼ N ,

if INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;M;

if INCY < 0, yi must be stored in Yð1� M� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;M.

If TRANS ¼ T or C ,

if INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N;

if INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.
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On exit: the updated vector y stored in the array elements used to supply the original vector y.

11: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SAF (ZGEMV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SBF (ZGBMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SBF (ZGBMV) computes the matrix-vector product for a complex general band matrix, its
transpose or its conjugate transpose.

2 Specification

SUBROUTINE F06SBF (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y,
INCY)

&

INTEGER M, N, KL, KU, LDA, INCX, INCY
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), X(*), BETA, Y(*)
CHARACTER(1) TRANS

The routine may be called by its BLAS name zgbmv.

3 Description

F06SBF (ZGBMV) performs one of the matrix-vector operations

y �Axþ �y; y �ATxþ �y or y �AHxþ �y;

where A is an m by n complex band matrix with kl subdiagonals and ku superdiagonals, x and y are
complex vectors, and � and � are complex scalars.

If m ¼ 0 or n ¼ 0, no operation is performed.

4 References

None.

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
y �Axþ �y.

TRANS ¼ T
y �ATxþ �y.

TRANS ¼ C
y �AHxþ �y.

Constraint: TRANS ¼ N , T or C .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.
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3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of A.

Constraint: KL � 0.

5: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of A.

Constraint: KU � 0.

6: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the m by n band matrix A.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

Aðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SBF
(ZGBMV) is called.

Constraint: LDA � KLþ KUþ 1.

9: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ if
TRANS ¼ N and at least max 1; 1þ M� 1ð Þ � INCXj jð Þ if TRANS ¼ T or C .

On entry: the vector x.

If TRANS ¼ N ,

if INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N;

if INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If TRANS ¼ T or C ,

if INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;M;

if INCX < 0, xi must be stored in Xð1� M� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;M.

10: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

11: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.
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12: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ M� 1ð Þ � INCYj jð Þ if
TRANS ¼ N and at least max 1; 1þ N� 1ð Þ � INCYj jð Þ if TRANS ¼ T or C .

On entry: the vector y, if BETA ¼ 0:0, Y need not be set.

If TRANS ¼ N ,

if INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;M;

if INCY < 0, yi must be stored in Yð1� M� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;M.

If TRANS ¼ T or C ,

if INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N;

if INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

13: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SBF (ZGBMV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SCF (ZHEMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SCF (ZHEMV) computes the matrix-vector product for a complex Hermitian matrix.

2 Specification

SUBROUTINE F06SCF (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER N, LDA, INCX, INCY
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), X(*), BETA, Y(*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name zhemv.

3 Description

F06SCF (ZHEMV) performs the matrix-vector operation

y �Axþ �y;

where A is an n by n complex Hermitian matrix, x and y are n-element complex vectors, and � and �
are complex scalars.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.
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If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SCF
(ZHEMV) is called.

Constraint: LDA � max 1;Nð Þ.

6: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

7: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

8: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

9: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y, if BETA ¼ 0, Y need not be set.

If INCY > 0, yi must be stored in Yð1þ i�1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N�ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

10: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SCF (ZHEMV) is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SDF (ZHBMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SDF (ZHBMV) computes the matrix-vector product for a complex Hermitian band matrix.

2 Specification

SUBROUTINE F06SDF (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER N, K, LDA, INCX, INCY
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), X(*), BETA, Y(*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name zhbmv.

3 Description

F06SDF (ZHBMV) performs the matrix-vector operation

y �Axþ �y;

where A is an n by n complex Hermitian band matrix with k subdiagonals and k superdiagonals, x and
y are n-element complex vectors, and � and � are complex scalars.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: K – INTEGER Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: K � 0.

4: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.
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5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in Aðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in Að1þ i� j; jÞ for j � i � min n; jþ kð Þ:

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SDF
(ZHBMV) is called.

Constraint: LDA � K þ 1.

7: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

8: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

9: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

10: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y, if BETA ¼ 0, Y need not be set.

If INCY > 0, yi must be stored in Yð1þ i�1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N�ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

11: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06SDF (ZHBMV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SEF (ZHPMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SEF (ZHPMV) computes the matrix-vector product for a complex Hermitian matrix stored in
packed form.

2 Specification

SUBROUTINE F06SEF (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

INTEGER N, INCX, INCY
COMPLEX (KIND=nag_wp) ALPHA, AP(*), X(*), BETA, Y(*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name zhpmv.

3 Description

F06SEF (ZHPMV) performs the matrix-vector operation

y �Axþ �y;

where A is an n by n complex Hermitian matrix stored in packed form, x and y are n-element complex
vectors, and � and � are complex scalars.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.
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4: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

5: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

6: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

7: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

8: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y, if BETA ¼ 0, Y need not be set.

If INCY > 0, yi must be stored in Yð1þ i�1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N�ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

9: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SEF (ZHPMV) is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SFF (ZTRMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SFF (ZTRMV) computes the matrix-vector product for a complex triangular matrix, its transpose or
its conjugate transpose.

2 Specification

SUBROUTINE F06SFF (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)

INTEGER N, LDA, INCX
COMPLEX (KIND=nag_wp) A(LDA,*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name ztrmv.

3 Description

F06SFF (ZTRMV) performs one of the matrix-vector operations

x Ax; x ATx or x AHx;

where A is an n by n complex triangular matrix, and x is an n-element complex vector.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x Ax.

TRANS ¼ T
x ATx.

TRANS ¼ C
x AHx.

Constraint: TRANS ¼ N , T or C .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SFF
(ZTRMV) is called.

Constraint: LDA � max 1;Nð Þ.

7: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

8: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06SFF (ZTRMV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SGF (ZTBMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SGF (ZTBMV) computes the matrix-vector product for a complex triangular band matrix, its
transpose or its conjugate transpose.

2 Specification

SUBROUTINE F06SGF (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)

INTEGER N, K, LDA, INCX
COMPLEX (KIND=nag_wp) A(LDA,*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name ztbmv.

3 Description

F06SGF (ZTBMV) performs one of the matrix-vector operations

x Ax; x ATx or x AHx;

where A is an n by n complex triangular band matrix with k subdiagonals or superdiagonals, and x is
an n-element complex vector.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x Ax.

TRANS ¼ T
x ATx.

TRANS ¼ C
x AHx.

Constraint: TRANS ¼ N , T or C .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: K � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n triangular band matrix A

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in Aðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in Að1þ i� j; jÞ for j � i � min n; jþ kð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SGF
(ZTBMV) is called.

Constraint: LDA � K þ 1.

8: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

9: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SGF (ZTBMV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.

F06 – Linear Algebra Support Routines F06SGF

Mark 26 F06SGF.3 (last)





NAG Library Routine Document

F06SHF (ZTPMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SHF (ZTPMV) computes the matrix-vector product for a complex triangular matrix, its transpose or
its conjugate transpose, stored in packed form.

2 Specification

SUBROUTINE F06SHF (UPLO, TRANS, DIAG, N, AP, X, INCX)

INTEGER N, INCX
COMPLEX (KIND=nag_wp) AP(*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name ztpmv.

3 Description

F06SHF (ZTPMV) performs one of the matrix-vector operations

x Ax; x ATx or x AHx;

where A is an n by n complex triangular matrix, stored in packed form, and x is an n-element complex
vector.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x Ax.

TRANS ¼ T
x ATx.

TRANS ¼ C
x AHx.

Constraint: TRANS ¼ N , T or C .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

6: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

7: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SHF (ZTPMV) is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SJF (ZTRSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SJF (ZTRSV) solves a complex triangular system of equations with a single right hand side.

2 Specification

SUBROUTINE F06SJF (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)

INTEGER N, LDA, INCX
COMPLEX (KIND=nag_wp) A(LDA,*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name ztrsv.

3 Description

F06SJF (ZTRSV) performs one of the matrix-vector operations

x A�1x; x A�Tx or x A�Hx;

where A is an n by n complex triangular matrix, and x is an n-element complex vector. A�T denotes

ATð Þ�1 or equivalently A�1ð ÞT; A�H denotes AHð Þ�1 or equivalently A�1ð ÞH.
No test for singularity or near-singularity of A is included in this routine. Such tests must be performed
before calling this routine.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x A�1x.

TRANS ¼ T
x A�Tx.
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TRANS ¼ C
x A�Hx.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SJF
(ZTRSV) is called.

Constraint: LDA � max 1;Nð Þ.

7: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

8: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SJF (ZTRSV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SKF (ZTBSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SKF (ZTBSV) solves a complex triangular banded system of equations with a single right hand
side.

2 Specification

SUBROUTINE F06SKF (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)

INTEGER N, K, LDA, INCX
COMPLEX (KIND=nag_wp) A(LDA,*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name ztbsv.

3 Description

F06SKF (ZTBSV) performs one of the matrix-vector operations

x A�1x; x A�Tx or x A�Hx;

where A is an n by n complex triangular band matrix with k subdiagonals or superdiagonals, and x is

an n-element complex vector. A�T denotes ATð Þ�1 or equivalently A�1ð ÞT; A�H denotes AHð Þ�1 or

equivalently A�1ð ÞH.
No test for singularity or near-singularity of A is included in this routine. Such tests must be performed
before calling this routine.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x A�1x.

TRANS ¼ T
x A�Tx.
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TRANS ¼ C
x A�Hx.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: K � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n triangular band matrix A

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in Aðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in Að1þ i� j; jÞ for j � i � min n; jþ kð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SKF
(ZTBSV) is called.

Constraint: LDA � K þ 1.

8: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

9: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SKF (ZTBSV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.

F06 – Linear Algebra Support Routines F06SKF

Mark 26 F06SKF.3 (last)





NAG Library Routine Document

F06SLF (ZTPSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SLF (ZTPSV) solves a complex triangular system of equations, stored in packed form, with a single
right hand side.

2 Specification

SUBROUTINE F06SLF (UPLO, TRANS, DIAG, N, AP, X, INCX)

INTEGER N, INCX
COMPLEX (KIND=nag_wp) AP(*), X(*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name ztpsv.

3 Description

F06SLF (ZTPSV) performs one of the matrix-vector operations

x A�1x; x A�Tx or x A�Hx;

where A is an n by n complex triangular matrix, stored in packed form, and x is an n-element complex

vector. A�T denotes ATð Þ�1 or equivalently A�1ð ÞT; A�H denotes AHð Þ�1 or equivalently A�1ð ÞH.
No test for singularity or near-singularity of A is included in this routine. Such tests must be performed
before calling this routine.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
x A�1x.

TRANS ¼ T
x A�Tx.
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TRANS ¼ C
x A�Hx.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

6: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector x stored in the array elements used to supply the original vector x.

7: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06SLF (ZTPSV) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SMF (ZGERU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SMF (ZGERU) computes the rank-1 update of a complex general matrix using an unconjugated
vector.

2 Specification

SUBROUTINE F06SMF (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

INTEGER M, N, INCX, INCY, LDA
COMPLEX (KIND=nag_wp) ALPHA, X(*), Y(*), A(LDA,*)

The routine may be called by its BLAS name zgeru.

3 Description

F06SMF (ZGERU) performs the rank-1 update operation

A �xyT þA;

where A is an m by n complex matrix, x is an m element complex vector, y is an n-element complex
vector, and � is a complex scalar.

4 References

None.

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ M� 1ð Þ � INCXj jð Þ.
On entry: the m element vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;M.

If INCX < 0, xi must be stored in Xð1� M�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;M.

Intermediate elements of X are not referenced.
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5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: Yð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

7: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

8: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

On exit: the updated matrix A.

9: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SMF
(ZGERU) is called.

Constraint: LDA � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SMF (ZGERU) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SNF (ZGERC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SNF (ZGERC) computes the rank-1 update of a complex general matrix using a conjugated vector.

2 Specification

SUBROUTINE F06SNF (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

INTEGER M, N, INCX, INCY, LDA
COMPLEX (KIND=nag_wp) ALPHA, X(*), Y(*), A(LDA,*)

The routine may be called by its BLAS name zgerc.

3 Description

F06SNF (ZGERC) performs the rank-1 update operation

A �xyH þA;

where A is an m by n complex matrix, x is an m element complex vector, y is an n-element complex
vector, and � is a complex scalar.

4 References

None.

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ M� 1ð Þ � INCXj jð Þ.
On entry: the m element vector x.

If INCX > 0, xi must be stored in Xð1þ i�1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;M.

If INCX < 0, xi must be stored in Xð1� M�ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;M.

Intermediate elements of X are not referenced.
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5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: Yð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

7: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

8: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

On exit: the updated matrix A.

9: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SNF
(ZGERC) is called.

Constraint: LDA � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SNF (ZGERC) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SPF (ZHER)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SPF (ZHER) computes the rank-1 update of a complex Hermitian matrix.

2 Specification

SUBROUTINE F06SPF (UPLO, N, ALPHA, X, INCX, A, LDA)

INTEGER N, INCX, LDA
REAL (KIND=nag_wp) ALPHA
COMPLEX (KIND=nag_wp) X(*), A(LDA,*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name zher.

3 Description

F06SPF (ZHER) performs the Hermitian rank-1 update operation

A �xxH þA;

where A is an n by n complex Hermitian matrix, x is an n-element complex vector, and � is a real
scalar.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.
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4: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the updated matrix A. The imaginary parts of the diagonal elements are set to zero.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SPF
(ZHER) is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SPF (ZHER) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SQF (ZHPR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SQF (ZHPR) computes the rank-1 update of a complex Hermitian matrix stored in packed form.

2 Specification

SUBROUTINE F06SQF (UPLO, N, ALPHA, X, INCX, AP)

INTEGER N, INCX
REAL (KIND=nag_wp) ALPHA
COMPLEX (KIND=nag_wp) X(*), AP(*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name zhpr.

3 Description

F06SQF (ZHPR) performs the Hermitian rank-1 update operation

A �xxH þA;

where A is an n by n complex Hermitian matrix, stored in packed form, x is an n-element complex
vector, and � is a real scalar.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.
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4: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the updated matrix A. The imaginary parts of the diagonal elements are set to zero.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SQF (ZHPR) is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06SRF (ZHER2)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SRF (ZHER2) computes the rank-2 update of a complex Hermitian matrix.

2 Specification

SUBROUTINE F06SRF (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)

INTEGER N, INCX, INCY, LDA
COMPLEX (KIND=nag_wp) ALPHA, X(*), Y(*), A(LDA,*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name zher2.

3 Description

F06SRF (ZHER2) performs the Hermitian rank-2 update operation

A �xyH þ ��yxH þA;

where A is an n by n complex Hermitian matrix, x and y are n-element complex vectors, and � is a
complex scalar.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.
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If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: Yð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

7: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

8: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the updated matrix A. The imaginary parts of the diagonal elements are set to zero.

9: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06SRF
(ZHER2) is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SRF (ZHER2) is not threaded in any implementation.

9 Further Comments

None.
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10 Example

None.
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NAG Library Routine Document

F06SSF (ZHPR2)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06SSF (ZHPR2) computes the rank-2 update of a complex Hermitian matrix stored in packed form.

2 Specification

SUBROUTINE F06SSF (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)

INTEGER N, INCX, INCY
COMPLEX (KIND=nag_wp) ALPHA, X(*), Y(*), AP(*)
CHARACTER(1) UPLO

The routine may be called by its BLAS name zhpr2.

3 Description

F06SSF (ZHPR2) performs the Hermitian rank-2 update operation

A �xyH þ ��yxH þA;

where A is an n by n complex Hermitian matrix, stored in packed form, x and y are n-element complex
vectors, and � is a complex scalar.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.
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If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: Yð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N� ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

7: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

8: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the updated matrix A. The imaginary parts of the diagonal elements are set to zero.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06SSF (ZHPR2) is not threaded in any implementation.

9 Further Comments

None.
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10 Example

None.
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NAG Library Routine Document

F06TAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TAF performs the matrix-vector operation

y �Axþ �y;

where A is an n by n complex symmetric matrix, x and y are n-element complex vectors, and � and �
are complex scalars.

2 Specification

SUBROUTINE F06TAF (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER N, LDA, INCX, INCY
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), X(*), BETA, Y(*)
CHARACTER(1) UPLO

3 Description

None.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.
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If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TAF
is called.

Constraint: LDA � max 1;Nð Þ.

6: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

7: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

8: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

9: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i�1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N�ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

10: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TAF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06TBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TBF performs the symmetric rank-1 update operation

A �xxT þ A;

where A is an n by n complex symmetric matrix, x is an n-element complex vector, and � is a complex
scalar.

2 Specification

SUBROUTINE F06TBF (UPLO, N, ALPHA, X, INCX, A, LDA)

INTEGER N, INCX, LDA
COMPLEX (KIND=nag_wp) ALPHA, X(*), A(LDA,*)
CHARACTER(1) UPLO

3 Description

None.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.
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If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the updated matrix A.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TBF
is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06TCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TCF performs the matrix-vector operation

y �Axþ �y

where A is an n by n complex symmetric matrix stored in packed form, x and y are n-element complex
vectors, and � and � are complex scalars.

2 Specification

SUBROUTINE F06TCF (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

INTEGER N, INCX, INCY
COMPLEX (KIND=nag_wp) ALPHA, AP(*), X(*), BETA, Y(*)
CHARACTER(1) UPLO

3 Description

None.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,
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if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

5: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

6: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

7: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

8: Yð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYj jð Þ.
On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð1þ i�1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð1� N�ið Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

9: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TCF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

None.
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NAG Library Routine Document

F06TDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TDF performs the symmetric rank-1 update operation

A �xxT þ A;

where A is an n by n complex symmetric matrix, stored in packed form, x is an n-element complex
vector, and � is a complex scalar.

2 Specification

SUBROUTINE F06TDF (UPLO, N, ALPHA, X, INCX, AP)

INTEGER N, INCX
COMPLEX (KIND=nag_wp) ALPHA, X(*), AP(*)
CHARACTER(1) UPLO

3 Description

None.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXj jð Þ.
On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.
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If INCX < 0, xi must be stored in Xð1� N� ið Þ � INCXÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the updated matrix A.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.

F06TDF NAG Library Manual

F06TDF.2 (last) Mark 26



NAG Library Routine Document

F06TFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TFF performs the matrix-copy operation

B A

where A and B are m by n complex general or trapezoidal matrices.

2 Specification

SUBROUTINE F06TFF (MATRIX, M, N, A, LDA, B, LDB)

INTEGER M, N, LDA, LDB
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) MATRIX

3 Description

None.

4 References

None.

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: the matrix type.

MATRIX ¼ G
General matrix.

MATRIX ¼ U
Upper trapezoidal matrix (upper triangular if m ¼ n).

MATRIX ¼ L
Lower trapezoidal matrix (lower triangular if m ¼ n).

Constraint: MATRIX ¼ G , U or L .

2: M – INTEGER Input

On entry: m, the number of rows of the matrices A and B.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.
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4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the m by n general or trapezoidal matrix A.

If MATRIX ¼ U , A is upper trapezoidal and the elements of the array below the diagonal
are not referenced.

If MATRIX ¼ L , A is lower trapezoidal and the elements of the array above the diagonal
are not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TFF
is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array B must be at least N.

On exit: the m by n general or trapezoidal matrix B.

If MATRIX ¼ U , B is upper trapezoidal and the elements of the array below the diagonal
are not referenced.

If MATRIX ¼ L , B is lower trapezoidal and the elements of the array above the diagonal
are not referenced.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06TFF
is called.

Constraint: LDB � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06THF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06THF forms the complex m by n rectangular or trapezoidal matrix A given by

aij ¼ diag if i ¼ j
const if i 6¼ j



:

2 Specification

SUBROUTINE F06THF (MATRIX, M, N, CON, DIAG, A, LDA)

INTEGER M, N, LDA
COMPLEX (KIND=nag_wp) CON, DIAG, A(LDA,*)
CHARACTER(1) MATRIX

3 Description

None.

4 References

None.

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: the matrix type.

MATRIX ¼ G
General matrix.

MATRIX ¼ U
Upper trapezoidal matrix (upper triangular if m ¼ n).

MATRIX ¼ L
Lower trapezoidal matrix (lower triangular if m ¼ n).

Constraint: MATRIX ¼ G , U or L .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: CON – COMPLEX (KIND=nag_wp) Input

On entry: the value to be assigned to the off-diagonal elements of A.
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5: DIAG – COMPLEX (KIND=nag_wp) Input

On entry: the value to be assigned to the diagonal elements of A.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array A must be at least N.

On exit: the m by n general or trapezoidal matrix A.

If MATRIX ¼ U , A is upper trapezoidal and the elements of the array below the diagonal
are not referenced.

If MATRIX ¼ L , A is lower trapezoidal and the elements of the array above the diagonal
are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06THF
is called.

Constraint: LDA � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06THF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06TMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TMF performs a Unitary similarity transformation (as a sequence of plane rotations) of a complex
Hermitian matrix.

2 Specification

SUBROUTINE F06TMF (UPLO, PIVOT, DIRECT, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) C(*)
COMPLEX (KIND=nag_wp) S(*), A(LDA,*)
CHARACTER(1) UPLO, PIVOT, DIRECT

3 Description

F06TMF performs the transformation

A PAPH

where A is an n by n complex Hermitian matrix, and P is a complex unitary matrix defined as a
sequence of plane rotations, Pk, applied in planes k1 to k2.

The 2 by 2 plane rotation part of Pk is assumed to have the form

ck �sk
�sk ck

� �
with ck real.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: PIVOT – CHARACTER(1) Input

On entry: specifies the plane rotated by Pk.

PIVOT ¼ V (variable pivot)
Pk rotates the k; kþ 1ð Þ plane.
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PIVOT ¼ T (top pivot)
Pk rotates the k1; kþ 1ð Þ plane.

PIVOT ¼ B (bottom pivot)
Pk rotates the k; k2ð Þ plane.

Constraint: PIVOT ¼ V , T or B .

3: DIRECT – CHARACTER(1) Input

On entry: specifies the sequence direction.

DIRECT ¼ F (forward sequence)
P ¼ Pk2�1 � � �Pk1þ1Pk1 .

DIRECT ¼ B (backward sequence)
P ¼ Pk1Pk1þ1 � � �Pk2�1.

Constraint: DIRECT ¼ F or B .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: K1 – INTEGER Input
6: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

7: Cð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array C must be at least K2� K1.

On entry: CðkÞ must hold ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

8: Sð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array S must be at least K2� K1.

On entry: SðkÞ must hold sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

9: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the transformed matrix A. The imaginary parts of the diagonal elements are set to zero.

10: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TMF
is called.

Constraint: LDA � max 1;Nð Þ.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TMF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06TPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TPF performs a QR factorization (as a sequence of plane rotations) of a complex upper triangular
matrix that has been modified by a rank-1 update.

2 Specification

SUBROUTINE F06TPF (N, ALPHA, X, INCX, Y, INCY, A, LDA, C, S)

INTEGER N, INCX, INCY, LDA
REAL (KIND=nag_wp) C(N-1)
COMPLEX (KIND=nag_wp) ALPHA, X(*), Y(*), A(LDA,*), S(N)

3 Description

F06TPF performs a QR factorization of an upper triangular matrix which has been modified by a rank-1
update:

�xyT þ U ¼ QR

where U and R are n by n complex upper triangular matrices with real diagonal elements, x and y are
n-element complex vectors, � is a complex scalar, and Q is an n by n complex unitary matrix.

Q is formed as the product of two sequences of plane rotations and a unitary diagonal matrix D:

QH ¼ DQn�1 � � �Q2Q1P1P2 � � �Pn�1
where

Pk is a rotation in the k; nð Þ plane, chosen to annihilate xk: thus Px ¼ �en, where
P ¼ P1P2 � � �Pn�1 and en is the last column of the unit matrix;

Qk is a rotation in the k; nð Þ plane, chosen to annihilate the n; kð Þ element of ��eny
T þ PUð Þ,

and thus restore it to upper triangular form;

D ¼ diag 1; . . . ; 1; dnð Þ, with dn chosen to make rnn real; dnj j ¼ 1.

The 2 by 2 plane rotation part of Pk or Qk has the form

ck �sk
�sk ck

� �
with ck real. The tangents of the rotations Pk are returned in the array X; the cosines and sines of these
rotations can be recovered by calling F06BCF. The cosines and sines of the rotations Qk are returned
directly in the arrays C and S.

4 References

None.
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrices U and R.

Constraint: N � 0.

2: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the referenced elements are overwritten by details of the sequence of plane rotations.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

5: Yð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array Y must be at least max 1; 1þ N� 1ð Þ � INCYð Þ.
On entry: the n-element vector y. yi must be stored in Yð1þ i � 1ð Þ � INCYÞ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

6: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY > 0.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix U . The imaginary parts of the diagonal elements
must be zero.

On exit: the upper triangular matrix R. The imaginary parts of the diagonal elements must be
zero.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TPF
is called.

Constraint: LDA � max 1;Nð Þ.

9: CðN� 1Þ – REAL (KIND=nag_wp) array Output

On exit: the cosines of the rotations Qk , for k ¼ 1; 2; . . . ; n� 1.

10: SðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the sines of the rotations Qk , for k ¼ 1; 2; . . . ; n� 1; SðnÞ holds dn, the nth diagonal
element of D.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TPF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06TQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TQF performs a QR factorization (as a sequence of plane rotations) of a complex upper triangular
matrix that has been augmented by a full row.

2 Specification

SUBROUTINE F06TQF (N, ALPHA, X, INCX, A, LDA, C, S)

INTEGER N, INCX, LDA
REAL (KIND=nag_wp) C(N)
COMPLEX (KIND=nag_wp) ALPHA, X(*), A(LDA,*), S(N)

3 Description

F06TQF performs the factorization

U
�xT

� �
¼ Q R

0

� �
where U and R are n by n complex upper triangular matrices, x is an n-element complex vector, � is a
complex scalar, and Q is a complex unitary matrix. If U has real diagonal elements, then so does R.

Q is formed as a sequence of plane rotations

QH ¼ Qn � � �Q2Q1

where Qk is a rotation in the k; nþ 1ð Þ plane, chosen to annihilate xk.

The 2 by 2 plane rotation part of Qk has the form

ck �sk
�sk ck

� �
with ck real.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrices U and R.

Constraint: N � 0.

2: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.
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3: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least max 1; 1þ N� 1ð Þ � INCXð Þ.
On entry: the n-element vector x. xi must be stored in Xð1þ i � 1ð Þ � INCXÞ, for
i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced.

On exit: the referenced elements are overwritten by details of the sequence of plane rotations.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX > 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix U .

On exit: the upper triangular matrix R.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TQF
is called.

Constraint: LDA � max 1;Nð Þ.

7: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values ck , the cosines of the rotations Qk , for k ¼ 1; 2; . . . ; n.

8: SðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the values sk , the sines of the rotations Qk , for k ¼ 1; 2; . . . ; n.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TQF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06TRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TRF performs a QR or RQ factorization (as a sequence of plane rotations) of a complex upper
Hessenberg matrix.

2 Specification

SUBROUTINE F06TRF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) S(*)
COMPLEX (KIND=nag_wp) C(K2), A(LDA,*)
CHARACTER(1) SIDE

3 Description

F06TRF transforms an n by n complex upper Hessenberg matrix H to upper triangular form R by
applying a unitary matrix P from the left or the right. H is assumed to have real nonzero subdiagonal
elements hkþ1;k , for k ¼ k1; . . . ; k2 � 1, only; R has real diagonal elements. P is formed as a sequence
of plane rotations in planes k1 to k2.

If SIDE ¼ L , the rotations are applied from the left:

PH ¼ R;

where P ¼ DPk2�1 � � �Pk1þ1Pk1 and D ¼ diag 1; . . . ; 1; dk2 ; 1; . . . ; 1ð Þ with dk2j j ¼ 1.

If SIDE ¼ R , the rotations are applied from the right:

HPH ¼ R;

where P ¼ DPk1Pk1þ1 � � �Pk2�1 and D ¼ diag 1; . . . ; 1; dk1 ; 1; . . . ; 1ð Þ with dk1j j ¼ 1.

In either case, Pk is a rotation in the k; kþ 1ð Þ plane, chosen to annihilate hkþ1;k.

The 2 by 2 plane rotation part of Pk has the form

�ck sk
�sk ck

� �
with sk real.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether H is operated on from the left or the right.

SIDE ¼ L
H is pre-multiplied from the left.
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SIDE ¼ R
H is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: N – INTEGER Input

On entry: n, the order of the matrix H.

Constraint: N � 0.

3: K1 – INTEGER Input
4: K2 – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which F06TRF is
called. The values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

5: CðK2Þ – COMPLEX (KIND=nag_wp) array Output

On exit: CðkÞ holds ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1; Cðk2Þ holds dk2 , the
k2th diagonal element of D, if SIDE ¼ L , or dk1, the k1th diagonal element of D, if SIDE ¼ R .

6: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least K2� K1.

On entry: the nonzero subdiagonal elements of H: SðkÞ must hold hkþ1;k , for k ¼ k1; . . . ; k2 � 1.

On exit: SðkÞ holds sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the upper triangular part of the n by n upper Hessenberg matrix H.

On exit: the upper triangular matrix R. The imaginary parts of the diagonal elements are set to
zero.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TRF
is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TRF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06TSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TSF performs a QR or RQ factorization (as a sequence of plane rotations) of a complex upper
spiked matrix.

2 Specification

SUBROUTINE F06TSF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) C(K2-1)
COMPLEX (KIND=nag_wp) S(*), A(LDA,*)
CHARACTER(1) SIDE

3 Description

F06TSF transforms an n by n complex upper spiked matrix H to upper triangular form R by applying a
complex unitary matrix P from the left or the right. H is assumed to have real diagonal elements except
where the spike joins the diagonal; R has real diagonal elements. P is formed as a sequence of plane
rotations in planes k1 to k2.

If SIDE ¼ L , H is assumed to have a row spike, with nonzero elements hk2;k , for k ¼ k1; . . . ; k2 � 1.
The rotations are applied from the left:

PH ¼ R;

where P ¼ DPk2�1 � � �Pk1þ1Pk1 , Pk is a rotation in the k; k2ð Þ plane and D ¼ diag 1; . . . ; 1; dk2 ; 1; . . . ; 1ð Þ
with dk2j j ¼ 1.

If SIDE ¼ R , H is assumed to have a column spike, with nonzero elements hkþ1;k1 , for
k ¼ k1; . . . ; k2 � 1. The rotations are applied from the right:

HPH ¼ R;

w h e r e P ¼ DPk1Pk1þ1 � � �Pk2�1, Pk i s a r o t a t i o n i n t h e k1; kþ 1ð Þ p l a n e a n d
D ¼ diag 1; . . . ; 1; dk1 ; 1; . . . ; 1ð Þ with dk1j j ¼ 1.

The 2 by 2 plane rotation part of Pk has the form

ck �sk
�sk ck

� �
with ck real.

4 References

None.
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5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether H is operated on from the left or the right.

SIDE ¼ L
H is pre-multiplied from the left.

SIDE ¼ R
H is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: N – INTEGER Input

On entry: n, the order of the matrix H.

Constraint: N � 0.

3: K1 – INTEGER Input
4: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

5: CðK2� 1Þ – REAL (KIND=nag_wp) array Output

On exit: CðkÞ holds ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

6: Sð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least K2� K1.

On entry: the nonzero elements of the spike of H: SðkÞ must hold hk2;k if SIDE ¼ L , and hkþ1;k1
if SIDE ¼ R , for k ¼ k1; . . . ; k2 � 1.

On exit: SðkÞ holds sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1; Sðk2Þ holds dk2 , the
k2th diagonal element of D, if SIDE ¼ L , or dk1, the k1th diagonal element of D, if SIDE ¼ R .

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the upper triangular part of the n by n upper spiked matrix H. The imaginary parts of
the diagonal elements must be zero, except for the k2; k2ð Þ element if SIDE ¼ L , or the k1; k1ð Þ
element if SIDE ¼ R .

On exit: the upper triangular matrix R. The imaginary parts of the diagonal elements are set to
zero.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TSF
is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06TSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06TTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TTF performs a QR or RQ factorization of the product of a complex upper triangular matrix and a
complex matrix of plane rotations.

2 Specification

SUBROUTINE F06TTF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) C(*)
COMPLEX (KIND=nag_wp) S(*), A(LDA,*)
CHARACTER(1) SIDE

3 Description

F06TTF performs one of the transformations

R PUQH or R QUPH;

where U is a given n by n complex upper triangular matrix, P is a given complex unitary matrix, and
Q is a complex unitary matrix chosen to make R upper triangular. Both P and Q are represented as
sequences of plane rotations in planes k1 to k2.

If SIDE ¼ L ,

R PUQH;

where P ¼ Pk2�1 . . .Pk1þ1Pk1 and Q ¼ Qk2�1 . . .Qk1þ1Qk1 .

If SIDE ¼ R ,

R QUPH;

where P ¼ Pk1Pk1þ1 . . .Pk2�1 and Q ¼ Qk1Qk1þ1 . . .Qk2�1.

In either case Pk and Qk are rotations in the k; kþ 1ð Þ plane.
The 2 by 2 rotation part of Pk or Qk has the form

ck �sk
�sk ck

� �
with ck real.

4 References

None.
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5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether P is applied from the left or the right in the transformation.

SIDE ¼ L
P is applied from the left.

SIDE ¼ R
P is applied from the right.

Constraint: SIDE ¼ L or R .

2: N – INTEGER Input

On entry: n, the order of the matrices U and R.

Constraint: N � 0.

3: K1 – INTEGER Input
4: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

5: Cð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array C must be at least K2� K1.

On entry: CðkÞ must hold the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

On exit: CðkÞ holds the cosine of the rotation Qk , for k ¼ k1; . . . ; k2 � 1.

6: Sð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least K2� K1.

On entry: SðkÞ must hold the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

On exit: SðkÞ holds the sine of the rotation Qk , for k ¼ k1; . . . ; k2 � 1.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix U .

On exit: the upper triangular matrix R.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TTF
is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F06TTF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06TVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TVF transforms a complex upper triangular matrix to an upper Hessenberg matrix by applying a
given sequence of plane rotations.

2 Specification

SUBROUTINE F06TVF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) S(*)
COMPLEX (KIND=nag_wp) C(*), A(LDA,*)
CHARACTER(1) SIDE

3 Description

F06TVF transforms an n by n complex upper triangular matrix U with real diagonal elements, to an
upper Hessenberg matrix H, by applying a given sequence of plane rotations from either the left or the
right, in planes k1 to k2; H has real nonzero subdiagonal elements hkþ1;k , for k ¼ k1; . . . ; k2 � 1 only.

If SIDE ¼ L , the rotations are applied from the left:

H ¼ PU;

where P ¼ Pk1Pk1þ1 � � �Pk2�1.
If SIDE ¼ R , the rotations are applied from the right:

H ¼ UPH;

where P ¼ Pk2�1 � � �Pk1þ1Pk1 .
In either case, Pk is a rotation in the k; kþ 1ð Þ plane.
The 2 by 2 plane rotation part of Pk has the form

�ck sk
�sk ck

� �
with sk real.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether U is operated on from the left or the right.

SIDE ¼ L
U is pre-multiplied from the left.
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SIDE ¼ R
U is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: N – INTEGER Input

On entry: n, the order of the matrices U and H.

Constraint: N � 0.

3: K1 – INTEGER Input
4: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

5: Cð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array C must be at least K2� K1.

On entry: CðkÞ must hold ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

6: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least K2� K1.

On entry: SðkÞ must hold sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

On exit: SðkÞ holds hkþ1;k , the subdiagonal element of H, for k ¼ k1; . . . ; k2 � 1.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix U . The imaginary parts of the diagonal elements
must be zero.

On exit: the upper triangular part of the upper Hessenberg matrix H.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TVF
is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TVF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

None.
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F06TWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TWF transforms a complex upper triangular matrix to an upper spiked matrix by applying a given
sequence of plane rotations.

2 Specification

SUBROUTINE F06TWF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER N, K1, K2, LDA
REAL (KIND=nag_wp) C(*)
COMPLEX (KIND=nag_wp) S(*), A(LDA,*)
CHARACTER(1) SIDE

3 Description

F06TWF transforms an n by n complex upper triangular matrix U with real diagonal elements, to an
upper spiked matrix H, by applying a given sequence of plane rotations from either the left or the right,
in planes k1 to k2. H has real diagonal elements except where the spike joins the diagonal.

If SIDE ¼ L , H has a row spike, with nonzero elements hk2;k, for k ¼ k1; k1 þ 1; . . . ; k2 � 1. The
rotations are applied from the left:

H ¼ PU;

where P ¼ Pk1Pk1þ1 � � �Pk2�1 and Pk is a rotation in the k; k2ð Þ plane.
If SIDE ¼ R , H has a column spike, with nonzero elements hkþ1;k1 , for k ¼ k1; k1 þ 1; . . . ; k2 � 1. The
rotations are applied from the right:

HPH ¼ R;

where P ¼ Pk2�1 � � �Pk1þ1Pk1 and Pk is a rotation in the k1; kþ 1ð Þ plane.
The 2 by 2 plane rotation part of Pk has the form

ck �sk
�sk ck

� �
with ck real.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether U is operated on from the left or the right.

SIDE ¼ L
U is pre-multiplied from the left.
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SIDE ¼ R
U is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: N – INTEGER Input

On entry: n, the order of the matrices U and H.

Constraint: N � 0.

3: K1 – INTEGER Input
4: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1 or K2 > N, an immediate return is effected.

5: Cð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array C must be at least K2� K1.

On entry: CðkÞ must hold ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

6: Sð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least K2� K1.

On entry: SðkÞ must hold sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

On exit: SðkÞ holds a nonzero element of the spike of H: hk2;k if SIDE ¼ L , or hkþ1;k1 if
SIDE ¼ R , for k ¼ k1; . . . ; k2 � 1.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix U . The imaginary parts of the diagonal elements
must be zero.

On exit: the upper triangular part of the upper spiked matrix H. The imaginary parts of the
diagonal elements are set to zero except for the k2; k2ð Þ element if SIDE ¼ L , or the k1; k1ð Þ
element if SIDE ¼ R .

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TWF
is called.

Constraint: LDA � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TWF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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F06TXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TXF applies to a complex rectangular matrix a sequence of plane rotations having real cosines and
complex sines.

2 Specification

SUBROUTINE F06TXF (SIDE, PIVOT, DIRECT, M, N, K1, K2, C, S, A, LDA)

INTEGER M, N, K1, K2, LDA
REAL (KIND=nag_wp) C(*)
COMPLEX (KIND=nag_wp) S(*), A(LDA,*)
CHARACTER(1) SIDE, PIVOT, DIRECT

3 Description

F06TXF performs the transformation

A PA or A APH;

where A is an m by n complex matrix and P is a complex unitary matrix, defined as a sequence of
complex plane rotations, Pk, with real cosines, applied in planes k1 to k2.

The 2 by 2 plane rotation part of Pk is assumed to have the form

ck �sk
�sk ck

� �
with ck real.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether A is operated on from the left or the right.

SIDE ¼ L
A is pre-multiplied from the left.

SIDE ¼ R
A is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: PIVOT – CHARACTER(1) Input

On entry: specifies the plane rotated by Pk.

PIVOT ¼ V (variable pivot)
Pk rotates the k; kþ 1ð Þ plane.
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PIVOT ¼ T (top pivot)
Pk rotates the k1; kþ 1ð Þ plane.

PIVOT ¼ B (bottom pivot)
Pk rotates the k; k2ð Þ plane.

Constraint: PIVOT ¼ V , T or B .

3: DIRECT – CHARACTER(1) Input

On entry: specifies the sequence direction.

DIRECT ¼ F (forward sequence)
P ¼ Pk2�1 � � �Pk1þ1Pk1 .

DIRECT ¼ B (backward sequence)
P ¼ Pk1Pk1þ1 � � �Pk2�1.

Constraint: DIRECT ¼ F or B .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

6: K1 – INTEGER Input
7: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1, or SIDE ¼ L and K2 > M, or SIDE ¼ R and K2 > N, an immediate
return is effected.

8: Cð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array C must be at least K2� K1.

On entry: CðkÞ must hold ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

9: Sð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array S must be at least K2� K1.

On entry: SðkÞ must hold sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

10: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

On exit: the transformed matrix A.

11: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TXF
is called.

Constraint: LDA � max 1;Mð Þ.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TXF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06TYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06TYF applies to a complex rectangular matrix a sequence of plane rotations having real sines and
complex cosines.

2 Specification

SUBROUTINE F06TYF (SIDE, PIVOT, DIRECT, M, N, K1, K2, C, S, A, LDA)

INTEGER M, N, K1, K2, LDA
REAL (KIND=nag_wp) S(*)
COMPLEX (KIND=nag_wp) C(*), A(LDA,*)
CHARACTER(1) SIDE, PIVOT, DIRECT

3 Description

F06TYF performs the transformation

A PA or A APH;

where A is an m by n complex matrix and P is a complex unitary matrix, defined as a sequence of
complex plane rotations, Pk, with real sines, applied in planes k1 to k2.

The 2 by 2 plane rotation part of Pk is assumed to have the form

�ck sk
�sk ck

� �
with sk real.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether A is operated on from the left or the right.

SIDE ¼ L
A is pre-multiplied from the left.

SIDE ¼ R
A is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: PIVOT – CHARACTER(1) Input

On entry: specifies the plane rotated by Pk.

PIVOT ¼ V (variable pivot)
Pk rotates the k; kþ 1ð Þ plane.
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PIVOT ¼ T (top pivot)
Pk rotates the k1; kþ 1ð Þ plane.

PIVOT ¼ B (bottom pivot)
Pk rotates the k; k2ð Þ plane.

Constraint: PIVOT ¼ V , T or B .

3: DIRECT – CHARACTER(1) Input

On entry: specifies the sequence direction.

DIRECT ¼ F (forward sequence)
P ¼ Pk2�1 � � �Pk1þ1Pk1 .

DIRECT ¼ B (backward sequence)
P ¼ Pk1Pk1þ1 � � �Pk2�1.

Constraint: DIRECT ¼ F or B .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

6: K1 – INTEGER Input
7: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1, or SIDE ¼ L and K2 > M, or SIDE ¼ R and K2 > N, an immediate
return is effected.

8: Cð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array C must be at least K2� K1.

On entry: CðkÞ must hold ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

9: Sð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array S must be at least K2� K1.

On entry: SðkÞ must hold sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

10: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

On exit: the transformed matrix A.

11: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TYF
is called.

Constraint: LDA � max 1;Mð Þ.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06TYF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06UAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UAF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex m by n matrix.

2 Specification

FUNCTION F06UAF (NORM, M, N, A, LDA, WORK)
REAL (KIND=nag_wp) F06UAF

INTEGER M, N, LDA
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) NORM

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

When M ¼ 0, F06UAF is set to zero.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.
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When N ¼ 0, F06UAF is set to zero.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06UAF
is called.

Constraint: LDA � max 1;Mð Þ.

6: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Mð Þ if NORM ¼ I , and at least
1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06UBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UBF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n band matrix.

2 Specification

FUNCTION F06UBF (NORM, N, KL, KU, AB, LDAB, WORK)
REAL (KIND=nag_wp) F06UBF

INTEGER N, KL, KU, LDAB
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) AB(LDAB,*)
CHARACTER(1) NORM

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06UBF returns zero.

Constraint: N � 0.
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3: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of A.

Constraint: KU � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least N.

On entry: the n by n band matrix A.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min n; jþ klð Þ:

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F06UBF is called.

Constraint: LDAB � KLþ KUþ 1.

7: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ I , and at least 1
otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.

F06UBF NAG Library Manual

F06UBF.2 (last) Mark 26



NAG Library Routine Document

F06UCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UCF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n Hermitian matrix.

2 Specification

FUNCTION F06UCF (NORM, UPLO, N, A, LDA, WORK)
REAL (KIND=nag_wp) F06UCF

INTEGER N, LDA
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) NORM, UPLO

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm (= the 1-norm for a Hermitian matrix).

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max i;j aij

		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06UCF returns zero.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06UCF
is called.

Constraint: LDA � max 1;Nð Þ.

6: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ 1 , O or I , and
at least 1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UCF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06UDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UDF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n Hermitian matrix, stored in packed
form.

2 Specification

FUNCTION F06UDF (NORM, UPLO, N, AP, WORK)
REAL (KIND=nag_wp) F06UDF

INTEGER N
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) AP(*)
CHARACTER(1) NORM, UPLO

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm (= the 1-norm for a Hermitian matrix).

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max i;j aij

		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06UDF returns zero.

Constraint: N � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

5: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ 1 , O or I , and
at least 1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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F06UEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UEF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n Hermitian band matrix.

2 Specification

FUNCTION F06UEF (NORM, UPLO, N, K, AB, LDAB, WORK)
REAL (KIND=nag_wp) F06UEF

INTEGER N, K, LDAB
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) AB(LDAB,*)
CHARACTER(1) NORM, UPLO

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm (= the 1-norm for a Hermitian matrix).

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max i;j aij

		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06UEF returns zero.

Constraint: N � 0.

4: K – INTEGER Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: K � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least N.

On entry: the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kð Þ:

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F06UEF is called.

Constraint: LDAB � K þ 1.

7: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ 1 , O or I , and
at least 1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UEF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06UFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UFF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n symmetric matrix.

2 Specification

FUNCTION F06UFF (NORM, UPLO, N, A, LDA, WORK)
REAL (KIND=nag_wp) F06UFF

INTEGER N, LDA
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) NORM, UPLO

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm (= the 1-norm for a symmetric matrix).

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max i;j aij

		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06UFF returns zero.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06UFF
is called.

Constraint: LDA � max 1;Nð Þ.

6: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ 1 , O or I , and
at least 1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06UGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UGF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n symmetric matrix, stored in packed
form.

2 Specification

FUNCTION F06UGF (NORM, UPLO, N, AP, WORK)
REAL (KIND=nag_wp) F06UGF

INTEGER N
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) AP(*)
CHARACTER(1) NORM, UPLO

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm (= the 1-norm for a symmetric matrix).

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max i;j aij

		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06UGF returns zero.

Constraint: N � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

5: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ 1 , O or I , and
at least 1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UGF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06UHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UHF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n symmetric band matrix.

2 Specification

FUNCTION F06UHF (NORM, UPLO, N, K, AB, LDAB, WORK)
REAL (KIND=nag_wp) F06UHF

INTEGER N, K, LDAB
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) AB(LDAB,*)
CHARACTER(1) NORM, UPLO

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm (= the 1-norm for a symmetric matrix).

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max i;j aij

		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06UHF returns zero.

Constraint: N � 0.

4: K – INTEGER Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: K � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least N.

On entry: the n by n symmetric band matrix A.

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kð Þ:

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F06UHF is called.

Constraint: LDAB � K þ 1.

7: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ 1 , O or I , and
at least 1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06UJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UJF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex m by n trapezoidal matrix (triangular if
m ¼ n).

2 Specification

FUNCTION F06UJF (NORM, UPLO, DIAG, M, N, A, LDA, WORK)
REAL (KIND=nag_wp) F06UJF

INTEGER M, N, LDA
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) NORM, UPLO, DIAG

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower trapezoidal.

UPLO ¼ U
A is upper trapezoidal.

UPLO ¼ L
A is lower trapezoidal.

Constraint: UPLO ¼ U or L .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

When M ¼ 0, F06UJF is set to zero.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

When N ¼ 0, F06UJF is set to zero.

Constraint: N � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the m by n trapezoidal matrix A.

If UPLO ¼ U , A is upper trapezoidal and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower trapezoidal and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06UJF
is called.

Constraint: LDA � max 1;Mð Þ.

8: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Mð Þ if NORM ¼ I , and at least
1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UJF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.

F06 – Linear Algebra Support Routines F06UJF

Mark 26 F06UJF.3 (last)





NAG Library Routine Document

F06UKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UKF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n triangular matrix, stored in packed
form.

2 Specification

FUNCTION F06UKF (NORM, UPLO, DIAG, N, AP, WORK)
REAL (KIND=nag_wp) F06UKF

INTEGER N
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) AP(*)
CHARACTER(1) NORM, UPLO, DIAG

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06UKF returns zero.

Constraint: N � 0.

5: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least N� Nþ 1ð Þ=2.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

6: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ I , and at least 1
otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UKF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06ULF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ULF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n triangular band matrix.

2 Specification

FUNCTION F06ULF (NORM, UPLO, DIAG, N, K, AB, LDAB, WORK)
REAL (KIND=nag_wp) F06ULF

INTEGER N, K, LDAB
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) AB(LDAB,*)
CHARACTER(1) NORM, UPLO, DIAG

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06ULF returns zero.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: K � 0.

6: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least N.

On entry: the n by n triangular band matrix A

The matrix is stored in rows 1 to kþ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F06ULF is called.

Constraint: LDAB � K þ 1.

8: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ I , and at least 1
otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ULF is not threaded in any implementation.

F06ULF NAG Library Manual

F06ULF.2 Mark 26



9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06UMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UMF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n upper Hessenberg matrix.

2 Specification

FUNCTION F06UMF (NORM, N, A, LDA, WORK)
REAL (KIND=nag_wp) F06UMF

INTEGER N, LDA
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) NORM

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06UMF returns zero.

Constraint: N � 0.
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3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper Hessenberg matrix A; elements of the array below the first
subdiagonal are not referenced.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F06UMF is called.

Constraint: LDA � max 1;Nð Þ.

5: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ I , and at least 1
otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UMF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06UNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UNF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n tridiagonal matrix A.

2 Specification

FUNCTION F06UNF (NORM, N, DL, D, DU)
REAL (KIND=nag_wp) F06UNF

INTEGER N
COMPLEX (KIND=nag_wp) DL(*), D(*), DU(*)
CHARACTER(1) NORM

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06UNF returns zero.

Constraint: N � 0.

3: DLð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: the (n� 1) subdiagonal elements of A.
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4: Dð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of A.

5: DUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: the (n� 1) superdiagonal elements of A.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UNF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.

F06UNF NAG Library Manual

F06UNF.2 (last) Mark 26



NAG Library Routine Document

F06UPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06UPF returns, via the function name, the value of the 1-norm, the 1-norm, the Frobenius norm, or
the maximum absolute value of the elements of a complex n by n Hermitian tridiagonal matrix A.

2 Specification

FUNCTION F06UPF (NORM, N, D, E)
REAL (KIND=nag_wp) F06UPF

INTEGER N
REAL (KIND=nag_wp) D(*)
COMPLEX (KIND=nag_wp) E(*)
CHARACTER(1) NORM

3 Description

None.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06UPF returns zero.

Constraint: N � 0.
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3: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix A.

4: Eð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the (n� 1) subdiagonal or superdiagonal elements of the tridiagonal matrix A.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06UPF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06VJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06VJF permutes the rows or columns of a complex rectangular matrix using an integer array of
permutations.

2 Specification

SUBROUTINE F06VJF (SIDE, TRANS, N, PERM, K, B, LDB)

INTEGER N, PERM(*), K, LDB
COMPLEX (KIND=nag_wp) B(LDB,*)
CHARACTER(1) SIDE, TRANS

3 Description

F06VJF performs one of the permutation operations

B PTB; B PB;
B BPT or B BP;

where B is a complex matrix, and P is a permutation matrix.

P is represented in the form

P ¼ P1;p1P2;p2 � � �Pn;pn ;

where Pi;j is the permutation matrix that interchanges items i and j; that is, Pi;j is the unit matrix with
rows and columns i and j interchanged. If i ¼ j, Pi;j ¼ I.
Let m denote the number of rows of B if SIDE ¼ L , or the number of columns of B if SIDE ¼ R : the
routine does not require m to be passed as an argument, but assumes that m � pi, for i ¼ 1; 2; . . . ; n.

This routine requires the indices pi to be supplied in an integer array; F06VKF performs the same
operation with the indices supplied in a real array.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input
2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

SIDE ¼ L and TRANS ¼ T
B PTB.

SIDE ¼ L and TRANS ¼ N
B PB.

SIDE ¼ R and TRANS ¼ T
B BPT.
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SIDE ¼ R and TRANS ¼ N
B BP .

Constraints:

SIDE ¼ L or R ;
TRANS ¼ N or T .

3: N – INTEGER Input

On entry: n, the number of interchanges in the representation of P .

Constraint: N � 0.

4: PERMð�Þ – INTEGER array Input

Note: the dimension of the array PERM must be at least max 1;Nð Þ.
On entry: the n indices pi which define the interchanges in the representation of P . It is usual to
have pi � i, but this is not necessary.

Constraint: 1 � PERMðiÞ � m.

5: K – INTEGER Input

On entry: k, the number of columns of B if SIDE ¼ L , or the number of rows of B if
SIDE ¼ R .

Constraint: K � 0.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Kð Þ if SIDE ¼ L and at least

max 1;max
k

PERMðkÞf g
� �

if SIDE ¼ R .

On entry: the original matrix B; B is m by k if SIDE ¼ L , or k by m if SIDE ¼ R .

On exit: the permuted matrix B.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06VJF
is called.

Constraints:

if SIDE ¼ L , LDB � max 1;mð Þ;
if SIDE ¼ R , LDB � max 1;Kð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06VJF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06VKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06VKF permutes the rows or columns of a complex rectangular matrix using a real array of
permutations.

2 Specification

SUBROUTINE F06VKF (SIDE, TRANS, N, PERM, K, B, LDB)

INTEGER N, K, LDB
REAL (KIND=nag_wp) PERM(*)
COMPLEX (KIND=nag_wp) B(LDB,*)
CHARACTER(1) SIDE, TRANS

3 Description

F06VKF performs one of the permutation operations

B PTB; B PB;
B BPT or B BP;

where B is a complex matrix, and P is a permutation matrix.

P is represented in the form

P ¼ P1;p1P2;p2 � � �Pn;pn ;

where Pi;j is the permutation matrix that interchanges items i and j; that is, Pi;j is the unit matrix with
rows and columns i and j interchanged. If i ¼ j, Pi;j ¼ I.
Let m denote the number of rows of B if SIDE ¼ L , or the number of columns of B if SIDE ¼ R : the
routine does not require m to be passed as an argument, but assumes that m � pi, for i ¼ 1; 2; . . . ; n.

This routine requires the indices pi to be supplied in a real array (the routine takes the integer part of
the array elements); F06VJF performs the same operation with the indices supplied in an integer array.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input
2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

SIDE ¼ L and TRANS ¼ T
B PTB.

SIDE ¼ L and TRANS ¼ N
B PB.

SIDE ¼ R and TRANS ¼ T
B BPT.
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SIDE ¼ R and TRANS ¼ N
B BP .

Constraints:

SIDE ¼ L or R ;
TRANS ¼ N or T .

3: N – INTEGER Input

On entry: n, the number of interchanges in the representation of P .

Constraint: N � 0.

4: PERMð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array PERM must be at least max 1;Nð Þ.
On entry: the n indices pi which define the interchanges in the representation of P . It is usual to
have pi � i, but this is not necessary.

Constraint: 1 � PERMðiÞ � m.

5: K – INTEGER Input

On entry: k, the number of columns of B if SIDE ¼ L , or the number of rows of B if
SIDE ¼ R .

Constraint: K � 0.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Kð Þ if SIDE ¼ L and at least

max 1;max
k

int PERMðkÞf g
� �

if SIDE ¼ R .

On entry: the original matrix B; B is m by k if SIDE ¼ L , or k by m if SIDE ¼ R .

On exit: the permuted matrix B.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06VKF
is called.

Constraints:

if SIDE ¼ L , LDB � max 1;mð Þ;
if SIDE ¼ R , LDB � max 1;Kð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06VKF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06VXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06VXF applies to a complex rectangular matrix a sequence of plane rotations having real cosines and
complex sines.

2 Specification

SUBROUTINE F06VXF (SIDE, PIVOT, DIRECT, M, N, K1, K2, C, S, A, LDA)

INTEGER M, N, K1, K2, LDA
REAL (KIND=nag_wp) C(*), S(*)
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) SIDE, PIVOT, DIRECT

3 Description

F06VXF performs the transformation

A PA or A APH;

where A is an m by n complex matrix and P is a real orthogonal matrix, defined as a sequence of real
plane rotations, Pk, applied in planes k1 to k2.

The 2 by 2 plane rotation part of Pk is assumed to have the form

ck sk
�sk ck

� �
with ck and sk real.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether A is operated on from the left or the right.

SIDE ¼ L
A is pre-multiplied from the left.

SIDE ¼ R
A is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: PIVOT – CHARACTER(1) Input

On entry: specifies the plane rotated by Pk.

PIVOT ¼ V (variable pivot)
Pk rotates the k; kþ 1ð Þ plane.
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PIVOT ¼ T (top pivot)
Pk rotates the k1; kþ 1ð Þ plane.

PIVOT ¼ B (bottom pivot)
Pk rotates the k; k2ð Þ plane.

Constraint: PIVOT ¼ V , T or B .

3: DIRECT – CHARACTER(1) Input

On entry: specifies the sequence direction.

DIRECT ¼ F (forward sequence)
P ¼ Pk2�1 � � �Pk1þ1Pk1 .

DIRECT ¼ B (backward sequence)
P ¼ Pk1Pk1þ1 � � �Pk2�1.

Constraint: DIRECT ¼ F or B .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

6: K1 – INTEGER Input
7: K2 – INTEGER Input

On entry: the values k1 and k2.

If K1 < 1 or K2 � K1, or SIDE ¼ L and K2 > M, or SIDE ¼ R and K2 > N, an immediate
return is effected.

8: Cð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array C must be at least K2� K1.

On entry: CðkÞ must hold ck , the cosine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

9: Sð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array S must be at least K2� K1.

On entry: SðkÞ must hold sk , the sine of the rotation Pk , for k ¼ k1; . . . ; k2 � 1.

10: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the m by n matrix A.

On exit: the transformed matrix A.

11: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06VXF
is called.

Constraint: LDA � max 1;Mð Þ.
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6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06VXF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06WAF (DLANSF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06WAF (DLANSF) returns the value of the 1-norm, the 1-norm, the Frobenius norm, or the
maximum absolute value of the elements of a real symmetric matrix A stored in Rectangular Full
Packed (RFP) format.

2 Specification

FUNCTION F06WAF (NORM, TRANSR, UPLO, N, AR, WORK)
REAL (KIND=nag_wp) F06WAF

INTEGER N
REAL (KIND=nag_wp) AR(N*(N+1)/2), WORK(*)
CHARACTER(1) NORM, TRANSR, UPLO

The routine may be called by its LAPACK name dlansf.

3 Description

Given a real n by n symmetric matrix, A, F06WAF (DLANSF) calculates one of the values given by

Ak k1 ¼ max
j

Xn
i¼1

aij
		 		 (the 1-norm of A),

Ak k1 ¼ max
i

Xn
j¼1

aij
		 		 (the 1-norm of A),

Ak kF ¼
Xn
i¼1

Xn
j¼1

aij
		 		2 !1=2

(the Frobenius norm of A), or

max
i;j

aij
		 		

(the maximum absolute element value of A).

A is stored in compact form using the RFP format. The RFP storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2
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5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: TRANSR – CHARACTER(1) Input

On entry: specifies whether the RFP representation of A is normal or transposed.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ T
The matrix A is stored in transposed RFP format.

Constraint: TRANSR ¼ N or T .

3: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06WAF (DLANSF) returns zero.

Constraint: N � 0.

5: ARðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the upper or lower triangular part (as specified by UPLO) of the n by n symmetric
matrix A, in either normal or transposed RFP format (as specified by TRANSR). The storage
format is described in detail in Section 3.3.3 in the F07 Chapter Introduction.

6: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ 1 , O or I , and
at least 1 otherwise.

6 Error Indicators and Warnings

None.
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7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F06WAF (DLANSF) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in the lower triangular part of a symmetric matrix, converts this to RFP format, then
calculates the norm of the matrix for each of the available norm types.

10.1 Program Text

Program f06wafe

! F06WAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dlansf, dtrttf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r_fro, r_inf, r_max, r_one
Integer :: i, info, lda, n
Character (1) :: transr, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ar(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F06WAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, uplo, transr

lda = n
Allocate (a(lda,n),ar((n*(n+1))/2),work(n))

! Read upper or lower triangle of matrix A from data file

If (uplo==’L’ .Or. uplo==’l’) Then
Do i = 1, n

Read (nin,*) a(i,1:i)
End Do

Else
Do i = 1, n

Read (nin,*) a(i,i:n)
End Do

End If

! Convert A to rectangular full packed storage in ar

! The NAG name equivalent of dtrttf is f01vef
Call dtrttf(transr,uplo,n,a,lda,ar,info)

F06 – Linear Algebra Support Routines F06WAF

Mark 26 F06WAF.3



Write (nout,*)
Write (nout,99999) &

’Norms of symmetric matrix stored in RFP format in ar:’
Write (nout,*)

! The NAG name equivalent of dlansf is f06waf
r_one = dlansf(’1-norm’,transr,uplo,n,ar,work)
Write (nout,99998) ’One norm = ’, r_one

r_inf = dlansf(’Infinity’,transr,uplo,n,ar,work)
Write (nout,99998) ’Infinity norm = ’, r_inf

r_fro = dlansf(’Frobenius’,transr,uplo,n,ar,work)
Write (nout,99998) ’Frobenius norm = ’, r_fro

r_max = dlansf(’Max norm’,transr,uplo,n,ar,work)
Write (nout,99998) ’Maximum norm = ’, r_max

99999 Format (1X,A)
99998 Format (1X,A,F9.4)

End Program f06wafe

10.2 Program Data

F06WAF Example Program Data
6 ’L’ ’N’ : N, UPLO, TRANSR
1.0
2.0 2.0
3.0 3.0 3.0
4.0 4.0 4.0 4.0
5.0 5.0 5.0 5.0 5.0
6.0 6.0 6.0 6.0 6.0 6.0 : Matrix A

10.3 Program Results

F06WAF Example Program Results

Norms of symmetric matrix stored in RFP format in ar:

One norm = 36.0000
Infinity norm = 36.0000
Frobenius norm = 28.1247
Maximum norm = 6.0000
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NAG Library Routine Document

F06WBF (DTFSM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06WBF (DTFSM) performs one of the matrix-matrix operations

B �A�1B; B �A�TB;
B �BA�1 or B �BA�T;

where A is a real triangular matrix stored in Rectangular Full Packed (RFP) format, B is an m by n real

matrix, and � is a real scalar. A�T denotes ATð Þ�1 or equivalently A�1ð ÞT.
No test for singularity or near-singularity of A is included in this routine. Such tests must be performed
before calling this routine.

2 Specification

SUBROUTINE F06WBF (TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, AR, B,
LDB)

&

INTEGER M, N, LDB
REAL (KIND=nag_wp) ALPHA, AR(*), B(LDB,*)
CHARACTER(1) TRANSR, SIDE, UPLO, TRANS, DIAG

The routine may be called by its LAPACK name dtfsm.

3 Description

F06WBF (DTFSM) solves (for X) a triangular linear system of one of the forms

AX ¼ �B; ATX ¼ �B;
XA ¼ �B or XAT ¼ �B;

where A is a real triangular matrix stored in RFP format, B, X are m by n real matrices, and � is a real
scalar. The RFP storage format is described in Section 3.3.3 in the F07 Chapter Introduction.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the RFP representation of A is normal or transposed.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ T
The matrix A is stored in transposed RFP format.

Constraint: TRANSR ¼ N or T .
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2: SIDE – CHARACTER(1) Input

On entry: specifies whether B is operated on from the left or the right, or similarly whether A (or
its transpose) appears to the left or right of the solution matrix in the linear system to be solved.

SIDE ¼ L
B is pre-multiplied from the left. The system to be solved has the form AX ¼ �B or
ATX ¼ �B.

SIDE ¼ R
B is post-multiplied from the right. The system to be solved has the form XA ¼ �B or
XAT ¼ �B.

Constraint: SIDE ¼ L or R .

3: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

4: TRANS – CHARACTER(1) Input

On entry: specifies whether the operation involves A�1 or A�T, i.e., whether or not A is
transposed in the linear system to be solved.

TRANS ¼ N
The operation involves A�1, i.e., A is not transposed.

TRANS ¼ T
The operation involves A�T, i.e., A is transposed.

Constraint: TRANS ¼ N or T .

5: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements of A are stored explicitly.

DIAG ¼ U
The diagonal elements of A are assumed to be 1, the corresponding elements of AR are
not referenced.

Constraint: DIAG ¼ N or U .

6: M – INTEGER Input

On entry: m, the number of rows of the matrix B.

Constraint: M � 0.

7: N – INTEGER Input

On entry: n, the number of columns of the matrix B.

Constraint: N � 0.

8: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.
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9: ARð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AR must be at least max 1;M� Mþ 1ð Þ=2ð Þ if SIDE ¼ L and
at least max 1;N� Nþ 1ð Þ=2ð Þ if SIDE ¼ R .

On entry: A, the m by m triangular matrix A if SIDE ¼ L or the n by n triangular matrix A if
SIDE ¼ R , stored in RFP format (as specified by TRANSR). The storage format is described in
detail in Section 3.3.3 in the F07 Chapter Introduction. If ALPHA ¼ 0:0, AR is not referenced.

10: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the m by n matrix B.

If ALPHA ¼ 0, B need not be set.

On exit: the updated matrix B, or similarly the solution matrix X.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06WBF
(DTFSM) is called.

Constraint: LDB � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06WBF (DTFSM) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example reads in the lower triangular part of a symmetric matrix A which it converts to RFP
format. It also reads in � and a 6 by 4 matrix B and then performs the matrix-matrix operation
B �A�1B.

10.1 Program Text

Program f06wbfe

! F06WBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: dtfsm, dtrttf, nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: alpha
Integer :: i, ifail, info, lda, ldb, m, n
Character (1) :: side, trans, transr, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ar(:), b(:,:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F06WBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m, n, uplo, transr, side, alpha, trans

lda = m
ldb = m
Allocate (a(lda,m),ar((m*(m+1))/2),work(m),b(ldb,n))

! Read upper or lower triangle of matrix A from data file

If (uplo==’L’ .Or. uplo==’l’) Then
Do i = 1, m

Read (nin,*) a(i,1:i)
End Do

Else
Do i = 1, m

Read (nin,*) a(i,i:m)
End Do

End If

! Read matrix B from data file

Read (nin,*)(b(i,1:n),i=1,m)

! Convert A to rectangular full packed storage in ar

! The NAG name equivalent of dtrttf is f01vef
Call dtrttf(transr,uplo,m,a,lda,ar,info)

Write (nout,*)
Flush (nout)

! Perform the matrix-matrix operation

! The NAG name equivalent of dtfsm is f06wbf
Call dtfsm(transr,side,uplo,trans,’N’,m,n,alpha,ar,b,ldb)

! Print the result

ifail = 0
Call x04caf(’General’,’ ’,m,n,b,ldb,’The Solution’,ifail)

End Program f06wbfe

10.2 Program Data

F06WBF Example Program Data
6 4 ’L’ ’N’ ’L’ 4.21 ’N’ : M, N, UPLO, TRANSR, SIDE, ALPHA, TRANS
1.0
2.0 2.0
3.0 3.0 3.0
4.0 4.0 4.0 4.0
5.0 5.0 5.0 5.0 5.0
6.0 6.0 6.0 6.0 6.0 6.0 : Matrix A
3.22 1.37 2.31 0.29
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1.64 1.80 0.38 -1.52
1.87 2.87 2.02 -0.80
5.20 -2.99 -0.91 -3.87
1.83 -2.71 -2.81 -1.13

-1.10 -0.63 -0.50 0.81 : End of matrix B

10.3 Program Results

F06WBF Example Program Results

The Solution
1 2 3 4

1 13.5562 5.7677 9.7251 1.2209
2 -10.1040 -1.9787 -8.9252 -4.4205
3 -0.8280 0.2386 2.0348 2.0769
4 2.8488 -7.1745 -3.7925 -2.9505
5 -3.9321 0.8652 -1.4082 3.1217
6 -2.3127 1.8398 2.0152 1.5198
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NAG Library Routine Document

F06WCF (DSFRK)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06WCF (DSFRK) performs one of the symmetric rank-k update operations

C  �AAT þ �C or C  �ATAþ �C;

where A is a real matrix, C is an n by n real symmetric matrix stored in Rectangular Full Packed (RFP)
format, and � and � are real scalars.

2 Specification

SUBROUTINE F06WCF (TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, CR)

INTEGER N, K, LDA
REAL (KIND=nag_wp) ALPHA, A(LDA,*), BETA, CR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO, TRANS

The routine may be called by its LAPACK name dsfrk.

3 Description

F06WCF (DSFRK) performs one of the symmetric rank-k update operations

C  �AAT þ �C or C  �ATAþ �C;

where A is a real matrix, C is an n by n real symmetric matrix stored in Rectangular Full Packed (RFP)
format, and � and � are real scalars. The RFP storage format is described in Section 3.3.3 in the F07
Chapter Introduction.

If n ¼ 0 or if � ¼ 1:0 and either k ¼ 0 or � ¼ 0:0 then F06WCF (DSFRK) returns immediately. If
�¼0:0 and either k¼0 or � ¼ 0:0 then C is set to the zero matrix.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the RFP representation of C is normal or transposed.

TRANSR ¼ N
The matrix C is stored in normal RFP format.

TRANSR ¼ T
The matrix C is stored in transposed RFP format.

Constraint: TRANSR ¼ N or T .
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2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of C is stored in RFP format.

UPLO ¼ U
The upper triangular part of C is stored in RFP format.

UPLO ¼ L
The lower triangular part of C is stored in RFP format.

Constraint: UPLO ¼ U or L .

3: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
C  �AAT þ �C.

TRANS ¼ T
C  �ATAþ �C.

Constraint: TRANS ¼ N or T .

4: N – INTEGER Input

On entry: n, the order of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of columns of A if TRANS ¼ N , or the number of rows of A if
TRANS ¼ T .

Constraint: K � 0.

6: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ if TRANS ¼ N and at
least max 1;Nð Þ if TRANS ¼ T .

On entry: the matrix A; A is n by k if TRANS ¼ N , or k by n if TRANS ¼ T . If
ALPHA ¼ 0:0, A is not referenced.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F06WCF (DSFRK) is called.

Constraints:

if TRANS ¼ N , LDA � max 1;Nð Þ;
if TRANS ¼ T , LDA � max 1;Kð Þ.

9: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

10: CRðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the upper or lower triangular part (as specified by UPLO) of the n by n symmetric
matrix C, stored in RFP format (as specified by TRANSR). The storage format is described in
detail in Section 3.3.3 in the F07 Chapter Introduction.
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On exit: the updated matrix C, that is its upper or lower triangular part stored in RFP format.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06WCF (DSFRK) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example reads in the lower triangular part of a symmetric matrix C which it converts to RFP
format. It also reads in �, � and a 6 by 4 matrix A and then performs the symmetric rank-4 update
C  �AAT þ �C.

10.1 Program Text

Program f06wcfe

! F06WCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsfrk, dtfttr, dtrttf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, beta
Integer :: i, ifail, info, k, lda, n
Character (1) :: trans, transr, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), cr(:)

! .. Executable Statements ..
Write (nout,*) ’F06WCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, k, uplo, transr, alpha, beta, trans

lda = n
Allocate (c(lda,n),cr((n*(n+1))/2),a(lda,k))

! Read upper or lower triangle of matrix C from data file
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If (uplo==’L’ .Or. uplo==’l’) Then
Do i = 1, n

Read (nin,*) c(i,1:i)
End Do

Else
Do i = 1, n

Read (nin,*) c(i,i:n)
End Do

End If

! Read matrix A from data file

Read (nin,*)(a(i,1:k),i=1,n)

! Convert C to rectangular full packed storage in cr

! The NAG name equivalent of dtrttf is f01vef
Call dtrttf(transr,uplo,n,c,lda,cr,info)

Write (nout,*)
Flush (nout)

! Perform the rank-k update

! The NAG name equivalent of dsfrk is f06wcf
Call dsfrk(transr,uplo,trans,n,k,alpha,a,lda,beta,cr)

! Convert cr back from rectangular full packed to standard format in C

! The NAG name equivalent of dtfttr is f01vgf
Call dtfttr(transr,uplo,n,cr,c,lda,info)

! Print out the result, stored in the lower triangle of matrix C

ifail = 0
Call x04caf(’Lower’,’N’,n,n,c,lda,’The Solution’,ifail)

End Program f06wcfe

10.2 Program Data

F06WCF Example Program Data
6 4 ’L’ ’N’ 4.21 0.89 ’N’ : N, K, UPLO, TRANSR, ALPHA, BETA, TRANS
1.0
2.0 2.0
3.0 3.0 3.0
4.0 4.0 4.0 4.0
5.0 5.0 5.0 5.0 5.0
6.0 6.0 6.0 6.0 6.0 6.0 : End of matrix C
3.21 1.32 2.31 0.25
1.65 1.87 0.32 -1.54
1.80 2.88 2.05 -0.89
5.25 -2.95 -0.95 -3.80
1.58 -2.69 -2.90 -1.04

-1.11 -0.66 -0.59 0.80 : End of matrix A

10.3 Program Results

F06WCF Example Program Results

The Solution
1 2 3 4 5 6

1 74.3339
2 35.9614 38.3792
3 61.9998 46.3791 72.2571
4 44.8769 40.1617 13.6156 220.8276
5 -18.4440 -2.9162 -37.3241 101.0169 85.3835
6 -18.2242 -13.5482 -19.1635 -21.4356 9.1315 16.5209
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NAG Library Routine Document

F06WNF (ZLANHF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06WNF (ZLANHF) returns the value of the 1-norm, the 1-norm, the Frobenius norm, or the
maximum absolute value of the elements of a complex Hermitian matrix A stored in Rectangular Full
Packed (RFP) format.

2 Specification

FUNCTION F06WNF (NORM, TRANSR, UPLO, N, AR, WORK)
REAL (KIND=nag_wp) F06WNF

INTEGER N
REAL (KIND=nag_wp) WORK(*)
COMPLEX (KIND=nag_wp) AR(N*(N+1)/2)
CHARACTER(1) NORM, TRANSR, UPLO

The routine may be called by its LAPACK name zlanhf.

3 Description

Given a complex n by n symmetric matrix, A, F06WNF (ZLANHF) calculates one of the values given
by

Ak k1 ¼ max
j

Xn
i¼1

aij
		 		 (the 1-norm of A),

Ak k1 ¼ max
i

Xn
j¼1

aij
		 		 (the 1-norm of A),

Ak kF ¼
Xn
i¼1

Xn
j¼1

aij
		 		2 !1=2

(the Frobenius norm of A), or

max
i;j

aij
		 		

(the maximum absolute element value of A).

A is stored in compact form using the RFP format. The RFP storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2
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5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned.

NORM ¼ 1 or O
The 1-norm.

NORM ¼ I
The 1-norm.

NORM ¼ F or E
The Frobenius (or Euclidean) norm.

NORM ¼ M
The value max

i;j
aij
		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I , F , E or M .

2: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its conjugate transpose is
stored.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ C
The conjugate transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or C .

3: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

When N ¼ 0, F06WNF (ZLANHF) returns zero.

Constraint: N � 0.

5: ARðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Input

On entry: the upper or lower triangular part (as specified by UPLO) of the n by n Hermitian
matrix A, in either normal or transposed RFP format (as specified by TRANSR). The storage
format is described in detail in Section 3.3.3 in the F07 Chapter Introduction.

6: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if NORM ¼ 1 , O or I , and
at least 1 otherwise.

6 Error Indicators and Warnings

None.
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7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F06WNF (ZLANHF) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in the lower triangular part of a symmetric matrix, converts this to RFP format, then
calculates the norm of the matrix for each of the available norm types.

10.1 Program Text

Program f06wnfe

! F06WNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zlanhf, ztrttf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r_fro, r_inf, r_max, r_one
Integer :: i, info, lda, n
Character (1) :: transr, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ar(:)
Real (Kind=nag_wp), Allocatable :: work(:)

! .. Executable Statements ..
Write (nout,*) ’F06WNF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, uplo, transr

lda = n
Allocate (a(lda,n),ar((n*(n+1))/2),work(n))

! Read upper or lower triangle of matrix A from data file

If (uplo==’L’ .Or. uplo==’l’) Then
Do i = 1, n

Read (nin,*) a(i,1:i)
End Do

Else
Do i = 1, n

Read (nin,*) a(i,i:n)
End Do

End If

! Convert A to rectangular full packed storage in ar

! The NAG name equivalent of ztrttf is f01vff
Call ztrttf(transr,uplo,n,a,lda,ar,info)
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Write (nout,*)
Write (nout,99999) &

’Norms of Hermitian matrix stored in RFP format in ar:’
Write (nout,*)

! The NAG name equivalent of zlanhf is f06wnf
r_one = zlanhf(’1-norm’,transr,uplo,n,ar,work)
Write (nout,99998) ’One norm = ’, r_one

r_inf = zlanhf(’Infinity’,transr,uplo,n,ar,work)
Write (nout,99998) ’Infinity norm = ’, r_inf

r_fro = zlanhf(’Frobenius’,transr,uplo,n,ar,work)
Write (nout,99998) ’Frobenius norm = ’, r_fro

r_max = zlanhf(’Max norm’,transr,uplo,n,ar,work)
Write (nout,99998) ’Maximum norm = ’, r_max

99999 Format (1X,A)
99998 Format (1X,A,F9.4)

End Program f06wnfe

10.2 Program Data

F06WNF Example Program Data
6 ’L’ ’N’ : N, UPLO, TRANSR
(1.0,1.1)
(2.0,2.1) (2.0,2.1)
(3.0,3.3) (3.3,3.0) (3.2,3.0)
(4.0,4.4) (4.0,4.3) (4.0,4.2) (4.0,4.1)
(5.0,5.1) (5.0,5.2) (5.3,5.0) (5.0,5.4) (5.5,5.0)
(6.9,6.0) (6.0,6.8) (6.7,6.0) (6.0,6.6) (6.5,6.0) (6.0,6.4) : Matrix A

10.3 Program Results

F06WNF Example Program Results

Norms of Hermitian matrix stored in RFP format in ar:

One norm = 50.9719
Infinity norm = 50.9719
Frobenius norm = 40.3801
Maximum norm = 9.1439
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NAG Library Routine Document

F06WPF (ZTFSM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06WPF (ZTFSM) performs one of the matrix-matrix operations

B �A�1B; B �A�HB;
B �BA�1 or B �BA�H;

where A is a complex triangular matrix stored in Rectangular Full Packed (RFP) format, B is an m by

n complex matrix, and � is a complex scalar. A�H denotes AHð Þ�1 or equivalently A�1ð ÞH.
No test for singularity or near-singularity of A is included in this routine. Such tests must be performed
before calling this routine.

2 Specification

SUBROUTINE F06WPF (TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, AR, B,
LDB)

&

INTEGER M, N, LDB
COMPLEX (KIND=nag_wp) ALPHA, AR(*), B(LDB,*)
CHARACTER(1) TRANSR, SIDE, UPLO, TRANS, DIAG

The routine may be called by its LAPACK name ztfsm.

3 Description

F06WPF (ZTFSM) solves (for X) a triangular linear system of one of the forms

AX ¼ �B; AHX ¼ �B;
XA ¼ �B or XAH ¼ �B;

where A is a complex triangular matrix stored in RFP format, B, X are m by n complex matrices, and
� is a complex scalar. The RFP storage format is described in Section 3.3.3 in the F07 Chapter
Introduction.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its conjugate transpose is
stored.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ C
The conjugate transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or C .
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2: SIDE – CHARACTER(1) Input

On entry: specifies whether B is operated on from the left or the right, or similarly whether A (or
its transpose) appears to the left or right of the solution matrix in the linear system to be solved.

SIDE ¼ L
B is pre-multiplied from the left. The system to be solved has the form AX ¼ �B or
ATX ¼ �B.

SIDE ¼ R
B is post-multiplied from the right. The system to be solved has the form XA ¼ �B or
XAT ¼ �B.

Constraint: SIDE ¼ L or R .

3: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

4: TRANS – CHARACTER(1) Input

On entry: specifies whether the operation involves A�1 or A�H, i.e., whether or not A is
transpose conjugated in the linear system to be solved.

TRANS ¼ N
The operation involves A�1, i.e., A is not transpose conjugated.

TRANS ¼ C
The operation involves A�H, i.e., A is transpose conjugated.

Constraint: TRANS ¼ N or C .

5: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements of A are stored explicitly.

DIAG ¼ U
The diagonal elements of A are assumed to be 1, the corresponding elements of AR are
not referenced.

Constraint: DIAG ¼ N or U .

6: M – INTEGER Input

On entry: m, the number of rows of the matrix B.

Constraint: M � 0.

7: N – INTEGER Input

On entry: n, the number of columns of the matrix B.

Constraint: N � 0.

8: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.
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9: ARð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AR must be at least max 1;M� Mþ 1ð Þ=2ð Þ if SIDE ¼ L and
at least max 1;N� Nþ 1ð Þ=2ð Þ if SIDE ¼ R .

On entry: A, the m by m triangular matrix A if SIDE ¼ L or the n by n triangular matrix A if
SIDE ¼ R , stored in RFP format (as specified by TRANSR). The storage format is described in
detail in Section 3.3.3 in the F07 Chapter Introduction. If ALPHA ¼ 0:0, AR is not referenced.

10: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the m by n matrix B.

If ALPHA ¼ 0, B need not be set.

On exit: the updated matrix B, or similarly the solution matrix X.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06WPF
(ZTFSM) is called.

Constraint: LDB � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06WPF (ZTFSM) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example reads in the upper triangular part of a symmetric matrix A which it converts to RFP
format. It also reads in � and a 4 by 3 matrix B and then performs the matrix-matrix operation
B �A�1B.

10.1 Program Text

Program f06wpfe

! F06WPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: nag_wp, x04daf, ztfsm, ztrttf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Complex (Kind=nag_wp) :: alpha
Integer :: i, ifail, info, lda, ldb, m, n
Character (1) :: side, trans, transr, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ar(:), b(:,:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F06WPF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m, n, uplo, transr, side, alpha, trans

lda = m
ldb = m
Allocate (a(lda,m),ar((m*(m+1))/2),work(m),b(ldb,n))

! Read upper or lower triangle of matrix A from data file

If (uplo==’L’ .Or. uplo==’l’) Then
Do i = 1, m

Read (nin,*) a(i,1:i)
End Do

Else
Do i = 1, m

Read (nin,*) a(i,i:m)
End Do

End If

! Read matrix B from data file

Read (nin,*)(b(i,1:n),i=1,m)

! Convert A to rectangular full packed storage in ar

! The NAG name equivalent of ztrttf is f01vff
Call ztrttf(transr,uplo,m,a,lda,ar,info)

Write (nout,*)
Flush (nout)

! Perform the matrix-matrix operation

! The NAG name equivalent of ztfsm is f06wpf
Call ztfsm(transr,side,uplo,trans,’N’,m,n,alpha,ar,b,ldb)

! Print the result

ifail = 0
Call x04daf(’General’,’ ’,m,n,b,ldb,’The Solution’,ifail)

End Program f06wpfe
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10.2 Program Data

F06WPF Example Program Data
4 3 ’U’ ’N’ ’L’ (4.21,1.28) ’N’ : M, N, UPLO,TRANSR,SIDE, ALPHA, TRANS
(1.1,1.1) (1.2,1.2) (1.3,1.3) (1.4,1.4)
(2.2,2.2) (2.3,2.3) (2.4,2.4)
(3.3,3.3) (3.4,3.4)
(4.4,4.4) : Unpacked Matrix A
( 1.80,0.59) ( 2.88, 1.23) (2.05, 0.78)
( 5.25,0.12) ( 1.76,-2.95) (2.20,-0.95)
( 1.58,2.01) (-2.69, 3.18) (0.11,-2.90)
(-1.11,1.11) (-0.66, 1.66) (1.59,-0.59) : End of matrix B

10.3 Program Results

F06WPF Example Program Results

The Solution
1 2 3

1 -2.0339 8.6009 3.8676
2.6429 4.3188 2.2452

2 4.3280 1.0930 3.3517
-4.3756 -8.8840 -0.0650

3 2.5393 -0.9711 -2.0155
-0.1237 2.5460 -1.5364

4 -0.3229 0.1410 0.7955
1.0621 1.2554 -0.8975
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NAG Library Routine Document

F06WQF (ZHFRK)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06WQF (ZHFRK) performs one of the Hermitian rank-k update operations

C  �AAH þ �C or C  �AHAþ �C;

where A is a complex matrix, C is an n by n complex Hermitian matrix stored in Rectangular Full
Packed (RFP) format, and � and � are real scalars.

2 Specification

SUBROUTINE F06WQF (TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, CR)

INTEGER N, K, LDA
REAL (KIND=nag_wp) ALPHA, BETA
COMPLEX (KIND=nag_wp) A(LDA,*), CR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO, TRANS

The routine may be called by its LAPACK name zhfrk.

3 Description

F06WQF (ZHFRK) performs one of the Hermitian rank-k update operations

C  �AAH þ �C or C  �AHAþ �C;

where A is a complex matrix, C is an n by n complex Hermitian matrix stored in Rectangular Full
Packed (RFP) format, and � and � are real scalars. The RFP storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.

If n ¼ 0 or if � ¼ 1:0 and either k ¼ 0 or � ¼ 0:0 then F06WQF (ZHFRK) returns immediately. If
�¼0:0 and either k¼0 or � ¼ 0:0 then C is set to the zero matrix.

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of C or its conjugate transpose is
stored.

TRANSR ¼ N
The matrix C is stored in normal RFP format.

TRANSR ¼ C
The conjugate transpose of the RFP representation of the matrix C is stored.

Constraint: TRANSR ¼ N or C .
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2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of C is stored in RFP format.

UPLO ¼ U
The upper triangular part of C is stored in RFP format.

UPLO ¼ L
The lower triangular part of C is stored in RFP format.

Constraint: UPLO ¼ U or L .

3: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
C  �AAH þ �C.

TRANS ¼ C
C  �AHAþ �C.

Constraint: TRANS ¼ N or C .

4: N – INTEGER Input

On entry: n, the order of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of columns of A if TRANS ¼ N , or the number of rows of A if
TRANS ¼ C .

Constraint: K � 0.

6: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ if TRANS ¼ N and at
least max 1;Nð Þ if TRANS ¼ C .

On entry: the matrix A; A is n by k if TRANS ¼ N , or k by n if TRANS ¼ C . If
ALPHA ¼ 0:0, A is not referenced.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F06WQF (ZHFRK) is called.

Constraints:

if TRANS ¼ N , LDA � max 1;Nð Þ;
if TRANS ¼ C , LDA � max 1;Kð Þ.

9: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

10: CRðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the upper or lower triangular part (as specified by UPLO) of the n by n Hermitian
matrix C, stored in RFP format (as specified by TRANSR). The storage format is described in
detail in Section 3.3.3 in the F07 Chapter Introduction.
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On exit: the updated matrix C, that is its upper or lower triangular part stored in RFP format.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06WQF (ZHFRK) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example reads in the lower triangular part of a symmetric matrix C which it converts to RFP
format. It also reads in �, � and a 4 by 3 matrix A and then performs the Hermitian rank-3 update
C  �AAH þ �C.

10.1 Program Text

Program f06wqfe

! F06WQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf, zhfrk, ztfttr, ztrttf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, beta
Integer :: i, ifail, info, k, lda, n
Character (1) :: trans, transr, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), cr(:)

! .. Executable Statements ..
Write (nout,*) ’F06WQF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, k, uplo, transr, alpha, beta, trans

lda = n
Allocate (c(lda,n),cr((n*(n+1))/2),a(lda,k))

! Read upper or lower triangle of matrix C from data file
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If (uplo==’L’ .Or. uplo==’l’) Then
Do i = 1, n

Read (nin,*) c(i,1:i)
End Do

Else
Do i = 1, n

Read (nin,*) c(i,i:n)
End Do

End If

! Read matrix A from data file

Read (nin,*)(a(i,1:k),i=1,n)

! Convert C to rectangular full packed storage in cr

! The NAG name equivalent of ztrttf is f01vff
Call ztrttf(transr,uplo,n,c,lda,cr,info)

Write (nout,*)
Flush (nout)

! Perform the rank-k update

! The NAG name equivalent of zhfrk is f06wqf
Call zhfrk(transr,uplo,trans,n,k,alpha,a,lda,beta,cr)

! Convert cr back from rectangular full packed to standard format in C

! The NAG name equivalent of ztfttr is f01vhf
Call ztfttr(transr,uplo,n,cr,c,lda,info)

! Print out the result, stored in the lower triangle of matrix C

ifail = 0
Call x04daf(’Lower’,’N’,n,n,c,lda,’The Solution’,ifail)

End Program f06wqfe

10.2 Program Data

F06WQF Example Program Data
4 3 ’L’ ’N’ 2.21 2.89 ’N’ : N,K, UPLO,TRANSR, ALPHA,BETA, TRANS
(1.0,3.0)
(2.0,2.0) (3.0,3.0)
(4.0,4.0) (4.0,4.0) (5.0,5.0)
(5.0,5.0) (5.0,6.0) (6.0,6.0) (6.0,6.0) : Unpacked matrix C
( 3.21, 1.32) ( 2.31, 0.25) ( 1.65, 1.87)
( 0.32,-1.55) ( 1.80, 1.88) ( 2.05,-0.89)
( 5.25,-2.95) (-1.95,-3.80) ( 1.58,-2.69)
(-2.90,-3.04) (-1.11,-0.66) (-0.59, 0.80) : End of matrix A

10.3 Program Results

F06WQF Example Program Results

The Solution
1 2 3 4

1 55.1885
0.0000

2 17.5536 40.2153
-9.2637 0.0000
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3 22.7883 14.2818 156.4204
-59.3437 11.3638 -0.0000

4 -19.8678 11.4084 7.0222 62.2194
3.9432 9.7064 -44.0297 -0.0000
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NAG Library Routine Document

F06YAF (DGEMM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06YAF (DGEMM) performs one of the matrix-matrix operations

C  �ABþ �C; C  �ATBþ �C;
C  �ABT þ �C or C  �ATBT þ �C;

where A, B and C are real matrices, and � and � are real scalars; C is always m by n.

2 Specification

SUBROUTINE F06YAF (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA,
C, LDC)

&

INTEGER M, N, K, LDA, LDB, LDC
REAL (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*), BETA, C(LDC,*)
CHARACTER(1) TRANSA, TRANSB

The routine may be called by its BLAS name dgemm.

3 Description

None.

4 References

None.

5 Arguments

1: TRANSA – CHARACTER(1) Input

On entry: specifies whether the operation involves A or AT.

TRANSA ¼ N
The operation involves A.

TRANSA ¼ T or C
The operation involves AT.

Constraint: TRANSA ¼ N , T or C .

2: TRANSB – CHARACTER(1) Input

On entry: specifies whether the operation involves B or BT.

TRANSB ¼ N
The operation involves B.

TRANSB ¼ T or C
The operation involves BT.

Constraint: TRANSB ¼ N , T or C .
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3: M – INTEGER Input

On entry: m, the number of rows of the matrix C; the number of rows of A if TRANSA ¼ N , or
the number of columns of A if TRANSA ¼ T or C .

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C; the number of columns of B if
TRANSB ¼ N , or the number of rows of B if TRANSB ¼ T or C .

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of columns of A if TRANSA ¼ N , or the number of rows of A if
TRANSA ¼ T or C ; the number of rows of B if TRANSB ¼ N , or the number of columns of
B if TRANSB ¼ T or C .

Constraint: K � 0.

6: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ if TRANSA ¼ N and at
least max 1;Mð Þ if TRANSA ¼ T or C .

On entry: the matrix A; A is m by k if TRANSA ¼ N , or k by m if TRANSA ¼ T or C .

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06YAF
(DGEMM) is called.

Constraints:

if TRANSA ¼ N , LDA � max 1;Mð Þ;
if TRANSA ¼ T or C , LDA � max 1;Kð Þ.

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ if TRANSB ¼ N and at
least max 1;Kð Þ if TRANSB ¼ T or C .

On entry: the matrix B; B is k by n if TRANSB ¼ N , or n by k if TRANSB ¼ T or C .

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06YAF
(DGEMM) is called.

Constraints:

if TRANSB ¼ N , LDB � max 1;Kð Þ;
if TRANSB ¼ T or C , LDB � max 1;Nð Þ.

11: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.
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12: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

If BETA ¼ 0, C need not be set.

On exit: the updated matrix C.

13: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06YAF
(DGEMM) is called.

Constraint: LDC � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06YAF (DGEMM) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06YCF (DSYMM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06YCF (DSYMM) performs one of the matrix-matrix operations

C  �ABþ �C or C  �BAþ �C;

where A is a real symmetric matrix, B and C are m by n real matrices, and � and � are real scalars.

2 Specification

SUBROUTINE F06YCF (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
LDC)

&

INTEGER M, N, LDA, LDB, LDC
REAL (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*), BETA, C(LDC,*)
CHARACTER(1) SIDE, UPLO

The routine may be called by its BLAS name dsymm.

3 Description

None.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether B is operated on from the left or the right.

SIDE ¼ L
B is pre-multiplied from the left.

SIDE ¼ R
B is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: M – INTEGER Input

On entry: m, the number of rows of the matrices B and C; the order of A if SIDE ¼ L .

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrices B and C; the order of A if SIDE ¼ R .

Constraint: N � 0.

5: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: the symmetric matrix A; A is m by m if SIDE ¼ L , or n by n if SIDE ¼ R .

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06YCF
(DSYMM) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the m by n matrix B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06YCF
(DSYMM) is called.

Constraint: LDB � max 1;Mð Þ.

10: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

11: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

If BETA ¼ 0, C need not be set.

On exit: the updated matrix C.
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12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06YCF
(DSYMM) is called.

Constraint: LDC � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06YCF (DSYMM) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06YFF (DTRMM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06YFF (DTRMM) performs one of the matrix-matrix operations

B �AB; B �ATB;
B �BA or B �BAT;

where B is an m by n real matrix, A is a real triangular matrix, and � is a real scalar.

2 Specification

SUBROUTINE F06YFF (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
LDB)

&

INTEGER M, N, LDA, LDB
REAL (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*)
CHARACTER(1) SIDE, UPLO, TRANSA, DIAG

The routine may be called by its BLAS name dtrmm.

3 Description

None.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether B is operated on from the left or the right.

SIDE ¼ L
B is pre-multiplied from the left.

SIDE ¼ R
B is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: TRANSA – CHARACTER(1) Input

On entry: specifies whether the operation involves A or AT.

TRANSA ¼ N
The operation involves A.

TRANSA ¼ T or C
The operation involves AT.

Constraint: TRANSA ¼ N , T or C .

4: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

5: M – INTEGER Input

On entry: m, the number of rows of the matrix B; the order of A if SIDE ¼ L .

Constraint: M � 0.

6: N – INTEGER Input

On entry: n, the number of columns of the matrix B; the order of A if SIDE ¼ R .

Constraint: N � 0.

7: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

8: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: the triangular matrix A; A is m by m if SIDE ¼ L , or n by n if SIDE ¼ R .

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

9: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06YFF
(DTRMM) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.
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10: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the m by n matrix B.

If ALPHA ¼ 0, B need not be set.

On exit: the updated matrix B.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06YFF
(DTRMM) is called.

Constraint: LDB � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06YFF (DTRMM) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06YJF (DTRSM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06YJF (DTRSM) performs one of the matrix-matrix operations

B �A�1B; B �A�TB;
B �BA�1 or B �BA�T;

where A is a real triangular matrix, B is an m by n real matrix, and � is a real scalar. A�T denotes

ATð Þ�1 or equivalently A�1ð ÞT.
No test for singularity or near-singularity of A is included in this routine. Such tests must be performed
before calling this routine.

2 Specification

SUBROUTINE F06YJF (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
LDB)

&

INTEGER M, N, LDA, LDB
REAL (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*)
CHARACTER(1) SIDE, UPLO, TRANSA, DIAG

The routine may be called by its BLAS name dtrsm.

3 Description

None.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether B is operated on from the left or the right.

SIDE ¼ L
B is pre-multiplied from the left.

SIDE ¼ R
B is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.
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UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

3: TRANSA – CHARACTER(1) Input

On entry: specifies whether the operation involves A�1 or A�T.

TRANSA ¼ N
The operation involves A�1.

TRANSA ¼ T or C
The operation involves A�T.

Constraint: TRANSA ¼ N , T or C .

4: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

5: M – INTEGER Input

On entry: m, the number of rows of the matrix B; the order of A if SIDE ¼ L .

Constraint: M � 0.

6: N – INTEGER Input

On entry: n, the number of columns of the matrix B; the order of A if SIDE ¼ R .

Constraint: N � 0.

7: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

8: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: the triangular matrix A; A is m by m if SIDE ¼ L , or n by n if SIDE ¼ R .

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

9: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06YJF
(DTRSM) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.
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10: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the m by n matrix B.

If ALPHA ¼ 0, B need not be set.

On exit: the updated matrix B.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06YJF
(DTRSM) is called.

Constraint: LDB � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06YJF (DTRSM) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06YPF (DSYRK)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06YPF (DSYRK) performs one of the symmetric rank-k update operations

C  �AAT þ �C or C  �ATAþ �C;

where A is a real matrix, C is an n by n real symmetric matrix, and � and � are real scalars.

2 Specification

SUBROUTINE F06YPF (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)

INTEGER N, K, LDA, LDC
REAL (KIND=nag_wp) ALPHA, A(LDA,*), BETA, C(LDC,*)
CHARACTER(1) UPLO, TRANS

The routine may be called by its BLAS name dsyrk.

3 Description

None.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of C is stored.

UPLO ¼ U
The upper triangular part of C is stored.

UPLO ¼ L
The lower triangular part of C is stored.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
C  �AAT þ �C.

TRANS ¼ T or C
C  �ATAþ �C.

Constraint: TRANS ¼ N , T or C .
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3: N – INTEGER Input

On entry: n, the order of the matrix C; the number of rows of A if TRANS ¼ N , or the number
of columns of A if TRANS ¼ T or C .

Constraint: N � 0.

4: K – INTEGER Input

On entry: k, the number of columns of A if TRANS ¼ N , or the number of rows of A if
TRANS ¼ T or C .

Constraint: K � 0.

5: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ if TRANS ¼ N and at
least max 1;Nð Þ if TRANS ¼ T or C .

On entry: the matrix A; A is n by k if TRANS ¼ N , or k by n if TRANS ¼ T or C .

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06YPF
(DSYRK) is called.

Constraints:

if TRANS ¼ N , LDA � max 1;Nð Þ;
if TRANS ¼ T or C , LDA � max 1;Kð Þ.

8: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

9: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix C.

If UPLO ¼ U , the upper triangular part of C must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of C must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the updated matrix C.

10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06YPF
(DSYRK) is called.

Constraint: LDC � max 1;Nð Þ.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06YPF (DSYRK) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06YRF (DSYR2K)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06YRF (DSYR2K) performs one of the symmetric rank-2k update operations

C  �ABT þ �BAT þ �C or C  �ATBþ �BTAþ �C;

where A and B are real matrices, C is an n by n real symmetric matrix, and � and � are real scalars.

2 Specification

SUBROUTINE F06YRF (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C,
LDC)

&

INTEGER N, K, LDA, LDB, LDC
REAL (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*), BETA, C(LDC,*)
CHARACTER(1) UPLO, TRANS

The routine may be called by its BLAS name dsyr2k.

3 Description

None.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of C is stored.

UPLO ¼ U
The upper triangular part of C is stored.

UPLO ¼ L
The lower triangular part of C is stored.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
C  �ABT þ �BAT þ �C.

TRANS ¼ T or C
C  �ATBþ �BTAþ �C.

Constraint: TRANS ¼ N , T or C .

F06 – Linear Algebra Support Routines F06YRF

Mark 26 F06YRF.1



3: N – INTEGER Input

On entry: n, the order of the matrix C; the number of rows of A and B if TRANS ¼ N , or the
number of columns of A and B if TRANS ¼ T or C .

Constraint: N � 0.

4: K – INTEGER Input

On entry: k, the number of columns of A and B if TRANS ¼ N , or the number of rows of A
and B if TRANS ¼ T or C .

Constraint: K � 0.

5: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ if TRANS ¼ N and at
least max 1;Nð Þ if TRANS ¼ T or C .

On entry: the matrix A; A is n by k if TRANS ¼ N , or k by n if TRANS ¼ T or C .

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06YRF
(DSYR2K) is called.

Constraints:

if TRANS ¼ N , LDA � max 1;Nð Þ;
if TRANS ¼ T or C , LDA � max 1;Kð Þ.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Kð Þ if TRANS ¼ N and at
least max 1;Nð Þ if TRANS ¼ T or C .

On entry: the matrix B; B is n by k if TRANS ¼ N , or k by n if TRANS ¼ T or C .

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06YRF
(DSYR2K) is called.

Constraints:

if TRANS ¼ N , LDB � max 1;Nð Þ;
if TRANS ¼ T or C , LDB � max 1;Kð Þ.

10: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

11: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix C.

If UPLO ¼ U , the upper triangular part of C must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of C must be stored and the elements of the array
above the diagonal are not referenced.
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On exit: the updated matrix C.

12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06YRF
(DSYR2K) is called.

Constraint: LDC � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06YRF (DSYR2K) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F06YRF (DSYR2K) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06ZAF (ZGEMM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ZAF (ZGEMM) performs one of the matrix-matrix operations

C  �ABþ �C; C  �ATBþ �C; C  �AHBþ �C;
C  �ABT þ �C; C  �ATBT þ �C; C  �AHBT þ �C;
C  �ABH þ �C; C  �ATBH þ �C or C  �AHBH þ �C;

where A, B and C are complex matrices, and � and � are complex scalars; C is always m by n.

2 Specification

SUBROUTINE F06ZAF (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA,
C, LDC)

&

INTEGER M, N, K, LDA, LDB, LDC
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*), BETA, C(LDC,*)
CHARACTER(1) TRANSA, TRANSB

The routine may be called by its BLAS name zgemm.

3 Description

None.

4 References

None.

5 Arguments

1: TRANSA – CHARACTER(1) Input

On entry: specifies whether the operation involves A, AT or AH.

TRANSA ¼ N
The operation involves A.

TRANSA ¼ T
The operation involves AT.

TRANSA ¼ C
The operation involves AH.

Constraint: TRANSA ¼ N , T or C .

2: TRANSB – CHARACTER(1) Input

On entry: specifies whether the operation involves B, BT or BH.

TRANSB ¼ N
The operation involves B.

TRANSB ¼ T
The operation involves BT.
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TRANSB ¼ C
The operation involves BH.

Constraint: TRANSB ¼ N , T or C .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C; the number of rows of A if TRANSA ¼ N , or
the number of columns of A if TRANSA ¼ T or C .

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C; the number of columns of B if
TRANSB ¼ N , or the number of rows of B if TRANSB ¼ T or C .

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of columns of A if TRANSA ¼ N , or the number of rows of A if
TRANSA ¼ T or C ; the number of rows of B if TRANSB ¼ N , or the number of columns of
B if TRANSB ¼ T or C .

Constraint: K � 0.

6: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ if TRANSA ¼ N and at
least max 1;Mð Þ if TRANSA ¼ T or C .

On entry: the matrix A; A is m by k if TRANSA ¼ N , or k by m if TRANSA ¼ T or C .

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06ZAF
(ZGEMM) is called.

Constraints:

if TRANSA ¼ N , LDA � max 1;Mð Þ;
if TRANSA ¼ T or C , LDA � max 1;Kð Þ.

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ if TRANSB ¼ N and at
least max 1;Kð Þ if TRANSB ¼ T or C .

On entry: the matrix B; B is k by n if TRANSB ¼ N , or n by k if TRANSB ¼ T or C .

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06ZAF
(ZGEMM) is called.

Constraints:

if TRANSB ¼ N , LDB � max 1;Kð Þ;
if TRANSB ¼ T or C , LDB � max 1;Nð Þ.
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11: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

12: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

If BETA ¼ 0, C need not be set.

On exit: the updated matrix C.

13: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06ZAF
(ZGEMM) is called.

Constraint: LDC � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ZAF (ZGEMM) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06ZCF (ZHEMM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ZCF (ZHEMM) performs one of the matrix-matrix operations

C  �ABþ �C or C  �BAþ �C;

where A is a complex Hermitian matrix, B and C are m by n complex matrices, and � and � are
complex scalars.

2 Specification

SUBROUTINE F06ZCF (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
LDC)

&

INTEGER M, N, LDA, LDB, LDC
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*), BETA, C(LDC,*)
CHARACTER(1) SIDE, UPLO

The routine may be called by its BLAS name zhemm.

3 Description

None.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether B is operated on from the left or the right.

SIDE ¼ L
B is pre-multiplied from the left.

SIDE ¼ R
B is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: M – INTEGER Input

On entry: m, the number of rows of the matrices B and C; the order of A if SIDE ¼ L .

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrices B and C; the order of A if SIDE ¼ R .

Constraint: N � 0.

5: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: the Hermitian matrix A; A is m by m if SIDE ¼ L , or n by n if SIDE ¼ R .

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06ZCF
(ZHEMM) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the m by n matrix B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06ZCF
(ZHEMM) is called.

Constraint: LDB � max 1;Mð Þ.

10: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

11: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

If BETA ¼ 0, C need not be set.

On exit: the updated matrix C.
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12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06ZCF
(ZHEMM) is called.

Constraint: LDC � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ZCF (ZHEMM) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06ZFF (ZTRMM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ZFF (ZTRMM) performs one of the matrix-matrix operations

B �AB; B �ATB; B �AHB;
B �BA; B �BAT or B �BAH;

where B is an m by n complex matrix, A is a complex triangular matrix, and � is a complex scalar.

2 Specification

SUBROUTINE F06ZFF (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
LDB)

&

INTEGER M, N, LDA, LDB
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*)
CHARACTER(1) SIDE, UPLO, TRANSA, DIAG

The routine may be called by its BLAS name ztrmm.

3 Description

None.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether B is operated on from the left or the right.

SIDE ¼ L
B is pre-multiplied from the left.

SIDE ¼ R
B is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: TRANSA – CHARACTER(1) Input

On entry: specifies whether the operation involves A, AT or AH.

TRANSA ¼ N
The operation involves A.

TRANSA ¼ T
The operation involves AT.

TRANSA ¼ C
The operation involves AH.

Constraint: TRANSA ¼ N , T or C .

4: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

5: M – INTEGER Input

On entry: m, the number of rows of the matrix B; the order of A if SIDE ¼ L .

Constraint: M � 0.

6: N – INTEGER Input

On entry: n, the number of columns of the matrix B; the order of A if SIDE ¼ R .

Constraint: N � 0.

7: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

8: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: the triangular matrix A; A is m by m if SIDE ¼ L , or n by n if SIDE ¼ R .

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

9: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06ZFF
(ZTRMM) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.
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10: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the m by n matrix B.

If ALPHA ¼ 0, B need not be set.

On exit: the updated matrix B.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06ZFF
(ZTRMM) is called.

Constraint: LDB � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ZFF (ZTRMM) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.

F06 – Linear Algebra Support Routines F06ZFF

Mark 26 F06ZFF.3 (last)





NAG Library Routine Document

F06ZJF (ZTRSM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ZJF (ZTRSM) performs one of the matrix-matrix operations

B �A�1B; B �A�TB; B �A�HB;
B �BA�1; B �BA�T or B �BA�H;

where A is a complex triangular matrix, B is an m by n complex matrix, and � is a complex scalar.

A�T denotes ATð Þ�1 or equivalently A�1ð ÞT; A�H denotes AHð Þ�1 or equivalently A�1ð ÞH.
No test for singularity or near-singularity of A is included in this routine. Such tests must be performed
before calling this routine.

2 Specification

SUBROUTINE F06ZJF (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
LDB)

&

INTEGER M, N, LDA, LDB
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*)
CHARACTER(1) SIDE, UPLO, TRANSA, DIAG

The routine may be called by its BLAS name ztrsm.

3 Description

None.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether B is operated on from the left or the right.

SIDE ¼ L
B is pre-multiplied from the left.

SIDE ¼ R
B is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.
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UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

3: TRANSA – CHARACTER(1) Input

On entry: specifies whether the operation involves A�1, A�T or A�H.

TRANSA ¼ N
The operation involves A�1.

TRANSA ¼ T
The operation involves A�T.

TRANSA ¼ C
The operation involves A�H.

Constraint: TRANSA ¼ N , T or C .

4: DIAG – CHARACTER(1) Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG ¼ N
The diagonal elements are stored explicitly.

DIAG ¼ U
The diagonal elements are assumed to be 1, and are not referenced.

Constraint: DIAG ¼ N or U .

5: M – INTEGER Input

On entry: m, the number of rows of the matrix B; the order of A if SIDE ¼ L .

Constraint: M � 0.

6: N – INTEGER Input

On entry: n, the number of columns of the matrix B; the order of A if SIDE ¼ R .

Constraint: N � 0.

7: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

8: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: the triangular matrix A; A is m by m if SIDE ¼ L , or n by n if SIDE ¼ R .

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

9: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06ZJF
(ZTRSM) is called.
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Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

10: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the m by n matrix B.

If ALPHA ¼ 0, B need not be set.

On exit: the updated matrix B.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06ZJF
(ZTRSM) is called.

Constraint: LDB � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ZJF (ZTRSM) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06ZPF (ZHERK)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ZPF (ZHERK) performs one of the Hermitian rank-k update operations

C  �AAH þ �C or C  �AHAþ �C

where A is a complex matrix, C is an n by n complex Hermitian matrix, and � and � are real scalars.

2 Specification

SUBROUTINE F06ZPF (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)

INTEGER N, K, LDA, LDC
REAL (KIND=nag_wp) ALPHA, BETA
COMPLEX (KIND=nag_wp) A(LDA,*), C(LDC,*)
CHARACTER(1) UPLO, TRANS

The routine may be called by its BLAS name zherk.

3 Description

None.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of C is stored.

UPLO ¼ U
The upper triangular part of C is stored.

UPLO ¼ L
The lower triangular part of C is stored.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
C  �AAH þ �C.

TRANS ¼ C
C  �AHAþ �C.

Constraint: TRANS ¼ N or C .
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3: N – INTEGER Input

On entry: n, the order of the matrix C; the number of rows of A if TRANS ¼ N , or the number
of columns of A if TRANS ¼ C .

Constraint: N � 0.

4: K – INTEGER Input

On entry: k, the number of columns of A if TRANS ¼ N , or the number of rows of A if
TRANS ¼ C .

Constraint: K � 0.

5: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ if TRANS ¼ N and at
least max 1;Nð Þ if TRANS ¼ C .

On entry: the matrix A; A is n by k if TRANS ¼ N , or k by n if TRANS ¼ C .

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06ZPF
(ZHERK) is called.

Constraints:

if TRANS ¼ N , LDA � max 1;Nð Þ;
if TRANS ¼ C , LDA � max 1;Kð Þ.

8: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

9: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix C.

If UPLO ¼ U , the upper triangular part of C must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of C must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the updated matrix C. The imaginary parts of the diagonal elements are set to zero.

10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06ZPF
(ZHERK) is called.

Constraint: LDC � max 1;Nð Þ.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ZPF (ZHERK) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06ZRF (ZHER2K)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ZRF (ZHER2K) performs one of the Hermitian rank-2k update operations

C  �ABH þ ��BAH þ �C or C  �AHBþ ��BHAþ �C;

where A and B are complex matrices, C is an n by n complex Hermitian matrix, � is a complex scalar,
and � is a real scalar.

2 Specification

SUBROUTINE F06ZRF (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C,
LDC)

&

INTEGER N, K, LDA, LDB, LDC
REAL (KIND=nag_wp) BETA
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*), C(LDC,*)
CHARACTER(1) UPLO, TRANS

The routine may be called by its BLAS name zher2k.

3 Description

None.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of C is stored.

UPLO ¼ U
The upper triangular part of C is stored.

UPLO ¼ L
The lower triangular part of C is stored.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
C  �ABH þ ��BAH þ �C.

TRANS ¼ C
C  �AHBþ ��BHAþ �C.

Constraint: TRANS ¼ N or C .
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3: N – INTEGER Input

On entry: n, the order of the matrix C; the number of rows of A if TRANS ¼ N , or the number
of columns of A if TRANS ¼ C .

Constraint: N � 0.

4: K – INTEGER Input

On entry: k, the number of columns of A if TRANS ¼ N , or the number of rows of A if
TRANS ¼ C .

Constraint: K � 0.

5: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ if TRANS ¼ N and at
least max 1;Nð Þ if TRANS ¼ C .

On entry: the matrix A; A is n by k if TRANS ¼ N , or k by n if TRANS ¼ C .

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06ZRF
(ZHER2K) is called.

Constraints:

if TRANS ¼ N , LDA � max 1;Nð Þ;
if TRANS ¼ C , LDA � max 1;Kð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Kð Þ if TRANS ¼ N and at
least max 1;Nð Þ if TRANS ¼ C .

On entry: the matrix B; B is n by k if TRANS ¼ N , or k by n if TRANS ¼ C .

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06ZRF
(ZHER2K) is called.

Constraints:

if TRANS ¼ N , LDB � max 1;Nð Þ;
if TRANS ¼ C , LDB � max 1;Kð Þ.

10: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

11: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix C.

If UPLO ¼ U , the upper triangular part of C must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of C must be stored and the elements of the array
above the diagonal are not referenced.
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On exit: the updated matrix C. The imaginary parts of the diagonal elements are set to zero.

12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06ZRF
(ZHER2K) is called.

Constraint: LDC � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ZRF (ZHER2K) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F06ZRF (ZHER2K) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06ZTF (ZSYMM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ZTF (ZSYMM) performs one of the matrix-matrix operations

C  �ABþ �C or C  �BAþ �C;

where A is a complex symmetric matrix, B and C are m by n complex matrices, and � and � are
complex scalars.

2 Specification

SUBROUTINE F06ZTF (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C,
LDC)

&

INTEGER M, N, LDA, LDB, LDC
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*), BETA, C(LDC,*)
CHARACTER(1) SIDE, UPLO

The routine may be called by its BLAS name zsymm.

3 Description

None.

4 References

None.

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies whether B is operated on from the left or the right.

SIDE ¼ L
B is pre-multiplied from the left.

SIDE ¼ R
B is post-multiplied from the right.

Constraint: SIDE ¼ L or R .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: M – INTEGER Input

On entry: m, the number of rows of the matrices B and C; the order of A if SIDE ¼ L .

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrices B and C; the order of A if SIDE ¼ R .

Constraint: N � 0.

5: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: the symmetric matrix A; A is m by m if SIDE ¼ L , or n by n if SIDE ¼ R .

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06ZTF
(ZSYMM) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the m by n matrix B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06ZTF
(ZSYMM) is called.

Constraint: LDB � max 1;Mð Þ.

10: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

11: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

If BETA ¼ 0, C need not be set.

On exit: the updated matrix C.
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12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06ZTF
(ZSYMM) is called.

Constraint: LDC � max 1;Mð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ZTF (ZSYMM) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06ZUF (ZSYRK)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ZUF (ZSYRK) performs one of the symmetric rank-k update operations

C  �AAT þ �C or C  �ATAþ �C;

where A is a complex matrix, C is an n by n complex symmetric matrix, and � and � are complex
scalars.

2 Specification

SUBROUTINE F06ZUF (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)

INTEGER N, K, LDA, LDC
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), BETA, C(LDC,*)
CHARACTER(1) UPLO, TRANS

The routine may be called by its BLAS name zsyrk.

3 Description

None.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of C is stored.

UPLO ¼ U
The upper triangular part of C is stored.

UPLO ¼ L
The lower triangular part of C is stored.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
C  �AAT þ �C.

TRANS ¼ T
C  �ATAþ �C.

Constraint: TRANS ¼ N or T .
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3: N – INTEGER Input

On entry: n, the order of the matrix C; the number of rows of A and B if TRANS ¼ N , or the
number of columns of A and B if TRANS ¼ T .

Constraint: N � 0.

4: K – INTEGER Input

On entry: k, the number of columns of A and B if TRANS ¼ N , or the number of rows of A
and B if TRANS ¼ T .

Constraint: K � 0.

5: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ if TRANS ¼ N and at
least max 1;Nð Þ if TRANS ¼ T .

On entry: the matrix A; A is n by k if TRANS ¼ N , or k by n if TRANS ¼ T .

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06ZUF
(ZSYRK) is called.

Constraints:

if TRANS ¼ N , LDA � max 1;Nð Þ;
if TRANS ¼ T , LDA � max 1;Kð Þ.

8: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

9: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix C.

If UPLO ¼ U , the upper triangular part of C must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of C must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the updated matrix C.

10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06ZUF
(ZSYRK) is called.

Constraint: LDC � max 1;Nð Þ.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ZUF (ZSYRK) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

F06ZWF (ZSYR2K)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F06ZWF (ZSYR2K) performs one of the symmetric rank-2k update operations

C  �ABT þ �BAT þ �C or C  �ATBþ �BTAþ �C;

where A and B are complex matrices, C is an n by n complex symmetric matrix, and � and � are
complex scalars.

2 Specification

SUBROUTINE F06ZWF (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C,
LDC)

&

INTEGER N, K, LDA, LDB, LDC
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*), BETA, C(LDC,*)
CHARACTER(1) UPLO, TRANS

The routine may be called by its BLAS name zsyr2k.

3 Description

None.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of C is stored.

UPLO ¼ U
The upper triangular part of C is stored.

UPLO ¼ L
The lower triangular part of C is stored.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: specifies the operation to be performed.

TRANS ¼ N
C  �ABT þ �BAT þ �C.

TRANS ¼ T
C  �ATBþ �BTAþ �C.

Constraint: TRANS ¼ N or T .
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3: N – INTEGER Input

On entry: n, the order of the matrix C; the number of rows of A and B if TRANS ¼ N , or the
number of columns of A and B if TRANS ¼ T .

Constraint: N � 0.

4: K – INTEGER Input

On entry: k, the number of columns of A and B if TRANS ¼ N , or the number of rows of A
and B if TRANS ¼ T .

Constraint: K � 0.

5: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ if TRANS ¼ N and at
least max 1;Nð Þ if TRANS ¼ T .

On entry: the matrix A; A is n by k if TRANS ¼ N , or k by n if TRANS ¼ T .

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06ZWF
(ZSYR2K) is called.

Constraints:

if TRANS ¼ N , LDA � max 1;Nð Þ;
if TRANS ¼ T , LDA � max 1;Kð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Kð Þ if TRANS ¼ N and at
least max 1;Nð Þ if TRANS ¼ T .

On entry: the matrix B; B is n by k if TRANS ¼ N , or k by n if TRANS ¼ T .

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06ZWF
(ZSYR2K) is called.

Constraints:

if TRANS ¼ N , LDB � max 1;Nð Þ;
if TRANS ¼ T , LDB � max 1;Kð Þ.

10: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

11: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix C.

If UPLO ¼ U , the upper triangular part of C must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of C must be stored and the elements of the array
above the diagonal are not referenced.
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On exit: the updated matrix C.

12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06ZWF
(ZSYR2K) is called.

Constraint: LDC � max 1;Nð Þ.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F06ZWF (ZSYR2K) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F06ZWF (ZSYR2K) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.
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NAG Library Chapter Contents

F07 – Linear Equations (LAPACK)

F07 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

F07AAF (DGESV) 21 DGESV
nagf_lapack_dgesv
Computes the solution to a real system of linear equations

F07ABF (DGESVX) 21 DGESVX
nagf_lapack_dgesvx
Uses the LU factorization to compute the solution, error-bound
and condition estimate for a real system of linear equations

F07ACF (DSGESV) 22 DSGESV
nagf_lapack_dsgesv
Computes the solution to a real system of linear equations
using mixed precision arithmetic

F07ADF (DGETRF) 15 DGETRF
nagf_lapack_dgetrf
LU factorization of real m by n matrix

F07AEF (DGETRS) 15 DGETRS
nagf_lapack_dgetrs
Solution of real system of linear equations, multiple right-hand
sides, matrix already factorized by F07ADF (DGETRF)

F07AFF (DGEEQU) 21 DGEEQU
nagf_lapack_dgeequ
Computes row and column scalings intended to equilibrate a
general real matrix and reduce its condition number

F07AGF (DGECON) 15 DGECON
nagf_lapack_dgecon
Estimate condition number of real matrix, matrix already
factorized by F07ADF (DGETRF)

F07AHF (DGERFS) 15 DGERFS
nagf_lapack_dgerfs
Refined solution with error bounds of real system of linear
equations, multiple right-hand sides

F07AJF (DGETRI) 15 DGETRI
nagf_lapack_dgetri
Inverse of real matrix, matrix already factorized by F07ADF
(DGETRF)

F07ANF (ZGESV) 21 ZGESV
nagf_lapack_zgesv
Computes the solution to a complex system of linear equations

F07APF (ZGESVX) 21 ZGESVX
nagf_lapack_zgesvx
Uses the LU factorization to compute the solution, error-bound
and condition estimate for a complex system of linear
equations

F07AQF (ZCGESV) 22 ZCGESV
nagf_lapack_zcgesv
Computes the solution to a complex system of linear equations
using mixed precision arithmetic

F07 – Linear Equations (LAPACK) Contents – F07

Mark 26 f07conts.1



F07ARF (ZGETRF) 15 ZGETRF
nagf_lapack_zgetrf
LU factorization of complex m by n matrix

F07ASF (ZGETRS) 15 ZGETRS
nagf_lapack_zgetrs
Solution of complex system of linear equations, multiple right-
hand sides, matrix already factorized by F07ARF (ZGETRF)

F07ATF (ZGEEQU) 21 ZGEEQU
nagf_lapack_zgeequ
Computes row and column scalings intended to equilibrate a
general complex matrix and reduce its condition number

F07AUF (ZGECON) 15 ZGECON
nagf_lapack_zgecon
Estimate condition number of complex matrix, matrix already
factorized by F07ARF (ZGETRF)

F07AVF (ZGERFS) 15 ZGERFS
nagf_lapack_zgerfs
Refined solution with error bounds of complex system of linear
equations, multiple right-hand sides

F07AWF (ZGETRI) 15 ZGETRI
nagf_lapack_zgetri
Inverse of complex matrix, matrix already factorized by
F07ARF (ZGETRF)

F07BAF (DGBSV) 21 DGBSV
nagf_lapack_dgbsv
Computes the solution to a real banded system of linear
equations

F07BBF (DGBSVX) 21 DGBSVX
nagf_lapack_dgbsvx
Uses the LU factorization to compute the solution, error-bound
and condition estimate for a real banded system of linear
equations

F07BDF (DGBTRF) 15 DGBTRF
nagf_lapack_dgbtrf
LU factorization of real m by n band matrix

F07BEF (DGBTRS) 15 DGBTRS
nagf_lapack_dgbtrs
Solution of real band system of linear equations, multiple right-
hand sides, matrix already factorized by F07BDF (DGBTRF)

F07BFF (DGBEQU) 21 DGBEQU
nagf_lapack_dgbequ
Computes row and column scalings intended to equilibrate a
real banded matrix and reduce its condition number

F07BGF (DGBCON) 15 DGBCON
nagf_lapack_dgbcon
Estimate condition number of real band matrix, matrix already
factorized by F07BDF (DGBTRF)

F07BHF (DGBRFS) 15 DGBRFS
nagf_lapack_dgbrfs
Refined solution with error bounds of real band system of
linear equations, multiple right-hand sides

F07BNF (ZGBSV) 21 ZGBSV
nagf_lapack_zgbsv
Computes the solution to a complex banded system of linear
equations
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F07BPF (ZGBSVX) 21 ZGBSVX
nagf_lapack_zgbsvx
Uses the LU factorization to compute the solution, error-bound
and condition estimate for a complex banded system of linear
equations

F07BRF (ZGBTRF) 15 ZGBTRF
nagf_lapack_zgbtrf
LU factorization of complex m by n band matrix

F07BSF (ZGBTRS) 15 ZGBTRS
nagf_lapack_zgbtrs
Solution of complex band system of linear equations, multiple
right-hand sides, matrix already factorized by F07BRF
(ZGBTRF)

F07BTF (ZGBEQU) 21 ZGBEQU
nagf_lapack_zgbequ
Computes row and column scalings intended to equilibrate a
complex banded matrix and reduce its condition number

F07BUF (ZGBCON) 15 ZGBCON
nagf_lapack_zgbcon
Estimate condition number of complex band matrix, matrix
already factorized by F07BRF (ZGBTRF)

F07BVF (ZGBRFS) 15 ZGBRFS
nagf_lapack_zgbrfs
Refined solution with error bounds of complex band system of
linear equations, multiple right-hand sides

F07CAF (DGTSV) 21 DGTSV
nagf_lapack_dgtsv
Computes the solution to a real tridiagonal system of linear
equations

F07CBF (DGTSVX) 21 DGTSVX
nagf_lapack_dgtsvx
Uses the LU factorization to compute the solution, error-bound
and condition estimate for a real tridiagonal system of linear
equations

F07CDF (DGTTRF) 21 DGTTRF
nagf_lapack_dgttrf
LU factorization of real tridiagonal matrix

F07CEF (DGTTRS) 21 DGTTRS
nagf_lapack_dgttrs
Solves a real tridiagonal system of linear equations using the
LU factorization computed by F07CDF (DGTTRF)

F07CGF (DGTCON) 21 DGTCON
nagf_lapack_dgtcon
Estimates the reciprocal of the condition number of a real
tridiagonal matrix using the LU factorization computed by
F07CDF (DGTTRF)

F07CHF (DGTRFS) 21 DGTRFS
nagf_lapack_dgtrfs
Refined solution with error bounds of real tridiagonal system of
linear equations, multiple right-hand sides

F07CNF (ZGTSV) 21 ZGTSV
nagf_lapack_zgtsv
Computes the solution to a complex tridiagonal system of
linear equations

F07CPF (ZGTSVX) 21 ZGTSVX
nagf_lapack_zgtsvx
Uses the LU factorization to compute the solution, error-bound
and condition estimate for a complex tridiagonal system of
linear equations
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F07CRF (ZGTTRF) 21 ZGTTRF
nagf_lapack_zgttrf
LU factorization of complex tridiagonal matrix

F07CSF (ZGTTRS) 21 ZGTTRS
nagf_lapack_zgttrs
Solves a complex tridiagonal system of linear equations using
the LU factorization computed by F07CDF (DGTTRF)

F07CUF (ZGTCON) 21 ZGTCON
nagf_lapack_zgtcon
Estimates the reciprocal of the condition number of a complex
tridiagonal matrix using the LU factorization computed by
F07CDF (DGTTRF)

F07CVF (ZGTRFS) 21 ZGTRFS
nagf_lapack_zgtrfs
Refined solution with error bounds of complex tridiagonal
system of linear equations, multiple right-hand sides

F07FAF (DPOSV) 21 DPOSV
nagf_lapack_dposv
Computes the solution to a real symmetric positive definite
system of linear equations

F07FBF (DPOSVX) 21 DPOSVX
nagf_lapack_dposvx
Uses the Cholesky factorization to compute the solution, error-
bound and condition estimate for a real symmetric positive
definite system of linear equations

F07FCF (DSPOSV) 23 DSPOSV
nagf_lapack_dsposv
Computes the solution to a real symmetric positive definite
system of linear equations using mixed precision arithmetic

F07FDF (DPOTRF) 15 DPOTRF
nagf_lapack_dpotrf
Cholesky factorization of real symmetric positive definite
matrix

F07FEF (DPOTRS) 15 DPOTRS
nagf_lapack_dpotrs
Solution of real symmetric positive definite system of linear
equations, multiple right-hand sides, matrix already factorized
by F07FDF (DPOTRF)

F07FFF (DPOEQU) 21 DPOEQU
nagf_lapack_dpoequ
Computes row and column scalings intended to equilibrate a
real symmetric positive definite matrix and reduce its condition
number

F07FGF (DPOCON) 15 DPOCON
nagf_lapack_dpocon
Estimate condition number of real symmetric positive definite
matrix, matrix already factorized by F07FDF (DPOTRF)

F07FHF (DPORFS) 15 DPORFS
nagf_lapack_dporfs
Refined solution with error bounds of real symmetric positive
definite system of linear equations, multiple right-hand sides

F07FJF (DPOTRI) 15 DPOTRI
nagf_lapack_dpotri
Inverse of real symmetric positive definite matrix, matrix
already factorized by F07FDF (DPOTRF)

F07FNF (ZPOSV) 21 ZPOSV
nagf_lapack_zposv
Computes the solution to a complex Hermitian positive definite
system of linear equations
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F07FPF (ZPOSVX) 21 ZPOSVX
nagf_lapack_zposvx
Uses the Cholesky factorization to compute the solution, error-
bound and condition estimate for a complex Hermitian positive
definite system of linear equations

F07FQF (ZCPOSV) 23 ZCPOSV
nagf_lapack_zcposv
Computes the solution to a complex Hermitian positive definite
system of linear equations using mixed precision arithmetic

F07FRF (ZPOTRF) 15 ZPOTRF
nagf_lapack_zpotrf
Cholesky factorization of complex Hermitian positive definite
matrix

F07FSF (ZPOTRS) 15 ZPOTRS
nagf_lapack_zpotrs
Solution of complex Hermitian positive definite system of
linear equations, multiple right-hand sides, matrix already
factorized by F07FRF (ZPOTRF)

F07FTF (ZPOEQU) 21 ZPOEQU
nagf_lapack_zpoequ
Computes row and column scalings intended to equilibrate a
complex Hermitian positive definite matrix and reduce its
condition number

F07FUF (ZPOCON) 15 ZPOCON
nagf_lapack_zpocon
Estimate condition number of complex Hermitian positive
definite matrix, matrix already factorized by F07FRF
(ZPOTRF)

F07FVF (ZPORFS) 15 ZPORFS
nagf_lapack_zporfs
Refined solution with error bounds of complex Hermitian
positive definite system of linear equations, multiple right-hand
sides

F07FWF (ZPOTRI) 15 ZPOTRI
nagf_lapack_zpotri
Inverse of complex Hermitian positive definite matrix, matrix
already factorized by F07FRF (ZPOTRF)

F07GAF (DPPSV) 21 DPPSV
nagf_lapack_dppsv
Computes the solution to a real symmetric positive definite
system of linear equations, packed storage

F07GBF (DPPSVX) 21 DPPSVX
nagf_lapack_dppsvx
Uses the Cholesky factorization to compute the solution, error-
bound and condition estimate for a real symmetric positive
definite system of linear equations, packed storage

F07GDF (DPPTRF) 15 DPPTRF
nagf_lapack_dpptrf
Cholesky factorization of real symmetric positive definite
matrix, packed storage

F07GEF (DPPTRS) 15 DPPTRS
nagf_lapack_dpptrs
Solution of real symmetric positive definite system of linear
equations, multiple right-hand sides, matrix already factorized
by F07GDF (DPPTRF), packed storage
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F07GFF (DPPEQU) 21 DPPEQU
nagf_lapack_dppequ
Computes row and column scalings intended to equilibrate a
real symmetric positive definite matrix and reduce its condition
number, packed storage

F07GGF (DPPCON) 15 DPPCON
nagf_lapack_dppcon
Estimate condition number of real symmetric positive definite
matrix, matrix already factorized by F07GDF (DPPTRF),
packed storage

F07GHF (DPPRFS) 15 DPPRFS
nagf_lapack_dpprfs
Refined solution with error bounds of real symmetric positive
definite system of linear equations, multiple right-hand sides,
packed storage

F07GJF (DPPTRI) 15 DPPTRI
nagf_lapack_dpptri
Inverse of real symmetric positive definite matrix, matrix
already factorized by F07GDF (DPPTRF), packed storage

F07GNF (ZPPSV) 21 ZPPSV
nagf_lapack_zppsv
Computes the solution to a complex Hermitian positive definite
system of linear equations, packed storage

F07GPF (ZPPSVX) 21 ZPPSVX
nagf_lapack_zppsvx
Uses the Cholesky factorization to compute the solution, error-
bound and condition estimate for a complex Hermitian positive
definite system of linear equations, packed storage

F07GRF (ZPPTRF) 15 ZPPTRF
nagf_lapack_zpptrf
Cholesky factorization of complex Hermitian positive definite
matrix, packed storage

F07GSF (ZPPTRS) 15 ZPPTRS
nagf_lapack_zpptrs
Solution of complex Hermitian positive definite system of
linear equations, multiple right-hand sides, matrix already
factorized by F07GRF (ZPPTRF), packed storage

F07GTF (ZPPEQU) 21 ZPPEQU
nagf_lapack_zppequ
Computes row and column scalings intended to equilibrate a
complex Hermitian positive definite matrix and reduce its
condition number, packed storage

F07GUF (ZPPCON) 15 ZPPCON
nagf_lapack_zppcon
Estimate condition number of complex Hermitian positive
definite matrix, matrix already factorized by F07GRF
(ZPPTRF), packed storage

F07GVF (ZPPRFS) 15 ZPPRFS
nagf_lapack_zpprfs
Refined solution with error bounds of complex Hermitian
positive definite system of linear equations, multiple right-hand
sides, packed storage

F07GWF (ZPPTRI) 15 ZPPTRI
nagf_lapack_zpptri
Inverse of complex Hermitian positive definite matrix, matrix
already factorized by F07GRF (ZPPTRF), packed storage
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F07HAF (DPBSV) 21 DPBSV
nagf_lapack_dpbsv
Computes the solution to a real symmetric positive definite
banded system of linear equations

F07HBF (DPBSVX) 21 DPBSVX
nagf_lapack_dpbsvx
Uses the Cholesky factorization to compute the solution, error-
bound and condition estimate for a real symmetric positive
definite banded system of linear equations

F07HDF (DPBTRF) 15 DPBTRF
nagf_lapack_dpbtrf
Cholesky factorization of real symmetric positive definite band
matrix

F07HEF (DPBTRS) 15 DPBTRS
nagf_lapack_dpbtrs
Solution of real symmetric positive definite band system of
linear equations, multiple right-hand sides, matrix already
factorized by F07HDF (DPBTRF)

F07HFF (DPBEQU) 21 DPBEQU
nagf_lapack_dpbequ
Computes row and column scalings intended to equilibrate a
real symmetric positive definite banded matrix and reduce its
condition number

F07HGF (DPBCON) 15 DPBCON
nagf_lapack_dpbcon
Estimate condition number of real symmetric positive definite
band matrix, matrix already factorized by F07HDF (DPBTRF)

F07HHF (DPBRFS) 15 DPBRFS
nagf_lapack_dpbrfs
Refined solution with error bounds of real symmetric positive
definite band system of linear equations, multiple right-hand
sides

F07HNF (ZPBSV) 21 ZPBSV
nagf_lapack_zpbsv
Computes the solution to a complex Hermitian positive definite
banded system of linear equations

F07HPF (ZPBSVX) 21 ZPBSVX
nagf_lapack_zpbsvx
Uses the Cholesky factorization to compute the solution, error-
bound and condition estimate for a complex Hermitian positive
definite banded system of linear equations

F07HRF (ZPBTRF) 15 ZPBTRF
nagf_lapack_zpbtrf
Cholesky factorization of complex Hermitian positive definite
band matrix

F07HSF (ZPBTRS) 15 ZPBTRS
nagf_lapack_zpbtrs
Solution of complex Hermitian positive definite band system of
linear equations, multiple right-hand sides, matrix already
factorized by F07HRF (ZPBTRF)

F07HTF (ZPBEQU) 21 ZPBEQU
nagf_lapack_zpbequ
Computes row and column scalings intended to equilibrate a
complex Hermitian positive definite banded matrix and reduce
its condition number
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F07HUF (ZPBCON) 15 ZPBCON
nagf_lapack_zpbcon
Estimate condition number of complex Hermitian positive
definite band matrix, matrix already factorized by F07HRF
(ZPBTRF)

F07HVF (ZPBRFS) 15 ZPBRFS
nagf_lapack_zpbrfs
Refined solution with error bounds of complex Hermitian
positive definite band system of linear equations, multiple
right-hand sides

F07JAF (DPTSV) 21 DPTSV
nagf_lapack_dptsv
Computes the solution to a real symmetric positive definite
tridiagonal system of linear equations

F07JBF (DPTSVX) 21 DPTSVX
nagf_lapack_dptsvx
Uses the LDLT factorization to compute the solution, error-
bound and condition estimate for a real symmetric positive
definite tridiagonal system of linear equations

F07JDF (DPTTRF) 21 DPTTRF
nagf_lapack_dpttrf
Computes the LDLT factorization of a real symmetric positive
definite tridiagonal matrix

F07JEF (DPTTRS) 21 DPTTRS
nagf_lapack_dpttrs
Solves a real symmetric positive definite tridiagonal system
using the LDLT factorization computed by F07JDF (DPTTRF)

F07JGF (DPTCON) 21 DPTCON
nagf_lapack_dptcon
Computes the reciprocal of the condition number of a real
symmetric positive definite tridiagonal system using the LDLT

factorization computed by F07JDF (DPTTRF)
F07JHF (DPTRFS) 21 DPTRFS

nagf_lapack_dptrfs
Refined solution with error bounds of real symmetric positive
definite tridiagonal system of linear equations, multiple right-
hand sides

F07JNF (ZPTSV) 21 ZPTSV
nagf_lapack_zptsv
Computes the solution to a complex Hermitian positive definite
tridiagonal system of linear equations

F07JPF (ZPTSVX) 21 ZPTSVX
nagf_lapack_zptsvx
Uses the LDLT factorization to compute the solution, error-
bound and condition estimate for a complex Hermitian positive
definite tridiagonal system of linear equations

F07JRF (ZPTTRF) 21 ZPTTRF
nagf_lapack_zpttrf
Computes the LDLH factorization of a complex Hermitian
positive definite tridiagonal matrix

F07JSF (ZPTTRS) 21 ZPTTRS
nagf_lapack_zpttrs
Solves a complex Hermitian positive definite tridiagonal
system using the LDLH factorization computed by F07JRF
(ZPTTRF)
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F07JUF (ZPTCON) 21 ZPTCON
nagf_lapack_zptcon
Computes the reciprocal of the condition number of a complex
Hermitian positive definite tridiagonal system using the LDLH

factorization computed by F07JRF (ZPTTRF)
F07JVF (ZPTRFS) 21 ZPTRFS

nagf_lapack_zptrfs
Refined solution with error bounds of complex Hermitian
positive definite tridiagonal system of linear equations, multiple
right-hand sides

F07KDF (DPSTRF) 23 DPSTRF
nagf_lapack_dpstrf
Cholesky factorization, with complete pivoting, of a real,
symmetric, positive semidefinite matrix

F07KRF (ZPSTRF) 23 ZPSTRF
nagf_lapack_zpstrf
Cholesky factorization of complex Hermitian positive
semidefinite matrix

F07MAF (DSYSV) 21 DSYSV
nagf_lapack_dsysv
Computes the solution to a real symmetric system of linear
equations

F07MBF (DSYSVX) 21 DSYSVX
nagf_lapack_dsysvx
Uses the diagonal pivoting factorization to compute the
solution to a real symmetric system of linear equations

F07MDF (DSYTRF) 15 DSYTRF
nagf_lapack_dsytrf
Bunch–Kaufman factorization of real symmetric indefinite
matrix

F07MEF (DSYTRS) 15 DSYTRS
nagf_lapack_dsytrs
Solution of real symmetric indefinite system of linear
equations, multiple right-hand sides, matrix already factorized
by F07MDF (DSYTRF)

F07MGF (DSYCON) 15 DSYCON
nagf_lapack_dsycon
Estimate condition number of real symmetric indefinite matrix,
matrix already factorized by F07MDF (DSYTRF)

F07MHF (DSYRFS) 15 DSYRFS
nagf_lapack_dsyrfs
Refined solution with error bounds of real symmetric indefinite
system of linear equations, multiple right-hand sides

F07MJF (DSYTRI) 15 DSYTRI
nagf_lapack_dsytri
Inverse of real symmetric indefinite matrix, matrix already
factorized by F07MDF (DSYTRF)

F07MNF (ZHESV) 21 ZHESV
nagf_lapack_zhesv
Computes the solution to a complex Hermitian system of linear
equations

F07MPF (ZHESVX) 21 ZHESVX
nagf_lapack_zhesvx
Uses the diagonal pivoting factorization to compute the
solution to a complex Hermitian system of linear equations

F07 – Linear Equations (LAPACK) Contents – F07

Mark 26 f07conts.9



F07MRF (ZHETRF) 15 ZHETRF
nagf_lapack_zhetrf
Bunch–Kaufman factorization of complex Hermitian indefinite
matrix

F07MSF (ZHETRS) 15 ZHETRS
nagf_lapack_zhetrs
Solution of complex Hermitian indefinite system of linear
equations, multiple right-hand sides, matrix already factorized
by F07MRF (ZHETRF)

F07MUF (ZHECON) 15 ZHECON
nagf_lapack_zhecon
Estimate condition number of complex Hermitian indefinite
matrix, matrix already factorized by F07MRF (ZHETRF)

F07MVF (ZHERFS) 15 ZHERFS
nagf_lapack_zherfs
Refined solution with error bounds of complex Hermitian
indefinite system of linear equations, multiple right-hand sides

F07MWF (ZHETRI) 15 ZHETRI
nagf_lapack_zhetri
Inverse of complex Hermitian indefinite matrix, matrix already
factorized by F07MRF (ZHETRF)

F07NNF (ZSYSV) 21 ZSYSV
nagf_lapack_zsysv
Computes the solution to a complex symmetric system of linear
equations

F07NPF (ZSYSVX) 21 ZSYSVX
nagf_lapack_zsysvx
Uses the diagonal pivoting factorization to compute the
solution to a complex symmetric system of linear equations

F07NRF (ZSYTRF) 15 ZSYTRF
nagf_lapack_zsytrf
Bunch–Kaufman factorization of complex symmetric matrix

F07NSF (ZSYTRS) 15 ZSYTRS
nagf_lapack_zsytrs
Solution of complex symmetric system of linear equations,
multiple right-hand sides, matrix already factorized by F07NRF
(ZSYTRF)

F07NUF (ZSYCON) 15 ZSYCON
nagf_lapack_zsycon
Estimate condition number of complex symmetric matrix,
matrix already factorized by F07NRF (ZSYTRF)

F07NVF (ZSYRFS) 15 ZSYRFS
nagf_lapack_zsyrfs
Refined solution with error bounds of complex symmetric
system of linear equations, multiple right-hand sides

F07NWF (ZSYTRI) 15 ZSYTRI
nagf_lapack_zsytri
Inverse of complex symmetric matrix, matrix already factorized
by F07NRF (ZSYTRF)

F07PAF (DSPSV) 21 DSPSV
nagf_lapack_dspsv
Computes the solution to a real symmetric system of linear
equations, packed storage

F07PBF (DSPSVX) 21 DSPSVX
nagf_lapack_dspsvx
Uses the diagonal pivoting factorization to compute the
solution to a real symmetric system of linear equations, packed
storage. Error bounds and a condition estimate are also
computed.
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F07PDF (DSPTRF) 15 DSPTRF
nagf_lapack_dsptrf
Bunch–Kaufman factorization of real symmetric indefinite
matrix, packed storage

F07PEF (DSPTRS) 15 DSPTRS
nagf_lapack_dsptrs
Solution of real symmetric indefinite system of linear
equations, multiple right-hand sides, matrix already factorized
by F07PDF (DSPTRF), packed storage

F07PGF (DSPCON) 15 DSPCON
nagf_lapack_dspcon
Estimate condition number of real symmetric indefinite matrix,
matrix already factorized by F07PDF (DSPTRF), packed
storage

F07PHF (DSPRFS) 15 DSPRFS
nagf_lapack_dsprfs
Refined solution with error bounds of real symmetric indefinite
system of linear equations, multiple right-hand sides, packed
storage

F07PJF (DSPTRI) 15 DSPTRI
nagf_lapack_dsptri
Inverse of real symmetric indefinite matrix, matrix already
factorized by F07PDF (DSPTRF), packed storage

F07PNF (ZHPSV) 21 ZHPSV
nagf_lapack_zhpsv
Computes the solution to a complex Hermitian system of linear
equations, packed storage

F07PPF (ZHPSVX) 21 ZHPSVX
nagf_lapack_zhpsvx
Uses the diagonal pivoting factorization to compute the
solution to a complex, Hermitian, system of linear equations,
error bounds and condition estimates. Packed storage

F07PRF (ZHPTRF) 15 ZHPTRF
nagf_lapack_zhptrf
Bunch–Kaufman factorization of complex Hermitian indefinite
matrix, packed storage

F07PSF (ZHPTRS) 15 ZHPTRS
nagf_lapack_zhptrs
Solution of complex Hermitian indefinite system of linear
equations, multiple right-hand sides, matrix already factorized
by F07PRF (ZHPTRF), packed storage

F07PUF (ZHPCON) 15 ZHPCON
nagf_lapack_zhpcon
Estimate condition number of complex Hermitian indefinite
matrix, matrix already factorized by F07PRF (ZHPTRF),
packed storage

F07PVF (ZHPRFS) 15 ZHPRFS
nagf_lapack_zhprfs
Refined solution with error bounds of complex Hermitian
indefinite system of linear equations, multiple right-hand sides,
packed storage

F07PWF (ZHPTRI) 15 ZHPTRI
nagf_lapack_zhptri
Inverse of complex Hermitian indefinite matrix, matrix already
factorized by F07PRF (ZHPTRF), packed storage

F07QNF (ZSPSV) 21 ZSPSV
nagf_lapack_zspsv
Computes the solution to a complex symmetric system of linear
equations, packed storage
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F07QPF (ZSPSVX) 21 ZSPSVX
nagf_lapack_zspsvx
Uses the diagonal pivoting factorization to compute the
solution to a complex, symmetric, system of linear equations,
error bounds and condition estimates. Packed storage

F07QRF (ZSPTRF) 15 ZSPTRF
nagf_lapack_zsptrf
Bunch–Kaufman factorization of complex symmetric matrix,
packed storage

F07QSF (ZSPTRS) 15 ZSPTRS
nagf_lapack_zsptrs
Solution of complex symmetric system of linear equations,
multiple right-hand sides, matrix already factorized by F07QRF
(ZSPTRF), packed storage

F07QUF (ZSPCON) 15 ZSPCON
nagf_lapack_zspcon
Estimate condition number of complex symmetric matrix,
matrix already factorized by F07QRF (ZSPTRF), packed
storage

F07QVF (ZSPRFS) 15 ZSPRFS
nagf_lapack_zsprfs
Refined solution with error bounds of complex symmetric
system of linear equations, multiple right-hand sides, packed
storage

F07QWF (ZSPTRI) 15 ZSPTRI
nagf_lapack_zsptri
Inverse of complex symmetric matrix, matrix already factorized
by F07QRF (ZSPTRF), packed storage

F07TEF (DTRTRS) 15 DTRTRS
nagf_lapack_dtrtrs
Solution of real triangular system of linear equations, multiple
right-hand sides

F07TGF (DTRCON) 15 DTRCON
nagf_lapack_dtrcon
Estimate condition number of real triangular matrix

F07THF (DTRRFS) 15 DTRRFS
nagf_lapack_dtrrfs
Error bounds for solution of real triangular system of linear
equations, multiple right-hand sides

F07TJF (DTRTRI) 15 DTRTRI
nagf_lapack_dtrtri
Inverse of real triangular matrix

F07TSF (ZTRTRS) 15 ZTRTRS
nagf_lapack_ztrtrs
Solution of complex triangular system of linear equations,
multiple right-hand sides

F07TUF (ZTRCON) 15 ZTRCON
nagf_lapack_ztrcon
Estimate condition number of complex triangular matrix

F07TVF (ZTRRFS) 15 ZTRRFS
nagf_lapack_ztrrfs
Error bounds for solution of complex triangular system of
linear equations, multiple right-hand sides

F07TWF (ZTRTRI) 15 ZTRTRI
nagf_lapack_ztrtri
Inverse of complex triangular matrix
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F07UEF (DTPTRS) 15 DTPTRS
nagf_lapack_dtptrs
Solution of real triangular system of linear equations, multiple
right-hand sides, packed storage

F07UGF (DTPCON) 15 DTPCON
nagf_lapack_dtpcon
Estimate condition number of real triangular matrix, packed
storage

F07UHF (DTPRFS) 15 DTPRFS
nagf_lapack_dtprfs
Error bounds for solution of real triangular system of linear
equations, multiple right-hand sides, packed storage

F07UJF (DTPTRI) 15 DTPTRI
nagf_lapack_dtptri
Inverse of real triangular matrix, packed storage

F07USF (ZTPTRS) 15 ZTPTRS
nagf_lapack_ztptrs
Solution of complex triangular system of linear equations,
multiple right-hand sides, packed storage

F07UUF (ZTPCON) 15 ZTPCON
nagf_lapack_ztpcon
Estimate condition number of complex triangular matrix,
packed storage

F07UVF (ZTPRFS) 15 ZTPRFS
nagf_lapack_ztprfs
Error bounds for solution of complex triangular system of
linear equations, multiple right-hand sides, packed storage

F07UWF (ZTPTRI) 15 ZTPTRI
nagf_lapack_ztptri
Inverse of complex triangular matrix, packed storage

F07VEF (DTBTRS) 15 DTBTRS
nagf_lapack_dtbtrs
Solution of real band triangular system of linear equations,
multiple right-hand sides

F07VGF (DTBCON) 15 DTBCON
nagf_lapack_dtbcon
Estimate condition number of real band triangular matrix

F07VHF (DTBRFS) 15 DTBRFS
nagf_lapack_dtbrfs
Error bounds for solution of real band triangular system of
linear equations, multiple right-hand sides

F07VSF (ZTBTRS) 15 ZTBTRS
nagf_lapack_ztbtrs
Solution of complex band triangular system of linear equations,
multiple right-hand sides

F07VUF (ZTBCON) 15 ZTBCON
nagf_lapack_ztbcon
Estimate condition number of complex band triangular matrix

F07VVF (ZTBRFS) 15 ZTBRFS
nagf_lapack_ztbrfs
Error bounds for solution of complex band triangular system of
linear equations, multiple right-hand sides

F07WDF (DPFTRF) 23 DPFTRF
nagf_lapack_dpftrf
Cholesky factorization of real symmetric positive definite
matrix, Rectangular Full Packed format
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F07WEF (DPFTRS) 23 DPFTRS
nagf_lapack_dpftrs
Solution of real symmetric positive definite system of linear
equations, multiple right-hand sides, coefficient matrix already
factorized by F07WDF (DPFTRF), Rectangular Full Packed
format

F07WJF (DPFTRI) 23 DPFTRI
nagf_lapack_dpftri
Inverse of real symmetric positive definite matrix, matrix
already factorized by F07WDF (DPFTRF), Rectangular Full
Packed format

F07WKF (DTFTRI) 23 DTFTRI
nagf_lapack_dtftri
Inverse of real triangular matrix, Rectangular Full Packed
format

F07WRF (ZPFTRF) 23 ZPFTRF
nagf_lapack_zpftrf
Cholesky factorization of complex Hermitian positive definite
matrix, Rectangular Full Packed format

F07WSF (ZPFTRS) 23 ZPFTRS
nagf_lapack_zpftrs
Solution of complex Hermitian positive definite system of
linear equations, multiple right-hand sides, coefficient matrix
already factorized by F07WRF (ZPFTRF), Rectangular Full
Packed format

F07WWF (ZPFTRI) 23 ZPFTRI
nagf_lapack_zpftri
Inverse of complex Hermitian positive definite matrix, matrix
already factorized by F07WRF (ZPFTRF), Rectangular Full
Packed format

F07WXF (ZTFTRI) 23 ZTFTRI
nagf_lapack_ztftri
Inverse of complex triangular matrix, Rectangular Full Packed
format
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1 Scope of the Chapter

This chapter provides routines for the solution of systems of simultaneous linear equations, and
associated computations. It provides routines for

matrix factorizations;

solution of linear equations;

estimating matrix condition numbers;

computing error bounds for the solution of linear equations;

matrix inversion;

computing scaling factors to equilibrate a matrix.

Routines are provided for both real and complex data.

For a general introduction to the solution of systems of linear equations, you should turn first to the F04
Chapter Introduction. The decision trees, in Section 4 in the F04 Chapter Introduction, direct you to the
most appropriate routines in Chapters F04 or F07 for solving your particular problem. In particular,
Chapters F04 and F07 contain Black Box (or driver) routines which enable some standard types of
problem to be solved by a call to a single routine. Where possible, routines in Chapter F04 call Chapter
F07 routines to perform the necessary computational tasks.

There are two types of driver routines in this chapter: simple drivers which just return the solution to
the linear equations; and expert drivers which also return condition and error estimates and, in many
cases, also allow equilibration. The simple drivers for real matrices have names of the form F07_AF
(D__SV) and for complex matrices have names of the form F07_NF (Z__SV). The expert drivers for
real matrices have names of the form F07_BF (D__SVX) and for complex matrices have names of the
form F07_PF (Z__SVX).

The routines in this chapter (Chapter F07) handle only dense and band matrices (not matrices with
more specialised structures, or general sparse matrices).

The routines in this chapter have all been derived from the LAPACK project (see Anderson et al.
(1999)). They have been designed to be efficient on a wide range of high-performance computers,
without compromising efficiency on conventional serial machines.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of systems of linear equations.
Consult a standard textbook, for example Golub and Van Loan (1996) for a more thorough discussion.

2.1 Notation

We use the standard notation for a system of simultaneous linear equations:

Ax ¼ b ð1Þ

where A is the coefficient matrix, b is the right-hand side, and x is the solution. A is assumed to be a
square matrix of order n.

If there are several right-hand sides, we write

AX ¼ B ð2Þ

where the columns of B are the individual right-hand sides, and the columns of X are the
corresponding solutions.

We also use the following notation, both here and in the routine documents:

x̂ a computed solution to Ax ¼ b, (which usually differs from the exact
solution x because of round-off error)

r ¼ b�Ax̂ the residual corresponding to the computed solution x̂
xk k1 ¼ max

i
xij j the 1-norm of the vector x
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xk k1 ¼
Xn
j¼1

xj
		 		 the 1-norm of the vector x

Ak k1 ¼ max
i

P
j

aij
		 		 the 1-norm of the matrix A

Ak k1 ¼ max
j

Xn
i¼1

aij
		 		 the 1-norm of the matrix A

xj j the vector with elements xij j
Aj j the matrix with elements aij

		 		
Inequalities of the form Aj j � Bj j are interpreted component-wise, that is aij

		 		 � bij
		 		 for all i; j.

2.2 Matrix Factorizations

If A is upper or lower triangular, Ax ¼ b can be solved by a straightforward process of backward or
forward substitution.

Otherwise, the solution is obtained after first factorizing A, as follows.

General matrices (LU factorization with partial pivoting)

A ¼ PLU

where P is a permutation matrix, L is lower-triangular with diagonal elements equal to 1, and U is
upper-triangular; the permutation matrix P (which represents row interchanges) is needed to ensure
numerical stability.

Symmetric positive definite matrices (Cholesky factorization)

A ¼ UTU or A ¼ LLT

where U is upper triangular and L is lower triangular.

Symmetric positive semidefinite matrices (pivoted Cholesky factorization)

A ¼ PUTUPT or A ¼ PLLTPT

where P is a permutation matrix, U is upper triangular and L is lower triangular. The permutation
matrix P (which represents row-and-column interchanges) is needed to ensure numerical stability and to
reveal the numerical rank of A.

Symmetric indefinite matrices (Bunch–Kaufman factorization)

A ¼ PUDUTPT or A ¼ PLDLTPT

where P is a permutation matrix, U is upper triangular, L is lower triangular, and D is a block diagonal
matrix with diagonal blocks of order 1 or 2; U and L have diagonal elements equal to 1, and have 2 by
2 unit matrices on the diagonal corresponding to the 2 by 2 blocks of D. The permutation matrix P
(which represents symmetric row-and-column interchanges) and the 2 by 2 blocks in D are needed to
ensure numerical stability. If A is in fact positive definite, no interchanges are needed and the
factorization reduces to A ¼ UDUT or A ¼ LDLT with diagonal D, which is simply a variant form of
the Cholesky factorization.

2.3 Solution of Systems of Equations

Given one of the above matrix factorizations, it is straightforward to compute a solution to Ax ¼ b by
solving two subproblems, as shown below, first for y and then for x. Each subproblem consists
essentially of solving a triangular system of equations by forward or backward substitution; the
permutation matrix P and the block diagonal matrix D introduce only a little extra complication:

General matrices (LU factorization)

Ly ¼ PTb
Ux ¼ y
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Symmetric positive definite matrices (Cholesky factorization)

UTy ¼ b
Ux ¼ y or Ly ¼ b

LTx ¼ y
Symmetric indefinite matrices (Bunch–Kaufman factorization)

PUDy ¼ b
UTPTx ¼ y or PLDy ¼ b

LTPTx ¼ y

2.4 Sensitivity and Error Analysis

2.4.1 Normwise error bounds

Frequently, in practical problems the data A and b are not known exactly, and it is then important to
understand how uncertainties or perturbations in the data can affect the solution.

If x is the exact solution to Ax ¼ b, and xþ �x is the exact solution to a perturbed problem
Aþ �Að Þ xþ �xð Þ ¼ bþ �bð Þ, then

�xk k
xk k � � Að Þ

�Ak k
Ak k þ

�bk k
bk k

� �
þ � � � second-order termsð Þ

where � Að Þ is the condition number of A defined by

� Að Þ ¼ Ak k: A�1
�� ��: ð3Þ

In other words, relative errors in A or b may be amplified in x by a factor � Að Þ. Section 2.4.2 discusses
how to compute or estimate � Að Þ.
Similar considerations apply when we study the effects of rounding errors introduced by computation
in finite precision. The effects of rounding errors can be shown to be equivalent to perturbations in the

original data, such that
�Ak k
Ak k and

�bk k
bk k are usually at most p nð Þ�, where � is the machine precision and

p nð Þ is an increasing function of n which is seldom larger than 10n (although in theory it can be as
large as 2n�1).

In other words, the computed solution x̂ is the exact solution of a linear system Aþ �Að Þx̂ ¼ bþ �b
which is close to the original system in a normwise sense.

2.4.2 Estimating condition numbers

The previous section has emphasized the usefulness of the quantity � Að Þ in understanding the
sensitivity of the solution of Ax ¼ b. To compute the value of � Að Þ from equation (3) is more
expensive than solving Ax ¼ b in the first place. Hence it is standard practice to estimate � Að Þ, in
either the 1-norm or the 1-norm, by a method which only requires O n2

� �
additional operations,

assuming that a suitable factorization of A is available.

The method used in this chapter is Higham's modification of Hager's method (see Higham (1988)). It
yields an estimate which is never larger than the true value, but which seldom falls short by more than a
factor of 3 (although artificial examples can be constructed where it is much smaller). This is acceptable
since it is the order of magnitude of � Að Þ which is important rather than its precise value.

Because � Að Þ is infinite if A is singular, the routines in this chapter actually return the reciprocal of
� Að Þ.

2.4.3 Scaling and Equilibration

The condition of a matrix and hence the accuracy of the computed solution, may be improved by
scaling; thus if D1 and D2 are diagonal matrices with positive diagonal elements, then

B ¼ D1AD2

is the scaled matrix. A general matrix is said to be equilibrated if it is scaled so that the lengths of its
rows and columns have approximately equal magnitude. Similarly a general matrix is said to be row-
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equilibrated (column-equilibrated) if it is scaled so that the lengths of its rows (columns) have
approximately equal magnitude. Note that row scaling can affect the choice of pivot when partial
pivoting is used in the factorization of A.

A symmetric or Hermitian positive definite matrix is said to be equilibrated if the diagonal elements are
all approximately equal to unity.

For further information on scaling and equilibration see Section 3.5.2 of Golub and Van Loan (1996),
Section 7.2, 7.3 and 9.8 of Higham (1988) and Section 5 of Chapter 4 of Wilkinson (1965).

Routines are provided to return the scaling factors that equilibrate a matrix for general, general band,
symmetric and Hermitian positive definite and symmetric and Hermitian positive definite band matrices.

2.4.4 Componentwise error bounds

A disadvantage of normwise error bounds is that they do not reflect any special structure in the data A
and b – that is, a pattern of elements which are known to be zero – and the bounds are dominated by
the largest elements in the data.

Componentwise error bounds overcome these limitations. Instead of the normwise relative error, we can
bound the relative error in each component of A and b:

max
ijk

�aij
		 		
aij
		 		 ; �bkj j

bkj j

 !
� !

where the component-wise backward error bound ! is given by

! ¼ max
i

rij j
Aj j: x̂j j þ bj jð Þi

:

Routines are provided in this chapter which compute !, and also compute a forward error bound which
is sometimes much sharper than the normwise bound given earlier:

x� x̂k k1
xk k1

�
A�1
		 		: rj j�� ��

1
xk k1

:

Care is taken when computing this bound to allow for rounding errors in computing r. The norm
A�1
		 		: rj j�� ��

1 is estimated cheaply (without computing A�1) by a modification of the method used to
estimate � Að Þ.

2.4.5 Iterative refinement of the solution

If x̂ is an approximate computed solution to Ax ¼ b, and r is the corresponding residual, then a
procedure for iterative refinement of x̂ can be defined as follows, starting with x0 ¼ x̂:

for i ¼ 0; 1; . . . , until convergence

compute ri ¼ b�Axi
solve Adi ¼ ri
compute xiþ1 ¼ xi þ di

In Chapter F04, routines are provided which perform this procedure using additional precision to
compute r, and are thus able to reduce the forward error to the level of machine precision.

The routines in this chapter do not use additional precision to compute r, and cannot guarantee a small
forward error, but can guarantee a small backward error (except in rare cases when A is very ill-
conditioned, or when A and x are sparse in such a way that Aj j: xj j has a zero or very small
component). The iterations continue until the backward error has been reduced as much as possible;
usually only one iteration is needed.
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2.5 Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve
Ax ¼ b by first computing A�1 and then forming the matrix-vector product x ¼ A�1b; the procedure
described in Section 2.3 is more efficient and more accurate.

However, routines are provided for the rare occasions when an inverse is needed, using one of the
factorizations described in Section 2.2.

2.6 Packed Storage Formats

Routines which handle symmetric matrices are usually designed so that they use either the upper or
lower triangle of the matrix; it is not necessary to store the whole matrix. If the upper or lower triangle
is stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining
elements of the array can be used to store other useful data.

However, that is not always convenient, and if it is important to economize on storage, the upper or
lower triangle can be stored in a one-dimensional array of length n nþ 1ð Þ=2 or a two-dimensional
array with n nþ 1ð Þ=2 elements; in other words, the storage is almost halved.

The one-dimensional array storage format is referred to as packed storage; it is described in
Section 3.3.2. The two-dimensional array storage format is referred to as Rectangular Full Packed
(RFP) format; it is described in Section 3.3.3. They may also be used for triangular matrices.

Routines designed for these packed storage formats perform the same number of arithmetic operations
as routines which use conventional storage. Those using a packed one-dimensional array are usually
less efficient, especially on high-performance computers, so there is then a trade-off between storage
and efficiency. The RFP routines are as efficient as for conventional storage, although only a small
subset of routines use this format.

2.7 Band and Tridiagonal Matrices

A band matrix is one whose nonzero elements are confined to a relatively small number of subdiagonals
or superdiagonals on either side of the main diagonal. A tridiagonal matrix is a special case of a band
matrix with just one subdiagonal and one superdiagonal. Algorithms can take advantage of bandedness
to reduce the amount of work and storage required. The storage scheme used for band matrices is
described in Section 3.3.4.

The LU factorization for general matrices, and the Cholesky factorization for symmetric and Hermitian
positive definite matrices both preserve bandedness. Hence routines are provided which take advantage
of the band structure when solving systems of linear equations.

The Cholesky factorization preserves bandedness in a very precise sense: the factor U or L has the
same number of superdiagonals or subdiagonals as the original matrix. In the LU factorization, the row-
interchanges modify the band structure: if A has kl subdiagonals and ku superdiagonals, then L is not a
band matrix but still has at most kl nonzero elements below the diagonal in each column; and U has at
most kl þ ku superdiagonals.

The Bunch–Kaufman factorization does not preserve bandedness, because of the need for symmetric
row-and-column permutations; hence no routines are provided for symmetric indefinite band matrices.

The inverse of a band matrix does not in general have a band structure, so no routines are provided for
computing inverses of band matrices.

2.8 Block Partitioned Algorithms

Many of the routines in this chapter use what is termed a block partitioned algorithm. This means that
at each major step of the algorithm a block of rows or columns is updated, and most of the computation
is performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed
by calls to the Level 3 BLAS (see Chapter F06), which are the key to achieving high performance on
many modern computers. See Golub and Van Loan (1996) or Anderson et al. (1999) for more about
block partitioned algorithms.
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The performance of a block partitioned algorithm varies to some extent with the block size – that is, the
number of rows or columns per block. This is a machine-dependent argument, which is set to a suitable
value when the library is implemented on each range of machines. You do not normally need to be
aware of what value is being used. Different block sizes may be used for different routines. Values in
the range 16 to 64 are typical.

On some machines there may be no advantage from using a block partitioned algorithm, and then the
routines use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the Level 2
BLAS (see Chapter F06 again).

The only situation in which you need some awareness of the block size is when it affects the amount of
workspace to be supplied to a particular routine. This is discussed in Section 3.4.3.

2.9 Mixed Precision LAPACK Routines

Some LAPACK routines use mixed precision arithmetic in an effort to solve problems more efficiently
on modern hardware. They work by converting a double precision problem into an equivalent single
precision problem, solving it and then using iterative refinement in double precision to find a full
precision solution to the original problem. The method may fail if the problem is too ill-conditioned to
allow the initial single precision solution, in which case the routines fall back to solve the original
problem entirely in double precision. The vast majority of problems are not so ill-conditioned, and in
those cases the technique can lead to significant gains in speed without loss of accuracy. This is
particularly true on machines where double precision arithmetic is significantly slower than single
precision.

3 Recommendations on Choice and Use of Available Routines

3.1 Available Routines

Tables 1 to 8 in Section 3.5 show the routines which are provided for performing different computations
on different types of matrices. Tables 1 to 4 show routines for real matrices; Tables 5 to 8 show routines
for complex matrices. Each entry in the table gives the NAG routine name and the LAPACK double
precision name (see Section 3.2).

Routines are provided for the following types of matrix:

general

general band

general tridiagonal

symmetric or Hermitian positive definite

symmetric or Hermitian positive definite (packed storage)

symmetric or Hermitian positive definite (RFP storage)

symmetric or Hermitian positive definite band

symmetric or Hermitian positive definite tridiagonal

symmetric or Hermitian indefinite

symmetric or Hermitian indefinite (packed storage)

triangular

triangular (packed storage)

triangular (RFP storage)

triangular band

For each of the above types of matrix (except where indicated), routines are provided to perform the
following computations:
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(a) (except for RFP matrices) solve a system of linear equations (driver routines);

(b) (except for RFP matrices) solve a system of linear equations with condition and error estimation
(expert drivers);

(c) (except for triangular matrices) factorize the matrix (see Section 2.2);

(d) solve a system of linear equations, using the factorization (see Section 2.3);

(e) (except for RFP matrices) estimate the condition number of the matrix, using the factorization
(see Section 2.4.2); these routines also require the norm of the original matrix (except when the
matrix is triangular) which may be computed by a routine in Chapter F06;

(f) (except for RFP matrices) refine the solution and compute forward and backward error bounds
(see Sections 2.4.4 and 2.4.5); these routines require the original matrix and right-hand side, as
well as the factorization returned from (a) and the solution returned from (b);

(g) (except for band and tridiagonal matrices) invert the matrix, using the factorization (see
Section 2.5);

(h) (except for tridiagonal, symmetric indefinite, triangular and RFP matrices) compute scale factors
to equilibrate the matrix (see Section 2.4.3).

Thus, to solve a particular problem, it is usually only necessary to call a single driver routine, but
alternatively two or more routines may be called in succession. This is illustrated in the example
programs in the routine documents.

3.2 NAG Names and LAPACK Names

As well as the NAG routine name (beginning F07), Tables 1 to 8 show the LAPACK routine names in
double precision.

The routines may be called either by their NAG names or by their LAPACK names. When using the
NAG Library, the double precision form of the LAPACK name must be used (beginning with D- or Z-).

References to Chapter F07 routines in the manual normally include the LAPACK double precision
names, for example, F07ADF (DGETRF).

The LAPACK routine names follow a simple scheme (which is similar to that used for the BLAS in
Chapter F06). Most names have the structure XYYZZZ, where the components have the following
meanings:

– the initial letter X indicates the data type (real or complex) and precision:

S – real, single precision (in Fortran 77, REAL)

D – real, double precision (in Fortran 77, DOUBLE PRECISION)

C – complex, single precision (in Fortran 77, COMPLEX)

Z – complex, double precision (in Fortran 77, COMPLEX*16 or DOUBLE COMPLEX)

– exceptionally, the mixed precision LAPACK routines described in Section 2.9 replace the initial first
letter by a pair of letters, as:

DS – double precision routine using single precision internally

ZC – double complex routine using single precision complex internally

– the letters YY indicate the type of the matrix A (and in some cases its storage scheme):

GE – general

GB – general band

PO – symmetric or Hermitian positive definite

PF – symmetric or Hermitian positive definite (RFP storage)

PP – symmetric or Hermitian positive definite (packed storage)

PB – symmetric or Hermitian positive definite band
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SY – symmetric indefinite

SF – symmetric indefinite (RFP storage)

SP – symmetric indefinite (packed storage)

HE – (complex) Hermitian indefinite

HF – (complex) Hermitian indefinite (RFP storage)

HP – (complex) Hermitian indefinite (packed storage)

GT – general tridiagonal

PT – symmetric or Hermitian positive definite tridiagonal

TR – triangular

TF – triangular (RFP storage)

TP – triangular (packed storage)

TB – triangular band

– the last two or three letters ZZ or ZZZ indicate the computation performed. Examples are:

TRF – triangular factorization

TRS – solution of linear equations, using the factorization

CON – estimate condition number

RFS – refine solution and compute error bounds

TRI – compute inverse, using the factorization

Thus the routine DGETRF performs a triangular factorization of a real general matrix in double
precision; the corresponding routine for a complex general matrix is ZGETRF.

3.3 Matrix Storage Schemes

In this chapter the following different storage schemes are used for matrices:

– conventional storage in a two-dimensional array;

– packed storage for symmetric, Hermitian or triangular matrices;

– rectangular full packed (RFP) storage for symmetric, Hermitian or triangular matrices;

– band storage for band matrices.

These storage schemes are compatible with those used in Chapter F06 (especially in the BLAS) and
Chapter F08, but different schemes for packed or band storage are used in a few older routines in
Chapters F01, F02, F03 and F04.

In the examples below, � indicates an array element which need not be set and is not referenced by the
routines. The examples illustrate only the relevant part of the arrays; array arguments may of course
have additional rows or columns, according to the usual rules for passing array arguments in Fortran 77.

3.3.1 Conventional storage

The default scheme for storing matrices is the obvious one: a matrix A is stored in a two-dimensional
array A, with matrix element aij stored in array element A i; jð Þ.
If a matrix is triangular (upper or lower, as specified by the argument UPLO), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * or  in the examples below.

For example, when n ¼ 4:
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UPLO Triangular matrix A Storage in array A

`U' a11 a12 a13 a14
a22 a23 a24

a33 a34
a44

0B@
1CA a11 a12 a13 a14

 a22 a23 a24
  a33 a34
   a44

`L' a11
a21 a22
a31 a32 a33
a41 a42 a43 a44

0B@
1CA a11    

a21 a22   
a31 a32 a33  
a41 a42 a43 a44

Routines which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by UPLO) to be stored in the corresponding elements of the array; the
remaining elements of the array need not be set.

For example, when n ¼ 4:

UPLO Hermitian matrix A Storage in array A

`U' a11 a12 a13 a14
�a12 a22 a23 a24
�a13 �a23 a33 a34
�a14 �a24 �a34 a44

0B@
1CA a11 a12 a13 a14

 a22 a23 a24
  a33 a34
   a44

`L' a11 �a21 �a31 �a41
a21 a22 �a32 �a42
a31 a32 a33 �a43
a41 a42 a43 a44

0B@
1CA a11    

a21 a22   
a31 a32 a33  
a41 a42 a43 a44

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as specified by UPLO) is packed by columns in a one-dimensional array. In this chapter, as in
Chapters F06 and F08, arrays which hold matrices in packed storage, have names ending in P. For a
matrix of order n, the array must have at least n nþ 1ð Þ=2 elements. So:

if UPLO ¼ U , aij is stored in APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , aij is stored in APðiþ 2n� jð Þ j� 1ð Þ=2Þ for j � i.

For example:

Triangle of matrix A Packed storage in array AP

UPLO ¼ U a11 a12 a13 a14
a22 a23 a24

a33 a34
a44

0B@
1CA a11 a12a22|fflffl{zfflffl} a13a23a33|fflfflfflfflffl{zfflfflfflfflffl} a14a24a34a44|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

UPLO ¼ L a11
a21 a22
a31 a32 a33
a41 a42 a43 a44

0B@
1CA a11a21a31a41|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} a22a32a42|fflfflfflfflffl{zfflfflfflfflffl} a33a43|fflffl{zfflffl} a44

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing
the lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper
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triangle by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements
are conjugated.)

3.3.3 Rectangular Full Packed (RFP) Storage

The rectangular full packed (RFP) storage format offers the same savings in storage as the packed
storage format (described in Section 3.3.2), but is likely to be much more efficient in general since the
block structure of the matrix is maintained. This structure can be exploited using block partition
algorithms (see Section 2.8) in a similar way to matrices that use conventional storage.

A AF

Figure 1 gives a graphical representation of the key idea of RFP for the particular case of a lower
triangular matrix of even dimensions. In all cases the original triangular matrix of stored elements is
separated into a trapezoidal part and a triangular part. The number of columns in these two parts is
equal when the dimension of the matrix is even, n ¼ 2k, while the trapezoidal part has kþ 1 columns
when n ¼ 2kþ 1. The smaller part is then transposed and fitted onto the trapezoidal part forming a
rectangle. The rectangle has dimensions 2kþ 1 and q, where q ¼ k when n is even and q ¼ kþ 1 when
n is odd.

For routines using RFP there is the option of storing the rectangle as described above (TRANSR ¼ N )
or its transpose (TRANSR ¼ T , for real A) or its conjugate transpose (TRANSR ¼ C , for complex A).

As an example, we first consider RFP for the case n ¼ 2k with k ¼ 3.

If TRANSR ¼ N , then AR holds A as follows:

For UPLO ¼ U the upper trapezoid ARð1 : 6; 1 : 3Þ consists of the last three columns of A
upper. The lower triangle ARð5 : 7; 1 : 3Þ consists of the transpose of the first three columns of A
upper.

For UPLO ¼ L the lower trapezoid ARð2 : 7; 1 : 3Þ consists of the first three columns of A
lower. The upper triangle ARð1 : 3; 1 : 3Þ consists of the transpose of the last three columns of A
lower.

If TRANSR ¼ T , then AR in both UPLO cases is just the transpose of AR as defined when
TRANSR ¼ N .

UPLO Triangle of matrix A Rectangular Full Packed matrix AR

TRANSR ¼ N TRANSR ¼ T

`U' 00 01 02 03 04 05
11 12 13 14 15

22 23 24 25
33 34 35

44 45
55

0BBBBB@

1CCCCCA
03 04 05
13 14 15
23 24 25
33 34 35
00 44 45
01 11 55
02 12 22

03 13 23 33 00 01 02
04 14 24 34 44 11 12
05 15 25 35 45 55 22

`L' 00
10 11
20 21 22
30 31 32 33
40 41 42 43 44
50 51 52 53 54 55

0BBBBB@

1CCCCCA
33 43 53
00 44 54
10 11 55
20 21 22
30 31 32
40 41 42
50 51 52

33 00 10 20 30 40 50
43 44 11 21 31 41 51
53 54 55 22 32 42 52
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Now we consider RFP for the case n ¼ 2kþ 1 and k ¼ 2.

If TRANSR ¼ N . AR holds A as follows:

if UPLO ¼ U the upper trapezoid ARð1 : 5; 1 : 3Þ consists of the last three columns of A upper.
The lower triangle ARð4 : 5; 1 : 2Þ consists of the transpose of the first two columns of A upper;

if UPLO ¼ L the lower trapezoid ARð1 : 5; 1 : 3Þ consists of the first three columns of A lower.
The upper triangle ARð1 : 2; 2 : 3Þ consists of the transpose of the last two columns of A lower.

If TRANSR ¼ T . AR in both UPLO cases is just the transpose of AR as defined when TRANSR ¼ N .

UPLO Triangle of matrix A Rectangular Full Packed matrix AR

TRANSR ¼ N TRANSR ¼ T

`U' 00 01 02 03 04
11 12 13 14

22 23 24
33 34

44

0BBB@
1CCCA

02 03 04
12 13 14
22 23 24
00 33 34
01 11 44

02 12 22 00 01
03 13 23 33 11
04 14 24 34 44

`L' 00
10 11
20 21 22
30 31 32 33
40 41 42 43 44

0BBB@
1CCCA

00 33 43
10 11 44
20 21 22
30 31 32
40 41 42

00 10 20 30 40 50
33 11 21 31 41 51
43 44 22 32 42 52

Explicitly, in the real matrix case, AR is a one-dimensional array of length n nþ 1ð Þ=2 and contains the
elements of A as follows:

for UPLO ¼ U and TRANSR ¼ N ,
aij is stored in ARð 2kþ 1ð Þ i � 1ð Þ þ j þ kþ 1Þ, for 1 � j � k and 1 � i � j, and
aij is stored in ARð 2kþ 1ð Þ j � k� 1ð Þ þ iÞ, for k < j � n and 1 � i � j;

for UPLO ¼ U and TRANSR ¼ T ,
aij is stored in ARðq jþ kð Þ þ iÞ, for 1 � j � k and 1 � i � j, and
aij is stored in ARðq i� 1ð Þ þ j � kÞ, for k < j � n and 1 � i � j;

for UPLO ¼ L and TRANSR ¼ N ,
aij is stored in ARð 2kþ 1ð Þ j� 1ð Þ þ iþ k� q þ 1Þ, for 1 � j � q and j � i � n, and
aij is stored in ARð 2kþ 1ð Þ i� k� 1ð Þ þ j� qÞ, for q < j � n and j � i � n;

for UPLO ¼ L and TRANSR ¼ T ,
aij is stored in ARðq iþ k� qð Þ þ jÞ, for 1 � j � q and 1 � i � n, and
aij is stored in ARðq j� 1� qð Þ þ i� kÞ, for q < j � n and 1 � i � n.

In the case of complex matrices, the assumption is that the full matrix, if it existed, would be
Hermitian. Thus, when TRANSR ¼ N , the triangular portion of A that is, in the real case, transposed
into the notional 2kþ 1ð Þ by q RFP matrix is also conjugated. When TRANSR ¼ C the notional q by
2kþ 1ð Þ RFP matrix is the conjugate transpose of the corresponding TRANSR ¼ N RFP matrix.
Explicitly, for complex A, the array AR contains the elements (or conjugated elements) of A as follows:

for UPLO ¼ U and TRANSR ¼ N ,
�aij is stored in ARð 2kþ 1ð Þ i � 1ð Þ þ j þ kþ 1Þ, for 1 � j � k and 1 � i � j, and
aij is stored in ARð 2kþ 1ð Þ j � k� 1ð Þ þ iÞ, for k < j � n and 1 � i � j;

for UPLO ¼ U and TRANSR ¼ C ,
aij is stored in ARðq jþ kð Þ þ iÞ, for 1 � j � k and 1 � i � j, and
�aij is stored in ARðq i� 1ð Þ þ j � kÞ, for k < j � n and 1 � i � j;

for UPLO ¼ L and TRANSR ¼ N ,
aij is stored in ARð 2kþ 1ð Þ j� 1ð Þ þ iþ k� q þ 1Þ, for 1 � j � q and j � i � n, and
�aij is stored in ARð 2kþ 1ð Þ i� k� 1ð Þ þ j� qÞ, for q < j � n and j � i � n;

for UPLO ¼ L and TRANSR ¼ C ,
�aij is stored in ARðq iþ k� qð Þ þ jÞ, for 1 � j � q and 1 � i � n, and
aij is stored in ARðq j� 1� qð Þ þ i� kÞ, for q < j � n and 1 � i � n.
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3.3.4 Band storage

A band matrix with kl subdiagonals and ku superdiagonals may be stored compactly in a two-
dimensional array with kl þ ku þ 1 rows and n columns. Columns of the matrix are stored in
corresponding columns of the array, and diagonals of the matrix are stored in rows of the array. This
storage scheme should be used in practice only if kl, ku  n, although the routines in Chapters F07 and
F08 work correctly for all values of kl and ku. In Chapters F07 and F08 arrays which hold matrices in
band storage have names ending in B.

To be precise, elements of matrix elements aij are stored as follows:

aij is stored in ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min n; jþ klð Þ.
For example, when n ¼ 5, kl ¼ 2 and ku ¼ 1:

Band matrix A Band storage in array AB

a11 a12
a21 a22 a23
a31 a32 a33 a34

a42 a43 a44 a45
a53 a54 a55

0BBB@
1CCCA � a12 a23 a34 a45

a11 a22 a33 a44 a55
a21 a32 a43 a54 �
a31 a42 a53 � �

The elements marked � in the upper left and lower right corners of the array AB need not be set, and
are not referenced by the routines.

Note: when a general band matrix is supplied for LU factorization, space must be allowed to store an
additional kl superdiagonals, generated by fill-in as a result of row interchanges. This means that the
matrix is stored according to the above scheme, but with kl þ ku superdiagonals.

Triangular band matrices are stored in the same format, with either kl ¼ 0 if upper triangular, or ku ¼ 0
if lower triangular.

For symmetric or Hermitian band matrices with k subdiagonals or superdiagonals, only the upper or
lower triangle (as specified by UPLO) need be stored:

if UPLO ¼ U , aij is stored in ABðkþ 1þ i� j; jÞ for max 1; j� kð Þ � i � j;
if UPLO ¼ L , aij is stored in ABð1þ i� j; jÞ for j � i � min n; jþ kð Þ.

For example, when n ¼ 5 and k ¼ 2:

UPLO Hermitian band matrix A Band storage in array AB

`U' a11 a12 a13
�a12 a22 a23 a24
�a13 �a23 a33 a34 a35

�a24 �a34 a44 a45
�a35 �a45 a55

0BBB@
1CCCA

� � a13 a24 a35
� a12 a23 a34 a45
a11 a22 a33 a44 a55

`L' a11 �a21 �a31
a21 a22 �a32 �a42
a31 a32 a33 �a43 �a53

a42 a43 a44 �a54
a53 a54 a55

0BBB@
1CCCA

a11 a22 a33 a44 a55
a21 a32 a43 a54 �
a31 a42 a53 � �

Note that different storage schemes for band matrices are used by some routines in Chapters F01, F02,
F03 and F04.

3.3.5 Unit triangular matrices

Some routines in this chapter have an option to handle unit triangular matrices (that is, triangular
matrices with diagonal elements ¼ 1). This option is specified by an argument DIAG. If DIAG ¼ U
(Unit triangular), the diagonal elements of the matrix need not be stored, and the corresponding array
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elements are not referenced by the routines. The storage scheme for the rest of the matrix (whether
conventional, packed or band) remains unchanged.

3.3.6 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal elements that are by definition purely real. In addition,
complex triangular matrices which arise in Cholesky factorization are defined by the algorithm to have
real diagonal elements.

If such matrices are supplied as input to routines in Chapters F07 and F08, the imaginary parts of the
diagonal elements are not referenced, but are assumed to be zero. If such matrices are returned as
output by the routines, the computed imaginary parts are explicitly set to zero.

3.4 Parameter Conventions

3.4.1 Option arguments

Most routines in this chapter have one or more option arguments, of type CHARACTER. The
descriptions in Section 5 of the routine documents refer only to upper-case values (for example
UPLO ¼ U or L ); however, in every case, the corresponding lower-case characters may be supplied
(with the same meaning). Any other value is illegal.

A longer character string can be passed as the actual argument, making the calling program more
readable, but only the first character is significant. (This is a feature of Fortran 77.) For example:

CALL DGETRS(’Transpose’,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M in F07ADF (DGETRF), N or NRHS in
F07AEF (DGETRS)) to be passed as zero, in which case the computation (or part of it) is skipped.
Negative dimensions are regarded as an error.

3.4.3 Length of work arrays

A few routines implementing block partitioned algorithms require workspace sufficient to hold one
block of rows or columns of the matrix if they are to achieve optimum levels of performance — for
example, workspace of size n� nb, where nb is the optimum block size. In such cases, the actual
declared length of the work array must be passed as a separate argument LWORK, which immediately
follows WORK in the argument-list.

The routine will still perform correctly when less workspace is provided: it uses the largest block size
allowed by the amount of workspace supplied, as long as this is likely to give better performance than
the unblocked algorithm. On exit, WORKð1Þ contains the minimum value of LWORK which would
allow the routine to use the optimum block size; this value of LWORK may be used for subsequent
runs.

If LWORK indicates that there is insufficient workspace to perform the unblocked algorithm, this is
regarded as an illegal value of LWORK, and is treated like any other illegal argument value (see
Section 3.4.4), though WORKð1Þ will still be set as described above.

If you are in doubt how much workspace to supply and are concerned to achieve optimum performance,
supply a generous amount (assume a block size of 64, say), and then examine the value of WORKð1Þ
on exit.

3.4.4 Error-handling and the diagnostic argument IINNFFOO

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving the
argument IFAIL. Instead they have a diagnostic argument INFO. (Thus they preserve complete
compatibility with the LAPACK specification.)

Whereas IFAIL is an Input/Output argument and must be set before calling a routine, INFO is purely an
Output argument and need not be set before entry.

Introduction – F07 NAG Library Manual

F07.14 Mark 26



INFO indicates the success or failure of the computation, as follows:

INFO ¼ 0: successful termination

INFO > 0: failure in the course of computation, control returned to the calling program

If the routine document specifies that the routine may terminate with INFO > 0, then it is essential to
test INFO on exit from the routine. (This corresponds to a soft failure in terms of the usual NAG error-
handling terminology.) No error message is output.

All routines check that input arguments such as N or LDA or option arguments of type CHARACTER
have permitted values. If an illegal value of the ith argument is detected, INFO is set to �i, a message
is output, and execution of the program is terminated. (This corresponds to a hard failure in the usual
NAG terminology.)

3.5 Tables of Driver and Computational Routines

3.5.1 Real matrices

Each entry in the following tables, listing real matrices, gives:

the NAG routine name and

the double precision LAPACK routine name.

Type of matrix and storage scheme

Operation general general band general tridiagonal

driver F07AAF (DGESV) F07BAF (DGBSV) F07CAF (DGTSV)

expert driver F07ABF (DGESVX) F07BBF (DGBSVX) F07CBF (DGTSVX)

mixed precision driver F07ACF (DSGESV)

factorize F07ADF (DGETRF) F07BDF (DGBTRF) F07CDF (DGTTRF)

solve F07AEF (DGETRS) F07BEF (DGBTRS) F07CEF (DGTTRS)

scaling factors F07AFF (DGEEQU) F07BFF (DGBEQU)

condition number F07AGF (DGECON) F07BGF (DGBCON) F07CGF (DGTCON)

error estimate F07AHF (DGERFS) F07BHF (DGBRFS) F07CHF (DGTRFS)

invert F07AJF (DGETRI)

Table 1
Routines for real general matrices

Type of matrix and storage scheme

Operation symmetric positive
definite

symmetric positive
definite (packed
storage)

symmetric positive
definite (RFP storage)

symmetric positive
definite band

symmetric positive
definite tridiagonal

symmetric positive
semidefinite

driver F07FAF (DPOSV) F07GAF (DPPSV) F07HAF (DPBSV) F07JAF (DPTSV)

expert driver F07FBF (DPOSVX) F07GBF (DPPSVX) F07HBF (DPBSVX) F07JBF (DPTSVX)

mixed precision F07FCF (DSPOSV)

factorize F07FDF (DPOTRF) F07GDF (DPPTRF) F07WDF (DPFTRF) F07HDF (DPBTRF) F07JDF (DPTTRF) F07KDF (DPSTRF)

solve F07FEF (DPOTRS) F07GEF (DPPTRS) F07WEF (DPFTRS) F07HEF (DPBTRS) F07JEF (DPTTRS)

scaling factors F07FFF (DPOEQU) F07GFF (DPPEQU) F07HFF (DPBEQU)

condition number F07FGF (DPOCON) F07GGF (DPPCON) F07HGF (DPBCON) F07JGF (DPTCON)

error estimate F07FHF (DPORFS) F07GHF (DPPRFS) F07HHF (DPBRFS) F07JHF (DPTRFS)

invert F07FJF (DPOTRI) F07GJF (DPPTRI) F07WJF (DPFTRI)

Table 2
Routines for real symmetric positive definite and positive semidefinite matrices
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Type of matrix and storage scheme

Operation symmetric indefinite symmetric indefinite
(packed storage)

driver F07MAF (DSYSV) F07PAF (DSPSV)

expert driver F07MBF (DSYSVX) F07PBF (DSPSVX)

factorize F07MDF (DSYTRF) F07PDF (DSPTRF)

solve F07MEF (DSYTRS) F07PEF (DSPTRS)

condition number F07MGF (DSYCON) F07PGF (DSPCON)

error estimate F07MHF (DSYRFS) F07PHF (DSPRFS)

invert F07MJF (DSYTRI) F07PJF (DSPTRI)

Table 3
Routines for real symmetric indefinite matrices

Type of matrix and storage scheme

Operation triangular triangular (packed
storage)

triangular (RFP
storage)

triangular band

solve F07TEF (DTRTRS) F07UEF (DTPTRS) F07VEF (DTBTRS)

condition number F07TGF (DTRCON) F07UGF (DTPCON) F07VGF (DTBCON)

error estimate F07THF (DTRRFS) F07UHF (DTPRFS) F07VHF (DTBRFS)

invert F07TJF (DTRTRI) F07UJF (DTPTRI) F07WKF (DTFTRI)

Table 4
Routines for real triangular matrices

3.5.2 Complex matrices

Each entry in the following tables, listing complex matrices, gives:

the NAG routine name and

the double precision LAPACK routine name.

Type of matrix and storage scheme

Operation general general band general tridiagonal

driver F07ANF (ZGESV) F07BNF (ZGBSV) F07CNF (ZGTSV)

expert driver F07APF (ZGESVX) F07BPF (ZGBSVX) F07CPF (ZGTSVX)

mixed precision driver F07AQF (ZCGESV)

factorize F07ARF (ZGETRF) F07BRF (ZGBTRF) F07CRF (ZGTTRF)

solve F07ASF (ZGETRS) F07BSF (ZGBTRS) F07CSF (ZGTTRS)

scaling factors F07ATF (ZGEEQU) F07BTF (ZGBEQU)

condition number F07AUF (ZGECON) F07BUF (ZGBCON) F07CUF (ZGTCON)

error estimate F07AVF (ZGERFS) F07BVF (ZGBRFS) F07CVF (ZGTRFS)

invert F07AWF (ZGETRI)

Table 5
Routines for complex general matrices
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Type of matrix and storage scheme

Operation Hermitian
positive definite

Hermitian
positive definite
(packed
storage)

Hermitian
positive definite
(RFP storage)

Hermitian
positive definite
band

Hermitian
positive definite
tridiagonal

Hermitian
positive
semidefinite

driver F07FNF
(ZPOSV)

F07GNF
(ZPPSV)

F07HNF
(ZPBSV)

F07JNF
(ZPTSV)

expert driver F07FPF
(ZPOSVX)

F07GPF
(ZPPSVX)

F07HPF
(ZPBSVX)

F07JPF
(ZPTSVX)

mixed precision driver F07FQF
(ZCPOSV)

factorize F07FRF
(ZPOTRF)

F07GRF
(ZPPTRF)

F07WRF
(ZPFTRF)

F07HRF
(ZPBTRF)

F07JRF
(ZPTTRF)

F07KRF
(ZPSTRF)

solve F07FSF
(ZPOTRS)

F07GSF
(ZPPTRS)

F07WSF
(ZPFTRS)

F07HSF
(ZPBTRS)

F07JSF
(ZPTTRS)

scaling factors F07FTF (ZPOE
QU)

F07GTF (ZPPE
QU)

condition number F07FUF (ZPO
CON)

F07GUF
(ZPPCON)

F07HUF
(ZPBCON)

F07JUF
(ZPTCON)

error estimate F07FVF
(ZPORFS)

F07GVF
(ZPPRFS)

F07HVF
(ZPBRFS)

F07JVF
(ZPTRFS)

invert F07FWF (ZPO
TRI)

F07GWF
(ZPPTRI)

F07WWF
(ZPFTRI)

Table 6
Routines for complex Hermitian positive definite and positive semidefinite matrices

Type of matrix and storage scheme

Operation Hermitian indefinite symmetric indefinite
(packed storage)

Hermitian indefinite
band

symmetric indefinite
tridiagonal

driver F07MNF (ZHESV) F07NNF (ZSYSV) F07PNF (ZHPSV) F07QNF (ZSPSV)

expert driver F07MPF (ZHESVX) F07NPF (ZSYSVX) F07PPF (ZHPSVX) F07QPF (ZSPSVX)

factorize F07MRF (ZHETRF) F07NRF (ZSYTRF) F07PRF (ZHPTRF) F07QRF (ZSPTRF)

solve F07MSF (ZHETRS) F07NSF (ZSYTRS) F07PSF (ZHPTRS) F07QSF (ZSPTRS)

condition number F07MUF (ZHECON) F07NUF (ZSYCON) F07PUF (ZHPCON) F07QUF (ZSPCON)

error estimate F07MVF (ZHERFS) F07NVF (ZSYRFS) F07PVF (ZHPRFS) F07QVF (ZSPRFS)

invert F07MWF (ZHETRI) F07NWF (ZSYTRI) F07PWF (ZHPTRI) F07QWF (ZSPTRI)

Table 7
Routines for complex Hermitian and symmetric indefinite matrices

Type of matrix and storage scheme

Operation triangular triangular (packed
storage)

triangular (RFP
storage)

triangular band

solve F07TSF (ZTRTRS) F07USF (ZTPTRS) F07VSF (ZTBTRS)

condition number F07TUF (ZTRCON) F07UUF (ZTPCON) F07VUF (ZTBCON)

error estimate F07TVF (ZTRRFS) F07UVF (ZTPRFS) F07VVF (ZTBRFS)

invert F07TWF (ZTRTRI) F07UWF (ZTPTRI) F07WXF (ZTFTRI)

Table 8
Routines for complex triangular matrices
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4 Functionality Index

Apply iterative refinement to the solution and compute error estimates,
after factorizing the matrix of coefficients,

complex band matrix .............................................................................. F07BVF (ZGBRFS)
complex Hermitian indefinite matrix....................................................... F07MVF (ZHERFS)
complex Hermitian indefinite matrix, packed storage ............................. F07PVF (ZHPRFS)
complex Hermitian positive definite band matrix ................................... F07HVF (ZPBRFS)
complex Hermitian positive definite matrix ............................................ F07FVF (ZPORFS)
complex Hermitian positive definite matrix, packed storage................... F07GVF (ZPPRFS)
complex Hermitian positive definite tridiagonal matrix .......................... F07JVF (ZPTRFS)
complex matrix ....................................................................................... F07AVF (ZGERFS)
complex symmetric indefinite matrix ...................................................... F07NVF (ZSYRFS)
complex symmetric indefinite matrix, packed storage............................. F07QVF (ZSPRFS)
complex tridiagonal matrix ..................................................................... F07CVF (ZGTRFS)
real band matrix...................................................................................... F07BHF (DGBRFS)
real matrix............................................................................................... F07AHF (DGERFS)
real symmetric indefinite matrix ............................................................. F07MHF (DSYRFS)
real symmetric indefinite matrix, packed storage .................................... F07PHF (DSPRFS)
real symmetric positive definite band matrix .......................................... F07HHF (DPBRFS)
real symmetric positive definite matrix ................................................... F07FHF (DPORFS)
real symmetric positive definite matrix, packed storage ......................... F07GHF (DPPRFS)
real symmetric positive definite tridiagonal matrix ................................. F07JHF (DPTRFS)
real tridiagonal matrix............................................................................. F07CHF (DGTRFS)

Compute error estimates,
complex triangular band matrix ................................................................... F07VVF (ZTBRFS)
complex triangular matrix ............................................................................ F07TVF (ZTRRFS)
complex triangular matrix, packed storage................................................... F07UVF (ZTPRFS)
real triangular band matrix........................................................................... F07VHF (DTBRFS)
real triangular matrix ................................................................................... F07THF (DTRRFS)
real triangular matrix, packed storage.......................................................... F07UHF (DTPRFS)

Compute row and column scalings,
complex band matrix ................................................................................... F07BTF (ZGBEQU)
complex Hermitian positive definite band matrix ........................................ F07HTF (ZPBEQU)
complex Hermitian positive definite matrix ................................................. F07FTF (ZPOEQU)
complex Hermitian positive definite matrix, packed storage........................ F07GTF (ZPPEQU)
complex matrix ............................................................................................ F07ATF (ZGEEQU)
real band matrix........................................................................................... F07BFF (DGBEQU)
real matrix.................................................................................................... F07AFF (DGEEQU)
real symmetric positive definite band matrix ............................................... F07HFF (DPBEQU)
real symmetric positive definite matrix ........................................................ F07FFF (DPOEQU)
real symmetric positive definite matrix, packed storage .............................. F07GFF (DPPEQU)

Condition number estimation,
after factorizing the matrix of coefficients,

complex band matrix .............................................................................. F07BUF (ZGBCON)
complex Hermitian indefinite matrix....................................................... F07MUF (ZHECON)
complex Hermitian indefinite matrix, packed storage ............................. F07PUF (ZHPCON)
complex Hermitian positive definite band matrix ................................... F07HUF (ZPBCON)
complex Hermitian positive definite matrix ............................................ F07FUF (ZPOCON)
complex Hermitian positive definite matrix, packed storage................... F07GUF (ZPPCON)
complex Hermitian positive definite tridiagonal matrix .......................... F07JUF (ZPTCON)
complex matrix ....................................................................................... F07AUF (ZGECON)
complex symmetric indefinite matrix ...................................................... F07NUF (ZSYCON)
complex symmetric indefinite matrix, packed storage............................. F07QUF (ZSPCON)
complex tridiagonal matrix ..................................................................... F07CUF (ZGTCON)
real band matrix...................................................................................... F07BGF (DGBCON)
real matrix............................................................................................... F07AGF (DGECON)
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real symmetric indefinite matrix ............................................................. F07MGF (DSYCON)
real symmetric indefinite matrix, packed storage .................................... F07PGF (DSPCON)
real symmetric positive definite band matrix .......................................... F07HGF (DPBCON)
real symmetric positive definite matrix ................................................... F07FGF (DPOCON)
real symmetric positive definite matrix, packed storage ......................... F07GGF (DPPCON)
real symmetric positive definite tridiagonal matrix ................................. F07JGF (DPTCON)
real tridiagonal matrix............................................................................. F07CGF (DGTCON)

complex triangular band matrix ................................................................... F07VUF (ZTBCON)
complex triangular matrix ............................................................................ F07TUF (ZTRCON)
complex triangular matrix, packed storage................................................... F07UUF (ZTPCON)
real triangular band matrix........................................................................... F07VGF (DTBCON)
real triangular matrix ................................................................................... F07TGF (DTRCON)
real triangular matrix, packed storage.......................................................... F07UGF (DTPCON)

LDLT factorization,
complex Hermitian positive definite tridiagonal matrix ............................... F07JRF (ZPTTRF)
real symmetric positive definite tridiagonal matrix ...................................... F07JDF (DPTTRF)

LLT or UTU factorization,
complex Hermitian positive definite band matrix ........................................ F07HRF (ZPBTRF)
complex Hermitian positive definite matrix ................................................. F07FRF (ZPOTRF)
complex Hermitian positive definite matrix, packed storage........................ F07GRF (ZPPTRF)
complex Hermitian positive definite matrix, RFP storage............................ F07WRF (ZPFTRF)
complex Hermitian positive semidefinite matrix .......................................... F07KRF (ZPSTRF)
real symmetric positive definite band matrix ............................................... F07HDF (DPBTRF)
real symmetric positive definite matrix ........................................................ F07FDF (DPOTRF)
real symmetric positive definite matrix, packed storage .............................. F07GDF (DPPTRF)
real symmetric positive definite matrix, RFP storage .................................. F07WDF (DPFTRF)
real symmetric positive semidefinite matrix................................................. F07KDF (DPSTRF)

LU factorization,
complex band matrix ................................................................................... F07BRF (ZGBTRF)
complex matrix ............................................................................................ F07ARF (ZGETRF)
complex tridiagonal matrix .......................................................................... F07CRF (ZGTTRF)
real band matrix........................................................................................... F07BDF (DGBTRF)
real matrix.................................................................................................... F07ADF (DGETRF)
real tridiagonal matrix.................................................................................. F07CDF (DGTTRF)

Matrix inversion,
after factorizing the matrix of coefficients,

complex Hermitian indefinite matrix....................................................... F07MWF (ZHETRI)
complex Hermitian indefinite matrix, packed storage ............................. F07PWF (ZHPTRI)
complex Hermitian positive definite matrix ............................................ F07FWF (ZPOTRI)
complex Hermitian positive definite matrix, packed storage................... F07GWF (ZPPTRI)
complex Hermitian positive definite matrix, RFP storage....................... F07WWF (ZPFTRI)
complex matrix ....................................................................................... F07AWF (ZGETRI)
complex symmetric indefinite matrix ...................................................... F07NWF (ZSYTRI)
complex symmetric indefinite matrix, packed storage............................. F07QWF (ZSPTRI)
real matrix............................................................................................... F07AJF (DGETRI)
real symmetric indefinite matrix ............................................................. F07MJF (DSYTRI)
real symmetric indefinite matrix, packed storage .................................... F07PJF (DSPTRI)
real symmetric positive definite matrix ................................................... F07FJF (DPOTRI)
real symmetric positive definite matrix, packed storage ......................... F07GJF (DPPTRI)
real symmetric positive definite matrix, RFP storage ............................. F07WJF (DPFTRI)

complex triangular matrix ............................................................................ F07TWF (ZTRTRI)
complex triangular matrix, packed storage................................................... F07UWF (ZTPTRI)
complex triangular matrix, RFP storage,

expert driver............................................................................................ F07WXF (ZTFTRI)
real triangular matrix ................................................................................... F07TJF (DTRTRI)
real triangular matrix, packed storage.......................................................... F07UJF (DTPTRI)
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real triangular matrix, RFP storage,
expert driver............................................................................................ F07WKF (DTFTRI)

PLDLTPT or PUDUTPT factorization,
complex Hermitian indefinite matrix............................................................ F07MRF (ZHETRF)
complex Hermitian indefinite matrix, packed storage .................................. F07PRF (ZHPTRF)
complex symmetric indefinite matrix ........................................................... F07NRF (ZSYTRF)
complex symmetric indefinite matrix, packed storage.................................. F07QRF (ZSPTRF)
real symmetric indefinite matrix .................................................................. F07MDF (DSYTRF)
real symmetric indefinite matrix, packed storage ......................................... F07PDF (DSPTRF)

Solution of simultaneous linear equations,
after factorizing the matrix of coefficients,

complex band matrix .............................................................................. F07BSF (ZGBTRS)
complex Hermitian indefinite matrix....................................................... F07MSF (ZHETRS)
complex Hermitian indefinite matrix, packed storage ............................. F07PSF (ZHPTRS)
complex Hermitian positive definite band matrix ................................... F07HSF (ZPBTRS)
complex Hermitian positive definite matrix ............................................ F07FSF (ZPOTRS)
complex Hermitian positive definite matrix, packed storage................... F07GSF (ZPPTRS)
complex Hermitian positive definite matrix, RFP storage....................... F07WSF (ZPFTRS)
complex Hermitian positive definite tridiagonal matrix .......................... F07JSF (ZPTTRS)
complex matrix ....................................................................................... F07ASF (ZGETRS)
complex symmetric indefinite matrix ...................................................... F07NSF (ZSYTRS)
complex symmetric indefinite matrix, packed storage............................. F07QSF (ZSPTRS)
complex tridiagonal matrix ..................................................................... F07CSF (ZGTTRS)
real band matrix...................................................................................... F07BEF (DGBTRS)
real matrix............................................................................................... F07AEF (DGETRS)
real symmetric indefinite matrix ............................................................. F07MEF (DSYTRS)
real symmetric indefinite matrix, packed storage .................................... F07PEF (DSPTRS)
real symmetric positive definite band matrix .......................................... F07HEF (DPBTRS)
real symmetric positive definite matrix ................................................... F07FEF (DPOTRS)
real symmetric positive definite matrix, packed storage ......................... F07GEF (DPPTRS)
real symmetric positive definite matrix, RFP storage ............................. F07WEF (DPFTRS)
real symmetric positive definite tridiagonal matrix ................................. F07JEF (DPTTRS)
real tridiagonal matrix............................................................................. F07CEF (DGTTRS)

expert drivers (with condition and error estimation):
complex band matrix .............................................................................. F07BPF (ZGBSVX)
complex Hermitian indefinite matrix....................................................... F07MPF (ZHESVX)
complex Hermitian indefinite matrix, packed storage ............................. F07PPF (ZHPSVX)
complex Hermitian positive definite band matrix ................................... F07HPF (ZPBSVX)
complex Hermitian positive definite matrix ............................................ F07FPF (ZPOSVX)
complex Hermitian positive definite matrix, packed storage................... F07GPF (ZPPSVX)
complex Hermitian positive definite tridiagonal matrix .......................... F07JPF (ZPTSVX)
complex matrix ....................................................................................... F07APF (ZGESVX)
complex symmetric indefinite matrix ...................................................... F07NPF (ZSYSVX)
complex symmetric indefinite matrix, packed storage............................. F07QPF (ZSPSVX)
complex tridiagonal matrix ..................................................................... F07CPF (ZGTSVX)
real band matrix...................................................................................... F07BBF (DGBSVX)
real matrix............................................................................................... F07ABF (DGESVX)
real symmetric indefinite matrix ............................................................. F07MBF (DSYSVX)
real symmetric indefinite matrix, packed storage .................................... F07PBF (DSPSVX)
real symmetric positive definite band matrix .......................................... F07HBF (DPBSVX)
real symmetric positive definite matrix ................................................... F07FBF (DPOSVX)
real symmetric positive definite matrix, packed storage ......................... F07GBF (DPPSVX)
real symmetric positive definite tridiagonal matrix ................................. F07JBF (DPTSVX)
real tridiagonal matrix............................................................................. F07CBF (DGTSVX)

simple drivers,
complex band matrix .............................................................................. F07BNF (ZGBSV)
complex Hermitian indefinite matrix....................................................... F07MNF (ZHESV)
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complex Hermitian indefinite matrix, packed storage ............................. F07PNF (ZHPSV)
complex Hermitian positive definite band matrix ................................... F07HNF (ZPBSV)
complex Hermitian positive definite matrix ............................................ F07FNF (ZPOSV)
complex Hermitian positive definite matrix, packed storage................... F07GNF (ZPPSV)
complex Hermitian positive definite matrix, using mixed precision ....... F07FQF (ZCPOSV)
complex Hermitian positive definite tridiagonal matrix .......................... F07JNF (ZPTSV)
complex matrix ....................................................................................... F07ANF (ZGESV)
complex matrix, using mixed precision .................................................. F07AQF (ZCGESV)
complex symmetric indefinite matrix ...................................................... F07NNF (ZSYSV)
complex symmetric indefinite matrix, packed storage............................. F07QNF (ZSPSV)
complex triangular band matrix .............................................................. F07VSF (ZTBTRS)
complex triangular matrix ....................................................................... F07TSF (ZTRTRS)
complex triangular matrix, packed storage.............................................. F07USF (ZTPTRS)
complex tridiagonal matrix ..................................................................... F07CNF (ZGTSV)
real band matrix...................................................................................... F07BAF (DGBSV)
real matrix............................................................................................... F07AAF (DGESV)
real matrix, using mixed precision.......................................................... F07ACF (DSGESV)
real symmetric indefinite matrix ............................................................. F07MAF (DSYSV)
real symmetric indefinite matrix, packed storage .................................... F07PAF (DSPSV)
real symmetric positive definite band matrix .......................................... F07HAF (DPBSV)
real symmetric positive definite matrix ................................................... F07FAF (DPOSV)
real symmetric positive definite matrix, packed storage ......................... F07GAF (DPPSV)
real symmetric positive definite matrix, using mixed precision .............. F07FCF (DSPOSV)
real symmetric positive definite tridiagonal matrix ................................. F07JAF (DPTSV)
real triangular band matrix...................................................................... F07VEF (DTBTRS)
real triangular matrix .............................................................................. F07TEF (DTRTRS)
real triangular matrix, packed storage..................................................... F07UEF (DTPTRS)
real tridiagonal matrix............................................................................. F07CAF (DGTSV)

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (1988) Algorithm 674: Fortran codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford
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NAG Library Routine Document

F07AAF (DGESV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07AAF (DGESV) computes the solution to a real system of linear equations

AX ¼ B;

where A is an n by n matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07AAF (N, NRHS, A, LDA, IPIV, B, LDB, INFO)

INTEGER N, NRHS, LDA, IPIV(N), LDB, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*)

The routine may be called by its LAPACK name dgesv.

3 Description

F07AAF (DGESV) uses the LU decomposition with partial pivoting and row interchanges to factor A
as

A ¼ PLU;

where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n coefficient matrix A.
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On exit: the factors L and U from the factorization A ¼ PLU; the unit diagonal elements of L
are not stored.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07AAF
(DGESV) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVðNÞ – INTEGER array Output

On exit: if no constraints are violated, the pivot indices that define the permutation matrix P ; at
the ith step row i of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ ¼ i indicates a row
interchange was not required.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07AAF
(DGESV) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies the equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.
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Following the use of F07AAF (DGESV), F07AGF (DGECON) can be used to estimate the condition
number of A and F07AHF (DGERFS) can be used to obtain approximate error bounds. Alternatives to
F07AAF (DGESV), which return condition and error estimates directly are F04BAF and F07ABF
(DGESVX).

8 Parallelism and Performance

F07AAF (DGESV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07AAF (DGESV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

3 þ 2n2r , where r is the number of
right-hand sides.

The complex analogue of this routine is F07ANF (ZGESV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the general matrix

A ¼
1:80 2:88 2:05 �0:89
5:25 �2:95 �0:95 �3:80
1:58 �2:69 �2:90 �1:04
�1:11 �0:66 �0:59 0:80

0B@
1CA and b ¼

9:52
24:35
0:77
�6:22

0B@
1CA:

Details of the LU factorization of A are also output.

10.1 Program Text

Program f07aafe

! F07AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgesv, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07AAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
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lda = n
ldb = n
Allocate (a(lda,n),b(ldb),ipiv(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*) b(1:n)

! Solve the equations Ax = b for x

! The NAG name equivalent of dgesv is f07aaf
Call dgesv(n,1,a,lda,ipiv,b,ldb,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Details of factorization’,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format ((3X,7F11.4))
99998 Format ((3X,7I11))
99997 Format (1X,A,I3,A,I3,A,A)

End Program f07aafe

10.2 Program Data

F07AAF Example Program Data

4 :Value of N

1.80 2.88 2.05 -0.89
5.25 -2.95 -0.95 -3.80
1.58 -2.69 -2.90 -1.04

-1.11 -0.66 -0.59 0.80 :End of matrix A

9.52 24.35 0.77 -6.22 :End of vector b

10.3 Program Results

F07AAF Example Program Results

Solution
1.0000 -1.0000 3.0000 -5.0000

Details of factorization
1 2 3 4

1 5.2500 -2.9500 -0.9500 -3.8000
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2 0.3429 3.8914 2.3757 0.4129
3 0.3010 -0.4631 -1.5139 0.2948
4 -0.2114 -0.3299 0.0047 0.1314

Pivot indices
2 2 3 4
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NAG Library Routine Document

F07ABF (DGESVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07ABF (DGESVX) uses the LU factorization to compute the solution to a real system of linear
equations

AX ¼ B or ATX ¼ B;

where A is an n by n matrix and X and B are n by r matrices. Error bounds on the solution and a
condition estimate are also provided.

2 Specification

SUBROUTINE F07ABF (FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED,
R, C, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK,
INFO)

&
&

INTEGER N, NRHS, LDA, LDAF, IPIV(*), LDB, LDX, IWORK(N),
INFO

&

REAL (KIND=nag_wp) A(LDA,*), AF(LDAF,*), R(*), C(*), B(LDB,*),
X(LDX,*), RCOND, FERR(NRHS), BERR(NRHS),
WORK(max(1,4*N))

&
&

CHARACTER(1) FACT, TRANS, EQUED

The routine may be called by its LAPACK name dgesvx.

3 Description

F07ABF (DGESVX) performs the following steps:

1. Equilibration

The linear system to be solved may be badly scaled. However, the system can be equilibrated as a
first stage by setting FACT ¼ E . In this case, real scaling factors are computed and these factors
then determine whether the system is to be equilibrated. Equilibrated forms of the systems
AX ¼ B and ATX ¼ B are

DRADCð Þ D�1C X
� �

¼ DRB

and

DRADCð ÞT D�1R X
� �

¼ DCB;

respectively, where DR and DC are diagonal matrices, with positive diagonal elements, formed
from the computed scaling factors.

When equilibration is used, A will be overwritten by DRADC and B will be overwritten by DRB
(or DCB when the solution of ATX ¼ B is sought).

2. Factorization

The matrix A, or its scaled form, is copied and factored using the LU decomposition

A ¼ PLU;

where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
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This stage can be by-passed when a factored matrix (with scaled matrices and scaling factors) are
supplied; for example, as provided by a previous call to F07ABF (DGESVX) with the same matrix
A.

3. Condition Number Estimation

The LU factorization of A determines whether a solution to the linear system exists. If some
diagonal element of U is zero, then U is exactly singular, no solution exists and the routine returns
with a failure. Otherwise the factorized form of A is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number is less than machine precision then a warning
code is returned on final exit.

4. Solution

The (equilibrated) system is solved for X (D�1C X or D�1R X) using the factored form of A
(DRADC).

5. Iterative Refinement

Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for the computed solution.

6. Construct Solution Matrix X

If equilibration was used, the matrix X is premultiplied by DC (if TRANS ¼ N ) or DR (if
TRANS ¼ T or C ) so that it solves the original system before equilibration.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

FACT ¼ F
AF and IPIV contain the factorized form of A. If EQUED 6¼ N , the matrix A has been
equilibrated with scaling factors given by R and C. A, AF and IPIV are not modified.

FACT ¼ N
The matrix A will be copied to AF and factorized.

FACT ¼ E
The matrix A will be equilibrated if necessary, then copied to AF and factorized.

Constraint: FACT ¼ F , N or E .

2: TRANS – CHARACTER(1) Input

On entry: specifies the form of the system of equations.

TRANS ¼ N
AX ¼ B (No transpose).
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TRANS ¼ T or C
ATX ¼ B (Transpose).

Constraint: TRANS ¼ N , T or C .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

If FACT ¼ F and EQUED 6¼ N , A must have been equilibrated by the scaling factors in R and/
or C.

On exit: if FACT ¼ F or N , or if FACT ¼ E and EQUED ¼ N , A is not modified.

If FACT ¼ E or EQUED 6¼ N , A is scaled as follows:

if EQUED ¼ R , A ¼ DRA;

if EQUED ¼ C , A ¼ ADC ;

if EQUED ¼ B , A ¼ DRADC .

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07ABF
(DGESVX) is called.

Constraint: LDA � max 1;Nð Þ.

7: AFðLDAF; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , AF contains the factors L and U from the factorization A ¼ PLU as
computed by F07ADF (DGETRF). If EQUED 6¼ N , AF is the factorized form of the equilibrated
matrix A.

If FACT ¼ N or E , AF need not be set.

On exit: if FACT ¼ N , AF returns the factors L and U from the factorization A ¼ PLU of the
original matrix A.

If FACT ¼ E , AF returns the factors L and U from the factorization A ¼ PLU of the
equilibrated matrix A (see the description of A for the form of the equilibrated matrix).

If FACT ¼ F , AF is unchanged from entry.

8: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07ABF (DGESVX) is called.

Constraint: LDAF � max 1;Nð Þ.
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9: IPIVð�Þ – INTEGER array Input/Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , IPIV contains the pivot indices from the factorization A ¼ PLU as
computed by F07ADF (DGETRF); at the ith step row i of the matrix was interchanged with row
IPIVðiÞ. IPIVðiÞ ¼ i indicates a row interchange was not required.

If FACT ¼ N or E , IPIV need not be set.

On exit: if FACT ¼ N , IPIV contains the pivot indices from the factorization A ¼ PLU of the
original matrix A.

If FACT ¼ E , IPIV contains the pivot indices from the factorization A ¼ PLU of the
equilibrated matrix A.

If FACT ¼ F , IPIV is unchanged from entry.

10: EQUED – CHARACTER(1) Input/Output

On entry: if FACT ¼ N or E , EQUED need not be set.

If FACT ¼ F , EQUED must specify the form of the equilibration that was performed as follows:

if EQUED ¼ N , no equilibration;

if EQUED ¼ R , row equilibration, i.e., A has been premultiplied by DR;

if EQUED ¼ C , column equilibration, i.e., A has been postmultiplied by DC;

if EQUED ¼ B , both row and column equilibration, i.e., A has been replaced by DRADC.

On exit: if FACT ¼ F , EQUED is unchanged from entry.

Otherwise, if no constraints are violated, EQUED specifies the form of equilibration that was
performed as specified above.

Constraint: if FACT ¼ F , EQUED ¼ N , R , C or B .

11: Rð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array R must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , R need not be set.

If FACT ¼ F and EQUED ¼ R or B , R must contain the row scale factors for A, DR; each
element of R must be positive.

On exit: if FACT ¼ F , R is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ R or B , R contains the row scale
factors for A, DR, such that A is multiplied on the left by DR; each element of R is positive.

12: Cð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array C must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , C need not be set.

If FACT ¼ F or EQUED ¼ C or B , C must contain the column scale factors for A, DC ; each
element of C must be positive.

On exit: if FACT ¼ F , C is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ C or B , C contains the row scale
factors for A, DC ; each element of C is positive.

13: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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On exit: if EQUED ¼ N , B is not modified.

If TRANS ¼ N and EQUED ¼ R or B , B is overwritten by DRB.

If TRANS ¼ T or C and EQUED ¼ C or B , B is overwritten by DCB.

14: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07ABF
(DGESVX) is called.

Constraint: LDB � max 1;Nð Þ.

15: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X to the original system of equations.
Note that the arrays A and B are modified on exit if EQUED 6¼ N , and the solution to the
equilibrated system is D�1C X if TRANS ¼ N and EQUED ¼ C or B , or D�1R X if TRANS ¼ T
or C and EQUED ¼ R or B .

16: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07ABF
(DGESVX) is called.

Constraint: LDX � max 1;Nð Þ.

17: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the

matrix A (after equilibration if that is performed), computed as RCOND ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

18: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

19: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

20: WORKðmax 1; 4� Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: WORKð1Þ contains the reciprocal pivot growth factor Ak k= Uk k. The ‘max absolute
element’ norm is used. If WORKð1Þ is much less than 1, then the stability of the LU
factorization of the (equilibrated) matrix A could be poor. This also means that the solution X,
condition estimate RCOND, and forward error bound FERR could be unreliable. If the
factorization fails with INFO > 0 and INFO � N, then WORKð1Þ contains the reciprocal pivot
growth factor for the leading INFO columns of A.

21: IWORKðNÞ – INTEGER array Workspace

22: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

U is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ej j � c nð Þ�P Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 9.3 of Higham (2002)
for further details.

If x is the true solution, then the computed solution x̂ satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07ABF (DGESVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07ABF (DGESVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 2
3n

3 floating-point operations.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves
approximately 2n2 operations.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.
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The complex analogue of this routine is F07APF (ZGESVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the general matrix

A ¼
1:80 2:88 2:05 �0:89

525:00 �295:00 �95:00 �380:00
1:58 �2:69 �2:90 �1:04
�1:11 �0:66 �0:59 �0:80

0B@
1CA

and

B ¼
9:52 18:47

2435:00 225:00
0:77 �13:28
�6:22 �6:21

0B@
1CA:

Error estimates for the solutions, information on scaling, an estimate of the reciprocal of the condition
number of the scaled matrix A and an estimate of the reciprocal of the pivot growth factor for the
factorization of A are also output.

10.1 Program Text

Program f07abfe

! F07ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgesvx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

n, nrhs
Character (1) :: equed

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), berr(:), &

c(:), ferr(:), r(:), work(:), x(:,:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07ABF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),berr(nrhs),c(n),ferr(nrhs), &

r(n),work(4*n),x(ldx,nrhs),ipiv(n),iwork(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)
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! Solve the equations AX = B for X

! The NAG name equivalent of dgesvx is f07abf
Call dgesvx(’Equilibration’,’No transpose’,n,nrhs,a,lda,af,ldaf,ipiv, &

equed,r,c,b,ldb,x,ldx,rcond,ferr,berr,work,iwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds, condition number, the form
! of equilibration and the pivot growth factor

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
If (equed==’N’) Then

Write (nout,*) ’A has not been equilibrated’
Else If (equed==’R’) Then

Write (nout,*) ’A has been row scaled as diag(R)*A’
Else If (equed==’C’) Then

Write (nout,*) ’A has been column scaled as A*diag(C)’
Else If (equed==’B’) Then

Write (nout,*) &
’A has been row and column scaled as diag(R)*A*diag(C)’

End If
Write (nout,*)
Write (nout,*) ’Reciprocal condition number estimate of scaled matrix’
Write (nout,99999) rcond
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal pivot growth factor’
Write (nout,99999) work(1)

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &
’ element of the factor U is zero’

End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07abfe

10.2 Program Data

F07ABF Example Program Data

4 2 :Values of N and NRHS

1.80 2.88 2.05 -0.89
525.00 -295.00 -95.00 -380.00

1.58 -2.69 -2.90 -1.04
-1.11 -0.66 -0.59 0.80 :End of matrix A

9.52 18.47
2435.00 225.00

0.77 -13.28
-6.22 -6.21 :End of matrix B
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10.3 Program Results

F07ABF Example Program Results

Solution(s)
1 2

1 1.0000 3.0000
2 -1.0000 2.0000
3 3.0000 4.0000
4 -5.0000 1.0000

Backward errors (machine-dependent)
6.8E-17 9.1E-17

Estimated forward error bounds (machine-dependent)
2.4E-14 3.6E-14

A has been row scaled as diag(R)*A

Reciprocal condition number estimate of scaled matrix
1.8E-02

Estimate of reciprocal pivot growth factor
7.4E-01
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NAG Library Routine Document

F07ACF (DSGESV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07ACF (DSGESV) computes the solution to a real system of linear equations

AX ¼ B;

where A is an n by n matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07ACF (N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, SWORK,
ITER, INFO)

&

INTEGER N, NRHS, LDA, IPIV(N), LDB, LDX, ITER, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), X(LDX,*), WORK(N*NRHS)
REAL (KIND=nag_rp) SWORK(N*(N+NRHS))

The routine may be called by its LAPACK name dsgesv.

3 Description

F07ACF (DSGESV) first attempts to factorize the matrix in single precision and use this factorization
within an iterative refinement procedure to produce a solution with full double precision accuracy. If the
approach fails the method switches to a double precision factorization and solve.

The iterative refinement process is stopped if

ITER > itermax;

where ITER is the number of iterations carried out thus far and itermax is the maximum number of
iterations allowed, which is fixed at 30 iterations. The process is also stopped if for all right-hand sides
we have

residk k <
ffiffiffiffi
N
p

xk k Ak k�;

where residk k is the 1-norm of the residual, xk k is the 1-norm of the solution, Ak k is the
1-operator-norm of the matrix A and � is the machine precision returned by X02AJF.

The iterative refinement strategy used by F07ACF (DSGESV) can be more efficient than the
corresponding direct full precision algorithm. Since this strategy must perform iterative refinement on
each right-hand side, any efficiency gains will reduce as the number of right-hand sides increases.
Conversely, as the matrix size increases the cost of these iterative refinements become less significant
relative to the cost of factorization. Thus, any efficiency gains will be greatest for a very small number
of right-hand sides and for large matrix sizes. The cut-off values for the number of right-hand sides and
matrix size, for which the iterative refinement strategy performs better, depends on the relative
performance of the reduced and full precision factorization and back-substitution. For now, F07ACF
(DSGESV) always attempts the iterative refinement strategy first; you are advised to compare the
performance of F07ACF (DSGESV) with that of its full precision counterpart F07AAF (DGESV) to
determine whether this strategy is worthwhile for your particular problem dimensions.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Buttari A, Dongarra J, Langou J, Langou J, Luszczek P and Kurzak J (2007) Mixed precision iterative
refinement techniques for the solution of dense linear systems International Journal of High
Performance Computing Applications

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n coefficient matrix A.

On exit: if iterative refinement has been successfully used (i.e., if INFO ¼ 0 and ITER � 0), then
A is unchanged. If double precision factorization has been used (when INFO ¼ 0 and ITER < 0),
A contains the factors L and U from the factorization A ¼ PLU; the unit diagonal elements of L
are not stored.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07ACF
(DSGESV) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVðNÞ – INTEGER array Output

On exit: if no constraints are violated, the pivot indices that define the permutation matrix P ; at
the ith step row i of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ ¼ i indicates a row
interchange was not required. IPIV corresponds either to the single precision factorization (if
INFO ¼ 0 and ITER � 0) or to the double precision factorization (if INFO ¼ 0 and ITER < 0).

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07ACF
(DSGESV) is called.

Constraint: LDB � max 1;Nð Þ.
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8: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0, the n by r solution matrix X.

9: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07ACF
(DSGESV) is called.

Constraint: LDX � max 1;Nð Þ.

10: WORKðN � NRHSÞ – REAL (KIND=nag_wp) array Workspace

11: SWORKðN� Nþ NRHSð ÞÞ – REAL (KIND=nag_rp) array Workspace

Note: this array is utilized in the reduced precision computation, consequently its type nag_rp
reflects this usage.

12: ITER – INTEGER Output

On exit: if ITER > 0, iterative refinement has been successfully used and ITER is the number of
iterations carried out.

If ITER < 0, iterative refinement has failed for one of the reasons given below and double
precision factorization has been carried out instead.

ITER ¼ �1
Taking into account machine parameters, and the values of N and NRHS, it is not worth
working in single precision.

ITER ¼ �2
Overflow of an entry occurred when moving from double to single precision.

ITER ¼ �3
An intermediate single precision factorization failed.

ITER ¼ �31
The maximum permitted number of iterations was exceeded.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies the equation of the form

Aþ Eð Þx̂ ¼ b;

where
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Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07ACF (DSGESV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07ACF (DSGESV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F07AQF (ZCGESV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the general matrix

A ¼
1:80 2:88 2:05 �0:89
5:25 �2:95 �0:95 �3:80
1:58 �2:69 �2:90 �1:04
�1:11 �0:66 �0:59 0:80

0B@
1CA and b ¼

9:52
24:35
0:77
�6:22

0B@
1CA:

10.1 Program Text

Program f07acfe

! F07ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsgesv, nag_rp, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, iter, lda, ldb, ldx, n, r

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), work(:), x(:,:)
Real (Kind=nag_rp), Allocatable :: swork(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07ACF Example Program Results’
Write (nout,*)
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! Skip heading in data file
Read (nin,*)
Read (nin,*) n, r
lda = n
ldb = n
ldx = n
Allocate (a(lda,n),b(n,r),work(n*r),x(ldx,r),swork(n*(n+r)),ipiv(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:r),i=1,n)

! Solve the equations Ax = b for x

! The NAG name equivalent of dsgesv is f07acf
Call dsgesv(n,r,a,lda,ipiv,b,ldb,x,ldx,work,swork,iter,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999)(x(i,1:r),i=1,n)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format ((3X,7F11.4))
99998 Format ((3X,7I11))
99997 Format (1X,A,I3,A,I3,A,A)

End Program f07acfe

10.2 Program Data

F07ACF Example Program Data

4 1 :Value of N, R

1.80 2.88 2.05 -0.89
5.25 -2.95 -0.95 -3.80
1.58 -2.69 -2.90 -1.04

-1.11 -0.66 -0.59 0.80 :End of matrix A

9.52 24.35 0.77 -6.22 :End of vector b

10.3 Program Results

F07ACF Example Program Results

Solution
1.0000 -1.0000 3.0000 -5.0000

Pivot indices
2 2 3 4
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NAG Library Routine Document

F07ADF (DGETRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07ADF (DGETRF) computes the LU factorization of a real m by n matrix.

2 Specification

SUBROUTINE F07ADF (M, N, A, LDA, IPIV, INFO)

INTEGER M, N, LDA, IPIV(min(M,N)), INFO
REAL (KIND=nag_wp) A(LDA,*)

The routine may be called by its LAPACK name dgetrf.

3 Description

F07ADF (DGETRF) forms the LU factorization of a real m by n matrix A as A ¼ PLU , where P is a
permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n) and
U is upper triangular (upper trapezoidal if m < n). Usually A is square m ¼ nð Þ, and both L and U are
triangular. The routine uses partial pivoting, with row interchanges.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: the factors L and U from the factorization A ¼ PLU; the unit diagonal elements of L
are not stored.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07ADF
(DGETRF) is called.

Constraint: LDA � max 1;Mð Þ.
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5: IPIVðmin M;Nð ÞÞ – INTEGER array Output

On exit: the pivot indices that define the permutation matrix. At the ith step, if IPIVðiÞ > i then
row i of the matrix A was interchanged with row IPIVðiÞ, for i ¼ 1; 2; . . . ;min m;nð Þ. IPIVðiÞ � i
indicates that, at the ith step, a row interchange was not required.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, and division by zero will occur if it is used to solve a system of
equations.

7 Accuracy

The computed factors L and U are the exact factors of a perturbed matrix Aþ E, where
Ej j � c min m;nð Þð Þ�P Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F07ADF (DGETRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07ADF (DGETRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

3 if m ¼ n (the usual case),
1
3n

2 3m� nð Þ if m > n and 1
3m

2 3n�mð Þ if m < n.

A call to this routine with m ¼ n may be followed by calls to the routines:

F07AEF (DGETRS) to solve AX ¼ B or ATX ¼ B;
F07AGF (DGECON) to estimate the condition number of A;

F07AJF (DGETRI) to compute the inverse of A.

The complex analogue of this routine is F07ARF (ZGETRF).
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10 Example

This example computes the LU factorization of the matrix A, where

A ¼
1:80 2:88 2:05 �0:89
5:25 �2:95 �0:95 �3:80
1:58 �2:69 �2:90 �1:04
�1:11 �0:66 �0:59 0:80

0B@
1CA:

10.1 Program Text

Program f07adfe

! F07ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgetrf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’F07ADF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
Allocate (a(lda,n),ipiv(n))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Factorize A

! The NAG name equivalent of dgetrf is f07adf
Call dgetrf(m,n,a,lda,ipiv,info)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,m,n,a,lda,’Details of factorization’,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’IPIV’
Write (nout,99999) ipiv(1:min(m,n))

If (info/=0) Then
Write (nout,*) ’The factor U is singular’

End If

99999 Format ((3X,7I11))
End Program f07adfe
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10.2 Program Data

F07ADF Example Program Data
4 4 :Values of M and N
1.80 2.88 2.05 -0.89
5.25 -2.95 -0.95 -3.80
1.58 -2.69 -2.90 -1.04

-1.11 -0.66 -0.59 0.80 :End of matrix A

10.3 Program Results

F07ADF Example Program Results

Details of factorization
1 2 3 4

1 5.2500 -2.9500 -0.9500 -3.8000
2 0.3429 3.8914 2.3757 0.4129
3 0.3010 -0.4631 -1.5139 0.2948
4 -0.2114 -0.3299 0.0047 0.1314

IPIV
2 2 3 4
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NAG Library Routine Document

F07AEF (DGETRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07AEF (DGETRS) solves a real system of linear equations with multiple right-hand sides,

AX ¼ B or ATX ¼ B;

where A has been factorized by F07ADF (DGETRF).

2 Specification

SUBROUTINE F07AEF (TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)

INTEGER N, NRHS, LDA, IPIV(*), LDB, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) TRANS

The routine may be called by its LAPACK name dgetrs.

3 Description

F07AEF (DGETRS) is used to solve a real system of linear equations AX ¼ B or ATX ¼ B, the
routine must be preceded by a call to F07ADF (DGETRF) which computes the LU factorization of A
as A ¼ PLU . The solution is computed by forward and backward substitution.

If TRANS ¼ N , the solution is computed by solving PLY ¼ B and then UX ¼ Y .
If TRANS ¼ T or C , the solution is computed by solving UTY ¼ B and then LTPTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
AX ¼ B is solved for X.

TRANS ¼ T or C
ATX ¼ B is solved for X.

Constraint: TRANS ¼ N , T or C .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07ADF (DGETRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07AEF
(DGETRS) is called.

Constraint: LDA � max 1;Nð Þ.

6: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07ADF (DGETRF).

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07AEF
(DGETRS) is called.

Constraint: LDB � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

Ej j � c nð Þ�P Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.
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Note that cond A; xð Þ can be much smaller than cond Að Þ, and cond ATð Þ can be much larger (or smaller)
than cond Að Þ.
Forward and backward error bounds can be computed by calling F07AHF (DGERFS), and an estimate
for �1 Að Þ can be obtained by calling F07AGF (DGECON) with NORM ¼ I .

8 Parallelism and Performance

F07AEF (DGETRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07AEF (DGETRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2n2r.

This routine may be followed by a call to F07AHF (DGERFS) to refine the solution and return an error
estimate.

The complex analogue of this routine is F07ASF (ZGETRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
1:80 2:88 2:05 �0:89
5:25 �2:95 �0:95 �3:80
1:58 �2:69 �2:90 �1:04
�1:11 �0:66 �0:59 0:80

0B@
1CA and B ¼

9:52 18:47
24:35 2:25
0:77 �13:28
�6:22 �6:21

0B@
1CA:

Here A is nonsymmetric and must first be factorized by F07ADF (DGETRF).

10.1 Program Text

Program f07aefe

! F07AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgetrf, dgetrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07AEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
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ldb = n
Allocate (a(lda,n),b(ldb,nrhs),ipiv(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A

! The NAG name equivalent of dgetrf is f07adf
Call dgetrf(n,n,a,lda,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution

! The NAG name equivalent of dgetrs is f07aef
Call dgetrs(trans,n,nrhs,a,lda,ipiv,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,*) ’The factor U is singular’

End If

End Program f07aefe

10.2 Program Data

F07AEF Example Program Data
4 2 :Values of N and NRHS
1.80 2.88 2.05 -0.89
5.25 -2.95 -0.95 -3.80
1.58 -2.69 -2.90 -1.04

-1.11 -0.66 -0.59 0.80 :End of matrix A
9.52 18.47

24.35 2.25
0.77 -13.28

-6.22 -6.21 :End of matrix B

10.3 Program Results

F07AEF Example Program Results

Solution(s)
1 2

1 1.0000 3.0000
2 -1.0000 2.0000
3 3.0000 4.0000
4 -5.0000 1.0000
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NAG Library Routine Document

F07AFF (DGEEQU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07AFF (DGEEQU) computes diagonal scaling matrices DR and DC intended to equilibrate a real m
by n matrix A and reduce its condition number.

2 Specification

SUBROUTINE F07AFF (M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO)

INTEGER M, N, LDA, INFO
REAL (KIND=nag_wp) A(LDA,*), R(M), C(N), ROWCND, COLCND, AMAX

The routine may be called by its LAPACK name dgeequ.

3 Description

F07AFF (DGEEQU) computes the diagonal scaling matrices. The diagonal scaling matrices are chosen
to try to make the elements of largest absolute value in each row and column of the matrix B given by

B ¼ DRADC

have absolute value 1. The diagonal elements of DR and DC are restricted to lie in the safe range
�; 1=�ð Þ, where � is the value returned by routine X02AMF. Use of these scaling factors is not
guaranteed to reduce the condition number of A but works well in practice.

4 References

None.

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A whose scaling factors are to be computed.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07AFF
(DGEEQU) is called.

Constraint: LDA � max 1;Mð Þ.
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5: RðMÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or INFO > M, R contains the row scale factors, the diagonal elements of
DR. The elements of R will be positive.

6: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, C contains the column scale factors, the diagonal elements of DC . The
elements of C will be positive.

7: ROWCND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0 or INFO > M, ROWCND contains the ratio of the smallest value of RðiÞ to
the largest value of RðiÞ. If ROWCND � 0:1 and AMAX is neither too large nor too small, it is
not worth scaling by DR.

8: COLCND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0, COLCND contains the ratio of the smallest value of CðiÞ to the largest
value of CðiÞ.
If COLCND � 0:1, it is not worth scaling by DC.

9: AMAX – REAL (KIND=nag_wp) Output

On exit: max aij
		 		. If AMAX is very close to overflow or underflow, the matrix A should be

scaled.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � M

Row valueh i of A is exactly zero.

INFO > M

Column valueh i of A is exactly zero.

7 Accuracy

The computed scale factors will be close to the exact scale factors.

8 Parallelism and Performance

F07AFF (DGEEQU) is not threaded in any implementation.

9 Further Comments

The complex analogue of this routine is F07ATF (ZGEEQU).
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10 Example

This example equilibrates the general matrix A given by

A ¼
1:80� 1010 2:88� 1010 2:05 �8:90� 109

5:25 �2:95 �9:50� 10�9 �3:80
1:58 �2:69 �2:90� 10�10 �1:04
�1:11 �0:66 �5:90� 10�11 0:80

0BB@
1CCA:

Details of the scaling factors, and the scaled matrix are output.

10.1 Program Text

Program f07affe

! F07AFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgeequ, dscal, f06fcf, nag_wp, x02ajf, x02amf, &

x02bhf, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: thresh = 0.1_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: amax, big, colcnd, rowcnd, small
Integer :: i, ifail, info, j, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), c(:), r(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F07AFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),c(n),r(n))

! Read the N by N matrix A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Print the matrix A

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Matrix A’,ifail)
Write (nout,*)

! Compute row and column scaling factors

! The NAG name equivalent of dgeequ is f07aff
Call dgeequ(n,n,a,lda,r,c,rowcnd,colcnd,amax,info)

If (info>0) Then
If (info<=n) Then

Write (nout,99999) ’Row ’, info, ’ of A is exactly zero’
Else

Write (nout,99999) ’Column ’, info - n, ’ of A is exactly zero’
End If

Else
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! Print ROWCND, COLCND, AMAX and the scale factors

Write (nout,99998) ’ROWCND =’, rowcnd, ’, COLCND =’, colcnd, &
’, AMAX =’, amax

Write (nout,*)
Write (nout,*) ’Row scale factors’
Write (nout,99997) r(1:n)
Write (nout,*)
Write (nout,*) ’Column scale factors’
Write (nout,99997) c(1:n)
Write (nout,*)
Flush (nout)

! Compute values close to underflow and overflow

small = x02amf()/(x02ajf()*real(x02bhf(),kind=nag_wp))
big = one/small
If ((rowcnd>=thresh) .And. (amax>=small) .And. (amax<=big)) Then

If (colcnd<thresh) Then

! Just column scale A
! The NAG name equivalent of dscal is f06edf

Do j = 1, n
Call dscal(n,c(j),a(1,j),1)

End Do

End If
Else If (colcnd>=thresh) Then

! Just row scale A
Do j = 1, n

Call f06fcf(n,r,1,a(1,j),1)
End Do

Else

! Row and column scale A
Do j = 1, n

Call dscal(n,c(j),a(1,j),1)
Call f06fcf(n,r,1,a(1,j),1)

End Do

End If

! Print the scaled matrix
ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Scaled matrix’,ifail)

End If

99999 Format (1X,A,I4,A)
99998 Format (1X,3(A,1P,E8.1))
99997 Format ((1X,1P,7E11.2))

End Program f07affe

10.2 Program Data

F07AFF Example Program Data

4 :Value of N

1.80D+10 2.88D+10 2.05D+00 -8.90D+09
5.25D+00 -2.95D+00 -9.50D-09 -3.80D+00
1.58D+00 -2.69D+00 -2.90D-10 -1.04D+00

-1.11D+00 -6.60D-01 -5.90D-11 8.00D-01 :End of matrix A
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10.3 Program Results

F07AFF Example Program Results

Matrix A
1 2 3 4

1 1.8000E+10 2.8800E+10 2.0500E+00 -8.9000E+09
2 5.2500E+00 -2.9500E+00 -9.5000E-09 -3.8000E+00
3 1.5800E+00 -2.6900E+00 -2.9000E-10 -1.0400E+00
4 -1.1100E+00 -6.6000E-01 -5.9000E-11 8.0000E-01

ROWCND = 3.9E-11, COLCND = 1.8E-09, AMAX = 2.9E+10

Row scale factors
3.47E-11 1.90E-01 3.72E-01 9.01E-01

Column scale factors
1.00E+00 1.00E+00 5.53E+08 1.38E+00

Scaled matrix
1 2 3 4

1 0.6250 1.0000 0.0393 -0.4269
2 1.0000 -0.5619 -1.0000 -1.0000
3 0.5874 -1.0000 -0.0596 -0.5341
4 -1.0000 -0.5946 -0.0294 0.9957
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NAG Library Routine Document

F07AGF (DGECON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07AGF (DGECON) estimates the condition number of a real matrix A, where A has been factorized
by F07ADF (DGETRF).

2 Specification

SUBROUTINE F07AGF (NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK, INFO)

INTEGER N, LDA, IWORK(N), INFO
REAL (KIND=nag_wp) A(LDA,*), ANORM, RCOND, WORK(4*N)
CHARACTER(1) NORM

The routine may be called by its LAPACK name dgecon.

3 Description

F07AGF (DGECON) estimates the condition number of a real matrix A, in either the 1-norm or the
1-norm:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
or �1 Að Þ ¼ Ak k1 A�1

�� ��
1:

Note that �1 Að Þ ¼ �1 ATð Þ.
Because the condition number is infinite if A is singular, the routine actually returns an estimate of the
reciprocal of the condition number.

The routine should be preceded by a call to F06RAF to compute Ak k1 or Ak k1, and a call to F07ADF
(DGETRF) to compute the LU factorization of A. The routine then uses Higham's implementation of
Hager's method (see Higham (1988)) to estimate A�1

�� ��
1
or A�1
�� ��

1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: indicates whether �1 Að Þ or �1 Að Þ is estimated.

NORM ¼ 1 or O
�1 Að Þ is estimated.

NORM ¼ I
�1 Að Þ is estimated.

Constraint: NORM ¼ 1 , O or I .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07ADF (DGETRF).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07AGF
(DGECON) is called.

Constraint: LDA � max 1;Nð Þ.

5: ANORM – REAL (KIND=nag_wp) Input

On entry: if NORM ¼ 1 or O , the 1-norm of the original matrix A.

If NORM ¼ I , the 1-norm of the original matrix A.

ANORM may be computed by calling F06RAF with the same value for the argument NORM.

ANORM must be computed either before calling F07ADF (DGETRF) or else from a copy of the
original matrix A (see Section 10).

Constraint: ANORM � 0:0.

6: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

7: WORKð4� NÞ – REAL (KIND=nag_wp) array Workspace

8: IWORKðNÞ – INTEGER array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07AGF (DGECON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

A call to F07AGF (DGECON) involves solving a number of systems of linear equations of the form
Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves
approximately 2n2 floating-point operations but takes considerably longer than a call to F07AEF
(DGETRS) with one right-hand side, because extra care is taken to avoid overflow when A is
approximately singular.

The complex analogue of this routine is F07AUF (ZGECON).

10 Example

This example estimates the condition number in the 1-norm of the matrix A, where

A ¼
1:80 2:88 2:05 �0:89
5:25 �2:95 �0:95 �3:80
1:58 �2:69 �2:90 �1:04
�1:11 �0:66 �0:59 0:80

0B@
1CA:

Here A is nonsymmetric and must first be factorized by F07ADF (DGETRF). The true condition
number in the 1-norm is 152:16.

10.1 Program Text

Program f07agfe

! F07AGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgecon, dgetrf, dlange => f06raf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: norm = ’1’

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07AGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),work(4*n),ipiv(n),iwork(n))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Compute norm of A

! f06raf is the NAG name equivalent of the LAPACK auxiliary dlange
anorm = dlange(norm,n,n,a,lda,work)

! Factorize A
! The NAG name equivalent of dgetrf is f07adf

Call dgetrf(n,n,a,lda,ipiv,info)

Write (nout,*)
If (info==0) Then
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! Estimate condition number

! The NAG name equivalent of dgecon is f07agf
Call dgecon(norm,n,a,lda,anorm,rcond,work,iwork,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0E0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’The factor U is singular’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07agfe

10.2 Program Data

F07AGF Example Program Data
4 :Value of N
1.80 2.88 2.05 -0.89
5.25 -2.95 -0.95 -3.80
1.58 -2.69 -2.90 -1.04

-1.11 -0.66 -0.59 0.80 :End of matrix A

10.3 Program Results

F07AGF Example Program Results

Estimate of condition number = 1.52E+02
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NAG Library Routine Document

F07AHF (DGERFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07AHF (DGERFS) returns error bounds for the solution of a real system of linear equations with
multiple right-hand sides, AX ¼ B or ATX ¼ B. It improves the solution by iterative refinement, in
order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07AHF (TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
LDX, FERR, BERR, WORK, IWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, IPIV(*), LDB, LDX, IWORK(N),
INFO

&

REAL (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
FERR(NRHS), BERR(NRHS), WORK(3*N)

&

CHARACTER(1) TRANS

The routine may be called by its LAPACK name dgerfs.

3 Description

F07AHF (DGERFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a real system of linear equations with multiple right-hand sides AX ¼ B or ATX ¼ B. The
routine handles each right-hand side vector (stored as a column of the matrix B) independently, so we
describe the function of F07AHF (DGERFS) in terms of a single right-hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: indicates the form of the linear equations for which X is the computed solution.

TRANS ¼ N
The linear equations are of the form AX ¼ B.

TRANS ¼ T or C
The linear equations are of the form ATX ¼ B.

Constraint: TRANS ¼ N , T or C .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n original matrix A as supplied to F07ADF (DGETRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07AHF
(DGERFS) is called.

Constraint: LDA � max 1;Nð Þ.

6: AFðLDAF; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07ADF (DGETRF).

7: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07AHF (DGERFS) is called.

Constraint: LDAF � max 1;Nð Þ.

8: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07ADF (DGETRF).

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07AHF
(DGERFS) is called.

Constraint: LDB � max 1;Nð Þ.

11: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07AEF (DGETRS).

On exit: the improved solution matrix X.

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07AHF
(DGERFS) is called.

Constraint: LDX � max 1;Nð Þ.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

15: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

16: IWORKðNÞ – INTEGER array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07AHF (DGERFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07AHF (DGERFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n2 floating-point
operations. Each step of iterative refinement involves an additional 6n2 operations. At most five steps of
iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves
approximately 2n2 operations.

The complex analogue of this routine is F07AVF (ZGERFS).

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
1:80 2:88 2:05 �0:89
5:25 �2:95 �0:95 �3:80
1:58 �2:69 �2:90 �1:04
�1:11 �0:66 �0:59 0:80

0B@
1CA and B ¼

9:52 18:47
24:35 2:25
0:77 �13:28
�6:22 �6:21

0B@
1CA:

Here A is nonsymmetric and must first be factorized by F07ADF (DGETRF).

10.1 Program Text

Program f07ahfe

! F07AHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgerfs, dgetrf, dgetrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

n, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), berr(:), &
ferr(:), work(:), x(:,:)

Integer, Allocatable :: ipiv(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F07AHF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),berr(nrhs),ferr(nrhs), &

work(3*n),x(ldx,n),ipiv(n),iwork(n))

! Read A and B from data file, and copy A to AF and B to X

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)
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af(1:n,1:n) = a(1:n,1:n)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AF

! The NAG name equivalent of dgetrf is f07adf
Call dgetrf(n,n,af,ldaf,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X

! The NAG name equivalent of dgetrs is f07aef
Call dgetrs(trans,n,nrhs,af,ldaf,ipiv,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of dgerfs is f07ahf
Call dgerfs(trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,x,ldx,ferr,berr, &

work,iwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’The factor U is singular’

End If

99999 Format ((3X,1P,7E11.1))
End Program f07ahfe

10.2 Program Data

F07AHF Example Program Data
4 2 :Values of N and NRHS
1.80 2.88 2.05 -0.89
5.25 -2.95 -0.95 -3.80
1.58 -2.69 -2.90 -1.04

-1.11 -0.66 -0.59 0.80 :End of matrix A
9.52 18.47

24.35 2.25
0.77 -13.28

-6.22 -6.21 :End of matrix B

10.3 Program Results

F07AHF Example Program Results

Solution(s)
1 2

1 1.0000 3.0000
2 -1.0000 2.0000
3 3.0000 4.0000
4 -5.0000 1.0000
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Backward errors (machine-dependent)
9.4E-17 3.7E-17

Estimated forward error bounds (machine-dependent)
2.4E-14 3.3E-14
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NAG Library Routine Document

F07AJF (DGETRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07AJF (DGETRI) computes the inverse of a real matrix A, where A has been factorized by F07ADF
(DGETRF).

2 Specification

SUBROUTINE F07AJF (N, A, LDA, IPIV, WORK, LWORK, INFO)

INTEGER N, LDA, IPIV(*), LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dgetri.

3 Description

F07AJF (DGETRI) is used to compute the inverse of a real matrix A, the routine must be preceded by a
call to F07ADF (DGETRF), which computes the LU factorization of A as A ¼ PLU . The inverse of A
is computed by forming U�1 and then solving the equation XPL ¼ U�1 for X.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07ADF (DGETRF).

On exit: the factorization is overwritten by the n by n matrix A�1.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07AJF
(DGETRI) is called.

Constraint: LDA � max 1;Nð Þ.

4: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07ADF (DGETRF).
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5: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimum
performance.

6: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F07AJF
(DGETRI) is called, unless LWORK ¼ �1, in which case a workspace query is assumed and the
routine only calculates the optimal dimension of WORK (using the formula given below).

Suggested value: for optimum performance LWORK should be at least N� nb, where nb is the
block size.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is zero. U is singular, and the inverse of A cannot be computed.

7 Accuracy

The computed inverse X satisfies a bound of the form:

XA� Ij j � c nð Þ� Xj jP Lj j Uj j;

where c nð Þ is a modest linear function of n, and � is the machine precision.

Note that a similar bound for AX � Ij j cannot be guaranteed, although it is almost always satisfied. See
Du Croz and Higham (1992).

8 Parallelism and Performance

F07AJF (DGETRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4
3n

3 .

The complex analogue of this routine is F07AWF (ZGETRI).
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10 Example

This example computes the inverse of the matrix A, where

A ¼
1:80 2:88 2:05 �0:89
5:25 �2:95 �0:95 �3:80
1:58 �2:69 �2:90 �1:04
�1:11 �0:66 �0:59 0:80

0B@
1CA:

Here A is nonsymmetric and must first be factorized by F07ADF (DGETRF).

10.1 Program Text

Program f07ajfe

! F07AJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgetrf, dgetri, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07AJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),work(lwork),ipiv(n))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Factorize A

! The NAG name equivalent of dgetrf is f07adf
Call dgetrf(n,n,a,lda,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute inverse of A

! The NAG name equivalent of dgetri is f07ajf
Call dgetri(n,a,lda,ipiv,work,lwork,info)

! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Inverse’,ifail)

Else
Write (nout,*) ’The factor U is singular’

End If

End Program f07ajfe
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10.2 Program Data

F07AJF Example Program Data
4 :Value of N
1.80 2.88 2.05 -0.89
5.25 -2.95 -0.95 -3.80
1.58 -2.69 -2.90 -1.04

-1.11 -0.66 -0.59 0.80 :End of matrix A

10.3 Program Results

F07AJF Example Program Results

Inverse
1 2 3 4

1 1.7720 0.5757 0.0843 4.8155
2 -0.1175 -0.4456 0.4114 -1.7126
3 0.1799 0.4527 -0.6676 1.4824
4 2.4944 0.7650 -0.0360 7.6119
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NAG Library Routine Document

F07ANF (ZGESV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07ANF (ZGESV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07ANF (N, NRHS, A, LDA, IPIV, B, LDB, INFO)

INTEGER N, NRHS, LDA, IPIV(N), LDB, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)

The routine may be called by its LAPACK name zgesv.

3 Description

F07ANF (ZGESV) uses the LU decomposition with partial pivoting and row interchanges to factor A
as

A ¼ PLU;

where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n coefficient matrix A.
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On exit: the factors L and U from the factorization A ¼ PLU; the unit diagonal elements of L
are not stored.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07ANF
(ZGESV) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVðNÞ – INTEGER array Output

On exit: if no constraints are violated, the pivot indices that define the permutation matrix P ; at
the ith step row i of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ ¼ i indicates a row
interchange was not required.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07ANF
(ZGESV) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies the equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.
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Following the use of F07ANF (ZGESV), F07AUF (ZGECON) can be used to estimate the condition
number of A and F07AVF (ZGERFS) can be used to obtain approximate error bounds. Alternatives to
F07ANF (ZGESV), which return condition and error estimates directly are F04CAF and F07APF
(ZGESVX).

8 Parallelism and Performance

F07ANF (ZGESV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07ANF (ZGESV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 8
3n

3 þ 8n2r , where r is the number of
right-hand sides.

The real analogue of this routine is F07AAF (DGESV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the general matrix

A ¼
�1:34þ 2:55i 0:28þ 3:17i �6:39� 2:20i 0:72� 0:92i
�0:17� 1:41i 3:31� 0:15i �0:15þ 1:34i 1:29þ 1:38i
�3:29� 2:39i �1:91þ 4:42i �0:14� 1:35i 1:72þ 1:35i
2:41þ 0:39i �0:56þ 1:47i �0:83� 0:69i �1:96þ 0:67i

0B@
1CA and b ¼

26:26þ 51:78i
6:43� 8:68i
�5:75þ 25:31i
1:16þ 2:57i

0B@
1CA:

Details of the LU factorization of A are also output.

10.1 Program Text

Program f07anfe

! F07ANF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgesv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07ANF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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Read (nin,*) n
lda = n
ldb = n
Allocate (a(lda,n),b(ldb),ipiv(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*) b(1:n)

! Solve the equations Ax = b for x

! The NAG name equivalent of zgesv is f07anf
Call zgesv(n,1,a,lda,ipiv,b,ldb,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
99998 Format (1X,7I11)
99997 Format (1X,A,I3,A,I3,A,A)

End Program f07anfe

10.2 Program Data

F07ANF Example Program Data

4 :Value of N

(-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92)
(-0.17,-1.41) ( 3.31,-0.15) (-0.15, 1.34) ( 1.29, 1.38)
(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35)
( 2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A

(26.26,51.78) ( 6.43,-8.68) (-5.75,25.31) ( 1.16, 2.57) :End of vector b

10.3 Program Results

F07ANF Example Program Results

Solution
( 1.0000, 1.0000) ( 2.0000,-3.0000) (-4.0000,-5.0000) ( 0.0000, 6.0000)

Details of factorization
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1 2 3 4
1 (-3.2900,-2.3900) (-1.9100, 4.4200) (-0.1400,-1.3500) ( 1.7200, 1.3500)
2 ( 0.2376, 0.2560) ( 4.8952,-0.7114) (-0.4623, 1.6966) ( 1.2269, 0.6190)
3 (-0.1020,-0.7010) (-0.6691, 0.3689) (-5.1414,-1.1300) ( 0.9983, 0.3850)
4 (-0.5359, 0.2707) (-0.2040, 0.8601) ( 0.0082, 0.1211) ( 0.1482,-0.1252)

Pivot indices
3 2 3 4
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NAG Library Routine Document

F07APF (ZGESVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07APF (ZGESVX) uses the LU factorization to compute the solution to a complex system of linear
equations

AX ¼ B or ATX ¼ B or AHX ¼ B;

where A is an n by n matrix and X and B are n by r matrices. Error bounds on the solution and a
condition estimate are also provided.

2 Specification

SUBROUTINE F07APF (FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED,
R, C, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK,
INFO)

&
&

INTEGER N, NRHS, LDA, LDAF, IPIV(*), LDB, LDX, INFO
REAL (KIND=nag_wp) R(*), C(*), RCOND, FERR(NRHS), BERR(NRHS),

RWORK(max(1,2*N))
&

COMPLEX (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
WORK(2*N)

&

CHARACTER(1) FACT, TRANS, EQUED

The routine may be called by its LAPACK name zgesvx.

3 Description

F07APF (ZGESVX) performs the following steps:

1. Equilibration

The linear system to be solved may be badly scaled. However, the system can be equilibrated as a
first stage by setting FACT ¼ E . In this case, real scaling factors are computed and these factors
then determine whether the system is to be equilibrated. Equilibrated forms of the systems
AX ¼ B, ATX ¼ B and AHX ¼ B are

DRADCð Þ D�1C X
� �

¼ DRB;

DRADCð ÞT D�1R X
� �

¼ DCB;

and

DRADCð ÞH D�1R X
� �

¼ DCB;

respectively, where DR and DC are diagonal matrices, with positive diagonal elements, formed
from the computed scaling factors.

When equilibration is used, A will be overwritten by DRADC and B will be overwritten by DRB
(or DCB when the solution of ATX ¼ B or AHX ¼ B is sought).

2. Factorization

The matrix A, or its scaled form, is copied and factored using the LU decomposition

A ¼ PLU;

where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
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This stage can be by-passed when a factored matrix (with scaled matrices and scaling factors) are
supplied; for example, as provided by a previous call to F07APF (ZGESVX) with the same matrix
A.

3. Condition Number Estimation

The LU factorization of A determines whether a solution to the linear system exists. If some
diagonal element of U is zero, then U is exactly singular, no solution exists and the routine returns
with a failure. Otherwise the factorized form of A is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number is less than machine precision then a warning
code is returned on final exit.

4. Solution

The (equilibrated) system is solved for X (D�1C X or D�1R X) using the factored form of A
(DRADC).

5. Iterative Refinement

Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for the computed solution.

6. Construct Solution Matrix X

If equilibration was used, the matrix X is premultiplied by DC (if TRANS ¼ N ) or DR (if
TRANS ¼ T or C ) so that it solves the original system before equilibration.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

FACT ¼ F
AF and IPIV contain the factorized form of A. If EQUED 6¼ N , the matrix A has been
equilibrated with scaling factors given by R and C. A, AF and IPIV are not modified.

FACT ¼ N
The matrix A will be copied to AF and factorized.

FACT ¼ E
The matrix A will be equilibrated if necessary, then copied to AF and factorized.

Constraint: FACT ¼ F , N or E .

2: TRANS – CHARACTER(1) Input

On entry: specifies the form of the system of equations.

TRANS ¼ N
AX ¼ B (No transpose).

TRANS ¼ T
ATX ¼ B (Transpose).
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TRANS ¼ C
AHX ¼ B (Conjugate transpose).

Constraint: TRANS ¼ N , T or C .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

If FACT ¼ F and EQUED 6¼ N , A must have been equilibrated by the scaling factors in R and/
or C.

On exit: if FACT ¼ F or N , or if FACT ¼ E and EQUED ¼ N , A is not modified.

If FACT ¼ E or EQUED 6¼ N , A is scaled as follows:

if EQUED ¼ R , A ¼ DRA;

if EQUED ¼ C , A ¼ ADC ;

if EQUED ¼ B , A ¼ DRADC .

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07APF
(ZGESVX) is called.

Constraint: LDA � max 1;Nð Þ.

7: AFðLDAF; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , AF contains the factors L and U from the factorization A ¼ PLU as
computed by F07ARF (ZGETRF). If EQUED 6¼ N , AF is the factorized form of the equilibrated
matrix A.

If FACT ¼ N or E , AF need not be set.

On exit: if FACT ¼ N , AF returns the factors L and U from the factorization A ¼ PLU of the
original matrix A.

If FACT ¼ E , AF returns the factors L and U from the factorization A ¼ PLU of the
equilibrated matrix A (see the description of A for the form of the equilibrated matrix).

If FACT ¼ F , AF is unchanged from entry.

8: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07APF (ZGESVX) is called.

Constraint: LDAF � max 1;Nð Þ.
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9: IPIVð�Þ – INTEGER array Input/Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , IPIV contains the pivot indices from the factorization A ¼ PLU as
computed by F07ARF (ZGETRF); at the ith step row i of the matrix was interchanged with row
IPIVðiÞ. IPIVðiÞ ¼ i indicates a row interchange was not required.

If FACT ¼ N or E , IPIV need not be set.

On exit: if FACT ¼ N , IPIV contains the pivot indices from the factorization A ¼ PLU of the
original matrix A.

If FACT ¼ E , IPIV contains the pivot indices from the factorization A ¼ PLU of the
equilibrated matrix A.

If FACT ¼ F , IPIV is unchanged from entry.

10: EQUED – CHARACTER(1) Input/Output

On entry: if FACT ¼ N or E , EQUED need not be set.

If FACT ¼ F , EQUED must specify the form of the equilibration that was performed as follows:

if EQUED ¼ N , no equilibration;

if EQUED ¼ R , row equilibration, i.e., A has been premultiplied by DR;

if EQUED ¼ C , column equilibration, i.e., A has been postmultiplied by DC;

if EQUED ¼ B , both row and column equilibration, i.e., A has been replaced by DRADC.

On exit: if FACT ¼ F , EQUED is unchanged from entry.

Otherwise, if no constraints are violated, EQUED specifies the form of equilibration that was
performed as specified above.

Constraint: if FACT ¼ F , EQUED ¼ N , R , C or B .

11: Rð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array R must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , R need not be set.

If FACT ¼ F and EQUED ¼ R or B , R must contain the row scale factors for A, DR; each
element of R must be positive.

On exit: if FACT ¼ F , R is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ R or B , R contains the row scale
factors for A, DR, such that A is multiplied on the left by DR; each element of R is positive.

12: Cð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array C must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , C need not be set.

If FACT ¼ F or EQUED ¼ C or B , C must contain the column scale factors for A, DC ; each
element of C must be positive.

On exit: if FACT ¼ F , C is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ C or B , C contains the row scale
factors for A, DC ; each element of C is positive.

13: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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On exit: if EQUED ¼ N , B is not modified.

If TRANS ¼ N and EQUED ¼ R or B , B is overwritten by DRB.

If TRANS ¼ T or C and EQUED ¼ C or B , B is overwritten by DCB.

14: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07APF
(ZGESVX) is called.

Constraint: LDB � max 1;Nð Þ.

15: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X to the original system of equations.
Note that the arrays A and B are modified on exit if EQUED 6¼ N , and the solution to the
equilibrated system is D�1C X if TRANS ¼ N and EQUED ¼ C or B , or D�1R X if TRANS ¼ T
or C and EQUED ¼ R or B .

16: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07APF
(ZGESVX) is called.

Constraint: LDX � max 1;Nð Þ.

17: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the

matrix A (after equilibration if that is performed), computed as RCOND ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

18: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

19: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

20: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

21: RWORKðmax 1; 2� Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: RWORKð1Þ contains the reciprocal pivot growth factor Ak k= Uk k. The ‘max absolute
element’ norm is used. If RWORKð1Þ is much less than 1, then the stability of the LU
factorization of the (equilibrated) matrix A could be poor. This also means that the solution X,
condition estimator RCOND, and forward error bound FERR could be unreliable. If factorization
fails with INFO > 0 and INFO � N, then RWORKð1Þ contains the reciprocal pivot growth factor
for the leading INFO columns of A.

22: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

U is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ej j � c nð Þ�P Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 9.3 of Higham (2002)
for further details.

If x is the true solution, then the computed solution x̂ satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07APF (ZGESVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07APF (ZGESVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 8
3n

3 floating-point operations.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves
approximately 8n2 operations.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.
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The real analogue of this routine is F07ABF (DGESVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the general matrix

A ¼
�1:34þ 2:55i 0:28þ 3:17i �6:39� 2:20i 0:72� 0:92i
�1:70� 14:10i 33:10� 1:50i �1:50þ 13:40i 12:90þ 13:80i
�3:29� 2:39i �1:91þ 4:42i �0:14� 1:35i 1:72þ 1:35i
2:41þ 0:39i �0:56þ 1:47i �0:83� 0:69i �1:96þ 0:67i

0B@
1CA

and

B ¼
26:26þ 51:78i 31:32� 6:70i
64:30� 86:80i 158:60� 14:20i
�5:75þ 25:31i �2:15þ 30:19i
1:16þ 2:57i �2:56þ 7:55i

0B@
1CA:

Error estimates for the solutions, information on scaling, an estimate of the reciprocal of the condition
number of the scaled matrix A and an estimate of the reciprocal of the pivot growth factor for the
factorization of A are also output.

10.1 Program Text

Program f07apfe

! F07APF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgesvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

n, nrhs
Character (1) :: equed

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), c(:), ferr(:), r(:), &

rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07APF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),work(2*n),x(ldx,nrhs), &

berr(nrhs),c(n),ferr(nrhs),r(n),rwork(2*n),ipiv(n))

! Read A and B from data file
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Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! The NAG name equivalent of zgesvx is f07apf
Call zgesvx(’Equilibrate’,’No transpose’,n,nrhs,a,lda,af,ldaf,ipiv, &

equed,r,c,b,ldb,x,ldx,rcond,ferr,berr,work,rwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds, condition number, the form
! of equilibration and the pivot growth factor

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
If (equed==’N’) Then

Write (nout,*) ’A has not been equilibrated’
Else If (equed==’R’) Then

Write (nout,*) ’A has been row scaled as diag(R)*A’
Else If (equed==’C’) Then

Write (nout,*) ’A has been column scaled as A*diag(C)’
Else If (equed==’B’) Then

Write (nout,*) &
’A has been row and column scaled as diag(R)*A*diag(C)’

End If
Write (nout,*)
Write (nout,*) ’Reciprocal condition number estimate of scaled matrix’
Write (nout,99999) rcond
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal pivot growth factor’
Write (nout,99999) rwork(1)

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &
’ element of the factor U is zero’

End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07apfe

10.2 Program Data

F07APF Example Program Data

4 2 :Values of N and NRHS

(-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92)
(-1.70,-14.10) ( 33.10, -1.50) (-1.50,13.40) (12.90,13.80)
(-3.29, -2.39) ( -1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35)
( 2.41, 0.39) ( -0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A
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(26.26, 51.78) ( 31.32, -6.70)
(64.30,-86.80) (158.60,-14.20)
(-5.75, 25.31) ( -2.15, 30.19)
( 1.16, 2.57) ( -2.56, 7.55) :End of matrix B

10.3 Program Results

F07APF Example Program Results

Solution(s)
1 2

1 ( 1.0000, 1.0000) (-1.0000,-2.0000)
2 ( 2.0000,-3.0000) ( 5.0000, 1.0000)
3 (-4.0000,-5.0000) (-3.0000, 4.0000)
4 ( 0.0000, 6.0000) ( 2.0000,-3.0000)

Backward errors (machine-dependent)
5.3E-17 4.8E-17

Estimated forward error bounds (machine-dependent)
5.8E-14 7.4E-14

A has been row scaled as diag(R)*A

Reciprocal condition number estimate of scaled matrix
1.0E-02

Estimate of reciprocal pivot growth factor
8.3E-01
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NAG Library Routine Document

F07AQF (ZCGESV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07AQF (ZCGESV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07AQF (N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, SWORK,
RWORK, ITER, INFO)

&

INTEGER N, NRHS, LDA, IPIV(N), LDB, LDX, ITER, INFO
REAL (KIND=nag_wp) RWORK(N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), X(LDX,*), WORK(N*NRHS)
COMPLEX (KIND=nag_rp) SWORK(N*(N+NRHS))

The routine may be called by its LAPACK name zcgesv.

3 Description

F07AQF (ZCGESV) first attempts to factorize the matrix in single precision and use this factorization
within an iterative refinement procedure to produce a solution with double precision accuracy. If the
approach fails the method switches to a double precision factorization and solve.

The iterative refinement process is stopped if

ITER > itermax;

where ITER is the number of iterations carried out thus far and itermax is the maximum number of
iterations allowed, which is fixed at 30 iterations. The process is also stopped if for all right-hand sides
we have

residk k <
ffiffiffiffi
N
p

xk k Ak k�;

where residk k is the 1-norm of the residual, xk k is the 1-norm of the solution, Ak k is the
1-operator-norm of the matrix A and � is the machine precision returned by X02AJF.

The iterative refinement strategy used by F07AQF (ZCGESV) can be more efficient than the
corresponding direct full precision algorithm. Since this strategy must perform iterative refinement on
each right-hand side, any efficiency gains will reduce as the number of right-hand sides increases.
Conversely, as the matrix size increases the cost of these iterative refinements become less significant
relative to the cost of factorization. Thus, any efficiency gains will be greatest for a very small number
of right-hand sides and for large matrix sizes. The cut-off values for the number of right-hand sides and
matrix size, for which the iterative refinement strategy performs better, depends on the relative
performance of the reduced and full precision factorization and back-substitution. For now, F07AQF
(ZCGESV) always attempts the iterative refinement strategy first; you are advised to compare the
performance of F07AQF (ZCGESV) with that of its full precision counterpart F07ANF (ZGESV) to
determine whether this strategy is worthwhile for your particular problem dimensions.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Buttari A, Dongarra J, Langou J, Langou J, Luszczek P and Kurzak J (2007) Mixed precision iterative
refinement techniques for the solution of dense linear systems International Journal of High
Performance Computing Applications

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n coefficient matrix A.

On exit: if iterative refinement has been successfully used (i.e., if INFO ¼ 0 and ITER � 0), then
A is unchanged. If double precision factorization has been used (when INFO ¼ 0 and ITER < 0),
A contains the factors L and U from the factorization A ¼ PLU; the unit diagonal elements of L
are not stored.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07AQF
(ZCGESV) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVðNÞ – INTEGER array Output

On exit: if no constraints are violated, the pivot indices that define the permutation matrix P ; at
the ith step row i of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ ¼ i indicates a row
interchange was not required. IPIV corresponds either to the single precision factorization (if
INFO ¼ 0 and ITER � 0) or to the double precision factorization (if INFO ¼ 0 and ITER < 0).

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07AQF
(ZCGESV) is called.

Constraint: LDB � max 1;Nð Þ.
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8: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0, the n by r solution matrix X.

9: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07AQF
(ZCGESV) is called.

Constraint: LDX � max 1;Nð Þ.

10: WORKðN � NRHSÞ – COMPLEX (KIND=nag_wp) array Workspace

11: SWORKðN� Nþ NRHSð ÞÞ – COMPLEX (KIND=nag_rp) array Workspace

Note: this array is utilized in the reduced precision computation, consequently its type nag_rp
reflects this usage.

12: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

13: ITER – INTEGER Output

On exit: if ITER > 0, iterative refinement has been successfully used and ITER is the number of
iterations carried out.

If ITER < 0, iterative refinement has failed for one of the reasons given below and double
precision factorization has been carried out instead.

ITER ¼ �1
Taking into account machine parameters, and the values of N and NRHS, it is not worth
working in single precision.

ITER ¼ �2
Overflow of an entry occurred when moving from double to single precision.

ITER ¼ �3
An intermediate single precision factorization failed.

ITER ¼ �31
The maximum permitted number of iterations was exceeded.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution could not be computed.
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7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies the equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07AQF (ZCGESV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07AQF (ZCGESV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F07ACF (DSGESV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the general matrix

A ¼
�1:34þ 2:55i 0:28þ 3:17i �6:39� 2:20i 0:72� 0:92i
�0:17� 1:41i 3:31� 0:15i �0:15þ 1:34i 1:29þ 1:38i
�3:29� 2:39i �1:91þ 4:42i �0:14� 1:35i 1:72þ 1:35i
2:41þ 0:39i �0:56þ 1:47i �0:83� 0:69i �1:96þ 0:67i

0B@
1CA and b ¼

26:26þ 51:78i
6:43� 8:68i
�5:75þ 25:31i
1:16þ 2:57i

0B@
1CA:

10.1 Program Text

Program f07aqfe

! F07AQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_rp, nag_wp, zcgesv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, iter, j, lda, ldb, ldx, n, &

r
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! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), work(:), x(:,:)
Complex (Kind=nag_rp), Allocatable :: swork(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07AQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, r
lda = n
ldb = n
ldx = n
Allocate (a(lda,n),b(ldb,r),work(n*r),x(ldx,r),swork(n*(n+ &

r)),ipiv(n),rwork(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:r),i=1,n)

! Solve the equations Ax = b for x

! The NAG name equivalent of zcgesv is f07aqf
Call zcgesv(n,r,a,lda,ipiv,b,ldb,x,ldx,work,swork,rwork,iter,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999)((x(i,r),j=1,r),i=1,n)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
99998 Format (1X,7I11)
99997 Format (1X,A,I3,A,I3,A,A)

End Program f07aqfe

10.2 Program Data

F07AQF Example Program Data

4 1 :Value of N, R

(-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92)
(-0.17,-1.41) ( 3.31,-0.15) (-0.15, 1.34) ( 1.29, 1.38)
(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35)
( 2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A

(26.26,51.78) ( 6.43,-8.68) (-5.75,25.31) ( 1.16, 2.57) :End of vector b
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10.3 Program Results

F07AQF Example Program Results

Solution
( 1.0000, 1.0000) ( 2.0000,-3.0000) (-4.0000,-5.0000) ( 0.0000, 6.0000)

Pivot indices
3 2 3 4
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NAG Library Routine Document

F07ARF (ZGETRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07ARF (ZGETRF) computes the LU factorization of a complex m by n matrix.

2 Specification

SUBROUTINE F07ARF (M, N, A, LDA, IPIV, INFO)

INTEGER M, N, LDA, IPIV(min(M,N)), INFO
COMPLEX (KIND=nag_wp) A(LDA,*)

The routine may be called by its LAPACK name zgetrf.

3 Description

F07ARF (ZGETRF) forms the LU factorization of a complex m by n matrix A as A ¼ PLU , where P
is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n)
and U is upper triangular (upper trapezoidal if m < n). Usually A is square m ¼ nð Þ, and both L and U
are triangular. The routine uses partial pivoting, with row interchanges.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: the factors L and U from the factorization A ¼ PLU; the unit diagonal elements of L
are not stored.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07ARF
(ZGETRF) is called.

Constraint: LDA � max 1;Mð Þ.
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5: IPIVðmin M;Nð ÞÞ – INTEGER array Output

On exit: the pivot indices that define the permutation matrix. At the ith step, if IPIVðiÞ > i then
row i of the matrix A was interchanged with row IPIVðiÞ, for i ¼ 1; 2; . . . ;min m;nð Þ. IPIVðiÞ � i
indicates that, at the ith step, a row interchange was not required.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, and division by zero will occur if it is used to solve a system of
equations.

7 Accuracy

The computed factors L and U are the exact factors of a perturbed matrix Aþ E, where
Ej j � c min m;nð Þð Þ�P Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F07ARF (ZGETRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07ARF (ZGETRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3n

3 if m ¼ n (the usual case),
4
3n

2 3m� nð Þ if m > n and 4
3m

2 3n�mð Þ if m < n.

A call to this routine with m ¼ n may be followed by calls to the routines:

F07ASF (ZGETRS) to solve AX ¼ B, ATX ¼ B or AHX ¼ B;
F07AUF (ZGECON) to estimate the condition number of A;

F07AWF (ZGETRI) to compute the inverse of A.

The real analogue of this routine is F07ADF (DGETRF).
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10 Example

This example computes the LU factorization of the matrix A, where

A ¼
�1:34þ 2:55i 0:28þ 3:17i �6:39� 2:20i 0:72� 0:92i
�0:17� 1:41i 3:31� 0:15i �0:15þ 1:34i 1:29þ 1:38i
�3:29� 2:39i �1:91þ 4:42i �0:14� 1:35i 1:72þ 1:35i
2:41þ 0:39i �0:56þ 1:47i �0:83� 0:69i �1:96þ 0:67i

0B@
1CA:

10.1 Program Text

Program f07arfe

! F07ARF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgetrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, m, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’F07ARF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
Allocate (a(lda,n),ipiv(n))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Factorize A

! The NAG name equivalent of zgetrf is f07arf
Call zgetrf(m,n,a,lda,ipiv,info)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,m,n,a,lda,’Bracketed’,’F7.4’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’IPIV’
Write (nout,99999) ipiv(1:min(m,n))

If (info/=0) Then
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Write (nout,*) ’The factor U is singular’
End If

99999 Format ((1X,I12,3I18))
End Program f07arfe

10.2 Program Data

F07ARF Example Program Data
4 4 :Values of M and N

(-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92)
(-0.17,-1.41) ( 3.31,-0.15) (-0.15, 1.34) ( 1.29, 1.38)
(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35)
( 2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A

10.3 Program Results

F07ARF Example Program Results

Details of factorization
1 2 3 4

1 (-3.2900,-2.3900) (-1.9100, 4.4200) (-0.1400,-1.3500) ( 1.7200, 1.3500)
2 ( 0.2376, 0.2560) ( 4.8952,-0.7114) (-0.4623, 1.6966) ( 1.2269, 0.6190)
3 (-0.1020,-0.7010) (-0.6691, 0.3689) (-5.1414,-1.1300) ( 0.9983, 0.3850)
4 (-0.5359, 0.2707) (-0.2040, 0.8601) ( 0.0082, 0.1211) ( 0.1482,-0.1252)

IPIV
3 2 3 4
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NAG Library Routine Document

F07ASF (ZGETRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07ASF (ZGETRS) solves a complex system of linear equations with multiple right-hand sides,

AX ¼ B; ATX ¼ B or AHX ¼ B;

where A has been factorized by F07ARF (ZGETRF).

2 Specification

SUBROUTINE F07ASF (TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)

INTEGER N, NRHS, LDA, IPIV(*), LDB, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) TRANS

The routine may be called by its LAPACK name zgetrs.

3 Description

F07ASF (ZGETRS) is used to solve a complex system of linear equations AX ¼ B, ATX ¼ B or
AHX ¼ B, the routine must be preceded by a call to F07ARF (ZGETRF) which computes the LU
factorization of A as A ¼ PLU . The solution is computed by forward and backward substitution.

If TRANS ¼ N , the solution is computed by solving PLY ¼ B and then UX ¼ Y .

If TRANS ¼ T , the solution is computed by solving UTY ¼ B and then LTPTX ¼ Y .
If TRANS ¼ C , the solution is computed by solving UHY ¼ B and then LHPTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
AX ¼ B is solved for X.

TRANS ¼ T
ATX ¼ B is solved for X.

TRANS ¼ C
AHX ¼ B is solved for X.

Constraint: TRANS ¼ N , T or C .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07ARF (ZGETRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07ASF
(ZGETRS) is called.

Constraint: LDA � max 1;Nð Þ.

6: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07ARF (ZGETRF).

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07ASF
(ZGETRS) is called.

Constraint: LDB � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

Ej j � c nð Þ�P Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision.
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If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ, and cond AHð Þ (which is the same as
cond ATð Þ) can be much larger (or smaller) than cond Að Þ.
Forward and backward error bounds can be computed by calling F07AVF (ZGERFS), and an estimate
for �1 Að Þ can be obtained by calling F07AUF (ZGECON) with NORM ¼ I .

8 Parallelism and Performance

F07ASF (ZGETRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07ASF (ZGETRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8n2r.

This routine may be followed by a call to F07AVF (ZGERFS) to refine the solution and return an error
estimate.

The real analogue of this routine is F07AEF (DGETRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
�1:34þ 2:55i 0:28þ 3:17i �6:39� 2:20i 0:72� 0:92i
�0:17� 1:41i 3:31� 0:15i �0:15þ 1:34i 1:29þ 1:38i
�3:29� 2:39i �1:91þ 4:42i �0:14� 1:35i 1:72þ 1:35i
2:41þ 0:39i �0:56þ 1:47i �0:83� 0:69i �1:96þ 0:67i

0B@
1CA

and

B ¼
26:26þ 51:78i 31:32� 6:70i
6:43� 8:68i 15:86� 1:42i
�5:75þ 25:31i �2:15þ 30:19i
1:16þ 2:57i �2:56þ 7:55i

0B@
1CA:

Here A is nonsymmetric and must first be factorized by F07ARF (ZGETRF).

10.1 Program Text

Program f07asfe

! F07ASF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgetrf, zgetrs

! .. Implicit None Statement ..
Implicit None
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! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07ASF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,nrhs),ipiv(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A

! The NAG name equivalent of zgetrf is f07arf
Call zgetrf(n,n,a,lda,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution

! The NAG name equivalent of zgetrs is f07asf
Call zgetrs(trans,n,nrhs,a,lda,ipiv,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’The factor U is singular’

End If

End Program f07asfe

10.2 Program Data

F07ASF Example Program Data
4 2 :Values of N and NRHS

(-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92)
(-0.17,-1.41) ( 3.31,-0.15) (-0.15, 1.34) ( 1.29, 1.38)
(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35)
( 2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A
(26.26, 51.78) (31.32, -6.70)
( 6.43, -8.68) (15.86, -1.42)
(-5.75, 25.31) (-2.15, 30.19)
( 1.16, 2.57) (-2.56, 7.55) :End of matrix B
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10.3 Program Results

F07ASF Example Program Results

Solution(s)
1 2

1 ( 1.0000, 1.0000) (-1.0000,-2.0000)
2 ( 2.0000,-3.0000) ( 5.0000, 1.0000)
3 (-4.0000,-5.0000) (-3.0000, 4.0000)
4 ( 0.0000, 6.0000) ( 2.0000,-3.0000)
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NAG Library Routine Document

F07ATF (ZGEEQU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07ATF (ZGEEQU) computes real diagonal scaling matrices DR and DC intended to equilibrate a
complex m by n matrix A and reduce its condition number.

2 Specification

SUBROUTINE F07ATF (M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO)

INTEGER M, N, LDA, INFO
REAL (KIND=nag_wp) R(M), C(N), ROWCND, COLCND, AMAX
COMPLEX (KIND=nag_wp) A(LDA,*)

The routine may be called by its LAPACK name zgeequ.

3 Description

F07ATF (ZGEEQU) computes the diagonal scaling matrices. The diagonal scaling matrices are chosen
to try to make the elements of largest absolute value in each row and column of the matrix B given by

B ¼ DRADC

have absolute value 1. The diagonal elements of DR and DC are restricted to lie in the safe range
�; 1=�ð Þ, where � is the value returned by routine X02AMF. Use of these scaling factors is not
guaranteed to reduce the condition number of A but works well in practice.

4 References

None.

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A whose scaling factors are to be computed.
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4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07ATF
(ZGEEQU) is called.

Constraint: LDA � max 1;Mð Þ.

5: RðMÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or INFO > M, R contains the row scale factors, the diagonal elements of
DR. The elements of R will be positive.

6: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, C contains the column scale factors, the diagonal elements of DC . The
elements of C will be positive.

7: ROWCND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0 or INFO > M, ROWCND contains the ratio of the smallest value of RðiÞ to
the largest value of RðiÞ. If ROWCND � 0:1 and AMAX is neither too large nor too small, it is
not worth scaling by DR.

8: COLCND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0, COLCND contains the ratio of the smallest value of CðiÞ to the largest
value of CðiÞ.
If COLCND � 0:1, it is not worth scaling by DC.

9: AMAX – REAL (KIND=nag_wp) Output

On exit: max aij
		 		. If AMAX is very close to overflow or underflow, the matrix A should be

scaled.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � M

Row valueh i of A is exactly zero.

INFO > M

Column valueh i of A is exactly zero.

7 Accuracy

The computed scale factors will be close to the exact scale factors.

8 Parallelism and Performance

F07ATF (ZGEEQU) is not threaded in any implementation.
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9 Further Comments

The real analogue of this routine is F07AFF (DGEEQU).

10 Example

This example equilibrates the general matrix A given by

A ¼
�1:34þ 2:55i 0:28þ 3:17ið Þ � 1010 �6:39� 2:20i
�1:70� 1:41i 3:31� 0:15ið Þ � 1010 �0:15þ 1:34i
2:41þ 0:39ið Þ � 10�10 �0:56þ 1:47i �0:83� 0:69ið Þ � 10�10

0@ 1A:
Details of the scaling factors, and the scaled matrix are output.

10.1 Program Text

Program f07atfe

! F07ATF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06kcf, nag_wp, x02ajf, x02amf, x02bhf, x04dbf, &

zdscal, zgeequ
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: thresh = 0.1_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: amax, big, colcnd, rowcnd, small
Integer :: i, ifail, info, j, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp), Allocatable :: c(:), r(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F07ATF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),c(n),r(n))

! Read the N by N matrix A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Print the matrix A

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’1P,E10.2’,’Matrix A’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)

! Compute row and column scaling factors

! The NAG name equivalent of zgeequ is f07atf
Call zgeequ(n,n,a,lda,r,c,rowcnd,colcnd,amax,info)
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If (info>0) Then
If (info<=n) Then

Write (nout,99999) ’Row ’, info, ’ of A is exactly zero’
Else

Write (nout,99999) ’Column ’, info - n, ’ of A is exactly zero’
End If

Else

! Print ROWCND, COLCND, AMAX and the scale factors

Write (nout,99998) ’ROWCND =’, rowcnd, ’, COLCND =’, colcnd, &
’, AMAX =’, amax

Write (nout,*)
Write (nout,*) ’Row scale factors’
Write (nout,99997) r(1:n)
Write (nout,*)
Write (nout,*) ’Column scale factors’
Write (nout,99997) c(1:n)
Write (nout,*)
Flush (nout)

! Compute values close to underflow and overflow

small = x02amf()/(x02ajf()*real(x02bhf(),kind=nag_wp))
big = one/small
If ((rowcnd>=thresh) .And. (amax>=small) .And. (amax<=big)) Then

If (colcnd<thresh) Then

! Just column scale A
! The NAG name equivalent of zdscal is f06jdf

Do j = 1, n
Call zdscal(n,c(j),a(1,j),1)

End Do

End If
Else If (colcnd>=thresh) Then

! Just row scale A
Do j = 1, n

Call f06kcf(n,r,1,a(1,j),1)
End Do

Else

! Row and column scale A
Do j = 1, n

Call zdscal(n,c(j),a(1,j),1)
Call f06kcf(n,r,1,a(1,j),1)

End Do

End If

! Print the scaled matrix
ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’ ’,’Scaled matrix’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If

99999 Format (1X,A,I4,A)
99998 Format (1X,3(A,1P,E8.1))
99997 Format ((1X,1P,7E11.2))

End Program f07atfe
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10.2 Program Data

F07ATF Example Program Data

3 :Value of N

(-1.34D+00, 2.55D+00) ( 0.28D+10, 3.17D+10) (-6.39D+00,-2.20D+00)
(-1.70D+00,-1.41D+00) ( 3.31D+10,-0.15D+10) (-0.15D+00, 1.34D+00)
( 2.41D-10, 0.39D-10) (-0.56D+00, 1.47D+00) (-0.83D-10,-0.69D-10)

:End of matrix A

10.3 Program Results

F07ATF Example Program Results

Matrix A
1 2 3

1 ( -1.34E+00, 2.55E+00) ( 2.80E+09, 3.17E+10) ( -6.39E+00, -2.20E+00)
2 ( -1.70E+00, -1.41E+00) ( 3.31E+10, -1.50E+09) ( -1.50E-01, 1.34E+00)
3 ( 2.41E-10, 3.90E-11) ( -5.60E-01, 1.47E+00) ( -8.30E-11, -6.90E-11)

ROWCND = 5.9E-11, COLCND = 1.4E-10, AMAX = 3.5E+10

Row scale factors
2.90E-11 2.89E-11 4.93E-01

Column scale factors
7.25E+09 1.00E+00 4.02E+09

Scaled matrix
1 2 3

1 ( -0.2816, 0.5359) ( 0.0812, 0.9188) ( -0.7439, -0.2561)
2 ( -0.3562, -0.2954) ( 0.9566, -0.0434) ( -0.0174, 0.1555)
3 ( 0.8607, 0.1393) ( -0.2759, 0.7241) ( -0.1642, -0.1365)
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NAG Library Routine Document

F07AUF (ZGECON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07AUF (ZGECON) estimates the condition number of a complex matrix A, where A has been
factorized by F07ARF (ZGETRF).

2 Specification

SUBROUTINE F07AUF (NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK, INFO)

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) ANORM, RCOND, RWORK(2*N)
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(2*N)
CHARACTER(1) NORM

The routine may be called by its LAPACK name zgecon.

3 Description

F07AUF (ZGECON) estimates the condition number of a complex matrix A, in either the 1-norm or the
1-norm:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
or �1 Að Þ ¼ Ak k1 A�1

�� ��
1:

Note that �1 Að Þ ¼ �1 AHð Þ.
Because the condition number is infinite if A is singular, the routine actually returns an estimate of the
reciprocal of the condition number.

The routine should be preceded by a call to F06UAF to compute Ak k1 or Ak k1, and a call to F07ARF
(ZGETRF) to compute the LU factorization of A. The routine then uses Higham's implementation of
Hager's method (see Higham (1988)) to estimate A�1

�� ��
1
or A�1
�� ��

1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: indicates whether �1 Að Þ or �1 Að Þ is estimated.

NORM ¼ 1 or O
�1 Að Þ is estimated.

NORM ¼ I
�1 Að Þ is estimated.

Constraint: NORM ¼ 1 , O or I .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07ARF (ZGETRF).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07AUF
(ZGECON) is called.

Constraint: LDA � max 1;Nð Þ.

5: ANORM – REAL (KIND=nag_wp) Input

On entry: if NORM ¼ 1 or O , the 1-norm of the original matrix A.

If NORM ¼ I , the 1-norm of the original matrix A.

ANORM may be computed by calling F06UAF with the same value for the argument NORM.

ANORM must be computed either before calling F07ARF (ZGETRF) or else from a copy of the
original matrix A (see Section 10).

Constraint: ANORM � 0:0.

6: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

7: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

8: RWORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07AUF (ZGECON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07AUF (ZGECON) involves solving a number of systems of linear equations of the form
Ax ¼ b or AHx ¼ b; the number is usually 5 and never more than 11. Each solution involves
approximately 8n2 real floating-point operations but takes considerably longer than a call to F07ASF
(ZGETRS) with one right-hand side, because extra care is taken to avoid overflow when A is
approximately singular.

The real analogue of this routine is F07AGF (DGECON).

10 Example

This example estimates the condition number in the 1-norm of the matrix A, where

A ¼
�1:34þ 2:55i 0:28þ 3:17i �6:39� 2:20i 0:72� 0:92i
�0:17� 1:41i 3:31� 0:15i �0:15þ 1:34i 1:29þ 1:38i
�3:29� 2:39i �1:91þ 4:42i �0:14� 1:35i 1:72þ 1:35i
2:41þ 0:39i �0:56þ 1:47i �0:83� 0:69i �1:96þ 0:67i

0B@
1CA:

Here A is nonsymmetric and must first be factorized by F07ARF (ZGETRF). The true condition
number in the 1-norm is 231:86.

10.1 Program Text

Program f07aufe

! F07AUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, zgecon, zgetrf, zlange => f06uaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: norm = ’1’

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07AUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),work(2*n),rwork(2*n),ipiv(n))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Compute norm of A
! f06uaf is the NAG name equivalent of the LAPACK auxiliary zlange

anorm = zlange(norm,n,n,a,lda,rwork)

! Factorize A
! The NAG name equivalent of zgetrf is f07arf
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Call zgetrf(n,n,a,lda,ipiv,info)

Write (nout,*)
If (info==0) Then

! Estimate condition number

! The NAG name equivalent of zgecon is f07auf
Call zgecon(norm,n,a,lda,anorm,rcond,work,rwork,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’The factor U is singular’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07aufe

10.2 Program Data

F07AUF Example Program Data
4 :Value of N

(-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92)
(-0.17,-1.41) ( 3.31,-0.15) (-0.15, 1.34) ( 1.29, 1.38)
(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35)
( 2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A

10.3 Program Results

F07AUF Example Program Results

Estimate of condition number = 1.50E+02
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NAG Library Routine Document

F07AVF (ZGERFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07AVF (ZGERFS) returns error bounds for the solution of a complex system of linear equations with
multiple right-hand sides, AX ¼ B, ATX ¼ B or AHX ¼ B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07AVF (TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
LDX, FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, IPIV(*), LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),

WORK(2*N)
&

CHARACTER(1) TRANS

The routine may be called by its LAPACK name zgerfs.

3 Description

F07AVF (ZGERFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex system of linear equations with multiple right-hand sides AX ¼ B, ATX ¼ B or
AHX ¼ B. The routine handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of F07AVF (ZGERFS) in terms of a single right-hand side b
and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: indicates the form of the linear equations for which X is the computed solution as
follows:

TRANS ¼ N
The linear equations are of the form AX ¼ B.

TRANS ¼ T
The linear equations are of the form ATX ¼ B.

TRANS ¼ C
The linear equations are of the form AHX ¼ B.

Constraint: TRANS ¼ N , T or C .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n original matrix A as supplied to F07ARF (ZGETRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07AVF
(ZGERFS) is called.

Constraint: LDA � max 1;Nð Þ.

6: AFðLDAF; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07ARF (ZGETRF).

7: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07AVF (ZGERFS) is called.

Constraint: LDAF � max 1;Nð Þ.

8: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07ARF (ZGETRF).

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07AVF
(ZGERFS) is called.

Constraint: LDB � max 1;Nð Þ.

11: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07ASF (ZGETRS).

On exit: the improved solution matrix X.

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07AVF
(ZGERFS) is called.

Constraint: LDX � max 1;Nð Þ.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

15: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

16: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07AVF (ZGERFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07AVF (ZGERFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n2 real floating-
point operations. Each step of iterative refinement involves an additional 24n2 real operations. At most
five steps of iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b or AHx ¼ b; the number is usually 5 and never more than 11. Each solution involves
approximately 8n2 real operations.

The real analogue of this routine is F07AHF (DGERFS).

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
�1:34þ 2:55i 0:28þ 3:17i �6:39� 2:20i 0:72� 0:92i
�0:17� 1:41i 3:31� 0:15i �0:15þ 1:34i 1:29þ 1:38i
�3:29� 2:39i �1:91þ 4:42i �0:14� 1:35i 1:72þ 1:35i
2:41þ 0:39i �0:56þ 1:47i �0:83� 0:69i �1:96þ 0:67i

0B@
1CA

and

B ¼
26:26þ 51:78i 31:32� 6:70i
6:43� 8:68i 15:86� 1:42i
�5:75þ 25:31i �2:15þ 30:19i
1:16þ 2:57i �2:56þ 7:55i

0B@
1CA:

Here A is nonsymmetric and must first be factorized by F07ARF (ZGETRF).

10.1 Program Text

Program f07avfe

! F07AVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgerfs, zgetrf, zgetrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), work(:), &
x(:,:)

Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07AVF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
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ldaf = n
ldb = n
ldx = n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),work(2*n),x(ldx,n),berr(nrhs), &

ferr(nrhs),rwork(n),ipiv(n))

! Read A and B from data file, and copy A to AF and B to X

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

af(1:n,1:n) = a(1:n,1:n)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AF
! The NAG name equivalent of zgetrf is f07arf

Call zgetrf(n,n,af,ldaf,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X

! The NAG name equivalent of zgetrs is f07asf
Call zgetrs(trans,n,nrhs,af,ldaf,ipiv,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of zgerfs is f07avf
Call zgerfs(trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,x,ldx,ferr,berr, &

work,rwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’The factor U is singular’

End If

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07avfe

10.2 Program Data

F07AVF Example Program Data
4 2 :Values of N and NRHS

(-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92)
(-0.17,-1.41) ( 3.31,-0.15) (-0.15, 1.34) ( 1.29, 1.38)
(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35)
( 2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A
(26.26, 51.78) (31.32, -6.70)
( 6.43, -8.68) (15.86, -1.42)
(-5.75, 25.31) (-2.15, 30.19)
( 1.16, 2.57) (-2.56, 7.55) :End of matrix B
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10.3 Program Results

F07AVF Example Program Results

Solution(s)
1 2

1 ( 1.0000, 1.0000) (-1.0000,-2.0000)
2 ( 2.0000,-3.0000) ( 5.0000, 1.0000)
3 (-4.0000,-5.0000) (-3.0000, 4.0000)
4 ( 0.0000, 6.0000) ( 2.0000,-3.0000)

Backward errors (machine-dependent)
4.1E-17 8.7E-17

Estimated forward error bounds (machine-dependent)
5.8E-14 7.8E-14

F07AVF NAG Library Manual

F07AVF.6 (last) Mark 26



NAG Library Routine Document

F07AWF (ZGETRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07AWF (ZGETRI) computes the inverse of a complex matrix A, where A has been factorized by
F07ARF (ZGETRF).

2 Specification

SUBROUTINE F07AWF (N, A, LDA, IPIV, WORK, LWORK, INFO)

INTEGER N, LDA, IPIV(*), LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zgetri.

3 Description

F07AWF (ZGETRI) is used to compute the inverse of a complex matrix A, the routine must be
preceded by a call to F07ARF (ZGETRF), which computes the LU factorization of A as A ¼ PLU .
The inverse of A is computed by forming U�1 and then solving the equation XPL ¼ U�1 for X.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07ARF (ZGETRF).

On exit: the factorization is overwritten by the n by n matrix A�1.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07AWF
(ZGETRI) is called.

Constraint: LDA � max 1;Nð Þ.

4: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07ARF (ZGETRF).
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5: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimum
performance.

6: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F07AWF (ZGETRI) is called, unless LWORK ¼ �1, in which case a workspace query is
assumed and the routine only calculates the optimal dimension of WORK (using the formula
given below).

Suggested value: for optimum performance LWORK should be at least N� nb, where nb is the
block size.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is zero. U is singular, and the inverse of A cannot be computed.

7 Accuracy

The computed inverse X satisfies a bound of the form:

XA� Ij j � c nð Þ� Xj jP Lj j Uj j;

where c nð Þ is a modest linear function of n, and � is the machine precision.

Note that a similar bound for AX � Ij j cannot be guaranteed, although it is almost always satisfied. See
Du Croz and Higham (1992).

8 Parallelism and Performance

F07AWF (ZGETRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 16
3 n

3 .

The real analogue of this routine is F07AJF (DGETRI).
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10 Example

This example computes the inverse of the matrix A, where

A ¼
�1:34þ 2:55i 0:28þ 3:17i �6:39� 2:20i 0:72� 0:92i
�0:17� 1:41i 3:31� 0:15i �0:15þ 1:34i 1:29þ 1:38i
�3:29� 2:39i �1:91þ 4:42i �0:14� 1:35i 1:72þ 1:35i
2:41þ 0:39i �0:56þ 1:47i �0:83� 0:69i �1:96þ 0:67i

0B@
1CA:

Here A is nonsymmetric and must first be factorized by F07ARF (ZGETRF).

10.1 Program Text

Program f07awfe

! F07AWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgetrf, zgetri

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07AWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),work(lwork),ipiv(n))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Factorize A
! The NAG name equivalent of zgetrf is f07arf

Call zgetrf(n,n,a,lda,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute inverse of A
! The NAG name equivalent of zgetri is f07awf

Call zgetri(n,a,lda,ipiv,work,lwork,info)

! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’,’Inverse’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’The factor U is singular’

End If

End Program f07awfe
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10.2 Program Data

F07AWF Example Program Data
4 :Value of N

(-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92)
(-0.17,-1.41) ( 3.31,-0.15) (-0.15, 1.34) ( 1.29, 1.38)
(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35)
( 2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A

10.3 Program Results

F07AWF Example Program Results

Inverse
1 2 3 4

1 ( 0.0757,-0.4324) ( 1.6512,-3.1342) ( 1.2663, 0.0418) ( 3.8181, 1.1195)
2 (-0.1942, 0.0798) (-1.1900,-0.1426) (-0.2401,-0.5889) (-0.0101,-1.4969)
3 (-0.0957,-0.0491) ( 0.7371,-0.4290) ( 0.3224, 0.0776) ( 0.6887, 0.7891)
4 ( 0.3702,-0.5040) ( 3.7253,-3.1813) ( 1.7014, 0.7267) ( 3.9367, 3.3255)

F07AWF NAG Library Manual

F07AWF.4 (last) Mark 26



NAG Library Routine Document

F07BAF (DGBSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BAF (DGBSV) computes the solution to a real system of linear equations

AX ¼ B;

where A is an n by n band matrix, with kl subdiagonals and ku superdiagonals, and X and B are n by r
matrices.

2 Specification

SUBROUTINE F07BAF (N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)

INTEGER N, KL, KU, NRHS, LDAB, IPIV(N), LDB, INFO
REAL (KIND=nag_wp) AB(LDAB,*), B(LDB,*)

The routine may be called by its LAPACK name dgbsv.

3 Description

F07BAF (DGBSV) uses the LU decomposition with partial pivoting and row interchanges to factor A
as A ¼ PLU , where P is a permutation matrix, L is a product of permutation and unit lower triangular
matrices with kl subdiagonals, and U is upper triangular with kl þ kuð Þ superdiagonals. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

2: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

3: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.
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4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n coefficient matrix A.

The matrix is stored in rows kl þ 1 to 2kl þ ku þ 1; the first kl rows need not be set, more
precisely, the element Aij must be stored in

ABðkl þ ku þ 1þ i� j; jÞ ¼ Aij for max 1; j� kuð Þ � i � min n; jþ klð Þ:
See Section 9 for further details.

On exit: if INFO � 0, AB is overwritten by details of the factorization.

The upper triangular band matrix U , with kl þ ku superdiagonals, is stored in rows 1 to
kl þ ku þ 1 of the array, and the multipliers used to form the matrix L are stored in rows
kl þ ku þ 2 to 2kl þ ku þ 1.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BAF (DGBSV) is called.

Constraint: LDAB � 2� KLþ KUþ 1.

7: IPIVðNÞ – INTEGER array Output

On exit: if no constraints are violated, the pivot indices that define the permutation matrix P ; at
the ith step row i of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ ¼ i indicates a row
interchange was not required.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07BAF
(DGBSV) is called.

Constraint: LDB � max 1;Nð Þ.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

Following the use of F07BAF (DGBSV), F07BGF (DGBCON) can be used to estimate the condition
number of A and F07BHF (DGBRFS) can be used to obtain approximate error bounds. Alternatives to
F07BAF (DGBSV), which return condition and error estimates directly are F04BBF and F07BBF
(DGBSVX).

8 Parallelism and Performance

F07BAF (DGBSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07BAF (DGBSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The band storage scheme for the array AB is illustrated by the following example, when n ¼ 6, kl ¼ 1,
and ku ¼ 2. Storage of the band matrix A in the array AB:

� � � þ þ þ
� � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 �

Array elements marked � need not be set and are not referenced by the routine. Array elements marked
þ need not be set, but are defined on exit from the routine and contain the elements u14, u25 and u36.

The total number of floating-point operations required to solve the equations AX ¼ B depends upon the
pivoting required, but if n� kl þ ku then it is approximately bounded by O nkl kl þ kuð Þð Þ for the
factorization and O n 2kl þ kuð Þrð Þ for the solution following the factorization.

The complex analogue of this routine is F07BNF (ZGBSV).
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10 Example

This example solves the equations

Ax ¼ b;

where A is the band matrix

A ¼
�0:23 2:54 �3:66 0
�6:98 2:46 �2:73 �2:13
0 2:56 2:46 4:07
0 0 �4:78 �3:82

0B@
1CA and b ¼

4:42
27:13
�6:14
10:50

0B@
1CA:

Details of the LU factorization of A are also output.

10.1 Program Text

Program f07bafe

! F07BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgbsv, nag_wp, x04cef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, k, kl, ku, ldab, &

n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), b(:)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07BAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kl, ku
ldab = 2*kl + ku + 1
Allocate (ab(ldab,n),b(n),ipiv(n))

! Read the band matrix A and the right hand side b from data file

k = kl + ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of dgbsv is f07baf

Call dgbsv(n,kl,ku,1,ab,ldab,ipiv,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of the factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
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! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04cef(n,n,kl,kl+ku,ab,ldab,’Details of factorization’,ifail)

! Print pivot indices’

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format ((3X,7F11.4))
99998 Format ((3X,7I11))
99997 Format (1X,A,I3,A,I3,A,A)

End Program f07bafe

10.2 Program Data

F07BAF Example Program Data

4 1 2 :Values of N, KL and KU

-0.23 2.54 -3.66
-6.98 2.46 -2.73 -2.13

2.56 2.46 4.07
-4.78 -3.82 :End of matrix A

4.42 27.13 -6.14 10.50 :End of vector B

10.3 Program Results

F07BAF Example Program Results

Solution
-2.0000 3.0000 1.0000 -4.0000

Details of factorization
1 2 3 4

1 -6.9800 2.4600 -2.7300 -2.1300
2 0.0330 2.5600 2.4600 4.0700
3 0.9605 -5.9329 -3.8391
4 0.8057 -0.7269

Pivot indices
2 3 3 4
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NAG Library Routine Document

F07BBF (DGBSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BBF (DGBSVX) uses the LU factorization to compute the solution to a real system of linear
equations

AX ¼ B or ATX ¼ B;

where A is an n by n band matrix with kl subdiagonals and ku superdiagonals, and X and B are n by r
matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07BBF (FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
WORK, IWORK, INFO)

&
&

INTEGER N, KL, KU, NRHS, LDAB, LDAFB, IPIV(*), LDB, LDX,
IWORK(N), INFO

&

REAL (KIND=nag_wp) AB(LDAB,*), AFB(LDAFB,*), R(*), C(*), B(LDB,*),
X(LDX,*), RCOND, FERR(NRHS), BERR(NRHS),
WORK(max(1,3*N))

&
&

CHARACTER(1) FACT, TRANS, EQUED

The routine may be called by its LAPACK name dgbsvx.

3 Description

F07BBF (DGBSVX) performs the following steps:

1. Equilibration

The linear system to be solved may be badly scaled. However, the system can be equilibrated as a
first stage by setting FACT ¼ E . In this case, real scaling factors are computed and these factors
then determine whether the system is to be equilibrated. Equilibrated forms of the systems
AX ¼ B and ATX ¼ B are

DRADCð Þ D�1C X
� �

¼ DRB

and

DRADCð ÞT D�1R X
� �

¼ DCB;

respectively, where DR and DC are diagonal matrices, with positive diagonal elements, formed
from the computed scaling factors.

When equilibration is used, A will be overwritten by DRADC and B will be overwritten by DRB
(or DCB when the solution of ATX ¼ B is sought).

2. Factorization

The matrix A, or its scaled form, is copied and factored using the LU decomposition

A ¼ PLU;

where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
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This stage can be by-passed when a factored matrix (with scaled matrices and scaling factors) are
supplied; for example, as provided by a previous call to F07BBF (DGBSVX) with the same matrix
A.

3. Condition Number Estimation

The LU factorization of A determines whether a solution to the linear system exists. If some
diagonal element of U is zero, then U is exactly singular, no solution exists and the routine returns
with a failure. Otherwise the factorized form of A is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number is less than machine precision then a warning
code is returned on final exit.

4. Solution

The (equilibrated) system is solved for X (D�1C X or D�1R X) using the factored form of A
(DRADC).

5. Iterative Refinement

Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for the computed solution.

6. Construct Solution Matrix X

If equilibration was used, the matrix X is premultiplied by DC (if TRANS ¼ N ) or DR (if
TRANS ¼ T or C ) so that it solves the original system before equilibration.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

FACT ¼ F
AFB and IPIV contain the factorized form of A. If EQUED 6¼ N , the matrix A has been
equilibrated with scaling factors given by R and C. AB, AFB and IPIV are not modified.

FACT ¼ N
The matrix A will be copied to AFB and factorized.

FACT ¼ E
The matrix A will be equilibrated if necessary, then copied to AFB and factorized.

Constraint: FACT ¼ F , N or E .

2: TRANS – CHARACTER(1) Input

On entry: specifies the form of the system of equations.

TRANS ¼ N
AX ¼ B (No transpose).
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TRANS ¼ T or C
ATX ¼ B (Transpose).

Constraint: TRANS ¼ N , T or C .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

5: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.

6: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

7: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n coefficient matrix A.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min n; jþ klð Þ:
See Section 9 for further details.

If FACT ¼ F and EQUED 6¼ N , A must have been equilibrated by the scaling factors in R and/
or C.

On exit: if FACT ¼ F or N , or if FACT ¼ E and EQUED ¼ N , AB is not modified.

If EQUED 6¼ N then, if no constraints are violated, A is scaled as follows:

if EQUED ¼ R , A ¼ DrA;

if EQUED ¼ C , A ¼ ADc;

if EQUED ¼ B , A ¼ DrADc.

8: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BBF (DGBSVX) is called.

Constraint: LDAB � KLþ KUþ 1.

9: AFBðLDAFB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AFB must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , AFB need not be set.

If FACT ¼ F , details of the LU factorization of the n by n band matrix A, as computed by
F07BDF (DGBTRF).
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The upper triangular band matrix U , with kl þ ku superdiagonals, is stored in rows 1 to
kl þ ku þ 1 of the array, and the multipliers used to form the matrix L are stored in rows
kl þ ku þ 2 to 2kl þ ku þ 1.

If EQUED 6¼ N , AFB is the factorized form of the equilibrated matrix A.

On exit: if FACT ¼ F , AFB is unchanged from entry.

Otherwise, if no constraints are violated, then if FACT ¼ N , AFB returns details of the LU
factorization of the band matrix A, and if FACT ¼ E , AFB returns details of the LU
factorization of the equilibrated band matrix A (see the description of AB for the form of the
equilibrated matrix).

10: LDAFB – INTEGER Input

On entry: the first dimension of the array AFB as declared in the (sub)program from which
F07BBF (DGBSVX) is called.

Constraint: LDAFB � 2� KLþ KUþ 1.

11: IPIVð�Þ – INTEGER array Input/Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , IPIV need not be set.

If FACT ¼ F , IPIV contains the pivot indices from the factorization A ¼ LU , as computed by
F07BDF (DGBTRF); row i of the matrix was interchanged with row IPIVðiÞ.
On exit: if FACT ¼ F , IPIV is unchanged from entry.

Otherwise, if no constraints are violated, IPIV contains the pivot indices that define the
permutation matrix P ; at the ith step row i of the matrix was interchanged with row IPIVðiÞ.
IPIVðiÞ ¼ i indicates a row interchange was not required.

If FACT ¼ N , the pivot indices are those corresponding to the factorization A ¼ LU of the
original matrix A.

If FACT ¼ E , the pivot indices are those corresponding to the factorization of A ¼ LU of the
equilibrated matrix A.

12: EQUED – CHARACTER(1) Input/Output

On entry: if FACT ¼ N or E , EQUED need not be set.

If FACT ¼ F , EQUED must specify the form of the equilibration that was performed as follows:

if EQUED ¼ N , no equilibration;

if EQUED ¼ R , row equilibration, i.e., A has been premultiplied by DR;

if EQUED ¼ C , column equilibration, i.e., A has been postmultiplied by DC;

if EQUED ¼ B , both row and column equilibration, i.e., A has been replaced by DRADC.

On exit: if FACT ¼ F , EQUED is unchanged from entry.

Otherwise, if no constraints are violated, EQUED specifies the form of equilibration that was
performed as specified above.

Constraint: if FACT ¼ F , EQUED ¼ N , R , C or B .

13: Rð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array R must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , R need not be set.

If FACT ¼ F and EQUED ¼ R or B , R must contain the row scale factors for A, DR; each
element of R must be positive.
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On exit: if FACT ¼ F , R is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ R or B , R contains the row scale
factors for A, DR, such that A is multiplied on the left by DR; each element of R is positive.

14: Cð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array C must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , C need not be set.

If FACT ¼ F or EQUED ¼ C or B , C must contain the column scale factors for A, DC ; each
element of C must be positive.

On exit: if FACT ¼ F , C is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ C or B , C contains the row scale
factors for A, DC ; each element of C is positive.

15: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if EQUED ¼ N , B is not modified.

If TRANS ¼ N and EQUED ¼ R or B , B is overwritten by DRB.

If TRANS ¼ T or C and EQUED ¼ C or B , B is overwritten by DCB.

16: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07BBF
(DGBSVX) is called.

Constraint: LDB � max 1;Nð Þ.

17: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X to the original system of equations.
Note that the arrays A and B are modified on exit if EQUED 6¼ N , and the solution to the
equilibrated system is D�1C X if TRANS ¼ N and EQUED ¼ C or B , or D�1R X if TRANS ¼ T
or C and EQUED ¼ R or B .

18: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07BBF
(DGBSVX) is called.

Constraint: LDX � max 1;Nð Þ.

19: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the

matrix A (after equilibration if that is performed), computed as RCOND ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

20: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.
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21: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

22: WORKðmax 1; 3� Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, WORKð1Þ contains the reciprocal pivot growth factor max aij
		 		=max uij

		 		.
If WORKð1Þ is much less than 1, then the stability of the LU factorization of the (equilibrated)
matrix A could be poor. This also means that the solution X, condition estimator RCOND, and
forward error bound FERR could be unreliable. If the factorization fails with
INFO > 0 and INFO � N, WORKð1Þ contains the reciprocal pivot growth factor for the leading
INFO columns of A.

23: IWORKðNÞ – INTEGER array Workspace

24: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

U is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ej j � c nð Þ�P Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 9.3 of Higham (2002)
for further details.

If x is the true solution, then the computed solution x̂ satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.
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8 Parallelism and Performance

F07BBF (DGBSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07BBF (DGBSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The band storage scheme for the array AB is illustrated by the following example, when n ¼ 6, kl ¼ 1,
and ku ¼ 2. Storage of the band matrix A in the array AB:

� � a13 a24 a35 a46
� a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 �

The total number of floating-point operations required to solve the equations AX ¼ B depends upon the
pivoting required, but if n� kl þ ku then it is approximately bounded by O nkl kl þ kuð Þð Þ for the
factorization and O n 2kl þ kuð Þrð Þ for the solution following the factorization. The condition number
estimation typically requires between four and five solves and never more than eleven solves, following
the factorization. The solution is then refined, and the errors estimated, using iterative refinement; see
F07BHF (DGBRFS) for information on the floating-point operations required.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of this routine is F07BPF (ZGBSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the band matrix

A ¼
�0:23 2:54 �3:66 0
�6:98 2:46 �2:73 �2:13
0 2:56 2:46 4:07
0 0 �4:78 �3:82

0B@
1CA and B ¼

4:42 �36:01
27:13 �31:67
�6:14 �1:16
10:50 �25:82

0B@
1CA:

Estimates for the backward errors, forward errors, condition number and pivot growth are also output,
together with information on the equilibration of A.

10.1 Program Text

Program f07bbfe

! F07BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgbsvx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, j, k, kl, ku, ldab, &

ldafb, ldb, ldx, n, nrhs
Character (1) :: equed

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), afb(:,:), b(:,:), berr(:), &

c(:), ferr(:), r(:), work(:), x(:,:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07BBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs, kl, ku
ldb = n
ldx = n
ldab = kl + ku + 1
ldafb = ldab + kl
Allocate (ab(ldab,n),afb(ldafb,n),b(ldb,nrhs),berr(nrhs),c(n), &

ferr(nrhs),r(n),work(3*n),x(ldx,nrhs),ipiv(n),iwork(n))

! Read the band matrix A and B from data file

k = ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of dgbsvx is f07bbf

Call dgbsvx(’Equilibration’,’No transpose’,n,kl,ku,nrhs,ab,ldab,afb, &
ldafb,ipiv,equed,r,c,b,ldb,x,ldx,rcond,ferr,berr,work,iwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds, condition number, the form
! of equilibration and the pivot growth factor

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)
If (equed==’N’) Then

Write (nout,*) ’A has not been equilibrated’
Else If (equed==’R’) Then

Write (nout,*) ’A has been row scaled as diag(R)*A’
Else If (equed==’C’) Then

Write (nout,*) ’A has been column scaled as A*diag(C)’
Else If (equed==’B’) Then

Write (nout,*) &
’A has been row and column scaled as diag(R)*A*diag(C)’

End If
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal pivot growth factor’
Write (nout,99999) work(1)

If (info==n+1) Then
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Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &
’ element of the factor U is zero’

End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07bbfe

10.2 Program Data

F07BBF Example Program Data
4 2 1 2 :Values of N, NRHS, KL and KU

-0.23 2.54 -3.66
-6.98 2.46 -2.73 -2.13

2.56 2.46 4.07
-4.78 -3.82 :End of matrix A

4.42 -36.01
27.13 -31.67
-6.14 -1.16
10.50 -25.82 :End of matrix B

10.3 Program Results

F07BBF Example Program Results

Solution(s)
1 2

1 -2.0000 1.0000
2 3.0000 -4.0000
3 1.0000 7.0000
4 -4.0000 -2.0000

Backward errors (machine-dependent)
1.1E-16 9.9E-17

Estimated forward error bounds (machine-dependent)
1.6E-14 1.9E-14

Estimate of reciprocal condition number
1.8E-02

A has not been equilibrated

Estimate of reciprocal pivot growth factor
1.0E+00
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NAG Library Routine Document

F07BDF (DGBTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BDF (DGBTRF) computes the LU factorization of a real m by n band matrix.

2 Specification

SUBROUTINE F07BDF (M, N, KL, KU, AB, LDAB, IPIV, INFO)

INTEGER M, N, KL, KU, LDAB, IPIV(min(M,N)), INFO
REAL (KIND=nag_wp) AB(LDAB,*)

The routine may be called by its LAPACK name dgbtrf.

3 Description

F07BDF (DGBTRF) forms the LU factorization of a real m by n band matrix A using partial pivoting,
with row interchanges. Usually m ¼ n, and then, if A has kl nonzero subdiagonals and ku nonzero
superdiagonals, the factorization has the form A ¼ PLU , where P is a permutation matrix, L is a lower
triangular matrix with unit diagonal elements and at most kl nonzero elements in each column, and U is
an upper triangular band matrix with kl þ ku superdiagonals.

Note that L is not a band matrix, but the nonzero elements of L can be stored in the same space as the
subdiagonal elements of A. U is a band matrix but with kl additional superdiagonals compared with A.
These additional superdiagonals are created by the row interchanges.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.
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5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

The matrix is stored in rows kl þ 1 to 2kl þ ku þ 1; the first kl rows need not be set, more
precisely, the element Aij must be stored in

ABðkl þ ku þ 1þ i� j; jÞ ¼ Aij for max 1; j� kuð Þ � i � min m; jþ klð Þ:
See Section 9 in F07BAF (DGBSV) for further details.

On exit: if INFO � 0, AB is overwritten by details of the factorization.

The upper triangular band matrix U , with kl þ ku superdiagonals, is stored in rows 1 to
kl þ ku þ 1 of the array, and the multipliers used to form the matrix L are stored in rows
kl þ ku þ 2 to 2kl þ ku þ 1.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BDF (DGBTRF) is called.

Constraint: LDAB � 2� KLþ KUþ 1.

7: IPIVðmin M;Nð ÞÞ – INTEGER array Output

On exit: the pivot indices that define the permutation matrix. At the ith step, if IPIVðiÞ > i then
row i of the matrix A was interchanged with row IPIVðiÞ, for i ¼ 1; 2; . . . ;min m;nð Þ. IPIVðiÞ � i
indicates that, at the ith step, a row interchange was not required.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed. See Section 3.7 in How to Use the NAG
Library and its Documentation for further information. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, and division by zero will occur if it is used to solve a system of
equations.

7 Accuracy

The computed factors L and U are the exact factors of a perturbed matrix Aþ E, where
Ej j � c kð Þ�P Lj j Uj j;

c kð Þ is a modest linear function of k ¼ kl þ ku þ 1, and � is the machine precision. This assumes
k min m;nð Þ.

8 Parallelism and Performance

F07BDF (DGBTRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F07BDF (DGBTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations varies between approximately 2nkl ku þ 1ð Þ and
2nkl kl þ ku þ 1ð Þ, depending on the interchanges, assuming m ¼ n� kl and n� ku.

A call to F07BDF (DGBTRF) may be followed by calls to the routines:

F07BEF (DGBTRS) to solve AX ¼ B or ATX ¼ B;
F07BGF (DGBCON) to estimate the condition number of A.

The complex analogue of this routine is F07BRF (ZGBTRF).

10 Example

This example computes the LU factorization of the matrix A, where

A ¼
�0:23 2:54 �3:66 0:00
�6:98 2:46 �2:73 �2:13
0:00 2:56 2:46 4:07
0:00 0:00 �4:78 �3:82

0B@
1CA:

Here A is treated as a band matrix with one subdiagonal and two superdiagonals.

10.1 Program Text

Program f07bdfe

! F07BDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgbtrf, nag_wp, x04cef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, k, kl, ku, ldab, &

m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07BDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, kl, ku
ldab = 2*kl + ku + 1
Allocate (ab(ldab,n),ipiv(n))

! Read A from data file

k = kl + ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,m)
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! Factorize A
! The NAG name equivalent of dgbtrf is f07bdf

Call dgbtrf(m,n,kl,ku,ab,ldab,ipiv,info)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04cef(m,n,kl,kl+ku,ab,ldab,’Details of factorization’,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’IPIV’
Write (nout,99999) ipiv(1:min(m,n))

If (info/=0) Then
Write (nout,*) ’The factor U is singular’

End If

99999 Format ((3X,7I11))
End Program f07bdfe

10.2 Program Data

F07BDF Example Program Data
4 4 1 2 :Values of M, N, KL and KU

-0.23 2.54 -3.66
-6.98 2.46 -2.73 -2.13

2.56 2.46 4.07
-4.78 -3.82 :End of matrix A

10.3 Program Results

F07BDF Example Program Results

Details of factorization
1 2 3 4

1 -6.9800 2.4600 -2.7300 -2.1300
2 0.0330 2.5600 2.4600 4.0700
3 0.9605 -5.9329 -3.8391
4 0.8057 -0.7269

IPIV
2 3 3 4
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NAG Library Routine Document

F07BEF (DGBTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BEF (DGBTRS) solves a real band system of linear equations with multiple right-hand sides,

AX ¼ B or ATX ¼ B;

where A has been factorized by F07BDF (DGBTRF).

2 Specification

SUBROUTINE F07BEF (TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)

INTEGER N, KL, KU, NRHS, LDAB, IPIV(*), LDB, INFO
REAL (KIND=nag_wp) AB(LDAB,*), B(LDB,*)
CHARACTER(1) TRANS

The routine may be called by its LAPACK name dgbtrs.

3 Description

F07BEF (DGBTRS) is used to solve a real band system of linear equations AX ¼ B or ATX ¼ B, the
routine must be preceded by a call to F07BDF (DGBTRF) which computes the LU factorization of A
as A ¼ PLU . The solution is computed by forward and backward substitution.

If TRANS ¼ N , the solution is computed by solving PLY ¼ B and then UX ¼ Y .
If TRANS ¼ T or C , the solution is computed by solving UTY ¼ B and then LTPTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
AX ¼ B is solved for X.

TRANS ¼ T or C
ATX ¼ B is solved for X.

Constraint: TRANS ¼ N , T or C .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07BDF (DGBTRF).

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BEF (DGBTRS) is called.

Constraint: LDAB � 2� KLþ KUþ 1.

8: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07BDF (DGBTRF).

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07BEF
(DGBTRS) is called.

Constraint: LDB � max 1;Nð Þ.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

Ej j � c kð Þ�P Lj j Uj j;

c kð Þ is a modest linear function of k ¼ kl þ ku þ 1, and � is the machine precision. This assumes
k n.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c kð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ, and cond ATð Þ can be much larger (or smaller)
than cond Að Þ.
Forward and backward error bounds can be computed by calling F07BHF (DGBRFS), and an estimate
for �1 Að Þ can be obtained by calling F07BGF (DGBCON) with NORM ¼ I .

8 Parallelism and Performance

F07BEF (DGBTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07BEF (DGBTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2n 2kl þ kuð Þr, assuming n� kl and
n� ku.

This routine may be followed by a call to F07BHF (DGBRFS) to refine the solution and return an error
estimate.

The complex analogue of this routine is F07BSF (ZGBTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
�0:23 2:54 �3:66 0:00
�6:98 2:46 �2:73 �2:13
0:00 2:56 2:46 4:07
0:00 0:00 �4:78 �3:82

0B@
1CA and B ¼

4:42 �36:01
27:13 �31:67
�6:14 �1:16
10:50 �25:82

0B@
1CA:

Here A is nonsymmetric and is treated as a band matrix, which must first be factorized by F07BDF
(DGBTRF).
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10.1 Program Text

Program f07befe

! F07BEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgbtrf, dgbtrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, k, kl, ku, ldab, &

ldb, n, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07BEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs, kl, ku
ldab = 2*kl + ku + 1
ldb = n
Allocate (ab(ldab,n),b(ldb,nrhs),ipiv(n))

! Read A and B from data file

k = kl + ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of dgbtrf is f07bdf

Call dgbtrf(n,n,kl,ku,ab,ldab,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of dgbtrs is f07bef

Call dgbtrs(trans,n,kl,ku,nrhs,ab,ldab,ipiv,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,*) ’The factor U is singular’

End If

End Program f07befe
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10.2 Program Data

F07BEF Example Program Data
4 2 1 2 :Values of N, NRHS, KL and KU

-0.23 2.54 -3.66
-6.98 2.46 -2.73 -2.13

2.56 2.46 4.07
-4.78 -3.82 :End of matrix A

4.42 -36.01
27.13 -31.67
-6.14 -1.16
10.50 -25.82 :End of matrix B

10.3 Program Results

F07BEF Example Program Results

Solution(s)
1 2

1 -2.0000 1.0000
2 3.0000 -4.0000
3 1.0000 7.0000
4 -4.0000 -2.0000
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NAG Library Routine Document

F07BFF (DGBEQU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BFF (DGBEQU) computes diagonal scaling matrices DR and DC intended to equilibrate a real m
by n band matrix A of band width kl þ ku þ 1ð Þ, and reduce its condition number.

2 Specification

SUBROUTINE F07BFF (M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX,
INFO)

&

INTEGER M, N, KL, KU, LDAB, INFO
REAL (KIND=nag_wp) AB(LDAB,*), R(M), C(N), ROWCND, COLCND, AMAX

The routine may be called by its LAPACK name dgbequ.

3 Description

F07BFF (DGBEQU) computes the diagonal scaling matrices. The diagonal scaling matrices are chosen
to try to make the elements of largest absolute value in each row and column of the matrix B given by

B ¼ DRADC

have absolute value 1. The diagonal elements of DR and DC are restricted to lie in the safe range
�; 1=�ð Þ, where � is the value returned by routine X02AMF. Use of these scaling factors is not
guaranteed to reduce the condition number of A but works well in practice.

4 References

None.

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: KL – INTEGER Input

On entry: kl, the number of subdiagonals of the matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: ku, the number of superdiagonals of the matrix A.

Constraint: KU � 0.
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5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the m by n band matrix A whose scaling factors are to be computed.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:
See Section 9 in F07BAF (DGBSV) for further details.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BFF (DGBEQU) is called.

Constraint: LDAB � KLþ KUþ 1.

7: RðMÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or INFO > M, R contains the row scale factors, the diagonal elements of
DR. The elements of R will be positive.

8: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, C contains the column scale factors, the diagonal elements of DC . The
elements of C will be positive.

9: ROWCND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0 or INFO > M, ROWCND contains the ratio of the smallest value of RðiÞ to
the largest value of RðiÞ. If ROWCND � 0:1 and AMAX is neither too large nor too small, it is
not worth scaling by DR.

10: COLCND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0, COLCND contains the ratio of the smallest value of CðiÞ to the largest
value of CðiÞ.
If COLCND � 0:1, it is not worth scaling by DC.

11: AMAX – REAL (KIND=nag_wp) Output

On exit: max aij
		 		. If AMAX is very close to overflow or underflow, the matrix A should be

scaled.

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � M

Row valueh i of A is exactly zero.

INFO > M

Column valueh i of A is exactly zero.
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7 Accuracy

The computed scale factors will be close to the exact scale factors.

8 Parallelism and Performance

F07BFF (DGBEQU) is not threaded in any implementation.

9 Further Comments

The complex analogue of this routine is F07BTF (ZGBEQU).

10 Example

This example equilibrates the band matrix A given by

A ¼
�0:23 2:54 �3:66� 10�10 0
�6:98� 1010 2:46� 1010 �2:73 �2:13� 1010

0 2:56 2:46� 10�10 4:07
0 0 �4:78� 10�10 �3:82

0BB@
1CCA:

Details of the scaling factors, and the scaled matrix are output.

10.1 Program Text

Program f07bffe

! F07BFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgbequ, dscal, f06fcf, nag_wp, x02ajf, x02amf, &

x02bhf, x04cef
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: thresh = 0.1_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: amax, big, colcnd, rowcnd, small
Integer :: i, i0, i1, ifail, ilen, info, j, k, &

kl, ku, ldab, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), c(:), r(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min, real
! .. Executable Statements ..

Write (nout,*) ’F07BFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kl, ku
ldab = kl + ku + 1
Allocate (ab(ldab,n),c(n),r(n))

! Read the band matrix A from data file

k = ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)

! Print the matrix A

! ifail: behaviour on error exit
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! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04cef(n,n,kl,ku,ab,ldab,’Matrix A’,ifail)

Write (nout,*)

! Compute row and column scaling factors

! The NAG name equivalent of dgbequ is f07bff
Call dgbequ(n,n,kl,ku,ab,ldab,r,c,rowcnd,colcnd,amax,info)

If (info>0) Then
If (info<=n) Then

Write (nout,99999) ’Row ’, info, ’ of A is exactly zero’
Else

Write (nout,99999) ’Column ’, info - n, ’ of A is exactly zero’
End If

Else

! Print ROWCND, COLCND, AMAX and the scale factors

Write (nout,99998) ’ROWCND =’, rowcnd, ’, COLCND =’, colcnd, &
’, AMAX =’, amax

Write (nout,*)
Write (nout,*) ’Row scale factors’
Write (nout,99997) r(1:n)
Write (nout,*)
Write (nout,*) ’Column scale factors’
Write (nout,99997) c(1:n)
Write (nout,*)
Flush (nout)

! Compute values close to underflow and overflow

small = x02amf()/(x02ajf()*real(x02bhf(),kind=nag_wp))
big = one/small
If ((rowcnd>=thresh) .And. (amax>=small) .And. (amax<=big)) Then

If (colcnd<thresh) Then
! Just column scale A
! The NAG name equivalent of dscal is f06edf

Do j = 1, n
i1 = 1 + max(1,j-ku) - (j-ku)
ilen = min(n,j+kl) - max(1,j-ku) + 1
Call dscal(ilen,c(j),ab(i1,j),1)

End Do

End If
Else If (colcnd>=thresh) Then

! Just row scale A
Do j = 1, n

i0 = max(1,j-ku)
i1 = 1 + i0 - (j-ku)
ilen = min(n,j+kl) - i0 + 1
Call f06fcf(ilen,r(i0),1,ab(i1,j),1)

End Do

Else

! Row and column scale A
Do j = 1, n

i0 = max(1,j-ku)
i1 = 1 + i0 - (j-ku)
ilen = min(n,j+kl) - i0 + 1
Call dscal(ilen,c(j),ab(i1,j),1)
Call f06fcf(ilen,r(i0),1,ab(i1,j),1)

End Do

End If

! Print the scaled matrix
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ifail = 0
Call x04cef(n,n,kl,ku,ab,ldab,’Scaled matrix’,ifail)

End If

99999 Format (1X,A,I4,A)
99998 Format (1X,3(A,1P,E8.1))
99997 Format ((1X,1P,7E11.2))

End Program f07bffe

10.2 Program Data

F07BFF Example Program Data
4 1 2 :Values of N, KL and KU

-2.30D-01 2.54D+00 -3.66D-10
-6.98D+10 2.46D+10 -2.73D+00 -2.13D+10

2.56D+00 2.46D-10 4.07D+00
-4.78D-10 -3.82D+00 :End of matrix A

10.3 Program Results

F07BFF Example Program Results

Matrix A
1 2 3 4

1 -2.3000E-01 2.5400E+00 -3.6600E-10
2 -6.9800E+10 2.4600E+10 -2.7300E+00 -2.1300E+10
3 2.5600E+00 2.4600E-10 4.0700E+00
4 -4.7800E-10 -3.8200E+00

ROWCND = 3.6E-11, COLCND = 1.4E-10, AMAX = 7.0E+10

Row scale factors
3.94E-01 1.43E-11 2.46E-01 2.62E-01

Column scale factors
1.00E+00 1.00E+00 6.94E+09 1.00E+00

Scaled matrix
1 2 3 4

1 -0.0906 1.0000 -1.0000
2 -1.0000 0.3524 -0.2714 -0.3052
3 0.6290 0.4195 1.0000
4 -0.8684 -1.0000
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NAG Library Routine Document

F07BGF (DGBCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BGF (DGBCON) estimates the condition number of a real band matrix A, where A has been
factorized by F07BDF (DGBTRF).

2 Specification

SUBROUTINE F07BGF (NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND, WORK,
IWORK, INFO)

&

INTEGER N, KL, KU, LDAB, IPIV(*), IWORK(N), INFO
REAL (KIND=nag_wp) AB(LDAB,*), ANORM, RCOND, WORK(3*N)
CHARACTER(1) NORM

The routine may be called by its LAPACK name dgbcon.

3 Description

F07BGF (DGBCON) estimates the condition number of a real band matrix A, in either the 1-norm or
the 1-norm:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
or �1 Að Þ ¼ Ak k1 A�1

�� ��
1:

Note that �1 Að Þ ¼ �1 ATð Þ.
Because the condition number is infinite if A is singular, the routine actually returns an estimate of the
reciprocal of the condition number.

The routine should be preceded by a call to F06RBF to compute Ak k1 or Ak k1, and a call to F07BDF
(DGBTRF) to compute the LU factorization of A. The routine then uses Higham's implementation of
Hager's method (see Higham (1988)) to estimate A�1

�� ��
1
or A�1
�� ��

1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: indicates whether �1 Að Þ or �1 Að Þ is estimated.

NORM ¼ 1 or O
�1 Að Þ is estimated.

NORM ¼ I
�1 Að Þ is estimated.

Constraint: NORM ¼ 1 , O or I .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.

5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07BDF (DGBTRF).

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BGF (DGBCON) is called.

Constraint: LDAB � 2� KLþ KUþ 1.

7: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07BDF (DGBTRF).

8: ANORM – REAL (KIND=nag_wp) Input

On entry: if NORM ¼ 1 or O , the 1-norm of the original matrix A.

If NORM ¼ I , the 1-norm of the original matrix A.

ANORM may be computed by calling F06RBF with the same value for the argument NORM.

ANORM must be computed either before calling F07BDF (DGBTRF) or else from a copy of the
original matrix A (see Section 10).

Constraint: ANORM � 0:0.

9: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

10: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

11: IWORKðNÞ – INTEGER array Workspace

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07BGF (DGBCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07BGF (DGBCON) involves solving a number of systems of linear equations of the form
Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves
approximately 2n 2kl þ kuð Þ floating-point operations (assuming n� kl and n� ku) but takes
considerably longer than a call to F07BEF (DGBTRS) with one right-hand side, because extra care
is taken to avoid overflow when A is approximately singular.

The complex analogue of this routine is F07BUF (ZGBCON).

10 Example

This example estimates the condition number in the 1-norm of the matrix A, where

A ¼
�0:23 2:54 �3:66 0:00
�6:98 2:46 �2:73 �2:13
0:00 2:56 2:46 4:07
0:00 0:00 �4:78 �3:82

0B@
1CA:

Here A is nonsymmetric and is treated as a band matrix, which must first be factorized by F07BDF
(DGBTRF). The true condition number in the 1-norm is 56:40.

10.1 Program Text

Program f07bgfe

! F07BGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgbcon, dgbtrf, dlangb => f06rbf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: norm = ’1’

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, j, k, kl, ku, ldab, n

! .. Local Arrays ..

F07 – Linear Equations (LAPACK) F07BGF

Mark 26 F07BGF.3



Real (Kind=nag_wp), Allocatable :: ab(:,:), work(:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07BGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kl, ku
ldab = 2*kl + ku + 1
Allocate (ab(ldab,n),work(3*n),ipiv(n),iwork(n))

! Read A from data file

k = kl + ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)

! Compute norm of A
! f06rbf is the NAG name equivalent of the LAPACK auxiliary dlangb

anorm = dlangb(norm,n,kl,ku,ab(kl+1,1),ldab,work)

! Factorize A

! The NAG name equivalent of dgbtrf id f07bdf
Call dgbtrf(n,n,kl,ku,ab,ldab,ipiv,info)

Write (nout,*)
If (info==0) Then

! Estimate condition number

! The NAG name equivalent of dgbcon is f07bgf
Call dgbcon(norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,iwork,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’The factor U is singular’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07bgfe

10.2 Program Data

F07BGF Example Program Data
4 1 2 :Values of N, KL and KU

-0.23 2.54 -3.66
-6.98 2.46 -2.73 -2.13

2.56 2.46 4.07
-4.78 -3.82 :End of matrix A

10.3 Program Results

F07BGF Example Program Results

Estimate of condition number = 5.64E+01
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NAG Library Routine Document

F07BHF (DGBRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BHF (DGBRFS) returns error bounds for the solution of a real band system of linear equations with
multiple right-hand sides, AX ¼ B or ATX ¼ B. It improves the solution by iterative refinement, in
order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07BHF (TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)

&

INTEGER N, KL, KU, NRHS, LDAB, LDAFB, IPIV(*), LDB, LDX,
IWORK(N), INFO

&

REAL (KIND=nag_wp) AB(LDAB,*), AFB(LDAFB,*), B(LDB,*), X(LDX,*),
FERR(NRHS), BERR(NRHS), WORK(3*N)

&

CHARACTER(1) TRANS

The routine may be called by its LAPACK name dgbrfs.

3 Description

F07BHF (DGBRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a real band system of linear equations with multiple right-hand sides AX ¼ B or ATX ¼ B.
The routine handles each right-hand side vector (stored as a column of the matrix B) independently, so
we describe the function of F07BHF (DGBRFS) in terms of a single right-hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: indicates the form of the linear equations for which X is the computed solution.

TRANS ¼ N
The linear equations are of the form AX ¼ B.

TRANS ¼ T or C
The linear equations are of the form ATX ¼ B.

Constraint: TRANS ¼ N , T or C .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the original n by n band matrix A as supplied to F07BDF (DGBTRF).

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min n; jþ klð Þ:
See Section 9 in F07BAF (DGBSV) for further details.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BHF (DGBRFS) is called.

Constraint: LDAB � KLþ KUþ 1.

8: AFBðLDAFB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AFB must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07BDF (DGBTRF).

9: LDAFB – INTEGER Input

On entry: the first dimension of the array AFB as declared in the (sub)program from which
F07BHF (DGBRFS) is called.

Constraint: LDAFB � 2� KLþ KUþ 1.
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10: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07BDF (DGBTRF).

11: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07BHF
(DGBRFS) is called.

Constraint: LDB � max 1;Nð Þ.

13: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07BEF (DGBTRS).

On exit: the improved solution matrix X.

14: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07BHF
(DGBRFS) is called.

Constraint: LDX � max 1;Nð Þ.

15: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

16: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

17: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

18: IWORKðNÞ – INTEGER array Workspace

19: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.
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8 Parallelism and Performance

F07BHF (DGBRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07BHF (DGBRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n kl þ kuð Þ
floating-point operations. Each step of iterative refinement involves an additional 2n 4kl þ 3kuð Þ
operations. This assumes n� kl and n� ku. At most five steps of iterative refinement are performed,
but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves
approximately 2n 2kl þ kuð Þ operations.
The complex analogue of this routine is F07BVF (ZGBRFS).

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
�0:23 2:54 �3:66 0:00
�6:98 2:46 �2:73 �2:13
0:00 2:56 2:46 4:07
0:00 0:00 �4:78 �3:82

0B@
1CA and B ¼

4:42 �36:01
27:13 �31:67
�6:14 �1:16
10:50 �25:82

0B@
1CA:

Here A is nonsymmetric and is treated as a band matrix, which must first be factorized by F07BDF
(DGBTRF).

10.1 Program Text

Program f07bhfe

! F07BHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgbrfs, dgbtrf, dgbtrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, k, kl, ku, ldab, &

ldafb, ldb, ldx, n, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), afb(:,:), b(:,:), berr(:), &
ferr(:), work(:), x(:,:)

Integer, Allocatable :: ipiv(:), iwork(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min
! .. Executable Statements ..
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Write (nout,*) ’F07BHF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n, nrhs, kl, ku
ldab = kl + ku + 1
ldafb = 2*kl + ku + 1
ldb = n
ldx = n
Allocate (ab(ldab,n),afb(ldafb,n),b(ldb,nrhs),berr(nrhs),ferr(nrhs), &

work(3*n),x(ldx,n),ipiv(n),iwork(n))

! Set A to zero to avoid referencing uninitialized elements

ab(1:kl+ku+1,1:n) = zero

! Read A and B from data file, and copy A to AFB and B to X

k = ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

afb(kl+1:2*kl+ku+1,1:n) = ab(1:kl+ku+1,1:n)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AFB
! The NAG name equivalent of dgbtrf is f07bdf

Call dgbtrf(n,n,kl,ku,afb,ldafb,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of dgbtrs is f07bef

Call dgbtrs(trans,n,kl,ku,nrhs,afb,ldafb,ipiv,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of dgbrfs is f07bhf
Call dgbrfs(trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,b,ldb,x,ldx, &

ferr,berr,work,iwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’The factor U is singular’

End If

99999 Format ((3X,1P,7E11.1))
End Program f07bhfe
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10.2 Program Data

F07BHF Example Program Data
4 2 1 2 :Values of N, NRHS, KL and KU

-0.23 2.54 -3.66
-6.98 2.46 -2.73 -2.13

2.56 2.46 4.07
-4.78 -3.82 :End of matrix A

4.42 -36.01
27.13 -31.67
-6.14 -1.16
10.50 -25.82 :End of matrix B

10.3 Program Results

F07BHF Example Program Results

Solution(s)
1 2

1 -2.0000 1.0000
2 3.0000 -4.0000
3 1.0000 7.0000
4 -4.0000 -2.0000

Backward errors (machine-dependent)
1.1E-16 9.9E-17

Estimated forward error bounds (machine-dependent)
1.6E-14 1.9E-14
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NAG Library Routine Document

F07BNF (ZGBSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BNF (ZGBSV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n band matrix, with kl subdiagonals and ku superdiagonals, and X and B are n by r
matrices.

2 Specification

SUBROUTINE F07BNF (N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)

INTEGER N, KL, KU, NRHS, LDAB, IPIV(N), LDB, INFO
COMPLEX (KIND=nag_wp) AB(LDAB,*), B(LDB,*)

The routine may be called by its LAPACK name zgbsv.

3 Description

F07BNF (ZGBSV) uses the LU decomposition with partial pivoting and row interchanges to factor A
as A ¼ PLU , where P is a permutation matrix, L is a product of permutation and unit lower triangular
matrices with kl subdiagonals, and U is upper triangular with kl þ kuð Þ superdiagonals. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

2: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

3: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.
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4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n coefficient matrix A.

The matrix is stored in rows kl þ 1 to 2kl þ ku þ 1; the first kl rows need not be set, more
precisely, the element Aij must be stored in

ABðkl þ ku þ 1þ i� j; jÞ ¼ Aij for max 1; j� kuð Þ � i � min n; jþ klð Þ:
See Section 9 for further details.

On exit: if INFO � 0, AB is overwritten by details of the factorization.

The upper triangular band matrix U , with kl þ ku superdiagonals, is stored in rows 1 to
kl þ ku þ 1 of the array, and the multipliers used to form the matrix L are stored in rows
kl þ ku þ 2 to 2kl þ ku þ 1.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BNF (ZGBSV) is called.

Constraint: LDAB � 2� KLþ KUþ 1.

7: IPIVðNÞ – INTEGER array Output

On exit: if no constraints are violated, the pivot indices that define the permutation matrix P ; at
the ith step row i of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ ¼ i indicates a row
interchange was not required.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07BNF
(ZGBSV) is called.

Constraint: LDB � max 1;Nð Þ.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

Following the use of F07BNF (ZGBSV), F07BUF (ZGBCON) can be used to estimate the condition
number of A and F07BVF (ZGBRFS) can be used to obtain approximate error bounds. Alternatives to
F07BNF (ZGBSV), which return condition and error estimates directly are F04CBF and F07BPF
(ZGBSVX).

8 Parallelism and Performance

F07BNF (ZGBSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07BNF (ZGBSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The band storage scheme for the array AB is illustrated by the following example, when n ¼ 6, kl ¼ 1,
and ku ¼ 2. Storage of the band matrix A in the array AB:

� � � þ þ þ
� � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 �

Array elements marked � need not be set and are not referenced by the routine. Array elements marked
þ need not be set, but are defined on exit from the routine and contain the elements u14, u25 and u36.

The total number of floating-point operations required to solve the equations AX ¼ B depends upon the
pivoting required, but if n� kl þ ku then it is approximately bounded by O nkl kl þ kuð Þð Þ for the
factorization and O n 2kl þ kuð Þrð Þ for the solution following the factorization.

The real analogue of this routine is F07BAF (DGBSV).
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10 Example

This example solves the equations

Ax ¼ b;

where A is the band matrix

A ¼
�1:65þ 2:26i �2:05� 0:85i 0:97� 2:84i 0

6:30i �1:48� 1:75i �3:99þ 4:01i 0:59� 0:48i
0 �0:77þ 2:83i �1:06þ 1:94i 3:33� 1:04i
0 0 4:48� 1:09i �0:46� 1:72i

0B@
1CA

and

b ¼
�1:06þ 21:50i
�22:72� 53:90i
28:24� 38:60i
�34:56þ 16:73i

0B@
1CA:

Details of the LU factorization of A are also output.

10.1 Program Text

Program f07bnfe

! F07BNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dff, zgbsv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, k, kl, ku, ldab, &

n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:), b(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07BNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kl, ku
ldab = 2*kl + ku + 1
Allocate (ab(ldab,n),b(n),ipiv(n))

! Read the band matrix A and the right hand side b from data file

k = kl + ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of zgbsv is f07bnf

Call zgbsv(n,kl,ku,1,ab,ldab,ipiv,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
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Write (nout,99999) b(1:n)

! Print details of the factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dff(n,n,kl,kl+ku,ab,ldab,’Bracketed’,’F7.4’, &

’Details of factorization’,’None’,rlabs,’None’,clabs,80,0,ifail)

! Print pivot indices’

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
99998 Format (1X,I5,3I18)
99997 Format (1X,A,I3,A,I3,A,A)

End Program f07bnfe

10.2 Program Data

F07BNF Example Program Data
4 1 2 :Values of N, KL and KU

(-1.65, 2.26) ( -2.05, -0.85) ( 0.97, -2.84)
( 0.00, 6.30) ( -1.48, -1.75) ( -3.99, 4.01) ( 0.59, -0.48)

( -0.77, 2.83) ( -1.06, 1.94) ( 3.33, -1.04)
( 4.48, -1.09) ( -0.46, -1.72) :End of matrix A

(-1.06, 21.50) (-22.72,-53.90) ( 28.24,-38.60) (-34.56, 16.73) :End of vector B

10.3 Program Results

F07BNF Example Program Results

Solution
(-3.0000, 2.0000) ( 1.0000,-7.0000) (-5.0000, 4.0000) ( 6.0000,-8.0000)

Details of factorization
( 0.0000, 6.3000) (-1.4800,-1.7500) (-3.9900, 4.0100) ( 0.5900,-0.4800)
( 0.3587, 0.2619) (-0.7700, 2.8300) (-1.0600, 1.9400) ( 3.3300,-1.0400)

( 0.2314, 0.6358) ( 4.9303,-3.0086) (-1.7692,-1.8587)
( 0.7604, 0.2429) ( 0.4338, 0.1233)

Pivot indices
2 3 3 4
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NAG Library Routine Document

F07BPF (ZGBSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BPF (ZGBSVX) uses the LU factorization to compute the solution to a complex system of linear
equations

AX ¼ B; ATX ¼ B or AHX ¼ B;

where A is an n by n band matrix with kl subdiagonals and ku superdiagonals, and X and B are n by r
matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07BPF (FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
WORK, RWORK, INFO)

&
&

INTEGER N, KL, KU, NRHS, LDAB, LDAFB, IPIV(*), LDB, LDX,
INFO

&

REAL (KIND=nag_wp) R(*), C(*), RCOND, FERR(NRHS), BERR(NRHS),
RWORK(max(1,N))

&

COMPLEX (KIND=nag_wp) AB(LDAB,*), AFB(LDAFB,*), B(LDB,*), X(LDX,*),
WORK(2*N)

&

CHARACTER(1) FACT, TRANS, EQUED

The routine may be called by its LAPACK name zgbsvx.

3 Description

F07BPF (ZGBSVX) performs the following steps:

1. Equilibration

The linear system to be solved may be badly scaled. However, the system can be equilibrated as a
first stage by setting FACT ¼ E . In this case, real scaling factors are computed and these factors
then determine whether the system is to be equilibrated. Equilibrated forms of the systems
AX ¼ B, ATX ¼ B and AHX ¼ B are

DRADCð Þ D�1C X
� �

¼ DRB;

DRADCð ÞT D�1R X
� �

¼ DCB;

and

DRADCð ÞH D�1R X
� �

¼ DCB;

respectively, where DR and DC are diagonal matrices, with positive diagonal elements, formed
from the computed scaling factors.

When equilibration is used, A will be overwritten by DRADC and B will be overwritten by DRB
(or DCB when the solution of ATX ¼ B or AHX ¼ B is sought).

2. Factorization

The matrix A, or its scaled form, is copied and factored using the LU decomposition

A ¼ PLU;

where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
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This stage can be by-passed when a factored matrix (with scaled matrices and scaling factors) are
supplied; for example, as provided by a previous call to F07BPF (ZGBSVX) with the same matrix
A.

3. Condition Number Estimation

The LU factorization of A determines whether a solution to the linear system exists. If some
diagonal element of U is zero, then U is exactly singular, no solution exists and the routine returns
with a failure. Otherwise the factorized form of A is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number is less than machine precision then a warning
code is returned on final exit.

4. Solution

The (equilibrated) system is solved for X (D�1C X or D�1R X) using the factored form of A
(DRADC).

5. Iterative Refinement

Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for the computed solution.

6. Construct Solution Matrix X

If equilibration was used, the matrix X is premultiplied by DC (if TRANS ¼ N ) or DR (if
TRANS ¼ T or C ) so that it solves the original system before equilibration.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

FACT ¼ F
AFB and IPIV contain the factorized form of A. If EQUED 6¼ N , the matrix A has been
equilibrated with scaling factors given by R and C. AB, AFB and IPIV are not modified.

FACT ¼ N
The matrix A will be copied to AFB and factorized.

FACT ¼ E
The matrix A will be equilibrated if necessary, then copied to AFB and factorized.

Constraint: FACT ¼ F , N or E .

2: TRANS – CHARACTER(1) Input

On entry: specifies the form of the system of equations.

TRANS ¼ N
AX ¼ B (No transpose).

TRANS ¼ T
ATX ¼ B (Transpose).
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TRANS ¼ C
AHX ¼ B (Conjugate transpose).

Constraint: TRANS ¼ N , T or C .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

5: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.

6: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

7: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n coefficient matrix A.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min n; jþ klð Þ:
See Section 9 for further details.

If FACT ¼ F and EQUED 6¼ N , A must have been equilibrated by the scaling factors in R and/
or C.

On exit: if FACT ¼ F or N , or if FACT ¼ E and EQUED ¼ N , AB is not modified.

If EQUED 6¼ N then, if no constraints are violated, A is scaled as follows:

if EQUED ¼ R , A ¼ DrA;

if EQUED ¼ C , A ¼ ADc;

if EQUED ¼ B , A ¼ DrADc.

8: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BPF (ZGBSVX) is called.

Constraint: LDAB � KLþ KUþ 1.

9: AFBðLDAFB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AFB must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , AFB need not be set.

If FACT ¼ F , details of the LU factorization of the n by n band matrix A, as computed by
F07BRF (ZGBTRF).
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The upper triangular band matrix U , with kl þ ku superdiagonals, is stored in rows 1 to
kl þ ku þ 1 of the array, and the multipliers used to form the matrix L are stored in rows
kl þ ku þ 2 to 2kl þ ku þ 1.

If EQUED 6¼ N , AFB is the factorized form of the equilibrated matrix A.

On exit: if FACT ¼ F , AFB is unchanged from entry.

Otherwise, if no constraints are violated, then if FACT ¼ N , AFB returns details of the LU
factorization of the band matrix A, and if FACT ¼ E , AFB returns details of the LU
factorization of the equilibrated band matrix A (see the description of AB for the form of the
equilibrated matrix).

10: LDAFB – INTEGER Input

On entry: the first dimension of the array AFB as declared in the (sub)program from which
F07BPF (ZGBSVX) is called.

Constraint: LDAFB � 2� KLþ KUþ 1.

11: IPIVð�Þ – INTEGER array Input/Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , IPIV need not be set.

If FACT ¼ F , IPIV contains the pivot indices from the factorization A ¼ LU , as computed by
F07BDF (DGBTRF); row i of the matrix was interchanged with row IPIVðiÞ.
On exit: if FACT ¼ F , IPIV is unchanged from entry.

Otherwise, if no constraints are violated, IPIV contains the pivot indices that define the
permutation matrix P ; at the ith step row i of the matrix was interchanged with row IPIVðiÞ.
IPIVðiÞ ¼ i indicates a row interchange was not required.

If FACT ¼ N , the pivot indices are those corresponding to the factorization A ¼ LU of the
original matrix A.

If FACT ¼ E , the pivot indices are those corresponding to the factorization of A ¼ LU of the
equilibrated matrix A.

12: EQUED – CHARACTER(1) Input/Output

On entry: if FACT ¼ N or E , EQUED need not be set.

If FACT ¼ F , EQUED must specify the form of the equilibration that was performed as follows:

if EQUED ¼ N , no equilibration;

if EQUED ¼ R , row equilibration, i.e., A has been premultiplied by DR;

if EQUED ¼ C , column equilibration, i.e., A has been postmultiplied by DC;

if EQUED ¼ B , both row and column equilibration, i.e., A has been replaced by DRADC.

On exit: if FACT ¼ F , EQUED is unchanged from entry.

Otherwise, if no constraints are violated, EQUED specifies the form of equilibration that was
performed as specified above.

Constraint: if FACT ¼ F , EQUED ¼ N , R , C or B .

13: Rð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array R must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , R need not be set.

If FACT ¼ F and EQUED ¼ R or B , R must contain the row scale factors for A, DR; each
element of R must be positive.
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On exit: if FACT ¼ F , R is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ R or B , R contains the row scale
factors for A, DR, such that A is multiplied on the left by DR; each element of R is positive.

14: Cð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array C must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , C need not be set.

If FACT ¼ F or EQUED ¼ C or B , C must contain the column scale factors for A, DC ; each
element of C must be positive.

On exit: if FACT ¼ F , C is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ C or B , C contains the row scale
factors for A, DC ; each element of C is positive.

15: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if EQUED ¼ N , B is not modified.

If TRANS ¼ N and EQUED ¼ R or B , B is overwritten by DRB.

If TRANS ¼ T or C and EQUED ¼ C or B , B is overwritten by DCB.

16: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07BPF
(ZGBSVX) is called.

Constraint: LDB � max 1;Nð Þ.

17: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X to the original system of equations.
Note that the arrays A and B are modified on exit if EQUED 6¼ N , and the solution to the
equilibrated system is D�1C X if TRANS ¼ N and EQUED ¼ C or B , or D�1R X if TRANS ¼ T
or C and EQUED ¼ R or B .

18: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07BPF
(ZGBSVX) is called.

Constraint: LDX � max 1;Nð Þ.

19: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the

matrix A (after equilibration if that is performed), computed as RCOND ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

20: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.
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21: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

22: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

23: RWORKðmax 1;Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, RWORKð1Þ contains the reciprocal pivot growth factor max aij
		 		=max uij

		 		.
If RWORKð1Þ is much less than 1, then the stability of the LU factorization of the (equilibrated)
matrix A could be poor. This also means that the solution X, condition estimator RCOND, and
forward error bound FERR could be unreliable. If the factorization fails with
INFO > 0 and INFO � N, RWORKð1Þ contains the reciprocal pivot growth factor for the leading
INFO columns of A.

24: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

U is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ej j � c nð Þ�P Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 9.3 of Higham (2002)
for further details.

If x is the true solution, then the computed solution x̂ satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.
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8 Parallelism and Performance

F07BPF (ZGBSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07BPF (ZGBSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The band storage scheme for the array AB is illustrated by the following example, when n ¼ 6, kl ¼ 1,
and ku ¼ 2. Storage of the band matrix A in the array AB:

� � a13 a24 a35 a46
� a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 �

The total number of floating-point operations required to solve the equations AX ¼ B depends upon the
pivoting required, but if n� kl þ ku then it is approximately bounded by O nkl kl þ kuð Þð Þ for the
factorization and O n 2kl þ kuð Þrð Þ for the solution following the factorization. The condition number
estimation typically requires between four and five solves and never more than eleven solves, following
the factorization. The solution is then refined, and the errors estimated, using iterative refinement; see
F07BVF (ZGBRFS) for information on the floating-point operations required.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The real analogue of this routine is F07BBF (DGBSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the band matrix

A ¼
�1:65þ 2:26i �2:05� 0:85i 0:97� 2:84i 0

6:30i �1:48� 1:75i �3:99þ 4:01i 0:59� 0:48i
0 �0:77þ 2:83i �1:06þ 1:94i 3:33� 1:04i
0 0 4:48� 1:09i �0:46� 1:72i

0B@
1CA

and

B ¼
�1:06þ 21:50i 12:85þ 2:84i
�22:72� 53:90i �70:22þ 21:57i
28:24� 38:60i �20:73� 1:23i
�34:56þ 16:73i 26:01þ 31:97i

0B@
1CA:

Estimates for the backward errors, forward errors, condition number and pivot growth are also output,
together with information on the equilibration of A.
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10.1 Program Text

Program f07bpfe

! F07BPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgbsvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, j, k, kl, ku, ldab, &

ldafb, ldb, ldx, n, nrhs
Character (1) :: equed

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), afb(:,:), b(:,:), &

work(:), x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), c(:), ferr(:), r(:), &

rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07BPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs, kl, ku
ldb = n
ldx = n
ldab = kl + ku + 1
ldafb = ldab + kl
Allocate (ab(ldab,n),afb(ldafb,n),b(ldb,nrhs),work(2*n),x(ldx,nrhs), &

berr(nrhs),c(n),ferr(nrhs),r(n),rwork(n),ipiv(n))

! Read the band matrix A and B from data file

k = ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! The NAG name equivalent of zgbsvx is f07bpf
Call zgbsvx(’Equilibration’,’No transpose’,n,kl,ku,nrhs,ab,ldab,afb, &

ldafb,ipiv,equed,r,c,b,ldb,x,ldx,rcond,ferr,berr,work,rwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds, condition number, the form
! of equilibration and the pivot growth factor

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
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Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)
If (equed==’N’) Then

Write (nout,*) ’A has not been equilibrated’
Else If (equed==’R’) Then

Write (nout,*) ’A has been row scaled as diag(R)*A’
Else If (equed==’C’) Then

Write (nout,*) ’A has been column scaled as A*diag(C)’
Else If (equed==’B’) Then

Write (nout,*) &
’A has been row and column scaled as diag(R)*A*diag(C)’

End If
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal pivot growth factor’
Write (nout,99999) rwork(1)

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &
’ element of the factor U is zero’

End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07bpfe

10.2 Program Data

F07BPF Example Program Data
4 2 1 2 :Values of N, NRHS, KL and KU

(-1.65, 2.26) (-2.05,-0.85) ( 0.97,-2.84)
( 0.00, 6.30) (-1.48,-1.75) (-3.99, 4.01) ( 0.59,-0.48)

(-0.77, 2.83) (-1.06, 1.94) ( 3.33,-1.04)
( 4.48,-1.09) (-0.46,-1.72) :End of matrix A

( -1.06, 21.50) ( 12.85, 2.84)
(-22.72,-53.90) (-70.22, 21.57)
( 28.24,-38.60) (-20.73, -1.23)
(-34.56, 16.73) ( 26.01, 31.97) :End of matrix B

10.3 Program Results

F07BPF Example Program Results

Solution(s)
1 2

1 (-3.0000, 2.0000) ( 1.0000, 6.0000)
2 ( 1.0000,-7.0000) (-7.0000,-4.0000)
3 (-5.0000, 4.0000) ( 3.0000, 5.0000)
4 ( 6.0000,-8.0000) (-8.0000, 2.0000)

Backward errors (machine-dependent)
1.8E-17 6.7E-17

Estimated forward error bounds (machine-dependent)
3.5E-14 4.3E-14

Estimate of reciprocal condition number
9.6E-03

A has not been equilibrated

Estimate of reciprocal pivot growth factor
1.0E+00
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NAG Library Routine Document

F07BRF (ZGBTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BRF (ZGBTRF) computes the LU factorization of a complex m by n band matrix.

2 Specification

SUBROUTINE F07BRF (M, N, KL, KU, AB, LDAB, IPIV, INFO)

INTEGER M, N, KL, KU, LDAB, IPIV(min(M,N)), INFO
COMPLEX (KIND=nag_wp) AB(LDAB,*)

The routine may be called by its LAPACK name zgbtrf.

3 Description

F07BRF (ZGBTRF) forms the LU factorization of a complex m by n band matrix A using partial
pivoting, with row interchanges. Usually m ¼ n, and then, if A has kl nonzero subdiagonals and ku
nonzero superdiagonals, the factorization has the form A ¼ PLU , where P is a permutation matrix, L
is a lower triangular matrix with unit diagonal elements and at most kl nonzero elements in each
column, and U is an upper triangular band matrix with kl þ ku superdiagonals.

Note that L is not a band matrix, but the nonzero elements of L can be stored in the same space as the
subdiagonal elements of A. U is a band matrix but with kl additional superdiagonals compared with A.
These additional superdiagonals are created by the row interchanges.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.
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5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

The matrix is stored in rows kl þ 1 to 2kl þ ku þ 1; the first kl rows need not be set, more
precisely, the element Aij must be stored in

ABðkl þ ku þ 1þ i� j; jÞ ¼ Aij for max 1; j� kuð Þ � i � min m; jþ klð Þ:
See Section 9 in F07BNF (ZGBSV) for further details.

On exit: if INFO � 0, AB is overwritten by details of the factorization.

The upper triangular band matrix U , with kl þ ku superdiagonals, is stored in rows 1 to
kl þ ku þ 1 of the array, and the multipliers used to form the matrix L are stored in rows
kl þ ku þ 2 to 2kl þ ku þ 1.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BRF (ZGBTRF) is called.

Constraint: LDAB � 2� KLþ KUþ 1.

7: IPIVðmin M;Nð ÞÞ – INTEGER array Output

On exit: the pivot indices that define the permutation matrix. At the ith step, if IPIVðiÞ > i then
row i of the matrix A was interchanged with row IPIVðiÞ, for i ¼ 1; 2; . . . ;min m;nð Þ. IPIVðiÞ � i
indicates that, at the ith step, a row interchange was not required.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed. See Section 3.7 in How to Use the NAG
Library and its Documentation for further information. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, and division by zero will occur if it is used to solve a system of
equations.

7 Accuracy

The computed factors L and U are the exact factors of a perturbed matrix Aþ E, where
Ej j � c kð Þ�P Lj j Uj j;

c kð Þ is a modest linear function of k ¼ kl þ ku þ 1, and � is the machine precision. This assumes
k min m;nð Þ.

8 Parallelism and Performance

F07BRF (ZGBTRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F07BRF (ZGBTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations varies between approximately 8nkl ku þ 1ð Þ and
8nkl kl þ ku þ 1ð Þ, depending on the interchanges, assuming m ¼ n� kl and n� ku.

A call to F07BRF (ZGBTRF) may be followed by calls to the routines:

F07BSF (ZGBTRS) to solve AX ¼ B, ATX ¼ B or AHX ¼ B;
F07BUF (ZGBCON) to estimate the condition number of A.

The real analogue of this routine is F07BDF (DGBTRF).

10 Example

This example computes the LU factorization of the matrix A, where

A ¼
�1:65þ 2:26i �2:05� 0:85i 0:97� 2:84i 0:00þ 0:00i
0:00þ 6:30i �1:48� 1:75i �3:99þ 4:01i 0:59� 0:48i
0:00þ 0:00i �0:77þ 2:83i �1:06þ 1:94i 3:33� 1:04i
0:00þ 0:00i 0:00þ 0:00i 4:48� 1:09i �0:46� 1:72i

0B@
1CA:

Here A is treated as a band matrix with one subdiagonal and two superdiagonals.

10.1 Program Text

Program f07brfe

! F07BRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dff, zgbtrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, k, kl, ku, ldab, &

m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07BRF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, kl, ku
ldab = 2*kl + ku + 1
Allocate (ab(ldab,n),ipiv(n))

! Read A from data file

k = kl + ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,m)
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! Factorize A
! The NAG name equivalent of zgbtrf is f07brf

Call zgbtrf(m,n,kl,ku,ab,ldab,ipiv,info)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dff(m,n,kl,kl+ku,ab,ldab,’Bracketed’,’F7.4’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’IPIV’
Write (nout,99999) ipiv(1:min(m,n))

If (info/=0) Then
Write (nout,*) ’The factor U is singular’

End If

99999 Format ((1X,I12,3I18))
End Program f07brfe

10.2 Program Data

F07BRF Example Program Data
4 4 1 2 :Values of M, N, KL and KU

(-1.65, 2.26) (-2.05,-0.85) ( 0.97,-2.84)
( 0.00, 6.30) (-1.48,-1.75) (-3.99, 4.01) ( 0.59,-0.48)

(-0.77, 2.83) (-1.06, 1.94) ( 3.33,-1.04)
( 4.48,-1.09) (-0.46,-1.72) :End of matrix A

10.3 Program Results

F07BRF Example Program Results

Details of factorization
1 2 3 4

1 ( 0.0000, 6.3000) (-1.4800,-1.7500) (-3.9900, 4.0100) ( 0.5900,-0.4800)
2 ( 0.3587, 0.2619) (-0.7700, 2.8300) (-1.0600, 1.9400) ( 3.3300,-1.0400)
3 ( 0.2314, 0.6358) ( 4.9303,-3.0086) (-1.7692,-1.8587)
4 ( 0.7604, 0.2429) ( 0.4338, 0.1233)

IPIV
2 3 3 4
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NAG Library Routine Document

F07BSF (ZGBTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BSF (ZGBTRS) solves a complex band system of linear equations with multiple right-hand sides,

AX ¼ B; ATX ¼ B or AHX ¼ B;

where A has been factorized by F07BRF (ZGBTRF).

2 Specification

SUBROUTINE F07BSF (TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)

INTEGER N, KL, KU, NRHS, LDAB, IPIV(*), LDB, INFO
COMPLEX (KIND=nag_wp) AB(LDAB,*), B(LDB,*)
CHARACTER(1) TRANS

The routine may be called by its LAPACK name zgbtrs.

3 Description

F07BSF (ZGBTRS) is used to solve a complex band system of linear equations AX ¼ B, ATX ¼ B or
AHX ¼ B, the routine must be preceded by a call to F07BRF (ZGBTRF) which computes the LU
factorization of A as A ¼ PLU . The solution is computed by forward and backward substitution.

If TRANS ¼ N , the solution is computed by solving PLY ¼ B and then UX ¼ Y .

If TRANS ¼ T , the solution is computed by solving UTY ¼ B and then LTPTX ¼ Y .
If TRANS ¼ C , the solution is computed by solving UHY ¼ B and then LHPTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
AX ¼ B is solved for X.

TRANS ¼ T
ATX ¼ B is solved for X.

TRANS ¼ C
AHX ¼ B is solved for X.

Constraint: TRANS ¼ N , T or C .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07BRF (ZGBTRF).

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BSF (ZGBTRS) is called.

Constraint: LDAB � 2� KLþ KUþ 1.

8: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07BRF (ZGBTRF).

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07BSF
(ZGBTRS) is called.

Constraint: LDB � max 1;Nð Þ.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

Ej j � c kð Þ� Lj j Uj j;

c kð Þ is a modest linear function of k ¼ kl þ ku þ 1, and � is the machine precision. This assumes
k n.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c kð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ, and cond AHð Þ (which is the same as
cond ATð Þ) can be much larger (or smaller) than cond Að Þ.
Forward and backward error bounds can be computed by calling F07BVF (ZGBRFS), and an estimate
for �1 Að Þ can be obtained by calling F07BUF (ZGBCON) with NORM ¼ I .

8 Parallelism and Performance

F07BSF (ZGBTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07BSF (ZGBTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8n 2kl þ kuð Þr, assuming n� kl and
n� ku.

This routine may be followed by a call to F07BVF (ZGBRFS) to refine the solution and return an error
estimate.

The real analogue of this routine is F07BEF (DGBTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
�1:65þ 2:26i �2:05� 0:85i 0:97� 2:84i 0:00þ 0:00i
0:00þ 6:30i �1:48� 1:75i �3:99þ 4:01i 0:59� 0:48i
0:00þ 0:00i �0:77þ 2:83i �1:06þ 1:94i 3:33� 1:04i
0:00þ 0:00i 0:00þ 0:00i 4:48� 1:09i �0:46� 1:72i

0B@
1CA

and

B ¼
�1:06þ 21:50i 12:85þ 2:84i
�22:72� 53:90i �70:22þ 21:57i
28:24� 38:60i �20:7 � 31:23i
�34:56þ 16:73i 26:01þ 31:97i

0B@
1CA:

Here A is nonsymmetric and is treated as a band matrix, which must first be factorized by F07BRF
(ZGBTRF).
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10.1 Program Text

Program f07bsfe

! F07BSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgbtrf, zgbtrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, k, kl, ku, ldab, &

ldb, n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07BSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs, kl, ku
ldab = 2*kl + ku + 1
ldb = n
Allocate (ab(ldab,n),b(ldb,nrhs),ipiv(n))

! Read A and B from data file

k = kl + ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A

! The NAG name equivalent of zgbtrf is f07brf
Call zgbtrf(n,n,kl,ku,ab,ldab,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of zgbtrs is f07bsf

Call zgbtrs(trans,n,kl,ku,nrhs,ab,ldab,ipiv,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’The factor U is singular’

End If

End Program f07bsfe
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10.2 Program Data

F07BSF Example Program Data
4 2 1 2 :Values of N, NRHS, KL and KU

(-1.65, 2.26) (-2.05,-0.85) ( 0.97,-2.84)
( 0.00, 6.30) (-1.48,-1.75) (-3.99, 4.01) ( 0.59,-0.48)

(-0.77, 2.83) (-1.06, 1.94) ( 3.33,-1.04)
( 4.48,-1.09) (-0.46,-1.72) :End of matrix A

( -1.06, 21.50) ( 12.85, 2.84)
(-22.72,-53.90) (-70.22, 21.57)
( 28.24,-38.60) (-20.73, -1.23)
(-34.56, 16.73) ( 26.01, 31.97) :End of matrix B

10.3 Program Results

F07BSF Example Program Results

Solution(s)
1 2

1 (-3.0000, 2.0000) ( 1.0000, 6.0000)
2 ( 1.0000,-7.0000) (-7.0000,-4.0000)
3 (-5.0000, 4.0000) ( 3.0000, 5.0000)
4 ( 6.0000,-8.0000) (-8.0000, 2.0000)
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NAG Library Routine Document

F07BTF (ZGBEQU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BTF (ZGBEQU) computes diagonal scaling matrices DR and DC intended to equilibrate a complex
m by n band matrix A of band width kl þ ku þ 1ð Þ, and reduce its condition number.

2 Specification

SUBROUTINE F07BTF (M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX,
INFO)

&

INTEGER M, N, KL, KU, LDAB, INFO
REAL (KIND=nag_wp) R(M), C(N), ROWCND, COLCND, AMAX
COMPLEX (KIND=nag_wp) AB(LDAB,*)

The routine may be called by its LAPACK name zgbequ.

3 Description

F07BTF (ZGBEQU) computes the diagonal scaling matrices. The diagonal scaling matrices are chosen
to try to make the elements of largest absolute value in each row and column of the matrix B given by

B ¼ DRADC

have absolute value 1. The diagonal elements of DR and DC are restricted to lie in the safe range
�; 1=�ð Þ, where � is the value returned by routine X02AMF. Use of these scaling factors is not
guaranteed to reduce the condition number of A but works well in practice.

4 References

None.

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: KL – INTEGER Input

On entry: kl, the number of subdiagonals of the matrix A.

Constraint: KL � 0.
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4: KU – INTEGER Input

On entry: ku, the number of superdiagonals of the matrix A.

Constraint: KU � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the m by n band matrix A whose scaling factors are to be computed.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:
See Section 9 in F07BNF (ZGBSV) for further details.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BTF (ZGBEQU) is called.

Constraint: LDAB � KLþ KUþ 1.

7: RðMÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or INFO > M, R contains the row scale factors, the diagonal elements of
DR. The elements of R will be positive.

8: CðNÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, C contains the column scale factors, the diagonal elements of DC . The
elements of C will be positive.

9: ROWCND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0 or INFO > M, ROWCND contains the ratio of the smallest value of RðiÞ to
the largest value of RðiÞ. If ROWCND � 0:1 and AMAX is neither too large nor too small, it is
not worth scaling by DR.

10: COLCND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0, COLCND contains the ratio of the smallest value of CðiÞ to the largest
value of CðiÞ.
If COLCND � 0:1, it is not worth scaling by DC.

11: AMAX – REAL (KIND=nag_wp) Output

On exit: max aij
		 		. If AMAX is very close to overflow or underflow, the matrix A should be

scaled.

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0 and INFO � M

Row valueh i of A is exactly zero.

INFO > M

Column valueh i of A is exactly zero.

7 Accuracy

The computed scale factors will be close to the exact scale factors.

8 Parallelism and Performance

F07BTF (ZGBEQU) is not threaded in any implementation.

9 Further Comments

The real analogue of this routine is F07BFF (DGBEQU).

10 Example

This example equilibrates the complex band matrix A given by

A ¼
�1:65þ 2:26i �2:05� 0:85ið Þ � 10�10 0:97� 2:84i 0
0:00þ 6:30i �1:48� 1:75ið Þ � 10�10 �3:99þ 4:01i 0:59� 0:48i
0 �0:77þ 2:83i �1:06þ 1:94ið Þ � 1010 3:33� 1:04ið Þ � 1010

0 0 0:48� 1:09i �0:46� 1:72i

0BB@
1CCA:

Details of the scaling factors, and the scaled matrix are output.

10.1 Program Text

Program f07btfe

! F07BTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06kcf, nag_wp, x02ajf, x02amf, x02bhf, x04def, &

zdscal, zgbequ
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: thresh = 0.1_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: amax, big, colcnd, rowcnd, small
Integer :: i, i0, i1, ifail, ilen, info, j, k, &

kl, ku, ldab, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:)
Real (Kind=nag_wp), Allocatable :: c(:), r(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min, real

! .. Executable Statements ..
Write (nout,*) ’F07BTF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kl, ku
ldab = kl + ku + 1
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Allocate (ab(ldab,n),c(n),r(n))

! Read the band matrix A from data file

k = ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)

! Print the matrix A

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04def(n,n,kl,ku,ab,ldab,’Matrix A’,ifail)

Write (nout,*)

! Compute row and column scaling factors

! The NAG name equivalent of zgbequ is f07btf
Call zgbequ(n,n,kl,ku,ab,ldab,r,c,rowcnd,colcnd,amax,info)

If (info>0) Then
If (info<=n) Then

Write (nout,99999) ’Row ’, info, ’ of A is exactly zero’
Else

Write (nout,99999) ’Column ’, info - n, ’ of A is exactly zero’
End If

Else

! Print ROWCND, COLCND, AMAX and the scale factors

Write (nout,99998) ’ROWCND =’, rowcnd, ’, COLCND =’, colcnd, &
’, AMAX =’, amax

Write (nout,*)
Write (nout,*) ’Row scale factors’
Write (nout,99997) r(1:n)
Write (nout,*)
Write (nout,*) ’Column scale factors’
Write (nout,99997) c(1:n)
Write (nout,*)
Flush (nout)

! Compute values close to underflow and overflow

small = x02amf()/(x02ajf()*real(x02bhf(),kind=nag_wp))
big = one/small
If ((rowcnd>=thresh) .And. (amax>=small) .And. (amax<=big)) Then

If (colcnd<thresh) Then

! Just column scale A
! The NAG name equivalent of zdscal is f06jdf

Do j = 1, n
i1 = 1 + max(1,j-ku) - (j-ku)
ilen = min(n,j+kl) - max(1,j-ku) + 1
Call zdscal(ilen,c(j),ab(i1,j),1)

End Do

End If
Else If (colcnd>=thresh) Then

! Just row scale A
Do j = 1, n

i0 = max(1,j-ku)
i1 = 1 + i0 - (j-ku)
ilen = min(n,j+kl) - i0 + 1
Call f06kcf(ilen,r(i0),1,ab(i1,j),1)

End Do

Else

! Row and column scale A
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Do j = 1, n
i0 = max(1,j-ku)
i1 = 1 + i0 - (j-ku)
ilen = min(n,j+kl) - i0 + 1
Call zdscal(ilen,c(j),ab(i1,j),1)
Call f06kcf(ilen,r(i0),1,ab(i1,j),1)

End Do

End If

! Print the scaled matrix
ifail = 0
Call x04def(n,n,kl,ku,ab,ldab,’Scaled matrix’,ifail)

End If

99999 Format (1X,A,I4,A)
99998 Format (1X,3(A,1P,E8.1))
99997 Format ((1X,1P,7E11.2))

End Program f07btfe

10.2 Program Data

F07BTF Example Program Data
4 1 2 :Values of N, KL and KU

(-1.65, 2.26) (-2.05D-10,-8.50D-11) ( 9.70D-01,-2.84D+00)
( 0.00, 6.30) (-1.48D-10,-1.75D-10) (-2.99D+00, 3.01D+00) ( 0.59D+00,-0.48D+00)

(-7.70D-01, 2.83D+00) (-1.06D+10, 1.94D+10) ( 3.33D+10,-1.04D+10)
( 4.48D+00,-1.09D+00) (-0.46D+00,-1.72D+00)

:End of matrix A

10.3 Program Results

F07BTF Example Program Results

Matrix A
1 2 3 4

1 -1.6500E+00 -2.0500E-10 9.7000E-01
2.2600E+00 -8.5000E-11 -2.8400E+00

2 0.0000E+00 -1.4800E-10 -2.9900E+00 5.9000E-01
6.3000E+00 -1.7500E-10 3.0100E+00 -4.8000E-01

3 -7.7000E-01 -1.0600E+10 3.3300E+10
2.8300E+00 1.9400E+10 -1.0400E+10

4 4.4800E+00 -4.6000E-01
-1.0900E+00 -1.7200E+00

ROWCND = 8.9E-11, COLCND = 8.2E-11, AMAX = 4.4E+10

Row scale factors
2.56E-01 1.59E-01 2.29E-11 1.80E-01

Column scale factors
1.00E+00 1.21E+10 1.00E+00 1.00E+00

Scaled matrix
1 2 3 4

1 -0.4220 -0.6364 0.2481
0.5780 -0.2639 -0.7263

2 0.0000 -0.2852 -0.4746 0.0937
1.0000 -0.3372 0.4778 -0.0762
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3 -0.2139 -0.2426 0.7620
0.7861 0.4439 -0.2380

4 0.8043 -0.0826
-0.1957 -0.3088
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NAG Library Routine Document

F07BUF (ZGBCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BUF (ZGBCON) estimates the condition number of a complex band matrix A, where A has been
factorized by F07BRF (ZGBTRF).

2 Specification

SUBROUTINE F07BUF (NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND, WORK,
RWORK, INFO)

&

INTEGER N, KL, KU, LDAB, IPIV(*), INFO
REAL (KIND=nag_wp) ANORM, RCOND, RWORK(N)
COMPLEX (KIND=nag_wp) AB(LDAB,*), WORK(2*N)
CHARACTER(1) NORM

The routine may be called by its LAPACK name zgbcon.

3 Description

F07BUF (ZGBCON) estimates the condition number of a complex band matrix A, in either the 1-norm
or the 1-norm:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
or �1 Að Þ ¼ Ak k1 A�1

�� ��
1:

Note that �1 Að Þ ¼ �1 AHð Þ.
Because the condition number is infinite if A is singular, the routine actually returns an estimate of the
reciprocal of the condition number.

The routine should be preceded by a call to F06UBF to compute Ak k1 or Ak k1, and a call to F07BRF
(ZGBTRF) to compute the LU factorization of A. The routine then uses Higham's implementation of
Hager's method (see Higham (1988)) to estimate A�1

�� ��
1
or A�1
�� ��

1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: indicates whether �1 Að Þ or �1 Að Þ is estimated.

NORM ¼ 1 or O
�1 Að Þ is estimated.

NORM ¼ I
�1 Að Þ is estimated.

Constraint: NORM ¼ 1 , O or I .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07BRF (ZGBTRF).

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BUF (ZGBCON) is called.

Constraint: LDAB � 2� KLþ KUþ 1.

7: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07BRF (ZGBTRF).

8: ANORM – REAL (KIND=nag_wp) Input

On entry: if NORM ¼ 1 or O , the 1-norm of the original matrix A.

If NORM ¼ I , the 1-norm of the original matrix A.

ANORM may be computed by calling F06UBF with the same value for the argument NORM.

ANORM must be computed either before calling F07BRF (ZGBTRF) or else from a copy of the
original matrix A (see Section 10).

Constraint: ANORM � 0:0.

9: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

10: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

11: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07BUF (ZGBCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07BUF (ZGBCON) involves solving a number of systems of linear equations of the form
Ax ¼ b or AHx ¼ b; the number is usually 5 and never more than 11. Each solution involves
approximately 8n 2kl þ kuð Þ real floating-point operations (assuming n� kl and n� ku) but takes
considerably longer than a call to F07BSF (ZGBTRS) with one right-hand side, because extra care is
taken to avoid overflow when A is approximately singular.

The real analogue of this routine is F07BGF (DGBCON).

10 Example

This example estimates the condition number in the 1-norm of the matrix A, where

A ¼
�1:65þ 2:26i �2:05� 0:85i 0:97� 2:84i 0:00þ 0:00i
0:00þ 6:30i �1:48� 1:75i �3:99þ 4:01i 0:59� 0:48i
0:00þ 0:00i �0:77þ 2:83i �1:06þ 1:94i 3:33� 1:04i
0:00þ 0:00i 0:00þ 0:00i 4:48� 1:09i �0:46� 1:72i

0B@
1CA:

10.1 Program Text

Program f07bufe

! F07BUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, zgbcon, zgbtrf, zlangb => f06ubf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: norm = ’1’

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, j, k, kl, ku, ldab, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: ipiv(:)
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! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07BUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kl, ku
ldab = 2*kl + ku + 1
Allocate (ab(ldab,n),work(2*n),rwork(n),ipiv(n))

! Read A from data file

k = kl + ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)

! f06ubf is the NAG name equivalent of the LAPACK auxiliary zlangb
anorm = zlangb(norm,n,kl,ku,ab(kl+1,1),ldab,rwork)

! Factorize A
! The NAG name equivalent of zgbtrf is f07brf

Call zgbtrf(n,n,kl,ku,ab,ldab,ipiv,info)

Write (nout,*)
If (info==0) Then

! Estimate condition number
! The NAG name equivalent of zgbcon is f07buf

Call zgbcon(norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,rwork,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0E0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’The factor U is singular’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07bufe

10.2 Program Data

F07BUF Example Program Data
4 1 2 :Values of N, KL and KU

(-1.65, 2.26) (-2.05,-0.85) ( 0.97,-2.84)
( 0.00, 6.30) (-1.48,-1.75) (-3.99, 4.01) ( 0.59,-0.48)

(-0.77, 2.83) (-1.06, 1.94) ( 3.33,-1.04)
( 4.48,-1.09) (-0.46,-1.72) :End of matrix A

10.3 Program Results

F07BUF Example Program Results

Estimate of condition number = 1.04E+02
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NAG Library Routine Document

F07BVF (ZGBRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07BVF (ZGBRFS) returns error bounds for the solution of a complex band system of linear equations
with multiple right-hand sides, AX ¼ B, ATX ¼ B or AHX ¼ B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07BVF (TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, KL, KU, NRHS, LDAB, LDAFB, IPIV(*), LDB, LDX,
INFO

&

REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) AB(LDAB,*), AFB(LDAFB,*), B(LDB,*), X(LDX,*),

WORK(2*N)
&

CHARACTER(1) TRANS

The routine may be called by its LAPACK name zgbrfs.

3 Description

F07BVF (ZGBRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex band system of linear equations with multiple right-hand sides AX ¼ B,
ATX ¼ B or AHX ¼ B. The routine handles each right-hand side vector (stored as a column of the
matrix B) independently, so we describe the function of F07BVF (ZGBRFS) in terms of a single right-
hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: indicates the form of the linear equations for which X is the computed solution as
follows:

TRANS ¼ N
The linear equations are of the form AX ¼ B.

TRANS ¼ T
The linear equations are of the form ATX ¼ B.

TRANS ¼ C
The linear equations are of the form AHX ¼ B.

Constraint: TRANS ¼ N , T or C .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: KU � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the original n by n band matrix A as supplied to F07BRF (ZGBTRF).

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min n; jþ klð Þ:
See Section 9 in F07BNF (ZGBSV) for further details.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07BVF (ZGBRFS) is called.

Constraint: LDAB � KLþ KUþ 1.

8: AFBðLDAFB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AFB must be at least max 1;Nð Þ.
On entry: the LU factorization of A, as returned by F07BRF (ZGBTRF).
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9: LDAFB – INTEGER Input

On entry: the first dimension of the array AFB as declared in the (sub)program from which
F07BVF (ZGBRFS) is called.

Constraint: LDAFB � 2� KLþ KUþ 1.

10: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: the pivot indices, as returned by F07BRF (ZGBTRF).

11: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07BVF
(ZGBRFS) is called.

Constraint: LDB � max 1;Nð Þ.

13: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07BSF (ZGBTRS).

On exit: the improved solution matrix X.

14: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07BVF
(ZGBRFS) is called.

Constraint: LDX � max 1;Nð Þ.

15: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

16: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

17: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

18: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

19: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07BVF (ZGBRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07BVF (ZGBRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n kl þ kuð Þ real
floating-point operations. Each step of iterative refinement involves an additional 8n 4kl þ 3kuð Þ real
operations. This assumes n� kl and n� ku. At most five steps of iterative refinement are performed,
but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b or AHx ¼ b; the number is usually 5 and never more than 11. Each solution involves
approximately 8n 2kl þ kuð Þ real operations.
The real analogue of this routine is F07BHF (DGBRFS).

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
�1:65þ 2:26i �2:05� 0:85i 0:97� 2:84i 0:00þ 0:00i
0:00þ 6:30i �1:48� 1:75i �3:99þ 4:01i 0:59� 0:48i
0:00þ 0:00i �0:77þ 2:83i �1:06þ 1:94i 3:33� 1:04i
0:00þ 0:00i 0:00þ 0:00i 4:48� 1:09i �0:46� 1:72i

0B@
1CA

and

B ¼
�1:06þ 21:50i 12:85þ 2:84i
�22:72� 53:90i �70:22þ 21:57i
28:24� 38:60i �20:73� 1:23i
�34:56þ 16:73i 26:01þ 31:97i

0B@
1CA:

Here A is nonsymmetric and is treated as a band matrix, which must first be factorized by F07BRF
(ZGBTRF).

10.1 Program Text

Program f07bvfe

! F07BVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgbrfs, zgbtrf, zgbtrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Complex (Kind=nag_wp), Parameter :: zero = (0.0_nag_wp,0.0_nag_wp)
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, k, kl, ku, ldab, &

ldafb, ldb, ldx, n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:), afb(:,:), b(:,:), &
work(:), x(:,:)

Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07BVF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs, kl, ku
ldb = n
ldx = n
ldab = kl + ku + 1
ldafb = 2*kl + ku + 1
Allocate (ab(ldab,n),afb(ldafb,n),b(ldb,nrhs),work(2*n),x(ldx,n), &

berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))

! Set A to zero to avoid referencing uninitialized elements

ab(1:kl+ku+1,1:n) = zero

! Read A and B from data file, and copy A to AFB and B to X

k = ku + 1
Read (nin,*)((ab(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
Read (nin,*)(b(i,1:nrhs),i=1,n)

afb(kl+1:2*kl+ku+1,1:n) = ab(1:kl+ku+1,1:n)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AFB
! The NAG name equivalent of zgbtrf is f07brf

Call zgbtrf(n,n,kl,ku,afb,ldafb,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of zgbtrs is f07bsf

Call zgbtrs(trans,n,kl,ku,nrhs,afb,ldafb,ipiv,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors
! The NAG name equivalent of zgbrfs is f07bvf

Call zgbrfs(trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,b,ldb,x,ldx, &
ferr,berr,work,rwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
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Write (nout,*) ’The factor U is singular’
End If

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07bvfe

10.2 Program Data

F07BVF Example Program Data
4 2 1 2 :Values of N, NRHS, KL and KU

(-1.65, 2.26) (-2.05,-0.85) ( 0.97,-2.84)
( 0.00, 6.30) (-1.48,-1.75) (-3.99, 4.01) ( 0.59,-0.48)

(-0.77, 2.83) (-1.06, 1.94) ( 3.33,-1.04)
( 4.48,-1.09) (-0.46,-1.72) :End of matrix A

( -1.06, 21.50) ( 12.85, 2.84)
(-22.72,-53.90) (-70.22, 21.57)
( 28.24,-38.60) (-20.73, -1.23)
(-34.56, 16.73) ( 26.01, 31.97) :End of matrix B

10.3 Program Results

F07BVF Example Program Results

Solution(s)
1 2

1 (-3.0000, 2.0000) ( 1.0000, 6.0000)
2 ( 1.0000,-7.0000) (-7.0000,-4.0000)
3 (-5.0000, 4.0000) ( 3.0000, 5.0000)
4 ( 6.0000,-8.0000) (-8.0000, 2.0000)

Backward errors (machine-dependent)
1.8E-17 6.7E-17

Estimated forward error bounds (machine-dependent)
3.5E-14 4.3E-14

F07BVF NAG Library Manual

F07BVF.6 (last) Mark 26



NAG Library Routine Document

F07CAF (DGTSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CAF (DGTSV) computes the solution to a real system of linear equations

AX ¼ B;

where A is an n by n tridiagonal matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07CAF (N, NRHS, DL, D, DU, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
REAL (KIND=nag_wp) DL(*), D(*), DU(*), B(LDB,*)

The routine may be called by its LAPACK name dgtsv.

3 Description

F07CAF (DGTSV) uses Gaussian elimination with partial pivoting and row interchanges to solve the
equations AX ¼ B. The matrix A is factorized as A ¼ PLU , where P is a permutation matrix, L is unit
lower triangular with at most one nonzero subdiagonal element per column, and U is an upper
triangular band matrix, with two superdiagonals.

Note that equations ATX ¼ B may be solved by interchanging the order of the arguments DU and DL.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: DLð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the matrix A.

On exit: if no constraints are violated, DL is overwritten by the (n� 2) elements of the second
superdiagonal of the upper triangular matrix U from the LU factorization of A, in
DLð1Þ;DLð2Þ; . . . ;DLðn� 2Þ.
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4: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix A.

On exit: if no constraints are violated, D is overwritten by the n diagonal elements of the upper
triangular matrix U from the LU factorization of A.

5: DUð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ superdiagonal elements of the matrix A.

On exit: if no constraints are violated, DU is overwritten by the n� 1ð Þ elements of the first
superdiagonal of U .

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
To solve the equations Ax ¼ b, where b is a single right-hand side, B may be supplied as a one-
dimensional array with length LDB ¼ max 1;Nð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07CAF
(DGTSV) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero, and the solution has not been computed. The
factorization has not been completed unless N ¼ valueh i.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;
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where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

Alternatives to F07CAF (DGTSV), which return condition and error estimates are F04BCF and
F07CBF (DGTSVX).

8 Parallelism and Performance

F07CAF (DGTSV) is not threaded in any implementation.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr.

The complex analogue of this routine is F07CNF (ZGTSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the tridiagonal matrix

A ¼

3:0 2:1 0 0 0
3:4 2:3 �1:0 0 0
0 3:6 �5:0 1:9 0
0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0BBB@
1CCCA and b ¼

2:7
�0:5
2:6
0:6
2:7

0BBB@
1CCCA:

10.1 Program Text

Program f07cafe

! F07CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgtsv, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: info, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), d(:), dl(:), du(:)

! .. Executable Statements ..
Write (nout,*) ’F07CAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (b(n),d(n),dl(n-1),du(n-1))

! Read the tridiagonal matrix A and the right hand side B from
! data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)
Read (nin,*) b(1:n)
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! Solve the equations Ax = b for x

! The NAG name equivalent of dgtsv is f07caf
Call dgtsv(n,1,dl,d,du,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

Else
Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format ((1X,7F11.4))
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07cafe

10.2 Program Data

F07CAF Example Program Data
5 :Value of N

2.1 -1.0 1.9 8.0
3.0 2.3 -5.0 -0.9 7.1
3.4 3.6 7.0 -6.0 :End of matrix A
2.7 -0.5 2.6 0.6 2.7 :End of vector B

10.3 Program Results

F07CAF Example Program Results

Solution
-4.0000 7.0000 3.0000 -4.0000 -3.0000
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NAG Library Routine Document

F07CBF (DGTSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CBF (DGTSVX) uses the LU factorization to compute the solution to a real system of linear
equations

AX ¼ B or ATX ¼ B;

where A is a tridiagonal matrix of order n and X and B are n by r matrices. Error bounds on the
solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07CBF (FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK,
INFO)

&
&

INTEGER N, NRHS, IPIV(*), LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) DL(*), D(*), DU(*), DLF(*), DF(*), DUF(*), DU2(*),

B(LDB,*), X(LDX,*), RCOND, FERR(NRHS), BERR(NRHS),
WORK(3*N)

&
&

CHARACTER(1) FACT, TRANS

The routine may be called by its LAPACK name dgtsvx.

3 Description

F07CBF (DGTSVX) performs the following steps:

1. If FACT ¼ N , the LU decomposition is used to factor the matrix A as A ¼ LU , where L is a
product of permutation and unit lower bidiagonal matrices and U is upper triangular with nonzeros
in only the main diagonal and first two superdiagonals.

2. If some uii ¼ 0, so that U is exactly singular, then the routine returns with INFO ¼ i. Otherwise,
the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal
of the condition number is less than machine precision, INFO ¼ Nþ 1 is returned as a warning,
but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

FACT ¼ F
DLF, DF, DUF, DU2 and IPIV contain the factorized form of the matrix A. DLF, DF,
DUF, DU2 and IPIV will not be modified.

FACT ¼ N
The matrix A will be copied to DLF, DF and DUF and factorized.

Constraint: FACT ¼ F or N .

2: TRANS – CHARACTER(1) Input

On entry: specifies the form of the system of equations.

TRANS ¼ N
AX ¼ B (No transpose).

TRANS ¼ T or C
ATX ¼ B (Transpose).

Constraint: TRANS ¼ N , T or C .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: DLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ subdiagonal elements of A.

6: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of A.

7: DUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ superdiagonal elements of A.

8: DLFð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DLF must be at least max 1;N� 1ð Þ.
On entry: if FACT ¼ F , DLF contains the n� 1ð Þ multipliers that define the matrix L from the
LU factorization of A.

On exit: if FACT ¼ N , DLF contains the n� 1ð Þ multipliers that define the matrix L from the
LU factorization of A.
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9: DFð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DF must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , DF contains the n diagonal elements of the upper triangular matrix U
from the LU factorization of A.

On exit: if FACT ¼ N , DF contains the n diagonal elements of the upper triangular matrix U
from the LU factorization of A.

10: DUFð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DUF must be at least max 1;N� 1ð Þ.
On entry: if FACT ¼ F , DUF contains the n� 1ð Þ elements of the first superdiagonal of U .

On exit: if FACT ¼ N , DUF contains the n� 1ð Þ elements of the first superdiagonal of U .

11: DU2ð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DU2 must be at least max 1;N� 2ð Þ.
On entry: if FACT ¼ F , DU2 contains the (n� 2) elements of the second superdiagonal of U .

On exit: if FACT ¼ N , DU2 contains the (n� 2) elements of the second superdiagonal of U .

12: IPIVð�Þ – INTEGER array Input/Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , IPIV contains the pivot indices from the LU factorization of A.

On exit: if FACT ¼ N , IPIV contains the pivot indices from the LU factorization of A; row i of
the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ will always be either i or iþ 1;
IPIVðiÞ ¼ i indicates a row interchange was not required.

13: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

14: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07CBF
(DGTSVX) is called.

Constraint: LDB � max 1;Nð Þ.

15: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X.

16: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07CBF
(DGTSVX) is called.

Constraint: LDX � max 1;Nð Þ.

17: RCOND – REAL (KIND=nag_wp) Output

On exit: the estimate of the reciprocal condition number of the matrix A. If RCOND ¼ 0:0, the
matrix may be exactly singular. This condition is indicated by INFO > 0 and INFO � N.
Otherwise, if RCOND is less than the machine precision, the matrix is singular to working
precision. This condition is indicated by INFO ¼ Nþ 1.
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18: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

19: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

20: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

21: IWORKðNÞ – INTEGER array Workspace

22: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO < N

Element valueh i of the diagonal is exactly zero. The factorization has not been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO > 0 and INFO ¼ N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

U is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ej j � c nð Þ� Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 9.3 of Higham (2002)
for further details.

If x is the true solution, then the computed solution x̂ satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ
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where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07CBF (DGTSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07CBF (DGTSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr.

The condition number estimation typically requires between four and five solves and never more than
eleven solves, following the factorization. The solution is then refined, and the errors estimated, using
iterative refinement.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of this routine is F07CPF (ZGTSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the tridiagonal matrix

A ¼

3:0 2:1 0 0 0
3:4 2:3 �1:0 0 0
0 3:6 �5:0 1:9 0
0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0BBB@
1CCCA

and

B ¼

2:7 6:6
�0:5 10:8
2:6 �3:2
0:6 �11:2
2:7 19:1

0BBB@
1CCCA:

Estimates for the backward errors, forward errors and condition number are also output.

10.1 Program Text

Program f07cbfe

! F07CBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..

F07 – Linear Equations (LAPACK) F07CBF
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Use nag_library, Only: dgtsvx, nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, ldb, ldx, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), berr(:), d(:), df(:), dl(:), &

dlf(:), du(:), du2(:), duf(:), &
ferr(:), work(:), x(:,:)

Integer, Allocatable :: ipiv(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F07CBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (b(ldb,nrhs),berr(nrhs),d(n),df(n),dl(n-1),dlf(n-1),du(n-1), &

du2(n-2),duf(n-1),ferr(nrhs),work(3*n),x(ldx,nrhs),ipiv(n),iwork(n))

! Read the tridiagonal matrix A from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)

! Read the right hand matrix B

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B

! The NAG name equivalent of dgtsvx is f07cbf
Call dgtsvx(’No factors’,’No transpose’,n,nrhs,dl,d,du,dlf,df,duf,du2, &

ipiv,b,ldb,x,ldx,rcond,ferr,berr,work,iwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds and condition number

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &
’ element of the factor U is zero’
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End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07cbfe

10.2 Program Data

F07CBF Example Program Data
5 2 :Values of N and NRHS

2.1 -1.0 1.9 8.0
3.0 2.3 -5.0 -0.9 7.1
3.4 3.6 7.0 -6.0 :End of matrix A
2.7 6.6

-0.5 10.8
2.6 -3.2
0.6 -11.2
2.7 19.1 :End of matrix B

10.3 Program Results

F07CBF Example Program Results

Solution(s)
1 2

1 -4.0000 5.0000
2 7.0000 -4.0000
3 3.0000 -3.0000
4 -4.0000 -2.0000
5 -3.0000 1.0000

Backward errors (machine-dependent)
7.2E-17 5.9E-17

Estimated forward error bounds (machine-dependent)
9.4E-15 1.4E-14

Estimate of reciprocal condition number
1.1E-02
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NAG Library Routine Document

F07CDF (DGTTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CDF (DGTTRF) computes the LU factorization of a real n by n tridiagonal matrix A.

2 Specification

SUBROUTINE F07CDF (N, DL, D, DU, DU2, IPIV, INFO)

INTEGER N, IPIV(N), INFO
REAL (KIND=nag_wp) DL(*), D(*), DU(*), DU2(N-2)

The routine may be called by its LAPACK name dgttrf.

3 Description

F07CDF (DGTTRF) uses Gaussian elimination with partial pivoting and row interchanges to factorize
the matrix A as

A ¼ PLU;

where P is a permutation matrix, L is unit lower triangular with at most one nonzero subdiagonal
element in each column, and U is an upper triangular band matrix, with two superdiagonals.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: DLð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the matrix A.

On exit: is overwritten by the n� 1ð Þ multipliers that define the matrix L of the LU factorization
of A.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix A.

On exit: is overwritten by the n diagonal elements of the upper triangular matrix U from the LU
factorization of A.
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4: DUð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ superdiagonal elements of the matrix A.

On exit: is overwritten by the n� 1ð Þ elements of the first superdiagonal of U .

5: DU2ðN� 2Þ – REAL (KIND=nag_wp) array Output

On exit: contains the n� 2ð Þ elements of the second superdiagonal of U .

6: IPIVðNÞ – INTEGER array Output

On exit: contains the n pivot indices that define the permutation matrix P . At the ith step, row i
of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ will always be either i or iþ 1ð Þ,
IPIVðiÞ ¼ i indicating that a row interchange was not performed.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, and division by zero will occur if it is used to solve a system of
equations.

7 Accuracy

The computed factorization satisfies an equation of the form

Aþ E ¼ PLU;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision.

Following the use of this routine, F07CEF (DGTTRS) can be used to solve systems of equations
AX ¼ B or ATX ¼ B, and F07CGF (DGTCON) can be used to estimate the condition number of A.

8 Parallelism and Performance

F07CDF (DGTTRF) is not threaded in any implementation.

9 Further Comments

The total number of floating-point operations required to factorize the matrix A is proportional to n.

The complex analogue of this routine is F07CRF (ZGTTRF).
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10 Example

This example factorizes the tridiagonal matrix A given by

A ¼

3:0 2:1 0 0 0
3:4 2:3 �1:0 0 0
0 3:6 �5:0 1:9 0
0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0BBB@
1CCCA:

10.1 Program Text

Program f07cdfe

! F07CDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgttrf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: info, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), dl(:), du(:), du2(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07CDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (d(n),dl(n-1),du(n-1),du2(n-2),ipiv(n))

! Read the tridiagonal matrix A from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)

! Factorize the tridiagonal matrix A
! The NAG name equivalent of dgttrf is f06cdf

Call dgttrf(n,dl,d,du,du2,ipiv,info)

If (info>0) Then
Write (nout,99999) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

! Print details of the factorization

Write (nout,*) ’Details of factorization’
Write (nout,*)
Write (nout,*) ’ Second superdiagonal of U’
Write (nout,99998) du2(1:n-2)
Write (nout,*)
Write (nout,*) ’ First superdiagonal of U’
Write (nout,99998) du(1:n-1)
Write (nout,*)
Write (nout,*) ’ Main diagonal of U’
Write (nout,99998) d(1:n)
Write (nout,*)
Write (nout,*) ’ Multipliers’
Write (nout,99998) dl(1:n-1)
Write (nout,*)
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Write (nout,*) ’ Vector of interchanges’
Write (nout,99997) ipiv(1:n)

99999 Format (1X,A,I3,A,I3,A,A)
99998 Format (1X,8F9.4)
99997 Format (1X,5I9)

End Program f07cdfe

10.2 Program Data

F07CDF Example Program Data
5 :Value of N

2.1 -1.0 1.9 8.0
3.0 2.3 -5.0 -0.9 7.1
3.4 3.6 7.0 -6.0 :End of matrix A

10.3 Program Results

F07CDF Example Program Results

Details of factorization

Second superdiagonal of U
-1.0000 1.9000 8.0000

First superdiagonal of U
2.3000 -5.0000 -0.9000 7.1000

Main diagonal of U
3.4000 3.6000 7.0000 -6.0000 -1.0154

Multipliers
0.8824 0.0196 0.1401 -0.0148

Vector of interchanges
2 3 4 5 5
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NAG Library Routine Document

F07CEF (DGTTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CEF (DGTTRS) computes the solution to a real system of linear equations AX ¼ B or ATX ¼ B,
where A is an n by n tridiagonal matrix and X and B are n by r matrices, using the LU factorization
returned by F07CDF (DGTTRF).

2 Specification

SUBROUTINE F07CEF (TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, INFO)

INTEGER N, NRHS, IPIV(*), LDB, INFO
REAL (KIND=nag_wp) DL(*), D(*), DU(*), DU2(*), B(LDB,*)
CHARACTER(1) TRANS

The routine may be called by its LAPACK name dgttrs.

3 Description

F07CEF (DGTTRS) should be preceded by a call to F07CDF (DGTTRF), which uses Gaussian
elimination with partial pivoting and row interchanges to factorize the matrix A as

A ¼ PLU;

where P is a permutation matrix, L is unit lower triangular with at most one nonzero subdiagonal
element in each column, and U is an upper triangular band matrix, with two superdiagonals. F07CEF
(DGTTRS) then utilizes the factorization to solve the required equations.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies the equations to be solved as follows:

TRANS ¼ N
Solve AX ¼ B for X.

TRANS ¼ T or C
Solve ATX ¼ B for X.

Constraint: TRANS ¼ N , T or C .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: DLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ multipliers that define the matrix L of the LU factorization of
A.

5: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the upper triangular matrix U from the LU
factorization of A.

6: DUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ elements of the first superdiagonal of U .

7: DU2ð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DU2 must be at least max 1;N� 2ð Þ.
On entry: must contain the n� 2ð Þ elements of the second superdiagonal of U .

8: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: must contain the n pivot indices that define the permutation matrix P . At the ith step,
row i of the matrix was interchanged with row IPIVðiÞ, and IPIVðiÞ must always be either i or
iþ 1ð Þ, IPIVðiÞ ¼ i indicating that a row interchange was not performed.

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: the n by r solution matrix X.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07CEF
(DGTTRS) is called.

Constraint: LDB � max 1;Nð Þ.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

Following the use of this routine F07CGF (DGTCON) can be used to estimate the condition number of
A and F07CHF (DGTRFS) can be used to obtain approximate error bounds.

8 Parallelism and Performance

F07CEF (DGTTRS) is not threaded in any implementation.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B or ATX ¼ B is
proportional to nr.

The complex analogue of this routine is F07CSF (ZGTTRS).

10 Example

This example solves the equations

AX ¼ B;

where A is the tridiagonal matrix

A ¼

3:0 2:1 0 0 0
3:4 2:3 �1:0 0 0
0 3:6 �5:0 1:9 0
0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0BBB@
1CCCA and B ¼

2:7 6:6
�0:5 10:8
2:6 �3:2
0:6 �11:2
2:7 19:1

0BBB@
1CCCA:

10.1 Program Text

Program f07cefe

! F07CEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgttrf, dgttrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, ldb, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), d(:), dl(:), du(:), du2(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
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Write (nout,*) ’F07CEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (b(ldb,nrhs),d(n),dl(n-1),du(n-1),du2(n-2),ipiv(n))

! Read the tridiagonal matrix A from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)

! Read the right hand matrix B
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize the tridiagonal matrix A
! The NAG name equivalent of dgttrf is f07cdf

Call dgttrf(n,dl,d,du,du2,ipiv,info)

If (info==0) Then

! Solve the equations AX = B
! The NAG name equivalent of dgttrs is f07cef

Call dgttrs(’No transpose’,n,nrhs,dl,d,du,du2,ipiv,b,ldb,info)

! Print the solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,99999) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format (1X,A,I3,A,I3,A,A)
End Program f07cefe

10.2 Program Data

F07CEF Example Program Data
5 2 :Values of N and NRHS

2.1 -1.0 1.9 8.0
3.0 2.3 -5.0 -0.9 7.1
3.4 3.6 7.0 -6.0 :End of matrix A
2.7 6.6

-0.5 10.8
2.6 -3.2
0.6 -11.2
2.7 19.1 :End of matrix B

10.3 Program Results

F07CEF Example Program Results

Solution(s)
1 2

1 -4.0000 5.0000
2 7.0000 -4.0000
3 3.0000 -3.0000
4 -4.0000 -2.0000
5 -3.0000 1.0000
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NAG Library Routine Document

F07CGF (DGTCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CGF (DGTCON) estimates the reciprocal condition number of a real n by n tridiagonal matrix A,
using the LU factorization returned by F07CDF (DGTTRF).

2 Specification

SUBROUTINE F07CGF (NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, WORK,
IWORK, INFO)

&

INTEGER N, IPIV(*), IWORK(N), INFO
REAL (KIND=nag_wp) DL(*), D(*), DU(*), DU2(*), ANORM, RCOND, WORK(2*N)
CHARACTER(1) NORM

The routine may be called by its LAPACK name dgtcon.

3 Description

F07CGF (DGTCON) should be preceded by a call to F07CDF (DGTTRF), which uses Gaussian
elimination with partial pivoting and row interchanges to factorize the matrix A as

A ¼ PLU;

where P is a permutation matrix, L is unit lower triangular with at most one nonzero subdiagonal
element in each column, and U is an upper triangular band matrix, with two superdiagonals. F07CGF
(DGTCON) then utilizes the factorization to estimate either A�1

�� ��
1
or A�1
�� ��

1, from which the
estimate of the reciprocal of the condition number of A, 1=� Að Þ is computed as either

1=�1 Að Þ ¼ 1= Ak k1 A�1
�� ��

1

� �
or

1=�1 Að Þ ¼ 1= Ak k1 A�1
�� ��

1

� �
:

1=� Að Þ is returned, rather than � Að Þ, since when A is singular � Að Þ is infinite.

Note that �1 Að Þ ¼ �1 ATð Þ.

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the norm to be used to estimate � Að Þ.
NORM ¼ 1 or O

Estimate �1 Að Þ.

F07 – Linear Equations (LAPACK) F07CGF

Mark 26 F07CGF.1



NORM ¼ I
Estimate �1 Að Þ.

Constraint: NORM ¼ 1 , O or I .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: DLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ multipliers that define the matrix L of the LU factorization of
A.

4: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the upper triangular matrix U from the LU
factorization of A.

5: DUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ elements of the first superdiagonal of U .

6: DU2ð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DU2 must be at least max 1;N� 2ð Þ.
On entry: must contain the n� 2ð Þ elements of the second superdiagonal of U .

7: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: must contain the n pivot indices that define the permutation matrix P . At the ith step,
row i of the matrix was interchanged with row IPIVðiÞ, and IPIVðiÞ must always be either i or
iþ 1ð Þ, IPIVðiÞ ¼ i indicating that a row interchange was not performed.

8: ANORM – REAL (KIND=nag_wp) Input

On entry: if NORM ¼ 1 or O , the 1-norm of the original matrix A.

If NORM ¼ I , the 1-norm of the original matrix A.

ANORM may be computed by calling F06RNF with the same value for the argument NORM.

ANORM must be computed either before calling F07CDF (DGTTRF) or else from a copy of the
original matrix A (see Section 10).

Constraint: ANORM � 0:0.

9: RCOND – REAL (KIND=nag_wp) Output

On exit: contains an estimate of the reciprocal condition number.

10: WORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

11: IWORKðNÞ – INTEGER array Workspace
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12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

8 Parallelism and Performance

F07CGF (DGTCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The condition number estimation typically requires between four and five solves and never more than
eleven solves, following the factorization. The total number of floating-point operations required to
perform a solve is proportional to n.

The complex analogue of this routine is F07CUF (ZGTCON).

10 Example

This example estimates the condition number in the 1-norm of the tridiagonal matrix A given by

A ¼

3:0 2:1 0 0 0
3:4 2:3 �1:0 0 0
0 3:6 �5:0 1:9 0
0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0BBB@
1CCCA:

10.1 Program Text

Program f07cgfe

! F07CGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgtcon, dgttrf, f06rnf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: info, n

! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: d(:), dl(:), du(:), du2(:), work(:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07CGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (d(n),dl(n-1),du(n-1),du2(n-2),work(2*n),ipiv(n),iwork(n))

! Read the tridiagonal matrix A from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)

! Compute the 1-norm of A
anorm = f06rnf(’1-norm’,n,dl,d,du)

! Factorize the tridiagonal matrix A
! The NAG name equivalent of dgttrf is f07cdf

Call dgttrf(n,dl,d,du,du2,ipiv,info)

If (info==0) Then

! Estimate the condition number of A
! The NAG name equivalent of dgtcon is f07cgf

Call dgtcon(’1-norm’,n,dl,d,du,du2,ipiv,anorm,rcond,work,iwork,info)

! Print the estimated condition number

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number = ’, &

1.0_nag_wp/rcond
Else

Write (nout,99999) ’A is singular to working precision. RCOND = ’, &
rcond

End If

Else
Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format (1X,A,1P,E10.2)
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07cgfe

10.2 Program Data

F07CGF Example Program Data
5 :Value of N

2.1 -1.0 1.9 8.0
3.0 2.3 -5.0 -0.9 7.1
3.4 3.6 7.0 -6.0 :End of matrix A

10.3 Program Results

F07CGF Example Program Results

Estimate of condition number = 9.27E+01
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NAG Library Routine Document

F07CHF (DGTRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CHF (DGTRFS) computes error bounds and refines the solution to a real system of linear equations
AX ¼ B or ATX ¼ B, where A is an n by n tridiagonal matrix and X and B are n by r matrices, using
the LU factorization returned by F07CDF (DGTTRF) and an initial solution returned by F07CEF
(DGTTRS). Iterative refinement is used to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07CHF (TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)

&

INTEGER N, NRHS, IPIV(*), LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) DL(*), D(*), DU(*), DLF(*), DF(*), DUF(*), DU2(*),

B(LDB,*), X(LDX,*), FERR(NRHS), BERR(NRHS),
WORK(3*N)

&
&

CHARACTER(1) TRANS

The routine may be called by its LAPACK name dgtrfs.

3 Description

F07CHF (DGTRFS) should normally be preceded by calls to F07CDF (DGTTRF) and F07CEF
(DGTTRS). F07CDF (DGTTRF) uses Gaussian elimination with partial pivoting and row interchanges
to factorize the matrix A as

A ¼ PLU;

where P is a permutation matrix, L is unit lower triangular with at most one nonzero subdiagonal
element in each column, and U is an upper triangular band matrix, with two superdiagonals. F07CEF
(DGTTRS) then utilizes the factorization to compute a solution, X̂, to the required equations. Letting x̂
denote a column of X̂, F07CHF (DGTRFS) computes a component-wise backward error, �, the smallest
relative perturbation in each element of A and b such that x̂ is the exact solution of a perturbed system

Aþ Eð Þx̂ ¼ bþ f; with eij
		 		 � � aij		 		; and fj

		 		 � � bj		 		:
The routine also estimates a bound for the component-wise forward error in the computed solution
defined by max xi � x̂ij j=max x̂ij j, where x is the corresponding column of the exact solution, X.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies the equations to be solved as follows:

TRANS ¼ N
Solve AX ¼ B for X.
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TRANS ¼ T or C
Solve ATX ¼ B for X.

Constraint: TRANS ¼ N , T or C .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: DLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the matrix A.

5: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix A.

6: DUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ superdiagonal elements of the matrix A.

7: DLFð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DLF must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ multipliers that define the matrix L of the LU factorization of
A.

8: DFð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DF must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the upper triangular matrix U from the LU
factorization of A.

9: DUFð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DUF must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ elements of the first superdiagonal of U .

10: DU2ð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DU2 must be at least max 1;N� 2ð Þ.
On entry: must contain the n� 2ð Þ elements of the second superdiagonal of U .

11: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: must contain the n pivot indices that define the permutation matrix P . At the ith step,
row i of the matrix was interchanged with row IPIVðiÞ, and IPIVðiÞ must always be either i or
iþ 1ð Þ, IPIVðiÞ ¼ i indicating that a row interchange was not performed.

F07CHF NAG Library Manual

F07CHF.2 Mark 26



12: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

13: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07CHF
(DGTRFS) is called.

Constraint: LDB � max 1;Nð Þ.

14: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r initial solution matrix X.

On exit: the n by r refined solution matrix X.

15: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07CHF
(DGTRFS) is called.

Constraint: LDX � max 1;Nð Þ.

16: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: estimate of the forward error bound for each computed solution vector, such that
x̂j � xj
�� ��

1= x̂j
�� ��

1 � FERRðjÞ, where x̂j is the jth column of the computed solution returned in
the array X and xj is the corresponding column of the exact solution X. The estimate is almost
always a slight overestimate of the true error.

17: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: estimate of the component-wise relative backward error of each computed solution
vector x̂j (i.e., the smallest relative change in any element of A or B that makes x̂j an exact
solution).

18: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

19: IWORKðNÞ – INTEGER array Workspace

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where
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Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1 Ak k1, the condition number of A with respect to the solution of the linear
equations. See Section 4.4 of Anderson et al. (1999) for further details.

Routine F07CGF (DGTCON) can be used to estimate the condition number of A.

8 Parallelism and Performance

F07CHF (DGTRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07CHF (DGTRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B or ATX ¼ B is
proportional to nr. At most five steps of iterative refinement are performed, but usually only one or two
steps are required.

The complex analogue of this routine is F07CVF (ZGTRFS).

10 Example

This example solves the equations

AX ¼ B;

where A is the tridiagonal matrix

A ¼

3:0 2:1 0 0 0
3:4 2:3 �1:0 0 0
0 3:6 �5:0 1:9 0
0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0BBB@
1CCCA and B ¼

2:7 6:6
�0:5 10:8
2:6 �3:2
0:6 �11:2
2:7 19:1

0BBB@
1CCCA:

Estimates for the backward errors and forward errors are also output.

10.1 Program Text

Program f07chfe

! F07CHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgtrfs, dgttrf, dgttrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Integer :: i, ifail, info, ldb, ldx, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), berr(:), d(:), df(:), dl(:), &

dlf(:), du(:), du2(:), duf(:), &
ferr(:), work(:), x(:,:)

Integer, Allocatable :: ipiv(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F07CHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (b(ldb,nrhs),berr(nrhs),d(n),df(n),dl(n-1),dlf(n-1),du(n-1), &

du2(n-2),duf(n-1),ferr(nrhs),work(3*n),x(ldx,nrhs),ipiv(n),iwork(n))

! Read the tridiagonal matrix A from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)

! Read the right hand matrix B

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Copy A into DUF, DF and DLF, and copy B into X

duf(1:n-1) = du(1:n-1)
df(1:n) = d(1:n)
dlf(1:n-1) = dl(1:n-1)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize the copy of the tridiagonal matrix A
! The NAG name equivalent of dgttrf is f07cdf

Call dgttrf(n,dlf,df,duf,du2,ipiv,info)

If (info==0) Then

! Solve the equations AX = B
! The NAG name equivalent of dgttrs is f07cef

Call dgttrs(’No transpose’,n,nrhs,dlf,df,duf,du2,ipiv,x,ldx,info)

! Improve the solution and compute error estimates
! The NAG name equivalent of dgtrfs is f07chf

Call dgtrfs(’No transpose’,n,nrhs,dl,d,du,dlf,df,duf,du2,ipiv,b,ldb,x, &
ldx,ferr,berr,work,iwork,info)

! Print the solution and the forward and backward error
! estimates

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
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End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07chfe

10.2 Program Data

F07CHF Example Program Data
5 2 :Values of N and NRHS

2.1 -1.0 1.9 8.0
3.0 2.3 -5.0 -0.9 7.1
3.4 3.6 7.0 -6.0 :End of matrix A
2.7 6.6

-0.5 10.8
2.6 -3.2
0.6 -11.2
2.7 19.1 :End of matrix B

10.3 Program Results

F07CHF Example Program Results

Solution(s)
1 2

1 -4.0000 5.0000
2 7.0000 -4.0000
3 3.0000 -3.0000
4 -4.0000 -2.0000
5 -3.0000 1.0000

Backward errors (machine-dependent)
7.2E-17 5.9E-17

Estimated forward error bounds (machine-dependent)
9.4E-15 1.4E-14
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NAG Library Routine Document

F07CNF (ZGTSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CNF (ZGTSV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n tridiagonal matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07CNF (N, NRHS, DL, D, DU, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
COMPLEX (KIND=nag_wp) DL(*), D(*), DU(*), B(LDB,*)

The routine may be called by its LAPACK name zgtsv.

3 Description

F07CNF (ZGTSV) uses Gaussian elimination with partial pivoting and row interchanges to solve the
equations AX ¼ B. The matrix A is factorized as A ¼ PLU , where P is a permutation matrix, L is unit
lower triangular with at most one nonzero subdiagonal element per column, and U is an upper
triangular band matrix, with two superdiagonals.

Note that the equations ATX ¼ B may be solved by interchanging the order of the arguments DU and
DL.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: DLð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the matrix A.
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On exit: if no constraints are violated, DL is overwritten by the (n� 2) elements of the second
superdiagonal of the upper triangular matrix U from the LU factorization of A, in
DLð1Þ;DLð2Þ; . . . ;DLðn� 2Þ.

4: Dð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix A.

On exit: if no constraints are violated, D is overwritten by the n diagonal elements of the upper
triangular matrix U from the LU factorization of A.

5: DUð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ superdiagonal elements of the matrix A.

On exit: if no constraints are violated, DU is overwritten by the n� 1ð Þ elements of the first
superdiagonal of U .

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
Note: to solve the equations Ax ¼ b, where b is a single right-hand side, B may be supplied as a
one-dimensional array with length LDB ¼ max 1;Nð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07CNF
(ZGTSV) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero, and the solution has not been computed. The
factorization has not been completed unless N ¼ valueh i.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1

F07CNF NAG Library Manual

F07CNF.2 Mark 26



and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

Alternatives to F07CNF (ZGTSV), which return condition and error estimates are F04CCF and F07CPF
(ZGTSVX).

8 Parallelism and Performance

F07CNF (ZGTSV) is not threaded in any implementation.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr.

The real analogue of this routine is F07CAF (DGTSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the tridiagonal matrix

A ¼

�1:3þ 1:3i 2:0� 1:0i 0 0 0
1:0� 2:0i �1:3þ 1:3i 2:0þ 1:0i 0 0
0 1:0þ 1:0i �1:3þ 3:3i �1:0þ 1:0i 0
0 0 2:0� 3:0i �0:3þ 4:3i 1:0� 1:0i
0 0 0 1:0þ 1:0i �3:3þ 1:3i

0BBB@
1CCCA

and

b ¼

2:4� 5:0i
3:4þ 18:2i

�14:7þ 9:7i
31:9� 7:7i
�1:0þ 1:6i

0BBB@
1CCCA:

10.1 Program Text

Program f07cnfe

! F07CNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zgtsv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: info, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: b(:), d(:), dl(:), du(:)

! .. Executable Statements ..
Write (nout,*) ’F07CNF Example Program Results’
Write (nout,*)
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! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (b(n),d(n),dl(n-1),du(n-1))

! Read the tridiagonal matrix A and the right hand side B from
! data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)
Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of zgtsv is f07cnf

Call zgtsv(n,1,dl,d,du,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

Else
Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format (4(’ (’,F8.4,’,’,F8.4,’)’,:))
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07cnfe

10.2 Program Data

F07CNF Example Program Data
5 :Value of N

( 2.0, -1.0) ( 2.0, 1.0) ( -1.0, 1.0) ( 1.0, -1.0) :End of DU
( -1.3, 1.3) ( -1.3, 1.3) ( -1.3, 3.3) ( -0.3, 4.3)
( -3.3, 1.3) :End of D
( 1.0, -2.0) ( 1.0 , 1.0) ( 2.0, -3.0) ( 1.0, 1.0) :End of DL
( 2.4, -5.0) ( 3.4, 18.2) (-14.7, 9.7) ( 31.9, -7.7)
( -1.0, 1.6) :End of B

10.3 Program Results

F07CNF Example Program Results

Solution
( 1.0000, 1.0000) ( 3.0000, -1.0000) ( 4.0000, 5.0000) ( -1.0000, -2.0000)
( 1.0000, -1.0000)
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NAG Library Routine Document

F07CPF (ZGTSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CPF (ZGTSVX) uses the LU factorization to compute the solution to a complex system of linear
equations

AX ¼ B; ATX ¼ B or AHX ¼ B;

where A is a tridiagonal matrix of order n and X and B are n by r matrices. Error bounds on the
solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07CPF (FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK,
INFO)

&
&

INTEGER N, NRHS, IPIV(*), LDB, LDX, INFO
REAL (KIND=nag_wp) RCOND, FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) DL(*), D(*), DU(*), DLF(*), DF(*), DUF(*),

DU2(*), B(LDB,*), X(LDX,*), WORK(2*N)
&

CHARACTER(1) FACT, TRANS

The routine may be called by its LAPACK name zgtsvx.

3 Description

F07CPF (ZGTSVX) performs the following steps:

1. If FACT ¼ N , the LU decomposition is used to factor the matrix A as A ¼ LU , where L is a
product of permutation and unit lower bidiagonal matrices and U is upper triangular with nonzeros
in only the main diagonal and first two superdiagonals.

2. If some uii ¼ 0, so that U is exactly singular, then the routine returns with INFO ¼ i. Otherwise,
the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal
of the condition number is less than machine precision, INFO ¼ Nþ 1 is returned as a warning,
but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

FACT ¼ F
DLF, DF, DUF, DU2 and IPIV contain the factorized form of the matrix A. DLF, DF,
DUF, DU2 and IPIV will not be modified.

FACT ¼ N
The matrix A will be copied to DLF, DF and DUF and factorized.

Constraint: FACT ¼ F or N .

2: TRANS – CHARACTER(1) Input

On entry: specifies the form of the system of equations.

TRANS ¼ N
AX ¼ B (No transpose).

TRANS ¼ T
ATX ¼ B (Transpose).

TRANS ¼ C
AHX ¼ B (Conjugate transpose).

Constraint: TRANS ¼ N , T or C .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: DLð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ subdiagonal elements of A.

6: Dð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of A.

7: DUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ superdiagonal elements of A.

8: DLFð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array DLF must be at least max 1;N� 1ð Þ.
On entry: if FACT ¼ F , DLF contains the n� 1ð Þ multipliers that define the matrix L from the
LU factorization of A.

On exit: if FACT ¼ N , DLF contains the n� 1ð Þ multipliers that define the matrix L from the
LU factorization of A.
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9: DFð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array DF must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , DF contains the n diagonal elements of the upper triangular matrix U
from the LU factorization of A.

On exit: if FACT ¼ N , DF contains the n diagonal elements of the upper triangular matrix U
from the LU factorization of A.

10: DUFð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array DUF must be at least max 1;N� 1ð Þ.
On entry: if FACT ¼ F , DUF contains the n� 1ð Þ elements of the first superdiagonal of U .

On exit: if FACT ¼ N , DUF contains the n� 1ð Þ elements of the first superdiagonal of U .

11: DU2ð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array DU2 must be at least max 1;N� 2ð Þ.
On entry: if FACT ¼ F , DU2 contains the (n� 2) elements of the second superdiagonal of U .

On exit: if FACT ¼ N , DU2 contains the (n� 2) elements of the second superdiagonal of U .

12: IPIVð�Þ – INTEGER array Input/Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , IPIV contains the pivot indices from the LU factorization of A.

On exit: if FACT ¼ N , IPIV contains the pivot indices from the LU factorization of A; row i of
the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ will always be either i or iþ 1;
IPIVðiÞ ¼ i indicates a row interchange was not required.

13: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

14: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07CPF
(ZGTSVX) is called.

Constraint: LDB � max 1;Nð Þ.

15: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X.

16: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07CPF
(ZGTSVX) is called.

Constraint: LDX � max 1;Nð Þ.

17: RCOND – REAL (KIND=nag_wp) Output

On exit: the estimate of the reciprocal condition number of the matrix A. If RCOND ¼ 0:0, the
matrix may be exactly singular. This condition is indicated by INFO > 0 and INFO � N.
Otherwise, if RCOND is less than the machine precision, the matrix is singular to working
precision. This condition is indicated by INFO ¼ Nþ 1.
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18: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

19: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

20: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

21: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

22: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO < N

Element valueh i of the diagonal is exactly zero. The factorization has not been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO > 0 and INFO ¼ N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

U is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ej j � c nð Þ� Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 9.3 of Higham (2002)
for further details.

If x is the true solution, then the computed solution x̂ satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ
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where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07CPF (ZGTSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07CPF (ZGTSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr.

The condition number estimation typically requires between four and five solves and never more than
eleven solves, following the factorization. The solution is then refined, and the errors estimated, using
iterative refinement.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The real analogue of this routine is F07CBF (DGTSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the tridiagonal matrix

A ¼

�1:3þ 1:3i 2:0� 1:0i 0 0 0
1:0� 2:0i �1:3þ 1:3i 2:0þ 1:0i 0 0
0 1:0þ 1:0i �1:3þ 3:3i �1:0þ 1:0i 0
0 0 2:0� 3:0i �0:3þ 4:3i 1:0� 1:0i
0 0 0 1:0þ 1:0i �3:3þ 1:3i

0BBB@
1CCCA

and

B ¼

2:4� 5:0i 2:7þ 6:9i
3:4þ 18:2i �6:9� 5:3i

�14:7þ 9:7i �6:0� 0:6i
31:9� 7:7i �3:9þ 9:3i
�1:0þ 1:6i �3:0þ 12:2i

0BBB@
1CCCA:

Estimates for the backward errors, forward errors and condition number are also output.

10.1 Program Text

Program f07cpfe

! F07CPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: nag_wp, x04dbf, zgtsvx
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, ldb, ldx, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: b(:,:), d(:), df(:), dl(:), &

dlf(:), du(:), du2(:), duf(:), &
work(:), x(:,:)

Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07CPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (b(ldb,nrhs),d(n),df(n),dl(n-1),dlf(n-1),du(n-1),du2(n-2), &

duf(n-1),work(2*n),x(ldx,nrhs),berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))

! Read the tridiagonal matrix A from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)

! Read the right hand matrix B

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B
! The NAG name equivalent of zgtsvx is f07cpf

Call zgtsvx(’No factors’,’No transpose’,n,nrhs,dl,d,du,dlf,df,duf,du2, &
ipiv,b,ldb,x,ldx,rcond,ferr,berr,work,rwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds and condition number

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &
’ element of the factor U is zero’
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End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07cpfe

10.2 Program Data

F07CPF Example Program Data
5 2 :Values of N and NRHS

( 2.0, -1.0) ( 2.0, 1.0) ( -1.0, 1.0) ( 1.0, -1.0) :End of DU
( -1.3, 1.3) ( -1.3, 1.3) ( -1.3, 3.3) ( -0.3, 4.3)
( -3.3, 1.3) :End of D
( 1.0, -2.0) ( 1.0 , 1.0) ( 2.0, -3.0) ( 1.0, 1.0) :End of DL
( 2.4, -5.0) ( 2.7, 6.9)
( 3.4, 18.2) ( -6.9, -5.3)
(-14.7, 9.7) ( -6.0, -0.6)
( 31.9, -7.7) ( -3.9, 9.3)
( -1.0, 1.6) ( -3.0, 12.2) :End of B

10.3 Program Results

F07CPF Example Program Results

Solution(s)
1 2

1 ( 1.0000, 1.0000) ( 2.0000,-1.0000)
2 ( 3.0000,-1.0000) ( 1.0000, 2.0000)
3 ( 4.0000, 5.0000) (-1.0000, 1.0000)
4 (-1.0000,-2.0000) ( 2.0000, 1.0000)
5 ( 1.0000,-1.0000) ( 2.0000,-2.0000)

Backward errors (machine-dependent)
3.7E-17 6.7E-17

Estimated forward error bounds (machine-dependent)
5.4E-14 7.3E-14

Estimate of reciprocal condition number
5.4E-03
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NAG Library Routine Document

F07CRF (ZGTTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CRF (ZGTTRF) computes the LU factorization of a complex n by n tridiagonal matrix A.

2 Specification

SUBROUTINE F07CRF (N, DL, D, DU, DU2, IPIV, INFO)

INTEGER N, IPIV(N), INFO
COMPLEX (KIND=nag_wp) DL(*), D(*), DU(*), DU2(N-2)

The routine may be called by its LAPACK name zgttrf.

3 Description

F07CRF (ZGTTRF) uses Gaussian elimination with partial pivoting and row interchanges to factorize
the matrix A as

A ¼ PLU;

where P is a permutation matrix, L is unit lower triangular with at most one nonzero subdiagonal
element in each column, and U is an upper triangular band matrix, with two superdiagonals.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: DLð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the matrix A.

On exit: is overwritten by the n� 1ð Þ multipliers that define the matrix L of the LU factorization
of A.

3: Dð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix A.

On exit: is overwritten by the n diagonal elements of the upper triangular matrix U from the LU
factorization of A.
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4: DUð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ superdiagonal elements of the matrix A.

On exit: is overwritten by the n� 1ð Þ elements of the first superdiagonal of U .

5: DU2ðN� 2Þ – COMPLEX (KIND=nag_wp) array Output

On exit: contains the n� 2ð Þ elements of the second superdiagonal of U .

6: IPIVðNÞ – INTEGER array Output

On exit: contains the n pivot indices that define the permutation matrix P . At the ith step, row i
of the matrix was interchanged with row IPIVðiÞ. IPIVðiÞ will always be either i or iþ 1ð Þ,
IPIVðiÞ ¼ i indicating that a row interchange was not performed.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, and division by zero will occur if it is used to solve a system of
equations.

7 Accuracy

The computed factorization satisfies an equation of the form

Aþ E ¼ PLU;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision.

Following the use of this routine, F07CSF (ZGTTRS) can be used to solve systems of equations
AX ¼ B or ATX ¼ B or AHX ¼ B, and F07CUF (ZGTCON) can be used to estimate the condition
number of A.

8 Parallelism and Performance

F07CRF (ZGTTRF) is not threaded in any implementation.

9 Further Comments

The total number of floating-point operations required to factorize the matrix A is proportional to n.

The real analogue of this routine is F07CDF (DGTTRF).
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10 Example

This example factorizes the tridiagonal matrix A given by

A ¼

�1:3þ 1:3i 2:0� 1:0i 0 0 0
1:0� 2:0i �1:3þ 1:3i 2:0þ 1:0i 0 0
0 1:0þ 1:0i �1:3þ 3:3i �1:0þ 1:0i 0
0 0 2:0� 3:0i �0:3þ 4:3i 1:0� 1:0i
0 0 0 1:0þ 1:0i �3:3þ 1:3i

0BBB@
1CCCA:

10.1 Program Text

Program f07crfe

! F07CRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zgttrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: info, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: d(:), dl(:), du(:), du2(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07CRF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (d(n),dl(n-1),du(n-1),du2(n-2),ipiv(n))

! Read the tridiagonal matrix A from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)

! Factorize the tridiagonal matrix A
! The NAG name equivalent of zgttrf is f07crf

Call zgttrf(n,dl,d,du,du2,ipiv,info)

If (info>0) Then
Write (nout,99999) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

! Print details of the factorization

Write (nout,*) ’Details of factorization’
Write (nout,*)
Write (nout,*) ’ Second superdiagonal of U’
Write (nout,99998) du2(1:n-2)
Write (nout,*)
Write (nout,*) ’ First superdiagonal of U’
Write (nout,99998) du(1:n-1)
Write (nout,*)
Write (nout,*) ’ Main diagonal of U’
Write (nout,99998) d(1:n)
Write (nout,*)
Write (nout,*) ’ Multipliers’
Write (nout,99998) dl(1:n-1)
Write (nout,*)
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Write (nout,*) ’ Vector of interchanges’
Write (nout,99997) ipiv(1:n)

99999 Format (1X,A,I3,A,I3,A,A)
99998 Format (4(’ (’,F8.4,’,’,F8.4,’)’,:))
99997 Format (1X,5I7)

End Program f07crfe

10.2 Program Data

F07CRF Example Program Data
5 :Value of N

( 2.0,-1.0) ( 2.0, 1.0) (-1.0, 1.0) ( 1.0,-1.0) :End of DU
(-1.3, 1.3) (-1.3, 1.3) (-1.3, 3.3) (-0.3, 4.3)
(-3.3, 1.3) :End of D
( 1.0,-2.0) ( 1.0, 1.0) ( 2.0,-3.0) ( 1.0, 1.0) :End of DL

10.3 Program Results

F07CRF Example Program Results

Details of factorization

Second superdiagonal of U
( 2.0000, 1.0000) ( -1.0000, 1.0000) ( 1.0000, -1.0000)

First superdiagonal of U
( -1.3000, 1.3000) ( -1.3000, 3.3000) ( -0.3000, 4.3000) ( -3.3000, 1.3000)

Main diagonal of U
( 1.0000, -2.0000) ( 1.0000, 1.0000) ( 2.0000, -3.0000) ( 1.0000, 1.0000)
( -1.3399, 0.2875)

Multipliers
( -0.7800, -0.2600) ( 0.1620, -0.4860) ( -0.0452, -0.0010) ( -0.3979, -0.0562)

Vector of interchanges
2 3 4 5 5
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NAG Library Routine Document

F07CSF (ZGTTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CSF (ZGTTRS) computes the solution to a complex system of linear equations AX ¼ B or
ATX ¼ B or AHX ¼ B, where A is an n by n tridiagonal matrix and X and B are n by r matrices,
using the LU factorization returned by F07CRF (ZGTTRF).

2 Specification

SUBROUTINE F07CSF (TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, INFO)

INTEGER N, NRHS, IPIV(*), LDB, INFO
COMPLEX (KIND=nag_wp) DL(*), D(*), DU(*), DU2(*), B(LDB,*)
CHARACTER(1) TRANS

The routine may be called by its LAPACK name zgttrs.

3 Description

F07CSF (ZGTTRS) should be preceded by a call to F07CRF (ZGTTRF), which uses Gaussian
elimination with partial pivoting and row interchanges to factorize the matrix A as

A ¼ PLU;

where P is a permutation matrix, L is unit lower triangular with at most one nonzero subdiagonal
element in each column, and U is an upper triangular band matrix, with two superdiagonals. F07CSF
(ZGTTRS) then utilizes the factorization to solve the required equations.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies the equations to be solved as follows:

TRANS ¼ N
Solve AX ¼ B for X.

TRANS ¼ T
Solve ATX ¼ B for X.

TRANS ¼ C
Solve AHX ¼ B for X.

Constraint: TRANS ¼ N , T or C .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: DLð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ multipliers that define the matrix L of the LU factorization of
A.

5: Dð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the upper triangular matrix U from the LU
factorization of A.

6: DUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ elements of the first superdiagonal of U .

7: DU2ð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DU2 must be at least max 1;N� 2ð Þ.
On entry: must contain the n� 2ð Þ elements of the second superdiagonal of U .

8: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: must contain the n pivot indices that define the permutation matrix P . At the ith step,
row i of the matrix was interchanged with row IPIVðiÞ, and IPIVðiÞ must always be either i or
iþ 1ð Þ, IPIVðiÞ ¼ i indicating that a row interchange was not performed.

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: the n by r solution matrix X.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07CSF
(ZGTTRS) is called.

Constraint: LDB � max 1;Nð Þ.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

Following the use of this routine F07CUF (ZGTCON) can be used to estimate the condition number of
A and F07CVF (ZGTRFS) can be used to obtain approximate error bounds.

8 Parallelism and Performance

F07CSF (ZGTTRS) is not threaded in any implementation.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B or ATX ¼ B or
AHX ¼ B is proportional to nr.

The real analogue of this routine is F07CEF (DGTTRS).

10 Example

This example solves the equations

AX ¼ B;

where A is the tridiagonal matrix

A ¼

�1:3þ 1:3i 2:0� 1:0i 0 0 0
1:0� 2:0i �1:3þ 1:3i 2:0þ 1:0i 0 0
0 1:0þ 1:0i �1:3þ 3:3i �1:0þ 1:0i 0
0 0 2:0� 3:0i �0:3þ 4:3i 1:0� 1:0i
0 0 0 1:0þ 1:0i �3:3þ 1:3i

0BBB@
1CCCA

and

B ¼

2:4� 5:0i 2:7þ 6:9i
3:4þ 18:2i �6:9� 5:3i

�14:7þ 9:7i �6:0� 0:6i
31:9� 7:7i �3:9þ 9:3i
�1:0þ 1:6i �3:0þ 12:2i

0BBB@
1CCCA:
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10.1 Program Text

Program f07csfe

! F07CSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgttrf, zgttrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: b(:,:), d(:), dl(:), du(:), du2(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07CSF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (b(ldb,nrhs),d(n),dl(n-1),du(n-1),du2(n-2),ipiv(n))

! Read the tridiagonal matrix A from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)

! Read the right hand matrix B

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize the tridiagonal matrix A
! The NAG name equivalent of zgttrf is f07crf

Call zgttrf(n,dl,d,du,du2,ipiv,info)

If (info==0) Then

! Solve the equations AX = B
! The NAG name equivalent of zgttrs is f07csf

Call zgttrs(’No transpose’,n,nrhs,dl,d,du,du2,ipiv,b,ldb,info)

! Print the solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,99999) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format (1X,A,I3,A,I3,A,A)
End Program f07csfe
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10.2 Program Data

F07CSF Example Program Data
5 2 :Values of N and NRHS

( 2.0, -1.0) ( 2.0, 1.0) ( -1.0, 1.0) ( 1.0, -1.0) :End of DU
( -1.3, 1.3) ( -1.3, 1.3) ( -1.3, 3.3) ( -0.3, 4.3)
( -3.3, 1.3) :End of D
( 1.0, -2.0) ( 1.0 , 1.0) ( 2.0, -3.0) ( 1.0, 1.0) :End of DL
( 2.4, -5.0) ( 2.7, 6.9)
( 3.4, 18.2) ( -6.9, -5.3)
(-14.7, 9.7) ( -6.0, -0.6)
( 31.9, -7.7) ( -3.9, 9.3)
( -1.0, 1.6) ( -3.0, 12.2) :End of B

10.3 Program Results

F07CSF Example Program Results

Solution(s)
1 2

1 ( 1.0000, 1.0000) ( 2.0000,-1.0000)
2 ( 3.0000,-1.0000) ( 1.0000, 2.0000)
3 ( 4.0000, 5.0000) (-1.0000, 1.0000)
4 (-1.0000,-2.0000) ( 2.0000, 1.0000)
5 ( 1.0000,-1.0000) ( 2.0000,-2.0000)
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NAG Library Routine Document

F07CUF (ZGTCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CUF (ZGTCON) estimates the reciprocal condition number of a complex n by n tridiagonal matrix
A, using the LU factorization returned by F07CRF (ZGTTRF).

2 Specification

SUBROUTINE F07CUF (NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, WORK,
INFO)

&

INTEGER N, IPIV(*), INFO
REAL (KIND=nag_wp) ANORM, RCOND
COMPLEX (KIND=nag_wp) DL(*), D(*), DU(*), DU2(*), WORK(2*N)
CHARACTER(1) NORM

The routine may be called by its LAPACK name zgtcon.

3 Description

F07CUF (ZGTCON) should be preceded by a call to F07CRF (ZGTTRF), which uses Gaussian
elimination with partial pivoting and row interchanges to factorize the matrix A as

A ¼ PLU;

where P is a permutation matrix, L is unit lower triangular with at most one nonzero subdiagonal
element in each column, and U is an upper triangular band matrix, with two superdiagonals. F07CUF
(ZGTCON) then utilizes the factorization to estimate either A�1

�� ��
1
or A�1
�� ��

1, from which the
estimate of the reciprocal of the condition number of A, 1=� Að Þ is computed as either

1=�1 Að Þ ¼ 1= Ak k1 A�1
�� ��

1

� �
or

1=�1 Að Þ ¼ 1= Ak k1 A�1
�� ��

1

� �
:

1=� Að Þ is returned, rather than � Að Þ, since when A is singular � Að Þ is infinite.

Note that �1 Að Þ ¼ �1 ATð Þ.

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the norm to be used to estimate � Að Þ.
NORM ¼ 1 or O

Estimate �1 Að Þ.
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NORM ¼ I
Estimate �1 Að Þ.

Constraint: NORM ¼ 1 , O or I .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: DLð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ multipliers that define the matrix L of the LU factorization of
A.

4: Dð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the upper triangular matrix U from the LU
factorization of A.

5: DUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ elements of the first superdiagonal of U .

6: DU2ð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DU2 must be at least max 1;N� 2ð Þ.
On entry: must contain the n� 2ð Þ elements of the second superdiagonal of U .

7: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: must contain the n pivot indices that define the permutation matrix P . At the ith step,
row i of the matrix was interchanged with row IPIVðiÞ, and IPIVðiÞ must always be either i or
iþ 1ð Þ, IPIVðiÞ ¼ i indicating that a row interchange was not performed.

8: ANORM – REAL (KIND=nag_wp) Input

On entry: if NORM ¼ 1 or O , the 1-norm of the original matrix A.

If NORM ¼ I , the 1-norm of the original matrix A.

ANORM may be computed by calling F06UNF with the same value for the argument NORM.

ANORM must be computed either before calling F07CRF (ZGTTRF) or else from a copy of the
original matrix A (see Section 10).

Constraint: ANORM � 0:0.

9: RCOND – REAL (KIND=nag_wp) Output

On exit: contains an estimate of the reciprocal condition number.

10: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

8 Parallelism and Performance

F07CUF (ZGTCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The condition number estimation typically requires between four and five solves and never more than
eleven solves, following the factorization. The total number of floating-point operations required to
perform a solve is proportional to n.

The real analogue of this routine is F07CGF (DGTCON).

10 Example

This example estimates the condition number in the 1-norm of the tridiagonal matrix A given by

A ¼

�1:3þ 1:3i 2:0� 1:0i 0 0 0
1:0� 2:0i �1:3þ 1:3i 2:0þ 1:0i 0 0
0 1:0þ 1:0i �1:3þ 3:3i �1:0þ 1:0i 0
0 0 2:0� 3:0i �0:3þ 4:3i 1:0� 1:0i
0 0 0 1:0þ 1:0i �3:3þ 1:3i

0BBB@
1CCCA:

10.1 Program Text

Program f07cufe

! F07CUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06unf, nag_wp, x02ajf, zgtcon, zgttrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: info, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: d(:), dl(:), du(:), du2(:), &

work(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07CUF Example Program Results’
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Write (nout,*)
! Skip heading in data file

Read (nin,*)
Read (nin,*) n

Allocate (d(n),dl(n-1),du(n-1),du2(n-2),work(2*n),ipiv(n))

! Read the tridiagonal matrix A from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)

! Compute the 1-norm of A
anorm = f06unf(’1-norm’,n,dl,d,du)

! Factorize the tridiagonal matrix A
! The NAG name equivalent of zgttrf is f07crf

Call zgttrf(n,dl,d,du,du2,ipiv,info)

If (info==0) Then

! Estimate the condition number of A
! The NAG name equivalent of zgtcon is f07cuf

Call zgtcon(’1-norm’,n,dl,d,du,du2,ipiv,anorm,rcond,work,info)

! Print the estimated condition number

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number = ’, &

1.0E0_nag_wp/rcond
Else

Write (nout,99999) ’A is singular to working precision. RCOND = ’, &
rcond

End If

Else
Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format (1X,A,1P,E10.2)
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07cufe

10.2 Program Data

F07CUF Example Program Data
5 :Value of N

( 2.0,-1.0) ( 2.0, 1.0) (-1.0, 1.0) ( 1.0,-1.0) :End of DU
(-1.3, 1.3) (-1.3, 1.3) (-1.3, 3.3) (-0.3, 4.3)
(-3.3, 1.3) :End of D
( 1.0,-2.0) ( 1.0, 1.0) ( 2.0,-3.0) ( 1.0, 1.0) :End of DL

10.3 Program Results

F07CUF Example Program Results

Estimate of condition number = 1.84E+02
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NAG Library Routine Document

F07CVF (ZGTRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07CVF (ZGTRFS) computes error bounds and refines the solution to a complex system of linear
equations AX ¼ B or ATX ¼ B or AHX ¼ B, where A is an n by n tridiagonal matrix and X and B
are n by r matrices, using the LU factorization returned by F07CRF (ZGTTRF) and an initial solution
returned by F07CSF (ZGTTRS). Iterative refinement is used to reduce the backward error as much as
possible.

2 Specification

SUBROUTINE F07CVF (TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, IPIV(*), LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) DL(*), D(*), DU(*), DLF(*), DF(*), DUF(*),

DU2(*), B(LDB,*), X(LDX,*), WORK(2*N)
&

CHARACTER(1) TRANS

The routine may be called by its LAPACK name zgtrfs.

3 Description

F07CVF (ZGTRFS) should normally be preceded by calls to F07CRF (ZGTTRF) and F07CSF
(ZGTTRS). F07CRF (ZGTTRF) uses Gaussian elimination with partial pivoting and row interchanges
to factorize the matrix A as

A ¼ PLU;

where P is a permutation matrix, L is unit lower triangular with at most one nonzero subdiagonal
element in each column, and U is an upper triangular band matrix, with two superdiagonals. F07CSF
(ZGTTRS) then utilizes the factorization to compute a solution, X̂, to the required equations. Letting x̂
denote a column of X̂, F07CVF (ZGTRFS) computes a component-wise backward error, �, the smallest
relative perturbation in each element of A and b such that x̂ is the exact solution of a perturbed system

Aþ Eð Þx̂ ¼ bþ f; with eij
		 		 � � aij		 		; and fj

		 		 � � bj		 		:
The routine also estimates a bound for the component-wise forward error in the computed solution
defined by max xi � x̂ij j=max x̂ij j, where x is the corresponding column of the exact solution, X.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug
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5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies the equations to be solved as follows:

TRANS ¼ N
Solve AX ¼ B for X.

TRANS ¼ T
Solve ATX ¼ B for X.

TRANS ¼ C
Solve AHX ¼ B for X.

Constraint: TRANS ¼ N , T or C .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: DLð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DL must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the matrix A.

5: Dð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix A.

6: DUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DU must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ superdiagonal elements of the matrix A.

7: DLFð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DLF must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ multipliers that define the matrix L of the LU factorization of
A.

8: DFð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DF must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the upper triangular matrix U from the LU
factorization of A.

9: DUFð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DUF must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ elements of the first superdiagonal of U .
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10: DU2ð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array DU2 must be at least max 1;N� 2ð Þ.
On entry: must contain the n� 2ð Þ elements of the second superdiagonal of U .

11: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: must contain the n pivot indices that define the permutation matrix P . At the ith step,
row i of the matrix was interchanged with row IPIVðiÞ, and IPIVðiÞ must always be either i or
iþ 1ð Þ, IPIVðiÞ ¼ i indicating that a row interchange was not performed.

12: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

13: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07CVF
(ZGTRFS) is called.

Constraint: LDB � max 1;Nð Þ.

14: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r initial solution matrix X.

On exit: the n by r refined solution matrix X.

15: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07CVF
(ZGTRFS) is called.

Constraint: LDX � max 1;Nð Þ.

16: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: estimate of the forward error bound for each computed solution vector, such that
x̂j � xj
�� ��

1= x̂j
�� ��

1 � FERRðjÞ, where x̂j is the jth column of the computed solution returned in
the array X and xj is the corresponding column of the exact solution X. The estimate is almost
always a slight overestimate of the true error.

17: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: estimate of the component-wise relative backward error of each computed solution
vector x̂j (i.e., the smallest relative change in any element of A or B that makes x̂j an exact
solution).

18: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

19: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1 Ak k1, the condition number of A with respect to the solution of the linear
equations. See Section 4.4 of Anderson et al. (1999) for further details.

Routine F07CUF (ZGTCON) can be used to estimate the condition number of A.

8 Parallelism and Performance

F07CVF (ZGTRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07CVF (ZGTRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B or ATX ¼ B or
AHX ¼ B is proportional to nr. At most five steps of iterative refinement are performed, but usually
only one or two steps are required.

The real analogue of this routine is F07CHF (DGTRFS).

10 Example

This example solves the equations

AX ¼ B;

where A is the tridiagonal matrix

A ¼

�1:3þ 1:3i 2:0� 1:0i 0 0 0
1:0� 2:0i �1:3þ 1:3i 2:0þ 1:0i 0 0
0 1:0þ 1:0i �1:3þ 3:3i �1:0þ 1:0i 0
0 0 2:0� 3:0i �0:3þ 4:3i 1:0� 1:0i
0 0 0 1:0þ 1:0i �3:3þ 1:3i

0BBB@
1CCCA

and
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B ¼

2:4� 5:0i 2:7þ 6:9i
3:4þ 18:2i �6:9� 5:3i

�14:7þ 9:7i �6:0� 0:6i
31:9� 7:7i �3:9þ 9:3i
�1:0þ 1:6i �3:0þ 12:2i

0BBB@
1CCCA:

Estimates for the backward errors and forward errors are also output.

10.1 Program Text

Program f07cvfe

! F07CVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgtrfs, zgttrf, zgttrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, ldb, ldx, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: b(:,:), d(:), df(:), dl(:), &

dlf(:), du(:), du2(:), duf(:), &
work(:), x(:,:)

Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07CVF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (b(ldb,nrhs),d(n),df(n),dl(n-1),dlf(n-1),du(n-1),du2(n-2), &

duf(n-1),work(2*n),x(ldx,nrhs),berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))

! Read the tridiagonal matrix A from data file

Read (nin,*) du(1:n-1)
Read (nin,*) d(1:n)
Read (nin,*) dl(1:n-1)

! Read the right hand matrix B

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Copy A into DUF, DF and DLF, and copy B into X

duf(1:n-1) = du(1:n-1)
df(1:n) = d(1:n)
dlf(1:n-1) = dl(1:n-1)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize the copy of the tridiagonal matrix A
! The NAG name equivalent of zgttrf is f07crf

Call zgttrf(n,dlf,df,duf,du2,ipiv,info)

If (info==0) Then

! Solve the equations AX = B
! The NAG name equivalent of zgttrs is f07csf
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Call zgttrs(’No transpose’,n,nrhs,dlf,df,duf,du2,ipiv,x,ldx,info)

! Improve the solution and compute error estimates
! The NAG name equivalent of zgtrfs is f07cvf

Call zgtrfs(’No transpose’,n,nrhs,dl,d,du,dlf,df,duf,du2,ipiv,b,ldb,x, &
ldx,ferr,berr,work,rwork,info)

! Print the solution and the forward and backward error
! estimates

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,99998) ’The (’, info, ’,’, info, ’)’, &

’ element of the factor U is zero’
End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A,I3,A,A)

End Program f07cvfe

10.2 Program Data

F07CVF Example Program Data
5 2 :Values of N and NRHS

( 2.0, -1.0) ( 2.0, 1.0) ( -1.0, 1.0) ( 1.0, -1.0) :End of DU
( -1.3, 1.3) ( -1.3, 1.3) ( -1.3, 3.3) ( -0.3, 4.3)
( -3.3, 1.3) :End of D
( 1.0, -2.0) ( 1.0 , 1.0) ( 2.0, -3.0) ( 1.0, 1.0) :End of DL
( 2.4, -5.0) ( 2.7, 6.9)
( 3.4, 18.2) ( -6.9, -5.3)
(-14.7, 9.7) ( -6.0, -0.6)
( 31.9, -7.7) ( -3.9, 9.3)
( -1.0, 1.6) ( -3.0, 12.2) :End of B

10.3 Program Results

F07CVF Example Program Results

Solution(s)
1 2

1 ( 1.0000, 1.0000) ( 2.0000,-1.0000)
2 ( 3.0000,-1.0000) ( 1.0000, 2.0000)
3 ( 4.0000, 5.0000) (-1.0000, 1.0000)
4 (-1.0000,-2.0000) ( 2.0000, 1.0000)
5 ( 1.0000,-1.0000) ( 2.0000,-2.0000)

Backward errors (machine-dependent)
3.7E-17 6.7E-17

Estimated forward error bounds (machine-dependent)
5.4E-14 7.3E-14
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NAG Library Routine Document

F07FAF (DPOSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FAF (DPOSV) computes the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric positive definite matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07FAF (UPLO, N, NRHS, A, LDA, B, LDB, INFO)

INTEGER N, NRHS, LDA, LDB, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dposv.

3 Description

F07FAF (DPOSV) uses the Cholesky decomposition to factor A as A ¼ UTU if UPLO ¼ U or
A ¼ LLT if UPLO ¼ L , where U is an upper triangular matrix and L is a lower triangular matrix. The
factored form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if INFO ¼ 0, the factor U or L from the Cholesky factorization A ¼ UTU or A ¼ LLT.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FAF
(DPOSV) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07FAF
(DPOSV) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;
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where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

F07FBF (DPOSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04BDF solves Ax ¼ b and returns a
forward error bound and condition estimate. F04BDF calls F07FAF (DPOSV) to solve the equations.

8 Parallelism and Performance

F07FAF (DPOSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FAF (DPOSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 1
3n

3 þ 2n2r , where r is the number of
right-hand sides.

The complex analogue of this routine is F07FNF (ZPOSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the symmetric positive definite matrix

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA and b ¼

8:70
�13:35

1:89
�4:14

0B@
1CA:

Details of the Cholesky factorization of A are also output.

10.1 Program Text

Program f07fafe

! F07FAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dposv, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:)

! .. Executable Statements ..
Write (nout,*) ’F07FAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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Read (nin,*) n
lda = n
Allocate (a(lda,n),b(n))

! Read the upper triangular part of A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Read b from data file

Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of dposv is f07faf

Call dposv(’Upper’,n,1,a,lda,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’Upper’,’Non-unit diagonal’,n,n,a,lda,’Cholesky factor U’, &

ifail)

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format ((3X,7F11.4))
99998 Format (1X,A,I3,A)

End Program f07fafe

10.2 Program Data

F07FAF Example Program Data
4 :Value of N
4.16 -3.12 0.56 -0.10

5.03 -0.83 1.18
0.76 0.34

1.18 :End of matrix A
8.70 -13.35 1.89 -4.14 :End of vector b

10.3 Program Results

F07FAF Example Program Results

Solution
1.0000 -1.0000 2.0000 -3.0000

Cholesky factor U
1 2 3 4

1 2.0396 -1.5297 0.2746 -0.0490
2 1.6401 -0.2500 0.6737
3 0.7887 0.6617
4 0.5347
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NAG Library Routine Document

F07FBF (DPOSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FBF (DPOSVX) uses the Cholesky factorization

A ¼ UTU or A ¼ LLT

to compute the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric positive definite matrix and X and B are n by r matrices. Error
bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07FBF (FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, S, B,
LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) A(LDA,*), AF(LDAF,*), S(*), B(LDB,*), X(LDX,*),

RCOND, FERR(NRHS), BERR(NRHS), WORK(3*N)
&

CHARACTER(1) FACT, UPLO, EQUED

The routine may be called by its LAPACK name dposvx.

3 Description

F07FBF (DPOSVX) performs the following steps:

1. If FACT ¼ E , real diagonal scaling factors, DS , are computed to equilibrate the system:

DSADSð Þ D�1S X
� �

¼ DSB:

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by DSADS and B by DSB.

2. If FACT ¼ N or E , the Cholesky decomposition is used to factor the matrix A (after equilibration
if FACT ¼ E ) as A ¼ UTU if UPLO ¼ U or A ¼ LLT if UPLO ¼ L , where U is an upper
triangular matrix and L is a lower triangular matrix.

3. If the leading i by i principal minor of A is not positive definite, then the routine returns with
INFO ¼ i. Otherwise, the factored form of A is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number is less than machine precision, INFO ¼ Nþ 1
is returned as a warning, but the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by DS so that it solves the original system
before equilibration.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

FACT ¼ F
AF contains the factorized form of A. If EQUED ¼ Y , the matrix A has been equilibrated
with scaling factors given by S. A and AF will not be modified.

FACT ¼ N
The matrix A will be copied to AF and factorized.

FACT ¼ E
The matrix A will be equilibrated if necessary, then copied to AF and factorized.

Constraint: FACT ¼ F , N or E .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If FACT ¼ F and EQUED ¼ Y , A must have been equilibrated by the scaling factor in S as
DSADS .

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if FACT ¼ F or N , or if FACT ¼ E and EQUED ¼ N , A is not modified.

If FACT ¼ E and EQUED ¼ Y , A is overwritten by DSADS.
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6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FBF
(DPOSVX) is called.

Constraint: LDA � max 1;Nð Þ.

7: AFðLDAF; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , AF contains the triangular factor U or L from the Cholesky
factorization A ¼ UTU or A ¼ LLT, in the same storage format as A. If EQUED 6¼ N , AF is the
factorized form of the equilibrated matrix DSADS .

On exit: if FACT ¼ N , AF returns the triangular factor U or L from the Cholesky factorization
A ¼ UTU or A ¼ LLT of the original matrix A.

If FACT ¼ E , AF returns the triangular factor U or L from the Cholesky factorization A ¼ UTU
or A ¼ LLT of the equilibrated matrix A (see the description of A for the form of the
equilibrated matrix).

8: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07FBF (DPOSVX) is called.

Constraint: LDAF � max 1;Nð Þ.

9: EQUED – CHARACTER(1) Input/Output

On entry: if FACT ¼ N or E , EQUED need not be set.

If FACT ¼ F , EQUED must specify the form of the equilibration that was performed as follows:

if EQUED ¼ N , no equilibration;

if EQUED ¼ Y , equilibration was performed, i.e., A has been replaced by DSADS.

On exit: if FACT ¼ F , EQUED is unchanged from entry.

Otherwise, if no constraints are violated, EQUED specifies the form of the equilibration that was
performed as specified above.

Constraint: if FACT ¼ F , EQUED ¼ N or Y .

10: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , S need not be set.

If FACT ¼ F and EQUED ¼ Y , S must contain the scale factors, DS , for A; each element of S
must be positive.

On exit: if FACT ¼ F , S is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ Y , S contains the scale factors, DS , for
A; each element of S is positive.

11: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if EQUED ¼ N , B is not modified.

If EQUED ¼ Y , B is overwritten by DSB.
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12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07FBF
(DPOSVX) is called.

Constraint: LDB � max 1;Nð Þ.

13: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X to the original system of equations.
Note that the arrays A and B are modified on exit if EQUED ¼ Y , and the solution to the
equilibrated system is D�1S X.

14: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07FBF
(DPOSVX) is called.

Constraint: LDX � max 1;Nð Þ.

15: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the

matrix A (after equilibration if that is performed), computed as RCOND ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

16: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

17: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

18: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

19: IWORKðNÞ – INTEGER array Workspace

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed. RCOND ¼ 0:0 is returned.
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INFO ¼ Nþ 1

U (or L) is nonsingular, but RCOND is less than machine precision, meaning that the matrix is
singular to working precision. Nevertheless, the solution and error bounds are computed because
there are a number of situations where the computed solution can be more accurate than the value
of RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UTj j Uj j;
if UPLO ¼ L , Ej j � c nð Þ� Lj j LTj j,

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham
(2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07FBF (DPOSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FBF (DPOSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 1
3n

3 floating-point operations.

For each right-hand side, computation of the backward error involves a minimum of 4n2 floating-point
operations. Each step of iterative refinement involves an additional 6n2 operations. At most five steps of
iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 2n2 operations.

The complex analogue of this routine is F07FPF (ZPOSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric positive definite matrix
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A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA

and

B ¼
8:70 8:30

�13:35 2:13
1:89 1:61
�4:14 5:00

0B@
1CA:

Error estimates for the solutions, information on equilibration and an estimate of the reciprocal of the
condition number of the scaled matrix A are also output.

10.1 Program Text

Program f07fbfe

! F07FBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dposvx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

n, nrhs
Character (1) :: equed

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), berr(:), &

ferr(:), s(:), work(:), x(:,:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07FBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),berr(nrhs),ferr(nrhs),s(n), &

work(3*n),x(ldx,nrhs),iwork(n))

! Read the upper triangular part of A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of dposvx is f07fbf

Call dposvx(’Equilibration’,’Upper’,n,nrhs,a,lda,af,ldaf,equed,s,b,ldb, &
x,ldx,rcond,ferr,berr,work,iwork,info)

If ((info==0) .Or. (info==n+1)) Then
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! Print solution, error bounds, condition number and the form
! of equilibration

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)
If (equed==’N’) Then

Write (nout,*) ’A has not been equilibrated’
Else If (equed==’Y’) Then

Write (nout,*) &
’A has been row and column scaled as diag(S)*A*diag(S)’

End If

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The leading minor of order ’, info, &
’ is not positive definite’

End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07fbfe

10.2 Program Data

F07FBF Example Program Data
4 2 :Values of N and NRHS
4.16 -3.12 0.56 -0.10

5.03 -0.83 1.18
0.76 0.34

1.18 :End of matrix A
8.70 8.30

-13.35 2.13
1.89 1.61

-4.14 5.00 :End of matrix B

10.3 Program Results

F07FBF Example Program Results

Solution(s)
1 2

1 1.0000 4.0000
2 -1.0000 3.0000
3 2.0000 2.0000
4 -3.0000 1.0000

Backward errors (machine-dependent)
6.7E-17 7.9E-17

Estimated forward error bounds (machine-dependent)
2.3E-14 2.3E-14
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Estimate of reciprocal condition number
1.0E-02

A has not been equilibrated
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NAG Library Routine Document

F07FCF (DSPOSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FCF (DSPOSV) uses the Cholesky factorization

A ¼ UTU or A ¼ LLT

to compute the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric positive definite matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07FCF (UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK, SWORK,
ITER, INFO)

&

INTEGER N, NRHS, LDA, LDB, LDX, ITER, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), X(LDX,*), WORK(N,NRHS)
REAL (KIND=nag_rp) SWORK(N*(N+NRHS))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsposv.

3 Description

F07FCF (DSPOSV) first attempts to factorize the matrix in reduced precision and use this factorization
within an iterative refinement procedure to produce a solution with full precision normwise backward
error quality (see below). If the approach fails the method switches to a full precision factorization and
solve.

The iterative refinement can be more efficient than the corresponding direct full precision algorithm.
Since the strategy implemented by F07FCF (DSPOSV) must perform iterative refinement on each right-
hand side, any efficiency gains will reduce as the number of right-hand sides increases. Conversely, as
the matrix size increases the cost of these iterative refinements become less significant relative to the
cost of factorization. Thus, any efficiency gains will be greatest for a very small number of right-hand
sides and for large matrix sizes. The cut-off values for the number of right-hand sides and matrix size,
for which the iterative refinement strategy performs better, depends on the relative performance of the
reduced and full precision factorization and back-substitution. F07FCF (DSPOSV) always attempts the
iterative refinement strategy first; you are advised to compare the performance of F07FCF (DSPOSV)
with that of its full precision counterpart F07FAF (DPOSV) to determine whether this strategy is
worthwhile for your particular problem dimensions.

The iterative refinement process is stopped if ITER > 30 where ITER is the number of iterations carried
out thus far. The process is also stopped if for all right-hand sides we have

residk k <
ffiffiffiffi
N
p

xk k Ak k�;

where residk k is the 1-norm of the residual, xk k is the 1-norm of the solution, Ak k is the 1-norm of
the matrix A and � is the machine precision returned by X02AJF.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric positive definite matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if iterative refinement has been successfully used (INFO ¼ 0 and ITER � 0, see
description below), then A is unchanged. If full precision factorization has been used (INFO ¼ 0
and ITER < 0, see description below), then the array A contains the factor U or L from the
Cholesky factorization A ¼ UTU or A ¼ LLT.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FCF
(DSPOSV) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the right-hand side matrix B.
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7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07FCF
(DSPOSV) is called.

Constraint: LDB � max 1;Nð Þ.

8: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0, the n by r solution matrix X.

9: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07FCF
(DSPOSV) is called.

Constraint: LDX � max 1;Nð Þ.

10: WORKðN;NRHSÞ – REAL (KIND=nag_wp) array Workspace

11: SWORKðN� Nþ NRHSð ÞÞ – REAL (KIND=nag_rp) array Workspace

Note: this array is utilized in the reduced precision computation, consequently its type nag_rp
reflects this usage.

12: ITER – INTEGER Output

On exit: information on the progress of the interative refinement process.

ITER < 0
Iterative refinement has failed for one of the reasons given below, full precision
factorization has been performed instead.

�1 The routine fell back to full precision for implementation- or machine-specific reasons.

�2 Narrowing the precision induced an overflow, the routine fell back to full precision.

�3 An intermediate reduced precision factorization failed.

�31 The maximum permitted number of iterations was exceeded.

ITER > 0
Iterative refinement has been sucessfully used. ITER returns the number of iterations.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

F07 – Linear Equations (LAPACK) F07FCF

Mark 26 F07FCF.3



if UPLO ¼ U , Ej j � c nð Þ� UTj j Uj j;

if UPLO ¼ L , Ej j � c nð Þ� Lj j LTj j,
c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham
(2002) for further details.

An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07FCF (DSPOSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FCF (DSPOSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F07FQF (ZCPOSV).

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric positive definite matrix

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA

and

B ¼
8:70

�13:35
1:89
�4:14

0B@
1CA:

10.1 Program Text

Program f07fcfe

! F07FCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsposv, nag_rp, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, info, iter, lda, ldb, ldx, n, r
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), work(:,:), x(:,:)
Real (Kind=nag_rp), Allocatable :: swork(:)

! .. Executable Statements ..
Write (nout,*) ’F07FCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, r
lda = n
ldb = n
ldx = n
Allocate (a(lda,n),b(n,r),work(n,r),x(ldx,r),swork(n*(n+r)))

! Read the upper triangular part of A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Read B from data file

Read (nin,*)(b(i,1:r),i=1,n)

! Solve the equations Ax = b for x
! The NAG name equivalent of dsposv is f07fcf

Call dsposv(’U’,n,r,a,lda,b,ldb,x,ldx,work,swork,iter,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999)(x(i,1:r),i=1,n)

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format ((3X,7F11.4))
99998 Format ((1X,A,I3,A))

End Program f07fcfe

10.2 Program Data

F07FCF Example Program Data
4 1 :Value of N, R
4.16 -3.12 0.56 -0.10

5.03 -0.83 1.18
0.76 0.34

1.18 :End of matrix A
8.70 -13.35 1.89 -4.14 :End of vector b

10.3 Program Results

F07FCF Example Program Results

Solution
1.0000 -1.0000 2.0000 -3.0000
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NAG Library Routine Document

F07FDF (DPOTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FDF (DPOTRF) computes the Cholesky factorization of a real symmetric positive definite matrix.

2 Specification

SUBROUTINE F07FDF (UPLO, N, A, LDA, INFO)

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) A(LDA,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpotrf.

3 Description

F07FDF (DPOTRF) forms the Cholesky factorization of a real symmetric positive definite matrix A
either as A ¼ UTU if UPLO ¼ U or A ¼ LLT if UPLO ¼ L , where U is an upper triangular matrix
and L is lower triangular.

4 References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of
Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UTU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLT, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric positive definite matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the upper or lower triangle of A is overwritten by the Cholesky factor U or L as
specified by UPLO.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FDF
(DPOTRF) is called.

Constraint: LDA � max 1;Nð Þ.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite and the factorization could not be
completed. Hence A itself is not positive definite. This may indicate an error in forming the
matrix A. To factorize a symmetric matrix which is not positive definite, call F07MDF
(DSYTRF) instead.

7 Accuracy

If UPLO ¼ U , the computed factor U is the exact factor of a perturbed matrix Aþ E, where

Ej j � c nð Þ� UT
		 		 Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision. If UPLO ¼ L , a similar
statement holds for the computed factor L. It follows that eij

		 		 � c nð Þ� ffiffiffiffiffiffiffiffiffiffiffi
aiiajj
p

.

8 Parallelism and Performance

F07FDF (DPOTRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FDF (DPOTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 1
3n

3 .

A call to F07FDF (DPOTRF) may be followed by calls to the routines:

F07FEF (DPOTRS) to solve AX ¼ B;
F07FGF (DPOCON) to estimate the condition number of A;

F07FJF (DPOTRI) to compute the inverse of A.

The complex analogue of this routine is F07FRF (ZPOTRF).

10 Example

This example computes the Cholesky factorization of the matrix A, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA:

10.1 Program Text

Program f07fdfe

! F07FDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpotrf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F07FDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of dpotrf is f07fdf

Call dpotrf(uplo,n,a,lda,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Print factor
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! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(uplo,’Nonunit’,n,n,a,lda,’Factor’,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07fdfe

10.2 Program Data

F07FDF Example Program Data
4 :Value of N
’L’ :Value of UPLO
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 :End of matrix A

10.3 Program Results

F07FDF Example Program Results

Factor
1 2 3 4

1 2.0396
2 -1.5297 1.6401
3 0.2746 -0.2500 0.7887
4 -0.0490 0.6737 0.6617 0.5347
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NAG Library Routine Document

F07FEF (DPOTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FEF (DPOTRS) solves a real symmetric positive definite system of linear equations with multiple
right-hand sides,

AX ¼ B;

where A has been factorized by F07FDF (DPOTRF).

2 Specification

SUBROUTINE F07FEF (UPLO, N, NRHS, A, LDA, B, LDB, INFO)

INTEGER N, NRHS, LDA, LDB, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpotrs.

3 Description

F07FEF (DPOTRS) is used to solve a real symmetric positive definite system of linear equations
AX ¼ B, this routine must be preceded by a call to F07FDF (DPOTRF) which computes the Cholesky
factorization of A. The solution X is computed by forward and backward substitution.

If UPLO ¼ U , A ¼ UTU , where U is upper triangular; the solution X is computed by solving
UTY ¼ B and then UX ¼ Y .
If UPLO ¼ L , A ¼ LLT, where L is lower triangular; the solution X is computed by solving LY ¼ B
and then LTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UTU , where U is upper triangular.

UPLO ¼ L
A ¼ LLT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07FDF (DPOTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FEF
(DPOTRS) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07FEF
(DPOTRS) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UTj j Uj j;
if UPLO ¼ L , Ej j � c nð Þ� Lj j LTj j,

c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07FHF (DPORFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07FGF (DPOCON).
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8 Parallelism and Performance

F07FEF (DPOTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FEF (DPOTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2n2r.

This routine may be followed by a call to F07FHF (DPORFS) to refine the solution and return an error
estimate.

The complex analogue of this routine is F07FSF (ZPOTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA and B ¼

8:70 8:30
�13:35 2:13

1:89 1:61
�4:14 5:00

0B@
1CA:

Here A is symmetric positive definite and must first be factorized by F07FDF (DPOTRF).

10.1 Program Text

Program f07fefe

! F07FEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpotrf, dpotrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)

! .. Executable Statements ..
Write (nout,*) ’F07FEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then
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Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of dpotrf is f07fdf

Call dpotrf(uplo,n,a,lda,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of dpotrs is f07fef

Call dpotrs(uplo,n,nrhs,a,lda,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07fefe

10.2 Program Data

F07FEF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 :End of matrix A
8.70 8.30

-13.35 2.13
1.89 1.61

-4.14 5.00 :End of matrix B

10.3 Program Results

F07FEF Example Program Results

Solution(s)
1 2

1 1.0000 4.0000
2 -1.0000 3.0000
3 2.0000 2.0000
4 -3.0000 1.0000
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NAG Library Routine Document

F07FFF (DPOEQU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FFF (DPOEQU) computes a diagonal scaling matrix S intended to equilibrate a real n by n
symmetric positive definite matrix A and reduce its condition number.

2 Specification

SUBROUTINE F07FFF (N, A, LDA, S, SCOND, AMAX, INFO)

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) A(LDA,*), S(N), SCOND, AMAX

The routine may be called by its LAPACK name dpoequ.

3 Description

F07FFF (DPOEQU) computes a diagonal scaling matrix S chosen so that

sj ¼ 1=
ffiffiffiffiffiffi
ajj
p

:

This means that the matrix B given by

B ¼ SAS;

has diagonal elements equal to unity. This in turn means that the condition number of B, �2 Bð Þ, is
within a factor n of the matrix of smallest possible condition number over all possible choices of
diagonal scalings (see Corollary 7.6 of Higham (2002)).

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A whose scaling factors are to be computed. Only the diagonal elements of
the array A are referenced.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FFF
(DPOEQU) is called.

Constraint: LDA � max 1;Nð Þ.
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4: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, S contains the diagonal elements of the scaling matrix S.

5: SCOND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0, SCOND contains the ratio of the smallest value of S to the largest value of
S. If SCOND � 0:1 and AMAX is neither too large nor too small, it is not worth scaling by S.

6: AMAX – REAL (KIND=nag_wp) Output

On exit: max aij
		 		. If AMAX is very close to overflow or underflow, the matrix A should be

scaled.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The valueh ith diagonal element of A is not positive (and hence A cannot be positive definite).

7 Accuracy

The computed scale factors will be close to the exact scale factors.

8 Parallelism and Performance

F07FFF (DPOEQU) is not threaded in any implementation.

9 Further Comments

The complex analogue of this routine is F07FTF (ZPOEQU).

10 Example

This example equilibrates the symmetric positive definite matrix A given by

A ¼
4:16 �3:12� 105 0:56 �0:10
�3:12� 105 5:03� 1010 �0:83� 105 1:18� 105

0:56 �0:83� 105 0:76 0:34
�0:10 1:18� 105 0:34 1:18

0BB@
1CCA:

Details of the scaling factors and the scaled matrix are output.

10.1 Program Text

Program f07fffe

! F07FFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: dpoequ, dscal, f06fcf, nag_wp, x02ajf, x02amf, &
x02bhf, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: thresh = 0.1_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: amax, big, scond, small
Integer :: i, ifail, info, j, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), s(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F07FFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),s(n))

! Read the upper triangular part of the matrix A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Print the matrix A

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’Upper’,’Non-unit’,n,n,a,lda,’Matrix A’,ifail)

Write (nout,*)

! Compute diagonal scaling factors
! The NAG name equivalent of dpoequ is f07fff

Call dpoequ(n,a,lda,s,scond,amax,info)

If (info>0) Then
Write (nout,99999) ’Diagonal element’, info, ’ of A is non positive’

Else

! Print SCOND, AMAX and the scale factors

Write (nout,99998) ’SCOND =’, scond, ’, AMAX =’, amax
Write (nout,*)
Write (nout,*) ’Diagonal scaling factors’
Write (nout,99997) s(1:n)
Write (nout,*)
Flush (nout)

! Compute values close to underflow and overflow

small = x02amf()/(x02ajf()*real(x02bhf(),kind=nag_wp))
big = one/small
If ((scond<thresh) .Or. (amax<small) .Or. (amax>big)) Then

! Scale A
! The NAG name equivalent of dscal is f06edf

Do j = 1, n
Call dscal(j,s(j),a(1,j),1)
Call f06fcf(j,s,1,a(1,j),1)

End Do

! Print the scaled matrix

ifail = 0
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Call x04caf(’Upper’,’Non-unit’,n,n,a,lda,’Scaled matrix’,ifail)

End If
End If

99999 Format (1X,A,I4,A)
99998 Format (1X,2(A,1P,E8.1))
99997 Format ((1X,1P,7E11.1))

End Program f07fffe

10.2 Program Data

F07FFF Example Program Data
4 :Value of N
4.16D+00 -3.12D+05 0.56D+00 -0.10D+00

5.03D+10 -0.83D+05 1.18D+05
0.76D+00 0.34D+00

1.18D+00 :End of matrix A

10.3 Program Results

F07FFF Example Program Results

Matrix A
1 2 3 4

1 4.1600E+00 -3.1200E+05 5.6000E-01 -1.0000E-01
2 5.0300E+10 -8.3000E+04 1.1800E+05
3 7.6000E-01 3.4000E-01
4 1.1800E+00

SCOND = 3.9E-06, AMAX = 5.0E+10

Diagonal scaling factors
4.9E-01 4.5E-06 1.1E+00 9.2E-01

Scaled matrix
1 2 3 4

1 1.0000 -0.6821 0.3149 -0.0451
2 1.0000 -0.4245 0.4843
3 1.0000 0.3590
4 1.0000
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NAG Library Routine Document

F07FGF (DPOCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FGF (DPOCON) estimates the condition number of a real symmetric positive definite matrix A,
where A has been factorized by F07FDF (DPOTRF).

2 Specification

SUBROUTINE F07FGF (UPLO, N, A, LDA, ANORM, RCOND, WORK, IWORK, INFO)

INTEGER N, LDA, IWORK(N), INFO
REAL (KIND=nag_wp) A(LDA,*), ANORM, RCOND, WORK(3*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpocon.

3 Description

F07FGF (DPOCON) estimates the condition number (in the 1-norm) of a real symmetric positive
definite matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is symmetric, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06RCF to compute Ak k1 and a call to F07FDF (DPOTRF)
to compute the Cholesky factorization of A. The routine then uses Higham's implementation of Hager's
method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UTU , where U is upper triangular.

UPLO ¼ L
A ¼ LLT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07FDF (DPOTRF).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FGF
(DPOCON) is called.

Constraint: LDA � max 1;Nð Þ.

5: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06RCF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07FDF (DPOTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

6: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

7: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

8: IWORKðNÞ – INTEGER array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07FGF (DPOCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

A call to F07FGF (DPOCON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
2n2 floating-point operations but takes considerably longer than a call to F07FEF (DPOTRS) with one
right-hand side, because extra care is taken to avoid overflow when A is approximately singular.

The complex analogue of this routine is F07FUF (ZPOCON).

10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA:

Here A is symmetric positive definite and must first be factorized by F07FDF (DPOTRF). The true
condition number in the 1-norm is 97:32.

10.1 Program Text

Program f07fgfe

! F07FGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dlansy => f06rcf, dpocon, dpotrf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07FGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),work(3*n),iwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Compute norm of A
! f06rcf is the NAG name equivalent of the LAPACK auxiliary dlansy

anorm = dlansy(’1-norm’,uplo,n,a,lda,work)

! Factorize A
! The NAG name equivalent of dpotrf is f06fdf

Call dpotrf(uplo,n,a,lda,info)

Write (nout,*)
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If (info==0) Then

! Estimate condition number

! The NAG name equivalent of dpocon is f07fgf
Call dpocon(uplo,n,a,lda,anorm,rcond,work,iwork,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’A is not positive definite’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07fgfe

10.2 Program Data

F07FGF Example Program Data
4 :Value of N
’L’ :Value of UPLO
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 :End of matrix A

10.3 Program Results

F07FGF Example Program Results

Estimate of condition number = 9.73E+01
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NAG Library Routine Document

F07FHF (DPORFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FHF (DPORFS) returns error bounds for the solution of a real symmetric positive definite system of
linear equations with multiple right-hand sides, AX ¼ B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07FHF (UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
FERR, BERR, WORK, IWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),

FERR(NRHS), BERR(NRHS), WORK(3*N)
&

CHARACTER(1) UPLO

The routine may be called by its LAPACK name dporfs.

3 Description

F07FHF (DPORFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a real symmetric positive definite system of linear equations with multiple right-hand sides
AX ¼ B. The routine handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of F07FHF (DPORFS) in terms of a single right-hand side b
and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UTU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLT, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n original symmetric positive definite matrix A as supplied to F07FDF
(DPOTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FHF
(DPORFS) is called.

Constraint: LDA � max 1;Nð Þ.

6: AFðLDAF; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07FDF (DPOTRF).

7: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07FHF (DPORFS) is called.

Constraint: LDAF � max 1;Nð Þ.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07FHF
(DPORFS) is called.

Constraint: LDB � max 1;Nð Þ.
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10: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07FEF (DPOTRS).

On exit: the improved solution matrix X.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07FHF
(DPORFS) is called.

Constraint: LDX � max 1;Nð Þ.

12: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

13: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

14: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

15: IWORKðNÞ – INTEGER array Workspace

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07FHF (DPORFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FHF (DPORFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n2 floating-point
operations. Each step of iterative refinement involves an additional 6n2 operations. At most five steps of
iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
2n2 operations.

The complex analogue of this routine is F07FVF (ZPORFS).

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA and B ¼

8:70 8:30
�13:35 2:13

1:89 1:61
�4:14 5:00

0B@
1CA:

Here A is symmetric positive definite and must first be factorized by F07FDF (DPOTRF).

10.1 Program Text

Program f07fhfe

! F07FHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dporfs, dpotrf, dpotrs, f06qff, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), berr(:), &

ferr(:), work(:), x(:,:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07FHF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),berr(nrhs),ferr(nrhs), &

work(3*n),x(ldx,n),iwork(n))

! Read A and B from data file, and copy A to AF and B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)
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Call f06qff(uplo,n,n,a,lda,af,ldaf)

x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AF
! The NAG name equivalent of dpotrf is f07fdf

Call dpotrf(uplo,n,af,ldaf,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of dpotrs is f07fef

Call dpotrs(uplo,n,nrhs,af,ldaf,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of dporfs is f07fhf
Call dporfs(uplo,n,nrhs,a,lda,af,ldaf,b,ldb,x,ldx,ferr,berr,work, &

iwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’A is not positive definite’

End If

99999 Format ((3X,1P,7E11.1))
End Program f07fhfe

10.2 Program Data

F07FHF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 :End of matrix A
8.70 8.30

-13.35 2.13
1.89 1.61

-4.14 5.00 :End of matrix B

10.3 Program Results

F07FHF Example Program Results

Solution(s)
1 2

1 1.0000 4.0000
2 -1.0000 3.0000
3 2.0000 2.0000
4 -3.0000 1.0000
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Backward errors (machine-dependent)
7.6E-17 5.0E-17

Estimated forward error bounds (machine-dependent)
2.4E-14 2.3E-14
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NAG Library Routine Document

F07FJF (DPOTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FJF (DPOTRI) computes the inverse of a real symmetric positive definite matrix A, where A has
been factorized by F07FDF (DPOTRF).

2 Specification

SUBROUTINE F07FJF (UPLO, N, A, LDA, INFO)

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) A(LDA,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpotri.

3 Description

F07FJF (DPOTRI) is used to compute the inverse of a real symmetric positive definite matrix A, the
routine must be preceded by a call to F07FDF (DPOTRF), which computes the Cholesky factorization
of A.

If UPLO ¼ U , A ¼ UTU and A�1 is computed by first inverting U and then forming U�1ð ÞU�T.

If UPLO ¼ L , A ¼ LLT and A�1 is computed by first inverting L and then forming L�T L�1ð Þ.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UTU , where U is upper triangular.

UPLO ¼ L
A ¼ LLT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the upper triangular matrix U if UPLO ¼ U or the lower triangular matrix L if
UPLO ¼ L , as returned by F07FDF (DPOTRF).

On exit: U is overwritten by the upper triangle of A�1 if UPLO ¼ U ; L is overwritten by the
lower triangle of A�1 if UPLO ¼ L .

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FJF
(DPOTRI) is called.

Constraint: LDA � max 1;Nð Þ.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Diagonal element valueh i of the Cholesky factor is zero; the Cholesky factor is singular and the
inverse of A cannot be computed.

7 Accuracy

The computed inverse X satisfies

XA� Ik k2 � c nð Þ��2 Að Þ and AX � Ik k2 � c nð Þ��2 Að Þ;

where c nð Þ is a modest function of n, � is the machine precision and �2 Að Þ is the condition number of
A defined by

�2 Að Þ ¼ Ak k2 A�1
�� ��

2
:

8 Parallelism and Performance

F07FJF (DPOTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

3 .

The complex analogue of this routine is F07FWF (ZPOTRI).
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10 Example

This example computes the inverse of the matrix A, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA:

Here A is symmetric positive definite and must first be factorized by F07FDF (DPOTRF).

10.1 Program Text

Program f07fjfe

! F07FJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpotrf, dpotri, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F07FJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of dpotrf is f07fdf

Call dpotrf(uplo,n,a,lda,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute inverse of A
! The NAG name equivalent of dpotri is f07fjf

Call dpotri(uplo,n,a,lda,info)

! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(uplo,’Nonunit’,n,n,a,lda,’Inverse’,ifail)
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Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07fjfe

10.2 Program Data

F07FJF Example Program Data
4 :Value of N
’L’ :Value of UPLO
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 :End of matrix A

10.3 Program Results

F07FJF Example Program Results

Inverse
1 2 3 4

1 0.6995
2 0.7769 1.4239
3 0.7508 1.8255 4.0688
4 -0.9340 -1.8841 -2.9342 3.4978
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NAG Library Routine Document

F07FNF (ZPOSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FNF (ZPOSV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian positive definite matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07FNF (UPLO, N, NRHS, A, LDA, B, LDB, INFO)

INTEGER N, NRHS, LDA, LDB, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zposv.

3 Description

F07FNF (ZPOSV) uses the Cholesky decomposition to factor A as A ¼ UHU if UPLO ¼ U or
A ¼ LLH if UPLO ¼ L , where U is an upper triangular matrix and L is a lower triangular matrix. The
factored form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if INFO ¼ 0, the factor U or L from the Cholesky factorization A ¼ UHU or A ¼ LLH.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FNF
(ZPOSV) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
Note: to solve the equations Ax ¼ b, where b is a single right-hand side, B may be supplied as a
one-dimensional array with length LDB ¼ max 1;Nð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07FNF
(ZPOSV) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by
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x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

F07FPF (ZPOSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04CDF solves Ax ¼ b and returns a
forward error bound and condition estimate. F04CDF calls F07FNF (ZPOSV) to solve the equations.

8 Parallelism and Performance

F07FNF (ZPOSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FNF (ZPOSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4
3n

3 þ 8n2r , where r is the number of
right-hand sides.

The real analogue of this routine is F07FAF (DPOSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the symmetric positive definite matrix

A ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA

and

b ¼
3:93� 6:14i
6:17þ 9:42i
�7:17� 21:83i
1:99� 14:38i

0B@
1CA:

Details of the Cholesky factorization of A are also output.

10.1 Program Text

Program f07fnfe

! F07FNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zposv

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, info, lda, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07FNF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),b(n))

! Read the upper triangular part of A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Read b from data file

Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of zposv is f07fnf

Call zposv(’Upper’,n,1,a,lda,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’Upper’,’Non-unit diagonal’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Cholesky factor U’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
99998 Format (1X,A,I3,A)

End Program f07fnfe

10.2 Program Data

F07FNF Example Program Data
4 :Value of N

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix A

( 3.93, -6.14) ( 6.17, 9.42) (-7.17,-21.83) ( 1.99,-14.38) :End of vector b
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10.3 Program Results

F07FNF Example Program Results

Solution
( 1.0000,-1.0000) (-0.0000, 3.0000) (-4.0000,-5.0000) ( 2.0000, 1.0000)

Cholesky factor U
1 2 3 4

1 ( 1.7972, 0.0000) ( 0.8402,-1.0683) ( 1.0572, 0.4674) ( 0.2337, 1.3910)
2 ( 1.3164, 0.0000) (-0.4702,-0.3131) ( 0.0834,-0.0368)
3 ( 1.5604, 0.0000) ( 0.9360,-0.9900)
4 ( 0.6603, 0.0000)
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NAG Library Routine Document

F07FPF (ZPOSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FPF (ZPOSVX) uses the Cholesky factorization

A ¼ UHU or A ¼ LLH

to compute the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian positive definite matrix and X and B are n by r matrices. Error bounds
on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07FPF (FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, S, B,
LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
REAL (KIND=nag_wp) S(*), RCOND, FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),

WORK(2*N)
&

CHARACTER(1) FACT, UPLO, EQUED

The routine may be called by its LAPACK name zposvx.

3 Description

F07FPF (ZPOSVX) performs the following steps:

1. If FACT ¼ E , real diagonal scaling factors, DS , are computed to equilibrate the system:

DSADSð Þ D�1S X
� �

¼ DSB:

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by DSADS and B by DSB.

2. If FACT ¼ N or E , the Cholesky decomposition is used to factor the matrix A (after equilibration
if FACT ¼ E ) as A ¼ UHU if UPLO ¼ U or A ¼ LLH if UPLO ¼ L , where U is an upper
triangular matrix and L is a lower triangular matrix.

3. If the leading i by i principal minor of A is not positive definite, then the routine returns with
INFO ¼ i. Otherwise, the factored form of A is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number is less than machine precision, INFO ¼ Nþ 1
is returned as a warning, but the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by DS so that it solves the original system
before equilibration.
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

FACT ¼ F
AF contains the factorized form of A. If EQUED ¼ Y , the matrix A has been equilibrated
with scaling factors given by S. A and AF will not be modified.

FACT ¼ N
The matrix A will be copied to AF and factorized.

FACT ¼ E
The matrix A will be equilibrated if necessary, then copied to AF and factorized.

Constraint: FACT ¼ F , N or E .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If FACT ¼ F and EQUED ¼ Y , A must have been equilibrated by the scaling factor in S as
DSADS .

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if FACT ¼ F or N , or if FACT ¼ E and EQUED ¼ N , A is not modified.

If FACT ¼ E and EQUED ¼ Y , A is overwritten by DSADS.
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6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FPF
(ZPOSVX) is called.

Constraint: LDA � max 1;Nð Þ.

7: AFðLDAF; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , AF contains the triangular factor U or L from the Cholesky
factorization A ¼ UHU or A ¼ LLH, in the same storage format as A. If EQUED 6¼ N , AF is the
factorized form of the equilibrated matrix DSADS .

On exit: if FACT ¼ N , AF returns the triangular factor U or L from the Cholesky factorization
A ¼ UHU or A ¼ LLH of the original matrix A.

If FACT ¼ E , AF returns the triangular factor U or L from the Cholesky factorization A ¼ UHU
or A ¼ LLH of the equilibrated matrix A (see the description of A for the form of the
equilibrated matrix).

8: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07FPF (ZPOSVX) is called.

Constraint: LDAF � max 1;Nð Þ.

9: EQUED – CHARACTER(1) Input/Output

On entry: if FACT ¼ N or E , EQUED need not be set.

If FACT ¼ F , EQUED must specify the form of the equilibration that was performed as follows:

if EQUED ¼ N , no equilibration;

if EQUED ¼ Y , equilibration was performed, i.e., A has been replaced by DSADS.

On exit: if FACT ¼ F , EQUED is unchanged from entry.

Otherwise, if no constraints are violated, EQUED specifies the form of the equilibration that was
performed as specified above.

Constraint: if FACT ¼ F , EQUED ¼ N or Y .

10: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , S need not be set.

If FACT ¼ F and EQUED ¼ Y , S must contain the scale factors, DS , for A; each element of S
must be positive.

On exit: if FACT ¼ F , S is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ Y , S contains the scale factors, DS , for
A; each element of S is positive.

11: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if EQUED ¼ N , B is not modified.

If EQUED ¼ Y , B is overwritten by DSB.
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12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07FPF
(ZPOSVX) is called.

Constraint: LDB � max 1;Nð Þ.

13: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X to the original system of equations.
Note that the arrays A and B are modified on exit if EQUED ¼ Y , and the solution to the
equilibrated system is D�1S X.

14: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07FPF
(ZPOSVX) is called.

Constraint: LDX � max 1;Nð Þ.

15: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the

matrix A (after equilibration if that is performed), computed as RCOND ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

16: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

17: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

18: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

19: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed. RCOND ¼ 0:0 is returned.
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INFO ¼ Nþ 1

U (or L) is nonsingular, but RCOND is less than machine precision, meaning that the matrix is
singular to working precision. Nevertheless, the solution and error bounds are computed because
there are a number of situations where the computed solution can be more accurate than the value
of RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UHj j Uj j;
if UPLO ¼ L , Ej j � c nð Þ� Lj j LHj j,

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham
(2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07FPF (ZPOSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FPF (ZPOSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 4
3n

3 floating-point operations.

For each right-hand side, computation of the backward error involves a minimum of 16n2 floating-point
operations. Each step of iterative refinement involves an additional 24n2 operations. At most five steps
of iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 8n2 operations.

The real analogue of this routine is F07FBF (DPOSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite matrix
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A ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA

and

B ¼
3:93� 6:14i 1:48þ 6:58i
6:17þ 9:42i 4:64� 4:75i
�7:17� 21:83i �4:91þ 2:29i
1:99� 14:38i 7:64� 10:79i

0B@
1CA:

Error estimates for the solutions, information on equilibration and an estimate of the reciprocal of the
condition number of the scaled matrix A are also output.

10.1 Program Text

Program f07fpfe

! F07FPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zposvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

n, nrhs
Character (1) :: equed

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:), s(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07FPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),work(2*n),x(ldx,nrhs), &

berr(nrhs),ferr(nrhs),rwork(n),s(n))

! Read the upper triangular part of A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of zposvx is f07fpf

Call zposvx(’Equilibration’,’Upper’,n,nrhs,a,lda,af,ldaf,equed,s,b,ldb, &
x,ldx,rcond,ferr,berr,work,rwork,info)

If ((info==0) .Or. (info==n+1)) Then
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! Print solution, error bounds, condition number and the form
! of equilibration

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)
If (equed==’N’) Then

Write (nout,*) ’A has not been equilibrated’
Else If (equed==’Y’) Then

Write (nout,*) &
’A has been row and column scaled as diag(S)*A*diag(S)’

End If

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The leading minor of order ’, info, &
’ is not positive definite’

End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07fpfe

10.2 Program Data

F07FPF Example Program Data
4 2 :Values of N and NRHS

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix A

( 3.93, -6.14) ( 1.48, 6.58)
( 6.17, 9.42) ( 4.65, -4.75)
(-7.17,-21.83) (-4.91, 2.29)
( 1.99,-14.38) ( 7.64,-10.79) :End of matrix B

10.3 Program Results

F07FPF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) (-1.0000, 2.0000)
2 (-0.0000, 3.0000) ( 3.0000,-4.0000)
3 (-4.0000,-5.0000) (-2.0000, 3.0000)
4 ( 2.0000, 1.0000) ( 4.0000,-5.0000)

Backward errors (machine-dependent)
5.9E-17 4.8E-17

Estimated forward error bounds (machine-dependent)
6.0E-14 7.2E-14
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Estimate of reciprocal condition number
6.6E-03

A has not been equilibrated
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NAG Library Routine Document

F07FQF (ZCPOSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FQF (ZCPOSV) uses the Cholesky factorization

A ¼ UHU or A ¼ LLH

to compute the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian positive definite matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07FQF (UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK, SWORK,
RWORK, ITER, INFO)

&

INTEGER N, NRHS, LDA, LDB, LDX, ITER, INFO
REAL (KIND=nag_wp) RWORK(N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), X(LDX,*), WORK(N,NRHS)
COMPLEX (KIND=nag_rp) SWORK(N*(N+NRHS))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zcposv.

3 Description

F07FQF (ZCPOSV) first attempts to factorize the matrix in reduced precision and use this factorization
within an iterative refinement procedure to produce a solution with full precision normwise backward
error quality (see below). If the approach fails the method switches to a full precision factorization and
solve.

The iterative refinement can be more efficient than the corresponding direct full precision algorithm.
Since the strategy implemented by F07FQF (ZCPOSV) must perform iterative refinement on each right-
hand side, any efficiency gains will reduce as the number of right-hand sides increases. Conversely, as
the matrix size increases the cost of these iterative refinements become less significant relative to the
cost of factorization. Thus, any efficiency gains will be greatest for a very small number of right-hand
sides and for large matrix sizes. The cut-off values for the number of right-hand sides and matrix size,
for which the iterative refinement strategy performs better, depends on the relative performance of the
reduced and full precision factorization and back-substitution. F07FQF (ZCPOSV) always attempts the
iterative refinement strategy first; you are advised to compare the performance of F07FQF (ZCPOSV)
with that of its full precision counterpart F07FNF (ZPOSV) to determine whether this strategy is
worthwhile for your particular problem dimensions.

The iterative refinement process is stopped if ITER > 30 where ITER is the number of iterations carried
out thus far. The process is also stopped if for all right-hand sides we have

residk k <
ffiffiffiffi
N
p

xk k Ak k�;

where residk k is the 1-norm of the residual, xk k is the 1-norm of the solution, Ak k is the 1-norm of
the matrix A and � is the machine precision returned by X02AJF.
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian positive definite matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if iterative refinement has been successfully used (INFO ¼ 0 and ITER � 0, see
description below), then A is unchanged. If full precision factorization has been used (INFO ¼ 0
and ITER < 0, see description below), then the array A contains the factor U or L from the
Cholesky factorization A ¼ UHU or A ¼ LLH.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FQF
(ZCPOSV) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the right-hand side matrix B.
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7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07FQF
(ZCPOSV) is called.

Constraint: LDB � max 1;Nð Þ.

8: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0, the n by r solution matrix X.

9: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07FQF
(ZCPOSV) is called.

Constraint: LDX � max 1;Nð Þ.

10: WORKðN;NRHSÞ – COMPLEX (KIND=nag_wp) array Workspace

11: SWORKðN� Nþ NRHSð ÞÞ – COMPLEX (KIND=nag_rp) array Workspace

Note: this array is utilized in the reduced precision computation, consequently its type nag_rp
reflects this usage.

12: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

13: ITER – INTEGER Output

On exit: information on the progress of the interative refinement process.

ITER < 0
Iterative refinement has failed for one of the reasons given below, full precision
factorization has been performed instead.

�1 The routine fell back to full precision for implementation- or machine-specific reasons.

�2 Narrowing the precision induced an overflow, the routine fell back to full precision.

�3 An intermediate reduced precision factorization failed.

�31 The maximum permitted number of iterations was exceeded.

ITER > 0
Iterative refinement has been sucessfully used. ITER returns the number of iterations.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed.
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7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UHj j Uj j;

if UPLO ¼ L , Ej j � c nð Þ� Lj j LHj j,
c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham
(2002) for further details.

An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07FQF (ZCPOSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FQF (ZCPOSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F07FCF (DSPOSV).

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite matrix

A ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA

and

B ¼
3:93� 6:14i
6:17þ 9:42i
�7:17� 21:83i
1:99� 14:38i

0B@
1CA:
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10.1 Program Text

Program f07fqfe

! F07FQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_rp, nag_wp, zcposv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, iter, lda, ldb, ldx, n, r

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), work(:,:), x(:,:)
Complex (Kind=nag_rp), Allocatable :: swork(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07FQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, r
lda = n
ldb = n
ldx = n
Allocate (a(lda,n),b(ldb,r),work(n,r),x(ldx,r),swork(n*(n+r)),rwork(n))

! Read A and B from data file

Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*)(b(i,1:r),i=1,n)

! Solve the equations Ax = b for x
! The NAG name equivalent of zcposv is f07fqf

Call zcposv(’U’,n,r,a,lda,b,ldb,x,ldx,work,swork,rwork,iter,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999)(x(i,1:r),i=1,n)

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
99998 Format (1X,A,I3,A)

End Program f07fqfe

10.2 Program Data

F07FQF Example Program Data
4 1 :Values of N, R

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix A

( 3.93, -6.14) ( 6.17, 9.42) (-7.17,-21.83) ( 1.99,-14.38) :End of vector b
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10.3 Program Results

F07FQF Example Program Results

Solution
( 1.0000,-1.0000) (-0.0000, 3.0000) (-4.0000,-5.0000) ( 2.0000, 1.0000)
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NAG Library Routine Document

F07FRF (ZPOTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FRF (ZPOTRF) computes the Cholesky factorization of a complex Hermitian positive definite
matrix.

2 Specification

SUBROUTINE F07FRF (UPLO, N, A, LDA, INFO)

INTEGER N, LDA, INFO
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpotrf.

3 Description

F07FRF (ZPOTRF) forms the Cholesky factorization of a complex Hermitian positive definite matrix A
either as A ¼ UHU if UPLO ¼ U or A ¼ LLH if UPLO ¼ L , where U is an upper triangular matrix
and L is lower triangular.

4 References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of
Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UHU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLH, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian positive definite matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the upper or lower triangle of A is overwritten by the Cholesky factor U or L as
specified by UPLO.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FRF
(ZPOTRF) is called.

Constraint: LDA � max 1;Nð Þ.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite and the factorization could not be
completed. Hence A itself is not positive definite. This may indicate an error in forming the
matrix A. To factorize a Hermitian matrix which is not positive definite, call F07MRF (ZHETRF)
instead.

7 Accuracy

If UPLO ¼ U , the computed factor U is the exact factor of a perturbed matrix Aþ E, where

Ej j � c nð Þ� UH
		 		 Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision. If UPLO ¼ L , a similar
statement holds for the computed factor L. It follows that eij

		 		 � c nð Þ� ffiffiffiffiffiffiffiffiffiffiffi
aiiajj
p

.

8 Parallelism and Performance

F07FRF (ZPOTRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FRF (ZPOTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

F07FRF NAG Library Manual

F07FRF.2 Mark 26



9 Further Comments

The total number of real floating-point operations is approximately 4
3n

3 .

A call to F07FRF (ZPOTRF) may be followed by calls to the routines:

F07FSF (ZPOTRS) to solve AX ¼ B;
F07FUF (ZPOCON) to estimate the condition number of A;

F07FWF (ZPOTRI) to compute the inverse of A.

The real analogue of this routine is F07FDF (DPOTRF).

10 Example

This example computes the Cholesky factorization of the matrix A, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA:

10.1 Program Text

Program f07frfe

! F07FRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpotrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07FRF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zpotrf is f07frf

Call zpotrf(uplo,n,a,lda,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Print factor
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! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(uplo,’Nonunit’,n,n,a,lda,’Bracketed’,’F7.4’,’Factor’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07frfe

10.2 Program Data

F07FRF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(3.23, 0.00)
(1.51, 1.92) ( 3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix A

10.3 Program Results

F07FRF Example Program Results

Factor
1 2 3 4

1 ( 1.7972, 0.0000)
2 ( 0.8402, 1.0683) ( 1.3164, 0.0000)
3 ( 1.0572,-0.4674) (-0.4702, 0.3131) ( 1.5604, 0.0000)
4 ( 0.2337,-1.3910) ( 0.0834, 0.0368) ( 0.9360, 0.9900) ( 0.6603, 0.0000)

F07FRF NAG Library Manual

F07FRF.4 (last) Mark 26



NAG Library Routine Document

F07FSF (ZPOTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FSF (ZPOTRS) solves a complex Hermitian positive definite system of linear equations with
multiple right-hand sides,

AX ¼ B;

where A has been factorized by F07FRF (ZPOTRF).

2 Specification

SUBROUTINE F07FSF (UPLO, N, NRHS, A, LDA, B, LDB, INFO)

INTEGER N, NRHS, LDA, LDB, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpotrs.

3 Description

F07FSF (ZPOTRS) is used to solve a complex Hermitian positive definite system of linear equations
AX ¼ B, this routine must be preceded by a call to F07FRF (ZPOTRF) which computes the Cholesky
factorization of A. The solution X is computed by forward and backward substitution.

If UPLO ¼ U , A ¼ UHU , where U is upper triangular; the solution X is computed by solving
UHY ¼ B and then UX ¼ Y .
If UPLO ¼ L , A ¼ LLH, where L is lower triangular; the solution X is computed by solving LY ¼ B
and then LHX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UHU , where U is upper triangular.

UPLO ¼ L
A ¼ LLH, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07FRF (ZPOTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FSF
(ZPOTRS) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07FSF
(ZPOTRS) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UHj j Uj j;
if UPLO ¼ L , Ej j � c nð Þ� Lj j LHj j,

c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07FVF (ZPORFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07FUF (ZPOCON).
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8 Parallelism and Performance

F07FSF (ZPOTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FSF (ZPOTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8n2r.

This routine may be followed by a call to F07FVF (ZPORFS) to refine the solution and return an error
estimate.

The real analogue of this routine is F07FEF (DPOTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA

and

B ¼
3:93� 6:14i 1:48þ 6:58i
6:17þ 9:42i 4:65� 4:75i
�7:17� 21:83i �4:91þ 2:29i
1:99� 14:38i 7:64� 10:79i

0B@
1CA:

Here A is Hermitian positive definite and must first be factorized by F07FRF (ZPOTRF).

10.1 Program Text

Program f07fsfe

! F07FSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpotrf, zpotrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07FSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
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ldb = n
Allocate (a(lda,n),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of zpotrf is f07frf

Call zpotrf(uplo,n,a,lda,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of zpotrs is f07fsf

Call zpotrs(uplo,n,nrhs,a,lda,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07fsfe

10.2 Program Data

F07FSF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(3.23, 0.00)
(1.51, 1.92) ( 3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix A
( 3.93, -6.14) ( 1.48, 6.58)
( 6.17, 9.42) ( 4.65, -4.75)
(-7.17,-21.83) (-4.91, 2.29)
( 1.99,-14.38) ( 7.64,-10.79) :End of matrix B

10.3 Program Results

F07FSF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) (-1.0000, 2.0000)
2 (-0.0000, 3.0000) ( 3.0000,-4.0000)
3 (-4.0000,-5.0000) (-2.0000, 3.0000)
4 ( 2.0000, 1.0000) ( 4.0000,-5.0000)
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NAG Library Routine Document

F07FTF (ZPOEQU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FTF (ZPOEQU) computes a diagonal scaling matrix S intended to equilibrate a complex n by n
Hermitian positive definite matrix A and reduce its condition number.

2 Specification

SUBROUTINE F07FTF (N, A, LDA, S, SCOND, AMAX, INFO)

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) S(N), SCOND, AMAX
COMPLEX (KIND=nag_wp) A(LDA,*)

The routine may be called by its LAPACK name zpoequ.

3 Description

F07FTF (ZPOEQU) computes a diagonal scaling matrix S chosen so that

sj ¼ 1=
ffiffiffiffiffiffi
ajj
p

:

This means that the matrix B given by

B ¼ SAS;

has diagonal elements equal to unity. This in turn means that the condition number of B, �2 Bð Þ, is
within a factor n of the matrix of smallest possible condition number over all possible choices of
diagonal scalings (see Corollary 7.6 of Higham (2002)).

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A whose scaling factors are to be computed. Only the diagonal elements of
the array A are referenced.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FTF
(ZPOEQU) is called.

Constraint: LDA � max 1;Nð Þ.
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4: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, S contains the diagonal elements of the scaling matrix S.

5: SCOND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0, SCOND contains the ratio of the smallest value of S to the largest value of
S. If SCOND � 0:1 and AMAX is neither too large nor too small, it is not worth scaling by S.

6: AMAX – REAL (KIND=nag_wp) Output

On exit: max aij
		 		. If AMAX is very close to overflow or underflow, the matrix A should be

scaled.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The valueh ith diagonal element of A is not positive (and hence A cannot be positive definite).

7 Accuracy

The computed scale factors will be close to the exact scale factors.

8 Parallelism and Performance

F07FTF (ZPOEQU) is not threaded in any implementation.

9 Further Comments

The real analogue of this routine is F07FFF (DPOEQU).

10 Example

This example equilibrates the Hermitian positive definite matrix A given by

A ¼
3:23 1:51� 1:92i 1:90þ 0:84ið Þ � 105 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11ið Þ � 105 �1:18þ 1:37i
1:90� 0:84ið Þ � 105 �0:23� 1:11ið Þ � 105 4:09� 1010 2:33� 0:14ið Þ � 105

0:42� 2:50i �1:18� 1:37i 2:33þ 0:14ið Þ � 105 4:29

0BB@
1CCA:

Details of the scaling factors and the scaled matrix are output.

10.1 Program Text

Program f07ftfe

! F07FTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: f06kcf, nag_wp, x02ajf, x02amf, x02bhf, x04dbf, &
zdscal, zpoequ

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: thresh = 0.1_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: amax, big, scond, small
Integer :: i, ifail, info, j, lda, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp), Allocatable :: s(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F07FTF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),s(n))

! Read the upper triangular part of the matrix A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Print the matrix A

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’Upper’,’Non-unit’,n,n,a,lda,’Bracketed’,’1P,E10.2’, &

’Matrix A’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)

! Compute diagonal scaling factors

! The NAG name equivalent of zpoequ is f07ftf
Call zpoequ(n,a,lda,s,scond,amax,info)

If (info>0) Then
Write (nout,99999) ’Diagonal element’, info, ’ of A is non positive’

Else

! Print SCOND, AMAX and the scale factors

Write (nout,99998) ’SCOND =’, scond, ’, AMAX =’, amax
Write (nout,*)
Write (nout,*) ’Diagonal scaling factors’
Write (nout,99997) s(1:n)
Write (nout,*)
Flush (nout)

! Compute values close to underflow and overflow

small = x02amf()/(x02ajf()*real(x02bhf(),kind=nag_wp))
big = one/small
If ((scond<thresh) .Or. (amax<small) .Or. (amax>big)) Then

! Scale A
! The NAG name equivalent of zdscal is f06jdf

Do j = 1, n
Call zdscal(j,s(j),a(1,j),1)
Call f06kcf(j,s,1,a(1,j),1)

End Do

F07 – Linear Equations (LAPACK) F07FTF

Mark 26 F07FTF.3



! Print the scaled matrix

ifail = 0
Call x04dbf(’Upper’,’Non-unit’,n,n,a,lda,’Bracketed’,’F8.4’, &

’Scaled matrix’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If
End If

99999 Format (1X,A,I4,A)
99998 Format (1X,2(A,1P,E8.1))
99997 Format ((1X,1P,7E11.1))

End Program f07ftfe

10.2 Program Data

F07FTF Example Program Data
4 :Value of N

( 3.23, 0.00) ( 1.51,-1.92) ( 1.90D+05, 0.84D+05) ( 0.42D+00, 2.50D+00)
( 3.58, 0.00) (-0.23D+05, 1.11D+05) (-1.18D+00, 1.37D+00)

( 4.09D+10, 0.00D+00) ( 2.33D+05,-0.14D+05)
( 4.29D+00, 0.00D+00)

:End of matrix A

10.3 Program Results

F07FTF Example Program Results

Matrix A
1 2 3

1 ( 3.23E+00, 0.00E+00) ( 1.51E+00, -1.92E+00) ( 1.90E+05, 8.40E+04)
2 ( 3.58E+00, 0.00E+00) ( -2.30E+04, 1.11E+05)
3 ( 4.09E+10, 0.00E+00)
4

4
1 ( 4.20E-01, 2.50E+00)
2 ( -1.18E+00, 1.37E+00)
3 ( 2.33E+05, -1.40E+04)
4 ( 4.29E+00, 0.00E+00)

SCOND = 8.9E-06, AMAX = 4.1E+10

Diagonal scaling factors
5.6E-01 5.3E-01 4.9E-06 4.8E-01

Scaled matrix
1 2 3

1 ( 1.0000, 0.0000) ( 0.4441, -0.5646) ( 0.5227, 0.2311)
2 ( 1.0000, 0.0000) ( -0.0601, 0.2901)
3 ( 1.0000, 0.0000)
4

4
1 ( 0.1128, 0.6716)
2 ( -0.3011, 0.3496)
3 ( 0.5562, -0.0334)
4 ( 1.0000, 0.0000)
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NAG Library Routine Document

F07FUF (ZPOCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FUF (ZPOCON) estimates the condition number of a complex Hermitian positive definite matrix A,
where A has been factorized by F07FRF (ZPOTRF).

2 Specification

SUBROUTINE F07FUF (UPLO, N, A, LDA, ANORM, RCOND, WORK, RWORK, INFO)

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) ANORM, RCOND, RWORK(N)
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpocon.

3 Description

F07FUF (ZPOCON) estimates the condition number (in the 1-norm) of a complex Hermitian positive
definite matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is Hermitian, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06UCF to compute Ak k1 and a call to F07FRF (ZPOTRF)
to compute the Cholesky factorization of A. The routine then uses Higham's implementation of Hager's
method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UHU , where U is upper triangular.

UPLO ¼ L
A ¼ LLH, where L is lower triangular.

Constraint: UPLO ¼ U or L .

F07 – Linear Equations (LAPACK) F07FUF
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07FRF (ZPOTRF).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FUF
(ZPOCON) is called.

Constraint: LDA � max 1;Nð Þ.

5: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06UCF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07FRF (ZPOTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

6: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

7: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

8: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07FUF (ZPOCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

A call to F07FUF (ZPOCON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
floating-point operations but takes considerably longer than a call to F07FSF (ZPOTRS) with one right-
hand side, because extra care is taken to avoid overflow when A is approximately singular.

The real analogue of this routine is F07FGF (DPOCON).

10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA:

Here A is Hermitian positive definite and must first be factorized by F07FRF (ZPOTRF). The true
condition number in the 1-norm is 201:92.

10.1 Program Text

Program f07fufe

! F07FUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, zlanhe => f06ucf, zpocon, zpotrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07FUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),work(2*n),rwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Compute norm of A
! f06ucf is the NAG name equivalent of the LAPACK auxiliary zlanhe

anorm = zlanhe(’1-norm’,uplo,n,a,lda,rwork)

! Factorize A
! The NAG name equivalent of zpotrf is f07frf

Call zpotrf(uplo,n,a,lda,info)

Write (nout,*)

F07 – Linear Equations (LAPACK) F07FUF
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If (info==0) Then

! Estimate condition number
! The NAG name equivalent of zpocon is f07fuf

Call zpocon(uplo,n,a,lda,anorm,rcond,work,rwork,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0E0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’A is not positive definite’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07fufe

10.2 Program Data

F07FUF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(3.23, 0.00)
(1.51, 1.92) ( 3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix A

10.3 Program Results

F07FUF Example Program Results

Estimate of condition number = 1.51E+02
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NAG Library Routine Document

F07FVF (ZPORFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FVF (ZPORFS) returns error bounds for the solution of a complex Hermitian positive definite
system of linear equations with multiple right-hand sides, AX ¼ B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07FVF (UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),

WORK(2*N)
&

CHARACTER(1) UPLO

The routine may be called by its LAPACK name zporfs.

3 Description

F07FVF (ZPORFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex Hermitian positive definite system of linear equations with multiple right-hand
sides AX ¼ B. The routine handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of F07FVF (ZPORFS) in terms of a single right-hand side b
and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UHU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLH, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n original Hermitian positive definite matrix A as supplied to F07FRF
(ZPOTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FVF
(ZPORFS) is called.

Constraint: LDA � max 1;Nð Þ.

6: AFðLDAF; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07FRF (ZPOTRF).

7: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07FVF (ZPORFS) is called.

Constraint: LDAF � max 1;Nð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07FVF
(ZPORFS) is called.

Constraint: LDB � max 1;Nð Þ.

F07FVF NAG Library Manual

F07FVF.2 Mark 26



10: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07FSF (ZPOTRS).

On exit: the improved solution matrix X.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07FVF
(ZPORFS) is called.

Constraint: LDX � max 1;Nð Þ.

12: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

13: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

14: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

15: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07FVF (ZPORFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07FVF (ZPORFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n2 real floating-
point operations. Each step of iterative refinement involves an additional 24n2 real operations. At most
five steps of iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
operations.

The real analogue of this routine is F07FHF (DPORFS).

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA

and

B ¼
3:93� 6:14i 1:48þ 6:58i
6:17þ 9:42i 4:65� 4:75i
�7:17� 21:83i �4:91þ 2:29i
1:99� 14:38i 7:64� 10:79i

0B@
1CA:

Here A is Hermitian positive definite and must first be factorized by F07FRF (ZPOTRF).

10.1 Program Text

Program f07fvfe

! F07FVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06tff, nag_wp, x04dbf, zporfs, zpotrf, zpotrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07FVF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),work(2*n),x(ldx,n),berr(nrhs), &

ferr(nrhs),rwork(n))

! Read A and B from data file, and copy A to AF and B to X
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Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

Call f06tff(uplo,n,n,a,lda,af,ldaf)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AF
! The NAG name equivalent of zpotrf is f07frf

Call zpotrf(uplo,n,af,ldaf,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of zpotrs is f07fsf

Call zpotrs(uplo,n,nrhs,af,ldaf,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of zporfs is f07fvf
Call zporfs(uplo,n,nrhs,a,lda,af,ldaf,b,ldb,x,ldx,ferr,berr,work, &

rwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’A is not positive definite’

End If

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07fvfe

10.2 Program Data

F07FVF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(3.23, 0.00)
(1.51, 1.92) ( 3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix A
( 3.93, -6.14) ( 1.48, 6.58)
( 6.17, 9.42) ( 4.65, -4.75)
(-7.17,-21.83) (-4.91, 2.29)
( 1.99,-14.38) ( 7.64,-10.79) :End of matrix B
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10.3 Program Results

F07FVF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) (-1.0000, 2.0000)
2 (-0.0000, 3.0000) ( 3.0000,-4.0000)
3 (-4.0000,-5.0000) (-2.0000, 3.0000)
4 ( 2.0000, 1.0000) ( 4.0000,-5.0000)

Backward errors (machine-dependent)
9.2E-17 8.4E-17

Estimated forward error bounds (machine-dependent)
6.0E-14 7.1E-14
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NAG Library Routine Document

F07FWF (ZPOTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07FWF (ZPOTRI) computes the inverse of a complex Hermitian positive definite matrix A, where A
has been factorized by F07FRF (ZPOTRF).

2 Specification

SUBROUTINE F07FWF (UPLO, N, A, LDA, INFO)

INTEGER N, LDA, INFO
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpotri.

3 Description

F07FWF (ZPOTRI) is used to compute the inverse of a complex Hermitian positive definite matrix A,
the routine must be preceded by a call to F07FRF (ZPOTRF), which computes the Cholesky
factorization of A.

If UPLO ¼ U , A ¼ UHU and A�1 is computed by first inverting U and then forming U�1ð ÞU�H.

If UPLO ¼ L , A ¼ LLH and A�1 is computed by first inverting L and then forming L�H L�1ð Þ.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UHU , where U is upper triangular.

UPLO ¼ L
A ¼ LLH, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the upper triangular matrix U if UPLO ¼ U or the lower triangular matrix L if
UPLO ¼ L , as returned by F07FRF (ZPOTRF).

On exit: U is overwritten by the upper triangle of A�1 if UPLO ¼ U ; L is overwritten by the
lower triangle of A�1 if UPLO ¼ L .

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07FWF
(ZPOTRI) is called.

Constraint: LDA � max 1;Nð Þ.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Diagonal element valueh i of the Cholesky factor is zero; the Cholesky factor is singular and the
inverse of A cannot be computed.

7 Accuracy

The computed inverse X satisfies

XA� Ik k2 � c nð Þ��2 Að Þ and AX � Ik k2 � c nð Þ��2 Að Þ;

where c nð Þ is a modest function of n, � is the machine precision and �2 Að Þ is the condition number of
A defined by

�2 Að Þ ¼ Ak k2 A�1
�� ��

2
:

8 Parallelism and Performance

F07FWF (ZPOTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3n

3 .

The real analogue of this routine is F07FJF (DPOTRI).
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10 Example

This example computes the inverse of the matrix A, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA:

Here A is Hermitian positive definite and must first be factorized by F07FRF (ZPOTRF).

10.1 Program Text

Program f07fwfe

! F07FWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpotrf, zpotri

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07FWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zpotrf is f07frf

Call zpotrf(uplo,n,a,lda,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute inverse of A
! The NAG name equivalent of zpotri is f07fwf

Call zpotri(uplo,n,a,lda,info)

! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(uplo,’Nonunit’,n,n,a,lda,’Bracketed’,’F7.4’,’Inverse’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
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Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07fwfe

10.2 Program Data

F07FWF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(3.23, 0.00)
(1.51, 1.92) ( 3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix A

10.3 Program Results

F07FWF Example Program Results

Inverse
1 2 3 4

1 ( 5.4691, 0.0000)
2 (-1.2624,-1.5491) ( 1.1024, 0.0000)
3 (-2.9746,-0.9616) ( 0.8989,-0.5672) ( 2.1589, 0.0000)
4 ( 1.1962, 2.9772) (-0.9826,-0.2566) (-1.3756,-1.4550) ( 2.2934,-0.0000)
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NAG Library Routine Document

F07GAF (DPPSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GAF (DPPSV) computes the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric positive definite matrix stored in packed format and X and B are n by
r matrices.

2 Specification

SUBROUTINE F07GAF (UPLO, N, NRHS, AP, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
REAL (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dppsv.

3 Description

F07GAF (DPPSV) uses the Cholesky decomposition to factor A as A ¼ UTU if UPLO ¼ U or
A ¼ LLT if UPLO ¼ L , where U is an upper triangular matrix and L is a lower triangular matrix. The
factored form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: if INFO ¼ 0, the factor U or L from the Cholesky factorization A ¼ UTU or A ¼ LLT,
in the same storage format as A.

5: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07GAF
(DPPSV) is called.

Constraint: LDB � max 1;Nð Þ.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.
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F07GBF (DPPSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04BEF solves Ax ¼ b and returns a
forward error bound and condition estimate. F04BEF calls F07GAF (DPPSV) to solve the equations.

8 Parallelism and Performance

F07GAF (DPPSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07GAF (DPPSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 1
3n

3 þ 2n2r , where r is the number of
right-hand sides.

The complex analogue of this routine is F07GNF (ZPPSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the symmetric positive definite matrix

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA and b ¼

8:70
�13:35

1:89
�4:14

0B@
1CA:

Details of the Cholesky factorization of A are also output.

10.1 Program Text

Program f07gafe

! F07GAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dppsv, nag_wp, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Integer :: i, ifail, info, j, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), b(:)

! .. Executable Statements ..
Write (nout,*) ’F07GAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
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Allocate (ap((n*(n+1))/2),b(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read b from data file

Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of dppsv is f07gaf

Call dppsv(uplo,n,1,ap,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ccf(uplo,’Non-unit diagonal’,n,ap,’Cholesky factor’,ifail)

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format ((3X,7F11.4))
99998 Format (1X,A,I3,A)

End Program f07gafe

10.2 Program Data

F07GAF Example Program Data
4 :Value of N
4.16 -3.12 0.56 -0.10

5.03 -0.83 1.18
0.76 0.34

1.18 :End of matrix A
8.70 -13.35 1.89 -4.14 :End of vector b

10.3 Program Results

F07GAF Example Program Results

Solution
1.0000 -1.0000 2.0000 -3.0000

Cholesky factor
1 2 3 4

1 2.0396 -1.5297 0.2746 -0.0490
2 1.6401 -0.2500 0.6737
3 0.7887 0.6617
4 0.5347
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NAG Library Routine Document

F07GBF (DPPSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GBF (DPPSVX) uses the Cholesky factorization

A ¼ UTU or A ¼ LLT

to compute the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric positive definite matrix stored in packed format and X and B are n by
r matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07GBF (FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, X,
LDX, RCOND, FERR, BERR, WORK, IWORK, INFO)

&

INTEGER N, NRHS, LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) AP(*), AFP(*), S(*), B(LDB,*), X(LDX,*), RCOND,

FERR(NRHS), BERR(NRHS), WORK(3*N)
&

CHARACTER(1) FACT, UPLO, EQUED

The routine may be called by its LAPACK name dppsvx.

3 Description

F07GBF (DPPSVX) performs the following steps:

1. If FACT ¼ E , real diagonal scaling factors, DS , are computed to equilibrate the system:

DSADSð Þ D�1S X
� �

¼ DSB:

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by DSADS and B by DSB.

2. If FACT ¼ N or E , the Cholesky decomposition is used to factor the matrix A (after equilibration
if FACT ¼ E ) as A ¼ UTU if UPLO ¼ U or A ¼ LLT if UPLO ¼ L , where U is an upper
triangular matrix and L is a lower triangular matrix.

3. If the leading i by i principal minor of A is not positive definite, then the routine returns with
INFO ¼ i. Otherwise, the factored form of A is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number is less than machine precision, INFO ¼ Nþ 1
is returned as a warning, but the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by DS so that it solves the original system
before equilibration.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

FACT ¼ F
AFP contains the factorized form of A. If EQUED ¼ Y , the matrix A has been
equilibrated with scaling factors given by S. AP and AFP will not be modified.

FACT ¼ N
The matrix A will be copied to AFP and factorized.

FACT ¼ E
The matrix A will be equilibrated if necessary, then copied to AFP and factorized.

Constraint: FACT ¼ F , N or E .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: if FACT ¼ F and EQUED ¼ Y , AP must contain the equilibrated matrix DSADS;
otherwise, AP must contain the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: if FACT ¼ F or N , or if FACT ¼ E and EQUED ¼ N , AP is not modified.

If FACT ¼ E and EQUED ¼ Y , AP is overwritten by DSADS.
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6: AFPð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AFP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: if FACT ¼ F , AFP contains the triangular factor U or L from the Cholesky
factorization A ¼ UTU or A ¼ LLT, in the same storage format as AP. If EQUED ¼ Y , AFP is
the factorized form of the equilibrated matrix DSADS .

On exit: if FACT ¼ N or if FACT ¼ E and EQUED ¼ N , AFP returns the triangular factor U
or L from the Cholesky factorization A ¼ UTU or A ¼ LLT of the original matrix A.

If FACT ¼ E and EQUED ¼ Y , AFP returns the triangular factor U or L from the Cholesky
factorization A ¼ UTU or A ¼ LLT of the equilibrated matrix A (see the description of AP for
the form of the equilibrated matrix).

7: EQUED – CHARACTER(1) Input/Output

On entry: if FACT ¼ N or E , EQUED need not be set.

If FACT ¼ F , EQUED must specify the form of the equilibration that was performed as follows:

if EQUED ¼ N , no equilibration;

if EQUED ¼ Y , equilibration was performed, i.e., A has been replaced by DSADS.

On exit: if FACT ¼ F , EQUED is unchanged from entry.

Otherwise, if no constraints are violated, EQUED specifies the form of the equilibration that was
performed as specified above.

Constraint: if FACT ¼ F , EQUED ¼ N or Y .

8: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , S need not be set.

If FACT ¼ F and EQUED ¼ Y , S must contain the scale factors, DS , for A; each element of S
must be positive.

On exit: if FACT ¼ F , S is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ Y , S contains the scale factors, DS , for
A; each element of S is positive.

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if EQUED ¼ N , B is not modified.

If EQUED ¼ Y , B is overwritten by DSB.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07GBF
(DPPSVX) is called.

Constraint: LDB � max 1;Nð Þ.

11: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X to the original system of equations.
Note that the arrays A and B are modified on exit if EQUED ¼ Y , and the solution to the
equilibrated system is D�1S X.
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12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07GBF
(DPPSVX) is called.

Constraint: LDX � max 1;Nð Þ.

13: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the

matrix A (after equilibration if that is performed), computed as RCOND ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

14: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

15: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

16: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

17: IWORKðNÞ – INTEGER array Workspace

18: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed. RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

U (or L) is nonsingular, but RCOND is less than machine precision, meaning that the matrix is
singular to working precision. Nevertheless, the solution and error bounds are computed because
there are a number of situations where the computed solution can be more accurate than the value
of RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UTj j Uj j;

if UPLO ¼ L , Ej j � c nð Þ� Lj j LTj j,
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c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham
(2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ;

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07GBF (DPPSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07GBF (DPPSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 1
3n

3 floating-point operations.

For each right-hand side, computation of the backward error involves a minimum of 4n2 floating-point
operations. Each step of iterative refinement involves an additional 6n2 operations. At most five steps of
iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 2n2 operations.

The complex analogue of this routine is F07GPF (ZPPSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric positive definite matrix

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA

and

B ¼
8:70 8:30

�13:35 2:13
1:89 1:61
�4:14 5:00

0B@
1CA:

Error estimates for the solutions, information on equilibration and an estimate of the reciprocal of the
condition number of the scaled matrix A are also output.
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10.1 Program Text

Program f07gbfe

! F07GBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dppsvx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, j, ldb, ldx, n, nrhs
Character (1) :: equed

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: afp(:), ap(:), b(:,:), berr(:), &

ferr(:), s(:), work(:), x(:,:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07GBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (afp((n*(n+1))/2),ap((n*(n+1))/2),b(ldb,nrhs),berr(nrhs),ferr( &

nrhs),s(n),work(3*n),x(ldx,nrhs),iwork(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of dppsvx is f07gbf

Call dppsvx(’Equilibration’,uplo,n,nrhs,ap,afp,equed,s,b,ldb,x,ldx, &
rcond,ferr,berr,work,iwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds, condition number and the form
! of equilibration

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
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Write (nout,99999) rcond
Write (nout,*)
If (equed==’N’) Then

Write (nout,*) ’A has not been equilibrated’
Else If (equed==’Y’) Then

Write (nout,*) &
’A has been row and column scaled as diag(S)*A*diag(S)’

End If

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The leading minor of order ’, info, &
’ is not positive definite’

End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07gbfe

10.2 Program Data

F07GBF Example Program Data
4 2 :Values of N and NRHS
4.16 -3.12 0.56 -0.10

5.03 -0.83 1.18
0.76 0.34

1.18 :End of matrix A
8.70 8.30

-13.35 2.13
1.89 1.61

-4.14 5.00 :End of matrix B

10.3 Program Results

F07GBF Example Program Results

Solution(s)
1 2

1 1.0000 4.0000
2 -1.0000 3.0000
3 2.0000 2.0000
4 -3.0000 1.0000

Backward errors (machine-dependent)
6.7E-17 7.9E-17

Estimated forward error bounds (machine-dependent)
2.3E-14 2.3E-14

Estimate of reciprocal condition number
1.0E-02

A has not been equilibrated
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NAG Library Routine Document

F07GDF (DPPTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GDF (DPPTRF) computes the Cholesky factorization of a real symmetric positive definite matrix,
using packed storage.

2 Specification

SUBROUTINE F07GDF (UPLO, N, AP, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) AP(*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpptrf.

3 Description

F07GDF (DPPTRF) forms the Cholesky factorization of a real symmetric positive definite matrix A
either as A ¼ UTU if UPLO ¼ U or A ¼ LLT if UPLO ¼ L , where U is an upper triangular matrix
and L is lower triangular, using packed storage.

4 References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of
Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UTU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLT, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: if INFO ¼ 0, the factor U or L from the Cholesky factorization A ¼ UTU or A ¼ LLT,
in the same storage format as A.

4: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite and the factorization could not be
completed. Hence A itself is not positive definite. This may indicate an error in forming the
matrix A. To factorize a symmetric matrix which is not positive definite, call F07PDF (DSPTRF)
instead.

7 Accuracy

If UPLO ¼ U , the computed factor U is the exact factor of a perturbed matrix Aþ E, where

Ej j � c nð Þ� UT
		 		 Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factor L. It follows that eij
		 		 � c nð Þ� ffiffiffiffiffiffiffiffiffiffiffi

aiiajj
p

.

8 Parallelism and Performance

F07GDF (DPPTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 1
3n

3 .

A call to F07GDF (DPPTRF) may be followed by calls to the routines:

F07GEF (DPPTRS) to solve AX ¼ B;
F07GGF (DPPCON) to estimate the condition number of A;
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F07GJF (DPPTRI) to compute the inverse of A.

The complex analogue of this routine is F07GRF (ZPPTRF).

10 Example

This example computes the Cholesky factorization of the matrix A, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA;

using packed storage.

10.1 Program Text

Program f07gdfe

! F07GDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpptrf, nag_wp, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:)

! .. Executable Statements ..
Write (nout,*) ’F07GDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of dpptrf is f07gdf

Call dpptrf(uplo,n,ap,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Print factor

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ccf(uplo,’Nonunit’,n,ap,’Factor’,ifail)
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Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07gdfe

10.2 Program Data

F07GDF Example Program Data
4 :Value of N
’L’ :Value of UPLO
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 :End of matrix A

10.3 Program Results

F07GDF Example Program Results

Factor
1 2 3 4

1 2.0396
2 -1.5297 1.6401
3 0.2746 -0.2500 0.7887
4 -0.0490 0.6737 0.6617 0.5347
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NAG Library Routine Document

F07GEF (DPPTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GEF (DPPTRS) solves a real symmetric positive definite system of linear equations with multiple
right-hand sides,

AX ¼ B;

where A has been factorized by F07GDF (DPPTRF), using packed storage.

2 Specification

SUBROUTINE F07GEF (UPLO, N, NRHS, AP, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
REAL (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpptrs.

3 Description

F07GEF (DPPTRS) is used to solve a real symmetric positive definite system of linear equations
AX ¼ B, the routine must be preceded by a call to F07GDF (DPPTRF) which computes the Cholesky
factorization of A, using packed storage. The solution X is computed by forward and backward
substitution.

If UPLO ¼ U , A ¼ UTU , where U is upper triangular; the solution X is computed by solving
UTY ¼ B and then UX ¼ Y .

If UPLO ¼ L , A ¼ LLT, where L is lower triangular; the solution X is computed by solving LY ¼ B
and then LTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UTU , where U is upper triangular.

UPLO ¼ L
A ¼ LLT, where L is lower triangular.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the Cholesky factor of A stored in packed form, as returned by F07GDF (DPPTRF).

5: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07GEF
(DPPTRS) is called.

Constraint: LDB � max 1;Nð Þ.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UTj j Uj j;
if UPLO ¼ L , Ej j � c nð Þ� Lj j LTj j,

c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07GHF (DPPRFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07GGF (DPPCON).
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8 Parallelism and Performance

F07GEF (DPPTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07GEF (DPPTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2n2r.

This routine may be followed by a call to F07GHF (DPPRFS) to refine the solution and return an error
estimate.

The complex analogue of this routine is F07GSF (ZPPTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA and B ¼

8:70 8:30
�13:35 2:13

1:89 1:61
�4:14 5:00

0B@
1CA:

Here A is symmetric positive definite, stored in packed form, and must first be factorized by F07GDF
(DPPTRF).

10.1 Program Text

Program f07gefe

! F07GEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpptrf, dpptrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, ldb, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), b(:,:)

! .. Executable Statements ..
Write (nout,*) ’F07GEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap(n*(n+1)/2),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
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Else If (uplo==’L’) Then
Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)

End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of dpptrf is f07gdf

Call dpptrf(uplo,n,ap,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of dpptrs is f07gef

Call dpptrs(uplo,n,nrhs,ap,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07gefe

10.2 Program Data

F07GEF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 :End of matrix A
8.70 8.30

-13.35 2.13
1.89 1.61

-4.14 5.00 :End of matrix B

10.3 Program Results

F07GEF Example Program Results

Solution(s)
1 2

1 1.0000 4.0000
2 -1.0000 3.0000
3 2.0000 2.0000
4 -3.0000 1.0000
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NAG Library Routine Document

F07GFF (DPPEQU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GFF (DPPEQU) computes a diagonal scaling matrix S intended to equilibrate a real n by n
symmetric positive definite matrix A, stored in packed format, and reduce its condition number.

2 Specification

SUBROUTINE F07GFF (UPLO, N, AP, S, SCOND, AMAX, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) AP(*), S(N), SCOND, AMAX
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dppequ.

3 Description

F07GFF (DPPEQU) computes a diagonal scaling matrix S chosen so that

sj ¼ 1=
ffiffiffiffiffiffi
ajj
p

:

This means that the matrix B given by

B ¼ SAS;

has diagonal elements equal to unity. This in turn means that the condition number of B, �2 Bð Þ, is
within a factor n of the matrix of smallest possible condition number over all possible choices of
diagonal scalings (see Corollary 7.6 of Higham (2002)).

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored in the array AP, as
follows:

UPLO ¼ U
The upper triangle of A is stored.

UPLO ¼ L
The lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

Only the elements of AP corresponding to the diagonal elements A are referenced.

4: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, S contains the diagonal elements of the scaling matrix S.

5: SCOND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0, SCOND contains the ratio of the smallest value of S to the largest value of
S. If SCOND � 0:1 and AMAX is neither too large nor too small, it is not worth scaling by S.

6: AMAX – REAL (KIND=nag_wp) Output

On exit: max aij
		 		. If AMAX is very close to overflow or underflow, the matrix A should be

scaled.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The valueh ith diagonal element of A is not positive (and hence A cannot be positive definite).

7 Accuracy

The computed scale factors will be close to the exact scale factors.

8 Parallelism and Performance

F07GFF (DPPEQU) is not threaded in any implementation.

9 Further Comments

The complex analogue of this routine is F07GTF (ZPPEQU).
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10 Example

This example equilibrates the symmetric positive definite matrix A given by

A ¼
4:16 �3:12� 105 0:56 �0:10
�3:12� 105 5:03� 1010 �0:83� 105 1:18� 105

0:56 �0:83� 105 0:76 0:34
�0:10 1:18� 105 0:34 1:18

0BB@
1CCA:

Details of the scaling factors and the scaled matrix are output.

10.1 Program Text

Program f07gffe

! F07GFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dppequ, dscal, f06fcf, nag_wp, x02ajf, x02amf, &

x02bhf, x04ccf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: thresh = 0.1_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: amax, big, scond, small
Integer :: i, ifail, info, j, jinc, jj, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), s(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F07GFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap((n*(n+1))/2),s(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Print the matrix A

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ccf(uplo,’Non-unit diagonal’,n,ap,’Matrix A’,ifail)

Write (nout,*)

! Compute diagonal scaling factors
! The NAG name equivalent of dppequ is f07gff

Call dppequ(uplo,n,ap,s,scond,amax,info)

If (info>0) Then
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Write (nout,99999) ’Diagonal element’, info, ’ of A is non positive’
Else

! Print SCOND, AMAX and the scale factors

Write (nout,99998) ’SCOND =’, scond, ’, AMAX =’, amax
Write (nout,*)
Write (nout,*) ’Diagonal scaling factors’
Write (nout,99997) s(1:n)
Write (nout,*)
Flush (nout)

! Compute values close to underflow and overflow

small = x02amf()/(x02ajf()*real(x02bhf(),kind=nag_wp))
big = one/small
If ((scond<thresh) .Or. (amax<small) .Or. (amax>big)) Then

! Scale A

If (uplo==’U’) Then
! The NAG name equivalent of dscal is f06edf

jj = 1
Do j = 1, n

Call dscal(j,s(j),ap(jj),1)
Call f06fcf(j,s,1,ap(jj),1)
jj = jj + j

End Do
Else If (uplo==’L’) Then

jj = 1
jinc = n
Do j = 1, n

Call dscal(jinc,s(j),ap(jj),1)
Call f06fcf(jinc,s(j),1,ap(jj),1)
jj = jj + jinc
jinc = jinc - 1

End Do
End If

! Print the scaled matrix

ifail = 0
Call x04ccf(uplo,’Non-unit diagonal’,n,ap,’Scaled matrix’,ifail)

End If
End If

99999 Format (1X,A,I4,A)
99998 Format (1X,2(A,1P,E8.1))
99997 Format ((1X,1P,7E11.1))

End Program f07gffe

10.2 Program Data

F07GFF Example Program Data
4 :Value of N
4.16D+00 -3.12D+05 0.56D+00 -0.10D+00

5.03D+10 -0.83D+05 1.18D+05
0.76D+00 0.34D+00

1.18D+00 :End of matrix A

10.3 Program Results

F07GFF Example Program Results

Matrix A
1 2 3 4

1 4.1600E+00 -3.1200E+05 5.6000E-01 -1.0000E-01
2 5.0300E+10 -8.3000E+04 1.1800E+05
3 7.6000E-01 3.4000E-01
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4 1.1800E+00

SCOND = 3.9E-06, AMAX = 5.0E+10

Diagonal scaling factors
4.9E-01 4.5E-06 1.1E+00 9.2E-01

Scaled matrix
1 2 3 4

1 1.0000 -0.6821 0.3149 -0.0451
2 1.0000 -0.4245 0.4843
3 1.0000 0.3590
4 1.0000
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NAG Library Routine Document

F07GGF (DPPCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GGF (DPPCON) estimates the condition number of a real symmetric positive definite matrix A,
where A has been factorized by F07GDF (DPPTRF), using packed storage.

2 Specification

SUBROUTINE F07GGF (UPLO, N, AP, ANORM, RCOND, WORK, IWORK, INFO)

INTEGER N, IWORK(N), INFO
REAL (KIND=nag_wp) AP(*), ANORM, RCOND, WORK(3*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dppcon.

3 Description

F07GGF (DPPCON) estimates the condition number (in the 1-norm) of a real symmetric positive
definite matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is symmetric, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06RDF to compute Ak k1 and a call to F07GDF (DPPTRF)
to compute the Cholesky factorization of A. The routine then uses Higham's implementation of Hager's
method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UTU , where U is upper triangular.

UPLO ¼ L
A ¼ LLT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F07 – Linear Equations (LAPACK) F07GGF
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3: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the Cholesky factor of A stored in packed form, as returned by F07GDF (DPPTRF).

4: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06RDF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07GDF (DPPTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

5: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

6: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

7: IWORKðNÞ – INTEGER array Workspace

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07GGF (DPPCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07GGF (DPPCON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
2n2 floating-point operations but takes considerably longer than a call to F07GEF (DPPTRS) with one
right-hand side, because extra care is taken to avoid overflow when A is approximately singular.

The complex analogue of this routine is F07GUF (ZPPCON).
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10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA:

Here A is symmetric positive definite, stored in packed form, and must first be factorized by F07GDF
(DPPTRF). The true condition number in the 1-norm is 97:32.

10.1 Program Text

Program f07ggfe

! F07GGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dlansp => f06rdf, dppcon, dpptrf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), work(:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07GGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),work(3*n),iwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Compute norm of A
! f06rdf is the NAG name equivalent of the LAPACK auxiliary dlansp

anorm = dlansp(’1-norm’,uplo,n,ap,work)

! Factorize A
! The NAG name equivalent of dppcon is f07gdf

Call dpptrf(uplo,n,ap,info)

Write (nout,*)
If (info==0) Then

! Estimate condition number

! The NAG name equivalent of dppcon is f07ggf
Call dppcon(uplo,n,ap,anorm,rcond,work,iwork,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
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Else
Write (nout,*) ’A is singular to working precision’

End If
Else

Write (nout,*) ’A is not positive definite’
End If

99999 Format (1X,A,1P,E10.2)
End Program f07ggfe

10.2 Program Data

F07GGF Example Program Data
4 :Value of N
’L’ :Value of UPLO
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 :End of matrix A

10.3 Program Results

F07GGF Example Program Results

Estimate of condition number = 9.73E+01
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NAG Library Routine Document

F07GHF (DPPRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GHF (DPPRFS) returns error bounds for the solution of a real symmetric positive definite system of
linear equations with multiple right-hand sides, AX ¼ B, using packed storage. It improves the solution
by iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07GHF (UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR,
WORK, IWORK, INFO)

&

INTEGER N, NRHS, LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) AP(*), AFP(*), B(LDB,*), X(LDX,*), FERR(NRHS),

BERR(NRHS), WORK(3*N)
&

CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpprfs.

3 Description

F07GHF (DPPRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a real symmetric positive definite system of linear equations with multiple right-hand sides
AX ¼ B, using packed storage. The routine handles each right-hand side vector (stored as a column of
the matrix B) independently, so we describe the function of F07GHF (DPPRFS) in terms of a single
right-hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

F07 – Linear Equations (LAPACK) F07GHF

Mark 26 F07GHF.1



5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UTU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLT, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n original symmetric positive definite matrix A as supplied to F07GDF
(DPPTRF).

5: AFPð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AFP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the Cholesky factor of A stored in packed form, as returned by F07GDF (DPPTRF).

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07GHF
(DPPRFS) is called.

Constraint: LDB � max 1;Nð Þ.

8: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07GEF (DPPTRS).

On exit: the improved solution matrix X.
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9: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07GHF
(DPPRFS) is called.

Constraint: LDX � max 1;Nð Þ.

10: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

11: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

12: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

13: IWORKðNÞ – INTEGER array Workspace

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07GHF (DPPRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07GHF (DPPRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n2 floating-point
operations. Each step of iterative refinement involves an additional 6n2 operations. At most five steps of
iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
2n2 operations.

The complex analogue of this routine is F07GVF (ZPPRFS).
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10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA and B ¼

8:70 8:30
�13:35 2:13

1:89 1:61
�4:14 5:00

0B@
1CA:

Here A is symmetric positive definite, stored in packed form, and must first be factorized by F07GDF
(DPPTRF).

10.1 Program Text

Program f07ghfe

! F07GHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpprfs, dpptrf, dpptrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: aplen, i, ifail, info, j, ldb, ldx, &

n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: afp(:), ap(:), b(:,:), berr(:), &

ferr(:), work(:), x(:,:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07GHF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
aplen = n*(n+1)/2
Allocate (afp(aplen),ap(aplen),b(ldb,nrhs),berr(nrhs),ferr(nrhs), &

work(3*n),x(ldx,n),iwork(n))

! Read A and B from data file, and copy A to AFP and B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

afp(1:aplen) = ap(1:aplen)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AFP
! The NAG name equivalent of dpptrf is f07gdf

Call dpptrf(uplo,n,afp,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of dpptrs is f07gef
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Call dpptrs(uplo,n,nrhs,afp,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of dpprfs is f07ghf
Call dpprfs(uplo,n,nrhs,ap,afp,b,ldb,x,ldx,ferr,berr,work,iwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’A is not positive definite’

End If

99999 Format ((3X,1P,7E11.1))
End Program f07ghfe

10.2 Program Data

F07GHF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 :End of matrix A
8.70 8.30

-13.35 2.13
1.89 1.61

-4.14 5.00 :End of matrix B

10.3 Program Results

F07GHF Example Program Results

Solution(s)
1 2

1 1.0000 4.0000
2 -1.0000 3.0000
3 2.0000 2.0000
4 -3.0000 1.0000

Backward errors (machine-dependent)
5.1E-17 6.1E-17

Estimated forward error bounds (machine-dependent)
2.3E-14 2.3E-14
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NAG Library Routine Document

F07GJF (DPPTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GJF (DPPTRI) computes the inverse of a real symmetric positive definite matrix A, where A has
been factorized by F07GDF (DPPTRF), using packed storage.

2 Specification

SUBROUTINE F07GJF (UPLO, N, AP, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) AP(*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpptri.

3 Description

F07GJF (DPPTRI) is used to compute the inverse of a real symmetric positive definite matrix A, the
routine must be preceded by a call to F07GDF (DPPTRF), which computes the Cholesky factorization
of A, using packed storage.

If UPLO ¼ U , A ¼ UTU and A�1 is computed by first inverting U and then forming U�1ð ÞU�T.

If UPLO ¼ L , A ¼ LLT and A�1 is computed by first inverting L and then forming L�T L�1ð Þ.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UTU , where U is upper triangular.

UPLO ¼ L
A ¼ LLT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the Cholesky factor of A stored in packed form, as returned by F07GDF (DPPTRF).
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On exit: the factorization is overwritten by the n by n matrix A�1.

More precisely,

if UPLO ¼ U , the upper triangle of A�1 must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;

if UPLO ¼ L , the lower triangle of A�1 must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

4: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Diagonal element valueh i of the Cholesky factor is zero; the Cholesky factor is singular and the
inverse of A cannot be computed.

7 Accuracy

The computed inverse X satisfies

XA� Ik k2 � c nð Þ��2 Að Þ and AX � Ik k2 � c nð Þ��2 Að Þ;

where c nð Þ is a modest function of n, � is the machine precision and �2 Að Þ is the condition number of
A defined by

�2 Að Þ ¼ Ak k2 A�1
�� ��

2
:

8 Parallelism and Performance

F07GJF (DPPTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

3 .

The complex analogue of this routine is F07GWF (ZPPTRI).
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10 Example

This example computes the inverse of the matrix A, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA:

Here A is symmetric positive definite, stored in packed form, and must first be factorized by F07GDF
(DPPTRF).

10.1 Program Text

Program f07gjfe

! F07GJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpptrf, dpptri, nag_wp, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:)

! .. Executable Statements ..
Write (nout,*) ’F07GJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of dpptrf is f07gdf

Call dpptrf(uplo,n,ap,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute inverse of A
! The NAG name equivalent of dpptri is f07gjf

Call dpptri(uplo,n,ap,info)

! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ccf(uplo,’Nonunit’,n,ap,’Inverse’,ifail)
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Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07gjfe

10.2 Program Data

F07GJF Example Program Data
4 :Value of N
’L’ :Value of UPLO
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 :End of matrix A

10.3 Program Results

F07GJF Example Program Results

Inverse
1 2 3 4

1 0.6995
2 0.7769 1.4239
3 0.7508 1.8255 4.0688
4 -0.9340 -1.8841 -2.9342 3.4978

F07GJF NAG Library Manual

F07GJF.4 (last) Mark 26



NAG Library Routine Document

F07GNF (ZPPSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GNF (ZPPSV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian positive definite matrix stored in packed format and X and B are n by
r matrices.

2 Specification

SUBROUTINE F07GNF (UPLO, N, NRHS, AP, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
COMPLEX (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zppsv.

3 Description

F07GNF (ZPPSV) uses the Cholesky decomposition to factor A as A ¼ UHU if UPLO ¼ U or
A ¼ LLH if UPLO ¼ L , where U is an upper triangular matrix and L is a lower triangular matrix. The
factored form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.
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4: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: if INFO ¼ 0, the factor U or L from the Cholesky factorization A ¼ UHU or A ¼ LLH,
in the same storage format as A.

5: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
Note: to solve the equations Ax ¼ b, where b is a single right-hand side, B may be supplied as a
one-dimensional array with length LDB ¼ max 1;Nð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07GNF
(ZPPSV) is called.

Constraint: LDB � max 1;Nð Þ.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;
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where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

F07GPF (ZPPSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04CEF solves Ax ¼ b and returns a
forward error bound and condition estimate. F04CEF calls F07GNF (ZPPSV) to solve the equations.

8 Parallelism and Performance

F07GNF (ZPPSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07GNF (ZPPSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4
3n

3 þ 8n2r , where r is the number of
right-hand sides.

The real analogue of this routine is F07GAF (DPPSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the Hermitian positive definite matrix

A ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA

and

b ¼
3:93� 6:14i
6:17þ 9:42i
�7:17� 21:83i
1:99� 14:38i

0B@
1CA:

Details of the Cholesky factorization of A are also output.

10.1 Program Text

Program f07gnfe

! F07GNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04ddf, zppsv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..

F07 – Linear Equations (LAPACK) F07GNF
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Integer :: i, ifail, info, j, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ap(:), b(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07GNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap((n*(n+1))/2),b(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read b from data file

Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of zppsv is f07gnf

Call zppsv(uplo,n,1,ap,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ddf(uplo,’Non-unit diagonal’,n,ap,’Bracketed’,’F7.4’, &

’Cholesky factor’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
99998 Format (1X,A,I3,A)

End Program f07gnfe

10.2 Program Data

F07GNF Example Program Data
4 :Value of N

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix A

( 3.93, -6.14) ( 6.17, 9.42) (-7.17,-21.83) ( 1.99,-14.38) :End of vector b
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10.3 Program Results

F07GNF Example Program Results

Solution
( 1.0000,-1.0000) (-0.0000, 3.0000) (-4.0000,-5.0000) ( 2.0000, 1.0000)

Cholesky factor
1 2 3 4

1 ( 1.7972, 0.0000) ( 0.8402,-1.0683) ( 1.0572, 0.4674) ( 0.2337, 1.3910)
2 ( 1.3164, 0.0000) (-0.4702,-0.3131) ( 0.0834,-0.0368)
3 ( 1.5604, 0.0000) ( 0.9360,-0.9900)
4 ( 0.6603, 0.0000)
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NAG Library Routine Document

F07GPF (ZPPSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GPF (ZPPSVX) uses the Cholesky factorization

A ¼ UHU or A ¼ LLH

to compute the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian positive definite matrix stored in packed format and X and B are n by
r matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07GPF (FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, X,
LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, LDB, LDX, INFO
REAL (KIND=nag_wp) S(*), RCOND, FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) AP(*), AFP(*), B(LDB,*), X(LDX,*), WORK(2*N)
CHARACTER(1) FACT, UPLO, EQUED

The routine may be called by its LAPACK name zppsvx.

3 Description

F07GPF (ZPPSVX) performs the following steps:

1. If FACT ¼ E , real diagonal scaling factors, DS , are computed to equilibrate the system:

DSADSð Þ D�1S X
� �

¼ DSB:

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by DSADS and B by DSB.

2. If FACT ¼ N or E , the Cholesky decomposition is used to factor the matrix A (after equilibration
if FACT ¼ E ) as A ¼ UHU if UPLO ¼ U or A ¼ LLH if UPLO ¼ L , where U is an upper
triangular matrix and L is a lower triangular matrix.

3. If the leading i by i principal minor of A is not positive definite, then the routine returns with
INFO ¼ i. Otherwise, the factored form of A is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number is less than machine precision, INFO ¼ Nþ 1
is returned as a warning, but the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by DS so that it solves the original system
before equilibration.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

FACT ¼ F
AFP contains the factorized form of A. If EQUED ¼ Y , the matrix A has been
equilibrated with scaling factors given by S. AP and AFP will not be modified.

FACT ¼ N
The matrix A will be copied to AFP and factorized.

FACT ¼ E
The matrix A will be equilibrated if necessary, then copied to AFP and factorized.

Constraint: FACT ¼ F , N or E .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: if FACT ¼ F and EQUED ¼ Y , AP must contain the equilibrated matrix DSADS;
otherwise, AP must contain the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: if FACT ¼ F or N , or if FACT ¼ E and EQUED ¼ N , AP is not modified.

If FACT ¼ E and EQUED ¼ Y , AP is overwritten by DSADS.

F07GPF NAG Library Manual

F07GPF.2 Mark 26

http://www.netlib.org/lapack/lug


6: AFPð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AFP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: if FACT ¼ F , AFP contains the triangular factor U or L from the Cholesky
factorization A ¼ UHU or A ¼ LLH, in the same storage format as AP. If EQUED ¼ Y , AFP is
the factorized form of the equilibrated matrix DSADS .

On exit: if FACT ¼ N or if FACT ¼ E and EQUED ¼ N , AFP returns the triangular factor U
or L from the Cholesky factorization A ¼ UHU or A ¼ LLH of the original matrix A.

If FACT ¼ E and EQUED ¼ Y , AFP returns the triangular factor U or L from the Cholesky
factorization A ¼ UHU or A ¼ LLH of the equilibrated matrix A (see the description of AP for
the form of the equilibrated matrix).

7: EQUED – CHARACTER(1) Input/Output

On entry: if FACT ¼ N or E , EQUED need not be set.

If FACT ¼ F , EQUED must specify the form of the equilibration that was performed as follows:

if EQUED ¼ N , no equilibration;

if EQUED ¼ Y , equilibration was performed, i.e., A has been replaced by DSADS.

On exit: if FACT ¼ F , EQUED is unchanged from entry.

Otherwise, if no constraints are violated, EQUED specifies the form of the equilibration that was
performed as specified above.

Constraint: if FACT ¼ F , EQUED ¼ N or Y .

8: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , S need not be set.

If FACT ¼ F and EQUED ¼ Y , S must contain the scale factors, DS , for A; each element of S
must be positive.

On exit: if FACT ¼ F , S is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ Y , S contains the scale factors, DS , for
A; each element of S is positive.

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if EQUED ¼ N , B is not modified.

If EQUED ¼ Y , B is overwritten by DSB.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07GPF
(ZPPSVX) is called.

Constraint: LDB � max 1;Nð Þ.

11: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X to the original system of equations.
Note that the arrays A and B are modified on exit if EQUED ¼ Y , and the solution to the
equilibrated system is D�1S X.
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12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07GPF
(ZPPSVX) is called.

Constraint: LDX � max 1;Nð Þ.

13: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the

matrix A (after equilibration if that is performed), computed as RCOND ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

14: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

15: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

16: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

17: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

18: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed. RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

U (or L) is nonsingular, but RCOND is less than machine precision, meaning that the matrix is
singular to working precision. Nevertheless, the solution and error bounds are computed because
there are a number of situations where the computed solution can be more accurate than the value
of RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UHj j Uj j;

if UPLO ¼ L , Ej j � c nð Þ� Lj j LHj j,
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c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham
(2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ;

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07GPF (ZPPSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07GPF (ZPPSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 4
3n

3 floating-point operations.

For each right-hand side, computation of the backward error involves a minimum of 16n2 floating-point
operations. Each step of iterative refinement involves an additional 24n2 operations. At most five steps
of iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 8n2 operations.

The real analogue of this routine is F07GBF (DPPSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite matrix

A ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA

and

B ¼
3:93� 6:14i 1:48þ 6:58i
6:17þ 9:42i 4:65� 4:75i
�7:17� 21:83i �4:91þ 2:29i
1:99� 14:38i 7:64� 10:79i

0B@
1CA:

Error estimates for the solutions, information on equilibration and an estimate of the reciprocal of the
condition number of the scaled matrix A are also output.

F07 – Linear Equations (LAPACK) F07GPF

Mark 26 F07GPF.5



10.1 Program Text

Program f07gpfe

! F07GPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zppsvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, j, ldb, ldx, n, nrhs
Character (1) :: equed

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: afp(:), ap(:), b(:,:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:), s(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07GPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (afp((n*(n+1))/2),ap((n*(n+1))/2),b(ldb,nrhs),work(2*n),x(ldx, &

nrhs),berr(nrhs),ferr(nrhs),rwork(n),s(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of zppsvx is f07gpf

Call zppsvx(’Equilibration’,uplo,n,nrhs,ap,afp,equed,s,b,ldb,x,ldx, &
rcond,ferr,berr,work,rwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds, condition number and the form
! of equilibration

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
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Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)
If (equed==’N’) Then

Write (nout,*) ’A has not been equilibrated’
Else If (equed==’Y’) Then

Write (nout,*) &
’A has been row and column scaled as diag(S)*A*diag(S)’

End If

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The leading minor of order ’, info, &
’ is not positive definite’

End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07gpfe

10.2 Program Data

F07GPF Example Program Data
4 2 :Values of N and NRHS

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix A

( 3.93, -6.14) ( 1.48, 6.58)
( 6.17, 9.42) ( 4.65, -4.75)
(-7.17,-21.83) (-4.91, 2.29)
( 1.99,-14.38) ( 7.64,-10.79) :End of matrix B

10.3 Program Results

F07GPF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) (-1.0000, 2.0000)
2 (-0.0000, 3.0000) ( 3.0000,-4.0000)
3 (-4.0000,-5.0000) (-2.0000, 3.0000)
4 ( 2.0000, 1.0000) ( 4.0000,-5.0000)

Backward errors (machine-dependent)
1.1E-16 7.9E-17

Estimated forward error bounds (machine-dependent)
6.1E-14 7.4E-14

Estimate of reciprocal condition number
6.6E-03

A has not been equilibrated
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NAG Library Routine Document

F07GRF (ZPPTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GRF (ZPPTRF) computes the Cholesky factorization of a complex Hermitian positive definite
matrix, using packed storage.

2 Specification

SUBROUTINE F07GRF (UPLO, N, AP, INFO)

INTEGER N, INFO
COMPLEX (KIND=nag_wp) AP(*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpptrf.

3 Description

F07GRF (ZPPTRF) forms the Cholesky factorization of a complex Hermitian positive definite matrix A
either as A ¼ UHU if UPLO ¼ U or A ¼ LLH if UPLO ¼ L , where U is an upper triangular matrix
and L is lower triangular, using packed storage.

4 References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of
Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UHU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLH, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F07 – Linear Equations (LAPACK) F07GRF
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3: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: if INFO ¼ 0, the factor U or L from the Cholesky factorization A ¼ UHU or A ¼ LLH,
in the same storage format as A.

4: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite and the factorization could not be
completed. Hence A itself is not positive definite. This may indicate an error in forming the
matrix A. To factorize a Hermitian matrix which is not positive definite, call F07PRF (ZHPTRF)
instead.

7 Accuracy

If UPLO ¼ U , the computed factor U is the exact factor of a perturbed matrix Aþ E, where

Ej j � c nð Þ� UH
		 		 Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factor L. It follows that eij
		 		 � c nð Þ� ffiffiffiffiffiffiffiffiffiffiffi

aiiajj
p

.

8 Parallelism and Performance

F07GRF (ZPPTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 4
3n

3 .

A call to F07GRF (ZPPTRF) may be followed by calls to the routines:

F07GSF (ZPPTRS) to solve AX ¼ B;
F07GUF (ZPPCON) to estimate the condition number of A;
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F07GWF (ZPPTRI) to compute the inverse of A.

The real analogue of this routine is F07GDF (DPPTRF).

10 Example

This example computes the Cholesky factorization of the matrix A, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA:

using packed storage.

10.1 Program Text

Program f07grfe

! F07GRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04ddf, zpptrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07GRF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zpptrf is f07grf

Call zpptrf(uplo,n,ap,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Print factor

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ddf(uplo,’Nonunit’,n,ap,’Bracketed’,’F7.4’,’Factor’,’Integer’, &

rlabs,’Integer’,clabs,80,0,ifail)
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Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07grfe

10.2 Program Data

F07GRF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(3.23, 0.00)
(1.51, 1.92) ( 3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix A

10.3 Program Results

F07GRF Example Program Results

Factor
1 2 3 4

1 ( 1.7972, 0.0000)
2 ( 0.8402, 1.0683) ( 1.3164, 0.0000)
3 ( 1.0572,-0.4674) (-0.4702, 0.3131) ( 1.5604, 0.0000)
4 ( 0.2337,-1.3910) ( 0.0834, 0.0368) ( 0.9360, 0.9900) ( 0.6603, 0.0000)
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NAG Library Routine Document

F07GSF (ZPPTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GSF (ZPPTRS) solves a complex Hermitian positive definite system of linear equations with
multiple right-hand sides,

AX ¼ B;

where A has been factorized by F07GRF (ZPPTRF), using packed storage.

2 Specification

SUBROUTINE F07GSF (UPLO, N, NRHS, AP, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
COMPLEX (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpptrs.

3 Description

F07GSF (ZPPTRS) is used to solve a complex Hermitian positive definite system of linear equations
AX ¼ B, the routine must be preceded by a call to F07GRF (ZPPTRF) which computes the Cholesky
factorization of A, using packed storage. The solution X is computed by forward and backward
substitution.

If UPLO ¼ U , A ¼ UHU , where U is upper triangular; the solution X is computed by solving
UHY ¼ B and then UX ¼ Y .

If UPLO ¼ L , A ¼ LLH, where L is lower triangular; the solution X is computed by solving LY ¼ B
and then LHX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UHU , where U is upper triangular.

UPLO ¼ L
A ¼ LLH, where L is lower triangular.

Constraint: UPLO ¼ U or L .
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Mark 26 F07GSF.1



2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the Cholesky factor of A stored in packed form, as returned by F07GRF (ZPPTRF).

5: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07GSF
(ZPPTRS) is called.

Constraint: LDB � max 1;Nð Þ.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UHj j Uj j;
if UPLO ¼ L , Ej j � c nð Þ� Lj j LHj j,

c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07GVF (ZPPRFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07GUF (ZPPCON).
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8 Parallelism and Performance

F07GSF (ZPPTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07GSF (ZPPTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8n2r.

This routine may be followed by a call to F07GVF (ZPPRFS) to refine the solution and return an error
estimate.

The real analogue of this routine is F07GEF (DPPTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA

and

B ¼
3:93� 6:14i 1:48þ 6:58i
6:17þ 9:42i 4:65� 4:75i
�7:17� 21:83i �4:91þ 2:29i
1:99� 14:38i 7:64� 10:79i

0B@
1CA:

Here A is Hermitian positive definite, stored in packed form, and must first be factorized by F07GRF
(ZPPTRF).

10.1 Program Text

Program f07gsfe

! F07GSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpptrf, zpptrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, ldb, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), b(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07GSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
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ldb = n
Allocate (ap(n*(n+1)/2),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of zpptrf is f07grf

Call zpptrf(uplo,n,ap,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of zpptrs is f07gsf

Call zpptrs(uplo,n,nrhs,ap,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07gsfe

10.2 Program Data

F07GSF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(3.23, 0.00)
(1.51, 1.92) ( 3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix A
( 3.93, -6.14) ( 1.48, 6.58)
( 6.17, 9.42) ( 4.65, -4.75)
(-7.17,-21.83) (-4.91, 2.29)
( 1.99,-14.38) ( 7.64,-10.79) :End of matrix B

10.3 Program Results

F07GSF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) (-1.0000, 2.0000)
2 (-0.0000, 3.0000) ( 3.0000,-4.0000)
3 (-4.0000,-5.0000) (-2.0000, 3.0000)
4 ( 2.0000, 1.0000) ( 4.0000,-5.0000)
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NAG Library Routine Document

F07GTF (ZPPEQU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GTF (ZPPEQU) computes a diagonal scaling matrix S intended to equilibrate a complex n by n
Hermitian positive definite matrix A, stored in packed format, and reduce its condition number.

2 Specification

SUBROUTINE F07GTF (UPLO, N, AP, S, SCOND, AMAX, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) S(N), SCOND, AMAX
COMPLEX (KIND=nag_wp) AP(*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zppequ.

3 Description

F07GTF (ZPPEQU) computes a diagonal scaling matrix S chosen so that

sj ¼ 1=
ffiffiffiffiffiffi
ajj
p

:

This means that the matrix B given by

B ¼ SAS;

has diagonal elements equal to unity. This in turn means that the condition number of B, �2 Bð Þ, is
within a factor n of the matrix of smallest possible condition number over all possible choices of
diagonal scalings (see Corollary 7.6 of Higham (2002)).

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored in the array AP, as
follows:

UPLO ¼ U
The upper triangle of A is stored.

UPLO ¼ L
The lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

Only the elements of AP corresponding to the diagonal elements A are referenced.

4: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, S contains the diagonal elements of the scaling matrix S.

5: SCOND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0, SCOND contains the ratio of the smallest value of S to the largest value of
S. If SCOND � 0:1 and AMAX is neither too large nor too small, it is not worth scaling by S.

6: AMAX – REAL (KIND=nag_wp) Output

On exit: max aij
		 		. If AMAX is very close to overflow or underflow, the matrix A should be

scaled.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The valueh ith diagonal element of A is not positive (and hence A cannot be positive definite).

7 Accuracy

The computed scale factors will be close to the exact scale factors.

8 Parallelism and Performance

F07GTF (ZPPEQU) is not threaded in any implementation.

9 Further Comments

The real analogue of this routine is F07GFF (DPPEQU).
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10 Example

This example equilibrates the Hermitian positive definite matrix A given by

A ¼
3:23 1:51� 1:92i 1:90þ 0:84ið Þ � 105 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11ið Þ � 105 �1:18þ 1:37i
1:90� 0:84ið Þ � 105 �0:23� 1:11ið Þ � 105 4:09� 1010 2:33� 0:14ið Þ � 105

0:42� 2:50i �1:18� 1:37i 2:33þ 0:14ið Þ � 105 4:29

0BB@
1CCA:

Details of the scaling factors and the scaled matrix are output.

10.1 Program Text

Program f07gtfe

! F07GTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06kcf, nag_wp, x02ajf, x02amf, x02bhf, x04ddf, &

zdscal, zppequ
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: thresh = 0.1_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: amax, big, scond, small
Integer :: i, ifail, info, j, jinc, jj, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:)
Real (Kind=nag_wp), Allocatable :: s(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F07GTF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap((n*(n+1))/2),s(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Print the matrix A

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ddf(uplo,’Non-unit diagonal’,n,ap,’Bracketed’,’1P,E10.2’, &

’Matrix A’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)

! Compute diagonal scaling factors
! The NAG name equivalent of zppequ is f07gtf
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Call zppequ(uplo,n,ap,s,scond,amax,info)

If (info>0) Then
Write (nout,99999) ’Diagonal element’, info, ’ of A is non positive’

Else

! Print SCOND, AMAX and the scale factors

Write (nout,99998) ’SCOND =’, scond, ’, AMAX =’, amax
Write (nout,*)
Write (nout,*) ’Diagonal scaling factors’
Write (nout,99997) s(1:n)
Write (nout,*)
Flush (nout)

! Compute values close to underflow and overflow

small = x02amf()/(x02ajf()*real(x02bhf(),kind=nag_wp))
big = one/small
If ((scond<thresh) .Or. (amax<small) .Or. (amax>big)) Then

! Scale A

If (uplo==’U’) Then

! The NAG name equivalent of zdscal is f06jdf
jj = 1
Do j = 1, n

Call zdscal(j,s(j),ap(jj),1)
Call f06kcf(j,s,1,ap(jj),1)
jj = jj + j

End Do
Else If (uplo==’L’) Then

jj = 1
jinc = n
Do j = 1, n

Call zdscal(jinc,s(j),ap(jj),1)
Call f06kcf(jinc,s(j),1,ap(jj),1)
jj = jj + jinc
jinc = jinc - 1

End Do
End If

! Print the scaled matrix

ifail = 0
Call x04ddf(uplo,’Non-unit diagonal’,n,ap,’Bracketed’,’F8.4’, &

’Scaled matrix’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If
End If

99999 Format (1X,A,I4,A)
99998 Format (1X,2(A,1P,E8.1))
99997 Format ((1X,1P,7E11.1))

End Program f07gtfe

10.2 Program Data

F07GTF Example Program Data
4 :Value of N

( 3.23, 0.00) ( 1.51,-1.92) ( 1.90D+05, 0.84D+05) ( 0.42D+00, 2.50D+00)
( 3.58, 0.00) (-0.23D+05, 1.11D+05) (-1.18D+00, 1.37D+00)

( 4.09D+10, 0.00D+00) ( 2.33D+05,-0.14D+05)
( 4.29D+00, 0.00D+00)

:End of matrix A
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10.3 Program Results

F07GTF Example Program Results

Matrix A
1 2 3

1 ( 3.23E+00, 0.00E+00) ( 1.51E+00, -1.92E+00) ( 1.90E+05, 8.40E+04)
2 ( 3.58E+00, 0.00E+00) ( -2.30E+04, 1.11E+05)
3 ( 4.09E+10, 0.00E+00)
4

4
1 ( 4.20E-01, 2.50E+00)
2 ( -1.18E+00, 1.37E+00)
3 ( 2.33E+05, -1.40E+04)
4 ( 4.29E+00, 0.00E+00)

SCOND = 8.9E-06, AMAX = 4.1E+10

Diagonal scaling factors
5.6E-01 5.3E-01 4.9E-06 4.8E-01

Scaled matrix
1 2 3

1 ( 1.0000, 0.0000) ( 0.4441, -0.5646) ( 0.5227, 0.2311)
2 ( 1.0000, 0.0000) ( -0.0601, 0.2901)
3 ( 1.0000, 0.0000)
4

4
1 ( 0.1128, 0.6716)
2 ( -0.3011, 0.3496)
3 ( 0.5562, -0.0334)
4 ( 1.0000, 0.0000)
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NAG Library Routine Document

F07GUF (ZPPCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GUF (ZPPCON) estimates the condition number of a complex Hermitian positive definite matrix A,
where A has been factorized by F07GRF (ZPPTRF), using packed storage.

2 Specification

SUBROUTINE F07GUF (UPLO, N, AP, ANORM, RCOND, WORK, RWORK, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) ANORM, RCOND, RWORK(N)
COMPLEX (KIND=nag_wp) AP(*), WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zppcon.

3 Description

F07GUF (ZPPCON) estimates the condition number (in the 1-norm) of a complex Hermitian positive
definite matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is Hermitian, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06UDF to compute Ak k1 and a call to F07GRF (ZPPTRF)
to compute the Cholesky factorization of A. The routine then uses Higham's implementation of Hager's
method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UHU , where U is upper triangular.

UPLO ¼ L
A ¼ LLH, where L is lower triangular.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the Cholesky factor of A stored in packed form, as returned by F07GRF (ZPPTRF).

4: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06UDF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07GRF (ZPPTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

5: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

6: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

7: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07GUF (ZPPCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07GUF (ZPPCON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
floating-point operations but takes considerably longer than a call to F07GSF (ZPPTRS) with one right-
hand side, because extra care is taken to avoid overflow when A is approximately singular.
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The real analogue of this routine is F07GGF (DPPCON).

10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA:

Here A is Hermitian positive definite, stored in packed form, and must first be factorized by F07GRF
(ZPPTRF). The true condition number in the 1-norm is 201:92.

10.1 Program Text

Program f07gufe

! F07GUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, zlanhp => f06udf, zppcon, zpptrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07GUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),work(2*n),rwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Compute norm of A
! f06udf is the NAG name equivalent of the LAPACK auxiliary zlanhp

anorm = zlanhp(’1-norm’,uplo,n,ap,rwork)

! Factorize A
! The NAG name equivalent of zpptrf is f07grf

Call zpptrf(uplo,n,ap,info)

Write (nout,*)
If (info==0) Then

! Estimate condition number

! The NAG name equivalent of zppcon is f07guf
Call zppcon(uplo,n,ap,anorm,rcond,work,rwork,info)
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If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’A is not positive definite’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07gufe

10.2 Program Data

F07GUF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(3.23, 0.00)
(1.51, 1.92) ( 3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix A

10.3 Program Results

F07GUF Example Program Results

Estimate of condition number = 1.51E+02
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NAG Library Routine Document

F07GVF (ZPPRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GVF (ZPPRFS) returns error bounds for the solution of a complex Hermitian positive definite
system of linear equations with multiple right-hand sides, AX ¼ B, using packed storage. It improves
the solution by iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07GVF (UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR,
WORK, RWORK, INFO)

&

INTEGER N, NRHS, LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) AP(*), AFP(*), B(LDB,*), X(LDX,*), WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpprfs.

3 Description

F07GVF (ZPPRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex Hermitian positive definite system of linear equations with multiple right-hand
sides AX ¼ B, using packed storage. The routine handles each right-hand side vector (stored as a
column of the matrix B) independently, so we describe the function of F07GVF (ZPPRFS) in terms of a
single right-hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UHU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLH, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n original Hermitian positive definite matrix A as supplied to F07GRF
(ZPPTRF).

5: AFPð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AFP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the Cholesky factor of A stored in packed form, as returned by F07GRF (ZPPTRF).

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07GVF
(ZPPRFS) is called.

Constraint: LDB � max 1;Nð Þ.

8: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07GSF (ZPPTRS).

On exit: the improved solution matrix X.

F07GVF NAG Library Manual

F07GVF.2 Mark 26



9: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07GVF
(ZPPRFS) is called.

Constraint: LDX � max 1;Nð Þ.

10: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

11: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

12: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

13: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07GVF (ZPPRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07GVF (ZPPRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n2 real floating-
point operations. Each step of iterative refinement involves an additional 24n2 real operations. At most
five steps of iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
operations.

The real analogue of this routine is F07GHF (DPPRFS).
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10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA

and

B ¼
3:93� 6:14i 1:48þ 6:58i
6:17þ 9:42i 4:65� 4:75i
�7:17� 21:83i �4:91þ 2:29i
1:99� 14:38i 7:64� 10:79i

0B@
1CA:

Here A is Hermitian positive definite, stored in packed form, and must first be factorized by F07GRF
(ZPPTRF).

10.1 Program Text

Program f07gvfe

! F07GVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpprfs, zpptrf, zpptrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: aplen, i, ifail, info, j, ldb, ldx, &

n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: afp(:), ap(:), b(:,:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07GVF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
aplen = n*(n+1)/2
Allocate (afp(aplen),ap(aplen),b(ldb,nrhs),work(2*n),x(ldx,n), &

berr(nrhs),ferr(nrhs),rwork(n))

! Read A and B from data file, and copy A to AFP and B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

afp(1:aplen) = ap(1:aplen)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AFP
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! The NAG name equivalent of zpptrf is f07grf
Call zpptrf(uplo,n,afp,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of zpptrs is f07gsf

Call zpptrs(uplo,n,nrhs,afp,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of zpprfs is f07gvf
Call zpprfs(uplo,n,nrhs,ap,afp,b,ldb,x,ldx,ferr,berr,work,rwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’A is not positive definite’

End If

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07gvfe

10.2 Program Data

F07GVF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(3.23, 0.00)
(1.51, 1.92) ( 3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix A
( 3.93, -6.14) ( 1.48, 6.58)
( 6.17, 9.42) ( 4.65, -4.75)
(-7.17,-21.83) (-4.91, 2.29)
( 1.99,-14.38) ( 7.64,-10.79) :End of matrix B

10.3 Program Results

F07GVF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) (-1.0000, 2.0000)
2 (-0.0000, 3.0000) ( 3.0000,-4.0000)
3 (-4.0000,-5.0000) (-2.0000, 3.0000)
4 ( 2.0000, 1.0000) ( 4.0000,-5.0000)

Backward errors (machine-dependent)
5.5E-17 7.9E-17

Estimated forward error bounds (machine-dependent)
6.0E-14 7.2E-14
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NAG Library Routine Document

F07GWF (ZPPTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GWF (ZPPTRI) computes the inverse of a complex Hermitian positive definite matrix A, where A
has been factorized by F07GRF (ZPPTRF), using packed storage.

2 Specification

SUBROUTINE F07GWF (UPLO, N, AP, INFO)

INTEGER N, INFO
COMPLEX (KIND=nag_wp) AP(*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpptri.

3 Description

F07GWF (ZPPTRI) is used to compute the inverse of a complex Hermitian positive definite matrix A,
the routine must be preceded by a call to F07GRF (ZPPTRF), which computes the Cholesky
factorization of A, using packed storage.

If UPLO ¼ U , A ¼ UHU and A�1 is computed by first inverting U and then forming U�1ð ÞU�H.

If UPLO ¼ L , A ¼ LLH and A�1 is computed by first inverting L and then forming L�H L�1ð Þ.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UHU , where U is upper triangular.

UPLO ¼ L
A ¼ LLH, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the Cholesky factor of A stored in packed form, as returned by F07GRF (ZPPTRF).
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On exit: the factorization is overwritten by the n by n matrix A�1.

More precisely,

if UPLO ¼ U , the upper triangle of A�1 must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;

if UPLO ¼ L , the lower triangle of A�1 must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

4: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Diagonal element valueh i of the Cholesky factor is zero; the Cholesky factor is singular and the
inverse of A cannot be computed.

7 Accuracy

The computed inverse X satisfies

XA� Ik k2 � c nð Þ��2 Að Þ and AX � Ik k2 � c nð Þ��2 Að Þ;

where c nð Þ is a modest function of n, � is the machine precision and �2 Að Þ is the condition number of
A defined by

�2 Að Þ ¼ Ak k2 A�1
�� ��

2
:

8 Parallelism and Performance

F07GWF (ZPPTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3n

3 .

The real analogue of this routine is F07GJF (DPPTRI).
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10 Example

This example computes the inverse of the matrix A, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA:

Here A is Hermitian positive definite, stored in packed form, and must first be factorized by F07GRF
(ZPPTRF).

10.1 Program Text

Program f07gwfe

! F07GWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04ddf, zpptrf, zpptri

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07GWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zpptrf is f07grf

Call zpptrf(uplo,n,ap,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute inverse of A
! The NAG name equivalent of zpptri is f07gwf

Call zpptri(uplo,n,ap,info)

! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ddf(uplo,’Nonunit’,n,ap,’Bracketed’,’F7.4’,’Inverse’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
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Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07gwfe

10.2 Program Data

F07GWF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(3.23, 0.00)
(1.51, 1.92) ( 3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix A

10.3 Program Results

F07GWF Example Program Results

Inverse
1 2 3 4

1 ( 5.4691, 0.0000)
2 (-1.2624,-1.5491) ( 1.1024, 0.0000)
3 (-2.9746,-0.9616) ( 0.8989,-0.5672) ( 2.1589, 0.0000)
4 ( 1.1962, 2.9772) (-0.9826,-0.2566) (-1.3756,-1.4550) ( 2.2934, 0.0000)
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NAG Library Routine Document

F07HAF (DPBSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HAF (DPBSV) computes the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric positive definite band matrix of bandwidth 2kd þ 1ð Þ and X and B are
n by r matrices.

2 Specification

SUBROUTINE F07HAF (UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO)

INTEGER N, KD, NRHS, LDAB, LDB, INFO
REAL (KIND=nag_wp) AB(LDAB,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpbsv.

3 Description

F07HAF (DPBSV) uses the Cholesky decomposition to factor A as A ¼ UTU if UPLO ¼ U or
A ¼ LLT if UPLO ¼ L , where U is an upper triangular band matrix, and L is a lower triangular band
matrix, with the same number of superdiagonals or subdiagonals as A. The factored form of A is then
used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.
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3: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the symmetric band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: if INFO ¼ 0, the triangular factor U or L from the Cholesky factorization A ¼ UTU or
A ¼ LLT of the band matrix A, in the same storage format as A.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HAF (DPBSV) is called.

Constraint: LDAB � KDþ 1.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07HAF
(DPBSV) is called.

Constraint: LDB � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed.
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7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

F07HBF (DPBSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04BFF solves Ax ¼ b and returns a
forward error bound and condition estimate. F04BFF calls F07HAF (DPBSV) to solve the equations.

8 Parallelism and Performance

F07HAF (DPBSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07HAF (DPBSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When n� k, the total number of floating-point operations is approximately n kþ 1ð Þ2 þ 4nkr, where k
is the number of superdiagonals and r is the number of right-hand sides.

The complex analogue of this routine is F07HNF (ZPBSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the symmetric positive definite band matrix

A ¼
5:49 2:68 0 0
2:68 5:63 �2:39 0
0 �2:39 2:60 �2:22
0 0 �2:22 5:17

0B@
1CA and b ¼

22:09
9:31
�5:24
11:83

0B@
1CA:

Details of the Cholesky factorization of A are also output.
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10.1 Program Text

Program f07hafe

! F07HAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpbsv, nag_wp, x04cef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), b(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
Allocate (ab(ldab,n),b(n))

! Read the upper or lower triangular part of the band matrix A
! from data file

If (uplo==’U’) Then
Read (nin,*)((ab(kd+1+i-j,j),j=i,min(n,i+kd)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-kd),i),i=1,n)

End If

! Read b from data file

Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of dpbsv is f07haf

Call dpbsv(uplo,n,kd,1,ab,ldab,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
If (uplo==’U’) Then

Call x04cef(n,n,0,kd,ab,ldab,’Cholesky factor U’,ifail)
Else If (uplo==’L’) Then

Call x04cef(n,n,kd,0,ab,ldab,’Cholesky factor L’,ifail)
End If

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
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End If

99999 Format ((3X,7F11.4))
99998 Format (1X,A,I3,A)

End Program f07hafe

10.2 Program Data

F07HAF Example Program Data

4 1 :Values of N and KD

5.49 2.68
5.63 -2.39

2.60 -2.22
5.17 :End of matrix A

22.09 9.31 -5.24 11.83 :End of vector b

10.3 Program Results

F07HAF Example Program Results

Solution
5.0000 -2.0000 -3.0000 1.0000

Cholesky factor U
1 2 3 4

1 2.3431 1.1438
2 2.0789 -1.1497
3 1.1306 -1.9635
4 1.1465
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NAG Library Routine Document

F07HBF (DPBSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HBF (DPBSVX) uses the Cholesky factorization

A ¼ UTU or A ¼ LLT

to compute the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric positive definite band matrix of bandwidth 2kd þ 1ð Þ and X and B are
n by r matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07HBF (FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, EQUED,
S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK,
INFO)

&
&

INTEGER N, KD, NRHS, LDAB, LDAFB, LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) AB(LDAB,*), AFB(LDAFB,*), S(*), B(LDB,*), X(LDX,*),

RCOND, FERR(NRHS), BERR(NRHS), WORK(3*N)
&

CHARACTER(1) FACT, UPLO, EQUED

The routine may be called by its LAPACK name dpbsvx.

3 Description

F07HBF (DPBSVX) performs the following steps:

1. If FACT ¼ E , real diagonal scaling factors, DS , are computed to equilibrate the system:

DSADSð Þ D�1S X
� �

¼ DSB:

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by DSADS and B by DSB.

2. If FACT ¼ N or E , the Cholesky decomposition is used to factor the matrix A (after equilibration
if FACT ¼ E ) as A ¼ UTU if UPLO ¼ U or A ¼ LLT if UPLO ¼ L , where U is an upper
triangular matrix and L is a lower triangular matrix.

3. If the leading i by i principal minor of A is not positive definite, then the routine returns with
INFO ¼ i. Otherwise, the factored form of A is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number is less than machine precision, INFO ¼ Nþ 1
is returned as a warning, but the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by DS so that it solves the original system
before equilibration.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

FACT ¼ F
AFB contains the factorized form of A. If EQUED ¼ Y , the matrix A has been
equilibrated with scaling factors given by S. AB and AFB will not be modified.

FACT ¼ N
The matrix A will be copied to AFB and factorized.

FACT ¼ E
The matrix A will be equilibrated if necessary, then copied to AFB and factorized.

Constraint: FACT ¼ F , N or E .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

6: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the symmetric band matrix A, except if FACT ¼ F and
EQUED ¼ Y , in which case AB must contain the equilibrated matrix DSADS .

The matrix is stored in rows 1 to kd þ 1, more precisely,
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if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: if FACT ¼ E and EQUED ¼ Y , AB is overwritten by DSADS.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HBF (DPBSVX) is called.

Constraint: LDAB � KDþ 1.

8: AFBðLDAFB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AFB must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , AFB contains the triangular factor U or L from the Cholesky
factorization A ¼ UTU or A ¼ LLT of the band matrix A, in the same storage format as A. If
EQUED ¼ Y , AFB is the factorized form of the equilibrated matrix A.

On exit: if FACT ¼ N , AFB returns the triangular factor U or L from the Cholesky factorization
A ¼ UTU or A ¼ LLT.

If FACT ¼ E , AFB returns the triangular factor U or L from the Cholesky factorization
A ¼ UTU or A ¼ LLT of the equilibrated matrix A (see the description of AB for the form of the
equilibrated matrix).

9: LDAFB – INTEGER Input

On entry: the first dimension of the array AFB as declared in the (sub)program from which
F07HBF (DPBSVX) is called.

Constraint: LDAFB � KDþ 1.

10: EQUED – CHARACTER(1) Input/Output

On entry: if FACT ¼ N or E , EQUED need not be set.

If FACT ¼ F , EQUED must specify the form of the equilibration that was performed as follows:

if EQUED ¼ N , no equilibration;

if EQUED ¼ Y , equilibration was performed, i.e., A has been replaced by DSADS.

On exit: if FACT ¼ F , EQUED is unchanged from entry.

Otherwise, if no constraints are violated, EQUED specifies the form of the equilibration that was
performed as specified above.

Constraint: if FACT ¼ F , EQUED ¼ N or Y .

11: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , S need not be set.

If FACT ¼ F and EQUED ¼ Y , S must contain the scale factors, DS , for A; each element of S
must be positive.

On exit: if FACT ¼ F , S is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ Y , S contains the scale factors, DS , for
A; each element of S is positive.
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12: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if EQUED ¼ N , B is not modified.

If EQUED ¼ Y , B is overwritten by DSB.

13: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07HBF
(DPBSVX) is called.

Constraint: LDB � max 1;Nð Þ.

14: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X to the original system of equations.
Note that the arrays A and B are modified on exit if EQUED ¼ Y , and the solution to the
equilibrated system is D�1S X.

15: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07HBF
(DPBSVX) is called.

Constraint: LDX � max 1;Nð Þ.

16: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the

matrix A (after equilibration if that is performed), computed as RCOND ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

17: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

18: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

19: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

20: IWORKðNÞ – INTEGER array Workspace

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed. RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

U (or L) is nonsingular, but RCOND is less than machine precision, meaning that the matrix is
singular to working precision. Nevertheless, the solution and error bounds are computed because
there are a number of situations where the computed solution can be more accurate than the value
of RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UTj j Uj j;
if UPLO ¼ L , Ej j � c nð Þ� Lj j LTj j,

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham
(2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07HBF (DPBSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07HBF (DPBSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When n� k, the factorization of A requires approximately n kþ 1ð Þ2 floating-point operations, where k
is the number of superdiagonals.

For each right-hand side, computation of the backward error involves a minimum of 8nk floating-point
operations. Each step of iterative refinement involves an additional 12nk operations. At most five steps
of iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 4nk operations.
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The complex analogue of this routine is F07HPF (ZPBSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric positive definite band matrix

A ¼
5:49 2:68 0 0
2:68 5:63 �2:39 0
0 �2:39 2:60 �2:22
0 0 �2:22 5:17

0B@
1CA

and

B ¼
22:09 5:10
9:31 30:81
�5:24 �25:82
11:83 22:90

0B@
1CA:

Error estimates for the solutions, information on equilibration and an estimate of the reciprocal of the
condition number of the scaled matrix A are also output.

10.1 Program Text

Program f07hbfe

! F07HBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpbsvx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, j, kd, ldab, ldafb, &

ldb, ldx, n, nrhs
Character (1) :: equed

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), afb(:,:), b(:,:), berr(:), &

ferr(:), s(:), work(:), x(:,:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd, nrhs
ldb = n
ldx = n
ldab = kd + 1
ldafb = kd + 1
Allocate (ab(ldab,n),afb(ldafb,n),b(ldb,nrhs),berr(nrhs),ferr(nrhs), &

s(n),work(3*n),x(ldx,nrhs),iwork(n))

! Read the upper or lower triangular part of the band matrix A
! from data file
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If (uplo==’U’) Then
Read (nin,*)((ab(kd+1+i-j,j),j=i,min(n,i+kd)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-kd),i),i=1,n)

End If

! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of dpbsvx is f07hbf

Call dpbsvx(’Equilibration’,uplo,n,kd,nrhs,ab,ldab,afb,ldafb,equed,s,b, &
ldb,x,ldx,rcond,ferr,berr,work,iwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds, condition number and the form
! of equilibration

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)
If (equed==’N’) Then

Write (nout,*) ’A has not been equilibrated’
Else If (equed==’Y’) Then

Write (nout,*) &
’A has been row and column scaled as diag(S)*A*diag(S)’

End If

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The leading minor of order ’, info, &
’ is not positive definite’

End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07hbfe

10.2 Program Data

F07HBF Example Program Data

4 1 2 :Values of N, KD and NRHS

5.49 2.68
5.63 -2.39

2.60 -2.22
5.17 :End of matrix A

22.09 5.10
9.31 30.81

-5.24 -25.82
11.83 22.90 :End of matrix B
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10.3 Program Results

F07HBF Example Program Results

Solution(s)
1 2

1 5.0000 -2.0000
2 -2.0000 6.0000
3 -3.0000 -1.0000
4 1.0000 4.0000

Backward errors (machine-dependent)
1.1E-16 1.1E-16

Estimated forward error bounds (machine-dependent)
2.1E-14 3.0E-14

Estimate of reciprocal condition number
1.3E-02

A has not been equilibrated
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NAG Library Routine Document

F07HDF (DPBTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HDF (DPBTRF) computes the Cholesky factorization of a real symmetric positive definite band
matrix.

2 Specification

SUBROUTINE F07HDF (UPLO, N, KD, AB, LDAB, INFO)

INTEGER N, KD, LDAB, INFO
REAL (KIND=nag_wp) AB(LDAB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpbtrf.

3 Description

F07HDF (DPBTRF) forms the Cholesky factorization of a real symmetric positive definite band matrix
A either as A ¼ UTU if UPLO ¼ U or A ¼ LLT if UPLO ¼ L , where U (or L) is an upper (or lower)
triangular band matrix with the same number of superdiagonals (or subdiagonals) as A.

4 References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of
Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UTU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLT, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: KD – INTEGER Input

On entry: kd, the number of superdiagonals or subdiagonals of the matrix A.

Constraint: KD � 0.

4: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n symmetric positive definite band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: the upper or lower triangle of A is overwritten by the Cholesky factor U or L as
specified by UPLO, using the same storage format as described above.

5: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HDF (DPBTRF) is called.

Constraint: LDAB � KDþ 1.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed. See Section 3.7 in How to Use the NAG
Library and its Documentation for further information. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite and the factorization could not be
completed. Hence A itself is not positive definite. This may indicate an error in forming the
matrix A. There is no routine specifically designed to factorize a symmetric band matrix which is
not positive definite; the matrix must be treated either as a nonsymmetric band matrix, by calling
F07BDF (DGBTRF) or as a full symmetric matrix, by calling F07MDF (DSYTRF).

7 Accuracy

If UPLO ¼ U , the computed factor U is the exact factor of a perturbed matrix Aþ E, where

Ej j � c kþ 1ð Þ� UT
		 		 Uj j;

c kþ 1ð Þ is a modest linear function of kþ 1, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factor L. It follows that
eij
		 		 � c kþ 1ð Þ� ffiffiffiffiffiffiffiffiffiffiffi

aiiajj
p

.
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8 Parallelism and Performance

F07HDF (DPBTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately n kþ 1ð Þ2, assuming n� k.

A call to F07HDF (DPBTRF) may be followed by calls to the routines:

F07HEF (DPBTRS) to solve AX ¼ B;
F07HGF (DPBCON) to estimate the condition number of A.

The complex analogue of this routine is F07HRF (ZPBTRF).

10 Example

This example computes the Cholesky factorization of the matrix A, where

A ¼
5:49 2:68 0:00 0:00
2:68 5:63 �2:39 0:00
0:00 �2:39 2:60 �2:22
0:00 0:00 �2:22 5:17

0B@
1CA:

10.1 Program Text

Program f07hdfe

! F07HDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpbtrf, nag_wp, x04cef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
Allocate (ab(ldab,n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
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Else If (uplo==’L’) Then
Do i = 1, n

Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)
End Do

End If

! Factorize A
! The NAG name equivalent of dpbtrf is f07hdf

Call dpbtrf(uplo,n,kd,ab,ldab,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Print factor

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

If (uplo==’U’) Then

Call x04cef(n,n,0,kd,ab,ldab,’Factor’,ifail)

Else If (uplo==’L’) Then

Call x04cef(n,n,kd,0,ab,ldab,’Factor’,ifail)

End If

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07hdfe

10.2 Program Data

F07HDF Example Program Data
4 1 :Values of N and KD
’L’ :Value of UPLO
5.49
2.68 5.63

-2.39 2.60
-2.22 5.17 :End of matrix A

10.3 Program Results

F07HDF Example Program Results

Factor
1 2 3 4

1 2.3431
2 1.1438 2.0789
3 -1.1497 1.1306
4 -1.9635 1.1465
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NAG Library Routine Document

F07HEF (DPBTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HEF (DPBTRS) solves a real symmetric positive definite band system of linear equations with
multiple right-hand sides,

AX ¼ B;

where A has been factorized by F07HDF (DPBTRF).

2 Specification

SUBROUTINE F07HEF (UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO)

INTEGER N, KD, NRHS, LDAB, LDB, INFO
REAL (KIND=nag_wp) AB(LDAB,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpbtrs.

3 Description

F07HEF (DPBTRS) is used to solve a real symmetric positive definite band system of linear equations
AX ¼ B, the routine must be preceded by a call to F07HDF (DPBTRF) which computes the Cholesky
factorization of A. The solution X is computed by forward and backward substitution.

If UPLO ¼ U , A ¼ UTU , where U is upper triangular; the solution X is computed by solving
UTY ¼ B and then UX ¼ Y .
If UPLO ¼ L , A ¼ LLT, where L is lower triangular; the solution X is computed by solving LY ¼ B
and then LTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UTU , where U is upper triangular.

UPLO ¼ L
A ¼ LLT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F07 – Linear Equations (LAPACK) F07HEF

Mark 26 F07HEF.1



3: KD – INTEGER Input

On entry: kd, the number of superdiagonals or subdiagonals of the matrix A.

Constraint: KD � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07HDF (DPBTRF).

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HEF (DPBTRS) is called.

Constraint: LDAB � KDþ 1.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07HEF
(DPBTRS) is called.

Constraint: LDB � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c kþ 1ð Þ� UTj j Uj j;
if UPLO ¼ L , Ej j � c kþ 1ð Þ� Lj j LTj j,

c kþ 1ð Þ is a modest linear function of kþ 1, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c kþ 1ð Þ cond A; xð Þ�
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where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. Note that cond A; xð Þ
can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07HHF (DPBRFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07HGF (DPBCON).

8 Parallelism and Performance

F07HEF (DPBTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07HEF (DPBTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4nkr, assuming n� k.

This routine may be followed by a call to F07HHF (DPBRFS) to refine the solution and return an error
estimate.

The complex analogue of this routine is F07HSF (ZPBTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
5:49 2:68 0:00 0:00
2:68 5:63 �2:39 0:00
0:00 �2:39 2:60 �2:22
0:00 0:00 �2:22 5:17

0B@
1CA and B ¼

22:09 5:10
9:31 30:81
�5:24 �25:82
11:83 22:90

0B@
1CA:

Here A is symmetric and positive definite, and is treated as a band matrix, which must first be
factorized by F07HDF (DPBTRF).

10.1 Program Text

Program f07hefe

! F07HEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpbtrf, dpbtrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, ldb, n, &

nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HEF Example Program Results’

! Skip heading in data file
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Read (nin,*)
Read (nin,*) n, kd, nrhs
ldab = kd + 1
ldb = n
Allocate (ab(ldab,n),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of dpbtrf is f07hdf

Call dpbtrf(uplo,n,kd,ab,ldab,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of dpbtrs is f07hef

Call dpbtrs(uplo,n,kd,nrhs,ab,ldab,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07hefe

10.2 Program Data

F07HEF Example Program Data
4 1 2 :Values of N, KD and NRHS
’L’ :Value of UPLO
5.49
2.68 5.63

-2.39 2.60
-2.22 5.17 :End of matrix A

22.09 5.10
9.31 30.81

-5.24 -25.82
11.83 22.90 :End of matrix B

F07HEF NAG Library Manual

F07HEF.4 Mark 26



10.3 Program Results

F07HEF Example Program Results

Solution(s)
1 2

1 5.0000 -2.0000
2 -2.0000 6.0000
3 -3.0000 -1.0000
4 1.0000 4.0000
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NAG Library Routine Document

F07HFF (DPBEQU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HFF (DPBEQU) computes a diagonal scaling matrix S intended to equilibrate a real n by n
symmetric positive definite band matrix A, with bandwidth 2kd þ 1ð Þ, and reduce its condition number.

2 Specification

SUBROUTINE F07HFF (UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO)

INTEGER N, KD, LDAB, INFO
REAL (KIND=nag_wp) AB(LDAB,*), S(N), SCOND, AMAX
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpbequ.

3 Description

F07HFF (DPBEQU) computes a diagonal scaling matrix S chosen so that

sj ¼ 1=
ffiffiffiffiffiffi
ajj
p

:

This means that the matrix B given by

B ¼ SAS;

has diagonal elements equal to unity. This in turn means that the condition number of B, �2 Bð Þ, is
within a factor n of the matrix of smallest possible condition number over all possible choices of
diagonal scalings (see Corollary 7.6 of Higham (2002)).

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored in the array AB, as
follows:

UPLO ¼ U
The upper triangle of A is stored.

UPLO ¼ L
The lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

4: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the symmetric positive definite band matrix A whose
scaling factors are to be computed.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

Only the elements of the array AB corresponding to the diagonal elements of A are referenced.
(Row kd þ 1ð Þ of AB when UPLO ¼ U , row 1 of AB when UPLO ¼ L .)

5: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HFF (DPBEQU) is called.

Constraint: LDAB � KDþ 1.

6: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, S contains the diagonal elements of the scaling matrix S.

7: SCOND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0, SCOND contains the ratio of the smallest value of S to the largest value of
S. If SCOND � 0:1 and AMAX is neither too large nor too small, it is not worth scaling by S.

8: AMAX – REAL (KIND=nag_wp) Output

On exit: max aij
		 		. If AMAX is very close to overflow or underflow, the matrix A should be

scaled.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The valueh ith diagonal element of A is not positive (and hence A cannot be positive definite).

7 Accuracy

The computed scale factors will be close to the exact scale factors.
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8 Parallelism and Performance

F07HFF (DPBEQU) is not threaded in any implementation.

9 Further Comments

The complex analogue of this routine is F07HTF (ZPBEQU).

10 Example

This example equilibrates the symmetric positive definite matrix A given by

A ¼
5:49 2:68� 1010 0 0
2:68� 1010 5:63� 1020 �2:39� 1010 0
0 �2:39� 1010 2:60 �2:22
0 0 �2:22 5:17

0BB@
1CCA:

Details of the scaling factors and the scaled matrix are output.

10.1 Program Text

Program f07hffe

! F07HFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpbequ, dscal, f06fcf, nag_wp, x02ajf, x02amf, &

x02bhf, x04cef
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: thresh = 0.1_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: amax, big, scond, small
Integer :: i, i0, i1, ifail, ilen, info, j, kd, &

ldab, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), s(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min, real
! .. Executable Statements ..

Write (nout,*) ’F07HFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
Allocate (ab(ldab,n),s(n))

! Read the upper or lower triangular part of the band matrix A
! from data file

If (uplo==’U’) Then
Do i = 1, n

Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))
End Do

Else If (uplo==’L’) Then
Do i = 1, n

Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)
End Do

End If
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! Print the matrix A

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
If (uplo==’U’) Then

Call x04cef(n,n,0,kd,ab,ldab,’Matrix A’,ifail)
Else If (uplo==’L’) Then

Call x04cef(n,n,kd,0,ab,ldab,’Matrix A’,ifail)
End If

Write (nout,*)

! Compute diagonal scaling factors
! The NAG name equivalent of dpbequ is f07hff

Call dpbequ(uplo,n,kd,ab,ldab,s,scond,amax,info)

If (info>0) Then
Write (nout,99999) ’Diagonal element’, info, ’ of A is non positive’

Else

! Print SCOND, AMAX and the scale factors

Write (nout,99998) ’SCOND =’, scond, ’, AMAX =’, amax
Write (nout,*)
Write (nout,*) ’Diagonal scaling factors’
Write (nout,99997) s(1:n)
Write (nout,*)
Flush (nout)

! Compute values close to underflow and overflow

small = x02amf()/(x02ajf()*real(x02bhf(),kind=nag_wp))
big = one/small
If ((scond<thresh) .Or. (amax<small) .Or. (amax>big)) Then

! Scale A
If (uplo==’U’) Then

! The NAG name equivalent of dscal is f06edf
Do j = 1, n

i0 = max(1,j-kd)
i1 = 1 + i0 - (j-kd)
ilen = j - i0 + 1
Call dscal(ilen,s(j),ab(i1,j),1)
Call f06fcf(ilen,s(i0),1,ab(i1,j),1)

End Do

Else If (uplo==’L’) Then
Do j = 1, n

i1 = 1
ilen = min(n,j+kd) - j + 1
Call dscal(ilen,s(j),ab(i1,j),1)
Call f06fcf(ilen,s(j),1,ab(i1,j),1)

End Do
End If

! Print the scaled matrix

ifail = 0
If (uplo==’U’) Then

Call x04cef(n,n,0,kd,ab,ldab,’Scaled matrix’,ifail)
Else If (uplo==’L’) Then

Call x04cef(n,n,kd,0,ab,ldab,’Scaled matrix’,ifail)
End If

End If
End If
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99999 Format (1X,A,I4,A)
99998 Format (1X,2(A,1P,E8.1))
99997 Format ((1X,1P,7E11.1))

End Program f07hffe

10.2 Program Data

F07HFF Example Program Data
4 1 :Values of N and KD
5.49E+00 2.68E+10

5.63E+20 -2.39E+10
2.60E+00 -2.22E+00

5.17E+00 :End of matrix A

10.3 Program Results

F07HFF Example Program Results

Matrix A
1 2 3 4

1 5.4900E+00 2.6800E+10
2 5.6300E+20 -2.3900E+10
3 2.6000E+00 -2.2200E+00
4 5.1700E+00

SCOND = 6.8E-11, AMAX = 5.6E+20

Diagonal scaling factors
4.3E-01 4.2E-11 6.2E-01 4.4E-01

Scaled matrix
1 2 3 4

1 1.0000 0.4821
2 1.0000 -0.6247
3 1.0000 -0.6055
4 1.0000
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NAG Library Routine Document

F07HGF (DPBCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HGF (DPBCON) estimates the condition number of a real symmetric positive definite band matrix
A, where A has been factorized by F07HDF (DPBTRF).

2 Specification

SUBROUTINE F07HGF (UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK, IWORK,
INFO)

&

INTEGER N, KD, LDAB, IWORK(N), INFO
REAL (KIND=nag_wp) AB(LDAB,*), ANORM, RCOND, WORK(3*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpbcon.

3 Description

F07HGF (DPBCON) estimates the condition number (in the 1-norm) of a real symmetric positive
definite band matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is symmetric, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06REF to compute Ak k1 and a call to F07HDF (DPBTRF)
to compute the Cholesky factorization of A. The routine then uses Higham's implementation of Hager's
method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UTU , where U is upper triangular.

UPLO ¼ L
A ¼ LLT, where L is lower triangular.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: KD – INTEGER Input

On entry: kd, the number of superdiagonals or subdiagonals of the matrix A.

Constraint: KD � 0.

4: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07HDF (DPBTRF).

5: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HGF (DPBCON) is called.

Constraint: LDAB � KDþ 1.

6: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06REF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07HDF (DPBTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

7: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

8: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

9: IWORKðNÞ – INTEGER array Workspace

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.
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8 Parallelism and Performance

F07HGF (DPBCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07HGF (DPBCON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
4nk floating-point operations (assuming n� k) but takes considerably longer than a call to F07HEF
(DPBTRS) with one right-hand side, because extra care is taken to avoid overflow when A is
approximately singular.

The complex analogue of this routine is F07HUF (ZPBCON).

10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
5:49 2:68 0:00 0:00
2:68 5:63 �2:39 0:00
0:00 �2:39 2:60 �2:22
0:00 0:00 �2:22 5:17

0B@
1CA:

Here A is symmetric and positive definite, and is treated as a band matrix, which must first be
factorized by F07HDF (DPBTRF). The true condition number in the 1-norm is 74:15.

10.1 Program Text

Program f07hgfe

! F07HGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dlansb => f06ref, dpbcon, dpbtrf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, j, kd, ldab, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), work(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
Allocate (ab(ldab,n),work(3*n),iwork(n))

! Read A from data file

Read (nin,*) uplo
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If (uplo==’U’) Then
Do i = 1, n

Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))
End Do

Else If (uplo==’L’) Then
Do i = 1, n

Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)
End Do

End If

! Compute norm of A

! f06ref is the NAG name equivalent of the LAPACK auxiliary dlansb
anorm = dlansb(’1-norm’,uplo,n,kd,ab,ldab,work)

! Factorize A
! The NAG name equivalent of dpbtrf is f07hdf

Call dpbtrf(uplo,n,kd,ab,ldab,info)

Write (nout,*)
If (info==0) Then

! Estimate condition number
! The NAG name equivalent of dpbcon is f07hgf

Call dpbcon(uplo,n,kd,ab,ldab,anorm,rcond,work,iwork,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’A is not positive definite’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07hgfe

10.2 Program Data

F07HGF Example Program Data
4 1 :Values of N and KD
’L’ :Value of UPLO
5.49
2.68 5.63

-2.39 2.60
-2.22 5.17 :End of matrix A

10.3 Program Results

F07HGF Example Program Results

Estimate of condition number = 7.42E+01
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NAG Library Routine Document

F07HHF (DPBRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HHF (DPBRFS) returns error bounds for the solution of a real symmetric positive definite band
system of linear equations with multiple right-hand sides, AX ¼ B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07HHF (UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
LDX, FERR, BERR, WORK, IWORK, INFO)

&

INTEGER N, KD, NRHS, LDAB, LDAFB, LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) AB(LDAB,*), AFB(LDAFB,*), B(LDB,*), X(LDX,*),

FERR(NRHS), BERR(NRHS), WORK(3*N)
&

CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpbrfs.

3 Description

F07HHF (DPBRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a real symmetric positive definite band system of linear equations with multiple right-hand
sides AX ¼ B. The routine handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of F07HHF (DPBRFS) in terms of a single right-hand side b
and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UTU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLT, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: KD – INTEGER Input

On entry: kd, the number of superdiagonals or subdiagonals of the matrix A.

Constraint: KD � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n original symmetric positive definite band matrix A as supplied to F07HDF
(DPBTRF).

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HHF (DPBRFS) is called.

Constraint: LDAB � KDþ 1.

7: AFBðLDAFB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AFB must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07HDF (DPBTRF).

8: LDAFB – INTEGER Input

On entry: the first dimension of the array AFB as declared in the (sub)program from which
F07HHF (DPBRFS) is called.

Constraint: LDAFB � KDþ 1.

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07HHF
(DPBRFS) is called.

Constraint: LDB � max 1;Nð Þ.

11: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07HEF (DPBTRS).

On exit: the improved solution matrix X.

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07HHF
(DPBRFS) is called.

Constraint: LDX � max 1;Nð Þ.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

15: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

16: IWORKðNÞ – INTEGER array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07HHF (DPBRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07HHF (DPBRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 8nk floating-point
operations. Each step of iterative refinement involves an additional 12nk operations. This assumes
n� k. At most five steps of iterative refinement are performed, but usually only one or two steps are
required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
4nk operations.

The complex analogue of this routine is F07HVF (ZPBRFS).

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
5:49 2:68 0:00 0:00
2:68 5:63 �2:39 0:00
0:00 �2:39 2:60 �2:22
0:00 0:00 �2:22 5:17

0B@
1CA and B ¼

22:09 5:10
9:31 30:81
�5:24 �25:82
11:83 22:90

0B@
1CA:

Here A is symmetric and positive definite, and is treated as a band matrix, which must first be
factorized by F07HDF (DPBTRF).

10.1 Program Text

Program f07hhfe

! F07HHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpbrfs, dpbtrf, dpbtrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, ldafb, &

ldb, ldx, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), afb(:,:), b(:,:), berr(:), &

ferr(:), work(:), x(:,:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HHF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd, nrhs
ldab = kd + 1
ldafb = kd + 1
ldb = n
ldx = n
Allocate (ab(ldab,n),afb(ldafb,n),b(ldb,nrhs),berr(nrhs),ferr(nrhs), &

work(3*n),x(ldx,n),iwork(n))
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! Set A to zero to avoid referencing uninitialized elements

ab(1:kd+1,1:n) = zero

! Read A and B from data file, and copy A to AFB and B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

afb(1:kd+1,1:n) = ab(1:kd+1,1:n)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AFB
! The NAG name equivalent of dpbtrf is f07hdf

Call dpbtrf(uplo,n,kd,afb,ldafb,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of dpbtrs is f07hef

Call dpbtrs(uplo,n,kd,nrhs,afb,ldafb,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of dpbrfs is f07hhf
Call dpbrfs(uplo,n,kd,nrhs,ab,ldab,afb,ldafb,b,ldb,x,ldx,ferr,berr, &

work,iwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’A is not positive definite’

End If

99999 Format ((3X,1P,7E11.1))
End Program f07hhfe

10.2 Program Data

F07HHF Example Program Data
4 1 2 :Values of N, KD and NRHS
’L’ :Value of UPLO
5.49
2.68 5.63

-2.39 2.60
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-2.22 5.17 :End of matrix A
22.09 5.10
9.31 30.81

-5.24 -25.82
11.83 22.90 :End of matrix B

10.3 Program Results

F07HHF Example Program Results

Solution(s)
1 2

1 5.0000 -2.0000
2 -2.0000 6.0000
3 -3.0000 -1.0000
4 1.0000 4.0000

Backward errors (machine-dependent)
4.4E-17 9.2E-17

Estimated forward error bounds (machine-dependent)
2.0E-14 2.9E-14
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NAG Library Routine Document

F07HNF (ZPBSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HNF (ZPBSV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian positive definite band matrix of bandwidth 2kd þ 1ð Þ and X and B are
n by r matrices.

2 Specification

SUBROUTINE F07HNF (UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO)

INTEGER N, KD, NRHS, LDAB, LDB, INFO
COMPLEX (KIND=nag_wp) AB(LDAB,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpbsv.

3 Description

F07HNF (ZPBSV) uses the Cholesky decomposition to factor A as A ¼ UHU if UPLO ¼ U or
A ¼ LLH if UPLO ¼ L , where U is an upper triangular band matrix, and L is a lower triangular band
matrix, with the same number of superdiagonals or subdiagonals as A. The factored form of A is then
used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.
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3: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the Hermitian band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: if INFO ¼ 0, the triangular factor U or L from the Cholesky factorization A ¼ UHU or
A ¼ LLH of the band matrix A, in the same storage format as A.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HNF (ZPBSV) is called.

Constraint: LDAB � KDþ 1.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07HNF
(ZPBSV) is called.

Constraint: LDB � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed.
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7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

F07HPF (ZPBSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04CFF solves Ax ¼ b and returns a
forward error bound and condition estimate. F04CFF calls F07HNF (ZPBSV) to solve the equations.

8 Parallelism and Performance

F07HNF (ZPBSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07HNF (ZPBSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When n� k, the total number of floating-point operations is approximately 4n kþ 1ð Þ2 þ 16nkr, where
k is the number of superdiagonals and r is the number of right-hand sides.

The real analogue of this routine is F07HAF (DPBSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the Hermitian positive definite band matrix

A ¼
9:39 1:08� 1:73i 0 0
1:08þ 1:73i 1:69 �0:04þ 0:29i 0
0 �0:04� 0:29i 2:65 �0:33þ 2:24i
0 0 �0:33� 2:24i 2:17

0B@
1CA

and

b ¼
�12:42þ 68:42i
�9:93þ 0:88i
�27:30� 0:01i

5:31þ 23:63i

0B@
1CA:

Details of the Cholesky factorization of A are also output.

F07 – Linear Equations (LAPACK) F07HNF

Mark 26 F07HNF.3



10.1 Program Text

Program f07hnfe

! F07HNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dff, zpbsv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), b(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
Allocate (ab(ldab,n),b(n))

! Read the upper or lower triangular part of the band matrix A
! from data file

If (uplo==’U’) Then
Read (nin,*)((ab(kd+1+i-j,j),j=i,min(n,i+kd)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-kd),i),i=1,n)

End If

! Read b from data file

Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of zpbsv is f07hnf

Call zpbsv(uplo,n,kd,1,ab,ldab,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
If (uplo==’U’) Then

Call x04dff(n,n,0,kd,ab,ldab,’Bracketed’,’F7.4’,’Cholesky factor U’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else If (uplo==’L’) Then
Call x04dff(n,n,kd,0,ab,ldab,’Bracketed’,’F7.4’,’Cholesky factor L’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
End If
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Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
99998 Format (1X,A,I3,A)

End Program f07hnfe

10.2 Program Data

F07HNF Example Program Data

4 1 :Values of N and KD

( 9.39, 0.00) ( 1.08,-1.73)
( 1.69, 0.00) ( -0.04, 0.29)

( 2.65, 0.00) ( -0.33, 2.24)
( 2.17, 0.00) :End of matrix A

(-12.42,68.42) ( -9.93, 0.88) (-27.30,-0.01) ( 5.31,23.63) :End of vector b

10.3 Program Results

F07HNF Example Program Results

Solution
(-1.0000, 8.0000) ( 2.0000,-3.0000) (-4.0000,-5.0000) ( 7.0000, 6.0000)

Cholesky factor U
1 2 3 4

1 ( 3.0643, 0.0000) ( 0.3524,-0.5646)
2 ( 1.1167, 0.0000) (-0.0358, 0.2597)
3 ( 1.6066, 0.0000) (-0.2054, 1.3942)
4 ( 0.4289, 0.0000)
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NAG Library Routine Document

F07HPF (ZPBSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HPF (ZPBSVX) uses the Cholesky factorization

A ¼ UHU or A ¼ LLH

to compute the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian positive definite band matrix of bandwidth 2kd þ 1ð Þ and X and B are
n by r matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07HPF (FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, EQUED,
S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK,
INFO)

&
&

INTEGER N, KD, NRHS, LDAB, LDAFB, LDB, LDX, INFO
REAL (KIND=nag_wp) S(*), RCOND, FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) AB(LDAB,*), AFB(LDAFB,*), B(LDB,*), X(LDX,*),

WORK(2*N)
&

CHARACTER(1) FACT, UPLO, EQUED

The routine may be called by its LAPACK name zpbsvx.

3 Description

F07HPF (ZPBSVX) performs the following steps:

1. If FACT ¼ E , real diagonal scaling factors, DS , are computed to equilibrate the system:

DSADSð Þ D�1S X
� �

¼ DSB:

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by DSADS and B by DSB.

2. If FACT ¼ N or E , the Cholesky decomposition is used to factor the matrix A (after equilibration
if FACT ¼ E ) as A ¼ UHU if UPLO ¼ U or A ¼ LLH if UPLO ¼ L , where U is an upper
triangular matrix and L is a lower triangular matrix.

3. If the leading i by i principal minor of A is not positive definite, then the routine returns with
INFO ¼ i. Otherwise, the factored form of A is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number is less than machine precision, INFO ¼ Nþ 1
is returned as a warning, but the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by DS so that it solves the original system
before equilibration.
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4 References
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

FACT ¼ F
AFB contains the factorized form of A. If EQUED ¼ Y , the matrix A has been
equilibrated with scaling factors given by S. AB and AFB will not be modified.

FACT ¼ N
The matrix A will be copied to AFB and factorized.

FACT ¼ E
The matrix A will be equilibrated if necessary, then copied to AFB and factorized.

Constraint: FACT ¼ F , N or E .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

6: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the Hermitian band matrix A, except if FACT ¼ F and
EQUED ¼ Y , in which case AB must contain the equilibrated matrix DSADS .

The matrix is stored in rows 1 to kd þ 1, more precisely,
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if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: if FACT ¼ E and EQUED ¼ Y , AB is overwritten by DSADS.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HPF (ZPBSVX) is called.

Constraint: LDAB � KDþ 1.

8: AFBðLDAFB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AFB must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , AFB contains the triangular factor U or L from the Cholesky
factorization A ¼ UHU or A ¼ LLH of the band matrix A, in the same storage format as A. If
EQUED ¼ Y , AFB is the factorized form of the equilibrated matrix A.

On exit: if FACT ¼ N , AFB returns the triangular factor U or L from the Cholesky factorization
A ¼ UHU or A ¼ LLH.

If FACT ¼ E , AFB returns the triangular factor U or L from the Cholesky factorization
A ¼ UHU or A ¼ LLH of the equilibrated matrix A (see the description of AB for the form of
the equilibrated matrix).

9: LDAFB – INTEGER Input

On entry: the first dimension of the array AFB as declared in the (sub)program from which
F07HPF (ZPBSVX) is called.

Constraint: LDAFB � KDþ 1.

10: EQUED – CHARACTER(1) Input/Output

On entry: if FACT ¼ N or E , EQUED need not be set.

If FACT ¼ F , EQUED must specify the form of the equilibration that was performed as follows:

if EQUED ¼ N , no equilibration;

if EQUED ¼ Y , equilibration was performed, i.e., A has been replaced by DSADS.

On exit: if FACT ¼ F , EQUED is unchanged from entry.

Otherwise, if no constraints are violated, EQUED specifies the form of the equilibration that was
performed as specified above.

Constraint: if FACT ¼ F , EQUED ¼ N or Y .

11: Sð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array S must be at least max 1;Nð Þ.
On entry: if FACT ¼ N or E , S need not be set.

If FACT ¼ F and EQUED ¼ Y , S must contain the scale factors, DS , for A; each element of S
must be positive.

On exit: if FACT ¼ F , S is unchanged from entry.

Otherwise, if no constraints are violated and EQUED ¼ Y , S contains the scale factors, DS , for
A; each element of S is positive.
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12: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if EQUED ¼ N , B is not modified.

If EQUED ¼ Y , B is overwritten by DSB.

13: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07HPF
(ZPBSVX) is called.

Constraint: LDB � max 1;Nð Þ.

14: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X to the original system of equations.
Note that the arrays A and B are modified on exit if EQUED ¼ Y , and the solution to the
equilibrated system is D�1S X.

15: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07HPF
(ZPBSVX) is called.

Constraint: LDX � max 1;Nð Þ.

16: RCOND – REAL (KIND=nag_wp) Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the

matrix A (after equilibration if that is performed), computed as RCOND ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

17: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

18: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

19: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

20: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed. RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

U (or L) is nonsingular, but RCOND is less than machine precision, meaning that the matrix is
singular to working precision. Nevertheless, the solution and error bounds are computed because
there are a number of situations where the computed solution can be more accurate than the value
of RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UHj j Uj j;
if UPLO ¼ L , Ej j � c nð Þ� Lj j LHj j,

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham
(2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07HPF (ZPBSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07HPF (ZPBSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When n� k, the factorization of A requires approximately 4n kþ 1ð Þ2 floating-point operations, where
k is the number of superdiagonals.

For each right-hand side, computation of the backward error involves a minimum of 32nk floating-point
operations. Each step of iterative refinement involves an additional 48nk operations. At most five steps
of iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 16nk operations.
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The real analogue of this routine is F07HBF (DPBSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite band matrix

A ¼
9:39 1:08� 1:73i 0 0
1:08þ 1:73i 1:69 �0:04þ 0:29i 0
0 �0:04� 0:29i 2:65 �0:33þ 2:24i
0 0 �0:33� 2:24i 2:17

0B@
1CA

and

B ¼
�12:42þ 68:42i 54:30� 56:56i
�9:93þ 0:88i 18:32þ 4:76i
�27:30� 0:01i �4:40þ 9:97i

5:31þ 23:63i 9:43þ 1:41i

0B@
1CA:

Error estimates for the solutions, information on equilibration and an estimate of the reciprocal of the
condition number of the scaled matrix A are also output.

10.1 Program Text

Program f07hpfe

! F07HPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpbsvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, j, kd, ldab, ldafb, &

ldb, ldx, n, nrhs
Character (1) :: equed

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), afb(:,:), b(:,:), &

work(:), x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:), s(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd, nrhs
ldab = kd + 1
ldafb = kd + 1
ldb = n
ldx = n
Allocate (ab(ldab,n),afb(ldafb,n),b(ldb,nrhs),work(3*n),x(ldx,nrhs), &

berr(nrhs),ferr(nrhs),rwork(n),s(n))

! Read the upper or lower triangular part of the band matrix A
! from data file
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If (uplo==’U’) Then
Read (nin,*)((ab(kd+1+i-j,j),j=i,min(n,i+kd)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-kd),i),i=1,n)

End If

! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of zpbsvx is f07hpf

Call zpbsvx(’Equilibration’,uplo,n,kd,nrhs,ab,ldab,afb,ldafb,equed,s,b, &
ldb,x,ldx,rcond,ferr,berr,work,rwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds, condition number and the form
! of equilibration

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)
If (equed==’N’) Then

Write (nout,*) ’A has not been equilibrated’
Else If (equed==’Y’) Then

Write (nout,*) &
’A has been row and column scaled as diag(S)*A*diag(S)’

End If

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The leading minor of order ’, info, &
’ is not positive definite’

End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07hpfe

10.2 Program Data

F07HPF Example Program Data

4 1 2 :Values of N, KD and NRHS

( 9.39, 0.00) ( 1.08,-1.73)
( 1.69, 0.00) ( -0.04, 0.29)

( 2.65, 0.00) ( -0.33, 2.24)
( 2.17, 0.00) :End of matrix A
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(-12.42,68.42) (54.30,-56.56)
( -9.93, 0.88) (18.32, 4.76)
(-27.30,-0.01) (-4.40, 9.97)
( 5.31,23.63) ( 9.43, 1.41) :End of matrix B

10.3 Program Results

F07HPF Example Program Results

Solution(s)
1 2

1 (-1.0000, 8.0000) ( 5.0000,-6.0000)
2 ( 2.0000,-3.0000) ( 2.0000, 3.0000)
3 (-4.0000,-5.0000) (-8.0000, 4.0000)
4 ( 7.0000, 6.0000) (-1.0000,-7.0000)

Backward errors (machine-dependent)
8.2E-17 5.4E-17

Estimated forward error bounds (machine-dependent)
3.6E-14 3.0E-14

Estimate of reciprocal condition number
7.6E-03

A has not been equilibrated
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NAG Library Routine Document

F07HRF (ZPBTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HRF (ZPBTRF) computes the Cholesky factorization of a complex Hermitian positive definite band
matrix.

2 Specification

SUBROUTINE F07HRF (UPLO, N, KD, AB, LDAB, INFO)

INTEGER N, KD, LDAB, INFO
COMPLEX (KIND=nag_wp) AB(LDAB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpbtrf.

3 Description

F07HRF (ZPBTRF) forms the Cholesky factorization of a complex Hermitian positive definite band
matrix A either as A ¼ UHU if UPLO ¼ U or A ¼ LLH if UPLO ¼ L , where U (or L) is an upper (or
lower) triangular band matrix with the same number of superdiagonals (or subdiagonals) as A.

4 References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of
Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UHU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLH, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F07 – Linear Equations (LAPACK) F07HRF
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3: KD – INTEGER Input

On entry: kd, the number of superdiagonals or subdiagonals of the matrix A.

Constraint: KD � 0.

4: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n Hermitian positive definite band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: the upper or lower triangle of A is overwritten by the Cholesky factor U or L as
specified by UPLO, using the same storage format as described above.

5: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HRF (ZPBTRF) is called.

Constraint: LDAB � KDþ 1.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed. See Section 3.7 in How to Use the NAG
Library and its Documentation for further information. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite and the factorization could not be
completed. Hence A itself is not positive definite. This may indicate an error in forming the
matrix A. There is no routine specifically designed to factorize a Hermitian band matrix which is
not positive definite; the matrix must be treated either as a nonsymmetric band matrix, by calling
F07BRF (ZGBTRF) or as a full Hermitian matrix, by calling F07MRF (ZHETRF).

7 Accuracy

If UPLO ¼ U , the computed factor U is the exact factor of a perturbed matrix Aþ E, where

Ej j � c kþ 1ð Þ� UH
		 		 Uj j;

c kþ 1ð Þ is a modest linear function of kþ 1, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factor L. It follows that
eij
		 		 � c kþ 1ð Þ� ffiffiffiffiffiffiffiffiffiffiffi

aiiajj
p

.
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8 Parallelism and Performance

F07HRF (ZPBTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 4n kþ 1ð Þ2, assuming n� k.

A call to F07HRF (ZPBTRF) may be followed by calls to the routines:

F07HSF (ZPBTRS) to solve AX ¼ B;
F07HUF (ZPBCON) to estimate the condition number of A.

The real analogue of this routine is F07HDF (DPBTRF).

10 Example

This example computes the Cholesky factorization of the matrix A, where

A ¼
9:39þ 0:00i 1:08� 1:73i 0:00þ 0:00i 0:00þ 0:00i
1:08þ 1:73i 1:69þ 0:00i �0:04þ 0:29i 0:00þ 0:00i
0:00þ 0:00i �0:04� 0:29i 2:65þ 0:00i �0:33þ 2:24i
0:00þ 0:00i 0:00þ 0:00i �0:33� 2:24i 2:17þ 0:00i

0B@
1CA:

10.1 Program Text

Program f07hrfe

! F07HRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dff, zpbtrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HRF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
Allocate (ab(ldab,n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))
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End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If

! Factorize A
! The NAG name equivalent of zpbtrf is f07hrf

Call zpbtrf(uplo,n,kd,ab,ldab,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Print factor

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
If (uplo==’U’) Then

Call x04dff(n,n,0,kd,ab,ldab,’Bracketed’,’F7.4’,’Factor’,’Integer’, &
rlabs,’Integer’,clabs,80,0,ifail)

Else If (uplo==’L’) Then

Call x04dff(n,n,kd,0,ab,ldab,’Bracketed’,’F7.4’,’Factor’,’Integer’, &
rlabs,’Integer’,clabs,80,0,ifail)

End If

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07hrfe

10.2 Program Data

F07HRF Example Program Data
4 1 :Values of N and KD
’L’ :Value of UPLO

( 9.39, 0.00)
( 1.08, 1.73) ( 1.69, 0.00)

(-0.04,-0.29) ( 2.65, 0.00)
(-0.33,-2.24) ( 2.17, 0.00) :End of matrix A

10.3 Program Results

F07HRF Example Program Results

Factor
1 2 3 4

1 ( 3.0643, 0.0000)
2 ( 0.3524, 0.5646) ( 1.1167, 0.0000)
3 (-0.0358,-0.2597) ( 1.6066, 0.0000)
4 (-0.2054,-1.3942) ( 0.4289, 0.0000)
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NAG Library Routine Document

F07HSF (ZPBTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HSF (ZPBTRS) solves a complex Hermitian positive definite band system of linear equations with
multiple right-hand sides,

AX ¼ B;

where A has been factorized by F07HRF (ZPBTRF).

2 Specification

SUBROUTINE F07HSF (UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO)

INTEGER N, KD, NRHS, LDAB, LDB, INFO
COMPLEX (KIND=nag_wp) AB(LDAB,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpbtrs.

3 Description

F07HSF (ZPBTRS) is used to solve a complex Hermitian positive definite band system of linear
equations AX ¼ B, the routine must be preceded by a call to F07HRF (ZPBTRF) which computes the
Cholesky factorization of A. The solution X is computed by forward and backward substitution.

If UPLO ¼ U , A ¼ UHU , where U is upper triangular; the solution X is computed by solving
UHY ¼ B and then UX ¼ Y .
If UPLO ¼ L , A ¼ LLH, where L is lower triangular; the solution X is computed by solving LY ¼ B
and then LHX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UHU , where U is upper triangular.

UPLO ¼ L
A ¼ LLH, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: KD – INTEGER Input

On entry: kd, the number of superdiagonals or subdiagonals of the matrix A.

Constraint: KD � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07HRF (ZPBTRF).

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HSF (ZPBTRS) is called.

Constraint: LDAB � KDþ 1.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07HSF
(ZPBTRS) is called.

Constraint: LDB � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c kþ 1ð Þ� UHj j Uj j;
if UPLO ¼ L , Ej j � c kþ 1ð Þ� Lj j LHj j,

c kþ 1ð Þ is a modest linear function of kþ 1, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c kþ 1ð Þ cond A; xð Þ�
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where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. Note that cond A; xð Þ
can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07HVF (ZPBRFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07HUF (ZPBCON).

8 Parallelism and Performance

F07HSF (ZPBTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07HSF (ZPBTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 16nkr, assuming n� k.

This routine may be followed by a call to F07HVF (ZPBRFS) to refine the solution and return an error
estimate.

The real analogue of this routine is F07HEF (DPBTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
9:39þ 0:00i 1:08� 1:73i 0:00þ 0:00i 0:00þ 0:00i
1:08þ 1:73i 1:69þ 0:00i �0:04þ 0:29i 0:00þ 0:00i
0:00þ 0:00i �0:04� 0:29i 2:65þ 0:00i �0:33þ 2:24i
0:00þ 0:00i 0:00þ 0:00i �0:33� 2:24i 2:17þ 0:00i

0B@
1CA

and

B ¼
�12:42þ 68:42i 54:30� 56:56i
�9:93þ 0:88i 18:32þ 4:76i
�27:30� 0:01i �4:40þ 9:97i

5:31þ 23:63i 9:43þ 1:41i

0B@
1CA:

Here A is Hermitian positive definite, and is treated as a band matrix, which must first be factorized by
F07HRF (ZPBTRF).

10.1 Program Text

Program f07hsfe

! F07HSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpbtrf, zpbtrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, ldb, n, &

nrhs
Character (1) :: uplo
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! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd, nrhs
ldab = kd + 1
ldb = n
Allocate (ab(ldab,n),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of zpbtrf is f07hrf

Call zpbtrf(uplo,n,kd,ab,ldab,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of zpbtrs is f07hsf

Call zpbtrs(uplo,n,kd,nrhs,ab,ldab,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07hsfe

10.2 Program Data

F07HSF Example Program Data
4 1 2 :Values of N, KD and NRHS
’L’ :Value of UPLO

( 9.39, 0.00)
( 1.08, 1.73) ( 1.69, 0.00)

(-0.04,-0.29) ( 2.65, 0.00)
(-0.33,-2.24) ( 2.17, 0.00) :End of matrix A

(-12.42,68.42) (54.30,-56.56)
( -9.93, 0.88) (18.32, 4.76)
(-27.30,-0.01) (-4.40, 9.97)
( 5.31,23.63) ( 9.43, 1.41) :End of matrix B
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10.3 Program Results

F07HSF Example Program Results

Solution(s)
1 2

1 (-1.0000, 8.0000) ( 5.0000,-6.0000)
2 ( 2.0000,-3.0000) ( 2.0000, 3.0000)
3 (-4.0000,-5.0000) (-8.0000, 4.0000)
4 ( 7.0000, 6.0000) (-1.0000,-7.0000)
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NAG Library Routine Document

F07HTF (ZPBEQU)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HTF (ZPBEQU) computes a diagonal scaling matrix S intended to equilibrate a complex n by n
Hermitian positive definite band matrix A, with bandwidth 2kd þ 1ð Þ, and reduce its condition number.

2 Specification

SUBROUTINE F07HTF (UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO)

INTEGER N, KD, LDAB, INFO
REAL (KIND=nag_wp) S(N), SCOND, AMAX
COMPLEX (KIND=nag_wp) AB(LDAB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpbequ.

3 Description

F07HTF (ZPBEQU) computes a diagonal scaling matrix S chosen so that

sj ¼ 1=
ffiffiffiffiffiffi
ajj
p

:

This means that the matrix B given by

B ¼ SAS;

has diagonal elements equal to unity. This in turn means that the condition number of B, �2 Bð Þ, is
within a factor n of the matrix of smallest possible condition number over all possible choices of
diagonal scalings (see Corollary 7.6 of Higham (2002)).

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored in the array AB, as
follows:

UPLO ¼ U
The upper triangle of A is stored.

UPLO ¼ L
The lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

4: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the Hermitian positive definite band matrix A whose
scaling factors are to be computed.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

Only the elements of the array AB corresponding to the diagonal elements of A are referenced.
(Row kd þ 1ð Þ of AB when UPLO ¼ U , row 1 of AB when UPLO ¼ L .)

5: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HTF (ZPBEQU) is called.

Constraint: LDAB � KDþ 1.

6: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0, S contains the diagonal elements of the scaling matrix S.

7: SCOND – REAL (KIND=nag_wp) Output

On exit: if INFO ¼ 0, SCOND contains the ratio of the smallest value of S to the largest value of
S. If SCOND � 0:1 and AMAX is neither too large nor too small, it is not worth scaling by S.

8: AMAX – REAL (KIND=nag_wp) Output

On exit: max aij
		 		. If AMAX is very close to overflow or underflow, the matrix A should be

scaled.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The valueh ith diagonal element of A is not positive (and hence A cannot be positive definite).

7 Accuracy

The computed scale factors will be close to the exact scale factors.
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8 Parallelism and Performance

F07HTF (ZPBEQU) is not threaded in any implementation.

9 Further Comments

The real analogue of this routine is F07HFF (DPBEQU).

10 Example

This example equilibrates the Hermitian positive definite matrix A given by

A ¼

9:39 1:08� 1:73i 0 0
1:08þ 1:73i 1:69 �0:04þ 0:29ið Þ � 1010 0
0 �0:04� 0:29ið Þ � 1010 2:65� 1020 �0:33þ 2:24ið Þ � 1010

0 0 �0:33� 2:24ið Þ � 1010 2:17

0BB@
1CCA:

Details of the scaling factors and the scaled matrix are output.

10.1 Program Text

Program f07htfe

! F07HTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06kcf, nag_wp, x02ajf, x02amf, x02bhf, x04dff, &

zdscal, zpbequ
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: thresh = 0.1_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: amax, big, scond, small
Integer :: i, i0, i1, ifail, ilen, info, j, kd, &

ldab, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:)
Real (Kind=nag_wp), Allocatable :: s(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min, real

! .. Executable Statements ..
Write (nout,*) ’F07HTF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
Allocate (ab(ldab,n),s(n))

! Read the upper or lower triangular part of the band matrix A
! from data file

If (uplo==’U’) Then
Do i = 1, n

Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))
End Do

Else If (uplo==’L’) Then
Do i = 1, n

Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)
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End Do
End If

! Print the matrix A

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
If (uplo==’U’) Then

Call x04dff(n,n,0,kd,ab,ldab,’Bracketed’,’1P,E10.2’,’Matrix A’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else If (uplo==’L’) Then
Call x04dff(n,n,kd,0,ab,ldab,’Bracketed’,’1P,E10.2’,’Matrix A’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
End If

Write (nout,*)

! Compute diagonal scaling factors

! The NAG name equivalent of zpbequ is f07htf
Call zpbequ(uplo,n,kd,ab,ldab,s,scond,amax,info)

If (info>0) Then
Write (nout,99999) ’Diagonal element’, info, ’ of A is non positive’

Else

! Print SCOND, AMAX and the scale factors

Write (nout,99998) ’SCOND =’, scond, ’, AMAX =’, amax
Write (nout,*)
Write (nout,*) ’Diagonal scaling factors’
Write (nout,99997) s(1:n)
Write (nout,*)
Flush (nout)

! Compute values close to underflow and overflow

small = x02amf()/(x02ajf()*real(x02bhf(),kind=nag_wp))
big = one/small
If ((scond<thresh) .Or. (amax<small) .Or. (amax>big)) Then

! Scale A

If (uplo==’U’) Then
! The NAG name equivalent of zdscal is f06jdf

Do j = 1, n
i0 = max(1,j-kd)
i1 = 1 + i0 - (j-kd)
ilen = j - i0 + 1
Call zdscal(ilen,s(j),ab(i1,j),1)
Call f06kcf(ilen,s(i0),1,ab(i1,j),1)

End Do

Else If (uplo==’L’) Then
Do j = 1, n

i1 = 1
ilen = min(n,j+kd) - j + 1
Call zdscal(ilen,s(j),ab(i1,j),1)
Call f06kcf(ilen,s(j),1,ab(i1,j),1)

End Do
End If

! Print the scaled matrix

ifail = 0
If (uplo==’U’) Then

Call x04dff(n,n,0,kd,ab,ldab,’Bracketed’,’F7.4’,’Scaled matrix’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else If (uplo==’L’) Then
Call x04dff(n,n,kd,0,ab,ldab,’Bracketed’,’F7.4’,’Scaled matrix’, &
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’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
End If

End If
End If

99999 Format (1X,A,I4,A)
99998 Format (1X,2(A,1P,E8.1))
99997 Format ((1X,1P,7E11.1))

End Program f07htfe

10.2 Program Data

F07HTF Example Program Data
4 1 :Values of N and KD

( 9.39, 0.00) ( 1.08,-1.73)
( 1.69, 0.00) ( -0.04E+10, 0.29E+10)

( 2.64E+20, 0.00 ) ( -0.33E+10, 2.24E+10)
( 2.17, 0.00 )

:End of matrix A

10.3 Program Results

F07HTF Example Program Results

Matrix A
1 2 3

1 ( 9.39E+00, 0.00E+00) ( 1.08E+00, -1.73E+00)
2 ( 1.69E+00, 0.00E+00) ( -4.00E+08, 2.90E+09)
3 ( 2.64E+20, 0.00E+00)
4

4
1
2
3 ( -3.30E+09, 2.24E+10)
4 ( 2.17E+00, 0.00E+00)

SCOND = 8.0E-11, AMAX = 2.6E+20

Diagonal scaling factors
3.3E-01 7.7E-01 6.2E-11 6.8E-01

Scaled matrix
1 2 3 4

1 ( 1.0000, 0.0000) ( 0.2711,-0.4343)
2 ( 1.0000, 0.0000) (-0.0189, 0.1373)
3 ( 1.0000, 0.0000) (-0.1379, 0.9359)
4 ( 1.0000, 0.0000)
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NAG Library Routine Document

F07HUF (ZPBCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HUF (ZPBCON) estimates the condition number of a complex Hermitian positive definite band
matrix A, where A has been factorized by F07HRF (ZPBTRF).

2 Specification

SUBROUTINE F07HUF (UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK, RWORK,
INFO)

&

INTEGER N, KD, LDAB, INFO
REAL (KIND=nag_wp) ANORM, RCOND, RWORK(N)
COMPLEX (KIND=nag_wp) AB(LDAB,*), WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpbcon.

3 Description

F07HUF (ZPBCON) estimates the condition number (in the 1-norm) of a complex Hermitian positive
definite band matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is Hermitian, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06UEF to compute Ak k1 and a call to F07HRF (ZPBTRF)
to compute the Cholesky factorization of A. The routine then uses Higham's implementation of Hager's
method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UHU , where U is upper triangular.

UPLO ¼ L
A ¼ LLH, where L is lower triangular.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: KD – INTEGER Input

On entry: kd, the number of superdiagonals or subdiagonals of the matrix A.

Constraint: KD � 0.

4: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07HRF (ZPBTRF).

5: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HUF (ZPBCON) is called.

Constraint: LDAB � KDþ 1.

6: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06UEF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07HRF (ZPBTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

7: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

8: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

9: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.
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8 Parallelism and Performance

F07HUF (ZPBCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07HUF (ZPBCON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 16nk
real floating-point operations (assuming n� k) but takes considerably longer than a call to F07HSF
(ZPBTRS) with one right-hand side, because extra care is taken to avoid overflow when A is
approximately singular.

The real analogue of this routine is F07HGF (DPBCON).

10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
9:39þ 0:00i 1:08� 1:73i 0:00þ 0:00i 0:00þ 0:00i
1:08þ 1:73i 1:69þ 0:00i �0:04þ 0:29i 0:00þ 0:00i
0:00þ 0:00i �0:04� 0:29i 2:65þ 0:00i �0:33þ 2:24i
0:00þ 0:00i 0:00þ 0:00i �0:33� 2:24i 2:17þ 0:00i

0B@
1CA:

Here A is Hermitian positive definite, and is treated as a band matrix, which must first be factorized by
F07HRF (ZPBTRF). The true condition number in the 1-norm is 153:45.

10.1 Program Text

Program f07hufe

! F07HUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, zlanhb => f06uef, zpbcon, zpbtrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, j, kd, ldab, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
Allocate (ab(ldab,n),work(2*n),rwork(n))

! Read A from data file

Read (nin,*) uplo
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If (uplo==’U’) Then
Do i = 1, n

Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))
End Do

Else If (uplo==’L’) Then
Do i = 1, n

Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)
End Do

End If

! Compute norm of A
! f06uef is the NAG name equivalent of the LAPACK auxiliary zlanhb

anorm = zlanhb(’1-norm’,uplo,n,kd,ab,ldab,rwork)

! Factorize A
! The NAG name equivalent of zpbtrf is f07hrf

Call zpbtrf(uplo,n,kd,ab,ldab,info)

Write (nout,*)
If (info==0) Then

! Estimate condition number
! The NAG name equivalent of zpbcon is f07huf

Call zpbcon(uplo,n,kd,ab,ldab,anorm,rcond,work,rwork,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’A is not positive definite’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07hufe

10.2 Program Data

F07HUF Example Program Data
4 1 :Values of N and KD
’L’ :Value of UPLO

( 9.39, 0.00)
( 1.08, 1.73) ( 1.69, 0.00)

(-0.04,-0.29) ( 2.65, 0.00)
(-0.33,-2.24) ( 2.17, 0.00) :End of matrix A

10.3 Program Results

F07HUF Example Program Results

Estimate of condition number = 1.32E+02

F07HUF NAG Library Manual

F07HUF.4 (last) Mark 26



NAG Library Routine Document

F07HVF (ZPBRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07HVF (ZPBRFS) returns error bounds for the solution of a complex Hermitian positive definite band
system of linear equations with multiple right-hand sides, AX ¼ B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07HVF (UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
LDX, FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, KD, NRHS, LDAB, LDAFB, LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) AB(LDAB,*), AFB(LDAFB,*), B(LDB,*), X(LDX,*),

WORK(2*N)
&

CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpbrfs.

3 Description

F07HVF (ZPBRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex Hermitian positive definite band system of linear equations with multiple right-
hand sides AX ¼ B. The routine handles each right-hand side vector (stored as a column of the matrix
B) independently, so we describe the function of F07HVF (ZPBRFS) in terms of a single right-hand
side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UHU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLH, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: KD – INTEGER Input

On entry: kd, the number of superdiagonals or subdiagonals of the matrix A.

Constraint: KD � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n original Hermitian positive definite band matrix A as supplied to F07HRF
(ZPBTRF).

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07HVF (ZPBRFS) is called.

Constraint: LDAB � KDþ 1.

7: AFBðLDAFB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AFB must be at least max 1;Nð Þ.
On entry: the Cholesky factor of A, as returned by F07HRF (ZPBTRF).

8: LDAFB – INTEGER Input

On entry: the first dimension of the array AFB as declared in the (sub)program from which
F07HVF (ZPBRFS) is called.

Constraint: LDAFB � KDþ 1.

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07HVF
(ZPBRFS) is called.

Constraint: LDB � max 1;Nð Þ.

11: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07HSF (ZPBTRS).

On exit: the improved solution matrix X.

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07HVF
(ZPBRFS) is called.

Constraint: LDX � max 1;Nð Þ.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

15: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

16: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07HVF (ZPBRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07HVF (ZPBRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 32nk real floating-
point operations. Each step of iterative refinement involves an additional 48nk real operations. This
assumes n� k. At most five steps of iterative refinement are performed, but usually only one or two
steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 16nk
real operations.

The real analogue of this routine is F07HHF (DPBRFS).

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
9:39þ 0:00i 1:08� 1:73i 0:00þ 0:00i 0:00þ 0:00i
1:08þ 1:73i 1:69þ 0:00i �0:04þ 0:29i 0:00þ 0:00i
0:00þ 0:00i �0:04� 0:29i 2:65þ 0:00i �0:33þ 2:24i
0:00þ 0:00i 0:00þ 0:00i �0:33� 2:24i 2:17þ 0:00i

0B@
1CA

and

B ¼
�12:42þ 68:42i 54:30� 56:56i
�9:93þ 0:88i 18:32þ 4:76i
�27:30� 0:01i �4:40þ 9:97i

5:31þ 23:63i 9:43þ 1:41i

0B@
1CA:

Here A is Hermitian positive definite, and is treated as a band matrix, which must first be factorized by
F07HRF (ZPBTRF).

10.1 Program Text

Program f07hvfe

! F07HVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpbrfs, zpbtrf, zpbtrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: zero = (0.0E0_nag_wp,0.0E0_nag_wp)
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, ldafb, &

ldb, ldx, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), afb(:,:), b(:,:), &

work(:), x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07HVF Example Program Results’
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! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd, nrhs
ldab = kd + 1
ldafb = kd + 1
ldb = n
ldx = n
Allocate (ab(ldab,n),afb(ldafb,n),b(ldb,nrhs),work(2*n),x(ldx,n), &

berr(nrhs),ferr(nrhs),rwork(n))

! Set A to zero to avoid referencing uninitialized elements

ab(1:kd+1,1:n) = zero

! Read A and B from data file, and copy A to AFB and B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

afb(1:kd+1,1:n) = ab(1:kd+1,1:n)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AFB

Call zpbtrf(uplo,n,kd,afb,ldafb,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X

Call zpbtrs(uplo,n,kd,nrhs,afb,ldafb,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

Call zpbrfs(uplo,n,kd,nrhs,ab,ldab,afb,ldafb,b,ldb,x,ldx,ferr,berr, &
work,rwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’A is not positive definite’

End If

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07hvfe
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10.2 Program Data

F07HVF Example Program Data
4 1 2 :Values of N, KD and NRHS
’L’ :Value of UPLO

( 9.39, 0.00)
( 1.08, 1.73) ( 1.69, 0.00)

(-0.04,-0.29) ( 2.65, 0.00)
(-0.33,-2.24) ( 2.17, 0.00) :End of matrix A

(-12.42,68.42) (54.30,-56.56)
( -9.93, 0.88) (18.32, 4.76)
(-27.30,-0.01) (-4.40, 9.97)
( 5.31,23.63) ( 9.43, 1.41) :End of matrix B

10.3 Program Results

F07HVF Example Program Results

Solution(s)
1 2

1 (-1.0000, 8.0000) ( 5.0000,-6.0000)
2 ( 2.0000,-3.0000) ( 2.0000, 3.0000)
3 (-4.0000,-5.0000) (-8.0000, 4.0000)
4 ( 7.0000, 6.0000) (-1.0000,-7.0000)

Backward errors (machine-dependent)
8.2E-17 8.3E-17

Estimated forward error bounds (machine-dependent)
3.5E-14 3.2E-14
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NAG Library Routine Document

F07JAF (DPTSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JAF (DPTSV) computes the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric positive definite tridiagonal matrix, and X and B are n by r matrices.

2 Specification

SUBROUTINE F07JAF (N, NRHS, D, E, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
REAL (KIND=nag_wp) D(*), E(*), B(LDB,*)

The routine may be called by its LAPACK name dptsv.

3 Description

F07JAF (DPTSV) factors A as A ¼ LDLT. The factored form of A is then used to solve the system of
equations.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix A.

On exit: the n diagonal elements of the diagonal matrix D from the factorization A ¼ LDLT.
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4: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ subdiagonal elements of the tridiagonal matrix A.

On exit: the n� 1ð Þ subdiagonal elements of the unit bidiagonal factor L from the LDLT

factorization of A. (E can also be regarded as the superdiagonal of the unit bidiagonal factor U
from the UTDU factorization of A.)

5: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07JAF
(DPTSV) is called.

Constraint: LDB � max 1;Nð Þ.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite, and the solution has not been
computed. The factorization has not been completed unless N ¼ valueh i.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

F07JBF (DPTSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04BGF solves Ax ¼ b and returns a
forward error bound and condition estimate. F04BGF calls F07JAF (DPTSV) to solve the equations.
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8 Parallelism and Performance

F07JAF (DPTSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of floating-point operations required for the factorization of A is proportional to n, and the
number of floating-point operations required for the solution of the equations is proportional to nr,
where r is the number of right-hand sides.

The complex analogue of this routine is F07JNF (ZPTSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the symmetric positive definite tridiagonal matrix

A ¼

4:0 �2:0 0 0 0
�2:0 10:0 �6:0 0 0

0 �6:0 29:0 15:0 0
0 0 15:0 25:0 8:0
0 0 0 8:0 5:0

0BBB@
1CCCA and b ¼

6:0
9:0
2:0

14:0
7:0

0BBB@
1CCCA:

Details of the LDLT factorization of A are also output.

10.1 Program Text

Program f07jafe

! F07JAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dptsv, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: info, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), d(:), e(:)

! .. Executable Statements ..
Write (nout,*) ’F07JAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (b(n),d(n),e(n-1))

! Read the lower bidiagonal part of the tridiagonal matrix A and
! the right hand side b from data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)
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Read (nin,*) b(1:n)

! Solve the equations Ax = b for x

! The NAG name equivalent of dptsv is f07jaf
Call dptsv(n,1,d,e,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Write (nout,*) ’Diagonal elements of the diagonal matrix D’
Write (nout,99999) d(1:n)
Write (nout,*)
Write (nout,*) ’Subdiagonal elements of the Cholesky factor L’
Write (nout,99999) e(1:n-1)

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format (1X,7F11.4)
99998 Format (1X,A,I3,A)

End Program f07jafe

10.2 Program Data

F07JAF Example Program Data
5 :Value of N
4.0 10.0 29.0 25.0 5.0 :End of diagonal D

-2.0 -6.0 15.0 8.0 :End of sub-diagonal E
6.0 9.0 2.0 14.0 7.0 :End of vector b

10.3 Program Results

F07JAF Example Program Results

Solution
2.5000 2.0000 1.0000 -1.0000 3.0000

Diagonal elements of the diagonal matrix D
4.0000 9.0000 25.0000 16.0000 1.0000

Subdiagonal elements of the Cholesky factor L
-0.5000 -0.6667 0.6000 0.5000
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NAG Library Routine Document

F07JBF (DPTSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JBF (DPTSVX) uses the factorization

A ¼ LDLT

to compute the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric positive definite tridiagonal matrix and X and B are n by r matrices.
Error bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07JBF (FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX, RCOND,
FERR, BERR, WORK, INFO)

&

INTEGER N, NRHS, LDB, LDX, INFO
REAL (KIND=nag_wp) D(*), E(*), DF(*), EF(*), B(LDB,*), X(LDX,*), RCOND,

FERR(NRHS), BERR(NRHS), WORK(2*N)
&

CHARACTER(1) FACT

The routine may be called by its LAPACK name dptsvx.

3 Description

F07JBF (DPTSVX) performs the following steps:

1. If FACT ¼ N , the matrix A is factorized as A ¼ LDLT, where L is a unit lower bidiagonal matrix
and D is diagonal. The factorization can also be regarded as having the form A ¼ UTDU .

2. If the leading i by i principal minor is not positive definite, then the routine returns with INFO ¼ i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, INFO ¼ Nþ 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

FACT ¼ F
DF and EF contain the factorized form of the matrix A. DF and EF will not be modified.

FACT ¼ N
The matrix A will be copied to DF and EF and factorized.

Constraint: FACT ¼ F or N .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix A.

5: Eð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ subdiagonal elements of the tridiagonal matrix A.

6: DFð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DF must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , DF must contain the n diagonal elements of the diagonal matrix D from
the LDLT factorization of A.

On exit: if FACT ¼ N , DF contains the n diagonal elements of the diagonal matrix D from the
LDLT factorization of A.

7: EFð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array EF must be at least max 1;N� 1ð Þ.
On entry: if FACT ¼ F , EF must contain the n� 1ð Þ subdiagonal elements of the unit
bidiagonal factor L from the LDLT factorization of A.

On exit: if FACT ¼ N , EF contains the n� 1ð Þ subdiagonal elements of the unit bidiagonal
factor L from the LDLT factorization of A.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07JBF
(DPTSVX) is called.

Constraint: LDB � max 1;Nð Þ.

10: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07JBF
(DPTSVX) is called.

Constraint: LDX � max 1;Nð Þ.

12: RCOND – REAL (KIND=nag_wp) Output

On exit: the reciprocal condition number of the matrix A. If RCOND is less than the machine
precision (in particular, if RCOND ¼ 0:0), the matrix is singular to working precision. This
condition is indicated by a return code of INFO ¼ Nþ 1.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: the forward error bound for each solution vector x̂j (the jth column of the solution
matrix X). If xj is the true solution corresponding to x̂j, FERRðjÞ is an estimated upper bound
for the magnitude of the largest element in (x̂j � xj) divided by the magnitude of the largest
element in x̂j.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: the component-wise relative backward error of each solution vector x̂j (i.e., the smallest
relative change in any element of A or B that makes x̂j an exact solution).

15: WORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed. RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.
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7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ej j � c nð Þ� Rj j RT
		 		; where R ¼ LD1

2;

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham
(2002) for further details.

If x is the true solution, then the computed solution x̂ satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07JBF (DPTSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07JBF (DPTSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of floating-point operations required for the factorization, and for the estimation of the
condition number of A is proportional to n. The number of floating-point operations required for the
solution of the equations, and for the estimation of the forward and backward error is proportional to
nr, where r is the number of right-hand sides.

The condition estimation is based upon Equation (15.11) of Higham (2002). For further details of the
error estimation, see Section 4.4 of Anderson et al. (1999).

The complex analogue of this routine is F07JPF (ZPTSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric positive definite tridiagonal matrix

A ¼

4:0 �2:0 0 0 0
�2:0 10:0 �6:0 0 0

0 �6:0 29:0 15:0 0
0 0 15:0 25:0 8:0
0 0 0 8:0 5:0

0BBB@
1CCCA

and
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B ¼

6:0 10:0
9:0 4:0
2:0 9:0

14:0 65:0
7:0 23:0

0BBB@
1CCCA:

Error estimates for the solutions and an estimate of the reciprocal of the condition number of A are also
output.

10.1 Program Text

Program f07jbfe

! F07JBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dptsvx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, ldb, ldx, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), berr(:), d(:), df(:), e(:), &

ef(:), ferr(:), work(:), x(:,:)
! .. Executable Statements ..

Write (nout,*) ’F07JBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (b(ldb,nrhs),berr(nrhs),d(n),df(n),e(n-1),ef(n-1),ferr(nrhs), &

work(2*n),x(ldx,nrhs))

! Read the lower bidiagonal part of the tridiagonal matrix A and
! the right hand side b from data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X

! The NAG name equivalent of dptsvx is f07jbf
Call dptsvx(’Not factored’,n,nrhs,d,e,df,ef,b,ldb,x,ldx,rcond,ferr,berr, &

work,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds and condition number

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
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Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The leading minor of order ’, info, &
’ is not positive definite’

End If

99999 Format (1X,1P,7E11.1)
99998 Format (1X,A,I3,A)

End Program f07jbfe

10.2 Program Data

F07JBF Example Program Data
5 2 :Values of N and NRHS
4.0 10.0 29.0 25.0 5.0 :End of diagonal D

-2.0 -6.0 15.0 8.0 :End of sub-diagonal E
6.0 10.0
9.0 4.0
2.0 9.0

14.0 65.0
7.0 23.0 :End of matrix B

10.3 Program Results

F07JBF Example Program Results

Solution(s)
1 2

1 2.5000 2.0000
2 2.0000 -1.0000
3 1.0000 -3.0000
4 -1.0000 6.0000
5 3.0000 -5.0000

Backward errors (machine-dependent)
0.0E+00 7.4E-17

Estimated forward error bounds (machine-dependent)
2.4E-14 4.7E-14

Estimate of reciprocal condition number
9.5E-03
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NAG Library Routine Document

F07JDF (DPTTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JDF (DPTTRF) computes the modified Cholesky factorization of a real n by n symmetric positive
definite tridiagonal matrix A.

2 Specification

SUBROUTINE F07JDF (N, D, E, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) D(*), E(*)

The routine may be called by its LAPACK name dpttrf.

3 Description

F07JDF (DPTTRF) factorizes the matrix A as

A ¼ LDLT;

where L is a unit lower bidiagonal matrix and D is a diagonal matrix with positive diagonal elements.
The factorization may also be regarded as having the form UTDU , where U is a unit upper bidiagonal
matrix.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix A.

On exit: is overwritten by the n diagonal elements of the diagonal matrix D from the LDLT

factorization of A.

3: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the matrix A.

On exit: is overwritten by the n� 1ð Þ subdiagonal elements of the lower bidiagonal matrix L. (E
can also be regarded as containing the n� 1ð Þ superdiagonal elements of the upper bidiagonal
matrix U .)
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4: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO < N

The leading minor of order valueh i is not positive definite, the factorization could not be
completed.

INFO > 0 and INFO ¼ N

The leading minor of order n is not positive definite, the factorization was completed, but
DðNÞ � 0.

7 Accuracy

The computed factorization satisfies an equation of the form

Aþ E ¼ LDLT;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision.

Following the use of this routine, F07JEF (DPTTRS) can be used to solve systems of equations
AX ¼ B, and F07JGF (DPTCON) can be used to estimate the condition number of A.

8 Parallelism and Performance

F07JDF (DPTTRF) is not threaded in any implementation.

9 Further Comments

The total number of floating-point operations required to factorize the matrix A is proportional to n.

The complex analogue of this routine is F07JRF (ZPTTRF).

10 Example

This example factorizes the symmetric positive definite tridiagonal matrix A given by

A ¼

4:0 �2:0 0 0 0
�2:0 10:0 �6:0 0 0
0 �6:0 29:0 15:0 0
0 0 15:0 25:0 8:0
0 0 0 8:0 5:0

0BBB@
1CCCA:
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10.1 Program Text

Program f07jdfe

! F07JDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpttrf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: info, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), e(:)

! .. Executable Statements ..
Write (nout,*) ’F07JDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (d(n),e(n-1))

! Read the lower bidiagonal part of the tridiagonal matrix A from
! data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Factorize the tridiagonal matrix A

! The NAG name equivalent of dpttrf is f07jdf
Call dpttrf(n,d,e,info)

If (info>0) Then
Write (nout,99999) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

! Print details of the factorization

Write (nout,*) ’Details of factorization’
Write (nout,*)
Write (nout,*) ’ The diagonal elements of D’
Write (nout,99998) d(1:n)
Write (nout,*)
Write (nout,*) ’ Subdiagonal elements of the Cholesky factor L’
Write (nout,99998) e(1:n-1)

99999 Format (1X,A,I3,A)
99998 Format (1X,8F9.4)

End Program f07jdfe

10.2 Program Data

F07JDF Example Program Data
5 :Value of N
4.0 10.0 29.0 25.0 5.0 :End of diagonal D

-2.0 -6.0 15.0 8.0 :End of sub-diagonal E
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10.3 Program Results

F07JDF Example Program Results

Details of factorization

The diagonal elements of D
4.0000 9.0000 25.0000 16.0000 1.0000

Subdiagonal elements of the Cholesky factor L
-0.5000 -0.6667 0.6000 0.5000
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NAG Library Routine Document

F07JEF (DPTTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JEF (DPTTRS) computes the solution to a real system of linear equations AX ¼ B, where A is an
n by n symmetric positive definite tridiagonal matrix and X and B are n by r matrices, using the LDLT

factorization returned by F07JDF (DPTTRF).

2 Specification

SUBROUTINE F07JEF (N, NRHS, D, E, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
REAL (KIND=nag_wp) D(*), E(*), B(LDB,*)

The routine may be called by its LAPACK name dpttrs.

3 Description

F07JEF (DPTTRS) should be preceded by a call to F07JDF (DPTTRF), which computes a modified
Cholesky factorization of the matrix A as

A ¼ LDLT;

where L is a unit lower bidiagonal matrix and D is a diagonal matrix, with positive diagonal elements.
F07JEF (DPTTRS) then utilizes the factorization to solve the required equations. Note that the
factorization may also be regarded as having the form UTDU , where U is a unit upper bidiagonal
matrix.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.

On entry: must contain the n diagonal elements of the diagonal matrix D from the LDLT

factorization of A.
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4: Eð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the unit lower bidiagonal matrix L.
(E can also be regarded as the superdiagonal of the unit upper bidiagonal matrix U from the
UTDU factorization of A.)

5: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: the n by r solution matrix X.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07JEF
(DPTTRS) is called.

Constraint: LDB � max 1;Nð Þ.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

Following the use of this routine F07JGF (DPTCON) can be used to estimate the condition number of
A and F07JHF (DPTRFS) can be used to obtain approximate error bounds.

8 Parallelism and Performance

F07JEF (DPTTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr.

The complex analogue of this routine is F07JSF (ZPTTRS).

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric positive definite tridiagonal matrix

A ¼

4:0 �2:0 0 0 0
�2:0 10:0 �6:0 0 0
0 �6:0 29:0 15:0 0
0 0 15:0 25:0 8:0
0 0 0 8:0 5:0

0BBB@
1CCCA and B ¼

6:0 10:0
9:0 4:0
2:0 9:0

14:0 65:0
7:0 23:0

0BBB@
1CCCA:

10.1 Program Text

Program f07jefe

! F07JEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpttrf, dpttrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, ldb, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), d(:), e(:)

! .. Executable Statements ..
Write (nout,*) ’F07JEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (b(ldb,nrhs),d(n),e(n-1))

! Read the upper bidiagonal part of the tridiagonal matrix A from
! data file

Read (nin,*) e(1:n-1)
Read (nin,*) d(1:n)

! Read the right hand matrix B

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize the tridiagonal matrix A
! The NAG name equivalent of dpttrf is f07jdf

Call dpttrf(n,d,e,info)

If (info==0) Then

! Solve the equations AX = B
! The NAG name equivalent of dpttrs is f07jef

Call dpttrs(n,nrhs,d,e,b,ldb,info)
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! Print the solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,99999) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format (1X,A,I3,A)
End Program f07jefe

10.2 Program Data

F07JEF Example Program Data
5 2 :Values of N and NRHS

-2.0 -6.0 15.0 8.0 :End of super-diagonal E
4.0 10.0 29.0 25.0 5.0 :End of diagonal D
6.0 10.0
9.0 4.0
2.0 9.0

14.0 65.0
7.0 23.0 :End of matrix B

10.3 Program Results

F07JEF Example Program Results

Solution(s)
1 2

1 2.5000 2.0000
2 2.0000 -1.0000
3 1.0000 -3.0000
4 -1.0000 6.0000
5 3.0000 -5.0000
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NAG Library Routine Document

F07JGF (DPTCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JGF (DPTCON) computes the reciprocal condition number of a real n by n symmetric positive
definite tridiagonal matrix A, using the LDLT factorization returned by F07JDF (DPTTRF).

2 Specification

SUBROUTINE F07JGF (N, D, E, ANORM, RCOND, WORK, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) D(*), E(*), ANORM, RCOND, WORK(N)

The routine may be called by its LAPACK name dptcon.

3 Description

F07JGF (DPTCON) should be preceded by a call to F07JDF (DPTTRF), which computes a modified
Cholesky factorization of the matrix A as

A ¼ LDLT;

where L is a unit lower bidiagonal matrix and D is a diagonal matrix, with positive diagonal elements.
F07JGF (DPTCON) then utilizes the factorization to compute A�1

�� ��
1
by a direct method, from which

the reciprocal of the condition number of A, 1=� Að Þ is computed as

1=�1 Að Þ ¼ 1= Ak k1 A�1
�� ��

1

� �
:

1=� Að Þ is returned, rather than � Að Þ, since when A is singular � Að Þ is infinite.

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the diagonal matrix D from the LDLT

factorization of A.
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3: Eð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the unit lower bidiagonal matrix L.
(E can also be regarded as the superdiagonal of the unit upper bidiagonal matrix U from the
UTDU factorization of A.)

4: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06RPF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07JDF (DPTTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

5: RCOND – REAL (KIND=nag_wp) Output

On exit: the reciprocal condition number, 1=�1 Að Þ ¼ 1= Ak k1 A�1
�� ��

1

� �
.

6: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed condition number will be the exact condition number for a closely neighbouring matrix.

8 Parallelism and Performance

F07JGF (DPTCON) is not threaded in any implementation.

9 Further Comments

The condition number estimation requires O nð Þ floating-point operations.
See Section 15.6 of Higham (2002) for further details on computing the condition number of tridiagonal
matrices.

The complex analogue of this routine is F07JUF (ZPTCON).

10 Example

This example computes the condition number of the symmetric positive definite tridiagonal matrix A
given by

A ¼

4:0 �2:0 0 0 0
�2:0 10:0 �6:0 0 0

0 �6:0 29:0 15:0 0
0 0 15:0 25:0 8:0
0 0 0 8:0 5:0

0BBB@
1CCCA:
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10.1 Program Text

Program f07jgfe

! F07JGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dptcon, dpttrf, f06rpf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: info, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), e(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F07JGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (d(n),e(n-1),work(n))

! Read the lower bidiagonal part of the tridiagonal matrix A from
! data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Compute the 1-norm of A
anorm = f06rpf(’1-norm’,n,d,e)

! Factorize the tridiagonal matrix A
! The NAG name equivalent of dpttrf is f07jdf

Call dpttrf(n,d,e,info)

If (info==0) Then

! Estimate the condition number of A
! The NAG name equivalent of dptcon is f07jgf

Call dptcon(n,d,e,anorm,rcond,work,info)

! Print the estimated condition number

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number = ’, &

1.0_nag_wp/rcond
Else

Write (nout,99999) ’A is singular to working precision. RCOND = ’, &
rcond

End If

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format (1X,A,1P,E10.2)
99998 Format (1X,A,I3,A)

End Program f07jgfe
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10.2 Program Data

F07JGF Example Program Data
5 :Value of N
4.0 10.0 29.0 25.0 5.0 :End of diagonal D

-2.0 -6.0 15.0 8.0 :End of sub-diagonal E

10.3 Program Results

F07JGF Example Program Results

Estimate of condition number = 1.05E+02
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NAG Library Routine Document

F07JHF (DPTRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JHF (DPTRFS) computes error bounds and refines the solution to a real system of linear equations
AX ¼ B, where A is an n by n symmetric positive definite tridiagonal matrix and X and B are n by r
matrices, using the modified Cholesky factorization returned by F07JDF (DPTTRF) and an initial
solution returned by F07JEF (DPTTRS). Iterative refinement is used to reduce the backward error as
much as possible.

2 Specification

SUBROUTINE F07JHF (N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
WORK, INFO)

&

INTEGER N, NRHS, LDB, LDX, INFO
REAL (KIND=nag_wp) D(*), E(*), DF(*), EF(*), B(LDB,*), X(LDX,*),

FERR(NRHS), BERR(NRHS), WORK(2*N)
&

The routine may be called by its LAPACK name dptrfs.

3 Description

F07JHF (DPTRFS) should normally be preceded by calls to F07JDF (DPTTRF) and F07JEF
(DPTTRS). F07JDF (DPTTRF) computes a modified Cholesky factorization of the matrix A as

A ¼ LDLT;

where L is a unit lower bidiagonal matrix and D is a diagonal matrix, with positive diagonal elements.
F07JEF (DPTTRS) then utilizes the factorization to compute a solution, X̂, to the required equations.
Letting x̂ denote a column of X̂, F07JHF (DPTRFS) computes a component-wise backward error, �,
the smallest relative perturbation in each element of A and b such that x̂ is the exact solution of a
perturbed system

Aþ Eð Þx̂ ¼ bþ f; with eij
		 		 � � aij		 		; and fj

		 		 � � bj		 		:
The routine also estimates a bound for the component-wise forward error in the computed solution
defined by max xi � x̂ij j=max x̂ij j, where x is the corresponding column of the exact solution, X.

Note that the modified Cholesky factorization of A can also be expressed as

A ¼ UTDU;

where U is unit upper bidiagonal.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix of A.

4: Eð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the matrix A.

5: DFð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DF must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the diagonal matrix D from the LDLT

factorization of A.

6: EFð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array EF must be at least max 1;Nð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the unit bidiagonal matrix L from the
LDLT factorization of A.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07JHF
(DPTRFS) is called.

Constraint: LDB � max 1;Nð Þ.

9: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r initial solution matrix X.

On exit: the n by r refined solution matrix X.

10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07JHF
(DPTRFS) is called.

Constraint: LDX � max 1;Nð Þ.
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11: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: estimate of the forward error bound for each computed solution vector, such that
x̂j � xj
�� ��

1= x̂j
�� ��

1 � FERRðjÞ, where x̂j is the jth column of the computed solution returned in
the array X and xj is the corresponding column of the exact solution X. The estimate is almost
always a slight overestimate of the true error.

12: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: estimate of the component-wise relative backward error of each computed solution
vector x̂j (i.e., the smallest relative change in any element of A or B that makes x̂j an exact
solution).

13: WORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1 Ak k1, the condition number of A with respect to the solution of the linear
equations. See Section 4.4 of Anderson et al. (1999) for further details.

Routine F07JGF (DPTCON) can be used to compute the condition number of A.

8 Parallelism and Performance

F07JHF (DPTRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07JHF (DPTRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr. At most five steps of iterative refinement are performed, but usually only one or two steps are
required.

The complex analogue of this routine is F07JVF (ZPTRFS).

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric positive definite tridiagonal matrix

A ¼

4:0 �2:0 0 0 0
�2:0 10:0 �6:0 0 0

0 �6:0 29:0 15:0 0
0 0 15:0 25:0 8:0
0 0 0 8:0 5:0

0BBB@
1CCCA and B ¼

6:0 10:0
9:0 4:0
2:0 9:0

14:0 65:0
7:0 23:0

0BBB@
1CCCA:

Estimates for the backward errors and forward errors are also output.

10.1 Program Text

Program f07jhfe

! F07JHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dptrfs, dpttrf, dpttrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, ldb, ldx, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), berr(:), d(:), df(:), e(:), &

ef(:), ferr(:), work(:), x(:,:)
! .. Executable Statements ..

Write (nout,*) ’F07JHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (b(ldb,nrhs),berr(nrhs),d(n),df(n),e(n-1),ef(n-1),ferr(nrhs), &

work(2*n),x(ldx,nrhs))

! Read the lower bidiagonal part of the tridiagonal matrix A from
! data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Read the right hand matrix B

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Copy A into DF and EF, and copy B into X

df(1:n) = d(1:n)
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ef(1:n-1) = e(1:n-1)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize the copy of the tridiagonal matrix A
! The NAG name equivalent of dpttrf is f07jdf

Call dpttrf(n,df,ef,info)

If (info==0) Then

! Solve the equations AX = B
! The NAG name equivalent of dpttrs is f07jef

Call dpttrs(n,nrhs,df,ef,x,ldx,info)

! Improve the solution and compute error estimates
! The NAG name equivalent of dptrfs is f07jhf

Call dptrfs(n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,work,info)

! Print the solution and the forward and backward error
! estimates

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07jhfe

10.2 Program Data

F07JHF Example Program Data
5 2 :Values of N and NRHS
4.0 10.0 29.0 25.0 5.0 :End of diagonal D

-2.0 -6.0 15.0 8.0 :End of super-diagonal E
6.0 10.0
9.0 4.0
2.0 9.0

14.0 65.0
7.0 23.0 :End of matrix B

10.3 Program Results

F07JHF Example Program Results

Solution(s)
1 2

1 2.5000 2.0000
2 2.0000 -1.0000
3 1.0000 -3.0000
4 -1.0000 6.0000
5 3.0000 -5.0000
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Backward errors (machine-dependent)
0.0E+00 7.4E-17

Estimated forward error bounds (machine-dependent)
2.4E-14 4.7E-14
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NAG Library Routine Document

F07JNF (ZPTSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JNF (ZPTSV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian positive definite tridiagonal matrix, and X and B are n by r matrices.

2 Specification

SUBROUTINE F07JNF (N, NRHS, D, E, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
REAL (KIND=nag_wp) D(*)
COMPLEX (KIND=nag_wp) E(*), B(LDB,*)

The routine may be called by its LAPACK name zptsv.

3 Description

F07JNF (ZPTSV) factors A as A ¼ LDLH. The factored form of A is then used to solve the system of
equations.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix A.

On exit: the n diagonal elements of the diagonal matrix D from the factorization A ¼ LDLH.
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4: Eð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ subdiagonal elements of the tridiagonal matrix A.

On exit: the n� 1ð Þ subdiagonal elements of the unit bidiagonal factor L from the LDLH

factorization of A. (E can also be regarded as the superdiagonal of the unit bidiagonal factor U
from the UHDU factorization of A.)

5: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07JNF
(ZPTSV) is called.

Constraint: LDB � max 1;Nð Þ.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite, and the solution has not been
computed. The factorization has not been completed unless N ¼ valueh i.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

F07JPF (ZPTSVX) is a comprehensive LAPACK driver that returns forward and backward error bounds
and an estimate of the condition number. Alternatively, F04CGF solves Ax ¼ b and returns a forward
error bound and condition estimate. F04CGF calls F07JNF (ZPTSV) to solve the equations.
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8 Parallelism and Performance

F07JNF (ZPTSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of floating-point operations required for the factorization of A is proportional to n, and the
number of floating-point operations required for the solution of the equations is proportional to nr,
where r is the number of right-hand sides.

The real analogue of this routine is F07JAF (DPTSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the Hermitian positive definite tridiagonal matrix

A ¼
16:0 16:0� 16:0i 0 0
16:0þ 16:0i 41:0 18:0þ 9:0i 0
0 18:0� 9:0i 46:0 1:0þ 4:0i
0 0 1:0� 4:0i 21:0

0B@
1CA

and

b ¼
64:0þ 16:0i
93:0þ 62:0i
78:0� 80:0i
14:0� 27:0i

0B@
1CA:

Details of the LDLH factorization of A are also output.

10.1 Program Text

Program f07jnfe

! F07JNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zptsv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: info, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: b(:), e(:)
Real (Kind=nag_wp), Allocatable :: d(:)

! .. Executable Statements ..
Write (nout,*) ’F07JNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
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Allocate (b(n),e(n-1),d(n))

! Read the lower bidiagonal part of the tridiagonal matrix A and
! the right hand side b from data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)
Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of zptsv is f07jnf

Call zptsv(n,1,d,e,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Write (nout,*) ’Diagonal elements of the diagonal matrix D’
Write (nout,99998) d(1:n)
Write (nout,*)
Write (nout,*) ’Subdiagonal elements of the Cholesky factor L’
Write (nout,99999) e(1:n-1)

Else
Write (nout,99997) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format (4(’ (’,F8.4,’,’,F8.4,’)’,:))
99998 Format ((2X,F7.4,3(11X,F7.4)))
99997 Format (1X,A,I3,A)

End Program f07jnfe

10.2 Program Data

F07JNF Example Program Data
4 :Value of N

16.0 41.0 46.0 21.0 :End of diagonal D
( 16.0, 16.0) ( 18.0, -9.0) ( 1.0, -4.0) :End of sub-diagonal E
( 64.0, 16.0) ( 93.0, 62.0) ( 78.0,-80.0) ( 14.0,-27.0) :End of vector b

10.3 Program Results

F07JNF Example Program Results

Solution
( 2.0000, 1.0000) ( 1.0000, 1.0000) ( 1.0000, -2.0000) ( 1.0000, -1.0000)

Diagonal elements of the diagonal matrix D
16.0000 9.0000 1.0000 4.0000

Subdiagonal elements of the Cholesky factor L
( 1.0000, 1.0000) ( 2.0000, -1.0000) ( 1.0000, -4.0000)
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NAG Library Routine Document

F07JPF (ZPTSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JPF (ZPTSVX) uses the factorization

A ¼ LDLH

to compute the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian positive definite tridiagonal matrix and X and B are n by r matrices.
Error bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07JPF (FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX, RCOND,
FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, LDB, LDX, INFO
REAL (KIND=nag_wp) D(*), DF(*), RCOND, FERR(NRHS), BERR(NRHS),

RWORK(N)
&

COMPLEX (KIND=nag_wp) E(*), EF(*), B(LDB,*), X(LDX,*), WORK(N)
CHARACTER(1) FACT

The routine may be called by its LAPACK name zptsvx.

3 Description

F07JPF (ZPTSVX) performs the following steps:

1. If FACT ¼ N , the matrix A is factorized as A ¼ LDLH, where L is a unit lower bidiagonal matrix
and D is diagonal. The factorization can also be regarded as having the form A ¼ UHDU .

2. If the leading i by i principal minor is not positive definite, then the routine returns with INFO ¼ i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, INFO ¼ Nþ 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

FACT ¼ F
DF and EF contain the factorized form of the matrix A. DF and EF will not be modified.

FACT ¼ N
The matrix A will be copied to DF and EF and factorized.

Constraint: FACT ¼ F or N .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix A.

5: Eð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ subdiagonal elements of the tridiagonal matrix A.

6: DFð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array DF must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , DF must contain the n diagonal elements of the diagonal matrix D from
the LDLH factorization of A.

On exit: if FACT ¼ N , DF contains the n diagonal elements of the diagonal matrix D from the
LDLH factorization of A.

7: EFð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array EF must be at least max 1;N� 1ð Þ.
On entry: if FACT ¼ F , EF must contain the n� 1ð Þ subdiagonal elements of the unit
bidiagonal factor L from the LDLH factorization of A.

On exit: if FACT ¼ N , EF contains the n� 1ð Þ subdiagonal elements of the unit bidiagonal
factor L from the LDLH factorization of A.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

F07JPF NAG Library Manual

F07JPF.2 Mark 26



9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07JPF
(ZPTSVX) is called.

Constraint: LDB � max 1;Nð Þ.

10: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07JPF
(ZPTSVX) is called.

Constraint: LDX � max 1;Nð Þ.

12: RCOND – REAL (KIND=nag_wp) Output

On exit: the reciprocal condition number of the matrix A. If RCOND is less than the machine
precision (in particular, if RCOND ¼ 0:0), the matrix is singular to working precision. This
condition is indicated by a return code of INFO ¼ Nþ 1.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: the forward error bound for each solution vector x̂j (the jth column of the solution
matrix X). If xj is the true solution corresponding to x̂j, FERRðjÞ is an estimated upper bound
for the magnitude of the largest element in (x̂j � xj) divided by the magnitude of the largest
element in x̂j.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: the component-wise relative backward error of each solution vector x̂j (i.e., the smallest
relative change in any element of A or B that makes x̂j an exact solution).

15: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

16: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed. RCOND ¼ 0:0 is returned.
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INFO ¼ Nþ 1

D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ej j � c nð Þ� RT
		 		 Rj j; where R ¼ D1

2U;

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham
(2002) for further details.

If x is the true solution, then the computed solution x̂ satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07JPF (ZPTSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07JPF (ZPTSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of floating-point operations required for the factorization, and for the estimation of the
condition number of A is proportional to n. The number of floating-point operations required for the
solution of the equations, and for the estimation of the forward and backward error is proportional to
nr, where r is the number of right-hand sides.

The condition estimation is based upon Equation (15.11) of Higham (2002). For further details of the
error estimation, see Section 4.4 of Anderson et al. (1999).

The real analogue of this routine is F07JBF (DPTSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite tridiagonal matrix

A ¼
16:0 16:0� 16:0i 0 0
16:0þ 16:0i 41:0 18:0þ 9:0i 0
0 18:0� 9:0i 46:0 1:0þ 4:0i
0 0 1:0� 4:0i 21:0

0B@
1CA
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and

B ¼
64:0þ 16:0i �16:0� 32:0i
93:0þ 62:0i 61:0� 66:0i
78:0� 80:0i 71:0� 74:0i
14:0� 27:0i 35:0þ 15:0i

0B@
1CA:

Error estimates for the solutions and an estimate of the reciprocal of the condition number of A are also
output.

10.1 Program Text

Program f07jpfe

! F07JPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zptsvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, ldb, ldx, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: b(:,:), e(:), ef(:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), d(:), df(:), ferr(:), &

rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07JPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (b(ldb,nrhs),e(n-1),ef(n-1),work(n),x(ldx,nrhs),berr(nrhs), &

d(n),df(n),ferr(nrhs),rwork(n))

! Read the lower bidiagonal part of the tridiagonal matrix A and
! the right hand side b from data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of zptsvx is f07jpf

Call zptsvx(’Not factored’,n,nrhs,d,e,df,ef,b,ldb,x,ldx,rcond,ferr,berr, &
work,rwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds and condition number

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
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Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The leading minor of order ’, info, &
’ is not positive definite’

End If

99999 Format (1X,1P,7E11.1)
99998 Format (1X,A,I3,A)

End Program f07jpfe

10.2 Program Data

F07JPF Example Program Data
4 2 :Values of N and NRHS

16.0 41.0 46.0 21.0 :End of diagonal D
( 16.0, 16.0) ( 18.0, -9.0) ( 1.0, -4.0) :End of sub-diagonal E
( 64.0, 16.0) (-16.0,-32.0)
( 93.0, 62.0) ( 61.0,-66.0)
( 78.0,-80.0) ( 71.0,-74.0)
( 14.0,-27.0) ( 35.0, 15.0) :End of matrix B

10.3 Program Results

F07JPF Example Program Results

Solution(s)
1 2

1 ( 2.0000, 1.0000) (-3.0000,-2.0000)
2 ( 1.0000, 1.0000) ( 1.0000, 1.0000)
3 ( 1.0000,-2.0000) ( 1.0000,-2.0000)
4 ( 1.0000,-1.0000) ( 2.0000, 1.0000)

Backward errors (machine-dependent)
0.0E+00 0.0E+00

Estimated forward error bounds (machine-dependent)
9.0E-12 6.1E-12

Estimate of reciprocal condition number
1.1E-04
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NAG Library Routine Document

F07JRF (ZPTTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JRF (ZPTTRF) computes the modified Cholesky factorization of a complex n by n Hermitian
positive definite tridiagonal matrix A.

2 Specification

SUBROUTINE F07JRF (N, D, E, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) D(*)
COMPLEX (KIND=nag_wp) E(*)

The routine may be called by its LAPACK name zpttrf.

3 Description

F07JRF (ZPTTRF) factorizes the matrix A as

A ¼ LDLH;

where L is a unit lower bidiagonal matrix and D is a diagonal matrix with positive diagonal elements.
The factorization may also be regarded as having the form UHDU , where U is a unit upper bidiagonal
matrix.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix A.

On exit: is overwritten by the n diagonal elements of the diagonal matrix D from the LDLH

factorization of A.

3: Eð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the matrix A.

On exit: is overwritten by the n� 1ð Þ subdiagonal elements of the lower bidiagonal matrix L. (E
can also be regarded as containing the n� 1ð Þ superdiagonal elements of the upper bidiagonal
matrix U .)
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4: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO < N

The leading minor of order valueh i is not positive definite, the factorization could not be
completed.

INFO > 0 and INFO ¼ N

The leading minor of order n is not positive definite, the factorization was completed, but
DðNÞ � 0.

7 Accuracy

The computed factorization satisfies an equation of the form

Aþ E ¼ LDLH;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision.

Following the use of this routine, F07JSF (ZPTTRS) can be used to solve systems of equations
AX ¼ B, and F07JUF (ZPTCON) can be used to estimate the condition number of A.

8 Parallelism and Performance

F07JRF (ZPTTRF) is not threaded in any implementation.

9 Further Comments

The total number of floating-point operations required to factorize the matrix A is proportional to n.

The real analogue of this routine is F07JDF (DPTTRF).

10 Example

This example factorizes the Hermitian positive definite tridiagonal matrix A given by

A ¼
16:0 16:0� 16:0i 0 0
16:0þ 16:0i 41:0 18:0þ 9:0i 0
0 18:0� 9:0i 46:0 1:0þ 4:0i
0 0 1:0� 4:0i 21:0

0B@
1CA:
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10.1 Program Text

Program f07jrfe

! F07JRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zpttrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: info, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: e(:)
Real (Kind=nag_wp), Allocatable :: d(:)

! .. Executable Statements ..
Write (nout,*) ’F07JRF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (e(n-1),d(n))

! Read the lower bidiagonal part of the tridiagonal matrix A from
! data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Factorize the tridiagonal matrix A
! The NAG name equivalent of zpttrf is f07jrf

Call zpttrf(n,d,e,info)

If (info>0) Then
Write (nout,99999) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

! Print details of the factorization

Write (nout,*) ’Details of factorization’
Write (nout,*)
Write (nout,*) ’ The diagonal elements of D’
Write (nout,99998) d(1:n)
Write (nout,*)
Write (nout,*) ’ Subdiagonal elements of the Cholesky factor L’
Write (nout,99998) e(1:n-1)

99999 Format (1X,A,I3,A)
99998 Format (1X,8F9.4)

End Program f07jrfe

10.2 Program Data

F07JRF Example Program Data
4 :Value of N

16.0 41.0 46.0 21.0 :End of diagonal D
( 16.0, 16.0) ( 18.0, -9.0) ( 1.0, -4.0) :End of sub-diagonal E
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10.3 Program Results

F07JRF Example Program Results

Details of factorization

The diagonal elements of D
16.0000 9.0000 1.0000 4.0000

Subdiagonal elements of the Cholesky factor L
1.0000 1.0000 2.0000 -1.0000 1.0000 -4.0000
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NAG Library Routine Document

F07JSF (ZPTTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JSF (ZPTTRS) computes the solution to a complex system of linear equations AX ¼ B, where A is
an n by n Hermitian positive definite tridiagonal matrix and X and B are n by r matrices, using the
LDLH factorization returned by F07JRF (ZPTTRF).

2 Specification

SUBROUTINE F07JSF (UPLO, N, NRHS, D, E, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
REAL (KIND=nag_wp) D(*)
COMPLEX (KIND=nag_wp) E(*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpttrs.

3 Description

F07JSF (ZPTTRS) should be preceded by a call to F07JRF (ZPTTRF), which computes a modified
Cholesky factorization of the matrix A as

A ¼ LDLH;

where L is a unit lower bidiagonal matrix and D is a diagonal matrix, with positive diagonal elements.
F07JSF (ZPTTRS) then utilizes the factorization to solve the required equations. Note that the
factorization may also be regarded as having the form UHDU , where U is a unit upper bidiagonal
matrix.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies the form of the factorization as follows:

UPLO ¼ U
A ¼ UHDU .

UPLO ¼ L
A ¼ LDLH.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the diagonal matrix D from the LDLH or
UHDU factorization of A.

5: Eð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: if UPLO ¼ U , E must contain the n� 1ð Þ superdiagonal elements of the unit upper
bidiagonal matrix U from the UHDU factorization of A.

If UPLO ¼ L , E must contain the n� 1ð Þ subdiagonal elements of the unit lower bidiagonal
matrix L from the LDLH factorization of A.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

On exit: the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07JSF
(ZPTTRS) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.
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Following the use of this routine F07JUF (ZPTCON) can be used to estimate the condition number of
A and F07JVF (ZPTRFS) can be used to obtain approximate error bounds.

8 Parallelism and Performance

F07JSF (ZPTTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr.

The real analogue of this routine is F07JEF (DPTTRS).

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite tridiagonal matrix

A ¼
16:0 16:0� 16:0i 0 0
16:0þ 16:0i 41:0 18:0þ 9:0i 0:0
0 18:0� 9:0i 46:0 1:0þ 4:0i
0 0 1:0� 4:0i 21:0

0B@
1CA

and

B ¼
64:0þ 16:0i �16:0� 32:0i
93:0þ 62:0i 61:0� 66:0i
78:0� 80:0i 71:0� 74:0i
14:0� 27:0i 35:0þ 15:0i

0B@
1CA:

10.1 Program Text

Program f07jsfe

! F07JSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpttrf, zpttrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Integer :: i, ifail, info, ldb, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: b(:,:), e(:)
Real (Kind=nag_wp), Allocatable :: d(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07JSF Example Program Results’
Write (nout,*)
Flush (nout)
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! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (b(ldb,nrhs),e(n-1),d(n))

! Read the upper bidiagonal part of the tridiagonal matrix A from
! data file

Read (nin,*) e(1:n-1)
Read (nin,*) d(1:n)

! Read the right hand matrix B

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize the tridiagonal matrix A
! The NAG name equivalent of zpttrf is f07jrf

Call zpttrf(n,d,e,info)

If (info==0) Then

! Solve the equations AX = B
! The NAG name equivalent of zpttrs is f07jsf

Call zpttrs(uplo,n,nrhs,d,e,b,ldb,info)

! Print the solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’ ’,’Solution(s)’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,99999) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format (1X,A,I3,A)
End Program f07jsfe

10.2 Program Data

F07JSF Example Program Data
4 2 :Values of N and NRHS

( 16.0,-16.0) ( 18.0, 9.0) ( 1.0, 4.0) :End of superdiagonal E
16.0 41.0 46.0 21.0 :End of diagonal D

( 64.0, 16.0) (-16.0,-32.0)
( 93.0, 62.0) ( 61.0,-66.0)
( 78.0,-80.0) ( 71.0,-74.0)
( 14.0,-27.0) ( 35.0, 15.0) :End of matrix B

10.3 Program Results

F07JSF Example Program Results

Solution(s)
1 2

1 ( 2.0000, 1.0000) ( -3.0000, -2.0000)
2 ( 1.0000, 1.0000) ( 1.0000, 1.0000)
3 ( 1.0000, -2.0000) ( 1.0000, -2.0000)
4 ( 1.0000, -1.0000) ( 2.0000, 1.0000)
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NAG Library Routine Document

F07JUF (ZPTCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JUF (ZPTCON) computes the reciprocal condition number of a complex n by n Hermitian positive
definite tridiagonal matrix A, using the LDLH factorization returned by F07JRF (ZPTTRF).

2 Specification

SUBROUTINE F07JUF (N, D, E, ANORM, RCOND, RWORK, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) D(*), ANORM, RCOND, RWORK(N)
COMPLEX (KIND=nag_wp) E(*)

The routine may be called by its LAPACK name zptcon.

3 Description

F07JUF (ZPTCON) should be preceded by a call to F07JRF (ZPTTRF), which computes a modified
Cholesky factorization of the matrix A as

A ¼ LDLH;

where L is a unit lower bidiagonal matrix and D is a diagonal matrix, with positive diagonal elements.
F07JUF (ZPTCON) then utilizes the factorization to compute A�1

�� ��
1
by a direct method, from which

the reciprocal of the condition number of A, 1=� Að Þ is computed as

1=�1 Að Þ ¼ 1= Ak k1 A�1
�� ��

1

� �
:

1=� Að Þ is returned, rather than � Að Þ, since when A is singular � Að Þ is infinite.

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the diagonal matrix D from the LDLH

factorization of A.
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3: Eð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: must contain the n� 1ð Þ subdiagonal elements of the unit lower bidiagonal matrix L.
(E can also be regarded as the superdiagonal of the unit upper bidiagonal matrix U from the
UHDU factorization of A.)

4: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06UPF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07JRF (ZPTTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

5: RCOND – REAL (KIND=nag_wp) Output

On exit: the reciprocal condition number, 1=�1 Að Þ ¼ 1= Ak k1 A�1
�� ��

1

� �
.

6: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed condition number will be the exact condition number for a closely neighbouring matrix.

8 Parallelism and Performance

F07JUF (ZPTCON) is not threaded in any implementation.

9 Further Comments

The condition number estimation requires O nð Þ floating-point operations.
See Section 15.6 of Higham (2002) for further details on computing the condition number of tridiagonal
matrices.

The real analogue of this routine is F07JGF (DPTCON).

10 Example

This example computes the condition number of the Hermitian positive definite tridiagonal matrix A
given by

A ¼
16:0 16:0� 16:0i 0 0
16:0þ 16:0i 41:0 18:0þ 9:0i 0
0 18:0� 9:0i 46:0 1:0þ 4:0i
0 0 1:0� 4:0i 21:0

0B@
1CA:
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10.1 Program Text

Program f07jufe

! F07JUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06upf, nag_wp, x02ajf, zptcon, zpttrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: info, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: e(:)
Real (Kind=nag_wp), Allocatable :: d(:), rwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07JUF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (e(n-1),d(n),rwork(n))

! Read the lower bidiagonal part of the tridiagonal matrix A from
! data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Compute the 1-norm of A
anorm = f06upf(’1-norm’,n,d,e)

! Factorize the tridiagonal matrix A
! The NAG name equivalent of zpttrf is f07jrf

Call zpttrf(n,d,e,info)

If (info==0) Then

! Estimate the condition number of A
! The NAG name equivalent of zptcon is f07juf

Call zptcon(n,d,e,anorm,rcond,rwork,info)

! Print the estimated condition number

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number = ’, &

1.0E0_nag_wp/rcond
Else

Write (nout,99999) ’A is singular to working precision. RCOND = ’, &
rcond

End If

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format (1X,A,1P,E10.2)
99998 Format (1X,A,I3,A)

End Program f07jufe
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10.2 Program Data

F07JUF Example Program Data
4 :Value of N

16.0 41.0 46.0 21.0 :End of diagonal D
( 16.0, 16.0) ( 18.0, -9.0) ( 1.0, -4.0) :End of sub-diagonal E

10.3 Program Results

F07JUF Example Program Results

Estimate of condition number = 9.21E+03
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NAG Library Routine Document

F07JVF (ZPTRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07JVF (ZPTRFS) computes error bounds and refines the solution to a complex system of linear
equations AX ¼ B, where A is an n by n Hermitian positive definite tridiagonal matrix and X and B
are n by r matrices, using the modified Cholesky factorization returned by F07JRF (ZPTTRF) and an
initial solution returned by F07JSF (ZPTTRS). Iterative refinement is used to reduce the backward error
as much as possible.

2 Specification

SUBROUTINE F07JVF (UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, LDB, LDX, INFO
REAL (KIND=nag_wp) D(*), DF(*), FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) E(*), EF(*), B(LDB,*), X(LDX,*), WORK(N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zptrfs.

3 Description

F07JVF (ZPTRFS) should normally be preceded by calls to F07JRF (ZPTTRF) and F07JSF (ZPTTRS).
F07JRF (ZPTTRF) computes a modified Cholesky factorization of the matrix A as

A ¼ LDLH;

where L is a unit lower bidiagonal matrix and D is a diagonal matrix, with positive diagonal elements.
F07JSF (ZPTTRS) then utilizes the factorization to compute a solution, X̂, to the required equations.
Letting x̂ denote a column of X̂, F07JVF (ZPTRFS) computes a component-wise backward error, �, the
smallest relative perturbation in each element of A and b such that x̂ is the exact solution of a perturbed
system

Aþ Eð Þx̂ ¼ bþ f; with eij
		 		 � � aij		 		; and fj

		 		 � � bj		 		:
The routine also estimates a bound for the component-wise forward error in the computed solution
defined by max xi � x̂ij j=max x̂ij j, where x is the corresponding column of the exact solution, X.

Note that the modified Cholesky factorization of A can also be expressed as

A ¼ UHDU;

where U is unit upper bidiagonal.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies the form of the factorization as follows:

UPLO ¼ U
A ¼ UHDU .

UPLO ¼ L
A ¼ LDLH.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the matrix of A.

5: Eð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: if UPLO ¼ U , E must contain the n� 1ð Þ superdiagonal elements of the matrix A.

If UPLO ¼ L , E must contain the n� 1ð Þ subdiagonal elements of the matrix A.

6: DFð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array DF must be at least max 1;Nð Þ.
On entry: must contain the n diagonal elements of the diagonal matrix D from the LDLT

factorization of A.

7: EFð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array EF must be at least max 1;N� 1ð Þ.
On entry: if UPLO ¼ U , EF must contain the n� 1ð Þ superdiagonal elements of the unit upper
bidiagonal matrix U from the UHDU factorization of A.

If UPLO ¼ L , EF must contain the n� 1ð Þ subdiagonal elements of the unit lower bidiagonal
matrix L from the LDLH factorization of A.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r matrix of right-hand sides B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07JVF
(ZPTRFS) is called.

Constraint: LDB � max 1;Nð Þ.
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10: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r initial solution matrix X.

On exit: the n by r refined solution matrix X.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07JVF
(ZPTRFS) is called.

Constraint: LDX � max 1;Nð Þ.

12: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: estimate of the forward error bound for each computed solution vector, such that
x̂j � xj
�� ��

1= x̂j
�� ��

1 � FERRðjÞ, where x̂j is the jth column of the computed solution returned in
the array X and xj is the corresponding column of the exact solution X. The estimate is almost
always a slight overestimate of the true error.

13: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: estimate of the component-wise relative backward error of each computed solution
vector x̂j (i.e., the smallest relative change in any element of A or B that makes x̂j an exact
solution).

14: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

15: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1 Ak k1, the condition number of A with respect to the solution of the linear
equations. See Section 4.4 of Anderson et al. (1999) for further details.

Routine F07JUF (ZPTCON) can be used to compute the condition number of A.
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8 Parallelism and Performance

F07JVF (ZPTRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07JVF (ZPTRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr. At most five steps of iterative refinement are performed, but usually only one or two steps are
required.

The real analogue of this routine is F07JHF (DPTRFS).

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite tridiagonal matrix

A ¼
16:0 16:0� 16:0i 0 0
16:0þ 16:0i 41:0 18:0þ 9:0i 0
0 18:0� 9:0i 46:0 1:0þ 4:0i
0 0 1:0� 4:0i 21:0

0B@
1CA

and

B ¼
64:0þ 16:0i �16:0� 32:0i
93:0þ 62:0i 61:0� 66:0i
78:0� 80:0i 71:0� 74:0i
14:0� 27:0i 35:0þ 15:0i

0B@
1CA:

Estimates for the backward errors and forward errors are also output.

10.1 Program Text

Program f07jvfe

! F07JVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zptrfs, zpttrf, zpttrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, ldb, ldx, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: b(:,:), e(:), ef(:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), d(:), df(:), ferr(:), &

rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
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Write (nout,*) ’F07JVF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (b(ldb,nrhs),e(n-1),ef(n-1),work(n),x(ldx,nrhs),berr(nrhs), &

d(n),df(n),ferr(nrhs),rwork(n))

! Read the lower bidiagonal part of the tridiagonal matrix A from
! data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Read the right hand matrix B

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Copy A into DF and EF, and copy B into X
df(1:n) = d(1:n)
ef(1:n-1) = e(1:n-1)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize the copy of the tridiagonal matrix A
! The NAG name equivalent of zptrrf is f07jrf

Call zpttrf(n,df,ef,info)

If (info==0) Then

! Solve the equations AX = B
! The NAG name equivalent of zptrrs is f07jsf

Call zpttrs(’Lower’,n,nrhs,df,ef,x,ldx,info)

! Improve the solution and compute error estimates
! The NAG name equivalent of zptrfs is f07jvf

Call zptrfs(’Lower’,n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,work,rwork, &
info)

! Print the solution and the forward and backward error estimates

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,99998) ’The leading minor of order ’, info, &

’ is not positive definite’
End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07jvfe
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10.2 Program Data

F07JVF Example Program Data
4 2 :Values of N and NRHS

16.0 41.0 46.0 21.0 :End of diagonal D
( 16.0, 16.0) ( 18.0, -9.0) ( 1.0, -4.0) :End of sub-diagonal E
( 64.0, 16.0) (-16.0,-32.0)
( 93.0, 62.0) ( 61.0,-66.0)
( 78.0,-80.0) ( 71.0,-74.0)
( 14.0,-27.0) ( 35.0, 15.0) :End of matrix B

10.3 Program Results

F07JVF Example Program Results

Solution(s)
1 2

1 ( 2.0000, 1.0000) (-3.0000,-2.0000)
2 ( 1.0000, 1.0000) ( 1.0000, 1.0000)
3 ( 1.0000,-2.0000) ( 1.0000,-2.0000)
4 ( 1.0000,-1.0000) ( 2.0000, 1.0000)

Backward errors (machine-dependent)
0.0E+00 0.0E+00

Estimated forward error bounds (machine-dependent)
9.0E-12 6.1E-12
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NAG Library Routine Document

F07KDF (DPSTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07KDF (DPSTRF) computes the Cholesky factorization with complete pivoting of a real symmetric
positive semidefinite matrix.

2 Specification

SUBROUTINE F07KDF (UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)

INTEGER N, LDA, PIV(N), RANK, INFO
REAL (KIND=nag_wp) A(LDA,*), TOL, WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpstrf.

3 Description

F07KDF (DPSTRF) forms the Cholesky factorization of a real symmetric positive semidefinite matrix
A either as PTAP ¼ UTU if UPLO ¼ U or P TAP ¼ LLT if UPLO ¼ L , where P is a permutation
matrix, U is an upper triangular matrix and L is lower triangular.

This algorithm does not attempt to check that A is positive semidefinite.

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

Lucas C (2004) LAPACK-style codes for Level 2 and 3 pivoted Cholesky factorizations LAPACK
Working Note No. 161. Technical Report CS-04-522 Department of Computer Science, University of
Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA http://www.netlib.org/lapack/lawnspdf/
lawn161.pdf

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UTU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLT, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F07 – Linear Equations (LAPACK) F07KDF
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3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric positive semidefinite matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if UPLO ¼ U , the first RANK rows of the upper triangle of A are overwritten with the
nonzero elements of the Cholesky factor U, and the remaining rows of the triangle are destroyed.

If UPLO ¼ L , the first RANK columns of the lower triangle of A are overwritten with the
nonzero elements of the Cholesky factor L, and the remaining columns of the triangle are
destroyed.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07KDF
(DPSTRF) is called.

Constraint: LDA � max 1;Nð Þ.

5: PIVðNÞ – INTEGER array Output

On exit: PIV is such that the nonzero entries of P are P PIVðkÞ; kð Þ ¼ 1, for k ¼ 1; 2; . . . ; n.

6: RANK – INTEGER Output

On exit: the computed rank of A given by the number of steps the algorithm completed.

7: TOL – REAL (KIND=nag_wp) Input

On entry: user defined tolerance. If TOL < 0, then n� max
k¼1;n

Akkj j �machine precision will be

used. The algorithm terminates at the rth step if the rþ 1ð Þth step pivot < TOL.

8: WORKð2 � NÞ – REAL (KIND=nag_wp) array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

The matrix A is not positive definite. It is either positive semidefinite with computed rank as
returned in RANK and less than n, or it may be indefinite, see Section 9.
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7 Accuracy

If UPLO ¼ L and RANK ¼ r, the computed Cholesky factor L and permutation matrix P satisfy the
following upper bound

A� PLLTP Tk k2
Ak k2

� 2rc rð Þ� Wk k2 þ 1
� �2 þO �2

� �
;

where

W ¼ L�111 L12; L ¼ L11 0
L12 0

� �
; L11 2 R

r�r;

c rð Þ is a modest linear function of r, � is machine precision, and

Wk k2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
n� rð Þ 4r � 1ð Þ

r
:

So there is no guarantee of stability of the algorithm for large n and r, although Wk k2 is generally
small in practice.

8 Parallelism and Performance

F07KDF (DPSTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately nr2 � 2=3r3, where r is the computed
rank of A.

This algorithm does not attempt to check that A is positive semidefinite, and in particular the rank
detection criterion in the algorithm is based on A being positive semidefinite. If there is doubt over
semidefiniteness then you should use the indefinite factorization F07MDF (DSYTRF). See Lucas (2004)
for further information.

The complex analogue of this routine is F07KRF (ZPSTRF).

10 Example

This example computes the Cholesky factorization of the matrix A, where

A ¼

2:51 4:04 3:34 1:34 1:29
4:04 8:22 7:38 2:68 2:44
3:34 7:38 7:06 2:24 2:14
1:34 2:68 2:24 0:96 0:80
1:29 2:44 2:14 0:80 0:74

0BBB@
1CCCA:

10.1 Program Text

Program f07kdfe

! F07KDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpstrf, nag_wp, x04caf, x04ebf

! .. Implicit None Statement ..

F07 – Linear Equations (LAPACK) F07KDF
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Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, info, j, lda, n, rank
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: piv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07KDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, uplo
lda = n
Allocate (a(lda,n),piv(n),work(2*n))

! Read A from data file
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
tol = -1.0_nag_wp

! Factorize A
! The NAG name equivalent of dpstrf is f07kdf

Call dpstrf(uplo,n,a,lda,piv,rank,tol,work,info)

! Zero out columns rank+1 to n
If (uplo==’U’) Then

Do j = rank + 1, n
a(rank+1:j,j) = zero

End Do
Else If (uplo==’L’) Then

Do j = rank + 1, n
a(j:n,j) = zero

End Do
End If

! Print rank
Write (nout,*)
Write (nout,’(1X,A15,I3)’) ’Computed rank: ’, rank

! Print factor
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(uplo,’Nonunit’,n,n,a,lda,’Factor’,ifail)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’PIV’
Flush (nout)

ifail = 0
Call x04ebf(’General’,’Non-unit’,1,n,piv,1,’I11’,’ ’,’No’,rlabs,’No’, &

clabs,80,1,ifail)

End Program f07kdfe
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10.2 Program Data

F07KDF Example Program Data
5 ’L’ : n, uplo
2.51
4.04 8.22
3.34 7.38 7.06
1.34 2.68 2.24 0.96
1.29 2.44 2.14 0.80 0.74 : End of matrix A

10.3 Program Results

F07KDF Example Program Results

Computed rank: 3

Factor
1 2 3 4 5

1 2.8671
2 1.4091 0.7242
3 2.5741 -0.3965 0.5262
4 0.9348 0.0315 -0.2920 0.0000
5 0.8510 0.1254 -0.0018 0.0000 0.0000

PIV
2 1 3 4 5
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NAG Library Routine Document

F07KRF (ZPSTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07KRF (ZPSTRF) computes the Cholesky factorization with complete pivoting of a complex
Hermitian positive semidefinite matrix.

2 Specification

SUBROUTINE F07KRF (UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)

INTEGER N, LDA, PIV(N), RANK, INFO
REAL (KIND=nag_wp) TOL, WORK(2*N)
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpstrf.

3 Description

F07KRF (ZPSTRF) forms the Cholesky factorization of a complex Hermitian positive semidefinite
matrix A either as P TAP ¼ UHU if UPLO ¼ U or PTAP ¼ LLH if UPLO ¼ L , where P is a
permutation matrix, U is an upper triangular matrix and L is lower triangular.

This algorithm does not attempt to check that A is positive semidefinite.

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

Lucas C (2004) LAPACK-style codes for Level 2 and 3 pivoted Cholesky factorizations LAPACK
Working Note No. 161. Technical Report CS-04-522 Department of Computer Science, University of
Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA http://www.netlib.org/lapack/lawnspdf/
lawn161.pdf

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as UHU , where U is upper
triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as LLH, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F07 – Linear Equations (LAPACK) F07KRF
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3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian positive semidefinite matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if UPLO ¼ U , the first RANK rows of the upper triangle of A are overwritten with the
nonzero elements of the Cholesky factor U, and the remaining rows of the triangle are destroyed.

If UPLO ¼ L , the first RANK columns of the lower triangle of A are overwritten with the
nonzero elements of the Cholesky factor L, and the remaining columns of the triangle are
destroyed.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07KRF
(ZPSTRF) is called.

Constraint: LDA � max 1;Nð Þ.

5: PIVðNÞ – INTEGER array Output

On exit: PIV is such that the nonzero entries of P are P PIVðkÞ; kð Þ ¼ 1, for k ¼ 1; 2; . . . ; n.

6: RANK – INTEGER Output

On exit: the computed rank of A given by the number of steps the algorithm completed.

7: TOL – REAL (KIND=nag_wp) Input

On entry: user defined tolerance. If TOL < 0, then n� max
k¼1;n

Akkj j �machine precision will be

used. The algorithm terminates at the rth step if the rþ 1ð Þth step pivot < TOL.

8: WORKð2 � NÞ – REAL (KIND=nag_wp) array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

The matrix A is not positive definite. It is either positive semidefinite with computed rank as
returned in RANK and less than n, or it may be indefinite, see Section 9.
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7 Accuracy

If UPLO ¼ L and RANK ¼ r, the computed Cholesky factor L and permutation matrix P satisfy the
following upper bound

A� PLLHPTk k2
Ak k2

� 2rc rð Þ� Wk k2 þ 1
� �2 þO �2

� �
;

where

W ¼ L�111 L12; L ¼ L11 0
L12 0

� �
; L11 2 C

r�r;

c rð Þ is a modest linear function of r, � is machine precision, and

Wk k2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
n� rð Þ 4r � 1ð Þ

r
:

So there is no guarantee of stability of the algorithm for large n and r, although Wk k2 is generally
small in practice.

8 Parallelism and Performance

F07KRF (ZPSTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 4nr2 � 8=3r3, where r is the
computed rank of A.

This algorithm does not attempt to check that A is positive semidefinite, and in particular the rank
detection criterion in the algorithm is based on A being positive semidefinite. If there is doubt over
semidefiniteness then you should use the indefinite factorization F07MRF (ZHETRF). See Lucas (2004)
for further information.

The real analogue of this routine is F07KDF (DPSTRF).

10 Example

This example computes the Cholesky factorization of the matrix A, where

A ¼

12:40þ 0:00i 2:39þ 0:00i 5:50þ 0:05i 4:47þ 0:00i 11:89þ 0:00i
2:39þ 0:00i 1:63þ 0:00i 1:04þ 0:10i 1:14þ 0:00i 1:81þ 0:00i
5:50þ 0:05i 1:04þ 0:10i 2:45þ 0:00i 1:98� 0:03i 5:28� 0:02i
4:47þ 0:00i 1:14þ 0:00i 1:98� 0:03i 1:71þ 0:00i 4:14þ 0:00i

11:89þ 0:00i 1:81þ 0:00i 5:28� 0:02i 4:14þ 0:00i 11:63þ 0:00i

0BBB@
1CCCA:

10.1 Program Text

Program f07krfe

! F07KRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, x04ebf, zpstrf

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Complex (Kind=nag_wp), Parameter :: zero = (0.0E0_nag_wp,0.0E0_nag_wp)
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, info, j, lda, n, rank
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp), Allocatable :: work(:)
Integer, Allocatable :: piv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07KRF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, uplo
lda = n
Allocate (a(lda,n),piv(n),work(2*n))

! Read A from data file
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
tol = -1.0_nag_wp

! Factorize A
! The NAG name equivalent of zpstrf is f07krf

Call zpstrf(uplo,n,a,lda,piv,rank,tol,work,info)

! Zero out columns rank+1 to n
If (uplo==’U’) Then

Do j = rank + 1, n
a(rank+1:j,j) = zero

End Do
Else If (uplo==’L’) Then

Do j = rank + 1, n
a(j:n,j) = zero

End Do
End If

! Print rank
Write (nout,*)
Write (nout,’(1X,A15,I3)’) ’Computed rank: ’, rank

! Print factor
Write (nout,*)
Flush (nout)
ifail = 0
Call x04dbf(uplo,’Nonunit’,n,n,a,lda,’Bracketed’,’F5.2’,’Factor’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Print pivot indices
Write (nout,*)
Write (nout,*) ’PIV’
Flush (nout)
ifail = 0
Call x04ebf(’General’,’Non-unit’,1,n,piv,1,’I14’,’ ’,’No’,rlabs,’No’, &

clabs,80,1,ifail)

End Program f07krfe
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10.2 Program Data

F07KRF Example Program Data
5 ’L’ : n, uplo

(12.40, 0.00)
( 2.39, 0.00) ( 1.63, 0.00)
( 5.50, 0.05) ( 1.04, 0.10) ( 2.45, 0.00)
( 4.47, 0.00) ( 1.14, 0.00) ( 1.98,-0.03) ( 1.71, 0.00)
(11.89, 0.00) ( 1.81, 0.00) ( 5.28,-0.02) ( 4.14, 0.00) (11.63, 0.00) : End of A

10.3 Program Results

F07KRF Example Program Results

Computed rank: 3

Factor
1 2 3 4 5

1 ( 3.52, 0.00)
2 ( 0.68, 0.00) ( 1.08, 0.00)
3 ( 1.27, 0.00) ( 0.26, 0.00) ( 0.18, 0.00)
4 ( 1.56, 0.01) (-0.02, 0.08) ( 0.01,-0.05) ( 0.00, 0.00)
5 ( 3.38, 0.00) (-0.45, 0.00) (-0.17, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)

PIV
1 2 4 3 5
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NAG Library Routine Document

F07MAF (DSYSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MAF (DSYSV) computes the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07MAF (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK,
INFO)

&

INTEGER N, NRHS, LDA, IPIV(*), LDB, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), WORK(max(1,LWORK))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsysv.

3 Description

F07MAF (DSYSV) uses the diagonal pivoting method to factor A as A ¼ UDUT if UPLO ¼ U or
A ¼ LDLT if UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower) triangular
matrices, and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored
form of A is then used to solve the system of equations AX ¼ B.
Note that, in general, different permutations (pivot sequences) and diagonal block structures are
obtained for UPLO ¼ U or L

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if INFO ¼ 0, the block diagonal matrix D and the multipliers used to obtain the factor U
or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by F07MDF (DSYTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F07MAF (DSYSV) is called.

Constraint: LDA � max 1;Nð Þ.

6: IPIVð�Þ – INTEGER array Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07MAF
(DSYSV) is called.

Constraint: LDB � max 1;Nð Þ.

9: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.
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10: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F07MAF (DSYSV) is called.

LWORK � 1, and for best performance LWORK � max 1;N� nbð Þ, where nb is the optimal
block size for F07MDF (DSYTRF).

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

F07MBF (DSYSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04BHF solves Ax ¼ b and returns a
forward error bound and condition estimate. F04BHF calls F07MAF (DSYSV) to solve the equations.

8 Parallelism and Performance

F07MAF (DSYSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 1
3n

3 þ 2n2r , where r is the number of
right-hand sides.

The complex analogues of F07MAF (DSYSV) are F07MNF (ZHESV) for Hermitian matrices, and
F07NNF (ZSYSV) for symmetric matrices.

10 Example

This example solves the equations

Ax ¼ b;

where A is the symmetric matrix

A ¼
�1:81 2:06 0:63 �1:15
2:06 1:15 1:87 4:20
0:63 1:87 �0:21 3:87
�1:15 4:20 3:87 2:07

0B@
1CA and b ¼

0:96
6:07
8:38
9:50

0B@
1CA:

Details of the factorization of A are also output.

10.1 Program Text

Program f07mafe

! F07MAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsysv, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), work(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07MAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = nb*n
Allocate (a(lda,n),b(n),work(lwork),ipiv(n))

! Read the upper triangular part of the matrix A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Read b from data file

Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of dsysv is f07maf

Call dsysv(’Upper’,n,1,a,lda,ipiv,b,n,work,lwork,info)

If (info==0) Then

! Print solution
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Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’Upper’,’Non-unit diagonal’,n,n,a,lda, &

’Details of the factorization’,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ’The diagonal block ’, info, ’ of D is zero’

End If

99999 Format ((3X,7F11.4))
99998 Format (1X,7I11)
99997 Format (1X,A,I3,A)

End Program f07mafe

10.2 Program Data

F07MAF Example Program Data
4 :Value of N

-1.81 2.06 0.63 -1.15
1.15 1.87 4.20

-0.21 3.87
2.07 :End of matrix A

0.96 6.07 8.38 9.50 :End of vector b

10.3 Program Results

F07MAF Example Program Results

Solution
-5.0000 -2.0000 1.0000 4.0000

Details of the factorization
1 2 3 4

1 0.4074 0.3031 -0.5960 0.6537
2 -2.5907 0.8115 0.2230
3 1.1500 4.2000
4 2.0700

Pivot indices
1 2 -2 -2
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NAG Library Routine Document

F07MBF (DSYSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MBF (DSYSVX) uses the diagonal pivoting factorization to compute the solution to a real system
of linear equations

AX ¼ B;

where A is an n by n symmetric matrix and X and B are n by r matrices. Error bounds on the solution
and a condition estimate are also provided.

2 Specification

SUBROUTINE F07MBF (FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
X, LDX, RCOND, FERR, BERR, WORK, LWORK, IWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, IPIV(*), LDB, LDX, LWORK,
IWORK(*), INFO

&

REAL (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*), RCOND,
FERR(*), BERR(*), WORK(max(1,LWORK))

&

CHARACTER(1) FACT, UPLO

The routine may be called by its LAPACK name dsysvx.

3 Description

F07MBF (DSYSVX) performs the following steps:

1. If FACT ¼ N , the diagonal pivoting method is used to factor A. The form of the factorization is
A ¼ UDUT if UPLO ¼ U or A ¼ LDLT if UPLO ¼ L , where U (or L) is a product of
permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal
with 1 by 1 and 2 by 2 diagonal blocks.

2. If some dii ¼ 0, so that D is exactly singular, then the routine returns with INFO ¼ i. Otherwise,
the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal
of the condition number is less than machine precision, INFO ¼ Nþ 1 is returned as a warning,
but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

FACT ¼ F
AF and IPIV contain the factorized form of the matrix A. AF and IPIV will not be
modified.

FACT ¼ N
The matrix A will be copied to AF and factorized.

Constraint: FACT ¼ F or N .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07MBF
(DSYSVX) is called.

Constraint: LDA � max 1;Nð Þ.

7: AFðLDAF; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , AF contains the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by
F07MDF (DSYTRF).

On exit: if FACT ¼ N , AF returns the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUT or A ¼ LDLT.
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8: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07MBF (DSYSVX) is called.

Constraint: LDAF � max 1;Nð Þ.

9: IPIVð�Þ – INTEGER array Input/Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , IPIV contains details of the interchanges and the block structure of D,
as determined by F07MDF (DSYTRF).

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

On exit: if FACT ¼ N , IPIV contains details of the interchanges and the block structure of D, as
determined by F07MDF (DSYTRF), as described above.

10: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07MBF
(DSYSVX) is called.

Constraint: LDB � max 1;Nð Þ.

12: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X.

13: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07MBF
(DSYSVX) is called.

Constraint: LDX � max 1;Nð Þ.

14: RCOND – REAL (KIND=nag_wp) Output

On exit: the estimate of the reciprocal condition number of the matrix A. If RCOND ¼ 0:0, the
matrix may be exactly singular. This condition is indicated by INFO > 0 and INFO � N.
Otherwise, if RCOND is less than the machine precision, the matrix is singular to working
precision. This condition is indicated by INFO ¼ Nþ 1.
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15: FERRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array FERR must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

16: BERRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array BERR must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

17: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.

18: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F07MBF (DSYSVX) is called.

LWORK � max 1; 3� Nð Þ, a n d f o r b e s t p e r f o r m a n c e , w h e n FACT ¼ N ,
LWORK � max 1; 3� N;N� nbð Þ, where nb is the optimal block size for F07MDF (DSYTRF).

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

19: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least max 1;Nð Þ.

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor D is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.
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7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ek k1 ¼ O �ð Þ Ak k1;

where � is the machine precision. See Chapter 11 of Higham (2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07MBF (DSYSVX) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F07MBF (DSYSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 1
3n

3 floating-point operations.

For each right-hand side, computation of the backward error involves a minimum of 4n2 floating-point
operations. Each step of iterative refinement involves an additional 6n2 operations. At most five steps of
iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 2n2 operations.

The complex analogues of this routine are F07MPF (ZHESVX) for Hermitian matrices, and F07NPF
(ZSYSVX) for symmetric matrices.

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric matrix

A ¼
�1:81 2:06 0:63 �1:15
2:06 1:15 1:87 4:20
0:63 1:87 �0:21 3:87
�1:15 4:20 3:87 2:07

0B@
1CA and B ¼

0:96 3:93
6:07 19:25
8:38 9:90
9:50 27:85

0B@
1CA:

Error estimates for the solutions, and an estimate of the reciprocal of the condition number of the
matrix A are also output.
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10.1 Program Text

Program f07mbfe

! F07MBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsysvx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

lwork, n, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), berr(:), &
ferr(:), work(:), x(:,:)

Integer, Allocatable :: ipiv(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F07MBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
lwork = nb*n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),berr(nrhs),ferr(nrhs), &

work(lwork),x(ldx,nrhs),ipiv(n),iwork(n))

! Read the upper triangular part of A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of dsysvx is f07mbf

Call dsysvx(’Not factored’,’Upper’,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,x, &
ldx,rcond,ferr,berr,work,lwork,iwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds and condition number

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)

If (info==n+1) Then
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Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The diagonal block ’, info, ’ of D is zero’
End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07mbfe

10.2 Program Data

F07MBF Example Program Data
4 2 :Values of N and NRHS

-1.81 2.06 0.63 -1.15
1.15 1.87 4.20

-0.21 3.87
2.07 :End of matrix A

0.96 3.93
6.07 19.25
8.38 9.90
9.50 27.85 :End of matrix B

10.3 Program Results

F07MBF Example Program Results

Solution(s)
1 2

1 -5.0000 2.0000
2 -2.0000 3.0000
3 1.0000 4.0000
4 4.0000 1.0000

Backward errors (machine-dependent)
1.4E-16 1.0E-16

Estimated forward error bounds (machine-dependent)
2.5E-14 3.2E-14

Estimate of reciprocal condition number
1.3E-02
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NAG Library Routine Document

F07MDF (DSYTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MDF (DSYTRF) computes the Bunch–Kaufman factorization of a real symmetric indefinite matrix.

2 Specification

SUBROUTINE F07MDF (UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)

INTEGER N, LDA, IPIV(*), LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), WORK(max(1,LWORK))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsytrf.

3 Description

F07MDF (DSYTRF) factorizes a real symmetric matrix A, using the Bunch–Kaufman diagonal
pivoting method. A is factorized as either A ¼ PUDUTP T if UPLO ¼ U or A ¼ PLDLTPT if
UPLO ¼ L , where P is a permutation matrix, U (or L) is a unit upper (or lower) triangular matrix and
D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 diagonal blocks; U (or L) has 2 by 2
unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and column interchanges are
performed to ensure numerical stability while preserving symmetry.

This method is suitable for symmetric matrices which are not known to be positive definite. If A is in
fact positive definite, no interchanges are performed and no 2 by 2 blocks occur in D.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUTPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLTPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric indefinite matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the upper or lower triangle of A is overwritten by details of the block diagonal matrix D
and the multipliers used to obtain the factor U or L as specified by UPLO.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F07MDF (DSYTRF) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVð�Þ – INTEGER array Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

6: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimum
performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F07MDF (DSYTRF) is called, unless LWORK ¼ �1, in which case a workspace query is
assumed and the routine only calculates the optimal dimension of WORK (using the formula
given below).

Suggested value: for optimum performance LWORK should be at least N� nb, where nb is the
block size.

Constraint: LWORK � 1 or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve
a system of equations.

7 Accuracy

If UPLO ¼ U , the computed factors U and D are the exact factors of a perturbed matrix Aþ E, where

Ej j � c nð Þ�P Uj j Dj j UT
		 		PT;

c nð Þ is a modest linear function of n, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factors L and D.

8 Parallelism and Performance

F07MDF (DSYTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper
or lower triangle is stored, as specified by UPLO.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U or L are stored in the corresponding columns of the array A, but additional row
interchanges must be applied to recover U or L explicitly (this is seldom necessary). If IPIVðiÞ ¼ i, for
i ¼ 1; 2; . . . ; n (as is the case when A is positive definite), then U or L is stored explicitly (except for its
unit diagonal elements which are equal to 1).

The total number of floating-point operations is approximately 1
3n

3 .

A call to F07MDF (DSYTRF) may be followed by calls to the routines:

F07MEF (DSYTRS) to solve AX ¼ B;
F07MGF (DSYCON) to estimate the condition number of A;

F07MJF (DSYTRI) to compute the inverse of A.

The complex analogues of this routine are F07MRF (ZHETRF) for Hermitian matrices and F07NRF
(ZSYTRF) for symmetric matrices.
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10 Example

This example computes the Bunch–Kaufman factorization of the matrix A, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA:

10.1 Program Text

Program f07mdfe

! F07MDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsytrf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07MDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),work(lwork),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of dsytrf is f07mdf

Call dsytrf(uplo,n,a,lda,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)

! Print details of factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(uplo,’Nonunit’,n,n,a,lda,’Details of factorization’,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’IPIV’
Write (nout,99999) ipiv(1:n)

If (info/=0) Then
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Write (nout,*) ’The factor D is singular’
End If

99999 Format ((3X,7I11))
End Program f07mdfe

10.2 Program Data

F07MDF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

10.3 Program Results

F07MDF Example Program Results

Details of factorization
1 2 3 4

1 2.0700
2 4.2000 1.1500
3 0.2230 0.8115 -2.5907
4 0.6537 -0.5960 0.3031 0.4074

IPIV
-3 -3 3 4
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NAG Library Routine Document

F07MEF (DSYTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MEF (DSYTRS) solves a real symmetric indefinite system of linear equations with multiple right-
hand sides,

AX ¼ B;

where A has been factorized by F07MDF (DSYTRF).

2 Specification

SUBROUTINE F07MEF (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)

INTEGER N, NRHS, LDA, IPIV(*), LDB, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsytrs.

3 Description

F07MEF (DSYTRS) is used to solve a real symmetric indefinite system of linear equations AX ¼ B,
this routine must be preceded by a call to F07MDF (DSYTRF) which computes the Bunch–Kaufman
factorization of A.

If UPLO ¼ U , A ¼ PUDUTPT, where P is a permutation matrix, U is an upper triangular matrix and
D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 blocks; the solution X is computed by
solving PUDY ¼ B and then UTPTX ¼ Y .

If UPLO ¼ L , A ¼ PLDLTPT, where L is a lower triangular matrix; the solution X is computed by
solving PLDY ¼ B and then LTPTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07MDF (DSYTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07MEF
(DSYTRS) is called.

Constraint: LDA � max 1;Nð Þ.

6: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07MDF
(DSYTRF).

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07MEF
(DSYTRS) is called.

Constraint: LDB � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ�P Uj j Dj j UTj jPT;

if UPLO ¼ L , Ej j � c nð Þ�P Lj j Dj j LTj jPT,
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c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07MHF (DSYRFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07MGF (DSYCON).

8 Parallelism and Performance

F07MEF (DSYTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2n2r.

This routine may be followed by a call to F07MHF (DSYRFS) to refine the solution and return an error
estimate.

The complex analogues of this routine are F07MSF (ZHETRS) for Hermitian matrices and F07NSF
(ZSYTRS) for symmetric matrices.

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA and B ¼

�9:50 27:85
�8:38 9:90
�6:07 19:25
�0:96 3:93

0B@
1CA:

Here A is symmetric indefinite and must first be factorized by F07MDF (DSYTRF).

10.1 Program Text

Program f07mefe

! F07MEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsytrf, dsytrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, lwork, n, &

nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), work(:)
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Integer, Allocatable :: ipiv(:)
! .. Executable Statements ..

Write (nout,*) ’F07MEF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
lwork = 64*n
Allocate (a(lda,n),b(ldb,nrhs),work(lwork),ipiv(n))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of dsytrf is f07mdf

Call dsytrf(uplo,n,a,lda,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of dsytrs is f07mef

Call dsytrs(uplo,n,nrhs,a,lda,ipiv,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07mefe

10.2 Program Data

F07MEF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A
-9.50 27.85
-8.38 9.90
-6.07 19.25
-0.96 3.93 :End of matrix B
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10.3 Program Results

F07MEF Example Program Results

Solution(s)
1 2

1 -4.0000 1.0000
2 -1.0000 4.0000
3 2.0000 3.0000
4 5.0000 2.0000
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NAG Library Routine Document

F07MGF (DSYCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MGF (DSYCON) estimates the condition number of a real symmetric indefinite matrix A, where A
has been factorized by F07MDF (DSYTRF).

2 Specification

SUBROUTINE F07MGF (UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, IWORK,
INFO)

&

INTEGER N, LDA, IPIV(*), IWORK(N), INFO
REAL (KIND=nag_wp) A(LDA,*), ANORM, RCOND, WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsycon.

3 Description

F07MGF (DSYCON) estimates the condition number (in the 1-norm) of a real symmetric indefinite
matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is symmetric, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06RCF to compute Ak k1 and a call to F07MDF
(DSYTRF) to compute the Bunch–Kaufman factorization of A. The routine then uses Higham's
implementation of Hager's method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07MDF (DSYTRF).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F07MGF (DSYCON) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07MDF
(DSYTRF).

6: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06RCF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07MDF (DSYTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

7: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

8: WORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

9: IWORKðNÞ – INTEGER array Workspace

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

F07MGF NAG Library Manual

F07MGF.2 Mark 26



8 Parallelism and Performance

F07MGF (DSYCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07MGF (DSYCON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
2n2 floating-point operations but takes considerably longer than a call to F07MEF (DSYTRS) with one
right-hand side, because extra care is taken to avoid overflow when A is approximately singular.

The complex analogues of this routine are F07MUF (ZHECON) for Hermitian matrices and F07NUF
(ZSYCON) for symmetric matrices.

10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA:

Here A is symmetric indefinite and must first be factorized by F07MDF (DSYTRF). The true condition
number in the 1-norm is 75:68.

10.1 Program Text

Program f07mgfe

! F07MGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dlansy => f06rcf, dsycon, dsytrf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, lda, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07MGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),work(lwork),ipiv(n),iwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then
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Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Compute norm of A
! f06rcf is the NAG name equivalent of the LAPACK auxiliary dlansy

anorm = dlansy(’1-norm’,uplo,n,a,lda,work)

! Factorize A
! The NAG name equivalent of dsytrf is f07mdf

Call dsytrf(uplo,n,a,lda,ipiv,work,lwork,info)

Write (nout,*)
If (info==0) Then

! Estimate condition number
! The NAG name equivalent of dsycon is f07mgf

Call dsycon(uplo,n,a,lda,ipiv,anorm,rcond,work,iwork,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07mgfe

10.2 Program Data

F07MGF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

10.3 Program Results

F07MGF Example Program Results

Estimate of condition number = 7.57E+01
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NAG Library Routine Document

F07MHF (DSYRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MHF (DSYRFS) returns error bounds for the solution of a real symmetric indefinite system of
linear equations with multiple right-hand sides, AX ¼ B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07MHF (UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
LDX, FERR, BERR, WORK, IWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, IPIV(*), LDB, LDX, IWORK(N),
INFO

&

REAL (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),
FERR(NRHS), BERR(NRHS), WORK(3*N)

&

CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsyrfs.

3 Description

F07MHF (DSYRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a real symmetric indefinite system of linear equations with multiple right-hand sides
AX ¼ B. The routine handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of F07MHF (DSYRFS) in terms of a single right-hand side b
and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUTPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLTPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n original symmetric matrix A as supplied to F07MDF (DSYTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F07MHF (DSYRFS) is called.

Constraint: LDA � max 1;Nð Þ.

6: AFðLDAF; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07MDF (DSYTRF).

7: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07MHF (DSYRFS) is called.

Constraint: LDAF � max 1;Nð Þ.

8: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07MDF
(DSYTRF).

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07MHF
(DSYRFS) is called.

Constraint: LDB � max 1;Nð Þ.

11: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07MEF (DSYTRS).

On exit: the improved solution matrix X.

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
F07MHF (DSYRFS) is called.

Constraint: LDX � max 1;Nð Þ.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

15: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

16: IWORKðNÞ – INTEGER array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07MHF (DSYRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07MHF (DSYRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n2 floating-point
operations. Each step of iterative refinement involves an additional 6n2 operations. At most five steps of
iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
2n2 operations.

The complex analogues of this routine are F07MVF (ZHERFS) for Hermitian matrices and F07NVF
(ZSYRFS) for symmetric matrices.

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA and B ¼

�9:50 27:85
�8:38 9:90
�6:07 19:25
�0:96 3:93

0B@
1CA:

Here A is symmetric indefinite and must first be factorized by F07MDF (DSYTRF).

10.1 Program Text

Program f07mhfe

! F07MHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsyrfs, dsytrf, dsytrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

lwork, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), berr(:), &

ferr(:), work(:), x(:,:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07MHF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
lwork = 64*n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),berr(nrhs),ferr(nrhs), &

work(lwork),x(ldx,n),ipiv(n),iwork(n))

! Read A and B from data file, and copy A to AF and B to X
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Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*) a(i,i:n)
af(i,i:n) = a(i,i:n)

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*) a(i,1:i)
af(i,1:i) = a(i,1:i)

End Do
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AF
! The NAG name equivalent of dsytrf is f07mdf

Call dsytrf(uplo,n,af,ldaf,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of dsytrs is f07mef

Call dsytrs(uplo,n,nrhs,af,ldaf,ipiv,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors
! The NAG name equivalent of dsyrfs is f07mhf

Call dsyrfs(uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,x,ldx,ferr,berr,work, &
iwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format ((3X,1P,7E11.1))
End Program f07mhfe

10.2 Program Data

F07MHF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A
-9.50 27.85
-8.38 9.90
-6.07 19.25
-0.96 3.93 :End of matrix B
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10.3 Program Results

F07MHF Example Program Results

Solution(s)
1 2

1 -4.0000 1.0000
2 -1.0000 4.0000
3 2.0000 3.0000
4 5.0000 2.0000

Backward errors (machine-dependent)
9.9E-17 8.3E-17

Estimated forward error bounds (machine-dependent)
2.4E-14 3.2E-14
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NAG Library Routine Document

F07MJF (DSYTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MJF (DSYTRI) computes the inverse of a real symmetric indefinite matrix A, where A has been
factorized by F07MDF (DSYTRF).

2 Specification

SUBROUTINE F07MJF (UPLO, N, A, LDA, IPIV, WORK, INFO)

INTEGER N, LDA, IPIV(*), INFO
REAL (KIND=nag_wp) A(LDA,*), WORK(N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsytri.

3 Description

F07MJF (DSYTRI) is used to compute the inverse of a real symmetric indefinite matrix A, the routine
must be preceded by a call to F07MDF (DSYTRF), which computes the Bunch–Kaufman factorization
of A.

If UPLO ¼ U , A ¼ PUDUTPT and A�1 is computed by solving UTP TXPU ¼ D�1 for X.

If UPLO ¼ L , A ¼ PLDLTPT and A�1 is computed by solving LTPTXPL ¼ D�1 for X.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07MDF (DSYTRF).
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On exit: the factorization is overwritten by the n by n symmetric matrix A�1.

If UPLO ¼ U , the upper triangle of A�1 is stored in the upper triangular part of the array.

If UPLO ¼ L , the lower triangle of A�1 is stored in the lower triangular part of the array.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07MJF
(DSYTRI) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07MDF
(DSYTRF).

6: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

�999 < INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. D is singular and the inverse of A cannot be
computed.

7 Accuracy

The computed inverse X satisfies a bound of the form

if UPLO ¼ U , DUTPTXPU � Ij j � c nð Þ� Dj j UTj jP T Xj jP Uj j þ Dj j D�1
		 		� �

;

if UPLO ¼ L , DLTPTXPL� Ij j � c nð Þ� Dj j LTj jPT Xj jP Lj j þ Dj j D�1
		 		� �

,

c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F07MJF (DSYTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

3 .

The complex analogues of this routine are F07MWF (ZHETRI) for Hermitian matrices and F07NWF
(ZSYTRI) for symmetric matrices.

10 Example

This example computes the inverse of the matrix A, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA:

Here A is symmetric indefinite and must first be factorized by F07MDF (DSYTRF).

10.1 Program Text

Program f07mjfe

! F07MJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsytrf, dsytri, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07MJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),work(lwork),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of dsytrf is f07mdf

Call dsytrf(uplo,n,a,lda,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)
If (info==0) Then
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! Compute inverse of A
! The NAG name equivalent of dsytri is f07mjf

Call dsytri(uplo,n,a,lda,ipiv,work,info)

! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(uplo,’Nonunit’,n,n,a,lda,’Inverse’,ifail)

Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07mjfe

10.2 Program Data

F07MJF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

10.3 Program Results

F07MJF Example Program Results

Inverse
1 2 3 4

1 0.7485
2 0.5221 -0.1605
3 -1.0058 -0.3131 1.3501
4 -1.4386 -0.7440 2.0667 2.4547
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NAG Library Routine Document

F07MNF (ZHESV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MNF (ZHESV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07MNF (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK,
INFO)

&

INTEGER N, NRHS, LDA, IPIV(*), LDB, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), WORK(max(1,LWORK))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhesv.

3 Description

F07MNF (ZHESV) uses the diagonal pivoting method to factor A as A ¼ UDUH if UPLO ¼ U or
A ¼ LDLH if UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is Hermitian and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The
factored form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if INFO ¼ 0, the block diagonal matrix D and the multipliers used to obtain the factor U
or L from the factorization A ¼ UDUH or A ¼ LDLH as computed by F07MRF (ZHETRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F07MNF (ZHESV) is called.

Constraint: LDA � max 1;Nð Þ.

6: IPIVð�Þ – INTEGER array Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
Note: to solve the equations Ax ¼ b, where b is a single right-hand side, B may be supplied as a
one-dimensional array with length LDB ¼ max 1;Nð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07MNF
(ZHESV) is called.

Constraint: LDB � max 1;Nð Þ.

9: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.
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10: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F07MNF (ZHESV) is called.

LWORK � 1, and for best performance LWORK � max 1;N� nbð Þ, where nb is the optimal
block size for F07MRF (ZHETRF).

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

F07MPF (ZHESVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04CHF solves Ax ¼ b and returns a
forward error bound and condition estimate. F04CHF calls F07MNF (ZHESV) to solve the equations.

8 Parallelism and Performance

F07MNF (ZHESV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 4
3n

3 þ 8n2r , where r is the number of
right-hand sides.

The real analogue of this routine is F07MAF (DSYSV). The complex symmetric analogue of this
routine is F07NNF (ZSYSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the Hermitian matrix

A ¼
�1:84 0:11� 0:11i �1:78� 1:18i 3:91� 1:50i
0:11þ 0:11i �4:63 �1:84þ 0:03i 2:21þ 0:21i
�1:78þ 1:18i �1:84� 0:03i �8:87 1:58� 0:90i
3:91þ 1:50i 2:21� 0:21i 1:58þ 0:90i �1:36

0B@
1CA

and

b ¼
2:98� 10:18i
�9:58þ 3:88i
�0:77� 16:05i
7:79þ 5:48i

0B@
1CA:

Details of the factorization of A are also output.

10.1 Program Text

Program f07mnfe

! F07MNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zhesv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:), work(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07MNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = nb*n
Allocate (a(lda,n),b(n),work(lwork),ipiv(n))

! Read the upper triangular part of the matrix A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Read b from data file

Read (nin,*) b(1:n)
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! Solve the equations Ax = b for x
! The NAG name equivalent of zhesv is f06mnf

Call zhesv(’Upper’,n,1,a,lda,ipiv,b,n,work,lwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’Upper’,’Non-unit diagonal’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Details of the factorization’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ’The diagonal block ’, info, ’ of D is zero’

End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
99998 Format (1X,7I11)
99997 Format (1X,A,I3,A)

End Program f07mnfe

10.2 Program Data

F07MNF Example Program Data
4 :Value of N

( -1.84, 0.00) ( 0.11, -0.11) ( -1.78, -1.18) ( 3.91, -1.50)
( -4.63 , 0.00) ( -1.84, 0.03) ( 2.21, 0.21)

( -8.87, 0.00) ( 1.58, -0.90)
( -1.36 , 0.00) :End matrix A

( 2.98,-10.18) ( -9.58, 3.88) ( -0.77,-16.05) ( 7.79, 5.48) :End vector b

10.3 Program Results

F07MNF Example Program Results

Solution
( 2.0000, 1.0000) ( 3.0000,-2.0000) (-1.0000, 2.0000) ( 1.0000,-1.0000)

Details of the factorization
1 2 3 4

1 (-7.1028, 0.0000) ( 0.2997, 0.1578) ( 0.3397, 0.0303) (-0.1518, 0.3743)
2 (-5.4176, 0.0000) ( 0.5637, 0.2850) ( 0.3100, 0.0433)
3 (-1.8400, 0.0000) ( 3.9100,-1.5000)
4 (-1.3600, 0.0000)

Pivot indices
1 2 -1 -1
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NAG Library Routine Document

F07MPF (ZHESVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MPF (ZHESVX) uses the diagonal pivoting factorization to compute the solution to a complex
system of linear equations

AX ¼ B;

where A is an n by n Hermitian matrix and X and B are n by r matrices. Error bounds on the solution
and a condition estimate are also provided.

2 Specification

SUBROUTINE F07MPF (FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
X, LDX, RCOND, FERR, BERR, WORK, LWORK, RWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, IPIV(*), LDB, LDX, LWORK,
INFO

&

REAL (KIND=nag_wp) RCOND, FERR(*), BERR(*), RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),

WORK(max(1,LWORK))
&

CHARACTER(1) FACT, UPLO

The routine may be called by its LAPACK name zhesvx.

3 Description

F07MPF (ZHESVX) performs the following steps:

1. If FACT ¼ N , the diagonal pivoting method is used to factor A. The form of the factorization is
A ¼ UDUH if UPLO ¼ U or A ¼ LDLH if UPLO ¼ L , where U (or L) is a product of
permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal
with 1 by 1 and 2 by 2 diagonal blocks.

2. If some dii ¼ 0, so that D is exactly singular, then the routine returns with INFO ¼ i. Otherwise,
the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal
of the condition number is less than machine precision, INFO ¼ Nþ 1 is returned as a warning,
but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

FACT ¼ F
AF and IPIV contain the factorized form of the matrix A. AF and IPIV will not be
modified.

FACT ¼ N
The matrix A will be copied to AF and factorized.

Constraint: FACT ¼ F or N .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07MPF
(ZHESVX) is called.

Constraint: LDA � max 1;Nð Þ.

7: AFðLDAF; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , AF contains the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUH or A ¼ LDLH as computed by
F07MRF (ZHETRF).

On exit: if FACT ¼ N , AF returns the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUH or A ¼ LDLH.
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8: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07MPF (ZHESVX) is called.

Constraint: LDAF � max 1;Nð Þ.

9: IPIVð�Þ – INTEGER array Input/Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , IPIV contains details of the interchanges and the block structure of D,
as determined by F07MRF (ZHETRF).

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

On exit: if FACT ¼ N , IPIV contains details of the interchanges and the block structure of D, as
determined by F07MRF (ZHETRF), as described above.

10: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07MPF
(ZHESVX) is called.

Constraint: LDB � max 1;Nð Þ.

12: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X.

13: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07MPF
(ZHESVX) is called.

Constraint: LDX � max 1;Nð Þ.

14: RCOND – REAL (KIND=nag_wp) Output

On exit: the estimate of the reciprocal condition number of the matrix A. If RCOND ¼ 0:0, the
matrix may be exactly singular. This condition is indicated by INFO > 0 and INFO � N.
Otherwise, if RCOND is less than the machine precision, the matrix is singular to working
precision. This condition is indicated by INFO ¼ Nþ 1.
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15: FERRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array FERR must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

16: BERRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array BERR must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

17: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.

18: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F07MPF (ZHESVX) is called.

LWORK � max 1; 2� Nð Þ, a n d f o r b e s t p e r f o r m a n c e , w h e n FACT ¼ N ,
LWORK � max 1; 2� N;N� nbð Þ, where nb is the optimal block size for F07MRF (ZHETRF).

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

19: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1;Nð Þ.

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor D is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.
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7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ek k1 ¼ O �ð Þ Ak k1;

where � is the machine precision. See Chapter 11 of Higham (2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07MPF (ZHESVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07MPF (ZHESVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 4
3n

3 floating-point operations.

For each right-hand side, computation of the backward error involves a minimum of 16n2 floating-point
operations. Each step of iterative refinement involves an additional 24n2 operations. At most five steps
of iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 8n2 operations.

The real analogue of this routine is F07MBF (DSYSVX). The complex symmetric analogue of this
routine is F07NPF (ZSYSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian matrix

A ¼
�1:84 0:11� 0:11i �1:78� 1:18i 3:91� 1:50i
0:11þ 0:11i �4:63 �1:84þ 0:03i 2:21þ 0:21i
�1:78þ 1:18i �1:84� 0:03i �8:87 1:58� 0:90i
3:91þ 1:50i 2:21� 0:21i 1:58þ 0:90i �1:36

0B@
1CA

and

B ¼
2:98� 10:18i 28:68� 39:89i
�9:58þ 3:88i �24:79� 8:40i
�0:77� 16:05i 4:23� 70:02i
7:79þ 5:48i �35:39þ 18:01i

0B@
1CA:
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Error estimates for the solutions, and an estimate of the reciprocal of the condition number of the
matrix A are also output.

10.1 Program Text

Program f07mpfe

! F07MPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zhesvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

lwork, n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), work(:), &
x(:,:)

Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07MPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
lwork = nb*n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),work(lwork),x(ldx,nrhs), &

berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))

! Read the upper triangular part of A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of zhesvx is f07mpf

Call zhesvx(’Not factored’,’Upper’,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,x, &
ldx,rcond,ferr,berr,work,lwork,rwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds and condition number

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
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Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The diagonal block ’, info, ’ of D is zero’
End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07mpfe

10.2 Program Data

F07MPF Example Program Data
4 2 :N and NRHS

( -1.84, 0.00) ( 0.11, -0.11) ( -1.78, -1.18) ( 3.91, -1.50)
( -4.63 , 0.00) ( -1.84, 0.03) ( 2.21, 0.21)

( -8.87, 0.00) ( 1.58, -0.90)
( -1.36 , 0.00) :End matrix A

( 2.98,-10.18) ( 28.68,-39.89)
( -9.58, 3.88) (-24.79, -8.40)
( -0.77,-16.05) ( 4.23,-70.02)
( 7.79, 5.48) (-35.39, 18.01) :End matrix B

10.3 Program Results

F07MPF Example Program Results

Solution(s)
1 2

1 ( 2.0000, 1.0000) (-8.0000, 6.0000)
2 ( 3.0000,-2.0000) ( 7.0000,-2.0000)
3 (-1.0000, 2.0000) (-1.0000, 5.0000)
4 ( 1.0000,-1.0000) ( 3.0000,-4.0000)

Backward errors (machine-dependent)
5.1E-17 5.9E-17

Estimated forward error bounds (machine-dependent)
2.5E-15 3.0E-15

Estimate of reciprocal condition number
1.5E-01

F07 – Linear Equations (LAPACK) F07MPF

Mark 26 F07MPF.7 (last)





NAG Library Routine Document

F07MRF (ZHETRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MRF (ZHETRF) computes the Bunch–Kaufman factorization of a complex Hermitian indefinite
matrix.

2 Specification

SUBROUTINE F07MRF (UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)

INTEGER N, LDA, IPIV(*), LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(max(1,LWORK))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhetrf.

3 Description

F07MRF (ZHETRF) factorizes a complex Hermitian matrix A, using the Bunch–Kaufman diagonal
pivoting method. A is factorized either as A ¼ PUDUHPT if UPLO ¼ U or A ¼ PLDLHP T if
UPLO ¼ L , where P is a permutation matrix, U (or L) is a unit upper (or lower) triangular matrix and
D is an Hermitian block diagonal matrix with 1 by 1 and 2 by 2 diagonal blocks; U (or L) has 2 by 2
unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and column interchanges are
performed to ensure numerical stability while keeping the matrix Hermitian.

This method is suitable for Hermitian matrices which are not known to be positive definite. If A is in
fact positive definite, no interchanges are performed and no 2 by 2 blocks occur in D.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUHPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLHPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian indefinite matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the upper or lower triangle of A is overwritten by details of the block diagonal matrix D
and the multipliers used to obtain the factor U or L as specified by UPLO.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07MRF
(ZHETRF) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVð�Þ – INTEGER array Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

6: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimum
performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F07MRF (ZHETRF) is called, unless LWORK ¼ �1, in which case a workspace query is
assumed and the routine only calculates the optimal dimension of WORK (using the formula
given below).

Suggested value: for optimum performance LWORK should be at least N� nb, where nb is the
block size.

Constraint: LWORK � 1 or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve
a system of equations.

7 Accuracy

If UPLO ¼ U , the computed factors U and D are the exact factors of a perturbed matrix Aþ E, where

Ej j � c nð Þ�P Uj j Dj j UH
		 		P T;

c nð Þ is a modest linear function of n, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factors L and D.

8 Parallelism and Performance

F07MRF (ZHETRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper
or lower triangle is stored, as specified by UPLO.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U or L are stored in the corresponding columns of the array A, but additional row
interchanges must be applied to recover U or L explicitly (this is seldom necessary). If IPIVðiÞ ¼ i, for
i ¼ 1; 2; . . . ; n (as is the case when A is positive definite), then U or L is stored explicitly (except for its
unit diagonal elements which are equal to 1).

The total number of real floating-point operations is approximately 4
3n

3 .

A call to F07MRF (ZHETRF) may be followed by calls to the routines:

F07MSF (ZHETRS) to solve AX ¼ B;
F07MUF (ZHECON) to estimate the condition number of A;

F07MWF (ZHETRI) to compute the inverse of A.

The real analogue of this routine is F07MDF (DSYTRF).

10 Example

This example computes the Bunch–Kaufman factorization of the matrix A, where

A ¼
�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

0B@
1CA:
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10.1 Program Text

Program f07mrfe

! F07MRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zhetrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07MRF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),work(lwork),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zhetrf is f07mrf

Call zhetrf(uplo,n,a,lda,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)

! Print details of factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(uplo,’Nonunit’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’IPIV’
Write (nout,99999) ipiv(1:n)

If (info/=0) Then
Write (nout,*) ’The factor D is singular’

End If

99999 Format ((1X,I12,3I18))
End Program f07mrfe
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10.2 Program Data

F07MRF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-1.36, 0.00)
( 1.58,-0.90) (-8.87, 0.00)
( 2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
( 3.91,-1.50) (-1.78,-1.18) ( 0.11,-0.11) (-1.84, 0.00) :End of matrix A

10.3 Program Results

F07MRF Example Program Results

Details of factorization
1 2 3 4

1 (-1.3600, 0.0000)
2 ( 3.9100,-1.5000) (-1.8400, 0.0000)
3 ( 0.3100, 0.0433) ( 0.5637, 0.2850) (-5.4176, 0.0000)
4 (-0.1518, 0.3743) ( 0.3397, 0.0303) ( 0.2997, 0.1578) (-7.1028, 0.0000)

IPIV
-4 -4 3 4
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NAG Library Routine Document

F07MSF (ZHETRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MSF (ZHETRS) solves a complex Hermitian indefinite system of linear equations with multiple
right-hand sides,

AX ¼ B;

where A has been factorized by F07MRF (ZHETRF).

2 Specification

SUBROUTINE F07MSF (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)

INTEGER N, NRHS, LDA, IPIV(*), LDB, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhetrs.

3 Description

F07MSF (ZHETRS) is used to solve a complex Hermitian indefinite system of linear equations
AX ¼ B, this routine must be preceded by a call to F07MRF (ZHETRF) which computes the Bunch–
Kaufman factorization of A.

If UPLO ¼ U , A ¼ PUDUHPT, where P is a permutation matrix, U is an upper triangular matrix and
D is an Hermitian block diagonal matrix with 1 by 1 and 2 by 2 blocks; the solution X is computed by
solving PUDY ¼ B and then UHPTX ¼ Y .

If UPLO ¼ L , A ¼ PLDLHPT, where L is a lower triangular matrix; the solution X is computed by
solving PLDY ¼ B and then LHPTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUHPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLHPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

F07 – Linear Equations (LAPACK) F07MSF
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07MRF (ZHETRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07MSF
(ZHETRS) is called.

Constraint: LDA � max 1;Nð Þ.

6: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07MRF
(ZHETRF).

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07MSF
(ZHETRS) is called.

Constraint: LDB � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ�P Uj j Dj j UHj jPT;

if UPLO ¼ L , Ej j � c nð Þ�P Lj j Dj j LHj jPT,
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c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07MVF (ZHERFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07MUF (ZHECON).

8 Parallelism and Performance

F07MSF (ZHETRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8n2r.

This routine may be followed by a call to F07MVF (ZHERFS) to refine the solution and return an error
estimate.

The real analogue of this routine is F07MEF (DSYTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

0B@
1CA

and

B ¼
7:79þ 5:48i �35:39þ 18:01i
�0:77� 16:05i 4:23� 70:02i
�9:58þ 3:88i �24:79� 8:40i
2:98� 10:18i 28:68� 39:89i

0B@
1CA:

Here A is Hermitian indefinite and must first be factorized by F07MRF (ZHETRF).

10.1 Program Text

Program f07msfe

! F07MSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zhetrf, zhetrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

F07 – Linear Equations (LAPACK) F07MSF
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! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, lwork, n, &

nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), work(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07MSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
lwork = 64*n
Allocate (a(lda,n),b(ldb,nrhs),work(lwork),ipiv(n))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of zhetrf is f07mrf

Call zhetrf(uplo,n,a,lda,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of zhetrs is f07msf

Call zhetrs(uplo,n,nrhs,a,lda,ipiv,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07msfe

10.2 Program Data

F07MSF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(-1.36, 0.00)
( 1.58,-0.90) (-8.87, 0.00)
( 2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
( 3.91,-1.50) (-1.78,-1.18) ( 0.11,-0.11) (-1.84, 0.00) :End of matrix A
( 7.79, 5.48) (-35.39, 18.01)
(-0.77,-16.05) ( 4.23,-70.02)
(-9.58, 3.88) (-24.79, -8.40)
( 2.98,-10.18) ( 28.68,-39.89) :End of matrix B
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10.3 Program Results

F07MSF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) ( 3.0000,-4.0000)
2 (-1.0000, 2.0000) (-1.0000, 5.0000)
3 ( 3.0000,-2.0000) ( 7.0000,-2.0000)
4 ( 2.0000, 1.0000) (-8.0000, 6.0000)
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NAG Library Routine Document

F07MUF (ZHECON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MUF (ZHECON) estimates the condition number of a complex Hermitian indefinite matrix A,
where A has been factorized by F07MRF (ZHETRF).

2 Specification

SUBROUTINE F07MUF (UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)

INTEGER N, LDA, IPIV(*), INFO
REAL (KIND=nag_wp) ANORM, RCOND
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhecon.

3 Description

F07MUF (ZHECON) estimates the condition number (in the 1-norm) of a complex Hermitian indefinite
matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is Hermitian, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06UCF to compute Ak k1 and a call to F07MRF
(ZHETRF) to compute the Bunch–Kaufman factorization of A. The routine then uses Higham's
implementation of Hager's method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUHPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLHPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07MRF (ZHETRF).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F07MUF (ZHECON) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07MRF
(ZHETRF).

6: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06UCF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07MRF (ZHETRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

7: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

8: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07MUF (ZHECON) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07MUF (ZHECON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
floating-point operations but takes considerably longer than a call to F07MSF (ZHETRS) with one
right-hand side, because extra care is taken to avoid overflow when A is approximately singular.

The real analogue of this routine is F07MGF (DSYCON).

10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

0B@
1CA:

Here A is Hermitian indefinite and must first be factorized by F07MRF (ZHETRF). The true condition
number in the 1-norm is 9:10.

10.1 Program Text

Program f07mufe

! F07MUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, zhecon, zhetrf, zlanhe => f06ucf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, lda, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07MUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),work(lwork),rwork(n),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Compute norm of A
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! f06ucf is the NAG name equivalent of the LAPACK auxiliary zlanhe
anorm = zlanhe(’1-norm’,uplo,n,a,lda,rwork)

! Factorize A
! The NAG name equivalent of zhetrf is f07mrf

Call zhetrf(uplo,n,a,lda,ipiv,work,lwork,info)

Write (nout,*)
If (info==0) Then

! Estimate condition number
! The NAG name equivalent of zhecon is f07muf

Call zhecon(uplo,n,a,lda,ipiv,anorm,rcond,work,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07mufe

10.2 Program Data

F07MUF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-1.36, 0.00)
( 1.58,-0.90) (-8.87, 0.00)
( 2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
( 3.91,-1.50) (-1.78,-1.18) ( 0.11,-0.11) (-1.84, 0.00) :End of matrix A

10.3 Program Results

F07MUF Example Program Results

Estimate of condition number = 6.68E+00
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NAG Library Routine Document

F07MVF (ZHERFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MVF (ZHERFS) returns error bounds for the solution of a complex Hermitian indefinite system of
linear equations with multiple right-hand sides, AX ¼ B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07MVF (UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
LDX, FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, IPIV(*), LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),

WORK(2*N)
&

CHARACTER(1) UPLO

The routine may be called by its LAPACK name zherfs.

3 Description

F07MVF (ZHERFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex Hermitian indefinite system of linear equations with multiple right-hand sides
AX ¼ B. The routine handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of F07MVF (ZHERFS) in terms of a single right-hand side b
and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUHPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLHPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n original Hermitian matrix A as supplied to F07MRF (ZHETRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F07MVF (ZHERFS) is called.

Constraint: LDA � max 1;Nð Þ.

6: AFðLDAF; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07MRF (ZHETRF).

7: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07MVF (ZHERFS) is called.

Constraint: LDAF � max 1;Nð Þ.

8: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07MRF
(ZHETRF).

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07MVF
(ZHERFS) is called.

Constraint: LDB � max 1;Nð Þ.

11: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07MSF (ZHETRS).

On exit: the improved solution matrix X.

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
F07MVF (ZHERFS) is called.

Constraint: LDX � max 1;Nð Þ.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

15: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

16: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07MVF (ZHERFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07MVF (ZHERFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n2 real floating-
point operations. Each step of iterative refinement involves an additional 24n2 real operations. At most
five steps of iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
operations.

The real analogue of this routine is F07MHF (DSYRFS).

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

0B@
1CA

and

B ¼
7:79þ 5:48i �35:39þ 18:01i
�0:77� 16:05i 4:23� 70:02i
�9:58þ 3:88i �24:79� 8:40i
2:98� 10:18i 28:68� 39:89i

0B@
1CA:

Here A is Hermitian indefinite and must first be factorized by F07MRF (ZHETRF).

10.1 Program Text

Program f07mvfe

! F07MVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06tff, nag_wp, x04dbf, zherfs, zhetrf, zhetrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

lwork, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07MVF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
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ldb = n
ldx = n
lwork = 64*n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),work(lwork),x(ldx,n), &

berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))

! Read A and B from data file, and copy A to AF and B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

Call f06tff(uplo,n,n,a,lda,af,ldaf)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AF
! The NAG name equivalent of zhetrf is f07mrf

Call zhetrf(uplo,n,af,ldaf,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of zhetrs is f07msf

Call zhetrs(uplo,n,nrhs,af,ldaf,ipiv,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of zherfs is f07mvf
Call zherfs(uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,x,ldx,ferr,berr,work, &

rwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07mvfe

10.2 Program Data

F07MVF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(-1.36, 0.00)
( 1.58,-0.90) (-8.87, 0.00)
( 2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
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( 3.91,-1.50) (-1.78,-1.18) ( 0.11,-0.11) (-1.84, 0.00) :End of matrix A
( 7.79, 5.48) (-35.39, 18.01)
(-0.77,-16.05) ( 4.23,-70.02)
(-9.58, 3.88) (-24.79, -8.40)
( 2.98,-10.18) ( 28.68,-39.89) :End of matrix B

10.3 Program Results

F07MVF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) ( 3.0000,-4.0000)
2 (-1.0000, 2.0000) (-1.0000, 5.0000)
3 ( 3.0000,-2.0000) ( 7.0000,-2.0000)
4 ( 2.0000, 1.0000) (-8.0000, 6.0000)

Backward errors (machine-dependent)
5.1E-17 3.5E-17

Estimated forward error bounds (machine-dependent)
2.5E-15 3.0E-15
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NAG Library Routine Document

F07MWF (ZHETRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07MWF (ZHETRI) computes the inverse of a complex Hermitian indefinite matrix A, where A has
been factorized by F07MRF (ZHETRF).

2 Specification

SUBROUTINE F07MWF (UPLO, N, A, LDA, IPIV, WORK, INFO)

INTEGER N, LDA, IPIV(*), INFO
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhetri.

3 Description

F07MWF (ZHETRI) is used to compute the inverse of a complex Hermitian indefinite matrix A, the
routine must be preceded by a call to F07MRF (ZHETRF), which computes the Bunch–Kaufman
factorization of A.

If UPLO ¼ U , A ¼ PUDUHPT and A�1 is computed by solving UHPTXPU ¼ D�1 for X.

If UPLO ¼ L , A ¼ PLDLHPT and A�1 is computed by solving LHPTXPL ¼ D�1 for X.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUHPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLHPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07MRF (ZHETRF).
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On exit: the factorization is overwritten by the n by n Hermitian matrix A�1.

If UPLO ¼ U , the upper triangle of A�1 is stored in the upper triangular part of the array.

If UPLO ¼ L , the lower triangle of A�1 is stored in the lower triangular part of the array.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F07MWF (ZHETRI) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07MRF
(ZHETRF).

6: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

�999 < INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. D is singular and the inverse of A cannot be
computed.

7 Accuracy

The computed inverse X satisfies a bound of the form

if UPLO ¼ U , DUHPTXPU � Ij j � c nð Þ� Dj j UHj jPT Xj jP Uj j þ Dj j D�1
		 		� �

;

if UPLO ¼ L , DLHPTXPL� Ij j � c nð Þ� Dj j LHj jPT Xj jP Lj j þ Dj j D�1
		 		� �

,

c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F07MWF (ZHETRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3n

3 .

The real analogue of this routine is F07MJF (DSYTRI).

10 Example

This example computes the inverse of the matrix A, where

A ¼
�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

0B@
1CA:

Here A is Hermitian indefinite and must first be factorized by F07MRF (ZHETRF).

10.1 Program Text

Program f07mwfe

! F07MWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zhetrf, zhetri

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07MWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),work(lwork),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zhetrf is f07mrf

Call zhetrf(uplo,n,a,lda,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)
If (info==0) Then
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! Compute inverse of A
! The NAG name equivalent of zhetri is f07mwf

Call zhetri(uplo,n,a,lda,ipiv,work,info)

! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(uplo,’Nonunit’,n,n,a,lda,’Bracketed’,’F7.4’,’Inverse’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07mwfe

10.2 Program Data

F07MWF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-1.36, 0.00)
( 1.58,-0.90) (-8.87, 0.00)
( 2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
( 3.91,-1.50) (-1.78,-1.18) ( 0.11,-0.11) (-1.84, 0.00) :End of matrix A

10.3 Program Results

F07MWF Example Program Results

Inverse
1 2 3 4

1 ( 0.0826, 0.0000)
2 (-0.0335, 0.0440) (-0.1408, 0.0000)
3 ( 0.0603,-0.0105) ( 0.0422,-0.0222) (-0.2007, 0.0000)
4 ( 0.2391,-0.0926) ( 0.0304, 0.0203) ( 0.0982,-0.0635) ( 0.0073,-0.0000)
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NAG Library Routine Document

F07NNF (ZSYSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07NNF (ZSYSV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n symmetric matrix and X and B are n by r matrices.

2 Specification

SUBROUTINE F07NNF (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK,
INFO)

&

INTEGER N, NRHS, LDA, IPIV(*), LDB, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), WORK(max(1,LWORK))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zsysv.

3 Description

F07NNF (ZSYSV) uses the diagonal pivoting method to factor A as A ¼ UDUT if UPLO ¼ U or
A ¼ LDLT if UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower) triangular
matrices, and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if INFO ¼ 0, the block diagonal matrix D and the multipliers used to obtain the factor U
or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by F07NRF (ZSYTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07NNF
(ZSYSV) is called.

Constraint: LDA � max 1;Nð Þ.

6: IPIVð�Þ – INTEGER array Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
Note: to solve the equations Ax ¼ b, where b is a single right-hand side, B may be supplied as a
one-dimensional array with length LDB ¼ max 1;Nð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07NNF
(ZSYSV) is called.

Constraint: LDB � max 1;Nð Þ.

9: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.
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10: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F07NNF (ZSYSV) is called.

LWORK � 1, and for best performance LWORK � max 1;N� nbð Þ, where nb is the optimal
block size for F07NRF (ZSYTRF).

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) and Chapter 11 of Higham (2002) for further
details.

F07NPF (ZSYSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04DHF solves Ax ¼ b and returns a
forward error bound and condition estimate. F04DHF calls F07NNF (ZSYSV) to solve the equations.

8 Parallelism and Performance

F07NNF (ZSYSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 4
3n

3 þ 8n2r , where r is the number of
right-hand sides.

The real analogue of this routine is F07MAF (DSYSV). The complex Hermitian analogue of this
routine is F07MNF (ZHESV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the complex symmetric matrix

A ¼
�0:56þ 0:12i �1:54� 2:86i 5:32� 1:59i 3:80þ 0:92i
�1:54� 2:86i �2:83� 0:03i �3:52þ 0:58i �7:86� 2:96i
5:32� 1:59i �3:52þ 0:58i 8:86þ 1:81i 5:14� 0:64i
3:80þ 0:92i �7:86� 2:96i 5:14� 0:64i �0:39� 0:71i

0B@
1CA

and

b ¼
�6:43þ 19:24i
�0:49� 1:47i
�48:18þ 66:00i
�55:64þ 41:22i

0B@
1CA:

Details of the factorization of A are also output.

10.1 Program Text

Program f07nnfe

! F07NNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zsysv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:), work(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07NNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = nb*n
Allocate (a(lda,n),b(n),work(lwork),ipiv(n))

! Read the upper triangular part of the matrix A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Read b from data file

Read (nin,*) b(1:n)

F07NNF NAG Library Manual

F07NNF.4 Mark 26



! Solve the equations Ax = b for x

! The NAG name equivalent of zsysv is f07nnf
Call zsysv(’Upper’,n,1,a,lda,ipiv,b,n,work,lwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’Upper’,’Non-unit diagonal’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Details of the factorization’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ’The diagonal block ’, info, ’ of D is zero’

End If

99999 Format ((4X,4(’(’,F7.4,’,’,F7.4,’) ’)))
99998 Format (1X,7I11)
99997 Format (1X,A,I3,A)

End Program f07nnfe

10.2 Program Data

F07NNF Example Program Data
4 :Value of N

( -0.56, 0.12) ( -1.54, -2.86) ( 5.32, -1.59) ( 3.80, 0.92)
( -2.83 ,-0.03) ( -3.52, 0.58) ( -7.86, -2.96)

( 8.86, 1.81) ( 5.14, -0.64)
( -0.39 ,-0.71) :End matrix A

( -6.43, 19.24) ( -0.49, -1.47) (-48.18, 66.00) (-55.64, 41.22) :End vector b

10.3 Program Results

F07NNF Example Program Results

Solution
(-4.0000, 3.0000) ( 3.0000,-2.0000) (-2.0000, 5.0000) ( 1.0000,-1.0000)

Details of the factorization
1 2 3 4

1 (-2.0954,-2.2011) (-0.1071,-0.3157) (-0.4823, 0.0150) ( 0.4426, 0.1936)
2 ( 4.4079, 5.3991) (-0.6078, 0.2811) ( 0.5279,-0.3715)
3 (-2.8300,-0.0300) (-7.8600,-2.9600)
4 (-0.3900,-0.7100)

Pivot indices
1 2 -2 -2
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NAG Library Routine Document

F07NPF (ZSYSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07NPF (ZSYSVX) uses the diagonal pivoting factorization to compute the solution to a complex
system of linear equations

AX ¼ B;

where A is an n by n symmetric matrix and X and B are n by r matrices. Error bounds on the solution
and a condition estimate are also provided.

2 Specification

SUBROUTINE F07NPF (FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
X, LDX, RCOND, FERR, BERR, WORK, LWORK, RWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, IPIV(*), LDB, LDX, LWORK,
INFO

&

REAL (KIND=nag_wp) RCOND, FERR(*), BERR(*), RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),

WORK(max(1,LWORK))
&

CHARACTER(1) FACT, UPLO

The routine may be called by its LAPACK name zsysvx.

3 Description

F07NPF (ZSYSVX) performs the following steps:

1. If FACT ¼ N , the diagonal pivoting method is used to factor A. The form of the factorization is
A ¼ UDUT if UPLO ¼ U or A ¼ LDLT if UPLO ¼ L , where U (or L) is a product of
permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal
with 1 by 1 and 2 by 2 diagonal blocks.

2. If some dii ¼ 0, so that D is exactly singular, then the routine returns with INFO ¼ i. Otherwise,
the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal
of the condition number is less than machine precision, INFO ¼ Nþ 1 is returned as a warning,
but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

FACT ¼ F
AF and IPIV contain the factorized form of the matrix A. AF and IPIV will not be
modified.

FACT ¼ N
The matrix A will be copied to AF and factorized.

Constraint: FACT ¼ F or N .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07NPF
(ZSYSVX) is called.

Constraint: LDA � max 1;Nð Þ.

7: AFðLDAF; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , AF contains the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by
F07NRF (ZSYTRF).

On exit: if FACT ¼ N , AF returns the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUT or A ¼ LDLT.
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8: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07NPF (ZSYSVX) is called.

Constraint: LDAF � max 1;Nð Þ.

9: IPIVð�Þ – INTEGER array Input/Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: if FACT ¼ F , IPIV contains details of the interchanges and the block structure of D,
as determined by F07NRF (ZSYTRF).

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

On exit: if FACT ¼ N , IPIV contains details of the interchanges and the block structure of D, as
determined by F07NRF (ZSYTRF), as described above.

10: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07NPF
(ZSYSVX) is called.

Constraint: LDB � max 1;Nð Þ.

12: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X.

13: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07NPF
(ZSYSVX) is called.

Constraint: LDX � max 1;Nð Þ.

14: RCOND – REAL (KIND=nag_wp) Output

On exit: the estimate of the reciprocal condition number of the matrix A. If RCOND ¼ 0:0, the
matrix may be exactly singular. This condition is indicated by INFO > 0 and INFO � N.
Otherwise, if RCOND is less than the machine precision, the matrix is singular to working
precision. This condition is indicated by INFO ¼ Nþ 1.
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15: FERRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array FERR must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

16: BERRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array BERR must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

17: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.

18: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F07NPF (ZSYSVX) is called.

LWORK � max 1; 2� Nð Þ, a n d f o r b e s t p e r f o r m a n c e , w h e n FACT ¼ N ,
LWORK � max 1; 2� N;N� nbð Þ, where nb is the optimal block size for F07NRF (ZSYTRF).

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

19: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1;Nð Þ.

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor D is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.
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7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ek k1 ¼ O �ð Þ Ak k1;

where � is the machine precision. See Chapter 11 of Higham (2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07NPF (ZSYSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07NPF (ZSYSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 4
3n

3 floating-point operations.

For each right-hand side, computation of the backward error involves a minimum of 16n2 floating-point
operations. Each step of iterative refinement involves an additional 24n2 operations. At most five steps
of iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 8n2 operations.

The real analogue of this routine is F07MBF (DSYSVX). The complex Hermitian analogue of this
routine is F07MPF (ZHESVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the complex symmetric matrix

A ¼
�0:56þ 0:12i �1:54� 2:86i 5:32� 1:59i 3:80þ 0:92i
�1:54� 2:86i �2:83� 0:03i �3:52þ 0:58i �7:86� 2:96i
5:32� 1:59i �3:52þ 0:58i 8:86þ 1:81i 5:14� 0:64i
3:80þ 0:92i �7:86� 2:96i 5:14� 0:64i �0:39� 0:71i

0B@
1CA

and

B ¼
�6:43þ 19:24i �4:59� 35:53i
�0:49� 1:47i 6:95þ 20:49i
�48:18þ 66:00i �12:08� 27:02i
�55:64þ 41:22i �19:09� 35:97i

0B@
1CA:
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Error estimates for the solutions, and an estimate of the reciprocal of the condition number of the
matrix A are also output.

10.1 Program Text

Program f07npfe

! F07NPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zsysvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

lwork, n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), work(:), &
x(:,:)

Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07NPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
ldb = n
ldx = n
lwork = nb*n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),work(lwork),x(ldx,nrhs), &

berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))

! Read the upper triangular part of A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of zsysvx is f07npf

Call zsysvx(’Not factored’,’Upper’,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,x, &
ldx,rcond,ferr,berr,work,lwork,rwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds and condition number

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
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Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The diagonal block ’, info, ’ of D is zero’
End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07npfe

10.2 Program Data

F07NPF Example Program Data
4 2 :N and NRHS

( -0.56, 0.12) ( -1.54, -2.86) ( 5.32, -1.59) ( 3.80, 0.92)
( -2.83 ,-0.03) ( -3.52, 0.58) ( -7.86, -2.96)

( 8.86, 1.81) ( 5.14, -0.64)
( -0.39 ,-0.71) :End matrix A

( -6.43, 19.24) ( -4.59,-35.53)
( -0.49, -1.47) ( 6.95, 20.49)
(-48.18, 66.00) (-12.08,-27.02)
(-55.64, 41.22) (-19.09,-35.97) :End matrix B

10.3 Program Results

F07NPF Example Program Results

Solution(s)
1 2

1 (-4.0000, 3.0000) (-1.0000, 1.0000)
2 ( 3.0000,-2.0000) ( 3.0000, 2.0000)
3 (-2.0000, 5.0000) ( 1.0000,-3.0000)
4 ( 1.0000,-1.0000) (-2.0000,-1.0000)

Backward errors (machine-dependent)
8.1E-17 3.0E-17

Estimated forward error bounds (machine-dependent)
1.2E-14 1.2E-14

Estimate of reciprocal condition number
4.9E-02
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NAG Library Routine Document

F07NRF (ZSYTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07NRF (ZSYTRF) computes the Bunch–Kaufman factorization of a complex symmetric matrix.

2 Specification

SUBROUTINE F07NRF (UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)

INTEGER N, LDA, IPIV(*), LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(max(1,LWORK))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zsytrf.

3 Description

F07NRF (ZSYTRF) factorizes a complex symmetric matrix A, using the Bunch–Kaufman diagonal
pivoting method. A is factorized as either A ¼ PUDUTP T if UPLO ¼ U or A ¼ PLDLTPT if
UPLO ¼ L , where P is a permutation matrix, U (or L) is a unit upper (or lower) triangular matrix and
D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 diagonal blocks; U (or L) has 2 by 2
unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and column interchanges are
performed to ensure numerical stability while preserving symmetry.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUTPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLTPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric indefinite matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the upper or lower triangle of A is overwritten by details of the block diagonal matrix D
and the multipliers used to obtain the factor U or L as specified by UPLO.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07NRF
(ZSYTRF) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVð�Þ – INTEGER array Output

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

6: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimum
performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F07NRF (ZSYTRF) is called, unless LWORK ¼ �1, in which case a workspace query is
assumed and the routine only calculates the optimal dimension of WORK (using the formula
given below).

Suggested value: for optimum performance LWORK should be at least N� nb, where nb is the
block size.

Constraint: LWORK � 1 or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve
a system of equations.

7 Accuracy

If UPLO ¼ U , the computed factors U and D are the exact factors of a perturbed matrix Aþ E, where

Ej j � c nð Þ�P Uj j Dj j UT
		 		PT;

c nð Þ is a modest linear function of n, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factors L and D.

8 Parallelism and Performance

F07NRF (ZSYTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper
or lower triangle is stored, as specified by UPLO.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U or L are stored in the corresponding columns of the array A, but additional row
interchanges must be applied to recover U or L explicitly (this is seldom necessary). If IPIVðiÞ ¼ i, for
i ¼ 1; 2; . . . ; n, then U or L is stored explicitly (except for its unit diagonal elements which are equal to
1).

The total number of real floating-point operations is approximately 4
3n

3 .

A call to F07NRF (ZSYTRF) may be followed by calls to the routines:

F07NSF (ZSYTRS) to solve AX ¼ B;
F07NUF (ZSYCON) to estimate the condition number of A;

F07NWF (ZSYTRI) to compute the inverse of A.

The real analogue of this routine is F07MDF (DSYTRF).

10 Example

This example computes the Bunch–Kaufman factorization of the matrix A, where

A ¼
�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i
�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

0B@
1CA:
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10.1 Program Text

Program f07nrfe

! F07NRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zsytrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07NRF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),work(lwork),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zsytrf is f07nrf

Call zsytrf(uplo,n,a,lda,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)

! Print details of factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(uplo,’Nonunit’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’IPIV’
Write (nout,99999) ipiv(1:n)

If (info/=0) Then
Write (nout,*) ’The factor D is singular’

End If

99999 Format ((1X,I12,3I18))
End Program f07nrfe
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10.2 Program Data

F07NRF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-0.39,-0.71)
( 5.14,-0.64) ( 8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
( 3.80, 0.92) ( 5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A

10.3 Program Results

F07NRF Example Program Results

Details of factorization
1 2 3 4

1 (-0.3900,-0.7100)
2 (-7.8600,-2.9600) (-2.8300,-0.0300)
3 ( 0.5279,-0.3715) (-0.6078, 0.2811) ( 4.4079, 5.3991)
4 ( 0.4426, 0.1936) (-0.4823, 0.0150) (-0.1071,-0.3157) (-2.0954,-2.2011)

IPIV
-3 -3 3 4
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NAG Library Routine Document

F07NSF (ZSYTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07NSF (ZSYTRS) solves a complex symmetric system of linear equations with multiple right-hand
sides,

AX ¼ B;

where A has been factorized by F07NRF (ZSYTRF).

2 Specification

SUBROUTINE F07NSF (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)

INTEGER N, NRHS, LDA, IPIV(*), LDB, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zsytrs.

3 Description

F07NSF (ZSYTRS) is used to solve a complex symmetric system of linear equations AX ¼ B, this
routine must be preceded by a call to F07NRF (ZSYTRF) which computes the Bunch–Kaufman
factorization of A.

If UPLO ¼ U , A ¼ PUDUTPT, where P is a permutation matrix, U is an upper triangular matrix and
D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 blocks; the solution X is computed by
solving PUDY ¼ B and then UTPTX ¼ Y .

If UPLO ¼ L , A ¼ PLDLTPT, where L is a lower triangular matrix; the solution X is computed by
solving PLDY ¼ B and then LTPTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

F07 – Linear Equations (LAPACK) F07NSF
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07NRF (ZSYTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07NSF
(ZSYTRS) is called.

Constraint: LDA � max 1;Nð Þ.

6: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07NRF
(ZSYTRF).

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07NSF
(ZSYTRS) is called.

Constraint: LDB � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ�P Uj j Dj j UTj jPT;

if UPLO ¼ L , Ej j � c nð Þ�P Lj j Dj j LTj jPT,

F07NSF NAG Library Manual

F07NSF.2 Mark 26



c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07NVF (ZSYRFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07NUF (ZSYCON).

8 Parallelism and Performance

F07NSF (ZSYTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8n2r.

This routine may be followed by a call to F07NVF (ZSYRFS) to refine the solution and return an error
estimate.

The real analogue of this routine is F07MEF (DSYTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i
�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

0B@
1CA

and

B ¼
�55:64þ 41:22i �19:09� 35:97i
�48:18þ 66:00i �12:08� 27:02i
�0:49� 1:47i 6:95þ 20:49i
�6:43þ 19:24i �4:59� 35:53i

0B@
1CA:

Here A is symmetric and must first be factorized by F07NRF (ZSYTRF).

10.1 Program Text

Program f07nsfe

! F07NSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zsytrf, zsytrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

F07 – Linear Equations (LAPACK) F07NSF

Mark 26 F07NSF.3



! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, lwork, n, &

nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), work(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07NSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
lwork = 64*n
Allocate (a(lda,n),b(ldb,nrhs),work(lwork),ipiv(n))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of zsytrf is f07nrf

Call zsytrf(uplo,n,a,lda,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of zsytrs is f07nsf

Call zsytrs(uplo,n,nrhs,a,lda,ipiv,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07nsfe

10.2 Program Data

F07NSF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(-0.39,-0.71)
( 5.14,-0.64) ( 8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
( 3.80, 0.92) ( 5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A
(-55.64, 41.22) (-19.09,-35.97)
(-48.18, 66.00) (-12.08,-27.02)
( -0.49, -1.47) ( 6.95, 20.49)
( -6.43, 19.24) ( -4.59,-35.53) :End of matrix B

F07NSF NAG Library Manual

F07NSF.4 Mark 26



10.3 Program Results

F07NSF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) (-2.0000,-1.0000)
2 (-2.0000, 5.0000) ( 1.0000,-3.0000)
3 ( 3.0000,-2.0000) ( 3.0000, 2.0000)
4 (-4.0000, 3.0000) (-1.0000, 1.0000)
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NAG Library Routine Document

F07NUF (ZSYCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07NUF (ZSYCON) estimates the condition number of a complex symmetric matrix A, where A has
been factorized by F07NRF (ZSYTRF).

2 Specification

SUBROUTINE F07NUF (UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)

INTEGER N, LDA, IPIV(*), INFO
REAL (KIND=nag_wp) ANORM, RCOND
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zsycon.

3 Description

F07NUF (ZSYCON) estimates the condition number (in the 1-norm) of a complex symmetric matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is symmetric, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06UFF to compute Ak k1 and a call to F07NRF (ZSYTRF)
to compute the Bunch–Kaufman factorization of A. The routine then uses Higham's implementation of
Hager's method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F07 – Linear Equations (LAPACK) F07NUF
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3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07NRF (ZSYTRF).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07NUF
(ZSYCON) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07NRF
(ZSYTRF).

6: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06UFF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07NRF (ZSYTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

7: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

8: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07NUF (ZSYCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

A call to F07NUF (ZSYCON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
floating-point operations but takes considerably longer than a call to F07NSF (ZSYTRS) with one right-
hand side, because extra care is taken to avoid overflow when A is approximately singular.

The real analogue of this routine is F07MGF (DSYCON).

10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i
�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

0B@
1CA:

Here A is symmetric and must first be factorized by F07NRF (ZSYTRF). The true condition number in
the 1-norm is 32:92.

10.1 Program Text

Program f07nufe

! F07NUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, zlansy => f06uff, zsycon, zsytrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, lda, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07NUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),work(lwork),rwork(n),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Compute norm of A
! f06uff is the NAG name equivalent of the LAPACK auxiliary zlansy

anorm = zlansy(’1-norm’,uplo,n,a,lda,rwork)

! Factorize A
! The NAG name equivalent of zsytrf is f07nrf

Call zsytrf(uplo,n,a,lda,ipiv,work,lwork,info)
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Write (nout,*)
If (info==0) Then

! Estimate condition number
! The NAG name equivalent of zsycon is f07nuf

Call zsycon(uplo,n,a,lda,ipiv,anorm,rcond,work,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07nufe

10.2 Program Data

F07NUF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-0.39,-0.71)
( 5.14,-0.64) ( 8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
( 3.80, 0.92) ( 5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A

10.3 Program Results

F07NUF Example Program Results

Estimate of condition number = 2.06E+01
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NAG Library Routine Document

F07NVF (ZSYRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07NVF (ZSYRFS) returns error bounds for the solution of a complex symmetric system of linear
equations with multiple right-hand sides, AX ¼ B. It improves the solution by iterative refinement, in
order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07NVF (UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
LDX, FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, LDA, LDAF, IPIV(*), LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) A(LDA,*), AF(LDAF,*), B(LDB,*), X(LDX,*),

WORK(2*N)
&

CHARACTER(1) UPLO

The routine may be called by its LAPACK name zsyrfs.

3 Description

F07NVF (ZSYRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex symmetric system of linear equations with multiple right-hand sides AX ¼ B.
The routine handles each right-hand side vector (stored as a column of the matrix B) independently, so
we describe the function of F07NVF (ZSYRFS) in terms of a single right-hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUTPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLTPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n original symmetric matrix A as supplied to F07NRF (ZSYTRF).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07NVF
(ZSYRFS) is called.

Constraint: LDA � max 1;Nð Þ.

6: AFðLDAF; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AF must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07NRF (ZSYTRF).

7: LDAF – INTEGER Input

On entry: the first dimension of the array AF as declared in the (sub)program from which
F07NVF (ZSYRFS) is called.

Constraint: LDAF � max 1;Nð Þ.

8: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07NRF
(ZSYTRF).

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07NVF
(ZSYRFS) is called.

Constraint: LDB � max 1;Nð Þ.

11: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07NSF (ZSYTRS).

On exit: the improved solution matrix X.

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07NVF
(ZSYRFS) is called.

Constraint: LDX � max 1;Nð Þ.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

15: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

16: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07NVF (ZSYRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07NVF (ZSYRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n2 real floating-
point operations. Each step of iterative refinement involves an additional 24n2 real operations. At most
five steps of iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
operations.

The real analogue of this routine is F07MHF (DSYRFS).

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i
�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

0B@
1CA

and

B ¼
�55:64þ 41:22i �19:09� 35:97i
�48:18þ 66:00i �12:08� 27:02i
�0:49� 1:47i 6:95þ 20:49i
�6:43þ 19:24i �4:59� 35:53i

0B@
1CA:

Here A is symmetric and must first be factorized by F07NRF (ZSYTRF).

10.1 Program Text

Program f07nvfe

! F07NVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06tff, nag_wp, x04dbf, zsyrfs, zsytrf, zsytrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &

lwork, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07NVF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldaf = n
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ldb = n
ldx = n
lwork = 64*n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),work(lwork),x(ldx,n), &

berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))

! Read A and B from data file, and copy A to AF and B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)
Call f06tff(uplo,n,n,a,lda,af,ldaf)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AF
! The NAG name equivalent of zsytrf is f07nrf

Call zsytrf(uplo,n,af,ldaf,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of zsytrs is f07nsf

Call zsytrs(uplo,n,nrhs,af,ldaf,ipiv,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of zsyrfs is f07nvf
Call zsyrfs(uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,x,ldx,ferr,berr,work, &

rwork,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07nvfe

10.2 Program Data

F07NVF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(-0.39,-0.71)
( 5.14,-0.64) ( 8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
( 3.80, 0.92) ( 5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A
(-55.64, 41.22) (-19.09,-35.97)
(-48.18, 66.00) (-12.08,-27.02)
( -0.49, -1.47) ( 6.95, 20.49)
( -6.43, 19.24) ( -4.59,-35.53) :End of matrix B
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10.3 Program Results

F07NVF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) (-2.0000,-1.0000)
2 (-2.0000, 5.0000) ( 1.0000,-3.0000)
3 ( 3.0000,-2.0000) ( 3.0000, 2.0000)
4 (-4.0000, 3.0000) (-1.0000, 1.0000)

Backward errors (machine-dependent)
8.9E-17 7.3E-17

Estimated forward error bounds (machine-dependent)
1.2E-14 1.2E-14
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NAG Library Routine Document

F07NWF (ZSYTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07NWF (ZSYTRI) computes the inverse of a complex symmetric matrix A, where A has been
factorized by F07NRF (ZSYTRF).

2 Specification

SUBROUTINE F07NWF (UPLO, N, A, LDA, IPIV, WORK, INFO)

INTEGER N, LDA, IPIV(*), INFO
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zsytri.

3 Description

F07NWF (ZSYTRI) is used to compute the inverse of a complex symmetric matrix A, the routine must
be preceded by a call to F07NRF (ZSYTRF), which computes the Bunch–Kaufman factorization of A.

If UPLO ¼ U , A ¼ PUDUTPT and A�1 is computed by solving UTP TXPU ¼ D�1 for X.

If UPLO ¼ L , A ¼ PLDLTPT and A�1 is computed by solving LTPTXPL ¼ D�1 for X.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the factorization of A, as returned by F07NRF (ZSYTRF).

On exit: the factorization is overwritten by the n by n symmetric matrix A�1.
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If UPLO ¼ U , the upper triangle of A�1 is stored in the upper triangular part of the array.

If UPLO ¼ L , the lower triangle of A�1 is stored in the lower triangular part of the array.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F07NWF (ZSYTRI) is called.

Constraint: LDA � max 1;Nð Þ.

5: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07NRF
(ZSYTRF).

6: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

�999 < INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. D is singular and the inverse of A cannot be
computed.

7 Accuracy

The computed inverse X satisfies a bound of the form

if UPLO ¼ U , DUTPTXPU � Ij j � c nð Þ� Dj j UTj jP T Xj jP Uj j þ Dj j D�1
		 		� �

;

if UPLO ¼ L , DLTPTXPL� Ij j � c nð Þ� Dj j LTj jPT Xj jP Lj j þ Dj j D�1
		 		� �

,

c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F07NWF (ZSYTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of real floating-point operations is approximately 8
3n

3 .

The real analogue of this routine is F07MJF (DSYTRI).

10 Example

This example computes the inverse of the matrix A, where

A ¼
�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i
�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

0B@
1CA:

Here A is symmetric and must first be factorized by F07NRF (ZSYTRF).

10.1 Program Text

Program f07nwfe

! F07NWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zsytrf, zsytri

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07NWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),work(lwork),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zsytrf is f07nrf

Call zsytrf(uplo,n,a,lda,ipiv,work,lwork,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute inverse of A
! The NAG name equivalent of zsytri is f07nwf

Call zsytri(uplo,n,a,lda,ipiv,work,info)
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! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(uplo,’Nonunit’,n,n,a,lda,’Bracketed’,’F7.4’,’Inverse’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07nwfe

10.2 Program Data

F07NWF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-0.39,-0.71)
( 5.14,-0.64) ( 8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
( 3.80, 0.92) ( 5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A

10.3 Program Results

F07NWF Example Program Results

Inverse
1 2 3 4

1 (-0.1562,-0.1014)
2 ( 0.0400, 0.1527) ( 0.0946,-0.1475)
3 ( 0.0550, 0.0845) (-0.0326,-0.1370) (-0.1320,-0.0102)
4 ( 0.2162,-0.0742) (-0.0995,-0.0461) (-0.1793, 0.1183) (-0.2269, 0.2383)
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NAG Library Routine Document

F07PAF (DSPSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PAF (DSPSV) computes the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric matrix stored in packed format and X and B are n by r matrices.

2 Specification

SUBROUTINE F07PAF (UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)

INTEGER N, NRHS, IPIV(N), LDB, INFO
REAL (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dspsv.

3 Description

F07PAF (DSPSV) uses the diagonal pivoting method to factor A as A ¼ UDUT if UPLO ¼ U or
A ¼ LDLT if UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower) triangular
matrices, D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form
of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the block diagonal matrix D and the multipliers used to obtain the factor U or L from
the factorization A ¼ UDUT or A ¼ LDLT as computed by F07PDF (DSPTRF), stored as a
packed triangular matrix in the same storage format as A.

5: IPIVðNÞ – INTEGER array Output

On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07PAF
(DSPSV) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) and Chapter 11 of Higham (2002) for further
details.

F07PBF (DSPSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04BJF solves AX ¼ B and returns a
forward error bound and condition estimate. F04BJF calls F07PAF (DSPSV) to solve the equations.

8 Parallelism and Performance

F07PAF (DSPSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 1
3n

3 þ 2n2r , where r is the number of
right-hand sides.

The complex analogues of F07PAF (DSPSV) are F07PNF (ZHPSV) for Hermitian matrices, and
F07QNF (ZSPSV) for symmetric matrices.

10 Example

This example solves the equations

Ax ¼ b;

where A is the symmetric matrix

A ¼
�1:81 2:06 0:63 �1:15
2:06 1:15 1:87 4:20
0:63 1:87 �0:21 3:87
�1:15 4:20 3:87 2:07

0B@
1CA and b ¼

0:96
6:07
8:38
9:50

0B@
1CA:

Details of the factorization of A are also output.
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10.1 Program Text

Program f07pafe

! F07PAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dspsv, nag_wp, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Integer :: i, ifail, info, j, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), b(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07PAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap((n*(n+1))/2),b(n),ipiv(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read b from data file

Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of dspsv is f07paf

Call dspsv(uplo,n,1,ap,ipiv,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)

! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ccf(uplo,’Non-unit diagonal’,n,ap, &

’Details of the factorization’,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
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Write (nout,99997) ’The diagonal block ’, info, ’ of D is zero’
End If

99999 Format ((3X,7F11.4))
99998 Format (1X,7I11)
99997 Format (1X,A,I3,A)

End Program f07pafe

10.2 Program Data

F07PAF Example Program Data
4 :Value of N

-1.81 2.06 0.63 -1.15
1.15 1.87 4.20

-0.21 3.87
2.07 :End of matrix A

0.96 6.07 8.38 9.50 :End of vector b

10.3 Program Results

F07PAF Example Program Results

Solution
-5.0000 -2.0000 1.0000 4.0000

Details of the factorization
1 2 3 4

1 0.4074 0.3031 -0.5960 0.6537
2 -2.5907 0.8115 0.2230
3 1.1500 4.2000
4 2.0700

Pivot indices
1 2 -2 -2
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NAG Library Routine Document

F07PBF (DSPSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PBF (DSPSVX) uses the diagonal pivoting factorization

A ¼ UDUT or A ¼ LDLT

to compute the solution to a real system of linear equations

AX ¼ B;

where A is an n by n symmetric matrix stored in packed format and X and B are n by r matrices. Error
bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07PBF (FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
RCOND, FERR, BERR, WORK, IWORK, INFO)

&

INTEGER N, NRHS, IPIV(N), LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) AP(*), AFP(*), B(LDB,*), X(LDX,*), RCOND,

FERR(NRHS), BERR(NRHS), WORK(3*N)
&

CHARACTER(1) FACT, UPLO

The routine may be called by its LAPACK name dspsvx.

3 Description

F07PBF (DSPSVX) performs the following steps:

1. If FACT ¼ N , the diagonal pivoting method is used to factor A as A ¼ UDUT if UPLO ¼ U or
A ¼ LDLT if UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower)
triangular matrices and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks.

2. If some dii ¼ 0, so that D is exactly singular, then the routine returns with INFO ¼ i. Otherwise,
the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal
of the condition number is less than machine precision, INFO ¼ Nþ 1 is returned as a warning,
but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

FACT ¼ F
AFP and IPIV contain the factorized form of the matrix A. AFP and IPIV will not be
modified.

FACT ¼ N
The matrix A will be copied to AFP and factorized.

Constraint: FACT ¼ F or N .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

6: AFPð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AFP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: if FACT ¼ F , AFP contains the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by
F07PDF (DSPTRF), stored as a packed triangular matrix in the same storage format as A.

On exit: if FACT ¼ N , AFP contains the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by
F07PDF (DSPTRF), stored as a packed triangular matrix in the same storage format as A.

7: IPIVðNÞ – INTEGER array Input/Output

On entry: if FACT ¼ F , IPIV contains details of the interchanges and the block structure of D,
as determined by F07PDF (DSPTRF).
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if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

On exit: if FACT ¼ N , IPIV contains details of the interchanges and the block structure of D, as
determined by F07PDF (DSPTRF), as described above.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07PBF
(DSPSVX) is called.

Constraint: LDB � max 1;Nð Þ.

10: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07PBF
(DSPSVX) is called.

Constraint: LDX � max 1;Nð Þ.

12: RCOND – REAL (KIND=nag_wp) Output

On exit: the estimate of the reciprocal condition number of the matrix A. If RCOND ¼ 0:0, the
matrix may be exactly singular. This condition is indicated by INFO > 0 and INFO � N.
Otherwise, if RCOND is less than the machine precision, the matrix is singular to working
precision. This condition is indicated by INFO ¼ Nþ 1.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

15: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace
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16: IWORKðNÞ – INTEGER array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor D is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ek k1 ¼ O �ð Þ Ak k1;

where � is the machine precision. See Chapter 11 of Higham (2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07PBF (DSPSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07PBF (DSPSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 1
3n

3 floating-point operations.
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For each right-hand side, computation of the backward error involves a minimum of 4n2 floating-point
operations. Each step of iterative refinement involves an additional 6n2 operations. At most five steps of
iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 2n2 operations.

The complex analogues of this routine are F07PPF (ZHPSVX) for Hermitian matrices, and F07QPF
(ZSPSVX) for symmetric matrices.

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric matrix

A ¼
�1:81 2:06 0:63 �1:15
2:06 1:15 1:87 4:20
0:63 1:87 �0:21 3:87
�1:15 4:20 3:87 2:07

0B@
1CA and B ¼

0:96 3:93
6:07 19:25
8:38 9:90
9:50 27:85

0B@
1CA:

Error estimates for the solutions, and an estimate of the reciprocal of the condition number of the
matrix A are also output.

10.1 Program Text

Program f07pbfe

! F07PBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dspsvx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, j, ldb, ldx, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: afp(:), ap(:), b(:,:), berr(:), &

ferr(:), work(:), x(:,:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07PBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (afp((n*(n+1))/2),ap((n*(n+1))/2),b(ldb,nrhs),berr(nrhs),ferr( &

nrhs),work(3*n),x(ldx,nrhs),ipiv(n),iwork(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If
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! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of dspsvx is f07pbf

Call dspsvx(’Not factored’,uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,rcond, &
ferr,berr,work,iwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds and condition number

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The diagonal block ’, info, ’ of D is zero’
End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07pbfe

10.2 Program Data

F07PBF Example Program Data
4 2 :Values of N and NRHS

-1.81 2.06 0.63 -1.15
1.15 1.87 4.20

-0.21 3.87
2.07 :End of matrix A

0.96 3.93
6.07 19.25
8.38 9.90
9.50 27.85 :End of matrix B

10.3 Program Results

F07PBF Example Program Results

Solution(s)
1 2

1 -5.0000 2.0000
2 -2.0000 3.0000
3 1.0000 4.0000
4 4.0000 1.0000

Backward errors (machine-dependent)
1.4E-16 1.0E-16

Estimated forward error bounds (machine-dependent)
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2.5E-14 3.2E-14

Estimate of reciprocal condition number
1.3E-02
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NAG Library Routine Document

F07PDF (DSPTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PDF (DSPTRF) computes the Bunch–Kaufman factorization of a real symmetric indefinite matrix,
using packed storage.

2 Specification

SUBROUTINE F07PDF (UPLO, N, AP, IPIV, INFO)

INTEGER N, IPIV(N), INFO
REAL (KIND=nag_wp) AP(*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsptrf.

3 Description

F07PDF (DSPTRF) factorizes a real symmetric matrix A, using the Bunch–Kaufman diagonal pivoting
method and packed storage. A is factorized as either A ¼ PUDUTPT if UPLO ¼ U or
A ¼ PLDLTPT if UPLO ¼ L , where P is a permutation matrix, U (or L) is a unit upper (or lower)
triangular matrix and D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 diagonal blocks;
U (or L) has 2 by 2 unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and column
interchanges are performed to ensure numerical stability while preserving symmetry.

This method is suitable for symmetric matrices which are not known to be positive definite. If A is in
fact positive definite, no interchanges are performed and no 2 by 2 blocks occur in D.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUTPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLTPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: A is overwritten by details of the block diagonal matrix D and the multipliers used to
obtain the factor U or L as specified by UPLO.

4: IPIVðNÞ – INTEGER array Output

On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve
a system of equations.

7 Accuracy

If UPLO ¼ U , the computed factors U and D are the exact factors of a perturbed matrix Aþ E, where

Ej j � c nð Þ�P Uj j Dj j UT
		 		PT;

c nð Þ is a modest linear function of n, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factors L and D.
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8 Parallelism and Performance

F07PDF (DSPTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper
or lower triangle is stored, as specified by UPLO.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U or L overwrite elements in the corresponding columns of A, but additional row
interchanges must be applied to recover U or L explicitly (this is seldom necessary). If IPIVðiÞ ¼ i, for
i ¼ 1; 2; . . . ; n (as is the case when A is positive definite), then U or L are stored explicitly in packed
form (except for their unit diagonal elements which are equal to 1).

The total number of floating-point operations is approximately 1
3n

3 .

A call to F07PDF (DSPTRF) may be followed by calls to the routines:

F07PEF (DSPTRS) to solve AX ¼ B;
F07PGF (DSPCON) to estimate the condition number of A;

F07PJF (DSPTRI) to compute the inverse of A.

The complex analogues of this routine are F07PRF (ZHPTRF) for Hermitian matrices and F07QRF
(ZSPTRF) for symmetric matrices.

10 Example

This example computes the Bunch–Kaufman factorization of the matrix A, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA;

using packed storage.

10.1 Program Text

Program f07pdfe

! F07PDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsptrf, nag_wp, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
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Write (nout,*) ’F07PDF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of dsptrf is f07pdf

Call dsptrf(uplo,n,ap,ipiv,info)

Write (nout,*)
Flush (nout)

! Print details of factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ccf(uplo,’Nonunit’,n,ap,’Details of factorization’,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’IPIV’
Write (nout,99999) ipiv(1:n)

If (info/=0) Then
Write (nout,*) ’The factor D is singular’

End If

99999 Format ((3X,7I11))
End Program f07pdfe

10.2 Program Data

F07PDF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

10.3 Program Results

F07PDF Example Program Results

Details of factorization
1 2 3 4

1 2.0700
2 4.2000 1.1500
3 0.2230 0.8115 -2.5907
4 0.6537 -0.5960 0.3031 0.4074

IPIV
-3 -3 3 4
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NAG Library Routine Document

F07PEF (DSPTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PEF (DSPTRS) solves a real symmetric indefinite system of linear equations with multiple right-
hand sides,

AX ¼ B;

where A has been factorized by F07PDF (DSPTRF), using packed storage.

2 Specification

SUBROUTINE F07PEF (UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)

INTEGER N, NRHS, IPIV(*), LDB, INFO
REAL (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsptrs.

3 Description

F07PEF (DSPTRS) is used to solve a real symmetric indefinite system of linear equations AX ¼ B, the
routine must be preceded by a call to F07PDF (DSPTRF) which computes the Bunch–Kaufman
factorization of A, using packed storage.

If UPLO ¼ U , A ¼ PUDUTPT, where P is a permutation matrix, U is an upper triangular matrix and
D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 blocks; the solution X is computed by
solving PUDY ¼ B and then UTPTX ¼ Y .

If UPLO ¼ L , A ¼ PLDLTPT, where L is a lower triangular matrix; the solution X is computed by
solving PLDY ¼ B and then LTPTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07PDF (DSPTRF).

5: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07PDF
(DSPTRF).

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07PEF
(DSPTRS) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ�P Uj j Dj j UTj jPT;

if UPLO ¼ L , Ej j � c nð Þ�P Lj j Dj j LTj jPT,

c nð Þ is a modest linear function of n, and � is the machine precision.
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If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07PHF (DSPRFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07PGF (DSPCON).

8 Parallelism and Performance

F07PEF (DSPTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2n2r.

This routine may be followed by a call to F07PHF (DSPRFS) to refine the solution and return an error
estimate.

The complex analogues of this routine are F07PSF (ZHPTRS) for Hermitian matrices and F07QSF
(ZSPTRS) for symmetric matrices.

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA and B ¼

�9:50 27:85
�8:38 9:90
�6:07 19:25
�0:96 3:93

0B@
1CA:

Here A is symmetric indefinite, stored in packed form, and must first be factorized by F07PDF
(DSPTRF).

10.1 Program Text

Program f07pefe

! F07PEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsptrf, dsptrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, ldb, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), b(:,:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
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Write (nout,*) ’F07PEF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap(n*(n+1)/2),b(ldb,nrhs),ipiv(n))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of dsptrf is f07pdf

Call dsptrf(uplo,n,ap,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of dsptrs is f07pef

Call dsptrs(uplo,n,nrhs,ap,ipiv,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07pefe

10.2 Program Data

F07PEF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A
-9.50 27.85
-8.38 9.90
-6.07 19.25
-0.96 3.93 :End of matrix B

10.3 Program Results

F07PEF Example Program Results

Solution(s)
1 2

1 -4.0000 1.0000
2 -1.0000 4.0000
3 2.0000 3.0000
4 5.0000 2.0000
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NAG Library Routine Document

F07PGF (DSPCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PGF (DSPCON) estimates the condition number of a real symmetric indefinite matrix A, where A
has been factorized by F07PDF (DSPTRF), using packed storage.

2 Specification

SUBROUTINE F07PGF (UPLO, N, AP, IPIV, ANORM, RCOND, WORK, IWORK, INFO)

INTEGER N, IPIV(*), IWORK(N), INFO
REAL (KIND=nag_wp) AP(*), ANORM, RCOND, WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dspcon.

3 Description

F07PGF (DSPCON) estimates the condition number (in the 1-norm) of a real symmetric indefinite
matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is symmetric, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06RDF to compute Ak k1 and a call to F07PDF (DSPTRF)
to compute the Bunch–Kaufman factorization of A. The routine then uses Higham's implementation of
Hager's method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F07 – Linear Equations (LAPACK) F07PGF

Mark 26 F07PGF.1



3: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07PDF (DSPTRF).

4: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07PDF
(DSPTRF).

5: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06RDF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07PDF (DSPTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

6: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

7: WORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

8: IWORKðNÞ – INTEGER array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07PGF (DSPCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

A call to F07PGF (DSPCON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
2n2 floating-point operations but takes considerably longer than a call to F07PEF (DSPTRS) with one
right-hand side, because extra care is taken to avoid overflow when A is approximately singular.

The complex analogues of this routine are F07PUF (ZHPCON) for Hermitian matrices and F07QUF
(ZSPCON) for symmetric matrices.

10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA:

Here A is symmetric indefinite, stored in packed form, and must first be factorized by F07PDF
(DSPTRF). The true condition number in the 1-norm is 75:68.

10.1 Program Text

Program f07pgfe

! F07PGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dlansp => f06rdf, dspcon, dsptrf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), work(:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07PGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),work(2*n),ipiv(n),iwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Compute norm of A
! f06rdf is the NAG name equivalent of the LAPACK auxiliary dlansp

anorm = dlansp(’1-norm’,uplo,n,ap,work)

! Factorize A
! The NAG name equivalent of dsptrf is f07pdf

Call dsptrf(uplo,n,ap,ipiv,info)
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Write (nout,*)
If (info==0) Then

! Estimate condition number
! The NAG name equivalent of dspcon is f07pgf

Call dspcon(uplo,n,ap,ipiv,anorm,rcond,work,iwork,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07pgfe

10.2 Program Data

F07PGF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

10.3 Program Results

F07PGF Example Program Results

Estimate of condition number = 7.57E+01
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NAG Library Routine Document

F07PHF (DSPRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PHF (DSPRFS) returns error bounds for the solution of a real symmetric indefinite system of linear
equations with multiple right-hand sides, AX ¼ B, using packed storage. It improves the solution by
iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07PHF (UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
BERR, WORK, IWORK, INFO)

&

INTEGER N, NRHS, IPIV(*), LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) AP(*), AFP(*), B(LDB,*), X(LDX,*), FERR(NRHS),

BERR(NRHS), WORK(3*N)
&

CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsprfs.

3 Description

F07PHF (DSPRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a real symmetric indefinite system of linear equations with multiple right-hand sides
AX ¼ B, using packed storage. The routine handles each right-hand side vector (stored as a column of
the matrix B) independently, so we describe the function of F07PHF (DSPRFS) in terms of a single
right-hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUTPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLTPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n original symmetric matrix A as supplied to F07PDF (DSPTRF).

5: AFPð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AFP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07PDF (DSPTRF).

6: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07PDF
(DSPTRF).

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07PHF
(DSPRFS) is called.

Constraint: LDB � max 1;Nð Þ.

9: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07PEF (DSPTRS).

On exit: the improved solution matrix X.
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10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07PHF
(DSPRFS) is called.

Constraint: LDX � max 1;Nð Þ.

11: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

12: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

13: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

14: IWORKðNÞ – INTEGER array Workspace

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07PHF (DSPRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07PHF (DSPRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n2 floating-point
operations. Each step of iterative refinement involves an additional 6n2 operations. At most five steps of
iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
2n2 operations.
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The complex analogues of this routine are F07PVF (ZHPRFS) for Hermitian matrices and F07QVF
(ZSPRFS) for symmetric matrices.

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA and B ¼

�9:50 27:85
�8:38 9:90
�6:07 19:25
�0:96 3:93

0B@
1CA:

Here A is symmetric indefinite, stored in packed form, and must first be factorized by F07PDF
(DSPTRF).

10.1 Program Text

Program f07phfe

! F07PHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsprfs, dsptrf, dsptrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, ldb, ldx, len, n, &

nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: afp(:), ap(:), b(:,:), berr(:), &

ferr(:), work(:), x(:,:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07PHF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
len = n*(n+1)/2
Allocate (afp(len),ap(len),b(ldb,nrhs),berr(nrhs),ferr(nrhs),work(3*n), &

x(ldx,n),ipiv(n),iwork(n))

! Read A and B from data file, and copy A to AFP and B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

afp(1:len) = ap(1:len)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AFP
! The NAG name equivalent of dsptrf is f07pdf

Call dsptrf(uplo,n,afp,ipiv,info)

Write (nout,*)
Flush (nout)
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If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of dsptrs is f07pef

Call dsptrs(uplo,n,nrhs,afp,ipiv,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of dsprfs is f07phf
Call dsprfs(uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,ferr,berr,work,iwork, &

info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format ((3X,1P,7E11.1))
End Program f07phfe

10.2 Program Data

F07PHF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A
-9.50 27.85
-8.38 9.90
-6.07 19.25
-0.96 3.93 :End of matrix B

10.3 Program Results

F07PHF Example Program Results

Solution(s)
1 2

1 -4.0000 1.0000
2 -1.0000 4.0000
3 2.0000 3.0000
4 5.0000 2.0000

Backward errors (machine-dependent)
9.9E-17 8.3E-17

Estimated forward error bounds (machine-dependent)
2.4E-14 3.2E-14
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NAG Library Routine Document

F07PJF (DSPTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PJF (DSPTRI) computes the inverse of a real symmetric indefinite matrix A, where A has been
factorized by F07PDF (DSPTRF), using packed storage.

2 Specification

SUBROUTINE F07PJF (UPLO, N, AP, IPIV, WORK, INFO)

INTEGER N, IPIV(*), INFO
REAL (KIND=nag_wp) AP(*), WORK(N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsptri.

3 Description

F07PJF (DSPTRI) is used to compute the inverse of a real symmetric indefinite matrix A, the routine
must be preceded by a call to F07PDF (DSPTRF), which computes the Bunch–Kaufman factorization
of A, using packed storage.

If UPLO ¼ U , A ¼ PUDUTPT and A�1 is computed by solving UTP TXPU ¼ D�1.

If UPLO ¼ L , A ¼ PLDLTPT and A�1 is computed by solving LTPTXPL ¼ D�1.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07PDF (DSPTRF).
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On exit: the factorization is overwritten by the n by n matrix A�1.

More precisely,

if UPLO ¼ U , the upper triangle of A�1 must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;

if UPLO ¼ L , the lower triangle of A�1 must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

4: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07PDF
(DSPTRF).

5: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. D is singular and the inverse of A cannot be
computed.

7 Accuracy

The computed inverse X satisfies a bound of the form

if UPLO ¼ U , DUTPTXPU � Ij j � c nð Þ� Dj j UTj jP T Xj jP Uj j þ Dj j D�1
		 		� �

;

if UPLO ¼ L , DLTPTXPL� Ij j � c nð Þ� Dj j LTj jPT Xj jP Lj j þ Dj j D�1
		 		� �

,

c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F07PJF (DSPTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

3 .

The complex analogues of this routine are F07PWF (ZHPTRI) for Hermitian matrices and F07QWF
(ZSPTRI) for symmetric matrices.
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10 Example

This example computes the inverse of the matrix A, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA:

Here A is symmetric indefinite, stored in packed form, and must first be factorized by F07PDF
(DSPTRF).

10.1 Program Text

Program f07pjfe

! F07PJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsptrf, dsptri, nag_wp, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), work(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07PJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),work(n),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of dsptrf is f07pdf

Call dsptrf(uplo,n,ap,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute inverse of A
! The NAG name equivalent of dsptri is f07pjf

Call dsptri(uplo,n,ap,ipiv,work,info)

! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ccf(uplo,’Nonunit’,n,ap,’Inverse’,ifail)
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Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07pjfe

10.2 Program Data

F07PJF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

10.3 Program Results

F07PJF Example Program Results

Inverse
1 2 3 4

1 0.7485
2 0.5221 -0.1605
3 -1.0058 -0.3131 1.3501
4 -1.4386 -0.7440 2.0667 2.4547
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NAG Library Routine Document

F07PNF (ZHPSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PNF (ZHPSV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian matrix stored in packed format and X and B are n by r matrices.

2 Specification

SUBROUTINE F07PNF (UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)

INTEGER N, NRHS, IPIV(N), LDB, INFO
COMPLEX (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhpsv.

3 Description

F07PNF (ZHPSV) uses the diagonal pivoting method to factor A as A ¼ UDUH if UPLO ¼ U or
A ¼ LDLH if UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, D is Hermitian and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The
factored form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the block diagonal matrix D and the multipliers used to obtain the factor U or L from
the factorization A ¼ UDUH or A ¼ LDLH as computed by F07PRF (ZHPTRF), stored as a
packed triangular matrix in the same storage format as A.

5: IPIVðNÞ – INTEGER array Output

On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
Note: to solve the equations Ax ¼ b, where b is a single right-hand side, B may be supplied as a
one-dimensional array with length LDB ¼ max 1;Nð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07PNF
(ZHPSV) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) and Chapter 11 of Higham (2002) for further
details.

F07PPF (ZHPSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04CJF solves AX ¼ B and returns a
forward error bound and condition estimate. F04CJF calls F07PNF (ZHPSV) to solve the equations.

8 Parallelism and Performance

F07PNF (ZHPSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4
3n

3 þ 8n2r , where r is the number of
right-hand sides.

The real analogue of this routine is F07PAF (DSPSV). The complex symmetric analogue of this routine
is F07QNF (ZSPSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the Hermitian matrix
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A ¼
�1:84 0:11� 0:11i �1:78� 1:18i 3:91� 1:50i
0:11þ 0:11i �4:63 �1:84þ 0:03i 2:21þ 0:21i
�1:78þ 1:18i �1:84� 0:03i �8:87 1:58� 0:90i
3:91þ 1:50i 2:21� 0:21i 1:58þ 0:90i �1:36

0B@
1CA

and

b ¼
2:98� 10:18i
�9:58þ 3:88i
�0:77� 16:05i
7:79þ 5:48i

0B@
1CA:

Details of the factorization of A are also output.

10.1 Program Text

Program f07pnfe

! F07PNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04ddf, zhpsv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Integer :: i, ifail, info, j, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), b(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07PNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap((n*(n+1))/2),b(n),ipiv(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read b from data file

Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of zhpsv is f07pnf

Call zhpsv(uplo,n,1,ap,ipiv,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)
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! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ddf(uplo,’Non-unit diagonal’,n,ap,’Bracketed’,’F7.4’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ’The diagonal block ’, info, ’ of D is zero’

End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
99998 Format (1X,7I11)
99997 Format (1X,A,I3,A)

End Program f07pnfe

10.2 Program Data

F07PNF Example Program Data
4 :Value of N

( -1.84, 0.00) ( 0.11, -0.11) ( -1.78, -1.18) ( 3.91, -1.50)
( -4.63 , 0.00) ( -1.84, 0.03) ( 2.21, 0.21)

( -8.87, 0.00) ( 1.58, -0.90)
( -1.36 , 0.00) :End matrix A

( 2.98,-10.18) ( -9.58, 3.88) ( -0.77,-16.05) ( 7.79, 5.48) :End vector b

10.3 Program Results

F07PNF Example Program Results

Solution
( 2.0000, 1.0000) ( 3.0000,-2.0000) (-1.0000, 2.0000) ( 1.0000,-1.0000)

Details of factorization
1 2 3 4

1 (-7.1028, 0.0000) ( 0.2997, 0.1578) ( 0.3397, 0.0303) (-0.1518, 0.3743)
2 (-5.4176, 0.0000) ( 0.5637, 0.2850) ( 0.3100, 0.0433)
3 (-1.8400, 0.0000) ( 3.9100,-1.5000)
4 (-1.3600, 0.0000)

Pivot indices
1 2 -1 -1
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NAG Library Routine Document

F07PPF (ZHPSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PPF (ZHPSVX) uses the diagonal pivoting factorization

A ¼ UDUH or A ¼ LDLH

to compute the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian matrix stored in packed format and X and B are n by r matrices. Error
bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07PPF (FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
RCOND, FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, IPIV(N), LDB, LDX, INFO
REAL (KIND=nag_wp) RCOND, FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) AP(*), AFP(*), B(LDB,*), X(LDX,*), WORK(2*N)
CHARACTER(1) FACT, UPLO

The routine may be called by its LAPACK name zhpsvx.

3 Description

F07PPF (ZHPSVX) performs the following steps:

1. If FACT ¼ N , the diagonal pivoting method is used to factor A as A ¼ UDUH if UPLO ¼ U or
A ¼ LDLH if UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower)
triangular matrices and D is Hermitian and block diagonal with 1 by 1 and 2 by 2 diagonal blocks.

2. If some dii ¼ 0, so that D is exactly singular, then the routine returns with INFO ¼ i. Otherwise,
the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal
of the condition number is less than machine precision, INFO ¼ Nþ 1 is returned as a warning,
but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

FACT ¼ F
AFP and IPIV contain the factorized form of the matrix A. AFP and IPIV will not be
modified.

FACT ¼ N
The matrix A will be copied to AFP and factorized.

Constraint: FACT ¼ F or N .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

6: AFPð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AFP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: if FACT ¼ F , AFP contains the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUH or A ¼ LDLH as computed by
F07PRF (ZHPTRF), stored as a packed triangular matrix in the same storage format as A.

On exit: if FACT ¼ N , AFP contains the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUH or A ¼ LDLH as computed by
F07PRF (ZHPTRF), stored as a packed triangular matrix in the same storage format as A.

7: IPIVðNÞ – INTEGER array Input/Output

On entry: if FACT ¼ F , IPIV contains details of the interchanges and the block structure of D,
as determined by F07PRF (ZHPTRF).
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if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

On exit: if FACT ¼ N , IPIV contains details of the interchanges and the block structure of D, as
determined by F07PRF (ZHPTRF), as described above.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07PPF
(ZHPSVX) is called.

Constraint: LDB � max 1;Nð Þ.

10: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07PPF
(ZHPSVX) is called.

Constraint: LDX � max 1;Nð Þ.

12: RCOND – REAL (KIND=nag_wp) Output

On exit: the estimate of the reciprocal condition number of the matrix A. If RCOND ¼ 0:0, the
matrix may be exactly singular. This condition is indicated by INFO > 0 and INFO � N.
Otherwise, if RCOND is less than the machine precision, the matrix is singular to working
precision. This condition is indicated by INFO ¼ Nþ 1.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

15: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace
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16: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor D is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ek k1 ¼ O �ð Þ Ak k1;

where � is the machine precision. See Chapter 11 of Higham (2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07PPF (ZHPSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07PPF (ZHPSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 4
3n

3 floating-point operations.
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For each right-hand side, computation of the backward error involves a minimum of 16n2 floating-point
operations. Each step of iterative refinement involves an additional 24n2 operations. At most five steps
of iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 8n2 operations.

The real analogue of this routine is F07PBF (DSPSVX). The complex symmetric analogue of this
routine is F07QPF (ZSPSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian matrix

A ¼
�1:84 0:11� 0:11i �1:78� 1:18i 3:91� 1:50i
0:11þ 0:11i �4:63 �1:84þ 0:03i 2:21þ 0:21i
�1:78þ 1:18i �1:84� 0:03i �8:87 1:58� 0:90i
3:91þ 1:50i 2:21� 0:21i 1:58þ 0:90i �1:36

0B@
1CA

and

B ¼
2:98� 10:18i 28:68� 39:89i
�9:58þ 3:88i �24:79� 8:40i
�0:77� 16:05i 4:23� 70:02i
7:79þ 5:48i �35:39þ 18:01i

0B@
1CA:

Error estimates for the solutions, and an estimate of the reciprocal of the condition number of the
matrix A are also output.

10.1 Program Text

Program f07ppfe

! F07PPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zhpsvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, j, ldb, ldx, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: afp(:), ap(:), b(:,:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07PPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (afp((n*(n+1))/2),ap((n*(n+1))/2),b(ldb,nrhs),work(2*n),x(ldx, &

nrhs),berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))
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! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of zhpsvx is f07ppf

Call zhpsvx(’Not factored’,uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,rcond, &
ferr,berr,work,rwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds and condition number

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The diagonal block ’, info, ’ of D is zero’
End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07ppfe

10.2 Program Data

F07PPF Example Program Data
4 2 :N and NRHS

( -1.84, 0.00) ( 0.11, -0.11) ( -1.78, -1.18) ( 3.91, -1.50)
( -4.63 , 0.00) ( -1.84, 0.03) ( 2.21, 0.21)

( -8.87, 0.00) ( 1.58, -0.90)
( -1.36 , 0.00) :End matrix A

( 2.98,-10.18) ( 28.68,-39.89)
( -9.58, 3.88) (-24.79, -8.40)
( -0.77,-16.05) ( 4.23,-70.02)
( 7.79, 5.48) (-35.39, 18.01) :End matrix B
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10.3 Program Results

F07PPF Example Program Results

Solution(s)
1 2

1 ( 2.0000, 1.0000) (-8.0000, 6.0000)
2 ( 3.0000,-2.0000) ( 7.0000,-2.0000)
3 (-1.0000, 2.0000) (-1.0000, 5.0000)
4 ( 1.0000,-1.0000) ( 3.0000,-4.0000)

Backward errors (machine-dependent)
5.1E-17 5.9E-17

Estimated forward error bounds (machine-dependent)
2.5E-15 3.0E-15

Estimate of reciprocal condition number
1.5E-01
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NAG Library Routine Document

F07PRF (ZHPTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PRF (ZHPTRF) computes the Bunch–Kaufman factorization of a complex Hermitian indefinite
matrix, using packed storage.

2 Specification

SUBROUTINE F07PRF (UPLO, N, AP, IPIV, INFO)

INTEGER N, IPIV(N), INFO
COMPLEX (KIND=nag_wp) AP(*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhptrf.

3 Description

F07PRF (ZHPTRF) factorizes a complex Hermitian matrix A, using the Bunch–Kaufman diagonal
pivoting method and packed storage. A is factorized as either A ¼ PUDUHPT if UPLO ¼ U or
A ¼ PLDLHPT if UPLO ¼ L , where P is a permutation matrix, U (or L) is a unit upper (or lower)
triangular matrix and D is an Hermitian block diagonal matrix with 1 by 1 and 2 by 2 diagonal blocks;
U (or L) has 2 by 2 unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and column
interchanges are performed to ensure numerical stability while keeping the matrix Hermitian.

This method is suitable for Hermitian matrices which are not known to be positive definite. If A is in
fact positive definite, no interchanges are performed and no 2 by 2 blocks occur in D.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUHPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLHPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F07 – Linear Equations (LAPACK) F07PRF
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3: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: A is overwritten by details of the block diagonal matrix D and the multipliers used to
obtain the factor U or L as specified by UPLO.

4: IPIVðNÞ – INTEGER array Output

On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve
a system of equations.

7 Accuracy

If UPLO ¼ U , the computed factors U and D are the exact factors of a perturbed matrix Aþ E, where

Ej j � c nð Þ�P Uj j Dj j UH
		 		P T;

c nð Þ is a modest linear function of n, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factors L and D.
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8 Parallelism and Performance

F07PRF (ZHPTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper
or lower triangle is stored, as specified by UPLO.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U and L are stored in the corresponding columns of the array AP, but additional row
interchanges must be applied to recover U or L explicitly (this is seldom necessary). If IPIVðiÞ ¼ i, for
i ¼ 1; 2; . . . ; n (as is the case when A is positive definite), then U or L are stored explicitly in packed
form (except for their unit diagonal elements which are equal to 1).

The total number of real floating-point operations is approximately 4
3n

3 .

A call to F07PRF (ZHPTRF) may be followed by calls to the routines:

F07PSF (ZHPTRS) to solve AX ¼ B;
F07PUF (ZHPCON) to estimate the condition number of A;

F07PWF (ZHPTRI) to compute the inverse of A.

The real analogue of this routine is F07PDF (DSPTRF).

10 Example

This example computes the Bunch–Kaufman factorization of the matrix A, where

A ¼
�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

0B@
1CA;

using packed storage.

10.1 Program Text

Program f07prfe

! F07PRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04ddf, zhptrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07PRF Example Program Results’
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! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zhptrf is f07prf

Call zhptrf(uplo,n,ap,ipiv,info)

Write (nout,*)
Flush (nout)

! Print details of factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ddf(uplo,’Nonunit’,n,ap,’Bracketed’,’F7.4’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’IPIV’
Write (nout,99999) ipiv(1:n)

If (info/=0) Then
Write (nout,*) ’The factor D is singular’

End If

99999 Format ((1X,I12,3I18))
End Program f07prfe

10.2 Program Data

F07PRF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-1.36, 0.00)
( 1.58,-0.90) (-8.87, 0.00)
( 2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
( 3.91,-1.50) (-1.78,-1.18) ( 0.11,-0.11) (-1.84, 0.00) :End of matrix A

10.3 Program Results

F07PRF Example Program Results

Details of factorization
1 2 3 4

1 (-1.3600, 0.0000)
2 ( 3.9100,-1.5000) (-1.8400, 0.0000)
3 ( 0.3100, 0.0433) ( 0.5637, 0.2850) (-5.4176, 0.0000)
4 (-0.1518, 0.3743) ( 0.3397, 0.0303) ( 0.2997, 0.1578) (-7.1028, 0.0000)

IPIV
-4 -4 3 4
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NAG Library Routine Document

F07PSF (ZHPTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PSF (ZHPTRS) solves a complex Hermitian indefinite system of linear equations with multiple
right-hand sides,

AX ¼ B;

where A has been factorized by F07PRF (ZHPTRF), using packed storage.

2 Specification

SUBROUTINE F07PSF (UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)

INTEGER N, NRHS, IPIV(*), LDB, INFO
COMPLEX (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhptrs.

3 Description

F07PSF (ZHPTRS) is used to solve a complex Hermitian indefinite system of linear equations AX ¼ B,
the routine must be preceded by a call to F07PRF (ZHPTRF) which computes the Bunch–Kaufman
factorization of A, using packed storage.

If UPLO ¼ U , A ¼ PUDUHPT, where P is a permutation matrix, U is an upper triangular matrix and
D is an Hermitian block diagonal matrix with 1 by 1 and 2 by 2 blocks; the solution X is computed by
solving PUDY ¼ B and then UHPTX ¼ Y .

If UPLO ¼ L , A ¼ PLDLHPT, where L is a lower triangular matrix; the solution X is computed by
solving PLDY ¼ B and then LHPTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUHPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLHPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07PRF (ZHPTRF).

5: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07PRF
(ZHPTRF).

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07PSF
(ZHPTRS) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ�P Uj j Dj j UHj jPT;

if UPLO ¼ L , Ej j � c nð Þ�P Lj j Dj j LHj jPT,

c nð Þ is a modest linear function of n, and � is the machine precision.
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If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07PVF (ZHPRFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07PUF (ZHPCON).

8 Parallelism and Performance

F07PSF (ZHPTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8n2r.

This routine may be followed by a call to F07PVF (ZHPRFS) to refine the solution and return an error
estimate.

The real analogue of this routine is F07PEF (DSPTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

0B@
1CA

and

B ¼
7:79þ 5:48i �35:39þ 18:01i
�0:77� 16:05i 4:23� 70:02i
�9:58þ 3:88i �24:79� 8:40i
2:98� 10:18i 28:68� 39:89i

0B@
1CA:

Here A is Hermitian indefinite, stored in packed form, and must first be factorized by F07PRF
(ZHPTRF).

10.1 Program Text

Program f07psfe

! F07PSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zhptrf, zhptrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Integer :: i, ifail, info, j, ldb, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), b(:,:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07PSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap(n*(n+1)/2),b(ldb,nrhs),ipiv(n))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of zhptrf is f07prf

Call zhptrf(uplo,n,ap,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of zhptrs is f07psf

Call zhptrs(uplo,n,nrhs,ap,ipiv,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07psfe

10.2 Program Data

F07PSF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(-1.36, 0.00)
( 1.58,-0.90) (-8.87, 0.00)
( 2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
( 3.91,-1.50) (-1.78,-1.18) ( 0.11,-0.11) (-1.84, 0.00) :End of matrix A
( 7.79, 5.48) (-35.39, 18.01)
(-0.77,-16.05) ( 4.23,-70.02)
(-9.58, 3.88) (-24.79, -8.40)
( 2.98,-10.18) ( 28.68,-39.89) :End of matrix B
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10.3 Program Results

F07PSF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) ( 3.0000,-4.0000)
2 (-1.0000, 2.0000) (-1.0000, 5.0000)
3 ( 3.0000,-2.0000) ( 7.0000,-2.0000)
4 ( 2.0000, 1.0000) (-8.0000, 6.0000)
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NAG Library Routine Document

F07PUF (ZHPCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PUF (ZHPCON) estimates the condition number of a complex Hermitian indefinite matrix A, where
A has been factorized by F07PRF (ZHPTRF), using packed storage.

2 Specification

SUBROUTINE F07PUF (UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO)

INTEGER N, IPIV(*), INFO
REAL (KIND=nag_wp) ANORM, RCOND
COMPLEX (KIND=nag_wp) AP(*), WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhpcon.

3 Description

F07PUF (ZHPCON) estimates the condition number (in the 1-norm) of a complex Hermitian indefinite
matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is Hermitian, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06UDF to compute Ak k1 and a call to F07PRF (ZHPTRF)
to compute the Bunch–Kaufman factorization of A. The routine then uses Higham's implementation of
Hager's method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUHPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLHPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

F07 – Linear Equations (LAPACK) F07PUF
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07PRF (ZHPTRF).

4: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07PRF
(ZHPTRF).

5: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06UDF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07PRF (ZHPTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

6: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

7: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07PUF (ZHPCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

A call to F07PUF (ZHPCON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
floating-point operations but takes considerably longer than a call to F07PSF (ZHPTRS) with one right-
hand side, because extra care is taken to avoid overflow when A is approximately singular.

The real analogue of this routine is F07PGF (DSPCON).

10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

0B@
1CA:

Here A is Hermitian indefinite, stored in packed form, and must first be factorized by F07PRF
(ZHPTRF). The true condition number in the 1-norm is 9:10.

10.1 Program Text

Program f07pufe

! F07PUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, zhpcon, zhptrf, zlanhp => f06udf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07PUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),work(2*n),rwork(n),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Compute norm of A
! f06udf is the NAG name equivalent of the LAPACK auxiliary zlanhp

anorm = zlanhp(’1-norm’,uplo,n,ap,rwork)

! Factorize A
! The NAG name equivalent of zhptrf is f07prf

Call zhptrf(uplo,n,ap,ipiv,info)
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Write (nout,*)
If (info==0) Then

! Estimate condition number
! The NAG name equivalent of zhpcon is f07puf

Call zhpcon(uplo,n,ap,ipiv,anorm,rcond,work,info)

If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07pufe

10.2 Program Data

F07PUF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-1.36, 0.00)
( 1.58,-0.90) (-8.87, 0.00)
( 2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
( 3.91,-1.50) (-1.78,-1.18) ( 0.11,-0.11) (-1.84, 0.00) :End of matrix A

10.3 Program Results

F07PUF Example Program Results

Estimate of condition number = 6.68E+00
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NAG Library Routine Document

F07PVF (ZHPRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PVF (ZHPRFS) returns error bounds for the solution of a complex Hermitian indefinite system of
linear equations with multiple right-hand sides, AX ¼ B, using packed storage. It improves the solution
by iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07PVF (UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, IPIV(*), LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) AP(*), AFP(*), B(LDB,*), X(LDX,*), WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhprfs.

3 Description

F07PVF (ZHPRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex Hermitian indefinite system of linear equations with multiple right-hand sides
AX ¼ B, using packed storage. The routine handles each right-hand side vector (stored as a column of
the matrix B) independently, so we describe the function of F07PVF (ZHPRFS) in terms of a single
right-hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUHPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLHPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n original Hermitian matrix A as supplied to F07PRF (ZHPTRF).

5: AFPð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AFP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07PRF (ZHPTRF).

6: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07PRF
(ZHPTRF).

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07PVF
(ZHPRFS) is called.

Constraint: LDB � max 1;Nð Þ.

9: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07PSF (ZHPTRS).

On exit: the improved solution matrix X.
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10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07PVF
(ZHPRFS) is called.

Constraint: LDX � max 1;Nð Þ.

11: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

12: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

13: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

14: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07PVF (ZHPRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07PVF (ZHPRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n2 real floating-
point operations. Each step of iterative refinement involves an additional 24n2 real operations. At most
five steps of iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
operations.

The real analogue of this routine is F07PHF (DSPRFS).
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10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

0B@
1CA

and

B ¼
7:79þ 5:48i �35:39þ 18:01i
�0:77� 16:05i 4:23� 70:02i
�9:58þ 3:88i �24:79� 8:40i
2:98� 10:18i 28:68� 39:89i

0B@
1CA:

Here A is Hermitian indefinite, stored in packed form, and must first be factorized by F07PRF
(ZHPTRF).

10.1 Program Text

Program f07pvfe

! F07PVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zhprfs, zhptrf, zhptrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: aplen, i, ifail, info, j, ldb, ldx, &

n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: afp(:), ap(:), b(:,:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07PVF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
aplen = n*(n+1)/2
Allocate (afp(aplen),ap(aplen),b(ldb,nrhs),work(2*n),x(ldx,n), &

berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))

! Read A and B from data file, and copy A to AFP and B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

afp(1:aplen) = ap(1:aplen)
x(1:n,1:nrhs) = b(1:n,1:nrhs)
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! Factorize A in the array AFP
! The NAG name equivalent of zhptrf is f07prf

Call zhptrf(uplo,n,afp,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of zhptrs is f07psf

Call zhptrs(uplo,n,nrhs,afp,ipiv,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of zhprfs is f07puf
Call zhprfs(uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,ferr,berr,work,rwork, &

info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07pvfe

10.2 Program Data

F07PVF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(-1.36, 0.00)
( 1.58,-0.90) (-8.87, 0.00)
( 2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
( 3.91,-1.50) (-1.78,-1.18) ( 0.11,-0.11) (-1.84, 0.00) :End of matrix A
( 7.79, 5.48) (-35.39, 18.01)
(-0.77,-16.05) ( 4.23,-70.02)
(-9.58, 3.88) (-24.79, -8.40)
( 2.98,-10.18) ( 28.68,-39.89) :End of matrix B

10.3 Program Results

F07PVF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) ( 3.0000,-4.0000)
2 (-1.0000, 2.0000) (-1.0000, 5.0000)
3 ( 3.0000,-2.0000) ( 7.0000,-2.0000)
4 ( 2.0000, 1.0000) (-8.0000, 6.0000)

Backward errors (machine-dependent)
5.1E-17 3.5E-17

Estimated forward error bounds (machine-dependent)
2.5E-15 3.0E-15
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NAG Library Routine Document

F07PWF (ZHPTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07PWF (ZHPTRI) computes the inverse of a complex Hermitian indefinite matrix A, where A has
been factorized by F07PRF (ZHPTRF), using packed storage.

2 Specification

SUBROUTINE F07PWF (UPLO, N, AP, IPIV, WORK, INFO)

INTEGER N, IPIV(*), INFO
COMPLEX (KIND=nag_wp) AP(*), WORK(N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhptri.

3 Description

F07PWF (ZHPTRI) is used to compute the inverse of a complex Hermitian indefinite matrix A, the
routine must be preceded by a call to F07PRF (ZHPTRF), which computes the Bunch–Kaufman
factorization of A, using packed storage.

If UPLO ¼ U , A ¼ PUDUHPT and A�1 is computed by solving UHPTXPU ¼ D�1 for X.

If UPLO ¼ L , A ¼ PLDLHPT and A�1 is computed by solving LHPTXPL ¼ D�1 for X.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUHPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLHPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07PRF (ZHPTRF).
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On exit: the factorization is overwritten by the n by n matrix A�1.

More precisely,

if UPLO ¼ U , the upper triangle of A�1 must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;

if UPLO ¼ L , the lower triangle of A�1 must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

4: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07PRF
(ZHPTRF).

5: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. D is singular and the inverse of A cannot be
computed.

7 Accuracy

The computed inverse X satisfies a bound of the form

if UPLO ¼ U , DUTPTXPU � Ij j � c nð Þ� Dj j UTj jP T Xj jP Uj j þ Dj j D�1
		 		� �

;

if UPLO ¼ L , DLTPTXPL� Ij j � c nð Þ� Dj j LTj jPT Xj jP Lj j þ Dj j D�1
		 		� �

,

c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F07PWF (ZHPTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3n

3 .

The real analogue of this routine is F07PJF (DSPTRI).
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10 Example

This example computes the inverse of the matrix A, where

A ¼
�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

0B@
1CA:

Here A is Hermitian indefinite, stored in packed form, and must first be factorized by F07PRF
(ZHPTRF).

10.1 Program Text

Program f07pwfe

! F07PWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04ddf, zhptrf, zhptri

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), work(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07PWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),work(n),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zhptrf is f07prf

Call zhptrf(uplo,n,ap,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute inverse of A
! The NAG name equivalent of zhptri is f07pwf

Call zhptri(uplo,n,ap,ipiv,work,info)

! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ddf(uplo,’Nonunit’,n,ap,’Bracketed’,’F7.4’,’Inverse’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
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Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07pwfe

10.2 Program Data

F07PWF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-1.36, 0.00)
( 1.58,-0.90) (-8.87, 0.00)
( 2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
( 3.91,-1.50) (-1.78,-1.18) ( 0.11,-0.11) (-1.84, 0.00) :End of matrix A

10.3 Program Results

F07PWF Example Program Results

Inverse
1 2 3 4

1 ( 0.0826, 0.0000)
2 (-0.0335, 0.0440) (-0.1408, 0.0000)
3 ( 0.0603,-0.0105) ( 0.0422,-0.0222) (-0.2007, 0.0000)
4 ( 0.2391,-0.0926) ( 0.0304, 0.0203) ( 0.0982,-0.0635) ( 0.0073,-0.0000)
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NAG Library Routine Document

F07QNF (ZSPSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07QNF (ZSPSV) computes the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n symmetric matrix stored in packed format and X and B are n by r matrices.

2 Specification

SUBROUTINE F07QNF (UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)

INTEGER N, NRHS, IPIV(N), LDB, INFO
COMPLEX (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zspsv.

3 Description

F07QNF (ZSPSV) uses the diagonal pivoting method to factor A as A ¼ UDUT if UPLO ¼ U or
A ¼ LDLT if UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower) triangular
matrices, D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form
of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the block diagonal matrix D and the multipliers used to obtain the factor U or L from
the factorization A ¼ UDUT or A ¼ LDLT as computed by F07QRF (ZSPTRF), stored as a
packed triangular matrix in the same storage format as A.

5: IPIVðNÞ – INTEGER array Output

On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
Note: to solve the equations Ax ¼ b, where b is a single right-hand side, B may be supplied as a
one-dimensional array with length LDB ¼ max 1;Nð Þ.
On entry: the n by r right-hand side matrix B.

On exit: if INFO ¼ 0, the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07QNF
(ZSPSV) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) and Chapter 11 of Higham (2002) for further
details.

F07QPF (ZSPSVX) is a comprehensive LAPACK driver that returns forward and backward error
bounds and an estimate of the condition number. Alternatively, F04DJF solves AX ¼ B and returns a
forward error bound and condition estimate. F04DJF calls F07QNF (ZSPSV) to solve the equations.

8 Parallelism and Performance

F07QNF (ZSPSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4
3n

3 þ 8n2r , where r is the number of
right-hand sides.

The real analogue of this routine is F07PAF (DSPSV). The complex Hermitian analogue of this routine
is F07PNF (ZHPSV).

10 Example

This example solves the equations

Ax ¼ b;

where A is the complex symmetric matrix
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A ¼
�0:56þ 0:12i �1:54� 2:86i 5:32� 1:59i 3:80þ 0:92i
�1:54� 2:86i �2:83� 0:03i �3:52þ 0:58i �7:86� 2:96i
5:32� 1:59i �3:52þ 0:58i 8:86þ 1:81i 5:14� 0:64i
3:80þ 0:92i �7:86� 2:96i 5:14� 0:64i �0:39� 0:71i

0B@
1CA

and

b ¼
�6:43þ 19:24i
�0:49� 1:47i
�48:18þ 66:00i
�55:64þ 41:22i

0B@
1CA:

Details of the factorization of A are also output.

10.1 Program Text

Program f07qnfe

! F07QNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04ddf, zspsv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Integer :: i, ifail, info, j, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), b(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07QNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap((n*(n+1))/2),b(n),ipiv(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read b from data file

Read (nin,*) b(1:n)

! Solve the equations Ax = b for x
! The NAG name equivalent of zspsv is f07qnf

Call zspsv(uplo,n,1,ap,ipiv,b,n,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Solution’
Write (nout,99999) b(1:n)
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! Print details of factorization

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ddf(uplo,’Non-unit diagonal’,n,ap,’Bracketed’,’F7.4’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’Pivot indices’
Write (nout,99998) ipiv(1:n)

Else
Write (nout,99997) ’The diagonal block ’, info, ’ of D is zero’

End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
99998 Format (1X,7I11)
99997 Format (1X,A,I3,A)

End Program f07qnfe

10.2 Program Data

F07QNF Example Program Data
4 :Value of N

( -0.56, 0.12) ( -1.54, -2.86) ( 5.32, -1.59) ( 3.80, 0.92)
( -2.83 ,-0.03) ( -3.52, 0.58) ( -7.86, -2.96)

( 8.86, 1.81) ( 5.14, -0.64)
( -0.39 ,-0.71) :End matrix A

( -6.43, 19.24) ( -0.49, -1.47) (-48.18, 66.00) (-55.64, 41.22) :End vector b

10.3 Program Results

F07QNF Example Program Results

Solution
(-4.0000, 3.0000) ( 3.0000,-2.0000) (-2.0000, 5.0000) ( 1.0000,-1.0000)

Details of factorization
1 2 3 4

1 (-2.0954,-2.2011) (-0.1071,-0.3157) (-0.4823, 0.0150) ( 0.4426, 0.1936)
2 ( 4.4079, 5.3991) (-0.6078, 0.2811) ( 0.5279,-0.3715)
3 (-2.8300,-0.0300) (-7.8600,-2.9600)
4 (-0.3900,-0.7100)

Pivot indices
1 2 -2 -2
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NAG Library Routine Document

F07QPF (ZSPSVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07QPF (ZSPSVX) uses the diagonal pivoting factorization

A ¼ UDUT or A ¼ LDLT

to compute the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n symmetric matrix stored in packed format and X and B are n by r matrices. Error
bounds on the solution and a condition estimate are also provided.

2 Specification

SUBROUTINE F07QPF (FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
RCOND, FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, IPIV(N), LDB, LDX, INFO
REAL (KIND=nag_wp) RCOND, FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) AP(*), AFP(*), B(LDB,*), X(LDX,*), WORK(2*N)
CHARACTER(1) FACT, UPLO

The routine may be called by its LAPACK name zspsvx.

3 Description

F07QPF (ZSPSVX) performs the following steps:

1. If FACT ¼ N , the diagonal pivoting method is used to factor A as A ¼ UDUT if UPLO ¼ U or
A ¼ LDLT if UPLO ¼ L , where U (or L) is a product of permutation and unit upper (lower)
triangular matrices and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks.

2. If some dii ¼ 0, so that D is exactly singular, then the routine returns with INFO ¼ i. Otherwise,
the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal
of the condition number is less than machine precision, INFO ¼ Nþ 1 is returned as a warning,
but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
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5 Arguments

1: FACT – CHARACTER(1) Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

FACT ¼ F
AFP and IPIV contain the factorized form of the matrix A. AFP and IPIV will not be
modified.

FACT ¼ N
The matrix A will be copied to AFP and factorized.

Constraint: FACT ¼ F or N .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of A is stored.

If UPLO ¼ L , the lower triangle of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: NRHS � 0.

5: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

6: AFPð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AFP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: if FACT ¼ F , AFP contains the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by
F07QRF (ZSPTRF), stored as a packed triangular matrix in the same storage format as A.

On exit: if FACT ¼ N , AFP contains the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by
F07QRF (ZSPTRF), stored as a packed triangular matrix in the same storage format as A.

7: IPIVðNÞ – INTEGER array Input/Output

On entry: if FACT ¼ F , IPIV contains details of the interchanges and the block structure of D,
as determined by F07QRF (ZSPTRF).
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if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

On exit: if FACT ¼ N , IPIV contains details of the interchanges and the block structure of D, as
determined by F07QRF (ZSPTRF), as described above.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07QPF
(ZSPSVX) is called.

Constraint: LDB � max 1;Nð Þ.

10: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On exit: if INFO ¼ 0 or Nþ 1, the n by r solution matrix X.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07QPF
(ZSPSVX) is called.

Constraint: LDX � max 1;Nð Þ.

12: RCOND – REAL (KIND=nag_wp) Output

On exit: the estimate of the reciprocal condition number of the matrix A. If RCOND ¼ 0:0, the
matrix may be exactly singular. This condition is indicated by INFO > 0 and INFO � N.
Otherwise, if RCOND is less than the machine precision, the matrix is singular to working
precision. This condition is indicated by INFO ¼ Nþ 1.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the forward error bound for each computed
solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � FERRðjÞ where x̂j is the jth column of the
computed solution returned in the array X and xj is the corresponding column of the exact
solution X. The estimate is as reliable as the estimate for RCOND, and is almost always a slight
overestimate of the true error.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: if INFO ¼ 0 or Nþ 1, an estimate of the component-wise relative backward error of
each computed solution vector x̂j (i.e., the smallest relative change in any element of A or B that
makes x̂j an exact solution).

15: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

F07 – Linear Equations (LAPACK) F07QPF

Mark 26 F07QPF.3



16: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0 and INFO � N

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor D is exactly singular, so the solution and error bounds could not be computed.
RCOND ¼ 0:0 is returned.

INFO ¼ Nþ 1

D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
RCOND would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ek k1 ¼ O �ð Þ Ak k1;

where � is the machine precision. See Chapter 11 of Higham (2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
		 		 Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in BERRðjÞ and a bound on x� x̂k k1= x̂k k1 is returned in
FERRðjÞ. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F07QPF (ZSPSVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07QPF (ZSPSVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 4
3n

3 floating-point operations.
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For each right-hand side, computation of the backward error involves a minimum of 16n2 floating-point
operations. Each step of iterative refinement involves an additional 24n2 operations. At most five steps
of iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 8n2 operations.

The real analogue of this routine is F07PBF (DSPSVX). The complex Hermitian analogue of this
routine is F07PPF (ZHPSVX).

10 Example

This example solves the equations

AX ¼ B;

where A is the complex symmetric matrix

A ¼
�0:56þ 0:12i �1:54� 2:86i 5:32� 1:59i 3:80þ 0:92i
�1:54� 2:86i �2:83� 0:03i �3:52þ 0:58i �7:86� 2:96i
5:32� 1:59i �3:52þ 0:58i 8:86þ 1:81i 5:14� 0:64i
3:80þ 0:92i �7:86� 2:96i 5:14� 0:64i �0:39� 0:71i

0B@
1CA

and

B ¼
�6:43þ 19:24i �4:59� 35:53i
�0:49� 1:47i 6:95þ 20:49i
�48:18þ 66:00i �12:08� 27:02i
�55:64þ 41:22i �19:09� 35:97i

0B@
1CA:

Error estimates for the solutions, and an estimate of the reciprocal of the condition number of the
matrix A are also output.

10.1 Program Text

Program f07qpfe

! F07QPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zspsvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, j, ldb, ldx, n, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: afp(:), ap(:), b(:,:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07QPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (afp((n*(n+1))/2),ap((n*(n+1))/2),b(ldb,nrhs),work(2*n),x(ldx, &

nrhs),berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))

F07 – Linear Equations (LAPACK) F07QPF

Mark 26 F07QPF.5



! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Read B from data file

Read (nin,*)(b(i,1:nrhs),i=1,n)

! Solve the equations AX = B for X
! The NAG name equivalent of zspsvx is f06qpf

Call zspsvx(’Not factored’,uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,rcond, &
ferr,berr,work,rwork,info)

If ((info==0) .Or. (info==n+1)) Then

! Print solution, error bounds and condition number

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number’
Write (nout,99999) rcond
Write (nout,*)

If (info==n+1) Then
Write (nout,*)
Write (nout,*) ’The matrix A is singular to working precision’

End If
Else

Write (nout,99998) ’The diagonal block ’, info, ’ of D is zero’
End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)

End Program f07qpfe

10.2 Program Data

F07QPF Example Program Data
4 2 :N and NRHS

( -0.56, 0.12) ( -1.54, -2.86) ( 5.32, -1.59) ( 3.80, 0.92)
( -2.83 ,-0.03) ( -3.52, 0.58) ( -7.86, -2.96)

( 8.86, 1.81) ( 5.14, -0.64)
( -0.39 ,-0.71) :End matrix A

( -6.43, 19.24) ( -4.59,-35.53)
( -0.49, -1.47) ( 6.95, 20.49)
(-48.18, 66.00) (-12.08,-27.02)
(-55.64, 41.22) (-19.09,-35.97) :End matrix B
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10.3 Program Results

F07QPF Example Program Results

Solution(s)
1 2

1 (-4.0000, 3.0000) (-1.0000, 1.0000)
2 ( 3.0000,-2.0000) ( 3.0000, 2.0000)
3 (-2.0000, 5.0000) ( 1.0000,-3.0000)
4 ( 1.0000,-1.0000) (-2.0000,-1.0000)

Backward errors (machine-dependent)
8.1E-17 3.0E-17

Estimated forward error bounds (machine-dependent)
1.2E-14 1.2E-14

Estimate of reciprocal condition number
4.9E-02
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NAG Library Routine Document

F07QRF (ZSPTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07QRF (ZSPTRF) computes the Bunch–Kaufman factorization of a complex symmetric matrix, using
packed storage.

2 Specification

SUBROUTINE F07QRF (UPLO, N, AP, IPIV, INFO)

INTEGER N, IPIV(N), INFO
COMPLEX (KIND=nag_wp) AP(*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zsptrf.

3 Description

F07QRF (ZSPTRF) factorizes a complex symmetric matrix A, using the Bunch–Kaufman diagonal
pivoting method and packed storage. A is factorized as either A ¼ PUDUTPT if UPLO ¼ U or
A ¼ PLDLTPT if UPLO ¼ L , where P is a permutation matrix, U (or L) is a unit upper (or lower)
triangular matrix and D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 diagonal blocks;
U (or L) has 2 by 2 unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and column
interchanges are performed to ensure numerical stability while preserving symmetry.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUTPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLTPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: A is overwritten by details of the block diagonal matrix D and the multipliers used to
obtain the factor U or L as specified by UPLO.

4: IPIVðNÞ – INTEGER array Output

On exit: details of the interchanges and the block structure of D. More precisely,

if IPIVðiÞ ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if UPLO ¼ U and IPIVði� 1Þ ¼ IPIVðiÞ ¼ �l < 0, di�1;i�1 �di;i�1
�di;i�1 dii

� �
is a 2 by 2 pivot

block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if UPLO ¼ L and IPIVðiÞ ¼ IPIVðiþ 1Þ ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2 pivot

block and the iþ 1ð Þth row and column of A were interchanged with the mth row and
column.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve
a system of equations.

7 Accuracy

If UPLO ¼ U , the computed factors U and D are the exact factors of a perturbed matrix Aþ E, where

Ej j � c nð Þ�P Uj j Dj j UT
		 		PT;

c nð Þ is a modest linear function of n, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factors L and D.
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8 Parallelism and Performance

F07QRF (ZSPTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper
or lower triangle is stored, as specified by UPLO.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U or L overwrite elements in the corresponding columns of A, but additional row
interchanges must be applied to recover U or L explicitly (this is seldom necessary). If IPIVðiÞ ¼ i, for
i ¼ 1; 2; . . . ; n, then U or L are stored explicitly in packed form (except for their unit diagonal elements
which are equal to 1).

The total number of real floating-point operations is approximately 4
3n

3 .

A call to F07QRF (ZSPTRF) may be followed by calls to the routines:

F07QSF (ZSPTRS) to solve AX ¼ B;
F07QUF (ZSPCON) to estimate the condition number of A;

F07QWF (ZSPTRI) to compute the inverse of A.

The real analogue of this routine is F07PDF (DSPTRF).

10 Example

This example computes the Bunch–Kaufman factorization of the matrix A, where

A ¼
�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i
�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

0B@
1CA;

using packed storage.

10.1 Program Text

Program f07qrfe

! F07QRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04ddf, zsptrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07QRF Example Program Results’
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! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zsptrf is f07qrf

Call zsptrf(uplo,n,ap,ipiv,info)

Write (nout,*)
Flush (nout)

! Print details of factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ddf(uplo,’Nonunit’,n,ap,’Bracketed’,’F7.4’, &

’Details of factorization’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Print pivot indices

Write (nout,*)
Write (nout,*) ’IPIV’
Write (nout,99999) ipiv(1:n)

If (info/=0) Then
Write (nout,*) ’The factor D is singular’

End If

99999 Format ((1X,I12,3I18))
End Program f07qrfe

10.2 Program Data

F07QRF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-0.39,-0.71)
( 5.14,-0.64) ( 8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
( 3.80, 0.92) ( 5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A

10.3 Program Results

F07QRF Example Program Results

Details of factorization
1 2 3 4

1 (-0.3900,-0.7100)
2 (-7.8600,-2.9600) (-2.8300,-0.0300)
3 ( 0.5279,-0.3715) (-0.6078, 0.2811) ( 4.4079, 5.3991)
4 ( 0.4426, 0.1936) (-0.4823, 0.0150) (-0.1071,-0.3157) (-2.0954,-2.2011)

IPIV
-3 -3 3 4
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NAG Library Routine Document

F07QSF (ZSPTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07QSF (ZSPTRS) solves a complex symmetric system of linear equations with multiple right-hand
sides,

AX ¼ B;

where A has been factorized by F07QRF (ZSPTRF), using packed storage.

2 Specification

SUBROUTINE F07QSF (UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)

INTEGER N, NRHS, IPIV(*), LDB, INFO
COMPLEX (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zsptrs.

3 Description

F07QSF (ZSPTRS) is used to solve a complex symmetric system of linear equations AX ¼ B, the
routine must be preceded by a call to F07QRF (ZSPTRF) which computes the Bunch–Kaufman
factorization of A, using packed storage.

If UPLO ¼ U , A ¼ PUDUTPT, where P is a permutation matrix, U is an upper triangular matrix and
D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 blocks; the solution X is computed by
solving PUDY ¼ B and then UTPTX ¼ Y .

If UPLO ¼ L , A ¼ PLDLTPT, where L is a lower triangular matrix; the solution X is computed by
solving PLDY ¼ B and then LTPTX ¼ Y .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07QRF (ZSPTRF).

5: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07QRF
(ZSPTRF).

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07QSF
(ZSPTRS) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ�P Uj j Dj j UTj jPT;

if UPLO ¼ L , Ej j � c nð Þ�P Lj j Dj j LTj jPT,

c nð Þ is a modest linear function of n, and � is the machine precision.

F07QSF NAG Library Manual

F07QSF.2 Mark 26



If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ.

Note that cond A; xð Þ can be much smaller than cond Að Þ.
Forward and backward error bounds can be computed by calling F07QVF (ZSPRFS), and an estimate
for �1 Að Þ ( ¼ �1 Að Þ) can be obtained by calling F07QUF (ZSPCON).

8 Parallelism and Performance

F07QSF (ZSPTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8n2r.

This routine may be followed by a call to F07QVF (ZSPRFS) to refine the solution and return an error
estimate.

The real analogue of this routine is F07PEF (DSPTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i
�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

0B@
1CA

and

B ¼
�55:64þ 41:22i �19:09� 35:97i
�48:18þ 66:00i �12:08� 27:02i
�0:49� 1:47i 6:95þ 20:49i
�6:43þ 19:24i �4:59� 35:53i

0B@
1CA:

Here A is symmetric, stored in packed form, and must first be factorized by F07QRF (ZSPTRF).

10.1 Program Text

Program f07qsfe

! F07QSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zsptrf, zsptrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, ldb, n, nrhs
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Character (1) :: uplo
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ap(:), b(:,:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07QSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap(n*(n+1)/2),b(ldb,nrhs),ipiv(n))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Factorize A
! The NAG name equivalent of zsptrf is f07qrf

Call zsptrf(uplo,n,ap,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of zsptrs is f07qsf

Call zsptrs(uplo,n,nrhs,ap,ipiv,b,ldb,info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07qsfe

10.2 Program Data

F07QSF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(-0.39,-0.71)
( 5.14,-0.64) ( 8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
( 3.80, 0.92) ( 5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A
(-55.64, 41.22) (-19.09,-35.97)
(-48.18, 66.00) (-12.08,-27.02)
( -0.49, -1.47) ( 6.95, 20.49)
( -6.43, 19.24) ( -4.59,-35.53) :End of matrix B
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10.3 Program Results

F07QSF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) (-2.0000,-1.0000)
2 (-2.0000, 5.0000) ( 1.0000,-3.0000)
3 ( 3.0000,-2.0000) ( 3.0000, 2.0000)
4 (-4.0000, 3.0000) (-1.0000, 1.0000)
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NAG Library Routine Document

F07QUF (ZSPCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07QUF (ZSPCON) estimates the condition number of a complex symmetric matrix A, where A has
been factorized by F07QRF (ZSPTRF), using packed storage.

2 Specification

SUBROUTINE F07QUF (UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO)

INTEGER N, IPIV(*), INFO
REAL (KIND=nag_wp) ANORM, RCOND
COMPLEX (KIND=nag_wp) AP(*), WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zspcon.

3 Description

F07QUF (ZSPCON) estimates the condition number (in the 1-norm) of a complex symmetric matrix A:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
:

Since A is symmetric, �1 Að Þ ¼ �1 Að Þ ¼ Ak k1 A�1
�� ��

1.

Because �1 Að Þ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of
�1 Að Þ.
The routine should be preceded by a call to F06UGF to compute Ak k1 and a call to F07QRF (ZSPTRF)
to compute the Bunch–Kaufman factorization of A. The routine then uses Higham's implementation of
Hager's method (see Higham (1988)) to estimate A�1

�� ��
1
.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07QRF (ZSPTRF).

4: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07QRF
(ZSPTRF).

5: ANORM – REAL (KIND=nag_wp) Input

On entry: the 1-norm of the original matrix A, which may be computed by calling F06UGF with
its argument NORM ¼ 1 . ANORM must be computed either before calling F07QRF (ZSPTRF)
or else from a copy of the original matrix A.

Constraint: ANORM � 0:0.

6: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

7: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07QUF (ZSPCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07QUF (ZSPCON) involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
floating-point operations but takes considerably longer than a call to F07QSF (ZSPTRS) with one right-
hand side, because extra care is taken to avoid overflow when A is approximately singular.
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The real analogue of this routine is F07PGF (DSPCON).

10 Example

This example estimates the condition number in the 1-norm (or 1-norm) of the matrix A, where

A ¼
�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i
�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

0B@
1CA:

Here A is symmetric, stored in packed form, and must first be factorized by F07QRF (ZSPTRF). The
true condition number in the 1-norm is 32:92.

10.1 Program Text

Program f07qufe

! F07QUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, zlansp => f06ugf, zspcon, zsptrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, rcond
Integer :: i, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: ipiv(:)

! .. Executable Statements ..
Write (nout,*) ’F07QUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),work(2*n),rwork(n),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Compute norm of A
! f06ugf is the NAG name equivalent of the LAPACK auxiliary zlansp

anorm = zlansp(’1-norm’,uplo,n,ap,rwork)

! Factorize A
! The NAG name equivalent of zsptrf is f07qrf

Call zsptrf(uplo,n,ap,ipiv,info)

Write (nout,*)
If (info==0) Then

! Estimate condition number
! The NAG name equivalent of zspcon is f07quf

Call zspcon(uplo,n,ap,ipiv,anorm,rcond,work,info)
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If (rcond>=x02ajf()) Then
Write (nout,99999) ’Estimate of condition number =’, &

1.0E0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07qufe

10.2 Program Data

F07QUF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-0.39,-0.71)
( 5.14,-0.64) ( 8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
( 3.80, 0.92) ( 5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A

10.3 Program Results

F07QUF Example Program Results

Estimate of condition number = 2.06E+01
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NAG Library Routine Document

F07QVF (ZSPRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07QVF (ZSPRFS) returns error bounds for the solution of a complex symmetric system of linear
equations with multiple right-hand sides, AX ¼ B, using packed storage. It improves the solution by
iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F07QVF (UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, IPIV(*), LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) AP(*), AFP(*), B(LDB,*), X(LDX,*), WORK(2*N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zsprfs.

3 Description

F07QVF (ZSPRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex symmetric system of linear equations with multiple right-hand sides AX ¼ B,
using packed storage. The routine handles each right-hand side vector (stored as a column of the matrix
B) independently, so we describe the function of F07QVF (ZSPRFS) in terms of a single right-hand
side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

UPLO ¼ U
The upper triangular part of A is stored and A is factorized as PUDUTPT, where U is
upper triangular.

UPLO ¼ L
The lower triangular part of A is stored and A is factorized as PLDLTPT, where L is
lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n original symmetric matrix A as supplied to F07QRF (ZSPTRF).

5: AFPð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AFP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07QRF (ZSPTRF).

6: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07QRF
(ZSPTRF).

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07QVF
(ZSPRFS) is called.

Constraint: LDB � max 1;Nð Þ.

9: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07QSF (ZSPTRS).

On exit: the improved solution matrix X.
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10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07QVF
(ZSPRFS) is called.

Constraint: LDX � max 1;Nð Þ.

11: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

12: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

13: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

14: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07QVF (ZSPRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07QVF (ZSPRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n2 real floating-
point operations. Each step of iterative refinement involves an additional 24n2 real operations. At most
five steps of iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
operations.

The real analogue of this routine is F07PHF (DSPRFS).
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10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼
�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i
�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

0B@
1CA

and

B ¼
�55:64þ 41:22i �19:09� 35:97i
�48:18þ 66:00i �12:08� 27:02i
�0:49� 1:47i 6:95þ 20:49i
�6:43þ 19:24i �4:59� 35:53i

0B@
1CA:

Here A is symmetric, stored in packed form, and must first be factorized by F07QRF (ZSPTRF).

10.1 Program Text

Program f07qvfe

! F07QVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zsprfs, zsptrf, zsptrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: aplen, i, ifail, info, j, ldb, ldx, &

n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: afp(:), ap(:), b(:,:), work(:), &

x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07QVF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
aplen = n*(n+1)/2
Allocate (afp(aplen),ap(aplen),b(ldb,nrhs),work(2*n),x(ldx,n), &

berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))

! Read A and B from data file, and copy A to AFP and B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

afp(1:aplen) = ap(1:aplen)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Factorize A in the array AFP
! The NAG name equivalent of zsptrf is f07qrf
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Call zsptrf(uplo,n,afp,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution in the array X
! The NAG name equivalent of zsptrs is f07qsf

Call zsptrs(uplo,n,nrhs,afp,ipiv,x,ldx,info)

! Improve solution, and compute backward errors and
! estimated bounds on the forward errors

! The NAG name equivalent of zsprfs is f07qvf
Call zsprfs(uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,ferr,berr,work,rwork, &

info)

! Print solution

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

Else
Write (nout,*) ’The factor D is singular’

End If

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07qvfe

10.2 Program Data

F07QVF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(-0.39,-0.71)
( 5.14,-0.64) ( 8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
( 3.80, 0.92) ( 5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A
(-55.64, 41.22) (-19.09,-35.97)
(-48.18, 66.00) (-12.08,-27.02)
( -0.49, -1.47) ( 6.95, 20.49)
( -6.43, 19.24) ( -4.59,-35.53) :End of matrix B

10.3 Program Results

F07QVF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) (-2.0000,-1.0000)
2 (-2.0000, 5.0000) ( 1.0000,-3.0000)
3 ( 3.0000,-2.0000) ( 3.0000, 2.0000)
4 (-4.0000, 3.0000) (-1.0000, 1.0000)

Backward errors (machine-dependent)
8.9E-17 7.3E-17

Estimated forward error bounds (machine-dependent)
1.2E-14 1.2E-14
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NAG Library Routine Document

F07QWF (ZSPTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07QWF (ZSPTRI) computes the inverse of a complex symmetric matrix A, where A has been
factorized by F07QRF (ZSPTRF), using packed storage.

2 Specification

SUBROUTINE F07QWF (UPLO, N, AP, IPIV, WORK, INFO)

INTEGER N, IPIV(*), INFO
COMPLEX (KIND=nag_wp) AP(*), WORK(N)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zsptri.

3 Description

F07QWF (ZSPTRI) is used to compute the inverse of a complex symmetric matrix A, the routine must
be preceded by a call to F07QRF (ZSPTRF), which computes the Bunch–Kaufman factorization of A,
using packed storage.

If UPLO ¼ U , A ¼ PUDUTPT and A�1 is computed by solving UTP TXPU ¼ D�1.

If UPLO ¼ L , A ¼ PLDLTPT and A�1 is computed by solving LTPTXPL ¼ D�1.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ PUDUTPT, where U is upper triangular.

UPLO ¼ L
A ¼ PLDLTPT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the factorization of A stored in packed form, as returned by F07QRF (ZSPTRF).
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On exit: the factorization is overwritten by the n by n matrix A�1.

More precisely,

if UPLO ¼ U , the upper triangle of A�1 must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;

if UPLO ¼ L , the lower triangle of A�1 must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

4: IPIVð�Þ – INTEGER array Input

Note: the dimension of the array IPIV must be at least max 1;Nð Þ.
On entry: details of the interchanges and the block structure of D, as returned by F07QRF
(ZSPTRF).

5: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. D is singular and the inverse of A cannot be
computed.

7 Accuracy

The computed inverse X satisfies a bound of the form

if UPLO ¼ U , DUTPTXPU � Ij j � c nð Þ� Dj j UTj jP T Xj jP Uj j þ Dj j D�1
		 		� �

;

if UPLO ¼ L , DLTPTXPL� Ij j � c nð Þ� Dj j LTj jPT Xj jP Lj j þ Dj j D�1
		 		� �

,

c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F07QWF (ZSPTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3n

3 .

The real analogue of this routine is F07PJF (DSPTRI).
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10 Example

This example computes the inverse of the matrix A, where

A ¼
�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i
�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

0B@
1CA:

Here A is symmetric, stored in packed form, and must first be factorized by F07QRF (ZSPTRF).

10.1 Program Text

Program f07qwfe

! F07QWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04ddf, zsptrf, zsptri

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), work(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07QWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),work(n),ipiv(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Factorize A
! The NAG name equivalent of zsptrf is f07qrf

Call zsptrf(uplo,n,ap,ipiv,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute inverse of A
! The NAG name equivalent of zsptri is f07qwf

Call zsptri(uplo,n,ap,ipiv,work,info)

! Print inverse

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ddf(uplo,’Nonunit’,n,ap,’Bracketed’,’F7.4’,’Inverse’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
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Else
Write (nout,*) ’The factor D is singular’

End If

End Program f07qwfe

10.2 Program Data

F07QWF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-0.39,-0.71)
( 5.14,-0.64) ( 8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
( 3.80, 0.92) ( 5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A

10.3 Program Results

F07QWF Example Program Results

Inverse
1 2 3 4

1 (-0.1562,-0.1014)
2 ( 0.0400, 0.1527) ( 0.0946,-0.1475)
3 ( 0.0550, 0.0845) (-0.0326,-0.1370) (-0.1320,-0.0102)
4 ( 0.2162,-0.0742) (-0.0995,-0.0461) (-0.1793, 0.1183) (-0.2269, 0.2383)
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NAG Library Routine Document

F07TEF (DTRTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07TEF (DTRTRS) solves a real triangular system of linear equations with multiple right-hand sides,
AX ¼ B or ATX ¼ B.

2 Specification

SUBROUTINE F07TEF (UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, INFO)

INTEGER N, NRHS, LDA, LDB, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name dtrtrs.

3 Description

F07TEF (DTRTRS) solves a real triangular system of linear equations AX ¼ B or ATX ¼ B.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (1989) The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26 1252–
1265

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T or C
The equations are of the form ATX ¼ B.

Constraint: TRANS ¼ N , T or C .

F07 – Linear Equations (LAPACK) F07TEF
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3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07TEF
(DTRTRS) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07TEF
(DTRTRS) is called.

Constraint: LDB � max 1;Nð Þ.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. A is singular and the solution has not been
computed.

7 Accuracy

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham
(1989).

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

Ej j � c nð Þ� Aj j;

c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�; provided c nð Þ cond A; xð Þ� < 1;

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1.

Note that cond A; xð Þ � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ; cond A; xð Þ can be much smaller than

cond Að Þ and it is also possible for cond ATð Þ to be much larger (or smaller) than cond Að Þ.
Forward and backward error bounds can be computed by calling F07THF (DTRRFS), and an estimate
for �1 Að Þ can be obtained by calling F07TGF (DTRCON) with NORM ¼ I .

8 Parallelism and Performance

F07TEF (DTRTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately n2r.

The complex analogue of this routine is F07TSF (ZTRTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
4:30 0:00 0:00 0:00
�3:96 �4:87 0:00 0:00
0:40 0:31 �8:02 0:00
�0:27 0:07 �5:95 0:12

0B@
1CA and B ¼

�12:90 �21:50
16:75 14:93
�17:55 6:33
�11:04 8:09

0B@
1CA:
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10.1 Program Text

Program f07tefe

! F07TEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtrtrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)

! .. Executable Statements ..
Write (nout,*) ’F07TEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Compute solution

! The NAG name equivalent of dtrtrs is f07tef
Call dtrtrs(uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

! Print solution

Write (nout,*)
Flush (nout)
If (info==0) Then

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,*) ’A is singular’

End If

End Program f07tefe

10.2 Program Data

F07TEF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
4.30

-3.96 -4.87
0.40 0.31 -8.02
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-0.27 0.07 -5.95 0.12 :End of matrix A
-12.90 -21.50
16.75 14.93

-17.55 6.33
-11.04 8.09 :End of matrix B

10.3 Program Results

F07TEF Example Program Results

Solution(s)
1 2

1 -3.0000 -5.0000
2 -1.0000 1.0000
3 2.0000 -1.0000
4 1.0000 6.0000
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NAG Library Routine Document

F07TGF (DTRCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07TGF (DTRCON) estimates the condition number of a real triangular matrix.

2 Specification

SUBROUTINE F07TGF (NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, IWORK,
INFO)

&

INTEGER N, LDA, IWORK(N), INFO
REAL (KIND=nag_wp) A(LDA,*), RCOND, WORK(3*N)
CHARACTER(1) NORM, UPLO, DIAG

The routine may be called by its LAPACK name dtrcon.

3 Description

F07TGF (DTRCON) estimates the condition number of a real triangular matrix A, in either the 1-norm
or the 1-norm:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
or �1 Að Þ ¼ Ak k1 A�1

�� ��
1:

Note that �1 Að Þ ¼ �1 ATð Þ.
Because the condition number is infinite if A is singular, the routine actually returns an estimate of the
reciprocal of the condition number.

The routine computes Ak k1 or Ak k1 exactly, and uses Higham's implementation of Hager's method
(see Higham (1988)) to estimate A�1

�� ��
1
or A�1
�� ��

1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: indicates whether �1 Að Þ or �1 Að Þ is estimated.

NORM ¼ 1 or O
�1 Að Þ is estimated.

NORM ¼ I
�1 Að Þ is estimated.

Constraint: NORM ¼ 1 , O or I .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.
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UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07TGF
(DTRCON) is called.

Constraint: LDA � max 1;Nð Þ.

7: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or if the estimate underflows. If RCOND is less than machine
precision, then A is singular to working precision.

8: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

9: IWORKðNÞ – INTEGER array Workspace

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07TGF (DTRCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07TGF (DTRCON) involves solving a number of systems of linear equations of the form
Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves
approximately n2 floating-point operations but takes considerably longer than a call to F07TEF
(DTRTRS) with one right-hand side, because extra care is taken to avoid overflow when A is
approximately singular.

The complex analogue of this routine is F07TUF (ZTRCON).

10 Example

This example estimates the condition number in the 1-norm of the matrix A, where

A ¼
4:30 0:00 0:00 0:00
�3:96 �4:87 0:00 0:00
0:40 0:31 �8:02 0:00
�0:27 0:07 �5:95 0:12

0B@
1CA:

The true condition number in the 1-norm is 116:41.

10.1 Program Text

Program f07tgfe

! F07TGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtrcon, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, norm = ’1’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, info, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07TGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
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Allocate (a(lda,n),work(3*n),iwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Estimate condition number
! The NAG name equivalent of dtrcon is f07tgf

Call dtrcon(norm,uplo,diag,n,a,lda,rcond,work,iwork,info)

Write (nout,*)
If (rcond>=x02ajf()) Then

Write (nout,99999) ’Estimate of condition number =’, &
1.0E0_nag_wp/rcond

Else
Write (nout,*) ’A is singular to working precision’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07tgfe

10.2 Program Data

F07TGF Example Program Data
4 :Value of N
’L’ :Value of UPLO
4.30

-3.96 -4.87
0.40 0.31 -8.02

-0.27 0.07 -5.95 0.12 :End of matrix A

10.3 Program Results

F07TGF Example Program Results

Estimate of condition number = 1.16E+02
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NAG Library Routine Document

F07THF (DTRRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07THF (DTRRFS) returns error bounds for the solution of a real triangular system of linear equations
with multiple right-hand sides, AX ¼ B or ATX ¼ B.

2 Specification

SUBROUTINE F07THF (UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, LDX,
FERR, BERR, WORK, IWORK, INFO)

&

INTEGER N, NRHS, LDA, LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), X(LDX,*), FERR(NRHS),

BERR(NRHS), WORK(3*N)
&

CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name dtrrfs.

3 Description

F07THF (DTRRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a real triangular system of linear equations with multiple right-hand sides AX ¼ B or
ATX ¼ B. The routine handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of F07THF (DTRRFS) in terms of a single right-hand side b
and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.
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UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T or C
The equations are of the form ATX ¼ B.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07THF
(DTRRFS) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07THF
(DTRRFS) is called.

Constraint: LDB � max 1;Nð Þ.

10: XðLDX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07TEF (DTRTRS).

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07THF
(DTRRFS) is called.

Constraint: LDX � max 1;Nð Þ.

12: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

13: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

14: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

15: IWORKðNÞ – INTEGER array Workspace

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07THF (DTRRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07THF (DTRRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

A call to F07THF (DTRRFS), for each right-hand side, involves solving a number of systems of linear
equations of the form Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each
solution involves approximately n2 floating-point operations.

The complex analogue of this routine is F07TVF (ZTRRFS).

10 Example

This example solves the system of equations AX ¼ B and to compute forward and backward error
bounds, where

A ¼
4:30 0:00 0:00 0:00
�3:96 �4:87 0:00 0:00
0:40 0:31 �8:02 0:00
�0:27 0:07 �5:95 0:12

0B@
1CA and B ¼

�12:90 �21:50
16:75 14:93
�17:55 6:33
�11:04 8:09

0B@
1CA:

10.1 Program Text

Program f07thfe

! F07THF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtrrfs, dtrtrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, ldx, n, &

nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), berr(:), ferr(:), &

work(:), x(:,:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07THF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
ldx = n
Allocate (a(lda,n),b(ldb,nrhs),berr(nrhs),ferr(nrhs),work(3*n),x(ldx,n), &

iwork(n))

! Read A and B from data file, and copy B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Compute solution in the array X
! The NAG name equivalent of dtrtrs is f07tef

Call dtrtrs(uplo,trans,diag,n,nrhs,a,lda,x,ldx,info)
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! Compute backward errors and estimated bounds on the
! forward errors

! The NAG name equivalent of dtrrfs is f07thf
Call dtrrfs(uplo,trans,diag,n,nrhs,a,lda,b,ldb,x,ldx,ferr,berr,work, &

iwork,info)

! Print solution

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

99999 Format ((3X,1P,7E11.1))
End Program f07thfe

10.2 Program Data

F07THF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
4.30

-3.96 -4.87
0.40 0.31 -8.02

-0.27 0.07 -5.95 0.12 :End of matrix A
-12.90 -21.50
16.75 14.93

-17.55 6.33
-11.04 8.09 :End of matrix B

10.3 Program Results

F07THF Example Program Results

Solution(s)
1 2

1 -3.0000 -5.0000
2 -1.0000 1.0000
3 2.0000 -1.0000
4 1.0000 6.0000

Backward errors (machine-dependent)
6.9E-17 0.0E+00

Estimated forward error bounds (machine-dependent)
8.3E-14 2.6E-14
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NAG Library Routine Document

F07TJF (DTRTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07TJF (DTRTRI) computes the inverse of a real triangular matrix.

2 Specification

SUBROUTINE F07TJF (UPLO, DIAG, N, A, LDA, INFO)

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) A(LDA,*)
CHARACTER(1) UPLO, DIAG

The routine may be called by its LAPACK name dtrtri.

3 Description

F07TJF (DTRTRI) forms the inverse of a real triangular matrix A. Note that the inverse of an upper
(lower) triangular matrix is also upper (lower) triangular.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F07 – Linear Equations (LAPACK) F07TJF
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4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

On exit: A is overwritten by A�1, using the same storage format as described above.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07TJF
(DTRTRI) is called.

Constraint: LDA � max 1;Nð Þ.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. A is singular its inverse cannot be computed.

7 Accuracy

The computed inverse X satisfies

XA� Ij j � c nð Þ� Xj j Aj j;

where c nð Þ is a modest linear function of n, and � is the machine precision.

Note that a similar bound for AX � Ij j cannot be guaranteed, although it is almost always satisfied.

The computed inverse satisfies the forward error bound

X �A�1
		 		 � c nð Þ� A�1		 		 Aj j Xj j:

See Du Croz and Higham (1992).

8 Parallelism and Performance

F07TJF (DTRTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 1
3n

3 .

The complex analogue of this routine is F07TWF (ZTRTRI).

10 Example

This example computes the inverse of the matrix A, where

A ¼
4:30 0:00 0:00 0:00
�3:96 �4:87 0:00 0:00
0:40 0:31 �8:02 0:00
�0:27 0:07 �5:95 0:12

0B@
1CA:

10.1 Program Text

Program f07tjfe

! F07TJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtrtri, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)

! .. Executable Statements ..
Write (nout,*) ’F07TJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Compute inverse of A
! The NAG name equivalent of dtrtri is f07tjf

Call dtrtri(uplo,diag,n,a,lda,info)

! Print inverse

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(uplo,diag,n,n,a,lda,’Inverse’,ifail)

End Program f07tjfe
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10.2 Program Data

F07TJF Example Program Data
4 :Value of N
’L’ :Value of UPLO
4.30

-3.96 -4.87
0.40 0.31 -8.02

-0.27 0.07 -5.95 0.12 :End of matrix A

10.3 Program Results

F07TJF Example Program Results

Inverse
1 2 3 4

1 0.2326
2 -0.1891 -0.2053
3 0.0043 -0.0079 -0.1247
4 0.8463 -0.2738 -6.1825 8.3333
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NAG Library Routine Document

F07TSF (ZTRTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07TSF (ZTRTRS) solves a complex triangular system of linear equations with multiple right-hand
sides, AX ¼ B, ATX ¼ B or AHX ¼ B.

2 Specification

SUBROUTINE F07TSF (UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, INFO)

INTEGER N, NRHS, LDA, LDB, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name ztrtrs.

3 Description

F07TSF (ZTRTRS) solves a complex triangular system of linear equations AX ¼ B, ATX ¼ B or
AHX ¼ B.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (1989) The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26 1252–
1265

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T
The equations are of the form ATX ¼ B.
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TRANS ¼ C
The equations are of the form AHX ¼ B.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07TSF
(ZTRTRS) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07TSF
(ZTRTRS) is called.

Constraint: LDB � max 1;Nð Þ.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. A is singular and the solution has not been
computed.

7 Accuracy

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham
(1989).

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

Ej j � c nð Þ� Aj j;

c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�; provided c nð Þ cond A; xð Þ� < 1;

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1.

Note that cond A; xð Þ � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ; cond A; xð Þ can be much smaller than

cond Að Þ and it is also possible for cond AHð Þ, which is the same as cond ATð Þ, to be much larger (or
smaller) than cond Að Þ.
Forward and backward error bounds can be computed by calling F07TVF (ZTRRFS), and an estimate
for �1 Að Þ can be obtained by calling F07TUF (ZTRCON) with NORM ¼ I .

8 Parallelism and Performance

F07TSF (ZTRTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 4n2r.

The real analogue of this routine is F07TEF (DTRTRS).
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10 Example

This example solves the system of equations AX ¼ B, where

A ¼
4:78þ 4:56i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
2:00� 0:30i �4:11þ 1:25i 0:00þ 0:00i 0:00þ 0:00i
2:89� 1:34i 2:36� 4:25i 4:15þ 0:80i 0:00þ 0:00i
�1:89þ 1:15i 0:04� 3:69i �0:02þ 0:46i 0:33� 0:26i

0B@
1CA

and

B ¼
�14:78� 32:36i �18:02þ 28:46i

2:98� 2:14i 14:22þ 15:42i
�20:96þ 17:06i 5:62þ 35:89i

9:54þ 9:91i �16:46� 1:73i

0B@
1CA:

10.1 Program Text

Program f07tsfe

! F07TSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztrtrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07TSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Compute solution
! The NAG name equivalent of ztrtrs is f07tsf

Call ztrtrs(uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

! Print solution

Write (nout,*)
Flush (nout)
If (info==0) Then

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
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Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &
’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’A is singular’

End If

End Program f07tsfe

10.2 Program Data

F07TSF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

( 4.78, 4.56)
( 2.00,-0.30) (-4.11, 1.25)
( 2.89,-1.34) ( 2.36,-4.25) ( 4.15, 0.80)
(-1.89, 1.15) ( 0.04,-3.69) (-0.02, 0.46) ( 0.33,-0.26) :End of matrix A
(-14.78,-32.36) (-18.02, 28.46)
( 2.98, -2.14) ( 14.22, 15.42)
(-20.96, 17.06) ( 5.62, 35.89)
( 9.54, 9.91) (-16.46, -1.73) :End of matrix B

10.3 Program Results

F07TSF Example Program Results

Solution(s)
1 2

1 (-5.0000,-2.0000) ( 1.0000, 5.0000)
2 (-3.0000,-1.0000) (-2.0000,-2.0000)
3 ( 2.0000, 1.0000) ( 3.0000, 4.0000)
4 ( 4.0000, 3.0000) ( 4.0000,-3.0000)
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NAG Library Routine Document

F07TUF (ZTRCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07TUF (ZTRCON) estimates the condition number of a complex triangular matrix.

2 Specification

SUBROUTINE F07TUF (NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, RWORK,
INFO)

&

INTEGER N, LDA, INFO
REAL (KIND=nag_wp) RCOND, RWORK(N)
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(2*N)
CHARACTER(1) NORM, UPLO, DIAG

The routine may be called by its LAPACK name ztrcon.

3 Description

F07TUF (ZTRCON) estimates the condition number of a complex triangular matrix A, in either the
1-norm or the 1-norm:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
or �1 Að Þ ¼ Ak k1 A�1

�� ��
1:

Note that �1 Að Þ ¼ �1 ATð Þ.
Because the condition number is infinite if A is singular, the routine actually returns an estimate of the
reciprocal of the condition number.

The routine computes Ak k1 or Ak k1 exactly, and uses Higham's implementation of Hager's method
(see Higham (1988)) to estimate A�1

�� ��
1
or A�1
�� ��

1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: indicates whether �1 Að Þ or �1 Að Þ is estimated.

NORM ¼ 1 or O
�1 Að Þ is estimated.

NORM ¼ I
�1 Að Þ is estimated.

Constraint: NORM ¼ 1 , O or I .

F07 – Linear Equations (LAPACK) F07TUF

Mark 26 F07TUF.1



2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07TUF
(ZTRCON) is called.

Constraint: LDA � max 1;Nð Þ.

7: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

8: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

9: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07TUF (ZTRCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07TUF (ZTRCON) involves solving a number of systems of linear equations of the form
Ax ¼ b or AHx ¼ b; the number is usually 5 and never more than 11. Each solution involves
approximately 4n2 real floating-point operations but takes considerably longer than a call to F07TSF
(ZTRTRS) with one right-hand side, because extra care is taken to avoid overflow when A is
approximately singular.

The real analogue of this routine is F07TGF (DTRCON).

10 Example

This example estimates the condition number in the 1-norm of the matrix A, where

A ¼
4:78þ 4:56i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
2:00� 0:30i �4:11þ 1:25i 0:00þ 0:00i 0:00þ 0:00i
2:89� 1:34i 2:36� 4:25i 4:15þ 0:80i 0:00þ 0:00i
�1:89þ 1:15i 0:04� 3:69i �0:02þ 0:46i 0:33� 0:26i

0B@
1CA:

The true condition number in the 1-norm is 70:27.

10.1 Program Text

Program f07tufe

! F07TUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, ztrcon

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, norm = ’1’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, info, lda, n
Character (1) :: uplo

! .. Local Arrays ..
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Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07TUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),work(2*n),rwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Estimate condition number
! The NAG name equivalent of ztrcon is f07tuf

Call ztrcon(norm,uplo,diag,n,a,lda,rcond,work,rwork,info)

Write (nout,*)
If (rcond>=x02ajf()) Then

Write (nout,99999) ’Estimate of condition number =’, 1.0_nag_wp/rcond
Else

Write (nout,*) ’A is singular to working precision’
End If

99999 Format (1X,A,1P,E10.2)
End Program f07tufe

10.2 Program Data

F07TUF Example Program Data
4 :Value of N
’L’ :Value of UPLO

( 4.78, 4.56)
( 2.00,-0.30) (-4.11, 1.25)
( 2.89,-1.34) ( 2.36,-4.25) ( 4.15, 0.80)
(-1.89, 1.15) ( 0.04,-3.69) (-0.02, 0.46) ( 0.33,-0.26) :End of matrix A

10.3 Program Results

F07TUF Example Program Results

Estimate of condition number = 3.74E+01
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NAG Library Routine Document

F07TVF (ZTRRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07TVF (ZTRRFS) returns error bounds for the solution of a complex triangular system of linear
equations with multiple right-hand sides, AX ¼ B, ATX ¼ B or AHX ¼ B.

2 Specification

SUBROUTINE F07TVF (UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, LDX,
FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, LDA, LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), X(LDX,*), WORK(2*N)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name ztrrfs.

3 Description

F07TVF (ZTRRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex triangular system of linear equations with multiple right-hand sides AX ¼ B,
ATX ¼ B or AHX ¼ B. The routine handles each right-hand side vector (stored as a column of the
matrix B) independently, so we describe the function of F07TVF (ZTRRFS) in terms of a single right-
hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.
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UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T
The equations are of the form ATX ¼ B.

TRANS ¼ C
The equations are of the form AHX ¼ B.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07TVF
(ZTRRFS) is called.

Constraint: LDA � max 1;Nð Þ.
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8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07TVF
(ZTRRFS) is called.

Constraint: LDB � max 1;Nð Þ.

10: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07TSF (ZTRTRS).

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07TVF
(ZTRRFS) is called.

Constraint: LDX � max 1;Nð Þ.

12: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

13: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

14: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

15: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07TVF (ZTRRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F07TVF (ZTRRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07TVF (ZTRRFS), for each right-hand side, involves solving a number of systems of linear
equations of the form Ax ¼ b or AHx ¼ b; the number is usually 5 and never more than 11. Each
solution involves approximately 4n2 real floating-point operations.

The real analogue of this routine is F07THF (DTRRFS).

10 Example

This example solves the system of equations AX ¼ B and to compute forward and backward error
bounds, where

A ¼
4:78þ 4:56i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
2:00� 0:30i �4:11þ 1:25i 0:00þ 0:00i 0:00þ 0:00i
2:89� 1:34i 2:36� 4:25i 4:15þ 0:80i 0:00þ 0:00i
�1:89þ 1:15i 0:04� 3:69i �0:02þ 0:46i 0:33� 0:26i

0B@
1CA

and

B ¼
�14:78� 32:36i �18:02þ 28:46i

2:98� 2:14i 14:22þ 15:42i
�20:96þ 17:06i 5:62þ 35:89i

9:54þ 9:91i �16:46� 1:73i

0B@
1CA:

10.1 Program Text

Program f07tvfe

! F07TVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztrrfs, ztrtrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, ldx, n, &

nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), work(:), x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07TVF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda = n
ldb = n
ldx = n
Allocate (a(lda,n),b(ldb,nrhs),work(2*n),x(ldx,n),berr(nrhs),ferr(nrhs), &

rwork(n))
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! Read A and B from data file, and copy B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Compute solution in the array X
! The NAG name equivalent of ztrtrs is f07tsf

Call ztrtrs(uplo,trans,diag,n,nrhs,a,lda,x,ldx,info)

! Compute backward errors and estimated bounds on the
! forward errors

! The NAG name equivalent of ztrrfs is f07tvf
Call ztrrfs(uplo,trans,diag,n,nrhs,a,lda,b,ldb,x,ldx,ferr,berr,work, &

rwork,info)

! Print solution

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’,’Solution(s)’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07tvfe

10.2 Program Data

F07TVF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

( 4.78, 4.56)
( 2.00,-0.30) (-4.11, 1.25)
( 2.89,-1.34) ( 2.36,-4.25) ( 4.15, 0.80)
(-1.89, 1.15) ( 0.04,-3.69) (-0.02, 0.46) ( 0.33,-0.26) :End of matrix A
(-14.78,-32.36) (-18.02, 28.46)
( 2.98, -2.14) ( 14.22, 15.42)
(-20.96, 17.06) ( 5.62, 35.89)
( 9.54, 9.91) (-16.46, -1.73) :End of matrix B
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10.3 Program Results

F07TVF Example Program Results

Solution(s)
1 2

1 (-5.0000,-2.0000) ( 1.0000, 5.0000)
2 (-3.0000,-1.0000) (-2.0000,-2.0000)
3 ( 2.0000, 1.0000) ( 3.0000, 4.0000)
4 ( 4.0000, 3.0000) ( 4.0000,-3.0000)

Backward errors (machine-dependent)
6.2E-17 2.7E-17

Estimated forward error bounds (machine-dependent)
2.9E-14 3.2E-14
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NAG Library Routine Document

F07TWF (ZTRTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07TWF (ZTRTRI) computes the inverse of a complex triangular matrix.

2 Specification

SUBROUTINE F07TWF (UPLO, DIAG, N, A, LDA, INFO)

INTEGER N, LDA, INFO
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) UPLO, DIAG

The routine may be called by its LAPACK name ztrtri.

3 Description

F07TWF (ZTRTRI) forms the inverse of a complex triangular matrix A. Note that the inverse of an
upper (lower) triangular matrix is also upper (lower) triangular.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n triangular matrix A.

If UPLO ¼ U , A is upper triangular and the elements of the array below the diagonal are
not referenced.

If UPLO ¼ L , A is lower triangular and the elements of the array above the diagonal are
not referenced.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

On exit: A is overwritten by A�1, using the same storage format as described above.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F07TWF
(ZTRTRI) is called.

Constraint: LDA � max 1;Nð Þ.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. A is singular its inverse cannot be computed.

7 Accuracy

The computed inverse X satisfies

XA� Ij j � c nð Þ� Xj j Aj j;

where c nð Þ is a modest linear function of n, and � is the machine precision.

Note that a similar bound for AX � Ij j cannot be guaranteed, although it is almost always satisfied.

The computed inverse satisfies the forward error bound

X �A�1
		 		 � c nð Þ� A�1		 		 Aj j Xj j:

See Du Croz and Higham (1992).

8 Parallelism and Performance

F07TWF (ZTRTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of real floating-point operations is approximately 4
3n

3 .

The real analogue of this routine is F07TJF (DTRTRI).

10 Example

This example computes the inverse of the matrix A, where

A ¼
4:78þ 4:56i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
2:00� 0:30i �4:11þ 1:25i 0:00þ 0:00i 0:00þ 0:00i
2:89� 1:34i 2:36� 4:25i 4:15þ 0:80i 0:00þ 0:00i
�1:89þ 1:15i 0:04� 3:69i �0:02þ 0:46i 0:33� 0:26i

0B@
1CA:

10.1 Program Text

Program f07twfe

! F07TWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztrtri

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07TWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Compute inverse of A
! The NAG name equivalent of ztrtri is f07twf

Call ztrtri(uplo,diag,n,a,lda,info)

! Print inverse

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
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ifail = 0
Call x04dbf(uplo,diag,n,n,a,lda,’Bracketed’,’F7.4’,’Inverse’,’Integer’, &

rlabs,’Integer’,clabs,80,0,ifail)

End Program f07twfe

10.2 Program Data

F07TWF Example Program Data
4 :Value of N
’L’ :Value of UPLO

( 4.78, 4.56)
( 2.00,-0.30) (-4.11, 1.25)
( 2.89,-1.34) ( 2.36,-4.25) ( 4.15, 0.80)
(-1.89, 1.15) ( 0.04,-3.69) (-0.02, 0.46) ( 0.33,-0.26) :End of matrix A

10.3 Program Results

F07TWF Example Program Results

Inverse
1 2 3 4

1 ( 0.1095,-0.1045)
2 ( 0.0582,-0.0411) (-0.2227,-0.0677)
3 ( 0.0032, 0.1905) ( 0.1538,-0.2192) ( 0.2323,-0.0448)
4 ( 0.7602, 0.2814) ( 1.6184,-1.4346) ( 0.1289,-0.2250) ( 1.8697, 1.4731)
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NAG Library Routine Document

F07UEF (DTPTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07UEF (DTPTRS) solves a real triangular system of linear equations with multiple right-hand sides,
AX ¼ B or ATX ¼ B, using packed storage.

2 Specification

SUBROUTINE F07UEF (UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
REAL (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name dtptrs.

3 Description

F07UEF (DTPTRS) solves a real triangular system of linear equations AX ¼ B or ATX ¼ B, using
packed storage.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (1989) The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26 1252–
1265

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T or C
The equations are of the form ATX ¼ B.

Constraint: TRANS ¼ N , T or C .
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3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07UEF
(DTPTRS) is called.

Constraint: LDB � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

Element valueh i of the diagonal is exactly zero. A is singular and the solution has not been
computed.

7 Accuracy

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham
(1989).

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

Ej j � c nð Þ� Aj j;

c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�; provided c nð Þ cond A; xð Þ� < 1;

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1.

Note that cond A; xð Þ � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ; cond A; xð Þ can be much smaller than

cond Að Þ and it is also possible for cond ATð Þ to be much larger (or smaller) than cond Að Þ.
Forward and backward error bounds can be computed by calling F07UHF (DTPRFS), and an estimate
for �1 Að Þ can be obtained by calling F07UGF (DTPCON) with NORM ¼ I .

8 Parallelism and Performance

F07UEF (DTPTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07UEF (DTPTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately n2r.

The complex analogue of this routine is F07USF (ZTPTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
4:30 0:00 0:00 0:00
�3:96 �4:87 0:00 0:00
0:40 0:31 �8:02 0:00
�0:27 0:07 �5:95 0:12

0B@
1CA and B ¼

�12:90 �21:50
16:75 14:93
�17:55 6:33
�11:04 8:09

0B@
1CA;

using packed storage for A.
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10.1 Program Text

Program f07uefe

! F07UEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtptrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, ldb, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), b(:,:)

! .. Executable Statements ..
Write (nout,*) ’F07UEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap(n*(n+1)/2),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Compute solution
! The NAG name equivalent of dtptrs is f07uef

Call dtptrs(uplo,trans,diag,n,nrhs,ap,b,ldb,info)

! Print solution

Write (nout,*)
Flush (nout)
If (info==0) Then

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,*) ’A is singular’

End If

End Program f07uefe

10.2 Program Data

F07UEF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
4.30

-3.96 -4.87
0.40 0.31 -8.02
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-0.27 0.07 -5.95 0.12 :End of matrix A
-12.90 -21.50
16.75 14.93

-17.55 6.33
-11.04 8.09 :End of matrix B

10.3 Program Results

F07UEF Example Program Results

Solution(s)
1 2

1 -3.0000 -5.0000
2 -1.0000 1.0000
3 2.0000 -1.0000
4 1.0000 6.0000
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NAG Library Routine Document

F07UGF (DTPCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07UGF (DTPCON) estimates the condition number of a real triangular matrix, using packed storage.

2 Specification

SUBROUTINE F07UGF (NORM, UPLO, DIAG, N, AP, RCOND, WORK, IWORK, INFO)

INTEGER N, IWORK(N), INFO
REAL (KIND=nag_wp) AP(*), RCOND, WORK(3*N)
CHARACTER(1) NORM, UPLO, DIAG

The routine may be called by its LAPACK name dtpcon.

3 Description

F07UGF (DTPCON) estimates the condition number of a real triangular matrix A, in either the 1-norm
or the 1-norm, using packed storage:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
or �1 Að Þ ¼ Ak k1 A�1

�� ��
1:

Note that �1 Að Þ ¼ �1 ATð Þ.
Because the condition number is infinite if A is singular, the routine actually returns an estimate of the
reciprocal of the condition number.

The routine computes Ak k1 or Ak k1 exactly, and uses Higham's implementation of Hager's method
(see Higham (1988)) to estimate A�1

�� ��
1
or A�1
�� ��

1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: indicates whether �1 Að Þ or �1 Að Þ is estimated.

NORM ¼ 1 or O
�1 Að Þ is estimated.

NORM ¼ I
�1 Að Þ is estimated.

Constraint: NORM ¼ 1 , O or I .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.
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UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

6: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

7: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

8: IWORKðNÞ – INTEGER array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07UGF (DTPCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07UGF (DTPCON) involves solving a number of systems of linear equations of the form
Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves
approximately n2 floating-point operations but takes considerably longer than a call to F07UEF
(DTPTRS) with one right-hand side, because extra care is taken to avoid overflow when A is
approximately singular.

The complex analogue of this routine is F07UUF (ZTPCON).

10 Example

This example estimates the condition number in the 1-norm of the matrix A, where

A ¼
4:30 0:00 0:00 0:00
�3:96 �4:87 0:00 0:00
0:40 0:31 �8:02 0:00
�0:27 0:07 �5:95 0:12

0B@
1CA;

using packed storage. The true condition number in the 1-norm is 116:41.

10.1 Program Text

Program f07ugfe

! F07UGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtpcon, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, norm = ’1’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), work(:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07UGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
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Allocate (ap(n*(n+1)/2),work(3*n),iwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Estimate condition number
! The NAG name equivalent of dtpcon is f07ugf

Call dtpcon(norm,uplo,diag,n,ap,rcond,work,iwork,info)

Write (nout,*)
If (rcond>=x02ajf()) Then

Write (nout,99999) ’Estimate of condition number =’, &
1.0E0_nag_wp/rcond

Else
Write (nout,*) ’A is singular to working precision’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07ugfe

10.2 Program Data

F07UGF Example Program Data
4 :Value of N
’L’ :Value of UPLO
4.30

-3.96 -4.87
0.40 0.31 -8.02

-0.27 0.07 -5.95 0.12 :End of matrix A

10.3 Program Results

F07UGF Example Program Results

Estimate of condition number = 1.16E+02

F07UGF NAG Library Manual

F07UGF.4 (last) Mark 26



NAG Library Routine Document

F07UHF (DTPRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07UHF (DTPRFS) returns error bounds for the solution of a real triangular system of linear equations
with multiple right-hand sides, AX ¼ B or ATX ¼ B, using packed storage.

2 Specification

SUBROUTINE F07UHF (UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, FERR,
BERR, WORK, IWORK, INFO)

&

INTEGER N, NRHS, LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) AP(*), B(LDB,*), X(LDX,*), FERR(NRHS), BERR(NRHS),

WORK(3*N)
&

CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name dtprfs.

3 Description

F07UHF (DTPRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a real triangular system of linear equations with multiple right-hand sides AX ¼ B or
ATX ¼ B, using packed storage. The routine handles each right-hand side vector (stored as a column of
the matrix B) independently, so we describe the function of F07UHF (DTPRFS) in terms of a single
right-hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.
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UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T or C
The equations are of the form ATX ¼ B.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07UHF
(DTPRFS) is called.

Constraint: LDB � max 1;Nð Þ.

9: XðLDX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07UEF (DTPTRS).

10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07UHF
(DTPRFS) is called.

Constraint: LDX � max 1;Nð Þ.

11: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

12: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

13: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

14: IWORKðNÞ – INTEGER array Workspace

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07UHF (DTPRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07UHF (DTPRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

A call to F07UHF (DTPRFS), for each right-hand side, involves solving a number of systems of linear
equations of the form Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each
solution involves approximately n2 floating-point operations.

The complex analogue of this routine is F07UVF (ZTPRFS).

10 Example

This example solves the system of equations AX ¼ B and to compute forward and backward error
bounds, where

A ¼
4:30 0:00 0:00 0:00
�3:96 �4:87 0:00 0:00
0:40 0:31 �8:02 0:00
�0:27 0:07 �5:95 0:12

0B@
1CA and B ¼

�12:90 �21:50
16:75 14:93
�17:55 6:33
�11:04 8:09

0B@
1CA;

using packed storage for A.

10.1 Program Text

Program f07uhfe

! F07UHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtprfs, dtptrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, ldb, ldx, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), b(:,:), berr(:), ferr(:), &

work(:), x(:,:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07UHF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (ap(n*(n+1)/2),b(ldb,nrhs),berr(nrhs),ferr(nrhs),work(3*n),x( &

ldx,n),iwork(n))

! Read A and B from data file, and copy B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Compute solution in the array X
! The NAG name equivalent of dtptrs is f07uef

Call dtptrs(uplo,trans,diag,n,nrhs,ap,x,ldx,info)

F07UHF NAG Library Manual

F07UHF.4 Mark 26



! Compute backward errors and estimated bounds on the
! forward errors

! The NAG name equivalent of dtprfs is f07uhf
Call dtprfs(uplo,trans,diag,n,nrhs,ap,b,ldb,x,ldx,ferr,berr,work,iwork, &

info)

! Print solution

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

99999 Format ((3X,1P,7E11.1))
End Program f07uhfe

10.2 Program Data

F07UHF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO
4.30

-3.96 -4.87
0.40 0.31 -8.02

-0.27 0.07 -5.95 0.12 :End of matrix A
-12.90 -21.50
16.75 14.93

-17.55 6.33
-11.04 8.09 :End of matrix B

10.3 Program Results

F07UHF Example Program Results

Solution(s)
1 2

1 -3.0000 -5.0000
2 -1.0000 1.0000
3 2.0000 -1.0000
4 1.0000 6.0000

Backward errors (machine-dependent)
6.9E-17 0.0E+00

Estimated forward error bounds (machine-dependent)
8.3E-14 2.6E-14
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NAG Library Routine Document

F07UJF (DTPTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07UJF (DTPTRI) computes the inverse of a real triangular matrix, using packed storage.

2 Specification

SUBROUTINE F07UJF (UPLO, DIAG, N, AP, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) AP(*)
CHARACTER(1) UPLO, DIAG

The routine may be called by its LAPACK name dtptri.

3 Description

F07UJF (DTPTRI) forms the inverse of a real triangular matrix A, using packed storage. Note that the
inverse of an upper (lower) triangular matrix is also upper (lower) triangular.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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4: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

On exit: A is overwritten by A�1, using the same storage format as described above.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. A is singular its inverse cannot be computed.

7 Accuracy

The computed inverse X satisfies

XA� Ij j � c nð Þ� Xj j Aj j;

where c nð Þ is a modest linear function of n, and � is the machine precision.

Note that a similar bound for AX � Ij j cannot be guaranteed, although it is almost always satisfied.

The computed inverse satisfies the forward error bound

X �A�1
		 		 � c nð Þ� A�1		 		 Aj j Xj j:

See Du Croz and Higham (1992).

8 Parallelism and Performance

F07UJF (DTPTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 1
3n

3 .

The complex analogue of this routine is F07UWF (ZTPTRI).
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10 Example

This example computes the inverse of the matrix A, where

A ¼
4:30 0:00 0:00 0:00
�3:96 �4:87 0:00 0:00
0:40 0:31 �8:02 0:00
�0:27 0:07 �5:95 0:12

0B@
1CA;

using packed storage.

10.1 Program Text

Program f07ujfe

! F07UJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtptri, nag_wp, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:)

! .. Executable Statements ..
Write (nout,*) ’F07UJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Compute inverse of A
! The NAG name equivalent of dtptri is f07ujf

Call dtptri(uplo,diag,n,ap,info)

! Print inverse

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ccf(uplo,diag,n,ap,’Inverse’,ifail)

End Program f07ujfe
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10.2 Program Data

F07UJF Example Program Data
4 :Value of N
’L’ :Value of UPLO
4.30

-3.96 -4.87
0.40 0.31 -8.02

-0.27 0.07 -5.95 0.12 :End of matrix A

10.3 Program Results

F07UJF Example Program Results

Inverse
1 2 3 4

1 0.2326
2 -0.1891 -0.2053
3 0.0043 -0.0079 -0.1247
4 0.8463 -0.2738 -6.1825 8.3333
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NAG Library Routine Document

F07USF (ZTPTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07USF (ZTPTRS) solves a complex triangular system of linear equations with multiple right-hand
sides, AX ¼ B, ATX ¼ B or AHX ¼ B, using packed storage.

2 Specification

SUBROUTINE F07USF (UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
COMPLEX (KIND=nag_wp) AP(*), B(LDB,*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name ztptrs.

3 Description

F07USF (ZTPTRS) solves a complex triangular system of linear equations AX ¼ B, ATX ¼ B or
AHX ¼ B, using packed storage.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (1989) The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26 1252–
1265

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T
The equations are of the form ATX ¼ B.
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TRANS ¼ C
The equations are of the form AHX ¼ B.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07USF
(ZTPTRS) is called.

Constraint: LDB � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

F07USF NAG Library Manual

F07USF.2 Mark 26



6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. A is singular and the solution has not been
computed.

7 Accuracy

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham
(1989).

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

Ej j � c nð Þ� Aj j;

c nð Þ is a modest linear function of n, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�; provided c nð Þ cond A; xð Þ� < 1;

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1.

Note that cond A; xð Þ � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ; cond A; xð Þ can be much smaller than

cond Að Þ and it is also possible for cond AHð Þ, which is the same as cond ATð Þ, to be much larger (or
smaller) than cond Að Þ.
Forward and backward error bounds can be computed by calling F07UVF (ZTPRFS), and an estimate
for �1 Að Þ can be obtained by calling F07UUF (ZTPCON) with NORM ¼ I .

8 Parallelism and Performance

F07USF (ZTPTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07USF (ZTPTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 4n2r.

The real analogue of this routine is F07UEF (DTPTRS).
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10 Example

This example solves the system of equations AX ¼ B, where

A ¼
4:78þ 4:56i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
2:00� 0:30i �4:11þ 1:25i 0:00þ 0:00i 0:00þ 0:00i
2:89� 1:34i 2:36� 4:25i 4:15þ 0:80i 0:00þ 0:00i
�1:89þ 1:15i 0:04� 3:69i �0:02þ 0:46i 0:33� 0:26i

0B@
1CA

and

B ¼
�14:78� 32:36i �18:02þ 28:46i

2:98� 2:14i 14:22þ 15:42i
�20:96þ 17:06i 5:62þ 35:89i

9:54þ 9:91i �16:46� 1:73i

0B@
1CA;

using packed storage for A.

10.1 Program Text

Program f07usfe

! F07USF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztptrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, ldb, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), b(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07USF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap(n*(n+1)/2),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Compute solution
! The NAG name equivalent of ztptrs is f07usf

Call ztptrs(uplo,trans,diag,n,nrhs,ap,b,ldb,info)

! Print solution

Write (nout,*)
Flush (nout)
If (info==0) Then

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
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ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’A is singular’

End If

End Program f07usfe

10.2 Program Data

F07USF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

( 4.78, 4.56)
( 2.00,-0.30) (-4.11, 1.25)
( 2.89,-1.34) ( 2.36,-4.25) ( 4.15, 0.80)
(-1.89, 1.15) ( 0.04,-3.69) (-0.02, 0.46) ( 0.33,-0.26) :End of matrix A
(-14.78,-32.36) (-18.02, 28.46)
( 2.98, -2.14) ( 14.22, 15.42)
(-20.96, 17.06) ( 5.62, 35.89)
( 9.54, 9.91) (-16.46, -1.73) :End of matrix B

10.3 Program Results

F07USF Example Program Results

Solution(s)
1 2

1 (-5.0000,-2.0000) ( 1.0000, 5.0000)
2 (-3.0000,-1.0000) (-2.0000,-2.0000)
3 ( 2.0000, 1.0000) ( 3.0000, 4.0000)
4 ( 4.0000, 3.0000) ( 4.0000,-3.0000)
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NAG Library Routine Document

F07UUF (ZTPCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07UUF (ZTPCON) estimates the condition number of a complex triangular matrix, using packed
storage.

2 Specification

SUBROUTINE F07UUF (NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) RCOND, RWORK(N)
COMPLEX (KIND=nag_wp) AP(*), WORK(2*N)
CHARACTER(1) NORM, UPLO, DIAG

The routine may be called by its LAPACK name ztpcon.

3 Description

F07UUF (ZTPCON) estimates the condition number of a complex triangular matrix A, in either the
1-norm or the 1-norm, using packed storage:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
or �1 Að Þ ¼ Ak k1 A�1

�� ��
1:

Note that �1 Að Þ ¼ �1 ATð Þ.
Because the condition number is infinite if A is singular, the routine actually returns an estimate of the
reciprocal of the condition number.

The routine computes Ak k1 or Ak k1 exactly, and uses Higham's implementation of Hager's method
(see Higham (1988)) to estimate A�1

�� ��
1
or A�1
�� ��

1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: indicates whether �1 Að Þ or �1 Að Þ is estimated.

NORM ¼ 1 or O
�1 Að Þ is estimated.

NORM ¼ I
�1 Að Þ is estimated.

Constraint: NORM ¼ 1 , O or I .
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2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

6: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

7: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

8: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07UUF (ZTPCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07UUF (ZTPCON) involves solving a number of systems of linear equations of the form
Ax ¼ b or AHx ¼ b; the number is usually 5 and never more than 11. Each solution involves
approximately 4n2 real floating-point operations but takes considerably longer than a call to F07USF
(ZTPTRS) with one right-hand side, because extra care is taken to avoid overflow when A is
approximately singular.

The real analogue of this routine is F07UGF (DTPCON).

10 Example

This example estimates the condition number in the 1-norm of the matrix A, where

A ¼
4:78þ 4:56i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
2:00� 0:30i �4:11þ 1:25i 0:00þ 0:00i 0:00þ 0:00i
2:89� 1:34i 2:36� 4:25i 4:15þ 0:80i 0:00þ 0:00i
�1:89þ 1:15i 0:04� 3:69i �0:02þ 0:46i 0:33� 0:26i

0B@
1CA;

using packed storage. The true condition number in the 1-norm is 70:27.

10.1 Program Text

Program f07uufe

! F07UUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, ztpcon

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, norm = ’1’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
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Complex (Kind=nag_wp), Allocatable :: ap(:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)

! .. Executable Statements ..
Write (nout,*) ’F07UUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),work(2*n),rwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Estimate condition number
! The NAG name equivalent of ztpcon is f07uuf

Call ztpcon(norm,uplo,diag,n,ap,rcond,work,rwork,info)

Write (nout,*)
If (rcond>=x02ajf()) Then

Write (nout,99999) ’Estimate of condition number =’, &
1.0E0_nag_wp/rcond

Else
Write (nout,*) ’A is singular to working precision’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07uufe

10.2 Program Data

F07UUF Example Program Data
4 :Value of N
’L’ :Value of UPLO

( 4.78, 4.56)
( 2.00,-0.30) (-4.11, 1.25)
( 2.89,-1.34) ( 2.36,-4.25) ( 4.15, 0.80)
(-1.89, 1.15) ( 0.04,-3.69) (-0.02, 0.46) ( 0.33,-0.26) :End of matrix A

10.3 Program Results

F07UUF Example Program Results

Estimate of condition number = 3.74E+01
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NAG Library Routine Document

F07UVF (ZTPRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07UVF (ZTPRFS) returns error bounds for the solution of a complex triangular system of linear
equations with multiple right-hand sides, AX ¼ B, ATX ¼ B or AHX ¼ B, using packed storage.

2 Specification

SUBROUTINE F07UVF (UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, FERR,
BERR, WORK, RWORK, INFO)

&

INTEGER N, NRHS, LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) AP(*), B(LDB,*), X(LDX,*), WORK(2*N)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name ztprfs.

3 Description

F07UVF (ZTPRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex triangular system of linear equations with multiple right-hand sides AX ¼ B,
ATX ¼ B or AHX ¼ B, using packed storage. The routine handles each right-hand side vector (stored
as a column of the matrix B) independently, so we describe the function of F07UVF (ZTPRFS) in terms
of a single right-hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

F07 – Linear Equations (LAPACK) F07UVF

Mark 26 F07UVF.1



UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T
The equations are of the form ATX ¼ B.

TRANS ¼ C
The equations are of the form AHX ¼ B.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

6: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.
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8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07UVF
(ZTPRFS) is called.

Constraint: LDB � max 1;Nð Þ.

9: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07USF (ZTPTRS).

10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07UVF
(ZTPRFS) is called.

Constraint: LDX � max 1;Nð Þ.

11: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

12: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

13: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

14: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07UVF (ZTPRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07UVF (ZTPRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

A call to F07UVF (ZTPRFS), for each right-hand side, involves solving a number of systems of linear
equations of the form Ax ¼ b or AHx ¼ b; the number is usually 5 and never more than 11. Each
solution involves approximately 4n2 real floating-point operations.

The real analogue of this routine is F07UHF (DTPRFS).

10 Example

This example solves the system of equations AX ¼ B and to compute forward and backward error
bounds, where

A ¼
4:78þ 4:56i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
2:00� 0:30i �4:11þ 1:25i 0:00þ 0:00i 0:00þ 0:00i
2:89� 1:34i 2:36� 4:25i 4:15þ 0:80i 0:00þ 0:00i
�1:89þ 1:15i 0:04� 3:69i �0:02þ 0:46i 0:33� 0:26i

0B@
1CA

and

B ¼
�14:78� 32:36i �18:02þ 28:46i

2:98� 2:14i 14:22þ 15:42i
�20:96þ 17:06i 5:62þ 35:89i

9:54þ 9:91i �16:46� 1:73i

0B@
1CA;

using packed storage for A.

10.1 Program Text

Program f07uvfe

! F07UVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztprfs, ztptrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, ldb, ldx, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), b(:,:), work(:), x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07UVF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (ap(n*(n+1)/2),b(ldb,nrhs),work(2*n),x(ldx,n),berr(nrhs),ferr( &

nrhs),rwork(n))

! Read A and B from data file, and copy B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If
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Read (nin,*)(b(i,1:nrhs),i=1,n)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Compute solution in the array X
! The NAG name equivalent of ztptrs is f07usf

Call ztptrs(uplo,trans,diag,n,nrhs,ap,x,ldx,info)

! Compute backward errors and estimated bounds on the
! forward errors

! The NAG name equivalent of ztprfs is f07uvf
Call ztprfs(uplo,trans,diag,n,nrhs,ap,b,ldb,x,ldx,ferr,berr,work,rwork, &

info)

! Print solution

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’,’Solution(s)’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07uvfe

10.2 Program Data

F07UVF Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

( 4.78, 4.56)
( 2.00,-0.30) (-4.11, 1.25)
( 2.89,-1.34) ( 2.36,-4.25) ( 4.15, 0.80)
(-1.89, 1.15) ( 0.04,-3.69) (-0.02, 0.46) ( 0.33,-0.26) :End of matrix A
(-14.78,-32.36) (-18.02, 28.46)
( 2.98, -2.14) ( 14.22, 15.42)
(-20.96, 17.06) ( 5.62, 35.89)
( 9.54, 9.91) (-16.46, -1.73) :End of matrix B

10.3 Program Results

F07UVF Example Program Results

Solution(s)
1 2

1 (-5.0000,-2.0000) ( 1.0000, 5.0000)
2 (-3.0000,-1.0000) (-2.0000,-2.0000)
3 ( 2.0000, 1.0000) ( 3.0000, 4.0000)
4 ( 4.0000, 3.0000) ( 4.0000,-3.0000)

Backward errors (machine-dependent)
6.2E-17 2.7E-17

Estimated forward error bounds (machine-dependent)
2.9E-14 3.2E-14
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NAG Library Routine Document

F07UWF (ZTPTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07UWF (ZTPTRI) computes the inverse of a complex triangular matrix, using packed storage.

2 Specification

SUBROUTINE F07UWF (UPLO, DIAG, N, AP, INFO)

INTEGER N, INFO
COMPLEX (KIND=nag_wp) AP(*)
CHARACTER(1) UPLO, DIAG

The routine may be called by its LAPACK name ztptri.

3 Description

F07UWF (ZTPTRI) forms the inverse of a complex triangular matrix A, using packed storage. Note
that the inverse of an upper (lower) triangular matrix is also upper (lower) triangular.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F07 – Linear Equations (LAPACK) F07UWF
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4: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the n by n triangular matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

On exit: A is overwritten by A�1, using the same storage format as described above.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. A is singular its inverse cannot be computed.

7 Accuracy

The computed inverse X satisfies

XA� Ij j � c nð Þ� Xj j Aj j;

where c nð Þ is a modest linear function of n, and � is the machine precision.

Note that a similar bound for AX � Ij j cannot be guaranteed, although it is almost always satisfied.

The computed inverse satisfies the forward error bound

X �A�1
		 		 � c nð Þ� A�1		 		 Aj j Xj j:

See Du Croz and Higham (1992).

8 Parallelism and Performance

F07UWF (ZTPTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 4
3n

3 .

The real analogue of this routine is F07UJF (DTPTRI).
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10 Example

This example computes the inverse of the matrix A, where

A ¼
4:78þ 4:56i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
2:00� 0:30i �4:11þ 1:25i 0:00þ 0:00i 0:00þ 0:00i
2:89� 1:34i 2:36� 4:25i 4:15þ 0:80i 0:00þ 0:00i
�1:89þ 1:15i 0:04� 3:69i �0:02þ 0:46i 0:33� 0:26i

0B@
1CA;

using packed storage.

10.1 Program Text

Program f07uwfe

! F07UWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04ddf, ztptri

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07UWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Compute inverse of A
! The NAG name equivalent of ztptri is f07uwf

Call ztptri(uplo,diag,n,ap,info)

! Print inverse

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04ddf(uplo,diag,n,ap,’Bracketed’,’F7.4’,’Inverse’,’Integer’,rlabs, &

’Integer’,clabs,80,0,ifail)

End Program f07uwfe
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10.2 Program Data

F07UWF Example Program Data
4 :Value of N
’L’ :Value of UPLO

( 4.78, 4.56)
( 2.00,-0.30) (-4.11, 1.25)
( 2.89,-1.34) ( 2.36,-4.25) ( 4.15, 0.80)
(-1.89, 1.15) ( 0.04,-3.69) (-0.02, 0.46) ( 0.33,-0.26) :End of matrix A

10.3 Program Results

F07UWF Example Program Results

Inverse
1 2 3 4

1 ( 0.1095,-0.1045)
2 ( 0.0582,-0.0411) (-0.2227,-0.0677)
3 ( 0.0032, 0.1905) ( 0.1538,-0.2192) ( 0.2323,-0.0448)
4 ( 0.7602, 0.2814) ( 1.6184,-1.4346) ( 0.1289,-0.2250) ( 1.8697, 1.4731)
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NAG Library Routine Document

F07VEF (DTBTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07VEF (DTBTRS) solves a real triangular band system of linear equations with multiple right-hand
sides, AX ¼ B or ATX ¼ B.

2 Specification

SUBROUTINE F07VEF (UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB,
INFO)

&

INTEGER N, KD, NRHS, LDAB, LDB, INFO
REAL (KIND=nag_wp) AB(LDAB,*), B(LDB,*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name dtbtrs.

3 Description

F07VEF (DTBTRS) solves a real triangular band system of linear equations AX ¼ B or ATX ¼ B.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (1989) The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26 1252–
1265

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T or C
The equations are of the form ATX ¼ B.

Constraint: TRANS ¼ N , T or C .
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3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

6: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

7: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n triangular band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

8: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07VEF (DTBTRS) is called.

Constraint: LDAB � KDþ 1.

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07VEF
(DTBTRS) is called.

Constraint: LDB � max 1;Nð Þ.
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11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. A is singular and the solution has not been
computed.

7 Accuracy

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham
(1989).

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

Ej j � c kð Þ� Aj j;

c kð Þ is a modest linear function of k, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c kð Þ cond A; xð Þ�; provided c kð Þ cond A; xð Þ� < 1;

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1.

Note that cond A; xð Þ � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ; cond A; xð Þ can be much smaller than
cond Að Þ and it is also possible for cond ATð Þ to be much larger (or smaller) than cond Að Þ.
Forward and backward error bounds can be computed by calling F07VHF (DTBRFS), and an estimate
for �1 Að Þ can be obtained by calling F07VGF (DTBCON) with NORM ¼ I .

8 Parallelism and Performance

F07VEF (DTBTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07VEF (DTBTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2nkr if k n.

The complex analogue of this routine is F07VSF (ZTBTRS).
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10 Example

This example solves the system of equations AX ¼ B, where

A ¼
�4:16 0:00 0:00 0:00
�2:25 4:78 0:00 0:00
0:00 5:86 6:32 0:00
0:00 0:00 �4:82 0:16

0B@
1CA and B ¼

�16:64 �4:16
�13:78 �16:59
13:10 �4:94
�14:14 �9:96

0B@
1CA:

Here A is treated as a lower triangular band matrix with one subdiagonal.

10.1 Program Text

Program f07vefe

! F07VEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtbtrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, ldb, n, &

nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07VEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd, nrhs
ldab = kd + 1
ldb = n
Allocate (ab(ldab,n),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Compute solution
! The NAG name equivalent of dtbtrs is f07vef

Call dtbtrs(uplo,trans,diag,n,kd,nrhs,ab,ldab,b,ldb,info)

! Print solution

Write (nout,*)
Flush (nout)
If (info==0) Then

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
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ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,*) ’A is singular’

End If

End Program f07vefe

10.2 Program Data

F07VEF Example Program Data
4 1 2 :Values of N, KD and NRHS
’L’ :Value of UPLO

-4.16
-2.25 4.78

5.86 6.32
-4.82 0.16 :End of matrix A

-16.64 -4.16
-13.78 -16.59
13.10 -4.94

-14.14 -9.96 :End of matrix B

10.3 Program Results

F07VEF Example Program Results

Solution(s)
1 2

1 4.0000 1.0000
2 -1.0000 -3.0000
3 3.0000 2.0000
4 2.0000 -2.0000
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NAG Library Routine Document

F07VGF (DTBCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07VGF (DTBCON) estimates the condition number of a real triangular band matrix.

2 Specification

SUBROUTINE F07VGF (NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK,
IWORK, INFO)

&

INTEGER N, KD, LDAB, IWORK(N), INFO
REAL (KIND=nag_wp) AB(LDAB,*), RCOND, WORK(3*N)
CHARACTER(1) NORM, UPLO, DIAG

The routine may be called by its LAPACK name dtbcon.

3 Description

F07VGF (DTBCON) estimates the condition number of a real triangular band matrix A, in either the
1-norm or the 1-norm:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
or �1 Að Þ ¼ Ak k1 A�1

�� ��
1:

Note that �1 Að Þ ¼ �1 ATð Þ.
Because the condition number is infinite if A is singular, the routine actually returns an estimate of the
reciprocal of the condition number.

The routine computes Ak k1 or Ak k1 exactly, and uses Higham's implementation of Hager's method
(see Higham (1988)) to estimate A�1

�� ��
1
or A�1
�� ��

1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: indicates whether �1 Að Þ or �1 Að Þ is estimated.

NORM ¼ 1 or O
�1 Að Þ is estimated.

NORM ¼ I
�1 Að Þ is estimated.

Constraint: NORM ¼ 1 , O or I .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.
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UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

6: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n triangular band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07VGF (DTBCON) is called.

Constraint: LDAB � KDþ 1.

8: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

9: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

10: IWORKðNÞ – INTEGER array Workspace

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07VGF (DTBCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07VGF (DTBCON) involves solving a number of systems of linear equations of the form
Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves
approximately 2nk floating-point operations (assuming n� k) but takes considerably longer than a call
to F07VEF (DTBTRS) with one right-hand side, because extra care is taken to avoid overflow when A
is approximately singular.

The complex analogue of this routine is F07VUF (ZTBCON).

10 Example

This example estimates the condition number in the 1-norm of the matrix A, where

A ¼
�4:16 0:00 0:00 0:00
�2:25 4:78 0:00 0:00
0:00 5:86 6:32 0:00
0:00 0:00 �4:82 0:16

0B@
1CA:

Here A is treated as a lower triangular band matrix with one subdiagonal. The true condition number in
the 1-norm is 69:62.

10.1 Program Text

Program f07vgfe

! F07VGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtbcon, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, norm = ’1’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, info, j, kd, ldab, n
Character (1) :: uplo
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), work(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07VGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
Allocate (ab(ldab,n),work(3*n),iwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If

! Estimate condition number
! The NAG name equivalent of dtbcon is f07vgf

Call dtbcon(norm,uplo,diag,n,kd,ab,ldab,rcond,work,iwork,info)

Write (nout,*)
If (rcond>=x02ajf()) Then

Write (nout,99999) ’Estimate of condition number =’, &
1.0E0_nag_wp/rcond

Else
Write (nout,*) ’A is singular to working precision’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07vgfe

10.2 Program Data

F07VGF Example Program Data
4 1 :Values of N and KD
’L’ :Value of UPLO

-4.16
-2.25 4.78

5.86 6.32
-4.82 0.16 :End of matrix A

10.3 Program Results

F07VGF Example Program Results

Estimate of condition number = 6.96E+01
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NAG Library Routine Document

F07VHF (DTBRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07VHF (DTBRFS) returns error bounds for the solution of a real triangular band system of linear
equations with multiple right-hand sides, AX ¼ B or ATX ¼ B.

2 Specification

SUBROUTINE F07VHF (UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, X,
LDX, FERR, BERR, WORK, IWORK, INFO)

&

INTEGER N, KD, NRHS, LDAB, LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) AB(LDAB,*), B(LDB,*), X(LDX,*), FERR(NRHS),

BERR(NRHS), WORK(3*N)
&

CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name dtbrfs.

3 Description

F07VHF (DTBRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a real triangular band system of linear equations with multiple right-hand sides AX ¼ B or
ATX ¼ B. The routine handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of F07VHF (DTBRFS) in terms of a single right-hand side b
and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.
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UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T or C
The equations are of the form ATX ¼ B.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

6: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

7: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n triangular band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.
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8: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07VHF (DTBRFS) is called.

Constraint: LDAB � KDþ 1.

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07VHF
(DTBRFS) is called.

Constraint: LDB � max 1;Nð Þ.

11: XðLDX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07VEF (DTBTRS).

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07VHF
(DTBRFS) is called.

Constraint: LDX � max 1;Nð Þ.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

15: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

16: IWORKðNÞ – INTEGER array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.
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8 Parallelism and Performance

F07VHF (DTBRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07VHF (DTBRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07VHF (DTBRFS), for each right-hand side, involves solving a number of systems of linear
equations of the form Ax ¼ b or ATx ¼ b; the number is usually 4 or 5 and never more than 11. Each
solution involves approximately 2nk floating-point operations (assuming n� k).

The complex analogue of this routine is F07VVF (ZTBRFS).

10 Example

This example solves the system of equations AX ¼ B and to compute forward and backward error
bounds, where

A ¼
�4:16 0:00 0:00 0:00
�2:25 4:78 0:00 0:00
0:00 5:86 6:32 0:00
0:00 0:00 �4:82 0:16

0B@
1CA and B ¼

�16:64 �4:16
�13:78 �16:59
13:10 �4:94
�14:14 �9:96

0B@
1CA:

10.1 Program Text

Program f07vhfe

! F07VHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtbrfs, dtbtrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, ldb, &

ldx, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:), berr(:), ferr(:), &

work(:), x(:,:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07VHF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd, nrhs
ldab = kd + 1
ldb = n
ldx = n
Allocate (ab(ldab,n),b(ldb,nrhs),berr(nrhs),ferr(nrhs),work(3*n), &

x(ldx,n),iwork(n))
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! Read A and B from data file, and copy B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Compute solution in the array X
! The NAG name equivalent of dtbtrs is f07vef

Call dtbtrs(uplo,trans,diag,n,kd,nrhs,ab,ldab,x,ldx,info)

! Compute backward errors and estimated bounds on the
! forward errors

! The NAG name equivalent of dtbrfs is f07vhf
Call dtbrfs(uplo,trans,diag,n,kd,nrhs,ab,ldab,b,ldb,x,ldx,ferr,berr, &

work,iwork,info)

! Print solution

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Solution(s)’,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

99999 Format ((3X,1P,7E11.1))
End Program f07vhfe

10.2 Program Data

F07VHF Example Program Data
4 1 2 :Values of N, KD and NRHS
’L’ :Value of UPLO

-4.16
-2.25 4.78

5.86 6.32
-4.82 0.16 :End of matrix A

-16.64 -4.16
-13.78 -16.59
13.10 -4.94

-14.14 -9.96 :End of matrix B

10.3 Program Results

F07VHF Example Program Results

Solution(s)
1 2

1 4.0000 1.0000
2 -1.0000 -3.0000
3 3.0000 2.0000
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4 2.0000 -2.0000

Backward errors (machine-dependent)
4.7E-17 2.5E-17

Estimated forward error bounds (machine-dependent)
5.4E-14 5.8E-14
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NAG Library Routine Document

F07VSF (ZTBTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07VSF (ZTBTRS) solves a complex triangular band system of linear equations with multiple right-
hand sides, AX ¼ B, ATX ¼ B or AHX ¼ B.

2 Specification

SUBROUTINE F07VSF (UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB,
INFO)

&

INTEGER N, KD, NRHS, LDAB, LDB, INFO
COMPLEX (KIND=nag_wp) AB(LDAB,*), B(LDB,*)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name ztbtrs.

3 Description

F07VSF (ZTBTRS) solves a complex triangular band system of linear equations AX ¼ B, ATX ¼ B or
AHX ¼ B.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (1989) The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26 1252–
1265

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T
The equations are of the form ATX ¼ B.
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TRANS ¼ C
The equations are of the form AHX ¼ B.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

6: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

7: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n triangular band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

8: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07VSF (ZTBTRS) is called.

Constraint: LDAB � KDþ 1.

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.
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10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07VSF
(ZTBTRS) is called.

Constraint: LDB � max 1;Nð Þ.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Element valueh i of the diagonal is exactly zero. A is singular and the solution has not been
computed.

7 Accuracy

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham
(1989).

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

Ej j � c kð Þ� Aj j;

c kð Þ is a modest linear function of k, and � is the machine precision.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c kð Þ cond A; xð Þ�; provided c kð Þ cond A; xð Þ� < 1;

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1.

Note that cond A; xð Þ � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ; cond A; xð Þ can be much smaller than
cond Að Þ and it is also possible for cond AHð Þ, which is the same as cond ATð Þ, to be much larger (or
smaller) than cond Að Þ.
Forward and backward error bounds can be computed by calling F07VVF (ZTBRFS), and an estimate
for �1 Að Þ can be obtained by calling F07VUF (ZTBCON) with NORM ¼ I .

8 Parallelism and Performance

F07VSF (ZTBTRS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07VSF (ZTBTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of real floating-point operations is approximately 8nkr if k n.

The real analogue of this routine is F07VEF (DTBTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
�1:94þ 4:43i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
�3:39þ 3:44i 4:12� 4:27i 0:00þ 0:00i 0:00þ 0:00i
1:62þ 3:68i �1:84þ 5:53i 0:43� 2:66i 0:00þ 0:00i
0:00þ 0:00i �2:77� 1:93i 1:74� 0:04i 0:44þ 0:10i

0B@
1CA

and

B ¼
�8:86� 3:88i �24:09� 5:27i
�15:57� 23:41i �57:97þ 8:14i
�7:63þ 22:78i 19:09� 29:51i
�14:74� 2:40i 19:17þ 21:33i

0B@
1CA:

Here A is treated as a lower triangular band matrix with two subdiagonals.

10.1 Program Text

Program f07vsfe

! F07VSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztbtrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, ldb, n, &

nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07VSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd, nrhs
ldab = kd + 1
ldb = n
Allocate (ab(ldab,n),b(ldb,nrhs))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
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End If
Read (nin,*)(b(i,1:nrhs),i=1,n)

! Compute solution
! The NAG name equivalent of ztbtrs is f07vsf

Call ztbtrs(uplo,trans,diag,n,kd,nrhs,ab,ldab,b,ldb,info)

! Print solution

Write (nout,*)
Flush (nout)
If (info==0) Then

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’A is singular’

End If

End Program f07vsfe

10.2 Program Data

F07VSF Example Program Data
4 2 2 :Values of N, KD and NRHS
’L’ :Value of UPLO

(-1.94, 4.43)
(-3.39, 3.44) ( 4.12,-4.27)
( 1.62, 3.68) (-1.84, 5.53) ( 0.43,-2.66)

(-2.77,-1.93) ( 1.74,-0.04) ( 0.44, 0.10) :End of matrix A
( -8.86, -3.88) (-24.09, -5.27)
(-15.57,-23.41) (-57.97, 8.14)
( -7.63, 22.78) ( 19.09,-29.51)
(-14.74, -2.40) ( 19.17, 21.33) :End of matrix B

10.3 Program Results

F07VSF Example Program Results

Solution(s)
1 2

1 ( 0.0000, 2.0000) ( 1.0000, 5.0000)
2 ( 1.0000,-3.0000) (-7.0000,-2.0000)
3 (-4.0000,-5.0000) ( 3.0000, 4.0000)
4 ( 2.0000,-1.0000) (-6.0000,-9.0000)
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NAG Library Routine Document

F07VUF (ZTBCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07VUF (ZTBCON) estimates the condition number of a complex triangular band matrix.

2 Specification

SUBROUTINE F07VUF (NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK,
RWORK, INFO)

&

INTEGER N, KD, LDAB, INFO
REAL (KIND=nag_wp) RCOND, RWORK(N)
COMPLEX (KIND=nag_wp) AB(LDAB,*), WORK(2*N)
CHARACTER(1) NORM, UPLO, DIAG

The routine may be called by its LAPACK name ztbcon.

3 Description

F07VUF (ZTBCON) estimates the condition number of a complex triangular band matrix A, in either
the 1-norm or the 1-norm:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
or �1 Að Þ ¼ Ak k1 A�1

�� ��
1:

Note that �1 Að Þ ¼ �1 ATð Þ.
Because the condition number is infinite if A is singular, the routine actually returns an estimate of the
reciprocal of the condition number.

The routine computes Ak k1 or Ak k1 exactly, and uses Higham's implementation of Hager's method
(see Higham (1988)) to estimate A�1

�� ��
1
or A�1
�� ��

1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: indicates whether �1 Að Þ or �1 Að Þ is estimated.

NORM ¼ 1 or O
�1 Að Þ is estimated.

NORM ¼ I
�1 Að Þ is estimated.

Constraint: NORM ¼ 1 , O or I .
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2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

6: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n triangular band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07VUF (ZTBCON) is called.

Constraint: LDAB � KDþ 1.

8: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

9: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace
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10: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07VUF (ZTBCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07VUF (ZTBCON) involves solving a number of systems of linear equations of the form
Ax ¼ b or AHx ¼ b; the number is usually 5 and never more than 11. Each solution involves
approximately 8nk real floating-point operations (assuming n� k) but takes considerably longer than a
call to F07VSF (ZTBTRS) with one right-hand side, because extra care is taken to avoid overflow when
A is approximately singular.

The real analogue of this routine is F07VGF (DTBCON).

10 Example

This example estimates the condition number in the 1-norm of the matrix A, where

A ¼
�1:94þ 4:43i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
�3:39þ 3:44i 4:12� 4:27i 0:00þ 0:00i 0:00þ 0:00i
1:62þ 3:68i �1:84þ 5:53i 0:43� 2:66i 0:00þ 0:00i
0:00þ 0:00i �2:77� 1:93i 1:74� 0:04i 0:44þ 0:10i

0B@
1CA:

Here A is treated as a lower triangular band matrix with two subdiagonals. The true condition number
in the 1-norm is 71:51.

10.1 Program Text

Program f07vufe

! F07VUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, ztbcon

! .. Implicit None Statement ..

F07 – Linear Equations (LAPACK) F07VUF
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, norm = ’1’

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, info, j, kd, ldab, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07VUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
Allocate (ab(ldab,n),work(2*n),rwork(n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If

! Estimate condition number
! The NAG name equivalent of ztbcon is f07vuf

Call ztbcon(norm,uplo,diag,n,kd,ab,ldab,rcond,work,rwork,info)

Write (nout,*)
If (rcond>=x02ajf()) Then

Write (nout,99999) ’Estimate of condition number =’, &
1.0E0_nag_wp/rcond

Else
Write (nout,*) ’A is singular to working precision’

End If

99999 Format (1X,A,1P,E10.2)
End Program f07vufe

10.2 Program Data

F07VUF Example Program Data
4 2 :Values of N and KD
’L’ :Value of UPLO

(-1.94, 4.43)
(-3.39, 3.44) ( 4.12,-4.27)
( 1.62, 3.68) (-1.84, 5.53) ( 0.43,-2.66)

(-2.77,-1.93) ( 1.74,-0.04) ( 0.44, 0.10) :End of matrix A

10.3 Program Results

F07VUF Example Program Results

Estimate of condition number = 3.35E+01
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NAG Library Routine Document

F07VVF (ZTBRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07VVF (ZTBRFS) returns error bounds for the solution of a complex triangular band system of linear
equations with multiple right-hand sides, AX ¼ B, ATX ¼ B or AHX ¼ B.

2 Specification

SUBROUTINE F07VVF (UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, X,
LDX, FERR, BERR, WORK, RWORK, INFO)

&

INTEGER N, KD, NRHS, LDAB, LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp) AB(LDAB,*), B(LDB,*), X(LDX,*), WORK(2*N)
CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its LAPACK name ztbrfs.

3 Description

F07VVF (ZTBRFS) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex triangular band system of linear equations with multiple right-hand sides
AX ¼ B, ATX ¼ B or AHX ¼ B. The routine handles each right-hand side vector (stored as a column
of the matrix B) independently, so we describe the function of F07VVF (ZTBRFS) in terms of a single
right-hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of
a perturbed system

Aþ �Að Þx ¼ bþ �b
�aij
		 		 � � aij		 		 and �bij j � � bij j:

Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i
xi � x̂ij j=max

i
xij j

where x̂ is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

F07 – Linear Equations (LAPACK) F07VVF
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UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .

2: TRANS – CHARACTER(1) Input

On entry: indicates the form of the equations.

TRANS ¼ N
The equations are of the form AX ¼ B.

TRANS ¼ T
The equations are of the form ATX ¼ B.

TRANS ¼ C
The equations are of the form AHX ¼ B.

Constraint: TRANS ¼ N , T or C .

3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: KD – INTEGER Input

On entry: kd, the number of superdiagonals of the matrix A if UPLO ¼ U , or the number of
subdiagonals if UPLO ¼ L .

Constraint: KD � 0.

6: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

7: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the n by n triangular band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced.
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8: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F07VVF (ZTBRFS) is called.

Constraint: LDAB � KDþ 1.

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07VVF
(ZTBRFS) is called.

Constraint: LDB � max 1;Nð Þ.

11: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by r solution matrix X, as returned by F07VSF (ZTBTRS).

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F07VVF
(ZTBRFS) is called.

Constraint: LDX � max 1;Nð Þ.

13: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

14: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

15: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

16: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.
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8 Parallelism and Performance

F07VVF (ZTBRFS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07VVF (ZTBRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F07VVF (ZTBRFS), for each right-hand side, involves solving a number of systems of linear
equations of the form Ax ¼ b or AHx ¼ b; the number is usually 5 and never more than 11. Each
solution involves approximately 8nk real floating-point operations (assuming n� k).

The real analogue of this routine is F07VHF (DTBRFS).

10 Example

This example solves the system of equations AX ¼ B and to compute forward and backward error
bounds, where

A ¼
�1:94þ 4:43i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
�3:39þ 3:44i 4:12� 4:27i 0:00þ 0:00i 0:00þ 0:00i
1:62þ 3:68i �1:84þ 5:53i 0:43� 2:66i 0:00þ 0:00i
0:00þ 0:00i �2:77� 1:93i 1:74� 0:04i 0:44þ 0:10i

0B@
1CA

and

B ¼
�8:86� 3:88i �24:09� 5:27i
�15:57� 23:41i �57:97þ 8:14i
�7:63þ 22:78i 19:09� 29:51i
�14:74� 2:40i 19:17þ 21:33i

0B@
1CA:

10.1 Program Text

Program f07vvfe

! F07VVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztbrfs, ztbtrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: diag = ’N’, trans = ’N’

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, ldb, &

ldx, n, nrhs
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:), work(:), x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F07VVF Example Program Results’

! Skip heading in data file
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Read (nin,*)
Read (nin,*) n, kd, nrhs
ldab = kd + 1
ldb = n
ldx = n
Allocate (ab(ldab,n),b(ldb,nrhs),work(2*n),x(ldx,n),berr(nrhs), &

ferr(nrhs),rwork(n))

! Read A and B from data file, and copy B to X

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)
x(1:n,1:nrhs) = b(1:n,1:nrhs)

! Compute solution in the array X
! The NAG name equivalent of ztbtrs is f07vsf

Call ztbtrs(uplo,trans,diag,n,kd,nrhs,ab,ldab,x,ldx,info)

! Compute backward errors and estimated bounds on the
! forward errors

! The NAG name equivalent of ztbrfs is f07vvf
Call ztbrfs(uplo,trans,diag,n,kd,nrhs,ab,ldab,b,ldb,x,ldx,ferr,berr, &

work,rwork,info)

! Print solution

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’,’Solution(s)’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Backward errors (machine-dependent)’
Write (nout,99999) berr(1:nrhs)
Write (nout,*) ’Estimated forward error bounds (machine-dependent)’
Write (nout,99999) ferr(1:nrhs)

99999 Format ((5X,1P,4(E11.1,7X)))
End Program f07vvfe

10.2 Program Data

F07VVF Example Program Data
4 2 2 :Values of N, KD and NRHS
’L’ :Value of UPLO

(-1.94, 4.43)
(-3.39, 3.44) ( 4.12,-4.27)
( 1.62, 3.68) (-1.84, 5.53) ( 0.43,-2.66)

(-2.77,-1.93) ( 1.74,-0.04) ( 0.44, 0.10) :End of matrix A
( -8.86, -3.88) (-24.09, -5.27)
(-15.57,-23.41) (-57.97, 8.14)
( -7.63, 22.78) ( 19.09,-29.51)
(-14.74, -2.40) ( 19.17, 21.33) :End of matrix B
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10.3 Program Results

F07VVF Example Program Results

Solution(s)
1 2

1 ( 0.0000, 2.0000) ( 1.0000, 5.0000)
2 ( 1.0000,-3.0000) (-7.0000,-2.0000)
3 (-4.0000,-5.0000) ( 3.0000, 4.0000)
4 ( 2.0000,-1.0000) (-6.0000,-9.0000)

Backward errors (machine-dependent)
4.1E-17 4.2E-17

Estimated forward error bounds (machine-dependent)
1.8E-14 2.2E-14

F07VVF NAG Library Manual

F07VVF.6 (last) Mark 26



NAG Library Routine Document

F07WDF (DPFTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07WDF (DPFTRF) computes the Cholesky factorization of a real symmetric positive definite matrix
stored in Rectangular Full Packed (RFP) format.

2 Specification

SUBROUTINE F07WDF (TRANSR, UPLO, N, AR, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) AR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name dpftrf.

3 Description

F07WDF (DPFTRF) forms the Cholesky factorization of a real symmetric positive definite matrix A
either as A ¼ UTU if UPLO ¼ U or A ¼ LLT if UPLO ¼ L , where U is an upper triangular matrix
and L is a lower triangular, stored in RFP format. The RFP storage format is described in Section 3.3.3
in the F07 Chapter Introduction.

4 References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of
Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the RFP representation of A is normal or transposed.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ T
The matrix A is stored in transposed RFP format.

Constraint: TRANSR ¼ N or T .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored, and A is factorized as UTU , where U is upper
triangular.
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UPLO ¼ L
The lower triangular part of A is stored, and A is factorized as LLT, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: ARðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the upper or lower triangular part (as specified by UPLO) of the n by n symmetric
matrix A, in either normal or transposed RFP format (as specified by TRANSR). The storage
format is described in detail in Section 3.3.3 in the F07 Chapter Introduction.

On exit: if INFO ¼ 0, the factor U or L from the Cholesky factorization A ¼ UTU or A ¼ LLT,
in the same storage format as A.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite and the factorization could not be
completed. Hence A itself is not positive definite. This may indicate an error in forming the
matrix A. There is no routine specifically designed to factorize a symmetric matrix stored in RFP
format which is not positive definite; the matrix must be treated as a full symmetric matrix, by
calling F07MDF (DSYTRF).

7 Accuracy

If UPLO ¼ U , the computed factor U is the exact factor of a perturbed matrix Aþ E, where

Ej j � c nð Þ� UT
		 		 Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factor L. It follows that eij
		 		 � c nð Þ� ffiffiffiffiffiffiffiffiffiffiffi

aiiajj
p

.

8 Parallelism and Performance

F07WDF (DPFTRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07WDF (DPFTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 1
3n

3 .

A call to F07WDF (DPFTRF) may be followed by calls to the routines:

F07WEF (DPFTRS) to solve AX ¼ B;
F07WJF (DPFTRI) to compute the inverse of A.

The complex analogue of this routine is F07WRF (ZPFTRF).

10 Example

This example computes the Cholesky factorization of the matrix A, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA;

and is stored using RFP format.

10.1 Program Text

Program f07wdfe

! F07WDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpftrf, dtfttr, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, k, lar1, lda, lenar, &

n, q
Character (1) :: transr, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ar(:)

! .. Executable Statements ..
Write (nout,*) ’F07WDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, uplo, transr

lenar = n*(n+1)/2
lda = n
Allocate (ar(lenar),a(lda,n))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Factorize A
! The NAG name equivalent of dpftrf is f07wdf
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Call dpftrf(transr,uplo,n,ar,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Convert factor to full array form, and print it
! The NAG name equivalent of dtfttr is f01vgf

Call dtfttr(transr,uplo,n,ar,a,lda,info)
ifail = 0
Call x04caf(uplo,’Nonunit’,n,n,a,lda,’Factor’,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07wdfe

10.2 Program Data

F07WDF Example Program Data
4 ’L’ ’N’ : n, uplo, transr
0.76 0.34
4.16 1.18

-3.12 5.03
0.56 -0.83

-0.10 1.18 : RFP matrix AR

10.3 Program Results

F07WDF Example Program Results

Factor
1 2 3 4

1 2.0396
2 -1.5297 1.6401
3 0.2746 -0.2500 0.7887
4 -0.0490 0.6737 0.6617 0.5347
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NAG Library Routine Document

F07WEF (DPFTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07WEF (DPFTRS) solves a real symmetric positive definite system of linear equations with multiple
right-hand sides,

AX ¼ B;

using the Cholesky factorization computed by F07WDF (DPFTRF) stored in Rectangular Full Packed
(RFP) format.

2 Specification

SUBROUTINE F07WEF (TRANSR, UPLO, N, NRHS, AR, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
REAL (KIND=nag_wp) AR(N*(N+1)/2), B(LDB,*)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name dpftrs.

3 Description

F07WEF (DPFTRS) is used to solve a real symmetric positive definite system of linear equations
AX ¼ B, the routine must be preceded by a call to F07WDF (DPFTRF) which computes the Cholesky
factorization of A, stored in RFP format. The RFP storage format is described in Section 3.3.3 in the
F07 Chapter Introduction. The solution X is computed by forward and backward substitution.

If UPLO ¼ U , A ¼ UTU , where U is upper triangular; the solution X is computed by solving
UTY ¼ B and then UX ¼ Y .

If UPLO ¼ L , A ¼ LLT, where L is lower triangular; the solution X is computed by solving LY ¼ B
and then LTX ¼ Y .

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the RFP representation of A is normal or transposed.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ T
The matrix A is stored in transposed RFP format.

Constraint: TRANSR ¼ N or T .
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2: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UTU , where U is upper triangular.

UPLO ¼ L
A ¼ LLT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

5: ARðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the Cholesky factorization of A stored in RFP format, as returned by F07WDF
(DPFTRF).

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07WEF
(DPFTRS) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UTj j Uj j;

if UPLO ¼ L , Ej j � c nð Þ� Lj j LTj j,
c nð Þ is a modest linear function of n, and � is the machine precision.
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If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ and �1 Að Þ is the
condition number when using the 1-norm.

Note that cond A; xð Þ can be much smaller than cond Að Þ.

8 Parallelism and Performance

F07WEF (DPFTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2n2r.

The complex analogue of this routine is F07WSF (ZPFTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA and B ¼

8:70 8:30
�13:35 2:13

1:89 1:61
�4:14 5:00

0B@
1CA:

Here A is symmetric positive definite, stored in RFP format, and must first be factorized by F07WDF
(DPFTRF).

10.1 Program Text

Program f07wefe

! F07WEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpftrf, dpftrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, k, lar1, ldb, lenar, &

n, nrhs, q
Character (1) :: transr, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ar(:), b(:,:)

! .. Executable Statements ..
Write (nout,*) ’F07WEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs, uplo, transr

lenar = n*(n+1)/2
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ldb = n
Allocate (ar(lenar),b(ldb,nrhs))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Read RHS matrix B
Do i = 1, n

Read (nin,*) b(i,1:nrhs)
End Do

! Factorize A
! The NAG name equivalent of dpftrf is f07wdf

Call dpftrf(transr,uplo,n,ar,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of dpftrs is f07wef

Call dpftrs(transr,uplo,n,nrhs,ar,b,ldb,info)

! Print solution
ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Solution(s)’,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07wefe

10.2 Program Data

F07WEF Example Program Data
4 2 ’L’ ’N’ : n, nrhs, uplo, transr
0.76 0.34
4.16 1.18

-3.12 5.03
0.56 -0.83

-0.10 1.18 : AR

8.70 8.30
-13.35 2.13

1.89 1.61
-4.14 5.00 : B
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10.3 Program Results

F07WEF Example Program Results

Solution(s)
1 2

1 1.0000 4.0000
2 -1.0000 3.0000
3 2.0000 2.0000
4 -3.0000 1.0000
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NAG Library Routine Document

F07WJF (DPFTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07WJF (DPFTRI) computes the inverse of a real symmetric positive definite matrix using the
Cholesky factorization computed by F07WDF (DPFTRF) stored in Rectangular Full Packed (RFP)
format.

2 Specification

SUBROUTINE F07WJF (TRANSR, UPLO, N, AR, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) AR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name dpftri.

3 Description

F07WJF (DPFTRI) is used to compute the inverse of a real symmetric positive definite matrix A, stored
in RFP format. The RFP storage format is described in Section 3.3.3 in the F07 Chapter Introduction.
The routine must be preceded by a call to F07WDF (DPFTRF), which computes the Cholesky
factorization of A.

If UPLO ¼ U , A ¼ UTU and A�1 is computed by first inverting U and then forming U�1ð ÞU�T.

If UPLO ¼ L , A ¼ LLT and A�1 is computed by first inverting L and then forming L�T L�1ð Þ.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the RFP representation of A is normal or transposed.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ T
The matrix A is stored in transposed RFP format.

Constraint: TRANSR ¼ N or T .

2: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UTU , where U is upper triangular.
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UPLO ¼ L
A ¼ LLT, where L is lower triangular.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: ARðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the Cholesky factorization of A stored in RFP format, as returned by F07WDF
(DPFTRF).

On exit: the factorization is overwritten by the n by n matrix A�1 stored in RFP format.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite and the factorization could not be
completed. Hence A itself is not positive definite. This may indicate an error in forming the
matrix A. There is no routine specifically designed to invert a symmetric matrix stored in RFP
format which is not positive definite; the matrix must be treated as a full symmetric matrix, by
calling F07MJF (DSYTRI).

7 Accuracy

The computed inverse X satisfies

XA� Ik k2 � c nð Þ��2 Að Þ and AX � Ik k2 � c nð Þ��2 Að Þ;

where c nð Þ is a modest function of n, � is the machine precision and �2 Að Þ is the condition number of
A defined by

�2 Að Þ ¼ Ak k2 A�1
�� ��

2
:

8 Parallelism and Performance

F07WJF (DPFTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

3 .

The complex analogue of this routine is F07WWF (ZPFTRI).
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10 Example

This example computes the inverse of the matrix A, where

A ¼
4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34
�0:10 1:18 0:34 1:18

0B@
1CA:

Here A is symmetric positive definite, stored in RFP format, and must first be factorized by F07WDF
(DPFTRF).

10.1 Program Text

Program f07wjfe

! F07WJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpftrf, dpftri, dtfttr, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, k, lar1, lda, lenar, &

n, q
Character (1) :: transr, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ar(:)

! .. Executable Statements ..
Write (nout,*) ’F07WJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, uplo, transr

lenar = n*(n+1)/2
lda = n
Allocate (ar(lenar),a(lda,n))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Factorize A
! The NAG name equivalent of dpftrf is f07wdf

Call dpftrf(transr,uplo,n,ar,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute inverse of A
! The NAG name equivalent of dpftri is f07wjf

Call dpftri(transr,uplo,n,ar,info)

! Convert inverse to full array form, and print it
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! The NAG name equivalent of dtfttr is f01vgf
Call dtfttr(transr,uplo,n,ar,a,lda,info)
ifail = 0
Call x04caf(uplo,’Nonunit’,n,n,a,lda,’Inverse’,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07wjfe

10.2 Program Data

F07WJF Example Program Data
4 ’L’ ’N’ : n, uplo, transr

0.76 0.34
4.16 1.18

-3.12 5.03
0.56 -0.83

-0.10 1.18 : AR

10.3 Program Results

F07WJF Example Program Results

Inverse
1 2 3 4

1 0.6995
2 0.7769 1.4239
3 0.7508 1.8255 4.0688
4 -0.9340 -1.8841 -2.9342 3.4978

F07WJF NAG Library Manual

F07WJF.4 (last) Mark 26



NAG Library Routine Document

F07WKF (DTFTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07WKF (DTFTRI) computes the inverse of a real triangular matrix stored in Rectangular Full Packed
(RFP) format.

2 Specification

SUBROUTINE F07WKF (TRANSR, UPLO, DIAG, N, AR, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) AR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO, DIAG

The routine may be called by its LAPACK name dtftri.

3 Description

F07WKF (DTFTRI) forms the inverse of a real triangular matrix A, stored using RFP format. The RFP
storage format is described in Section 3.3.3 in the F07 Chapter Introduction. Note that the inverse of an
upper (lower) triangular matrix is also upper (lower) triangular.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the RFP representation of A is normal or transposed.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ T
The matrix A is stored in transposed RFP format.

Constraint: TRANSR ¼ N or T .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: ARðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the upper or lower triangular part (as specified by UPLO) of the n by n symmetric
matrix A, in either normal or transposed RFP format (as specified by TRANSR). The storage
format is described in detail in Section 3.3.3 in the F07 Chapter Introduction.

On exit: A is overwritten by A�1, in the same storage format as A.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Diagonal element valueh i of A is exactly zero. A is singular its inverse cannot be computed.

7 Accuracy

The computed inverse X satisfies

XA� Ij j � c nð Þ� Xj j Aj j;

where c nð Þ is a modest linear function of n, and � is the machine precision.

Note that a similar bound for AX � Ij j cannot be guaranteed, although it is almost always satisfied.

The computed inverse satisfies the forward error bound

X �A�1
		 		 � c nð Þ� A�1		 		 Aj j Xj j:

See Du Croz and Higham (1992).

8 Parallelism and Performance

F07WKF (DTFTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 1
3n

3 .

The complex analogue of this routine is F07WXF (ZTFTRI).

10 Example

This example computes the inverse of the matrix A, where

A ¼
4:30 0:00 0:00 0:00
�3:96 �4:87 0:00 0:00
0:40 0:31 �8:02 0:00
�0:27 0:07 �5:95 0:12

0B@
1CA

and is stored using RFP format.

10.1 Program Text

Program f07wkfe

! F07WKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtftri, dtfttr, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, k, lar1, lda, lenar, &

n, q
Character (1) :: diag, transr, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ar(:)

! .. Executable Statements ..
Write (nout,*) ’F07WKF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, uplo, transr, diag

lenar = n*(n+1)/2
lda = n
Allocate (ar(lenar),a(lda,n))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Compute inverse of A
! The NAG name equivalent of dtftri is f07wkf
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Call dtftri(transr,uplo,diag,n,ar,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Convert inverse to full array form, and print it
! The NAG name equivalent of dtfttr is f01vgf

Call dtfttr(transr,uplo,n,ar,a,lda,info)
ifail = 0
Call x04caf(uplo,’Nonunit’,n,n,a,lda,’Inverse’,ifail)

Else
Write (nout,*) ’A is singular’

End If

End Program f07wkfe

10.2 Program Data

F07WKF Example Program Data
4 ’L’ ’N’ ’N’ : n, uplo, transr, diag

-8.02 -5.95
4.30 0.12

-3.96 -4.87
0.40 0.31

-0.27 0.07 : AR

10.3 Program Results

F07WKF Example Program Results

Inverse
1 2 3 4

1 0.2326
2 -0.1891 -0.2053
3 0.0043 -0.0079 -0.1247
4 0.8463 -0.2738 -6.1825 8.3333
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NAG Library Routine Document

F07WRF (ZPFTRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07WRF (ZPFTRF) computes the Cholesky factorization of a complex Hermitian positive definite
matrix stored in Rectangular Full Packed (RFP) format.

2 Specification

SUBROUTINE F07WRF (TRANSR, UPLO, N, AR, INFO)

INTEGER N, INFO
COMPLEX (KIND=nag_wp) AR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name zpftrf.

3 Description

F07WRF (ZPFTRF) forms the Cholesky factorization of a complex Hermitian positive definite matrix
A either as A ¼ UHU if UPLO ¼ U or A ¼ LLH if UPLO ¼ L , where U is an upper triangular matrix
and L is a lower triangular, stored in RFP format. The RFP storage format is described in Section 3.3.3
in the F07 Chapter Introduction.

4 References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of
Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its conjugate transpose is
stored.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ C
The conjugate transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or C .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored, and A is factorized as UHU , where U is upper
triangular.
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UPLO ¼ L
The lower triangular part of A is stored, and A is factorized as LLH, where L is lower
triangular.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: ARðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the upper or lower triangular part (as specified by UPLO) of the n by n Hermitian
matrix A, in either normal or transposed RFP format (as specified by TRANSR). The storage
format is described in detail in Section 3.3.3 in the F07 Chapter Introduction.

On exit: if INFO ¼ 0, the factor U or L from the Cholesky factorization A ¼ UHU or A ¼ LLH,
in the same storage format as A.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite and the factorization could not be
completed. Hence A itself is not positive definite. This may indicate an error in forming the
matrix A. There is no routine specifically designed to factorize a Hermitian matrix stored in RFP
format which is not positive definite; the matrix must be treated as a full Hermitian matrix, by
calling F07MRF (ZHETRF).

7 Accuracy

If UPLO ¼ U , the computed factor U is the exact factor of a perturbed matrix Aþ E, where

Ej j � c nð Þ� UH
		 		 Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision.

If UPLO ¼ L , a similar statement holds for the computed factor L. It follows that eij
		 		 � c nð Þ� ffiffiffiffiffiffiffiffiffiffiffi

aiiajj
p

.

8 Parallelism and Performance

F07WRF (ZPFTRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F07WRF (ZPFTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of real floating-point operations is approximately 4
3n

3 .

A call to F07WRF (ZPFTRF) may be followed by calls to the routines:

F07WSF (ZPFTRS) to solve AX ¼ B;
F07WWF (ZPFTRI) to compute the inverse of A.

The real analogue of this routine is F07WDF (DPFTRF).

10 Example

This example computes the Cholesky factorization of the matrix A, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA:

and is stored using RFP format.

10.1 Program Text

Program f07wrfe

! F07WRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpftrf, ztfttr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, k, lar1, lda, lenar, &

n, q
Character (1) :: transr, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ar(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07WRF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, uplo, transr

lenar = n*(n+1)/2
lda = n
Allocate (ar(lenar),a(lda,n))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Factorize A
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! The NAG name equivalent of zpftrf is f07wrf
Call zpftrf(transr,uplo,n,ar,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Convert and print factor
! The NAG name equivalent of ztfttr is f01vhf

Call ztfttr(transr,uplo,n,ar,a,lda,info)
ifail = 0
Call x04dbf(uplo,’Nonunit’,n,n,a,lda,’Bracketed’,’F7.4’,’Factor’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07wrfe

10.2 Program Data

F07WRF Example Program Data
4 ’L’ ’N’ : n, uplo, transr

( 4.09, 0.00) ( 2.33, 0.14)
( 3.23, 0.00) ( 4.29, 0.00)
( 1.51, 1.92) ( 3.58, 0.00)
( 1.90,-0.84) (-0.23,-1.11)
( 0.42,-2.50) (-1.18,-1.37) : AR

10.3 Program Results

F07WRF Example Program Results

Factor
1 2 3 4

1 ( 1.7972, 0.0000)
2 ( 0.8402, 1.0683) ( 1.3164, 0.0000)
3 ( 1.0572,-0.4674) (-0.4702, 0.3131) ( 1.5604,-0.0000)
4 ( 0.2337,-1.3910) ( 0.0834, 0.0368) ( 0.9360, 0.8105) ( 0.8713,-0.0000)
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NAG Library Routine Document

F07WSF (ZPFTRS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07WSF (ZPFTRS) solves a complex Hermitian positive definite system of linear equations with
multiple right-hand sides,

AX ¼ B;

using the Cholesky factorization computed by F07WRF (ZPFTRF) stored in Rectangular Full Packed
(RFP) format.

2 Specification

SUBROUTINE F07WSF (TRANSR, UPLO, N, NRHS, AR, B, LDB, INFO)

INTEGER N, NRHS, LDB, INFO
COMPLEX (KIND=nag_wp) AR(N*(N+1)/2), B(LDB,*)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name zpftrs.

3 Description

F07WSF (ZPFTRS) is used to solve a complex Hermitian positive definite system of linear equations
AX ¼ B, the routine must be preceded by a call to F07WRF (ZPFTRF) which computes the Cholesky
factorization of A, stored in RFP format. The RFP storage format is described in Section 3.3.3 in the
F07 Chapter Introduction. The solution X is computed by forward and backward substitution.

If UPLO ¼ U , A ¼ UHU , where U is upper triangular; the solution X is computed by solving
UHY ¼ B and then UX ¼ Y .

If UPLO ¼ L , A ¼ LLH, where L is lower triangular; the solution X is computed by solving LY ¼ B
and then LHX ¼ Y .

4 References

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its conjugate transpose is
stored.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ C
The conjugate transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or C .
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2: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UHU , where U is upper triangular.

UPLO ¼ L
A ¼ LLH, where L is lower triangular.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides.

Constraint: NRHS � 0.

5: ARðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Input

On entry: the Cholesky factorization of A stored in RFP format, as returned by F07WRF
(ZPFTRF).

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F07WSF
(ZPFTRS) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if UPLO ¼ U , Ej j � c nð Þ� UHj j Uj j;

if UPLO ¼ L , Ej j � c nð Þ� Lj j LHj j,
c nð Þ is a modest linear function of n, and � is the machine precision.
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If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ and �1 Að Þ is the
condition number when using the 1-norm.

Note that cond A; xð Þ can be much smaller than cond Að Þ.

8 Parallelism and Performance

F07WSF (ZPFTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8n2r.

The real analogue of this routine is F07WEF (DPFTRS).

10 Example

This example solves the system of equations AX ¼ B, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA

and

B ¼
3:93� 6:14i 1:48þ 6:58i
6:17þ 9:42i 4:65� 4:75i
�7:17� 21:83i �4:91þ 2:29i
1:99� 14:38i 7:64� 10:79i

0B@
1CA:

Here A is Hermitian positive definite, stored in RFP format, and must first be factorized by F07WRF
(ZPFTRF).

10.1 Program Text

Program f07wsfe

! F07WSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpftrf, zpftrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, k, lar1, ldb, lenar, &

n, nrhs, q
Character (1) :: transr, uplo

! .. Local Arrays ..
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Complex (Kind=nag_wp), Allocatable :: ar(:), b(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07WSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs, uplo, transr

lenar = n*(n+1)/2
ldb = n
Allocate (ar(lenar),b(ldb,nrhs))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Read RHS matrix B
Do i = 1, n

Read (nin,*) b(i,1:nrhs)
End Do

! Factorize A
! The NAG name equivalent of zpftrf is f07wrf

Call zpftrf(transr,uplo,n,ar,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Compute solution
! The NAG name equivalent of zpftrs is f07wsf

Call zpftrs(transr,uplo,n,nrhs,ar,b,ldb,info)

! Print solution
ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07wsfe

10.2 Program Data

F07WSF Example Program Data
4 2 ’L’ ’N’ : n, nrhs, uplo, transr

( 4.09, 0.00) ( 2.33, -0.14)
( 3.23, 0.00) ( 4.29, 0.00)
( 1.51, 1.92) ( 3.58, 0.00)
( 1.90, -0.84) (-0.23, -1.11)
( 0.42, -2.50) (-1.18, -1.37) : AR

( 3.93, -6.14) ( 1.48, 6.58)
( 6.17, 9.42) ( 4.65, -4.75)
(-7.17,-21.83) (-4.91, 2.29)
( 1.99,-14.38) ( 7.64,-10.79) : B
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10.3 Program Results

F07WSF Example Program Results

Solution(s)
1 2

1 ( 1.0000,-1.0000) (-1.0000, 2.0000)
2 (-0.0000, 3.0000) ( 3.0000,-4.0000)
3 (-4.0000,-5.0000) (-2.0000, 3.0000)
4 ( 2.0000, 1.0000) ( 4.0000,-5.0000)
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NAG Library Routine Document

F07WWF (ZPFTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07WWF (ZPFTRI) computes the inverse of a complex Hermitian positive definite matrix using the
Cholesky factorization computed by F07WRF (ZPFTRF) stored in Rectangular Full Packed (RFP)
format.

2 Specification

SUBROUTINE F07WWF (TRANSR, UPLO, N, AR, INFO)

INTEGER N, INFO
COMPLEX (KIND=nag_wp) AR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO

The routine may be called by its LAPACK name zpftri.

3 Description

F07WWF (ZPFTRI) is used to compute the inverse of a complex Hermitian positive definite matrix A,
stored in RFP format. The RFP storage format is described in Section 3.3.3 in the F07 Chapter
Introduction. The routine must be preceded by a call to F07WRF (ZPFTRF), which computes the
Cholesky factorization of A.

If UPLO ¼ U , A ¼ UHU and A�1 is computed by first inverting U and then forming U�1ð ÞU�H.

If UPLO ¼ L , A ¼ LLH and A�1 is computed by first inverting L and then forming L�H L�1ð Þ.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its conjugate transpose is
stored.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ C
The conjugate transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or C .
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2: UPLO – CHARACTER(1) Input

On entry: specifies how A has been factorized.

UPLO ¼ U
A ¼ UHU , where U is upper triangular.

UPLO ¼ L
A ¼ LLH, where L is lower triangular.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: ARðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the Cholesky factorization of A stored in RFP format, as returned by F07WRF
(ZPFTRF).

On exit: the factorization is overwritten by the n by n matrix A�1 stored in RFP format.

5: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The leading minor of order valueh i is not positive definite and the factorization could not be
completed. Hence A itself is not positive definite. This may indicate an error in forming the
matrix A. There is no routine specifically designed to invert a Hermitian matrix stored in RFP
format which is not positive definite; the matrix must be treated as a full Hermitian matrix, by
calling F07MWF (ZHETRI).

7 Accuracy

The computed inverse X satisfies

XA� Ik k2 � c nð Þ��2 Að Þ and AX � Ik k2 � c nð Þ��2 Að Þ;

where c nð Þ is a modest function of n, � is the machine precision and �2 Að Þ is the condition number of
A defined by

�2 Að Þ ¼ Ak k2 A�1
�� ��

2
:

8 Parallelism and Performance

F07WWF (ZPFTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of real floating-point operations is approximately 8
3n

3 .

The real analogue of this routine is F07WJF (DPFTRI).

10 Example

This example computes the inverse of the matrix A, where

A ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA:

Here A is Hermitian positive definite, stored in RFP format, and must first be factorized by F07WRF
(ZPFTRF).

10.1 Program Text

Program f07wwfe

! F07WWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zpftrf, zpftri, ztfttr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, k, lar1, lda, lenar, &

n, q
Character (1) :: transr, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ar(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07WWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, uplo, transr

lenar = n*(n+1)/2
lda = n
Allocate (ar(lenar),a(lda,n))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Factorize A
! The NAG name equivalent of zpftrf is f07wrf

Call zpftrf(transr,uplo,n,ar,info)

Write (nout,*)
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Flush (nout)
If (info==0) Then

! Compute inverse of A
! The NAG name equivalent of zpftri is f07wwf

Call zpftri(transr,uplo,n,ar,info)

! Convert and print inverse
! The NAG name equivalent of ztfttr is f01vhf

Call ztfttr(transr,uplo,n,ar,a,lda,info)
ifail = 0
Call x04dbf(uplo,’Nonunit’,n,n,a,lda,’Bracketed’,’F7.4’,’Inverse’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’A is not positive definite’

End If

End Program f07wwfe

10.2 Program Data

F07WWF Example Program Data
4 ’L’ ’N’ : n, uplo, transr

( 4.09, 0.00) ( 2.33,-0.14)
( 3.23, 0.00) ( 4.29, 0.00)
( 1.51, 1.92) ( 3.58, 0.00)
( 1.90,-0.84) (-0.23,-1.11)
( 0.42,-2.50) (-1.18,-1.37) : AR

10.3 Program Results

F07WWF Example Program Results

Inverse
1 2 3 4

1 ( 5.4691, 0.0000)
2 (-1.2624,-1.5491) ( 1.1024, 0.0000)
3 (-2.9746,-0.9616) ( 0.8989,-0.5672) ( 2.1589,-0.0000)
4 ( 1.1962, 2.9772) (-0.9826,-0.2566) (-1.3756,-1.4550) ( 2.2934, 0.0000)
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NAG Library Routine Document

F07WXF (ZTFTRI)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07WXF (ZTFTRI) computes the inverse of a complex triangular matrix stored in Rectangular Full
Packed (RFP) format.

2 Specification

SUBROUTINE F07WXF (TRANSR, UPLO, DIAG, N, AR, INFO)

INTEGER N, INFO
COMPLEX (KIND=nag_wp) AR(N*(N+1)/2)
CHARACTER(1) TRANSR, UPLO, DIAG

The routine may be called by its LAPACK name ztftri.

3 Description

F07WXF (ZTFTRI) forms the inverse of a complex triangular matrix A, stored using RFP format. The
RFP storage format is described in Section 3.3.3 in the F07 Chapter Introduction. Note that the inverse
of an upper (lower) triangular matrix is also upper (lower) triangular.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

Gustavson F G, Wa�sniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for
Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

5 Arguments

1: TRANSR – CHARACTER(1) Input

On entry: specifies whether the normal RFP representation of A or its conjugate transpose is
stored.

TRANSR ¼ N
The matrix A is stored in normal RFP format.

TRANSR ¼ C
The conjugate transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR ¼ N or C .

2: UPLO – CHARACTER(1) Input

On entry: specifies whether A is upper or lower triangular.

UPLO ¼ U
A is upper triangular.

UPLO ¼ L
A is lower triangular.

Constraint: UPLO ¼ U or L .
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3: DIAG – CHARACTER(1) Input

On entry: indicates whether A is a nonunit or unit triangular matrix.

DIAG ¼ N
A is a nonunit triangular matrix.

DIAG ¼ U
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to
be 1.

Constraint: DIAG ¼ N or U .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: ARðN� Nþ 1ð Þ=2Þ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the upper or lower triangular part (as specified by UPLO) of the n by n Hermitian
matrix A, in either normal or transposed RFP format (as specified by TRANSR). The storage
format is described in detail in Section 3.3.3 in the F07 Chapter Introduction.

On exit: A is overwritten by A�1, in the same storage format as A.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

Diagonal element valueh i of A is exactly zero. A is singular its inverse cannot be computed.

7 Accuracy

The computed inverse X satisfies

XA� Ij j � c nð Þ� Xj j Aj j;

where c nð Þ is a modest linear function of n, and � is the machine precision.

Note that a similar bound for AX � Ij j cannot be guaranteed, although it is almost always satisfied.

The computed inverse satisfies the forward error bound

X �A�1
		 		 � c nð Þ� A�1		 		 Aj j Xj j:

See Du Croz and Higham (1992).

8 Parallelism and Performance

F07WXF (ZTFTRI) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 4
3n

3 .

The real analogue of this routine is F07WKF (DTFTRI).

10 Example

This example computes the inverse of the matrix A, where

A ¼
4:78þ 4:56i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
2:00� 0:30i �4:11þ 1:25i 0:00þ 0:00i 0:00þ 0:00i
2:89� 1:34i 2:36� 4:25i 4:15þ 0:80i 0:00þ 0:00i
�1:89þ 1:15i 0:04� 3:69i �0:02þ 0:46i 0:33� 0:26i

0B@
1CA

and is stored using RFP format.

10.1 Program Text

Program f07wxfe

! F07WXF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztftri, ztfttr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, k, lar1, lda, lenar, &

n, q
Character (1) :: diag, transr, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ar(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F07WXF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, uplo, transr, diag

lenar = n*(n+1)/2
lda = n
Allocate (ar(1:lenar),a(lda,n))

! Setup notional dimensions of RFP matrix AR
k = n/2
q = n - k
If (transr==’N’ .Or. transr==’n’) Then

lar1 = 2*k + 1
Else

lar1 = q
End If

! Read an RFP matrix into array AR
Do i = 1, lar1

Read (nin,*) ar(i:lenar:lar1)
End Do

! Compute inverse of A
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! The NAG name equivalent of ztftri is f07wxf
Call ztftri(transr,uplo,diag,n,ar,info)

Write (nout,*)
Flush (nout)
If (info==0) Then

! Convert and print inverse
! The NAG name equivalent of ztfttr is f01vhf

Call ztfttr(transr,uplo,n,ar,a,lda,info)
ifail = 0

Call x04dbf(uplo,’Nonunit’,n,n,a,lda,’Bracketed’,’F7.4’,’Inverse’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,*) ’A is singular’

End If

End Program f07wxfe

10.2 Program Data

F07WXF Example Program Data
4 ’L’ ’N’ ’N’ : n, uplo, transr, diag

( 4.15,-0.80) (-0.02,-0.46)
( 4.78, 4.56) ( 0.33, 0.26)
( 2.00,-0.30) (-4.11, 1.25)
( 2.89,-1.34) ( 2.36,-4.25)
(-1.89, 1.15) ( 0.04,-3.69) : AR

10.3 Program Results

F07WXF Example Program Results

Inverse
1 2 3 4

1 ( 0.1095,-0.1045)
2 ( 0.0582,-0.0411) (-0.2227,-0.0677)
3 ( 0.0032, 0.1905) ( 0.1538,-0.2192) ( 0.2323,-0.0448)
4 ( 0.7602, 0.2814) ( 1.6184,-1.4346) ( 0.1289,-0.2250) ( 1.8697, 1.4731)
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NAG Library Chapter Contents

F08 – Least Squares and Eigenvalue Problems (LAPACK)

F08 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

F08AAF (DGELS) 21 DGELS
nagf_lapack_dgels
Solves a real linear least squares problem of full rank

F08ABF (DGEQRT) 25 DGEQRT
nagf_lapack_dgeqrt
Performs a QR factorization of real general rectangular
matrix, with explicit blocking

F08ACF (DGEMQRT) 25 DGEMQRT
nagf_lapack_dgemqrt
Applies the orthogonal transformation determined by F08ABF
(DGEQRT)

F08AEF (DGEQRF) 16 DGEQRF
nagf_lapack_dgeqrf
Performs a QR factorization of real general rectangular
matrix

F08AFF (DORGQR) 16 DORGQR
nagf_lapack_dorgqr
Forms all or part of orthogonal Q from QR factorization
determined by F08AEF (DGEQRF), F08BEF (DGEQPF) or
F08BFF (DGEQP3)

F08AGF (DORMQR) 16 DORMQR
nagf_lapack_dormqr
Applies an orthogonal transformation determined by F08AEF
(DGEQRF), F08BEF (DGEQPF) or F08BFF (DGEQP3)

F08AHF (DGELQF) 16 DGELQF
nagf_lapack_dgelqf
Performs a LQ factorization of real general rectangular matrix

F08AJF (DORGLQ) 16 DORGLQ
nagf_lapack_dorglq
Forms all or part of orthogonal Q from LQ factorization
determined by F08AHF (DGELQF)

F08AKF (DORMLQ) 16 DORMLQ
nagf_lapack_dormlq
Applies the orthogonal transformation determined by F08AHF
(DGELQF)

F08ANF (ZGELS) 21 ZGELS
nagf_lapack_zgels
Solves a complex linear least problem of full rank

F08APF (ZGEQRT) 25 ZGEQRT
nagf_lapack_zgeqrt
Performs a QR factorization of complex general rectangular
matrix using recursive algorithm

F08AQF (ZGEMQRT) 25 ZGEMQRT
nagf_lapack_zgemqrt
Applies the unitary transformation determined by F08APF
(ZGEQRT)
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F08ASF (ZGEQRF) 16 ZGEQRF
nagf_lapack_zgeqrf
Performs a QR factorization of complex general rectangular
matrix

F08ATF (ZUNGQR) 16 ZUNGQR
nagf_lapack_zungqr
Forms all or part of unitary Q from QR factorization
determined by F08ASF (ZGEQRF), F08BSF (ZGEQPF) or
F08BTF (ZGEQP3)

F08AUF (ZUNMQR) 16 ZUNMQR
nagf_lapack_zunmqr
Applies a unitary transformation determined by F08ASF
(ZGEQRF), F08BSF (ZGEQPF) or F08BTF (ZGEQP3)

F08AVF (ZGELQF) 16 ZGELQF
nagf_lapack_zgelqf
Performs a LQ factorization of complex general rectangular
matrix

F08AWF (ZUNGLQ) 16 ZUNGLQ
nagf_lapack_zunglq
Forms all or part of unitary Q from LQ factorization
determined by F08AVF (ZGELQF)

F08AXF (ZUNMLQ) 16 ZUNMLQ
nagf_lapack_zunmlq
Applies the unitary transformation determined by F08AVF
(ZGELQF)

F08BAF (DGELSY) 21 DGELSY
nagf_lapack_dgelsy
Computes the minimum-norm solution to a real linear least
squares problem

F08BBF (DTPQRT) 25 DTPQRT
nagf_lapack_dtpqrt
QR factorization of real general triangular-pentagonal matrix

F08BCF (DTPMQRT) 25 DTPMQRT
nagf_lapack_dtpmqrt
Applies the orthogonal transformation determined by F08BBF
(DTPQRT)

F08BEF (DGEQPF) 16 DGEQPF
nagf_lapack_dgeqpf
QR factorization, with column pivoting, of real general
rectangular matrix

F08BFF (DGEQP3) 21 DGEQP3
nagf_lapack_dgeqp3
QR factorization, with column pivoting, using BLAS-3, of
real general rectangular matrix

F08BHF (DTZRZF) 21 DTZRZF
nagf_lapack_dtzrzf
Reduces a real upper trapezoidal matrix to upper triangular
form

F08BKF (DORMRZ) 21 DORMRZ
nagf_lapack_dormrz
Applies the orthogonal transformation determined by F08BHF
(DTZRZF)

F08BNF (ZGELSY) 21 ZGELSY
nagf_lapack_zgelsy
Computes the minimum-norm solution to a complex linear
least squares problem

F08BPF (ZTPQRT) 25 ZTPQRT
nagf_lapack_ztpqrt
QR factorization of complex triangular-pentagonal matrix
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F08BQF (ZTPMQRT) 25 ZTPMQRT
nagf_lapack_ztpmqrt
Applies the unitary transformation determined by F08BPF
(ZTPQRT)

F08BSF (ZGEQPF) 16 ZGEQPF
nagf_lapack_zgeqpf
QR factorization, with column pivoting, of complex general
rectangular matrix

F08BTF (ZGEQP3) 21 ZGEQP3
nagf_lapack_zgeqp3
QR factorization, with column pivoting, using BLAS-3, of
complex general rectangular matrix

F08BVF (ZTZRZF) 21 ZTZRZF
nagf_lapack_ztzrzf
Reduces a complex upper trapezoidal matrix to upper
triangular form

F08BXF (ZUNMRZ) 21 ZUNMRZ
nagf_lapack_zunmrz
Applies the unitary transformation determined by F08BVF
(ZTZRZF)

F08CEF (DGEQLF) 21 DGEQLF
nagf_lapack_dgeqlf
QL factorization of real general rectangular matrix

F08CFF (DORGQL) 21 DORGQL
nagf_lapack_dorgql
Form all or part of orthogonal Q from QL factorization
determined by F08CEF (DGEQLF)

F08CGF (DORMQL) 21 DORMQL
nagf_lapack_dormql
Applies the orthogonal transformation determined by F08CEF
(DGEQLF)

F08CHF (DGERQF) 21 DGERQF
nagf_lapack_dgerqf
RQ factorization of real general rectangular matrix

F08CJF (DORGRQ) 21 DORGRQ
nagf_lapack_dorgrq
Form all or part of orthogonal Q from RQ factorization
determined by F08CHF (DGERQF)

F08CKF (DORMRQ) 21 DORMRQ
nagf_lapack_dormrq
Applies the orthogonal transformation determined by F08CHF
(DGERQF)

F08CSF (ZGEQLF) 21 ZGEQLF
nagf_lapack_zgeqlf
QL factorization of complex general rectangular matrix

F08CTF (ZUNGQL) 21 ZUNGQL
nagf_lapack_zungql
Form all or part of unitary Q from QL factorization
determined by F08CSF (ZGEQLF)

F08CUF (ZUNMQL) 21 ZUNMQL
nagf_lapack_zunmql
Applies the unitary transformation determined by F08CSF
(ZGEQLF)

F08CVF (ZGERQF) 21 ZGERQF
nagf_lapack_zgerqf
RQ factorization of complex general rectangular matrix
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F08CWF (ZUNGRQ) 21 ZUNGRQ
nagf_lapack_zungrq
Form all or part of unitary Q from RQ factorization
determined by F08CVF (ZGERQF)

F08CXF (ZUNMRQ) 21 ZUNMRQ
nagf_lapack_zunmrq
Applies the unitary transformation determined by F08CVF
(ZGERQF)

F08FAF (DSYEV) 21 DSYEV
nagf_lapack_dsyev
Computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix

F08FBF (DSYEVX) 21 DSYEVX
nagf_lapack_dsyevx
Computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix

F08FCF (DSYEVD) 19 DSYEVD
nagf_lapack_dsyevd
Computes all eigenvalues and, optionally, all eigenvectors of
real symmetric matrix (divide-and-conquer)

F08FDF (DSYEVR) 21 DSYEVR
nagf_lapack_dsyevr
Computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix (Relatively Robust
Representations)

F08FEF (DSYTRD) 16 DSYTRD
nagf_lapack_dsytrd
Orthogonal reduction of real symmetric matrix to symmetric
tridiagonal form

F08FFF (DORGTR) 16 DORGTR
nagf_lapack_dorgtr
Generate orthogonal transformation matrix from reduction to
tridiagonal form determined by F08FEF (DSYTRD)

F08FGF (DORMTR) 16 DORMTR
nagf_lapack_dormtr
Applies the orthogonal transformation determined by F08FEF
(DSYTRD)

F08FLF (DDISNA) 21 DDISNA
nagf_lapack_ddisna
Computes the reciprocal condition numbers for the
eigenvectors of a real symmetric or complex Hermitian matrix
or for the left or right singular vectors of a general matrix

F08FNF (ZHEEV) 21 ZHEEV
nagf_lapack_zheev
Computes all eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrix

F08FPF (ZHEEVX) 21 ZHEEVX
nagf_lapack_zheevx
Computes selected eigenvalues and, optionally, eigenvectors
of a complex Hermitian matrix

F08FQF (ZHEEVD) 19 ZHEEVD
nagf_lapack_zheevd
Computes all eigenvalues and, optionally, all eigenvectors of
complex Hermitian matrix (divide-and-conquer)

F08FRF (ZHEEVR) 21 ZHEEVR
nagf_lapack_zheevr
Computes selected eigenvalues and, optionally, eigenvectors
of a complex Hermitian matrix (Relatively Robust
Representations)
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F08FSF (ZHETRD) 16 ZHETRD
nagf_lapack_zhetrd
Unitary reduction of complex Hermitian matrix to real
symmetric tridiagonal form

F08FTF (ZUNGTR) 16 ZUNGTR
nagf_lapack_zungtr
Generate unitary transformation matrix from reduction to
tridiagonal form determined by F08FSF (ZHETRD)

F08FUF (ZUNMTR) 16 ZUNMTR
nagf_lapack_zunmtr
Applies the unitary transformation matrix determined by
F08FSF (ZHETRD)

F08GAF (DSPEV) 21 DSPEV
nagf_lapack_dspev
Computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix, packed storage

F08GBF (DSPEVX) 21 DSPEVX
nagf_lapack_dspevx
Computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix, packed storage

F08GCF (DSPEVD) 19 DSPEVD
nagf_lapack_dspevd
Computes all eigenvalues and, optionally, all eigenvectors of
real symmetric matrix, packed storage (divide-and-conquer or
Pal–Walker–Kahan variant of the QL or QR algorithm)

F08GEF (DSPTRD) 16 DSPTRD
nagf_lapack_dsptrd
Orthogonal reduction of real symmetric matrix to symmetric
tridiagonal form, packed storage

F08GFF (DOPGTR) 16 DOPGTR
nagf_lapack_dopgtr
Generate orthogonal transformation matrix from reduction to
tridiagonal form determined by F08GEF (DSPTRD)

F08GGF (DOPMTR) 16 DOPMTR
nagf_lapack_dopmtr
Applies the orthogonal transformation determined by F08GEF
(DSPTRD)

F08GNF (ZHPEV) 21 ZHPEV
nagf_lapack_zhpev
Computes all eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrix, packed storage

F08GPF (ZHPEVX) 21 ZHPEVX
nagf_lapack_zhpevx
Computes selected eigenvalues and, optionally, eigenvectors
of a complex Hermitian matrix, packed storage

F08GQF (ZHPEVD) 19 ZHPEVD
nagf_lapack_zhpevd
Computes all eigenvalues and, optionally, all eigenvectors of
complex Hermitian matrix, packed storage (divide-and-
conquer or Pal–Walker–Kahan variant of the QL or QR
algorithm)

F08GSF (ZHPTRD) 16 ZHPTRD
nagf_lapack_zhptrd
Performs a unitary reduction of complex Hermitian matrix to
real symmetric tridiagonal form, packed storage

F08GTF (ZUPGTR) 16 ZUPGTR
nagf_lapack_zupgtr
Generates a unitary transformation matrix from reduction to
tridiagonal form determined by F08GSF (ZHPTRD)
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F08GUF (ZUPMTR) 16 ZUPMTR
nagf_lapack_zupmtr
Applies the unitary transformation matrix determined by
F08GSF (ZHPTRD)

F08HAF (DSBEV) 21 DSBEV
nagf_lapack_dsbev
Computes all eigenvalues and, optionally, eigenvectors of a
real symmetric band matrix

F08HBF (DSBEVX) 21 DSBEVX
nagf_lapack_dsbevx
Computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric band matrix

F08HCF (DSBEVD) 19 DSBEVD
nagf_lapack_dsbevd
Computes all eigenvalues and, optionally, all eigenvectors of
real symmetric band matrix (divide-and-conquer or Pal–
Walker–Kahan variant of the QL or QR algorithm)

F08HEF (DSBTRD) 16 DSBTRD
nagf_lapack_dsbtrd
Performs an orthogonal reduction of real symmetric band
matrix to symmetric tridiagonal form

F08HNF (ZHBEV) 21 ZHBEV
nagf_lapack_zhbev
Computes all eigenvalues and, optionally, eigenvectors of a
complex Hermitian band matrix

F08HPF (ZHBEVX) 21 ZHBEVX
nagf_lapack_zhbevx
Computes selected eigenvalues and, optionally, eigenvectors
of a complex Hermitian band matrix

F08HQF (ZHBEVD) 19 ZHBEVD
nagf_lapack_zhbevd
Computes all eigenvalues and, optionally, all eigenvectors of
complex Hermitian band matrix (divide-and-conquer)

F08HSF (ZHBTRD) 16 ZHBTRD
nagf_lapack_zhbtrd
Performs a unitary reduction of complex Hermitian band
matrix to real symmetric tridiagonal form

F08JAF (DSTEV) 21 DSTEV
nagf_lapack_dstev
Computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix

F08JBF (DSTEVX) 21 DSTEVX
nagf_lapack_dstevx
Computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix

F08JCF (DSTEVD) 19 DSTEVD
nagf_lapack_dstevd
Computes all eigenvalues and, optionally, all eigenvectors of
real symmetric tridiagonal matrix (divide-and-conquer)

F08JDF (DSTEVR) 21 DSTEVR
nagf_lapack_dstevr
Computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix (Relatively Robust
Representations)

F08JEF (DSTEQR) 16 DSTEQR
nagf_lapack_dsteqr
Computes all eigenvalues and eigenvectors of real symmetric
tridiagonal matrix, reduced from real symmetric matrix using
the implicit QL or QR algorithm
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F08JFF (DSTERF) 16 DSTERF
nagf_lapack_dsterf
Computes all eigenvalues of real symmetric tridiagonal
matrix, root-free variant of the QL or QR algorithm

F08JGF (DPTEQR) 16 DPTEQR
nagf_lapack_dpteqr
Computes all eigenvalues and eigenvectors of real symmetric
positive definite tridiagonal matrix, reduced from real
symmetric positive definite matrix

F08JHF (DSTEDC) 21 DSTEDC
nagf_lapack_dstedc
Computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix or a matrix reduced to this
form (divide-and-conquer)

F08JJF (DSTEBZ) 16 DSTEBZ
nagf_lapack_dstebz
Computes selected eigenvalues of real symmetric tridiagonal
matrix by bisection

F08JKF (DSTEIN) 16 DSTEIN
nagf_lapack_dstein
Computes selected eigenvectors of real symmetric tridiagonal
matrix by inverse iteration, storing eigenvectors in real array

F08JLF (DSTEGR) 21 DSTEGR
nagf_lapack_dstegr
Computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix or a symmetric matrix
reduced to this form (Relatively Robust Representations)

F08JSF (ZSTEQR) 16 ZSTEQR
nagf_lapack_zsteqr
Computes all eigenvalues and eigenvectors of real symmetric
tridiagonal matrix, reduced from complex Hermitian matrix,
using the implicit QL or QR algorithm

F08JUF (ZPTEQR) 16 ZPTEQR
nagf_lapack_zpteqr
Computes all eigenvalues and eigenvectors of real symmetric
positive definite tridiagonal matrix, reduced from complex
Hermitian positive definite matrix

F08JVF (ZSTEDC) 21 ZSTEDC
nagf_lapack_zstedc
Computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix or a complex Hermitian
matrix reduced to this form (divide-and-conquer)

F08JXF (ZSTEIN) 16 ZSTEIN
nagf_lapack_zstein
Computes selected eigenvectors of real symmetric tridiagonal
matrix by inverse iteration, storing eigenvectors in complex
array

F08JYF (ZSTEGR) 21 ZSTEGR
nagf_lapack_zstegr
Computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix or a complex Hermitian
matrix reduced to this form (Relatively Robust
Representations)

F08KAF (DGELSS) 21 DGELSS
nagf_lapack_dgelss
Computes the minimum-norm solution to a real linear least
squares problem using singular value decomposition
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F08KBF (DGESVD) 21 DGESVD
nagf_lapack_dgesvd
Computes the singular value decomposition of a real matrix,
optionally computing the left and/or right singular vectors

F08KCF (DGELSD) 21 DGELSD
nagf_lapack_dgelsd
Computes the minimum-norm solution to a real linear least
squares problem using singular value decomposition (divide-
and-conquer)

F08KDF (DGESDD) 21 DGESDD
nagf_lapack_dgesdd
Computes the singular value decomposition of a real matrix,
optionally computing the left and/or right singular vectors
(divide-and-conquer)

F08KEF (DGEBRD) 16 DGEBRD
nagf_lapack_dgebrd
Performs an orthogonal reduction of real general rectangular
matrix to bidiagonal form

F08KFF (DORGBR) 16 DORGBR
nagf_lapack_dorgbr
Generates an orthogonal transformation matrices from
reduction to bidiagonal form determined by F08KEF
(DGEBRD)

F08KGF (DORMBR) 16 DORMBR
nagf_lapack_dormbr
Applies the orthogonal transformations from reduction to
bidiagonal form determined by F08KEF (DGEBRD)

F08KHF (DGEJSV) 23 DGEJSV
nagf_lapack_dgejsv
Computes the singular value decomposition of a real matrix,
optionally computing the left and/or right singular vectors
(preconditioned Jacobi)

F08KJF (DGESVJ) 23 DGESVJ
nagf_lapack_dgesvj
Computes the singular value decomposition of a real matrix,
optionally computing the left and/or right singular vectors
(fast Jacobi)

F08KNF (ZGELSS) 21 ZGELSS
nagf_lapack_zgelss
Computes the minimum-norm solution to a complex linear
least squares problem using singular value decomposition

F08KPF (ZGESVD) 21 ZGESVD
nagf_lapack_zgesvd
Computes the singular value decomposition of a complex
matrix, optionally computing the left and/or right singular
vectors

F08KQF (ZGELSD) 21 ZGELSD
nagf_lapack_zgelsd
Computes the minimum-norm solution to a complex linear
least squares problem using singular value decomposition
(divide-and-conquer)

F08KRF (ZGESDD) 21 ZGESDD
nagf_lapack_zgesdd
Computes the singular value decomposition of a complex
matrix, optionally computing the left and/or right singular
vectors (divide-and-conquer)
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F08KSF (ZGEBRD) 16 ZGEBRD
nagf_lapack_zgebrd
Performs a unitary reduction of complex general rectangular
matrix to bidiagonal form

F08KTF (ZUNGBR) 16 ZUNGBR
nagf_lapack_zungbr
Generates unitary transformation matrices from the reduction
to bidiagonal form determined by F08KSF (ZGEBRD)

F08KUF (ZUNMBR) 16 ZUNMBR
nagf_lapack_zunmbr
Applies the unitary transformations from reduction to
bidiagonal form determined by F08KSF (ZGEBRD)

F08LEF (DGBBRD) 19 DGBBRD
nagf_lapack_dgbbrd
Performs a reduction of real rectangular band matrix to upper
bidiagonal form

F08LSF (ZGBBRD) 19 ZGBBRD
nagf_lapack_zgbbrd
Reduction of complex rectangular band matrix to upper
bidiagonal form

F08MDF (DBDSDC) 21 DBDSDC
nagf_lapack_dbdsdc
Computes the singular value decomposition of a real
bidiagonal matrix, optionally computing the singular vectors
(divide-and-conquer)

F08MEF (DBDSQR) 16 DBDSQR
nagf_lapack_dbdsqr
Performs an SVD of real bidiagonal matrix reduced from real
general matrix

F08MSF (ZBDSQR) 16 ZBDSQR
nagf_lapack_zbdsqr
Performs an SVD of real bidiagonal matrix reduced from
complex general matrix

F08NAF (DGEEV) 21 DGEEV
nagf_lapack_dgeev
Computes all eigenvalues and, optionally, left and/or right
eigenvectors of a real nonsymmetric matrix

F08NBF (DGEEVX) 21 DGEEVX
nagf_lapack_dgeevx
Computes all eigenvalues and, optionally, left and/or right
eigenvectors of a real nonsymmetric matrix; also, optionally,
the balancing transformation, the reciprocal condition
numbers for the eigenvalues and for the right eigenvectors

F08NEF (DGEHRD) 16 DGEHRD
nagf_lapack_dgehrd
Performs an orthogonal reduction of real general matrix to
upper Hessenberg form

F08NFF (DORGHR) 16 DORGHR
nagf_lapack_dorghr
Generates an orthogonal transformation matrix from reduction
to Hessenberg form determined by F08NEF (DGEHRD)

F08NGF (DORMHR) 16 DORMHR
nagf_lapack_dormhr
Applies the orthogonal transformation matrix from reduction
to Hessenberg form determined by F08NEF (DGEHRD)

F08NHF (DGEBAL) 16 DGEBAL
nagf_lapack_dgebal
Balances a real general matrix
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F08NJF (DGEBAK) 16 DGEBAK
nagf_lapack_dgebak
Transforms eigenvectors of real balanced matrix to those of
original matrix supplied to F08NHF (DGEBAL)

F08NNF (ZGEEV) 21 ZGEEV
nagf_lapack_zgeev
Computes all eigenvalues and, optionally, left and/or right
eigenvectors of a complex nonsymmetric matrix

F08NPF (ZGEEVX) 21 ZGEEVX
nagf_lapack_zgeevx
Computes all eigenvalues and, optionally, left and/or right
eigenvectors of a complex nonsymmetric matrix; also,
optionally, the balancing transformation, the reciprocal
condition numbers for the eigenvalues and for the right
eigenvectors

F08NSF (ZGEHRD) 16 ZGEHRD
nagf_lapack_zgehrd
Performs a unitary reduction of complex general matrix to
upper Hessenberg form

F08NTF (ZUNGHR) 16 ZUNGHR
nagf_lapack_zunghr
Generates a unitary transformation matrix from reduction to
Hessenberg form determined by F08NSF (ZGEHRD)

F08NUF (ZUNMHR) 16 ZUNMHR
nagf_lapack_zunmhr
Applies the unitary transformation matrix from reduction to
Hessenberg form determined by F08NSF (ZGEHRD)

F08NVF (ZGEBAL) 16 ZGEBAL
nagf_lapack_zgebal
Balances a complex general matrix

F08NWF (ZGEBAK) 16 ZGEBAK
nagf_lapack_zgebak
Transforms eigenvectors of complex balanced matrix to those
of original matrix supplied to F08NVF (ZGEBAL)

F08PAF (DGEES) 21 DGEES
nagf_lapack_dgees
Computes for real square nonsymmetric matrix, the
eigenvalues, the real Schur form, and, optionally, the matrix
of Schur vectors

F08PBF (DGEESX) 21 DGEESX
nagf_lapack_dgeesx
Computes for real square nonsymmetric matrix, the
eigenvalues, the real Schur form, and, optionally, the matrix
of Schur vectors; also, optionally, computes reciprocal
condition numbers for selected eigenvalues

F08PEF (DHSEQR) 16 DHSEQR
nagf_lapack_dhseqr
Computes the eigenvalues and Schur factorization of real
upper Hessenberg matrix reduced from real general matrix

F08PKF (DHSEIN) 16 DHSEIN
nagf_lapack_dhsein
Computes selected right and/or left eigenvectors of real upper
Hessenberg matrix by inverse iteration

F08PNF (ZGEES) 21 ZGEES
nagf_lapack_zgees
Computes for complex square nonsymmetric matrix, the
eigenvalues, the Schur form, and, optionally, the matrix of
Schur vectors
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F08PPF (ZGEESX) 21 ZGEESX
nagf_lapack_zgeesx
Computes for real square nonsymmetric matrix, the
eigenvalues, the Schur form, and, optionally, the matrix of
Schur vectors; also computes a reciprocal condition number
for the average of the selected eigenvalues and for the right
invariant subspace corresponding to these eigenvalues

F08PSF (ZHSEQR) 16 ZHSEQR
nagf_lapack_zhseqr
Computes the eigenvalues and Schur factorization of complex
upper Hessenberg matrix reduced from complex general
matrix

F08PXF (ZHSEIN) 16 ZHSEIN
nagf_lapack_zhsein
Computes selected right and/or left eigenvectors of complex
upper Hessenberg matrix by inverse iteration

F08QFF (DTREXC) 16 DTREXC
nagf_lapack_dtrexc
Reorders a Schur factorization of real matrix using orthogonal
similarity transformation

F08QGF (DTRSEN) 16 DTRSEN
nagf_lapack_dtrsen
Reorders a Schur factorization of real matrix, form
orthonormal basis of right invariant subspace for selected
eigenvalues, with estimates of sensitivities

F08QHF (DTRSYL) 16 DTRSYL
nagf_lapack_dtrsyl
Solves the real Sylvester matrix equation AX þXB ¼ C, A
and B are upper quasi-triangular or transposes

F08QKF (DTREVC) 16 DTREVC
nagf_lapack_dtrevc
Computes left and right eigenvectors of real upper quasi-
triangular matrix

F08QLF (DTRSNA) 16 DTRSNA
nagf_lapack_dtrsna
Computes estimates of sensitivities of selected eigenvalues
and eigenvectors of real upper quasi-triangular matrix

F08QTF (ZTREXC) 16 ZTREXC
nagf_lapack_ztrexc
Reorders a Schur factorization of complex matrix using
unitary similarity transformation

F08QUF (ZTRSEN) 16 ZTRSEN
nagf_lapack_ztrsen
Reorders a Schur factorization of complex matrix, form
orthonormal basis of right invariant subspace for selected
eigenvalues, with estimates of sensitivities

F08QVF (ZTRSYL) 16 ZTRSYL
nagf_lapack_ztrsyl
Solves the complex Sylvester matrix equation
AX þXB ¼ C, A and B are upper triangular or conjugate-
transposes

F08QXF (ZTREVC) 16 ZTREVC
nagf_lapack_ztrevc
Computes left and right eigenvectors of complex upper
triangular matrix

F08QYF (ZTRSNA) 16 ZTRSNA
nagf_lapack_ztrsna
Computes estimates of sensitivities of selected eigenvalues
and eigenvectors of complex upper triangular matrix
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F08RAF (DORCSD) 25 DORCSD
nagf_lapack_dorcsd
Computes the CS decomposition of an orthogonal matrix
partitioned into four real submatrices

F08RNF (ZUNCSD) 25 ZUNCSD
nagf_lapack_zuncsd
Computes the CS decomposition of a unitary matrix
partitioned into four complex submatrices

F08SAF (DSYGV) 21 DSYGV
nagf_lapack_dsygv
Computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem

F08SBF (DSYGVX) 21 DSYGVX
nagf_lapack_dsygvx
Computes selected eigenvalues, and optionally, the
eigenvectors of a real generalized symmetric-definite
eigenproblem

F08SCF (DSYGVD) 21 DSYGVD
nagf_lapack_dsygvd
Computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem
(divide-and-conquer)

F08SEF (DSYGST) 16 DSYGST
nagf_lapack_dsygst
Performs a reduction to standard form of real symmetric-
definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or
BAx ¼ �x, B factorized by F07FDF (DPOTRF)

F08SNF (ZHEGV) 21 ZHEGV
nagf_lapack_zhegv
Computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem

F08SPF (ZHEGVX) 21 ZHEGVX
nagf_lapack_zhegvx
Computes selected eigenvalues, and optionally, the
eigenvectors of a complex generalized Hermitian-definite
eigenproblem

F08SQF (ZHEGVD) 21 ZHEGVD
nagf_lapack_zhegvd
Computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem
(divide-and-conquer)

F08SSF (ZHEGST) 16 ZHEGST
nagf_lapack_zhegst
Performs a reduction to standard form of complex Hermitian-
definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or
BAx ¼ �x, B factorized by F07FRF (ZPOTRF)

F08TAF (DSPGV) 21 DSPGV
nagf_lapack_dspgv
Computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, packed
storage

F08TBF (DSPGVX) 21 DSPGVX
nagf_lapack_dspgvx
Computes selected eigenvalues, and optionally, the
eigenvectors of a real generalized symmetric-definite
eigenproblem, packed storage

Contents – F08 NAG Library Manual

f08conts.12 Mark 26



F08TCF (DSPGVD) 21 DSPGVD
nagf_lapack_dspgvd
Computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, packed
storage (divide-and-conquer)

F08TEF (DSPGST) 16 DSPGST
nagf_lapack_dspgst
Performs a reduction to standard form of real symmetric-
definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or
BAx ¼ �x, packed storage, B factorized by F07GDF
(DPPTRF)

F08TNF (ZHPGV) 21 ZHPGV
nagf_lapack_zhpgv
Computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem,
packed storage

F08TPF (ZHPGVX) 21 ZHPGVX
nagf_lapack_zhpgvx
Computes selected eigenvalues, and optionally, the
eigenvectors of a complex generalized Hermitian-definite
eigenproblem, packed storage

F08TQF (ZHPGVD) 21 ZHPGVD
nagf_lapack_zhpgvd
Computes selected eigenvalues, and optionally, the
eigenvectors of a complex generalized Hermitian-definite
eigenproblem, packed storage (divide-and-conquer)

F08TSF (ZHPGST) 16 ZHPGST
nagf_lapack_zhpgst
Performs a reduction to standard form of complex Hermitian-
definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or
BAx ¼ �x, packed storage, B factorized by F07GRF
(ZPPTRF)

F08UAF (DSBGV) 21 DSBGV
nagf_lapack_dsbgv
Computes all the eigenvalues, and optionally, the eigenvectors
of a real banded generalized symmetric-definite eigenproblem

F08UBF (DSBGVX) 21 DSBGVX
nagf_lapack_dsbgvx
Computes selected eigenvalues, and optionally, the
eigenvectors of a real banded generalized symmetric-definite
eigenproblem

F08UCF (DSBGVD) 21 DSBGVD
nagf_lapack_dsbgvd
Computes all the eigenvalues, and optionally, the eigenvectors
of a real banded generalized symmetric-definite eigenproblem
(divide-and-conquer)

F08UEF (DSBGST) 19 DSBGST
nagf_lapack_dsbgst
Performs a reduction of real symmetric-definite banded
generalized eigenproblem Ax ¼ �Bx to standard form
Cy ¼ �y, such that C has the same bandwidth as A

F08UFF (DPBSTF) 19 DPBSTF
nagf_lapack_dpbstf
Computes a split Cholesky factorization of real symmetric
positive definite band matrix A
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F08UNF (ZHBGV) 21 ZHBGV
nagf_lapack_zhbgv
Computes all the eigenvalues, and optionally, the eigenvectors
of a complex banded generalized Hermitian-definite
eigenproblem

F08UPF (ZHBGVX) 21 ZHBGVX
nagf_lapack_zhbgvx
Computes selected eigenvalues, and optionally, the
eigenvectors of a complex banded generalized Hermitian-
definite eigenproblem

F08UQF (ZHBGVD) 21 ZHBGVD
nagf_lapack_zhbgvd
Computes all the eigenvalues, and optionally, the eigenvectors
of a complex banded generalized Hermitian-definite
eigenproblem (divide-and-conquer)

F08USF (ZHBGST) 19 ZHBGST
nagf_lapack_zhbgst
Performs a reduction of complex Hermitian-definite banded
generalized eigenproblem Ax ¼ �Bx to standard form
Cy ¼ �y, such that C has the same bandwidth as A

F08UTF (ZPBSTF) 19 ZPBSTF
nagf_lapack_zpbstf
Computes a split Cholesky factorization of complex
Hermitian positive definite band matrix A

F08VAF (DGGSVD) 21 DGGSVD
nagf_lapack_dggsvd
Computes the generalized singular value decomposition of a
real matrix pair

F08VCF (DGGSVD3) 26 DGGSVD3
nagf_lapack_dggsvd3
Computes, using BLAS-3, the generalized singular value
decomposition of a real matrix pair

F08VEF (DGGSVP) 21 DGGSVP
nagf_lapack_dggsvp
Produces orthogonal matrices that simultaneously reduce the
m by n matrix A and the p by n matrix B to upper triangular
form

F08VGF (DGGSVP3) 26 DGGSVP3
nagf_lapack_dggsvp3
Produces orthogonal matrices, using BLAS-3, that
simultaneously reduce the m by n matrix A and the p by n
matrix B to upper triangular form

F08VNF (ZGGSVD) 21 ZGGSVD
nagf_lapack_zggsvd
Computes the generalized singular value decomposition of a
complex matrix pair

F08VQF (ZGGSVD3) 26 ZGGSVD3
nagf_lapack_zggsvd3
Computes, using BLAS-3, the generalized singular value
decomposition of a complex matrix pair

F08VSF (ZGGSVP) 21 ZGGSVP
nagf_lapack_zggsvp
Produces unitary matrices that simultaneously reduce the
complex, m by n, matrix A and the complex, p by n, matrix
B to upper triangular form
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F08VUF (ZGGSVP3) 26 ZGGSVP3
nagf_lapack_zggsvp3
Produces unitary matrices, using BLAS-3, that simultaneously
reduce the complex, m by n, matrix A and the complex, p by
n, matrix B to upper triangular form

F08WAF (DGGEV) 21 DGGEV
nagf_lapack_dggev
Computes, for a real nonsymmetric matrix pair, the
generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors

F08WBF (DGGEVX) 21 DGGEVX
nagf_lapack_dggevx
Computes, for a real nonsymmetric matrix pair, the
generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors; also, optionally, the balancing
transformation, the reciprocal condition numbers for the
eigenvalues and for the right eigenvectors

F08WCF (DGGEV3) 26 DGGEV3
nagf_lapack_dggev3
Computes, for a real nonsymmetric matrix pair, using BLAS-
3, the generalized eigenvalues, and optionally, the left and/or
right generalized eigenvectors

F08WEF (DGGHRD) 20 DGGHRD
nagf_lapack_dgghrd
Performs an orthogonal reduction of a pair of real general
matrices to generalized upper Hessenberg form

F08WFF (DGGHD3) 26 DGGHD3
nagf_lapack_dgghd3
Performs, using BLAS-3, an orthogonal reduction of a pair of
real general matrices to generalized upper Hessenberg form

F08WHF (DGGBAL) 20 DGGBAL
nagf_lapack_dggbal
Balances a pair of real, square, matrices

F08WJF (DGGBAK) 20 DGGBAK
nagf_lapack_dggbak
Transforms eigenvectors of a pair of real balanced matrices to
those of original matrix pair supplied to F08WHF (DGGBAL)

F08WNF (ZGGEV) 21 ZGGEV
nagf_lapack_zggev
Computes, for a complex nonsymmetric matrix pair, the
generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors

F08WPF (ZGGEVX) 21 ZGGEVX
nagf_lapack_zggevx
Computes, for a complex nonsymmetric matrix pair, the
generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors; also, optionally, the balancing
transformation, the reciprocal condition numbers for the
eigenvalues and for the right eigenvectors

F08WQF (ZGGEV3) 26 ZGGEV3
nagf_lapack_zggev3
Computes, for a complex nonsymmetric matrix pair, using
BLAS-3, the generalized eigenvalues, and optionally, the left
and/or right generalized eigenvectors

F08WSF (ZGGHRD) 20 ZGGHRD
nagf_lapack_zgghrd
Performs a unitary reduction of a pair of complex general
matrices to generalized upper Hessenberg form
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F08WTF (ZGGHD3) 26 ZGGHD3
nagf_lapack_zgghd3
Performs, using BLAS-3, a unitary reduction of a pair of
complex general matrices to generalized upper Hessenberg
form

F08WVF (ZGGBAL) 20 ZGGBAL
nagf_lapack_zggbal
Balances a pair of complex, square, matrices

F08WWF (ZGGBAK) 20 ZGGBAK
nagf_lapack_zggbak
Transforms eigenvectors of a pair of complex balanced
matrices to those of original matrix pair supplied to F08WVF
(ZGGBAL)

F08XAF (DGGES) 21 DGGES
nagf_lapack_dgges
Computes, for a real nonsymmetric matrix pair, the
generalized eigenvalues, the generalized real Schur form and,
optionally, the left and/or right matrices of Schur vectors

F08XBF (DGGESX) 21 DGGESX
nagf_lapack_dggesx
Computes, for a real nonsymmetric matrix pair, the
generalized eigenvalues, the generalized real Schur form and,
optionally, the left and/or right matrices of Schur vectors;
also, optionally, computes reciprocal condition numbers for
selected eigenvalues

F08XCF (DGGES3) 26 DGGES3
nagf_lapack_dgges3
Computes, for a real nonsymmetric matrix pair, using BLAS-
3, the generalized eigenvalues, the generalized real Schur
form and, optionally, the left and/or right matrices of Schur
vectors

F08XEF (DHGEQZ) 20 DHGEQZ
nagf_lapack_dhgeqz
Computes eigenvalues and generalized Schur factorization of
real generalized upper Hessenberg form reduced from a pair
of real general matrices

F08XNF (ZGGES) 21 ZGGES
nagf_lapack_zgges
Computes, for a complex nonsymmetric matrix pair, the
generalized eigenvalues, the generalized complex Schur form
and, optionally, the left and/or right matrices of Schur vectors

F08XPF (ZGGESX) 21 ZGGESX
nagf_lapack_zggesx
Computes, for a complex nonsymmetric matrix pair, the
generalized eigenvalues, the generalized complex Schur form
and, optionally, the left and/or right matrices of Schur vectors;
also, optionally, computes reciprocal condition numbers for
selected eigenvalues

F08XQF (ZGGES3) 26 ZGGES3
nagf_lapack_zgges3
Computes, for a complex nonsymmetric matrix pair, using
BLAS-3, the generalized eigenvalues, the generalized
complex Schur form and, optionally, the left and/or right
matrices of Schur vectors

F08XSF (ZHGEQZ) 20 ZHGEQZ
nagf_lapack_zhgeqz
Eigenvalues and generalized Schur factorization of complex
generalized upper Hessenberg form reduced from a pair of
complex, square, matrices
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F08YEF (DTGSJA) 21 DTGSJA
nagf_lapack_dtgsja
Computes the generalized singular value decomposition of a
real upper triangular (or trapezoidal) matrix pair

F08YFF (DTGEXC) 21 DTGEXC
nagf_lapack_dtgexc
Reorders the generalized real Schur decomposition of a real
matrix pair using an orthogonal equivalence transformation

F08YGF (DTGSEN) 21 DTGSEN
nagf_lapack_dtgsen
Reorders the generalized real Schur decomposition of a real
matrix pair using an orthogonal equivalence transformation,
computes the generalized eigenvalues of the reordered pair
and, optionally, computes the estimates of reciprocal
condition numbers for eigenvalues and eigenspaces

F08YHF (DTGSYL) 21 DTGSYL
nagf_lapack_dtgsyl
Solves the real-valued, generalized, quasi-trangular, Sylvester
equation

F08YKF (DTGEVC) 20 DTGEVC
nagf_lapack_dtgevc
Computes right and left generalized eigenvectors of the
matrix pair A;Bð Þ which is assumed to be in generalized
upper Schur form

F08YLF (DTGSNA) 21 DTGSNA
nagf_lapack_dtgsna
Estimates reciprocal condition numbers for specified
eigenvalues and/or eigenvectors of a real matrix pair in
generalized real Schur canonical form

F08YSF (ZTGSJA) 21 ZTGSJA
nagf_lapack_ztgsja
Computes the generalized singular value decomposition of a
complex upper triangular (or trapezoidal) matrix pair

F08YTF (ZTGEXC) 21 ZTGEXC
nagf_lapack_ztgexc
Reorders the generalized Schur decomposition of a complex
matrix pair using an unitary equivalence transformation

F08YUF (ZTGSEN) 21 ZTGSEN
nagf_lapack_ztgsen
Reorders the generalized Schur decomposition of a complex
matrix pair using an unitary equivalence transformation,
computes the generalized eigenvalues of the reordered pair
and, optionally, computes the estimates of reciprocal
condition numbers for eigenvalues and eigenspaces

F08YVF (ZTGSYL) 21 ZTGSYL
nagf_lapack_ztgsyl
Solves the complex generalized Sylvester equation

F08YXF (ZTGEVC) 20 ZTGEVC
nagf_lapack_ztgevc
Computes left and right eigenvectors of a pair of complex
upper triangular matrices

F08YYF (ZTGSNA) 21 ZTGSNA
nagf_lapack_ztgsna
Estimates reciprocal condition numbers for specified
eigenvalues and/or eigenvectors of a complex matrix pair in
generalized Schur canonical form
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F08ZAF (DGGLSE) 21 DGGLSE
nagf_lapack_dgglse
Solves the real linear equality-constrained least squares (LSE)
problem

F08ZBF (DGGGLM) 21 DGGGLM
nagf_lapack_dggglm
Solves a real general Gauss–Markov linear model (GLM)
problem

F08ZEF (DGGQRF) 21 DGGQRF
nagf_lapack_dggqrf
Computes a generalized QR factorization of a real matrix pair

F08ZFF (DGGRQF) 21 DGGRQF
nagf_lapack_dggrqf
Computes a generalized RQ factorization of a real matrix pair

F08ZNF (ZGGLSE) 21 ZGGLSE
nagf_lapack_zgglse
Solves the complex linear equality-constrained least squares
(LSE) problem

F08ZPF (ZGGGLM) 21 ZGGGLM
nagf_lapack_zggglm
Solves a complex general Gauss–Markov linear model
(GLM) problem

F08ZSF (ZGGQRF) 21 ZGGQRF
nagf_lapack_zggqrf
Computes a generalized QR factorization of a complex matrix
pair

F08ZTF (ZGGRQF) 21 ZGGRQF
nagf_lapack_zggrqf
Computes a generalized RQ factorization of a complex matrix
pair

Contents – F08 NAG Library Manual

f08conts.18 (last) Mark 26



NAG Library Chapter Introduction

F08 – Least Squares and Eigenvalue Problems (LAPACK)

Contents

1 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background to the Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Linear Least Squares Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Orthogonal Factorizations and Least Squares Problems . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 QR factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 LQ factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 QR factorization with column pivoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4 Complete orthogonal factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.5 Updating a QR factorization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.6 Other factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 The Singular Value Decomposition and Least Squares Problems . . . . . . . . . . . . . . . . 8

2.5 Generalized Linear Least Squares Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Generalized Orthogonal Factorization and Generalized Linear Least Squares Problems
8

2.6.1 Generalized QR Factorization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6.2 Generalized RQ Factorization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.3 Generalized Singular Value Decomposition (GSVD) . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.4 The Full CS Decomposition of Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Symmetric Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Generalized Symmetric-definite Eigenvalue Problems. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 Packed Storage for Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.10 Band Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.11 Nonsymmetric Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.12 Generalized Nonsymmetric Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.13 The Sylvester Equation and the Generalized Sylvester Equation . . . . . . . . . . . . . . . 17

2.14 Error and Perturbation Bounds and Condition Numbers. . . . . . . . . . . . . . . . . . . . . . . 17

2.14.1 Least squares problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.14.2 The singular value decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.14.3 The symmetric eigenproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.14.4 The generalized symmetric-definite eigenproblem. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.14.5 The nonsymmetric eigenproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.14.6Balancing and condition for the nonsymmetric eigenproblem . . . . . . . . . . . . . . . . . 22
2.14.7 The generalized nonsymmetric eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.14.8Balancing the generalized eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.14.9Other problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.15 Block Partitioned Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 26 F08.1



3 Recommendations on Choice and Use of Available Routines. . . . . . . . . . . . . 24

3.1 Available Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Driver routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1.1 Linear least squares problems (LLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1.2 Generalized linear least squares problems (LSE and GLM) . . . . . . . . . . . 24
3.1.1.3 Symmetric eigenvalue problems (SEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1.4 Nonsymmetric eigenvalue problem (NEP) . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1.5 Singular value decomposition (SVD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP) . . . . . . . . . . 25
3.1.1.7 Generalized nonsymmetric eigenvalue problem (GNEP) . . . . . . . . . . . . . . 26
3.1.1.8 Generalized singular value decomposition (GSVD) . . . . . . . . . . . . . . . . . . 26

3.1.2 Computational routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2.1 Orthogonal factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2.2 Generalized orthogonal factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2.3 Singular value problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2.4 Generalized singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2.5 Symmetric eigenvalue problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2.6 Generalized symmetric-definite eigenvalue problems . . . . . . . . . . . . . . . . . 31
3.1.2.7 Nonsymmetric eigenvalue problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2.8 Generalized nonsymmetric eigenvalue problems . . . . . . . . . . . . . . . . . . . . 34
3.1.2.9 The Sylvester equation and the generalized Sylvester equation. . . . . . . . . 36

3.2 NAG Names and LAPACK Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Matrix Storage Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Conventional storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Packed storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Band storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.4 Tridiagonal and bidiagonal matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.5 Real diagonal elements of complex matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.6 Representation of orthogonal or unitary matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Argument Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Option Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 Problem dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Length of work arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.4 Error-handling and the Diagnostic Argument INFO . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 General Purpose Routines (eigenvalues and eigenvectors) . . . . . . . . . . . . . . . . . . . . . 40

4.2 General Purpose Routines (singular value decomposition) . . . . . . . . . . . . . . . . . . . . . 45

5 Functionality Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Auxiliary Routines Associated with Library Routine Arguments . . . . . . . . 53

7 Routines Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . . . . . . . . 53

8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Introduction – F08 NAG Library Manual

F08.2 Mark 26



1 Scope of the Chapter

This chapter provides routines for the solution of linear least squares problems, eigenvalue problems
and singular value problems, as well as associated computations. It provides routines for:

solution of linear least squares problems

solution of symmetric eigenvalue problems

solution of nonsymmetric eigenvalue problems

solution of singular value problems

solution of generalized linear least squares problems

solution of generalized symmetric-definite eigenvalue problems

solution of generalized nonsymmetric eigenvalue problems

solution of generalized singular value problems

matrix factorizations associated with the above problems

estimating condition numbers of eigenvalue and eigenvector problems

estimating the numerical rank of a matrix

solution of the Sylvester matrix equation

Routines are provided for both real and complex data.

For a general introduction to the solution of linear least squares problems, you should turn first to
Chapter F04. The decision trees, at the end of Chapter F04, direct you to the most appropriate routines
in Chapters F04 or F08. Chapters F04 and F08 contain Black Box (or driver) routines which enable
standard linear least squares problems to be solved by a call to a single routine.

For a general introduction to eigenvalue and singular value problems, you should turn first to Chapter
F02. The decision trees, at the end of Chapter F02, direct you to the most appropriate routines in
Chapters F02 or F08. Chapters F02 and F08 contain Black Box (or driver) routines which enable
standard types of problem to be solved by a call to a single routine. Often routines in Chapter F02 call
Chapter F08 routines to perform the necessary computational tasks.

The routines in this chapter (Chapter F08) handle only dense, band, tridiagonal and Hessenberg
matrices (not matrices with more specialised structures, or general sparse matrices). The tables in
Section 3 and the decision trees in Section 4 direct you to the most appropriate routines in Chapter F08.

The routines in this chapter have all been derived from the LAPACK project (see Anderson et al.
(1999)). They have been designed to be efficient on a wide range of high-performance computers,
without compromising efficiency on conventional serial machines.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of linear least squares problems,
eigenvalue and singular value problems. Consult a standard textbook for a more thorough discussion,
for example Golub and Van Loan (2012).

2.1 Linear Least Squares Problems

The linear least squares problem is

minimize
x

b�Axk k2; ð1Þ

where A is an m by n matrix, b is a given m element vector and x is an n-element solution vector.

In the most usual case m � n and rank Að Þ ¼ n, so that A has full rank and in this case the solution to
problem (1) is unique; the problem is also referred to as finding a least squares solution to an
overdetermined system of linear equations.
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When m < n and rank Að Þ ¼ m, there are an infinite number of solutions x which exactly satisfy
b�Ax ¼ 0. In this case it is often useful to find the unique solution x which minimizes xk k2, and the
problem is referred to as finding a minimum norm solution to an underdetermined system of linear
equations.

In the general case when we may have rank Að Þ < min m;nð Þ – in other words, A may be rank-deficient
– we seek the minimum norm least squares solution x which minimizes both xk k2 and b�Axk k2.
This chapter (Chapter F08) contains driver routines to solve these problems with a single call, as well
as computational routines that can be combined with routines in Chapter F07 to solve these linear least
squares problems. Chapter F04 also contains Black Box routines to solve these linear least squares
problems in standard cases. The next two sections discuss the factorizations that can be used in the
solution of linear least squares problems.

2.2 Orthogonal Factorizations and Least Squares Problems

A number of routines are provided for factorizing a general rectangular m by n matrix A, as the
product of an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal) matrix.

A real matrix Q is orthogonal if QTQ ¼ I; a complex matrix Q is unitary if QHQ ¼ I. Orthogonal or
unitary matrices have the important property that they leave the 2-norm of a vector invariant, so that

xk k2 ¼ Qxk k2;

if Q is orthogonal or unitary. They usually help to maintain numerical stability because they do not
amplify rounding errors.

Orthogonal factorizations are used in the solution of linear least squares problems. They may also be
used to perform preliminary steps in the solution of eigenvalue or singular value problems, and are
useful tools in the solution of a number of other problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by

A ¼ Q R
0

� �
; if m � n;

where R is an n by n upper triangular matrix and Q is an m by m orthogonal (or unitary) matrix. If A
is of full rank n, then R is nonsingular. It is sometimes convenient to write the factorization as

A ¼ Q1Q2ð Þ R
0

� �
which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

A ¼ Q R1R2ð Þ; if m < n;

where R1 is upper triangular and R2 is rectangular.

The QR factorization can be used to solve the linear least squares problem (1) when m � n and A is of
full rank, since

b�Axk k2 ¼ QTb�QTAx
�� ��

2
¼ c1 �Rx

c2

� ����� ����
2

;

where
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c 	 c1
c2

� �
¼

QT
1b

QT
2b

0@ 1A ¼ QTb;

and c1 is an n-element vector. Then x is the solution of the upper triangular system

Rx ¼ c1:
The residual vector r is given by

r ¼ b� Ax ¼ Q 0
c2

� �
:

The residual sum of squares rk k22 may be computed without forming r explicitly, since

rk k2 ¼ b�Axk k2 ¼ c2k k2:

2.2.2 LQ factorization

The LQ factorization is given by

A ¼ L 0ð ÞQ ¼ L 0ð Þ Q1
Q2

� �
¼ LQ1; if m � n;

where L is m by m lower triangular, Q is n by n orthogonal (or unitary), Q1 consists of the first m
rows of Q, and Q2 the remaining n�m rows.

The LQ factorization of A is essentially the same as the QR factorization of AT (AH if A is complex),
since

A ¼ L 0ð ÞQ, AT ¼ QT LT

0

� �
:

The LQ factorization may be used to find a minimum norm solution of an underdetermined system of
linear equations Ax ¼ b where A is m by n with m < n and has rank m. The solution is given by

x ¼ QT L�1b
0

� �
:

2.2.3 QR factorization with column pivoting

To solve a linear least squares problem (1) when A is not of full rank, or the rank of A is in doubt, we
can perform either a QR factorization with column pivoting or a singular value decomposition.

The QR factorization with column pivoting is given by

A ¼ Q R
0

� �
PT; m � n;

where Q and R are as before and P is a (real) permutation matrix, chosen (in general) so that

r11j j � r22j j � � � � � rnnj j

and moreover, for each k,

rkkj j � Rk:j;j

�� ��
2
; j ¼ kþ 1; . . . ; n:

If we put

R ¼ R11 R12
0 R22

� �
where R11 is the leading k by k upper triangular sub-matrix of R then, in exact arithmetic, if
rank Að Þ ¼ k, the whole of the sub-matrix R22 in rows and columns kþ 1 to n would be zero. In
numerical computation, the aim must be to determine an index k, such that the leading sub-matrix R11
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is well-conditioned, and R22 is negligible, so that

R ¼ R11 R12
0 R22

� �
’ R11 R12

0 0

� �
:

Then k is the effective rank of A. See Golub and Van Loan (2012) for a further discussion of numerical
rank determination.

The so-called basic solution to the linear least squares problem (1) can be obtained from this
factorization as

x ¼ P R�111 ĉ1
0

� �
;

where ĉ1 consists of just the first k elements of c ¼ QTb.

2.2.4 Complete orthogonal factorization

The QR factorization with column pivoting does not enable us to compute a minimum norm solution to
a rank-deficient linear least squares problem, unless R12 ¼ 0. However, by applying for further
orthogonal (or unitary) transformations from the right to the upper trapezoidal matrix R11 R12

� �
, R12

can be eliminated:

R11 R12

� �
Z ¼ T11 0

� �
:

This gives the complete orthogonal factorization

AP ¼ Q T11 0
0 0

� �
ZT

from which the minimum norm solution can be obtained as

x ¼ PZ T�111 ĉ1
0

� �
:

2.2.5 Updating a QR factorization

Section 2.2.1 gave the forms of the QR factorization of an m by n matrix A for the two cases m � n
and m < n. Taking first the case m � n, the least squares solution of

Ax ¼ b ¼
��

n b1
m� n b2

is the solution of

Rx ¼ QT
1b:

If the original system is now augmented by the addition of p rows so that we require the solution of

A
B

� �
x ¼

��
m b
p b3

where B is p by n, then this is equivalent to finding the least squares solution of

Âx ¼
�� n

n R
p B

x ¼ QT
1b
b3

� �
¼ b̂:

This now requires the QR factorization of the nþ p by n triangular-rectangular matrix Â.
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For the case m < n � mþ p, the least squares solution of the augmented system reduces to

Âx ¼ B
R1 R2

� �
x ¼ b3

QTb

� �
¼ b̂;

where Â is pentagonal.

In both cases Â can be written as a special case of a triangular-pentagonal matrix consisting of an upper
triangular part on top of a rectangular part which is itself on top of a trapezoidal part. In the first case
there is no trapezoidal part, in the second case a zero upper triangular part can be added, and more
generally the two cases can be combined.

2.2.6 Other factorizations

The QL and RQ factorizations are given by

A ¼ Q 0
L

� �
; if m � n;

and

A ¼ 0 R
� �

Q; if m � n:
The factorizations are less commonly used than either the QR or LQ factorizations described above,
but have applications in, for example, the computation of generalized QR factorizations.

2.3 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by n matrix A is given by

A ¼ U�V T; A ¼ U�V Hin the complex case
� �

where U and V are orthogonal (unitary) and � is an m by n diagonal matrix with real diagonal
elements, �i, such that

�1 � �2 � � � � � �min m;nð Þ � 0:

The �i are the singular values of A and the first min m;nð Þ columns of U and V are the left and right
singular vectors of A. The singular values and singular vectors satisfy

Avi ¼ �iui and ATui ¼ �ivi or AHui ¼ �ivi
� �

where ui and vi are the ith columns of U and V respectively.

The computation proceeds in the following stages.

1. The matrix A is reduced to bidiagonal form A ¼ U1BV
T
1 if A is real (A ¼ U1BV

H
1 if A is

complex), where U1 and V1 are orthogonal (unitary if A is complex), and B is real and upper
bidiagonal when m � n and lower bidiagonal when m < n, so that B is nonzero only on the main
diagonal and either on the first superdiagonal (if m � n) or the first subdiagonal (if m < n).

2. The SVD of the bidiagonal matrix B is computed as B ¼ U2�V
T
2 , where U2 and V2 are orthogonal

and � is diagonal as described above. The singular vectors of A are then U ¼ U1U2 and V ¼ V1V2.
If m� n, it may be more efficient to first perform a QR factorization of A, and then compute the SVD
of the n by n matrix R, since if A ¼ QR and R ¼ U�V T, then the SVD of A is given by
A ¼ QUð Þ�V T.

Similarly, if m n, it may be more efficient to first perform an LQ factorization of A.

This chapter supports two primary algorithms for computing the SVD of a bidiagonal matrix. They are:

(i) the divide and conquer algorithm;

(ii) the QR algorithm.
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The divide and conquer algorithm is much faster than the QR algorithm if singular vectors of large
matrices are required.

2.4 The Singular Value Decomposition and Least Squares Problems

The SVD may be used to find a minimum norm solution to a (possibly) rank-deficient linear least
squares problem (1). The effective rank, k, of A can be determined as the number of singular values
which exceed a suitable threshold. Let �̂ be the leading k by k sub-matrix of �, and V̂ be the matrix
consisting of the first k columns of V . Then the solution is given by

x ¼ V̂ �̂�1ĉ1;

where ĉ1 consists of the first k elements of c ¼ UTb ¼ UT
2 U

T
1 b.

2.5 Generalized Linear Least Squares Problems

The simple type of linear least squares problem described in Section 2.1 can be generalized in various
ways.

1. Linear least squares problems with equality constraints:

find x to minimize S ¼ c�Axk k22 subject to Bx ¼ d;

where A is m by n and B is p by n, with p � n � mþ p. The equations Bx ¼ d may be regarded
as a set of equality constraints on the problem of minimizing S. Alternatively the problem may be
regarded as solving an overdetermined system of equations

A
B

� �
x ¼ c

d

� �
;

where some of the equations (those involving B) are to be solved exactly, and the others (those
involving A) are to be solved in a least squares sense. The problem has a unique solution on the

assumptions that B has full row rank p and the matrix A
B

� �
has full column rank n. (For linear

least squares problems with inequality constraints, refer to Chapter E04.)

2. General Gauss–Markov linear model problems:

minimize yk k2 subject to d ¼ AxþBy;

where A is m by n and B is m by p, with n � m � nþ p. When B ¼ I, the problem reduces to an
ordinary linear least squares problem. When B is square and nonsingular, it is equivalent to a
weighted linear least squares problem:

find x to minimize B�1 d�Axð Þ
�� ��

2
:

The problem has a unique solution on the assumptions that A has full column rank n, and the
matrix A;Bð Þ has full row rank m. Unless B is diagonal, for numerical stability it is generally
preferable to solve a weighted linear least squares problem as a general Gauss–Markov linear
model problem.

2.6 Generalized Orthogonal Factorization and Generalized Linear Least Squares
Problems

2.6.1 Generalized QR Factorization

The generalized QR (GQR) factorization of an n by m matrix A and an n by p matrix B is given by
the pair of factorizations

A ¼ QR and B ¼ QTZ;

where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if A and B
are complex). R has the form
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R ¼
�� m

m R11
n�m 0

; if n � m;

or

R ¼
�� n m� n

n R11 R12 ; if n < m;

where R11 is upper triangular. T has the form

T ¼
�� p� n n

n 0 T12 ; if n � p;

or

T ¼
�� p

n� p T11
p T21

; if n > p;

where T12 or T21 is upper triangular.

Note that if B is square and nonsingular, the GQR factorization of A and B implicitly gives the QR
factorization of the matrix B�1A:

B�1A ¼ ZT T�1R
� �

without explicitly computing the matrix inverse B�1 or the product B�1A (remembering that the inverse
of an invertible upper triangular matrix and the product of two upper triangular matrices is an upper
triangular matrix).

The GQR factorization can be used to solve the general (Gauss–Markov) linear model problem (GLM)
(see Section 2.5, but note that A and B are dimensioned differently there as m by n and p by n
respectively). Using the GQR factorization of A and B, we rewrite the equation d ¼ AxþBy as

QTd ¼ QTAxþQTBy
¼ Rxþ TZy:

We partition this as

d1
d2

� �
¼

�� m

m R11
n�m 0

xþ
�� p� nþm n�m

m T11 T12
n�m 0 T22

y1
y2

� �
where

d1
d2

� �
	 QTd; and y1

y2

� �
	 Zy:

The GLM problem is solved by setting

y1 ¼ 0 and y2 ¼ T�122 d2

from which we obtain the desired solutions

x ¼ R�111 d1 � T12y2ð Þ and y ¼ ZT 0
y2

� �
:

2.6.2 Generalized RQ Factorization

The generalized RQ (GRQ) factorization of an m by n matrix A and a p by n matrix B is given by
the pair of factorizations

A ¼ RQ; B ¼ ZTQ
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where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if A and B
are complex). R has the form

R ¼
��n�m m

m 0 R12 ; if m � n;

or

R ¼
�� n

m� n R11
n R21

; if m > n;

where R12 or R21 is upper triangular. T has the form

T ¼
�� n

n T11
p� n 0

; if p � n;

or

T ¼
�� p n� p

p T11 T12 ; if p < n;

where T11 is upper triangular.

Note that if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the RQ
factorization of the matrix AB�1:

AB�1 ¼ RT�1
� �

ZT

without explicitly computing the matrix B�1 or the product AB�1 (remembering that the inverse of an
invertible upper triangular matrix and the product of two upper triangular matrices is an upper
triangular matrix).

The GRQ factorization can be used to solve the linear equality-constrained least squares problem (LSE)
(see Section 2.5). We use the GRQ factorization of B and A (note that B and A have swapped roles),
written as

B ¼ TQ and A ¼ ZRQ:
We write the linear equality constraints Bx ¼ d as

TQx ¼ d;

which we partition as:

��n� p p

p 0 T12
x1
x2

� �
¼ d where x1

x2

� �
	 Qx:

Therefore x2 is the solution of the upper triangular system

T12x2 ¼ d:
Furthermore,

Ax� ck k2 ¼ ZTAx� ZTck k2
¼ RQx� ZTck k2

:

We partition this expression as:

��n� p p

n� p R11 R12
pþm� n 0 R22

x1
x2

� �
� c1

c2

� �
;

where c1
c2

� �
	 ZTc.
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To solve the LSE problem, we set

R11x1 þ R12x2 � c1 ¼ 0

which gives x1 as the solution of the upper triangular system

R11x1 ¼ c1 �R12x2:

Finally, the desired solution is given by

x ¼ QT x1
x2

� �
:

2.6.3 Generalized Singular Value Decomposition (GSVD)

The generalized (or quotient) singular value decomposition of an m by n matrix A and a p by n
matrix B is given by the pair of factorizations

A ¼ U�1 0; R½ �QT and B ¼ V�2 0; R½ �QT:

The matrices in these factorizations have the following properties:

– U is m by m, V is p by p, Q is n by n, and all three matrices are orthogonal. If A and B are
complex, these matrices are unitary instead of orthogonal, and QT should be replaced by QH in the
pair of factorizations.

– R is r by r, upper triangular and nonsingular. 0; R½ � is r by n (in other words, the 0 is an r by n� r

zero matrix). The integer r is the rank of A
B

� �
, and satisfies r � n.

– �1 is m by r, �2 is p by r, both are real, non-negative and diagonal, and �T
1�1 þ�T

2�2 ¼ I. Write
�T

1�1 ¼ diag �2
1; . . . ; �

2
r

� �
and �T

2�2 ¼ diag �21; . . . ; �
2
r

� �
, where �i and �i lie in the interval from 0

to 1. The ratios �1=�1; . . . ; �r=�r are called the generalized singular values of the pair A, B. If
�i ¼ 0, then the generalized singular value �i=�i is infinite.

�1 and �2 have the following detailed structures, depending on whether m � r or m < r. In the first
case, m � r, then

�1 ¼

1A0@
k l

k I 0
l 0 C

m� k� l 0 0
and �2 ¼

�� k l

l 0 S
p� l 0 0

:

Here l is the rank of B, k ¼ r� l, C and S are diagonal matrices satisfying C2 þ S2 ¼ I, and S is
nonsingular. We may also identify �1 ¼ � � � ¼ �k ¼ 1, �kþi ¼ cii, for i ¼ 1; 2; . . . ; l, �1 ¼ � � � ¼ �k ¼ 0,
and �kþi ¼ sii, for i ¼ 1; 2; . . . ; l. Thus, the first k generalized singular values �1=�1; . . . ; �k=�k are
infinite, and the remaining l generalized singular values are finite.

In the second case, when m < r,

�1 ¼
�� k m� k kþ l�m

k I 0 0
m� k 0 C 0

and

�2 ¼

1A0@
k m� k kþ l�m

m� k 0 S 0
kþ l�m 0 0 I

p� l 0 0 0
:

Again, l is the rank of B, k ¼ r� l, C and S are diagonal matrices satisfying C2 þ S2 ¼ I, and S is
nonsingular, and we may identify �1 ¼ � � � ¼ �k ¼ 1, �kþi ¼ cii, for i ¼ 1; 2; . . . ;m� k,
�mþ1 ¼ � � � ¼ �r ¼ 0, �1 ¼ � � � ¼ �k ¼ 0, �kþi ¼ sii, for i ¼ 1; 2; . . . ;m� k and �mþ1 ¼ � � � ¼ �r ¼ 1.
Thus, the first k generalized singular values �1=�1; . . . ; �k=�k are infinite, and the remaining l
generalized singular values are finite.
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Here are some important special cases of the generalized singular value decomposition. First, if B is
square and nonsingular, then r ¼ n and the generalized singular value decomposition of A and B is
equivalent to the singular value decomposition of AB�1, where the singular values of AB�1 are equal
to the generalized singular values of the pair A, B:

AB�1 ¼ U�1RQ
T

� �
V �2RQ

T
� ��1 ¼ U �1�

�1
2

� �
V T:

Second, for the matrix C, where

C 	 A
B

� �
if the columns of C are orthonormal, then r ¼ n, R ¼ I and the generalized singular value
decomposition of A and B is equivalent to the CS (Cosine–Sine) decomposition of C:

A
B

� �
¼ U 0

0 V

� �
�1
�2

� �
QT:

Third, the generalized eigenvalues and eigenvectors of ATA� �BTB can be expressed in terms of the
generalized singular value decomposition: Let

X ¼ Q I 0
0 R�1

� �
:

Then

XTATAX ¼ 0 0
0 �T

1�1

� �
and XTBTBX ¼ 0 0

0 �T
2�2

� �
:

Therefore, the columns of X are the eigenvectors of ATA� �BTB, and ‘nontrivial’ eigenvalues are the
squares of the generalized singular values (see also Section 2.8). ‘Trivial’ eigenvalues are those
corresponding to the leading n� r columns of X, which span the common null space of ATA and BTB.
The ‘trivial eigenvalues’ are not well defined.

2.6.4 The Full CS Decomposition of Orthogonal Matrices

In Section 2.6.3 the CS (Cosine-Sine) decomposition of an orthogonal matrix partitioned into two
submatrices A and B was given by

A
B

� �
¼ U 0

0 V

� �
�1
�2

� �
QT:

The full CS decomposition of an m by m orthogonal matrix X partitions X into four submatrices and
factorizes as

X11 X12
X21 X22

� �
¼ U1 0

0 U2

� �
�11 ��12
�21 �22

� �
V1 0
0 V2

� �T

where, X11 is a p by q submatrix (which implies the dimensions of X12, X21 and X22); U1, U2, V1 and
V2 are orthogonal matrices of dimensions p, m� p, q and m� q respectively; �11 is the p by q single-
diagonal matrix

�11 ¼

1A0@
k11 � r r q � k11

k11 � r I 0 0
r 0 C 0

p� k11 0 0
; k11 ¼ min p; qð Þ

�12 is the p by m� q single-diagonal matrix

�12 ¼

1A0@
m� q � k12 r k12 � r

p� k12 0 0
r 0 S 0

k12 � r 0 0 I

; k12 ¼ min p;m� qð Þ;

�21 is the m� p by q single-diagonal matrix
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�21 ¼

1A0@
q � k21 r k21 � r

m� p� k21 0 0
r 0 S 0

k21 � r 0 0 I

; k21 ¼ min m� p; qð Þ;

and, �21 is the m� p by q single-diagonal matrix

�22 ¼

1A0@
k22 � r r m� q � k22

k22 � r I 0 0
r 0 C 0

m� p� k22 0 0
; k22 ¼ min m� p;m� qð Þ

where r ¼ min p;m� p; q;m� qð Þ and the missing zeros remind us that either the column or the row is
missing. The r by r diagonal matrices C and S are such that C2 þ S2 ¼ I.
This is equivalent to the simultaneous singular value decomposition of the four submatrices X11, X12,
X21 and X22.

2.7 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors, z 6¼ 0,
such that

Az ¼ �z; A ¼ AT; where A is real:

For the Hermitian eigenvalue problem we have

Az ¼ �z; A ¼ AH; where A is complex:

For both problems the eigenvalues � are real.

When all eigenvalues and eigenvectors have been computed, we write

A ¼ Z�ZT or A ¼ Z�ZH if complex
� �

;

where � is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal (or
unitary) matrix whose columns are the eigenvectors. This is the classical spectral factorization of A.

The basic task of the symmetric eigenproblem routines is to compute values of � and, optionally,
corresponding vectors z for a given matrix A. This computation proceeds in the following stages.

1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T . If A is
real symmetric this decomposition is A ¼ QTQT with Q orthogonal and T symmetric tridiagonal.
If A is complex Hermitian, the decomposition is A ¼ QTQH with Q unitary and T , as before, real
symmetric tridiagonal.

2. Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix T are computed. If all
eigenvalues and eigenvectors are computed, this is equivalent to factorizing T as T ¼ S�ST, where
S is orthogonal and � is diagonal. The diagonal entries of � are the eigenvalues of T , which are
also the eigenvalues of A, and the columns of S are the eigenvectors of T ; the eigenvectors of A
are the columns of Z ¼ QS, so that A ¼ Z�ZT (Z�ZH when A is complex Hermitian).

This chapter supports four primary algorithms for computing eigenvalues and eigenvectors of real
symmetric matrices and complex Hermitian matrices. They are:

(i) the divide-and-conquer algorithm;

(ii) the QR algorithm;

(iii) bisection followed by inverse iteration;

(iv) the Relatively Robust Representation (RRR).

The divide-and-conquer algorithm is generally more efficient than the traditional QR algorithm for
computing all eigenvalues and eigenvectors, but the RRR algorithm tends to be fastest of all. For
further information and references see Anderson et al. (1999).

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 26 F08.13



2.8 Generalized Symmetric-definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az ¼ �Bz,
ABz ¼ �z, and BAz ¼ �z, where A and B are real symmetric or complex Hermitian and B is positive
definite. Each of these problems can be reduced to a standard symmetric eigenvalue problem, using a
Cholesky factorization of B as either B ¼ LLT or B ¼ UTU (LLH or UHU in the Hermitian case).

With B ¼ LLT, we have

Az ¼ �Bz) L�1AL�T
� �

LTz
� �

¼ � LTz
� �

:

Hence the eigenvalues of Az ¼ �Bz are those of Cy ¼ �y, where C is the symmetric matrix
C ¼ L�1AL�T and y ¼ LTz. In the complex case C is Hermitian with C ¼ L�1AL�H and y ¼ LHz.

Table 1 summarises how each of the three types of problem may be reduced to standard form Cy ¼ �y,
and how the eigenvectors z of the original problem may be recovered from the eigenvectors y of the
reduced problem. The table applies to real problems; for complex problems, transposed matrices must
be replaced by conjugate-transposes.

Type of problem Factorization of B Reduction Recovery of eigenvectors

1. Az ¼ �Bz B ¼ LLT,
B ¼ UTU

C ¼ L�1AL�T,
C ¼ U�TAU�1

z ¼ L�Ty,
z ¼ U�1y

2. ABz ¼ �z B ¼ LLT,
B ¼ UTU

C ¼ LTAL,
C ¼ UAUT

z ¼ L�Ty,
z ¼ U�1y

3. BAz ¼ �z B ¼ LLT,
B ¼ UTU

C ¼ LTAL,
C ¼ UAUT

z ¼ Ly,
z ¼ UTy

Table 1
Reduction of generalized symmetric-definite eigenproblems to standard problems

When the generalized symmetric-definite problem has been reduced to the corresponding standard
problem Cy ¼ �y, this may then be solved using the routines described in the previous section. No
special routines are needed to recover the eigenvectors z of the generalized problem from the
eigenvectors y of the standard problem, because these computations are simple applications of Level 2
or Level 3 BLAS (see Chapter F06).

2.9 Packed Storage for Symmetric Matrices

Routines which handle symmetric matrices are usually designed so that they use either the upper or
lower triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower
triangle is stored conventionally in the upper or lower triangle of a two-dimensional array, the
remaining elements of the array can be used to store other useful data. However, that is not always
convenient, and if it is important to economize on storage, the upper or lower triangle can be stored in a
one-dimensional array of length n nþ 1ð Þ=2; that is, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.2 in the F07 Chapter
Introduction.

Routines designed for packed storage are usually less efficient, especially on high-performance
computers, so there is a trade-off between storage and efficiency.

2.10 Band Matrices

A band matrix is one whose elements are confined to a relatively small number of subdiagonals or
superdiagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme for band matrices is described in
Section 3.3.4 in the F07 Chapter Introduction.
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If the problem is the generalized symmetric definite eigenvalue problem Az ¼ �Bz and the matrices A
and B are additionally banded, the matrix C as defined in Section 2.8 is, in general, full. We can reduce
the problem to a banded standard problem by modifying the definition of C thus:

C ¼ XTAX; where X ¼ U�1Q or L�TQ;

where Q is an orthogonal matrix chosen to ensure that C has bandwidth no greater than that of A.

A further refinement is possible when A and B are banded, which halves the amount of work required
to form C. Instead of the standard Cholesky factorization of B as UTU or LLT, we use a split Cholesky
factorization B ¼ STS, where

S ¼ U11
M21 L22

� �
with U11 upper triangular and L22 lower triangular of order approximately n=2; S has the same
bandwidth as B.

2.11 Nonsymmetric Eigenvalue Problems

The nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors,
v 6¼ 0, such that

Av ¼ �v:

More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u 6¼ 0
satisfying

uTA ¼ �uT uHA ¼ �uH when u is complex
� �

is called a left eigenvector of A.

A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs.

This problem can be solved via the Schur factorization of A, defined in the real case as

A ¼ ZTZT;

where Z is an orthogonal matrix and T is an upper quasi-triangular matrix with 1 by 1 and 2 by 2
diagonal blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the
complex case, the Schur factorization is

A ¼ ZTZH;

where Z is unitary and T is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 � k � n), the first k columns of Z form
an orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal
of T . Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors
rather than eigenvectors. It is possible to order the Schur factorization so that any desired set of k
eigenvalues occupy the k leading positions on the diagonal of T .

The two basic tasks of the nonsymmetric eigenvalue routines are to compute, for a given matrix A, all
n values of � and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and the
Schur factorization.

These two basic tasks can be performed in the following stages.

1. A general matrix A is reduced to upper Hessenberg form H which is zero below the first
subdiagonal. The reduction may be written A ¼ QHQT with Q orthogonal if A is real, or
A ¼ QHQH with Q unitary if A is complex.

2. The upper Hessenberg matrix H is reduced to Schur form T , giving the Schur factorization
H ¼ STST (for H real) or H ¼ STSH (for H complex). The matrix S (the Schur vectors of H)
may optionally be computed as well. Alternatively S may be postmultiplied into the matrix Q
determined in stage 1, to give the matrix Z ¼ QS, the Schur vectors of A. The eigenvalues are
obtained from the diagonal elements or diagonal blocks of T .
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3. Given the eigenvalues, the eigenvectors may be computed in two different ways. Inverse iteration
can be performed on H to compute the eigenvectors of H, and then the eigenvectors can be
multiplied by the matrix Q in order to transform them to eigenvectors of A. Alternatively the
eigenvectors of T can be computed, and optionally transformed to those of H or A if the matrix S
or Z is supplied.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix.
This is discussed further in Section 2.14.6 below.

2.12 Generalized Nonsymmetric Eigenvalue Problem

The generalized nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding
eigenvectors, v 6¼ 0, such that

Av ¼ �Bv:
More precisely, a vector v as just defined is called a right eigenvector of the matrix pair A;Bð Þ, and a
vector u 6¼ 0 satisfying

uTA ¼ �uTB uHA ¼ �uHB when u is complex
� �

is called a left eigenvector of the matrix pair A;Bð Þ.
If B is singular then the problem has one or more infinite eigenvalues � ¼ 1, corresponding to Bv ¼ 0.
Note that if A is nonsingular, then the equivalent problem �Av ¼ Bv is perfectly well defined and an
infinite eigenvalue corresponds to � ¼ 0. To deal with both finite (including zero) and infinite
eigenvalues, the routines in this chapter do not compute � explicitly, but rather return a pair of numbers
�; �ð Þ such that if � 6¼ 0

� ¼ �=�

and if � 6¼ 0 and � ¼ 0 then � ¼ 1. � is always returned as real and non-negative. Of course,
computationally an infinite eigenvalue may correspond to a small � rather than an exact zero.

For a given pair A;Bð Þ the set of all the matrices of the form A� �Bð Þ is called a matrix pencil and �
and v are said to be an eigenvalue and eigenvector of the pencil A� �Bð Þ. If A and B are both singular
and share a common null space then

det A� �Bð Þ 	 0

so that the pencil A� �Bð Þ is singular for all �. In other words any � can be regarded as an
eigenvalue. In exact arithmetic a singular pencil will have � ¼ � ¼ 0 for some �; �ð Þ. Computationally
if some pair �; �ð Þ is small then the pencil is singular, or nearly singular, and no reliance can be placed
on any of the computed eigenvalues. Singular pencils can also manifest themselves in other ways; see,
in particular, Sections 2.3.5.2 and 4.11.1.4 of Anderson et al. (1999) for further details.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of the pair
A;Bð Þ defined in the real case as

A ¼ QSZT; B ¼ QTZT;

where Q and Z are orthogonal, T is upper triangular with non-negative diagonal elements and S is
upper quasi-triangular with 1 by 1 and 2 by 2 diagonal blocks, the 2 by 2 blocks corresponding to
complex conjugate pairs of eigenvalues. In the complex case, the generalized Schur factorization is

A ¼ QSZH; B ¼ QTZH;

where Q and Z are unitary and S and T are upper triangular, with T having real non-negative diagonal
elements. The columns of Q and Z are called respectively the left and right generalized Schur vectors
and span pairs of deflating subspaces of A and B, which are a generalization of invariant subspaces.

It is possible to order the generalized Schur factorization so that any desired set of k eigenvalues
correspond to the k leading positions on the diagonals of the pair S; Tð Þ.
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The two basic tasks of the generalized nonsymmetric eigenvalue routines are to compute, for a given
pair A;Bð Þ, all n values of � and, if desired, their associated right eigenvectors v and/or left
eigenvectors u, and the generalized Schur factorization.

These two basic tasks can be performed in the following stages.

1. The matrix pair A;Bð Þ is reduced to generalized upper Hessenberg form H;Rð Þ, where H is upper
Hessenberg (zero below the first subdiagonal) and R is upper triangular. The reduction may be
written as A ¼ Q1HZ

T
1 ; B ¼ Q1RZ

T
1 in the real case with Q1 and Z1 orthogonal, and

A ¼ Q1HZ
H
1 ; B ¼ Q1RZ

H
1 in the complex case with Q1 and Z1 unitary.

2. The generalized upper Hessenberg form H;Rð Þ is reduced to the generalized Schur form S; Tð Þ
using the generalized Schur factorization H ¼ Q2SZ

T
2 , R ¼ Q2TZ

T
2 in the real case with Q2 and

Z2 orthogonal, and H ¼ Q2SZ
H
2 ; R ¼ Q2TZ

H
2 in the complex case. The generalized Schur vectors

of A;Bð Þ are given by Q ¼ Q1Q2, Z ¼ Z1Z2. The eigenvalues are obtained from the diagonal
elements (or blocks) of the pair S; Tð Þ.

3. Given the eigenvalues, the eigenvectors of the pair S; Tð Þ can be computed, and optionally
transformed to those of H;Rð Þ or A;Bð Þ.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix
pair. This is discussed further in Section 2.14.8 below.

2.13 The Sylvester Equation and the Generalized Sylvester Equation

The Sylvester equation is a matrix equation of the form

AX þXB ¼ C;

where A, B, and C are given matrices with A being m by m, B an n by n matrix and C, and the
solution matrix X, m by n matrices. The solution of a special case of this equation occurs in the
computation of the condition number for an invariant subspace, but a combination of routines in this
chapter allows the solution of the general Sylvester equation.

Routines are also provided for solving a special case of the generalized Sylvester equations

AR� LB ¼ C; DR� LE ¼ F;

where A;Dð Þ, B;Eð Þ and C; Fð Þ are given matrix pairs, and R and L are the solution matrices.

2.14 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data, on the solution to the problem. A number of the routines in this chapter return
information, such as condition numbers, that allow these effects to be assessed. First we discuss some
notation used in the error bounds of later sections.

The bounds usually contain the factor p nð Þ (or p m; nð Þ), which grows as a function of the matrix
dimension n (or matrix dimensions m and n). It measures how errors can grow as a function of the
matrix dimension, and represents a potentially different function for each problem. In practice, it
usually grows just linearly; p nð Þ � 10n is often true, although generally only much weaker bounds can
be actually proved. We normally describe p nð Þ as a ‘modestly growing’ function of n. For detailed
derivations of various p nð Þ, see Golub and Van Loan (2012) and Wilkinson (1965).

For linear equation (see Chapter F07) and least squares solvers, we consider bounds on the relative
error x� x̂k k= xk k in the computed solution x̂, where x is the true solution. For eigenvalue problems
we consider bounds on the error �i � �̂i

		 		 in the ith computed eigenvalue �̂i, where �i is the true ith
eigenvalue. For singular value problems we similarly consider bounds �i � �̂ij j.
Bounding the error in computed eigenvectors and singular vectors v̂i is more subtle because these
vectors are not unique: even though we restrict v̂ik k2 ¼ 1 and vik k2 ¼ 1, we may still multiply them by
arbitrary constants of absolute value 1. So to avoid ambiguity we bound the angular difference between
v̂i and the true vector vi, so that
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� vi; v̂ið Þ ¼ acute angle between vi and v̂i
¼ arccos vHi v̂i

		 		: ð2Þ

Here arccos �ð Þ is in the standard range: 0 � arccos �ð Þ < 	. When � vi; v̂ið Þ is small, we can choose a
constant � with absolute value 1 so that �vi � v̂ik k2 � � vi; v̂ið Þ.
In addition to bounds for individual eigenvectors, bounds can be obtained for the spaces spanned by
collections of eigenvectors. These may be much more accurately determined than the individual
eigenvectors which span them. These spaces are called invariant subspaces in the case of eigenvectors,
because if v is any vector in the space, Av is also in the space, where A is the matrix. Again, we will
use angle to measure the difference between a computed space Ŝ and the true space S:

� S; Ŝ
� �

¼ acute angle between S and Ŝ

¼ max
s2S
s6¼0

min
ŝ2Ŝ
ŝ6¼0

� s; ŝð Þ or max
ŝ2Ŝ
ŝ6¼0

min
s2S
s6¼0

� s; ŝð Þ ð3Þ

� S; Ŝ
� �

may be computed as follows. Let S be a matrix whose columns are orthonormal and spanS.

Similarly let Ŝ be an orthonormal matrix with columns spanning Ŝ. Then

� S; Ŝ
� �

¼ arccos�min SHŜ
� �

:

Finally, we remark on the accuracy of the bounds when they are large. Relative errors like x̂� xk k= xk k
and angular errors like � v̂i; við Þ are only of interest when they are much less than 1. Some stated bounds
are not strictly true when they are close to 1, but rigorous bounds are much more complicated and
supply little extra information in the interesting case of small errors. These bounds are indicated by
using the symbol �< , or ‘approximately less than’, instead of the usual �. Thus, when these bounds are
close to 1 or greater, they indicate that the computed answer may have no significant digits at all, but do
not otherwise bound the error.

A number of routines in this chapter return error estimates and/or condition number estimates directly.
In other cases Anderson et al. (1999) gives code fragments to illustrate the computation of these
estimates, and a number of the Chapter F08 example programs, for the driver routines, implement these
code fragments.

2.14.1Least squares problems

The conventional error analysis of linear least squares problems goes as follows. The problem is to find
the x minimizing Ax� bk k2. Let x̂ be the solution computed using one of the methods described above.
We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and
has full rank.

Then the computed solution x̂ has a small normwise backward error. In other words x̂ minimizes
Aþ Eð Þx̂� bþ fð Þk k2, where

max
Ek k2
Ak k2

;
fk k2
bk k2

� �
� p nð Þ�

and p nð Þ is a modestly growing function of n and � is the machine precision. Let
�2 Að Þ ¼ �max Að Þ=�min Að Þ, � ¼ Ax� bk k2, and sin �ð Þ ¼ �= bk k2. Then if p nð Þ� is small enough, the
error x̂� x is bounded by

x� x̂k k2
xk k2 �< p nð Þ� 2�2 Að Þ

cos �ð Þ þ tan �ð Þ�22 Að Þ

 �

:

If A is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See Golub and Van Loan (2012) for error bounds in this case, as
well as for the underdetermined case.

The solution of the overdetermined, full-rank problem may also be characterised as the solution of the
linear system of equations
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I A
AT 0

� �
r
x

� �
¼ b

0

� �
:

By solving this linear system (see Chapter F07) component-wise error bounds can also be obtained (see
Arioli et al. (1989)).

2.14.2The singular value decomposition

The usual error analysis of the SVD algorithm is as follows (see Golub and Van Loan (2012)).

The computed SVD, Û�̂V̂ T, is nearly the exact SVD of Aþ E, i.e., Aþ E ¼ Û þ �Û
� �

�̂ V̂ þ �V̂
� �

is

the true SVD, so that Û þ �Û and V̂ þ �V̂ are both orthogonal, where Ek k2= Ak k2 � p m; nð Þ�,
�Û
�� �� � p m; nð Þ�, and �V̂

�� �� � p m; nð Þ�. Here p m; nð Þ is a modestly growing function of m and n and
� is the machine precision. Each computed singular value �̂i differs from the true �i by an amount
satisfying the bound

�̂i � �ij j � p m; nð Þ��1:

Thus large singular values (those near �1) are computed to high relative accuracy and small ones may
not be.

The angular difference between the computed left singular vector ûi and the true ui satisfies the
approximate bound

� ûi; uið Þ �<
p m; nð Þ� Ak k2

gapi

where

gapi ¼ min
j 6¼i

�i � �j
		 		

is the absolute gap between �i and the nearest other singular value. Thus, if �i is close to other singular
values, its corresponding singular vector ui may be inaccurate. The same bound applies to the computed
right singular vector v̂i and the true vector vi. The gaps may be easily obtained from the computed
singular values.

Let Ŝ be the space spanned by a collection of computed left singular vectors ûi; i 2 If g, where I is a
subset of the integers from 1 to n. Let S be the corresponding true space. Then

� Ŝ; S
� �

�<
p m; nð Þ� Ak k2

gapI
:

where

gapI ¼ min �i � �j
		 		 for i 2 I; j =2 I
� 

is the absolute gap between the singular values in I and the nearest other singular value. Thus, a cluster
of close singular values which is far away from any other singular value may have a well determined
space Ŝ even if its individual singular vectors are ill-conditioned. The same bound applies to a set of
right singular vectors v̂i; i 2 If g.
In the special case of bidiagonal matrices, the singular values and singular vectors may be computed
much more accurately (see Demmel and Kahan (1990)). A bidiagonal matrix B has nonzero entries only
on the main diagonal and the diagonal immediately above it (or immediately below it). Reduction of a
dense matrix to bidiagonal form B can introduce additional errors, so the following bounds for the
bidiagonal case do not apply to the dense case.

Using the routines in this chapter, each computed singular value of a bidiagonal matrix is accurate to
nearly full relative accuracy, no matter how tiny it is, so that

�̂i � �ij j � p m; nð Þ��i:

F08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – F08

Mark 26 F08.19



The computed left singular vector ûi has an angular error at most about

� ûi; uið Þ �<
p m; nð Þ�
relgapi

where

relgapi ¼ min
j6¼i

�i � �j
		 		= �i þ �j� �

is the relative gap between �i and the nearest other singular value. The same bound applies to the right
singular vector v̂i and vi. Since the relative gap may be much larger than the absolute gap, this error
bound may be much smaller than the previous one. The relative gaps may be easily obtained from the
computed singular values.

2.14.3The symmetric eigenproblem

The usual error analysis of the symmetric eigenproblem is as follows (see Parlett (1998)).

The computed eigendecomposition Ẑ�̂ẐT is nearly the exact eigendecomposition of Aþ E, i.e.,

Aþ E ¼ Ẑ þ �Ẑ
� �

�̂ Ẑ þ �Ẑ
� �T

is the true eigendecomposition so that Ẑ þ �Ẑ is orthogonal, where

Ek k2= Ak k2 � p nð Þ� and �Ẑ
�� ��

2
� p nð Þ� and p nð Þ is a modestly growing function of n and � is the

machine precision. Each computed eigenvalue �̂i differs from the true �i by an amount satisfying the
bound

�̂i � �i
		 		 � p nð Þ� Ak k2:

Thus large eigenvalues (those near max
i
�ij j ¼ Ak k2) are computed to high relative accuracy and small

ones may not be.

The angular difference between the computed unit eigenvector ẑi and the true zi satisfies the
approximate bound

� ẑi; zið Þ �<
p nð Þ� Ak k2

gapi

if p nð Þ� is small enough, where

gapi ¼ min
j 6¼i

�i � �j
		 		

is the absolute gap between �i and the nearest other eigenvalue. Thus, if �i is close to other
eigenvalues, its corresponding eigenvector zi may be inaccurate. The gaps may be easily obtained from
the computed eigenvalues.

Let Ŝ be the invariant subspace spanned by a collection of eigenvectors ẑi; i 2 If g, where I is a subset
of the integers from 1 to n. Let S be the corresponding true subspace. Then

� Ŝ; S
� �

�<
p nð Þ� Ak k2

gapI

where

gapI ¼ min �i � �j
		 		 for i 2 I; j =2 I
� 

is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of
close eigenvalues which is far away from any other eigenvalue may have a well determined invariant
subspace Ŝ even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix T , routines in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson et al. (1999) for further details.
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2.14.4The generalized symmetric-definite eigenproblem

The three types of problem to be considered are A� �B, AB� �I and BA� �I. In each case A and B
are real symmetric (or complex Hermitian) and B is positive definite. We consider each case in turn,
assuming that routines in this chapter are used to transform the generalized problem to the standard
symmetric problem, followed by the solution of the symmetric problem. In all cases

gapi ¼ min
j 6¼i

�i � �j
		 		

is the absolute gap between �i and the nearest other eigenvalue.

1. A� �B. The computed eigenvalues �̂i can differ from the true eigenvalues �i by an amount

�̂i � �i
		 		 �< p nð Þ� B�1

�� ��
2
Ak k2:

The angular difference between the computed eigenvector ẑi and the true eigenvector zi is

� ẑi; zið Þ �<
p nð Þ� B�1

�� ��
2
Ak k2 �2 Bð Þð Þ1=2

gapi
:

2. AB� �I or BA� �I. The computed eigenvalues �̂i can differ from the true eigenvalues �i by an
amount

�̂i � �i
		 		 �< p nð Þ� Bk k2 Ak k2:

The angular difference between the computed eigenvector ẑi and the true eigenvector zi is

� ẑi; zið Þ �<
p nð Þ� Bk k2 Ak k2 �2 Bð Þð Þ1=2

gapi
:

These error bounds are large when B is ill-conditioned with respect to inversion (�2 Bð Þ is large). It is
often the case that the eigenvalues and eigenvectors are much better conditioned than indicated here.
One way to get tighter bounds is effective when the diagonal entries of B differ widely in magnitude, as
for example with a graded matrix.

1. A� �B. Let D ¼ diag b
�1=2
11 ; . . . ; b�1=2nn

� �
be a diagonal matrix. Then replace B by DBD and A by

DAD in the above bounds.

2. AB� �I or BA� �I. Let D ¼ diag b
�1=2
11 ; . . . ; b�1=2nn

� �
be a diagonal matrix. Then replace B by

DBD and A by D�1AD�1 in the above bounds.

Further details can be found in Anderson et al. (1999).

2.14.5The nonsymmetric eigenproblem

The nonsymmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem. In
this section, we just summarise the bounds. Further details can be found in Anderson et al. (1999).

We let �̂i be the ith computed eigenvalue and �i the ith true eigenvalue. Let v̂i be the corresponding
computed right eigenvector, and vi the true right eigenvector (so Avi ¼ �ivi). If I is a subset of the

integers from 1 to n, we let �I denote the average of the selected eigenvalues: �I ¼
P
i2I
�i

� �
=
P
i2I

1

� �
,

and similarly for �̂I. We also let SI denote the subspace spanned by vi; i 2 If g; it is called a right
invariant subspace because if v is any vector in SI then Av is also in SI . ŜI is the corresponding
computed subspace.

The algorithms for the nonsymmetric eigenproblem are normwise backward stable: they compute the
exact eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices Aþ Eð Þ, where
Ek k � p nð Þ� Ak k. Some of the bounds are stated in terms of Ek k2 and others in terms of Ek kF ; one
may use p nð Þ� for either quantity.
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Routines are provided so that, for each (�̂i; v̂i) pair the two values si and sepi, or for a selected subset I
of eigenvalues the values sI and sepI can be obtained, for which the error bounds in Table 2 are true for
sufficiently small Ek k, (which is why they are called asymptotic):

Simple eigenvalue �̂i � �i
		 		 �< Ek k2=si

Eigenvalue cluster �̂I � �I
		 		 �< Ek k2=sI

Eigenvector � v̂i; við Þ �< Ek kF=sepi

Invariant subspace � ŜI ; SI

� �
�< Ek kF=sepI

Table 2
Asymptotic error bounds for the nonsymmetric

eigenproblem

If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small Ek k. The
global error bounds of Table 3 are guaranteed to hold for all Ek kF < s� sep=4:

Simple
eigenvalue

�̂i � �i
		 		 � n Ek k2=si Holds for all E

Eigenvalue
cluster

�̂I � �I
		 		 � 2 Ek k2=sI Requires Ek kF < sI � sepI=4

Eigenvector � v̂i; við Þ � arctan 2 Ek kF= sepi � 4 Ek kF=si
� �� �

Requires Ek kF < si � sepi=4

Invariant
subspace

� ŜI ; SI

� �
� arctan 2 Ek kF= sepI � 4 Ek kF=sI

� �� � Requires Ek kF < sI � sepI=4

Table 3
Global error bounds for the nonsymmetric eigenproblem

2.14.6Balancing and condition for the nonsymmetric eigenproblem

There are two preprocessing steps one may perform on a matrix A in order to make its eigenproblem
easier. The first is permutation, or reordering the rows and columns to make A more nearly upper
triangular (closer to Schur form): A0 ¼ PAPT, where P is a permutation matrix. If A0 is permutable to
upper triangular form (or close to it), then no floating-point operations (or very few) are needed to
reduce it to Schur form. The second is scaling by a diagonal matrix D to make the rows and columns of
A0 more nearly equal in norm: A00 ¼ DA0D�1. Scaling can make the matrix norm smaller with respect
to the eigenvalues, and so possibly reduce the inaccuracy contributed by roundoff (see Chapter 11 of
Wilkinson and Reinsch (1971)). We refer to these two operations as balancing.

Permuting has no effect on the condition numbers or their interpretation as described previously.
Scaling, however, does change their interpretation and further details can be found in Anderson et al.
(1999).

2.14.7The generalized nonsymmetric eigenvalue problem

The algorithms for the generalized nonsymmetric eigenvalue problem are normwise backward stable:
they compute the exact eigenvalues (as the pairs �; �ð Þ), eigenvectors and deflating subspaces of
slightly perturbed pairs Aþ E;Bþ Fð Þ, where

E;Fð Þk kF � p nð Þ� A;Bð Þk kF :
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Asymptotic and global error bounds can be obtained, which are generalizations of those given in
Tables 2 and 3. See Section 4.11 of Anderson et al. (1999) for details. Routines are provided to
compute estimates of reciprocal conditions numbers for eigenvalues and eigenspaces.

2.14.8Balancing the generalized eigenvalue problem

As with the standard nonsymmetric eigenvalue problem, there are two preprocessing steps one may
perform on a matrix pair A;Bð Þ in order to make its eigenproblem easier; permutation and scaling,
which together are referred to as balancing, as indicated in the following two steps.

1. The balancing routine first attempts to permute A and B to block upper triangular form by a
similarity transformation:

PAPT ¼ F ¼
F11 F12 F13

F22 F23
F33

0@ 1A;

PBPT ¼ G ¼
G11 G12 G13

G22 G23
G33

0@ 1A;
where P is a permutation matrix, F11, F33, G11 and G33 are upper triangular. Then the diagonal
elements of the matrix F11; G11ð Þ and G33; H33ð Þ are generalized eigenvalues of A;Bð Þ. The rest of
the generalized eigenvalues are given by the matrix pair F22; G22ð Þ. Subsequent operations to
compute the eigenvalues of A;Bð Þ need only be applied to the matrix F22; G22ð Þ; this can save a
significant amount of work if F22; G22ð Þ is smaller than the original matrix pair A;Bð Þ. If no
suitable permutation exists (as is often the case), then there is no gain in efficiency or accuracy.

2. The balancing routine applies a diagonal similarity transformation to F;Gð Þ, to make the rows and
columns of F22; G22ð Þ as close as possible in the norm:

DFD�1 ¼
I

D22
I

0@ 1A F11 F12 F13
F22 F23

F33

0@ 1A I
D�122

I

0@ 1A;

DGD�1 ¼
I

D22
I

0@ 1A G11 G12 G13
G22 G23

G33

0@ 1A I
D�122

I

0@ 1A:
This transformation usually improves the accuracy of computed generalized eigenvalues and
eigenvectors. However, there are exceptional occasions when this transformation increases the
norm of the pencil; in this case accuracy could be lower with diagonal balancing.

See Anderson et al. (1999) for further details.

2.14.9Other problems

Error bounds for other problems such as the generalized linear least squares problem and generalized
singular value decomposition can be found in Anderson et al. (1999).

2.15 Block Partitioned Algorithms

A number of the routines in this chapter use what is termed a block partitioned algorithm. This means
that at each major step of the algorithm a block of rows or columns is updated, and much of the
computation is performed by matrix-matrix operations on these blocks. These matrix-matrix operations
make efficient use of computer memory and are key to achieving high performance. See Golub and Van
Loan (2012) or Anderson et al. (1999) for more about block partitioned algorithms.

The performance of a block partitioned algorithm varies to some extent with the block size – that is, the
number of rows or columns per block. This is a machine-dependent constant, which is set to a suitable
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value when the library is implemented on each range of machines. Block size affects the amount of
workspace that should be supplied to a particular routine. This is discussed in Section 3.4.3.

3 Recommendations on Choice and Use of Available Routines

3.1 Available Routines

The tables in the following sub-sections show the routines which are provided for performing different
computations on different types of matrices. Each entry in the table gives the NAG routine name and
the LAPACK double precision name(see Section 3.2).

Black box (or driver) routines are provided for the solution of most problems. In a number of cases
there are simple drivers, which just return the solution to the problem, as well as expert drivers, which
return additional information, such as condition number estimates, and may offer additional facilities
such as balancing. The following sub-sections give tables for the driver routines.

3.1.1 Driver routines

3.1.1.1 Linear least squares problems (LLS)

Operation real complex

solve LLS using QR or LQ factorization
solve LLS using complete orthogonal factorization
solve LLS using SVD
solve LLS using divide-and-conquer SVD

F08AAF (DGELS)
F08BAF (DGELSY)
F08KAF (DGELSS)
F08KCF (DGELSD)

F08ANF (ZGELS)
F08BNF (ZGELSY)
F08KNF (ZGELSS)
F08KQF (ZGELSD)

3.1.1.2 Generalized linear least squares problems (LSE and GLM)

Operation real complex

solve LSE problem using GRQ
solve GLM problem using GQR

F08ZAF (DGGLSE)
F08ZBF (DGGGLM)

F08ZNF (ZGGLSE)
F08ZPF (ZGGGLM)

3.1.1.3 Symmetric eigenvalue problems (SEP)

Function and storage scheme real complex

simple driver
divide-and-conquer driver
expert driver
RRR driver

F08FAF (DSYEV)
F08FCF (DSYEVD)
F08FBF (DSYEVX)
F08FDF (DSYEVR)

F08FNF (ZHEEV)
F08FQF (ZHEEVD)
F08FPF (ZHEEVX)
F08FRF (ZHEEVR)

packed storage
simple driver
divide-and-conquer driver
expert driver

F08GAF (DSPEV)
F08GCF (DSPEVD)
F08GBF (DSPEVX)

F08GNF (ZHPEV)
F08GQF (ZHPEVD)
F08GPF (ZHPEVX)
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band matrix
simple driver
divide-and-conquer driver
expert driver

F08HAF (DSBEV)
F08HCF (DSBEVD)
F08HBF (DSBEVX)

F08HNF (ZHBEV)
F08HQF (ZHBEVD)
F08HPF (ZHBEVX)

tridiagonal matrix
simple driver
divide-and-conquer driver
expert driver
RRR driver

F08JAF (DSTEV)
F08JCF (DSTEVD)
F08JBF (DSTEVX)
F08JDF (DSTEVR)

3.1.1.4 Nonsymmetric eigenvalue problem (NEP)

Function and storage scheme real complex

simple driver for Schur factorization
expert driver for Schur factorization
simple driver for eigenvalues/vectors
expert driver for eigenvalues/vectors

F08PAF (DGEES)
F08PBF (DGEESX)
F08NAF (DGEEV)
F08NBF (DGEEVX)

F08PNF (ZGEES)
F08PPF (ZGEESX)
F08NNF (ZGEEV)
F08NPF (ZGEEVX)

3.1.1.5 Singular value decomposition (SVD)

Function and storage scheme real complex

simple driver
divide-and-conquer driver
simple driver for one-sided Jacobi SVD
expert driver for one-sided Jacobi SVD

F08KBF (DGESVD)
F08KDF (DGESDD)
F08KJF (DGESVJ)
F08KHF (DGEJSV)

F08KPF (ZGESVD)
F08KRF (ZGESDD)

3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP)

Function and storage scheme real complex

simple driver
divide-and-conquer driver
expert driver

F08SAF (DSYGV)
F08SCF (DSYGVD)
F08SBF (DSYGVX)

F08SNF (ZHEGV)
F08SQF (ZHEGVD)
F08SPF (ZHEGVX)

packed storage
simple driver
divide-and-conquer driver
expert driver

F08TAF (DSPGV)
F08TCF (DSPGVD)
F08TBF (DSPGVX)

F08TNF (ZHPGV)
F08TQF (ZHPGVD)
F08TPF (ZHPGVX)

band matrix
simple driver
divide-and-conquer driver
expert driver

F08UAF (DSBGV)
F08UCF (DSBGVD)
F08UBF (DSBGVX)

F08UNF (ZHBGV)
F08UQF (ZHBGVD)
F08UPF (ZHBGVX)
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3.1.1.7 Generalized nonsymmetric eigenvalue problem (GNEP)

Function and storage scheme real complex

simple driver for Schur factorization
expert driver for Schur factorization
simple driver for eigenvalues/vectors
expert driver for eigenvalues/vectors

F08XCF (DGGES3)
F08XBF (DGGESX)
F08WCF (DGGEV3)
F08WBF (DGGEVX)

F08XQF (ZGGES3)
F08XPF (ZGGESX)
F08WQF (ZGGEV3)
F08WPF (ZGGEVX)

3.1.1.8 Generalized singular value decomposition (GSVD)

Function and storage scheme real complex

singular values/vectors F08VCF
(DGGSVD3)

F08VQF
(ZGGSVD3)

3.1.2 Computational routines

It is possible to solve problems by calling two or more routines in sequence. Some common sequences
of routines are indicated in the tables in the following sub-sections; an asterisk (�) against a routine
name means that the sequence of calls is illustrated in the example program for that routine.

3.1.2.1 Orthogonal factorizations

Routines are provided for QR factorization (with and without column pivoting), and for LQ, QL and
RQ factorizations (without pivoting only), of a general real or complex rectangular matrix. A routine is
also provided for the RQ factorization of a real or complex upper trapezoidal matrix. (LAPACK refers
to this as the RZ factorization.)

The factorization routines do not form the matrix Q explicitly, but represent it as a product of
elementary reflectors (see Section 3.3.6). Additional routines are provided to generate all or part of Q
explicitly if it is required, or to apply Q in its factored form to another matrix (specifically to compute
one of the matrix products QC, QTC, CQ or CQT with QT replaced by QH if C and Q are complex).

Factorize
without
pivoting

Factorize
with
pivoting

Factorize
(blocked)

Generate
matrix Q

Apply
matrix Q

Apply
Q (blocked)

QR factorization,
real matrices

F08AEF
(DGEQRF)

F08BFF
(DGEQP3)

F08ABF
(DGEQRT)

F08AFF
(DORGQR)

F08AGF
(DORMQR)

F08ACF
(DGEMQRT)

QR factorization,
real triangular-pentagonal

F08BBF
(DTPQRT)

F08BCF
(DTPMQRT)

LQ factorization,
real matrices

F08AHF
(DGELQF)

F08AJF
(DORGLQ)

F08AKF
(DORMLQ)

QL factorization,
real matrices

F08CEF
(DGEQLF)

F08CFF
(DORGQL)

F08CGF
(DORMQL)

RQ factorization,
real matrices

F08CHF
(DGERQF)

F08CJF
(DORGRQ)

F08CKF
(DORMRQ)

RQ factorization,
real upper trapezoidal matrices

F08BHF
(DTZRZF)

F08BKF
(DORMRZ)

QR factorization,
complex matrices

F08ASF
(ZGEQRF)

F08BTF
(ZGEQP3)

F08APF
(ZGEQRT)

F08ATF
(ZUNGQR)

F08AUF
(ZUNMQR)

F08AQF
(ZGEMQRT)

QR factorization,
complex triangular-pentagonal

F08BPF
(ZTPQRT)

F08BQF
(ZTPMQRT)

LQ factorization,
complex matrices

F08AVF
(ZGELQF)

F08AWF
(ZUNGLQ)

F08AXF
(ZUNMLQ)

QL factorization,
complex matrices

F08CSF
(ZGEQLF)

F08CTF
(ZUNGQL)

F08CUF
(ZUNMQL)
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RQ factorization,
complex matrices

F08CVF
(ZGERQF)

F08CWF
(ZUNGRQ)

F08CXF
(ZUNMRQ)

RQ factorization,
complex upper trapezoidal matrices

F08BVF
(ZTZRZF)

F08BXF
(ZUNMRZ)

To solve linear least squares problems, as described in Sections 2.2.1 or 2.2.3, routines based on the
QR factorization can be used:

real data, full-rank problem F08AAF (DGELS), F08AEF
(DGEQRF) and F08AGF
(DORMQR), F08ABF
(DGEQRT) and F08ACF
(DGEMQRT), F06YJF
(DTRSM)

complex data, full-rank problem F08ANF (ZGELS), F08ASF
(ZGEQRF) and F08AUF
(ZUNMQR), F08APF
(ZGEQRT) and F08AQF
(ZGEMQRT), F06ZJF
(ZTRSM)

real data, rank-deficient problem F08BFF (DGEQP3)*,
F06YJF (DTRSM), F08AGF
(DORMQR)

complex data, rank-deficient problem F08BTF (ZGEQP3)*,
F06ZJF (ZTRSM), F08AUF
(ZUNMQR)

To find the minimum norm solution of under-determined systems of linear equations, as described in
Section 2.2.2, routines based on the LQ factorization can be used:

real data, full-rank problem F08AHF (DGELQF)*,
F06YJF (DTRSM), F08AKF
(DORMLQ)

complex data, full-rank problem F08AVF (ZGELQF)*,
F06ZJF (ZTRSM), F08AXF
(ZUNMLQ)

3.1.2.2 Generalized orthogonal factorizations

Routines are provided for the generalized QR and RQ factorizations of real and complex matrix pairs.

Factorize

Generalized QR factorization, real matrices F08ZEF (DGGQRF)

Generalized RQ factorization, real matrices F08ZFF (DGGRQF)

Generalized QR factorization, complex matrices F08ZSF (ZGGQRF)

Generalized RQ factorization, complex matrices F08ZTF (ZGGRQF)

3.1.2.3 Singular value problems

Routines are provided to reduce a general real or complex rectangular matrix A to real bidiagonal form
B by an orthogonal transformation A ¼ QBPT (or by a unitary transformation A ¼ QBPH if A is
complex). Different routines allow a full matrix A to be stored conventionally (see Section 3.3.1), or a
band matrix to use band storage (see Section 3.3.4 in the F07 Chapter Introduction).
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The routines for reducing full matrices do not form the matrix Q or P explicitly; additional routines are
provided to generate all or part of them, or to apply them to another matrix, as with the routines for
orthogonal factorizations. Explicit generation of Q or P is required before using the bidiagonal QR
algorithm to compute left or right singular vectors of A.

The routines for reducing band matrices have options to generate Q or P if required.

Further routines are provided to compute all or part of the singular value decomposition of a real
bidiagonal matrix; the same routines can be used to compute the singular value decomposition of a real
or complex matrix that has been reduced to bidiagonal form.

Reduce to
bidiagonal
form

Generate
matrix Q
or PT

Apply
matrix Q
or P

Reduce band
matrix to
bidiagonal
form

SVD of
bidiagonal
form (QR
algorithm)

SVD of
bidiagonal
form (divide and
conquer)

real matrices F08KEF
(DGEBRD)

F08KFF
(DORGBR)

F08KGF
(DORMBR)

F08LEF
(DGBBRD)

F08MEF
(DBDSQR)

F08MDF
(DBDSDC)

complex matrices F08KSF
(ZGEBRD)

F08KTF
(ZUNGBR)

F08KUF
(ZUNMBR)

F08LSF
(ZGBBRD)

F08MSF
(ZBDSQR)

Given the singular values, F08FLF (DDISNA) is provided to compute the reciprocal condition numbers
for the left or right singular vectors of a real or complex matrix.

To compute the singular values and vectors of a rectangular matrix, as described in Section 2.3, use the
following sequence of calls:

Rectangular matrix (standard storage)

real matrix, singular values and vectors F08KEF (DGEBRD),
F08KFF (DORGBR)*,
F08MEF (DBDSQR)

complex matrix, singular values and vectors F08KSF (ZGEBRD),
F08KTF (ZUNGBR)*,
F08MSF (ZBDSQR)

Rectangular matrix (banded)

real matrix, singular values and vectors F08LEF (DGBBRD),
F08KFF (DORGBR),
F08MEF (DBDSQR)

complex matrix, singular values and vectors F08LSF (ZGBBRD),
F08KTF (ZUNGBR),
F08MSF (ZBDSQR)

To use the singular value decomposition to solve a linear least squares problem, as described in
Section 2.4, the following routines are required:

real data F06YAF (DGEMM),
F08KEF (DGEBRD),
F08KFF (DORGBR),
F08KGF (DORMBR),
F08MEF (DBDSQR)

complex data F06ZAF (ZGEMM), F08KSF
(ZGEBRD), F08KTF
(ZUNGBR), F08KUF
(ZUNMBR), F08MSF
(ZBDSQR)
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3.1.2.4 Generalized singular value decomposition

Routines are provided to compute the generalized SVD of a real or complex matrix pair A;Bð Þ in upper
trapezoidal form. Routines are also provided to reduce a general real or complex matrix pair to the
required upper trapezoidal form.

Reduce to
trapezoidal form

Generalized SVD
of trapezoidal form

real matrices F08VGF (DGGSVP3) F08YEF (DTGSJA)

complex matrices F08VUF (ZGGSVP3) F08YSF (ZTGSJA)

Routines are provided for the full CS decomposition of orthogonal and unitary matrices expressed as 2
by 2 partitions of submatrices. For real orthogonal matrices the CS decomposition is performed by
F08RAF (DORCSD), while for unitary matrices the equivalent routine is F08RNF (ZUNCSD).

3.1.2.5 Symmetric eigenvalue problems

Routines are provided to reduce a real symmetric or complex Hermitian matrix A to real tridiagonal
form T by an orthogonal similarity transformation A ¼ QTQT (or by a unitary transformation
A ¼ QTQH if A is complex). Different routines allow a full matrix A to be stored conventionally (see
Section 3.3.1 in the F07 Chapter Introduction) or in packed storage (see Section 3.3.2 in the F07
Chapter Introduction); or a band matrix to use band storage (see Section 3.3.4 in the F07 Chapter
Introduction).

The routines for reducing full matrices do not form the matrix Q explicitly; additional routines are
provided to generate Q, or to apply it to another matrix, as with the routines for orthogonal
factorizations. Explicit generation of Q is required before using the QR algorithm to find all the
eigenvectors of A; application of Q to another matrix is required after eigenvectors of T have been
found by inverse iteration, in order to transform them to eigenvectors of A.

The routines for reducing band matrices have an option to generate Q if required.

Reduce to
tridiagonal
form

Generate
matrix Q

Apply
matrix Q

real symmetric matrices F08FEF (DSYTRD) F08FFF (DORGTR) F08FGF (DORMTR)

real symmetric matrices
(packed storage)

F08GEF (DSPTRD) F08GFF (DOPGTR) F08GGF (DOPMTR)

real symmetric band matrices F08HEF (DSBTRD)

complex Hermitian
matrices

F08FSF (ZHETRD) F08FTF (ZUNGTR) F08FUF (ZUNMTR)

complex Hermitian matrices
(packed storage)

F08GSF (ZHPTRD) F08GTF (ZUPGTR) F08GUF (ZUPMTR)

complex Hermitian band ma-
trices

F08HSF (ZHBTRD)

Given the eigenvalues, F08FLF (DDISNA) is provided to compute the reciprocal condition numbers for
the eigenvectors of a real symmetric or complex Hermitian matrix.
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A variety of routines are provided to compute eigenvalues and eigenvectors of the real symmetric
tridiagonal matrix T , some computing all eigenvalues and eigenvectors, some computing selected
eigenvalues and eigenvectors. The same routines can be used to compute eigenvalues and eigenvectors
of a real symmetric or complex Hermitian matrix which has been reduced to tridiagonal form.

Eigenvalues and eigenvectors of real symmetric tridiagonal matrices:

The original (non-reduced) matrix is Real Symmetric or Complex Hermitian

all eigenvalues (root-free QR algorithm) F08JFF (DSTERF)
all eigenvalues (root-free QR algorithm called by divide-and-conquer) F08JCF (DSTEVD) or

F08JHF (DSTEDC)
all eigenvalues (RRR) F08JLF (DSTEGR)
selected eigenvalues (bisection) F08JJF (DSTEBZ)

The original (non-reduced) matrix is Real Symmetric

all eigenvalues and eigenvectors (QR algorithm) F08JEF (DSTEQR)
all eigenvalues and eigenvectors (divide-and-conquer) F08JCF (DSTEVD) or

F08JHF (DSTEDC)
all eigenvalues and eigenvectors (RRR) F08JLF (DSTEGR)
all eigenvalues and eigenvectors (positive definite case) F08JGF (DPTEQR)
selected eigenvectors (inverse iteration) F08JKF (DSTEIN)

The original (non-reduced) matrix is Complex Hermitian

all eigenvalues and eigenvectors (QR algorithm) F08JSF (ZSTEQR)
all eigenvalues and eigenvectors (divide and conquer) F08JVF (ZSTEDC)
all eigenvalues and eigenvectors (RRR) F08JYF (ZSTEGR)
all eigenvalues and eigenvectors (positive definite case) F08JUF (ZPTEQR)
selected eigenvectors (inverse iteration) F08JXF (ZSTEIN)

The following sequences of calls may be used to compute various combinations of eigenvalues and
eigenvectors, as described in Section 2.7.

Sequences for computing eigenvalues and eigenvectors

Real Symmetric matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer) F08FCF (DSYEVD)
all eigenvalues and eigenvectors (using QR algorithm) F08FEF (DSYTRD), F08FFF

(DORGTR)*, F08JEF
(DSTEQR)

all eigenvalues and eigenvectors (RRR) F08FEF (DSYTRD), F08FGF
(DORMTR), F08JLF
(DSTEGR)

selected eigenvalues and eigenvectors (bisection and inverse iteration) F08FEF (DSYTRD), F08FGF
(DORMTR), F08JJF
(DSTEBZ), F08JKF
(DSTEIN)*

Real Symmetric matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer) F08GCF (DSPEVD)
all eigenvalues and eigenvectors (using QR algorithm) F08GEF (DSPTRD), F08GFF

(DOPGTR) and F08JEF
(DSTEQR)
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all eigenvalues and eigenvectors (RRR) F08GEF (DSPTRD),
F08GGF (DOPMTR),
F08JLF (DSTEGR)

selected eigenvalues and eigenvectors (bisection and inverse iteration) F08GEF (DSPTRD),
F08GGF (DOPMTR), F08JJF
(DSTEBZ), F08JKF
(DSTEIN)*

Real Symmetric banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer) F08HCF (DSBEVD)
all eigenvalues and eigenvectors (using QR algorithm) F08HEF (DSBTRD)*,

F08JEF (DSTEQR)

Complex Hermitian matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer) F08FQF (ZHEEVD)
all eigenvalues and eigenvectors (using QR algorithm) F08FSF (ZHETRD), F08FTF

(ZUNGTR)*, F08JSF
(ZSTEQR)

all eigenvalues and eigenvectors (RRR) F08FSF (ZHETRD), F08FUF
(ZUNMTR), F08JYF
(ZSTEGR)

selected eigenvalues and eigenvectors (bisection and inverse iteration) F08FSF (ZHETRD), F08FUF
(ZUNMTR), F08JJF
(DSTEBZ), F08JXF
(ZSTEIN)*

Complex Hermitian matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer) F08GQF (ZHPEVD)
all eigenvalues and eigenvectors (using QR algorithm) F08GSF (ZHPTRD),

F08GTF (ZUPGTR)*,
F08JSF (ZSTEQR)

all eigenvalues and eigenvectors (RRR) F08GSF (ZHPTRD),
F08GUF (ZUPMTR) and
F08JYF (ZSTEGR)

selected eigenvalues and eigenvectors (bisection and inverse iteration) F08GSF (ZHPTRD),
F08GUF (ZUPMTR), F08JJF
(DSTEBZ), F08JXF
(ZSTEIN)*

Complex Hermitian banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer) F08HQF (ZHBEVD)
all eigenvalues and eigenvectors (using QR algorithm) F08HSF (ZHBTRD)*,

F08JSF (ZSTEQR)

3.1.2.6 Generalized symmetric-definite eigenvalue problems

Routines are provided for reducing each of the problems Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x to an
equivalent standard eigenvalue problem Cy ¼ �y. Different routines allow the matrices to be stored
either conventionally or in packed storage. The positive definite matrix B must first be factorized using
a routine from Chapter F07. There is also a routine which reduces the problem Ax ¼ �Bx where A and
B are banded, to an equivalent banded standard eigenvalue problem; this uses a split Cholesky
factorization for which a routine in Chapter F08 is provided.
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Reduce to
standard problem

Reduce to
standard problem
(packed storage)

Reduce to
standard problem
(band matrices)

real symmetric matrices F08SEF (DSYGST) F08TEF (DSPGST) F08UEF (DSBGST)

complex Hermitian matrices F08SSF (ZHEGST) F08TSF (ZHPGST) F08USF (ZHBGST)

The equivalent standard problem can then be solved using the routines discussed in Section 3.1.2.5. For
example, to compute all the eigenvalues, the following routines must be called:

real symmetric-definite problem F07FDF (DPOTRF), F08SEF
(DSYGST)*, F08FEF
(DSYTRD), F08JFF
(DSTERF)

real symmetric-definite problem, packed storage F07GDF (DPPTRF), F08TEF
(DSPGST)*, F08GEF
(DSPTRD), F08JFF
(DSTERF)

real symmetric-definite banded problem F08UFF (DPBSTF)*,
F08UEF (DSBGST)*,
F08HEF (DSBTRD), F08JFF
(DSTERF)

complex Hermitian-definite problem F07FRF (ZPOTRF), F08SSF
(ZHEGST)*, F08FSF
(ZHETRD), F08JFF
(DSTERF)

complex Hermitian-definite problem, packed storage F07GRF (ZPPTRF), F08TSF
(ZHPGST)*, F08GSF
(ZHPTRD), F08JFF
(DSTERF)

complex Hermitian-definite banded problem F08UTF (ZPBSTF)*,
F08USF (ZHBGST)*,
F08HSF (ZHBTRD), F08JFF
(DSTERF)

If eigenvectors are computed, the eigenvectors of the equivalent standard problem must be transformed
back to those of the original generalized problem, as indicated in Section 2.8; routines from Chapter
F06 may be used for this.

3.1.2.7 Nonsymmetric eigenvalue problems

Routines are provided to reduce a general real or complex matrix A to upper Hessenberg form H by an
orthogonal similarity transformation A ¼ QHQT (or by a unitary transformation A ¼ QHQH if A is
complex).

These routines do not form the matrix Q explicitly; additional routines are provided to generate Q, or to
apply it to another matrix, as with the routines for orthogonal factorizations. Explicit generation of Q is
required before using the QR algorithm on H to compute the Schur vectors; application of Q to another
matrix is needed after eigenvectors of H have been computed by inverse iteration, in order to transform
them to eigenvectors of A.

Routines are also provided to balance the matrix before reducing it to Hessenberg form, as described in
Section 2.14.6. Companion routines are required to transform Schur vectors or eigenvectors of the
balanced matrix to those of the original matrix.
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Reduce to
Hessenberg
form

Generate
matrix Q

Apply
matrix Q

Balance Back-
transform
vectors after
balancing

real matrices F08NEF
(DGEHRD)

F08NFF
(DORGHR)

F08NGF
(DORMHR)

F08NHF
(DGEBAL)

F08NJF
(DGEBAK)

complex matrices F08NSF
(ZGEHRD)

F08NTF
(ZUNGHR)

F08NUF
(ZUNMHR)

F08NVF
(ZGEBAL)

F08NWF
(ZGEBAK)

Routines are provided to compute the eigenvalues and all or part of the Schur factorization of an upper
Hessenberg matrix. Eigenvectors may be computed either from the upper Hessenberg form by inverse
iteration, or from the Schur form by back-substitution; these approaches are equally satisfactory for
computing individual eigenvectors, but the latter may provide a more accurate basis for a subspace
spanned by several eigenvectors.

Additional routines estimate the sensitivities of computed eigenvalues and eigenvectors, as discussed in
Section 2.14.5.

Eigenvalues and
Schur factorization
(QR algorithm)

Eigenvectors from
Hessenberg form
(inverse iteration)

Eigenvectors from
Schur factorization

Sensitivities of
eigenvalues and
eigenvectors

real matrices F08PEF (DHSEQR) F08PKF (DHSEIN) F08QKF (DTREVC) F08QLF (DTRSNA)

complex matrices F08PSF (ZHSEQR) F08PXF (ZHSEIN) F08QXF (ZTREVC) F08QYF (ZTRSNA)

Finally routines are provided for reordering the Schur factorization, so that eigenvalues appear in any
desired order on the diagonal of the Schur form. The routines F08QFF (DTREXC) and F08QTF
(ZTREXC) simply swap two diagonal elements or blocks, and may need to be called repeatedly to
achieve a desired order. The routines F08QGF (DTRSEN) and F08QUF (ZTRSEN) perform the whole
reordering process for the important special case where a specified cluster of eigenvalues is to appear at
the top of the Schur form; if the Schur vectors are reordered at the same time, they yield an
orthonormal basis for the invariant subspace corresponding to the specified cluster of eigenvalues.
These routines can also compute the sensitivities of the cluster of eigenvalues and the invariant
subspace.

Reorder
Schur factorization

Reorder
Schur factorization,
find basis for invariant
subspace and estimate
sensitivities

real matrices F08QFF (DTREXC) F08QGF (DTRSEN)

complex matrices F08QTF (ZTREXC) F08QUF (ZTRSEN)

The following sequences of calls may be used to compute various combinations of eigenvalues, Schur
vectors and eigenvectors, as described in Section 2.11:

real matrix, all eigenvalues and Schur factorization F08NEF (DGEHRD),
F08NFF (DORGHR)*,
F08PEF (DHSEQR)

real matrix, all eigenvalues and selected eigenvectors F08NEF (DGEHRD),
F08NGF (DORMHR),
F08PEF (DHSEQR), F08PKF
(DHSEIN)
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real matrix, all eigenvalues and eigenvectors (with balancing) F08NHF (DGEBAL)*,
F08NEF (DGEHRD),
F08NFF (DORGHR),
F08NJF (DGEBAK), F08PEF
(DHSEQR), F08PKF
(DHSEIN)

complex matrix, all eigenvalues and Schur factorization F08NSF (ZGEHRD),
F08NTF (ZUNGHR)*,
F08PSF (ZHSEQR)

complex matrix, all eigenvalues and selected eigenvectors F08NSF (ZGEHRD),
F08NUF (ZUNMHR),
F08PSF (ZHSEQR), F08PXF
(ZHSEIN)*

complex matrix, all eigenvalues and eigenvectors (with balancing) F08NVF (ZGEBAL)*,
F08NSF (ZGEHRD),
F08NTF (ZUNGHR),
F08NWF (ZGEBAK),
F08PSF (ZHSEQR), F08PXF
(ZHSEIN)

3.1.2.8 Generalized nonsymmetric eigenvalue problems

Routines are provided to reduce a real or complex matrix pair A1; R1ð Þ, where A1 is general and R1 is
upper triangular, to generalized upper Hessenberg form by orthogonal transformations A1 ¼ Q1HZ

T
1 ,

R1 ¼ Q1RZ
T
1 , (or by unitary transformations A1 ¼ Q1HZ

H
1 , R ¼ Q1R1Z

H
1 , in the complex case). These

routines can optionally return Q1 and/or Z1. Note that to transform a general matrix pair A;Bð Þ to the
form A1; R1ð Þ a QR factorization of B (B ¼ ~QR1) should first be performed and the matrix A1 obtained
as A1 ¼ ~QTA (see Section 3.1.2.1 above).

Routines are also provided to balance a general matrix pair before reducing it to generalized Hessenberg
form, as described in Section 2.14.8. Companion routines are provided to transform vectors of the
balanced pair to those of the original matrix pair.

Reduce to
generalized
Hessenberg form

Balance Backtransform
vectors after
balancing

real matrices F08WFF (DGGHD3) F08WHF (DGGBAL) F08WJF (DGGBAK)

complex matrices F08WTF (ZGGHD3) F08WVF (ZGGBAL) F08WWF (ZGGBAK)

Routines are provided to compute the eigenvalues (as the pairs �; �ð Þ) and all or part of the generalized
Schur factorization of a generalized upper Hessenberg matrix pair. Eigenvectors may be computed from
the generalized Schur form by back-substitution.

Additional routines estimate the sensitivities of computed eigenvalues and eigenvectors.

Eigenvalues and
generalized Schur
factorization
(QZ algorithm)

Eigenvectors from
generalized Schur
factorization

Sensitivities of
eigenvalues and
eigenvectors

real matrices F08XEF (DHGEQZ) F08YKF (DTGEVC) F08YLF (DTGSNA)

complex matrices F08XSF (ZHGEQZ) F08YXF (ZTGEVC) F08YYF (ZTGSNA)
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Finally, routines are provided for reordering the generalized Schur factorization so that eigenvalues
appear in any desired order on the diagonal of the generalized Schur form. F08YFF (DTGEXC) and
F08YTF (ZTGEXC) simply swap two diagonal elements or blocks, and may need to be called
repeatedly to achieve a desired order. F08YGF (DTGSEN) and F08YUF (ZTGSEN) perform the whole
reordering process for the important special case where a specified cluster of eigenvalues is to appear at
the top of the generalized Schur form; if the Schur vectors are reordered at the same time, they yield an
orthonormal basis for the deflating subspace corresponding to the specified cluster of eigenvalues.
These routines can also compute the sensitivities of the cluster of eigenvalues and the deflating
subspace.

Reorder generalized Schur
factorization

Reorder generalized Schur
factorization, find basis for
deflating subspace and
estimate sensitivites

real matrices F08YFF (DTGEXC) F08YGF (DTGSEN)

complex matrices F08YTF (ZTGEXC) F08YUF (ZTGSEN)

The following sequences of calls may be used to compute various combinations of eigenvalues,
generalized Schur vectors and eigenvectors

real matrix pair, all eigenvalues (with balancing) F08AEF (DGEQRF),
F08AGF (DORMQR) (or
F08ABF (DGEQRT),
F08ACF (DGEMQRT)),
F08WFF (DGGHD3),
F08WHF (DGGBAL),
F08XEF (DHGEQZ)*

real matrix pair, all eigenvalues and generalized Schur factorization F08AEF (DGEQRF),
F08AFF (DORGQR),
F08AGF (DORMQR) (or
F08ABF (DGEQRT),
F08ACF (DGEMQRT)),
F08WFF (DGGHD3),
F08XEF (DHGEQZ)

real matrix pair, all eigenvalues and eigenvectors (with balancing) F06QFF, F06QHF, F08AEF
(DGEQRF), F08AFF
(DORGQR), F08AGF
(DORMQR) (or F08ABF
(DGEQRT), F08ACF
(DGEMQRT)), F08WFF
(DGGHD3), F08WHF
(DGGBAL), F08XEF
(DHGEQZ), F08YKF
(DTGEVC)*, F08WJF
(DGGBAK)

complex matrix pair, all eigenvalues (with balancing) F08ASF (ZGEQRF),
F08AUF (ZUNMQR) (or
F08APF (ZGEQRT),
F08AQF (ZGEMQRT)),
F08WTF (ZGGHD3),
F08WVF (ZGGBAL),
F08XSF (ZHGEQZ)*
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complex matrix pair, all eigenvalues and generalized Schur factoriza-
tion

F08ASF (ZGEQRF), F08ATF
(ZUNGQR), F08AUF
(ZUNMQR) (or F08APF
(ZGEQRT), F08AQF
(ZGEMQRT)), F08WTF
(ZGGHD3), F08XSF
(ZHGEQZ)

complex matrix pair, all eigenvalues and eigenvectors (with balancing) F06TFF, F06THF, F08ASF
(ZGEQRF), F08ATF
(ZUNGQR), F08AUF
(ZUNMQR) (or F08APF
(ZGEQRT), F08AQF
(ZGEMQRT)), F08WTF
(ZGGHD3), F08WVF
(ZGGBAL), F08XSF
(ZHGEQZ), F08YXF
(ZTGEVC)*, F08WWF
(ZGGBAK)

3.1.2.9 The Sylvester equation and the generalized Sylvester equation

Routines are provided to solve the real or complex Sylvester equation AX 
XB ¼ C, where A and B
are upper quasi-triangular if real, or upper triangular if complex. To solve the general form of the
Sylvester equation in which A and B are general square matrices, A and B must be reduced to upper
(quasi-) triangular form by the Schur factorization, using routines described in Section 3.1.2.7. For more
details, see the documents for the routines listed below.

Solve the Sylvester equation

real matrices F08QHF (DTRSYL)

complex matrices F08QVF (ZTRSYL)

Routines are also provided to solve the real or complex generalized Sylvester equations

AR� LB ¼ C; DR� LE ¼ F;

where the pairs A;Dð Þ and B;Eð Þ are in generalized Schur form. To solve the general form of the
generalized Sylvester equation in which A;Dð Þ and B;Eð Þ are general matrix pairs, A;Dð Þ and B;Eð Þ
must first be reduced to generalized Schur form.

Solve the generalized Sylvester equation

real matrices F08YHF (DTGSYL)

complex matrices F08YVF (ZTGSYL)

3.2 NAG Names and LAPACK Names

As well as the NAG routine name (beginning F08), the tables in Section 3.1 show the LAPACK routine
names in double precision.

The routines may be called either by their NAG or LAPACK names. When using the NAG Library, the
double precision form of the LAPACK name must be used (beginning with D- or Z-).

References to Chapter F08 routines in the manual normally include the LAPACK double precision
names, for example F08AEF (DGEQRF). The LAPACK routine names follow a simple scheme (which
is similar to that used for the BLAS in Chapter F06). Each name has the structure XYYZZZ, where the
components have the following meanings:
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– the initial letter X indicates the data type (real or complex) and precision:

S – real, single precision (in Fortran 77, REAL)

D – real, double precision (in Fortran 77, DOUBLE PRECISION)

C – complex, single precision (in Fortran 77, COMPLEX)

Z – complex, double precision (in Fortran 77, COMPLEX*16 or DOUBLE COMPLEX)

– the second and third letters YY indicate the type of the matrix A or matrix pair A;Bð Þ (and in some
cases the storage scheme):

BD – bidiagonal

DI – diagonal

GB – general band

GE – general

GG – general pair (B may be triangular)

HB – (complex) Hermitian band

HE – Hermitian

HG – generalized upper Hessenberg

HP – Hermitian (packed storage)

HS – upper Hessenberg

OP – (real) orthogonal (packed storage)

OR – (real) orthogonal

PT – symmetric or Hermitian positive definite tridiagonal

SB – (real) symmetric band

SP – symmetric (packed storage)

ST – (real) symmetric tridiagonal

SY – symmetric

TG – triangular pair (one may be quasi-triangular)

TP – triangular-pentagonal

TR – triangular (or quasi-triangular)

UN – (complex) unitary

UP – (complex) unitary (packed storage)

– the last three letters ZZZ indicate the computation performed. For example, QRF is a QR
factorization.

Thus the routine DGEQRF performs a QR factorization of a real general matrix; the corresponding
routine for a complex general matrix is ZGEQRF.

3.3 Matrix Storage Schemes

In this chapter the following storage schemes are used for matrices:

– conventional storage in a two-dimensional array;

– packed storage for symmetric or Hermitian matrices;

– packed storage for orthogonal or unitary matrices;

– band storage for general, symmetric or Hermitian band matrices;
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– storage of bidiagonal, symmetric or Hermitian tridiagonal matrices in two one-dimensional
arrays.

These storage schemes are compatible with those used in Chapters F06 and F07, but different schemes
for packed, band and tridiagonal storage are used in a few older routines in Chapters F01, F02, F03 and
F04.

3.3.1 Conventional storage

Please see Section 3.3.1 in the F07 Chapter Introduction for full details.

3.3.2 Packed storage

Please see Section 3.3.2 in the F07 Chapter Introduction for full details.

3.3.3 Band storage

Please see Section 3.3.4 in the F07 Chapter Introduction for full details.

3.3.4 Tridiagonal and bidiagonal matrices

A symmetric tridiagonal or bidiagonal matrix is stored in two one-dimensional arrays, one of length n
containing the diagonal elements, and one of length n� 1 containing the off-diagonal elements. (Older
routines in Chapter F02 store the off-diagonal elements in elements 2 : n of a vector of length n.)

3.3.5 Real diagonal elements of complex matrices

Please see Section 3.3.6 in the F07 Chapter Introduction for full details.

3.3.6 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted Q) is often represented in the NAG
Library as a product of elementary reflectors – also referred to as elementary Householder matrices
(usually denoted Hi). For example,

Q ¼ H1H2 � � �Hk:

You need not be aware of the details, because routines are provided to work with this representation,
either to generate all or part of Q explicitly, or to multiply a given matrix by Q or QT (QH in the
complex case) without forming Q explicitly.

Nevertheless, the following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix of the
form

H ¼ I � �vvH ð4Þ

where � is a scalar, and v is an n-element vector, with �j j2 vk k22 ¼ 2� Re �ð Þ; v is often referred to as the
Householder vector. Often v has several leading or trailing zero elements, but for the purpose of this
discussion assume that H has no such special structure.

There is some redundancy in the representation 4ð Þ, which can be removed in various ways. The
representation used in Chapter F08 and in LAPACK (which differs from those used in some of the
routines in Chapters F01, F02, F04 and F06) sets v1 ¼ 1; hence v1 need not be stored. In real
arithmetic, 1 � � � 2, except that � ¼ 0 implies H ¼ I.
In complex arithmetic, � may be complex, and satisfies 1 � Re �ð Þ � 2 and � � 1j j � 1. Thus a complex
H is not Hermitian (as it is in other representations), but it is unitary, which is the important property.
The advantage of allowing � to be complex is that, given an arbitrary complex vector x;H can be
computed so that

HHx ¼ � 1; 0; . . . ; 0ð ÞT
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with real �. This is useful, for example, when reducing a complex Hermitian matrix to real symmetric
tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

3.4 Argument Conventions

3.4.1 Option Arguments

Most routines in this chapter have one or more option arguments, of type CHARACTER. The
descriptions in Section 5 of the routine documents refer only to upper case values (for example
UPLO ¼ U or UPLO ¼ L ); however in every case, the corresponding lower case characters may be
supplied (with the same meaning). Any other value is illegal.

A longer character string can be passed as the actual argument, making the calling program more
readable, but only the first character is significant. (This is a feature of Fortran 77.) For example:

CALL SSYTRD (’Upper’,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M or N) to be passed as zero, in which case
the computation (or part of it) is skipped. Negative dimensions are regarded as an error.

3.4.3 Length of work arrays

A number of routines implementing block algorithms require workspace sufficient to hold one block of
rows or columns of the matrix if they are to achieve optimum levels of performance – for example,
workspace of size n� nb, where nb is the optimal block size. In such cases, the actual declared length
of the work array must be passed as a separate argument LWORK, which immediately follows WORK
in the argument-list.

The blocked routines in this chapter allow you to perform a workspace query. In this case the routine
only calculates the optimal size of the WORK array, and returns this value as the first entry of the
WORK array. You are strongly encouraged to perform such a query before using a particular routine.
The routine will still perform correctly when less workspace is provided: it simply uses the largest
block size allowed by the amount of workspace supplied, as long as this is likely to give better
performance than the unblocked algorithm.

If LWORK indicates that there is insufficient workspace to perform the unblocked algorithm, this is
regarded as an illegal value of LWORK, and is treated like any other illegal argument value (see
Section 3.4.4).

3.4.4 Error-handling and the Diagnostic Argument INFO

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving the
argument IFAIL. Instead they have a diagnostic argument INFO. (Thus they preserve complete
compatibility with the LAPACK specification.)

Whereas IFAIL is an Input/Output argument and must be set before calling a routine, INFO is purely an
Output argument and need not be set before entry.

INFO indicates the success or failure of the computation, as follows:

INFO ¼ 0: successful termination;

INFO > 0: failure in the course of computation, control returned to the calling program.

If the routine document specifies that the routine may terminate with INFO > 0, then it is essential to
test INFO on exit from the routine. (This corresponds to a soft failure in terms of the usual NAG error-
handling terminology.) No error message is output.

All routines check that input arguments such as N or LDA or option arguments of type CHARACTER
have permitted values. If an illegal value of the ith argument is detected, INFO is set to �i, a message
is output, and execution of the program is terminated. (This corresponds to a hard failure in the usual
NAG terminology.) In some implementations, especially when linking to vendor versions of LAPACK,
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execution of the program may continue, in which case, it is essential to test INFO on exit from the
routine.

4 Decision Trees

The following decision trees are principally for the computation (general purpose) routines. See
Section 3.1.1.1 for tables of the driver (black box) routines.

4.1 General Purpose Routines (eigenvalues and eigenvectors)

Tree 1: Real Symmetric Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes

Is A tridiagonal?
yes

F08JCF or F08JFF

no

Is A band matrix?
yes

(F08HEF and F08JFF) or
F08HCF

no

Is one triangle of A stored
as a linear array? yes

(F08GEF and F08JFF) or
F08GCF

no

(F08FEF and F08JFF) or
F08FAF or F08FCF

no

Is A tridiagonal?
yes

F08JJF

no

Is A a band matrix?
yes

F08HEF and F08JJF

no

Is one triangle of A stored
as a linear array? yes

F08GEF and F08JJF

no

(F08FEF and F08JJF) or
F08FBF

no

Are all eigenvalues and
eigenvectors required? yes

Is A tridiagonal?
yes

F08JEF, F08JCF, F08JHF or
F08JLF

no

Is A a band matrix?
yes

(F08HEF and F08JEF) or
F08HCF

no

Is one triangle of A stored
as a linear array? yes

(F08GEF, F08GFF and
F08JEF) or F08GCF

no

(F08FEF, F08FFF and
F08JEF) or F08FAF or

F08FCF

no

Is A tridiagonal?
yes

F08JJF and F08JKF

no

Is one triangle of A stored
as a linear array? yes

F08GEF, F08JJF, F08JKF
and F08GGF

no

(F08FEF, F08JJF, F08JKF
and F08FGF) or F08FBF
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Tree 2: Real Generalized Symmetric-definite Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes

Are A and B band matrices?
yes

F08UFF, F08UEF, F08HEF
and F08JFF

no

Are A and B stored with
one triangle as a linear
array?

yes
F07GDF, F08TEF, F08GEF

and F08JFF

no

F07FDF, F08SEF, F08FEF
and F08JFF

no

Are A and B band matrices?
yes

F08UFF, F08UEF, F08HEF
and F08JJF

no

Are A and B stored with
one triangle as a linear
array?

yes
F07GDF, F08TEF, F08GEF

and F08JJF

no

F07FDF, F08SEF, F08GEF
and F08JJF

no

Are all eigenvalues and
eigenvectors required? yes

Are A and B stored with
one triangle as a linear
array?

yes

F07GDF, F08TEF, F08GEF,
F08GFF, F08JEF and

F06PLF

no

F07FDF, F08SEF, F08FEF,
F08FFF, F08JEF and

F06YJF

no

Are A and B band matrices?
yes

F08UFF, F08UEF, F08HEF,
F08JKF and F06YJF

no

Are A and B stored with
one triangle as a linear
array?

yes

F07GDF, F08TEF, F08GEF,
F08JJF, F08JKF, F08GGF

and F06PLF

no

F07FDF, F08SEF, F08FEF,
F08JJF, F08JKF, F08FGF

and F06YJF

Note: the routines for band matrices only handle the problem Ax ¼ �Bx; the other routines handle all
three types of problems (Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x) except that, if the problem is
BAx ¼ �x and eigenvectors are required, F06PHF must be used instead of F06PLF and F06YFF
instead of F06YJF.
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Tree 3: Real Nonsymmetric Eigenvalue Problems

Are eigenvalues required?
yes

Is A an upper Hessenberg matrix?
yes

F08PEF

no

F08NAF or F08NBF or (F08NHF,
F08NEF and F08PEF)

no

Is the Schur factorization of A required?
yes

Is A an upper Hessenberg matrix?
yes

F08PEF

no

F08NBF or (F08NEF, F08NFF, F08PEF
or F08NJF)

no

Are all eigenvectors required?
yes

Is A an upper Hessenberg matrix?
yes

F08PEF or F08QKF

no

F08NAF or F08NBF or (F08NHF,
F08NEF, F08NFF, F08PEF, F08QKF or

F08NJF)

no

Is A an upper Hessenberg matrix?
yes

F08PEF or F08PKF

no

F08NHF, F08NEF, F08PEF, F08PKF,
F08NGF or F08NJF

Tree 4: Real Generalized Nonsymmetric Eigenvalue Problems

Are eigenvalues only required?
yes

Are A and B in generalized upper
Hessenberg form? yes

F08XEF

no

F08WBF, or F08WHF and F08WCF

no

Is the generalized Schur factorization of
A and B required? yes

Are A and B in generalized upper
Hessenberg form? yes

F08XEF

no

F08XBF or F08XCF

no

Are A and B in generalized upper
Hessenberg form? yes

F08XEF and F08YKF

no

F08WBF, or F08WHF, F08WCF and
F08WJF
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Tree 5: Complex Hermitian Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes

Is A a band matrix?
yes

(F08HSF and F08JFF) or
F08HQF

no

Is one triangle of A stored
as a linear array? yes

(F08GSF and F08JFF) or
F08GQF

no

(F08FSF and F08JFF) or
F08FQF

no

Is A a band matrix?
yes

F08HSF and F08JJF

no

Is one triangle of A stored
as a linear array? yes

F08GSF and F08JJF

no

F08FSF and F08JJF

no

Are all eigenvalues and
eigenvectors required? yes

Is A a band matrix?
yes

(F08HSF and F08JSF) or
F08HQF

no

Is one triangle of A stored
as a linear array? yes

(F08GSF, F08GTF and
F08JSF) or F08GQF

no

(F08FSF, F08FTF and
F08JSF) or F08FQF

no

Is one triangle of A stored
as a linear array? yes

F08GSF, F08JJF, F08JXF
and F08GUF

no

F08FSF, F08JJF, F08JXF
and F08FUF
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Tree 6: Complex Generalized Hermitian-definite Eigenvalue Problems

Are eigenvalues only
required? yes

Are all eigenvalues
required? yes

Are A and B stored with
one triangle as a linear
array?

yes
F07GRF, F08TSF, F08GSF

and F08JFF

no

F07FRF, F08SSF, F08FSF
and F08JFF

no

Are A and B stored with
one triangle as a linear
array?

yes
F07GRF, F08TSF, F08GSF

and F08JJF

no

F07FRF, F08SSF, F08GSF
and F08JJF

no

Are all eigenvalues and
eigenvectors required? yes

Are A and B stored with
one triangle as a linear
array?

yes
F07GRF, F08TSF, F08GSF,

F08GTF and F06PSF

no

F07FRF, F08SSF, F08FSF,
F08FTF, F08JSF and

F06ZJF

no

Are A and B stored with
one triangle as a linear
array?

yes

F07GRF, F08TSF, F08GSF,
F08JJF, F08JXF, F08GUF

and F06SLF

no

F07FRF, F08SSF, F08FSF,
F08JJF, F08JXF, F08FUF

and F06ZJF

Tree 7: Complex non-Hermitian Eigenvalue Problems

Are eigenvalues only required?
yes

Is A an upper Hessenberg matrix?
yes

F08PSF

no

F08NVF, F08NSF and F08PSF

no

Is the Schur factorization of A required?
yes

Is A an upper Hessenberg matrix?
yes

F08PSF

no

F08NSF, F08NTF, F08PSF and
F08NWF

no

Are all eigenvectors required?
yes

Is A an upper Hessenberg matrix?
yes

F08PSF and F08QXF

no

F08NVF, F08NSF, F08NTF, F08PSF,
F08QXF and F08NWF

no

Is A an upper Hessenberg matrix?
yes

F08PSF and F08PXF

no

F08NVF, F08NSF, F08PSF, F08PXF,
F08NUF and F08NWF
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Tree 8: Complex Generalized non-Hermitian Eigenvalue Problems

Are eigenvalues only required?
yes

Are A and B in generalized upper
Hessenberg form? yes

F08XSF

no

F08WPF, or F08WQF and F08WVF

no

Is the generalized Schur factorization of
A and B required? yes

Are A and B in generalized upper
Hessenberg form? yes

F08XSF

no

F08XPF or F08XQF

no

Are A and B in generalized upper
Hessenberg form? yes

F08XSF and F08YXF

no

F08WPF, or F08WVF, F08WQF and
F08WWF

4.2 General Purpose Routines (singular value decomposition)

Tree 9: Singular Value Decomposition of a Matrix

Is A a complex matrix?
yes

Is A banded?
yes

F08LSF and F08MSF

no

Are singular values only required?
yes

F08KSF and F08MSF

no

F08KSF, F08KTF and F08MSF

no

Is A bidiagonal?
yes

F08MEF

no

Is A banded?
yes

F08LEF and F08MEF

no

Are singular values only required?
yes

F08KEF and F08MEF

no

F08KEF, F08KFF and F08MEF

Tree 10: Singular Value Decompositon of a Matrix Pair

Are A and B complex matrices
yes

F08VQF

no

F08VCF

5 Functionality Index

Backtransformation of eigenvectors from those of balanced forms,
complex matrix .......................................................................................... F08NWF (ZGEBAK)
real matrix.................................................................................................. F08NJF (DGEBAK)

Backtransformation of generalized eigenvectors from those of balanced forms,
complex matrix .......................................................................................... F08WWF (ZGGBAK)
real matrix.................................................................................................. F08WJF (DGGBAK)

Balancing,
complex general matrix.............................................................................. F08NVF (ZGEBAL)
complex general matrix pair ...................................................................... F08WVF (ZGGBAL)
real general matrix ..................................................................................... F08NHF (DGEBAL)
real general matrix pair.............................................................................. F08WHF (DGGBAL)
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Eigenvalue problems for condensed forms of matrices,
complex Hermitian matrix,

eigenvalues and eigenvectors,
band matrix,

all/selected eigenvalues and eigenvectors by root-free QR
algorithm.....................................................................................

F08HPF (ZHBEVX)

all eigenvalues and eigenvectors by a divide-and-conquer
algorithm, using packed storage..................................................

F08HQF (ZHBEVD)

all eigenvalues and eigenvectors by root-free QR algorithm...... F08HNF (ZHBEV)
general matrix,

all/selected eigenvalues and eigenvectors by root-free QR
algorithm.....................................................................................

F08FPF (ZHEEVX)

all/selected eigenvalues and eigenvectors by root-free QR
algorithm, using packed storage..................................................

F08GPF (ZHPEVX)

all/selected eigenvalues and eigenvectors using Relatively
Robust Representations ...............................................................

F08FRF (ZHEEVR)

all eigenvalues and eigenvectors by a divide-and-conquer
algorithm.....................................................................................

F08FQF (ZHEEVD)

all eigenvalues and eigenvectors by a divide-and-conquer
algorithm, using packed storage..................................................

F08GQF (ZHPEVD)

all eigenvalues and eigenvectors by root-free QR algorithm...... F08FNF (ZHEEV)
all eigenvalues and eigenvectors by root-free QR algorithm,
using packed storage...................................................................

F08GNF (ZHPEV)

eigenvalues only,
band matrix,

all/selected eigenvalues by the Pal–Walker–Kahan variant of the
QL or QR algorithm ..................................................................

F08HPF (ZHBEVX)

all eigenvalues by the Pal–Walker–Kahan variant of the QL or
QR algorithm..............................................................................

F08HNF (ZHBEV)

all eigenvalues by the Pal–Walker–Kahan variant of the QL or
QR algorithm, using packed storage...........................................

F08HQF (ZHBEVD)

general matrix,
all/selected eigenvalues by the Pal–Walker–Kahan variant of the
QL or QR algorithm ..................................................................

F08FPF (ZHEEVX)

all/selected eigenvalues by the Pal–Walker–Kahan variant of the
QL or QR algorithm, using packed storage ...............................

F08GPF (ZHPEVX)

all eigenvalues by the Pal–Walker–Kahan variant of the QL or
QR algorithm..............................................................................

F08FNF (ZHEEV)

all eigenvalues by the Pal–Walker–Kahan variant of the QL or
QR algorithm, using packed storage...........................................

F08GNF (ZHPEV)

complex upper Hessenberg matrix, reduced from complex general matrix,
eigenvalues and Schur factorization ...................................................... F08PSF (ZHSEQR)
selected right and/or left eigenvectors by inverse iteration................... F08PXF (ZHSEIN)

real bidiagonal matrix,
singular value decomposition,

after reduction from complex general matrix................................... F08MSF (ZBDSQR)
after reduction from real general matrix .......................................... F08MEF (DBDSQR)
after reduction from real general matrix, using divide-and-conquer F08MDF (DBDSDC)

real symmetric matrix,
eigenvalues and eigenvectors,

band matrix,
all/selected eigenvalues and eigenvectors by root-free QR
algorithm.....................................................................................

F08HBF (DSBEVX)

all eigenvalues and eigenvectors by a divide-and-conquer
algorithm.....................................................................................

F08HCF (DSBEVD)

all eigenvalues and eigenvectors by root-free QR algorithm...... F08HAF (DSBEV)
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general matrix,
all/selected eigenvalues and eigenvectors by root-free QR
algorithm.....................................................................................

F08FBF (DSYEVX)

all/selected eigenvalues and eigenvectors by root-free QR
algorithm, using packed storage..................................................

F08GBF (DSPEVX)

all/selected eigenvalues and eigenvectors using Relatively
Robust Representations ...............................................................

F08FDF (DSYEVR)

all eigenvalues and eigenvectors by a divide-and-conquer
algorithm.....................................................................................

F08FCF (DSYEVD)

all eigenvalues and eigenvectors by a divide-and-conquer
algorithm, using packed storage..................................................

F08GCF (DSPEVD)

all eigenvalues and eigenvectors by root-free QR algorithm...... F08FAF (DSYEV)
all eigenvalues and eigenvectors by root-free QR algorithm,
using packed storage...................................................................

F08GAF (DSPEV)

eigenvalues only,
band matrix,

all/selected eigenvalues by the Pal–Walker–Kahan variant of the
QL or QR algorithm ..................................................................

F08HBF (DSBEVX)

all eigenvalues by the Pal–Walker–Kahan variant of the QL or
QR algorithm..............................................................................

F08HAF (DSBEV)

general matrix,
all/selected eigenvalues by the Pal–Walker–Kahan variant of the
QL or QR algorithm ..................................................................

F08FBF (DSYEVX)

all/selected eigenvalues by the Pal–Walker–Kahan variant of the
QL or QR algorithm, using packed storage ...............................

F08GBF (DSPEVX)

all eigenvalues by the Pal–Walker–Kahan variant of the QL or
QR algorithm..............................................................................

F08FAF (DSYEV)

all eigenvalues by the Pal–Walker–Kahan variant of the QL or
QR algorithm, using packed storage...........................................

F08GAF (DSPEV)

real symmetric tridiagonal matrix,
eigenvalues and eigenvectors,

after reduction from complex Hermitian matrix,
all eigenvalues and eigenvectors ................................................. F08JSF (ZSTEQR)
all eigenvalues and eigenvectors, positive definite matrix .......... F08JUF (ZPTEQR)
all eigenvalues and eigenvectors, using divide-and-conquer ....... F08JVF (ZSTEDC)
all eigenvalues and eigenvectors, using Relatively Robust
Representations ...........................................................................

F08JYF (ZSTEGR)

selected eigenvectors by inverse iteration ................................... F08JXF (ZSTEIN)
all/selected eigenvalues and eigenvectors by root-free QR algorithm F08JBF (DSTEVX)
all/selected eigenvalues and eigenvectors using Relatively Robust
Representations ................................................................................

F08JDF (DSTEVR)

all eigenvalues and eigenvectors ...................................................... F08JEF (DSTEQR)
all eigenvalues and eigenvectors, by divide-and-conquer................. F08JHF (DSTEDC)
all eigenvalues and eigenvectors, positive definite matrix ............... F08JGF (DPTEQR)
all eigenvalues and eigenvectors, using Relatively Robust Repre-
sentations .........................................................................................

F08JLF (DSTEGR)

all eigenvalues and eigenvectors by a divide-and-conquer algorithm F08JCF (DSTEVD)
all eigenvalues and eigenvectors by root-free QR algorithm........... F08JAF (DSTEV)
selected eigenvectors by inverse iteration ........................................ F08JKF (DSTEIN)

eigenvalues only,
all/selected eigenvalues by the Pal–Walker–Kahan variant of the
QL or QR algorithm .......................................................................

F08JBF (DSTEVX)

all eigenvalues by root-free QR algorithm ...................................... F08JFF (DSTERF)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR
algorithm..........................................................................................

F08JAF (DSTEV)

selected eigenvalues only...................................................................... F08JJF (DSTEBZ)
real upper Hessenberg matrix, reduced from real general matrix,

eigenvalues and Schur factorization ...................................................... F08PEF (DHSEQR)
selected right and/or left eigenvectors by inverse iteration................... F08PKF (DHSEIN)
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Eigenvalue problems for nonsymmetric matrices,
complex matrix,

all eigenvalues, Schur form, Schur vectors and reciprocal condition
numbers.................................................................................................

F08PPF (ZGEESX)

all eigenvalues, Schur form and Schur vectors..................................... F08PNF (ZGEES)
all eigenvalues and left/right eigenvectors ............................................ F08NNF (ZGEEV)
all eigenvalues and left/right eigenvectors, plus balancing transforma-
tion and reciprocal condition numbers ..................................................

F08NPF (ZGEEVX)

real matrix,
all eigenvalues, real Schur form, Schur vectors and reciprocal condition
numbers.................................................................................................

F08PBF (DGEESX)

all eigenvalues, real Schur form and Schur vectors.............................. F08PAF (DGEES)
all eigenvalues and left/right eigenvectors ............................................ F08NAF (DGEEV)
all eigenvalues and left/right eigenvectors, plus balancing transforma-
tion and reciprocal condition numbers ..................................................

F08NBF (DGEEVX)

Eigenvalues and generalized Schur factorization,
complex generalized upper Hessenberg form............................................. F08XSF (ZHGEQZ)
real generalized upper Hessenberg form .................................................... F08XEF (DHGEQZ)

General Gauss–Markov linear model,
solves a complex general Gauss–Markov linear model problem ............... F08ZPF (ZGGGLM)
solves a real general Gauss–Markov linear model problem ...................... F08ZBF (DGGGLM)

Generalized eigenvalue problems for condensed forms of matrices,
complex Hermitian-definite eigenproblems,

banded matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm F08UQF (ZHBGVD)
all eigenvalues and eigenvectors by reduction to tridiagonal form.. F08UNF (ZHBGV)
selected eigenvalues and eigenvectors by reduction to tridiagonal
form .................................................................................................

F08UPF (ZHBGVX)

general matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm F08SQF (ZHEGVD)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm,
packed storage format ......................................................................

F08TQF (ZHPGVD)

all eigenvalues and eigenvectors by reduction to tridiagonal form.. F08SNF (ZHEGV)
all eigenvalues and eigenvectors by reduction to tridiagonal form,
packed storage format ......................................................................

F08TNF (ZHPGV)

selected eigenvalues and eigenvectors by reduction to tridiagonal
form .................................................................................................

F08SPF (ZHEGVX)

selected eigenvalues and eigenvectors by reduction to tridiagonal
form, packed storage format ............................................................

F08TPF (ZHPGVX)

real symmetric-definite eigenproblems,
banded matrices,

all eigenvalues and eigenvectors by a divide-and-conquer algorithm F08UCF (DSBGVD)
all eigenvalues and eigenvectors by reduction to tridiagonal form.. F08UAF (DSBGV)
selected eigenvalues and eigenvectors by reduction to tridiagonal
form .................................................................................................

F08UBF (DSBGVX)

general matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm F08SCF (DSYGVD)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm,
packed storage format ......................................................................

F08TCF (DSPGVD)

all eigenvalues and eigenvectors by reduction to tridiagonal form.. F08SAF (DSYGV)
all eigenvalues and eigenvectors by reduction to tridiagonal form,
packed storage format ......................................................................

F08TAF (DSPGV)

selected eigenvalues and eigenvectors by reduction to tridiagonal
form .................................................................................................

F08SBF (DSYGVX)

selected eigenvalues and eigenvectors by reduction to tridiagonal
form, packed storage format ............................................................

F08TBF (DSPGVX)

Introduction – F08 NAG Library Manual

F08.48 Mark 26



Generalized eigenvalue problems for nonsymmetric matrix pairs,
complex nonsymmetric matrix pairs,

all eigenvalues, generalized Schur form, Schur vectors and reciprocal
condition numbers.................................................................................

F08XPF (ZGGESX)

all eigenvalues, generalized Schur form and Schur vectors, deprecated F08XNF (ZGGES)
all eigenvalues, generalized Schur form and Schur vectors, using level
3 BLAS.................................................................................................

F08XQF (ZGGES3)

all eigenvalues and left/right eigenvectors, deprecated ......................... F08WNF (ZGGEV)
all eigenvalues and left/right eigenvectors, plus the balancing
transformation and reciprocal condition numbers..................................

F08WPF (ZGGEVX)

all eigenvalues and left/right eigenvectors, using level 3 BLAS .......... F08WQF (ZGGEV3)
real nonsymmetric matrix pairs,

all eigenvalues, generalized real Schur form and left/right Schur
vectors, deprecated................................................................................

F08XAF (DGGES)

all eigenvalues, generalized real Schur form and left/right Schur
vectors, plus reciprocal condition numbers ...........................................

F08XBF (DGGESX)

all eigenvalues, generalized real Schur form and left/right Schur
vectors, using level 3 BLAS.................................................................

F08XCF (DGGES3)

all eigenvalues and left/right eigenvectors, deprecated ......................... F08WAF (DGGEV)
all eigenvalues and left/right eigenvectors, plus the balancing
transformation and reciprocal condition numbers..................................

F08WBF (DGGEVX)

all eigenvalues and left/right eigenvectors, using level 3 BLAS .......... F08WCF (DGGEV3)

Generalized QR factorization,
complex matrices ....................................................................................... F08ZSF (ZGGQRF)
real matrices............................................................................................... F08ZEF (DGGQRF)

Generalized RQ factorization,
complex matrices ....................................................................................... F08ZTF (ZGGRQF)
real matrices............................................................................................... F08ZFF (DGGRQF)

Generalized singular value decomposition,
after reduction from complex general matrix,

complex triangular or trapezoidal matrix pair....................................... F08YSF (ZTGSJA)
after reduction from real general matrix,

real triangular or trapezoidal matrix pair .............................................. F08YEF (DTGSJA)
complex matrix pair, deprecated ................................................................ F08VNF (ZGGSVD)
complex matrix pair, using level 3 BLAS ................................................. F08VQF (ZGGSVD3)
partitioned orthogonal matrix (CS decomposition)..................................... F08RAF (DORCSD)
partitioned unitary matrix (CS decomposition) .......................................... F08RNF (ZUNCSD)
real matrix pair, deprecated ....................................................................... F08VAF (DGGSVD)
real matrix pair, using level 3 BLAS ........................................................ F08VCF (DGGSVD3)
reduction of a pair of general matrices to triangular or trapezoidal form,

complex matrices, deprecated................................................................ F08VSF (ZGGSVP)
complex matrices, using level 3 BLAS ................................................ F08VUF (ZGGSVP3)
real matrices, deprecated....................................................................... F08VEF (DGGSVP)
real matrices, using level 3 BLAS........................................................ F08VGF (DGGSVP3)

least squares problems,
complex matrices,

apply orthogonal matrix ........................................................................ F08BXF (ZUNMRZ)
minimum norm solution using a complete orthogonal factorization ..... F08BNF (ZGELSY)
minimum norm solution using the singular value decomposition ......... F08KNF (ZGELSS)
minimum norm solution using the singular value decomposition
(divide-and-conquer) .............................................................................

F08KQF (ZGELSD)

reduction of upper trapezoidal matrix to upper triangular form............ F08BVF (ZTZRZF)
real matrices,

apply orthogonal matrix ........................................................................ F08BKF (DORMRZ)
minimum norm solution using a complete orthogonal factorization ..... F08BAF (DGELSY)
minimum norm solution using the singular value decomposition ......... F08KAF (DGELSS)
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minimum norm solution using the singular value decomposition
(divide-and-conquer) .............................................................................

F08KCF (DGELSD)

reduction of upper trapezoidal matrix to upper triangular form............ F08BHF (DTZRZF)

least squares problems with linear equality constraints,
complex matrices,

minimum norm solution subject to linear equality constraints using a
generalized RQ factorization ................................................................

F08ZNF (ZGGLSE)

real matrices,
minimum norm solution subject to linear equality constraints using a
generalized RQ factorization ................................................................

F08ZAF (DGGLSE)

Left and right eigenvectors of a pair of matrices,
complex upper triangular matrices ............................................................. F08YXF (ZTGEVC)
real quasi-triangular matrices ..................................................................... F08YKF (DTGEVC)

LQ factorization and related operations,
complex matrices,

apply unitary matrix.............................................................................. F08AXF (ZUNMLQ)
factorization .......................................................................................... F08AVF (ZGELQF)
form all or part of unitary matrix......................................................... F08AWF (ZUNGLQ)

real matrices,
apply orthogonal matrix ........................................................................ F08AKF (DORMLQ)
factorization .......................................................................................... F08AHF (DGELQF)
form all or part of orthogonal matrix ................................................... F08AJF (DORGLQ)

Operations on eigenvectors of a real symmetric or complex Hermitian matrix,
or singular vectors of a general matrix,

estimate condition numbers........................................................................ F08FLF (DDISNA)

Operations on generalized Schur factorization of a general matrix pair,
complex matrix,

estimate condition numbers of eigenvalues and/or eigenvectors ........... F08YYF (ZTGSNA)
re-order Schur factorization .................................................................. F08YTF (ZTGEXC)
re-order Schur factorization, compute generalized eigenvalues and
condition numbers.................................................................................

F08YUF (ZTGSEN)

real matrix,
estimate condition numbers of eigenvalues and/or eigenvectors ........... F08YLF (DTGSNA)
re-order Schur factorization .................................................................. F08YFF (DTGEXC)
re-order Schur factorization, compute generalized eigenvalues and
condition numbers.................................................................................

F08YGF (DTGSEN)

Operations on Schur factorization of a general matrix,
complex matrix,

compute left and/or right eigenvectors.................................................. F08QXF (ZTREVC)
estimate sensitivities of eigenvalues and/or eigenvectors ...................... F08QYF (ZTRSNA)
re-order Schur factorization .................................................................. F08QTF (ZTREXC)
re-order Schur factorization, compute basis of invariant subspace, and
estimate sensitivities..............................................................................

F08QUF (ZTRSEN)

real matrix,
compute left and/or right eigenvectors.................................................. F08QKF (DTREVC)
estimate sensitivities of eigenvalues and/or eigenvectors ...................... F08QLF (DTRSNA)
re-order Schur factorization .................................................................. F08QFF (DTREXC)
re-order Schur factorization, compute basis of invariant subspace, and
estimate sensitivities..............................................................................

F08QGF (DTRSEN)

Overdetermined and underdetermined linear systems,
complex matrices,

solves an overdetermined or undetermined complex linear system....... F08ANF (ZGELS)
real matrices,

solves an overdetermined or undetermined real linear system.............. F08AAF (DGELS)
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Performs a reduction of eigenvalue problems to condensed forms, and related
operations,

real rectangular band matrix to upper bidiagonal form.............................. F08LEF (DGBBRD)

QL factorization and related operations,
complex matrices,

apply unitary matrix.............................................................................. F08CUF (ZUNMQL)
factorization .......................................................................................... F08CSF (ZGEQLF)
form all or part of unitary matrix......................................................... F08CTF (ZUNGQL)

real matrices,
apply orthogonal matrix ........................................................................ F08CGF (DORMQL)
factorization .......................................................................................... F08CEF (DGEQLF)
form all or part of orthogonal matrix ................................................... F08CFF (DORGQL)

QR factorization and related operations,
complex matrices,

general matrices,
apply unitary matrix......................................................................... F08AUF (ZUNMQR)
apply unitary matrix, explicitly blocked .......................................... F08AQF (ZGEMQRT)
factorization ..................................................................................... F08ASF (ZGEQRF)
factorization,

with column pivoting, using BLAS-3 ......................................... F08BTF (ZGEQP3)
factorization, explicitly blocked ....................................................... F08APF (ZGEQRT)
factorization, with column pivoting ................................................. F08BSF (ZGEQPF)
form all or part of unitary matrix.................................................... F08ATF (ZUNGQR)

triangular-pentagonal matrices,
apply unitary matrix......................................................................... F08BQF (ZTPMQRT)
factorization ..................................................................................... F08BPF (ZTPQRT)

real matrices,
general matrices,

apply orthogonal matrix ................................................................... F08AGF (DORMQR)
apply orthogonal matrix, explicitly blocked..................................... F08ACF (DGEMQRT)
factorization,

with column pivoting, using BLAS-3 ......................................... F08BFF (DGEQP3)
factorization, orthogonal matrix ....................................................... F08AEF (DGEQRF)
factorization, with column pivoting ................................................. F08BEF (DGEQPF)
factorization, with explicit blocking................................................. F08ABF (DGEQRT)
form all or part of orthogonal matrix .............................................. F08AFF (DORGQR)

triangular-pentagonal matrices,
apply orthogonal matrix ................................................................... F08BBF (DTPQRT)
factorization ..................................................................................... F08BCF (DTPMQRT)

Reduction of a pair of general matrices to generalized upper Hessenberg form,
orthogonal reduction, real matrices, deprecated ......................................... F08WEF (DGGHRD)
orthogonal reduction, real matrices, using level 3 BLAS .......................... F08WFF (DGGHD3)
unitary reduction, complex matrices, deprecated........................................ F08WSF (ZGGHRD)
unitary reduction, complex matrices, using level 3 BLAS......................... F08WTF (ZGGHD3)

Reduction of eigenvalue problems to condensed forms, and related operations,
complex general matrix to upper Hessenberg form,

apply orthogonal matrix ........................................................................ F08NUF (ZUNMHR)
form orthogonal matrix ......................................................................... F08NTF (ZUNGHR)
reduce to Hessenberg form ................................................................... F08NSF (ZGEHRD)

complex Hermitian band matrix to real symmetric tridiagonal form ......... F08HSF (ZHBTRD)
complex Hermitian matrix to real symmetric tridiagonal form,

apply unitary matrix.............................................................................. F08FUF (ZUNMTR)
apply unitary matrix, packed storage .................................................... F08GUF (ZUPMTR)
form unitary matrix............................................................................... F08FTF (ZUNGTR)
form unitary matrix, packed storage ..................................................... F08GTF (ZUPGTR)
reduce to tridiagonal form .................................................................... F08FSF (ZHETRD)
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reduce to tridiagonal form, packed storage ........................................... F08GSF (ZHPTRD)
complex rectangular band matrix to real upper bidiagonal form ............... F08LSF (ZGBBRD)
complex rectangular matrix to real bidiagonal form,

apply unitary matrix.............................................................................. F08KUF (ZUNMBR)
form unitary matrix............................................................................... F08KTF (ZUNGBR)
reduce to bidiagonal form..................................................................... F08KSF (ZGEBRD)

real general matrix to upper Hessenberg form,
apply orthogonal matrix ........................................................................ F08NGF (DORMHR)
form orthogonal matrix ......................................................................... F08NFF (DORGHR)
reduce to Hessenberg form ................................................................... F08NEF (DGEHRD)

real rectangular matrix to bidiagonal form,
apply orthogonal matrix ........................................................................ F08KGF (DORMBR)
form orthogonal matrix ......................................................................... F08KFF (DORGBR)
reduce to bidiagonal form..................................................................... F08KEF (DGEBRD)

real symmetric band matrix to symmetric tridiagonal form....................... F08HEF (DSBTRD)
real symmetric matrix to symmetric tridiagonal form,

apply orthogonal matrix ........................................................................ F08FGF (DORMTR)
apply orthogonal matrix, packed storage .............................................. F08GGF (DOPMTR)
form orthogonal matrix ......................................................................... F08FFF (DORGTR)
form orthogonal matrix, packed storage................................................ F08GFF (DOPGTR)
reduce to tridiagonal form .................................................................... F08FEF (DSYTRD)
reduce to tridiagonal form, packed storage ........................................... F08GEF (DSPTRD)

Reduction of generalized eigenproblems to standard eigenproblems,
complex Hermitian-definite banded generalized eigenproblem Ax ¼ �Bx. F08USF (ZHBGST)
complex Hermitian-definite generalized eigenproblem Ax ¼ �Bx,
ABx ¼ �x or BAx ¼ �x ...........................................................................

F08SSF (ZHEGST)

complex Hermitian-definite generalized eigenproblem Ax ¼ �Bx,
ABx ¼ �x or BAx ¼ �x, packed storage..................................................

F08TSF (ZHPGST)

real symmetric-definite banded generalized eigenproblem Ax ¼ �Bx ....... F08UEF (DSBGST)
real symmetric-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x
or BAx ¼ �x .............................................................................................

F08SEF (DSYGST)

real symmetric-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x
or BAx ¼ �x, packed storage....................................................................

F08TEF (DSPGST)

RQ factorization and related operations,
complex matrices,

apply unitary matrix.............................................................................. F08CXF (ZUNMRQ)
factorization .......................................................................................... F08CVF (ZGERQF)
form all or part of unitary matrix......................................................... F08CWF (ZUNGRQ)

real matrices,
apply orthogonal matrix ........................................................................ F08CKF (DORMRQ)
factorization .......................................................................................... F08CHF (DGERQF)
form all or part of orthogonal matrix ................................................... F08CJF (DORGRQ)

Singular value decomposition,
complex matrix,

using a divide-and-conquer algorithm ................................................... F08KRF (ZGESDD)
using bidiagonal QR iteration............................................................... F08KPF (ZGESVD)

real matrix,
preconditioned Jacobi SVD using fast scaled rotations and de Rijks
pivoting .................................................................................................

F08KHF (DGEJSV)

using a divide-and-conquer algorithm ................................................... F08KDF (DGESDD)
using bidiagonal QR iteration............................................................... F08KBF (DGESVD)
using fast scaled rotation and de Rijks pivoting................................... F08KJF (DGESVJ)

Solve generalized Sylvester equation,
complex matrices ....................................................................................... F08YVF (ZTGSYL)
real matrices............................................................................................... F08YHF (DTGSYL)
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Solve reduced form of Sylvester matrix equation,
complex matrices ....................................................................................... F08QVF (ZTRSYL)
real matrices............................................................................................... F08QHF (DTRSYL)

Split Cholesky factorization,
complex Hermitian positive definite band matrix ...................................... F08UTF (ZPBSTF)
real symmetric positive definite band matrix ............................................. F08UFF (DPBSTF)

6 Auxiliary Routines Associated with Library Routine Arguments

F08PAZ nagf_lapack_dgees_dummy_select
See the description of the argument SELECT in F08PAF (DGEES) and F08PBF (DGEESX).

F08PNZ nagf_lapack_zgees_dummy_select
See the description of the argument SELECT in F08PNF (ZGEES) and F08PPF (ZGEESX).

F08XAZ nagf_lapack_dgges_dummy_selctg
See the description of the argument SELCTG in F08XAF (DGGES), F08XBF (DGGESX)
and F08XCF (DGGES3).

F08XNZ nagf_lapack_zgges_dummy_selctg
See the description of the argument SELCTG in F08XNF (ZGGES), F08XPF (ZGGESX)
and F08XQF (ZGGES3).

7 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

F08AAF (DGELS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AAF (DGELS) solves linear least squares problems of the form

min
x

b�Axk k2 or min
x

b�ATx
�� ��

2
;

where A is an m by n real matrix of full rank, using a QR or LQ factorization of A.

2 Specification

SUBROUTINE F08AAF (TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, INFO)

INTEGER M, N, NRHS, LDA, LDB, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), WORK(max(1,LWORK))
CHARACTER(1) TRANS

The routine may be called by its LAPACK name dgels.

3 Description

The following options are provided:

1. If TRANS ¼ N and m � n: find the least squares solution of an overdetermined system, i.e., solve
the least squares problem

min
x

b�Axk k2:

2. If TRANS ¼ N and m < n: find the minimum norm solution of an underdetermined system
Ax ¼ b.

3. If TRANS ¼ T and m � n: find the minimum norm solution of an undetermined system ATx ¼ b.
4. If TRANS ¼ T and m < n: find the least squares solution of an overdetermined system, i.e., solve

the least squares problem

min
x

b�ATx
�� ��

2
:

Several right-hand side vectors b and solution vectors x can be handled in a single call; they are stored
as the columns of the m by r right-hand side matrix B and the n by r solution matrix X.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: if TRANS ¼ N , the linear system involves A.
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If TRANS ¼ T , the linear system involves AT.

Constraint: TRANS ¼ N or T .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrices B and X.

Constraint: NRHS � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if M � N, A is overwritten by details of its QR factorization, as returned by F08AEF
(DGEQRF).

If M < N, A is overwritten by details of its LQ factorization, as returned by F08AHF
(DGELQF).

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AAF
(DGELS) is called.

Constraint: LDA � max 1;Mð Þ.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the matrix B of right-hand side vectors, stored in columns; B is m by r if
TRANS ¼ N , or n by r if TRANS ¼ T .

On exit: B is overwritten by the solution vectors, x, stored in columns:

if TRANS ¼ N and m � n, or TRANS ¼ T and m < n, elements 1 to min m;nð Þ in each
column of B contain the least squares solution vectors; the residual sum of squares for the
solution is given by the sum of squares of the modulus of elements min m;nð Þ þ 1ð Þ to
max m;nð Þ in that column;

otherwise, elements 1 to max m;nð Þ in each column of B contain the minimum norm
solution vectors.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08AAF
(DGELS) is called.

Constraint: LDB � max 1;M;Nð Þ.
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9: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

10: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08AAF (DGELS) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � min M;Nð Þ þmax 1;M;N;NRHSð Þ � nb,
where nb is the optimal block size.

Constraint: LWORK � min M;Nð Þ þmax 1;M;N;NRHSð Þ or LWORK ¼ �1.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, diagonal element i of the triangular factor of A is zero, so that A does not have full
rank; the least squares solution could not be computed.

7 Accuracy

See Section 4.5 of Anderson et al. (1999) for details of error bounds.

8 Parallelism and Performance

F08AAF (DGELS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08AAF (DGELS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to factorize A is approximately 2
3n

2 3m� nð Þ if
m � n and 2

3m
2 3n�mð Þ otherwise. Following the factorization the solution for a single vector x

requires O min m2; n2
� �� �

operations.

The complex analogue of this routine is F08ANF (ZGELS).

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08AAF

Mark 26 F08AAF.3



10 Example

This example solves the linear least squares problem

min
x

b�Axk k2;

where

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA and b ¼

�2:67
�0:55
3:34
�0:77
0:48
4:10

0BBBBB@

1CCCCCA:
The square root of the residual sum of squares is also output.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08aafe

! F08AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgels, dnrm2, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm
Integer :: i, info, lda, ldb, lwork, m, n, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F08AAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = n + nb*m
Allocate (a(lda,n),b(m),work(lwork))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)

! Solve the least squares problem min( norm2(b - Ax) ) for x

nrhs = 1
ldb = m

! The NAG name equivalent of dgels is f08aaf
Call dgels(’No transpose’,m,n,nrhs,a,lda,b,ldb,work,lwork,info)

! Print solution

Write (nout,*) ’Least squares solution’
Write (nout,99999) b(1:n)

! Compute and print estimate of the square root of the residual
! sum of squares
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! The NAG name equivalent of dnrm2 is f06ejf
rnorm = dnrm2(m-n,b(n+1),1)
Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99998) rnorm

99999 Format (1X,7F11.4)
99998 Format (3X,1P,E11.2)

End Program f08aafe

10.2 Program Data

F08AAF Example Program Data

6 4 :Values of M and N

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A

-2.67
-0.55
3.34

-0.77
0.48
4.10 :End of vector b

10.3 Program Results

F08AAF Example Program Results

Least squares solution
1.5339 1.8707 -1.5241 0.0392

Square root of the residual sum of squares
2.22E-02
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NAG Library Routine Document

F08ABF (DGEQRT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ABF (DGEQRT) recursively computes, with explicit blocking, the QR factorization of a real m by
n matrix.

2 Specification

SUBROUTINE F08ABF (M, N, NB, A, LDA, T, LDT, WORK, INFO)

INTEGER M, N, NB, LDA, LDT, INFO
REAL (KIND=nag_wp) A(LDA,*), T(LDT,*), WORK(NB*N)

The routine may be called by its LAPACK name dgeqrt.

3 Description

F08ABF (DGEQRT) forms the QR factorization of an arbitrary rectangular real m by n matrix. No
pivoting is performed.

It differs from F08AEF (DGEQRF) in that it: requires an explicit block size; stores reflector factors that
are upper triangular matrices of the chosen block size (rather than scalars); and recursively computes
the QR factorization based on the algorithm of Elmroth and Gustavson (2000).

If m � n, the factorization is given by:

A ¼ Q R
0

� �
;

where R is an n by n upper triangular matrix and Q is an m by m orthogonal matrix. It is sometimes
more convenient to write the factorization as

A ¼ Q1 Q2

� � R
0

� �
;

which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is upper trapezoidal, and the factorization can be written

A ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned represents a QR factorization of the first k
columns of the original matrix A.
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4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel QR Factorization Leads
to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605–624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: NB – INTEGER Input

On entry: the explicitly chosen block size to be used in computing the QR factorization. See
Section 9 for details.

Constraints:

NB � 1;
if min M;Nð Þ > 0, NB � min M;Nð Þ.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ABF
(DGEQRT) is called.

Constraint: LDA � max 1;Mð Þ.

6: TðLDT; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array T must be at least max 1;min M;Nð Þð Þ.

On exit: further details of the orthogonal matrix Q. The number of blocks is b ¼ k
NB

� �
, where

k ¼ min m;nð Þ and each block is of order NB except for the last block, which is of order
k� b� 1ð Þ � NB. For each of the blocks, an upper triangular block reflector factor is computed:
T1;T2; . . . ;Tb. These are stored in the NB by n matrix T as T ¼ T1jT2j . . . jTb½ �.
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7: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08ABF
(DGEQRT) is called.

Constraint: LDT � NB.

8: WORKðNB� NÞ – REAL (KIND=nag_wp) array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08ABF (DGEQRT) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ
if m < n.

To apply Q to an arbitrary real rectangular matrix C, F08ABF (DGEQRT) may be followed by a call to
F08ACF (DGEMQRT). For example,

CALL DGEMQRT(’Left’,’Transpose’,M,P,MIN(M,N),NB,A,LDA,T,LDT,C,LDC, &
WORK,INFO)

forms C ¼ QTC, where C is m by p.

To form the orthogonal matrix Q explicitly, simply initialize the m by m matrix C to the identity matrix
and form C ¼ QC using F08ACF (DGEMQRT) as above.

The block size, NB, used by F08ABF (DGEQRT) is supplied explicitly through the interface. For
moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the
algorithm with the optimal value being dependent on problem size and platform. A value of
NB ¼ 64 min m;nð Þ is likely to achieve good efficiency and it is unlikely that an optimal value
would exceed 340.

To compute a QR factorization with column pivoting, use F08BBF (DTPQRT) or F08BEF (DGEQPF).

The complex analogue of this routine is F08APF (ZGEQRT).
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10 Example

This example solves the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA and B ¼

�2:67 0:41
�0:55 �3:10
3:34 �4:01
�0:77 2:76
0:48 �6:17
4:10 0:21

0BBBBB@

1CCCCCA:

10.1 Program Text

Program f08abfe

! F08ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgemqrt, dgeqrt, dnrm2, dtrtrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nbmax = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, lda, ldb, ldt, &

lwork, m, n, nb, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), rnorm(:), t(:,:), &
work(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F08ABF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
nb = min(m,n,nbmax)
ldt = nb
lwork = nb*max(n,m)
Allocate (a(lda,n),b(ldb,nrhs),rnorm(nrhs),t(ldt,min(m,n)),work(lwork))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Compute the QR factorization of A
! The NAG name equivalent of dgeqrt is f08abf

Call dgeqrt(m,n,nb,a,lda,t,ldt,work,info)

! Compute C = (C1) = (Q**T)*B, storing the result in B
! (C2)
! The NAG name equivalent of dgemqrt is f08acf

Call dgemqrt(’Left’,’Transpose’,m,nrhs,n,nb,a,lda,t,ldt,b,ldb,work,info)

! Compute least squares solutions by back-substitution in
! R*X = C1
! The NAG name equivalent of dtrtrs is f07tef

Call dtrtrs(’Upper’,’No transpose’,’Non-Unit’,n,nrhs,a,lda,b,ldb,info)
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If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

! Print least squares solutions

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Least squares solution(s)’, &

ifail)

! Compute and print estimates of the square roots of the residual
! sums of squares

! The NAG name equivalent of dnrm2 is f06ejf
Do j = 1, nrhs

rnorm(j) = dnrm2(m-n,b(n+1,j),1)
End Do

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

End If

99999 Format (5X,1P,7E11.2)
End Program f08abfe

10.2 Program Data

F08ABF Example Program Data

6 4 2 : m, n and nrhs

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 : matrix A

-2.67 0.41
-0.55 -3.10
3.34 -4.01

-0.77 2.76
0.48 -6.17
4.10 0.21 : matrix B

10.3 Program Results

F08ABF Example Program Results

Least squares solution(s)
1 2

1 1.5339 -1.5753
2 1.8707 0.5559
3 -1.5241 1.3119
4 0.0392 2.9585

Square root(s) of the residual sum(s) of squares
2.22E-02 1.38E-02
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NAG Library Routine Document

F08ACF (DGEMQRT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ACF (DGEMQRT) multiplies an arbitrary real matrix C by the real orthogonal matrix Q from a QR
factorization computed by F08ABF (DGEQRT).

2 Specification

SUBROUTINE F08ACF (SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT, C, LDC,
WORK, INFO)

&

INTEGER M, N, K, NB, LDV, LDT, LDC, INFO
REAL (KIND=nag_wp) V(LDV,*), T(LDT,*), C(LDC,*), WORK(*)
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name dgemqrt.

3 Description

F08ACF (DGEMQRT) is intended to be used after a call to F08ABF (DGEQRT) which performs a QR
factorization of a real matrix A. The orthogonal matrix Q is represented as a product of elementary
reflectors.

This routine may be used to form one of the matrix products

QC;QTC;CQ or CQT;

overwriting the result on C (which may be any real rectangular matrix).

A common application of this routine is in solving linear least squares problems, as described in the
F08 Chapter Introduction and illustrated in Section 10 in F08ABF (DGEQRT).

4 References

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QT is to be applied to C.

SIDE ¼ L
Q or QT is applied to C from the left.

SIDE ¼ R
Q or QT is applied to C from the right.

Constraint: SIDE ¼ L or R .
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2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QT is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ T
QT is applied to C.

Constraint: TRANS ¼ N or T .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q. Usually
K ¼ min mA; nAð Þ where mA, nA are the dimensions of the matrix A supplied in a previous call
to F08ABF (DGEQRT).

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: NB – INTEGER Input

On entry: the block size used in the QR factorization performed in a previous call to F08ABF
(DGEQRT); this value must remain unchanged from that call.

Constraints:

NB � 1;
if K > 0, NB � K.

7: VðLDV; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array V must be at least max 1;Kð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08ABF
(DGEQRT) in the first k columns of its array argument A.

8: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08ACF
(DGEMQRT) is called.

Constraints:

if SIDE ¼ L , LDV � max 1;Mð Þ;
if SIDE ¼ R , LDV � max 1;Nð Þ.

9: TðLDT; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array T must be at least max 1;Kð Þ.
On entry: further details of the orthogonal matrix Q as returned by F08ABF (DGEQRT). The
number of blocks is b ¼ k

NB

� �
, where k ¼ min m;nð Þ and each block is of order NB except for the
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last block, which is of order k� b� 1ð Þ � NB. For the b blocks the upper triangular block
reflector factors T1;T2; . . . ;Tb are stored in the NB by n matrix T as T ¼ T1jT2j . . . jTb½ �.

10: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08ACF
(DGEMQRT) is called.

Constraint: LDT � NB.

11: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QTC or CQ or CQT as specified by SIDE and TRANS.

12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08ACF
(DGEMQRT) is called.

Constraint: LDC � max 1;Mð Þ.

13: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least N� NB if SIDE ¼ L and at least
M� NB if SIDE ¼ R .

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08ACF (DGEMQRT) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2nk 2m� kð Þ if SIDE ¼ L and
2mk 2n� kð Þ if SIDE ¼ R .
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The complex analogue of this routine is F08AQF (ZGEMQRT).

10 Example

See Section 10 in F08ABF (DGEQRT).
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NAG Library Routine Document

F08AEF (DGEQRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AEF (DGEQRF) computes the QR factorization of a real m by n matrix.

2 Specification

SUBROUTINE F08AEF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dgeqrf.

3 Description

F08AEF (DGEQRF) forms the QR factorization of an arbitrary rectangular real m by n matrix. No
pivoting is performed.

If m � n, the factorization is given by:

A ¼ Q R
0

� �
;

where R is an n by n upper triangular matrix and Q is an m by m orthogonal matrix. It is sometimes
more convenient to write the factorization as

A ¼ Q1 Q2

� � R
0

� �
;

which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

A ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned in the first k columns of the array A represents a
QR factorization of the first k columns of the original matrix A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AEF
(DGEQRF) is called.

Constraint: LDA � max 1;Mð Þ.

5: TAUð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;min M;Nð Þð Þ.
On exit: further details of the orthogonal matrix Q.

6: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08AEF (DGEQRF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08AEF (DGEQRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08AEF (DGEQRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ
if m < n.

To form the orthogonal matrix Q F08AEF (DGEQRF) may be followed by a call to F08AFF
(DORGQR):

CALL DORGQR(M,M,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)

but note that the second dimension of the array A must be at least M, which may be larger than was
required by F08AEF (DGEQRF).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

CALL DORGQR(M,N,N,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary real rectangular matrix C, F08AEF (DGEQRF) may be followed by a call to
F08AGF (DORMQR). For example,

CALL DORMQR(’Left’,’Transpose’,M,P,MIN(M,N),A,LDA,TAU,C,LDC,WORK, &
LWORK,INFO)

forms C ¼ QTC, where C is m by p.

To compute a QR factorization with column pivoting, use F08BBF (DTPQRT) or F08BEF (DGEQPF).

The complex analogue of this routine is F08ASF (ZGEQRF).

10 Example

This example solves the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08AEF

Mark 26 F08AEF.3



A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA and B ¼

�3:15 2:19
�0:11 �3:64
1:99 0:57
�2:70 8:23
0:26 �6:35
4:50 �1:48

0BBBBB@

1CCCCCA:

10.1 Program Text

Program f08aefe

! F08AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgeqrf, dnrm2, dormqr, dtrtrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, lda, ldb, lwork, &

m, n, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), rnorm(:), tau(:), &
work(:)

! .. Executable Statements ..
Write (nout,*) ’F08AEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
lwork = nb*n
Allocate (a(lda,n),b(ldb,nrhs),rnorm(nrhs),tau(n),work(lwork))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Compute the QR factorization of A
! The NAG name equivalent of dgeqrf is f08aef

Call dgeqrf(m,n,a,lda,tau,work,lwork,info)

! Compute C = (C1) = (Q**T)*B, storing the result in B
! (C2)
! The NAG name equivalent of dormqr is f08agf

Call dormqr(’Left’,’Transpose’,m,nrhs,n,a,lda,tau,b,ldb,work,lwork,info)

! Compute least squares solutions by back-substitution in
! R*X = C1
! The NAG name equivalent of dtrtrs is f07tef

Call dtrtrs(’Upper’,’No transpose’,’Non-Unit’,n,nrhs,a,lda,b,ldb,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

! Print least squares solutions

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
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ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Least squares solution(s)’, &

ifail)

! Compute and print estimates of the square roots of the residual
! sums of squares

! The NAG name equivalent of dnrm2 is f06ejf
Do j = 1, nrhs

rnorm(j) = dnrm2(m-n,b(n+1,j),1)
End Do

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

End If

99999 Format (5X,1P,7E11.2)
End Program f08aefe

10.2 Program Data

F08AEF Example Program Data

6 4 2 :Values of M, N and NRHS

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A

-2.67 0.41
-0.55 -3.10
3.34 -4.01

-0.77 2.76
0.48 -6.17
4.10 0.21 :End of matrix B

10.3 Program Results

F08AEF Example Program Results

Least squares solution(s)
1 2

1 1.5339 -1.5753
2 1.8707 0.5559
3 -1.5241 1.3119
4 0.0392 2.9585

Square root(s) of the residual sum(s) of squares
2.22E-02 1.38E-02
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NAG Library Routine Document

F08AFF (DORGQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AFF (DORGQR) generates all or part of the real orthogonal matrix Q from a QR factorization
computed by F08AEF (DGEQRF), F08BEF (DGEQPF) or F08BFF (DGEQP3).

2 Specification

SUBROUTINE F08AFF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, K, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dorgqr.

3 Description

F08AFF (DORGQR) is intended to be used after a call to F08AEF (DGEQRF), F08BEF (DGEQPF) or
F08BFF (DGEQP3). which perform a QR factorization of a real matrix A. The orthogonal matrix Q is
represented as a product of elementary reflectors.

This routine may be used to generate Q explicitly as a square matrix, or to form only its leading
columns.

Usually Q is determined from the QR factorization of an m by p matrix A with m � p. The whole of Q
may be computed by:

CALL DORGQR(M,M,P,A,LDA,TAU,WORK,LWORK,INFO)

(note that the array A must have at least m columns) or its leading p columns by:

CALL DORGQR(M,P,P,A,LDA,TAU,WORK,LWORK,INFO)

The columns of Q returned by the last call form an orthonormal basis for the space spanned by the
columns of A; thus F08AEF (DGEQRF) followed by F08AFF (DORGQR) can be used to orthogonalize
the columns of A.

The information returned by the QR factorization routines also yields the QR factorization of the
leading k columns of A, where k < p. The orthogonal matrix arising from this factorization can be
computed by:

CALL DORGQR(M,M,K,A,LDA,TAU,WORK,LWORK,INFO)

or its leading k columns by:

CALL DORGQR(M,K,K,A,LDA,TAU,WORK,LWORK,INFO)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the order of the orthogonal matrix Q.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix Q.

Constraint: M � N � 0.

3: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: N � K � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08AEF
(DGEQRF), F08BEF (DGEQPF) or F08BFF (DGEQP3).

On exit: the m by n matrix Q.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AFF
(DORGQR) is called.

Constraint: LDA � max 1;Mð Þ.

6: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08AEF (DGEQRF),
F08BEF (DGEQPF) or F08BFF (DGEQP3).

7: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08AFF (DORGQR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08AFF (DORGQR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08AFF (DORGQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4mnk� 2 mþ nð Þk2 þ 4
3k

3 ; when n ¼ k,
the number is approximately 2

3n
2 3m� nð Þ .

The complex analogue of this routine is F08ATF (ZUNGQR).

10 Example

This example forms the leading 4 columns of the orthogonal matrix Q from the QR factorization of the
matrix A, where

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA:

The columns of Q form an orthonormal basis for the space spanned by the columns of A.

10.1 Program Text

Program f08affe

! F08AFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgeqrf, dorgqr, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08AFF
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! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, m, n
Character (30) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F08AFF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = 64*n
Allocate (a(lda,n),tau(n),work(lwork))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Compute the QR factorization of A
! The NAG name equivalent of dgeqrf is f08aef

Call dgeqrf(m,n,a,lda,tau,work,lwork,info)

! Form the leading N columns of Q explicitly
! The NAG name equivalent of dorgqr is f08aff

Call dorgqr(m,n,n,a,lda,tau,work,lwork,info)

! Print the leading N columns of Q only

Write (nout,*)
Write (title,99999) n
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,m,n,a,lda,title,ifail)

99999 Format (’The leading ’,I2,’ columns of Q’)
End Program f08affe

10.2 Program Data

F08AFF Example Program Data
6 4 :Values of M and N

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A

10.3 Program Results

F08AFF Example Program Results

The leading 4 columns of Q
1 2 3 4

1 -0.1576 0.6744 -0.4571 0.4489
2 -0.5335 -0.3861 0.2583 0.3898
3 0.6358 -0.2928 0.0165 0.1930
4 -0.5335 -0.1692 -0.0834 -0.2350
5 0.0415 -0.1593 0.1475 0.7436
6 -0.0055 -0.5064 -0.8339 0.0335
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NAG Library Routine Document

F08AGF (DORMQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AGF (DORMQR) multiplies an arbitrary real matrix C by the real orthogonal matrix Q from a QR
factorization computed by F08AEF (DGEQRF), F08BEF (DGEQPF) or F08BFF (DGEQP3).

2 Specification

SUBROUTINE F08AGF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, K, LDA, LDC, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name dormqr.

3 Description

F08AGF (DORMQR) is intended to be used after a call to F08AEF (DGEQRF), F08BEF (DGEQPF) or
F08BFF (DGEQP3) which perform a QR factorization of a real matrix A. The orthogonal matrix Q is
represented as a product of elementary reflectors.

This routine may be used to form one of the matrix products

QC;QTC;CQ or CQT;

overwriting the result on C (which may be any real rectangular matrix).

A common application of this routine is in solving linear least squares problems, as described in the
F08 Chapter Introduction and illustrated in Section 10 in F08AEF (DGEQRF).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QT is to be applied to C.

SIDE ¼ L
Q or QT is applied to C from the left.

SIDE ¼ R
Q or QT is applied to C from the right.

Constraint: SIDE ¼ L or R .

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08AGF
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2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QT is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ T
QT is applied to C.

Constraint: TRANS ¼ N or T .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08AEF
(DGEQRF), F08BEF (DGEQPF) or F08BFF (DGEQP3).

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AGF
(DORMQR) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

8: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08AEF (DGEQRF),
F08BEF (DGEQPF) or F08BFF (DGEQP3).

9: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QTC or CQ or CQT as specified by SIDE and TRANS.
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10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08AGF
(DORMQR) is called.

Constraint: LDC � max 1;Mð Þ.

11: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08AGF (DORMQR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08AGF (DORMQR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08AGF (DORMQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 2nk 2m� kð Þ if SIDE ¼ L and
2mk 2n� kð Þ if SIDE ¼ R .

The complex analogue of this routine is F08AUF (ZUNMQR).

10 Example

See Section 10 in F08AEF (DGEQRF).
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NAG Library Routine Document

F08AHF (DGELQF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AHF (DGELQF) computes the LQ factorization of a real m by n matrix.

2 Specification

SUBROUTINE F08AHF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dgelqf.

3 Description

F08AHF (DGELQF) forms the LQ factorization of an arbitrary rectangular real m by n matrix. No
pivoting is performed.

If m � n, the factorization is given by:

A ¼ L 0
� �

Q

where L is an m by m lower triangular matrix and Q is an n by n orthogonal matrix. It is sometimes
more convenient to write the factorization as

A ¼ L 0
� � Q1

Q2

� �
which reduces to

A ¼ LQ1;

where Q1 consists of the first m rows of Q, and Q2 the remaining n�m rows.

If m > n, L is trapezoidal, and the factorization can be written

A ¼ L1
L2

� �
Q

where L1 is lower triangular and L2 is rectangular.

The LQ factorization of A is essentially the same as the QR factorization of AT, since

A ¼ L 0
� �

Q, AT ¼ QT LT

0

� �
:

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

Note also that for any k < m, the information returned in the first k rows of the array A represents an
LQ factorization of the first k rows of the original matrix A.

4 References

None.
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the elements above the diagonal are overwritten by details of the orthogonal
matrix Q and the lower triangle is overwritten by the corresponding elements of the m by m
lower triangular matrix L.

If m > n, the strictly upper triangular part is overwritten by details of the orthogonal matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n lower
trapezoidal matrix L.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AHF
(DGELQF) is called.

Constraint: LDA � max 1;Mð Þ.

5: TAUð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;min M;Nð Þð Þ.
On exit: further details of the orthogonal matrix Q.

6: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08AHF (DGELQF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � M� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Mð Þ or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08AHF (DGELQF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3m

2 3n�mð Þ if m � n or 2
3n

2 3m� nð Þ
if m > n.

To form the orthogonal matrix Q F08AHF (DGELQF) may be followed by a call to F08AJF
(DORGLQ):

CALL DORGLQ(N,N,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)

but note that the first dimension of the array A, specified by the argument LDA, must be at least N,
which may be larger than was required by F08AHF (DGELQF).

When m � n, it is often only the first m rows of Q that are required, and they may be formed by the
call:

CALL DORGLQ(M,N,M,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary real rectangular matrix C, F08AHF (DGELQF) may be followed by a call to
F08AKF (DORMLQ). For example,

CALL DORMLQ(’Left’,’Transpose’,M,P,MIN(M,N),A,LDA,TAU,C,LDC, &
WORK,LWORK,INFO)

forms the matrix product C ¼ QTC, where C is m by p.

The complex analogue of this routine is F08AVF (ZGELQF).

10 Example

This example finds the minimum norm solutions of the under-determined systems of linear equations

Ax1 ¼ b1 and Ax2 ¼ b2
where b1 and b2 are the columns of the matrix B,

A ¼
�5:42 3:28 �3:68 0:27 2:06 0:46
�1:65 �3:40 �3:20 �1:03 �4:06 �0:01
�0:37 2:35 1:90 4:31 �1:76 1:13
�3:15 �0:11 1:99 �2:70 0:26 4:50

0B@
1CA and B ¼

�2:87 �5:23
1:63 0:29
�3:52 4:76
0:45 �8:41

0B@
1CA:
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10.1 Program Text

Program f08ahfe

! F08AHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgelqf, dormlq, dtrsm, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, lwork, m, &

n, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:)
! .. Executable Statements ..

Write (nout,*) ’F08AHF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = n
lwork = 64*n
Allocate (a(lda,n),b(ldb,nrhs),tau(n),work(lwork))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Compute the LQ factorization of A
! The NAG name equivalent of dgelqf is f08ahf

Call dgelqf(m,n,a,lda,tau,work,lwork,info)

! Solve L*Y = B, storing the result in B
! The NAG name equivalent of dtrsm is f06yjf

Call dtrsm(’Left’,’Lower’,’No transpose’,’Non-Unit’,m,nrhs,one,a,lda,b, &
ldb)

! Set rows (M+1) to N of B to zero

If (m<n) Then
b(m+1:n,1:nrhs) = zero

End If

! Compute minimum-norm solution X = (Q**T)*B in B
! The NAG name equivalent of dormlq is f08akf

Call dormlq(’Left’,’Transpose’,n,nrhs,m,a,lda,tau,b,ldb,work,lwork,info)

! Print minimum-norm solution(s)

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Minimum-norm solution(s)’,ifail)

End Program f08ahfe
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10.2 Program Data

F08AHF Example Program Data
4 6 2 :Values of M, N and NRHS

-5.42 3.28 -3.68 0.27 2.06 0.46
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50 :End of matrix A
-2.87 -5.23
1.63 0.29

-3.52 4.76
0.45 -8.41 :End of matrix B

10.3 Program Results

F08AHF Example Program Results

Minimum-norm solution(s)
1 2

1 0.2371 0.7383
2 -0.4575 0.0158
3 -0.0085 -0.0161
4 -0.5192 1.0768
5 0.0239 -0.6436
6 -0.0543 -0.6613
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NAG Library Routine Document

F08AJF (DORGLQ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AJF (DORGLQ) generates all or part of the real orthogonal matrix Q from an LQ factorization
computed by F08AHF (DGELQF).

2 Specification

SUBROUTINE F08AJF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, K, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dorglq.

3 Description

F08AJF (DORGLQ) is intended to be used after a call to F08AHF (DGELQF), which performs an LQ
factorization of a real matrix A. The orthogonal matrix Q is represented as a product of elementary
reflectors.

This routine may be used to generate Q explicitly as a square matrix, or to form only its leading rows.

Usually Q is determined from the LQ factorization of a p by n matrix A with p � n. The whole of Q
may be computed by:

CALL DORGLQ(N,N,P,A,LDA,TAU,WORK,LWORK,INFO)

(note that the array A must have at least n rows) or its leading p rows by:

CALL DORGLQ(P,N,P,A,LDA,TAU,WORK,LWORK,INFO)

The rows of Q returned by the last call form an orthonormal basis for the space spanned by the rows of
A; thus F08AHF (DGELQF) followed by F08AJF (DORGLQ) can be used to orthogonalize the rows of
A.

The information returned by the LQ factorization routines also yields the LQ factorization of the
leading k rows of A, where k < p. The orthogonal matrix arising from this factorization can be
computed by:

CALL DORGLQ(N,N,K,A,LDA,TAU,WORK,LWORK,INFO)

or its leading k rows by:

CALL DORGLQ(K,N,K,A,LDA,TAU,WORK,LWORK,INFO)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix Q.

Constraint: M � 0.
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2: N – INTEGER Input

On entry: n, the number of columns of the matrix Q.

Constraint: N � M.

3: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: M � K � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08AHF
(DGELQF).

On exit: the m by n matrix Q.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AJF
(DORGLQ) is called.

Constraint: LDA � max 1;Mð Þ.

6: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08AHF (DGELQF).

7: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08AJF
(DORGLQ) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � M� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Mð Þ or LWORK ¼ �1.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08AJF (DORGLQ) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4mnk� 2 mþ nð Þk2 þ 4
3k

3 ; when
m ¼ k, the number is approximately 2

3m
2 3n�mð Þ .

The complex analogue of this routine is F08AWF (ZUNGLQ).

10 Example

This example forms the leading 4 rows of the orthogonal matrix Q from the LQ factorization of the
matrix A, where

A ¼
�5:42 3:28 �3:68 0:27 2:06 0:46
�1:65 �3:40 �3:20 �1:03 �4:06 �0:01
�0:37 2:35 1:90 4:31 �1:76 1:13
�3:15 �0:11 1:99 �2:70 0:26 4:50

0B@
1CA:

The rows of Q form an orthonormal basis for the space spanned by the rows of A.

10.1 Program Text

Program f08ajfe

! F08AJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgelqf, dorglq, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, m, n
Character (30) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F08AJF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = 64*m
Allocate (a(lda,n),tau(n),work(lwork))
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! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Compute the LQ factorization of A
! The NAG name equivalent of dgelqf is f08ahf

Call dgelqf(m,n,a,lda,tau,work,lwork,info)

! Form the leading M rows of Q explicitly
! The NAG name equivalent of dorglq is f08ajf

Call dorglq(m,n,m,a,lda,tau,work,lwork,info)

! Print the leading M rows of Q only

Write (nout,*)
Write (title,99999) m
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,m,n,a,lda,title,ifail)

99999 Format (’The leading ’,I2,’ rows of Q’)
End Program f08ajfe

10.2 Program Data

F08AJF Example Program Data
4 6 :Values of M and N

-5.42 3.28 -3.68 0.27 2.06 0.46
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50 :End of matrix A

10.3 Program Results

F08AJF Example Program Results

The leading 4 rows of Q
1 2 3 4 5 6

1 -0.7104 0.4299 -0.4824 0.0354 0.2700 0.0603
2 -0.2412 -0.5323 -0.4845 -0.1595 -0.6311 -0.0027
3 0.1287 -0.2619 -0.2108 -0.7447 0.5227 -0.2063
4 -0.3403 -0.0921 0.4546 -0.3869 -0.0465 0.7191
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NAG Library Routine Document

F08AKF (DORMLQ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AKF (DORMLQ) multiplies an arbitrary real matrix C by the real orthogonal matrix Q from an LQ
factorization computed by F08AHF (DGELQF).

2 Specification

SUBROUTINE F08AKF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, K, LDA, LDC, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name dormlq.

3 Description

F08AKF (DORMLQ) is intended to be used after a call to F08AHF (DGELQF), which performs an LQ
factorization of a real matrix A. The orthogonal matrix Q is represented as a product of elementary
reflectors.

This routine may be used to form one of the matrix products

QC;QTC;CQ or CQT;

overwriting the result on C (which may be any real rectangular matrix).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QT is to be applied to C.

SIDE ¼ L
Q or QT is applied to C from the left.

SIDE ¼ R
Q or QT is applied to C from the right.

Constraint: SIDE ¼ L or R .

2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QT is to be applied to C.

TRANS ¼ N
Q is applied to C.
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TRANS ¼ T
QT is applied to C.

Constraint: TRANS ¼ N or T .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: details of the vectors which define the elementary reflectors, as returned by F08AHF
(DGELQF).

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AKF
(DORMLQ) is called.

Constraint: LDA � max 1;Kð Þ.

8: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08AHF (DGELQF).

9: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QTC or CQ or CQT as specified by SIDE and TRANS.

10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08AKF
(DORMLQ) is called.

Constraint: LDC � max 1;Mð Þ.

11: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.
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12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08AKF (DORMLQ) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08AKF (DORMLQ) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2nk 2m� kð Þ if SIDE ¼ L and
2mk 2n� kð Þ if SIDE ¼ R .

The complex analogue of this routine is F08AXF (ZUNMLQ).

10 Example

See Section 10 in F08AHF (DGELQF).
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NAG Library Routine Document

F08ANF (ZGELS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ANF (ZGELS) solves linear least squares problems of the form

min
x

b�Axk k2 or min
x

b�AHx
�� ��

2
;

where A is an m by n complex matrix of full rank, using a QR or LQ factorization of A.

2 Specification

SUBROUTINE F08ANF (TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, INFO)

INTEGER M, N, NRHS, LDA, LDB, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), WORK(max(1,LWORK))
CHARACTER(1) TRANS

The routine may be called by its LAPACK name zgels.

3 Description

The following options are provided:

1. If TRANS ¼ N and m � n: find the least squares solution of an overdetermined system, i.e., solve
the least squares problem

min
x

b�Axk k2:

2. If TRANS ¼ N and m < n: find the minimum norm solution of an underdetermined system
Ax ¼ b.

3. If TRANS ¼ C and m � n: find the minimum norm solution of an undetermined system AHx ¼ b.
4. If TRANS ¼ C and m < n: find the least squares solution of an overdetermined system, i.e., solve

the least squares problem

min
x

b�AHx
�� ��

2
:

Several right-hand side vectors b and solution vectors x can be handled in a single call; they are stored
as the columns of the m by r right-hand side matrix B and the n by r solution matrix X.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: if TRANS ¼ N , the linear system involves A.
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If TRANS ¼ C , the linear system involves AH.

Constraint: TRANS ¼ N or C .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrices B and X.

Constraint: NRHS � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if M � N, A is overwritten by details of its QR factorization, as returned by F08ASF
(ZGEQRF).

If M < N, A is overwritten by details of its LQ factorization, as returned by F08AVF (ZGELQF).

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ANF
(ZGELS) is called.

Constraint: LDA � max 1;Mð Þ.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the matrix B of right-hand side vectors, stored in columns; B is m by r if
TRANS ¼ N , or n by r if TRANS ¼ C .

On exit: B is overwritten by the solution vectors, x, stored in columns:

if TRANS ¼ N and m � n, or TRANS ¼ C and m < n, elements 1 to min m;nð Þ in each
column of B contain the least squares solution vectors; the residual sum of squares for the
solution is given by the sum of squares of the modulus of elements min m;nð Þ þ 1ð Þ to
max m;nð Þ in that column;

otherwise, elements 1 to max m;nð Þ in each column of B contain the minimum norm
solution vectors.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08ANF
(ZGELS) is called.

Constraint: LDB � max 1;M;Nð Þ.

9: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.
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10: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08ANF (ZGELS) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � min M;Nð Þ þmax 1;M;N;NRHSð Þ � nb,
where nb is the optimal block size.

Constraint: LWORK � min M;Nð Þ þmax 1;M;N;NRHSð Þ or LWORK ¼ �1.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, diagonal element i of the triangular factor of A is zero, so that A does not have full
rank; the least squares solution could not be computed.

7 Accuracy

See Section 4.5 of Anderson et al. (1999) for details of error bounds.

8 Parallelism and Performance

F08ANF (ZGELS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08ANF (ZGELS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to factorize A is approximately 8
3n

2 3m� nð Þ if
m � n and 8

3m
2 3n�mð Þ otherwise. Following the factorization the solution for a single vector x

requires O min m2; n2
� �� �

operations.

The real analogue of this routine is F08AAF (DGELS).

10 Example

This example solves the linear least squares problem

min
x

b�Axk k2;

where
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A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA
and

b ¼

�2:09þ 1:93i
3:34� 3:53i
�4:94� 2:04i
0:17þ 4:23i
�5:19þ 3:63i
0:98þ 2:53i

0BBBBB@

1CCCCCA:
The square root of the residual sum of squares is also output.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08anfe

! F08ANF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, zgels

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm
Integer :: i, info, lda, lwork, m, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F08ANF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = n + nb*m
Allocate (a(lda,n),b(m),work(lwork))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)

! Solve the least squares problem min( norm2(b - Ax) ) for x
! The NAG name equivalent of zgels is f08anf

Call zgels(’No transpose’,m,n,1,a,lda,b,m,work,lwork,info)

! Print solution

Write (nout,*) ’Least squares solution’
Write (nout,99999) b(1:n)

! Compute and print estimate of the square root of the residual
! sum of squares
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! The NAG name equivalent of dznrm2 is f06jjf
rnorm = dznrm2(m-n,b(n+1),1)
Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99998) rnorm

99999 Format (4(’ (’,F7.4,’,’,F7.4,’)’,:))
99998 Format (1X,1P,E10.2)

End Program f08anfe

10.2 Program Data

F08ANF Example Program Data

6 4 :Values of M, N and NRHS

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

(-2.09, 1.93)
( 3.34,-3.53)
(-4.94,-2.04)
( 0.17, 4.23)
(-5.19, 3.63)
( 0.98, 2.53) :End of vector b

10.3 Program Results

F08ANF Example Program Results

Least squares solution
(-0.5044,-1.2179) (-2.4281, 2.8574) ( 1.4872,-2.1955) ( 0.4537, 2.6904)

Square root of the residual sum of squares
6.88E-02
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NAG Library Routine Document

F08APF (ZGEQRT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08APF (ZGEQRT) recursively computes, with explicit blocking, the QR factorization of a complex m
by n matrix.

2 Specification

SUBROUTINE F08APF (M, N, NB, A, LDA, T, LDT, WORK, INFO)

INTEGER M, N, NB, LDA, LDT, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), T(LDT,*), WORK(NB*N)

The routine may be called by its LAPACK name zgeqrt.

3 Description

F08APF (ZGEQRT) forms the QR factorization of an arbitrary rectangular complex m by n matrix. No
pivoting is performed.

It differs from F08ASF (ZGEQRF) in that it: requires an explicit block size; stores reflector factors that
are upper triangular matrices of the chosen block size (rather than scalars); and recursively computes
the QR factorization based on the algorithm of Elmroth and Gustavson (2000).

If m � n, the factorization is given by:

A ¼ Q R
0

� �
;

where R is an n by n upper triangular matrix (with real diagonal elements) and Q is an m by m unitary
matrix. It is sometimes more convenient to write the factorization as

A ¼ Q1 Q2

� � R
0

� �
;

which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is upper trapezoidal, and the factorization can be written

A ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned represents a QR factorization of the first k
columns of the original matrix A.
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4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel QR Factorization Leads
to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605–624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: NB – INTEGER Input

On entry: the explicitly chosen block size to be used in computing the QR factorization. See
Section 9 for details.

Constraints:

NB � 1;
if min M;Nð Þ > 0, NB � min M;Nð Þ.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the unitary
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the unitary matrix Q and
the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

The diagonal elements of R are real.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08APF
(ZGEQRT) is called.

Constraint: LDA � max 1;Mð Þ.

6: TðLDT; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array T must be at least max 1;min M;Nð Þð Þ.

On exit: further details of the unitary matrix Q. The number of blocks is b ¼ k
NB

� �
, where

k ¼ min m;nð Þ and each block is of order NB except for the last block, which is of order
k� b� 1ð Þ � NB. For each of the blocks, an upper triangular block reflector factor is computed:
T1;T2; . . . ;Tb. These are stored in the NB by n matrix T as T ¼ T1jT2j . . . jTb½ �.
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7: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08APF
(ZGEQRT) is called.

Constraint: LDT � NB.

8: WORKðNB� NÞ – COMPLEX (KIND=nag_wp) array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08APF (ZGEQRT) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3n

2 3m� nð Þ if m � n or
8
3m

2 3n�mð Þ if m < n.

To apply Q to an arbitrary complex rectangular matrix C, F08APF (ZGEQRT) may be followed by a
call to F08AQF (ZGEMQRT). For example,

CALL ZGEMQRT(’Left’,’Conjugate Transpose’,M,P,MIN(M,N),NB,A,LDA, &
T,LDT,C,LDC,WORK,INFO)

forms C ¼ QHC, where C is m by p.

To form the unitary matrix Q explicitly, simply initialize the m by m matrix C to the identity matrix
and form C ¼ QC using F08AQF (ZGEMQRT) as above.

The block size, NB, used by F08APF (ZGEQRT) is supplied explicitly through the interface. For
moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the
algorithm with the optimal value being dependent on problem size and platform. A value of
NB ¼ 64 min m;nð Þ is likely to achieve good efficiency and it is unlikely that an optimal value
would exceed 340.

To compute a QR factorization with column pivoting, use F08BPF (ZTPQRT) or F08BSF (ZGEQPF).

The real analogue of this routine is F08ABF (DGEQRT).
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10 Example

This example solves the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA
and

B ¼

�2:09þ 1:93i 3:26� 2:70i
3:34� 3:53i �6:22þ 1:16i
�4:94� 2:04i 7:94� 3:13i
0:17þ 4:23i 1:04� 4:26i
�5:19þ 3:63i �2:31� 2:12i
0:98þ 2:53i �1:39� 4:05i

0BBBBB@

1CCCCCA:

10.1 Program Text

Program f08apfe

! F08APF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04dbf, zgemqrt, zgeqrt, ztrtrs

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nbmax = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, lda, ldb, ldt, &

lwork, m, n, nb, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), t(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rnorm(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F08APF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
nb = min(m,n,nbmax)
ldt = nb
lwork = nb*max(m,n)
Allocate (a(lda,n),b(ldb,nrhs),t(ldt,min(m,n)),work(lwork),rnorm(nrhs))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Compute the QR factorization of A
! The NAG name equivalent of zgeqrf is f08apf
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Call zgeqrt(m,n,nb,a,lda,t,ldt,work,info)

! Compute C = (C1) = (Q**H)*B, storing the result in B
! (C2)
! The NAG name equivalent of zgemqrt is f08aqf

Call zgemqrt(’Left’,’Conjugate transpose’,m,nrhs,n,nb,a,lda,t,ldt,b,ldb, &
work,info)

! Compute least squares solutions by back-substitution in
! R*X = C1
! The NAG name equivalent of ztrtrs is f07tsf

Call ztrtrs(’Upper’,’No transpose’,’Non-Unit’,n,nrhs,a,lda,b,ldb,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

! Print least squares solutions

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Least squares solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

! Compute and print estimates of the square roots of the residual
! sums of squares
! The NAG name equivalent of dznrm2 is f06jjf

Do j = 1, nrhs
rnorm(j) = dznrm2(m-n,b(n+1,j),1)

End Do

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

End If

99999 Format (3X,1P,7E11.2)
End Program f08apfe

10.2 Program Data

F08APF Example Program Data

6 4 2 : m, n and nrhs

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) : matrix A

(-2.09, 1.93) ( 3.26,-2.70)
( 3.34,-3.53) (-6.22, 1.16)
(-4.94,-2.04) ( 7.94,-3.13)
( 0.17, 4.23) ( 1.04,-4.26)
(-5.19, 3.63) (-2.31,-2.12)
( 0.98, 2.53) (-1.39,-4.05) : matrix B

10.3 Program Results

F08APF Example Program Results

Least squares solution(s)
1 2

1 (-0.5044,-1.2179) ( 0.7629, 1.4529)
2 (-2.4281, 2.8574) ( 5.1570,-3.6089)
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3 ( 1.4872,-2.1955) (-2.6518, 2.1203)
4 ( 0.4537, 2.6904) (-2.7606, 0.3318)

Square root(s) of the residual sum(s) of squares
6.88E-02 1.87E-01
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NAG Library Routine Document

F08AQF (ZGEMQRT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AQF (ZGEMQRT) multiplies an arbitrary complex matrix C by the complex unitary matrix Q from
a QR factorization computed by F08APF (ZGEQRT).

2 Specification

SUBROUTINE F08AQF (SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT, C, LDC,
WORK, INFO)

&

INTEGER M, N, K, NB, LDV, LDT, LDC, INFO
COMPLEX (KIND=nag_wp) V(LDV,*), T(LDT,*), C(LDC,*), WORK(*)
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name zgemqrt.

3 Description

F08AQF (ZGEMQRT) is intended to be used after a call to F08APF (ZGEQRT), which performs a QR
factorization of a complex matrix A. The unitary matrix Q is represented as a product of elementary
reflectors.

This routine may be used to form one of the matrix products

QC;QHC;CQ or CQH;

overwriting the result on C (which may be any complex rectangular matrix).

A common application of this routine is in solving linear least squares problems, as described in the
F08 Chapter Introduction and illustrated in Section 10 in F08APF (ZGEQRT).

4 References

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QH is to be applied to C.

SIDE ¼ L
Q or QH is applied to C from the left.

SIDE ¼ R
Q or QH is applied to C from the right.

Constraint: SIDE ¼ L or R .
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2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QH is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ C
QH is applied to C.

Constraint: TRANS ¼ N or C .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q. Usually
K ¼ min mA; nAð Þ where mA, nA are the dimensions of the matrix A supplied in a previous call
to F08APF (ZGEQRT).

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: NB – INTEGER Input

On entry: the block size used in the QR factorization performed in a previous call to F08APF
(ZGEQRT); this value must remain unchanged from that call.

Constraints:

NB � 1;
if K > 0, NB � K.

7: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array V must be at least max 1;Kð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08APF
(ZGEQRT) in the first k columns of its array argument A.

8: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08AQF
(ZGEMQRT) is called.

Constraints:

if SIDE ¼ L , LDV � max 1;Mð Þ;
if SIDE ¼ R , LDV � max 1;Nð Þ.

9: TðLDT; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array T must be at least max 1;Kð Þ.
On entry: further details of the unitary matrix Q as returned by F08APF (ZGEQRT). The number
of blocks is b ¼ k

NB

� �
, where k ¼ min m;nð Þ and each block is of order NB except for the last
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block, which is of order k� b� 1ð Þ � NB. For the b blocks the upper triangular block reflector
factors T1;T2; . . . ;Tb are stored in the NB by n matrix T as T ¼ T1jT2j . . . jTb½ �.

10: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08AQF
(ZGEMQRT) is called.

Constraint: LDT � NB.

11: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QHC or CQ or CQH as specified by SIDE and TRANS.

12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08AQF
(ZGEMQRT) is called.

Constraint: LDC � max 1;Mð Þ.

13: WORKð�Þ – COMPLEX (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least N� NB if SIDE ¼ L and at least
M� NB if SIDE ¼ R .

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08AQF (ZGEMQRT) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8nk 2m� kð Þ if SIDE ¼ L and
8mk 2n� kð Þ if SIDE ¼ R .
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The real analogue of this routine is F08ACF (DGEMQRT).

10 Example

See Section 10 in F08APF (ZGEQRT).
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NAG Library Routine Document

F08ASF (ZGEQRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ASF (ZGEQRF) computes the QR factorization of a complex m by n matrix.

2 Specification

SUBROUTINE F08ASF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zgeqrf.

3 Description

F08ASF (ZGEQRF) forms the QR factorization of an arbitrary rectangular complex m by n matrix. No
pivoting is performed.

If m � n, the factorization is given by:

A ¼ Q R
0

� �
;

where R is an n by n upper triangular matrix (with real diagonal elements) and Q is an m by m unitary
matrix. It is sometimes more convenient to write the factorization as

A ¼ Q1 Q2

� � R
0

� �
;

which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

A ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned in the first k columns of the array A represents a
QR factorization of the first k columns of the original matrix A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the unitary
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the unitary matrix Q and
the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

The diagonal elements of R are real.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ASF
(ZGEQRF) is called.

Constraint: LDA � max 1;Mð Þ.

5: TAUð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;min M;Nð Þð Þ.
On exit: further details of the unitary matrix Q.

6: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08ASF (ZGEQRF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08ASF (ZGEQRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08ASF (ZGEQRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3n

2 3m� nð Þ if m � n or
8
3m

2 3n�mð Þ if m < n.

To form the unitary matrix Q F08ASF (ZGEQRF) may be followed by a call to F08ATF (ZUNGQR):

CALL ZUNGQR(M,M,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)

but note that the second dimension of the array A must be at least M, which may be larger than was
required by F08ASF (ZGEQRF).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

CALL ZUNGQR(M,N,N,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary complex rectangular matrix C, F08ASF (ZGEQRF) may be followed by a
call to F08AUF (ZUNMQR). For example,

CALL ZUNMQR(’Left’,’Conjugate Transpose’,M,P,MIN(M,N),A,LDA,TAU, &
C,LDC,WORK,LWORK,INFO)

forms C ¼ QHC, where C is m by p.

To compute a QR factorization with column pivoting, use F08BSF (ZGEQPF).

The real analogue of this routine is F08AEF (DGEQRF).

10 Example

This example solves the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,
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A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA
and

B ¼

�1:54þ 0:76i 3:17� 2:09i
0:12� 1:92i �6:53þ 4:18i
�9:08� 4:31i 7:28þ 0:73i
7:49þ 3:65i 0:91� 3:97i
�5:63� 2:12i �5:46� 1:64i
2:37þ 8:03i �2:84� 5:86i

0BBBBB@

1CCCCCA:

10.1 Program Text

Program f08asfe

! F08ASF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04dbf, zgeqrf, ztrtrs, zunmqr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, lda, ldb, lwork, &

m, n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:)
Real (Kind=nag_wp), Allocatable :: rnorm(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08ASF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
lwork = nb*n
Allocate (a(lda,n),b(ldb,nrhs),tau(n),work(lwork),rnorm(nrhs))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Compute the QR factorization of A
! The NAG name equivalent of zgeqrf is f08asf

Call zgeqrf(m,n,a,lda,tau,work,lwork,info)

! Compute C = (C1) = (Q**H)*B, storing the result in B
! (C2)
! The NAG name equivalent of zunmqr is f08auf

Call zunmqr(’Left’,’Conjugate transpose’,m,nrhs,n,a,lda,tau,b,ldb,work, &
lwork,info)

! Compute least squares solutions by back-substitution in
! R*X = C1
! The NAG name equivalent of ztrtrs is f07tsf
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Call ztrtrs(’Upper’,’No transpose’,’Non-Unit’,n,nrhs,a,lda,b,ldb,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

! Print least squares solutions

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Least squares solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

! Compute and print estimates of the square roots of the residual
! sums of squares
! The NAG name equivalent of dznrm2 is f06jjf

Do j = 1, nrhs
rnorm(j) = dznrm2(m-n,b(n+1,j),1)

End Do

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

End If

99999 Format (3X,1P,7E11.2)
End Program f08asfe

10.2 Program Data

F08ASF Example Program Data

6 4 2 :Values of M, N and NRHS

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

(-2.09, 1.93) ( 3.26,-2.70)
( 3.34,-3.53) (-6.22, 1.16)
(-4.94,-2.04) ( 7.94,-3.13)
( 0.17, 4.23) ( 1.04,-4.26)
(-5.19, 3.63) (-2.31,-2.12)
( 0.98, 2.53) (-1.39,-4.05) :End of matrix B

10.3 Program Results

F08ASF Example Program Results

Least squares solution(s)
1 2

1 (-0.5044,-1.2179) ( 0.7629, 1.4529)
2 (-2.4281, 2.8574) ( 5.1570,-3.6089)
3 ( 1.4872,-2.1955) (-2.6518, 2.1203)
4 ( 0.4537, 2.6904) (-2.7606, 0.3318)

Square root(s) of the residual sum(s) of squares
6.88E-02 1.87E-01
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NAG Library Routine Document

F08ATF (ZUNGQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ATF (ZUNGQR) generates all or part of the complex unitary matrix Q from a QR factorization
computed by F08ASF (ZGEQRF), F08BSF (ZGEQPF) or F08BTF (ZGEQP3).

2 Specification

SUBROUTINE F08ATF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, K, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zungqr.

3 Description

F08ATF (ZUNGQR) is intended to be used after a call to F08ASF (ZGEQRF), F08BSF (ZGEQPF) or
F08BTF (ZGEQP3), which perform a QR factorization of a complex matrix A. The unitary matrix Q is
represented as a product of elementary reflectors.

This routine may be used to generate Q explicitly as a square matrix, or to form only its leading
columns.

Usually Q is determined from the QR factorization of an m by p matrix A with m � p. The whole of Q
may be computed by:

CALL ZUNGQR(M,M,P,A,LDA,TAU,WORK,LWORK,INFO)

(note that the array A must have at least m columns) or its leading p columns by:

CALL ZUNGQR(M,P,P,A,LDA,TAU,WORK,LWORK,INFO)

The columns of Q returned by the last call form an orthonormal basis for the space spanned by the
columns of A; thus F08ASF (ZGEQRF) followed by F08ATF (ZUNGQR) can be used to orthogonalize
the columns of A.

The information returned by the QR factorization routines also yields the QR factorization of the
leading k columns of A, where k < p. The unitary matrix arising from this factorization can be
computed by:

CALL ZUNGQR(M,M,K,A,LDA,TAU,WORK,LWORK,INFO)

or its leading k columns by:

CALL ZUNGQR(M,K,K,A,LDA,TAU,WORK,LWORK,INFO)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the order of the unitary matrix Q.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix Q.

Constraint: M � N � 0.

3: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: N � K � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08ASF
(ZGEQRF), F08BSF (ZGEQPF) or F08BTF (ZGEQP3).

On exit: the m by n matrix Q.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ATF
(ZUNGQR) is called.

Constraint: LDA � max 1;Mð Þ.

6: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08ASF (ZGEQRF),
F08BSF (ZGEQPF) or F08BTF (ZGEQP3).

7: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08ATF (ZUNGQR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08ATF (ZUNGQR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08ATF (ZUNGQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 16mnk� 8 mþ nð Þk2 þ 16
3 k

3 ; when
n ¼ k, the number is approximately 8

3n
2 3m� nð Þ .

The real analogue of this routine is F08AFF (DORGQR).

10 Example

This example forms the leading 4 columns of the unitary matrix Q from the QR factorization of the
matrix A, where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA:

The columns of Q form an orthonormal basis for the space spanned by the columns of A.

10.1 Program Text

Program f08atfe

! F08ATF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgeqrf, zungqr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, m, n
Character (30) :: title

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08ATF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = 64*n
Allocate (a(lda,n),tau(n),work(lwork))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Compute the QR factorization of A
! The NAG name equivalent of zgeqrf is f08asf

Call zgeqrf(m,n,a,lda,tau,work,lwork,info)

! Form the leading N columns of Q explicitly
! The NAG name equivalent of zungqr is f08atf

Call zungqr(m,n,n,a,lda,tau,work,lwork,info)

! Print the leading N columns of Q only

Write (nout,*)
Write (title,99999) n
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,m,n,a,lda,’Bracketed’,’F7.4’,title,’Integer’, &

rlabs,’Integer’,clabs,80,0,ifail)

99999 Format (’The leading ’,I2,’ columns of Q’)
End Program f08atfe

10.2 Program Data

F08ATF Example Program Data
6 4 :Values of M and N

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

10.3 Program Results

F08ATF Example Program Results

The leading 4 columns of Q
1 2 3 4

1 (-0.3110, 0.2624) (-0.3175, 0.4835) ( 0.4966,-0.2997) (-0.0072,-0.3718)
2 ( 0.3175,-0.6414) (-0.2062, 0.1577) (-0.0793,-0.3094) (-0.0282,-0.1491)
3 (-0.2008, 0.1490) ( 0.4892,-0.0900) ( 0.0357,-0.0219) ( 0.5625,-0.0710)
4 ( 0.1199,-0.1231) ( 0.2566,-0.3055) ( 0.4489,-0.2141) (-0.1651, 0.1800)
5 (-0.2689,-0.1652) ( 0.1697,-0.2491) (-0.0496, 0.1158) (-0.4885,-0.4540)
6 (-0.3499, 0.0907) (-0.0491,-0.3133) (-0.1256,-0.5300) ( 0.1039, 0.0450)
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NAG Library Routine Document

F08AUF (ZUNMQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AUF (ZUNMQR) multiplies an arbitrary complex matrix C by the complex unitary matrix Q from a
QR factorization computed by F08ASF (ZGEQRF), F08BSF (ZGEQPF) or F08BTF (ZGEQP3).

2 Specification

SUBROUTINE F08AUF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, K, LDA, LDC, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name zunmqr.

3 Description

F08AUF (ZUNMQR) is intended to be used after a call to F08ASF (ZGEQRF), F08BSF (ZGEQPF) or
F08BTF (ZGEQP3), which perform a QR factorization of a complex matrix A. The unitary matrix Q is
represented as a product of elementary reflectors.

This routine may be used to form one of the matrix products

QC;QHC;CQ or CQH;

overwriting the result on C (which may be any complex rectangular matrix).

A common application of this routine is in solving linear least squares problems, as described in the
F08 Chapter Introduction and illustrated in Section 10 in F08ASF (ZGEQRF).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QH is to be applied to C.

SIDE ¼ L
Q or QH is applied to C from the left.

SIDE ¼ R
Q or QH is applied to C from the right.

Constraint: SIDE ¼ L or R .
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2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QH is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ C
QH is applied to C.

Constraint: TRANS ¼ N or C .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08ASF
(ZGEQRF), F08BSF (ZGEQPF) or F08BTF (ZGEQP3).

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AUF
(ZUNMQR) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

8: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08ASF (ZGEQRF),
F08BSF (ZGEQPF) or F08BTF (ZGEQP3).

9: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QHC or CQ or CQH as specified by SIDE and TRANS.
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10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08AUF
(ZUNMQR) is called.

Constraint: LDC � max 1;Mð Þ.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08AUF (ZUNMQR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08AUF (ZUNMQR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08AUF (ZUNMQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of real floating-point operations is approximately 8nk 2m� kð Þ if SIDE ¼ L and
8mk 2n� kð Þ if SIDE ¼ R .

The real analogue of this routine is F08AGF (DORMQR).

10 Example

See Section 10 in F08ASF (ZGEQRF).

F08AUF NAG Library Manual

F08AUF.4 (last) Mark 26



NAG Library Routine Document

F08AVF (ZGELQF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AVF (ZGELQF) computes the LQ factorization of a complex m by n matrix.

2 Specification

SUBROUTINE F08AVF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zgelqf.

3 Description

F08AVF (ZGELQF) forms the LQ factorization of an arbitrary rectangular complex m by n matrix. No
pivoting is performed.

If m � n, the factorization is given by:

A ¼ L 0
� �

Q

where L is an m by m lower triangular matrix (with real diagonal elements) and Q is an n by n unitary
matrix. It is sometimes more convenient to write the factorization as

A ¼ L 0
� � Q1

Q2

� �
which reduces to

A ¼ LQ1;

where Q1 consists of the first m rows of Q, and Q2 the remaining n�m rows.

If m > n, L is trapezoidal, and the factorization can be written

A ¼ L1
L2

� �
Q

where L1 is lower triangular and L2 is rectangular.

The LQ factorization of A is essentially the same as the QR factorization of AH, since

A ¼ L 0
� �

Q, AH ¼ QH LH

0

� �
:

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

Note also that for any k < m, the information returned in the first k rows of the array A represents an
LQ factorization of the first k rows of the original matrix A.

4 References

None.
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the elements above the diagonal are overwritten by details of the unitary
matrix Q and the lower triangle is overwritten by the corresponding elements of the m by m
lower triangular matrix L.

If m > n, the strictly upper triangular part is overwritten by details of the unitary matrix Q and
the remaining elements are overwritten by the corresponding elements of the m by n lower
trapezoidal matrix L.

The diagonal elements of L are real.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AVF
(ZGELQF) is called.

Constraint: LDA � max 1;Mð Þ.

5: TAUð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;min M;Nð Þð Þ.
On exit: further details of the unitary matrix Q.

6: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08AVF (ZGELQF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � M� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Mð Þ or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08AVF (ZGELQF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3m

2 3n�mð Þ if m � n or
8
3n

2 3m� nð Þ if m > n.

To form the unitary matrix Q F08AVF (ZGELQF) may be followed by a call to F08AWF (ZUNGLQ):

CALL ZUNGLQ(N,N,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)

but note that the first dimension of the array A, specified by the argument LDA, must be at least N,
which may be larger than was required by F08AVF (ZGELQF).

When m � n, it is often only the first m rows of Q that are required, and they may be formed by the
call:

CALL ZUNGLQ(M,N,M,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary complex rectangular matrix C, F08AVF (ZGELQF) may be followed by a
call to F08AXF (ZUNMLQ). For example,

CALL ZUNMLQ(’Left’,’Conjugate Transpose’,M,P,MIN(M,N),A,LDA,TAU, &
C,LDC,WORK,LWORK,INFO)

forms the matrix product C ¼ QHC, where C is m by p.

The real analogue of this routine is F08AHF (DGELQF).

10 Example

This example finds the minimum norm solutions of the under-determined systems of linear equations

Ax1 ¼ b1 and Ax2 ¼ b2
where b1 and b2 are the columns of the matrix B,

A ¼
0:28� 0:36i 0:50� 0:86i �0:77� 0:48i 1:58þ 0:66i
�0:50� 1:10i �1:21þ 0:76i �0:32� 0:24i �0:27� 1:15i
0:36� 0:51i �0:07þ 1:33i �0:75þ 0:47i �0:08þ 1:01i

0@ 1A
and
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B ¼
�1:35þ 0:19i 4:83� 2:67i
9:41� 3:56i �7:28þ 3:34i
�7:57þ 6:93i 0:62þ 4:53i

0@ 1A:
10.1 Program Text

Program f08avfe

! F08AVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgelqf, ztrsm, zunmlq

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: one = (1.0_nag_wp,0.0_nag_wp)
Complex (Kind=nag_wp), Parameter :: zero = (0.0_nag_wp,0.0_nag_wp)
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldb, lwork, m, &

n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08AVF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = n
lwork = 64*n
Allocate (a(lda,n),b(ldb,nrhs),tau(n),work(lwork))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Compute the LQ factorization of A
! The NAG name equivalent of zgelqf is f08avf

Call zgelqf(m,n,a,lda,tau,work,lwork,info)

! Solve L*Y = B, storing the result in B
! The NAG name equivalent of ztrsm is f06zjf

Call ztrsm(’Left’,’Lower’,’No transpose’,’Non-Unit’,m,nrhs,one,a,lda,b, &
ldb)

! Set rows (M+1) to N of B to zero

If (m<n) Then
b(m+1:n,1:nrhs) = zero

End If

! Compute minimum-norm solution X = (Q**H)*B in B
! The NAG name equivalent of zunmlq is f08axf

Call zunmlq(’Left’,’Conjugate transpose’,n,nrhs,m,a,lda,tau,b,ldb,work, &
lwork,info)

! Print minimum-norm solution(s)

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
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ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Minimum-norm solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End Program f08avfe

10.2 Program Data

F08AVF Example Program Data
3 4 2 :Values of M, N and NRHS

( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A
(-1.35, 0.19) ( 4.83,-2.67)
( 9.41,-3.56) (-7.28, 3.34)
(-7.57, 6.93) ( 0.62, 4.53) :End of matrix B

10.3 Program Results

F08AVF Example Program Results

Minimum-norm solution(s)
1 2

1 (-2.8501, 6.4683) (-1.1682,-1.8886)
2 ( 1.6264,-0.7799) ( 2.8377, 0.7654)
3 ( 6.9290, 4.6481) (-1.7610,-0.7041)
4 ( 1.4048, 3.2400) ( 1.0518,-1.6365)

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08AVF

Mark 26 F08AVF.5 (last)





NAG Library Routine Document

F08AWF (ZUNGLQ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AWF (ZUNGLQ) generates all or part of the complex unitary matrix Q from an LQ factorization
computed by F08AVF (ZGELQF).

2 Specification

SUBROUTINE F08AWF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, K, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zunglq.

3 Description

F08AWF (ZUNGLQ) is intended to be used after a call to F08AVF (ZGELQF), which performs an LQ
factorization of a complex matrix A. The unitary matrix Q is represented as a product of elementary
reflectors.

This routine may be used to generate Q explicitly as a square matrix, or to form only its leading rows.

Usually Q is determined from the LQ factorization of a p by n matrix A with p � n. The whole of Q
may be computed by:

CALL ZUNGLQ(N,N,P,A,LDA,TAU,WORK,LWORK,INFO)

(note that the array A must have at least n rows) or its leading p rows by:

CALL ZUNGLQ(P,N,P,A,LDA,TAU,WORK,LWORK,INFO)

The rows of Q returned by the last call form an orthonormal basis for the space spanned by the rows of
A; thus F08AVF (ZGELQF) followed by F08AWF (ZUNGLQ) can be used to orthogonalize the rows of
A.

The information returned by the LQ factorization routines also yields the LQ factorization of the
leading k rows of A, where k < p. The unitary matrix arising from this factorization can be computed
by:

CALL ZUNGLQ(N,N,K,A,LDA,TAU,WORK,LWORK,INFO)

or its leading k rows by:

CALL ZUNGLQ(K,N,K,A,LDA,TAU,WORK,LWORK,INFO)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix Q.

Constraint: M � 0.
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2: N – INTEGER Input

On entry: n, the number of columns of the matrix Q.

Constraint: N � M.

3: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: M � K � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08AVF
(ZGELQF).

On exit: the m by n matrix Q.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AWF
(ZUNGLQ) is called.

Constraint: LDA � max 1;Mð Þ.

6: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08AVF (ZGELQF).

7: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08AWF (ZUNGLQ) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � M� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Mð Þ or LWORK ¼ �1.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08AWF (ZUNGLQ) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 16mnk� 8 mþ nð Þk2 þ 16
3 k

3 ; when
m ¼ k, the number is approximately 8

3m
2 3n�mð Þ .

The real analogue of this routine is F08AJF (DORGLQ).

10 Example

This example forms the leading 4 rows of the unitary matrix Q from the LQ factorization of the matrix
A, where

A ¼
0:28� 0:36i 0:50� 0:86i �0:77� 0:48i 1:58þ 0:66i
�0:50� 1:10i �1:21þ 0:76i �0:32� 0:24i �0:27� 1:15i
0:36� 0:51i �0:07þ 1:33i �0:75þ 0:47i �0:08þ 1:01i

0@ 1A:
The rows of Q form an orthonormal basis for the space spanned by the rows of A.

10.1 Program Text

Program f08awfe

! F08AWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgelqf, zunglq

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, m, n
Character (30) :: title

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08AWF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = 64*m
Allocate (a(lda,n),tau(n),work(lwork))
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! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Compute the LQ factorization of A
! The NAG name equivalent of zgelqf is f08avf

Call zgelqf(m,n,a,lda,tau,work,lwork,info)

! Form the leading M rows of Q explicitly
! The NAG name equivalent of zunglq is f08awf

Call zunglq(m,n,m,a,lda,tau,work,lwork,info)

! Print the leading M rows of Q only

Write (nout,*)
Write (title,99999) m
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,m,n,a,lda,’Bracketed’,’F7.4’,title,’Integer’, &

rlabs,’Integer’,clabs,80,0,ifail)

99999 Format (’The leading ’,I2,’ rows of Q’)
End Program f08awfe

10.2 Program Data

F08AWF Example Program Data
3 4 :Values of M and N

( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A

10.3 Program Results

F08AWF Example Program Results

The leading 3 rows of Q
1 2 3 4

1 (-0.1258, 0.1618) (-0.2247, 0.3864) ( 0.3460, 0.2157) (-0.7099,-0.2966)
2 (-0.1163,-0.6380) (-0.3240, 0.4272) (-0.1995,-0.5009) (-0.0323,-0.0162)
3 (-0.4607, 0.1090) ( 0.2171,-0.4062) ( 0.2733,-0.6106) (-0.0994,-0.3261)
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NAG Library Routine Document

F08AXF (ZUNMLQ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AXF (ZUNMLQ) multiplies an arbitrary complex matrix C by the complex unitary matrix Q from
an LQ factorization computed by F08AVF (ZGELQF).

2 Specification

SUBROUTINE F08AXF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, K, LDA, LDC, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name zunmlq.

3 Description

F08AXF (ZUNMLQ) is intended to be used after a call to F08AVF (ZGELQF), which performs an LQ
factorization of a complex matrix A. The unitary matrix Q is represented as a product of elementary
reflectors.

This routine may be used to form one of the matrix products

QC;QHC;CQ or CQH;

overwriting the result on C (which may be any complex rectangular matrix).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QH is to be applied to C.

SIDE ¼ L
Q or QH is applied to C from the left.

SIDE ¼ R
Q or QH is applied to C from the right.

Constraint: SIDE ¼ L or R .

2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QH is to be applied to C.

TRANS ¼ N
Q is applied to C.
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TRANS ¼ C
QH is applied to C.

Constraint: TRANS ¼ N or C .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: details of the vectors which define the elementary reflectors, as returned by F08AVF
(ZGELQF).

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AXF
(ZUNMLQ) is called.

Constraint: LDA � max 1;Kð Þ.

8: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08AVF (ZGELQF).

9: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QHC or CQ or CQH as specified by SIDE and TRANS.

10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08AXF
(ZUNMLQ) is called.

Constraint: LDC � max 1;Mð Þ.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.
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12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08AXF (ZUNMLQ) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08AXF (ZUNMLQ) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8nk 2m� kð Þ if SIDE ¼ L and
8mk 2n� kð Þ if SIDE ¼ R .

The real analogue of this routine is F08AKF (DORMLQ).

10 Example

See Section 10 in F08AVF (ZGELQF).
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NAG Library Routine Document

F08BAF (DGELSY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BAF (DGELSY) computes the minimum norm solution to a real linear least squares problem

min
x

b�Axk k2

using a complete orthogonal factorization of A. A is an m by n matrix which may be rank-deficient.
Several right-hand side vectors b and solution vectors x can be handled in a single call.

2 Specification

SUBROUTINE F08BAF (M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK,
LWORK, INFO)

&

INTEGER M, N, NRHS, LDA, LDB, JPVT(*), RANK, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), RCOND, WORK(max(1,LWORK))

The routine may be called by its LAPACK name dgelsy.

3 Description

The right-hand side vectors are stored as the columns of the m by r matrix B and the solution vectors
in the n by r matrix X.

F08BAF (DGELSY) first computes a QR factorization with column pivoting

AP ¼ Q R11 R12
0 R22

� �
;

with R11 defined as the largest leading sub-matrix whose estimated condition number is less than
1=RCOND. The order of R11, RANK, is the effective rank of A.

Then, R22 is considered to be negligible, and R12 is annihilated by orthogonal transformations from the
right, arriving at the complete orthogonal factorization

AP ¼ Q T11 0
0 0

� �
Z:

The minimum norm solution is then

X ¼ PZT T�111 Q
T
1b

0

� �
where Q1 consists of the first RANK columns of Q.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrices B and X.

Constraint: NRHS � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: A has been overwritten by details of its complete orthogonal factorization.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BAF
(DGELSY) is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the m by r right-hand side matrix B.

On exit: the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08BAF
(DGELSY) is called.

Constraint: LDB � max 1;M;Nð Þ.

8: JPVTð�Þ – INTEGER array Input/Output

Note: the dimension of the array JPVT must be at least max 1;Nð Þ.
On entry: if JPVTðiÞ 6¼ 0, the ith column of A is permuted to the front of AP , otherwise column
i is a free column.

On exit: if JPVTðiÞ ¼ k, then the ith column of AP was the kth column of A.

9: RCOND – REAL (KIND=nag_wp) Input

On entry: used to determine the effective rank of A, which is defined as the order of the largest
leading triangular sub-matrix R11 in the QR factorization of A, whose estimated condition
number is < 1=RCOND.

Suggested value: if the condition number of A is not known then RCOND ¼
ffiffiffiffiffiffiffiffiffiffiffi
�ð Þ=2

p
(where � is

machine precision, see X02AJF) is a good choice. Negative values or values less than machine
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precision should be avoided since this will cause A to have an effective rank ¼ min M;Nð Þ that
could be larger than its actual rank, leading to meaningless results.

10: RANK – INTEGER Output

On exit: the effective rank of A, i.e., the order of the sub-matrix R11. This is the same as the
order of the sub-matrix T11 in the complete orthogonal factorization of A.

11: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08BAF (DGELSY) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance,

LWORK � max kþ 2� Nþ nb� Nþ 1ð Þ; 2� kþ nb� NRHSð Þ;

where k ¼ min M;Nð Þ and nb is the optimal block size.

Constraint: LWORK � kþmax 2� k;Nþ 1; kþ NRHSð Þ; where k ¼ min M;Nð Þ or
LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

See Section 4.5 of Anderson et al. (1999) for details of error bounds.

8 Parallelism and Performance

F08BAF (DGELSY) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08BAF (DGELSY) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08BNF (ZGELSY).
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10 Example

This example solves the linear least squares problem

min
x

b�Axk k2

for the solution, x, of minimum norm, where

A ¼

�0:09 0:14 �0:46 0:68 1:29
�1:56 0:20 0:29 1:09 0:51
�1:48 �0:43 0:89 �0:71 �0:96
�1:09 0:84 0:77 2:11 �1:27
0:08 0:55 �1:13 0:14 1:74
�1:59 �0:72 1:06 1:24 0:34

0BBBBB@

1CCCCCA and b ¼

7:4
4:2
�8:3
1:8
8:6
2:1

0BBBBB@

1CCCCCA:
A tolerance of 0:01 is used to determine the effective rank of A.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08bafe

! F08BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgelsy, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, info, lda, lwork, m, n, rank

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), work(:)
Integer, Allocatable :: jpvt(:)

! .. Executable Statements ..
Write (nout,*) ’F08BAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = 3*n + nb*(n+1)
Allocate (a(lda,n),b(m),work(lwork),jpvt(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)

! Initialize JPVT to be zero so that all columns are free

jpvt(1:n) = 0

! Choose RCOND to reflect the relative accuracy of the input data

rcond = 0.01_nag_wp

! Solve the least squares problem min( norm2(b - Ax) ) for the x
! of minimum norm.

! The NAG name equivalent of dgelsy is f08baf
Call dgelsy(m,n,1,a,lda,b,m,jpvt,rcond,rank,work,lwork,info)
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! Print solution

Write (nout,*) ’Least squares solution’
Write (nout,99999) b(1:n)

! Print the effective rank of A

Write (nout,*)
Write (nout,*) ’Tolerance used to estimate the rank of A’
Write (nout,99998) rcond
Write (nout,*) ’Estimated rank of A’
Write (nout,99997) rank

99999 Format (1X,7F11.4)
99998 Format (3X,1P,E11.2)
99997 Format (1X,I6)

End Program f08bafe

10.2 Program Data

F08BAF Example Program Data

6 5 :Values of M and N

-0.09 0.14 -0.46 0.68 1.29
-1.56 0.20 0.29 1.09 0.51
-1.48 -0.43 0.89 -0.71 -0.96
-1.09 0.84 0.77 2.11 -1.27
0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 :End of matrix A

7.4
4.2

-8.3
1.8
8.6
2.1 :End of vector b

10.3 Program Results

F08BAF Example Program Results

Least squares solution
0.6344 0.9699 -1.4402 3.3678 3.3992

Tolerance used to estimate the rank of A
1.00E-02

Estimated rank of A
4
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NAG Library Routine Document

F08BBF (DTPQRT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BBF (DTPQRT) computes the QR factorization of a real mþ nð Þ by n triangular-pentagonal
matrix.

2 Specification

SUBROUTINE F08BBF (M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, INFO)

INTEGER M, N, L, NB, LDA, LDB, LDT, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), T(LDT,*), WORK(*)

The routine may be called by its LAPACK name dtpqrt.

3 Description

F08BBF (DTPQRT) forms the QR factorization of a real mþ nð Þ by n triangular-pentagonal matrix C,

C ¼ A
B

� �
where A is an upper triangular n by n matrix and B is an m by n pentagonal matrix consisting of an
m� lð Þ by n rectangular matrix B1 on top of an l by n upper trapezoidal matrix B2:

B ¼ B1
B2

� �
:

The upper trapezoidal matrix B2 consists of the first l rows of an n by n upper triangular matrix, where
0 � l � min m;nð Þ. If l ¼ 0, B is m by n rectangular; if l ¼ n and m ¼ n, B is upper triangular.

A recursive, explicitly blocked, QR factorization (see F08ABF (DGEQRT)) is performed on the matrix
C. The upper triangular matrix R, details of the orthogonal matrix Q, and further details (the block
reflector factors) of Q are returned.

Typically the matrix A or B2 contains the matrix R from the QR factorization of a subproblem and
F08BBF (DTPQRT) performs the QR update operation from the inclusion of matrix B1.

For example, consider the QR factorization of an l by n matrix B̂ with l < n: B̂ ¼ Q̂R̂,
R̂ ¼ R̂1 R̂2

� �
, where R̂1 is l by l upper triangular and R̂2 is n� lð Þ by n rectangular (this can be

performed by F08ABF (DGEQRT)). Given an initial least-squares problem B̂X̂ ¼ Ŷ where X and Y
are l by nrhs matrices, we have R̂X̂ ¼ Q̂TŶ .

Now, adding an additional m� l rows to the original system gives the augmented least squares problem

BX ¼ Y

where B is an m by n matrix formed by adding m� l rows on top of R̂ and Y is an m by nrhs matrix
formed by adding m� l rows on top of Q̂TŶ .

F08BBF (DTPQRT) can then be used to perform the QR factorization of the pentagonal matrix B; the
n by n matrix A will be zero on input and contain R on output.

In the case where B̂ is r by n, r � n, R̂ is n by n upper triangular (forming A) on top of r� n rows of
zeros (forming first r� n rows of B). Augmentation is then performed by adding rows to the bottom of
B with l ¼ 0.
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4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel QR Factorization Leads
to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605–624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix B.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix B and the order of the upper triangular matrix
A.

Constraint: N � 0.

3: L – INTEGER Input

On entry: l, the number of rows of the trapezoidal part of B (i.e., B2).

Constraint: 0 � L � min M;Nð Þ.

4: NB – INTEGER Input

On entry: the explicitly chosen block-size to be used in the algorithm for computing the QR
factorization. See Section 9 for details.

Constraints:

NB � 1;
if N > 0, NB � N.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n upper triangular matrix A.

On exit: the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BBF
(DTPQRT) is called.

Constraint: LDA � max 1;Nð Þ.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the m by n pentagonal matrix B composed of an m� lð Þ by n rectangular matrix B1

above an l by n upper trapezoidal matrix B2.

On exit: details of the orthogonal matrix Q.
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8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08BBF
(DTPQRT) is called.

Constraint: LDB � max 1;Mð Þ.

9: TðLDT; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array T must be at least N.

On exit: further details of the orthogonal matrix Q. The number of blocks is b ¼ k
NB

� �
, where

k ¼ min m;nð Þ and each block is of order NB except for the last block, which is of order
k� b� 1ð Þ � NB. For each of the blocks, an upper triangular block reflector factor is computed:
T1;T2; . . . ;Tb. These are stored in the NB by n matrix T as T ¼ T1jT2j . . . jTb½ �.

10: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08BBF
(DTPQRT) is called.

Constraint: LDT � NB.

11: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least NB� N.

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08BBF (DTPQRT) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ
if m < n.

The block size, NB, used by F08BBF (DTPQRT) is supplied explicitly through the interface. For
moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the
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algorithm with the optimal value being dependent on problem size and platform. A value of
NB ¼ 64 min m;nð Þ is likely to achieve good efficiency and it is unlikely that an optimal value
would exceed 340.

To apply Q to an arbitrary real rectangular matrix C, F08BBF (DTPQRT) may be followed by a call to
F08BCF (DTPMQRT). For example,

CALL DTPMQRT(’Left’,’Transpose’,M,P,N,L,NB,B,LDB, &
T,LDT,C,LDC,C(n+1,1),LDC,WORK,INFO)

forms C ¼ QTC, where C is mþ nð Þ by p.
To form the orthogonal matrix Q explicitly set p ¼ mþ n, initialize C to the identity matrix and make
a call to F08BCF (DTPMQRT) as above.

10 Example

This example finds the basic solutions for the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA and B ¼

�2:67 0:41
�0:55 �3:10
3:34 �4:01
�0:77 2:76
0:48 �6:17
4:10 0:21

0BBBBB@

1CCCCCA:

A QR factorization is performed on the first 4 rows of A using F08ABF (DGEQRT) after which the
first 4 rows of B are updated by applying QT using F08ACF (DGEMQRT). The remaining row is added
by performing a QR update using F08BBF (DTPQRT); B is updated by applying the new QT using
F08BCF (DTPMQRT); the solution is finally obtained by triangular solve using R from the updated
QR.

10.1 Program Text

Program f08bbfe

! F08BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgemqrt, dgeqrt, dnrm2, dtpmqrt, dtpqrt, dtrtrs, &

nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nbmax = 64, nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, info, j, lda, ldb, ldt, &
lwork, m, n, nb, nrhs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:), rnorm(:), &

t(:,:), work(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min
! .. Executable Statements ..

Write (nout,*) ’F08BBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
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ldb = m
nb = min(m,n,nbmax)
ldt = nb
lwork = nb*max(n,m)
Allocate (a(lda,n),b(ldb,nrhs),c(ldb,nrhs),rnorm(nrhs),t(ldt,min(m, &

n)),work(lwork))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

c(1:m,1:nrhs) = b(1:m,1:nrhs)
! Compute the QR factorization of first n rows of A
! The NAG name equivalent of dgeqrt is f08abf

Call dgeqrt(n,n,nb,a,lda,t,ldt,work,info)

! Compute C = (C1) = (Q**T)*B, storing the result in C
! (C2)
! The NAG name equivalent of dgemqrt is f08acf

Call dgemqrt(’Left’,’Transpose’,n,nrhs,n,nb,a,lda,t,ldt,c,ldb,work,info)

b(1:n,1:nrhs) = c(1:n,1:nrhs)
! Compute least squares solutions for first n rows by back-substitution in
! R*X = C1
! The NAG name equivalent of dtrtrs is f07tef

Call dtrtrs(’Upper’,’No transpose’,’Non-Unit’,n,nrhs,a,lda,c,ldb,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

! Print solution using first n rows

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,c,ldb,’solution(s) for n rows’,ifail)

End If

! Now add the remaining rows and perform QR update
! The NAG name equivalent of dtpqrt is f08bbf

Call dtpqrt(m-n,n,0,nb,a,lda,a(n+1,1),lda,t,ldt,work,info)

! Apply orthogonal transformations to C
! The NAG name equivalent of dtpmqrt is f08bcf

Call dtpmqrt(’Left’,’Transpose’,m-n,nrhs,n,0,nb,a(n+1,1),lda,t,ldt,b, &
ldb,b(5,1),ldb,work,info)

! Compute least squares solutions for first n rows by bac-substitution in
! R*X = C1
! The NAG name equivalent of dtrtrs is f07tef

Call dtrtrs(’Upper’,’No transpose’,’Non-Unit’,n,nrhs,a,lda,b,ldb,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

! Print least squares solutions
Write (nout,*)
ifail = 0
Call x04caf(’G’,’ ’,n,nrhs,b,ldb, &

’Least squares solution(s) for all rows’,ifail)

! Compute and print estimates of the square roots of the residual
! sums of squares

! The NAG name equivalent of dnrm2 is f06ejf
Do j = 1, nrhs
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rnorm(j) = dnrm2(m-n,b(n+1,j),1)
End Do

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

End If

99999 Format (5X,1P,7E11.2)
End Program f08bbfe

10.2 Program Data

F08BBF Example Program Data

6 4 2 : m, n and nrhs

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 : matrix A

-2.67 0.41
-0.55 -3.10
3.34 -4.01

-0.77 2.76
0.48 -6.17
4.10 0.21 : matrix B

10.3 Program Results

F08BBF Example Program Results

solution(s) for n rows
1 2

1 1.5179 -1.5850
2 1.8629 0.5531
3 -1.4608 1.3485
4 0.0398 2.9619

Least squares solution(s) for all rows
1 2

1 1.5339 -1.5753
2 1.8707 0.5559
3 -1.5241 1.3119
4 0.0392 2.9585

Square root(s) of the residual sum(s) of squares
2.22E-02 1.38E-02
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NAG Library Routine Document

F08BCF (DTPMQRT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BCF (DTPMQRT) multiplies an arbitrary real matrix C by the real orthogonal matrix Q from a QR
factorization computed by F08BBF (DTPQRT).

2 Specification

SUBROUTINE F08BCF (SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT, C1,
LDC1, C2, LDC2, WORK, INFO)

&

INTEGER M, N, K, L, NB, LDV, LDT, LDC1, LDC2, INFO
REAL (KIND=nag_wp) V(LDV,*), T(LDT,*), C1(LDC1,*), C2(LDC2,*), WORK(*)
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name dtpmqrt.

3 Description

F08BCF (DTPMQRT) is intended to be used after a call to F08BBF (DTPQRT) which performs a QR
factorization of a triangular-pentagonal matrix containing an upper triangular matrix A over a
pentagonal matrix B. The orthogonal matrix Q is represented as a product of elementary reflectors.

This routine may be used to form the matrix products

QC;QTC;CQ or CQT;

where the real rectangular mc by nc matrix C is split into component matrices C1 and C2.

If Q is being applied from the left (QC or QTC) then

C ¼ C1
C2

� �
where C1 is k by nc, C2 is mv by nc, mc ¼ kþmv is fixed and mv is the number of rows of the matrix
V containing the elementary reflectors (i.e., M as passed to F08BBF (DTPQRT)); the number of
columns of V is nv (i.e., N as passed to F08BBF (DTPQRT)).

If Q is being applied from the right (CQ or CQT) then

C ¼ C1 C2

� �
where C1 is mc by k, and C2 is mc by mv and nc ¼ kþmv is fixed.

The matrices C1 and C2 are overwriten by the result of the matrix product.

A common application of this routine is in updating the solution of a linear least squares problem as
illustrated in Section 10 in F08BBF (DTPQRT).

4 References

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08BCF

Mark 26 F08BCF.1



5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QT is to be applied to C.

SIDE ¼ L
Q or QT is applied to C from the left.

SIDE ¼ R
Q or QT is applied to C from the right.

Constraint: SIDE ¼ L or R .

2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QT is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ T
QT is applied to C.

Constraint: TRANS ¼ N or T .

3: M – INTEGER Input

On entry: the number of rows of the matrix C2, that is,

if SIDE ¼ L
then mv, the number of rows of the matrix V ;

if SIDE ¼ R
then mc, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: the number of columns of the matrix C2, that is,

if SIDE ¼ L
then nc, the number of columns of the matrix C;

if SIDE ¼ R
then nv, the number of columns of the matrix V .

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: K � 0.

6: L – INTEGER Input

On entry: l, the number of rows of the upper trapezoidal part of the pentagonal composite matrix
V , passed (as B) in a previous call to F08BBF (DTPQRT). This must be the same value used in
the previous call to F08BBF (DTPQRT) (see L in F08BBF (DTPQRT)).

Constraint: 0 � L � K.

7: NB – INTEGER Input

On entry: nb, the blocking factor used in a previous call to F08BBF (DTPQRT) to compute the
QR factorization of a triangular-pentagonal matrix containing composite matrices A and B.
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Constraints:

NB � 1;
if K > 0, NB � K.

8: VðLDV; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array LDV must be at least max 1;Kð Þ.
On entry: the mv by nv matrix V ; this should remain unchanged from the array B returned by a
previous call to F08BBF (DTPQRT).

9: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08BCF
(DTPMQRT) is called.

Constraints:

if SIDE ¼ L , LDV � max 1;Mð Þ;
if SIDE ¼ R , LDV � max 1;Nð Þ.

10: TðLDT; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array T must be at least max 1;Kð Þ.
On entry: this must remain unchanged from a previous call to F08BBF (DTPQRT) (see T in
F08BBF (DTPQRT)).

11: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08BCF
(DTPMQRT) is called.

Constraint: LDT � NB.

12: C1ðLDC1; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C1 must be at least max 1;Nð Þ if SIDE ¼ L and at least
max 1;Kð Þ if SIDE ¼ R .

On entry: C1, the first part of the composite matrix C:

if SIDE ¼ L
then C1 contains the first k rows of C;

if SIDE ¼ R
then C1 contains the first k columns of C.

On exit: C1 is overwritten by the corresponding block of QC or QTC or CQ or CQT.

13: LDC1 – INTEGER Input

On entry: the first dimension of the array C1 as declared in the (sub)program from which
F08BCF (DTPMQRT) is called.

Constraints:

if SIDE ¼ L , LDC1 � max 1;Kð Þ;
if SIDE ¼ R , LDC1 � max 1;Mð Þ.
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14: C2ðLDC2; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C2 must be at least max 1;Nð Þ.
On entry: C2, the second part of the composite matrix C.

if SIDE ¼ L
then C2 contains the remaining mv rows of C;

if SIDE ¼ R
then C2 contains the remaining mv columns of C;

On exit: C2 is overwritten by the corresponding block of QC or QTC or CQ or CQT.

15: LDC2 – INTEGER Input

On entry: the first dimension of the array C2 as declared in the (sub)program from which
F08BCF (DTPMQRT) is called.

Constraint: LDC2 � max 1;Mð Þ.

16: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least N� NB if SIDE ¼ L and at least
M� NB if SIDE ¼ R .

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08BCF (DTPMQRT) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2nk 2m� kð Þ if SIDE ¼ L and
2mk 2n� kð Þ if SIDE ¼ R .

The complex analogue of this routine is F08BQF (ZTPMQRT).
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10 Example

See Section 10 in F08BBF (DTPQRT).
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NAG Library Routine Document

F08BEF (DGEQPF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BEF (DGEQPF) computes the QR factorization, with column pivoting, of a real m by n matrix.

2 Specification

SUBROUTINE F08BEF (M, N, A, LDA, JPVT, TAU, WORK, INFO)

INTEGER M, N, LDA, JPVT(*), INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(min(M,N)), WORK(3*N)

The routine may be called by its LAPACK name dgeqpf.

3 Description

F08BEF (DGEQPF) forms the QR factorization, with column pivoting, of an arbitrary rectangular real
m by n matrix.

If m � n, the factorization is given by:

AP ¼ Q R
0

� �
;

where R is an n by n upper triangular matrix, Q is an m by m orthogonal matrix and P is an n by n
permutation matrix. It is sometimes more convenient to write the factorization as

AP ¼ Q1 Q2

� � R
0

� �
;

which reduces to

AP ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

AP ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned in the first k columns of the array A represents a
QR factorization of the first k columns of the permuted matrix AP .

The routine allows specified columns of A to be moved to the leading columns of AP at the start of the
factorization and fixed there. The remaining columns are free to be interchanged so that at the ith stage
the pivot column is chosen to be the column which maximizes the 2-norm of elements i to m over
columns i to n.
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BEF
(DGEQPF) is called.

Constraint: LDA � max 1;Mð Þ.

5: JPVTð�Þ – INTEGER array Input/Output

Note: the dimension of the array JPVT must be at least max 1;Nð Þ.
On entry: if JPVTðiÞ 6¼ 0, then the i th column of A is moved to the beginning of AP before the
decomposition is computed and is fixed in place during the computation. Otherwise, the i th
column of A is a free column (i.e., one which may be interchanged during the computation with
any other free column).

On exit: details of the permutation matrix P . More precisely, if JPVTðiÞ ¼ k, then the kth column
of A is moved to become the i th column of AP ; in other words, the columns of AP are the
columns of A in the order JPVTð1Þ; JPVTð2Þ; . . . ; JPVTðnÞ.

6: TAUðmin M;Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: further details of the orthogonal matrix Q.

7: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08BEF (DGEQPF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ
if m < n.

To form the orthogonal matrix Q F08BEF (DGEQPF) may be followed by a call to F08AFF
(DORGQR):

CALL DORGQR(M,M,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)

but note that the second dimension of the array A must be at least M, which may be larger than was
required by F08BEF (DGEQPF).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

CALL DORGQR(M,N,N,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary real rectangular matrix C, F08BEF (DGEQPF) may be followed by a call to
F08AGF (DORMQR). For example,

CALL DORMQR(’Left’,’Transpose’,M,P,MIN(M,N),A,LDA,TAU,C,LDC,WORK, &
LWORK,INFO)

forms C ¼ QTC, where C is m by p.

To compute a QR factorization without column pivoting, use F08AEF (DGEQRF).

The complex analogue of this routine is F08BSF (ZGEQPF).

10 Example

This example finds the basic solutions for the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,
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A ¼

�0:09 0:14 �0:46 0:68 1:29
�1:56 0:20 0:29 1:09 0:51
�1:48 �0:43 0:89 �0:71 �0:96
�1:09 0:84 0:77 2:11 �1:27
0:08 0:55 �1:13 0:14 1:74
�1:59 �0:72 1:06 1:24 0:34

0BBBBB@

1CCCCCA and B ¼

�0:01 �0:04
0:04 �0:03
0:05 0:01
�0:03 �0:02
0:02 0:05
�0:06 0:07

0BBBBB@

1CCCCCA:

Here A is approximately rank-deficient, and hence it is preferable to use F08BEF (DGEQPF) rather
than F08AEF (DGEQRF).

10.1 Program Text

Program f08befe

! F08BEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgeqpf, dormqr, dtrsv, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, info, k, lda, ldb, ldx, &

lwork, m, n, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:), &
x(:,:)

Integer, Allocatable :: jpvt(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs
! .. Executable Statements ..

Write (nout,*) ’F08BEF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
ldx = m
lwork = 64*n
Allocate (a(lda,n),b(ldb,nrhs),tau(n),work(lwork),x(ldx,nrhs),jpvt(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Initialize JPVT to be zero so that all columns are free

jpvt(1:n) = 0

! Compute the QR factorization of A

! The NAG name equivalent of dgeqpf is f08bef
Call dgeqpf(m,n,a,lda,jpvt,tau,work,info)

! Choose TOL to reflect the relative accuracy of the input data

tol = 0.01E0_nag_wp

! Determine which columns of R to use

loop: Do k = 1, n
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If (abs(a(k,k))<=tol*abs(a(1,1))) Then
Exit loop

End If
End Do loop

! Compute C = (Q**T)*B, storing the result in B

k = k - 1

! The NAG name equivalent of dormqr is f08agf
Call dormqr(’Left’,’Transpose’,m,nrhs,n,a,lda,tau,b,ldb,work,lwork,info)

! Compute least squares solution by back-substitution in R*B = C
Do i = 1, nrhs

! The NAG name equivalent of dtrsv is f06pjf
Call dtrsv(’Upper’,’No transpose’,’Non-Unit’,k,a,lda,b(1,i),1)

! Set the unused elements of the I-th solution vector to zero

b(k+1:n,i) = zero

End Do

! Unscramble the least squares solution stored in B

Do i = 1, n
x(jpvt(i),1:nrhs) = b(i,1:nrhs)

End Do

! Print least squares solution

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,x,ldx,’Least squares solution’,ifail)

End Program f08befe

10.2 Program Data

F08BEF Example Program Data
6 5 2 :Values of M, N and NRHS

-0.09 0.14 -0.46 0.68 1.29
-1.56 0.20 0.29 1.09 0.51
-1.48 -0.43 0.89 -0.71 -0.96
-1.09 0.84 0.77 2.11 -1.27
0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 :End of matrix A
-0.01 -0.04
0.04 -0.03
0.05 0.01

-0.03 -0.02
0.02 0.05

-0.06 0.07 :End of matrix B
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10.3 Program Results

F08BEF Example Program Results

Least squares solution
1 2

1 -0.0370 -0.0044
2 0.0647 -0.0335
3 0.0000 0.0000
4 -0.0515 0.0018
5 0.0066 0.0102
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NAG Library Routine Document

F08BFF (DGEQP3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BFF (DGEQP3) computes the QR factorization, with column pivoting, of a real m by n matrix.

2 Specification

SUBROUTINE F08BFF (M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, JPVT(*), LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dgeqp3.

3 Description

F08BFF (DGEQP3) forms the QR factorization, with column pivoting, of an arbitrary rectangular real
m by n matrix.

If m � n, the factorization is given by:

AP ¼ Q R
0

� �
;

where R is an n by n upper triangular matrix, Q is an m by m orthogonal matrix and P is an n by n
permutation matrix. It is sometimes more convenient to write the factorization as

AP ¼ Q1 Q2

� � R
0

� �
;

which reduces to

AP ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

AP ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned in the first k columns of the array A represents a
QR factorization of the first k columns of the permuted matrix AP .

The routine allows specified columns of A to be moved to the leading columns of AP at the start of the
factorization and fixed there. The remaining columns are free to be interchanged so that at the ith stage
the pivot column is chosen to be the column which maximizes the 2-norm of elements i to m over
columns i to n.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BFF
(DGEQP3) is called.

Constraint: LDA � max 1;Mð Þ.

5: JPVTð�Þ – INTEGER array Input/Output

Note: the dimension of the array JPVT must be at least max 1;Nð Þ.
On entry: if JPVTðjÞ 6¼ 0, then the j th column of A is moved to the beginning of AP before the
decomposition is computed and is fixed in place during the computation. Otherwise, the j th
column of A is a free column (i.e., one which may be interchanged during the computation with
any other free column).

On exit: details of the permutation matrix P . More precisely, if JPVTðjÞ ¼ k, then the kth column
of A is moved to become the j th column of AP ; in other words, the columns of AP are the
columns of A in the order JPVTð1Þ; JPVTð2Þ; . . . ; JPVTðnÞ.

6: TAUð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;min M;Nð Þð Þ.
On exit: the scalar factors of the elementary reflectors.
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7: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08BFF (DGEQP3) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � 2� Nþ Nþ 1ð Þ � nb, where nb is the
optimal block size.

Constraint: LWORK � 3� Nþ 1 or LWORK ¼ �1.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08BFF (DGEQP3) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08BFF (DGEQP3) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ
if m < n.

To form the orthogonal matrix Q F08BFF (DGEQP3) may be followed by a call to F08AFF
(DORGQR):

CALL DORGQR(M,M,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)

but note that the second dimension of the array A must be at least M, which may be larger than was
required by F08BFF (DGEQP3).
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When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

CALL DORGQR(M,N,N,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary real rectangular matrix C, F08BFF (DGEQP3) may be followed by a call to
F08AGF (DORMQR). For example,

CALL DORMQR(’Left’,’Transpose’,M,P,MIN(M,N),A,LDA,TAU,C,LDC,WORK, &
LWORK,INFO)

forms C ¼ QTC, where C is m by p.

To compute a QR factorization without column pivoting, use F08AEF (DGEQRF).

The complex analogue of this routine is F08BTF (ZGEQP3).

10 Example

This example solves the linear least squares problems

min
x

bj �Axj
�� ��

2
; j ¼ 1; 2

for the basic solutions x1 and x2, where

A ¼

�0:09 0:14 �0:46 0:68 1:29
�1:56 0:20 0:29 1:09 0:51
�1:48 �0:43 0:89 �0:71 �0:96
�1:09 0:84 0:77 2:11 �1:27
0:08 0:55 �1:13 0:14 1:74
�1:59 �0:72 1:06 1:24 0:34

0BBBBB@

1CCCCCA and B ¼

7:4 2:7
4:2 �3:0
�8:3 �9:6
1:8 1:1
8:6 4:0
2:1 �5:7

0BBBBB@

1CCCCCA
and bj is the jth column of the matrix B. The solution is obtained by first obtaining a QR factorization
with column pivoting of the matrix A. A tolerance of 0:01 is used to estimate the rank of A from the
upper triangular factor, R.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08bffe

! F08BFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgeqp3, dnrm2, dormqr, dtrsm, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: inc1 = 1, nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, info, j, k, lda, ldb, &

lwork, m, n, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), rnorm(:), tau(:), &
work(:)

Integer, Allocatable :: jpvt(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs
! .. Executable Statements ..

Write (nout,*) ’F08BFF Example Program Results’
Write (nout,*)
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! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
lwork = 2*n + (n+1)*nb
Allocate (a(lda,n),b(ldb,nrhs),rnorm(n),tau(n),work(lwork),jpvt(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Initialize JPVT to be zero so that all columns are free

jpvt(1:n) = 0

! Compute the QR factorization of A
! The NAG name equivalent of dgeqp3 is f08bff

Call dgeqp3(m,n,a,lda,jpvt,tau,work,lwork,info)

! Compute C = (C1) = (Q**T)*B, storing the result in B
! (C2)
! The NAG name equivalent of dormqr is f08agf

Call dormqr(’Left’,’Transpose’,m,nrhs,n,a,lda,tau,b,ldb,work,lwork,info)

! Choose TOL to reflect the relative accuracy of the input data

tol = 0.01_nag_wp

! Determine and print the rank, K, of R relative to TOL

loop: Do k = 1, n
If (abs(a(k,k))<=tol*abs(a(1,1))) Then

Exit loop
End If

End Do loop
k = k - 1

Write (nout,*) ’Tolerance used to estimate the rank of A’
Write (nout,99999) tol
Write (nout,*) ’Estimated rank of A’
Write (nout,99998) k
Write (nout,*)
Flush (nout)

! Compute least squares solutions by back-substitution in
! R(1:K,1:K)*Y = C1, storing the result in B

Call dtrsm(’Left’,’Upper’,’No transpose’,’Non-Unit’,k,nrhs,one,a,lda,b, &
ldb)

! Compute estimates of the square roots of the residual sums of
! squares (2-norm of each of the columns of C2)

! The NAG name equivalent of dnrm2 is f06ejf
Do j = 1, nrhs

rnorm(j) = dnrm2(m-k,b(k+1,j),inc1)
End Do

! Set the remaining elements of the solutions to zero (to give
! the basic solutions)

b(k+1:n,1:nrhs) = zero

! Permute the least squares solutions stored in B to give X = P*Y

Do j = 1, nrhs
work(jpvt(1:n)) = b(1:n,j)
b(1:n,j) = work(1:n)

End Do
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! Print least squares solutions

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Least squares solution(s)’, &

ifail)

! Print the square roots of the residual sums of squares

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

99999 Format (5X,1P,6E11.2)
99998 Format (1X,I8)

End Program f08bffe

10.2 Program Data

F08BFF Example Program Data

6 5 2 :Values of M, N and NRHS

-0.09 0.14 -0.46 0.68 1.29
-1.56 0.20 0.29 1.09 0.51
-1.48 -0.43 0.89 -0.71 -0.96
-1.09 0.84 0.77 2.11 -1.27
0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 :End of matrix A

7.4 2.7
4.2 -3.0

-8.3 -9.6
1.8 1.1
8.6 4.0
2.1 -5.7 :End of matrix B

10.3 Program Results

F08BFF Example Program Results

Tolerance used to estimate the rank of A
1.00E-02

Estimated rank of A
4

Least squares solution(s)
1 2

1 0.9767 4.0159
2 1.9861 2.9867
3 0.0000 0.0000
4 2.9927 2.0032
5 4.0272 0.9976

Square root(s) of the residual sum(s) of squares
2.54E-02 3.65E-02
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NAG Library Routine Document

F08BHF (DTZRZF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BHF (DTZRZF) reduces the m by n (m � n) real upper trapezoidal matrix A to upper triangular
form by means of orthogonal transformations.

2 Specification

SUBROUTINE F08BHF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dtzrzf.

3 Description

The m by n (m � n) real upper trapezoidal matrix A given by

A ¼ R1 R2

� �
;

where R1 is an m by m upper triangular matrix and R2 is an m by n�mð Þ matrix, is factorized as

A ¼ R 0
� �

Z;

where R is also an m by m upper triangular matrix and Z is an n by n orthogonal matrix.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the leading m by n upper trapezoidal part of the array A must contain the matrix to be
factorized.

On exit: the leading m by m upper triangular part of A contains the upper triangular matrix R,
and elements Mþ 1 to N of the first m rows of A, with the array TAU, represent the orthogonal
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matrix Z as a product of m elementary reflectors (see Section 3.3.6 in the F08 Chapter
Introduction).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BHF
(DTZRZF) is called.

Constraint: LDA � max 1;Mð Þ.

5: TAUð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;Mð Þ.
On exit: the scalar factors of the elementary reflectors.

6: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08BHF (DTZRZF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � M� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Mð Þ or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ E, where
Ek k2 ¼ O � Ak k2

and � is the machine precision.

8 Parallelism and Performance

F08BHF (DTZRZF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

F08BHF NAG Library Manual

F08BHF.2 Mark 26



9 Further Comments

The total number of floating-point operations is approximately 4m2 n�mð Þ.
The complex analogue of this routine is F08BVF (ZTZRZF).

10 Example

This example solves the linear least squares problems

min
x

bj �Axj
�� ��

2
; j ¼ 1; 2

for the minimum norm solutions x1 and x2, where bj is the jth column of the matrix B,

A ¼

�0:09 0:14 �0:46 0:68 1:29
�1:56 0:20 0:29 1:09 0:51
�1:48 �0:43 0:89 �0:71 �0:96
�1:09 0:84 0:77 2:11 �1:27
0:08 0:55 �1:13 0:14 1:74
�1:59 �0:72 1:06 1:24 0:34

0BBBBB@

1CCCCCA and B ¼

7:4 2:7
4:2 �3:0
�8:3 �9:6
1:8 1:1
8:6 4:0
2:1 �5:7

0BBBBB@

1CCCCCA:
The solution is obtained by first obtaining a QR factorization with column pivoting of the matrix A,
and then the RZ factorization of the leading k by k part of R is computed, where k is the estimated
rank of A. A tolerance of 0:01 is used to estimate the rank of A from the upper triangular factor, R.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08bhfe

! F08BHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgeqp3, dnrm2, dormqr, dormrz, dtrsm, dtzrzf, &

nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: inc1 = 1, nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, info, j, k, lda, ldb, &

lwork, m, n, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), rnorm(:), tau(:), &
work(:)

Integer, Allocatable :: jpvt(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs
! .. Executable Statements ..

Write (nout,*) ’F08BHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
lwork = 2*n + (n+1)*nb
Allocate (a(lda,n),b(ldb,nrhs),rnorm(n),tau(n),work(lwork),jpvt(n))

! Read A and B from data file
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Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Initialize JPVT to be zero so that all columns are free

jpvt(1:n) = 0

! Compute the QR factorization of A with column pivoting as
! A = Q*(R11 R12)*(P**T)
! ( 0 R22)

! The NAG name equivalent of dgeqp3 is f08bff
Call dgeqp3(m,n,a,lda,jpvt,tau,work,lwork,info)

! Compute C = (C1) = (Q**T)*B, storing the result in B
! (C2)
! The NAG name equivalent of dormqr is f08agf

Call dormqr(’Left’,’Transpose’,m,nrhs,n,a,lda,tau,b,ldb,work,lwork,info)

! Choose TOL to reflect the relative accuracy of the input data

tol = 0.01_nag_wp

! Determine and print the rank, K, of R relative to TOL

loop: Do k = 1, n
If (abs(a(k,k))<=tol*abs(a(1,1))) Then

Exit loop
End If

End Do loop
k = k - 1

Write (nout,*) ’Tolerance used to estimate the rank of A’
Write (nout,99999) tol
Write (nout,*) ’Estimated rank of A’
Write (nout,99998) k
Write (nout,*)
Flush (nout)

! Compute the RZ factorization of the K by K part of R as
! (R11 R12) = (T 0)*Z
! The NAG name equivalent of dtzrzf is f08bhf

Call dtzrzf(k,n,a,lda,tau,work,lwork,info)

! Compute least squares solutions of triangular problems by
! back-substitution in T*Y1 = C1, storing the result in B
! The NAG name equivalent of dtrsm is f06yjf

Call dtrsm(’Left’,’Upper’,’No transpose’,’Non-Unit’,k,nrhs,one,a,lda,b, &
ldb)

! Compute estimates of the square roots of the residual sums of
! squares (2-norm of each of the columns of C2)
! The NAG name equivalent of dnrm2 is f06ejf

Do j = 1, nrhs
rnorm(j) = dnrm2(m-k,b(k+1,j),inc1)

End Do

! Set the remaining elements of the solutions to zero (to give
! the minimum-norm solutions), Y2 = 0

b(k+1:n,1:nrhs) = zero

! Form W = (Z**T)*Y

! The NAG name equivalent of dormrz is f08bkf
Call dormrz(’Left’,’Transpose’,n,nrhs,k,n-k,a,lda,tau,b,ldb,work,lwork, &

info)

! Permute the least squares solutions stored in B to give X = P*W
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Do j = 1, nrhs
work(jpvt(1:n)) = b(1:n,j)
b(1:n,j) = work(1:n)

End Do

! Print least squares solutions

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b,ldb,’Least squares solution(s)’, &

ifail)

! Print the square roots of the residual sums of squares

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

99999 Format (5X,1P,6E11.2)
99998 Format (1X,I8)

End Program f08bhfe

10.2 Program Data

F08BHF Example Program Data

6 5 2 :Values of M, N and NRHS

-0.09 0.14 -0.46 0.68 1.29
-1.56 0.20 0.29 1.09 0.51
-1.48 -0.43 0.89 -0.71 -0.96
-1.09 0.84 0.77 2.11 -1.27
0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 :End of matrix A

7.4 2.7
4.2 -3.0

-8.3 -9.6
1.8 1.1
8.6 4.0
2.1 -5.7 :End of matrix B

10.3 Program Results

F08BHF Example Program Results

Tolerance used to estimate the rank of A
1.00E-02

Estimated rank of A
4

Least squares solution(s)
1 2

1 0.6344 3.6258
2 0.9699 1.8284
3 -1.4402 -1.6416
4 3.3678 2.4307
5 3.3992 0.2818

Square root(s) of the residual sum(s) of squares
2.54E-02 3.65E-02
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NAG Library Routine Document

F08BKF (DORMRZ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BKF (DORMRZ) multiplies a general real m by n matrix C by the real orthogonal matrix Z from
an RZ factorization computed by F08BHF (DTZRZF).

2 Specification

SUBROUTINE F08BKF (SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, K, L, LDA, LDC, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name dormrz.

3 Description

F08BKF (DORMRZ) is intended to be used following a call to F08BHF (DTZRZF), which performs an
RZ factorization of a real upper trapezoidal matrix A and represents the orthogonal matrix Z as a
product of elementary reflectors.

This routine may be used to form one of the matrix products

ZC; ZTC; CZ; CZT;

overwriting the result on C, which may be any real rectangular m by n matrix.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Z or ZT is to be applied to C.

SIDE ¼ L
Z or ZT is applied to C from the left.

SIDE ¼ R
Z or ZT is applied to C from the right.

Constraint: SIDE ¼ L or R .

2: TRANS – CHARACTER(1) Input

On entry: indicates whether Z or ZT is to be applied to C.

TRANS ¼ N
Z is applied to C.
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TRANS ¼ T
ZT is applied to C.

Constraint: TRANS ¼ N or T .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Z.

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: L – INTEGER Input

On entry: l, the number of columns of the matrix A containing the meaningful part of the
Householder reflectors.

Constraints:

if SIDE ¼ L , M � L � 0;
if SIDE ¼ R , N � L � 0.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: the ith row of A must contain the vector which defines the elementary reflector Hi, for
i ¼ 1; 2; . . . ; k, as returned by F08BHF (DTZRZF).

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BKF
(DORMRZ) is called.

Constraint: LDA � max 1;Kð Þ.

9: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: TAUðiÞ must contain the scalar factor of the elementary reflector Hi, as returned by
F08BHF (DTZRZF).

10: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by ZC or ZTC or CZ or ZTC as specified by SIDE and TRANS.
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11: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08BKF
(DORMRZ) is called.

Constraint: LDC � max 1;Mð Þ.

12: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08BKF (DORMRZ) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O � Ck k2
where � is the machine precision.

8 Parallelism and Performance

F08BKF (DORMRZ) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 4nlk if SIDE ¼ L and 4mlk if
SIDE ¼ R .

The complex analogue of this routine is F08BXF (ZUNMRZ).

10 Example

See Section 10 in F08BHF (DTZRZF).
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NAG Library Routine Document

F08BNF (ZGELSY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BNF (ZGELSY) computes the minimum norm solution to a complex linear least squares problem

min
x

b�Axk k2

using a complete orthogonal factorization of A. A is an m by n matrix which may be rank-deficient.
Several right-hand side vectors b and solution vectors x can be handled in a single call.

2 Specification

SUBROUTINE F08BNF (M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK,
LWORK, RWORK, INFO)

&

INTEGER M, N, NRHS, LDA, LDB, JPVT(*), RANK, LWORK, INFO
REAL (KIND=nag_wp) RCOND, RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zgelsy.

3 Description

The right-hand side vectors are stored as the columns of the m by r matrix B and the solution vectors
in the n by r matrix X.

F08BNF (ZGELSY) first computes a QR factorization with column pivoting

AP ¼ Q R11 R12
0 R22

� �
;

with R11 defined as the largest leading sub-matrix whose estimated condition number is less than
1=RCOND. The order of R11, RANK, is the effective rank of A.

Then, R22 is considered to be negligible, and R12 is annihilated by orthogonal transformations from the
right, arriving at the complete orthogonal factorization

AP ¼ Q T11 0
0 0

� �
Z:

The minimum norm solution is then

X ¼ PZH T�111 Q
H
1 b

0

� �
where Q1 consists of the first RANK columns of Q.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrices B and X.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: A has been overwritten by details of its complete orthogonal factorization.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BNF
(ZGELSY) is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the m by r right-hand side matrix B.

On exit: the n by r solution matrix X.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08BNF
(ZGELSY) is called.

Constraint: LDB � max 1;M;Nð Þ.

8: JPVTð�Þ – INTEGER array Input/Output

Note: the dimension of the array JPVT must be at least max 1;Nð Þ.
On entry: if JPVTðiÞ 6¼ 0, the ith column of A is permuted to the front of AP , otherwise column
i is a free column.

On exit: if JPVTðiÞ ¼ k, then the ith column of AP was the kth column of A.

9: RCOND – REAL (KIND=nag_wp) Input

On entry: used to determine the effective rank of A, which is defined as the order of the largest
leading triangular sub-matrix R11 in the QR factorization of A, whose estimated condition
number is < 1=RCOND.

Suggested value: if the condition number of A is not known then RCOND ¼
ffiffiffiffiffiffiffiffiffiffiffi
�ð Þ=2

p
(where � is

machine precision, see X02AJF) is a good choice. Negative values or values less than machine
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precision should be avoided since this will cause A to have an effective rank ¼ min M;Nð Þ that
could be larger than its actual rank, leading to meaningless results.

10: RANK – INTEGER Output

On exit: the effective rank of A, i.e., the order of the sub-matrix R11. This is the same as the
order of the sub-matrix T11 in the complete orthogonal factorization of A.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08BNF (ZGELSY) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance,

LWORK � max kþ 2� Nþ nb� Nþ 1ð Þ; 2� kþ nb� NRHSð Þ;

where k ¼ min M;Nð Þ and nb is the optimal block size.

Constraint: LWORK � kþmax 2� k;Nþ 1; kþ NRHSð Þ; where k ¼ min M;Nð Þ or
LWORK ¼ �1.

13: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1; 2� Nð Þ.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

See Section 4.5 of Anderson et al. (1999) for details of error bounds.

8 Parallelism and Performance

F08BNF (ZGELSY) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08BNF (ZGELSY) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The real analogue of this routine is F08BAF (DGELSY).

10 Example

This example solves the linear least squares problem

min
x

b�Axk k2

for the solution, x, of minimum norm, where

A ¼

0:47� 0:34i �0:40þ 0:54i 0:60þ 0:01i 0:80� 1:02i
�0:32� 0:23i �0:05þ 0:20i �0:26� 0:44i �0:43þ 0:17i
0:35� 0:60i �0:52� 0:34i 0:87� 0:11i �0:34� 0:09i
0:89þ 0:71i �0:45� 0:45i �0:02� 0:57i 1:14� 0:78i
�0:19þ 0:06i 0:11� 0:85i 1:44þ 0:80i 0:07þ 1:14i

0BBB@
1CCCA

and

b ¼

�1:08� 2:59i
�2:61� 1:49i
3:13� 3:61i
7:33� 8:01i
9:12þ 7:63i

0BBB@
1CCCA:

A tolerance of 0:01 is used to determine the effective rank of A.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08bnfe

! F08BNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zgelsy

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, info, lda, lwork, m, n, rank

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: jpvt(:)

! .. Executable Statements ..
Write (nout,*) ’F08BNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = nb*(n+1)
Allocate (a(lda,n),b(m),work(lwork),rwork(2*n),jpvt(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)

! Initialize JPVT to be zero so that all columns are free
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jpvt(1:n) = 0

! Choose RCOND to reflect the relative accuracy of the input data

rcond = 0.01_nag_wp

! Solve the least squares problem min( norm2(b - Ax) ) for the x
! of minimum norm.

! The NAG name equivalent of zgelsy is f08bnf
Call zgelsy(m,n,1,a,lda,b,m,jpvt,rcond,rank,work,lwork,rwork,info)

! Print solution

Write (nout,*) ’Least squares solution’
Write (nout,99999) b(1:n)

! Print the effective rank of A

Write (nout,*)
Write (nout,*) ’Tolerance used to estimate the rank of A’
Write (nout,99998) rcond
Write (nout,*) ’Estimated rank of A’
Write (nout,99997) rank

99999 Format (4(’ (’,F7.4,’,’,F7.4,’)’,:))
99998 Format (1X,1P,E10.2)
99997 Format (1X,I6)

End Program f08bnfe

10.2 Program Data

F08BNF Example Program Data

5 4 :Values of M and N

( 0.47,-0.34) (-0.40, 0.54) ( 0.60, 0.01) ( 0.80,-1.02)
(-0.32,-0.23) (-0.05, 0.20) (-0.26,-0.44) (-0.43, 0.17)
( 0.35,-0.60) (-0.52,-0.34) ( 0.87,-0.11) (-0.34,-0.09)
( 0.89, 0.71) (-0.45,-0.45) (-0.02,-0.57) ( 1.14,-0.78)
(-0.19, 0.06) ( 0.11,-0.85) ( 1.44, 0.80) ( 0.07, 1.14) :End of matrix A

(-1.08,-2.59)
(-2.61,-1.49)
( 3.13,-3.61)
( 7.33,-8.01)
( 9.12, 7.63) :End of vector b

10.3 Program Results

F08BNF Example Program Results

Least squares solution
( 1.1669,-3.3224) ( 1.3486, 5.5027) ( 4.1764, 2.3435) ( 0.6467, 0.0107)

Tolerance used to estimate the rank of A
1.00E-02

Estimated rank of A
3
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NAG Library Routine Document

F08BPF (ZTPQRT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BPF (ZTPQRT) computes the QR factorization of a complex mþ nð Þ by n triangular-pentagonal
matrix.

2 Specification

SUBROUTINE F08BPF (M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, INFO)

INTEGER M, N, L, NB, LDA, LDB, LDT, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), T(LDT,*), WORK(*)

The routine may be called by its LAPACK name ztpqrt.

3 Description

F08BPF (ZTPQRT) forms the QR factorization of a complex mþ nð Þ by n triangular-pentagonal
matrix C,

C ¼ A
B

� �
where A is an upper triangular n by n matrix and B is an m by n pentagonal matrix consisting of an
m� lð Þ by n rectangular matrix B1 on top of an l by n upper trapezoidal matrix B2:

B ¼ B1
B2

� �
:

The upper trapezoidal matrix B2 consists of the first l rows of an n by n upper triangular matrix, where
0 � l � min m;nð Þ. If l ¼ 0, B is m by n rectangular; if l ¼ n and m ¼ n, B is upper triangular.

A recursive, explicitly blocked, QR factorization (see F08APF (ZGEQRT)) is performed on the matrix
C. The upper triangular matrix R, details of the unitary matrix Q, and further details (the block reflector
factors) of Q are returned.

Typically the matrix A or B2 contains the matrix R from the QR factorization of a subproblem and
F08BPF (ZTPQRT) performs the QR update operation from the inclusion of matrix B1.

For example, consider the QR factorization of an l by n matrix B̂ with l < n: B̂ ¼ Q̂R̂,
R̂ ¼ R̂1 R̂2

� �
, where R̂1 is l by l upper triangular and R̂2 is n� lð Þ by n rectangular (this can be

performed by F08APF (ZGEQRT)). Given an initial least-squares problem B̂X̂ ¼ Ŷ where X and Y are
l by nrhs matrices, we have R̂X̂ ¼ Q̂HŶ .

Now, adding an additional m� l rows to the original system gives the augmented least squares problem

BX ¼ Y

where B is an m by n matrix formed by adding m� l rows on top of R̂ and Y is an m by nrhs matrix
formed by adding m� l rows on top of Q̂HŶ .

F08BPF (ZTPQRT) can then be used to perform the QR factorization of the pentagonal matrix B; the n
by n matrix A will be zero on input and contain R on output.
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In the case where B̂ is r by n, r � n, R̂ is n by n upper triangular (forming A) on top of r� n rows of
zeros (forming first r� n rows of B). Augmentation is then performed by adding rows to the bottom of
B with l ¼ 0.

4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel QR Factorization Leads
to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605–624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix B.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix B and the order of the upper triangular matrix
A.

Constraint: N � 0.

3: L – INTEGER Input

On entry: l, the number of rows of the trapezoidal part of B (i.e., B2).

Constraint: 0 � L � min M;Nð Þ.

4: NB – INTEGER Input

On entry: the explicitly chosen block-size to be used in the algorithm for computing the QR
factorization. See Section 9 for details.

Constraints:

NB � 1;
if N > 0, NB � N.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n upper triangular matrix A.

On exit: the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BPF
(ZTPQRT) is called.

Constraint: LDA � max 1;Nð Þ.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the m by n pentagonal matrix B composed of an m� lð Þ by n rectangular matrix B1

above an l by n upper trapezoidal matrix B2.
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On exit: details of the unitary matrix Q.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08BPF
(ZTPQRT) is called.

Constraint: LDB � max 1;Mð Þ.

9: TðLDT; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array T must be at least N.

On exit: further details of the unitary matrix Q. The number of blocks is b ¼ k
NB

� �
, where

k ¼ min m;nð Þ and each block is of order NB except for the last block, which is of order
k� b� 1ð Þ � NB. For each of the blocks, an upper triangular block reflector factor is computed:
T1;T2; . . . ;Tb. These are stored in the NB by n matrix T as T ¼ T1jT2j . . . jTb½ �.

10: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08BPF
(ZTPQRT) is called.

Constraint: LDT � NB.

11: WORKð�Þ – COMPLEX (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least NB� N.

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08BPF (ZTPQRT) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ
if m < n.
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The block size, NB, used by F08BPF (ZTPQRT) is supplied explicitly through the interface. For
moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the
algorithm with the optimal value being dependent on problem size and platform. A value of
NB ¼ 64 min m;nð Þ is likely to achieve good efficiency and it is unlikely that an optimal value
would exceed 340.

To apply Q to an arbitrary complex rectangular matrix C, F08BPF (ZTPQRT) may be followed by a
call to F08BQF (ZTPMQRT). For example,

CALL ZTPMQRT(’Left’,’Transpose’,M,P,N,L,NB,B,LDB, &
T,LDT,C,LDC,C(n+1,1),LDC,WORK,INFO)

forms C ¼ QHC, where C is mþ nð Þ by p.
To form the unitary matrix Q explicitly set p ¼ mþ n, initialize C to the identity matrix and make a
call to F08BQF (ZTPMQRT) as above.

10 Example

This example finds the basic solutions for the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA and

B ¼

�2:09þ 1:93i 3:26� 2:70i
3:34� 3:53i �6:22þ 1:16i
�4:94� 2:04i 7:94� 3:13i
0:17þ 4:23i 1:04� 4:26i
�5:19þ 3:63i �2:31� 2:12i
0:98þ 2:53i �1:39� 4:05i

0BBBBB@

1CCCCCA:

A QR factorization is performed on the first 4 rows of A using F08APF (ZGEQRT) after which the first
4 rows of B are updated by applying QT using F08AQF (ZGEMQRT). The remaining row is added by
performing a QR update using F08BPF (ZTPQRT); B is updated by applying the new QT using
F08BQF (ZTPMQRT); the solution is finally obtained by triangular solve using R from the updated
QR.

10.1 Program Text

Program f08bpfe

! F08BPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04dbf, zgemqrt, zgeqrt, ztpmqrt, &

ztpqrt, ztrtrs
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nbmax = 64, nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, info, j, lda, ldb, ldt, &
lwork, m, n, nb, nrhs

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:), t(:,:), &

work(:)

F08BPF NAG Library Manual

F08BPF.4 Mark 26



Real (Kind=nag_wp), Allocatable :: rnorm(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F08BPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
nb = min(m,n,nbmax)
ldt = nb
lwork = nb*max(n,m)
Allocate (a(lda,n),b(ldb,nrhs),c(ldb,nrhs),rnorm(nrhs),t(ldt,min(m, &

n)),work(lwork))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

c(1:m,1:nrhs) = b(1:m,1:nrhs)
! Compute the QR factorization of first n rows of A
! The NAG name equivalent of zgeqrt is f08apf

Call zgeqrt(n,n,nb,a,lda,t,ldt,work,info)

! Compute C = (C1) = (Q**H)*B, storing the result in C
! (C2)
! The NAG name equivalent of zgemqrt is f08aqf

Call zgemqrt(’Left’,’Conjugate Transpose’,n,nrhs,n,nb,a,lda,t,ldt,c,ldb, &
work,info)

b(1:n,1:nrhs) = c(1:n,1:nrhs)
! Compute least squares solutions for first n rows by back-substitution in
! R*X = C1
! The NAG name equivalent of ztrtrs is f07tsf

Call ztrtrs(’Upper’,’No transpose’,’Non-Unit’,n,nrhs,a,lda,c,ldb,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

! Print solution using first n rows

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,c,ldb,’Bracketed’,’F7.4’, &

’solution(s) for n rows’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If

! Now add the remaining rows and perform QR update
! The NAG name equivalent of ztpqrt is f08bpf

Call ztpqrt(m-n,n,0,nb,a,lda,a(n+1,1),lda,t,ldt,work,info)

! Apply orthogonal transformations to C
! The NAG name equivalent of ztpmqrt is f08bqf

Call ztpmqrt(’Left’,’Conjugate Transpose’,m-n,nrhs,n,0,nb,a(n+1,1),lda, &
t,ldt,b,ldb,b(5,1),ldb,work,info)

! Compute least squares solutions for first n rows by back-substitution in
! R*X = C1
! The NAG name equivalent of ztrtrs is f07tsf

Call ztrtrs(’Upper’,’No transpose’,’Non-Unit’,n,nrhs,a,lda,b,ldb,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
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Write (nout,*) ’the least squares solution could not be computed’
Else

! Print least squares solutions
Write (nout,*)
ifail = 0
Call x04dbf(’G’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Least squares solution(s) for all rows’,’Integer’,rlabs,’Integer’, &
clabs,80,0,ifail)

! Compute and print estimates of the square roots of the residual
! sums of squares

! The NAG name equivalent of dznrm2 is f06jjf
Do j = 1, nrhs

rnorm(j) = dznrm2(m-n,b(n+1,j),1)
End Do

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

End If

99999 Format (5X,1P,7E11.2)
End Program f08bpfe

10.2 Program Data

F08BPF Example Program Data

6 4 2 : m, n and nrhs

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) : matrix A

(-2.09, 1.93) ( 3.26,-2.70)
( 3.34,-3.53) (-6.22, 1.16)
(-4.94,-2.04) ( 7.94,-3.13)
( 0.17, 4.23) ( 1.04,-4.26)
(-5.19, 3.63) (-2.31,-2.12)
( 0.98, 2.53) (-1.39,-4.05) : matrix B

10.3 Program Results

F08BPF Example Program Results

solution(s) for n rows
1 2

1 (-0.5091,-1.2428) ( 0.7569, 1.4384)
2 (-2.3789, 2.8651) ( 5.1727,-3.6193)
3 ( 1.4634,-2.2064) (-2.6613, 2.1339)
4 ( 0.4701, 2.6964) (-2.6933, 0.2724)

Least squares solution(s) for all rows
1 2

1 (-0.5044,-1.2179) ( 0.7629, 1.4529)
2 (-2.4281, 2.8574) ( 5.1570,-3.6089)
3 ( 1.4872,-2.1955) (-2.6518, 2.1203)
4 ( 0.4537, 2.6904) (-2.7606, 0.3318)

Square root(s) of the residual sum(s) of squares
6.88E-02 1.87E-01
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NAG Library Routine Document

F08BQF (ZTPMQRT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BQF (ZTPMQRT) multiplies an arbitrary complex matrix C by the complex unitary matrix Q from
a QR factorization computed by F08BPF (ZTPQRT).

2 Specification

SUBROUTINE F08BQF (SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT, C1,
LDC1, C2, LDC2, WORK, INFO)

&

INTEGER M, N, K, L, NB, LDV, LDT, LDC1, LDC2, INFO
COMPLEX (KIND=nag_wp) V(LDV,*), T(LDT,*), C1(LDC1,*), C2(LDC2,*),

WORK(*)
&

CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name ztpmqrt.

3 Description

F08BQF (ZTPMQRT) is intended to be used after a call to F08BPF (ZTPQRT) which performs a QR
factorization of a triangular-pentagonal matrix containing an upper triangular matrix A over a
pentagonal matrix B. The unitary matrix Q is represented as a product of elementary reflectors.

This routine may be used to form the matrix products

QC;QHC;CQ or CQH;

where the complex rectangular mc by nc matrix C is split into component matrices C1 and C2.

If Q is being applied from the left (QC or QHC) then

C ¼ C1
C2

� �
where C1 is k by nc, C2 is mv by nc, mc ¼ kþmv is fixed and mv is the number of rows of the matrix
V containing the elementary reflectors (i.e., M as passed to F08BPF (ZTPQRT)); the number of
columns of V is nv (i.e., N as passed to F08BPF (ZTPQRT)).

If Q is being applied from the right (CQ or CQH) then

C ¼ C1 C2

� �
where C1 is mc by k, and C2 is mc by mv and nc ¼ kþmv is fixed.

The matrices C1 and C2 are overwriten by the result of the matrix product.

A common application of this routine is in updating the solution of a linear least squares problem as
illustrated in Section 10 in F08BPF (ZTPQRT).

4 References

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QH is to be applied to C.

SIDE ¼ L
Q or QH is applied to C from the left.

SIDE ¼ R
Q or QH is applied to C from the right.

Constraint: SIDE ¼ L or R .

2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QH is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ C
QH is applied to C.

Constraint: TRANS ¼ N or C .

3: M – INTEGER Input

On entry: the number of rows of the matrix C2, that is,

if SIDE ¼ L
then mv, the number of rows of the matrix V ;

if SIDE ¼ R
then mc, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: the number of columns of the matrix C2, that is,

if SIDE ¼ L
then nc, the number of columns of the matrix C;

if SIDE ¼ R
then nv, the number of columns of the matrix V .

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: K � 0.

6: L – INTEGER Input

On entry: l, the number of rows of the upper trapezoidal part of the pentagonal composite matrix
V , passed (as B) in a previous call to F08BPF (ZTPQRT). This must be the same value used in
the previous call to F08BPF (ZTPQRT) (see L in F08BPF (ZTPQRT)).

Constraint: 0 � L � K.

7: NB – INTEGER Input

On entry: nb, the blocking factor used in a previous call to F08BPF (ZTPQRT) to compute the
QR factorization of a triangular-pentagonal matrix containing composite matrices A and B.
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Constraints:

NB � 1;
if K > 0, NB � K.

8: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array LDV must be at least max 1;Kð Þ.
On entry: the mv by nv matrix V ; this should remain unchanged from the array B returned by a
previous call to F08BPF (ZTPQRT).

9: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08BQF
(ZTPMQRT) is called.

Constraints:

if SIDE ¼ L , LDV � max 1;Mð Þ;
if SIDE ¼ R , LDV � max 1;Nð Þ.

10: TðLDT; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array T must be at least max 1;Kð Þ.
On entry: this must remain unchanged from a previous call to F08BPF (ZTPQRT) (see T in
F08BPF (ZTPQRT)).

11: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08BQF
(ZTPMQRT) is called.

Constraint: LDT � NB.

12: C1ðLDC1; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C1 must be at least max 1;Nð Þ if SIDE ¼ L and at least
max 1;Kð Þ if SIDE ¼ R .

On entry: C1, the first part of the composite matrix C:

if SIDE ¼ L
then C1 contains the first k rows of C;

if SIDE ¼ R
then C1 contains the first k columns of C.

On exit: C1 is overwritten by the corresponding block of QC or QHC or CQ or CQH.

13: LDC1 – INTEGER Input

On entry: the first dimension of the array C1 as declared in the (sub)program from which
F08BQF (ZTPMQRT) is called.

Constraints:

if SIDE ¼ L , LDC1 � max 1;Kð Þ;
if SIDE ¼ R , LDC1 � max 1;Mð Þ.
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14: C2ðLDC2; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C2 must be at least max 1;Nð Þ.
On entry: C2, the second part of the composite matrix C.

if SIDE ¼ L
then C2 contains the remaining mv rows of C;

if SIDE ¼ R
then C2 contains the remaining mv columns of C;

On exit: C2 is overwritten by the corresponding block of QC or QHC or CQ or CQH.

15: LDC2 – INTEGER Input

On entry: the first dimension of the array C2 as declared in the (sub)program from which
F08BQF (ZTPMQRT) is called.

Constraint: LDC2 � max 1;Mð Þ.

16: WORKð�Þ – COMPLEX (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least N� NB if SIDE ¼ L and at least
M� NB if SIDE ¼ R .

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08BQF (ZTPMQRT) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2nk 2m� kð Þ if SIDE ¼ L and
2mk 2n� kð Þ if SIDE ¼ R .

The real analogue of this routine is F08BCF (DTPMQRT).
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10 Example

See Section 10 in F08BPF (ZTPQRT).
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NAG Library Routine Document

F08BSF (ZGEQPF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BSF (ZGEQPF) computes the QR factorization, with column pivoting, of a complex m by n matrix.

2 Specification

SUBROUTINE F08BSF (M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO)

INTEGER M, N, LDA, JPVT(*), INFO
REAL (KIND=nag_wp) RWORK(2*N)
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(min(M,N)), WORK(N)

The routine may be called by its LAPACK name zgeqpf.

3 Description

F08BSF (ZGEQPF) forms the QR factorization, with column pivoting, of an arbitrary rectangular
complex m by n matrix.

If m � n, the factorization is given by:

AP ¼ Q R
0

� �
;

where R is an n by n upper triangular matrix (with real diagonal elements), Q is an m by m unitary
matrix and P is an n by n permutation matrix. It is sometimes more convenient to write the
factorization as

AP ¼ Q1 Q2

� � R
0

� �
;

which reduces to

AP ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

AP ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned in the first k columns of the array A represents a
QR factorization of the first k columns of the permuted matrix AP .

The routine allows specified columns of A to be moved to the leading columns of AP at the start of the
factorization and fixed there. The remaining columns are free to be interchanged so that at the ith stage
the pivot column is chosen to be the column which maximizes the 2-norm of elements i to m over
columns i to n.
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the unitary
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the unitary matrix Q and
the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

The diagonal elements of R are real.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BSF
(ZGEQPF) is called.

Constraint: LDA � max 1;Mð Þ.

5: JPVTð�Þ – INTEGER array Input/Output

Note: the dimension of the array JPVT must be at least max 1;Nð Þ.
On entry: if JPVTðiÞ 6¼ 0, then the i th column of A is moved to the beginning of AP before the
decomposition is computed and is fixed in place during the computation. Otherwise, the i th
column of A is a free column (i.e., one which may be interchanged during the computation with
any other free column).

On exit: details of the permutation matrix P . More precisely, if JPVTðiÞ ¼ k, then the kth column
of A is moved to become the i th column of AP ; in other words, the columns of AP are the
columns of A in the order JPVTð1Þ; JPVTð2Þ; . . . ; JPVTðnÞ.

6: TAUðmin M;Nð ÞÞ – COMPLEX (KIND=nag_wp) array Output

On exit: further details of the unitary matrix Q.

7: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

8: RWORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08BSF (ZGEQPF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3n

2 3m� nð Þ if m � n or
8
3m

2 3n�mð Þ if m < n.

To form the unitary matrix Q F08BSF (ZGEQPF) may be followed by a call to F08ATF (ZUNGQR):

CALL ZUNGQR(M,M,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)

but note that the second dimension of the array A must be at least M, which may be larger than was
required by F08BSF (ZGEQPF).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

CALL ZUNGQR(M,N,N,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary complex rectangular matrix C, F08BSF (ZGEQPF) may be followed by a
call to F08AUF (ZUNMQR). For example,

CALL ZUNMQR(’Left’,’Conjugate Transpose’,M,P,MIN(M,N),A,LDA,TAU, &
C,LDC,WORK,LWORK,INFO)

forms C ¼ QHC, where C is m by p.

To compute a QR factorization without column pivoting, use F08ASF (ZGEQRF).

The real analogue of this routine is F08BEF (DGEQPF).

10 Example

This example solves the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,
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A ¼

0:47� 0:34i �0:40þ 0:54i 0:60þ 0:01i 0:80� 1:02i
�0:32� 0:23i �0:05þ 0:20i �0:26� 0:44i �0:43þ 0:17i
0:35� 0:60i �0:52� 0:34i 0:87� 0:11i �0:34� 0:09i
0:89þ 0:71i �0:45� 0:45i �0:02� 0:57i 1:14� 0:78i
�0:19þ 0:06i 0:11� 0:85i 1:44þ 0:80i 0:07þ 1:14i

0BBB@
1CCCA

and

B ¼

�0:85� 1:63i 2:49þ 4:01i
�2:16þ 3:52i �0:14þ 7:98i
4:57� 5:71i 8:36� 0:28i
6:38� 7:40i �3:55þ 1:29i
8:41þ 9:39i �6:72þ 5:03i

0BBB@
1CCCA:

Here A is approximately rank-deficient, and hence it is preferable to use F08BSF (ZGEQPF) rather than
F08ASF (ZGEQRF).

10.1 Program Text

Program f08bsfe

! F08BSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgeqpf, ztrsv, zunmqr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: zero = (0.0E0_nag_wp,0.0E0_nag_wp)
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, info, k, lda, ldb, ldx, &

lwork, m, n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:), &
x(:,:)

Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: jpvt(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F08BSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
ldx = m
lwork = 64*n
Allocate (a(lda,n),b(ldb,nrhs),tau(n),work(lwork),x(ldx,nrhs), &

rwork(2*n),jpvt(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Initialize JPVT to be zero so that all columns are free

jpvt(1:n) = 0

! Compute the QR factorization of A
! The NAG name equivalent of zgeqpf is f08bsf
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Call zgeqpf(m,n,a,lda,jpvt,tau,work,rwork,info)

! Choose TOL to reflect the relative accuracy of the input data

tol = 0.01_nag_wp

! Determine which columns of R to use

loop: Do k = 1, n
If (abs(a(k,k))<=tol*abs(a(1,1))) Then

Exit loop
End If

End Do loop

! Compute C = (Q**H)*B, storing the result in B

k = k - 1

! The NAG name equivalent of zunmqr is f08auf
Call zunmqr(’Left’,’Conjugate Transpose’,m,nrhs,k,a,lda,tau,b,ldb,work, &

lwork,info)

! Compute least squares solution by back-substitution in R*B = C

Do i = 1, nrhs

! The NAG name equivalent of ztrsv is f06sjf
Call ztrsv(’Upper’,’No transpose’,’Non-Unit’,k,a,lda,b(1,i),1)

! Set the unused elements of the I-th solution vector to zero

b(k+1:n,i) = zero

End Do

! Unscramble the least squares solution stored in B

Do i = 1, n
x(jpvt(i),1:nrhs) = b(i,1:nrhs)

End Do

! Print least squares solution

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,x,ldx,’Bracketed’,’F7.4’, &

’Least squares solution’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End Program f08bsfe

10.2 Program Data

F08BSF Example Program Data
5 4 2 :Values of M, N and NRHS

( 0.47,-0.34) (-0.40, 0.54) ( 0.60, 0.01) ( 0.80,-1.02)
(-0.32,-0.23) (-0.05, 0.20) (-0.26,-0.44) (-0.43, 0.17)
( 0.35,-0.60) (-0.52,-0.34) ( 0.87,-0.11) (-0.34,-0.09)
( 0.89, 0.71) (-0.45,-0.45) (-0.02,-0.57) ( 1.14,-0.78)
(-0.19, 0.06) ( 0.11,-0.85) ( 1.44, 0.80) ( 0.07, 1.14) :End of matrix A
(-0.85,-1.63) ( 2.49, 4.01)
(-2.16, 3.52) (-0.14, 7.98)
( 4.57,-5.71) ( 8.36,-0.28)
( 6.38,-7.40) (-3.55, 1.29)
( 8.41, 9.39) (-6.72, 5.03) :End of matrix B
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10.3 Program Results

F08BSF Example Program Results

Least squares solution
1 2

1 ( 0.0000, 0.0000) ( 0.0000, 0.0000)
2 ( 2.6925, 8.0446) (-2.0563,-2.9759)
3 ( 2.7602, 2.5455) ( 1.0588, 1.4635)
4 ( 2.7383, 0.5123) (-1.4150, 0.2982)
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NAG Library Routine Document

F08BTF (ZGEQP3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BTF (ZGEQP3) computes the QR factorization, with column pivoting, of a complex m by n matrix.

2 Specification

SUBROUTINE F08BTF (M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, INFO)

INTEGER M, N, LDA, JPVT(*), LWORK, INFO
REAL (KIND=nag_wp) RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zgeqp3.

3 Description

F08BTF (ZGEQP3) forms the QR factorization, with column pivoting, of an arbitrary rectangular
complex m by n matrix.

If m � n, the factorization is given by:

AP ¼ Q R
0

� �
;

where R is an n by n upper triangular matrix (with real diagonal elements), Q is an m by m unitary
matrix and P is an n by n permutation matrix. It is sometimes more convenient to write the
factorization as

AP ¼ Q1 Q2

� � R
0

� �
;

which reduces to

AP ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

AP ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned in the first k columns of the array A represents a
QR factorization of the first k columns of the permuted matrix AP .

The routine allows specified columns of A to be moved to the leading columns of AP at the start of the
factorization and fixed there. The remaining columns are free to be interchanged so that at the ith stage
the pivot column is chosen to be the column which maximizes the 2-norm of elements i to m over
columns i to n.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the unitary
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the unitary matrix Q and
the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

The diagonal elements of R are real.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BTF
(ZGEQP3) is called.

Constraint: LDA � max 1;Mð Þ.

5: JPVTð�Þ – INTEGER array Input/Output

Note: the dimension of the array JPVT must be at least max 1;Nð Þ.
On entry: if JPVTðjÞ 6¼ 0, then the j th column of A is moved to the beginning of AP before the
decomposition is computed and is fixed in place during the computation. Otherwise, the j th
column of A is a free column (i.e., one which may be interchanged during the computation with
any other free column).

On exit: details of the permutation matrix P . More precisely, if JPVTðjÞ ¼ k, then the kth column
of A is moved to become the j th column of AP ; in other words, the columns of AP are the
columns of A in the order JPVTð1Þ; JPVTð2Þ; . . . ; JPVTðnÞ.

6: TAUð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;min M;Nð Þð Þ.
On exit: further details of the unitary matrix Q.
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7: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08BTF (ZGEQP3) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � Nþ 1ð Þ � nb, where nb is the optimal
block size.

Constraint: LWORK � Nþ 1 or LWORK ¼ �1.

9: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1; 2� Nð Þ.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08BTF (ZGEQP3) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08BTF (ZGEQP3) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3n

2 3m� nð Þ if m � n or
8
3m

2 3n�mð Þ if m < n.

To form the unitary matrix Q F08BTF (ZGEQP3) may be followed by a call to F08ATF (ZUNGQR):

CALL ZUNGQR(M,M,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)
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but note that the second dimension of the array A must be at least M, which may be larger than was
required by F08BTF (ZGEQP3).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

CALL ZUNGQR(M,N,N,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary complex rectangular matrix C, F08BTF (ZGEQP3) may be followed by a
call to F08AUF (ZUNMQR). For example,

CALL ZUNMQR(’Left’,’Conjugate Transpose’,M,P,MIN(M,N),A,LDA,TAU, &
C,LDC,WORK,LWORK,INFO)

forms C ¼ QHC, where C is m by p.

To compute a QR factorization without column pivoting, use F08ASF (ZGEQRF).

The real analogue of this routine is F08BFF (DGEQP3).

10 Example

This example solves the linear least squares problems

min
x

bj �Axj
�� ��

2
; j ¼ 1; 2

for the basic solutions x1 and x2, where

A ¼

0:47� 0:34i �0:40þ 0:54i 0:60þ 0:01i 0:80� 1:02i
�0:32� 0:23i �0:05þ 0:20i �0:26� 0:44i �0:43þ 0:17i
0:35� 0:60i �0:52� 0:34i 0:87� 0:11i �0:34� 0:09i
0:89þ 0:71i �0:45� 0:45i �0:02� 0:57i 1:14� 0:78i
�0:19þ 0:06i 0:11� 0:85i 1:44þ 0:80i 0:07þ 1:14i

0BBB@
1CCCA

and

B ¼

�1:08� 2:59i 2:22þ 2:35i
�2:61� 1:49i 1:62� 1:48i
3:13� 3:61i 1:65þ 3:43i
7:33� 8:01i �0:98þ 3:08i
9:12þ 7:63i �2:84þ 2:78i

0BBB@
1CCCA:

and bj is the jth column of the matrix B. The solution is obtained by first obtaining a QR factorization
with column pivoting of the matrix A. A tolerance of 0:01 is used to estimate the rank of A from the
upper triangular factor, R.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08btfe

! F08BTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04dbf, zgeqp3, ztrsm, zunmqr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: one = (1.0E0_nag_wp,0.0E0_nag_wp)
Complex (Kind=nag_wp), Parameter :: zero = (0.0E0_nag_wp,0.0E0_nag_wp)
Integer, Parameter :: inc1 = 1, nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, info, j, k, lda, ldb, &
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lwork, m, n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:)
Real (Kind=nag_wp), Allocatable :: rnorm(:), rwork(:)
Integer, Allocatable :: jpvt(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F08BTF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
lwork = (n+1)*nb
Allocate (a(lda,n),b(ldb,nrhs),tau(n),work(lwork),rnorm(nrhs), &

rwork(2*n),jpvt(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Initialize JPVT to be zero so that all columns are free

jpvt(1:n) = 0

! Compute the QR factorization of A

! The NAG name equivalent of zgeqp3 is f08btf
Call zgeqp3(m,n,a,lda,jpvt,tau,work,lwork,rwork,info)

! Compute C = (C1) = (Q**H)*B, storing the result in B
! (C2)

! The NAG name equivalent of zunmqr is f08auf
Call zunmqr(’Left’,’Conjugate Transpose’,m,nrhs,n,a,lda,tau,b,ldb,work, &

lwork,info)

! Choose TOL to reflect the relative accuracy of the input data

tol = 0.01_nag_wp

! Determine and print the rank, K, of R relative to TOL

loop: Do k = 1, n
If (abs(a(k,k))<=tol*abs(a(1,1))) Then

Exit loop
End If

End Do loop
k = k - 1

Write (nout,*) ’Tolerance used to estimate the rank of A’
Write (nout,99999) tol
Write (nout,*) ’Estimated rank of A’
Write (nout,99998) k
Write (nout,*)
Flush (nout)

! Compute least squares solutions by back-substitution in
! R(1:K,1:K)*Y = C1, storing the result in B

! The NAG name equivalent of ztrsm is f06zjf
Call ztrsm(’Left’,’Upper’,’No transpose’,’Non-Unit’,k,nrhs,one,a,lda,b, &

ldb)

! Compute estimates of the square roots of the residual sums of
! squares (2-norm of each of the columns of C2)
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! The NAG name equivalent of dznrm2 is f06jjf
Do j = 1, nrhs

rnorm(j) = dznrm2(m-k,b(k+1,j),inc1)
End Do

! Set the remaining elements of the solutions to zero (to give
! the basic solutions)

b(k+1:n,1:nrhs) = zero

! Permute the least squares solutions stored in B to give X = P*Y

Do j = 1, nrhs
work(jpvt(1:n)) = b(1:n,j)
b(1:n,j) = work(1:n)

End Do

! Print least squares solutions

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Least squares solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

! Print the square roots of the residual sums of squares

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

99999 Format (3X,1P,7E11.2)
99998 Format (1X,I8)

End Program f08btfe

10.2 Program Data

F08BTF Example Program Data

5 4 2 :Values of M, N and NRHS

( 0.47,-0.34) (-0.40, 0.54) ( 0.60, 0.01) ( 0.80,-1.02)
(-0.32,-0.23) (-0.05, 0.20) (-0.26,-0.44) (-0.43, 0.17)
( 0.35,-0.60) (-0.52,-0.34) ( 0.87,-0.11) (-0.34,-0.09)
( 0.89, 0.71) (-0.45,-0.45) (-0.02,-0.57) ( 1.14,-0.78)
(-0.19, 0.06) ( 0.11,-0.85) ( 1.44, 0.80) ( 0.07, 1.14) :End of matrix A

(-1.08,-2.59) ( 2.22, 2.35)
(-2.61,-1.49) ( 1.62,-1.48)
( 3.13,-3.61) ( 1.65, 3.43)
( 7.33,-8.01) (-0.98, 3.08)
( 9.12, 7.63) (-2.84, 2.78) :End of matrix B

10.3 Program Results

F08BTF Example Program Results

Tolerance used to estimate the rank of A
1.00E-02

Estimated rank of A
3

Least squares solution(s)
1 2

1 ( 0.0000, 0.0000) ( 0.0000, 0.0000)
2 ( 2.7020, 8.0911) (-2.2682,-2.9884)
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3 ( 2.8888, 2.5012) ( 0.9779, 1.3565)
4 ( 2.7100, 0.4791) (-1.3734, 0.2212)

Square root(s) of the residual sum(s) of squares
2.51E-01 8.10E-02
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NAG Library Routine Document

F08BVF (ZTZRZF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BVF (ZTZRZF) reduces the m by n (m � n) complex upper trapezoidal matrix A to upper
triangular form by means of unitary transformations.

2 Specification

SUBROUTINE F08BVF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name ztzrzf.

3 Description

The m by n (m � n) complex upper trapezoidal matrix A given by

A ¼ R1 R2

� �
;

where R1 is an m by m upper triangular matrix and R2 is an m by n�mð Þ matrix, is factorized as

A ¼ R 0
� �

Z;

where R is also an m by m upper triangular matrix and Z is an n by n unitary matrix.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the leading m by n upper trapezoidal part of the array A must contain the matrix to be
factorized.

On exit: the leading m by m upper triangular part of A contains the upper triangular matrix R,
and elements Mþ 1 to N of the first m rows of A, with the array TAU, represent the unitary

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08BVF

Mark 26 F08BVF.1

http://www.netlib.org/lapack/lug


matrix Z as a product of m elementary reflectors (see Section 3.3.6 in the F08 Chapter
Introduction).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BVF
(ZTZRZF) is called.

Constraint: LDA � max 1;Mð Þ.

5: TAUð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;Mð Þ.
On exit: the scalar factors of the elementary reflectors.

6: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08BVF (ZTZRZF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � M� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Mð Þ or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ E, where
Ek k2 ¼ O � Ak k2

and � is the machine precision.

8 Parallelism and Performance

F08BVF (ZTZRZF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 16m2 n�mð Þ.
The real analogue of this routine is F08BHF (DTZRZF).

10 Example

This example solves the linear least squares problems

min
x

bj �Axj
�� ��

2
; j ¼ 1; 2

for the minimum norm solutions x1 and x2, where bj is the jth column of the matrix B,

A ¼

0:47� 0:34i �0:40þ 0:54i 0:60þ 0:01i 0:80� 1:02i
�0:32� 0:23i �0:05þ 0:20i �0:26� 0:44i �0:43þ 0:17i
0:35� 0:60i �0:52� 0:34i 0:87� 0:11i �0:34� 0:09i
0:89þ 0:71i �0:45� 0:45i �0:02� 0:57i 1:14� 0:78i
�0:19þ 0:06i 0:11� 0:85i 1:44þ 0:80i 0:07þ 1:14i

0BBB@
1CCCA

and

B ¼

�1:08� 2:59i 2:22þ 2:35i
�2:61� 1:49i 1:62� 1:48i
3:13� 3:61i 1:65þ 3:43i
7:33� 8:01i �0:98þ 3:08i
9:12þ 7:63i �2:84þ 2:78i

0BBB@
1CCCA:

The solution is obtained by first obtaining a QR factorization with column pivoting of the matrix A,
and then the RZ factorization of the leading k by k part of R is computed, where k is the estimated
rank of A. A tolerance of 0:01 is used to estimate the rank of A from the upper triangular factor, R.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08bvfe

! F08BVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04dbf, zgeqp3, ztrsm, ztzrzf, &

zunmqr, zunmrz
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Complex (Kind=nag_wp), Parameter :: one = (1.0_nag_wp,0.0_nag_wp)
Complex (Kind=nag_wp), Parameter :: zero = (0.0_nag_wp,0.0_nag_wp)
Integer, Parameter :: inc1 = 1, nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, info, j, k, lda, ldb, &

lwork, m, n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:)
Real (Kind=nag_wp), Allocatable :: rnorm(:), rwork(:)
Integer, Allocatable :: jpvt(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F08BVF Example Program Results’
Write (nout,*)

! Skip heading in data file
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Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
lwork = (n+1)*nb
Allocate (a(lda,n),b(ldb,nrhs),tau(n),work(lwork),rnorm(n),rwork(2*n), &

jpvt(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Initialize JPVT to be zero so that all columns are free

jpvt(1:n) = 0

! Compute the QR factorization of A with column pivoting as
! A = Q*(R11 R12)*(P**T)
! ( 0 R22)
! The NAG name equivalent of zgeqp3 is f08btf

Call zgeqp3(m,n,a,lda,jpvt,tau,work,lwork,rwork,info)

! Compute C = (C1) = (Q**H)*B, storing the result in B
! (C2)
! The NAG name equivalent of zunmqr is f08auf

Call zunmqr(’Left’,’Conjugate transpose’,m,nrhs,n,a,lda,tau,b,ldb,work, &
lwork,info)

! Choose TOL to reflect the relative accuracy of the input data

tol = 0.01_nag_wp

! Determine and print the rank, K, of R relative to TOL

loop: Do k = 1, n
If (abs(a(k,k))<=tol*abs(a(1,1))) Then

Exit loop
End If

End Do loop
k = k - 1

Write (nout,*) ’Tolerance used to estimate the rank of A’
Write (nout,99999) tol
Write (nout,*) ’Estimated rank of A’
Write (nout,99998) k
Write (nout,*)
Flush (nout)

! Compute the RZ factorization of the K by K part of R as
! (R1 R2) = (T 0)*Z
! The NAG name equivalent of ztzrzf is f08bvf

Call ztzrzf(k,n,a,lda,tau,work,lwork,info)

! Compute least squares solutions of triangular problems by
! back substitution in T*Y1 = C1, storing the result in B
! The NAG name equivalent of ztrsm is f06zjf

Call ztrsm(’Left’,’Upper’,’No transpose’,’Non-Unit’,k,nrhs,one,a,lda,b, &
ldb)

! Compute estimates of the square roots of the residual sums of
! squares (2-norm of each of the columns of C2)

! The NAG name equivalent of dznrm2 is f06jjf
Do j = 1, nrhs

rnorm(j) = dznrm2(m-k,b(k+1,j),inc1)
End Do

! Set the remaining elements of the solutions to zero (to give
! the minimum-norm solutions), Y2 = 0
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b(k+1:n,1:nrhs) = zero

! Form W = (Z**H)*Y
! The NAG name equivalent of zunmrz is f08bxf

Call zunmrz(’Left’,’Conjugate transpose’,n,nrhs,k,n-k,a,lda,tau,b,ldb, &
work,lwork,info)

! Permute the least squares solutions stored in B to give X = P*W

Do j = 1, nrhs
Do i = 1, n

work(jpvt(i)) = b(i,j)
End Do
b(1:n,j) = work(1:n)

End Do

! Print least squares solutions

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b,ldb,’Bracketed’,’F7.4’, &

’Least squares solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

! Print the square roots of the residual sums of squares

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

99999 Format (3X,1P,7E11.2)
99998 Format (1X,I6)

End Program f08bvfe

10.2 Program Data

F08BVF Example Program Data

5 4 2 :Values of M, N and NRHS

( 0.47,-0.34) (-0.40, 0.54) ( 0.60, 0.01) ( 0.80,-1.02)
(-0.32,-0.23) (-0.05, 0.20) (-0.26,-0.44) (-0.43, 0.17)
( 0.35,-0.60) (-0.52,-0.34) ( 0.87,-0.11) (-0.34,-0.09)
( 0.89, 0.71) (-0.45,-0.45) (-0.02,-0.57) ( 1.14,-0.78)
(-0.19, 0.06) ( 0.11,-0.85) ( 1.44, 0.80) ( 0.07, 1.14) :End of matrix A

(-1.08,-2.59) ( 2.22, 2.35)
(-2.61,-1.49) ( 1.62,-1.48)
( 3.13,-3.61) ( 1.65, 3.43)
( 7.33,-8.01) (-0.98, 3.08)
( 9.12, 7.63) (-2.84, 2.78) :End of matrix B

10.3 Program Results

F08BVF Example Program Results

Tolerance used to estimate the rank of A
1.00E-02

Estimated rank of A
3

Least squares solution(s)
1 2

1 ( 1.1669,-3.3224) (-0.5023, 1.8323)
2 ( 1.3486, 5.5027) (-1.4418,-1.6465)
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3 ( 4.1764, 2.3435) ( 0.2908, 1.4900)
4 ( 0.6467, 0.0107) (-0.2453, 0.3951)

Square root(s) of the residual sum(s) of squares
2.51E-01 8.10E-02
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NAG Library Routine Document

F08BXF (ZUNMRZ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08BXF (ZUNMRZ) multiplies a general complex m by n matrix C by the complex unitary matrix Z
from an RZ factorization computed by F08BVF (ZTZRZF).

2 Specification

SUBROUTINE F08BXF (SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, K, L, LDA, LDC, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name zunmrz.

3 Description

F08BXF (ZUNMRZ) is intended to be used following a call to F08BVF (ZTZRZF), which performs an
RZ factorization of a real upper trapezoidal matrix A and represents the unitary matrix Z as a product
of elementary reflectors.

This routine may be used to form one of the matrix products

ZC; ZHC; CZ; CZH;

overwriting the result on C, which may be any complex rectangular m by n matrix.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Z or ZH is to be applied to C.

SIDE ¼ L
Z or ZH is applied to C from the left.

SIDE ¼ R
Z or ZH is applied to C from the right.

Constraint: SIDE ¼ L or R .

2: TRANS – CHARACTER(1) Input

On entry: indicates whether Z or ZH is to be applied to C.

TRANS ¼ N
Z is applied to C.
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TRANS ¼ C
ZH is applied to C.

Constraint: TRANS ¼ N or C .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Z.

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: L – INTEGER Input

On entry: l, the number of columns of the matrix A containing the meaningful part of the
Householder reflectors.

Constraints:

if SIDE ¼ L , M � L � 0;
if SIDE ¼ R , N � L � 0.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: the ith row of A must contain the vector which defines the elementary reflector Hi, for
i ¼ 1; 2; . . . ; k, as returned by F08BVF (ZTZRZF).

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08BXF
(ZUNMRZ) is called.

Constraint: LDA � max 1;Kð Þ.

9: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: TAUðiÞ must contain the scalar factor of the elementary reflector Hi, as returned by
F08BVF (ZTZRZF).

10: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by ZC or ZHC or CZ or ZHC as specified by SIDE and TRANS.
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11: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08BXF
(ZUNMRZ) is called.

Constraint: LDC � max 1;Mð Þ.

12: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08BXF (ZUNMRZ) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O � Ck k2
where � is the machine precision.

8 Parallelism and Performance

F08BXF (ZUNMRZ) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 16nlk if SIDE ¼ L and 16mlk if
SIDE ¼ R .

The real analogue of this routine is F08BKF (DORMRZ).

10 Example

See Section 10 in F08BVF (ZTZRZF).
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NAG Library Routine Document

F08CEF (DGEQLF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CEF (DGEQLF) computes a QL factorization of a real m by n matrix A.

2 Specification

SUBROUTINE F08CEF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dgeqlf.

3 Description

F08CEF (DGEQLF) forms the QL factorization of an arbitrary rectangular real m by n matrix.

If m � n, the factorization is given by:

A ¼ Q 0
L

� �
;

where L is an n by n lower triangular matrix and Q is an m by m orthogonal matrix. If m < n the
factorization is given by

A ¼ QL;

where L is an m by n lower trapezoidal matrix and Q is again an m by m orthogonal matrix. In the
case where m > n the factorization can be expressed as

A ¼ Q1 Q2

� � 0
L

� �
¼ Q2L;

where Q1 consists of the first m� n columns of Q, and Q2 the remaining n columns.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see Section 3.3.6 in the F08 Chapter Introduction for details). Routines are provided to work with Q in
this representation (see Section 9).

Note also that for any k < n, the information returned in the last k columns of the array A represents a
QL factorization of the last kendgroup columns of the original matrix A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the lower triangle of the subarray Aðm� nþ 1 : m; 1 : nÞ contains the n by n
lower triangular matrix L.

If m � n, the elements on and below the n�mð Þth superdiagonal contain the m by n lower
trapezoidal matrix L. The remaining elements, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors (see Section 3.3.6 in the F08 Chapter
Introduction).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08CEF
(DGEQLF) is called.

Constraint: LDA � max 1;Mð Þ.

5: TAUð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;min M;Nð Þð Þ.
On exit: the scalar factors of the elementary reflectors (see Section 9).

6: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08CEF (DGEQLF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08CEF (DGEQLF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ
if m < n.

To form the orthogonal matrix Q F08CEF (DGEQLF) may be followed by a call to F08CFF
(DORGQL):

CALL DORGQL(M,M,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)

but note that the second dimension of the array A must be at least M, which may be larger than was
required by F08CEF (DGEQLF).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

CALL DORGQL(M,N,N,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary real rectangular matrix C, F08CEF (DGEQLF) may be followed by a call to
F08CGF (DORMQL). For example,

CALL DORMQL(’Left’,’Transpose’,M,P,MIN(M,N),A,LDA,TAU,C,LDC,WORK, &
LWORK,INFO)

forms C ¼ QTC, where C is m by p.

The complex analogue of this routine is F08CSF (ZGEQLF).

10 Example

This example solves the linear least squares problems

min
x

bj �Axj
�� ��

2
; j ¼ 1; 2

for x1 and x2, where bj is the jth column of the matrix B,
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A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA and B ¼

�2:67 0:41
�0:55 �3:10
3:34 �4:01
�0:77 2:76
0:48 �6:17
4:10 0:21

0BBBBB@

1CCCCCA:
The solution is obtained by first obtaining a QL factorization of the matrix A.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08cefe

! F08CEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgeqlf, dnrm2, dormql, dtrtrs, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, lda, ldb, lwork, &

m, n, nrhs
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), rnorm(:), tau(:), &
work(:)

! .. Executable Statements ..
Write (nout,*) ’F08CEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
lwork = nb*n
Allocate (a(lda,n),b(ldb,nrhs),rnorm(nrhs),tau(n),work(lwork))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Compute the QL factorization of A
! The NAG name equivalent of dgeqlf is f08cef

Call dgeqlf(m,n,a,lda,tau,work,lwork,info)

! Compute C = (C1) = (Q**T)*B, storing the result in B
! (C2)
! The NAG name equivalent of dormql is f08cgf

Call dormql(’Left’,’Transpose’,m,nrhs,n,a,lda,tau,b,ldb,work,lwork,info)

! Compute least squares solutions by back-substitution in
! L*X = C2
! The NAG name equivalent of dtrtrs is f07tef

Call dtrtrs(’Lower’,’No transpose’,’Non-Unit’,n,nrhs,a(m-n+1,1),lda, &
b(m-n+1,1),ldb,info)

If (info>0) Then
Write (nout,*) ’The lower triangular factor, L, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

F08CEF NAG Library Manual

F08CEF.4 Mark 26



! Print least squares solution(s)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,nrhs,b(m-n+1,1),ldb, &

’Least squares solution(s)’,ifail)

! Compute and print estimates of the square roots of the residual
! sums of squares

! The NAG name equivalent of dnrm2 is f06ejf
Do j = 1, nrhs

rnorm(j) = dnrm2(m-n,b(1,j),1)
End Do

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

End If

99999 Format (5X,1P,7E11.2)
End Program f08cefe

10.2 Program Data

F08CEF Example Program Data

6 4 2 :Values of M, N and NRHS

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A

-2.67 0.41
-0.55 -3.10
3.34 -4.01

-0.77 2.76
0.48 -6.17
4.10 0.21 :End of matrix B

10.3 Program Results

F08CEF Example Program Results

Least squares solution(s)
1 2

1 1.5339 -1.5753
2 1.8707 0.5559
3 -1.5241 1.3119
4 0.0392 2.9585

Square root(s) of the residual sum(s) of squares
2.22E-02 1.38E-02
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NAG Library Routine Document

F08CFF (DORGQL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CFF (DORGQL) generates all or part of the real m by m orthogonal matrix Q from a QL
factorization computed by F08CEF (DGEQLF).

2 Specification

SUBROUTINE F08CFF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, K, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dorgql.

3 Description

F08CFF (DORGQL) is intended to be used after a call to F08CEF (DGEQLF), which performs a QL
factorization of a real matrix A. The orthogonal matrix Q is represented as a product of elementary
reflectors.

This routine may be used to generate Q explicitly as a square matrix, or to form only its trailing
columns.

Usually Q is determined from the QL factorization of an m by p matrix A with m � p. The whole of Q
may be computed by:

CALL DORGQL(M,M,P,A,LDA,TAU,WORK,LWORK,INFO)

(note that the array A must have at least m columns) or its trailing p columns by:

CALL DORGQL(M,P,P,A,LDA,TAU,WORK,LWORK,INFO)

The columns of Q returned by the last call form an orthonormal basis for the space spanned by the
columns of A; thus F08CEF (DGEQLF) followed by F08CFF (DORGQL) can be used to orthogonalize
the columns of A.

The information returned by F08CEF (DGEQLF) also yields the QL factorization of the trailing k
columns of A, where k < p. The orthogonal matrix arising from this factorization can be computed by:

CALL DORGQL(M,M,K,A,LDA,TAU,WORK,LWORK,INFO)

or its trailing k columns by:

CALL DORGQL(M,K,K,A,LDA,TAU,WORK,LWORK,INFO)

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix Q.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix Q.

Constraint: M � N � 0.

3: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: N � K � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08CEF
(DGEQLF).

On exit: the m by n matrix Q.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08CFF
(DORGQL) is called.

Constraint: LDA � max 1;Mð Þ.

6: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08CEF (DGEQLF).

7: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08CFF (DORGQL) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08CFF (DORGQL) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4mnk� 2 mþ nð Þk2 þ 4
3k

3 ; when n ¼ k,
the number is approximately 2

3n
2 3m� nð Þ .

The complex analogue of this routine is F08CTF (ZUNGQL).

10 Example

This example generates the first four columns of the matrix Q of the QL factorization of A as returned
by F08CEF (DGEQLF), where

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA:
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08cffe

! F08CFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgeqlf, dorgql, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, m, n

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08CFF
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Character (30) :: title
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:)
! .. Executable Statements ..

Write (nout,*) ’F08CFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = nb*n
Allocate (a(lda,n),tau(n),work(lwork))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Compute the QL factorization of A

! The NAG name equivalent of dgeqlf is f08cef
Call dgeqlf(m,n,a,lda,tau,work,lwork,info)

! Form the leading N columns of Q explicitly

! The NAG name equivalent of dorgql is f08cff
Call dorgql(m,n,n,a,lda,tau,work,lwork,info)

! Form the heading for X04CAF

Write (title,99999) n
Flush (nout)

! Print the leading N columns of Q

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,m,n,a,lda,title,ifail)

99999 Format (’The leading ’,I4,’ columns of Q’)
End Program f08cffe

10.2 Program Data

F08CFF Example Program Data

6 4 :Values of M and N

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A

10.3 Program Results

F08CFF Example Program Results

The leading 4 columns of Q
1 2 3 4

1 -0.0833 0.9100 -0.2202 -0.0809
2 0.2972 -0.1080 -0.2706 0.6922
3 -0.6404 -0.2351 0.2220 0.1132
4 0.4461 -0.1620 -0.3866 -0.0259
5 -0.2938 0.2022 0.0015 0.6890
6 -0.4575 -0.1946 -0.8243 -0.1617

F08CFF NAG Library Manual

F08CFF.4 (last) Mark 26



NAG Library Routine Document

F08CGF (DORMQL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CGF (DORMQL) multiplies a general real m by n matrix C by the real orthogonal matrix Q from a
QL factorization computed by F08CEF (DGEQLF).

2 Specification

SUBROUTINE F08CGF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, K, LDA, LDC, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name dormql.

3 Description

F08CGF (DORMQL) is intended to be used following a call to F08CEF (DGEQLF), which performs a
QL factorization of a real matrix A and represents the orthogonal matrix Q as a product of elementary
reflectors.

This routine may be used to form one of the matrix products

QC; QTC; CQ; CQT;

overwriting the result on C, which may be any real rectangular m by n matrix.

A common application of this routine is in solving linear least squares problems, as described in the
F08 Chapter Introduction, and illustrated in Section 10 in F08CEF (DGEQLF).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QT is to be applied to C.

SIDE ¼ L
Q or QT is applied to C from the left.

SIDE ¼ R
Q or QT is applied to C from the right.

Constraint: SIDE ¼ L or R .
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2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QT is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ T
QT is applied to C.

Constraint: TRANS ¼ N or T .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08CEF
(DGEQLF).

On exit: is modified by F08CGF (DORMQL) but restored on exit.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08CGF
(DORMQL) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

8: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08CEF (DGEQLF).

9: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QTC or CQ or CQT as specified by SIDE and TRANS.
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10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08CGF
(DORMQL) is called.

Constraint: LDC � max 1;Mð Þ.

11: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08CGF (DORMQL) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O � Ck k2
where � is the machine precision.

8 Parallelism and Performance

F08CGF (DORMQL) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 2nk 2m� kð Þ if SIDE ¼ L and
2mk 2n� kð Þ if SIDE ¼ R .

The complex analogue of this routine is F08CUF (ZUNMQL).

10 Example

See Section 10 in F08CEF (DGEQLF).
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NAG Library Routine Document

F08CHF (DGERQF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CHF (DGERQF) computes an RQ factorization of a real m by n matrix A.

2 Specification

SUBROUTINE F08CHF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dgerqf.

3 Description

F08CHF (DGERQF) forms the RQ factorization of an arbitrary rectangular real m by n matrix. If
m � n, the factorization is given by

A ¼ 0 R
� �

Q;

where R is an m by m lower triangular matrix and Q is an n by n orthogonal matrix. If m > n the
factorization is given by

A ¼ RQ;

where R is an m by n upper trapezoidal matrix and Q is again an n by n orthogonal matrix. In the case
where m < n the factorization can be expressed as

A ¼ 0 R
� � Q1

Q2

� �
¼ RQ2;

where Q1 consists of the first n�mð Þ rows of Q and Q2 the remaining m rows.

The matrix Q is not formed explicitly, but is represented as a product of min m;nð Þ elementary
reflectors (see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.
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2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the upper triangle of the subarray Að1 : m;n�mþ 1 : nÞ contains the m by
m upper triangular matrix R.

If m � n, the elements on and above the m� nð Þth subdiagonal contain the m by n upper
trapezoidal matrix R; the remaining elements, with the array TAU, represent the orthogonal
matrix Q as a product of min m;nð Þ elementary reflectors (see Section 3.3.6 in the F08 Chapter
Introduction).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08CHF
(DGERQF) is called.

Constraint: LDA � max 1;Mð Þ.

5: TAUð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;min M;Nð Þð Þ.
On exit: the scalar factors of the elementary reflectors.

6: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08CHF (DGERQF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � M� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Mð Þ or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

F08CHF NAG Library Manual

F08CHF.2 Mark 26



7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ E, where
Ek k2 ¼ O � Ak k2

and � is the machine precision.

8 Parallelism and Performance

F08CHF (DGERQF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3m

2 3n�mð Þ if m � n, or 2
3n

2 3m� nð Þ
if m > n.

To form the orthogonal matrix Q F08CHF (DGERQF) may be followed by a call to F08CJF
(DORGRQ):

CALL DORGRQ(N,N,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)

but note that the first dimension of the array A must be at least N, which may be larger than was
required by F08CHF (DGERQF). When m � n, it is often only the first m rows of Q that are required
and they may be formed by the call:

CALL DORGRQ(M,N,M,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary real rectangular matrix C, F08CHF (DGERQF) may be followed by a call to
F08CKF (DORMRQ). For example:

CALL DORMRQ(’Left’,’Transpose’,N,P,MIN(M,N),A,LDA,TAU,C,LDC, &
WORK,LWORK,INFO)

forms C ¼ QTC, where C is n by p.

The complex analogue of this routine is F08CVF (ZGERQF).

10 Example

This example finds the minimum norm solution to the underdetermined equations

Ax ¼ b

where

A ¼
�5:42 3:28 �3:68 0:27 2:06 0:46
�1:65 �3:40 �3:20 �1:03 �4:06 �0:01
�0:37 2:35 1:90 4:31 �1:76 1:13
�3:15 �0:11 1:99 �2:70 0:26 4:50

0B@
1CA and b ¼

�2:87
1:63
�3:52
0:45

0B@
1CA:

The solution is obtained by first obtaining an RQ factorization of the matrix A.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08CHF

Mark 26 F08CHF.3



10.1 Program Text

Program f08chfe

! F08CHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgerqf, dormrq, dtrtrs, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, lda, lwork, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), tau(:), work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’F08CHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = nb*m
Allocate (a(lda,n),b(m),tau(m),work(lwork),x(n))

! Read the matrix A and the vector b from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)

! Compute the RQ factorization of A
! The NAG name equivalent of dgerqf is f08chf

Call dgerqf(m,n,a,lda,tau,work,lwork,info)

! Copy the m element vector b into elements x(n-m+1), ..., x(n) of x

x(n-m+1:n) = b(1:m)

! Solve R*y2 = b, storing the result in x2
! The NAG name equivalent of dtrtrs is f07tef

Call dtrtrs(’Upper’,’No transpose’,’Non-Unit’,m,1,a(1,n-m+1),lda, &
x(n-m+1),m,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

x(1:n-m) = zero

! Compute the minimum-norm solution x = (Q**T)*y
! The NAG name equivalent of dormrq is f08ckf

Call dormrq(’Left’,’Transpose’,n,1,m,a,lda,tau,x,n,work,lwork,info)

! Print minimum-norm solution

Write (nout,*) ’Minimum-norm solution’
Write (nout,99999) x(1:n)

End If

99999 Format (1X,8F9.4)
End Program f08chfe
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10.2 Program Data

F08CHF Example Program Data

4 6 :Values of M and N

-5.42 3.28 -3.68 0.27 2.06 0.46
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50 :End of matrix A

-2.87
1.63

-3.52
0.45 :End of vector b

10.3 Program Results

F08CHF Example Program Results

Minimum-norm solution
0.2371 -0.4575 -0.0085 -0.5192 0.0239 -0.0543
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NAG Library Routine Document

F08CJF (DORGRQ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CJF (DORGRQ) generates all or part of the real n by n orthogonal matrix Q from an RQ
factorization computed by F08CHF (DGERQF).

2 Specification

SUBROUTINE F08CJF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, K, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dorgrq.

3 Description

F08CJF (DORGRQ) is intended to be used following a call to F08CHF (DGERQF), which performs an
RQ factorization of a real matrix A and represents the orthogonal matrix Q as a product of k
elementary reflectors of order n.

This routine may be used to generate Q explicitly as a square matrix, or to form only its trailing rows.

Usually Q is determined from the RQ factorization of a p by n matrix A with p � n. The whole of Q
may be computed by:

CALL DORGRQ(N,N,P,A,LDA,TAU,WORK,LWORK,INFO)

(note that the matrix A must have at least n rows), or its trailing p rows as:

CALL DORGRQ(P,N,P,A,LDA,TAU,WORK,LWORK,INFO)

The rows of Q returned by the last call form an orthonormal basis for the space spanned by the rows of
A; thus F08CHF (DGERQF) followed by F08CJF (DORGRQ) can be used to orthogonalize the rows of
A.

The information returned by F08CHF (DGERQF) also yields the RQ factorization of the trailing k rows
of A, where k < p. The orthogonal matrix arising from this factorization can be computed by:

CALL DORGRQ(N,N,K,A,LDA,TAU,WORK,LWORK,INFO)

or its leading k columns by:

CALL DORGRQ(K,N,K,A,LDA,TAU,WORK,LWORK,INFO)

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix Q.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix Q.

Constraint: N � M.

3: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: M � K � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08CHF
(DGERQF).

On exit: the m by n matrix Q.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08CJF
(DORGRQ) is called.

Constraint: LDA � max 1;Mð Þ.

6: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: TAUðiÞ must contain the scalar factor of the elementary reflector Hi, as returned by
F08CHF (DGERQF).

7: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08CJF
(DORGRQ) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Mð Þ or LWORK ¼ �1.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that

Ek k2 ¼ O �

and � is the machine precision.

8 Parallelism and Performance

F08CJF (DORGRQ) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4mnk�2 mþ nð Þk2 þ 4
3k

3 ; when m ¼ k
this becomes 2

3m
2 3n�mð Þ .

The complex analogue of this routine is F08CWF (ZUNGRQ).

10 Example

This example generates the first four rows of the matrix Q of the RQ factorization of A as returned by
F08CHF (DGERQF), where

A ¼
�0:57 �1:93 2:30 �1:93 0:15 �0:02
�1:28 1:08 0:24 0:64 0:30 1:03
�0:39 �0:31 0:40 �0:66 0:15 �1:43
0:25 �2:14 �0:35 0:08 �2:13 0:50

0B@
1CA:

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08cjfe

! F08CJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgerqf, dorgrq, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, m, n
Character (26) :: title

! .. Local Arrays ..

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08CJF
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Real (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:)
! .. Executable Statements ..

Write (nout,*) ’F08CJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = nb*m
Allocate (a(lda,n),tau(n),work(lwork))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Compute the RQ factorization of A
! The NAG name equivalent of dgerqf is f08chf

Call dgerqf(m,n,a,lda,tau,work,lwork,info)

! Form the leading M rows of Q explicitly
! The NAG name equivalent of dorgrq is f08cjf

Call dorgrq(m,n,m,a,lda,tau,work,lwork,info)

! Form the heading for X04CAF

Write (title,99999) m
Flush (nout)

! Print the leading M rows of Q

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,m,n,a,lda,title,ifail)

99999 Format (’The leading ’,I4,’ rows of Q’)
End Program f08cjfe

10.2 Program Data

F08CJF Example Program Data

4 6 :Values of M and N

-0.57 -1.93 2.30 -1.93 0.15 -0.02
-1.28 1.08 0.24 0.64 0.30 1.03
-0.39 -0.31 0.40 -0.66 0.15 -1.43
0.25 -2.14 -0.35 0.08 -2.13 0.50 :End of matrix A

10.3 Program Results

F08CJF Example Program Results

The leading 4 rows of Q
1 2 3 4 5 6

1 -0.0833 0.2972 -0.6404 0.4461 -0.2938 -0.4575
2 0.9100 -0.1080 -0.2351 -0.1620 0.2022 -0.1946
3 -0.2202 -0.2706 0.2220 -0.3866 0.0015 -0.8243
4 -0.0809 0.6922 0.1132 -0.0259 0.6890 -0.1617
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NAG Library Routine Document

F08CKF (DORMRQ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CKF (DORMRQ) multiplies a general real m by n matrix C by the real orthogonal matrix Q from
an RQ factorization computed by F08CHF (DGERQF).

2 Specification

SUBROUTINE F08CKF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, K, LDA, LDC, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name dormrq.

3 Description

F08CKF (DORMRQ) is intended to be used following a call to F08CHF (DGERQF), which performs
an RQ factorization of a real matrix A and represents the orthogonal matrix Q as a product of
elementary reflectors.

This routine may be used to form one of the matrix products

QC; QTC; CQ; CQT;

overwriting the result on C, which may be any real rectangular m by n matrix.

A common application of this routine is in solving underdetermined linear least squares problems, as
described in the F08 Chapter Introduction, and illustrated in Section 10 in F08CHF (DGERQF).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QT is to be applied to C.

SIDE ¼ L
Q or QT is applied to C from the left.

SIDE ¼ R
Q or QT is applied to C from the right.

Constraint: SIDE ¼ L or R .
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2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QT is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ T
QT is applied to C.

Constraint: TRANS ¼ N or T .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: the ith row of A must contain the vector which defines the elementary reflector Hi, for
i ¼ 1; 2; . . . ; k, as returned by F08CHF (DGERQF).

On exit: is modified by F08CKF (DORMRQ) but restored on exit.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08CKF
(DORMRQ) is called.

Constraint: LDA � max 1;Kð Þ.

8: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: TAUðiÞ must contain the scalar factor of the elementary reflector Hi, as returned by
F08CHF (DGERQF).

9: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QTC or CQ or CQT as specified by SIDE and TRANS.
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10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08CKF
(DORMRQ) is called.

Constraint: LDC � max 1;Mð Þ.

11: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08CKF (DORMRQ) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O � Ck k2
where � is the machine precision.

8 Parallelism and Performance

F08CKF (DORMRQ) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 2nk 2m� kð Þ if SIDE ¼ L and
2mk 2n� kð Þ if SIDE ¼ R .

The complex analogue of this routine is F08CXF (ZUNMRQ).

10 Example

See Section 10 in F08CHF (DGERQF).
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NAG Library Routine Document

F08CSF (ZGEQLF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CSF (ZGEQLF) computes a QL factorization of a complex m by n matrix A.

2 Specification

SUBROUTINE F08CSF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zgeqlf.

3 Description

F08CSF (ZGEQLF) forms the QL factorization of an arbitrary rectangular complex m by n matrix.

If m � n, the factorization is given by:

A ¼ Q 0
L

� �
;

where L is an n by n lower triangular matrix and Q is an m by m unitary matrix. If m < n the
factorization is given by

A ¼ QL;

where L is an m by n lower trapezoidal matrix and Q is again an m by m unitary matrix. In the case
where m > n the factorization can be expressed as

A ¼ Q1 Q2

� � 0
L

� �
¼ Q2L;

where Q1 consists of the first m� n columns of Q, and Q2 the remaining n columns.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see Section 3.3.6 in the F08 Chapter Introduction for details). Routines are provided to work with Q in
this representation (see Section 9).

Note also that for any k < n, the information returned in the last k columns of the array A represents a
QL factorization of the last kendgroup columns of the original matrix A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the lower triangle of the subarray Aðm� nþ 1 : m; 1 : nÞ contains the n by n
lower triangular matrix L.

If m � n, the elements on and below the n�mð Þth superdiagonal contain the m by n lower
trapezoidal matrix L. The remaining elements, with the array TAU, represent the unitary matrix
Q as a product of elementary reflectors (see Section 3.3.6 in the F08 Chapter Introduction).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08CSF
(ZGEQLF) is called.

Constraint: LDA � max 1;Mð Þ.

5: TAUð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;min M;Nð Þð Þ.
On exit: the scalar factors of the elementary reflectors (see Section 9).

6: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08CSF (ZGEQLF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

F08CSF (ZGEQLF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3n

2 3m� nð Þ if m � n or
8
3m

2 3n�mð Þ if m < n.

To form the unitary matrix Q F08CSF (ZGEQLF) may be followed by a call to F08CTF (ZUNGQL):

CALL ZUNGQL(M,M,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)

but note that the second dimension of the array A must be at least M, which may be larger than was
required by F08CSF (ZGEQLF).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

CALL ZUNGQL(M,N,N,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary complex rectangular matrix C, F08CSF (ZGEQLF) may be followed by a
call to F08CUF (ZUNMQL). For example,

CALL ZUNMQL(’Left’,’Conjugate Transpose’,M,P,MIN(M,N),A,LDA,TAU, &
C,LDC,WORK,LWORK,INFO)

forms C ¼ QHC, where C is m by p.

The real analogue of this routine is F08CEF (DGEQLF).

10 Example

This example solves the linear least squares problems

min
x

bj �Axj
�� ��

2
; j ¼ 1; 2

for x1 and x2, where bj is the jth column of the matrix B,
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A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA
and

B ¼

�2:09þ 1:93i 3:26� 2:70i
3:34� 3:53i �6:22þ 1:16i
�4:94� 2:04i 7:94� 3:13i
0:17þ 4:23i 1:04� 4:26i
�5:19þ 3:63i �2:31� 2:12i
0:98þ 2:53i �1:39� 4:05i

0BBBBB@

1CCCCCA:
The solution is obtained by first obtaining a QL factorization of the matrix A.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08csfe

! F08CSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04dbf, zgeqlf, ztrtrs, zunmql

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, lda, ldb, lwork, &

m, n, nrhs
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:)
Real (Kind=nag_wp), Allocatable :: rnorm(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08CSF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
lwork = nb*n
Allocate (a(lda,n),b(ldb,nrhs),tau(n),work(lwork),rnorm(nrhs))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)

! Compute the QL factorization of A
! The NAG name equivalent of zgeqlf is f08csf

Call zgeqlf(m,n,a,lda,tau,work,lwork,info)

! Compute C = (C1) = (Q**H)*B, storing the result in B
! (C2)
! The NAG name equivalent of zunmql is f08cuf

Call zunmql(’Left’,’Conjugate Transpose’,m,nrhs,n,a,lda,tau,b,ldb,work, &
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lwork,info)

! Compute least squares solutions by back-substitution in
! L*X = C2
! The NAG name equivalent of ztrtrs is f07tsf

Call ztrtrs(’Lower’,’No transpose’,’Non-Unit’,n,nrhs,a(m-n+1,1),lda, &
b(m-n+1,1),ldb,info)

If (info>0) Then
Write (nout,*) ’The lower triangular factor, L, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

! Print least squares solution(s)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,nrhs,b(m-n+1,1),ldb,’Bracketed’,’F7.4’, &

’Least squares solution(s)’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

! Compute and print estimates of the square roots of the residual
! sums of squares
! The NAG name equivalent of dznrm2 is f06jjf

Do j = 1, nrhs
rnorm(j) = dznrm2(m-n,b(1,j),1)

End Do

Write (nout,*)
Write (nout,*) ’Square root(s) of the residual sum(s) of squares’
Write (nout,99999) rnorm(1:nrhs)

End If

99999 Format (3X,1P,7E11.2)
End Program f08csfe

10.2 Program Data

F08CSF Example Program Data
6 4 2 :Values of M, N and NRHS

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

(-2.09, 1.93) ( 3.26,-2.70)
( 3.34,-3.53) (-6.22, 1.16)
(-4.94,-2.04) ( 7.94,-3.13)
( 0.17, 4.23) ( 1.04,-4.26)
(-5.19, 3.63) (-2.31,-2.12)
( 0.98, 2.53) (-1.39,-4.05) :End of matrix B

10.3 Program Results

F08CSF Example Program Results

Least squares solution(s)
1 2

1 (-0.5044,-1.2179) ( 0.7629, 1.4529)
2 (-2.4281, 2.8574) ( 5.1570,-3.6089)
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3 ( 1.4872,-2.1955) (-2.6518, 2.1203)
4 ( 0.4537, 2.6904) (-2.7606, 0.3318)

Square root(s) of the residual sum(s) of squares
6.88E-02 1.87E-01
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NAG Library Routine Document

F08CTF (ZUNGQL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CTF (ZUNGQL) generates all or part of the complex m by m unitary matrix Q from a QL
factorization computed by F08CSF (ZGEQLF).

2 Specification

SUBROUTINE F08CTF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, K, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zungql.

3 Description

F08CTF (ZUNGQL) is intended to be used after a call to F08CSF (ZGEQLF), which performs a QL
factorization of a complex matrix A. The unitary matrix Q is represented as a product of elementary
reflectors.

This routine may be used to generate Q explicitly as a square matrix, or to form only its trailing
columns.

Usually Q is determined from the QL factorization of an m by p matrix A with m � p. The whole of Q
may be computed by:

CALL ZUNGQL(M,M,P,A,LDA,TAU,WORK,LWORK,INFO)

(note that the array A must have at least m columns) or its trailing p columns by:

CALL ZUNGQL(M,P,P,A,LDA,TAU,WORK,LWORK,INFO)

The columns of Q returned by the last call form an orthonormal basis for the space spanned by the
columns of A; thus F08CSF (ZGEQLF) followed by F08CTF (ZUNGQL) can be used to orthogonalize
the columns of A.

The information returned by F08CSF (ZGEQLF) also yields the QL factorization of the trailing k
columns of A, where k < p. The unitary matrix arising from this factorization can be computed by:

CALL ZUNGQL(M,M,K,A,LDA,TAU,WORK,LWORK,INFO)

or its trailing k columns by:

CALL ZUNGQL(M,K,K,A,LDA,TAU,WORK,LWORK,INFO)

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix Q.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix Q.

Constraint: M � N � 0.

3: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: N � K � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08CSF
(ZGEQLF).

On exit: the m by n matrix Q.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08CTF
(ZUNGQL) is called.

Constraint: LDA � max 1;Mð Þ.

6: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08CSF (ZGEQLF).

7: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08CTF (ZUNGQL) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Nð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08CTF (ZUNGQL) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 16mnk� 8 mþ nð Þk2 þ 16
3 k

3 ; when
n ¼ k, the number is approximately 8

3n
2 3m� nð Þ .

The real analogue of this routine is F08CFF (DORGQL).

10 Example

This example generates the first four columns of the matrix Q of the QL factorization of A as returned
by F08CSF (ZGEQLF), where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA:
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08ctfe

! F08CTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgeqlf, zungql

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, m, n
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Character (30) :: title
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08CTF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = nb*n
Allocate (a(lda,n),tau(n),work(lwork))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Compute the QL factorization of A
! The NAG name equivalent of zgeqlf is f08csf

Call zgeqlf(m,n,a,lda,tau,work,lwork,info)

! Form the leading N columns of Q explicitly
! The NAG name equivalent of zungql is f08ctf

Call zungql(m,n,n,a,lda,tau,work,lwork,info)

! Form the heading for X04DBF

Write (title,99999) n
Flush (nout)

! Print the leading N columns of Q

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,m,n,a,lda,’Bracketed’,’F7.4’,title,’Integer’, &

rlabs,’Integer’,clabs,80,0,ifail)

99999 Format (’The leading ’,I4,’ columns of Q’)
End Program f08ctfe

10.2 Program Data

F08CTF Example Program Data

6 4 :Values of M and N

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

10.3 Program Results

F08CTF Example Program Results

The leading 4 columns of Q
1 2 3 4

1 ( 0.2810, 0.5020) (-0.2051,-0.1092) ( 0.3083,-0.6874) ( 0.0181,-0.1483)
2 ( 0.2707,-0.3296) ( 0.5711, 0.0432) ( 0.2251,-0.1313) ( 0.2930,-0.2025)
3 (-0.2864,-0.0094) (-0.5416, 0.0454) (-0.2062, 0.0691) ( 0.4015,-0.2170)
4 ( 0.2262,-0.3854) (-0.3387, 0.2228) ( 0.3259, 0.1178) (-0.0796, 0.0723)
5 ( 0.0341,-0.0760) ( 0.0098,-0.0712) ( 0.0753, 0.1412) (-0.5317,-0.5751)
6 (-0.3936,-0.2083) (-0.1296, 0.3691) ( 0.0264,-0.4134) (-0.0940,-0.0940)
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NAG Library Routine Document

F08CUF (ZUNMQL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CUF (ZUNMQL) multiplies a general complex m by n matrix C by the complex unitary matrix Q
from a QL factorization computed by F08CSF (ZGEQLF).

2 Specification

SUBROUTINE F08CUF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, K, LDA, LDC, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name zunmql.

3 Description

F08CUF (ZUNMQL) is intended to be used following a call to F08CSF (ZGEQLF), which performs a
QL factorization of a complex matrix A and represents the unitary matrix Q as a product of elementary
reflectors.

This routine may be used to form one of the matrix products

QC; QHC; CQ; CQH;

overwriting the result on C, which may be any complex rectangular m by n matrix.

A common application of this routine is in solving linear least squares problems, as described in the
F08 Chapter Introduction, and illustrated in Section 10 in F08CSF (ZGEQLF).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QH is to be applied to C.

SIDE ¼ L
Q or QH is applied to C from the left.

SIDE ¼ R
Q or QH is applied to C from the right.

Constraint: SIDE ¼ L or R .
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2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QH is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ C
QH is applied to C.

Constraint: TRANS ¼ N or C .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Kð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08CSF
(ZGEQLF).

On exit: is modified by F08CUF (ZUNMQL) but restored on exit.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08CUF
(ZUNMQL) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

8: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: further details of the elementary reflectors, as returned by F08CSF (ZGEQLF).

9: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QHC or CQ or CQH as specified by SIDE and TRANS.
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10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08CUF
(ZUNMQL) is called.

Constraint: LDC � max 1;Mð Þ.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08CUF (ZUNMQL) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O � Ck k2
where � is the machine precision.

8 Parallelism and Performance

F08CUF (ZUNMQL) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 8nk 2m� kð Þ if SIDE ¼ L and
8mk 2n� kð Þ if SIDE ¼ R .

The real analogue of this routine is F08CGF (DORMQL).

10 Example

See Section 10 in F08CSF (ZGEQLF).
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NAG Library Routine Document

F08CVF (ZGERQF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CVF (ZGERQF) computes an RQ factorization of a complex m by n matrix A.

2 Specification

SUBROUTINE F08CVF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zgerqf.

3 Description

F08CVF (ZGERQF) forms the RQ factorization of an arbitrary rectangular real m by n matrix. If
m � n, the factorization is given by

A ¼ 0 R
� �

Q;

where R is an m by m lower triangular matrix and Q is an n by n unitary matrix. If m > n the
factorization is given by

A ¼ RQ;

where R is an m by n upper trapezoidal matrix and Q is again an n by n unitary matrix. In the case
where m < n the factorization can be expressed as

A ¼ 0 R
� � Q1

Q2

� �
¼ RQ2;

where Q1 consists of the first n�mð Þ rows of Q and Q2 the remaining m rows.

The matrix Q is not formed explicitly, but is represented as a product of min m;nð Þ elementary
reflectors (see the F08 Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 9).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.
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2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the upper triangle of the subarray Að1 : m;n�mþ 1 : nÞ contains the m by
m upper triangular matrix R.

If m � n, the elements on and above the m� nð Þth subdiagonal contain the m by n upper
trapezoidal matrix R; the remaining elements, with the array TAU, represent the unitary matrix Q
as a product of min m;nð Þ elementary reflectors (see Section 3.3.6 in the F08 Chapter
Introduction).

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08CVF
(ZGERQF) is called.

Constraint: LDA � max 1;Mð Þ.

5: TAUð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;min M;Nð Þð Þ.
On exit: the scalar factors of the elementary reflectors.

6: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08CVF (ZGERQF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � M� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Mð Þ or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ E, where
Ek k2 ¼ O � Ak k2

and � is the machine precision.

8 Parallelism and Performance

F08CVF (ZGERQF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3m

2 3n�mð Þ if m � n, or 2
3n

2 3m� nð Þ
if m > n.

To form the unitary matrix Q F08CVF (ZGERQF) may be followed by a call to F08CWF (ZUNGRQ):

CALL ZUNGRQ(N,N,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)

but note that the first dimension of the array A must be at least N, which may be larger than was
required by F08CVF (ZGERQF). When m � n, it is often only the first m rows of Q that are required
and they may be formed by the call:

CALL ZUNGRQ(M,N,M,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an arbitrary real rectangular matrix C, F08CVF (ZGERQF) may be followed by a call to
F08CXF (ZUNMRQ). For example:

CALL ZUNMRQ(’Left’,’C’,N,P,MIN(M,N),A,LDA,TAU,C,LDC, &
WORK,LWORK,INFO)

forms C ¼ QHC, where C is n by p.

The real analogue of this routine is F08CHF (DGERQF).

10 Example

This example finds the minimum norm solution to the underdetermined equations

Ax ¼ b

where

A ¼
0:28� 0:36i 0:50� 0:86i �0:77� 0:48i 1:58þ 0:66i
�0:50� 1:10i �1:21þ 0:76i �0:32� 0:24i �0:27� 1:15i
0:36� 0:51i �0:07þ 1:33i �0:75þ 0:47i �0:08þ 1:01i

0@ 1A
and

b ¼
�1:35þ 0:19i
9:41� 3:56i
�7:57þ 6:93i

0@ 1A:
The solution is obtained by first obtaining an RQ factorization of the matrix A.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.
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10.1 Program Text

Program f08cvfe

! F08CVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zgerqf, ztrtrs, zunmrq

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: zero = (0.0_nag_wp,0.0_nag_wp)
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, lda, lwork, m, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:), tau(:), work(:), &

x(:)
! .. Executable Statements ..

Write (nout,*) ’F08CVF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = nb*m
Allocate (a(lda,n),b(m),tau(m),work(lwork),x(n))

! Read the matrix A and the vector b from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)

! Compute the RQ factorization of A
! The NAG name equivalent of zgerqf is f08cvf

Call zgerqf(m,n,a,lda,tau,work,lwork,info)

! Copy the m-element vector b into elements x(n-m+1), ..., x(n) of x

x(n-m+1:n) = b(1:m)

! Solve R*y2 = b, storing the result in x2
! The NAG name equivalent of ztrtrs is f07tsf

Call ztrtrs(’Upper’,’No transpose’,’Non-Unit’,m,1,a(1,n-m+1),lda, &
x(n-m+1),m,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

! Set y1 to zero (stored in x(1:n-m))

x(1:n-m) = zero

! Compute minimum-norm solution x = (Q**H)*y
! The NAG name equivalent of zunmrq is f08cxf

Call zunmrq(’Left’,’Conjugate transpose’,n,1,m,a,lda,tau,x,n,work, &
lwork,info)

! Print minimum-norm solution

Write (nout,*) ’Minimum-norm solution’
Write (nout,99999) x(1:n)

End If

99999 Format (4(’ (’,F8.4,’,’,F8.4,’)’,:))
End Program f08cvfe

F08CVF NAG Library Manual

F08CVF.4 Mark 26



10.2 Program Data

F08CVF Example Program Data

3 4 :Values of M, N and NRHS

( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A

(-1.35, 0.19)
( 9.41,-3.56)
(-7.57, 6.93) :End of vector b

10.3 Program Results

F08CVF Example Program Results

Minimum-norm solution
( -2.8501, 6.4683) ( 1.6264, -0.7799) ( 6.9290, 4.6481) ( 1.4048, 3.2400)
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NAG Library Routine Document

F08CWF (ZUNGRQ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CWF (ZUNGRQ) generates all or part of the complex n by n unitary matrix Q from an RQ
factorization computed by F08CVF (ZGERQF).

2 Specification

SUBROUTINE F08CWF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, K, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zungrq.

3 Description

F08CWF (ZUNGRQ) is intended to be used following a call to F08CVF (ZGERQF), which performs an
RQ factorization of a complex matrix A and represents the unitary matrix Q as a product of k
elementary reflectors of order n.

This routine may be used to generate Q explicitly as a square matrix, or to form only its trailing rows.

Usually Q is determined from the RQ factorization of a p by n matrix A with p � n. The whole of Q
may be computed by:

CALL ZUNGRQ(N,N,P,A,LDA,TAU,WORK,LWORK,INFO)

(note that the matrix A must have at least n rows), or its trailing p rows as:

CALL ZUNGRQ(P,N,P,A,LDA,TAU,WORK,LWORK,INFO)

The rows of Q returned by the last call form an orthonormal basis for the space spanned by the rows of
A; thus F08CVF (ZGERQF) followed by F08CWF (ZUNGRQ) can be used to orthogonalize the rows
of A.

The information returned by F08CVF (ZGERQF) also yields the RQ factorization of the trailing k rows
of A, where k < p. The unitary matrix arising from this factorization can be computed by:

CALL ZUNGRQ(N,N,K,A,LDA,TAU,WORK,LWORK,INFO)

or its leading k columns by:

CALL ZUNGRQ(K,N,K,A,LDA,TAU,WORK,LWORK,INFO)

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix Q.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix Q.

Constraint: N � M.

3: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: M � K � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08CVF
(ZGERQF).

On exit: the m by n matrix Q.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F08CWF (ZUNGRQ) is called.

Constraint: LDA � max 1;Mð Þ.

6: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: TAUðiÞ must contain the scalar factor of the elementary reflector Hi, as returned by
F08CVF (ZGERQF).

7: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08CWF (ZUNGRQ) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Mð Þ or LWORK ¼ �1.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

Ek k2 ¼ O �

and � is the machine precision.

8 Parallelism and Performance

F08CWF (ZUNGRQ) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 16mnk�8 mþ nð Þk2 þ 16
3 k

3 ; when
m ¼ k this becomes 8

3m
2 3n�mð Þ .

The real analogue of this routine is F08CJF (DORGRQ).

10 Example

This example generates the first four rows of the matrix Q of the RQ factorization of A as returned by
F08CVF (ZGERQF), where

A ¼
0:96� 0:81i �0:98þ 1:98i 0:62� 0:46i �0:37þ 0:38i 0:83þ 0:51i 1:08� 0:28i
�0:03þ 0:96i �1:20þ 0:19i 1:01þ 0:02i 0:19� 0:54i 0:20þ 0:01i 0:20� 0:12i
�0:91þ 2:06i �0:66þ 0:42i 0:63� 0:17i �0:98� 0:36i �0:17� 0:46i �0:07þ 1:23i
�0:05þ 0:41i �0:81þ 0:56i �1:11þ 0:60i 0:22� 0:20i 1:47þ 1:59i 0:26þ 0:26i

0B@
1CA:

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08cwfe

! F08CWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgerqf, zungrq

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, m, n
Character (26) :: title

! .. Local Arrays ..

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08CWF
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Complex (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08CWF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = nb*m
Allocate (a(lda,n),tau(n),work(lwork))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Compute the RQ factorization of A
! The NAG name equivalent of zgerqf is f08cvf

Call zgerqf(m,n,a,lda,tau,work,lwork,info)

! Form the leading M rows of Q explicitly
! The NAG name equivalent of zungrq is f08cwf

Call zungrq(m,n,m,a,lda,tau,work,lwork,info)

! Form the heading for X04DBF

Write (title,99999) m
Flush (nout)

! Print the leading M rows of Q

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,m,n,a,lda,’Bracketed’,’F7.4’,title,’Integer’, &

rlabs,’Integer’,clabs,80,0,ifail)

99999 Format (’The leading ’,I4,’ rows of Q’)
End Program f08cwfe

10.2 Program Data

F08CWF Example Program Data

4 6 :Values of M and N

( 0.96,-0.81) (-0.98, 1.98) ( 0.62,-0.46) (-0.37, 0.38) ( 0.83, 0.51)
( 1.08,-0.28)
(-0.03, 0.96) (-1.20, 0.19) ( 1.01, 0.02) ( 0.19,-0.54) ( 0.20, 0.01)
( 0.20,-0.12)
(-0.91, 2.06) (-0.66, 0.42) ( 0.63,-0.17) (-0.98,-0.36) (-0.17,-0.46)
(-0.07, 1.23)
(-0.05, 0.41) (-0.81, 0.56) (-1.11, 0.60) ( 0.22,-0.20) ( 1.47, 1.59)
( 0.26, 0.26) :End of matrix A

10.3 Program Results

F08CWF Example Program Results

The leading 4 rows of Q
1 2 3 4

1 ( 0.2810, 0.5020) ( 0.2707,-0.3296) (-0.2864,-0.0094) ( 0.2262,-0.3854)
2 (-0.2051,-0.1092) ( 0.5711, 0.0432) (-0.5416, 0.0454) (-0.3387, 0.2228)
3 ( 0.3083,-0.6874) ( 0.2251,-0.1313) (-0.2062, 0.0691) ( 0.3259, 0.1178)
4 ( 0.0181,-0.1483) ( 0.2930,-0.2025) ( 0.4015,-0.2170) (-0.0796, 0.0723)
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5 6
1 ( 0.0341,-0.0760) (-0.3936,-0.2083)
2 ( 0.0098,-0.0712) (-0.1296, 0.3691)
3 ( 0.0753, 0.1412) ( 0.0264,-0.4134)
4 (-0.5317,-0.5751) (-0.0940,-0.0940)
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NAG Library Routine Document

F08CXF (ZUNMRQ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08CXF (ZUNMRQ) multiplies a general complex m by n matrix C by the complex unitary matrix Q
from an RQ factorization computed by F08CVF (ZGERQF).

2 Specification

SUBROUTINE F08CXF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, K, LDA, LDC, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name zunmrq.

3 Description

F08CXF (ZUNMRQ) is intended to be used following a call to F08CVF (ZGERQF), which performs an
RQ factorization of a complex matrix A and represents the unitary matrix Q as a product of elementary
reflectors.

This routine may be used to form one of the matrix products

QC; QHC; CQ; CQH;

overwriting the result on C, which may be any complex rectangular m by n matrix.

A common application of this routine is in solving underdetermined linear least squares problems, as
described in the F08 Chapter Introduction, and illustrated in Section 10 in F08CVF (ZGERQF).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QH is to be applied to C.

SIDE ¼ L
Q or QH is applied to C from the left.

SIDE ¼ R
Q or QH is applied to C from the right.

Constraint: SIDE ¼ L or R .
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2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QH is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ C
QH is applied to C.

Constraint: TRANS ¼ N or C .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

5: K – INTEGER Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints:

if SIDE ¼ L , M � K � 0;
if SIDE ¼ R , N � K � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: the ith row of A must contain the vector which defines the elementary reflector Hi, for
i ¼ 1; 2; . . . ; k, as returned by F08CVF (ZGERQF).

On exit: is modified by F08CXF (ZUNMRQ) but restored on exit.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08CXF
(ZUNMRQ) is called.

Constraint: LDA � max 1;Kð Þ.

8: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;Kð Þ.
On entry: TAUðiÞ must contain the scalar factor of the elementary reflector Hi, as returned by
F08CVF (ZGERQF).

9: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QHC or CQ or CQH as specified by SIDE and TRANS.
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10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08CXF
(ZUNMRQ) is called.

Constraint: LDC � max 1;Mð Þ.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08CXF (ZUNMRQ) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O � Ck k2
where � is the machine precision.

8 Parallelism and Performance

F08CXF (ZUNMRQ) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 8nk 2m� kð Þ if SIDE ¼ L and
8mk 2n� kð Þ if SIDE ¼ R .

The real analogue of this routine is F08CKF (DORMRQ).

10 Example

See Section 10 in F08CVF (ZGERQF).
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NAG Library Routine Document

F08FAF (DSYEV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FAF (DSYEV) computes all the eigenvalues and, optionally, all the eigenvectors of a real n by n
symmetric matrix A.

2 Specification

SUBROUTINE F08FAF (JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO)

INTEGER N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), W(N), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name dsyev.

3 Description

The symmetric matrix A is first reduced to tridiagonal form, using orthogonal similarity
transformations, and then the QR algorithm is applied to the tridiagonal matrix to compute the
eigenvalues and (optionally) the eigenvectors.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08FAF

Mark 26 F08FAF.1

http://www.netlib.org/lapack/lug


3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if JOBZ ¼ V , then A contains the orthonormal eigenvectors of the matrix A.

If JOBZ ¼ N , then on exit the lower triangle (if UPLO ¼ L ) or the upper triangle (if
UPLO ¼ U ) of A, including the diagonal, is overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FAF
(DSYEV) is called.

Constraint: LDA � max 1;Nð Þ.

6: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

7: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08FAF (DSYEV) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � nbþ 2ð Þ � N, where nb is the optimal
block size for F08FEF (DSYTRD).

Constraint: LWORK � max 1; 3� N� 1ð Þ.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

If INFO ¼ i, the algorithm failed to converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08FAF (DSYEV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FAF (DSYEV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08FNF (ZHEEV).

10 Example

This example finds all the eigenvalues and eigenvectors of the symmetric matrix

A ¼
1 2 3 4
2 2 3 4
3 3 3 4
4 4 4 4

0B@
1CA;

together with approximate error bounds for the computed eigenvalues and eigenvectors.

10.1 Program Text

Program f08fafe

! F08FAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, ddisna, dsyev, nag_wp, x02ajf, &

x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eerrbd, eps, r
Integer :: i, ifail, info, k, lda, lwork, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), rcondz(:), w(:), work(:), &

zerrbd(:)
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Real (Kind=nag_wp) :: dummy(1)
! .. Intrinsic Procedures ..

Intrinsic :: abs, max, nint
! .. Executable Statements ..

Write (nout,*) ’F08FAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),rcondz(n),w(n),zerrbd(n))

! Use routine workspace query to get optimal workspace.
! The NAG name equivalent of dsyev is f08faf

lwork = -1
Call dsyev(’Vectors’,’Upper’,n,a,lda,w,dummy,lwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+2)*n,nint(dummy(1)))
Allocate (work(lwork))

! Read the upper triangular part of the matrix A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Solve the symmetric eigenvalue problem
! The NAG name equivalent of dsyev is f08faf

Call dsyev(’Vectors’,’Upper’,n,a,lda,w,work,lwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)
Flush (nout)

! Normalize the eigenvectors: largest element positive
Do i = 1, n

Call blas_damax_val(n,a(1,i),1,k,r)
If (a(k,i)<zero) Then

a(1:n,i) = -a(1:n,i)
End If

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Eigenvectors’,ifail)

! Get the machine precision, EPS and compute the approximate
! error bound for the computed eigenvalues. Note that for
! the 2-norm, max( abs(W(i)) ) = norm(A), and since the
! eigenvalues are returned in ascending order
! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n)))

eps = x02ajf()
eerrbd = eps*max(abs(w(1)),abs(w(n)))

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the eigenvectors

Call ddisna(’Eigenvectors’,n,n,w,rcondz,info)

! Compute the error estimates for the eigenvectors

Do i = 1, n
zerrbd(i) = eerrbd/rcondz(i)

End Do

! Print the approximate error bounds for the eigenvalues
! and vectors
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Write (nout,*)
Write (nout,*) ’Error estimate for the eigenvalues’
Write (nout,99998) eerrbd
Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvectors’
Write (nout,99998) zerrbd(1:n)

Else
Write (nout,99997) ’Failure in DSYEV. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)

End Program f08fafe

10.2 Program Data

F08FAF Example Program Data

4 :Value of N

1.0 2.0 3.0 4.0
2.0 3.0 4.0

3.0 4.0
4.0 :End of matrix A

10.3 Program Results

F08FAF Example Program Results

Eigenvalues
-2.0531 -0.5146 -0.2943 12.8621

Eigenvectors
1 2 3 4

1 0.7003 -0.5144 -0.2767 0.4103
2 0.3592 0.4851 0.6634 0.4422
3 -0.1569 0.5420 -0.6504 0.5085
4 -0.5965 -0.4543 0.2457 0.6144

Error estimate for the eigenvalues
1.4E-15

Error estimates for the eigenvectors
9.3E-16 6.5E-15 6.5E-15 1.1E-16
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NAG Library Routine Document

F08FBF (DSYEVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FBF (DSYEVX) computes selected eigenvalues and, optionally, eigenvectors of a real n by n
symmetric matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08FBF (JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, WORK, LWORK, IWORK, JFAIL, INFO)

&

INTEGER N, LDA, IL, IU, M, LDZ, LWORK, IWORK(*), JFAIL(*),
INFO

&

REAL (KIND=nag_wp) A(LDA,*), VL, VU, ABSTOL, W(*), Z(LDZ,*),
WORK(max(1,LWORK))

&

CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name dsyevx.

3 Description

The symmetric matrix A is first reduced to tridiagonal form, using orthogonal similarity
transformations. The required eigenvalues and eigenvectors are then computed from the tridiagonal
matrix; the method used depends upon whether all, or selected, eigenvalues and eigenvectors are
required.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.
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If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the lower triangle (if UPLO ¼ L ) or the upper triangle (if UPLO ¼ U ) of A, including
the diagonal, is overwritten.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FBF
(DSYEVX) is called.

Constraint: LDA � max 1;Nð Þ.

7: VL – REAL (KIND=nag_wp) Input
8: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

9: IL – INTEGER Input
10: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

11: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to
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ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO > 0, indicating that some
eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and Kahan
(1990).

12: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

13: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the first M elements contain the selected eigenvalues in ascending order.

14: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ;
if an eigenvector fails to converge (INFO > 0), then that column of Z contains the latest
approximation to the eigenvector, and the index of the eigenvector is returned in JFAIL.

If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

15: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08FBF
(DSYEVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

16: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08FBF (DSYEVX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.
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Suggested value: for optimal performance, LWORK � nbþ 3ð Þ � N, where nb is the largest
optimal block size for F08FEF (DSYTRD) and F08FGF (DORMTR).

Constraints:

if N � 1, LWORK � 1;
otherwise LWORK � 8� N.

18: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least max 1; 5� Nð Þ.

19: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO > 0, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm failed to converge; valueh i eigenvectors did not converge. Their indices are stored
in array JFAIL.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08FBF (DSYEVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FBF (DSYEVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.
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The complex analogue of this routine is F08FPF (ZHEEVX).

10 Example

This example finds the eigenvalues in the half-open interval �1; 1ð �, and the corresponding
eigenvectors, of the symmetric matrix

A ¼
1 2 3 4
2 2 3 4
3 3 3 4
4 4 4 4

0B@
1CA:

10.1 Program Text

Program f08fbfe

! F08FBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsyevx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, lda, ldz, &

lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), w(:), work(:), z(:,:)
Real (Kind=nag_wp) :: dummy(1)
Integer, Allocatable :: iwork(:), jfail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint

! .. Executable Statements ..
Write (nout,*) ’F08FBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldz = n
m = n
Allocate (a(lda,n),w(n),z(ldz,m),iwork(5*n),jfail(n))

! Read the lower and upper bounds of the interval to be searched.
Read (nin,*) vl, vu

! Use routine workspace query to get optimal workspace.
! The NAG name equivalent of dsyevx is f08fbf

lwork = -1
Call dsyevx(’Vectors’,’Values in range’,’Upper’,n,a,lda,vl,vu,il,iu, &

abstol,m,w,z,ldz,dummy,lwork,iwork,jfail,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+3)*n,nint(dummy(1)))
Allocate (work(lwork))

! Read the upper triangular part of the matrix A.

Read (nin,*)(a(i,i:n),i=1,n)

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead
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abstol = zero

! Solve the symmetric eigenvalue problem
! The NAG name equivalent of dsyevx is f08fbf

Call dsyevx(’Vectors’,’Values in range’,’Upper’,n,a,lda,vl,vu,il,iu, &
abstol,m,w,z,ldz,work,lwork,iwork,jfail,info)

If (info>=0) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else

Write (nout,99999) ’Failure in DSYEVX. INFO =’, info
End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))

End Program f08fbfe

10.2 Program Data

F08FBF Example Program Data
4 :Value of N

-1.0 1.0 :Values of VL and VU
1.0 2.0 3.0 4.0

2.0 3.0 4.0
3.0 4.0

4.0 :End of matrix A

10.3 Program Results

F08FBF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
-0.5146 -0.2943

Selected eigenvectors
1 2

1 -0.5144 0.2767
2 0.4851 -0.6634
3 0.5420 0.6504
4 -0.4543 -0.2457
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NAG Library Routine Document

F08FCF (DSYEVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the arguments LWORK and LIWORK changed at Mark 20 in the case where JOB ¼ V and N > 1: the
minimum dimension of the array WORK has been reduced whereas the minimum dimension of the array IWORK has been increased.

1 Purpose

F08FCF (DSYEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric matrix. If the eigenvectors are requested, then it uses a divide-and-conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal–Walker–Kahan variant of the QL or QR algorithm.

2 Specification

SUBROUTINE F08FCF (JOB, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK,
INFO)

&

INTEGER N, LDA, LWORK, IWORK(max(1,LIWORK)), LIWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), W(*), WORK(max(1,LWORK))
CHARACTER(1) JOB, UPLO

The routine may be called by its LAPACK name dsyevd.

3 Description

F08FCF (DSYEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric matrix A. In other words, it can compute the spectral factorization of A as

A ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the orthogonal
matrix whose columns are the eigenvectors zi. Thus

Azi ¼ �izi; i ¼ 1; 2; . . . ; n:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOB ¼ N
Only eigenvalues are computed.
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JOB ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOB ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if JOB ¼ V , A is overwritten by the orthogonal matrix Z which contains the
eigenvectors of A.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FCF
(DSYEVD) is called.

Constraint: LDA � max 1;Nð Þ.

6: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the eigenvalues of the matrix A in ascending order.

7: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the required minimal size of LWORK.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08FCF (DSYEVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the WORK array, returns this value as the first entry of the WORK array, and no
error message related to LWORK is issued.

Constraints:

if N � 1, LWORK � 1 or LWORK ¼ �1;
if JOB ¼ N and N > 1, LWORK � 2� Nþ 1 or LWORK ¼ �1;
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if JOB ¼ V and N > 1, LWORK � 2� N2 þ 6� Nþ 1 or LWORK ¼ �1.

9: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ contains the required minimal size of LIWORK.

10: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08FCF (DSYEVD) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the IWORK array, returns this value as the first entry of the IWORK array, and no
error message related to LIWORK is issued.

Constraints:

if N � 1, LIWORK � 1 or LIWORK ¼ �1;
if JOB ¼ N and N > 1, LIWORK � 1 or LIWORK ¼ �1;
if JOB ¼ V and N > 1, LIWORK � 5� Nþ 3 or LIWORK ¼ �1.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

if INFO ¼ i and JOB ¼ N , the algorithm failed to converge; i elements of an intermediate
tridiagonal form did not converge to zero; if INFO ¼ i and JOB ¼ V , then the algorithm failed
to compute an eigenvalue while working on the submatrix lying in rows and column i= Nþ 1ð Þ
through i mod Nþ 1ð Þ.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08FCF (DSYEVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FCF (DSYEVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08FQF (ZHEEVD).
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10 Example

This example computes all the eigenvalues and eigenvectors of the symmetric matrix A, where

A ¼
1:0 2:0 3:0 4:0
2:0 2:0 3:0 4:0
3:0 3:0 3:0 4:0
4:0 4:0 4:0 4:0

0B@
1CA:

10.1 Program Text

Program f08fcfe

! F08FCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, dsyevd, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, ifail, info, k, lda, liwork, &

lwork, n
Character (1) :: job, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), w(:), work(:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F08FCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
liwork = 5*n + 3
lwork = 2*n*n + 6*n + 1
Allocate (a(lda,n),w(n),work(lwork),iwork(liwork))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

Read (nin,*) job

! Calculate all the eigenvalues and eigenvectors of A
! The NAG name equivalent of dsyevd is f08fcf

Call dsyevd(job,uplo,n,a,lda,w,work,lwork,iwork,liwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)
Write (nout,*)
Flush (nout)
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! Normalize the eigenvectors: largest element positive
Do i = 1, n

Call blas_damax_val(n,a(1,i),1,k,r)
If (a(k,i)<zero) Then

a(1:n,i) = -a(1:n,i)
End If

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Eigenvectors’,ifail)

End If

99999 Format (3X,(8F8.4))
End Program f08fcfe

10.2 Program Data

F08FCF Example Program Data
4 :Value of N
’L’ :Value of UPLO
1.0
2.0 2.0
3.0 3.0 3.0
4.0 4.0 4.0 4.0 :End of matrix A
’V’ :Value of JOB

10.3 Program Results

F08FCF Example Program Results

Eigenvalues
-2.0531 -0.5146 -0.2943 12.8621

Eigenvectors
1 2 3 4

1 0.7003 -0.5144 -0.2767 0.4103
2 0.3592 0.4851 0.6634 0.4422
3 -0.1569 0.5420 -0.6504 0.5085
4 -0.5965 -0.4543 0.2457 0.6144
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NAG Library Routine Document

F08FDF (DSYEVR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FDF (DSYEVR) computes selected eigenvalues and, optionally, eigenvectors of a real n by n
symmetric matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08FDF (JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK,
INFO)

&
&

INTEGER N, LDA, IL, IU, M, LDZ, ISUPPZ(*), LWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) A(LDA,*), VL, VU, ABSTOL, W(*), Z(LDZ,*),
WORK(max(1,LWORK))

&

CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name dsyevr.

3 Description

The symmetric matrix is first reduced to a tridiagonal matrix T , using orthogonal similarity
transformations. Then whenever possible, F08FDF (DSYEVR) computes the eigenspectrum using
Relatively Robust Representations. F08FDF (DSYEVR) computes eigenvalues by the dqds algorithm,
while orthogonal eigenvectors are computed from various ‘good’ LDLT representations (also known as
Relatively Robust Representations). Gram–Schmidt orthogonalization is avoided as far as possible.
More specifically, the various steps of the algorithm are as follows. For the ith unreduced block of T :

(a) compute T � �iI ¼ LiDiL
T
i , such that LiDiL

T
i is a relatively robust representation,

(b) compute the eigenvalues, �j, of LiDiL
T
i to high relative accuracy by the dqds algorithm,

(c) if there is a cluster of close eigenvalues, ‘choose’ �i close to the cluster, and go to (a),

(d) given the approximate eigenvalue �j of LiDiL
T
i , compute the corresponding eigenvector by

forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the argument ABSTOL. For more details, see
Dhillon (1997) and Parlett and Dhillon (2000).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Barlow J and Demmel J W (1990) Computing accurate eigensystems of scaled diagonally dominant
matrices SIAM J. Numer. Anal. 27 762–791

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Dhillon I (1997) A new O n2
� �

algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem
Computer Science Division Technical Report No. UCB//CSD-97-971 UC Berkeley
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Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Parlett B N and Dhillon I S (2000) Relatively robust representations of symmetric tridiagonals Linear
Algebra Appl. 309 121–151

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

For RANGE ¼ V or I and IU� IL < N� 1, F08JJF (DSTEBZ) and F08JKF (DSTEIN) are
called.

Constraint: RANGE ¼ A , V or I .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the lower triangle (if UPLO ¼ L ) or the upper triangle (if UPLO ¼ U ) of A, including
the diagonal, is overwritten.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FDF
(DSYEVR) is called.

Constraint: LDA � max 1;Nð Þ.
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7: VL – REAL (KIND=nag_wp) Input
8: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

9: IL – INTEGER Input
10: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

11: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form.
See Demmel and Kahan (1990).

If high relative accuracy is important, set ABSTOL to X02AMFð Þ, although doing so does not
currently guarantee that eigenvalues are computed to high relative accuracy. See Barlow and
Demmel (1990) for a discussion of which matrices can define their eigenvalues to high relative
accuracy.

12: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

13: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the first M elements contain the selected eigenvalues in ascending order.

14: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , the first M columns of Z contain the orthonormal eigenvectors of the
matrix A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ.
If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.
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15: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08FDF
(DSYEVR) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

16: ISUPPZð�Þ – INTEGER array Output

Note: the dimension of the array ISUPPZ must be at least max 1; 2�Mð Þ.
On exit: the support of the eigenvectors in Z, i.e., the indices indicating the nonzero elements in
Z. The ith eigenvector is nonzero only in elements ISUPPZð2� i� 1Þ through ISUPPZð2� iÞ.
Implemented only for RANGE ¼ A or I and IU� IL ¼ N� 1.

17: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

18: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08FDF (DSYEVR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array and the minimum size of the IWORK array, returns these values as the first
entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK
is issued.

Suggested value: for optimal performance, LWORK � nbþ 6ð Þ � N, where nb is the largest
optimal block size for F08FEF (DSYTRD) and F08FGF (DORMTR).

Constraint: LWORK � max 1; 26� Nð Þ.

19: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum LIWORK.

20: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08FDF (DSYEVR) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array and the minimum size of the IWORK array, returns these values as the first
entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK
is issued.

Constraint: LIWORK � max 1; 10� Nð Þ.

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

F08FDF (DSYEVR) failed to converge.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08FDF (DSYEVR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FDF (DSYEVR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08FRF (ZHEEVR).

10 Example

This example finds the eigenvalues with indices in the range 2; 3½ �, and the corresponding eigenvectors,
of the symmetric matrix

A ¼
1 2 3 4
2 2 3 4
3 3 3 4
4 4 4 4

0B@
1CA:

Information on required and provided workspace is also output.

10.1 Program Text

Program f08fdfe

! F08FDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsyevr, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, lda, ldz, &

liwork, lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), w(:), work(:), z(:,:)
Real (Kind=nag_wp) :: dummy(1)
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Integer :: idum(1)
Integer, Allocatable :: isuppz(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint

! .. Executable Statements ..
Write (nout,*) ’F08FDF Example Program Results’
Write (nout,*)

! Skip heading in data file and read N and the lower and upper
! indices of the smallest and largest eigenvalues to be found

Read (nin,*)
Read (nin,*) n, il, iu
lda = n
ldz = n
m = n
Allocate (a(lda,n),w(n),z(ldz,m),isuppz(2*m))

! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1

! The NAG name equivalent of dsyevr is f08fdf
Call dsyevr(’Vectors’,’I’,’Upper’,n,a,lda,vl,vu,il,iu,abstol,m,w,z,ldz, &

isuppz,dummy,lwork,idum,liwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+6)*n,nint(dummy(1)))
liwork = max(10*n,idum(1))
Allocate (work(lwork),iwork(liwork))

! Read the upper triangular part of the matrix A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead

abstol = zero

! Solve the symmetric eigenvalue problem
! The NAG name equivalent of dsyevr is f08fdf

Call dsyevr(’Vectors’,’I’,’Upper’,n,a,lda,vl,vu,il,iu,abstol,m,w,z,ldz, &
isuppz,work,lwork,iwork,liwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Selected eigenvalues’
Write (nout,99999) w(1:m)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

Else
Write (nout,99998) ’Failure in DSYEVR. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (1X,A,I5)

End Program f08fdfe
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10.2 Program Data

F08FDF Example Program Data

4 2 3 :Values of N, IL and IU

1.0 2.0 3.0 4.0
2.0 3.0 4.0

3.0 4.0
4.0 :End of matrix A

10.3 Program Results

F08FDF Example Program Results

Selected eigenvalues
-0.5146 -0.2943

Selected eigenvectors
1 2

1 -0.5144 0.2767
2 0.4851 -0.6634
3 0.5420 0.6504
4 -0.4543 -0.2457
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NAG Library Routine Document

F08FEF (DSYTRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FEF (DSYTRD) reduces a real symmetric matrix to tridiagonal form.

2 Specification

SUBROUTINE F08FEF (UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

INTEGER N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), D(*), E(*), TAU(*), WORK(max(1,LWORK))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsytrd.

3 Description

F08FEF (DSYTRD) reduces a real symmetric matrix A to symmetric tridiagonal form T by an
orthogonal similarity transformation: A ¼ QTQT.

The matrix Q is not formed explicitly but is represented as a product of n� 1 elementary reflectors (see
the F08 Chapter Introduction for details). Routines are provided to work with Q in this representation
(see Section 9).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.
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If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: A is overwritten by the tridiagonal matrix T and details of the orthogonal matrix Q as
specified by UPLO.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FEF
(DSYTRD) is called.

Constraint: LDA � max 1;Nð Þ.

5: Dð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On exit: the diagonal elements of the tridiagonal matrix T .

6: Eð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On exit: the off-diagonal elements of the tridiagonal matrix T .

7: TAUð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;N� 1ð Þ.
On exit: further details of the orthogonal matrix Q.

8: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

9: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08FEF (DSYTRD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � 1 or LWORK ¼ �1.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix Aþ Eð Þ, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues and eigenvectors.

8 Parallelism and Performance

F08FEF (DSYTRD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FEF (DSYTRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4
3n

3 .

To form the orthogonal matrix Q F08FEF (DSYTRD) may be followed by a call to F08FFF
(DORGTR):

CALL DORGTR(UPLO,N,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an n by p real matrix C F08FEF (DSYTRD) may be followed by a call to F08FGF
(DORMTR). For example,

CALL DORMTR(’Left’,UPLO,’No Transpose’,N,P,A,LDA,TAU,C,LDC, &
WORK,LWORK,INFO)

forms the matrix product QC.

The complex analogue of this routine is F08FSF (ZHETRD).

10 Example

This example reduces the matrix A to tridiagonal form, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA:

10.1 Program Text

Program f08fefe

! F08FEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsytrd, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Integer :: i, info, lda, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), d(:), e(:), tau(:), work(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F08FEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),d(n),e(n-1),tau(n-1),work(lwork))

! Read A from data file and copy A into C to store as a full matrix

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Reduce A to tridiagonal form
! The NAG name equivalent of dsytrd is f08fef.

Call dsytrd(uplo,n,a,lda,d,e,tau,work,lwork,info)

If (info==0) Then
! Print the diagonal and off-diagonal of tridiagonal T.
! The absolute value of E is printed since this can vary by a change of
! sign (corresponding to multiplying through a column of Q by -1).

Write (nout,*)
Write (nout,*) &

’Diagonal and off-diagonal elements of tridiagonal form’
Write (nout,*)
Write (nout,99999) ’i’, ’D’, ’E’
Do i = 1, n - 1

Write (nout,99998) i, d(i), abs(e(i))
End Do
Write (nout,99998) n, d(n)

Else
Write (nout,99997) info

End If

99999 Format (5X,A,9X,A,12X,A)
99998 Format (1X,I5,2(1X,F12.5))
99997 Format (1X,’** DSYTRD/F08FEF retuned with INFO = ’,I10)

End Program f08fefe

10.2 Program Data

F08FEF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A
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10.3 Program Results

F08FEF Example Program Results

Diagonal and off-diagonal elements of tridiagonal form

i D E
1 2.07000 5.82575
2 1.47409 2.62405
3 -0.64916 0.91627
4 -1.69493
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NAG Library Routine Document

F08FFF (DORGTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FFF (DORGTR) generates the real orthogonal matrix Q, which was determined by F08FEF
(DSYTRD) when reducing a symmetric matrix to tridiagonal form.

2 Specification

SUBROUTINE F08FFF (UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dorgtr.

3 Description

F08FFF (DORGTR) is intended to be used after a call to F08FEF (DSYTRD), which reduces a real
symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity transformation:
A ¼ QTQT. F08FEF (DSYTRD) represents the orthogonal matrix Q as a product of n� 1 elementary
reflectors.

This routine may be used to generate Q explicitly as a square matrix.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: this must be the same argument UPLO as supplied to F08FEF (DSYTRD).

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix Q.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08FEF
(DSYTRD).

On exit: the n by n orthogonal matrix Q.
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4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FFF
(DORGTR) is called.

Constraint: LDA � max 1;Nð Þ.

5: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;N� 1ð Þ.
On entry: further details of the elementary reflectors, as returned by F08FEF (DSYTRD).

6: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08FFF
(DORGTR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� 1ð Þ � nb, where nb is the optimal
block size.

Constraint: LWORK � max 1;N� 1ð Þ or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08FFF (DORGTR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FFF (DORGTR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 4
3n

3 .

The complex analogue of this routine is F08FTF (ZUNGTR).

10 Example

This example computes all the eigenvalues and eigenvectors of the matrix A, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA:

Here A is symmetric and must first be reduced to tridiagonal form by F08FEF (DSYTRD). The
program then calls F08FFF (DORGTR) to form Q, and passes this matrix to F08JEF (DSTEQR) which
computes the eigenvalues and eigenvectors of A.

10.1 Program Text

Program f08fffe

! F08FFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, dorgtr, dsteqr, dsytrd, f06qff, &

nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, ifail, info, k, lda, ldz, lwork, &

n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), d(:), e(:), tau(:), work(:), &

z(:,:)
! .. Executable Statements ..

Write (nout,*) ’F08FFF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
lda = n
ldz = n
lwork = 64*n
Allocate (a(lda,n),d(n),e(n),tau(n),work(lwork),z(ldz,n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Reduce A to tridiagonal form T = (Q**T)*A*Q
! The NAG name equivalent of dsytrd is f08fef

Call dsytrd(uplo,n,a,lda,d,e,tau,work,lwork,info)

! Copy A into Z
Call f06qff(uplo,n,n,a,lda,z,ldz)
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! Form Q explicitly, storing the result in Z
! The NAG name equivalent of dorgtr is f08fff

Call dorgtr(uplo,n,z,ldz,tau,work,lwork,info)

! Calculate all the eigenvalues and eigenvectors of A
! The NAG name equivalent of dsteqr is f08jef

Call dsteqr(’V’,n,d,e,z,ldz,work,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors: largest element positive
Do i = 1, n

Call blas_damax_val(n,z(1,i),1,k,r)
If (z(k,i)<zero) Then

z(1:n,i) = -z(1:n,i)
End If

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

End If

99999 Format (3X,(8F8.4))
End Program f08fffe

10.2 Program Data

F08FFF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

10.3 Program Results

F08FFF Example Program Results

Eigenvalues
-5.0034 -1.9987 0.2013 8.0008

Eigenvectors
1 2 3 4

1 0.5658 -0.2328 -0.3965 0.6845
2 -0.3478 0.7994 -0.1780 0.4564
3 -0.4740 -0.4087 0.5381 0.5645
4 0.5781 0.3737 0.7221 0.0676
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NAG Library Routine Document

F08FGF (DORMTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FGF (DORMTR) multiplies an arbitrary real matrix C by the real orthogonal matrix Q which was
determined by F08FEF (DSYTRD) when reducing a real symmetric matrix to tridiagonal form.

2 Specification

SUBROUTINE F08FGF (SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, LDA, LDC, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, UPLO, TRANS

The routine may be called by its LAPACK name dormtr.

3 Description

F08FGF (DORMTR) is intended to be used after a call to F08FEF (DSYTRD), which reduces a real
symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity transformation:
A ¼ QTQT. F08FEF (DSYTRD) represents the orthogonal matrix Q as a product of elementary
reflectors.

This routine may be used to form one of the matrix products

QC;QTC;CQ or CQT;

overwriting the result on C (which may be any real rectangular matrix).

A common application of this routine is to transform a matrix Z of eigenvectors of T to the matrix QZ
of eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QT is to be applied to C.

SIDE ¼ L
Q or QT is applied to C from the left.

SIDE ¼ R
Q or QT is applied to C from the right.

Constraint: SIDE ¼ L or R .
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2: UPLO – CHARACTER(1) Input

On entry: this must be the same argument UPLO as supplied to F08FEF (DSYTRD).

Constraint: UPLO ¼ U or L .

3: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QT is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ T
QT is applied to C.

Constraint: TRANS ¼ N or T .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix C; m is also the order of Q if SIDE ¼ L .

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix C; n is also the order of Q if SIDE ¼ R .

Constraint: N � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: details of the vectors which define the elementary reflectors, as returned by F08FEF
(DSYTRD).

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FGF
(DORMTR) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

8: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;M� 1ð Þ if SIDE ¼ L and at least
max 1;N� 1ð Þ if SIDE ¼ R .

On entry: further details of the elementary reflectors, as returned by F08FEF (DSYTRD).

9: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QTC or CQ or CQT as specified by SIDE and TRANS.

10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08FGF
(DORMTR) is called.

Constraint: LDC � max 1;Mð Þ.
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11: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08FGF (DORMTR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08FGF (DORMTR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08FGF (DORMTR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2m2n if SIDE ¼ L and 2mn2 if
SIDE ¼ R .

The complex analogue of this routine is F08FUF (ZUNMTR).
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10 Example

This example computes the two smallest eigenvalues, and the associated eigenvectors, of the matrix A,
where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA:

Here A is symmetric and must first be reduced to tridiagonal form T by F08FEF (DSYTRD). The
program then calls F08JJF (DSTEBZ) to compute the requested eigenvalues and F08JKF (DSTEIN) to
compute the associated eigenvectors of T . Finally F08FGF (DORMTR) is called to transform the
eigenvectors to those of A.

10.1 Program Text

Program f08fgfe

! F08FGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dormtr, dstebz, dstein, dsytrd, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: vl, vu
Integer :: i, ifail, info, lda, ldc, lwork, m, &

n, nsplit
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), d(:), e(:), tau(:), &

w(:), work(:)
Integer, Allocatable :: iblock(:), ifailv(:), isplit(:), &

iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F08FGF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
lda = n
ldc = n
lwork = 64*n
Allocate (a(lda,n),c(ldc,n),d(n),e(n),tau(n),w(n),work(lwork),iblock(n), &

ifailv(n),isplit(n),iwork(3*n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Reduce A to tridiagonal form T = (Q**T)*A*Q
Call dsytrd(uplo,n,a,lda,d,e,tau,work,lwork,info)

! Calculate the two smallest eigenvalues of T (same as A)

! The NAG name equivalent of dstebz is f08jjf
Call dstebz(’I’,’B’,n,vl,vu,1,2,zero,d,e,m,nsplit,w,iblock,isplit,work, &

iwork,info)
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Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:m)

! Calculate the eigenvectors of T, storing the result in C
! The NAG name equivalent of dstein is f08jkf

Call dstein(n,d,e,m,w,iblock,isplit,c,ldc,work,iwork,ifailv,info)

If (info>0) Then
Write (nout,*) ’Failure to converge.’

Else

! Calculate the eigenvectors of A = Q * (eigenvectors of T)
! The NAG name equivalent of dormtr is f08fgf

Call dormtr(’Left’,uplo,’No transpose’,n,m,a,lda,tau,c,ldc,work, &
lwork,info)

! Print eigenvectors

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,c,ldc,’Eigenvectors’,ifail)

End If
End If

99999 Format (3X,(9F8.4))
End Program f08fgfe

10.2 Program Data

F08FGF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

10.3 Program Results

F08FGF Example Program Results

Eigenvalues
-5.0034 -1.9987

Eigenvectors
1 2

1 0.5658 -0.2328
2 -0.3478 0.7994
3 -0.4740 -0.4087
4 0.5781 0.3737
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NAG Library Routine Document

F08FLF (DDISNA)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FLF (DDISNA) computes the reciprocal condition numbers for the eigenvectors of a real symmetric
or complex Hermitian m by m matrix A, or for the left or right singular vectors of a general m by n
matrix A.

2 Specification

SUBROUTINE F08FLF (JOB, M, N, D, SEP, INFO)

INTEGER M, N, INFO
REAL (KIND=nag_wp) D(*), SEP(*)
CHARACTER(1) JOB

The routine may be called by its LAPACK name ddisna.

3 Description

The bound on the error, measured by the angle in radians, for the ith computed vector is given by
� Ak k2=sepi, where � is the machine precision and sepi is the reciprocal condition number for the
vectors, returned in the array element SEPðiÞ. SEPðiÞ is restricted to be at least � Ak k2 in order to limit
the size of the error bound.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies for which problem the reciprocal condition number should be computed.

JOB ¼ E
The eigenvectors of a symmetric or Hermitian matrix.

JOB ¼ L
The left singular vectors of a general matrix.

JOB ¼ R
The right singular vectors of a general matrix.

Constraint: JOB ¼ E , L or R .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix when JOB ¼ L or R .
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If JOB ¼ E , N is not referenced.

Constraint: if JOB ¼ L or R , N � 0.

4: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Mð Þ if JOB ¼ E and at least
max 1;min M;Nð Þð Þ if JOB ¼ L or R .

On entry: the eigenvalues if JOB ¼ E , or singular values if JOB ¼ L or R of the matrix A.

Constraints:

the elements of the array D must be in either increasing or decreasing order;
if JOB ¼ L or R the elements of D must be non-negative.

5: SEPð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array SEP must be at least max 1;Mð Þ if JOB ¼ E and at least
max 1;min M;Nð Þð Þ if JOB ¼ L or R .

On exit: the reciprocal condition numbers of the vectors.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The reciprocal condition numbers are computed to machine precision relative to the size of the
eigenvalues, or singular values.

8 Parallelism and Performance

F08FLF (DDISNA) is not threaded in any implementation.

9 Further Comments

F08FLF (DDISNA) may also be used towards computing error bounds for the eigenvectors of the
generalized symmetric or Hermitian definite eigenproblem. See Golub and Van Loan (1996) for further
details on the error bounds.

10 Example

The use of F08FLF (DDISNA) in computing error bounds for eigenvectors of the symmetric eigenvalue
problem is illustrated in Section 10 in F08FAF (DSYEV); its use in computing error bounds for singular
vectors is illustrated in Section 10 in F08KBF (DGESVD); and its use in computing error bounds for
eigenvectors of the generalized symmetric definite eigenvalue problem is illustrated in Section 10 in
F08SAF (DSYGV).
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NAG Library Routine Document

F08FNF (ZHEEV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FNF (ZHEEV) computes all the eigenvalues and, optionally, all the eigenvectors of a complex n by
n Hermitian matrix A.

2 Specification

SUBROUTINE F08FNF (JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO)

INTEGER N, LDA, LWORK, INFO
REAL (KIND=nag_wp) W(N), RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name zheev.

3 Description

The Hermitian matrix A is first reduced to real tridiagonal form, using unitary similarity
transformations, and then the QR algorithm is applied to the tridiagonal matrix to compute the
eigenvalues and (optionally) the eigenvectors.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if JOBZ ¼ V , then A contains the orthonormal eigenvectors of the matrix A.

If JOBZ ¼ N , then on exit the lower triangle (if UPLO ¼ L ) or the upper triangle (if
UPLO ¼ U ) of A, including the diagonal, is overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FNF
(ZHEEV) is called.

Constraint: LDA � max 1;Nð Þ.

6: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

7: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08FNF (ZHEEV) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � nbþ 1ð Þ � N, where nb is the optimal
block size for F08FSF (ZHETRD).

Constraint: LWORK � max 1; 2� Nð Þ.

9: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1; 3� N� 2ð Þ.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

If INFO ¼ i, the algorithm failed to converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08FNF (ZHEEV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FNF (ZHEEV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Each eigenvector is normalized so that the element of largest absolute value is real.

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08FAF (DSYEV).

10 Example

This example finds all the eigenvalues and eigenvectors of the Hermitian matrix

A ¼
1 2� i 3� i 4� i
2þ i 2 3� 2i 4� 2i
3þ i 3þ 2i 3 4� 3i
4þ i 4þ 2i 4þ 3i 4

0B@
1CA;

together with approximate error bounds for the computed eigenvalues and eigenvectors.

10.1 Program Text

Program f08fnfe

! F08FNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddisna, nag_wp, x02ajf, x04daf, zheev, zscal

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eerrbd, eps
Integer :: i, ifail, info, k, lda, lwork, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Complex (Kind=nag_wp) :: dummy(1)
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Real (Kind=nag_wp), Allocatable :: rcondz(:), rwork(:), w(:), zerrbd(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs, cmplx, conjg, max, maxloc, &
nint, real

! .. Executable Statements ..
Write (nout,*) ’F08FNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),rcondz(n),rwork(3*n-2),w(n),zerrbd(n))

! Use routine workspace query to get optimal workspace.
! The NAG name equivalent of zheev is f08fnf

lwork = -1
Call zheev(’Vectors’,’Upper’,n,a,lda,w,dummy,lwork,rwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(dummy(1))))
Allocate (work(lwork))

! Read the upper triangular part of the matrix A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Solve the Hermitian eigenvalue problem
! The NAG name equivalent of zheev is f08fnf

Call zheev(’Vectors’,’Upper’,n,a,lda,w,work,lwork,rwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

Write (nout,*)
Flush (nout)

! Normalize the eigenvectors so that the element of largest absolute
! value is real.

Do i = 1, n
rwork(1:n) = abs(a(1:n,i))
k = maxloc(rwork(1:n),1)
Call zscal(n,conjg(a(k,i))/cmplx(abs(a(k,i)),kind=nag_wp),a(1,i),1)

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,n,a,lda,’Eigenvectors’,ifail)

! Get the machine precision, EPS and compute the approximate
! error bound for the computed eigenvalues. Note that for
! the 2-norm, max( abs(W(i)) ) = norm(A), and since the
! eigenvalues are returned in descending order
! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n)))

eps = x02ajf()
eerrbd = eps*max(abs(w(1)),abs(w(n)))

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the eigenvectors

Call ddisna(’Eigenvectors’,n,n,w,rcondz,info)

! Compute the error estimates for the eigenvectors

Do i = 1, n
zerrbd(i) = eerrbd/rcondz(i)

End Do
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! Print the approximate error bounds for the eigenvalues
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimate for the eigenvalues’
Write (nout,99998) eerrbd
Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvectors’
Write (nout,99998) zerrbd(1:n)

Else
Write (nout,99997) ’Failure in ZHEEV. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)

End Program f08fnfe

10.2 Program Data

F08FNF Example Program Data

4 :Value of N

(1.0, 0.0) (2.0, -1.0) (3.0, -1.0) (4.0, -1.0)
(2.0, 0.0) (3.0, -2.0) (4.0, -2.0)

(3.0, 0.0) (4.0, -3.0)
(4.0, 0.0) :End of matrix A

10.3 Program Results

F08FNF Example Program Results

Eigenvalues
-4.2443 -0.6886 1.1412 13.7916

Eigenvectors
1 2 3 4

1 -0.3839 0.6470 0.0179 0.3309
-0.2941 0.0000 -0.4453 -0.1986

2 -0.4512 -0.4984 0.5706 0.3728
0.1102 -0.1130 -0.0000 -0.2419

3 0.0263 0.2949 -0.1530 0.4870
0.4857 0.3165 0.5273 -0.1938

4 0.5602 -0.2241 -0.2118 0.6155
0.0000 -0.2878 -0.3598 0.0000

Error estimate for the eigenvalues
1.5E-15

Error estimates for the eigenvectors
4.3E-16 8.4E-16 8.4E-16 1.2E-16
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NAG Library Routine Document

F08FPF (ZHEEVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FPF (ZHEEVX) computes selected eigenvalues and, optionally, eigenvectors of a complex n by n
Hermitian matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08FPF (JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, JFAIL, INFO)

&

INTEGER N, LDA, IL, IU, M, LDZ, LWORK, IWORK(*),
JFAIL(*), INFO

&

REAL (KIND=nag_wp) VL, VU, ABSTOL, W(*), RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name zheevx.

3 Description

The Hermitian matrix A is first reduced to real tridiagonal form, using unitary similarity
transformations. The required eigenvalues and eigenvectors are then computed from the tridiagonal
matrix; the method used depends upon whether all, or selected, eigenvalues and eigenvectors are
required.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.
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If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the lower triangle (if UPLO ¼ L ) or the upper triangle (if UPLO ¼ U ) of A, including
the diagonal, is overwritten.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FPF
(ZHEEVX) is called.

Constraint: LDA � max 1;Nð Þ.

7: VL – REAL (KIND=nag_wp) Input
8: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

9: IL – INTEGER Input
10: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

11: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to
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ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO > 0, indicating that some
eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and Kahan
(1990).

12: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

13: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the first M elements contain the selected eigenvalues in ascending order.

14: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ;
if an eigenvector fails to converge (INFO > 0), then that column of Z contains the latest
approximation to the eigenvector, and the index of the eigenvector is returned in JFAIL.

If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

15: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08FPF
(ZHEEVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

16: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08FPF
(ZHEEVX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08FPF

Mark 26 F08FPF.3



Suggested value: for optimal performance, LWORK � nbþ 1ð Þ � N, where nb is the largest
optimal block size for F08FSF (ZHETRD) and for F08FUF (ZUNMTR).

Constraint: LWORK � max 1; 2� Nð Þ.

18: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1; 7� Nð Þ.

19: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least max 1; 5� Nð Þ.

20: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO > 0, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm failed to converge; valueh i eigenvectors did not converge. Their indices are stored
in array JFAIL.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08FPF (ZHEEVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FPF (ZHEEVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08FBF (DSYEVX).

10 Example

This example finds the eigenvalues in the half-open interval �2; 2ð �, and the corresponding
eigenvectors, of the Hermitian matrix

A ¼
1 2� i 3� i 4� i
2þ i 2 3� 2i 4� 2i
3þ i 3þ 2i 3 4� 3i
4þ i 4þ 2i 4þ 3i 4

0B@
1CA:

10.1 Program Text

Program f08fpfe

! F08FPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf, zheevx, zscal

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, k, lda, ldz, &

lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:), z(:,:)
Complex (Kind=nag_wp) :: dummy(1)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:), jfail(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cmplx, conjg, max, maxloc, &

nint, real
! .. Executable Statements ..

Write (nout,*) ’F08FPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldz = n
m = n
Allocate (a(lda,n),z(ldz,m),rwork(7*n),w(n),iwork(5*n),jfail(n))

! Read the lower and upper bounds of the interval to be searched.
Read (nin,*) vl, vu

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zheevx is f08fpf
Call zheevx(’Vectors’,’Values in range’,’Upper’,n,a,lda,vl,vu,il,iu, &

abstol,m,w,z,ldz,dummy,lwork,rwork,iwork,jfail,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(dummy(1))))
Allocate (work(lwork))

! Read the upper triangular part of the matrix A.
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Read (nin,*)(a(i,i:n),i=1,n)

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead

abstol = zero

! Solve the Hermitian eigenvalue problem

! The NAG name equivalent of zheevx is f08fpf
Call zheevx(’Vectors’,’Values in range’,’Upper’,n,a,lda,vl,vu,il,iu, &

abstol,m,w,z,ldz,work,lwork,rwork,iwork,jfail,info)

If (info>=0) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! Normalize the eigenvectors so that the element of largest absolute
! value is real.

Do i = 1, m
rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
Call zscal(n,conjg(z(k,i))/cmplx(abs(z(k,i)),kind=nag_wp),z(1,i),1)

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else

Write (nout,99999) ’Failure in ZHEEVX. INFO =’, info
End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))

End Program f08fpfe

10.2 Program Data

F08FPF Example Program Data
4 :Value of N

-2.0 2.0 :Values of VL and VU
(1.0, 0.0) (2.0, -1.0) (3.0, -1.0) (4.0, -1.0)

(2.0, 0.0) (3.0, -2.0) (4.0, -2.0)
(3.0, 0.0) (4.0, -3.0)

(4.0, 0.0) :End of matrix A

10.3 Program Results

F08FPF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
-0.6886 1.1412
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Selected eigenvectors
1 2

1 0.6470 0.0179
0.0000 -0.4453

2 -0.4984 0.5706
-0.1130 0.0000

3 0.2949 -0.1530
0.3165 0.5273

4 -0.2241 -0.2118
-0.2878 -0.3598
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NAG Library Routine Document

F08FQF (ZHEEVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the arguments LRWORK and LIWORK changed at Mark 20 in the case where JOB ¼ V and N > 1: the
minimum dimension of the array RWORK has been reduced whereas the minimum dimension of the array IWORK has been increased.

1 Purpose

F08FQF (ZHEEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian matrix. If the eigenvectors are requested, then it uses a divide-and-conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal–Walker–Kahan variant of the QL or QR algorithm.

2 Specification

SUBROUTINE F08FQF (JOB, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK,
IWORK, LIWORK, INFO)

&

INTEGER N, LDA, LWORK, LRWORK, IWORK(max(1,LIWORK)),
LIWORK, INFO

&

REAL (KIND=nag_wp) W(*), RWORK(max(1,LRWORK))
COMPLEX (KIND=nag_wp) A(LDA,*), WORK(max(1,LWORK))
CHARACTER(1) JOB, UPLO

The routine may be called by its LAPACK name zheevd.

3 Description

F08FQF (ZHEEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian matrix A. In other words, it can compute the spectral factorization of A as

A ¼ Z�ZH;

where � is a real diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the
(complex) unitary matrix whose columns are the eigenvectors zi. Thus

Azi ¼ �izi; i ¼ 1; 2; . . . ; n:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOB ¼ N
Only eigenvalues are computed.
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JOB ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOB ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if JOB ¼ V , A is overwritten by the unitary matrix Z which contains the eigenvectors
of A.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FQF
(ZHEEVD) is called.

Constraint: LDA � max 1;Nð Þ.

6: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the eigenvalues of the matrix A in ascending order.

7: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the required minimal size of LWORK.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08FQF (ZHEEVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the WORK array, returns this value as the first entry of the WORK array, and no
error message related to LWORK is issued.

Constraints:

if N � 1, LWORK � 1 or LWORK ¼ �1;
if JOB ¼ N and N > 1, LWORK � Nþ 1 or LWORK ¼ �1;
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if JOB ¼ V and N > 1, LWORK � N� Nþ 2ð Þ or LWORK ¼ �1.

9: RWORKðmax 1;LRWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, RWORKð1Þ contains the required minimal size of LRWORK.

10: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
F08FQF (ZHEEVD) is called.

If LRWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the RWORK array, returns this value as the first entry of the RWORK array, and no
error message related to LRWORK is issued.

Constraints:

if N � 1, LRWORK � 1 or LRWORK ¼ �1;
if JOB ¼ N and N > 1, LRWORK � N or LRWORK ¼ �1;
if JOB ¼ V and N > 1, LRWORK � 2� N2 þ 5� Nþ 1 or LRWORK ¼ �1.

11: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ contains the required minimal size of LIWORK.

12: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08FQF (ZHEEVD) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the IWORK array, returns this value as the first entry of the IWORK array, and no
error message related to LIWORK is issued.

Constraints:

if N � 1, LIWORK � 1 or LIWORK ¼ �1;
if JOB ¼ N and N > 1, LIWORK � 1 or LIWORK ¼ �1;
if JOB ¼ V and N > 1, LIWORK � 5� Nþ 3 or LIWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

if INFO ¼ i and JOB ¼ N , the algorithm failed to converge; i elements of an intermediate
tridiagonal form did not converge to zero; if INFO ¼ i and JOB ¼ V , then the algorithm failed
to compute an eigenvalue while working on the submatrix lying in rows and column i= Nþ 1ð Þ
through i mod Nþ 1ð Þ.
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7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08FQF (ZHEEVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FQF (ZHEEVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F08FCF (DSYEVD).

10 Example

This example computes all the eigenvalues and eigenvectors of the Hermitian matrix A, where

A ¼
1:0þ 0:0i 2:0� 1:0i 3:0� 1:0i 4:0� 1:0i
2:0þ 1:0i 2:0þ 0:0i 3:0� 2:0i 4:0� 2:0i
3:0þ 1:0i 3:0þ 2:0i 3:0þ 0:0i 4:0� 3:0i
4:0þ 1:0i 4:0þ 2:0i 4:0þ 3:0i 4:0þ 0:0i

0B@
1CA:

The example program for F08FQF (ZHEEVD) illustrates the computation of error bounds for the
eigenvalues and eigenvectors.

10.1 Program Text

Program f08fqfe

! F08FQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf, zheevd, zscal

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, k, lda, liwork, &

lrwork, lwork, n
Character (1) :: job, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cmplx, conjg, maxloc

! .. Executable Statements ..
Write (nout,*) ’F08FQF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
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lda = n
liwork = 5*n + 3
lrwork = 2*n*n + 5*n + 1
lwork = n*(n+2)
Allocate (a(lda,n),work(lwork),rwork(lrwork),w(n),iwork(liwork))
Read (nin,*) uplo

! Read A from data file

If (uplo==’U’) Then
Read (nin,*)(a(i,i:n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)(a(i,1:i),i=1,n)

End If

Read (nin,*) job

! Calculate all the eigenvalues and eigenvectors of A
! The NAG name equivalent of zheevd is f08fqf

Call zheevd(job,uplo,n,a,lda,w,work,lwork,rwork,lrwork,iwork,liwork, &
info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Do i = 1, n

Write (nout,99999) i, w(i)
End Do
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors so that the element of largest absolute
! value is real.

Do i = 1, n
rwork(1:n) = abs(a(1:n,i))
k = maxloc(rwork(1:n),1)
Call zscal(n,conjg(a(k,i))/cmplx(abs(a(k,i)),kind=nag_wp),a(1,i),1)

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,n,a,lda,’Eigenvectors’,ifail)

End If

99999 Format (3X,I5,5X,2F8.4)
End Program f08fqfe

10.2 Program Data

F08FQF Example Program Data
4 :Value of N
’L’ :Value of UPLO
(1.0, 0.0)
(2.0, 1.0) (2.0, 0.0)
(3.0, 1.0) (3.0, 2.0) (3.0, 0.0)
(4.0, 1.0) (4.0, 2.0) (4.0, 3.0) (4.0, 0.0) :End of matrix A
’V’ :Value of JOB
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10.3 Program Results

F08FQF Example Program Results

Eigenvalues
1 -4.2443
2 -0.6886
3 1.1412
4 13.7916

Eigenvectors
1 2 3 4

1 -0.3839 0.6470 0.0179 0.3309
-0.2941 0.0000 -0.4453 -0.1986

2 -0.4512 -0.4984 0.5706 0.3728
0.1102 -0.1130 0.0000 -0.2419

3 0.0263 0.2949 -0.1530 0.4870
0.4857 0.3165 0.5273 -0.1938

4 0.5602 -0.2241 -0.2118 0.6155
0.0000 -0.2878 -0.3598 0.0000
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NAG Library Routine Document

F08FRF (ZHEEVR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FRF (ZHEEVR) computes selected eigenvalues and, optionally, eigenvectors of a complex n by n
Hermitian matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08FRF (JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, ISUPPZ, WORK, LWORK, RWORK, LRWORK,
IWORK, LIWORK, INFO)

&
&

INTEGER N, LDA, IL, IU, M, LDZ, ISUPPZ(*), LWORK, LRWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) VL, VU, ABSTOL, W(*), RWORK(max(1,LRWORK))
COMPLEX (KIND=nag_wp) A(LDA,*), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name zheevr.

3 Description

The Hermitian matrix is first reduced to a real tridiagonal matrix T , using unitary similarity
transformations. Then whenever possible, F08FRF (ZHEEVR) computes the eigenspectrum using
Relatively Robust Representations. F08FRF (ZHEEVR) computes eigenvalues by the dqds algorithm,
while orthogonal eigenvectors are computed from various ‘good’ LDLT representations (also known as
Relatively Robust Representations). Gram–Schmidt orthogonalization is avoided as far as possible.
More specifically, the various steps of the algorithm are as follows. For the ith unreduced block of T :

(a) compute T � �iI ¼ LiDiL
T
i , such that LiDiL

T
i is a relatively robust representation,

(b) compute the eigenvalues, �j, of LiDiL
T
i to high relative accuracy by the dqds algorithm,

(c) if there is a cluster of close eigenvalues, ‘choose’ �i close to the cluster, and go to (a),

(d) given the approximate eigenvalue �j of LiDiL
T
i , compute the corresponding eigenvector by

forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the argument ABSTOL. For more details, see
Dhillon (1997) and Parlett and Dhillon (2000).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Barlow J and Demmel J W (1990) Computing accurate eigensystems of scaled diagonally dominant
matrices SIAM J. Numer. Anal. 27 762–791

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Dhillon I (1997) A new O n2
� �

algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem
Computer Science Division Technical Report No. UCB//CSD-97-971 UC Berkeley
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Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Parlett B N and Dhillon I S (2000) Relatively robust representations of symmetric tridiagonals Linear
Algebra Appl. 309 121–151

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

For RANGE ¼ V or I and IU� IL < N� 1, F08JJF (DSTEBZ) and F08JXF (ZSTEIN) are
called.

Constraint: RANGE ¼ A , V or I .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the lower triangle (if UPLO ¼ L ) or the upper triangle (if UPLO ¼ U ) of A, including
the diagonal, is overwritten.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FRF
(ZHEEVR) is called.

Constraint: LDA � max 1;Nð Þ.
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7: VL – REAL (KIND=nag_wp) Input
8: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

9: IL – INTEGER Input
10: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

11: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the real tridiagonal matrix obtained by reducing A to tridiagonal
form. See Demmel and Kahan (1990).

If high relative accuracy is important, set ABSTOL to X02AMFð Þ, although doing so does not
currently guarantee that eigenvalues are computed to high relative accuracy. See Barlow and
Demmel (1990) for a discussion of which matrices can define their eigenvalues to high relative
accuracy.

12: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

13: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the first M elements contain the selected eigenvalues in ascending order.

14: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , the first M columns of Z contain the orthonormal eigenvectors of the
matrix A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ.
If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08FRF

Mark 26 F08FRF.3



15: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08FRF
(ZHEEVR) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

16: ISUPPZð�Þ – INTEGER array Output

Note: the dimension of the array ISUPPZ must be at least max 1; 2�Mð Þ.
On exit: the support of the eigenvectors in Z, i.e., the indices indicating the nonzero elements in
Z. The ith eigenvector is nonzero only in elements ISUPPZð2� i� 1Þ through ISUPPZð2� iÞ.
Implemented only for RANGE ¼ A or I and IU� IL ¼ N� 1.

17: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

18: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08FRF (ZHEEVR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes of
the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK,
RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or LIWORK
is issued.

Suggested value: for optimal performance, LWORK � nbþ 1ð Þ � N, where nb is the largest
optimal block size for F08FSF (ZHETRD) and for F08FUF (ZUNMTR).

Constraint: LWORK � max 1; 2� Nð Þ.

19: RWORKðmax 1;LRWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, RWORKð1Þ returns the optimal (and minimal) LRWORK.

20: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
F08FRF (ZHEEVR) is called.

If LRWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes
of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the
WORK, RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or
LIWORK is issued.

Constraint: LRWORK � max 1; 24� Nð Þ.

21: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the optimal (and minimal) LIWORK.

22: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08FRF (ZHEEVR) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes
of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the
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WORK, RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or
LIWORK is issued.

Constraint: LIWORK � max 1; 10� Nð Þ.

23: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F08FRF (ZHEEVR) failed to converge.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08FRF (ZHEEVR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FRF (ZHEEVR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08FDF (DSYEVR).

10 Example

This example finds the eigenvalues with indices in the range 2; 3½ �, and the corresponding eigenvectors,
of the Hermitian matrix

A ¼
1 2� i 3� i 4� i
2þ i 2 3� 2i 4� 2i
3þ i 3þ 2i 3 4� 3i
4þ i 4þ 2i 4þ 3i 4

0B@
1CA:

Information on required and provided workspace is also output.
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10.1 Program Text

Program f08frfe

! F08FRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf, zheevr, zscal

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, k, lda, ldz, &

liwork, lrwork, lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:), z(:,:)
Complex (Kind=nag_wp) :: dummy(1)
Real (Kind=nag_wp) :: rdum(1)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer :: idum(1)
Integer, Allocatable :: isuppz(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cmplx, conjg, max, maxloc, &

nint, real
! .. Executable Statements ..

Write (nout,*) ’F08FRF Example Program Results’
Write (nout,*)

! Skip heading in data file and read N and the lower and upper
! indices of the smallest and largest eigenvalues to be found

Read (nin,*)
Read (nin,*) n, il, iu
lda = n
ldz = n
m = n
Allocate (a(lda,n),z(ldz,m),w(n),isuppz(2*m))

! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1
lrwork = -1

! The NAG name equivalent of zheevr is f08frf
Call zheevr(’Vectors’,’I’,’Upper’,n,a,lda,vl,vu,il,iu,abstol,m,w,z,ldz, &

isuppz,dummy,lwork,rdum,lrwork,idum,liwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(dummy(1))))
lrwork = max(24*n,nint(rdum(1)))
liwork = max(10*n,idum(1))
Allocate (work(lwork),rwork(lrwork),iwork(liwork))

! Read the upper triangular part of the matrix A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead

abstol = zero

! Solve the symmetric eigenvalue problem

! The NAG name equivalent of zheevr is f08frf
Call zheevr(’Vectors’,’I’,’Upper’,n,a,lda,vl,vu,il,iu,abstol,m,w,z,ldz, &

isuppz,work,lwork,rwork,lrwork,iwork,liwork,info)

If (info==0) Then
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! Print solution

Write (nout,*) ’Selected eigenvalues’
Write (nout,99999) w(1:m)
Flush (nout)

! Normalize the eigenvectors so that the element of largest absolute
! value is real.

Do i = 1, m
rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
Call zscal(n,conjg(z(k,i))/cmplx(abs(z(k,i)),kind=nag_wp),z(1,i),1)

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

Else
Write (nout,99998) ’Failure in ZHEEVR. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (1X,A,I5)

End Program f08frfe

10.2 Program Data

F08FRF Example Program Data

4 2 3 :Values of N, IL and IU

(1.0, 0.0) (2.0,-1.0) (3.0,-1.0) (4.0,-1.0)
(2.0, 0.0) (3.0,-2.0) (4.0,-2.0)

(3.0, 0.0) (4.0,-3.0)
(4.0, 0.0) :End of matrix A

10.3 Program Results

F08FRF Example Program Results

Selected eigenvalues
-0.6886 1.1412

Selected eigenvectors
1 2

1 0.6470 0.0179
0.0000 -0.4453

2 -0.4984 0.5706
-0.1130 0.0000

3 0.2949 -0.1530
0.3165 0.5273

4 -0.2241 -0.2118
-0.2878 -0.3598
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NAG Library Routine Document

F08FSF (ZHETRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FSF (ZHETRD) reduces a complex Hermitian matrix to tridiagonal form.

2 Specification

SUBROUTINE F08FSF (UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

INTEGER N, LDA, LWORK, INFO
REAL (KIND=nag_wp) D(*), E(*)
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhetrd.

3 Description

F08FSF (ZHETRD) reduces a complex Hermitian matrix A to real symmetric tridiagonal form T by a
unitary similarity transformation: A ¼ QTQH.

The matrix Q is not formed explicitly but is represented as a product of n� 1 elementary reflectors (see
the F08 Chapter Introduction for details). Routines are provided to work with Q in this representation
(see Section 9).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.
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If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: A is overwritten by the tridiagonal matrix T and details of the unitary matrix Q as
specified by UPLO.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FSF
(ZHETRD) is called.

Constraint: LDA � max 1;Nð Þ.

5: Dð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On exit: the diagonal elements of the tridiagonal matrix T .

6: Eð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On exit: the off-diagonal elements of the tridiagonal matrix T .

7: TAUð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;N� 1ð Þ.
On exit: further details of the unitary matrix Q.

8: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

9: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08FSF
(ZHETRD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � 1 or LWORK ¼ �1.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix Aþ Eð Þ, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues and eigenvectors.

8 Parallelism and Performance

F08FSF (ZHETRD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FSF (ZHETRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 16
3 n

3 .

To form the unitary matrix Q F08FSF (ZHETRD) may be followed by a call to F08FTF (ZUNGTR):

CALL ZUNGTR(UPLO,N,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an n by p complex matrix C F08FSF (ZHETRD) may be followed by a call to F08FUF
(ZUNMTR). For example,

CALL ZUNMTR(’Left’,UPLO,’No Transpose’,N,P,A,LDA,TAU,C,LDC, &
WORK,LWORK,INFO)

forms the matrix product QC.

The real analogue of this routine is F08FEF (DSYTRD).

10 Example

This example reduces the matrix A to tridiagonal form, where

A ¼
�2:28þ 0:00i 1:78� 2:03i 2:26þ 0:10i �0:12þ 2:53i
1:78þ 2:03i �1:12þ 0:00i 0:01þ 0:43i �1:07þ 0:86i
2:26� 0:10i 0:01� 0:43i �0:37þ 0:00i 2:31� 0:92i
�0:12� 2:53i �1:07� 0:86i 2:31þ 0:92i �0:73þ 0:00i

0B@
1CA:

10.1 Program Text

Program f08fsfe

! F08FSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zhetrd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, lda, lwork, n
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Character (1) :: uplo
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F08FSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),tau(n-1),work(lwork),d(n),e(n-1))

! Read A from data file and copy A into C

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Reduce A to tridiagonal form
! The NAG name equivalent of zhetrd is f08fsf

Call zhetrd(uplo,n,a,lda,d,e,tau,work,lwork,info)

If (info==0) Then
! Print the diagonal and off-diagonal of tridiagonal T.
! The absolute value of E is printed since this can vary by a change of
! sign (corresponding to multiplying through a column of Q by -1).

Write (nout,*)
Write (nout,*) &

’Diagonal and off-diagonal elements of tridiagonal form’
Write (nout,*)
Write (nout,99999) ’i’, ’D’, ’E’
Do i = 1, n - 1

Write (nout,99998) i, d(i), abs(e(i))
End Do
Write (nout,99998) n, d(n)

Else
Write (nout,99997) info

End If

99999 Format (5X,A,9X,A,12X,A)
99998 Format (1X,I5,2(1X,F12.5))
99997 Format (1X,’** ZHETRD/F08FSF retuned with INFO = ’,I10)

End Program f08fsfe

10.2 Program Data

F08FSF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-2.28, 0.00)
( 1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A
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10.3 Program Results

F08FSF Example Program Results

Diagonal and off-diagonal elements of tridiagonal form

i D E
1 -2.28000 4.33846
2 -0.12846 2.02259
3 -0.16659 1.80232
4 -1.92495
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NAG Library Routine Document

F08FTF (ZUNGTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FTF (ZUNGTR) generates the complex unitary matrix Q, which was determined by F08FSF
(ZHETRD) when reducing a Hermitian matrix to tridiagonal form.

2 Specification

SUBROUTINE F08FTF (UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER N, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zungtr.

3 Description

F08FTF (ZUNGTR) is intended to be used after a call to F08FSF (ZHETRD), which reduces a complex
Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity transformation:
A ¼ QTQH. F08FSF (ZHETRD) represents the unitary matrix Q as a product of n� 1 elementary
reflectors.

This routine may be used to generate Q explicitly as a square matrix.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: this must be the same argument UPLO as supplied to F08FSF (ZHETRD).

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix Q.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08FSF
(ZHETRD).

On exit: the n by n unitary matrix Q.
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4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FTF
(ZUNGTR) is called.

Constraint: LDA � max 1;Nð Þ.

5: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;N� 1ð Þ.
On entry: further details of the elementary reflectors, as returned by F08FSF (ZHETRD).

6: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08FTF (ZUNGTR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� 1ð Þ � nb, where nb is the optimal
block size.

Constraint: LWORK � max 1;N� 1ð Þ or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08FTF (ZUNGTR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08FTF (ZUNGTR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of real floating-point operations is approximately 16
3 n

3 .

The real analogue of this routine is F08FFF (DORGTR).

10 Example

This example computes all the eigenvalues and eigenvectors of the matrix A, where

A ¼
�2:28þ 0:00i 1:78� 2:03i 2:26þ 0:10i �0:12þ 2:53i
1:78þ 2:03i �1:12þ 0:00i 0:01þ 0:43i �1:07þ 0:86i
2:26� 0:10i 0:01� 0:43i �0:37þ 0:00i 2:31� 0:92i
�0:12� 2:53i �1:07� 0:86i 2:31þ 0:92i �0:73þ 0:00i

0B@
1CA:

Here A is Hermitian and must first be reduced to tridiagonal form by F08FSF (ZHETRD). The program
then calls F08FTF (ZUNGTR) to form Q, and passes this matrix to F08JSF (ZSTEQR) which computes
the eigenvalues and eigenvectors of A.

10.1 Program Text

Program f08ftfe

! F08FTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06tff, nag_wp, x04dbf, zhetrd, zscal, zsteqr, &

zungtr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, info, k, lda, ldz, lwork, &
n

Character (1) :: uplo
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:), z(:,:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:), rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cmplx, conjg, maxloc

! .. Executable Statements ..
Write (nout,*) ’F08FTF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldz = n
lwork = 64*n
Allocate (a(lda,n),tau(n),work(lwork),z(ldz,n),d(n),e(n),rwork(2*n-2))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Reduce A to tridiagonal form T = (Q**H)*A*Q

! The NAG name equivalent of zhetrd is f08fsf
Call zhetrd(uplo,n,a,lda,d,e,tau,work,lwork,info)
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! Copy A into Z
Call f06tff(uplo,n,n,a,lda,z,ldz)

! Form Q explicitly, storing the result in Z
! The NAG name equivalent of zungtr is f08ftf

Call zungtr(uplo,n,z,ldz,tau,work,lwork,info)

! Calculate all the eigenvalues and eigenvectors of A
! The NAG name equivalent of zsteqr is f08jsf

Call zsteqr(’V’,n,d,e,z,ldz,rwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors so that the element of largest absolute
! value is real.

Do i = 1, n
rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
Call zscal(n,conjg(z(k,i))/cmplx(abs(z(k,i)),kind=nag_wp),z(1,i),1)

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,z,ldz,’Bracketed’,’F7.4’,’Eigenvectors’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If

99999 Format (8X,4(F7.4,11X,:))
End Program f08ftfe

10.2 Program Data

F08FTF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-2.28, 0.00)
( 1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A

10.3 Program Results

F08FTF Example Program Results

Eigenvalues
-6.0002 -3.0030 0.5036 3.9996

Eigenvectors
1 2 3 4

1 ( 0.7299, 0.0000) (-0.2120, 0.1497) ( 0.1000,-0.3570) ( 0.1991, 0.4720)
2 (-0.1663,-0.2061) ( 0.7307,-0.0000) ( 0.2863,-0.3353) (-0.2467, 0.3751)
3 (-0.4165,-0.1417) (-0.3291, 0.0479) ( 0.6890, 0.0000) ( 0.4468, 0.1466)
4 ( 0.1743, 0.4162) ( 0.5200, 0.1329) ( 0.0662, 0.4347) ( 0.5612, 0.0000)
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NAG Library Routine Document

F08FUF (ZUNMTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08FUF (ZUNMTR) multiplies an arbitrary complex matrix C by the complex unitary matrix Q which
was determined by F08FSF (ZHETRD) when reducing a complex Hermitian matrix to tridiagonal form.

2 Specification

SUBROUTINE F08FUF (SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

&

INTEGER M, N, LDA, LDC, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, UPLO, TRANS

The routine may be called by its LAPACK name zunmtr.

3 Description

F08FUF (ZUNMTR) is intended to be used after a call to F08FSF (ZHETRD), which reduces a
complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity
transformation: A ¼ QTQH. F08FSF (ZHETRD) represents the unitary matrix Q as a product of
elementary reflectors.

This routine may be used to form one of the matrix products

QC;QHC;CQ or CQH;

overwriting the result on C (which may be any complex rectangular matrix).

A common application of this routine is to transform a matrix Z of eigenvectors of T to the matrix QZ
of eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QH is to be applied to C.

SIDE ¼ L
Q or QH is applied to C from the left.

SIDE ¼ R
Q or QH is applied to C from the right.

Constraint: SIDE ¼ L or R .
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2: UPLO – CHARACTER(1) Input

On entry: this must be the same argument UPLO as supplied to F08FSF (ZHETRD).

Constraint: UPLO ¼ U or L .

3: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QH is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ C
QH is applied to C.

Constraint: TRANS ¼ N or C .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix C; m is also the order of Q if SIDE ¼ L .

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix C; n is also the order of Q if SIDE ¼ R .

Constraint: N � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: details of the vectors which define the elementary reflectors, as returned by F08FSF
(ZHETRD).

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FUF
(ZUNMTR) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

8: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;M� 1ð Þ if SIDE ¼ L and at least
max 1;N� 1ð Þ if SIDE ¼ R .

On entry: further details of the elementary reflectors, as returned by F08FSF (ZHETRD).

9: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QHC or CQ or CQH as specified by SIDE and TRANS.

10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08FUF
(ZUNMTR) is called.

Constraint: LDC � max 1;Mð Þ.
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11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08FUF (ZUNMTR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08FUF (ZUNMTR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08FUF (ZUNMTR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8m2n if SIDE ¼ L and 8mn2 if
SIDE ¼ R .

The real analogue of this routine is F08FGF (DORMTR).
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10 Example

This example computes the two smallest eigenvalues, and the associated eigenvectors, of the matrix A,
where

A ¼
�2:28þ 0:00i 1:78� 2:03i 2:26þ 0:10i �0:12þ 2:53i
1:78þ 2:03i �1:12þ 0:00i 0:01þ 0:43i �1:07þ 0:86i
2:26� 0:10i 0:01� 0:43i �0:37þ 0:00i 2:31� 0:92i
�0:12� 2:53i �1:07� 0:86i 2:31þ 0:92i �0:73þ 0:00i

0B@
1CA:

Here A is Hermitian and must first be reduced to tridiagonal form T by F08FSF (ZHETRD). The
program then calls F08JJF (DSTEBZ) to compute the requested eigenvalues and F08JXF (ZSTEIN) to
compute the associated eigenvectors of T . Finally F08FUF (ZUNMTR) is called to transform the
eigenvectors to those of A.

10.1 Program Text

Program f08fufe

! F08FUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dstebz, nag_wp, x04dbf, zhetrd, zscal, zstein, &

zunmtr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: vl, vu
Integer :: i, ifail, info, k, lda, ldc, lwork, &

m, n, nsplit
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), tau(:), work(:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:), rwork(:), w(:)
Integer, Allocatable :: iblock(:), ifailv(:), isplit(:), &

iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cmplx, conjg, maxloc

! .. Executable Statements ..
Write (nout,*) ’F08FUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldc = n
lwork = 64*n
Allocate (a(lda,n),c(ldc,n),tau(n),work(lwork),d(n),e(n),rwork(5*n), &

w(n),iblock(n),ifailv(n),isplit(n),iwork(3*n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
End If

! Reduce A to tridiagonal form T = (Q**H)*A*Q
! The NAG name equivalent of zhetrd is f08fsf

Call zhetrd(uplo,n,a,lda,d,e,tau,work,lwork,info)
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! Calculate the two smallest eigenvalues of T (same as A)

! The NAG name equivalent of dstebz is f08jjf
Call dstebz(’I’,’B’,n,vl,vu,1,2,zero,d,e,m,nsplit,w,iblock,isplit,rwork, &

iwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:m)

! Calculate the eigenvectors of T, storing the result in C
! The NAG name equivalent of zstein is f08jxf

Call zstein(n,d,e,m,w,iblock,isplit,c,ldc,rwork,iwork,ifailv,info)

If (info>0) Then
Write (nout,*) ’Failure to converge.’

Else

! Calculate the eigenvectors of A = Q * (eigenvectors of T)
! The NAG name equivalent of zunmtr is f08fuf

Call zunmtr(’Left’,uplo,’No transpose’,n,m,a,lda,tau,c,ldc,work, &
lwork,info)

! Print eigenvectors
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors so that the element of largest absolute
! value is real.

Do i = 1, m
rwork(1:n) = abs(c(1:n,i))
k = maxloc(rwork(1:n),1)
Call zscal(n,conjg(c(k,i))/cmplx(abs(c(k,i)),kind=nag_wp),c(1,i),1 &

)
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,m,c,ldc,’Bracketed’,’F7.4’, &

’Eigenvectors’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If
End If

99999 Format (8X,4(F7.4,11X,:))
End Program f08fufe

10.2 Program Data

F08FUF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-2.28, 0.00)
( 1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A

10.3 Program Results

F08FUF Example Program Results

Eigenvalues
-6.0002 -3.0030

Eigenvectors
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1 2
1 ( 0.7299, 0.0000) (-0.2120, 0.1497)
2 (-0.1663,-0.2061) ( 0.7307, 0.0000)
3 (-0.4165,-0.1417) (-0.3291, 0.0479)
4 ( 0.1743, 0.4162) ( 0.5200, 0.1329)
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NAG Library Routine Document

F08GAF (DSPEV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08GAF (DSPEV) computes all the eigenvalues and, optionally, all the eigenvectors of a real n by n
symmetric matrix A in packed storage.

2 Specification

SUBROUTINE F08GAF (JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO)

INTEGER N, LDZ, INFO
REAL (KIND=nag_wp) AP(*), W(N), Z(LDZ,*), WORK(3*N)
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name dspev.

3 Description

The symmetric matrix A is first reduced to tridiagonal form, using orthogonal similarity
transformations, and then the QR algorithm is applied to the tridiagonal matrix to compute the
eigenvalues and (optionally) the eigenvectors.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: AP is overwritten by the values generated during the reduction to tridiagonal form. The
elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the
corresponding elements of A.

5: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

6: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the orthonormal eigenvectors of the matrix A, with the ith
column of Z holding the eigenvector associated with WðiÞ.
If JOBZ ¼ N , Z is not referenced.

7: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08GAF
(DSPEV) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

8: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the algorithm failed to converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.
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7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08GAF (DSPEV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08GAF (DSPEV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08GNF (ZHPEV).

10 Example

This example finds all the eigenvalues of the symmetric matrix

A ¼
1 2 3 4
2 2 3 4
3 3 3 4
4 4 4 4

0B@
1CA;

together with approximate error bounds for the computed eigenvalues.

10.1 Program Text

Program f08gafe

! F08GAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dspev, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: eerrbd, eps
Integer :: i, info, j, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), w(:), work(:)
Real (Kind=nag_wp) :: dummy(1,1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max

! .. Executable Statements ..
Write (nout,*) ’F08GAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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Read (nin,*) n

Allocate (ap((n*(n+1))/2),w(n),work(3*n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Solve the symmetric eigenvalue problem
! The NAG name equivalent of dspev is f08gaf

Call dspev(’No vectors’,uplo,n,ap,w,dummy,1,work,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

! Get the machine precision, EPS and compute the approximate
! error bound for the computed eigenvalues. Note that for
! the 2-norm, max( abs(W(i)) ) = norm(A), and since the
! eigenvalues are returned in ascending order
! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n)))

eps = x02ajf()
eerrbd = eps*max(abs(w(1)),abs(w(n)))

! Print the approximate error bound for the eigenvalues

Write (nout,*)
Write (nout,*) ’Error estimate for the eigenvalues’
Write (nout,99998) eerrbd

Else
Write (nout,99997) ’Failure in DSPEV. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)

End Program f08gafe

10.2 Program Data

F08GAF Example Program Data

4 :Value of N

1.0 2.0 3.0 4.0
2.0 3.0 4.0

3.0 4.0
4.0 :End of matrix A

10.3 Program Results

F08GAF Example Program Results

Eigenvalues
-2.0531 -0.5146 -0.2943 12.8621

Error estimate for the eigenvalues
1.4E-15
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NAG Library Routine Document

F08GBF (DSPEVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08GBF (DSPEVX) computes selected eigenvalues and, optionally, eigenvectors of a real n by n
symmetric matrix A in packed storage. Eigenvalues and eigenvectors can be selected by specifying
either a range of values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08GBF (JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
W, Z, LDZ, WORK, IWORK, JFAIL, INFO)

&

INTEGER N, IL, IU, M, LDZ, IWORK(5*N), JFAIL(*), INFO
REAL (KIND=nag_wp) AP(*), VL, VU, ABSTOL, W(N), Z(LDZ,*), WORK(8*N)
CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name dspevx.

3 Description

The symmetric matrix A is first reduced to tridiagonal form, using orthogonal similarity
transformations. The required eigenvalues and eigenvectors are then computed from the tridiagonal
matrix; the method used depends upon whether all, or selected, eigenvalues and eigenvectors are
required.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.
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If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: AP is overwritten by the values generated during the reduction to tridiagonal form. The
elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the
corresponding elements of A.

6: VL – REAL (KIND=nag_wp) Input
7: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

8: IL – INTEGER Input
9: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

10: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
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threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO > 0, indicating that some
eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and Kahan
(1990).

11: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

12: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the selected eigenvalues in ascending order.

13: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ;
if an eigenvector fails to converge (INFO > 0), then that column of Z contains the latest
approximation to the eigenvector, and the index of the eigenvector is returned in JFAIL.

If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

14: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08GBF
(DSPEVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

15: WORKð8� NÞ – REAL (KIND=nag_wp) array Workspace

16: IWORKð5� NÞ – INTEGER array Workspace

17: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO > 0, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

18: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm failed to converge; valueh i eigenvectors did not converge. Their indices are stored
in array JFAIL.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08GBF (DSPEVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08GBF (DSPEVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08GPF (ZHPEVX).

10 Example

This example finds the eigenvalues in the half-open interval �1; 1ð �, and the corresponding
eigenvectors, of the symmetric matrix

A ¼
1 2 3 4
2 2 3 4
3 3 3 4
4 4 4 4

0B@
1CA:

10.1 Program Text

Program f08gbfe

! F08GBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, dspevx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
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Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, r, vl, vu
Integer :: i, ifail, il, info, iu, j, k, ldz, &

m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ap(:), w(:), work(:), z(:,:)
Integer, Allocatable :: iwork(:), jfail(:)

! .. Executable Statements ..
Write (nout,*) ’F08GBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
m = n
Allocate (ap((n*(n+1))/2),w(n),work(8*n),z(ldz,m),iwork(5*n),jfail(n))

! Read the lower and upper bounds of the interval to be searched,
! and read the upper or lower triangular part of the matrix A
! from data file

Read (nin,*) vl, vu
If (uplo==’U’) Then

Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)
End If

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead

abstol = zero

! Solve the symmetric eigenvalue problem
! The NAG name equivalent of dspevx is f08gbf

Call dspevx(’Vectors’,’Values in range’,uplo,n,ap,vl,vu,il,iu,abstol,m, &
w,z,ldz,work,iwork,jfail,info)

If (info>=0) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! Normalize the eigenvectors: largest element positive
Do i = 1, m

Call blas_damax_val(n,z(1,i),1,k,r)
If (z(k,i)<zero) Then

z(1:n,i) = -z(1:n,i)
End If

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else

Write (nout,99999) ’Failure in DSPEVX. INFO =’, info
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End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))

End Program f08gbfe

10.2 Program Data

F08GBF Example Program Data

4 :Value of N
-1.0 1.0 :Values of VL and VU

1.0 2.0 3.0 4.0
2.0 3.0 4.0

3.0 4.0
4.0 :End of matrix A

10.3 Program Results

F08GBF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
-0.5146 -0.2943

Selected eigenvectors
1 2

1 -0.5144 -0.2767
2 0.4851 0.6634
3 0.5420 -0.6504
4 -0.4543 0.2457
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NAG Library Routine Document

F08GCF (DSPEVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the arguments LWORK and LIWORK changed at Mark 20 in the case where JOB ¼ V and N > 1: the
minimum dimension of the array WORK has been reduced whereas the minimum dimension of the array IWORK has been increased.

1 Purpose

F08GCF (DSPEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric matrix held in packed storage. If the eigenvectors are requested, then it uses a divide-and-
conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required,
then it uses the Pal–Walker–Kahan variant of the QL or QR algorithm.

2 Specification

SUBROUTINE F08GCF (JOB, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
LIWORK, INFO)

&

INTEGER N, LDZ, LWORK, IWORK(max(1,LIWORK)), LIWORK, INFO
REAL (KIND=nag_wp) AP(*), W(*), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) JOB, UPLO

The routine may be called by its LAPACK name dspevd.

3 Description

F08GCF (DSPEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric matrix A (held in packed storage). In other words, it can compute the spectral factorization
of A as

A ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the orthogonal
matrix whose columns are the eigenvectors zi. Thus

Azi ¼ �izi; i ¼ 1; 2; . . . ; n:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOB ¼ N
Only eigenvalues are computed.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08GCF

Mark 26 F08GCF.1

http://www.netlib.org/lapack/lug


JOB ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOB ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: AP is overwritten by the values generated during the reduction to tridiagonal form. The
elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the
corresponding elements of A.

5: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the eigenvalues of the matrix A in ascending order.

6: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOB ¼ V and at least 1
if JOB ¼ N .

On exit: if JOB ¼ V , Z is overwritten by the orthogonal matrix Z which contains the
eigenvectors of A.

If JOB ¼ N , Z is not referenced.

7: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08GCF
(DSPEVD) is called.

Constraints:

if JOB ¼ V , LDZ � max 1;Nð Þ;
if JOB ¼ N , LDZ � 1.
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8: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the required minimal size of LWORK.

9: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08GCF (DSPEVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the WORK array, returns this value as the first entry of the WORK array, and no
error message related to LWORK is issued.

Constraints:

if N � 1, LWORK � 1 or LWORK ¼ �1;
if JOB ¼ N and N > 1, LWORK � 2� N or LWORK ¼ �1;
if JOB ¼ V and N > 1, LWORK � N2 þ 6� Nþ 1 or LWORK ¼ �1.

10: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ contains the required minimal size of LIWORK.

11: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08GCF (DSPEVD) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the IWORK array, returns this value as the first entry of the IWORK array, and no
error message related to LIWORK is issued.

Constraints:

if JOB ¼ N or N � 1, LIWORK � 1 or LIWORK ¼ �1;
if JOB ¼ V and N > 1, LIWORK � 5� Nþ 3 or LIWORK ¼ �1.

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

if INFO ¼ i and JOB ¼ N , the algorithm failed to converge; i elements of an intermediate
tridiagonal form did not converge to zero; if INFO ¼ i and JOB ¼ V , then the algorithm failed
to compute an eigenvalue while working on the submatrix lying in rows and column i= Nþ 1ð Þ
through i mod Nþ 1ð Þ.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.
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8 Parallelism and Performance

F08GCF (DSPEVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08GCF (DSPEVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08GQF (ZHPEVD).

10 Example

This example computes all the eigenvalues and eigenvectors of the symmetric matrix A, where

A ¼
1:0 2:0 3:0 4:0
2:0 2:0 3:0 4:0
3:0 3:0 3:0 4:0
4:0 4:0 4:0 4:0

0B@
1CA:

10.1 Program Text

Program f08gcfe

! F08GCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, dspevd, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, ifail, info, j, k, ldz, liwork, &

lwork, n
Character (1) :: job, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), w(:), work(:), z(:,:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F08GCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
liwork = 5*n + 3
lwork = n*n + 6*n + 1
Allocate (ap(n*(n+1)/2),w(n),work(lwork),z(ldz,n),iwork(liwork))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
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End If

Read (nin,*) job

! Calculate all the eigenvalues and eigenvectors of A
! The NAG name equivalent of dspevd is f08gcf

Call dspevd(job,uplo,n,ap,w,z,ldz,work,lwork,iwork,liwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors: largest element positive
Do i = 1, n

Call blas_damax_val(n,z(1,i),1,k,r)
If (z(k,i)<zero) Then

z(1:n,i) = -z(1:n,i)
End If

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

End If

99999 Format (3X,(8F8.4))
End Program f08gcfe

10.2 Program Data

F08GCF Example Program Data
4 :Value of N
’L’ :Value of UPLO
1.0
2.0 2.0
3.0 3.0 3.0
4.0 4.0 4.0 4.0 :End of matrix A
’V’ :Value of JOB

10.3 Program Results

F08GCF Example Program Results

Eigenvalues
-2.0531 -0.5146 -0.2943 12.8621

Eigenvectors
1 2 3 4

1 0.7003 -0.5144 -0.2767 0.4103
2 0.3592 0.4851 0.6634 0.4422
3 -0.1569 0.5420 -0.6504 0.5085
4 -0.5965 -0.4543 0.2457 0.6144
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NAG Library Routine Document

F08GEF (DSPTRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08GEF (DSPTRD) reduces a real symmetric matrix to tridiagonal form, using packed storage.

2 Specification

SUBROUTINE F08GEF (UPLO, N, AP, D, E, TAU, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) AP(*), D(N), E(N-1), TAU(N-1)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsptrd.

3 Description

F08GEF (DSPTRD) reduces a real symmetric matrix A, held in packed storage, to symmetric
tridiagonal form T by an orthogonal similarity transformation: A ¼ QTQT.

The matrix Q is not formed explicitly but is represented as a product of n� 1 elementary reflectors (see
the F08 Chapter Introduction for details). Routines are provided to work with Q in this representation
(see Section 9).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n symmetric matrix A, packed by columns.

More precisely,
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if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: AP is overwritten by the tridiagonal matrix T and details of the orthogonal matrix Q.

4: DðNÞ – REAL (KIND=nag_wp) array Output

On exit: the diagonal elements of the tridiagonal matrix T .

5: EðN� 1Þ – REAL (KIND=nag_wp) array Output

On exit: the off-diagonal elements of the tridiagonal matrix T .

6: TAUðN� 1Þ – REAL (KIND=nag_wp) array Output

On exit: further details of the orthogonal matrix Q.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix Aþ Eð Þ, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues and eigenvectors.

8 Parallelism and Performance

F08GEF (DSPTRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4
3n

3 .

To form the orthogonal matrix Q F08GEF (DSPTRD) may be followed by a call to F08GFF
(DOPGTR):

CALL DOPGTR(UPLO,N,AP,TAU,Q,LDQ,WORK,INFO)

To apply Q to an n by p real matrix C F08GEF (DSPTRD) may be followed by a call to F08GGF
(DOPMTR). For example,
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CALL DOPMTR(’Left’,UPLO,’No Transpose’,N,P,AP,TAU,C,LDC,WORK, &
INFO)

forms the matrix product QC.

The complex analogue of this routine is F08GSF (ZHPTRD).

10 Example

This example reduces the matrix A to tridiagonal form, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA;

using packed storage.

10.1 Program Text

Program f08gefe

! F08GEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsptrd, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), d(:), e(:), tau(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F08GEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),d(n),e(n-1),tau(n-1))

! Read A from data file and copy A into AW

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Reduce A to tridiagonal form
! The NAG name equivalent of dsptrd is f08gef

Call dsptrd(uplo,n,ap,d,e,tau,info)

If (info==0) Then
! Print the diagonal and off-diagonal of tridiagonal T.
! The absolute value of E is printed since this can vary by a change of
! sign (corresponding to multiplying through a column of Q by -1).

Write (nout,*)
Write (nout,*) &

’Diagonal and off-diagonal elements of tridiagonal form’
Write (nout,*)
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Write (nout,99999) ’i’, ’D’, ’E’
Do i = 1, n - 1

Write (nout,99998) i, d(i), abs(e(i))
End Do
Write (nout,99998) n, d(n)

Else
Write (nout,99997) info

End If

99999 Format (5X,A,9X,A,12X,A)
99998 Format (1X,I5,2(1X,F12.5))
99997 Format (1X,’** DSPTRD/F08GEF retuned with INFO = ’,I10)

End Program f08gefe

10.2 Program Data

F08GEF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

10.3 Program Results

F08GEF Example Program Results

Diagonal and off-diagonal elements of tridiagonal form

i D E
1 2.07000 5.82575
2 1.47409 2.62405
3 -0.64916 0.91627
4 -1.69493

F08GEF NAG Library Manual

F08GEF.4 (last) Mark 26



NAG Library Routine Document

F08GFF (DOPGTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08GFF (DOPGTR) generates the real orthogonal matrix Q, which was determined by F08GEF
(DSPTRD) when reducing a symmetric matrix to tridiagonal form.

2 Specification

SUBROUTINE F08GFF (UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)

INTEGER N, LDQ, INFO
REAL (KIND=nag_wp) AP(*), TAU(*), Q(LDQ,*), WORK(N-1)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dopgtr.

3 Description

F08GFF (DOPGTR) is intended to be used after a call to F08GEF (DSPTRD), which reduces a real
symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity transformation:
A ¼ QTQT. F08GEF (DSPTRD) represents the orthogonal matrix Q as a product of n� 1 elementary
reflectors.

This routine may be used to generate Q explicitly as a square matrix.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: this must be the same argument UPLO as supplied to F08GEF (DSPTRD).

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix Q.

Constraint: N � 0.

3: APð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08GEF
(DSPTRD).

4: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;N� 1ð Þ.
On entry: further details of the elementary reflectors, as returned by F08GEF (DSPTRD).
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5: QðLDQ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ.
On exit: the n by n orthogonal matrix Q.

6: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08GFF
(DOPGTR) is called.

Constraint: LDQ � max 1;Nð Þ.

7: WORKðN� 1Þ – REAL (KIND=nag_wp) array Workspace

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08GFF (DOPGTR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08GFF (DOPGTR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4
3n

3 .

The complex analogue of this routine is F08GTF (ZUPGTR).

10 Example

This example computes all the eigenvalues and eigenvectors of the matrix A, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA;

using packed storage. Here A is symmetric and must first be reduced to tridiagonal form by F08GEF
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(DSPTRD). The program then calls F08GFF (DOPGTR) to form Q, and passes this matrix to F08JEF
(DSTEQR) which computes the eigenvalues and eigenvectors of A.

10.1 Program Text

Program f08gffe

! F08GFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, dopgtr, dsptrd, dsteqr, nag_wp, &

x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, ifail, info, j, k, ldq, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), d(:), e(:), q(:,:), tau(:), &

work(:)
! .. Executable Statements ..

Write (nout,*) ’F08GFF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
ldq = n
Allocate (ap(n*(n+1)/2),d(n),e(n),q(ldq,n),tau(n),work(2*n-2))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Reduce A to tridiagonal form T = (Q**T)*A*Q
! The NAG name equivalent of dsptrd is f08gef

Call dsptrd(uplo,n,ap,d,e,tau,info)

! Form Q explicitly, storing the result in Q
! The NAG name equivalent of dopgtr is f08gff

Call dopgtr(uplo,n,ap,tau,q,ldq,work,info)

! Calculate all the eigenvalues and eigenvectors of A
! The NAG name equivalent of dsteqr is f08jef

Call dsteqr(’V’,n,d,e,q,ldq,work,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors: largest element positive
Do i = 1, n

Call blas_damax_val(n,q(1,i),1,k,r)
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If (q(k,i)<zero) Then
q(1:n,i) = -q(1:n,i)

End If
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,q,ldq,’Eigenvectors’,ifail)

End If

99999 Format (3X,(8F8.4))
End Program f08gffe

10.2 Program Data

F08GFF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

10.3 Program Results

F08GFF Example Program Results

Eigenvalues
-5.0034 -1.9987 0.2013 8.0008

Eigenvectors
1 2 3 4

1 0.5658 -0.2328 -0.3965 0.6845
2 -0.3478 0.7994 -0.1780 0.4564
3 -0.4740 -0.4087 0.5381 0.5645
4 0.5781 0.3737 0.7221 0.0676
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NAG Library Routine Document

F08GGF (DOPMTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08GGF (DOPMTR) multiplies an arbitrary real matrix C by the real orthogonal matrix Q which was
determined by F08GEF (DSPTRD) when reducing a real symmetric matrix to tridiagonal form.

2 Specification

SUBROUTINE F08GGF (SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK, INFO)

INTEGER M, N, LDC, INFO
REAL (KIND=nag_wp) AP(*), TAU(*), C(LDC,*), WORK(*)
CHARACTER(1) SIDE, UPLO, TRANS

The routine may be called by its LAPACK name dopmtr.

3 Description

F08GGF (DOPMTR) is intended to be used after a call to F08GEF (DSPTRD), which reduces a real
symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity transformation:
A ¼ QTQT. F08GEF (DSPTRD) represents the orthogonal matrix Q as a product of elementary
reflectors.

This routine may be used to form one of the matrix products

QC;QTC;CQ or CQT;

overwriting the result on C (which may be any real rectangular matrix).

A common application of this routine is to transform a matrix Z of eigenvectors of T to the matrix QZ
of eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QT is to be applied to C.

SIDE ¼ L
Q or QT is applied to C from the left.

SIDE ¼ R
Q or QT is applied to C from the right.

Constraint: SIDE ¼ L or R .

2: UPLO – CHARACTER(1) Input

On entry: this must be the same argument UPLO as supplied to F08GEF (DSPTRD).

Constraint: UPLO ¼ U or L .

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08GGF

Mark 26 F08GGF.1



3: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QT is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ T
QT is applied to C.

Constraint: TRANS ¼ N or T .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix C; m is also the order of Q if SIDE ¼ L .

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix C; n is also the order of Q if SIDE ¼ R .

Constraint: N � 0.

6: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;M� Mþ 1ð Þ=2ð Þ if SIDE ¼ L and
at least max 1;N� Nþ 1ð Þ=2ð Þ if SIDE ¼ R .

On entry: details of the vectors which define the elementary reflectors, as returned by F08GEF
(DSPTRD).

On exit: is used as internal workspace prior to being restored and hence is unchanged.

7: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;M� 1ð Þ if SIDE ¼ L and at least
max 1;N� 1ð Þ if SIDE ¼ R .

On entry: further details of the elementary reflectors, as returned by F08GEF (DSPTRD).

8: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QTC or CQ or CQT as specified by SIDE and TRANS.

9: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08GGF
(DOPMTR) is called.

Constraint: LDC � max 1;Mð Þ.

10: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if SIDE ¼ L and at least
max 1;Mð Þ if SIDE ¼ R .

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

F08GGF NAG Library Manual

F08GGF.2 Mark 26



6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08GGF (DOPMTR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2m2n if SIDE ¼ L and 2mn2 if
SIDE ¼ R .

The complex analogue of this routine is F08GUF (ZUPMTR).

10 Example

This example computes the two smallest eigenvalues, and the associated eigenvectors, of the matrix A,
where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0B@
1CA;

using packed storage. Here A is symmetric and must first be reduced to tridiagonal form T by F08GEF
(DSPTRD). The program then calls F08JJF (DSTEBZ) to compute the requested eigenvalues and
F08JKF (DSTEIN) to compute the associated eigenvectors of T . Finally F08GGF (DOPMTR) is called
to transform the eigenvectors to those of A.

10.1 Program Text

Program f08ggfe

! F08GGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, dopmtr, dsptrd, dstebz, dstein, &

nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: r, vl, vu
Integer :: i, ifail, info, j, k, ldc, m, n, &

nsplit
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), c(:,:), d(:), e(:), tau(:), &

w(:), work(:)
Integer, Allocatable :: iblock(:), ifailv(:), isplit(:), &

iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F08GGF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
ldc = n
Allocate (ap(n*(n+1)/2),c(ldc,n),d(n),e(n),tau(n),w(n),work(5*n),iblock( &

n),ifailv(n),isplit(n),iwork(3*n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Reduce A to tridiagonal form T = (Q**T)*A*Q
! The NAG name equivalent of dsptrd is f08gef

Call dsptrd(uplo,n,ap,d,e,tau,info)

! Calculate the two smallest eigenvalues of T (same as A)
! The NAG name equivalent of dstebz is f08jjf

Call dstebz(’I’,’B’,n,vl,vu,1,2,zero,d,e,m,nsplit,w,iblock,isplit,work, &
iwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:m)

! Calculate the eigenvectors of T, storing the result in C
! The NAG name equivalent of dstein is f08jkf

Call dstein(n,d,e,m,w,iblock,isplit,c,ldc,work,iwork,ifailv,info)

If (info>0) Then
Write (nout,*) ’Failure to converge.’

Else

! Calculate the eigenvectors of A = Q * (eigenvectors of T)
! The NAG name equivalent of dopmtr is f08ggf

Call dopmtr(’Left’,uplo,’No transpose’,n,m,ap,tau,c,ldc,work,info)

! Print eigenvectors
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors
Do i = 1, m

Call blas_damax_val(n,c(1,i),1,k,r)
If (c(k,i)<zero) Then

c(1:n,i) = -c(1:n,i)
End If

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
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Call x04caf(’General’,’ ’,n,m,c,ldc,’Eigenvectors’,ifail)

End If
End If

99999 Format (3X,(9F8.4))
End Program f08ggfe

10.2 Program Data

F08GGF Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

10.3 Program Results

F08GGF Example Program Results

Eigenvalues
-5.0034 -1.9987

Eigenvectors
1 2

1 0.5658 -0.2328
2 -0.3478 0.7994
3 -0.4740 -0.4087
4 0.5781 0.3737
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NAG Library Routine Document

F08GNF (ZHPEV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08GNF (ZHPEV) computes all the eigenvalues and, optionally, all the eigenvectors of a complex n by
n Hermitian matrix A in packed storage.

2 Specification

SUBROUTINE F08GNF (JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK, INFO)

INTEGER N, LDZ, INFO
REAL (KIND=nag_wp) W(N), RWORK(3*N-2)
COMPLEX (KIND=nag_wp) AP(*), Z(LDZ,*), WORK(2*N-1)
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name zhpev.

3 Description

The Hermitian matrix A is first reduced to real tridiagonal form, using unitary similarity
transformations, and then the QR algorithm is applied to the tridiagonal matrix to compute the
eigenvalues and (optionally) the eigenvectors.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: AP is overwritten by the values generated during the reduction to tridiagonal form. The
elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the
corresponding elements of A.

5: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

6: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the orthonormal eigenvectors of the matrix A, with the ith
column of Z holding the eigenvector associated with WðiÞ.
If JOBZ ¼ N , Z is not referenced.

7: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08GNF
(ZHPEV) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

8: WORKð2� N� 1Þ – COMPLEX (KIND=nag_wp) array Workspace

9: RWORKð3� N� 2Þ – REAL (KIND=nag_wp) array Workspace

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

If INFO ¼ i, the algorithm failed to converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08GNF (ZHPEV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08GNF (ZHPEV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Each eigenvector is normalized so that the element of largest absolute value is real.

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08GAF (DSPEV).

10 Example

This example finds all the eigenvalues of the Hermitian matrix

A ¼
1 2� i 3� i 4� i
2þ i 2 3� 2i 4� 2i
3þ i 3þ 2i 3 4� 3i
4þ i 4þ 2i 4þ 3i 4

0B@
1CA;

together with approximate error bounds for the computed eigenvalues.

10.1 Program Text

Program f08gnfe

! F08GNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, zhpev

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: eerrbd, eps
Integer :: i, info, j, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), work(:)
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Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max

! .. Executable Statements ..
Write (nout,*) ’F08GNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap((n*(n+1))/2),work(2*n-1),rwork(3*n-2),w(n))

! Read the upper or lower triangular part of the matrix A from
! data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Solve the Hermitian eigenvalue problem

! The NAG name equivalent of zhpev is f08gnf
Call zhpev(’No vectors’,uplo,n,ap,w,dummy,1,work,rwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

! Get the machine precision, EPS and compute the approximate
! error bound for the computed eigenvalues. Note that for
! the 2-norm, max( abs(W(i)) ) = norm(A), and since the
! eigenvalues are returned in ascending order
! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n)))

eps = x02ajf()
eerrbd = eps*max(abs(w(1)),abs(w(n)))

! Print the approximate error bound for the eigenvalues

Write (nout,*)
Write (nout,*) ’Error estimate for the eigenvalues’
Write (nout,99998) eerrbd

Else
Write (nout,99997) ’Failure in ZHPEV. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)

End Program f08gnfe

10.2 Program Data

F08GNF Example Program Data

4 :Value of N

(1.0, 0.0) (2.0, -1.0) (3.0, -1.0) (4.0, -1.0)
(2.0, 0.0) (3.0, -2.0) (4.0, -2.0)

(3.0, 0.0) (4.0, -3.0)
(4.0, 0.0) :End of matrix A
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10.3 Program Results

F08GNF Example Program Results

Eigenvalues
-4.2443 -0.6886 1.1412 13.7916

Error estimate for the eigenvalues
1.5E-15
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NAG Library Routine Document

F08GPF (ZHPEVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08GPF (ZHPEVX) computes selected eigenvalues and, optionally, eigenvectors of a complex n by n
Hermitian matrix A in packed storage. Eigenvalues and eigenvectors can be selected by specifying
either a range of values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08GPF (JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
W, Z, LDZ, WORK, RWORK, IWORK, JFAIL, INFO)

&

INTEGER N, IL, IU, M, LDZ, IWORK(5*N), JFAIL(*), INFO
REAL (KIND=nag_wp) VL, VU, ABSTOL, W(N), RWORK(7*N)
COMPLEX (KIND=nag_wp) AP(*), Z(LDZ,*), WORK(2*N)
CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name zhpevx.

3 Description

The Hermitian matrix A is first reduced to real tridiagonal form, using unitary similarity
transformations. The required eigenvalues and eigenvectors are then computed from the tridiagonal
matrix; the method used depends upon whether all, or selected, eigenvalues and eigenvectors are
required.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.
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If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: AP is overwritten by the values generated during the reduction to tridiagonal form. The
elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the
corresponding elements of A.

6: VL – REAL (KIND=nag_wp) Input
7: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

8: IL – INTEGER Input
9: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

10: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be

F08GPF NAG Library Manual

F08GPF.2 Mark 26



used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO > 0, indicating that some
eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and Kahan
(1990).

11: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

12: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the selected eigenvalues in ascending order.

13: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ;
if an eigenvector fails to converge (INFO > 0), then that column of Z contains the latest
approximation to the eigenvector, and the index of the eigenvector is returned in JFAIL.

If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

14: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08GPF
(ZHPEVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

15: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

16: RWORKð7� NÞ – REAL (KIND=nag_wp) array Workspace

17: IWORKð5� NÞ – INTEGER array Workspace

18: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO > 0, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.
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19: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm failed to converge; valueh i eigenvectors did not converge. Their indices are stored
in array JFAIL.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08GPF (ZHPEVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08GPF (ZHPEVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08GBF (DSPEVX).

10 Example

This example finds the eigenvalues in the half-open interval �2; 2ð �, and the corresponding
eigenvectors, of the Hermitian matrix

A ¼
1 2� i 3� i 4� i
2þ i 2 3� 2i 4� 2i
3þ i 3þ 2i 3 4� 3i
4þ i 4þ 2i 4þ 3i 4

0B@
1CA:

10.1 Program Text

Program f08gpfe

! F08GPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04daf, zhpevx
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, j, k, ldz, &

m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ap(:), work(:), z(:,:)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:), jfail(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, maxloc

! .. Executable Statements ..
Write (nout,*) ’F08GPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
m = n
Allocate (ap((n*(n+1))/2),work(2*n),z(ldz,m),rwork(7*n),w(n),iwork(5*n), &

jfail(n))

! Read the lower and upper bounds of the interval to be searched,
! and read the upper or lower triangular part of the matrix A
! from data file

Read (nin,*) vl, vu
If (uplo==’U’) Then

Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)
End If

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead

abstol = zero

! Solve the Hermitian eigenvalue problem

! The NAG name equivalent of zhpevx is f08gpf
Call zhpevx(’Vectors’,’Values in range’,uplo,n,ap,vl,vu,il,iu,abstol,m, &

w,z,ldz,work,rwork,iwork,jfail,info)

If (info>=0) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, m

rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(z(k,i))/abs(z(k,i))/dznrm2(n,z(1,i),1)
z(1:n,i) = z(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
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Call x04daf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else

Write (nout,99999) ’Failure in ZHPEVX. INFO =’, info
End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))

End Program f08gpfe

10.2 Program Data

F08GPF Example Program Data

4 :Value of N
-2.0 2.0 :Values of VL and VU

(1.0, 0.0) (2.0, -1.0) (3.0, -1.0) (4.0, -1.0)
(2.0, 0.0) (3.0, -2.0) (4.0, -2.0)

(3.0, 0.0) (4.0, -3.0)
(4.0, 0.0) :End of matrix A

10.3 Program Results

F08GPF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
-0.6886 1.1412

Selected eigenvectors
1 2

1 0.6470 0.0179
0.0000 -0.4453

2 -0.4984 0.5706
-0.1130 -0.0000

3 0.2949 -0.1530
0.3165 0.5273

4 -0.2241 -0.2118
-0.2878 -0.3598

F08GPF NAG Library Manual

F08GPF.6 (last) Mark 26



NAG Library Routine Document

F08GQF (ZHPEVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the arguments LRWORK and LIWORK changed at Mark 20 in the case where JOB ¼ V and N > 1: the
minimum dimension of the array RWORK has been reduced whereas the minimum dimension of the array IWORK has been increased.

1 Purpose

F08GQF (ZHPEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian matrix held in packed storage. If the eigenvectors are requested, then it uses a divide-and-
conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required,
then it uses the Pal–Walker–Kahan variant of the QL or QR algorithm.

2 Specification

SUBROUTINE F08GQF (JOB, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK,
LRWORK, IWORK, LIWORK, INFO)

&

INTEGER N, LDZ, LWORK, LRWORK, IWORK(max(1,LIWORK)),
LIWORK, INFO

&

REAL (KIND=nag_wp) W(*), RWORK(max(1,LRWORK))
COMPLEX (KIND=nag_wp) AP(*), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) JOB, UPLO

The routine may be called by its LAPACK name zhpevd.

3 Description

F08GQF (ZHPEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian matrix A (held in packed storage). In other words, it can compute the spectral factorization
of A as

A ¼ Z�ZH;

where � is a real diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the
(complex) unitary matrix whose columns are the eigenvectors zi. Thus

Azi ¼ �izi; i ¼ 1; 2; . . . ; n:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOB ¼ N
Only eigenvalues are computed.
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JOB ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOB ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: AP is overwritten by the values generated during the reduction to tridiagonal form. The
elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the
corresponding elements of A.

5: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the eigenvalues of the matrix A in ascending order.

6: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOB ¼ V and at least 1
if JOB ¼ N .

On exit: if JOB ¼ V , Z is overwritten by the unitary matrix Z which contains the eigenvectors
of A.

If JOB ¼ N , Z is not referenced.

7: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08GQF
(ZHPEVD) is called.

Constraints:

if JOB ¼ V , LDZ � max 1;Nð Þ;
if JOB ¼ N , LDZ � 1.
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8: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the required minimal size of LWORK.

9: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08GQF (ZHPEVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the WORK array, returns this value as the first entry of the WORK array, and no
error message related to LWORK is issued.

Constraints:

if N � 1, LWORK � 1 or LWORK ¼ �1;
if JOB ¼ N and N > 1, LWORK � N or LWORK ¼ �1;
if JOB ¼ V and N > 1, LWORK � 2� N or LWORK ¼ �1.

10: RWORKðmax 1;LRWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, RWORKð1Þ contains the required minimal size of LRWORK.

11: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
F08GQF (ZHPEVD) is called.

If LRWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the RWORK array, returns this value as the first entry of the RWORK array, and no
error message related to LRWORK is issued.

Constraints:

if N � 1, LRWORK � 1 or LRWORK ¼ �1;
if JOB ¼ N and N > 1, LRWORK � N or LRWORK ¼ �1;
if JOB ¼ V and N > 1, LRWORK � 2� N2 þ 5� Nþ 1 or LRWORK ¼ �1.

12: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ contains the required minimal size of LIWORK.

13: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08GQF (ZHPEVD) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the IWORK array, returns this value as the first entry of the IWORK array, and no
error message related to LIWORK is issued.

Constraints:

if JOB ¼ N or N � 1, LIWORK � 1 or LIWORK ¼ �1;
if JOB ¼ V and N > 1, LIWORK � 5� Nþ 3 or LIWORK ¼ �1.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

if INFO ¼ i and JOB ¼ N , the algorithm failed to converge; i elements of an intermediate
tridiagonal form did not converge to zero; if INFO ¼ i and JOB ¼ V , then the algorithm failed
to compute an eigenvalue while working on the submatrix lying in rows and column i= Nþ 1ð Þ
through i mod Nþ 1ð Þ.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08GQF (ZHPEVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08GQF (ZHPEVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F08GCF (DSPEVD).

10 Example

This example computes all the eigenvalues and eigenvectors of the Hermitian matrix A, where

A ¼
1:0þ 0:0i 2:0� 1:0i 3:0� 1:0i 4:0� 1:0i
2:0þ 1:0i 2:0þ 0:0i 3:0� 2:0i 4:0� 2:0i
3:0þ 1:0i 3:0þ 2:0i 3:0þ 0:0i 4:0� 3:0i
4:0þ 1:0i 4:0þ 2:0i 4:0þ 3:0i 4:0þ 0:0i

0B@
1CA:

10.1 Program Text

Program f08gqfe

! F08GQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04daf, zhpevd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Integer :: i, ifail, info, j, k, ldz, liwork, &

lrwork, lwork, n
Character (1) :: job, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), work(:), z(:,:)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:)
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! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, maxloc

! .. Executable Statements ..
Write (nout,*) ’F08GQF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
liwork = 5*n + 3
lrwork = 2*n*n + 5*n + 1
lwork = 2*n
Allocate (ap(n*(n+1)/2),work(lwork),z(ldz,n),rwork(lrwork),w(n),iwork( &

liwork))
Read (nin,*) uplo

! Read A from data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)

End If

Read (nin,*) job

! Calculate all the eigenvalues and eigenvectors of A

! The NAG name equivalent of zhpevd is f08gqf
Call zhpevd(job,uplo,n,ap,w,z,ldz,work,lwork,rwork,lrwork,iwork,liwork, &

info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Do i = 1, n

Write (nout,99999) i, w(i)
End Do
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, n

rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(z(k,i))/abs(z(k,i))/dznrm2(n,z(1,i),1)
z(1:n,i) = z(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

End If

99999 Format (3X,I5,5X,2F8.4)
End Program f08gqfe
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10.2 Program Data

F08GQF Example Program Data
4 :Value of N
’L’ :Value of UPLO
(1.0, 0.0)
(2.0, 1.0) (2.0, 0.0)
(3.0, 1.0) (3.0, 2.0) (3.0, 0.0)
(4.0, 1.0) (4.0, 2.0) (4.0, 3.0) (4.0, 0.0) :End of matrix A
’V’ :Value of JOB

10.3 Program Results

F08GQF Example Program Results

Eigenvalues
1 -4.2443
2 -0.6886
3 1.1412
4 13.7916

Eigenvectors
1 2 3 4

1 -0.3839 0.6470 0.0179 0.3309
-0.2941 0.0000 -0.4453 -0.1986

2 -0.4512 -0.4984 0.5706 0.3728
0.1102 -0.1130 0.0000 -0.2419

3 0.0263 0.2949 -0.1530 0.4870
0.4857 0.3165 0.5273 -0.1938

4 0.5602 -0.2241 -0.2118 0.6155
0.0000 -0.2878 -0.3598 0.0000
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NAG Library Routine Document

F08GSF (ZHPTRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08GSF (ZHPTRD) reduces a complex Hermitian matrix to tridiagonal form, using packed storage.

2 Specification

SUBROUTINE F08GSF (UPLO, N, AP, D, E, TAU, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) D(N), E(N-1)
COMPLEX (KIND=nag_wp) AP(*), TAU(N-1)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhptrd.

3 Description

F08GSF (ZHPTRD) reduces a complex Hermitian matrix A, held in packed storage, to real symmetric
tridiagonal form T by a unitary similarity transformation: A ¼ QTQH.

The matrix Q is not formed explicitly but is represented as a product of n� 1 elementary reflectors (see
the F08 Chapter Introduction for details). Routines are provided to work with Q in this representation
(see Section 9).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n Hermitian matrix A, packed by columns.

More precisely,
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if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: AP is overwritten by the tridiagonal matrix T and details of the unitary matrix Q.

4: DðNÞ – REAL (KIND=nag_wp) array Output

On exit: the diagonal elements of the tridiagonal matrix T .

5: EðN� 1Þ – REAL (KIND=nag_wp) array Output

On exit: the off-diagonal elements of the tridiagonal matrix T .

6: TAUðN� 1Þ – COMPLEX (KIND=nag_wp) array Output

On exit: further details of the unitary matrix Q.

7: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix Aþ Eð Þ, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues and eigenvectors.

8 Parallelism and Performance

F08GSF (ZHPTRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 16
3 n

3 .

To form the unitary matrix Q F08GSF (ZHPTRD) may be followed by a call to F08GTF (ZUPGTR):

CALL ZUPGTR(UPLO,N,AP,TAU,Q,LDQ,WORK,INFO)

To apply Q to an n by p complex matrix C F08GSF (ZHPTRD) may be followed by a call to F08GUF
(ZUPMTR). For example,
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CALL ZUPMTR(’Left’,UPLO,’No Transpose’,N,P,AP,TAU,C,LDC,WORK, &
INFO)

forms the matrix product QC.

The real analogue of this routine is F08GEF (DSPTRD).

10 Example

This example reduces the matrix A to tridiagonal form, where

A ¼
�2:28þ 0:00i 1:78� 2:03i 2:26þ 0:10i �0:12þ 2:53i
1:78þ 2:03i �1:12þ 0:00i 0:01þ 0:43i �1:07þ 0:86i
2:26� 0:10i 0:01� 0:43i �0:37þ 0:00i 2:31� 0:92i
�0:12� 2:53i �1:07� 0:86i 2:31þ 0:92i �0:73þ 0:00i

0B@
1CA;

using packed storage.

10.1 Program Text

Program f08gsfe

! F08GSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zhptrd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), tau(:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F08GSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),tau(n-1),d(n),e(n-1))

! Read A from data file and copy a into AW

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Reduce A to tridiagonal form
! The NAG name equivalent of zhptrd is f08gsf

Call zhptrd(uplo,n,ap,d,e,tau,info)

If (info==0) Then
! Print the diagonal and off-diagonal of tridiagonal T.
! The absolute value of E is printed since this can vary by a change of
! sign (corresponding to multiplying through a column of Q by -1).

Write (nout,*)
Write (nout,*) &

’Diagonal and off-diagonal elements of tridiagonal form’
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Write (nout,*)
Write (nout,99999) ’i’, ’D’, ’E’
Do i = 1, n - 1

Write (nout,99998) i, d(i), abs(e(i))
End Do
Write (nout,99998) n, d(n)

Else
Write (nout,99997) info

End If

99999 Format (5X,A,9X,A,12X,A)
99998 Format (1X,I5,2(1X,F12.5))
99997 Format (1X,’** ZHPTRD/F08GSF retuned with INFO = ’,I10)

End Program f08gsfe

10.2 Program Data

F08GSF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-2.28, 0.00)
( 1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A

10.3 Program Results

F08GSF Example Program Results

Diagonal and off-diagonal elements of tridiagonal form

i D E
1 -2.28000 4.33846
2 -0.12846 2.02259
3 -0.16659 1.80232
4 -1.92495
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NAG Library Routine Document

F08GTF (ZUPGTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08GTF (ZUPGTR) generates the complex unitary matrix Q, which was determined by F08GSF
(ZHPTRD) when reducing a Hermitian matrix to tridiagonal form.

2 Specification

SUBROUTINE F08GTF (UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)

INTEGER N, LDQ, INFO
COMPLEX (KIND=nag_wp) AP(*), TAU(*), Q(LDQ,*), WORK(N-1)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zupgtr.

3 Description

F08GTF (ZUPGTR) is intended to be used after a call to F08GSF (ZHPTRD), which reduces a complex
Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity transformation:
A ¼ QTQH. F08GSF (ZHPTRD) represents the unitary matrix Q as a product of n� 1 elementary
reflectors.

This routine may be used to generate Q explicitly as a square matrix.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: this must be the same argument UPLO as supplied to F08GSF (ZHPTRD).

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix Q.

Constraint: N � 0.

3: APð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08GSF
(ZHPTRD).

4: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;N� 1ð Þ.
On entry: further details of the elementary reflectors, as returned by F08GSF (ZHPTRD).
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5: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ.
On exit: the n by n unitary matrix Q.

6: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08GTF
(ZUPGTR) is called.

Constraint: LDQ � max 1;Nð Þ.

7: WORKðN� 1Þ – COMPLEX (KIND=nag_wp) array Workspace

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08GTF (ZUPGTR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08GTF (ZUPGTR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 16
3 n

3 .

The real analogue of this routine is F08GFF (DOPGTR).

10 Example

This example computes all the eigenvalues and eigenvectors of the matrix A, where

A ¼
�2:28þ 0:00i 1:78� 2:03i 2:26þ 0:10i �0:12þ 2:53i
1:78þ 2:03i �1:12þ 0:00i 0:01þ 0:43i �1:07þ 0:86i
2:26� 0:10i 0:01� 0:43i �0:37þ 0:00i 2:31� 0:92i
�0:12� 2:53i �1:07� 0:86i 2:31þ 0:92i �0:73þ 0:00i

0B@
1CA;

using packed storage. Here A is Hermitian and must first be reduced to tridiagonal form by F08GSF

F08GTF NAG Library Manual

F08GTF.2 Mark 26



(ZHPTRD). The program then calls F08GTF (ZUPGTR) to form Q, and passes this matrix to F08JSF
(ZSTEQR) which computes the eigenvalues and eigenvectors of A.

10.1 Program Text

Program f08gtfe

! F08GTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04dbf, zhptrd, zsteqr, zupgtr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Integer :: i, ifail, info, j, k, ldq, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), q(:,:), tau(:), work(:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:), rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, maxloc

! .. Executable Statements ..
Write (nout,*) ’F08GTF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldq = n
Allocate (ap(n*(n+1)/2),q(ldq,n),tau(n),work(n-1),d(n),e(n),rwork(2*n-2) &

)

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Reduce A to tridiagonal form T = (Q**H)*A*Q
! The NAG name equivalent of zhptrd is f08gsf

Call zhptrd(uplo,n,ap,d,e,tau,info)

! Form Q explicitly, storing the result in Q
! The NAG name equivalent of zupgtr is f08gtf

Call zupgtr(uplo,n,ap,tau,q,ldq,work,info)

! Calculate all the eigenvalues and eigenvectors of A
! The NAG name equivalent of zsteqr is f08jsf

Call zsteqr(’V’,n,d,e,q,ldq,rwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors, largest element real
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Do i = 1, n
rwork(1:n) = abs(q(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(q(k,i))/abs(q(k,i))/dznrm2(n,q(1,i),1)
q(1:n,i) = q(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,q,ldq,’Bracketed’,’F7.4’,’Eigenvectors’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If

99999 Format (8X,4(F7.4,11X,:))
End Program f08gtfe

10.2 Program Data

F08GTF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-2.28, 0.00)
( 1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A

10.3 Program Results

F08GTF Example Program Results

Eigenvalues
-6.0002 -3.0030 0.5036 3.9996

Eigenvectors
1 2 3 4

1 ( 0.7299, 0.0000) (-0.2120, 0.1497) ( 0.1000,-0.3570) ( 0.1991, 0.4720)
2 (-0.1663,-0.2061) ( 0.7307,-0.0000) ( 0.2863,-0.3353) (-0.2467, 0.3751)
3 (-0.4165,-0.1417) (-0.3291, 0.0479) ( 0.6890, 0.0000) ( 0.4468, 0.1466)
4 ( 0.1743, 0.4162) ( 0.5200, 0.1329) ( 0.0662, 0.4347) ( 0.5612, 0.0000)
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NAG Library Routine Document

F08GUF (ZUPMTR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08GUF (ZUPMTR) multiplies an arbitrary complex matrix C by the complex unitary matrix Q which
was determined by F08GSF (ZHPTRD) when reducing a complex Hermitian matrix to tridiagonal form.

2 Specification

SUBROUTINE F08GUF (SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK, INFO)

INTEGER M, N, LDC, INFO
COMPLEX (KIND=nag_wp) AP(*), TAU(*), C(LDC,*), WORK(*)
CHARACTER(1) SIDE, UPLO, TRANS

The routine may be called by its LAPACK name zupmtr.

3 Description

F08GUF (ZUPMTR) is intended to be used after a call to F08GSF (ZHPTRD), which reduces a
complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity
transformation: A ¼ QTQH. F08GSF (ZHPTRD) represents the unitary matrix Q as a product of
elementary reflectors.

This routine may be used to form one of the matrix products

QC;QHC;CQ or CQH;

overwriting the result on C (which may be any complex rectangular matrix).

A common application of this routine is to transform a matrix Z of eigenvectors of T to the matrix QZ
of eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QH is to be applied to C.

SIDE ¼ L
Q or QH is applied to C from the left.

SIDE ¼ R
Q or QH is applied to C from the right.

Constraint: SIDE ¼ L or R .

2: UPLO – CHARACTER(1) Input

On entry: this must be the same argument UPLO as supplied to F08GSF (ZHPTRD).

Constraint: UPLO ¼ U or L .

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08GUF

Mark 26 F08GUF.1



3: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QH is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ C
QH is applied to C.

Constraint: TRANS ¼ N or C .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix C; m is also the order of Q if SIDE ¼ L .

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix C; n is also the order of Q if SIDE ¼ R .

Constraint: N � 0.

6: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;M� Mþ 1ð Þ=2ð Þ if SIDE ¼ L and
at least max 1;N� Nþ 1ð Þ=2ð Þ if SIDE ¼ R .

On entry: details of the vectors which define the elementary reflectors, as returned by F08GSF
(ZHPTRD).

On exit: is used as internal workspace prior to being restored and hence is unchanged.

7: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;M� 1ð Þ if SIDE ¼ L and at least
max 1;N� 1ð Þ if SIDE ¼ R .

On entry: further details of the elementary reflectors, as returned by F08GSF (ZHPTRD).

8: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.

On exit: C is overwritten by QC or QHC or CQ or CQH as specified by SIDE and TRANS.

9: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08GUF
(ZUPMTR) is called.

Constraint: LDC � max 1;Mð Þ.

10: WORKð�Þ – COMPLEX (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1;Nð Þ if SIDE ¼ L and at least
max 1;Mð Þ if SIDE ¼ R .

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

F08GUF NAG Library Manual

F08GUF.2 Mark 26



6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08GUF (ZUPMTR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8m2n if SIDE ¼ L and 8mn2 if
SIDE ¼ R .

The real analogue of this routine is F08GGF (DOPMTR).

10 Example

This example computes the two smallest eigenvalues, and the associated eigenvectors, of the matrix A,
where

A ¼
�2:28þ 0:00i 1:78� 2:03i 2:26þ 0:10i �0:12þ 2:53i
1:78þ 2:03i �1:12þ 0:00i 0:01þ 0:43i �1:07þ 0:86i
2:26� 0:10i 0:01� 0:43i �0:37þ 0:00i 2:31� 0:92i
�0:12� 2:53i �1:07� 0:86i 2:31þ 0:92i �0:73þ 0:00i

0B@
1CA;

using packed storage. Here A is Hermitian and must first be reduced to tridiagonal form T by F08GSF
(ZHPTRD). The program then calls F08JJF (DSTEBZ) to compute the requested eigenvalues and
F08JXF (ZSTEIN) to compute the associated eigenvectors of T . Finally F08GUF (ZUPMTR) is called
to transform the eigenvectors to those of A.

10.1 Program Text

Program f08gufe

! F08GUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dstebz, dznrm2, nag_wp, x04dbf, zhptrd, zstein, &

zupmtr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Real (Kind=nag_wp) :: vl, vu
Integer :: i, ifail, info, j, k, ldc, m, n, &

nsplit
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), c(:,:), tau(:), work(:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:), rwork(:), w(:)
Integer, Allocatable :: iblock(:), ifailv(:), isplit(:), &

iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, maxloc

! .. Executable Statements ..
Write (nout,*) ’F08GUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldc = n
Allocate (ap(n*(n+1)/2),c(ldc,n),tau(n),work(n),d(n),e(n),rwork(5*n),w(n &

),iblock(n),ifailv(n),isplit(n),iwork(3*n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
End If

! Reduce A to tridiagonal form T = (Q**H)*A*Q
! The NAG name equivalent of zhptrd is f08gsf

Call zhptrd(uplo,n,ap,d,e,tau,info)

! Calculate the two smallest eigenvalues of T (same as A)

! The NAG name equivalent of dstebz is f08jjf
Call dstebz(’I’,’B’,n,vl,vu,1,2,zero,d,e,m,nsplit,w,iblock,isplit,rwork, &

iwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:m)

! Calculate the eigenvectors of T, storing the result in C
! The NAG name equivalent of zstein is f08jxf

Call zstein(n,d,e,m,w,iblock,isplit,c,ldc,rwork,iwork,ifailv,info)

If (info>0) Then
Write (nout,*) ’Failure to converge.’

Else

! Calculate the eigenvectors of A = Q * (eigenvectors of T)
! The NAG name equivalent of zupmtr is f08guf

Call zupmtr(’Left’,uplo,’No transpose’,n,m,ap,tau,c,ldc,work,info)

! Print eigenvectors

Write (nout,*)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, m

rwork(1:n) = abs(c(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(c(k,i))/abs(c(k,i))/dznrm2(n,c(1,i),1)
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c(1:n,i) = c(1:n,i)*scal
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,m,c,ldc,’Bracketed’,’F7.4’, &

’Eigenvectors’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If
End If

99999 Format (8X,4(F7.4,11X,:))
End Program f08gufe

10.2 Program Data

F08GUF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-2.28, 0.00)
( 1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A

10.3 Program Results

F08GUF Example Program Results

Eigenvalues
-6.0002 -3.0030

Eigenvectors
1 2

1 ( 0.7299, 0.0000) (-0.2120, 0.1497)
2 (-0.1663,-0.2061) ( 0.7307,-0.0000)
3 (-0.4165,-0.1417) (-0.3291, 0.0479)
4 ( 0.1743, 0.4162) ( 0.5200, 0.1329)
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NAG Library Routine Document

F08HAF (DSBEV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08HAF (DSBEV) computes all the eigenvalues and, optionally, all the eigenvectors of a real n by n
symmetric band matrix A of bandwidth 2kd þ 1ð Þ.

2 Specification

SUBROUTINE F08HAF (JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, INFO)

INTEGER N, KD, LDAB, LDZ, INFO
REAL (KIND=nag_wp) AB(LDAB,*), W(N), Z(LDZ,*), WORK(3*N-2)
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name dsbev.

3 Description

The symmetric band matrix A is first reduced to tridiagonal form, using orthogonal similarity
transformations, and then the QR algorithm is applied to the tridiagonal matrix to compute the
eigenvalues and (optionally) the eigenvectors.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: KD – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kd, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, kd, of the matrix A.

Constraint: KD � 0.

5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n symmetric band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: AB is overwritten by values generated during the reduction to tridiagonal form.

The first superdiagonal or subdiagonal and the diagonal of the tridiagonal matrix T are returned
in AB using the same storage format as described above.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08HAF (DSBEV) is called.

Constraint: LDAB � KDþ 1.

7: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

8: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the orthonormal eigenvectors of the matrix A, with the ith
column of Z holding the eigenvector associated with WðiÞ.
If JOBZ ¼ N , Z is not referenced.

9: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08HAF
(DSBEV) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

10: WORKð3� N� 2Þ – REAL (KIND=nag_wp) array Workspace

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the algorithm failed to converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08HAF (DSBEV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08HAF (DSBEV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3 if JOBZ ¼ V and is proportional to
kdn

2 otherwise.

The complex analogue of this routine is F08HNF (ZHBEV).

10 Example

This example finds all the eigenvalues and eigenvectors of the symmetric band matrix

A ¼

1 2 3 0 0
2 2 3 4 0
3 3 3 4 5
0 4 4 4 5
0 0 5 5 5

0BBB@
1CCCA;

together with approximate error bounds for the computed eigenvalues and eigenvectors.

10.1 Program Text

Program f08hafe

! F08HAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddisna, dsbev, nag_wp, x02ajf, x04caf

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: eerrbd, eps
Integer :: i, ifail, info, j, kd, ldab, ldz, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), rcondz(:), w(:), work(:), &

z(:,:), zerrbd(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs, max, min
! .. Executable Statements ..

Write (nout,*) ’F08HAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
ldz = n
Allocate (ab(ldab,n),rcondz(n),w(n),work(3*n-2),z(ldz,n),zerrbd(n))

! Read the upper or lower triangular part of the symmetric band
! matrix A from data file

If (uplo==’U’) Then
Read (nin,*)((ab(kd+1+i-j,j),j=i,min(n,i+kd)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-kd),i),i=1,n)

End If

! Solve the band symmetric eigenvalue problem

! The NAG name equivalent of dsbev is f08haf
Call dsbev(’Vectors’,uplo,n,kd,ab,ldab,w,z,ldz,work,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)
Flush (nout)

! Standardize the eigenvectors so that first elements are non-negative.
Do i = 1, n

If (z(1,i)<0.0_nag_wp) Then
z(1:n,i) = -z(1:n,i)

End If
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

! Get the machine precision, EPS and compute the approximate
! error bound for the computed eigenvalues. Note that for
! the 2-norm, max( abs(W(i)) ) = norm(A), and since the
! eigenvalues are returned in ascending order
! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n)))

eps = x02ajf()
eerrbd = eps*max(abs(w(1)),abs(w(n)))

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the eigenvectors

Call ddisna(’Eigenvectors’,n,n,w,rcondz,info)

! Compute the error estimates for the eigenvectors

F08HAF NAG Library Manual

F08HAF.4 Mark 26



Do i = 1, n
zerrbd(i) = eerrbd/rcondz(i)

End Do

! Print the approximate error bounds for the eigenvalues
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimate for the eigenvalues’
Write (nout,99998) eerrbd
Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvectors’
Write (nout,99998) zerrbd(1:n)

Else
Write (nout,99997) ’Failure in DSBEV. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)

End Program f08hafe

10.2 Program Data

F08HAF Example Program Data

5 2 :Values of N and KD

1.0 2.0 3.0
2.0 3.0 4.0

3.0 4.0 5.0
4.0 5.0

5.0 :End of matrix A

10.3 Program Results

F08HAF Example Program Results

Eigenvalues
-3.2474 -2.6633 1.7511 4.1599 14.9997

Eigenvectors
1 2 3 4 5

1 0.0394 0.6238 0.5635 0.5165 0.1582
2 0.5721 -0.2575 -0.3896 0.5955 0.3161
3 -0.4372 -0.5900 0.4008 0.1470 0.5277
4 -0.4424 0.4308 -0.5581 -0.0470 0.5523
5 0.5332 0.1039 0.2421 -0.5956 0.5400

Error estimate for the eigenvalues
1.7E-15

Error estimates for the eigenvectors
2.9E-15 2.9E-15 6.9E-16 6.9E-16 1.5E-16
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NAG Library Routine Document

F08HBF (DSBEVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08HBF (DSBEVX) computes selected eigenvalues and, optionally, eigenvectors of a real n by n
symmetric band matrix A of bandwidth 2kd þ 1ð Þ. Eigenvalues and eigenvectors can be selected by
specifying either a range of values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08HBF (JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, VU,
IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, JFAIL,
INFO)

&
&

INTEGER N, KD, LDAB, LDQ, IL, IU, M, LDZ, IWORK(5*N),
JFAIL(*), INFO

&

REAL (KIND=nag_wp) AB(LDAB,*), Q(LDQ,*), VL, VU, ABSTOL, W(N),
Z(LDZ,*), WORK(7*N)

&

CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name dsbevx.

3 Description

The symmetric band matrix A is first reduced to tridiagonal form, using orthogonal similarity
transformations. The required eigenvalues and eigenvectors are then computed from the tridiagonal
matrix; the method used depends upon whether all, or selected, eigenvalues and eigenvectors are
required.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .
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2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: KD – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kd, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, kd, of the matrix A.

Constraint: KD � 0.

6: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n symmetric band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: AB is overwritten by values generated during the reduction to tridiagonal form.

The first superdiagonal or subdiagonal and the diagonal of the tridiagonal matrix T are returned
in AB using the same storage format as described above.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08HBF (DSBEVX) is called.

Constraint: LDAB � KDþ 1.

8: QðLDQ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , the n by n orthogonal matrix used in the reduction to tridiagonal form.

If JOBZ ¼ N , Q is not referenced.
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9: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08HBF
(DSBEVX) is called.

Constraints:

if JOBZ ¼ V , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

10: VL – REAL (KIND=nag_wp) Input
11: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

12: IL – INTEGER Input
13: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

14: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO > 0, indicating that some
eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and Kahan
(1990).

15: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

16: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first M elements contain the selected eigenvalues in ascending order.

17: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then
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if INFO ¼ 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ;
if an eigenvector fails to converge (INFO > 0), then that column of Z contains the latest
approximation to the eigenvector, and the index of the eigenvector is returned in JFAIL.

If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

18: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08HBF
(DSBEVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

19: WORKð7� NÞ – REAL (KIND=nag_wp) array Workspace

20: IWORKð5� NÞ – INTEGER array Workspace

21: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO > 0, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

22: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, then i eigenvectors failed to converge. Their indices are stored in array JFAIL.
Please see ABSTOL.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.
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8 Parallelism and Performance

F08HBF (DSBEVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08HBF (DSBEVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to kdn2 if JOBZ ¼ N , and is proportional
to n3 if JOBZ ¼ V and RANGE ¼ A , otherwise the number of floating-point operations will depend
upon the number of computed eigenvectors.

The complex analogue of this routine is F08HPF (ZHBEVX).

10 Example

This example finds the eigenvalues in the half-open interval �3; 3ð �, and the corresponding
eigenvectors, of the symmetric band matrix

A ¼

1 2 3 0 0
2 2 3 4 0
3 3 3 4 5
0 4 4 4 5
0 0 5 5 5

0BBB@
1CCCA:

10.1 Program Text

Program f08hbfe

! F08HBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsbevx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, j, kd, ldab, &

ldq, ldz, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), q(:,:), w(:), work(:), &
z(:,:)

Integer, Allocatable :: iwork(:), jfail(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min
! .. Executable Statements ..

Write (nout,*) ’F08HBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
ldq = n
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ldz = n
m = n
Allocate (ab(ldab,n),q(ldq,n),w(n),work(7*n),z(ldz,m),iwork(5*n), &

jfail(n))

! Read the lower and upper bounds of the interval to be searched,
! and read the upper or lower triangular part of the matrix A
! from data file

Read (nin,*) vl, vu
If (uplo==’U’) Then

Read (nin,*)((ab(kd+1+i-j,j),j=i,min(n,i+kd)),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ab(1+i-j,j),j=max(1,i-kd),i),i=1,n)
End If

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead

abstol = zero

! Solve the band symmetric eigenvalue problem
! The NAG name equivalent of dsbevx is f08hbf

Call dsbevx(’Vectors’,’Values in range’,uplo,n,kd,ab,ldab,q,ldq,vl,vu, &
il,iu,abstol,m,w,z,ldz,work,iwork,jfail,info)

If (info>=0) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else

Write (nout,99999) ’Failure in DSBEVX. INFO =’, info
End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))

End Program f08hbfe

10.2 Program Data

F08HBF Example Program Data

5 2 :Values of N and KD

-3.0 3.0 :Values of VL and VU

1.0 2.0 3.0
2.0 3.0 4.0

3.0 4.0 5.0
4.0 5.0

5.0 :End of matrix A
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10.3 Program Results

F08HBF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
-2.6633 1.7511

Selected eigenvectors
1 2

1 -0.6238 -0.5635
2 0.2575 0.3896
3 0.5900 -0.4008
4 -0.4308 0.5581
5 -0.1039 -0.2421
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NAG Library Routine Document

F08HCF (DSBEVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the arguments LWORK and LIWORK changed at Mark 20 in the case where JOB ¼ V and N > 1: the
minimum dimension of the array WORK has been reduced whereas the minimum dimension of the array IWORK has been increased.

1 Purpose

F08HCF (DSBEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric band matrix. If the eigenvectors are requested, then it uses a divide-and-conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal–Walker–Kahan variant of the QL or QR algorithm.

2 Specification

SUBROUTINE F08HCF (JOB, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, LWORK,
IWORK, LIWORK, INFO)

&

INTEGER N, KD, LDAB, LDZ, LWORK, IWORK(max(1,LIWORK)),
LIWORK, INFO

&

REAL (KIND=nag_wp) AB(LDAB,*), W(*), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) JOB, UPLO

The routine may be called by its LAPACK name dsbevd.

3 Description

F08HCF (DSBEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric band matrix A. In other words, it can compute the spectral factorization of A as

A ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the orthogonal
matrix whose columns are the eigenvectors zi. Thus

Azi ¼ �izi; i ¼ 1; 2; . . . ; n:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOB ¼ N
Only eigenvalues are computed.
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JOB ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOB ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: KD – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kd, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, kd, of the matrix A.

Constraint: KD � 0.

5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n symmetric band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: AB is overwritten by values generated during the reduction to tridiagonal form.

The first superdiagonal or subdiagonal and the diagonal of the tridiagonal matrix T are returned
in AB using the same storage format as described above.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08HCF (DSBEVD) is called.

Constraint: LDAB � KDþ 1.

7: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the eigenvalues of the matrix A in ascending order.
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8: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOB ¼ V and at least 1
if JOB ¼ N .

On exit: if JOB ¼ V , Z is overwritten by the orthogonal matrix Z which contains the
eigenvectors of A. The ith column of Z contains the eigenvector which corresponds to the
eigenvalue WðiÞ.
If JOB ¼ N , Z is not referenced.

9: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08HCF
(DSBEVD) is called.

Constraints:

if JOB ¼ V , LDZ � max 1;Nð Þ;
if JOB ¼ N , LDZ � 1.

10: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the required minimal size of LWORK.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08HCF (DSBEVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the WORK array, returns this value as the first entry of the WORK array, and no
error message related to LWORK is issued.

Constraints:

if N � 1, LWORK � 1 or LWORK ¼ �1;
if JOB ¼ N and N > 1, LWORK � 2� N or LWORK ¼ �1;
if JOB ¼ V and N > 1, LWORK � 2� N2 þ 5� Nþ 1 or LWORK ¼ �1.

12: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ contains the required minimal size of LIWORK.

13: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08HCF (DSBEVD) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the IWORK array, returns this value as the first entry of the IWORK array, and no
error message related to LIWORK is issued.

Constraints:

if JOB ¼ N or N � 1, LIWORK � 1 or LIWORK ¼ �1;
if JOB ¼ V and N > 1, LIWORK � 5� Nþ 3 or LIWORK ¼ �1.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

if INFO ¼ i and JOB ¼ N , the algorithm failed to converge; i elements of an intermediate
tridiagonal form did not converge to zero; if INFO ¼ i and JOB ¼ V , then the algorithm failed
to compute an eigenvalue while working on the submatrix lying in rows and column i= Nþ 1ð Þ
through i mod Nþ 1ð Þ.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08HCF (DSBEVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08HCF (DSBEVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08HQF (ZHBEVD).

10 Example

This example computes all the eigenvalues and eigenvectors of the symmetric band matrix A, where

A ¼

1 2 3 0 0
2 2 3 4 0
3 3 3 4 5
0 4 4 4 5
0 0 5 5 5

0BBB@
1CCCA:

10.1 Program Text

Program f08hcfe

! F08HCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsbevd, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, ldz, &

liwork, lwork, n
Character (1) :: job, uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), w(:), work(:), z(:,:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F08HCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
ldz = n
liwork = 5*n + 3
lwork = 2*n*n + 5*n + 1
Allocate (ab(ldab,n),w(n),work(lwork),z(ldz,n),iwork(liwork))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If

Read (nin,*) job

! Calculate all the eigenvalues and eigenvectors of A
! The NAG name equivalent of dsbevd is f08hcf

Call dsbevd(job,uplo,n,kd,ab,ldab,w,z,ldz,work,lwork,iwork,liwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)
Write (nout,*)
Flush (nout)

! Standardize the eigenvectors so that first elements are non-negative.
Do i = 1, n

If (z(1,i)<0.0_nag_wp) Then
z(1:n,i) = -z(1:n,i)

End If
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

End If

99999 Format (3X,(8F8.4))
End Program f08hcfe
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10.2 Program Data

F08HCF Example Program Data
5 2 :Values of N and KD
’L’ :Value of UPLO
1.0
2.0 2.0
3.0 3.0 3.0

4.0 4.0 4.0
5.0 5.0 5.0 :End of matrix A

’V’ :Value of JOB

10.3 Program Results

F08HCF Example Program Results

Eigenvalues
-3.2474 -2.6633 1.7511 4.1599 14.9997

Eigenvectors
1 2 3 4 5

1 0.0394 0.6238 0.5635 0.5165 0.1582
2 0.5721 -0.2575 -0.3896 0.5955 0.3161
3 -0.4372 -0.5900 0.4008 0.1470 0.5277
4 -0.4424 0.4308 -0.5581 -0.0470 0.5523
5 0.5332 0.1039 0.2421 -0.5956 0.5400
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NAG Library Routine Document

F08HEF (DSBTRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08HEF (DSBTRD) reduces a real symmetric band matrix to tridiagonal form.

2 Specification

SUBROUTINE F08HEF (VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK,
INFO)

&

INTEGER N, KD, LDAB, LDQ, INFO
REAL (KIND=nag_wp) AB(LDAB,*), D(N), E(N-1), Q(LDQ,*), WORK(N)
CHARACTER(1) VECT, UPLO

The routine may be called by its LAPACK name dsbtrd.

3 Description

F08HEF (DSBTRD) reduces a symmetric band matrix A to symmetric tridiagonal form T by an
orthogonal similarity transformation:

T ¼ QTAQ:

The orthogonal matrix Q is determined as a product of Givens rotation matrices, and may be formed
explicitly by the routine if required.

The routine uses a vectorizable form of the reduction, due to Kaufman (1984).

4 References

Kaufman L (1984) Banded eigenvalue solvers on vector machines ACM Trans. Math. Software 10 73–
86

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

5 Arguments

1: VECT – CHARACTER(1) Input

On entry: indicates whether Q is to be returned.

VECT ¼ V
Q is returned.

VECT ¼ U
Q is updated (and the array Q must contain a matrix on entry).

VECT ¼ N
Q is not required.

Constraint: VECT ¼ V , U or N .

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08HEF
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2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: KD – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kd, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, kd, of the matrix A.

Constraint: KD � 0.

5: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n symmetric band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: AB is overwritten by values generated during the reduction to tridiagonal form.

The first superdiagonal or subdiagonal and the diagonal of the tridiagonal matrix T are returned
in AB using the same storage format as described above.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08HEF (DSBTRD) is called.

Constraint: LDAB � max 1;KDþ 1ð Þ.

7: DðNÞ – REAL (KIND=nag_wp) array Output

On exit: the diagonal elements of the tridiagonal matrix T .

8: EðN� 1Þ – REAL (KIND=nag_wp) array Output

On exit: the off-diagonal elements of the tridiagonal matrix T .

9: QðLDQ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if VECT ¼ V or U and at
least 1 if VECT ¼ N .

On entry: if VECT ¼ U , Q must contain the matrix formed in a previous stage of the reduction
(for example, the reduction of a banded symmetric-definite generalized eigenproblem); otherwise
Q need not be set.
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On exit: if VECT ¼ V or U , the n by n matrix Q.

If VECT ¼ N , Q is not referenced.

10: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08HEF
(DSBTRD) is called.

Constraints:

if VECT ¼ V or U , LDQ � max 1;Nð Þ;
if VECT ¼ N , LDQ � 1.

11: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix Aþ Eð Þ, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues and eigenvectors.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08HEF (DSBTRD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08HEF (DSBTRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 6n2k if VECT ¼ N with 3n3 k� 1ð Þ=k
additional operations if VECT ¼ V .

The complex analogue of this routine is F08HSF (ZHBTRD).
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10 Example

This example computes all the eigenvalues and eigenvectors of the matrix A, where

A ¼
4:99 0:04 0:22 0:00
0:04 1:05 �0:79 1:04
0:22 �0:79 �2:31 �1:30
0:00 1:04 �1:30 �0:43

0B@
1CA:

Here A is symmetric and is treated as a band matrix. The program first calls F08HEF (DSBTRD) to
reduce A to tridiagonal form T , and to form the orthogonal matrix Q; the results are then passed to
F08JEF (DSTEQR) which computes the eigenvalues and eigenvectors of A.

10.1 Program Text

Program f08hefe

! F08HEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsbtrd, dsteqr, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, ldq, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), d(:), e(:), q(:,:), work(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F08HEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
ldq = n
Allocate (ab(ldab,n),d(n),e(n-1),q(ldq,n),work(2*n-2))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If

! Reduce A to tridiagonal form T = (Q**T)*A*Q (and form Q)
! The NAG name equivalent of dsbtrd is f08hef

Call dsbtrd(’V’,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

! Calculate all the eigenvalues and eigenvectors of A
! The NAG name equivalent of dsteqr is f08jef

Call dsteqr(’V’,n,d,e,q,ldq,work,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else
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! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! Standardize the eigenvectors so that first elements are non-negative.
Do i = 1, n

If (q(1,i)<0.0_nag_wp) Then
q(1:n,i) = -q(1:n,i)

End If
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,q,ldq,’Eigenvectors’,ifail)

End If

99999 Format (3X,(8F8.4))
End Program f08hefe

10.2 Program Data

F08HEF Example Program Data
4 2 :Values of N and KD
’L’ :Value of UPLO
4.99
0.04 1.05
0.22 -0.79 -2.31

1.04 -1.30 -0.43 :End of matrix A

10.3 Program Results

F08HEF Example Program Results

Eigenvalues
-2.9943 -0.7000 1.9974 4.9969

Eigenvectors
1 2 3 4

1 0.0251 0.0162 0.0113 0.9995
2 -0.0656 -0.5859 0.8077 0.0020
3 -0.9002 -0.3135 -0.3006 0.0311
4 -0.4298 0.7471 0.5070 -0.0071
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NAG Library Routine Document

F08HNF (ZHBEV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08HNF (ZHBEV) computes all the eigenvalues and, optionally, all the eigenvectors of a complex n by
n Hermitian band matrix A of bandwidth 2kd þ 1ð Þ.

2 Specification

SUBROUTINE F08HNF (JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, RWORK,
INFO)

&

INTEGER N, KD, LDAB, LDZ, INFO
REAL (KIND=nag_wp) W(N), RWORK(3*N-2)
COMPLEX (KIND=nag_wp) AB(LDAB,*), Z(LDZ,*), WORK(N)
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name zhbev.

3 Description

The Hermitian band matrix A is first reduced to real tridiagonal form, using unitary similarity
transformations, and then the QR algorithm is applied to the tridiagonal matrix to compute the
eigenvalues and (optionally) the eigenvectors.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08HNF
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3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: KD – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kd, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, kd, of the matrix A.

Constraint: KD � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: AB is overwritten by values generated during the reduction to tridiagonal form.

The first superdiagonal or subdiagonal and the diagonal of the tridiagonal matrix T are returned
in AB using the same storage format as described above.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08HNF (ZHBEV) is called.

Constraint: LDAB � KDþ 1.

7: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

8: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the orthonormal eigenvectors of the matrix A, with the ith
column of Z holding the eigenvector associated with WðiÞ.
If JOBZ ¼ N , Z is not referenced.

9: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08HNF
(ZHBEV) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

10: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

11: RWORKð3� N� 2Þ – REAL (KIND=nag_wp) array Workspace
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12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the algorithm failed to converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08HNF (ZHBEV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08HNF (ZHBEV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3 if JOBZ ¼ V and is proportional to
kdn

2 otherwise.

The real analogue of this routine is F08HAF (DSBEV).

10 Example

This example finds all the eigenvalues and eigenvectors of the Hermitian band matrix

A ¼

1 2� i 3� i 0 0
2þ i 2 3� 2i 4� 2i 0
3þ i 3þ 2i 3 4� 3i 5� 3i
0 4þ 2i 4þ 3i 4 5� 4i
0 0 5þ 3i 5þ 4i 5

0BBB@
1CCCA;

together with approximate error bounds for the computed eigenvalues and eigenvectors.
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10.1 Program Text

Program f08hnfe

! F08HNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddisna, dznrm2, nag_wp, x02ajf, x04daf, zhbev

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Real (Kind=nag_wp) :: eerrbd, eps
Integer :: i, ifail, info, j, k, kd, ldab, ldz, &

n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:), work(:), z(:,:)
Real (Kind=nag_wp), Allocatable :: rcondz(:), rwork(:), w(:), zerrbd(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, max, maxloc, min

! .. Executable Statements ..
Write (nout,*) ’F08HNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
ldz = n
Allocate (ab(ldab,n),work(n),z(ldz,n),rcondz(n),rwork(3*n-2),w(n), &

zerrbd(n))

! Read the upper or lower triangular part of the symmetric band
! matrix A from data file

If (uplo==’U’) Then
Read (nin,*)((ab(kd+1+i-j,j),j=i,min(n,i+kd)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-kd),i),i=1,n)

End If

! Solve the band Hermitian eigenvalue problem
! The NAG name equivalent of zhbev is f08hnf

Call zhbev(’Vectors’,uplo,n,kd,ab,ldab,w,z,ldz,work,rwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, n

rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(z(k,i))/abs(z(k,i))/dznrm2(n,z(1,i),1)
z(1:n,i) = z(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

! Get the machine precision, EPS and compute the approximate
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! error bound for the computed eigenvalues. Note that for
! the 2-norm, max( abs(W(i)) ) = norm(A), and since the
! eigenvalues are returned in ascending order
! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n)))

eps = x02ajf()
eerrbd = eps*max(abs(w(1)),abs(w(n)))

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the eigenvectors

Call ddisna(’Eigenvectors’,n,n,w,rcondz,info)

! Compute the error estimates for the eigenvectors

Do i = 1, n
zerrbd(i) = eerrbd/rcondz(i)

End Do

! Print the approximate error bounds for the eigenvalues
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimate for the eigenvalues’
Write (nout,99998) eerrbd
Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvectors’
Write (nout,99998) zerrbd(1:n)

Else
Write (nout,99997) ’Failure in ZHBEV. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)

End Program f08hnfe

10.2 Program Data

F08HNF Example Program Data

5 2 :Values of N and KD

(1.0, 0.0) (2.0,-1.0) (3.0,-1.0)
(2.0, 0.0) (3.0,-2.0) (4.0,-2.0)

(3.0, 0.0) (4.0,-3.0) (5.0,-3.0)
(4.0, 0.0) (5.0,-4.0)

(5.0, 0.0) :End of matrix A

10.3 Program Results

F08HNF Example Program Results

Eigenvalues
-6.4185 -1.4094 1.4421 4.4856 16.9002

Eigenvectors
1 2 3 4 5

1 -0.2534 0.6367 -0.2560 0.0171 0.1051
-0.0538 0.0000 0.3721 0.5500 -0.0983

2 -0.0662 -0.2578 0.5344 -0.2608 0.2516
0.4301 0.2413 0.0000 0.4869 -0.1789

3 0.5274 -0.3039 -0.4245 -0.0399 0.4994
0.0000 -0.3481 0.0915 0.2142 -0.1513

4 0.1061 0.3450 0.4964 -0.0253 0.5611
-0.4981 -0.0832 -0.1546 -0.1700 0.0000

5 -0.4519 -0.2469 -0.1979 0.5614 0.4837
0.0424 0.2634 -0.1114 -0.0000 0.2509
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Error estimate for the eigenvalues
1.9E-15

Error estimates for the eigenvectors
3.7E-16 6.6E-16 6.6E-16 6.2E-16 1.5E-16
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NAG Library Routine Document

F08HPF (ZHBEVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08HPF (ZHBEVX) computes selected eigenvalues and, optionally, eigenvectors of a complex n by n
Hermitian band matrix A of bandwidth 2kd þ 1ð Þ. Eigenvalues and eigenvectors can be selected by
specifying either a range of values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08HPF (JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, VU,
IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
JFAIL, INFO)

&
&

INTEGER N, KD, LDAB, LDQ, IL, IU, M, LDZ, IWORK(5*N),
JFAIL(*), INFO

&

REAL (KIND=nag_wp) VL, VU, ABSTOL, W(N), RWORK(7*N)
COMPLEX (KIND=nag_wp) AB(LDAB,*), Q(LDQ,*), Z(LDZ,*), WORK(N)
CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name zhbevx.

3 Description

The Hermitian band matrix A is first reduced to real tridiagonal form, using unitary similarity
transformations. The required eigenvalues and eigenvectors are then computed from the tridiagonal
matrix; the method used depends upon whether all, or selected, eigenvalues and eigenvectors are
required.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .
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2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: KD – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kd, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, kd, of the matrix A.

Constraint: KD � 0.

6: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: AB is overwritten by values generated during the reduction to tridiagonal form.

The first superdiagonal or subdiagonal and the diagonal of the tridiagonal matrix T are returned
in AB using the same storage format as described above.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08HPF (ZHBEVX) is called.

Constraint: LDAB � KDþ 1.

8: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , the n by n unitary matrix used in the reduction to tridiagonal form.

If JOBZ ¼ N , Q is not referenced.
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9: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08HPF
(ZHBEVX) is called.

Constraints:

if JOBZ ¼ V , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

10: VL – REAL (KIND=nag_wp) Input
11: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

12: IL – INTEGER Input
13: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

14: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO > 0, indicating that some
eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and Kahan
(1990).

15: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

16: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first M elements contain the selected eigenvalues in ascending order.

17: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then
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if INFO ¼ 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ;
if an eigenvector fails to converge (INFO > 0), then that column of Z contains the latest
approximation to the eigenvector, and the index of the eigenvector is returned in JFAIL.

If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

18: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08HPF
(ZHBEVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

19: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

20: RWORKð7� NÞ – REAL (KIND=nag_wp) array Workspace

21: IWORKð5� NÞ – INTEGER array Workspace

22: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO > 0, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

23: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, then i eigenvectors failed to converge. Their indices are stored in array JFAIL.
Please see ABSTOL.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

F08HPF NAG Library Manual

F08HPF.4 Mark 26



8 Parallelism and Performance

F08HPF (ZHBEVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08HPF (ZHBEVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to kdn2 if JOBZ ¼ N , and is proportional
to n3 if JOBZ ¼ V and RANGE ¼ A , otherwise the number of floating-point operations will depend
upon the number of computed eigenvectors.

The real analogue of this routine is F08HBF (DSBEVX).

10 Example

This example finds the eigenvalues in the half-open interval �2; 2ð �, and the corresponding
eigenvectors, of the Hermitian band matrix

A ¼

1 2� i 3� i 0 0
2þ i 2 3� 2i 4� 2i 0
3þ i 3þ 2i 3 4� 3i 5� 3i
0 4þ 2i 4þ 3i 4 5� 4i
0 0 5þ 3i 5þ 4i 5

0BBB@
1CCCA:

10.1 Program Text

Program f08hpfe

! F08HPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf, zhbevx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, j, kd, ldab, &

ldq, ldz, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:), q(:,:), work(:), z(:,:)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:), jfail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F08HPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
ldq = n
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ldz = n
m = n
Allocate (ab(ldab,n),q(ldq,n),work(n),z(ldz,m),rwork(7*n),w(n), &

iwork(5*n),jfail(n))

! Read the lower and upper bounds of the interval to be searched,
! and read the upper or lower triangular part of the matrix A
! from data file

Read (nin,*) vl, vu
If (uplo==’U’) Then

Read (nin,*)((ab(kd+1+i-j,j),j=i,min(n,i+kd)),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)((ab(1+i-j,j),j=max(1,i-kd),i),i=1,n)
End If

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead

abstol = zero

! Solve the band symmetric eigenvalue problem
! The NAG name equivalent of zhbevx is f08hpf

Call zhbevx(’Vectors’,’Values in range’,uplo,n,kd,ab,ldab,q,ldq,vl,vu, &
il,iu,abstol,m,w,z,ldz,work,rwork,iwork,jfail,info)

If (info>=0) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else

Write (nout,99999) ’Failure in ZHBEVX. INFO =’, info
End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))

End Program f08hpfe

10.2 Program Data

F08HPF Example Program Data

5 2 :Values of N and KD

-2.0 2.0 :Values of VL and VU

(1.0, 0.0) (2.0,-1.0) (3.0,-1.0)
(2.0, 0.0) (3.0,-2.0) (4.0,-2.0)

(3.0, 0.0) (4.0,-3.0) (5.0,-3.0)
(4.0, 0.0) (5.0,-4.0)

(5.0, 0.0) :End of matrix A
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10.3 Program Results

F08HPF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
-1.4094 1.4421

Selected eigenvectors
1 2

1 0.6367 0.4516
0.0000 0.0000

2 -0.2578 -0.3029
0.2413 -0.4402

3 -0.3039 0.3160
-0.3481 0.2978

4 0.3450 -0.4088
-0.0832 -0.3213

5 -0.2469 0.0204
0.2634 0.2262
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NAG Library Routine Document

F08HQF (ZHBEVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the arguments LRWORK and LIWORK changed at Mark 20 in the case where JOB ¼ V and N > 1: the
minimum dimension of the array RWORK has been reduced whereas the minimum dimension of the array IWORK has been increased.

1 Purpose

F08HQF (ZHBEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian band matrix. If the eigenvectors are requested, then it uses a divide-and-conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal–Walker–Kahan variant of the QL or QR algorithm.

2 Specification

SUBROUTINE F08HQF (JOB, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, LWORK,
RWORK, LRWORK, IWORK, LIWORK, INFO)

&

INTEGER N, KD, LDAB, LDZ, LWORK, LRWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) W(*), RWORK(max(1,LRWORK))
COMPLEX (KIND=nag_wp) AB(LDAB,*), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) JOB, UPLO

The routine may be called by its LAPACK name zhbevd.

3 Description

F08HQF (ZHBEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian band matrix A. In other words, it can compute the spectral factorization of A as

A ¼ Z�ZH;

where � is a real diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the
(complex) unitary matrix whose columns are the eigenvectors zi. Thus

Azi ¼ �izi; i ¼ 1; 2; . . . ; n:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOB ¼ N
Only eigenvalues are computed.
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JOB ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOB ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: KD – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kd, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, kd, of the matrix A.

Constraint: KD � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: AB is overwritten by values generated during the reduction to tridiagonal form.

The first superdiagonal or subdiagonal and the diagonal of the tridiagonal matrix T are returned
in AB using the same storage format as described above.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08HQF (ZHBEVD) is called.

Constraint: LDAB � KDþ 1.

7: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the eigenvalues of the matrix A in ascending order.
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8: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOB ¼ V and at least 1
if JOB ¼ N .

On exit: if JOB ¼ V , Z is overwritten by the unitary matrix Z which contains the eigenvectors
of A. The ith column of Z contains the eigenvector which corresponds to the eigenvalue WðiÞ.
If JOB ¼ N , Z is not referenced.

9: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08HQF
(ZHBEVD) is called.

Constraints:

if JOB ¼ V , LDZ � max 1;Nð Þ;
if JOB ¼ N , LDZ � 1.

10: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the required minimal size of LWORK.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08HQF (ZHBEVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the WORK array, returns this value as the first entry of the WORK array, and no
error message related to LWORK is issued.

Constraints:

if N � 1, LWORK � 1 or LWORK ¼ �1;
if JOB ¼ N and N > 1, LWORK � N or LWORK ¼ �1;
if JOB ¼ V and N > 1, LWORK � 2� N2 or LWORK ¼ �1.

12: RWORKðmax 1;LRWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, RWORKð1Þ contains the required minimal size of LRWORK.

13: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
F08HQF (ZHBEVD) is called.

If LRWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the RWORK array, returns this value as the first entry of the RWORK array, and no
error message related to LRWORK is issued.

Constraints:

if N � 1, LRWORK � 1 or LRWORK ¼ �1;
if JOB ¼ N and N > 1, LRWORK � N or LRWORK ¼ �1;
if JOB ¼ V and N > 1, LRWORK � 2� N2 þ 5� Nþ 1 or LRWORK ¼ �1.

14: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ contains the required minimal size of LIWORK.

15: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08HQF (ZHBEVD) is called.
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If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the IWORK array, returns this value as the first entry of the IWORK array, and no
error message related to LIWORK is issued.

Constraints:

if JOB ¼ N or N � 1, LIWORK � 1 or LIWORK ¼ �1;
if JOB ¼ V and N > 1, LIWORK � 5� Nþ 3 or LIWORK ¼ �1.

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

if INFO ¼ i and JOB ¼ N , the algorithm failed to converge; i elements of an intermediate
tridiagonal form did not converge to zero; if INFO ¼ i and JOB ¼ V , then the algorithm failed
to compute an eigenvalue while working on the submatrix lying in rows and column i= Nþ 1ð Þ
through i mod Nþ 1ð Þ.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08HQF (ZHBEVD) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08HQF (ZHBEVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F08HCF (DSBEVD).

10 Example

This example computes all the eigenvalues and eigenvectors of the Hermitian band matrix A, where

A ¼

1þ 0i 2� 1i 3� 1i 0þ 0i 0þ 0i
2þ 1i 2þ 0i 3� 2i 4� 2i 0þ 0i
3þ 1i 3þ 2i 3þ 0i 4� 3i 5� 3i
0þ 0i 4þ 2i 4þ 3i 4þ 0i 5� 4i
0þ 0i 0þ 0i 5þ 3i 5þ 4i 5þ 0i

0BBB@
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10.1 Program Text

Program f08hqfe

! F08HQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04daf, zhbevd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Integer :: i, ifail, info, j, k, kd, ldab, ldz, &

liwork, lrwork, lwork, n
Character (1) :: job, uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), work(:), z(:,:)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, max, maxloc, min

! .. Executable Statements ..
Write (nout,*) ’F08HQF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = n
ldz = n
liwork = 5*n + 3
lrwork = 2*n*n + 5*n + 1
lwork = 2*n*n
Allocate (ab(ldab,n),work(lwork),z(ldz,n),rwork(lrwork),w(n), &

iwork(liwork))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If

Read (nin,*) job

! Calculate all the eigenvalues and eigenvectors of A
! The NAG name equivalent of zhbevd is f08hqf

Call zhbevd(job,uplo,n,kd,ab,ldab,w,z,ldz,work,lwork,rwork,lrwork,iwork, &
liwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Do i = 1, n

Write (nout,99999) i, w(i)
End Do
Write (nout,*)
Flush (nout)
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! Normalize the eigenvectors, largest element real
Do i = 1, n

rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(z(k,i))/abs(z(k,i))/dznrm2(n,z(1,i),1)
z(1:n,i) = z(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

End If

99999 Format (3X,I5,5X,2F8.4)
End Program f08hqfe

10.2 Program Data

F08HQF Example Program Data
5 2 :Values of N and KD
’L’ :Value of UPLO
(1.0, 0.0)
(2.0, 1.0) (2.0, 0.0)
(3.0, 1.0) (3.0, 2.0) (3.0, 0.0)

(4.0, 2.0) (4.0, 3.0) (4.0, 0.0)
(5.0, 3.0) (5.0, 4.0) (5.0, 0.0) :End of matrix A

’V’ :Value of JOB

10.3 Program Results

F08HQF Example Program Results

Eigenvalues
1 -6.4185
2 -1.4094
3 1.4421
4 4.4856
5 16.9002

Eigenvectors
1 2 3 4 5

1 -0.2534 0.6367 -0.2560 0.0171 0.1051
-0.0538 0.0000 0.3721 0.5500 -0.0983

2 -0.0662 -0.2578 0.5344 -0.2608 0.2516
0.4301 0.2413 0.0000 0.4869 -0.1789

3 0.5274 -0.3039 -0.4245 -0.0399 0.4994
0.0000 -0.3481 0.0915 0.2142 -0.1513

4 0.1061 0.3450 0.4964 -0.0253 0.5611
-0.4981 -0.0832 -0.1546 -0.1700 0.0000

5 -0.4519 -0.2469 -0.1979 0.5614 0.4837
0.0424 0.2634 -0.1114 0.0000 0.2509
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NAG Library Routine Document

F08HSF (ZHBTRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08HSF (ZHBTRD) reduces a complex Hermitian band matrix to tridiagonal form.

2 Specification

SUBROUTINE F08HSF (VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK,
INFO)

&

INTEGER N, KD, LDAB, LDQ, INFO
REAL (KIND=nag_wp) D(N), E(N-1)
COMPLEX (KIND=nag_wp) AB(LDAB,*), Q(LDQ,*), WORK(N)
CHARACTER(1) VECT, UPLO

The routine may be called by its LAPACK name zhbtrd.

3 Description

F08HSF (ZHBTRD) reduces a Hermitian band matrix A to real symmetric tridiagonal form T by a
unitary similarity transformation:

T ¼ QHAQ:

The unitary matrix Q is determined as a product of Givens rotation matrices, and may be formed
explicitly by the routine if required.

The routine uses a vectorizable form of the reduction, due to Kaufman (1984).

4 References

Kaufman L (1984) Banded eigenvalue solvers on vector machines ACM Trans. Math. Software 10 73–
86

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

5 Arguments

1: VECT – CHARACTER(1) Input

On entry: indicates whether Q is to be returned.

VECT ¼ V
Q is returned.

VECT ¼ U
Q is updated (and the array Q must contain a matrix on entry).

VECT ¼ N
Q is not required.

Constraint: VECT ¼ V , U or N .
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2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: KD – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kd, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, kd, of the matrix A.

Constraint: KD � 0.

5: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to kd þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðkd þ 1þ i� j; jÞ for max 1; j� kdð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kdð Þ:

On exit: AB is overwritten by values generated during the reduction to tridiagonal form.

The first superdiagonal or subdiagonal and the diagonal of the tridiagonal matrix T are returned
in AB using the same storage format as described above.

6: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08HSF (ZHBTRD) is called.

Constraint: LDAB � max 1;KDþ 1ð Þ.

7: DðNÞ – REAL (KIND=nag_wp) array Output

On exit: the diagonal elements of the tridiagonal matrix T .

8: EðN� 1Þ – REAL (KIND=nag_wp) array Output

On exit: the off-diagonal elements of the tridiagonal matrix T .

9: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if VECT ¼ V or U and at
least 1 if VECT ¼ N .

On entry: if VECT ¼ U , Q must contain the matrix formed in a previous stage of the reduction
(for example, the reduction of a banded Hermitian-definite generalized eigenproblem); otherwise
Q need not be set.
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On exit: if VECT ¼ V or U , the n by n matrix Q.

If VECT ¼ N , Q is not referenced.

10: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08HSF
(ZHBTRD) is called.

Constraints:

if VECT ¼ V or U , LDQ � max 1;Nð Þ;
if VECT ¼ N , LDQ � 1.

11: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix Aþ Eð Þ, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues and eigenvectors.

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08HSF (ZHBTRD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08HSF (ZHBTRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 20n2k if VECT ¼ N with
10n3 k� 1ð Þ=k additional operations if VECT ¼ V .

The real analogue of this routine is F08HEF (DSBTRD).
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10 Example

This example computes all the eigenvalues and eigenvectors of the matrix A, where

A ¼
�3:13þ 0:00i 1:94� 2:10i �3:40þ 0:25i 0:00þ 0:00i
1:94þ 2:10i �1:91þ 0:00i �0:82� 0:89i �0:67þ 0:34i
�3:40� 0:25i �0:82þ 0:89i �2:87þ 0:00i �2:10� 0:16i
0:00þ 0:00i �0:67� 0:34i �2:10þ 0:16i 0:50þ 0:00i

0B@
1CA:

Here A is Hermitian and is treated as a band matrix. The program first calls F08HSF (ZHBTRD) to
reduce A to tridiagonal form T , and to form the unitary matrix Q; the results are then passed to F08JSF
(ZSTEQR) which computes the eigenvalues and eigenvectors of A.

10.1 Program Text

Program f08hsfe

! F08HSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04dbf, zhbtrd, zsteqr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Integer :: i, ifail, info, j, k, kd, ldab, ldq, &

n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), q(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:), rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, max, maxloc, min

! .. Executable Statements ..
Write (nout,*) ’F08HSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
ldq = n
Allocate (ab(ldab,n),q(ldq,n),work(n),d(n),e(n-1),rwork(2*n-2))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))

End Do
Else If (uplo==’L’) Then

Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)

End Do
End If

! Reduce A to tridiagonal form T = (Q**H)*A*Q (and form Q)
! The NAG name equivalent of zhbtrd is f08hsf

Call zhbtrd(’V’,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

! Calculate all the eigenvalues and eigenvectors of A
! The NAG name equivalent of zsteqr is f08jsf

Call zsteqr(’V’,n,d,e,q,ldq,rwork,info)

Write (nout,*)
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If (info>0) Then
Write (nout,*) ’Failure to converge.’

Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, n

rwork(1:n) = abs(q(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(q(k,i))/abs(q(k,i))/dznrm2(n,q(1,i),1)
q(1:n,i) = q(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,q,ldq,’Bracketed’,’F7.4’,’Eigenvectors’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If

99999 Format (8X,4(F7.4,11X,:))
End Program f08hsfe

10.2 Program Data

F08HSF Example Program Data
4 2 :Values of N and KD
’L’ :Value of UPLO

(-3.13, 0.00)
( 1.94, 2.10) (-1.91, 0.00)
(-3.40,-0.25) (-0.82, 0.89) (-2.87, 0.00)

(-0.67,-0.34) (-2.10, 0.16) ( 0.50, 0.00) :End of matrix A

10.3 Program Results

F08HSF Example Program Results

Eigenvalues
-7.0042 -4.0038 0.5968 3.0012

Eigenvectors
1 2 3 4

1 ( 0.7293, 0.0000) (-0.2128, 0.1511) (-0.3354,-0.1604) (-0.5114,-0.0163)
2 (-0.1654,-0.2046) ( 0.7316, 0.0000) (-0.2804,-0.3413) (-0.2374,-0.3796)
3 ( 0.6081, 0.0301) ( 0.3910,-0.3843) (-0.0144, 0.1532) ( 0.5523,-0.0000)
4 ( 0.1653,-0.0303) ( 0.2775,-0.1378) ( 0.8019, 0.0000) (-0.4517, 0.1693)
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NAG Library Routine Document

F08JAF (DSTEV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JAF (DSTEV) computes all the eigenvalues and, optionally, all the eigenvectors of a real n by n
symmetric tridiagonal matrix A.

2 Specification

SUBROUTINE F08JAF (JOBZ, N, D, E, Z, LDZ, WORK, INFO)

INTEGER N, LDZ, INFO
REAL (KIND=nag_wp) D(*), E(*), Z(LDZ,*), WORK(*)
CHARACTER(1) JOBZ

The routine may be called by its LAPACK name dstev.

3 Description

F08JAF (DSTEV) computes all the eigenvalues and, optionally, all the eigenvectors of A using a
combination of the QR and QL algorithms, with an implicit shift.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: N – INTEGER Input

On entry: n, the order of the matrix.

Constraint: N � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix A.

On exit: if INFO ¼ 0, the eigenvalues in ascending order.
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4: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ subdiagonal elements of the tridiagonal matrix A.

On exit: the contents of E are destroyed.

5: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then if INFO ¼ 0, Z contains the orthonormal eigenvectors of the matrix
A, with the ith column of Z holding the eigenvector associated with DðiÞ.
If JOBZ ¼ N , Z is not referenced.

6: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JAF
(DSTEV) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

7: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1; 2� N� 2ð Þ.
On exit: if JOBZ ¼ N , WORK is not referenced.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the algorithm failed to converge; i off-diagonal elements of E did not converge to
zero.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08JAF (DSTEV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F08JAF (DSTEV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n2 if JOBZ ¼ N and is proportional to
n3 if JOBZ ¼ V .

10 Example

This example finds all the eigenvalues and eigenvectors of the symmetric tridiagonal matrix

A ¼
1 1 0 0
1 4 2 0
0 2 9 3
0 0 3 16

0B@
1CA;

together with approximate error bounds for the computed eigenvalues and eigenvectors.

10.1 Program Text

Program f08jafe

! F08JAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddisna, dstev, nag_wp, x02ajf, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eerrbd, eps
Integer :: i, ifail, info, ldz, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), e(:), rcondz(:), work(:), &

z(:,:), zerrbd(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs, max
! .. Executable Statements ..

Write (nout,*) ’F08JAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
Allocate (d(n),e(n-1),rcondz(n),work(2*n-2),z(ldz,n),zerrbd(n))

! Read the diagonal and off-diagonal elements of the matrix A
! from data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Solve the symmetric tridiagonal eigenvalue problem
! The NAG name equivalent of dstev is f08jaf

Call dstev(’Vectors’,n,d,e,z,ldz,work,info)

If (info==0) Then
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! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
Flush (nout)

! Standardize the eigenvectors so that first elements are non-negative.
Do i = 1, n

If (z(1,i)<0.0_nag_wp) Then
z(1:n,i) = -z(1:n,i)

End If
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

! Get the machine precision, EPS and compute the approximate
! error bound for the computed eigenvalues. Note that for
! the 2-norm, max( abs(D(i)) ) = norm(A), and since the
! eigenvalues are returned in ascending order
! max( abs(D(i)) ) = max( abs(D(1)), abs(D(n)))

eps = x02ajf()
eerrbd = eps*max(abs(d(1)),abs(d(n)))

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the eigenvectors

Call ddisna(’Eigenvectors’,n,n,d,rcondz,info)

! Compute the error estimates for the eigenvectors

Do i = 1, n
zerrbd(i) = eerrbd/rcondz(i)

End Do

! Print the approximate error bounds for the eigenvalues
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimate for the eigenvalues’
Write (nout,99998) eerrbd
Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvectors’
Write (nout,99998) zerrbd(1:n)

Else
Write (nout,99997) ’Failure in DSTEV. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)

End Program f08jafe

10.2 Program Data

F08JAF Example Program Data

4 :Value of N

1.0 4.0 9.0 16.0 :End of diagonal elements
1.0 2.0 3.0 :End of off-diagonal elements
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10.3 Program Results

F08JAF Example Program Results

Eigenvalues
0.6476 3.5470 8.6578 17.1477

Eigenvectors
1 2 3 4

1 0.9396 0.3388 0.0494 0.0034
2 -0.3311 0.8628 0.3781 0.0545
3 0.0853 -0.3648 0.8558 0.3568
4 -0.0167 0.0879 -0.3497 0.9326

Error estimate for the eigenvalues
1.9E-15

Error estimates for the eigenvectors
6.6E-16 6.6E-16 3.7E-16 2.2E-16
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NAG Library Routine Document

F08JBF (DSTEVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JBF (DSTEVX) computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08JBF (JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
Z, LDZ, WORK, IWORK, JFAIL, INFO)

&

INTEGER N, IL, IU, M, LDZ, IWORK(5*N), JFAIL(*), INFO
REAL (KIND=nag_wp) D(*), E(*), VL, VU, ABSTOL, W(N), Z(LDZ,*),

WORK(5*N)
&

CHARACTER(1) JOBZ, RANGE

The routine may be called by its LAPACK name dstevx.

3 Description

F08JBF (DSTEVX) computes the required eigenvalues and eigenvectors of A by reducing the
tridiagonal matrix to diagonal form using the QR algorithm. Bisection is used to determine selected
eigenvalues.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.
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If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

3: N – INTEGER Input

On entry: n, the order of the matrix.

Constraint: N � 0.

4: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix A.

On exit: may be multiplied by a constant factor chosen to avoid over/underflow in computing the
eigenvalues.

5: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ subdiagonal elements of the tridiagonal matrix A.

On exit: may be multiplied by a constant factor chosen to avoid over/underflow in computing the
eigenvalues.

6: VL – REAL (KIND=nag_wp) Input
7: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

8: IL – INTEGER Input
9: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

10: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Ak k1 will be
used in its place. Eigenvalues will be computed most accurately when ABSTOL is set to twice
the underflow threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO > 0,
indicating that some eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See
Demmel and Kahan (1990).

11: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.
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If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

12: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first M elements contain the selected eigenvalues in ascending order.

13: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ;
if an eigenvector fails to converge (INFO > 0), then that column of Z contains the latest
approximation to the eigenvector, and the index of the eigenvector is returned in JFAIL.

If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

14: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JBF
(DSTEVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

15: WORKð5� NÞ – REAL (KIND=nag_wp) array Workspace

16: IWORKð5� NÞ – INTEGER array Workspace

17: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO > 0, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

18: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

The algorithm failed to converge; valueh i eigenvectors did not converge. Their indices are stored
in array JFAIL.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08JBF (DSTEVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08JBF (DSTEVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n2 if JOBZ ¼ N and is proportional to
n3 if JOBZ ¼ V and RANGE ¼ A , otherwise the number of floating-point operations will depend
upon the number of computed eigenvectors.

10 Example

This example finds the eigenvalues in the half-open interval 0; 5ð �, and the corresponding eigenvectors,
of the symmetric tridiagonal matrix

A ¼
1 1 0 0
1 4 2 0
0 2 9 3
0 0 3 16

0B@
1CA:

10.1 Program Text

Program f08jbfe

! F08JBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dstevx, nag_wp, x02amf, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: ifail, il, info, iu, ldz, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), e(:), w(:), work(:), z(:,:)
Integer, Allocatable :: iwork(:), jfail(:)

! .. Executable Statements ..
Write (nout,*) ’F08JBF Example Program Results’
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Write (nout,*)
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
ldz = n
m = n
Allocate (d(n),e(n),w(n),work(5*n),z(ldz,m),iwork(5*n),jfail(n))

! Read the lower and upper bounds of the interval to be searched,
! and read the diagonal and off-diagonal elements of the matrix
! A from data file

Read (nin,*) vl, vu
Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value would be used instead

abstol = 2.0E0_nag_wp*x02amf()

! Solve the symmetric eigenvalue problem
! The NAG name equivalent of dstevx is f08jbf

Call dstevx(’Vectors’,’Values in range’,n,d,e,vl,vu,il,iu,abstol,m,w,z, &
ldz,work,iwork,jfail,info)

If (info>=0) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else

Write (nout,99999) ’Failure in DSTEVX. INFO =’, info
End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))

End Program f08jbfe

10.2 Program Data

F08JBF Example Program Data

4 :Value of N

0.0 5.0 :Values of VL and VU

1.0 4.0 9.0 16.0 :End of diagonal elements
1.0 2.0 3.0 :End of off-diagonal elements
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10.3 Program Results

F08JBF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
0.6476 3.5470

Selected eigenvectors
1 2

1 0.9396 0.3388
2 -0.3311 0.8628
3 0.0853 -0.3648
4 -0.0167 0.0879
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NAG Library Routine Document

F08JCF (DSTEVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the arguments LWORK and LIWORK changed at Mark 20 in the case where JOB ¼ V and N > 1: the
minimum dimension of the array WORK has been reduced whereas the minimum dimension of the array IWORK has been increased.

1 Purpose

F08JCF (DSTEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric tridiagonal matrix. If the eigenvectors are requested, then it uses a divide-and-conquer
algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it
uses the Pal–Walker–Kahan variant of the QL or QR algorithm.

2 Specification

SUBROUTINE F08JCF (JOB, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
INFO)

&

INTEGER N, LDZ, LWORK, IWORK(max(1,LIWORK)), LIWORK, INFO
REAL (KIND=nag_wp) D(*), E(*), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) JOB

The routine may be called by its LAPACK name dstevd.

3 Description

F08JCF (DSTEVD) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric tridiagonal matrix T . In other words, it can compute the spectral factorization of T as

T ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the orthogonal
matrix whose columns are the eigenvectors zi. Thus

Tzi ¼ �izi; i ¼ 1; 2; . . . ; n:

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOB ¼ N
Only eigenvalues are computed.

JOB ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOB ¼ N or V .
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2: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix T .

On exit: the eigenvalues of the matrix T in ascending order.

4: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;Nð Þ.
On entry: the n� 1 off-diagonal elements of the tridiagonal matrix T . The nth element of this
array is used as workspace.

On exit: E is overwritten with intermediate results.

5: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOB ¼ V and at least 1
if JOB ¼ N .

On exit: if JOB ¼ V , Z is overwritten by the orthogonal matrix Z which contains the
eigenvectors of T .

If JOB ¼ N , Z is not referenced.

6: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JCF
(DSTEVD) is called.

Constraints:

if JOB ¼ V , LDZ � max 1;Nð Þ;
if JOB ¼ N , LDZ � 1.

7: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the required minimal size of LWORK.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08JCF
(DSTEVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the WORK array, returns this value as the first entry of the WORK array, and no
error message related to LWORK is issued.

Constraints:

if JOB ¼ N or N � 1, LWORK � 1 or LWORK ¼ �1;
if JOB ¼ V and N > 1, LWORK � N2 þ 4� Nþ 1 or LWORK ¼ �1.

9: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ contains the required minimal size of LIWORK.
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10: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08JCF (DSTEVD) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum
dimension of the IWORK array, returns this value as the first entry of the IWORK array, and no
error message related to LIWORK is issued.

Constraints:

if JOB ¼ N or N � 1, LIWORK � 1 or LIWORK ¼ �1;
if JOB ¼ V and N > 1, LIWORK � 5� Nþ 3 or LIWORK ¼ �1.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

if INFO ¼ i and JOB ¼ N , the algorithm failed to converge; i elements of an intermediate
tridiagonal form did not converge to zero; if INFO ¼ i and JOB ¼ V , then the algorithm failed
to compute an eigenvalue while working on the submatrix lying in rows and column i= Nþ 1ð Þ
through i mod Nþ 1ð Þ.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix T þ Eð Þ, where
Ek k2 ¼ O �ð Þ Tk k2;

and � is the machine precision.

If �i is an exact eigenvalue and ~�i is the corresponding computed value, then

~�i � �i
		 		 � c nð Þ� Tk k2;

where c nð Þ is a modestly increasing function of n.

If zi is the corresponding exact eigenvector, and ~zi is the corresponding computed eigenvector, then the
angle � ~zi; zið Þ between them is bounded as follows:

� ~zi; zið Þ � c nð Þ� Tk k2
min
i6¼j

�i � �j
		 		:

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the
other eigenvalues.

8 Parallelism and Performance

F08JCF (DSTEVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08JCF (DSTEVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

There is no complex analogue of this routine.

10 Example

This example computes all the eigenvalues and eigenvectors of the symmetric tridiagonal matrix T ,
where

T ¼
1:0 1:0 0:0 0:0
1:0 4:0 2:0 0:0
0:0 2:0 9:0 3:0
0:0 0:0 3:0 16:0

0B@
1CA:

10.1 Program Text

Program f08jcfe

! F08JCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dnrm2, dstevd, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: norm
Integer :: i, ifail, info, ldz, liwork, lwork, &

n
Character (1) :: job

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), e(:), work(:), z(:,:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F08JCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
liwork = 5*n + 3
lwork = n*n + 4*n + 1
Allocate (d(n),e(n-1),work(lwork),z(ldz,n),iwork(liwork))

! Read T from data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

Read (nin,*) job

! Calculate all the eigenvalues and eigenvectors of T
! The NAG name equivalent of dstevd is f08jcf

Call dstevd(job,n,d,e,z,ldz,work,lwork,iwork,liwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors
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Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors
Do i = 1, n

! The NAG name equivalent of dnrm2 is f06ejf
norm = dnrm2(n,z(1,i),1)
If (z(1,i)<0.0_nag_wp) Then

norm = -norm
End If
z(1:n,i) = z(1:n,i)/norm

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

End If

99999 Format (3X,(8F8.4))
End Program f08jcfe

10.2 Program Data

F08JCF Example Program Data
4 :Value of N
1.0 4.0 9.0 16.0
1.0 2.0 3.0 :End of T
’V’ :Value of JOB

10.3 Program Results

F08JCF Example Program Results

Eigenvalues
0.6476 3.5470 8.6578 17.1477

Eigenvectors
1 2 3 4

1 0.9396 0.3388 0.0494 0.0034
2 -0.3311 0.8628 0.3781 0.0545
3 0.0853 -0.3648 0.8558 0.3568
4 -0.0167 0.0879 -0.3497 0.9326
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NAG Library Routine Document

F08JDF (DSTEVR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JDF (DSTEVR) computes selected eigenvalues and, optionally, eigenvectors of a real n by n
symmetric tridiagonal matrix T . Eigenvalues and eigenvectors can be selected by specifying either a
range of values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08JDF (JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

&

INTEGER N, IL, IU, M, LDZ, ISUPPZ(*), LWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) D(*), E(*), VL, VU, ABSTOL, W(*), Z(LDZ,*),
WORK(max(1,LWORK))

&

CHARACTER(1) JOBZ, RANGE

The routine may be called by its LAPACK name dstevr.

3 Description

Whenever possible F08JDF (DSTEVR) computes the eigenspectrum using Relatively Robust
Representations. F08JDF (DSTEVR) computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various ‘good’ LDLT representations (also known as Relatively Robust
Representations). Gram–Schmidt orthogonalization is avoided as far as possible. More specifically, the
various steps of the algorithm are as follows. For the ith unreduced block of T :

(a) compute T � �iI ¼ LiDiL
T
i , such that LiDiL

T
i is a relatively robust representation,

(b) compute the eigenvalues, �j, of LiDiL
T
i to high relative accuracy by the dqds algorithm,

(c) if there is a cluster of close eigenvalues, ‘choose’ �i close to the cluster, and go to (a),

(d) given the approximate eigenvalue �j of LiDiL
T
i , compute the corresponding eigenvector by

forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the argument ABSTOL. For more details, see
Dhillon (1997) and Parlett and Dhillon (2000).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Barlow J and Demmel J W (1990) Computing accurate eigensystems of scaled diagonally dominant
matrices SIAM J. Numer. Anal. 27 762–791

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Dhillon I (1997) A new O n2
� �

algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem
Computer Science Division Technical Report No. UCB//CSD-97-971 UC Berkeley
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Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Parlett B N and Dhillon I S (2000) Relatively robust representations of symmetric tridiagonals Linear
Algebra Appl. 309 121–151

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

3: N – INTEGER Input

On entry: n, the order of the matrix.

Constraint: N � 0.

4: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix T .

On exit: may be multiplied by a constant factor chosen to avoid over/underflow in computing the
eigenvalues.

5: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ subdiagonal elements of the tridiagonal matrix T .

On exit: may be multiplied by a constant factor chosen to avoid over/underflow in computing the
eigenvalues.

6: VL – REAL (KIND=nag_wp) Input
7: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.
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8: IL – INTEGER Input
9: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

10: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place. See Demmel and Kahan (1990).

If high relative accuracy is important, set ABSTOL to X02AMFð Þ, although doing so does not
currently guarantee that eigenvalues are computed to high relative accuracy. See Barlow and
Demmel (1990) for a discussion of which matrices can define their eigenvalues to high relative
accuracy.

11: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

12: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the first M elements contain the selected eigenvalues in ascending order.

13: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , the first M columns of Z contain the orthonormal eigenvectors of the
matrix A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ.
If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

14: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JDF
(DSTEVR) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.
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15: ISUPPZð�Þ – INTEGER array Output

Note: the dimension of the array ISUPPZ must be at least max 1; 2�Mð Þ.
On exit: the support of the eigenvectors in Z, i.e., the indices indicating the nonzero elements in
Z. The ith eigenvector is nonzero only in elements ISUPPZð2� i� 1Þ through ISUPPZð2� iÞ.
Implemented only for RANGE ¼ A or I and IU� IL ¼ N� 1.

16: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08JDF
(DSTEVR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraint: LWORK � max 1; 20� Nð Þ.

18: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum LIWORK.

19: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08JDF (DSTEVR) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraint: LIWORK � max 1; 120� Nð Þ.

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

An internal error has occurred in this routine. Please refer to INFO in F08JJF (DSTEBZ).

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.
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8 Parallelism and Performance

F08JDF (DSTEVR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08JDF (DSTEVR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n2 if JOBZ ¼ N and is proportional to
n3 if JOBZ ¼ V and RANGE ¼ A , otherwise the number of floating-point operations will depend
upon the number of computed eigenvectors.

10 Example

This example finds the eigenvalues with indices in the range 2; 3½ �, and the corresponding eigenvectors,
of the symmetric tridiagonal matrix

T ¼
1 1 0 0
1 4 2 0
0 2 9 3
0 0 3 16

0B@
1CA:

10.1 Program Text

Program f08jdfe

! F08JDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dstevr, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: ifail, il, info, iu, ldz, liwork, &

lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: d(:), e(:), w(:), work(:), z(:,:)
Real (Kind=nag_wp) :: rdum(1)
Integer :: idum(1)
Integer, Allocatable :: isuppz(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint

! .. Executable Statements ..
Write (nout,*) ’F08JDF Example Program Results’
Write (nout,*)

! Skip heading in data file and read N and the lower and upper
! indices of the eigenvalues to be found

Read (nin,*)
Read (nin,*) n, il, iu
ldz = n
m = n
Allocate (d(n),e(n-1),w(n),z(ldz,m),isuppz(2*n))
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! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1

! The NAG name equivalent of dstevr is f08jdf
Call dstevr(’Vectors’,’Indices’,n,d,e,vl,vu,il,iu,abstol,m,w,z,ldz, &

isuppz,rdum,lwork,idum,liwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max(20*n,nint(rdum(1)))
liwork = max(10*n,idum(1))
Allocate (work(lwork),iwork(liwork))

! Read the diagonal and off-diagonal elements of the matrix A
! from data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead

abstol = zero

! Solve the symmetric tridiagonal eigenvalue problem
! The NAG name equivalent of dstevr is f08jdf

Call dstevr(’Vectors’,’Indices’,n,d,e,vl,vu,il,iu,abstol,m,w,z,ldz, &
isuppz,work,lwork,iwork,liwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Selected eigenvalues’
Write (nout,99999) w(1:m)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

Else
Write (nout,99998) ’Failure in DSTEVR. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (1X,A,I5)

End Program f08jdfe

10.2 Program Data

F08JDF Example Program Data

4 2 3 :Values of N, IL and IU

1.0 4.0 9.0 16.0 :End of diagonal elements
1.0 2.0 3.0 :End of off-diagonal elements
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10.3 Program Results

F08JDF Example Program Results

Selected eigenvalues
3.5470 8.6578

Selected eigenvectors
1 2

1 0.3388 0.0494
2 0.8628 0.3781
3 -0.3648 0.8558
4 0.0879 -0.3497
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NAG Library Routine Document

F08JEF (DSTEQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JEF (DSTEQR) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric tridiagonal matrix, or of a real symmetric matrix which has been reduced to tridiagonal form.

2 Specification

SUBROUTINE F08JEF (COMPZ, N, D, E, Z, LDZ, WORK, INFO)

INTEGER N, LDZ, INFO
REAL (KIND=nag_wp) D(*), E(*), Z(LDZ,*), WORK(*)
CHARACTER(1) COMPZ

The routine may be called by its LAPACK name dsteqr.

3 Description

F08JEF (DSTEQR) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric tridiagonal matrix T . In other words, it can compute the spectral factorization of T as

T ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the orthogonal
matrix whose columns are the eigenvectors zi. Thus

Tzi ¼ �izi; i ¼ 1; 2; . . . ; n:

The routine may also be used to compute all the eigenvalues and eigenvectors of a real symmetric
matrix A which has been reduced to tridiagonal form T :

A ¼ QTQT; where Q is orthogonal
¼ QZð Þ� QZð ÞT:

In this case, the matrix Q must be formed explicitly and passed to F08JEF (DSTEQR), which must be
called with COMPZ ¼ V . The routines which must be called to perform the reduction to tridiagonal
form and form Q are:

full matrix F08FEF (DSYTRD) and F08FFF (DORGTR)
full matrix, packed storage F08GEF (DSPTRD) and F08GFF (DOPGTR)
band matrix F08HEF (DSBTRD) with VECT ¼ V .

F08JEF (DSTEQR) uses the implicitly shifted QR algorithm, switching between the QR and QL
variants in order to handle graded matrices effectively (see Greenbaum and Dongarra (1980)). The
eigenvectors are normalized so that zik k2 ¼ 1, but are determined only to within a factor 
1.
If only the eigenvalues of T are required, it is more efficient to call F08JFF (DSTERF) instead. If T is
positive definite, small eigenvalues can be computed more accurately by F08JGF (DPTEQR).
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Greenbaum A and Dongarra J J (1980) Experiments with QR/QL methods for the symmetric triangular
eigenproblem LAPACK Working Note No. 17 (Technical Report CS-89-92) University of Tennessee,
Knoxville http://www.netlib.org/lapack/lawnspdf/lawn17.pdf

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

5 Arguments

1: COMPZ – CHARACTER(1) Input

On entry: indicates whether the eigenvectors are to be computed.

COMPZ ¼ N
Only the eigenvalues are computed (and the array Z is not referenced).

COMPZ ¼ V
The eigenvalues and eigenvectors of A are computed (and the array Z must contain the
matrix Q on entry).

COMPZ ¼ I
The eigenvalues and eigenvectors of T are computed (and the array Z is initialized by the
routine).

Constraint: COMPZ ¼ N , V or I .

2: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the tridiagonal matrix T .

On exit: the n eigenvalues in ascending order, unless INFO > 0 (in which case see Section 6).

4: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the off-diagonal elements of the tridiagonal matrix T .

On exit: E is overwritten.

5: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , Z must contain the orthogonal matrix Q from the reduction to
tridiagonal form.

If COMPZ ¼ I , Z need not be set.

On exit: if COMPZ ¼ V or I , the n required orthonormal eigenvectors stored as columns of Z;
the ith column corresponds to the ith eigenvalue, where i ¼ 1; 2; . . . ; n, unless INFO > 0.

If COMPZ ¼ N , Z is not referenced.
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6: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JEF
(DSTEQR) is called.

Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
if COMPZ ¼ N , LDZ � 1.

7: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1; 2� N� 1ð Þð Þ if COMPZ ¼ V
or I and at least 1 if COMPZ ¼ N .

If COMPZ ¼ N , WORK is not referenced.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm has failed to find all the eigenvalues after a total of 30� N iterations. In this case,
D and E contain on exit the diagonal and off-diagonal elements, respectively, of a tridiagonal
matrix orthogonally similar to T . If INFO ¼ i, then i off-diagonal elements have not converged
to zero.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix T þ Eð Þ, where
Ek k2 ¼ O �ð Þ Tk k2;

and � is the machine precision.

If �i is an exact eigenvalue and ~�i is the corresponding computed value, then

~�i � �i
		 		 � c nð Þ� Tk k2;

where c nð Þ is a modestly increasing function of n.

If zi is the corresponding exact eigenvector, and ~zi is the corresponding computed eigenvector, then the
angle � ~zi; zið Þ between them is bounded as follows:

� ~zi; zið Þ � c nð Þ� Tk k2
min
i6¼j

�i � �j
		 		:

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the
other eigenvalues.

8 Parallelism and Performance

F08JEF (DSTEQR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F08JEF (DSTEQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is typically about 24n2 if COMPZ ¼ N and about 7n3 if
COMPZ ¼ V or I , but depends on how rapidly the algorithm converges. When COMPZ ¼ N , the
operations are all performed in scalar mode; the additional operations to compute the eigenvectors when
COMPZ ¼ V or I can be vectorized and on some machines may be performed much faster.

The complex analogue of this routine is F08JSF (ZSTEQR).

10 Example

This example computes all the eigenvalues and eigenvectors of the symmetric tridiagonal matrix T ,
where

T ¼
�6:99 �0:44 0:00 0:00
�0:44 7:92 �2:63 0:00
0:00 �2:63 2:34 �1:18
0:00 0:00 �1:18 0:32

0B@
1CA:

See also the examples for F08FFF (DORGTR), F08GFF (DOPGTR) or F08HEF (DSBTRD), which
illustrate the use of this routine to compute the eigenvalues and eigenvectors of a full or band
symmetric matrix.

10.1 Program Text

Program f08jefe

! F08JEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsteqr, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, ldz, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), e(:), work(:), z(:,:)

! .. Executable Statements ..
Write (nout,*) ’F08JEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
Allocate (d(n),e(n-1),work(2*n-2),z(ldz,n))

! Read T from data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Calculate all the eigenvalues and eigenvectors of T
! The NAG name equivalent of dsteqr is f08jef

Call dsteqr(’I’,n,d,e,z,ldz,work,info)
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Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! Standardize the eigenvectors so that first elements are non-negative.
Do i = 1, n

If (z(1,i)<0.0_nag_wp) Then
z(1:n,i) = -z(1:n,i)

End If
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

End If

99999 Format (3X,(8F8.4))
End Program f08jefe

10.2 Program Data

F08JEF Example Program Data
4 :Value of N

-6.99 7.92 2.34 0.32
-0.44 -2.63 -1.18 :End of matrix T

10.3 Program Results

F08JEF Example Program Results

Eigenvalues
-7.0037 -0.4059 2.0028 8.9968

Eigenvectors
1 2 3 4

1 0.9995 0.0109 0.0167 0.0255
2 0.0310 -0.1627 -0.3408 -0.9254
3 0.0089 -0.5170 -0.7696 0.3746
4 0.0014 -0.8403 0.5397 -0.0509
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NAG Library Routine Document

F08JFF (DSTERF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JFF (DSTERF) computes all the eigenvalues of a real symmetric tridiagonal matrix.

2 Specification

SUBROUTINE F08JFF (N, D, E, INFO)

INTEGER N, INFO
REAL (KIND=nag_wp) D(*), E(*)

The routine may be called by its LAPACK name dsterf.

3 Description

F08JFF (DSTERF) computes all the eigenvalues of a real symmetric tridiagonal matrix, using a square-
root-free variant of the QR algorithm.

The routine uses an explicit shift, and, like F08JEF (DSTEQR), switches between the QR and QL
variants in order to handle graded matrices effectively (see Greenbaum and Dongarra (1980)).

4 References

Greenbaum A and Dongarra J J (1980) Experiments with QR/QL methods for the symmetric triangular
eigenproblem LAPACK Working Note No. 17 (Technical Report CS-89-92) University of Tennessee,
Knoxville http://www.netlib.org/lapack/lawnspdf/lawn17.pdf

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

2: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the tridiagonal matrix T .

On exit: the n eigenvalues in ascending order, unless INFO > 0 (in which case see Section 6).

3: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the off-diagonal elements of the tridiagonal matrix T .

On exit: E is overwritten.

4: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm has failed to find all the eigenvalues after a total of 30� N iterations. If INFO ¼ i,
then on exit i elements of E have not converged to zero.

7 Accuracy

The computed eigenvalues are exact for a nearby matrix T þ Eð Þ, where
Ek k2 ¼ O �ð Þ Tk k2;

and � is the machine precision.

If �i is an exact eigenvalue and ~�i is the corresponding computed value, then

~�i � �i
		 		 � c nð Þ� Tk k2;

where c nð Þ is a modestly increasing function of n.

8 Parallelism and Performance

F08JFF (DSTERF) is not threaded in any implementation.

9 Further Comments

The total number of floating-point operations is typically about 14n2, but depends on how rapidly the
algorithm converges. The operations are all performed in scalar mode.

There is no complex analogue of this routine.

10 Example

This example computes all the eigenvalues of the symmetric tridiagonal matrix T , where

T ¼
�6:99 �0:44 0:00 0:00
�0:44 7:92 �2:63 0:00
0:00 �2:63 2:34 �1:18
0:00 0:00 �1:18 0:32

0B@
1CA:

10.1 Program Text

Program f08jffe

! F08JFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsterf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: info, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), e(:)
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! .. Executable Statements ..
Write (nout,*) ’F08JFF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (d(n),e(n-1))

! Read T from data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Calculate the eigenvalues of T
! The NAG name equivalent of dsterf is f08jff

Call dsterf(n,d,e,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)

End If

99999 Format (3X,(9F8.4))
End Program f08jffe

10.2 Program Data

F08JFF Example Program Data
4 :Value of N

-6.99 7.92 2.34 0.32
-0.44 -2.63 -1.18 :End of matrix T

10.3 Program Results

F08JFF Example Program Results

Eigenvalues
-7.0037 -0.4059 2.0028 8.9968
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NAG Library Routine Document

F08JGF (DPTEQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the argument WORK changed at Mark 20: the length of WORK needs to be increased.

1 Purpose

F08JGF (DPTEQR) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric positive definite tridiagonal matrix, or of a real symmetric positive definite matrix which has
been reduced to tridiagonal form.

2 Specification

SUBROUTINE F08JGF (COMPZ, N, D, E, Z, LDZ, WORK, INFO)

INTEGER N, LDZ, INFO
REAL (KIND=nag_wp) D(*), E(*), Z(LDZ,*), WORK(4*N)
CHARACTER(1) COMPZ

The routine may be called by its LAPACK name dpteqr.

3 Description

F08JGF (DPTEQR) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric positive definite tridiagonal matrix T . In other words, it can compute the spectral
factorization of T as

T ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the orthogonal
matrix whose columns are the eigenvectors zi. Thus

Tzi ¼ �izi; i ¼ 1; 2; . . . ; n:

The routine may also be used to compute all the eigenvalues and eigenvectors of a real symmetric
positive definite matrix A which has been reduced to tridiagonal form T :

A ¼ QTQT; where Q is orthogonal
¼ QZð Þ� QZð ÞT:

In this case, the matrix Q must be formed explicitly and passed to F08JGF (DPTEQR), which must be
called with COMPZ ¼ V . The routines which must be called to perform the reduction to tridiagonal
form and form Q are:

full matrix F08FEF (DSYTRD) and F08FFF (DORGTR)
full matrix, packed storage F08GEF (DSPTRD) and F08GFF (DOPGTR)
band matrix F08HEF (DSBTRD) with VECT ¼ V .

F08JGF (DPTEQR) first factorizes T as LDLT where L is unit lower bidiagonal and D is diagonal. It
forms the bidiagonal matrix B ¼ LD1

2 , and then calls F08MEF (DBDSQR) to compute the singular
values of B which are the same as the eigenvalues of T . The method used by the routine allows high
relative accuracy to be achieved in the small eigenvalues of T . The eigenvectors are normalized so that
zik k2 ¼ 1, but are determined only to within a factor 
1.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08JGF

Mark 26 F08JGF.1



4 References

Barlow J and Demmel J W (1990) Computing accurate eigensystems of scaled diagonally dominant
matrices SIAM J. Numer. Anal. 27 762–791

5 Arguments

1: COMPZ – CHARACTER(1) Input

On entry: indicates whether the eigenvectors are to be computed.

COMPZ ¼ N
Only the eigenvalues are computed (and the array Z is not referenced).

COMPZ ¼ V
The eigenvalues and eigenvectors of A are computed (and the array Z must contain the
matrix Q on entry).

COMPZ ¼ I
The eigenvalues and eigenvectors of T are computed (and the array Z is initialized by the
routine).

Constraint: COMPZ ¼ N , V or I .

2: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the tridiagonal matrix T .

On exit: the n eigenvalues in descending order, unless INFO > 0, in which case D is overwritten.

4: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the off-diagonal elements of the tridiagonal matrix T .

On exit: E is overwritten.

5: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , Z must contain the orthogonal matrix Q from the reduction to
tridiagonal form.

If COMPZ ¼ I , Z need not be set.

On exit: if COMPZ ¼ V or I , the n required orthonormal eigenvectors stored as columns of Z;
the ith column corresponds to the ith eigenvalue, where i ¼ 1; 2; . . . ; n, unless INFO > 0.

If COMPZ ¼ N , Z is not referenced.

6: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JGF
(DPTEQR) is called.
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Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
if COMPZ ¼ N , LDZ � 1.

7: WORKð4� NÞ – REAL (KIND=nag_wp) array Workspace

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the leading minor of order i is not positive definite and the Cholesky factorization
of T could not be completed. Hence T itself is not positive definite.

If INFO ¼ Nþ i, the algorithm to compute the singular values of the Cholesky factor B failed to
converge; i off-diagonal elements did not converge to zero.

7 Accuracy

The eigenvalues and eigenvectors of T are computed to high relative accuracy which means that if they
vary widely in magnitude, then any small eigenvalues (and corresponding eigenvectors) will be
computed more accurately than, for example, with the standard QR method. However, the reduction to
tridiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative
accuracy in the small eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

To be more precise, let H be the tridiagonal matrix defined by H ¼ DTD, where D is diagonal with

dii ¼ t
�12
ii , and hii ¼ 1 for all i. If �i is an exact eigenvalue of T and ~�i is the corresponding computed

value, then

~�i � �i
		 		 � c nð Þ��2 Hð Þ�i

where c nð Þ is a modestly increasing function of n, � is the machine precision, and �2 Hð Þ is the
condition number of H with respect to inversion defined by: �2 Hð Þ ¼ Hk k � H�1

�� ��.
If zi is the corresponding exact eigenvector of T , and ~zi is the corresponding computed eigenvector,
then the angle � ~zi; zið Þ between them is bounded as follows:

� ~zi; zið Þ � c nð Þ��2 Hð Þ
relgapi

where relgapi is the relative gap between �i and the other eigenvalues, defined by

relgapi ¼ min
i6¼j

�i � �j
		 		
�i þ �j
� �:

8 Parallelism and Performance

F08JGF (DPTEQR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08JGF (DPTEQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08JGF

Mark 26 F08JGF.3



Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is typically about 30n2 if COMPZ ¼ N and about 6n3 if
COMPZ ¼ V or I , but depends on how rapidly the algorithm converges. When COMPZ ¼ N , the
operations are all performed in scalar mode; the additional operations to compute the eigenvectors when
COMPZ ¼ V or I can be vectorized and on some machines may be performed much faster.

The complex analogue of this routine is F08JUF (ZPTEQR).

10 Example

This example computes all the eigenvalues and eigenvectors of the symmetric positive definite
tridiagonal matrix T , where

T ¼
4:16 3:17 0:00 0:00
3:17 5:25 �0:97 0:00
0:00 �0:97 1:09 0:55
0:00 0:00 0:55 0:62

0B@
1CA:

10.1 Program Text

Program f08jgfe

! F08JGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, dpteqr, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, ifail, info, k, ldz, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), e(:), work(:), z(:,:)

! .. Executable Statements ..
Write (nout,*) ’F08JGF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
Allocate (d(n),e(n-1),work(4*n),z(ldz,n))

! Read T from data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Calculate all the eigenvalues and eigenvectors of T
! The NAG name equivalent of dpteqr is f08jgf

Call dpteqr(’I’,n,d,e,z,ldz,work,info)

Write (nout,*)
If (info>0 .And. info<=n) Then

Write (nout,*) ’T is not positive definite.’
Else If (info>n) Then

Write (nout,*) ’Failure to converge.’
Else
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! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors, largest positive
Do i = 1, n

Call blas_damax_val(n,z(1,i),1,k,r)
If (z(k,i)<zero) Then

z(1:n,i) = -z(1:n,i)
End If

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

End If

99999 Format (3X,(8F8.4))
End Program f08jgfe

10.2 Program Data

F08JGF Example Program Data
4 :Value of N
4.16 5.25 1.09 0.62
3.17 -0.97 0.55 :End of matrix T

10.3 Program Results

F08JGF Example Program Results

Eigenvalues
8.0023 1.9926 1.0014 0.1237

Eigenvectors
1 2 3 4

1 0.6326 0.6245 -0.4191 0.1847
2 0.7668 -0.4270 0.4176 -0.2352
3 -0.1082 0.6071 0.4594 -0.6393
4 -0.0081 0.2432 0.6625 0.7084
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NAG Library Routine Document

F08JHF (DSTEDC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JHF (DSTEDC) computes all the eigenvalues and, optionally, all the eigenvectors of a real n by n
symmetric tridiagonal matrix, or of a real full or banded symmetric matrix which has been reduced to
tridiagonal form.

2 Specification

SUBROUTINE F08JHF (COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
INFO)

&

INTEGER N, LDZ, LWORK, IWORK(max(1,LIWORK)), LIWORK, INFO
REAL (KIND=nag_wp) D(*), E(*), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) COMPZ

The routine may be called by its LAPACK name dstedc.

3 Description

F08JHF (DSTEDC) computes all the eigenvalues and, optionally, the eigenvectors of a real symmetric
tridiagonal matrix T . That is, the routine computes the spectral factorization of T given by

T ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues, �i, of T and Z is an
orthogonal matrix whose columns are the eigenvectors, zi, of T . Thus

Tzi ¼ �izi; i ¼ 1; 2; . . . ; n:

The routine may also be used to compute all the eigenvalues and vectors of a real full, or banded,
symmetric matrix A which has been reduced to tridiagonal form T as

A ¼ QTQT;

where Q is orthogonal. The spectral factorization of A is then given by

A ¼ QZð Þ� QZð ÞT:

In this case Q must be formed explicitly and passed to F08JHF (DSTEDC) in the array Z, and the
routine called with COMPZ ¼ V . Routines which may be called to form T and Q are

full matrix F08FEF (DSYTRD) and F08FFF (DORGTR)
full matrix, packed storage F08GEF (DSPTRD) and F08GFF (DOPGTR)
band matrix F08HEF (DSBTRD), with VECT ¼ V

When only eigenvalues are required then this routine calls F08JFF (DSTERF) to compute the
eigenvalues of the tridiagonal matrix T , but when eigenvectors of T are also required and the matrix is
not too small, then a divide and conquer method is used, which can be much faster than F08JEF
(DSTEQR), although more storage is required.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: COMPZ – CHARACTER(1) Input

On entry: indicates whether the eigenvectors are to be computed.

COMPZ ¼ N
Only the eigenvalues are computed (and the array Z is not referenced).

COMPZ ¼ V
The eigenvalues and eigenvectors of A are computed (and the array Z must contain the
matrix Q on entry).

COMPZ ¼ I
The eigenvalues and eigenvectors of T are computed (and the array Z is initialized by the
routine).

Constraint: COMPZ ¼ N , V or I .

2: N – INTEGER Input

On entry: n, the order of the symmetric tridiagonal matrix T .

Constraint: N � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the tridiagonal matrix.

On exit: if INFO ¼ 0, the eigenvalues in ascending order.

4: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the subdiagonal elements of the tridiagonal matrix.

On exit: E is overwritten.

5: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I , and
at least 1 otherwise.

On entry: if COMPZ ¼ V , Z must contain the orthogonal matrix Q used in the reduction to
tridiagonal form.

On exit: if COMPZ ¼ V , Z contains the orthonormal eigenvectors of the original symmetric
matrix A, and if COMPZ ¼ I , Z contains the orthonormal eigenvectors of the symmetric
tridiagonal matrix T .

If COMPZ ¼ N , Z is not referenced.

6: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JHF
(DSTEDC) is called.
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Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

7: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08JHF
(DSTEDC) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraints: if LWORK 6¼ �1,
if COMPZ ¼ N or N � 1, LWORK must be at least 1;
if COMPZ ¼ V and N > 1,
LWORK must be at least 1þ 3� Nþ 2� N� lg Nð Þ þ 4� N2

� �
, where lg Nð Þ ¼ smallest

integer k such that 2k � N;
if COMPZ ¼ I and N > 1, LWORK must be at least 1þ 4� Nþ N2

� �
.

Note: that for COMPZ ¼ V or I then if N is less than or equal to the minimum divide size,
usually 25, then LWORK need only be max 1; 2� N� 1ð Þð Þ.

9: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum LIWORK.

10: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08JHF (DSTEDC) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraints: if LIWORK 6¼ �1,
if COMPZ ¼ N or N � 1, LIWORK must be at least 1;
if COMPZ ¼ V and N > 1, LIWORK must be at least 6þ 6� Nþ 5� N� lg Nð Þð Þ;
if COMPZ ¼ I and N > 1, LIWORK must be at least 3þ 5� Nð Þ.

Note: that for COMPZ ¼ V or I , then if N is less than or equal to the minimum divide size,
usually 25, then LIWORK need only be 1.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and
columns INFO= Nþ 1ð Þ through INFO mod Nþ 1ð Þ.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix T þ Eð Þ, where
Ek k2 ¼ O �ð Þ Tk k2;

and � is the machine precision.

If �i is an exact eigenvalue and ~�i is the corresponding computed value, then

~�i � �i
		 		 � c nð Þ� Tk k2;

where c nð Þ is a modestly increasing function of n.

If zi is the corresponding exact eigenvector, and ~zi is the corresponding computed eigenvector, then the
angle � ~zi; zið Þ between them is bounded as follows:

� ~zi; zið Þ � c nð Þ� Tk k2
min
i6¼j

�i � �j
		 		:

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the
other eigenvalues.

See Section 4.7 of Anderson et al. (1999) for further details. See also F08FLF (DDISNA).

8 Parallelism and Performance

F08JHF (DSTEDC) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08JHF (DSTEDC) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If only eigenvalues are required, the total number of floating-point operations is approximately
proportional to n2. When eigenvectors are required the number of operations is bounded above by
approximately the same number of operations as F08JEF (DSTEQR), but for large matrices F08JHF
(DSTEDC) is usually much faster.

The complex analogue of this routine is F08JVF (ZSTEDC).

10 Example

This example finds all the eigenvalues and eigenvectors of the symmetric band matrix

A ¼
4:99 0:04 0:22 0
0:04 1:05 �0:79 1:04
0:22 �0:79 �2:31 �1:30
0 1:04 �1:30 �0:43

0B@
1CA:

A is first reduced to tridiagonal form by a call to F08HEF (DSBTRD).
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10.1 Program Text

Program f08jhfe

! F08JHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsbtrd, dstedc, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Integer :: i, ifail, info, j, kd, ldab, ldz, &

lgn, liwork, lwork, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), d(:), e(:), work(:), z(:,:)
Real (Kind=nag_wp) :: rdum(1)
Integer :: idum(1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: ceiling, log, max, min, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08JHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
ldz = n
lgn = ceiling(log(real(n,kind=nag_wp))/log(2.0E0_nag_wp))
Allocate (ab(ldab,n),d(n),e(n-1),z(ldz,n))

! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1

! The NAG name equivalent of dstedc is f08jhf
Call dstedc(’V’,n,d,e,z,ldz,rdum,lwork,idum,liwork,info)

! Make sure that there is enough workspace.
lwork = max(1+3*n+2*n*lgn+4*n*n,nint(rdum(1)))
liwork = max(6+6*n+5*n*lgn,idum(1))
Allocate (work(lwork),iwork(liwork))

! Read the upper or lower triangular part of the band matrix A
! from data file

If (uplo==’U’) Then
Do i = 1, n

Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))
End Do

Else If (uplo==’L’) Then
Do i = 1, n

Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)
End Do

End If

! Reduce A to tridiagonal form T = (Z**T)*A*Z, and form Z
! The NAG name equivalent of dsbtrd is f08hef

Call dsbtrd(’V’,uplo,n,kd,ab,ldab,d,e,z,ldz,work,info)

! Calculate all the eigenvalues and eigenvectors of A,
! from T and Z
! The NAG name equivalent of dstedc is f08jhf

Call dstedc(’V’,n,d,e,z,ldz,work,lwork,iwork,liwork,info)

If (info==0) Then
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! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)

Write (nout,*)
Flush (nout)

! Standardize the eigenvectors so that first elements are non-negative.
Do i = 1, n

If (z(1,i)<0.0_nag_wp) Then
z(1:n,i) = -z(1:n,i)

End If
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,z,ldz,’Eigenvectors’,ifail)

Else
Write (nout,99998) ’Failure in DSTEDC. INFO = ’, info

End If

99999 Format ((3X,8F8.4))
99998 Format (1X,A,I10)

End Program f08jhfe

10.2 Program Data

F08JHF Example Program Data

4 2 :Values of N and KD

4.99 0.04 0.22
1.05 -0.79 1.04

-2.31 -1.30
-0.43 :End of matrix A

10.3 Program Results

F08JHF Example Program Results

Eigenvalues
-2.9943 -0.7000 1.9974 4.9969

Eigenvectors
1 2 3 4

1 0.0251 0.0162 0.0113 0.9995
2 -0.0656 -0.5859 0.8077 0.0020
3 -0.9002 -0.3135 -0.3006 0.0311
4 -0.4298 0.7471 0.5070 -0.0071
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NAG Library Routine Document

F08JJF (DSTEBZ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JJF (DSTEBZ) computes some (or all) of the eigenvalues of a real symmetric tridiagonal matrix, by
bisection.

2 Specification

SUBROUTINE F08JJF (RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M,
NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)

&

INTEGER N, IL, IU, M, NSPLIT, IBLOCK(N), ISPLIT(N),
IWORK(3*N), INFO

&

REAL (KIND=nag_wp) VL, VU, ABSTOL, D(*), E(*), W(N), WORK(4*N)
CHARACTER(1) RANGE, ORDER

The routine may be called by its LAPACK name dstebz.

3 Description

F08JJF (DSTEBZ) uses bisection to compute some or all of the eigenvalues of a real symmetric
tridiagonal matrix T .

It searches for zero or negligible off-diagonal elements of T to see if the matrix splits into block
diagonal form:

T ¼

T1
T2

:
:
:
Tp

0BBBBB@

1CCCCCA:

It performs bisection on each of the blocks Ti and returns the block index of each computed eigenvalue,
so that a subsequent call to F08JKF (DSTEIN) to compute eigenvectors can also take advantage of the
block structure.

4 References

Kahan W (1966) Accurate eigenvalues of a symmetric tridiagonal matrix Report CS41 Stanford
University

5 Arguments

1: RANGE – CHARACTER(1) Input

On entry: indicates which eigenvalues are required.

RANGE ¼ A
All the eigenvalues are required.

RANGE ¼ V
All the eigenvalues in the half-open interval (VL,VU] are required.
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RANGE ¼ I
Eigenvalues with indices IL to IU are required.

Constraint: RANGE ¼ A , V or I .

2: ORDER – CHARACTER(1) Input

On entry: indicates the order in which the eigenvalues and their block numbers are to be stored.

ORDER ¼ B
The eigenvalues are to be grouped by split-off block and ordered from smallest to largest
within each block.

ORDER ¼ E
The eigenvalues for the entire matrix are to be ordered from smallest to largest.

Constraint: ORDER ¼ B or E .

3: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

4: VL – REAL (KIND=nag_wp) Input
5: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds, respectively, of the half-open interval
(VL,VU] within which the required eigenvalues lie.

If RANGE ¼ A or I , VL is not referenced.

Constraint: if RANGE ¼ V , VL < VU.

6: IL – INTEGER Input
7: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices of the first and last eigenvalues, respectively, to be
computed (assuming that the eigenvalues are in ascending order).

If RANGE ¼ A or V , IL is not referenced.

Constraint: if RANGE ¼ I , 1 � IL � IU � N.

8: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute tolerance to which each eigenvalue is required. An eigenvalue (or cluster)
is considered to have converged if it lies in an interval of width � ABSTOL. If ABSTOL � 0:0,
then the tolerance is taken as machine precision� Tk k1.

9: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the tridiagonal matrix T .

10: Eð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the off-diagonal elements of the tridiagonal matrix T .

11: M – INTEGER Output

On exit: m, the actual number of eigenvalues found.
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12: NSPLIT – INTEGER Output

On exit: the number of diagonal blocks which constitute the tridiagonal matrix T .

13: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the required eigenvalues of the tridiagonal matrix T stored in Wð1Þ to WðmÞ.

14: IBLOCKðNÞ – INTEGER array Output

On exit: at each row/column j where EðjÞ is zero or negligible, T is considered to split into a
block diagonal matrix and IBLOCKðiÞ contains the block number of the eigenvalue stored in
WðiÞ, for i ¼ 1; 2; . . . ;m. Note that IBLOCKðiÞ < 0 for some i whenever INFO ¼ 1 or 3 (see
Section 6) and RANGE ¼ A or V .

15: ISPLITðNÞ – INTEGER array Output

On exit: the leading NSPLIT elements contain the points at which T splits up into sub-matrices
as follows. The first sub-matrix consists of rows/columns 1 to ISPLITð1Þ, the second sub-matrix
consists of rows/columns ISPLITð1Þ þ 1 to ISPLITð2Þ, . . ., and the NSPLIT(th) sub-matrix
consists of rows/columns ISPLITðNSPLIT� 1Þ þ 1 to ISPLITðNSPLITÞ ( ¼ n).

16: WORKð4� NÞ – REAL (KIND=nag_wp) array Workspace

17: IWORKð3� NÞ – INTEGER array Workspace

18: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

If RANGE ¼ A or V , the algorithm failed to compute some (or all) of the required eigenvalues
to the required accuracy. More precisely, IBLOCKðiÞ < 0 indicates that eigenvalue i (stored in
WðiÞ) failed to converge.

INFO ¼ 2

If RANGE ¼ I , the algorithm failed to compute some (or all) of the required eigenvalues. Try
calling the routine again with RANGE ¼ A .

INFO ¼ 3

If RANGE ¼ I , see the description above for INFO ¼ 2.

If RANGE ¼ A or V , see the description above for INFO ¼ 1.

INFO ¼ 4

No eigenvalues have been computed. The floating-point arithmetic on the computer is not
behaving as expected.

If failures with INFO � 1 are causing persistent trouble and you have checked that the routine is being
called correctly, please contact NAG.
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7 Accuracy

The eigenvalues of T are computed to high relative accuracy which means that if they vary widely in
magnitude, then any small eigenvalues will be computed more accurately than, for example, with the
standard QR method. However, the reduction to tridiagonal form (prior to calling the routine) may
exclude the possibility of obtaining high relative accuracy in the small eigenvalues of the original
matrix if its eigenvalues vary widely in magnitude.

8 Parallelism and Performance

F08JJF (DSTEBZ) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

There is no complex analogue of this routine.

10 Example

See Section 10 in F08FGF (DORMTR).
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NAG Library Routine Document

F08JKF (DSTEIN)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JKF (DSTEIN) computes the eigenvectors of a real symmetric tridiagonal matrix corresponding to
specified eigenvalues, by inverse iteration.

2 Specification

SUBROUTINE F08JKF (N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,
IFAILV, INFO)

&

INTEGER N, M, IBLOCK(*), ISPLIT(*), LDZ, IWORK(N),
IFAILV(M), INFO

&

REAL (KIND=nag_wp) D(*), E(*), W(*), Z(LDZ,*), WORK(5*N)

The routine may be called by its LAPACK name dstein.

3 Description

F08JKF (DSTEIN) computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding
to specified eigenvalues, by inverse iteration (see Jessup and Ipsen (1992)). It is designed to be used in
particular after the specified eigenvalues have been computed by F08JJF (DSTEBZ) with
ORDER ¼ B , but may also be used when the eigenvalues have been computed by other routines in
Chapters F02 or F08.

If T has been formed by reduction of a full real symmetric matrix A to tridiagonal form, then
eigenvectors of T may be transformed to eigenvectors of A by a call to F08FGF (DORMTR) or
F08GGF (DOPMTR).

F08JJF (DSTEBZ) determines whether the matrix T splits into block diagonal form:

T ¼

T1
T2

:
:
:
Tp

0BBBBB@

1CCCCCA
and passes details of the block structure to this routine in the arrays IBLOCK and ISPLIT. This routine
can then take advantage of the block structure by performing inverse iteration on each block Ti
separately, which is more efficient than using the whole matrix.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Jessup E and Ipsen I C F (1992) Improving the accuracy of inverse iteration SIAM J. Sci. Statist.
Comput. 13 550–572
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

2: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the tridiagonal matrix T .

3: Eð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the off-diagonal elements of the tridiagonal matrix T .

4: M – INTEGER Input

On entry: m, the number of eigenvectors to be returned.

Constraint: 0 � M � N.

5: Wð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array W must be at least max 1;Nð Þ.
On entry: the eigenvalues of the tridiagonal matrix T stored in Wð1Þ to WðmÞ, as returned by
F08JJF (DSTEBZ) with ORDER ¼ B . Eigenvalues associated with the first sub-matrix must be
supplied first, in nondecreasing order; then those associated with the second sub-matrix, again in
nondecreasing order; and so on.

Constraint: if IBLOCKðiÞ ¼ IBLOCKði þ 1Þ, WðiÞ �Wði þ 1Þ, for i ¼ 1; 2; . . . ;M� 1.

6: IBLOCKð�Þ – INTEGER array Input

Note: the dimension of the array IBLOCK must be at least max 1;Nð Þ.
On entry: the first m elements must contain the sub-matrix indices associated with the specified
eigenvalues, as returned by F08JJF (DSTEBZ) with ORDER ¼ B . If the eigenvalues were not
computed by F08JJF (DSTEBZ) with ORDER ¼ B , set IBLOCKðiÞ to 1, for i ¼ 1; 2; . . . ;m.

Constraint: IBLOCKðiÞ � IBLOCKði þ 1Þ, for i ¼ 1; 2; . . . ;M� 1.

7: ISPLITð�Þ – INTEGER array Input

Note: the dimension of the array ISPLIT must be at least max 1;Nð Þ.
On entry: the points at which T breaks up into sub-matrices, as returned by F08JJF (DSTEBZ)
with ORDER ¼ B . If the eigenvalues were not computed by F08JJF (DSTEBZ) with
ORDER ¼ B , set ISPLITð1Þ to N.

8: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ.
On exit: the m eigenvectors, stored as columns of Z; the ith column corresponds to the ith
specified eigenvalue, unless INFO > 0 (in which case see Section 6).

9: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JKF
(DSTEIN) is called.

Constraint: LDZ � max 1;Nð Þ.
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10: WORKð5� NÞ – REAL (KIND=nag_wp) array Workspace

11: IWORKðNÞ – INTEGER array Workspace

12: IFAILVðMÞ – INTEGER array Output

On exit: if INFO ¼ i > 0, the first i elements of IFAILV contain the indices of any eigenvectors
which have failed to converge. The rest of the first M elements of IFAILV are set to 0.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, then i eigenvectors (as indicated by the argument IFAILV above) each failed to
converge in five iterations. The current iterate after five iterations is stored in the corresponding
column of Z.

7 Accuracy

Each computed eigenvector zi is the exact eigenvector of a nearby matrix Aþ Ei, such that

Eik k ¼ O �ð Þ Ak k;

where � is the machine precision. Hence the residual is small:

Azi � �izik k ¼ O �ð Þ Ak k:

However, a set of eigenvectors computed by this routine may not be orthogonal to so high a degree of
accuracy as those computed by F08JEF (DSTEQR).

8 Parallelism and Performance

F08JKF (DSTEIN) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08JKF (DSTEIN) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08JXF (ZSTEIN).

10 Example

See Section 10 in F08FGF (DORMTR).
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NAG Library Routine Document

F08JLF (DSTEGR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JLF (DSTEGR) computes all the eigenvalues and, optionally, all the eigenvectors of a real n by n
symmetric tridiagonal matrix.

2 Specification

SUBROUTINE F08JLF (JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

&

INTEGER N, IL, IU, M, LDZ, ISUPPZ(*), LWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) D(*), E(*), VL, VU, ABSTOL, W(*), Z(LDZ,*),
WORK(max(1,LWORK))

&

CHARACTER(1) JOBZ, RANGE

The routine may be called by its LAPACK name dstegr.

3 Description

F08JLF (DSTEGR) computes all the eigenvalues and, optionally, the eigenvectors, of a real symmetric
tridiagonal matrix T . That is, the routine computes the spectral factorization of T given by

T ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues, �i, of T and Z is an
orthogonal matrix whose columns are the eigenvectors, zi, of T . Thus

Tzi ¼ �izi; i ¼ 1; 2; . . . ; n:

The routine may also be used to compute all the eigenvalues and eigenvectors of a real symmetric
matrix A which has been reduced to tridiagonal form T :

A ¼ QTQT; where Q is orthogonal
¼ QZð Þ� QZð ÞT:

In this case, the matrix Q must be explicitly applied to the output matrix Z. The routines which must be
called to perform the reduction to tridiagonal form and apply Q are:

full matrix F08FEF (DSYTRD) and F08FGF (DORMTR)
full matrix, packed storage F08GEF (DSPTRD) and F08GGF (DOPMTR)
band matrix F08HEF (DSBTRD) with VECT ¼ V and F06YAF (DGEMM).

This routine uses the dqds and the Relatively Robust Representation algorithms to compute the
eigenvalues and eigenvectors respectively; see for example Parlett and Dhillon (2000) and Dhillon and
Parlett (2004) for further details. F08JLF (DSTEGR) can usually compute all the eigenvalues and
eigenvectors in O n2

� �
floating-point operations and so, for large matrices, is often considerably faster

than the other symmetric tridiagonal routines in this chapter when all the eigenvectors are required,
particularly so compared to those routines that are based on the QR algorithm.
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5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: indicates which eigenvalues should be returned.

RANGE ¼ A
All eigenvalues will be found.

RANGE ¼ V
All eigenvalues in the half-open interval VL;VUð � will be found.

RANGE ¼ I
The ILth through IUth eigenvectors will be found.

Constraint: RANGE ¼ A , V or I .

3: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

4: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix T .

On exit: D is overwritten.

5: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;Nð Þ.
On entry: Eð1 : N� 1Þ contains the subdiagonal elements of the tridiagonal matrix T . EðNÞ need
not be set.

On exit: E is overwritten.
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6: VL – REAL (KIND=nag_wp) Input
7: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , VL and VU contain the lower and upper bounds respectively of the
interval to be searched for eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

8: IL – INTEGER Input
9: IU – INTEGER Input

On entry: if RANGE ¼ I , IL and IU contains the indices (in ascending order) of the smallest and
largest eigenvalues to be returned, respectively.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N > 0, 1 � IL � IU � N;
if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0.

10: ABSTOL – REAL (KIND=nag_wp) Input

On entry: in earlier versions, this argument was the absolute error tolerance for the eigenvalues/
eigenvectors. It is now deprecated, and only included for backwards-compatibility.

11: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

12: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the eigenvalues in ascending order.

13: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then if INFO ¼ 0, the columns of Z contain the orthonormal eigenvectors
of the matrix T , with the ith column of Z holding the eigenvector associated with WðiÞ.
If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

14: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JLF
(DSTEGR) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.
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15: ISUPPZð�Þ – INTEGER array Output

Note: the dimension of the array ISUPPZ must be at least max 1; 2�Mð Þ.
On exit: the support of the eigenvectors in Z, i.e., the indices indicating the nonzero elements in
Z. The ith eigenvector is nonzero only in elements ISUPPZð2� i� 1Þ through ISUPPZð2� iÞ.

16: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the minimum LWORK.

17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08JLF
(DSTEGR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraint: LWORK � max 1; 18� Nð Þ or LWORK ¼ �1.

18: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the minimum LIWORK.

19: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08JLF (DSTEGR) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraint: LIWORK � max 1; 10� Nð Þ or LIWORK ¼ �1.

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ 1, the dqds algorithm failed to converge, if INFO ¼ 2, inverse iteration failed to
converge.

7 Accuracy

See the description for ABSTOL. See alsoSection 4.7 of Anderson et al. (1999) and Barlow and
Demmel (1990) for further details.

8 Parallelism and Performance

F08JLF (DSTEGR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F08JLF (DSTEGR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to compute all the eigenvalues and eigenvectors
is approximately proportional to n2.

The complex analogue of this routine is F08JYF (ZSTEGR).

10 Example

This example finds all the eigenvalues and eigenvectors of the symmetric tridiagonal matrix

T ¼
1:0 1:0 0 0
1:0 4:0 2:0 0
0 2:0 9:0 3:0
0 0 3:0 16:0

0B@
1CA:

ABSTOL is set to zero so that the default tolerance of n� Tk k1 is used.

10.1 Program Text

Program f08jlfe

! F08JLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dstegr, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: vl = 0.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: vu = 0.0E0_nag_wp
Integer, Parameter :: il = 0, iu = 0, nin = 5, nout = 6
Character (1), Parameter :: range = ’A’

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol
Integer :: i, ifail, info, ldz, liwork, lwork, &

m, n
Character (1) :: jobz

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), e(:), w(:), work(:), z(:,:)
Integer, Allocatable :: isuppz(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F08JLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
liwork = 10*n
lwork = 18*n
Allocate (d(n),e(n),w(n),work(lwork),z(ldz,n),isuppz(2*n),iwork(liwork))

! Read the symmetric tridiagonal matrix T from data file, first
! the diagonal elements, then the off diagonal elements and then
! JOBV (’N’ - eigenvalues only, ’V’ - vectors as well)

Read (nin,*) d(1:n)
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Read (nin,*) e(1:n-1)
Read (nin,*) jobz

! Calculate all the eigenvalues of T. Set ABSTOL to zero so that
! the default value is used.

abstol = 0.0E0_nag_wp
! The NAG name equivalent of dstegr is f08jlf

Call dstegr(jobz,range,n,d,e,vl,vu,il,iu,abstol,m,w,z,ldz,isuppz,work, &
lwork,iwork,liwork,info)

If (info==0) Then

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:m)

Write (nout,*)
Flush (nout)

! Standardize the eigenvectors so that first elements are non-negative.
Do i = 1, m

If (z(1,i)<0.0_nag_wp) Then
z(1:n,i) = -z(1:n,i)

End If
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,z,ldz,’Eigenvectors’,ifail)

Else
Write (nout,99998) ’Failure to compute an eigenvalue, INFO = ’, info

End If

99999 Format ((3X,8F8.4))
99998 Format (1X,A,I10)

End Program f08jlfe

10.2 Program Data

F08JLF Example Program Data

4 :Value of N

1.0 4.0 9.0 16.0 :End of D
1.0 2.0 3.0 :End of E

’V’ :Value of JOBZ

10.3 Program Results

F08JLF Example Program Results

Eigenvalues
0.6476 3.5470 8.6578 17.1477

Eigenvectors
1 2 3 4

1 0.9396 0.3388 0.0494 0.0034
2 -0.3311 0.8628 0.3781 0.0545
3 0.0853 -0.3648 0.8558 0.3568
4 -0.0167 0.0879 -0.3497 0.9326
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NAG Library Routine Document

F08JSF (ZSTEQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JSF (ZSTEQR) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian matrix which has been reduced to tridiagonal form.

2 Specification

SUBROUTINE F08JSF (COMPZ, N, D, E, Z, LDZ, WORK, INFO)

INTEGER N, LDZ, INFO
REAL (KIND=nag_wp) D(*), E(*), WORK(*)
COMPLEX (KIND=nag_wp) Z(LDZ,*)
CHARACTER(1) COMPZ

The routine may be called by its LAPACK name zsteqr.

3 Description

F08JSF (ZSTEQR) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric tridiagonal matrix T . In other words, it can compute the spectral factorization of T as

T ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the orthogonal
matrix whose columns are the eigenvectors zi. Thus

Tzi ¼ �izi; i ¼ 1; 2; . . . ; n:

The routine stores the real orthogonal matrix Z in a complex array, so that it may also be used to
compute all the eigenvalues and eigenvectors of a complex Hermitian matrix A which has been reduced
to tridiagonal form T :

A ¼ QTQH; where Q is unitary
¼ QZð Þ� QZð ÞH:

In this case, the matrix Q must be formed explicitly and passed to F08JSF (ZSTEQR), which must be
called with COMPZ ¼ V . The routines which must be called to perform the reduction to tridiagonal
form and form Q are:

full matrix F08FSF (ZHETRD) and F08FTF (ZUNGTR)
full matrix, packed storage F08GSF (ZHPTRD) and F08GTF (ZUPGTR)
band matrix F08HSF (ZHBTRD) with VECT ¼ V .

F08JSF (ZSTEQR) uses the implicitly shifted QR algorithm, switching between the QR and QL
variants in order to handle graded matrices effectively (see Greenbaum and Dongarra (1980)). The
eigenvectors are normalized so that zik k2 ¼ 1, but are determined only to within a complex factor of
absolute value 1.

If only the eigenvalues of T are required, it is more efficient to call F08JFF (DSTERF) instead. If T is
positive definite, small eigenvalues can be computed more accurately by F08JUF (ZPTEQR).
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4 References
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5 Arguments

1: COMPZ – CHARACTER(1) Input

On entry: indicates whether the eigenvectors are to be computed.

COMPZ ¼ N
Only the eigenvalues are computed (and the array Z is not referenced).

COMPZ ¼ V
The eigenvalues and eigenvectors of A are computed (and the array Z must contain the
matrix Q on entry).

COMPZ ¼ I
The eigenvalues and eigenvectors of T are computed (and the array Z is initialized by the
routine).

Constraint: COMPZ ¼ N , V or I .

2: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the tridiagonal matrix T .

On exit: the n eigenvalues in ascending order, unless INFO > 0 (in which case see Section 6).

4: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the off-diagonal elements of the tridiagonal matrix T .

On exit: E is overwritten.

5: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , Z must contain the unitary matrix Q from the reduction to tridiagonal
form.

If COMPZ ¼ I , Z need not be set.

On exit: if COMPZ ¼ V or I , the n required orthonormal eigenvectors stored as columns of Z;
the ith column corresponds to the ith eigenvalue, where i ¼ 1; 2; . . . ; n, unless INFO > 0.

If COMPZ ¼ N , Z is not referenced.
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6: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JSF
(ZSTEQR) is called.

Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
if COMPZ ¼ N , LDZ � 1.

7: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1; 2� N� 1ð Þð Þ if COMPZ ¼ V
or I and at least 1 if COMPZ ¼ N .

If COMPZ ¼ N , WORK is not referenced.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm has failed to find all the eigenvalues after a total of 30� N iterations. In this case,
D and E contain on exit the diagonal and off-diagonal elements, respectively, of a tridiagonal
matrix unitarily similar to T . If INFO ¼ i, then i off-diagonal elements have not converged to
zero.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix T þ Eð Þ, where
Ek k2 ¼ O �ð Þ Tk k2;

and � is the machine precision.

If �i is an exact eigenvalue and ~�i is the corresponding computed value, then

~�i � �i
		 		 � c nð Þ� Tk k2;

where c nð Þ is a modestly increasing function of n.

If zi is the corresponding exact eigenvector, and ~zi is the corresponding computed eigenvector, then the
angle � ~zi; zið Þ between them is bounded as follows:

� ~zi; zið Þ � c nð Þ� Tk k2
min
i6¼j

�i � �j
		 		:

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the
other eigenvalues.

8 Parallelism and Performance

F08JSF (ZSTEQR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F08JSF (ZSTEQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is typically about 24n2 if COMPZ ¼ N and about
14n3 if COMPZ ¼ V or I , but depends on how rapidly the algorithm converges. When COMPZ ¼ N ,
the operations are all performed in scalar mode; the additional operations to compute the eigenvectors
when COMPZ ¼ V or I can be vectorized and on some machines may be performed much faster.

The real analogue of this routine is F08JEF (DSTEQR).

10 Example

See Section 10 in F08FTF (ZUNGTR), F08GTF (ZUPGTR) or F08HSF (ZHBTRD), which illustrate
the use of this routine to compute the eigenvalues and eigenvectors of a full or band Hermitian matrix.
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NAG Library Routine Document

F08JUF (ZPTEQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the argument WORK changed at Mark 20: the length of WORK needs to be increased.

1 Purpose

F08JUF (ZPTEQR) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian positive definite matrix which has been reduced to tridiagonal form.

2 Specification

SUBROUTINE F08JUF (COMPZ, N, D, E, Z, LDZ, WORK, INFO)

INTEGER N, LDZ, INFO
REAL (KIND=nag_wp) D(*), E(*), WORK(4*N)
COMPLEX (KIND=nag_wp) Z(LDZ,*)
CHARACTER(1) COMPZ

The routine may be called by its LAPACK name zpteqr.

3 Description

F08JUF (ZPTEQR) computes all the eigenvalues and, optionally, all the eigenvectors of a real
symmetric positive definite tridiagonal matrix T . In other words, it can compute the spectral
factorization of T as

T ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the orthogonal
matrix whose columns are the eigenvectors zi. Thus

Tzi ¼ �izi; i ¼ 1; 2; . . . ; n:

The routine stores the real orthogonal matrix Z in a complex array, so that it may be used to compute
all the eigenvalues and eigenvectors of a complex Hermitian positive definite matrix A which has been
reduced to tridiagonal form T :

A ¼ QTQH; where Q is unitary
¼ QZð Þ� QZð ÞH:

In this case, the matrix Q must be formed explicitly and passed to F08JUF (ZPTEQR), which must be
called with COMPZ ¼ V . The routines which must be called to perform the reduction to tridiagonal
form and form Q are:

full matrix F08FSF (ZHETRD) and F08FTF (ZUNGTR)
full matrix, packed storage F08GSF (ZHPTRD) and F08GTF (ZUPGTR)
band matrix F08HSF (ZHBTRD) with VECT ¼ V .

F08JUF (ZPTEQR) first factorizes T as LDLH where L is unit lower bidiagonal and D is diagonal. It
forms the bidiagonal matrix B ¼ LD1

2 , and then calls F08MSF (ZBDSQR) to compute the singular
values of B which are the same as the eigenvalues of T . The method used by the routine allows high
relative accuracy to be achieved in the small eigenvalues of T . The eigenvectors are normalized so that
zik k2 ¼ 1, but are determined only to within a complex factor of absolute value 1.
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4 References

Barlow J and Demmel J W (1990) Computing accurate eigensystems of scaled diagonally dominant
matrices SIAM J. Numer. Anal. 27 762–791

5 Arguments

1: COMPZ – CHARACTER(1) Input

On entry: indicates whether the eigenvectors are to be computed.

COMPZ ¼ N
Only the eigenvalues are computed (and the array Z is not referenced).

COMPZ ¼ V
The eigenvalues and eigenvectors of A are computed (and the array Z must contain the
matrix Q on entry).

COMPZ ¼ I
The eigenvalues and eigenvectors of T are computed (and the array Z is initialized by the
routine).

Constraint: COMPZ ¼ N , V or I .

2: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the tridiagonal matrix T .

On exit: the n eigenvalues in descending order, unless INFO > 0, in which case D is overwritten.

4: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the off-diagonal elements of the tridiagonal matrix T .

On exit: E is overwritten.

5: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , Z must contain the unitary matrix Q from the reduction to tridiagonal
form.

If COMPZ ¼ I , Z need not be set.

On exit: if COMPZ ¼ V or I , the n required orthonormal eigenvectors stored as columns of Z;
the ith column corresponds to the ith eigenvalue, where i ¼ 1; 2; . . . ; n, unless INFO > 0.

If COMPZ ¼ N , Z is not referenced.

6: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JUF
(ZPTEQR) is called.
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Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
if COMPZ ¼ N , LDZ � 1.

7: WORKð4� NÞ – REAL (KIND=nag_wp) array Workspace

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the leading minor of order i is not positive definite and the Cholesky factorization
of T could not be completed. Hence T itself is not positive definite.

If INFO ¼ Nþ i, the algorithm to compute the singular values of the Cholesky factor B failed to
converge; i off-diagonal elements did not converge to zero.

7 Accuracy

The eigenvalues and eigenvectors of T are computed to high relative accuracy which means that if they
vary widely in magnitude, then any small eigenvalues (and corresponding eigenvectors) will be
computed more accurately than, for example, with the standard QR method. However, the reduction to
tridiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative
accuracy in the small eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

To be more precise, let H be the tridiagonal matrix defined by H ¼ DTD, where D is diagonal with

dii ¼ t
�12
ii , and hii ¼ 1 for all i. If �i is an exact eigenvalue of T and ~�i is the corresponding computed

value, then

~�i � �i
		 		 � c nð Þ��2 Hð Þ�i

where c nð Þ is a modestly increasing function of n, � is the machine precision, and �2 Hð Þ is the
condition number of H with respect to inversion defined by: �2 Hð Þ ¼ Hk k � H�1

�� ��.
If zi is the corresponding exact eigenvector of T , and ~zi is the corresponding computed eigenvector,
then the angle � ~zi; zið Þ between them is bounded as follows:

� ~zi; zið Þ � c nð Þ��2 Hð Þ
relgapi

where relgapi is the relative gap between �i and the other eigenvalues, defined by

relgapi ¼ min
i6¼j

�i � �j
		 		
�i þ �j
� �:

8 Parallelism and Performance

F08JUF (ZPTEQR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08JUF (ZPTEQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is typically about 30n2 if COMPZ ¼ N and about
12n3 if COMPZ ¼ V or I , but depends on how rapidly the algorithm converges. When COMPZ ¼ N ,
the operations are all performed in scalar mode; the additional operations to compute the eigenvectors
when COMPZ ¼ V or I can be vectorized and on some machines may be performed much faster.

The real analogue of this routine is F08JGF (DPTEQR).

10 Example

This example computes all the eigenvalues and eigenvectors of the complex Hermitian positive definite
matrix A, where

A ¼
6:02þ 0:00i �0:45þ 0:25i �1:30þ 1:74i 1:45� 0:66i
�0:45� 0:25i 2:91þ 0:00i 0:05þ 1:56i �1:04þ 1:27i
�1:30� 1:74i 0:05� 1:56i 3:29þ 0:00i 0:14þ 1:70i
1:45þ 0:66i �1:04� 1:27i 0:14� 1:70i 4:18þ 0:00i

0B@
1CA:

10.1 Program Text

Program f08jufe

! F08JUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, f06tff, nag_wp, x04dbf, zhetrd, zpteqr, &

zungtr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Complex (Kind=nag_wp) :: scal
Integer :: i, ifail, info, k, lda, ldz, lwork, &

n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:), z(:,:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:), rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, maxloc

! .. Executable Statements ..
Write (nout,*) ’F08JUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldz = n
lwork = 64*n
Allocate (a(lda,n),tau(n),work(lwork),z(ldz,n),d(n),e(n),rwork(4*n))

! Read A from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo==’L’) Then

Read (nin,*)(a(i,1:i),i=1,n)
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End If

! Reduce A to tridiagonal form T = (Q**H)*A*Q

! The NAG name equivalent of zhetrd is f08fsf
Call zhetrd(uplo,n,a,lda,d,e,tau,work,lwork,info)

! Copy A into Z

Call f06tff(uplo,n,n,a,lda,z,ldz)

! Form Q explicitly, storing the result in Z

! The NAG name equivalent of zungtr is f08ftf
Call zungtr(uplo,n,z,ldz,tau,work,lwork,info)

! Calculate all the eigenvalues and eigenvectors of A

! The NAG name equivalent of zpteqr is f08juf
Call zpteqr(’V’,n,d,e,z,ldz,rwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, n

rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(z(k,i))/abs(z(k,i))/dznrm2(n,z(1,i),1)
z(1:n,i) = z(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,z,ldz,’Bracketed’,’F7.4’,’Eigenvectors’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If

99999 Format (8X,4(F7.4,11X,:))
End Program f08jufe

10.2 Program Data

F08JUF Example Program Data
4 :Value of N
’L’ :Value of UPLO

( 6.02, 0.00)
(-0.45,-0.25) ( 2.91, 0.00)
(-1.30,-1.74) ( 0.05,-1.56) ( 3.29, 0.00)
( 1.45, 0.66) (-1.04,-1.27) ( 0.14,-1.70) ( 4.18, 0.00) :End of matrix A

10.3 Program Results

F08JUF Example Program Results

Eigenvalues
7.9995 5.9976 2.0003 0.4026

Eigenvectors
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1 2 3 4
1 ( 0.7289, 0.0000) ( 0.2001, 0.4724) (-0.2133, 0.1498) ( 0.0995,-0.3573)
2 (-0.1651,-0.2067) (-0.2461, 0.3742) ( 0.7308, 0.0000) ( 0.2867,-0.3364)
3 (-0.4170,-0.1413) ( 0.4476, 0.1455) (-0.3282, 0.0471) ( 0.6890, 0.0000)
4 ( 0.1748, 0.4175) ( 0.5610, 0.0000) ( 0.5203, 0.1317) ( 0.0659, 0.4336)
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NAG Library Routine Document

F08JVF (ZSTEDC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JVF (ZSTEDC) computes all the eigenvalues and, optionally, all the eigenvectors of a real n by n
symmetric tridiagonal matrix, or of a complex full or banded Hermitian matrix which has been reduced
to tridiagonal form.

2 Specification

SUBROUTINE F08JVF (COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, LRWORK,
IWORK, LIWORK, INFO)

&

INTEGER N, LDZ, LWORK, LRWORK, IWORK(max(1,LIWORK)),
LIWORK, INFO

&

REAL (KIND=nag_wp) D(*), E(*), RWORK(max(1,LRWORK))
COMPLEX (KIND=nag_wp) Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) COMPZ

The routine may be called by its LAPACK name zstedc.

3 Description

F08JVF (ZSTEDC) computes all the eigenvalues and, optionally, the eigenvectors of a real symmetric
tridiagonal matrix T . That is, the routine computes the spectral factorization of T given by

T ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues, �i, of T and Z is an
orthogonal matrix whose columns are the eigenvectors, zi, of T . Thus

Tzi ¼ �izi; i ¼ 1; 2; . . . ; n:

The routine may also be used to compute all the eigenvalues and eigenvectors of a complex full, or
banded, Hermitian matrix A which has been reduced to real tridiagonal form T as

A ¼ QTQH;

where Q is unitary. The spectral factorization of A is then given by

A ¼ QZð Þ� QZð ÞH:

In this case Q must be formed explicitly and passed to F08JVF (ZSTEDC) in the array Z, and the
routine called with COMPZ ¼ V . Routines which may be called to form T and Q are

full matrix F08FSF (ZHETRD) and F08FTF (ZUNGTR)
full matrix, packed storage F08GSF (ZHPTRD) and F08GTF (ZUPGTR)
band matrix F08HSF (ZHBTRD), with VECT ¼ V

When only eigenvalues are required then this routine calls F08JFF (DSTERF) to compute the
eigenvalues of the tridiagonal matrix T , but when eigenvectors of T are also required and the matrix is
not too small, then a divide and conquer method is used, which can be much faster than F08JSF
(ZSTEQR), although more storage is required.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: COMPZ – CHARACTER(1) Input

On entry: indicates whether the eigenvectors are to be computed.

COMPZ ¼ N
Only the eigenvalues are computed (and the array Z is not referenced).

COMPZ ¼ V
The eigenvalues and eigenvectors of A are computed (and the array Z must contain the
matrix Q on entry).

COMPZ ¼ I
The eigenvalues and eigenvectors of T are computed (and the array Z is initialized by the
routine).

Constraint: COMPZ ¼ N , V or I .

2: N – INTEGER Input

On entry: n, the order of the symmetric tridiagonal matrix T .

Constraint: N � 0.

3: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the tridiagonal matrix.

On exit: if INFO ¼ 0, the eigenvalues in ascending order.

4: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the subdiagonal elements of the tridiagonal matrix.

On exit: E is overwritten.

5: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I , and
at least 1 otherwise.

On entry: if COMPZ ¼ V , Z must contain the unitary matrix Q used in the reduction to
tridiagonal form.

On exit: if COMPZ ¼ V , Z contains the orthonormal eigenvectors of the original Hermitian
matrix A, and if COMPZ ¼ I , Z contains the orthonormal eigenvectors of the symmetric
tridiagonal matrix T .

If COMPZ ¼ N , Z is not referenced.

6: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JVF
(ZSTEDC) is called.
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Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

7: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08JVF
(ZSTEDC) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes of
the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK,
RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or LIWORK
is issued.

Constraints: if LWORK 6¼ �1,
if COMPZ ¼ N or I or N � 1, LWORK must be at least 1;
if COMPZ ¼ V and N > 1, LWORK must be at least N2.

Note: that for COMPZ ¼ V , then if N is less than or equal to the minimum divide size, usually
25, then LWORK need only be 1.

9: RWORKðmax 1;LRWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, RWORKð1Þ returns the optimal LRWORK.

10: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
F08JVF (ZSTEDC) is called.

If LRWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes
of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the
WORK, RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or
LIWORK is issued.

Constraints: if LRWORK 6¼ �1,
if COMPZ ¼ N or N � 1, LRWORK must be at least 1;
if COMPZ ¼ V and N > 1,
LRWORK must be at least 1þ 3� Nþ 2� N� lg Nð Þ þ 4� N2, where lg Nð Þ ¼ smallest
integer k such that 2k � N;
if COMPZ ¼ I and N > 1, LRWORK must be at least 1þ 4� Nþ 2� N2.

Note: that for COMPZ ¼ V or I then if N is less than or equal to the minimum divide size,
usually 25, then LRWORK need only be max 1; 2� N� 1ð Þð Þ.

11: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the optimal LIWORK.

12: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08JVF (ZSTEDC) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes
of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the
WORK, RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or
LIWORK is issued.
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Constraints: if LIWORK 6¼ �1,
if COMPZ ¼ N or N � 1, LIWORK must be at least 1;
if COMPZ ¼ V or N > 1, LIWORK must be at least 6þ 6� Nþ 5� N� lg Nð Þ;
if COMPZ ¼ I or N > 1, LIWORK must be at least 3þ 5� N.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and
columns INFO= Nþ 1ð Þ through INFO mod Nþ 1ð Þ.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix T þ Eð Þ, where
Ek k2 ¼ O �ð Þ Tk k2;

and � is the machine precision.

If �i is an exact eigenvalue and ~�i is the corresponding computed value, then

~�i � �i
		 		 � c nð Þ� Tk k2;

where c nð Þ is a modestly increasing function of n.

If zi is the corresponding exact eigenvector, and ~zi is the corresponding computed eigenvector, then the
angle � ~zi; zið Þ between them is bounded as follows:

� ~zi; zið Þ � c nð Þ� Tk k2
min
i6¼j

�i � �j
		 		:

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the
other eigenvalues.

See Section 4.7 of Anderson et al. (1999) for further details. See also F08FLF (DDISNA).

8 Parallelism and Performance

F08JVF (ZSTEDC) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08JVF (ZSTEDC) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

If only eigenvalues are required, the total number of floating-point operations is approximately
proportional to n2. When eigenvectors are required the number of operations is bounded above by
approximately the same number of operations as F08JSF (ZSTEQR), but for large matrices F08JVF
(ZSTEDC) is usually much faster.

The real analogue of this routine is F08JHF (DSTEDC).

10 Example

This example finds all the eigenvalues and eigenvectors of the Hermitian band matrix

A ¼
�3:13 1:94� 2:10i �3:40þ 0:25i 0
1:94þ 2:10i �1:91 �0:82� 0:89i �0:67þ 0:34i
�3:40� 0:25i �0:82þ 0:89i �2:87 �2:10� 0:16i
0 �0:67� 0:34i �2:10þ 0:16i 0:50

0B@
1CA:

A is first reduced to tridiagonal form by a call to F08HSF (ZHBTRD).

10.1 Program Text

Program f08jvfe

! F08JVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04dbf, zhbtrd, zstedc

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Integer :: i, ifail, info, j, k, kd, ldab, ldz, &

lgn, liwork, lrwork, lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:), work(:), z(:,:)
Complex (Kind=nag_wp) :: cdum(1)
Real (Kind=nag_wp), Allocatable :: d(:), e(:), rwork(:)
Real (Kind=nag_wp) :: rdum(1)
Integer :: idum(1)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, ceiling, conjg, log, max, &

maxloc, min, nint, real
! .. Executable Statements ..

Write (nout,*) ’F08JVF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kd
ldab = kd + 1
ldz = n
lgn = ceiling(log(real(n,kind=nag_wp))/log(2.0_nag_wp))
Allocate (ab(ldab,n),z(ldz,n),d(n),e(n-1))

! Use routine workspace query to get optimal workspace.
lwork = -1
lrwork = -1
liwork = -1

! The NAG name equivalent of zstedc is f08jvf
Call zstedc(’V’,n,d,e,z,ldz,cdum,lwork,rdum,lrwork,idum,liwork,info)
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! Make sure that there is enough workspace.
lwork = max(n*n,nint(real(cdum(1))))
lrwork = max(1+3*n+2*n*lgn+4*n*n,nint(rdum(1)))
liwork = max(6+6*n+5*n*lgn,idum(1))
Allocate (work(lwork),rwork(lrwork),iwork(liwork))

! Read the upper or lower triangular part of the band matrix A
! from data file

If (uplo==’U’) Then
Do i = 1, n

Read (nin,*)(ab(kd+1+i-j,j),j=i,min(n,i+kd))
End Do

Else If (uplo==’L’) Then
Do i = 1, n

Read (nin,*)(ab(1+i-j,j),j=max(1,i-kd),i)
End Do

End If

! Reduce A to tridiagonal form T = (Z**T)*A*Z, and form Z

! The NAG name equivalent of zhbtrd is f08hsf
Call zhbtrd(’V’,uplo,n,kd,ab,ldab,d,e,z,ldz,work,info)

! Calculate all the eigenvalues and eigenvectors of A,
! from T and Z

! The NAG name equivalent of zstedc is f08jvf
Call zstedc(’V’,n,d,e,z,ldz,work,lwork,rwork,lrwork,iwork,liwork,info)

If (info==0) Then

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)

Write (nout,*)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, n

rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(z(k,i))/abs(z(k,i))/dznrm2(n,z(1,i),1)
z(1:n,i) = z(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,z,ldz,’Bracketed’,’F7.4’,’Eigenvectors’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else
Write (nout,99998) ’Failure in ZSTEDC. INFO = ’, info

End If

99999 Format (4X,F8.4,3(10X,F8.4))
99998 Format (1X,A,I10)

End Program f08jvfe
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10.2 Program Data

F08JVF Example Program Data

4 2 :Values of N and KD

( -3.13 , 0.00) ( 1.94, -2.10) ( -3.40, 0.25)
( -1.91, 0.00) ( -0.82, -0.89) ( -0.67, 0.34)

( -2.87, 0.00) ( -2.10, -0.16)
( 0.50, 0.00) :End matrix A

10.3 Program Results

F08JVF Example Program Results

Eigenvalues
-7.0042 -4.0038 0.5968 3.0012

Eigenvectors
1 2 3 4

1 ( 0.7293, 0.0000) (-0.2128, 0.1511) (-0.3354,-0.1604) (-0.5114,-0.0163)
2 (-0.1654,-0.2046) ( 0.7316, 0.0000) (-0.2804,-0.3413) (-0.2374,-0.3796)
3 ( 0.6081, 0.0301) ( 0.3910,-0.3843) (-0.0144, 0.1532) ( 0.5523,-0.0000)
4 ( 0.1653,-0.0303) ( 0.2775,-0.1378) ( 0.8019, 0.0000) (-0.4517, 0.1693)
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NAG Library Routine Document

F08JXF (ZSTEIN)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JXF (ZSTEIN) computes the eigenvectors of a real symmetric tridiagonal matrix corresponding to
specified eigenvalues, by inverse iteration, storing the eigenvectors in a complex array.

2 Specification

SUBROUTINE F08JXF (N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,
IFAILV, INFO)

&

INTEGER N, M, IBLOCK(*), ISPLIT(*), LDZ, IWORK(N),
IFAILV(M), INFO

&

REAL (KIND=nag_wp) D(*), E(*), W(*), WORK(5*N)
COMPLEX (KIND=nag_wp) Z(LDZ,*)

The routine may be called by its LAPACK name zstein.

3 Description

F08JXF (ZSTEIN) computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding to
specified eigenvalues, by inverse iteration (see Jessup and Ipsen (1992)). It is designed to be used in
particular after the specified eigenvalues have been computed by F08JJF (DSTEBZ) with
ORDER ¼ B , but may also be used when the eigenvalues have been computed by other routines in
Chapters F02 or F08.

The eigenvectors of T are real, but are stored by this routine in a complex array. If T has been formed
by reduction of a full complex Hermitian matrix A to tridiagonal form, then eigenvectors of T may be
transformed to (complex) eigenvectors of A by a call to F08FUF (ZUNMTR) or F08GUF (ZUPMTR).

F08JJF (DSTEBZ) determines whether the matrix T splits into block diagonal form:

T ¼

T1
T2

:
:
:
Tp

0BBBBB@

1CCCCCA
and passes details of the block structure to this routine in the arrays IBLOCK and ISPLIT. This routine
can then take advantage of the block structure by performing inverse iteration on each block Ti
separately, which is more efficient than using the whole matrix.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Jessup E and Ipsen I C F (1992) Improving the accuracy of inverse iteration SIAM J. Sci. Statist.
Comput. 13 550–572
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

2: Dð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the tridiagonal matrix T .

3: Eð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the off-diagonal elements of the tridiagonal matrix T .

4: M – INTEGER Input

On entry: m, the number of eigenvectors to be returned.

Constraint: 0 � M � N.

5: Wð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array W must be at least max 1;Nð Þ.
On entry: the eigenvalues of the tridiagonal matrix T stored in Wð1Þ to WðmÞ, as returned by
F08JJF (DSTEBZ) with ORDER ¼ B . Eigenvalues associated with the first sub-matrix must be
supplied first, in nondecreasing order; then those associated with the second sub-matrix, again in
nondecreasing order; and so on.

Constraint: if IBLOCKðiÞ ¼ IBLOCKði þ 1Þ, WðiÞ �Wði þ 1Þ, for i ¼ 1; 2; . . . ;M� 1.

6: IBLOCKð�Þ – INTEGER array Input

Note: the dimension of the array IBLOCK must be at least max 1;Nð Þ.
On entry: the first m elements must contain the sub-matrix indices associated with the specified
eigenvalues, as returned by F08JJF (DSTEBZ) with ORDER ¼ B . If the eigenvalues were not
computed by F08JJF (DSTEBZ) with ORDER ¼ B , set IBLOCKðiÞ to 1, for i ¼ 1; 2; . . . ;m.

Constraint: IBLOCKðiÞ � IBLOCKði þ 1Þ, for i ¼ 1; 2; . . . ;M� 1.

7: ISPLITð�Þ – INTEGER array Input

Note: the dimension of the array ISPLIT must be at least max 1;Nð Þ.
On entry: the points at which T breaks up into sub-matrices, as returned by F08JJF (DSTEBZ)
with ORDER ¼ B . If the eigenvalues were not computed by F08JJF (DSTEBZ) with
ORDER ¼ B , set ISPLITð1Þ to N.

8: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ.
On exit: the m eigenvectors, stored as columns of Z; the ith column corresponds to the ith
specified eigenvalue, unless INFO > 0 (in which case see Section 6).

9: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JXF
(ZSTEIN) is called.

Constraint: LDZ � max 1;Nð Þ.
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10: WORKð5� NÞ – REAL (KIND=nag_wp) array Workspace

11: IWORKðNÞ – INTEGER array Workspace

12: IFAILVðMÞ – INTEGER array Output

On exit: if INFO ¼ i > 0, the first i elements of IFAILV contain the indices of any eigenvectors
which have failed to converge. The rest of the first M elements of IFAILV are set to 0.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, then i eigenvectors (as indicated by the argument IFAILV above) each failed to
converge in five iterations. The current iterate after five iterations is stored in the corresponding
column of Z.

7 Accuracy

Each computed eigenvector zi is the exact eigenvector of a nearby matrix Aþ Ei, such that

Eik k ¼ O �ð Þ Ak k;

where � is the machine precision. Hence the residual is small:

Azi � �izik k ¼ O �ð Þ Ak k:

However, a set of eigenvectors computed by this routine may not be orthogonal to so high a degree of
accuracy as those computed by F08JSF (ZSTEQR).

8 Parallelism and Performance

F08JXF (ZSTEIN) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08JXF (ZSTEIN) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F08JKF (DSTEIN).

10 Example

See Section 10 in F08FUF (ZUNMTR).
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NAG Library Routine Document

F08JYF (ZSTEGR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08JYF (ZSTEGR) computes all the eigenvalues and, optionally, all the eigenvectors of a real n by n
symmetric tridiagonal matrix.

2 Specification

SUBROUTINE F08JYF (JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

&

INTEGER N, IL, IU, M, LDZ, ISUPPZ(*), LWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) D(*), E(*), VL, VU, ABSTOL, W(*),
WORK(max(1,LWORK))

&

COMPLEX (KIND=nag_wp) Z(LDZ,*)
CHARACTER(1) JOBZ, RANGE

The routine may be called by its LAPACK name zstegr.

3 Description

F08JYF (ZSTEGR) computes all the eigenvalues and, optionally, the eigenvectors, of a real symmetric
tridiagonal matrix T . That is, the routine computes the spectral factorization of T given by

T ¼ Z�ZT;

where � is a diagonal matrix whose diagonal elements are the eigenvalues, �i, of T and Z is an
orthogonal matrix whose columns are the eigenvectors, zi, of T . Thus

Tzi ¼ �izi; i ¼ 1; 2; . . . ; n:

The routine stores the real orthogonal matrix Z in a complex array, so that it may also be used to
compute all the eigenvalues and eigenvectors of a complex Hermitian matrix A which has been reduced
to tridiagonal form T :

A ¼ QTQH; where Q is unitary
¼ QZð Þ� QZð ÞH:

In this case, the matrix Q must be explicitly applied to the output matrix Z. The routines which must be
called to perform the reduction to tridiagonal form and apply Q are:

full matrix F08FSF (ZHETRD) and F08FUF (ZUNMTR)
full matrix, packed storage F08GSF (ZHPTRD) and F08GUF (ZUPMTR)
band matrix F08HSF (ZHBTRD) with VECT ¼ V and F06ZAF (ZGEMM).

This routine uses the dqds and the Relatively Robust Representation algorithms to compute the
eigenvalues and eigenvectors respectively; see for example Parlett and Dhillon (2000) and Dhillon and
Parlett (2004) for further details. F08JYF (ZSTEGR) can usually compute all the eigenvalues and
eigenvectors in O n2

� �
floating-point operations and so, for large matrices, is often considerably faster

than the other symmetric tridiagonal routines in this chapter when all the eigenvectors are required,
particularly so compared to those routines that are based on the QR algorithm.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Barlow J and Demmel J W (1990) Computing accurate eigensystems of scaled diagonally dominant
matrices SIAM J. Numer. Anal. 27 762–791

Dhillon I S and Parlett B N (2004) Orthogonal eigenvectors and relative gaps. SIAM J. Appl. Math. 25
858–899

Parlett B N and Dhillon I S (2000) Relatively robust representations of symmetric tridiagonals Linear
Algebra Appl. 309 121–151

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: indicates which eigenvalues should be returned.

RANGE ¼ A
All eigenvalues will be found.

RANGE ¼ V
All eigenvalues in the half-open interval VL;VUð � will be found.

RANGE ¼ I
The ILth through IUth eigenvectors will be found.

Constraint: RANGE ¼ A , V or I .

3: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

4: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the tridiagonal matrix T .

On exit: D is overwritten.

5: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;Nð Þ.
On entry: Eð1 : N� 1Þ contains the subdiagonal elements of the tridiagonal matrix T . EðNÞ need
not be set.

On exit: E is overwritten.
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6: VL – REAL (KIND=nag_wp) Input
7: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , VL and VU contain the lower and upper bounds respectively of the
interval to be searched for eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

8: IL – INTEGER Input
9: IU – INTEGER Input

On entry: if RANGE ¼ I , IL and IU contains the indices (in ascending order) of the smallest and
largest eigenvalues to be returned, respectively.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N > 0, 1 � IL � IU � N;
if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0.

10: ABSTOL – REAL (KIND=nag_wp) Input

On entry: in earlier versions, this argument was the absolute error tolerance for the eigenvalues/
eigenvectors. It is now deprecated, and only included for backwards-compatibility.

11: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

12: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the eigenvalues in ascending order.

13: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then if INFO ¼ 0, the columns of Z contain the orthonormal eigenvectors
of the matrix T , with the ith column of Z holding the eigenvector associated with WðiÞ.
If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

14: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08JYF
(ZSTEGR) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.
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15: ISUPPZð�Þ – INTEGER array Output

Note: the dimension of the array ISUPPZ must be at least max 1; 2�Mð Þ.
On exit: the support of the eigenvectors in Z, i.e., the indices indicating the nonzero elements in
Z. The ith eigenvector is nonzero only in elements ISUPPZð2� i� 1Þ through ISUPPZð2� iÞ.

16: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the minimum LWORK.

17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08JYF
(ZSTEGR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraint: LWORK � max 1; 18� Nð Þ or LWORK ¼ �1.

18: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the minimum LIWORK.

19: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08JYF (ZSTEGR) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraint: LIWORK � max 1; 10� Nð Þ or LIWORK ¼ �1.

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ 1, the dqds algorithm failed to converge, if INFO ¼ 2, inverse iteration failed to
converge.

7 Accuracy

See the description for ABSTOL. See alsoSection 4.7 of Anderson et al. (1999) and Barlow and
Demmel (1990) for further details.

8 Parallelism and Performance

F08JYF (ZSTEGR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F08JYF (ZSTEGR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to compute all the eigenvalues and eigenvectors
is approximately proportional to n2.

The real analogue of this routine is F08JLF (DSTEGR).

10 Example

This example finds all the eigenvalues and eigenvectors of the symmetric tridiagonal matrix

T ¼
1:0 1:0 0 0
1:0 4:0 2:0 0
0 2:0 9:0 3:0
0 0 3:0 16:0

0B@
1CA:

ABSTOL is set to zero so that the default tolerance of n� Tk k1 is used.

10.1 Program Text

Program f08jyfe

! F08JYF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf, zstegr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: vl = 0.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: vu = 0.0E0_nag_wp
Integer, Parameter :: il = 0, iu = 0, nin = 5, nout = 6
Character (1), Parameter :: range = ’A’

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol
Integer :: i, ifail, info, ldz, liwork, lwork, &

m, n
Character (1) :: jobz

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: z(:,:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:), w(:), work(:)
Integer, Allocatable :: isuppz(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F08JYF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
liwork = 10*n
lwork = 18*n
Allocate (z(ldz,n),d(n),e(n),w(n),work(lwork),isuppz(2*n),iwork(liwork))

! Read the symmetric tridiagonal matrix T from data file, first
! the diagonal elements, then the off diagonal elements and then
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! JOBV (’N’ - eigenvalues only, ’V’ - vectors as well)

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)
Read (nin,*) jobz

! Calculate all the eigenvalues of T. Set ABSTOL to zero so that
! the default value is used.

abstol = 0.0E0_nag_wp
! The NAG name equivalent of zstegr is f08jyf

Call zstegr(jobz,range,n,d,e,vl,vu,il,iu,abstol,m,w,z,ldz,isuppz,work, &
lwork,iwork,liwork,info)

If (info==0) Then

! Print eigenvalues and eigenvectors

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:m)

Write (nout,*)
Flush (nout)

! Standardize the eigenvectors so that first elements are non-negative.
Do i = 1, m

If (real(z(1,i))<0.0_nag_wp) Then
z(1:n,i) = -z(1:n,i)

End If
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,m,z,ldz,’Eigenvectors’,ifail)

Else
Write (nout,99998) ’Failure to compute an eigenvalue, INFO = ’, info

End If

99999 Format ((3X,8F8.4))
99998 Format (1X,A,I10)

End Program f08jyfe

10.2 Program Data

F08JYF Example Program Data

4 :Value of N

1.0 4.0 9.0 16.0 :End of D
1.0 2.0 3.0 :End of E

’V’ :Value of JOBZ

10.3 Program Results

F08JYF Example Program Results

Eigenvalues
0.6476 3.5470 8.6578 17.1477

Eigenvectors
1 2 3 4

1 0.9396 0.3388 0.0494 0.0034
0.0000 0.0000 0.0000 0.0000

2 -0.3311 0.8628 0.3781 0.0545
-0.0000 0.0000 0.0000 0.0000
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3 0.0853 -0.3648 0.8558 0.3568
0.0000 -0.0000 0.0000 0.0000

4 -0.0167 0.0879 -0.3497 0.9326
-0.0000 0.0000 -0.0000 0.0000
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NAG Library Routine Document

F08KAF (DGELSS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KAF (DGELSS) computes the minimum norm solution to a real linear least squares problem

min
x

b�Axk k2:

2 Specification

SUBROUTINE F08KAF (M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK,
LWORK, INFO)

&

INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), S(*), RCOND, WORK(max(1,LWORK))

The routine may be called by its LAPACK name dgelss.

3 Description

F08KAF (DGELSS) uses the singular value decomposition (SVD) of A, where A is an m by n matrix
which may be rank-deficient.

Several right-hand side vectors b and solution vectors x can be handled in a single call; they are stored
as the columns of the m by r right-hand side matrix B and the n by r solution matrix X.

The effective rank of A is determined by treating as zero those singular values which are less than
RCOND times the largest singular value.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrices B and X.

Constraint: NRHS � 0.
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4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: the first min m;nð Þ rows of A are overwritten with its right singular vectors, stored row-
wise.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KAF
(DGELSS) is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the m by r right-hand side matrix B.

On exit: B is overwritten by the n by r solution matrix X. If m � n and RANK ¼ n, the residual
sum of squares for the solution in the ith column is given by the sum of squares of elements
nþ 1; . . . ;m in that column.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08KAF
(DGELSS) is called.

Constraint: LDB � max 1;M;Nð Þ.

8: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least max 1;min M;Nð Þð Þ.
On exit: the singular values of A in decreasing order.

9: RCOND – REAL (KIND=nag_wp) Input

On entry: used to determine the effective rank of A. Singular values SðiÞ � RCOND� Sð1Þ are
treated as zero. If RCOND < 0, machine precision is used instead.

10: RANK – INTEGER Output

On exit: the effective rank of A, i.e., the number of singular values which are greater than
RCOND� Sð1Þ.

11: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KAF (DGELSS) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.
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Suggested value: for optimal performance, LWORK should generally be larger. Consider
increasing LWORK by at least nb�min M;Nð Þ, where nb is the optimal block size.

Constraint: LWORK � 1, and also
LWORK � 3�min M;Nð Þ þmax 2�min M;Nð Þ;max M;Nð Þ;NRHSð Þ.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm for computing the SVD failed to converge; if INFO ¼ i, i off-diagonal elements of
an intermediate bidiagonal form did not converge to zero.

7 Accuracy

See Section 4.5 of Anderson et al. (1999) for details.

8 Parallelism and Performance

F08KAF (DGELSS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KAF (DGELSS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08KNF (ZGELSS).

10 Example

This example solves the linear least squares problem

min
x

b�Axk k2

for the solution, x, of minimum norm, where

A ¼

�0:09 0:14 �0:46 0:68 1:29
�1:56 0:20 0:29 1:09 0:51
�1:48 �0:43 0:89 �0:71 �0:96
�1:09 0:84 0:77 2:11 �1:27
0:08 0:55 �1:13 0:14 1:74
�1:59 �0:72 1:06 1:24 0:34

0BBBBB@

1CCCCCA and b ¼

7:4
4:2
�8:3
1:8
8:6
2:1

0BBBBB@

1CCCCCA:
A tolerance of 0:01 is used to determine the effective rank of A.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.
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10.1 Program Text

Program f08kafe

! F08KAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgelss, dnrm2, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond, rnorm
Integer :: i, info, lda, lwork, m, n, rank

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), s(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F08KAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = 3*n + nb*(m+n)
Allocate (a(lda,n),b(m),s(n),work(lwork))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)

! Choose RCOND to reflect the relative accuracy of the input data

rcond = 0.01_nag_wp

! Solve the least squares problem min( norm2(b - Ax) ) for the x
! of minimum norm.

! The NAG name equivalent of dgelss is f08kaf
Call dgelss(m,n,1,a,lda,b,m,s,rcond,rank,work,lwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Least squares solution’
Write (nout,99999) b(1:n)

! Print the effective rank of A

Write (nout,*)
Write (nout,*) ’Tolerance used to estimate the rank of A’
Write (nout,99998) rcond
Write (nout,*) ’Estimated rank of A’
Write (nout,99997) rank

! Print singular values of A

Write (nout,*)
Write (nout,*) ’Singular values of A’
Write (nout,99999) s(1:n)

! Compute and print estimate of the square root of the
! residual sum of squares

If (rank==n) Then
! The NAG name equivalent of dnrm2 is f06ejf

rnorm = dnrm2(m-n,b(n+1),1)
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Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99998) rnorm

End If
Else

Write (nout,*) ’The SVD algorithm failed to converge’
End If

99999 Format (1X,7F11.4)
99998 Format (3X,1P,E11.2)
99997 Format (1X,I6)

End Program f08kafe

10.2 Program Data

F08KAF Example Program Data

6 5 :Values of M and N

-0.09 0.14 -0.46 0.68 1.29
-1.56 0.20 0.29 1.09 0.51
-1.48 -0.43 0.89 -0.71 -0.96
-1.09 0.84 0.77 2.11 -1.27
0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 :End of matrix A

7.4
4.2

-8.3
1.8
8.6
2.1 :End of vector b

10.3 Program Results

F08KAF Example Program Results

Least squares solution
0.6344 0.9699 -1.4403 3.3678 3.3992

Tolerance used to estimate the rank of A
1.00E-02

Estimated rank of A
4

Singular values of A
3.9997 2.9962 2.0001 0.9988 0.0025
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NAG Library Routine Document

F08KBF (DGESVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KBF (DGESVD) computes the singular value decomposition (SVD) of a real m by n matrix A,
optionally computing the left and/or right singular vectors.

2 Specification

SUBROUTINE F08KBF (JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
LWORK, INFO)

&

INTEGER M, N, LDA, LDU, LDVT, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), S(*), U(LDU,*), VT(LDVT,*),

WORK(max(1,LWORK))
&

CHARACTER(1) JOBU, JOBVT

The routine may be called by its LAPACK name dgesvd.

3 Description

The SVD is written as

A ¼ U�V T;

where � is an m by n matrix which is zero except for its min m;nð Þ diagonal elements, U is an m by m
orthogonal matrix, and V is an n by n orthogonal matrix. The diagonal elements of � are the singular
values of A; they are real and non-negative, and are returned in descending order. The first min m;nð Þ
columns of U and V are the left and right singular vectors of A.

Note that the routine returns V T, not V .

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: specifies options for computing all or part of the matrix U .

JOBU ¼ A
All m columns of U are returned in array U.

JOBU ¼ S
The first min m;nð Þ columns of U (the left singular vectors) are returned in the array U.

JOBU ¼ O
The first min m;nð Þ columns of U (the left singular vectors) are overwritten on the array A.
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JOBU ¼ N
No columns of U (no left singular vectors) are computed.

Constraint: JOBU ¼ A , S , O or N .

2: JOBVT – CHARACTER(1) Input

On entry: specifies options for computing all or part of the matrix V T.

JOBVT ¼ A
All n rows of V T are returned in the array VT.

JOBVT ¼ S
The first min m;nð Þ rows of V T (the right singular vectors) are returned in the array VT.

JOBVT ¼ O
The first min m;nð Þ rows of V T (the right singular vectors) are overwritten on the array A.

JOBVT ¼ N
No rows of V T (no right singular vectors) are computed.

Constraints:

JOBVT ¼ A , S , O or N ;
JOBVT and JOBU cannot both be O .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if JOBU ¼ O , A is overwritten with the first min m;nð Þ columns of U (the left singular
vectors, stored column-wise).

If JOBVT ¼ O , A is overwritten with the first min m;nð Þ rows of V T (the right singular vectors,
stored row-wise).

If JOBU 6¼ O and JOBVT 6¼ O , the contents of A are destroyed.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KBF
(DGESVD) is called.

Constraint: LDA � max 1;Mð Þ.

7: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least max 1;min M;Nð Þð Þ.
On exit: the singular values of A, sorted so that SðiÞ � Sðiþ 1Þ.

F08KBF NAG Library Manual

F08KBF.2 Mark 26



8: UðLDU; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ A ,
max 1;min M;Nð Þð Þ if JOBU ¼ S , and at least 1 otherwise.

On exit: if JOBU ¼ A , U contains the m by m orthogonal matrix U .

If JOBU ¼ S , U contains the first min m;nð Þ columns of U (the left singular vectors, stored
column-wise).

If JOBU ¼ N or O , U is not referenced.

9: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08KBF
(DGESVD) is called.

Constraints:

if JOBU ¼ A or S , LDU � max 1;Mð Þ;
otherwise LDU � 1.

10: VTðLDVT; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VT must be at least max 1;Nð Þ if JOBVT ¼ A or S ,
and at least 1 otherwise.

On exit: if JOBVT ¼ A , VT contains the n by n orthogonal matrix V T.

If JOBVT ¼ S , VT contains the first min m;nð Þ rows of V T (the right singular vectors, stored
row-wise).

If JOBVT ¼ N or O , VT is not referenced.

11: LDVT – INTEGER Input

On entry: the first dimension of the array VT as declared in the (sub)program from which
F08KBF (DGESVD) is called.

Constraints:

if JOBVT ¼ A , LDVT � max 1;Nð Þ;
if JOBVT ¼ S , LDVT � max 1;min M;Nð Þð Þ;
otherwise LDVT � 1.

12: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.

If INFO > 0, WORKð2 : min M;Nð ÞÞ contains the unconverged superdiagonal elements of an
upper bidiagonal matrix B whose diagonal is in S (not necessarily sorted). B satisfies
A ¼ UBV T, so it has the same singular values as A, and singular vectors related by U and V T.

13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KBF (DGESVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK should generally be larger. Consider
increasing LWORK by at least nb�min M;Nð Þ, where nb is the optimal block size.

Constraint: LWORK � max 1; 3�min M;Nð Þ þmax M;Nð Þ; 5�min M;Nð Þð Þ.
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14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If F08KBF (DGESVD) did not converge, INFO specifies how many superdiagonals of an
intermediate bidiagonal form did not converge to zero.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08KBF (DGESVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KBF (DGESVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately proportional to mn2 when m > n and
m2n otherwise.

The singular values are returned in descending order.

The complex analogue of this routine is F08KPF (ZGESVD).

10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

2:27 �1:54 1:15 �1:94
0:28 �1:67 0:94 �0:78
�0:48 �3:09 0:99 �0:21
1:07 1:22 0:79 0:63
�2:35 2:93 �1:45 2:30
0:62 �7:39 1:03 �2:57

0BBBBB@

1CCCCCA;

together with approximate error bounds for the computed singular values and vectors.
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The example program for F08KDF (DGESDD) illustrates finding a singular value decomposition for the
case m � n.

10.1 Program Text

Program f08kbfe

! F08KBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgesvd, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6, &

prerr = 0
! .. Local Scalars ..

Integer :: i, info, lda, ldu, ldvt, lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), a_copy(:,:), b(:), s(:), &
u(:,:), vt(:,:), work(:)

Real (Kind=nag_wp) :: dummy(1,1)
! .. Intrinsic Procedures ..

Intrinsic :: max, min, nint
! .. Executable Statements ..

Write (nout,*) ’F08KBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldu = m
ldvt = n
Allocate (a(lda,n),a_copy(m,n),s(n),vt(ldvt,n),u(ldu,m),b(m))

! Read the m by n matrix A from data file
Read (nin,*)(a(i,1:n),i=1,m)

! Read the right hand side of the linear system
Read (nin,*) b(1:m)

a_copy(1:m,1:n) = a(1:m,1:n)

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dgesvd is f08kbf
Call dgesvd(’A’,’S’,m,n,a,lda,s,u,ldu,vt,ldvt,dummy,lwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max(m+4*n+nb*(m+n),nint(dummy(1,1)))
Allocate (work(lwork))

! Compute the singular values and left and right singular vectors
! of A.

! The NAG name equivalent of dgesvd is f08kbf
Call dgesvd(’A’,’S’,m,n,a,lda,s,u,ldu,vt,ldvt,work,lwork,info)

If (info/=0) Then
Write (nout,99999) ’Failure in DGESVD. INFO =’, info

99999 Format (1X,A,I4)
Go To 100

End If

! Print the significant singular values of A

Write (nout,*) ’Singular values of A:’
Write (nout,99998) s(1:min(m,n))
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99998 Format (1X,4(3X,F11.4))

If (prerr>0) Then
Call compute_error_bounds(m,n,s)

End If

If (m>n) Then
! Compute V*Inv(S)*U^T * b to get least squares solution.

Call compute_least_squares(m,n,a_copy,m,u,ldu,vt,ldvt,s,b)
End If

100 Continue

Contains
Subroutine compute_least_squares(m,n,a,lda,u,ldu,vt,ldvt,s,b)

! .. Use Statements ..
Use nag_library, Only: dgemv, dnrm2

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: lda, ldu, ldvt, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: a(lda,n), s(n), u(ldu,m), &

vt(ldvt,n)
Real (Kind=nag_wp), Intent (Inout) :: b(m)

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, beta, norm

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: allocated

! .. Executable Statements ..
Allocate (x(n),y(n))

! Compute V*Inv(S)*U^T * b to get least squares solution.

! y = U^T b
! The NAG name equivalent of dgemv is f06paf

alpha = 1._nag_wp
beta = 0._nag_wp
Call dgemv(’T’,m,n,alpha,u,ldu,b,1,beta,y,1)

y(1:n) = y(1:n)/s(1:n)

! x = V y
Call dgemv(’T’,n,n,alpha,vt,ldvt,y,1,beta,x,1)

Write (nout,*)
Write (nout,*) ’Least squares solution:’
Write (nout,99999) x(1:n)

! Find norm of residual ||b-Ax||.
alpha = -1._nag_wp
beta = 1._nag_wp
Call dgemv(’N’,m,n,alpha,a,lda,x,1,beta,b,1)

norm = dnrm2(m,b,1)

Write (nout,*)
Write (nout,*) ’Norm of Residual:’
Write (nout,99999) norm

If (allocated(x)) Then
Deallocate (x)

End If
If (allocated(y)) Then

Deallocate (y)
End If

99999 Format (1X,4(3X,F11.4))
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End Subroutine compute_least_squares

Subroutine compute_error_bounds(m,n,s)

! Error estimates for singular values and vectors is computed
! and printed here.

! .. Use Statements ..
Use nag_library, Only: ddisna, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: s(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, info

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rcondu(:), rcondv(:), uerrbd(:), &

verrbd(:)
! .. Executable Statements ..

Allocate (rcondu(n),rcondv(n),uerrbd(n),verrbd(n))

! Get the machine precision, EPS and compute the approximate
! error bound for the computed singular values. Note that for
! the 2-norm, S(1) = norm(A)

eps = x02ajf()
serrbd = eps*s(1)

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the singular vectors

Call ddisna(’Left’,m,n,s,rcondu,info)
Call ddisna(’Right’,m,n,s,rcondv,info)

! Compute the error estimates for the singular vectors

Do i = 1, n
uerrbd(i) = serrbd/rcondu(i)
verrbd(i) = serrbd/rcondv(i)

End Do

! Print the approximate error bounds for the singular values
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimate for the singular values’
Write (nout,99999) serrbd
Write (nout,*)
Write (nout,*) ’Error estimates for the left singular vectors’
Write (nout,99999) uerrbd(1:n)
Write (nout,*)
Write (nout,*) ’Error estimates for the right singular vectors’
Write (nout,99999) verrbd(1:n)

99999 Format (4X,1P,6E11.1)

End Subroutine compute_error_bounds

End Program f08kbfe
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10.2 Program Data

F08KBF Example Program Data

6 4 :Values of M and N

2.27 -1.54 1.15 -1.94
0.28 -1.67 0.94 -0.78

-0.48 -3.09 0.99 -0.21
1.07 1.22 0.79 0.63

-2.35 2.93 -1.45 2.30
0.62 -7.39 1.03 -2.57 :End of matrix A

1.0 1.0 1.0 1.0
1.0 1.0 :RHS b(1:m)

10.3 Program Results

F08KBF Example Program Results

Singular values of A:
9.9966 3.6831 1.3569 0.5000

Least squares solution:
-0.0563 -0.1700 0.8202 0.5545

Norm of Residual:
1.7472
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NAG Library Routine Document

F08KCF (DGELSD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KCF (DGELSD) computes the minimum norm solution to a real linear least squares problem

min
x

b�Axk k2:

2 Specification

SUBROUTINE F08KCF (M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK,
LWORK, IWORK, INFO)

&

INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, IWORK(*), INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), S(*), RCOND, WORK(max(1,LWORK))

The routine may be called by its LAPACK name dgelsd.

3 Description

F08KCF (DGELSD) uses the singular value decomposition (SVD) of A, where A is a real m by n
matrix which may be rank-deficient.

Several right-hand side vectors b and solution vectors x can be handled in a single call; they are stored
as the columns of the m by r right-hand side matrix B and the n by r solution matrix X.

The problem is solved in three steps:

1. reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing the
original problem into a ‘bidiagonal least squares problem’ (BLS);

2. solve the BLS using a divide-and-conquer approach;

3. apply back all the Householder transformations to solve the original least squares problem.

The effective rank of A is determined by treating as zero those singular values which are less than
RCOND times the largest singular value.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.
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2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrices B and X.

Constraint: NRHS � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n coefficient matrix A.

On exit: the contents of A are destroyed.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KCF
(DGELSD) is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the m by r right-hand side matrix B.

On exit: B is overwritten by the n by r solution matrix X. If m � n and RANK ¼ n, the residual
sum of squares for the solution in the ith column is given by the sum of squares of elements
nþ 1; . . . ;m in that column.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08KCF
(DGELSD) is called.

Constraint: LDB � max 1;M;Nð Þ.

8: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least max 1;min M;Nð Þð Þ.
On exit: the singular values of A in decreasing order.

9: RCOND – REAL (KIND=nag_wp) Input

On entry: used to determine the effective rank of A. Singular values SðiÞ � RCOND� Sð1Þ are
treated as zero. If RCOND < 0, machine precision is used instead.

10: RANK – INTEGER Output

On exit: the effective rank of A, i.e., the number of singular values which are greater than
RCOND� Sð1Þ.

11: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.
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12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KCF (DGELSD) is called.

The exact minimum amount of workspace needed depends on M, N and NRHS. As long as
LWORK is at least

12rþ 2r� smlsiz þ 8r� nlvl þ r� NRHSþ smlsiz þ 1ð Þ2;

where smlsiz is equal to the maximum size of the subproblems at the bottom of the computation
t r e e ( u s u a l l y a b o u t 25) , nlvl ¼ max 0; int log2 min M;Nð Þ= smlsiz þ 1ð Þð Þð Þ þ 1ð Þ a n d
r ¼ min M;Nð Þ, the code will execute correctly.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array and the minimum size of the IWORK array, and returns these values as the first
entries of the WORK and IWORK arrays, and no error message related to LWORK is issued.

Suggested value: for optimal performance, LWORK should generally be larger than the minimum
required as set out above. Consider increasing LWORK by at least nb�min M;Nð Þ, where nb is
the optimal block size.

C o n s t r a i n t :
LWORK � 12rþ 2r� smlsiz þ 8r� nlvl þ r� NRHSþ smlsiz þ 1ð Þ2 or LWORK ¼ �1.

13: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least max 1; liworkð Þ, where liwork is at
least max 1; 3�min M;Nð Þ � nlvl þ 11�min M;Nð Þð Þ.
On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum liwork.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm for computing the SVD failed to converge; if INFO ¼ i, i off-diagonal elements of
an intermediate bidiagonal form did not converge to zero.

7 Accuracy

See Section 4.5 of Anderson et al. (1999) for details.

8 Parallelism and Performance

F08KCF (DGELSD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KCF (DGELSD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The complex analogue of this routine is F08KQF (ZGELSD).

10 Example

This example solves the linear least squares problem

min
x

b�Axk k2

for the solution, x, of minimum norm, where

A ¼

�0:09 �1:56 �1:48 �1:09 0:08 �1:59
0:14 0:20 �0:43 0:84 0:55 �0:72
�0:46 0:29 0:89 0:77 �1:13 1:06
0:68 1:09 �0:71 2:11 0:14 1:24
1:29 0:51 �0:96 �1:27 1:74 0:34

0BBB@
1CCCA and b ¼

7:4
4:3
�8:1
1:8
8:7

0BBB@
1CCCA:

A tolerance of 0:01 is used to determine the effective rank of A.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08kcfe

! F08KCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgelsd, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, info, lda, liwork, lwork, m, n, &

rank
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), s(:), work(:)
Real (Kind=nag_wp) :: lw(1)
Integer, Allocatable :: iwork(:)
Integer :: liw(1)

! .. Intrinsic Procedures ..
Intrinsic :: nint

! .. Executable Statements ..
Write (nout,*) ’F08KCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
Allocate (a(lda,n),b(n),s(m))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)

! Choose RCOND to reflect the relative accuracy of the input
! data

rcond = 0.01_nag_wp

! Call f08kcf/dgelsd in workspace query mode.
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lwork = -1
! The NAG name equivalent of dgelsd is f08kcf

Call dgelsd(m,n,1,a,lda,b,n,s,rcond,rank,lw,lwork,liw,info)
lwork = nint(lw(1))
liwork = liw(1)
Allocate (work(lwork),iwork(liwork))

! Now Solve the least squares problem min( norm2(b - Ax) ) for the
! x of minimum norm.

Call dgelsd(m,n,1,a,lda,b,n,s,rcond,rank,work,lwork,iwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Least squares solution’
Write (nout,99999) b(1:n)

! Print the effective rank of A

Write (nout,*)
Write (nout,*) ’Tolerance used to estimate the rank of A’
Write (nout,99998) rcond
Write (nout,*) ’Estimated rank of A’
Write (nout,99997) rank

! Print singular values of A

Write (nout,*)
Write (nout,*) ’Singular values of A’
Write (nout,99999) s(1:m)

Else
Write (nout,*) ’The SVD algorithm failed to converge’

End If

99999 Format (1X,7F11.4)
99998 Format (3X,1P,E11.2)
99997 Format (1X,I6)

End Program f08kcfe

10.2 Program Data

F08KCF Example Program Data

5 6 :Values of M and N

-0.09 -1.56 -1.48 -1.09 0.08 -1.59
0.14 0.20 -0.43 0.84 0.55 -0.72

-0.46 0.29 0.89 0.77 -1.13 1.06
0.68 1.09 -0.71 2.11 0.14 1.24
1.29 0.51 -0.96 -1.27 1.74 0.34 :End of matrix A

7.4
4.3

-8.1
1.8
8.7 :End of vector b

10.3 Program Results

F08KCF Example Program Results

Least squares solution
1.5938 -0.1180 -3.1501 0.1554 2.5529 -1.6730

Tolerance used to estimate the rank of A
1.00E-02
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Estimated rank of A
4

Singular values of A
3.9997 2.9962 2.0001 0.9988 0.0025
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NAG Library Routine Document

F08KDF (DGESDD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KDF (DGESDD) computes the singular value decomposition (SVD) of a real m by n matrix A,
optionally computing the left and/or right singular vectors, by using a divide-and-conquer method.

2 Specification

SUBROUTINE F08KDF (JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK,
IWORK, INFO)

&

INTEGER M, N, LDA, LDU, LDVT, LWORK, IWORK(8*min(M,N)), INFO
REAL (KIND=nag_wp) A(LDA,*), S(min(M,N)), U(LDU,*), VT(LDVT,*),

WORK(max(1,LWORK))
&

CHARACTER(1) JOBZ

The routine may be called by its LAPACK name dgesdd.

3 Description

The SVD is written as

A ¼ U�V T;

where � is an m by n matrix which is zero except for its min m;nð Þ diagonal elements, U is an m by m
orthogonal matrix, and V is an n by n orthogonal matrix. The diagonal elements of � are the singular
values of A; they are real and non-negative, and are returned in descending order. The first min m;nð Þ
columns of U and V are the left and right singular vectors of A.

Note that the routine returns V T, not V .

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: specifies options for computing all or part of the matrix U .

JOBZ ¼ A
All m columns of U and all n rows of V T are returned in the arrays U and VT.

JOBZ ¼ S
The first min m;nð Þ columns of U and the first min m;nð Þ rows of V T are returned in the
arrays U and VT.
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JOBZ ¼ O
If M � N, the first n columns of U are overwritten on the array A and all rows of V T are
returned in the array VT. Otherwise, all columns of U are returned in the array U and the
first m rows of V T are overwritten in the array VT.

JOBZ ¼ N
No columns of U or rows of V T are computed.

Constraint: JOBZ ¼ A , S , O or N .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if JOBZ ¼ O , A is overwritten with the first n columns of U (the left singular vectors,
stored column-wise) if M � N; A is overwritten with the first m rows of V T (the right singular
vectors, stored row-wise) otherwise.

If JOBZ 6¼ O , the contents of A are destroyed.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KDF
(DGESDD) is called.

Constraint: LDA � max 1;Mð Þ.

6: Sðmin M;Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the singular values of A, sorted so that SðiÞ � Sðiþ 1Þ.

7: UðLDU; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBZ ¼ A or
JOBZ ¼ O and M < N, max 1;min M;Nð Þð Þ if JOBZ ¼ S , and at least 1 otherwise.

On exit:

If JOBZ ¼ A or JOBZ ¼ O and M < N, U contains the m by m orthogonal matrix U .

If JOBZ ¼ S , U contains the first min m;nð Þ columns of U (the left singular vectors, stored
column-wise).

If JOBZ ¼ O and M � N, or JOBZ ¼ N , U is not referenced.

8: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08KDF
(DGESDD) is called.

Constraints:

if JOBZ ¼ S or A or JOBZ ¼ O and M < N, LDU � max 1;Mð Þ;
otherwise LDU � 1.

F08KDF NAG Library Manual

F08KDF.2 Mark 26



9: VTðLDVT; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VT must be at least max 1;Nð Þ if JOBZ ¼ A or S or
JOBZ ¼ O and M � N, and at least 1 otherwise.

On exit: if JOBZ ¼ A or JOBZ ¼ O and M � N, VT contains the n by n orthogonal matrix V T.

If JOBZ ¼ S , VT contains the first min m;nð Þ rows of V T (the right singular vectors, stored row-
wise).

If JOBZ ¼ O and M < N, or JOBZ ¼ N , VT is not referenced.

10: LDVT – INTEGER Input

On entry: the first dimension of the array VT as declared in the (sub)program from which
F08KDF (DGESDD) is called.

Constraints:

if JOBZ ¼ A or JOBZ ¼ O and M � N, LDVT � max 1;Nð Þ;
if JOBZ ¼ S , LDVT � max 1;min M;Nð Þð Þ;
otherwise LDVT � 1.

11: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KDF (DGESDD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK should generally be larger. Consider
increasing LWORK by at least nb�min M;Nð Þ, where nb is the optimal block size.

Constraints:

if JOBZ ¼ N , LWORK � 3�min M;Nð Þ þmax 1;max M;Nð Þ; 7�min M;Nð Þð Þ;
if JOBZ ¼ O , LWORK � 3�min M;Nð Þ þ
max 1;max M;Nð Þ; 5�min M;Nð Þ �min M;Nð Þ þ 4�min M;Nð Þð Þ;
if JOBZ ¼ S or A , LWORK � 3�min M;Nð Þ þ
max 1;max M;Nð Þ; 4�min M;Nð Þ �min M;Nð Þ þ 4�min M;Nð Þð Þ;
otherwise LWORK � 1.

13: IWORKð8�min M;Nð ÞÞ – INTEGER array Workspace

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F08KDF (DGESDD) did not converge, the updating process failed.
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7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08KDF (DGESDD) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08KDF (DGESDD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately proportional to mn2 when m > n and
m2n otherwise.

The singular values are returned in descending order.

The complex analogue of this routine is F08KRF (ZGESDD).

10 Example

This example finds the singular values and left and right singular vectors of the 4 by 6 matrix

A ¼
2:27 0:28 �0:48 1:07 �2:35 0:62
�1:54 �1:67 �3:09 1:22 2:93 �7:39
1:15 0:94 0:99 0:79 �1:45 1:03
�1:94 �0:78 �0:21 0:63 2:30 �2:57

0B@
1CA;

together with approximate error bounds for the computed singular values and vectors.

The example program for F08KBF (DGESVD) illustrates finding a singular value decomposition for the
case m � n.

10.1 Program Text

Program f08kdfe

! F08KDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddisna, dgesdd, nag_wp, x02ajf, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, ifail, info, lda, ldu, lwork, m, &

n
! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: a(:,:), rcondu(:), rcondv(:), s(:), &
u(:,:), uerrbd(:), verrbd(:), &
work(:)

Real (Kind=nag_wp) :: dummy(1,1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min, nint

! .. Executable Statements ..
Write (nout,*) ’F08KDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldu = m
Allocate (a(lda,n),rcondu(m),rcondv(m),s(m),u(ldu,m),uerrbd(m), &

verrbd(m),iwork(8*min(m,n)))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dgesdd is f08kdf
Call dgesdd(’Overwrite A by tranpose(V)’,m,n,a,lda,s,u,ldu,dummy,1, &

dummy,lwork,iwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((5*m+9)*m+n+nb*(m+n),nint(dummy(1,1)))
Allocate (work(lwork))

! Read the m by n matrix A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Compute the singular values and left and right singular vectors
! of A (A = U*S*(V**T), m.le.n)

! The NAG name equivalent of dgesdd is f08kdf
Call dgesdd(’Overwrite A by tranpose(V)’,m,n,a,lda,s,u,ldu,dummy,1,work, &

lwork,iwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Singular values’
Write (nout,99999) s(1:m)
Flush (nout)

! Normalize so that u(1,j)>=0
Do i = 1, m

If (u(1,i)<0.0_nag_wp) Then
u(1:m,i) = -u(1:m,i)
a(i,1:n) = -a(i,1:n)

End If
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,m,m,u,ldu,’Left singular vectors’,ifail)

Write (nout,*)
Flush (nout)

Call x04caf(’General’,’ ’,m,n,a,lda,’Right singular vectors by row ’// &
’(first m rows of V**T)’,ifail)

! Get the machine precision, EPS and compute the approximate
! error bound for the computed singular values. Note that for
! the 2-norm, S(1) = norm(A)

eps = x02ajf()
serrbd = eps*s(1)
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! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the singular vectors

Call ddisna(’Left’,m,n,s,rcondu,info)
Call ddisna(’Right’,m,n,s,rcondv,info)

! Compute the error estimates for the singular vectors

Do i = 1, m
uerrbd(i) = serrbd/rcondu(i)
verrbd(i) = serrbd/rcondv(i)

End Do

! Print the approximate error bounds for the singular values
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimate for the singular values’
Write (nout,99998) serrbd
Write (nout,*)
Write (nout,*) ’Error estimates for the left singular vectors’
Write (nout,99998) uerrbd(1:m)
Write (nout,*)
Write (nout,*) ’Error estimates for the right singular vectors’
Write (nout,99998) verrbd(1:m)

Else
Write (nout,99997) ’Failure in DGESDD. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)

End Program f08kdfe

10.2 Program Data

F08KDF Example Program Data

4 6 :Values of M and N

2.27 0.28 -0.48 1.07 -2.35 0.62
-1.54 -1.67 -3.09 1.22 2.93 -7.39
1.15 0.94 0.99 0.79 -1.45 1.03

-1.94 -0.78 -0.21 0.63 2.30 -2.57 :End of matrix A

10.3 Program Results

F08KDF Example Program Results

Singular values
9.9966 3.6831 1.3569 0.5000

Left singular vectors
1 2 3 4

1 0.1921 0.8030 0.0041 0.5642
2 -0.8794 0.3926 -0.0752 -0.2587
3 0.2140 0.2980 0.7827 -0.5027
4 -0.3795 -0.3351 0.6178 0.6017

Right singular vectors by row (first m rows of V**T)
1 2 3 4 5 6

1 0.2774 0.2020 0.2918 -0.0938 -0.4213 0.7816
2 0.6003 0.0301 -0.3348 0.3699 -0.5266 -0.3353
3 -0.1277 0.2805 0.6453 0.6781 0.0413 -0.1645
4 -0.1323 -0.7034 -0.1906 0.5399 0.0575 0.3957

Error estimate for the singular values
1.1E-15
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Error estimates for the left singular vectors
1.8E-16 4.8E-16 1.3E-15 1.3E-15

Error estimates for the right singular vectors
1.8E-16 4.8E-16 1.3E-15 2.2E-15
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NAG Library Routine Document

F08KEF (DGEBRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KEF (DGEBRD) reduces a real m by n matrix to bidiagonal form.

2 Specification

SUBROUTINE F08KEF (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), D(*), E(*), TAUQ(*), TAUP(*),

WORK(max(1,LWORK))
&

The routine may be called by its LAPACK name dgebrd.

3 Description

F08KEF (DGEBRD) reduces a real m by n matrix A to bidiagonal form B by an orthogonal
transformation: A ¼ QBPT, where Q and PT are orthogonal matrices of order m and n respectively.

If m � n, the reduction is given by:

A ¼ Q B1
0

� �
PT ¼ Q1B1P

T;

where B1 is an n by n upper bidiagonal matrix and Q1 consists of the first n columns of Q.

If m < n, the reduction is given by

A ¼ Q B1 0
� �

PT ¼ QB1P
T
1 ;

where B1 is an m by m lower bidiagonal matrix and PT
1 consists of the first m rows of PT.

The orthogonal matrices Q and P are not formed explicitly but are represented as products of
elementary reflectors (see the F08 Chapter Introduction for details). Routines are provided to work with
Q and P in this representation (see Section 9).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the diagonal and first superdiagonal are overwritten by the upper bidiagonal
matrix B, elements below the diagonal are overwritten by details of the orthogonal matrix Q and
elements above the first superdiagonal are overwritten by details of the orthogonal matrix P .

If m < n, the diagonal and first subdiagonal are overwritten by the lower bidiagonal matrix B,
elements below the first subdiagonal are overwritten by details of the orthogonal matrix Q and
elements above the diagonal are overwritten by details of the orthogonal matrix P .

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KEF
(DGEBRD) is called.

Constraint: LDA � max 1;Mð Þ.

5: Dð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array D must be at least max 1;min M;Nð Þð Þ.
On exit: the diagonal elements of the bidiagonal matrix B.

6: Eð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array E must be at least max 1;min M;Nð Þ � 1ð Þ.
On exit: the off-diagonal elements of the bidiagonal matrix B.

7: TAUQð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array TAUQ must be at least max 1;min M;Nð Þð Þ.
On exit: further details of the orthogonal matrix Q.

8: TAUPð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array TAUP must be at least max 1;min M;Nð Þð Þ.
On exit: further details of the orthogonal matrix P .

9: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

10: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KEF (DGEBRD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � Mþ Nð Þ � nb, where nb is the optimal
block size.

Constraint: LWORK � max 1;M;Nð Þ or LWORK ¼ �1.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed bidiagonal form B satisfies QBPT ¼ Aþ E, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.

8 Parallelism and Performance

F08KEF (DGEBRD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KEF (DGEBRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4
3n

2 3m� nð Þ if m � n or 4
3m

2 3n�mð Þ
if m < n.

If m� n, it can be more efficient to first call F08AEF (DGEQRF) to perform a QR factorization of A,
and then to call F08KEF (DGEBRD) to reduce the factor R to bidiagonal form. This requires
approximately 2n2 mþ nð Þ floating-point operations.
If m n, it can be more efficient to first call F08AHF (DGELQF) to perform an LQ factorization of
A, and then to call F08KEF (DGEBRD) to reduce the factor L to bidiagonal form. This requires
approximately 2m2 mþ nð Þ operations.

To form the orthogonal matrices PT and/or Q F08KEF (DGEBRD) may be followed by calls to
F08KFF (DORGBR):

to form the m by m orthogonal matrix Q

CALL DORGBR(’Q’,M,M,N,A,LDA,TAUQ,WORK,LWORK,INFO)

but note that the second dimension of the array A must be at least M, which may be larger than was
required by F08KEF (DGEBRD);

to form the n by n orthogonal matrix P T

CALL DORGBR(’P’,N,N,M,A,LDA,TAUP,WORK,LWORK,INFO)

but note that the first dimension of the array A, specified by the argument LDA, must be at least N,
which may be larger than was required by F08KEF (DGEBRD).

To apply Q or P to a real rectangular matrix C, F08KEF (DGEBRD) may be followed by a call to
F08KGF (DORMBR).

The complex analogue of this routine is F08KSF (ZGEBRD).
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10 Example

This example reduces the matrix A to bidiagonal form, where

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA:

10.1 Program Text

Program f08kefe

! F08KEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgebrd, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, lda, lwork, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), d(:), e(:), taup(:), &

tauq(:), work(:)
! .. Intrinsic Procedures ..

Intrinsic :: min
! .. Executable Statements ..

Write (nout,*) ’F08KEF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = 64*(m+n)
Allocate (a(lda,n),d(n),e(n-1),taup(n),tauq(n),work(lwork))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Reduce A to bidiagonal form

! The NAG name equivalent of dgebrd is f08kef
Call dgebrd(m,n,a,lda,d,e,tauq,taup,work,lwork,info)

! Print bidiagonal form

Write (nout,*)
Write (nout,*) ’Diagonal’
Write (nout,99999) d(1:min(m,n))
If (m>=n) Then

Write (nout,*) ’Superdiagonal’
Else

Write (nout,*) ’Subdiagonal’
End If
Write (nout,99999) e(1:min(m,n)-1)

99999 Format (1X,8F9.4)
End Program f08kefe
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10.2 Program Data

F08KEF Example Program Data
6 4 :Values of M and N

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A

10.3 Program Results

F08KEF Example Program Results

Diagonal
3.6177 2.4161 -1.9213 -1.4265

Superdiagonal
1.2587 1.5262 -1.1895

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08KEF

Mark 26 F08KEF.5 (last)





NAG Library Routine Document

F08KFF (DORGBR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KFF (DORGBR) generates one of the real orthogonal matrices Q or PT which were determined by
F08KEF (DGEBRD) when reducing a real matrix to bidiagonal form.

2 Specification

SUBROUTINE F08KFF (VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, K, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))
CHARACTER(1) VECT

The routine may be called by its LAPACK name dorgbr.

3 Description

F08KFF (DORGBR) is intended to be used after a call to F08KEF (DGEBRD), which reduces a real
rectangular matrix A to bidiagonal form B by an orthogonal transformation: A ¼ QBPT. F08KEF
(DGEBRD) represents the matrices Q and PT as products of elementary reflectors.

This routine may be used to generate Q or P T explicitly as square matrices, or in some cases just the
leading columns of Q or the leading rows of PT.

The various possibilities are specified by the arguments VECT, M, N and K. The appropriate values to
cover the most likely cases are as follows (assuming that A was an m by n matrix):

1. To form the full m by m matrix Q:

CALL DORGBR(’Q’,m,m,n,...)

(note that the array A must have at least m columns).

2. If m > n, to form the n leading columns of Q:

CALL DORGBR(’Q’,m,n,n,...)

3. To form the full n by n matrix PT:

CALL DORGBR(’P’,n,n,m,...)

(note that the array A must have at least n rows).

4. If m < n, to form the m leading rows of PT:

CALL DORGBR(’P’,m,n,m,...)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: VECT – CHARACTER(1) Input

On entry: indicates whether the orthogonal matrix Q or P T is generated.

VECT ¼ Q
Q is generated.

VECT ¼ P
PT is generated.

Constraint: VECT ¼ Q or P .

2: M – INTEGER Input

On entry: m, the number of rows of the orthogonal matrix Q or PT to be returned.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the orthogonal matrix Q or PT to be returned.

Constraints:

N � 0;
if VECT ¼ Q and M > K, M � N � K;
if VECT ¼ Q and M � K, M ¼ N;
if VECT ¼ P and N > K, N � M � K;
if VECT ¼ P and N � K, N ¼ M.

4: K – INTEGER Input

On entry: if VECT ¼ Q , the number of columns in the original matrix A.

If VECT ¼ P , the number of rows in the original matrix A.

Constraint: K � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08KEF
(DGEBRD).

On exit: the orthogonal matrix Q or PT, or the leading rows or columns thereof, as specified by
VECT, M and N.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KFF
(DORGBR) is called.

Constraint: LDA � max 1;Mð Þ.

7: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;min M;Kð Þð Þ if VECT ¼ Q and at
least max 1;min N;Kð Þð Þ if VECT ¼ P .

On entry: further details of the elementary reflectors, as returned by F08KEF (DGEBRD) in its
argument TAUQ if VECT ¼ Q , or in its argument TAUP if VECT ¼ P .
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8: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

9: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KFF (DORGBR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � min M;Nð Þ � nb, where nb is the optimal
block size.

Constraint: LWORK � max 1;min M;Nð Þð Þ or LWORK ¼ �1.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision. A similar statement holds for the computed matrix PT.

8 Parallelism and Performance

F08KFF (DORGBR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KFF (DORGBR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations for the cases listed in Section 3 are approximately as
follows:

1. To form the whole of Q:

4
3n 3m2 � 3mnþ n2
� �

if m > n,

4
3m

3 if m � n;

2. To form the n leading columns of Q when m > n:
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2
3n

2 3m� nð Þ ;

3. To form the whole of PT:

4
3n

3 if m � n,
4
3m 3n2 � 3mnþm2
� �

if m < n;

4. To form the m leading rows of PT when m < n:

2
3m

2 3n�mð Þ .

The complex analogue of this routine is F08KTF (ZUNGBR).

10 Example

For this routine two examples are presented, both of which involve computing the singular value
decomposition of a matrix A, where

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA
in the first example and

A ¼
�5:42 3:28 �3:68 0:27 2:06 0:46
�1:65 �3:40 �3:20 �1:03 �4:06 �0:01
�0:37 2:35 1:90 4:31 �1:76 1:13
�3:15 �0:11 1:99 �2:70 0:26 4:50

0B@
1CA

in the second. A must first be reduced to tridiagonal form by F08KEF (DGEBRD). The program then
calls F08KFF (DORGBR) twice to form Q and PT, and passes these matrices to F08MEF (DBDSQR),
which computes the singular value decomposition of A.

10.1 Program Text

Program f08kffe

! F08KFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dbdsqr, dgebrd, dorgbr, f06qff, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ic, ifail, info, lda, ldc, ldu, &

ldvt, lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), d(:), e(:), taup(:), &
tauq(:), u(:,:), vt(:,:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F08KFF Example Program Results’

! Skip heading in data file
Read (nin,*)
Do ic = 1, 2

Read (nin,*) m, n
lda = m
ldc = n
ldu = m
ldvt = n
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lwork = 64*(m+n)
Allocate (a(lda,n),c(ldc,n),d(n),e(n-1),taup(n),tauq(n),u(ldu,n), &

vt(ldvt,n),work(lwork))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Reduce A to bidiagonal form
! The NAG name equivalent of dgebrd is f08kef

Call dgebrd(m,n,a,lda,d,e,tauq,taup,work,lwork,info)

If (m>=n) Then

! Copy A to VT and U

Call f06qff(’Upper’,n,n,a,lda,vt,ldvt)
Call f06qff(’Lower’,m,n,a,lda,u,ldu)

! Form P**T explicitly, storing the result in VT
! The NAG name equivalent of dorgbr is f08kff

Call dorgbr(’P’,n,n,m,vt,ldvt,taup,work,lwork,info)

! Form Q explicitly, storing the result in U
! The NAG name equivalent of dorgbr is f08kff

Call dorgbr(’Q’,m,n,n,u,ldu,tauq,work,lwork,info)

! Compute the SVD of A
! The NAG name equivalent of dbdsqr is f08mef

Call dbdsqr(’Upper’,n,n,m,0,d,e,vt,ldvt,u,ldu,c,ldc,work,info)

! Print singular values, left & right singular vectors

Write (nout,*)
Write (nout,*) ’Example 1: singular values’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,vt,ldvt, &

’Example 1: right singular vectors, by row’,ifail)

Write (nout,*)
Flush (nout)

Call x04caf(’General’,’ ’,m,n,u,ldu, &
’Example 1: left singular vectors, by column’,ifail)

Else

! Copy A to VT and U

Call f06qff(’Upper’,m,n,a,lda,vt,ldvt)
Call f06qff(’Lower’,m,m,a,lda,u,ldu)

! Form P**T explicitly, storing the result in VT
! The NAG name equivalent of dorgbr is f08kff

Call dorgbr(’P’,m,n,m,vt,ldvt,taup,work,lwork,info)

! Form Q explicitly, storing the result in U
! The NAG name equivalent of dorgbr is f08kff

Call dorgbr(’Q’,m,m,n,u,ldu,tauq,work,lwork,info)

! Compute the SVD of A
! The NAG name equivalent of dbdsqr is f08mef

Call dbdsqr(’Lower’,m,n,m,0,d,e,vt,ldvt,u,ldu,c,ldc,work,info)

! Print singular values, left & right singular vectors
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Write (nout,*)
Write (nout,*) ’Example 2: singular values’
Write (nout,99999) d(1:m)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04caf(’General’,’ ’,m,n,vt,ldvt, &

’Example 2: right singular vectors, by row’,ifail)

Write (nout,*)
Flush (nout)

Call x04caf(’General’,’ ’,m,m,u,ldu, &
’Example 2: left singular vectors, by column’,ifail)

End If
Deallocate (a,c,d,e,taup,tauq,u,vt,work)

End Do

99999 Format (3X,(8F8.4))
End Program f08kffe

10.2 Program Data

F08KFF Example Program Data
6 4 :Values of M and N, Example 1

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A
4 6 :Values of M and N, Example 2

-5.42 3.28 -3.68 0.27 2.06 0.46
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50 :End of matrix A

10.3 Program Results

F08KFF Example Program Results

Example 1: singular values
3.9987 3.0005 1.9967 0.9999

Example 1: right singular vectors, by row
1 2 3 4

1 0.8251 -0.2794 0.2048 0.4463
2 -0.4530 -0.2121 -0.2622 0.8252
3 -0.2829 -0.7961 0.4952 -0.2026
4 0.1841 -0.4931 -0.8026 -0.2807

Example 1: left singular vectors, by column
1 2 3 4

1 -0.0203 0.2794 0.4690 0.7692
2 -0.7284 -0.3464 -0.0169 -0.0383
3 0.4393 -0.4955 -0.2868 0.0822
4 -0.4678 0.3258 -0.1536 -0.1636
5 -0.2200 -0.6428 0.1125 0.3572
6 -0.0935 0.1927 -0.8132 0.4957

Example 2: singular values
7.9987 7.0059 5.9952 4.9989

Example 2: right singular vectors, by row
1 2 3 4 5 6

1 -0.7933 0.3163 -0.3342 -0.1514 0.2142 0.3001
2 0.1002 0.6442 0.4371 0.4890 0.3771 0.0501
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3 0.0111 0.1724 -0.6367 0.4354 -0.0430 -0.6111
4 0.2361 0.0216 -0.1025 -0.5286 0.7460 -0.3120

Example 2: left singular vectors, by column
1 2 3 4

1 0.8884 0.1275 0.4331 0.0838
2 0.0733 -0.8264 0.1943 -0.5234
3 -0.0361 0.5435 0.0756 -0.8352
4 0.4518 -0.0733 -0.8769 -0.1466
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NAG Library Routine Document

F08KGF (DORMBR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KGF (DORMBR) multiplies an arbitrary real m by n matrix C by one of the real orthogonal
matrices Q or P which were determined by F08KEF (DGEBRD) when reducing a real matrix to
bidiagonal form.

2 Specification

SUBROUTINE F08KGF (VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

&

INTEGER M, N, K, LDA, LDC, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) VECT, SIDE, TRANS

The routine may be called by its LAPACK name dormbr.

3 Description

F08KGF (DORMBR) is intended to be used after a call to F08KEF (DGEBRD), which reduces a real
rectangular matrix A to bidiagonal form B by an orthogonal transformation: A ¼ QBPT. F08KEF
(DGEBRD) represents the matrices Q and PT as products of elementary reflectors.

This routine may be used to form one of the matrix products

QC;QTC;CQ;CQT; PC; PTC;CP or CP T;

overwriting the result on C (which may be any real rectangular matrix).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

Note: in the descriptions below, r denotes the order of Q or PT: if SIDE ¼ L , r ¼ M and if
SIDE ¼ R , r ¼ N.

1: VECT – CHARACTER(1) Input

On entry: indicates whether Q or QT or P or PT is to be applied to C.

VECT ¼ Q
Q or QT is applied to C.

VECT ¼ P
P or PT is applied to C.

Constraint: VECT ¼ Q or P .
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2: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QT or P or P T is to be applied to C.

SIDE ¼ L
Q or QT or P or PT is applied to C from the left.

SIDE ¼ R
Q or QT or P or PT is applied to C from the right.

Constraint: SIDE ¼ L or R .

3: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or P or QT or PT is to be applied to C.

TRANS ¼ N
Q or P is applied to C.

TRANS ¼ T
QT or PT is applied to C.

Constraint: TRANS ¼ N or T .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

6: K – INTEGER Input

On entry: if VECT ¼ Q , the number of columns in the original matrix A.

If VECT ¼ P , the number of rows in the original matrix A.

Constraint: K � 0.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;min r ;Kð Þð Þ if VECT ¼ Q and
at least max 1; rð Þ if VECT ¼ P .

On entry: details of the vectors which define the elementary reflectors, as returned by F08KEF
(DGEBRD).

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KGF
(DORMBR) is called.

Constraints:

if VECT ¼ Q , LDA � max 1; rð Þ;
if VECT ¼ P , LDA � max 1;min r ;Kð Þð Þ.

9: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;min r ;Kð Þð Þ.
On entry: further details of the elementary reflectors, as returned by F08KEF (DGEBRD) in its
argument TAUQ if VECT ¼ Q , or in its argument TAUP if VECT ¼ P .
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10: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the matrix C.

On exit: C is overwritten by QC or QTC or CQ or CTQ or PC or P TC or CP or CTP as
specified by VECT, SIDE and TRANS.

11: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08KGF
(DORMBR) is called.

Constraint: LDC � max 1;Mð Þ.

12: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KGF (DORMBR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08KGF (DORMBR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08KGF (DORMBR) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately

if SIDE ¼ L and m � k, 2nk 2m� kð Þ;
if SIDE ¼ R and n � k, 2mk 2n� kð Þ;

if SIDE ¼ L and m < k, 2m2n;

if SIDE ¼ R and n < k, 2mn2,

where k is the value of the argument K.

The complex analogue of this routine is F08KUF (ZUNMBR).

10 Example

For this routine two examples are presented. Both illustrate how the reduction to bidiagonal form of a
matrix A may be preceded by a QR or LQ factorization of A.

In the first example, m > n, and

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA:

The routine first performs a QR factorization of A as A ¼ QaR and then reduces the factor R to
bidiagonal form B: R ¼ QbBP

T. Finally it forms Qa and calls F08KGF (DORMBR) to form
Q ¼ QaQb.

In the second example, m < n, and

A ¼
�5:42 3:28 �3:68 0:27 2:06 0:46
�1:65 �3:40 �3:20 �1:03 �4:06 �0:01
�0:37 2:35 1:90 4:31 �1:76 1:13
�3:15 �0:11 1:99 �2:70 0:26 4:50

0B@
1CA:

The routine first performs an LQ factorization of A as A ¼ LPT
a and then reduces the factor L to

bidiagonal form B: L ¼ QBPT
b . Finally it forms PT

b and calls F08KGF (DORMBR) to form
PT ¼ P T

b P
T
a .

10.1 Program Text

Program f08kgfe

! F08KGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgebrd, dgelqf, dgeqrf, dorglq, dorgqr, dormbr, &

f06qff, f06qhf, nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Integer :: i, ic, ifail, info, lda, ldpt, ldu, &
lwork, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), d(:), e(:), pt(:,:), tau(:), &

taup(:), tauq(:), u(:,:), work(:)
! .. Executable Statements ..

Write (nout,*) ’F08KGF Example Program Results’
! Skip heading in data file

Read (nin,*)
Do ic = 1, 2

Read (nin,*) m, n
lda = m
ldpt = n
ldu = m
lwork = 64*(m+n)
Allocate (a(lda,n),d(n),e(n-1),pt(ldpt,n),tau(n),taup(n),tauq(n), &

u(ldu,n),work(lwork))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

If (m>=n) Then

! Compute the QR factorization of A
! The NAG name equivalent of dgeqrf is f08aef

Call dgeqrf(m,n,a,lda,tau,work,lwork,info)

! Copy A to U
Call f06qff(’Lower’,m,n,a,lda,u,ldu)

! Form Q explicitly, storing the result in U
! The NAG name equivalent of dorgqr is f08aff

Call dorgqr(m,n,n,u,ldu,tau,work,lwork,info)

! Copy R to PT (used as workspace)
Call f06qff(’Upper’,n,n,a,lda,pt,ldpt)

! Set the strictly lower triangular part of R to zero
Call f06qhf(’Lower’,n-1,n-1,zero,zero,pt(2,1),ldpt)

! Bidiagonalize R
! The NAG name equivalent of dgebrd is f08kef

Call dgebrd(n,n,pt,ldpt,d,e,tauq,taup,work,lwork,info)

! Update Q, storing the result in U
! The NAG name equivalent of dormbr is f08kgf

Call dormbr(’Q’,’Right’,’No transpose’,m,n,n,pt,ldpt,tauq,u,ldu, &
work,lwork,info)

! Print bidiagonal form and matrix Q

Write (nout,*)
Write (nout,*) ’Example 1: bidiagonal matrix B’
Write (nout,*) ’Diagonal’
Write (nout,99999) d(1:n)
Write (nout,*) ’Superdiagonal’
Write (nout,99999) e(1:n-1)
Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,m,n,u,ldu,’Example 1: matrix Q’,ifail)

Else

! Compute the LQ factorization of A
! The NAG name equivalent of dgelqf is f08ahf

Call dgelqf(m,n,a,lda,tau,work,lwork,info)
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! Copy A to PT
Call f06qff(’Upper’,m,n,a,lda,pt,ldpt)

! Form Q explicitly, storing the result in PT
! The NAG name equivalent of dorglq is f08ajf

Call dorglq(n,n,m,pt,ldpt,tau,work,lwork,info)

! Copy L to U (used as workspace)
Call f06qff(’Lower’,m,m,a,lda,u,ldu)

! Set the strictly upper triangular part of L to zero
Call f06qhf(’Upper’,m-1,m-1,zero,zero,u(1,2),ldu)

! Bidiagonalize L
! The NAG name equivalent of dgebrd is f08kef

Call dgebrd(m,m,u,ldu,d,e,tauq,taup,work,lwork,info)

! Update P**T, storing the result in PT
! The NAG name equivalent of dormbr is f08kgf

Call dormbr(’P’,’Left’,’Transpose’,m,n,m,u,ldu,taup,pt,ldpt,work, &
lwork,info)

! Print bidiagonal form and matrix P**T

Write (nout,*)
Write (nout,*) ’Example 2: bidiagonal matrix B’
Write (nout,*) ’Diagonal’
Write (nout,99999) d(1:m)
Write (nout,*) ’Superdiagonal’
Write (nout,99999) e(1:m-1)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04caf(’General’,’ ’,m,n,pt,ldpt,’Example 2: matrix P**T’, &

ifail)

End If
Deallocate (a,d,e,pt,tau,taup,tauq,u,work)

End Do

99999 Format (3X,(8F8.4))
End Program f08kgfe

10.2 Program Data

F08KGF Example Program Data
6 4 :Values of M and N, Example 1

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A
4 6 :Values of M and N, Example 2

-5.42 3.28 -3.68 0.27 2.06 0.46
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50 :End of matrix A

10.3 Program Results

F08KGF Example Program Results

Example 1: bidiagonal matrix B
Diagonal

3.6177 -2.4161 1.9213 -1.4265
Superdiagonal

1.2587 -1.5262 1.1895
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Example 1: matrix Q
1 2 3 4

1 -0.1576 -0.2690 0.2612 0.8513
2 -0.5335 0.5311 -0.2922 0.0184
3 0.6358 0.3495 -0.0250 -0.0210
4 -0.5335 0.0035 0.1537 -0.2592
5 0.0415 0.5572 -0.2917 0.4523
6 -0.0055 0.4614 0.8585 -0.0532

Example 2: bidiagonal matrix B
Diagonal

-7.7724 6.1573 -6.0576 5.7933
Superdiagonal

1.1926 0.5734 -1.9143

Example 2: matrix P**T
1 2 3 4 5 6

1 -0.7104 0.4299 -0.4824 0.0354 0.2700 0.0603
2 0.3583 0.1382 -0.4110 0.4044 0.0951 -0.7148
3 -0.0507 0.4244 0.3795 0.7402 -0.2773 0.2203
4 0.2442 0.4016 0.4158 -0.1354 0.7666 -0.0137
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NAG Library Routine Document

F08KHF (DGEJSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KHF (DGEJSV) computes the singular value decomposition (SVD) of a real m by n matrix A
where m � n, and optionally computes the left and/or right singular vectors. F08KHF (DGEJSV)
implements the preconditioned Jacobi SVD of Drmac and Veselic. This is the expert driver routine that
calls F08KJF (DGESVJ) after certain preconditioning. In most cases F08KBF (DGESVD) or F08KDF
(DGESDD) is sufficient to obtain the SVD of a real matrix. These are much simpler to use and also
handle the case m < n.

2 Specification

SUBROUTINE F08KHF (JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, M, N, A, LDA,
SVA, U, LDU, V, LDV, WORK, LWORK, IWORK, INFO)

&

INTEGER M, N, LDA, LDU, LDV, LWORK, IWORK(M+3*N), INFO
REAL (KIND=nag_wp) A(LDA,*), SVA(N), U(LDU,*), V(LDV,*), WORK(LWORK)
CHARACTER(1) JOBA, JOBU, JOBV, JOBR, JOBT, JOBP

The routine may be called by its LAPACK name dgejsv.

3 Description

The SVD is written as

A ¼ U�V T;

where � is an m by n matrix which is zero except for its n diagonal elements, U is an m by m
orthogonal matrix, and V is an n by n orthogonal matrix. The diagonal elements of � are the singular
values of A in descending order of magnitude. The columns of U and V are the left and the right
singular vectors of A. The diagonal of � is computed and stored in the array SVA.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Drmac Z and Veselic K (2008a) New fast and accurate Jacobi SVD algorithm I SIAM J. Matrix Anal.
Appl. 29 4

Drmac Z and Veselic K (2008b) New fast and accurate Jacobi SVD algorithm II SIAM J. Matrix Anal.
Appl. 29 4

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: JOBA – CHARACTER(1) Input

On entry: specifies the form of pivoting for the QR factorization stage; whether an estimate of
the condition number of the scaled matrix is required; and the form of rank reduction that is
performed.

JOBA ¼ C
The initial QR factorization of the input matrix is performed with column pivoting; no
estimate of condition number is computed; and, the rank is reduced by only the
underflowed part of the triangular factor R. This option works well (high relative accuracy)
if A ¼ BD, with well-conditioned B and arbitrary diagonal matrix D. The accuracy cannot
be spoiled by column scaling. The accuracy of the computed output depends on the
condition of B, and the procedure aims at the best theoretical accuracy.

JOBA ¼ E
Computation as with JOBA ¼ C with an additional estimate of the condition number of
B. It provides a realistic error bound.

JOBA ¼ F
The initial QR factorization of the input matrix is performed with full row and column
pivoting; no estimate of condition number is computed; and, the rank is reduced by only
the underflowed part of the triangular factor R. If A ¼ D1 � C �D2 with ill-conditioned
diagonal scalings D1, D2, and well-conditioned matrix C, this option gives higher
accuracy than the JOBA ¼ C option. If the structure of the input matrix is not known, and
relative accuracy is desirable, then this option is advisable.

JOBA ¼ G
Computation as with JOBA ¼ F with an additional estimate of the condition number of B,
where A ¼ DB (i.e., B ¼ C �D2). If A has heavily weighted rows, then using this
condition number gives too pessimistic an error bound.

JOBA ¼ A
Computation as with JOBA ¼ C except in the treatment of rank reduction. In this case,
small singular values are to be considered as noise and, if found, the matrix is treated as
numerically rank deficient. The computed SVD A ¼ U�V T restores A up to
f m; nð Þ � �� Ak k, where � is machine precision. This gives the procedure licence to
discard (set to zero) all singular values below N� �� Ak k.

JOBA ¼ R
Similar to JOBA ¼ A . The rank revealing property of the initial QR factorization is used
to reveal (using the upper triangular factor) a gap �rþ1 < ��r in which case the numerical
rank is declared to be r. The SVD is computed with absolute error bounds, but more
accurately than with JOBA ¼ A .

Constraint: JOBA ¼ C , E , F , G , A or R .

2: JOBU – CHARACTER(1) Input

On entry: specifies options for computing the left singular vectors U .

JOBU ¼ U
The first n left singular vectors (columns of U) are computed and returned in the array U.

JOBU ¼ F
All m left singular vectors are computed and returned in the array U.

JOBU ¼ W
No left singular vectors are computed, but the array U (with LDU � M and second
dimension at least N) is available as workspace for computing right singular values. See
the description of U.
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JOBU ¼ N
No left singular vectors are computed. U is not referenced.

Constraint: JOBU ¼ U , F , W or N .

3: JOBV – CHARACTER(1) Input

On entry: specifies options for computing the right singular vectors V .

JOBV ¼ V
the n right singular vectors (columns of V ) are computed and returned in the array V;
Jacobi rotations are not explicitly accumulated.

JOBV ¼ J
the n right singular vectors (columns of V ) are computed and returned in the array V, but
they are computed as the product of Jacobi rotations. This option is allowed only if
JOBU ¼ U or F , i.e., in computing the full SVD.

JOBV ¼ W
No right singular values are computed, but the array V (with LDV � N and second
dimension at least N) is available as workspace for computing left singular values. See the
description of V.

JOBV ¼ N
No right singular vectors are computed. V is not referenced.

Constraints:

JOBV ¼ V , J , W or N ;
if JOBU ¼ W or N , JOBV 6¼ J .

4: JOBR – CHARACTER(1) Input

On entry: specifies the conditions under which columns of A are to be set to zero. This
effectively specifies a lower limit on the range of singular values; any singular values below this
limit are (through column zeroing) set to zero. If A 6¼ 0 is scaled so that the largest column (in
the Euclidean norm) of cA is equal to the square root of the overflow threshold, then JOBR
allows the routine to kill columns of A whose norm in cA is less than

ffiffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

(for JOBR ¼ R ),
or less than sfmin=� (otherwise). sfmin is the safe range argument, as returned by routine
X02AMF.

JOBR ¼ N
Only set to zero those columns of A for which the norm of corresponding column of
cA < sfmin=�, that is, those columns that are effectively zero (to machine precision)
anyway. If the condition number of A is greater than the overflow threshold �, where � is
the value returned by X02ALF, you are recommended to use routine F08KJF (DGESVJ).

JOBR ¼ R
Set to zero those columns of A for which the norm of the corresponding column of
cA <

ffiffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

. This approximately represents a restricted range for � cAð Þ offfiffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

;
ffiffiffi
�
p� �

.

For computing the singular values in the full range from the safe minimum up to the overflow
threshold use F08KJF (DGESVJ).

Suggested value: JOBR ¼ R .

Constraint: JOBR ¼ N or R .

5: JOBT – CHARACTER(1) Input

On entry: specifies, in the case n ¼ m, whether the routine is permitted to use the transpose of A
for improved efficiency. If the matrix is square then the procedure may use transposed A if AT

seems to be better with respect to convergence. If the matrix is not square, JOBT is ignored. The
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decision is based on two values of entropy over the adjoint orbit of ATA. See the descriptions of
WORKð6Þ and WORKð7Þ.
JOBT ¼ T

If n ¼ m, perform an entropy test and then transpose if the test indicates possibly faster
convergence of the Jacobi process if AT is taken as input. If A is replaced with AT, then
the row pivoting is included automatically.

JOBT ¼ N
No entropy test and no transposition is performed.

The option JOBT ¼ T can be used to compute only the singular values, or the full SVD (U , �
and V ). In the case where only one set of singular vectors (U or V ) is required, the caller must
still provide both U and V, as one of the matrices is used as workspace if the matrix A is
transposed. See the descriptions of U and V.

Constraint: JOBT ¼ T or N .

6: JOBP – CHARACTER(1) Input

On entry: specifies whether the routine should be allowed to introduce structured perturbations to
drown denormalized numbers. For details see Drmac and Veselic (2008a) and Drmac and Veselic
(2008b). For the sake of simplicity, these perturbations are included only when the full SVD or
only the singular values are requested.

JOBP ¼ P
Introduce perturbation if A is found to be very badly scaled (introducing denormalized
numbers).

JOBP ¼ N
Do not perturb.

Constraint: JOBP ¼ P or N .

7: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

8: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: M � N � 0.

9: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: the contents of A are overwritten.

10: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KHF
(DGEJSV) is called.

Constraint: LDA � max 1;Mð Þ.

11: SVAðNÞ – REAL (KIND=nag_wp) array Output

On exit: the, possibly scaled, singular values of A.

T h e s i n g u l a r v a l u e s o f A a r e �i ¼ �SVAðiÞ, f o r i ¼ 1; 2; . . . ; n, w h e r e
� ¼WORKð1Þ=WORKð2Þ. Normally � ¼ 1 and no scaling is required to obtain the singular
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values. However, if the largest singular value of A overflows or if small singular values have
been saved from underflow by scaling the input matrix A, then � 6¼ 1.

If JOBR ¼ R then some of the singular values may be returned as exact zeros because they are
below the numerical rank threshold or are denormalized numbers.

12: UðLDU; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ F , max 1;Nð Þ
if JOBU ¼ U or W , and at least 1 otherwise.

On exit: if JOBU ¼ U , U contains the m by n matrix of the left singular vectors.

If JOBU ¼ F , U contains the m by m matrix of the left singular vectors, including an
orthonormal basis of the orthogonal complement of Range(A).

If JOBU ¼ W and (JOBV ¼ V and JOBT ¼ T and M ¼ N), then U is used as workspace if the
procedure replaces A with AT. In that case, V is computed in U as left singular vectors of AT and
then copied back to the array V.

If JOBU ¼ N , U is not referenced.

13: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08KHF
(DGEJSV) is called.

Constraints:

if JOBU ¼ F , U or W , LDU � max 1;Mð Þ;
otherwise LDU � 1.

14: VðLDV; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1;Nð Þ if JOBV ¼ V , J or W ,
and at least 1 otherwise.

On exit: if JOBV ¼ V or J , V contains the n by n matrix of the right singular vectors.

If JOBV ¼ W and (JOBU ¼ U and JOBT ¼ T and M ¼ N), then V is used as workspace if the
procedure replaces A with AT. In that case, U is computed in V as right singular vectors of AT

and then copied back to the array U.

If JOBV ¼ N , V is not referenced.

15: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08KHF
(DGEJSV) is called.

Constraints:

if JOBV ¼ V , J or W , LDV � max 1;Nð Þ;
otherwise LDV � 1.

16: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace

On exit: contains information about the completed job.

WORKð1Þ
� ¼WORKð1Þ=WORKð2Þ is the scaling factor such that �i ¼ �SVAðiÞ, for i ¼ 1; 2; . . . ; n
are the computed singular values of A. (See the description of SVA.)

WORKð2Þ
See the description of WORKð1Þ.
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WORKð3Þ
sconda, an estimate for the condition number of column equilibrated A (if JOBA ¼ E or

G ). sconda is an estimate of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RTRð Þ�1

��� ���
1

� �r
. It is computed using F07FGF (DPOCON).

It satisfies n�
1
4 � sconda � R�1

�� ��
2
� n1

4 � sconda where R is the triangular factor from
the QR factorization of A. However, if R is truncated and the numerical rank is
determined to be strictly smaller than n, sconda is returned as �1, thus indicating that the
smallest singular values might be lost.

If full SVD is needed, and you are familiar with the details of the method, the following two
condition numbers are useful for the analysis of the algorithm.

WORKð4Þ
An estimate of the scaled condition number of the triangular factor in the first QR
factorization.

WORKð5Þ
An estimate of the scaled condition number of the triangular factor in the second QR
factorization.

The following two parameters are computed if JOBT ¼ T .

WORKð6Þ
The entropy of ATA: this is the Shannon entropy of diagATA= traceATA taken as a point
in the probability simplex.

WORKð7Þ
The entropy of AAT.

17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KHF (DGEJSV) is called.

If JOBU ¼ N and JOBV ¼ N

if JOBA 6¼ E or G
The minimal requirement is LWORK � max 2Mþ N; 4Nþ 1; 7ð Þ.

For optimal performance the requirement is LWORK � max 2Mþ N; 3Nþ Nþ 1ð Þnb; 7ð Þ,
where nb is the block size used by F08AEF (DGEQRF) and F08BFF (DGEQP3).
Assuming a value of nb ¼ 256 is wise, but choosing a smaller value (e.g., nb ¼ 128)
should still lead to acceptable performance.

if JOBA ¼ E or G
In this case, LWORK is the maximum of the above and N� Nþ 4N, i.e.,
LWORK � max 2Mþ N; 3Nþ Nþ 1ð Þnb;N� Nþ 4N; 7ð Þ.

If JOBU 6¼ U or F and JOBV ¼ V or J
The minimal requirement is LWORK � max 2NþM; 7ð Þ.

For optimal performance, LWORK � max 2NþM; 2Nþ N� nb; 7ð Þ, where nb is described
above.

If JOBU ¼ U or F and JOBV 6¼ V or J
The minimal requirement is LWORK � max 2NþM; 7ð Þ.

For optimal performance, LWORK � max 2NþM; 2Nþ N� nb; 7ð Þ, where nb is described
above.

If JOBU ¼ U or F and JOBV ¼ V
LWORK � 6Nþ 2N� N.

If JOBU ¼ U or F and JOBV ¼ J
The minimal requirement is LWORK � max Mþ 3Nþ N� N; 7ð Þ.
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For better performance LWORK � max 3Nþ N� NþM; 3Nþ N� Nþ N� nb; 7ð Þ, where nb is
described above.

18: IWORKðMþ 3� NÞ – INTEGER array Output

On exit: contains information about the completed job.

IWORKð1Þ
The numerical rank of A determined after the initial QR factorization with pivoting. See
the descriptions of JOBA and JOBR.

IWORKð2Þ
The number of computed nonzero singular values.

IWORKð3Þ
If nonzero, a warning message: If IWORKð3Þ ¼ 1 then some of the column norms of A
were denormalized (tiny) numbers. The requested high accuracy is not warranted by the
data.

19: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F08KHF (DGEJSV) did not converge in the allowed number of iterations (30). The computed
values might be inaccurate.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08KHF (DGEJSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KHF (DGEJSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

F08KHF (DGEJSV) implements a preconditioned Jacobi SVD algorithm. It uses F08AEF (DGEQRF),
F08AHF (DGELQF) and F08BFF (DGEQP3) as preprocessors and preconditioners. Optionally, an
additional row pivoting can be used as a preprocessor, which in some cases results in much higher
accuracy. An example is matrix A with the structure A ¼ D1CD2, where D1, D2 are arbitrarily ill-
conditioned diagonal matrices and C is a well-conditioned matrix. In that case, complete pivoting in the
first QR factorizations provides accuracy dependent on the condition number of C, and independent of
D1, D2. Such higher accuracy is not completely understood theoretically, but it works well in practice.
Further, if A can be written as A ¼ BD, with well-conditioned B and some diagonal D, then the high
accuracy is guaranteed, both theoretically and in software, independent of D.

10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

2:27 �1:54 1:15 �1:94
0:28 �1:67 0:94 �0:78
�0:48 �3:09 0:99 �0:21
1:07 1:22 0:79 0:63
�2:35 2:93 �1:45 2:30
0:62 �7:39 1:03 �2:57

0BBBBB@

1CCCCCA;

together with the condition number of A and approximate error bounds for the computed singular
values and vectors.

10.1 Program Text

Program f08khfe

! F08KHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddisna, dgejsv, nag_wp, x02ajf, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, ifail, info, j, lda, ldu, ldv, &

lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), rcondu(:), rcondv(:), s(:), &
u(:,:), v(:,:), work(:)

Integer, Allocatable :: iwork(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs, max
! .. Executable Statements ..

Write (nout,*) ’F08KHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldu = m
ldv = n
lwork = max(3*n+n*n+m,3*n+n*n+n*nb,7)
Allocate (a(lda,n),rcondu(m),rcondv(m),s(n),u(ldu,n),v(ldv,n), &

work(lwork),iwork(m+3*n))

! Read the m by n matrix A from data file
Read (nin,*)((a(i,j),j=1,n),i=1,m)
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! Compute the singular values and left and right singular vectors
! of A (A = U*S*V^T, m.ge.n)
! The NAG name equivalent of dgejsv is f08khf

Call dgejsv(’E’,’U’,’V’,’R’,’N’,’N’,m,n,a,lda,s,u,ldu,v,ldv,work,lwork, &
iwork,info)

If (info==0) Then

! Compute the approximate error bound for the computed singular values
! using the 2-norm, s(1) = norm(A), and machine precision, eps.

eps = x02ajf()
serrbd = eps*s(1)

! Print solution
If (abs(work(1)-work(2))<2.0_nag_wp*eps) Then

! No scaling required
Write (nout,’(1X,A)’) ’Singular values’
Write (nout,99999)(s(j),j=1,n)

Else
Write (nout,’(/1X,A)’) ’Scaled singular values’
Write (nout,99999)(s(j),j=1,n)
Write (nout,’(/1X,A)’) ’For true singular values, multiply by a/b,’
Write (nout,99996) ’ where a = ’, work(1), ’ and b = ’, work(2)

End If

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,m,n,u,ldu,’Left singular vectors’,ifail)

Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,n,v,ldv,’Right singular vectors’,ifail)

! Call DDISNA (F08FLF) to estimate reciprocal condition numbers for
! the singular vectors.

Call ddisna(’Left’,m,n,s,rcondu,info)
Call ddisna(’Right’,m,n,s,rcondv,info)

! Print the approximate error bounds for the singular values
! and vectors.

Write (nout,*)
Write (nout,’(/1X,A)’) &

’Estimate of the condition number of column equilibrated A’
Write (nout,99998) work(3)
Write (nout,’(/1X,A)’) ’Error estimate for the singular values’
Write (nout,99998) serrbd
Write (nout,’(/1X,A)’) ’Error estimates for left singular vectors’
Write (nout,99998)(serrbd/rcondu(i),i=1,n)
Write (nout,’(/1X,A)’) ’Error estimates for right singular vectors’
Write (nout,99998)(serrbd/rcondv(i),i=1,n)

Else
Write (nout,99997) ’Failure in DGEJSV. INFO =’, info

End If

99999 Format (3X,8F8.4)
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)
99996 Format (1X,2(A,1P,E13.5))

End Program f08khfe
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10.2 Program Data

F08KHF Example Program Data

6 4 :Values of M and N

2.27 -1.54 1.15 -1.94
0.28 -1.67 0.94 -0.78

-0.48 -3.09 0.99 -0.21
1.07 1.22 0.79 0.63

-2.35 2.93 -1.45 2.30
0.62 -7.39 1.03 -2.57 :End of matrix A

10.3 Program Results

F08KHF Example Program Results

Singular values
9.9966 3.6831 1.3569 0.5000

Left singular vectors
1 2 3 4

1 0.2774 -0.6003 -0.1277 0.1323
2 0.2020 -0.0301 0.2805 0.7034
3 0.2918 0.3348 0.6453 0.1906
4 -0.0938 -0.3699 0.6781 -0.5399
5 -0.4213 0.5266 0.0413 -0.0575
6 0.7816 0.3353 -0.1645 -0.3957

Right singular vectors
1 2 3 4

1 0.1921 -0.8030 0.0041 -0.5642
2 -0.8794 -0.3926 -0.0752 0.2587
3 0.2140 -0.2980 0.7827 0.5027
4 -0.3795 0.3351 0.6178 -0.6017

Estimate of the condition number of column equilibrated A
9.0E+00

Error estimate for the singular values
1.1E-15

Error estimates for left singular vectors
1.8E-16 4.8E-16 1.3E-15 2.2E-15

Error estimates for right singular vectors
1.8E-16 4.8E-16 1.3E-15 1.3E-15
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NAG Library Routine Document

F08KJF (DGESVJ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KJF (DGESVJ) computes the one-sided Jacobi singular value decomposition (SVD) of a real m by
n matrix A, m � n, with fast scaled rotations and de Rijk's pivoting, optionally computing the left and/
or right singular vectors. For m < n, the routines F08KBF (DGESVD) or F08KDF (DGESDD) may be
used.

2 Specification

SUBROUTINE F08KJF (JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, LDV,
WORK, LWORK, INFO)

&

INTEGER M, N, LDA, MV, LDV, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), SVA(N), V(LDV,*), WORK(LWORK)
CHARACTER(1) JOBA, JOBU, JOBV

The routine may be called by its LAPACK name dgesvj.

3 Description

The SVD is written as

A ¼ U�V T;

where � is an n by n diagonal matrix, U is an m by n orthonormal matrix, and V is an n by n
orthogonal matrix. The diagonal elements of � are the singular values of A in descending order of
magnitude. The columns of U and V are the left and the right singular vectors of A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Drmac Z and Veselic K (2008a) New fast and accurate Jacobi SVD algorithm I SIAM J. Matrix Anal.
Appl. 29 4

Drmac Z and Veselic K (2008b) New fast and accurate Jacobi SVD algorithm II SIAM J. Matrix Anal.
Appl. 29 4

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBA – CHARACTER(1) Input

On entry: specifies the structure of matrix A.

JOBA ¼ L
The input matrix A is lower triangular.

JOBA ¼ U
The input matrix A is upper triangular.
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JOBA ¼ G
The input matrix A is a general m by n matrix, M � N.

Constraint: JOBA ¼ L , U or G .

2: JOBU – CHARACTER(1) Input

On entry: specifies whether to compute the left singular vectors and if so whether you want to
control their numerical orthogonality threshold.

JOBU ¼ U
The left singular vectors corresponding to the nonzero singular values are computed and
returned in the leading columns of A. See more details in the description of A. The
numerical orthogonality threshold is set to approximately tol ¼ ctol � �, where � is the
machine precision and ctol ¼ ffiffiffiffiffi

m
p

.

JOBU ¼ C
Analogous to JOBU ¼ U , except that you can control the level of numerical orthogonality
of the computed left singular vectors. The orthogonality threshold is set to tol ¼ ctol � �,
where ctol is given on input in WORKð1Þ. The option JOBU ¼ C can be used if m� � is
a satisfactory orthogonality of the computed left singular vectors, so ctol ¼ M could save a
few sweeps of Jacobi rotations. See the descriptions of A and WORKð1Þ.

JOBU ¼ N
The matrix U is not computed. However, see the description of A.

Constraint: JOBU ¼ U , C or N .

3: JOBV – CHARACTER(1) Input

On entry: specifies whether and how to compute the right singular vectors.

JOBV ¼ V
The matrix V is computed and returned in the array V.

JOBV ¼ A
The Jacobi rotations are applied to the leading mv by n part of the array V. In other words,
the right singular vector matrix V is not computed explicitly, instead it is applied to an mv

by n matrix initially stored in the first MV rows of V.

JOBV ¼ N
The matrix V is not computed and the array V is not referenced.

Constraint: JOBV ¼ V , A or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: M � N � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.
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On exit: the matrix U containing the left singular vectors of A.

If JOBU ¼ U or C

if INFO ¼ 0
rank Að Þ orthonormal columns of U are returned in the leading rank Að Þ columns of
the array A. Here rank Að Þ � N is the number of computed singular values of A that
are above the safe range parameter, as returned by X02AMF. The singular vectors
corresponding to underflowed or zero singular values are not computed. The value
of rank Að Þ is returned by rounding WORKð2Þ to the nearest whole number. Also
see the descriptions of SVA and WORK. The computed columns of U are mutually
numerically orthogonal up to approximately tol ¼ ffiffiffiffiffi

m
p � �; or tol ¼ ctol � �

(JOBU ¼ C ), where � is the machine precision and ctol is supplied on entry in
WORKð1Þ, see the description of JOBU.

If INFO > 0
F08KJF (DGESVJ) did not converge in 30 iterations (sweeps). In this case, the
computed columns of U may not be orthogonal up to tol. The output U (stored in
A), � (given by the computed singular values in SVA) and V is still a
decomposition of the input matrix A in the sense that the residual
A� �� U �� � V Tk k2= Ak k2 is small, where � is the value returned in
WORKð1Þ.

If JOBU ¼ N

if INFO ¼ 0
Note that the left singular vectors are ‘for free’ in the one-sided Jacobi SVD
algorithm. However, if only the singular values are needed, the level of numerical
orthogonality of U is not an issue and iterations are stopped when the columns of
the iterated matrix are numerically orthogonal up to approximately m� �. Thus, on
exit, A contains the columns of U scaled with the corresponding singular values.

If INFO > 0
F08KJF (DGESVJ) did not converge in 30 iterations (sweeps).

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KJF
(DGESVJ) is called.

Constraint: LDA � max 1;Mð Þ.

8: SVAðNÞ – REAL (KIND=nag_wp) array Output

On exit: the, possibly scaled, singular values of A.

If INFO ¼ 0
The singular values of A are �i ¼ �SVAðiÞ, for i ¼ 1; 2; . . . ; n, where � is the scale factor
stored in WORKð1Þ. Normally � ¼ 1, however, if some of the singular values of A might
underflow or overflow, then � 6¼ 1 and the scale factor needs to be applied to obtain the
singular values.

If INFO > 0
F08KJF (DGESVJ) did not converge in 30 iterations and �� SVA may not be accurate.

9: MV – INTEGER Input

On entry: if JOBV ¼ A , the product of Jacobi rotations is applied to the first mv rows of V.

If JOBV 6¼ A , MV is ignored. See the description of JOBV.
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10: VðLDV; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;Nð Þ if JOBV ¼ V or A , and
at least 1 otherwise.

On entry: if JOBV ¼ A , V must contain an mv by n matrix to be premultiplied by the matrix V
of right singular vectors.

On exit: the right singular vectors of A.

If JOBV ¼ V , V contains the n by n matrix of the right singular vectors.

If JOBV ¼ A , V contains the product of the computed right singular vector matrix and the initial
matrix in the array V.

If JOBV ¼ N , V is not referenced.

11: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08KJF
(DGESVJ) is called.

Constraints:

if JOBV ¼ V , LDV � max 1;Nð Þ;
if JOBV ¼ A , LDV � max 1;MVð Þ;
otherwise LDV � 1.

12: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace

On entry: if JOBU ¼ C , WORKð1Þ ¼ ctol, where ctol defines the threshold for convergence.
The process stops if all columns of A are mutually orthogonal up to ctol � �. It is required that
ctol � 1, i.e., it is not possible to force the routine to obtain orthogonality below �. ctol greater
than 1=� is meaningless, where � is the machine precision.

On exit: contains information about the completed job.

WORKð1Þ
the scaling factor, �, such that �i ¼ �SVAðiÞ, for i ¼ 1; 2; . . . ; n are the computed singular
values of A. (See description of SVA.)

WORKð2Þ
nint WORKð2Þð Þgives the number of the computed nonzero singular values.

WORKð3Þ
nint WORKð3Þð Þ gives the number of the computed singular values that are larger than the
underflow threshold.

WORKð4Þ
nint WORKð4Þð Þ gives the number of iterations (sweeps of Jacobi rotations) needed for
numerical convergence.

WORKð5Þ
max i6¼j cos A :; ið Þ; A :; jð Þð Þj j in the last iteration (sweep). This is useful information in cases
when F08KJF (DGESVJ) did not converge, as it can be used to estimate whether the
output is still useful and for subsequent analysis.

WORKð6Þ
The largest absolute value over all sines of the Jacobi rotation angles in the last sweep. It
can be useful for subsequent analysis.

Constraint: if JOBU ¼ C , WORKð1Þ � 1:0.
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13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08KJF
(DGESVJ) is called.

Constraint: LWORK � max 6;Mþ Nð Þ.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F08KJF (DGESVJ) did not converge in the allowed number of iterations (30), but its output
might still be useful.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

See Section 6 of Drmac and Veselic (2008a) for a detailed discussion of the accuracy of the computed
SVD.

8 Parallelism and Performance

F08KJF (DGESVJ) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This SVD algorithm is numerically superior to the bidiagonalization based QR algorithm implemented
by F08KBF (DGESVD) and the divide and conquer algorithm implemented by F08KDF (DGESDD)
algorithms and is considerably faster than previous implementations of the (equally accurate) Jacobi
SVD method. Moreover, this algorithm can compute the SVD faster than F08KBF (DGESVD) and not
much slower than F08KDF (DGESDD). See Section 3.3 of Drmac and Veselic (2008b) for the details.
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10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

2:27 �1:54 1:15 �1:94
0:28 �1:67 0:94 �0:78
�0:48 �3:09 0:99 �0:21
1:07 1:22 0:79 0:63
�2:35 2:93 �1:45 2:30
0:62 �7:39 1:03 �2:57

0BBBBB@

1CCCCCA;

together with approximate error bounds for the computed singular values and vectors.

10.1 Program Text

Program f08kjfe

! F08KJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddisna, dgesvj, nag_wp, x02ajf, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, ifail, info, j, lda, ldv, lwork, &

m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), rcondu(:), rcondv(:), s(:), &
v(:,:), work(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F08KJF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldv = n
lwork = n + m
Allocate (a(lda,n),rcondu(m),rcondv(m),s(n),v(ldv,n),work(lwork))

! Read the m by n matrix A from data file

Read (nin,*)((a(i,j),j=1,n),i=1,m)

! Compute the singular values and left and right singular vectors
! of A (A = U*S*V, m.ge.n)

! The NAG name equivalent of dgesvj is f08kjf
Call dgesvj(’G’,’U’,’V’,m,n,a,lda,s,0,v,ldv,work,lwork,info)

If (info==0) Then

! Compute the approximate error bound for the computed singular values
! using the 2-norm, s(1) = norm(A), and machine precision, eps.

eps = x02ajf()
serrbd = eps*s(1)

! Print solution
Write (nout,*) ’Singular values’
Write (nout,99999)(s(j),j=1,n)
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If (abs(work(1)-1.0_nag_wp)>eps) Then
Write (nout,99996) ’Values need scaling by factor = ’, work(1)

End If
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,m,n,a,lda,’Left singular vectors’,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04caf(’General’,’ ’,n,n,v,ldv,’Right singular vectors’,ifail)

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the singular vectors

Call ddisna(’Left’,m,n,s,rcondu,info)
Call ddisna(’Right’,m,n,s,rcondv,info)

! Print the approximate error bounds for the singular values
! and vectors

Write (nout,’(/1X,A)’) ’Error estimate for the singular values’
Write (nout,99998) serrbd
Write (nout,’(/1X,A)’) ’Error estimates for left singular vectors’
Write (nout,99998)(serrbd/rcondu(i),i=1,n)
Write (nout,’(/1X,A)’) ’Error estimates for right singular vectors’
Write (nout,99998)(serrbd/rcondv(i),i=1,n)

Else
Write (nout,99997) ’Failure in DGESVJ. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)
99996 Format (/,1X,A,1P,E13.5)

End Program f08kjfe

10.2 Program Data

F08KJF Example Program Data

6 4 :Values of M and N

2.27 -1.54 1.15 -1.94
0.28 -1.67 0.94 -0.78

-0.48 -3.09 0.99 -0.21
1.07 1.22 0.79 0.63

-2.35 2.93 -1.45 2.30
0.62 -7.39 1.03 -2.57 :End of matrix A

10.3 Program Results

F08KJF Example Program Results

Singular values
9.9966 3.6831 1.3569 0.5000

Left singular vectors
1 2 3 4

1 -0.2774 0.6003 -0.1277 0.1323
2 -0.2020 0.0301 0.2805 0.7034
3 -0.2918 -0.3348 0.6453 0.1906
4 0.0938 0.3699 0.6781 -0.5399
5 0.4213 -0.5266 0.0413 -0.0575
6 -0.7816 -0.3353 -0.1645 -0.3957

Right singular vectors
1 2 3 4

1 -0.1921 0.8030 0.0041 -0.5642
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2 0.8794 0.3926 -0.0752 0.2587
3 -0.2140 0.2980 0.7827 0.5027
4 0.3795 -0.3351 0.6178 -0.6017

Error estimate for the singular values
1.1E-15

Error estimates for left singular vectors
1.8E-16 4.8E-16 1.3E-15 2.2E-15

Error estimates for right singular vectors
1.8E-16 4.8E-16 1.3E-15 1.3E-15
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NAG Library Routine Document

F08KMF (DGESVDX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KMF (DGESVDX) computes the singular value decomposition (SVD) of a real m by n matrix A,
optionally computing the left and/or right singular vectors. All singular values or a selected set of
singular values may be computed.

2 Specification

SUBROUTINE F08KMF (JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, IL, IU, NS,
S, U, LDU, VT, LDVT, WORK, LWORK, IWORK, INFO)

&

INTEGER M, N, LDA, IL, IU, NS, LDU, LDVT, LWORK,
IWORK(12*min(N,M)), INFO

&

REAL (KIND=nag_wp) A(LDA,*), VL, VU, S(min(M,N)), U(LDU,*),
VT(LDVT,*), WORK(max(1,LWORK))

&

CHARACTER(1) JOBU, JOBVT, RANGE

The routine may be called by its LAPACK name dgesvdx.

3 Description

The SVD is written as

A ¼ U�V T;

where � is an m by n matrix which is zero except for its min m;nð Þ diagonal elements, U is an m by m
orthogonal matrix, and V is an n by n orthogonal matrix. The diagonal elements of � are the singular
values of A; they are real and non-negative, and are returned in descending order. The first min m;nð Þ
columns of U and V are the left and right singular vectors of A.

Note that the routine returns V T, not V .

Alternative to computing all singular values of A, a selected set can be computed. The set is either
those singular values lying in a given interval, � 2 vl; vuð �, or those whose index (counting from largest
to smallest in magnitude) lies in a given range 1 � il; . . . ; iu � n. In these cases, the corresponding left
and right singular vectors can optionally be computed.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: specifies options for computing all or part of the matrix U .

JOBU ¼ V
The NS columns of U , as specified by RANGE, are returned in array U.
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JOBU ¼ N
No columns of U (no left singular vectors) are computed.

Constraint: JOBU ¼ V or N .

2: JOBVT – CHARACTER(1) Input

On entry: specifies options for computing all or part of the matrix V T.

JOBVT ¼ V
The NS rows of V T, as specified by RANGE, are returned in the array VT.

JOBVT ¼ N
No rows of V T (no right singular vectors) are computed.

Constraint: JOBVT ¼ V or N .

3: RANGE – CHARACTER(1) Input

On entry: indicates which singular values should be returned.

RANGE ¼ A
All singular values will be found.

RANGE ¼ V
All singular values in the half-open interval VL;VUð � will be found.

RANGE ¼ I
The ILth through IUth singular values will be found.

Constraint: RANGE ¼ A , V or I .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if JOBU 6¼ N and JOBVT 6¼ N , the contents of A are destroyed.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F08KMF (DGESVDX) is called.

Constraint: LDA � max 1;Mð Þ.

8: VL – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower bounds of the interval to be searched for singular values.

If RANGE ¼ A or I , VL is not referenced.

Constraint: if RANGE ¼ V , 0:0 � VL.
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9: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the upper bounds of the interval to be searched for singular values.

If RANGE ¼ A or I , VU is not referenced.

Constraint: if RANGE ¼ V , VL < VU.

10: IL – INTEGER Input
11: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest singular
values to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and min M;Nð Þ ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and min M;Nð Þ > 0, 1 � IL � IU � min M;Nð Þ.

12: NS – INTEGER Output

On exit: the total number of singular values found. 0 � NS � min M;Nð Þ.
If RANGE ¼ A , NS ¼ min M;Nð Þ.
If RANGE ¼ I , NS ¼ IU� ILþ 1.

If RANGE ¼ V then the value of NS is not known in advance and so an upper limit should be
used when specifying array dimensions, e.g., min M;Nð Þ.

13: Sðmin M;Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the singular values of A, sorted so that SðiÞ � Sðiþ 1Þ.

14: UðLDU; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;nsmaxð Þ if JOBU ¼ V , and at
least 1 otherwise.

Where nsmax is a value larger than the output value NS.

On exit: m by NS.

If JOBU ¼ V , U contains the first NS columns of U (the left singular vectors, stored column-
wise).

If JOBU ¼ N , U is not referenced.

15: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which
F08KMF (DGESVDX) is called.

Constraints:

if JOBU ¼ V , LDU � max 1;Mð Þ;
otherwise LDU � 1.

16: VTðLDVT; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VT must be at least max 1;Nð Þ if JOBVT ¼ V , and at
least 1 otherwise.

On exit: if JOBVT ¼ V , VT contains the first NS rows of V T (the right singular vectors, stored
row-wise).

If JOBVT ¼ N , VT is not referenced.
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17: LDVT – INTEGER Input

Note: If JOBVT ¼ V and RANGE ¼ V then the value of NS is not known in advance and so
an upper limit should be used, e.g., min M;Nð Þ.
On entry: the first dimension of the array VT as declared in the (sub)program from which
F08KMF (DGESVDX) is called.

Constraints:

if JOBVT ¼ V , LDVT � max 1;NSð Þ;
otherwise LDVT � 1.

18: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.

If INFO > 0, WORKð2 : min M;Nð ÞÞ contains the unconverged superdiagonal elements of an
upper bidiagonal matrix B whose diagonal is in S (not necessarily sorted). B satisfies
A ¼ UBV T, so it has the same singular values as A, and singular vectors related by U and V T.

19: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KMF (DGESVDX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK should generally be larger. Consider
increasing LWORK by at least nb�min M;Nð Þ, where nb is the optimal block size.

Constraint: LWORK � max 1; 3�min M;Nð Þ þmax M;Nð Þ; 5�min M;Nð Þð Þ.

20: IWORKð12�min N;Mð ÞÞ – INTEGER array Workspace

On exit:

if INFO ¼ 0, the first NS elements of IWORK are zero;

if INFO > 0, IWORK contains the indices of the eigenvectors that failed to converge in
F08JBF (DSTEVX) and F08MBF (DBDSVDX).

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If F08KMF (DGESVDX) did not converge, INFO specifies how many superdiagonals of an
intermediate bidiagonal form did not converge to zero.
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7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08KMF (DGESVDX) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08KMF (DGESVDX) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately proportional to mn2 when m > n and
m2n otherwise.

The singular values are returned in descending order.

The complex analogue of this routine is F08KZF (ZGESVDX).

10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

2:27 �1:54 1:15 �1:94
0:28 �1:67 0:94 �0:78
�0:48 �3:09 0:99 �0:21
1:07 1:22 0:79 0:63
�2:35 2:93 �1:45 2:30
0:62 �7:39 1:03 �2:57

0BBBBB@

1CCCCCA;

together with approximate error bounds for the computed singular values and vectors.

10.1 Program Text

Program f08kmfe

! F08KMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgesvdx, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: vl, vu
Integer :: i, il, info, iu, lda, ldu, ldvt, &

lwork, m, n, ns
Character (1) :: range

! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: a(:,:), a_copy(:,:), b(:), s(:), &
u(:,:), vt(:,:), work(:)

Real (Kind=nag_wp) :: dummy(1,1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: nint

! .. Executable Statements ..
Write (nout,*) ’F08KMF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldu = m
ldvt = n
Allocate (a(lda,n),a_copy(m,n),s(n),vt(ldvt,n),u(ldu,m),b(m), &

iwork(12*m))

! Read the m by n matrix A from data file
Read (nin,*)(a(i,1:n),i=1,m)

! Read the right hand side of the linear system
Read (nin,*) b(1:m)

! Read range for selected singular values
Read (nin,*) range

If (range==’I’ .Or. range==’i’) Then
Read (nin,*) il, iu

Else If (range==’V’ .Or. range==’v’) Then
Read (nin,*) vl, vu

End If

a_copy(1:m,1:n) = a(1:m,1:n)

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dgesvd is f08kmf
Call dgesvdx(’V’,’V’,range,m,n,a,lda,vl,vu,il,iu,ns,s,u,ldu,vt,ldvt, &

dummy,lwork,iwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = nint(dummy(1,1))
Allocate (work(lwork))

! Compute the singular values and left and right singular vectors
! of A.

! The NAG name equivalent of dgesvd is f08kmf
Call dgesvdx(’V’,’V’,range,m,n,a,lda,vl,vu,il,iu,ns,s,u,ldu,vt,ldvt, &

work,lwork,iwork,info)

If (info/=0) Then
Write (nout,99999) ’Failure in DGESVDX. INFO =’, info

99999 Format (1X,A,I4)
Go To 100

End If

! Print the selected singular values of A

Write (nout,*) ’Singular values of A:’
Write (nout,99998) s(1:ns)

99998 Format (1X,4(3X,F11.4))

Call compute_error_bounds(m,ns,s)

If (m>n .And. ns==n) Then
! Compute V*Inv(S)*U^T * b to get least squares solution.

Call compute_least_squares(m,n,a_copy,m,u,ldu,vt,ldvt,s,b)
End If
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100 Continue

Contains
Subroutine compute_least_squares(m,n,a,lda,u,ldu,vt,ldvt,s,b)

! .. Use Statements ..
Use nag_library, Only: dgemv, dnrm2

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: lda, ldu, ldvt, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: a(lda,n), s(n), u(ldu,m), &

vt(ldvt,n)
Real (Kind=nag_wp), Intent (Inout) :: b(m)

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, beta, norm

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: allocated

! .. Executable Statements ..
Allocate (x(n),y(n))

! Compute V*Inv(S)*U^T * b to get least squares solution.

! y = U^T b
! The NAG name equivalent of dgemv is f06paf

alpha = 1._nag_wp
beta = 0._nag_wp
Call dgemv(’T’,m,n,alpha,u,ldu,b,1,beta,y,1)

y(1:n) = y(1:n)/s(1:n)

! x = V y
Call dgemv(’T’,n,n,alpha,vt,ldvt,y,1,beta,x,1)

Write (nout,*)
Write (nout,*) ’Least squares solution:’
Write (nout,99999) x(1:n)

! Find norm of residual ||b-Ax||.
alpha = -1._nag_wp
beta = 1._nag_wp
Call dgemv(’N’,m,n,alpha,a,lda,x,1,beta,b,1)

norm = dnrm2(m,b,1)

Write (nout,*)
Write (nout,*) ’Norm of Residual:’
Write (nout,99999) norm

If (allocated(x)) Then
Deallocate (x)

End If
If (allocated(y)) Then

Deallocate (y)
End If

99999 Format (1X,4(3X,F11.4))

End Subroutine compute_least_squares

Subroutine compute_error_bounds(m,n,s)

! Error estimates for singular values and vectors is computed
! and printed here.

! .. Use Statements ..
Use nag_library, Only: ddisna, nag_wp, x02ajf

! .. Implicit None Statement ..
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Implicit None
! .. Scalar Arguments ..

Integer, Intent (In) :: m, n
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (In) :: s(n)
! .. Local Scalars ..

Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, info

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rcondu(:), rcondv(:), uerrbd(:), &

verrbd(:)
! .. Executable Statements ..

Allocate (rcondu(n),rcondv(n),uerrbd(n),verrbd(n))

! Get the machine precision, EPS and compute the approximate
! error bound for the computed singular values. Note that for
! the 2-norm, S(1) = norm(A)

eps = x02ajf()
serrbd = eps*s(1)

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the singular vectors

Call ddisna(’Left’,m,n,s,rcondu,info)
Call ddisna(’Right’,m,n,s,rcondv,info)

! Compute the error estimates for the singular vectors

Do i = 1, n
uerrbd(i) = serrbd/rcondu(i)
verrbd(i) = serrbd/rcondv(i)

End Do

! Print the approximate error bounds for the singular values
! and vectors

Write (nout,*)
Write (nout,*) ’Estimates given as multiples of machine precision’
Write (nout,*) ’Error estimate for the singular values’
Write (nout,99999) nint(serrbd/x02ajf())
Write (nout,*)
Write (nout,*) ’Error estimates for the left singular vectors’
Write (nout,99999) nint(uerrbd(1:n)/x02ajf())
Write (nout,*)
Write (nout,*) ’Error estimates for the right singular vectors’
Write (nout,99999) nint(verrbd(1:n)/x02ajf())

99999 Format (4X,6I11)

End Subroutine compute_error_bounds

End Program f08kmfe

10.2 Program Data

F08KMF Example Program Data

6 4 : Values of m and n

2.27 -1.54 1.15 -1.94
0.28 -1.67 0.94 -0.78

-0.48 -3.09 0.99 -0.21
1.07 1.22 0.79 0.63

-2.35 2.93 -1.45 2.30
0.62 -7.39 1.03 -2.57 : End of matrix A
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1.0 1.0 1.0 1.0
1.0 1.0 : RHS b(1:m)

’V’ : range
1.00 4.00 : (vl,vu) or (il,iu)

10.3 Program Results

F08KMF Example Program Results

Singular values of A:
3.6831 1.3569

Estimates given as multiples of machine precision
Error estimate for the singular values

4

Error estimates for the left singular vectors
2 3

Error estimates for the right singular vectors
2 2
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NAG Library Routine Document

F08KNF (ZGELSS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KNF (ZGELSS) computes the minimum norm solution to a complex linear least squares problem

min
x

b�Axk k2:

2 Specification

SUBROUTINE F08KNF (M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK,
LWORK, RWORK, INFO)

&

INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, INFO
REAL (KIND=nag_wp) S(*), RCOND, RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zgelss.

3 Description

F08KNF (ZGELSS) uses the singular value decomposition (SVD) of A, where A is an m by n matrix
which may be rank-deficient.

Several right-hand side vectors b and solution vectors x can be handled in a single call; they are stored
as the columns of the m by r right-hand side matrix B and the n by r solution matrix X.

The effective rank of A is determined by treating as zero those singular values which are less than
RCOND times the largest singular value.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.
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3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrices B and X.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: the first min m;nð Þ rows of A are overwritten with its right singular vectors, stored row-
wise.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KNF
(ZGELSS) is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the m by r right-hand side matrix B.

On exit: B is overwritten by the n by r solution matrix X. If m � n and RANK ¼ n, the residual
sum of squares for the solution in the ith column is given by the sum of squares of the modulus
of elements nþ 1; . . . ;m in that column.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08KNF
(ZGELSS) is called.

Constraint: LDB � max 1;M;Nð Þ.

8: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least max 1;min M;Nð Þð Þ.
On exit: the singular values of A in decreasing order.

9: RCOND – REAL (KIND=nag_wp) Input

On entry: used to determine the effective rank of A. Singular values SðiÞ � RCOND� Sð1Þ are
treated as zero. If RCOND < 0, machine precision is used instead.

10: RANK – INTEGER Output

On exit: the effective rank of A, i.e., the number of singular values which are greater than
RCOND� Sð1Þ.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KNF (ZGELSS) is called.
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If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK should generally be larger. Consider
increasing LWORK by at least nb�min M;Nð Þ, where nb is the optimal block size.

Constraint: LWORK � 1 and LWORK � 2�min M;Nð Þ þmax M;N;NRHSð Þ.

13: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1; 5�min M;Nð Þð Þ.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm for computing the SVD failed to converge; if INFO ¼ i, i off-diagonal elements of
an intermediate bidiagonal form did not converge to zero.

7 Accuracy

See Section 4.5 of Anderson et al. (1999) for details.

8 Parallelism and Performance

F08KNF (ZGELSS) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KNF (ZGELSS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F08KAF (DGELSS).

10 Example

This example solves the linear least squares problem

min
x

b�Axk k2

for the solution, x, of minimum norm, where
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A ¼

0:47� 0:34i �0:40þ 0:54i 0:60þ 0:01i 0:80� 1:02i
�0:32� 0:23i �0:05þ 0:20i �0:26� 0:44i �0:43þ 0:17i
0:35� 0:60i �0:52� 0:34i 0:87� 0:11i �0:34� 0:09i
0:89þ 0:71i �0:45� 0:45i �0:02� 0:57i 1:14� 0:78i
�0:19þ 0:06i 0:11� 0:85i 1:44þ 0:80i 0:07þ 1:14i

0BBB@
1CCCA

and

b ¼

�1:08� 2:59i
�2:61� 1:49i
3:13� 3:61i
7:33� 8:01i
9:12þ 7:63i

0BBB@
1CCCA:

A tolerance of 0:01 is used to determine the effective rank of A.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08knfe

! F08KNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, zgelss

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond, rnorm
Integer :: i, info, lda, lwork, m, n, rank

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:), s(:)

! .. Executable Statements ..
Write (nout,*) ’F08KNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = 2*n + nb*(m+n)
Allocate (a(lda,n),b(m),work(lwork),rwork(5*n),s(n))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)

! Choose RCOND to reflect the relative accuracy of the input data

rcond = 0.01E0_nag_wp

! Solve the least squares problem min( norm2(b - Ax) ) for the x
! of minimum norm.

! The NAG name equivalent of zgelss is f08knf
Call zgelss(m,n,1,a,lda,b,m,s,rcond,rank,work,lwork,rwork,info)

If (info==0) Then

! Print solution
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Write (nout,*) ’Least squares solution’
Write (nout,99999) b(1:n)

! Print the effective rank of A

Write (nout,*)
Write (nout,*) ’Tolerance used to estimate the rank of A’
Write (nout,99998) rcond
Write (nout,*) ’Estimated rank of A’
Write (nout,99997) rank

! Print singular values of A

Write (nout,*)
Write (nout,*) ’Singular values of A’
Write (nout,99996) s(1:n)

! Compute and print estimate of the square root of the
! residual sum of squares

If (rank==n) Then
! The NAG name equivalent of dznrm2 is f06jjf

rnorm = dznrm2(m-n,b(n+1),1)
Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99998) rnorm

End If
Else

Write (nout,*) ’The SVD algorithm failed to converge’
End If

99999 Format (4(’ (’,F7.4,’,’,F7.4,’)’,:))
99998 Format (3X,1P,E11.2)
99997 Format (1X,I6)
99996 Format (1X,7F11.4)

End Program f08knfe

10.2 Program Data

F08KNF Example Program Data

5 4 :Values of M and N

( 0.47,-0.34) (-0.40, 0.54) ( 0.60, 0.01) ( 0.80,-1.02)
(-0.32,-0.23) (-0.05, 0.20) (-0.26,-0.44) (-0.43, 0.17)
( 0.35,-0.60) (-0.52,-0.34) ( 0.87,-0.11) (-0.34,-0.09)
( 0.89, 0.71) (-0.45,-0.45) (-0.02,-0.57) ( 1.14,-0.78)
(-0.19, 0.06) ( 0.11,-0.85) ( 1.44, 0.80) ( 0.07, 1.14) :End of matrix A

(-1.08,-2.59)
(-2.61,-1.49)
( 3.13,-3.61)
( 7.33,-8.01)
( 9.12, 7.63) :End of vector b

10.3 Program Results

F08KNF Example Program Results

Least squares solution
( 1.1673,-3.3222) ( 1.3480, 5.5028) ( 4.1762, 2.3434) ( 0.6465, 0.0105)

Tolerance used to estimate the rank of A
1.00E-02
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Estimated rank of A
3

Singular values of A
2.9979 1.9983 1.0044 0.0064
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NAG Library Routine Document

F08KPF (ZGESVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KPF (ZGESVD) computes the singular value decomposition (SVD) of a complex m by n matrix A,
optionally computing the left and/or right singular vectors.

2 Specification

SUBROUTINE F08KPF (JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
LWORK, RWORK, INFO)

&

INTEGER M, N, LDA, LDU, LDVT, LWORK, INFO
REAL (KIND=nag_wp) S(*), RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), U(LDU,*), VT(LDVT,*),

WORK(max(1,LWORK))
&

CHARACTER(1) JOBU, JOBVT

The routine may be called by its LAPACK name zgesvd.

3 Description

The SVD is written as

A ¼ U�V H;

where � is an m by n matrix which is zero except for its min m;nð Þ diagonal elements, U is an m by m
unitary matrix, and V is an n by n unitary matrix. The diagonal elements of � are the singular values
of A; they are real and non-negative, and are returned in descending order. The first min m;nð Þ columns
of U and V are the left and right singular vectors of A.

Note that the routine returns V H, not V .

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: specifies options for computing all or part of the matrix U .

JOBU ¼ A
All m columns of U are returned in array U.

JOBU ¼ S
The first min m;nð Þ columns of U (the left singular vectors) are returned in the array U.

JOBU ¼ O
The first min m;nð Þ columns of U (the left singular vectors) are overwritten on the array A.
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JOBU ¼ N
No columns of U (no left singular vectors) are computed.

Constraint: JOBU ¼ A , S , O or N .

2: JOBVT – CHARACTER(1) Input

On entry: specifies options for computing all or part of the matrix V H.

JOBVT ¼ A
All n rows of V H are returned in the array VT.

JOBVT ¼ S
The first min m;nð Þ rows of V H (the right singular vectors) are returned in the array VT.

JOBVT ¼ O
The first min m;nð Þ rows of V H (the right singular vectors) are overwritten on the array A.

JOBVT ¼ N
No rows of V H (no right singular vectors) are computed.

Constraints:

JOBVT ¼ A , S , O or N ;
JOBVT and JOBU cannot both be O ;
if JOBU ¼ O , JOBVT 6¼ O .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if JOBU ¼ O , A is overwritten with the first min m;nð Þ columns of U (the left singular
vectors, stored column-wise).

If JOBVT ¼ O , A is overwritten with the first min m;nð Þ rows of V H (the right singular vectors,
stored row-wise).

If JOBU 6¼ O and JOBVT 6¼ O , the contents of A are destroyed.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KPF
(ZGESVD) is called.

Constraint: LDA � max 1;Mð Þ.

7: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least max 1;min M;Nð Þð Þ.
On exit: the singular values of A, sorted so that SðiÞ � Sðiþ 1Þ.
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8: UðLDU; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ A ,
max 1;min M;Nð Þð Þ if JOBU ¼ S , and at least 1 otherwise.

On exit: if JOBU ¼ A , U contains the m by m unitary matrix U .

If JOBU ¼ S , U contains the first min m;nð Þ columns of U (the left singular vectors, stored
column-wise).

If JOBU ¼ N or O , U is not referenced.

9: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08KPF
(ZGESVD) is called.

Constraints:

if JOBU ¼ A or S , LDU � max 1;Mð Þ;
otherwise LDU � 1.

10: VTðLDVT; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VT must be at least max 1;Nð Þ if JOBVT ¼ A or S ,
and at least 1 otherwise.

On exit: if JOBVT ¼ A , VT contains the n by n unitary matrix V H.

If JOBVT ¼ S , VT contains the first min m;nð Þ rows of V H (the right singular vectors, stored
row-wise).

If JOBVT ¼ N or O , VT is not referenced.

11: LDVT – INTEGER Input

On entry: the first dimension of the array VT as declared in the (sub)program from which
F08KPF (ZGESVD) is called.

Constraints:

if JOBVT ¼ A , LDVT � max 1;Nð Þ;
if JOBVT ¼ S , LDVT � max 1;min M;Nð Þð Þ;
otherwise LDVT � 1.

12: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KPF (ZGESVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK should generally be larger. Consider
increasing LWORK by at least nb�min M;Nð Þ, where nb is the optimal block size.

Constraint: LWORK � max 1; 2�min M;Nð Þ þmax M;Nð Þð Þ.
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14: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1; 5�min M;Nð Þð Þ.
On exit: if INFO > 0, RWORKð1 : min M;Nð Þ � 1Þ contains the unconverged superdiagonal
elements of an upper bidiagonal matrix B whose diagonal is in S (not necessarily sorted). B
satisfies A ¼ UBV H, so it has the same singular values as A, and singular vectors related by U
and V H.

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If F08KPF (ZGESVD) did not converge, INFO specifies how many superdiagonals of an
intermediate bidiagonal form did not converge to zero. See the description of RWORK above for
details.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08KPF (ZGESVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KPF (ZGESVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately proportional to mn2 when m > n and
m2n otherwise.

The singular values are returned in descending order.

The real analogue of this routine is F08KBF (DGESVD).
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10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA;

together with approximate error bounds for the computed singular values and vectors.

The example program for F08KRF (ZGESDD) illustrates finding a singular value decomposition for the
case m � n.

10.1 Program Text

Program f08kpfe

! F08KPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zgesvd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6, &

prerr = 0
! .. Local Scalars ..

Integer :: i, info, lda, ldu, ldvt, lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), a_copy(:,:), b(:), u(:,:), &
vt(:,:), work(:)

Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: rwork(:), s(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08KPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldu = m
ldvt = n
Allocate (a(lda,n),a_copy(m,n),s(n),u(ldu,m),vt(ldvt,n),b(m),rwork(5*n))

! Read the m by n matrix A from data file
Read (nin,*)(a(i,1:n),i=1,m)

! Read the right hand side of the linear system
Read (nin,*) b(1:m)

a_copy(1:m,1:n) = a(1:m,1:n)

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dgesvd is f08kpf
Call zgesvd(’A’,’S’,m,n,a,lda,s,u,ldu,vt,ldvt,dummy,lwork,rwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max(m+3*n+nb*(m+n),nint(real(dummy(1,1))))
Allocate (work(lwork))

! Compute the singular values and left and right singular vectors
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! of A.

! The NAG name equivalent of dgesvd is f08kpf
Call zgesvd(’A’,’S’,m,n,a,lda,s,u,ldu,vt,ldvt,work,lwork,rwork,info)

If (info/=0) Then
Write (nout,99999) ’Failure in F08KPF/ZGESVD. INFO =’, info

99999 Format (1X,A,I4)
Go To 100

End If

! Print the significant singular values of A

Write (nout,*) ’Singular values of A:’
Write (nout,99998) s(1:min(m,n))

99998 Format (1X,4(3X,F11.4))

If (prerr>0) Then
Call compute_error_bounds(m,n,s)

End If

If (m>n) Then
! Compute V*Inv(S)*U^T * b to get least squares solution.

Call compute_least_squares(m,n,a_copy,m,u,ldu,vt,ldvt,s,b)
End If

100 Continue

Contains
Subroutine compute_least_squares(m,n,a,lda,u,ldu,vt,ldvt,s,b)

! .. Use Statements ..
Use nag_library, Only: dznrm2, zgemv

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: lda, ldu, ldvt, m, n

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: a(lda,n), u(ldu,m), vt(ldvt,n)
Complex (Kind=nag_wp), Intent (Inout) :: b(m)
Real (Kind=nag_wp), Intent (In) :: s(n)

! .. Local Scalars ..
Complex (Kind=nag_wp) :: alpha, beta
Real (Kind=nag_wp) :: norm

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: allocated, cmplx

! .. Executable Statements ..
Allocate (x(n),y(n))

! Compute V*Inv(S)*U^H * b to get least squares solution.

! y = U^T b
! The NAG name equivalent of zgemv is f06saf

alpha = cmplx(1.0_nag_wp,0.0_nag_wp,kind=nag_wp)
beta = cmplx(0.0_nag_wp,0.0_nag_wp,kind=nag_wp)
Call zgemv(’C’,m,n,alpha,u,ldu,b,1,beta,y,1)

y(1:n) = y(1:n)/s(1:n)

! x = V y
Call zgemv(’C’,n,n,alpha,vt,ldvt,y,1,beta,x,1)

Write (nout,*)
Write (nout,*) ’Least squares solution:’
Write (nout,99999) x(1:n)

! Find norm of residual ||b-Ax||.
alpha = cmplx(-1.0_nag_wp,0.0_nag_wp,kind=nag_wp)
beta = cmplx(1._nag_wp,0.0_nag_wp,kind=nag_wp)

F08KPF NAG Library Manual

F08KPF.6 Mark 26



Call zgemv(’N’,m,n,alpha,a,lda,x,1,beta,b,1)

norm = dznrm2(m,b,1)

Write (nout,*)
Write (nout,*) ’Norm of Residual:’
Write (nout,99998) norm

If (allocated(x)) Then
Deallocate (x)

End If
If (allocated(y)) Then

Deallocate (y)
End If

99999 Format (4X,’(’,F8.4,’,’,F8.4,’)’)
99998 Format (4X,F11.4)

End Subroutine compute_least_squares

Subroutine compute_error_bounds(m,n,s)

! Error estimates for singular values and vectors is computed
! and printed here.

! .. Use Statements ..
Use nag_library, Only: ddisna, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: s(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, info

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rcondu(:), rcondv(:), uerrbd(:), &

verrbd(:)
! .. Executable Statements ..

Allocate (rcondu(n),rcondv(n),uerrbd(n),verrbd(n))

! Get the machine precision, EPS and compute the approximate
! error bound for the computed singular values. Note that for
! the 2-norm, S(1) = norm(A)

eps = x02ajf()
serrbd = eps*s(1)

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the singular vectors

Call ddisna(’Left’,m,n,s,rcondu,info)
Call ddisna(’Right’,m,n,s,rcondv,info)

! Compute the error estimates for the singular vectors

Do i = 1, n
uerrbd(i) = serrbd/rcondu(i)
verrbd(i) = serrbd/rcondv(i)

End Do

! Print the approximate error bounds for the singular values
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimate for the singular values’
Write (nout,99999) serrbd
Write (nout,*)
Write (nout,*) ’Error estimates for the left singular vectors’
Write (nout,99999) uerrbd(1:n)
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Write (nout,*)
Write (nout,*) ’Error estimates for the right singular vectors’
Write (nout,99999) verrbd(1:n)

99999 Format (4X,1P,6E11.1)

End Subroutine compute_error_bounds

End Program f08kpfe

10.2 Program Data

F08KPF Example Program Data

6 4 : m and n

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) : Matrix A(1:m,1:n)

( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00)
( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) : RHS b(1:n)

10.3 Program Results

F08KPF Example Program Results

Singular values of A:
3.9994 3.0003 1.9944 0.9995

Least squares solution:
( -0.0719, -0.2761)
( 0.6796, 0.4326)
( -0.3832, -0.5447)
( 0.0096, -0.3489)

Norm of Residual:
1.5266
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NAG Library Routine Document

F08KQF (ZGELSD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KQF (ZGELSD) computes the minimum norm solution to a complex linear least squares problem

min
x

b�Axk k2:

2 Specification

SUBROUTINE F08KQF (M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK,
LWORK, RWORK, IWORK, INFO)

&

INTEGER M, N, NRHS, LDA, LDB, RANK, LWORK, IWORK(*), INFO
REAL (KIND=nag_wp) S(*), RCOND, RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zgelsd.

3 Description

F08KQF (ZGELSD) uses the singular value decomposition (SVD) of A, where A is a complex m by n
matrix which may be rank-deficient.

Several right-hand side vectors b and solution vectors x can be handled in a single call; they are stored
as the columns of the m by r right-hand side matrix B and the n by r solution matrix X.

The problem is solved in three steps:

1. reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing the
original problem into a ‘bidiagonal least squares problem’ (BLS);

2. solve the BLS using a divide-and-conquer approach;

3. apply back all the Householder transformations to solve the original least squares problem.

The effective rank of A is determined by treating as zero those singular values which are less than
RCOND times the largest singular value.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.
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2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: NRHS – INTEGER Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrices B and X.

Constraint: NRHS � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n coefficient matrix A.

On exit: the contents of A are destroyed.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KQF
(ZGELSD) is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the m by r right-hand side matrix B.

On exit: B is overwritten by the n by r solution matrix X. If m � n and RANK ¼ n, the residual
sum of squares for the solution in the ith column is given by the sum of squares of the modulus
of elements nþ 1; . . . ;m in that column.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08KQF
(ZGELSD) is called.

Constraint: LDB � max 1;M;Nð Þ.

8: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least max 1;min M;Nð Þð Þ.
On exit: the singular values of A in decreasing order.

9: RCOND – REAL (KIND=nag_wp) Input

On entry: used to determine the effective rank of A. Singular values SðiÞ � RCOND� Sð1Þ are
treated as zero. If RCOND < 0, machine precision is used instead.

10: RANK – INTEGER Output

On exit: the effective rank of A, i.e., the number of singular values which are greater than
RCOND� Sð1Þ.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.
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12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KQF (ZGELSD) is called.

The exact minimum amount of workspace needed depends on M, N and NRHS. As long as
LWORK is at least

max 1;Mþ Nþ r; 2rþ r� NRHSð Þ;

where r ¼ min M;Nð Þ, the code will execute correctly.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array and the minimum size of the IWORK array, and returns these values as the first
entries of the WORK and IWORK arrays, and no error message related to LWORK is issued.

Suggested value: for optimal performance, LWORK should generally be larger than the required
minimum. Consider increasing LWORK by at least nb�min M;Nð Þ, where nb is the optimal
block size.

Constraint: LWORK must be at least max 1;Mþ Nþ r; 2rþ r� NRHSð Þ or LWORK ¼ �1.

13: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1; lrworkð Þ, where lrwork is at
least

10� Nþ 2� N� smlsiz þ 8� N� nlvl þ 3� smlsiz � NRHSþ smlsiz þ 1ð Þ2; if M � N

or

10�Mþ 2�M� smlsiz þ 8�M� nlvl þ 3� smlsiz � NRHSþ smlsiz þ 1ð Þ2; if M < N

where smlsiz is equal to the maximum size of the subproblems at the bottom of the computation
tree (usually about 25), and nlvl ¼ max 0; int log2 min M;Nð Þ= smlsiz þ 1ð Þð Þð Þ þ 1ð Þ, the code will
execute correctly.

On exit: if INFO ¼ 0, RWORKð1Þ contains the required minimal size of lrwork.

14: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least max 1; liworkð Þ, where liwork is at
least max 1; 3�min M;Nð Þ � nlvl þ 11�min M;Nð Þð Þ.
On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum liwork.

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm for computing the SVD failed to converge; if INFO ¼ i, i off-diagonal elements of
an intermediate bidiagonal form did not converge to zero.

7 Accuracy

See Section 4.5 of Anderson et al. (1999) for details.
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8 Parallelism and Performance

F08KQF (ZGELSD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KQF (ZGELSD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F08KCF (DGELSD).

10 Example

This example solves the linear least squares problem

min
x

b�Axk k2

for the solution, x, of minimum norm, where

A ¼
0:47� 0:34i �0:32� 0:23i 0:35� 0:60i 0:89þ 0:71i �0:19þ 0:06i
�0:40þ 0:54i �0:05þ 0:20i �0:52� 0:34i �0:45� 0:45i 0:11� 0:85i
0:60þ 0:01i �0:26� 0:44i 0:87� 0:11i �0:02� 0:57i 1:44þ 0:80i
0:80� 1:02i �0:43þ 0:17i �0:34� 0:09i 1:14� 0:78i 0:07þ 1:14i

0B@
1CA

and

b ¼
2:15� 0:20i
�2:24þ 1:82i
4:45� 4:28i
5:70� 6:25i

0B@
1CA:

A tolerance of 0:01 is used to determine the effective rank of A.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08kqfe

! F08KQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zgelsd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, info, lda, liwork, lrwork, lwork, &

m, n, rank
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:), work(:)
Complex (Kind=nag_wp) :: lw(1)
Real (Kind=nag_wp) :: lrw(1)
Real (Kind=nag_wp), Allocatable :: rwork(:), s(:)
Integer, Allocatable :: iwork(:)
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Integer :: liw(1)
! .. Intrinsic Procedures ..

Intrinsic :: nint, real
! .. Executable Statements ..

Write (nout,*) ’F08KQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
Allocate (a(lda,n),b(n),s(m))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)

! Choose RCOND to reflect the relative accuracy of the input
! data

rcond = 0.01E0_nag_wp

! Call f08kqf/zgelsd in workspace query mode.
lwork = -1
Call zgelsd(m,n,1,a,lda,b,n,s,rcond,rank,lw,lwork,lrw,liw,info)
lwork = nint(real(lw(1)))
lrwork = nint(lrw(1))
liwork = liw(1)
Allocate (work(lwork),rwork(lrwork),iwork(liwork))

! Solve the least squares problem min( norm2(b - Ax) ) for the
! x of minimum norm.

! The NAG name equivalent of zgelsd is f08kqf
Call zgelsd(m,n,1,a,lda,b,n,s,rcond,rank,work,lwork,rwork,iwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Least squares solution’
Write (nout,99999) b(1:n)

! Print the effective rank of A

Write (nout,*)
Write (nout,*) ’Tolerance used to estimate the rank of A’
Write (nout,99998) rcond
Write (nout,*) ’Estimated rank of A’
Write (nout,99997) rank

! Print singular values of A

Write (nout,*)
Write (nout,*) ’Singular values of A’
Write (nout,99996) s(1:m)

Else If (info>0) Then
Write (nout,*) ’The SVD algorithm failed to converge’

End If

99999 Format (4(’ (’,F7.4,’,’,F7.4,’)’,:))
99998 Format (3X,1P,E11.2)
99997 Format (1X,I6)
99996 Format (1X,7F11.4)

End Program f08kqfe
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10.2 Program Data

F08KQF Example Program Data

4 5 :Values of M and N

( 0.47,-0.34) (-0.32,-0.23) ( 0.35,-0.60) ( 0.89, 0.71) (-0.19, 0.06)
(-0.40, 0.54) (-0.05, 0.20) (-0.52,-0.34) (-0.45,-0.45) ( 0.11,-0.85)
( 0.60, 0.01) (-0.26,-0.44) ( 0.87,-0.11) (-0.02,-0.57) ( 1.44, 0.80)
( 0.80,-1.02) (-0.43, 0.17) (-0.34,-0.09) ( 1.14,-0.78) ( 0.07, 1.14) :End of A

( 2.15,-0.20)
(-2.24, 1.82)
( 4.45,-4.28)
( 5.70,-6.25) :End of vector b

10.3 Program Results

F08KQF Example Program Results

Least squares solution
( 3.9747,-1.8377) (-0.9186, 0.8253) (-0.3105, 0.1477) ( 1.0050, 0.8626)
(-0.2256,-1.9425)

Tolerance used to estimate the rank of A
1.00E-02

Estimated rank of A
3

Singular values of A
2.9979 1.9983 1.0044 0.0064
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NAG Library Routine Document

F08KRF (ZGESDD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KRF (ZGESDD) computes the singular value decomposition (SVD) of a complex m by n matrix A,
optionally computing the left and/or right singular vectors, by using a divide-and-conquer method.

2 Specification

SUBROUTINE F08KRF (JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK,
RWORK, IWORK, INFO)

&

INTEGER M, N, LDA, LDU, LDVT, LWORK, IWORK(8*min(M,N)),
INFO

&

REAL (KIND=nag_wp) S(min(M,N)), RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), U(LDU,*), VT(LDVT,*),

WORK(max(1,LWORK))
&

CHARACTER(1) JOBZ

The routine may be called by its LAPACK name zgesdd.

3 Description

The SVD is written as

A ¼ U�V H;

where � is an m by n matrix which is zero except for its min m;nð Þ diagonal elements, U is an m by m
unitary matrix, and V is an n by n unitary matrix. The diagonal elements of � are the singular values
of A; they are real and non-negative, and are returned in descending order. The first min m;nð Þ columns
of U and V are the left and right singular vectors of A.

Note that the routine returns V H, not V .

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: specifies options for computing all or part of the matrix U .

JOBZ ¼ A
All m columns of U and all n rows of V H are returned in the arrays U and VT.

JOBZ ¼ S
The first min m;nð Þ columns of U and the first min m;nð Þ rows of V H are returned in the
arrays U and VT.
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JOBZ ¼ O
If M � N, the first n columns of U are overwritten on the array A and all rows of V H are
returned in the array VT. Otherwise, all columns of U are returned in the array U and the
first m rows of V H are overwritten in the array VT.

JOBZ ¼ N
No columns of U or rows of V H are computed.

Constraint: JOBZ ¼ A , S , O or N .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if JOBZ ¼ O , A is overwritten with the first n columns of U (the left singular vectors,
stored column-wise) if M � N; A is overwritten with the first m rows of V H (the right singular
vectors, stored row-wise) otherwise.

If JOBZ 6¼ O , the contents of A are destroyed.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KRF
(ZGESDD) is called.

Constraint: LDA � max 1;Mð Þ.

6: Sðmin M;Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the singular values of A, sorted so that SðiÞ � Sðiþ 1Þ.

7: UðLDU; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBZ ¼ A or
JOBZ ¼ O and M < N, max 1;min M;Nð Þð Þ if JOBZ ¼ S , and at least 1 otherwise.

On exit:

If JOBZ ¼ A or JOBZ ¼ O and M < N, U contains the m by m unitary matrix U .

If JOBZ ¼ S , U contains the first min m;nð Þ columns of U (the left singular vectors, stored
column-wise).

If JOBZ ¼ O and M � N, or JOBZ ¼ N , U is not referenced.

8: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08KRF
(ZGESDD) is called.

Constraints:

if JOBZ ¼ S or A or JOBZ ¼ O and M < N, LDU � max 1;Mð Þ;
otherwise LDU � 1.
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9: VTðLDVT; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VT must be at least max 1;Nð Þ if JOBZ ¼ A or S or
JOBZ ¼ O and M � N, and at least 1 otherwise.

On exit: if JOBZ ¼ A or JOBZ ¼ O and M � N, VT contains the n by n unitary matrix V H.

If JOBZ ¼ S , VT contains the first min m;nð Þ rows of V H (the right singular vectors, stored row-
wise).

If JOBZ ¼ O and M < N, or JOBZ ¼ N , VT is not referenced.

10: LDVT – INTEGER Input

On entry: the first dimension of the array VT as declared in the (sub)program from which
F08KRF (ZGESDD) is called.

Constraints:

if JOBZ ¼ A or JOBZ ¼ O and M � N, LDVT � max 1;Nð Þ;
if JOBZ ¼ S , LDVT � max 1;min M;Nð Þð Þ;
otherwise LDVT � 1.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KRF (ZGESDD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK should generally be larger. Consider
increasing LWORK by at least nb�min M;Nð Þ, where nb is the optimal block size.

Constraints:

if JOBZ ¼ N , LWORK � 2�min M;Nð Þ þmax 1;M;Nð Þ;
if JOBZ ¼ O , LWORK � 2�min M;Nð Þ �min M;Nð Þ þ 2�min M;Nð Þ þmax 1;M;Nð Þ;
if JOBZ ¼ S or A ,
LWORK � min M;Nð Þ �min M;Nð Þ þ 2�min M;Nð Þ þmax 1;M;Nð Þ;
otherwise LWORK � 1.

13: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1; 7�min M;Nð Þð Þ if JOBZ ¼ N ,
and at least max 1;min M;Nð Þ �max 5�min M;Nð Þ þ 7; 2�max M;Nð Þ þ 2�min M;Nð Þ þ 1ð Þð Þ
otherwise.

14: IWORKð8�min M;Nð ÞÞ – INTEGER array Workspace

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F08KRF (ZGESDD) did not converge, the updating process failed.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08KRF (ZGESDD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KRF (ZGESDD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately proportional to mn2 when m > n and
m2n otherwise.

The singular values are returned in descending order.

The real analogue of this routine is F08KDF (DGESDD).

10 Example

This example finds the singular values and left and right singular vectors of the 4 by 6 matrix

A ¼
0:96þ 0:81i �0:98� 1:98i 0:62þ 0:46i �0:37� 0:38i 0:83� 0:51i 1:08þ 0:28i
�0:03� 0:96i �1:20� 0:19i 1:01� 0:02i 0:19þ 0:54i 0:20� 0:01i 0:20þ 0:12i
�0:91� 2:06i �0:66� 0:42i 0:63þ 0:17i �0:98þ 0:36i �0:17þ 0:46i �0:07� 1:23i
�0:05� 0:41i �0:81� 0:56i �1:11� 0:60i 0:22þ 0:20i 1:47� 1:59i 0:26� 0:26i

0B@
1CA;

together with approximate error bounds for the computed singular values and vectors.

The example program for F08KPF (ZGESVD) illustrates finding a singular value decomposition for the
case m � n.
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10.1 Program Text

Program f08krfe

! F08KRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zgesdd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6, &

prerr = 0
! .. Local Scalars ..

Integer :: i, info, lda, ldu, ldvt, lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), a_copy(:,:), b(:), u(:,:), &
vt(:,:), work(:)

Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: rwork(:), s(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08KRF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldu = m
ldvt = n
Allocate (a(lda,n),a_copy(m,n),s(m),u(ldu,m),vt(ldvt,n),b(m),rwork((5*m+ &

7)*n),iwork(8*m))

! Read the m by n matrix A from data file
Read (nin,*)(a(i,1:n),i=1,m)

! Read the right hand side of the linear system
Read (nin,*) b(1:m)

a_copy(1:m,1:n) = a(1:m,1:n)

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dgesdd is f08krf
Call zgesdd(’A’,m,n,a,lda,s,u,ldu,vt,ldvt,dummy,lwork,rwork,iwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((2*m+2)*m+2*n+nb*(m+n),nint(real(dummy(1,1))))
Allocate (work(lwork))

! Compute the singular values and left and right singular vectors
! of A.

! The NAG name equivalent of dgesdd is f08krf
Call zgesdd(’A’,m,n,a,lda,s,u,ldu,vt,ldvt,work,lwork,rwork,iwork,info)

If (info/=0) Then
Write (nout,99999) ’Failure in F08KRF/ZGESDD. INFO =’, info

99999 Format (1X,A,I4)
Go To 100

End If

! Print the significant singular values of A

Write (nout,*) ’Singular values of A:’
Write (nout,99998) s(1:min(m,n))

99998 Format (1X,4(3X,F11.4))
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If (prerr>0) Then
Call compute_error_bounds(m,n,s)

End If

If (m<n) Then
! Compute V*Inv(S)*U^T * b to get minimum norm solution.

Call compute_minimum_norm(m,n,a_copy,m,u,ldu,vt,ldvt,s,b)
End If

100 Continue

Contains
Subroutine compute_minimum_norm(m,n,a,lda,u,ldu,vt,ldvt,s,b)

! .. Use Statements ..
Use nag_library, Only: dznrm2, zgemv

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: lda, ldu, ldvt, m, n

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: a(lda,n), u(ldu,m), vt(ldvt,n)
Complex (Kind=nag_wp), Intent (Inout) :: b(m)
Real (Kind=nag_wp), Intent (In) :: s(m)

! .. Local Scalars ..
Complex (Kind=nag_wp) :: alpha, beta
Real (Kind=nag_wp) :: norm

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: allocated, cmplx

! .. Executable Statements ..
Allocate (x(n),y(m))

! Compute V*Inv(S)*U^H * b to get least squares solution.

! y = U^H b
! The NAG name equivalent of zgemv is f06saf

alpha = cmplx(1.0_nag_wp,0.0_nag_wp,kind=nag_wp)
beta = cmplx(0.0_nag_wp,0.0_nag_wp,kind=nag_wp)
Call zgemv(’C’,m,m,alpha,u,ldu,b,1,beta,y,1)

y(1:m) = y(1:m)/s(1:m)

! x = V y
Call zgemv(’C’,m,n,alpha,vt,ldvt,y,1,beta,x,1)

Write (nout,*)
Write (nout,*) ’Minimum norm solution:’
Write (nout,99999) x(1:n)

norm = dznrm2(n,x,1)

Write (nout,*)
Write (nout,*) ’Norm of Solution:’
Write (nout,99998) norm

! Find norm of residual ||b-Ax||, should be zero.
alpha = cmplx(-1.0_nag_wp,0.0_nag_wp,kind=nag_wp)
beta = cmplx(1._nag_wp,0.0_nag_wp,kind=nag_wp)
Call zgemv(’N’,m,n,alpha,a,lda,x,1,beta,b,1)

norm = dznrm2(m,b,1)

Write (nout,*)
Write (nout,*) ’Norm of Residual:’
Write (nout,99998) norm

If (allocated(x)) Then
Deallocate (x)
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End If
If (allocated(y)) Then

Deallocate (y)
End If

99999 Format (4X,’(’,F8.4,’,’,F8.4,’)’)
99998 Format (4X,F11.4)

End Subroutine compute_minimum_norm

Subroutine compute_error_bounds(m,n,s)

! Error estimates for singular values and vectors is computed
! and printed here.

! .. Use Statements ..
Use nag_library, Only: ddisna, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: s(m)

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, info

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rcondu(:), rcondv(:), uerrbd(:), &

verrbd(:)
! .. Executable Statements ..

Allocate (rcondu(n),rcondv(n),uerrbd(n),verrbd(n))

! Get the machine precision, EPS and compute the approximate
! error bound for the computed singular values. Note that for
! the 2-norm, S(1) = norm(A)

eps = x02ajf()
serrbd = eps*s(1)

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the singular vectors

Call ddisna(’Left’,m,n,s,rcondu,info)
Call ddisna(’Right’,m,n,s,rcondv,info)

! Compute the error estimates for the singular vectors

Do i = 1, n
uerrbd(i) = serrbd/rcondu(i)
verrbd(i) = serrbd/rcondv(i)

End Do

! Print the approximate error bounds for the singular values
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimate for the singular values’
Write (nout,99999) serrbd
Write (nout,*)
Write (nout,*) ’Error estimates for the left singular vectors’
Write (nout,99999) uerrbd(1:n)
Write (nout,*)
Write (nout,*) ’Error estimates for the right singular vectors’
Write (nout,99999) verrbd(1:n)

99999 Format (4X,1P,6E11.1)

End Subroutine compute_error_bounds

End Program f08krfe
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10.2 Program Data

F08KRF Example Program Data

4 6 : m and n

( 0.96, 0.81) (-0.98,-1.98) ( 0.62, 0.46)
(-0.37,-0.38) ( 0.83,-0.51) ( 1.08, 0.28)

(-0.03,-0.96) (-1.20,-0.19) ( 1.01,-0.02)
( 0.19, 0.54) ( 0.20,-0.01) ( 0.20, 0.12)

(-0.91,-2.06) (-0.66,-0.42) ( 0.63, 0.17)
(-0.98, 0.36) (-0.17, 0.46) (-0.07,-1.23)

(-0.05,-0.41) (-0.81,-0.56) (-1.11,-0.60)
( 0.22, 0.20) ( 1.47,-1.59) ( 0.26,-0.26) : Matrix A(1:m,1:n)

( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00)
( 1.00, 0.00) : RHS b(1:n)

10.3 Program Results

F08KRF Example Program Results

Singular values of A:
3.9994 3.0003 1.9944 0.9995

Minimum norm solution:
( -0.4024, 0.3777)
( -0.2272, 0.3626)
( 0.1704, -0.1532)
( 0.2125, 0.0781)
( 0.2041, 0.2236)
( 0.2766, -0.1517)

Norm of Solution:
0.8846

Norm of Residual:
0.0000
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NAG Library Routine Document

F08KSF (ZGEBRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KSF (ZGEBRD) reduces a complex m by n matrix to bidiagonal form.

2 Specification

SUBROUTINE F08KSF (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
REAL (KIND=nag_wp) D(*), E(*)
COMPLEX (KIND=nag_wp) A(LDA,*), TAUQ(*), TAUP(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zgebrd.

3 Description

F08KSF (ZGEBRD) reduces a complex m by n matrix A to real bidiagonal form B by a unitary
transformation: A ¼ QBPH, where Q and PH are unitary matrices of order m and n respectively.

If m � n, the reduction is given by:

A ¼ Q B1
0

� �
PH ¼ Q1B1P

H;

where B1 is a real n by n upper bidiagonal matrix and Q1 consists of the first n columns of Q.

If m < n, the reduction is given by

A ¼ Q B1 0
� �

PH ¼ QB1P
H
1 ;

where B1 is a real m by m lower bidiagonal matrix and PH
1 consists of the first m rows of PH.

The unitary matrices Q and P are not formed explicitly but are represented as products of elementary
reflectors (see the F08 Chapter Introduction for details). Routines are provided to work with Q and P in
this representation (see Section 9).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.
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3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the diagonal and first superdiagonal are overwritten by the upper bidiagonal
matrix B, elements below the diagonal are overwritten by details of the unitary matrix Q and
elements above the first superdiagonal are overwritten by details of the unitary matrix P .

If m < n, the diagonal and first subdiagonal are overwritten by the lower bidiagonal matrix B,
elements below the first subdiagonal are overwritten by details of the unitary matrix Q and
elements above the diagonal are overwritten by details of the unitary matrix P .

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KSF
(ZGEBRD) is called.

Constraint: LDA � max 1;Mð Þ.

5: Dð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array D must be at least max 1;min M;Nð Þð Þ.
On exit: the diagonal elements of the bidiagonal matrix B.

6: Eð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array E must be at least max 1;min M;Nð Þ � 1ð Þ.
On exit: the off-diagonal elements of the bidiagonal matrix B.

7: TAUQð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array TAUQ must be at least max 1;min M;Nð Þð Þ.
On exit: further details of the unitary matrix Q.

8: TAUPð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array TAUP must be at least max 1;min M;Nð Þð Þ.
On exit: further details of the unitary matrix P .

9: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

10: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KSF (ZGEBRD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � Mþ Nð Þ � nb, where nb is the optimal
block size.

Constraint: LWORK � max 1;M;Nð Þ or LWORK ¼ �1.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed bidiagonal form B satisfies QBPH ¼ Aþ E, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.

8 Parallelism and Performance

F08KSF (ZGEBRD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KSF (ZGEBRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 16n2 3m� nð Þ=3 if m � n or
16m2 3n�mð Þ=3 if m < n.

If m� n, it can be more efficient to first call F08ASF (ZGEQRF) to perform a QR factorization of A,
and then to call F08KSF (ZGEBRD) to reduce the factor R to bidiagonal form. This requires
approximately 8n2 mþ nð Þ floating-point operations.
If m n, it can be more efficient to first call F08AVF (ZGELQF) to perform an LQ factorization of A,
and then to call F08KSF (ZGEBRD) to reduce the factor L to bidiagonal form. This requires
approximately 8m2 mþ nð Þ operations.
To form the unitary matrices PH and/or Q F08KSF (ZGEBRD) may be followed by calls to F08KTF
(ZUNGBR):

to form the m by m unitary matrix Q

CALL ZUNGBR(’Q’,M,M,N,A,LDA,TAUQ,WORK,LWORK,INFO)

but note that the second dimension of the array A must be at least M, which may be larger than was
required by F08KSF (ZGEBRD);

to form the n by n unitary matrix PH

CALL ZUNGBR(’P’,N,N,M,A,LDA,TAUP,WORK,LWORK,INFO)

but note that the first dimension of the array A, specified by the argument LDA, must be at least N,
which may be larger than was required by F08KSF (ZGEBRD).

To apply Q or P to a complex rectangular matrix C, F08KSF (ZGEBRD) may be followed by a call to
F08KUF (ZUNMBR).

The real analogue of this routine is F08KEF (DGEBRD).
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10 Example

This example reduces the matrix A to bidiagonal form, where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA:

10.1 Program Text

Program f08ksfe

! F08KSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zgebrd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, lda, lwork, m, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), taup(:), tauq(:), work(:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’F08KSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = 64*(m+n)
Allocate (a(lda,n),taup(n),tauq(n),work(lwork),d(n),e(n-1))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

! Reduce A to bidiagonal form

! The NAG name equivalent of zgebrd is f08ksf
Call zgebrd(m,n,a,lda,d,e,tauq,taup,work,lwork,info)

! Print bidiagonal form

Write (nout,*)
Write (nout,*) ’Diagonal’
Write (nout,99999) d(1:min(m,n))
If (m>=n) Then

Write (nout,*) ’Superdiagonal’
Else

Write (nout,*) ’Subdiagonal’
End If
Write (nout,99999) e(1:min(m,n)-1)

99999 Format (1X,8F9.4)
End Program f08ksfe
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10.2 Program Data

F08KSF Example Program Data
6 4 :Values of M and N

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

10.3 Program Results

F08KSF Example Program Results

Diagonal
-3.0870 2.0660 1.8731 2.0022

Superdiagonal
2.1126 1.2628 -1.6126
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NAG Library Routine Document

F08KTF (ZUNGBR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KTF (ZUNGBR) generates one of the complex unitary matrices Q or PH which were determined by
F08KSF (ZGEBRD) when reducing a complex matrix to bidiagonal form.

2 Specification

SUBROUTINE F08KTF (VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, K, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))
CHARACTER(1) VECT

The routine may be called by its LAPACK name zungbr.

3 Description

F08KTF (ZUNGBR) is intended to be used after a call to F08KSF (ZGEBRD), which reduces a
complex rectangular matrix A to real bidiagonal form B by a unitary transformation: A ¼ QBPH.
F08KSF (ZGEBRD) represents the matrices Q and PH as products of elementary reflectors.

This routine may be used to generate Q or PH explicitly as square matrices, or in some cases just the
leading columns of Q or the leading rows of PH.

The various possibilities are specified by the arguments VECT, M, N and K. The appropriate values to
cover the most likely cases are as follows (assuming that A was an m by n matrix):

1. To form the full m by m matrix Q:

CALL ZUNGBR(’Q’,m,m,n,...)

(note that the array A must have at least m columns).

2. If m > n, to form the n leading columns of Q:

CALL ZUNGBR(’Q’,m,n,n,...)

3. To form the full n by n matrix PH:

CALL ZUNGBR(’P’,n,n,m,...)

(note that the array A must have at least n rows).

4. If m < n, to form the m leading rows of PH:

CALL ZUNGBR(’P’,m,n,m,...)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: VECT – CHARACTER(1) Input

On entry: indicates whether the unitary matrix Q or PH is generated.

VECT ¼ Q
Q is generated.

VECT ¼ P
PH is generated.

Constraint: VECT ¼ Q or P .

2: M – INTEGER Input

On entry: m, the number of rows of the unitary matrix Q or PH to be returned.

Constraint: M � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the unitary matrix Q or PH to be returned.

Constraints:

N � 0;
if VECT ¼ Q and M > K, M � N � K;
if VECT ¼ Q and M � K, M ¼ N;
if VECT ¼ P and N > K, N � M � K;
if VECT ¼ P and N � K, N ¼ M.

4: K – INTEGER Input

On entry: if VECT ¼ Q , the number of columns in the original matrix A.

If VECT ¼ P , the number of rows in the original matrix A.

Constraint: K � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08KSF
(ZGEBRD).

On exit: the unitary matrix Q or PH, or the leading rows or columns thereof, as specified by
VECT, M and N.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KTF
(ZUNGBR) is called.

Constraint: LDA � max 1;Mð Þ.

7: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;min M;Kð Þð Þ if VECT ¼ Q and at
least max 1;min N;Kð Þð Þ if VECT ¼ P .

On entry: further details of the elementary reflectors, as returned by F08KSF (ZGEBRD) in its
argument TAUQ if VECT ¼ Q , or in its argument TAUP if VECT ¼ P .
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8: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

9: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KTF (ZUNGBR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � min M;Nð Þ � nb, where nb is the optimal
block size.

Constraint: LWORK � max 1;min M;Nð Þð Þ or LWORK ¼ �1.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision. A similar statement holds for the computed matrix PH.

8 Parallelism and Performance

F08KTF (ZUNGBR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KTF (ZUNGBR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations for the cases listed in Section 3 are approximately as
follows:

1. To form the whole of Q:

16
3 n 3m2 � 3mnþ n2
� �

if m > n,

16
3m

3 if m � n;

2. To form the n leading columns of Q when m > n:
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8
3n

2 3m� nð Þ ;

3. To form the whole of PH:

16
3 n

3 if m � n,
16
3m

3 3n2 � 3mnþm2
� �

if m < n;

4. To form the m leading rows of PH when m < n:

8
3m

2 3n�mð Þ .

The real analogue of this routine is F08KFF (DORGBR).

10 Example

For this routine two examples are presented, both of which involve computing the singular value
decomposition of a matrix A, where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA
in the first example and

A ¼
0:28� 0:36i 0:50� 0:86i �0:77� 0:48i 1:58þ 0:66i
�0:50� 1:10i �1:21þ 0:76i �0:32� 0:24i �0:27� 1:15i
0:36� 0:51i �0:07þ 1:33i �0:75þ 0:47i �0:08þ 1:01i

0@ 1A
in the second. A must first be reduced to tridiagonal form by F08KSF (ZGEBRD). The program then
calls F08KTF (ZUNGBR) twice to form Q and PH, and passes these matrices to F08MSF (ZBDSQR),
which computes the singular value decomposition of A.

10.1 Program Text

Program f08ktfe

! F08KTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06tff, nag_wp, x04dbf, zbdsqr, zgebrd, zungbr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ic, ifail, info, lda, ldc, ldu, &

ldvt, lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), taup(:), tauq(:), &
u(:,:), vt(:,:), work(:)

Real (Kind=nag_wp), Allocatable :: d(:), e(:), rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08KTF Example Program Results’

! Skip heading in data file
Read (nin,*)
Do ic = 1, 2

Read (nin,*) m, n
lda = m
ldc = n
ldu = m
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ldvt = n
lwork = 64*(m+n)
Allocate (a(lda,n),c(ldc,n),taup(n),tauq(n),u(ldu,n),vt(ldvt,n), &

work(lwork),d(n),e(n-1),rwork(4*n-4))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,m)

! Reduce A to bidiagonal form
! The NAG name equivalent of zgebrd is f08ksf

Call zgebrd(m,n,a,lda,d,e,tauq,taup,work,lwork,info)

If (m>=n) Then

! Copy A to VT and U
Call f06tff(’Upper’,n,n,a,lda,vt,ldvt)
Call f06tff(’Lower’,m,n,a,lda,u,ldu)

! Form P**H explicitly, storing the result in VT
! The NAG name equivalent of zungbr is f08ktf

Call zungbr(’P’,n,n,m,vt,ldvt,taup,work,lwork,info)

! Form Q explicitly, storing the result in U
Call zungbr(’Q’,m,n,n,u,ldu,tauq,work,lwork,info)

! Compute the SVD of A
! The NAG name equivalent of zbdsqr is f08msf

Call zbdsqr(’Upper’,n,n,m,0,d,e,vt,ldvt,u,ldu,c,ldc,rwork,info)

! Print singular values, left & right singular vectors

Write (nout,*)
Write (nout,*) ’Example 1: singular values’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,vt,ldvt,’Bracketed’,’F7.4’, &

’Example 1: right singular vectors, by row’,’Integer’,rlabs, &
’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’General’,’ ’,m,n,u,ldu,’Bracketed’,’F7.4’, &
’Example 1: left singular vectors, by column’,’Integer’,rlabs, &
’Integer’,clabs,80,0,ifail)

Else

! Copy A to VT and U
Call f06tff(’Upper’,m,n,a,lda,vt,ldvt)
Call f06tff(’Lower’,m,m,a,lda,u,ldu)

! Form P**H explicitly, storing the result in VT
! The NAG name equivalent of zungbr is f08ktf

Call zungbr(’P’,m,n,m,vt,ldvt,taup,work,lwork,info)

! Form Q explicitly, storing the result in U
Call zungbr(’Q’,m,m,n,u,ldu,tauq,work,lwork,info)

! Compute the SVD of A
! The NAG name equivalent of zbdsqr is f08msf

Call zbdsqr(’Lower’,m,n,m,0,d,e,vt,ldvt,u,ldu,c,ldc,rwork,info)

! Print singular values, left & right singular vectors

Write (nout,*)
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Write (nout,*) ’Example 2: singular values’
Write (nout,99999) d(1:m)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,m,n,vt,ldvt,’Bracketed’,’F7.4’, &

’Example 2: right singular vectors, by row’,’Integer’,rlabs, &
’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’General’,’ ’,m,m,u,ldu,’Bracketed’,’F7.4’, &
’Example 2: left singular vectors, by column’,’Integer’,rlabs, &
’Integer’,clabs,80,0,ifail)

End If
Deallocate (a,c,taup,tauq,u,vt,work,d,e,rwork)

End Do

99999 Format (8X,4(F7.4,11X,:))
End Program f08ktfe

10.2 Program Data

F08KTF Example Program Data
6 4 :Values of M and N, Example 1

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A
3 4 :Values of M and N, Example 2

( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A

10.3 Program Results

F08KTF Example Program Results

Example 1: singular values
3.9994 3.0003 1.9944 0.9995

Example 1: right singular vectors, by row
1 2 3 4

1 (-0.6971,-0.0000) (-0.0867,-0.3548) ( 0.0560,-0.5400) (-0.1878,-0.2253)
2 ( 0.2403, 0.0000) ( 0.0725,-0.2336) (-0.2477,-0.5291) ( 0.7026, 0.2177)
3 (-0.5123, 0.0000) (-0.3030,-0.1735) ( 0.0678, 0.5162) ( 0.4418, 0.3864)
4 (-0.4403, 0.0000) ( 0.5294, 0.6361) (-0.3027,-0.0346) ( 0.1667, 0.0258)

Example 1: left singular vectors, by column
1 2 3 4

1 (-0.5634, 0.0016) (-0.2687,-0.2749) ( 0.2451, 0.4657) ( 0.3787, 0.2987)
2 ( 0.1205,-0.6108) (-0.2909, 0.1085) ( 0.4329,-0.1758) (-0.0182,-0.0437)
3 (-0.0816, 0.1613) (-0.1660, 0.3885) (-0.4667, 0.3821) (-0.0800,-0.2276)
4 ( 0.1441,-0.1532) ( 0.1984,-0.1737) (-0.0034, 0.1555) ( 0.2608,-0.5382)
5 (-0.2487,-0.0926) ( 0.6253, 0.3304) ( 0.2643,-0.0194) ( 0.1002, 0.0140)
6 (-0.3758, 0.0793) (-0.0307,-0.0816) ( 0.1266, 0.1747) (-0.4175,-0.4058)

Example 2: singular values
3.0004 1.9967 0.9973

Example 2: right singular vectors, by row
1 2 3 4

1 ( 0.2454,-0.0001) ( 0.2942,-0.5843) ( 0.0162,-0.0810) ( 0.6794, 0.2083)
2 (-0.1692, 0.5194) ( 0.1915,-0.4374) ( 0.5205,-0.0244) (-0.3149,-0.3208)
3 (-0.5553, 0.1403) ( 0.1438,-0.1507) (-0.5684,-0.5505) (-0.0318,-0.0378)
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Example 2: left singular vectors, by column
1 2 3

1 ( 0.6518, 0.0000) (-0.4312, 0.0000) ( 0.6239, 0.0000)
2 (-0.4437,-0.5027) (-0.3794, 0.1026) ( 0.2014, 0.5961)
3 (-0.2012, 0.2916) (-0.8122, 0.0030) (-0.3511,-0.3026)
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NAG Library Routine Document

F08KUF (ZUNMBR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KUF (ZUNMBR) multiplies an arbitrary complex m by n matrix C by one of the complex unitary
matrices Q or P which were determined by F08KSF (ZGEBRD) when reducing a complex matrix to
bidiagonal form.

2 Specification

SUBROUTINE F08KUF (VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

&

INTEGER M, N, K, LDA, LDC, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) VECT, SIDE, TRANS

The routine may be called by its LAPACK name zunmbr.

3 Description

F08KUF (ZUNMBR) is intended to be used after a call to F08KSF (ZGEBRD), which reduces a
complex rectangular matrix A to real bidiagonal form B by a unitary transformation: A ¼ QBPH.
F08KSF (ZGEBRD) represents the matrices Q and PH as products of elementary reflectors.

This routine may be used to form one of the matrix products

QC;QHC;CQ;CQH; PC; PHC;CP or CPH;

overwriting the result on C (which may be any complex rectangular matrix).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

Note: in the descriptions below, r denotes the order of Q or PH: if SIDE ¼ L , r ¼ M and if
SIDE ¼ R , r ¼ N.

1: VECT – CHARACTER(1) Input

On entry: indicates whether Q or QH or P or PH is to be applied to C.

VECT ¼ Q
Q or QH is applied to C.

VECT ¼ P
P or PH is applied to C.

Constraint: VECT ¼ Q or P .
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2: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QH or P or PH is to be applied to C.

SIDE ¼ L
Q or QH or P or PH is applied to C from the left.

SIDE ¼ R
Q or QH or P or PH is applied to C from the right.

Constraint: SIDE ¼ L or R .

3: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or P or QH or PH is to be applied to C.

TRANS ¼ N
Q or P is applied to C.

TRANS ¼ C
QH or PH is applied to C.

Constraint: TRANS ¼ N or C .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix C.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix C.

Constraint: N � 0.

6: K – INTEGER Input

On entry: if VECT ¼ Q , the number of columns in the original matrix A.

If VECT ¼ P , the number of rows in the original matrix A.

Constraint: K � 0.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;min r ;Kð Þð Þ if VECT ¼ Q and
at least max 1; rð Þ if VECT ¼ P .

On entry: details of the vectors which define the elementary reflectors, as returned by F08KSF
(ZGEBRD).

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KUF
(ZUNMBR) is called.

Constraints:

if VECT ¼ Q , LDA � max 1; rð Þ;
if VECT ¼ P , LDA � max 1;min r ;Kð Þð Þ.

9: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;min r ;Kð Þð Þ.
On entry: further details of the elementary reflectors, as returned by F08KSF (ZGEBRD) in its
argument TAUQ if VECT ¼ Q , or in its argument TAUP if VECT ¼ P .
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10: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the matrix C.

On exit: C is overwritten by QC or QHC or CQ or CHQ or PC or PHC or CP or CHP as
specified by VECT, SIDE and TRANS.

11: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08KUF
(ZUNMBR) is called.

Constraint: LDC � max 1;Mð Þ.

12: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KUF (ZUNMBR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08KUF (ZUNMBR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08KUF (ZUNMBR) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately

if SIDE ¼ L and m � k, 8nk 2m� kð Þ;
if SIDE ¼ R and n � k, 8mk 2n� kð Þ;

if SIDE ¼ L and m < k, 8m2n;

if SIDE ¼ R and n < k, 8mn2,

where k is the value of the argument K.

The real analogue of this routine is F08KGF (DORMBR).

10 Example

For this routine two examples are presented. Both illustrate how the reduction to bidiagonal form of a
matrix A may be preceded by a QR or LQ factorization of A.

In the first example, m > n, and

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA:

The routine first performs a QR factorization of A as A ¼ QaR and then reduces the factor R to
bidiagonal form B: R ¼ QbBP

H. Finally it forms Qa and calls F08KUF (ZUNMBR) to form
Q ¼ QaQb.

In the second example, m < n, and

A ¼
0:28� 0:36i 0:50� 0:86i �0:77� 0:48i 1:58þ 0:66i
�0:50� 1:10i �1:21þ 0:76i �0:32� 0:24i �0:27� 1:15i
0:36� 0:51i �0:07þ 1:33i �0:75þ 0:47i �0:08þ 1:01i

0@ 1A:
The routine first performs an LQ factorization of A as A ¼ LPH

a and then reduces the factor L to
bidiagonal form B: L ¼ QBPH

b . Finally it forms PH
b and calls F08KUF (ZUNMBR) to form

PH ¼ PH
b P

H
a .

10.1 Program Text

Program f08kufe

! F08KUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06tff, f06thf, nag_wp, x04dbf, zgebrd, zgelqf, &

zgeqrf, zunglq, zungqr, zunmbr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Complex (Kind=nag_wp), Parameter :: zero = (0.0E0_nag_wp,0.0E0_nag_wp)
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ic, ifail, info, lda, ldph, ldu, &
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lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), ph(:,:), tau(:), taup(:), &
tauq(:), u(:,:), work(:)

Real (Kind=nag_wp), Allocatable :: d(:), e(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08KUF Example Program Results’

! Skip heading in data file
Read (nin,*)
Do ic = 1, 2

Read (nin,*) m, n
lda = m
ldph = n
ldu = m
lwork = 64*(m+n)
Allocate (a(lda,n),ph(ldph,n),tau(n),taup(n),tauq(n),u(ldu,n), &

work(lwork),d(n),e(n-1))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,m)

If (m>=n) Then

! Compute the QR factorization of A
! The NAG name equivalent of zgeqrf is f08asf

Call zgeqrf(m,n,a,lda,tau,work,lwork,info)

! Copy A to U
Call f06tff(’Lower’,m,n,a,lda,u,ldu)

! Form Q explicitly, storing the result in U
! The NAG name equivalent of zungqr is f08atf

Call zungqr(m,n,n,u,ldu,tau,work,lwork,info)

! Copy R to PH (used as workspace)
Call f06tff(’Upper’,n,n,a,lda,ph,ldph)

! Set the strictly lower triangular part of R to zero
Call f06thf(’Lower’,n-1,n-1,zero,zero,ph(2,1),ldph)

! Bidiagonalize R
! The NAG name equivalent of zgebrd is f08ksf

Call zgebrd(n,n,ph,ldph,d,e,tauq,taup,work,lwork,info)

! Update Q, storing the result in U
! The NAG name equivalent of zunmbr is f08kuf

Call zunmbr(’Q’,’Right’,’No transpose’,m,n,n,ph,ldph,tauq,u,ldu, &
work,lwork,info)

! Print bidiagonal form and matrix Q

Write (nout,*)
Write (nout,*) ’Example 1: bidiagonal matrix B’
Write (nout,*) ’Diagonal’
Write (nout,99999) d(1:n)
Write (nout,*) ’Superdiagonal’
Write (nout,99999) e(1:n-1)
Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,m,n,u,ldu,’Bracketed’,’F7.4’, &

’Example 1: matrix Q’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Else

! Compute the LQ factorization of A
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! The NAG name equivalent of zgelqf is f08avf
Call zgelqf(m,n,a,lda,tau,work,lwork,info)

! Copy A to PH
Call f06tff(’Upper’,m,n,a,lda,ph,ldph)

! Form Q explicitly, storing the result in PH
! The NAG name equivalent of zunglq is f08awf

Call zunglq(n,n,m,ph,ldph,tau,work,lwork,info)

! Copy L to U (used as workspace)
Call f06tff(’Lower’,m,m,a,lda,u,ldu)

! Set the strictly upper triangular part of L to zero
Call f06thf(’Upper’,m-1,m-1,zero,zero,u(1,2),ldu)

! Bidiagonalize L
! The NAG name equivalent of zgebrd is f08ksf

Call zgebrd(m,m,u,ldu,d,e,tauq,taup,work,lwork,info)

! Update P**H, storing the result in PH
! The NAG name equivalent of zunmbr is f08kuf

Call zunmbr(’P’,’Left’,’Conjugate transpose’,m,n,m,u,ldu,taup,ph, &
ldph,work,lwork,info)

! Print bidiagonal form and matrix P**H

Write (nout,*)
Write (nout,*) ’Example 2: bidiagonal matrix B’
Write (nout,*) ’Diagonal’
Write (nout,99999) d(1:m)
Write (nout,*) ’Superdiagonal’
Write (nout,99999) e(1:m-1)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,m,n,ph,ldph,’Bracketed’,’F7.4’, &

’Example 2: matrix P**H’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

End If
Deallocate (a,ph,tau,taup,tauq,u,work,d,e)

End Do

99999 Format (3X,(8F8.4))
End Program f08kufe

10.2 Program Data

F08KUF Example Program Data
6 4 :Values of M and N, Example 1

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A
3 4 :Values of M and N, Example 2

( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A

F08KUF NAG Library Manual

F08KUF.6 Mark 26



10.3 Program Results

F08KUF Example Program Results

Example 1: bidiagonal matrix B
Diagonal

-3.0870 -2.0660 -1.8731 -2.0022
Superdiagonal

2.1126 -1.2628 1.6126

Example 1: matrix Q
1 2 3 4

1 (-0.3110, 0.2624) ( 0.6521, 0.5532) ( 0.0427, 0.0361) (-0.2634,-0.0741)
2 ( 0.3175,-0.6414) ( 0.3488, 0.0721) ( 0.2287, 0.0069) ( 0.1101,-0.0326)
3 (-0.2008, 0.1490) (-0.3103, 0.0230) ( 0.1855,-0.1817) (-0.2956, 0.5648)
4 ( 0.1199,-0.1231) (-0.0046,-0.0005) (-0.3305, 0.4821) (-0.0675, 0.3464)
5 (-0.2689,-0.1652) ( 0.1794,-0.0586) (-0.5235,-0.2580) ( 0.3927, 0.1450)
6 (-0.3499, 0.0907) ( 0.0829,-0.0506) ( 0.3202, 0.3038) ( 0.3174, 0.3241)

Example 2: bidiagonal matrix B
Diagonal

2.7615 1.6298 -1.3275
Superdiagonal

-0.9500 -1.0183

Example 2: matrix P**H
1 2 3 4

1 (-0.1258, 0.1618) (-0.2247, 0.3864) ( 0.3460, 0.2157) (-0.7099,-0.2966)
2 ( 0.4148, 0.1795) ( 0.1368,-0.3976) ( 0.6885, 0.3386) ( 0.1667,-0.0494)
3 ( 0.4575,-0.4807) (-0.2733, 0.4981) (-0.0230, 0.3861) ( 0.1730, 0.2395)
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NAG Library Routine Document

F08KVF (ZGEJSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KVF (ZGEJSV) computes the singular value decomposition (SVD) of a real m by n matrix A
where m � n, and optionally computes the left and/or right singular vectors. F08KVF (ZGEJSV)
implements the preconditioned Jacobi SVD of Drmac and Veselic. This is the expert driver routine that
calls F08KWF (ZGESVJ) after certain preconditioning. In most cases F08KWF (ZGESVJ) (m � n), or,
where m < n, F08KPF (ZGESVD) or F08KRF (ZGESDD) is sufficient to obtain the SVD of a real
matrix and is much simpler to use. These are much simpler to use and also handle the case m < n.

2 Specification

SUBROUTINE F08KVF (JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, M, N, A, LDA,
SVA, U, LDU, V, LDV, CWORK, LWORK, RWORK, LRWORK,
IWORK, INFO)

&
&

INTEGER M, N, LDA, LDU, LDV, LWORK, LRWORK, IWORK(M+3*N),
INFO

&

REAL (KIND=nag_wp) SVA(N), RWORK(max(1,LRWORK))
COMPLEX (KIND=nag_wp) A(LDA,*), U(LDU,*), V(LDV,*), CWORK(LWORK)
CHARACTER(1) JOBA, JOBU, JOBV, JOBR, JOBT, JOBP

The routine may be called by its LAPACK name zgejsv.

3 Description

The SVD is written as

A ¼ U�V H;

where � is an m by n matrix which is zero except for its n diagonal elements, U is a m by m unitary
matrix, and V is a n by n unitary matrix. The diagonal elements of � are the singular values of A in
descending order of magnitude. The columns of U and V are the left and the right singular vectors of
A. The diagonal of � is computed and stored in the array SVA.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Drmac Z and Veselic K (2008a) New fast and accurate Jacobi SVD algorithm I SIAM J. Matrix Anal.
Appl. 29 4

Drmac Z and Veselic K (2008b) New fast and accurate Jacobi SVD algorithm II SIAM J. Matrix Anal.
Appl. 29 4

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: JOBA – CHARACTER(1) Input

On entry: specifies the form of pivoting for the QR factorization stage; whether an estimate of
the condition number of the scaled matrix is required; and the form of rank reduction that is
performed.

JOBA ¼ C
The initial QR factorization of the input matrix is performed with column pivoting; no
estimate of condition number is computed; and, the rank is reduced by only the
underflowed part of the triangular factor R. This option works well (high relative accuracy)
if A ¼ BD, with well-conditioned B and arbitrary diagonal matrix D. The accuracy cannot
be spoiled by column scaling. The accuracy of the computed output depends on the
condition of B, and the procedure aims at the best theoretical accuracy.

JOBA ¼ E
Computation as with JOBA ¼ C with an additional estimate of the condition number of
B. It provides a realistic error bound.

JOBA ¼ F
The initial QR factorization of the input matrix is performed with full row and column
pivoting; no estimate of condition number is computed; and, the rank is reduced by only
the underflowed part of the triangular factor R. If A ¼ D1 � C �D2 with ill-conditioned
diagonal scalings D1, D2, and well-conditioned matrix C, this option gives higher
accuracy than the JOBA ¼ C option. If the structure of the input matrix is not known, and
relative accuracy is desirable, then this option is advisable.

JOBA ¼ G
Computation as with JOBA ¼ F with an additional estimate of the condition number of B,
where A ¼ DB (i.e., B ¼ C �D2). If A has heavily weighted rows, then using this
condition number gives too pessimistic an error bound.

JOBA ¼ A
Computation as with JOBA ¼ C except in the treatment of rank reduction. In this case,
small singular values are to be considered as noise and, if found, the matrix is treated as
numerically rank deficient. The computed SVD A ¼ U�V H restores A up to
f m; nð Þ � �� Ak k, where � is machine precision. This gives the procedure licence to
discard (set to zero) all singular values below N� �� Ak k.

JOBA ¼ R
Similar to JOBA ¼ A . The rank revealing property of the initial QR factorization is used
to reveal (using the upper triangular factor) a gap �rþ1 < ��r in which case the numerical
rank is declared to be r. The SVD is computed with absolute error bounds, but more
accurately than with JOBA ¼ A .

Constraint: JOBA ¼ C , E , F , G , A or R .

2: JOBU – CHARACTER(1) Input

On entry: specifies options for computing the left singular vectors U .

JOBU ¼ U
The first n left singular vectors (columns of U) are computed and returned in the array U.

JOBU ¼ F
All m left singular vectors are computed and returned in the array U.

JOBU ¼ W
No left singular vectors are computed, but the array U (with LDU � M and second
dimension at least N) is available as workspace for computing right singular values. See
the description of U.
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JOBU ¼ N
No left singular vectors are computed. U is not referenced.

Constraint: JOBU ¼ U , F , W or N .

3: JOBV – CHARACTER(1) Input

On entry: specifies options for computing the right singular vectors V .

JOBV ¼ V
the n right singular vectors (columns of V ) are computed and returned in the array V;
Jacobi rotations are not explicitly accumulated.

JOBV ¼ J
the n right singular vectors (columns of V ) are computed and returned in the array V, but
they are computed as the product of Jacobi rotations. This option is allowed only if
JOBU ¼ U or F , i.e., in computing the full SVD.

JOBV ¼ W
No right singular values are computed, but the array V (with LDV � N and second
dimension at least N) is available as workspace for computing left singular values. See the
description of V.

JOBV ¼ N
No right singular vectors are computed. V is not referenced.

Constraints:

JOBV ¼ V , J , W or N ;
if JOBU ¼ W or N , JOBV 6¼ J .

4: JOBR – CHARACTER(1) Input

On entry: specifies the conditions under which columns of A are to be set to zero. This
effectively specifies a lower limit on the range of singular values; any singular values below this
limit are (through column zeroing) set to zero. If A 6¼ 0 is scaled so that the largest column (in
the Euclidean norm) of cA is equal to the square root of the overflow threshold, then JOBR
allows the routine to kill columns of A whose norm in cA is less than

ffiffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

(for JOBR ¼ R ),
or less than sfmin=� (otherwise). sfmin is the safe range argument, as returned by routine
X02AMF.

JOBR ¼ N
Only set to zero those columns of A for which the norm of corresponding column of
cA < sfmin=�, that is, those columns that are effectively zero (to machine precision)
anyway. If the condition number of A is greater than the overflow threshold �, where � is
the value returned by X02ALF, you are recommended to use routine F08KWF (ZGESVJ).

JOBR ¼ R
Set to zero those columns of A for which the norm of the corresponding column of
cA <

ffiffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

. This approximately represents a restricted range for � cAð Þ offfiffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

;
ffiffiffi
�
p� �

.

For computing the singular values in the full range from the safe minimum up to the overflow
threshold use F08KWF (ZGESVJ).

Suggested value: JOBR ¼ R .

Constraint: JOBR ¼ N or R .

5: JOBT – CHARACTER(1) Input

On entry: specifies, in the case n ¼ m, whether the routine is permitted to use the transpose of A
for improved efficiency. If the matrix is square then the procedure may use transposed A if AH

seems to be better with respect to convergence. If the matrix is not square, JOBT is ignored. The
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decision is based on two values of entropy over the adjoint orbit of AHA. See the descriptions of
RWORKð6Þ and RWORKð7Þ.
JOBT ¼ T

If n ¼ m, perform an entropy test and then transpose if the test indicates possibly faster
convergence of the Jacobi process if AH is taken as input. If A is replaced with AH, then
the row pivoting is included automatically.

JOBT ¼ N
No entropy test and no transposition is performed.

The option JOBT ¼ T can be used to compute only the singular values, or the full SVD (U , �
and V ). In the case where only one set of singular vectors (U or V ) is required, the caller must
still provide both U and V, as one of the matrices is used as workspace if the matrix A is
transposed. See the descriptions of U and V.

Constraint: JOBT ¼ T or N .

6: JOBP – CHARACTER(1) Input

On entry: specifies whether the routine should be allowed to introduce structured perturbations to
drown denormalized numbers. For details see Drmac and Veselic (2008a) and Drmac and Veselic
(2008b). For the sake of simplicity, these perturbations are included only when the full SVD or
only the singular values are requested.

JOBP ¼ P
Introduce perturbation if A is found to be very badly scaled (introducing denormalized
numbers).

JOBP ¼ N
Do not perturb.

Constraint: JOBP ¼ P or N .

7: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

8: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: M � N � 0.

9: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: the contents of A are overwritten.

10: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KVF
(ZGEJSV) is called.

Constraint: LDA � max 1;Mð Þ.

11: SVAðNÞ – REAL (KIND=nag_wp) array Output

On exit: the, possibly scaled, singular values of A.

T h e s i n g u l a r v a l u e s o f A a r e �i ¼ �SVAðiÞ, f o r i ¼ 1; 2; . . . ; n, w h e r e
� ¼ RWORKð1Þ=RWORKð2Þ. Normally � ¼ 1 and no scaling is required to obtain the singular
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values. However, if the largest singular value of A overflows or if small singular values have
been saved from underflow by scaling the input matrix A, then � 6¼ 1.

If JOBR ¼ R then some of the singular values may be returned as exact zeros because they are
below the numerical rank threshold or are denormalized numbers.

12: UðLDU; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ F , max 1;Nð Þ
if JOBU ¼ U or W , and at least 1 otherwise.

On exit: if JOBU ¼ U , U contains the m by n matrix of the left singular vectors.

If JOBU ¼ F , U contains the m by m matrix of the left singular vectors, including an
orthonormal basis of the orthogonal complement of Range(A).

If JOBU ¼ W and (JOBV ¼ V and JOBT ¼ T and M ¼ N), then U is used as workspace if the
procedure replaces A with AH. In that case, V is computed in U as left singular vectors of AH

and then copied back to the array V.

If JOBU ¼ N , U is not referenced.

13: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08KVF
(ZGEJSV) is called.

Constraints:

if JOBU ¼ F , U or W , LDU � max 1;Mð Þ;
otherwise LDU � 1.

14: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1;Nð Þ if JOBV ¼ V , J or W ,
and at least 1 otherwise.

On exit: if JOBV ¼ V or J , V contains the n by n matrix of the right singular vectors.

If JOBV ¼ W and (JOBU ¼ U and JOBT ¼ T and M ¼ N), then V is used as workspace if the
procedure replaces A with AH. In that case, U is computed in V as right singular vectors of AH

and then copied back to the array U.

If JOBV ¼ N , V is not referenced.

15: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08KVF
(ZGEJSV) is called.

Constraints:

if JOBV ¼ V , J or W , LDV � max 1;Nð Þ;
otherwise LDV � 1.

16: CWORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, CWORKð1Þ contains the required minimal size of LWORK.

17: LWORK – INTEGER Input

On entry: the dimension of the array CWORK as declared in the (sub)program from which
F08KVF (ZGEJSV) is called.

If JOBU ¼ N and JOBV ¼ N

if JOBA 6¼ E or G
The minimal requirement is LWORK � max 2Mþ N; 4Nþ 1; 7ð Þ.
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For optimal performance the requirement is LWORK � max 2Mþ N; 3Nþ Nþ 1ð Þnb; 7ð Þ,
where nb is the block size used by F08ASF (ZGEQRF) and F08BTF (ZGEQP3).
Assuming a value of nb ¼ 256 is wise, but choosing a smaller value (e.g., nb ¼ 128)
should still lead to acceptable performance.

if JOBA ¼ E or G
In this case, LWORK is the maximum of the above and N� Nþ 4N, i.e.,
LWORK � max 2Mþ N; 3Nþ Nþ 1ð Þnb;N� Nþ 4N; 7ð Þ.

If JOBU 6¼ U or F and JOBV ¼ V or J
The minimal requirement is LWORK � max 2NþM; 7ð Þ.

For optimal performance, LWORK � max 2NþM; 2Nþ N� nb; 7ð Þ, where nb is described
above.

If JOBU ¼ U or F and JOBV 6¼ V or J
The minimal requirement is LWORK � max 2NþM; 7ð Þ.

For optimal performance, LWORK � max 2NþM; 2Nþ N� nb; 7ð Þ, where nb is described
above.

If JOBU ¼ U or F and JOBV ¼ V
LWORK � 6Nþ 2N� N.

If JOBU ¼ U or F and JOBV ¼ J
The minimal requirement is LWORK � max Mþ 3Nþ N� N; 7ð Þ.

For better performance LWORK � max 3Nþ N� NþM; 3Nþ N� Nþ N� nb; 7ð Þ, where nb is
described above.

18: RWORKðmax 1;LRWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: contains information about the completed job.

RWORKð1Þ
� ¼ RWORKð1Þ=RWORKð2Þ is the scaling factor such that �i ¼ �SVAðiÞ, for
i ¼ 1; 2; . . . ; n are the computed singular values of A. (See the description of SVA.)

RWORKð2Þ
See the description of RWORKð1Þ.

RWORKð3Þ
sconda, an estimate for the condition number of column equilibrated A (if JOBA ¼ E or

G ). sconda is an estimate of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RHRð Þ�1

��� ���
1

� �r
. It is computed using F07FGF (DPOCON).

It satisfies n�
1
4 � sconda � R�1

�� ��
2
� n1

4 � sconda where R is the triangular factor from
the QR factorization of A. However, if R is truncated and the numerical rank is
determined to be strictly smaller than n, sconda is returned as �1, thus indicating that the
smallest singular values might be lost.

If full SVD is needed, and you are familiar with the details of the method, the following two
condition numbers are useful for the analysis of the algorithm.

RWORKð4Þ
An estimate of the scaled condition number of the triangular factor in the first QR
factorization.

RWORKð5Þ
An estimate of the scaled condition number of the triangular factor in the second QR
factorization.

The following two parameters are computed if JOBT ¼ T .

RWORKð6Þ
The entropy of AHA: this is the Shannon entropy of diagAHA= traceAHA taken as a point
in the probability simplex.
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RWORKð7Þ
The entropy of AAH.

19: LRWORK – INTEGER Input

On entry: the first dimension of the array RWORK as declared in the (sub)program from which
F08KVF (ZGEJSV) is called.

Constraint: LRWORK � max 7;Nþ 2�Mð Þ.

20: IWORKðMþ 3� NÞ – INTEGER array Output

On exit: contains information about the completed job.

IWORKð1Þ
The numerical rank of A determined after the initial QR factorization with pivoting. See
the descriptions of JOBA and JOBR.

IWORKð2Þ
The number of computed nonzero singular values.

IWORKð3Þ
If nonzero, a warning message: If IWORKð3Þ ¼ 1 then some of the column norms of A
were denormalized (tiny) numbers. The requested high accuracy is not warranted by the
data.

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F08KVF (ZGEJSV) did not converge in the allowed number of iterations (30). The computed
values might be inaccurate.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly unitary to working
precision. See Section 4.9 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08KVF (ZGEJSV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08KVF (ZGEJSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F08KVF (ZGEJSV) implements a preconditioned Jacobi SVD algorithm. It uses F08ASF (ZGEQRF),
F08AVF (ZGELQF) and F08BTF (ZGEQP3) as preprocessors and preconditioners. Optionally, an
additional row pivoting can be used as a preprocessor, which in some cases results in much higher
accuracy. An example is matrix A with the structure A ¼ D1CD2, where D1, D2 are arbitrarily ill-
conditioned diagonal matrices and C is a well-conditioned matrix. In that case, complete pivoting in the
first QR factorizations provides accuracy dependent on the condition number of C, and independent of
D1, D2. Such higher accuracy is not completely understood theoretically, but it works well in practice.
Further, if A can be written as A ¼ BD, with well-conditioned B and some diagonal D, then the high
accuracy is guaranteed, both theoretically and in software, independent of D.

10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA;

together with the condition number of A and approximate error bounds for the computed singular
values and vectors.

10.1 Program Text

Program f08kvfe

! F08KVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddisna, nag_wp, x02ajf, x04daf, zgejsv

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, ifail, info, j, lda, ldu, ldv, &

lrwork, lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), cwork(:), u(:,:), v(:,:)
Real (Kind=nag_wp), Allocatable :: rcondu(:), rcondv(:), rwork(:), &

sva(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, nint

! .. Executable Statements ..
Write (nout,*) ’F08KVF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldu = m
ldv = n
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lwork = 5*n + n*n + 1000
lrwork = n + 2*m + 7
Allocate (a(lda,n),rcondu(m),rcondv(m),sva(n),u(ldu,n),v(ldv,n), &

cwork(lwork),rwork(lrwork),iwork(m+3*n+3))

! Read the m by n matrix A from data file
Read (nin,*)((a(i,j),j=1,n),i=1,m)

! Compute the singular values and left and right singular vectors
! of A (A = U*S*V^T, m.ge.n)
! The NAG name equivalent of zgejsv is f08kvf

Call zgejsv(’E’,’U’,’V’,’R’,’N’,’N’,m,n,a,lda,sva,u,ldu,v,ldv,cwork, &
lwork,rwork,lrwork,iwork,info)

If (info==0) Then

! Compute the approximate error bound for the computed singular values
! using the 2-norm, s(1) = norm(A), and machine precision, eps.

eps = x02ajf()
serrbd = eps*sva(1)

! Print solution
If (abs(rwork(1)-rwork(2))<2.0_nag_wp*eps) Then

! No scaling required
Write (nout,’(1X,A)’) ’Singular values’
Write (nout,99999)(sva(j),j=1,n)

Else
Write (nout,’(/1X,A)’) ’Scaled singular values’
Write (nout,99999)(sva(j),j=1,n)
Write (nout,’(/1X,A)’) ’For true singular values, multiply by a/b,’
Write (nout,99995) ’ where a = ’, rwork(1), ’ and b = ’, rwork(2)

End If

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

Write (nout,*)
Flush (nout)
ifail = 0
Call x04daf(’General’,’ ’,m,n,u,ldu,’Left singular vectors’,ifail)

Write (nout,*)
Flush (nout)
ifail = 0
Call x04daf(’General’,’ ’,n,n,v,ldv,’Right singular vectors’,ifail)

! Call DDISNA (F08FLF) to estimate reciprocal condition numbers for
! the singular vectors.

Call ddisna(’Left’,m,n,sva,rcondu,info)
Call ddisna(’Right’,m,n,sva,rcondv,info)

! Print the approximate error bounds for the singular values
! and vectors.

Write (nout,*)
Write (nout,’(/1X,A)’) &

’Estimate of the condition number of column equilibrated A’
Write (nout,99998) rwork(3)
Write (nout,’(/1X,A)’) &

’Error estimates (as multiples of machine precision):’
Write (nout,’(/1X,A)’) ’ for the singular values’
Write (nout,99997) nint(serrbd/x02ajf())
Write (nout,’(/1X,A)’) ’ for left singular vectors’
Write (nout,99997)(nint(serrbd/rcondu(i)/x02ajf()),i=1,n)
Write (nout,’(/1X,A)’) ’ for right singular vectors’
Write (nout,99997)(nint(serrbd/rcondv(i)/x02ajf()),i=1,n)

Else
Write (nout,99996) ’Failure in ZGEJSV. INFO =’, info

End If

99999 Format (3X,8F8.4)
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99998 Format (4X,1P,E11.2)
99997 Format (4X,6I4)
99996 Format (1X,A,I4)
99995 Format (1X,2(A,1P,E13.5))

End Program f08kvfe

10.2 Program Data

F08KVF Example Program Data
6 4 : m and n

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) : matrix A

10.3 Program Results

F08KVF Example Program Results

Singular values
3.9994 3.0003 1.9944 0.9995

Left singular vectors
1 2 3 4

1 0.5634 -0.1804 0.0757 0.0127
-0.0021 0.3395 -0.5208 0.4822

2 -0.1200 0.1917 -0.4535 0.0220
0.6109 0.2443 -0.1124 -0.0420

3 0.0815 0.4205 0.6021 0.1237
-0.1614 0.0403 -0.0346 -0.2071

4 -0.1440 -0.2257 0.0942 0.5805
0.1534 -0.1364 -0.1237 -0.1439

5 0.2488 0.1251 -0.2252 0.0533
0.0924 -0.6961 -0.1398 0.0860

6 0.3758 -0.0684 0.0004 0.0448
-0.0796 0.0540 -0.2158 -0.5805

Right singular vectors
1 2 3 4

1 0.6971 -0.0729 0.4144 -0.2817
-0.0006 -0.2289 0.3013 -0.3384

2 0.0864 0.2006 0.3471 0.8276
-0.3549 -0.1400 0.0379 -0.0000

3 -0.0564 0.5794 -0.3585 -0.2202
-0.5399 0.0755 0.3776 -0.2106

4 0.1876 -0.4206 -0.5845 0.1264
-0.2254 -0.6035 0.0527 0.1116

Estimate of the condition number of column equilibrated A
2.61E+00

Error estimates (as multiples of machine precision):

for the singular values
4

F08KVF NAG Library Manual

F08KVF.10 Mark 26



for left singular vectors
4 4 4 4

for right singular vectors
4 4 4 4
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NAG Library Routine Document

F08KWF (ZGESVJ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KWF (ZGESVJ) computes the one-sided Jacobi singular value decomposition (SVD) of a complex
m by n matrix A, m � n, with fast scaled rotations and de Rijk's pivoting, optionally computing the
left and/or right singular vectors. For m < n, the routines F08KPF (ZGESVD) or F08KRF (ZGESDD)
may be used.

2 Specification

SUBROUTINE F08KWF (JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, LDV,
CWORK, LWORK, RWORK, LRWORK, INFO)

&

INTEGER M, N, LDA, MV, LDV, LWORK, LRWORK, INFO
REAL (KIND=nag_wp) SVA(N), RWORK(LRWORK)
COMPLEX (KIND=nag_wp) A(LDA,*), V(LDV,*), CWORK(LWORK)
CHARACTER(1) JOBA, JOBU, JOBV

The routine may be called by its LAPACK name zgesvj.

3 Description

The SVD is written as

A ¼ U�V H;

where � is an n by n diagonal matrix, U is an m by n unitary matrix, and V is an n by n unitary
matrix. The diagonal elements of � are the singular values of A in descending order of magnitude. The
columns of U and V are the left and the right singular vectors of A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Drmac Z and Veselic K (2008a) New fast and accurate Jacobi SVD algorithm I SIAM J. Matrix Anal.
Appl. 29 4

Drmac Z and Veselic K (2008b) New fast and accurate Jacobi SVD algorithm II SIAM J. Matrix Anal.
Appl. 29 4

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBA – CHARACTER(1) Input

On entry: specifies the structure of matrix A.

JOBA ¼ L
The input matrix A is lower triangular.

JOBA ¼ U
The input matrix A is upper triangular.
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JOBA ¼ G
The input matrix A is a general m by n matrix, M � N.

Constraint: JOBA ¼ L , U or G .

2: JOBU – CHARACTER(1) Input

On entry: specifies whether to compute the left singular vectors and if so whether you want to
control their numerical orthogonality threshold.

JOBU ¼ U
The left singular vectors corresponding to the nonzero singular values are computed and
returned in the leading columns of A. See more details in the description of A. The
numerical orthogonality threshold is set to approximately tol ¼ ctol � �, where � is the
machine precision and ctol ¼ ffiffiffiffiffi

m
p

.

JOBU ¼ C
Analogous to JOBU ¼ U , except that you can control the level of numerical orthogonality
of the computed left singular vectors. The orthogonality threshold is set to tol ¼ ctol � �,
where ctol is given on input in RWORKð1Þ. The option JOBU ¼ C can be used if m� �
is a satisfactory orthogonality of the computed left singular vectors, so ctol ¼ M could
save a few sweeps of Jacobi rotations. See the descriptions of A and RWORKð1Þ.

JOBU ¼ N
The matrix U is not computed. However, see the description of A.

Constraint: JOBU ¼ U , C or N .

3: JOBV – CHARACTER(1) Input

On entry: specifies whether and how to compute the right singular vectors.

JOBV ¼ V
The matrix V is computed and returned in the array V.

JOBV ¼ A
The Jacobi rotations are applied to the leading mv by n part of the array V. In other words,
the right singular vector matrix V is not computed explicitly, instead it is applied to an mv

by n matrix initially stored in the first MV rows of V.

JOBV ¼ N
The matrix V is not computed and the array V is not referenced.

Constraint: JOBV ¼ V , A or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: M � N � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.
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On exit: the matrix U containing the left singular vectors of A.

If JOBU ¼ U or C

if INFO ¼ 0
rank Að Þ unitary columns of U are returned in the leading rank Að Þ columns of the
array A. Here rank Að Þ � N is the number of computed singular values of A that are
above the safe range parameter, as returned by X02AMF. The singular vectors
corresponding to underflowed or zero singular values are not computed. The value
of rank Að Þ is returned by rounding RWORKð2Þ to the nearest whole number. Also
see the descriptions of SVA and RWORK. The computed columns of U are mutually
numerically unitary up to approximately tol ¼ ffiffiffiffiffi

m
p � �; or tol ¼ ctol � �

(JOBU ¼ C ), where � is the machine precision and ctol is supplied on entry in
RWORKð1Þ, see the description of JOBU.

If INFO > 0
F08KWF (ZGESVJ) did not converge in 30 iterations (sweeps). In this case, the
computed columns of U may not be unitary up to tol. The output U (stored in A), �
(given by the computed singular values in SVA) and V is still a decomposition of
the input matrix A in the sense that the residual A� �� U �� � V Hk k2= Ak k2 is
small, where � is the value returned in RWORKð1Þ.

If JOBU ¼ N

if INFO ¼ 0
Note that the left singular vectors are ‘for free’ in the one-sided Jacobi SVD
algorithm. However, if only the singular values are needed, the level of numerical
orthogonality of U is not an issue and iterations are stopped when the columns of
the iterated matrix are numerically unitary up to approximately m� �. Thus, on exit,
A contains the columns of U scaled with the corresponding singular values.

If INFO > 0
F08KWF (ZGESVJ) did not converge in 30 iterations (sweeps).

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F08KWF (ZGESVJ) is called.

Constraint: LDA � max 1;Mð Þ.

8: SVAðNÞ – REAL (KIND=nag_wp) array Output

On exit: the, possibly scaled, singular values of A.

If INFO ¼ 0
The singular values of A are �i ¼ �SVAðiÞ, for i ¼ 1; 2; . . . ; n, where � is the scale factor
stored in RWORKð1Þ. Normally � ¼ 1, however, if some of the singular values of A might
underflow or overflow, then � 6¼ 1 and the scale factor needs to be applied to obtain the
singular values.

If INFO > 0
F08KWF (ZGESVJ) did not converge in 30 iterations and �� SVA may not be accurate.

9: MV – INTEGER Input

On entry: if JOBV ¼ A , the product of Jacobi rotations is applied to the first mv rows of V.

If JOBV 6¼ A , MV is ignored. See the description of JOBV.
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10: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;Nð Þ if JOBV ¼ V or A , and
at least 1 otherwise.

On entry: if JOBV ¼ A , V must contain an mv by n matrix to be premultiplied by the matrix V
of right singular vectors.

On exit: the right singular vectors of A.

If JOBV ¼ V , V contains the n by n matrix of the right singular vectors.

If JOBV ¼ A , V contains the product of the computed right singular vector matrix and the initial
matrix in the array V.

If JOBV ¼ N , V is not referenced.

11: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08KWF
(ZGESVJ) is called.

Constraints:

if JOBV ¼ V , LDV � max 1;Nð Þ;
if JOBV ¼ A , LDV � max 1;MVð Þ;
otherwise LDV � 1.

12: CWORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, CWORKð1Þ contains the required minimal size of LWORK.

13: LWORK – INTEGER Input

On entry: the dimension of the array CWORK as declared in the (sub)program from which
F08KWF (ZGESVJ) is called.

Constraint: LWORK � Mþ N.

14: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Workspace

On entry: if JOBU ¼ C , RWORKð1Þ ¼ ctol, where ctol defines the threshold for convergence.
The process stops if all columns of A are mutually orthogonal up to ctol � �. It is required that
ctol � 1, i.e., it is not possible to force the routine to obtain orthogonality below �. ctol greater
than 1=� is meaningless, where � is the machine precision.

On exit: contains information about the completed job.

RWORKð1Þ
the scaling factor, �, such that �i ¼ �SVAðiÞ, for i ¼ 1; 2; . . . ; n are the computed singular
values of A. (See description of SVA.)

RWORKð2Þ
nint RWORKð2Þð Þgives the number of the computed nonzero singular values.

RWORKð3Þ
nint RWORKð3Þð Þ gives the number of the computed singular values that are larger than
the underflow threshold.

RWORKð4Þ
nint RWORKð4Þð Þ gives the number of iterations (sweeps of Jacobi rotations) needed for
numerical convergence.

RWORKð5Þ
max i6¼j cos A :; ið Þ; A :; jð Þð Þj j in the last iteration (sweep). This is useful information in cases
when F08KWF (ZGESVJ) did not converge, as it can be used to estimate whether the
output is still useful and for subsequent analysis.
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RWORKð6Þ
The largest absolute value over all sines of the Jacobi rotation angles in the last sweep. It
can be useful for subsequent analysis.

Constraint: if JOBU ¼ C , RWORKð1Þ � 1:0.

15: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
F08KWF (ZGESVJ) is called.

Constraint: LRWORK � max 6;Nð Þ.

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F08KWF (ZGESVJ) did not converge in the allowed number of iterations (30), but its output
might still be useful.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly unitary to working
precision. See Section 4.9 of Anderson et al. (1999) for further details.

See Section 6 of Drmac and Veselic (2008a) for a detailed discussion of the accuracy of the computed
SVD.

8 Parallelism and Performance

F08KWF (ZGESVJ) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This SVD algorithm is numerically superior to the bidiagonalization based QR algorithm implemented
by F08KPF (ZGESVD) and the divide and conquer algorithm implemented by F08KRF (ZGESDD)
algorithms and is considerably faster than previous implementations of the (equally accurate) Jacobi
SVD method. Moreover, this algorithm can compute the SVD faster than F08KPF (ZGESVD) and not
much slower than F08KRF (ZGESDD). See Section 3.3 of Drmac and Veselic (2008b) for the details.

The real analogue of this routine is F08KJF (DGESVJ).
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10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA;

together with approximate error bounds for the computed singular values and vectors.

10.1 Program Text

Program f08kwfe

! F08KWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddisna, nag_wp, x02ajf, x04daf, zgesvj

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, ifail, info, j, lda, ldv, lrwork, &

lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), cwork(:), v(:,:)
Real (Kind=nag_wp), Allocatable :: rcondu(:), rcondv(:), rwork(:), &

sva(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs, max, nint
! .. Executable Statements ..

Write (nout,*) ’F08KWF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldv = n
lwork = n + m
lrwork = max(6,n)
Allocate (a(lda,n),rcondu(m),rcondv(m),sva(n),v(ldv,n),cwork(lwork), &

rwork(lrwork))

! Read the m by n matrix A from data file

Read (nin,*)((a(i,j),j=1,n),i=1,m)

! Compute the singular values and left and right singular vectors
! of A (A = U*S*V, m.ge.n)

! The NAG name equivalent of zgesvj is f08kwf
Call zgesvj(’G’,’U’,’V’,m,n,a,lda,sva,0,v,ldv,cwork,lwork,rwork,lrwork, &

info)
If (info==0) Then

! Compute the approximate error bound for the computed singular values
! using the 2-norm, s(1) = norm(A), and machine precision, eps.

eps = x02ajf()
serrbd = eps*sva(1)

! Print solution
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Write (nout,*) ’Singular values’
Write (nout,99999)(sva(j),j=1,n)

If (abs(rwork(1)-1.0_nag_wp)>eps) Then
Write (nout,99996) ’Values need scaling by factor = ’, rwork(1)

End If
Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,m,n,a,lda,’Left singular vectors’,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04daf(’General’,’ ’,n,n,v,ldv,’Right singular vectors’,ifail)

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the singular vectors

Call ddisna(’Left’,m,n,sva,rcondu,info)
Call ddisna(’Right’,m,n,sva,rcondv,info)

! Print the approximate error bounds for the singular values
! and vectors

Write (nout,’(/1X,A)’) &
’Error estimates (as multiples of machine precision):’

Write (nout,’(/1X,A)’) ’ for the singular values’
Write (nout,99998) nint(serrbd/x02ajf())
Write (nout,’(/1X,A)’) ’ for left singular vectors’
Write (nout,99998)(nint(serrbd/rcondu(i)/x02ajf()),i=1,n)
Write (nout,’(/1X,A)’) ’ for right singular vectors’
Write (nout,99998)(nint(serrbd/rcondv(i)/x02ajf()),i=1,n)

Else
Write (nout,99997) ’Failure in ZGESVJ. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (4X,6I4)
99997 Format (1X,A,I4)
99996 Format (/,1X,A,1P,E13.5)

End Program f08kwfe

10.2 Program Data

F08KWF Example Program Data
6 4 : m and n

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) : matrix A

10.3 Program Results

F08KWF Example Program Results

Singular values
3.9994 3.0003 1.9944 0.9995

Left singular vectors
1 2 3 4

1 0.5632 -0.1814 -0.4517 -0.0171
0.0151 -0.3390 0.2700 0.4820

2 -0.1386 -0.3097 0.1991 0.0245
0.6070 0.0231 0.4227 -0.0405
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3 0.0864 -0.2677 -0.4069 0.1363
-0.1588 0.3268 -0.4452 -0.1991

4 -0.1486 0.2390 -0.1554 0.5883
0.1489 -0.1115 0.0051 -0.1077

5 0.2459 0.5084 0.0337 0.0479
0.1000 0.4916 0.2629 0.0891

6 0.3780 -0.0068 -0.1676 0.0806
-0.0681 -0.0870 0.1359 -0.5766

Right singular vectors
1 2 3 4

1 0.6968 0.2307 -0.0278 -0.2602
0.0207 0.0670 -0.5116 -0.3552

2 0.0972 0.0045 -0.1897 0.8260
-0.3520 0.2446 -0.2932 0.0511

3 -0.0399 -0.3854 0.5192 -0.2068
-0.5414 0.4391 0.0397 -0.2237

4 0.1944 0.7355 0.4098 0.1193
-0.2196 -0.0131 0.4201 0.1192

Error estimates (as multiples of machine precision):

for the singular values
4

for left singular vectors
4 4 4 4

for right singular vectors
4 4 4 4
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NAG Library Routine Document

F08KZF (ZGESVDX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KZF (ZGESVDX) computes the singular value decomposition (SVD) of a complex m by n matrix
A, optionally computing the left and/or right singular vectors. All singular values or a selected set of
singular values may be computed.

2 Specification

SUBROUTINE F08KZF (JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, IL, IU, NS,
S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, IWORK, INFO)

&

INTEGER M, N, LDA, IL, IU, NS, LDU, LDVT, LWORK,
IWORK(12*min(N,M)), INFO

&

REAL (KIND=nag_wp) VL, VU, S(min(M,N)), RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), U(LDU,*), VT(LDVT,*),

WORK(max(1,LWORK))
&

CHARACTER(1) JOBU, JOBVT, RANGE

The routine may be called by its LAPACK name zgesvdx.

3 Description

The SVD is written as

A ¼ U�V H;

where � is an m by n matrix which is zero except for its min m;nð Þ diagonal elements, U is an m by m
unitary matrix, and V is an n by n unitary matrix. The diagonal elements of � are the singular values
of A; they are complex and non-negative, and are returned in descending order. The first min m;nð Þ
columns of U and V are the left and right singular vectors of A.

Note that the routine returns V H, not V .

Alternative to computing all singular values of A, a selected set can be computed. The set is either
those singular values lying in a given interval, � 2 vl; vuð �, or those whose index (counting from largest
to smallest in magnitude) lies in a given range 1 � il; . . . ; iu � n. In these cases, the corresponding left
and right singular vectors can optionally be computed.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: specifies options for computing all or part of the matrix U .

JOBU ¼ V
The NS columns of U , as specified by RANGE, are returned in array U.
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JOBU ¼ N
No columns of U (no left singular vectors) are computed.

Constraint: JOBU ¼ V or N .

2: JOBVT – CHARACTER(1) Input

On entry: specifies options for computing all or part of the matrix V T.

JOBVT ¼ V
The NS rows of V T, as specified by RANGE, are returned in the array VT.

JOBVT ¼ N
No rows of V T (no right singular vectors) are computed.

Constraint: JOBVT ¼ V or N .

3: RANGE – CHARACTER(1) Input

On entry: indicates which singular values should be returned.

RANGE ¼ A
All singular values will be found.

RANGE ¼ V
All singular values in the half-open interval VL;VUð � will be found.

RANGE ¼ I
The ILth through IUth singular values will be found.

Constraint: RANGE ¼ A , V or I .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if JOBU 6¼ N and JOBVT 6¼ N , the contents of A are destroyed.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KZF
(ZGESVDX) is called.

Constraint: LDA � max 1;Mð Þ.

8: VL – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower bounds of the interval to be searched for singular values.

If RANGE ¼ A or I , VL is not referenced.

Constraint: if RANGE ¼ V , 0:0 � VL.
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9: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the upper bounds of the interval to be searched for singular values.

If RANGE ¼ A or I , VU is not referenced.

Constraint: if RANGE ¼ V , VL < VU.

10: IL – INTEGER Input
11: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest singular
values to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and min M;Nð Þ ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and min M;Nð Þ > 0, 1 � IL � IU � min M;Nð Þ.

12: NS – INTEGER Output

On exit: the total number of singular values found. 0 � NS � min M;Nð Þ.
If RANGE ¼ A , NS ¼ min M;Nð Þ.
If RANGE ¼ I , NS ¼ IU� ILþ 1.

13: Sðmin M;Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the singular values of A, sorted so that SðiÞ � Sðiþ 1Þ.

14: UðLDU; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;NSð Þ if JOBU ¼ V , and at
least 1 otherwise.

On exit: m by NS.

If JOBU ¼ V , U contains the first min m;nð Þ NS columns of U (the left singular vectors, stored
column-wise).

If JOBU ¼ N , U is not referenced.

If RANGE ¼ V then the value of NS is not known in advance and so an upper limit should be
used, e.g., min M;Nð Þ.

15: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08KZF
(ZGESVDX) is called.

Constraints:

if JOBU ¼ V , LDU � max 1;Mð Þ;
otherwise LDU � 1.

16: VTðLDVT; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VT must be at least max 1;Nð Þ if JOBVT ¼ V , and at
least 1 otherwise.

On exit: if JOBVT ¼ V , VT contains the first NS rows of V H (the right singular vectors, stored
row-wise).

If JOBVT ¼ N , VT is not referenced.
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17: LDVT – INTEGER Input

Note: If JOBVT ¼ V and RANGE ¼ V then the value of NS is not known in advance and so
an upper limit should be used, e.g., min M;Nð Þ.
On entry: the first dimension of the array VT as declared in the (sub)program from which
F08KZF (ZGESVDX) is called.

Constraints:

if JOBVT ¼ V , LDVT � max 1;NSð Þ;
otherwise LDVT � 1.

18: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.

If INFO > 0, WORKð2 : min M;Nð ÞÞ contains the unconverged superdiagonal elements of an
upper bidiagonal matrix B whose diagonal is in S (not necessarily sorted). B satisfies
A ¼ UBV H, so it has the same singular values as A, and singular vectors related by U and V H.

19: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08KZF (ZGESVDX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK should generally be larger. Consider
increasing LWORK by at least nb�min M;Nð Þ, where nb is the optimal block size.

Constraint: LWORK � max 1;min M;Nð Þ � min M;Nð Þ þ 5ð Þð Þ.

20: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least min M;Nð Þ � 2�min M;Nð Þ þ 17ð Þ.

21: IWORKð12�min N;Mð ÞÞ – INTEGER array Workspace

On exit:

if INFO ¼ 0, the first NS elements of IWORK are zero;

if INFO > 0, IWORK contains the indices of the eigenvectors that failed to converge in
F08JBF (DSTEVX) and F08MBF (DBDSVDX).

22: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If F08KZF (ZGESVDX) did not converge, INFO specifies how many superdiagonals of an
intermediate bidiagonal form did not converge to zero.
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7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly unitary to working
precision. See Section 4.9 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08KZF (ZGESVDX) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08KZF (ZGESVDX) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately proportional to mn2 when m > n and
m2n otherwise.

The singular values are returned in descending order.

The real analogue of this routine is F08KMF (DGESVDX).

10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:04i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08þ 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA;

together with approximate error bounds for the computed singular values and vectors.

The example program for F08KRF (ZGESDD) illustrates finding a singular value decomposition for the
case m � n.

10.1 Program Text

Program f08kzfe

! F08KZF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zgesvdx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: vl, vu
Integer :: i, il, info, iu, lda, ldu, ldvt, &
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liwork, lrwork, lwork, m, n, ns
Character (1) :: range

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), u(:,:), vt(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rwork(:), s(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: nint

! .. Executable Statements ..
Write (nout,*) ’F08KZF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldu = m
ldvt = n
lwork = 2*n**2 + 4*n
lrwork = 2*n*2 + 34*n
liwork = 12*n
Allocate (a(lda,n),s(n),vt(ldvt,n),u(ldu,m),iwork(liwork),work(lwork), &

rwork(lrwork))

! Read the m by n matrix A from data file
Read (nin,*)(a(i,1:n),i=1,m)

! Read range for selected singular values
Read (nin,*) range

If (range==’I’ .Or. range==’i’) Then
Read (nin,*) il, iu

Else If (range==’V’ .Or. range==’v’) Then
Read (nin,*) vl, vu

End If

! Compute the singular values and left and right singular vectors
! of A.

! The NAG name equivalent of zgesvd is f08kzf
Call zgesvdx(’V’,’V’,range,m,n,a,lda,vl,vu,il,iu,ns,s,u,ldu,vt,ldvt, &

work,lwork,rwork,iwork,info)

If (info/=0) Then
Write (nout,99999) ’Failure in ZGESVDX. INFO =’, info

99999 Format (1X,A,I4)
Go To 100

End If

! Print the selected singular values of A

Write (nout,*) ’Singular values of A:’
Write (nout,99998) s(1:ns)

99998 Format (1X,4(3X,F11.4))

Call compute_error_bounds(m,ns,s)

100 Continue

Contains
Subroutine compute_error_bounds(m,n,s)

! Error estimates for singular values and vectors is computed
! and printed here.

! .. Use Statements ..
Use nag_library, Only: ddisna, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: m, n

! .. Array Arguments ..
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Real (Kind=nag_wp), Intent (In) :: s(n)
! .. Local Scalars ..

Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, info

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rcondu(:), rcondv(:), uerrbd(:), &

verrbd(:)
! .. Executable Statements ..

Allocate (rcondu(n),rcondv(n),uerrbd(n),verrbd(n))

! Get the machine precision, EPS and compute the approximate
! error bound for the computed singular values. Note that for
! the 2-norm, S(1) = norm(A)

eps = x02ajf()
serrbd = eps*s(1)

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the singular vectors

Call ddisna(’Left’,m,n,s,rcondu,info)
Call ddisna(’Right’,m,n,s,rcondv,info)

! Compute the error estimates for the singular vectors

Do i = 1, n
uerrbd(i) = serrbd/rcondu(i)
verrbd(i) = serrbd/rcondv(i)

End Do

! Print the approximate error bounds for the singular values
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimates (as multiples of machine precision):’
Write (nout,*) ’ for the singular values’
Write (nout,99999) nint(serrbd/x02ajf())
Write (nout,*)
Write (nout,*) ’ for the left singular vectors’
Write (nout,99999) nint(uerrbd(1:n)/x02ajf())
Write (nout,*)
Write (nout,*) ’ for the right singular vectors’
Write (nout,99999) nint(verrbd(1:n)/x02ajf())

99999 Format (4X,6I11)

End Subroutine compute_error_bounds

End Program f08kzfe

10.2 Program Data

F08KZF Example Program Data

6 4 : m and n

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) : matrix A

’V’ : range
1.00 4.00
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10.3 Program Results

F08KZF Example Program Results

Singular values of A:
3.9994 3.0003 1.9944

Error estimates (as multiples of machine precision):
for the singular values

4

for the left singular vectors
4 4 4

for the right singular vectors
4 4 4
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NAG Library Routine Document

F08LEF (DGBBRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08LEF (DGBBRD) reduces a real m by n band matrix to upper bidiagonal form.

2 Specification

SUBROUTINE F08LEF (VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ, PT,
LDPT, C, LDC, WORK, INFO)

&

INTEGER M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
REAL (KIND=nag_wp) AB(LDAB,*), D(min(M,N)), E(min(M,N)-1), Q(LDQ,*),

PT(LDPT,*), C(LDC,*), WORK(2*max(M,N))
&

CHARACTER(1) VECT

The routine may be called by its LAPACK name dgbbrd.

3 Description

F08LEF (DGBBRD) reduces a real m by n band matrix to upper bidiagonal form B by an orthogonal
transformation: A ¼ QBPT. The orthogonal matrices Q and P T, of order m and n respectively, are
determined as a product of Givens rotation matrices, and may be formed explicitly by the routine if
required. A matrix C may also be updated to give ~C ¼ QTC.

The routine uses a vectorizable form of the reduction.

4 References

None.

5 Arguments

1: VECT – CHARACTER(1) Input

On entry: indicates whether the matrices Q and/or PT are generated.

VECT ¼ N
Neither Q nor PT is generated.

VECT ¼ Q
Q is generated.

VECT ¼ P
PT is generated.

VECT ¼ B
Both Q and PT are generated.

Constraint: VECT ¼ N , Q , P or B .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.
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3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: NCC – INTEGER Input

On entry: nC , the number of columns of the matrix C.

Constraint: NCC � 0.

5: KL – INTEGER Input

On entry: the number of subdiagonals, kl, within the band of A.

Constraint: KL � 0.

6: KU – INTEGER Input

On entry: the number of superdiagonals, ku, within the band of A.

Constraint: KU � 0.

7: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the original m by n band matrix A.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:
On exit: AB is overwritten by values generated during the reduction.

8: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08LEF (DGBBRD) is called.

Constraint: LDAB � KLþ KUþ 1.

9: Dðmin M;Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the diagonal elements of the bidiagonal matrix B.

10: Eðmin M;Nð Þ � 1Þ – REAL (KIND=nag_wp) array Output

On exit: the superdiagonal elements of the bidiagonal matrix B.

11: QðLDQ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Mð Þ if VECT ¼ Q or B , and
at least 1 otherwise.

On exit: if VECT ¼ Q or B , contains the m by m orthogonal matrix Q.

If VECT ¼ N or P , Q is not referenced.

12: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08LEF
(DGBBRD) is called.

Constraints:

if VECT ¼ Q or B , LDQ � max 1;Mð Þ;
otherwise LDQ � 1.
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13: PTðLDPT; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array PT must be at least max 1;Nð Þ if VECT ¼ P or B , and
at least 1 otherwise.

On exit: the n by n orthogonal matrix P T, if VECT ¼ P or B . If VECT ¼ N or Q , PT is not
referenced.

14: LDPT – INTEGER Input

On entry: the first dimension of the array PT as declared in the (sub)program from which
F08LEF (DGBBRD) is called.

Constraints:

if VECT ¼ P or B , LDPT � max 1;Nð Þ;
otherwise LDPT � 1.

15: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;NCCð Þ.
On entry: an m by nC matrix C.

On exit: C is overwritten by QTC. If NCC ¼ 0, C is not referenced.

16: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08LEF
(DGBBRD) is called.

Constraints:

if NCC > 0, LDC � max 1;Mð Þ;
if NCC ¼ 0, LDC � 1.

17: WORKð2�max M;Nð ÞÞ – REAL (KIND=nag_wp) array Workspace

18: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed bidiagonal form B satisfies QBPT ¼ Aþ E, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix F such that

Fk k2 ¼ O �ð Þ:

A similar statement holds for the computed matrix P T.
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8 Parallelism and Performance

F08LEF (DGBBRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately the sum of:

6n2k, if VECT ¼ N and NCC ¼ 0, and

3n2nC k� 1ð Þ=k, if C is updated, and

3n3 k� 1ð Þ=k, if either Q or PT is generated (double this if both),

where k ¼ kl þ ku, assuming n� k. For this section we assume that m ¼ n.
The complex analogue of this routine is F08LSF (ZGBBRD).

10 Example

This example reduces the matrix A to upper bidiagonal form, where

A ¼

�0:57 �1:28 0:00 0:00
�1:93 1:08 �0:31 0:00
2:30 0:24 0:40 �0:35
0:00 0:64 �0:66 0:08
0:00 0:00 0:15 �2:13
�0:00 0:00 0:00 0:50

0BBBBB@

1CCCCCA:

10.1 Program Text

Program f08lefe

! F08LEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgbbrd, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: vect = ’B’

! .. Local Scalars ..
Integer :: i, info, j, kl, ku, ldab, ldb, ldc, &

ldpt, ldq, m, n, ncc
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), b(:,:), c(:,:), d(:), e(:), &
pt(:,:), q(:,:), work(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max, min

! .. Executable Statements ..
Write (nout,*) ’F08LEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, kl, ku, ncc
ldab = kl + ku + 1
ldb = m
ldc = m
ldpt = n
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ldq = m
Allocate (ab(ldab,n),b(ldb,n),c(m,ncc),d(n),e(n-1),pt(ldpt,n),q(ldq,m), &

work(2*m+2*n))

! Read A from data file

Read (nin,*)((ab(ku+1+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,m)

! Reduce A to upper bidiagonal form
! The NAG name equivalent of dgbbrd is f08lef

Call dgbbrd(vect,m,n,ncc,kl,ku,ab,ldab,d,e,q,ldq,pt,ldpt,c,ldc,work, &
info)

! Print the absolute values of bidiagonal vectors d and e.
! Any of these can differ by a sign change by combinations of sign
! changes in columns of Q and P (rows of PT).

Write (nout,*)
Write (nout,*) ’Diagonal D:’
Write (nout,99999) abs(d(1:n))
Write (nout,*)
Write (nout,*) ’Off-diagonal E:’
Write (nout,99999) abs(e(1:n-1))

99999 Format (1X,4(3X,F11.4))

End Program f08lefe

10.2 Program Data

F08LEF Example Program Data
6 4 2 1 0 :Values of M, N, KL, KU and NCC

-0.57 -1.28
-1.93 1.08 -0.31
2.30 0.24 0.40 -0.35

0.64 -0.66 0.08
0.15 -2.13

0.50 :End of matrix A

10.3 Program Results

F08LEF Example Program Results

Diagonal D:
3.0561 1.5259 0.9690 1.5685

Off-diagonal E:
0.6206 1.2353 1.1240
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NAG Library Routine Document

F08LSF (ZGBBRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08LSF (ZGBBRD) reduces a complex m by n band matrix to real upper bidiagonal form.

2 Specification

SUBROUTINE F08LSF (VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ, PT,
LDPT, C, LDC, WORK, RWORK, INFO)

&

INTEGER M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
REAL (KIND=nag_wp) D(min(M,N)), E(min(M,N)-1), RWORK(max(M,N))
COMPLEX (KIND=nag_wp) AB(LDAB,*), Q(LDQ,*), PT(LDPT,*), C(LDC,*),

WORK(max(M,N))
&

CHARACTER(1) VECT

The routine may be called by its LAPACK name zgbbrd.

3 Description

F08LSF (ZGBBRD) reduces a complex m by n band matrix to real upper bidiagonal form B by a
unitary transformation: A ¼ QBPH. The unitary matrices Q and PH, of order m and n respectively, are
determined as a product of Givens rotation matrices, and may be formed explicitly by the routine if
required. A matrix C may also be updated to give ~C ¼ QHC.

The routine uses a vectorizable form of the reduction.

4 References

None.

5 Arguments

1: VECT – CHARACTER(1) Input

On entry: indicates whether the matrices Q and/or PH are generated.

VECT ¼ N
Neither Q nor PH is generated.

VECT ¼ Q
Q is generated.

VECT ¼ P
PH is generated.

VECT ¼ B
Both Q and PH are generated.

Constraint: VECT ¼ N , Q , P or B .

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.
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3: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

4: NCC – INTEGER Input

On entry: nC , the number of columns of the matrix C.

Constraint: NCC � 0.

5: KL – INTEGER Input

On entry: the number of subdiagonals, kl, within the band of A.

Constraint: KL � 0.

6: KU – INTEGER Input

On entry: the number of superdiagonals, ku, within the band of A.

Constraint: KU � 0.

7: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the original m by n band matrix A.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:
On exit: AB is overwritten by values generated during the reduction.

8: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08LSF (ZGBBRD) is called.

Constraint: LDAB � KLþ KUþ 1.

9: Dðmin M;Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the diagonal elements of the bidiagonal matrix B.

10: Eðmin M;Nð Þ � 1Þ – REAL (KIND=nag_wp) array Output

On exit: the superdiagonal elements of the bidiagonal matrix B.

11: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Mð Þ if VECT ¼ Q or B , and
at least 1 otherwise.

On exit: if VECT ¼ Q or B , contains the m by m unitary matrix Q.

If VECT ¼ N or P , Q is not referenced.

12: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08LSF
(ZGBBRD) is called.

Constraints:

if VECT ¼ Q or B , LDQ � max 1;Mð Þ;
otherwise LDQ � 1.
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13: PTðLDPT; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array PT must be at least max 1;Nð Þ if VECT ¼ P or B , and
at least 1 otherwise.

On exit: the n by n unitary matrix PH, if VECT ¼ P or B . If VECT ¼ N or Q , PT is not
referenced.

14: LDPT – INTEGER Input

On entry: the first dimension of the array PT as declared in the (sub)program from which F08LSF
(ZGBBRD) is called.

Constraints:

if VECT ¼ P or B , LDPT � max 1;Nð Þ;
otherwise LDPT � 1.

15: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;NCCð Þ.
On entry: an m by nC matrix C.

On exit: C is overwritten by QHC. If NCC ¼ 0, C is not referenced.

16: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08LSF
(ZGBBRD) is called.

Constraints:

if NCC > 0, LDC � max 1;Mð Þ;
if NCC ¼ 0, LDC � 1.

17: WORKðmax M;Nð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

18: RWORKðmax M;Nð ÞÞ – REAL (KIND=nag_wp) array Workspace

19: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed bidiagonal form B satisfies QBPH ¼ Aþ E, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.
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The computed matrix Q differs from an exactly unitary matrix by a matrix F such that

Fk k2 ¼ O �ð Þ:

A similar statement holds for the computed matrix PH.

8 Parallelism and Performance

F08LSF (ZGBBRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately the sum of:

20n2k, if VECT ¼ N and NCC ¼ 0, and

10n2nC k� 1ð Þ=k, if C is updated, and

10n3 k� 1ð Þ=k, if either Q or PH is generated (double this if both),

where k ¼ kl þ ku, assuming n� k. For this section we assume that m ¼ n.
The real analogue of this routine is F08LEF (DGBBRD).

10 Example

This example reduces the matrix A to upper bidiagonal form, where

A ¼

0:96� 0:81i �0:03þ 0:96i 0:00þ 0:00i 0:00þ 0:00i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i 0:00þ 0:00i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
0:00þ 0:00i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:00þ 0:00i 0:00þ 0:00i �0:17� 0:46i 1:47þ 1:59i
0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i 0:26þ 0:26i

0BBBBB@

1CCCCCA:

10.1 Program Text

Program f08lsfe

! F08LSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zgbbrd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: vect = ’N’

! .. Local Scalars ..
Integer :: i, info, j, kl, ku, ldab, ldc, ldpt, &

ldq, m, n, ncc
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:), c(:,:), pt(:,:), q(:,:), &
work(:)

Real (Kind=nag_wp), Allocatable :: d(:), e(:), rwork(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min
! .. Executable Statements ..
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Write (nout,*) ’F08LSF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) m, n, kl, ku, ncc
ldab = kl + ku + 1
ldc = m
ldpt = n
ldq = m
Allocate (ab(ldab,n),c(m,ncc),pt(ldpt,n),q(ldq,m),work(m+n),d(n),e(n-1), &

rwork(m+n))

! Read A from data file

Read (nin,*)((ab(ku+1+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,m)

! Reduce A to upper bidiagonal form

! The NAG name equivalent of zgbbrd is f08lsf
Call zgbbrd(vect,m,n,ncc,kl,ku,ab,ldab,d,e,q,ldq,pt,ldpt,c,ldc,work, &

rwork,info)

! Print bidiagonal form

Write (nout,*)
Write (nout,*) ’Diagonal’
Write (nout,99999) d(1:min(m,n))
Write (nout,*) ’Superdiagonal’
Write (nout,99999) e(1:min(m,n)-1)

99999 Format (1X,8F9.4)
End Program f08lsfe

10.2 Program Data

F08LSF Example Program Data
6 4 2 1 0 :Values of M, N, KL, KU and NCC

( 0.96,-0.81) (-0.03, 0.96)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)

( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
(-0.17,-0.46) ( 1.47, 1.59)

( 0.26, 0.26) :End of matrix A

10.3 Program Results

F08LSF Example Program Results

Diagonal
2.6560 1.7501 2.0607 0.8658

Superdiagonal
1.7033 1.2800 0.1467
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NAG Library Routine Document

F08MBF (DBDSVDX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08MBF (DBDSVDX) computes all or selected singular values and, optionally, the corresponding left
and right singular vectors of a real n by n (upper or lower) bidiagonal matrix B.

2 Specification

SUBROUTINE F08MBF (UPLO, JOBZ, RANGE, N, D, E, VL, VU, IL, IU, NS, S, Z,
LDZ, WORK, IWORK, INFO)

&

INTEGER N, IL, IU, NS, LDZ, IWORK(12*N), INFO
REAL (KIND=nag_wp) D(N), E(N-1), VL, VU, S(N), Z(LDZ,*), WORK(14*N)
CHARACTER(1) UPLO, JOBZ, RANGE

The routine may be called by its LAPACK name dbdsvdx.

3 Description

F08MBF (DBDSVDX) computes the singular value decomposition (SVD) of a real n by n (upper or
lower) bidiagonal matrix B as

B ¼ USV T;

where S is a diagonal matrix with non-negative diagonal elements (the singular values of B), and U and
V T are orthogonal matrices of left and right singular vectors, respectively.

Given an upper bidiagonal B with diagonal d ¼ d1 d2 . . . dn
� �

and superdiagonal
e ¼ e1 e2 . . . eN�1

� �
, F08MBF (DBDSVDX) computes the singular value decompositon of B

through the eigenvalues and eigenvectors of the n� 2 by n� 2 tridiagonal matrix

TGK ¼

0 d1
d1 0 e1

e1 0 d2
d2 : :

: : :

0BBB@
1CCCA:

If s; u; vð Þ is a singular triplet of B with uk k ¼ vk k ¼ 1, then s; qð Þ and �s; qð Þ, qk k ¼ 1, are eigenpairs
of TGK , with q ¼ v1; u1; v2; u2; . . . ; vn; unð Þ=

ffiffiffi
2
p

for s, and q ¼ �v1; u1;�v2; u2; . . . ;�vn; unð Þ=
ffiffiffi
2
p

for
�s.
Given a TGK matrix, one can either

(i) compute �s;�v and change signs so that the singular values (and corresponding vectors) are
already in descending order (as in F08KBF (DGESVD)) or

(ii) compute s; v and reorder the values (and corresponding vectors).

F08MBF (DBDSVDX) implements (i) by calling F08JBF (DSTEVX) (bisection plus inverse iteration,
to be replaced with a version of the Multiple Relative Robust Representation algorithm. (See Williams
and Lang (2013).)

Alternative to computing all singular values of A, a selected set can be computed. The set is either
those singular values lying in a given interval, � 2 vl; vuð �, or those whose index (counting from largest
to smallest in magnitude) lies in a given range 1 � il; . . . ; iu � n. In these cases, the corresponding left
and right singular vectors can optionally be computed.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Williams P and Lang B (2013) A framework for the MR3 algorithm: theory and implementation SIAM
J. Sci. Comput. 35 740–766

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether B is upper or lower bidiagonal.

UPLO ¼ U
B is upper bidiagonal.

UPLO ¼ L
B is lower bidiagonal.

Constraint: UPLO ¼ U or L .

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether singular vectors are computed.

JOBZ ¼ N
Only singular values are computed.

JOBZ ¼ V
Singular values and singular vectors are computed.

Constraint: JOBZ ¼ N or V .

3: RANGE – CHARACTER(1) Input

On entry: indicates which singular values should be returned.

RANGE ¼ A
All singular values will be found.

RANGE ¼ V
All singular values in the half-open interval VL;VUð � will be found.

RANGE ¼ I
The ILth through IUth singular values will be found.

Constraint: RANGE ¼ A , V or I .

4: N – INTEGER Input

On entry: n, the order of the bidiagonal matrix B.

Constraint: N � 0.

5: DðNÞ – REAL (KIND=nag_wp) array Input

On entry: the diagonal elements d of the bidiagonal matrix B.

6: EðN� 1Þ – REAL (KIND=nag_wp) array Input

On entry: the n� 1ð Þ superdiagonal elements e of the bidiagonal matrix B.

7: VL – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower bounds of the interval to be searched for singular values.
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If RANGE ¼ A or I , VL is not referenced.

Constraint: if RANGE ¼ V , 0:0 � VL.

8: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the upper bounds of the interval to be searched for singular values.

If RANGE ¼ A or I , VU is not referenced.

Constraint: if RANGE ¼ V , VL < VU.

9: IL – INTEGER Input
10: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest singular
values to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

11: NS – INTEGER Output

On exit: the total number of singular values found. 0 � NS � N.

If RANGE ¼ A , NS ¼ N.

If RANGE ¼ I , NS ¼ IU� ILþ 1.

12: SðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first NS elements contain the selected singular values in ascending order.

13: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least min N;NSþ 1ð Þ if JOBZ ¼ V , and at
least 1 otherwise.

On exit: If JOBZ ¼ V , then if INFO ¼ 0 the first NS columns of Z contain the singular vectors
of the matrix B corresponding to the selected singular values, with U in rows 1 to N and V in
rows N þ 1 to N � 2, i.e.,

Z ¼ U
V

� �
:

If JOBZ ¼ V , then Z is not referenced.

Note: the user must ensure that at least K ¼ NSþ 1 columns are supplied in the array Z; if
RANGE ¼ V , the exact value of NS is not known in advance and an upper bound must be used.

14: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08MBF
(DBDSVDX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 2;N� 2ð Þ;
otherwise LDZ � 1.

15: WORKð14� NÞ – REAL (KIND=nag_wp) array Workspace
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16: IWORKð12� NÞ – INTEGER array Workspace

On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first NS elements of IWORK are zero;

if INFO > 0, IWORK contains the indices of the eigenvectors that failed to converge in
F08JBF (DSTEVX).

If JOBZ ¼ N , IWORK is not referenced.

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm failed to converge; valueh i eigenvectors of the associated eigenproblem did not
converge. Their indices are stored in array IWORK.

7 Accuracy

Each computed singular value of B is accurate to nearly full relative precision, no matter how tiny the
singular value. The ith computed singular value, ŝi, satisfies the bound

ŝi � sij j � p nð Þ�si
where � is the machine precision and p nð Þ is a modest function of n.

For bounds on the computed singular values, see Section 4.9.1 of Anderson et al. (1999). See also
F08FLF (DDISNA).

8 Parallelism and Performance

F08MBF (DBDSVDX) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08MBF (DBDSVDX) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If only singular values are required, the total number of floating-point operations is approximately
proportional to n2. When singular vectors are required the number of operations is bounded above by
approximately the same number of operations as F08MEF (DBDSQR), but for large matrices F08MBF
(DBDSVDX) is usually much faster.

There is no complex analogue of F08MBF (DBDSVDX).
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10 Example

This example computes the singular value decomposition of the upper bidiagonal matrix

B ¼
3:62 1:26 0 0
0 �2:41 �1:53 0
0 0 1:92 1:19
0 0 0 �1:43

0B@
1CA:

10.1 Program Text

Program f08mbfe

! F08MBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dbdsvdx, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: vl, vu
Integer :: il, info, iu, ldz, n, ns
Character (1) :: range

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), e(:), s(:), work(:), z(:,:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F08MBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = 2*n
Allocate (d(n),e(n-1),s(n),z(ldz,n+1),work(14*n),iwork(12*n))

! Read the bidiagonal matrix B from data file, first
! the diagonal elements, and then the off diagonal elements

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Read range for selected singular values
Read (nin,*) range

If (range==’I’ .Or. range==’i’) Then
Read (nin,*) il, iu

Else If (range==’V’ .Or. range==’v’) Then
Read (nin,*) vl, vu

End If

! Calculate the singular values and singular vectors of B.

! The NAG name equivalent of dbdsvdx is f08mbf
Call dbdsvdx(’Upper’,’V’,range,n,d,e,vl,vu,il,iu,ns,s,z,ldz,work,iwork, &

info)

If (info==0) Then
! Print the singular values of B.

If (range==’I’ .Or. range==’i’) Then
Write (nout,99999) ns, il, iu

Else If (range==’V’ .Or. range==’v’) Then
Write (nout,99998) ns, vl, vu

End If
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Write (nout,99997) s(1:ns)
Else

Write (nout,99996) ’** F08MBF/DBDSVDX failed with INFO = ’, info
End If

99999 Format (1X,I2,1X,’singular values of B in the index range [’,I2,’,’,I2, &
’]:’)

99998 Format (1X,I2,1X,’singular values of B in the range [’,F7.3,’,’,F7.3, &
’]:’)

99997 Format (1X,4(3X,F11.4))
99996 Format (1X,A,I10)

End Program f08mbfe

10.2 Program Data

F08MBF Example Program Data

4 : n

3.62 -2.41 1.92 -1.43 : diagonal elements, d
1.26 -1.53 1.19 : off-diagonal elements, e

’V’
0.00 4.00

10.3 Program Results

F08MBF Example Program Results

3 singular values of B in the range [ 0.000, 4.000]:
3.0006 1.9960 0.9998
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NAG Library Routine Document

F08MDF (DBDSDC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08MDF (DBDSDC) computes the singular values and, optionally, the left and right singular vectors of
a real n by n (upper or lower) bidiagonal matrix B.

2 Specification

SUBROUTINE F08MDF (UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ, WORK,
IWORK, INFO)

&

INTEGER N, LDU, LDVT, IQ(*), IWORK(8*N), INFO
REAL (KIND=nag_wp) D(*), E(*), U(LDU,*), VT(LDVT,*), Q(*), WORK(*)
CHARACTER(1) UPLO, COMPQ

The routine may be called by its LAPACK name dbdsdc.

3 Description

F08MDF (DBDSDC) computes the singular value decomposition (SVD) of the (upper or lower)
bidiagonal matrix B as

B ¼ USV T;

where S is a diagonal matrix with non-negative diagonal elements sii ¼ si, such that

s1 � s2 � � � � � sn � 0;

and U and V are orthogonal matrices. The diagonal elements of S are the singular values of B and the
columns of U and V are respectively the corresponding left and right singular vectors of B.

When only singular values are required the routine uses the QR algorithm, but when singular vectors
are required a divide and conquer method is used. The singular values can optionally be returned in
compact form, although currently no routine is available to apply U or V when stored in compact form.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether B is upper or lower bidiagonal.

UPLO ¼ U
B is upper bidiagonal.
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UPLO ¼ L
B is lower bidiagonal.

Constraint: UPLO ¼ U or L .

2: COMPQ – CHARACTER(1) Input

On entry: specifies whether singular vectors are to be computed.

COMPQ ¼ N
Compute singular values only.

COMPQ ¼ P
Compute singular values and compute singular vectors in compact form.

COMPQ ¼ I
Compute singular values and singular vectors.

Constraint: COMPQ ¼ N , P or I .

3: N – INTEGER Input

On entry: n, the order of the matrix B.

Constraint: N � 0.

4: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the n diagonal elements of the bidiagonal matrix B.

On exit: if INFO ¼ 0, the singular values of B.

5: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the n� 1ð Þ off-diagonal elements of the bidiagonal matrix B.

On exit: the contents of E are destroyed.

6: UðLDU; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Nð Þ if COMPQ ¼ I , and at
least 1 otherwise.

On exit: if COMPQ ¼ I , then if INFO ¼ 0, U contains the left singular vectors of the bidiagonal
matrix B.

If COMPQ 6¼ I , U is not referenced.

7: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which
F08MDF (DBDSDC) is called.

Constraints:

if COMPQ ¼ I , LDU � max 1;Nð Þ;
otherwise LDU � 1.

8: VTðLDVT; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VT must be at least max 1;Nð Þ if COMPQ ¼ I , and at
least 1 otherwise.

On exit: if COMPQ ¼ I , then if INFO ¼ 0, the rows of VT contain the right singular vectors of
the bidiagonal matrix B.
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If COMPQ 6¼ I , VT is not referenced.

9: LDVT – INTEGER Input

On entry: the first dimension of the array VT as declared in the (sub)program from which
F08MDF (DBDSDC) is called.

Constraints:

if COMPQ ¼ I , LDVT � max 1;Nð Þ;
otherwise LDVT � 1.

10: Qð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array Q must be at least max 1;N2 þ 5N; ldq
� �

.

On exit: if COMPQ ¼ P , then if INFO ¼ 0, Q and IQ contain the left and right singular vectors
in a compact form, requiring O Nlog2 Nð Þ space instead of 2� N2. In particular, Q contains all the
real data in the first ldq ¼ N� 11þ 2� smlsiz þ 8� int log2 N= smlsiz þ 1ð Þð Þð Þð Þ elements of Q,
where smlsiz is equal to the maximum size of the subproblems at the bottom of the computation
tree (usually about 25).

If COMPQ 6¼ P , Q is not referenced.

11: IQð�Þ – INTEGER array Output

Note: the dimension of the array IQ must be at least max 1; ldiqð Þ.
On exit: if COMPQ ¼ P , then if INFO ¼ 0, Q and IQ contain the left and right singular vectors
in a compact form, requiring O Nlog2 Nð Þ space instead of 2� N2. In particular, IQ contains all
integer data in the first ldiq ¼ N� 3þ 3� int log2 N= smlsiz þ 1ð Þð Þð Þð Þ elements of IQ, where
smlsiz is equal to the maximum size of the subproblems at the bottom of the computation tree
(usually about 25).

If COMPQ 6¼ P , IQ is not referenced.

12: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1; 6� N� 2ð Þ if COMPQ ¼ N ,
max 1; 6� Nð Þ if COMPQ ¼ P , max 1; 3� N2 þ 4� N

� �
if COMPQ ¼ I , and at least 1

otherwise.

13: IWORKð8� NÞ – INTEGER array Workspace

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm failed to compute a singular value. The update process of divide-and-conquer
failed.
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7 Accuracy

Each computed singular value of B is accurate to nearly full relative precision, no matter how tiny the
singular value. The ith computed singular value, ŝi, satisfies the bound

ŝi � sij j � p nð Þ�si
where � is the machine precision and p nð Þ is a modest function of n.

For bounds on the computed singular values, see Section 4.9.1 of Anderson et al. (1999). See also
F08FLF (DDISNA).

8 Parallelism and Performance

F08MDF (DBDSDC) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08MDF (DBDSDC) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If only singular values are required, the total number of floating-point operations is approximately
proportional to n2. When singular vectors are required the number of operations is bounded above by
approximately the same number of operations as F08MEF (DBDSQR), but for large matrices F08MDF
(DBDSDC) is usually much faster.

There is no complex analogue of F08MDF (DBDSDC).

10 Example

This example computes the singular value decomposition of the upper bidiagonal matrix

B ¼
3:62 1:26 0 0
0 �2:41 �1:53 0
0 0 1:92 1:19
0 0 0 �1:43

0B@
1CA:

10.1 Program Text

Program f08mdfe

! F08MDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dbdsdc, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: info, ldb, ldu, ldvt, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), d(:), e(:), u(:,:), vt(:,:), &

work(:)
Real (Kind=nag_wp) :: q(1)
Integer :: iq(1)
Integer, Allocatable :: iwork(:)

F08MDF NAG Library Manual
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! .. Executable Statements ..
Write (nout,*) ’F08MDF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldb = n
ldu = n
ldvt = n
Allocate (b(ldb,n),d(n),e(n-1),u(ldu,n),vt(ldvt,n),work(n*(3*n+ &

4)),iwork(8*n))

! Read the bidiagonal matrix B from data file, first
! the diagonal elements, and then the off diagonal elements

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

! Calculate the singular values and left and right singular
! vectors of B.

! The NAG name equivalent of dbdsdc is f08mdf
Call dbdsdc(’Upper’,’I’,n,d,e,u,ldu,vt,ldvt,q,iq,work,iwork,info)

If (info==0) Then
! Print the singular values of B.

Write (nout,*) ’Singular values of B:’
Write (nout,99999) d(1:n)

Else
Write (nout,99998) ’** F08MDF/DBDSDC failed with INFO = ’, info

End If

99999 Format (1X,4(3X,F11.4))
99998 Format (1X,A,I10)

End Program f08mdfe

10.2 Program Data

F08MDF Example Program Data

4 :Value of N

3.62 -2.41 1.92 -1.43 :End of diagonal elements
1.26 -1.53 1.19 :End of off-diagonal elements

10.3 Program Results

F08MDF Example Program Results

Singular values of B:
4.0001 3.0006 1.9960 0.9998
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NAG Library Routine Document

F08MEF (DBDSQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the argument WORK changed at Mark 20: the length of WORK needs to be increased.

1 Purpose

F08MEF (DBDSQR) computes the singular value decomposition of a real upper or lower bidiagonal
matrix, or of a real general matrix which has been reduced to bidiagonal form.

2 Specification

SUBROUTINE F08MEF (UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
LDC, WORK, INFO)

&

INTEGER N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
REAL (KIND=nag_wp) D(*), E(*), VT(LDVT,*), U(LDU,*), C(LDC,*), WORK(*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dbdsqr.

3 Description

F08MEF (DBDSQR) computes the singular values and, optionally, the left or right singular vectors of a
real upper or lower bidiagonal matrix B. In other words, it can compute the singular value
decomposition (SVD) of B as

B ¼ U�V T:

Here � is a diagonal matrix with real diagonal elements �i (the singular values of B), such that

�1 � �2 � � � � � �n � 0;

U is an orthogonal matrix whose columns are the left singular vectors ui; V is an orthogonal matrix
whose rows are the right singular vectors vi. Thus

Bui ¼ �ivi and BTvi ¼ �iui; i ¼ 1; 2; . . . ; n:

To compute U and/or V T, the arrays U and/or VT must be initialized to the unit matrix before F08MEF
(DBDSQR) is called.

The routine may also be used to compute the SVD of a real general matrix A which has been reduced
to bidiagonal form by an orthogonal transformation: A ¼ QBPT. If A is m by n with m � n, then Q is
m by n and P T is n by n; if A is n by p with n < p, then Q is n by n and PT is n by p. In this case,
the matrices Q and/or PT must be formed explicitly by F08KFF (DORGBR) and passed to F08MEF
(DBDSQR) in the arrays U and/or VT respectively.

F08MEF (DBDSQR) also has the capability of forming UTC, where C is an arbitrary real matrix; this
is needed when using the SVD to solve linear least squares problems.

F08MEF (DBDSQR) uses two different algorithms. If any singular vectors are required (i.e., if
NCVT > 0 or NRU > 0 or NCC > 0), the bidiagonal QR algorithm is used, switching between zero-
shift and implicitly shifted forms to preserve the accuracy of small singular values, and switching
between QR and QL variants in order to handle graded matrices effectively (see Demmel and Kahan
(1990)). If only singular values are required (i.e., if NCVT ¼ NRU ¼ NCC ¼ 0), they are computed by
the differential qd algorithm (see Fernando and Parlett (1994)), which is faster and can achieve even
greater accuracy.
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The singular vectors are normalized so that uik k ¼ vik k ¼ 1, but are determined only to within a factor

1.

4 References

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Fernando K V and Parlett B N (1994) Accurate singular values and differential qd algorithms Numer.
Math. 67 191–229

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether B is an upper or lower bidiagonal matrix.

UPLO ¼ U
B is an upper bidiagonal matrix.

UPLO ¼ L
B is a lower bidiagonal matrix.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix B.

Constraint: N � 0.

3: NCVT – INTEGER Input

On entry: ncvt, the number of columns of the matrix V T of right singular vectors. Set NCVT ¼ 0
if no right singular vectors are required.

Constraint: NCVT � 0.

4: NRU – INTEGER Input

On entry: nru, the number of rows of the matrix U of left singular vectors. Set NRU ¼ 0 if no
left singular vectors are required.

Constraint: NRU � 0.

5: NCC – INTEGER Input

On entry: ncc, the number of columns of the matrix C. Set NCC ¼ 0 if no matrix C is supplied.

Constraint: NCC � 0.

6: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the bidiagonal matrix B.

On exit: the singular values in decreasing order of magnitude, unless INFO > 0 (in which case
see Section 6).
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7: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the off-diagonal elements of the bidiagonal matrix B.

On exit: E is overwritten, but if INFO > 0 see Section 6.

8: VTðLDVT; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VT must be at least max 1;NCVTð Þ.
On entry: if NCVT > 0, VT must contain an n by ncvt matrix. If the right singular vectors of B
are required, ncvt ¼ n and VT must contain the unit matrix; if the right singular vectors of A are
required, VT must contain the orthogonal matrix PT returned by F08KFF (DORGBR) with
VECT ¼ P .

On exit: the n by ncvt matrix V T or V TPT of right singular vectors, stored by rows.

If NCVT ¼ 0, VT is not referenced.

9: LDVT – INTEGER Input

On entry: the first dimension of the array VT as declared in the (sub)program from which
F08MEF (DBDSQR) is called.

Constraints:

if NCVT > 0, LDVT � max 1;Nð Þ;
otherwise LDVT � 1.

10: UðLDU; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array U must be at least max 1;Nð Þ.
On entry: if NRU > 0, U must contain an nru by n matrix. If the left singular vectors of B are
required, nru ¼ n and U must contain the unit matrix; if the left singular vectors of A are
required, U must contain the orthogonal matrix Q returned by F08KFF (DORGBR) with
VECT ¼ Q .

On exit: the nru by n matrix U or QU of left singular vectors, stored as columns of the matrix.

If NRU ¼ 0, U is not referenced.

11: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08MEF
(DBDSQR) is called.

Constraint: LDU � max 1;NRUð Þ.

12: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;NCCð Þ.
On entry: the n by ncc matrix C if NCC > 0.

On exit: C is overwritten by the matrix UTC. If NCC ¼ 0, C is not referenced.

13: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08MEF
(DBDSQR) is called.

Constraints:

if NCC > 0, LDC � max 1;Nð Þ;
otherwise LDC � 1.
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14: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1; 2� Nð Þ if NCVT ¼ 0 and
NRU ¼ 0 and NCC ¼ 0, and at least max 1; 4� Nð Þ otherwise.

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm failed to converge and INFO specifies how many off-diagonals did not converge.
In this case, D and E contain on exit the diagonal and off-diagonal elements, respectively, of a
bidiagonal matrix orthogonally equivalent to B.

7 Accuracy

Each singular value and singular vector is computed to high relative accuracy. However, the reduction
to bidiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative
accuracy in the small singular values of the original matrix if its singular values vary widely in
magnitude.

If �i is an exact singular value of B and ~�i is the corresponding computed value, then

~�i � �ij j � p m; nð Þ��i
where p m; nð Þ is a modestly increasing function of m and n, and � is the machine precision. If only
singular values are computed, they are computed more accurately (i.e., the function p m; nð Þ is smaller),
than when some singular vectors are also computed.

If ui is the corresponding exact left singular vector of B, and ~ui is the corresponding computed left
singular vector, then the angle � ~ui; uið Þ between them is bounded as follows:

� ~ui; uið Þ � p m; nð Þ�
relgapi

where relgapi is the relative gap between �i and the other singular values, defined by

relgapi ¼ min
i6¼j

�i � �j
		 		
�i þ �j
� �:

A similar error bound holds for the right singular vectors.

8 Parallelism and Performance

F08MEF (DBDSQR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08MEF (DBDSQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is roughly proportional to n2 if only the singular values
are computed. About 6n2 � nru additional operations are required to compute the left singular vectors
and about 6n2 � ncvt to compute the right singular vectors. The operations to compute the singular
values must all be performed in scalar mode; the additional operations to compute the singular vectors
can be vectorized and on some machines may be performed much faster.

The complex analogue of this routine is F08MSF (ZBDSQR).

10 Example

This example computes the singular value decomposition of the upper bidiagonal matrix B, where

B ¼
3:62 1:26 0:00 0:00
0:00 �2:41 �1:53 0:00
0:00 0:00 1:92 1:19
0:00 0:00 0:00 �1:43

0B@
1CA:

See also the example for F08KFF (DORGBR), which illustrates the use of the routine to compute the
singular value decomposition of a general matrix.

10.1 Program Text

Program f08mefe

! F08MEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dbdsqr, f06qhf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, info, ldc, ldu, ldvt, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:,:), d(:), e(:), u(:,:), vt(:,:), &

work(:)
! .. Executable Statements ..

Write (nout,*) ’F08MEF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
ldc = 1
ldu = n
ldvt = n
Allocate (c(ldc,1),d(n),e(n-1),u(ldu,n),vt(ldvt,n),work(4*n))

! Read B from data file

Read (nin,*) d(1:n)
Read (nin,*) e(1:n-1)

Read (nin,*) uplo

! Initialize U and VT to be the unit matrix
Call f06qhf(’General’,n,n,zero,one,u,ldu)
Call f06qhf(’General’,n,n,zero,one,vt,ldvt)

! Calculate the SVD of B
! The NAG name equivalent of dbdsqr is f08mef
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Call dbdsqr(uplo,n,n,n,0,d,e,vt,ldvt,u,ldu,c,ldc,work,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Print singular values, left & right singular vectors

Write (nout,*) ’Singular values’
Write (nout,99999) d(1:n)
Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,vt,ldvt,’Right singular vectors, by row’ &

,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04caf(’General’,’ ’,n,n,u,ldu,’Left singular vectors, by column’ &

,ifail)

End If

99999 Format (3X,(8F8.4))
End Program f08mefe

10.2 Program Data

F08MEF Example Program Data
4 :Value of N
3.62 -2.41 1.92 -1.43
1.26 -1.53 1.19 :End of matrix B
’U’ :Value of UPLO

10.3 Program Results

F08MEF Example Program Results

Singular values
4.0001 3.0006 1.9960 0.9998

Right singular vectors, by row
1 2 3 4

1 0.8261 0.5246 0.2024 0.0369
2 0.4512 -0.4056 -0.7350 -0.3030
3 0.2823 -0.5644 0.1731 0.7561
4 0.1852 -0.4916 0.6236 -0.5789

Left singular vectors, by column
1 2 3 4

1 0.9129 0.3740 0.1556 0.0512
2 -0.3935 0.7005 0.5489 0.2307
3 0.1081 -0.5904 0.6173 0.5086
4 -0.0132 0.1444 -0.5417 0.8280
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NAG Library Routine Document

F08MSF (ZBDSQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the argument WORK changed at Mark 20: the length of WORK needs to be increased.

1 Purpose

F08MSF (ZBDSQR) computes the singular value decomposition of a complex general matrix which has
been reduced to bidiagonal form.

2 Specification

SUBROUTINE F08MSF (UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
LDC, WORK, INFO)

&

INTEGER N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
REAL (KIND=nag_wp) D(*), E(*), WORK(*)
COMPLEX (KIND=nag_wp) VT(LDVT,*), U(LDU,*), C(LDC,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zbdsqr.

3 Description

F08MSF (ZBDSQR) computes the singular values and, optionally, the left or right singular vectors of a
real upper or lower bidiagonal matrix B. In other words, it can compute the singular value
decomposition (SVD) of B as

B ¼ U�V T:

Here � is a diagonal matrix with real diagonal elements �i (the singular values of B), such that

�1 � �2 � � � � � �n � 0;

U is an orthogonal matrix whose columns are the left singular vectors ui; V is an orthogonal matrix
whose rows are the right singular vectors vi. Thus

Bui ¼ �ivi and BTvi ¼ �iui; i ¼ 1; 2; . . . ; n:

To compute U and/or V T, the arrays U and/or VT must be initialized to the unit matrix before F08MSF
(ZBDSQR) is called.

The routine stores the real orthogonal matrices U and V T in complex arrays U and VT, so that it may
also be used to compute the SVD of a complex general matrix A which has been reduced to bidiagonal
form by a unitary transformation: A ¼ QBPH. If A is m by n with m � n, then Q is m by n and PH is
n by n; if A is n by p with n < p, then Q is n by n and PH is n by p. In this case, the matrices Q and/
or PH must be formed explicitly by F08KTF (ZUNGBR) and passed to F08MSF (ZBDSQR) in the
arrays U and/or VT respectively.

F08MSF (ZBDSQR) also has the capability of forming UHC, where C is an arbitrary complex matrix;
this is needed when using the SVD to solve linear least squares problems.

F08MSF (ZBDSQR) uses two different algorithms. If any singular vectors are required (i.e., if
NCVT > 0 or NRU > 0 or NCC > 0), the bidiagonal QR algorithm is used, switching between zero-
shift and implicitly shifted forms to preserve the accuracy of small singular values, and switching
between QR and QL variants in order to handle graded matrices effectively (see Demmel and Kahan
(1990)). If only singular values are required (i.e., if NCVT ¼ NRU ¼ NCC ¼ 0), they are computed by
the differential qd algorithm (see Fernando and Parlett (1994)), which is faster and can achieve even
greater accuracy.
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The singular vectors are normalized so that uik k ¼ vik k ¼ 1, but are determined only to within a
complex factor of absolute value 1.

4 References

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Fernando K V and Parlett B N (1994) Accurate singular values and differential qd algorithms Numer.
Math. 67 191–229

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether B is an upper or lower bidiagonal matrix.

UPLO ¼ U
B is an upper bidiagonal matrix.

UPLO ¼ L
B is a lower bidiagonal matrix.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix B.

Constraint: N � 0.

3: NCVT – INTEGER Input

On entry: ncvt, the number of columns of the matrix V H of right singular vectors. Set NCVT ¼ 0
of right singular vectors. Set NCVT ¼ 0 if no right singular vectors are required.

Constraint: NCVT � 0.

4: NRU – INTEGER Input

On entry: nru, the number of rows of the matrix U of left singular vectors. Set NRU ¼ 0 if no
left singular vectors are required.

Constraint: NRU � 0.

5: NCC – INTEGER Input

On entry: ncc, the number of columns of the matrix C. Set NCC ¼ 0 if no matrix C is supplied.

Constraint: NCC � 0.

6: Dð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array D must be at least max 1;Nð Þ.
On entry: the diagonal elements of the bidiagonal matrix B.

On exit: the singular values in decreasing order of magnitude, unless INFO > 0 (in which case
see Section 6).
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7: Eð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array E must be at least max 1;N� 1ð Þ.
On entry: the off-diagonal elements of the bidiagonal matrix B.

On exit: E is overwritten, but if INFO > 0 see Section 6.

8: VTðLDVT; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VT must be at least max 1;NCVTð Þ.
On entry: if NCVT > 0, VT must contain an n by ncvt matrix. If the right singular vectors of B
are required, ncvt ¼ n and VT must contain the unit matrix; if the right singular vectors of A are
required, VT must contain the unitary matrix PH returned by F08KTF (ZUNGBR) with
VECT ¼ P .

On exit: the n by ncvt matrix V H or V H of right singular vectors, stored by rows.

If NCVT ¼ 0, VT is not referenced.

9: LDVT – INTEGER Input

On entry: the first dimension of the array VT as declared in the (sub)program from which
F08MSF (ZBDSQR) is called.

Constraints:

if NCVT > 0, LDVT � max 1;Nð Þ;
otherwise LDVT � 1.

10: UðLDU; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array U must be at least max 1;Nð Þ.
On entry: if NRU > 0, U must contain an nru by n matrix. If the left singular vectors of B are
required, nru ¼ n and U must contain the unit matrix; if the left singular vectors of A are
required, U must contain the unitary matrix Q returned by F08KTF (ZUNGBR) with
VECT ¼ Q .

On exit: the nru by n matrix U or QU of left singular vectors, stored as columns of the matrix.

If NRU ¼ 0, U is not referenced.

11: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08MSF
(ZBDSQR) is called.

Constraint: LDU � max 1;NRUð Þ.

12: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;NCCð Þ.
On entry: the n by ncc matrix C if NCC > 0.

On exit: C is overwritten by the matrix UHC. If NCC ¼ 0, C is not referenced.

13: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08MSF
(ZBDSQR) is called.

Constraints:

if NCC > 0, LDC � max 1;Nð Þ;
otherwise LDC � 1.
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14: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1; 2� Nð Þ if NCVT ¼ 0 and
NRU ¼ 0 and NCC ¼ 0, and at least max 1; 4� Nð Þ otherwise.

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The algorithm failed to converge and INFO specifies how many off-diagonals did not converge.
In this case, D and E contain on exit the diagonal and off-diagonal elements, respectively, of a
bidiagonal matrix orthogonally equivalent to B.

7 Accuracy

Each singular value and singular vector is computed to high relative accuracy. However, the reduction
to bidiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative
accuracy in the small singular values of the original matrix if its singular values vary widely in
magnitude.

If �i is an exact singular value of B and ~�i is the corresponding computed value, then

~�i � �ij j � p m; nð Þ��i
where p m; nð Þ is a modestly increasing function of m and n, and � is the machine precision. If only
singular values are computed, they are computed more accurately (i.e., the function p m; nð Þ is smaller),
than when some singular vectors are also computed.

If ui is an exact left singular vector of B, and ~ui is the corresponding computed left singular vector,
then the angle � ~ui; uið Þ between them is bounded as follows:

� ~ui; uið Þ � p m; nð Þ�
relgapi

where relgapi is the relative gap between �i and the other singular values, defined by

relgapi ¼ min
i6¼j

�i � �j
		 		
�i þ �j
� �:

A similar error bound holds for the right singular vectors.

8 Parallelism and Performance

F08MSF (ZBDSQR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08MSF (ZBDSQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of real floating-point operations is roughly proportional to n2 if only the singular
values are computed. About 12n2 � nru additional operations are required to compute the left singular
vectors and about 12n2 � ncvt to compute the right singular vectors. The operations to compute the
singular values must all be performed in scalar mode; the additional operations to compute the singular
vectors can be vectorized and on some machines may be performed much faster.

The real analogue of this routine is F08MEF (DBDSQR).

10 Example

See Section 10 in F08KTF (ZUNGBR), which illustrates the use of the routine to compute the singular
value decomposition of a general matrix.
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NAG Library Routine Document

F08NAF (DGEEV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NAF (DGEEV) computes the eigenvalues and, optionally, the left and/or right eigenvectors for an n
by n real nonsymmetric matrix A.

2 Specification

SUBROUTINE F08NAF (JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR, LDVR,
WORK, LWORK, INFO)

&

INTEGER N, LDA, LDVL, LDVR, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), WR(*), WI(*), VL(LDVL,*), VR(LDVR,*),

WORK(max(1,LWORK))
&

CHARACTER(1) JOBVL, JOBVR

The routine may be called by its LAPACK name dgeev.

3 Description

The right eigenvector vj of A satisfies

Avj ¼ �jvj
where �j is the jth eigenvalue of A. The left eigenvector uj of A satisfies

uHj A ¼ �juHj

where uHj denotes the conjugate transpose of uj.

The matrix A is first reduced to upper Hessenberg form by means of orthogonal similarity
transformations, and the QR algorithm is then used to further reduce the matrix to upper quasi-
triangular Schur form, T , with 1 by 1 and 2 by 2 blocks on the main diagonal. The eigenvalues are
computed from T , the 2 by 2 blocks corresponding to complex conjugate pairs and, optionally, the
eigenvectors of T are computed and backtransformed to the eigenvectors of A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , the left eigenvectors of A are not computed.

If JOBVL ¼ V , the left eigenvectors of A are computed.

Constraint: JOBVL ¼ N or V .
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2: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , the right eigenvectors of A are not computed.

If JOBVR ¼ V , the right eigenvectors of A are computed.

Constraint: JOBVR ¼ N or V .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A has been overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NAF
(DGEEV) is called.

Constraint: LDA � max 1;Nð Þ.

6: WRð�Þ – REAL (KIND=nag_wp) array Output
7: WIð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the arrays WR and WI must be at least max 1;Nð Þ.
On exit: WR and WI contain the real and imaginary parts, respectively, of the computed
eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue
having the positive imaginary part first.

8: VLðLDVL; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least max 1;Nð Þ if JOBVL ¼ V , and at
least 1 otherwise.

On exit: if JOBVL ¼ V , the left eigenvectors uj are stored one after another in the columns of
VL, in the same order as their corresponding eigenvalues. If the jth eigenvalue is real, then
uj ¼ VLð:; jÞ, the jth column of VL. If the jth and jþ 1ð Þst eigenvalues form a complex
conjugate pair, then uj ¼ VLð:; jÞ þ i� VLð:; jþ 1Þ and ujþ1 ¼ VLð:; jÞ � i� VLð:; jþ 1Þ.
If JOBVL ¼ N , VL is not referenced.

9: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08NAF (DGEEV) is called.

Constraints:

if JOBVL ¼ V , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

10: VRðLDVR; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least max 1;Nð Þ if JOBVR ¼ V , and at
least 1 otherwise.

On exit: if JOBVR ¼ V , the right eigenvectors vj are stored one after another in the columns of
VR, in the same order as their corresponding eigenvalues. If the jth eigenvalue is real, then
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vj ¼ VRð:; jÞ, the jth column of VR. If the jth and jþ 1ð Þst eigenvalues form a complex
conjugate pair, then vj ¼ VRð:; jÞ þ i� VRð:; jþ 1Þ and vjþ1 ¼ VRð:; jÞ � i� VRð:; jþ 1Þ.
If JOBVR ¼ N , VR is not referenced.

11: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08NAF (DGEEV) is called.

Constraints:

if JOBVR ¼ V , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

12: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08NAF (DGEEV) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum,
say, 4� Nþ nb� N, where nb is the optimal block size of F08NEF (DGEHRD).

Constraints:

if JOBVL ¼ V or JOBVR ¼ V , LWORK � 4� N;
otherwise LWORK � max 1; 3� Nð Þ.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The QR algorithm failed to compute all the eigenvalues, and no eigenvectors have been
computed; elements valueh i to N of WR and WI contain eigenvalues which have converged.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.8 of Anderson et al. (1999) for further details.
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8 Parallelism and Performance

F08NAF (DGEEV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08NAF (DGEEV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Each eigenvector is normalized to have Euclidean norm equal to unity and the element of largest
absolute value real.

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08NNF (ZGEEV).

10 Example

This example finds all the eigenvalues and right eigenvectors of the matrix

A ¼
0:35 0:45 �0:14 �0:17
0:09 0:07 �0:54 0:35
�0:44 �0:33 �0:03 0:17
0:25 �0:32 �0:13 0:11

0B@
1CA:

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08nafe

! F08NAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgeev, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: eig
Real (Kind=nag_wp) :: alpha, beta, scale
Integer :: i, info, j, k, lda, ldvr, lwork, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), vr(:,:), wi(:), work(:), &

wr(:)
Real (Kind=nag_wp) :: dummy(1,1)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, max, maxloc, nint, sqrt

! .. Executable Statements ..
Write (nout,*) ’F08NAF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldvr = n
Allocate (a(lda,n),vr(ldvr,n),wi(n),wr(n))
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! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dgeev is f08naf
Call dgeev(’No left vectors’,’Vectors (right)’,n,a,lda,wr,wi,dummy,1,vr, &

ldvr,dummy,lwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+2)*n,nint(dummy(1,1)))
Allocate (work(lwork))

! Read the matrix A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Compute the eigenvalues and right eigenvectors of A

! The NAG name equivalent of dgeev is f08naf
Call dgeev(’No left vectors’,’Vectors (right)’,n,a,lda,wr,wi,dummy,1,vr, &

ldvr,work,lwork,info)

If (info==0) Then

! Print solution

Do j = 1, n
Write (nout,*)
If (wi(j)==zero) Then

Write (nout,99999) ’Eigenvalue(’, j, ’) = ’, wr(j)
Else

eig = cmplx(wr(j),wi(j),kind=nag_wp)
Write (nout,99998) ’Eigenvalue(’, j, ’) = ’, eig

End If
Write (nout,*)
Write (nout,99997) ’Eigenvector(’, j, ’)’
If (wi(j)==zero) Then

! Scale by making largest element positive
k = maxloc(vr(1:n,j),1)
If (vr(k,j)<zero) Then

vr(1:n,j) = -vr(1:n,j)
End If
Write (nout,99996) vr(1:n,j)

Else If (wi(j)>0.0E0_nag_wp) Then
! Scale by making largest element real and positive

work(1:n) = vr(1:n,j)**2 + vr(1:n,j+1)**2
k = maxloc(work(1:n),1)
scale = sqrt(work(k))
work(1:n) = vr(1:n,j)
alpha = vr(k,j)/scale
beta = vr(k,j+1)/scale
vr(1:n,j) = alpha*work(1:n) + beta*vr(1:n,j+1)
vr(1:n,j+1) = alpha*vr(1:n,j+1) - beta*work(1:n)
Write (nout,99995)(vr(i,j),vr(i,j+1),i=1,n)

Else
Write (nout,99995)(vr(i,j-1),-vr(i,j),i=1,n)

End If
End Do

Else
Write (nout,*)
Write (nout,99994) ’Failure in DGEEV. INFO = ’, info

End If

99999 Format (1X,A,I2,A,1P,E11.4)
99998 Format (1X,A,I2,A,’(’,1P,E11.4,’,’,1P,E11.4,’)’)
99997 Format (1X,A,I2,A)
99996 Format (1X,1P,E11.4)
99995 Format (1X,’(’,1P,E11.4,’,’,1P,E11.4,’)’)
99994 Format (1X,A,I4)

End Program f08nafe
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10.2 Program Data

F08NAF Example Program Data

4 :Value of N

0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35

-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A

10.3 Program Results

F08NAF Example Program Results

Eigenvalue( 1) = 7.9948E-01

Eigenvector( 1)
-6.5509E-01
-5.2363E-01
5.3622E-01

-9.5607E-02

Eigenvalue( 2) = (-9.9412E-02, 4.0079E-01)

Eigenvector( 2)
(-1.9330E-01, 2.5463E-01)
( 2.5186E-01,-5.2240E-01)
( 9.7182E-02,-3.0838E-01)
( 6.7595E-01, 0.0000E+00)

Eigenvalue( 3) = (-9.9412E-02,-4.0079E-01)

Eigenvector( 3)
(-1.9330E-01,-2.5463E-01)
( 2.5186E-01, 5.2240E-01)
( 9.7182E-02, 3.0838E-01)
( 6.7595E-01,-0.0000E+00)

Eigenvalue( 4) = -1.0066E-01

Eigenvector( 4)
1.2533E-01
3.3202E-01
5.9384E-01
7.2209E-01
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NAG Library Routine Document

F08NBF (DGEEVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NBF (DGEEVX) computes the eigenvalues and, optionally, the left and/or right eigenvectors for an
n by n real nonsymmetric matrix A.

Optionally, it also computes a balancing transformation to improve the conditioning of the eigenvalues
and eigenvectors, reciprocal condition numbers for the eigenvalues, and reciprocal condition numbers
for the right eigenvectors.

2 Specification

SUBROUTINE F08NBF (BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI, VL,
LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE,
RCONDV, WORK, LWORK, IWORK, INFO)

&
&

INTEGER N, LDA, LDVL, LDVR, ILO, IHI, LWORK, IWORK(*), INFO
REAL (KIND=nag_wp) A(LDA,*), WR(*), WI(*), VL(LDVL,*), VR(LDVR,*),

SCALE(*), ABNRM, RCONDE(*), RCONDV(*),
WORK(max(1,LWORK))

&
&

CHARACTER(1) BALANC, JOBVL, JOBVR, SENSE

The routine may be called by its LAPACK name dgeevx.

3 Description

The right eigenvector vj of A satisfies

Avj ¼ �jvj
where �j is the jth eigenvalue of A. The left eigenvector uj of A satisfies

uHj A ¼ �juHj

where uHj denotes the conjugate transpose of uj.

Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and
applying a diagonal similarity transformation DAD�1, where D is a diagonal matrix, with the aim of
making its rows and columns closer in norm and the condition numbers of its eigenvalues and
eigenvectors smaller. The computed reciprocal condition numbers correspond to the balanced matrix.
Permuting rows and columns will not change the condition numbers (in exact arithmetic) but diagonal
scaling will. For further explanation of balancing, see Section 4.8.1.2 of Anderson et al. (1999).

Following the optional balancing, the matrix A is first reduced to upper Hessenberg form by means of
unitary similarity transformations, and the QR algorithm is then used to further reduce the matrix to
upper triangular Schur form, T , from which the eigenvalues are computed. Optionally, the eigenvectors
of T are also computed and backtransformed to those of A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: BALANC – CHARACTER(1) Input

On entry: indicates how the input matrix should be diagonally scaled and/or permuted to improve
the conditioning of its eigenvalues.

BALANC ¼ N
Do not diagonally scale or permute.

BALANC ¼ P
Perform permutations to make the matrix more nearly upper triangular. Do not diagonally
scale.

BALANC ¼ S
Diagonally scale the matrix, i.e., replace A by DAD�1, where D is a diagonal matrix
chosen to make the rows and columns of A more equal in norm. Do not permute.

BALANC ¼ B
Both diagonally scale and permute A.

Computed reciprocal condition numbers will be for the matrix after balancing and/or permuting.
Permuting does not change condition numbers (in exact arithmetic), but balancing does.

Constraint: BALANC ¼ N , P , S or B .

2: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , the left eigenvectors of A are not computed.

If JOBVL ¼ V , the left eigenvectors of A are computed.

If SENSE ¼ E or B , JOBVL must be set to JOBVL ¼ V .

Constraint: JOBVL ¼ N or V .

3: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , the right eigenvectors of A are not computed.

If JOBVR ¼ V , the right eigenvectors of A are computed.

If SENSE ¼ E or B , JOBVR must be set to JOBVR ¼ V .

Constraint: JOBVR ¼ N or V .

4: SENSE – CHARACTER(1) Input

On entry: determines which reciprocal condition numbers are computed.

SENSE ¼ N
None are computed.

SENSE ¼ E
Computed for eigenvalues only.

SENSE ¼ V
Computed for right eigenvectors only.

SENSE ¼ B
Computed for eigenvalues and right eigenvectors.

If SENSE ¼ E or B , both left and right eigenvectors must also be computed (JOBVL ¼ V and
JOBVR ¼ V ).

Constraint: SENSE ¼ N , E , V or B .
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5: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A has been overwritten. If JOBVL ¼ V or JOBVR ¼ V , A contains the real Schur
form of the balanced version of the input matrix A.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NBF
(DGEEVX) is called.

Constraint: LDA � max 1;Nð Þ.

8: WRð�Þ – REAL (KIND=nag_wp) array Output
9: WIð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the arrays WR and WI must be at least max 1;Nð Þ.
On exit: WR and WI contain the real and imaginary parts, respectively, of the computed
eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue
having the positive imaginary part first.

10: VLðLDVL; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least max 1;Nð Þ if JOBVL ¼ V , and at
least 1 otherwise.

On exit: if JOBVL ¼ V , the left eigenvectors uj are stored one after another in the columns of
VL, in the same order as their corresponding eigenvalues. If the jth eigenvalue is real, then
uj ¼ VLð:; jÞ, the jth column of VL. If the jth and jþ 1ð Þst eigenvalues form a complex
conjugate pair, then uj ¼ VLð:; jÞ þ i� VLð:; jþ 1Þ and ujþ1 ¼ VLð:; jÞ � i� VLð:; jþ 1Þ.
If JOBVL ¼ N , VL is not referenced.

11: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08NBF (DGEEVX) is called.

Constraints:

if JOBVL ¼ V , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

12: VRðLDVR; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least max 1;Nð Þ if JOBVR ¼ V , and at
least 1 otherwise.

On exit: if JOBVR ¼ V , the right eigenvectors vj are stored one after another in the columns of
VR, in the same order as their corresponding eigenvalues. If the jth eigenvalue is real, then
vj ¼ VRð:; jÞ, the jth column of VR. If the jth and jþ 1ð Þst eigenvalues form a complex
conjugate pair, then vj ¼ VRð:; jÞ þ i� VRð:; jþ 1Þ and vjþ1 ¼ VRð:; jÞ � i� VRð:; jþ 1Þ.
If JOBVR ¼ N , VR is not referenced.
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13: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08NBF (DGEEVX) is called.

Constraints:

if JOBVR ¼ V , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

14: ILO – INTEGER Output
15: IHI – INTEGER Output

On exit: ILO and IHI are integer values determined when A was balanced. The balanced A has
aij ¼ 0 if i > j and j ¼ 1; 2; . . . ; ILO� 1 or i ¼ IHIþ 1; . . . ;N.

16: SCALEð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array SCALE must be at least max 1;Nð Þ.
On exit: details of the permutations and scaling factors applied when balancing A.

If pj is the index of the row and column interchanged with row and column j, and dj is the
scaling factor applied to row and column j, then

SCALEðjÞ ¼ pj , for j ¼ 1; 2; . . . ; ILO� 1;

SCALEðjÞ ¼ dj , for j ¼ ILO; . . . ; IHI;

SCALEðjÞ ¼ pj , for j ¼ IHIþ 1; . . . ;N.

The order in which the interchanges are made is N to IHIþ 1, then 1 to ILO� 1.

17: ABNRM – REAL (KIND=nag_wp) Output

On exit: the 1-norm of the balanced matrix (the maximum of the sum of absolute values of
elements of any column).

18: RCONDEð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RCONDE must be at least max 1;Nð Þ.
On exit: RCONDEðjÞ is the reciprocal condition number of the jth eigenvalue.

19: RCONDVð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RCONDV must be at least max 1;Nð Þ.
On exit: RCONDVðjÞ is the reciprocal condition number of the jth right eigenvector.

20: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

21: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08NBF (DGEEVX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum,
increase LWORK by, say, N� nb, where nb is the optimal block size for F08NEF (DGEHRD).
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Constraints:

if JOBVL ¼ N and JOBVR ¼ N ,

if SENSE ¼ N , LWORK � max 1; 2� Nð Þ;
otherwise LWORK � max 1;N2 þ 6� N

� �
.;

if JOBVL ¼ V or JOBVR ¼ V ,

if SENSE ¼ N or E , LWORK � max 1; 3� Nð Þ;
otherwise LWORK � max 1;N2 þ 6� N

� �
..

22: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least max 1; 2� N� 1ð Þ.
If SENSE ¼ N or E , IWORK is not referenced.

23: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors or
condition numbers have been computed; elements 1 : ILO� 1 and iþ 1 : N of WR and WI
contain eigenvalues which have converged.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.8 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08NBF (DGEEVX) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08NBF (DGEEVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Each eigenvector is normalized to have Euclidean norm equal to unity and the element of largest
absolute value real.

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08NPF (ZGEEVX).

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NBF
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10 Example

This example finds all the eigenvalues and right eigenvectors of the matrix

A ¼
0:35 0:45 �0:14 �0:17
0:09 0:07 �0:54 0:35
�0:44 �0:33 �0:03 0:17
0:25 �0:32 �0:13 0:11

0B@
1CA;

together with estimates of the condition number and forward error bounds for each eigenvalue and
eigenvector. The option to balance the matrix is used. In order to compute the condition numbers of the
eigenvalues, the left eigenvectors also have to be computed, but they are not printed out in this
example.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08nbfe

! F08NBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgeevx, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: eig
Real (Kind=nag_wp) :: abnrm, eps, tol
Integer :: i, ihi, ilo, info, j, k, lda, ldvl, &

ldvr, lwork, n
Logical :: pair

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), rconde(:), rcondv(:), &

scale(:), vl(:,:), vr(:,:), wi(:), &
work(:), wr(:)

Real (Kind=nag_wp) :: dummy(1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, max, maxloc, nint

! .. Executable Statements ..
Write (nout,*) ’F08NBF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldvl = n
ldvr = n
lwork = (2+nb)*n
Allocate (a(lda,n),rconde(n),rcondv(n),scale(n),vl(ldvl,n),vr(ldvr,n), &

wi(n),wr(n),iwork(2*n-2))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dgeevx is f08nbf
Call dgeevx(’Balance’,’Vectors (left)’,’Vectors (right)’, &

’Both reciprocal condition numbers’,n,a,lda,wr,wi,vl,ldvl,vr,ldvr,ilo, &
ihi,scale,abnrm,rconde,rcondv,dummy,lwork,iwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+2)*n,nint(dummy(1)))
Allocate (work(lwork))

! Read the matrix A from data file

F08NBF NAG Library Manual
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Read (nin,*)(a(i,1:n),i=1,n)

! Solve the eigenvalue problem
! The NAG name equivalent of dgeevx is f08nbf

Call dgeevx(’Balance’,’Vectors (left)’,’Vectors (right)’, &
’Both reciprocal condition numbers’,n,a,lda,wr,wi,vl,ldvl,vr,ldvr,ilo, &
ihi,scale,abnrm,rconde,rcondv,work,lwork,iwork,info)

If (info==0) Then

! Compute the machine precision
eps = x02ajf()
tol = eps*abnrm
pair = .False.

! Print the eigenvalues and vectors, and associated condition
! number and bounds

Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,*)
Write (nout,*) ’ Eigenvalue rcond error’

Do j = 1, n

! Print information on j-th eigenvalue

If (wi(j)==0.0_nag_wp) Then
If (rconde(j)>0.0_nag_wp) Then

If (tol/rconde(j)<10.0_nag_wp*eps) Then
Write (nout,99999) j, wr(j), rconde(j), ’-’

Else
Write (nout,99998) j, wr(j), rconde(j), tol/rconde(j)

End If
Else

Write (nout,99998) j, wr(j), rconde(j), ’Inf’
End If

Else
If (rconde(j)>0.0_nag_wp) Then

If (tol/rconde(j)<10.0_nag_wp*eps) Then
Write (nout,99997) j, wr(j), wi(j), rconde(j), ’-’

Else
Write (nout,99996) j, wr(j), wi(j), rconde(j), tol/rconde(j)

End If
Else

Write (nout,99997) j, wr(j), wi(j), rconde(j), ’Inf’
End If

End If
End Do

Write (nout,*)
Write (nout,*) ’Eigenvectors’
Write (nout,*)
Write (nout,*) ’ Eigenvector rcond error’

Do j = 1, n

! Print information on j-th eigenvector
Write (nout,*)

If (wi(j)==0.0E0_nag_wp) Then
! Make real eigenvectors have positive first entry

If (vr(1,j)<0.0_nag_wp) Then
vr(1:n,j) = -vr(1:n,j)

End If
If (rcondv(j)>0.0_nag_wp) Then

If (tol/rcondv(j)<10.0_nag_wp*eps) Then
Write (nout,99999) j, vr(1,j), rcondv(j), ’-’

Else
Write (nout,99998) j, vr(1,j), rcondv(j), tol/rcondv(j)
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End If
Else

Write (nout,99998) j, vr(1,j), rcondv(j), ’Inf’
End If
Write (nout,99995) vr(2:n,j)

Else
If (pair) Then

eig = cmplx(vr(1,j-1),-vr(1,j),kind=nag_wp)
Else

! Make largest eigenvector element have positive first entry
work(1:n) = vr(1:n,j)**2 + vr(1:n,j+1)**2
k = maxloc(work(1:n),1)
If (vr(k,j)<0.0_nag_wp) Then

vr(1:n,j) = -vr(1:n,j)
End If
eig = cmplx(vr(1,j),vr(1,j+1),kind=nag_wp)

End If
If (rcondv(j)>0.0_nag_wp) Then

If (tol/rcondv(j)<10.0_nag_wp*eps) Then
Write (nout,99997) j, eig, rcondv(j), ’-’

Else
Write (nout,99996) j, eig, rcondv(j), tol/rcondv(j)

End If
Else

Write (nout,99997) j, eig, rcondv(j), ’Inf’
End If
If (pair) Then

Write (nout,99994)(vr(i,j-1),-vr(i,j),i=2,n)
Else

Write (nout,99994)(vr(i,j),vr(i,j+1),i=2,n)
End If
pair = .Not. pair

End If
End Do
Write (nout,*)
Write (nout,*) ’Errors below 10*machine precision are not displayed’

Else
Write (nout,*)
Write (nout,99993) ’Failure in DGEEVX. INFO = ’, info

End If

99999 Format (1X,I2,2X,1P,E11.4,14X,0P,F7.4,4X,A)
99998 Format (1X,I2,2X,1P,E11.4,11X,0P,F7.4,1X,1P,E8.1)
99997 Format (1X,I2,1X,’(’,1P,E11.4,’,’,E11.4,’)’,1X,0P,F7.4,4X,A)
99996 Format (1X,I2,1X,’(’,1P,E11.4,’,’,E11.4,’)’,1X,0P,F7.4,1X,1P,E8.1)
99995 Format (1X,4X,1P,E11.4)
99994 Format (1X,3X,’(’,1P,E11.4,’,’,E11.4,’)’)
99993 Format (1X,A,I4)

End Program f08nbfe

10.2 Program Data

F08NBF Example Program Data
4 :Value of N
0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35

-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A

10.3 Program Results

F08NBF Example Program Results

Eigenvalues

Eigenvalue rcond error
1 7.9948E-01 0.9936 -
2 (-9.9412E-02, 4.0079E-01) 0.7027 -
3 (-9.9412E-02,-4.0079E-01) 0.7027 -
4 -1.0066E-01 0.5710 -
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Eigenvectors

Eigenvector rcond error

1 6.5509E-01 0.6252 -
5.2363E-01

-5.3622E-01
9.5607E-02

2 (-1.9330E-01, 2.5463E-01) 0.3996 -
( 2.5186E-01,-5.2240E-01)
( 9.7182E-02,-3.0838E-01)
( 6.7595E-01, 0.0000E+00)

3 (-1.9330E-01,-2.5463E-01) 0.3996 -
( 2.5186E-01, 5.2240E-01)
( 9.7182E-02, 3.0838E-01)
( 6.7595E-01,-0.0000E+00)

4 1.2533E-01 0.3125 -
3.3202E-01
5.9384E-01
7.2209E-01

Errors below 10*machine precision are not displayed
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NAG Library Routine Document

F08NEF (DGEHRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NEF (DGEHRD) reduces a real general matrix to Hessenberg form.

2 Specification

SUBROUTINE F08NEF (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER N, ILO, IHI, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dgehrd.

3 Description

F08NEF (DGEHRD) reduces a real general matrix A to upper Hessenberg form H by an orthogonal
similarity transformation: A ¼ QHQT.

The matrix Q is not formed explicitly, but is represented as a product of elementary reflectors (see the
F08 Chapter Introduction for details). Routines are provided to work with Q in this representation (see
Section 9).

The routine can take advantage of a previous call to F08NHF (DGEBAL), which may produce a matrix
with the structure:

A11 A12 A13
A22 A23

A33

0@ 1A
where A11 and A33 are upper triangular. If so, only the central diagonal block A22, in rows and columns
ilo to ihi, needs to be reduced to Hessenberg form (the blocks A12 and A23 will also be affected by the
reduction). Therefore the values of ilo and ihi determined by F08NHF (DGEBAL) can be supplied to the
routine directly. If F08NHF (DGEBAL) has not previously been called however, then ilo must be set to
1 and ihi to n.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: ILO – INTEGER Input
3: IHI – INTEGER Input

On entry: if A has been output by F08NHF (DGEBAL), then ILO and IHI must contain the
values returned by that routine. Otherwise, ILO must be set to 1 and IHI to N.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NEF
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Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n general matrix A.

On exit: A is overwritten by the upper Hessenberg matrix H and details of the orthogonal matrix
Q.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NEF
(DGEHRD) is called.

Constraint: LDA � max 1;Nð Þ.

6: TAUð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;N� 1ð Þ.
On exit: further details of the orthogonal matrix Q.

7: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08NEF (DGEHRD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.
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7 Accuracy

The computed Hessenberg matrix H is exactly similar to a nearby matrix Aþ Eð Þ, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of H themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues, eigenvectors or Schur
factorization.

8 Parallelism and Performance

F08NEF (DGEHRD) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08NEF (DGEHRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3q

2 2q þ 3nð Þ , where q ¼ ihi � ilo; if
ilo ¼ 1 and ihi ¼ n, the number is approximately 10

3n
3 .

To form the orthogonal matrix Q F08NEF (DGEHRD) may be followed by a call to F08NFF
(DORGHR):

CALL DORGHR(N,ILO,IHI,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an m by n real matrix C F08NEF (DGEHRD) may be followed by a call to F08NGF
(DORMHR). For example,

CALL DORMHR(’Left’,’No Transpose’,M,N,ILO,IHI,A,LDA,TAU,C,LDC, &
WORK,LWORK,INFO)

forms the matrix product QC.

The complex analogue of this routine is F08NSF (ZGEHRD).

10 Example

This example computes the upper Hessenberg form of the matrix A, where

A ¼
0:35 0:45 �0:14 �0:17
0:09 0:07 �0:54 0:35
�0:44 �0:33 �0:03 0:17
0:25 �0:32 �0:13 0:11

0B@
1CA:

10.1 Program Text

Program f08nefe

! F08NEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgehrd, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NEF
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! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, lwork, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F08NEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),tau(n-1),work(lwork))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Reduce A to upper Hessenberg form

! The NAG name equivalent of dgehrd is f08nef
Call dgehrd(n,1,n,a,lda,tau,work,lwork,info)

! Set the elements below the first subdiagonal to zero

Do i = 1, n - 2
a(i+2:n,i) = zero

End Do

! Print upper Hessenberg form

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Upper Hessenberg form’,ifail)

End Program f08nefe

10.2 Program Data

F08NEF Example Program Data
4 :Value of N
0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35

-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A

10.3 Program Results

F08NEF Example Program Results

Upper Hessenberg form
1 2 3 4

1 0.3500 -0.1160 -0.3886 -0.2942
2 -0.5140 0.1225 0.1004 0.1126
3 0.0000 0.6443 -0.1357 -0.0977
4 0.0000 0.0000 0.4262 0.1632
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NAG Library Routine Document

F08NFF (DORGHR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NFF (DORGHR) generates the real orthogonal matrix Q which was determined by F08NEF
(DGEHRD) when reducing a real general matrix A to Hessenberg form.

2 Specification

SUBROUTINE F08NFF (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER N, ILO, IHI, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name dorghr.

3 Description

F08NFF (DORGHR) is intended to be used following a call to F08NEF (DGEHRD), which reduces a
real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation:
A ¼ QHQT. F08NEF (DGEHRD) represents the matrix Q as a product of ihi � ilo elementary
reflectors. Here ilo and ihi are values determined by F08NHF (DGEBAL) when balancing the matrix; if
the matrix has not been balanced, ilo ¼ 1 and ihi ¼ n.
This routine may be used to generate Q explicitly as a square matrix. Q has the structure:

Q ¼
I 0 0
0 Q22 0
0 0 I

0@ 1A
where Q22 occupies rows and columns ilo to ihi.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix Q.

Constraint: N � 0.

2: ILO – INTEGER Input
3: IHI – INTEGER Input

On entry: these must be the same arguments ILO and IHI, respectively, as supplied to F08NEF
(DGEHRD).

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NFF

Mark 26 F08NFF.1



4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08NEF
(DGEHRD).

On exit: the n by n orthogonal matrix Q.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NFF
(DORGHR) is called.

Constraint: LDA � max 1;Nð Þ.

6: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;N� 1ð Þ.
On entry: further details of the elementary reflectors, as returned by F08NEF (DGEHRD).

7: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08NFF (DORGHR) is called, unless LWORK ¼ �1, in which case a workspace query is
assumed and the routine only calculates the optimal dimension of WORK (using the formula
given below).

Suggested value: for optimal performance LWORK should be at least IHI� ILOð Þ � nb, where
nb is the block size.

Constraint: LWORK � max 1; IHI� ILOð Þ or LWORK ¼ �1.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08NFF (DORGHR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.
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F08NFF (DORGHR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4
3q

3 , where q ¼ ihi � ilo.

The complex analogue of this routine is F08NTF (ZUNGHR).

10 Example

This example computes the Schur factorization of the matrix A, where

A ¼
0:35 0:45 �0:14 �0:17
0:09 0:07 �0:54 0:35
�0:44 �0:33 �0:03 0:17
0:25 �0:32 �0:13 0:11

0B@
1CA:

Here A is general and must first be reduced to Hessenberg form by F08NEF (DGEHRD). The program
then calls F08NFF (DORGHR) to form Q, and passes this matrix to F08PEF (DHSEQR) which
computes the Schur factorization of A.

10.1 Program Text

Program f08nffe

! F08NFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgehrd, dgemm, dhseqr, dlange => f06raf, dorghr, &

nag_wp, x02ajf, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: alpha, beta, norm
Integer :: i, ifail, info, lda, ldc, ldd, ldz, &

lwork, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), d(:,:), tau(:), &
wi(:), work(:), wr(:), z(:,:)

! .. Executable Statements ..
Write (nout,*) ’F08NFF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldz = n
ldc = n
ldd = n
lwork = 64*(n-1)
Allocate (a(lda,n),c(ldc,n),d(ldd,n),tau(n),wi(n),work(lwork),wr(n), &

z(ldz,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Copy A into D.
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d(1:n,1:n) = a(1:n,1:n)

Write (nout,*)
Flush (nout)

! Print Matrix A
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Matrix A’,ifail)

Write (nout,*)
Flush (nout)

! Reduce A to upper Hessenberg form H = (Q**T)*A*Q
! The NAG name equivalent of dgehrd is f08nef

Call dgehrd(n,1,n,a,lda,tau,work,lwork,info)

! Copy A into Z
z(1:n,1:n) = a(1:n,1:n)

! Form Q explicitly, storing the result in Z
! The NAG name equivalent of dorghr is f08nff

Call dorghr(n,1,n,z,ldz,tau,work,lwork,info)

! Calculate the Schur factorization of H = Y*T*(Y**T) and form
! Q*Y explicitly, storing the result in Z

! Note that A = Z*T*(Z**T), where Z = Q*Y
! The NAG name equivalent of dhseqr is f08pef

Call dhseqr(’Schur form’,’Vectors’,n,1,n,a,lda,wr,wi,z,ldz,work,lwork, &
info)

! Compute A - Z*T*Z^T from the factorization of A and store in matrix D.
! The NAG name equivalent of dgemm is f06yaf.

alpha = 1.0_nag_wp
beta = 0.0_nag_wp
Call dgemm(’N’,’N’,n,n,n,alpha,z,ldz,a,lda,beta,c,ldc)
alpha = -1.0_nag_wp
beta = 1.0_nag_wp
Call dgemm(’N’,’T’,n,n,n,alpha,c,ldc,z,ldz,beta,d,ldd)

! Find norm of difference matrix D and warn if it is too large;
! f06raf is the NAG name equivalent of the LAPACK auxiliary dlange

norm = dlange(’O’,ldd,n,d,ldd,work)
If (norm>x02ajf()**0.8_nag_wp) Then

Write (nout,*) ’Norm of A-(Z*T*Z^T) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’

Else
! Print eigenvalues.

Write (nout,*) ’Eigenvalues’
Write (nout,99999)(’ (’,wr(i),’,’,wi(i),’)’,i=1,n)

End If

99999 Format (1X,A,F8.4,A,F8.4,A)

End Program f08nffe

10.2 Program Data

F08NFF Example Program Data
4 :Value of N
0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35

-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A
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10.3 Program Results

F08NFF Example Program Results

Matrix A
1 2 3 4

1 0.3500 0.4500 -0.1400 -0.1700
2 0.0900 0.0700 -0.5400 0.3500
3 -0.4400 -0.3300 -0.0300 0.1700
4 0.2500 -0.3200 -0.1300 0.1100

Eigenvalues
( 0.7995, 0.0000)
( -0.0994, 0.4008)
( -0.0994, -0.4008)
( -0.1007, 0.0000)
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NAG Library Routine Document

F08NGF (DORMHR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NGF (DORMHR) multiplies an arbitrary real matrix C by the real orthogonal matrix Q which was
determined by F08NEF (DGEHRD) when reducing a real general matrix to Hessenberg form.

2 Specification

SUBROUTINE F08NGF (SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

&

INTEGER M, N, ILO, IHI, LDA, LDC, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name dormhr.

3 Description

F08NGF (DORMHR) is intended to be used following a call to F08NEF (DGEHRD), which reduces a
real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation:
A ¼ QHQT. F08NEF (DGEHRD) represents the matrix Q as a product of ihi � ilo elementary
reflectors. Here ilo and ihi are values determined by F08NHF (DGEBAL) when balancing the matrix; if
the matrix has not been balanced, ilo ¼ 1 and ihi ¼ n.
This routine may be used to form one of the matrix products

QC;QTC;CQ or CQT;

overwriting the result on C (which may be any real rectangular matrix).

A common application of this routine is to transform a matrix V of eigenvectors of H to the matrix QV
of eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QT is to be applied to C.

SIDE ¼ L
Q or QT is applied to C from the left.

SIDE ¼ R
Q or QT is applied to C from the right.

Constraint: SIDE ¼ L or R .
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2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QT is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ T
QT is applied to C.

Constraint: TRANS ¼ N or T .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C; m is also the order of Q if SIDE ¼ L .

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C; n is also the order of Q if SIDE ¼ R .

Constraint: N � 0.

5: ILO – INTEGER Input
6: IHI – INTEGER Input

On entry: these must be the same arguments ILO and IHI, respectively, as supplied to F08NEF
(DGEHRD).

Constraints:

if SIDE ¼ L and M > 0, 1 � ILO � IHI � M;
if SIDE ¼ L and M ¼ 0, ILO ¼ 1 and IHI ¼ 0;
if SIDE ¼ R and N > 0, 1 � ILO � IHI � N;
if SIDE ¼ R and N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: details of the vectors which define the elementary reflectors, as returned by F08NEF
(DGEHRD).

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NGF
(DORMHR) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

9: TAUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;M� 1ð Þ if SIDE ¼ L and at least
max 1;N� 1ð Þ if SIDE ¼ R .

On entry: further details of the elementary reflectors, as returned by F08NEF (DGEHRD).

10: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.
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On exit: C is overwritten by QC or QTC or CQ or CQT as specified by SIDE and TRANS.

11: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08NGF
(DORMHR) is called.

Constraint: LDC � max 1;Mð Þ.

12: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08NGF (DORMHR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08NGF (DORMHR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08NGF (DORMHR) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately 2nq2 if SIDE ¼ L and 2mq2 if
SIDE ¼ R , where q ¼ ihi � ilo.
The complex analogue of this routine is F08NUF (ZUNMHR).

10 Example

This example computes all the eigenvalues of the matrix A, where

A ¼
0:35 0:45 �0:14 �0:17
0:09 0:07 �0:54 0:35
�0:44 �0:33 �0:03 0:17
0:25 �0:32 �0:13 0:11

0B@
1CA;

and those eigenvectors which correspond to eigenvalues � such that Re �ð Þ < 0. Here A is general and
must first be reduced to upper Hessenberg form H by F08NEF (DGEHRD). The program then calls
F08PEF (DHSEQR) to compute the eigenvalues, and F08PKF (DHSEIN) to compute the required
eigenvectors of H by inverse iteration. Finally F08NGF (DORMHR) is called to transform the
eigenvectors of H back to eigenvectors of the original matrix A.

10.1 Program Text

Program f08ngfe

! F08NGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, dgehrd, dhsein, dhseqr, dormhr, &

nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: eig, eig1
Real (Kind=nag_wp) :: r, thresh
Integer :: i, ifail, info, j, k, l, lda, ldc, &

ldh, ldvl, ldz, lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), h(:,:), tau(:), &
vl(:,:), wi(:), work(:), wr(:), &
z(:,:)

Integer, Allocatable :: ifaill(:), ifailr(:)
Logical, Allocatable :: select(:)

! .. Intrinsic Procedures ..
Intrinsic :: aimag, cmplx, conjg, maxloc, real, &

sqrt, sum
! .. Executable Statements ..

Write (nout,*) ’F08NGF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
ldz = 1
lda = n
ldc = n
ldh = n
ldvl = n
lwork = 64*n
Allocate (a(lda,n),c(ldc,n),h(ldh,n),tau(n),vl(ldvl,n),wi(n), &

work(lwork),wr(n),z(ldz,1),ifaill(n),ifailr(n),select(n))

! Read A from data file
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Read (nin,*)(a(i,1:n),i=1,n)

Read (nin,*) thresh

! Reduce A to upper Hessenberg form H = (Q**T)*A*Q
! The NAG name equivalent of dgehrd is f08nef

Call dgehrd(n,1,n,a,lda,tau,work,lwork,info)

! Copy A to H
h(1:n,1:n) = a(1:n,1:n)

! Calculate the eigenvalues of H (same as A)
! The NAG name equivalent of dhseqr is f08pef

Call dhseqr(’Eigenvalues’,’No vectors’,n,1,n,h,ldh,wr,wi,z,ldz,work, &
lwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

Write (nout,*) ’Eigenvalues’
Write (nout,99999)(’ (’,wr(i),’,’,wi(i),’)’,i=1,n)

Do i = 1, n
select(i) = wr(i) < thresh

End Do

! Calculate the eigenvectors of H (as specified by SELECT),
! storing the result in C
! The NAG name equivalent of dhsein is f08pkf

Call dhsein(’Right’,’QR’,’No initial vectors’,select,n,a,lda,wr,wi,vl, &
ldvl,c,ldc,n,m,work,ifaill,ifailr,info)

! Calculate the eigenvectors of A = Q * (eigenvectors of H)
! The NAG name equivalent of dormhr is f08ngf

Call dormhr(’Left’,’No transpose’,n,m,1,n,a,lda,tau,c,ldc,work,lwork, &
info)

! Print eigenvectors

Write (nout,*)
Flush (nout)

! Normalize selected eigenvectors
j = 0
k = 1
Do While (k<=n)

If (select(k)) Then
j = j + 1
If (wi(k)==0.0_nag_wp) Then

! Normalize real eigenvector by making largest positive
Do i = 1, n

Call blas_damax_val(n,c(1,j),1,l,r)
If (c(l,j)<zero) Then

c(1:n,j) = -c(1:n,j)
End If

End Do
Else

! Normalize complex eigenvectors making largest element real
work(1:n) = c(1:n,j)**2 + c(1:n,j+1)**2
l = maxloc(work(1:n),1)
eig1 = cmplx(c(l,j),c(l,j+1),kind=nag_wp)
eig1 = conjg(eig1)/sqrt(work(l)*sum(work(1:n)))
Do i = 1, n

eig = cmplx(c(i,j),c(i,j+1),kind=nag_wp)
eig = eig*eig1
c(i,j) = real(eig)
c(i,j+1) = aimag(eig)

End Do
c(l,j+1) = 0.0_nag_wp
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j = j + 1
k = k + 1

End If
End If
k = k + 1

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,c,ldc,’Contents of array C’,ifail)

End If

99999 Format (1X,A,F8.4,A,F8.4,A)
End Program f08ngfe

10.2 Program Data

F08NGF Example Program Data
4 :Value of N
0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35

-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A
0.0 :Value of THRESH

10.3 Program Results

F08NGF Example Program Results

Eigenvalues
( 0.7995, 0.0000)
( -0.0994, 0.4008)
( -0.0994, -0.4008)
( -0.1007, 0.0000)

Contents of array C
1 2 3

1 -0.1933 0.2546 0.1493
2 0.2519 -0.5224 0.3956
3 0.0972 -0.3084 0.7075
4 0.6760 0.0000 0.8603
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NAG Library Routine Document

F08NHF (DGEBAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NHF (DGEBAL) balances a real general matrix in order to improve the accuracy of computed
eigenvalues and/or eigenvectors.

2 Specification

SUBROUTINE F08NHF (JOB, N, A, LDA, ILO, IHI, SCALE, INFO)

INTEGER N, LDA, ILO, IHI, INFO
REAL (KIND=nag_wp) A(LDA,*), SCALE(N)
CHARACTER(1) JOB

The routine may be called by its LAPACK name dgebal.

3 Description

F08NHF (DGEBAL) balances a real general matrix A. The term ‘balancing’ covers two steps, each of
which involves a similarity transformation of A. The routine can perform either or both of these steps.

1. The routine first attempts to permute A to block upper triangular form by a similarity
transformation:

PAPT ¼ A0 ¼
A011 A012 A013
0 A022 A023
0 0 A033

0@ 1A
where P is a permutation matrix, and A011 and A

0
33 are upper triangular. Then the diagonal elements

of A011 and A033 are eigenvalues of A. The rest of the eigenvalues of A are the eigenvalues of the
central diagonal block A022, in rows and columns ilo to ihi. Subsequent operations to compute the
eigenvalues of A (or its Schur factorization) need only be applied to these rows and columns; this
can save a significant amount of work if ilo > 1 and ihi < n. If no suitable permutation exists (as is
often the case), the routine sets ilo ¼ 1 and ihi ¼ n, and A022 is the whole of A.

2. The routine applies a diagonal similarity transformation to A0, to make the rows and columns of
A022 as close in norm as possible:

A00 ¼ DA0D�1 ¼
I 0 0
0 D22 0
0 0 I

0@ 1A A011 A012 A013
0 A022 A023
0 0 A033

0@ 1A I 0 0
0 D�122 0
0 0 I

0@ 1A:
This scaling can reduce the norm of the matrix (i.e., A0022

�� �� < A022
�� ��) and hence reduce the effect

of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether A is to be permuted and/or scaled (or neither).

JOB ¼ N
A is neither permuted nor scaled (but values are assigned to ILO, IHI and SCALE).

JOB ¼ P
A is permuted but not scaled.

JOB ¼ S
A is scaled but not permuted.

JOB ¼ B
A is both permuted and scaled.

Constraint: JOB ¼ N , P , S or B .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A is overwritten by the balanced matrix. If JOB ¼ N , A is not referenced.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NHF
(DGEBAL) is called.

Constraint: LDA � max 1;Nð Þ.

5: ILO – INTEGER Output
6: IHI – INTEGER Output

On exit: the values ilo and ihi such that on exit Aði; jÞ is zero if i > j and 1 � j < ilo or
ihi < i � n.
If JOB ¼ N or S , ilo ¼ 1 and ihi ¼ n.

7: SCALEðNÞ – REAL (KIND=nag_wp) array Output

On exit: details of the permutations and scaling factors applied to A. More precisely, if pj is the
index of the row and column interchanged with row and column j and dj is the scaling factor
used to balance row and column j then

SCALEðjÞ ¼
pj; j ¼ 1; 2; . . . ; ilo � 1
dj; j ¼ ilo; ilo þ 1; . . . ; ihi and
pj; j ¼ ihi þ 1; ihi þ 2; . . . ; n:

8<:
The order in which the interchanges are made is n to ihi þ 1 then 1 to ilo � 1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The errors are negligible.

8 Parallelism and Performance

F08NHF (DGEBAL) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If the matrix A is balanced by F08NHF (DGEBAL), then any eigenvectors computed subsequently are
eigenvectors of the matrix A00 (see Section 3) and hence F08NJF (DGEBAK) must then be called to
transform them back to eigenvectors of A.

If the Schur vectors of A are required, then this routine must not be called with JOB ¼ S or B ,
because then the balancing transformation is not orthogonal. If this routine is called with JOB ¼ P ,
then any Schur vectors computed subsequently are Schur vectors of the matrix A00, and F08NJF
(DGEBAK) must be called (with SIDE ¼ R ) to transform them back to Schur vectors of A.

The total number of floating-point operations is approximately proportional to n2.

The complex analogue of this routine is F08NVF (ZGEBAL).

10 Example

This example computes all the eigenvalues and right eigenvectors of the matrix A, where

A ¼
5:14 0:91 0:00 �32:80
0:91 0:20 0:00 34:50
1:90 0:80 �0:40 �3:00
�0:33 0:35 0:00 0:66

0B@
1CA:

The program first calls F08NHF (DGEBAL) to balance the matrix; it then computes the Schur
factorization of the balanced matrix, by reduction to Hessenberg form and the QR algorithm. Then it
calls F08QKF (DTREVC) to compute the right eigenvectors of the balanced matrix, and finally calls
F08NJF (DGEBAK) to transform the eigenvectors back to eigenvectors of the original matrix A.

10.1 Program Text

Program f08nhfe

! F08NHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, dgebak, dgebal, dgehrd, dhseqr, &

dnrm2, dorghr, dtrevc, nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
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! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, ifail, ihi, ilo, info, k, lda, &

ldh, ldvl, ldvr, lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), h(:,:), scale(:), tau(:), &
vl(:,:), vr(:,:), wi(:), work(:), &
wr(:)

Logical :: select(1)
! .. Executable Statements ..

Write (nout,*) ’F08NHF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
ldvl = 1
lda = n
ldh = n
ldvr = n
lwork = 64*n
Allocate (a(lda,n),h(ldh,n),scale(n),tau(n),vl(ldvl,1),vr(ldvr,n),wi(n), &

work(lwork),wr(n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Balance A
! The NAG name equivalent of dgebal is f08nhf

Call dgebal(’Both’,n,a,lda,ilo,ihi,scale,info)

! Reduce A to upper Hessenberg form H = (Q**T)*A*Q
! The NAG name equivalent of dgehrd is f08nef

Call dgehrd(n,ilo,ihi,a,lda,tau,work,lwork,info)

! Copy A to H and VR
h(1:n,1:n) = a(1:n,1:n)
vr(1:n,1:n) = a(1:n,1:n)

! Form Q explicitly, storing the result in VR
! The NAG name equivalent of dorghr is f08nff

Call dorghr(n,1,n,vr,ldvr,tau,work,lwork,info)

! Calculate the eigenvalues and Schur factorization of A
! The NAG name equivalent of dhseqr is f08pef

Call dhseqr(’Schur form’,’Vectors’,n,ilo,ihi,h,ldh,wr,wi,vr,ldvr,work, &
lwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

Write (nout,*) ’Eigenvalues’
Write (nout,99999)(’ (’,wr(i),’,’,wi(i),’)’,i=1,n)

! Calculate the eigenvectors of A, storing the result in VR

! The NAG name equivalent of dtrevc is f08qkf
Call dtrevc(’Right’,’Backtransform’,select,n,h,ldh,vl,ldvl,vr,ldvr,n, &

m,work,info)

! The NAG name equivalent of dgebak is f08njf
Call dgebak(’Both’,’Right’,n,ilo,ihi,scale,m,vr,ldvr,info)

! Print eigenvectors

Write (nout,*)
Flush (nout)

! Normalize the eigenvectors, largest positive
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Do i = 1, m
Call blas_damax_val(n,vr(1,i),1,k,r)
If (vr(k,i)<zero) Then

vr(1:n,i) = -vr(1:n,i)
End If
r = dnrm2(n,vr(1,i),1)
vr(1:n,i) = vr(1:n,i)/r

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,vr,ldvr,’Contents of array VR’,ifail)

End If

99999 Format (1X,A,F8.4,A,F8.4,A)
End Program f08nhfe

10.2 Program Data

F08NHF Example Program Data
4 :Value of N

5.14 0.91 0.00 -32.80
0.91 0.20 0.00 34.50
1.90 0.80 -0.40 -3.00

-0.33 0.35 0.00 0.66 :End of matrix A

10.3 Program Results

F08NHF Example Program Results

Eigenvalues
( -0.4000, 0.0000)
( -4.0208, 0.0000)
( 3.0136, 0.0000)
( 7.0072, 0.0000)

Contents of array VR
1 2 3 4

1 0.0000 -0.4381 0.4654 0.9513
2 0.0000 0.8923 0.7888 -0.1714
3 1.0000 -0.0481 0.3981 0.2494
4 0.0000 -0.0976 0.0521 -0.0589
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NAG Library Routine Document

F08NJF (DGEBAK)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NJF (DGEBAK) transforms eigenvectors of a balanced matrix to those of the original real
nonsymmetric matrix.

2 Specification

SUBROUTINE F08NJF (JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)

INTEGER N, ILO, IHI, M, LDV, INFO
REAL (KIND=nag_wp) SCALE(*), V(LDV,*)
CHARACTER(1) JOB, SIDE

The routine may be called by its LAPACK name dgebak.

3 Description

F08NJF (DGEBAK) is intended to be used after a real nonsymmetric matrix A has been balanced by
F08NHF (DGEBAL), and eigenvectors of the balanced matrix A0022 have subsequently been computed.

For a description of balancing, see the document for F08NHF (DGEBAL). The balanced matrix A00 is
obtained as A00 ¼ DPAPTD�1, where P is a permutation matrix and D is a diagonal scaling matrix.
This routine transforms left or right eigenvectors as follows:

if x is a right eigenvector of A00, PTD�1x is a right eigenvector of A;

if y is a left eigenvector of A00, PTDy is a left eigenvector of A.

4 References

None.

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: this must be the same argument JOB as supplied to F08NHF (DGEBAL).

Constraint: JOB ¼ N , P , S or B .

2: SIDE – CHARACTER(1) Input

On entry: indicates whether left or right eigenvectors are to be transformed.

SIDE ¼ L
The left eigenvectors are transformed.

SIDE ¼ R
The right eigenvectors are transformed.

Constraint: SIDE ¼ L or R .
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3: N – INTEGER Input

On entry: n, the number of rows of the matrix of eigenvectors.

Constraint: N � 0.

4: ILO – INTEGER Input
5: IHI – INTEGER Input

On entry: the values ilo and ihi, as returned by F08NHF (DGEBAL).

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

6: SCALEð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array SCALE must be at least max 1;Nð Þ.
On entry: details of the permutations and/or the scaling factors used to balance the original real
nonsymmetric matrix, as returned by F08NHF (DGEBAL).

7: M – INTEGER Input

On entry: m, the number of columns of the matrix of eigenvectors.

Constraint: M � 0.

8: VðLDV; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;Mð Þ.
On entry: the matrix of left or right eigenvectors to be transformed.

On exit: the transformed eigenvectors.

9: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08NJF
(DGEBAK) is called.

Constraint: LDV � max 1;Nð Þ.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The errors are negligible.

8 Parallelism and Performance

F08NJF (DGEBAK) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately proportional to nm.

The complex analogue of this routine is F08NWF (ZGEBAK).

10 Example

See Section 10 in F08NHF (DGEBAL).

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NJF

Mark 26 F08NJF.3 (last)





NAG Library Routine Document

F08NNF (ZGEEV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NNF (ZGEEV) computes the eigenvalues and, optionally, the left and/or right eigenvectors for an n
by n complex nonsymmetric matrix A.

2 Specification

SUBROUTINE F08NNF (JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR, WORK,
LWORK, RWORK, INFO)

&

INTEGER N, LDA, LDVL, LDVR, LWORK, INFO
REAL (KIND=nag_wp) RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), W(*), VL(LDVL,*), VR(LDVR,*),

WORK(max(1,LWORK))
&

CHARACTER(1) JOBVL, JOBVR

The routine may be called by its LAPACK name zgeev.

3 Description

The right eigenvector vj of A satisfies

Avj ¼ �jvj
where �j is the jth eigenvalue of A. The left eigenvector uj of A satisfies

uHj A ¼ �juHj

where uHj denotes the conjugate transpose of uj.

The matrix A is first reduced to upper Hessenberg form by means of unitary similarity transformations,
and the QR algorithm is then used to further reduce the matrix to upper triangular Schur form, T , from
which the eigenvalues are computed. Optionally, the eigenvectors of T are also computed and
backtransformed to those of A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , the left eigenvectors of A are not computed.

If JOBVL ¼ V , the left eigenvectors of A are computed.

Constraint: JOBVL ¼ N or V .
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2: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , the right eigenvectors of A are not computed.

If JOBVR ¼ V , the right eigenvectors of A are computed.

Constraint: JOBVR ¼ N or V .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A has been overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NNF
(ZGEEV) is called.

Constraint: LDA � max 1;Nð Þ.

6: Wð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: contains the computed eigenvalues.

7: VLðLDVL; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least max 1;Nð Þ if JOBVL ¼ V , and at
least 1 otherwise.

On exit: if JOBVL ¼ V , the left eigenvectors uj are stored one after another in the columns of
VL, in the same order as their corresponding eigenvalues; that is uj ¼ VLð:; jÞ, the jth column of
VL.

If JOBVL ¼ N , VL is not referenced.

8: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08NNF (ZGEEV) is called.

Constraints:

if JOBVL ¼ V , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

9: VRðLDVR; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least max 1;Nð Þ if JOBVR ¼ V , and at
least 1 otherwise.

On exit: if JOBVR ¼ V , the right eigenvectors vj are stored one after another in the columns of
VR, in the same order as their corresponding eigenvalues; that is vj ¼ VRð:; jÞ, the jth column of
VR.

If JOBVR ¼ N , VR is not referenced.
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10: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08NNF (ZGEEV) is called.

Constraints:

if JOBVR ¼ V , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08NNF (ZGEEV) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK should be generally larger than the
minimum, say Nþ nb� N, where nb is the optimal block size for F08NSF (ZGEHRD).

Constraint: LWORK � max 1; 2� Nð Þ.

13: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1; 2� Nð Þ.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors have
been computed; elements iþ 1 : N of W contain eigenvalues which have converged.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.8 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08NNF (ZGEEV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F08NNF (ZGEEV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Each eigenvector is normalized to have Euclidean norm equal to unity and the element of largest
absolute value real.

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08NAF (DGEEV).

10 Example

This example finds all the eigenvalues and right eigenvectors of the matrix

A ¼
�3:97� 5:04i �4:11þ 3:70i �0:34þ 1:01i 1:29� 0:86i
0:34� 1:50i 1:52� 0:43i 1:88� 5:38i 3:36þ 0:65i
3:31� 3:85i 2:50þ 3:45i 0:88� 1:08i 0:64� 1:48i
�1:10þ 0:82i 1:81� 1:59i 3:25þ 1:33i 1:57� 3:44i

0B@
1CA:

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08nnfe

! F08NNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf, zgeev

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, info, lda, ldvr, lwork, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), vr(:,:), w(:), work(:)
Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: rwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08NNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldvr = n
Allocate (a(lda,n),vr(ldvr,n),w(n),rwork(2*n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zgeev is f08nnf
Call zgeev(’No left vectors’,’Vectors (right)’,n,a,lda,w,dummy,1,vr, &

ldvr,dummy,lwork,rwork,info)
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! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(dummy(1,1))))
Allocate (work(lwork))

! Read the matrix A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Compute the eigenvalues and right eigenvectors of A

! The NAG name equivalent of zgeev is f08nnf
Call zgeev(’No left vectors’,’Vectors (right)’,n,a,lda,w,dummy,1,vr, &

ldvr,work,lwork,rwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,n,vr,ldvr,’Eigenvectors’,ifail)

Else
Write (nout,*)
Write (nout,99998) ’Failure in ZGEEV. INFO = ’, info

End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
99998 Format (1X,A,I4)

End Program f08nnfe

10.2 Program Data

F08NNF Example Program Data

4 :Value of N

(-3.97, -5.04) (-4.11, 3.70) (-0.34, 1.01) ( 1.29, -0.86)
( 0.34, -1.50) ( 1.52, -0.43) ( 1.88, -5.38) ( 3.36, 0.65)
( 3.31, -3.85) ( 2.50, 3.45) ( 0.88, -1.08) ( 0.64, -1.48)
(-1.10, 0.82) ( 1.81, -1.59) ( 3.25, 1.33) ( 1.57, -3.44) :End of matrix A

10.3 Program Results

F08NNF Example Program Results

Eigenvalues
(-6.0004,-6.9998) (-5.0000, 2.0060) ( 7.9982,-0.9964) ( 3.0023,-3.9998)

Eigenvectors
1 2 3 4

1 0.8457 -0.3865 -0.1730 -0.0356
0.0000 0.1732 0.2669 -0.1782

2 -0.0177 -0.3539 0.6924 0.1264
0.3036 0.4529 0.0000 0.2666
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3 0.0875 0.6124 0.3324 0.0129
0.3115 0.0000 0.4960 -0.2966

4 -0.0561 -0.0859 0.2504 0.8898
-0.2906 -0.3284 -0.0147 0.0000
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NAG Library Routine Document

F08NPF (ZGEEVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NPF (ZGEEVX) computes the eigenvalues and, optionally, the left and/or right eigenvectors for an
n by n complex nonsymmetric matrix A.

Optionally, it also computes a balancing transformation to improve the conditioning of the eigenvalues
and eigenvectors, reciprocal condition numbers for the eigenvalues, and reciprocal condition numbers
for the right eigenvectors.

2 Specification

SUBROUTINE F08NPF (BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL, LDVL,
VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV,
WORK, LWORK, RWORK, INFO)

&
&

INTEGER N, LDA, LDVL, LDVR, ILO, IHI, LWORK, INFO
REAL (KIND=nag_wp) SCALE(*), ABNRM, RCONDE(*), RCONDV(*), RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), W(*), VL(LDVL,*), VR(LDVR,*),

WORK(max(1,LWORK))
&

CHARACTER(1) BALANC, JOBVL, JOBVR, SENSE

The routine may be called by its LAPACK name zgeevx.

3 Description

The right eigenvector vj of A satisfies

Avj ¼ �jvj
where �j is the jth eigenvalue of A. The left eigenvector uj of A satisfies

uHj A ¼ �juHj

where uHj denotes the conjugate transpose of uj.

Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and
applying a diagonal similarity transformation DAD�1, where D is a diagonal matrix, with the aim of
making its rows and columns closer in norm and the condition numbers of its eigenvalues and
eigenvectors smaller. The computed reciprocal condition numbers correspond to the balanced matrix.
Permuting rows and columns will not change the condition numbers (in exact arithmetic) but diagonal
scaling will. For further explanation of balancing, see Section 4.8.1.2 of Anderson et al. (1999).

Following the optional balancing, the matrix A is first reduced to upper Hessenberg form by means of
unitary similarity transformations, and the QR algorithm is then used to further reduce the matrix to
upper triangular Schur form, T , from which the eigenvalues are computed. Optionally, the eigenvectors
of T are also computed and backtransformed to those of A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: BALANC – CHARACTER(1) Input

On entry: indicates how the input matrix should be diagonally scaled and/or permuted to improve
the conditioning of its eigenvalues.

BALANC ¼ N
Do not diagonally scale or permute.

BALANC ¼ P
Perform permutations to make the matrix more nearly upper triangular. Do not diagonally
scale.

BALANC ¼ S
Diagonally scale the matrix, i.e., replace A by DAD�1, where D is a diagonal matrix
chosen to make the rows and columns of A more equal in norm. Do not permute.

BALANC ¼ B
Both diagonally scale and permute A.

Computed reciprocal condition numbers will be for the matrix after balancing and/or permuting.
Permuting does not change condition numbers (in exact arithmetic), but balancing does.

Constraint: BALANC ¼ N , P , S or B .

2: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , the left eigenvectors of A are not computed.

If JOBVL ¼ V , the left eigenvectors of A are computed.

If SENSE ¼ E or B , JOBVL must be set to JOBVL ¼ V .

Constraint: JOBVL ¼ N or V .

3: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , the right eigenvectors of A are not computed.

If JOBVR ¼ V , the right eigenvectors of A are computed.

If SENSE ¼ E or B , JOBVR must be set to JOBVR ¼ V .

Constraint: JOBVR ¼ N or V .

4: SENSE – CHARACTER(1) Input

On entry: determines which reciprocal condition numbers are computed.

SENSE ¼ N
None are computed.

SENSE ¼ E
Computed for eigenvalues only.

SENSE ¼ V
Computed for right eigenvectors only.

SENSE ¼ B
Computed for eigenvalues and right eigenvectors.

If SENSE ¼ E or B , both left and right eigenvectors must also be computed (JOBVL ¼ V and
JOBVR ¼ V ).

Constraint: SENSE ¼ N , E , V or B .
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5: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A has been overwritten. If JOBVL ¼ V or JOBVR ¼ V , A contains the Schur form of
the balanced version of the matrix A.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NPF
(ZGEEVX) is called.

Constraint: LDA � max 1;Nð Þ.

8: Wð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: contains the computed eigenvalues.

9: VLðLDVL; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least max 1;Nð Þ if JOBVL ¼ V , and at
least 1 otherwise.

On exit: if JOBVL ¼ V , the left eigenvectors uj are stored one after another in the columns of
VL, in the same order as their corresponding eigenvalues; that is uj ¼ VLð:; jÞ, the jth column of
VL.

If JOBVL ¼ N , VL is not referenced.

10: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08NPF (ZGEEVX) is called.

Constraints:

if JOBVL ¼ V , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

11: VRðLDVR; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least max 1;Nð Þ if JOBVR ¼ V , and at
least 1 otherwise.

On exit: if JOBVR ¼ V , the right eigenvectors vj are stored one after another in the columns of
VR, in the same order as their corresponding eigenvalues; that is vj ¼ VRð:; jÞ, the jth column of
VR.

If JOBVR ¼ N , VR is not referenced.

12: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08NPF (ZGEEVX) is called.
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Constraints:

if JOBVR ¼ V , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

13: ILO – INTEGER Output
14: IHI – INTEGER Output

On exit: ILO and IHI are integer values determined when A was balanced. The balanced A has
aij ¼ 0 if i > j and j ¼ 1; 2; . . . ; ILO� 1 or i ¼ IHIþ 1; . . . ;N.

15: SCALEð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array SCALE must be at least max 1;Nð Þ.
On exit: details of the permutations and scaling factors applied when balancing A.

If pj is the index of the row and column interchanged with row and column j, and dj is the
scaling factor applied to row and column j, then

SCALEðjÞ ¼ pj , for j ¼ 1; 2; . . . ; ILO� 1;

SCALEðjÞ ¼ dj , for j ¼ ILO; . . . ; IHI;

SCALEðjÞ ¼ pj , for j ¼ IHIþ 1; . . . ;N.

The order in which the interchanges are made is N to IHIþ 1, then 1 to ILO� 1.

16: ABNRM – REAL (KIND=nag_wp) Output

On exit: the 1-norm of the balanced matrix (the maximum of the sum of absolute values of
elements of any column).

17: RCONDEð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RCONDE must be at least max 1;Nð Þ.
On exit: RCONDEðjÞ is the reciprocal condition number of the jth eigenvalue.

18: RCONDVð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RCONDV must be at least max 1;Nð Þ.
On exit: RCONDVðjÞ is the reciprocal condition number of the jth right eigenvector.

19: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

20: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08NPF (ZGEEVX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum,
increase LWORK by, say, N� nb, where nb is the optimal block size for F08NEF (DGEHRD).

Constraints:

if SENSE ¼ N or E , LWORK � max 1; 2� Nð Þ;
if SENSE ¼ V or B , LWORK � max 1;N� Nþ 2� Nð Þ.
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21: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1; 2� Nð Þ.

22: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors or
condition numbers have been computed; elements 1 : ILO� 1 and iþ 1 : N of W contain
eigenvalues which have converged.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.8 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08NPF (ZGEEVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08NPF (ZGEEVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Each eigenvector is normalized to have Euclidean norm equal to unity and the element of largest
absolute value real.

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08NBF (DGEEVX).

10 Example

This example finds all the eigenvalues and right eigenvectors of the matrix

A ¼
�3:97� 5:04i �4:11þ 3:70i �0:34þ 1:01i 1:29� 0:86i
0:34� 1:50i 1:52� 0:43i 1:88� 5:38i 3:36þ 0:65i
3:31� 3:85i 2:50þ 3:45i 0:88� 1:08i 0:64� 1:48i
�1:10þ 0:82i 1:81� 1:59i 3:25þ 1:33i 1:57� 3:44i

0B@
1CA;

together with estimates of the condition number and forward error bounds for each eigenvalue and
eigenvector. The option to balance the matrix is used. In order to compute the condition numbers of the

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NPF

Mark 26 F08NPF.5



eigenvalues, the left eigenvectors also have to be computed, but they are not printed out in this
example.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08npfe

! F08NPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, zgeevx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: abnrm, eps, tol
Integer :: i, ihi, ilo, info, j, lda, ldvl, &

ldvr, lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), vl(:,:), vr(:,:), w(:), &
work(:)

Complex (Kind=nag_wp) :: dummy(1)
Real (Kind=nag_wp), Allocatable :: rconde(:), rcondv(:), rwork(:), &

scale(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, nint, real
! .. Executable Statements ..

Write (nout,*) ’F08NPF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
lda = n
ldvl = n
ldvr = n
Allocate (a(lda,n),vl(ldvl,n),vr(ldvr,n),w(n),rconde(n),rcondv(n), &

rwork(2*n),scale(n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zgeevx is f08npf
Call zgeevx(’Balance’,’Vectors (left)’,’Vectors (right)’, &

’Both reciprocal condition numbers’,n,a,lda,w,vl,ldvl,vr,ldvr,ilo,ihi, &
scale,abnrm,rconde,rcondv,dummy,lwork,rwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(dummy(1))))
Allocate (work(lwork))

! Read the matrix A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Solve the eigenvalue problem

! The NAG name equivalent of zgeevx is f08npf
Call zgeevx(’Balance’,’Vectors (left)’,’Vectors (right)’, &

’Both reciprocal condition numbers’,n,a,lda,w,vl,ldvl,vr,ldvr,ilo,ihi, &
scale,abnrm,rconde,rcondv,work,lwork,rwork,info)

If (info==0) Then

! Compute the machine precision

eps = x02ajf()
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tol = eps*abnrm

! Print the eigenvalues and vectors, and associated condition
! number and bounds

Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,*)
Write (nout,*) ’ Eigenvalue rcond error’

Do j = 1, n

! Print information on j-th eigenvalue

If (rconde(j)>0.0_nag_wp) Then
If (tol/rconde(j)<10.0_nag_wp*eps) Then

Write (nout,99999) j, w(j), rconde(j), ’-’
Else

Write (nout,99998) j, w(j), rconde(j), tol/rconde(j)
End If

Else
Write (nout,99999) j, w(j), rconde(j), ’Inf’

End If

End Do

Write (nout,*)
Write (nout,*) ’Eigenvectors’
Write (nout,*)
Write (nout,*) ’ Eigenvector rcond error’

Do j = 1, n

! Print information on j-th eigenvector

Write (nout,*)

! Make first real part component be positive
If (real(vr(1,j))<0.0_nag_wp) Then

vr(1:n,j) = -vr(1:n,j)
End If
If (rcondv(j)>0.0_nag_wp) Then

If (tol/rcondv(j)<10.0_nag_wp*eps) Then
Write (nout,99999) j, vr(1,j), rcondv(j), ’-’

Else
Write (nout,99998) j, vr(1,j), rcondv(j), tol/rcondv(j)

End If
Else

Write (nout,99999) j, vr(1,j), rcondv(j), ’Inf’
End If

Write (nout,99997) vr(2:n,j)

End Do
Write (nout,*)
Write (nout,*) ’Errors below 10*machine precision are not displayed’

Else
Write (nout,*)
Write (nout,99996) ’Failure in ZGEEVX. INFO =’, info

End If

99999 Format (1X,I2,1X,’(’,1P,E11.4,’,’,E11.4,’)’,1X,0P,F7.4,4X,A)
99998 Format (1X,I2,1X,’(’,1P,E11.4,’,’,E11.4,’)’,1X,0P,F7.4,1X,1P,E8.1)
99997 Format (1X,3X,’(’,1P,E11.4,’,’,E11.4,’)’)
99996 Format (1X,A,I4)

End Program f08npfe
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10.2 Program Data

F08NPF Example Program Data
4 :Value of N

(-3.97, -5.04) (-4.11, 3.70) (-0.34, 1.01) ( 1.29, -0.86)
( 0.34, -1.50) ( 1.52, -0.43) ( 1.88, -5.38) ( 3.36, 0.65)
( 3.31, -3.85) ( 2.50, 3.45) ( 0.88, -1.08) ( 0.64, -1.48)
(-1.10, 0.82) ( 1.81, -1.59) ( 3.25, 1.33) ( 1.57, -3.44) :End of matrix A

10.3 Program Results

F08NPF Example Program Results

Eigenvalues

Eigenvalue rcond error
1 (-6.0004E+00,-6.9998E+00) 0.9932 1.6E-15
2 (-5.0000E+00, 2.0060E+00) 0.9964 1.6E-15
3 ( 7.9982E+00,-9.9637E-01) 0.9814 1.6E-15
4 ( 3.0023E+00,-3.9998E+00) 0.9779 1.6E-15

Eigenvectors

Eigenvector rcond error

1 ( 8.4572E-01, 0.0000E+00) 8.4011 -
(-1.7723E-02, 3.0361E-01)
( 8.7521E-02, 3.1145E-01)
(-5.6147E-02,-2.9060E-01)

2 ( 3.8655E-01,-1.7323E-01) 8.0214 -
( 3.5393E-01,-4.5288E-01)
(-6.1237E-01,-0.0000E+00)
( 8.5928E-02, 3.2836E-01)

3 ( 1.7297E-01,-2.6690E-01) 5.8292 -
(-6.9242E-01,-0.0000E+00)
(-3.3240E-01,-4.9598E-01)
(-2.5039E-01, 1.4655E-02)

4 ( 3.5614E-02, 1.7822E-01) 5.8292 -
(-1.2637E-01,-2.6663E-01)
(-1.2933E-02, 2.9657E-01)
(-8.8982E-01,-0.0000E+00)

Errors below 10*machine precision are not displayed
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NAG Library Routine Document

F08NSF (ZGEHRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NSF (ZGEHRD) reduces a complex general matrix to Hessenberg form.

2 Specification

SUBROUTINE F08NSF (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER N, ILO, IHI, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zgehrd.

3 Description

F08NSF (ZGEHRD) reduces a complex general matrix A to upper Hessenberg form H by a unitary
similarity transformation: A ¼ QHQH. H has real subdiagonal elements.

The matrix Q is not formed explicitly, but is represented as a product of elementary reflectors (see the
F08 Chapter Introduction for details). Routines are provided to work with Q in this representation (see
Section 9).

The routine can take advantage of a previous call to F08NVF (ZGEBAL), which may produce a matrix
with the structure:

A11 A12 A13
A22 A23

A33

0@ 1A
where A11 and A33 are upper triangular. If so, only the central diagonal block A22, in rows and columns
ilo to ihi, needs to be reduced to Hessenberg form (the blocks A12 and A23 will also be affected by the
reduction). Therefore the values of ilo and ihi determined by F08NVF (ZGEBAL) can be supplied to the
routine directly. If F08NVF (ZGEBAL) has not previously been called however, then ilo must be set to
1 and ihi to n.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: ILO – INTEGER Input
3: IHI – INTEGER Input

On entry: if A has been output by F08NVF (ZGEBAL), then ILO and IHI must contain the
values returned by that routine. Otherwise, ILO must be set to 1 and IHI to N.
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Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n general matrix A.

On exit: A is overwritten by the upper Hessenberg matrix H and details of the unitary matrix Q.
The subdiagonal elements of H are real.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NSF
(ZGEHRD) is called.

Constraint: LDA � max 1;Nð Þ.

6: TAUð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array TAU must be at least max 1;N� 1ð Þ.
On exit: further details of the unitary matrix Q.

7: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08NSF (ZGEHRD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb, where nb is the optimal block
size.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.
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7 Accuracy

The computed Hessenberg matrix H is exactly similar to a nearby matrix Aþ Eð Þ, where
Ek k2 � c nð Þ� Ak k2;

c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of H themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues, eigenvectors or Schur
factorization.

8 Parallelism and Performance

F08NSF (ZGEHRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 8
3q

2 2q þ 3nð Þ , where q ¼ ihi � ilo; if
ilo ¼ 1 and ihi ¼ n, the number is approximately 40

3n
3 .

To form the unitary matrix Q F08NSF (ZGEHRD) may be followed by a call to F08NTF (ZUNGHR):

CALL ZUNGHR(N,ILO,IHI,A,LDA,TAU,WORK,LWORK,INFO)

To apply Q to an m by n complex matrix C F08NSF (ZGEHRD) may be followed by a call to F08NUF
(ZUNMHR). For example,

CALL ZUNMHR(’Left’,’No Transpose’,M,N,ILO,IHI,A,LDA,TAU,C,LDC, &
WORK,LWORK,INFO)

forms the matrix product QC.

The real analogue of this routine is F08NEF (DGEHRD).

10 Example

This example computes the upper Hessenberg form of the matrix A, where

A ¼
�3:97� 5:04i �4:11þ 3:70i �0:34þ 1:01i 1:29� 0:86i
0:34� 1:50i 1:52� 0:43i 1:88� 5:38i 3:36þ 0:65i
3:31� 3:85i 2:50þ 3:45i 0:88� 1:08i 0:64� 1:48i
�1:10þ 0:82i 1:81� 1:59i 3:25þ 1:33i 1:57� 3:44i

0B@
1CA:

10.1 Program Text

Program f08nsfe

! F08NSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgehrd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: zero = (0.0E0_nag_wp,0.0E0_nag_wp)
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NSF
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Integer :: i, ifail, info, lda, lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), tau(:), work(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08NSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
lwork = 64*n
Allocate (a(lda,n),tau(n-1),work(lwork))

! Read A from data file

Read (nin,*)(a(i,1:n),i=1,n)

! Reduce A to upper Hessenberg form

! The NAG name equivalent of zgehrd is f08nsf
Call zgehrd(n,1,n,a,lda,tau,work,lwork,info)

! Set the elements below the first subdiagonal to zero

Do i = 1, n - 2
a(i+2:n,i) = zero

End Do

! Print upper Hessenberg form

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Upper Hessenberg form’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End Program f08nsfe

10.2 Program Data

F08NSF Example Program Data
4 :Value of N

(-3.97,-5.04) (-4.11, 3.70) (-0.34, 1.01) ( 1.29,-0.86)
( 0.34,-1.50) ( 1.52,-0.43) ( 1.88,-5.38) ( 3.36, 0.65)
( 3.31,-3.85) ( 2.50, 3.45) ( 0.88,-1.08) ( 0.64,-1.48)
(-1.10, 0.82) ( 1.81,-1.59) ( 3.25, 1.33) ( 1.57,-3.44) :End of matrix A

10.3 Program Results

F08NSF Example Program Results

Upper Hessenberg form
1 2 3 4

1 (-3.9700,-5.0400) (-1.1318,-2.5693) (-4.6027,-0.1426) (-1.4249, 1.7330)
2 (-5.4797, 0.0000) ( 1.8585,-1.5502) ( 4.4145,-0.7638) (-0.4805,-1.1976)
3 ( 0.0000, 0.0000) ( 6.2673, 0.0000) (-0.4504,-0.0290) (-1.3467, 1.6579)
4 ( 0.0000, 0.0000) ( 0.0000, 0.0000) (-3.5000, 0.0000) ( 2.5619,-3.3708)
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NAG Library Routine Document

F08NTF (ZUNGHR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NTF (ZUNGHR) generates the complex unitary matrix Q which was determined by F08NSF
(ZGEHRD) when reducing a complex general matrix A to Hessenberg form.

2 Specification

SUBROUTINE F08NTF (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER N, ILO, IHI, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))

The routine may be called by its LAPACK name zunghr.

3 Description

F08NTF (ZUNGHR) is intended to be used following a call to F08NSF (ZGEHRD), which reduces a
complex general matrix A to upper Hessenberg form H by a unitary similarity transformation:
A ¼ QHQH. F08NSF (ZGEHRD) represents the matrix Q as a product of ihi � ilo elementary reflectors.
Here ilo and ihi are values determined by F08NVF (ZGEBAL) when balancing the matrix; if the matrix
has not been balanced, ilo ¼ 1 and ihi ¼ n.
This routine may be used to generate Q explicitly as a square matrix. Q has the structure:

Q ¼
I 0 0
0 Q22 0
0 0 I

0@ 1A
where Q22 occupies rows and columns ilo to ihi.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix Q.

Constraint: N � 0.

2: ILO – INTEGER Input
3: IHI – INTEGER Input

On entry: these must be the same arguments ILO and IHI, respectively, as supplied to F08NSF
(ZGEHRD).

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NTF

Mark 26 F08NTF.1



4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: details of the vectors which define the elementary reflectors, as returned by F08NSF
(ZGEHRD).

On exit: the n by n unitary matrix Q.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NTF
(ZUNGHR) is called.

Constraint: LDA � max 1;Nð Þ.

6: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;N� 1ð Þ.
On entry: further details of the elementary reflectors, as returned by F08NSF (ZGEHRD).

7: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08NTF (ZUNGHR) is called, unless LWORK ¼ �1, in which case a workspace query is
assumed and the routine only calculates the optimal dimension of WORK (using the formula
given below).

Suggested value: for optimal performance LWORK should be at least IHI� ILOð Þ � nb, where
nb is the block size.

Constraint: LWORK � max 1; IHI� ILOð Þ or LWORK ¼ �1.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

Ek k2 ¼ O �ð Þ;

where � is the machine precision.

8 Parallelism and Performance

F08NTF (ZUNGHR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.
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F08NTF (ZUNGHR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 16
3 q

3 , where q ¼ ihi � ilo.

The real analogue of this routine is F08NFF (DORGHR).

10 Example

This example computes the Schur factorization of the matrix A, where

A ¼
�3:97� 5:04i �4:11þ 3:70i �0:34þ 1:01i 1:29� 0:86i
0:34� 1:50i 1:52� 0:43i 1:88� 5:38i 3:36þ 0:65i
3:31� 3:85i 2:50þ 3:45i 0:88� 1:08i 0:64� 1:48i
�1:10þ 0:82i 1:81� 1:59i 3:25þ 1:33i 1:57� 3:44i

0B@
1CA:

Here A is general and must first be reduced to Hessenberg form by F08NSF (ZGEHRD). The program
then calls F08NTF (ZUNGHR) to form Q, and passes this matrix to F08PSF (ZHSEQR) which
computes the Schur factorization of A.

10.1 Program Text

Program f08ntfe

! F08NTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, x04dbf, zgehrd, zgemm, zhseqr, &

zlange => f06uaf, zunghr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Complex (Kind=nag_wp) :: alpha, beta
Real (Kind=nag_wp) :: norm
Integer :: i, ifail, info, lda, ldc, ldd, ldz, &

lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), d(:,:), tau(:), &
w(:), work(:), z(:,:)

Real (Kind=nag_wp), Allocatable :: rwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
Write (nout,*) ’F08NTF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldc = n
ldd = n
ldz = n
lwork = 64*(n-1)
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Allocate (a(lda,n),c(ldc,n),d(ldd,n),rwork(lda),tau(n),w(n),work(lwork), &
z(ldz,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Store A in D
d(1:ldd,1:n) = a(1:lda,1:n)

! Print matrix A
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’,’Matrix A’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
Write (nout,*)
Flush (nout)

! Reduce A to upper Hessenberg form H = (Q**H)*A*Q

! The NAG name equivalent of zgehrd is f08nsf
Call zgehrd(n,1,n,a,lda,tau,work,lwork,info)

! Copy A into Z
z(1:n,1:n) = a(1:n,1:n)

! Form Q explicitly, storing the result in Z
! The NAG name equivalent of zunghr is f08ntf

Call zunghr(n,1,n,z,ldz,tau,work,lwork,info)

! Calculate the Schur factorization of H = Y*T*(Y**H) and form
! Q*Y explicitly, storing the result in Z

! Note that A = Z*T*(Z**H), where Z = Q*Y

! The NAG name equivalent of zhseqr is f08psf
Call zhseqr(’Schur form’,’Vectors’,n,1,n,a,lda,w,z,ldz,work,lwork,info)

! Compute A - Z*T*Z^H from Schur factorization of A, and store in matrix D
! The NAG name equivalent of zgemm is f06zaf

alpha = cmplx(1,kind=nag_wp)
beta = cmplx(0,kind=nag_wp)
Call zgemm(’N’,’N’,n,n,n,alpha,z,ldz,a,lda,beta,c,ldc)
alpha = cmplx(-1,kind=nag_wp)
beta = cmplx(1,kind=nag_wp)
Call zgemm(’N’,’C’,n,n,n,alpha,c,ldc,z,ldz,beta,d,ldd)

! Find norm of matrix D and print warning if it is too large
! f06uaf is the NAG name equivalent of the LAPACK auxiliary zlange

norm = zlange(’O’,ldd,n,d,ldd,rwork)
If (norm>x02ajf()**0.5_nag_wp) Then

Write (nout,*) ’Norm of A-(Z*T*Z^H) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’

Else
! Print eigenvalues.

Write (nout,*) ’Eigenvalues’
Write (nout,99999)(w(i),i=1,n)

End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))

End Program f08ntfe
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10.2 Program Data

F08NTF Example Program Data
4 :Value of N

(-3.97,-5.04) (-4.11, 3.70) (-0.34, 1.01) ( 1.29,-0.86)
( 0.34,-1.50) ( 1.52,-0.43) ( 1.88,-5.38) ( 3.36, 0.65)
( 3.31,-3.85) ( 2.50, 3.45) ( 0.88,-1.08) ( 0.64,-1.48)
(-1.10, 0.82) ( 1.81,-1.59) ( 3.25, 1.33) ( 1.57,-3.44) :End of matrix A

10.3 Program Results

F08NTF Example Program Results

Matrix A
1 2 3 4

1 (-3.9700,-5.0400) (-4.1100, 3.7000) (-0.3400, 1.0100) ( 1.2900,-0.8600)
2 ( 0.3400,-1.5000) ( 1.5200,-0.4300) ( 1.8800,-5.3800) ( 3.3600, 0.6500)
3 ( 3.3100,-3.8500) ( 2.5000, 3.4500) ( 0.8800,-1.0800) ( 0.6400,-1.4800)
4 (-1.1000, 0.8200) ( 1.8100,-1.5900) ( 3.2500, 1.3300) ( 1.5700,-3.4400)

Eigenvalues
(-6.0004,-6.9998) (-5.0000, 2.0060) ( 7.9982,-0.9964) ( 3.0023,-3.9998)

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NTF
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NAG Library Routine Document

F08NUF (ZUNMHR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NUF (ZUNMHR) multiplies an arbitrary complex matrix C by the complex unitary matrix Q which
was determined by F08NSF (ZGEHRD) when reducing a complex general matrix to Hessenberg form.

2 Specification

SUBROUTINE F08NUF (SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

&

INTEGER M, N, ILO, IHI, LDA, LDC, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1,LWORK))
CHARACTER(1) SIDE, TRANS

The routine may be called by its LAPACK name zunmhr.

3 Description

F08NUF (ZUNMHR) is intended to be used following a call to F08NSF (ZGEHRD), which reduces a
complex general matrix A to upper Hessenberg form H by a unitary similarity transformation:
A ¼ QHQH. F08NSF (ZGEHRD) represents the matrix Q as a product of ihi � ilo elementary reflectors.
Here ilo and ihi are values determined by F08NVF (ZGEBAL) when balancing the matrix; if the matrix
has not been balanced, ilo ¼ 1 and ihi ¼ n.
This routine may be used to form one of the matrix products

QC;QHC;CQ or CQH;

overwriting the result on C (which may be any complex rectangular matrix).

A common application of this routine is to transform a matrix V of eigenvectors of H to the matrix QV
of eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates how Q or QH is to be applied to C.

SIDE ¼ L
Q or QH is applied to C from the left.

SIDE ¼ R
Q or QH is applied to C from the right.

Constraint: SIDE ¼ L or R .

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NUF
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2: TRANS – CHARACTER(1) Input

On entry: indicates whether Q or QH is to be applied to C.

TRANS ¼ N
Q is applied to C.

TRANS ¼ C
QH is applied to C.

Constraint: TRANS ¼ N or C .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix C; m is also the order of Q if SIDE ¼ L .

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix C; n is also the order of Q if SIDE ¼ R .

Constraint: N � 0.

5: ILO – INTEGER Input
6: IHI – INTEGER Input

On entry: these must be the same arguments ILO and IHI, respectively, as supplied to F08NSF
(ZGEHRD).

Constraints:

if SIDE ¼ L and M > 0, 1 � ILO � IHI � M;
if SIDE ¼ L and M ¼ 0, ILO ¼ 1 and IHI ¼ 0;
if SIDE ¼ R and N > 0, 1 � ILO � IHI � N;
if SIDE ¼ R and N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ if SIDE ¼ L and at least
max 1;Nð Þ if SIDE ¼ R .

On entry: details of the vectors which define the elementary reflectors, as returned by F08NSF
(ZGEHRD).

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NUF
(ZUNMHR) is called.

Constraints:

if SIDE ¼ L , LDA � max 1;Mð Þ;
if SIDE ¼ R , LDA � max 1;Nð Þ.

9: TAUð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max 1;M� 1ð Þ if SIDE ¼ L and at least
max 1;N� 1ð Þ if SIDE ¼ R .

On entry: further details of the elementary reflectors, as returned by F08NSF (ZGEHRD).

10: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n matrix C.
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On exit: C is overwritten by QC or QHC or CQ or CQH as specified by SIDE and TRANS.

11: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08NUF
(ZUNMHR) is called.

Constraint: LDC � max 1;Mð Þ.

12: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08NUF (ZUNMHR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � N� nb if SIDE ¼ L and at least M� nb
if SIDE ¼ R , where nb is the optimal block size.

Constraints:

if SIDE ¼ L , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if SIDE ¼ R , LWORK � max 1;Mð Þ or LWORK ¼ �1.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

Ek k2 ¼ O �ð Þ Ck k2;

where � is the machine precision.

8 Parallelism and Performance

F08NUF (ZUNMHR) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08NUF (ZUNMHR) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NUF
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9 Further Comments

The total number of real floating-point operations is approximately 8nq2 if SIDE ¼ L and 8mq2 if
SIDE ¼ R , where q ¼ ihi � ilo.
The real analogue of this routine is F08NGF (DORMHR).

10 Example

This example computes all the eigenvalues of the matrix A, where

A ¼
�3:97� 5:04i �4:11þ 3:70i �0:34þ 1:01i 1:29� 0:86i
0:34� 1:50i 1:52� 0:43i 1:88� 5:38i 3:36þ 0:65i
3:31� 3:85i 2:50þ 3:45i 0:88� 1:08i 0:64� 1:48i
�1:10þ 0:82i 1:81� 1:59i 3:25þ 1:33i 1:57� 3:44i

0B@
1CA;

and those eigenvectors which correspond to eigenvalues � such that Re �ð Þ < 0. Here A is general and
must first be reduced to upper Hessenberg form H by F08NSF (ZGEHRD). The program then calls
F08PSF (ZHSEQR) to compute the eigenvalues, and F08PXF (ZHSEIN) to compute the required
eigenvectors of H by inverse iteration. Finally F08NUF (ZUNMHR) is called to transform the
eigenvectors of H back to eigenvectors of the original matrix A.

10.1 Program Text

Program f08nufe

! F08NUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04dbf, zgehrd, zhsein, zhseqr, &

zunmhr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Complex (Kind=nag_wp) :: scal
Real (Kind=nag_wp) :: thresh
Integer :: i, ifail, info, k, lda, ldc, ldh, &

ldvl, ldz, lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), h(:,:), tau(:), &
vl(:,:), w(:), work(:), z(:,:)

Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: ifaill(:), ifailr(:)
Logical, Allocatable :: select(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, aimag, conjg, maxloc, real

! .. Executable Statements ..
Write (nout,*) ’F08NUF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = 1
lda = n
ldc = n
ldh = n
ldvl = n
lwork = 64*n
Allocate (a(lda,n),c(ldc,n),h(ldh,n),tau(n),vl(ldvl,n),w(n),work(lwork), &

z(ldz,1),rwork(n),ifaill(n),ifailr(n),select(n))

! Read A from data file
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Read (nin,*)(a(i,1:n),i=1,n)

Read (nin,*) thresh

! Reduce A to upper Hessenberg form H = (Q**H)*A*Q
! The NAG name equivalent of zgehrd is f08nsf

Call zgehrd(n,1,n,a,lda,tau,work,lwork,info)

! Copy A to H
h(1:n,1:n) = a(1:n,1:n)

! Calculate the eigenvalues of H (same as A)
! The NAG name equivalent of zhseqr is f08psf

Call zhseqr(’Eigenvalues’,’No vectors’,n,1,n,h,ldh,w,z,ldz,work,lwork, &
info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

Write (nout,*) ’Eigenvalues’
Write (nout,99999)(’ (’,real(w(i)),’,’,aimag(w(i)),’)’,i=1,n)
Flush (nout)

Do i = 1, n
select(i) = real(w(i)) < thresh

End Do

! Calculate the eigenvectors of H (as specified by SELECT),
! storing the result in C
! The NAG name equivalent of zhsein is f08pxf

Call zhsein(’Right’,’QR’,’No initial vectors’,select,n,a,lda,w,vl, &
ldvl,c,ldc,n,m,work,rwork,ifaill,ifailr,info)

! Calculate the eigenvectors of A = Q * (eigenvectors of H)
! The NAG name equivalent of zunmhr is f08nuf

Call zunmhr(’Left’,’No transpose’,n,m,1,n,a,lda,tau,c,ldc,work,lwork, &
info)

! Print eigenvectors

Write (nout,*)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, m

rwork(1:n) = abs(c(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(c(k,i))/abs(c(k,i))/dznrm2(n,c(1,i),1)
c(1:n,i) = c(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,m,c,ldc,’Bracketed’,’F7.4’, &

’Contents of array C’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If

99999 Format ((3X,4(A,F7.4,A,F7.4,A,:)))
End Program f08nufe
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10.2 Program Data

F08NUF Example Program Data
4 :Value of N

(-3.97,-5.04) (-4.11, 3.70) (-0.34, 1.01) ( 1.29,-0.86)
( 0.34,-1.50) ( 1.52,-0.43) ( 1.88,-5.38) ( 3.36, 0.65)
( 3.31,-3.85) ( 2.50, 3.45) ( 0.88,-1.08) ( 0.64,-1.48)
(-1.10, 0.82) ( 1.81,-1.59) ( 3.25, 1.33) ( 1.57,-3.44) :End of matrix A
0.0 :Value of THRESH

10.3 Program Results

F08NUF Example Program Results

Eigenvalues
(-6.0004,-6.9998) (-5.0000, 2.0060) ( 7.9982,-0.9964) ( 3.0023,-3.9998)

Contents of array C
1 2

1 ( 0.8457, 0.0000) (-0.3865, 0.1732)
2 (-0.0177, 0.3036) (-0.3539, 0.4529)
3 ( 0.0875, 0.3115) ( 0.6124, 0.0000)
4 (-0.0561,-0.2906) (-0.0859,-0.3284)
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NAG Library Routine Document

F08NVF (ZGEBAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NVF (ZGEBAL) balances a complex general matrix in order to improve the accuracy of computed
eigenvalues and/or eigenvectors.

2 Specification

SUBROUTINE F08NVF (JOB, N, A, LDA, ILO, IHI, SCALE, INFO)

INTEGER N, LDA, ILO, IHI, INFO
REAL (KIND=nag_wp) SCALE(N)
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(1) JOB

The routine may be called by its LAPACK name zgebal.

3 Description

F08NVF (ZGEBAL) balances a complex general matrix A. The term ‘balancing’ covers two steps, each
of which involves a similarity transformation of A. The routine can perform either or both of these
steps.

1. The routine first attempts to permute A to block upper triangular form by a similarity
transformation:

PAPT ¼ A0 ¼
A011 A012 A013
0 A022 A023
0 0 A033

0@ 1A
where P is a permutation matrix, and A011 and A

0
33 are upper triangular. Then the diagonal elements

of A011 and A033 are eigenvalues of A. The rest of the eigenvalues of A are the eigenvalues of the
central diagonal block A022, in rows and columns ilo to ihi. Subsequent operations to compute the
eigenvalues of A (or its Schur factorization) need only be applied to these rows and columns; this
can save a significant amount of work if ilo > 1 and ihi < n. If no suitable permutation exists (as is
often the case), the routine sets ilo ¼ 1 and ihi ¼ n, and A022 is the whole of A.

2. The routine applies a diagonal similarity transformation to A0, to make the rows and columns of
A022 as close in norm as possible:

A00 ¼ DA0D�1 ¼
I 0 0
0 D22 0
0 0 I

0@ 1A A011 A012 A013
0 A022 A023
0 0 A033

0@ 1A I 0 0
0 D�122 0
0 0 I

0@ 1A:
This scaling can reduce the norm of the matrix (i.e., A0022

�� �� < A022
�� ��) and hence reduce the effect

of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether A is to be permuted and/or scaled (or neither).

JOB ¼ N
A is neither permuted nor scaled (but values are assigned to ILO, IHI and SCALE).

JOB ¼ P
A is permuted but not scaled.

JOB ¼ S
A is scaled but not permuted.

JOB ¼ B
A is both permuted and scaled.

Constraint: JOB ¼ N , P , S or B .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A is overwritten by the balanced matrix. If JOB ¼ N , A is not referenced.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08NVF
(ZGEBAL) is called.

Constraint: LDA � max 1;Nð Þ.

5: ILO – INTEGER Output
6: IHI – INTEGER Output

On exit: the values ilo and ihi such that on exit Aði; jÞ is zero if i > j and 1 � j < ilo or
ihi < i � n.
If JOB ¼ N or S , ilo ¼ 1 and ihi ¼ n.

7: SCALEðNÞ – REAL (KIND=nag_wp) array Output

On exit: details of the permutations and scaling factors applied to A. More precisely, if pj is the
index of the row and column interchanged with row and column j and dj is the scaling factor
used to balance row and column j then

SCALEðjÞ ¼
pj; j ¼ 1; 2; . . . ; ilo � 1
dj; j ¼ ilo; ilo þ 1; . . . ; ihi and
pj; j ¼ ihi þ 1; ihi þ 2; . . . ; n:

8<:
The order in which the interchanges are made is n to ihi þ 1 then 1 to ilo � 1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The errors are negligible, compared with those in subsequent computations.

8 Parallelism and Performance

F08NVF (ZGEBAL) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If the matrix A is balanced by F08NVF (ZGEBAL), then any eigenvectors computed subsequently are
eigenvectors of the matrix A00 (see Section 3) and hence F08NWF (ZGEBAK) must then be called to
transform them back to eigenvectors of A.

If the Schur vectors of A are required, then this routine must not be called with JOB ¼ S or B ,
because then the balancing transformation is not unitary. If this routine is called with JOB ¼ P , then
any Schur vectors computed subsequently are Schur vectors of the matrix A00, and F08NWF (ZGEBAK)
must be called (with SIDE ¼ R ) to transform them back to Schur vectors of A.

The total number of real floating-point operations is approximately proportional to n2.

The real analogue of this routine is F08NHF (DGEBAL).

10 Example

This example computes all the eigenvalues and right eigenvectors of the matrix A, where

A ¼
1:50� 2:75i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
�8:06� 1:24i �2:50� 0:50i 0:00þ 0:00i �0:75þ 0:50i
�2:09þ 7:56i 1:39þ 3:97i �1:25þ 0:75i �4:82� 5:67i
6:18þ 9:79i �0:92� 0:62i 0:00þ 0:00i �2:50� 0:50i

0B@
1CA:

The program first calls F08NVF (ZGEBAL) to balance the matrix; it then computes the Schur
factorization of the balanced matrix, by reduction to Hessenberg form and the QR algorithm. Then it
calls F08QXF (ZTREVC) to compute the right eigenvectors of the balanced matrix, and finally calls
F08NWF (ZGEBAK) to transform the eigenvectors back to eigenvectors of the original matrix A.

10.1 Program Text

Program f08nvfe

! F08NVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, m01daf, m01edf, nag_wp, x04dbf, zgebak, &

zgebal, zgehrd, zhseqr, ztrevc, zunghr
! .. Implicit None Statement ..

Implicit None

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08NVF
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! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Integer :: i, ifail, ihi, ilo, info, k, lda, &

ldh, ldvl, ldvr, lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), h(:,:), tau(:), vl(:,:), &
vr(:,:), vr_row(:), w(:), work(:)

Real (Kind=nag_wp), Allocatable :: rwork(:), scale(:)
Integer, Allocatable :: irank(:)
Logical :: select(1)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, aimag, conjg, maxloc, real

! .. Executable Statements ..
Write (nout,*) ’F08NVF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldvl = 1
lda = n
ldh = n
ldvr = n
lwork = 64*n
Allocate (a(lda,n),h(ldh,n),tau(n),vl(ldvl,1),vr(ldvr,n),w(n), &

work(lwork),rwork(n),scale(n),irank(n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Balance A
! The NAG name equivalent of zgebal is f08nvf

Call zgebal(’Both’,n,a,lda,ilo,ihi,scale,info)

! Reduce A to upper Hessenberg form H = (Q**H)*A*Q
! The NAG name equivalent of zgehrd is f08nsf

Call zgehrd(n,ilo,ihi,a,lda,tau,work,lwork,info)

! Copy A to H and VR
h(1:n,1:n) = a(1:n,1:n)
vr(1:n,1:n) = a(1:n,1:n)

! Form Q explicitly, storing the result in VR
! The NAG name equivalent of zunghr is f08ntf

Call zunghr(n,1,n,vr,ldvr,tau,work,lwork,info)

! Calculate the eigenvalues and Schur factorization of A
! The NAG name equivalent of zhseqr is f08psf

Call zhseqr(’Schur form’,’Vectors’,n,ilo,ihi,h,ldh,w,vr,ldvr,work,lwork, &
info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Sort eigenvalues into descending absolute value
rwork(1:n) = abs(w(1:n))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call m01daf(rwork,1,n,’Descending’,irank,ifail)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call m01edf(w,1,n,irank,ifail)

Write (nout,*) ’Eigenvalues’
Write (nout,99999)(’ (’,real(w(i)),’,’,aimag(w(i)),’)’,i=1,n)
Flush (nout)
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! Calculate the eigenvectors of A, storing the result in VR
! The NAG name equivalent of ztrevc is f08qxf

Call ztrevc(’Right’,’Backtransform’,select,n,h,ldh,vl,ldvl,vr,ldvr,n, &
m,work,rwork,info)

! The NAG name equivalent of zgebak is f08nwf
Call zgebak(’Both’,’Right’,n,ilo,ihi,scale,m,vr,ldvr,info)

! Reorder eigenvectors using irank
Allocate (vr_row(n))
Do i = 1, n

vr_row(1:n) = vr(i,1:n)
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call m01edf(vr_row,1,n,irank,ifail)
vr(i,1:n) = vr_row(1:n)

End Do
Deallocate (vr_row)

! Print eigenvectors

Write (nout,*)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, m

rwork(1:n) = abs(vr(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(vr(k,i))/abs(vr(k,i))/dznrm2(n,vr(1,i),1)
vr(1:n,i) = vr(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,m,vr,ldvr,’Bracketed’,’F7.4’, &

’Contents of array VR’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If

99999 Format ((3X,4(A,F7.4,A,F7.4,A,:)))
End Program f08nvfe

10.2 Program Data

F08NVF Example Program Data
4 :Value of N

( 1.50,-2.75) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
(-8.06,-1.24) (-2.50,-0.50) ( 0.00, 0.00) (-0.75, 0.50)
(-2.09, 7.56) ( 1.39, 3.97) (-1.25, 0.75) (-4.82,-5.67)
( 6.18, 9.79) (-0.92,-0.62) ( 0.00, 0.00) (-2.50,-0.50) :End of matrix A

10.3 Program Results

F08NVF Example Program Results

Eigenvalues
(-3.5000,-0.5025) ( 1.5000,-2.7500) (-1.5000,-0.4975) (-1.2500, 0.7500)

Contents of array VR
1 2 3 4

1 ( 0.0000,-0.0000) ( 0.1418,-0.0407) (-0.0000, 0.0000) ( 0.0000, 0.0000)
2 ( 0.1756,-0.4131) (-0.2711,-0.1812) (-0.1015, 0.0009) ( 0.0000, 0.0000)
3 ( 0.7420, 0.0000) ( 0.8213, 0.0000) ( 0.9884, 0.0000) ( 1.0000, 0.0000)
4 ( 0.4170,-0.2722) ( 0.1110, 0.4303) ( 0.0941, 0.0619) ( 0.0000, 0.0000)
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NAG Library Routine Document

F08NWF (ZGEBAK)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08NWF (ZGEBAK) transforms eigenvectors of a balanced matrix to those of the original complex
general matrix.

2 Specification

SUBROUTINE F08NWF (JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)

INTEGER N, ILO, IHI, M, LDV, INFO
REAL (KIND=nag_wp) SCALE(*)
COMPLEX (KIND=nag_wp) V(LDV,*)
CHARACTER(1) JOB, SIDE

The routine may be called by its LAPACK name zgebak.

3 Description

F08NWF (ZGEBAK) is intended to be used after a complex general matrix A has been balanced by
F08NVF (ZGEBAL), and eigenvectors of the balanced matrix A0022 have subsequently been computed.

For a description of balancing, see the document for F08NVF (ZGEBAL). The balanced matrix A00 is
obtained as A00 ¼ DPAPTD�1, where P is a permutation matrix and D is a diagonal scaling matrix.
This routine transforms left or right eigenvectors as follows:

if x is a right eigenvector of A00, PTD�1x is a right eigenvector of A;

if y is a left eigenvector of A00, PTDy is a left eigenvector of A.

4 References

None.

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: this must be the same argument JOB as supplied to F08NVF (ZGEBAL).

Constraint: JOB ¼ N , P , S or B .

2: SIDE – CHARACTER(1) Input

On entry: indicates whether left or right eigenvectors are to be transformed.

SIDE ¼ L
The left eigenvectors are transformed.

SIDE ¼ R
The right eigenvectors are transformed.

Constraint: SIDE ¼ L or R .
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3: N – INTEGER Input

On entry: n, the number of rows of the matrix of eigenvectors.

Constraint: N � 0.

4: ILO – INTEGER Input
5: IHI – INTEGER Input

On entry: the values ilo and ihi, as returned by F08NVF (ZGEBAL).

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

6: SCALEð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array SCALE must be at least max 1;Nð Þ.
On entry: details of the permutations and/or the scaling factors used to balance the original
complex general matrix, as returned by F08NVF (ZGEBAL).

7: M – INTEGER Input

On entry: m, the number of columns of the matrix of eigenvectors.

Constraint: M � 0.

8: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;Mð Þ.
On entry: the matrix of left or right eigenvectors to be transformed.

On exit: the transformed eigenvectors.

9: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08NWF
(ZGEBAK) is called.

Constraint: LDV � max 1;Nð Þ.

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The errors are negligible.

8 Parallelism and Performance

F08NWF (ZGEBAK) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately proportional to nm.

The real analogue of this routine is F08NJF (DGEBAK).

10 Example

See Section 10 in F08NVF (ZGEBAL).
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NAG Library Routine Document

F08PAF (DGEES)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08PAF (DGEES) computes the eigenvalues, the real Schur form T , and, optionally, the matrix of
Schur vectors Z for an n by n real nonsymmetric matrix A.

2 Specification

SUBROUTINE F08PAF (JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI, VS,
LDVS, WORK, LWORK, BWORK, INFO)

&

INTEGER N, LDA, SDIM, LDVS, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), WR(*), WI(*), VS(LDVS,*),

WORK(max(1,LWORK))
&

LOGICAL SELECT, BWORK(*)
CHARACTER(1) JOBVS, SORT
EXTERNAL SELECT

The routine may be called by its LAPACK name dgees.

3 Description

The real Schur factorization of A is given by

A ¼ ZTZT;

where Z, the matrix of Schur vectors, is orthogonal and T is the real Schur form. A matrix is in real
Schur form if it is upper quasi-triangular with 1 by 1 and 2 by 2 blocks. 2 by 2 blocks will be
standardized in the form

a b
c a

� �
where bc < 0. The eigenvalues of such a block are a


ffiffiffiffiffi
bc
p

.

Optionally, F08PAF (DGEES) also orders the eigenvalues on the diagonal of the real Schur form so that
selected eigenvalues are at the top left. The leading columns of Z form an orthonormal basis for the
invariant subspace corresponding to the selected eigenvalues.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBVS – CHARACTER(1) Input

On entry: if JOBVS ¼ N , Schur vectors are not computed.
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If JOBVS ¼ V , Schur vectors are computed.

Constraint: JOBVS ¼ N or V .

2: SORT – CHARACTER(1) Input

On entry: specifies whether or not to order the eigenvalues on the diagonal of the Schur form.

SORT ¼ N
Eigenvalues are not ordered.

SORT ¼ S
Eigenvalues are ordered (see SELECT).

Constraint: SORT ¼ N or S .

3: SELECT – LOGICAL FUNCTION, supplied by the user. External Procedure

If SORT ¼ S , SELECT is used to select eigenvalues to sort to the top left of the Schur form.

If SORT ¼ N , SELECT is not referenced and F08PAF (DGEES) may be called with the dummy
function F08PAZ.

An eigenvalue WRðjÞ þ
ffiffiffiffiffiffiffi
�1
p

�WIðjÞ is selected if SELECT WRðjÞ;WIðjÞð Þ is .TRUE.. If either
one of a complex conjugate pair of eigenvalues is selected, then both are. Note that a selected
complex eigenvalue may no longer satisfy SELECT WRðjÞ;WIðjÞð Þ ¼ :TRUE: after ordering,
since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-
conditioned); in this case INFO is set to Nþ 2 (see INFO below).

The specification of SELECT is:

FUNCTION SELECT (WR, WI)
LOGICAL SELECT

REAL (KIND=nag_wp) WR, WI

1: WR – REAL (KIND=nag_wp) Input
2: WI – REAL (KIND=nag_wp) Input

On entry: the real and imaginary parts of the eigenvalue.

SELECT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F08PAF (DGEES) is called. Arguments denoted as Input must not be
changed by this procedure.

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A is overwritten by its real Schur form T .

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08PAF
(DGEES) is called.

Constraint: LDA � max 1;Nð Þ.
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7: SDIM – INTEGER Output

On exit: if SORT ¼ N , SDIM ¼ 0.

If SORT ¼ S , SDIM ¼ number of eigenvalues (after sorting) for which SELECT is .TRUE..
(Complex conjugate pairs for which SELECT is .TRUE. for either eigenvalue count as 2.)

8: WRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array WR must be at least max 1;Nð Þ.
On exit: see the description of WI.

9: WIð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array WI must be at least max 1;Nð Þ.
On exit: WR and WI contain the real and imaginary parts, respectively, of the computed
eigenvalues in the same order that they appear on the diagonal of the output Schur form T .
Complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first.

10: VSðLDVS; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VS must be at least max 1;Nð Þ if JOBVS ¼ V , and at
least 1 otherwise.

On exit: if JOBVS ¼ V , VS contains the orthogonal matrix Z of Schur vectors.

If JOBVS ¼ N , VS is not referenced.

11: LDVS – INTEGER Input

On entry: the first dimension of the array VS as declared in the (sub)program from which
F08PAF (DGEES) is called.

Constraints:

if JOBVS ¼ V , LDVS � max 1;Nð Þ;
otherwise LDVS � 1.

12: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08PAF (DGEES) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum,
say 3� Nþ nb� N, where nb is the optimal block size for F08NEF (DGEHRD)

Constraint: LWORK � max 1; 3� Nð Þ.

14: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least 1 if SORT ¼ N , and at least
max 1;Nð Þ otherwise.
If SORT ¼ N , BWORK is not referenced.
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15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i and i � N, the QR algorithm failed to compute all the eigenvalues.

INFO ¼ Nþ 1

The eigenvalues could not be reordered because some eigenvalues were too close to separate (the
problem is very ill-conditioned).

INFO ¼ Nþ 2

After reordering, roundoff changed values of some complex eigenvalues so that leading
eigenvalues in the Schur form no longer satisfy SELECT ¼ :TRUE:. This could also be caused
by underflow due to scaling.

7 Accuracy

The computed Schur factorization satisfies

Aþ E ¼ ZTZT;

where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.8 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08PAF (DGEES) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08PAF (DGEES) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08PNF (ZGEES).
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10 Example

This example finds the Schur factorization of the matrix

A ¼
0:35 0:45 �0:14 �0:17
0:09 0:07 �0:54 0:35
�0:44 �0:33 �0:03 0:17
0:25 �0:32 �0:13 0:11

0B@
1CA;

such that the real positive eigenvalues of A are the top left diagonal elements of the Schur form, T .

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

! F08PAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f08pafe_mod

! F08PAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: select

! .. Parameters ..
Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6

Contains
Function select(wr,wi)

! Logical function select for use with DGEES (F08PAF)
! Returns the value .TRUE. if the eigenvalue is real and positive

! .. Function Return Value ..
Logical :: select

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: wi, wr

! .. Executable Statements ..
select = (wr>0._nag_wp .And. wi==0._nag_wp)
Return

End Function select
End Module f08pafe_mod
Program f08pafe

! F08PAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgees, dgemm, dlange => f06raf, nag_wp, x02ajf, &

x04caf
Use f08pafe_mod, Only: nb, nin, nout, select

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, beta, norm
Integer :: i, ifail, info, lda, ldc, ldd, ldvs, &

lwork, n, sdim
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), d(:,:), vs(:,:), &
wi(:), work(:), wr(:)

Real (Kind=nag_wp) :: dummy(1), rwork(1)
Logical, Allocatable :: bwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint
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! .. Executable Statements ..
Write (nout,*) ’F08PAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldc = n
ldd = n
ldvs = n
Allocate (a(lda,n),c(ldc,n),d(ldd,n),vs(ldvs,n),wi(n),wr(n),bwork(n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dgees is f08paf
Call dgees(’Vectors (Schur)’,’Sort’,select,n,a,lda,sdim,wr,wi,vs,ldvs, &

dummy,lwork,bwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+2)*n,nint(dummy(1)))
Allocate (work(lwork))

! Read in the matrix A
Read (nin,*)(a(i,1:n),i=1,n)

! Copy A into D
d(1:n,1:n) = a(1:n,1:n)

! Print matrix A
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Matrix A’,ifail)

Write (nout,*)
Flush (nout)

! Find the Schur factorization of A
! The NAG name equivalent of dgees is f08paf

Call dgees(’Vectors (Schur)’,’Sort’,select,n,a,lda,sdim,wr,wi,vs,ldvs, &
work,lwork,bwork,info)

If (info==0 .Or. info==(n+2)) Then

! Compute A - Z*T*Z^T from the factorization of A and store in matrix D
! The NAG name equivalent of dgemm is f06yaf

alpha = 1.0_nag_wp
beta = 0.0_nag_wp
Call dgemm(’N’,’N’,n,n,n,alpha,vs,ldvs,a,lda,beta,c,ldc)
alpha = -1.0_nag_wp
beta = 1.0_nag_wp
Call dgemm(’N’,’T’,n,n,n,alpha,c,ldc,vs,ldvs,beta,d,ldd)

! Find norm of matrix D and print warning if it is too large
! f06raf is the NAG name equivalent of the LAPACK auxiliary dlange

norm = dlange(’O’,ldd,n,d,ldd,rwork)
If (norm>x02ajf()**0.8_nag_wp) Then

Write (nout,*) ’Norm of A-(Z*T*Z^T) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’

Else

! Print solution
Write (nout,99999) &

’Number of eigenvalues for which SELECT is true = ’, sdim, &
’(dimension of invariant subspace)’

Write (nout,*)
! Print eigenvalues.

Write (nout,*) ’Selected eigenvalues’
Write (nout,99997)(’ (’,wr(i),’,’,wi(i),’)’,i=1,sdim)
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Write (nout,*)

If (info==(n+2)) Then
Write (nout,99996) ’***Note that rounding errors mean ’, &

’that leading eigenvalues in the Schur form’, &
’no longer satisfy SELECT = .TRUE.’

Write (nout,*)
End If

End If

Else
Write (nout,99998) ’Failure in DGEES. INFO = ’, info

End If

99999 Format (1X,A,I4,/,1X,A)
99998 Format (1X,A,I4)
99997 Format (1X,A,F8.4,A,F8.4,A)
99996 Format (1X,2A,/,1X,A)

End Program f08pafe

10.2 Program Data

F08PAF Example Program Data

4 :Value of N

0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35

-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A

10.3 Program Results

F08PAF Example Program Results

Matrix A
1 2 3 4

1 0.3500 0.4500 -0.1400 -0.1700
2 0.0900 0.0700 -0.5400 0.3500
3 -0.4400 -0.3300 -0.0300 0.1700
4 0.2500 -0.3200 -0.1300 0.1100

Number of eigenvalues for which SELECT is true = 1
(dimension of invariant subspace)

Selected eigenvalues
( 0.7995, 0.0000)
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NAG Library Routine Document

F08PBF (DGEESX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08PBF (DGEESX) computes the eigenvalues, the real Schur form T , and, optionally, the matrix of
Schur vectors Z for an n by n real nonsymmetric matrix A.

2 Specification

SUBROUTINE F08PBF (JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, WR, WI,
VS, LDVS, RCONDE, RCONDV, WORK, LWORK, IWORK, LIWORK,
BWORK, INFO)

&
&

INTEGER N, LDA, SDIM, LDVS, LWORK, IWORK(max(1,LIWORK)),
LIWORK, INFO

&

REAL (KIND=nag_wp) A(LDA,*), WR(*), WI(*), VS(LDVS,*), RCONDE, RCONDV,
WORK(max(1,LWORK))

&

LOGICAL SELECT, BWORK(*)
CHARACTER(1) JOBVS, SORT, SENSE
EXTERNAL SELECT

The routine may be called by its LAPACK name dgeesx.

3 Description

The real Schur factorization of A is given by

A ¼ ZTZT;

where Z, the matrix of Schur vectors, is orthogonal and T is the real Schur form. A matrix is in real
Schur form if it is upper quasi-triangular with 1 by 1 and 2 by 2 blocks. 2 by 2 blocks will be
standardized in the form

a b
c a

� �
where bc < 0. The eigenvalues of such a block are a


ffiffiffiffiffi
bc
p

.

Optionally, F08PBF (DGEESX) also orders the eigenvalues on the diagonal of the real Schur form so
that selected eigenvalues are at the top left; computes a reciprocal condition number for the average of
the selected eigenvalues (RCONDE); and computes a reciprocal condition number for the right
invariant subspace corresponding to the selected eigenvalues (RCONDV). The leading columns of Z
form an orthonormal basis for this invariant subspace.

For further explanation of the reciprocal condition numbers RCONDE and RCONDV, see Section 4.8 of
Anderson et al. (1999) (where these quantities are called s and sep respectively).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: JOBVS – CHARACTER(1) Input

On entry: if JOBVS ¼ N , Schur vectors are not computed.

If JOBVS ¼ V , Schur vectors are computed.

Constraint: JOBVS ¼ N or V .

2: SORT – CHARACTER(1) Input

On entry: specifies whether or not to order the eigenvalues on the diagonal of the Schur form.

SORT ¼ N
Eigenvalues are not ordered.

SORT ¼ S
Eigenvalues are ordered (see SELECT).

Constraint: SORT ¼ N or S .

3: SELECT – LOGICAL FUNCTION, supplied by the user. External Procedure

If SORT ¼ S , SELECT is used to select eigenvalues to sort to the top left of the Schur form.

If SORT ¼ N , SELECT is not referenced and F08PBF (DGEESX) may be called with the
dummy function F08PAZ.

An eigenvalue WRðjÞ þ
ffiffiffiffiffiffiffi
�1
p

�WIðjÞ is selected if SELECT WRðjÞ;WIðjÞð Þ is .TRUE.. If either
one of a complex conjugate pair of eigenvalues is selected, then both are. Note that a selected
complex eigenvalue may no longer satisfy SELECT WRðjÞ;WIðjÞð Þ ¼ :TRUE: after ordering,
since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-
conditioned); in this case INFO is set to Nþ 2 (see INFO below).

The specification of SELECT is:

FUNCTION SELECT (WR, WI)
LOGICAL SELECT

REAL (KIND=nag_wp) WR, WI

1: WR – REAL (KIND=nag_wp) Input
2: WI – REAL (KIND=nag_wp) Input

On entry: the real and imaginary parts of the eigenvalue.

SELECT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F08PBF (DGEESX) is called. Arguments denoted as Input must not be
changed by this procedure.

4: SENSE – CHARACTER(1) Input

On entry: determines which reciprocal condition numbers are computed.

SENSE ¼ N
None are computed.

SENSE ¼ E
Computed for average of selected eigenvalues only.

SENSE ¼ V
Computed for selected right invariant subspace only.

SENSE ¼ B
Computed for both.
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If SENSE ¼ E , V or B , SORT ¼ S .

Constraint: SENSE ¼ N , E , V or B .

5: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A is overwritten by its real Schur form T .

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08PBF
(DGEESX) is called.

Constraint: LDA � max 1;Nð Þ.

8: SDIM – INTEGER Output

On exit: if SORT ¼ N , SDIM ¼ 0.

If SORT ¼ S , SDIM ¼ number of eigenvalues (after sorting) for which SELECT is .TRUE..
(Complex conjugate pairs for which SELECT is .TRUE. for either eigenvalue count as 2.)

9: WRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array WR must be at least max 1;Nð Þ.
On exit: see the description of WI.

10: WIð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array WI must be at least max 1;Nð Þ.
On exit: WR and WI contain the real and imaginary parts, respectively, of the computed
eigenvalues in the same order that they appear on the diagonal of the output Schur form T .
Complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first.

11: VSðLDVS; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VS must be at least max 1;Nð Þ if JOBVS ¼ V , and at
least 1 otherwise.

On exit: if JOBVS ¼ V , VS contains the orthogonal matrix Z of Schur vectors.

If JOBVS ¼ N , VS is not referenced.

12: LDVS – INTEGER Input

On entry: the first dimension of the array VS as declared in the (sub)program from which
F08PBF (DGEESX) is called.

Constraints:

if JOBVS ¼ V , LDVS � max 1;Nð Þ;
otherwise LDVS � 1.
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13: RCONDE – REAL (KIND=nag_wp) Output

On exit: if SENSE ¼ E or B , contains the reciprocal condition number for the average of the
selected eigenvalues.

If SENSE ¼ N or V , RCONDE is not referenced.

14: RCONDV – REAL (KIND=nag_wp) Output

On exit: if SENSE ¼ V or B , RCONDV contains the reciprocal condition number for the
selected right invariant subspace.

If SENSE ¼ N or E , RCONDV is not referenced.

15: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

16: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08PBF (DGEESX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates upper bounds on the
optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the
WORK and IWORK arrays, and no error messages related to LWORK or LIWORK is issued.

If SENSE ¼ E , V or B , LWORK � Nþ 2� SDIM� N� SDIMð Þ, where SDIM is the number
o f s e l e c t e d e i g e n v a l u e s c o m p u t e d b y t h i s r o u t i n e . N o t e t h a t
Nþ 2� SDIM� N� SDIMð Þ � Nþ N� N=2.

Note also that an error is only returned if LWORK < max 1; 3� Nð Þ, but if SENSE ¼ E , V or
B this may not be large enough.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase the workspace by, say, nb� N, where nb is the optimal block size for F08NEF
(DGEHRD).

Constraint: LWORK � max 1; 3� Nð Þ.

17: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the optimal LIWORK.

18: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08PBF (DGEESX) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates upper bounds on
the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the
WORK and IWORK arrays, and no error messages related to LWORK or LIWORK is issued.

Constraints:

if SENSE ¼ V or B , LIWORK � SDIM� N� SDIMð Þ;
otherwise LIWORK � 1.

Note: SDIM� N� SDIMð Þ � N� N=4. Note also that an error is only returned if
LIWORK < 1, but if SENSE ¼ V or B this may not be large enough.

19: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least max 1;Nð Þ if SORT 6¼ N , and at least
1 otherwise.

If SORT ¼ N , BWORK is not referenced.
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20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i and i � N, the QR algorithm failed to compute all the eigenvalues.

INFO ¼ Nþ 1

The eigenvalues could not be reordered because some eigenvalues were too close to separate (the
problem is very ill-conditioned).

INFO ¼ Nþ 2

After reordering, roundoff changed values of some complex eigenvalues so that leading
eigenvalues in the Schur form no longer satisfy SELECT ¼ :TRUE:. This could also be caused
by underflow due to scaling.

7 Accuracy

The computed Schur factorization satisfies

Aþ E ¼ ZTZT;

where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.8 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08PBF (DGEESX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08PBF (DGEESX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08PPF (ZGEESX).
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10 Example

This example finds the Schur factorization of the matrix

A ¼
0:35 0:45 �0:14 �0:17
0:09 0:07 �0:54 0:35
�0:44 �0:33 �0:03 0:17
0:25 �0:32 �0:13 0:11

0B@
1CA;

such that the real positive eigenvalues of A are the top left diagonal elements of the Schur form, T .
Estimates of the condition numbers for the selected eigenvalue cluster and corresponding invariant
subspace are also returned.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

! F08PBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f08pbfe_mod

! F08PBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: select

! .. Parameters ..
Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6
Logical, Parameter, Public :: check_fac = .True., &

print_cond = .False.
Contains

Function select(wr,wi)

! Logical function select for use with DGEESX (F08PBF)
! Returns the value .TRUE. if the eigenvalue is real and positive

! .. Function Return Value ..
Logical :: select

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: wi, wr

! .. Executable Statements ..
select = (wr>0._nag_wp .And. wi==0._nag_wp)
Return

End Function select
End Module f08pbfe_mod
Program f08pbfe

! F08PBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgeesx, dgemm, dlange => f06raf, nag_wp, x02ajf, &

x04caf
Use f08pbfe_mod, Only: check_fac, nb, nin, nout, print_cond, select

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, anorm, beta, eps, norm, &

rconde, rcondv, tol
Integer :: i, ifail, info, lda, ldc, ldd, ldvs, &

liwork, lwork, n, sdim
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), d(:,:), vs(:,:), &
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wi(:), work(:), wr(:)
Real (Kind=nag_wp) :: dummy(1)
Integer :: idum(1)
Integer, Allocatable :: iwork(:)
Logical, Allocatable :: bwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint

! .. Executable Statements ..
Write (nout,*) ’F08PBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldc = n
ldd = n
ldvs = n
Allocate (a(lda,n),c(ldc,n),d(ldd,n),vs(ldvs,n),wi(n),wr(n),bwork(n))

! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1

! The NAG name equivalent of dgeesx is f08pbf
Call dgeesx(’Vectors (Schur)’,’Sort’,select, &

’Both reciprocal condition numbers’,n,a,lda,sdim,wr,wi,vs,ldvs,rconde, &
rcondv,dummy,lwork,idum,liwork,bwork,info)

! Make sure that there is enough workspace for block size nb.
liwork = max((n*n)/4,idum(1))
lwork = max(n*(nb+2+n/2),nint(dummy(1)))
Allocate (work(lwork),iwork(liwork))

! Read in the matrix A
Read (nin,*)(a(i,1:n),i=1,n)

! Copy A into D
d(1:n,1:n) = a(1:n,1:n)

! Print matrix A
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Matrix A’,ifail)

Write (nout,*)
Flush (nout)

! Find the Frobenius norm of A
! The NAG name equivalent of the LAPACK auxiliary dlange is f06raf

anorm = dlange(’Frobenius’,n,n,a,lda,work)

! Find the Schur factorization of A
! The NAG name equivalent of dgeesx is f08pbf

Call dgeesx(’Vectors (Schur)’,’Sort’,select, &
’Both reciprocal condition numbers’,n,a,lda,sdim,wr,wi,vs,ldvs,rconde, &
rcondv,work,lwork,iwork,liwork,bwork,info)

If (info/=0 .And. info/=(n+2)) Then
Write (nout,99993) ’Failure in DGEESX. INFO =’, info
Go To 100

End If

If (check_fac) Then
! Compute A - Z*T*Z^T from the factorization of A and store in matrix D
! The NAG name equivalent of dgemm is f06yaf

alpha = 1.0_nag_wp
beta = 0.0_nag_wp
Call dgemm(’N’,’N’,n,n,n,alpha,vs,ldvs,a,lda,beta,c,ldc)
alpha = -1.0_nag_wp
beta = 1.0_nag_wp
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Call dgemm(’N’,’T’,n,n,n,alpha,c,ldc,vs,ldvs,beta,d,ldd)

! Find norm of matrix D and print warning if it is too large
! f06raf is the NAG name equivalent of the LAPACK auxiliary dlange

norm = dlange(’O’,ldd,n,d,ldd,work)
If (norm>x02ajf()**0.8_nag_wp) Then

Write (nout,*) ’Norm of A-(Z*T*Z^T) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’
Go To 100

End If
End If

! Print solution
Write (nout,99999) ’Number of eigenvalues for which SELECT is true = ’, &

sdim, ’(dimension of invariant subspace)’

Write (nout,*)
! Print eigenvalues.

Write (nout,*) ’Selected eigenvalues’
Write (nout,99998)(’ (’,wr(i),’,’,wi(i),’)’,i=1,sdim)
Write (nout,*)

If (info==(n+2)) Then
Write (nout,99997) ’***Note that rounding errors mean ’, &

’that leading eigenvalues in the Schur form’, &
’no longer satisfy SELECT = .TRUE.’

Write (nout,*)
End If
Flush (nout)

If (print_cond) Then
! Print out the reciprocal condition numbers

Write (nout,99996) ’Reciprocal of projection norm onto the invariant’, &
’subspace for the selected eigenvalues’, ’RCONDE = ’, rconde

Write (nout,*)
Write (nout,99995) &

’Reciprocal condition number for the invariant subspace’, &
’RCONDV = ’, rcondv

! Compute the machine precision
eps = x02ajf()
tol = eps*anorm

! Print out the approximate asymptotic error bound on the
! average absolute error of the selected eigenvalues given by
! eps*norm(A)/RCONDE

Write (nout,*)
Write (nout,99994) ’Approximate asymptotic error bound for selected ’, &

’eigenvalues = ’, tol/rconde

! Print out an approximate asymptotic bound on the maximum
! angular error in the computed invariant subspace given by
! eps*norm(A)/RCONDV

Write (nout,99994) &
’Approximate asymptotic error bound for the invariant ’, &
’subspace = ’, tol/rcondv

End If
100 Continue

99999 Format (1X,A,I4,/,1X,A)
99998 Format (1X,A,F8.4,A,F8.4,A)
99997 Format (1X,2A,/,1X,A)
99996 Format (1X,A,/,1X,A,/,1X,A,1P,E8.1)
99995 Format (1X,A,/,1X,A,1P,E8.1)
99994 Format (1X,2A,1P,E8.1)
99993 Format (1X,A,I4)

End Program f08pbfe

F08PBF NAG Library Manual

F08PBF.8 Mark 26



10.2 Program Data

F08PBF Example Program Data

4 :Value of N

0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35

-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A

10.3 Program Results

F08PBF Example Program Results

Matrix A
1 2 3 4

1 0.3500 0.4500 -0.1400 -0.1700
2 0.0900 0.0700 -0.5400 0.3500
3 -0.4400 -0.3300 -0.0300 0.1700
4 0.2500 -0.3200 -0.1300 0.1100

Number of eigenvalues for which SELECT is true = 1
(dimension of invariant subspace)

Selected eigenvalues
( 0.7995, 0.0000)
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NAG Library Routine Document

F08PEF (DHSEQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the argument LWORK changed at Mark 20: LWORK is no longer redundant.

1 Purpose

F08PEF (DHSEQR) computes all the eigenvalues and, optionally, the Schur factorization of a real
Hessenberg matrix or a real general matrix which has been reduced to Hessenberg form.

2 Specification

SUBROUTINE F08PEF (JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, LDZ,
WORK, LWORK, INFO)

&

INTEGER N, ILO, IHI, LDH, LDZ, LWORK, INFO
REAL (KIND=nag_wp) H(LDH,*), WR(*), WI(*), Z(LDZ,*),

WORK(max(1,LWORK))
&

CHARACTER(1) JOB, COMPZ

The routine may be called by its LAPACK name dhseqr.

3 Description

F08PEF (DHSEQR) computes all the eigenvalues and, optionally, the Schur factorization of a real
upper Hessenberg matrix H:

H ¼ ZTZT;

where T is an upper quasi-triangular matrix (the Schur form of H), and Z is the orthogonal matrix
whose columns are the Schur vectors zi. See Section 9 for details of the structure of T .

The routine may also be used to compute the Schur factorization of a real general matrix A which has
been reduced to upper Hessenberg form H:

A ¼ QHQT; where Q is orthogonal;
¼ QZð ÞT QZð ÞT:

In this case, after F08NEF (DGEHRD) has been called to reduce A to Hessenberg form, F08NFF
(DORGHR) must be called to form Q explicitly; Q is then passed to F08PEF (DHSEQR), which must
be called with COMPZ ¼ V .

The routine can also take advantage of a previous call to F08NHF (DGEBAL) which may have
balanced the original matrix before reducing it to Hessenberg form, so that the Hessenberg matrix H
has the structure:

H11 H12 H13
H22 H23

H33

0@ 1A
where H11 and H33 are upper triangular. If so, only the central diagonal block H22 (in rows and
columns ilo to ihi) needs to be further reduced to Schur form (the blocks H12 and H23 are also affected).
Therefore the values of ilo and ihi can be supplied to F08PEF (DHSEQR) directly. Also, F08NJF
(DGEBAK) must be called after this routine to permute the Schur vectors of the balanced matrix to
those of the original matrix. If F08NHF (DGEBAL) has not been called however, then ilo must be set to
1 and ihi to n. Note that if the Schur factorization of A is required, F08NHF (DGEBAL) must not be
called with JOB ¼ S or B , because the balancing transformation is not orthogonal.
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F08PEF (DHSEQR) uses a multishift form of the upper Hessenberg QR algorithm, due to Bai and
Demmel (1989). The Schur vectors are normalized so that zik k2 ¼ 1, but are determined only to within
a factor 
1.

4 References

Bai Z and Demmel J W (1989) On a block implementation of Hessenberg multishift QR iteration
Internat. J. High Speed Comput. 1 97–112

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether eigenvalues only or the Schur form T is required.

JOB ¼ E
Eigenvalues only are required.

JOB ¼ S
The Schur form T is required.

Constraint: JOB ¼ E or S .

2: COMPZ – CHARACTER(1) Input

On entry: indicates whether the Schur vectors are to be computed.

COMPZ ¼ N
No Schur vectors are computed (and the array Z is not referenced).

COMPZ ¼ V
The Schur vectors of A are computed (and the array Z must contain the matrix Q on
entry).

COMPZ ¼ I
The Schur vectors of H are computed (and the array Z is initialized by the routine).

Constraint: COMPZ ¼ N , V or I .

3: N – INTEGER Input

On entry: n, the order of the matrix H.

Constraint: N � 0.

4: ILO – INTEGER Input
5: IHI – INTEGER Input

On entry: if the matrix A has been balanced by F08NHF (DGEBAL), then ILO and IHI must
contain the values returned by that routine. Otherwise, ILO must be set to 1 and IHI to N.

Constraint: ILO � 1 and min ILO;Nð Þ � IHI � N.

6: HðLDH; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array H must be at least max 1;Nð Þ.
On entry: the n by n upper Hessenberg matrix H, as returned by F08NEF (DGEHRD).

On exit: if JOB ¼ E , the array contains no useful information.

If JOB ¼ S , H is overwritten by the upper quasi-triangular matrix T from the Schur
decomposition (the Schur form) unless INFO > 0.
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7: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which F08PEF
(DHSEQR) is called.

Constraint: LDH � max 1;Nð Þ.

8: WRð�Þ – REAL (KIND=nag_wp) array Output
9: WIð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the arrays WR and WI must be at least max 1;Nð Þ.
On exit: the real and imaginary parts, respectively, of the computed eigenvalues, unless
INFO > 0 (in which case see Section 6). Complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having positive imaginary part first. The eigenvalues are stored
in the same order as on the diagonal of the Schur form T (if computed); see Section 9 for details.

10: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , Z must contain the orthogonal matrix Q from the reduction to
Hessenberg form.

If COMPZ ¼ I , Z need not be set.

On exit: if COMPZ ¼ V or I , Z contains the orthogonal matrix of the required Schur vectors,
unless INFO > 0.

If COMPZ ¼ N , Z is not referenced.

11: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08PEF
(DHSEQR) is called.

Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
if COMPZ ¼ N , LDZ � 1.

12: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08PEF (DHSEQR) is called, unless LWORK ¼ �1, in which case a workspace query is
assumed and the routine only calculates the minimum dimension of WORK.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

The algorithm has failed to find all the eigenvalues after a total of 30� IHI� ILOþ 1ð Þ
iterations. If INFO ¼ i, elements 1; 2; . . . ; ILO� 1 and iþ 1; iþ 2; . . . ; n of WR and WI contain
the real and imaginary parts of contain the eigenvalues which have been found.

If JOB ¼ E , then on exit, the remaining unconverged eigenvalues are the eigenvalues of the
upper Hessenberg matrix Ĥ, formed from HðILO : INFO; ILO : INFOÞ, i.e., the ILO through
INFO rows and columns of the final output matrix H.

If JOB ¼ S , then on exit

�ð Þ HiU ¼ U ~H

for some matrix U , where Hi is the input upper Hessenberg matrix and ~H is an upper Hessenberg
matrix formed from HðINFOþ 1 : IHI; INFOþ 1 : IHIÞ.
If COMPZ ¼ V , then on exit

Zout ¼ ZinU

where U is defined in �ð Þ (regardless of the value of JOB).

If COMPZ ¼ I , then on exit

Zout ¼ U

where U is defined in �ð Þ (regardless of the value of JOB).

If INFO > 0 and COMPZ ¼ N , then Z is not accessed.

7 Accuracy

The computed Schur factorization is the exact factorization of a nearby matrix H þ Eð Þ, where
Ek k2 ¼ O �ð Þ Hk k2;

and � is the machine precision.

If �i is an exact eigenvalue, and ~�i is the corresponding computed value, then

~�i � �i
		 		 � c nð Þ� Hk k2

si
;

where c nð Þ is a modestly increasing function of n, and si is the reciprocal condition number of �i. The
condition numbers si may be computed by calling F08QLF (DTRSNA).

8 Parallelism and Performance

F08PEF (DHSEQR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08PEF (DHSEQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations depends on how rapidly the algorithm converges, but is
typically about:
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7n3 if only eigenvalues are computed;

10n3 if the Schur form is computed;

20n3 if the full Schur factorization is computed.

The Schur form T has the following structure (referred to as canonical Schur form).

If all the computed eigenvalues are real, T is upper triangular, and the diagonal elements of T are the
eigenvalues; WRðiÞ ¼ tii, for i ¼ 1; 2; . . . ; n, and WIðiÞ ¼ 0:0.

If some of the computed eigenvalues form complex conjugate pairs, then T has 2 by 2 diagonal blocks.
Each diagonal block has the form

tii ti;iþ1
tiþ1;i tiþ1;iþ1

� �
¼ � �

� �

� �
where �� < 0. The corresponding eigenvalues are �


ffiffiffiffiffiffi
��
p

; WRðiÞ ¼WRðiþ 1Þ ¼ �;
WIðiÞ ¼ þ

ffiffiffiffiffiffiffiffiffi
��j j

p
; WIðiþ 1Þ ¼ �WIðiÞ.

The complex analogue of this routine is F08PSF (ZHSEQR).

10 Example

This example computes all the eigenvalues and the Schur factorization of the upper Hessenberg matrix
H, where

H ¼
0:3500 �0:1160 �0:3886 �0:2942
�0:5140 0:1225 0:1004 0:1126
0:0000 0:6443 �0:1357 �0:0977
0:0000 0:0000 0:4262 0:1632

0B@
1CA:

See also Section 10 in F08NFF (DORGHR), which illustrates the use of this routine to compute the
Schur factorization of a general matrix.

10.1 Program Text

Program f08pefe

! F08PEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgemm, dhseqr, dlange => f06raf, nag_wp, x02ajf, &

x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: alpha, beta, norm
Integer :: i, ifail, info, ldc, ldd, ldh, ldz, &

lwork, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), d(:,:), h(:,:), wi(:), &
work(:), wr(:), z(:,:)

! .. Executable Statements ..
Write (nout,*) ’F08PEF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldc = n
ldd = n
ldh = n
ldz = n
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lwork = n
Allocate (c(ldc,n),d(ldd,n),h(ldh,n),wi(n),work(lwork),wr(n),z(ldz,n))

! Read H from data file
Read (nin,*)(h(i,1:n),i=1,n)

! Copy H into D
d(1:n,1:n) = h(1:n,1:n)

! Print Matrix H
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,h,ldh,’Matrix H’,ifail)

! Calculate the eigenvalues and Schur factorization of H

! The NAG name equivalent of dhseqr is f08pef
Call dhseqr(’Schur form’,’Initialize Z’,n,1,n,h,ldh,wr,wi,z,ldz,work, &

lwork,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Compute H - Z*T*Z^T from the factorization of A and store in matrix D
! The NAG name equivalent of dgemm is f06yaf

alpha = 1.0_nag_wp
beta = 0.0_nag_wp
Call dgemm(’N’,’N’,n,n,n,alpha,z,ldz,h,ldh,beta,c,ldc)
alpha = -1.0_nag_wp
beta = 1.0_nag_wp
Call dgemm(’N’,’T’,n,n,n,alpha,c,ldc,z,ldz,beta,d,ldd)

! Find norm of matrix D and print warning if it is too large
! f06raf is the NAG name equivalent of the LAPACK auxiliary dlange

norm = dlange(’O’,ldd,n,d,ldd,work)
If (norm>x02ajf()**0.8_nag_wp) Then

Write (nout,*) ’Norm of H-(Z*T*Z^T) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’

Else
! Print eigenvalues

Write (nout,*) ’Eigenvalues’
Write (nout,99999)(’ (’,wr(i),’,’,wi(i),’)’,i=1,n)

End If
End If

99999 Format (1X,A,F8.4,A,F8.4,A)
End Program f08pefe

10.2 Program Data

F08PEF Example Program Data
4 :Value of N
0.3500 -0.1160 -0.3886 -0.2942

-0.5140 0.1225 0.1004 0.1126
0.0000 0.6443 -0.1357 -0.0977
0.0000 0.0000 0.4262 0.1632 :End of matrix H

10.3 Program Results

F08PEF Example Program Results
Matrix H

1 2 3 4
1 0.3500 -0.1160 -0.3886 -0.2942
2 -0.5140 0.1225 0.1004 0.1126
3 0.0000 0.6443 -0.1357 -0.0977
4 0.0000 0.0000 0.4262 0.1632
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Eigenvalues
( 0.7995, 0.0000)
( -0.0994, 0.4008)
( -0.0994, -0.4008)
( -0.1007, 0.0000)
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NAG Library Routine Document

F08PKF (DHSEIN)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08PKF (DHSEIN) computes selected left and/or right eigenvectors of a real upper Hessenberg matrix
corresponding to specified eigenvalues, by inverse iteration.

2 Specification

SUBROUTINE F08PKF (JOB, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, VL,
LDVL, VR, LDVR, MM, M, WORK, IFAILL, IFAILR, INFO)

&

INTEGER N, LDH, LDVL, LDVR, MM, M, IFAILL(*), IFAILR(*),
INFO

&

REAL (KIND=nag_wp) H(LDH,*), WR(*), WI(*), VL(LDVL,*), VR(LDVR,*),
WORK((N+2)*N)

&

LOGICAL SELECT(*)
CHARACTER(1) JOB, EIGSRC, INITV

The routine may be called by its LAPACK name dhsein.

3 Description

F08PKF (DHSEIN) computes left and/or right eigenvectors of a real upper Hessenberg matrix H,
corresponding to selected eigenvalues.

The right eigenvector x, and the left eigenvector y, corresponding to an eigenvalue �, are defined by:

Hx ¼ �x and yHH ¼ �yH or HTy ¼ ��y
� �

:

Note that even though H is real, �, x and y may be complex. If x is an eigenvector corresponding to a
complex eigenvalue �, then the complex conjugate vector �x is the eigenvector corresponding to the
complex conjugate eigenvalue ��.

The eigenvectors are computed by inverse iteration. They are scaled so that, for a real eigenvector x,
max xij j ¼ 1, and for a complex eigenvector, max Re xið Þj j þ Im xij j ¼ 1.

If H has been formed by reduction of a real general matrix A to upper Hessenberg form, then the
eigenvectors of H may be transformed to eigenvectors of A by a call to F08NGF (DORMHR).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether left and/or right eigenvectors are to be computed.

JOB ¼ R
Only right eigenvectors are computed.

JOB ¼ L
Only left eigenvectors are computed.
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JOB ¼ B
Both left and right eigenvectors are computed.

Constraint: JOB ¼ R , L or B .

2: EIGSRC – CHARACTER(1) Input

On entry: indicates whether the eigenvalues of H (stored in WR and WI) were found using
F08PEF (DHSEQR).

EIGSRC ¼ Q
The eigenvalues of H were found using F08PEF (DHSEQR); thus if H has any zero
subdiagonal elements (and so is block triangular), then the jth eigenvalue can be assumed
to be an eigenvalue of the block containing the jth row/column. This property allows the
routine to perform inverse iteration on just one diagonal block.

EIGSRC ¼ N
No such assumption is made and the routine performs inverse iteration using the whole
matrix.

Constraint: EIGSRC ¼ Q or N .

3: INITV – CHARACTER(1) Input

On entry: indicates whether you are supplying initial estimates for the selected eigenvectors.

INITV ¼ N
No initial estimates are supplied.

INITV ¼ U
Initial estimates are supplied in VL and/or VR.

Constraint: INITV ¼ N or U .

4: SELECTð�Þ – LOGICAL array Input/Output

Note: the dimension of the array SELECT must be at least max 1;Nð Þ.
On entry: specifies which eigenvectors are to be computed. To obtain the real eigenvector
corresponding to the real eigenvalue WRðjÞ, SELECTðjÞ must be set .TRUE.. To select the
complex eigenvector corresponding to the complex eigenvalue WRðjÞ;WIðjÞð Þ with complex
conjugate (WRðjþ 1Þ;WIðjþ 1Þ), SELECTðjÞ and/or SELECTðjþ 1Þ must be set .TRUE.; the
eigenvector corresponding to the first eigenvalue in the pair is computed.

On exit: if a complex eigenvector was selected as specified above, then SELECTðjÞ is set to .
TRUE. and SELECTðjþ 1Þ to .FALSE..

5: N – INTEGER Input

On entry: n, the order of the matrix H.

Constraint: N � 0.

6: HðLDH; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array H must be at least max 1;Nð Þ.
On entry: the n by n upper Hessenberg matrix H. If a NaN is detected in H, the routine will
return with INFO ¼ �6.
Constraint: No element of H is equal to NaN.

7: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which F08PKF
(DHSEIN) is called.

Constraint: LDH � max 1;Nð Þ.
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8: WRð�Þ – REAL (KIND=nag_wp) array Input/Output
9: WIð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the arrays WR and WI must be at least max 1;Nð Þ.
On entry: the real and imaginary parts, respectively, of the eigenvalues of the matrix H. Complex
conjugate pairs of values must be stored in consecutive elements of the arrays. If EIGSRC ¼ Q ,
the arrays must be exactly as returned by F08PEF (DHSEQR).

On exit: some elements of WR may be modified, as close eigenvalues are perturbed slightly in
searching for independent eigenvectors.

10: VLðLDVL; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VL must be at least max 1;MMð Þ if JOB ¼ L or B and
at least 1 if JOB ¼ R .

On entry: if INITV ¼ U and JOB ¼ L or B , VL must contain starting vectors for inverse
iteration for the left eigenvectors. Each starting vector must be stored in the same column or
columns as will be used to store the corresponding eigenvector (see below).

If INITV ¼ N , VL need not be set.

On exit: if JOB ¼ L or B , VL contains the computed left eigenvectors (as specified by
SELECT). The eigenvectors are stored consecutively in the columns of the array, in the same
order as their eigenvalues. Corresponding to each selected real eigenvalue is a real eigenvector,
occupying one column. Corresponding to each selected complex eigenvalue is a complex
eigenvector, occupying two columns: the first column holds the real part and the second column
holds the imaginary part.

If JOB ¼ R , VL is not referenced.

11: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08PKF (DHSEIN) is called.

Constraints:

if JOB ¼ L or B , LDVL � N;
if JOB ¼ R , LDVL � 1.

12: VRðLDVR; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VR must be at least max 1;MMð Þ if JOB ¼ R or B and
at least 1 if JOB ¼ L .

On entry: if INITV ¼ U and JOB ¼ R or B , VR must contain starting vectors for inverse
iteration for the right eigenvectors. Each starting vector must be stored in the same column or
columns as will be used to store the corresponding eigenvector (see below).

If INITV ¼ N , VR need not be set.

On exit: if JOB ¼ R or B , VR contains the computed right eigenvectors (as specified by
SELECT). The eigenvectors are stored consecutively in the columns of the array, in the same
order as their eigenvalues. Corresponding to each selected real eigenvalue is a real eigenvector,
occupying one column. Corresponding to each selected complex eigenvalue is a complex
eigenvector, occupying two columns: the first column holds the real part and the second column
holds the imaginary part.

If JOB ¼ L , VR is not referenced.

13: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08PKF (DHSEIN) is called.
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Constraints:

if JOB ¼ R or B , LDVR � N;
if JOB ¼ L , LDVR � 1.

14: MM – INTEGER Input

On entry: the number of columns in the arrays VL and/or VR . The actual number of columns
required, m, is obtained by counting 1 for each selected real eigenvector and 2 for each selected
complex eigenvector (see SELECT); 0 � m � n.
Constraint: MM � m.

15: M – INTEGER Output

On exit: m, the number of columns of VL and/or VR required to store the selected eigenvectors.

16: WORKð Nþ 2ð Þ � NÞ – REAL (KIND=nag_wp) array Workspace

17: IFAILLð�Þ – INTEGER array Output

Note: the dimension of the array IFAILL must be at least max 1;MMð Þ if JOB ¼ L or B and at
least 1 if JOB ¼ R .

On exit: if JOB ¼ L or B , then IFAILLðiÞ ¼ 0 if the selected left eigenvector converged and
IFAILLðiÞ ¼ j > 0 if the eigenvector stored in the ith column of VL (corresponding to the jth
eigenvalue as held in WRðjÞ;WIðjÞð Þ failed to converge. If the ith and iþ 1ð Þth columns of VL
contain a selected complex eigenvector, then IFAILLðiÞ and IFAILLðiþ 1Þ are set to the same
value.

If JOB ¼ R , IFAILL is not referenced.

18: IFAILRð�Þ – INTEGER array Output

Note: the dimension of the array IFAILR must be at least max 1;MMð Þ if JOB ¼ R or B and at
least 1 if JOB ¼ L .

On exit: if JOB ¼ R or B , then IFAILRðiÞ ¼ 0 if the selected right eigenvector converged and
IFAILRðiÞ ¼ j > 0 if the eigenvector stored in the ith row or column of VR (corresponding to
the jth eigenvalue as held in WRðjÞ;WIðjÞð Þ) failed to converge. If the ith and iþ 1ð Þth rows or
columns of VR contain a selected complex eigenvector, then IFAILRðiÞ and IFAILRðiþ 1Þ are
set to the same value.

If JOB ¼ L , IFAILR is not referenced.

19: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, then i eigenvectors (as indicated by the arguments IFAILL and/or IFAILR above)
failed to converge. The corresponding columns of VL and/or VR contain no useful information.
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7 Accuracy

Each computed right eigenvector xi is the exact eigenvector of a nearby matrix Aþ Ei, such that
Eik k ¼ O �ð Þ Ak k. Hence the residual is small:

Axi � �ixik k ¼ O �ð Þ Ak k:

However, eigenvectors corresponding to close or coincident eigenvalues may not accurately span the
relevant subspaces.

Similar remarks apply to computed left eigenvectors.

8 Parallelism and Performance

F08PKF (DHSEIN) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08PKF (DHSEIN) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08PXF (ZHSEIN).

10 Example

See Section 10 in F08NGF (DORMHR).
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NAG Library Routine Document

F08PNF (ZGEES)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08PNF (ZGEES) computes the eigenvalues, the Schur form T , and, optionally, the matrix of Schur
vectors Z for an n by n complex nonsymmetric matrix A.

2 Specification

SUBROUTINE F08PNF (JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS, LDVS,
WORK, LWORK, RWORK, BWORK, INFO)

&

INTEGER N, LDA, SDIM, LDVS, LWORK, INFO
REAL (KIND=nag_wp) RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), W(*), VS(LDVS,*), WORK(max(1,LWORK))
LOGICAL SELECT, BWORK(*)
CHARACTER(1) JOBVS, SORT
EXTERNAL SELECT

The routine may be called by its LAPACK name zgees.

3 Description

The Schur factorization of A is given by

A ¼ ZTZH;

where Z, the matrix of Schur vectors, is unitary and T is the Schur form. A complex matrix is in Schur
form if it is upper triangular.

Optionally, F08PNF (ZGEES) also orders the eigenvalues on the diagonal of the Schur form so that
selected eigenvalues are at the top left. The leading columns of Z form an orthonormal basis for the
invariant subspace corresponding to the selected eigenvalues.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBVS – CHARACTER(1) Input

On entry: if JOBVS ¼ N , Schur vectors are not computed.

If JOBVS ¼ V , Schur vectors are computed.

Constraint: JOBVS ¼ N or V .
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2: SORT – CHARACTER(1) Input

On entry: specifies whether or not to order the eigenvalues on the diagonal of the Schur form.

SORT ¼ N
Eigenvalues are not ordered.

SORT ¼ S
Eigenvalues are ordered (see SELECT).

Constraint: SORT ¼ N or S .

3: SELECT – LOGICAL FUNCTION, supplied by the user. External Procedure

If SORT ¼ S , SELECT is used to select eigenvalues to sort to the top left of the Schur form.

If SORT ¼ N , SELECT is not referenced and F08PNF (ZGEES) may be called with the dummy
function F08PNZ.

An eigenvalue WðjÞ is selected if SELECT WðjÞð Þ is .TRUE..

The specification of SELECT is:

FUNCTION SELECT (W)
LOGICAL SELECT

COMPLEX (KIND=nag_wp) W

1: W – COMPLEX (KIND=nag_wp) Input

On entry: the real and imaginary parts of the eigenvalue.

SELECT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F08PNF (ZGEES) is called. Arguments denoted as Input must not be
changed by this procedure.

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A is overwritten by its Schur form T .

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08PNF
(ZGEES) is called.

Constraint: LDA � max 1;Nð Þ.

7: SDIM – INTEGER Output

On exit: if SORT ¼ N , SDIM ¼ 0.

If SORT ¼ S , SDIM ¼ number of eigenvalues for which SELECT is .TRUE..

8: Wð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: contains the computed eigenvalues, in the same order that they appear on the diagonal of
the output Schur form T .
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9: VSðLDVS; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VS must be at least max 1;Nð Þ if JOBVS ¼ V , and at
least 1 otherwise.

On exit: if JOBVS ¼ V , VS contains the unitary matrix Z of Schur vectors.

If JOBVS ¼ N , VS is not referenced.

10: LDVS – INTEGER Input

On entry: the first dimension of the array VS as declared in the (sub)program from which
F08PNF (ZGEES) is called.

Constraints:

if JOBVS ¼ V , LDVS � max 1;Nð Þ;
otherwise LDVS � 1.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08PNF (ZGEES) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum,
say 2� Nþ nb� N, where nb is the optimal block size for F08NSF (ZGEHRD).

Constraint: LWORK � max 1; 2� Nð Þ.

13: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1;Nð Þ.

14: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least 1 if SORT ¼ N , and at least
max 1;Nð Þ otherwise.
If SORT ¼ N , BWORK is not referenced.

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i and i � N, the QR algorithm failed to compute all the eigenvalues.
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INFO ¼ Nþ 1

The eigenvalues could not be reordered because some eigenvalues were too close to separate (the
problem is very ill-conditioned).

INFO ¼ Nþ 2

After reordering, roundoff changed values of some complex eigenvalues so that leading
eigenvalues in the Schur form no longer satisfy SELECT ¼ :TRUE:. This could also be caused
by underflow due to scaling.

7 Accuracy

The computed Schur factorization satisfies

Aþ E ¼ ZTZH;

where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.8 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08PNF (ZGEES) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08PNF (ZGEES) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08PAF (DGEES).

10 Example

This example finds the Schur factorization of the matrix

A ¼
�3:97� 5:04i �4:11þ 3:70i �0:34þ 1:01i 1:29� 0:86i
0:34� 1:50i 1:52� 0:43i 1:88� 5:38i 3:36þ 0:65i
3:31� 3:85i 2:50þ 3:45i 0:88� 1:08i 0:64� 1:48i
�1:10þ 0:82i 1:81� 1:59i 3:25þ 1:33i 1:57� 3:44i

0B@
1CA:

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08pnfe

! F08PNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f08pnz, nag_wp, x02ajf, x04dbf, zgees, zgemm, &
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zlange => f06uaf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nb = 64, nin = 5, nout = 6
! .. Local Scalars ..

Complex (Kind=nag_wp) :: alpha, beta
Real (Kind=nag_wp) :: norm
Integer :: i, ifail, info, lda, ldc, ldd, ldvs, &

lwork, n, sdim
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), d(:,:), vs(:,:), &
w(:), work(:)

Complex (Kind=nag_wp) :: wdum(1)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Logical :: dummy(1)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, max, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08PNF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldc = n
ldd = n
ldvs = n
Allocate (a(lda,n),vs(ldvs,n),c(ldc,n),d(ldd,n),w(n),rwork(n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zgees is f08pnf
Call zgees(’Vectors (Schur)’,’No sort’,f08pnz,n,a,lda,sdim,w,vs,ldvs, &

wdum,lwork,rwork,dummy,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(wdum(1))))
Allocate (work(lwork))

! Read in the matrix A
Read (nin,*)(a(i,1:n),i=1,n)

! Copy A into D
d(1:n,1:n) = a(1:n,1:n)

! Print matrix A
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’,’Matrix A’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

! Find the Schur factorization of A
! The NAG name equivalent of zgees is f08pnf

Call zgees(’Vectors (Schur)’,’No sort’,f08pnz,n,a,lda,sdim,w,vs,ldvs, &
work,lwork,rwork,dummy,info)

If (info>0) Then
Write (nout,99999) ’Failure in ZGEES. INFO =’, info

Else

! Compute A - Z*T*Z^H from the factorization of A and store in matrix D
! The NAG name equivalent of zgemm is f06zaf

alpha = cmplx(1,kind=nag_wp)
beta = cmplx(0,kind=nag_wp)
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Call zgemm(’N’,’N’,n,n,n,alpha,vs,ldvs,a,lda,beta,c,ldc)
alpha = cmplx(-1,kind=nag_wp)
beta = cmplx(1,kind=nag_wp)
Call zgemm(’N’,’C’,n,n,n,alpha,c,ldc,vs,ldvs,beta,d,ldd)

! Find norm of matrix D and print warning if it is too large
! f06uaf is the NAG name equivalent of the LAPACK auxiliary zlange

norm = zlange(’O’,ldd,n,d,ldd,rwork)
If (norm>x02ajf()**0.5_nag_wp) Then

Write (nout,*) ’Norm of A-(Z*T*Z^H) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’

Else
! Print eigenvalues.

Write (nout,*) ’Eigenvalues’
Write (nout,99998)(i,w(i),i=1,n)

End If
End If

99999 Format (1X,A,I4)
99998 Format (1X,I4,2X,’ (’,F7.4,’,’,F7.4,’)’,:)

End Program f08pnfe

10.2 Program Data

F08PNF Example Program Data

4 :Value of N

(-3.97, -5.04) (-4.11, 3.70) (-0.34, 1.01) ( 1.29, -0.86)
( 0.34, -1.50) ( 1.52, -0.43) ( 1.88, -5.38) ( 3.36, 0.65)
( 3.31, -3.85) ( 2.50, 3.45) ( 0.88, -1.08) ( 0.64, -1.48)
(-1.10, 0.82) ( 1.81, -1.59) ( 3.25, 1.33) ( 1.57, -3.44) :End of matrix A

10.3 Program Results

F08PNF Example Program Results

Matrix A
1 2 3 4

1 (-3.9700,-5.0400) (-4.1100, 3.7000) (-0.3400, 1.0100) ( 1.2900,-0.8600)
2 ( 0.3400,-1.5000) ( 1.5200,-0.4300) ( 1.8800,-5.3800) ( 3.3600, 0.6500)
3 ( 3.3100,-3.8500) ( 2.5000, 3.4500) ( 0.8800,-1.0800) ( 0.6400,-1.4800)
4 (-1.1000, 0.8200) ( 1.8100,-1.5900) ( 3.2500, 1.3300) ( 1.5700,-3.4400)

Eigenvalues
1 (-6.0004,-6.9998)
2 (-5.0000, 2.0060)
3 ( 7.9982,-0.9964)
4 ( 3.0023,-3.9998)
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NAG Library Routine Document

F08PPF (ZGEESX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08PPF (ZGEESX) computes the eigenvalues, the Schur form T , and, optionally, the matrix of Schur
vectors Z for an n by n complex nonsymmetric matrix A.

2 Specification

SUBROUTINE F08PPF (JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W, VS,
LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK, BWORK,
INFO)

&
&

INTEGER N, LDA, SDIM, LDVS, LWORK, INFO
REAL (KIND=nag_wp) RCONDE, RCONDV, RWORK(*)
COMPLEX (KIND=nag_wp) A(LDA,*), W(*), VS(LDVS,*), WORK(max(1,LWORK))
LOGICAL SELECT, BWORK(*)
CHARACTER(1) JOBVS, SORT, SENSE
EXTERNAL SELECT

The routine may be called by its LAPACK name zgeesx.

3 Description

The Schur factorization of A is given by

A ¼ ZTZH;

where Z, the matrix of Schur vectors, is unitary and T is the Schur form. A complex matrix is in Schur
form if it is upper triangular.

Optionally, F08PPF (ZGEESX) also orders the eigenvalues on the diagonal of the Schur form so that
selected eigenvalues are at the top left; computes a reciprocal condition number for the average of the
selected eigenvalues (RCONDE); and computes a reciprocal condition number for the right invariant
subspace corresponding to the selected eigenvalues (RCONDV). The leading columns of Z form an
orthonormal basis for this invariant subspace.

For further explanation of the reciprocal condition numbers RCONDE and RCONDV, see Section 4.8 of
Anderson et al. (1999) (where these quantities are called s and sep respectively).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBVS – CHARACTER(1) Input

On entry: if JOBVS ¼ N , Schur vectors are not computed.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08PPF
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If JOBVS ¼ V , Schur vectors are computed.

Constraint: JOBVS ¼ N or V .

2: SORT – CHARACTER(1) Input

On entry: specifies whether or not to order the eigenvalues on the diagonal of the Schur form.

SORT ¼ N
Eigenvalues are not ordered.

SORT ¼ S
Eigenvalues are ordered (see SELECT).

Constraint: SORT ¼ N or S .

3: SELECT – LOGICAL FUNCTION, supplied by the user. External Procedure

If SORT ¼ S , SELECT is used to select eigenvalues to sort to the top left of the Schur form.

If SORT ¼ N , SELECT is not referenced and F08PPF (ZGEESX) may be called with the
dummy function F08PNZ.

An eigenvalue WðjÞ is selected if SELECT WðjÞð Þ is .TRUE..

The specification of SELECT is:

FUNCTION SELECT (W)
LOGICAL SELECT

COMPLEX (KIND=nag_wp) W

1: W – COMPLEX (KIND=nag_wp) Input

On entry: the real and imaginary parts of the eigenvalue.

SELECT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F08PPF (ZGEESX) is called. Arguments denoted as Input must not be
changed by this procedure.

4: SENSE – CHARACTER(1) Input

On entry: determines which reciprocal condition numbers are computed.

SENSE ¼ N
None are computed.

SENSE ¼ E
Computed for average of selected eigenvalues only.

SENSE ¼ V
Computed for selected right invariant subspace only.

SENSE ¼ B
Computed for both.

If SENSE ¼ E , V or B , SORT ¼ S .

Constraint: SENSE ¼ N , E , V or B .

5: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A is overwritten by its Schur form T .

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08PPF
(ZGEESX) is called.

Constraint: LDA � max 1;Nð Þ.

8: SDIM – INTEGER Output

On exit: if SORT ¼ N , SDIM ¼ 0.

If SORT ¼ S , SDIM ¼ number of eigenvalues for which SELECT is .TRUE..

9: Wð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: contains the computed eigenvalues, in the same order that they appear on the diagonal of
the output Schur form T .

10: VSðLDVS; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VS must be at least max 1;Nð Þ if JOBVS ¼ V , and at
least 1 otherwise.

On exit: if JOBVS ¼ V , VS contains the unitary matrix Z of Schur vectors.

If JOBVS ¼ N , VS is not referenced.

11: LDVS – INTEGER Input

On entry: the first dimension of the array VS as declared in the (sub)program from which
F08PPF (ZGEESX) is called.

Constraints:

if JOBVS ¼ V , LDVS � max 1;Nð Þ;
otherwise LDVS � 1.

12: RCONDE – REAL (KIND=nag_wp) Output

On exit: if SENSE ¼ E or B , contains the reciprocal condition number for the average of the
selected eigenvalues.

If SENSE ¼ N or V , RCONDE is not referenced.

13: RCONDV – REAL (KIND=nag_wp) Output

On exit: if SENSE ¼ V or B , RCONDV contains the reciprocal condition number for the
selected right invariant subspace.

If SENSE ¼ N or E , RCONDV is not referenced.

14: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.
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15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08PPF
(ZGEESX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates an upper bound on
the optimal size of the WORK array, returns this value as the first entry of the WORK array, and
no error message related to LWORK is issued.

If SENSE ¼ E , V or B , LWORK � 2� SDIM� N� SDIMð Þ, where SDIM is the number of
selected eigenvalues computed by this routine.

Note that 2� SDIM� N� SDIMð Þ � N� N=2. Note also that an error is only returned if
LWORK < max 1; 2� Nð Þ, but if SENSE ¼ E , V or B this may not be large enough.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase the workspace by, say, nb� N, where nb is the optimal block size for F08NSF
(ZGEHRD).

Constraint: LWORK � max 1; 2� Nð Þ.

16: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1;Nð Þ.

17: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least 1 if SORT ¼ N , and at least
max 1;Nð Þ otherwise.
If SORT ¼ N , BWORK is not referenced.

18: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i and i � N, the QR algorithm failed to compute all the eigenvalues.

INFO ¼ Nþ 1

The eigenvalues could not be reordered because some eigenvalues were too close to separate (the
problem is very ill-conditioned).

INFO ¼ Nþ 2

After reordering, roundoff changed values of some complex eigenvalues so that leading
eigenvalues in the Schur form no longer satisfy SELECT ¼ :TRUE:. This could also be caused
by underflow due to scaling.

7 Accuracy

The computed Schur factorization satisfies

Aþ E ¼ ZTZH;

where
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Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. See Section 4.8 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08PPF (ZGEESX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08PPF (ZGEESX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08PBF (DGEESX).

10 Example

This example finds the Schur factorization of the matrix

A ¼
�3:97� 5:04i �4:11þ 3:70i �0:34þ 1:01i 1:29� 0:86i
0:34� 1:50i 1:52� 0:43i 1:88� 5:38i 3:36þ 0:65i
3:31� 3:85i 2:50þ 3:45i 0:88� 1:08i 0:64� 1:48i
�1:10þ 0:82i 1:81� 1:59i 3:25þ 1:33i 1:57� 3:44i

0B@
1CA;

such that the eigenvalues of A with positive real part of are the top left diagonal elements of the Schur
form, T . Estimates of the condition numbers for the selected eigenvalue cluster and corresponding
invariant subspace are also returned.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

! F08PPF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f08ppfe_mod

! F08PPF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: select

! .. Parameters ..
Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6
Logical, Parameter, Public :: check_fac = .True., &

print_cond = .False.
Contains

Function select(w)

! Logical function select for use with ZGEESX (F08PPF)
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! Returns the value .TRUE. if the real part of the eigenvalue
! w is positive.

! .. Function Return Value ..
Logical :: select

! .. Scalar Arguments ..
Complex (Kind=nag_wp), Intent (In) :: w

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
select = (real(w)>0._nag_wp)
Return

End Function select
End Module f08ppfe_mod
Program f08ppfe

! F08PPF Example Main Program

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, x04dbf, zgeesx, zgemm, &

zlange => f06uaf
Use f08ppfe_mod, Only: check_fac, nb, nin, nout, print_cond, select

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Complex (Kind=nag_wp) :: alpha, beta
Real (Kind=nag_wp) :: anorm, eps, norm, rconde, rcondv, &

tol
Integer :: i, ifail, info, lda, ldc, ldd, ldvs, &

lwork, n, sdim
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), d(:,:), vs(:,:), &
w(:), work(:)

Complex (Kind=nag_wp) :: dummy(1)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Logical, Allocatable :: bwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, max, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08PPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldc = n
ldd = n
ldvs = n
Allocate (a(lda,n),c(ldc,n),d(ldd,n),vs(ldvs,n),w(n),rwork(n),bwork(n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zgeesx is f08ppf
Call zgeesx(’Vectors (Schur)’,’Sort’,select, &

’Both reciprocal condition numbers’,n,a,lda,sdim,w,vs,ldvs,rconde, &
rcondv,dummy,lwork,rwork,bwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max(n*(nb+1+n/2),nint(real(dummy(1))))
Allocate (work(lwork))

! Read in the matrix A
Read (nin,*)(a(i,1:n),i=1,n)

! Copy A into D
d(1:n,1:n) = a(1:n,1:n)

! Print matrix A
! ifail: behaviour on error exit
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! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’,’Matrix A’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

! Find the Frobenius norm of A
! The NAG name equivalent of the LAPACK auxiliary zlange is f06uaf

anorm = zlange(’Frobenius’,n,n,a,lda,rwork)

! Find the Schur factorization of A
! The NAG name equivalent of zgeesx is f08ppf

Call zgeesx(’Vectors (Schur)’,’Sort’,select, &
’Both reciprocal condition numbers’,n,a,lda,sdim,w,vs,ldvs,rconde, &
rcondv,work,lwork,rwork,bwork,info)

If (info/=0 .And. info/=(n+2)) Then
Write (nout,99993) ’Failure in ZGEESX. INFO =’, info
Go To 100

End If

If (check_fac) Then
! Compute A - Z*T*Z^H from the factorization of A and store in matrix D
! The NAG name equivalent of zgemm is f06zaf

alpha = cmplx(1,kind=nag_wp)
beta = cmplx(0,kind=nag_wp)
Call zgemm(’N’,’N’,n,n,n,alpha,vs,ldvs,a,lda,beta,c,ldc)
alpha = cmplx(-1,kind=nag_wp)
beta = cmplx(1,kind=nag_wp)
Call zgemm(’N’,’C’,n,n,n,alpha,c,ldc,vs,ldvs,beta,d,ldd)

! Find norm of matrix D and print warning if it is too large
! f06uaf is the NAG name equivalent of the LAPACK auxiliary zlange

norm = zlange(’O’,ldd,n,d,ldd,rwork)
If (norm>x02ajf()**0.5_nag_wp) Then

Write (nout,*) ’Norm of A-(Z*T*Z^H) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’
Go To 100

End If
End If

! Print solution
Write (nout,99999) ’Number of eigenvalues for which SELECT is true = ’, &

sdim, ’(dimension of invariant subspace)’

Write (nout,*)
! Print eigenvalues.

Write (nout,*) ’Selected eigenvalues’
Write (nout,99998)(i,w(i),i=1,sdim)
Write (nout,*)

If (info==(n+2)) Then
Write (nout,99997) ’***Note that rounding errors mean ’, &

’that leading eigenvalues in the Schur form’, &
’no longer satisfy SELECT = .TRUE.’

Write (nout,*)
End If
Flush (nout)

If (print_cond) Then
! Print out the reciprocal condition numbers

Write (nout,99996) ’Reciprocal of projection norm onto the invariant’, &
’subspace for the selected eigenvalues’, ’RCONDE = ’, rconde

Write (nout,*)
Write (nout,99995) &

’Reciprocal condition number for the invariant subspace’, &
’RCONDV = ’, rcondv

! Compute the machine precision
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eps = x02ajf()
tol = eps*anorm

! Print out the approximate asymptotic error bound on the
! average absolute error of the selected eigenvalues given by
! eps*norm(A)/RCONDE

Write (nout,*)
Write (nout,99994) ’Approximate asymptotic error bound for selected ’, &

’eigenvalues = ’, tol/rconde

! Print out an approximate asymptotic bound on the maximum
! angular error in the computed invariant subspace given by
! eps*norm(A)/RCONDV

Write (nout,99994) &
’Approximate asymptotic error bound for the invariant ’, &
’subspace = ’, tol/rcondv

End If
100 Continue

99999 Format (1X,A,I4,/,1X,A)
99998 Format (1X,I4,2X,’ (’,F7.4,’,’,F7.4,’)’,:)
99997 Format (1X,2A,/,1X,A)
99996 Format (1X,A,/,1X,A,/,1X,A,1P,E8.1)
99995 Format (1X,A,/,1X,A,1P,E8.1)
99994 Format (1X,2A,1P,E8.1)
99993 Format (1X,A,I4)

End Program f08ppfe

10.2 Program Data

F08PPF Example Program Data

4 :Value of N

(-3.97, -5.04) (-4.11, 3.70) (-0.34, 1.01) ( 1.29, -0.86)
( 0.34, -1.50) ( 1.52, -0.43) ( 1.88, -5.38) ( 3.36, 0.65)
( 3.31, -3.85) ( 2.50, 3.45) ( 0.88, -1.08) ( 0.64, -1.48)
(-1.10, 0.82) ( 1.81, -1.59) ( 3.25, 1.33) ( 1.57, -3.44) :End of matrix A

10.3 Program Results

F08PPF Example Program Results

Matrix A
1 2 3 4

1 (-3.9700,-5.0400) (-4.1100, 3.7000) (-0.3400, 1.0100) ( 1.2900,-0.8600)
2 ( 0.3400,-1.5000) ( 1.5200,-0.4300) ( 1.8800,-5.3800) ( 3.3600, 0.6500)
3 ( 3.3100,-3.8500) ( 2.5000, 3.4500) ( 0.8800,-1.0800) ( 0.6400,-1.4800)
4 (-1.1000, 0.8200) ( 1.8100,-1.5900) ( 3.2500, 1.3300) ( 1.5700,-3.4400)

Number of eigenvalues for which SELECT is true = 2
(dimension of invariant subspace)

Selected eigenvalues
1 ( 7.9982,-0.9964)
2 ( 3.0023,-3.9998)
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NAG Library Routine Document

F08PSF (ZHSEQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the argument LWORK changed at Mark 20: LWORK is no longer redundant.

1 Purpose

F08PSF (ZHSEQR) computes all the eigenvalues and, optionally, the Schur factorization of a complex
Hessenberg matrix or a complex general matrix which has been reduced to Hessenberg form.

2 Specification

SUBROUTINE F08PSF (JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, WORK,
LWORK, INFO)

&

INTEGER N, ILO, IHI, LDH, LDZ, LWORK, INFO
COMPLEX (KIND=nag_wp) H(LDH,*), W(*), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) JOB, COMPZ

The routine may be called by its LAPACK name zhseqr.

3 Description

F08PSF (ZHSEQR) computes all the eigenvalues and, optionally, the Schur factorization of a complex
upper Hessenberg matrix H:

H ¼ ZTZH;

where T is an upper triangular matrix (the Schur form of H), and Z is the unitary matrix whose
columns are the Schur vectors zi. The diagonal elements of T are the eigenvalues of H.

The routine may also be used to compute the Schur factorization of a complex general matrix A which
has been reduced to upper Hessenberg form H:

A ¼ QHQH; where Q is unitary;
¼ QZð ÞT QZð ÞH:

In this case, after F08NSF (ZGEHRD) has been called to reduce A to Hessenberg form, F08NTF
(ZUNGHR) must be called to form Q explicitly; Q is then passed to F08PSF (ZHSEQR), which must
be called with COMPZ ¼ V .

The routine can also take advantage of a previous call to F08NVF (ZGEBAL) which may have
balanced the original matrix before reducing it to Hessenberg form, so that the Hessenberg matrix H
has the structure:

H11 H12 H13
H22 H23

H33

0@ 1A
where H11 and H33 are upper triangular. If so, only the central diagonal block H22 (in rows and
columns ilo to ihi) needs to be further reduced to Schur form (the blocks H12 and H23 are also affected).
Therefore the values of ilo and ihi can be supplied to F08PSF (ZHSEQR) directly. Also, F08NWF
(ZGEBAK) must be called after this routine to permute the Schur vectors of the balanced matrix to
those of the original matrix. If F08NVF (ZGEBAL) has not been called however, then ilo must be set to
1 and ihi to n. Note that if the Schur factorization of A is required, F08NVF (ZGEBAL) must not be
called with JOB ¼ S or B , because the balancing transformation is not unitary.
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F08PSF (ZHSEQR) uses a multishift form of the upper Hessenberg QR algorithm, due to Bai and
Demmel (1989). The Schur vectors are normalized so that zik k2 ¼ 1, but are determined only to within
a complex factor of absolute value 1.

4 References

Bai Z and Demmel J W (1989) On a block implementation of Hessenberg multishift QR iteration
Internat. J. High Speed Comput. 1 97–112

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether eigenvalues only or the Schur form T is required.

JOB ¼ E
Eigenvalues only are required.

JOB ¼ S
The Schur form T is required.

Constraint: JOB ¼ E or S .

2: COMPZ – CHARACTER(1) Input

On entry: indicates whether the Schur vectors are to be computed.

COMPZ ¼ N
No Schur vectors are computed (and the array Z is not referenced).

COMPZ ¼ V
The Schur vectors of A are computed (and the array Z must contain the matrix Q on
entry).

COMPZ ¼ I
The Schur vectors of H are computed (and the array Z is initialized by the routine).

Constraint: COMPZ ¼ N , V or I .

3: N – INTEGER Input

On entry: n, the order of the matrix H.

Constraint: N � 0.

4: ILO – INTEGER Input
5: IHI – INTEGER Input

On entry: if the matrix A has been balanced by F08NVF (ZGEBAL), then ILO and IHI must
contain the values returned by that routine. Otherwise, ILO must be set to 1 and IHI to N.

Constraint: ILO � 1 and min ILO;Nð Þ � IHI � N.

6: HðLDH; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array H must be at least max 1;Nð Þ.
On entry: the n by n upper Hessenberg matrix H, as returned by F08NSF (ZGEHRD).

On exit: if JOB ¼ E , the array contains no useful information.

If JOB ¼ S , H is overwritten by the upper triangular matrix T from the Schur decomposition
(the Schur form) unless INFO > 0.
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7: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which F08PSF
(ZHSEQR) is called.

Constraint: LDH � max 1;Nð Þ.

8: Wð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the computed eigenvalues, unless INFO > 0 (in which case see Section 6). The
eigenvalues are stored in the same order as on the diagonal of the Schur form T (if computed).

9: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , Z must contain the unitary matrix Q from the reduction to
Hessenberg form.

If COMPZ ¼ I , Z need not be set.

On exit: if COMPZ ¼ V or I , Z contains the unitary matrix of the required Schur vectors,
unless INFO > 0.

If COMPZ ¼ N , Z is not referenced.

10: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08PSF
(ZHSEQR) is called.

Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
if COMPZ ¼ N , LDZ � 1.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08PSF
(ZHSEQR) is called, unless LWORK ¼ �1, in which case a workspace query is assumed and the
routine only calculates the minimum dimension of WORK.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value.

If INFO ¼ �999, dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

An explanatory message is output, and execution of the program is terminated.
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INFO > 0

The algorithm has failed to find all the eigenvalues after a total of 30� IHI� ILOþ 1ð Þ
iterations. If INFO ¼ i, elements 1; 2; . . . ; ILO� 1 and iþ 1; iþ 2; . . . ; n of W contain the
eigenvalues which have been found.

If JOB ¼ E , then on exit, the remaining unconverged eigenvalues are the eigenvalues of the
upper Hessenberg matrix Ĥ, formed from HðILO : INFO; ILO : INFOÞ, i.e., the ILO through
INFO rows and columns of the final output matrix H.

If JOB ¼ S , then on exit

�ð Þ HiU ¼ U ~H

for some matrix U , where Hi is the input upper Hessenberg matrix and ~H is an upper Hessenberg
matrix formed from HðINFOþ 1 : IHI; INFOþ 1 : IHIÞ.
If COMPZ ¼ V , then on exit

Zout ¼ ZinU

where U is defined in �ð Þ (regardless of the value of JOB).

If COMPZ ¼ I , then on exit

Zout ¼ U

where U is defined in �ð Þ (regardless of the value of JOB).

If INFO > 0 and COMPZ ¼ N , then Z is not accessed.

7 Accuracy

The computed Schur factorization is the exact factorization of a nearby matrix H þ Eð Þ, where
Ek k2 ¼ O �ð Þ Hk k2;

and � is the machine precision.

If �i is an exact eigenvalue, and ~�i is the corresponding computed value, then

~�i � �i
		 		 � c nð Þ� Hk k2

si
;

where c nð Þ is a modestly increasing function of n, and si is the reciprocal condition number of �i. The
condition numbers si may be computed by calling F08QYF (ZTRSNA).

8 Parallelism and Performance

F08PSF (ZHSEQR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08PSF (ZHSEQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations depends on how rapidly the algorithm converges, but
is typically about:
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25n3 if only eigenvalues are computed;

35n3 if the Schur form is computed;

70n3 if the full Schur factorization is computed.

The real analogue of this routine is F08PEF (DHSEQR).

10 Example

This example computes all the eigenvalues and the Schur factorization of the upper Hessenberg matrix
H, where

H ¼
�3:9700� 5:0400i �1:1318� 2:5693i �4:6027� 0:1426i �1:4249þ 1:7330i
�5:4797þ 0:0000i 1:8585� 1:5502i 4:4145� 0:7638i �0:4805� 1:1976i
0:0000þ 0:0000i 6:2673þ 0:0000i �0:4504� 0:0290i �1:3467þ 1:6579i
0:0000þ 0:0000i 0:0000þ 0:0000i �3:5000þ 0:0000i 2:5619� 3:3708i

0B@
1CA:

See also Section 10 in F08NTF (ZUNGHR), which illustrates the use of this routine to compute the
Schur factorization of a general matrix.

10.1 Program Text

Program f08psfe

! F08PSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, x04dbf, zgemm, zhseqr, &

zlange => f06uaf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Complex (Kind=nag_wp) :: alpha, beta
Real (Kind=nag_wp) :: norm
Integer :: i, ifail, info, ldc, ldd, ldh, ldz, &

lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: c(:,:), d(:,:), h(:,:), w(:), &
work(:), z(:,:)

Real (Kind=nag_wp) :: rwork(1)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
Write (nout,*) ’F08PSF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldc = n
ldd = n
ldh = n
ldz = n
lwork = n
Allocate (c(ldc,n),d(ldd,n),h(ldh,n),w(n),work(lwork),z(ldz,n))

! Read H from data file

Read (nin,*)(h(i,1:n),i=1,n)

! Store H in D
d(1:ldd,1:n) = h(1:ldh,1:n)
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! Print matrix H
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,h,ldh,’Bracketed’,’F7.4’,’Matrix H’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Calculate the eigenvalues and Schur factorization of H

! The NAG name equivalent of zhseqr is f08psf
Call zhseqr(’Schur form’,’Initialize Z’,n,1,n,h,ldh,w,z,ldz,work,lwork, &

info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’Failure to converge.’
Else

! Compute A - Z*T*Z^H from Schur factorization of A, and store in matrix
! D
! The NAG name equivalent of zgemm is f06zaf

alpha = cmplx(1,kind=nag_wp)
beta = cmplx(0,kind=nag_wp)
Call zgemm(’N’,’N’,n,n,n,alpha,z,ldz,h,ldh,beta,c,ldc)
alpha = cmplx(-1,kind=nag_wp)
beta = cmplx(1,kind=nag_wp)
Call zgemm(’N’,’C’,n,n,n,alpha,c,ldc,z,ldz,beta,d,ldd)

! Find norm of matrix D and print warning if it is too large
! f06uaf is the NAG name equivalent of the LAPACK auxiliary zlange

norm = zlange(’O’,ldd,n,d,ldd,rwork)

If (norm>x02ajf()**0.5_nag_wp) Then
Write (nout,*) ’Norm of A-(Z*T*Z^H) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’

Else
! Print eigenvalues

Write (nout,*) ’Eigenvalues’
Write (nout,99999)(w(i),i=1,n)

End If

End If

99999 Format ((3X,4(’ (’,F7.4,’,’,F7.4,’)’,:)))
End Program f08psfe

10.2 Program Data

F08PSF Example Program Data
4 :Value of N

(-3.9700,-5.0400) (-1.1318,-2.5693) (-4.6027,-0.1426) (-1.4249, 1.7330)
(-5.4797, 0.0000) ( 1.8585,-1.5502) ( 4.4145,-0.7638) (-0.4805,-1.1976)
( 0.0000, 0.0000) ( 6.2673, 0.0000) (-0.4504,-0.0290) (-1.3467, 1.6579)
( 0.0000, 0.0000) ( 0.0000, 0.0000) (-3.5000, 0.0000) ( 2.5619,-3.3708)

:End of matrix H

10.3 Program Results

F08PSF Example Program Results

Matrix H
1 2 3 4

1 (-3.9700,-5.0400) (-1.1318,-2.5693) (-4.6027,-0.1426) (-1.4249, 1.7330)
2 (-5.4797, 0.0000) ( 1.8585,-1.5502) ( 4.4145,-0.7638) (-0.4805,-1.1976)
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3 ( 0.0000, 0.0000) ( 6.2673, 0.0000) (-0.4504,-0.0290) (-1.3467, 1.6579)
4 ( 0.0000, 0.0000) ( 0.0000, 0.0000) (-3.5000, 0.0000) ( 2.5619,-3.3708)

Eigenvalues
(-6.0004,-6.9998) (-5.0000, 2.0060) ( 7.9982,-0.9964) ( 3.0023,-3.9998)
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NAG Library Routine Document

F08PXF (ZHSEIN)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08PXF (ZHSEIN) computes selected left and/or right eigenvectors of a complex upper Hessenberg
matrix corresponding to specified eigenvalues, by inverse iteration.

2 Specification

SUBROUTINE F08PXF (JOB, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL,
VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO)

&

INTEGER N, LDH, LDVL, LDVR, MM, M, IFAILL(*), IFAILR(*),
INFO

&

REAL (KIND=nag_wp) RWORK(N)
COMPLEX (KIND=nag_wp) H(LDH,*), W(*), VL(LDVL,*), VR(LDVR,*),

WORK(N*N)
&

LOGICAL SELECT(*)
CHARACTER(1) JOB, EIGSRC, INITV

The routine may be called by its LAPACK name zhsein.

3 Description

F08PXF (ZHSEIN) computes left and/or right eigenvectors of a complex upper Hessenberg matrix H,
corresponding to selected eigenvalues.

The right eigenvector x, and the left eigenvector y, corresponding to an eigenvalue �, are defined by:

Hx ¼ �x and yHH ¼ �yH or HHy ¼ ��y
� �

:

The eigenvectors are computed by inverse iteration. They are scaled so that max Re xið Þj j þ Imxij j ¼ 1.

If H has been formed by reduction of a complex general matrix A to upper Hessenberg form, then the
eigenvectors of H may be transformed to eigenvectors of A by a call to F08NUF (ZUNMHR).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether left and/or right eigenvectors are to be computed.

JOB ¼ R
Only right eigenvectors are computed.

JOB ¼ L
Only left eigenvectors are computed.

JOB ¼ B
Both left and right eigenvectors are computed.

Constraint: JOB ¼ R , L or B .
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2: EIGSRC – CHARACTER(1) Input

On entry: indicates whether the eigenvalues of H (stored in W) were found using F08PSF
(ZHSEQR).

EIGSRC ¼ Q
The eigenvalues of H were found using F08PSF (ZHSEQR); thus if H has any zero
subdiagonal elements (and so is block triangular), then the jth eigenvalue can be assumed
to be an eigenvalue of the block containing the jth row/column. This property allows the
routine to perform inverse iteration on just one diagonal block.

EIGSRC ¼ N
No such assumption is made and the routine performs inverse iteration using the whole
matrix.

Constraint: EIGSRC ¼ Q or N .

3: INITV – CHARACTER(1) Input

On entry: indicates whether you are supplying initial estimates for the selected eigenvectors.

INITV ¼ N
No initial estimates are supplied.

INITV ¼ U
Initial estimates are supplied in VL and/or VR.

Constraint: INITV ¼ N or U .

4: SELECTð�Þ – LOGICAL array Input

Note: the dimension of the array SELECT must be at least max 1;Nð Þ.
On entry: specifies which eigenvectors are to be computed. To select the eigenvector
corresponding to the eigenvalue WðjÞ, SELECTðjÞ must be set to .TRUE..

5: N – INTEGER Input

On entry: n, the order of the matrix H.

Constraint: N � 0.

6: HðLDH; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array H must be at least max 1;Nð Þ.
On entry: the n by n upper Hessenberg matrix H. If a NaN is detected in H, the routine will
return with INFO ¼ �6.
Constraint: No element of H is equal to NaN.

7: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which F08PXF
(ZHSEIN) is called.

Constraint: LDH � max 1;Nð Þ.

8: Wð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On entry: the eigenvalues of the matrix H. If EIGSRC ¼ Q , the array must be exactly as
returned by F08PSF (ZHSEQR).

On exit: the real parts of some elements of W may be modified, as close eigenvalues are
perturbed slightly in searching for independent eigenvectors.
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9: VLðLDVL; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VL must be at least max 1;MMð Þ if JOB ¼ L or B and
at least 1 if JOB ¼ R .

On entry: if INITV ¼ U and JOB ¼ L or B , VL must contain starting vectors for inverse
iteration for the left eigenvectors. Each starting vector must be stored in the same column as will
be used to store the corresponding eigenvector (see below).

If INITV ¼ N , VL need not be set.

On exit: if JOB ¼ L or B , VL contains the computed left eigenvectors (as specified by
SELECT). The eigenvectors are stored consecutively in the columns of the array, in the same
order as their eigenvalues.

If JOB ¼ R , VL is not referenced.

10: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08PXF (ZHSEIN) is called.

Constraints:

if JOB ¼ L or B , LDVL � N;
if JOB ¼ R , LDVL � 1.

11: VRðLDVR; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VR must be at least max 1;MMð Þ if JOB ¼ R or B and
at least 1 if JOB ¼ L .

On entry: if INITV ¼ U and JOB ¼ R or B , VR must contain starting vectors for inverse
iteration for the right eigenvectors. Each starting vector must be stored in the same column as
will be used to store the corresponding eigenvector (see below).

If INITV ¼ N , VR need not be set.

On exit: if JOB ¼ R or B , VR contains the computed right eigenvectors (as specified by
SELECT). The eigenvectors are stored consecutively in the columns of the array, in the same
order as their eigenvalues.

If JOB ¼ L , VR is not referenced.

12: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08PXF (ZHSEIN) is called.

Constraints:

if JOB ¼ R or B , LDVR � N;
if JOB ¼ L , LDVR � 1.

13: MM – INTEGER Input

On entry: the number of columns in the arrays VL and/or VR . The actual number of columns
required, m, is obtained by counting 1 for each selected real eigenvector and 2 for each selected
complex eigenvector (see SELECT); 0 � m � n.
Constraint: MM � m.

14: M – INTEGER Output

On exit: m, the number of selected eigenvectors.

15: WORKðN� NÞ – COMPLEX (KIND=nag_wp) array Workspace
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16: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

17: IFAILLð�Þ – INTEGER array Output

Note: the dimension of the array IFAILL must be at least max 1;MMð Þ if JOB ¼ L or B and at
least 1 if JOB ¼ R .

On exit: if JOB ¼ L or B , then IFAILLðiÞ ¼ 0 if the selected left eigenvector converged and
IFAILLðiÞ ¼ j > 0 if the eigenvector stored in the ith row or column of VL (corresponding to
the jth eigenvalue) failed to converge.

If JOB ¼ R , IFAILL is not referenced.

18: IFAILRð�Þ – INTEGER array Output

Note: the dimension of the array IFAILR must be at least max 1;MMð Þ if JOB ¼ R or B and at
least 1 if JOB ¼ L .

On exit: if JOB ¼ R or B , then IFAILRðiÞ ¼ 0 if the selected right eigenvector converged and
IFAILRðiÞ ¼ j > 0 if the eigenvector stored in the ith column of VR (corresponding to the jth
eigenvalue) failed to converge.

If JOB ¼ L , IFAILR is not referenced.

19: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, then i eigenvectors (as indicated by the arguments IFAILL and/or IFAILR above)
failed to converge. The corresponding columns of VL and/or VR contain no useful information.

7 Accuracy

Each computed right eigenvector xi is the exact eigenvector of a nearby matrix Aþ Ei, such that
Eik k ¼ O �ð Þ Ak k. Hence the residual is small:

Axi � �ixik k ¼ O �ð Þ Ak k:

However, eigenvectors corresponding to close or coincident eigenvalues may not accurately span the
relevant subspaces.

Similar remarks apply to computed left eigenvectors.

8 Parallelism and Performance

F08PXF (ZHSEIN) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08PXF (ZHSEIN) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The real analogue of this routine is F08PKF (DHSEIN).

10 Example

See Section 10 in F08NUF (ZUNMHR).
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NAG Library Routine Document

F08QFF (DTREXC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08QFF (DTREXC) reorders the Schur factorization of a real general matrix.

2 Specification

SUBROUTINE F08QFF (COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK, INFO)

INTEGER N, LDT, LDQ, IFST, ILST, INFO
REAL (KIND=nag_wp) T(LDT,*), Q(LDQ,*), WORK(N)
CHARACTER(1) COMPQ

The routine may be called by its LAPACK name dtrexc.

3 Description

F08QFF (DTREXC) reorders the Schur factorization of a real general matrix A ¼ QTQT, so that the
diagonal element or block of T with row index IFST is moved to row ILST.

The reordered Schur form ~T is computed by an orthogonal similarity transformation: ~T ¼ ZTTZ.
Optionally the updated matrix ~Q of Schur vectors is computed as ~Q ¼ QZ, giving A ¼ ~Q ~T ~QT.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: COMPQ – CHARACTER(1) Input

On entry: indicates whether the matrix Q of Schur vectors is to be updated.

COMPQ ¼ V
The matrix Q of Schur vectors is updated.

COMPQ ¼ N
No Schur vectors are updated.

Constraint: COMPQ ¼ V or N .

2: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

3: TðLDT; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array T must be at least max 1;Nð Þ.
On entry: the n by n upper quasi-triangular matrix T in canonical Schur form, as returned by
F08PEF (DHSEQR).

On exit: T is overwritten by the updated matrix ~T . See also Section 9.
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4: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08QFF
(DTREXC) is called.

Constraint: LDT � max 1;Nð Þ.

5: QðLDQ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if COMPQ ¼ V and at
least 1 if COMPQ ¼ N .

On entry: if COMPQ ¼ V , Q must contain the n by n orthogonal matrix Q of Schur vectors.

On exit: if COMPQ ¼ V , Q contains the updated matrix of Schur vectors.

If COMPQ ¼ N , Q is not referenced.

6: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08QFF
(DTREXC) is called.

Constraints:

if COMPQ ¼ V , LDQ � max 1;Nð Þ;
if COMPQ ¼ N , LDQ � 1.

7: IFST – INTEGER Input/Output
8: ILST – INTEGER Input/Output

On entry: IFST and ILST must specify the reordering of the diagonal elements or blocks of T .
The element or block with row index IFST is moved to row ILST by a sequence of exchanges
between adjacent elements or blocks.

On exit: if IFST pointed to the second row of a 2 by 2 block on entry, it is changed to point to
the first row. ILST always points to the first row of the block in its final position (which may
differ from its input value by 
1).
Constraint: 1 � IFST � N and 1 � ILST � N.

9: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

10: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

Two adjacent diagonal elements or blocks could not be successfully exchanged. This error can
only occur if the exchange involves at least one 2 by 2 block; it implies that the problem is very
ill-conditioned, and that the eigenvalues of the two blocks are very close. On exit, T may have
been partially reordered, and ILST points to the first row of the current position of the block
being moved; Q (if requested) is updated consistently with T .
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7 Accuracy

The computed matrix ~T is exactly similar to a matrix T þ Eð Þ, where
Ek k2 ¼ O �ð Þ Tk k2;

and � is the machine precision.

Note that if a 2 by 2 diagonal block is involved in the reordering, its off-diagonal elements are in
general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block
is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2
block to break into two 1 by 1 blocks, i.e., for a pair of complex eigenvalues to become purely real. The
values of real eigenvalues however are never changed by the reordering.

8 Parallelism and Performance

F08QFF (DTREXC) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 6nr if COMPQ ¼ N , and 12nr if
COMPQ ¼ V , where r ¼ IFST� ILSTj j.

The input matrix T must be in canonical Schur form, as is the output matrix ~T . This has the following
structure.

If all the computed eigenvalues are real, T is upper triangular and its diagonal elements are the
eigenvalues.

If some of the computed eigenvalues form complex conjugate pairs, then T has 2 by 2 diagonal blocks.
Each diagonal block has the form

tii ti;iþ1
tiþ1;i tiþ1;iþ1

� �
¼ � �

� �

� �
where �� < 0. The corresponding eigenvalues are �


ffiffiffiffiffiffi
��
p

.

The complex analogue of this routine is F08QTF (ZTREXC).

10 Example

This example reorders the Schur factorization of the matrix T so that the 2 by 2 block with row index 2
is moved to row 1, where

T ¼
0:80 �0:11 0:01 0:03
0:00 �0:10 0:25 0:35
0:00 �0:65 �0:10 0:20
0:00 0:00 0:00 �0:10

0B@
1CA:

10.1 Program Text

Program f08qffe

! F08QFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08QFF
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Use nag_library, Only: dtrexc, nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, ifst, ilst, info, ldq, &
ldt, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: q(:,:), t(:,:), work(:)

! .. Executable Statements ..
Write (nout,*) ’F08QFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldq = 1
ldt = n
Allocate (q(ldq,1),t(ldt,n),work(n))

! Read T from data file

Read (nin,*)(t(i,1:n),i=1,n)

! Read the row indices

Read (nin,*) ifst, ilst

! Reorder the Schur factor T

! The NAG name equivalent of dtrexc is f08qff
Call dtrexc(’No update’,n,t,ldt,q,ldq,ifst,ilst,work,info)
If (info>0) Then

Write (nout,99999) info, ilst
Write (nout,*)
Flush (nout)

End If

! Print reordered Schur factor

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,t,ldt,’Reordered Schur form’,ifail)

99999 Format (’ Reordering could not be completed. INFO = ’,I3,’ ILST = ’,I5)
End Program f08qffe

10.2 Program Data

F08QFF Example Program Data
4 :Value of N
0.80 -0.11 0.01 0.03
0.00 -0.10 0.25 0.35
0.00 -0.65 -0.10 0.20
0.00 0.00 0.00 -0.10 :End of matrix T
2 1 :Values of IFST and ILST
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10.3 Program Results

F08QFF Example Program Results

Reordered Schur form
1 2 3 4

1 -0.1000 -0.6463 0.0874 0.2010
2 0.2514 -0.1000 0.0927 0.3505
3 0.0000 0.0000 0.8000 -0.0117
4 0.0000 0.0000 0.0000 -0.1000
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NAG Library Routine Document

F08QGF (DTRSEN)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08QGF (DTRSEN) reorders the Schur factorization of a real general matrix so that a selected cluster
of eigenvalues appears in the leading elements or blocks on the diagonal of the Schur form. The routine
also optionally computes the reciprocal condition numbers of the cluster of eigenvalues and/or the
invariant subspace.

2 Specification

SUBROUTINE F08QGF (JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI, M, S,
SEP, WORK, LWORK, IWORK, LIWORK, INFO)

&

INTEGER N, LDT, LDQ, M, LWORK, IWORK(max(1,LIWORK)), LIWORK,
INFO

&

REAL (KIND=nag_wp) T(LDT,*), Q(LDQ,*), WR(*), WI(*), S, SEP,
WORK(max(1,LWORK))

&

LOGICAL SELECT(*)
CHARACTER(1) JOB, COMPQ

The routine may be called by its LAPACK name dtrsen.

3 Description

F08QGF (DTRSEN) reorders the Schur factorization of a real general matrix A ¼ QTQT, so that a
selected cluster of eigenvalues appears in the leading diagonal elements or blocks of the Schur form.

The reordered Schur form ~T is computed by an orthogonal similarity transformation: ~T ¼ ZTTZ.
Optionally the updated matrix ~Q of Schur vectors is computed as ~Q ¼ QZ, giving A ¼ ~Q ~T ~QT.

Let ~T ¼ T11 T12
0 T22

� �
, where the selected eigenvalues are precisely the eigenvalues of the leading m by

m sub-matrix T11. Let ~Q be correspondingly partitioned as Q1 Q2

� �
where Q1 consists of the first m

columns of Q. Then AQ1 ¼ Q1T11, and so the m columns of Q1 form an orthonormal basis for the
invariant subspace corresponding to the selected cluster of eigenvalues.

Optionally the routine also computes estimates of the reciprocal condition numbers of the average of
the cluster of eigenvalues and of the invariant subspace.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether condition numbers are required for the cluster of eigenvalues and/or
the invariant subspace.

JOB ¼ N
No condition numbers are required.
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JOB ¼ E
Only the condition number for the cluster of eigenvalues is computed.

JOB ¼ V
Only the condition number for the invariant subspace is computed.

JOB ¼ B
Condition numbers for both the cluster of eigenvalues and the invariant subspace are
computed.

Constraint: JOB ¼ N , E , V or B .

2: COMPQ – CHARACTER(1) Input

On entry: indicates whether the matrix Q of Schur vectors is to be updated.

COMPQ ¼ V
The matrix Q of Schur vectors is updated.

COMPQ ¼ N
No Schur vectors are updated.

Constraint: COMPQ ¼ V or N .

3: SELECTð�Þ – LOGICAL array Input

Note: the dimension of the array SELECT must be at least max 1;Nð Þ.
On entry: the eigenvalues in the selected cluster. To select a real eigenvalue �j, SELECTðjÞ must
be set .TRUE.. To select a complex conjugate pair of eigenvalues �j and �jþ1 (corresponding to a
2 by 2 diagonal block), SELECTðjÞ and/or SELECTðjþ 1Þ must be set to .TRUE.. A complex
conjugate pair of eigenvalues must be either both included in the cluster or both excluded. See
also Section 9.

4: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

5: TðLDT; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array T must be at least max 1;Nð Þ.
On entry: the n by n upper quasi-triangular matrix T in canonical Schur form, as returned by
F08PEF (DHSEQR). See also Section 9.

On exit: T is overwritten by the updated matrix ~T .

6: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08QGF
(DTRSEN) is called.

Constraint: LDT � max 1;Nð Þ.

7: QðLDQ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if COMPQ ¼ V and at
least 1 if COMPQ ¼ N .

On entry: if COMPQ ¼ V , Q must contain the n by n orthogonal matrix Q of Schur vectors, as
returned by F08PEF (DHSEQR).

On exit: if COMPQ ¼ V , Q contains the updated matrix of Schur vectors; the first m columns of
Q form an orthonormal basis for the specified invariant subspace.

If COMPQ ¼ N , Q is not referenced.
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8: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08QGF
(DTRSEN) is called.

Constraints:

if COMPQ ¼ V , LDQ � max 1;Nð Þ;
if COMPQ ¼ N , LDQ � 1.

9: WRð�Þ – REAL (KIND=nag_wp) array Output
10: WIð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the arrays WR and WI must be at least max 1;Nð Þ.

On exit: the real and imaginary parts, respectively, of the reordered eigenvalues of ~T . The
eigenvalues are stored in the same order as on the diagonal of ~T ; see Section 9 for details. Note
that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly
from its value before reordering.

11: M – INTEGER Output

On exit: m, the dimension of the specified invariant subspace. The value of m is obtained by
counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of
eigenvalues (see SELECT); 0 � m � n.

12: S – REAL (KIND=nag_wp) Output

On exit: if JOB ¼ E or B , S is a lower bound on the reciprocal condition number of the average
of the selected cluster of eigenvalues. If M ¼ 0 or N, S ¼ 1; if INFO ¼ 1 (see Section 6), S is set
to zero.

If JOB ¼ N or V , S is not referenced.

13: SEP – REAL (KIND=nag_wp) Output

On exit: if JOB ¼ V or B , SEP is the estimated reciprocal condition number of the specified
invariant subspace. If M ¼ 0 or N, SEP ¼ Tk k; if INFO ¼ 1 (see Section 6), SEP is set to zero.

If JOB ¼ N or E , SEP is not referenced.

14: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08QGF (DTRSEN) is called, unless LWORK ¼ �1, in which case a workspace query is
assumed and the routine only calculates the minimum dimension of WORK.

Constraints:

if JOB ¼ N , LWORK � max 1;Nð Þ or LWORK ¼ �1;
if JOB ¼ E , LWORK � max 1;m� N�mð Þð Þ or LWORK ¼ �1;
if JOB ¼ V or B , LWORK � max 1; 2m� N�mð Þð Þ or LWORK ¼ �1.

The actual amount of workspace required cannot exceed N2=4 if JOB ¼ E or N2=2 if JOB ¼ V
or B .

16: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ contains the required minimal size of LIWORK.
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17: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08QGF (DTRSEN) is called, unless LIWORK ¼ �1, in which case a workspace query is
assumed and the routine only calculates the minimum dimension of IWORK.

Constraints:

if JOB ¼ N or E , LIWORK � 1 or LIWORK ¼ �1;
if JOB ¼ V or B , LIWORK � max 1;m� N�mð Þð Þ or LIWORK ¼ �1.

The actual amount of workspace required cannot exceed N2=2 if JOB ¼ V or B .

18: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

The reordering of T failed because a selected eigenvalue was too close to an eigenvalue which
was not selected; this error exit can only occur if at least one of the eigenvalues involved was
complex. The problem is too ill-conditioned: consider modifying the selection of eigenvalues so
that eigenvalues which are very close together are either all included in the cluster or all
excluded. On exit, T may have been partially reordered, but WR, WI and Q (if requested) are
updated consistently with T ; S and SEP (if requested) are both set to zero.

7 Accuracy

The computed matrix ~T is similar to a matrix T þ Eð Þ, where
Ek k2 ¼ O �ð Þ Tk k2;

and � is the machine precision.

S cannot underestimate the true reciprocal condition number by more than a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min m;n�mð Þ

p
.

SEP may differ from the true value by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m n�mð Þ

p
. The angle between the computed invariant

subspace and the true subspace is
O �ð Þ Ak k2

sep
.

Note that if a 2 by 2 diagonal block is involved in the reordering, its off-diagonal elements are in
general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block
is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2
block to break into two 1 by 1 blocks, i.e., for a pair of complex eigenvalues to become purely real. The
values of real eigenvalues however are never changed by the reordering.

8 Parallelism and Performance

F08QGF (DTRSEN) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The input matrix T must be in canonical Schur form, as is the output matrix ~T . This has the following
structure.

If all the computed eigenvalues are real, ~T is upper triangular, and the diagonal elements of ~T are the
eigenvalues; WRðiÞ ¼ ~tii, for i ¼ 1; 2; . . . ; n and WIðiÞ ¼ 0:0.

If some of the computed eigenvalues form complex conjugate pairs, then ~T has 2 by 2 diagonal blocks.
Each diagonal block has the form

~tii ~ti;iþ1
~tiþ1;i ~tiþ1;iþ1

� �
¼ � �

� �

� �
where �� < 0. The corresponding eigenvalues are �


ffiffiffiffiffiffi
��
p

; WRðiÞ ¼WRðiþ 1Þ ¼ �;
WIðiÞ ¼ þ

ffiffiffiffiffiffiffiffiffi
��j j

p
; WIðiþ 1Þ ¼ �WIðiÞ.

The complex analogue of this routine is F08QUF (ZTRSEN).

10 Example

This example reorders the Schur factorization of the matrix A ¼ QTQT such that the two real
eigenvalues appear as the leading elements on the diagonal of the reordered matrix ~T , where

T ¼
0:7995 �0:1144 0:0060 0:0336
0:0000 �0:0994 0:2478 0:3474
0:0000 �0:6483 �0:0994 0:2026
0:0000 0:0000 0:0000 �0:1007

0B@
1CA

and

Q ¼
0:6551 0:1037 0:3450 0:6641
0:5236 �0:5807 �0:6141 �0:1068
�0:5362 �0:3073 �0:2935 0:7293
0:0956 0:7467 �0:6463 0:1249

0B@
1CA:

The example program for F08QGF (DTRSEN) illustrates the computation of error bounds for the
eigenvalues.

The original matrix A is given in Section 10 in F08NFF (DORGHR).

10.1 Program Text

Program f08qgfe

! F08QGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgemm, dlange => f06raf, dtrsen, nag_wp, x02ajf, &

x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: alpha, beta, norm, s, sep
Integer :: i, ifail, info, lda, ldc, ldq, ldt, &

liwork, lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), q(:,:), t(:,:), &
wi(:), work(:), wr(:)

Integer, Allocatable :: iwork(:)
Logical, Allocatable :: select(:)

! .. Executable Statements ..
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Write (nout,*) ’F08QGF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldc = n
ldq = n
ldt = n
liwork = (n*n)/4
lwork = (n*n)/2
Allocate (a(lda,n),c(ldc,n),q(ldq,n),t(ldt,n),wi(n),work(lwork),wr(n), &

iwork(liwork),select(n))

! Read T, Q and the logical array SELECT from data file

Read (nin,*)(t(i,1:n),i=1,n)
Read (nin,*)(q(i,1:n),i=1,n)

Read (nin,*) select(1:n)

! Compute Q * T * Q**T to find A
! The NAG name equivalent of dgemm is f06yaf

alpha = 1._nag_wp
beta = 0._nag_wp
Call dgemm(’N’,’N’,n,n,n,alpha,q,ldq,t,ldt,beta,c,ldc)
Call dgemm(’N’,’T’,n,n,n,alpha,c,ldc,q,ldq,beta,a,lda)

! Print Matrix A, as computed from Q * T * Q**T
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Matrix A computed from Q*T*Q^T’, &

ifail)

Write (nout,*)
Flush (nout)

! Reorder the Schur factor T and update the matrix Q to obtain TT and QT

! The NAG name equivalent of dtrsen is f08qgf
Call dtrsen(’Both’,’Vectors’,select,n,t,ldt,q,ldq,wr,wi,m,s,sep,work, &

lwork,iwork,liwork,info)

! Compute (Q * T * Q^T) - (QT * TT * QT^T) and store in A,
! i.e. the difference between reconstructed A using Schur and reordered
! Schur decompositions.

alpha = 1._nag_wp
beta = 0._nag_wp
Call dgemm(’N’,’N’,n,n,n,alpha,q,ldq,t,ldt,beta,c,ldc)
alpha = -1._nag_wp
beta = 1._nag_wp
Call dgemm(’N’,’T’,n,n,n,alpha,c,ldc,q,ldq,beta,a,lda)

! Find norm of difference matrix and print warning if it is too large
! f06raf is the NAG name equivalent of the LAPACK auxiliary dlange

norm = dlange(’O’,lda,n,a,lda,work)
If (norm>x02ajf()**0.8_nag_wp) Then

Write (nout,*) ’Norm of A - (QT * TT * QT^T) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’

Else
! Print Result

Write (nout,99999) ’Condition number estimate’, &
’ of the selected cluster of eigenvalues = ’, 1.0_nag_wp/s

Write (nout,*)
Write (nout,99999) ’Condition number estimate of the spec’, &
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’ified invariant subspace = ’, 1.0_nag_wp/sep
End If

99999 Format (1X,A,A,1P,E10.2)
End Program f08qgfe

10.2 Program Data

F08QGF Example Program Data
4 :Value of N
0.7995 -0.1144 0.0060 0.0336
0.0000 -0.0994 0.2478 0.3474
0.0000 -0.6483 -0.0994 0.2026
0.0000 0.0000 0.0000 -0.1007 :End of matrix T
0.6551 0.1037 0.3450 0.6641
0.5236 -0.5807 -0.6141 -0.1068

-0.5362 -0.3073 -0.2935 0.7293
0.0956 0.7467 -0.6463 0.1249 :End of matrix Q
T F F T :End of SELECT

10.3 Program Results

F08QGF Example Program Results

Matrix A computed from Q*T*Q^T
1 2 3 4

1 0.3500 0.4500 -0.1400 -0.1700
2 0.0900 0.0700 -0.5399 0.3500
3 -0.4400 -0.3300 -0.0300 0.1700
4 0.2500 -0.3200 -0.1300 0.1100

Condition number estimate of the selected cluster of eigenvalues = 1.75E+00

Condition number estimate of the specified invariant subspace = 3.22E+00
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NAG Library Routine Document

F08QHF (DTRSYL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08QHF (DTRSYL) solves the real quasi-triangular Sylvester matrix equation.

2 Specification

SUBROUTINE F08QHF (TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
SCALE, INFO)

&

INTEGER ISGN, M, N, LDA, LDB, LDC, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), C(LDC,*), SCALE
CHARACTER(1) TRANA, TRANB

The routine may be called by its LAPACK name dtrsyl.

3 Description

F08QHF (DTRSYL) solves the real Sylvester matrix equation

op Að ÞX 
X op Bð Þ ¼ �C;

where op Að Þ ¼ A or AT, and the matrices A and B are upper quasi-triangular matrices in canonical
Schur form (as returned by F08PEF (DHSEQR)); � is a scale factor ( � 1) determined by the routine to
avoid overflow in X; A is m by m and B is n by n while the right-hand side matrix C and the solution
matrix X are both m by n. The matrix X is obtained by a straightforward process of back-substitution
(see Golub and Van Loan (1996)).

Note that the equation has a unique solution if and only if �i 
 �j 6¼ 0, where �if g and �j
� 

are the
eigenvalues of A and B respectively and the sign (þ or �) is the same as that used in the equation to be
solved.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (1992) Perturbation theory and backward error for AX �XB ¼ C Numerical Analysis
Report University of Manchester

5 Arguments

1: TRANA – CHARACTER(1) Input

On entry: specifies the option op Að Þ.
TRANA ¼ N

op Að Þ ¼ A.
TRANA ¼ T or C

op Að Þ ¼ AT.

Constraint: TRANA ¼ N , T or C .
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2: TRANB – CHARACTER(1) Input

On entry: specifies the option op Bð Þ.
TRANB ¼ N

op Bð Þ ¼ B.
TRANB ¼ T or C

op Bð Þ ¼ BT.

Constraint: TRANB ¼ N , T or C .

3: ISGN – INTEGER Input

On entry: indicates the form of the Sylvester equation.

ISGN ¼ þ1
The equation is of the form op Að ÞX þX op Bð Þ ¼ �C.

ISGN ¼ �1
The equation is of the form op Að ÞX �X op Bð Þ ¼ �C.

Constraint: ISGN ¼ þ1 or �1.

4: M – INTEGER Input

On entry: m, the order of the matrix A, and the number of rows in the matrices X and C.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the order of the matrix B, and the number of columns in the matrices X and C.

Constraint: N � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ.
On entry: the m by m upper quasi-triangular matrix A in canonical Schur form, as returned by
F08PEF (DHSEQR).

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08QHF
(DTRSYL) is called.

Constraint: LDA � max 1;Mð Þ.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n upper quasi-triangular matrix B in canonical Schur form, as returned by
F08PEF (DHSEQR).

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08QHF
(DTRSYL) is called.

Constraint: LDB � max 1;Nð Þ.

10: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n right-hand side matrix C.
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On exit: C is overwritten by the solution matrix X.

11: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08QHF
(DTRSYL) is called.

Constraint: LDC � max 1;Mð Þ.

12: SCALE – REAL (KIND=nag_wp) Output

On exit: the value of the scale factor �.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

A and B have common or close eigenvalues, perturbed values of which were used to solve the
equation.

7 Accuracy

Consider the equation AX �XB ¼ C. (To apply the remarks to the equation AX þXB ¼ C, simply
replace B by �B.)

Let ~X be the computed solution and R the residual matrix:

R ¼ C � A ~X � ~XB
� �

:

Then the residual is always small:

Rk kF ¼ O �ð Þ Ak kF þ Bk kF
� �

~X
�� ��

F
:

However, ~X is not necessarily the exact solution of a slightly perturbed equation; in other words, the
solution is not backwards stable.

For the forward error, the following bound holds:

~X �X
�� ��

F
� Rk kF

sep A;Bð Þ

but this may be a considerable over estimate. See Golub and Van Loan (1996) for a definition of
sep A;Bð Þ, and Higham (1992) for further details.

These remarks also apply to the solution of a general Sylvester equation, as described in Section 9.

8 Parallelism and Performance

F08QHF (DTRSYL) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is approximately mn mþ nð Þ.
To solve the general real Sylvester equation

AX 
XB ¼ C

where A and B are general nonsymmetric matrices, A and B must first be reduced to Schur form (by
calling F08PAF (DGEES), for example):

A ¼ Q1
~AQT

1 and B ¼ Q2
~BQT

2

where ~A and ~B are upper quasi-triangular and Q1 and Q2 are orthogonal. The original equation may
then be transformed to:

~A ~X 
 ~X ~B ¼ ~C

where ~X ¼ QT
1XQ2 and ~C ¼ QT

1CQ2. ~C may be computed by matrix multiplication; F08QHF
(DTRSYL) may be used to solve the transformed equation; and the solution to the original equation can
be obtained as X ¼ Q1

~XQT
2 .

The complex analogue of this routine is F08QVF (ZTRSYL).

10 Example

This example solves the Sylvester equation AX þXB ¼ C, where

A ¼
0:10 0:50 0:68 �0:21
�0:50 0:10 �0:24 0:67
0:00 0:00 0:19 �0:35
0:00 0:00 0:00 �0:72

0B@
1CA;

B ¼
�0:99 �0:17 0:39 0:58
0:00 0:48 �0:84 �0:15
0:00 0:00 0:75 0:25
0:00 0:00 �0:25 0:75

0B@
1CA

and

C ¼
0:63 �0:56 0:08 �0:23
�0:45 �0:31 0:27 1:21
0:20 �0:35 0:41 0:84
0:49 �0:05 �0:52 �0:08

0B@
1CA:

10.1 Program Text

Program f08qhfe

! F08QHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtrsyl, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: scale
Integer :: i, ifail, info, lda, ldb, ldc, m, n, &

sign
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:)
! .. Executable Statements ..
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Write (nout,*) ’F08QHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldb = n
ldc = m
sign = 1
Allocate (a(lda,m),b(ldb,n),c(ldc,n))

! Read A, B and C from data file

Read (nin,*)(a(i,1:m),i=1,m)
Read (nin,*)(b(i,1:n),i=1,n)
Read (nin,*)(c(i,1:n),i=1,m)

! Solve the Sylvester equation A*X + X*B = C for X
! The NAG name equivalent of dtrsyl is f08qhf

Call dtrsyl(’No transpose’,’No transpose’,sign,m,n,a,lda,b,ldb,c,ldc, &
scale,info)

If (info==1) Then
Write (nout,99999)
Write (nout,*)

End If

Flush (nout)

! Print X
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,m,n,c,ldc,’Solution Matrix’,ifail)

99999 Format (/,’ A and B have common or very close eigenvalues.’,/,’ Pe’, &
’rturbed values were used to solve the equations’)

End Program f08qhfe

10.2 Program Data

F08QHF Example Program Data
4 4 :Values of M and N
0.10 0.50 0.68 -0.21

-0.50 0.10 -0.24 0.67
0.00 0.00 0.19 -0.35
0.00 0.00 0.00 -0.72 :End of matrix A

-0.99 -0.17 0.39 0.58
0.00 0.48 -0.84 -0.15
0.00 0.00 0.75 0.25
0.00 0.00 -0.25 0.75 :End of matrix B
0.63 -0.56 0.08 -0.23

-0.45 -0.31 0.27 1.21
0.20 -0.35 0.41 0.84
0.49 -0.05 -0.52 -0.08 :End of matrix C

10.3 Program Results

F08QHF Example Program Results

Solution Matrix
1 2 3 4

1 -0.4209 0.1764 0.2438 -0.9577
2 0.5600 -0.8337 -0.7221 0.5386
3 -0.1246 -0.3392 0.6221 0.8691
4 -0.2865 0.4113 0.5535 0.3174

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08QHF

Mark 26 F08QHF.5 (last)





NAG Library Routine Document

F08QKF (DTREVC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08QKF (DTREVC) computes selected left and/or right eigenvectors of a real upper quasi-triangular
matrix.

2 Specification

SUBROUTINE F08QKF (JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR,
MM, M, WORK, INFO)

&

INTEGER N, LDT, LDVL, LDVR, MM, M, INFO
REAL (KIND=nag_wp) T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(3*N)
LOGICAL SELECT(*)
CHARACTER(1) JOB, HOWMNY

The routine may be called by its LAPACK name dtrevc.

3 Description

F08QKF (DTREVC) computes left and/or right eigenvectors of a real upper quasi-triangular matrix T
in canonical Schur form. Such a matrix arises from the Schur factorization of a real general matrix, as
computed by F08PEF (DHSEQR), for example.

The right eigenvector x, and the left eigenvector y, corresponding to an eigenvalue �, are defined by:

Tx ¼ �x and yHT ¼ �yH or TTy ¼ ��y
� �

:

Note that even though T is real, �, x and y may be complex. If x is an eigenvector corresponding to a
complex eigenvalue �, then the complex conjugate vector �x is the eigenvector corresponding to the
complex conjugate eigenvalue ��.

The routine can compute the eigenvectors corresponding to selected eigenvalues, or it can compute all
the eigenvectors. In the latter case the eigenvectors may optionally be pre-multiplied by an input matrix
Q. Normally Q is an orthogonal matrix from the Schur factorization of a matrix A as A ¼ QTQT; if x
is a (left or right) eigenvector of T , then Qx is an eigenvector of A.

The eigenvectors are computed by forward or backward substitution. They are scaled so that, for a real
eigenvector x, max xij jð Þ ¼ 1, and for a complex eigenvector, max Re xið Þj j þ Im xið Þj jð Þ ¼ 1.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether left and/or right eigenvectors are to be computed.

JOB ¼ R
Only right eigenvectors are computed.

JOB ¼ L
Only left eigenvectors are computed.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08QKF
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JOB ¼ B
Both left and right eigenvectors are computed.

Constraint: JOB ¼ R , L or B .

2: HOWMNY – CHARACTER(1) Input

On entry: indicates how many eigenvectors are to be computed.

HOWMNY ¼ A
All eigenvectors (as specified by JOB) are computed.

HOWMNY ¼ B
All eigenvectors (as specified by JOB) are computed and then pre-multiplied by the matrix
Q (which is overwritten).

HOWMNY ¼ S
Selected eigenvectors (as specified by JOB and SELECT) are computed.

Constraint: HOWMNY ¼ A , B or S .

3: SELECTð�Þ – LOGICAL array Input/Output

Note: the dimension of the array SELECT must be at least max 1;Nð Þ if HOWMNY ¼ S , and at
least 1 otherwise.

On entry: specifies which eigenvectors are to be computed if HOWMNY ¼ S . To obtain the real
eigenvector corresponding to the real eigenvalue �j, SELECTðjÞ must be set .TRUE.. To select
the complex eigenvector corresponding to a complex conjugate pair of eigenvalues �j and �jþ1,
SELECTðjÞ and/or SELECTðjþ 1Þ must be set .TRUE.; the eigenvector corresponding to the
first eigenvalue in the pair is computed.

On exit: if a complex eigenvector was selected as specified above, then SELECTðjÞ is set to .
TRUE. and SELECTðjþ 1Þ to .FALSE..

If HOWMNY ¼ A or B , SELECT is not referenced.

4: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

5: TðLDT; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array T must be at least max 1;Nð Þ.
On entry: the n by n upper quasi-triangular matrix T in canonical Schur form, as returned by
F08PEF (DHSEQR).

6: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08QKF
(DTREVC) is called.

Constraint: LDT � max 1;Nð Þ.

7: VLðLDVL; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VL must be at least max 1;MMð Þ if JOB ¼ L or B and
at least 1 if JOB ¼ R .

On entry: if HOWMNY ¼ B and JOB ¼ L or B , VL must contain an n by n matrix Q (usually
the matrix of Schur vectors returned by F08PEF (DHSEQR)).

If HOWMNY ¼ A or S , VL need not be set.
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On exit: if JOB ¼ L or B , VL contains the computed left eigenvectors (as specified by
HOWMNY and SELECT). The eigenvectors are stored consecutively in the columns of the array,
in the same order as their eigenvalues. Corresponding to each real eigenvalue is a real
eigenvector, occupying one column. Corresponding to each complex conjugate pair of
eigenvalues, is a complex eigenvector occupying two columns; the first column holds the real
part and the second column holds the imaginary part.

If JOB ¼ R , VL is not referenced.

8: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08QKF (DTREVC) is called.

Constraints:

if JOB ¼ L or B , LDVL � N;
if JOB ¼ R , LDVL � 1.

9: VRðLDVR; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VR must be at least max 1;MMð Þ if JOB ¼ R or B and
at least 1 if JOB ¼ L .

On entry: if HOWMNY ¼ B and JOB ¼ R or B , VR must contain an n by n matrix Q (usually
the matrix of Schur vectors returned by F08PEF (DHSEQR)).

If HOWMNY ¼ A or S , VR need not be set.

On exit: if JOB ¼ R or B , VR contains the computed right eigenvectors (as specified by
HOWMNY and SELECT). The eigenvectors are stored consecutively in the columns of the array,
in the same order as their eigenvalues. Corresponding to each real eigenvalue is a real
eigenvector, occupying one column. Corresponding to each complex conjugate pair of
eigenvalues, is a complex eigenvector occupying two columns; the first column holds the real
part and the second column holds the imaginary part.

If JOB ¼ L , VR is not referenced.

10: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08QKF (DTREVC) is called.

Constraints:

if JOB ¼ R or B , LDVR � N;
if JOB ¼ L , LDVR � 1.

11: MM – INTEGER Input

On entry: the number of columns in the arrays VL and/or VR. The precise number of columns
required, m, is n if HOWMNY ¼ A or B ; if HOWMNY ¼ S , m is obtained by counting 1 for
each selected real eigenvector and 2 for each selected complex eigenvector (see SELECT), in
which case 0 � m � n.
Constraints:

if HOWMNY ¼ A or B , MM � N;
otherwise MM � m.

12: M – INTEGER Output

On exit: m, the number of columns of VL and/or VR actually used to store the computed
eigenvectors. If HOWMNY ¼ A or B , M is set to n.

13: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace
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14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ �11
On entry, MM ¼ valueh i and N ¼ valueh i.
Constraint: if HOWMNY 6¼ S , MM � N
else MM � m, where m is obtained by counting
1 for each selected real eigenvector and
2 for each selected complex eigenvector.

7 Accuracy

If xi is an exact right eigenvector, and ~xi is the corresponding computed eigenvector, then the angle
� ~xi; xið Þ between them is bounded as follows:

� ~xi; xið Þ � c nð Þ� Tk k2
sepi

where sepi is the reciprocal condition number of xi.

The condition number sepi may be computed by calling F08QLF (DTRSNA).

8 Parallelism and Performance

F08QKF (DTREVC) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For a description of canonical Schur form, see the document for F08PEF (DHSEQR).

The complex analogue of this routine is F08QXF (ZTREVC).

10 Example

See Section 10 in F08NHF (DGEBAL).
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NAG Library Routine Document

F08QLF (DTRSNA)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08QLF (DTRSNA) estimates condition numbers for specified eigenvalues and/or right eigenvectors of
a real upper quasi-triangular matrix.

2 Specification

SUBROUTINE F08QLF (JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR,
S, SEP, MM, M, WORK, LDWORK, IWORK, INFO)

&

INTEGER N, LDT, LDVL, LDVR, MM, M, LDWORK, IWORK(*), INFO
REAL (KIND=nag_wp) T(LDT,*), VL(LDVL,*), VR(LDVR,*), S(*), SEP(*),

WORK(LDWORK,*)
&

LOGICAL SELECT(*)
CHARACTER(1) JOB, HOWMNY

The routine may be called by its LAPACK name dtrsna.

3 Description

F08QLF (DTRSNA) estimates condition numbers for specified eigenvalues and/or right eigenvectors of
a real upper quasi-triangular matrix T in canonical Schur form. These are the same as the condition
numbers of the eigenvalues and right eigenvectors of an original matrix A ¼ ZTZT (with orthogonal
Z), from which T may have been derived.

F08QLF (DTRSNA) computes the reciprocal of the condition number of an eigenvalue �i as

si ¼
vHuj j

uk kE vk kE
;

where u and v are the right and left eigenvectors of T , respectively, corresponding to �i. This reciprocal
condition number always lies between zero (i.e., ill-conditioned) and one (i.e., well-conditioned).

An approximate error estimate for a computed eigenvalue �i is then given by

� Tk k
si

;

where � is the machine precision.

To estimate the reciprocal of the condition number of the right eigenvector corresponding to �i, the
routine first calls F08QFF (DTREXC) to reorder the eigenvalues so that �i is in the leading position:

T ¼ Q �i cT

0 T22

� �
QT:

The reciprocal condition number of the eigenvector is then estimated as sepi, the smallest singular value
of the matrix T22 � �iIð Þ. This number ranges from zero (i.e., ill-conditioned) to very large (i.e., well-
conditioned).

An approximate error estimate for a computed right eigenvector u corresponding to �i is then given by

� Tk k
sepi

:
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether condition numbers are required for eigenvalues and/or eigenvectors.

JOB ¼ E
Condition numbers for eigenvalues only are computed.

JOB ¼ V
Condition numbers for eigenvectors only are computed.

JOB ¼ B
Condition numbers for both eigenvalues and eigenvectors are computed.

Constraint: JOB ¼ E , V or B .

2: HOWMNY – CHARACTER(1) Input

On entry: indicates how many condition numbers are to be computed.

HOWMNY ¼ A
Condition numbers for all eigenpairs are computed.

HOWMNY ¼ S
Condition numbers for selected eigenpairs (as specified by SELECT) are computed.

Constraint: HOWMNY ¼ A or S .

3: SELECTð�Þ – LOGICAL array Input

Note: the dimension of the array SELECT must be at least max 1;Nð Þ if HOWMNY ¼ S , and at
least 1 otherwise.

On entry: specifies the eigenpairs for which condition numbers are to be computed if
HOWMNY ¼ S . To select condition numbers for the eigenpair corresponding to the real
eigenvalue �j, SELECTðjÞ must be set .TRUE.. To select condition numbers corresponding to a
complex conjugate pair of eigenvalues �j and �jþ1, SELECTðjÞ and/or SELECTðjþ 1Þ must be
set to .TRUE..

If HOWMNY ¼ A , SELECT is not referenced.

4: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

5: TðLDT; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array T must be at least max 1;Nð Þ.
On entry: the n by n upper quasi-triangular matrix T in canonical Schur form, as returned by
F08PEF (DHSEQR).

6: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08QLF
(DTRSNA) is called.

Constraint: LDT � max 1;Nð Þ.
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7: VLðLDVL; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array VL must be at least max 1;MMð Þ if JOB ¼ E or B and
at least 1 if JOB ¼ V .

On entry: if JOB ¼ E or B , VL must contain the left eigenvectors of T (or of any matrix QTQT

with Q orthogonal) corresponding to the eigenpairs specified by HOWMNY and SELECT. The
eigenvectors must be stored in consecutive columns of VL, as returned by F08PKF (DHSEIN) or
F08QKF (DTREVC).

If JOB ¼ V , VL is not referenced.

8: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08QLF (DTRSNA) is called.

Constraints:

if JOB ¼ E or B , LDVL � max 1;Nð Þ;
if JOB ¼ V , LDVL � 1.

9: VRðLDVR; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array VR must be at least max 1;MMð Þ if JOB ¼ E or B and
at least 1 if JOB ¼ V .

On entry: if JOB ¼ E or B , VR must contain the right eigenvectors of T (or of any matrix
QTQT with Q orthogonal) corresponding to the eigenpairs specified by HOWMNY and SELECT.
The eigenvectors must be stored in consecutive columns of VR, as returned by F08PKF
(DHSEIN) or F08QKF (DTREVC).

If JOB ¼ V , VR is not referenced.

10: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08QLF (DTRSNA) is called.

Constraints:

if JOB ¼ E or B , LDVR � max 1;Nð Þ;
if JOB ¼ V , LDVR � 1.

11: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least max 1;MMð Þ if JOB ¼ E or B , and at least 1
otherwise.

On exit: the reciprocal condition numbers of the selected eigenvalues if JOB ¼ E or B , stored in
consecutive elements of the array. Thus SðjÞ, SEPðjÞ and the jth columns of VL and VR all
correspond to the same eigenpair (but not in general the jth eigenpair unless all eigenpairs have
been selected). For a complex conjugate pair of eigenvalues, two consecutive elements of S are
set to the same value.

If JOB ¼ V , S is not referenced.

12: SEPð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array SEP must be at least max 1;MMð Þ if JOB ¼ V or B , and at
least 1 otherwise.

On exit: the estimated reciprocal condition numbers of the selected right eigenvectors if
JOB ¼ V or B , stored in consecutive elements of the array. For a complex eigenvector, two
consecutive elements of SEP are set to the same value. If the eigenvalues cannot be reordered to
compute SEPðjÞ, then SEPðjÞ is set to zero; this can only occur when the true value would be
very small anyway.
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If JOB ¼ E , SEP is not referenced.

13: MM – INTEGER Input

On entry: the number of elements in the arrays S and SEP, and the number of columns in the
arrays VL and VR (if used). The precise number required, m, is n if HOWMNY ¼ A ; if
HOWMNY ¼ S , m is obtained by counting 1 for each selected real eigenvalue, and 2 for each
selected complex conjugate pair of eigenvalues (see SELECT), in which case 0 � m � n.
Constraint: MM � M.

14: M – INTEGER Output

On exit: m, the number of elements of S and/or SEP actually used to store the estimated
condition numbers. If HOWMNY ¼ A , M is set to n.

15: WORKðLDWORK; �Þ – REAL (KIND=nag_wp) array Workspace

Note: the second dimension of the array WORK must be at least max 1;Nþ 6ð Þ if JOB ¼ V or
B and at least 1 if JOB ¼ E .

If JOB ¼ E , WORK is not referenced.

16: LDWORK – INTEGER Input

On entry: the first dimension of the array WORK as declared in the (sub)program from which
F08QLF (DTRSNA) is called.

Constraints:

if JOB ¼ V or B , LDWORK � max 1;Nð Þ;
if JOB ¼ E , LDWORK � 1.

17: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least max 1; 2� N� 1ð Þð Þ.

18: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed values sepi may over estimate the true value, but seldom by a factor of more than 3.

8 Parallelism and Performance

F08QLF (DTRSNA) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

For a description of canonical Schur form, see the document for F08PEF (DHSEQR).

The complex analogue of this routine is F08QYF (ZTRSNA).

10 Example

This example computes approximate error estimates for all the eigenvalues and right eigenvectors of the
matrix T , where

T ¼
0:7995 �0:1144 0:0060 0:0336
0:0000 �0:0994 0:2478 0:3474
0:0000 �0:6483 �0:0994 0:2026
0:0000 0:0000 0:0000 �0:1007

0B@
1CA:

10.1 Program Text

Program f08qlfe

! F08QLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dlange => f06raf, dtrevc, dtrsna, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, tnorm
Integer :: i, info, ldt, ldvl, ldvr, ldwork, m, &

n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: s(:), sep(:), t(:,:), vl(:,:), &
vr(:,:), work(:,:)

Integer, Allocatable :: iwork(:)
Logical :: select(1)

! .. Executable Statements ..
Write (nout,*) ’F08QLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldt = n
ldvl = n
ldvr = n
ldwork = n
Allocate (s(n),sep(n),t(ldt,n),vl(ldvl,n),vr(ldvr,n),work(ldwork,n+6), &

iwork(2*n-1))

! Read T from data file

Read (nin,*)(t(i,1:n),i=1,n)

! Calculate the left and right eigenvectors of T

! The NAG name equivalent of dtrevc is f08qkf
Call dtrevc(’Both’,’All’,select,n,t,ldt,vl,ldvl,vr,ldvr,n,m,work,info)

! Estimate condition numbers for all the eigenvalues and right
! eigenvectors of T

! The NAG name equivalent of dtrsna is f08qlf
Call dtrsna(’Both’,’All’,select,n,t,ldt,vl,ldvl,vr,ldvr,s,sep,n,m,work, &

ldwork,iwork,info)
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! Print condition numbers of eigenvalues and right eigenvectors

Write (nout,*) ’S’
Write (nout,99999) s(1:m)
Write (nout,*)
Write (nout,*) ’SEP’
Write (nout,99999) sep(1:m)

! Calculate approximate error estimates (using the 1-norm)

eps = x02ajf()
! f06raf is the NAG name equivalent of the LAPACK auxiliary dlange

tnorm = dlange(’1-norm’,n,n,t,ldt,work)
Write (nout,*)
Write (nout,*) ’Approximate error estimates for eigenvalues ’, &

’of T (machine-dependent)’
Write (nout,99999)(eps*tnorm/s(i),i=1,m)
Write (nout,*)
Write (nout,*) ’Approximate error estimates for right ’, &

’eigenvectors of T (machine-dependent)’
Write (nout,99999)(eps*tnorm/sep(i),i=1,m)

99999 Format ((3X,1P,7E11.1))
End Program f08qlfe

10.2 Program Data

F08QLF Example Program Data
4 :Value of N
0.7995 -0.1144 0.0060 0.0336
0.0000 -0.0994 0.2478 0.3474
0.0000 -0.6483 -0.0994 0.2026
0.0000 0.0000 0.0000 -0.1007 :End of matrix T

10.3 Program Results

F08QLF Example Program Results

S
9.9E-01 7.0E-01 7.0E-01 5.7E-01

SEP
6.3E-01 3.7E-01 3.7E-01 3.1E-01

Approximate error estimates for eigenvalues of T (machine-dependent)
9.6E-17 1.4E-16 1.4E-16 1.7E-16

Approximate error estimates for right eigenvectors of T (machine-dependent)
1.5E-16 2.6E-16 2.6E-16 3.1E-16
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NAG Library Routine Document

F08QTF (ZTREXC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08QTF (ZTREXC) reorders the Schur factorization of a complex general matrix.

2 Specification

SUBROUTINE F08QTF (COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO)

INTEGER N, LDT, LDQ, IFST, ILST, INFO
COMPLEX (KIND=nag_wp) T(LDT,*), Q(LDQ,*)
CHARACTER(1) COMPQ

The routine may be called by its LAPACK name ztrexc.

3 Description

F08QTF (ZTREXC) reorders the Schur factorization of a complex general matrix A ¼ QTQH, so that
the diagonal element of T with row index IFST is moved to row ILST.

The reordered Schur form ~T is computed by a unitary similarity transformation: ~T ¼ ZHTZ. Optionally
the updated matrix ~Q of Schur vectors is computed as ~Q ¼ QZ, giving A ¼ ~Q ~T ~QH.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: COMPQ – CHARACTER(1) Input

On entry: indicates whether the matrix Q of Schur vectors is to be updated.

COMPQ ¼ V
The matrix Q of Schur vectors is updated.

COMPQ ¼ N
No Schur vectors are updated.

Constraint: COMPQ ¼ V or N .

2: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

3: TðLDT; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array T must be at least max 1;Nð Þ.
On entry: the n by n upper triangular matrix T , as returned by F08PSF (ZHSEQR).

On exit: T is overwritten by the updated matrix ~T .
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4: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08QTF
(ZTREXC) is called.

Constraint: LDT � max 1;Nð Þ.

5: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if COMPQ ¼ V and at
least 1 if COMPQ ¼ N .

On entry: if COMPQ ¼ V , Q must contain the n by n unitary matrix Q of Schur vectors.

On exit: if COMPQ ¼ V , Q contains the updated matrix of Schur vectors.

If COMPQ ¼ N , Q is not referenced.

6: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08QTF
(ZTREXC) is called.

Constraints:

if COMPQ ¼ V , LDQ � max 1;Nð Þ;
if COMPQ ¼ N , LDQ � 1.

7: IFST – INTEGER Input
8: ILST – INTEGER Input

On entry: IFST and ILST must specify the reordering of the diagonal elements of T . The element
with row index IFST is moved to row ILST by a sequence of exchanges between adjacent
elements.

Constraint: 1 � IFST � N and 1 � ILST � N.

9: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix ~T is exactly similar to a matrix T þ Eð Þ, where
Ek k2 ¼ O �ð Þ Tk k2;

and � is the machine precision.

The values of the eigenvalues are never changed by the reordering.

8 Parallelism and Performance

F08QTF (ZTREXC) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 20nr if COMPQ ¼ N , and 40nr if
COMPQ ¼ V , where r ¼ IFST� ILSTj j.
The real analogue of this routine is F08QFF (DTREXC).

10 Example

This example reorders the Schur factorization of the matrix T so that element t11 is moved to t44, where

T ¼
�6:00� 7:00i 0:36� 0:36i �0:19þ 0:48i 0:88� 0:25i
0:00þ 0:00i �5:00þ 2:00i �0:03� 0:72i �0:23þ 0:13i
0:00þ 0:00i 0:00þ 0:00i 8:00� 1:00i 0:94þ 0:53i
0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i 3:00� 4:00i

0B@
1CA:

10.1 Program Text

Program f08qtfe

! F08QTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztrexc

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ifst, ilst, info, ldq, &

ldt, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: q(:,:), t(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08QTF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldq = 1
ldt = n
Allocate (q(ldq,1),t(ldt,n))

! Read T from data file

Read (nin,*)(t(i,1:n),i=1,n)

! Read the row indices

Read (nin,*) ifst, ilst

! Reorder the Schur factor T

! The NAG name equivalent of ztrexc is f08qtf
Call ztrexc(’No update’,n,t,ldt,q,ldq,ifst,ilst,info)
If (info/=0) Then

Write (nout,99999) info, ilst
Write (nout,*)
Flush (nout)
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End If

! Print reordered Schur form

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,t,ldt,’Bracketed’,’F7.4’, &

’Reordered Schur form’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

99999 Format (’ Reordering could not be completed. INFO = ’,I3,’ ILST = ’,I5)
End Program f08qtfe

10.2 Program Data

F08QTF Example Program Data
4 :Value of N

(-6.00,-7.00) ( 0.36,-0.36) (-0.19, 0.48) ( 0.88,-0.25)
( 0.00, 0.00) (-5.00, 2.00) (-0.03,-0.72) (-0.23, 0.13)
( 0.00, 0.00) ( 0.00, 0.00) ( 8.00,-1.00) ( 0.94, 0.53)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 3.00,-4.00) :End of matrix T
1 4 :Values of IFST and ILST

10.3 Program Results

F08QTF Example Program Results

Reordered Schur form
1 2 3 4

1 (-5.0000, 2.0000) (-0.1574, 0.7143) ( 0.1781,-0.1913) ( 0.3950, 0.3861)
2 ( 0.0000, 0.0000) ( 8.0000,-1.0000) ( 1.0742, 0.1447) ( 0.2515,-0.3397)
3 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 3.0000,-4.0000) ( 0.2264, 0.8962)
4 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) (-6.0000,-7.0000)
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NAG Library Routine Document

F08QUF (ZTRSEN)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08QUF (ZTRSEN) reorders the Schur factorization of a complex general matrix so that a selected
cluster of eigenvalues appears in the leading elements on the diagonal of the Schur form. The routine
also optionally computes the reciprocal condition numbers of the cluster of eigenvalues and/or the
invariant subspace.

2 Specification

SUBROUTINE F08QUF (JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S, SEP,
WORK, LWORK, INFO)

&

INTEGER N, LDT, LDQ, M, LWORK, INFO
REAL (KIND=nag_wp) S, SEP
COMPLEX (KIND=nag_wp) T(LDT,*), Q(LDQ,*), W(*), WORK(max(1,LWORK))
LOGICAL SELECT(*)
CHARACTER(1) JOB, COMPQ

The routine may be called by its LAPACK name ztrsen.

3 Description

F08QUF (ZTRSEN) reorders the Schur factorization of a complex general matrix A ¼ QTQH, so that a
selected cluster of eigenvalues appears in the leading diagonal elements of the Schur form.

The reordered Schur form ~T is computed by a unitary similarity transformation: ~T ¼ ZHTZ. Optionally
the updated matrix ~Q of Schur vectors is computed as ~Q ¼ QZ, giving A ¼ ~Q ~T ~QH.

Let ~T ¼ T11 T12
0 T22

� �
, where the selected eigenvalues are precisely the eigenvalues of the leading m by

m sub-matrix T11. Let ~Q be correspondingly partitioned as Q1 Q2

� �
where Q1 consists of the first m

columns of Q. Then AQ1 ¼ Q1T11, and so the m columns of Q1 form an orthonormal basis for the
invariant subspace corresponding to the selected cluster of eigenvalues.

Optionally the routine also computes estimates of the reciprocal condition numbers of the average of
the cluster of eigenvalues and of the invariant subspace.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether condition numbers are required for the cluster of eigenvalues and/or
the invariant subspace.

JOB ¼ N
No condition numbers are required.
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JOB ¼ E
Only the condition number for the cluster of eigenvalues is computed.

JOB ¼ V
Only the condition number for the invariant subspace is computed.

JOB ¼ B
Condition numbers for both the cluster of eigenvalues and the invariant subspace are
computed.

Constraint: JOB ¼ N , E , V or B .

2: COMPQ – CHARACTER(1) Input

On entry: indicates whether the matrix Q of Schur vectors is to be updated.

COMPQ ¼ V
The matrix Q of Schur vectors is updated.

COMPQ ¼ N
No Schur vectors are updated.

Constraint: COMPQ ¼ V or N .

3: SELECTð�Þ – LOGICAL array Input

Note: the dimension of the array SELECT must be at least max 1;Nð Þ.
On entry: specifies the eigenvalues in the selected cluster. To select a complex eigenvalue �j,
SELECTðjÞ must be set .TRUE..

4: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

5: TðLDT; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array T must be at least max 1;Nð Þ.
On entry: the n by n upper triangular matrix T , as returned by F08PSF (ZHSEQR).

On exit: T is overwritten by the updated matrix ~T .

6: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08QUF
(ZTRSEN) is called.

Constraint: LDT � max 1;Nð Þ.

7: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if COMPQ ¼ V and at
least 1 if COMPQ ¼ N .

On entry: if COMPQ ¼ V , Q must contain the n by n unitary matrix Q of Schur vectors, as
returned by F08PSF (ZHSEQR).

On exit: if COMPQ ¼ V , Q contains the updated matrix of Schur vectors; the first m columns of
Q form an orthonormal basis for the specified invariant subspace.

If COMPQ ¼ N , Q is not referenced.
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8: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08QUF
(ZTRSEN) is called.

Constraints:

if COMPQ ¼ V , LDQ � max 1;Nð Þ;
if COMPQ ¼ N , LDQ � 1.

9: Wð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.

On exit: the reordered eigenvalues of ~T . The eigenvalues are stored in the same order as on the
diagonal of ~T .

10: M – INTEGER Output

On exit: m, the dimension of the specified invariant subspace, which is the same as the number
of selected eigenvalues (see SELECT); 0 � m � n.

11: S – REAL (KIND=nag_wp) Output

On exit: if JOB ¼ E or B , S is a lower bound on the reciprocal condition number of the average
of the selected cluster of eigenvalues. If M ¼ 0 or N, S ¼ 1.

If JOB ¼ N or V , S is not referenced.

12: SEP – REAL (KIND=nag_wp) Output

On exit: if JOB ¼ V or B , SEP is the estimated reciprocal condition number of the specified
invariant subspace. If M ¼ 0 or N, SEP ¼ Tk k.
If JOB ¼ N or E , SEP is not referenced.

13: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

14: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08QUF (ZTRSEN) is called, unless LWORK ¼ �1, in which case a workspace query is
assumed and the routine only calculates the minimum dimension of WORK.

Constraints:

if JOB ¼ N , LWORK � 1 or LWORK ¼ �1;
if JOB ¼ E , LWORK � max 1;m� N�mð Þð Þ or LWORK ¼ �1;
if JOB ¼ V or B , LWORK � max 1; 2m� N�mð Þð Þ or LWORK ¼ �1.

The actual amount of workspace required cannot exceed N2=4 if JOB ¼ E or N2=2 if JOB ¼ V
or B .

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed matrix ~T is similar to a matrix T þ Eð Þ, where
Ek k2 ¼ O �ð Þ Tk k2;

and � is the machine precision.

S cannot underestimate the true reciprocal condition number by more than a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min m;n�mð Þ

p
.

SEP may differ from the true value by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m n�mð Þ

p
. The angle between the computed invariant

subspace and the true subspace is
O �ð Þ Ak k2

sep
.

The values of the eigenvalues are never changed by the reordering.

8 Parallelism and Performance

F08QUF (ZTRSEN) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F08QGF (DTRSEN).

10 Example

This example reorders the Schur factorization of the matrix A ¼ QTQH such that the eigenvalues stored
in elements t11 and t44 appear as the leading elements on the diagonal of the reordered matrix ~T , where

T ¼
�6:0004� 6:9999i 0:3637� 0:3656i �0:1880þ 0:4787i 0:8785� 0:2539i
0:0000þ 0:0000i �5:0000þ 2:0060i �0:0307� 0:7217i �0:2290þ 0:1313i
0:0000þ 0:0000i 0:0000þ 0:0000i 7:9982� 0:9964i 0:9357þ 0:5359i
0:0000þ 0:0000i 0:0000þ 0:0000i 0:0000þ 0:0000i 3:0023� 3:9998i

0B@
1CA

and

Q ¼
�0:8347� 0:1364i �0:0628þ 0:3806i 0:2765� 0:0846i 0:0633� 0:2199i
0:0664� 0:2968i 0:2365þ 0:5240i �0:5877� 0:4208i 0:0835þ 0:2183i
�0:0362� 0:3215i 0:3143� 0:5473i 0:0576� 0:5736i 0:0057� 0:4058i
0:0086þ 0:2958i �0:3416� 0:0757i �0:1900� 0:1600i 0:8327� 0:1868i

0B@
1CA:

The original matrix A is given in Section 10 in F08NTF (ZUNGHR).
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10.1 Program Text

Program f08qufe

! F08QUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, x04dbf, zgemm, zlange => f06uaf, &

ztrsen
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Complex (Kind=nag_wp) :: alpha, beta
Real (Kind=nag_wp) :: norm, s, sep
Integer :: i, ifail, info, lda, ldc, ldq, ldt, &

lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), q(:,:), t(:,:), &
w(:), work(:)

Real (Kind=nag_wp) :: rwork(1)
Logical, Allocatable :: select(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
Write (nout,*) ’F08QUF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldc = n
lda = n
ldq = n
ldt = n
lwork = (n*n)/2
Allocate (a(lda,n),c(ldc,n),q(ldq,n),t(ldt,n),w(n),work(lwork), &

select(n))

! Read T, Q and the logical array SELECT from data file

Read (nin,*)(t(i,1:n),i=1,n)
Read (nin,*)
Read (nin,*)(q(i,1:n),i=1,n)
Read (nin,*)
Read (nin,*) select(1:n)

! Compute Q * T * Q**T to find A
! The NAG name equivalent of zgemm is f06zaf

alpha = cmplx(1,kind=nag_wp)
beta = cmplx(0,kind=nag_wp)
Call zgemm(’N’,’N’,n,n,n,alpha,q,ldq,t,ldt,beta,c,ldc)
Call zgemm(’N’,’C’,n,n,n,alpha,c,ldc,q,ldq,beta,a,lda)

! Print Matrix A, as computed from Q * T * Q**T
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Matrix A created from Q*T*Q^T’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

Write (nout,*)
Flush (nout)

! Reorder the Schur factor T and update the matrix Q to obtain TT and QT
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! The NAG name equivalent of ztrsen is f08quf
Call ztrsen(’Both’,’Vectors’,select,n,t,ldt,q,ldq,w,m,s,sep,work,lwork, &

info)

! Compute (Q * T * Q^H) - (QT * TT * QT^H) and store in A,
! i.e. the difference between reconstructed A using Schur and reordered
! Schur decompositions.

alpha = cmplx(1,kind=nag_wp)
beta = cmplx(0,kind=nag_wp)
Call zgemm(’N’,’N’,n,n,n,alpha,q,ldq,t,ldt,beta,c,ldc)
alpha = cmplx(-1,kind=nag_wp)
beta = cmplx(1,kind=nag_wp)
Call zgemm(’N’,’C’,n,n,n,alpha,c,ldc,q,ldq,beta,a,lda)

! Find norm of difference matrix and print warning if it is too large
! f06uaf is the NAG name equivalent of the LAPACK auxiliary zlange

norm = zlange(’O’,lda,n,a,lda,rwork)
If (norm>x02ajf()**0.5_nag_wp) Then

Write (nout,*) ’Norm of A - (QT * TT * QT^H) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’

Else
! Print condition estimates

Write (nout,99999) ’Condition number estimate’, &
’ of the selected cluster of eigenvalues = ’, 1.0_nag_wp/s

Write (nout,*)
Write (nout,99999) ’Condition number estimate of the specified ’, &

’invariant subspace = ’, 1.0_nag_wp/sep
End If

99999 Format (1X,A,A,1P,E10.2)
End Program f08qufe

10.2 Program Data

F08QUF Example Program Data
4 :Value of N

(-6.0004,-6.9999) ( 0.3637,-0.3656) (-0.1880, 0.4787) ( 0.8785,-0.2539)
( 0.0000, 0.0000) (-5.0000, 2.0060) (-0.0307,-0.7217) (-0.2290, 0.1313)
( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 7.9982,-0.9964) ( 0.9357, 0.5359)
( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 3.0023,-3.9998)

:End of matrix T
(-0.8347,-0.1364) (-0.0628, 0.3806) ( 0.2765,-0.0846) ( 0.0633,-0.2199)
( 0.0664,-0.2968) ( 0.2365, 0.5240) (-0.5877,-0.4208) ( 0.0835, 0.2183)
(-0.0362,-0.3215) ( 0.3143,-0.5473) ( 0.0576,-0.5736) ( 0.0057,-0.4058)
( 0.0086, 0.2958) (-0.3416,-0.0757) (-0.1900,-0.1600) ( 0.8327,-0.1868)

:End of matrix Q
T F F T :End of SELECT

10.3 Program Results

F08QUF Example Program Results

Matrix A created from Q*T*Q^T
1 2 3 4

1 (-3.9702,-5.0406) (-4.1108, 3.7002) (-0.3403, 1.0098) ( 1.2899,-0.8590)
2 ( 0.3397,-1.5006) ( 1.5201,-0.4301) ( 1.8797,-5.3804) ( 3.3606, 0.6498)
3 ( 3.3101,-3.8506) ( 2.4996, 3.4504) ( 0.8802,-1.0802) ( 0.6401,-1.4800)
4 (-1.0999, 0.8199) ( 1.8103,-1.5905) ( 3.2502, 1.3297) ( 1.5701,-3.4397)

Condition number estimate of the selected cluster of eigenvalues = 1.02E+00

Condition number estimate of the specified invariant subspace = 1.82E-01
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NAG Library Routine Document

F08QVF (ZTRSYL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08QVF (ZTRSYL) solves the complex triangular Sylvester matrix equation.

2 Specification

SUBROUTINE F08QVF (TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
SCAL, INFO)

&

INTEGER ISGN, M, N, LDA, LDB, LDC, INFO
REAL (KIND=nag_wp) SCAL
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), C(LDC,*)
CHARACTER(1) TRANA, TRANB

The routine may be called by its LAPACK name ztrsyl.

3 Description

F08QVF (ZTRSYL) solves the complex Sylvester matrix equation

op Að ÞX 
X op Bð Þ ¼ �C;

where op Að Þ ¼ A or AH, and the matrices A and B are upper triangular; � is a scale factor ( � 1)
determined by the routine to avoid overflow in X; A is m by m and B is n by n while the right-hand
side matrix C and the solution matrix X are both m by n. The matrix X is obtained by a
straightforward process of back-substitution (see Golub and Van Loan (1996)).

Note that the equation has a unique solution if and only if �i 
 �j 6¼ 0, where �if g and �j
� 

are the
eigenvalues of A and B respectively and the sign (þ or �) is the same as that used in the equation to be
solved.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (1992) Perturbation theory and backward error for AX �XB ¼ C Numerical Analysis
Report University of Manchester

5 Arguments

1: TRANA – CHARACTER(1) Input

On entry: specifies the option op Að Þ.
TRANA ¼ N

op Að Þ ¼ A.
TRANA ¼ C

op Að Þ ¼ AH.

Constraint: TRANA ¼ N or C .
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2: TRANB – CHARACTER(1) Input

On entry: specifies the option op Bð Þ.
TRANB ¼ N

op Bð Þ ¼ B.
TRANB ¼ C

op Bð Þ ¼ BH.

Constraint: TRANB ¼ N or C .

3: ISGN – INTEGER Input

On entry: indicates the form of the Sylvester equation.

ISGN ¼ þ1
The equation is of the form op Að ÞX þX op Bð Þ ¼ �C.

ISGN ¼ �1
The equation is of the form op Að ÞX �X op Bð Þ ¼ �C.

Constraint: ISGN ¼ þ1 or �1.

4: M – INTEGER Input

On entry: m, the order of the matrix A, and the number of rows in the matrices X and C.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the order of the matrix B, and the number of columns in the matrices X and C.

Constraint: N � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ.
On entry: the m by m upper triangular matrix A.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08QVF
(ZTRSYL) is called.

Constraint: LDA � max 1;Mð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n upper triangular matrix B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08QVF
(ZTRSYL) is called.

Constraint: LDB � max 1;Nð Þ.

10: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: the m by n right-hand side matrix C.

On exit: C is overwritten by the solution matrix X.
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11: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08QVF
(ZTRSYL) is called.

Constraint: LDC � max 1;Mð Þ.

12: SCAL – REAL (KIND=nag_wp) Output

On exit: the value of the scale factor �.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

A and B have common or close eigenvalues, perturbed values of which were used to solve the
equation.

7 Accuracy

Consider the equation AX �XB ¼ C. (To apply the remarks to the equation AX þXB ¼ C, simply
replace B by �B.)

Let ~X be the computed solution and R the residual matrix:

R ¼ C � A ~X � ~XB
� �

:

Then the residual is always small:

Rk kF ¼ O �ð Þ Ak kF þ Bk kF
� �

~X
�� ��

F
:

However, ~X is not necessarily the exact solution of a slightly perturbed equation; in other words, the
solution is not backwards stable.

For the forward error, the following bound holds:

~X �X
�� ��

F
� Rk kF

sep A;Bð Þ

but this may be a considerable over estimate. See Golub and Van Loan (1996) for a definition of
sep A;Bð Þ, and Higham (1992) for further details.

These remarks also apply to the solution of a general Sylvester equation, as described in Section 9.

8 Parallelism and Performance

F08QVF (ZTRSYL) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of real floating-point operations is approximately 4mn mþ nð Þ.
To solve the general complex Sylvester equation

AX 
XB ¼ C

where A and B are general matrices, A and B must first be reduced to Schur form (by calling F08PNF
(ZGEES), for example):

A ¼ Q1
~AQH

1 and B ¼ Q2
~BQH

2

where ~A and ~B are upper triangular and Q1 and Q2 are unitary. The original equation may then be
transformed to:

~A ~X 
 ~X ~B ¼ ~C

where ~X ¼ QH
1XQ2 and ~C ¼ QH

1CQ2. ~C may be computed by matrix multiplication; F08QVF
(ZTRSYL) may be used to solve the transformed equation; and the solution to the original equation can
be obtained as X ¼ Q1

~XQH
2 .

The real analogue of this routine is F08QHF (DTRSYL).

10 Example

This example solves the Sylvester equation AX þXB ¼ C, where

A ¼
�6:00� 7:00i 0:36� 0:36i �0:19þ 0:48i 0:88� 0:25i
0:00þ 0:00i �5:00þ 2:00i �0:03� 0:72i �0:23þ 0:13i
0:00þ 0:00i 0:00þ 0:00i 8:00� 1:00i 0:94þ 0:53i
0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i 3:00� 4:00i

0B@
1CA;

B ¼
0:50� 0:20i �0:29� 0:16i �0:37þ 0:84i �0:55þ 0:73i
0:00þ 0:00i �0:40þ 0:90i 0:06þ 0:22i �0:43þ 0:17i
0:00þ 0:00i 0:00þ 0:00i �0:90� 0:10i �0:89� 0:42i
0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i 0:30� 0:70i

0B@
1CA

and

C ¼
0:63þ 0:35i 0:45� 0:56i 0:08� 0:14i �0:17� 0:23i
�0:17þ 0:09i �0:07� 0:31i 0:27� 0:54i 0:35þ 1:21i
�0:93� 0:44i �0:33� 0:35i 0:41� 0:03i 0:57þ 0:84i
0:54þ 0:25i �0:62� 0:05i �0:52� 0:13i 0:11� 0:08i

0B@
1CA:

10.1 Program Text

Program f08qvfe

! F08QVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztrsyl

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: scale
Integer :: i, ifail, info, lda, ldb, ldc, m, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
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Write (nout,*) ’F08QVF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldb = n
ldc = m
Allocate (a(lda,m),b(ldb,n),c(ldc,n))

! Read A, B and C from data file

Read (nin,*)(a(i,1:m),i=1,m)
Read (nin,*)(b(i,1:n),i=1,n)
Read (nin,*)(c(i,1:n),i=1,m)

! Solve the Sylvester equation A*X + X*B = C for X
! The NAG name equivalent of ztrsyl is f08qvf

Call ztrsyl(’No transpose’,’No transpose’,1,m,n,a,lda,b,ldb,c,ldc,scale, &
info)

If (info>=1) Then
Write (nout,99999)
Write (nout,*)
Flush (nout)

End If

! Print X
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,m,n,c,ldc,’Bracketed’,’F8.4’, &

’Solution Matrix’,’I’,rlabs,’I’,clabs,80,0,ifail)

99999 Format (/,’ A and B have common or very close eigenvalues.’,/,’ Pe’, &
’rturbed values were used to solve the equations’)

End Program f08qvfe

10.2 Program Data

F08QVF Example Program Data
4 4 :Values of M and N

(-6.00,-7.00) ( 0.36,-0.36) (-0.19, 0.48) ( 0.88,-0.25)
( 0.00, 0.00) (-5.00, 2.00) (-0.03,-0.72) (-0.23, 0.13)
( 0.00, 0.00) ( 0.00, 0.00) ( 8.00,-1.00) ( 0.94, 0.53)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 3.00,-4.00) :End of matrix A
( 0.50,-0.20) (-0.29,-0.16) (-0.37, 0.84) (-0.55, 0.73)
( 0.00, 0.00) (-0.40, 0.90) ( 0.06, 0.22) (-0.43, 0.17)
( 0.00, 0.00) ( 0.00, 0.00) (-0.90,-0.10) (-0.89,-0.42)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.30,-0.70) :End of matrix B
( 0.63, 0.35) ( 0.45,-0.56) ( 0.08,-0.14) (-0.17,-0.23)
(-0.17, 0.09) (-0.07,-0.31) ( 0.27,-0.54) ( 0.35, 1.21)
(-0.93,-0.44) (-0.33,-0.35) ( 0.41,-0.03) ( 0.57, 0.84)
( 0.54, 0.25) (-0.62,-0.05) (-0.52,-0.13) ( 0.11,-0.08) :End of matrix C

10.3 Program Results

F08QVF Example Program Results

Solution Matrix
1 2 3

1 ( -0.0611, 0.0249) ( -0.0031, 0.0798) ( -0.0062, 0.0165)
2 ( 0.0215, -0.0003) ( -0.0155, 0.0570) ( -0.0665, 0.0718)
3 ( -0.0949, -0.0785) ( -0.0415, -0.0298) ( 0.0357, 0.0244)
4 ( 0.0281, 0.1052) ( -0.0970, -0.1214) ( -0.0271, -0.0940)
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4
1 ( 0.0054, -0.0063)
2 ( 0.0290, -0.2636)
3 ( 0.0284, 0.1108)
4 ( 0.0402, 0.0048)
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NAG Library Routine Document

F08QXF (ZTREVC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08QXF (ZTREVC) computes selected left and/or right eigenvectors of a complex upper triangular
matrix.

2 Specification

SUBROUTINE F08QXF (JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR,
MM, M, WORK, RWORK, INFO)

&

INTEGER N, LDT, LDVL, LDVR, MM, M, INFO
REAL (KIND=nag_wp) RWORK(N)
COMPLEX (KIND=nag_wp) T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(2*N)
LOGICAL SELECT(*)
CHARACTER(1) JOB, HOWMNY

The routine may be called by its LAPACK name ztrevc.

3 Description

F08QXF (ZTREVC) computes left and/or right eigenvectors of a complex upper triangular matrix T .
Such a matrix arises from the Schur factorization of a complex general matrix, as computed by F08PSF
(ZHSEQR), for example.

The right eigenvector x, and the left eigenvector y, corresponding to an eigenvalue �, are defined by:

Tx ¼ �x and yHT ¼ �yH or THy ¼ ��y
� �

:

The routine can compute the eigenvectors corresponding to selected eigenvalues, or it can compute all
the eigenvectors. In the latter case the eigenvectors may optionally be pre-multiplied by an input matrix
Q. Normally Q is a unitary matrix from the Schur factorization of a matrix A as A ¼ QTQH; if x is a
(left or right) eigenvector of T , then Qx is an eigenvector of A.

The eigenvectors are computed by forward or backward substitution. They are scaled so that
max Re xið Þj j þ Imxij j ¼ 1.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether left and/or right eigenvectors are to be computed.

JOB ¼ R
Only right eigenvectors are computed.

JOB ¼ L
Only left eigenvectors are computed.
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JOB ¼ B
Both left and right eigenvectors are computed.

Constraint: JOB ¼ R , L or B .

2: HOWMNY – CHARACTER(1) Input

On entry: indicates how many eigenvectors are to be computed.

HOWMNY ¼ A
All eigenvectors (as specified by JOB) are computed.

HOWMNY ¼ B
All eigenvectors (as specified by JOB) are computed and then pre-multiplied by the matrix
Q (which is overwritten).

HOWMNY ¼ S
Selected eigenvectors (as specified by JOB and SELECT) are computed.

Constraint: HOWMNY ¼ A , B or S .

3: SELECTð�Þ – LOGICAL array Input

Note: the dimension of the array SELECT must be at least N if HOWMNY ¼ S , and at least 1
otherwise.

On entry: specifies which eigenvectors are to be computed if HOWMNY ¼ S . To obtain the
eigenvector corresponding to the eigenvalue �j, SELECTðjÞ must be set .TRUE..

If HOWMNY ¼ A or B , SELECT is not referenced.

4: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

5: TðLDT; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array T must be at least N.

On entry: the n by n upper triangular matrix T , as returned by F08PSF (ZHSEQR).

On exit: is used as internal workspace prior to being restored and hence is unchanged.

6: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08QXF
(ZTREVC) is called.

Constraint: LDT � max 1;Nð Þ.

7: VLðLDVL; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VL must be at least MM if JOB ¼ L or B and at least
1 if JOB ¼ R .

On entry: if HOWMNY ¼ B and JOB ¼ L or B , VL must contain an n by n matrix Q (usually
the matrix of Schur vectors returned by F08PSF (ZHSEQR)).

If HOWMNY ¼ A or S , VL need not be set.

On exit: if JOB ¼ L or B , VL contains the computed left eigenvectors (as specified by
HOWMNY and SELECT). The eigenvectors are stored consecutively in the columns of the array,
in the same order as their eigenvalues.

If JOB ¼ R , VL is not referenced.
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8: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08QXF (ZTREVC) is called.

Constraints:

if JOB ¼ L or B , LDVL � N;
if JOB ¼ R , LDVL � 1.

9: VRðLDVR; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VR must be at least MM if JOB ¼ R or B and at least
1 if JOB ¼ L .

On entry: if HOWMNY ¼ B and JOB ¼ R or B , VR must contain an n by n matrix Q (usually
the matrix of Schur vectors returned by F08PSF (ZHSEQR)).

If HOWMNY ¼ A or S , VR need not be set.

On exit: if JOB ¼ R or B , VR contains the computed right eigenvectors (as specified by
HOWMNY and SELECT). The eigenvectors are stored consecutively in the columns of the array,
in the same order as their eigenvalues.

If JOB ¼ L , VR is not referenced.

10: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08QXF (ZTREVC) is called.

Constraints:

if JOB ¼ R or B , LDVR � N;
if JOB ¼ L , LDVR � 1.

11: MM – INTEGER Input

On entry: the number of columns in the arrays VL and/or VR. The precise number of columns
required, m, is n if HOWMNY ¼ A or B ; if HOWMNY ¼ S , m is the number of selected
eigenvectors (see SELECT), in which case 0 � m � n.
Constraints:

if HOWMNY ¼ A or B , MM � N;
otherwise MM � m.

12: M – INTEGER Output

On exit: m, the number of selected eigenvectors. If HOWMNY ¼ A or B , M is set to n.

13: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

14: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

If xi is an exact right eigenvector, and ~xi is the corresponding computed eigenvector, then the angle
� ~xi; xið Þ between them is bounded as follows:

� ~xi; xið Þ � c nð Þ� Tk k2
sepi

where sepi is the reciprocal condition number of xi.

The condition number sepi may be computed by calling F08QYF (ZTRSNA).

8 Parallelism and Performance

F08QXF (ZTREVC) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F08QKF (DTREVC).

10 Example

See Section 10 in F08NVF (ZGEBAL).
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NAG Library Routine Document

F08QYF (ZTRSNA)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08QYF (ZTRSNA) estimates condition numbers for specified eigenvalues and/or right eigenvectors of
a complex upper triangular matrix.

2 Specification

SUBROUTINE F08QYF (JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR,
S, SEP, MM, M, WORK, LDWORK, RWORK, INFO)

&

INTEGER N, LDT, LDVL, LDVR, MM, M, LDWORK, INFO
REAL (KIND=nag_wp) S(*), SEP(*), RWORK(*)
COMPLEX (KIND=nag_wp) T(LDT,*), VL(LDVL,*), VR(LDVR,*), WORK(LDWORK,*)
LOGICAL SELECT(*)
CHARACTER(1) JOB, HOWMNY

The routine may be called by its LAPACK name ztrsna.

3 Description

F08QYF (ZTRSNA) estimates condition numbers for specified eigenvalues and/or right eigenvectors of
a complex upper triangular matrix T . These are the same as the condition numbers of the eigenvalues
and right eigenvectors of an original matrix A ¼ ZTZH (with unitary Z), from which T may have been
derived.

F08QYF (ZTRSNA) computes the reciprocal of the condition number of an eigenvalue �i as

si ¼
vHuj j

uk kE vk kE
;

where u and v are the right and left eigenvectors of T , respectively, corresponding to �i. This reciprocal
condition number always lies between zero (i.e., ill-conditioned) and one (i.e., well-conditioned).

An approximate error estimate for a computed eigenvalue �i is then given by

� Tk k
si

;

where � is the machine precision.

To estimate the reciprocal of the condition number of the right eigenvector corresponding to �i, the
routine first calls F08QTF (ZTREXC) to reorder the eigenvalues so that �i is in the leading position:

T ¼ Q �i cH

0 T22

� �
QH:

The reciprocal condition number of the eigenvector is then estimated as sepi, the smallest singular value
of the matrix T22 � �iIð Þ. This number ranges from zero (i.e., ill-conditioned) to very large (i.e., well-
conditioned).

An approximate error estimate for a computed right eigenvector u corresponding to �i is then given by

� Tk k
sepi

:
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether condition numbers are required for eigenvalues and/or eigenvectors.

JOB ¼ E
Condition numbers for eigenvalues only are computed.

JOB ¼ V
Condition numbers for eigenvectors only are computed.

JOB ¼ B
Condition numbers for both eigenvalues and eigenvectors are computed.

Constraint: JOB ¼ E , V or B .

2: HOWMNY – CHARACTER(1) Input

On entry: indicates how many condition numbers are to be computed.

HOWMNY ¼ A
Condition numbers for all eigenpairs are computed.

HOWMNY ¼ S
Condition numbers for selected eigenpairs (as specified by SELECT) are computed.

Constraint: HOWMNY ¼ A or S .

3: SELECTð�Þ – LOGICAL array Input

Note: the dimension of the array SELECT must be at least max 1;Nð Þ if HOWMNY ¼ S , and at
least 1 otherwise.

On entry: specifies the eigenpairs for which condition numbers are to be computed if
HOWMNY ¼ S . To select condition numbers for the eigenpair corresponding to the eigenvalue
�j, SELECTðjÞ must be set to .TRUE..

If HOWMNY ¼ A , SELECT is not referenced.

4: N – INTEGER Input

On entry: n, the order of the matrix T .

Constraint: N � 0.

5: TðLDT; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array T must be at least max 1;Nð Þ.
On entry: the n by n upper triangular matrix T , as returned by F08PSF (ZHSEQR).

6: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which F08QYF
(ZTRSNA) is called.

Constraint: LDT � max 1;Nð Þ.
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7: VLðLDVL; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array VL must be at least max 1;MMð Þ if JOB ¼ E or B and
at least 1 if JOB ¼ V .

On entry: if JOB ¼ E or B , VL must contain the left eigenvectors of T (or of any matrix QTQH

with Q unitary) corresponding to the eigenpairs specified by HOWMNY and SELECT. The
eigenvectors must be stored in consecutive columns of VL, as returned by F08PXF (ZHSEIN) or
F08QXF (ZTREVC).

If JOB ¼ V , VL is not referenced.

8: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08QYF (ZTRSNA) is called.

Constraints:

if JOB ¼ E or B , LDVL � max 1;Nð Þ;
if JOB ¼ V , LDVL � 1.

9: VRðLDVR; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array VR must be at least max 1;MMð Þ if JOB ¼ E or B and
at least 1 if JOB ¼ V .

On entry: if JOB ¼ E or B , VR must contain the right eigenvectors of T (or of any matrix
QTQH with Q unitary) corresponding to the eigenpairs specified by HOWMNY and SELECT.
The eigenvectors must be stored in consecutive columns of VR, as returned by F08PXF
(ZHSEIN) or F08QXF (ZTREVC).

If JOB ¼ V , VR is not referenced.

10: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08QYF (ZTRSNA) is called.

Constraints:

if JOB ¼ E or B , LDVR � max 1;Nð Þ;
if JOB ¼ V , LDVR � 1.

11: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least max 1;MMð Þ if JOB ¼ E or B , and at least 1
otherwise.

On exit: the reciprocal condition numbers of the selected eigenvalues if JOB ¼ E or B , stored in
consecutive elements of the array. Thus SðjÞ, SEPðjÞ and the jth columns of VL and VR all
correspond to the same eigenpair (but not in general the jth eigenpair unless all eigenpairs have
been selected).

If JOB ¼ V , S is not referenced.

12: SEPð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array SEP must be at least max 1;MMð Þ if JOB ¼ V or B , and at
least 1 otherwise.

On exit: the estimated reciprocal condition numbers of the selected right eigenvectors if
JOB ¼ V or B , stored in consecutive elements of the array.

If JOB ¼ E , SEP is not referenced.
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13: MM – INTEGER Input

On entry: the number of elements in the arrays S and SEP, and the number of columns in the
arrays VL and VR (if used). The precise number required, m, is n if HOWMNY ¼ A ; if
HOWMNY ¼ S , m is the number of selected eigenpairs (see SELECT), in which case
0 � m � n.
Constraints:

if HOWMNY ¼ A , MM � N;
otherwise MM � m.

14: M – INTEGER Output

On exit: m, the number of selected eigenpairs. If HOWMNY ¼ A , M is set to n.

15: WORKðLDWORK; �Þ – COMPLEX (KIND=nag_wp) array Workspace

Note: the second dimension of the array WORK must be at least max 1;Nþ 1ð Þ if JOB ¼ V or
B and at least 1 if JOB ¼ E .

If JOB ¼ E , WORK is not referenced.

16: LDWORK – INTEGER Input

On entry: the first dimension of the array WORK as declared in the (sub)program from which
F08QYF (ZTRSNA) is called.

Constraints:

if JOB ¼ V or B , LDWORK � max 1;Nð Þ;
if JOB ¼ E , LDWORK � 1.

17: RWORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array RWORK must be at least max 1;Nð Þ.

18: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed values sepi may over estimate the true value, but seldom by a factor of more than 3.

8 Parallelism and Performance

F08QYF (ZTRSNA) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The real analogue of this routine is F08QLF (DTRSNA).

10 Example

This example computes approximate error estimates for all the eigenvalues and right eigenvectors of the
matrix T , where

T ¼
�6:0004� 6:9999i 0:3637� 0:3656i �0:1880þ 0:4787i 0:8785� 0:2539i
0:0000þ 0:0000i �5:0000þ 2:0060i �0:0307� 0:7217i �0:2290þ 0:1313i
0:0000þ 0:0000i 0:0000þ 0:0000i 7:9982� 0:9964i 0:9357þ 0:5359i
0:0000þ 0:0000i 0:0000þ 0:0000i 0:0000þ 0:0000i 3:0023� 3:9998i

0B@
1CA:

10.1 Program Text

Program f08qyfe

! F08QYF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06uaf, nag_wp, x02ajf, ztrevc, ztrsna

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, tnorm
Integer :: i, info, ldt, ldvl, ldvr, ldwork, m, &

n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: t(:,:), vl(:,:), vr(:,:), &
work(:,:)

Real (Kind=nag_wp), Allocatable :: rwork(:), s(:), sep(:)
Logical :: select(1)

! .. Executable Statements ..
Write (nout,*) ’F08QYF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldt = n
ldvl = n
ldvr = n
ldwork = n
Allocate (t(ldt,n),vl(ldvl,n),vr(ldvr,n),work(ldwork,n+1),rwork(n),s(n), &

sep(n))

! Read T from data file

Read (nin,*)(t(i,1:n),i=1,n)

! Calculate the left and right eigenvectors of T

! The NAG name equivalent of ztrevc is f08qxf
Call ztrevc(’Both’,’All’,select,n,t,ldt,vl,ldvl,vr,ldvr,n,m,work,rwork, &

info)

! Estimate condition numbers for all the eigenvalues and right
! eigenvectors of T

! The NAG name equivalent of ztrsna is f08qyf
Call ztrsna(’Both’,’All’,select,n,t,ldt,vl,ldvl,vr,ldvr,s,sep,n,m,work, &

ldwork,rwork,info)

! Print condition numbers of eigenvalues and right eigenvectors

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08QYF
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Write (nout,*) ’S’
Write (nout,99999) s(1:m)
Write (nout,*)
Write (nout,*) ’SEP’
Write (nout,99999) sep(1:m)

! Calculate approximate error estimates (using the 1-norm)

eps = x02ajf()
tnorm = f06uaf(’1-norm’,n,n,t,ldt,rwork)
Write (nout,*)
Write (nout,*) ’Approximate error estimates for eigenvalues ’, &

’of T (machine-dependent)’
Write (nout,99999)(eps*tnorm/s(i),i=1,m)
Write (nout,*)
Write (nout,*) ’Approximate error estimates for right ’, &

’eigenvectors of T (machine-dependent)’
Write (nout,99999)(eps*tnorm/sep(i),i=1,m)

99999 Format ((3X,1P,7E11.1))
End Program f08qyfe

10.2 Program Data

F08QYF Example Program Data
4 :Value of N

(-6.0004,-6.9999) ( 0.3637,-0.3656) (-0.1880, 0.4787) ( 0.8785,-0.2539)
( 0.0000, 0.0000) (-5.0000, 2.0060) (-0.0307,-0.7217) (-0.2290, 0.1313)
( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 7.9982,-0.9964) ( 0.9357, 0.5359)
( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 3.0023,-3.9998)

:End of matrix T

10.3 Program Results

F08QYF Example Program Results

S
9.9E-01 1.0E+00 9.8E-01 9.8E-01

SEP
8.4E+00 8.0E+00 5.8E+00 5.8E+00

Approximate error estimates for eigenvalues of T (machine-dependent)
1.0E-15 1.0E-15 1.1E-15 1.1E-15

Approximate error estimates for right eigenvectors of T (machine-dependent)
1.2E-16 1.3E-16 1.8E-16 1.8E-16
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NAG Library Routine Document

F08RAF (DORCSD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08RAF (DORCSD) computes the CS decomposition of a real m by m orthogonal matrix X,
partitioned into a 2 by 2 array of submatrices.

2 Specification

SUBROUTINE F08RAF (JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS, M, P, Q,
X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22,
THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T,
WORK, LWORK, IWORK, INFO)

&
&
&

INTEGER M, P, Q, LDX11, LDX12, LDX21, LDX22, LDU1, LDU2,
LDV1T, LDV2T, LWORK, IWORK(M-min(P,M-P,Q,M-Q)),
INFO

&
&

REAL (KIND=nag_wp) X11(LDX11,*), X12(LDX12,*), X21(LDX21,*),
X22(LDX22,*), THETA(min(P,M-P,Q,M-Q)), U1(LDU1,*),
U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*),
WORK(max(1,LWORK))

&
&
&

CHARACTER(1) JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS

The routine may be called by its LAPACK name dorcsd.

3 Description

The m by m orthogonal matrix X is partitioned as

X ¼ X11 X12
X21 X22

� �
where X11 is a p by q submatrix and the dimensions of the other submatrices X12, X21 and X22 are such
that X remains m by m.

The CS decomposition of X is X ¼ U�pV
T where U , V and �p are m by m matrices, such that

U ¼ U1 0
0 U2

� �
is an orthogonal matrix containing the p by p orthogonal matrix U1 and the m� pð Þ by m� pð Þ
orthogonal matrix U2;

V ¼ V1 0
0 V2

� �
is an orthogonal matrix containing the q by q orthogonal matrix V1 and the m� qð Þ by m� qð Þ
orthogonal matrix V2; and

�p ¼

I11 0 0 0

C 0 0 �S
0 0 0 �I12

0 0 I22 0

0 S C 0

0 I21 0 0

0BBBBBBBBB@
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contains the r by r non-negative diagonal submatrices C and S satisfying C2 þ S2 ¼ I, where
r ¼ min p;m� p; q;m� qð Þ and the top left partition is p by q.

The identity matrix I11 is of order min p; qð Þ � r and vanishes if min p; qð Þ ¼ r.
The identity matrix I12 is of order min p;m� qð Þ � r and vanishes if min p;m� qð Þ ¼ r.
The identity matrix I21 is of order min m� p; qð Þ � r and vanishes if min m� p; qð Þ ¼ r.
The identity matrix I22 is of order min m� p;m� qð Þ � r and vanishes if min m� p;m� qð Þ ¼ r.
In each of the four cases r ¼ p; q;m� p;m� q at least two of the identity matrices vanish.

The indicated zeros represent augmentations by additional rows or columns (but not both) to the square
diagonal matrices formed by Iij and C or S.

�p does not need to be stored in full; it is sufficient to return only the values �i for i ¼ 1; 2; . . . ; r where
Cii ¼ cos �ið Þ and Sii ¼ sin �ið Þ.
The algorithm used to perform the complete CS decomposition is described fully in Sutton (2009)
including discussions of the stability and accuracy of the algorithm.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Sutton B D (2009) Computing the complete CS decomposition Numerical Algorithms (Volume 50)
1017–1398 Springer US 33–65 http://dx.doi.org/10.1007/s11075-008-9215-6

5 Arguments

1: JOBU1 – CHARACTER(1) Input

On entry:

if JOBU1 ¼ Y , U1 is computed;

otherwise, U1 is not computed.

2: JOBU2 – CHARACTER(1) Input

On entry:

if JOBU2 ¼ Y , U2 is computed;

otherwise, U2 is not computed.

3: JOBV1T – CHARACTER(1) Input

On entry:

if JOBV1T ¼ Y , V T
1 is computed;

otherwise, V T
1 is not computed.

4: JOBV2T – CHARACTER(1) Input

On entry:

if JOBV2T ¼ Y , V T
2 is computed;

otherwise, V T
2 is not computed.
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5: TRANS – CHARACTER(1) Input

On entry:

if TRANS ¼ T , X, U1, U2, V T
1 and V T

2 are stored in row-major order;

otherwise, X, U1, U2, V T
1 and V T

2 are stored in column-major order.

6: SIGNS – CHARACTER(1) Input

On entry:

if SIGNS ¼ O , the lower-left block is made nonpositive (the other convention);

otherwise, the upper-right block is made nonpositive (the default convention).

7: M – INTEGER Input

On entry: m, the number of rows and columns in the orthogonal matrix X.

Constraint: M � 0.

8: P – INTEGER Input

On entry: p, the number of rows in X11 and X12.

Constraint: 0 � P � M.

9: Q – INTEGER Input

On entry: q, the number of columns in X11 and X21.

Constraint: 0 � Q � M.

10: X11ðLDX11; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X11 must be at least max 1; Pð Þ if TRANS ¼ T , and at
least Q otherwise.

On entry: the upper left partition of the orthogonal matrix X whose CSD is desired.

On exit: contains details of the orthogonal matrix used in a simultaneous bidiagonalization
process.

11: LDX11 – INTEGER Input

On entry: the first dimension of the array X11 as declared in the (sub)program from which
F08RAF (DORCSD) is called.

Constraints:

if TRANS ¼ T , LDX11 � max 1;Qð Þ;
otherwise LDX11 � max 1; Pð Þ.

12: X12ðLDX12; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X12 must be at least max 1; Pð Þ if TRANS ¼ T , and at
least M� Q otherwise.

On entry: the upper right partition of the orthogonal matrix X whose CSD is desired.

On exit: contains details of the orthogonal matrix used in a simultaneous bidiagonalization
process.

13: LDX12 – INTEGER Input

On entry: the first dimension of the array X12 as declared in the (sub)program from which
F08RAF (DORCSD) is called.
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Constraints:

if TRANS ¼ T , LDX12 � max 1;M� Qð Þ;
otherwise LDX12 � max 1; Pð Þ.

14: X21ðLDX21; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X21 must be at least max 1;M� Pð Þ if TRANS ¼ T ,
and at least Q otherwise.

On entry: the lower left partition of the orthogonal matrix X whose CSD is desired.

On exit: contains details of the orthogonal matrix used in a simultaneous bidiagonalization
process.

15: LDX21 – INTEGER Input

On entry: the first dimension of the array X21 as declared in the (sub)program from which
F08RAF (DORCSD) is called.

Constraints:

if TRANS ¼ T , LDX21 � max 1;Qð Þ;
otherwise LDX21 � max 1;M� Pð Þ.

16: X22ðLDX22; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X22 must be at least max 1;M� Pð Þ if TRANS ¼ T ,
and at least M� Q otherwise.

On entry: the lower right partition of the orthogonal matrix X CSD is desired.

On exit: contains details of the orthogonal matrix used in a simultaneous bidiagonalization
process.

17: LDX22 – INTEGER Input

On entry: the first dimension of the array X22 as declared in the (sub)program from which
F08RAF (DORCSD) is called.

Constraints:

if TRANS ¼ T , LDX22 � max 1;M� Qð Þ;
otherwise LDX22 � max 1;M� Pð Þ.

18: THETAðmin P;M� P;Q;M� Qð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the values �i for i ¼ 1; 2; . . . ; r where r ¼ min p;m� p; q;m� qð Þ. The diagonal
submatrices C and S of �p are constructed from these values as

C ¼ diag cos THETAð1Þð Þ; . . . ; cos THETAðrÞð Þð Þ and
S ¼ diag sin THETAð1Þð Þ; . . . ; sin THETAðrÞð Þð Þ.

19: U1ðLDU1; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U1 must be at least max 1; Pð Þ if JOBU1 ¼ Y , and at
least 1 otherwise.

On exit: if JOBU1 ¼ Y , U1 contains the p by p orthogonal matrix U1.

20: LDU1 – INTEGER Input

On entry: the first dimension of the array U1 as declared in the (sub)program from which
F08RAF (DORCSD) is called.

Constraint: if JOBU1 ¼ Y , LDU1 � max 1;Pð Þ.

F08RAF NAG Library Manual

F08RAF.4 Mark 26



21: U2ðLDU2; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U2 must be at least max 1;M� Pð Þ if JOBU2 ¼ Y , and
at least 1 otherwise.

On exit: if JOBU2 ¼ Y , U2 contains the m� p by m� p orthogonal matrix U2.

22: LDU2 – INTEGER Input

On entry: the first dimension of the array U2 as declared in the (sub)program from which
F08RAF (DORCSD) is called.

Constraint: if JOBU2 ¼ Y , LDU2 � max 1;M� Pð Þ.

23: V1TðLDV1T; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V1T must be at least max 1;Qð Þ if JOBV1T ¼ Y , and at
least 1 otherwise.

On exit: if JOBV1T ¼ Y , V1T contains the q by q orthogonal matrix V1
T.

24: LDV1T – INTEGER Input

On entry: the first dimension of the array V1T as declared in the (sub)program from which
F08RAF (DORCSD) is called.

Constraint: if JOBV1T ¼ Y , LDV1T � max 1;Qð Þ.

25: V2TðLDV2T; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V2T must be at least max 1;M� Qð Þ if JOBV2T ¼ Y ,
and at least 1 otherwise.

On exit: if JOBV2T ¼ Y , V2T contains the m� q by m� q orthogonal matrix V2
T.

26: LDV2T – INTEGER Input

On entry: the first dimension of the array V2T as declared in the (sub)program from which
F08RAF (DORCSD) is called.

Constraint: if JOBV2T ¼ Y , LDV2T � max 1;M� Qð Þ.

27: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.

If INFO > 0 on exit, WORKð2 : rÞ contains the values PHI 1ð Þ; . . . PHI r � 1ð Þ that, together with
THETA 1ð Þ; . . .THETA rð Þ, define the matrix in intermediate bidiagonal-block form remaining
after nonconvergence. INFO specifies the number of nonzero PHI's.

28: LWORK – INTEGER Input

On entry:

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

The minimum workspace required is 5�max 1; r� 1ð Þ þ 4�max 1; rð Þ þmax 1; 8rð Þ þ
max 1; pð Þ þmax 1;m� pð Þ þmax 1; qð Þ þmax 1;m� qð Þ þ 1 where r ¼ min p;m� p; q;m� qð Þ.
The optimal workspace depends on internal block sizes and the relative dimensions of the
problem.

Constraint: LWORK ¼ �1 or
LWORK � 5�max 1; r� 1ð Þ þ 4�max 1; rð Þ þmax 1; 8rð Þ þmax 1; Pð Þ þmax 1;M� Pð Þ þ
max 1;Qð Þ þmax 1;M� Qð Þ þ 1.
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29: IWORKðM�min P;M� P;Q;M� Qð ÞÞ – INTEGER array Workspace

30: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The Jacobi-type procedure failed to converge during an internal reduction to bidiagonal-block
form. The process requires convergence to min P;M� P;Q;M� Qð Þ values, the value of INFO
gives the number of converged values.

7 Accuracy

The computed CS decomposition is nearly the exact CS decomposition for the nearby matrix X þ Eð Þ,
where

Ek k2 ¼ O �ð Þ;

and � is the machine precision.

8 Parallelism and Performance

F08RAF (DORCSD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08RAF (DORCSD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to perform the full CS decomposition is
approximately 2m3.

The complex analogue of this routine is F08RNF (ZUNCSD).

10 Example

This example finds the full CS decomposition of

X ¼

�0:7576 0:3697 0:3838 0:2126 �0:3112
�0:4077 �0:1552 �0:1129 0:2676 0:8517
�0:0488 0:7240 �0:6730 �0:1301 0:0602
�0:2287 0:0088 0:2235 �0:9235 0:2120
0:4530 0:5612 0:5806 0:1162 0:3595

0BBB@
1CCCA

partitioned so that the top left block is 3 by 2.

The decomposition is performed both on submatrices of the orthogonal matrix X and on separated
partition matrices. Code is also provided to perform a recombining check if required.

F08RAF NAG Library Manual

F08RAF.6 Mark 26



10.1 Program Text

Program f08rafe

! F08RAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgemm, dorcsd, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6, recombine = 1, &

reprint = 0
! .. Local Scalars ..

Integer :: i, ifail, info, info2, j, ldu, ldu1, &
ldu2, ldv, ldv1t, ldv2t, ldx, ldx11, &
ldx12, ldx21, ldx22, lwork, m, n11, &
n12, n21, n22, p, q, r

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: theta(:), u(:,:), u1(:,:), u2(:,:), &

v(:,:), v1t(:,:), v2t(:,:), w(:,:), &
work(:), x(:,:), x11(:,:), x12(:,:), &
x21(:,:), x22(:,:)

Real (Kind=nag_wp) :: wdum(1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: cos, min, nint, sin

! .. Executable Statements ..
Write (nout,*) ’F08RAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, p, q

r = min(min(p,q),min(m-p,m-q))

ldx = m
ldx11 = p
ldx12 = p
ldx21 = m - p
ldx22 = m - p
ldu = m
ldu1 = p
ldu2 = m - p
ldv = m
ldv1t = q
ldv2t = m - q
Allocate (x(ldx,m),u(ldu,m),v(ldv,m),theta(r),iwork(m),w(ldx,m))
Allocate (x11(ldx11,q),x12(ldx12,m-q),x21(ldx21,q),x22(ldx22,m-q))
Allocate (u1(ldu1,p),u2(ldu2,m-p),v1t(ldv1t,q),v2t(ldv2t,m-q))

! Read and print orthogonal X from data file
! (as, say, generated by a generalized singular value decomposition).

Read (nin,*)(x(i,1:m),i=1,m)

! Print general matrix using simple matrix printing routine x04caf.
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’G’,’N’,m,m,x,ldx,’ Orthogonal matrix X’,ifail)
Write (nout,*)

! Compute the complete CS factorization of X:
! X11 is stored in X(1:p, 1:q), X12 is stored in X(1:p, q+1:m)
! X21 is stored in X(p+1:m, 1:q), X22 is stored in X(p+1:m, q+1:m)
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! U1 is stored in U(1:p, 1:p), U2 is stored in U(p+1:m, p+1:m)
! V1 is stored in V(1:q, 1:q), V2 is stored in V(q+1:m, q+1:m)

x11(1:p,1:q) = x(1:p,1:q)
x12(1:p,1:m-q) = x(1:p,q+1:m)
x21(1:m-p,1:q) = x(p+1:m,1:q)
x22(1:m-p,1:m-q) = x(p+1:m,q+1:m)

! Workspace query first to get length of work array for complete CS
! factorization routine dorcsd/f08raf.

lwork = -1
Call dorcsd(’Yes U1’,’Yes U2’,’Yes V1T’,’Yes V2T’,’Column’,’Default’,m, &

p,q,x,ldx,x(1,q+1),ldx,x(p+1,1),ldx,x(p+1,q+1),ldx,theta,u,ldu, &
u(p+1,p+1),ldu,v,ldv,v(q+1,q+1),ldv,wdum,lwork,iwork,info)

lwork = nint(wdum(1))
Allocate (work(lwork))

! Initialize all of u, v to zero.
u(1:m,1:m) = zero
v(1:m,1:m) = zero

! This is how you might pass partitions as sub-matrices
Call dorcsd(’Yes U1’,’Yes U2’,’Yes V1T’,’Yes V2T’,’Column’,’Default’,m, &

p,q,x,ldx,x(1,q+1),ldx,x(p+1,1),ldx,x(p+1,q+1),ldx,theta,u,ldu, &
u(p+1,p+1),ldu,v,ldv,v(q+1,q+1),ldv,work,lwork,iwork,info)

If (info/=0) Then
Write (nout,99999) ’Failure in DORCSD/F08RAF. info =’, info
Go To 100

End If
! Print Theta, U1, U2, V1T, V2T using matrix printing routine x04caf.

Write (nout,99998) ’Components of CS factorization of X:’
ifail = 0
Call x04caf(’G’,’N’,r,1,theta,r,’ Theta’,ifail)
Write (nout,*)

! By changes of sign the first r elements of the first row of U1 can be
! made positive.

Do i = 1, r
If (u(1,i)<0.0_nag_wp) Then

u(1:p,i) = -u(1:p,i)
u(p+1:m,p+i) = -u(p+1:m,p+i)
v(i,1:q) = -v(i,1:q)
v(q+i,q+1:m) = -v(q+i,q+1:m)

End If
End Do
ifail = 0
Call x04caf(’G’,’N’,p,p,u,ldu,’ U1’,ifail)
Write (nout,*)
ifail = 0
Call x04caf(’G’,’N’,m-p,m-p,u(p+1,p+1),ldu,’ U2’,ifail)
Write (nout,*)
ifail = 0
Call x04caf(’G’,’N’,q,q,v,ldv,’ V1T’,ifail)
Write (nout,*)
ifail = 0
Call x04caf(’G’,’N’,m-q,m-q,v(q+1,q+1),ldv,’ V2T’,ifail)
Write (nout,*)

! And this is how you might pass partitions as separate matrices.
Call dorcsd(’Yes U1’,’Yes U2’,’Yes V1T’,’Yes V2T’,’Column’,’Default’,m, &

p,q,x11,ldx11,x12,ldx12,x21,ldx21,x22,ldx22,theta,u1,ldu1,u2,ldu2,v1t, &
ldv1t,v2t,ldv2t,work,lwork,iwork,info2)

If (info2/=0) Then
Write (nout,99999) ’Failure in DORCSD/F08RAF. info =’, info
Go To 100

End If

! Print Theta, U1, U2, V1T, V2T using matrix printing routine x04caf.
If (reprint/=0) Then

! By changes of sign the first r elements of the first row of U1 can be
! made positive.

Do i = 1, r
If (u1(1,i)<0.0_nag_wp) Then

u1(1:p,i) = -u1(1:p,i)
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u2(1:m-p,i) = -u2(1:m-p,i)
v1t(i,1:q) = -v1t(i,1:q)
v2t(i,1:m-q) = -v2t(i,1:m-q)

End If
End Do
Write (nout,99998) ’Components of CS factorization of X:’
ifail = 0
Call x04caf(’G’,’N’,r,1,theta,r,’ Theta’,ifail)
Write (nout,*)
ifail = 0
Call x04caf(’G’,’N’,p,p,u1,ldu1,’ U1’,ifail)
Write (nout,*)
ifail = 0
Call x04caf(’G’,’N’,m-p,m-p,u2,ldu2,’ U2’,ifail)
Write (nout,*)
ifail = 0
Call x04caf(’G’,’N’,q,q,v1t,ldv1t,’ V1T’,ifail)
Write (nout,*)
ifail = 0
Call x04caf(’G’,’N’,m-q,m-q,v2t,ldv2t,’ V2T’,ifail)
Write (nout,*)

End If
If (recombine/=0) Then

! Recombining should return the original matrix
! Assemble Sigma_p into X

x(1:m,1:m) = zero
n11 = min(p,q) - r
n12 = min(p,m-q) - r
n21 = min(m-p,q) - r
n22 = min(m-p,m-1) - r

! Top Half
Do j = 1, n11

x(j,j) = one
End Do
Do j = 1, r

x(j+n11,j+n11) = cos(theta(j))
x(j+n11,j+n11+r+n21+n22) = -sin(theta(j))

End Do
Do j = 1, n12

x(j+n11+r,j+n11+r+n21+n22+r) = -one
End Do

! Bottom half
Do j = 1, n22

x(p+j,q+j) = one
End Do
Do j = 1, r

x(p+n22+j,j+n11) = sin(theta(j))
x(p+n22+j,j+r+n21+n22) = cos(theta(j))

End Do
Do j = 1, n21

x(p+n22+r+j,n11+r+j) = one
End Do

! multiply U * Sigma_p into w
Call dgemm(’n’,’n’,m,m,m,one,u,ldu,x,ldx,zero,w,ldx)

! form U * Sigma_p * V^T into u
Call dgemm(’n’,’n’,m,m,m,one,w,ldx,v,ldv,zero,u,ldu)

ifail = 0
Call x04caf(’G’,’N’,m,m,u,ldu, &

’ Recombined matrix X = U * Sigma_p * V^T’,ifail)
End If

100 Continue

99999 Format (1X,A,I4)
99998 Format (1X,A,/)

End Program f08rafe
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10.2 Program Data

F08RAF Example Program Data
5 3 2 : m, p, q

-0.7576 0.3697 0.3838 0.2126 -0.3112
-0.4077 -0.1552 -0.1129 0.2676 0.8517
-0.0488 0.7240 -0.6730 -0.1301 0.0602
-0.2287 0.0088 0.2235 -0.9235 0.2120
0.4530 0.5612 0.5806 0.1162 0.3595 : orthogonal matrix X

10.3 Program Results

F08RAF Example Program Results

Orthogonal matrix X
1 2 3 4 5

1 -0.7576 0.3697 0.3838 0.2126 -0.3112
2 -0.4077 -0.1552 -0.1129 0.2676 0.8517
3 -0.0488 0.7240 -0.6730 -0.1301 0.0602
4 -0.2287 0.0088 0.2235 -0.9235 0.2120
5 0.4530 0.5612 0.5806 0.1162 0.3595

Components of CS factorization of X:

Theta
1

1 0.1811
2 0.8255

U1
1 2 3

1 0.8249 0.3370 -0.4538
2 0.2042 0.5710 0.7952
3 0.5271 -0.7486 0.4022

U2
1 2

1 0.9802 0.1982
2 0.1982 -0.9802

V1T
1 2

1 -0.7461 0.6658
2 -0.6658 -0.7461

V2T
1 2 3

1 0.3397 -0.8967 0.2837
2 -0.7738 -0.4379 -0.4576
3 0.5346 -0.0640 -0.8427

Recombined matrix X = U * Sigma_p * V^T
1 2 3 4 5

1 -0.7576 0.3697 0.3838 0.2126 -0.3112
2 -0.4077 -0.1551 -0.1129 0.2677 0.8517
3 -0.0488 0.7240 -0.6730 -0.1300 0.0602
4 -0.2287 0.0088 0.2235 -0.9234 0.2120
5 0.4530 0.5612 0.5806 0.1162 0.3595
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NAG Library Routine Document

F08RNF (ZUNCSD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08RNF (ZUNCSD) computes the CS decomposition of a complex m by m unitary matrix X,
partitioned into a 2 by 2 array of submatrices.

2 Specification

SUBROUTINE F08RNF (JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS, M, P, Q,
X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22,
THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T,
WORK, LWORK, RWORK, LRWORK, IWORK, INFO)

&
&
&

INTEGER M, P, Q, LDX11, LDX12, LDX21, LDX22, LDU1, LDU2,
LDV1T, LDV2T, LWORK, LRWORK,
IWORK(M-min(P,M-P,Q,M-Q)), INFO

&
&

REAL (KIND=nag_wp) THETA(min(P,M-P,Q,M-Q)), RWORK(max(1,LRWORK))
COMPLEX (KIND=nag_wp) X11(LDX11,*), X12(LDX12,*), X21(LDX21,*),

X22(LDX22,*), U1(LDU1,*), U2(LDU2,*),
V1T(LDV1T,*), V2T(LDV2T,*), WORK(max(1,LWORK))

&
&

CHARACTER(1) JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS

The routine may be called by its LAPACK name zuncsd.

3 Description

The m by m unitary matrix X is partitioned as

X ¼ X11 X12
X21 X22

� �
where X11 is a p by q submatrix and the dimensions of the other submatrices X12, X21 and X22 are such
that X remains m by m.

The CS decomposition of X is X ¼ U�pV
T where U , V and �p are m by m matrices, such that

U ¼ U1 0
0 U2

� �
is a unitary matrix containing the p by p unitary matrix U1 and the m� pð Þ by m� pð Þ unitary matrix
U2;

V ¼ V1 0
0 V2

� �
is a unitary matrix containing the q by q unitary matrix V1 and the m� qð Þ by m� qð Þ unitary matrix
V2; and

�p ¼

I11 0 0 0

C 0 0 �S
0 0 0 �I12

0 0 I22 0

0 S C 0

0 I21 0 0

0BBBBBBBBB@

1CCCCCCCCCA
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contains the r by r non-negative diagonal submatrices C and S satisfying C2 þ S2 ¼ I, where
r ¼ min p;m� p; q;m� qð Þ and the top left partition is p by q.

The identity matrix I11 is of order min p; qð Þ � r and vanishes if min p; qð Þ ¼ r.
The identity matrix I12 is of order min p;m� qð Þ � r and vanishes if min p;m� qð Þ ¼ r.
The identity matrix I21 is of order min m� p; qð Þ � r and vanishes if min m� p; qð Þ ¼ r.
The identity matrix I22 is of order min m� p;m� qð Þ � r and vanishes if min m� p;m� qð Þ ¼ r.
In each of the four cases r ¼ p; q;m� p;m� q at least two of the identity matrices vanish.

The indicated zeros represent augmentations by additional rows or columns (but not both) to the square
diagonal matrices formed by Iij and C or S.

�p does not need to be stored in full; it is sufficient to return only the values �i for i ¼ 1; 2; . . . ; r where
Cii ¼ cos �ið Þ and Sii ¼ sin �ið Þ.
The algorithm used to perform the complete CS decomposition is described fully in Sutton (2009)
including discussions of the stability and accuracy of the algorithm.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Sutton B D (2009) Computing the complete CS decomposition Numerical Algorithms (Volume 50)
1017–1398 Springer US 33–65 http://dx.doi.org/10.1007/s11075-008-9215-6

5 Arguments

1: JOBU1 – CHARACTER(1) Input

On entry:

if JOBU1 ¼ Y , U1 is computed;

otherwise, U1 is not computed.

2: JOBU2 – CHARACTER(1) Input

On entry:

if JOBU2 ¼ Y , U2 is computed;

otherwise, U2 is not computed.

3: JOBV1T – CHARACTER(1) Input

On entry:

if JOBV1T ¼ Y , V T
1 is computed;

otherwise, V T
1 is not computed.

4: JOBV2T – CHARACTER(1) Input

On entry:

if JOBV2T ¼ Y , V T
2 is computed;

otherwise, V T
2 is not computed.
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5: TRANS – CHARACTER(1) Input

On entry:

if TRANS ¼ T , X, U1, U2, V T
1 and V T

2 are stored in row-major order;

otherwise, X, U1, U2, V T
1 and V T

2 are stored in column-major order.

6: SIGNS – CHARACTER(1) Input

On entry:

if SIGNS ¼ O , the lower-left block is made nonpositive (the other convention);

otherwise, the upper-right block is made nonpositive (the default convention).

7: M – INTEGER Input

On entry: m, the number of rows and columns in the unitary matrix X.

Constraint: M � 0.

8: P – INTEGER Input

On entry: p, the number of rows in X11 and X12.

Constraint: 0 � P � M.

9: Q – INTEGER Input

On entry: q, the number of columns in X11 and X21.

Constraint: 0 � Q � M.

10: X11ðLDX11; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X11 must be at least max 1; Pð Þ if TRANS ¼ T , and at
least Q otherwise.

On entry: the upper left partition of the unitary matrix X whose CSD is desired.

On exit: contains details of the unitary matrix used in a simultaneous bidiagonalization process.

11: LDX11 – INTEGER Input

On entry: the first dimension of the array X11 as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraints:

if TRANS ¼ T , LDX11 � max 1;Qð Þ;
otherwise LDX11 � max 1; Pð Þ.

12: X12ðLDX12; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X12 must be at least max 1; Pð Þ if TRANS ¼ T , and at
least M� Q otherwise.

On entry: the upper right partition of the unitary matrix X whose CSD is desired.

On exit: contains details of the unitary matrix used in a simultaneous bidiagonalization process.

13: LDX12 – INTEGER Input

On entry: the first dimension of the array X12 as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.
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Constraints:

if TRANS ¼ T , LDX12 � max 1;M� Qð Þ;
otherwise LDX12 � max 1; Pð Þ.

14: X21ðLDX21; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X21 must be at least max 1;M� Pð Þ if TRANS ¼ T ,
and at least Q otherwise.

On entry: the lower left partition of the unitary matrix X whose CSD is desired.

On exit: contains details of the unitary matrix used in a simultaneous bidiagonalization process.

15: LDX21 – INTEGER Input

On entry: the first dimension of the array X21 as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraints:

if TRANS ¼ T , LDX21 � max 1;Qð Þ;
otherwise LDX21 � max 1;M� Pð Þ.

16: X22ðLDX22; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X22 must be at least max 1;M� Pð Þ if TRANS ¼ T ,
and at least M� Q otherwise.

On entry: the lower right partition of the unitary matrix X CSD is desired.

On exit: contains details of the unitary matrix used in a simultaneous bidiagonalization process.

17: LDX22 – INTEGER Input

On entry: the first dimension of the array X22 as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraints:

if TRANS ¼ T , LDX22 � max 1;M� Qð Þ;
otherwise LDX22 � max 1;M� Pð Þ.

18: THETAðmin P;M� P;Q;M� Qð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the values �i for i ¼ 1; 2; . . . ; r where r ¼ min p;m� p; q;m� qð Þ. The diagonal
submatrices C and S of �p are constructed from these values as

C ¼ diag cos THETAð1Þð Þ; . . . ; cos THETAðrÞð Þð Þ and
S ¼ diag sin THETAð1Þð Þ; . . . ; sin THETAðrÞð Þð Þ.

19: U1ðLDU1; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U1 must be at least max 1; Pð Þ if JOBU1 ¼ Y , and at
least 1 otherwise.

On exit: if JOBU1 ¼ Y , U1 contains the p by p unitary matrix U1.

20: LDU1 – INTEGER Input

On entry: the first dimension of the array U1 as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraint: if JOBU1 ¼ Y , LDU1 � max 1;Pð Þ.
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21: U2ðLDU2; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U2 must be at least max 1;M� Pð Þ if JOBU2 ¼ Y , and
at least 1 otherwise.

On exit: if JOBU2 ¼ Y , U2 contains the m� p by m� p unitary matrix U2.

22: LDU2 – INTEGER Input

On entry: the first dimension of the array U2 as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraint: if JOBU2 ¼ Y , LDU2 � max 1;M� Pð Þ.

23: V1TðLDV1T; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array V1T must be at least max 1;Qð Þ if JOBV1T ¼ Y , and at
least 1 otherwise.

On exit: if JOBV1T ¼ Y , V1T contains the q by q unitary matrix V1
H.

24: LDV1T – INTEGER Input

On entry: the first dimension of the array V1T as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraint: if JOBV1T ¼ Y , LDV1T � max 1;Qð Þ.

25: V2TðLDV2T; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array V2T must be at least max 1;M� Qð Þ if JOBV2T ¼ Y ,
and at least 1 otherwise.

On exit: if JOBV2T ¼ Y , V2T contains the m� q by m� q unitary matrix V2
H.

26: LDV2T – INTEGER Input

On entry: the first dimension of the array V2T as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraint: if JOBV2T ¼ Y , LDV2T � max 1;M� Qð Þ.

27: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.

If INFO > 0 on exit, WORKð2 : rÞ contains the values PHI 1ð Þ; . . . PHI r � 1ð Þ that, together with
THETA 1ð Þ; . . .THETA rð Þ, define the matrix in intermediate bidiagonal-block form remaining
after nonconvergence. INFO specifies the number of nonzero PHI's.

28: LWORK – INTEGER Input

On entry:

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

The minimum workspace required is max 1; Pð Þ þmax 1;M� Pð Þ þmax 1;Qð Þ þ
max 1;M� Qð Þ þmax 1; P;M� P;Q;M� Qð Þ þ 1; the optimal amount of workspace depends on
internal block sizes and the relative problem dimensions.

Constraint:
LWORK ¼ �1 or LWORK � max 1;Pð Þ þmax 1;M� Pð Þ þmax 1;Qð Þ þ
max 1;M� Qð Þ þmax 1; P;M� P;Q;M� Qð Þ þ 1.
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29: RWORKðmax 1;LRWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

30: LRWORK – INTEGER Input

On entry:

If LRWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
r e l a t e d t o LRWORK i s i s s u e d . O t h e rw i s e t h e r e q u i r e d wo r k s p a c e i s
5�max 1;Q� 1ð Þ þ 4�max 1;Qð Þ þmax 1; 8� Qð Þ þ 1 which equates to 11 for Q ¼ 0, 18 for
Q ¼ 1 and 17� Q� 4 when Q > 1.

Constraint:
LRWORK ¼ �1 or LRWORK � 5�max 1;Q� 1ð Þ þ 4�max 1;Qð Þ þmax 1; 8� Qð Þ þ 1.

31: IWORKðM�min P;M� P;Q;M� Qð ÞÞ – INTEGER array Workspace

32: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The Jacobi-type procedure failed to converge during an internal reduction to bidiagonal-block
form. The process requires convergence to min P;M� P;Q;M� Qð Þ values, the value of INFO
gives the number of converged values.

7 Accuracy

The computed CS decomposition is nearly the exact CS decomposition for the nearby matrix X þ Eð Þ,
where

Ek k2 ¼ O �ð Þ;

and � is the machine precision.

8 Parallelism and Performance

F08RNF (ZUNCSD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08RNF (ZUNCSD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to perform the full CS decomposition is
approximately 2m3.

The real analogue of this routine is F08RAF (DORCSD).
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10 Example

This example finds the full CS decomposition of a unitary 6 by 6 matrix X (see Section 10.2)
partitioned so that the top left block is 2 by 4.

The decomposition is performed both on submatrices of the unitary matrix X and on separated partition
matrices. Code is also provided to perform a recombining check if required.

10.1 Program Text

Program f08rnfe

! F08RNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04caf, x04dbf, zgemm, zuncsd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: one = (1.0_nag_wp,0.0_nag_wp)
Complex (Kind=nag_wp), Parameter :: zero = (0.0_nag_wp,0.0_nag_wp)
Integer, Parameter :: nin = 5, nout = 6, recombine = 1, &

reprint = 1
! .. Local Scalars ..

Integer :: i, ifail, info, info2, j, ldu, ldu1, &
ldu2, ldv, ldv1t, ldv2t, ldx, ldx11, &
ldx12, ldx21, ldx22, lrwork, lwork, &
m, n11, n12, n21, n22, p, q, r

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: u(:,:), u1(:,:), u2(:,:), v(:,:), &

v1t(:,:), v2t(:,:), w(:,:), work(:), &
x(:,:), x11(:,:), x12(:,:), &
x21(:,:), x22(:,:)

Complex (Kind=nag_wp) :: wdum(1)
Real (Kind=nag_wp) :: rwdum(1)
Real (Kind=nag_wp), Allocatable :: rwork(:), theta(:)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, cos, min, nint, real, sin

! .. Executable Statements ..
Write (nout,*) ’F08RNF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, p, q

r = min(min(p,q),min(m-p,m-q))

ldx = m
ldx11 = p
ldx12 = p
ldx21 = m - p
ldx22 = m - p
ldu = m
ldu1 = p
ldu2 = m - p
ldv = m
ldv1t = q
ldv2t = m - q
Allocate (x(ldx,m),u(ldu,m),v(ldv,m),theta(r),iwork(m),w(ldx,m))
Allocate (x11(ldx11,q),x12(ldx12,m-q),x21(ldx21,q),x22(ldx22,m-q))
Allocate (u1(ldu1,p),u2(ldu2,m-p),v1t(ldv1t,q),v2t(ldv2t,m-q))

! Read (by column) and print unitary X from data file
! (as, say, generated by a generalized singular value decomposition).
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Do i = 1, m
Read (nin,*) x(1:m,i)

End Do

! Print general complex matrix using matrix printing routine x04dbf.
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’N’,m,m,x,ldx,’Bracketed’,’F7.4’, &

’ Unitary matrix X’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
Write (nout,*)

! Compute the complete CS factorization of X:
! X11 is stored in X(1:p, 1:q), X12 is stored in X(1:p, q+1:m)
! X21 is stored in X(p+1:m, 1:q), X22 is stored in X(p+1:m, q+1:m)
! U1 is stored in U(1:p, 1:p), U2 is stored in U(p+1:m, p+1:m)
! V1 is stored in V(1:q, 1:q), V2 is stored in V(q+1:m, q+1:m)

x11(1:p,1:q) = x(1:p,1:q)
x12(1:p,1:m-q) = x(1:p,q+1:m)
x21(1:m-p,1:q) = x(p+1:m,1:q)
x22(1:m-p,1:m-q) = x(p+1:m,q+1:m)

! Workspace query first to get length of work array for complete CS
! factorization routine zuncsd/f08rnf.

lwork = -1
lrwork = -1
Call zuncsd(’Yes U1’,’Yes U2’,’Yes V1T’,’Yes V2T’,’Column’,’Default’,m, &

p,q,x,ldx,x(1,q+1),ldx,x(p+1,1),ldx,x(p+1,q+1),ldx,theta,u,ldu, &
u(p+1,p+1),ldu,v,ldv,v(q+1,q+1),ldv,wdum,lwork,rwdum,lrwork,iwork, &
info)

lwork = nint(real(wdum(1)))
lrwork = nint(rwdum(1))
Allocate (work(lwork),rwork(lrwork))

! Initialize all of u, v to zero.
u(1:m,1:m) = zero
v(1:m,1:m) = zero

! This is how you might pass partitions as sub-matrices
Call zuncsd(’Yes U1’,’Yes U2’,’Yes V1T’,’Yes V2T’,’Column’,’Default’,m, &

p,q,x,ldx,x(1,q+1),ldx,x(p+1,1),ldx,x(p+1,q+1),ldx,theta,u,ldu, &
u(p+1,p+1),ldu,v,ldv,v(q+1,q+1),ldv,work,lwork,rwork,lrwork,iwork, &
info)

If (info/=0) Then
Write (nout,99999) ’Failure in ZUNCSD/F08RNF. info =’, info
Go To 100

End If

! Print Theta using real matrix printing routine x04caf
! Note: U1, U2, V1T, V2T not printed since these may differ by a sign
! change in columns of U1, U2 and corresponding rows of V1T, V2T.

Write (nout,99998) ’Theta Component of CS factorization of X:’
ifail = 0
Call x04caf(’G’,’N’,r,1,theta,r,’ Theta’,ifail)
Write (nout,*)

! And this is how you might pass partitions as separate matrices.
Call zuncsd(’Yes U1’,’Yes U2’,’Yes V1T’,’Yes V2T’,’Column’,’Default’,m, &

p,q,x11,ldx11,x12,ldx12,x21,ldx21,x22,ldx22,theta,u1,ldu1,u2,ldu2,v1t, &
ldv1t,v2t,ldv2t,work,lwork,rwork,lrwork,iwork,info2)

If (info/=0) Then
Write (nout,99999) ’Failure in ZUNCSD/F08RNF. info =’, info
Go To 100

End If

! Reprint Theta using matrix printing routine x04caf.
If (reprint/=0) Then

Write (nout,99998) ’Components of CS factorization of X:’
ifail = 0
Call x04caf(’G’,’N’,r,1,theta,r,’ Theta’,ifail)
Write (nout,*)
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End If

If (recombine/=0) Then
! Recombining should return the original matrix
! Assemble Sigma_p into X

x(1:m,1:m) = zero
n11 = min(p,q) - r
n12 = min(p,m-q) - r
n21 = min(m-p,q) - r
n22 = min(m-p,m-q) - r

! Top Half
Do j = 1, n11

x(j,j) = one
End Do
Do j = 1, r

x(j+n11,j+n11) = cmplx(cos(theta(j)),0.0_nag_wp,kind=nag_wp)
x(j+n11,j+n11+r+n21+n22) = cmplx(-sin(theta(j)),0.0_nag_wp, &

kind=nag_wp)
End Do
Do j = 1, n12

x(j+n11+r,j+n11+r+n21+n22+r) = -one
End Do

! Bottom half
Do j = 1, n22

x(p+j,q+j) = one
End Do
Do j = 1, r

x(p+n22+j,j+n11) = cmplx(sin(theta(j)),0.0_nag_wp,kind=nag_wp)
x(p+n22+j,j+r+n21+n22) = cmplx(cos(theta(j)),0.0_nag_wp,kind=nag_wp)

End Do
Do j = 1, n21

x(p+n22+r+j,n11+r+j) = one
End Do

! multiply U * Sigma_p into w
Call zgemm(’n’,’n’,m,m,m,one,u,ldu,x,ldx,zero,w,ldx)

! form U * Sigma_p * V^T into u
Call zgemm(’n’,’n’,m,m,m,one,w,ldx,v,ldv,zero,u,ldu)

! Print recombined matrix using complex matrix printing routine x04dbf.
Write (nout,*)
ifail = 0
Call x04dbf(’General’,’N’,m,m,u,ldu,’Bracketed’,’F7.4’, &

’ Recombined matrix X = U * Sigma_p * V^H’,’Integer’,rlabs, &
’Integer’,clabs,80,0,ifail)

End If
100 Continue

99999 Format (1X,A,I4)
99998 Format (/,1X,A,/)

End Program f08rnfe

10.2 Program Data

F08RNF Example Program Data

6 2 4 : m p q

( -1.3038E-02, -3.2597E-01)
( 4.2764E-01, -6.2582E-01)
( -3.2597E-01, 1.6428E-01)
( 1.5906E-01, -5.2151E-03)
( -1.7210E-01, -1.3027E-02)
( -2.6336E-01, -2.4772E-01) : column 1 of unitary matrix X

( -1.4039E-01, -2.6167E-01)
( 8.6298E-02, -3.8174E-02)
( 3.8163E-01, -1.8219E-01)
( -2.8207E-01, 1.9734E-01)
( -5.0942E-01, -5.0319E-01)
( -1.0861E-01, 2.8474E-01) : column 2 of unitary matrix X
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( 2.5177E-01, -7.9789E-01)
( -3.2188E-01, 1.6112E-01)
( 1.3231E-01, -1.4563E-02)
( 2.1598E-01, 1.8813E-01)
( 3.6488E-02, 2.0319E-01)
( 1.0906E-01, -1.2712E-01) : column 3 of unitary matrix X

( -5.0956E-02, -2.1750E-01)
( 1.1979E-01, 1.6319E-01)
( -5.0671E-01, 1.8612E-01)
( -4.0163E-01, 2.6787E-01)
( 1.9271E-01, 1.5574E-01)
( -8.8179E-02, 5.6169E-01) : column 4 of unitary matrix X

( -4.5947E-02, 1.4052E-04)
( -8.0311E-02, -4.3611E-01)
( 5.9714E-02, -5.8970E-01)
( -4.6443E-02, 3.0864E-01)
( 5.7843E-01, -1.2439E-01)
( 1.5763E-02, 4.7130E-02) : column 5 of unitary matrix X

( -5.2773E-02, -2.2492E-01)
( -3.8117E-02, -2.1907E-01)
( -1.3850E-01, -9.0941E-02)
( -3.7354E-01, -5.5148E-01)
( -1.8818E-02, -5.5686E-02)
( 6.5007E-01, 4.9173E-03) : column 6 of unitary matrix X

10.3 Program Results

F08RNF Example Program Results

Unitary matrix X
1 2 3 4

1 (-0.0130,-0.3260) (-0.1404,-0.2617) ( 0.2518,-0.7979) (-0.0510,-0.2175)
2 ( 0.4276,-0.6258) ( 0.0863,-0.0382) (-0.3219, 0.1611) ( 0.1198, 0.1632)
3 (-0.3260, 0.1643) ( 0.3816,-0.1822) ( 0.1323,-0.0146) (-0.5067, 0.1861)
4 ( 0.1591,-0.0052) (-0.2821, 0.1973) ( 0.2160, 0.1881) (-0.4016, 0.2679)
5 (-0.1721,-0.0130) (-0.5094,-0.5032) ( 0.0365, 0.2032) ( 0.1927, 0.1557)
6 (-0.2634,-0.2477) (-0.1086, 0.2847) ( 0.1091,-0.1271) (-0.0882, 0.5617)

5 6
1 (-0.0459, 0.0001) (-0.0528,-0.2249)
2 (-0.0803,-0.4361) (-0.0381,-0.2191)
3 ( 0.0597,-0.5897) (-0.1385,-0.0909)
4 (-0.0464, 0.3086) (-0.3735,-0.5515)
5 ( 0.5784,-0.1244) (-0.0188,-0.0557)
6 ( 0.0158, 0.0471) ( 0.6501, 0.0049)

Theta Component of CS factorization of X:

Theta
1

1 0.1973
2 0.5387

Components of CS factorization of X:

Theta
1

1 0.1973
2 0.5387

Recombined matrix X = U * Sigma_p * V^H
1 2 3 4

1 (-0.0130,-0.3260) (-0.1404,-0.2617) ( 0.2518,-0.7979) (-0.0510,-0.2175)
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2 ( 0.4276,-0.6258) ( 0.0863,-0.0382) (-0.3219, 0.1611) ( 0.1198, 0.1632)
3 (-0.3260, 0.1643) ( 0.3816,-0.1822) ( 0.1323,-0.0146) (-0.5067, 0.1861)
4 ( 0.1591,-0.0052) (-0.2821, 0.1973) ( 0.2160, 0.1881) (-0.4016, 0.2679)
5 (-0.1721,-0.0131) (-0.5094,-0.5032) ( 0.0365, 0.2032) ( 0.1927, 0.1557)
6 (-0.2634,-0.2477) (-0.1086, 0.2847) ( 0.1091,-0.1271) (-0.0882, 0.5617)

5 6
1 (-0.0459, 0.0001) (-0.0528,-0.2249)
2 (-0.0803,-0.4361) (-0.0381,-0.2191)
3 ( 0.0597,-0.5897) (-0.1385,-0.0909)
4 (-0.0464, 0.3086) (-0.3735,-0.5515)
5 ( 0.5784,-0.1244) (-0.0188,-0.0557)
6 ( 0.0158, 0.0471) ( 0.6501, 0.0049)
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NAG Library Routine Document

F08SAF (DSYGV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08SAF (DSYGV) computes all the eigenvalues and, optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are symmetric and B is also positive definite.

2 Specification

SUBROUTINE F08SAF (ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK,
INFO)

&

INTEGER ITYPE, N, LDA, LDB, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), W(N), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name dsygv.

3 Description

F08SAF (DSYGV) first performs a Cholesky factorization of the matrix B as B ¼ UTU , when
UPLO ¼ U or B ¼ LLT, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then
backtransformed to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, z,
satisfies

ZTAZ ¼ � and ZTBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�T ¼ � and ZTBZ ¼ I;

and for BAz ¼ �z we have

ZTAZ ¼ � and ZTB�1Z ¼ I:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if JOBZ ¼ V , A contains the matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

if ITYPE ¼ 1 or 2, ZTBZ ¼ I;

if ITYPE ¼ 3, ZTB�1Z ¼ I.
If JOBZ ¼ N , the upper triangle (if UPLO ¼ U ) or the lower triangle (if UPLO ¼ L ) of A,
including the diagonal, is overwritten.

F08SAF NAG Library Manual

F08SAF.2 Mark 26



6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08SAF
(DSYGV) is called.

Constraint: LDA � max 1;Nð Þ.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n symmetric positive definite matrix B.

If UPLO ¼ U , the upper triangular part of B must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of B must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if 0 � INFO � N, the part of B containing the matrix is overwritten by the triangular
factor U or L from the Cholesky factorization B ¼ UTU or B ¼ LLT.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08SAF
(DSYGV) is called.

Constraint: LDB � max 1;Nð Þ.

9: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

10: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08SAF (DSYGV) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � nbþ 2ð Þ � N, where nb is the optimal
block size for F08FEF (DSYTRD).

Constraint: LWORK � max 1; 3� N� 1ð Þ.

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO ¼ 1 to N

If INFO ¼ i, F08FAF (DSYEV) failed to converge; i i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

INFO > N

F07FDF (DPOTRF) returned an error code; i.e., if INFO ¼ Nþ i, for 1 � i � N, then the leading
minor of order i of B is not positive definite. The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

The example program below illustrates the computation of approximate error bounds.

8 Parallelism and Performance

F08SAF (DSYGV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08SAF (DSYGV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08SNF (ZHEGV).

10 Example

This example finds all the eigenvalues and eigenvectors of the generalized symmetric eigenproblem
Az ¼ �Bz, where

A ¼
0:24 0:39 0:42 �0:16
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
�0:16 0:63 0:48 �0:03

0B@
1CA and B ¼

4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:09
0:56 �0:83 0:76 0:34
�0:10 1:09 0:34 1:18

0B@
1CA;

together with and estimate of the condition number of B, and approximate error bounds for the
computed eigenvalues and eigenvectors.

The example program for F08SCF (DSYGVD) illustrates solving a generalized symmetric
eigenproblem of the form ABz ¼ �z.
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10.1 Program Text

Program f08safe

! F08SAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, ddisna, dsygv, dtrcon, f06rcf, &

nag_wp, x02ajf, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, bnorm, eps, r, rcond, rcondb, &

t1, t2, t3
Integer :: i, ifail, info, k, lda, ldb, lwork, &

n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), eerbnd(:), &
rcondz(:), w(:), work(:), zerbnd(:)

Real (Kind=nag_wp) :: dummy(1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max, nint

! .. Executable Statements ..
Write (nout,*) ’F08SAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,n),eerbnd(n),rcondz(n),w(n),zerbnd(n),iwork(n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dsygv is f08saf
Call dsygv(1,’Vectors’,’Upper’,n,a,lda,b,ldb,w,dummy,lwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+2)*n,nint(dummy(1)))
Allocate (work(lwork))

! Read the upper triangular parts of the matrices A and B

Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*)(b(i,i:n),i=1,n)

! Compute the one-norms of the symmetric matrices A and B

anorm = f06rcf(’One norm’,’Upper’,n,a,lda,work)
bnorm = f06rcf(’One norm’,’Upper’,n,b,ldb,work)

! Solve the generalized symmetric eigenvalue problem
! A*x = lambda*B*x (ITYPE = 1)

! The NAG name equivalent of dsygv is f08saf
Call dsygv(1,’Vectors’,’Upper’,n,a,lda,b,ldb,w,work,lwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

Write (nout,*)
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Flush (nout)

! Normalize the eigenvectors, largest positive
Do i = 1, n

Call blas_damax_val(n,a(1,i),1,k,r)
If (a(k,i)<zero) Then

a(1:n,i) = -a(1:n,i)
End If

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Eigenvectors’,ifail)

! Call DTRCON (F07TGF) to estimate the reciprocal condition
! number of the Cholesky factor of B. Note that:
! cond(B) = 1/rcond**2

! The NAG name equivalent of dtrcon is f07tgf
Call dtrcon(’One norm’,’Upper’,’Non-unit’,n,b,ldb,rcond,work,iwork, &

info)

! Print the reciprocal condition number of B

rcondb = rcond**2
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for B’
Write (nout,99998) rcondb
Flush (nout)

! Get the machine precision, eps, and if rcondb is not less
! than eps**2, compute error estimates for the eigenvalues and
! eigenvectors

eps = x02ajf()
If (rcond>=eps) Then

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the eigenvectors of (A - lambda*B)

Call ddisna(’Eigenvectors’,n,n,w,rcondz,info)

! Compute the error estimates for the eigenvalues and
! eigenvectors

t1 = eps/rcondb
t2 = anorm/bnorm
t3 = t2/rcond
Do i = 1, n

eerbnd(i) = t1*(t2+abs(w(i)))
zerbnd(i) = t1*(t3+abs(w(i)))/rcondz(i)

End Do

! Print the approximate error bounds for the eigenvalues
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvalues’
Write (nout,99998) eerbnd(1:n)
Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvectors’
Write (nout,99998) zerbnd(1:n)

Else
Write (nout,*)
Write (nout,*) ’B is very ill-conditioned, error ’, &

’estimates have not been computed’
End If

Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout,99997) ’The leading minor of order ’, i, &
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’ of B is not positive definite’
Else

Write (nout,99996) ’Failure in DSYGV. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4,A)
99996 Format (1X,A,I4)

End Program f08safe

10.2 Program Data

F08SAF Example Program Data

4 :Value of N

0.24 0.39 0.42 -0.16
-0.11 0.79 0.63

-0.25 0.48
-0.03 :End of matrix A

4.16 -3.12 0.56 -0.10
5.03 -0.83 1.09

0.76 0.34
1.18 :End of matrix B

10.3 Program Results

F08SAF Example Program Results

Eigenvalues
-2.2254 -0.4548 0.1001 1.1270

Eigenvectors
1 2 3 4

1 0.0690 -0.3080 -0.4469 0.5528
2 0.5740 -0.5329 -0.0371 0.6766
3 1.5428 0.3496 0.0505 0.9276
4 -1.4004 0.6211 0.4743 -0.2510

Estimate of reciprocal condition number for B
5.8E-03

Error estimates for the eigenvalues
4.7E-14 1.2E-14 5.6E-15 2.5E-14

Error estimates for the eigenvectors
5.2E-14 1.0E-13 9.2E-14 6.9E-14
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NAG Library Routine Document

F08SBF (DSYGVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08SBF (DSYGVX) computes selected eigenvalues and, optionally, eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are symmetric and B is also positive definite. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08SBF (ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL, VU,
IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK,
JFAIL, INFO)

&
&

INTEGER ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK,
IWORK(5*N), JFAIL(*), INFO

&

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), VL, VU, ABSTOL, W(N), Z(LDZ,*),
WORK(max(1,LWORK))

&

CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name dsygvx.

3 Description

F08SBF (DSYGVX) first performs a Cholesky factorization of the matrix B as B ¼ UTU , when
UPLO ¼ U or B ¼ LLT, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the desired eigenvalues and eigenvectors; the eigenvectors are then backtransformed
to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, Z,
satisfies

ZTAZ ¼ � and ZTBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�T ¼ � and ZTBZ ¼ I;

and for BAz ¼ �z we have

ZTAZ ¼ � and ZTB�1Z ¼ I:

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08SBF

Mark 26 F08SBF.1



4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

4: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

5: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

F08SBF NAG Library Manual

F08SBF.2 Mark 26

http://www.netlib.org/lapack/lug


6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the lower triangle (if UPLO ¼ L ) or the upper triangle (if UPLO ¼ U ) of A, including
the diagonal, is overwritten.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08SBF
(DSYGVX) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix B.

If UPLO ¼ U , the upper triangular part of B must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of B must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the triangular factor U or L from the Cholesky factorization B ¼ UTU or B ¼ LLT.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08SBF
(DSYGVX) is called.

Constraint: LDB � max 1;Nð Þ.

10: VL – REAL (KIND=nag_wp) Input
11: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

12: IL – INTEGER Input
13: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.
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14: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing C to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO ¼ 1 to N, indicating that
some eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and
Kahan (1990).

15: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

16: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first M elements contain the selected eigenvalues in ascending order.

17: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ. The eigenvectors are normalized as follows:

if ITYPE ¼ 1 or 2, ZTBZ ¼ I;

if ITYPE ¼ 3, ZTB�1Z ¼ I;
if an eigenvector fails to converge (INFO ¼ 1 to N), then that column of Z contains the
latest approximation to the eigenvector, and the index of the eigenvector is returned in
JFAIL.

If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

18: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08SBF
(DSYGVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

19: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.
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20: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08SBF (DSYGVX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � nbþ 3ð Þ � N, where nb is the optimal
block size for F08FEF (DSYTRD).

Constraint: LWORK � max 1; 8� Nð Þ.

21: IWORKð5� NÞ – INTEGER array Workspace

22: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO ¼ 1 to N, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

23: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i, F08FBF (DSYEVX) failed to converge; i eigenvectors failed to converge. Their
indices are stored in array JFAIL.

INFO > N

F07FDF (DPOTRF) returned an error code; i.e., if INFO ¼ Nþ i, for 1 � i � N, then the leading
minor of order i of B is not positive definite. The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

8 Parallelism and Performance

F08SBF (DSYGVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F08SBF (DSYGVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08SPF (ZHEGVX).

10 Example

This example finds the eigenvalues in the half-open interval �1:0; 1:0ð �, and corresponding
eigenvectors, of the generalized symmetric eigenproblem Az ¼ �Bz, where

A ¼
0:24 0:39 0:42 �0:16
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
�0:16 0:63 0:48 �0:03

0B@
1CA and B ¼

4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:09
0:56 �0:83 0:76 0:34
�0:10 1:09 0:34 1:18

0B@
1CA:

The example program for F08SCF (DSYGVD) illustrates solving a generalized symmetric
eigenproblem of the form ABz ¼ �z.

10.1 Program Text

Program f08sbfe

! F08SBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, dsygvx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, r, vl, vu
Integer :: i, ifail, il, info, iu, k, lda, ldb, &

ldz, lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), w(:), work(:), &
z(:,:)

Real (Kind=nag_wp) :: dummy(1)
Integer, Allocatable :: iwork(:), jfail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint

! .. Executable Statements ..
Write (nout,*) ’F08SBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldz = n
m = n
Allocate (a(lda,n),b(ldb,n),w(n),z(ldz,m),iwork(5*n),jfail(n))

! Read the lower and upper bounds of the interval to be searched.
Read (nin,*) vl, vu
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! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dsygvx is f08sbf
Call dsygvx(1,’Vectors’,’Values in range’,’Upper’,n,a,lda,b,ldb,vl,vu, &

il,iu,abstol,m,w,z,ldz,dummy,lwork,iwork,jfail,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+3)*n,nint(dummy(1)))
Allocate (work(lwork))

! Read the upper triangular parts of the matrices A and B

Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*)(b(i,i:n),i=1,n)

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead

abstol = zero

! Solve the generalized symmetric eigenvalue problem
! A*x = lambda*B*x (ITYPE = 1)

! The NAG name equivalent of dsygvx is f08sbf
Call dsygvx(1,’Vectors’,’Values in range’,’Upper’,n,a,lda,b,ldb,vl,vu, &

il,iu,abstol,m,w,z,ldz,work,lwork,iwork,jfail,info)

If (info>=0 .And. info<=n) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! Normalize the eigenvectors, largest positive
Do i = 1, m

Call blas_damax_val(n,z(1,i),1,k,r)
If (z(k,i)<zero) Then

z(1:n,i) = -z(1:n,i)
End If

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else If (info>n .And. info<=2*n) Then

i = info - n
Write (nout,99996) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99999) ’Failure in DSYGVX. INFO =’, info
End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))
99996 Format (1X,A,I4,A)

End Program f08sbfe
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10.2 Program Data

F08SBF Example Program Data

4 :Value of N

-1.0 1.0 :Values of VL and VU

0.24 0.39 0.42 -0.16
-0.11 0.79 0.63

-0.25 0.48
-0.03 :End of matrix A

4.16 -3.12 0.56 -0.10
5.03 -0.83 1.09

0.76 0.34
1.18 :End of matrix B

10.3 Program Results

F08SBF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
-0.4548 0.1001

Selected eigenvectors
1 2

1 -0.3080 -0.4469
2 -0.5329 -0.0371
3 0.3496 0.0505
4 0.6211 0.4743
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NAG Library Routine Document

F08SCF (DSYGVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08SCF (DSYGVD) computes all the eigenvalues and, optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are symmetric and B is also positive definite. If eigenvectors are desired, it uses a
divide-and-conquer algorithm.

2 Specification

SUBROUTINE F08SCF (ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK,
IWORK, LIWORK, INFO)

&

INTEGER ITYPE, N, LDA, LDB, LWORK, IWORK(max(1,LIWORK)),
LIWORK, INFO

&

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), W(N), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name dsygvd.

3 Description

F08SCF (DSYGVD) first performs a Cholesky factorization of the matrix B as B ¼ UTU , when
UPLO ¼ U or B ¼ LLT, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then
backtransformed to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, z,
satisfies

ZTAZ ¼ � and ZTBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�T ¼ � and ZTBZ ¼ I;

and for BAz ¼ �z we have

ZTAZ ¼ � and ZTB�1Z ¼ I:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if JOBZ ¼ V , A contains the matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

if ITYPE ¼ 1 or 2, ZTBZ ¼ I;

if ITYPE ¼ 3, ZTB�1Z ¼ I.
If JOBZ ¼ N , the upper triangle (if UPLO ¼ U ) or the lower triangle (if UPLO ¼ L ) of A,
including the diagonal, is overwritten.
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6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08SCF
(DSYGVD) is called.

Constraint: LDA � max 1;Nð Þ.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix B.

If UPLO ¼ U , the upper triangular part of B must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of B must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the triangular factor U or L from the Cholesky factorization B ¼ UTU or B ¼ LLT.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08SCF
(DSYGVD) is called.

Constraint: LDB � max 1;Nð Þ.

9: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

10: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08SCF (DSYGVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array and the minimum size of the IWORK array, returns these values as the first
entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK
is issued.

Suggested value: for optimal performance, LWORK should usually be larger than the minimum,
try increasing by nb� N, where nb is the optimal block size.

Constraints:

if N � 1, LWORK � 1;
if JOBZ ¼ N and N > 1, LWORK � 2� Nþ 1;
if JOBZ ¼ V and N > 1, LWORK � 1þ 6� Nþ 2� N2.

12: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum LIWORK.

13: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08SCF (DSYGVD) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array and the minimum size of the IWORK array, returns these values as the first
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entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK
is issued.

Constraints:

if N � 1, LIWORK � 1;
if JOBZ ¼ N and N > 1, LIWORK � 1;
if JOBZ ¼ V and N > 1, LIWORK � 3þ 5� N.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i, F08FCF (DSYEVD) failed to converge; i i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

INFO > N

F07FDF (DPOTRF) returned an error code; i.e., if INFO ¼ Nþ i, for 1 � i � N, then the leading
minor of order i of B is not positive definite. The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

The example program below illustrates the computation of approximate error bounds.

8 Parallelism and Performance

F08SCF (DSYGVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08SCF (DSYGVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08SQF (ZHEGVD).
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10 Example

This example finds all the eigenvalues and eigenvectors of the generalized symmetric eigenproblem
ABz ¼ �z, where

A ¼
0:24 0:39 0:42 �0:16
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
�0:16 0:63 0:48 �0:03

0B@
1CA and B ¼

4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:09
0:56 �0:83 0:76 0:34
�0:10 1:09 0:34 1:18

0B@
1CA;

together with an estimate of the condition number of B, and approximate error bounds for the computed
eigenvalues and eigenvectors.

The example program for F08SAF (DSYGV) illustrates solving a generalized symmetric eigenproblem
of the form Az ¼ �Bz.

10.1 Program Text

Program f08scfe

! F08SCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, ddisna, dsygvd, dtrcon, f06rcf, &

nag_wp, x02ajf, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0E+0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, bnorm, eps, r, rcond, rcondb, &

t1, t2, t3
Integer :: i, ifail, info, k, lda, ldb, liwork, &

lwork, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), eerbnd(:), &
rcondz(:), w(:), work(:), zerbnd(:)

Real (Kind=nag_wp) :: dummy(1)
Integer :: idum(1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max, nint

! .. Executable Statements ..
Write (nout,*) ’F08SCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,n),eerbnd(n),rcondz(n),w(n),zerbnd(n))

! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1

! The NAG name equivalent of dsygvd is f08scf
Call dsygvd(2,’Vectors’,’Upper’,n,a,lda,b,ldb,w,dummy,lwork,idum,liwork, &

info)

! Make sure that there is enough workspace for block size nb.
lwork = max(1+(nb+6+2*n)*n,nint(dummy(1)))
liwork = max(3+5*n,idum(1))
Allocate (work(lwork),iwork(liwork))

! Read the upper triangular parts of the matrices A and B
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Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*)(b(i,i:n),i=1,n)

! Compute the one-norms of the symmetric matrices A and B

anorm = f06rcf(’One norm’,’Upper’,n,a,lda,work)
bnorm = f06rcf(’One norm’,’Upper’,n,b,ldb,work)

! Solve the generalized symmetric eigenvalue problem
! A*B*x = lambda*x (ITYPE = 2)

! The NAG name equivalent of dsygvd is f08scf
Call dsygvd(2,’Vectors’,’Upper’,n,a,lda,b,ldb,w,work,lwork,iwork,liwork, &

info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)
Flush (nout)

! Normalize the eigenvectors, largest positive
Do i = 1, n

Call blas_damax_val(n,a(1,i),1,k,r)
If (a(k,i)<zero) Then

a(1:n,i) = -a(1:n,i)
End If

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Eigenvectors’,ifail)

! Call DTRCON (F07TGF) to estimate the reciprocal condition
! number of the Cholesky factor of B. Note that:
! cond(B) = 1/RCOND**2

! The NAG name equivalent of dtrcon is f07tgf
Call dtrcon(’One norm’,’Upper’,’Non-unit’,n,b,ldb,rcond,work,iwork, &

info)

! Print the reciprocal condition number of B

rcondb = rcond**2
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for B’
Write (nout,99998) rcondb
Flush (nout)

! Get the machine precision, EPS, and if RCONDB is not less
! than EPS**2, compute error estimates for the eigenvalues and
! eigenvectors

eps = x02ajf()
If (rcond>=eps) Then

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the eigenvectors of (A*B - lambda*I)

Call ddisna(’Eigenvectors’,n,n,w,rcondz,info)

! Compute the error estimates for the eigenvalues and
! eigenvectors

t1 = one/rcond
t2 = eps*t1
t3 = anorm*bnorm
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Do i = 1, n
eerbnd(i) = eps*(t3+abs(w(i))/rcondb)
zerbnd(i) = t2*(t3/rcondz(i)+t1)

End Do

! Print the approximate error bounds for the eigenvalues
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvalues’
Write (nout,99998) eerbnd(1:n)
Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvectors’
Write (nout,99998) zerbnd(1:n)

Else
Write (nout,*)
Write (nout,*) ’B is very ill-conditioned, error ’, &

’estimates have not been computed’
End If

Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout,99997) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99996) ’Failure in DSYGVD. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4,A)
99996 Format (1X,A,I4)

End Program f08scfe

10.2 Program Data

F08SCF Example Program Data

4 :Value of N

0.24 0.39 0.42 -0.16
-0.11 0.79 0.63

-0.25 0.48
-0.03 :End of matrix A

4.16 -3.12 0.56 -0.10
5.03 -0.83 1.09

0.76 0.34
1.18 :End of matrix B

10.3 Program Results

F08SCF Example Program Results

Eigenvalues
-3.5411 -0.3347 0.2983 2.2544

Eigenvectors
1 2 3 4

1 -0.0356 -0.1039 -0.7459 0.1909
2 0.3809 0.4322 -0.7845 0.3540
3 -0.2943 1.5644 -0.7144 0.5665
4 -0.3186 -1.0647 1.1184 0.3859

Estimate of reciprocal condition number for B
5.8E-03
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Error estimates for the eigenvalues
7.0E-14 8.6E-15 7.9E-15 4.6E-14

Error estimates for the eigenvectors
2.8E-14 6.4E-14 6.4E-14 3.4E-14
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NAG Library Routine Document

F08SEF (DSYGST)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08SEF (DSYGST) reduces a real symmetric-definite generalized eigenproblem Az ¼ �Bz, ABz ¼ �z
or BAz ¼ �z to the standard form Cy ¼ �y, where A is a real symmetric matrix and B has been
factorized by F07FDF (DPOTRF).

2 Specification

SUBROUTINE F08SEF (ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

INTEGER ITYPE, N, LDA, LDB, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dsygst.

3 Description

To reduce the real symmetric-definite generalized eigenproblem Az ¼ �Bz, ABz ¼ �z or BAz ¼ �z to
the standard form Cy ¼ �y, F08SEF (DSYGST) must be preceded by a call to F07FDF (DPOTRF)
which computes the Cholesky factorization of B; B must be positive definite.

The different problem types are specified by the argument ITYPE, as indicated in the table below. The
table shows how C is computed by the routine, and also how the eigenvectors z of the original problem
can be recovered from the eigenvectors of the standard form.

ITYPE Problem UPLO B C z

1 Az ¼ �Bz `U'
`L'

UTU
LLT

U�TAU�1

L�1AL�T
U�1y
L�Ty

2 ABz ¼ �z `U'
`L'

UTU
LLT

UAUT

LTAL
U�1y
L�Ty

3 BAz ¼ �z `U'
`L'

UTU
LLT

UAUT

LTAL
UTy
Ly

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: indicates how the standard form is computed.

ITYPE ¼ 1

if UPLO ¼ U , C ¼ U�TAU�1;

if UPLO ¼ L , C ¼ L�1AL�T.
ITYPE ¼ 2 or 3

if UPLO ¼ U , C ¼ UAUT;

if UPLO ¼ L , C ¼ LTAL.

Constraint: ITYPE ¼ 1, 2 or 3.

2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored and how B has been
factorized.

UPLO ¼ U
The upper triangular part of A is stored and B ¼ UTU .

UPLO ¼ L
The lower triangular part of A is stored and B ¼ LLT.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the upper or lower triangle of A is overwritten by the corresponding upper or lower
triangle of C as specified by ITYPE and UPLO.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08SEF
(DSYGST) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the Cholesky factor of B as specified by UPLO and returned by F07FDF (DPOTRF).
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7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08SEF
(DSYGST) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B�1

(if ITYPE ¼ 1) or B (if ITYPE ¼ 2 or 3). When F08SEF (DSYGST) is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of
accuracy if B is ill-conditioned with respect to inversion. See the document for F08SAF (DSYGV) for
further details.

8 Parallelism and Performance

F08SEF (DSYGST) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately n3.

The complex analogue of this routine is F08SSF (ZHEGST).

10 Example

This example computes all the eigenvalues of Az ¼ �Bz, where

A ¼
0:24 0:39 0:42 �0:16
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
�0:16 0:63 0:48 �0:03

0B@
1CA and B ¼

4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:09
0:56 �0:83 0:76 0:34
�0:10 1:09 0:34 1:18

0B@
1CA:

Here B is symmetric positive definite and must first be factorized by F07FDF (DPOTRF). The program
calls F08SEF (DSYGST) to reduce the problem to the standard form Cy ¼ �y; then F08FEF
(DSYTRD) to reduce C to tridiagonal form, and F08JFF (DSTERF) to compute the eigenvalues.
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10.1 Program Text

Program f08sefe

! F08SEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpotrf, dsterf, dsygst, dsytrd, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, lda, ldb, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), d(:), e(:), tau(:), &

work(:)
! .. Executable Statements ..

Write (nout,*) ’F08SEF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
lwork = 64*n
Allocate (a(lda,n),b(ldb,n),d(n),e(n-1),tau(n),work(lwork))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*)(b(i,i:n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)(a(i,1:i),i=1,n)
Read (nin,*)(b(i,1:i),i=1,n)

End If

! Compute the Cholesky factorization of B
! The NAG name equivalent of dpotrf is f07fdf

Call dpotrf(uplo,n,b,ldb,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’B is not positive definite.’
Else

! Reduce the problem to standard form C*y = lambda*y, storing
! the result in A
! The NAG name equivalent of dsygst is f08sef

Call dsygst(1,uplo,n,a,lda,b,ldb,info)

! Reduce C to tridiagonal form T = (Q**T)*C*Q
! The NAG name equivalent of dsytrd is f08fef

Call dsytrd(uplo,n,a,lda,d,e,tau,work,lwork,info)

! Calculate the eigenvalues of T (same as C)
! The NAG name equivalent of dsterf is f08jff

Call dsterf(n,d,e,info)

If (info>0) Then
Write (nout,*) ’Failure to converge.’

Else

! Print eigenvalues

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
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End If
End If

99999 Format (3X,(9F8.4))
End Program f08sefe

10.2 Program Data

F08SEF Example Program Data
4 :Value of N
’L’ :Value of UPLO
0.24
0.39 -0.11
0.42 0.79 -0.25

-0.16 0.63 0.48 -0.03 :End of matrix A
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.09 0.34 1.18 :End of matrix B

10.3 Program Results

F08SEF Example Program Results

Eigenvalues
-2.2254 -0.4548 0.1001 1.1270
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NAG Library Routine Document

F08SNF (ZHEGV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08SNF (ZHEGV) computes all the eigenvalues and, optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are Hermitian and B is also positive definite.

2 Specification

SUBROUTINE F08SNF (ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK,
RWORK, INFO)

&

INTEGER ITYPE, N, LDA, LDB, LWORK, INFO
REAL (KIND=nag_wp) W(N), RWORK(3*N-2)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name zhegv.

3 Description

F08SNF (ZHEGV) first performs a Cholesky factorization of the matrix B as B ¼ UHU , when
UPLO ¼ U or B ¼ LLH, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then
backtransformed to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, z,
satisfies

ZHAZ ¼ � and ZHBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�H ¼ � and ZHBZ ¼ I;

and for BAz ¼ �z we have

ZHAZ ¼ � and ZHB�1Z ¼ I:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if JOBZ ¼ V , A contains the matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

if ITYPE ¼ 1 or 2, ZHBZ ¼ I;

if ITYPE ¼ 3, ZHB�1Z ¼ I.
If JOBZ ¼ N , the upper triangle (if UPLO ¼ U ) or the lower triangle (if UPLO ¼ L ) of A,
including the diagonal, is overwritten.
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6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08SNF
(ZHEGV) is called.

Constraint: LDA � max 1;Nð Þ.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n Hermitian positive definite matrix B.

If UPLO ¼ U , the upper triangular part of B must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of B must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if 0 � INFO � N, the part of B containing the matrix is overwritten by the triangular
factor U or L from the Cholesky factorization B ¼ UHU or B ¼ LLH.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08SNF
(ZHEGV) is called.

Constraint: LDB � max 1;Nð Þ.

9: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

10: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08SNF (ZHEGV) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � nbþ 1ð Þ � N, where nb is the optimal
block size for F08FSF (ZHETRD).

Constraint: LWORK � max 1; 2� Nð Þ.

12: RWORKð3� N� 2Þ – REAL (KIND=nag_wp) array Workspace

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO ¼ 1 to N

If INFO ¼ i, F08FNF (ZHEEV) failed to converge; i i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

INFO > N

F07FRF (ZPOTRF) returned an error code; i.e., if INFO ¼ Nþ i, for 1 � i � N, then the leading
minor of order i of B is not positive definite. The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

The example program below illustrates the computation of approximate error bounds.

8 Parallelism and Performance

F08SNF (ZHEGV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08SNF (ZHEGV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08SAF (DSYGV).

10 Example

This example finds all the eigenvalues and eigenvectors of the generalized Hermitian eigenproblem
Az ¼ �Bz, where

A ¼
�7:36 0:77� 0:43i �0:64� 0:92i 3:01� 6:97i
0:77þ 0:43i 3:49 2:19þ 4:45i 1:90þ 3:73i
�0:64þ 0:92i 2:19� 4:45i 0:12 2:88� 3:17i
3:01þ 6:97i 1:90� 3:73i 2:88þ 3:17i �2:54

0B@
1CA

and

B ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA;

together with and estimate of the condition number of B, and approximate error bounds for the
computed eigenvalues and eigenvectors.

The example program for F08SQF (ZHEGVD) illustrates solving a generalized Hermitian eigenproblem
of the form ABz ¼ �z.
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10.1 Program Text

Program f08snfe

! F08SNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddisna, f06ucf, nag_wp, x02ajf, x04daf, zhegv, &

ztrcon
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nb = 64, nin = 5, nout = 6
! .. Local Scalars ..

Complex (Kind=nag_wp) :: scal
Real (Kind=nag_wp) :: anorm, bnorm, eps, rcond, rcondb, &

t1, t2, t3
Integer :: i, ifail, info, k, lda, ldb, lwork, &

n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), work(:)
Complex (Kind=nag_wp) :: dummy(1)
Real (Kind=nag_wp), Allocatable :: eerbnd(:), rcondz(:), rwork(:), &

w(:), zerbnd(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs, conjg, max, maxloc, nint, real
! .. Executable Statements ..

Write (nout,*) ’F08SNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,n),eerbnd(n),rcondz(n),rwork(3*n-2),w(n), &

zerbnd(n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zhegv is f08snf
Call zhegv(1,’Vectors’,’Upper’,n,a,lda,b,ldb,w,dummy,lwork,rwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(dummy(1))))
Allocate (work(lwork))

! Read the upper triangular parts of the matrices A and B

Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*)(b(i,i:n),i=1,n)

! Compute the one-norms of the symmetric matrices A and B

anorm = f06ucf(’One norm’,’Upper’,n,a,lda,rwork)
bnorm = f06ucf(’One norm’,’Upper’,n,b,ldb,rwork)

! Solve the generalized Hermitian eigenvalue problem
! A*x = lambda*B*x (itype = 1)

! The NAG name equivalent of zhegv is f08snf
Call zhegv(1,’Vectors’,’Upper’,n,a,lda,b,ldb,w,work,lwork,rwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)
Flush (nout)
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! Normalize the eigenvectors, largest element real
! (normalization w.r.t B unaffected: Z^HBZ = I).

Do i = 1, n
rwork(1:n) = abs(a(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(a(k,i))/abs(a(k,i))
a(1:n,i) = a(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,n,a,lda,’Eigenvectors’,ifail)

! Call ZTRCON (F07TUF) to estimate the reciprocal condition
! number of the Cholesky factor of B. Note that:
! cond(B) = 1/rcond**2

Call ztrcon(’One norm’,’Upper’,’Non-unit’,n,b,ldb,rcond,work,rwork, &
info)

! Print the reciprocal condition number of B

rcondb = rcond**2
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for B’
Write (nout,99998) rcondb
Flush (nout)

! Get the machine precision, eps, and if rcondb is not less
! than eps**2, compute error estimates for the eigenvalues and
! eigenvectors

eps = x02ajf()
If (rcond>=eps) Then

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the eigenvectors of (A - lambda*B)

Call ddisna(’Eigenvectors’,n,n,w,rcondz,info)

! Compute the error estimates for the eigenvalues and
! eigenvectors

t1 = eps/rcondb
t2 = anorm/bnorm
t3 = t2/rcond
Do i = 1, n

eerbnd(i) = t1*(t2+abs(w(i)))
zerbnd(i) = t1*(t3+abs(w(i)))/rcondz(i)

End Do

! Print the approximate error bounds for the eigenvalues
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvalues’
Write (nout,99998) eerbnd(1:n)
Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvectors’
Write (nout,99998) zerbnd(1:n)

Else
Write (nout,*)
Write (nout,*) ’B is very ill-conditioned, error ’, &

’estimates have not been computed’
End If

Else If (info>n) Then
i = info - n
Write (nout,99997) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else
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Write (nout,99996) ’Failure in ZHEGV. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4,A)
99996 Format (1X,A,I4)

End Program f08snfe

10.2 Program Data

F08SNF Example Program Data

4 :Value of N

(-7.36, 0.00) ( 0.77, -0.43) (-0.64, -0.92) ( 3.01, -6.97)
( 3.49, 0.00) ( 2.19, 4.45) ( 1.90, 3.73)

( 0.12, 0.00) ( 2.88, -3.17)
(-2.54, 0.00) :End of matrix A

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix B

10.3 Program Results

F08SNF Example Program Results

Eigenvalues
-5.9990 -2.9936 0.5047 3.9990

Eigenvectors
1 2 3 4

1 1.7405 -0.6626 0.2835 1.2378
0.0000 0.2258 -0.5806 0.0000

2 -0.4136 -0.1164 -0.3769 -0.5608
-0.4689 -0.0178 -0.3194 -0.3729

3 -0.8404 0.9098 -0.3338 -0.6643
-0.2483 -0.0000 -0.0134 -0.1021

4 0.3021 -0.6120 0.6663 0.1589
0.6103 -0.5348 0.0000 0.8366

Estimate of reciprocal condition number for B
2.5E-03

Error estimates for the eigenvalues
3.4E-13 2.0E-13 9.6E-14 2.5E-13

Error estimates for the eigenvectors
5.8E-13 5.3E-13 4.3E-13 4.7E-13
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NAG Library Routine Document

F08SPF (ZHEGVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08SPF (ZHEGVX) computes selected eigenvalues and, optionally, eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are Hermitian and B is also positive definite. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08SPF (ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL, VU,
IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
IWORK, JFAIL, INFO)

&
&

INTEGER ITYPE, N, LDA, LDB, IL, IU, M, LDZ, LWORK,
IWORK(5*N), JFAIL(*), INFO

&

REAL (KIND=nag_wp) VL, VU, ABSTOL, W(N), RWORK(7*N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name zhegvx.

3 Description

F08SPF (ZHEGVX) first performs a Cholesky factorization of the matrix B as B ¼ UHU , when
UPLO ¼ U or B ¼ LLH, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the desired eigenvalues and eigenvectors; the eigenvectors are then backtransformed
to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, Z,
satisfies

ZHAZ ¼ � and ZHBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�H ¼ � and ZHBZ ¼ I;

and for BAz ¼ �z we have

ZHAZ ¼ � and ZHB�1Z ¼ I:
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

4: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

5: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.
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6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the lower triangle (if UPLO ¼ L ) or the upper triangle (if UPLO ¼ U ) of A, including
the diagonal, is overwritten.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08SPF
(ZHEGVX) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix B.

If UPLO ¼ U , the upper triangular part of B must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of B must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the triangular factor U or L from the Cholesky factorization B ¼ UHU or B ¼ LLH.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08SPF
(ZHEGVX) is called.

Constraint: LDB � max 1;Nð Þ.

10: VL – REAL (KIND=nag_wp) Input
11: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

12: IL – INTEGER Input
13: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08SPF

Mark 26 F08SPF.3



14: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing C to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO ¼ 1 to N, indicating that
some eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and
Kahan (1990).

15: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

16: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first M elements contain the selected eigenvalues in ascending order.

17: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ. The eigenvectors are normalized as follows:

if ITYPE ¼ 1 or 2, ZHBZ ¼ I;

if ITYPE ¼ 3, ZHB�1Z ¼ I;
if an eigenvector fails to converge (INFO ¼ 1 to N), then that column of Z contains the
latest approximation to the eigenvector, and the index of the eigenvector is returned in
JFAIL.

If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

18: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08SPF
(ZHEGVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

19: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.
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20: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08SPF
(ZHEGVX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � nbþ 1ð Þ � N, where nb is the optimal
block size for F08FSF (ZHETRD).

Constraint: LWORK � max 1; 2� Nð Þ.

21: RWORKð7� NÞ – REAL (KIND=nag_wp) array Workspace

22: IWORKð5� NÞ – INTEGER array Workspace

23: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO ¼ 1 to N, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

24: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i, F08FPF (ZHEEVX) failed to converge; i eigenvectors failed to converge. Their
indices are stored in array JFAIL.

INFO > N

F07FRF (ZPOTRF) returned an error code; i.e., if INFO ¼ Nþ i, for 1 � i � N, then the leading
minor of order i of B is not positive definite. The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

8 Parallelism and Performance

F08SPF (ZHEGVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F08SPF (ZHEGVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08SBF (DSYGVX).

10 Example

This example finds the eigenvalues in the half-open interval �3; 3ð �, and corresponding eigenvectors, of
the generalized Hermitian eigenproblem Az ¼ �Bz, where

A ¼
�7:36 0:77� 0:43i �0:64� 0:92i 3:01� 6:97i
0:77þ 0:43i 3:49 2:19þ 4:45i 1:90þ 3:73i
�0:64þ 0:92i 2:19� 4:45i 0:12 2:88� 3:17i
3:01þ 6:97i 1:90� 3:73i 2:88þ 3:17i �2:54

0B@
1CA

and

B ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA:

The example program for F08SQF (ZHEGVD) illustrates solving a generalized Hermitian eigenproblem
of the form ABz ¼ �z.

10.1 Program Text

Program f08spfe

! F08SPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf, zhegvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, k, lda, ldb, &

ldz, lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), work(:), z(:,:)
Complex (Kind=nag_wp) :: dummy(1)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:), jfail(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, max, maxloc, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08SPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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Read (nin,*) n
lda = n
ldb = n
ldz = n
m = n
Allocate (a(lda,n),b(ldb,n),z(ldz,m),rwork(7*n),w(n),iwork(5*n), &

jfail(n))

! Read the lower and upper bounds of the interval to be searched.
Read (nin,*) vl, vu

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zhegvx is f08spf
Call zhegvx(1,’Vectors’,’Values in range’,’Upper’,n,a,lda,b,ldb,vl,vu, &

il,iu,abstol,m,w,z,ldz,dummy,lwork,rwork,iwork,jfail,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(dummy(1))))
Allocate (work(lwork))

! Read the upper triangular parts of the matrices A and B

Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*)(b(i,i:n),i=1,n)

! Set the absolute error tolerance for eigenvalues. With abstol
! set to zero, the default value is used instead

abstol = zero

! Solve the generalized Hermitian eigenvalue problem
! A*x = lambda*B*x (itype = 1)

! The NAG name equivalent of zhegvx is f08spf
Call zhegvx(1,’Vectors’,’Values in range’,’Upper’,n,a,lda,b,ldb,vl,vu, &

il,iu,abstol,m,w,z,ldz,work,lwork,rwork,iwork,jfail,info)

If (info>=0 .And. info<=n) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, m

rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(z(k,i))/abs(z(k,i))
z(1:n,i) = z(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else If (info>n .And. info<=2*n) Then

i = info - n
Write (nout,99996) ’The leading minor of order ’, i, &

’ of B is not positive definite’
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Else
Write (nout,99999) ’Failure in ZHEGVX. INFO =’, info

End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))
99996 Format (1X,A,I4,A)

End Program f08spfe

10.2 Program Data

F08SPF Example Program Data

4 :Value of N

-3.0 3.0 :Values of VL and VU

(-7.36, 0.00) ( 0.77, -0.43) (-0.64, -0.92) ( 3.01, -6.97)
( 3.49, 0.00) ( 2.19, 4.45) ( 1.90, 3.73)

( 0.12, 0.00) ( 2.88, -3.17)
(-2.54, 0.00) :End of matrix A

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix B

10.3 Program Results

F08SPF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
-2.9936 0.5047

Selected eigenvectors
1 2

1 -0.6626 0.2835
0.2258 -0.5806

2 -0.1164 -0.3769
-0.0178 -0.3194

3 0.9098 -0.3338
0.0000 -0.0134

4 -0.6120 0.6663
-0.5348 0.0000

F08SPF NAG Library Manual

F08SPF.8 (last) Mark 26



NAG Library Routine Document

F08SQF (ZHEGVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08SQF (ZHEGVD) computes all the eigenvalues and, optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are Hermitian and B is also positive definite. If eigenvectors are desired, it uses a
divide-and-conquer algorithm.

2 Specification

SUBROUTINE F08SQF (ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK,
RWORK, LRWORK, IWORK, LIWORK, INFO)

&

INTEGER ITYPE, N, LDA, LDB, LWORK, LRWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) W(N), RWORK(max(1,LRWORK))
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name zhegvd.

3 Description

F08SQF (ZHEGVD) first performs a Cholesky factorization of the matrix B as B ¼ UHU , when
UPLO ¼ U or B ¼ LLH, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then
backtransformed to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, z,
satisfies

ZHAZ ¼ � and ZHBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�H ¼ � and ZHBZ ¼ I;

and for BAz ¼ �z we have

ZHAZ ¼ � and ZHB�1Z ¼ I:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if JOBZ ¼ V , A contains the matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

if ITYPE ¼ 1 or 2, ZHBZ ¼ I;

if ITYPE ¼ 3, ZHB�1Z ¼ I.
If JOBZ ¼ N , the upper triangle (if UPLO ¼ U ) or the lower triangle (if UPLO ¼ L ) of A,
including the diagonal, is overwritten.
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6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08SQF
(ZHEGVD) is called.

Constraint: LDA � max 1;Nð Þ.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix B.

If UPLO ¼ U , the upper triangular part of B must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of B must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the triangular factor U or L from the Cholesky factorization B ¼ UHU or B ¼ LLH.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08SQF
(ZHEGVD) is called.

Constraint: LDB � max 1;Nð Þ.

9: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

10: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08SQF (ZHEGVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes of
the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK,
RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or LIWORK
is issued.

Suggested value: for optimal performance, LWORK should usually be larger than the minimum,
try increasing by nb� N, where nb is the optimal block size.

Constraints:

if N � 1, LWORK � 1;
if JOBZ ¼ N and N > 1, LWORK � Nþ 1;
if JOBZ ¼ V and N > 1, LWORK � 2� Nþ N2.

12: RWORKðmax 1;LRWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, RWORKð1Þ returns the optimal LRWORK.

13: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
F08SQF (ZHEGVD) is called.

If LRWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes
of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the
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WORK, RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or
LIWORK is issued.

Constraints:

if N � 1, LRWORK � 1;
if JOBZ ¼ N and N > 1, LRWORK � N;
if JOBZ ¼ V and N > 1, LRWORK � 1þ 5� Nþ 2� N2.

14: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the optimal LIWORK.

15: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08SQF (ZHEGVD) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes
of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the
WORK, RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or
LIWORK is issued.

Constraints:

if N � 1, LIWORK � 1;
if JOBZ ¼ N and N > 1, LIWORK � 1;
if JOBZ ¼ V and N > 1, LIWORK � 3þ 5� N.

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i, F08FQF (ZHEEVD) failed to converge; i i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

INFO > N

F07FRF (ZPOTRF) returned an error code; i.e., if INFO ¼ Nþ i, for 1 � i � N, then the leading
minor of order i of B is not positive definite. The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

The example program below illustrates the computation of approximate error bounds.
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8 Parallelism and Performance

F08SQF (ZHEGVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08SQF (ZHEGVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08SCF (DSYGVD).

10 Example

This example finds all the eigenvalues and eigenvectors of the generalized Hermitian eigenproblem
ABz ¼ �z, where

A ¼
�7:36 0:77� 0:43i �0:64� 0:92i 3:01� 6:97i
0:77þ 0:43i 3:49 2:19þ 4:45i 1:90þ 3:73i
�0:64þ 0:92i 2:19� 4:45i 0:12 2:88� 3:17i
3:01þ 6:97i 1:90� 3:73i 2:88þ 3:17i �2:54

0B@
1CA

and

B ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA;

together with an estimate of the condition number of B, and approximate error bounds for the computed
eigenvalues and eigenvectors.

The example program for F08SNF (ZHEGV) illustrates solving a generalized Hermitian eigenproblem
of the form Az ¼ �Bz.

10.1 Program Text

Program f08sqfe

! F08SQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddisna, nag_wp, x02ajf, x04daf, zhegvd, &

zlanhe => f06ucf, ztrcon
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0E+0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Real (Kind=nag_wp) :: anorm, bnorm, eps, rcond, rcondb, &

t1, t2
Integer :: i, ifail, info, k, lda, ldb, liwork, &

lrwork, lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), work(:)
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Complex (Kind=nag_wp) :: cdum(1)
Real (Kind=nag_wp), Allocatable :: eerbnd(:), rcondz(:), rwork(:), &

w(:), zerbnd(:)
Real (Kind=nag_wp) :: rdum(1)
Integer :: idum(1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, max, maxloc, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08SQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,n),eerbnd(n),rcondz(n),w(n),zerbnd(n))

! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1
lrwork = -1

! The NAG name equivalent of zhegvd is f08sqf
Call zhegvd(2,’Vectors’,’Upper’,n,a,lda,b,ldb,w,cdum,lwork,rdum,lrwork, &

idum,liwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+2+n)*n,nint(real(cdum(1))))
lrwork = max(1+(5+2*n)*n,nint(rdum(1)))
liwork = max(3+5*n,idum(1))
Allocate (work(lwork),rwork(lrwork),iwork(liwork))

! Read the upper triangular parts of the matrices A and B

Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*)(b(i,i:n),i=1,n)

! Compute the one-norms of the symmetric matrices A and B

! f06ucf is the NAG name equivalent of the LAPACK auxiliary zlanhe
anorm = zlanhe(’One norm’,’Upper’,n,a,lda,rwork)
bnorm = zlanhe(’One norm’,’Upper’,n,b,ldb,rwork)

! Solve the generalized Hermitian eigenvalue problem
! A*B*x = lambda*x (itype = 2)
! The NAG name equivalent of zhegvd is f08sqf

Call zhegvd(2,’Vectors’,’Upper’,n,a,lda,b,ldb,w,work,lwork,rwork,lrwork, &
iwork,liwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, n

rwork(1:n) = abs(a(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(a(k,i))/abs(a(k,i))
a(1:n,i) = a(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,n,a,lda,’Eigenvectors’,ifail)

! Call ZTRCON (F07TUF) to estimate the reciprocal condition
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! number of the Cholesky factor of B. Note that:
! cond(B) = 1/rcond**2

Call ztrcon(’One norm’,’Upper’,’Non-unit’,n,b,ldb,rcond,work,rwork, &
info)

! Print the reciprocal condition number of B

rcondb = rcond**2
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for B’
Write (nout,99998) rcondb
Flush (nout)

! Get the machine precision, eps, and if rcondb is not less
! than eps**2, compute error estimates for the eigenvalues and
! eigenvectors

eps = x02ajf()
If (rcond>=eps) Then

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the eigenvectors of (A*B - lambda*I)

Call ddisna(’Eigenvectors’,n,n,w,rcondz,info)

! Compute the error estimates for the eigenvalues and
! eigenvectors

t1 = one/rcond
t2 = anorm*bnorm
Do i = 1, n

eerbnd(i) = (t2+abs(w(i))/rcondb)
zerbnd(i) = t1*(t2/rcondz(i)+t1)

End Do

! Print the approximate error bounds for the eigenvalues
! and vectors

Write (nout,*)
Write (nout,*) ’Error estimates (relative to machine precision)’
Write (nout,*) ’for the eigenvalues:’
Write (nout,99998) eerbnd(1:n)
Write (nout,*)
Write (nout,*) ’for the eigenvectors:’
Write (nout,99998) zerbnd(1:n)

Else
Write (nout,*)
Write (nout,*) ’B is very ill-conditioned, error ’, &

’estimates have not been computed’
End If

Else If (info>n) Then
i = info - n
Write (nout,99997) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99996) ’Failure in ZHEGVD. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4,A)
99996 Format (1X,A,I4)

End Program f08sqfe
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10.2 Program Data

F08SQF Example Program Data

4 :Value of N

(-7.36, 0.00) ( 0.77, -0.43) (-0.64, -0.92) ( 3.01, -6.97)
( 3.49, 0.00) ( 2.19, 4.45) ( 1.90, 3.73)

( 0.12, 0.00) ( 2.88, -3.17)
(-2.54, 0.00) :End of matrix A

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix B

10.3 Program Results

F08SQF Example Program Results

Eigenvalues
-61.7321 -6.6195 0.0725 43.1883

Eigenvectors
1 2 3 4

1 0.3903 -0.1560 2.2909 -0.1943
0.0000 -0.0404 0.0000 -0.0690

2 -0.1814 -0.1552 -0.5042 0.3884
0.0114 -0.3651 -0.7120 0.0000

3 0.0438 0.5364 -1.2701 0.0657
0.0338 0.0000 -0.4547 -0.2095

4 -0.2221 -0.1298 0.5706 0.2924
-0.2272 -0.1880 1.3132 -0.0675

Estimate of reciprocal condition number for B
2.5E-03

Error estimates (relative to machine precision)
for the eigenvalues:

2.4E+04 2.8E+03 2.3E+02 1.7E+04

for the eigenvectors:
4.7E+02 1.0E+03 1.0E+03 4.9E+02
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NAG Library Routine Document

F08SSF (ZHEGST)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08SSF (ZHEGST) reduces a complex Hermitian-definite generalized eigenproblem Az ¼ �Bz,
ABz ¼ �z or BAz ¼ �z to the standard form Cy ¼ �y, where A is a complex Hermitian matrix and
B has been factorized by F07FRF (ZPOTRF).

2 Specification

SUBROUTINE F08SSF (ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

INTEGER ITYPE, N, LDA, LDB, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhegst.

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem Az ¼ �Bz, ABz ¼ �z or
BAz ¼ �z to the standard form Cy ¼ �y, F08SSF (ZHEGST) must be preceded by a call to F07FRF
(ZPOTRF) which computes the Cholesky factorization of B; B must be positive definite.

The different problem types are specified by the argument ITYPE, as indicated in the table below. The
table shows how C is computed by the routine, and also how the eigenvectors z of the original problem
can be recovered from the eigenvectors of the standard form.

ITYPE Problem UPLO B C z

1 Az ¼ �Bz `U'
`L'

UHU
LLH

U�HAU�1

L�1AL�H
U�1y
L�Hy

2 ABz ¼ �z `U'
`L'

UHU
LLH

UAUH

LHAL
U�1y
L�Hy

3 BAz ¼ �z `U'
`L'

UHU
LLH

UAUH

LHAL
UHy
Ly

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: indicates how the standard form is computed.

ITYPE ¼ 1

if UPLO ¼ U , C ¼ U�HAU�1;

if UPLO ¼ L , C ¼ L�1AL�H.
ITYPE ¼ 2 or 3

if UPLO ¼ U , C ¼ UAUH;

if UPLO ¼ L , C ¼ LHAL.

Constraint: ITYPE ¼ 1, 2 or 3.

2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored and how B has been
factorized.

UPLO ¼ U
The upper triangular part of A is stored and B ¼ UHU .

UPLO ¼ L
The lower triangular part of A is stored and B ¼ LLH.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the upper or lower triangle of A is overwritten by the corresponding upper or lower
triangle of C as specified by ITYPE and UPLO.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08SSF
(ZHEGST) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the Cholesky factor of B as specified by UPLO and returned by F07FRF (ZPOTRF).
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7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08SSF
(ZHEGST) is called.

Constraint: LDB � max 1;Nð Þ.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B�1

(if ITYPE ¼ 1) or B (if ITYPE ¼ 2 or 3). When F08SSF (ZHEGST) is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of
accuracy if B is ill-conditioned with respect to inversion. See the document for F08SNF (ZHEGV) for
further details.

8 Parallelism and Performance

F08SSF (ZHEGST) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 4n3.

The real analogue of this routine is F08SEF (DSYGST).

10 Example

This example computes all the eigenvalues of Az ¼ �Bz, where

A ¼
�7:36þ 0:00i 0:77� 0:43i �0:64� 0:92i 3:01� 6:97i
0:77þ 0:43i 3:49þ 0:00i 2:19þ 4:45i 1:90þ 3:73i
�0:64þ 0:92i 2:19� 4:45i 0:12þ 0:00i 2:88� 3:17i
3:01þ 6:97i 1:90� 3:73i 2:88þ 3:17i �2:54þ 0:00i

0B@
1CA

and

B ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA:

Here B is Hermitian positive definite and must first be factorized by F07FRF (ZPOTRF). The program
calls F08SSF (ZHEGST) to reduce the problem to the standard form Cy ¼ �y; then F08FSF (ZHETRD)
to reduce C to tridiagonal form, and F08JFF (DSTERF) to compute the eigenvalues.
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10.1 Program Text

Program f08ssfe

! F08SSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsterf, nag_wp, zhegst, zhetrd, zpotrf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, lda, ldb, lwork, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:)

! .. Executable Statements ..
Write (nout,*) ’F08SSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
lwork = 64*n
Allocate (a(lda,n),b(ldb,n),tau(n),work(lwork),d(n),e(n-1))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*)(b(i,i:n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)(a(i,1:i),i=1,n)
Read (nin,*)(b(i,1:i),i=1,n)

End If

! Compute the Cholesky factorization of B
! The NAG name equivalent of zpotrf is f07frf

Call zpotrf(uplo,n,b,ldb,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’B is not positive definite.’
Else

! Reduce the problem to standard form C*y = lambda*y, storing
! the result in A
! The NAG name equivalent of zhegst is f08ssf

Call zhegst(1,uplo,n,a,lda,b,ldb,info)

! Reduce C to tridiagonal form T = (Q**H)*C*Q
! The NAG name equivalent of zhetrd is f08fsf

Call zhetrd(uplo,n,a,lda,d,e,tau,work,lwork,info)

! Calculate the eigenvalues of T (same as C)
! The NAG name equivalent of dsterf is f08jff

Call dsterf(n,d,e,info)

If (info>0) Then
Write (nout,*) ’Failure to converge.’

Else

! Print eigenvalues

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)
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End If
End If

99999 Format (3X,(9F8.4))
End Program f08ssfe

10.2 Program Data

F08SSF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-7.36, 0.00)
( 0.77, 0.43) ( 3.49, 0.00)
(-0.64, 0.92) ( 2.19,-4.45) ( 0.12, 0.00)
( 3.01, 6.97) ( 1.90,-3.73) ( 2.88, 3.17) (-2.54, 0.00) :End of matrix A
( 3.23, 0.00)
( 1.51, 1.92) ( 3.58, 0.00)
( 1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
( 0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix B

10.3 Program Results

F08SSF Example Program Results

Eigenvalues
-5.9990 -2.9936 0.5047 3.9990
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NAG Library Routine Document

F08TAF (DSPGV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08TAF (DSPGV) computes all the eigenvalues and, optionally, all the eigenvectors of a real
generalized symmetric-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are symmetric, stored in packed format, and B is also positive definite.

2 Specification

SUBROUTINE F08TAF (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, INFO)

INTEGER ITYPE, N, LDZ, INFO
REAL (KIND=nag_wp) AP(*), BP(*), W(N), Z(LDZ,*), WORK(3*N)
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name dspgv.

3 Description

F08TAF (DSPGV) first performs a Cholesky factorization of the matrix B as B ¼ UTU , when
UPLO ¼ U or B ¼ LLT, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then
backtransformed to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, Z,
satisfies

ZTAZ ¼ � and ZTBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�T ¼ � and ZTBZ ¼ I;

and for BAz ¼ �z we have

ZTAZ ¼ � and ZTB�1Z ¼ I:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

5: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the contents of AP are destroyed.

6: BPð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array BP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n symmetric matrix B, packed by columns.

More precisely,
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if UPLO ¼ U , the upper triangle of B must be stored with element Bij in
BPðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of B must be stored with element Bij in
BPðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the triangular factor U or L from the Cholesky factorization B ¼ UTU or B ¼ LLT, in
the same storage format as B.

7: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

8: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

if ITYPE ¼ 1 or 2, ZTBZ ¼ I;

if ITYPE ¼ 3, ZTB�1Z ¼ I.
If JOBZ ¼ N , Z is not referenced.

9: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08TAF
(DSPGV) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

10: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F07GDF (DPPTRF) or F08GAF (DSPEV) returned an error code:

� N if INFO ¼ i, F08GAF (DSPEV) failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero;

> N if INFO ¼ Nþ i, for 1 � i � N, then the leading minor of order i of B is not positive
definite. The factorization of B could not be completed and no eigenvalues or eigenvectors
were computed.
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7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

The example program below illustrates the computation of approximate error bounds.

8 Parallelism and Performance

F08TAF (DSPGV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08TAF (DSPGV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08TNF (ZHPGV).

10 Example

This example finds all the eigenvalues and eigenvectors of the generalized symmetric eigenproblem
Az ¼ �Bz, where

A ¼
0:24 0:39 0:42 �0:16
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
�0:16 0:63 0:48 �0:03

0B@
1CA and B ¼

4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:09
0:56 �0:83 0:76 0:34
�0:10 1:09 0:34 1:18

0B@
1CA;

together with an estimate of the condition number of B, and approximate error bounds for the computed
eigenvalues and eigenvectors.

The example program for F08TCF (DSPGVD) illustrates solving a generalized symmetric eigenproblem
of the form ABz ¼ �z.

10.1 Program Text

Program f08tafe

! F08TAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dspgv, dtpcon, f06rdf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, bnorm, eps, rcond, rcondb, &

t1, t2
Integer :: i, info, j, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), bp(:), eerbnd(:), w(:), &
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work(:)
Real (Kind=nag_wp) :: dummy(1,1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F08TAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap((n*(n+1))/2),bp((n*(n+1))/2),eerbnd(n),w(n),work(3*n),iwork &
(n))

! Read the upper or lower triangular parts of the matrices A and
! B from data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)
Read (nin,*)((bp(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)
Read (nin,*)((bp(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Compute the one-norms of the symmetric matrices A and B

anorm = f06rdf(’One norm’,uplo,n,ap,work)
bnorm = f06rdf(’One norm’,uplo,n,bp,work)

! Solve the generalized symmetric eigenvalue problem
! A*x = lambda*B*x (itype = 1)

! The NAG name equivalent of dspgv is f08taf
Call dspgv(1,’No vectors’,uplo,n,ap,bp,w,dummy,1,work,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

! Call DTPCON (F07UGF) to estimate the reciprocal condition
! number of the Cholesky factor of B. Note that:
! cond(B) = 1/rcond**2

Call dtpcon(’One norm’,uplo,’Non-unit’,n,bp,rcond,work,iwork,info)

! Print the reciprocal condition number of B

rcondb = rcond**2
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for B’
Write (nout,99998) rcondb

! Get the machine precision, eps, and if rcondb is not less
! than eps**2, compute error estimates for the eigenvalues

eps = x02ajf()
If (rcond>=eps) Then

t1 = eps/rcondb
t2 = anorm/bnorm
Do i = 1, n

eerbnd(i) = t1*(t2+abs(w(i)))
End Do

! Print the approximate error bounds for the eigenvalues

Write (nout,*)
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Write (nout,*) ’Error estimates for the eigenvalues’
Write (nout,99998) eerbnd(1:n)

Else
Write (nout,*)
Write (nout,*) ’B is very ill-conditioned, error ’, &

’estimates have not been computed’
End If

Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout,99997) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99996) ’Failure in DSPGV. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4,A)
99996 Format (1X,A,I4)

End Program f08tafe

10.2 Program Data

F08TAF Example Program Data

4 :Value of N

0.24 0.39 0.42 -0.16
-0.11 0.79 0.63

-0.25 0.48
-0.03 :End of matrix A

4.16 -3.12 0.56 -0.10
5.03 -0.83 1.09

0.76 0.34
1.18 :End of matrix B

10.3 Program Results

F08TAF Example Program Results

Eigenvalues
-2.2254 -0.4548 0.1001 1.1270

Estimate of reciprocal condition number for B
5.8E-03

Error estimates for the eigenvalues
4.7E-14 1.2E-14 5.6E-15 2.5E-14
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NAG Library Routine Document

F08TBF (DSPGVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08TBF (DSPGVX) computes selected eigenvalues and, optionally, eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are symmetric, stored in packed storage, and B is also positive definite. Eigenvalues
and eigenvectors can be selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

2 Specification

SUBROUTINE F08TBF (ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL, IU,
ABSTOL, M, W, Z, LDZ, WORK, IWORK, JFAIL, INFO)

&

INTEGER ITYPE, N, IL, IU, M, LDZ, IWORK(5*N), JFAIL(*), INFO
REAL (KIND=nag_wp) AP(*), BP(*), VL, VU, ABSTOL, W(N), Z(LDZ,*),

WORK(8*N)
&

CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name dspgvx.

3 Description

F08TBF (DSPGVX) first performs a Cholesky factorization of the matrix B as B ¼ UTU , when
UPLO ¼ U or B ¼ LLT, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the desired eigenvalues and eigenvectors; the eigenvectors are then backtransformed
to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, Z,
satisfies

ZTAZ ¼ � and ZTBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�T ¼ � and ZTBZ ¼ I;

and for BAz ¼ �z we have

ZTAZ ¼ � and ZTB�1Z ¼ I:
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

4: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

5: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.
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6: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the contents of AP are destroyed.

7: BPð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array BP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n symmetric matrix B, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of B must be stored with element Bij in
BPðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of B must be stored with element Bij in
BPðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the triangular factor U or L from the Cholesky factorization B ¼ UTU or B ¼ LLT, in
the same storage format as B.

8: VL – REAL (KIND=nag_wp) Input
9: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

10: IL – INTEGER Input
11: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

12: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing C to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO ¼ 1 to N, indicating that
some eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and
Kahan (1990).
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13: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

14: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first M elements contain the selected eigenvalues in ascending order.

15: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ. The eigenvectors are normalized as follows:

if ITYPE ¼ 1 or 2, ZTBZ ¼ I;

if ITYPE ¼ 3, ZTB�1Z ¼ I;
if an eigenvector fails to converge (INFO ¼ 1 to N), then that column of Z contains the
latest approximation to the eigenvector, and the index of the eigenvector is returned in
JFAIL.

If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

16: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08TBF
(DSPGVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

17: WORKð8� NÞ – REAL (KIND=nag_wp) array Workspace

18: IWORKð5� NÞ – INTEGER array Workspace

19: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO ¼ 1 to N, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i, F08GBF (DSPEVX) failed to converge; i eigenvectors failed to converge. Their
indices are stored in array JFAIL.

INFO > N

F07GDF (DPPTRF) returned an error code; i.e., if INFO ¼ Nþ i, for 1 � i � N, then the leading
minor of order i of B is not positive definite. The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

8 Parallelism and Performance

F08TBF (DSPGVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08TBF (DSPGVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08TPF (ZHPGVX).

10 Example

This example finds the eigenvalues in the half-open interval �1:0; 1:0ð �, and corresponding
eigenvectors, of the generalized symmetric eigenproblem Az ¼ �Bz, where

A ¼
0:24 0:39 0:42 �0:16
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
�0:16 0:63 0:48 �0:03

0B@
1CA and B ¼

4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:09
0:56 �0:83 0:76 0:34
�0:10 1:09 0:34 1:18

0B@
1CA:

The example program for F08TCF (DSPGVD) illustrates solving a generalized symmetric eigenproblem
of the form ABz ¼ �z.
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10.1 Program Text

Program f08tbfe

! F08TBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, dspgvx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, r, vl, vu
Integer :: i, ifail, il, info, iu, j, k, ldz, &

m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ap(:), bp(:), w(:), work(:), z(:,:)
Integer, Allocatable :: iwork(:), jfail(:)

! .. Executable Statements ..
Write (nout,*) ’F08TBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
m = n
Allocate (ap((n*(n+1))/2),bp((n*(n+1))/2),w(n),work(8*n),z(ldz,m),iwork( &

5*n),jfail(n))

! Read the lower and upper bounds of the interval to be searched,
! and read the upper or lower triangular parts of the matrices A
! and B from data file

Read (nin,*) vl, vu
If (uplo==’U’) Then

Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)
Read (nin,*)((bp(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)
Read (nin,*)((bp(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Set the absolute error tolerance for eigenvalues. With abstol
! set to zero, the default value is used instead

abstol = zero

! Solve the generalized symmetric eigenvalue problem
! A*x = lambda*B*x (itype = 1)

! The NAG name equivalent of dspgvx is f08tbf
Call dspgvx(1,’Vectors’,’Values in range’,uplo,n,ap,bp,vl,vu,il,iu, &

abstol,m,w,z,ldz,work,iwork,jfail,info)

If (info>=0 .And. info<=n) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! Normalize the eigenvectors, largest positive
Do i = 1, m
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Call blas_damax_val(n,z(1,i),1,k,r)
If (z(k,i)<zero) Then

z(1:n,i) = -z(1:n,i)
End If

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else If (info>n .And. info<=2*n) Then

i = info - n
Write (nout,99996) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99999) ’Failure in DSPGVX. INFO =’, info
End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))
99996 Format (1X,A,I4,A)

End Program f08tbfe

10.2 Program Data

F08TBF Example Program Data

4 :Value of N

-1.0 1.0 :Values of VL and VU

0.24 0.39 0.42 -0.16
-0.11 0.79 0.63

-0.25 0.48
-0.03 :End of matrix A

4.16 -3.12 0.56 -0.10
5.03 -0.83 1.09

0.76 0.34
1.18 :End of matrix B

10.3 Program Results

F08TBF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
-0.4548 0.1001

Selected eigenvectors
1 2

1 -0.3080 -0.4469
2 -0.5329 -0.0371
3 0.3496 0.0505
4 0.6211 0.4743
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NAG Library Routine Document

F08TCF (DSPGVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08TCF (DSPGVD) computes all the eigenvalues and, optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are symmetric, stored in packed format, and B is also positive definite. If eigenvectors
are desired, it uses a divide-and-conquer algorithm.

2 Specification

SUBROUTINE F08TCF (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, LWORK,
IWORK, LIWORK, INFO)

&

INTEGER ITYPE, N, LDZ, LWORK, IWORK(max(1,LIWORK)), LIWORK,
INFO

&

REAL (KIND=nag_wp) AP(*), BP(*), W(N), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name dspgvd.

3 Description

F08TCF (DSPGVD) first performs a Cholesky factorization of the matrix B as B ¼ UTU , when
UPLO ¼ U or B ¼ LLT, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then
backtransformed to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, z,
satisfies

ZTAZ ¼ � and ZTBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�T ¼ � and ZTBZ ¼ I;

and for BAz ¼ �z we have

ZTAZ ¼ � and ZTB�1Z ¼ I:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

5: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the contents of AP are destroyed.

6: BPð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array BP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n symmetric matrix B, packed by columns.

More precisely,
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if UPLO ¼ U , the upper triangle of B must be stored with element Bij in
BPðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of B must be stored with element Bij in
BPðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the triangular factor U or L from the Cholesky factorization B ¼ UTU or B ¼ LLT, in
the same storage format as B.

7: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

8: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

if ITYPE ¼ 1 or 2, ZTBZ ¼ I;

if ITYPE ¼ 3, ZTB�1Z ¼ I.
If JOBZ ¼ N , Z is not referenced.

9: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08TCF
(DSPGVD) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

10: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08TCF (DSPGVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraints:

if N � 1, LWORK � 1;
if JOBZ ¼ N and N > 1, LWORK � 2� N;
if JOBZ ¼ V and N > 1, LWORK � 1þ 6� Nþ 2� N2.

12: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum LIWORK.

13: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08TCF (DSPGVD) is called.
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If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraints:

if JOBZ ¼ N or N � 1, LIWORK � 1;
if JOBZ ¼ V and N > 1, LIWORK � 3þ 5� N.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F07GDF (DPPTRF) or F08GCF (DSPEVD) returned an error code:

� N if INFO ¼ i, F08GCF (DSPEVD) failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero;

> N if INFO ¼ Nþ i, for 1 � i � N, then the leading minor of order i of B is not positive
definite. The factorization of B could not be completed and no eigenvalues or eigenvectors
were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

The example program below illustrates the computation of approximate error bounds.

8 Parallelism and Performance

F08TCF (DSPGVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08TCF (DSPGVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08TQF (ZHPGVD).
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10 Example

This example finds all the eigenvalues and eigenvectors of the generalized symmetric eigenproblem
ABz ¼ �z, where

A ¼
0:24 0:39 0:42 �0:16
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
�0:16 0:63 0:48 �0:03

0B@
1CA and B ¼

4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:09
0:56 �0:83 0:76 0:34
�0:10 1:09 0:34 1:18

0B@
1CA;

together with an estimate of the condition number of B, and approximate error bounds for the computed
eigenvalues and eigenvectors.

The example program for F08TAF (DSPGV) illustrates solving a generalized symmetric eigenproblem
of the form Az ¼ �Bz.

10.1 Program Text

Program f08tcfe

! F08TCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dspgvd, dtpcon, f06rdf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, bnorm, eps, rcond, rcondb, t1
Integer :: aplen, i, info, j, liwork, lwork, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), bp(:), eerbnd(:), w(:), &

work(:)
Real (Kind=nag_wp) :: dummy(1,1)
Integer :: idum(1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max, nint

! .. Executable Statements ..
Write (nout,*) ’F08TCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
aplen = (n*(n+1))/2
Allocate (ap(aplen),bp(aplen),eerbnd(n),w(n))

! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1

! The NAG name equivalent of dspgvd is f08tcf
Call dspgvd(2,’No vectors’,uplo,n,ap,bp,w,dummy,n,dummy,lwork,idum, &

liwork,info)

! Make sure that there is at least minimum workspace.
lwork = max(3*n,nint(dummy(1,1)))
liwork = max(n,idum(1))
Allocate (work(lwork),iwork(liwork))

! Read the upper or lower triangular parts of the matrices A and
! B from data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)
Read (nin,*)((bp(i+(j*(j-1))/2),j=i,n),i=1,n)
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Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)
Read (nin,*)((bp(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Compute the one-norms of the symmetric matrices A and B

anorm = f06rdf(’One norm’,uplo,n,ap,work)
bnorm = f06rdf(’One norm’,uplo,n,bp,work)

! Solve the generalized symmetric eigenvalue problem
! A*B*x = lambda*x (itype = 2)

! In the following call the 9th argument is set to n rather
! than 1 to avoid an incorrect error message in some vendor
! versions of LAPACK.
! The NAG name equivalent of dspgvd is f08tcf

Call dspgvd(2,’No vectors’,uplo,n,ap,bp,w,dummy,n,work,lwork,iwork, &
liwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

! Call DTPCON (F07UGF) to estimate the reciprocal condition
! number of the Cholesky factor of B. Note that:
! cond(B) = 1/rcond**2. DTPCON requires WORK and IWORK to be
! of length at least 3*n and n respectively

Call dtpcon(’One norm’,uplo,’Non-unit’,n,bp,rcond,work,iwork,info)

! Print the reciprocal condition number of B

rcondb = rcond**2
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for B’
Write (nout,99998) rcondb

! Get the machine precision, eps, and if rcondb is not less
! than eps**2, compute error estimates for the eigenvalues

eps = x02ajf()
If (rcond>=eps) Then

t1 = anorm*bnorm
Do i = 1, n

eerbnd(i) = eps*(t1+abs(w(i))/rcondb)
End Do

! Print the approximate error bounds for the eigenvalues

Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvalues’
Write (nout,99998) eerbnd(1:n)

Else
Write (nout,*)
Write (nout,*) ’B is very ill-conditioned, error ’, &

’estimates have not been computed’
End If

Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout,99997) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99996) ’Failure in DSPGVD. INFO =’, info
End If
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99999 Format (3X,(6F11.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4,A)
99996 Format (1X,A,I4)

End Program f08tcfe

10.2 Program Data

F08TCF Example Program Data

4 :Value of N

0.24 0.39 0.42 -0.16
-0.11 0.79 0.63

-0.25 0.48
-0.03 :End of matrix A

4.16 -3.12 0.56 -0.10
5.03 -0.83 1.09

0.76 0.34
1.18 :End of matrix B

10.3 Program Results

F08TCF Example Program Results

Eigenvalues
-3.5411 -0.3347 0.2983 2.2544

Estimate of reciprocal condition number for B
5.8E-03

Error estimates for the eigenvalues
7.0E-14 8.6E-15 7.9E-15 4.6E-14
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NAG Library Routine Document

F08TEF (DSPGST)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08TEF (DSPGST) reduces a real symmetric-definite generalized eigenproblem Az ¼ �Bz, ABz ¼ �z
or BAz ¼ �z to the standard form Cy ¼ �y, where A is a real symmetric matrix and B has been
factorized by F07GDF (DPPTRF), using packed storage.

2 Specification

SUBROUTINE F08TEF (ITYPE, UPLO, N, AP, BP, INFO)

INTEGER ITYPE, N, INFO
REAL (KIND=nag_wp) AP(*), BP(*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dspgst.

3 Description

To reduce the real symmetric-definite generalized eigenproblem Az ¼ �Bz, ABz ¼ �z or BAz ¼ �z to
the standard form Cy ¼ �y using packed storage, F08TEF (DSPGST) must be preceded by a call to
F07GDF (DPPTRF) which computes the Cholesky factorization of B; B must be positive definite.

The different problem types are specified by the argument ITYPE, as indicated in the table below. The
table shows how C is computed by the routine, and also how the eigenvectors z of the original problem
can be recovered from the eigenvectors of the standard form.

ITYPE Problem UPLO B C z

1 Az ¼ �Bz `U'
`L'

UTU
LLT

U�TAU�1

L�1AL�T
U�1y
L�Ty

2 ABz ¼ �z `U'
`L'

UTU
LLT

UAUT

LTAL
U�1y
L�Ty

3 BAz ¼ �z `U'
`L'

UTU
LLT

UAUT

LTAL
UTy
Ly

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: indicates how the standard form is computed.

ITYPE ¼ 1

if UPLO ¼ U , C ¼ U�TAU�1;

if UPLO ¼ L , C ¼ L�1AL�T.
ITYPE ¼ 2 or 3

if UPLO ¼ U , C ¼ UAUT;

if UPLO ¼ L , C ¼ LTAL.

Constraint: ITYPE ¼ 1, 2 or 3.

2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored and how B has been
factorized.

UPLO ¼ U
The upper triangular part of A is stored and B ¼ UTU .

UPLO ¼ L
The lower triangular part of A is stored and B ¼ LLT.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: APð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n symmetric matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the upper or lower triangle of AP is overwritten by the corresponding upper or lower
triangle of C as specified by ITYPE and UPLO, using the same packed storage format as
described above.

5: BPð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array BP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the Cholesky factor of B as specified by UPLO and returned by F07GDF (DPPTRF).

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B�1

if (ITYPE ¼ 1) or B (if ITYPE ¼ 2 or 3). When F08TEF (DSPGST) is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of
accuracy if B is ill-conditioned with respect to inversion. See the document for F08SAF (DSYGV) for
further details.

8 Parallelism and Performance

F08TEF (DSPGST) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately n3.

The complex analogue of this routine is F08TSF (ZHPGST).

10 Example

This example computes all the eigenvalues of Az ¼ �Bz, where

A ¼
0:24 0:39 0:42 �0:16
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
�0:16 0:63 0:48 �0:03

0B@
1CA and B ¼

4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:09
0:56 �0:83 0:76 0:34
�0:10 1:09 0:34 1:18

0B@
1CA;

using packed storage. Here B is symmetric positive definite and must first be factorized by F07GDF
(DPPTRF). The program calls F08TEF (DSPGST) to reduce the problem to the standard form Cy ¼ �y;
then F08GEF (DSPTRD) to reduce C to tridiagonal form, and F08JFF (DSTERF) to compute the
eigenvalues.

10.1 Program Text

Program f08tefe

! F08TEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpptrf, dspgst, dsptrd, dsterf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, j, n
Character (1) :: uplo
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), bp(:), d(:), e(:), tau(:)

! .. Executable Statements ..
Write (nout,*) ’F08TEF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),bp(n*(n+1)/2),d(n),e(n-1),tau(n))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Read (nin,*)((bp(i+j*(j-1)/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
Read (nin,*)((bp(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)

End If

! Compute the Cholesky factorization of B
! The NAG name equivalent of dpptrf is f07gdf

Call dpptrf(uplo,n,bp,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’B is not positive definite.’
Else

! Reduce the problem to standard form C*y = lambda*y, storing
! the result in A
! The NAG name equivalent of dspgst is f08tef

Call dspgst(1,uplo,n,ap,bp,info)

! Reduce C to tridiagonal form T = (Q**T)*C*Q
! The NAG name equivalent of dsptrd is f08gef

Call dsptrd(uplo,n,ap,d,e,tau,info)

! Calculate the eigenvalues of T (same as C)
! The NAG name equivalent of dsterf is f08jff

Call dsterf(n,d,e,info)

If (info>0) Then
Write (nout,*) ’Failure to converge.’

Else

! Print eigenvalues

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)

End If
End If

99999 Format (3X,(9F8.4))
End Program f08tefe

10.2 Program Data

F08TEF Example Program Data
4 :Value of N
’L’ :Value of UPLO
0.24
0.39 -0.11
0.42 0.79 -0.25

-0.16 0.63 0.48 -0.03 :End of matrix A
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.09 0.34 1.18 :End of matrix B
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10.3 Program Results

F08TEF Example Program Results

Eigenvalues
-2.2254 -0.4548 0.1001 1.1270
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NAG Library Routine Document

F08TNF (ZHPGV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08TNF (ZHPGV) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are Hermitian, stored in packed format, and B is also positive definite.

2 Specification

SUBROUTINE F08TNF (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, RWORK,
INFO)

&

INTEGER ITYPE, N, LDZ, INFO
REAL (KIND=nag_wp) W(N), RWORK(3*N-2)
COMPLEX (KIND=nag_wp) AP(*), BP(*), Z(LDZ,*), WORK(2*N-1)
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name zhpgv.

3 Description

F08TNF (ZHPGV) first performs a Cholesky factorization of the matrix B as B ¼ UHU , when
UPLO ¼ U or B ¼ LLH, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then
backtransformed to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, Z,
satisfies

ZHAZ ¼ � and ZHBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�H ¼ � and ZHBZ ¼ I;

and for BAz ¼ �z we have

ZHAZ ¼ � and ZHB�1Z ¼ I:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

5: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the contents of AP are destroyed.

6: BPð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array BP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n Hermitian matrix B, packed by columns.

More precisely,
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if UPLO ¼ U , the upper triangle of B must be stored with element Bij in
BPðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of B must be stored with element Bij in
BPðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the triangular factor U or L from the Cholesky factorization B ¼ UHU or B ¼ LLH, in
the same storage format as B.

7: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

8: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

if ITYPE ¼ 1 or 2, ZHBZ ¼ I;

if ITYPE ¼ 3, ZHB�1Z ¼ I.
If JOBZ ¼ N , Z is not referenced.

9: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08TNF
(ZHPGV) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

10: WORKð2� N� 1Þ – COMPLEX (KIND=nag_wp) array Workspace

11: RWORKð3� N� 2Þ – REAL (KIND=nag_wp) array Workspace

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F07GRF (ZPPTRF) or F08GNF (ZHPEV) returned an error code:

� N if INFO ¼ i, F08GNF (ZHPEV) failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero;

> N if INFO ¼ Nþ i, for 1 � i � N, then the leading minor of order i of B is not positive
definite. The factorization of B could not be completed and no eigenvalues or eigenvectors
were computed.
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7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

The example program below illustrates the computation of approximate error bounds.

8 Parallelism and Performance

F08TNF (ZHPGV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08TNF (ZHPGV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08TAF (DSPGV).

10 Example

This example finds all the eigenvalues and eigenvectors of the generalized Hermitian eigenproblem
Az ¼ �Bz, where

A ¼
�7:36 0:77� 0:43i �0:64� 0:92i 3:01� 6:97i
0:77þ 0:43i 3:49 2:19þ 4:45i 1:90þ 3:73i
�0:64þ 0:92i 2:19� 4:45i 0:12 2:88� 3:17i
3:01þ 6:97i 1:90� 3:73i 2:88þ 3:17i �2:54

0B@
1CA

and

B ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA;

together with an estimate of the condition number of B, and approximate error bounds for the computed
eigenvalues and eigenvectors.

The example program for F08TQF (ZHPGVD) illustrates solving a generalized symmetric
eigenproblem of the form ABz ¼ �z.

10.1 Program Text

Program f08tnfe

! F08TNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06udf, nag_wp, x02ajf, zhpgv, ztpcon

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, bnorm, eps, rcond, rcondb, &

t1, t2
Integer :: i, info, j, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), bp(:), work(:)
Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: eerbnd(:), rwork(:), w(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F08TNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap((n*(n+1))/2),bp((n*(n+1))/2),work(2*n),eerbnd(n),rwork(3*n- &
2),w(n))

! Read the upper or lower triangular parts of the matrices A and
! B from data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)
Read (nin,*)((bp(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)
Read (nin,*)((bp(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Compute the one-norms of the symmetric matrices A and B

anorm = f06udf(’One norm’,uplo,n,ap,rwork)
bnorm = f06udf(’One norm’,uplo,n,bp,rwork)

! Solve the generalized symmetric eigenvalue problem
! A*x = lambda*B*x (ITYPE = 1)

! The NAG name equivalent of zhpgv is f08tnf
Call zhpgv(1,’No vectors’,uplo,n,ap,bp,w,dummy,1,work,rwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

! Call ZTPCON (F07UUF) to estimate the reciprocal condition
! number of the Cholesky factor of B. Note that:
! cond(B) = 1/RCOND**2

Call ztpcon(’One norm’,uplo,’Non-unit’,n,bp,rcond,work,rwork,info)

! Print the reciprocal condition number of B

rcondb = rcond**2
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for B’
Write (nout,99998) rcondb

! Get the machine precision, EPS, and if RCONDB is not less
! than EPS**2, compute error estimates for the eigenvalues

eps = x02ajf()
If (rcond>=eps) Then

t1 = eps/rcondb
t2 = anorm/bnorm
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Do i = 1, n
eerbnd(i) = t1*(t2+abs(w(i)))

End Do

! Print the approximate error bounds for the eigenvalues

Write (nout,*)
Write (nout,*) ’Error estimates for the eigenvalues’
Write (nout,99998) eerbnd(1:n)

Else
Write (nout,*)
Write (nout,*) ’B is very ill-conditioned, error ’, &

’estimates have not been computed’
End If

Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout,99997) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99996) ’Failure in ZHPGV. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4,A)
99996 Format (1X,A,I4)

End Program f08tnfe

10.2 Program Data

F08TNF Example Program Data

4 :Value of N

(-7.36, 0.00) ( 0.77, -0.43) (-0.64, -0.92) ( 3.01, -6.97)
( 3.49, 0.00) ( 2.19, 4.45) ( 1.90, 3.73)

( 0.12, 0.00) ( 2.88, -3.17)
(-2.54, 0.00) :End of matrix A

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix B

10.3 Program Results

F08TNF Example Program Results

Eigenvalues
-5.9990 -2.9936 0.5047 3.9990

Estimate of reciprocal condition number for B
2.5E-03

Error estimates for the eigenvalues
3.4E-13 2.0E-13 9.6E-14 2.5E-13
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NAG Library Routine Document

F08TPF (ZHPGVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08TPF (ZHPGVX) computes selected eigenvalues and, optionally, eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are Hermitian, stored in packed format, and B is also positive definite. Eigenvalues and
eigenvectors can be selected by specifying either a range of values or a range of indices for the desired
eigenvalues.

2 Specification

SUBROUTINE F08TPF (ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL, IU,
ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, JFAIL,
INFO)

&
&

INTEGER ITYPE, N, IL, IU, M, LDZ, IWORK(5*N), JFAIL(*),
INFO

&

REAL (KIND=nag_wp) VL, VU, ABSTOL, W(N), RWORK(7*N)
COMPLEX (KIND=nag_wp) AP(*), BP(*), Z(LDZ,*), WORK(2*N)
CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name zhpgvx.

3 Description

F08TPF (ZHPGVX) first performs a Cholesky factorization of the matrix B as B ¼ UHU , when
UPLO ¼ U or B ¼ LLH, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the desired eigenvalues and eigenvectors; the eigenvectors are then backtransformed
to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, Z,
satisfies

ZHAZ ¼ � and ZHBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�H ¼ � and ZHBZ ¼ I;

and for BAz ¼ �z we have

ZHAZ ¼ � and ZHB�1Z ¼ I:

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08TPF

Mark 26 F08TPF.1



4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

4: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

5: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.
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6: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the contents of AP are destroyed.

7: BPð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array BP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n Hermitian matrix B, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of B must be stored with element Bij in
BPðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of B must be stored with element Bij in
BPðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the triangular factor U or L from the Cholesky factorization B ¼ UHU or B ¼ LLH, in
the same storage format as B.

8: VL – REAL (KIND=nag_wp) Input
9: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

10: IL – INTEGER Input
11: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

12: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing C to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO ¼ 1 to N, indicating that
some eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and
Kahan (1990).
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13: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

14: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first M elements contain the selected eigenvalues in ascending order.

15: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the
eigenvector associated with WðiÞ. The eigenvectors are normalized as follows:

if ITYPE ¼ 1 or 2, ZHBZ ¼ I;

if ITYPE ¼ 3, ZHB�1Z ¼ I;
if an eigenvector fails to converge (INFO ¼ 1 to N), then that column of Z contains the
latest approximation to the eigenvector, and the index of the eigenvector is returned in
JFAIL.

If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

16: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08TPF
(ZHPGVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

17: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

18: RWORKð7� NÞ – REAL (KIND=nag_wp) array Workspace

19: IWORKð5� NÞ – INTEGER array Workspace

20: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO ¼ 1 to N, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

F08TPF NAG Library Manual

F08TPF.4 Mark 26



6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i, F08GPF (ZHPEVX) failed to converge; i eigenvectors failed to converge. Their
indices are stored in array JFAIL.

INFO > N

F07GRF (ZPPTRF) returned an error code; i.e., if INFO ¼ Nþ i, for 1 � i � N, then the leading
minor of order i of B is not positive definite. The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

8 Parallelism and Performance

F08TPF (ZHPGVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08TPF (ZHPGVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08TBF (DSPGVX).

10 Example

This example finds the eigenvalues in the half-open interval �3; 3ð �, and corresponding eigenvectors, of
the generalized Hermitian eigenproblem Az ¼ �Bz, where

A ¼
�7:36 0:77� 0:43i �0:64� 0:92i 3:01� 6:97i
0:77þ 0:43i 3:49 2:19þ 4:45i 1:90þ 3:73i
�0:64þ 0:92i 2:19� 4:45i 0:12 2:88� 3:17i
3:01þ 6:97i 1:90� 3:73i 2:88þ 3:17i �2:54

0B@
1CA

and

B ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA:
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The example program for F08TQF (ZHPGVD) illustrates solving a generalized symmetric
eigenproblem of the form ABz ¼ �z.

10.1 Program Text

Program f08tpfe

! F08TPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf, zhpgvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, j, k, ldz, &

m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ap(:), bp(:), work(:), z(:,:)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:), jfail(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, maxloc

! .. Executable Statements ..
Write (nout,*) ’F08TPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldz = n
m = n
Allocate (ap((n*(n+1))/2),bp((n*(n+1))/2),work(2*n),z(ldz,m),rwork(7*n), &

w(n),iwork(5*n),jfail(n))

! Read the lower and upper bounds of the interval to be searched,
! and read the upper or lower triangular parts of the matrices A
! and B from data file

Read (nin,*) vl, vu
If (uplo==’U’) Then

Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)
Read (nin,*)((bp(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)
Read (nin,*)((bp(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Set the absolute error tolerance for eigenvalues. With abstol
! set to zero, the default value is used instead

abstol = zero

! Solve the generalized Hermitian eigenvalue problem
! A*x = lambda*B*x (itype = 1)

! The NAG name equivalent of zhpgvx is f08tpf
Call zhpgvx(1,’Vectors’,’Values in range’,uplo,n,ap,bp,vl,vu,il,iu, &

abstol,m,w,z,ldz,work,rwork,iwork,jfail,info)

If (info>=0 .And. info<=n) Then

! Print solution
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Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! Normalize the eigenvectors, largest element real
Do i = 1, m

rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(z(k,i))/abs(z(k,i))
z(1:n,i) = z(1:n,i)*scal

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else If (info>n .And. info<=2*n) Then

i = info - n
Write (nout,99996) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99999) ’Failure in ZHPGVX. INFO =’, info
End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))
99996 Format (1X,A,I4,A)

End Program f08tpfe

10.2 Program Data

F08TPF Example Program Data

4 :Value of N

-3.0 3.0 :Values of VL and VU

(-7.36, 0.00) ( 0.77, -0.43) (-0.64, -0.92) ( 3.01, -6.97)
( 3.49, 0.00) ( 2.19, 4.45) ( 1.90, 3.73)

( 0.12, 0.00) ( 2.88, -3.17)
(-2.54, 0.00) :End of matrix A

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix B

10.3 Program Results

F08TPF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
-2.9936 0.5047

Selected eigenvectors
1 2

1 -0.6626 0.2835
0.2258 -0.5806
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2 -0.1164 -0.3769
-0.0178 -0.3194

3 0.9098 -0.3338
-0.0000 -0.0134

4 -0.6120 0.6663
-0.5348 0.0000
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NAG Library Routine Document

F08TQF (ZHPGVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08TQF (ZHPGVD) computes all the eigenvalues and, optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form

Az ¼ �Bz; ABz ¼ �z or BAz ¼ �z;

where A and B are Hermitian, stored in packed format, and B is also positive definite. If eigenvectors
are desired, it uses a divide-and-conquer algorithm.

2 Specification

SUBROUTINE F08TQF (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, LWORK,
RWORK, LRWORK, IWORK, LIWORK, INFO)

&

INTEGER ITYPE, N, LDZ, LWORK, LRWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) W(N), RWORK(max(1,LRWORK))
COMPLEX (KIND=nag_wp) AP(*), BP(*), Z(LDZ,*), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name zhpgvd.

3 Description

F08TQF (ZHPGVD) first performs a Cholesky factorization of the matrix B as B ¼ UHU , when
UPLO ¼ U or B ¼ LLH, when UPLO ¼ L . The generalized problem is then reduced to a standard
symmetric eigenvalue problem

Cx ¼ �x;

which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then
backtransformed to give the eigenvectors of the original problem.

For the problem Az ¼ �Bz, the eigenvectors are normalized so that the matrix of eigenvectors, z,
satisfies

ZHAZ ¼ � and ZHBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
ABz ¼ �z we correspondingly have

Z�1AZ�H ¼ � and ZHBZ ¼ I;

and for BAz ¼ �z we have

ZHAZ ¼ � and ZHB�1Z ¼ I:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the problem type to be solved.

ITYPE ¼ 1
Az ¼ �Bz.

ITYPE ¼ 2
ABz ¼ �z.

ITYPE ¼ 3
BAz ¼ �z.

Constraint: ITYPE ¼ 1, 2 or 3.

2: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

5: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the contents of AP are destroyed.

6: BPð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array BP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n Hermitian matrix B, packed by columns.

More precisely,
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if UPLO ¼ U , the upper triangle of B must be stored with element Bij in
BPðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of B must be stored with element Bij in
BPðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the triangular factor U or L from the Cholesky factorization B ¼ UHU or B ¼ LLH, in
the same storage format as B.

7: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

8: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the matrix Z of eigenvectors. The eigenvectors are normalized
as follows:

if ITYPE ¼ 1 or 2, ZHBZ ¼ I;

if ITYPE ¼ 3, ZHB�1Z ¼ I.
If JOBZ ¼ N , Z is not referenced.

9: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08TQF
(ZHPGVD) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

10: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08TQF (ZHPGVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes of
the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK,
RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or LIWORK
is issued.

Constraints:

if N � 1, LWORK � 1;
if JOBZ ¼ N and N > 1, LWORK � N;
if JOBZ ¼ V and N > 1, LWORK � 2� N.

12: RWORKðmax 1;LRWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, RWORKð1Þ returns the optimal LRWORK.

13: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
F08TQF (ZHPGVD) is called.
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If LRWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes
of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the
WORK, RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or
LIWORK is issued.

Constraints:

if N � 1, LRWORK � 1;
if JOBZ ¼ N and N > 1, LRWORK � N;
if JOBZ ¼ V and N > 1, LRWORK � 1þ 5� Nþ 2� N2.

14: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the optimal LIWORK.

15: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08TQF (ZHPGVD) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes
of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the
WORK, RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or
LIWORK is issued.

Constraints:

if JOBZ ¼ N or N � 1, LIWORK � 1;
if JOBZ ¼ V and N > 1, LIWORK � 3þ 5� N.

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F07GRF (ZPPTRF) or F08GQF (ZHPEVD) returned an error code:

� N if INFO ¼ i, F08GQF (ZHPEVD) failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero;

> N if INFO ¼ Nþ i, for 1 � i � N, then the leading minor of order i of B is not positive
definite. The factorization of B could not be completed and no eigenvalues or eigenvectors
were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

The example program below illustrates the computation of approximate error bounds.
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8 Parallelism and Performance

F08TQF (ZHPGVD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08TQF (ZHPGVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08TCF (DSPGVD).

10 Example

This example finds all the eigenvalues and eigenvectors of the generalized Hermitian eigenproblem
ABz ¼ �z, where

A ¼
�7:36 0:77� 0:43i �0:64� 0:92i 3:01� 6:97i
0:77þ 0:43i 3:49 2:19þ 4:45i 1:90þ 3:73i
�0:64þ 0:92i 2:19� 4:45i 0:12 2:88� 3:17i
3:01þ 6:97i 1:90� 3:73i 2:88þ 3:17i �2:54

0B@
1CA

and

B ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0B@
1CA;

together with an estimate of the condition number of B, and approximate error bounds for the computed
eigenvalues and eigenvectors.

The example program for F08TNF (ZHPGV) illustrates solving a generalized Hermitian eigenproblem
of the form Az ¼ �Bz.

10.1 Program Text

Program f08tqfe

! F08TQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06udf, nag_wp, x02ajf, zhpgvd, ztpcon

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, bnorm, eps, rcond, rcondb, t1
Integer :: aplen, i, info, j, liwork, lrwork, &

lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ap(:), bp(:), work(:)
Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: eerbnd(:), rwork(:), w(:)
Real (Kind=nag_wp) :: rdum(1)
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Integer :: idum(1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08TQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
aplen = (n*(n+1))/2
Allocate (ap(aplen),bp(aplen),eerbnd(n),w(n))

! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1
lrwork = -1

! The NAG name equivalent of zhpgvd is f08tqf
Call zhpgvd(2,’No vectors’,uplo,n,ap,bp,w,dummy,1,dummy,lwork,rdum, &

lrwork,idum,liwork,info)

! Make sure that there is at least the minimum workspace
lwork = max(2*n,nint(real(dummy(1,1))))
lrwork = max(n,nint(rdum(1)))
liwork = max(1,idum(1))
Allocate (work(lwork),rwork(lrwork),iwork(liwork))

! Read the upper or lower triangular parts of the matrices A and
! B from data file

If (uplo==’U’) Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)
Read (nin,*)((bp(i+(j*(j-1))/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)
Read (nin,*)((bp(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)

End If

! Compute the one-norms of the symmetric matrices A and B

anorm = f06udf(’One norm’,uplo,n,ap,rwork)
bnorm = f06udf(’One norm’,uplo,n,bp,rwork)

! Solve the generalized symmetric eigenvalue problem
! A*B*x = lambda*x (itype = 2)

! The NAG name equivalent of zhpgvd is f08tqf
Call zhpgvd(2,’No vectors’,uplo,n,ap,bp,w,dummy,1,work,lwork,rwork, &

lrwork,iwork,liwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

! Call ZTPCON (F07UUF) to estimate the reciprocal condition
! number of the Cholesky factor of B. Note that:
! cond(B) = 1/rcond**2. ZTPCON requires WORK and RWORK to be
! of length at least 2*n and n respectively

Call ztpcon(’One norm’,uplo,’Non-unit’,n,bp,rcond,work,rwork,info)

! Print the reciprocal condition number of B

rcondb = rcond**2
Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for B’
Write (nout,99998) rcondb
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! Get the machine precision, eps, and if rcondb is not less
! than eps**2, compute error estimates for the eigenvalues

eps = x02ajf()
If (rcond>=eps) Then

t1 = anorm*bnorm
Do i = 1, n

eerbnd(i) = t1 + abs(w(i))/rcondb
End Do

! Print the approximate error bounds for the eigenvalues

Write (nout,*)
Write (nout,*) ’Error estimates (relative to machine precision)’
Write (nout,*) ’for the eigenvalues:’
Write (nout,99998) eerbnd(1:n)

Else
Write (nout,*)
Write (nout,*) ’B is very ill-conditioned, error ’, &

’estimates have not been computed’
End If

Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout,99997) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99996) ’Failure in ZHPGVD. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4,A)
99996 Format (1X,A,I4)

End Program f08tqfe

10.2 Program Data

F08TQF Example Program Data

4 :Value of N

(-7.36, 0.00) ( 0.77, -0.43) (-0.64, -0.92) ( 3.01, -6.97)
( 3.49, 0.00) ( 2.19, 4.45) ( 1.90, 3.73)

( 0.12, 0.00) ( 2.88, -3.17)
(-2.54, 0.00) :End of matrix A

( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)

( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix B

10.3 Program Results

F08TQF Example Program Results

Eigenvalues
-61.7321 -6.6195 0.0725 43.1883

Estimate of reciprocal condition number for B
2.5E-03

Error estimates (relative to machine precision)
for the eigenvalues:

2.4E+04 2.8E+03 2.3E+02 1.7E+04
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NAG Library Routine Document

F08TSF (ZHPGST)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08TSF (ZHPGST) reduces a complex Hermitian-definite generalized eigenproblem Az ¼ �Bz,
ABz ¼ �z or BAz ¼ �z to the standard form Cy ¼ �y, where A is a complex Hermitian matrix and
B has been factorized by F07GRF (ZPPTRF), using packed storage.

2 Specification

SUBROUTINE F08TSF (ITYPE, UPLO, N, AP, BP, INFO)

INTEGER ITYPE, N, INFO
COMPLEX (KIND=nag_wp) AP(*), BP(*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zhpgst.

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem Az ¼ �Bz, ABz ¼ �z or
BAz ¼ �z to the standard form Cy ¼ �y using packed storage, F08TSF (ZHPGST) must be preceded
by a call to F07GRF (ZPPTRF) which computes the Cholesky factorization of B; B must be positive
definite.

The different problem types are specified by the argument ITYPE, as indicated in the table below. The
table shows how C is computed by the routine, and also how the eigenvectors z of the original problem
can be recovered from the eigenvectors of the standard form.

ITYPE Problem UPLO B C z

1 Az ¼ �Bz `U'
`L'

UHU
LLH

U�HAU�1

L�1AL�H
U�1y
L�Hy

2 ABz ¼ �z `U'
`L'

UHU
LLH

UAUH

LHAL
U�1y
L�Hy

3 BAz ¼ �z `U'
`L'

UHU
LLH

UAUH

LHAL
UHy
Ly

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: ITYPE – INTEGER Input

On entry: indicates how the standard form is computed.

ITYPE ¼ 1

if UPLO ¼ U , C ¼ U�HAU�1;

if UPLO ¼ L , C ¼ L�1AL�H.
ITYPE ¼ 2 or 3

if UPLO ¼ U , C ¼ UAUH;

if UPLO ¼ L , C ¼ LHAL.

Constraint: ITYPE ¼ 1, 2 or 3.

2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored and how B has been
factorized.

UPLO ¼ U
The upper triangular part of A is stored and B ¼ UHU .

UPLO ¼ L
The lower triangular part of A is stored and B ¼ LLH.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: APð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array AP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the upper or lower triangle of the n by n Hermitian matrix A, packed by columns.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
APðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
APðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

On exit: the upper or lower triangle of AP is overwritten by the corresponding upper or lower
triangle of C as specified by ITYPE and UPLO, using the same packed storage format as
described above.

5: BPð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array BP must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the Cholesky factor of B as specified by UPLO and returned by F07GRF (ZPPTRF).

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

F08TSF NAG Library Manual

F08TSF.2 Mark 26



6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B�1

if (ITYPE ¼ 1) or B (if ITYPE ¼ 2 or 3). When F08TSF (ZHPGST) is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of
accuracy if B is ill-conditioned with respect to inversion. See the document for F08SNF (ZHEGV) for
further details.

8 Parallelism and Performance

F08TSF (ZHPGST) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 4n3.

The real analogue of this routine is F08TEF (DSPGST).

10 Example

This example computes all the eigenvalues of Az ¼ �Bz, where

A ¼
�7:36þ 0:00i 0:77� 0:43i �0:64� 0:92i 3:01� 6:97i
0:77þ 0:43i 3:49þ 0:00i 2:19þ 4:45i 1:90þ 3:73i
�0:64þ 0:92i 2:19� 4:45i 0:12þ 0:00i 2:88� 3:17i
3:01þ 6:97i 1:90� 3:73i 2:88þ 3:17i �2:54þ 0:00i

0B@
1CA

and

B ¼
3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

0B@
1CA;

using packed storage. Here B is Hermitian positive definite and must first be factorized by F07GRF
(ZPPTRF). The program calls F08TSF (ZHPGST) to reduce the problem to the standard form Cy ¼ �y;
then F08GSF (ZHPTRD) to reduce C to tridiagonal form, and F08JFF (DSTERF) to compute the
eigenvalues.

10.1 Program Text

Program f08tsfe

! F08TSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsterf, nag_wp, zhpgst, zhptrd, zpptrf

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08TSF
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, j, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ap(:), bp(:), tau(:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:)

! .. Executable Statements ..
Write (nout,*) ’F08TSF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

Allocate (ap(n*(n+1)/2),bp(n*(n+1)/2),tau(n),d(n),e(n-1))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
Read (nin,*)((bp(i+j*(j-1)/2),j=i,n),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
Read (nin,*)((bp(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)

End If

! Compute the Cholesky factorization of B
! The NAG name equivalent of zpptrf is f07grf

Call zpptrf(uplo,n,bp,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’B is not positive definite.’
Else

! Reduce the problem to standard form C*y = lambda*y, storing
! the result in A
! The NAG name equivalent of zhpgst is f08tsf

Call zhpgst(1,uplo,n,ap,bp,info)

! Reduce C to tridiagonal form T = (Q**H)*C*Q
! The NAG name equivalent of zhptrd is f08gsf

Call zhptrd(uplo,n,ap,d,e,tau,info)

! Calculate the eigenvalues of T (same as C)
! The NAG name equivalent of dsterf is f08jff

Call dsterf(n,d,e,info)

If (info>0) Then
Write (nout,*) ’Failure to converge.’

Else

! Print eigenvalues

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)

End If
End If

99999 Format (3X,(9F8.4))
End Program f08tsfe
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10.2 Program Data

F08TSF Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-7.36, 0.00)
( 0.77, 0.43) ( 3.49, 0.00)
(-0.64, 0.92) ( 2.19,-4.45) ( 0.12, 0.00)
( 3.01, 6.97) ( 1.90,-3.73) ( 2.88, 3.17) (-2.54, 0.00) :End of matrix A
( 3.23, 0.00)
( 1.51, 1.92) ( 3.58, 0.00)
( 1.90,-0.84) (-0.23,-1.11) ( 4.09, 0.00)
( 0.42,-2.50) (-1.18,-1.37) ( 2.33, 0.14) ( 4.29, 0.00) :End of matrix B

10.3 Program Results

F08TSF Example Program Results

Eigenvalues
-5.9990 -2.9936 0.5047 3.9990
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NAG Library Routine Document

F08UAF (DSBGV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08UAF (DSBGV) computes all the eigenvalues and, optionally, the eigenvectors of a real generalized
symmetric-definite banded eigenproblem, of the form

Az ¼ �Bz;

where A and B are symmetric and banded, and B is also positive definite.

2 Specification

SUBROUTINE F08UAF (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ,
WORK, INFO)

&

INTEGER N, KA, KB, LDAB, LDBB, LDZ, INFO
REAL (KIND=nag_wp) AB(LDAB,*), BB(LDBB,*), W(N), Z(LDZ,*), WORK(3*N)
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name dsbgv.

3 Description

The generalized symmetric-definite band problem

Az ¼ �Bz

is first reduced to a standard band symmetric problem

Cx ¼ �x;

where C is a symmetric band matrix, using Wilkinson's modification to Crawford's algorithm (see
Crawford (1973) and Wilkinson (1977)). The symmetric eigenvalue problem is then solved for the
eigenvalues and the eigenvectors, if required, which are then backtransformed to the eigenvectors of the
original problem.

The eigenvectors are normalized so that the matrix of eigenvectors, Z, satisfies

ZTAZ ¼ � and ZTBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41–44

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1977) Some recent advances in numerical linear algebra The State of the Art in
Numerical Analysis (ed D A H Jacobs) Academic Press
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5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: KA – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, ka, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, ka, of the matrix A.

Constraint: KA � 0.

5: KB – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kb, of the matrix B.

If UPLO ¼ L , the number of subdiagonals, kb, of the matrix B.

Constraint: KA � KB � 0.

6: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n symmetric band matrix A.

The matrix is stored in rows 1 to ka þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðka þ 1þ i� j; jÞ for max 1; j� kað Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kað Þ:

On exit: the contents of AB are overwritten.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08UAF (DSBGV) is called.

Constraint: LDAB � KAþ 1.
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8: BBðLDBB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array BB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n symmetric band matrix B.

The matrix is stored in rows 1 to kb þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of B within the band must be stored with
element Bij in BBðkb þ 1þ i� j; jÞ for max 1; j� kbð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of B within the band must be stored with
element Bij in BBð1þ i� j; jÞ for j � i � min n; jþ kbð Þ:

On exit: the factor S from the split Cholesky factorization B ¼ STS, as returned by F08UFF
(DPBSTF).

9: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F08UAF (DSBGV) is called.

Constraint: LDBB � KBþ 1.

10: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

11: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the matrix Z of eigenvectors, with the ith column of Z
holding the eigenvector associated with WðiÞ. The eigenvectors are normalized so that
ZTBZ ¼ I.
If JOBZ ¼ N , Z is not referenced.

12: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08UAF
(DSBGV) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

13: WORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i and i � N, the algorithm failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero.
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If INFO ¼ i and i > N, if INFO ¼ Nþ i, for 1 � i � N, then F08UFF (DPBSTF) returned
INFO ¼ i: B is not positive definite. The factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

8 Parallelism and Performance

F08UAF (DSBGV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08UAF (DSBGV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3 if JOBZ ¼ V and, assuming that
n� ka, is approximately proportional to n2ka otherwise.

The complex analogue of this routine is F08UNF (ZHBGV).

10 Example

This example finds all the eigenvalues of the generalized band symmetric eigenproblem Az ¼ �Bz,
where

A ¼
0:24 0:39 0:42 0
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
0 0:63 0:48 �0:03

0B@
1CA and B ¼

2:07 0:95 0 0
0:95 1:69 �0:29 0
0 �0:29 0:65 �0:33
0 0 �0:33 1:17

0B@
1CA:

10.1 Program Text

Program f08uafe

! F08UAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsbgv, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Integer :: i, info, j, ka, kb, ldab, ldbb, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), bb(:,:), w(:), work(:)
Real (Kind=nag_wp) :: dummy(1,1)

! .. Intrinsic Procedures ..
Intrinsic :: max, min
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! .. Executable Statements ..
Write (nout,*) ’F08UAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ka, kb
ldab = ka + 1
ldbb = kb + 1
Allocate (ab(ldab,n),bb(ldbb,n),w(n),work(3*n))

! Read the upper or lower triangular parts of the matrices A and
! B from data file

If (uplo==’U’) Then
Read (nin,*)((ab(ka+1+i-j,j),j=i,min(n,i+ka)),i=1,n)
Read (nin,*)((bb(kb+1+i-j,j),j=i,min(n,i+kb)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-ka),i),i=1,n)
Read (nin,*)((bb(1+i-j,j),j=max(1,i-kb),i),i=1,n)

End If

! Solve the generalized symmetric band eigenvalue problem
! A*x = lambda*B*x

! The NAG name equivalent of dsbgv is f08uaf
Call dsbgv(’No vectors’,uplo,n,ka,kb,ab,ldab,bb,ldbb,w,dummy,1,work, &

info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout,99998) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99997) ’Failure in DSBGV. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (1X,A,I4,A)
99997 Format (1X,A,I4)

End Program f08uafe

10.2 Program Data

F08UAF Example Program Data

4 2 1 :Values of N, KA and KB

0.24 0.39 0.42
-0.11 0.79 0.63

-0.25 0.48
-0.03 :End of matrix A

2.07 0.95
1.69 -0.29

0.65 -0.33
1.17 :End of matrix B

10.3 Program Results

F08UAF Example Program Results

Eigenvalues
-0.8305 -0.6401 0.0992 1.8525
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NAG Library Routine Document

F08UBF (DSBGVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08UBF (DSBGVX) computes selected eigenvalues and, optionally, eigenvectors of a real generalized
symmetric-definite banded eigenproblem, of the form

Az ¼ �Bz;

where A and B are symmetric and banded, and B is also positive definite. Eigenvalues and eigenvectors
can be selected by specifying either all eigenvalues, a range of values or a range of indices for the
desired eigenvalues.

2 Specification

SUBROUTINE F08UBF (JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q,
LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
IWORK, JFAIL, INFO)

&
&

INTEGER N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ,
IWORK(5*N), JFAIL(*), INFO

&

REAL (KIND=nag_wp) AB(LDAB,*), BB(LDBB,*), Q(LDQ,*), VL, VU, ABSTOL,
W(N), Z(LDZ,*), WORK(7*N)

&

CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name dsbgvx.

3 Description

The generalized symmetric-definite band problem

Az ¼ �Bz

is first reduced to a standard band symmetric problem

Cx ¼ �x;

where C is a symmetric band matrix, using Wilkinson's modification to Crawford's algorithm (see
Crawford (1973) and Wilkinson (1977)). The symmetric eigenvalue problem is then solved for the
required eigenvalues and eigenvectors, and the eigenvectors are then backtransformed to the
eigenvectors of the original problem.

The eigenvectors are normalized so that

zTAz ¼ � and zTBz ¼ 1:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41–44

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912
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Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1977) Some recent advances in numerical linear algebra The State of the Art in
Numerical Analysis (ed D A H Jacobs) Academic Press

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

5: KA – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, ka, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, ka, of the matrix A.

Constraint: KA � 0.

6: KB – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kb, of the matrix B.

If UPLO ¼ L , the number of subdiagonals, kb, of the matrix B.

Constraint: KA � KB � 0.

7: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n symmetric band matrix A.

The matrix is stored in rows 1 to ka þ 1, more precisely,

F08UBF NAG Library Manual

F08UBF.2 Mark 26



if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðka þ 1þ i� j; jÞ for max 1; j� kað Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kað Þ:

On exit: the contents of AB are overwritten.

8: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08UBF (DSBGVX) is called.

Constraint: LDAB � KAþ 1.

9: BBðLDBB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array BB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n symmetric positive definite band matrix B.

The matrix is stored in rows 1 to kb þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of B within the band must be stored with
element Bij in BBðkb þ 1þ i� j; jÞ for max 1; j� kbð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of B within the band must be stored with
element Bij in BBð1þ i� j; jÞ for j � i � min n; jþ kbð Þ:

On exit: the factor S from the split Cholesky factorization B ¼ STS, as returned by F08UFF
(DPBSTF).

10: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F08UBF (DSBGVX) is called.

Constraint: LDBB � KBþ 1.

11: QðLDQ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , the n by n matrix, Q used in the reduction of the standard form, i.e.,
Cx ¼ �x, from symmetric banded to tridiagonal form.

If JOBZ ¼ N , Q is not referenced.

12: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08UBF
(DSBGVX) is called.

Constraints:

if JOBZ ¼ V , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

13: VL – REAL (KIND=nag_wp) Input
14: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.
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15: IL – INTEGER Input
16: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

17: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing C to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO ¼ 1 to N, indicating that
some eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and
Kahan (1990).

18: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

19: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

20: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the matrix Z of eigenvectors, with the ith column of Z
holding the eigenvector associated with WðiÞ. The eigenvectors are normalized so that
ZTBZ ¼ I.
If JOBZ ¼ N , Z is not referenced.

21: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08UBF
(DSBGVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

22: WORKð7� NÞ – REAL (KIND=nag_wp) array Workspace

23: IWORKð5� NÞ – INTEGER array Workspace

F08UBF NAG Library Manual

F08UBF.4 Mark 26



24: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO ¼ 1 to N, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

25: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i, then i eigenvectors failed to converge. Their indices are stored in array JFAIL.
Please see ABSTOL.

INFO > N

F08UFF (DPBSTF) returned an error code; i.e., if INFO ¼ Nþ i, for 1 � i � N, then the leading
minor of order i of B is not positive definite. The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

8 Parallelism and Performance

F08UBF (DSBGVX) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08UBF (DSBGVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3 if JOBZ ¼ V and RANGE ¼ A ,
and assuming that n� ka, is approximately proportional to n2ka if JOBZ ¼ N . Otherwise the number
of floating-point operations depends upon the number of eigenvectors computed.

The complex analogue of this routine is F08UPF (ZHBGVX).
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10 Example

This example finds the eigenvalues in the half-open interval 0:0; 1:0ð �, and corresponding eigenvectors,
of the generalized band symmetric eigenproblem Az ¼ �Bz, where

A ¼
0:24 0:39 0:42 0
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
0 0:63 0:48 �0:03

0B@
1CA and B ¼

2:07 0:95 0 0
0:95 1:69 �0:29 0
0 �0:29 0:65 �0:33
0 0 �0:33 1:17

0B@
1CA:

10.1 Program Text

Program f08ubfe

! F08UBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsbgvx, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, j, ka, kb, &

ldab, ldbb, ldq, ldz, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), bb(:,:), q(:,:), w(:), &
work(:), z(:,:)

Integer, Allocatable :: iwork(:), jfail(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min
! .. Executable Statements ..

Write (nout,*) ’F08UBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ka, kb
ldab = ka + 1
ldbb = kb + 1
ldq = n
ldz = n
m = n
Allocate (ab(ldab,n),bb(ldbb,n),q(ldq,n),w(n),work(7*n),z(ldz,m), &

iwork(5*n),jfail(n))

! Read the lower and upper bounds of the interval to be searched,
! and read the upper or lower triangular parts of the matrices A
! and B from data file

Read (nin,*) vl, vu
If (uplo==’U’) Then

Read (nin,*)((ab(ka+1+i-j,j),j=i,min(n,i+ka)),i=1,n)
Read (nin,*)((bb(kb+1+i-j,j),j=i,min(n,i+kb)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-ka),i),i=1,n)
Read (nin,*)((bb(1+i-j,j),j=max(1,i-kb),i),i=1,n)

End If

! Set the absolute error tolerance for eigenvalues. With abstol
! set to zero, the default value is used instead

abstol = zero

! Solve the generalized symmetric eigenvalue problem
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! A*x = lambda*B*x

! The NAG name equivalent of dsbgvx is f08ubf
Call dsbgvx(’Vectors’,’Values in range’,uplo,n,ka,kb,ab,ldab,bb,ldbb,q, &

ldq,vl,vu,il,iu,abstol,m,w,z,ldz,work,iwork,jfail,info)

If (info>=0 .And. info<=n) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else If (info>n .And. info<=2*n) Then

i = info - n
Write (nout,99996) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Write (nout,99999) ’Failure in DSBGVX. INFO =’, info

End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))
99996 Format (1X,A,I4,A)

End Program f08ubfe

10.2 Program Data

F08UBF Example Program Data

4 2 1 :Values of N, KA and KB

0.0 1.0 :Values of VL and VU

0.24 0.39 0.42
-0.11 0.79 0.63

-0.25 0.48
-0.03 :End of matrix A

2.07 0.95
1.69 -0.29

0.65 -0.33
1.17 :End of matrix B

10.3 Program Results

F08UBF Example Program Results

Number of eigenvalues found = 1

Eigenvalues
0.0992

Selected eigenvectors
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1
1 0.6729
2 -0.1009
3 0.0155
4 -0.3806
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NAG Library Routine Document

F08UCF (DSBGVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08UCF (DSBGVD) computes all the eigenvalues and, optionally, the eigenvectors of a real
generalized symmetric-definite banded eigenproblem, of the form

Az ¼ �Bz;

where A and B are symmetric and banded, and B is also positive definite. If eigenvectors are desired, it
uses a divide-and-conquer algorithm.

2 Specification

SUBROUTINE F08UCF (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ,
WORK, LWORK, IWORK, LIWORK, INFO)

&

INTEGER N, KA, KB, LDAB, LDBB, LDZ, LWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) AB(LDAB,*), BB(LDBB,*), W(N), Z(LDZ,*),
WORK(max(1,LWORK))

&

CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name dsbgvd.

3 Description

The generalized symmetric-definite band problem

Az ¼ �Bz

is first reduced to a standard band symmetric problem

Cx ¼ �x;

where C is a symmetric band matrix, using Wilkinson's modification to Crawford's algorithm (see
Crawford (1973) and Wilkinson (1977)). The symmetric eigenvalue problem is then solved for the
eigenvalues and the eigenvectors, if required, which are then backtransformed to the eigenvectors of the
original problem.

The eigenvectors are normalized so that the matrix of eigenvectors, Z, satisfies

ZTAZ ¼ � and ZTBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41–44
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Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1977) Some recent advances in numerical linear algebra The State of the Art in
Numerical Analysis (ed D A H Jacobs) Academic Press

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: KA – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, ka, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, ka, of the matrix A.

Constraint: KA � 0.

5: KB – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kb, of the matrix B.

If UPLO ¼ L , the number of subdiagonals, kb, of the matrix B.

Constraint: KA � KB � 0.

6: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n symmetric band matrix A.

The matrix is stored in rows 1 to ka þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðka þ 1þ i� j; jÞ for max 1; j� kað Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kað Þ:

On exit: the contents of AB are overwritten.
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7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08UCF (DSBGVD) is called.

Constraint: LDAB � KAþ 1.

8: BBðLDBB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array BB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n symmetric band matrix B.

The matrix is stored in rows 1 to kb þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of B within the band must be stored with
element Bij in BBðkb þ 1þ i� j; jÞ for max 1; j� kbð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of B within the band must be stored with
element Bij in BBð1þ i� j; jÞ for j � i � min n; jþ kbð Þ:

On exit: the factor S from the split Cholesky factorization B ¼ STS, as returned by F08UFF
(DPBSTF).

9: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F08UCF (DSBGVD) is called.

Constraint: LDBB � KBþ 1.

10: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

11: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the matrix Z of eigenvectors, with the ith column of Z
holding the eigenvector associated with WðiÞ. The eigenvectors are normalized so that
ZTBZ ¼ I.
If JOBZ ¼ N , Z is not referenced.

12: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08UCF
(DSBGVD) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

13: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

14: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08UCF (DSBGVD) is called.
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If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraints:

if N � 1, LWORK � 1;
if JOBZ ¼ N and N > 1, LWORK � max 1; 3� Nð Þ;
if JOBZ ¼ V and N > 1, LWORK � 1þ 5� Nþ 2� N2.

15: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum LIWORK.

16: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08UCF (DSBGVD) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraints:

if JOBZ ¼ N or N � 1, LIWORK � 1;
if JOBZ ¼ V and N > 1, LIWORK � 3þ 5� N.

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i and i � N, the algorithm failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero.

If INFO ¼ i and i > N, if INFO ¼ Nþ i, for 1 � i � N, then F08UFF (DPBSTF) returned
INFO ¼ i: B is not positive definite. The factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

8 Parallelism and Performance

F08UCF (DSBGVD) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08UCF (DSBGVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3 if JOBZ ¼ V and, assuming that
n� ka, is approximately proportional to n2ka otherwise.

The complex analogue of this routine is F08UQF (ZHBGVD).

10 Example

This example finds all the eigenvalues of the generalized band symmetric eigenproblem Az ¼ �Bz,
where

A ¼
0:24 0:39 0:42 0
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
0 0:63 0:48 �0:03

0B@
1CA and B ¼

2:07 0:95 0 0
0:95 1:69 �0:29 0
0 �0:29 0:65 �0:33
0 0 �0:33 1:17

0B@
1CA:

10.1 Program Text

Program f08ucfe

! F08UCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsbgvd, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Integer :: i, info, j, ka, kb, ldab, ldbb, &

liwork, lwork, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), bb(:,:), w(:), work(:)
Real (Kind=nag_wp) :: dummy(1,1)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F08UCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ka, kb
ldab = ka + 1
ldbb = kb + 1
liwork = 1
lwork = 3*n
Allocate (ab(ldab,n),bb(ldbb,n),w(n),work(lwork),iwork(liwork))

! Read the upper or lower triangular parts of the matrices A and
! B from data file

If (uplo==’U’) Then
Read (nin,*)((ab(ka+1+i-j,j),j=i,min(n,i+ka)),i=1,n)
Read (nin,*)((bb(kb+1+i-j,j),j=i,min(n,i+kb)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-ka),i),i=1,n)
Read (nin,*)((bb(1+i-j,j),j=max(1,i-kb),i),i=1,n)

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08UCF

Mark 26 F08UCF.5



End If

! Solve the generalized symmetric band eigenvalue problem
! A*x = lambda*B*x

! The NAG name equivalent of dsbgvd is f08ucf
Call dsbgvd(’No vectors’,uplo,n,ka,kb,ab,ldab,bb,ldbb,w,dummy,1,work, &

lwork,iwork,liwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout,99998) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99997) ’Failure in DSBGVD. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (1X,A,I4,A)
99997 Format (1X,A,I4)

End Program f08ucfe

10.2 Program Data

F08UCF Example Program Data

4 2 1 :Values of N, KA and KB

0.24 0.39 0.42
-0.11 0.79 0.63

-0.25 0.48
-0.03 :End of matrix A

2.07 0.95
1.69 -0.29

0.65 -0.33
1.17 :End of matrix B

10.3 Program Results

F08UCF Example Program Results

Eigenvalues
-0.8305 -0.6401 0.0992 1.8525
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NAG Library Routine Document

F08UEF (DSBGST)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08UEF (DSBGST) reduces a real symmetric-definite generalized eigenproblem Az ¼ �Bz to the
standard form Cy ¼ �y, where A and B are band matrices, A is a real symmetric matrix, and B has
been factorized by F08UFF (DPBSTF).

2 Specification

SUBROUTINE F08UEF (VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, LDX,
WORK, INFO)

&

INTEGER N, KA, KB, LDAB, LDBB, LDX, INFO
REAL (KIND=nag_wp) AB(LDAB,*), BB(LDBB,*), X(LDX,*), WORK(2*N)
CHARACTER(1) VECT, UPLO

The routine may be called by its LAPACK name dsbgst.

3 Description

To reduce the real symmetric-definite generalized eigenproblem Az ¼ �Bz to the standard form
Cy ¼ �y, where A, B and C are banded, F08UEF (DSBGST) must be preceded by a call to F08UFF
(DPBSTF) which computes the split Cholesky factorization of the positive definite matrix B: B ¼ STS.
The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to
be approximately halved.

This routine overwrites A with C ¼ XTAX, where X ¼ S�1Q and Q is a orthogonal matrix chosen
(implicitly) to preserve the bandwidth of A. The routine also has an option to allow the accumulation of
X, and then, if z is an eigenvector of C, Xz is an eigenvector of the original system.

4 References

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41–44

Kaufman L (1984) Banded eigenvalue solvers on vector machines ACM Trans. Math. Software 10 73–
86

5 Arguments

1: VECT – CHARACTER(1) Input

On entry: indicates whether X is to be returned.

VECT ¼ N
X is not returned.

VECT ¼ V
X is returned.

Constraint: VECT ¼ N or V .
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2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: KA – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, ka, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, ka, of the matrix A.

Constraint: KA � 0.

5: KB – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kb, of the matrix B.

If UPLO ¼ L , the number of subdiagonals, kb, of the matrix B.

Constraint: KA � KB � 0.

6: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n symmetric band matrix A.

The matrix is stored in rows 1 to ka þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðka þ 1þ i� j; jÞ for max 1; j� kað Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kað Þ:

On exit: the upper or lower triangle of AB is overwritten by the corresponding upper or lower
triangle of C as specified by UPLO.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08UEF (DSBGST) is called.

Constraint: LDAB � KAþ 1.

8: BBðLDBB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array BB must be at least max 1;Nð Þ.
On entry: the banded split Cholesky factor of B as specified by UPLO, N and KB and returned
by F08UFF (DPBSTF).

F08UEF NAG Library Manual

F08UEF.2 Mark 26



9: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F08UEF (DSBGST) is called.

Constraint: LDBB � KBþ 1.

10: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;Nð Þ if VECT ¼ V and at least
1 if VECT ¼ N .

On exit: the n by n matrix X ¼ S�1Q, if VECT ¼ V .

If VECT ¼ N , X is not referenced.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F08UEF
(DSBGST) is called.

Constraints:

if VECT ¼ V , LDX � max 1;Nð Þ;
if VECT ¼ N , LDX � 1.

12: WORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by
B�1. When F08UEF (DSBGST) is used as a step in the computation of eigenvalues and eigenvectors of
the original problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to
inversion.

8 Parallelism and Performance

F08UEF (DSBGST) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 6n2kB, when VECT ¼ N , assuming
n� kA; kB; there are an additional 3=2ð Þn3 kB=kAð Þ operations when VECT ¼ V .

The complex analogue of this routine is F08USF (ZHBGST).
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10 Example

This example computes all the eigenvalues of Az ¼ �Bz, where

A ¼
0:24 0:39 0:42 0:00
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
0:00 0:63 0:48 �0:03

0B@
1CA and B ¼

2:07 0:95 0:00 0:00
0:95 1:69 �0:29 0:00
0:00 �0:29 0:65 �0:33
0:00 0:00 �0:33 1:17

0B@
1CA:

Here A is symmetric, B is symmetric positive definite, and A and B are treated as band matrices. B
must first be factorized by F08UFF (DPBSTF). The program calls F08UEF (DSBGST) to reduce the
problem to the standard form Cy ¼ �y, then F08HEF (DSBTRD) to reduce C to tridiagonal form, and
F08JFF (DSTERF) to compute the eigenvalues.

10.1 Program Text

Program f08uefe

! F08UEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dpbstf, dsbgst, dsbtrd, dsterf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, j, ka, kb, ldab, ldbb, ldx, &

n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), bb(:,:), d(:), e(:), &

work(:), x(:,:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min
! .. Executable Statements ..

Write (nout,*) ’F08UEF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n, ka, kb
ldab = ka + 1
ldbb = kb + 1
ldx = n
Allocate (ab(ldab,n),bb(ldbb,n),d(n),e(n-1),work(2*n),x(ldx,n))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(ka+1+i-j,j),j=i,min(n,i+ka))

End Do
Do i = 1, n

Read (nin,*)(bb(kb+1+i-j,j),j=i,min(n,i+kb))
End Do

Else If (uplo==’L’) Then
Do i = 1, n

Read (nin,*)(ab(1+i-j,j),j=max(1,i-ka),i)
End Do
Do i = 1, n

Read (nin,*)(bb(1+i-j,j),j=max(1,i-kb),i)
End Do

End If

! Compute the split Cholesky factorization of B
! The NAG name equivalent of dpbstf is f08uff

Call dpbstf(uplo,n,kb,bb,ldbb,info)
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Write (nout,*)
If (info>0) Then

Write (nout,*) ’B is not positive definite.’
Else

! Reduce the problem to standard form C*y = lambda*y, storing
! the result in A
! The NAG name equivalent of dsbgst is f08uef

Call dsbgst(’N’,uplo,n,ka,kb,ab,ldab,bb,ldbb,x,ldx,work,info)

! Reduce C to tridiagonal form T = (Q**T)*C*Q
! The NAG name equivalent of dsbtrd is f08hef

Call dsbtrd(’N’,uplo,n,ka,ab,ldab,d,e,x,ldx,work,info)

! Calculate the eigenvalues of T (same as C)
! The NAG name equivalent of dsterf is f08jff

Call dsterf(n,d,e,info)

If (info>0) Then
Write (nout,*) ’Failure to converge.’

Else

! Print eigenvalues

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)

End If
End If

99999 Format (3X,(8F8.4))
End Program f08uefe

10.2 Program Data

F08UEF Example Program Data
4 2 1 :Values of N, KA and KB
’L’ :Value of UPLO
0.24
0.39 -0.11
0.42 0.79 -0.25

0.63 0.48 -0.03 :End of matrix A
2.07
0.95 1.69

-0.29 0.65
-0.33 1.17 :End of matrix B

10.3 Program Results

F08UEF Example Program Results

Eigenvalues
-0.8305 -0.6401 0.0992 1.8525
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NAG Library Routine Document

F08UFF (DPBSTF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08UFF (DPBSTF) computes a split Cholesky factorization of a real symmetric positive definite band
matrix.

2 Specification

SUBROUTINE F08UFF (UPLO, N, KB, BB, LDBB, INFO)

INTEGER N, KB, LDBB, INFO
REAL (KIND=nag_wp) BB(LDBB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name dpbstf.

3 Description

F08UFF (DPBSTF) computes a split Cholesky factorization of a real symmetric positive definite band
matrix B. It is designed to be used in conjunction with F08UEF (DSBGST).

The factorization has the form B ¼ STS, where S is a band matrix of the same bandwidth as B and the
following structure: S is upper triangular in the first nþ kð Þ=2 rows, and transposed — hence, lower
triangular — in the remaining rows. For example, if n ¼ 9 and k ¼ 2, then

S ¼

s11 s12 s13
s22 s23 s24

s33 s34 s35
s44 s45

s55
s64 s65 s66

s75 s76 s77
s86 s87 s88

s97 s98 s99

0BBBBBBBBBB@

1CCCCCCCCCCA
:

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of B is stored.

UPLO ¼ U
The upper triangular part of B is stored.

UPLO ¼ L
The lower triangular part of B is stored.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix B.

Constraint: N � 0.

3: KB – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kb, of the matrix B.

If UPLO ¼ L , the number of subdiagonals, kb, of the matrix B.

Constraint: KB � 0.

4: BBðLDBB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array BB must be at least max 1;Nð Þ.
On entry: the n by n symmetric positive definite band matrix B.

The matrix is stored in rows 1 to kb þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of B within the band must be stored with
element Bij in BBðkb þ 1þ i� j; jÞ for max 1; j� kbð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of B within the band must be stored with
element Bij in BBð1þ i� j; jÞ for j � i � min n; jþ kbð Þ:

On exit: B is overwritten by the elements of its split Cholesky factor S.

5: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F08UFF (DPBSTF) is called.

Constraint: LDBB � KBþ 1.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the factorization could not be completed, because the updated element b i; ið Þ would
be the square root of a negative number. Hence B is not positive definite. This may indicate an
error in forming the matrix B.

7 Accuracy

The computed factor S is the exact factor of a perturbed matrix Bþ Eð Þ, where

Ej j � c kþ 1ð Þ� ST
		 		 Sj j;

c kþ 1ð Þ is a modest linear function of kþ 1, and � is the machine precision. It follows that

eij
		 		 � c kþ 1ð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
biibjj
� �q

.
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8 Parallelism and Performance

F08UFF (DPBSTF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately n kþ 1ð Þ2, assuming n� k.

A call to F08UFF (DPBSTF) may be followed by a call to F08UEF (DSBGST) to solve the generalized
eigenproblem Az ¼ �Bz, where A and B are banded and B is positive definite.

The complex analogue of this routine is F08UTF (ZPBSTF).

10 Example

See Section 10 in F08UEF (DSBGST).
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NAG Library Routine Document

F08UNF (ZHBGV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08UNF (ZHBGV) computes all the eigenvalues and, optionally, the eigenvectors of a complex
generalized Hermitian-definite banded eigenproblem, of the form

Az ¼ �Bz;

where A and B are Hermitian and banded, and B is also positive definite.

2 Specification

SUBROUTINE F08UNF (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ,
WORK, RWORK, INFO)

&

INTEGER N, KA, KB, LDAB, LDBB, LDZ, INFO
REAL (KIND=nag_wp) W(N), RWORK(3*N)
COMPLEX (KIND=nag_wp) AB(LDAB,*), BB(LDBB,*), Z(LDZ,*), WORK(N)
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name zhbgv.

3 Description

The generalized Hermitian-definite band problem

Az ¼ �Bz

is first reduced to a standard band Hermitian problem

Cx ¼ �x;

where C is a Hermitian band matrix, using Wilkinson's modification to Crawford's algorithm (see
Crawford (1973) and Wilkinson (1977)). The Hermitian eigenvalue problem is then solved for the
eigenvalues and the eigenvectors, if required, which are then backtransformed to the eigenvectors of the
original problem.

The eigenvectors are normalized so that the matrix of eigenvectors, Z, satisfies

ZHAZ ¼ � and ZHBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41–44

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1977) Some recent advances in numerical linear algebra The State of the Art in
Numerical Analysis (ed D A H Jacobs) Academic Press

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08UNF

Mark 26 F08UNF.1

http://www.netlib.org/lapack/lug


5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: KA – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, ka, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, ka, of the matrix A.

Constraint: KA � 0.

5: KB – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kb, of the matrix B.

If UPLO ¼ L , the number of subdiagonals, kb, of the matrix B.

Constraint: KA � KB � 0.

6: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to ka þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðka þ 1þ i� j; jÞ for max 1; j� kað Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kað Þ:

On exit: the contents of AB are overwritten.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08UNF (ZHBGV) is called.

Constraint: LDAB � KAþ 1.
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8: BBðLDBB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array BB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n Hermitian band matrix B.

The matrix is stored in rows 1 to kb þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of B within the band must be stored with
element Bij in BBðkb þ 1þ i� j; jÞ for max 1; j� kbð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of B within the band must be stored with
element Bij in BBð1þ i� j; jÞ for j � i � min n; jþ kbð Þ:

On exit: the factor S from the split Cholesky factorization B ¼ SHS, as returned by F08UTF
(ZPBSTF).

9: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F08UNF (ZHBGV) is called.

Constraint: LDBB � KBþ 1.

10: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

11: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the matrix Z of eigenvectors, with the ith column of Z
holding the eigenvector associated with WðiÞ. The eigenvectors are normalized so that
ZHBZ ¼ I.
If JOBZ ¼ N , Z is not referenced.

12: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08UNF
(ZHBGV) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

13: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

14: RWORKð3� NÞ – REAL (KIND=nag_wp) array Workspace

15: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

If INFO ¼ i and i � N, the algorithm failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero.

If INFO ¼ i and i > N, if INFO ¼ Nþ i, for 1 � i � N, then F08UTF (ZPBSTF) returned
INFO ¼ i: B is not positive definite. The factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

8 Parallelism and Performance

F08UNF (ZHBGV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08UNF (ZHBGV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3 if JOBZ ¼ V and, assuming that
n� ka, is approximately proportional to n2ka otherwise.

The real analogue of this routine is F08UAF (DSBGV).

10 Example

This example finds all the eigenvalues of the generalized band Hermitian eigenproblem Az ¼ �Bz,
where

A ¼
�1:13 1:94� 2:10i �1:40þ 0:25i 0
1:94þ 2:10i �1:91 �0:82� 0:89i �0:67þ 0:34i
�1:40� 0:25i �0:82þ 0:89i �1:87 �1:10� 0:16i
0 �0:67� 0:34i �1:10þ 0:16i 0:50

0B@
1CA

and

B ¼
9:89 1:08� 1:73i 0 0
1:08þ 1:73i 1:69 �0:04þ 0:29i 0
0 �0:04� 0:29i 2:65 �0:33þ 2:24i
0 0 �0:33� 2:24i 2:17

0B@
1CA:

10.1 Program Text

Program f08unfe

! F08UNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zhbgv
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Integer :: i, info, j, ka, kb, ldab, ldbb, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), bb(:,:), work(:)
Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F08UNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ka, kb
ldab = ka + 1
ldbb = kb + 1
Allocate (ab(ldab,n),bb(ldbb,n),work(n),rwork(3*n),w(n))

! Read the upper or lower triangular parts of the matrices A and
! B from data file

If (uplo==’U’) Then
Read (nin,*)((ab(ka+1+i-j,j),j=i,min(n,i+ka)),i=1,n)
Read (nin,*)((bb(kb+1+i-j,j),j=i,min(n,i+kb)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-ka),i),i=1,n)
Read (nin,*)((bb(1+i-j,j),j=max(1,i-kb),i),i=1,n)

End If

! Solve the generalized Hermitian band eigenvalue problem
! A*x = lambda*B*x

! The NAG name equivalent of zhbgv is f08unf
Call zhbgv(’No vectors’,uplo,n,ka,kb,ab,ldab,bb,ldbb,w,dummy,1,work, &

rwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout,99998) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99997) ’Failure in ZHBGV. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (1X,A,I4,A)
99997 Format (1X,A,I4)

End Program f08unfe

10.2 Program Data

F08UNF Example Program Data

4 2 1 :Values of N, KA and KB

(-1.13, 0.00) ( 1.94,-2.10) (-1.40, 0.25)
(-1.91, 0.00) (-0.82,-0.89) (-0.67, 0.34)

(-1.87, 0.00) (-1.10,-0.16)
( 0.50, 0.00) :End of matrix A
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( 9.89, 0.00) ( 1.08,-1.73)
( 1.69, 0.00) (-0.04, 0.29)

( 2.65, 0.00) (-0.33, 2.24)
( 2.17, 0.00) :End of matrix B

10.3 Program Results

F08UNF Example Program Results

Eigenvalues
-6.6089 -2.0416 0.1603 1.7712
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NAG Library Routine Document

F08UPF (ZHBGVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08UPF (ZHBGVX) computes selected the eigenvalues and, optionally, the eigenvectors of a complex
generalized Hermitian-definite banded eigenproblem, of the form

Az ¼ �Bz;

where A and B are Hermitian and banded, and B is also positive definite. Eigenvalues and eigenvectors
can be selected by specifying either all eigenvalues, a range of values or a range of indices for the
desired eigenvalues.

2 Specification

SUBROUTINE F08UPF (JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q,
LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
RWORK, IWORK, JFAIL, INFO)

&
&

INTEGER N, KA, KB, LDAB, LDBB, LDQ, IL, IU, M, LDZ,
IWORK(5*N), JFAIL(*), INFO

&

REAL (KIND=nag_wp) VL, VU, ABSTOL, W(N), RWORK(7*N)
COMPLEX (KIND=nag_wp) AB(LDAB,*), BB(LDBB,*), Q(LDQ,*), Z(LDZ,*),

WORK(N)
&

CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name zhbgvx.

3 Description

The generalized Hermitian-definite band problem

Az ¼ �Bz

is first reduced to a standard band Hermitian problem

Cx ¼ �x;

where C is a Hermitian band matrix, using Wilkinson's modification to Crawford's algorithm (see
Crawford (1973) and Wilkinson (1977)). The Hermitian eigenvalue problem is then solved for the
required eigenvalues and eigenvectors, and the eigenvectors are then backtransformed to the
eigenvectors of the original problem.

The eigenvectors are normalized so that

zHAz ¼ � and zHBz ¼ 1:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41–44

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912
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Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1977) Some recent advances in numerical linear algebra The State of the Art in
Numerical Analysis (ed D A H Jacobs) Academic Press

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

Constraint: RANGE ¼ A , V or I .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

5: KA – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, ka, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, ka, of the matrix A.

Constraint: KA � 0.

6: KB – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kb, of the matrix B.

If UPLO ¼ L , the number of subdiagonals, kb, of the matrix B.

Constraint: KA � KB � 0.

7: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to ka þ 1, more precisely,
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if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðka þ 1þ i� j; jÞ for max 1; j� kað Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kað Þ:

On exit: the contents of AB are overwritten.

8: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08UPF (ZHBGVX) is called.

Constraint: LDAB � KAþ 1.

9: BBðLDBB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array BB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n Hermitian positive definite band matrix B.

The matrix is stored in rows 1 to kb þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of B within the band must be stored with
element Bij in BBðkb þ 1þ i� j; jÞ for max 1; j� kbð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of B within the band must be stored with
element Bij in BBð1þ i� j; jÞ for j � i � min n; jþ kbð Þ:

On exit: the factor S from the split Cholesky factorization B ¼ SHS, as returned by F08UTF
(ZPBSTF).

10: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F08UPF (ZHBGVX) is called.

Constraint: LDBB � KBþ 1.

11: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , the n by n matrix, Q used in the reduction of the standard form, i.e.,
Cx ¼ �x, from symmetric banded to tridiagonal form.

If JOBZ ¼ N , Q is not referenced.

12: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08UPF
(ZHBGVX) is called.

Constraints:

if JOBZ ¼ V , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

13: VL – REAL (KIND=nag_wp) Input
14: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.
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15: IL – INTEGER Input
16: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues
to be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

17: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ;

where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing C to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow
threshold 2� X02AMFð Þ, not zero. If this routine returns with INFO ¼ 1 to N, indicating that
some eigenvectors did not converge, try setting ABSTOL to 2� X02AMFð Þ. See Demmel and
Kahan (1990).

18: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

19: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

20: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the matrix Z of eigenvectors, with the ith column of Z
holding the eigenvector associated with WðiÞ. The eigenvectors are normalized so that
ZHBZ ¼ I.
If JOBZ ¼ N , Z is not referenced.

21: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08UPF
(ZHBGVX) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

22: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

23: RWORKð7� NÞ – REAL (KIND=nag_wp) array Workspace

24: IWORKð5� NÞ – INTEGER array Workspace
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25: JFAILð�Þ – INTEGER array Output

Note: the dimension of the array JFAIL must be at least max 1;Nð Þ.
On exit: if JOBZ ¼ V , then

if INFO ¼ 0, the first M elements of JFAIL are zero;

if INFO ¼ 1 to N, JFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ ¼ N , JFAIL is not referenced.

26: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

If INFO ¼ i, then i eigenvectors failed to converge. Their indices are stored in array JFAIL.
Please see ABSTOL.

INFO > N

F08UFF (DPBSTF) returned an error code; i.e., if INFO ¼ Nþ i, for 1 � i � N, then the leading
minor of order i of B is not positive definite. The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

8 Parallelism and Performance

F08UPF (ZHBGVX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08UPF (ZHBGVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3 if JOBZ ¼ V and RANGE ¼ A ,
and assuming that n� ka, is approximately proportional to n2ka if JOBZ ¼ N . Otherwise the number
of floating-point operations depends upon the number of eigenvectors computed.

The real analogue of this routine is F08UBF (DSBGVX).
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10 Example

This example finds the eigenvalues in the half-open interval 0:0; 2:0ð �, and corresponding eigenvectors,
of the generalized band Hermitian eigenproblem Az ¼ �Bz, where

A ¼
�1:13 1:94� 2:10i �1:40þ 0:25i 0
1:94þ 2:10i �1:91 �0:82� 0:89i �0:67þ 0:34i
�1:40� 0:25i �0:82þ 0:89i �1:87 �1:10� 0:16i
0 �0:67� 0:34i �1:10þ 0:16i 0:50

0B@
1CA

and

B ¼
9:89 1:08� 1:73i 0 0
1:08þ 1:73i 1:69 �0:04þ 0:29i 0
0 �0:04� 0:29i 2:65 �0:33þ 2:24i
0 0 �0:33� 2:24i 2:17

0B@
1CA:

10.1 Program Text

Program f08upfe

! F08UPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf, zhbgvx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, j, ka, kb, &

ldab, ldbb, ldq, ldz, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:), bb(:,:), q(:,:), work(:), &
z(:,:)

Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:), jfail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F08UPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ka, kb
ldab = ka + 1
ldbb = kb + 1
ldq = n
ldz = n
m = n
Allocate (ab(ldab,n),bb(ldbb,n),q(ldq,n),work(n),z(ldz,m),rwork(7*n), &

w(n),iwork(5*n),jfail(n))

! Read the lower and upper bounds of the interval to be searched,
! and read the upper or lower triangular parts of the matrices A
! and B from data file

Read (nin,*) vl, vu
If (uplo==’U’) Then

Read (nin,*)((ab(ka+1+i-j,j),j=i,min(n,i+ka)),i=1,n)
Read (nin,*)((bb(kb+1+i-j,j),j=i,min(n,i+kb)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-ka),i),i=1,n)
Read (nin,*)((bb(1+i-j,j),j=max(1,i-kb),i),i=1,n)
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End If

! Set the absolute error tolerance for eigenvalues. With abstol
! set to zero, the default value is used instead

abstol = zero

! Solve the generalized symmetric eigenvalue problem
! A*x = lambda*B*x

! The NAG name equivalent of zhbgvx is f08upf
Call zhbgvx(’Vectors’,’Values in range’,uplo,n,ka,kb,ab,ldab,bb,ldbb,q, &

ldq,vl,vu,il,iu,abstol,m,w,z,ldz,work,rwork,iwork,jfail,info)

If (info>=0 .And. info<=n) Then

! Print solution

Write (nout,99999) ’Number of eigenvalues found =’, m
Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,99998) w(1:m)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04daf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

If (info>0) Then
Write (nout,99999) ’INFO eigenvectors failed to converge, INFO =’, &

info
Write (nout,*) ’Indices of eigenvectors that did not converge’
Write (nout,99997) jfail(1:m)

End If
Else If (info>n .And. info<=2*n) Then

i = info - n
Write (nout,99996) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99999) ’Failure in ZHBGVX. INFO =’, info
End If

99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))
99996 Format (1X,A,I4,A)

End Program f08upfe

10.2 Program Data

F08UPF Example Program Data

4 2 1 :Values of N, KA and KB

0.0 2.0 :Values of VL and VU

(-1.13, 0.00) ( 1.94,-2.10) (-1.40, 0.25)
(-1.91, 0.00) (-0.82,-0.89) (-0.67, 0.34)

(-1.87, 0.00) (-1.10,-0.16)
( 0.50, 0.00) :End of matrix A

( 9.89, 0.00) ( 1.08,-1.73)
( 1.69, 0.00) (-0.04, 0.29)

( 2.65, 0.00) (-0.33, 2.24)
( 2.17, 0.00) :End of matrix B
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10.3 Program Results

F08UPF Example Program Results

Number of eigenvalues found = 2

Eigenvalues
0.1603 1.7712

Selected eigenvectors
1 2

1 0.1908 0.0494
0.0137 -0.0045

2 0.1413 0.2505
0.1012 0.4427

3 -0.0437 -0.9705
-0.0905 0.0679

4 -0.2135 0.0606
0.2880 -1.3227
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NAG Library Routine Document

F08UQF (ZHBGVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08UQF (ZHBGVD) computes all the eigenvalues and, optionally, the eigenvectors of a complex
generalized Hermitian-definite banded eigenproblem, of the form

Az ¼ �Bz;

where A and B are Hermitian and banded, and B is also positive definite. If eigenvectors are desired, it
uses a divide-and-conquer algorithm.

2 Specification

SUBROUTINE F08UQF (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ,
WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)

&

INTEGER N, KA, KB, LDAB, LDBB, LDZ, LWORK, LRWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) W(N), RWORK(max(1,LRWORK))
COMPLEX (KIND=nag_wp) AB(LDAB,*), BB(LDBB,*), Z(LDZ,*),

WORK(max(1,LWORK))
&

CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name zhbgvd.

3 Description

The generalized Hermitian-definite band problem

Az ¼ �Bz

is first reduced to a standard band Hermitian problem

Cx ¼ �x;

where C is a Hermitian band matrix, using Wilkinson's modification to Crawford's algorithm (see
Crawford (1973) and Wilkinson (1977)). The Hermitian eigenvalue problem is then solved for the
eigenvalues and the eigenvectors, if required, which are then backtransformed to the eigenvectors of the
original problem.

The eigenvectors are normalized so that the matrix of eigenvectors, Z, satisfies

ZHAZ ¼ � and ZHBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41–44
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Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1977) Some recent advances in numerical linear algebra The State of the Art in
Numerical Analysis (ed D A H Jacobs) Academic Press

5 Arguments

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangles of A and B are stored.

If UPLO ¼ L , the lower triangles of A and B are stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: KA – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, ka, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, ka, of the matrix A.

Constraint: KA � 0.

5: KB – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kb, of the matrix B.

If UPLO ¼ L , the number of subdiagonals, kb, of the matrix B.

Constraint: KA � KB � 0.

6: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to ka þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðka þ 1þ i� j; jÞ for max 1; j� kað Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kað Þ:

On exit: the contents of AB are overwritten.
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7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08UQF (ZHBGVD) is called.

Constraint: LDAB � KAþ 1.

8: BBðLDBB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array BB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n Hermitian band matrix B.

The matrix is stored in rows 1 to kb þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of B within the band must be stored with
element Bij in BBðkb þ 1þ i� j; jÞ for max 1; j� kbð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of B within the band must be stored with
element Bij in BBð1þ i� j; jÞ for j � i � min n; jþ kbð Þ:

On exit: the factor S from the split Cholesky factorization B ¼ SHS, as returned by F08UTF
(ZPBSTF).

9: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F08UQF (ZHBGVD) is called.

Constraint: LDBB � KBþ 1.

10: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues in ascending order.

11: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if JOBZ ¼ V , and at least
1 otherwise.

On exit: if JOBZ ¼ V , Z contains the matrix Z of eigenvectors, with the ith column of Z
holding the eigenvector associated with WðiÞ. The eigenvectors are normalized so that
ZHBZ ¼ I.
If JOBZ ¼ N , Z is not referenced.

12: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08UQF
(ZHBGVD) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

13: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

14: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08UQF (ZHBGVD) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes of
the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK,
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RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or LIWORK
is issued.

Constraints:

if N � 1, LWORK � 1;
if JOBZ ¼ N and N > 1, LWORK � max 1;Nð Þ;
if JOBZ ¼ V and N > 1, LWORK � max 1;N2

� �
.

15: RWORKðmax 1;LRWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, RWORKð1Þ returns the optimal LRWORK.

16: LRWORK – INTEGER Input

On entry: the first dimension of the array RWORK as declared in the (sub)program from which
F08UQF (ZHBGVD) is called.

If LRWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes
of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the
WORK, RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or
LIWORK is issued.

Constraints:

if N � 1, LRWORK � 1;
if JOBZ ¼ N and N > 1, LRWORK � max 1;Nð Þ;
if JOBZ ¼ V and N > 1, LRWORK � 1þ 5� Nþ 2� N2.

17: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the optimal LIWORK.

18: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08UQF (ZHBGVD) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal sizes
of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the
WORK, RWORK and IWORK arrays, and no error message related to LWORK, LRWORK or
LIWORK is issued.

Constraints:

if JOBZ ¼ N or N � 1, LIWORK � 1;
if JOBZ ¼ V and N > 1, LIWORK � 3þ 5� N.

19: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i and i � N, the algorithm failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero.
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If INFO ¼ i and i > N, if INFO ¼ Nþ i, for 1 � i � N, then F08UTF (ZPBSTF) returned
INFO ¼ i: B is not positive definite. The factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

8 Parallelism and Performance

F08UQF (ZHBGVD) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08UQF (ZHBGVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3 if JOBZ ¼ V and, assuming that
n� ka, is approximately proportional to n2ka otherwise.

The real analogue of this routine is F08UCF (DSBGVD).

10 Example

This example finds all the eigenvalues of the generalized band Hermitian eigenproblem Az ¼ �Bz,
where

A ¼
�1:13 1:94� 2:10i �1:40þ 0:25i 0
1:94þ 2:10i �1:91 �0:82� 0:89i �0:67þ 0:34i
�1:40� 0:25i �0:82þ 0:89i �1:87 �1:10� 0:16i
0 �0:67� 0:34i �1:10þ 0:16i 0:50

0B@
1CA

and

B ¼
9:89 1:08� 1:73i 0 0
1:08þ 1:73i 1:69 �0:04þ 0:29i 0
0 �0:04� 0:29i 2:65 �0:33þ 2:24i
0 0 �0:33� 2:24i 2:17

0B@
1CA:

10.1 Program Text

Program f08uqfe

! F08UQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, zhbgvd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = ’U’

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08UQF
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! .. Local Scalars ..
Integer :: i, info, j, ka, kb, ldab, ldbb, &

liwork, lrwork, lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: ab(:,:), bb(:,:), work(:)
Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F08UQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ka, kb
ldab = ka + 1
ldbb = kb + 1
lrwork = n
lwork = n
liwork = 1
Allocate (ab(ldab,n),bb(ldbb,n),work(lwork),rwork(lrwork),w(n), &

iwork(liwork))

! Read the upper or lower triangular parts of the matrices A and
! B from data file

If (uplo==’U’) Then
Read (nin,*)((ab(ka+1+i-j,j),j=i,min(n,i+ka)),i=1,n)
Read (nin,*)((bb(kb+1+i-j,j),j=i,min(n,i+kb)),i=1,n)

Else If (uplo==’L’) Then
Read (nin,*)((ab(1+i-j,j),j=max(1,i-ka),i),i=1,n)
Read (nin,*)((bb(1+i-j,j),j=max(1,i-kb),i),i=1,n)

End If

! Solve the generalized Hermitian band eigenvalue problem
! A*x = lambda*B*x

! The NAG name equivalent of zhbgvd is f08uqf
Call zhbgvd(’No vectors’,uplo,n,ka,kb,ab,ldab,bb,ldbb,w,dummy,1,work, &

lwork,rwork,lrwork,iwork,liwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Eigenvalues’
Write (nout,99999) w(1:n)

Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout,99998) ’The leading minor of order ’, i, &

’ of B is not positive definite’
Else

Write (nout,99997) ’Failure in ZHBGVD. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (1X,A,I4,A)
99997 Format (1X,A,I4)

End Program f08uqfe

10.2 Program Data

F08UQF Example Program Data

4 2 1 :Values of N, KA and KB

(-1.13, 0.00) ( 1.94,-2.10) (-1.40, 0.25)
(-1.91, 0.00) (-0.82,-0.89) (-0.67, 0.34)

(-1.87, 0.00) (-1.10,-0.16)
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( 0.50, 0.00) :End of matrix A

( 9.89, 0.00) ( 1.08,-1.73)
( 1.69, 0.00) (-0.04, 0.29)

( 2.65, 0.00) (-0.33, 2.24)
( 2.17, 0.00) :End of matrix B

10.3 Program Results

F08UQF Example Program Results

Eigenvalues
-6.6089 -2.0416 0.1603 1.7712
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NAG Library Routine Document

F08USF (ZHBGST)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08USF (ZHBGST) reduces a complex Hermitian-definite generalized eigenproblem Az ¼ �Bz to the
standard form Cy ¼ �y, where A and B are band matrices, A is a complex Hermitian matrix, and B has
been factorized by F08UTF (ZPBSTF).

2 Specification

SUBROUTINE F08USF (VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, LDX,
WORK, RWORK, INFO)

&

INTEGER N, KA, KB, LDAB, LDBB, LDX, INFO
REAL (KIND=nag_wp) RWORK(N)
COMPLEX (KIND=nag_wp) AB(LDAB,*), BB(LDBB,*), X(LDX,*), WORK(N)
CHARACTER(1) VECT, UPLO

The routine may be called by its LAPACK name zhbgst.

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem Az ¼ �Bz to the standard form
Cy ¼ �y, where A, B and C are banded, F08USF (ZHBGST) must be preceded by a call to F08UTF
(ZPBSTF) which computes the split Cholesky factorization of the positive definite matrix B: B ¼ SHS.
The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to
be approximately halved.

This routine overwrites A with C ¼ XHAX, where X ¼ S�1Q and Q is a unitary matrix chosen
(implicitly) to preserve the bandwidth of A. The routine also has an option to allow the accumulation of
X, and then, if z is an eigenvector of C, Xz is an eigenvector of the original system.

4 References

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16
41–44

Kaufman L (1984) Banded eigenvalue solvers on vector machines ACM Trans. Math. Software 10 73–
86

5 Arguments

1: VECT – CHARACTER(1) Input

On entry: indicates whether X is to be returned.

VECT ¼ N
X is not returned.

VECT ¼ V
X is returned.

Constraint: VECT ¼ N or V .
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Mark 26 F08USF.1



2: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of A is stored.

UPLO ¼ U
The upper triangular part of A is stored.

UPLO ¼ L
The lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: KA – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, ka, of the matrix A.

If UPLO ¼ L , the number of subdiagonals, ka, of the matrix A.

Constraint: KA � 0.

5: KB – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kb, of the matrix B.

If UPLO ¼ L , the number of subdiagonals, kb, of the matrix B.

Constraint: KA � KB � 0.

6: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the upper or lower triangle of the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to ka þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in ABðka þ 1þ i� j; jÞ for max 1; j� kað Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in ABð1þ i� j; jÞ for j � i � min n; jþ kað Þ:

On exit: the upper or lower triangle of AB is overwritten by the corresponding upper or lower
triangle of C as specified by UPLO.

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F08USF (ZHBGST) is called.

Constraint: LDAB � KAþ 1.

8: BBðLDBB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array BB must be at least max 1;Nð Þ.
On entry: the banded split Cholesky factor of B as specified by UPLO, N and KB and returned
by F08UTF (ZPBSTF).
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9: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F08USF (ZHBGST) is called.

Constraint: LDBB � KBþ 1.

10: XðLDX; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least max 1;Nð Þ if VECT ¼ V and at least
1 if VECT ¼ N .

On exit: the n by n matrix X ¼ S�1Q, if VECT ¼ V .

If VECT ¼ N , X is not referenced.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F08USF
(ZHBGST) is called.

Constraints:

if VECT ¼ V , LDX � max 1;Nð Þ;
if VECT ¼ N , LDX � 1.

12: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

13: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by
B�1. When F08USF (ZHBGST) is used as a step in the computation of eigenvalues and eigenvectors of
the original problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to
inversion.

8 Parallelism and Performance

F08USF (ZHBGST) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately 20n2kB, when VECT ¼ N ,
assuming n� kA; kB; there are an additional 5n3 kB=kAð Þ operations when VECT ¼ V .
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The real analogue of this routine is F08UEF (DSBGST).

10 Example

This example computes all the eigenvalues of Az ¼ �Bz, where

A ¼
�1:13þ 0:00i 1:94� 2:10i �1:40þ 0:25i 0:00þ 0:00i
1:94þ 2:10i �1:91þ 0:00i �0:82� 0:89i �0:67þ 0:34i
�1:40� 0:25i �0:82þ 0:89i �1:87þ 0:00i �1:10� 0:16i
0:00þ 0:00i �0:67� 0:34i �1:10þ 0:16i 0:50þ 0:00i

0B@
1CA

and

B ¼
9:89þ 0:00i 1:08� 1:73i 0:00þ 0:00i 0:00þ 0:00i
1:08þ 1:73i 1:69þ 0:00i �0:04þ 0:29i 0:00þ 0:00i
0:00þ 0:00i �0:04� 0:29i 2:65þ 0:00i �0:33þ 2:24i
0:00þ 0:00i 0:00þ 0:00i �0:33� 2:24i 2:17þ 0:00i

0B@
1CA:

Here A is Hermitian, B is Hermitian positive definite, and A and B are treated as band matrices. B
must first be factorized by F08UTF (ZPBSTF). The program calls F08USF (ZHBGST) to reduce the
problem to the standard form Cy ¼ �y, then F08HSF (ZHBTRD) to reduce C to tridiagonal form, and
F08JFF (DSTERF) to compute the eigenvalues.

10.1 Program Text

Program f08usfe

! F08USF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsterf, nag_wp, zhbgst, zhbtrd, zpbstf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, info, j, ka, kb, ldab, ldbb, ldx, &

n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), bb(:,:), work(:), x(:,:)
Real (Kind=nag_wp), Allocatable :: d(:), e(:), rwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F08USF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ka, kb
ldab = ka + 1
ldbb = kb + 1
ldx = n
Allocate (ab(ldab,n),bb(ldbb,n),work(n),x(ldx,n),d(n),e(n-1),rwork(n))

! Read A and B from data file

Read (nin,*) uplo
If (uplo==’U’) Then

Do i = 1, n
Read (nin,*)(ab(ka+1+i-j,j),j=i,min(n,i+ka))

End Do
Do i = 1, n

Read (nin,*)(bb(kb+1+i-j,j),j=i,min(n,i+kb))
End Do

Else If (uplo==’L’) Then
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Do i = 1, n
Read (nin,*)(ab(1+i-j,j),j=max(1,i-ka),i)

End Do
Do i = 1, n

Read (nin,*)(bb(1+i-j,j),j=max(1,i-kb),i)
End Do

End If

! Compute the split Cholesky factorization of B
! The NAG name equivalent of zpbstf is f08utf

Call zpbstf(uplo,n,kb,bb,ldbb,info)

Write (nout,*)
If (info>0) Then

Write (nout,*) ’B is not positive definite.’
Else

! Reduce the problem to standard form C*y = lambda*y, storing
! the result in A
! The NAG name equivalent of zhbgst is f08usf

Call zhbgst(’N’,uplo,n,ka,kb,ab,ldab,bb,ldbb,x,ldx,work,rwork,info)

! Reduce C to tridiagonal form T = (Q**H)*C*Q
! The NAG name equivalent of zhbtrd is f08hsf

Call zhbtrd(’N’,uplo,n,ka,ab,ldab,d,e,x,ldx,work,info)

! Calculate the eigenvalues of T (same as C)
! The NAG name equivalent of dsterf is f08jff

Call dsterf(n,d,e,info)

If (info>0) Then
Write (nout,*) ’Failure to converge.’

Else

! Print eigenvalues

Write (nout,*) ’Eigenvalues’
Write (nout,99999) d(1:n)

End If
End If

99999 Format (3X,(8F8.4))
End Program f08usfe

10.2 Program Data

F08USF Example Program Data
4 2 1 :Values of N, KA and KB
’L’ :Value of UPLO

(-1.13, 0.00)
( 1.94, 2.10) (-1.91, 0.00)
(-1.40,-0.25) (-0.82, 0.89) (-1.87, 0.00)

(-0.67,-0.34) (-1.10, 0.16) ( 0.50, 0.00) :End of matrix A
( 9.89, 0.00)
( 1.08, 1.73) ( 1.69, 0.00)

(-0.04,-0.29) ( 2.65, 0.00)
(-0.33,-2.24) ( 2.17, 0.00) :End of matrix B

10.3 Program Results

F08USF Example Program Results

Eigenvalues
-6.6089 -2.0416 0.1603 1.7712
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NAG Library Routine Document

F08UTF (ZPBSTF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08UTF (ZPBSTF) computes a split Cholesky factorization of a complex Hermitian positive definite
band matrix.

2 Specification

SUBROUTINE F08UTF (UPLO, N, KB, BB, LDBB, INFO)

INTEGER N, KB, LDBB, INFO
COMPLEX (KIND=nag_wp) BB(LDBB,*)
CHARACTER(1) UPLO

The routine may be called by its LAPACK name zpbstf.

3 Description

F08UTF (ZPBSTF) computes a split Cholesky factorization of a complex Hermitian positive definite
band matrix B. It is designed to be used in conjunction with F08USF (ZHBGST).

The factorization has the form B ¼ SHS, where S is a band matrix of the same bandwidth as B and the
following structure: S is upper triangular in the first nþ kð Þ=2 rows, and transposed — hence, lower
triangular — in the remaining rows. For example, if n ¼ 9 and k ¼ 2, then

S ¼

s11 s12 s13
s22 s23 s24

s33 s34 s35
s44 s45

s55
s64 s65 s66

s75 s76 s77
s86 s87 s88

s97 s98 s99

0BBBBBBBBBB@

1CCCCCCCCCCA
:

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates whether the upper or lower triangular part of B is stored.

UPLO ¼ U
The upper triangular part of B is stored.

UPLO ¼ L
The lower triangular part of B is stored.

Constraint: UPLO ¼ U or L .
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2: N – INTEGER Input

On entry: n, the order of the matrix B.

Constraint: N � 0.

3: KB – INTEGER Input

On entry: if UPLO ¼ U , the number of superdiagonals, kb, of the matrix B.

If UPLO ¼ L , the number of subdiagonals, kb, of the matrix B.

Constraint: KB � 0.

4: BBðLDBB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array BB must be at least max 1;Nð Þ.
On entry: the n by n Hermitian positive definite band matrix B.

The matrix is stored in rows 1 to kb þ 1, more precisely,

if UPLO ¼ U , the elements of the upper triangle of B within the band must be stored with
element Bij in BBðkb þ 1þ i� j; jÞ for max 1; j� kbð Þ � i � j;
if UPLO ¼ L , the elements of the lower triangle of B within the band must be stored with
element Bij in BBð1þ i� j; jÞ for j � i � min n; jþ kbð Þ:

On exit: B is overwritten by the elements of its split Cholesky factor S.

5: LDBB – INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which
F08UTF (ZPBSTF) is called.

Constraint: LDBB � KBþ 1.

6: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the factorization could not be completed, because the updated element b i; ið Þ would
be the square root of a negative number. Hence B is not positive definite. This may indicate an
error in forming the matrix B.

7 Accuracy

The computed factor S is the exact factor of a perturbed matrix Bþ Eð Þ, where

Ej j � c kþ 1ð Þ� SH
		 		 Sj j;

c kþ 1ð Þ is a modest linear function of kþ 1, and � is the machine precision. It follows that

eij
		 		 � c kþ 1ð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
biibjj
� �q

.
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8 Parallelism and Performance

F08UTF (ZPBSTF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 4n kþ 1ð Þ2, assuming n� k.

A call to F08UTF (ZPBSTF) may be followed by a call to F08USF (ZHBGST) to solve the generalized
eigenproblem Az ¼ �Bz, where A and B are banded and B is positive definite.

The real analogue of this routine is F08UFF (DPBSTF).

10 Example

See Section 10 in F08USF (ZHBGST).
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NAG Library Routine Document

F08VAF (DGGSVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08VAF (DGGSVD) computes the generalized singular value decomposition (GSVD) of an m by n real
matrix A and a p by n real matrix B. F08VAF (DGGSVD) is marked as deprecated by LAPACK; the
replacement routine is F08VCF (DGGSVD3) which makes better use of level 3 BLAS.

2 Specification

SUBROUTINE F08VAF (JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, IWORK,
INFO)

&
&

INTEGER M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, IWORK(N),
INFO

&

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHA(N), BETA(N), U(LDU,*),
V(LDV,*), Q(LDQ,*), WORK(max(3*N,M,P)+N)

&

CHARACTER(1) JOBU, JOBV, JOBQ

The routine may be called by its LAPACK name dggsvd.

3 Description

The generalized singular value decomposition is given by

UTAQ ¼ D1 0 R
� �

; V TBQ ¼ D2 0 R
� �

;

where U , V and Q are orthogonal matrices. Let kþ lð Þ be the effective numerical rank of the matrix
A
B

� �
, then R is a kþ lð Þ by kþ lð Þ nonsingular upper triangular matrix, D1 and D2 are m by kþ lð Þ

and p by kþ lð Þ ‘diagonal’ matrices structured as follows:

if m� k� l � 0,

D1 ¼

1A0@
k l

k I 0
l 0 C

m� k� l 0 0

D2 ¼
�� k l

l 0 S
p� l 0 0

0 R
� �

¼
��n� k� l k l

k 0 R11 R12
l 0 0 R22

where

C ¼ diag �kþ1; . . . ; �kþlð Þ;
S ¼ diag �kþ1; . . . ; �kþlð Þ;

and
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C2 þ S2 ¼ I:

R is stored as a submatrix of A with elements Rij stored as Ai;n�k�lþj on exit.

If m� k� l < 0,

D1 ¼
�� k m� k kþ l�m

k I 0 0
m� k 0 C 0

D2 ¼

1A0@
k m� k kþ l�m

m� k 0 S 0
kþ l�m 0 0 I

p� l 0 0 0

0 R
� �

¼

1A0@
n� k� l k m� k kþ l�m

k 0 R11 R12 R13
m� k 0 0 R22 R23

kþ l�m 0 0 0 R33

where

C ¼ diag �kþ1; . . . ; �mð Þ;
S ¼ diag �kþ1; . . . ; �mð Þ;

and

C2 þ S2 ¼ I:

R11 R12 R13
0 R22 R23

� �
is stored as a submatrix of A with Rij stored as Ai;n�k�lþj, and R33 is stored as a

submatrix of B with R33ð Þij stored as Bm�kþi;nþm�k�lþj.

The routine computes C, S, R and, optionally, the orthogonal transformation matrices U , V and Q.

In particular, if B is an n by n nonsingular matrix, then the GSVD of A and B implicitly gives the SVD
of AB�1:

AB�1 ¼ U D1D
�1
2

� �
V T:

If A
B

� �
has orthonormal columns, then the GSVD of A and B is also equal to the CS decomposition

of A and B. Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem:

ATAx ¼ �BTBx:

In some literature, the GSVD of A and B is presented in the form

UTAX ¼ 0 D1

� �
; V TBX ¼ 0 D2

� �
;

where U and V are orthogonal and X is nonsingular, and D1 and D2 are ‘diagonal’. The former GSVD
form can be converted to the latter form by taking the nonsingular matrix X as

X ¼ Q I 0
0 R�1

� �
:
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5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: if JOBU ¼ U , the orthogonal matrix U is computed.

If JOBU ¼ N , U is not computed.

Constraint: JOBU ¼ U or N .

2: JOBV – CHARACTER(1) Input

On entry: if JOBV ¼ V , the orthogonal matrix V is computed.

If JOBV ¼ N , V is not computed.

Constraint: JOBV ¼ V or N .

3: JOBQ – CHARACTER(1) Input

On entry: if JOBQ ¼ Q , the orthogonal matrix Q is computed.

If JOBQ ¼ N , Q is not computed.

Constraint: JOBQ ¼ Q or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

6: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

7: K – INTEGER Output
8: L – INTEGER Output

On exit: K and L specify the dimension of the subblocks k and l as described in Section 3;

kþ lð Þ is the effective numerical rank of A
B

� �
.

9: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: contains the triangular matrix R, or part of R. See Section 3 for details.
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10: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08VAF
(DGGSVD) is called.

Constraint: LDA � max 1;Mð Þ.

11: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: contains the triangular matrix R if m� k� l < 0. See Section 3 for details.

12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08VAF
(DGGSVD) is called.

Constraint: LDB � max 1; Pð Þ.

13: ALPHAðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

14: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHA and BETA contain the generalized singular value pairs of A and B, �i and �i;

ALPHAð1 : KÞ ¼ 1,

BETAð1 : KÞ ¼ 0,

and if m� k� l � 0,

ALPHAðKþ 1 : K þ LÞ ¼ C,
BETAðK þ 1 : K þ LÞ ¼ S,

or if m� k� l < 0,

ALPHAðKþ 1 : MÞ ¼ C,
ALPHAðMþ 1 : K þ LÞ ¼ 0,

BETAðK þ 1 : MÞ ¼ S,
BETAðMþ 1 : K þ LÞ ¼ 1, and

ALPHAðKþ Lþ 1 : NÞ ¼ 0,

BETAðK þ Lþ 1 : NÞ ¼ 0.

The notation ALPHAðK : NÞ above refers to consecutive elements ALPHAðiÞ, for i ¼ K; . . . ;N.

15: UðLDU; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ U , and at least
1 otherwise.

On exit: if JOBU ¼ U , U contains the m by m orthogonal matrix U .

If JOBU ¼ N , U is not referenced.

16: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08VAF
(DGGSVD) is called.
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Constraints:

if JOBU ¼ U , LDU � max 1;Mð Þ;
otherwise LDU � 1.

17: VðLDV; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1; Pð Þ if JOBV ¼ V , and at least
1 otherwise.

On exit: if JOBV ¼ V , V contains the p by p orthogonal matrix V .

If JOBV ¼ N , V is not referenced.

18: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08VAF
(DGGSVD) is called.

Constraints:

if JOBV ¼ V , LDV � max 1; Pð Þ;
otherwise LDV � 1.

19: QðLDQ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBQ ¼ Q , and at least
1 otherwise.

On exit: if JOBQ ¼ Q , Q contains the n by n orthogonal matrix Q.

If JOBQ ¼ N , Q is not referenced.

20: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08VAF
(DGGSVD) is called.

Constraints:

if JOBQ ¼ Q , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

21: WORKðmax 3� N;M;Pð Þ þ NÞ – REAL (KIND=nag_wp) array Workspace

22: IWORKðNÞ – INTEGER array Output

On exit: stores the sorting information. More precisely, the following loop will sort ALPHA

for I=K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor

such that ALPHAð1Þ � ALPHAð2Þ � � � � � ALPHAðNÞ.

23: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO ¼ 1

If INFO ¼ 1, the Jacobi-type procedure failed to converge.

7 Accuracy

The computed generalized singular value decomposition is nearly the exact generalized singular value
decomposition for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where

Ek k2 ¼ O �ð Þ Ak k2 and Fk k2 ¼ O �ð Þ Bk k2;

and � is the machine precision. See Section 4.12 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08VAF (DGGSVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08VNF (ZGGSVD).

10 Example

This example finds the generalized singular value decomposition

A ¼ U�1 0 R
� �

QT; B ¼ V�2 0 R
� �

QT;

where

A ¼
1 2 3
3 2 1
4 5 6
7 8 8

0B@
1CA and B ¼ �2 �3 3

4 6 5

� �
;

together with estimates for the condition number of R and the error bound for the computed generalized
singular values.

The example program assumes that m � n, and would need slight modification if this is not the case.

10.1 Program Text

Program f08vafe

! F08VAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dggsvd, dtrcon, nag_wp, x02ajf, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, rcond, serrbd
Integer :: i, ifail, info, irank, j, k, l, lda, &

ldb, ldq, ldu, ldv, m, n, p
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &
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q(:,:), u(:,:), v(:,:), work(:)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08VAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),q(ldq,n),u(ldu,m),v(ldv,p), &

work(m+3*n),iwork(n))

! Read the m by n matrix A and p by n matrix B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)

! Compute the generalized singular value decomposition of (A, B)
! (A = U*D1*(0 R)*(Q**T), B = V*D2*(0 R)*(Q**T), m>=n)
! The NAG name equivalent of dggsvd is f08vaf

Call dggsvd(’U’,’V’,’Q’,m,n,p,k,l,a,lda,b,ldb,alpha,beta,u,ldu,v,ldv,q, &
ldq,work,iwork,info)

If (info==0) Then

! Print solution

irank = k + l
Write (nout,*) ’Number of infinite generalized singular values (K)’
Write (nout,99999) k
Write (nout,*) ’Number of finite generalized singular values (L)’
Write (nout,99999) l
Write (nout,*) ’Numerical rank of (A**T B**T)**T (K+L)’
Write (nout,99999) irank
Write (nout,*)
Write (nout,*) ’Finite generalized singular values’
Write (nout,99998)(alpha(j)/beta(j),j=k+1,irank)

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04cbf(’General’,’ ’,m,m,u,ldu,’1P,E12.4’,’Orthogonal matrix U’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04cbf(’General’,’ ’,p,p,v,ldv,’1P,E12.4’,’Orthogonal matrix V’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04cbf(’General’,’ ’,n,n,q,ldq,’1P,E12.4’,’Orthogonal matrix Q’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04cbf(’Upper triangular’,’Non-unit’,irank,irank,a(1,n-irank+1), &
lda,’1P,E12.4’,’Nonsingular upper triangular matrix R’,’Integer’, &
rlabs,’Integer’,clabs,80,0,ifail)
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! Call DTRCON (F07TGF) to estimate the reciprocal condition
! number of R

Call dtrcon(’Infinity-norm’,’Upper’,’Non-unit’,irank,a(1,n-irank+1), &
lda,rcond,work,iwork,info)

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for R’
Write (nout,99997) rcond
Write (nout,*)

! So long as irank = n, get the machine precision, eps, and
! compute the approximate error bound for the computed
! generalized singular values

If (irank==n) Then
eps = x02ajf()
serrbd = eps/rcond
Write (nout,*) ’Error estimate for the generalized singular values’
Write (nout,99997) serrbd

Else
Write (nout,*) ’(A**T B**T)**T is not of full rank’

End If
Else

Write (nout,99996) ’Failure in DGGSVD. INFO =’, info
End If

99999 Format (1X,I5)
99998 Format (3X,8(1P,E12.4))
99997 Format (1X,1P,E11.1)
99996 Format (1X,A,I4)

End Program f08vafe

10.2 Program Data

F08VAF Example Program Data

4 3 2 :Values of M, N and P

1.0 2.0 3.0
3.0 2.0 1.0
4.0 5.0 6.0
7.0 8.0 8.0 :End of matrix A

-2.0 -3.0 3.0
4.0 6.0 5.0 :End of matrix B

10.3 Program Results

F08VAF Example Program Results

Number of infinite generalized singular values (K)
1

Number of finite generalized singular values (L)
2

Numerical rank of (A**T B**T)**T (K+L)
3

Finite generalized singular values
1.3151E+00 8.0185E-02

Orthogonal matrix U
1 2 3 4

1 -1.3484E-01 5.2524E-01 -2.0924E-01 8.1373E-01
2 6.7420E-01 -5.2213E-01 -3.8886E-01 3.4874E-01
3 2.6968E-01 5.2757E-01 -6.5782E-01 -4.6499E-01
4 6.7420E-01 4.1615E-01 6.1014E-01 1.5127E-15

Orthogonal matrix V
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1 2
1 3.5539E-01 -9.3472E-01
2 9.3472E-01 3.5539E-01

Orthogonal matrix Q
1 2 3

1 -8.3205E-01 -9.4633E-02 -5.4657E-01
2 5.5470E-01 -1.4195E-01 -8.1985E-01
3 0.0000E+00 -9.8534E-01 1.7060E-01

Nonsingular upper triangular matrix R
1 2 3

1 -2.0569E+00 -9.0121E+00 -9.3705E+00
2 -1.0882E+01 -7.2688E+00
3 -6.0405E+00

Estimate of reciprocal condition number for R
4.2E-02

Error estimate for the generalized singular values
2.6E-15
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NAG Library Routine Document

F08VCF (DGGSVD3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08VCF (DGGSVD3) computes the generalized singular value decomposition (GSVD) of an m by n
real matrix A and a p by n real matrix B.

2 Specification

SUBROUTINE F08VCF (JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, LWORK,
IWORK, INFO)

&
&

INTEGER M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, LWORK,
IWORK(N), INFO

&

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHA(N), BETA(N), U(LDU,*),
V(LDV,*), Q(LDQ,*), WORK(max(1,LWORK))

&

CHARACTER(1) JOBU, JOBV, JOBQ

The routine may be called by its LAPACK name dggsvd3.

3 Description

Given an m by n real matrix A and a p by n real matrix B, the generalized singular value
decomposition is given by

UTAQ ¼ D1 0 R
� �

; V TBQ ¼ D2 0 R
� �

;

where U , V and Q are orthogonal matrices. Let l be the effective numerical rank of B and kþ lð Þ be

the effective numerical rank of the matrix A
B

� �
, then the first k generalized singular values are infinite

and the remaining l are finite. R is a kþ lð Þ by kþ lð Þ nonsingular upper triangular matrix, D1 and D2

are m by kþ lð Þ and p by kþ lð Þ ‘diagonal’ matrices structured as follows:

if m� k� l � 0,

D1 ¼

1A0@
k l

k I 0
l 0 C

m� k� l 0 0

D2 ¼
�� k l

l 0 S
p� l 0 0

0 R
� �

¼
��n� k� l k l

k 0 R11 R12
l 0 0 R22

where

C ¼ diag �kþ1; . . . ; �kþlð Þ;
S ¼ diag �kþ1; . . . ; �kþlð Þ;

and
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C2 þ S2 ¼ I:

R is stored as a submatrix of A with elements Rij stored as Ai;n�k�lþj on exit.

If m� k� l < 0,

D1 ¼
�� k m� k kþ l�m

k I 0 0
m� k 0 C 0

D2 ¼

1A0@
k m� k kþ l�m

m� k 0 S 0
kþ l�m 0 0 I

p� l 0 0 0

0 R
� �

¼

1A0@
n� k� l k m� k kþ l�m

k 0 R11 R12 R13
m� k 0 0 R22 R23

kþ l�m 0 0 0 R33

where

C ¼ diag �kþ1; . . . ; �mð Þ;
S ¼ diag �kþ1; . . . ; �mð Þ;

and

C2 þ S2 ¼ I:

R11 R12 R13
0 R22 R23

� �
is stored as a submatrix of A with Rij stored as Ai;n�k�lþj, and R33 is stored as a

submatrix of B with R33ð Þij stored as Bm�kþi;nþm�k�lþj.

The routine computes C, S, R and, optionally, the orthogonal transformation matrices U , V and Q.

In particular, if B is an n by n nonsingular matrix, then the GSVD of A and B implicitly gives the SVD
of AB�1:

AB�1 ¼ U D1D
�1
2

� �
V T:

If A
B

� �
has orthonormal columns, then the GSVD of A and B is also equal to the CS decomposition

of A and B. Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem:

ATAx ¼ �BTBx:

In some literature, the GSVD of A and B is presented in the form

UTAX ¼ 0 D1

� �
; V TBX ¼ 0 D2

� �
;

where U and V are orthogonal and X is nonsingular, and D1 and D2 are ‘diagonal’. The former GSVD
form can be converted to the latter form by setting

X ¼ Q I 0
0 R�1

� �
:

A two stage process is used to compute the GSVD of the matrix pair A;Bð Þ. The pair is first reduced to
upper triangular form by orthogonal transformations using F08VGF (DGGSVP3). The GSVD of the
resulting upper triangular matrix pair is then performed by F08YEF (DTGSJA) which uses a variant of
the Kogbetliantz algorithm (a cyclic Jacobi method).

F08VCF NAG Library Manual

F08VCF.2 Mark 26



4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: if JOBU ¼ U , the orthogonal matrix U is computed.

If JOBU ¼ N , U is not computed.

Constraint: JOBU ¼ U or N .

2: JOBV – CHARACTER(1) Input

On entry: if JOBV ¼ V , the orthogonal matrix V is computed.

If JOBV ¼ N , V is not computed.

Constraint: JOBV ¼ V or N .

3: JOBQ – CHARACTER(1) Input

On entry: if JOBQ ¼ Q , the orthogonal matrix Q is computed.

If JOBQ ¼ N , Q is not computed.

Constraint: JOBQ ¼ Q or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

6: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

7: K – INTEGER Output
8: L – INTEGER Output

On exit: K and L specify the dimension of the subblocks k and l as described in Section 3;

kþ lð Þ is the effective numerical rank of A
B

� �
.

9: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: contains the triangular matrix R, or part of R. See Section 3 for details.
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10: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08VCF
(DGGSVD3) is called.

Constraint: LDA � max 1;Mð Þ.

11: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: contains the triangular matrix R if m� k� l < 0. See Section 3 for details.

12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08VCF
(DGGSVD3) is called.

Constraint: LDB � max 1; Pð Þ.

13: ALPHAðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

14: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHA and BETA contain the generalized singular value pairs of A and B, �i and �i;

ALPHAð1 : KÞ ¼ 1,

BETAð1 : KÞ ¼ 0,

and if m� k� l � 0,

ALPHAðKþ 1 : K þ LÞ ¼ C,
BETAðK þ 1 : K þ LÞ ¼ S,

or if m� k� l < 0,

ALPHAðKþ 1 : MÞ ¼ C,
ALPHAðMþ 1 : K þ LÞ ¼ 0,

BETAðK þ 1 : MÞ ¼ S,
BETAðMþ 1 : K þ LÞ ¼ 1, and

ALPHAðKþ Lþ 1 : NÞ ¼ 0,

BETAðK þ Lþ 1 : NÞ ¼ 0.

The notation ALPHAðK : NÞ above refers to consecutive elements ALPHAðiÞ, for i ¼ K; . . . ;N.

15: UðLDU; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ U , and at least
1 otherwise.

On exit: if JOBU ¼ U , U contains the m by m orthogonal matrix U .

If JOBU ¼ N , U is not referenced.

16: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08VCF
(DGGSVD3) is called.
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Constraints:

if JOBU ¼ U , LDU � max 1;Mð Þ;
otherwise LDU � 1.

17: VðLDV; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1; Pð Þ if JOBV ¼ V , and at least
1 otherwise.

On exit: if JOBV ¼ V , V contains the p by p orthogonal matrix V .

If JOBV ¼ N , V is not referenced.

18: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08VCF
(DGGSVD3) is called.

Constraints:

if JOBV ¼ V , LDV � max 1; Pð Þ;
otherwise LDV � 1.

19: QðLDQ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBQ ¼ Q , and at least
1 otherwise.

On exit: if JOBQ ¼ Q , Q contains the n by n orthogonal matrix Q.

If JOBQ ¼ N , Q is not referenced.

20: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08VCF
(DGGSVD3) is called.

Constraints:

if JOBQ ¼ Q , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

21: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

22: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)routine from which F08VCF
(DGGSVD3) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, nb� Nþ 1ð Þ, where nb is the optimal block size.

Constraints:

if JOBV ¼ V , LWORK � max 3 � Nþ 1;M; Pð Þ;
if JOBV ¼ N , LWORK � max 3 � Nþ 1;Mð Þ.
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23: IWORKðNÞ – INTEGER array Output

On exit: stores the sorting information. More precisely, if I is the ordered set of indices of
ALPHA containing C (denote as ALPHAðIÞ, see BETA), then the corresponding elements
IWORKðIÞ contain the swap pivots, J , that sorts I such that ALPHAðIÞ is in descending
numerical order.

The following pseudocode sorts the set I:

for i 2 I
j ¼ Ji
swap Ii and Ij

end

24: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

The Jacobi-type procedure failed to converge.

7 Accuracy

The computed generalized singular value decomposition is nearly the exact generalized singular value
decomposition for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where

Ek k2 ¼ O �ð Þ Ak k2 and Fk k2 ¼ O �ð Þ Bk k2;

and � is the machine precision. See Section 4.12 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08VCF (DGGSVD3) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08VCF (DGGSVD3) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This routine replaces the deprecated routine F08VAF (DGGSVD) which used an unblocked algorithm
and therefore did not make best use of level 3 BLAS routines.

The complex analogue of this routine is F08VQF (ZGGSVD3).
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10 Example

This example finds the generalized singular value decomposition

A ¼ U�1 0 R
� �

QT; B ¼ V�2 0 R
� �

QT;

where

A ¼
1 2 3
3 2 1
4 5 6
7 8 8

0B@
1CA and B ¼ �2 �3 3

4 6 5

� �
;

together with estimates for the condition number of R and the error bound for the computed generalized
singular values.

The example program assumes that m � n, and would need slight modification if this is not the case.

10.1 Program Text

Program f08vcfe

! F08VCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dggsvd3, dtrcon, nag_wp, x02ajf, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, rcond, serrbd
Integer :: i, ifail, info, irank, j, k, l, lda, &

ldb, ldq, ldu, ldv, lwork, m, n, p
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &
q(:,:), u(:,:), v(:,:), work(:)

Real (Kind=nag_wp) :: wdum(1)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: nint

! .. Executable Statements ..
Write (nout,*) ’F08VCF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),q(ldq,n),u(ldu,m),v(ldv,p), &

iwork(n))

! Perform workspace query to get optimal size of work
! The NAG name equivalent of dggsvd3 is f08vcf

lwork = -1
Call dggsvd3(’U’,’V’,’Q’,m,n,p,k,l,a,lda,b,ldb,alpha,beta,u,ldu,v,ldv,q, &

ldq,wdum,lwork,iwork,info)
lwork = nint(wdum(1))
Allocate (work(lwork))

! Read the m by n matrix A and p by n matrix B from data file
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Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)

! Compute the generalized singular value decomposition of (A, B)
! (A = U*D1*(0 R)*(Q**T), B = V*D2*(0 R)*(Q**T), m>=n)
! The NAG name equivalent of dggsvd3 is f08vcf

Call dggsvd3(’U’,’V’,’Q’,m,n,p,k,l,a,lda,b,ldb,alpha,beta,u,ldu,v,ldv,q, &
ldq,work,lwork,iwork,info)

If (info==0) Then

! Print solution

irank = k + l
Write (nout,*) ’Number of infinite generalized singular values (K)’
Write (nout,99999) k
Write (nout,*) ’Number of finite generalized singular values (L)’
Write (nout,99999) l
Write (nout,*) ’Numerical rank of (A**T B**T)**T (K+L)’
Write (nout,99999) irank
Write (nout,*)
Write (nout,*) ’Finite generalized singular values’
Write (nout,99998)(alpha(j)/beta(j),j=k+1,irank)

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04cbf(’General’,’ ’,m,m,u,ldu,’1P,E12.4’,’Orthogonal matrix U’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04cbf(’General’,’ ’,p,p,v,ldv,’1P,E12.4’,’Orthogonal matrix V’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04cbf(’General’,’ ’,n,n,q,ldq,’1P,E12.4’,’Orthogonal matrix Q’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04cbf(’Upper triangular’,’Non-unit’,irank,irank,a(1,n-irank+1), &
lda,’1P,E12.4’,’Nonsingular upper triangular matrix R’,’Integer’, &
rlabs,’Integer’,clabs,80,0,ifail)

! Call DTRCON (F07TGF) to estimate the reciprocal condition
! number of R

Call dtrcon(’Infinity-norm’,’Upper’,’Non-unit’,irank,a(1,n-irank+1), &
lda,rcond,work,iwork,info)

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for R’
Write (nout,99997) rcond
Write (nout,*)

! So long as irank = n, get the machine precision, eps, and
! compute the approximate error bound for the computed
! generalized singular values

If (irank==n) Then
eps = x02ajf()
serrbd = eps/rcond
Write (nout,*) ’Error estimate for the generalized singular values’
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Write (nout,99997) serrbd
Else

Write (nout,*) ’(A**T B**T)**T is not of full rank’
End If

Else
Write (nout,99996) ’Failure in DGGSVD3. INFO =’, info

End If

99999 Format (1X,I5)
99998 Format (3X,8(1P,E12.4))
99997 Format (1X,1P,E11.1)
99996 Format (1X,A,I4)

End Program f08vcfe

10.2 Program Data

F08VCF Example Program Data

4 3 2 :Values of M, N and P

1.0 2.0 3.0
3.0 2.0 1.0
4.0 5.0 6.0
7.0 8.0 8.0 :End of matrix A

-2.0 -3.0 3.0
4.0 6.0 5.0 :End of matrix B

10.3 Program Results

F08VCF Example Program Results

Number of infinite generalized singular values (K)
1

Number of finite generalized singular values (L)
2

Numerical rank of (A**T B**T)**T (K+L)
3

Finite generalized singular values
1.3151E+00 8.0185E-02

Orthogonal matrix U
1 2 3 4

1 -1.3484E-01 5.2524E-01 -2.0924E-01 8.1373E-01
2 6.7420E-01 -5.2213E-01 -3.8886E-01 3.4874E-01
3 2.6968E-01 5.2757E-01 -6.5782E-01 -4.6499E-01
4 6.7420E-01 4.1615E-01 6.1014E-01 1.5127E-15

Orthogonal matrix V
1 2

1 3.5539E-01 -9.3472E-01
2 9.3472E-01 3.5539E-01

Orthogonal matrix Q
1 2 3

1 -8.3205E-01 -9.4633E-02 -5.4657E-01
2 5.5470E-01 -1.4195E-01 -8.1985E-01
3 0.0000E+00 -9.8534E-01 1.7060E-01

Nonsingular upper triangular matrix R
1 2 3

1 -2.0569E+00 -9.0121E+00 -9.3705E+00
2 -1.0882E+01 -7.2688E+00
3 -6.0405E+00
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Estimate of reciprocal condition number for R
4.2E-02

Error estimate for the generalized singular values
2.6E-15
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NAG Library Routine Document

F08VEF (DGGSVP)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08VEF (DGGSVP) uses orthogonal transformations to simultaneously reduce the m by n matrix A
and the p by n matrix B to upper triangular form. This factorization is usually used as a preprocessing
step for computing the generalized singular value decomposition (GSVD). F08VEF (DGGSVP) is
marked as deprecated by LAPACK; the replacement routine is F08VGF (DGGSVP3) which makes
better use of level 3 BLAS.

2 Specification

SUBROUTINE F08VEF (JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK,
INFO)

&
&

INTEGER M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, IWORK(N),
INFO

&

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), TOLA, TOLB, U(LDU,*), V(LDV,*),
Q(LDQ,*), TAU(N), WORK(max(3*N,M,P))

&

CHARACTER(1) JOBU, JOBV, JOBQ

The routine may be called by its LAPACK name dggsvp.

3 Description

F08VEF (DGGSVP) computes orthogonal matrices U , V and Q such that

UTAQ ¼

1CCCCA
0BBBB@
n� k� l k l

k 0 A12 A13

l 0 0 A23

m� k� l 0 0 0

; if m� k� l � 0;

1CA
0B@
n� k� l k l

k 0 A12 A13

m� k 0 0 A23

; if m� k� l < 0;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

V TBQ ¼

1CA
0B@
n� k� l k l

l 0 0 B13

p� l 0 0 0

where the k by k matrix A12 and l by l matrix B13 are nonsingular upper triangular; A23 is l by l upper
triangular if m� k� l � 0 and is m� kð Þ by l upper trapezoidal otherwise. kþ lð Þ is the effective

numerical rank of the mþ pð Þ by n matrix AT BT
� �T

.

This decomposition is usually used as the preprocessing step for computing the Generalized Singular
Value Decomposition (GSVD), see routine F08VAF (DGGSVD).

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08VEF

Mark 26 F08VEF.1



4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: if JOBU ¼ U , the orthogonal matrix U is computed.

If JOBU ¼ N , U is not computed.

Constraint: JOBU ¼ U or N .

2: JOBV – CHARACTER(1) Input

On entry: if JOBV ¼ V , the orthogonal matrix V is computed.

If JOBV ¼ N , V is not computed.

Constraint: JOBV ¼ V or N .

3: JOBQ – CHARACTER(1) Input

On entry: if JOBQ ¼ Q , the orthogonal matrix Q is computed.

If JOBQ ¼ N , Q is not computed.

Constraint: JOBQ ¼ Q or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

6: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: contains the triangular (or trapezoidal) matrix described in Section 3.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08VEF
(DGGSVP) is called.

Constraint: LDA � max 1;Mð Þ.
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9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: contains the triangular matrix described in Section 3.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08VEF
(DGGSVP) is called.

Constraint: LDB � max 1; Pð Þ.

11: TOLA – REAL (KIND=nag_wp) Input
12: TOLB – REAL (KIND=nag_wp) Input

On entry: TOLA and TOLB are the thresholds to determine the effective numerical rank of
matrix B and a subblock of A. Generally, they are set to

TOLA ¼ max M;Nð Þ Ak k�;
TOLB ¼ max P;Nð Þ Bk k�;

where � is the machine precision.

The size of TOLA and TOLB may affect the size of backward errors of the decomposition.

13: K – INTEGER Output
14: L – INTEGER Output

On exit: K and L specify the dimension of the subblocks k and l as described in Section 3;

kþ lð Þ is the effective numerical rank of AT BT
� �T

.

15: UðLDU; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ U , and at least
1 otherwise.

On exit: if JOBU ¼ U , U contains the orthogonal matrix U .

If JOBU ¼ N , U is not referenced.

16: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08VEF
(DGGSVP) is called.

Constraints:

if JOBU ¼ U , LDU � max 1;Mð Þ;
otherwise LDU � 1.

17: VðLDV; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1; Pð Þ if JOBV ¼ V , and at least
1 otherwise.

On exit: if JOBV ¼ V , V contains the orthogonal matrix V .

If JOBV ¼ N , V is not referenced.

18: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08VEF
(DGGSVP) is called.
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Constraints:

if JOBV ¼ V , LDV � max 1; Pð Þ;
otherwise LDV � 1.

19: QðLDQ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBQ ¼ Q , and at least
1 otherwise.

On exit: if JOBQ ¼ Q , Q contains the orthogonal matrix Q.

If JOBQ ¼ N , Q is not referenced.

20: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08VEF
(DGGSVP) is called.

Constraints:

if JOBQ ¼ Q , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

21: IWORKðNÞ – INTEGER array Workspace

22: TAUðNÞ – REAL (KIND=nag_wp) array Workspace

23: WORKðmax 3� N;M;Pð ÞÞ – REAL (KIND=nag_wp) array Workspace

24: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is nearly the exact factorization for nearby matrices Aþ Eð Þ and Bþ Fð Þ,
where

Ek k2 ¼ O �ð Þ Ak k2 and Fk k2 ¼ O �ð Þ Bk k2;

and � is the machine precision.

8 Parallelism and Performance

F08VEF (DGGSVP) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The complex analogue of this routine is F08VSF (ZGGSVP).

10 Example

This example finds the generalized factorization

A ¼ U�1 0 S
� �

QT; B ¼ V�2 0 T
� �

QT;

of the matrix pair A B
� �

, where

A ¼
1 2 3
3 2 1
4 5 6
7 8 8

0B@
1CA and B ¼ �2 �3 3

4 6 5

� �
:

10.1 Program Text

Program f08vefe

! F08VEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dggsvp, f06raf, nag_wp, x02ajf, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, tola, tolb
Integer :: i, ifail, info, irank, k, l, lda, &

ldb, ldq, ldu, ldv, m, n, p
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), q(:,:), tau(:), &
u(:,:), v(:,:), work(:)

Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, real

! .. Executable Statements ..
Write (nout,*) ’F08VEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n),b(ldb,n),q(ldq,n),tau(n),u(ldu,m),v(ldv,p), &

work(m+3*n+p),iwork(n))

! Read the m by n matrix A and p by n matrix B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)

! Compute tola and tolb as
! tola = max(m,n)*norm(A)*macheps
! tolb = max(p,n)*norm(B)*macheps

eps = x02ajf()
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tola = real(max(m,n),kind=nag_wp)*f06raf(’One-norm’,m,n,a,lda,work)*eps
tolb = real(max(p,n),kind=nag_wp)*f06raf(’One-norm’,p,n,b,ldb,work)*eps

! Compute the factorization of (A, B)
! (A = U*S*(Q**T), B = V*T*(Q**T))

! The NAG name equivalent of dggsvp is f08vef
Call dggsvp(’U’,’V’,’Q’,m,p,n,a,lda,b,ldb,tola,tolb,k,l,u,ldu,v,ldv,q, &

ldq,iwork,tau,work,info)

! Print solution

irank = k + l
Write (nout,*) ’Numerical rank of (A**T B**T)**T (K+L)’
Write (nout,99999) irank

Write (nout,*)
Flush (nout)
If (m>=irank) Then

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04cbf(’Upper’,’Non-unit’,irank,irank,a(1,n-irank+1),lda, &

’1P,E12.4’,’Upper triangular matrix S’,’Integer’,rlabs,’Integer’, &
clabs,80,0,ifail)

Else

ifail = 0
Call x04cbf(’Upper’,’Non-unit’,m,irank,a(1,n-irank+1),lda,’1P,E12.4’, &

’Upper trapezoidal matrix S’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

End If
Write (nout,*)
Flush (nout)

ifail = 0
Call x04cbf(’Upper’,’Non-unit’,l,l,b(1,n-l+1),ldb,’1P,E12.4’, &

’Upper triangular matrix T’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04cbf(’General’,’ ’,m,m,u,ldu,’1P,E12.4’,’Orthogonal matrix U’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04cbf(’General’,’ ’,p,p,v,ldv,’1P,E12.4’,’Orthogonal matrix V’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04cbf(’General’,’ ’,n,n,q,ldq,’1P,E12.4’,’Orthogonal matrix Q’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

99999 Format (1X,I5)
End Program f08vefe

F08VEF NAG Library Manual

F08VEF.6 Mark 26



10.2 Program Data

F08VEF Example Program Data

4 3 2 :Values of M, N and P

1.0 2.0 3.0
3.0 2.0 1.0
4.0 5.0 6.0
7.0 8.0 8.0 :End of matrix A

-2.0 -3.0 3.0
4.0 6.0 5.0 :End of matrix B

10.3 Program Results

F08VEF Example Program Results

Numerical rank of (A**T B**T)**T (K+L)
3

Upper triangular matrix S
1 2 3

1 -2.0569E+00 1.0771E+01 -7.2814E+00
2 7.1947E+00 -7.5262E+00
3 5.8129E-01

Upper triangular matrix T
1 2

1 8.0623E+00 -3.1305E+00
2 -4.9193E+00

Orthogonal matrix U
1 2 3 4

1 -1.3484E-01 5.1025E-01 -2.4351E-01 8.1373E-01
2 6.7420E-01 -5.4670E-01 -3.5349E-01 3.4874E-01
3 2.6968E-01 4.8292E-01 -6.9127E-01 -4.6499E-01
4 6.7420E-01 4.5558E-01 5.8129E-01 1.5127E-15

Orthogonal matrix V
1 2

1 -4.4721E-01 8.9443E-01
2 8.9443E-01 4.4721E-01

Orthogonal matrix Q
1 2 3

1 -8.3205E-01 5.5470E-01 0.0000E+00
2 5.5470E-01 8.3205E-01 0.0000E+00
3 0.0000E+00 0.0000E+00 -1.0000E+00
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NAG Library Routine Document

F08VGF (DGGSVP3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08VGF (DGGSVP3) uses orthogonal transformations to simultaneously reduce the m by n matrix A
and the p by n matrix B to upper triangular form. This factorization is usually used as a preprocessing
step for computing the generalized singular value decomposition (GSVD). For sufficiently large
problems, a blocked algorithm is used to make best use of level 3 BLAS.

2 Specification

SUBROUTINE F08VGF (JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK,
LWORK, INFO)

&
&

INTEGER M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, IWORK(N),
LWORK, INFO

&

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), TOLA, TOLB, U(LDU,*), V(LDV,*),
Q(LDQ,*), TAU(N), WORK(max(1,LWORK))

&

CHARACTER(1) JOBU, JOBV, JOBQ

The routine may be called by its LAPACK name dggsvp3.

3 Description

F08VGF (DGGSVP3) computes orthogonal matrices U , V and Q such that

UTAQ ¼

1CCCCA
0BBBB@
n� k� l k l

k 0 A12 A13

l 0 0 A23

m� k� l 0 0 0

; if m� k� l � 0;

1CA
0B@
n� k� l k l

k 0 A12 A13

m� k 0 0 A23

; if m� k� l < 0;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

V TBQ ¼

1CA
0B@
n� k� l k l

l 0 0 B13

p� l 0 0 0

where the k by k matrix A12 and l by l matrix B13 are nonsingular upper triangular; A23 is l by l upper
triangular if m� k� l � 0 and is m� kð Þ by l upper trapezoidal otherwise. kþ lð Þ is the effective

numerical rank of the mþ pð Þ by n matrix AT BT
� �T

.

This decomposition is usually used as the preprocessing step for computing the Generalized Singular
Value Decomposition (GSVD), see routine F08YEF (DTGSJA); the two steps are combined in F08VCF
(DGGSVD3).
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
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5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: if JOBU ¼ U , the orthogonal matrix U is computed.

If JOBU ¼ N , U is not computed.

Constraint: JOBU ¼ U or N .

2: JOBV – CHARACTER(1) Input

On entry: if JOBV ¼ V , the orthogonal matrix V is computed.

If JOBV ¼ N , V is not computed.

Constraint: JOBV ¼ V or N .

3: JOBQ – CHARACTER(1) Input

On entry: if JOBQ ¼ Q , the orthogonal matrix Q is computed.

If JOBQ ¼ N , Q is not computed.

Constraint: JOBQ ¼ Q or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

6: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: contains the triangular (or trapezoidal) matrix described in Section 3.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08VGF
(DGGSVP3) is called.

Constraint: LDA � max 1;Mð Þ.

F08VGF NAG Library Manual

F08VGF.2 Mark 26

http://www.netlib.org/lapack/lug


9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: contains the triangular matrix described in Section 3.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08VGF
(DGGSVP3) is called.

Constraint: LDB � max 1; Pð Þ.

11: TOLA – REAL (KIND=nag_wp) Input
12: TOLB – REAL (KIND=nag_wp) Input

On entry: TOLA and TOLB are the thresholds to determine the effective numerical rank of
matrix B and a subblock of A. Generally, they are set to

TOLA ¼ max M;Nð Þ Ak k�;
TOLB ¼ max P;Nð Þ Bk k�;

where � is the machine precision.

The size of TOLA and TOLB may affect the size of backward errors of the decomposition.

13: K – INTEGER Output
14: L – INTEGER Output

On exit: K and L specify the dimension of the subblocks k and l as described in Section 3;

kþ lð Þ is the effective numerical rank of AT BT
� �T

.

15: UðLDU; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ U , and at least
1 otherwise.

On exit: if JOBU ¼ U , U contains the orthogonal matrix U .

If JOBU ¼ N , U is not referenced.

16: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08VGF
(DGGSVP3) is called.

Constraints:

if JOBU ¼ U , LDU � max 1;Mð Þ;
otherwise LDU � 1.

17: VðLDV; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1; Pð Þ if JOBV ¼ V , and at least
1 otherwise.

On exit: if JOBV ¼ V , V contains the orthogonal matrix V .

If JOBV ¼ N , V is not referenced.

18: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08VGF
(DGGSVP3) is called.
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Constraints:

if JOBV ¼ V , LDV � max 1; Pð Þ;
otherwise LDV � 1.

19: QðLDQ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBQ ¼ Q , and at least
1 otherwise.

On exit: if JOBQ ¼ Q , Q contains the orthogonal matrix Q.

If JOBQ ¼ N , Q is not referenced.

20: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08VGF
(DGGSVP3) is called.

Constraints:

if JOBQ ¼ Q , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

21: IWORKðNÞ – INTEGER array Workspace

22: TAUðNÞ – REAL (KIND=nag_wp) array Workspace

23: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

24: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)routine from which F08VGF
(DGGSVP3) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, nb� Nþ 1ð Þ, where nb is the optimal block size

Constraints:

if JOBV ¼ V , LWORK � max 2 � Nþ 1;P;Mð Þ;
if JOBV ¼ N , LWORK � max 2 � Nþ 1;Mð Þ.

25: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

The computed factorization is nearly the exact factorization for nearby matrices Aþ Eð Þ and Bþ Fð Þ,
where

Ek k2 ¼ O �ð Þ Ak k2 and Fk k2 ¼ O �ð Þ Bk k2;

and � is the machine precision.

8 Parallelism and Performance

F08VGF (DGGSVP3) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08VGF (DGGSVP3) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This routine replaces the deprecated routine F08VEF (DGGSVP) which used an unblocked algorithm
and therefore did not make best use of level 3 BLAS routines.

The complex analogue of this routine is F08VUF (ZGGSVP3).

10 Example

This example finds the generalized factorization

A ¼ U�1 0 S
� �

QT; B ¼ V�2 0 T
� �

QT;

of the matrix pair A B
� �

, where

A ¼
1 2 3
3 2 1
4 5 6
7 8 8

0B@
1CA and B ¼ �2 �3 3

4 6 5

� �
:

10.1 Program Text

Program f08vgfe

! F08VGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dggsvp3, f06raf, f08yef, nag_wp, x02ajf, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, tola, tolb
Integer :: i, ifail, info, irank, j, k, l, lda, &

ldb, ldq, ldu, ldv, lwork, m, n, &
ncycle, p

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &

q(:,:), tau(:), u(:,:), v(:,:), &
work(:)
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Real (Kind=nag_wp) :: wdum(1)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08VGF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),q(ldq,n),tau(n),u(ldu,m), &

v(ldv,p),iwork(n))

! Perform workspace query to get optimal size of work
! The NAG name equivalent of dggsvp3 is f08vgf

lwork = -1
Call dggsvp3(’U’,’V’,’Q’,m,p,n,a,lda,b,ldb,tola,tolb,k,l,u,ldu,v,ldv,q, &

ldq,iwork,tau,wdum,lwork,info)
lwork = nint(wdum(1))
Allocate (work(lwork))

! Read the m by n matrix A and p by n matrix B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)

! Compute tola and tolb as
! tola = max(m,n)*norm(A)*macheps
! tolb = max(p,n)*norm(B)*macheps

eps = x02ajf()
tola = real(max(m,n),kind=nag_wp)*f06raf(’One-norm’,m,n,a,lda,work)*eps
tolb = real(max(p,n),kind=nag_wp)*f06raf(’One-norm’,p,n,b,ldb,work)*eps

! Compute the factorization of (A, B)
! (A = U*S*(Q**T), B = V*T*(Q**T))

! The NAG name equivalent of dggsvp3 is f08vgf
Call dggsvp3(’U’,’V’,’Q’,m,p,n,a,lda,b,ldb,tola,tolb,k,l,u,ldu,v,ldv,q, &

ldq,iwork,tau,work,lwork,info)

! Given the factors above find the generalized SVD of (A, B)

! The NAG name equivalent of dtgdja is f08yef
Call f08yef(’U’,’V’,’Q’,m,p,n,k,l,a,lda,b,ldb,tola,tolb,alpha,beta,u, &

ldu,v,ldv,q,ldq,work,ncycle,info)

! Print solution

irank = k + l
Write (nout,*) ’Number of infinite generalized singular values (k)’
Write (nout,99999) k
Write (nout,*) ’Number of finite generalized singular values (l)’
Write (nout,99999) l
Write (nout,*) ’Effective Numerical rank of (A; B) (k+l)’
Write (nout,99999) irank
Write (nout,*)
Write (nout,*) ’Finite generalized singular values’
Write (nout,99998)(alpha(j)/beta(j),j=k+1,irank)

Write (nout,*)
Flush (nout)
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Call x04cbf(’General’,’ ’,m,m,u,ldu,’1P,E12.4’,’Orthogonal matrix U’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04cbf(’General’,’ ’,p,p,v,ldv,’1P,E12.4’,’Orthogonal matrix V’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04cbf(’General’,’ ’,n,n,q,ldq,’1P,E12.4’,’Orthogonal matrix Q’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04cbf(’Upper triangular’,’Non-unit’,irank,irank,a(1,n-irank+1), &
lda,’1P,E12.4’,’Nonsingular upper triangular matrix R’,’Integer’, &
rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Number of cycles of the Kogbetliantz method’
Write (nout,99999) ncycle

99999 Format (1X,I5)
99998 Format (3X,8(1P,E12.4))

End Program f08vgfe

10.2 Program Data

F08VGF Example Program Data

4 3 2 :Values of M, N and P

1.0 2.0 3.0
3.0 2.0 1.0
4.0 5.0 6.0
7.0 8.0 8.0 :End of matrix A

-2.0 -3.0 3.0
4.0 6.0 5.0 :End of matrix B

10.3 Program Results

F08VGF Example Program Results

Number of infinite generalized singular values (k)
1

Number of finite generalized singular values (l)
2

Effective Numerical rank of (A; B) (k+l)
3

Finite generalized singular values
1.3151E+00 8.0185E-02

Orthogonal matrix U
1 2 3 4

1 -1.3484E-01 5.2524E-01 -2.0924E-01 8.1373E-01
2 6.7420E-01 -5.2213E-01 -3.8886E-01 3.4874E-01
3 2.6968E-01 5.2757E-01 -6.5782E-01 -4.6499E-01
4 6.7420E-01 4.1615E-01 6.1014E-01 1.5127E-15

Orthogonal matrix V
1 2

1 3.5539E-01 -9.3472E-01
2 9.3472E-01 3.5539E-01
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Orthogonal matrix Q
1 2 3

1 -8.3205E-01 -9.4633E-02 -5.4657E-01
2 5.5470E-01 -1.4195E-01 -8.1985E-01
3 0.0000E+00 -9.8534E-01 1.7060E-01

Nonsingular upper triangular matrix R
1 2 3

1 -2.0569E+00 -9.0121E+00 -9.3705E+00
2 -1.0882E+01 -7.2688E+00
3 -6.0405E+00

Number of cycles of the Kogbetliantz method
2
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NAG Library Routine Document

F08VNF (ZGGSVD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08VNF (ZGGSVD) computes the generalized singular value decomposition (GSVD) of an m by n
complex matrix A and a p by n complex matrix B. F08VNF (ZGGSVD) is marked as deprecated by
LAPACK; the replacement routine is F08VQF (ZGGSVD3) which makes better use of level 3 BLAS.

2 Specification

SUBROUTINE F08VNF (JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, RWORK,
IWORK, INFO)

&
&

INTEGER M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, IWORK(N),
INFO

&

REAL (KIND=nag_wp) ALPHA(N), BETA(N), RWORK(2*N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),

Q(LDQ,*), WORK(max(3*N,M,P)+N)
&

CHARACTER(1) JOBU, JOBV, JOBQ

The routine may be called by its LAPACK name zggsvd.

3 Description

The generalized singular value decomposition is given by

UHAQ ¼ D1 0 R
� �

; V HBQ ¼ D2 0 R
� �

;

where U , V and Q are unitary matrices. Let kþ lð Þ be the effective numerical rank of the matrix A
B

� �
,

then R is a kþ lð Þ by kþ lð Þ nonsingular upper triangular matrix, D1 and D2 are m by kþ lð Þ and p by
kþ lð Þ ‘diagonal’ matrices structured as follows:

if m� k� l � 0,

D1 ¼

1A0@
k l

k I 0
l 0 C

m� k� l 0 0

D2 ¼
�� k l

l 0 S
p� l 0 0

0 R
� �

¼
��n� k� l k l

k 0 R11 R12
l 0 0 R22

where

C ¼ diag �kþ1; . . . ; �kþlð Þ;
S ¼ diag �kþ1; . . . ; �kþlð Þ;

and
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C2 þ S2 ¼ I:

R is stored as a submatrix of A with elements Rij stored as Ai;n�k�lþj on exit.

If m� k� l < 0,

D1 ¼
�� k m� k kþ l�m

k I 0 0
m� k 0 C 0

D2 ¼

1A0@
k m� k kþ l�m

m� k 0 S 0
kþ l�m 0 0 I

p� l 0 0 0

0 R
� �

¼

1A0@
n� k� l k m� k kþ l�m

k 0 R11 R12 R13
m� k 0 0 R22 R23

kþ l�m 0 0 0 R33

where

C ¼ diag �kþ1; . . . ; �mð Þ;
S ¼ diag �kþ1; . . . ; �mð Þ;

and

C2 þ S2 ¼ I:

R11 R12 R13
0 R22 R23

� �
is stored as a submatrix of A with Rij stored as Ai;n�k�lþj, and R33 is stored as a

submatrix of B with R33ð Þij stored as Bm�kþi;nþm�k�lþj.

The routine computes C, S, R and, optionally, the unitary transformation matrices U , V and Q.

In particular, if B is an n by n nonsingular matrix, then the GSVD of A and B implicitly gives the SVD
of A� B�1:

AB�1 ¼ U D1D
�1
2

� �
V H:

If A
B

� �
has orthonormal columns, then the GSVD of A and B is also equal to the CS decomposition

of A and B. Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem:

AHAx ¼ �BHBx:

In some literature, the GSVD of A and B is presented in the form

UHAX ¼ 0 D1

� �
; V HBX ¼ 0 D2

� �
;

where U and V are orthogonal and X is nonsingular, and D1 and D2 are ‘diagonal’. The former GSVD
form can be converted to the latter form by taking the nonsingular matrix X as

X ¼ Q I 0
0 R�1

� �
:
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5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: if JOBU ¼ U , the unitary matrix U is computed.

If JOBU ¼ N , U is not computed.

Constraint: JOBU ¼ U or N .

2: JOBV – CHARACTER(1) Input

On entry: if JOBV ¼ V , the unitary matrix V is computed.

If JOBV ¼ N , V is not computed.

Constraint: JOBV ¼ V or N .

3: JOBQ – CHARACTER(1) Input

On entry: if JOBQ ¼ Q , the unitary matrix Q is computed.

If JOBQ ¼ N , Q is not computed.

Constraint: JOBQ ¼ Q or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

6: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

7: K – INTEGER Output
8: L – INTEGER Output

On exit: K and L specify the dimension of the subblocks k and l as described in Section 3;

kþ lð Þ is the effective numerical rank of A
B

� �
.

9: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: contains the triangular matrix R, or part of R. See Section 3 for details.
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10: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08VNF
(ZGGSVD) is called.

Constraint: LDA � max 1;Mð Þ.

11: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: contains the triangular matrix R if m� k� l < 0. See Section 3 for details.

12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08VNF
(ZGGSVD) is called.

Constraint: LDB � max 1; Pð Þ.

13: ALPHAðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

14: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHA and BETA contain the generalized singular value pairs of A and B, �i and �i;

ALPHAð1 : KÞ ¼ 1,

BETAð1 : KÞ ¼ 0,

and if m� k� l � 0,

ALPHAðKþ 1 : K þ LÞ ¼ C,
BETAðK þ 1 : K þ LÞ ¼ S,

or if m� k� l < 0,

ALPHAðKþ 1 : MÞ ¼ C,
ALPHAðMþ 1 : K þ LÞ ¼ 0,

BETAðK þ 1 : MÞ ¼ S,
BETAðMþ 1 : K þ LÞ ¼ 1, and

ALPHAðKþ Lþ 1 : NÞ ¼ 0,

BETAðK þ Lþ 1 : NÞ ¼ 0.

The notation ALPHAðK : NÞ above refers to consecutive elements ALPHAðiÞ, for i ¼ K; . . . ;N.

15: UðLDU; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ U , and at least
1 otherwise.

On exit: if JOBU ¼ U , U contains the m by m unitary matrix U .

If JOBU ¼ N , U is not referenced.

16: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08VNF
(ZGGSVD) is called.

F08VNF NAG Library Manual

F08VNF.4 Mark 26



Constraints:

if JOBU ¼ U , LDU � max 1;Mð Þ;
otherwise LDU � 1.

17: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1; Pð Þ if JOBV ¼ V , and at least
1 otherwise.

On exit: if JOBV ¼ V , V contains the p by p unitary matrix V .

If JOBV ¼ N , V is not referenced.

18: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08VNF
(ZGGSVD) is called.

Constraints:

if JOBV ¼ V , LDV � max 1; Pð Þ;
otherwise LDV � 1.

19: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBQ ¼ Q , and at least
1 otherwise.

On exit: if JOBQ ¼ Q , Q contains the n by n unitary matrix Q.

If JOBQ ¼ N , Q is not referenced.

20: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08VNF
(ZGGSVD) is called.

Constraints:

if JOBQ ¼ Q , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

21: WORKðmax 3� N;M;Pð Þ þ NÞ – COMPLEX (KIND=nag_wp) array Workspace

22: RWORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

23: IWORKðNÞ – INTEGER array Output

On exit: stores the sorting information. More precisely, the following loop will sort ALPHA

for I=K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor

such that ALPHAð1Þ � ALPHAð2Þ � � � � � ALPHAðNÞ.

24: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO ¼ 1

If INFO ¼ 1, the Jacobi-type procedure failed to converge.

7 Accuracy

The computed generalized singular value decomposition is nearly the exact generalized singular value
decomposition for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where

Ek k2 ¼ O �ð Þ Ak k2 and Fk k2 ¼ O �ð Þ Bk k2;

and � is the machine precision. See Section 4.12 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08VNF (ZGGSVD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The diagonal elements of the matrix R are real.

The real analogue of this routine is F08VAF (DGGSVD).

10 Example

This example finds the generalized singular value decomposition

A ¼ U�1 0 R
� �

QH; B ¼ V�2 0 R
� �

QH;

where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA
and

B ¼ 1 0 �1 0
0 1 0 �1

� �
;

together with estimates for the condition number of R and the error bound for the computed generalized
singular values.

The example program assumes that m � n, and would need slight modification if this is not the case.

10.1 Program Text

Program f08vnfe

! F08VNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, x04dbf, zggsvd, ztrcon
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, rcond, serrbd
Integer :: i, ifail, info, irank, j, k, l, lda, &

ldb, ldq, ldu, ldv, m, n, p
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), q(:,:), u(:,:), &
v(:,:), work(:)

Real (Kind=nag_wp), Allocatable :: alpha(:), beta(:), rwork(:)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08VNF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n),b(ldb,n),q(ldq,n),u(ldu,m),v(ldv,p),work(m+3*n), &

alpha(n),beta(n),rwork(2*n),iwork(n))

! Read the m by n matrix A and p by n matrix B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)

! Compute the generalized singular value decomposition of (A, B)
! (A = U*D1*(0 R)*(Q**H), B = V*D2*(0 R)*(Q**H), m.ge.n)
! The NAG name equivalent of zggsvd is f08vnf

Call zggsvd(’U’,’V’,’Q’,m,n,p,k,l,a,lda,b,ldb,alpha,beta,u,ldu,v,ldv,q, &
ldq,work,rwork,iwork,info)

If (info==0) Then

! Print solution

irank = k + l
Write (nout,*) ’Number of infinite generalized singular values (K)’
Write (nout,99999) k
Write (nout,*) ’Number of finite generalized singular values (L)’
Write (nout,99999) l
Write (nout,*) ’Numerical rank of (A**H B**H)**H (K+L)’
Write (nout,99999) irank
Write (nout,*)
Write (nout,*) ’Finite generalized singular values’
Write (nout,99998)(alpha(j)/beta(j),j=k+1,irank)

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,m,m,u,ldu,’Bracketed’,’1P,E12.4’, &

’Unitary matrix U’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’General’,’ ’,p,p,v,ldv,’Bracketed’,’1P,E12.4’, &
’Unitary matrix V’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
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Flush (nout)

Call x04dbf(’General’,’ ’,n,n,q,ldq,’Bracketed’,’1P,E12.4’, &
’Unitary matrix Q’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’Upper triangular’,’Non-unit’,irank,irank,a(1,n-irank+1), &
lda,’Bracketed’,’1P,E12.4’,’Nonsingular upper triangular matrix R’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Call ZTRCON (F07TUF) to estimate the reciprocal condition
! number of R

Call ztrcon(’Infinity-norm’,’Upper’,’Non-unit’,irank,a(1,n-irank+1), &
lda,rcond,work,rwork,info)

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for R’
Write (nout,99997) rcond
Write (nout,*)

! So long as irank = n, get the machine precision, eps, and
! compute the approximate error bound for the computed
! generalized singular values

If (irank==n) Then
eps = x02ajf()
serrbd = eps/rcond
Write (nout,*) ’Error estimate for the generalized singular values’
Write (nout,99997) serrbd

Else
Write (nout,*) ’(A**H B**H)**H is not of full rank’

End If
Else

Write (nout,99996) ’Failure in ZGGSVD. INFO =’, info
End If

99999 Format (1X,I5)
99998 Format (4X,8(1P,E13.4))
99997 Format (3X,1P,E11.1)
99996 Format (1X,A,I4)

End Program f08vnfe

10.2 Program Data

F08VNF Example Program Data

6 4 2 :Values of M, N and P

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
( 0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) :End of matrix B

10.3 Program Results

F08VNF Example Program Results

Number of infinite generalized singular values (K)
2

Number of finite generalized singular values (L)
2

Numerical rank of (A**H B**H)**H (K+L)
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4

Finite generalized singular values
2.0720E+00 1.1058E+00

Unitary matrix U
1 2

1 ( -1.3038E-02, -3.2595E-01) ( -1.4039E-01, -2.6167E-01)
2 ( 4.2764E-01, -6.2582E-01) ( 8.6298E-02, -3.8174E-02)
3 ( -3.2595E-01, 1.6428E-01) ( 3.8163E-01, -1.8219E-01)
4 ( 1.5906E-01, -5.2151E-03) ( -2.8207E-01, 1.9732E-01)
5 ( -1.7210E-01, -1.3038E-02) ( -5.0942E-01, -5.0319E-01)
6 ( -2.6336E-01, -2.4772E-01) ( -1.0861E-01, 2.8474E-01)

3 4
1 ( 2.5177E-01, -7.9789E-01) ( -5.0956E-02, -2.1750E-01)
2 ( -3.2188E-01, 1.6112E-01) ( 1.1979E-01, 1.6319E-01)
3 ( 1.3231E-01, -1.4565E-02) ( -5.0671E-01, 1.8615E-01)
4 ( 2.1598E-01, 1.8813E-01) ( -4.0163E-01, 2.6787E-01)
5 ( 3.6488E-02, 2.0316E-01) ( 1.9271E-01, 1.5574E-01)
6 ( 1.0906E-01, -1.2712E-01) ( -8.8159E-02, 5.6169E-01)

5 6
1 ( -4.5947E-02, 1.4052E-04) ( -5.2773E-02, -2.2492E-01)
2 ( -8.0311E-02, -4.3605E-01) ( -3.8117E-02, -2.1907E-01)
3 ( 5.9714E-02, -5.8974E-01) ( -1.3850E-01, -9.0941E-02)
4 ( -4.6443E-02, 3.0864E-01) ( -3.7354E-01, -5.5148E-01)
5 ( 5.7843E-01, -1.2439E-01) ( -1.8815E-02, -5.5686E-02)
6 ( 1.5763E-02, 4.7130E-02) ( 6.5007E-01, 4.9173E-03)

Unitary matrix V
1 2

1 ( 9.8930E-01, 1.0471E-19) ( -1.1461E-01, 9.0250E-02)
2 ( -1.1461E-01, -9.0250E-02) ( -9.8930E-01, 1.0471E-19)

Unitary matrix Q
1 2

1 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
2 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)
3 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
4 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)

3 4
1 ( 6.9954E-01, -1.1784E-18) ( 8.1044E-02, -6.3817E-02)
2 ( -8.1044E-02, -6.3817E-02) ( 6.9954E-01, 1.1784E-18)
3 ( -6.9954E-01, 1.1784E-18) ( -8.1044E-02, 6.3817E-02)
4 ( 8.1044E-02, 6.3817E-02) ( -6.9954E-01, -1.1784E-18)

Nonsingular upper triangular matrix R
1 2

1 ( -2.7118E+00, 0.0000E+00) ( -1.4390E+00, -1.0315E+00)
2 ( -1.8583E+00, 0.0000E+00)
3
4

3 4
1 ( -7.6930E-02, 1.3613E+00) ( -2.8137E-01, -3.2425E-02)
2 ( -1.0760E+00, 3.1016E-02) ( 1.3292E+00, 3.6772E-01)
3 ( 3.2537E+00, 0.0000E+00) ( -6.3858E-17, 3.4216E-33)
4 ( -2.1084E+00, 0.0000E+00)

Estimate of reciprocal condition number for R
1.3E-01

Error estimate for the generalized singular values
8.3E-16
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NAG Library Routine Document

F08VQF (ZGGSVD3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08VQF (ZGGSVD3) computes the generalized singular value decomposition (GSVD) of an m by n
complex matrix A and a p by n complex matrix B.

2 Specification

SUBROUTINE F08VQF (JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB,
ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, LWORK,
RWORK, IWORK, INFO)

&
&

INTEGER M, N, P, K, L, LDA, LDB, LDU, LDV, LDQ, LWORK,
IWORK(N), INFO

&

REAL (KIND=nag_wp) ALPHA(N), BETA(N), RWORK(2*N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),

Q(LDQ,*), WORK(max(1,LWORK))
&

CHARACTER(1) JOBU, JOBV, JOBQ

The routine may be called by its LAPACK name zggsvd3.

3 Description

Given an m by n complex matrix A and a p by n complex matrix B, the generalized singular value
decomposition is given by

UHAQ ¼ D1 0 R
� �

; V HBQ ¼ D2 0 R
� �

;

where U , V and Q are unitary matrices. Let l be the effective numerical rank of B and kþ lð Þ be the

effective numerical rank of the matrix A
B

� �
, then the first k generalized singular values are infinite and

the remaining l are finite. R is a kþ lð Þ by kþ lð Þ nonsingular upper triangular matrix, D1 and D2 are
m by kþ lð Þ and p by kþ lð Þ ‘diagonal’ matrices structured as follows:

if m� k� l � 0,

D1 ¼

1A0@
k l

k I 0
l 0 C

m� k� l 0 0

D2 ¼
�� k l

l 0 S
p� l 0 0

0 R
� �

¼
��n� k� l k l

k 0 R11 R12
l 0 0 R22

where

C ¼ diag �kþ1; . . . ; �kþlð Þ;
S ¼ diag �kþ1; . . . ; �kþlð Þ;

and
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C2 þ S2 ¼ I:

R is stored as a submatrix of A with elements Rij stored as Ai;n�k�lþj on exit.

If m� k� l < 0,

D1 ¼
�� k m� k kþ l�m

k I 0 0
m� k 0 C 0

D2 ¼

1A0@
k m� k kþ l�m

m� k 0 S 0
kþ l�m 0 0 I

p� l 0 0 0

0 R
� �

¼

1A0@
n� k� l k m� k kþ l�m

k 0 R11 R12 R13
m� k 0 0 R22 R23

kþ l�m 0 0 0 R33

where

C ¼ diag �kþ1; . . . ; �mð Þ;
S ¼ diag �kþ1; . . . ; �mð Þ;

and

C2 þ S2 ¼ I:

R11 R12 R13
0 R22 R23

� �
is stored as a submatrix of A with Rij stored as Ai;n�k�lþj, and R33 is stored as a

submatrix of B with R33ð Þij stored as Bm�kþi;nþm�k�lþj.

The routine computes C, S, R and, optionally, the unitary transformation matrices U , V and Q.

In particular, if B is an n by n nonsingular matrix, then the GSVD of A and B implicitly gives the SVD
of A� B�1:

AB�1 ¼ U D1D
�1
2

� �
V H:

If A
B

� �
has orthonormal columns, then the GSVD of A and B is also equal to the CS decomposition

of A and B. Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem:

AHAx ¼ �BHBx:

In some literature, the GSVD of A and B is presented in the form

UHAX ¼ 0 D1

� �
; V HBX ¼ 0 D2

� �
;

where U and V are orthogonal and X is nonsingular, and D1 and D2 are ‘diagonal’. The former GSVD
form can be converted to the latter form by setting

X ¼ Q I 0
0 R�1

� �
:

A two stage process is used to compute the GSVD of the matrix pair A;Bð Þ. The pair is first reduced to
upper triangular form by unitary transformations using F08VUF (ZGGSVP3). The GSVD of the
resulting upper triangular matrix pair is then performed by F08YSF (ZTGSJA) which uses a variant of
the Kogbetliantz algorithm (a cyclic Jacobi method).
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5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: if JOBU ¼ U , the unitary matrix U is computed.

If JOBU ¼ N , U is not computed.

Constraint: JOBU ¼ U or N .

2: JOBV – CHARACTER(1) Input

On entry: if JOBV ¼ V , the unitary matrix V is computed.

If JOBV ¼ N , V is not computed.

Constraint: JOBV ¼ V or N .

3: JOBQ – CHARACTER(1) Input

On entry: if JOBQ ¼ Q , the unitary matrix Q is computed.

If JOBQ ¼ N , Q is not computed.

Constraint: JOBQ ¼ Q or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

6: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

7: K – INTEGER Output
8: L – INTEGER Output

On exit: K and L specify the dimension of the subblocks k and l as described in Section 3;

kþ lð Þ is the effective numerical rank of A
B

� �
.

9: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: contains the triangular matrix R, or part of R. See Section 3 for details.
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10: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08VQF
(ZGGSVD3) is called.

Constraint: LDA � max 1;Mð Þ.

11: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: contains the triangular matrix R if m� k� l < 0. See Section 3 for details.

12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08VQF
(ZGGSVD3) is called.

Constraint: LDB � max 1; Pð Þ.

13: ALPHAðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

14: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHA and BETA contain the generalized singular value pairs of A and B, �i and �i;

ALPHAð1 : KÞ ¼ 1,

BETAð1 : KÞ ¼ 0,

and if m� k� l � 0,

ALPHAðKþ 1 : K þ LÞ ¼ C,
BETAðK þ 1 : K þ LÞ ¼ S,

or if m� k� l < 0,

ALPHAðKþ 1 : MÞ ¼ C,
ALPHAðMþ 1 : K þ LÞ ¼ 0,

BETAðK þ 1 : MÞ ¼ S,
BETAðMþ 1 : K þ LÞ ¼ 1, and

ALPHAðKþ Lþ 1 : NÞ ¼ 0,

BETAðK þ Lþ 1 : NÞ ¼ 0.

The notation ALPHAðK : NÞ above refers to consecutive elements ALPHAðiÞ, for i ¼ K; . . . ;N.

15: UðLDU; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ U , and at least
1 otherwise.

On exit: if JOBU ¼ U , U contains the m by m unitary matrix U .

If JOBU ¼ N , U is not referenced.

16: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08VQF
(ZGGSVD3) is called.
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Constraints:

if JOBU ¼ U , LDU � max 1;Mð Þ;
otherwise LDU � 1.

17: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1; Pð Þ if JOBV ¼ V , and at least
1 otherwise.

On exit: if JOBV ¼ V , V contains the p by p unitary matrix V .

If JOBV ¼ N , V is not referenced.

18: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08VQF
(ZGGSVD3) is called.

Constraints:

if JOBV ¼ V , LDV � max 1; Pð Þ;
otherwise LDV � 1.

19: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBQ ¼ Q , and at least
1 otherwise.

On exit: if JOBQ ¼ Q , Q contains the n by n unitary matrix Q.

If JOBQ ¼ N , Q is not referenced.

20: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08VQF
(ZGGSVD3) is called.

Constraints:

if JOBQ ¼ Q , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

21: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

22: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)routine from which F08VQF
(ZGGSVD3) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, nb� Nþ 1ð Þ, where nb is the optimal block size.

Constraints:

if JOBV ¼ V , LWORK � max Nþ 1;M; Pð Þ;
if JOBV ¼ N , LWORK � max Nþ 1;Mð Þ.

23: RWORKð2� NÞ – REAL (KIND=nag_wp) array Workspace
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24: IWORKðNÞ – INTEGER array Output

On exit: stores the sorting information. More precisely, if I is the ordered set of indices of
ALPHA containing C (denote as ALPHAðIÞ, see BETA), then the corresponding elements
IWORKðIÞ contain the swap pivots, J , that sorts I such that ALPHAðIÞ is in descending
numerical order.

The following pseudocode sorts the set I:

for i 2 I
j ¼ Ji
swap Ii and Ij

end

25: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

The Jacobi-type procedure failed to converge.

7 Accuracy

The computed generalized singular value decomposition is nearly the exact generalized singular value
decomposition for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where

Ek k2 ¼ O �ð Þ Ak k2 and Fk k2 ¼ O �ð Þ Bk k2;

and � is the machine precision. See Section 4.12 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08VQF (ZGGSVD3) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08VQF (ZGGSVD3) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This routine replaces the deprecated routine F08VNF (ZGGSVD) which used an unblocked algorithm
and therefore did not make best use of level 3 BLAS routines.

The diagonal elements of the matrix R are real.

The real analogue of this routine is F08VCF (DGGSVD3).
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10 Example

This example finds the generalized singular value decomposition

A ¼ U�1 0 R
� �

QH; B ¼ V�2 0 R
� �

QH;

where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA
and

B ¼ 1 0 �1 0
0 1 0 �1

� �
;

together with estimates for the condition number of R and the error bound for the computed generalized
singular values.

The example program assumes that m � n, and would need slight modification if this is not the case.

10.1 Program Text

Program f08vqfe

! F08VQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, x04dbf, zggsvd3, ztrcon

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, rcond, serrbd
Integer :: i, ifail, info, irank, j, k, l, lda, &

ldb, ldq, ldu, ldv, lwork, m, n, p
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), q(:,:), u(:,:), &
v(:,:), work(:)

Complex (Kind=nag_wp) :: wdum(1)
Real (Kind=nag_wp), Allocatable :: alpha(:), beta(:), rwork(:)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: nint, real

! .. Executable Statements ..
Write (nout,*) ’F08VQF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n),b(ldb,n),q(ldq,n),u(ldu,m),v(ldv,p),alpha(n),beta(n), &

rwork(2*n),iwork(n))

! Perform workspace query to get optimal size of work
! The NAG name equivalent of zggsvd3 is f08vqf

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08VQF
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lwork = -1
Call zggsvd3(’U’,’V’,’Q’,m,n,p,k,l,a,lda,b,ldb,alpha,beta,u,ldu,v,ldv,q, &

ldq,wdum,lwork,rwork,iwork,info)
lwork = nint(real(wdum(1)))
Allocate (work(lwork))

! Read the m by n matrix A and p by n matrix B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)

! Compute the generalized singular value decomposition of (A, B)
! (A = U*D1*(0 R)*(Q**H), B = V*D2*(0 R)*(Q**H), m.ge.n)
! The NAG name equivalent of zggsvd3 is f08vqf

Call zggsvd3(’U’,’V’,’Q’,m,n,p,k,l,a,lda,b,ldb,alpha,beta,u,ldu,v,ldv,q, &
ldq,work,lwork,rwork,iwork,info)

If (info==0) Then

! Print solution

irank = k + l
Write (nout,*) ’Number of infinite generalized singular values (K)’
Write (nout,99999) k
Write (nout,*) ’Number of finite generalized singular values (L)’
Write (nout,99999) l
Write (nout,*) ’Numerical rank of (A**T B**T)**T (K+L)’
Write (nout,99999) irank
Write (nout,*)
Write (nout,*) ’Finite generalized singular values’
Write (nout,99998)(alpha(j)/beta(j),j=k+1,irank)

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,m,m,u,ldu,’Bracketed’,’1P,E12.4’, &

’Unitary matrix U’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’General’,’ ’,p,p,v,ldv,’Bracketed’,’1P,E12.4’, &
’Unitary matrix V’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’General’,’ ’,n,n,q,ldq,’Bracketed’,’1P,E12.4’, &
’Unitary matrix Q’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’Upper triangular’,’Non-unit’,irank,irank,a(1,n-irank+1), &
lda,’Bracketed’,’1P,E12.4’,’Nonsingular upper triangular matrix R’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Call ZTRCON (F07TUF) to estimate the reciprocal condition
! number of R

Call ztrcon(’Infinity-norm’,’Upper’,’Non-unit’,irank,a(1,n-irank+1), &
lda,rcond,work,rwork,info)

Write (nout,*)
Write (nout,*) ’Estimate of reciprocal condition number for R’
Write (nout,99997) rcond
Write (nout,*)
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! So long as irank = n, get the machine precision, eps, and
! compute the approximate error bound for the computed
! generalized singular values

If (irank==n) Then
eps = x02ajf()
serrbd = eps/rcond
Write (nout,*) ’Error estimate for the generalized singular values’
Write (nout,99997) serrbd

Else
Write (nout,*) ’(A**T B**T)**T is not of full rank’

End If
Else

Write (nout,99996) ’Failure in ZGGSVD3. INFO =’, info
End If

99999 Format (1X,I5)
99998 Format (4X,8(1P,E13.4))
99997 Format (3X,1P,E11.1)
99996 Format (1X,A,I4)

End Program f08vqfe

10.2 Program Data

F08VQF Example Program Data

6 4 2 :Values of M, N and P

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
( 0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) :End of matrix B

10.3 Program Results

F08VQF Example Program Results

Number of infinite generalized singular values (K)
2

Number of finite generalized singular values (L)
2

Numerical rank of (A**T B**T)**T (K+L)
4

Finite generalized singular values
2.0720E+00 1.1058E+00

Unitary matrix U
1 2

1 ( -1.3038E-02, -3.2595E-01) ( -1.4039E-01, -2.6167E-01)
2 ( 4.2764E-01, -6.2582E-01) ( 8.6298E-02, -3.8174E-02)
3 ( -3.2595E-01, 1.6428E-01) ( 3.8163E-01, -1.8219E-01)
4 ( 1.5906E-01, -5.2151E-03) ( -2.8207E-01, 1.9732E-01)
5 ( -1.7210E-01, -1.3038E-02) ( -5.0942E-01, -5.0319E-01)
6 ( -2.6336E-01, -2.4772E-01) ( -1.0861E-01, 2.8474E-01)

3 4
1 ( 2.5177E-01, -7.9789E-01) ( -5.0956E-02, -2.1750E-01)
2 ( -3.2188E-01, 1.6112E-01) ( 1.1979E-01, 1.6319E-01)
3 ( 1.3231E-01, -1.4565E-02) ( -5.0671E-01, 1.8615E-01)
4 ( 2.1598E-01, 1.8813E-01) ( -4.0163E-01, 2.6787E-01)
5 ( 3.6488E-02, 2.0316E-01) ( 1.9271E-01, 1.5574E-01)
6 ( 1.0906E-01, -1.2712E-01) ( -8.8159E-02, 5.6169E-01)

5 6
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1 ( -4.5947E-02, 1.4052E-04) ( -5.2773E-02, -2.2492E-01)
2 ( -8.0311E-02, -4.3605E-01) ( -3.8117E-02, -2.1907E-01)
3 ( 5.9714E-02, -5.8974E-01) ( -1.3850E-01, -9.0941E-02)
4 ( -4.6443E-02, 3.0864E-01) ( -3.7354E-01, -5.5148E-01)
5 ( 5.7843E-01, -1.2439E-01) ( -1.8815E-02, -5.5686E-02)
6 ( 1.5763E-02, 4.7130E-02) ( 6.5007E-01, 4.9173E-03)

Unitary matrix V
1 2

1 ( 9.8930E-01, 1.0471E-19) ( -1.1461E-01, 9.0250E-02)
2 ( -1.1461E-01, -9.0250E-02) ( -9.8930E-01, 1.0471E-19)

Unitary matrix Q
1 2

1 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
2 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)
3 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
4 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)

3 4
1 ( 6.9954E-01, -1.1784E-18) ( 8.1044E-02, -6.3817E-02)
2 ( -8.1044E-02, -6.3817E-02) ( 6.9954E-01, 1.1784E-18)
3 ( -6.9954E-01, 1.1784E-18) ( -8.1044E-02, 6.3817E-02)
4 ( 8.1044E-02, 6.3817E-02) ( -6.9954E-01, -1.1784E-18)

Nonsingular upper triangular matrix R
1 2

1 ( -2.7118E+00, 0.0000E+00) ( -1.4390E+00, -1.0315E+00)
2 ( -1.8583E+00, 0.0000E+00)
3
4

3 4
1 ( -7.6930E-02, 1.3613E+00) ( -2.8137E-01, -3.2425E-02)
2 ( -1.0760E+00, 3.1016E-02) ( 1.3292E+00, 3.6772E-01)
3 ( 3.2537E+00, 0.0000E+00) ( -6.3858E-17, 3.4216E-33)
4 ( -2.1084E+00, 0.0000E+00)

Estimate of reciprocal condition number for R
1.3E-01

Error estimate for the generalized singular values
8.3E-16
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NAG Library Routine Document

F08VSF (ZGGSVP)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08VSF (ZGGSVP) uses unitary transformations to simultaneously reduce the m by n matrix A and the
p by n matrix B to upper triangular form. This factorization is usually used as a preprocessing step for
computing the generalized singular value decomposition (GSVD). F08VSF (ZGGSVP) is marked as
deprecated by LAPACK; the replacement routine is F08VUF (ZGGSVP3) which makes better use of
level 3 BLAS.

2 Specification

SUBROUTINE F08VSF (JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
TAU, WORK, INFO)

&
&

INTEGER M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, IWORK(N),
INFO

&

REAL (KIND=nag_wp) TOLA, TOLB, RWORK(2*N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),

Q(LDQ,*), TAU(N), WORK(max(3*N,M,P))
&

CHARACTER(1) JOBU, JOBV, JOBQ

The routine may be called by its LAPACK name zggsvp.

3 Description

F08VSF (ZGGSVP) computes unitary matrices U , V and Q such that

UHAQ ¼

1CCCCA
0BBBB@
n� k� l k l

k 0 A12 A13

l 0 0 A23

m� k� l 0 0 0

; if m� k� l � 0;

1CA
0B@
n� k� l k l

k 0 A12 A13

m� k 0 0 A23

; if m� k� l < 0;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

V HBQ ¼

1CA
0B@
n� k� l k l

l 0 0 B13

p� l 0 0 0

where the k by k matrix A12 and l by l matrix B13 are nonsingular upper triangular; A23 is l by l upper
triangular if m� k� l � 0 and is m� kð Þ by l upper trapezoidal otherwise. kþ lð Þ is the effective

numerical rank of the mþ pð Þ by n matrix AH BH
� �H

.

This decomposition is usually used as the preprocessing step for computing the Generalized Singular
Value Decomposition (GSVD), see routine F08VNF (ZGGSVD).
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5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: if JOBU ¼ U , the unitary matrix U is computed.

If JOBU ¼ N , U is not computed.

Constraint: JOBU ¼ U or N .

2: JOBV – CHARACTER(1) Input

On entry: if JOBV ¼ V , the unitary matrix V is computed.

If JOBV ¼ N , V is not computed.

Constraint: JOBV ¼ V or N .

3: JOBQ – CHARACTER(1) Input

On entry: if JOBQ ¼ Q , the unitary matrix Q is computed.

If JOBQ ¼ N , Q is not computed.

Constraint: JOBQ ¼ Q or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

6: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: contains the triangular (or trapezoidal) matrix described in Section 3.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08VSF
(ZGGSVP) is called.

Constraint: LDA � max 1;Mð Þ.
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9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: contains the triangular matrix described in Section 3.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08VSF
(ZGGSVP) is called.

Constraint: LDB � max 1; Pð Þ.

11: TOLA – REAL (KIND=nag_wp) Input
12: TOLB – REAL (KIND=nag_wp) Input

On entry: TOLA and TOLB are the thresholds to determine the effective numerical rank of
matrix B and a subblock of A. Generally, they are set to

TOLA ¼ max M;Nð Þ Ak k�;
TOLB ¼ max P;Nð Þ Bk k�;

where � is the machine precision.

The size of TOLA and TOLB may affect the size of backward errors of the decomposition.

13: K – INTEGER Output
14: L – INTEGER Output

On exit: K and L specify the dimension of the subblocks k and l as described in Section 3;

kþ lð Þ is the effective numerical rank of AT BT
� �T

.

15: UðLDU; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ U , and at least
1 otherwise.

On exit: if JOBU ¼ U , U contains the unitary matrix U .

If JOBU ¼ N , U is not referenced.

16: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08VSF
(ZGGSVP) is called.

Constraints:

if JOBU ¼ U , LDU � max 1;Mð Þ;
otherwise LDU � 1.

17: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1; Pð Þ if JOBV ¼ V , and at least
1 otherwise.

On exit: if JOBV ¼ V , V contains the unitary matrix V .

If JOBV ¼ N , V is not referenced.

18: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08VSF
(ZGGSVP) is called.
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Constraints:

if JOBV ¼ V , LDV � max 1; Pð Þ;
otherwise LDV � 1.

19: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBQ ¼ Q , and at least
1 otherwise.

On exit: if JOBQ ¼ Q , Q contains the unitary matrix Q.

If JOBQ ¼ N , Q is not referenced.

20: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08VSF
(ZGGSVP) is called.

Constraints:

if JOBQ ¼ Q , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

21: IWORKðNÞ – INTEGER array Workspace

22: RWORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

23: TAUðNÞ – COMPLEX (KIND=nag_wp) array Workspace

24: WORKðmax 3� N;M;Pð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

25: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed factorization is nearly the exact factorization for nearby matrices Aþ Eð Þ and Bþ Fð Þ,
where

Ek k2 ¼ O �ð Þ Ak k2 and Fk k2 ¼ O �ð Þ Bk k2;

and � is the machine precision.

8 Parallelism and Performance

F08VSF (ZGGSVP) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The real analogue of this routine is F08VEF (DGGSVP).

10 Example

This example finds the generalized factorization

A ¼ U�1 0 S
� �

QH; B ¼ V�2 0 T
� �

QH;

of the matrix pair A B
� �

, where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA
and

B ¼ 1 0 �1 0
0 1 0 �1

� �
:

10.1 Program Text

Program f08vsfe

! F08VSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06uaf, nag_wp, x02ajf, x04dbf, zggsvp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, tola, tolb
Integer :: i, ifail, info, irank, k, l, lda, &

ldb, ldq, ldu, ldv, m, n, p
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), q(:,:), tau(:), &
u(:,:), v(:,:), work(:)

Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, real

! .. Executable Statements ..
Write (nout,*) ’F08VSF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n),b(ldb,n),q(ldq,n),tau(n),u(ldu,m),v(ldv,p), &

work(m+3*n+p),rwork(2*n),iwork(n))

! Read the m by n matrix A and p by n matrix B from data file
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Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)

! Compute tola and tolb as
! tola = max(m,n)*norm(A)*macheps
! tolb = max(p,n)*norm(B)*macheps

eps = x02ajf()
tola = real(max(m,n),kind=nag_wp)*f06uaf(’One-norm’,m,n,a,lda,rwork)*eps
tolb = real(max(p,n),kind=nag_wp)*f06uaf(’One-norm’,p,n,b,ldb,rwork)*eps

! Compute the factorization of (A, B)
! (A = U*S*(Q**H), B = V*T*(Q**H))

! The NAG name equivalent of zggsvp is f08vsf
Call zggsvp(’U’,’V’,’Q’,m,p,n,a,lda,b,ldb,tola,tolb,k,l,u,ldu,v,ldv,q, &

ldq,iwork,rwork,tau,work,info)

! Print solution

irank = k + l
Write (nout,*) ’Numerical rank of (A**T B**T)**T (K+L)’
Write (nout,99999) irank

Write (nout,*)
Flush (nout)
If (m>=irank) Then

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’Upper’,’Non-unit’,irank,irank,a(1,n-irank+1),lda, &

’Bracketed’,’1P,E12.4’,’Upper triangular matrix S’,’Integer’,rlabs, &
’Integer’,clabs,80,0,ifail)

Else

ifail = 0
Call x04dbf(’Upper’,’Non-unit’,m,irank,a(1,n-irank+1),lda,’Bracketed’, &

’1P,E12.4’,’Upper trapezoidal matrix S’,’Integer’,rlabs,’Integer’, &
clabs,80,0,ifail)

End If
Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’Upper’,’Non-unit’,l,l,b(1,n-l+1),ldb,’Bracketed’, &

’1P,E12.4’,’Upper triangular matrix T’,’Integer’,rlabs,’Integer’, &
clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,m,m,u,ldu,’Bracketed’,’1P,E12.4’, &

’Unitary matrix U’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,p,p,v,ldv,’Bracketed’,’1P,E12.4’, &

’Unitary matrix V’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
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Call x04dbf(’General’,’ ’,n,n,q,ldq,’Bracketed’,’1P,E12.4’, &
’Unitary matrix Q’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

99999 Format (1X,I5)
End Program f08vsfe

10.2 Program Data

F08VSF Example Program Data

6 4 2 :Values of M, N and P

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
( 0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) :End of matrix B

10.3 Program Results

F08VSF Example Program Results

Numerical rank of (A**T B**T)**T (K+L)
4

Upper triangular matrix S
1 2

1 ( -2.7118E+00, 0.0000E+00) ( -1.4390E+00, -1.0315E+00)
2 ( -1.8583E+00, 0.0000E+00)
3
4

3 4
1 ( -1.0543E-01, 1.3176E+00) ( -3.9240E-01, -1.9504E-01)
2 ( -9.4529E-01, 1.9279E-01) ( 1.4355E+00, 2.6313E-01)
3 ( 2.9079E+00, 0.0000E+00) ( -2.3946E-01, 1.8856E-01)
4 ( -1.5759E+00, 0.0000E+00)

Upper triangular matrix T
1 2

1 ( 1.4142E+00, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
2 ( 1.4142E+00, 0.0000E+00)

Unitary matrix U
1 2

1 ( -1.3038E-02, -3.2595E-01) ( -1.4039E-01, -2.6167E-01)
2 ( 4.2764E-01, -6.2582E-01) ( 8.6298E-02, -3.8174E-02)
3 ( -3.2595E-01, 1.6428E-01) ( 3.8163E-01, -1.8219E-01)
4 ( 1.5906E-01, -5.2151E-03) ( -2.8207E-01, 1.9732E-01)
5 ( -1.7210E-01, -1.3038E-02) ( -5.0942E-01, -5.0319E-01)
6 ( -2.6336E-01, -2.4772E-01) ( -1.0861E-01, 2.8474E-01)

3 4
1 ( 2.4357E-01, -7.7956E-01) ( -7.4007E-02, -2.7823E-01)
2 ( -3.2035E-01, 1.4475E-01) ( 1.0740E-01, 1.8824E-01)
3 ( 1.7217E-01, -1.4009E-03) ( -4.9770E-01, 1.7826E-01)
4 ( 2.5307E-01, 1.9053E-01) ( -3.7794E-01, 2.6816E-01)
5 ( 3.2057E-02, 1.8358E-01) ( 2.0422E-01, 1.6601E-01)
6 ( 1.4142E-01, -1.5707E-01) ( -8.7335E-02, 5.4683E-01)

5 6
1 ( -4.5947E-02, 1.4052E-04) ( -5.2773E-02, -2.2492E-01)
2 ( -8.0311E-02, -4.3605E-01) ( -3.8117E-02, -2.1907E-01)
3 ( 5.9714E-02, -5.8974E-01) ( -1.3850E-01, -9.0941E-02)
4 ( -4.6443E-02, 3.0864E-01) ( -3.7354E-01, -5.5148E-01)
5 ( 5.7843E-01, -1.2439E-01) ( -1.8815E-02, -5.5686E-02)

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08VSF

Mark 26 F08VSF.7



6 ( 1.5763E-02, 4.7130E-02) ( 6.5007E-01, 4.9173E-03)

Unitary matrix V
1 2

1 ( 1.0000E+00, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
2 ( 0.0000E+00, 0.0000E+00) ( 1.0000E+00, 0.0000E+00)

Unitary matrix Q
1 2

1 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
2 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)
3 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
4 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)

3 4
1 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
2 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)
3 ( -7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
4 ( 0.0000E+00, 0.0000E+00) ( -7.0711E-01, 0.0000E+00)
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NAG Library Routine Document

F08VUF (ZGGSVP3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08VUF (ZGGSVP3) uses unitary transformations to simultaneously reduce the m by n matrix A and
the p by n matrix B to upper triangular form. This factorization is usually used as a preprocessing step
for computing the generalized singular value decomposition (GSVD). For sufficiently large problems, a
blocked algorithm is used to make best use of level 3 BLAS.

2 Specification

SUBROUTINE F08VUF (JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
TAU, WORK, LWORK, INFO)

&
&

INTEGER M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, IWORK(N),
LWORK, INFO

&

REAL (KIND=nag_wp) TOLA, TOLB, RWORK(2*N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),

Q(LDQ,*), TAU(N), WORK(max(1,LWORK))
&

CHARACTER(1) JOBU, JOBV, JOBQ

The routine may be called by its LAPACK name zggsvp3.

3 Description

F08VUF (ZGGSVP3) computes unitary matrices U , V and Q such that

UHAQ ¼

1CCCCA
0BBBB@
n� k� l k l

k 0 A12 A13

l 0 0 A23

m� k� l 0 0 0

; if m� k� l � 0;

1CA
0B@
n� k� l k l

k 0 A12 A13

m� k 0 0 A23

; if m� k� l < 0;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

V HBQ ¼

1CA
0B@
n� k� l k l

l 0 0 B13

p� l 0 0 0

where the k by k matrix A12 and l by l matrix B13 are nonsingular upper triangular; A23 is l by l upper
triangular if m� k� l � 0 and is m� kð Þ by l upper trapezoidal otherwise. kþ lð Þ is the effective

numerical rank of the mþ pð Þ by n matrix AH BH
� �H

.

This decomposition is usually used as the preprocessing step for computing the Generalized Singular
Value Decomposition (GSVD), see routine F08YSF (ZTGSJA); the two steps are combined in F08VQF
(ZGGSVD3).
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5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: if JOBU ¼ U , the unitary matrix U is computed.

If JOBU ¼ N , U is not computed.

Constraint: JOBU ¼ U or N .

2: JOBV – CHARACTER(1) Input

On entry: if JOBV ¼ V , the unitary matrix V is computed.

If JOBV ¼ N , V is not computed.

Constraint: JOBV ¼ V or N .

3: JOBQ – CHARACTER(1) Input

On entry: if JOBQ ¼ Q , the unitary matrix Q is computed.

If JOBQ ¼ N , Q is not computed.

Constraint: JOBQ ¼ Q or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

6: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: contains the triangular (or trapezoidal) matrix described in Section 3.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08VUF
(ZGGSVP3) is called.

Constraint: LDA � max 1;Mð Þ.
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9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: contains the triangular matrix described in Section 3.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08VUF
(ZGGSVP3) is called.

Constraint: LDB � max 1; Pð Þ.

11: TOLA – REAL (KIND=nag_wp) Input
12: TOLB – REAL (KIND=nag_wp) Input

On entry: TOLA and TOLB are the thresholds to determine the effective numerical rank of
matrix B and a subblock of A. Generally, they are set to

TOLA ¼ max M;Nð Þ Ak k�;
TOLB ¼ max P;Nð Þ Bk k�;

where � is the machine precision.

The size of TOLA and TOLB may affect the size of backward errors of the decomposition.

13: K – INTEGER Output
14: L – INTEGER Output

On exit: K and L specify the dimension of the subblocks k and l as described in Section 3;

kþ lð Þ is the effective numerical rank of AT BT
� �T

.

15: UðLDU; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ U , and at least
1 otherwise.

On exit: if JOBU ¼ U , U contains the unitary matrix U .

If JOBU ¼ N , U is not referenced.

16: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08VUF
(ZGGSVP3) is called.

Constraints:

if JOBU ¼ U , LDU � max 1;Mð Þ;
otherwise LDU � 1.

17: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1; Pð Þ if JOBV ¼ V , and at least
1 otherwise.

On exit: if JOBV ¼ V , V contains the unitary matrix V .

If JOBV ¼ N , V is not referenced.

18: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08VUF
(ZGGSVP3) is called.
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Constraints:

if JOBV ¼ V , LDV � max 1; Pð Þ;
otherwise LDV � 1.

19: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBQ ¼ Q , and at least
1 otherwise.

On exit: if JOBQ ¼ Q , Q contains the unitary matrix Q.

If JOBQ ¼ N , Q is not referenced.

20: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08VUF
(ZGGSVP3) is called.

Constraints:

if JOBQ ¼ Q , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

21: IWORKðNÞ – INTEGER array Workspace

22: RWORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

23: TAUðNÞ – COMPLEX (KIND=nag_wp) array Workspace

24: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

25: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)routine from which F08VUF
(ZGGSVP3) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, nb� Nþ 1ð Þ, where nb is the optimal block size

Constraints:

if JOBV ¼ V , LWORK � max Nþ 1; P;Mð Þ;
if JOBV ¼ N , LWORK � max Nþ 1;Mð Þ.

26: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

The computed factorization is nearly the exact factorization for nearby matrices Aþ Eð Þ and Bþ Fð Þ,
where

Ek k2 ¼ O �ð Þ Ak k2 and Fk k2 ¼ O �ð Þ Bk k2;

and � is the machine precision.

8 Parallelism and Performance

F08VUF (ZGGSVP3) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08VUF (ZGGSVP3) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This routine replaces the deprecated routine F08VSF (ZGGSVP) which used an unblocked algorithm
and therefore did not make best use of level 3 BLAS routines.

The real analogue of this routine is F08VGF (DGGSVP3).

10 Example

This example finds the generalized factorization

A ¼ U�1 0 S
� �

QH; B ¼ V�2 0 T
� �

QH;

of the matrix pair A B
� �

, where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA
and

B ¼ 1 0 �1 0
0 1 0 �1

� �
:

10.1 Program Text

Program f08vufe

! F08VUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06uaf, nag_wp, x02ajf, x04dbf, zggsvp3, ztgsja

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Real (Kind=nag_wp) :: eps, tola, tolb
Integer :: i, ifail, info, irank, j, k, l, lda, &

ldb, ldq, ldu, ldv, lwork, m, n, &
ncycle, p

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), q(:,:), tau(:), &

u(:,:), v(:,:), work(:)
Complex (Kind=nag_wp) :: wdum(1)
Real (Kind=nag_wp), Allocatable :: alpha(:), beta(:), rwork(:)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08VUF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),q(ldq,n),tau(n),u(ldu,m), &

v(ldv,p),rwork(2*n),iwork(n))

! Perform workspace query to get optimal size of work
! The NAG name equivalent of zggsvp3 is f08vuf

lwork = -1
Call zggsvp3(’U’,’V’,’Q’,m,p,n,a,lda,b,ldb,tola,tolb,k,l,u,ldu,v,ldv,q, &

ldq,iwork,rwork,tau,wdum,lwork,info)
lwork = nint(real(wdum(1)))
Allocate (work(lwork))

! Read the m by n matrix A and p by n matrix B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)

! Compute tola and tolb as
! tola = max(m,n)*norm(A)*macheps
! tolb = max(p,n)*norm(B)*macheps

eps = x02ajf()
tola = real(max(m,n),kind=nag_wp)*f06uaf(’One-norm’,m,n,a,lda,rwork)*eps
tolb = real(max(p,n),kind=nag_wp)*f06uaf(’One-norm’,p,n,b,ldb,rwork)*eps

! Compute the factorization of (A, B)
! (A = U*S*(Q**H), B = V*T*(Q**H))

! The NAG name equivalent of zggsvp3 is f08vuf
Call zggsvp3(’U’,’V’,’Q’,m,p,n,a,lda,b,ldb,tola,tolb,k,l,u,ldu,v,ldv,q, &

ldq,iwork,rwork,tau,work,lwork,info)

! Compute the generalized singular value decomposition of (A, B)
! (A = U*D1*(0 R)*(Q**H), B = V*D2*(0 R)*(Q**H))

Deallocate (work)
Allocate (work(2*n))

! The NAG name equivalent of ztgsja is f08ysf
Call ztgsja(’U’,’V’,’Q’,m,p,n,k,l,a,lda,b,ldb,tola,tolb,alpha,beta,u, &

ldu,v,ldv,q,ldq,work,ncycle,info)

! Print solution

irank = k + l
Write (nout,*) ’Number of infinite generalized singular values (k)’
Write (nout,99999) k
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Write (nout,*) ’Number of finite generalized singular values (l)’
Write (nout,99999) l
Write (nout,*) ’Effective Numerical rank of (A; B) (k+l)’
Write (nout,99999) irank
Write (nout,*)
Write (nout,*) ’Finite generalized singular values’
Write (nout,99998)(alpha(j)/beta(j),j=k+1,irank)
Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,m,m,u,ldu,’Bracketed’,’1P,E12.4’, &

’Unitary matrix U’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’General’,’ ’,p,p,v,ldv,’Bracketed’,’1P,E12.4’, &
’Unitary matrix V’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’General’,’ ’,n,n,q,ldq,’Bracketed’,’1P,E12.4’, &
’Unitary matrix Q’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’Upper triangular’,’Non-unit’,irank,irank,a(1,n-irank+1), &
lda,’Bracketed’,’1P,E12.4’,’Nonsingular upper triangular matrix R’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Number of cycles of the Kogbetliantz method’
Write (nout,99999) ncycle

99999 Format (1X,I5)
99998 Format (3X,8(1P,E12.4))

End Program f08vufe

10.2 Program Data

F08VUF Example Program Data

6 4 2 :Values of M, N and P

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
( 0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) :End of matrix B

10.3 Program Results

F08VUF Example Program Results

Number of infinite generalized singular values (k)
2

Number of finite generalized singular values (l)
2

Effective Numerical rank of (A; B) (k+l)
4
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Finite generalized singular values
2.0720E+00 1.1058E+00

Unitary matrix U
1 2

1 ( -1.3038E-02, -3.2595E-01) ( -1.4039E-01, -2.6167E-01)
2 ( 4.2764E-01, -6.2582E-01) ( 8.6298E-02, -3.8174E-02)
3 ( -3.2595E-01, 1.6428E-01) ( 3.8163E-01, -1.8219E-01)
4 ( 1.5906E-01, -5.2151E-03) ( -2.8207E-01, 1.9732E-01)
5 ( -1.7210E-01, -1.3038E-02) ( -5.0942E-01, -5.0319E-01)
6 ( -2.6336E-01, -2.4772E-01) ( -1.0861E-01, 2.8474E-01)

3 4
1 ( 2.5177E-01, -7.9789E-01) ( -5.0956E-02, -2.1750E-01)
2 ( -3.2188E-01, 1.6112E-01) ( 1.1979E-01, 1.6319E-01)
3 ( 1.3231E-01, -1.4565E-02) ( -5.0671E-01, 1.8615E-01)
4 ( 2.1598E-01, 1.8813E-01) ( -4.0163E-01, 2.6787E-01)
5 ( 3.6488E-02, 2.0316E-01) ( 1.9271E-01, 1.5574E-01)
6 ( 1.0906E-01, -1.2712E-01) ( -8.8159E-02, 5.6169E-01)

5 6
1 ( -4.5947E-02, 1.4052E-04) ( -5.2773E-02, -2.2492E-01)
2 ( -8.0311E-02, -4.3605E-01) ( -3.8117E-02, -2.1907E-01)
3 ( 5.9714E-02, -5.8974E-01) ( -1.3850E-01, -9.0941E-02)
4 ( -4.6443E-02, 3.0864E-01) ( -3.7354E-01, -5.5148E-01)
5 ( 5.7843E-01, -1.2439E-01) ( -1.8815E-02, -5.5686E-02)
6 ( 1.5763E-02, 4.7130E-02) ( 6.5007E-01, 4.9173E-03)

Unitary matrix V
1 2

1 ( 9.8930E-01, 1.0471E-19) ( -1.1461E-01, 9.0250E-02)
2 ( -1.1461E-01, -9.0250E-02) ( -9.8930E-01, 1.0471E-19)

Unitary matrix Q
1 2

1 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
2 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)
3 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
4 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)

3 4
1 ( 6.9954E-01, -1.1784E-18) ( 8.1044E-02, -6.3817E-02)
2 ( -8.1044E-02, -6.3817E-02) ( 6.9954E-01, 1.1784E-18)
3 ( -6.9954E-01, 1.1784E-18) ( -8.1044E-02, 6.3817E-02)
4 ( 8.1044E-02, 6.3817E-02) ( -6.9954E-01, -1.1784E-18)

Nonsingular upper triangular matrix R
1 2

1 ( -2.7118E+00, 0.0000E+00) ( -1.4390E+00, -1.0315E+00)
2 ( -1.8583E+00, 0.0000E+00)
3
4

3 4
1 ( -7.6930E-02, 1.3613E+00) ( -2.8137E-01, -3.2425E-02)
2 ( -1.0760E+00, 3.1016E-02) ( 1.3292E+00, 3.6772E-01)
3 ( 3.2537E+00, 0.0000E+00) ( -6.3858E-17, 3.4216E-33)
4 ( -2.1084E+00, 0.0000E+00)

Number of cycles of the Kogbetliantz method
2
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NAG Library Routine Document

F08WAF (DGGEV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WAF (DGGEV) computes for a pair of n by n real nonsymmetric matrices A;Bð Þ the generalized
eigenvalues and, optionally, the left and/or right generalized eigenvectors using the QZ algorithm.
F08WAF (DGGEV) is marked as deprecated by LAPACK; the replacement routine is F08WCF
(DGGEV3) which makes better use of level 3 BLAS.

2 Specification

SUBROUTINE F08WAF (JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO)

&

INTEGER N, LDA, LDB, LDVL, LDVR, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHAR(N), ALPHAI(N), BETA(N),

VL(LDVL,*), VR(LDVR,*), WORK(max(1,LWORK))
&

CHARACTER(1) JOBVL, JOBVR

The routine may be called by its LAPACK name dggev.

3 Description

A generalized eigenvalue for a pair of matrices A;Bð Þ is a scalar � or a ratio �=� ¼ �, such that
A� �B is singular. It is usually represented as the pair �; �ð Þ, as there is a reasonable interpretation for
� ¼ 0, and even for both being zero.

The right eigenvector vj corresponding to the eigenvalue �j of A;Bð Þ satisfies

Avj ¼ �jBvj:
The left eigenvector uj corresponding to the eigenvalue �j of A;Bð Þ satisfies

uHj A ¼ �juHj B;

where uHj is the conjugate-transpose of uj.

All the eigenvalues and, if required, all the eigenvectors of the generalized eigenproblem Ax ¼ �Bx,
where A and B are real, square matrices, are determined using the QZ algorithm. The QZ algorithm
consists of four stages:

1. A is reduced to upper Hessenberg form and at the same time B is reduced to upper triangular form.

2. A is further reduced to quasi-triangular form while the triangular form of B is maintained. This is
the real generalized Schur form of the pair A;Bð Þ.

3. The quasi-triangular form of A is reduced to triangular form and the eigenvalues extracted. This
routine does not actually produce the eigenvalues �j, but instead returns �j and �j such that

�j ¼ �j=�j; j ¼ 1; 2; . . . ; n:

The division by �j becomes your responsibility, since �j may be zero, indicating an infinite
eigenvalue. Pairs of complex eigenvalues occur with �j=�j and �jþ1=�jþ1 complex conjugates,
even though �j and �jþ1 are not conjugate.

4. If the eigenvectors are required they are obtained from the triangular matrices and then transformed
back into the original coordinate system.
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5 Arguments

1: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , do not compute the left generalized eigenvectors.

If JOBVL ¼ V , compute the left generalized eigenvectors.

Constraint: JOBVL ¼ N or V .

2: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , do not compute the right generalized eigenvectors.

If JOBVR ¼ V , compute the right generalized eigenvectors.

Constraint: JOBVR ¼ N or V .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A in the pair A;Bð Þ.
On exit: A has been overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08WAF
(DGGEV) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix B in the pair A;Bð Þ.
On exit: B has been overwritten.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08WAF
(DGGEV) is called.

Constraint: LDB � max 1;Nð Þ.
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8: ALPHARðNÞ – REAL (KIND=nag_wp) array Output

On exit: the element ALPHARðjÞ contains the real part of �j.

9: ALPHAIðNÞ – REAL (KIND=nag_wp) array Output

On exit: the element ALPHAIðjÞ contains the imaginary part of �j.

10: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHARðjÞ þ ALPHAIðjÞ � ið Þ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized
eigenvalues.

If ALPHAIðjÞ is zero, then the jth eigenvalue is real; if positive, then the jth and jþ 1ð Þst
eigenvalues are a complex conjugate pair, with ALPHAIðjþ 1Þ negative.
Note: the quotients ALPHARðjÞ=BETAðjÞ and ALPHAIðjÞ=BETAðjÞ may easily overflow or
underflow, and BETAðjÞ may even be zero. Thus, you should avoid naively computing the ratio
�j=�j. However, max �j

		 		 will always be less than and usually comparable with Ak k2 in
magnitude, and max �j

		 		 will always be less than and usually comparable with Bk k2.

11: VLðLDVL; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least max 1;Nð Þ if JOBVL ¼ V , and at
least 1 otherwise.

On exit: if JOBVL ¼ V , the left eigenvectors uj are stored one after another in the columns of
VL, in the same order as the corresponding eigenvalues.

If the jth eigenvalue is real, then uj ¼ VLð:; jÞ, the jth column of VL.

If the jth and jþ 1ð Þth eigenvalues form a complex conjugate pai r, then
uj ¼ VLð:; jÞ þ i� VLð:; jþ 1Þ and u jþ 1ð Þ ¼ VLð:; jÞ � i� VLð:; jþ 1Þ. Each eigenvector will
be scaled so the largest component has real partj j þ imag: partj j ¼ 1.

If JOBVL ¼ N , VL is not referenced.

12: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08WAF (DGGEV) is called.

Constraints:

if JOBVL ¼ V , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

13: VRðLDVR; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least max 1;Nð Þ if JOBVR ¼ V , and at
least 1 otherwise.

On exit: if JOBVR ¼ V , the right eigenvectors vj are stored one after another in the columns of
VR, in the same order as the corresponding eigenvalues.

If the jth eigenvalue is real, then vj ¼ VRð:; jÞ, the jth column of VR.

If the jth and jþ 1ð Þth eigenvalues form a complex conjugate pai r, then
vj ¼ VRð:; jÞ þ i� VRð:; jþ 1Þ and vjþ1 ¼ VRð:; jÞ � i� VRð:; jþ 1Þ. Each eigenvector will
be scaled so the largest component has real partj j þ imag: partj j ¼ 1.

If JOBVR ¼ N , VR is not referenced.

14: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08WAF (DGGEV) is called.
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Constraints:

if JOBVR ¼ V , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

15: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

16: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08WAF (DGGEV) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, nb� N, where nb is the optimal block size.

Constraint: LWORK � max 1; 8� Nð Þ.

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration failed. No eigenvectors have been calculated, but ALPHARðjÞ, ALPHAIðjÞ,
and BETAðjÞ should be correct for j ¼ INFOþ 1; . . . ;N.

INFO ¼ Nþ 1

Unexpected error returned from F08XEF (DHGEQZ).

INFO ¼ Nþ 2

Error returned from F08YKF (DTGEVC).

7 Accuracy

The computed eigenvalues and eigenvectors are exact for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where
E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF ;

and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

Note: interpretation of results obtained with the QZ algorithm often requires a clear understanding of
the effects of small changes in the original data. These effects are reviewed in Wilkinson (1979), in
relation to the significance of small values of �j and �j. It should be noted that if �j and �j are both
small for any j, it may be that no reliance can be placed on any of the computed eigenvalues
�i ¼ �i=�i. You are recommended to study Wilkinson (1979) and, if in difficulty, to seek expert advice
on determining the sensitivity of the eigenvalues to perturbations in the data.
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8 Parallelism and Performance

F08WAF (DGGEV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08WAF (DGGEV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08WNF (ZGGEV).

10 Example

This example finds all the eigenvalues and right eigenvectors of the matrix pair A;Bð Þ, where

A ¼
3:9 12:5 �34:5 �0:5
4:3 21:5 �47:5 7:5
4:3 21:5 �43:5 3:5
4:4 26:0 �46:0 6:0

0B@
1CA and B ¼

1:0 2:0 �3:0 1:0
1:0 3:0 �5:0 4:0
1:0 3:0 �4:0 3:0
1:0 3:0 �4:0 4:0

0B@
1CA:

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08wafe

! F08WAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dggev, m01def, m01eaf, nag_wp, x02ajf, x02amf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: eig
Real (Kind=nag_wp) :: scal_i, scal_r, small
Integer :: i, ifail, info, j, k, lda, ldb, &

ldvr, lwork, n
Logical :: pair

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), alphai(:), alphar(:), &

b(:,:), beta(:), vr(:,:), vr_row(:), &
work(:)

Real (Kind=nag_wp) :: dummy(1,1)
Integer, Allocatable :: irank(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, all, cmplx, max, maxloc, nint, &

sqrt
! .. Executable Statements ..

Write (nout,*) ’F08WAF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
lda = n
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ldb = n
ldvr = n
Allocate (a(lda,n),alphai(n),alphar(n),b(ldb,n),beta(n),vr(ldvr,n), &

irank(n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dggev is f08waf
Call dggev(’No left vectors’,’Vectors (right)’,n,a,lda,b,ldb,alphar, &

alphai,beta,dummy,1,vr,ldvr,dummy,lwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+7)*n,nint(dummy(1,1)))
Allocate (work(lwork))

! Read in the matrices A and B

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Solve the generalized eigenvalue problem

! The NAG name equivalent of dggev is f08waf
Call dggev(’No left vectors’,’Vectors (right)’,n,a,lda,b,ldb,alphar, &

alphai,beta,dummy,1,vr,ldvr,work,lwork,info)

If (info>0) Then
Write (nout,*)
Write (nout,99999) ’Failure in DGGEV. INFO =’, info

Else
! If beta(:) > eps, Order eigenvalues by ascending real parts
! and then by ascending imaginary parts

If (all(abs(beta(1:n))>x02ajf())) Then
work(1:n) = alphar(1:n)/beta(1:n)
work(n+1:2*n) = alphai(1:n)/beta(1:n)
ifail = 0
Call m01def(work,n,1,n,1,2,’Ascending’,irank,ifail)
Call m01eaf(alphar,1,n,irank,ifail)
Call m01eaf(alphai,1,n,irank,ifail)
Call m01eaf(beta,1,n,irank,ifail)

! Order the eigenvectors in the same way
Allocate (vr_row(n))
Do j = 1, n

vr_row(1:n) = vr(j,1:n)
Call m01eaf(vr_row,1,n,irank,ifail)
vr(j,1:n) = vr_row(1:n)

End Do
Deallocate (vr_row)

End If
small = x02amf()
pair = .False.
Do j = 1, n

Write (nout,*)
If ((abs(alphar(j))+abs(alphai(j)))*small>=abs(beta(j))) Then

Write (nout,99998) ’Eigenvalue(’, j, ’)’, &
’ is numerically infinite or undetermined’, ’ALPHAR(’, j, &
’) = ’, alphar(j), ’, ALPHAI(’, j, ’) = ’, alphai(j), ’, BETA(’, &
j, ’) = ’, beta(j)

Else
If (alphai(j)==zero) Then

Write (nout,99997) ’Eigenvalue(’, j, ’) = ’, alphar(j)/beta(j)
Else

eig = cmplx(alphar(j),alphai(j),kind=nag_wp)/ &
cmplx(beta(j),kind=nag_wp)

Write (nout,99996) ’Eigenvalue(’, j, ’) = ’, eig
End If

End If
Write (nout,*)
Write (nout,99995) ’Eigenvector(’, j, ’)’
If (alphai(j)==zero) Then

! Let largest element be positive
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work(1:n) = abs(vr(1:n,j))
k = maxloc(work(1:n),1)
If (vr(k,j)<zero) Then

vr(1:n,j) = -vr(1:n,j)
End If
Write (nout,99994)(vr(i,j),i=1,n)

Else
If (pair) Then

Write (nout,99993)(vr(i,j-1),-vr(i,j),i=1,n)
Else

! Let largest element be real (and positive).
work(1:n) = vr(1:n,j)**2 + vr(1:n,j+1)**2
k = maxloc(work(1:n),1)
scal_r = vr(k,j)/sqrt(work(k))
scal_i = -vr(k,j+1)/sqrt(work(k))
work(1:n) = vr(1:n,j)
vr(1:n,j) = scal_r*work(1:n) - scal_i*vr(1:n,j+1)
vr(1:n,j+1) = scal_r*vr(1:n,j+1) + scal_i*work(1:n)
Write (nout,99993)(vr(i,j),vr(i,j+1),i=1,n)

End If
pair = .Not. pair

End If
End Do

End If

99999 Format (1X,A,I4)
99998 Format (1X,A,I2,2A,/,1X,2(A,I2,A,1P,F11.3,3X),A,I2,A,1P,F11.3)
99997 Format (1X,A,I2,A,1P,F11.3)
99996 Format (1X,A,I2,A,’(’,1P,F11.3,’,’,1P,F11.3,’)’)
99995 Format (1X,A,I2,A)
99994 Format (1X,1P,F11.5)
99993 Format (1X,’(’,1P,F11.5,’,’,1P,F11.5,’)’)

End Program f08wafe

10.2 Program Data

F08WAF Example Program Data
4 :Value of N
3.9 12.5 -34.5 -0.5
4.3 21.5 -47.5 7.5
4.3 21.5 -43.5 3.5
4.4 26.0 -46.0 6.0 :End of matrix A
1.0 2.0 -3.0 1.0
1.0 3.0 -5.0 4.0
1.0 3.0 -4.0 3.0
1.0 3.0 -4.0 4.0 :End of matrix B

10.3 Program Results

F08WAF Example Program Results

Eigenvalue( 1) = 20.000

Eigenvector( 1)
10.00000
0.05714
0.62857
0.62857

Eigenvalue( 2) = ( 30.000, -40.000)

Eigenvector( 2)
( 7.12215, 0.00000)
( 1.42443, -0.00000)
( 0.85466, 1.13954)
( 0.85466, 1.13954)

Eigenvalue( 3) = ( 30.000, 40.000)
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Eigenvector( 3)
( 7.12215, 0.00000)
( 1.42443, 0.00000)
( 0.85466, -1.13954)
( 0.85466, -1.13954)

Eigenvalue( 4) = 40.000

Eigenvector( 4)
10.00000
0.11111

-0.33333
1.55556
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NAG Library Routine Document

F08WBF (DGGEVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WBF (DGGEVX) computes for a pair of n by n real nonsymmetric matrices A;Bð Þ the generalized
eigenvalues and, optionally, the left and/or right generalized eigenvectors using the QZ algorithm.

Optionally it also computes a balancing transformation to improve the conditioning of the eigenvalues
and eigenvectors, reciprocal condition numbers for the eigenvalues, and reciprocal condition numbers
for the right eigenvectors.

2 Specification

SUBROUTINE F08WBF (BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, IHI,
LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, WORK,
LWORK, IWORK, BWORK, INFO)

&
&
&

INTEGER N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK, IWORK(*),
INFO

&

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHAR(N), ALPHAI(N), BETA(N),
VL(LDVL,*), VR(LDVR,*), LSCALE(N), RSCALE(N),
ABNRM, BBNRM, RCONDE(*), RCONDV(*),
WORK(max(1,LWORK))

&
&
&

LOGICAL BWORK(*)
CHARACTER(1) BALANC, JOBVL, JOBVR, SENSE

The routine may be called by its LAPACK name dggevx.

3 Description

A generalized eigenvalue for a pair of matrices A;Bð Þ is a scalar � or a ratio �=� ¼ �, such that
A� �B is singular. It is usually represented as the pair �; �ð Þ, as there is a reasonable interpretation for
� ¼ 0, and even for both being zero.

The right eigenvector vj corresponding to the eigenvalue �j of A;Bð Þ satisfies

Avj ¼ �jBvj:
The left eigenvector uj corresponding to the eigenvalue �j of A;Bð Þ satisfies

uHj A ¼ �juHj B;

where uHj is the conjugate-transpose of uj.

All the eigenvalues and, if required, all the eigenvectors of the generalized eigenproblem Ax ¼ �Bx,
where A and B are real, square matrices, are determined using the QZ algorithm. The QZ algorithm
consists of four stages:

1. A is reduced to upper Hessenberg form and at the same time B is reduced to upper triangular form.

2. A is further reduced to quasi-triangular form while the triangular form of B is maintained. This is
the real generalized Schur form of the pair A;Bð Þ.

3. The quasi-triangular form of A is reduced to triangular form and the eigenvalues extracted. This
routine does not actually produce the eigenvalues �j, but instead returns �j and �j such that

�j ¼ �j=�j; j ¼ 1; 2; . . . ; n:

The division by �j becomes your responsibility, since �j may be zero, indicating an infinite
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eigenvalue. Pairs of complex eigenvalues occur with �j=�j and �jþ1=�jþ1 complex conjugates,
even though �j and �jþ1 are not conjugate.

4. If the eigenvectors are required they are obtained from the triangular matrices and then transformed
back into the original coordinate system.

For details of the balancing option, see Section 3 in F08WHF (DGGBAL).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1979) Kronecker's canonical form and the QZ algorithm Linear Algebra Appl. 28 285–
303

5 Arguments

1: BALANC – CHARACTER(1) Input

On entry: specifies the balance option to be performed.

BALANC ¼ N
Do not diagonally scale or permute.

BALANC ¼ P
Permute only.

BALANC ¼ S
Scale only.

BALANC ¼ B
Both permute and scale.

Computed reciprocal condition numbers will be for the matrices after permuting and/or
balancing. Permuting does not change condition numbers (in exact arithmetic), but balancing
does. In the absence of other information, BALANC ¼ B is recommended.

Constraint: BALANC ¼ N , P , S or B .

2: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , do not compute the left generalized eigenvectors.

If JOBVL ¼ V , compute the left generalized eigenvectors.

Constraint: JOBVL ¼ N or V .

3: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , do not compute the right generalized eigenvectors.

If JOBVR ¼ V , compute the right generalized eigenvectors.

Constraint: JOBVR ¼ N or V .

4: SENSE – CHARACTER(1) Input

On entry: determines which reciprocal condition numbers are computed.

SENSE ¼ N
None are computed.
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SENSE ¼ E
Computed for eigenvalues only.

SENSE ¼ V
Computed for eigenvectors only.

SENSE ¼ B
Computed for eigenvalues and eigenvectors.

Constraint: SENSE ¼ N , E , V or B .

5: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A in the pair A;Bð Þ.
On exit: A has been overwritten. If JOBVL ¼ V or JOBVR ¼ V or both, then A contains the
first part of the real Schur form of the ‘balanced’ versions of the input A and B.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F08WBF (DGGEVX) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix B in the pair A;Bð Þ.
On exit: B has been overwritten.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08WBF
(DGGEVX) is called.

Constraint: LDB � max 1;Nð Þ.

10: ALPHARðNÞ – REAL (KIND=nag_wp) array Output

On exit: the element ALPHARðjÞ contains the real part of �j.

11: ALPHAIðNÞ – REAL (KIND=nag_wp) array Output

On exit: the element ALPHAIðjÞ contains the imaginary part of �j.

12: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHARðjÞ þ ALPHAIðjÞ � ið Þ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized
eigenvalues.

If ALPHAIðjÞ is zero, then the jth eigenvalue is real; if positive, then the jth and jþ 1ð Þst
eigenvalues are a complex conjugate pair, with ALPHAIðjþ 1Þ negative.
Note: the quotients ALPHARðjÞ=BETAðjÞ and ALPHAIðjÞ=BETAðjÞ may easily overflow or
underflow, and BETAðjÞ may even be zero. Thus, you should avoid naively computing the ratio
�j=�j. However, max �j

		 		 will always be less than and usually comparable with Ak k2 in
magnitude, and max �j

		 		 will always be less than and usually comparable with Bk k2.
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13: VLðLDVL; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least max 1;Nð Þ if JOBVL ¼ V , and at
least 1 otherwise.

On exit: if JOBVL ¼ V , the left generalized eigenvectors uj are stored one after another in the
columns of VL, in the same order as the corresponding eigenvalues. Each eigenvector will be
scaled so the largest component will have real partj j þ imag: partj j ¼ 1.

If JOBVL ¼ N , VL is not referenced.

14: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08WBF (DGGEVX) is called.

Constraints:

if JOBVL ¼ V , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

15: VRðLDVR; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least max 1;Nð Þ if JOBVR ¼ V , and at
least 1 otherwise.

On exit: if JOBVR ¼ V , the right generalized eigenvectors vj are stored one after another in the
columns of VR, in the same order as the corresponding eigenvalues. Each eigenvector will be
scaled so the largest component will have real partj j þ imag: partj j ¼ 1.

If JOBVR ¼ N , VR is not referenced.

16: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08WBF (DGGEVX) is called.

Constraints:

if JOBVR ¼ V , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

17: ILO – INTEGER Output
18: IHI – INTEGER Output

On exit: ILO and IHI are integer values such that Aði; jÞ ¼ 0 and Bði; jÞ ¼ 0 if i > j and
j ¼ 1; 2; . . . ; ILO� 1 or i ¼ IHIþ 1; . . . ;N.

If BALANC ¼ N or S , ILO ¼ 1 and IHI ¼ N.

19: LSCALEðNÞ – REAL (KIND=nag_wp) array Output

On exit: details of the permutations and scaling factors applied to the left side of A and B.

If plj is the index of the row interchanged with row j, and dlj is the scaling factor applied to row
j, then:

LSCALEðjÞ ¼ plj , for j ¼ 1; 2; . . . ; ILO� 1;

LSCALE ¼ dlj , for j ¼ ILO; . . . ; IHI;

LSCALE ¼ plj , for j ¼ IHIþ 1; . . . ;N.

The order in which the interchanges are made is N to IHIþ 1, then 1 to ILO� 1.

20: RSCALEðNÞ – REAL (KIND=nag_wp) array Output

On exit: details of the permutations and scaling factors applied to the right side of A and B.
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If prj is the index of the column interchanged with column j, and drj is the scaling factor
applied to column j, then:

RSCALEðjÞ ¼ prj , for j ¼ 1; 2; . . . ; ILO� 1;

if RSCALE ¼ drj , for j ¼ ILO; . . . ; IHI;

if RSCALE ¼ prj , for j ¼ IHIþ 1; . . . ;N.

The order in which the interchanges are made is N to IHIþ 1, then 1 to ILO� 1.

21: ABNRM – REAL (KIND=nag_wp) Output

On exit: the 1-norm of the balanced matrix A.

22: BBNRM – REAL (KIND=nag_wp) Output

On exit: the 1-norm of the balanced matrix B.

23: RCONDEð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RCONDE must be at least max 1;Nð Þ.
On exit: if SENSE ¼ E or B , the reciprocal condition numbers of the eigenvalues, stored in
consecutive elements of the array. For a complex conjugate pair of eigenvalues two consecutive
elements of RCONDE are set to the same value. Thus RCONDEðjÞ, RCONDVðjÞ, and the jth
columns of VL and VR all correspond to the jth eigenpair.

If SENSE ¼ V , RCONDE is not referenced.

24: RCONDVð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RCONDV must be at least max 1;Nð Þ.
On exit: if SENSE ¼ V or B , the estimated reciprocal condition numbers of the eigenvectors,
stored in consecutive elements of the array. For a complex eigenvector two consecutive elements
of RCONDV are set to the same value.

If SENSE ¼ E , RCONDV is not referenced.

25: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

26: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08WBF (DGGEVX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, nb� N, where nb is the optimal block size.

Constraints:

if SENSE ¼ N ,

i f BALANC ¼ N o r P a n d JOBVL ¼ N a n d JOBVR ¼ N ,
LWORK � max 1; 2� Nð Þ;
otherwise LWORK � max 1; 6� Nð Þ.;

if SENSE ¼ E , LWORK � max 1; 10� Nð Þ;
if SENSE ¼ B or SENSE ¼ V , LWORK � max 10� N; 2� N� Nþ 4ð Þ þ 16ð Þ.
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27: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least Nþ 6.

If SENSE ¼ E , IWORK is not referenced.

28: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least max 1;Nð Þ.
If SENSE ¼ N , BWORK is not referenced.

29: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration failed. No eigenvectors have been calculated, but ALPHARðjÞ, ALPHAIðjÞ,
and BETAðjÞ should be correct for j ¼ INFOþ 1; . . . ;N.

INFO ¼ Nþ 1

Unexpected error returned from F08XEF (DHGEQZ).

INFO ¼ Nþ 2

Error returned from F08YKF (DTGEVC).

7 Accuracy

The computed eigenvalues and eigenvectors are exact for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where
E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF ;

and � is the machine precision.

An approximate error bound on the chordal distance between the ith computed generalized eigenvalue
w and the corresponding exact eigenvalue � is

�� ABNRM;BBNRMk k2=RCONDEðiÞ:
An approximate error bound for the angle between the ith computed eigenvector uj or vj is given by

�� ABNRM;BBNRMk k2=RCONDVðiÞ:
For further explanation of the reciprocal condition numbers RCONDE and RCONDV, see Section 4.11
of Anderson et al. (1999).

Note: interpretation of results obtained with the QZ algorithm often requires a clear understanding of
the effects of small changes in the original data. These effects are reviewed in Wilkinson (1979), in
relation to the significance of small values of �j and �j. It should be noted that if �j and �j are both
small for any j, it may be that no reliance can be placed on any of the computed eigenvalues
�i ¼ �i=�i. You are recommended to study Wilkinson (1979) and, if in difficulty, to seek expert advice
on determining the sensitivity of the eigenvalues to perturbations in the data.
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8 Parallelism and Performance

F08WBF (DGGEVX) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08WBF (DGGEVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08WPF (ZGGEVX).

10 Example

This example finds all the eigenvalues and right eigenvectors of the matrix pair A;Bð Þ, where

A ¼
3:9 12:5 �34:5 �0:5
4:3 21:5 �47:5 7:5
4:3 21:5 �43:5 3:5
4:4 26:0 �46:0 6:0

0B@
1CA and B ¼

1:0 2:0 �3:0 1:0
1:0 3:0 �5:0 4:0
1:0 3:0 �4:0 3:0
1:0 3:0 �4:0 4:0

0B@
1CA;

together with estimates of the condition number and forward error bounds for each eigenvalue and
eigenvector. The option to balance the matrix pair is used.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08wbfe

! F08WBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dggevx, dnrm2, m01daf, m01eaf, nag_wp, x02ajf, &

x02amf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nb = 64, nin = 5, nout = 6
! .. Local Scalars ..

Complex (Kind=nag_wp) :: eig
Real (Kind=nag_wp) :: abnrm, bbnrm, eps, jswap, rcnd, &

scal_i, scal_r, small
Integer :: i, ifail, ihi, ilo, info, j, k, lda, &

ldb, ldvr, lwork, n
Logical :: pair

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), alphai(:), alphar(:), &

b(:,:), beta(:), lscale(:), &
rconde(:), rcondv(:), rscale(:), &
vr(:,:), vr_row(:), work(:)

Real (Kind=nag_wp) :: dummy(1,1)
Integer, Allocatable :: iwork(:)
Logical, Allocatable :: bwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, all, cmplx, max, maxloc, nint, &
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sqrt, sum
! .. Executable Statements ..

Write (nout,*) ’F08WBF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldvr = n
Allocate (a(lda,n),alphai(n),alphar(n),b(ldb,n),beta(n),lscale(n), &

rconde(n),rcondv(n),rscale(n),vr(ldvr,n),iwork(n+6),bwork(n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dggevx is f08wbf
Call dggevx(’Balance’,’No vectors (left)’,’Vectors (right)’, &

’Both reciprocal condition numbers’,n,a,lda,b,ldb,alphar,alphai,beta, &
dummy,1,vr,ldvr,ilo,ihi,lscale,rscale,abnrm,bbnrm,rconde,rcondv,dummy, &
lwork,iwork,bwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+2*n)*n,nint(dummy(1,1)))
Allocate (work(lwork))

! Read in the matrices A and B

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Solve the generalized eigenvalue problem

! The NAG name equivalent of dggevx is f08wbf
Call dggevx(’Balance’,’No vectors (left)’,’Vectors (right)’, &

’Both reciprocal condition numbers’,n,a,lda,b,ldb,alphar,alphai,beta, &
dummy,1,vr,ldvr,ilo,ihi,lscale,rscale,abnrm,bbnrm,rconde,rcondv,work, &
lwork,iwork,bwork,info)

If (info>0) Then
Write (nout,*)
Write (nout,99999) ’Failure in DGGEVX. INFO =’, info

Else

! Compute the machine precision and the safe range parameter
! small

eps = x02ajf()
small = x02amf()

! If beta(:) > eps, Order eigenvalues by ascending real parts
If (all(abs(beta(1:n))>eps)) Then

work(1:n) = alphar(1:n)/beta(1:n)
ifail = 0
Call m01daf(work,1,n,’Ascending’,iwork,ifail)
Call m01eaf(alphar,1,n,iwork,ifail)
Call m01eaf(alphai,1,n,iwork,ifail)
Call m01eaf(beta,1,n,iwork,ifail)

! Order the eigenvectors in the same way
Allocate (vr_row(n))
Do j = 1, n

vr_row(1:n) = vr(j,1:n)
Call m01eaf(vr_row,1,n,iwork,ifail)
vr(j,1:n) = vr_row(1:n)

End Do
Deallocate (vr_row)

End If

! Print out eigenvalues and vectors and associated condition
! number and bounds

pair = .False.
Do j = 1, n

F08WBF NAG Library Manual

F08WBF.8 Mark 26



! Print out information on the j-th eigenvalue

Write (nout,*)
If ((abs(alphar(j))+abs(alphai(j)))*small>=abs(beta(j))) Then

Write (nout,99998) ’Eigenvalue(’, j, ’)’, &
’ is numerically infinite or undetermined’, ’ALPHAR(’, j, &
’) = ’, alphar(j), ’, ALPHAI(’, j, ’) = ’, alphai(j), ’, BETA(’, &
j, ’) = ’, beta(j)

Else
If (.Not. pair) Then

jswap = 1.0_nag_wp
If (alphai(j)>0.0_nag_wp) Then

jswap = -jswap
End If

End If
If (alphai(j)==0.0E0_nag_wp) Then

Write (nout,99997) ’Eigenvalue(’, j, ’) = ’, alphar(j)/beta(j)
Else

eig = cmplx(alphar(j),jswap*alphai(j),kind=nag_wp)/ &
cmplx(beta(j),kind=nag_wp)

Write (nout,99996) ’Eigenvalue(’, j, ’) = ’, eig
End If

End If
rcnd = rconde(j)
Write (nout,*)
Write (nout,99995) ’ Reciprocal condition number = ’, rcnd

! Print out information on the j-th eigenvector

Write (nout,*)
Write (nout,99994) ’Eigenvector(’, j, ’)’
If (alphai(j)==0.0E0_nag_wp) Then

! Let largest element be positive
work(1:n) = abs(vr(1:n,j))
k = maxloc(work(1:n),1)
If (vr(k,j)<0.0_nag_wp) Then

vr(1:n,j) = -vr(1:n,j)/dnrm2(n,vr(1,j),1)
End If
Write (nout,99993)(vr(i,j),i=1,n)

Else
If (pair) Then

Write (nout,99992)(vr(i,j-1),-jswap*vr(i,j),i=1,n)
Else

! Let largest element be real (and positive).
work(1:n) = vr(1:n,j)**2 + vr(1:n,j+1)**2
k = maxloc(work(1:n),1)
scal_r = vr(k,j)/sqrt(work(k))/sqrt(sum(work(1:n)))
scal_i = -vr(k,j+1)/sqrt(work(k))/sqrt(sum(work(1:n)))
work(1:n) = vr(1:n,j)
vr(1:n,j) = scal_r*work(1:n) - scal_i*vr(1:n,j+1)
vr(1:n,j+1) = scal_r*vr(1:n,j+1) + scal_i*work(1:n)
vr(k,j+1) = 0.0_nag_wp
Write (nout,99992)(vr(i,j),jswap*vr(i,j+1),i=1,n)

End If
pair = .Not. pair

End If
rcnd = rcondv(j)
Write (nout,*)
Write (nout,99995) ’ Reciprocal condition number = ’, rcnd

End Do

End If

99999 Format (1X,A,I4)
99998 Format (/,1X,A,I2,2A,/,1X,2(A,I2,A,F11.5),A,I2,A,F11.5)
99997 Format (/,1X,A,I2,A,F11.5)
99996 Format (/,1X,A,I2,A,’(’,F11.5,’,’,F11.5,’)’)
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99995 Format (1X,A,1P,E8.1)
99994 Format (1X,A,I2,A)
99993 Format (1X,F11.5)
99992 Format (1X,’(’,F11.5,’,’,F11.5,’)’)

End Program f08wbfe

10.2 Program Data

F08WBF Example Program Data
4 :Value of N
3.9 12.5 -34.5 -0.5
4.3 21.5 -47.5 7.5
4.3 21.5 -43.5 3.5
4.4 26.0 -46.0 6.0 :End of matrix A
1.0 2.0 -3.0 1.0
1.0 3.0 -5.0 4.0
1.0 3.0 -4.0 3.0
1.0 3.0 -4.0 4.0 :End of matrix B

10.3 Program Results

F08WBF Example Program Results

Eigenvalue( 1) = 2.00000

Reciprocal condition number = 9.5E-02

Eigenvector( 1)
0.99606
0.00569
0.06261
0.06261

Reciprocal condition number = 1.3E-01

Eigenvalue( 2) = ( 3.00000, -4.00000)

Reciprocal condition number = 1.7E-01

Eigenvector( 2)
( 0.94491, -0.00000)
( 0.18898, 0.00000)
( 0.11339, 0.15119)
( 0.11339, 0.15119)

Reciprocal condition number = 3.8E-02

Eigenvalue( 3) = ( 3.00000, 4.00000)

Reciprocal condition number = 1.7E-01

Eigenvector( 3)
( 0.94491, 0.00000)
( 0.18898, -0.00000)
( 0.11339, -0.15119)
( 0.11339, -0.15119)

Reciprocal condition number = 3.8E-02

Eigenvalue( 4) = 4.00000

Reciprocal condition number = 5.1E-01

Eigenvector( 4)
0.98752
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0.01097
-0.03292
0.15361

Reciprocal condition number = 7.1E-02
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NAG Library Routine Document

F08WCF (DGGEV3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WCF (DGGEV3) computes for a pair of n by n real nonsymmetric matrices A;Bð Þ the generalized
eigenvalues and, optionally, the left and/or right generalized eigenvectors using the QZ algorithm.

2 Specification

SUBROUTINE F08WCF (JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO)

&

INTEGER N, LDA, LDB, LDVL, LDVR, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHAR(N), ALPHAI(N), BETA(N),

VL(LDVL,*), VR(LDVR,*), WORK(max(1,LWORK))
&

CHARACTER(1) JOBVL, JOBVR

The routine may be called by its LAPACK name dggev3.

3 Description

A generalized eigenvalue for a pair of matrices A;Bð Þ is a scalar � or a ratio �=� ¼ �, such that
A� �B is singular. It is usually represented as the pair �; �ð Þ, as there is a reasonable interpretation for
� ¼ 0, and even for both being zero.

The right eigenvector vj corresponding to the eigenvalue �j of A;Bð Þ satisfies

Avj ¼ �jBvj:
The left eigenvector uj corresponding to the eigenvalue �j of A;Bð Þ satisfies

uHj A ¼ �juHj B;

where uHj is the conjugate-transpose of uj.

All the eigenvalues and, if required, all the eigenvectors of the generalized eigenproblem Ax ¼ �Bx,
where A and B are real, square matrices, are determined using the QZ algorithm. The QZ algorithm
consists of four stages:

1. A is reduced to upper Hessenberg form and at the same time B is reduced to upper triangular form.

2. A is further reduced to quasi-triangular form while the triangular form of B is maintained. This is
the real generalized Schur form of the pair A;Bð Þ.

3. The quasi-triangular form of A is reduced to triangular form and the eigenvalues extracted. This
routine does not actually produce the eigenvalues �j, but instead returns �j and �j such that

�j ¼ �j=�j; j ¼ 1; 2; . . . ; n:

The division by �j becomes your responsibility, since �j may be zero, indicating an infinite
eigenvalue. Pairs of complex eigenvalues occur with �j=�j and �jþ1=�jþ1 complex conjugates,
even though �j and �jþ1 are not conjugate.

4. If the eigenvectors are required they are obtained from the triangular matrices and then transformed
back into the original coordinate system.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1979) Kronecker's canonical form and the QZ algorithm Linear Algebra Appl. 28 285–
303

5 Arguments

1: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , do not compute the left generalized eigenvectors.

If JOBVL ¼ V , compute the left generalized eigenvectors.

Constraint: JOBVL ¼ N or V .

2: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , do not compute the right generalized eigenvectors.

If JOBVR ¼ V , compute the right generalized eigenvectors.

Constraint: JOBVR ¼ N or V .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A in the pair A;Bð Þ.
On exit: A has been overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F08WCF (DGGEV3) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix B in the pair A;Bð Þ.
On exit: B has been overwritten.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08WCF
(DGGEV3) is called.

Constraint: LDB � max 1;Nð Þ.
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8: ALPHARðNÞ – REAL (KIND=nag_wp) array Output

On exit: the element ALPHARðjÞ contains the real part of �j.

9: ALPHAIðNÞ – REAL (KIND=nag_wp) array Output

On exit: the element ALPHAIðjÞ contains the imaginary part of �j.

10: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHARðjÞ þ ALPHAIðjÞ � ið Þ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized
eigenvalues.

If ALPHAIðjÞ is zero, then the jth eigenvalue is real; if positive, then the jth and jþ 1ð Þst
eigenvalues are a complex conjugate pair, with ALPHAIðjþ 1Þ negative.
Note: the quotients ALPHARðjÞ=BETAðjÞ and ALPHAIðjÞ=BETAðjÞ may easily overflow or
underflow, and BETAðjÞ may even be zero. Thus, you should avoid naively computing the ratio
�j=�j. However, max �j

		 		 will always be less than and usually comparable with Ak k2 in
magnitude, and max �j

		 		 will always be less than and usually comparable with Bk k2.

11: VLðLDVL; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least max 1;Nð Þ if JOBVL ¼ V , and at
least 1 otherwise.

On exit: if JOBVL ¼ V , the left eigenvectors uj are stored one after another in the columns of
VL, in the same order as the corresponding eigenvalues.

If the jth eigenvalue is real, then uj ¼ VLð:; jÞ, the jth column of VL.

If the jth and jþ 1ð Þth eigenvalues form a complex conjugate pai r, then
uj ¼ VLð:; jÞ þ i� VLð:; jþ 1Þ and u jþ 1ð Þ ¼ VLð:; jÞ � i� VLð:; jþ 1Þ. Each eigenvector will
be scaled so the largest component has real partj j þ imag: partj j ¼ 1.

If JOBVL ¼ N , VL is not referenced.

12: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08WCF (DGGEV3) is called.

Constraints:

if JOBVL ¼ V , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

13: VRðLDVR; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least max 1;Nð Þ if JOBVR ¼ V , and at
least 1 otherwise.

On exit: if JOBVR ¼ V , the right eigenvectors vj are stored one after another in the columns of
VR, in the same order as the corresponding eigenvalues.

If the jth eigenvalue is real, then vj ¼ VRð:; jÞ, the jth column of VR.

If the jth and jþ 1ð Þth eigenvalues form a complex conjugate pai r, then
vj ¼ VRð:; jÞ þ i� VRð:; jþ 1Þ and vjþ1 ¼ VRð:; jÞ � i� VRð:; jþ 1Þ. Each eigenvector will
be scaled so the largest component has real partj j þ imag: partj j ¼ 1.

If JOBVR ¼ N , VR is not referenced.

14: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08WCF (DGGEV3) is called.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08WCF

Mark 26 F08WCF.3



Constraints:

if JOBVR ¼ V , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

15: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

16: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08WCF (DGGEV3) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, 6� nb� N, where nb is the optimal block size.

Constraint: LWORK � max 1; 8� Nð Þ.

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration failed. No eigenvectors have been calculated but ALPHARðjÞ, ALPHAIðjÞ and
BETAðjÞ should be correct from element valueh i.

INFO ¼ Nþ 1

The QZ iteration failed with an unexpected error, please contact NAG.

INFO ¼ Nþ 2

A failure occurred in F08YKF (DTGEVC) while computing generalized eigenvectors.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where
E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF ;

and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

Note: interpretation of results obtained with the QZ algorithm often requires a clear understanding of
the effects of small changes in the original data. These effects are reviewed in Wilkinson (1979), in
relation to the significance of small values of �j and �j. It should be noted that if �j and �j are both
small for any j, it may be that no reliance can be placed on any of the computed eigenvalues
�i ¼ �i=�i. You are recommended to study Wilkinson (1979) and, if in difficulty, to seek expert advice
on determining the sensitivity of the eigenvalues to perturbations in the data.
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8 Parallelism and Performance

F08WCF (DGGEV3) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08WCF (DGGEV3) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08WQF (ZGGEV3).

10 Example

This example finds all the eigenvalues and right eigenvectors of the matrix pair A;Bð Þ, where

A ¼
3:9 12:5 �34:5 �0:5
4:3 21:5 �47:5 7:5
4:3 21:5 �43:5 3:5
4:4 26:0 �46:0 6:0

0B@
1CA and B ¼

1:0 2:0 �3:0 1:0
1:0 3:0 �5:0 4:0
1:0 3:0 �4:0 3:0
1:0 3:0 �4:0 4:0

0B@
1CA:

10.1 Program Text

Program f08wcfe

! F08WCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dggev3, m01def, m01edf, nag_wp, x02ajf, x04caf, &

x04daf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Integer :: i, ifail, info, j, k, lda, ldb, &

ldvr, lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: eigval(:), eigvec(:,:)
Real (Kind=nag_wp), Allocatable :: a(:,:), alphai(:), alphar(:), &

b(:,:), beta(:), vr(:,:), work(:)
Real (Kind=nag_wp) :: dummy(1,1)
Integer, Allocatable :: irank(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, all, cmplx, conjg, maxloc, nint

! .. Executable Statements ..
Write (nout,*) ’F08WCF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldvr = n
Allocate (a(lda,n),alphai(n),alphar(n),b(ldb,n),beta(n),vr(ldvr,n), &

eigvec(n,n),eigval(n),irank(n))
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! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dggev3 is f08wcf
Call dggev3(’No left vectors’,’Vectors (right)’,n,a,lda,b,ldb,alphar, &

alphai,beta,dummy,1,vr,ldvr,dummy,lwork,info)

lwork = nint(dummy(1,1))
Allocate (work(lwork))

! Read in the matrices A and B

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Solve the generalized eigenvalue problem

! The NAG name equivalent of dggev3 is f08wcf
Call dggev3(’No left vectors’,’Vectors (right)’,n,a,lda,b,ldb,alphar, &

alphai,beta,dummy,1,vr,ldvr,work,lwork,info)
If (info>0) Then

Write (nout,*)
Write (nout,99999) ’Failure in DGGEV3. INFO =’, info
Go To 100

End If

! Re-normalize the eigenvectors, largest absolute element real
j = 0
Do i = 1, n

If (alphai(i)==zero) Then
eigvec(1:n,i) = cmplx(vr(1:n,i),zero,kind=nag_wp)

Else If (j==0) Then
eigvec(1:n,i) = cmplx(vr(1:n,i),vr(1:n,i+1),kind=nag_wp)
j = 1

Else
eigvec(1:n,i) = cmplx(vr(1:n,i-1),-vr(1:n,i),kind=nag_wp)
j = 0

End If
work(1:n) = abs(eigvec(1:n,i))
k = maxloc(work(1:n),1)
scal = conjg(eigvec(k,i))/abs(eigvec(k,i))
eigvec(1:n,i) = eigvec(1:n,i)*scal

End Do

! If eigenvalues are finite, order by descending absolute values
If (all(abs(beta(1:n))>x02ajf())) Then

! add small amount to alphai to distinguish conjugates
alphai(1:n) = alphai(1:n) + x02ajf()*10.0_nag_wp
eigval(1:n) = cmplx(alphar(1:n),alphai(1:n),kind=nag_wp)
eigval(1:n) = eigval(1:n)/beta(1:n)
work(1:n) = abs(eigval(1:n))
ifail = 0
Call m01def(work,n,1,n,1,1,’Descending’,irank,ifail)
Call m01edf(eigval,1,n,irank,ifail)

! Print ordered eigenvalues
ifail = 0
Call x04daf(’Gen’,’ ’,1,n,eigval,1,’Eigenvalues:’,ifail)

! Order the eigenvectors in the same way and print
Do j = 1, n

eigval(1:n) = eigvec(j,1:n)
Call m01edf(eigval,1,n,irank,ifail)
eigvec(j,1:n) = eigval(1:n)

End Do

Write (nout,*)
ifail = 0
Call x04daf(’Gen’,’ ’,n,n,eigvec,n,’Right Eigenvectors (columns):’, &

ifail)
Else

Write (nout,*) ’Some of the eigenvalues are infinite’
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Write (nout,*)
ifail = 0
Call x04caf(’Gen’,’ ’,1,n,alphar,1,’Alpha (real):’,ifail)
Call x04caf(’Gen’,’ ’,1,n,alphai,1,’Alpha (imag):’,ifail)
Call x04caf(’Gen’,’ ’,1,n,beta,1,’Beta:’,ifail)

End If
100 Continue

99999 Format (1X,A,I4)
End Program f08wcfe

10.2 Program Data

F08WCF Example Program Data
4 :Value of N
3.9 12.5 -34.5 -0.5
4.3 21.5 -47.5 7.5
4.3 21.5 -43.5 3.5
4.4 26.0 -46.0 6.0 :End of matrix A
1.0 2.0 -3.0 1.0
1.0 3.0 -5.0 4.0
1.0 3.0 -4.0 3.0
1.0 3.0 -4.0 4.0 :End of matrix B

10.3 Program Results

F08WCF Example Program Results
Eigenvalues:

1 2 3 4
1 3.0000 3.0000 4.0000 2.0000

4.0000 -4.0000 0.0000 0.0000

Right Eigenvectors (columns):
1 2 3 4

1 0.7122 0.7122 1.0000 1.0000
0.0000 0.0000 0.0000 0.0000

2 0.1424 0.1424 0.0111 0.0057
0.0000 -0.0000 0.0000 0.0000

3 0.0855 0.0855 -0.0333 0.0629
-0.1140 0.1140 -0.0000 0.0000

4 0.0855 0.0855 0.1556 0.0629
-0.1140 0.1140 0.0000 0.0000
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NAG Library Routine Document

F08WEF (DGGHRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WEF (DGGHRD) reduces a pair of real matrices A;Bð Þ, where B is upper triangular, to the
generalized upper Hessenberg form using orthogonal transformations. F08WEF (DGGHRD) is marked
as deprecated by LAPACK; the replacement routine is F08WFF (DGGHD3) which makes better use of
level 3 BLAS.

2 Specification

SUBROUTINE F08WEF (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z,
LDZ, INFO)

&

INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
CHARACTER(1) COMPQ, COMPZ

The routine may be called by its LAPACK name dgghrd.

3 Description

F08WEF (DGGHRD) is the third step in the solution of the real generalized eigenvalue problem

Ax ¼ �Bx:

The (optional) first step balances the two matrices using F08WHF (DGGBAL). In the second step,
matrix B is reduced to upper triangular form using the QR factorization routine F08AEF (DGEQRF)
and this orthogonal transformation Q is applied to matrix A by calling F08AGF (DORMQR).

F08WEF (DGGHRD) reduces a pair of real matrices A;Bð Þ, where B is upper triangular, to the
generalized upper Hessenberg form using orthogonal transformations. This two-sided transformation is
of the form

QTAZ ¼ H
QTBZ ¼ T

where H is an upper Hessenberg matrix, T is an upper triangular matrix and Q and Z are orthogonal
matrices determined as products of Givens rotations. They may either be formed explicitly, or they may
be postmultiplied into input matrices Q1 and Z1, so that

Q1AZ
T
1 ¼ Q1Qð ÞH Z1Zð ÞT;

Q1BZ
T
1 ¼ Q1Qð ÞT Z1Zð ÞT:

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J.
Numer. Anal. 10 241–256
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5 Arguments

1: COMPQ – CHARACTER(1) Input

On entry: specifies the form of the computed orthogonal matrix Q.

COMPQ ¼ N
Do not compute Q.

COMPQ ¼ I
The orthogonal matrix Q is returned.

COMPQ ¼ V
Q must contain an orthogonal matrix Q1, and the product Q1Q is returned.

Constraint: COMPQ ¼ N , I or V .

2: COMPZ – CHARACTER(1) Input

On entry: specifies the form of the computed orthogonal matrix Z.

COMPZ ¼ N
Do not compute Z.

COMPZ ¼ I
The orthogonal matrix Z is returned.

COMPZ ¼ V
Z must contain an orthogonal matrix Z1, and the product Z1Z is returned.

Constraint: COMPZ ¼ N , V or I .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: ILO – INTEGER Input
5: IHI – INTEGER Input

On entry: ilo and ihi as determined by a previous call to F08WHF (DGGBAL). Otherwise, they
should be set to 1 and n, respectively.

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A of the matrix pair A;Bð Þ. Usually, this is the matrix A returned by
F08AGF (DORMQR).

On exit: A is overwritten by the upper Hessenberg matrix H.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08WEF
(DGGHRD) is called.

Constraint: LDA � max 1;Nð Þ.
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8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the upper triangular matrix B of the matrix pair A;Bð Þ. Usually, this is the matrix B
returned by the QR factorization routine F08AEF (DGEQRF).

On exit: B is overwritten by the upper triangular matrix T .

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08WEF
(DGGHRD) is called.

Constraint: LDB � max 1;Nð Þ.

10: QðLDQ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if COMPQ ¼ I or V and
at least 1 if COMPQ ¼ N .

On entry: if COMPQ ¼ V , Q must contain an orthogonal matrix Q1.

If COMPQ ¼ N , Q is not referenced.

On exit: if COMPQ ¼ I , Q contains the orthogonal matrix Q.

If COMPQ ¼ V , Q is overwritten by Q1Q.

11: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08WEF
(DGGHRD) is called.

Constraints:

if COMPQ ¼ I or V , LDQ � max 1;Nð Þ;
if COMPQ ¼ N , LDQ � 1.

12: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , Z must contain an orthogonal matrix Z1.

If COMPZ ¼ N , Z is not referenced.

On exit: if COMPZ ¼ I , Z contains the orthogonal matrix Z.

If COMPZ ¼ V , Z is overwritten by Z1Z.

13: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08WEF
(DGGHRD) is called.

Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
if COMPZ ¼ N , LDZ � 1.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The reduction to the generalized Hessenberg form is implemented using orthogonal transformations
which are backward stable.

8 Parallelism and Performance

F08WEF (DGGHRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This routine is usually followed by F08XEF (DHGEQZ) which implements the QZ algorithm for
computing generalized eigenvalues of a reduced pair of matrices.

The complex analogue of this routine is F08WSF (ZGGHRD).

10 Example

See Section 10 in F08XEF (DHGEQZ) and F08YKF (DTGEVC).
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NAG Library Routine Document

F08WFF (DGGHD3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WFF (DGGHD3) reduces a pair of real matrices A;Bð Þ, where B is upper triangular, to the
generalized upper Hessenberg form using orthogonal transformations.

2 Specification

SUBROUTINE F08WFF (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z,
LDZ, WORK, LWORK, INFO)

&

INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*),

WORK(max(1,LWORK))
&

CHARACTER(1) COMPQ, COMPZ

The routine may be called by its LAPACK name dgghd3.

3 Description

F08WFF (DGGHD3) is the third step in the solution of the real generalized eigenvalue problem

Ax ¼ �Bx:

The (optional) first step balances the two matrices using F08WHF (DGGBAL). In the second step,
matrix B is reduced to upper triangular form using the QR factorization routine F08AEF (DGEQRF)
and this orthogonal transformation Q is applied to matrix A by calling F08AGF (DORMQR). The
driver, F08WCF (DGGEV3), solves the real generalized eigenvalue problem by combining all the
required steps including those just listed.

F08WFF (DGGHD3) reduces a pair of real matrices A;Bð Þ, where B is upper triangular, to the
generalized upper Hessenberg form using orthogonal transformations. This two-sided transformation is
of the form

QTAZ ¼ H;
QTBZ ¼ T

where H is an upper Hessenberg matrix, T is an upper triangular matrix and Q and Z are orthogonal
matrices determined as products of Givens rotations. They may either be formed explicitly, or they may
be postmultiplied into input matrices Q1 and Z1, so that

Q1AZ
T
1 ¼ Q1Qð ÞH Z1Zð ÞT;

Q1BZ
T
1 ¼ Q1Qð ÞT Z1Zð ÞT:

4 References

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J.
Numer. Anal. 10 241–256
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5 Arguments

1: COMPQ – CHARACTER(1) Input

On entry: specifies the form of the computed orthogonal matrix Q.

COMPQ ¼ N
Do not compute Q.

COMPQ ¼ I
The orthogonal matrix Q is returned.

COMPQ ¼ V
Q must contain an orthogonal matrix Q1, and the product Q1Q is returned.

Constraint: COMPQ ¼ N , I or V .

2: COMPZ – CHARACTER(1) Input

On entry: specifies the form of the computed orthogonal matrix Z.

COMPZ ¼ N
Do not compute Z.

COMPZ ¼ I
The orthogonal matrix Z is returned.

COMPZ ¼ V
Z must contain an orthogonal matrix Z1, and the product Z1Z is returned.

Constraint: COMPZ ¼ N , V or I .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: ILO – INTEGER Input
5: IHI – INTEGER Input

On entry: ilo and ihi as determined by a previous call to F08WHF (DGGBAL). Otherwise, they
should be set to 1 and n, respectively.

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A of the matrix pair A;Bð Þ. Usually, this is the matrix A returned by
F08AGF (DORMQR).

On exit: A is overwritten by the upper Hessenberg matrix H.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08WFF
(DGGHD3) is called.

Constraint: LDA � max 1;Nð Þ.

F08WFF NAG Library Manual

F08WFF.2 Mark 26



8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the upper triangular matrix B of the matrix pair A;Bð Þ. Usually, this is the matrix B
returned by the QR factorization routine F08AEF (DGEQRF).

On exit: B is overwritten by the upper triangular matrix T .

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08WFF
(DGGHD3) is called.

Constraint: LDB � max 1;Nð Þ.

10: QðLDQ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if COMPQ ¼ I or V and
at least 1 if COMPQ ¼ N .

On entry: if COMPQ ¼ V , Q must contain an orthogonal matrix Q1.

If COMPQ ¼ N , Q is not referenced.

On exit: if COMPQ ¼ I , Q contains the orthogonal matrix Q.

If COMPQ ¼ V , Q is overwritten by Q1Q.

11: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08WFF
(DGGHD3) is called.

Constraints:

if COMPQ ¼ I or V , LDQ � max 1;Nð Þ;
if COMPQ ¼ N , LDQ � 1.

12: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , Z must contain an orthogonal matrix Z1.

If COMPZ ¼ N , Z is not referenced.

On exit: if COMPZ ¼ I , Z contains the orthogonal matrix Z.

If COMPZ ¼ V , Z is overwritten by Z1Z.

13: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08WFF
(DGGHD3) is called.

Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
if COMPZ ¼ N , LDZ � 1.

14: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.
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15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)routine from which F08WFF
(DGGHD3) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, 6� nb� N, where nb is the optimal block size.

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The reduction to the generalized Hessenberg form is implemented using orthogonal transformations
which are backward stable.

8 Parallelism and Performance

F08WFF (DGGHD3) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This routine is usually followed by F08XEF (DHGEQZ) which implements the QZ algorithm for
computing generalized eigenvalues of a reduced pair of matrices.

The complex analogue of this routine is F08WTF (ZGGHD3).

10 Example

See Section 10 in F08XEF (DHGEQZ) and F08YKF (DTGEVC).
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NAG Library Routine Document

F08WHF (DGGBAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WHF (DGGBAL) balances a pair of real square matrices A;Bð Þ of order n. Balancing usually
improves the accuracy of computed generalized eigenvalues and eigenvectors.

2 Specification

SUBROUTINE F08WHF (JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
WORK, INFO)

&

INTEGER N, LDA, LDB, ILO, IHI, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), LSCALE(N), RSCALE(N), WORK(*)
CHARACTER(1) JOB

The routine may be called by its LAPACK name dggbal.

3 Description

Balancing may reduce the 1-norms of the matrices and improve the accuracy of the computed
eigenvalues and eigenvectors in the real generalized eigenvalue problem

Ax ¼ �Bx:

F08WHF (DGGBAL) is usually the first step in the solution of the above generalized eigenvalue
problem. Balancing is optional but it is highly recommended.

The term ‘balancing’ covers two steps, each of which involves similarity transformations on A and B.
The routine can perform either or both of these steps. Both steps are optional.

1. The routine first attempts to permute A and B to block upper triangular form by a similarity
transformation:

PAPT ¼ F ¼
F11 F12 F13

F22 F23
F33

0@ 1A
PBPT ¼ G ¼

G11 G12 G13
G22 G23

G33

0@ 1A
where P is a permutation matrix, F11, F33, G11 and G33 are upper triangular. Then the diagonal
elements of the matrix pairs F11; G11ð Þ and F33; G33ð Þ are generalized eigenvalues of A;Bð Þ. The
rest of the generalized eigenvalues are given by the matrix pair F22; G22ð Þ which are in rows and
columns ilo to ihi. Subsequent operations to compute the generalized eigenvalues of A;Bð Þ need
only be applied to the matrix pair F22; G22ð Þ; this can save a significant amount of work if ilo > 1
and ihi < n. If no suitable permutation exists (as is often the case), the routine sets ilo ¼ 1 and
ihi ¼ n.

2. The routine applies a diagonal similarity transformation to F;Gð Þ, to make the rows and columns
of F22; G22ð Þ as close in norm as possible:

DFD̂ ¼
I 0 0
0 D22 0
0 0 I

0@ 1A F11 F12 F13
F22 F23

F33

0@ 1A I 0 0
0 D̂22 0
0 0 I

0@ 1A
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DGD̂ ¼
I 0 0
0 D22 0
0 0 I

0@ 1A G11 G12 G13
G22 G23

G33

0@ 1A I 0 0
0 D̂22 0
0 0 I

0@ 1A
This transformation usually improves the accuracy of computed generalized eigenvalues and
eigenvectors.

4 References

Ward R C (1981) Balancing the generalized eigenvalue problem SIAM J. Sci. Stat. Comp. 2 141–152

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies the operations to be performed on matrices A and B.

JOB ¼ N
No balancing is done. In i t ia l ize ILO ¼ 1, IHI ¼ N, LSCALEðiÞ ¼ 1:0 and
RSCALEðiÞ ¼ 1:0, for i ¼ 1; 2; . . . ; n.

JOB ¼ P
Only permutations are used in balancing.

JOB ¼ S
Only scalings are are used in balancing.

JOB ¼ B
Both permutations and scalings are used in balancing.

Constraint: JOB ¼ N , P , S or B .

2: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A is overwritten by the balanced matrix. If JOB ¼ N , A is not referenced.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F08WHF (DGGBAL) is called.

Constraint: LDA � max 1;Nð Þ.

5: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n matrix B.

On exit: B is overwritten by the balanced matrix. If JOB ¼ N , B is not referenced.
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6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which
F08WHF (DGGBAL) is called.

Constraint: LDB � max 1;Nð Þ.

7: ILO – INTEGER Output
8: IHI – INTEGER Output

On exit: ilo and ihi are set such that Aði; jÞ ¼ 0 and Bði; jÞ ¼ 0 if i > j and 1 � j < ilo or
ihi < i � n.
If JOB ¼ N or S , ilo ¼ 1 and ihi ¼ n.

9: LSCALEðNÞ – REAL (KIND=nag_wp) array Output

On exit: details of the permutations and scaling factors applied to the left side of the matrices A
and B. If Pi is the index of the row interchanged with row i and di is the scaling factor applied to
row i, then

LSCALEðiÞ ¼ Pi, for i ¼ 1; 2; . . . ; ilo � 1;

LSCALEðiÞ ¼ di, for i ¼ ilo; . . . ; ihi;

LSCALEðiÞ ¼ Pi, for i ¼ ihi þ 1; . . . ; n.

The order in which the interchanges are made is n to ihi þ 1, then 1 to ilo � 1.

10: RSCALEðNÞ – REAL (KIND=nag_wp) array Output

On exit: details of the permutations and scaling factors applied to the right side of the matrices A
and B.

If Pj is the index of the column interchanged with column j and d̂j is the scaling factor applied to
column j, then

RSCALEðjÞ ¼ Pj , for j ¼ 1; 2; . . . ; ilo � 1;

RSCALEðjÞ ¼ d̂j , for j ¼ ilo; . . . ; ihi;
RSCALEðjÞ ¼ Pj , for j ¼ ihi þ 1; . . . ; n.

The order in which the interchanges are made is n to ihi þ 1, then 1 to ilo � 1.

11: WORKð�Þ – REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least max 1; 6� Nð Þ if JOB ¼ S or B and at
least 1 if JOB ¼ N or P .

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The errors are negligible, compared to those in subsequent computations.
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8 Parallelism and Performance

F08WHF (DGGBAL) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F08WHF (DGGBAL) is usually the first step in computing the real generalized eigenvalue problem but
it is an optional step. The matrix B is reduced to the upper triangular form using the QR factorization
routine F08AEF (DGEQRF) and this orthogonal transformation Q is applied to the matrix A by calling
F08AGF (DORMQR). This is followed by F08WEF (DGGHRD) which reduces the matrix pair into the
generalized Hessenberg form.

If the matrix pair A;Bð Þ is balanced by this routine, then any generalized eigenvectors computed
subsequently are eigenvectors of the balanced matrix pair. In that case, to compute the generalized
eigenvectors of the original matrix, F08WJF (DGGBAK) must be called.

The total number of floating-point operations is approximately proportional to n2.

The complex analogue of this routine is F08WVF (ZGGBAL).

10 Example

See Section 10 in F08XEF (DHGEQZ) and F08YKF (DTGEVC).
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NAG Library Routine Document

F08WJF (DGGBAK)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WJF (DGGBAK) forms the right or left eigenvectors of the real generalized eigenvalue problem
Ax ¼ �Bx, by backward transformation on the computed eigenvectors given by F08YKF (DTGEVC).
It is necessary to call this routine only if the optional balancing routine F08WHF (DGGBAL) was
previously called to balance the matrix pair A;Bð Þ.

2 Specification

SUBROUTINE F08WJF (JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V, LDV,
INFO)

&

INTEGER N, ILO, IHI, M, LDV, INFO
REAL (KIND=nag_wp) LSCALE(*), RSCALE(*), V(LDV,*)
CHARACTER(1) JOB, SIDE

The routine may be called by its LAPACK name dggbak.

3 Description

If the matrix pair has been previously balanced using the routine F08WHF (DGGBAL) then F08WJF
(DGGBAK) backtransforms the eigenvector solution given by F08YKF (DTGEVC). This is usually the
sixth and last step in the solution of the generalized eigenvalue problem.

For a description of balancing, see the document for F08WHF (DGGBAL).

4 References

Ward R C (1981) Balancing the generalized eigenvalue problem SIAM J. Sci. Stat. Comp. 2 141–152

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies the backward transformation step required.

JOB ¼ N
No transformations are done.

JOB ¼ P
Only do backward transformations based on permutations.

JOB ¼ S
Only do backward transformations based on scaling.

JOB ¼ B
Do backward transformations for both permutations and scaling.

Note: this must be the same argument JOB as supplied to F08WHF (DGGBAL).

Constraint: JOB ¼ N , P , S or B .
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2: SIDE – CHARACTER(1) Input

On entry: indicates whether left or right eigenvectors are to be transformed.

SIDE ¼ L
The left eigenvectors are transformed.

SIDE ¼ R
The right eigenvectors are transformed.

Constraint: SIDE ¼ L or R .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B of the generalized eigenvalue problem.

Constraint: N � 0.

4: ILO – INTEGER Input
5: IHI – INTEGER Input

On entry: ilo and ihi as determined by a previous call to F08WHF (DGGBAL).

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

6: LSCALEð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array LSCALE must be at least max 1;Nð Þ.
On entry: details of the permutations and scaling factors applied to the left side of the matrices A
and B, as returned by a previous call to F08WHF (DGGBAL).

7: RSCALEð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RSCALE must be at least max 1;Nð Þ.
On entry: details of the permutations and scaling factors applied to the right side of the matrices
A and B, as returned by a previous call to F08WHF (DGGBAL).

8: M – INTEGER Input

On entry: m, the required number of left or right eigenvectors.

Constraint: 0 � M � N.

9: VðLDV; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;Mð Þ.
On entry: the matrix of right or left eigenvectors, as returned by F08WHF (DGGBAL).

On exit: the transformed right or left eigenvectors.

10: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08WJF
(DGGBAK) is called.

Constraint: LDV � max 1;Nð Þ.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The errors are negligible, compared with the previous computations.

8 Parallelism and Performance

F08WJF (DGGBAK) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of operations is proportional to n2.

The complex analogue of this routine is F08WWF (ZGGBAK).

10 Example

See Section 10 in F08XEF (DHGEQZ) and F08YKF (DTGEVC).
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NAG Library Routine Document

F08WNF (ZGGEV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WNF (ZGGEV) computes for a pair of n by n complex nonsymmetric matrices A;Bð Þ the
generalized eigenvalues and, optionally, the left and/or right generalized eigenvectors using the QZ
algorithm. F08WNF (ZGGEV) is marked as deprecated by LAPACK; the replacement routine is
F08WQF (ZGGEV3) which makes better use of level 3 BLAS.

2 Specification

SUBROUTINE F08WNF (JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL,
LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)

&

INTEGER N, LDA, LDB, LDVL, LDVR, LWORK, INFO
REAL (KIND=nag_wp) RWORK(max(1,8*N))
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHA(N), BETA(N),

VL(LDVL,*), VR(LDVR,*), WORK(max(1,LWORK))
&

CHARACTER(1) JOBVL, JOBVR

The routine may be called by its LAPACK name zggev.

3 Description

A generalized eigenvalue for a pair of matrices A;Bð Þ is a scalar � or a ratio �=� ¼ �, such that
A� �B is singular. It is usually represented as the pair �; �ð Þ, as there is a reasonable interpretation for
� ¼ 0, and even for both being zero.

The right generalized eigenvector vj corresponding to the generalized eigenvalue �j of A;Bð Þ satisfies

Avj ¼ �jBvj:
The left generalized eigenvector uj corresponding to the generalized eigenvalue �j of A;Bð Þ satisfies

uHj A ¼ �juHj B;

where uHj is the conjugate-transpose of uj.

All the eigenvalues and, if required, all the eigenvectors of the complex generalized eigenproblem
Ax ¼ �Bx, where A and B are complex, square matrices, are determined using the QZ algorithm. The
complex QZ algorithm consists of three stages:

1. A is reduced to upper Hessenberg form (with real, non-negative subdiagonal elements) and at the
same time B is reduced to upper triangular form.

2. A is further reduced to triangular form while the triangular form of B is maintained and the
diagonal elements of B are made real and non-negative. This is the generalized Schur form of the
pair A;Bð Þ.
This routine does not actually produce the eigenvalues �j, but instead returns �j and �j such that

�j ¼ �j=�j; j ¼ 1; 2; . . . ; n:

The division by �j becomes your responsibility, since �j may be zero, indicating an infinite
eigenvalue.

3. If the eigenvectors are required they are obtained from the triangular matrices and then transformed
back into the original coordinate system.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1979) Kronecker's canonical form and the QZ algorithm Linear Algebra Appl. 28 285–
303

5 Arguments

1: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , do not compute the left generalized eigenvectors.

If JOBVL ¼ V , compute the left generalized eigenvectors.

Constraint: JOBVL ¼ N or V .

2: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , do not compute the right generalized eigenvectors.

If JOBVR ¼ V , compute the right generalized eigenvectors.

Constraint: JOBVR ¼ N or V .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A in the pair A;Bð Þ.
On exit: A has been overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F08WNF (ZGGEV) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix B in the pair A;Bð Þ.
On exit: B has been overwritten.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which
F08WNF (ZGGEV) is called.

Constraint: LDB � max 1;Nð Þ.
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8: ALPHAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: see the description of BETA.

9: BETAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: ALPHAðjÞ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized eigenvalues.

Note: the quotients ALPHAðjÞ=BETAðjÞ may easily overflow or underflow, and BETAðjÞ may
even be zero. Thus, you should avoid naively computing the ratio �j=�j. However, max �j

		 		 will
always be less than and usually comparable with Ak k2 in magnitude, and max �j

		 		 will always be
less than and usually comparable with Bk k2.

10: VLðLDVL; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least max 1;Nð Þ if JOBVL ¼ V , and at
least 1 otherwise.

On exit: if JOBVL ¼ V , the left generalized eigenvectors uj are stored one after another in the
columns of VL, in the same order as the corresponding eigenvalues. Each eigenvector will be
scaled so the largest component will have real partj j þ imag: partj j ¼ 1.

If JOBVL ¼ N , VL is not referenced.

11: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08WNF (ZGGEV) is called.

Constraints:

if JOBVL ¼ V , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

12: VRðLDVR; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least max 1;Nð Þ if JOBVR ¼ V , and at
least 1 otherwise.

On exit: if JOBVR ¼ V , the right generalized eigenvectors vj are stored one after another in the
columns of VR, in the same order as the corresponding eigenvalues. Each eigenvector will be
scaled so the largest component will have real partj j þ imag: partj j ¼ 1.

If JOBVR ¼ N , VR is not referenced.

13: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08WNF (ZGGEV) is called.

Constraints:

if JOBVR ¼ V , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

14: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08WNF (ZGGEV) is called.
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If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, nb� N, where nb is the optimal block size.

Constraint: LWORK � max 1; 2� Nð Þ.

16: RWORKðmax 1; 8� Nð ÞÞ – REAL (KIND=nag_wp) array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration failed. No eigenvectors have been calculated, but ALPHAðjÞ and BETAðjÞ
should be correct for j ¼ INFOþ 1; . . . ;N.

INFO ¼ Nþ 1

Unexpected error returned from F08XSF (ZHGEQZ).

INFO ¼ Nþ 2

Error returned from F08YXF (ZTGEVC).

7 Accuracy

The computed eigenvalues and eigenvectors are exact for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where
E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF ;

and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

Note: interpretation of results obtained with the QZ algorithm often requires a clear understanding of
the effects of small changes in the original data. These effects are reviewed in Wilkinson (1979), in
relation to the significance of small values of �j and �j. It should be noted that if �j and �j are both
small for any j, it may be that no reliance can be placed on any of the computed eigenvalues
�i ¼ �i=�i. You are recommended to study Wilkinson (1979) and, if in difficulty, to seek expert advice
on determining the sensitivity of the eigenvalues to perturbations in the data.

8 Parallelism and Performance

F08WNF (ZGGEV) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08WNF (ZGGEV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08WAF (DGGEV).

10 Example

This example finds all the eigenvalues and right eigenvectors of the matrix pair A;Bð Þ, where

A ¼
�21:10� 22:50i 53:50� 50:50i �34:50þ 127:50i 7:50þ 0:50i
�0:46� 7:78i �3:50� 37:50i �15:50þ 58:50i �10:50� 1:50i
4:30� 5:50i 39:70� 17:10i �68:50þ 12:50i �7:50� 3:50i
5:50þ 4:40i 14:40þ 43:30i �32:50� 46:00i �19:00� 32:50i

0B@
1CA

and

B ¼
1:00� 5:00i 1:60þ 1:20i �3:00þ 0:00i 0:00� 1:00i
0:80� 0:60i 3:00� 5:00i �4:00þ 3:00i �2:40� 3:20i
1:00þ 0:00i 2:40þ 1:80i �4:00� 5:00i 0:00� 3:00i
0:00þ 1:00i �1:80þ 2:40i 0:00� 4:00i 4:00� 5:00i

0B@
1CA:

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08wnfe

! F08WNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01daf, m01edf, nag_wp, x02ajf, x04daf, zggev

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6
Complex (Kind=nag_wp), Parameter :: cone = (one,zero)

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Integer :: i, ifail, info, j, k, lda, ldb, &

ldvr, lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &
vr(:,:), work(:)

Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: irank(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, all, max, maxloc, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08WNF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldvr = n
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),vr(ldvr,n),rwork(8*n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zggev is f08wnf
Call zggev(’No left vectors’,’Vectors (right)’,n,a,lda,b,ldb,alpha,beta, &
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dummy,1,vr,ldvr,dummy,lwork,rwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(dummy(1,1))))
Allocate (work(lwork))

! Read in the matrices A and B

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Solve the generalized eigenvalue problem

! The NAG name equivalent of zggev is f08wnf
Call zggev(’No left vectors’,’Vectors (right)’,n,a,lda,b,ldb,alpha,beta, &

dummy,1,vr,ldvr,work,lwork,rwork,info)

If (info>0) Then
Write (nout,*)
Write (nout,99999) ’Failure in ZGGEV. INFO =’, info

Else
! Re-normalize the eigenvectors, largest absolute element real (=1)

Do i = 1, n
rwork(1:n) = abs(vr(1:n,i))
k = maxloc(rwork(1:n),1)
scal = cone/vr(k,i)
vr(1:n,i) = vr(1:n,i)*scal
vr(k,i) = cone

End Do

Write (nout,*)
If (all(abs(beta(1:n))>x02ajf())) Then

! Reorder eigenvalues by descending absolute value and print
alpha(1:n) = alpha(1:n)/beta(1:n)
rwork(1:n) = abs(alpha(1:n))
Allocate (irank(n))
ifail = 0
Call m01daf(rwork,1,n,’Descending’,irank,ifail)
Call m01edf(alpha,1,n,irank,ifail)
ifail = 0
Call x04daf(’Gen’,’ ’,1,n,alpha,1,’Eigenvalues:’,ifail)

! Reorder eigenvectors accordingly
Do j = 1, n

beta(1:n) = vr(j,1:n)
Call m01edf(beta,1,n,irank,ifail)
vr(j,1:n) = beta(1:n)

End Do
Else

Write (nout,*) &
’Some of the eigenvalues are infinite or undetermined’

Write (nout,*)
ifail = 0
Call x04daf(’Gen’,’ ’,1,n,alpha,1,’Alpha:’,ifail)
Call x04daf(’Gen’,’ ’,1,n,beta,1,’Beta:’,ifail)

End If
Write (nout,*)
ifail = 0
Call x04daf(’Gen’,’ ’,n,n,vr,ldvr,’Eigenvectors (columns):’,ifail)

End If

99999 Format (1X,A,I4)
End Program f08wnfe
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10.2 Program Data

F08WNF Example Program Data
4 : Value of N
(-21.10,-22.50) ( 53.50,-50.50) (-34.50,127.50) ( 7.50, 0.50)
( -0.46, -7.78) ( -3.50,-37.50) (-15.50, 58.50) (-10.50, -1.50)
( 4.30, -5.50) ( 39.70,-17.10) (-68.50, 12.50) ( -7.50, -3.50)
( 5.50, 4.40) ( 14.40, 43.30) (-32.50,-46.00) (-19.00,-32.50) : End of A
( 1.00, -5.00) ( 1.60, 1.20) ( -3.00, 0.00) ( 0.00, -1.00)
( 0.80, -0.60) ( 3.00, -5.00) ( -4.00, 3.00) ( -2.40, -3.20)
( 1.00, 0.00) ( 2.40, 1.80) ( -4.00, -5.00) ( 0.00, -3.00)
( 0.00, 1.00) ( -1.80, 2.40) ( 0.00, -4.00) ( 4.00, -5.00) : End of B

10.3 Program Results

F08WNF Example Program Results

Eigenvalues:
1 2 3 4

1 3.0000 4.0000 2.0000 3.0000
-9.0000 -5.0000 -5.0000 -1.0000

Eigenvectors (columns):
1 2 3 4

1 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0000

2 0.1600 0.0089 0.0046 0.1600
-0.1200 -0.0067 -0.0034 -0.1200

3 0.1200 -0.0333 0.0629 0.1200
0.1600 -0.0000 0.0000 -0.1600

4 -0.1600 -0.0000 -0.0000 0.1600
0.1200 0.1556 0.0629 0.1200
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NAG Library Routine Document

F08WPF (ZGGEVX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WPF (ZGGEVX) computes for a pair of n by n complex nonsymmetric matrices A;Bð Þ the
generalized eigenvalues and, optionally, the left and/or right generalized eigenvectors using the QZ
algorithm.

Optionally it also computes a balancing transformation to improve the conditioning of the eigenvalues
and eigenvectors, reciprocal condition numbers for the eigenvalues, and reciprocal condition numbers
for the right eigenvectors.

2 Specification

SUBROUTINE F08WPF (BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI, LSCALE,
RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, WORK, LWORK,
RWORK, IWORK, BWORK, INFO)

&
&
&

INTEGER N, LDA, LDB, LDVL, LDVR, ILO, IHI, LWORK,
IWORK(*), INFO

&

REAL (KIND=nag_wp) LSCALE(N), RSCALE(N), ABNRM, BBNRM, RCONDE(*),
RCONDV(*), RWORK(6*N)

&

COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHA(N), BETA(N),
VL(LDVL,*), VR(LDVR,*), WORK(max(1,LWORK))

&

LOGICAL BWORK(*)
CHARACTER(1) BALANC, JOBVL, JOBVR, SENSE

The routine may be called by its LAPACK name zggevx.

3 Description

A generalized eigenvalue for a pair of matrices A;Bð Þ is a scalar � or a ratio �=� ¼ �, such that
A� �B is singular. It is usually represented as the pair �; �ð Þ, as there is a reasonable interpretation for
� ¼ 0, and even for both being zero.

The right generalized eigenvector vj corresponding to the generalized eigenvalue �j of A;Bð Þ satisfies

Avj ¼ �jBvj:
The left generalized eigenvector uj corresponding to the generalized eigenvalue �j of A;Bð Þ satisfies

uHj A ¼ �juHj B;

where uHj is the conjugate-transpose of uj.

All the eigenvalues and, if required, all the eigenvectors of the complex generalized eigenproblem
Ax ¼ �Bx, where A and B are complex, square matrices, are determined using the QZ algorithm. The
complex QZ algorithm consists of three stages:

1. A is reduced to upper Hessenberg form (with real, non-negative subdiagonal elements) and at the
same time B is reduced to upper triangular form.

2. A is further reduced to triangular form while the triangular form of B is maintained and the
diagonal elements of B are made real and non-negative. This is the generalized Schur form of the
pair A;Bð Þ.
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This routine does not actually produce the eigenvalues �j, but instead returns �j and �j such that

�j ¼ �j=�j; j ¼ 1; 2; . . . ; n:

The division by �j becomes your responsibility, since �j may be zero, indicating an infinite
eigenvalue.

3. If the eigenvectors are required they are obtained from the triangular matrices and then transformed
back into the original coordinate system.

For details of the balancing option, see Section 3 in F08WVF (ZGGBAL).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Wilkinson J H (1979) Kronecker's canonical form and the QZ algorithm Linear Algebra Appl. 28 285–
303

5 Arguments

1: BALANC – CHARACTER(1) Input

On entry: specifies the balance option to be performed.

BALANC ¼ N
Do not diagonally scale or permute.

BALANC ¼ P
Permute only.

BALANC ¼ S
Scale only.

BALANC ¼ B
Both permute and scale.

Computed reciprocal condition numbers will be for the matrices after permuting and/or
balancing. Permuting does not change condition numbers (in exact arithmetic), but balancing
does. In the absence of other information, BALANC ¼ B is recommended.

Constraint: BALANC ¼ N , P , S or B .

2: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , do not compute the left generalized eigenvectors.

If JOBVL ¼ V , compute the left generalized eigenvectors.

Constraint: JOBVL ¼ N or V .

3: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , do not compute the right generalized eigenvectors.

If JOBVR ¼ V , compute the right generalized eigenvectors.

Constraint: JOBVR ¼ N or V .
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4: SENSE – CHARACTER(1) Input

On entry: determines which reciprocal condition numbers are computed.

SENSE ¼ N
None are computed.

SENSE ¼ E
Computed for eigenvalues only.

SENSE ¼ V
Computed for eigenvectors only.

SENSE ¼ B
Computed for eigenvalues and eigenvectors.

Constraint: SENSE ¼ N , E , V or B .

5: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A in the pair A;Bð Þ.
On exit: A has been overwritten. If JOBVL ¼ V or JOBVR ¼ V or both, then A contains the
first part of the Schur form of the ‘balanced’ versions of the input A and B.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08WPF
(ZGGEVX) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix B in the pair A;Bð Þ.
On exit: B has been overwritten.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08WPF
(ZGGEVX) is called.

Constraint: LDB � max 1;Nð Þ.

10: ALPHAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: see the description of BETA.

11: BETAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: ALPHAðjÞ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized eigenvalues.

Note: the quotients ALPHAðjÞ=BETAðjÞ may easily overflow or underflow, and BETAðjÞ may
even be zero. Thus, you should avoid naively computing the ratio �j=�j. However, max �j

		 		 will
always be less than and usually comparable with Ak k2 in magnitude, and max �j

		 		 will always be
less than and usually comparable with Bk k2.
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12: VLðLDVL; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least max 1;Nð Þ if JOBVL ¼ V , and at
least 1 otherwise.

On exit: if JOBVL ¼ V , the left generalized eigenvectors uj are stored one after another in the
columns of VL, in the same order as the corresponding eigenvalues. Each eigenvector will be
scaled so the largest component will have real partj j þ imag: partj j ¼ 1.

If JOBVL ¼ N , VL is not referenced.

13: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08WPF (ZGGEVX) is called.

Constraints:

if JOBVL ¼ V , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

14: VRðLDVR; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least max 1;Nð Þ if JOBVR ¼ V , and at
least 1 otherwise.

On exit: if JOBVR ¼ V , the right generalized eigenvectors vj are stored one after another in the
columns of VR, in the same order as the corresponding eigenvalues. Each eigenvector will be
scaled so the largest component will have real partj j þ imag: partj j ¼ 1.

If JOBVR ¼ N , VR is not referenced.

15: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08WPF (ZGGEVX) is called.

Constraints:

if JOBVR ¼ V , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

16: ILO – INTEGER Output
17: IHI – INTEGER Output

On exit: ILO and IHI are integer values such that Aði; jÞ ¼ 0 and Bði; jÞ ¼ 0 if i > j and
j ¼ 1; 2; . . . ; ILO� 1 or i ¼ IHIþ 1; . . . ;N.

If BALANC ¼ N or S , ILO ¼ 1 and IHI ¼ N.

18: LSCALEðNÞ – REAL (KIND=nag_wp) array Output

On exit: details of the permutations and scaling factors applied to the left side of A and B.

If plj is the index of the row interchanged with row j, and dlj is the scaling factor applied to row
j, then:

LSCALEðjÞ ¼ plj , for j ¼ 1; 2; . . . ; ILO� 1;

LSCALE ¼ dlj , for j ¼ ILO; . . . ; IHI;

LSCALE ¼ plj , for j ¼ IHIþ 1; . . . ;N.

The order in which the interchanges are made is N to IHIþ 1, then 1 to ILO� 1.

19: RSCALEðNÞ – REAL (KIND=nag_wp) array Output

On exit: details of the permutations and scaling factors applied to the right side of A and B.
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If prj is the index of the column interchanged with column j, and drj is the scaling factor
applied to column j, then:

RSCALEðjÞ ¼ prj , for j ¼ 1; 2; . . . ; ILO� 1;

if RSCALE ¼ drj , for j ¼ ILO; . . . ; IHI;

if RSCALE ¼ prj , for j ¼ IHIþ 1; . . . ;N.

The order in which the interchanges are made is N to IHIþ 1, then 1 to ILO� 1.

20: ABNRM – REAL (KIND=nag_wp) Output

On exit: the 1-norm of the balanced matrix A.

21: BBNRM – REAL (KIND=nag_wp) Output

On exit: the 1-norm of the balanced matrix B.

22: RCONDEð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RCONDE must be at least max 1;Nð Þ.
On exit: if SENSE ¼ E or B , the reciprocal condition numbers of the eigenvalues, stored in
consecutive elements of the array.

If SENSE ¼ N or V , RCONDE is not referenced.

23: RCONDVð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RCONDV must be at least max 1;Nð Þ.
On exit: if SENSE ¼ V or B , the estimated reciprocal condition numbers of the selected
eigenvectors, stored in consecutive elements of the array.

If SENSE ¼ N or E , RCONDV is not referenced.

24: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

25: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08WPF (ZGGEVX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, nb� N, where nb is the optimal block size.

Constraints:

if SENSE ¼ N , LWORK � max 1; 2� Nð Þ;
if SENSE ¼ E , LWORK � max 1; 4� Nð Þ;
if SENSE ¼ B or V , LWORK � max 1; 2� N� Nþ 2� Nð Þ.

26: RWORKð6� NÞ – REAL (KIND=nag_wp) array Workspace

Real workspace.
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27: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least max 1;Nþ 2ð Þ.
If SENSE ¼ E , IWORK is not referenced.

28: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least max 1;Nð Þ.
If SENSE ¼ N , BWORK is not referenced.

29: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration failed. No eigenvectors have been calculated, but ALPHAðjÞ and BETAðjÞ
should be correct for j ¼ INFOþ 1; . . . ;N.

INFO ¼ Nþ 1

Unexpected error returned from F08XSF (ZHGEQZ).

INFO ¼ Nþ 2

Error returned from F08YXF (ZTGEVC).

7 Accuracy

The computed eigenvalues and eigenvectors are exact for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where
E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF ;

and � is the machine precision.

An approximate error bound on the chordal distance between the ith computed generalized eigenvalue
w and the corresponding exact eigenvalue � is

�� ABNRM;BBNRMk k2=RCONDEðiÞ:
An approximate error bound for the angle between the ith computed eigenvector uj or vj is given by

�� ABNRM;BBNRMk k2=RCONDVðiÞ:
For further explanation of the reciprocal condition numbers RCONDE and RCONDV, see Section 4.11
of Anderson et al. (1999).

Note: interpretation of results obtained with the QZ algorithm often requires a clear understanding of
the effects of small changes in the original data. These effects are reviewed in Wilkinson (1979), in
relation to the significance of small values of �j and �j. It should be noted that if �j and �j are both
small for any j, it may be that no reliance can be placed on any of the computed eigenvalues
�i ¼ �i=�i. You are recommended to study Wilkinson (1979) and, if in difficulty, to seek expert advice
on determining the sensitivity of the eigenvalues to perturbations in the data.

F08WPF NAG Library Manual

F08WPF.6 Mark 26



8 Parallelism and Performance

F08WPF (ZGGEVX) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08WPF (ZGGEVX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08WBF (DGGEVX).

10 Example

This example finds all the eigenvalues and right eigenvectors of the matrix pair A;Bð Þ, where

A ¼
�21:10� 22:50i 53:50� 50:50i �34:50þ 127:50i 7:50þ 0:50i
�0:46� 7:78i �3:50� 37:50i �15:50þ 58:50i �10:50� 1:50i
4:30� 5:50i 39:70� 17:10i �68:50þ 12:50i �7:50� 3:50i
5:50þ 4:40i 14:40þ 43:30i �32:50� 46:00i �19:00� 32:50i

0B@
1CA

and

B ¼
1:00� 5:00i 1:60þ 1:20i �3:00þ 0:00i 0:00� 1:00i
0:80� 0:60i 3:00� 5:00i �4:00þ 3:00i �2:40� 3:20i
1:00þ 0:00i 2:40þ 1:80i �4:00� 5:00i 0:00� 3:00i
0:00þ 1:00i �1:80þ 2:40i 0:00� 4:00i 4:00� 5:00i

0B@
1CA;

together with estimates of the condition number and forward error bounds for each eigenvalue and
eigenvector. The option to balance the matrix pair is used.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08wpfe

! F08WPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06bnf, nag_wp, x02ajf, x02amf, zggevx

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: eig, scal
Real (Kind=nag_wp) :: abnorm, abnrm, bbnrm, eps, small, &

tol
Integer :: i, ihi, ilo, info, j, k, lda, ldb, &

ldvr, lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &
vr(:,:), work(:)

Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: lscale(:), rconde(:), rcondv(:), &
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rscale(:), rwork(:)
Integer, Allocatable :: iwork(:)
Logical, Allocatable :: bwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max, maxloc, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08WPF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldvr = n
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),vr(ldvr,n),lscale(n), &

rconde(n),rcondv(n),rscale(n),rwork(6*n),iwork(n+2),bwork(n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zggevx is f08wpf
Call zggevx(’Balance’,’No vectors (left)’,’Vectors (right)’, &

’Both reciprocal condition numbers’,n,a,lda,b,ldb,alpha,beta,dummy,1, &
vr,ldvr,ilo,ihi,lscale,rscale,abnrm,bbnrm,rconde,rcondv,dummy,lwork, &
rwork,iwork,bwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+2*n)*n,nint(real(dummy(1,1))))
Allocate (work(lwork))

! Read in the matrices A and B

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Solve the generalized eigenvalue problem

! The NAG name equivalent of zggevx is f08wpf
Call zggevx(’Balance’,’No vectors (left)’,’Vectors (right)’, &

’Both reciprocal condition numbers’,n,a,lda,b,ldb,alpha,beta,dummy,1, &
vr,ldvr,ilo,ihi,lscale,rscale,abnrm,bbnrm,rconde,rcondv,work,lwork, &
rwork,iwork,bwork,info)

If (info>0) Then
Write (nout,*)
Write (nout,99999) ’Failure in ZGGEVX. INFO =’, info

Else

! Compute the machine precision, the safe range parameter
! SMALL and sqrt(ABNRM**2+BBNRM**2)

eps = x02ajf()
small = x02amf()
abnorm = f06bnf(abnrm,bbnrm)
tol = eps*abnorm

! Print out eigenvalues and vectors and associated condition
! number and bounds

Write (nout,*)
Write (nout,*) ’Eigenvalues’
Write (nout,*)
Write (nout,*) ’ Eigenvalue rcond error’

Do j = 1, n

! Print out information on the j-th eigenvalue

If ((abs(alpha(j)))*small>=abs(beta(j))) Then
If (rconde(j)>0.0_nag_wp) Then

If (tol/rconde(j)<100.0_nag_wp*eps) Then
Write (nout,99995) j, rconde(j), ’-’

Else
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Write (nout,99994) j, rconde(j), tol/rconde(j)
End If

Else
Write (nout,99995) j, rconde(j), ’Inf’

End If
Else

eig = alpha(j)/beta(j)
If (rconde(j)>0.0_nag_wp) Then

If (tol/rconde(j)<100.0_nag_wp*eps) Then
Write (nout,99998) j, eig, rconde(j), ’-’

Else
Write (nout,99997) j, eig, rconde(j), tol/rconde(j)

End If
Else

Write (nout,99998) j, eig, rconde(j), ’Inf’
End If

End If

End Do

Write (nout,*)
Write (nout,*) ’Eigenvectors’
Write (nout,*)
Write (nout,*) ’ Eigenvector rcond error’

Do j = 1, n

! Print information on j-th eigenvector
Write (nout,*)

! Re-normalize eigenvector, largest absolute element real (=1)
rwork(1:n) = abs(vr(1:n,j))
k = maxloc(rwork(1:n),1)
scal = (1.0_nag_wp,0.0_nag_wp)/vr(k,j)
vr(1:n,j) = vr(1:n,j)*scal

If (rcondv(j)>0.0_nag_wp) Then
If (tol/rcondv(j)<100.0_nag_wp*eps) Then

Write (nout,99998) j, vr(1,j), rcondv(j), ’-’
Else

Write (nout,99997) j, vr(1,j), rcondv(j), tol/rcondv(j)
End If

Else
Write (nout,99998) j, vr(1,j), rcondv(j), ’Inf’

End If

Write (nout,99996) vr(2:n,j)

End Do

Write (nout,*)
Write (nout,*) ’Errors below 100*machine precision are not displayed’

End If

99999 Format (1X,A,I4)
99998 Format (1X,I2,1X,’(’,1P,E11.4,’,’,E11.4,’)’,1X,0P,F7.4,4X,A)
99997 Format (1X,I2,1X,’(’,1P,E11.4,’,’,E11.4,’)’,1X,0P,F7.4,1X,1P,E8.1)
99996 Format (1X,3X,’(’,1P,E11.4,’,’,E11.4,’)’)
99995 Format (1X,I2,1X,’ Infinite or undetermined’,1X,0P,F7.4,4X,A)
99994 Format (1X,I2,1X,’ Infinite or undetermined’,1X,0P,F7.4,1X,1P,E8.1)

End Program f08wpfe
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10.2 Program Data

F08WPF Example Program Data
4 : Value of N
(-21.10,-22.50) ( 53.50,-50.50) (-34.50,127.50) ( 7.50, 0.50)
( -0.46, -7.78) ( -3.50,-37.50) (-15.50, 58.50) (-10.50, -1.50)
( 4.30, -5.50) ( 39.70,-17.10) (-68.50, 12.50) ( -7.50, -3.50)
( 5.50, 4.40) ( 14.40, 43.30) (-32.50,-46.00) (-19.00,-32.50) : End of A
( 1.00, -5.00) ( 1.60, 1.20) ( -3.00, 0.00) ( 0.00, -1.00)
( 0.80, -0.60) ( 3.00, -5.00) ( -4.00, 3.00) ( -2.40, -3.20)
( 1.00, 0.00) ( 2.40, 1.80) ( -4.00, -5.00) ( 0.00, -3.00)
( 0.00, 1.00) ( -1.80, 2.40) ( 0.00, -4.00) ( 4.00, -5.00) : End of B

10.3 Program Results

F08WPF Example Program Results

Eigenvalues

Eigenvalue rcond error
1 ( 3.0000E+00,-9.0000E+00) 0.5108 -
2 ( 2.0000E+00,-5.0000E+00) 0.3756 -
3 ( 3.0000E+00,-1.0000E+00) 0.1340 1.2E-14
4 ( 4.0000E+00,-5.0000E+00) 0.6195 -

Eigenvectors

Eigenvector rcond error

1 ( 1.0000E+00, 0.0000E+00) 0.0471 3.4E-14
( 1.6000E-01,-1.2000E-01)
( 1.2000E-01, 1.6000E-01)
(-1.6000E-01, 1.2000E-01)

2 ( 1.0000E+00, 5.5511E-17) 0.0662 2.4E-14
( 4.5714E-03,-3.4286E-03)
( 6.2857E-02,-2.0123E-16)
( 1.8041E-16, 6.2857E-02)

3 ( 1.0000E+00, 0.0000E+00) 0.1723 -
( 1.6000E-01,-1.2000E-01)
( 1.2000E-01,-1.6000E-01)
( 1.6000E-01, 1.2000E-01)

4 ( 1.0000E+00, 0.0000E+00) 0.0346 4.6E-14
( 8.8889E-03,-6.6667E-03)
(-3.3333E-02,-2.0123E-16)
( 3.3307E-16, 1.5556E-01)

Errors below 100*machine precision are not displayed

F08WPF NAG Library Manual

F08WPF.10 (last) Mark 26



NAG Library Routine Document

F08WQF (ZGGEV3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WQF (ZGGEV3) computes for a pair of n by n complex nonsymmetric matrices A;Bð Þ the
generalized eigenvalues and, optionally, the left and/or right generalized eigenvectors using the QZ
algorithm.

2 Specification

SUBROUTINE F08WQF (JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL,
LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)

&

INTEGER N, LDA, LDB, LDVL, LDVR, LWORK, INFO
REAL (KIND=nag_wp) RWORK(max(1,8*N))
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHA(N), BETA(N),

VL(LDVL,*), VR(LDVR,*), WORK(max(1,LWORK))
&

CHARACTER(1) JOBVL, JOBVR

The routine may be called by its LAPACK name zggev3.

3 Description

A generalized eigenvalue for a pair of matrices A;Bð Þ is a scalar � or a ratio �=� ¼ �, such that
A� �B is singular. It is usually represented as the pair �; �ð Þ, as there is a reasonable interpretation for
� ¼ 0, and even for both being zero.

The right generalized eigenvector vj corresponding to the generalized eigenvalue �j of A;Bð Þ satisfies

Avj ¼ �jBvj:
The left generalized eigenvector uj corresponding to the generalized eigenvalue �j of A;Bð Þ satisfies

uHj A ¼ �juHj B;

where uHj is the conjugate-transpose of uj.

All the eigenvalues and, if required, all the eigenvectors of the complex generalized eigenproblem
Ax ¼ �Bx, where A and B are complex, square matrices, are determined using the QZ algorithm. The
complex QZ algorithm consists of three stages:

1. A is reduced to upper Hessenberg form (with real, non-negative subdiagonal elements) and at the
same time B is reduced to upper triangular form.

2. A is further reduced to triangular form while the triangular form of B is maintained and the
diagonal elements of B are made real and non-negative. This is the generalized Schur form of the
pair A;Bð Þ.
This routine does not actually produce the eigenvalues �j, but instead returns �j and �j such that

�j ¼ �j=�j; j ¼ 1; 2; . . . ; n:

The division by �j becomes your responsibility, since �j may be zero, indicating an infinite
eigenvalue.

3. If the eigenvectors are required they are obtained from the triangular matrices and then transformed
back into the original coordinate system.
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5 Arguments

1: JOBVL – CHARACTER(1) Input

On entry: if JOBVL ¼ N , do not compute the left generalized eigenvectors.

If JOBVL ¼ V , compute the left generalized eigenvectors.

Constraint: JOBVL ¼ N or V .

2: JOBVR – CHARACTER(1) Input

On entry: if JOBVR ¼ N , do not compute the right generalized eigenvectors.

If JOBVR ¼ V , compute the right generalized eigenvectors.

Constraint: JOBVR ¼ N or V .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A in the pair A;Bð Þ.
On exit: A has been overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F08WQF (ZGGEV3) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix B in the pair A;Bð Þ.
On exit: B has been overwritten.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which
F08WQF (ZGGEV3) is called.

Constraint: LDB � max 1;Nð Þ.
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8: ALPHAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: see the description of BETA.

9: BETAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: ALPHAðjÞ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized eigenvalues.

Note: the quotients ALPHAðjÞ=BETAðjÞ may easily overflow or underflow, and BETAðjÞ may
even be zero. Thus, you should avoid naively computing the ratio �j=�j. However, max �j

		 		 will
always be less than and usually comparable with Ak k2 in magnitude, and max �j

		 		 will always be
less than and usually comparable with Bk k2.

10: VLðLDVL; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VL must be at least max 1;Nð Þ if JOBVL ¼ V , and at
least 1 otherwise.

On exit: if JOBVL ¼ V , the left generalized eigenvectors uj are stored one after another in the
columns of VL, in the same order as the corresponding eigenvalues. Each eigenvector will be
scaled so the largest component will have real partj j þ imag: partj j ¼ 1.

If JOBVL ¼ N , VL is not referenced.

11: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08WQF (ZGGEV3) is called.

Constraints:

if JOBVL ¼ V , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

12: VRðLDVR; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VR must be at least max 1;Nð Þ if JOBVR ¼ V , and at
least 1 otherwise.

On exit: if JOBVR ¼ V , the right generalized eigenvectors vj are stored one after another in the
columns of VR, in the same order as the corresponding eigenvalues. Each eigenvector will be
scaled so the largest component will have real partj j þ imag: partj j ¼ 1.

If JOBVR ¼ N , VR is not referenced.

13: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08WQF (ZGGEV3) is called.

Constraints:

if JOBVR ¼ V , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

14: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08WQF (ZGGEV3) is called.
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If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, nb� N� 6ð Þ, where nb is the optimal block size.

Constraint: LWORK � max 1; 2� Nð Þ.

16: RWORKðmax 1; 8� Nð ÞÞ – REAL (KIND=nag_wp) array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration failed. No eigenvectors have been calculated but ALPHA and BETA should be
correct from element valueh i.

INFO ¼ Nþ 1

The QZ iteration failed with an unexpected error, please contact NAG.

INFO ¼ Nþ 2

A failure occurred in F08YXF (ZTGEVC) while computing generalized eigenvectors.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where
E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF ;

and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

Note: interpretation of results obtained with the QZ algorithm often requires a clear understanding of
the effects of small changes in the original data. These effects are reviewed in Wilkinson (1979), in
relation to the significance of small values of �j and �j. It should be noted that if �j and �j are both
small for any j, it may be that no reliance can be placed on any of the computed eigenvalues
�i ¼ �i=�i. You are recommended to study Wilkinson (1979) and, if in difficulty, to seek expert advice
on determining the sensitivity of the eigenvalues to perturbations in the data.

8 Parallelism and Performance

F08WQF (ZGGEV3) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08WQF (ZGGEV3) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08WCF (DGGEV3).

10 Example

This example finds all the eigenvalues and right eigenvectors of the matrix pair A;Bð Þ, where

A ¼
�21:10� 22:50i 53:50� 50:50i �34:50þ 127:50i 7:50þ 0:50i
�0:46� 7:78i �3:50� 37:50i �15:50þ 58:50i �10:50� 1:50i
4:30� 5:50i 39:70� 17:10i �68:50þ 12:50i �7:50� 3:50i
5:50þ 4:40i 14:40þ 43:30i �32:50� 46:00i �19:00� 32:50i

0B@
1CA

and

B ¼
1:00� 5:00i 1:60þ 1:20i �3:00þ 0:00i 0:00� 1:00i
0:80� 0:60i 3:00� 5:00i �4:00þ 3:00i �2:40� 3:20i
1:00þ 0:00i 2:40þ 1:80i �4:00� 5:00i 0:00� 3:00i
0:00þ 1:00i �1:80þ 2:40i 0:00� 4:00i 4:00� 5:00i

0B@
1CA:

10.1 Program Text

Program f08wqfe

! F08WQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ajf, x04daf, zggev3

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Integer :: i, ifail, info, k, lda, ldb, ldvr, &

lwork, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &
vr(:,:), work(:)

Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: rwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, all, conjg, maxloc, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08WQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldvr = n
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),vr(ldvr,n),rwork(8*n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zggev3 is f08wqf
Call zggev3(’No left vectors’,’Vectors (right)’,n,a,lda,b,ldb,alpha, &

beta,dummy,1,vr,ldvr,dummy,lwork,rwork,info)

lwork = nint(real(dummy(1,1)))
Allocate (work(lwork))

! Read in the matrices A and B
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Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Solve the generalized eigenvalue problem

! The NAG name equivalent of zggev3 is f08wqf
Call zggev3(’No left vectors’,’Vectors (right)’,n,a,lda,b,ldb,alpha, &

beta,dummy,1,vr,ldvr,work,lwork,rwork,info)

If (info>0) Then
Write (nout,*)
Write (nout,99999) ’Failure in ZGGEV3. INFO =’, info

Else If (all(abs(beta(1:n))>x02ajf())) Then
! Re-normalize the eigenvectors, largest absolute element real

Do i = 1, n
rwork(1:n) = abs(vr(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(vr(k,i))/rwork(k)
vr(1:n,i) = vr(1:n,i)*scal

End Do
alpha(1:n) = alpha(1:n)/beta(1:n)
ifail = 0
Call x04daf(’Gen’,’ ’,1,n,alpha,1,’Eigenvalues:’,ifail)
Write (nout,*)
Call x04daf(’Gen’,’ ’,n,n,vr,ldvr,’Right Eigenvectors (columns):’, &

ifail)
Else

Write (nout,*) ’Some of the eigenvalues are infinite.’
Write (nout,*)
ifail = 0
Call x04daf(’Gen’,’ ’,1,n,alpha,1,’Alpha’,ifail)
Call x04daf(’Gen’,’ ’,1,n,beta,1,’Beta’,ifail)

End If

99999 Format (1X,A,I4)
End Program f08wqfe

10.2 Program Data

F08WQF Example Program Data
4 : Value of N
(-21.10,-22.50) ( 53.50,-50.50) (-34.50,127.50) ( 7.50, 0.50)
( -0.46, -7.78) ( -3.50,-37.50) (-15.50, 58.50) (-10.50, -1.50)
( 4.30, -5.50) ( 39.70,-17.10) (-68.50, 12.50) ( -7.50, -3.50)
( 5.50, 4.40) ( 14.40, 43.30) (-32.50,-46.00) (-19.00,-32.50) : End of A
( 1.00, -5.00) ( 1.60, 1.20) ( -3.00, 0.00) ( 0.00, -1.00)
( 0.80, -0.60) ( 3.00, -5.00) ( -4.00, 3.00) ( -2.40, -3.20)
( 1.00, 0.00) ( 2.40, 1.80) ( -4.00, -5.00) ( 0.00, -3.00)
( 0.00, 1.00) ( -1.80, 2.40) ( 0.00, -4.00) ( 4.00, -5.00) : End of B

10.3 Program Results

F08WQF Example Program Results

Eigenvalues:
1 2 3 4

1 3.0000 2.0000 3.0000 4.0000
-9.0000 -5.0000 -1.0000 -5.0000

Right Eigenvectors (columns):
1 2 3 4

1 0.8424 0.7342 0.9778 0.9111
0.0000 0.0000 0.0000 0.0000

2 0.1348 0.0034 0.1564 0.0081
-0.1011 -0.0025 -0.1173 -0.0061
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3 0.1011 0.0461 0.1173 -0.0304
0.1348 0.0000 -0.1564 -0.0000

4 -0.1348 -0.0000 0.1564 -0.0000
0.1011 0.0461 0.1173 0.1417

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08WQF

Mark 26 F08WQF.7 (last)





NAG Library Routine Document

F08WSF (ZGGHRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WSF (ZGGHRD) reduces a pair of complex matrices A;Bð Þ, where B is upper triangular, to the
generalized upper Hessenberg form using unitary transformations.

2 Specification

SUBROUTINE F08WSF (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z,
LDZ, INFO)

&

INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
CHARACTER(1) COMPQ, COMPZ

The routine may be called by its LAPACK name zgghrd.

3 Description

F08WSF (ZGGHRD) is usually the third step in the solution of the complex generalized eigenvalue
problem

Ax ¼ �Bx:

The (optional) first step balances the two matrices using F08WVF (ZGGBAL). In the second step,
matrix B is reduced to upper triangular form using the QR factorization routine F08ASF (ZGEQRF)
and this unitary transformation Q is applied to matrix A by calling F08AUF (ZUNMQR).

F08WSF (ZGGHRD) reduces a pair of complex matrices A;Bð Þ, where B is triangular, to the
generalized upper Hessenberg form using unitary transformations. This two-sided transformation is of
the form

QHAZ ¼ H
QHBZ ¼ T

where H is an upper Hessenberg matrix, T is an upper triangular matrix and Q and Z are unitary
matrices determined as products of Givens rotations. They may either be formed explicitly, or they may
be postmultiplied into input matrices Q1 and Z1, so that

Q1AZ
H
1 ¼ Q1Qð ÞH Z1Zð ÞH;

Q1BZ
H
1 ¼ Q1Qð ÞT Z1Zð ÞH:

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J.
Numer. Anal. 10 241–256
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5 Arguments

1: COMPQ – CHARACTER(1) Input

On entry: specifies the form of the computed unitary matrix Q.

COMPQ ¼ N
Do not compute Q.

COMPQ ¼ I
The unitary matrix Q is returned.

COMPQ ¼ V
Q must contain a unitary matrix Q1, and the product Q1Q is returned.

Constraint: COMPQ ¼ N , I or V .

2: COMPZ – CHARACTER(1) Input

On entry: specifies the form of the computed unitary matrix Z.

COMPZ ¼ N
Do not compute Z.

COMPZ ¼ V
Z must contain a unitary matrix Z1, and the product Z1Z is returned.

COMPZ ¼ I
The unitary matrix Z is returned.

Constraint: COMPZ ¼ N , V or I .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: ILO – INTEGER Input
5: IHI – INTEGER Input

On entry: ilo and ihi as determined by a previous call to F08WVF (ZGGBAL). Otherwise, they
should be set to 1 and n, respectively.

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A of the matrix pair A;Bð Þ. Usually, this is the matrix A returned by
F08AUF (ZUNMQR).

On exit: A is overwritten by the upper Hessenberg matrix H.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08WSF
(ZGGHRD) is called.

Constraint: LDA � max 1;Nð Þ.
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8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the upper triangular matrix B of the matrix pair A;Bð Þ. Usually, this is the matrix B
returned by the QR factorization routine F08ASF (ZGEQRF).

On exit: B is overwritten by the upper triangular matrix T .

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08WSF
(ZGGHRD) is called.

Constraint: LDB � max 1;Nð Þ.

10: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if COMPQ ¼ I or V and
at least 1 if COMPQ ¼ N .

On entry: if COMPQ ¼ V , Q must contain a unitary matrix Q1.

If COMPQ ¼ N , Q is not referenced.

On exit: if COMPQ ¼ I , Q contains the unitary matrix Q.

Iif COMPQ ¼ V , Q is overwritten by Q1Q.

11: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08WSF
(ZGGHRD) is called.

Constraints:

if COMPQ ¼ I or V , LDQ � max 1;Nð Þ;
if COMPQ ¼ N , LDQ � 1.

12: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , Z must contain a unitary matrix Z1.

If COMPZ ¼ N , Z is not referenced.

On exit: if COMPZ ¼ I , Z contains the unitary matrix Z.

If COMPZ ¼ V , Z is overwritten by Z1Z.

13: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08WSF
(ZGGHRD) is called.

Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
if COMPZ ¼ N , LDZ � 1.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The reduction to the generalized Hessenberg form is implemented using unitary transformations which
are backward stable.

8 Parallelism and Performance

F08WSF (ZGGHRD) is not threaded in any implementation.

9 Further Comments

This routine is usually followed by F08XSF (ZHGEQZ) which implements the QZ algorithm for
computing generalized eigenvalues of a reduced pair of matrices.

The real analogue of this routine is F08WEF (DGGHRD).

10 Example

See Section 10 in F08XSF (ZHGEQZ) and F08YXF (ZTGEVC).
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NAG Library Routine Document

F08WTF (ZGGHD3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WTF (ZGGHD3) reduces a pair of complex matrices A;Bð Þ, where B is upper triangular, to the
generalized upper Hessenberg form using unitary transformations.

2 Specification

SUBROUTINE F08WTF (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z,
LDZ, WORK, LWORK, INFO)

&

INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*),

WORK(max(1,LWORK))
&

CHARACTER(1) COMPQ, COMPZ

The routine may be called by its LAPACK name zgghd3.

3 Description

F08WTF (ZGGHD3) is usually the third step in the solution of the complex generalized eigenvalue
problem

Ax ¼ �Bx:

The (optional) first step balances the two matrices using F08WVF (ZGGBAL). In the second step,
matrix B is reduced to upper triangular form using the QR factorization routine F08ASF (ZGEQRF)
and this unitary transformation Q is applied to matrix A by calling F08AUF (ZUNMQR). The driver,
F08WQF (ZGGEV3), solves the complex generalized eigenvalue problem by combining all the required
steps including those just listed.

F08WTF (ZGGHD3) reduces a pair of complex matrices A;Bð Þ, where B is triangular, to the
generalized upper Hessenberg form using unitary transformations. This two-sided transformation is of
the form

QHAZ ¼ H;
QHBZ ¼ T

where H is an upper Hessenberg matrix, T is an upper triangular matrix and Q and Z are unitary
matrices determined as products of Givens rotations. They may either be formed explicitly, or they may
be postmultiplied into input matrices Q1 and Z1, so that

Q1AZ
H
1 ¼ Q1Qð ÞH Z1Zð ÞH;

Q1BZ
H
1 ¼ Q1Qð ÞT Z1Zð ÞH:

4 References

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J.
Numer. Anal. 10 241–256
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5 Arguments

1: COMPQ – CHARACTER(1) Input

On entry: specifies the form of the computed unitary matrix Q.

COMPQ ¼ N
Do not compute Q.

COMPQ ¼ I
The unitary matrix Q is returned.

COMPQ ¼ V
Q must contain a unitary matrix Q1, and the product Q1Q is returned.

Constraint: COMPQ ¼ N , I or V .

2: COMPZ – CHARACTER(1) Input

On entry: specifies the form of the computed unitary matrix Z.

COMPZ ¼ N
Do not compute Z.

COMPZ ¼ V
Z must contain a unitary matrix Z1, and the product Z1Z is returned.

COMPZ ¼ I
The unitary matrix Z is returned.

Constraint: COMPZ ¼ N , V or I .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

4: ILO – INTEGER Input
5: IHI – INTEGER Input

On entry: ilo and ihi as determined by a previous call to F08WVF (ZGGBAL). Otherwise, they
should be set to 1 and n, respectively.

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A of the matrix pair A;Bð Þ. Usually, this is the matrix A returned by
F08AUF (ZUNMQR).

On exit: A is overwritten by the upper Hessenberg matrix H.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08WTF
(ZGGHD3) is called.

Constraint: LDA � max 1;Nð Þ.
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8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the upper triangular matrix B of the matrix pair A;Bð Þ. Usually, this is the matrix B
returned by the QR factorization routine F08ASF (ZGEQRF).

On exit: B is overwritten by the upper triangular matrix T .

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08WTF
(ZGGHD3) is called.

Constraint: LDB � max 1;Nð Þ.

10: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if COMPQ ¼ I or V and
at least 1 if COMPQ ¼ N .

On entry: if COMPQ ¼ V , Q must contain a unitary matrix Q1.

If COMPQ ¼ N , Q is not referenced.

On exit: if COMPQ ¼ I , Q contains the unitary matrix Q.

Iif COMPQ ¼ V , Q is overwritten by Q1Q.

11: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08WTF
(ZGGHD3) is called.

Constraints:

if COMPQ ¼ I or V , LDQ � max 1;Nð Þ;
if COMPQ ¼ N , LDQ � 1.

12: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , Z must contain a unitary matrix Z1.

If COMPZ ¼ N , Z is not referenced.

On exit: if COMPZ ¼ I , Z contains the unitary matrix Z.

If COMPZ ¼ V , Z is overwritten by Z1Z.

13: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08WTF
(ZGGHD3) is called.

Constraints:

if COMPZ ¼ V or I , LDZ � max 1;Nð Þ;
if COMPZ ¼ N , LDZ � 1.

14: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.
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15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)routine from which F08WTF
(ZGGHD3) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum;
increase workspace by, say, nb� N� 6ð Þ, where nb is the optimal block size.

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The reduction to the generalized Hessenberg form is implemented using unitary transformations which
are backward stable.

8 Parallelism and Performance

F08WTF (ZGGHD3) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This routine is usually followed by F08XSF (ZHGEQZ) which implements the QZ algorithm for
computing generalized eigenvalues of a reduced pair of matrices.

The real analogue of this routine is F08WFF (DGGHD3).

10 Example

See Section 10 in F08XSF (ZHGEQZ) and F08YXF (ZTGEVC).
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NAG Library Routine Document

F08WVF (ZGGBAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WVF (ZGGBAL) balances a pair of complex square matrices A;Bð Þ of order n. Balancing usually
improves the accuracy of computed generalized eigenvalues and eigenvectors.

2 Specification

SUBROUTINE F08WVF (JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
WORK, INFO)

&

INTEGER N, LDA, LDB, ILO, IHI, INFO
REAL (KIND=nag_wp) LSCALE(N), RSCALE(N), WORK(6*N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) JOB

The routine may be called by its LAPACK name zggbal.

3 Description

Balancing may reduce the 1-norm of the matrices and improve the accuracy of the computed
eigenvalues and eigenvectors in the complex generalized eigenvalue problem

Ax ¼ �Bx:

F08WVF (ZGGBAL) is usually the first step in the solution of the above generalized eigenvalue
problem. Balancing is optional but it is highly recommended.

The term ‘balancing’ covers two steps, each of which involves similarity transformations on A and B.
The routine can perform either or both of these steps. Both steps are optional.

1. The routine first attempts to permute A and B to block upper triangular form by a similarity
transformation:

PAPT ¼ F ¼
F11 F12 F13

F22 F23
F33

0@ 1A
PBPT ¼ G ¼

G11 G12 G13
G22 G23

G33

0@ 1A
where P is a permutation matrix, F11, F33, G11 and G33 are upper triangular. Then the diagonal
elements of the matrix pairs F11; G11ð Þ and F33; G33ð Þ are generalized eigenvalues of A;Bð Þ. The
rest of the generalized eigenvalues are given by the matrix pair F22; G22ð Þ which are in rows and
columns ilo to ihi. Subsequent operations to compute the generalized eigenvalues of A;Bð Þ need
only be applied to the matrix pair F22; G22ð Þ; this can save a significant amount of work if ilo > 1
and ihi < n. If no suitable permutation exists (as is often the case), the routine sets ilo ¼ 1 and
ihi ¼ n.

2. The routine applies a diagonal similarity transformation to F;Gð Þ, to make the rows and columns
of F22; G22ð Þ as close in norm as possible:

DFD̂ ¼
I 0 0
0 D22 0
0 0 I

0@ 1A F11 F12 F13
F22 F23

F33

0@ 1A I 0 0
0 D̂22 0
0 0 I

0@ 1A
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DGD�1 ¼
I 0 0
0 D22 0
0 0 I

0@ 1A G11 G12 G13
G22 G23

G33

0@ 1A I 0 0
0 D̂22 0
0 0 I

0@ 1A
This transformation usually improves the accuracy of computed generalized eigenvalues and
eigenvectors.

4 References

Ward R C (1981) Balancing the generalized eigenvalue problem SIAM J. Sci. Stat. Comp. 2 141–152

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies the operations to be performed on matrices A and B.

JOB ¼ N
No balancing is done. In i t ia l ize ILO ¼ 1, IHI ¼ N, LSCALEðiÞ ¼ 1:0 and
RSCALEðiÞ ¼ 1:0, for i ¼ 1; 2; . . . ; n.

JOB ¼ P
Only permutations are used in balancing.

JOB ¼ S
Only scalings are are used in balancing.

JOB ¼ B
Both permutations and scalings are used in balancing.

Constraint: JOB ¼ N , P , S or B .

2: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

3: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n matrix A.

On exit: A is overwritten by the balanced matrix. If JOB ¼ N , A is not referenced.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
F08WVF (ZGGBAL) is called.

Constraint: LDA � max 1;Nð Þ.

5: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n matrix B.

On exit: B is overwritten by the balanced matrix. If JOB ¼ N , B is not referenced.
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6: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which
F08WVF (ZGGBAL) is called.

Constraint: LDB � max 1;Nð Þ.

7: ILO – INTEGER Output
8: IHI – INTEGER Output

On exit: ilo and ihi are set such that Aði; jÞ ¼ 0 and Bði; jÞ ¼ 0 if i > j and 1 � j < ilo or
ihi < i � n.
If JOB ¼ N or S , ilo ¼ 1 and ihi ¼ n.

9: LSCALEðNÞ – REAL (KIND=nag_wp) array Output

On exit: details of the permutations and scaling factors applied to the left side of the matrices A
and B. If Pi is the index of the row interchanged with row i and di is the scaling factor applied to
row i, then

LSCALEðiÞ ¼ Pi, for i ¼ 1; 2; . . . ; ilo � 1;

LSCALEðiÞ ¼ di, for i ¼ ilo; . . . ; ihi;

LSCALEðiÞ ¼ Pi, for i ¼ ihi þ 1; . . . ; n.

The order in which the interchanges are made is n to ihi þ 1, then 1 to ilo � 1.

10: RSCALEðNÞ – REAL (KIND=nag_wp) array Output

On exit: details of the permutations and scaling factors applied to the right side of the matrices A
and B.

If Pj is the index of the column interchanged with column j and d̂j is the scaling factor applied to
column j, then

RSCALEðjÞ ¼ Pj , for j ¼ 1; 2; . . . ; ilo � 1;

RSCALEðjÞ ¼ d̂j , for j ¼ ilo; . . . ; ihi;
RSCALEðjÞ ¼ Pj , for j ¼ ihi þ 1; . . . ; n.

The order in which the interchanges are made is n to ihi þ 1, then 1 to ilo � 1.

11: WORKð6� NÞ – REAL (KIND=nag_wp) array Workspace

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The errors are negligible, compared to those in subsequent computations.
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8 Parallelism and Performance

F08WVF (ZGGBAL) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F08WVF (ZGGBAL) is usually the first step in computing the complex generalized eigenvalue problem
but it is an optional step. The matrix B is reduced to the triangular form using the QR factorization
routine F08ASF (ZGEQRF) and the unitary transformation Q is applied to the matrix A by calling
F08AUF (ZUNMQR). This is followed by F08WSF (ZGGHRD) which reduces the matrix pair into the
generalized Hessenberg form.

If the matrix pair A;Bð Þ is balanced by this routine, then any generalized eigenvectors computed
subsequently are eigenvectors of the balanced matrix pair. In that case, to compute the generalized
eigenvectors of the original matrix, F08WWF (ZGGBAK) must be called.

The total number of floating-point operations is approximately proportional to n2.

The real analogue of this routine is F08WHF (DGGBAL).

10 Example

See Section 10 in F08XSF (ZHGEQZ) and F08YXF (ZTGEVC).
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NAG Library Routine Document

F08WWF (ZGGBAK)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08WWF (ZGGBAK) forms the right or left eigenvectors of the real generalized eigenvalue problem
Ax ¼ �Bx, by backward transformation on the computed eigenvectors given by F08YXF (ZTGEVC). It
is necessary to call this routine only if the optional balancing routine F08WVF (ZGGBAL) was
previously called to balance the matrix pair A;Bð Þ.

2 Specification

SUBROUTINE F08WWF (JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V, LDV,
INFO)

&

INTEGER N, ILO, IHI, M, LDV, INFO
REAL (KIND=nag_wp) LSCALE(*), RSCALE(*)
COMPLEX (KIND=nag_wp) V(LDV,*)
CHARACTER(1) JOB, SIDE

The routine may be called by its LAPACK name zggbak.

3 Description

If the matrix pair has been previously balanced using the routine F08WVF (ZGGBAL) then F08WWF
(ZGGBAK) backtransforms the eigenvector solution given by F08YXF (ZTGEVC). This is usually the
sixth and last step in the solution of the generalized eigenvalue problem.

For a description of balancing, see the document for F08WVF (ZGGBAL).

4 References

Ward R C (1981) Balancing the generalized eigenvalue problem SIAM J. Sci. Stat. Comp. 2 141–152

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies the backtransformation step required.

JOB ¼ N
No transformations are done.

JOB ¼ P
Only do backward transformations based on permutations.

JOB ¼ S
Only do backward transformations based on scaling.

JOB ¼ B
Do backward transformations for both permutations and scaling.

Note: this must be identical to the argument JOB as supplied to F08WVF (ZGGBAL).

Constraint: JOB ¼ N , P , S or B .
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2: SIDE – CHARACTER(1) Input

On entry: indicates whether left or right eigenvectors are to be transformed.

SIDE ¼ L
The left eigenvectors are transformed.

SIDE ¼ R
The right eigenvectors are transformed.

Constraint: SIDE ¼ L or R .

3: N – INTEGER Input

On entry: n, the order of the matrices A and B of the generalized eigenvalue problem.

Constraint: N � 0.

4: ILO – INTEGER Input
5: IHI – INTEGER Input

On entry: ilo and ihi as determined by a previous call to F08WVF (ZGGBAL).

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

6: LSCALEð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array LSCALE must be at least max 1;Nð Þ.
On entry: details of the permutations and scaling factors applied to the left side of the matrices A
and B, as returned by a previous call to F08WVF (ZGGBAL).

7: RSCALEð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RSCALE must be at least max 1;Nð Þ.
On entry: details of the permutations and scaling factors applied to the right side of the matrices
A and B, as returned by a previous call to F08WVF (ZGGBAL).

8: M – INTEGER Input

On entry: m, the required number of left or right eigenvectors.

Constraint: 0 � M � N.

9: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;Mð Þ.
On entry: the matrix of right or left eigenvectors, as returned by F08WVF (ZGGBAL).

On exit: the transformed right or left eigenvectors.

10: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which
F08WWF (ZGGBAK) is called.

Constraint: LDV � max 1;Nð Þ.

11: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The errors are negligible.

8 Parallelism and Performance

F08WWF (ZGGBAK) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of operations is proportional to n2.

The real analogue of this routine is F08WJF (DGGBAK).

10 Example

See Section 10 in F08XSF (ZHGEQZ) and F08YXF (ZTGEVC).
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NAG Library Routine Document

F08XAF (DGGES)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08XAF (DGGES) computes the generalized eigenvalues, the generalized real Schur form S; Tð Þ and,
optionally, the left and/or right generalized Schur vectors for a pair of n by n real nonsymmetric
matrices A;Bð Þ. F08XAF (DGGES) is marked as deprecated by LAPACK; the replacement routine is
F08XCF (DGGES3) which makes better use of level 3 BLAS.

2 Specification

SUBROUTINE F08XAF (JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
WORK, LWORK, BWORK, INFO)

&
&

INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHAR(N), ALPHAI(N), BETA(N),

VSL(LDVSL,*), VSR(LDVSR,*), WORK(max(1,LWORK))
&

LOGICAL SELCTG, BWORK(*)
CHARACTER(1) JOBVSL, JOBVSR, SORT
EXTERNAL SELCTG

The routine may be called by its LAPACK name dgges.

3 Description

The generalized Schur factorization for a pair of real matrices A;Bð Þ is given by

A ¼ QSZT; B ¼ QTZT;

where Q and Z are orthogonal, T is upper triangular and S is upper quasi-triangular with 1 by 1 and 2
by 2 diagonal blocks. The generalized eigenvalues, �, of A;Bð Þ are computed from the diagonals of S
and T and satisfy

Az ¼ �Bz;

where z is the corresponding generalized eigenvector. � is actually returned as the pair �; �ð Þ such that

� ¼ �=�

since �, or even both � and � can be zero. The columns of Q and Z are the left and right generalized
Schur vectors of A;Bð Þ.
Optionally, F08XAF (DGGES) can order the generalized eigenvalues on the diagonals of S; Tð Þ so that
selected eigenvalues are at the top left. The leading columns of Q and Z then form an orthonormal
basis for the corresponding eigenspaces, the deflating subspaces.

F08XAF (DGGES) computes T to have non-negative diagonal elements, and the 2 by 2 blocks of S
correspond to complex conjugate pairs of generalized eigenvalues. The generalized Schur factorization,
before reordering, is computed by the QZ algorithm.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBVSL – CHARACTER(1) Input

On entry: if JOBVSL ¼ N , do not compute the left Schur vectors.

If JOBVSL ¼ V , compute the left Schur vectors.

Constraint: JOBVSL ¼ N or V .

2: JOBVSR – CHARACTER(1) Input

On entry: if JOBVSR ¼ N , do not compute the right Schur vectors.

If JOBVSR ¼ V , compute the right Schur vectors.

Constraint: JOBVSR ¼ N or V .

3: SORT – CHARACTER(1) Input

On entry: specifies whether or not to order the eigenvalues on the diagonal of the generalized
Schur form.

SORT ¼ N
Eigenvalues are not ordered.

SORT ¼ S
Eigenvalues are ordered (see SELCTG).

Constraint: SORT ¼ N or S .

4: SELCTG – LOGICAL FUNCTION, supplied by the user. External Procedure

If SORT ¼ S , SELCTG is used to select generalized eigenvalues to be moved to the top left of
the generalized Schur form.

If SORT ¼ N , SELCTG is not referenced by F08XAF (DGGES), and may be called with the
dummy function F08XAZ.

The specification of SELCTG is:

FUNCTION SELCTG (AR, AI, B)
LOGICAL SELCTG

REAL (KIND=nag_wp) AR, AI, B

1: AR – REAL (KIND=nag_wp) Input
2: AI – REAL (KIND=nag_wp) Input
3: B – REAL (KIND=nag_wp) Input

On e n t r y : a n e i g e n v a l u e ARðjÞ þ
ffiffiffiffiffiffiffi
�1
p

� AIðjÞ
� �

=BðjÞ i s s e l e c t e d i f
SELCTG ARðjÞ;AIðjÞ;BðjÞð Þ ¼ :TRUE:. If either one of a complex conjugate pair is
selected, then both complex generalized eigenvalues are selected.

Note that in the ill-conditioned case, a selected complex generalized eigenvalue may no
longer satisfy SELCTG ARðjÞ;AIðjÞ;BðjÞð Þ ¼ :TRUE: after ordering. INFO ¼ Nþ 2 in
this case.
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SELCTG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F08XAF (DGGES) is called. Arguments denoted as Input must not be
changed by this procedure.

5: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the first of the pair of matrices, A.

On exit: A has been overwritten by its generalized Schur form S.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08XAF
(DGGES) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the second of the pair of matrices, B.

On exit: B has been overwritten by its generalized Schur form T .

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08XAF
(DGGES) is called.

Constraint: LDB � max 1;Nð Þ.

10: SDIM – INTEGER Output

On exit: if SORT ¼ N , SDIM ¼ 0.

If SORT ¼ S , SDIM ¼ number of eigenvalues (after sorting) for which SELCTG is .TRUE..
(Complex conjugate pairs for which SELCTG is .TRUE. for either eigenvalue count as 2.)

11: ALPHARðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

12: ALPHAIðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

13: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHARðjÞ þ ALPHAIðjÞ � ið Þ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized
eigenvalues. ALPHARðjÞ þ ALPHAIðjÞ � i, and BETAðjÞ, for j ¼ 1; 2; . . . ;N, are the diagonals
of the complex Schur form S; Tð Þ that would result if the 2 by 2 diagonal blocks of the real
Schur form of A;Bð Þ were further reduced to triangular form using 2 by 2 complex unitary
transformations.

If ALPHAIðjÞ is zero, then the jth eigenvalue is real; if positive, then the jth and jþ 1ð Þst
eigenvalues are a complex conjugate pair, with ALPHAIðjþ 1Þ negative.
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Note: the quotients ALPHARðjÞ=BETAðjÞ and ALPHAIðjÞ=BETAðjÞ may easily overflow or
underflow, and BETAðjÞ may even be zero. Thus, you should avoid naively computing the ratio
�=�. However, ALPHAR and ALPHAI will always be less than and usually comparable with
Ak k2 in magnitude, and BETA will always be less than and usually comparable with Bk k2.

14: VSLðLDVSL; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VSL must be at least max 1;Nð Þ if JOBVSL ¼ V , and at
least 1 otherwise.

On exit: if JOBVSL ¼ V , VSL will contain the left Schur vectors, Q.

If JOBVSL ¼ N , VSL is not referenced.

15: LDVSL – INTEGER Input

On entry: the first dimension of the array VSL as declared in the (sub)program from which
F08XAF (DGGES) is called.

Constraints:

if JOBVSL ¼ V , LDVSL � max 1;Nð Þ;
otherwise LDVSL � 1.

16: VSRðLDVSR; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VSR must be at least max 1;Nð Þ if JOBVSR ¼ V , and
at least 1 otherwise.

On exit: if JOBVSR ¼ V , VSR will contain the right Schur vectors, Z.

If JOBVSR ¼ N , VSR is not referenced.

17: LDVSR – INTEGER Input

On entry: the first dimension of the array VSR as declared in the (sub)program from which
F08XAF (DGGES) is called.

Constraints:

if JOBVSR ¼ V , LDVSR � max 1;Nð Þ;
otherwise LDVSR � 1.

18: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

19: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08XAF (DGGES) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the mimimum;
add, say nb� N, where nb is the optimal block size.

Constraints:

if N ¼ 0, LWORK � 1;
otherwise LWORK � max 8� N; 6� Nþ 16ð Þ.
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20: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least 1 if SORT ¼ N , and at least
max 1;Nð Þ otherwise.
If SORT ¼ N , BWORK is not referenced.

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration failed. A;Bð Þ are not in Schur form, but ALPHARðjÞ, ALPHAIðjÞ, and
BETAðjÞ should be correct for j ¼ INFOþ 1; . . . ;N.

INFO ¼ Nþ 1

Unexpected error returned from F08XEF (DHGEQZ).

INFO ¼ Nþ 2

After reordering, roundoff changed values of some complex eigenvalues so that leading
eigenvalues in the generalized Schur form no longer satisfy SELCTG ¼ :TRUE:. This could also
be caused by underflow due to scaling.

INFO ¼ Nþ 3

The eigenvalues could not be reordered because some eigenvalues were too close to separate (the
problem is very ill-conditioned).

7 Accuracy

The computed generalized Schur factorization satisfies

Aþ E ¼ QSZT; Bþ F ¼ QTZT;

where

E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF
and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08XAF (DGGES) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08XAF (DGGES) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08XNF (ZGGES).

10 Example

This example finds the generalized Schur factorization of the matrix pair A;Bð Þ, where

A ¼
3:9 12:5 �34:5 �0:5
4:3 21:5 �47:5 7:5
4:3 21:5 �43:5 3:5
4:4 26:0 �46:0 6:0

0B@
1CA and B ¼

1:0 2:0 �3:0 1:0
1:0 3:0 �5:0 4:0
1:0 3:0 �4:0 3:0
1:0 3:0 �4:0 4:0

0B@
1CA;

such that the real positive eigenvalues of A;Bð Þ correspond to the top left diagonal elements of the
generalized Schur form, S; Tð Þ.
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

! F08XAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f08xafe_mod

! F08XAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: selctg

! .. Parameters ..
Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6

Contains
Function selctg(ar,ai,b)

! Logical function selctg for use with DGGES (F08XAF)
! Returns the value .TRUE. if the eigenvalue is real and positive

! .. Function Return Value ..
Logical :: selctg

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: ai, ar, b

! .. Executable Statements ..
selctg = (ar>0._nag_wp .And. ai==0._nag_wp .And. b/=0._nag_wp)
Return

End Function selctg
End Module f08xafe_mod
Program f08xafe

! F08XAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgemm, dgges, dlange => f06raf, nag_wp, x02ajf, &

x04caf
Use f08xafe_mod, Only: nb, nin, nout, selctg

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: alph, bet, normd, norme
Integer :: i, ifail, info, lda, ldb, ldc, ldd, &
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lde, ldvsl, ldvsr, lwork, n, sdim
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), alphai(:), alphar(:), &
b(:,:), beta(:), c(:,:), d(:,:), &
e(:,:), vsl(:,:), vsr(:,:), work(:)

Real (Kind=nag_wp) :: dummy(1)
Logical, Allocatable :: bwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint

! .. Executable Statements ..
Write (nout,*) ’F08XAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldc = n
ldd = n
lde = n
ldvsl = n
ldvsr = n
Allocate (a(lda,n),alphai(n),alphar(n),b(ldb,n),beta(n),vsl(ldvsl,n), &

vsr(ldvsr,n),bwork(n),c(ldc,n),d(ldd,n),e(lde,n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dgges is f08xaf
Call dgges(’Vectors (left)’,’Vectors (right)’,’Sort’,selctg,n,a,lda,b, &

ldb,sdim,alphar,alphai,beta,vsl,ldvsl,vsr,ldvsr,dummy,lwork,bwork, &
info)

! Make sure that there is enough workspace for block size nb.
lwork = max(8*n+16+n*nb,nint(dummy(1)))
Allocate (work(lwork))

! Read in the matrices A and B
Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Copy A and B into D and E respectively
d(1:n,1:n) = a(1:n,1:n)
e(1:n,1:n) = b(1:n,1:n)

! Print matrices A and B
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Matrix A’,ifail)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04caf(’General’,’ ’,n,n,b,ldb,’Matrix B’,ifail)
Write (nout,*)
Flush (nout)

! Find the generalized Schur form
! The NAG name equivalent of dgges is f08xaf

Call dgges(’Vectors (left)’,’Vectors (right)’,’Sort’,selctg,n,a,lda,b, &
ldb,sdim,alphar,alphai,beta,vsl,ldvsl,vsr,ldvsr,work,lwork,bwork,info)

If (info==0 .Or. info==(n+2)) Then

! Compute A - Q*S*Z^T from the factorization of (A,B) and store in
! matrix D
! The NAG name equivalent of dgemm is f06yaf

alph = 1.0_nag_wp
bet = 0.0_nag_wp
Call dgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,a,lda,bet,c,ldc)
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alph = -1.0_nag_wp
bet = 1.0_nag_wp
Call dgemm(’N’,’T’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,d,ldd)

! Compute B - Q*T*Z^T from the factorization of (A,B) and store in
! matrix E

alph = 1.0_nag_wp
bet = 0.0_nag_wp
Call dgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,b,ldb,bet,c,ldc)
alph = -1.0_nag_wp
bet = 1.0_nag_wp
Call dgemm(’N’,’T’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,e,lde)

! Find norms of matrices D and E and warn if either is too large
! f06raf is the NAG name equivalent of the LAPACK auxiliary dlange

normd = dlange(’O’,ldd,n,d,ldd,work)
norme = dlange(’O’,lde,n,e,lde,work)
If (normd>x02ajf()**0.8_nag_wp .Or. norme>x02ajf()**0.8_nag_wp) Then

Write (nout,*) &
’Norm of A-(Q*S*Z^T) or norm of B-(Q*T*Z^T) is much greater than 0.’

Write (nout,*) ’Schur factorization has failed.’
Else

! Print solution
Write (nout,99999) &

’Number of eigenvalues for which SELCTG is true = ’, sdim, &
’(dimension of deflating subspaces)’

Write (nout,*)
! Print generalized eigenvalues

Write (nout,*) ’Selected generalized eigenvalues’

Do i = 1, sdim
If (beta(i)/=0.0_nag_wp) Then

Write (nout,99997) i, ’(’, alphar(i)/beta(i), ’,’, &
alphai(i)/beta(i), ’)’

Else
Write (nout,99996) i

End If
End Do
Write (nout,*)

If (info==(n+2)) Then
Write (nout,99995) ’***Note that rounding errors mean ’, &

’that leading eigenvalues in the generalized’, &
’Schur form no longer satisfy SELCTG = .TRUE.’

Write (nout,*)
End If

End If

Else
Write (nout,99998) ’Failure in DGGES. INFO =’, info

End If

99999 Format (1X,A,I4,/,1X,A)
99998 Format (1X,A,I4)
99997 Format (1X,I4,5X,A,F7.3,A,F7.3,A)
99996 Format (1X,I4,’Eigenvalue is infinite’)
99995 Format (1X,2A,/,1X,A)

End Program f08xafe
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10.2 Program Data

F08XAF Example Program Data
4 :Value of N
3.9 12.5 -34.5 -0.5
4.3 21.5 -47.5 7.5
4.3 21.5 -43.5 3.5
4.4 26.0 -46.0 6.0 :End of matrix A
1.0 2.0 -3.0 1.0
1.0 3.0 -5.0 4.0
1.0 3.0 -4.0 3.0
1.0 3.0 -4.0 4.0 :End of matrix B

10.3 Program Results

F08XAF Example Program Results

Matrix A
1 2 3 4

1 3.9000 12.5000 -34.5000 -0.5000
2 4.3000 21.5000 -47.5000 7.5000
3 4.3000 21.5000 -43.5000 3.5000
4 4.4000 26.0000 -46.0000 6.0000

Matrix B
1 2 3 4

1 1.0000 2.0000 -3.0000 1.0000
2 1.0000 3.0000 -5.0000 4.0000
3 1.0000 3.0000 -4.0000 3.0000
4 1.0000 3.0000 -4.0000 4.0000

Number of eigenvalues for which SELCTG is true = 2
(dimension of deflating subspaces)

Selected generalized eigenvalues
1 ( 2.000, 0.000)
2 ( 4.000, 0.000)
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NAG Library Routine Document

F08XBF (DGGESX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08XBF (DGGESX) computes the generalized eigenvalues, the generalized real Schur form S; Tð Þ and,
optionally, the left and/or right generalized Schur vectors for a pair of n by n real nonsymmetric
matrices A;Bð Þ.
Estimates of condition numbers for selected generalized eigenvalue clusters and Schur vectors are also
computed.

2 Specification

SUBROUTINE F08XBF (JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA, B,
LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK, LIWORK,
BWORK, INFO)

&
&
&

INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHAR(N), ALPHAI(N), BETA(N),
VSL(LDVSL,*), VSR(LDVSR,*), RCONDE(2), RCONDV(2),
WORK(max(1,LWORK))

&
&

LOGICAL SELCTG, BWORK(*)
CHARACTER(1) JOBVSL, JOBVSR, SORT, SENSE
EXTERNAL SELCTG

The routine may be called by its LAPACK name dggesx.

3 Description

The generalized real Schur factorization of A;Bð Þ is given by

A ¼ QSZT; B ¼ QTZT;

where Q and Z are orthogonal, T is upper triangular and S is upper quasi-triangular with 1 by 1 and 2
by 2 diagonal blocks. The generalized eigenvalues, �, of A;Bð Þ are computed from the diagonals of T
and S and satisfy

Az ¼ �Bz;

where z is the corresponding generalized eigenvector. � is actually returned as the pair �; �ð Þ such that

� ¼ �=�

since �, or even both � and � can be zero. The columns of Q and Z are the left and right generalized
Schur vectors of A;Bð Þ.
Optionally, F08XBF (DGGESX) can order the generalized eigenvalues on the diagonals of S; Tð Þ so
that selected eigenvalues are at the top left. The leading columns of Q and Z then form an orthonormal
basis for the corresponding eigenspaces, the deflating subspaces.

F08XBF (DGGESX) computes T to have non-negative diagonal elements, and the 2 by 2 blocks of S
correspond to complex conjugate pairs of generalized eigenvalues. The generalized Schur factorization,
before reordering, is computed by the QZ algorithm.

The reciprocals of the condition estimates, the reciprocal values of the left and right projection norms,
are returned in RCONDEð1Þ and RCONDEð2Þ respectively, for the selected generalized eigenvalues,
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together with reciprocal condition estimates for the corresponding left and right deflating subspaces, in
RCONDVð1Þ and RCONDVð2Þ. See Section 4.11 of Anderson et al. (1999) for further information.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBVSL – CHARACTER(1) Input

On entry: if JOBVSL ¼ N , do not compute the left Schur vectors.

If JOBVSL ¼ V , compute the left Schur vectors.

Constraint: JOBVSL ¼ N or V .

2: JOBVSR – CHARACTER(1) Input

On entry: if JOBVSR ¼ N , do not compute the right Schur vectors.

If JOBVSR ¼ V , compute the right Schur vectors.

Constraint: JOBVSR ¼ N or V .

3: SORT – CHARACTER(1) Input

On entry: specifies whether or not to order the eigenvalues on the diagonal of the generalized
Schur form.

SORT ¼ N
Eigenvalues are not ordered.

SORT ¼ S
Eigenvalues are ordered (see SELCTG).

Constraint: SORT ¼ N or S .

4: SELCTG – LOGICAL FUNCTION, supplied by the user. External Procedure

If SORT ¼ S , SELCTG is used to select generalized eigenvalues to be moved to the top left of
the generalized Schur form.

If SORT ¼ N , SELCTG is not referenced by F08XBF (DGGESX), and may be called with the
dummy function F08XAZ.

The specification of SELCTG is:

FUNCTION SELCTG (AR, AI, B)
LOGICAL SELCTG

REAL (KIND=nag_wp) AR, AI, B

1: AR – REAL (KIND=nag_wp) Input
2: AI – REAL (KIND=nag_wp) Input
3: B – REAL (KIND=nag_wp) Input

On e n t r y : a n e i g e n v a l u e ARðjÞ þ
ffiffiffiffiffiffiffi
�1
p

� AIðjÞ
� �

=BðjÞ i s s e l e c t e d i f
SELCTG ARðjÞ;AIðjÞ;BðjÞð Þ is .TRUE.. If either one of a complex conjugate pair is
selected, then both complex generalized eigenvalues are selected.
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Note that in the ill-conditioned case, a selected complex generalized eigenvalue may no
longer satisfy SELCTG ARðjÞ;AIðjÞ;BðjÞð Þ ¼ :TRUE: after ordering. INFO ¼ Nþ 2 in
this case.

SELCTG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F08XBF (DGGESX) is called. Arguments denoted as Input must not be
changed by this procedure.

5: SENSE – CHARACTER(1) Input

On entry: determines which reciprocal condition numbers are computed.

SENSE ¼ N
None are computed.

SENSE ¼ E
Computed for average of selected eigenvalues only.

SENSE ¼ V
Computed for selected deflating subspaces only.

SENSE ¼ B
Computed for both.

If SENSE ¼ E , V or B , SORT ¼ S .

Constraint: SENSE ¼ N , E , V or B .

6: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the first of the pair of matrices, A.

On exit: A has been overwritten by its generalized Schur form S.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08XBF
(DGGESX) is called.

Constraint: LDA � max 1;Nð Þ.

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the second of the pair of matrices, B.

On exit: B has been overwritten by its generalized Schur form T .

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08XBF
(DGGESX) is called.

Constraint: LDB � max 1;Nð Þ.

11: SDIM – INTEGER Output

On exit: if SORT ¼ N , SDIM ¼ 0.
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If SORT ¼ S , SDIM ¼ number of eigenvalues (after sorting) for which SELCTG is .TRUE..
(Complex conjugate pairs for which SELCTG is .TRUE. for either eigenvalue count as 2.)

12: ALPHARðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

13: ALPHAIðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

14: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHARðjÞ þ ALPHAIðjÞ � ið Þ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized
eigenvalues. ALPHARðjÞ þ ALPHAIðjÞ � i, and BETAðjÞ, for j ¼ 1; 2; . . . ;N, are the diagonals
of the complex Schur form S; Tð Þ that would result if the 2 by 2 diagonal blocks of the real
Schur form of A;Bð Þ were further reduced to triangular form using 2 by 2 complex unitary
transformations.

If ALPHAIðjÞ is zero, then the jth eigenvalue is real; if positive, then the jth and jþ 1ð Þst
eigenvalues are a complex conjugate pair, with ALPHAIðjþ 1Þ negative.
Note: the quotients ALPHARðjÞ=BETAðjÞ and ALPHAIðjÞ=BETAðjÞ may easily overflow or
underflow, and BETAðjÞ may even be zero. Thus, you should avoid naively computing the ratio
�=�. However, ALPHAR and ALPHAI will always be less than and usually comparable with
Ak k2 in magnitude, and BETA will always be less than and usually comparable with Bk k2.

15: VSLðLDVSL; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VSL must be at least max 1;Nð Þ if JOBVSL ¼ V , and at
least 1 otherwise.

On exit: if JOBVSL ¼ V , VSL will contain the left Schur vectors, Q.

If JOBVSL ¼ N , VSL is not referenced.

16: LDVSL – INTEGER Input

On entry: the first dimension of the array VSL as declared in the (sub)program from which
F08XBF (DGGESX) is called.

Constraints:

if JOBVSL ¼ V , LDVSL � max 1;Nð Þ;
otherwise LDVSL � 1.

17: VSRðLDVSR; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VSR must be at least max 1;Nð Þ if JOBVSR ¼ V , and
at least 1 otherwise.

On exit: if JOBVSR ¼ V , VSR will contain the right Schur vectors, Z.

If JOBVSR ¼ N , VSR is not referenced.

18: LDVSR – INTEGER Input

On entry: the first dimension of the array VSR as declared in the (sub)program from which
F08XBF (DGGESX) is called.

Constraints:

if JOBVSR ¼ V , LDVSR � max 1;Nð Þ;
otherwise LDVSR � 1.
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19: RCONDEð2Þ – REAL (KIND=nag_wp) array Output

On exit: if SENSE ¼ E or B , RCONDEð1Þ and RCONDEð2Þ contain the reciprocal condition
numbers for the average of the selected eigenvalues.

If SENSE ¼ N or V , RCONDE is not referenced.

20: RCONDVð2Þ – REAL (KIND=nag_wp) array Output

On exit: if SENSE ¼ V or B , RCONDVð1Þ and RCONDVð2Þ contain the reciprocal condition
numbers for the selected deflating subspaces.

if SENSE ¼ N or E , RCONDV is not referenced.

21: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.

22: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08XBF (DGGESX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the bound on the
optimal size of the WORK array and the minimum size of the IWORK array, returns these values
as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or
LIWORK is issued.

Constraints:

if SENSE ¼ E , V or B , LWORK � max 8� Nþ 1ð Þ þ 16; 2� SDIM� N� SDIMð Þð Þ;
otherwise LWORK � max 1; 8� N; 6� Nþ 16ð Þ.

Note: that 2� SDIM� N� SDIMð Þ � N� N=2. Note also that an error is only returned if
LWORK < 8� Nþ 1ð Þ þ 16, but if SENSE ¼ E , V or B this may not be large enough.
Consider increasing LWORK by nb, where nb is the optimal block size.

23: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum LIWORK.

24: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08XBF (DGGESX) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the bound on the
optimal size of the WORK array and the minimum size of the IWORK array, returns these values
as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or
LIWORK is issued.

Constraints:

if SENSE ¼ N or N ¼ 0, LIWORK � 1;
otherwise LIWORK � Nþ 6.

25: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least 1 if SORT ¼ N , and at least
max 1;Nð Þ otherwise.
If SORT ¼ N , BWORK is not referenced.

26: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration failed. A;Bð Þ are not in Schur form, but ALPHARðjÞ, ALPHAIðjÞ, and
BETAðjÞ should be correct for j ¼ INFOþ 1; . . . ;N.

INFO ¼ Nþ 1

Unexpected error returned from F08XEF (DHGEQZ).

INFO ¼ Nþ 2

After reordering, roundoff changed values of some complex eigenvalues so that leading
eigenvalues in the generalized Schur form no longer satisfy SELCTG ¼ :TRUE:. This could also
be caused by underflow due to scaling.

INFO ¼ Nþ 3

The eigenvalues could not be reordered because some eigenvalues were too close to separate (the
problem is very ill-conditioned).

7 Accuracy

The computed generalized Schur factorization satisfies

Aþ E ¼ QSZT; Bþ F ¼ QTZT;

where

E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF
and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08XBF (DGGESX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08XBF (DGGESX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08XPF (ZGGESX).
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10 Example

This example finds the generalized Schur factorization of the matrix pair A;Bð Þ, where

A ¼
3:9 12:5 �34:5 �0:5
4:3 21:5 �47:5 7:5
4:3 21:5 �43:5 3:5
4:4 26:0 �46:0 6:0

0B@
1CA and B ¼

1:0 2:0 �3:0 1:0
1:0 3:0 �5:0 4:0
1:0 3:0 �4:0 3:0
1:0 3:0 �4:0 4:0

0B@
1CA;

such that the real positive eigenvalues of A;Bð Þ correspond to the top left diagonal elements of the
generalized Schur form, S; Tð Þ. Estimates of the condition numbers for the selected eigenvalue cluster
and corresponding deflating subspaces are also returned.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

! F08XBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f08xbfe_mod

! F08XBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: selctg

! .. Parameters ..
Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6

Contains
Function selctg(ar,ai,b)

! Logical function selctg for use with DGGESX (F08XBF)
! Returns the value .TRUE. if the eigenvalue is real and positive

! .. Function Return Value ..
Logical :: selctg

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: ai, ar, b

! .. Executable Statements ..
selctg = (ar>0._nag_wp .And. ai==0._nag_wp .And. b/=0._nag_wp)
Return

End Function selctg
End Module f08xbfe_mod
Program f08xbfe

! F08XBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgemm, dggesx, dlange => f06raf, f06bnf, nag_wp, &

x02ajf, x04caf
Use f08xbfe_mod, Only: nb, nin, nout, selctg

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: abnorm, alph, anorm, bet, bnorm, &

eps, normd, norme, tol
Integer :: i, ifail, info, lda, ldb, ldc, ldd, &

lde, ldvsl, ldvsr, liwork, lwork, n, &
sdim

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), alphai(:), alphar(:), &

b(:,:), beta(:), c(:,:), d(:,:), &
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e(:,:), vsl(:,:), vsr(:,:), work(:)
Real (Kind=nag_wp) :: rconde(2), rcondv(2), rdum(1)
Integer :: idum(1)
Integer, Allocatable :: iwork(:)
Logical, Allocatable :: bwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint

! .. Executable Statements ..
Write (nout,*) ’F08XBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldc = n
ldd = n
lde = n
ldvsl = n
ldvsr = n
Allocate (a(lda,n),alphai(n),alphar(n),b(ldb,n),beta(n),vsl(ldvsl,n), &

vsr(ldvsr,n),bwork(n),c(ldc,n),d(ldd,n),e(lde,n))

! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1

! The NAG name equivalent of dggesx is f08xbf
Call dggesx(’Vectors (left)’,’Vectors (right)’,’Sort’,selctg, &

’Both reciprocal condition numbers’,n,a,lda,b,ldb,sdim,alphar,alphai, &
beta,vsl,ldvsl,vsr,ldvsr,rconde,rcondv,rdum,lwork,idum,liwork,bwork, &
info)

! Make sure that there is enough workspace for block size nb.
lwork = max(8*(n+1)+16+n*nb+n*n/2,nint(rdum(1)))
liwork = max(n+6,idum(1))
Allocate (work(lwork),iwork(liwork))

! Read in the matrices A and B
Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Copy A and B into D and E respectively
d(1:n,1:n) = a(1:n,1:n)
e(1:n,1:n) = b(1:n,1:n)

! Print matrices A and B
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Matrix A’,ifail)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04caf(’General’,’ ’,n,n,b,ldb,’Matrix B’,ifail)
Write (nout,*)
Flush (nout)

! Find the Frobenius norms of A and B
! The NAG name equivalent of the LAPACK auxiliary dlange is f06raf

anorm = dlange(’Frobenius’,n,n,a,lda,work)
bnorm = dlange(’Frobenius’,n,n,b,ldb,work)

! Find the generalized Schur form
! The NAG name equivalent of dggesx is f08xbf

Call dggesx(’Vectors (left)’,’Vectors (right)’,’Sort’,selctg, &
’Both reciprocal condition numbers’,n,a,lda,b,ldb,sdim,alphar,alphai, &
beta,vsl,ldvsl,vsr,ldvsr,rconde,rcondv,work,lwork,iwork,liwork,bwork, &
info)
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If (info==0 .Or. info==(n+2)) Then

! Compute A - Q*S*Z^T from the factorization of (A,B) and store in
! matrix D
! The NAG name equivalent of dgemm is f06yaf

alph = 1.0_nag_wp
bet = 0.0_nag_wp
Call dgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,a,lda,bet,c,ldc)
alph = -1.0_nag_wp
bet = 1.0_nag_wp
Call dgemm(’N’,’T’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,d,ldd)

! Compute B - Q*T*Z^T from the factorization of (A,B) and store in
! matrix E

alph = 1.0_nag_wp
bet = 0.0_nag_wp
Call dgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,b,ldb,bet,c,ldc)
alph = -1.0_nag_wp
bet = 1.0_nag_wp
Call dgemm(’N’,’T’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,e,lde)

! Find norms of matrices D and E and warn if either is too large
normd = dlange(’O’,ldd,n,d,ldd,work)
norme = dlange(’O’,lde,n,e,lde,work)
If (normd>x02ajf()**0.8_nag_wp .Or. norme>x02ajf()**0.8_nag_wp) Then

Write (nout,*) &
’Norm of A-(Q*S*Z^T) or norm of B-(Q*T*Z^T) is much greater than 0.’

Write (nout,*) ’Schur factorization has failed.’
Else

! Print solution
Write (nout,99999) &

’Number of eigenvalues for which SELCTG is true = ’, sdim, &
’(dimension of deflating subspaces)’

Write (nout,*)
! Print generalized eigenvalues

Write (nout,*) ’Selected generalized eigenvalues’

Do i = 1, sdim
If (beta(i)/=0.0_nag_wp) Then

Write (nout,99998) i, ’(’, alphar(i)/beta(i), ’,’, &
alphai(i)/beta(i), ’)’

Else
Write (nout,99997) i

End If
End Do

If (info==(n+2)) Then
Write (nout,99996) ’***Note that rounding errors mean ’, &

’that leading eigenvalues in the generalized’, &
’Schur form no longer satisfy SELCTG = .TRUE.’

Write (nout,*)
End If
Flush (nout)

! Print out the reciprocal condition numbers
Write (nout,*)
Write (nout,99995) &

’Reciprocals of left and right projection norms onto’, &
’the deflating subspaces for the selected eigenvalues’, &
’RCONDE(1) = ’, rconde(1), ’, RCONDE(2) = ’, rconde(2)

Write (nout,*)
Write (nout,99995) &

’Reciprocal condition numbers for the left and right’, &
’deflating subspaces’, ’RCONDV(1) = ’, rcondv(1), &
’, RCONDV(2) = ’, rcondv(2)

Flush (nout)

! Compute the machine precision and sqrt(anorm**2+bnorm**2)
eps = x02ajf()
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abnorm = f06bnf(anorm,bnorm)
tol = eps*abnorm

! Print out the approximate asymptotic error bound on the
! average absolute error of the selected eigenvalues given by
! eps*norm((A, B))/PL, where PL = RCONDE(1)

Write (nout,*)
Write (nout,99994) &

’Approximate asymptotic error bound for selected ’, &
’eigenvalues = ’, tol/rconde(1)

! Print out an approximate asymptotic bound on the maximum
! angular error in the computed deflating subspaces given by
! eps*norm((A, B))/DIF(2), where DIF(2) = RCONDV(2)

Write (nout,99994) &
’Approximate asymptotic error bound for the deflating ’, &
’subspaces = ’, tol/rcondv(2)

End If

Else
Write (nout,99999) ’Failure in DGGESX. INFO =’, info

End If

99999 Format (1X,A,I4,/,1X,A)
99998 Format (1X,I4,5X,A,F7.3,A,F7.3,A)
99997 Format (1X,I4,’Eigenvalue is infinite’)
99996 Format (1X,2A,/,1X,A)
99995 Format (1X,A,/,1X,A,/,1X,2(A,1P,E8.1))
99994 Format (1X,2A,1P,E8.1)

End Program f08xbfe

10.2 Program Data

F08XBF Example Program Data
4 :Value of N
3.9 12.5 -34.5 -0.5
4.3 21.5 -47.5 7.5
4.3 21.5 -43.5 3.5
4.4 26.0 -46.0 6.0 :End of matrix A
1.0 2.0 -3.0 1.0
1.0 3.0 -5.0 4.0
1.0 3.0 -4.0 3.0
1.0 3.0 -4.0 4.0 :End of matrix B

10.3 Program Results

F08XBF Example Program Results

Matrix A
1 2 3 4

1 3.9000 12.5000 -34.5000 -0.5000
2 4.3000 21.5000 -47.5000 7.5000
3 4.3000 21.5000 -43.5000 3.5000
4 4.4000 26.0000 -46.0000 6.0000

Matrix B
1 2 3 4

1 1.0000 2.0000 -3.0000 1.0000
2 1.0000 3.0000 -5.0000 4.0000
3 1.0000 3.0000 -4.0000 3.0000
4 1.0000 3.0000 -4.0000 4.0000

Number of eigenvalues for which SELCTG is true = 2
(dimension of deflating subspaces)

Selected generalized eigenvalues
1 ( 2.000, 0.000)
2 ( 4.000, 0.000)
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Reciprocals of left and right projection norms onto
the deflating subspaces for the selected eigenvalues
RCONDE(1) = 1.9E-01, RCONDE(2) = 1.8E-02

Reciprocal condition numbers for the left and right
deflating subspaces
RCONDV(1) = 5.4E-02, RCONDV(2) = 9.0E-02

Approximate asymptotic error bound for selected eigenvalues = 5.7E-14
Approximate asymptotic error bound for the deflating subspaces = 1.2E-13
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NAG Library Routine Document

F08XCF (DGGES3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08XCF (DGGES3) computes the generalized eigenvalues, the generalized real Schur form S; Tð Þ and,
optionally, the left and/or right generalized Schur vectors for a pair of n by n real nonsymmetric
matrices A;Bð Þ.

2 Specification

SUBROUTINE F08XCF (JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
WORK, LWORK, BWORK, INFO)

&
&

INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHAR(N), ALPHAI(N), BETA(N),

VSL(LDVSL,*), VSR(LDVSR,*), WORK(max(1,LWORK))
&

LOGICAL SELCTG, BWORK(*)
CHARACTER(1) JOBVSL, JOBVSR, SORT
EXTERNAL SELCTG

The routine may be called by its LAPACK name dgges3.

3 Description

The generalized Schur factorization for a pair of real matrices A;Bð Þ is given by

A ¼ QSZT; B ¼ QTZT;

where Q and Z are orthogonal, T is upper triangular and S is upper quasi-triangular with 1 by 1 and 2
by 2 diagonal blocks. The generalized eigenvalues, �, of A;Bð Þ are computed from the diagonals of S
and T and satisfy

Az ¼ �Bz;

where z is the corresponding generalized eigenvector. � is actually returned as the pair �; �ð Þ such that

� ¼ �=�

since �, or even both � and � can be zero. The columns of Q and Z are the left and right generalized
Schur vectors of A;Bð Þ.
Optionally, F08XCF (DGGES3) can order the generalized eigenvalues on the diagonals of S; Tð Þ so that
selected eigenvalues are at the top left. The leading columns of Q and Z then form an orthonormal
basis for the corresponding eigenspaces, the deflating subspaces.

F08XCF (DGGES3) computes T to have non-negative diagonal elements, and the 2 by 2 blocks of S
correspond to complex conjugate pairs of generalized eigenvalues. The generalized Schur factorization,
before reordering, is computed by the QZ algorithm.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: JOBVSL – CHARACTER(1) Input

On entry: if JOBVSL ¼ N , do not compute the left Schur vectors.

If JOBVSL ¼ V , compute the left Schur vectors.

Constraint: JOBVSL ¼ N or V .

2: JOBVSR – CHARACTER(1) Input

On entry: if JOBVSR ¼ N , do not compute the right Schur vectors.

If JOBVSR ¼ V , compute the right Schur vectors.

Constraint: JOBVSR ¼ N or V .

3: SORT – CHARACTER(1) Input

On entry: specifies whether or not to order the eigenvalues on the diagonal of the generalized
Schur form.

SORT ¼ N
Eigenvalues are not ordered.

SORT ¼ S
Eigenvalues are ordered (see SELCTG).

Constraint: SORT ¼ N or S .

4: SELCTG – LOGICAL FUNCTION, supplied by the user. External Procedure

If SORT ¼ S , SELCTG is used to select generalized eigenvalues to be moved to the top left of
the generalized Schur form.

If SORT ¼ N , SELCTG is not referenced by F08XCF (DGGES3), and may be called with the
dummy function F08XAZ.

The specification of SELCTG is:

FUNCTION SELCTG (AR, AI, B)
LOGICAL SELCTG

REAL (KIND=nag_wp) AR, AI, B

1: AR – REAL (KIND=nag_wp) Input
2: AI – REAL (KIND=nag_wp) Input
3: B – REAL (KIND=nag_wp) Input

On e n t r y : a n e i g e n v a l u e ARðjÞ þ
ffiffiffiffiffiffiffi
�1
p

� AIðjÞ
� �

=BðjÞ i s s e l e c t e d i f
SELCTG ARðjÞ;AIðjÞ;BðjÞð Þ ¼ :TRUE:. If either one of a complex conjugate pair is
selected, then both complex generalized eigenvalues are selected.

Note that in the ill-conditioned case, a selected complex generalized eigenvalue may no
longer satisfy SELCTG ARðjÞ;AIðjÞ;BðjÞð Þ ¼ :TRUE: after ordering. INFO ¼ Nþ 2 in
this case.

SELCTG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F08XCF (DGGES3) is called. Arguments denoted as Input must not be
changed by this procedure.

5: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.
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6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the first of the pair of matrices, A.

On exit: A has been overwritten by its generalized Schur form S.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08XCF
(DGGES3) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the second of the pair of matrices, B.

On exit: B has been overwritten by its generalized Schur form T .

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08XCF
(DGGES3) is called.

Constraint: LDB � max 1;Nð Þ.

10: SDIM – INTEGER Output

On exit: if SORT ¼ N , SDIM ¼ 0.

If SORT ¼ S , SDIM ¼ number of eigenvalues (after sorting) for which SELCTG is .TRUE..
(Complex conjugate pairs for which SELCTG is .TRUE. for either eigenvalue count as 2.)

11: ALPHARðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

12: ALPHAIðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

13: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHARðjÞ þ ALPHAIðjÞ � ið Þ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized
eigenvalues. ALPHARðjÞ þ ALPHAIðjÞ � i, and BETAðjÞ, for j ¼ 1; 2; . . . ;N, are the diagonals
of the complex Schur form S; Tð Þ that would result if the 2 by 2 diagonal blocks of the real
Schur form of A;Bð Þ were further reduced to triangular form using 2 by 2 complex unitary
transformations.

If ALPHAIðjÞ is zero, then the jth eigenvalue is real; if positive, then the jth and jþ 1ð Þst
eigenvalues are a complex conjugate pair, with ALPHAIðjþ 1Þ negative.
Note: the quotients ALPHARðjÞ=BETAðjÞ and ALPHAIðjÞ=BETAðjÞ may easily overflow or
underflow, and BETAðjÞ may even be zero. Thus, you should avoid naively computing the ratio
�=�. However, ALPHAR and ALPHAI will always be less than and usually comparable with
Ak k2 in magnitude, and BETA will always be less than and usually comparable with Bk k2.

14: VSLðLDVSL; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VSL must be at least max 1;Nð Þ if JOBVSL ¼ V , and at
least 1 otherwise.

On exit: if JOBVSL ¼ V , VSL will contain the left Schur vectors, Q.
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If JOBVSL ¼ N , VSL is not referenced.

15: LDVSL – INTEGER Input

On entry: the first dimension of the array VSL as declared in the (sub)program from which
F08XCF (DGGES3) is called.

Constraints:

if JOBVSL ¼ V , LDVSL � max 1;Nð Þ;
otherwise LDVSL � 1.

16: VSRðLDVSR; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VSR must be at least max 1;Nð Þ if JOBVSR ¼ V , and
at least 1 otherwise.

On exit: if JOBVSR ¼ V , VSR will contain the right Schur vectors, Z.

If JOBVSR ¼ N , VSR is not referenced.

17: LDVSR – INTEGER Input

On entry: the first dimension of the array VSR as declared in the (sub)program from which
F08XCF (DGGES3) is called.

Constraints:

if JOBVSR ¼ V , LDVSR � max 1;Nð Þ;
otherwise LDVSR � 1.

18: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

19: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08XCF (DGGES3) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the mimimum;
add, say nb� N� 6ð Þ, where nb is the optimal block size.

Constraints:

if N ¼ 0, LWORK � 1;
otherwise LWORK � max 8� N; 6� Nþ 16ð Þ.

20: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least 1 if SORT ¼ N , and at least
max 1;Nð Þ otherwise.
If SORT ¼ N , BWORK is not referenced.

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration failed. No eigenvectors have been calculated but ALPHARðjÞ, ALPHAIðjÞ and
BETAðjÞ should be correct from element valueh i.

INFO ¼ Nþ 1

The QZ iteration failed with an unexpected error, please contact NAG.

INFO ¼ Nþ 2

After reordering, roundoff changed values of some complex eigenvalues so that leading
eigenvalues in the generalized Schur form no longer satisfy SELCTG ¼ :TRUE:. This could also
be caused by underflow due to scaling.

INFO ¼ Nþ 3

The eigenvalues could not be reordered because some eigenvalues were too close to separate (the
problem is very ill-conditioned).

7 Accuracy

The computed generalized Schur factorization satisfies

Aþ E ¼ QSZT; Bþ F ¼ QTZT;

where

E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF
and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08XCF (DGGES3) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08XCF (DGGES3) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The complex analogue of this routine is F08XQF (ZGGES3).
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10 Example

This example finds the generalized Schur factorization of the matrix pair A;Bð Þ, where

A ¼
3:9 12:5 �34:5 �0:5
4:3 21:5 �47:5 7:5
4:3 21:5 �43:5 3:5
4:4 26:0 �46:0 6:0

0B@
1CA and B ¼

1:0 2:0 �3:0 1:0
1:0 3:0 �5:0 4:0
1:0 3:0 �4:0 3:0
1:0 3:0 �4:0 4:0

0B@
1CA;

such that the real positive eigenvalues of A;Bð Þ correspond to the top left diagonal elements of the
generalized Schur form, S; Tð Þ.

10.1 Program Text

! F08XCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f08xcfe_mod

! F08XCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: selctg

! .. Parameters ..
Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6

Contains
Function selctg(ar,ai,b)

! Logical function selctg for use with DGGES3 (F08XCF)
! Returns the value .TRUE. if the eigenvalue is real and positive

! .. Function Return Value ..
Logical :: selctg

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: ai, ar, b

! .. Executable Statements ..
selctg = (ar>0._nag_wp .And. ai==0._nag_wp .And. b/=0._nag_wp)
Return

End Function selctg
End Module f08xcfe_mod
Program f08xcfe

! F08XCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgemm, dgges3, dlange => f06raf, nag_wp, x02ajf, &

x04caf
Use f08xcfe_mod, Only: nb, nin, nout, selctg

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: alph, bet, normd, norme
Integer :: i, ifail, info, lda, ldb, ldc, ldd, &

lde, ldvsl, ldvsr, lwork, n, sdim
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), alphai(:), alphar(:), &
b(:,:), beta(:), c(:,:), d(:,:), &
e(:,:), vsl(:,:), vsr(:,:), work(:)

Real (Kind=nag_wp) :: dummy(1)
Logical, Allocatable :: bwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint

! .. Executable Statements ..
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Write (nout,*) ’F08XCF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldc = n
ldd = n
lde = n
ldvsl = n
ldvsr = n
Allocate (a(lda,n),alphai(n),alphar(n),b(ldb,n),beta(n),vsl(ldvsl,n), &

vsr(ldvsr,n),bwork(n),c(ldc,n),d(ldd,n),e(lde,n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of dgges3 is f08xcf
Call dgges3(’Vectors (left)’,’Vectors (right)’,’Sort’,selctg,n,a,lda,b, &

ldb,sdim,alphar,alphai,beta,vsl,ldvsl,vsr,ldvsr,dummy,lwork,bwork, &
info)

! Make sure that there is enough workspace for block size nb.
lwork = max(8*n+16+n*nb,nint(dummy(1)))
Allocate (work(lwork))

! Read in the matrices A and B
Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Copy A and B into D and E respectively
d(1:n,1:n) = a(1:n,1:n)
e(1:n,1:n) = b(1:n,1:n)

! Print matrices A and B
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Matrix A’,ifail)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04caf(’General’,’ ’,n,n,b,ldb,’Matrix B’,ifail)
Write (nout,*)
Flush (nout)

! Find the generalized Schur form
! The NAG name equivalent of dgges3 is f08xcf

Call dgges3(’Vectors (left)’,’Vectors (right)’,’Sort’,selctg,n,a,lda,b, &
ldb,sdim,alphar,alphai,beta,vsl,ldvsl,vsr,ldvsr,work,lwork,bwork,info)

If (info==0 .Or. info==(n+2)) Then

! Compute A - Q*S*Z^T from the factorization of (A,B) and store in
! matrix D
! The NAG name equivalent of dgemm is f06yaf

alph = 1.0_nag_wp
bet = 0.0_nag_wp
Call dgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,a,lda,bet,c,ldc)
alph = -1.0_nag_wp
bet = 1.0_nag_wp
Call dgemm(’N’,’T’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,d,ldd)

! Compute B - Q*T*Z^T from the factorization of (A,B) and store in
! matrix E

alph = 1.0_nag_wp
bet = 0.0_nag_wp
Call dgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,b,ldb,bet,c,ldc)
alph = -1.0_nag_wp
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bet = 1.0_nag_wp
Call dgemm(’N’,’T’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,e,lde)

! Find norms of matrices D and E and warn if either is too large
! f06raf is the NAG name equivalent of the LAPACK auxiliary dlange

normd = dlange(’O’,ldd,n,d,ldd,work)
norme = dlange(’O’,lde,n,e,lde,work)
If (normd>x02ajf()**0.8_nag_wp .Or. norme>x02ajf()**0.8_nag_wp) Then

Write (nout,*) &
’Norm of A-(Q*S*Z^T) or norm of B-(Q*T*Z^T) is much greater than 0.’

Write (nout,*) ’Schur factorization has failed.’
Else

! Print solution
Write (nout,99999) &

’Number of eigenvalues for which SELCTG is true = ’, sdim, &
’(dimension of deflating subspaces)’

Write (nout,*)
! Print generalized eigenvalues

Write (nout,*) ’Selected generalized eigenvalues’

Do i = 1, sdim
If (beta(i)/=0.0_nag_wp) Then

Write (nout,99997) i, ’(’, alphar(i)/beta(i), ’,’, &
alphai(i)/beta(i), ’)’

Else
Write (nout,99996) i

End If
End Do
Write (nout,*)

If (info==(n+2)) Then
Write (nout,99995) ’***Note that rounding errors mean ’, &

’that leading eigenvalues in the generalized’, &
’Schur form no longer satisfy SELCTG = .TRUE.’

Write (nout,*)
End If

End If

Else
Write (nout,99998) ’Failure in DGGES3. INFO =’, info

End If

99999 Format (1X,A,I4,/,1X,A)
99998 Format (1X,A,I4)
99997 Format (1X,I4,5X,A,F7.3,A,F7.3,A)
99996 Format (1X,I4,’Eigenvalue is infinite’)
99995 Format (1X,2A,/,1X,A)

End Program f08xcfe

10.2 Program Data

F08XCF Example Program Data
4 :Value of N
3.9 12.5 -34.5 -0.5
4.3 21.5 -47.5 7.5
4.3 21.5 -43.5 3.5
4.4 26.0 -46.0 6.0 :End of matrix A
1.0 2.0 -3.0 1.0
1.0 3.0 -5.0 4.0
1.0 3.0 -4.0 3.0
1.0 3.0 -4.0 4.0 :End of matrix B
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10.3 Program Results

F08XCF Example Program Results

Matrix A
1 2 3 4

1 3.9000 12.5000 -34.5000 -0.5000
2 4.3000 21.5000 -47.5000 7.5000
3 4.3000 21.5000 -43.5000 3.5000
4 4.4000 26.0000 -46.0000 6.0000

Matrix B
1 2 3 4

1 1.0000 2.0000 -3.0000 1.0000
2 1.0000 3.0000 -5.0000 4.0000
3 1.0000 3.0000 -4.0000 3.0000
4 1.0000 3.0000 -4.0000 4.0000

Number of eigenvalues for which SELCTG is true = 2
(dimension of deflating subspaces)

Selected generalized eigenvalues
1 ( 2.000, 0.000)
2 ( 4.000, 0.000)
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NAG Library Routine Document

F08XEF (DHGEQZ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08XEF (DHGEQZ) implements the QZ method for finding generalized eigenvalues of the real matrix
pair A;Bð Þ of order n, which is in the generalized upper Hessenberg form.

2 Specification

SUBROUTINE F08XEF (JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,
ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
INFO)

&
&

INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHAR(N), ALPHAI(N), BETA(N),

Q(LDQ,*), Z(LDZ,*), WORK(max(1,LWORK))
&

CHARACTER(1) JOB, COMPQ, COMPZ

The routine may be called by its LAPACK name dhgeqz.

3 Description

F08XEF (DHGEQZ) implements a single-double-shift version of the QZ method for finding the
generalized eigenvalues of the real matrix pair A;Bð Þ which is in the generalized upper Hessenberg
form. If the matrix pair A;Bð Þ is not in the generalized upper Hessenberg form, then the routine
F08WEF (DGGHRD) should be called before invoking F08XEF (DHGEQZ).

This problem is mathematically equivalent to solving the equation

det A� �Bð Þ ¼ 0:

Note that, to avoid underflow, overflow and other arithmetic problems, the generalized eigenvalues �j
are never computed explicitly by this routine but defined as ratios between two computed values, �j and
�j:

�j ¼ �j=�j:
The arguments �j, in general, are finite complex values and �j are finite real non-negative values.

If desired, the matrix pair A;Bð Þ may be reduced to generalized Schur form. That is, the transformed
matrix B is upper triangular and the transformed matrix A is block upper triangular, where the diagonal
blocks are either 1 by 1 or 2 by 2. The 1 by 1 blocks provide generalized eigenvalues which are real and
the 2 by 2 blocks give complex generalized eigenvalues.

The argument JOB specifies two options. If JOB ¼ S then the matrix pair A;Bð Þ is simultaneously
reduced to Schur form by applying one orthogonal transformation (usually called Q) on the left and
another (usually called Z) on the right. That is,

A QTAZ
B QTBZ

The 2 by 2 upper-triangular diagonal blocks of B corresponding to 2 by 2 blocks of A will be reduced
to non-negative diagonal matrices. That is, if Aðjþ 1; jÞ is nonzero, then Bðjþ 1; jÞ ¼ Bðj; jþ 1Þ ¼ 0
and Bðj; jÞ and Bðjþ 1; jþ 1Þ will be non-negative.

If JOB ¼ E , then at each iteration the same transformations are computed but they are only applied to
those parts of A and B which are needed to compute � and �. This option could be used if generalized
eigenvalues are required but not generalized eigenvectors.
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If JOB ¼ S and COMPQ ¼ V or I , and COMPZ ¼ V or I , then the orthogonal transformations used
to reduce the pair A;Bð Þ are accumulated into the input arrays Q and Z. If generalized eigenvectors are
required then JOB must be set to JOB ¼ S and if left (right) generalized eigenvectors are to be
computed then COMPQ (COMPZ) must be set to COMPQ ¼ V or I and not COMPQ 6¼ N .

If COMPQ ¼ I , then eigenvectors are accumulated on the identity matrix and on exit the array Q
contains the left eigenvector matrix Q. However, if COMPQ ¼ V then the transformations are
accumulated on the user-supplied matrix Q0 in array Q on entry and thus on exit Q contains the matrix
product QQ0. A similar convention is used for COMPZ.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J.
Numer. Anal. 10 241–256

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies the operations to be performed on A;Bð Þ.
JOB ¼ E

The matrix pair A;Bð Þ on exit might not be in the generalized Schur form.

JOB ¼ S
The matrix pair A;Bð Þ on exit will be in the generalized Schur form.

Constraint: JOB ¼ E or S .

2: COMPQ – CHARACTER(1) Input

On entry: specifies the operations to be performed on Q:

COMPQ ¼ N
The array Q is unchanged.

COMPQ ¼ V
The left transformation Q is accumulated on the array Q.

COMPQ ¼ I
The array Q is initialized to the identity matrix before the left transformation Q is
accumulated in Q.

Constraint: COMPQ ¼ N , V or I .

3: COMPZ – CHARACTER(1) Input

On entry: specifies the operations to be performed on Z.

COMPZ ¼ N
The array Z is unchanged.

COMPZ ¼ V
The right transformation Z is accumulated on the array Z.
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COMPZ ¼ I
The array Z is initialized to the identity matrix before the right transformation Z is
accumulated in Z.

Constraint: COMPZ ¼ N , V or I .

4: N – INTEGER Input

On entry: n, the order of the matrices A, B, Q and Z.

Constraint: N � 0.

5: ILO – INTEGER Input
6: IHI – INTEGER Input

On entry: the indices ilo and ihi, respectively which define the upper triangular parts of A. The
submatrices A 1 : ilo � 1; 1 : ilo � 1ð Þ and A ihi þ 1 : n; ihi þ 1 : nð Þ are then upper triangular.
These arguments are provided by F08WHF (DGGBAL) if the matrix pair was previously
balanced; otherwise, ILO ¼ 1 and IHI ¼ N.

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

7: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n upper Hessenberg matrix A. The elements below the first subdiagonal must
be set to zero.

On exit: if JOB ¼ S , the matrix pair A;Bð Þ will be simultaneously reduced to generalized Schur
form.

If JOB ¼ E , the 1 by 1 and 2 by 2 diagonal blocks of the matrix pair A;Bð Þ will give
generalized eigenvalues but the remaining elements will be irrelevant.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08XEF
(DHGEQZ) is called.

Constraint: LDA � max 1;Nð Þ.

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n upper triangular matrix B. The elements below the diagonal must be zero.

On exit: if JOB ¼ S , the matrix pair A;Bð Þ will be simultaneously reduced to generalized Schur
form.

If JOB ¼ E , the 1 by 1 and 2 by 2 diagonal blocks of the matrix pair A;Bð Þ will give
generalized eigenvalues but the remaining elements will be irrelevant.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08XEF
(DHGEQZ) is called.

Constraint: LDB � max 1;Nð Þ.

11: ALPHARðNÞ – REAL (KIND=nag_wp) array Output

On exit: the real parts of �j , for j ¼ 1; 2; . . . ; n.
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12: ALPHAIðNÞ – REAL (KIND=nag_wp) array Output

On exit: the imaginary parts of �j , for j ¼ 1; 2; . . . ; n.

13: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: �j , for j ¼ 1; 2; . . . ; n.

14: QðLDQ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if COMPQ ¼ V or I and
at least 1 if COMPQ ¼ N .

On entry: if COMPQ ¼ V , the matrix Q0. The matrix Q0 is usually the matrix Q returned by
F08WEF (DGGHRD).

If COMPQ ¼ N , Q is not referenced.

On exit: if COMPQ ¼ V , Q contains the matrix product QQ0.

If COMPQ ¼ I , Q contains the transformation matrix Q.

15: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08XEF
(DHGEQZ) is called.

Constraints:

if COMPQ ¼ V or I , LDQ � N;
if COMPQ ¼ N , LDQ � 1.

16: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , the matrix Z0. The matrix Z0 is usually the matrix Z returned by
F08WEF (DGGHRD).

If COMPZ ¼ N , Z is not referenced.

On exit: if COMPZ ¼ V , Z contains the matrix product ZZ0.

If COMPZ ¼ I , Z contains the transformation matrix Z.

17: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08XEF
(DHGEQZ) is called.

Constraints:

if COMPZ ¼ V or I , LDZ � N;
if COMPZ ¼ N , LDZ � 1.

18: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

19: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08XEF (DHGEQZ) is called.
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If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum size
of the WORK array, returns this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If 1 � INFO � N, the QZ iteration did not converge and the matrix pair A;Bð Þ is not in the
generalized Schur form at exit. However, if INFO < N, then the computed �i and �i should be
correct for i ¼ INFOþ 1; . . . ;N.

If Nþ 1 � INFO � 2� N, the computation of shifts failed and the matrix pair A;Bð Þ is not in
the generalized Schur form at exit. However, if INFO < 2� N, then the computed �i and �i
should be correct for i ¼ INFO� Nþ 1; . . . ;N.

If INFO > 2� N, then an unexpected Library error has occurred. Please contact NAG with
details of your program.

7 Accuracy

Please consult Section 4.11 of the LAPACK Users' Guide (see Anderson et al. (1999)) and Chapter 6 of
Stewart and Sun (1990), for more information.

8 Parallelism and Performance

F08XEF (DHGEQZ) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F08XEF (DHGEQZ) is the fifth step in the solution of the real generalized eigenvalue problem and is
called after F08WEF (DGGHRD).

The complex analogue of this routine is F08XSF (ZHGEQZ).
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10 Example

This example computes the � and � arguments, which defines the generalized eigenvalues, of the
matrix pair A;Bð Þ given by

A ¼

1:0 1:0 1:0 1:0 1:0
2:0 4:0 8:0 16:0 32:0
3:0 9:0 27:0 81:0 243:0
4:0 16:0 64:0 256:0 1024:0
5:0 25:0 125:0 625:0 3125:0

0BBB@
1CCCA

B ¼

1:0 2:0 3:0 4:0 5:0
1:0 4:0 9:0 16:0 25:0
1:0 8:0 27:0 64:0 125:0
1:0 16:0 81:0 256:0 625:0
1:0 32:0 243:0 1024:0 3125:0

0BBB@
1CCCA:

This requires calls to five routines: F08WHF (DGGBAL) to balance the matrix, F08AEF (DGEQRF) to
perform the QR factorization of B, F08AGF (DORMQR) to apply Q to A, F08WEF (DGGHRD) to
reduce the matrix pair to the generalized Hessenberg form and F08XEF (DHGEQZ) to compute the
eigenvalues using the QZ algorithm.

10.1 Program Text

Program f08xefe

! F08XEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgeqrf, dggbal, dgghd3, dhgeqz, dormqr, nag_wp, &

x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, ihi, ilo, info, irows, &
jwork, lda, ldb, ldq, ldz, lwork, n

Character (1) :: compq, compz, job
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), alphai(:), alphar(:), &
b(:,:), beta(:), lscale(:), q(:,:), &
rscale(:), tau(:), work(:), z(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: nint

! .. Executable Statements ..
Write (nout,*) ’F08XEF Example Program Results’
Flush (nout)

! Skip heading in data file

Read (nin,*)
Read (nin,*) n
ldq = 1
ldz = 1
lda = n
ldb = n
lwork = 6*n
Allocate (alphai(n),alphar(n),beta(n),a(lda,n),lscale(n),q(ldq,ldq), &

rscale(n),b(ldb,n),tau(n),work(lwork),z(ldz,ldz))

! READ matrix A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! READ matrix B from data file
Read (nin,*)(b(i,1:n),i=1,n)
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! Balance matrix pair (A,B)
job = ’B’

! The NAG name equivalent of dggbal is f08whf
Call dggbal(job,n,a,lda,b,ldb,ilo,ihi,lscale,rscale,work,info)

! Matrix A after balancing

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Matrix A after balancing’,ifail)

Write (nout,*)
Flush (nout)

! Matrix B after balancing

ifail = 0
Call x04caf(’General’,’ ’,n,n,b,ldb,’Matrix B after balancing’,ifail)

Write (nout,*)
Flush (nout)

! Reduce B to triangular form using QR
irows = ihi + 1 - ilo

! The NAG name equivalent of dgeqrf is f08aef
Call dgeqrf(irows,irows,b(ilo,ilo),ldb,tau,work,lwork,info)

! Apply the orthogonal transformation to matrix A
! The NAG name equivalent of dormqr is f08agf

Call dormqr(’L’,’T’,irows,irows,irows,b(ilo,ilo),ldb,tau,a(ilo,ilo),lda, &
work,lwork,info)

! Compute the generalized Hessenberg form of (A,B) -> (H,T)
compq = ’N’
compz = ’N’

! The NAG name equivalent of dgghd3 is f08wff
Call dgghd3(compq,compz,irows,1,irows,a(ilo,ilo),lda,b(ilo,ilo),ldb,q, &

ldq,z,ldz,work,lwork,info)

! Matrix A (H) in generalized Hessenberg form.

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Matrix A in Hessenberg form’,ifail)

Write (nout,*)
Flush (nout)

! Matrix B (T) in generalized Hessenberg form.

ifail = 0
Call x04caf(’General’,’ ’,n,n,b,ldb,’Matrix B is triangular’,ifail)

! Routine DHGEQZ
! Workspace query: jwork = -1

jwork = -1
job = ’E’

! The NAG name equivalent of dhgeqz is f08xef
Call dhgeqz(job,compq,compz,n,ilo,ihi,a,lda,b,ldb,alphar,alphai,beta,q, &

ldq,z,ldz,work,jwork,info)

Write (nout,*)
Write (nout,99999) nint(work(1))
Write (nout,99998) lwork
Write (nout,*)
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! Compute the generalized Schur form
! if the workspace lwork is adequate

If (nint(work(1))<=lwork) Then

! The NAG name equivalent of dhgeqz is f08xef
Call dhgeqz(job,compq,compz,n,ilo,ihi,a,lda,b,ldb,alphar,alphai,beta, &

q,ldq,z,ldz,work,lwork,info)

! Print the generalized eigenvalues

Write (nout,99997)

Do i = 1, n
If (beta(i)/=0.0E0_nag_wp) Then

Write (nout,99996) i, ’(’, alphar(i)/beta(i), ’,’, &
alphai(i)/beta(i), ’)’

Else
Write (nout,99994) i

End If
End Do

Else
Write (nout,99995)

End If

99999 Format (1X,’Minimal required LWORK = ’,I6)
99998 Format (1X,’Actual value of LWORK = ’,I6)
99997 Format (1X,’Generalized eigenvalues’)
99996 Format (1X,I4,5X,A,F7.3,A,F7.3,A)
99995 Format (1X,’Insufficient workspace allocated for call to F08XEF/DHGEQZ’)
99994 Format (1X,I4,’Eigenvalue is infinite’)

End Program f08xefe

10.2 Program Data

F08XEF Example Program Data
5 :Value of N

1.00 1.00 1.00 1.00 1.00
2.00 4.00 8.00 16.00 32.00
3.00 9.00 27.00 81.00 243.00
4.00 16.00 64.00 256.00 1024.00
5.00 25.00 125.00 625.00 3125.00 :End of matrix A
1.00 2.00 3.00 4.00 5.00
1.00 4.00 9.00 16.00 25.00
1.00 8.00 27.00 64.00 125.00
1.00 16.00 81.00 256.00 625.00
1.00 32.00 243.00 1024.00 3125.00 :End of matrix B

10.3 Program Results

F08XEF Example Program Results
Matrix A after balancing

1 2 3 4 5
1 1.0000 1.0000 0.1000 0.1000 0.1000
2 2.0000 4.0000 0.8000 1.6000 3.2000
3 0.3000 0.9000 0.2700 0.8100 2.4300
4 0.4000 1.6000 0.6400 2.5600 10.2400
5 0.5000 2.5000 1.2500 6.2500 31.2500

Matrix B after balancing
1 2 3 4 5

1 1.0000 2.0000 0.3000 0.4000 0.5000
2 1.0000 4.0000 0.9000 1.6000 2.5000
3 0.1000 0.8000 0.2700 0.6400 1.2500
4 0.1000 1.6000 0.8100 2.5600 6.2500
5 0.1000 3.2000 2.4300 10.2400 31.2500

Matrix A in Hessenberg form
1 2 3 4 5

F08XEF NAG Library Manual

F08XEF.8 Mark 26



1 -2.1898 -0.3181 2.0547 4.7371 -4.6249
2 -0.8395 -0.0426 1.7132 7.5194 -17.1850
3 0.0000 -0.2846 -1.0101 -7.5927 26.4499
4 0.0000 0.0000 0.0376 1.4070 -3.3643
5 0.0000 0.0000 0.0000 0.3813 -0.9937

Matrix B is triangular
1 2 3 4 5

1 -1.4248 -0.3476 2.1175 5.5813 -3.9269
2 0.0000 -0.0782 0.1189 8.0940 -15.2928
3 0.0000 0.0000 1.0021 -10.9356 26.5971
4 0.0000 0.0000 0.0000 0.5820 -0.0730
5 0.0000 0.0000 0.0000 0.0000 0.5321

Minimal required LWORK = 5
Actual value of LWORK = 30

Generalized eigenvalues
1 ( -2.437, 0.000)
2 ( 0.607, 0.795)
3 ( 0.607, -0.795)
4 ( 1.000, 0.000)
5 ( -0.410, 0.000)
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NAG Library Routine Document

F08XNF (ZGGES)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08XNF (ZGGES) computes the generalized eigenvalues, the generalized Schur form S; Tð Þ and,
optionally, the left and/or right generalized Schur vectors for a pair of n by n complex nonsymmetric
matrices A;Bð Þ. F08XNF (ZGGES) is marked as deprecated by LAPACK; the replacement routine is
F08XQF (ZGGES3) which makes better use of level 3 BLAS.

2 Specification

SUBROUTINE F08XNF (JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
LWORK, RWORK, BWORK, INFO)

&
&

INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
REAL (KIND=nag_wp) RWORK(max(1,8*N))
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHA(N), BETA(N),

VSL(LDVSL,*), VSR(LDVSR,*), WORK(max(1,LWORK))
&

LOGICAL SELCTG, BWORK(*)
CHARACTER(1) JOBVSL, JOBVSR, SORT
EXTERNAL SELCTG

The routine may be called by its LAPACK name zgges.

3 Description

The generalized Schur factorization for a pair of complex matrices A;Bð Þ is given by

A ¼ QSZH; B ¼ QTZH;

where Q and Z are unitary, T and S are upper triangular. The generalized eigenvalues, �, of A;Bð Þ are
computed from the diagonals of T and S and satisfy

Az ¼ �Bz;

where z is the corresponding generalized eigenvector. � is actually returned as the pair �; �ð Þ such that

� ¼ �=�

since �, or even both � and � can be zero. The columns of Q and Z are the left and right generalized
Schur vectors of A;Bð Þ.
Optionally, F08XNF (ZGGES) can order the generalized eigenvalues on the diagonals of S; Tð Þ so that
selected eigenvalues are at the top left. The leading columns of Q and Z then form an orthonormal
basis for the corresponding eigenspaces, the deflating subspaces.

F08XNF (ZGGES) computes T to have real non-negative diagonal entries. The generalized Schur
factorization, before reordering, is computed by the QZ algorithm.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: JOBVSL – CHARACTER(1) Input

On entry: if JOBVSL ¼ N , do not compute the left Schur vectors.

If JOBVSL ¼ V , compute the left Schur vectors.

Constraint: JOBVSL ¼ N or V .

2: JOBVSR – CHARACTER(1) Input

On entry: if JOBVSR ¼ N , do not compute the right Schur vectors.

If JOBVSR ¼ V , compute the right Schur vectors.

Constraint: JOBVSR ¼ N or V .

3: SORT – CHARACTER(1) Input

On entry: specifies whether or not to order the eigenvalues on the diagonal of the generalized
Schur form.

SORT ¼ N
Eigenvalues are not ordered.

SORT ¼ S
Eigenvalues are ordered (see SELCTG).

Constraint: SORT ¼ N or S .

4: SELCTG – LOGICAL FUNCTION, supplied by the user. External Procedure

If SORT ¼ S , SELCTG is used to select generalized eigenvalues to be moved to the top left of
the generalized Schur form.

If SORT ¼ N , SELCTG is not referenced by F08XNF (ZGGES), and may be called with the
dummy function F08XNZ.

The specification of SELCTG is:

FUNCTION SELCTG (A, B)
LOGICAL SELCTG

COMPLEX (KIND=nag_wp) A, B

1: A – COMPLEX (KIND=nag_wp) Input
2: B – COMPLEX (KIND=nag_wp) Input

On entry: an eigenvalue AðjÞ=BðjÞ is selected if SELCTG AðjÞ;BðjÞð Þ is .TRUE..

Note that in the ill-conditioned case, a selected generalized eigenvalue may no longer
satisfy SELCTG AðjÞ;BðjÞð Þ ¼ :TRUE: after ordering. INFO ¼ Nþ 2 in this case.

SELCTG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F08XNF (ZGGES) is called. Arguments denoted as Input must not be
changed by this procedure.

5: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the first of the pair of matrices, A.
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On exit: A has been overwritten by its generalized Schur form S.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08XNF
(ZGGES) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the second of the pair of matrices, B.

On exit: B has been overwritten by its generalized Schur form T .

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08XNF
(ZGGES) is called.

Constraint: LDB � max 1;Nð Þ.

10: SDIM – INTEGER Output

On exit: if SORT ¼ N , SDIM ¼ 0.

If SORT ¼ S , SDIM ¼ number of eigenvalues (after sorting) for which SELCTG is .TRUE..

11: ALPHAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: see the description of BETA.

12: BETAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: ALPHAðjÞ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized eigenvalues.
ALPHAðjÞ, for j ¼ 1; 2; . . . ;N and BETAðjÞ, for j ¼ 1; 2; . . . ;N, are the diagonals of the
complex Schur form A;Bð Þ output by F08XNF (ZGGES). The BETAðjÞ will be non-negative
real.

Note: the quotients ALPHAðjÞ=BETAðjÞ may easily overflow or underflow, and BETAðjÞ may
even be zero. Thus, you should avoid naively computing the ratio �=�. However, ALPHA will
always be less than and usually comparable with Ak k2 in magnitude, and BETA will always be
less than and usually comparable with Bk k2.

13: VSLðLDVSL; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VSL must be at least max 1;Nð Þ if JOBVSL ¼ V , and at
least 1 otherwise.

On exit: if JOBVSL ¼ V , VSL will contain the left Schur vectors, Q.

If JOBVSL ¼ N , VSL is not referenced.

14: LDVSL – INTEGER Input

On entry: the first dimension of the array VSL as declared in the (sub)program from which
F08XNF (ZGGES) is called.

Constraints:

if JOBVSL ¼ V , LDVSL � max 1;Nð Þ;
otherwise LDVSL � 1.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08XNF

Mark 26 F08XNF.3



15: VSRðLDVSR; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VSR must be at least max 1;Nð Þ if JOBVSR ¼ V , and
at least 1 otherwise.

On exit: if JOBVSR ¼ V , VSR will contain the right Schur vectors, Z.

If JOBVSR ¼ N , VSR is not referenced.

16: LDVSR – INTEGER Input

On entry: the first dimension of the array VSR as declared in the (sub)program from which
F08XNF (ZGGES) is called.

Constraints:

if JOBVSR ¼ V , LDVSR � max 1;Nð Þ;
otherwise LDVSR � 1.

17: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

18: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08XNF (ZGGES) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum,
say 2� Nþ nb� N, where nb is the optimal block size for F08NSF (ZGEHRD).

Constraint: LWORK � max 1; 2� Nð Þ.

19: RWORKðmax 1; 8� Nð ÞÞ – REAL (KIND=nag_wp) array Workspace

20: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least 1 if SORT ¼ N , and at least
max 1;Nð Þ otherwise.
If SORT ¼ N , BWORK is not referenced.

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration failed. A;Bð Þ are not in Schur form, but ALPHAðjÞ and BETAðjÞ should be
correct for j ¼ INFOþ 1; . . . ;N.

INFO ¼ Nþ 1

Unexpected error returned from F08XSF (ZHGEQZ).
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INFO ¼ Nþ 2

After reordering, roundoff changed values of some complex eigenvalues so that leading
eigenvalues in the generalized Schur form no longer satisfy SELCTG ¼ :TRUE:. This could also
be caused by underflow due to scaling.

INFO ¼ Nþ 3

The eigenvalues could not be reordered because some eigenvalues were too close to separate (the
problem is very ill-conditioned).

7 Accuracy

The computed generalized Schur factorization satisfies

Aþ E ¼ QSZH; Bþ F ¼ QTZH;

where

E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF
and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08XNF (ZGGES) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08XNF (ZGGES) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08XAF (DGGES).

10 Example

This example finds the generalized Schur factorization of the matrix pair A;Bð Þ, where

A ¼
�21:10� 22:50i 53:50� 50:50i �34:50þ 127:50i 7:50þ 0:50i
�0:46� 7:78i �3:50� 37:50i �15:50þ 58:50i �10:50� 1:50i
4:30� 5:50i 39:70� 17:10i �68:50þ 12:50i �7:50� 3:50i
5:50þ 4:40i 14:40þ 43:30i �32:50� 46:00i �19:00� 32:50i

0B@
1CA

and

B ¼
1:00� 5:00i 1:60þ 1:20i �3:00þ 0:00i 0:00� 1:00i
0:80� 0:60i 3:00� 5:00i �4:00þ 3:00i �2:40� 3:20i
1:00þ 0:00i 2:40þ 1:80i �4:00� 5:00i 0:00� 3:00i
0:00þ 1:00i �1:80þ 2:40i 0:00� 4:00i 4:00� 5:00i

0B@
1CA:

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.
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10.1 Program Text

Program f08xnfe

! F08XNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f08xnz, m01daf, m01edf, nag_wp, x02ajf, x04dbf, &

zgemm, zgges, zlange => f06uaf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nb = 64, nin = 5, nout = 6
Logical, Parameter :: chkfac = .False., prmat = .False.

! .. Local Scalars ..
Complex (Kind=nag_wp) :: alph, bet
Real (Kind=nag_wp) :: normd, norme
Integer :: i, ifail, info, lda, ldb, ldc, ldd, &

lde, ldvsl, ldvsr, lwork, n, sdim
Logical :: factor

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &

c(:,:), d(:,:), e(:,:), vsl(:,:), &
vsr(:,:), work(:)

Complex (Kind=nag_wp) :: wdum(1)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: irank(:)
Logical, Allocatable :: bwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, all, cmplx, max, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08XNF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldc = n
ldd = n
lde = n
ldvsl = n
ldvsr = n
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),c(ldc,n),d(ldd,n),e(lde,n), &

vsl(ldvsl,n),vsr(ldvsr,n),rwork(8*n),bwork(n),irank(n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zgges is f08xnf
Call zgges(’Vectors (left)’,’Vectors (right)’,’No sort’,f08xnz,n,a,lda, &

b,ldb,sdim,alpha,beta,vsl,ldvsl,vsr,ldvsr,wdum,lwork,rwork,bwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(wdum(1))))
Allocate (work(lwork))

! Read in the matrices A and B
Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Copy A and B into D and E respectively
d(1:n,1:n) = a(1:n,1:n)
e(1:n,1:n) = b(1:n,1:n)

If (prmat) Then
! Print matrices A and B
! ifail: behaviour on error exit
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! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F8.4’,’Matrix A’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,n,n,b,ldb,’Bracketed’,’F8.4’,’Matrix B’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
Write (nout,*)
Flush (nout)

End If

factor = .True.
! Find the generalized Schur form
! The NAG name equivalent of zgges is f08xnf

Call zgges(’Vectors (left)’,’Vectors (right)’,’No sort’,f08xnz,n,a,lda, &
b,ldb,sdim,alpha,beta,vsl,ldvsl,vsr,ldvsr,work,lwork,rwork,bwork,info)

If (info>0) Then
Write (nout,99999) ’Failure in ZGGES. INFO =’, info
factor = .False.

Else If (chkfac) Then

! Compute A - Q*S*Z^H from the factorization of (A,B) and store in
! matrix D
! The NAG name equivalent of zgemm is f06zaf

alph = cmplx(1,kind=nag_wp)
bet = cmplx(0,kind=nag_wp)
Call zgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,a,lda,bet,c,ldc)
alph = cmplx(-1,kind=nag_wp)
bet = cmplx(1,kind=nag_wp)
Call zgemm(’N’,’C’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,d,ldd)

! Compute B - Q*T*Z^H from the factorization of (A,B) and store in
! matrix E

alph = cmplx(1,kind=nag_wp)
bet = cmplx(0,kind=nag_wp)
Call zgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,b,ldb,bet,c,ldc)
alph = cmplx(-1,kind=nag_wp)
bet = cmplx(1,kind=nag_wp)
Call zgemm(’N’,’C’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,e,lde)

! Find norms of matrices D and E and warn if either is too large
! f06uaf is the NAG name equivalent of the LAPACK auxiliary zlange

normd = zlange(’O’,ldd,n,d,ldd,rwork)
norme = zlange(’O’,lde,n,e,lde,rwork)
If (normd>x02ajf()**0.75_nag_wp) Then

Write (nout,*) ’Norm of A-(Q*S*Z^H) is much greater than 0.’
factor = .False.

End If
If (norme>x02ajf()**0.75_nag_wp) Then

Write (nout,*) ’Norm of B-(Q*T*Z^H) is much greater than 0.’
factor = .False.

End If
End If
If (factor) Then

! Sort and print generalized eigenvalues if none are infinite
If (all(real(beta(1:n))>0.0_nag_wp)) Then

work(1:n) = alpha(1:n)/beta(1:n)
rwork(1:n) = abs(work(1:n))

! Rank eigenvalues
ifail = 0
Call m01daf(rwork,1,n,’Descending’,irank,ifail)

! Sort eigenvalues in work(1:n)
Call m01edf(work,1,n,irank,ifail)
Write (nout,*) ’Generalized Eigenvalues’
Do i = 1, n
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Write (nout,99998) i, work(i)
End Do

End If
Else

Write (nout,*) ’Schur factorization has failed.’
End If

99999 Format (1X,A,I4)
99998 Format (1X,I2,3X,’(’,F6.2,’,’,F6.2,’)’)

End Program f08xnfe

10.2 Program Data

F08XNF Example Program Data
4 : Value of N
(-21.10,-22.50) ( 53.50,-50.50) (-34.50,127.50) ( 7.50, 0.50)
( -0.46, -7.78) ( -3.50,-37.50) (-15.50, 58.50) (-10.50, -1.50)
( 4.30, -5.50) ( 39.70,-17.10) (-68.50, 12.50) ( -7.50, -3.50)
( 5.50, 4.40) ( 14.40, 43.30) (-32.50,-46.00) (-19.00,-32.50) : End of A
( 1.00, -5.00) ( 1.60, 1.20) ( -3.00, 0.00) ( 0.00, -1.00)
( 0.80, -0.60) ( 3.00, -5.00) ( -4.00, 3.00) ( -2.40, -3.20)
( 1.00, 0.00) ( 2.40, 1.80) ( -4.00, -5.00) ( 0.00, -3.00)
( 0.00, 1.00) ( -1.80, 2.40) ( 0.00, -4.00) ( 4.00, -5.00) : End of B

10.3 Program Results

F08XNF Example Program Results

Generalized Eigenvalues
1 ( 3.00, -9.00)
2 ( 4.00, -5.00)
3 ( 2.00, -5.00)
4 ( 3.00, -1.00)
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NAG Library Routine Document

F08XPF (ZGGESX)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08XPF (ZGGESX) computes the generalized eigenvalues, the generalized Schur form S; Tð Þ and,
optionally, the left and/or right generalized Schur vectors for a pair of n by n complex nonsymmetric
matrices A;Bð Þ.
Estimates of condition numbers for selected generalized eigenvalue clusters and Schur vectors are also
computed.

2 Specification

SUBROUTINE F08XPF (JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA, B,
LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR,
RCONDE, RCONDV, WORK, LWORK, RWORK, IWORK, LIWORK,
BWORK, INFO)

&
&
&

INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) RCONDE(2), RCONDV(2), RWORK(max(1,8*N))
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHA(N), BETA(N),

VSL(LDVSL,*), VSR(LDVSR,*), WORK(max(1,LWORK))
&

LOGICAL SELCTG, BWORK(*)
CHARACTER(1) JOBVSL, JOBVSR, SORT, SENSE
EXTERNAL SELCTG

The routine may be called by its LAPACK name zggesx.

3 Description

The generalized Schur factorization for a pair of complex matrices A;Bð Þ is given by

A ¼ QSZH; B ¼ QTZH;

where Q and Z are unitary, T and S are upper triangular. The generalized eigenvalues, �, of A;Bð Þ are
computed from the diagonals of T and S and satisfy

Az ¼ �Bz;

where z is the corresponding generalized eigenvector. � is actually returned as the pair �; �ð Þ such that

� ¼ �=�

since �, or even both � and � can be zero. The columns of Q and Z are the left and right generalized
Schur vectors of A;Bð Þ.
Optionally, F08XPF (ZGGESX) can order the generalized eigenvalues on the diagonals of S; Tð Þ so that
selected eigenvalues are at the top left. The leading columns of Q and Z then form an orthonormal
basis for the corresponding eigenspaces, the deflating subspaces.

F08XPF (ZGGESX) computes T to have real non-negative diagonal entries. The generalized Schur
factorization, before reordering, is computed by the QZ algorithm.

The reciprocals of the condition estimates, the reciprocal values of the left and right projection norms,
are returned in RCONDEð1Þ and RCONDEð2Þ respectively, for the selected generalized eigenvalues,
together with reciprocal condition estimates for the corresponding left and right deflating subspaces, in
RCONDVð1Þ and RCONDVð2Þ. See Section 4.11 of Anderson et al. (1999) for further information.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBVSL – CHARACTER(1) Input

On entry: if JOBVSL ¼ N , do not compute the left Schur vectors.

If JOBVSL ¼ V , compute the left Schur vectors.

Constraint: JOBVSL ¼ N or V .

2: JOBVSR – CHARACTER(1) Input

On entry: if JOBVSR ¼ N , do not compute the right Schur vectors.

If JOBVSR ¼ V , compute the right Schur vectors.

Constraint: JOBVSR ¼ N or V .

3: SORT – CHARACTER(1) Input

On entry: specifies whether or not to order the eigenvalues on the diagonal of the generalized
Schur form.

SORT ¼ N
Eigenvalues are not ordered.

SORT ¼ S
Eigenvalues are ordered (see SELCTG).

Constraint: SORT ¼ N or S .

4: SELCTG – LOGICAL FUNCTION, supplied by the user. External Procedure

If SORT ¼ S , SELCTG is used to select generalized eigenvalues to be moved to the top left of
the generalized Schur form.

If SORT ¼ N , SELCTG is not referenced by F08XPF (ZGGESX), and may be called with the
dummy function F08XNZ.

The specification of SELCTG is:

FUNCTION SELCTG (A, B)
LOGICAL SELCTG

COMPLEX (KIND=nag_wp) A, B

1: A – COMPLEX (KIND=nag_wp) Input
2: B – COMPLEX (KIND=nag_wp) Input

On entry: an eigenvalue AðjÞ=BðjÞ is selected if SELCTG AðjÞ;BðjÞð Þ is .TRUE..

Note that in the ill-conditioned case, a selected generalized eigenvalue may no longer
satisfy SELCTG AðjÞ;BðjÞð Þ ¼ :TRUE: after ordering. INFO ¼ Nþ 2 in this case.

SELCTG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F08XPF (ZGGESX) is called. Arguments denoted as Input must not be
changed by this procedure.
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5: SENSE – CHARACTER(1) Input

On entry: determines which reciprocal condition numbers are computed.

SENSE ¼ N
None are computed.

SENSE ¼ E
Computed for average of selected eigenvalues only.

SENSE ¼ V
Computed for selected deflating subspaces only.

SENSE ¼ B
Computed for both.

If SENSE ¼ E , V or B , SORT ¼ S .

Constraint: SENSE ¼ N , E , V or B .

6: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the first of the pair of matrices, A.

On exit: A has been overwritten by its generalized Schur form S.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08XPF
(ZGGESX) is called.

Constraint: LDA � max 1;Nð Þ.

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the second of the pair of matrices, B.

On exit: B has been overwritten by its generalized Schur form T .

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08XPF
(ZGGESX) is called.

Constraint: LDB � max 1;Nð Þ.

11: SDIM – INTEGER Output

On exit: if SORT ¼ N , SDIM ¼ 0.

If SORT ¼ S , SDIM ¼ number of eigenvalues (after sorting) for which SELCTG is .TRUE..

12: ALPHAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: see the description of BETA.
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13: BETAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: ALPHAðjÞ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized eigenvalues.
ALPHAðjÞ and BETAðjÞ; j ¼ 1; 2; . . . ;N are the diagonals of the complex Schur form S; Tð Þ.
BETAðjÞ will be non-negative real.

Note: the quotients ALPHAðjÞ=BETAðjÞ may easily overflow or underflow, and BETAðjÞ may
even be zero. Thus, you should avoid naively computing the ratio �=�. However, ALPHA will
always be less than and usually comparable with Ak k in magnitude, and BETA will always be
less than and usually comparable with Bk k.

14: VSLðLDVSL; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VSL must be at least max 1;Nð Þ if JOBVSL ¼ V , and at
least 1 otherwise.

On exit: if JOBVSL ¼ V , VSL will contain the left Schur vectors, Q.

If JOBVSL ¼ N , VSL is not referenced.

15: LDVSL – INTEGER Input

On entry: the first dimension of the array VSL as declared in the (sub)program from which
F08XPF (ZGGESX) is called.

Constraints:

if JOBVSL ¼ V , LDVSL � max 1;Nð Þ;
otherwise LDVSL � 1.

16: VSRðLDVSR; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VSR must be at least max 1;Nð Þ if JOBVSR ¼ V , and
at least 1 otherwise.

On exit: if JOBVSR ¼ V , VSR will contain the right Schur vectors, Z.

If JOBVSR ¼ N , VSR is not referenced.

17: LDVSR – INTEGER Input

On entry: the first dimension of the array VSR as declared in the (sub)program from which
F08XPF (ZGGESX) is called.

Constraints:

if JOBVSR ¼ V , LDVSR � max 1;Nð Þ;
otherwise LDVSR � 1.

18: RCONDEð2Þ – REAL (KIND=nag_wp) array Output

On exit: if SENSE ¼ E or B , RCONDEð1Þ and RCONDEð2Þ contain the reciprocal condition
numbers for the average of the selected eigenvalues.

If SENSE ¼ N or V , RCONDE is not referenced.

19: RCONDVð2Þ – REAL (KIND=nag_wp) array Output

On exit: if SENSE ¼ V or B , RCONDVð1Þ and RCONDVð2Þ contain the reciprocal condition
numbers for the selected deflating subspaces.

if SENSE ¼ N or E , RCONDV is not referenced.

20: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains a bound on the value of LWORK
required for optimal performance.
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21: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08XPF (ZGGESX) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the bound on the
optimal size of the WORK array and the minimum size of the IWORK array, returns these values
as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or
LIWORK is issued.

Constraints:

if N ¼ 0, LWORK � 1;
if SENSE ¼ E , V or B , LWORK � max 1; 2� N; 2� SDIM� N� SDIMð Þð Þ;
otherwise LWORK � max 1; 2� Nð Þ.

Note: 2� SDIM� N� SDIMð Þ � N� N=2. Note also that an error is only returned if
LWORK < max 1; 2� Nð Þ, but if SENSE ¼ E , V or B this may not be large enough. Consider
increasing LWORK by nb, where nb is the optimal block size.

22: RWORKðmax 1; 8� Nð ÞÞ – REAL (KIND=nag_wp) array Workspace

Real workspace.

23: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum LIWORK.

24: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08XPF (ZGGESX) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the bound on the
optimal size of the WORK array and the minimum size of the IWORK array, returns these values
as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or
LIWORK is issued.

Constraints:

if SENSE ¼ N or N ¼ 0, LIWORK � 1;
otherwise LIWORK � Nþ 2.

25: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least 1 if SORT ¼ N , and at least
max 1;Nð Þ otherwise.
If SORT ¼ N , BWORK is not referenced.

26: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration failed. A;Bð Þ are not in Schur form, but ALPHAðjÞ and BETAðjÞ should be
correct for j ¼ INFOþ 1; . . . ;N.
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INFO ¼ Nþ 1

Unexpected error returned from F08XSF (ZHGEQZ).

INFO ¼ Nþ 2

After reordering, roundoff changed values of some complex eigenvalues so that leading
eigenvalues in the generalized Schur form no longer satisfy SELCTG ¼ :TRUE:. This could also
be caused by underflow due to scaling.

INFO ¼ Nþ 3

The eigenvalues could not be reordered because some eigenvalues were too close to separate (the
problem is very ill-conditioned).

7 Accuracy

The computed generalized Schur factorization satisfies

Aþ E ¼ QSZT; Bþ F ¼ QTZT;

where

E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF
and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08XPF (ZGGESX) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08XPF (ZGGESX) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08XBF (DGGESX).

10 Example

This example finds the generalized Schur factorization of the matrix pair A;Bð Þ, where

A ¼
�21:10� 22:50i 53:50� 50:50i �34:50þ 127:50i 7:50þ 0:50i
�0:46� 7:78i �3:50� 37:50i �15:50þ 58:50i �10:50� 1:50i
4:30� 5:50i 39:70� 17:10i �68:50þ 12:50i �7:50� 3:50i
5:50þ 4:40i 14:40þ 43:30i �32:50� 46:00i �19:00� 32:50i

0B@
1CA

and

B ¼
1:00� 5:00i 1:60þ 1:20i �3:00þ 0:00i 0:00� 1:00i
0:80� 0:60i 3:00� 5:00i �4:00þ 3:00i �2:40� 3:20i
1:00þ 0:00i 2:40þ 1:80i �4:00� 5:00i 0:00� 3:00i
0:00þ 1:00i �1:80þ 2:40i 0:00� 4:00i 4:00� 5:00i

0B@
1CA;

such that the eigenvalues of A;Bð Þ for which �j j < 6 correspond to the top left diagonal elements of the
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generalized Schur form, S; Tð Þ. Estimates of the condition numbers for the selected eigenvalue cluster
and corresponding deflating subspaces are also returned.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

! F08XPF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f08xpfe_mod

! F08XPF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: selctg

! .. Parameters ..
Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6
Logical, Parameter, Public :: chkfac = .False., prcond = .False., &

prmat = .False.
Contains

Function selctg(a,b)

! Logical function selctg for use with ZGGESX (F08XPF)
! Returns the value .TRUE. if the absolute value of the eigenvalue
! a/b < 6.0

! .. Function Return Value ..
Logical :: selctg

! .. Scalar Arguments ..
Complex (Kind=nag_wp), Intent (In) :: a, b

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
selctg = (abs(a)<6.0_nag_wp*abs(b))
Return

End Function selctg
End Module f08xpfe_mod
Program f08xpfe

! F08XPF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f06bnf, m01daf, m01edf, nag_wp, x02ajf, x04dbf, &

zgemm, zggesx, zlange => f06uaf
Use f08xpfe_mod, Only: chkfac, nb, nin, nout, prcond, prmat, selctg

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Complex (Kind=nag_wp) :: alph, bet
Real (Kind=nag_wp) :: abnorm, anorm, bnorm, eps, normd, &

norme, tol
Integer :: i, ifail, info, lda, ldb, ldc, ldd, &

lde, ldvsl, ldvsr, liwork, lwork, n, &
sdim

Logical :: factor
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &
c(:,:), d(:,:), e(:,:), vsl(:,:), &
vsr(:,:), work(:)

Complex (Kind=nag_wp) :: dummy(1)
Real (Kind=nag_wp) :: rconde(2), rcondv(2)
Real (Kind=nag_wp), Allocatable :: rwork(:)
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Integer :: idum(1)
Integer, Allocatable :: iwork(:)
Logical, Allocatable :: bwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cmplx, max, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08XPF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldc = n
ldd = n
lde = n
ldvsl = n
ldvsr = n
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),c(ldc,n),d(ldd,n),e(lde,n), &

vsl(ldvsl,n),vsr(ldvsr,n),rwork(8*n),bwork(n))

! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1

! The NAG name equivalent of zggesx is f08xpf
Call zggesx(’Vectors (left)’,’Vectors (right)’,’Sort’,selctg, &

’Both reciprocal condition numbers’,n,a,lda,b,ldb,sdim,alpha,beta,vsl, &
ldvsl,vsr,ldvsr,rconde,rcondv,dummy,lwork,rwork,idum,liwork,bwork, &
info)

! Make sure that there is enough workspace for block size nb.
lwork = max(n*nb+n*n/2,nint(real(dummy(1))))
liwork = max(n+2,idum(1))
Allocate (work(lwork),iwork(liwork))

! Read in the matrices A and B
Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

If (chkfac) Then
! Copy A and B into D and E respectively

d(1:n,1:n) = a(1:n,1:n)
e(1:n,1:n) = b(1:n,1:n)

End If

! Find the Frobenius norms of A and B
! The NAG name equivalent of the LAPACK auxiliary zlange is f06uaf

anorm = zlange(’Frobenius’,n,n,a,lda,rwork)
bnorm = zlange(’Frobenius’,n,n,b,ldb,rwork)

If (prmat) Then
! Print matrices A and B
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F8.4’,’Matrix A’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,n,n,b,ldb,’Bracketed’,’F8.4’,’Matrix B’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
Write (nout,*)
Flush (nout)

End If

factor = .True.
! Find the generalized Schur form
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! The NAG name equivalent of zggesx is f08xpf
Call zggesx(’Vectors (left)’,’Vectors (right)’,’Sort’,selctg, &

’Both reciprocal condition numbers’,n,a,lda,b,ldb,sdim,alpha,beta,vsl, &
ldvsl,vsr,ldvsr,rconde,rcondv,work,lwork,rwork,iwork,liwork,bwork, &
info)

If (info/=0 .And. info/=(n+2)) Then
Write (nout,99999) ’Failure in ZGGESX. INFO =’, info
factor = .False.

Else If (chkfac) Then
! Compute A - Q*S*Z^H from the factorization of (A,B) and store in
! matrix D
! The NAG name equivalent of zgemm is f06zaf

alph = cmplx(1,kind=nag_wp)
bet = cmplx(0,kind=nag_wp)
Call zgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,a,lda,bet,c,ldc)
alph = cmplx(-1,kind=nag_wp)
bet = cmplx(1,kind=nag_wp)
Call zgemm(’N’,’C’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,d,ldd)

! Compute B - Q*T*Z^H from the factorization of (A,B) and store in
! matrix E

alph = cmplx(1,kind=nag_wp)
bet = cmplx(0,kind=nag_wp)
Call zgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,b,ldb,bet,c,ldc)
alph = cmplx(-1,kind=nag_wp)
bet = cmplx(1,kind=nag_wp)
Call zgemm(’N’,’C’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,e,lde)

! Find norms of matrices D and E and warn if either is too large
normd = zlange(’O’,ldd,n,d,ldd,rwork)
If (normd>x02ajf()**0.75_nag_wp) Then

Write (nout,*) ’Norm of A-(Q*S*Z^T) is much greater than 0.’
factor = .False.
Write (nout,*) ’Schur factorization has failed.’

End If
norme = zlange(’O’,lde,n,e,lde,rwork)
If (norme>x02ajf()**0.75_nag_wp) Then

Write (nout,*) ’Norm of B-(Q*T*Z^T) is much greater than 0.’
factor = .False.

End If
End If

If (factor) Then
! Print eigenvalue details

Write (nout,99999) ’Number of eigenvalues for which SELCTG is true = ’ &
, sdim, ’(dimension of deflating subspaces)’

Write (nout,*)
! Print selected (finite) generalized eigenvalues

Write (nout,*) ’Selected generalized eigenvalues’

! Store absolute values of eigenvalues for ranking
work(1:n) = alpha(1:n)/beta(1:n)
rwork(1:n) = abs(work(1:n))

! Rank eigenvalues
ifail = 0
Call m01daf(rwork,1,sdim,’Descending’,iwork,ifail)

! Sort eigenvalues in work(1:n)
Call m01edf(work,1,sdim,iwork,ifail)
Do i = 1, sdim

Write (nout,99998) i, work(i)
End Do

If (info==(n+2)) Then
Write (nout,99997) ’*** Note that rounding errors mean ’, &

’that leading eigenvalues in the’, &
’generalized Schur form no longer satisfy SELCTG = .TRUE.’

Write (nout,*)
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End If
Flush (nout)

If (prcond) Then
! Compute the machine precision and sqrt(anorm**2+bnorm**2)

eps = x02ajf()
abnorm = f06bnf(anorm,bnorm)
tol = eps*abnorm

! Print out the reciprocal condition numbers and error bound for
! selected eigenvalues

Write (nout,*)
Write (nout,99996) &

’Reciprocal condition numbers for the average of the’, &
’selected eigenvalues and their asymptotic error bound’, &
’rcond-left = ’, rconde(1), ’, rcond-right = ’, rconde(2), &
’, error = ’, tol/rconde(1)

Write (nout,*)
Write (nout,99996) &

’Reciprocal condition numbers for the deflating subspaces’, &
’and their approximate asymptotic error bound’, ’rcond-left = ’, &
rcondv(1), ’, rcond-right = ’, rcondv(2), ’, error = ’, &
tol/rcondv(2)

End If

Else
Write (nout,*) ’Schur factorization has failed.’

End If

99999 Format (1X,A,I4,/,1X,A)
99998 Format (1X,I2,1X,’(’,F6.2,’,’,F6.2,’)’)
99997 Format (1X,2A,/,1X,A)
99996 Format (1X,A,/,1X,A,/,1X,3(A,1P,E8.1))

End Program f08xpfe

10.2 Program Data

F08XPF Example Program Data
4 : Value of N
(-21.10,-22.50) ( 53.50,-50.50) (-34.50,127.50) ( 7.50, 0.50)
( -0.46, -7.78) ( -3.50,-37.50) (-15.50, 58.50) (-10.50, -1.50)
( 4.30, -5.50) ( 39.70,-17.10) (-68.50, 12.50) ( -7.50, -3.50)
( 5.50, 4.40) ( 14.40, 43.30) (-32.50,-46.00) (-19.00,-32.50) : End of A
( 1.00, -5.00) ( 1.60, 1.20) ( -3.00, 0.00) ( 0.00, -1.00)
( 0.80, -0.60) ( 3.00, -5.00) ( -4.00, 3.00) ( -2.40, -3.20)
( 1.00, 0.00) ( 2.40, 1.80) ( -4.00, -5.00) ( 0.00, -3.00)
( 0.00, 1.00) ( -1.80, 2.40) ( 0.00, -4.00) ( 4.00, -5.00) : End of B

10.3 Program Results

F08XPF Example Program Results

Number of eigenvalues for which SELCTG is true = 2
(dimension of deflating subspaces)

Selected generalized eigenvalues
1 ( 2.00, -5.00)
2 ( 3.00, -1.00)
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NAG Library Routine Document

F08XQF (ZGGES3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08XQF (ZGGES3) computes the generalized eigenvalues, the generalized Schur form S; Tð Þ and,
optionally, the left and/or right generalized Schur vectors for a pair of n by n complex nonsymmetric
matrices A;Bð Þ.

2 Specification

SUBROUTINE F08XQF (JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
LWORK, RWORK, BWORK, INFO)

&
&

INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
REAL (KIND=nag_wp) RWORK(max(1,8*N))
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHA(N), BETA(N),

VSL(LDVSL,*), VSR(LDVSR,*), WORK(max(1,LWORK))
&

LOGICAL SELCTG, BWORK(*)
CHARACTER(1) JOBVSL, JOBVSR, SORT
EXTERNAL SELCTG

The routine may be called by its LAPACK name zgges3.

3 Description

The generalized Schur factorization for a pair of complex matrices A;Bð Þ is given by

A ¼ QSZH; B ¼ QTZH;

where Q and Z are unitary, T and S are upper triangular. The generalized eigenvalues, �, of A;Bð Þ are
computed from the diagonals of T and S and satisfy

Az ¼ �Bz;

where z is the corresponding generalized eigenvector. � is actually returned as the pair �; �ð Þ such that

� ¼ �=�

since �, or even both � and � can be zero. The columns of Q and Z are the left and right generalized
Schur vectors of A;Bð Þ.
Optionally, F08XQF (ZGGES3) can order the generalized eigenvalues on the diagonals of S; Tð Þ so that
selected eigenvalues are at the top left. The leading columns of Q and Z then form an orthonormal
basis for the corresponding eigenspaces, the deflating subspaces.

F08XQF (ZGGES3) computes T to have real non-negative diagonal entries. The generalized Schur
factorization, before reordering, is computed by the QZ algorithm.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore
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5 Arguments

1: JOBVSL – CHARACTER(1) Input

On entry: if JOBVSL ¼ N , do not compute the left Schur vectors.

If JOBVSL ¼ V , compute the left Schur vectors.

Constraint: JOBVSL ¼ N or V .

2: JOBVSR – CHARACTER(1) Input

On entry: if JOBVSR ¼ N , do not compute the right Schur vectors.

If JOBVSR ¼ V , compute the right Schur vectors.

Constraint: JOBVSR ¼ N or V .

3: SORT – CHARACTER(1) Input

On entry: specifies whether or not to order the eigenvalues on the diagonal of the generalized
Schur form.

SORT ¼ N
Eigenvalues are not ordered.

SORT ¼ S
Eigenvalues are ordered (see SELCTG).

Constraint: SORT ¼ N or S .

4: SELCTG – LOGICAL FUNCTION, supplied by the user. External Procedure

If SORT ¼ S , SELCTG is used to select generalized eigenvalues to be moved to the top left of
the generalized Schur form.

If SORT ¼ N , SELCTG is not referenced by F08XQF (ZGGES3), and may be called with the
dummy function F08XNZ.

The specification of SELCTG is:

FUNCTION SELCTG (A, B)
LOGICAL SELCTG

COMPLEX (KIND=nag_wp) A, B

1: A – COMPLEX (KIND=nag_wp) Input
2: B – COMPLEX (KIND=nag_wp) Input

On entry: an eigenvalue AðjÞ=BðjÞ is selected if SELCTG AðjÞ;BðjÞð Þ is .TRUE..

Note that in the ill-conditioned case, a selected generalized eigenvalue may no longer
satisfy SELCTG AðjÞ;BðjÞð Þ ¼ :TRUE: after ordering. INFO ¼ Nþ 2 in this case.

SELCTG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F08XQF (ZGGES3) is called. Arguments denoted as Input must not be
changed by this procedure.

5: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the first of the pair of matrices, A.
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On exit: A has been overwritten by its generalized Schur form S.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08XQF
(ZGGES3) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the second of the pair of matrices, B.

On exit: B has been overwritten by its generalized Schur form T .

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08XQF
(ZGGES3) is called.

Constraint: LDB � max 1;Nð Þ.

10: SDIM – INTEGER Output

On exit: if SORT ¼ N , SDIM ¼ 0.

If SORT ¼ S , SDIM ¼ number of eigenvalues (after sorting) for which SELCTG is .TRUE..

11: ALPHAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: see the description of BETA.

12: BETAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: ALPHAðjÞ=BETAðjÞ, for j ¼ 1; 2; . . . ;N, will be the generalized eigenvalues.
ALPHAðjÞ, for j ¼ 1; 2; . . . ;N and BETAðjÞ, for j ¼ 1; 2; . . . ;N, are the diagonals of the
complex Schur form A;Bð Þ output by F08XQF (ZGGES3). The BETAðjÞ will be non-negative
real.

Note: the quotients ALPHAðjÞ=BETAðjÞ may easily overflow or underflow, and BETAðjÞ may
even be zero. Thus, you should avoid naively computing the ratio �=�. However, ALPHA will
always be less than and usually comparable with Ak k2 in magnitude, and BETA will always be
less than and usually comparable with Bk k2.

13: VSLðLDVSL; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VSL must be at least max 1;Nð Þ if JOBVSL ¼ V , and at
least 1 otherwise.

On exit: if JOBVSL ¼ V , VSL will contain the left Schur vectors, Q.

If JOBVSL ¼ N , VSL is not referenced.

14: LDVSL – INTEGER Input

On entry: the first dimension of the array VSL as declared in the (sub)program from which
F08XQF (ZGGES3) is called.

Constraints:

if JOBVSL ¼ V , LDVSL � max 1;Nð Þ;
otherwise LDVSL � 1.
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15: VSRðLDVSR; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array VSR must be at least max 1;Nð Þ if JOBVSR ¼ V , and
at least 1 otherwise.

On exit: if JOBVSR ¼ V , VSR will contain the right Schur vectors, Z.

If JOBVSR ¼ N , VSR is not referenced.

16: LDVSR – INTEGER Input

On entry: the first dimension of the array VSR as declared in the (sub)program from which
F08XQF (ZGGES3) is called.

Constraints:

if JOBVSR ¼ V , LDVSR � max 1;Nð Þ;
otherwise LDVSR � 1.

17: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

18: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08XQF (ZGGES3) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the minimum,
say 2� Nþ nb� N� 6ð Þ, where nb is the optimal block size for F08WTF (ZGGHD3).

Constraint: LWORK � max 1; 2� Nð Þ.

19: RWORKðmax 1; 8� Nð ÞÞ – REAL (KIND=nag_wp) array Workspace

20: BWORKð�Þ – LOGICAL array Workspace

Note: the dimension of the array BWORK must be at least 1 if SORT ¼ N , and at least
max 1;Nð Þ otherwise.
If SORT ¼ N , BWORK is not referenced.

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1 to N

The QZ iteration did not converge and the matrix pair A;Bð Þ is not in the generalized Schur
form. The computed �i and �i should be correct for i ¼ valueh i; . . . ; valueh i.

INFO ¼ Nþ 1

The QZ iteration failed with an unexpected error, please contact NAG.
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INFO ¼ Nþ 2

After reordering, roundoff changed values of some complex eigenvalues so that leading
eigenvalues in the generalized Schur form no longer satisfy SELCTG ¼ :TRUE:. This could also
be caused by underflow due to scaling.

INFO ¼ Nþ 3

The eigenvalues could not be reordered because some eigenvalues were too close to separate (the
problem is very ill-conditioned).

7 Accuracy

The computed generalized Schur factorization satisfies

Aþ E ¼ QSZH; Bþ F ¼ QTZH;

where

E;Fð Þk kF ¼ O �ð Þ A;Bð Þk kF
and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08XQF (ZGGES3) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08XQF (ZGGES3) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.

The real analogue of this routine is F08XCF (DGGES3).

10 Example

This example finds the generalized Schur factorization of the matrix pair A;Bð Þ, where

A ¼
�21:10� 22:50i 53:50� 50:50i �34:50þ 127:50i 7:50þ 0:50i
�0:46� 7:78i �3:50� 37:50i �15:50þ 58:50i �10:50� 1:50i
4:30� 5:50i 39:70� 17:10i �68:50þ 12:50i �7:50� 3:50i
5:50þ 4:40i 14:40þ 43:30i �32:50� 46:00i �19:00� 32:50i

0B@
1CA

and

B ¼
1:00� 5:00i 1:60þ 1:20i �3:00þ 0:00i 0:00� 1:00i
0:80� 0:60i 3:00� 5:00i �4:00þ 3:00i �2:40� 3:20i
1:00þ 0:00i 2:40þ 1:80i �4:00� 5:00i 0:00� 3:00i
0:00þ 1:00i �1:80þ 2:40i 0:00� 4:00i 4:00� 5:00i

0B@
1CA:

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08XQF

Mark 26 F08XQF.5



10.1 Program Text

Program f08xqfe

! F08XQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f08xnz, nag_wp, x02ajf, x04dbf, zgemm, zgges3, &

zlange => f06uaf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nb = 64, nin = 5, nout = 6
! .. Local Scalars ..

Complex (Kind=nag_wp) :: alph, bet
Real (Kind=nag_wp) :: normd, norme
Integer :: i, ifail, info, lda, ldb, ldc, ldd, &

lde, ldvsl, ldvsr, lwork, n, sdim
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &
c(:,:), d(:,:), e(:,:), vsl(:,:), &
vsr(:,:), work(:)

Complex (Kind=nag_wp) :: wdum(1)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Logical, Allocatable :: bwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, max, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08XQF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldc = n
ldd = n
lde = n
ldvsl = n
ldvsr = n
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),c(ldc,n),d(ldd,n),e(lde,n), &

vsl(ldvsl,n),vsr(ldvsr,n),rwork(8*n),bwork(n))

! Use routine workspace query to get optimal workspace.
lwork = -1

! The NAG name equivalent of zgges3 is f08xqf
Call zgges3(’Vectors (left)’,’Vectors (right)’,’No sort’,f08xnz,n,a,lda, &

b,ldb,sdim,alpha,beta,vsl,ldvsl,vsr,ldvsr,wdum,lwork,rwork,bwork,info)

! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(wdum(1))))
Allocate (work(lwork))

! Read in the matrices A and B
Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Copy A and B into D and E respectively
d(1:n,1:n) = a(1:n,1:n)
e(1:n,1:n) = b(1:n,1:n)

! Print matrices A and B
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F8.4’,’Matrix A’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
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Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,n,n,b,ldb,’Bracketed’,’F8.4’,’Matrix B’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
Write (nout,*)
Flush (nout)

! Find the generalized Schur form
! The NAG name equivalent of zgges3 is f08xqf

Call zgges3(’Vectors (left)’,’Vectors (right)’,’No sort’,f08xnz,n,a,lda, &
b,ldb,sdim,alpha,beta,vsl,ldvsl,vsr,ldvsr,work,lwork,rwork,bwork,info)

If (info>0) Then
Write (nout,99999) ’Failure in ZGGES3. INFO =’, info

Else

! Compute A - Q*S*Z^H from the factorization of (A,B) and store in
! matrix D
! The NAG name equivalent of zgemm is f06zaf

alph = cmplx(1,kind=nag_wp)
bet = cmplx(0,kind=nag_wp)
Call zgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,a,lda,bet,c,ldc)
alph = cmplx(-1,kind=nag_wp)
bet = cmplx(1,kind=nag_wp)
Call zgemm(’N’,’C’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,d,ldd)

! Compute B - Q*T*Z^H from the factorization of (A,B) and store in
! matrix E

alph = cmplx(1,kind=nag_wp)
bet = cmplx(0,kind=nag_wp)
Call zgemm(’N’,’N’,n,n,n,alph,vsl,ldvsl,b,ldb,bet,c,ldc)
alph = cmplx(-1,kind=nag_wp)
bet = cmplx(1,kind=nag_wp)
Call zgemm(’N’,’C’,n,n,n,alph,c,ldc,vsr,ldvsr,bet,e,lde)

! Find norms of matrices D and E and warn if either is too large
! f06uaf is the NAG name equivalent of the LAPACK auxiliary zlange

normd = zlange(’O’,ldd,n,d,ldd,rwork)
norme = zlange(’O’,lde,n,e,lde,rwork)
If (normd>x02ajf()**0.75_nag_wp .Or. norme>x02ajf()**0.75_nag_wp) Then

Write (nout,*) &
’Norm of A-(Q*S*Z^H) or norm of B-(Q*T*Z^H) is much greater than 0.’

Write (nout,*) ’Schur factorization has failed.’
Else

! Print generalized eigenvalues
Write (nout,*) ’Generalized Eigenvalues’

Do i = 1, n
If (beta(i)/=0.0_nag_wp) Then

Write (nout,99998) i, alpha(i)/beta(i)
Else

Write (nout,99997) i
End If

End Do
End If

End If

99999 Format (1X,A,I4)
99998 Format (1X,I2,1X,’(’,1P,E11.4,’,’,E11.4,’)’)
99997 Format (1X,I4,’Eigenvalue is infinite’)

End Program f08xqfe
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10.2 Program Data

F08XQF Example Program Data
4 : Value of N
(-21.10,-22.50) ( 53.50,-50.50) (-34.50,127.50) ( 7.50, 0.50)
( -0.46, -7.78) ( -3.50,-37.50) (-15.50, 58.50) (-10.50, -1.50)
( 4.30, -5.50) ( 39.70,-17.10) (-68.50, 12.50) ( -7.50, -3.50)
( 5.50, 4.40) ( 14.40, 43.30) (-32.50,-46.00) (-19.00,-32.50) : End of A
( 1.00, -5.00) ( 1.60, 1.20) ( -3.00, 0.00) ( 0.00, -1.00)
( 0.80, -0.60) ( 3.00, -5.00) ( -4.00, 3.00) ( -2.40, -3.20)
( 1.00, 0.00) ( 2.40, 1.80) ( -4.00, -5.00) ( 0.00, -3.00)
( 0.00, 1.00) ( -1.80, 2.40) ( 0.00, -4.00) ( 4.00, -5.00) : End of B

10.3 Program Results

F08XQF Example Program Results

Matrix A
1 2 3

1 (-21.1000,-22.5000) ( 53.5000,-50.5000) (-34.5000,127.5000)
2 ( -0.4600, -7.7800) ( -3.5000,-37.5000) (-15.5000, 58.5000)
3 ( 4.3000, -5.5000) ( 39.7000,-17.1000) (-68.5000, 12.5000)
4 ( 5.5000, 4.4000) ( 14.4000, 43.3000) (-32.5000,-46.0000)

4
1 ( 7.5000, 0.5000)
2 (-10.5000, -1.5000)
3 ( -7.5000, -3.5000)
4 (-19.0000,-32.5000)

Matrix B
1 2 3

1 ( 1.0000, -5.0000) ( 1.6000, 1.2000) ( -3.0000, 0.0000)
2 ( 0.8000, -0.6000) ( 3.0000, -5.0000) ( -4.0000, 3.0000)
3 ( 1.0000, 0.0000) ( 2.4000, 1.8000) ( -4.0000, -5.0000)
4 ( 0.0000, 1.0000) ( -1.8000, 2.4000) ( 0.0000, -4.0000)

4
1 ( 0.0000, -1.0000)
2 ( -2.4000, -3.2000)
3 ( 0.0000, -3.0000)
4 ( 4.0000, -5.0000)

Generalized Eigenvalues
1 ( 3.0000E+00,-9.0000E+00)
2 ( 2.0000E+00,-5.0000E+00)
3 ( 3.0000E+00,-1.0000E+00)
4 ( 4.0000E+00,-5.0000E+00)
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NAG Library Routine Document

F08XSF (ZHGEQZ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08XSF (ZHGEQZ) implements the QZ method for finding generalized eigenvalues of the complex
matrix pair A;Bð Þ of order n, which is in the generalized upper Hessenberg form.

2 Specification

SUBROUTINE F08XSF (JOB, COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB,
ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK,
INFO)

&
&

INTEGER N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, INFO
REAL (KIND=nag_wp) RWORK(N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHA(N), BETA(N), Q(LDQ,*),

Z(LDZ,*), WORK(max(1,LWORK))
&

CHARACTER(1) JOB, COMPQ, COMPZ

The routine may be called by its LAPACK name zhgeqz.

3 Description

F08XSF (ZHGEQZ) implements a single-shift version of the QZ method for finding the generalized
eigenvalues of the complex matrix pair A;Bð Þ which is in the generalized upper Hessenberg form. If
the matrix pair A;Bð Þ is not in the generalized upper Hessenberg form, then the routine F08WSF
(ZGGHRD) should be called before invoking F08XSF (ZHGEQZ).

This problem is mathematically equivalent to solving the matrix equation

det A� �Bð Þ ¼ 0:

Note that, to avoid underflow, overflow and other arithmetic problems, the generalized eigenvalues �j
are never computed explicitly by this routine but defined as ratios between two computed values, �j and
�j:

�j ¼ �j=�j:
The arguments �j, in general, are finite complex values and �j are finite real non-negative values.

If desired, the matrix pair A;Bð Þ may be reduced to generalized Schur form. That is, the transformed
matrices A and B are upper triangular and the diagonal values of A and B provide � and �.

The argument JOB specifies two options. If JOB ¼ S then the matrix pair A;Bð Þ is simultaneously
reduced to Schur form by applying one unitary transformation (usually called Q) on the left and another
(usually called Z) on the right. That is,

A QHAZ
B QHBZ

If JOB ¼ E , then at each iteration the same transformations are computed but they are only applied to
those parts of A and B which are needed to compute � and �. This option could be used if generalized
eigenvalues are required but not generalized eigenvectors.

If JOB ¼ S and COMPQ ¼ V or I , and COMPZ ¼ V or I , then the unitary transformations used to
reduce the pair A;Bð Þ are accumulated into the input arrays Q and Z. If generalized eigenvectors are
required then JOB must be set to JOB ¼ S and if left (right) generalized eigenvectors are to be
computed then COMPQ (COMPZ) must be set to COMPQ ¼ V or I rather than COMPQ ¼ N .
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If COMPQ ¼ I , then eigenvectors are accumulated on the identity matrix and on exit the array Q
contains the left eigenvector matrix Q. However, if COMPQ ¼ V then the transformations are
accumulated in the user-supplied matrix Q0 in array Q on entry and thus on exit Q contains the matrix
product QQ0. A similar convention is used for COMPZ.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J.
Numer. Anal. 10 241–256

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: specifies the operations to be performed on A;Bð Þ.
JOB ¼ E

The matrix pair A;Bð Þ on exit might not be in the generalized Schur form.

JOB ¼ S
The matrix pair A;Bð Þ on exit will be in the generalized Schur form.

Constraint: JOB ¼ E or S .

2: COMPQ – CHARACTER(1) Input

On entry: specifies the operations to be performed on Q:

COMPQ ¼ N
The array Q is unchanged.

COMPQ ¼ V
The left transformation Q is accumulated on the array Q.

COMPQ ¼ I
The array Q is initialized to the identity matrix before the left transformation Q is
accumulated in Q.

Constraint: COMPQ ¼ N , V or I .

3: COMPZ – CHARACTER(1) Input

On entry: specifies the operations to be performed on Z.

COMPZ ¼ N
The array Z is unchanged.

COMPZ ¼ V
The right transformation Z is accumulated on the array Z.

COMPZ ¼ I
The array Z is initialized to the identity matrix before the right transformation Z is
accumulated in Z.

Constraint: COMPZ ¼ N , V or I .
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4: N – INTEGER Input

On entry: n, the order of the matrices A, B, Q and Z.

Constraint: N � 0.

5: ILO – INTEGER Input
6: IHI – INTEGER Input

On entry: the indices ilo and ihi, respectively which define the upper triangular parts of A. The
submatrices A 1 : ilo � 1; 1 : ilo � 1ð Þ and A ihi þ 1 : n; ihi þ 1 : nð Þ are then upper triangular.
These arguments are provided by F08WVF (ZGGBAL) if the matrix pair was previously
balanced; otherwise, ILO ¼ 1 and IHI ¼ N.

Constraints:

if N > 0, 1 � ILO � IHI � N;
if N ¼ 0, ILO ¼ 1 and IHI ¼ 0.

7: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n upper Hessenberg matrix A. The elements below the first subdiagonal must
be set to zero.

On exit: if JOB ¼ S , the matrix pair A;Bð Þ will be simultaneously reduced to generalized Schur
form.

If JOB ¼ E , the 1 by 1 and 2 by 2 diagonal blocks of the matrix pair A;Bð Þ will give
generalized eigenvalues but the remaining elements will be irrelevant.

8: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08XSF
(ZHGEQZ) is called.

Constraint: LDA � max 1;Nð Þ.

9: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the n by n upper triangular matrix B. The elements below the diagonal must be zero.

On exit: if JOB ¼ S , the matrix pair A;Bð Þ will be simultaneously reduced to generalized Schur
form.

If JOB ¼ E , the 1 by 1 and 2 by 2 diagonal blocks of the matrix pair A;Bð Þ will give
generalized eigenvalues but the remaining elements will be irrelevant.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08XSF
(ZHGEQZ) is called.

Constraint: LDB � max 1;Nð Þ.

11: ALPHAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: �j , for j ¼ 1; 2; . . . ; n.

12: BETAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: �j , for j ¼ 1; 2; . . . ; n.
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13: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if COMPQ ¼ V or I and
at least 1 if COMPQ ¼ N .

On entry: if COMPQ ¼ V , the matrix Q0. The matrix Q0 is usually the matrix Q returned by
F08WSF (ZGGHRD).

If COMPQ ¼ N , Q is not referenced.

On exit: if COMPQ ¼ V , Q contains the matrix product QQ0.

If COMPQ ¼ I , Q contains the transformation matrix Q.

14: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08XSF
(ZHGEQZ) is called.

Constraints:

if COMPQ ¼ V or I , LDQ � N;
if COMPQ ¼ N , LDQ � 1.

15: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if COMPZ ¼ V or I and
at least 1 if COMPZ ¼ N .

On entry: if COMPZ ¼ V , the matrix Z0. The matrix Z0 is usually the matrix Z returned by
F08WSF (ZGGHRD).

If COMPZ ¼ N , Z is not referenced.

On exit: if COMPZ ¼ V , Z contains the matrix product ZZ0.

If COMPZ ¼ I , Z contains the transformation matrix Z.

16: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08XSF
(ZHGEQZ) is called.

Constraints:

if COMPZ ¼ V or I , LDZ � N;
if COMPZ ¼ N , LDZ � 1.

17: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

18: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08XSF (ZHGEQZ) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum size
of the WORK array, returns this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

Constraint: LWORK � max 1;Nð Þ or LWORK ¼ �1.

19: RWORKðNÞ – REAL (KIND=nag_wp) array Workspace
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20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If 1 � INFO � N, the QZ iteration did not converge and the matrix pair A;Bð Þ is not in the
generalized Schur form at exit. However, if INFO < N, then the computed �i and �i should be
correct for i ¼ INFOþ 1; . . . ;N.

If Nþ 1 � INFO � 2� N, the computation of shifts failed and the matrix pair A;Bð Þ is not in
the generalized Schur form at exit. However, if INFO < 2� N, then the computed �i and �i
should be correct for i ¼ INFO� Nþ 1; . . . ;N.

If INFO > 2� N, then an unexpected Library error has occurred. Please contact NAG with
details of your program.

7 Accuracy

Please consult Section 4.11 of the LAPACK Users' Guide (see Anderson et al. (1999)) and Chapter 6 of
Stewart and Sun (1990), for more information.

8 Parallelism and Performance

F08XSF (ZHGEQZ) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F08XSF (ZHGEQZ) is the fifth step in the solution of the complex generalized eigenvalue problem and
is called after F08WSF (ZGGHRD).

The number of floating-point operations taken by this routine is proportional to n3.

The real analogue of this routine is F08XEF (DHGEQZ).

10 Example

This example computes the � and � arguments, which defines the generalized eigenvalues, of the
matrix pair A;Bð Þ given by

A ¼
1:0þ 3:0i 1:0þ 4:0i 1:0þ 5:0i 1:0þ 6:0i
2:0þ 2:0i 4:0þ 3:0i 8:0þ 4:0i 16:0þ 5:0i
3:0þ 1:0i 9:0þ 2:0i 27:0þ 3:0i 81:0þ 4:0i
4:0þ 0:0i 16:0þ 1:0i 64:0þ 2:0i 256:0þ 3:0i

0B@
1CA

and
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B ¼
1:0þ 0:0i 2:0þ 1:0i 3:0þ 2:0i 4:0þ 3:0i
1:0þ 1:0i 4:0þ 2:0i 9:0þ 3:0i 16:0þ 4:0i
1:0þ 2:0i 8:0þ 3:0i 27:0þ 4:0i 64:0þ 5:0i
1:0þ 3:0i 16:0þ 4:0i 81:0þ 5:0i 256:0þ 6:0i

0B@
1CA:

This requires calls to five routines: F08WVF (ZGGBAL) to balance the matrix, F08ASF (ZGEQRF) to
perform the QR factorization of B, F08AUF (ZUNMQR) to apply Q to A, F08WSF (ZGGHRD) to
reduce the matrix pair to the generalized Hessenberg form and F08XSF (ZHGEQZ) to compute the
eigenvalues using the QZ algorithm.

10.1 Program Text

Program f08xsfe

! F08XSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01daf, m01edf, nag_wp, x04dbf, zgeqrf, zggbal, &

zgghd3, zhgeqz, zunmqr
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, ihi, ilo, info, irows, &
jwork, lda, ldb, ldq, ldz, lwork, n, &
ni

Character (1) :: compq, compz, job
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &
e(:), q(:,:), tau(:), work(:), &
z(:,:)

Real (Kind=nag_wp), Allocatable :: emod(:), lscale(:), rscale(:), &
rwork(:)

Integer, Allocatable :: irank(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: abs, aimag, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08XSF Example Program Results’
Flush (nout)

! Skip heading in data file

Read (nin,*)
Read (nin,*) n
ldq = 1
ldz = 1
lda = n
ldb = n
lwork = 6*n
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),q(ldq,ldq),tau(n), &

work(lwork),z(ldz,ldz),lscale(n),rscale(n),rwork(6*n))

! READ matrix A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! READ matrix B from data file
Read (nin,*)(b(i,1:n),i=1,n)

! Balance matrix pair (A,B)
job = ’B’
Call zggbal(job,n,a,lda,b,ldb,ilo,ihi,lscale,rscale,rwork,info)

! Matrix A after balancing
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! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Matrix A after balancing’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

! Matrix B after balancing

ifail = 0
Call x04dbf(’General’,’ ’,n,n,b,ldb,’Bracketed’,’F7.4’, &

’Matrix B after balancing’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

! Reduce B to triangular form using QR
irows = ihi + 1 - ilo

! The NAG name equivalent of zgeqrf is f08asf
Call zgeqrf(irows,irows,b(ilo,ilo),ldb,tau,work,lwork,info)

! Apply the orthogonal transformation to A
! The NAG name equivalent of zunmqr is f08auf

Call zunmqr(’L’,’C’,irows,irows,irows,b(ilo,ilo),ldb,tau,a(ilo,ilo),lda, &
work,lwork,info)

! Compute the generalized Hessenberg form of (A,B) -> (H,T)
compq = ’N’
compz = ’N’

! The NAG name equivalent of zgghd3 is f08wuf
Call zgghd3(compq,compz,irows,1,irows,a(ilo,ilo),lda,b(ilo,ilo),ldb,q, &

ldq,z,ldz,work,lwork,info)

! Matrix A (H) in generalized Hessenberg form
ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.3’, &

’Matrix A in Hessenberg form’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

Write (nout,*)
Flush (nout)

! Matrix B (T) in generalized Hessenberg form
ifail = 0
Call x04dbf(’General’,’ ’,n,n,b,ldb,’Bracketed’,’F7.3’, &

’Matrix B is triangular’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Routine ZHGEQZ
! Workspace query: jwork = -1

jwork = -1
job = ’E’

! The NAG name equivalent of zhgeqz is f08xsf
Call zhgeqz(job,compq,compz,n,ilo,ihi,a,lda,b,ldb,alpha,beta,q,ldq,z, &

ldz,work,jwork,rwork,info)
Write (nout,*)
Write (nout,99999) nint(real(work(1)))
Write (nout,99998) lwork
Write (nout,*)
Write (nout,99997)
Write (nout,*)
Flush (nout)

! Compute the generalized Schur form
! if the workspace lwork is adequate
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If (nint(real(work(1)))<=lwork) Then

! The NAG name equivalent of zhgeqz is f08xsf
Call zhgeqz(job,compq,compz,n,ilo,ihi,a,lda,b,ldb,alpha,beta,q,ldq,z, &

ldz,work,lwork,rwork,info)

! Print the generalized eigenvalues in descending size order
! Note: the actual values of beta are real and non-negative

! Calculate the moduli of the finite eigenvalues.
Allocate (e(n),emod(n),irank(n))
ni = 0
Do i = 1, n

If (real(beta(i))/=0.0_nag_wp) Then
ni = ni + 1
e(ni) = alpha(i)/beta(i)
emod(ni) = abs(e(ni))

Else
Write (nout,99996) i

End If
End Do

! Rearrange the finite eigenvalues in descending order of modulus.
ifail = 0
Call m01daf(emod,1,ni,’Descending’,irank,ifail)
ifail = 0
Call m01edf(e,1,ni,irank,ifail)

Write (nout,99995)(i,’(’,real(e(i)),’,’,aimag(e(i)),’)’,i=1,ni)
Else

Write (nout,99994)
End If

99999 Format (1X,’Minimal required LWORK = ’,I6)
99998 Format (1X,’Actual value of LWORK = ’,I6)
99997 Format (1X,’Generalized eigenvalues’)
99996 Format (1X,I4,5X,’Infinite eigenvalue’)
99995 Format (1X,I4,5X,A,F7.3,A,F7.3,A)
99994 Format (1X,’Insufficient workspace allocated for call to F08XSF/ZHGEQZ’)

End Program f08xsfe

10.2 Program Data

F08XSF Example Program Data
4 : n

( 1.0, 3.0) ( 1.0, 4.0) ( 1.0, 5.0) ( 1.0, 6.0)
( 2.0, 2.0) ( 4.0, 3.0) ( 8.0, 4.0) ( 16.0, 5.0)
( 3.0, 1.0) ( 9.0, 2.0) ( 27.0, 3.0) ( 81.0, 4.0)
( 4.0, 0.0) ( 16.0, 1.0) ( 64.0, 2.0) (256.0, 3.0) : A

( 1.0, 0.0) ( 2.0, 1.0) ( 3.0, 2.0) ( 4.0, 3.0)
( 1.0, 1.0) ( 4.0, 2.0) ( 9.0, 3.0) ( 16.0, 4.0)
( 1.0, 2.0) ( 8.0, 3.0) ( 27.0, 4.0) ( 64.0, 5.0)
( 1.0, 3.0) ( 16.0, 4.0) ( 81.0, 5.0) (256.0, 6.0) : B

10.3 Program Results

F08XSF Example Program Results
Matrix A after balancing

1 2 3 4
1 ( 1.0000, 3.0000) ( 1.0000, 4.0000) ( 0.1000, 0.5000) ( 0.1000, 0.6000)
2 ( 2.0000, 2.0000) ( 4.0000, 3.0000) ( 0.8000, 0.4000) ( 1.6000, 0.5000)
3 ( 0.3000, 0.1000) ( 0.9000, 0.2000) ( 0.2700, 0.0300) ( 0.8100, 0.0400)
4 ( 0.4000, 0.0000) ( 1.6000, 0.1000) ( 0.6400, 0.0200) ( 2.5600, 0.0300)

Matrix B after balancing
1 2 3 4

1 ( 1.0000, 0.0000) ( 2.0000, 1.0000) ( 0.3000, 0.2000) ( 0.4000, 0.3000)
2 ( 1.0000, 1.0000) ( 4.0000, 2.0000) ( 0.9000, 0.3000) ( 1.6000, 0.4000)
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3 ( 0.1000, 0.2000) ( 0.8000, 0.3000) ( 0.2700, 0.0400) ( 0.6400, 0.0500)
4 ( 0.1000, 0.3000) ( 1.6000, 0.4000) ( 0.8100, 0.0500) ( 2.5600, 0.0600)

Matrix A in Hessenberg form
1 2 3 4

1 ( -2.868, -1.595) ( -0.809, -0.328) ( -4.900, -0.987) ( -0.048, 1.163)
2 ( -2.672, 0.595) ( -0.790, 0.049) ( -4.955, -0.163) ( -0.439, -0.574)
3 ( 0.000, 0.000) ( -0.098, -0.011) ( -1.168, -0.137) ( -1.756, -0.205)
4 ( 0.000, 0.000) ( 0.000, 0.000) ( 0.087, 0.004) ( 0.032, 0.001)

Matrix B is triangular
1 2 3 4

1 ( -1.775, 0.000) ( -0.721, 0.043) ( -5.021, 1.190) ( -0.145, 0.726)
2 ( 0.000, 0.000) ( -0.218, 0.035) ( -2.541, -0.146) ( -0.823, -0.418)
3 ( 0.000, 0.000) ( 0.000, 0.000) ( -1.396, -0.163) ( -1.747, -0.204)
4 ( 0.000, 0.000) ( 0.000, 0.000) ( 0.000, 0.000) ( -0.100, -0.004)

Minimal required LWORK = 4
Actual value of LWORK = 24

Generalized eigenvalues

1 ( -0.635, 1.653)
2 ( 0.493, 0.910)
3 ( 0.458, -0.843)
4 ( 0.674, -0.050)
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NAG Library Routine Document

F08YEF (DTGSJA)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YEF (DTGSJA) computes the generalized singular value decomposition (GSVD) of two real upper
trapezoidal matrices A and B, where A is an m by n matrix and B is a p by n matrix.

A and B are assumed to be in the form returned by F08VEF (DGGSVP) or F08VGF (DGGSVP3).

2 Specification

SUBROUTINE F08YEF (JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
WORK, NCYCLE, INFO)

&
&

INTEGER M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), TOLA, TOLB, ALPHA(N), BETA(N),

U(LDU,*), V(LDV,*), Q(LDQ,*), WORK(2*N)
&

CHARACTER(1) JOBU, JOBV, JOBQ

The routine may be called by its LAPACK name dtgsja.

3 Description

F08YEF (DTGSJA) computes the GSVD of the matrices A and B which are assumed to have the form
as returned by F08VEF (DGGSVP) or F08VGF (DGGSVP3)

A ¼

1CCCCA
0BBBB@
n� k� l k l

k 0 A12 A13

l 0 0 A23

m� k� l 0 0 0

; if m� k� l � 0;

1CA
0B@
n� k� l k l

k 0 A12 A13

m� k 0 0 A23

; if m� k� l < 0;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

B ¼

1CA
0B@
n� k� l k l

l 0 0 B13

p� l 0 0 0

;

where the k by k matrix A12 and the l by l matrix B13 are nonsingular upper triangular, A23 is l by l
upper triangular if m� k� l � 0 and is m� kð Þ by l upper trapezoidal otherwise.
F08YEF (DTGSJA) computes orthogonal matrices Q, U and V , diagonal matrices D1 and D2, and an
upper triangular matrix R such that

UTAQ ¼ D1 0 R
� �

; V TBQ ¼ D2 0 R
� �

:
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Optionally Q, U and V may or may not be computed, or they may be premultiplied by matrices Q1, U1

and V1 respectively.

If m� k� lð Þ � 0 then D1, D2 and R have the form

D1 ¼

1A0@
k l

k I 0
l 0 C

m� k� l 0 0
;

D2 ¼
�� k l

l 0 S
p� l 0 0

;

R ¼
�� k l

k R11 R12
l 0 R22

;

where C ¼ diag �kþ1; ; ; . . . ; ; ; �kþlð Þ; S ¼ diag �kþ1; ; ; . . . ; ; ; �kþlð Þ.
If m� k� lð Þ < 0 then D1, D2 and R have the form

D1 ¼
�� k m� k kþ l�m

k I 0 0
m� k 0 C 0

;

D2 ¼

1A0@
k m� k kþ l�m

m� k 0 S 0
kþ l�m 0 0 I

p� l 0 0 0
;

R ¼

1A0@
k m� k kþ l�m

k R11 R12 R13
m� k 0 R22 R23

kþ l�m 0 0 R33

;

where C ¼ diag �kþ1; ; ; . . . ; ; ; �mð Þ; S ¼ diag �kþ1; ; ; . . . ; ; ; �mð Þ.
In both cases the diagonal matrix C has non-negative diagonal elements, the diagonal matrix S has
positive diagonal elements, so that S is nonsingular, and C2 þ S2 ¼ 1. See Section 2.3.5.3 of Anderson
et al. (1999) for further information.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: if JOBU ¼ U , U must contain an orthogonal matrix U1 on entry, and the product U1U
is returned.

If JOBU ¼ I , U is initialized to the unit matrix, and the orthogonal matrix U is returned.

If JOBU ¼ N , U is not computed.

Constraint: JOBU ¼ U , I or N .
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2: JOBV – CHARACTER(1) Input

On entry: if JOBV ¼ V , V must contain an orthogonal matrix V1 on entry, and the product V1V
is returned.

If JOBV ¼ I , V is initialized to the unit matrix, and the orthogonal matrix V is returned.

If JOBV ¼ N , V is not computed.

Constraint: JOBV ¼ V , I or N .

3: JOBQ – CHARACTER(1) Input

On entry: if JOBQ ¼ Q , Q must contain an orthogonal matrix Q1 on entry, and the product Q1Q
is returned.

If JOBQ ¼ I , Q is initialized to the unit matrix, and the orthogonal matrix Q is returned.

If JOBQ ¼ N , Q is not computed.

Constraint: JOBQ ¼ Q , I or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

6: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

7: K – INTEGER Input
8: L – INTEGER Input

On entry: K and L specify the sizes, k and l, of the subblocks of A and B, whose GSVD is to be
computed by F08YEF (DTGSJA).

9: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m� k� l � 0, Að1 : kþ l; n� k� lþ 1 : nÞ contains the kþ lð Þ by kþ lð Þ upper
triangular matrix R.

If m� k� l < 0, Að1 : m;n� k� lþ 1 : nÞ contains the first m rows of the kþ lð Þ by kþ lð Þ
u p p e r t r i a n g u l a r m a t r i x R, a n d t h e s u bm a t r i x R33 i s r e t u r n e d i n
Bðm� kþ 1 : l; nþm� k� lþ 1 : nÞ.

10: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YEF
(DTGSJA) is called.

Constraint: LDA � max 1;Mð Þ.
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11: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: if m� k� l < 0, Bðm� kþ 1 : l; nþm� k� lþ 1 : nÞ contains the submatrix R33 of
R.

12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YEF
(DTGSJA) is called.

Constraint: LDB � max 1; Pð Þ.

13: TOLA – REAL (KIND=nag_wp) Input
14: TOLB – REAL (KIND=nag_wp) Input

On entry: TOLA and TOLB are the convergence criteria for the Jacobi–Kogbetliantz iteration
procedure. Generally, they should be the same as used in the preprocessing step performed by
F08VEF (DGGSVP) or F08VGF (DGGSVP3), say

TOLA ¼ max M;Nð Þ Ak k�;
TOLB ¼ max P;Nð Þ Bk k�;

where � is the machine precision.

15: ALPHAðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

16: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHA and BETA contain the generalized singular value pairs of A and B;

ALPHAðiÞ ¼ 1, BETAðiÞ ¼ 0, for i ¼ 1; 2; . . . ; k, and

if m� k� l � 0, ALPHAðiÞ ¼ �i, BETAðiÞ ¼ �i, for i ¼ kþ 1; . . . ; kþ l, or
i f m� k� l < 0, ALPHAðiÞ ¼ �i, BETAðiÞ ¼ �i, f o r i ¼ kþ 1; . . . ;m a n d
ALPHAðiÞ ¼ 0, BETAðiÞ ¼ 1, for i ¼ mþ 1; . . . ; kþ l.

Furthermore, if kþ l < n, ALPHAðiÞ ¼ BETAðiÞ ¼ 0, for i ¼ kþ lþ 1; . . . ; n.

17: UðLDU; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ U or I , and at
least 1 otherwise.

On entry: if JOBU ¼ U , U must contain an m by m matrix U1 (usually the orthogonal matrix
returned by F08VEF (DGGSVP) or F08VGF (DGGSVP3)).

On exit: if JOBU ¼ U , U contains the product U1U .

If JOBU ¼ I , U contains the orthogonal matrix U .

If JOBU ¼ N , U is not referenced.

18: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08YEF
(DTGSJA) is called.

Constraints:

if JOBU ¼ U or I , LDU � max 1;Mð Þ;
otherwise LDU � 1.
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19: VðLDV; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1; Pð Þ if JOBV ¼ V or I , and at
least 1 otherwise.

On entry: if JOBV ¼ V , V must contain an p by p matrix V1 (usually the orthogonal matrix
returned by F08VEF (DGGSVP) or F08VGF (DGGSVP3)).

On exit: if JOBV ¼ I , V contains the orthogonal matrix V .

If JOBV ¼ V , V contains the product V1V .

If JOBV ¼ N , V is not referenced.

20: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08YEF
(DTGSJA) is called.

Constraints:

if JOBV ¼ V or I , LDV � max 1;Pð Þ;
otherwise LDV � 1.

21: QðLDQ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBQ ¼ Q or I , and at
least 1 otherwise.

On entry: if JOBQ ¼ Q , Q must contain an n by n matrix Q1 (usually the orthogonal matrix
returned by F08VEF (DGGSVP) or F08VGF (DGGSVP3)).

On exit: if JOBQ ¼ I , Q contains the orthogonal matrix Q.

If JOBQ ¼ Q , Q contains the product Q1Q.

If JOBQ ¼ N , Q is not referenced.

22: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08YEF
(DTGSJA) is called.

Constraints:

if JOBQ ¼ Q or I , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

23: WORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

24: NCYCLE – INTEGER Output

On exit: the number of cycles required for convergence.

25: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO ¼ 1

The procedure does not converge after 40 cycles.

7 Accuracy

The computed generalized singular value decomposition is nearly the exact generalized singular value
decomposition for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where

Ek k2 ¼ O � Ak k2 and Fk k2 ¼ O � Bk k2;

and � is the machine precision. See Section 4.12 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08YEF (DTGSJA) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08YSF (ZTGSJA).

10 Example

This example finds the generalized singular value decomposition

A ¼ U�1 0 R
� �

QT; B ¼ V�2 0 R
� �

QT;

of the matrix pair A;Bð Þ, where

A ¼
1 2 3
3 2 1
4 5 6
7 8 8

0B@
1CA and B ¼ �2 �3 3

4 6 5

� �
:

10.1 Program Text

Program f08yefe

! F08YEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dggsvp, dtgsja, f06raf, nag_wp, x02ajf, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, tola, tolb
Integer :: i, ifail, info, irank, j, k, l, lda, &

ldb, ldq, ldu, ldv, m, n, ncycle, p
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &
q(:,:), tau(:), u(:,:), v(:,:), &
work(:)

Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
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Intrinsic :: max, real
! .. Executable Statements ..

Write (nout,*) ’F08YEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),q(ldq,n),tau(n),u(ldu,m), &

v(ldv,p),work(m+3*n+p),iwork(n))

! Read the m by n matrix A and p by n matrix B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)

! Compute tola and tolb as
! tola = max(m,n)*norm(A)*macheps
! tolb = max(p,n)*norm(B)*macheps

eps = x02ajf()
tola = real(max(m,n),kind=nag_wp)*f06raf(’One-norm’,m,n,a,lda,work)*eps
tolb = real(max(p,n),kind=nag_wp)*f06raf(’One-norm’,p,n,b,ldb,work)*eps

! Compute the factorization of (A, B)
! (A = U1*S*(Q1**T), B = V1*T*(Q1**T))
! The NAG name equivalent of dggsvp is f08vef

Call dggsvp(’U’,’V’,’Q’,m,p,n,a,lda,b,ldb,tola,tolb,k,l,u,ldu,v,ldv,q, &
ldq,iwork,tau,work,info)

! Compute the generalized singular value decomposition of (A, B)
! (A = U*D1*(0 R)*(Q**T), B = V*D2*(0 R)*(Q**T))
! The NAG name equivalent of dtgsja is f08yef

Call dtgsja(’U’,’V’,’Q’,m,p,n,k,l,a,lda,b,ldb,tola,tolb,alpha,beta,u, &
ldu,v,ldv,q,ldq,work,ncycle,info)

If (info==0) Then

! Print solution

irank = k + l
Write (nout,*) ’Number of infinite generalized singular values (K)’
Write (nout,99999) k
Write (nout,*) ’Number of finite generalized singular values (L)’
Write (nout,99999) l
Write (nout,*) ’ Effective Numerical rank of (A**T B**T)**T (K+L)’
Write (nout,99999) irank
Write (nout,*)
Write (nout,*) ’Finite generalized singular values’
Write (nout,99998)(alpha(j)/beta(j),j=k+1,irank)

Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04cbf(’General’,’ ’,m,m,u,ldu,’1P,E12.4’,’Orthogonal matrix U’, &

’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04cbf(’General’,’ ’,p,p,v,ldv,’1P,E12.4’,’Orthogonal matrix V’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
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Write (nout,*)
Flush (nout)

Call x04cbf(’General’,’ ’,n,n,q,ldq,’1P,E12.4’,’Orthogonal matrix Q’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04cbf(’Upper triangular’,’Non-unit’,irank,irank,a(1,n-irank+1), &
lda,’1P,E12.4’,’Nonsingular upper triangular matrix R’,’Integer’, &
rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Number of cycles of the Kogbetliantz method’
Write (nout,99999) ncycle

Else
Write (nout,99997) ’Failure in DTGSJA. INFO =’, info

End If

99999 Format (1X,I5)
99998 Format (3X,8(1P,E12.4))
99997 Format (1X,A,I4)

End Program f08yefe

10.2 Program Data

F08YEF Example Program Data

4 3 2 :Values of M, N and P

1.0 2.0 3.0
3.0 2.0 1.0
4.0 5.0 6.0
7.0 8.0 8.0 :End of matrix A

-2.0 -3.0 3.0
4.0 6.0 5.0 :End of matrix B

10.3 Program Results

F08YEF Example Program Results

Number of infinite generalized singular values (K)
1

Number of finite generalized singular values (L)
2

Effective Numerical rank of (A**T B**T)**T (K+L)
3

Finite generalized singular values
1.3151E+00 8.0185E-02

Orthogonal matrix U
1 2 3 4

1 -1.3484E-01 5.2524E-01 -2.0924E-01 8.1373E-01
2 6.7420E-01 -5.2213E-01 -3.8886E-01 3.4874E-01
3 2.6968E-01 5.2757E-01 -6.5782E-01 -4.6499E-01
4 6.7420E-01 4.1615E-01 6.1014E-01 1.5127E-15

Orthogonal matrix V
1 2

1 3.5539E-01 -9.3472E-01
2 9.3472E-01 3.5539E-01

Orthogonal matrix Q
1 2 3

1 -8.3205E-01 -9.4633E-02 -5.4657E-01
2 5.5470E-01 -1.4195E-01 -8.1985E-01
3 0.0000E+00 -9.8534E-01 1.7060E-01
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Nonsingular upper triangular matrix R
1 2 3

1 -2.0569E+00 -9.0121E+00 -9.3705E+00
2 -1.0882E+01 -7.2688E+00
3 -6.0405E+00

Number of cycles of the Kogbetliantz method
2

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08YEF

Mark 26 F08YEF.9 (last)





NAG Library Routine Document

F08YFF (DTGEXC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YFF (DTGEXC) reorders the generalized Schur factorization of a matrix pair in real generalized
Schur form.

2 Specification

SUBROUTINE F08YFF (WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
IFST, ILST, WORK, LWORK, INFO)

&

INTEGER N, LDA, LDB, LDQ, LDZ, IFST, ILST, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*),

WORK(max(1,LWORK))
&

LOGICAL WANTQ, WANTZ

The routine may be called by its LAPACK name dtgexc.

3 Description

F08YFF (DTGEXC) reorders the generalized real n by n matrix pair S; Tð Þ in real generalized Schur
form, so that the diagonal element or block of S; Tð Þ with row index i1 is moved to row i2, using an
orthogonal equivalence transformation. That is, S and T are factorized as

S ¼ Q̂ŜẐT; T ¼ Q̂T̂ ẐT;

where Ŝ; T̂
� �

are also in real generalized Schur form.

The pair S; Tð Þ are in real generalized Schur form if S is block upper triangular with 1 by 1 and 2 by 2
diagonal blocks and T is upper triangular as returned, for example, by F08XAF (DGGES), or F08XEF
(DHGEQZ) with JOB ¼ S .

If S and T are the result of a generalized Schur factorization of a matrix pair A;Bð Þ

A ¼ QSZT; B ¼ QTZT

then, optionally, the matrices Q and Z can be updated as QQ̂ and ZẐ.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: WANTQ – LOGICAL Input

On entry: if WANTQ ¼ :TRUE:, update the left transformation matrix Q.

If WANTQ ¼ :FALSE:, do not update Q.
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2: WANTZ – LOGICAL Input

On entry: if WANTZ ¼ :TRUE:, update the right transformation matrix Z.

If WANTZ ¼ :FALSE:, do not update Z.

3: N – INTEGER Input

On entry: n, the order of the matrices S and T .

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix S in the pair S; Tð Þ.

On exit: the updated matrix Ŝ.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YFF
(DTGEXC) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix T , in the pair S; Tð Þ.

On exit: the updated matrix T̂

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YFF
(DTGEXC) is called.

Constraint: LDB � max 1;Nð Þ.

8: QðLDQ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if WANTQ ¼ :TRUE:, and
at least 1 otherwise.

On entry: if WANTQ ¼ :TRUE:, the orthogonal matrix Q.

On exit: if WANTQ ¼ :TRUE:, the updated matrix QQ̂.

If WANTQ ¼ :FALSE:, Q is not referenced.

9: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08YFF
(DTGEXC) is called.

Constraints:

if WANTQ ¼ :TRUE:, LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

10: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if WANTZ ¼ :TRUE:, and
at least 1 otherwise.

On entry: if WANTZ ¼ :TRUE:, the orthogonal matrix Z.
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On exit: if WANTZ ¼ :TRUE:, the updated matrix ZẐ.

If WANTZ ¼ :FALSE:, Z is not referenced.

11: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08YFF
(DTGEXC) is called.

Constraints:

if WANTZ ¼ :TRUE:, LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

12: IFST – INTEGER Input/Output
13: ILST – INTEGER Input/Output

On entry: the indices i1 and i2 that specify the reordering of the diagonal blocks of S; Tð Þ. The
block with row index IFST is moved to row ILST, by a sequence of swapping between adjacent
blocks.

On exit: if IFST pointed on entry to the second row of a 2 by 2 block, it is changed to point to
the first row; ILST always points to the first row of the block in its final position (which may
differ from its input value by þ1 or �1).
Constraint: 1 � IFST � N and 1 � ILST � N.

14: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08YFF (DTGEXC) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum size
of the WORK array, returns this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

Constraints: if LWORK 6¼ �1,
if N � 1, LWORK � 1;
otherwise LWORK � 4� Nþ 16.

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

The transformed matrix pair Ŝ; T̂
� �

would be too far from generalized Schur form; the problem

is ill-conditioned. S; Tð Þ may have been partially reordered, and ILST points to the first row of
the current position of the block being moved.
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7 Accuracy

The computed generalized Schur form is nearly the exact generalized Schur form for nearby matrices
S þ Eð Þ and T þ Fð Þ, where

Ek k2 ¼ O � Sk k2 and Fk k2 ¼ O � Tk k2;

and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details of error
bounds for the generalized nonsymmetric eigenproblem.

8 Parallelism and Performance

F08YFF (DTGEXC) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08YTF (ZTGEXC).

10 Example

This example exchanges blocks 2 and 1 of the matrix pair S; Tð Þ, where

S ¼
4:0 1:0 1:0 2:0
0 3:0 4:0 1:0
0 1:0 3:0 1:0
0 0 0 6:0

0B@
1CA and T ¼

2:0 1:0 1:0 3:0
0 1:0 2:0 1:0
0 0 1:0 1:0
0 0 0 2:0

0B@
1CA:

10.1 Program Text

Program f08yffe

! F08YFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtgexc, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Logical, Parameter :: wantq = .False., wantz = .False.

! .. Local Scalars ..
Integer :: i, ifail, ifst, ilst, info, lda, &

ldb, ldq, ldz, lwork, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), q(:,:), work(:), &
z(:,:)

! .. Executable Statements ..
Write (nout,*) ’F08YFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldq = 1
ldz = 1
lda = n
ldb = n
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lwork = 4*n + 16
Allocate (a(lda,n),b(ldb,n),q(ldq,1),work(lwork),z(ldz,1))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Read the row indices

Read (nin,*) ifst, ilst

! Reorder A and B

! The NAG name equivalent of dtgexc is f08yff
Call dtgexc(wantq,wantz,n,a,lda,b,ldb,q,ldq,z,ldz,ifst,ilst,work,lwork, &

info)

If (info/=0) Then
Write (nout,99999) info, ilst
Write (nout,*)
Flush (nout)

End If

! The resulting reordered Schur matrices can differ by +- signs by
! multiplying rows and columns of Q and Z by -1. We will normalize here by
! making the diagonals and last column of B positive.

Call normalize(a,b)

! Print reordered generalized Schur form

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Reordered Schur matrix A’,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04caf(’General’,’ ’,n,n,b,ldb,’Reordered Schur matrix B’,ifail)

99999 Format (’ Reordering could not be completed. INFO = ’,I3,’ ILST = ’,I5)

Contains
Subroutine normalize(a,b)

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: a(lda,n), b(ldb,n)

! .. Local Scalars ..
Integer :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..

! Last column of B positive
Do i = 1, n

j = max(1,i-1)
If (b(i,n)<0.0_nag_wp) Then

a(i,j:n) = -a(i,j:n)
b(i,i:n) = -b(i,i:n)

End If
End Do

! Diagonals of B positive
Do i = 1, n - 1

If (b(i,i)<0.0_nag_wp) Then
a(1:i+1,i) = -a(1:i+1,i)
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b(1:i,i) = -b(1:i,i)
End If

End Do
End Subroutine normalize

End Program f08yffe

10.2 Program Data

F08YFF Example Program Data
4 :Value of N
4.0 1.0 1.0 2.0
0.0 3.0 4.0 1.0
0.0 1.0 3.0 1.0
0.0 0.0 0.0 6.0 :End of matrix A
2.0 1.0 1.0 3.0
0.0 1.0 2.0 1.0
0.0 0.0 1.0 1.0
0.0 0.0 0.0 2.0 :End of matrix B
2 1 :Values of IFST and ILST

10.3 Program Results

F08YFF Example Program Results

Reordered Schur matrix A
1 2 3 4

1 4.1926 1.2591 2.5578 0.4520
2 -0.8712 0.8627 2.7912 1.1383
3 0.0000 0.0000 4.2426 2.1213
4 0.0000 0.0000 0.0000 6.0000

Reordered Schur matrix B
1 2 3 4

1 1.7439 0.0000 0.7533 0.0661
2 0.0000 0.5406 1.8972 1.7308
3 0.0000 0.0000 2.1213 2.8284
4 0.0000 0.0000 0.0000 2.0000
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NAG Library Routine Document

F08YGF (DTGSEN)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YGF (DTGSEN) reorders the generalized Schur factorization of a matrix pair in real generalized
Schur form, so that a selected cluster of eigenvalues appears in the leading elements, or blocks on the
diagonal of the generalized Schur form. The routine also, optionally, computes the reciprocal condition
numbers of the cluster of eigenvalues and/or corresponding deflating subspaces.

2 Specification

SUBROUTINE F08YGF (IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
WORK, LWORK, IWORK, LIWORK, INFO)

&
&

INTEGER IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, IWORK(*),
LIWORK, INFO

&

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHAR(N), ALPHAI(N), BETA(N),
Q(LDQ,*), Z(LDZ,*), PL, PR, DIF(*),
WORK(max(1,LWORK))

&
&

LOGICAL WANTQ, WANTZ, SELECT(N)

The routine may be called by its LAPACK name dtgsen.

3 Description

F08YGF (DTGSEN) factorizes the generalized real n by n matrix pair S; Tð Þ in real generalized Schur
form, using an orthogonal equivalence transformation as

S ¼ Q̂ŜẐT; T ¼ Q̂T̂ ẐT;

where Ŝ; T̂
� �

are also in real generalized Schur form and have the selected eigenvalues as the leading

diagonal elements, or diagonal blocks. The leading columns of Q and Z are the generalized Schur
vectors corresponding to the selected eigenvalues and form orthonormal subspaces for the left and right
eigenspaces (deflating subspaces) of the pair S; Tð Þ.
The pair S; Tð Þ are in real generalized Schur form if S is block upper triangular with 1 by 1 and 2 by 2
diagonal blocks and T is upper triangular as returned, for example, by F08XAF (DGGES), or F08XEF
(DHGEQZ) with JOB ¼ S . The diagonal elements, or blocks, define the generalized eigenvalues
�i; �ið Þ, for i ¼ 1; 2; . . . ; n, of the pair S; Tð Þ. The eigenvalues are given by

�i ¼ �i=�i;

but are returned as the pair �i; �ið Þ in order to avoid possible overflow in computing �i. Optionally, the
routine returns reciprocals of condition number estimates for the selected eigenvalue cluster, p and q,
the right and left projection norms, and of deflating subspaces, Difu and Dif l. For more information see
Sections 2.4.8 and 4.11 of Anderson et al. (1999).

If S and T are the result of a generalized Schur factorization of a matrix pair A;Bð Þ

A ¼ QSZT; B ¼ QTZT

then, optionally, the matrices Q and Z can be updated as QQ̂ and ZẐ. Note that the condition numbers
of the pair S; Tð Þ are the same as those of the pair A;Bð Þ.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: IJOB – INTEGER Input

On entry: specifies whether condition numbers are required for the cluster of eigenvalues (p and
q) or the deflating subspaces (Difu and Dif l).

IJOB ¼ 0
Only reorder with respect to SELECT. No extras.

IJOB ¼ 1
Reciprocal of norms of ‘projections’ onto left and right eigenspaces with respect to the
selected cluster (p and q).

IJOB ¼ 2
The upper bounds on Difu and Dif l. F -norm-based estimate (DIFð1 : 2Þ).

IJOB ¼ 3
Estimate of Difu and Dif l. 1-norm-based estimate (DIFð1 : 2Þ). About five times as
expensive as IJOB ¼ 2.

IJOB ¼ 4
Compute PL, PR and DIF as in IJOB ¼ 0, 1 and 2. Economic version to get it all.

IJOB ¼ 5
Compute PL, PR and DIF as in IJOB ¼ 0, 1 and 3.

Constraint: 0 � IJOB � 5.

2: WANTQ – LOGICAL Input

On entry: if WANTQ ¼ :TRUE:, update the left transformation matrix Q.

If WANTQ ¼ :FALSE:, do not update Q.

3: WANTZ – LOGICAL Input

On entry: if WANTZ ¼ :TRUE:, update the right transformation matrix Z.

If WANTZ ¼ :FALSE:, do not update Z.

4: SELECTðNÞ – LOGICAL array Input

On entry: specifies the eigenvalues in the selected cluster. To select a real eigenvalue �j,
SELECTðjÞ must be set to .TRUE..

To select a complex conjugate pair of eigenvalues �j and �jþ1, corresponding to a 2 by 2
diagonal block, either SELECTðjÞ or SELECTðjþ 1Þ or both must be set to .TRUE.; a complex
conjugate pair of eigenvalues must be either both included in the cluster or both excluded.

5: N – INTEGER Input

On entry: n, the order of the matrices S and T .

Constraint: N � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix S in the pair S; Tð Þ.
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On exit: the updated matrix Ŝ.

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YGF
(DTGSEN) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix T , in the pair S; Tð Þ.

On exit: the updated matrix T̂

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YGF
(DTGSEN) is called.

Constraint: LDB � max 1;Nð Þ.

10: ALPHARðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

11: ALPHAIðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

12: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHARðjÞ=BETAðjÞ and ALPHAIðjÞ=BETAðjÞ are the real and imaginary parts
respectively of the jth eigenvalue, for j ¼ 1; 2; . . . ;N.

If ALPHAIðjÞ is zero, then the jth eigenvalue is real; if positive then ALPHAIðjþ 1Þ is negative,
and the jth and jþ 1ð Þst eigenvalues are a complex conjugate pair.

Conjugate pairs of eigenvalues correspond to the 2 by 2 diagonal blocks of Ŝ. These 2 by 2

blocks can be reduced by applying complex unitary transformations to Ŝ; T̂
� �

to obtain the

complex Schur form ~S; ~T
� �

, where ~S is triangular (and complex). In this form

ALPHAR þ iALPHAI and BETA are the diagonals of ~S and ~T respectively.

13: QðLDQ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if WANTQ ¼ :TRUE:, and
at least 1 otherwise.

On entry: if WANTQ ¼ :TRUE:, the n by n matrix Q.

On exit: if WANTQ ¼ :TRUE:, the updated matrix QQ̂.

If WANTQ ¼ :FALSE:, Q is not referenced.

14: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08YGF
(DTGSEN) is called.

Constraints:

if WANTQ ¼ :TRUE:, LDQ � max 1;Nð Þ;
otherwise LDQ � 1.
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15: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if WANTZ ¼ :TRUE:, and
at least 1 otherwise.

On entry: if WANTZ ¼ :TRUE:, the n by n matrix Z.

On exit: if WANTZ ¼ :TRUE:, the updated matrix ZẐ.

If WANTZ ¼ :FALSE:, Z is not referenced.

16: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08YGF
(DTGSEN) is called.

Constraints:

if WANTZ ¼ :TRUE:, LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

17: M – INTEGER Output

On exit: the dimension of the specified pair of left and right eigenspaces (deflating subspaces).

18: PL – REAL (KIND=nag_wp) Output
19: PR – REAL (KIND=nag_wp) Output

On exit: if IJOB ¼ 1, 4 or 5, PL and PR are lower bounds on the reciprocal of the norm of
‘projections’ p and q onto left and right eigenspaces with respect to the selected cluster. 0 < PL,
PR � 1.

If M ¼ 0 or M ¼ N, PL ¼ PR ¼ 1.

If IJOB ¼ 0, 2 or 3, PL and PR are not referenced.

20: DIFð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array DIF must be at least 2.

On exit: if IJOB � 2, DIFð1 : 2Þ store the estimates of Difu and Dif l.

If IJOB ¼ 2 or 4, DIFð1 : 2Þ are F -norm-based upper bounds on Difu and Dif l.

If IJOB ¼ 3 or 5, DIFð1 : 2Þ are 1-norm-based estimates of Difu and Dif l.

If M ¼ 0 or n, DIFð1 : 2Þ ¼ A;Bð Þk kF .
If IJOB ¼ 0 or 1, DIF is not referenced.

21: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the minimum LWORK.

If IJOB ¼ 0, WORK is not referenced.

22: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08YGF (DTGSEN) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraints: if LWORK 6¼ �1,
if N ¼ 0, LWORK � 1;
if IJOB ¼ 1, 2 or 4, LWORK � max 4� Nþ 16; 2�M� N�Mð Þð Þ;
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if IJOB ¼ 3 or 5, LWORK � max 4� Nþ 16; 4�M� N�Mð Þð Þ;
otherwise LWORK � 4� Nþ 16.

23: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least max 1;LIWORKð Þ.
On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum LIWORK.

If IJOB ¼ 0, IWORK is not referenced.

24: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08YGF (DTGSEN) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraints: if LIWORK 6¼ �1,
if IJOB ¼ 1, 2 or 4, LIWORK � Nþ 6;
if IJOB ¼ 3 or 5, LIWORK � max 2�M� N�Mð Þ;Nþ 6ð Þ;
otherwise LIWORK � 1.

25: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

Reordering of S; Tð Þ failed because the transformed matrix pair Ŝ; T̂
� �

would be too far from

generalized Schur form; the problem is very ill-conditioned. S; Tð Þ may have been partially
reordered. If requested, 0 is returned in DIFð1 : 2Þ, PL and PR.

7 Accuracy

The computed generalized Schur form is nearly the exact generalized Schur form for nearby matrices
S þ Eð Þ and T þ Fð Þ, where

Ek k2 ¼ O � Sk k2 and Fk k2 ¼ O � Tk k2;

and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details of error
bounds for the generalized nonsymmetric eigenproblem, and for information on the condition numbers
returned.

8 Parallelism and Performance

F08YGF (DTGSEN) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The complex analogue of this routine is F08YUF (ZTGSEN).

10 Example

This example reorders the generalized Schur factors S and T and update the matrices Q and Z given by

S ¼
4:0 1:0 1:0 2:0
0 3:0 4:0 1:0
0 1:0 3:0 1:0
0 0 0 6:0

0B@
1CA; T ¼

2:0 1:0 1:0 3:0
0 1:0 2:0 1:0
0 0 1:0 1:0
0 0 0 2:0

0B@
1CA;

Q ¼
1:0 0 0 0
0 1:0 0 0
0 0 1:0 0
0 0 0 1:0

0B@
1CA and Z ¼

1:0 0 0 0
0 1:0 0 0
0 0 1:0 0
0 0 0 1:0

0B@
1CA;

selecting the first and fourth generalized eigenvalues to be moved to the leading positions. Bases for the
left and right deflating subspaces, and estimates of the condition numbers for the eigenvalues and
Frobenius norm based bounds on the condition numbers for the deflating subspaces are also output.

10.1 Program Text

Program f08ygfe

! F08YGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtgsen, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: pl, pr
Integer :: i, ijob, info, lda, ldb, ldc, ldq, &

ldz, liwork, lwork, m, n
Logical :: wantq, wantz

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), alphai(:), alphar(:), &

b(:,:), beta(:), c(:,:), q(:,:), &
work(:), z(:,:)

Real (Kind=nag_wp) :: dif(2)
Integer, Allocatable :: iwork(:)
Logical, Allocatable :: select(:)

! .. Executable Statements ..
Write (nout,*) ’F08YGF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldc = n
ldq = n
ldz = n
liwork = (n*n)/2 + 6
lwork = n*(n+4) + 16
Allocate (a(lda,n),alphai(n),alphar(n),b(ldb,n),beta(n),c(ldc,n), &

q(ldq,n),work(lwork),z(ldz,n),iwork(liwork),select(n))

! Read A, B, Q, Z and the logical array SELECT from data file
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Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)
Read (nin,*)(q(i,1:n),i=1,n)
Read (nin,*)(z(i,1:n),i=1,n)

Read (nin,*) select(1:n)

! Set ijob, wantq and wantz
ijob = 4
wantq = .True.
wantz = .True.

! Reorder the Schur factors A and B and update the matrices
! Q and Z

! The NAG name equivalent of dtgsen is f08ygf
Call dtgsen(ijob,wantq,wantz,select,n,a,lda,b,ldb,alphar,alphai,beta,q, &

ldq,z,ldz,m,pl,pr,dif,work,lwork,iwork,liwork,info)

If (info>0) Then
Write (nout,99999) info
Write (nout,*)
Flush (nout)

End If

! Print Results
Write (nout,99996) ’Number of selected eigenvalues = ’, m
Write (nout,*)
Write (nout,*) ’Selected Generalized Eigenvalues’
Write (nout,*)
Write (nout,99997)(i,alphar(i)/beta(i),alphai(i)/beta(i),i=1,m)

Write (nout,*)
Write (nout,99998) ’Norm estimate of projection onto’, &

’ left eigenspace for selected cluster’, 1.0_nag_wp/pl
Write (nout,*)
Write (nout,99998) ’Norm estimate of projection onto’, &

’ right eigenspace for selected cluster’, 1.0_nag_wp/pr
Write (nout,*)
Write (nout,99998) ’F-norm based upper bound on’, ’ Difu’, dif(1)
Write (nout,*)
Write (nout,99998) ’F-norm based upper bound on’, ’ Difl’, dif(2)

99999 Format (’ Reordering could not be completed. INFO = ’,I3)
99998 Format (1X,2A,/,1X,1P,E10.2)
99997 Format (1X,I2,1X,’(’,1P,E11.4,’,’,E11.4,’)’)
99996 Format (1X,A,I4)

End Program f08ygfe

10.2 Program Data

F08YGF Example Program Data
4 :Value of N
4.0 1.0 1.0 2.0
0.0 3.0 4.0 1.0
0.0 1.0 3.0 1.0
0.0 0.0 0.0 6.0 :End of matrix A
2.0 1.0 1.0 3.0
0.0 1.0 2.0 1.0
0.0 0.0 1.0 1.0
0.0 0.0 0.0 2.0 :End of matrix B
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0 :End of matrix Q
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0 :End of matrix Z
T F F T :End of SELECT
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10.3 Program Results

F08YGF Example Program Results

Number of selected eigenvalues = 2

Selected Generalized Eigenvalues

1 ( 2.0000E+00, 0.0000E+00)
2 ( 3.0000E+00, 0.0000E+00)

Norm estimate of projection onto left eigenspace for selected cluster
2.69E+00

Norm estimate of projection onto right eigenspace for selected cluster
1.50E+00

F-norm based upper bound on Difu
2.52E-01

F-norm based upper bound on Difl
2.45E-01
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NAG Library Routine Document

F08YHF (DTGSYL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YHF (DTGSYL) solves the generalized real quasi-triangular Sylvester equations.

2 Specification

SUBROUTINE F08YHF (TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD, E,
LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)

&

INTEGER IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
IWORK(max(1,M+N+6)), INFO

&

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), E(LDE,*),
F(LDF,*), SCALE, DIF, WORK(max(1,LWORK))

&

CHARACTER(1) TRANS

The routine may be called by its LAPACK name dtgsyl.

3 Description

F08YHF (DTGSYL) solves either the generalized real Sylvester equations

AR� LB ¼ �C
DR� LE ¼ �F; ð1Þ

or the equations

ATRþDTL ¼ �C
RBT þ LET ¼ ��F; ð2Þ

where the pair A;Dð Þ are given m by m matrices in real generalized Schur form, B;Eð Þ are given n by
n matrices in real generalized Schur form and C; Fð Þ are given m by n matrices. The pair R;Lð Þ are
the m by n solution matrices, and � is an output scaling factor determined by the routine to avoid
overflow in computing R;Lð Þ.
Equations (1) are equivalent to equations of the form

Zx ¼ �b;

where

Z ¼ I �A�BT � I
I �D� ET � I

� �
and � is the Kronecker product. Equations (2) are then equivalent to

ZTy ¼ �b:
The pair S; Tð Þ are in real generalized Schur form if S is block upper triangular with 1 by 1 and 2 by 2
diagonal blocks on the diagonal and T is upper triangular as returned, for example, by F08XAF
(DGGES), or F08XEF (DHGEQZ) with JOB ¼ S .

Optionally, the routine estimates Dif A;Dð Þ; B;Eð Þ½ �, the separation between the matrix pairs A;Dð Þ
and B;Eð Þ, which is the smallest singular value of Z. The estimate can be based on either the
Frobenius norm, or the 1-norm. The 1-norm estimate can be three to ten times more expensive than the
Frobenius norm estimate, but makes the condition estimation uniform with the nonsymmetric
eigenproblem. The Frobenius norm estimate provides a low cost, but equally reliable estimate. For more
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information see Sections 2.4.8.3 and 4.11.1.3 of Anderson et al. (1999) and KÔgstrÎm and Poromaa
(1996).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

KÔgstrÎm B (1994) A perturbation analysis of the generalized Sylvester equation
AR� LB;DR� LEð Þ ¼ c; Fð Þ SIAM J. Matrix Anal. Appl. 15 1045–1060

KÔgstrÎm B and Poromaa P (1996) LAPACK-style algorithms and software for solving the generalized
Sylvester equation and estimating the separation between regular matrix pairs ACM Trans. Math.
Software 22 78–103

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: if TRANS ¼ N , solve the generalized Sylvester equation (1).

If TRANS ¼ T , solve the ‘transposed’ system (2).

Constraint: TRANS ¼ N or T .

2: IJOB – INTEGER Input

On entry: specifies what kind of functionality is to be performed when TRANS ¼ N .

IJOB ¼ 0
Solve (1) only.

IJOB ¼ 1
The functionality of IJOB ¼ 0 and 3.

IJOB ¼ 2
The functionality of IJOB ¼ 0 and 4.

IJOB ¼ 3
Only an estimate of Dif A;Dð Þ; B;Eð Þ½ � is computed based on the Frobenius norm.

IJOB ¼ 4
Only an estimate of Dif A;Dð Þ; B;Eð Þ½ � is computed based on the 1-norm.

If TRANS ¼ T , IJOB is not referenced.

Constraint: if TRANS ¼ N , 0 � IJOB � 4.

3: M – INTEGER Input

On entry: m, the order of the matrices A and D, and the row dimension of the matrices C, F , R
and L.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the order of the matrices B and E, and the column dimension of the matrices C, F ,
R and L.

Constraint: N � 0.
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5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ.
On entry: the upper quasi-triangular matrix A.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YHF
(DTGSYL) is called.

Constraint: LDA � max 1;Mð Þ.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the upper quasi-triangular matrix B.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YHF
(DTGSYL) is called.

Constraint: LDB � max 1;Nð Þ.

9: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: contains the right-hand-side matrix C.

On exit: if IJOB ¼ 0, 1 or 2, C is overwritten by the solution matrix R.

If TRANS ¼ N and IJOB ¼ 3 or 4, C holds R, the solution achieved during the computation of
the Dif estimate.

10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08YHF
(DTGSYL) is called.

Constraint: LDC � max 1;Mð Þ.

11: DðLDD; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array D must be at least max 1;Mð Þ.
On entry: the upper triangular matrix D.

12: LDD – INTEGER Input

On entry: the first dimension of the array D as declared in the (sub)program from which F08YHF
(DTGSYL) is called.

Constraint: LDD � max 1;Mð Þ.

13: EðLDE; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array E must be at least max 1;Nð Þ.
On entry: the upper triangular matrix E.

14: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which F08YHF
(DTGSYL) is called.

Constraint: LDE � max 1;Nð Þ.
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15: FðLDF; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array F must be at least max 1;Nð Þ.
On entry: contains the right-hand side matrix F .

On exit: if IJOB ¼ 0, 1 or 2, F is overwritten by the solution matrix L.

If TRANS ¼ N and IJOB ¼ 3 or 4, F holds L, the solution achieved during the computation of
the Dif estimate.

16: LDF – INTEGER Input

On entry: the first dimension of the array F as declared in the (sub)program from which F08YHF
(DTGSYL) is called.

Constraint: LDF � max 1;Mð Þ.

17: SCALE – REAL (KIND=nag_wp) Output

On exit: �, the scaling factor in (1) or (2).

If 0 < SCALE < 1, C and F hold the solutions R and L, respectively, to a slightly perturbed
system but the input arrays A, B, D and E have not been changed.

If SCALE ¼ 0, C and F hold the solutions R and L, respectively, to the homogeneous system
with C ¼ F ¼ 0. In this case DIF is not referenced.

Normally, SCALE ¼ 1.

18: DIF – REAL (KIND=nag_wp) Output

On exit: the estimate of Dif . If IJOB ¼ 0, DIF is not referenced.

19: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

20: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08YHF (DTGSYL) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum size
of the WORK array, returns this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

Constraints: if LWORK 6¼ �1,
if TRANS ¼ N and IJOB ¼ 1 or 2, LWORK � max 1; 2�M� Nð Þ;
otherwise LWORK � 1.

21: IWORKðmax 1;Mþ Nþ 6ð ÞÞ – INTEGER array Workspace

22: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO > 0

A;Dð Þ and B;Eð Þ have common or close eigenvalues and so no solution could be computed.

7 Accuracy

See KÔgstrÎm (1994) for a perturbation analysis of the generalized Sylvester equation.

8 Parallelism and Performance

F08YHF (DTGSYL) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations needed to solve the generalized Sylvester equations is
approximately 2mn nþmð Þ. The Frobenius norm estimate of Dif does not require additional significant
computation, but the 1-norm estimate is typically five times more expensive.

The complex analogue of this routine is F08YVF (ZTGSYL).

10 Example

This example solves the generalized Sylvester equations

AR� LB ¼ �C
DR� LE ¼ �F;

where

A ¼
4:0 1:0 1:0 2:0
0 3:0 4:0 1:0
0 1:0 3:0 1:0
0 0 0 6:0

0B@
1CA; B ¼

1:0 1:0 1:0 1:0
0 3:0 4:0 1:0
0 1:0 3:0 1:0
0 0 0 4:0

0B@
1CA;

D ¼
2:0 1:0 1:0 3:0
0 1:0 2:0 1:0
0 0 1:0 1:0
0 0 0 2:0

0B@
1CA; E ¼

1:0 1:0 1:0 2:0
0 1:0 4:0 1:0
0 0 1:0 1:0
0 0 0 1:0

0B@
1CA;

C ¼
�4:0 7:0 1:0 12:0
�9:0 2:0 �2:0 �2:0
�4:0 2:0 �2:0 8:0
�7:0 7:0 �6:0 19:0

0B@
1CA and F ¼

�7:0 5:0 0:0 7:0
�5:0 1:0 �8:0 0:0
�1:0 2:0 �3:0 5:0
�3:0 2:0 0:0 5:0

0B@
1CA:

10.1 Program Text

Program f08yhfe

! F08YHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtgsyl, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: dif, scale
Integer :: i, ifail, ijob, info, lda, ldb, ldc, &

ldd, lde, ldf, lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:), d(:,:), &
e(:,:), f(:,:), work(:)

Integer, Allocatable :: iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F08YHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldb = n
ldc = m
ldd = m
lde = n
ldf = m
lwork = 1
Allocate (a(lda,m),b(ldb,n),c(ldc,n),d(ldd,m),e(lde,n),f(ldf,n), &

work(lwork),iwork(m+n+6))

! Read A, B, D, E, C and F from data file

Read (nin,*)(a(i,1:m),i=1,m)
Read (nin,*)(b(i,1:n),i=1,n)
Read (nin,*)(d(i,1:m),i=1,m)
Read (nin,*)(e(i,1:n),i=1,n)
Read (nin,*)(c(i,1:n),i=1,m)
Read (nin,*)(f(i,1:n),i=1,m)

! Solve the Sylvester equations
! A*R - L*B = scale*C and D*R - L*E = scale*F
! for R and L.

ijob = 0

! The NAG name equivalent of dtgsyl is f08yhf
Call dtgsyl(’No transpose’,ijob,m,n,a,lda,b,ldb,c,ldc,d,ldd,e,lde,f,ldf, &

scale,dif,work,lwork,iwork,info)

If (info>=1) Then
Write (nout,99999)
Write (nout,*)
Flush (nout)

End If

! Print the solution matrices R and L

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,m,n,c,ldc,’Solution matrix R’,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04caf(’General’,’ ’,m,n,f,ldf,’Solution matrix L’,ifail)

Write (nout,*)
Write (nout,99998) ’SCALE = ’, scale

99999 Format (/,’ (A,D) and (B,E) have common or very close eigenval’,’ues.’, &
/,’ Perturbed values were used to solve the equations’)

99998 Format (1X,A,1P,E10.2)
End Program f08yhfe
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10.2 Program Data

F08YHF Example Program Data
4 4 :Values of M and N
4.0 1.0 1.0 2.0
0.0 3.0 4.0 1.0
0.0 1.0 3.0 1.0
0.0 0.0 0.0 6.0 :End of matrix A
1.0 1.0 1.0 1.0
0.0 3.0 4.0 1.0
0.0 1.0 3.0 1.0
0.0 0.0 0.0 4.0 :End of matrix B
2.0 1.0 1.0 3.0
0.0 1.0 2.0 1.0
0.0 0.0 1.0 1.0
0.0 0.0 0.0 2.0 :End of matrix D
1.0 1.0 1.0 2.0
0.0 1.0 4.0 1.0
0.0 0.0 1.0 1.0
0.0 0.0 0.0 1.0 :End of matrix E

-4.0 7.0 1.0 12.0
-9.0 2.0 -2.0 -2.0
-4.0 2.0 -2.0 8.0
-7.0 7.0 -6.0 19.0 :End of matrix C
-7.0 5.0 0.0 7.0
-5.0 1.0 -8.0 0.0
-1.0 2.0 -3.0 5.0
-3.0 2.0 0.0 5.0 :End of matrix F

10.3 Program Results

F08YHF Example Program Results

Solution matrix R
1 2 3 4

1 1.0000 1.0000 1.0000 1.0000
2 -1.0000 2.0000 -1.0000 -1.0000
3 -1.0000 1.0000 3.0000 1.0000
4 -1.0000 1.0000 -1.0000 4.0000

Solution matrix L
1 2 3 4

1 4.0000 -1.0000 1.0000 -1.0000
2 1.0000 3.0000 -1.0000 1.0000
3 -1.0000 1.0000 2.0000 -1.0000
4 1.0000 -1.0000 1.0000 1.0000

SCALE = 1.00E+00
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NAG Library Routine Document

F08YKF (DTGEVC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YKF (DTGEVC) computes some or all of the right and/or left generalized eigenvectors of a pair of
real matrices A;Bð Þ which are in generalized real Schur form.

2 Specification

SUBROUTINE F08YKF (SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL,
VR, LDVR, MM, M, WORK, INFO)

&

INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*),

WORK(6*N)
&

LOGICAL SELECT(*)
CHARACTER(1) SIDE, HOWMNY

The routine may be called by its LAPACK name dtgevc.

3 Description

F08YKF (DTGEVC) computes some or all of the right and/or left generalized eigenvectors of the
matrix pair A;Bð Þ which is assumed to be in generalized upper Schur form. If the matrix pair A;Bð Þ is
not in the generalized upper Schur form, then F08XEF (DHGEQZ) should be called before invoking
F08YKF (DTGEVC).

The right generalized eigenvector x and the left generalized eigenvector y of A;Bð Þ corresponding to a
generalized eigenvalue � are defined by

A� �Bð Þx ¼ 0

and

yH A� �Bð Þ ¼ 0:

If a generalized eigenvalue is determined as 0=0, which is due to zero diagonal elements at the same
locations in both A and B, a unit vector is returned as the corresponding eigenvector.

Note that the generalized eigenvalues are computed using F08XEF (DHGEQZ) but F08YKF
(DTGEVC) does not explicitly require the generalized eigenvalues to compute eigenvectors. The
ordering of the eigenvectors is based on the ordering of the eigenvalues as computed by F08YKF
(DTGEVC).

If all eigenvectors are requested, the routine may either return the matrices X and/or Y of right or left
eigenvectors of A;Bð Þ, or the products ZX and/or QY , where Z and Q are two matrices supplied by
you. Usually, Q and Z are chosen as the orthogonal matrices returned by F08XEF (DHGEQZ).
Equivalently, Q and Z are the left and right Schur vectors of the matrix pair supplied to F08XEF
(DHGEQZ). In that case, QY and ZX are the left and right generalized eigenvectors, respectively, of
the matrix pair supplied to F08XEF (DHGEQZ).

A must be block upper triangular; with 1 by 1 and 2 by 2 diagonal blocks. Corresponding to each 2 by
2 diagonal block is a complex conjugate pair of eigenvalues and eigenvectors; only one eigenvector of
the pair is computed, namely the one corresponding to the eigenvalue with positive imaginary part.
Each 1 by 1 block gives a real generalized eigenvalue and a corresponding eigenvector.
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Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J.
Numer. Anal. 10 241–256

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies the required sets of generalized eigenvectors.

SIDE ¼ R
Only right eigenvectors are computed.

SIDE ¼ L
Only left eigenvectors are computed.

SIDE ¼ B
Both left and right eigenvectors are computed.

Constraint: SIDE ¼ B , L or R .

2: HOWMNY – CHARACTER(1) Input

On entry: specifies further details of the required generalized eigenvectors.

HOWMNY ¼ A
All right and/or left eigenvectors are computed.

HOWMNY ¼ B
All right and/or left eigenvectors are computed; they are backtransformed using the input
matrices supplied in arrays VR and/or VL.

HOWMNY ¼ S
Selected right and/or left eigenvectors, defined by the array SELECT, are computed.

Constraint: HOWMNY ¼ A , B or S .

3: SELECTð�Þ – LOGICAL array Input

Note: the dimension of the array SELECT must be at least max 1;Nð Þ if HOWMNY ¼ S , and at
least 1 otherwise.

On entry: specifies the eigenvectors to be computed if HOWMNY ¼ S . To select the generalized
eigenvector corresponding to the jth generalized eigenvalue, the jth element of SELECT should
be set to .TRUE.; if the eigenvalue corresponds to a complex conjugate pair, then real and
imaginary parts of eigenvectors corresponding to the complex conjugate eigenvalue pair will be
computed.

If HOWMNY ¼ A or B , SELECT is not referenced.

Constraint: if HOWMNY ¼ S , SELECTðjÞ ¼ :TRUE: or :FALSE:, for j ¼ 1; 2; . . . ; n.

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.
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5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix pair A;Bð Þ must be in the generalized Schur form. Usually, this is the
matrix A returned by F08XEF (DHGEQZ).

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YKF
(DTGEVC) is called.

Constraint: LDA � max 1;Nð Þ.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix pair A;Bð Þ must be in the generalized Schur form. If A has a 2 by 2
diagonal block then the corresponding 2 by 2 block of B must be diagonal with positive
elements. Usually, this is the matrix B returned by F08XEF (DHGEQZ).

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YKF
(DTGEVC) is called.

Constraint: LDB � max 1;Nð Þ.

9: VLðLDVL; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VL must be at least max 1;MMð Þ if SIDE ¼ L or B
and at least 1 if SIDE ¼ R .

On entry: if HOWMNY ¼ B and SIDE ¼ L or B , VL must be initialized to an n by n matrix
Q. Usually, this is the orthogonal matrix Q of left Schur vectors returned by F08XEF
(DHGEQZ).

On exit: if SIDE ¼ L or B , VL contains:

if HOWMNY ¼ A , the matrix Y of left eigenvectors of A;Bð Þ;
if HOWMNY ¼ B , the matrix QY ;

if HOWMNY ¼ S , the left eigenvectors of A;Bð Þ specified by SELECT, stored
consecutively in the columns of the array VL, in the same order as their corresponding
eigenvalues.

A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive
columns, the first holding the real part, and the second the imaginary part.

If SIDE ¼ R , VL is not referenced.

10: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08YKF (DTGEVC) is called.

Constraints:

if SIDE ¼ L or B , LDVL � max 1;Nð Þ;
if SIDE ¼ R , LDVL � 1.
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11: VRðLDVR; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VR must be at least max 1;MMð Þ if SIDE ¼ R or B
and at least 1 if SIDE ¼ L .

On entry: if HOWMNY ¼ B and SIDE ¼ R or B , VR must be initialized to an n by n matrix
Z. Usually, this is the orthogonal matrix Z of right Schur vectors returned by F08XEF
(DHGEQZ).

On exit: if SIDE ¼ R or B , VR contains:

if HOWMNY ¼ A , the matrix X of right eigenvectors of A;Bð Þ;
if HOWMNY ¼ B , the matrix ZX;

if HOWMNY ¼ S , the right eigenvectors of A;Bð Þ specified by SELECT, stored
consecutively in the columns of the array VR, in the same order as their corresponding
eigenvalues.

A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive
columns, the first holding the real part, and the second the imaginary part.

If SIDE ¼ L , VR is not referenced.

12: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08YKF (DTGEVC) is called.

Constraints:

if SIDE ¼ R or B , LDVR � max 1;Nð Þ;
if SIDE ¼ L , LDVR � 1.

13: MM – INTEGER Input

On entry: the number of columns in the arrays VL and/or VR.

Constraints:

if HOWMNY ¼ A or B , MM � N;
if HOWMNY ¼ S , MM must not be less than the number of requested eigenvectors.

14: M – INTEGER Output

On exit: the number of columns in the arrays VL and/or VR actually used to store the
eigenvectors. If HOWMNY ¼ A or B , M is set to N. Each selected real eigenvector occupies
one column and each selected complex eigenvector occupies two columns.

15: WORKð6� NÞ – REAL (KIND=nag_wp) array Workspace

16: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

If INFO ¼ i, the 2 by 2 block INFO : INFOþ 1ð Þ does not have complex eigenvalues.
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7 Accuracy

It is beyond the scope of this manual to summarise the accuracy of the solution of the generalized
eigenvalue problem. Interested readers should consult Section 4.11 of the LAPACK Users' Guide (see
Anderson et al. (1999)) and Chapter 6 of Stewart and Sun (1990).

8 Parallelism and Performance

F08YKF (DTGEVC) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F08YKF (DTGEVC) is the sixth step in the solution of the real generalized eigenvalue problem and is
called after F08XEF (DHGEQZ).

The complex analogue of this routine is F08YXF (ZTGEVC).

10 Example

This example computes the � and � arguments, which defines the generalized eigenvalues and the
corresponding left and right eigenvectors, of the matrix pair A;Bð Þ given by

A ¼

1:0 1:0 1:0 1:0 1:0
2:0 4:0 8:0 16:0 32:0
3:0 9:0 27:0 81:0 243:0
4:0 16:0 64:0 256:0 1024:0
5:0 25:0 125:0 625:0 3125:0

0BBB@
1CCCA and B ¼

1:0 2:0 3:0 4:0 5:0
1:0 4:0 9:0 16:0 25:0
1:0 8:0 27:0 64:0 125:0
1:0 16:0 81:0 256:0 625:0
1:0 32:0 243:0 1024:0 3125:0

0BBB@
1CCCA:

To compute generalized eigenvalues, it is required to call five routines: F08WHF (DGGBAL) to balance
the matrix, F08AEF (DGEQRF) to perform the QR factorization of B, F08AGF (DORMQR) to apply
Q to A, F08WEF (DGGHRD) to reduce the matrix pair to the generalized Hessenberg form and
F08XEF (DHGEQZ) to compute the eigenvalues via the QZ algorithm.

The computation of generalized eigenvectors is done by calling F08YKF (DTGEVC) to compute the
eigenvectors of the balanced matrix pair. The routine F08WJF (DGGBAK) is called to backward
transform the eigenvectors to the user-supplied matrix pair. If both left and right eigenvectors are
required then F08WJF (DGGBAK) must be called twice.

10.1 Program Text

! F08YKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f08ykfe_mod

! F08YKF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: normalize

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
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Integer, Parameter, Public :: nin = 5, nout = 6
Contains

Subroutine normalize(n,alphai,v,ldv)

! .. Use Statements ..
Use nag_library, Only: dnrm2

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: ldv, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: alphai(n)
Real (Kind=nag_wp), Intent (Inout) :: v(ldv,*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, r, r1, r2, v1, v2
Integer :: i, j, k

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..

Do j = 1, n

If (alphai(j)>=0.0_nag_wp) Then
If (alphai(j)==0.0_nag_wp) Then

! Real eigenvalue
! The 2-norm of Q is calculated using dnrm2 (f06ejf).

r = dnrm2(n,v(1,j),1)
v(1:n,j) = v(1:n,j)/r

Else
! Complex eigenvalue (positive imaginary part)
! Make largest element real and positive

r1 = dnrm2(n,v(1,j),1)
r2 = dnrm2(n,v(1,j+1),1)
r1 = sqrt(r1**2+r2**2)
r2 = -1.0_nag_wp
Do i = 1, n

r = v(i,j)**2 + v(i,j+1)**2
If (r>r2) Then

r2 = r
k = i

End If
End Do
r = r1*sqrt(r2)
a = v(k,j)/r
b = v(k,j+1)/r
Do i = 1, n

v1 = v(i,j)
v2 = v(i,j+1)
v(i,j) = v1*a + v2*b
v(i,j+1) = v2*a - v1*b

End Do
End If

End If
End Do

End Subroutine normalize
End Module f08ykfe_mod
Program f08ykfe

! F08YKF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgeqrf, dggbak, dggbal, dgghrd, dhgeqz, dorgqr, &

dormqr, dtgevc, f06qff, f06qhf, nag_wp, x04cbf
Use f08ykfe_mod, Only: nin, normalize, nout, one, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, icols, ifail, ihi, ilo, info, &

irows, jwork, lda, ldb, ldvl, ldvr, &
lwork, m, n

Logical :: ileft, iright
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Character (1) :: compq, compz, howmny, job, side
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), alphai(:), alphar(:), &
b(:,:), beta(:), lscale(:), &
rscale(:), tau(:), vl(:,:), vr(:,:), &
work(:)

Logical, Allocatable :: select(:)
Character (0) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: nint

! .. Executable Statements ..
Write (nout,*) ’F08YKF Example Program Results’
Flush (nout)

! ileft is TRUE if left eigenvectors are required
! iright is TRUE if right eigenvectors are required

ileft = .True.
iright = .True.

! Skip heading in data file

Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldvl = n
ldvr = n
lwork = 6*n
Allocate (a(lda,n),alphai(n),alphar(n),b(ldb,n),beta(n),lscale(n), &

rscale(n),tau(n),vl(ldvl,ldvl),vr(ldvr,ldvr),work(lwork),select(n))

! READ matrix A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! READ matrix B from data file
Read (nin,*)(b(i,1:n),i=1,n)

! Balance matrix pair (A,B)
job = ’B’

! The NAG name equivalent of dggbal is f08whf
Call dggbal(job,n,a,lda,b,ldb,ilo,ihi,lscale,rscale,work,info)

! Matrix A after balancing
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04cbf(’General’,’ ’,n,n,a,lda,’F8.4’,’Matrix A after balancing’, &

’I’,rlabs,’I’,clabs,80,0,ifail)
Write (nout,*)
Flush (nout)

! Matrix B after balancing
ifail = 0
Call x04cbf(’General’,’ ’,n,n,b,ldb,’F8.4’,’Matrix B after balancing’, &

’I’,rlabs,’I’,clabs,80,0,ifail)
Write (nout,*)
Flush (nout)

! Reduce B to triangular form using QR
irows = ihi + 1 - ilo
icols = n + 1 - ilo

! The NAG name equivalent of dgeqrf is f08aef
Call dgeqrf(irows,icols,b(ilo,ilo),ldb,tau,work,lwork,info)

! Apply the orthogonal transformation to matrix A
! The NAG name equivalent of dormqr is f08agf

Call dormqr(’L’,’T’,irows,icols,irows,b(ilo,ilo),ldb,tau,a(ilo,ilo),lda, &
work,lwork,info)

! Initialize VL (if left eigenvectors are required)
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If (ileft) Then

Call f06qhf(’General’,n,n,zero,one,vl,ldvl)
Call f06qff(’Lower’,irows-1,irows-1,b(ilo+1,ilo),ldb,vl(ilo+1,ilo), &

ldvl)

! The NAG name equivalent of dorgqr is f08aff
Call dorgqr(irows,irows,irows,vl(ilo,ilo),ldvl,tau,work,lwork,info)

End If

! Initialize VR (if right eigenvectors are required)
If (iright) Then

Call f06qhf(’General’,n,n,zero,one,vr,ldvr)
End If

! Compute the generalized Hessenberg form of (A,B)
compq = ’V’
compz = ’V’

! The NAG name equivalent of dgghrd is f08wef
Call dgghrd(compq,compz,n,ilo,ihi,a,lda,b,ldb,vl,ldvl,vr,ldvr,info)

! Matrix A in generalized Hessenberg form
ifail = 0
Call x04cbf(’General’,’ ’,n,n,a,lda,’F8.4’,’Matrix A in Hessenberg form’ &

,’I’,rlabs,’I’,clabs,80,0,ifail)
Write (nout,*)
Flush (nout)

! Matrix B in generalized Hessenberg form
ifail = 0
Call x04cbf(’General’,’ ’,n,n,b,ldb,’F8.4’,’Matrix B in Hessenberg form’ &

,’I’,rlabs,’I’,clabs,80,0,ifail)

! Routine DHGEQZ
! Workspace query: jwork = -1

jwork = -1
job = ’S’

! The NAG name equivalent of dhgeqz is f08xef
Call dhgeqz(job,compq,compz,n,ilo,ihi,a,lda,b,ldb,alphar,alphai,beta,vl, &

ldvl,vr,ldvr,work,jwork,info)

Write (nout,*)
Write (nout,99999) nint(work(1))
Write (nout,99998) lwork
Write (nout,*)
Write (nout,99997)
Write (nout,99996)

! Compute the generalized Schur form
! if the workspace lwork is adequate
! The Schur form also gives parameters
! required to compute generalized eigenvalues

If (nint(work(1))<=lwork) Then

! The NAG name equivalent of dhgeqz is f08xef
Call dhgeqz(job,compq,compz,n,ilo,ihi,a,lda,b,ldb,alphar,alphai,beta, &

vl,ldvl,vr,ldvr,work,lwork,info)

! Print the generalized eigenvalues

Do i = 1, n
If (beta(i)/=0.0E0_nag_wp) Then

Write (nout,99995) i, ’(’, alphar(i)/beta(i), ’,’, &
alphai(i)/beta(i), ’)’

Else
Write (nout,99996) i

End If
End Do
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Write (nout,*)
Flush (nout)

! Compute left and right generalized eigenvectors
! of the balanced matrix

howmny = ’B’
If (ileft .And. iright) Then

side = ’B’
Else If (ileft) Then

side = ’L’
Else If (iright) Then

side = ’R’
End If

! The NAG name equivalent of dtgevc is f08ykf
Call dtgevc(side,howmny,select,n,a,lda,b,ldb,vl,ldvl,vr,ldvr,n,m,work, &

info)

If (iright) Then

! Compute right eigenvectors of the original matrix

job = ’B’
side = ’R’

! The NAG name equivalent of dggbak is f08wjf
Call dggbak(job,side,n,ilo,ihi,lscale,rscale,n,vr,ldvr,info)

Call normalize(n,alphai,vr,ldvr)
! Print the right eigenvectors

ifail = 0
Call x04cbf(’General’,’ ’,n,n,vr,ldvr,’F8.4’,’Right eigenvectors’, &

’I’,rlabs,’I’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

End If

! Compute left eigenvectors of the original matrix

If (ileft) Then
job = ’B’
side = ’L’

! The NAG name equivalent of dggbak is f08wjf
Call dggbak(job,side,n,ilo,ihi,lscale,rscale,n,vl,ldvl,info)

Call normalize(n,alphai,vl,ldvl)
! Print the left eigenvectors

ifail = 0
Call x04cbf(’General’,’ ’,n,n,vl,ldvl,’F8.4’,’Left eigenvectors’, &

’I’,rlabs,’I’,clabs,80,0,ifail)

End If
Else

Write (nout,99994)
End If

99999 Format (1X,’Minimal required LWORK = ’,I6)
99998 Format (1X,’Actual value of LWORK = ’,I6)
99997 Format (1X,’Generalized eigenvalues’)
99996 Format (1X,I4,5X,’Infinite eigenvalue’)
99995 Format (1X,I4,5X,A,F7.3,A,F7.3,A)
99994 Format (1X,’Insufficient workspace for array WORK’,/,’ in F08XEF/’, &

’DHGEQZ’)
End Program f08ykfe
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10.2 Program Data

F08YKF Example Program Data
5 :Value of N

1.00 1.00 1.00 1.00 1.00
2.00 4.00 8.00 16.00 32.00
3.00 9.00 27.00 81.00 243.00
4.00 16.00 64.00 256.00 1024.00
5.00 25.00 125.00 625.00 3125.00 :End of matrix A
1.00 2.00 3.00 4.00 5.00
1.00 4.00 9.00 16.00 25.00
1.00 8.00 27.00 64.00 125.00
1.00 16.00 81.00 256.00 625.00
1.00 32.00 243.00 1024.00 3125.00 :End of matrix B

10.3 Program Results

F08YKF Example Program Results
Matrix A after balancing

1 2 3 4 5
1 1.0000 1.0000 0.1000 0.1000 0.1000
2 2.0000 4.0000 0.8000 1.6000 3.2000
3 0.3000 0.9000 0.2700 0.8100 2.4300
4 0.4000 1.6000 0.6400 2.5600 10.2400
5 0.5000 2.5000 1.2500 6.2500 31.2500

Matrix B after balancing
1 2 3 4 5

1 1.0000 2.0000 0.3000 0.4000 0.5000
2 1.0000 4.0000 0.9000 1.6000 2.5000
3 0.1000 0.8000 0.2700 0.6400 1.2500
4 0.1000 1.6000 0.8100 2.5600 6.2500
5 0.1000 3.2000 2.4300 10.2400 31.2500

Matrix A in Hessenberg form
1 2 3 4 5

1 -2.1898 -0.3181 2.0547 4.7371 -4.6249
2 -0.8395 -0.0426 1.7132 7.5194-17.1850
3 0.0000 -0.2846 -1.0101 -7.5927 26.4499
4 0.0000 0.0000 0.0376 1.4070 -3.3643
5 0.0000 0.0000 0.0000 0.3813 -0.9937

Matrix B in Hessenberg form
1 2 3 4 5

1 -1.4248 -0.3476 2.1175 5.5813 -3.9269
2 0.0000 -0.0782 0.1189 8.0940-15.2928
3 0.0000 0.0000 1.0021-10.9356 26.5971
4 0.0000 0.0000 0.0000 0.5820 -0.0730
5 0.0000 0.0000 0.0000 0.0000 0.5321

Minimal required LWORK = 5
Actual value of LWORK = 30

Generalized eigenvalues

1 ( -2.437, 0.000)
2 ( 0.607, 0.795)
3 ( 0.607, -0.795)
4 ( 1.000, 0.000)
5 ( -0.410, 0.000)

Right eigenvectors
1 2 3 4 5

1 -0.3083 0.7026 0.0000 -0.3985 -0.3747
2 0.6622 -0.5582 -0.3678 0.7287 0.7339
3 -0.6244 0.1600 0.1763 -0.5380 -0.5394
4 0.2732 -0.0211 -0.0492 0.1423 0.1720
5 -0.0438 0.0010 0.0072 -0.0199 -0.0192

Left eigenvectors

F08YKF NAG Library Manual

F08YKF.10 Mark 26



1 2 3 4 5
1 -0.3747 0.7026 0.0000 -0.3985 0.3083
2 0.7339 -0.5582 -0.3678 0.7287 -0.6622
3 -0.5394 0.1600 0.1763 -0.5380 0.6244
4 0.1720 -0.0211 -0.0492 0.1423 -0.2732
5 -0.0192 0.0010 0.0072 -0.0199 0.0438
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NAG Library Routine Document

F08YLF (DTGSNA)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YLF (DTGSNA) estimates condition numbers for specified eigenvalues and/or eigenvectors of a
matrix pair in generalized real Schur form.

2 Specification

SUBROUTINE F08YLF (JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL, VR,
LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)

&

INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, IWORK(*),
INFO

&

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*), S(*),
DIF(*), WORK(max(1,LWORK))

&

LOGICAL SELECT(*)
CHARACTER(1) JOB, HOWMNY

The routine may be called by its LAPACK name dtgsna.

3 Description

F08YLF (DTGSNA) estimates condition numbers for specified eigenvalues and/or right eigenvectors of
an n by n matrix pair S; Tð Þ in real generalized Schur form. The routine actually returns estimates of
the reciprocals of the condition numbers in order to avoid possible overflow.

The pair S; Tð Þ are in real generalized Schur form if S is block upper triangular with 1 by 1 and 2 by 2
diagonal blocks and T is upper triangular as returned, for example, by F08XAF (DGGES) or F08XBF
(DGGESX), or F08XEF (DHGEQZ) with JOB ¼ S . The diagonal elements, or blocks, define the
generalized eigenvalues �i; �ið Þ, for i ¼ 1; 2; . . . ; n, of the pair S; Tð Þ and the eigenvalues are given by

�i ¼ �i=�i;

so that

�iSxi ¼ �iTxi or Sxi ¼ �iTxi;

where xi is the corresponding (right) eigenvector.

If S and T are the result of a generalized Schur factorization of a matrix pair A;Bð Þ

A ¼ QSZT; B ¼ QTZT

then the eigenvalues and condition numbers of the pair S; Tð Þ are the same as those of the pair A;Bð Þ.
Let �; �ð Þ 6¼ 0; 0ð Þ be a simple generalized eigenvalue of A;Bð Þ. Then the reciprocal of the condition
number of the eigenvalue � ¼ �=� is defined as

s �ð Þ ¼
yTAxj j2 þ yTBxj j2

� �1=2
xk k2 yk k2

� � ;

where x and y are the right and left eigenvectors of A;Bð Þ corresponding to �. If both � and � are zero,
then A;Bð Þ is singular and s �ð Þ ¼ �1 is returned.

The definition of the reciprocal of the estimated condition number of the right eigenvector x and the left
eigenvector y corresponding to the simple eigenvalue � depends upon whether � is a real eigenvalue, or
one of a complex conjugate pair.
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If the eigenvalue � is real and U and V are orthogonal transformations such that

UT A;Bð ÞV ¼ S; Tð Þ ¼ � �
0 S22

� �
� �
0 T22

� �
;

where S22 and T22 are n� 1ð Þ by n� 1ð Þ matrices, then the reciprocal condition number is given by

Dif xð Þ 	 Dif yð Þ ¼ Dif �; �ð Þ; S22; T22ð Þð Þ ¼ �min Zð Þ;

where �min Zð Þ denotes the smallest singular value of the 2 n� 1ð Þ by 2 n� 1ð Þ matrix

Z ¼ �� I �1� S22
� � I �1� T22

� �
and � is the Kronecker product.

If � is part of a complex conjugate pair and U and V are orthogonal transformations such that

UT A;Bð ÞV ¼ S; Tð Þ ¼ S11 �
0 S22

� �
T11 �
0 T22

� �
;

where S11 and T11 are two by two matrices, S22 and T22 are n� 2ð Þ by n� 2ð Þ matrices, and S11; T11ð Þ
corresponds to the complex conjugate eigenvalue pair �, ��, then there exist unitary matrices U1 and V1
such that

UH
1 S11V1 ¼ s11 s12

0 s22

� �
and UH

1 T11V1 ¼
t11 t12
0 t22

� �
:

The eigenvalues are given by � ¼ s11=t11 and �� ¼ s22=t22. Then the Frobenius norm-based, estimated
reciprocal condition number is bounded by

Dif xð Þ 	 Dif yð Þ � min d1;max 1; Re s11ð Þ=Re s22ð Þj jð Þ; d2ð Þ

where Re zð Þ denotes the real part of z, d1 ¼ Dif s11; t11ð Þ; s22; t22ð Þð Þ ¼ �min Z1ð Þ, Z1 is the complex two
by two matrix

Z1 ¼ s11 �s22
t11 �t22

� �
;

and d2 is an upper bound on Dif S11; T11ð Þ; S22; T22ð Þð Þ; i.e., an upper bound on �min Z2ð Þ, where Z2 is
the 2n� 2ð Þ by 2n� 2ð Þ matrix

Z2 ¼ ST11 � I �I � S22
TT11 � I �I � T22

� �
:

See Sections 2.4.8 and 4.11 of Anderson et al. (1999) and KÔgstrÎm and Poromaa (1996) for further
details and information.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

KÔgstrÎm B and Poromaa P (1996) LAPACK-style algorithms and software for solving the generalized
Sylvester equation and estimating the separation between regular matrix pairs ACM Trans. Math.
Software 22 78–103
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5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether condition numbers are required for eigenvalues and/or eigenvectors.

JOB ¼ E
Condition numbers for eigenvalues only are computed.

JOB ¼ V
Condition numbers for eigenvectors only are computed.

JOB ¼ B
Condition numbers for both eigenvalues and eigenvectors are computed.

Constraint: JOB ¼ E , V or B .

2: HOWMNY – CHARACTER(1) Input

On entry: indicates how many condition numbers are to be computed.

HOWMNY ¼ A
Condition numbers for all eigenpairs are computed.

HOWMNY ¼ S
Condition numbers for selected eigenpairs (as specified by SELECT) are computed.

Constraint: HOWMNY ¼ A or S .

3: SELECTð�Þ – LOGICAL array Input

Note: the dimension of the array SELECT must be at least max 1;Nð Þ if HOWMNY ¼ S , and at
least 1 otherwise.

On entry: specifies the eigenpairs for which condition numbers are to be computed if
HOWMNY ¼ S . To select condition numbers for the eigenpair corresponding to the real
eigenvalue �j, SELECTðjÞ must be set .TRUE.. To select condition numbers corresponding to a
complex conjugate pair of eigenvalues �j and �jþ1, SELECTðjÞ and/or SELECTðjþ 1Þ must be
set to .TRUE..

If HOWMNY ¼ A , SELECT is not referenced.

4: N – INTEGER Input

On entry: n, the order of the matrix pair S; Tð Þ.
Constraint: N � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the upper quasi-triangular matrix S.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YLF
(DTGSNA) is called.

Constraint: LDA � max 1;Nð Þ.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the upper triangular matrix T .
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8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YLF
(DTGSNA) is called.

Constraint: LDB � max 1;Nð Þ.

9: VLðLDVL; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array VL must be at least max 1;MMð Þ if JOB ¼ E or B , and
at least 1 otherwise.

On entry: if JOB ¼ E or B , VL must contain left eigenvectors of S; Tð Þ, corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive
columns of VL, as returned by F08WAF (DGGEV) or F08YKF (DTGEVC).

If JOB ¼ V , VL is not referenced.

10: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08YLF (DTGSNA) is called.

Constraints:

if JOB ¼ E or B , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

11: VRðLDVR; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array VR must be at least max 1;MMð Þ if JOB ¼ E or B , and
at least 1 otherwise.

On entry: if JOB ¼ E or B , VR must contain right eigenvectors of S; Tð Þ, corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive
columns of VR, as returned by F08WAF (DGGEV) or F08YKF (DTGEVC).

If JOB ¼ V , VR is not referenced.

12: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08YLF (DTGSNA) is called.

Constraints:

if JOB ¼ E or B , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

13: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least max 1;MMð Þ if JOB ¼ E or B , and at least 1
otherwise.

On exit: if JOB ¼ E or B , the reciprocal condition numbers of the selected eigenvalues, stored
in consecutive elements of the array. For a complex conjugate pair of eigenvalues two
consecutive elements of S are set to the same value. Thus SðjÞ, DIFðjÞ, and the jth columns of
VL and VR all correspond to the same eigenpair (but not in general the jth eigenpair, unless all
eigenpairs are selected).

If JOB ¼ V , S is not referenced.
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14: DIFð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array DIF must be at least max 1;MMð Þ if JOB ¼ V or B , and at
least 1 otherwise.

On exit: if JOB ¼ V or B , the estimated reciprocal condition numbers of the selected
eigenvectors, stored in consecutive elements of the array. For a complex eigenvector two
consecutive elements of DIF are set to the same value. If the eigenvalues cannot be reordered to
compute DIFðjÞ, DIFðjÞ is set to 0; this can only occur when the true value would be very small
anyway.

If JOB ¼ E , DIF is not referenced.

15: MM – INTEGER Input

On entry: the number of elements in the arrays S and DIF.

Constraints:

if HOWMNY ¼ A , MM � N;
otherwise MM � M.

16: M – INTEGER Output

On exit: the number of elements of the arrays S and DIF used to store the specified condition
numbers; for each selected real eigenvalue one element is used, and for each selected complex
conjugate pair of eigenvalues, two elements are used. If HOWMNY ¼ A , M is set to N.

17: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

18: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08YLF (DTGSNA) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum size
of the WORK array, returns this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

Constraints: if LWORK 6¼ �1,
if JOB ¼ V or B , LWORK � 2� N� Nþ 2ð Þ þ 16;
otherwise LWORK � max 1;Nð Þ.

19: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least Nþ 6ð Þ.
If JOB ¼ E , IWORK is not referenced.

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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7 Accuracy

None.

8 Parallelism and Performance

F08YLF (DTGSNA) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

An approximate asymptotic error bound on the chordal distance between the computed eigenvalue ~�
and the corresponding exact eigenvalue � is

� ~�; �
� �

� � A;Bð Þk kF=S �ð Þ

where � is the machine precision.

An approximate asymptotic error bound for the right or left computed eigenvectors ~x or ~y
corresponding to the right and left eigenvectors x and y is given by

� ~z; zð Þ � � A;Bð Þk kF=Dif :
The complex analogue of this routine is F08YYF (ZTGSNA).

10 Example

This example estimates condition numbers and approximate error estimates for all the eigenvalues and
eigenvalues and right eigenvectors of the pair S; Tð Þ given by

S ¼
4:0 1:0 1:0 2:0
0 3:0 �1:0 1:0
0 1:0 3:0 1:0
0 0 0 6:0

0B@
1CA and T ¼

2:0 1:0 1:0 3:0
0 1:0 0:0 1:0
0 0 1:0 1:0
0 0 0 2:0

0B@
1CA:

The eigenvalues and eigenvectors are computed by calling F08YKF (DTGEVC).

10.1 Program Text

Program f08ylfe

! F08YLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtgevc, dtgsna, f06bnf, f06raf, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, snorm, stnrm, tnorm
Integer :: i, info, lda, ldb, ldvl, ldvr, &

lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), dif(:), s(:), &
vl(:,:), vr(:,:), work(:)

Integer, Allocatable :: iwork(:)
Logical :: select(1)
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! .. Executable Statements ..
Write (nout,*) ’F08YLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldvl = n
ldvr = n
lwork = 2*n*(n+2) + 16
Allocate (a(lda,n),b(ldb,n),dif(n),s(n),vl(ldvl,n),vr(ldvr,n), &

work(lwork),iwork(n+6))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Calculate the left and right generalized eigenvectors of the
! pair (A,B). Note that DTGEVC requires WORK to be of dimension
! at least 6*n.

! The NAG name equivalent of dtgevc is f08ykf
Call dtgevc(’Both’,’All’,select,n,a,lda,b,ldb,vl,ldvl,vr,ldvr,n,m,work, &

info)

If (info>0) Then
Write (nout,99999) info, info + 1

Else

! Estimate condition numbers for all the generalized eigenvalues
! and right eigenvectors of the pair (A,B)

! The NAG name equivalent of dtgsna is f08ylf
Call dtgsna(’Both’,’All’,select,n,a,lda,b,ldb,vl,ldvl,vr,ldvr,s,dif,n, &

m,work,lwork,iwork,info)

! Print condition numbers of eigenvalues and right eigenvectors

Write (nout,*) ’S’
Write (nout,99998) s(1:m)
Write (nout,*)
Write (nout,*) ’DIF’
Write (nout,99998) dif(1:m)

! Calculate approximate error estimates

! Compute the 1-norms of A and B and then compute
! SQRT(snorm**2 + tnorm**2)

eps = x02ajf()
snorm = f06raf(’1-norm’,n,n,a,lda,work)
tnorm = f06raf(’1-norm’,n,n,b,ldb,work)
stnrm = f06bnf(snorm,tnorm)
Write (nout,*)
Write (nout,*) ’Approximate error estimates for eigenvalues of (A,B)’
Write (nout,99998)(eps*stnrm/s(i),i=1,m)
Write (nout,*)
Write (nout,*) ’Approximate error estimates for right ’, &

’eigenvectors of (A,B)’
Write (nout,99998)(eps*stnrm/dif(i),i=1,m)

End If

99999 Format (’ The 2-by-2 block (’,I5,’:’,I5,’) does not have a co’, &
’mplex eigenvalue’)

99998 Format ((3X,1P,7E11.1))
End Program f08ylfe
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10.2 Program Data

F08YLF Example Program Data
4 :Value of N
4.0 1.0 1.0 2.0
0.0 3.0 -1.0 1.0
0.0 1.0 3.0 1.0
0.0 0.0 0.0 6.0 :End of matrix A
2.0 1.0 1.0 3.0
0.0 1.0 0.0 1.0
0.0 0.0 1.0 1.0
0.0 0.0 0.0 2.0 :End of matrix B

10.3 Program Results

F08YLF Example Program Results

S
1.6E+00 1.7E+00 1.7E+00 1.4E+00

DIF
5.4E-01 1.5E-01 1.5E-01 1.2E-01

Approximate error estimates for eigenvalues of (A,B)
8.7E-16 7.8E-16 7.8E-16 9.9E-16

Approximate error estimates for right eigenvectors of (A,B)
2.5E-15 9.0E-15 9.0E-15 1.1E-14
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NAG Library Routine Document

F08YSF (ZTGSJA)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YSF (ZTGSJA) computes the generalized singular value decomposition (GSVD) of two complex
upper trapezoidal matrices A and B, where A is an m by n matrix and B is a p by n matrix.

A and B are assumed to be in the form returned by F08VSF (ZGGSVP) or F08VUF (ZGGSVP3).

2 Specification

SUBROUTINE F08YSF (JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
WORK, NCYCLE, INFO)

&
&

INTEGER M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE,
INFO

&

REAL (KIND=nag_wp) TOLA, TOLB, ALPHA(N), BETA(N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*),

Q(LDQ,*), WORK(2*N)
&

CHARACTER(1) JOBU, JOBV, JOBQ

The routine may be called by its LAPACK name ztgsja.

3 Description

F08YSF (ZTGSJA) computes the GSVD of the matrices A and B which are assumed to have the form
as returned by F08VSF (ZGGSVP) or F08VUF (ZGGSVP3)

A ¼

1CCCCA
0BBBB@
n� k� l k l

k 0 A12 A13

l 0 0 A23

m� k� l 0 0 0

; if m� k� l � 0;

1CA
0B@
n� k� l k l

k 0 A12 A13

m� k 0 0 A23

; if m� k� l < 0;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

B ¼

1CA
0B@
n� k� l k l

l 0 0 B13

p� l 0 0 0

;

where the k by k matrix A12 and the l by l matrix B13 are nonsingular upper triangular, A23 is l by l
upper triangular if m� k� l � 0 and is m� kð Þ by l upper trapezoidal otherwise.
F08YSF (ZTGSJA) computes unitary matrices Q, U and V , diagonal matrices D1 and D2, and an upper
triangular matrix R such that

UHAQ ¼ D1 0 R
� �

; V HBQ ¼ D2 0 R
� �

:
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Optionally Q, U and V may or may not be computed, or they may be premultiplied by matrices Q1, U1

and V1 respectively.

If m� k� lð Þ � 0 then D1, D2 and R have the form

D1 ¼

1A0@
k l

k I 0
l 0 C

m� k� l 0 0
;

D2 ¼
�� k l

l 0 S
p� l 0 0

;

R ¼
�� k l

k R11 R12
l 0 R22

;

where C ¼ diag �kþ1; ; ; . . . ; ; ; �kþlð Þ; S ¼ diag �kþ1; ; ; . . . ; ; ; �kþlð Þ.
If m� k� lð Þ < 0 then D1, D2 and R have the form

D1 ¼
�� k m� k kþ l�m

k I 0 0
m� k 0 C 0

;

D2 ¼

1A0@
k m� k kþ l�m

m� k 0 S 0
kþ l�m 0 0 I

p� l 0 0 0
;

R ¼

1A0@
k m� k kþ l�m

k R11 R12 R13
m� k 0 R22 R23

kþ l�m 0 0 R33

;

where C ¼ diag �kþ1; ; ; . . . ; ; ; �mð Þ; S ¼ diag �kþ1; ; ; . . . ; ; ; �mð Þ.
In both cases the diagonal matrix C has real non-negative diagonal elements, the diagonal matrix S has
real positive diagonal elements, so that S is nonsingular, and C2 þ S2 ¼ 1. See Section 2.3.5.3 of
Anderson et al. (1999) for further information.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: JOBU – CHARACTER(1) Input

On entry: if JOBU ¼ U , U must contain a unitary matrix U1 on entry, and the product U1U is
returned.

If JOBU ¼ I , U is initialized to the unit matrix, and the unitary matrix U is returned.

If JOBU ¼ N , U is not computed.

Constraint: JOBU ¼ U , I or N .
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2: JOBV – CHARACTER(1) Input

On entry: if JOBV ¼ V , V must contain a unitary matrix V1 on entry, and the product V1V is
returned.

If JOBV ¼ I , V is initialized to the unit matrix, and the unitary matrix V is returned.

If JOBV ¼ N , V is not computed.

Constraint: JOBV ¼ V , I or N .

3: JOBQ – CHARACTER(1) Input

On entry: if JOBQ ¼ Q , Q must contain a unitary matrix Q1 on entry, and the product Q1Q is
returned.

If JOBQ ¼ I , Q is initialized to the unit matrix, and the unitary matrix Q is returned.

If JOBQ ¼ N , Q is not computed.

Constraint: JOBQ ¼ Q , I or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

6: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

7: K – INTEGER Input
8: L – INTEGER Input

On entry: K and L specify the sizes, k and l, of the subblocks of A and B, whose GSVD is to be
computed by F08YSF (ZTGSJA).

9: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m� k� l � 0, Að1 : kþ l; n� k� lþ 1 : nÞ contains the kþ lð Þ by kþ lð Þ upper
triangular matrix R.

If m� k� l < 0, Að1 : m;n� k� lþ 1 : nÞ contains the first m rows of the kþ lð Þ by kþ lð Þ
u p p e r t r i a n g u l a r m a t r i x R, a n d t h e s u bm a t r i x R33 i s r e t u r n e d i n
Bðm� kþ 1 : l; nþm� k� lþ 1 : nÞ.

10: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YSF
(ZTGSJA) is called.

Constraint: LDA � max 1;Mð Þ.
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11: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: if m� k� l < 0, Bðm� kþ 1 : l; nþm� k� lþ 1 : nÞ contains the submatrix R33 of
R.

12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YSF
(ZTGSJA) is called.

Constraint: LDB � max 1; Pð Þ.

13: TOLA – REAL (KIND=nag_wp) Input
14: TOLB – REAL (KIND=nag_wp) Input

On entry: TOLA and TOLB are the convergence criteria for the Jacobi–Kogbetliantz iteration
procedure. Generally, they should be the same as used in the preprocessing step performed by
F08VSF (ZGGSVP) or F08VUF (ZGGSVP3), say

TOLA ¼ max M;Nð Þ Ak k�;
TOLB ¼ max P;Nð Þ Bk k�;

where � is the machine precision.

15: ALPHAðNÞ – REAL (KIND=nag_wp) array Output

On exit: see the description of BETA.

16: BETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: ALPHA and BETA contain the generalized singular value pairs of A and B;

ALPHAðiÞ ¼ 1, BETAðiÞ ¼ 0, for i ¼ 1; 2; . . . ; k, and

if m� k� l � 0, ALPHAðiÞ ¼ �i, BETAðiÞ ¼ �i, for i ¼ kþ 1; . . . ; kþ l, or
i f m� k� l < 0, ALPHAðiÞ ¼ �i, BETAðiÞ ¼ �i, f o r i ¼ kþ 1; . . . ;m a n d
ALPHAðiÞ ¼ 0, BETAðiÞ ¼ 1, for i ¼ mþ 1; . . . ; kþ l.

Furthermore, if kþ l < n, ALPHAðiÞ ¼ BETAðiÞ ¼ 0, for i ¼ kþ lþ 1; . . . ; n.

17: UðLDU; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ U or I , and at
least 1 otherwise.

On entry: if JOBU ¼ U , U must contain an m by m matrix U1 (usually the unitary matrix
returned by F08VSF (ZGGSVP) or F08VUF (ZGGSVP3)).

On exit: if JOBU ¼ U , U contains the product U1U .

If JOBU ¼ I , U contains the unitary matrix U .

If JOBU ¼ N , U is not referenced.

18: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08YSF
(ZTGSJA) is called.

Constraints:

if JOBU ¼ U or I , LDU � max 1;Mð Þ;
otherwise LDU � 1.
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19: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1; Pð Þ if JOBV ¼ V or I , and at
least 1 otherwise.

On entry: if JOBV ¼ V , V must contain an p by p matrix V1 (usually the unitary matrix returned
by F08VSF (ZGGSVP) or F08VUF (ZGGSVP3)).

On exit: if JOBV ¼ I , V contains the unitary matrix V .

If JOBV ¼ V , V contains the product V1V .

If JOBV ¼ N , V is not referenced.

20: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08YSF
(ZTGSJA) is called.

Constraints:

if JOBV ¼ V or I , LDV � max 1;Pð Þ;
otherwise LDV � 1.

21: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if JOBQ ¼ Q or I , and at
least 1 otherwise.

On entry: if JOBQ ¼ Q , Q must contain an n by n matrix Q1 (usually the unitary matrix
returned by F08VSF (ZGGSVP) or F08VUF (ZGGSVP3)).

On exit: if JOBQ ¼ I , Q contains the unitary matrix Q.

If JOBQ ¼ Q , Q contains the product Q1Q.

If JOBQ ¼ N , Q is not referenced.

22: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08YSF
(ZTGSJA) is called.

Constraints:

if JOBQ ¼ Q or I , LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

23: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

24: NCYCLE – INTEGER Output

On exit: the number of cycles required for convergence.

25: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.
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INFO ¼ 1

The procedure does not converge after 40 cycles.

7 Accuracy

The computed generalized singular value decomposition is nearly the exact generalized singular value
decomposition for nearby matrices Aþ Eð Þ and Bþ Fð Þ, where

Ek k2 ¼ O � Ak k2 and Fk k2 ¼ O � Bk k2;

and � is the machine precision. See Section 4.12 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08YSF (ZTGSJA) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F08YEF (DTGSJA).

10 Example

This example finds the generalized singular value decomposition

A ¼ U�1 0 R
� �

QH; B ¼ V�2 0 R
� �

QH;

of the matrix pair A;Bð Þ, where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA
and

B ¼ 1 0 �1 0
0 1 0 �1

� �
:

10.1 Program Text

Program f08ysfe

! F08YSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06uaf, nag_wp, x02ajf, x04dbf, zggsvp, ztgsja

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, tola, tolb
Integer :: i, ifail, info, irank, j, k, l, lda, &
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ldb, ldq, ldu, ldv, m, n, ncycle, p
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), q(:,:), tau(:), &
u(:,:), v(:,:), work(:)

Real (Kind=nag_wp), Allocatable :: alpha(:), beta(:), rwork(:)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: max, real

! .. Executable Statements ..
Write (nout,*) ’F08YSF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n),b(ldb,n),q(ldq,n),tau(n),u(ldu,m),v(ldv,p), &

work(m+3*n+p),alpha(n),beta(n),rwork(2*n),iwork(n))

! Read the m by n matrix A and p by n matrix B from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)

! Compute tola and tolb as
! tola = max(m,n)*norm(A)*macheps
! tolb = max(p,n)*norm(B)*macheps

eps = x02ajf()
tola = real(max(m,n),kind=nag_wp)*f06uaf(’One-norm’,m,n,a,lda,rwork)*eps
tolb = real(max(p,n),kind=nag_wp)*f06uaf(’One-norm’,p,n,b,ldb,rwork)*eps

! Compute the factorization of (A, B)
! (A = U1*S*(Q1**H), B = V1*T*(Q1**H))

! The NAG name equivalent of zggsvp is f08vsf
Call zggsvp(’U’,’V’,’Q’,m,p,n,a,lda,b,ldb,tola,tolb,k,l,u,ldu,v,ldv,q, &

ldq,iwork,rwork,tau,work,info)

! Compute the generalized singular value decomposition of (A, B)
! (A = U*D1*(0 R)*(Q**H), B = V*D2*(0 R)*(Q**H))

! The NAG name equivalent of ztgsja is f08ysf
Call ztgsja(’U’,’V’,’Q’,m,p,n,k,l,a,lda,b,ldb,tola,tolb,alpha,beta,u, &

ldu,v,ldv,q,ldq,work,ncycle,info)

If (info==0) Then

! Print solution

irank = k + l
Write (nout,*) ’Number of infinite generalized singular values (K)’
Write (nout,99999) k
Write (nout,*) ’Number of finite generalized singular values (L)’
Write (nout,99999) l
Write (nout,*) ’ Effective Numerical rank of (A**T B**T)**T (K+L)’
Write (nout,99999) irank
Write (nout,*)
Write (nout,*) ’Finite generalized singular values’
Write (nout,99998)(alpha(j)/beta(j),j=k+1,irank)
Write (nout,*)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
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ifail = 0
Call x04dbf(’General’,’ ’,m,m,u,ldu,’Bracketed’,’1P,E12.4’, &

’Unitary matrix U’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’General’,’ ’,p,p,v,ldv,’Bracketed’,’1P,E12.4’, &
’Unitary matrix V’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’General’,’ ’,n,n,q,ldq,’Bracketed’,’1P,E12.4’, &
’Unitary matrix Q’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

Call x04dbf(’Upper triangular’,’Non-unit’,irank,irank,a(1,n-irank+1), &
lda,’Bracketed’,’1P,E12.4’,’Nonsingular upper triangular matrix R’, &
’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) ’Number of cycles of the Kogbetliantz method’
Write (nout,99999) ncycle

Else
Write (nout,99997) ’Failure in ZTGSJA. INFO =’, info

End If

99999 Format (1X,I5)
99998 Format (3X,8(1P,E12.4))
99997 Format (1X,A,I4)

End Program f08ysfe

10.2 Program Data

F08YSF Example Program Data

6 4 2 :Values of M, N and P

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
( 0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) :End of matrix B

10.3 Program Results

F08YSF Example Program Results

Number of infinite generalized singular values (K)
2

Number of finite generalized singular values (L)
2

Effective Numerical rank of (A**T B**T)**T (K+L)
4

Finite generalized singular values
2.0720E+00 1.1058E+00

Unitary matrix U
1 2

1 ( -1.3038E-02, -3.2595E-01) ( -1.4039E-01, -2.6167E-01)
2 ( 4.2764E-01, -6.2582E-01) ( 8.6298E-02, -3.8174E-02)
3 ( -3.2595E-01, 1.6428E-01) ( 3.8163E-01, -1.8219E-01)
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4 ( 1.5906E-01, -5.2151E-03) ( -2.8207E-01, 1.9732E-01)
5 ( -1.7210E-01, -1.3038E-02) ( -5.0942E-01, -5.0319E-01)
6 ( -2.6336E-01, -2.4772E-01) ( -1.0861E-01, 2.8474E-01)

3 4
1 ( 2.5177E-01, -7.9789E-01) ( -5.0956E-02, -2.1750E-01)
2 ( -3.2188E-01, 1.6112E-01) ( 1.1979E-01, 1.6319E-01)
3 ( 1.3231E-01, -1.4565E-02) ( -5.0671E-01, 1.8615E-01)
4 ( 2.1598E-01, 1.8813E-01) ( -4.0163E-01, 2.6787E-01)
5 ( 3.6488E-02, 2.0316E-01) ( 1.9271E-01, 1.5574E-01)
6 ( 1.0906E-01, -1.2712E-01) ( -8.8159E-02, 5.6169E-01)

5 6
1 ( -4.5947E-02, 1.4052E-04) ( -5.2773E-02, -2.2492E-01)
2 ( -8.0311E-02, -4.3605E-01) ( -3.8117E-02, -2.1907E-01)
3 ( 5.9714E-02, -5.8974E-01) ( -1.3850E-01, -9.0941E-02)
4 ( -4.6443E-02, 3.0864E-01) ( -3.7354E-01, -5.5148E-01)
5 ( 5.7843E-01, -1.2439E-01) ( -1.8815E-02, -5.5686E-02)
6 ( 1.5763E-02, 4.7130E-02) ( 6.5007E-01, 4.9173E-03)

Unitary matrix V
1 2

1 ( 9.8930E-01, 1.0471E-19) ( -1.1461E-01, 9.0250E-02)
2 ( -1.1461E-01, -9.0250E-02) ( -9.8930E-01, 1.0471E-19)

Unitary matrix Q
1 2

1 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
2 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)
3 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
4 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)

3 4
1 ( 6.9954E-01, -1.1784E-18) ( 8.1044E-02, -6.3817E-02)
2 ( -8.1044E-02, -6.3817E-02) ( 6.9954E-01, 1.1784E-18)
3 ( -6.9954E-01, 1.1784E-18) ( -8.1044E-02, 6.3817E-02)
4 ( 8.1044E-02, 6.3817E-02) ( -6.9954E-01, -1.1784E-18)

Nonsingular upper triangular matrix R
1 2

1 ( -2.7118E+00, 0.0000E+00) ( -1.4390E+00, -1.0315E+00)
2 ( -1.8583E+00, 0.0000E+00)
3
4

3 4
1 ( -7.6930E-02, 1.3613E+00) ( -2.8137E-01, -3.2425E-02)
2 ( -1.0760E+00, 3.1016E-02) ( 1.3292E+00, 3.6772E-01)
3 ( 3.2537E+00, 0.0000E+00) ( -6.3858E-17, 3.4216E-33)
4 ( -2.1084E+00, 0.0000E+00)

Number of cycles of the Kogbetliantz method
2
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NAG Library Routine Document

F08YTF (ZTGEXC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YTF (ZTGEXC) reorders the generalized Schur factorization of a complex matrix pair in
generalized Schur form.

2 Specification

SUBROUTINE F08YTF (WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
IFST, ILST, INFO)

&

INTEGER N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
LOGICAL WANTQ, WANTZ

The routine may be called by its LAPACK name ztgexc.

3 Description

F08YTF (ZTGEXC) reorders the generalized complex n by n matrix pair S; Tð Þ in generalized Schur
form, so that the diagonal element of S; Tð Þ with row index i1 is moved to row i2, using a unitary
equivalence transformation. That is, S and T are factorized as

S ¼ Q̂ŜẐH; T ¼ Q̂T̂ ẐH;

where Ŝ; T̂
� �

are also in generalized Schur form.

The pair S; Tð Þ are in generalized Schur form if S and T are upper triangular as returned, for example,
by F08XNF (ZGGES), or F08XSF (ZHGEQZ) with JOB ¼ S .

If S and T are the result of a generalized Schur factorization of a matrix pair A;Bð Þ

A ¼ QSZH; B ¼ QTZH

then, optionally, the matrices Q and Z can be updated as QQ̂ and ZẐ.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: WANTQ – LOGICAL Input

On entry: if WANTQ ¼ :TRUE:, update the left transformation matrix Q.

If WANTQ ¼ :FALSE:, do not update Q.

2: WANTZ – LOGICAL Input

On entry: if WANTZ ¼ :TRUE:, update the right transformation matrix Z.

If WANTZ ¼ :FALSE:, do not update Z.
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3: N – INTEGER Input

On entry: n, the order of the matrices S and T .

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix S in the pair S; Tð Þ.

On exit: the updated matrix Ŝ.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YTF
(ZTGEXC) is called.

Constraint: LDA � max 1;Nð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix T , in the pair S; Tð Þ.

On exit: the updated matrix T̂

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YTF
(ZTGEXC) is called.

Constraint: LDB � max 1;Nð Þ.

8: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if WANTQ ¼ :TRUE:, and
at least 1 otherwise.

On entry: if WANTQ ¼ :TRUE:, the unitary matrix Q.

On exit: if WANTQ ¼ :TRUE:, the updated matrix QQ̂.

If WANTQ ¼ :FALSE:, Q is not referenced.

9: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08YTF
(ZTGEXC) is called.

Constraints:

if WANTQ ¼ :TRUE:, LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

10: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if WANTZ ¼ :TRUE:, and
at least 1 otherwise.

On entry: if WANTZ ¼ :TRUE:, the unitary matrix Z.

On exit: if WANTZ ¼ :TRUE:, the updated matrix ZẐ.

If WANTZ ¼ :FALSE:, Z is not referenced.
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11: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08YTF
(ZTGEXC) is called.

Constraints:

if WANTZ ¼ :TRUE:, LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

12: IFST – INTEGER Input
13: ILST – INTEGER Input/Output

On entry: the indices i1 and i2 that specify the reordering of the diagonal elements of S; Tð Þ. The
element with row index IFST is moved to row ILST, by a sequence of swapping between
adjacent diagonal elements.

On exit: ILST points to the row in its final position.

Constraint: 1 � IFST � N and 1 � ILST � N.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

The transformed matrix pair Ŝ; T̂
� �

would be too far from generalized Schur form; the problem

is ill-conditioned. S; Tð Þ may have been partially reordered, and ILST points to the first row of
the current position of the block being moved.

7 Accuracy

The computed generalized Schur form is nearly the exact generalized Schur form for nearby matrices
S þ Eð Þ and T þ Fð Þ, where

Ek k2 ¼ O � Sk k2 and Fk k2 ¼ O � Tk k2;

and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details of error
bounds for the generalized nonsymmetric eigenproblem.

8 Parallelism and Performance

F08YTF (ZTGEXC) is not threaded in any implementation.

9 Further Comments

The real analogue of this routine is F08YFF (DTGEXC).

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08YTF

Mark 26 F08YTF.3



10 Example

This example exchanges rows 4 and 1 of the matrix pair S; Tð Þ, where

S ¼
4:0þ 4:0i 1:0þ 1:0i 1:0þ 1:0i 2:0� 1:0i
0 2:0þ 1:0i 1:0þ 1:0i 1:0þ 1:0i
0 0 2:0� 1:0i 1:0þ 1:0i
0 0 0 6:0� 2:0i

0B@
1CA

and

T ¼
2:0 1:0þ 1:0i 1:0þ 1:0i 3:0� 1:0i
0 1:0 2:0þ 1:0i 1:0þ 1:0i
0 0 1:0 1:0þ 1:0i
0 0 0 2:0

0B@
1CA:

10.1 Program Text

Program f08ytfe

! F08YTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztgexc

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Logical, Parameter :: wantq = .False., wantz = .False.

! .. Local Scalars ..
Integer :: i, ifail, ifst, ilst, info, lda, &

ldb, ldq, ldz, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), q(:,:), z(:,:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08YTF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldq = 1
ldz = 1
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,n),q(ldq,1),z(ldz,1))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Read the row indices

Read (nin,*) ifst, ilst

! Reorder the A and B

! The NAG name equivalent of ztgexc is f08ytf
Call ztgexc(wantq,wantz,n,a,lda,b,ldb,q,ldq,z,ldz,ifst,ilst,info)

If (info/=0) Then
Write (nout,99999) info, ilst
Write (nout,*)
Flush (nout)

End If
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! Print reordered generalized Schur form

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Reordered Schur matrix A’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,n,n,b,ldb,’Bracketed’,’F7.4’, &

’Reordered Schur matrix B’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

99999 Format (’ Reordering could not be completed. INFO = ’,I3,’ ILST = ’,I5)
End Program f08ytfe

10.2 Program Data

F08YTF Example Program Data
4 :Value of N

( 4.0, 4.0) ( 1.0, 1.0) ( 1.0, 1.0) ( 2.0,-1.0)
( 0.0, 0.0) ( 2.0, 1.0) ( 1.0, 1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 2.0,-1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 6.0,-2.0) :End of matrix A
( 2.0, 0.0) ( 1.0, 1.0) ( 1.0, 1.0) ( 3.0,-1.0)
( 0.0, 0.0) ( 1.0, 0.0) ( 2.0, 1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 1.0, 0.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 2.0, 0.0) :End of matrix B
1 4 :Values of IFST and ILST

10.3 Program Results

F08YTF Example Program Results

Reordered Schur matrix A
1 2 3 4

1 ( 3.7081, 3.7081) (-2.0834,-0.5688) ( 2.6374, 1.0772) ( 0.2845, 0.7991)
2 ( 0.0000, 0.0000) ( 1.6097, 1.5656) (-0.0634, 1.9234) (-0.0301, 0.9720)
3 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 4.7029,-2.1187) ( 1.1379,-3.1199)
4 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 2.3085,-1.8289)

Reordered Schur matrix B
1 2 3 4

1 ( 2.2249, 0.7416) (-1.1631, 1.5347) ( 2.2608, 2.0851) ( 1.1094,-0.3205)
2 ( 0.0000, 0.0000) ( 0.3308, 0.9482) ( 0.3919, 1.8172) (-0.6305, 1.6053)
3 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 1.6227,-0.1653) ( 0.9966,-0.9074)
4 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.1199,-1.0343)
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NAG Library Routine Document

F08YUF (ZTGSEN)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YUF (ZTGSEN) reorders the generalized Schur factorization of a complex matrix pair in
generalized Schur form, so that a selected cluster of eigenvalues appears in the leading elements on the
diagonal of the generalized Schur form. The routine also, optionally, computes the reciprocal condition
numbers of the cluster of eigenvalues and/or corresponding deflating subspaces.

2 Specification

SUBROUTINE F08YUF (IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, ALPHA,
BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK, LWORK,
IWORK, LIWORK, INFO)

&
&

INTEGER IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) PL, PR, DIF(*)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHA(N), BETA(N), Q(LDQ,*),

Z(LDZ,*), WORK(max(1,LWORK))
&

LOGICAL WANTQ, WANTZ, SELECT(N)

The routine may be called by its LAPACK name ztgsen.

3 Description

F08YUF (ZTGSEN) factorizes the generalized complex n by n matrix pair S; Tð Þ in generalized Schur
form, using a unitary equivalence transformation as

S ¼ Q̂ŜẐH; T ¼ Q̂T̂ ẐH;

where Ŝ; T̂
� �

are also in generalized Schur form and have the selected eigenvalues as the leading

diagonal elements. The leading columns of Q and Z are the generalized Schur vectors corresponding to
the selected eigenvalues and form orthonormal subspaces for the left and right eigenspaces (deflating
subspaces) of the pair S; Tð Þ.
The pair S; Tð Þ are in generalized Schur form if S and T are upper triangular as returned, for example,
by F08XNF (ZGGES), or F08XSF (ZHGEQZ) with JOB ¼ S . The diagonal elements define the
generalized eigenvalues �i; �ið Þ, for i ¼ 1; 2; . . . ; n, of the pair S; Tð Þ. The eigenvalues are given by

�i ¼ �i=�i;

but are returned as the pair �i; �ið Þ in order to avoid possible overflow in computing �i. Optionally, the
routine returns reciprocals of condition number estimates for the selected eigenvalue cluster, p and q,
the right and left projection norms, and of deflating subspaces, Difu and Dif l. For more information see
Sections 2.4.8 and 4.11 of Anderson et al. (1999).

If S and T are the result of a generalized Schur factorization of a matrix pair A;Bð Þ

A ¼ QSZH; B ¼ QTZH

then, optionally, the matrices Q and Z can be updated as QQ̂ and ZẐ. Note that the condition numbers
of the pair S; Tð Þ are the same as those of the pair A;Bð Þ.
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: IJOB – INTEGER Input

On entry: specifies whether condition numbers are required for the cluster of eigenvalues (p and
q) or the deflating subspaces (Difu and Dif l).

IJOB ¼ 0
Only reorder with respect to SELECT. No extras.

IJOB ¼ 1
Reciprocal of norms of ‘projections’ onto left and right eigenspaces with respect to the
selected cluster (p and q).

IJOB ¼ 2
The upper bounds on Difu and Dif l. F -norm-based estimate (DIFð1 : 2Þ).

IJOB ¼ 3
Estimate of Difu and Dif l. 1-norm-based estimate (DIFð1 : 2Þ). About five times as
expensive as IJOB ¼ 2.

IJOB ¼ 4
Compute PL, PR and DIF as in IJOB ¼ 0, 1 and 2. Economic version to get it all.

IJOB ¼ 5
Compute PL, PR and DIF as in IJOB ¼ 0, 1 and 3.

Constraint: 0 � IJOB � 5.

2: WANTQ – LOGICAL Input

On entry: if WANTQ ¼ :TRUE:, update the left transformation matrix Q.

If WANTQ ¼ :FALSE:, do not update Q.

3: WANTZ – LOGICAL Input

On entry: if WANTZ ¼ :TRUE:, update the right transformation matrix Z.

If WANTZ ¼ :FALSE:, do not update Z.

4: SELECTðNÞ – LOGICAL array Input

On entry: specifies the eigenvalues in the selected cluster. To select an eigenvalue �j, SELECTðjÞ
must be set to .TRUE..

5: N – INTEGER Input

On entry: n, the order of the matrices S and T .

Constraint: N � 0.

6: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix S in the pair S; Tð Þ.

On exit: the updated matrix Ŝ.
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7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YUF
(ZTGSEN) is called.

Constraint: LDA � max 1;Nð Þ.

8: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix T , in the pair S; Tð Þ.

On exit: the updated matrix T̂

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YUF
(ZTGSEN) is called.

Constraint: LDB � max 1;Nð Þ.

10: ALPHAðNÞ – COMPLEX (KIND=nag_wp) array Output
11: BETAðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: ALPHA and BETA contain diagonal elements of Ŝ and T̂ , respectively, when the pair
S; Tð Þ has been reduced to generalized Schur form. ALPHAðiÞ=BETAðiÞ, for i ¼ 1; 2; . . . ;N, are
the eigenvalues.

12: QðLDQ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max 1;Nð Þ if WANTQ ¼ :TRUE:, and
at least 1 otherwise.

On entry: if WANTQ ¼ :TRUE:, the n by n matrix Q.

On exit: if WANTQ ¼ :TRUE:, the updated matrix QQ̂.

If WANTQ ¼ :FALSE:, Q is not referenced.

13: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which F08YUF
(ZTGSEN) is called.

Constraints:

if WANTQ ¼ :TRUE:, LDQ � max 1;Nð Þ;
otherwise LDQ � 1.

14: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max 1;Nð Þ if WANTZ ¼ :TRUE:, and
at least 1 otherwise.

On entry: if WANTZ ¼ :TRUE:, the n by n matrix Z.

On exit: if WANTZ ¼ :TRUE:, the updated matrix ZẐ.

If WANTZ ¼ :FALSE:, Z is not referenced.

15: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08YUF
(ZTGSEN) is called.
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Constraints:

if WANTZ ¼ :TRUE:, LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

16: M – INTEGER Output

On exit: the dimension of the specified pair of left and right eigenspaces (deflating subspaces).

Constraint: 0 � M � N.

17: PL – REAL (KIND=nag_wp) Output
18: PR – REAL (KIND=nag_wp) Output

On exit: if IJOB ¼ 1, 4 or 5, PL and PR are lower bounds on the reciprocal of the norm of
‘projections’ p and q onto left and right eigenspace with respect to the selected cluster. 0 < PL,
PR � 1.

If M ¼ 0 or M ¼ N, PL ¼ PR ¼ 1.

If IJOB ¼ 0, 2 or 3, PL and PR are not referenced.

19: DIFð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array DIF must be at least 2.

On exit: if IJOB � 2, DIFð1 : 2Þ store the estimates of Difu and Dif l.

If IJOB ¼ 2 or 4, DIFð1 : 2Þ are F -norm-based upper bounds on Difu and Dif l.

If IJOB ¼ 3 or 5, DIFð1 : 2Þ are 1-norm-based estimates of Difu and Dif l.

If M ¼ 0 or n, DIFð1 : 2Þ ¼ A;Bð Þk kF .
If IJOB ¼ 0 or 1, DIF is not referenced.

20: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

21: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08YUF (ZTGSEN) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraints: if LWORK 6¼ �1,
if IJOB ¼ 1, 2 or 4, LWORK � max 1; 2�M� N�Mð Þð Þ;
if IJOB ¼ 3 or 5, LWORK � max 1; 4�M� N�Mð Þð Þ;
otherwise LWORK � 1.

22: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum LIWORK.

23: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F08YUF (ZTGSEN) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum sizes
of the WORK and IWORK arrays, returns these values as the first entries of the WORK and
IWORK arrays, and no error message related to LWORK or LIWORK is issued.
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Constraints: if LIWORK 6¼ �1,
if IJOB ¼ 1, 2 or 4, LIWORK � Nþ 2;
if IJOB ¼ 3 or 5, LIWORK � max Nþ 2; 2�M� N�Mð Þð Þ;
otherwise LIWORK � 1.

24: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

Reordering of S; Tð Þ failed because the transformed matrix pair Ŝ; T̂
� �

would be too far from

generalized Schur form; the problem is very ill-conditioned. S; Tð Þ may have been partially
reordered. If requested, 0 is returned in DIFð1 : 2Þ, PL and PR.

7 Accuracy

The computed generalized Schur form is nearly the exact generalized Schur form for nearby matrices
S þ Eð Þ and T þ Fð Þ, where

Ek k2 ¼ O � Sk k2 and Fk k2 ¼ O � Tk k2;

and � is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details of error
bounds for the generalized nonsymmetric eigenproblem, and for information on the condition numbers
returned.

8 Parallelism and Performance

F08YUF (ZTGSEN) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this routine is F08YGF (DTGSEN).

10 Example

This example reorders the generalized Schur factors S and T and update the matrices Q and Z given by

S ¼
4:0þ 4:0i 1:0þ 1:0i 1:0þ 1:0i 2:0� 1:0i
0 2:0þ 1:0i 1:0þ 1:0i 1:0þ 1:0i
0 0 2:0� 1:0i 1:0þ 1:0i
0 0 0 6:0� 2:0i

0B@
1CA;
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T ¼
2:0 1:0þ 1:0i 1:0þ 1:0i 3:0� 1:0i
0 1:0 2:0þ 1:0i 1:0þ 1:0i
0 0 1:0 1:0þ 1:0i
0 0 0 2:0

0B@
1CA;

Q ¼
1:0 0 0 0
0 1:0 0 0
0 0 1:0 0
0 0 0 1:0

0B@
1CA and Z ¼

1:0 0 0 0
0 1:0 0 0
0 0 1:0 0
0 0 0 1:0

0B@
1CA;

selecting the second and third generalized eigenvalues to be moved to the leading positions. Bases for
the left and right deflating subspaces, and estimates of the condition numbers for the eigenvalues and
Frobenius norm based bounds on the condition numbers for the deflating subspaces are also output.

10.1 Program Text

Program f08yufe

! F08YUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztgsen

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: pl, pr
Integer :: i, ifail, ijob, info, lda, ldb, ldq, &

ldz, liwork, lwork, m, n
Logical :: wantq, wantz

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &

q(:,:), work(:), z(:,:)
Real (Kind=nag_wp) :: dif(2)
Integer, Allocatable :: iwork(:)
Logical, Allocatable :: select(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08YUF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldq = n
ldz = n
liwork = (n*n)/2 + 2
lwork = n*n
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),q(ldq,n),work(lwork), &

z(ldz,n),iwork(liwork),select(n))

! Read A, B, Q, Z and the logical array SELECT from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)
Read (nin,*)(q(i,1:n),i=1,n)
Read (nin,*)(z(i,1:n),i=1,n)

Read (nin,*) select(1:n)

! Set ijob, wantq and wantz
ijob = 4
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wantq = .True.
wantz = .True.

! Reorder the Schur factors A and B and update the matrices
! Q and Z

! The NAG name equivalent of ztgsen is f08yuf
Call ztgsen(ijob,wantq,wantz,select,n,a,lda,b,ldb,alpha,beta,q,ldq,z, &

ldz,m,pl,pr,dif,work,lwork,iwork,liwork,info)

If (info/=0) Then
Write (nout,99999) info
Write (nout,*)
Flush (nout)

End If

! Print reordered generalized Schur form

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Reordered Schur matrix A’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,n,n,b,ldb,’Bracketed’,’F7.4’, &

’Reordered Schur matrix B’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

! Print deflating subspaces

Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,n,m,q,ldq,’Bracketed’,’F7.4’, &

’Basis of left deflating invariant subspace’,’Integer’,rlabs, &
’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,n,m,z,ldz,’Bracketed’,’F7.4’, &

’Basis of right deflating invariant subspace’,’Integer’,rlabs, &
’Integer’,clabs,80,0,ifail)

! Print norm estimates and F-norm upper bounds

Write (nout,*)
Write (nout,99998) ’Norm estimate of projection onto’, &

’ left eigenspace for selected cluster’, 1.0E0_nag_wp/pl
Write (nout,*)
Write (nout,99998) ’Norm estimate of projection onto’, &

’ right eigenspace for selected cluster’, 1.0E0_nag_wp/pr
Write (nout,*)
Write (nout,99998) ’F-norm based upper bound on’, ’ Difu’, dif(1)
Write (nout,*)
Write (nout,99998) ’F-norm based upper bound on’, ’ Difl’, dif(2)

99999 Format (’ Reordering could not be completed. INFO = ’,I3)
99998 Format (1X,2A,/,1X,1P,E10.2)

End Program f08yufe

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08YUF

Mark 26 F08YUF.7



10.2 Program Data

F08YUF Example Program Data
4 :Value of N

( 4.0, 4.0) ( 1.0, 1.0) ( 1.0, 1.0) ( 2.0,-1.0)
( 0.0, 0.0) ( 2.0, 1.0) ( 1.0, 1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 2.0,-1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 6.0,-2.0) :End of matrix A
( 2.0, 0.0) ( 1.0, 1.0) ( 1.0, 1.0) ( 3.0,-1.0)
( 0.0, 0.0) ( 1.0, 0.0) ( 2.0, 1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 1.0, 0.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 2.0, 0.0) :End of matrix B
( 1.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0)
( 0.0, 0.0) ( 1.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 1.0, 0.0) ( 0.0, 0.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 1.0, 0.0) :End of matrix Q
( 1.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0)
( 0.0, 0.0) ( 1.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 1.0, 0.0) ( 0.0, 0.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 1.0, 0.0) :End of matrix Z

F T T F :End of SELECT

10.3 Program Results

F08YUF Example Program Results

Reordered Schur matrix A
1 2 3 4

1 ( 4.6904, 2.3452) (-2.1563, 0.1192) ( 1.9599,-0.5174) ( 1.8091,-1.2060)
2 ( 0.0000, 0.0000) ( 2.0084,-1.0042) ( 0.9161,-0.2762) ( 1.8574,-0.5326)
3 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 1.6985, 1.6985) ( 0.1270, 0.7231)
4 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 6.0000,-2.0000)

Reordered Schur matrix B
1 2 3 4

1 ( 2.3452, 0.0000) (-0.6181, 1.8237) ( 0.9290, 0.5409) ( 2.7136,-1.5076)
2 ( 0.0000, 0.0000) ( 1.0042, 0.0000) ( 1.2251,-1.1857) ( 1.8541,-0.2929)
3 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.8492, 0.0000) ( 0.1435, 0.9053)
4 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 2.0000, 0.0000)

Basis of left deflating invariant subspace
1 2

1 ( 0.9045, 0.3015) (-0.0033,-0.2397)
2 ( 0.3015, 0.0000) ( 0.2497, 0.7157)
3 ( 0.0000, 0.0000) ( 0.0549, 0.6042)
4 ( 0.0000, 0.0000) ( 0.0000, 0.0000)

Basis of right deflating invariant subspace
1 2

1 ( 0.7071, 0.0000) (-0.5607, 0.0000)
2 ( 0.7071, 0.0000) ( 0.5607, 0.0000)
3 ( 0.0000, 0.0000) ( 0.0552, 0.6067)
4 ( 0.0000, 0.0000) ( 0.0000, 0.0000)

Norm estimate of projection onto left eigenspace for selected cluster
8.90E+00

Norm estimate of projection onto right eigenspace for selected cluster
7.02E+00

F-norm based upper bound on Difu
2.18E-01

F-norm based upper bound on Difl
2.62E-01
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NAG Library Routine Document

F08YVF (ZTGSYL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YVF (ZTGSYL) solves the generalized complex triangular Sylvester equations.

2 Specification

SUBROUTINE F08YVF (TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD, E,
LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)

&

INTEGER IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF, LWORK,
IWORK(M+N+2), INFO

&

REAL (KIND=nag_wp) SCALE, DIF
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),

E(LDE,*), F(LDF,*), WORK(max(1,LWORK))
&

CHARACTER(1) TRANS

The routine may be called by its LAPACK name ztgsyl.

3 Description

F08YVF (ZTGSYL) solves either the generalized complex Sylvester equations

AR� LB ¼ �C
DR� LE ¼ �F; ð1Þ

or the equations

AHRþDHL ¼ �C
RBH þ LEH ¼ ��F; ð2Þ

where the pair A;Dð Þ are given m by m matrices in generalized Schur form, B;Eð Þ are given n by n
matrices in generalized Schur form and C;Fð Þ are given m by n matrices. The pair R;Lð Þ are the m by
n solution matrices, and � is an output scaling factor determined by the routine to avoid overflow in
computing R;Lð Þ.
Equations (1) are equivalent to equations of the form

Zx ¼ �b;

where

Z ¼ I �A�BH � I
I �D� EH � I

� �
and � is the Kronecker product. Equations (2) are then equivalent to

ZHy ¼ �b:
The pair S; Tð Þ are in generalized Schur form if S and T are upper triangular as returned, for example,
by F08XNF (ZGGES), or F08XSF (ZHGEQZ) with JOB ¼ S .

Optionally, the routine estimates Dif A;Dð Þ; B;Eð Þ½ �, the separation between the matrix pairs A;Dð Þ
and B;Eð Þ, which is the smallest singular value of Z. The estimate can be based on either the
Frobenius norm, or the 1-norm. The 1-norm estimate can be three to ten times more expensive than the
Frobenius norm estimate, but makes the condition estimation uniform with the nonsymmetric
eigenproblem. The Frobenius norm estimate provides a low cost, but equally reliable estimate. For more
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information see Sections 2.4.8.3 and 4.11.1.3 of Anderson et al. (1999) and KÔgstrÎm and Poromaa
(1996).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

KÔgstrÎm B (1994) A perturbation analysis of the generalized Sylvester equation
AR� LB;DR� LEð Þ ¼ c; Fð Þ SIAM J. Matrix Anal. Appl. 15 1045–1060

KÔgstrÎm B and Poromaa P (1996) LAPACK-style algorithms and software for solving the generalized
Sylvester equation and estimating the separation between regular matrix pairs ACM Trans. Math.
Software 22 78–103

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: if TRANS ¼ N , solve the generalized Sylvester equation (1).

If TRANS ¼ C , solve the ‘conjugate transposed’ system (2).

Constraint: TRANS ¼ N or C .

2: IJOB – INTEGER Input

On entry: specifies what kind of functionality is to be performed when TRANS ¼ N .

IJOB ¼ 0
Solve (1) only.

IJOB ¼ 1
The functionality of IJOB ¼ 0 and 3.

IJOB ¼ 2
The functionality of IJOB ¼ 0 and 4.

IJOB ¼ 3
Only an estimate of Dif A;Dð Þ; B;Eð Þ½ � is computed based on the Frobenius norm.

IJOB ¼ 4
Only an estimate of Dif A;Dð Þ; B;Eð Þ½ � is computed based on the 1-norm.

If TRANS ¼ C , IJOB is not referenced.

Constraint: if TRANS ¼ N , 0 � IJOB � 4.

3: M – INTEGER Input

On entry: m, the order of the matrices A and D, and the row dimension of the matrices C, F , R
and L.

Constraint: M � 0.

4: N – INTEGER Input

On entry: n, the order of the matrices B and E, and the column dimension of the matrices C, F ,
R and L.

Constraint: N � 0.
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5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Mð Þ.
On entry: the upper triangular matrix A.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YVF
(ZTGSYL) is called.

Constraint: LDA � max 1;Mð Þ.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the upper triangular matrix B.

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YVF
(ZTGSYL) is called.

Constraint: LDB � max 1;Nð Þ.

9: CðLDC; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Nð Þ.
On entry: contains the right-hand-side matrix C.

On exit: if IJOB ¼ 0, 1 or 2, C is overwritten by the solution matrix R.

If TRANS ¼ N and IJOB ¼ 3 or 4, C holds R, the solution achieved during the computation of
the Dif estimate.

10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F08YVF
(ZTGSYL) is called.

Constraint: LDC � max 1;Mð Þ.

11: DðLDD; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array D must be at least max 1;Mð Þ.
On entry: the upper triangular matrix D.

12: LDD – INTEGER Input

On entry: the first dimension of the array D as declared in the (sub)program from which F08YVF
(ZTGSYL) is called.

Constraint: LDD � max 1;Mð Þ.

13: EðLDE; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array E must be at least max 1;Nð Þ.
On entry: the upper triangular matrix E.

14: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which F08YVF
(ZTGSYL) is called.

Constraint: LDE � max 1;Nð Þ.
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15: FðLDF; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array F must be at least max 1;Nð Þ.
On entry: contains the right-hand side matrix F .

On exit: if IJOB ¼ 0, 1 or 2, F is overwritten by the solution matrix L.

If TRANS ¼ N and IJOB ¼ 3 or 4, F holds L, the solution achieved during the computation of
the Dif estimate.

16: LDF – INTEGER Input

On entry: the first dimension of the array F as declared in the (sub)program from which F08YVF
(ZTGSYL) is called.

Constraint: LDF � max 1;Mð Þ.

17: SCALE – REAL (KIND=nag_wp) Output

On exit: �, the scaling factor in (1) or (2).

If 0 < SCALE < 1, C and F hold the solutions R and L, respectively, to a slightly perturbed
system but the input arrays A, B, D and E have not been changed.

If SCALE ¼ 0, C and F hold the solutions R and L, respectively, to the homogeneous system
with C ¼ F ¼ 0. In this case DIF is not referenced.

Normally, SCALE ¼ 1.

18: DIF – REAL (KIND=nag_wp) Output

On exit: the estimate of Dif . If IJOB ¼ 0, DIF is not referenced.

19: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

20: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08YVF (ZTGSYL) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum size
of the WORK array, returns this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

Constraints: if LWORK 6¼ �1,
if TRANS ¼ N and IJOB ¼ 1 or 2, LWORK � 2�M� N;
otherwise LWORK � 1.

21: IWORKðMþ Nþ 2Þ – INTEGER array Workspace

22: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

F08YVF NAG Library Manual

F08YVF.4 Mark 26



INFO > 0

A;Dð Þ and B;Eð Þ have common or close eigenvalues and so no solution could be computed.

7 Accuracy

See KÔgstrÎm (1994) for a perturbation analysis of the generalized Sylvester equation.

8 Parallelism and Performance

F08YVF (ZTGSYL) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations needed to solve the generalized Sylvester equations is
approximately 8mn nþmð Þ. The Frobenius norm estimate of Dif does not require additional significant
computation, but the 1-norm estimate is typically five times more expensive.

The real analogue of this routine is F08YHF (DTGSYL).

10 Example

This example solves the generalized Sylvester equations

AR� LB ¼ �C
DR� LE ¼ �F;

where

A ¼
4:0þ 4:0i 1:0þ 1:0i 1:0þ 1:0i 2:0� 1:0i
0 2:0þ 1:0i 1:0þ 1:0i 1:0þ 1:0i
0 0 2:0� 1:0i 1:0þ 1:0i
0 0 0 6:0� 2:0i

0B@
1CA;

B ¼
2:0 1:0þ 1:0i 1:0þ 1:0i 3:0� 1:0i
0 1:0 2:0þ 1:0i 1:0þ 1:0i
0 0 1:0 1:0þ 1:0i
0 0 0 2:0

0B@
1CA;

D ¼
1:0þ 1:0i 1:0� 1:0i 1:0þ 1:0i 1:0� 1:0i
0 6:0� 4:0i 1:0� 1:0i 1:0þ 1:0i
0 0 2:0þ 4:0i 1:0� 1:0i
0 0 0 2:0þ 3:0i

0B@
1CA;

E ¼
1:0 1:0þ 1:0i 1:0� 1:0i 1:0þ 1:0i
0 2:0 1:0þ 1:0i 1:0� 1:0i
0 0 2:0 1:0þ 1:0i
0 0 0 1:0

0B@
1CA;

C ¼
�13:0þ 9:0i 2:0þ 8:0i �2:0þ 8:0i �2:0þ 5:0i
�9:0� 1:0i 0:0þ 5:0i �7:0� 3:0i �6:0� 0:0i
�1:0þ 1:0i 4:0þ 2:0i 4:0� 5:0i 9:0� 5:0i
�6:0þ 6:0i 9:0þ 1:0i �2:0þ 4:0i 22:0� 8:0i

0B@
1CA

and
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F ¼
�6:0þ 5:0i 4:0� 4:0i �3:0þ 11:0i 3:0� 7:0i
�5:0þ 11:0i 12:0� 4:0i �2:0þ 2:0i 0:0þ 14:0i
�5:0� 1:0i 0:0þ 4:0i �2:0þ 10:0i 3:0� 1:0i
�6:0� 2:0i 1:0þ 1:0i �7:0� 3:0i 4:0þ 7:0i

0B@
1CA:

10.1 Program Text

Program f08yvfe

! F08YVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, ztgsyl

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dif, scale
Integer :: i, ifail, ijob, info, lda, ldb, ldc, &

ldd, lde, ldf, lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:), d(:,:), &
e(:,:), f(:,:), work(:)

Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F08YVF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldb = n
ldc = m
ldd = m
lde = n
ldf = m
lwork = 1
Allocate (a(lda,m),b(ldb,n),c(ldc,n),d(ldd,m),e(lde,n),f(ldf,n), &

work(lwork),iwork(m+n+2))

! Read A, B, D, E, C and F from data file

Read (nin,*)(a(i,1:m),i=1,m)
Read (nin,*)(b(i,1:n),i=1,n)
Read (nin,*)(d(i,1:m),i=1,m)
Read (nin,*)(e(i,1:n),i=1,n)
Read (nin,*)(c(i,1:n),i=1,m)
Read (nin,*)(f(i,1:n),i=1,m)

! Solve the Sylvester equations
! A*R - L*B = scale*C and D*R - L*E = scale*F
! for R and L.

ijob = 0

! The NAG name equivalent of ztgsyl is f08yvf
Call ztgsyl(’No transpose’,ijob,m,n,a,lda,b,ldb,c,ldc,d,ldd,e,lde,f,ldf, &

scale,dif,work,lwork,iwork,info)

If (info>=1) Then
Write (nout,99999)
Write (nout,*)
Flush (nout)
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End If

! Print the solution matrices R and L

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,m,n,c,ldc,’Bracketed’,’F7.4’, &

’Solution matrix R’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04dbf(’General’,’ ’,m,n,f,ldf,’Bracketed’,’F7.4’, &

’Solution matrix L’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Write (nout,99998) ’SCALE = ’, scale

99999 Format (/,’ (A,D) and (B,E) have common or very close eigenval’,’ues.’, &
/,’ Perturbed values were used to solve the equations’)

99998 Format (1X,A,1P,E10.2)
End Program f08yvfe

10.2 Program Data

F08YVF Example Program Data
4 4 :Values of M and N

( 4.0, 4.0) ( 1.0, 1.0) ( 1.0, 1.0) ( 2.0, -1.0)
( 0.0, 0.0) ( 2.0, 1.0) ( 1.0, 1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 2.0, -1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 6.0, -2.0) :End of matrix A
( 2.0, 0.0) ( 1.0, 1.0) ( 1.0, 1.0) ( 3.0, -1.0)
( 0.0, 0.0) ( 1.0, 0.0) ( 2.0, 1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 1.0, 0.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 2.0, 0.0) :End of matrix B
( 1.0, 1.0) ( 1.0, -1.0) ( 1.0, 1.0) ( 1.0, -1.0)
( 0.0, 0.0) ( 6.0, -4.0) ( 1.0, -1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 2.0, 4.0) ( 1.0, -1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 2.0, 3.0) :End of matrix D
( 1.0, 0.0) ( 1.0, 1.0) ( 1.0, -1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 2.0, 0.0) ( 1.0, 1.0) ( 1.0, -1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 2.0, 0.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 1.0, 0.0) :End of matrix E
(-13.0, 9.0) ( 2.0, 8.0) ( -2.0, 8.0) ( -2.0, 5.0)
( -9.0, -1.0) ( 0.0, 5.0) ( -7.0, -3.0) ( -6.0, 0.0)
( -1.0, 1.0) ( 4.0, 2.0) ( 4.0, -5.0) ( 9.0, -5.0)
( -6.0, 6.0) ( 9.0, 1.0) ( -2.0, 4.0) ( 22.0, -8.0) :End of matrix C
( -6.0, 5.0) ( 4.0, -4.0) ( -3.0, 11.0) ( 3.0, -7.0)
( -5.0, 11.0) ( 12.0, -4.0) ( -2.0, 2.0) ( 0.0, 14.0)
( -5.0, -1.0) ( 0.0, 4.0) ( -2.0, 10.0) ( 3.0, -1.0)
( -6.0, -2.0) ( 1.0, 1.0) ( -7.0, -3.0) ( 4.0, 7.0) :End of matrix F

10.3 Program Results

F08YVF Example Program Results

Solution matrix R
1 2 3 4

1 ( 1.0000, 1.0000) ( 1.0000, 1.0000) ( 1.0000, 1.0000) ( 1.0000, 1.0000)
2 (-1.0000, 1.0000) ( 2.0000, 1.0000) (-1.0000, 1.0000) (-1.0000, 1.0000)
3 (-1.0000, 1.0000) ( 1.0000, 1.0000) ( 3.0000, 1.0000) ( 1.0000, 1.0000)
4 (-1.0000, 1.0000) ( 1.0000, 1.0000) (-1.0000, 1.0000) ( 4.0000, 1.0000)

Solution matrix L
1 2 3 4

1 ( 4.0000, 1.0000) (-1.0000, 1.0000) ( 1.0000, 1.0000) (-1.0000, 1.0000)
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2 ( 1.0000, 1.0000) ( 3.0000, 1.0000) (-1.0000, 1.0000) ( 1.0000, 1.0000)
3 (-1.0000, 1.0000) ( 1.0000, 1.0000) ( 2.0000, 1.0000) (-1.0000, 1.0000)
4 ( 1.0000, 1.0000) (-1.0000, 1.0000) ( 1.0000, 1.0000) ( 1.0000, 1.0000)

SCALE = 1.00E+00
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NAG Library Routine Document

F08YXF (ZTGEVC)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YXF (ZTGEVC) computes some or all of the right and/or left generalized eigenvectors of a pair of
complex upper triangular matrices A;Bð Þ.

2 Specification

SUBROUTINE F08YXF (SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL,
VR, LDVR, MM, M, WORK, RWORK, INFO)

&

INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, INFO
REAL (KIND=nag_wp) RWORK(2*N)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*),

WORK(2*N)
&

LOGICAL SELECT(*)
CHARACTER(1) SIDE, HOWMNY

The routine may be called by its LAPACK name ztgevc.

3 Description

F08YXF (ZTGEVC) computes some or all of the right and/or left generalized eigenvectors of the
matrix pair A;Bð Þ which is assumed to be in upper triangular form. If the matrix pair A;Bð Þ is not
upper triangular then the routine F08XSF (ZHGEQZ) should be called before invoking F08YXF
(ZTGEVC).

The right generalized eigenvector x and the left generalized eigenvector y of A;Bð Þ corresponding to a
generalized eigenvalue � are defined by

A� �Bð Þx ¼ 0

and

yH A� �Bð Þ ¼ 0:

If a generalized eigenvalue is determined as 0=0, which is due to zero diagonal elements at the same
locations in both A and B, a unit vector is returned as the corresponding eigenvector.

Note that the generalized eigenvalues are computed using F08XSF (ZHGEQZ) but F08YXF (ZTGEVC)
does not explicitly require the generalized eigenvalues to compute eigenvectors. The ordering of the
eigenvectors is based on the ordering of the eigenvalues as computed by F08YXF (ZTGEVC).

If all eigenvectors are requested, the routine may either return the matrices X and/or Y of right or left
eigenvectors of A;Bð Þ, or the products ZX and/or QY , where Z and Q are two matrices supplied by
you. Usually, Q and Z are chosen as the unitary matrices returned by F08XSF (ZHGEQZ).
Equivalently, Q and Z are the left and right Schur vectors of the matrix pair supplied to F08XSF
(ZHGEQZ). In that case, QY and ZX are the left and right generalized eigenvectors, respectively, of
the matrix pair supplied to F08XSF (ZHGEQZ).
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5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: specifies the required sets of generalized eigenvectors.

SIDE ¼ R
Only right eigenvectors are computed.

SIDE ¼ L
Only left eigenvectors are computed.

SIDE ¼ B
Both left and right eigenvectors are computed.

Constraint: SIDE ¼ B , L or R .

2: HOWMNY – CHARACTER(1) Input

On entry: specifies further details of the required generalized eigenvectors.

HOWMNY ¼ A
All right and/or left eigenvectors are computed.

HOWMNY ¼ B
All right and/or left eigenvectors are computed; they are backtransformed using the input
matrices supplied in arrays VR and/or VL.

HOWMNY ¼ S
Selected right and/or left eigenvectors, defined by the array SELECT, are computed.

Constraint: HOWMNY ¼ A , B or S .

3: SELECTð�Þ – LOGICAL array Input

Note: the dimension of the array SELECT must be at least max 1;Nð Þ if HOWMNY ¼ S , and at
least 1 otherwise.

On entry: specifies the eigenvectors to be computed if HOWMNY ¼ S . To select the generalized
eigenvector corresponding to the jth generalized eigenvalue, the jth element of SELECT should
be set to .TRUE..

Constraint: if HOWMNY ¼ S , SELECTðjÞ ¼ :TRUE: or :FALSE:, for j ¼ 1; 2; . . . ; n.

4: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 0.
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5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix A must be in upper triangular form. Usually, this is the matrix A returned
by F08XSF (ZHGEQZ).

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YXF
(ZTGEVC) is called.

Constraint: LDA � max 1;Nð Þ.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the matrix B must be in upper triangular form with non-negative real diagonal
elements. Usually, this is the matrix B returned by F08XSF (ZHGEQZ).

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YXF
(ZTGEVC) is called.

Constraint: LDB � max 1;Nð Þ.

9: VLðLDVL; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VL must be at least max 1;MMð Þ if SIDE ¼ L or B
and at least 1 if SIDE ¼ R .

On entry: if HOWMNY ¼ B and SIDE ¼ L or B , VL must be initialized to an n by n matrix
Q. Usually, this is the unitary matrix Q of left Schur vectors returned by F08XSF (ZHGEQZ).

On exit: if SIDE ¼ L or B , VL contains:

if HOWMNY ¼ A , the matrix Y of left eigenvectors of A;Bð Þ;
if HOWMNY ¼ B , the matrix QY ;

if HOWMNY ¼ S , the left eigenvectors of A;Bð Þ specified by SELECT, stored
consecutively in the columns of the array VL, in the same order as their corresponding
eigenvalues.

10: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08YXF (ZTGEVC) is called.

Constraints:

if SIDE ¼ L or B , LDVL � max 1;Nð Þ;
if SIDE ¼ R , LDVL � 1.

11: VRðLDVR; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array VR must be at least max 1;MMð Þ if SIDE ¼ R or B
and at least 1 if SIDE ¼ L .

On entry: if HOWMNY ¼ B and SIDE ¼ R or B , VR must be initialized to an n by n matrix
Z. Usually, this is the unitary matrix Z of right Schur vectors returned by F08XEF (DHGEQZ).

On exit: if SIDE ¼ R or B , VR contains:

if HOWMNY ¼ A , the matrix X of right eigenvectors of A;Bð Þ;
if HOWMNY ¼ B , the matrix ZX;
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if HOWMNY ¼ S , the right eigenvectors of A;Bð Þ specified by SELECT, stored
consecutively in the columns of the array VR, in the same order as their corresponding
eigenvalues.

12: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08YXF (ZTGEVC) is called.

Constraints:

if SIDE ¼ R or B , LDVR � max 1;Nð Þ;
if SIDE ¼ L , LDVR � 1.

13: MM – INTEGER Input

On entry: the number of columns in the arrays VL and/or VR.

Constraints:

if HOWMNY ¼ A or B , MM � N;
if HOWMNY ¼ S , MM must not be less than the number of requested eigenvectors.

14: M – INTEGER Output

On exit: the number of columns in the arrays VL and/or VR actually used to store the
eigenvectors. If HOWMNY ¼ A or B , M is set to N. Each selected eigenvector occupies one
column.

15: WORKð2� NÞ – COMPLEX (KIND=nag_wp) array Workspace

16: RWORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

17: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

It is beyond the scope of this manual to summarise the accuracy of the solution of the generalized
eigenvalue problem. Interested readers should consult Section 4.11 of the LAPACK Users' Guide (see
Anderson et al. (1999)) and Chapter 6 of Stewart and Sun (1990).

8 Parallelism and Performance

F08YXF (ZTGEVC) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

F08YXF (ZTGEVC) is the sixth step in the solution of the complex generalized eigenvalue problem
and is usually called after F08XSF (ZHGEQZ).

The real analogue of this routine is F08YKF (DTGEVC).

10 Example

This example computes the � and � arguments, which defines the generalized eigenvalues and the
corresponding left and right eigenvectors, of the matrix pair A;Bð Þ given by

A ¼
1:0þ 3:0i 1:0þ 4:0i 1:0þ 5:0i 1:0þ 6:0i
2:0þ 2:0i 4:0þ 3:0i 8:0þ 4:0i 16:0þ 5:0i
3:0þ 1:0i 9:0þ 2:0i 27:0þ 3:0i 81:0þ 4:0i
4:0þ 0:0i 16:0þ 1:0i 64:0þ 2:0i 256:0þ 3:0i

0B@
1CA

and

B ¼
1:0þ 0:0i 2:0þ 1:0i 3:0þ 2:0i 4:0þ 3:0i
1:0þ 1:0i 4:0þ 2:0i 9:0þ 3:0i 16:0þ 4:0i
1:0þ 2:0i 8:0þ 3:0i 27:0þ 4:0i 64:0þ 5:0i
1:0þ 3:0i 16:0þ 4:0i 81:0þ 5:0i 256:0þ 6:0i

0B@
1CA:

To compute generalized eigenvalues, it is required to call five routines: F08WVF (ZGGBAL) to balance
the matrix, F08ASF (ZGEQRF) to perform the QR factorization of B, F08AUF (ZUNMQR) to apply Q
to A, F08WSF (ZGGHRD) to reduce the matrix pair to the generalized Hessenberg form and F08XSF
(ZHGEQZ) to compute the eigenvalues via the QZ algorithm.

The computation of generalized eigenvectors is done by calling F08YXF (ZTGEVC) to compute the
eigenvectors of the balanced matrix pair. The routine F08WWF (ZGGBAK) is called to backward
transform the eigenvectors to the user-supplied matrix pair. If both left and right eigenvectors are
required then F08WWF (ZGGBAK) must be called twice.

10.1 Program Text

Program f08yxfe

! F08YXF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, f06tff, f06thf, m01daf, m01edf, nag_wp, &

x04dbf, zgeqrf, zggbak, zggbal, zgghrd, zhgeqz, &
ztgevc, zungqr, zunmqr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: cone = (1.0E0_nag_wp,0.0E0_nag_wp)
Complex (Kind=nag_wp), Parameter :: czero = (0.0E0_nag_wp,0.0E0_nag_wp)
Integer, Parameter :: nin = 5, nout = 6
Logical, Parameter :: prbal = .False., prhess = .False.

! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Integer :: i, icols, ifail, ihi, ilo, info, &

irows, j, jwork, k, lda, ldb, ldvl, &
ldvr, lwork, m, n

Logical :: ileft, iright
Character (1) :: compq, compz, howmny, job, side

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &

tau(:), v(:,:), vl(:,:), vr(:,:), &
work(:), zwork(:)

Real (Kind=nag_wp), Allocatable :: lscale(:), rscale(:), rwork(:)
Integer, Allocatable :: irank(:)
Logical, Allocatable :: select(:)
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Character (1) :: clabs(1), rlabs(1)
! .. Intrinsic Procedures ..

Intrinsic :: abs, aimag, all, cmplx, conjg, &
maxloc, nint, real

! .. Executable Statements ..
Write (nout,*) ’F08YXF Example Program Results’
Flush (nout)

! ileft is TRUE if left eigenvectors are required
! iright is TRUE if right eigenvectors are required

ileft = .True.
iright = .True.

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldvl = n
ldvr = n
lwork = 6*n
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),tau(n),vl(ldvl,ldvl), &

vr(ldvr,ldvr),work(lwork),lscale(n),rscale(n),rwork(6*n),select(n), &
irank(n),v(n,n))

! READ matrix A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! READ matrix B from data file
Read (nin,*)(b(i,1:n),i=1,n)

! Balance matrix pair (A,B)
job = ’B’

! The NAG name equivalent of zggbal is f08wvf
Call zggbal(job,n,a,lda,b,ldb,ilo,ihi,lscale,rscale,rwork,info)

If (prbal) Then
! Matrix A after balancing
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.4’, &

’Matrix A after balancing’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

Write (nout,*)
Flush (nout)

! Matrix B after balancing
ifail = 0
Call x04dbf(’General’,’ ’,n,n,b,ldb,’Bracketed’,’F7.4’, &

’Matrix B after balancing’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

Write (nout,*)
Flush (nout)

End If

! Reduce B to triangular form using QR
irows = ihi + 1 - ilo
icols = n + 1 - ilo

! The NAG name equivalent of zgeqrf is f08asf
Call zgeqrf(irows,icols,b(ilo,ilo),ldb,tau,work,lwork,info)

! Apply the orthogonal transformation to A
! The NAG name equivalent of zunmqr is f08auf

Call zunmqr(’L’,’C’,irows,icols,irows,b(ilo,ilo),ldb,tau,a(ilo,ilo),lda, &
work,lwork,info)

! Initialize VL (for left eigenvectors)
If (ileft) Then
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Call f06thf(’General’,n,n,czero,cone,vl,ldvl)
Call f06tff(’Lower’,irows-1,irows-1,b(ilo+1,ilo),ldb,vl(ilo+1,ilo), &

ldvl)
! The NAG name equivalent of zungqr is f08atf

Call zungqr(irows,irows,irows,vl(ilo,ilo),ldvl,tau,work,lwork,info)

End If

! Initialize VR for right eigenvectors
If (iright) Then

Call f06thf(’General’,n,n,czero,cone,vr,ldvr)
End If

! Compute the generalized Hessenberg form of (A,B)
compq = ’V’
compz = ’V’

! The NAG name equivalent of zgghrd is f08wsf
Call zgghrd(compq,compz,n,ilo,ihi,a,lda,b,ldb,vl,ldvl,vr,ldvr,info)

If (prhess) Then
! Matrix A in generalized Hessenberg form

ifail = 0
Call x04dbf(’General’,’ ’,n,n,a,lda,’Bracketed’,’F7.3’, &

’Matrix A in Hessenberg form’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

Write (nout,*)
Flush (nout)

! Matrix B in generalized Hessenberg form
ifail = 0
Call x04dbf(’General’,’ ’,n,n,b,ldb,’Bracketed’,’F7.3’, &

’Matrix B in Hessenberg form’,’Integer’,rlabs,’Integer’,clabs,80,0, &
ifail)

Write (nout,*)
Flush (nout)

End If

! Routine ZHGEQZ
! Workspace query: jwork = -1

jwork = -1
job = ’S’

! The NAG name equivalent of zhgeqz is f08xsf
Call zhgeqz(job,compq,compz,n,ilo,ihi,a,lda,b,ldb,alpha,beta,vl,ldvl,vr, &

ldvr,work,jwork,rwork,info)

lwork = nint(real(work(1)))
Allocate (zwork(lwork))

! Compute the generalized Schur form
! The NAG name equivalent of zhgeqz is f08xsf

Call zhgeqz(job,compq,compz,n,ilo,ihi,a,lda,b,ldb,alpha,beta,vl,ldvl,vr, &
ldvr,zwork,lwork,rwork,info)

! Sort and print generalized eigenvalues if none are infinite.
If (all(real(beta(1:n))>0.0_nag_wp)) Then

! Store absolute values of eigenvalues for ranking
work(1:n) = alpha(1:n)/beta(1:n)
rwork(1:n) = abs(work(1:n))

! Rank eigenvalues
ifail = 0
Call m01daf(rwork,1,n,’Descending’,irank,ifail)

! Sort eigenvalues in work(1:n)
Call m01edf(work,1,n,irank,ifail)

Write (nout,99999)
Do i = 1, n

Write (nout,99998) i, ’(’, real(work(i)), ’,’, aimag(work(i)), ’)’
End Do
Write (nout,*)
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Flush (nout)
Else

irank(1:n) = (/(i,i=1,n)/)
End If

! Compute left and right generalized eigenvectors
! of the balanced matrix

howmny = ’B’
If (ileft .And. iright) Then

side = ’B’
Else If (ileft) Then

side = ’L’
Else If (iright) Then

side = ’R’
End If

! The NAG name equivalent of ztgevc is f08yxf
Call ztgevc(side,howmny,select,n,a,lda,b,ldb,vl,ldvl,vr,ldvr,n,m,work, &

rwork,info)

! Compute right eigenvectors of the original matrix

If (iright) Then
job = ’B’
side = ’R’

! The NAG name equivalent of zggbak is f08wwf
Call zggbak(job,side,n,ilo,ihi,lscale,rscale,n,vr,ldvr,info)

! Normalize the right eigenvectors
Do i = 1, n

j = irank(i)
rwork(1:n) = abs(vr(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(vr(k,i))/abs(vr(k,i))/dznrm2(n,vr(1,i),1)
v(1:n,j) = vr(1:n,i)*scal
v(k,j) = cmplx(real(v(k,j)),kind=nag_wp)

End Do

! Print the right eigenvectors

ifail = 0
Call x04dbf(’General’,’ ’,n,n,v,n,’Bracketed’,’F7.4’, &

’Right eigenvectors’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

Write (nout,*)
Flush (nout)

End If

! Compute left eigenvectors of the original matrix

If (ileft) Then
job = ’B’
side = ’L’

! The NAG name equivalent of zggbak is f08wwf
Call zggbak(job,side,n,ilo,ihi,lscale,rscale,n,vl,ldvl,info)

! Normalize the left eigenvectors
Do i = 1, n

j = irank(i)
rwork(1:n) = abs(vl(1:n,i))
k = maxloc(rwork(1:n),1)
scal = conjg(vl(k,i))/abs(vl(k,i))/dznrm2(n,vl(1,i),1)
v(1:n,j) = vl(1:n,i)*scal
v(k,j) = cmplx(real(v(k,j)),kind=nag_wp)

End Do

! Print the left eigenvectors
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ifail = 0
Call x04dbf(’General’,’ ’,n,n,v,n,’Bracketed’,’F7.4’, &

’Left eigenvectors’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)

End If

99999 Format (1X,/,1X,’Generalized eigenvalues’)
99998 Format (1X,I4,5X,A,F7.3,A,F7.3,A)

End Program f08yxfe

10.2 Program Data

F08YXF Example Program Data
4 :Value of N

( 1.00, 3.00) ( 1.00, 4.00) ( 1.00, 5.00) ( 1.00, 6.00)
( 2.00, 2.00) ( 4.00, 3.00) ( 8.00, 4.00) ( 16.00, 5.00)
( 3.00, 1.00) ( 9.00, 2.00) ( 27.00, 3.00) ( 81.00, 4.00)
( 4.00, 0.00) ( 16.00, 1.00) ( 64.00, 2.00) (256.00, 3.00) :End of matrix A
( 1.00, 0.00) ( 2.00, 1.00) ( 3.00, 2.00) ( 4.00, 3.00)
( 1.00, 1.00) ( 4.00, 2.00) ( 9.00, 3.00) ( 16.00, 4.00)
( 1.00, 2.00) ( 8.00, 3.00) ( 27.00, 4.00) ( 64.00, 5.00)
( 1.00, 3.00) ( 16.00, 4.00) ( 81.00, 5.00) (256.00, 6.00) :End of matrix B

10.3 Program Results

F08YXF Example Program Results

Generalized eigenvalues
1 ( -0.635, 1.653)
2 ( 0.493, 0.910)
3 ( 0.458, -0.843)
4 ( 0.674, -0.050)

Right eigenvectors
1 2 3 4

1 ( 0.7186, 0.0000) (-0.3946, 0.0246) (-0.4649, 0.0156) (-0.6788,-0.1233)
2 (-0.6208,-0.2009) ( 0.7921, 0.0000) ( 0.7652, 0.0000) ( 0.7184, 0.0000)
3 ( 0.2251, 0.0762) (-0.4554, 0.0334) (-0.4275,-0.0912) (-0.0886,-0.0067)
4 (-0.0372,-0.0088) ( 0.0824,-0.0322) ( 0.0707, 0.0442) (-0.0048, 0.0006)

Left eigenvectors
1 2 3 4

1 ( 0.7397, 0.0000) (-0.3240,-0.1559) (-0.3722,-0.0016) (-0.4118,-0.2276)
2 (-0.5812, 0.2589) ( 0.8063, 0.0000) ( 0.8003, 0.0000) ( 0.8681, 0.0000)
3 ( 0.1875,-0.1097) (-0.4523, 0.0903) (-0.4606,-0.0279) (-0.1564, 0.0136)
4 (-0.0219, 0.0195) ( 0.0755,-0.0453) ( 0.0839, 0.0311) ( 0.0206,-0.0038)
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NAG Library Routine Document

F08YYF (ZTGSNA)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08YYF (ZTGSNA) estimates condition numbers for specified eigenvalues and/or eigenvectors of a
complex matrix pair in generalized Schur form.

2 Specification

SUBROUTINE F08YYF (JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL, VR,
LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)

&

INTEGER N, LDA, LDB, LDVL, LDVR, MM, M, LWORK, IWORK(*),
INFO

&

REAL (KIND=nag_wp) S(*), DIF(*)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), VL(LDVL,*), VR(LDVR,*),

WORK(max(1,LWORK))
&

LOGICAL SELECT(*)
CHARACTER(1) JOB, HOWMNY

The routine may be called by its LAPACK name ztgsna.

3 Description

F08YYF (ZTGSNA) estimates condition numbers for specified eigenvalues and/or right eigenvectors of
an n by n matrix pair S; Tð Þ in generalized Schur form. The routine actually returns estimates of the
reciprocals of the condition numbers in order to avoid possible overflow.

The pair S; Tð Þ are in generalized Schur form if S and T are upper triangular as returned, for example,
by F08XNF (ZGGES) or F08XPF (ZGGESX), or F08XSF (ZHGEQZ) with JOB ¼ S . The diagonal
elements define the generalized eigenvalues �i; �ið Þ, for i ¼ 1; 2; . . . ; n, of the pair S; Tð Þ and the
eigenvalues are given by

�i ¼ �i=�i;

so that

�iSxi ¼ �iTxi or Sxi ¼ �iTxi;

where xi is the corresponding (right) eigenvector.

If S and T are the result of a generalized Schur factorization of a matrix pair A;Bð Þ

A ¼ QSZH; B ¼ QTZH

then the eigenvalues and condition numbers of the pair S; Tð Þ are the same as those of the pair A;Bð Þ.
Let �; �ð Þ 6¼ 0; 0ð Þ be a simple generalized eigenvalue of A;Bð Þ. Then the reciprocal of the condition
number of the eigenvalue � ¼ �=� is defined as

s �ð Þ ¼
yHAxj j2 þ yHBxj j2

� �1=2
xk k2 yk k2

� � ;

where x and y are the right and left eigenvectors of A;Bð Þ corresponding to �. If both � and � are zero,
then A;Bð Þ is singular and s �ð Þ ¼ �1 is returned.
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If U and V are unitary transformations such that

UH A;Bð ÞV ¼ S; Tð Þ ¼ � �
0 S22

� �
� �
0 T22

� �
;

where S22 and T22 are n� 1ð Þ by n� 1ð Þ matrices, then the reciprocal condition number is given by

Dif xð Þ 	 Dif yð Þ ¼ Dif �; �ð Þ; S22; T22ð Þð Þ ¼ �min Zð Þ;

where �min Zð Þ denotes the smallest singular value of the 2 n� 1ð Þ by 2 n� 1ð Þ matrix

Z ¼ �� I �1� S22
� � I �1� T22

� �
and � is the Kronecker product.

See Sections 2.4.8 and 4.11 of Anderson et al. (1999) and KÔgstrÎm and Poromaa (1996) for further
details and information.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

KÔgstrÎm B and Poromaa P (1996) LAPACK-style algorithms and software for solving the generalized
Sylvester equation and estimating the separation between regular matrix pairs ACM Trans. Math.
Software 22 78–103

5 Arguments

1: JOB – CHARACTER(1) Input

On entry: indicates whether condition numbers are required for eigenvalues and/or eigenvectors.

JOB ¼ E
Condition numbers for eigenvalues only are computed.

JOB ¼ V
Condition numbers for eigenvectors only are computed.

JOB ¼ B
Condition numbers for both eigenvalues and eigenvectors are computed.

Constraint: JOB ¼ E , V or B .

2: HOWMNY – CHARACTER(1) Input

On entry: indicates how many condition numbers are to be computed.

HOWMNY ¼ A
Condition numbers for all eigenpairs are computed.

HOWMNY ¼ S
Condition numbers for selected eigenpairs (as specified by SELECT) are computed.

Constraint: HOWMNY ¼ A or S .

3: SELECTð�Þ – LOGICAL array Input

Note: the dimension of the array SELECT must be at least max 1;Nð Þ if HOWMNY ¼ S , and at
least 1 otherwise.

On entry: specifies the eigenpairs for which condition numbers are to be computed if
HOWMNY ¼ S . To select condition numbers for the eigenpair corresponding to the eigenvalue
�j, SELECTðjÞ must be set to .TRUE..
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If HOWMNY ¼ A , SELECT is not referenced.

4: N – INTEGER Input

On entry: n, the order of the matrix pair S; Tð Þ.
Constraint: N � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N.

On entry: the upper triangular matrix S.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08YYF
(ZTGSNA) is called.

Constraint: LDA � N.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least N.

On entry: the upper triangular matrix T .

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08YYF
(ZTGSNA) is called.

Constraint: LDB � N.

9: VLðLDVL; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array VL must be at least max 1;MMð Þ if JOB ¼ E or B , and
at least 1 otherwise.

On entry: if JOB ¼ E or B , VL must contain left eigenvectors of S; Tð Þ, corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive
columns of VL, as returned by F08WNF (ZGGEV) or F08YXF (ZTGEVC).

If JOB ¼ V , VL is not referenced.

10: LDVL – INTEGER Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
F08YYF (ZTGSNA) is called.

Constraints:

if JOB ¼ E or B , LDVL � max 1;Nð Þ;
otherwise LDVL � 1.

11: VRðLDVR; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array VR must be at least max 1;MMð Þ if JOB ¼ E or B , and
at least 1 otherwise.

On entry: if JOB ¼ E or B , VR must contain right eigenvectors of S; Tð Þ, corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive
columns of VR, as returned by F08WNF (ZGGEV) or F08YXF (ZTGEVC).

If JOB ¼ V , VR is not referenced.
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12: LDVR – INTEGER Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
F08YYF (ZTGSNA) is called.

Constraints:

if JOB ¼ E or B , LDVR � max 1;Nð Þ;
otherwise LDVR � 1.

13: Sð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array S must be at least max 1;MMð Þ if JOB ¼ E or B , and at least 1
otherwise.

On exit: if JOB ¼ E or B , the reciprocal condition numbers of the selected eigenvalues, stored
in consecutive elements of the array.

If JOB ¼ V , S is not referenced.

14: DIFð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array DIF must be at least max 1;MMð Þ if JOB ¼ V or B , and at
least 1 otherwise.

On exit: if JOB ¼ V or B , the estimated reciprocal condition numbers of the selected
eigenvectors, stored in consecutive elements of the array. If the eigenvalues cannot be reordered
to compute DIFðjÞ, DIFðjÞ is set to 0; this can only occur when the true value would be very
small anyway.

If JOB ¼ E , DIF is not referenced.

15: MM – INTEGER Input

On entry: the number of elements in the arrays S and DIF.

Constraints:

if HOWMNY ¼ A , MM � N;
otherwise MM � the number of selected eigenvalues.

16: M – INTEGER Output

On exit: the number of elements of the arrays S and DIF used to store the specified condition
numbers; for each selected eigenvalue one element is used.

If HOWMNY ¼ A , M is set to N.

17: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

18: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08YYF (ZTGSNA) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the minimum size
of the WORK array, returns this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

Constraints: if LWORK 6¼ �1,
if JOB ¼ V or B , LWORK � max 1; 2� N� Nð Þ;
otherwise LWORK � max 1;Nð Þ.
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19: IWORKð�Þ – INTEGER array Workspace

Note: the dimension of the array IWORK must be at least Nþ 2ð Þ.
If JOB ¼ E , IWORK is not referenced.

20: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

None.

8 Parallelism and Performance

F08YYF (ZTGSNA) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

An approximate asymptotic error bound on the chordal distance between the computed eigenvalue ~�
and the corresponding exact eigenvalue � is

� ~�; �
� �

� � A;Bð Þk kF=S �ð Þ

where � is the machine precision.

An approximate asymptotic error bound for the right or left computed eigenvectors ~x or ~y
corresponding to the right and left eigenvectors x and y is given by

� ~z; zð Þ � � A;Bð Þk kF=Dif :
The real analogue of this routine is F08YLF (DTGSNA).

10 Example

This example estimates condition numbers and approximate error estimates for all the eigenvalues and
right eigenvectors of the pair S; Tð Þ given by

S ¼
4:0þ 4:0i 1:0þ 1:0i 1:0þ 1:0i 2:0� 1:0i
0 2:0þ 1:0i 1:0þ 1:0i 1:0þ 1:0i
0 0 2:0� 1:0i 1:0þ 1:0i
0 0 0 6:0� 2:0i

0B@
1CA

and
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T ¼
2:0 1:0þ 1:0i 1:0þ 1:0i 3:0� 1:0i
0 1:0 2:0þ 1:0i 1:0þ 1:0i
0 0 1:0 1:0þ 1:0i
0 0 0 2:0

0B@
1CA:

The eigenvalues and eigenvectors are computed by calling F08YXF (ZTGEVC).

10.1 Program Text

Program f08yyfe

! F08YYF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f06bnf, f06uaf, nag_wp, x02ajf, ztgevc, ztgsna

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, snorm, stnrm, tnorm
Integer :: i, info, lda, ldb, ldvl, ldvr, &

lwork, m, n
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), vl(:,:), vr(:,:), &
work(:)

Real (Kind=nag_wp), Allocatable :: dif(:), rwork(:), s(:)
Integer, Allocatable :: iwork(:)
Logical :: select(1)

! .. Executable Statements ..
Write (nout,*) ’F08YYF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldvl = n
ldvr = n
lwork = 2*n*n
Allocate (a(lda,n),b(ldb,n),vl(ldvl,n),vr(ldvr,n),work(lwork),dif(n), &

rwork(2*n),s(n),iwork(n+2))

! Read A and B from data file

Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)

! Calculate the left and right generalized eigenvectors of the
! pair (A,B).

! The NAG name equivalent of ztgevc is f08yxf
Call ztgevc(’Both’,’All’,select,n,a,lda,b,ldb,vl,ldvl,vr,ldvr,n,m,work, &

rwork,info)

! Estimate condition numbers for all the generalized eigenvalues
! and right eigenvectors of the pair (A,B)

! The NAG name equivalent of ztgsna is f08yyf
Call ztgsna(’Both’,’All’,select,n,a,lda,b,ldb,vl,ldvl,vr,ldvr,s,dif,n,m, &

work,lwork,iwork,info)

! Print condition numbers of eigenvalues and right eigenvectors

Write (nout,*) ’S’
Write (nout,99999) s(1:m)
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Write (nout,*)
Write (nout,*) ’DIF’
Write (nout,99999) dif(1:m)

! Calculate approximate error estimates

! Compute the 1-norms of A and B and then compute
! SQRT(snorm**2 + tnorm**2)

eps = x02ajf()
snorm = f06uaf(’1-norm’,n,n,a,lda,rwork)
tnorm = f06uaf(’1-norm’,n,n,b,ldb,rwork)
stnrm = f06bnf(snorm,tnorm)
Write (nout,*)
Write (nout,*) ’Approximate error estimates for eigenvalues of (A,B)’
Write (nout,99999)(eps*stnrm/s(i),i=1,m)
Write (nout,*)
Write (nout,*) &

’Approximate error estimates for right eigenvectors of (A,B)’
Write (nout,99999)(eps*stnrm/dif(i),i=1,m)

99999 Format ((3X,1P,7E11.1))
End Program f08yyfe

10.2 Program Data

F08YYF Example Program Data
4 :Value of N

( 4.0, 4.0) ( 1.0, 1.0) ( 1.0, 1.0) ( 2.0,-1.0)
( 0.0, 0.0) ( 2.0, 1.0) ( 1.0, 1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 2.0,-1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 6.0,-2.0) :End of matrix A
( 2.0, 0.0) ( 1.0, 1.0) ( 1.0, 1.0) ( 3.0,-1.0)
( 0.0, 0.0) ( 1.0, 0.0) ( 2.0, 1.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 1.0, 0.0) ( 1.0, 1.0)
( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) ( 2.0, 0.0) :End of matrix B

10.3 Program Results

F08YYF Example Program Results

S
1.0E+00 8.2E-01 7.2E-01 8.2E-01

DIF
3.2E-01 3.6E-01 5.5E-01 2.8E-01

Approximate error estimates for eigenvalues of (A,B)
1.5E-15 1.9E-15 2.1E-15 1.9E-15

Approximate error estimates for right eigenvectors of (A,B)
4.8E-15 4.3E-15 2.8E-15 5.5E-15
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NAG Library Routine Document

F08ZAF (DGGLSE)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ZAF (DGGLSE) solves a real linear equality-constrained least squares problem.

2 Specification

SUBROUTINE F08ZAF (M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK, INFO)

INTEGER M, N, P, LDA, LDB, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), C(M), D(P), X(N),

WORK(max(1,LWORK))
&

The routine may be called by its LAPACK name dgglse.

3 Description

F08ZAF (DGGLSE) solves the real linear equality-constrained least squares (LSE) problem

minimize
x

c�Axk k2 subject to Bx ¼ d

where A is an m by n matrix, B is a p by n matrix, c is an m element vector and d is a p element

vector. It is assumed that p � n � mþ p, rank Bð Þ ¼ p and rank Eð Þ ¼ n, where E ¼ A
B

� �
. These

conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized
RQ factorization of the matrices B and A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia

Anderson E, Bai Z and Dongarra J (1992) Generalized QR factorization and its applications Linear
Algebra Appl. (Volume 162–164) 243–271

EldÉn L (1980) Perturbation theory for the least squares problem with linear equality constraints SIAM
J. Numer. Anal. 17 338–350

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.
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3: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: 0 � P � N � Mþ P.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: A is overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ZAF
(DGGLSE) is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: B is overwritten.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08ZAF
(DGGLSE) is called.

Constraint: LDB � max 1; Pð Þ.

8: CðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the right-hand side vector c for the least squares part of the LSE problem.

On exit: the residual sum of squares for the solution vector x is given by the sum of squares of
elements CðN� Pþ 1Þ;CðN� Pþ 2Þ; . . . ;CðMÞ; the remaining elements are overwritten.

9: DðPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the right-hand side vector d for the equality constraints.

On exit: D is overwritten.

10: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x of the LSE problem.

11: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08ZAF (DGGLSE) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.
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Suggested value: for optimal performance, LWORK � Pþmin M;Nð Þ þmax M;Nð Þ � nb, where
nb is the optimal block size.

Constraint: LWORK � max 1;Mþ Nþ Pð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

The upper triangular factor R associated with B in the generalized RQ factorization of the pair
B;Að Þ is singular, so that rank Bð Þ < p; the least squares solution could not be computed.

INFO ¼ 2

The N � Pð Þ by N � Pð Þ part of the upper trapezoidal factor T associated with A in the
generalized RQ factorization of the pair B;Að Þ is singular, so that the rank of the matrix (E)
comprising the rows of A and B is less than n; the least squares solutions could not be
computed.

7 Accuracy

For an error analysis, see Anderson et al. (1992) and EldÉn (1980). See also Section 4.6 of Anderson et
al. (1999).

8 Parallelism and Performance

F08ZAF (DGGLSE) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08ZAF (DGGLSE) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When m � n ¼ p, the total number of floating-point operations is approximately 2
3n

2 6mþ nð Þ ; if
p n, the number reduces to approximately 2

3n
2 3m� nð Þ .

E04NCF/E04NCA may also be used to solve LSE problems. It differs from F08ZAF (DGGLSE) in that
it uses an iterative (rather than direct) method, and that it allows general upper and lower bounds to be
specified for the variables x and the linear constraints Bx.
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10 Example

This example solves the least squares problem

minimize
x

c�Axk k2 subject to Bx ¼ d

where

c ¼

�1:50
�2:14
1:23
�0:54
�1:68
0:82

0BBBBB@

1CCCCCA;

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA;

B ¼ 1:0 0 �1:0 0
0 1:0 0 �1:0

� �
and

d ¼ 0
0

� �
:

The constraints Bx ¼ d correspond to x1 ¼ x3 and x2 ¼ x4.

10.1 Program Text

Program f08zafe

! F08ZAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgglse, dnrm2, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm
Integer :: i, info, lda, ldb, lwork, m, n, p

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:), d(:), work(:), &

x(:)
! .. Executable Statements ..

Write (nout,*) ’F08ZAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
lwork = p + n + nb*(m+n)
Allocate (a(lda,n),b(ldb,n),c(m),d(p),work(lwork),x(n))

! Read A, B, C and D from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)
Read (nin,*) c(1:m)
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Read (nin,*) d(1:p)

! Solve the equality-constrained least squares problem

! minimize ||c - A*x|| (in the 2-norm) subject to B*x = D

! The NAG name equivalent of dgglse is f08zaf
Call dgglse(m,n,p,a,lda,b,ldb,c,d,x,work,lwork,info)

! Print least squares solution

Write (nout,*) ’Constrained least squares solution’
Write (nout,99999) x(1:n)

! Compute the square root of the residual sum of squares

! The NAG name equivalent of dnrm2 is f06ejf
rnorm = dnrm2(m-n+p,c(n-p+1),1)
Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99998) rnorm

99999 Format (1X,7F11.4)
99998 Format (3X,1P,E11.2)

End Program f08zafe

10.2 Program Data

F08ZAF Example Program Data

6 4 2 :Values of M, N and P

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A

1.00 0.00 -1.00 0.00
0.00 1.00 0.00 -1.00 :End of matrix B

-1.50
-2.14
1.23

-0.54
-1.68
0.82 :End of vector c

0.00
0.00 :End of vector d

10.3 Program Results

F08ZAF Example Program Results

Constrained least squares solution
0.4890 0.9975 0.4890 0.9975

Square root of the residual sum of squares
2.51E-02

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08ZAF

Mark 26 F08ZAF.5 (last)





NAG Library Routine Document

F08ZBF (DGGGLM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ZBF (DGGGLM) solves a real general Gauss–Markov linear (least squares) model problem.

2 Specification

SUBROUTINE F08ZBF (M, N, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, INFO)

INTEGER M, N, P, LDA, LDB, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), D(M), X(N), Y(P),

WORK(max(1,LWORK))
&

The routine may be called by its LAPACK name dggglm.

3 Description

F08ZBF (DGGGLM) solves the real general Gauss–Markov linear model (GLM) problem

minimize
x

yk k2 subject to d ¼ AxþBy

where A is an m by n matrix, B is an m by p matrix and d is an m element vector. It is assumed that
n � m � nþ p, rank Að Þ ¼ n and rank Eð Þ ¼ m, where E ¼ A B

� �
. Under these assumptions, the

problem has a unique solution x and a minimal 2-norm solution y, which is obtained using a
generalized QR factorization of the matrices A and B.

In particular, if the matrix B is square and nonsingular, then the GLM problem is equivalent to the
weighted linear least squares problem

minimize
x

B�1 d�Axð Þ
�� ��

2
:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia

Anderson E, Bai Z and Dongarra J (1992) Generalized QR factorization and its applications Linear
Algebra Appl. (Volume 162–164) 243–271

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrices A and B.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: 0 � N � M.
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3: P – INTEGER Input

On entry: p, the number of columns of the matrix B.

Constraint: P � M� N.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: A is overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ZBF
(DGGGLM) is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1; Pð Þ.
On entry: the m by p matrix B.

On exit: B is overwritten.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08ZBF
(DGGGLM) is called.

Constraint: LDB � max 1;Mð Þ.

8: DðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the left-hand side vector d of the GLM equation.

On exit: D is overwritten.

9: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x of the GLM problem.

10: YðPÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector y of the GLM problem.

11: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08ZBF (DGGGLM) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � Nþmin M;Pð Þ þmax M;Pð Þ � nb, where
nb is the optimal block size.

Constraint: LWORK � max 1;Mþ Nþ Pð Þ or LWORK ¼ �1.
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13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

The bottom M �Nð Þ by M �Nð Þ part of the upper trapezoidal factor T associated with B in the
generalized QR factorization of the pair A;Bð Þ is singular, so that rank A B

� �
< M; the least

squares solutions could not be computed.

INFO ¼ 2

The upper triangular factor R associated with A in the generalized RQ factorization of the pair
A;Bð Þ is singular, so that rank Að Þ < n; the least squares solution could not be computed.

7 Accuracy

For an error analysis, see Anderson et al. (1992). See also Section 4.6 of Anderson et al. (1999).

8 Parallelism and Performance

F08ZBF (DGGGLM) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

F08ZBF (DGGGLM) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When p ¼ m � n, the total number of floating-point operations is approximately 2
3 2m3 � n3
� �

þ 4nm2 ;
when p ¼ m ¼ n, the total number of floating-point operations is approximately 14

3m
3 .

10 Example

This example solves the weighted least squares problem

minimize
x

B�1 d�Axð Þ
�� ��

2
;

where

B ¼
0:5 0:0 0:0 0:0
0:0 1:0 0:0 0:0
0:0 0:0 2:0 0:0
0:0 0:0 0:0 5:0

0B@
1CA; d ¼

1:32
�4:00
5:52
3:24

0B@
1CA and A ¼

�0:57 �1:28 �0:39
�1:93 1:08 �0:31
2:30 0:24 �0:40
�0:02 1:03 �1:43

0B@
1CA:
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10.1 Program Text

Program f08zbfe

! F08ZBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dggglm, dnrm2, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm
Integer :: i, info, lda, ldb, lwork, m, n, p

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), d(:), work(:), x(:), &

y(:)
! .. Executable Statements ..

Write (nout,*) ’F08ZBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = m
lwork = n + m + nb*(m+p)
Allocate (a(lda,n),b(ldb,p),d(m),work(lwork),x(n),y(p))

! Read A, B and D from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:p),i=1,m)
Read (nin,*) d(1:m)

! Solve the weighted least squares problem

! minimize ||inv(B)*(d - A*x)|| (in the 2-norm)

! The NAG name equivalent of dggglm is f08zbf
Call dggglm(m,n,p,a,lda,b,ldb,d,x,y,work,lwork,info)

! Print least squares solution, x

Write (nout,*) ’Weighted least squares solution’
Write (nout,99999) x(1:n)

! Print residual vector y = inv(B)*(d - A*x)

Write (nout,*)
Write (nout,*) ’Residual vector’
Write (nout,99998) y(1:p)

! Compute and print the square root of the residual sum of
! squares

! The NAG name equivalent of dnrm2 is f06ejf
rnorm = dnrm2(p,y,1)

Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99998) rnorm

99999 Format (1X,7F11.4)
99998 Format (3X,1P,7E11.2)

End Program f08zbfe

F08ZBF NAG Library Manual

F08ZBF.4 Mark 26



10.2 Program Data

F08ZBF Example Program Data

4 3 4 :Values of M, N and P

-0.57 -1.28 -0.39
-1.93 1.08 -0.31
2.30 0.24 -0.40

-0.02 1.03 -1.43 :End of matrix A

0.50 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 2.00 0.00
0.00 0.00 0.00 5.00 :End of matrix B

1.32
-4.00
5.52
3.24 :End of vector d

10.3 Program Results

F08ZBF Example Program Results

Weighted least squares solution
1.9889 -1.0058 -2.9911

Residual vector
-6.37E-04 -2.45E-03 -4.72E-03 7.70E-03

Square root of the residual sum of squares
9.38E-03
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NAG Library Routine Document

F08ZEF (DGGQRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ZEF (DGGQRF) computes a generalized QR factorization of a real matrix pair A;Bð Þ, where A is
an n by m matrix and B is an n by p matrix.

2 Specification

SUBROUTINE F08ZEF (N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
INFO)

&

INTEGER N, M, P, LDA, LDB, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAUA(min(N,M)), B(LDB,*), TAUB(min(N,P)),

WORK(max(1,LWORK))
&

The routine may be called by its LAPACK name dggqrf.

3 Description

F08ZEF (DGGQRF) forms the generalized QR factorization of an n by m matrix A and an n by p
matrix B

A ¼ QR; B ¼ QTZ;

where Q is an n by n orthogonal matrix, Z is a p by p orthogonal matrix and R and T are of the form

R ¼

�� m

m R11
n�m 0

; if n � m;

�� n m� n
n R11 R12 ; if n < m;

8>>>><>>>>:
with R11 upper triangular,

T ¼

�� p� n n

n 0 T12 ; if n � p;�� p

n� p T11
p T21

; if n > p;

8>>>><>>>>:
with T12 or T21 upper triangular.

In particular, if B is square and nonsingular, the generalized QR factorization of A and B implicitly
gives the QR factorization of B�1A as

B�1A ¼ ZT T�1R
� �

:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Anderson E, Bai Z and Dongarra J (1992) Generalized QR factorization and its applications Linear
Algebra Appl. (Volume 162–164) 243–271
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Hammarling S (1987) The numerical solution of the general Gauss-Markov linear model Mathematics
in Signal Processing (eds T S Durrani, J B Abbiss, J E Hudson, R N Madan, J G McWhirter and T A
Moore) 441–456 Oxford University Press

Paige C C (1990) Some aspects of generalized QR factorizations . In Reliable Numerical Computation
(eds M G Cox and S Hammarling) 73–91 Oxford University Press

5 Arguments

1: N – INTEGER Input

On entry: n, the number of rows of the matrices A and B.

Constraint: N � 0.

2: M – INTEGER Input

On entry: m, the number of columns of the matrix A.

Constraint: M � 0.

3: P – INTEGER Input

On entry: p, the number of columns of the matrix B.

Constraint: P � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Mð Þ.
On entry: the n by m matrix A.

On exit: the elements on and above the diagonal of the array contain the min n;mð Þ by m upper
trapezoidal matrix R (R is upper triangular if n � m); the elements below the diagonal, with the
array TAUA, represent the orthogonal matrix Q as a product of min n;mð Þ elementary reflectors
(see Section 3.3.6 in the F08 Chapter Introduction).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ZEF
(DGGQRF) is called.

Constraint: LDA � max 1;Nð Þ.

6: TAUAðmin N;Mð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the scalar factors of the elementary reflectors which represent the orthogonal matrix Q.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1; Pð Þ.
On entry: the n by p matrix B.

On exit: if n � p, the upper triangle of the subarray Bð1 : n; p� nþ 1 : pÞ contains the n by n
upper triangular matrix T12.

If n > p, the elements on and above the n� pð Þth subdiagonal contain the n by p upper
trapezoidal matrix T ; the remaining elements, with the array TAUB, represent the orthogonal
matrix Z as a product of elementary reflectors (see Section 3.3.6 in the F08 Chapter
Introduction).
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8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08ZEF
(DGGQRF) is called.

Constraint: LDB � max 1;Nð Þ.

9: TAUBðmin N; Pð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the scalar factors of the elementary reflectors which represent the orthogonal matrix Z.

10: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08ZEF (DGGQRF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � max N;M; Pð Þ �max nb1; nb2;nb3ð Þ,
where nb1 is the optimal block size for the QR factorization of an n by m matrix, nb2 is the
optimal block size for the RQ factorization of an n by p matrix, and nb3 is the optimal block size
for a call of F08AGF (DORMQR).

Constraint: LWORK � max 1;N;M; Pð Þ or LWORK ¼ �1.

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed generalized QR factorization is the exact factorization for nearby matrices Aþ Eð Þ and
Bþ Fð Þ, where

Ek k2 ¼ O � Ak k2 and Fk k2 ¼ O � Bk k2;

and � is the machine precision.

8 Parallelism and Performance

F08ZEF (DGGQRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08ZEF (DGGQRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The orthogonal matrices Q and Z may be formed explicitly by calls to F08AFF (DORGQR) and
F08CJF (DORGRQ) respectively. F08AGF (DORMQR) may be used to multiply Q by another matrix
and F08CKF (DORMRQ) may be used to multiply Z by another matrix.

The complex analogue of this routine is F08ZSF (ZGGQRF).

10 Example

This example solves the general Gauss–Markov linear model problem

min
x

yk k2 subject to d ¼ AxþBy

where

A ¼
�0:57 �1:28 �0:39
�1:93 1:08 �0:31
2:30 0:24 �0:40
�0:02 1:03 �1:43

0B@
1CA; B ¼

0:5 0 0 0
0 1:0 0 0
0 0 2:0 0
0 0 0 5:0

0B@
1CA and d ¼

1:32
�4:00
5:52
3:24

0B@
1CA:

The solution is obtained by first computing a generalized QR factorization of the matrix pair A;Bð Þ.
The example illustrates the general solution process, although the above data corresponds to a simple
weighted least squares problem.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08zefe

! F08ZEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgemv, dggqrf, dnrm2, dormqr, dormrq, dtrtrs, &

nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0E0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm
Integer :: i, info, lda, ldb, lwork, m, n, p

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), d(:), taua(:), &

taub(:), work(:), y(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min
! .. Executable Statements ..

Write (nout,*) ’F08ZEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, p
lda = n
ldb = n
lwork = nb*(m+p)
Allocate (a(lda,m),b(ldb,p),d(n),taua(m),taub(m+p),work(lwork),y(p))

! Read A, B and D from data file
Read (nin,*)(a(i,1:m),i=1,n)
Read (nin,*)(b(i,1:p),i=1,n)
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Read (nin,*) d(1:n)

! Compute the generalized QR factorization of (A,B) as
! A = Q*(R), B = Q*(T11 T12)*Z
! (0) ( 0 T22)
! The NAG name equivalent of dggqrf is f08zef

Call dggqrf(n,m,p,a,lda,taua,b,ldb,taub,work,lwork,info)

! Compute c = (c1) = (Q**T)*d, storing the result in D
! (c2)
! The NAG name equivalent of dormqr is f08agf

Call dormqr(’Left’,’Transpose’,n,1,m,a,lda,taua,d,n,work,lwork,info)

! Putting Z*y = w = (w1), set w1 = 0, storing the result in Y1
! (w2)

y(1:m+p-n) = zero

If (n>m) Then

! Copy c2 into Y2
y(m+p-n+1:p) = d(m+1:n)

! Solve T22*w2 = c2 for w2, storing result in Y2
! The NAG name equivalent of dtrtrs is f07tef

Call dtrtrs(’Upper’,’No transpose’,’Non-unit’,n-m,1,b(m+1,m+p-n+1), &
ldb,y(m+p-n+1),n-m,info)

If (info>0) Then
Write (nout,*) &

’The upper triangular factor, T22, of B is singular, ’
Write (nout,*) ’the least squares solution could not be computed’
Go To 100

End If

! Compute estimate of the square root of the residual sum of squares
! norm(y) = norm(w2)

! The NAG name equivalent of dnrm2 is f06ejf
rnorm = dnrm2(n-m,y(m+p-n+1),1)

! Form c1 - T12*w2 in D
! The NAG name equivalent of dgemv is f06paf

Call dgemv(’No transpose’,m,n-m,-one,b(1,m+p-n+1),ldb,y(m+p-n+1),1, &
one,d,1)

End If

! Solve R*x = c1 - T12*w2 for x
! The NAG name equivalent of dtrtrs is f07tef

Call dtrtrs(’Upper’,’No transpose’,’Non-unit’,m,1,a,lda,d,m,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

! Compute y = (Z**T)*w
! The NAG name equivalent of dormrq is f08ckf

Call dormrq(’Left’,’Transpose’,p,1,min(n,p),b(max(1, &
n-p+1),1),ldb,taub,y,p,work,lwork,info)

! Print least squares solution x

Write (nout,*) ’Generalized least squares solution’
Write (nout,99999) d(1:m)

! Print residual vector y

Write (nout,*)
Write (nout,*) ’Residual vector’
Write (nout,99998) y(1:p)
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! Print estimate of the square root of the residual sum of squares

Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99998) rnorm

End If
100 Continue

99999 Format (1X,7F11.4)
99998 Format (3X,1P,7E11.2)

End Program f08zefe

10.2 Program Data

F08ZEF Example Program Data

4 3 4 :Values of N, M and P

-0.57 -1.28 -0.39
-1.93 1.08 -0.31
2.30 0.24 -0.40

-0.02 1.03 -1.43 :End of matrix A

0.50 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 2.00 0.00
0.00 0.00 0.00 5.00 :End of matrix B

1.32
-4.00
5.52
3.24 :End of vector d

10.3 Program Results

F08ZEF Example Program Results

Generalized least squares solution
1.9889 -1.0058 -2.9911

Residual vector
-6.37E-04 -2.45E-03 -4.72E-03 7.70E-03

Square root of the residual sum of squares
9.38E-03
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NAG Library Routine Document

F08ZFF (DGGRQF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ZFF (DGGRQF) computes a generalized RQ factorization of a real matrix pair A;Bð Þ, where A is
an m by n matrix and B is a p by n matrix.

2 Specification

SUBROUTINE F08ZFF (M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
INFO)

&

INTEGER M, P, N, LDA, LDB, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAUA(min(M,N)), B(LDB,*), TAUB(min(P,N)),

WORK(max(1,LWORK))
&

The routine may be called by its LAPACK name dggrqf.

3 Description

F08ZFF (DGGRQF) forms the generalized RQ factorization of an m by n matrix A and a p by n
matrix B

A ¼ RQ; B ¼ ZTQ;

where Q is an n by n orthogonal matrix, Z is a p by p orthogonal matrix and R and T are of the form

R ¼

��n�m m

m 0 R12
; if m � n;

1CA
0B@

n

m� n R11

n R21

; if m > n;

8>>>>>>>>>><>>>>>>>>>>:
with R12 or R21 upper triangular,

T ¼

�� n

n T11
p� n 0

; if p � n;

�� p n� p
p T11 T12 ; if p < n;

8>>>><>>>>:
with T11 upper triangular.

In particular, if B is square and nonsingular, the generalized RQ factorization of A and B implicitly
gives the RQ factorization of AB�1 as

AB�1 ¼ RT�1
� �

ZT:
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the upper triangle of the subarray Að1 : m;n�mþ 1 : nÞ contains the m by
m upper triangular matrix R12.

If m � n, the elements on and above the m� nð Þth subdiagonal contain the m by n upper
trapezoidal matrix R; the remaining elements, with the array TAUA, represent the orthogonal
matrix Q as a product of min m;nð Þ elementary reflectors (see Section 3.3.6 in the F08 Chapter
Introduction).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ZFF
(DGGRQF) is called.

Constraint: LDA � max 1;Mð Þ.

6: TAUAðmin M;Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the scalar factors of the elementary reflectors which represent the orthogonal matrix Q.

7: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.
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On exit: the elements on and above the diagonal of the array contain the min p; nð Þ by n upper
trapezoidal matrix T (T is upper triangular if p � n); the elements below the diagonal, with the
array TAUB, represent the orthogonal matrix Z as a product of elementary reflectors (see
Section 3.3.6 in the F08 Chapter Introduction).

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08ZFF
(DGGRQF) is called.

Constraint: LDB � max 1; Pð Þ.

9: TAUBðmin P;Nð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the scalar factors of the elementary reflectors which represent the orthogonal matrix Z.

10: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08ZFF (DGGRQF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � max N;M; Pð Þ �max nb1; nb2;nb3ð Þ,
where nb1 is the optimal block size for the RQ factorization of an m by n matrix by
F08CHF (DGERQF), nb2 is the optimal block size for the QR factorization of a p by n matrix
by F08AEF (DGEQRF), and nb3 is the optimal block size for a call of F08CKF (DORMRQ).

Constraint: LWORK � max 1;N;M; Pð Þ or LWORK ¼ �1.

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed generalized RQ factorization is the exact factorization for nearby matrices Aþ Eð Þ and
Bþ Fð Þ, where

Ek k2 ¼ O � Ak k2 and Fk k2 ¼ O � Bk k2;

and � is the machine precision.

8 Parallelism and Performance

F08ZFF (DGGRQF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F08ZFF (DGGRQF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The orthogonal matrices Q and Z may be formed explicitly by calls to F08CJF (DORGRQ) and
F08AFF (DORGQR) respectively. F08CKF (DORMRQ) may be used to multiply Q by another matrix
and F08AGF (DORMQR) may be used to multiply Z by another matrix.

The complex analogue of this routine is F08ZTF (ZGGRQF).

10 Example

This example solves the least squares problem

minimize
x

c�Axk k2 subject to Bx ¼ d

where

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0BBBBB@

1CCCCCA; B ¼ 1 0 �1 0
0 1 0 �1

� �
;

c ¼

�1:50
�2:14
1:23
�0:54
�1:68
0:82

0BBBBB@

1CCCCCA and d ¼ 0
0

� �
:

The constraints Bx ¼ d correspond to x1 ¼ x3 and x2 ¼ x4.
The solution is obtained by first computing a generalized RQ factorization of the matrix pair B;Að Þ.
The example illustrates the general solution process.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08zffe

! F08ZFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgemv, dggrqf, dnrm2, dormqr, dormrq, dtrmv, &

dtrtrs, nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0E0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm
Integer :: i, info, lda, ldb, lwork, m, n, p
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:), d(:), taua(:), &

taub(:), work(:), x(:)
! .. Intrinsic Procedures ..

Intrinsic :: min
! .. Executable Statements ..

Write (nout,*) ’F08ZFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
lwork = nb*(p+n)
Allocate (a(lda,n),b(ldb,n),c(m),d(p),taua(n),taub(n),work(lwork),x(n))

! Read B, A, C and D from data file
Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)
Read (nin,*) c(1:m)
Read (nin,*) d(1:p)

! Compute the generalized RQ factorization of (B,A) as
! B = (0 T12)*Q, A = Z*(R11 R12)*Q, where T12, R11
! ( 0 R22)
! are upper triangular
! The NAG name equivalent of dggrqf is f08zff

Call dggrqf(p,m,n,b,ldb,taub,a,lda,taua,work,lwork,info)

! Set Qx = y. The problem then reduces to:
! minimize (Ry - Z^Tc) subject to Ty = d
! Update c = Z^T*c -> minimize (Ry-c)
! The NAG name equivalent of dormqr is f08agf

Call dormqr(’Left’,’Transpose’,m,1,min(m,n),a,lda,taua,c,m,work,lwork, &
info)

! Putting y = (y1), solve T12*w = d for w, storing result in d
! (w )
! The NAG name equivalent of dtrtrs is f07tef

Call dtrtrs(’Upper’,’No transpose’,’Non-unit’,p,1,b(1,n-p+1),ldb,d,p, &
info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor of B is singular, ’
Write (nout,*) ’the least squares solution could not be computed’
Go To 100

End If

! From first n-p rows of (Ry-c) we have: R11*y1 + R12*w = c(1:n-p) = c1
! Form c1 = c1 - R12*w = R11*y1
! The NAG name equivalent of dgemv is f06raf

Call dgemv(’No transpose’,n-p,p,-one,a(1,n-p+1),lda,d,1,one,c,1)

! Solve R11*y1 = c1 for y1, storing result in c(1:n-p)
! The NAG name equivalent of dtrtrs is f07tef

Call dtrtrs(’Upper’,’No transpose’,’Non-unit’,n-p,1,a,lda,c,n-p,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’
Go To 100

End If

! Copy y into X (first y1, then w)
x(1:n-p) = c(1:n-p)
x(n-p+1:n) = d(1:p)

! Compute x = (Q**T)*y
! The NAG name equivalent of dormrq is f08ckf

Call dormrq(’Left’,’Transpose’,n,1,p,b,ldb,taub,x,n,work,lwork,info)
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! The least squares solution is in x, the remainder here is to compute
! the residual, which equals c2 - R22*w.

! Upper triangular part of R22 first
! The NAG name equivalent of dtrmv is f06pff

Call dtrmv(’Upper’,’No transpose’,’Non-unit’,min(m,n)-n+p, &
a(n-p+1,n-p+1),lda,d,1)

Do i = 1, min(m,n) - n + p
c(n-p+i) = c(n-p+i) - d(i)

End Do

If (m<n) Then

! Additional rectangular part of R22
! The NAG name equivalent of dgemv is f06paf

Call dgemv(’No transpose’,m-n+p,n-m,-one,a(n-p+1,m+1),lda,d(m-n+p+1), &
1,one,c(n-p+1),1)

End If

! Compute norm of residual sum of squares.
rnorm = dnrm2(m-(n-p),c(n-p+1),1)

! Print least squares solution x
Write (nout,*) ’Constrained least squares solution’
Write (nout,99999) x(1:n)

! Print estimate of the square root of the residual sum of squares
Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99998) rnorm

100 Continue

99999 Format (1X,7F11.4)
99998 Format (3X,1P,E11.2)

End Program f08zffe

10.2 Program Data

F08ZFF Example Program Data

6 4 2 : m, n and p

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 : A

1.00 0.00 -1.00 0.00
0.00 1.00 0.00 -1.00 : B

-1.50
-2.14
1.23

-0.54
-1.68
0.82 : c

0.00
0.00 : d
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10.3 Program Results

F08ZFF Example Program Results

Constrained least squares solution
0.4890 0.9975 0.4890 0.9975

Square root of the residual sum of squares
2.51E-02
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NAG Library Routine Document

F08ZNF (ZGGLSE)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ZNF (ZGGLSE) solves a complex linear equality-constrained least squares problem.

2 Specification

SUBROUTINE F08ZNF (M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK, INFO)

INTEGER M, N, P, LDA, LDB, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), C(M), D(P), X(N),

WORK(max(1,LWORK))
&

The routine may be called by its LAPACK name zgglse.

3 Description

F08ZNF (ZGGLSE) solves the complex linear equality-constrained least squares (LSE) problem

minimize
x

c�Axk k2 subject to Bx ¼ d

where A is an m by n matrix, B is a p by n matrix, c is an m element vector and d is a p element

vector. It is assumed that p � n � mþ p, rank Bð Þ ¼ p and rank Eð Þ ¼ n, where E ¼ A
B

� �
. These

conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized
RQ factorization of the matrices B and A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia

Anderson E, Bai Z and Dongarra J (1992) Generalized QR factorization and its applications Linear
Algebra Appl. (Volume 162–164) 243–271

EldÉn L (1980) Perturbation theory for the least squares problem with linear equality constraints SIAM
J. Numer. Anal. 17 338–350

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.
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3: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: 0 � P � N � Mþ P.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: A is overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ZNF
(ZGGLSE) is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.

On exit: B is overwritten.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08ZNF
(ZGGLSE) is called.

Constraint: LDB � max 1; Pð Þ.

8: CðMÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the right-hand side vector c for the least squares part of the LSE problem.

On exit: the residual sum of squares for the solution vector x is given by the sum of squares of
elements CðN� Pþ 1Þ;CðN� Pþ 2Þ; . . . ;CðMÞ; the remaining elements are overwritten.

9: DðPÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the right-hand side vector d for the equality constraints.

On exit: D is overwritten.

10: XðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the solution vector x of the LSE problem.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08ZNF (ZGGLSE) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.
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Suggested value: for optimal performance, LWORK � Pþmin M;Nð Þ þmax M;Nð Þ � nb, where
nb is the optimal block size.

Constraint: LWORK � max 1;Mþ Nþ Pð Þ or LWORK ¼ �1.

13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

The upper triangular factor R associated with B in the generalized RQ factorization of the pair
B;Að Þ is singular, so that rank Bð Þ < p; the least squares solution could not be computed.

INFO ¼ 2

The N � Pð Þ by N � Pð Þ part of the upper trapezoidal factor T associated with A in the
generalized RQ factorization of the pair B;Að Þ is singular, so that the rank of the matrix (E)
comprising the rows of A and B is less than n; the least squares solutions could not be
computed.

7 Accuracy

For an error analysis, see Anderson et al. (1992) and EldÉn (1980). See also Section 4.6 of Anderson et
al. (1999).

8 Parallelism and Performance

F08ZNF (ZGGLSE) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08ZNF (ZGGLSE) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When m � n ¼ p, the total number of real floating-point operations is approximately 8
3n

2 6mþ nð Þ ; if
p n, the number reduces to approximately 8

3n
2 3m� nð Þ .

10 Example

This example solves the least squares problem

minimize
x

c�Axk k2 subject to Bx ¼ d

where
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c ¼

�2:54þ 0:09i
1:65� 2:26i
�2:11� 3:96i
1:82þ 3:30i
�6:41þ 3:77i
2:07þ 0:66i

0BBBBB@

1CCCCCA;

and

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA;

B ¼ 1:0þ 0:0i 0 �1:0þ 0:0i 0
0 1:0þ 0:0i 0 �1:0þ 0:0i

� �
and

d ¼ 0
0

� �
:

The constraints Bx ¼ d correspond to x1 ¼ x3 and x2 ¼ x4.
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08znfe

! F08ZNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, zgglse

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm
Integer :: i, info, lda, ldb, lwork, m, n, p

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:), d(:), &

work(:), x(:)
! .. Executable Statements ..

Write (nout,*) ’F08ZNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
lwork = p + n + nb*(m+n)
Allocate (a(lda,n),b(ldb,n),c(m),d(p),work(lwork),x(n))

! Read A, B, C and D from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)
Read (nin,*) c(1:m)
Read (nin,*) d(1:p)
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! Solve the equality-constrained least squares problem

! minimize ||c - A*x|| (in the 2-norm) subject to B*x = D

! The NAG name equivalent of zgglse is f08znf
Call zgglse(m,n,p,a,lda,b,ldb,c,d,x,work,lwork,info)

! Print least squares solution

Write (nout,*) ’Constrained least squares solution’
Write (nout,99999) x(1:n)

! Compute the square root of the residual sum of squares

! The NAG name equivalent of dznrm2 is f06jjf
rnorm = dznrm2(m-n+p,c(n-p+1),1)
Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99998) rnorm

99999 Format (4(’ (’,F7.4,’,’,F7.4,’)’,:))
99998 Format (1X,1P,E10.2)

End Program f08znfe

10.2 Program Data

F08ZNF Example Program Data

6 4 2 :Values of M, N and P

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
( 0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A

( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) :End of matrix B

(-2.54, 0.09)
( 1.65,-2.26)
(-2.11,-3.96)
( 1.82, 3.30)
(-6.41, 3.77)
( 2.07, 0.66) :End of vector c

( 0.00, 0.00)
( 0.00, 0.00) :End of vector d

10.3 Program Results

F08ZNF Example Program Results

Constrained least squares solution
( 1.0874,-1.9621) (-0.7409, 3.7297) ( 1.0874,-1.9621) (-0.7409, 3.7297)

Square root of the residual sum of squares
1.59E-01
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NAG Library Routine Document

F08ZPF (ZGGGLM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ZPF (ZGGGLM) solves a complex general Gauss–Markov linear (least squares) model problem.

2 Specification

SUBROUTINE F08ZPF (M, N, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, INFO)

INTEGER M, N, P, LDA, LDB, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), D(M), X(N), Y(P),

WORK(max(1,LWORK))
&

The routine may be called by its LAPACK name zggglm.

3 Description

F08ZPF (ZGGGLM) solves the complex general Gauss–Markov linear model (GLM) problem

minimize
x

yk k2 subject to d ¼ AxþBy

where A is an m by n matrix, B is an m by p matrix and d is an m element vector. It is assumed that
n � m � nþ p, rank Að Þ ¼ n and rank Eð Þ ¼ m, where E ¼ A B

� �
. Under these assumptions, the

problem has a unique solution x and a minimal 2-norm solution y, which is obtained using a
generalized QR factorization of the matrices A and B.

In particular, if the matrix B is square and nonsingular, then the GLM problem is equivalent to the
weighted linear least squares problem

minimize
x

B�1 d�Axð Þ
�� ��

2
:

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia

Anderson E, Bai Z and Dongarra J (1992) Generalized QR factorization and its applications Linear
Algebra Appl. (Volume 162–164) 243–271

5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrices A and B.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: 0 � N � M.
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3: P – INTEGER Input

On entry: p, the number of columns of the matrix B.

Constraint: P � M� N.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: A is overwritten.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ZPF
(ZGGGLM) is called.

Constraint: LDA � max 1;Mð Þ.

6: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1; Pð Þ.
On entry: the m by p matrix B.

On exit: B is overwritten.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08ZPF
(ZGGGLM) is called.

Constraint: LDB � max 1;Mð Þ.

8: DðMÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the left-hand side vector d of the GLM equation.

On exit: D is overwritten.

9: XðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the solution vector x of the GLM problem.

10: YðPÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the solution vector y of the GLM problem.

11: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08ZPF (ZGGGLM) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � Nþmin M;Pð Þ þmax M;Pð Þ � nb, where
nb is the optimal block size.

Constraint: LWORK � max 1;Mþ Nþ Pð Þ or LWORK ¼ �1.
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13: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO ¼ 1

The bottom M �Nð Þ by M �Nð Þ part of the upper trapezoidal factor T associated with B in the
generalized QR factorization of the pair A;Bð Þ is singular, so that rank A B

� �
< M; the least

squares solutions could not be computed.

INFO ¼ 2

The upper triangular factor R associated with A in the generalized RQ factorization of the pair
A;Bð Þ is singular, so that rank Að Þ < n; the least squares solution could not be computed.

7 Accuracy

For an error analysis, see Anderson et al. (1992). See also Section 4.6 of Anderson et al. (1999).

8 Parallelism and Performance

F08ZPF (ZGGGLM) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08ZPF (ZGGGLM) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When p ¼ m � n, the total number of real floating-point operations is approximately
8
3 2m3 � n3
� �

þ 16nm2 ; when p ¼ m ¼ n, the total number of real floating-point operations is
approximately 56

3m
3 .

10 Example

This example solves the weighted least squares problem

minimize
x

B�1 d�Axð Þ
�� ��

2
;

where

B ¼
0:5� 1:0i

1:0� 2:0i
2:0� 3:0i

5:0� 4:0i

0B@
1CA;
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d ¼
6:00� 0:40i
�5:27þ 0:90i
2:72� 2:13i
�1:30� 2:80i

0B@
1CA

and

A ¼
0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i

0B@
1CA:

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08zpfe

! F08ZPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, zggglm

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm
Integer :: i, info, lda, ldb, lwork, m, n, p

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), d(:), work(:), &

x(:), y(:)
! .. Executable Statements ..

Write (nout,*) ’F08ZPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = m
lwork = n + m + nb*(m+p)
Allocate (a(lda,n),b(ldb,p),d(m),work(lwork),x(n),y(p))

! Read A, B and D from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:p),i=1,m)
Read (nin,*) d(1:m)

! Solve the weighted least squares problem

! minimize ||inv(B)*(d - A*x)|| (in the 2-norm)

! The NAG name equivalent of zggglm is f08zpf
Call zggglm(m,n,p,a,lda,b,ldb,d,x,y,work,lwork,info)

! Print least squares solution

Write (nout,*) ’Weighted least squares solution’
Write (nout,99999) x(1:n)

! Print residual vector y = inv(B)*(d - A*x)

Write (nout,*)
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Write (nout,*) ’Residual vector’
Write (nout,99998) y(1:p)

! Compute and print the square root of the residual sum of squares
! The NAG name equivalent of dznrm2 is f06jjf

rnorm = dznrm2(p,y,1)

Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99997) rnorm

99999 Format (3(’ (’,F9.4,’,’,F9.4,’)’,:))
99998 Format (3(’ (’,1P,E9.2,’,’,1P,E9.2,’)’,:))
99997 Format (1X,1P,E10.2)

End Program f08zpfe

10.2 Program Data

F08ZPF Example Program Data

4 3 4 :Values of M, N and P

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) :End of matrix A

( 0.50,-1.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 1.00,-2.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( 2.00,-3.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 5.00,-4.00) :End of matrix B

( 6.00,-0.40)
(-5.27, 0.90)
( 2.72,-2.13)
(-1.30,-2.80) :End of vector d

10.3 Program Results

F08ZPF Example Program Results

Weighted least squares solution
( -0.9846, 1.9950) ( 3.9929, -4.9748) ( -3.0026, 0.9994)

Residual vector
( 1.26E-04,-4.66E-04) ( 1.11E-03,-8.61E-04) ( 3.84E-03,-1.82E-03)
( 2.03E-03, 3.02E-03)

Square root of the residual sum of squares
5.79E-03
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NAG Library Routine Document

F08ZSF (ZGGQRF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ZSF (ZGGQRF) computes a generalized QR factorization of a complex matrix pair A;Bð Þ, where A
is an n by m matrix and B is an n by p matrix.

2 Specification

SUBROUTINE F08ZSF (N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
INFO)

&

INTEGER N, M, P, LDA, LDB, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAUA(min(N,M)), B(LDB,*),

TAUB(min(N,P)), WORK(max(1,LWORK))
&

The routine may be called by its LAPACK name zggqrf.

3 Description

F08ZSF (ZGGQRF) forms the generalized QR factorization of an n by m matrix A and an n by p
matrix B

A ¼ QR; B ¼ QTZ;

where Q is an n by n unitary matrix, Z is a p by p unitary matrix and R and T are of the form

R ¼

�� m

m R11
n�m 0

; if n � m;

�� n m� n
n R11 R12 ; if n < m;

8>>>><>>>>:
with R11 upper triangular,

T ¼

�� p� n n

n 0 T12
; if n � p;

1CA
0B@

p

n� p T11

p T21

; if n > p;

8>>>>>>>>>><>>>>>>>>>>:
with T12 or T21 upper triangular.

In particular, if B is square and nonsingular, the generalized QR factorization of A and B implicitly
gives the QR factorization of B�1A as

B�1A ¼ ZH T�1R
� �

:
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4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of rows of the matrices A and B.

Constraint: N � 0.

2: M – INTEGER Input

On entry: m, the number of columns of the matrix A.

Constraint: M � 0.

3: P – INTEGER Input

On entry: p, the number of columns of the matrix B.

Constraint: P � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Mð Þ.
On entry: the n by m matrix A.

On exit: the elements on and above the diagonal of the array contain the min n;mð Þ by m upper
trapezoidal matrix R (R is upper triangular if n � m); the elements below the diagonal, with the
array TAUA, represent the unitary matrix Q as a product of min n;mð Þ elementary reflectors (see
Section 3.3.6 in the F08 Chapter Introduction).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ZSF
(ZGGQRF) is called.

Constraint: LDA � max 1;Nð Þ.

6: TAUAðmin N;Mð ÞÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the scalar factors of the elementary reflectors which represent the unitary matrix Q.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1; Pð Þ.
On entry: the n by p matrix B.

On exit: if n � p, the upper triangle of the subarray Bð1 : n; p� nþ 1 : pÞ contains the n by n
upper triangular matrix T12.
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If n > p, the elements on and above the n� pð Þth subdiagonal contain the n by p upper
trapezoidal matrix T ; the remaining elements, with the array TAUB, represent the unitary matrix
Z as a product of elementary reflectors (see Section 3.3.6 in the F08 Chapter Introduction).

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08ZSF
(ZGGQRF) is called.

Constraint: LDB � max 1;Nð Þ.

9: TAUBðmin N; Pð ÞÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the scalar factors of the elementary reflectors which represent the unitary matrix Z.

10: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08ZSF (ZGGQRF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � max N;M; Pð Þ �max nb1; nb2;nb3ð Þ,
where nb1 is the optimal block size for the QR factorization of an n by m matrix, nb2 is the
optimal block size for the RQ factorization of an n by p matrix, and nb3 is the optimal block size
for a call of F08AUF (ZUNMQR).

Constraint: LWORK � max 1;N;M; Pð Þ or LWORK ¼ �1.

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed generalized QR factorization is the exact factorization for nearby matrices Aþ Eð Þ and
Bþ Fð Þ, where

Ek k2 ¼ O � Ak k2 and Fk k2 ¼ O � Bk k2;

and � is the machine precision.

8 Parallelism and Performance

F08ZSF (ZGGQRF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F08ZSF (ZGGQRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The unitary matrices Q and Z may be formed explicitly by calls to F08ATF (ZUNGQR) and F08CWF
(ZUNGRQ) respectively. F08AUF (ZUNMQR) may be used to multiply Q by another matrix and
F08CXF (ZUNMRQ) may be used to multiply Z by another matrix.

The real analogue of this routine is F08ZEF (DGGQRF).

10 Example

This example solves the general Gauss–Markov linear model problem

min
x

yk k2 subject to d ¼ AxþBy

where

A ¼
0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i

0B@
1CA;

B ¼
0:5� 1:0i 0 0 0
0 1:0� 2:0i 0 0
0 0 2:0� 3:0i 0
0 0 0 5:0� 4:0i

0B@
1CA

and

d ¼
6:00� 0:40i
�5:27þ 0:90i
2:72� 2:13i
�1:30� 2:80i

0B@
1CA:

The solution is obtained by first computing a generalized QR factorization of the matrix pair A;Bð Þ.
The example illustrates the general solution process, although the above data corresponds to a simple
weighted least squares problem.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08zsfe

! F08ZSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, zgemv, zggqrf, ztrtrs, zunmqr, &

zunmrq
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Complex (Kind=nag_wp), Parameter :: one = (1.0E0_nag_wp,0.0E0_nag_wp)
Complex (Kind=nag_wp), Parameter :: zero = (0.0E0_nag_wp,0.0E0_nag_wp)
Integer, Parameter :: nb = 64, nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm
Integer :: i, info, lda, ldb, lwork, m, n, p

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), d(:), taua(:), &

taub(:), work(:), y(:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min
! .. Executable Statements ..

Write (nout,*) ’F08ZSF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, p
lda = n
ldb = n
lwork = nb*(m+p)
Allocate (a(lda,m),b(ldb,p),d(n),taua(m),taub(m+p),work(lwork),y(p))

! Read A, B and D from data file
Read (nin,*)(a(i,1:m),i=1,n)
Read (nin,*)(b(i,1:p),i=1,n)
Read (nin,*) d(1:n)

! Compute the generalized QR factorization of (A,B) as
! A = Q*(R), B = Q*(T11 T12)*Z
! (0) ( 0 T22)
! The NAG name equivalent of zggqrf is f08zsf

Call zggqrf(n,m,p,a,lda,taua,b,ldb,taub,work,lwork,info)

! Compute c = (c1) = (Q**H)*d, storing the result in D
! (c2)
! The NAG name equivalent of zunmqr is f08auf

Call zunmqr(’Left’,’Conjugate transpose’,n,1,m,a,lda,taua,d,n,work, &
lwork,info)

! Putting Z*y = w = (w1), set w1 = 0, storing the result in Y1
! (w2)

y(1:m+p-n) = zero

If (n>m) Then

! Copy c2 into Y2

y(m+p-n+1:p) = d(m+1:n)

! Solve T22*w2 = c2 for w2, storing result in Y2

! The NAG name equivalent of ztrtrs is f07tsf
Call ztrtrs(’Upper’,’No transpose’,’Non-unit’,n-m,1,b(m+1,m+p-n+1), &

ldb,y(m+p-n+1),n-m,info)

If (info>0) Then
Write (nout,*) &

’The upper triangular factor, T22, of B is singular, ’
Write (nout,*) ’the least squares solution could not be computed’
Go To 100

End If

! Compute estimate of the square root of the residual sum of
! squares norm(y) = norm(w2)
! The NAG name equivalent of dznrm2 is f06jjf

rnorm = dznrm2(n-m,y(m+p-n+1),1)

! Form c1 - T12*w2 in D
! The NAG name equivalent of zgemv is f06saf

Call zgemv(’No transpose’,m,n-m,-one,b(1,m+p-n+1),ldb,y(m+p-n+1),1, &
one,d,1)

End If

! Solve R*x = c1 - T12*w2 for x
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! The NAG name equivalent of ztrtrs is f07tsf
Call ztrtrs(’Upper’,’No transpose’,’Non-unit’,m,1,a,lda,d,m,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor, R, of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’

Else

! Compute y = (Z**H)*w
! The NAG name equivalent of zunmrq is f08cxf

Call zunmrq(’Left’,’Conjugate transpose’,p,1,min(n,p),b(max(1, &
n-p+1),1),ldb,taub,y,p,work,lwork,info)

! Print least squares solution x
Write (nout,*) ’Generalized least squares solution’
Write (nout,99999) d(1:m)

! Print residual vector y
Write (nout,*)
Write (nout,*) ’Residual vector’
Write (nout,99998) y(1:p)

! Print estimate of the square root of the residual sum of
! squares

Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99997) rnorm

End If
100 Continue

99999 Format (3(’ (’,F9.4,’,’,F9.4,’)’,:))
99998 Format (3(’ (’,1P,E9.2,’,’,1P,E9.2,’)’,:))
99997 Format (1X,1P,E10.2)

End Program f08zsfe

10.2 Program Data

F08ZSF Example Program Data

4 3 4 :Values of N, M and P

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) :End of matrix A

( 0.50,-1.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 1.00,-2.00) ( 0.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( 2.00,-3.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 5.00,-4.00) :End of matrix B

( 6.00,-0.40)
(-5.27, 0.90)
( 2.72,-2.13)
(-1.30,-2.80) :End of vector d

10.3 Program Results

F08ZSF Example Program Results

Generalized least squares solution
( -0.9846, 1.9950) ( 3.9929, -4.9748) ( -3.0026, 0.9994)

Residual vector
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( 1.26E-04,-4.66E-04) ( 1.11E-03,-8.61E-04) ( 3.84E-03,-1.82E-03)
( 2.03E-03, 3.02E-03)

Square root of the residual sum of squares
5.79E-03
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NAG Library Routine Document

F08ZTF (ZGGRQF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08ZTF (ZGGRQF) computes a generalized RQ factorization of a complex matrix pair A;Bð Þ, where
A is an m by n matrix and B is a p by n matrix.

2 Specification

SUBROUTINE F08ZTF (M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK,
INFO)

&

INTEGER M, P, N, LDA, LDB, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAUA(min(M,N)), B(LDB,*),

TAUB(min(P,N)), WORK(max(1,LWORK))
&

The routine may be called by its LAPACK name zggrqf.

3 Description

F08ZTF (ZGGRQF) forms the generalized RQ factorization of an m by n matrix A and a p by n matrix
B

A ¼ RQ; B ¼ ZTQ;

where Q is an n by n unitary matrix, Z is a p by p unitary matrix and R and T are of the form

R ¼

��n�m m

m 0 R12
; if m � n;

1CA
0B@

n

m� n R11

n R21

; if m > n;

8>>>>>>>>>><>>>>>>>>>>:
with R12 or R21 upper triangular,

T ¼

�� n

n T11
p� n 0

; if p � n;

�� p n� p
p T11 T12 ; if p < n;

8>>>><>>>>:
with T11 upper triangular.

In particular, if B is square and nonsingular, the generalized RQ factorization of A and B implicitly
gives the RQ factorization of AB�1 as

AB�1 ¼ RT�1
� �

ZH:
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: P – INTEGER Input

On entry: p, the number of rows of the matrix B.

Constraint: P � 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrices A and B.

Constraint: N � 0.

4: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: if m � n, the upper triangle of the subarray Að1 : m;n�mþ 1 : nÞ contains the m by
m upper triangular matrix R12.

If m � n, the elements on and above the m� nð Þth subdiagonal contain the m by n upper
trapezoidal matrix R; the remaining elements, with the array TAUA, represent the unitary matrix
Q as a product of min m;nð Þ elementary reflectors (see Section 3.3.6 in the F08 Chapter
Introduction).

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08ZTF
(ZGGRQF) is called.

Constraint: LDA � max 1;Mð Þ.

6: TAUAðmin M;Nð ÞÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the scalar factors of the elementary reflectors which represent the unitary matrix Q.

7: BðLDB; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;Nð Þ.
On entry: the p by n matrix B.
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On exit: the elements on and above the diagonal of the array contain the min p; nð Þ by n upper
trapezoidal matrix T (T is upper triangular if p � n); the elements below the diagonal, with the
array TAUB, represent the unitary matrix Z as a product of elementary reflectors (see
Section 3.3.6 in the F08 Chapter Introduction).

8: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08ZTF
(ZGGRQF) is called.

Constraint: LDB � max 1; Pð Þ.

9: TAUBðmin P;Nð ÞÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the scalar factors of the elementary reflectors which represent the unitary matrix Z.

10: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, the real part of WORKð1Þ contains the minimum value of LWORK
required for optimal performance.

11: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F08ZTF (ZGGRQF) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

Suggested value: for optimal performance, LWORK � max N;M; Pð Þ �max nb1; nb2;nb3ð Þ,
where nb1 is the optimal block size for the RQ factorization of an m by n matrix by
F08CVF (ZGERQF), nb2 is the optimal block size for the QR factorization of a p by n matrix by
F08ASF (ZGEQRF), and nb3 is the optimal block size for a call of F08CXF (ZUNMRQ).

Constraint: LWORK � max 1;N;M; Pð Þ or LWORK ¼ �1.

12: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy

The computed generalized RQ factorization is the exact factorization for nearby matrices Aþ Eð Þ and
Bþ Fð Þ, where

Ek k2 ¼ O � Ak k2 and Fk k2 ¼ O � Bk k2;

and � is the machine precision.

8 Parallelism and Performance

F08ZTF (ZGGRQF) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
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F08ZTF (ZGGRQF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The unitary matrices Q and Z may be formed explicitly by calls to F08CWF (ZUNGRQ) and F08ATF
(ZUNGQR) respectively. F08CXF (ZUNMRQ) may be used to multiply Q by another matrix and
F08AUF (ZUNMQR) may be used to multiply Z by another matrix.

The real analogue of this routine is F08ZFF (DGGRQF).

10 Example

This example solves the least squares problem

minimize
x

c�Axk k2 subject to Bx ¼ d

where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i
0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

0BBBBB@

1CCCCCA;

B ¼ 1 0 �1 0
0 1 0 �1

� �
; c ¼

�2:54þ 0:09i
1:65� 2:26i
�2:11� 3:96i
1:82þ 3:30i
�6:41þ 3:77i
2:07þ 0:66i

0BBBBB@

1CCCCCA and d ¼ 0
0

� �
:

The constraints Bx ¼ d correspond to x1 ¼ x3 and x2 ¼ x4.
The solution is obtained by first obtaining a generalized RQ factorization of the matrix pair A;Bð Þ. The
example illustrates the general solution process, although the above data corresponds to a simple
weighted least squares problem.

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem,
but should be suitable for large problems.

10.1 Program Text

Program f08ztfe

! F08ZTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, zgemv, zggrqf, ztrmv, ztrtrs, &

zunmqr, zunmrq
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Complex (Kind=nag_wp), Parameter :: one = (1.0E0_nag_wp,0.0E0_nag_wp)
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm
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Integer :: i, info, lda, ldb, lwork, m, n, p
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:), d(:), &
taua(:), taub(:), work(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’F08ZTF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
lwork = nb*(p+n)
Allocate (a(lda,n),b(ldb,n),c(m),d(p),taua(n),taub(n),work(lwork),x(n))

! Read A, B, C and D from data file

Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)
Read (nin,*) c(1:m)
Read (nin,*) d(1:p)

! Compute the generalized RQ factorization of (B,A) as
! B = (0 T12)*Q, A = Z*(R11 R12)*Q, where T12 and R11
! ( 0 R22)
! are upper triangular
! The NAG name equivalent of zggrqf is f08ztf

Call zggrqf(p,m,n,b,ldb,taub,a,lda,taua,work,lwork,info)

! Set Qx = y. The problem then reduces to:
! minimize (Ry - Z^Hc) subject to Ty = d
! Update c = Z^H*c -> minimize (Ry-c)
! The NAG name equivalent of zunmqr is f08auf

Call zunmqr(’Left’,’Conjugate transpose’,m,1,min(m,n),a,lda,taua,c,m, &
work,lwork,info)

! Putting y = (y1), solve T12*w = d for w, storing result in d
! (w )
! The NAG name equivalent of ztrtrs is f07tsf

Call ztrtrs(’Upper’,’No transpose’,’Non-unit’,p,1,b(1,n-p+1),ldb,d,p, &
info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor of B is singular, ’
Write (nout,*) ’the least squares solution could not be computed’
Go To 100

End If

! From first n-p rows of (Ry-c) we have
! R11*y1 + R12*w = c(1:n-p) = c1
! Form c1 = c1 - R12*w = R11*y1

! The NAG name equivalent of zgemv is f06saf
Call zgemv(’No transpose’,n-p,p,-one,a(1,n-p+1),lda,d,1,one,c,1)

! Solve R11*y1 = c1 for y1, storing result in c(1:n-p)
! The NAG name equivalent of ztrtrs is f07tsf

Call ztrtrs(’Upper’,’No transpose’,’Non-unit’,n-p,1,a,lda,c,n-p,info)

If (info>0) Then
Write (nout,*) ’The upper triangular factor of A is singular, ’
Write (nout,*) ’the least squares solution could not be computed’
Go To 100

End If

! Copy y into x (first y1, then w)
x(1:n-p) = c(1:n-p)
x(n-p+1:n) = d(1:p)
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! Compute x = (Q**H)*y
! The NAG name equivalent of zunmrq is f08cxf

Call zunmrq(’Left’,’Conjugate transpose’,n,1,p,b,ldb,taub,x,n,work, &
lwork,info)

! The least squares solution is in x, the remainder here is to compute
! the residual, which equals c2 - R22*w.

! Upper triangular part of R22 first
! The NAG name equivalent of ztrmv is f06sff

Call ztrmv(’Upper’,’No transpose’,’Non-unit’,min(m,n)-n+p, &
a(n-p+1,n-p+1),lda,d,1)

Do i = 1, min(m,n) - n + p
c(n-p+i) = c(n-p+i) - d(i)

End Do

If (m<n) Then

! Additional rectangular part of R22
! The NAG name equivalent of zgemv is f06saf

Call zgemv(’No transpose’,m-n+p,n-m,-one,a(n-p+1,m+1),lda,d(m-n+p+1), &
1,one,c(n-p+1),1)

End If

! Compute norm of residual sum of squares.
! The NAG name equivalent of dznrm2 is f06jjf

rnorm = dznrm2(m-(n-p),c(n-p+1),1)

! Print least squares solution x
Write (nout,*) ’Constrained least squares solution’
Write (nout,99999) x(1:n)

! Print estimate of the square root of the residual sum of
! squares

Write (nout,*)
Write (nout,*) ’Square root of the residual sum of squares’
Write (nout,99998) rnorm

100 Continue

99999 Format (4(’ (’,F7.4,’,’,F7.4,’)’,:))
99998 Format (1X,1P,E10.2)

End Program f08ztfe

10.2 Program Data

F08ZTF Example Program Data

6 4 2 : m, n and p

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
( 0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) : A

( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) ( 0.00, 0.00)
( 0.00, 0.00) ( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) : B

(-2.54, 0.09)
( 1.65,-2.26)
(-2.11,-3.96)
( 1.82, 3.30)
(-6.41, 3.77)
( 2.07, 0.66) : c

( 0.00, 0.00)
( 0.00, 0.00) : d

F08ZTF NAG Library Manual

F08ZTF.6 Mark 26



10.3 Program Results

F08ZTF Example Program Results

Constrained least squares solution
( 1.0874,-1.9621) (-0.7409, 3.7297) ( 1.0874,-1.9621) (-0.7409, 3.7297)

Square root of the residual sum of squares
1.59E-01

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08ZTF
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F11 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

F11BDF 19 nagf_sparse_real_gen_basic_setup
Real sparse nonsymmetric linear systems, setup for F11BEF

F11BEF 19 nagf_sparse_real_gen_basic_solver
Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS,
Bi-CGSTAB or TFQMR method

F11BFF 19 nagf_sparse_real_gen_basic_diag
Real sparse nonsymmetric linear systems, diagnostic for F11BEF

F11BRF 19 nagf_sparse_complex_gen_basic_setup
Complex sparse non-Hermitian linear systems, setup for F11BSF

F11BSF 19 nagf_sparse_complex_gen_basic_solver
Complex sparse non-Hermitian linear systems, preconditioned RGMRES,
CGS, Bi-CGSTAB or TFQMR method

F11BTF 19 nagf_sparse_complex_gen_basic_diag
Complex sparse non-Hermitian linear systems, diagnostic for F11BSF

F11DAF 18 nagf_sparse_real_gen_precon_ilu
Real sparse nonsymmetric linear systems, incomplete LU factorization

F11DBF 18 nagf_sparse_real_gen_precon_ilu_solve
Solution of linear system involving incomplete LU preconditioning matrix
generated by F11DAF

F11DCF 18 nagf_sparse_real_gen_solve_ilu
Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-
CGSTAB or TFQMR method, preconditioner computed by F11DAF

F11DDF 18 nagf_sparse_real_gen_precon_ssor_solve
Solution of linear system involving preconditioning matrix generated by
applying SSOR to real sparse nonsymmetric matrix

F11DEF 18 nagf_sparse_real_gen_solve_jacssor
Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-
CGSTAB, or TFQMR method, Jacobi or SSOR preconditioner (Black Box)

F11DFF 24 nagf_sparse_real_gen_precon_bdilu
Real sparse nonsymmetric linear system, incomplete LU factorization of
local or overlapping diagonal blocks

F11DGF 24 nagf_sparse_real_gen_solve_bdilu
Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-
CGSTAB or TFQMR method, incomplete LU block diagonal
preconditioner computed by F11DFF

F11DKF 20 nagf_sparse_real_gen_precon_jacobi
Real, sparse, symmetric or nonsymmetric, linear systems, line Jacobi
preconditioner

F11DNF 19 nagf_sparse_complex_gen_precon_ilu
Complex sparse non-Hermitian linear systems, incomplete LU factorization

F11DPF 19 nagf_sparse_complex_gen_precon_ilu_solve
Solution of complex linear system involving incomplete LU
preconditioning matrix generated by F11DNF

F11DQF 19 nagf_sparse_complex_gen_solve_ilu
Solution of complex sparse non-Hermitian linear system, RGMRES, CGS,
Bi-CGSTAB or TFQMR method, preconditioner computed by F11DNF
(Black Box)
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F11DRF 19 nagf_sparse_complex_gen_precon_ssor_solve
Solution of linear system involving preconditioning matrix generated by
applying SSOR to complex sparse non-Hermitian matrix

F11DSF 19 nagf_sparse_complex_gen_solve_jacssor
Solution of complex sparse non-Hermitian linear system, RGMRES, CGS,
Bi-CGSTAB or TFQMR method, Jacobi or SSOR preconditioner Black
Box

F11DTF 24 nagf_sparse_complex_gen_precon_bdilu
Complex, sparse, non-Hermitian linear system, incomplete LU factorization
of local or overlapping diagonal blocks

F11DUF 24 nagf_sparse_complex_gen_solve_bdilu
Solution of complex, sparse, non-Hermitian linear system, RGMRES, CGS,
Bi-CGSTAB or TFQMR method, incomplete LU block diagonal
preconditioner computed by F11DTF

F11DXF 20 nagf_sparse_complex_gen_precon_jacobi
Complex, sparse, Hermitian or non-Hermitian, linear systems, line Jacobi
preconditioner

F11GDF 20 nagf_sparse_real_symm_basic_setup
Real sparse symmetric linear systems, setup for F11GEF

F11GEF 20 nagf_sparse_real_symm_basic_solver
Real sparse symmetric linear systems, preconditioned conjugate gradient or
Lanczos method or the MINRES algorithm

F11GFF 20 nagf_sparse_real_symm_basic_diag
Real sparse symmetric linear systems, diagnostic for F11GEF

F11GRF 20 nagf_sparse_complex_herm_basic_setup
Complex sparse Hermitian linear systems, setup for F11GSF

F11GSF 20 nagf_sparse_complex_herm_basic_solver
Complex sparse Hermitian linear systems, preconditioned conjugate
gradient or Lanczos

F11GTF 20 nagf_sparse_complex_herm_basic_diag
Complex sparse Hermitian linear systems, diagnostic for F11GSF

F11JAF 17 nagf_sparse_real_symm_precon_ichol
Real sparse symmetric matrix, incomplete Cholesky factorization

F11JBF 17 nagf_sparse_real_symm_precon_ichol_solve
Solution of linear system involving incomplete Cholesky preconditioning
matrix generated by F11JAF

F11JCF 17 nagf_sparse_real_symm_solve_ichol
Solution of real sparse symmetric linear system, conjugate gradient/Lanczos
method, preconditioner computed by F11JAF (Black Box)

F11JDF 17 nagf_sparse_real_symm_precon_ssor_solve
Solution of linear system involving preconditioning matrix generated by
applying SSOR to real sparse symmetric matrix

F11JEF 17 nagf_sparse_real_symm_solve_jacssor
Solution of real sparse symmetric linear system, conjugate gradient/Lanczos
method, Jacobi or SSOR preconditioner (Black Box)

F11JNF 19 nagf_sparse_complex_herm_precon_ilu
Complex sparse Hermitian matrix, incomplete Cholesky factorization

F11JPF 19 nagf_sparse_complex_herm_precon_ilu_solve
Solution of complex linear system involving incomplete Cholesky
preconditioning matrix generated by F11JNF

F11JQF 19 nagf_sparse_complex_herm_solve_ilu
Solution of complex sparse Hermitian linear system, conjugate gradient/
Lanczos method, preconditioner computed by F11JNF (Black Box)

F11JRF 19 nagf_sparse_complex_herm_precon_ssor_solve
Solution of linear system involving preconditioning matrix generated by
applying SSOR to complex sparse Hermitian matrix

F11JSF 19 nagf_sparse_complex_herm_solve_jacssor
Solution of complex sparse Hermitian linear system, conjugate gradient/
Lanczos method, Jacobi or SSOR preconditioner (Black Box)
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F11MDF 21 nagf_sparse_direct_real_gen_setup
Real sparse nonsymmetric linear systems, setup for F11MEF

F11MEF 21 nagf_sparse_direct_real_gen_lu
LU factorization of real sparse matrix

F11MFF 21 nagf_sparse_direct_real_gen_solve
Solution of real sparse simultaneous linear equations (coefficient matrix
already factorized)

F11MGF 21 nagf_sparse_direct_real_gen_cond
Estimate condition number of real matrix, matrix already factorized by
F11MEF

F11MHF 21 nagf_sparse_direct_real_gen_refine
Refined solution with error bounds of real system of linear equations,
multiple right-hand sides

F11MKF 21 nagf_sparse_direct_real_gen_matmul
Real sparse nonsymmetric matrix-matrix multiply, compressed column
storage

F11MLF 21 nagf_sparse_direct_real_gen_norm
1-norm, 1-norm, largest absolute element, real, square, sparse matrix

F11MMF 21 nagf_sparse_direct_real_gen_diag
Real sparse nonsymmetric linear systems, diagnostic for F11MEF

F11XAF 18 nagf_sparse_real_gen_matvec
Real, sparse, nonsymmetric matrix-vector multiply

F11XEF 17 nagf_sparse_real_symm_matvec
Real sparse symmetric matrix-vector multiply

F11XNF 19 nagf_sparse_complex_gen_matvec
Complex sparse non-Hermitian matrix-vector multiply

F11XSF 19 nagf_sparse_complex_herm_matvec
Complex sparse Hermitian matrix-vector multiply

F11YEF 25 nagf_sparse_sym_rcm
Reverse Cuthill–McKee reordering of a sparse symmetric matrix in CCS
format

F11ZAF 18 nagf_sparse_real_gen_sort
Real sparse nonsymmetric matrix reorder routine

F11ZBF 17 nagf_sparse_real_symm_sort
Real sparse symmetric matrix reorder routine

F11ZNF 19 nagf_sparse_complex_gen_sort
Complex sparse non-Hermitian matrix reorder routine

F11ZPF 19 nagf_sparse_complex_herm_sort
Complex sparse Hermitian matrix reorder routine
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1 Scope of the Chapter

This chapter provides routines for the solution of large sparse systems of simultaneous linear equations.
These include iterative methods for real nonsymmetric and symmetric, complex non-Hermitian and
Hermitian linear systems and direct methods for general real linear systems. Further direct methods are
currently available in Chapters F01 and F04.

2 Background to the Problems

This section is only a brief introduction to the solution of sparse linear systems. For a more detailed
discussion see for example Duff et al. (1986) and Demmel et al. (1999) for direct methods, or Barrett et
al. (1994) for iterative methods.

2.1 Sparse Matrices and Their Storage

A matrix A may be described as sparse if the number of zero elements is sufficiently large that it is
worthwhile using algorithms which avoid computations involving zero elements.

If A is sparse, and the chosen algorithm requires the matrix coefficients to be stored, a significant
saving in storage can often be made by storing only the nonzero elements. A number of different
formats may be used to represent sparse matrices economically. These differ according to the amount of
storage required, the amount of indirect addressing required for fundamental operations such as matrix-
vector products, and their suitability for vector and/or parallel architectures. For a survey of some of
these storage formats see Barrett et al. (1994).

Some of the routines in this chapter have been designed to be independent of the matrix storage format.
This allows you to choose your own preferred format, or to avoid storing the matrix altogether. Other
routines are the so-called Black Boxes, which are easier to use, but are based on fixed storage formats.
Three fixed storage formats for sparse matrices are currently used. These are known as coordinate
storage (CS) format, symmetric coordinate storage (SCS) format and compressed column storage (CCS)
format.

2.1.1 Coordinate storage (CS) format

This storage format represents a sparse matrix A, with NNZ nonzero elements, in terms of three one-
dimensional arrays – a real or complex array A and two integer arrays IROW and ICOL. These arrays
are all of dimension at least NNZ. A contains the nonzero elements themselves, while IROW and ICOL
store the corresponding row and column indices respectively.

For example, the matrix

A ¼

1 2 �1 �1 �3
0 �1 0 0 �4
3 0 0 0 2
2 0 4 1 1
�2 0 0 0 1

0BBB@
1CCCA

might be represented in the arrays A, IROW and ICOL as

A ¼ 1; 2;�1;�1;�3;�1;�4; 3; 2; 2; 4; 1; 1;�2; 1ð Þ
IROW ¼ 1; 1; 1; 1; 1; 2; 2; 3; 3; 4; 4; 4; 4; 5; 5ð Þ
ICOL ¼ 1; 2; 3; 4; 5; 2; 5; 1; 5; 1; 3; 4; 5; 1; 5ð Þ.

Notes

(i) The general format specifies no ordering of the array elements, but some routines may impose a
specific ordering. For example, the nonzero elements may be required to be ordered by increasing
row index and by increasing column index within each row, as in the example above. Utility
routines are provided to order the elements appropriately (see Section 2.2).

(ii) With this storage format it is possible to enter duplicate elements. These may be interpreted in
various ways (e.g., raising an error, ignoring all but the first entry, all but the last, or summing).
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2.1.2 Symmetric coordinate storage (SCS) format

This storage format is suitable for symmetric and Hermitian matrices, and is identical to the CS format
described in Section 2.1.1, except that only the lower triangular nonzero elements are stored. Thus, for
example, the matrix

A ¼

4 1 0 0 �1 2
1 5 0 2 0 0
0 0 2 1 0 �1
0 2 1 3 1 0
�1 0 0 1 4 0
2 0 �1 0 0 3

0BBBBB@

1CCCCCA
might be represented in the arrays A, IROW and ICOL as

A ¼ 4; 1; 5; 2; 2; 1; 3;�1; 1; 4; 2;�1; 3ð Þ.
IROW ¼ 1; 2; 2; 3; 4; 4; 4; 5; 5; 5; 6; 6; 6ð Þ,
ICOL ¼ 1; 1; 2; 3; 2; 3; 4; 1; 4; 5; 1; 3; 6ð Þ.

2.1.3 Compressed column storage (CCS) format

This storage format also uses three one-dimensional arrays – a real or complex array A and two integer
arrays IROWIX and ICOLZP. The array A and IROWIX are of dimension at least nnz, while ICOLZP
is of dimension at least Nþ 1. A contains the nonzero elements, going down the first column, then the
second and so on. For example, the matrix in Section 2.1.1 above will be represented by

A ¼ 1; 3; 2;�2; 2;�1;�1; 4;�1; 1;�3;�4; 2; 1; 1ð Þ.
IROWIX records the row index for each entry in A, so the same matrix will have

IROWIX ¼ 1; 3; 4; 5; 1; 2; 1; 4; 1; 4; 1; 2; 3; 4; 5ð Þ.
ICOLZP records the index into A which starts each new column. The last entry of ICOLZP is equal to
nnz þ 1. An empty column (one filled with zeros, that is) is signalled by an index that is the same as
the next non-empty column, or nnz þ 1 if all subsequent columns are empty. The above example
corresponds to

ICOLZP ¼ 1; 5; 7; 9; 11; 16ð Þ
The example in Section 2.1.2 above will be represented by

A ¼ 4; 1;�1; 2; 1; 5; 2; 2; 1;�1; 2; 1; 3; 1;�1; 1; 4; 2;�1; 3ð Þ
IROWIX ¼ 1; 2; 5; 6; 1; 2; 4; 3; 4; 6; 2; 3; 4; 5; 1; 4; 5; 1; 3; 6ð Þ
ICOLZP ¼ 1; 5; 8; 11; 15; 18; 21ð Þ

2.2 Direct Methods

Direct methods for the solution of the linear algebraic system

Ax ¼ b ð1Þ

aim to determine the solution vector x in a fixed number of arithmetic operations, which is determined
a priori by the number of unknowns. For example, an LU factorization of A followed by forward and
backward substitution is a direct method for (1).

If the matrix A is sparse it is possible to design direct methods which exploit the sparsity pattern and
are therefore much more computationally efficient than the algorithms in Chapter F07, which in general
take no account of sparsity. However, if the matrix is very large and sparse, then iterative methods,
with an appropriate preconditioner, (see Section 2.3) may be more efficient still.

This chapter provides a direct LU factorization method for sparse real systems. This method is based on
special coding for supernodes, broadly defined as groups of consecutive columns with the same nonzero
structure, which enables use of dense BLAS kernels. The algorithms contained here come from the
SuperLU software suite (see Demmel et al. (1999)). An important requirement of sparse LU
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factorization is keeping the factors as sparse as possible. It is well known that certain column orderings
can produce much sparser factorizations than the normal left-to-right ordering. It is well worth the
effort, then, to find such column orderings since they reduce both storage requirements of the factors,
the time taken to compute them and the time taken to solve the linear system. The row reorderings,
demanded by partial pivoting in order to keep the factorization stable, can further complicate the choice
of the column ordering, but quite good and fast algorithms have been developed to make possible a
fairly reliable computation of an appropriate column ordering for any sparsity pattern. We provide one
such algorithm (known in the literature as COLAMD) through one routine in the suite. Similar to the
case for dense matrices, routines are provided to compute the LU factorization with partial row pivoting
for numerical stability, solve (1) by performing the forward and backward substitutions for multiple
right hand side vectors, refine the solution, minimize the backward error and estimate the forward error
of the solutions, compute norms, estimate condition numbers and perform diagnostics of the
factorization. It is also possible to explicitly construct, column by column, the dense inverse of the
matrix by solving equation (1) for right hand sides corresponding to columns of the identity matrix.
Blocks of dense columns can be handled at one time and then stored in some chosen sparse format, as
system memory allows. For more details see Section 3.4.

It is also possible to use iterative method routines in this chapter to compute a direct factorization. Such
methods are available for sparse real nonsymmetric, complex non-Hermitian, real symmetric positive
definite and complex Hermitian positive definite systems. Further direct methods may be found in
Chapters F01, F04 and F07.

2.3 Iterative Methods

In contrast to the direct methods discussed in Section 2.2, iterative methods for (1) approach the
solution through a sequence of approximations until some user-specified termination criterion is met or
until some predefined maximum number of iterations has been reached. The number of iterations
required for convergence is not generally known in advance, as it depends on the accuracy required, and
on the matrix A – its sparsity pattern, conditioning and eigenvalue spectrum.

Faster convergence can often be achieved using a preconditioner (see Golub and Van Loan (1996) and
Barrett et al. (1994)). A preconditioner maps the original system of equations onto a different system

�A�x ¼ �b; ð2Þ

which hopefully exhibits better convergence characteristics. For example, the condition number of the
matrix �A may be better than that of A, or it may have eigenvalues of greater multiplicity.

An unsuitable preconditioner or no preconditioning at all may result in a very slow rate or lack of
convergence. However, preconditioning involves a trade-off between the reduction in the number of
iterations required for convergence and the additional computational costs per iteration. Setting up a
preconditioner may also involve non-negligible overheads. The application of preconditioners to real
nonsymmetric, complex non-Hermitian, real symmetric and complex Hermitian and real symmetric
systems of equations is further considered in Sections 2.4 and 2.5.

2.4 Iterative Methods for Real Nonsymmetric and Complex Non-Hermitian Linear
Systems

Many of the most effective iterative methods for the solution of (1) lie in the class of non-stationary
Krylov subspace methods (see Barrett et al. (1994)). For real nonsymmetric and complex non-
Hermitian matrices this class includes:

the restarted generalized minimum residual (RGMRES) method (see Saad and Schultz (1986));

the conjugate gradient squared (CGS) method (see Sonneveld (1989));

the polynomial stabilized bi-conjugate gradient (Bi-CGSTAB ‘ð Þ) method (see Van der Vorst
(1989) and Sleijpen and Fokkema (1993));

the transpose-free quasi-minimal residual method (TFQMR) (see Freund and Nachtigal (1991)
and Freund (1993)).

Here we just give a brief overview of these algorithms as implemented in this chapter. For full details
see the routine documents for F11BDF and F11BRF.
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RGMRES is based on the Arnoldi method, which explicitly generates an orthogonal basis for the
Krylov subspace span Akr0

� 
, k ¼ 0; 1; 2; . . . , where r0 is the initial residual. The solution is then

expanded onto the orthogonal basis so as to minimize the residual norm. For real nonsymmetric and
complex non-Hermitian matrices the generation of the basis requires a ‘long’ recurrence relation,
resulting in prohibitive computational and storage costs. RGMRES limits these costs by restarting the
Arnoldi process from the latest available residual every m iterations. The value of m is chosen in
advance and is fixed throughout the computation. Unfortunately, an optimum value of m cannot easily
be predicted.

CGS is a development of the bi-conjugate gradient method where the nonsymmetric Lanczos method is
applied to reduce the coefficient matrix to tridiagonal form: two bi-orthogonal sequences of vectors are
generated starting from the initial residual r0 and from the shadow residual r̂0 corresponding to the
arbitrary problem AHx̂ ¼ b̂, where b̂ is chosen so that r0 ¼ r̂0. In the course of the iteration, the residual
and shadow residual ri ¼ Pi Að Þr0 and r̂i ¼ Pi AHð Þr̂0 are generated, where Pi is a polynomial of order i,
a n d b i - o r t h o g o n a l i t y i s e x p l o i t e d b y c o m p u t i n g t h e v e c t o r p r o d u c t
�i ¼ r̂i; rið Þ ¼ Pi A

Hð Þr̂0Pi Að Þr0ð Þ ¼ r̂0; P
2
i Að Þr0

� �
. Applying the ‘contraction’ operator Pi Að Þ twice,

the iteration coefficients can still be recovered without advancing the solution of the shadow problem,
which is of no interest. The CGS method often provides fast convergence; however, there is no reason
why the contraction operator should also reduce the once reduced vector Pi Að Þr0: this can lead to a
highly irregular convergence.

Bi-CGSTAB ‘ð Þ is similar to the CGS method. However, instead of generating the sequence P 2
i Að Þr0

� 
,

it generates the sequence Qi Að ÞPi Að Þr0f g where the Qi Að Þ are polynomials chosen to minimize the
residual after the application of the contraction operator Pi Að Þ. Two main steps can be identified for
each iteration: an OR (Orthogonal Residuals) step where a basis of order ‘ is generated by a Bi-CG
iteration and an MR (Minimum Residuals) step where the residual is minimized over the basis
generated, by a method similar to GMRES. For ‘ ¼ 1, the method corresponds to the Bi-CGSTAB
method of Van der Vorst (1989). For ‘ > 1, more information about complex eigenvalues of the
iteration matrix can be taken into account, and this may lead to improved convergence and robustness.
However, as ‘ increases, numerical instabilities may arise.

The transpose-free quasi-minimal residual method (TFQMR) (see Freund and Nachtigal (1991) and
Freund (1993)) is conceptually derived from the CGS method. The residual is minimized over the space
of the residual vectors generated by the CGS iterations under the simplifying assumption that residuals
are almost orthogonal. In practice, this is not the case but theoretical analysis has proved the validity of
the method. This has the effect of remedying the rather irregular convergence behaviour with wild
oscillations in the residual norm that can degrade the numerical performance and robustness of the CGS
method. In general, the TFQMR method can be expected to converge at least as fast as the CGS
method, in terms of number of iterations, although each iteration involves a higher operation count.
When the CGS method exhibits irregular convergence, the TFQMR method can produce much
smoother, almost monotonic convergence curves. However, the close relationship between the CGS and
TFQMR method implies that the overall speed of convergence is similar for both methods. In some
cases, the TFQMR method may converge faster than the CGS method.

Faster convergence can usually be achieved by using a preconditioner. A left preconditioner M�1 can
be used by the RGMRES, CGS and TFQMR methods, such that �A ¼M�1A � In in (2), where In is the
identity matrix of order n; a right preconditioner M�1 can be used by the Bi-CGSTAB ‘ð Þ method, such
that �A ¼ AM�1 � In. These are formal definitions, used only in the design of the algorithms; in
practice, only the means to compute the matrix-vector products v ¼ Au and v ¼ AHu (the latter only
being required when an estimate of Ak k1 or Ak k1 is computed internally), and to solve the
preconditioning equations Mv ¼ u are required, that is, explicit information about M, or its inverse is
not required at any stage.

Preconditioning matrices M are typically based on incomplete factorizations (see Meijerink and Van der
Vorst (1981)), or on the approximate inverses occurring in stationary iterative methods (see Young
(1971)). A common example is the incomplete LU factorization

M ¼ PLDUQ ¼ A�R

where L is lower triangular with unit diagonal elements, D is diagonal, U is upper triangular with unit
diagonals, P and Q are permutation matrices, and R is a remainder matrix. A zero-fill incomplete LU
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factorization is one for which the matrix

S ¼ P LþDþ Uð ÞQ

has the same pattern of nonzero entries as A. This is obtained by discarding any fill elements (nonzero
elements of S arising during the factorization in locations where A has zero elements). Allowing some
of these fill elements to be kept rather than discarded generally increases the accuracy of the
factorization at the expense of some loss of sparsity. For further details see Barrett et al. (1994).

2.5 Iterative Methods for Real Symmetric and Complex Hermitian Linear Systems

Three of the best known iterative methods applicable to real symmetric and complex Hermitian linear
systems are the conjugate gradient (CG) method (see Hestenes and Stiefel (1952) and Golub and Van
Loan (1996)) and Lanczos type methods based on SYMMLQ and MINRES (see Paige and Saunders
(1975)). The description of these methods given below is for the real symmetric cases. The
generalization to complex Hermitian matrices is straightforward.

For the CG method the matrix A should ideally be positive definite. The application of CG to indefinite
matrices may lead to failure, or to lack of convergence. The SYMMLQ and MINRES methods are
suitable for both positive definite and indefinite symmetric matrices. They are more robust than CG, but
less efficient when A is positive definite.

The methods start from the residual r0 ¼ b�Ax0, where x0 is an initial estimate for the solution (often
x0 ¼ 0), and generate an orthogonal basis for the Krylov subspace span Akr0

� 
, for k ¼ 0; 1; . . ., by

means of three-term recurrence relations (see Golub and Van Loan (1996)). A sequence of symmetric
tridiagonal matrices Tkf g is also generated. Here and in the following, the index k denotes the iteration
count. The resulting symmetric tridiagonal systems of equations are usually more easily solved than the
original problem. A sequence of solution iterates xkf g is thus generated such that the sequence of the
norms of the residuals rkk kf g converges to a required tolerance. Note that, in general, the convergence
is not monotonic.

In exact arithmetic, after n iterations, this process is equivalent to an orthogonal reduction of A to
symmetric tridiagonal form, Tn ¼ QTAQ; the solution xn would thus achieve exact convergence. In
finite-precision arithmetic, cancellation and round-off errors accumulate causing loss of orthogonality.
These methods must therefore be viewed as genuinely iterative methods, able to converge to a solution
within a prescribed tolerance.

The orthogonal basis is not formed explicitly in either method. The basic difference between the
methods lies in the method of solution of the resulting symmetric tridiagonal systems of equations: the
CG method is equivalent to carrying out an LDLT (Cholesky) factorization whereas the Lanczos
method (SYMMLQ) uses an LQ factorization. The MINRES method on the other hand minimizes the
residual into 2-norm.

A preconditioner for these methods must be symmetric and positive definite, i.e., representable by
M ¼ EET, where M is nonsingular, and such that �A ¼ E�1AE�T � In in (2), where In is the identity
matrix of order n. These are formal definitions, used only in the design of the algorithms; in practice,
only the means to compute the matrix-vector products v ¼ Au and to solve the preconditioning
equations Mv ¼ u are required.

Preconditioning matrices M are typically based on incomplete factorizations (see Meijerink and Van der
Vorst (1977)), or on the approximate inverses occurring in stationary iterative methods (see Young
(1971)). A common example is the incomplete Cholesky factorization

M ¼ PLDLTP T ¼ A�R

where P is a permutation matrix, L is lower triangular with unit diagonal elements, D is diagonal and
R is a remainder matrix. A zero-fill incomplete Cholesky factorization is one for which the matrix

S ¼ P LþDþ LT
� �

PT

has the same pattern of nonzero entries as A. This is obtained by discarding any fill elements (nonzero
elements of S arising during the factorization in locations where A has zero elements). Allowing some
of these fill elements to be kept rather than discarded generally increases the accuracy of the
factorization at the expense of some loss of sparsity. For further details see Barrett et al. (1994).
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3 Recommendations on Choice and Use of Available Routines

3.1 Types of Routine Available

The direct method routines available in this chapter largely follow the LAPACK scheme in that four
different routines separately handle the tasks of factorizing, solving, refining and condition number
estimating. See Section 3.4.

The iterative method routines available in this chapter divide essentially into three types: basic routines,
utility routines and Black Box routines.

Basic routines are grouped in suites of three, and implement the underlying iterative method. Each
suite comprises a setup routine, a solver, and a routine to return additional information. The solver
routine is independent of the matrix storage format (indeed the matrix need not be stored at all) and the
type of preconditioner. It uses reverse communication (see Section 3.3.3 in How to Use the NAG
Library and its Documentation for further information), i.e., it returns repeatedly to the calling program
with the argument IREVCM set to specified values which require the calling program to carry out a
specific task (either to compute a matrix-vector product or to solve the preconditioning equation), to
signal the completion of the computation or to allow the calling program to monitor the solution.
Reverse communication has the following advantages.

(i) Maximum flexibility in the representation and storage of sparse matrices. All matrix operations are
performed outside the solver routine, thereby avoiding the need for a complicated interface with
enough flexibility to cope with all types of storage schemes and sparsity patterns. This also applies
to preconditioners.

(ii) Enhanced user interaction: you can closely monitor the solution and tidy or immediate termination
can be requested. This is useful, for example, when alternative termination criteria are to be
employed or in case of failure of the external routines used to perform matrix operations.

At present there are suites of basic routines for real symmetric and nonsymmetric systems, and for
complex Hermitian and non-Hermitian systems.

Utility routines perform such tasks as initializing the preconditioning matrix M, solving linear systems
involving M, or computing matrix-vector products, for particular preconditioners and matrix storage
formats. Used in combination, basic routines and utility routines therefore provide iterative methods
with a considerable degree of flexibility, allowing you to select from different termination criteria,
monitor the approximate solution, and compute various diagnostic parameters. The tasks of computing
the matrix-vector products and dealing with the preconditioner are removed from you, but at the
expense of sacrificing some flexibility in the choice of preconditioner and matrix storage format.

Black Box routines call basic and utility routines in order to provide easy-to-use routines for particular
preconditioners and sparse matrix storage formats. They are much less flexible than the basic routines,
but do not use reverse communication, and may be suitable in many simple cases.

The structure of this chapter has been designed to cater for as many types of application as possible. If
a Black Box routine exists which is suitable for a given application you are recommended to use it. If
you then decide you need some additional flexibility it is easy to achieve this by using basic and utility
routines which reproduce the algorithm used in the Black Box, but allow more access to algorithmic
control parameters and monitoring. If you wish to use a preconditioner or storage format for which no
utility routines are provided, you must call basic routines, and provide your own utility routines.

3.2 Iterative Methods for Real Nonsymmetric and Complex Non-Hermitian Linear
Systems

The suite of basic routines F11BDF, F11BEF and F11BFF implements either RGMRES, CGS, Bi-
CGSTAB ‘ð Þ, or TFQMR, for the iterative solution of the real sparse nonsymmetric linear system
Ax ¼ b. These routines allow a choice of termination criteria and the norms used in them, allow
monitoring of the approximate solution, and can return estimates of the norm of A and the largest
singular value of the preconditioned matrix �A.

In general, it is not possible to recommend one of these methods (RGMRES, CGS, Bi-CGSTAB ‘ð Þ, or
TFQMR) in preference to another. RGMRES is popular, but requires the most storage, and can easily
stagnate when the size m of the orthogonal basis is too small, or the preconditioner is not good enough.
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CGS can be the fastest method, but the computed residuals can exhibit instability which may greatly
affect the convergence and quality of the solution. Bi-CGSTAB ‘ð Þ seems robust and reliable, but it can
be slower than the other methods. TFQMR can be viewed as a more robust variant of the CGS method:
it shares the CGS method speed but avoids the CGS fluctuations in the residual, which may give, rise to
instability. Some further discussion of the relative merits of these methods can be found in Barrett et al.
(1994).

The utility routines provided for real nonsymmetric matrices use the coordinate storage (CS) format
described in Section 2.1.1. F11DAF computes a preconditioning matrix based on incomplete LU
factorization, and F11DBF solves linear systems involving the preconditioner generated by F11DAF.
The amount of fill-in occurring in the incomplete factorization can be controlled by specifying either
the level of fill, or the drop tolerance. Partial or complete pivoting may optionally be employed, and the
factorization can be modified to preserve row-sums.

F11DFF is a generalization of F11DAF. It computes incomplete LU factorizations on a set of (possibly
overlapping) block diagonal matrices, using a prescribed block structure, to provide a block Jacobi or
additive Schwartz preconditioner. To solve the linear system defined by the preconditioner generated by
F11DFF, a sequence of calls to F11DBF (one for each block) would be required.

F11DDF is similar to F11DBF, but solves linear systems involving the preconditioner corresponding to
symmetric successive-over-relaxation (SSOR). The value of the relaxation parameter ! must currently
be supplied by you. Automatic procedures for choosing ! will be included in the chapter at a future
mark.

F11DKF applies the iterated Jacobi method to a symmetric or nonsymmetric system of linear equations
and can be used as a preconditioner. However, the domain of validity of the Jacobi method is rather
restricted; you should read the routine document for F11DKF before using it.

F11XAF computes matrix-vector products for real nonsymmetric matrices stored in ordered CS format.
An additional utility routine F11ZAF orders the nonzero elements of a real sparse nonsymmetric matrix
stored in general CS format. The same routine can be used to convert a matrix from CS format to CCS
format.

The Black Box routine F11DCF makes calls to F11BDF, F11BEF, F11BFF, F11DBF and F11XAF, to
solve a real sparse nonsymmetric linear system, represented in CS format, using RGMRES, CGS, Bi-
CGSTAB ‘ð Þ, or TFQMR, with incomplete LU preconditioning. F11DEF is similar, but has options for
no preconditioning, Jacobi preconditioning or SSOR preconditioning. F11DGF is also similar to
F11DCF, but uses block Jacobi or additive Schwartz preconditioning.

For complex non-Hermitian sparse matrices there is an equivalent suite of routines. F11BRF, F11BSF
and F11BTF are the basic routines which implement the same methods used for real nonsymmetric
systems, namely RGMRES, CGS, Bi-CGSTAB ‘ð Þ and TFQMR, for the solution of complex sparse non-
Hermitian linear systems. F11DNF and F11DPF are the complex equivalents of F11DAF and F11DBF,
respectively, providing facilities for implementing ILU preconditioning. F11DRF and F11DTF
implement complex versions of the SSOR and block Jacobi (or additive Schwartz) preconditioners,
respectively. F11DXF implements a complex version of the iterated Jacobi preconditioner. Utility
routines F11XNF and F11ZNF are provided for computing matrix-vector products and sorting the
elements of complex sparse non-Hermitian matrices, respectively. Finally, the Black Box routines
F11DQF, F11DSF and F11DUF are complex equivalents of F11DCF, F11DEF and F11DFF,
respectively.

3.3 Iterative Methods for Real Symmetric and Complex Hermitian Linear Systems

The suite of basic routines F11GDF, F11GEF and F11GFF implement either the conjugate gradient
(CG) method, or a Lanczos method based on SYMMLQ, for the iterative solution of the real sparse
symmetric linear system Ax ¼ b. If A is known to be positive definite the CG method should be
chosen; the Lanczos method is more robust but less efficient for positive definite matrices. These
routines allow a choice of termination criteria and the norms used in them, allow monitoring of the
approximate solution, and can return estimates of the norm of A and the largest singular value of the
preconditioned matrix �A.

The utility routines provided for real symmetric matrices use the symmetric coordinate storage (SCS)
format described in Section 2.1.2. F11JAF computes a preconditioning matrix based on incomplete
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Cholesky factorization, and F11JBF solves linear systems involving the preconditioner generated by
F11JAF. The amount of fill-in occurring in the incomplete factorization can be controlled by specifying
either the level of fill, or the drop tolerance. Diagonal Markowitz pivoting may optionally be employed,
and the factorization can be modified to preserve row-sums. Additionally, the utility routine F11YEF
can be used to discover a row and column permutation that reduces the bandwidth of A.

F11JDF is similar to F11JBF, but solves linear systems involving the preconditioner corresponding to
symmetric successive-over-relaxation (SSOR). The value of the relaxation parameter ! must currently
be supplied by you. Automatic procedures for choosing ! will be included in the chapter at a future
mark.

F11DKF applies the iterated Jacobi method to a symmetric or nonsymmetric system of linear equations
and can be used as a preconditioner. However, the domain of validity of the Jacobi method is rather
restricted; you should read the routine document for F11DKF before using it.

F11XEF computes matrix-vector products for real symmetric matrices stored in ordered SCS format. An
additional utility routine F11ZBF orders the nonzero elements of a real sparse symmetric matrix stored
in general SCS format.

The Black Box routine F11JCF makes calls to F11GDF, F11GEF, F11GFF, F11JBF and F11XEF, to
solve a real sparse symmetric linear system, represented in SCS format, using a conjugate gradient or
Lanczos method, with incomplete Cholesky preconditioning. F11JEF is similar, but has options for no
preconditioning, Jacobi preconditioning or SSOR preconditioning.

For complex Hermitian sparse matrices there is an equivalent suite of routines. F11GRF, F11GSF and
F11GTF are the basic routines which implement the same methods used for real symmetric systems,
namely CG and SYMMLQ, for the solution of complex sparse Hermitian linear systems. F11JNF and
F11JPF are the complex equivalents of F11JAF and F11JBF, respectively, providing facilities for
implementing incomplete Cholesky preconditioning. F11JRF implements a complex version of the
SSOR preconditioner. F11DXF implements a complex version of the iterated Jacobi preconditioner.
Utility routines F11XSF and F11ZPF are provided for computing matrix-vector products and sorting the
elements of complex sparse Hermitian matrices, respectively. Finally, the Black Box routines F11JQF
and F11JSF provide easy-to-use implementations of the CG and SYMMLQ methods for complex
Hermitian linear systems.

3.4 Direct Methods

The suite of routines F11MDF, F11MEF, F11MFF, F11MGF, F11MHF, F11MKF, F11MLF and
F11MMF implement the COLAMD/SuperLU direct real sparse solver and associated utilities. You are
expected to first call F11MDF to compute a suitable column permutation for the subsequent
factorization by F11MEF. F11MFF then solves the system of equations. A solution can be further
refined by F11MHF, which also minimizes the backward error and estimates a bound for the forward
error in the solution. Diagnostics are provided by F11MGF which computes an estimate of the condition
number of the matrix using the factorization output by F11MEF, and F11MMF which computes the
reciprocal pivot growth (a numerical stability measure) of the factorization. The two utility routines,
F11MKF, which computes matrix-matrix products in the particular storage scheme demanded by the
suite (CCS format), and F11MLF which computes quantities relating to norms of a matrix in that
particular storage scheme, complete the suite.

Another way of computing a direct solution is to choose specific arguments for the indirect solvers. For
example, routine F11DBF solves a linear system involving the incomplete LU preconditioning matrix

M ¼ PLDUQ ¼ A�R

generated by F11DAF, where P and Q are permutation matrices, L is lower triangular with unit
diagonal elements, U is upper triangular with unit diagonal elements, D is diagonal and R is a
remainder matrix.

If A is nonsingular, a call to F11DAF with LFILL < 0 and DTOL ¼ 0:0 results in a zero remainder
matrix R and a complete factorization. A subsequent call to F11DBF will therefore result in a direct
method for real sparse nonsymmetric systems.

If A is known to be symmetric positive definite, F11JAF and F11JBF may similarly be used to give a
direct solution. For further details see Section 9.4 in F11JAF.
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Complex non-Hermitian systems can be solved directly in the same way using F11DNF and F11DPF,
while for complex Hermitian systems F11JNF and F11JPF may be used.

Some other routines specifically designed for direct solution of sparse linear systems can currently be
found in Chapters F01, F04 and F07. In particular, the following routines allow the direct solution of
nonsymmetric systems:

Almost block-diagonal F01LHF and F04LHF
Sparse F01BRF (or F01BSF) and F04AXF

and the following routines allow the direct solution of symmetric positive definite systems:

Variable band (skyline) F01MCF and F04MCF

Routines for the solution of band and tridiagonal systems can be found in Chapters F04 and F07.
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4 Decision Tree

Tree 1: Solvers

Do you have a real system
and want to use a direct
method?

yes
F11MDF, F11MEF and

F11MFF

no

Do you want to use your
own storage scheme or
preconditioner?

yes
complex system?

yes
Hermitian?

yes
F11GRF, F11GSF and

F11GTF

no

F11BRF, F11BSF and
F11BTF

no

symmetric?
yes

F11GDF, F11GEF and
F11GFF

no

F11BDF, F11BEF and
F11BFF

no

complex system?
yes

Hermitian positive definite?
yes

Incomplete Cholesky
preconditioner? yes

F11JNF and F11JPF

no

F11JSF

no

Incomplete LU
preconditioner? yes

Using (possibly
overlapping) diagonal
blocks?

yes
F11DTF and F11DUF

no

F11DNF and F11DQF

no

F11DSF

no

symmetric positive definite?
yes

Incomplete Cholesky
preconditioner? yes

F11JAF and F11JCF

no

F11JEF

no

Incomplete LU
preconditioner? yes

Using (possibly
overlapping) diagonal
blocks?

yes
F11DFF and F11DGF

no

F11DAF and F11DCF

no

F11DEF

5 Functionality Index

Basic routines for complex Hermitian linear systems,
diagnostic routine............................................................................................................ F11GTF
reverse communication CG or SYMMLQ solver routine................................................ F11GSF
setup routine ................................................................................................................... F11GRF

Basic routines for complex non-Hermitian linear systems,
diagnostic routine............................................................................................................ F11BTF
reverse communication RGMRES, CGS, Bi-CGSTAB ‘ð Þ or TFQMR solver routine ..... F11BSF
setup routine ................................................................................................................... F11BRF
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Basic routines for real nonsymmetric linear systems,
diagnostic routine............................................................................................................ F11BFF
reverse communication RGMRES, CGS, Bi-CGSTAB ‘ð Þ or TFQMR solver routine ..... F11BEF
setup routine ................................................................................................................... F11BDF

Basic routines for real symmetric linear systems,
diagnostic routine............................................................................................................ F11GFF
reverse communication CG or SYMMLQ solver............................................................ F11GEF
setup routine ................................................................................................................... F11GDF

Black Box routines for complex Hermitian linear systems,
CG or SYMMLQ solver,

with incomplete Cholesky preconditioning ................................................................ F11JQF
with no preconditioning, Jacobi or SSOR preconditioning ........................................ F11JSF

Black Box routines for complex non-Hermitian linear systems,
RGMRES, CGS, Bi-CGSTAB ‘ð Þ or TFQMR solver,

with block Jacobi or additive Schwarz preconditioning............................................. F11DUF
with incomplete LU preconditioning ......................................................................... F11DQF
with no preconditioning, Jacobi, or SSOR preconditioning ....................................... F11DSF

Black Box routines for real nonsymmetric linear systems,
RGMRES, CGS, Bi-CGSTAB ‘ð Þ or TFQMR solver,

with block Jacobi or additive Schwarz preconditioning............................................. F11DGF
with incomplete LU preconditioning ......................................................................... F11DCF
with no preconditioning, Jacobi, or SSOR preconditioning ....................................... F11DEF

Black Box routines for real symmetric linear systems,
CG or SYMMLQ solver,

with incomplete Cholesky preconditioning ................................................................ F11JCF
with no preconditioning, Jacobi, or SSOR preconditioning ....................................... F11JEF

Direct methods for real sparse nonsymmetric linear systems in CCS format,
apply iterative refinement to the solution and compute error estimates, after factorizing
the matrix of coefficients ................................................................................................

F11MHF

condition number estimation, after factorizing the matrix of coefficients, ...................... F11MGF
LU factorization,

diagnostic ................................................................................................................... F11MMF
factorize ..................................................................................................................... F11MEF
setup........................................................................................................................... F11MDF

solution of simultaneous linear equations, after factorizing the matrix of coefficients, .. F11MFF
utility,

compute a norm or the element of largest absolute value, ........................................ F11MLF
matrix-matrix multiplier ............................................................................................. F11MKF

Utility routine for complex Hermitian linear systems,
incomplete Cholesky factorization .................................................................................. F11JNF
matrix-vector multiplier for complex Hermitian matrices in SCS format ....................... F11XSF
solver for linear systems involving preconditioning matrix from F11JNF...................... F11JPF
solver for linear systems involving SSOR preconditioning matrix ................................. F11JRF
sort routine for complex Hermitian matrices in SCS format .......................................... F11ZPF

Utility routine for complex linear systems,
solver for linear systems involving iterated Jacobi method ............................................ F11DXF

Utility routine for complex non-Hermitian linear systems,
incomplete LU factorization ........................................................................................... F11DNF
incomplete LU factorization of local or overlapping diagonal blocks ............................ F11DTF
matrix-vector multiplier for complex non-Hermitian matrices in CS format .................. F11XNF
solver for linear systems involving preconditioning matrix from F11DNF..................... F11DPF
solver for linear systems involving SSOR preconditioning matrix ................................. F11DRF
sort routine for complex non-Hermitian matrices in CS format ..................................... F11ZNF
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Utility routine for real linear systems,
solver for linear systems involving iterated Jacobi method ............................................ F11DKF

Utility routine for real nonsymmetric linear systems,
incomplete LU factorization ........................................................................................... F11DAF
incomplete LU factorization of local or overlapping diagonal blocks ............................ F11DFF
matrix-vector multiplier for real nonsymmetric matrices in CS format .......................... F11XAF
solver for linear systems involving preconditioning matrix from F11DAF..................... F11DBF
solver for linear systems involving SSOR preconditioning matrix ................................. F11DDF
sort routine for real nonsymmetric matrices in CS format ............................................. F11ZAF

Utility routine for real symmetric linear systems,
incomplete Cholesky factorization .................................................................................. F11JAF
matrix-vector multiplier for real symmetric matrices in SCS format.............................. F11XEF
solver for linear systems involving preconditioning matrix from F11JAF...................... F11JBF
solver for linear systems involving SSOR preconditioning matrix ................................. F11JDF
sort routine for real symmetric matrices in SCS format................................................. F11ZBF

Utility routine for real symmetric linear systems, compute bandwidth-reducing reverse
Cuthill–McKee permutation .................................................................................................

F11YEF

6 Auxiliary Routines Associated with Library Routine Arguments

None.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

F11BAF 21 F11BDF
F11BBF 21 F11BEF
F11BCF 21 F11BFF
F11GAF 22 F11GDF
F11GBF 22 F11GEF
F11GCF 22 F11GFF
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NAG Library Routine Document

F11BDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11BDF is a setup routine, the first in a suite of three routines for the iterative solution of a real general
(nonsymmetric) system of simultaneous linear equations. F11BDF must be called before F11BEF, the
iterative solver. The third routine in the suite, F11BFF, can be used to return additional information
about the computation.

These three routines are suitable for the solution of large sparse general (nonsymmetric) systems of
equations.

2 Specification

SUBROUTINE F11BDF (METHOD, PRECON, NORM, WEIGHT, ITERM, N, M, TOL,
MAXITN, ANORM, SIGMAX, MONIT, LWREQ, WORK, LWORK,
IFAIL)

&
&

INTEGER ITERM, N, M, MAXITN, MONIT, LWREQ, LWORK, IFAIL
REAL (KIND=nag_wp) TOL, ANORM, SIGMAX, WORK(LWORK)
CHARACTER(*) METHOD
CHARACTER(1) PRECON, NORM, WEIGHT

3 Description

The suite consisting of the routines F11BDF, F11BEF and F11BFF is designed to solve the general
(nonsymmetric) system of simultaneous linear equations Ax ¼ b of order n, where n is large and the
coefficient matrix A is sparse.

F11BDF is a setup routine which must be called before F11BEF, the iterative solver. The third routine
in the suite, F11BFF, can be used to return additional information about the computation. A choice of
methods is available:

restarted generalized minimum residual method (RGMRES);

conjugate gradient squared method (CGS);

bi-conjugate gradient stabilized (‘) method (Bi-CGSTAB(‘));

transpose-free quasi-minimal residual method (TFQMR).

3.1 Restarted Generalized Minimum Residual Method (RGMRES)

The restarted generalized minimum residual method (RGMRES) (see Saad and Schultz (1986), Barrett
et al. (1994) and Dias da Cunha and Hopkins (1994)) starts from the residual r0 ¼ b�Ax0, where x0 is
an initial estimate for the solution (often x0 ¼ 0). An orthogonal basis for the Krylov subspace
span Akr0

� 
, for k ¼ 0; 1; . . ., is generated explicitly: this is referred to as Arnoldi's method (see Arnoldi

(1951)). The solution is then expanded onto the orthogonal basis so as to minimize the residual norm
b�Axk k2. The lack of symmetry of A implies that the orthogonal basis is generated by applying a
‘long’ recurrence relation, whose length increases linearly with the iteration count. For all but the most
trivial problems, computational and storage costs can quickly become prohibitive as the iteration count
increases. RGMRES limits these costs by employing a restart strategy: every m iterations at most, the
Arnoldi process is restarted from rl ¼ b�Axl, where the subscript l denotes the last available iterate.
Each group of m iterations is referred to as a ‘super-iteration’. The value of m is chosen in advance and
is fixed throughout the computation. Unfortunately, an optimum value of m cannot easily be predicted.
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3.2 Conjugate Gradient Squared Method (CGS)

The conjugate gradient squared method (CGS) (see Sonneveld (1989), Barrett et al. (1994) and Dias da
Cunha and Hopkins (1994)) is a development of the bi-conjugate gradient method where the
nonsymmetric Lanczos method is applied to reduce the coefficients matrix to real tridiagonal form: two
bi-orthogonal sequences of vectors are generated starting from the residual r0 ¼ b�Ax0, where x0 is
an initial estimate for the solution (often x0 ¼ 0) and from the shadow residual r̂0 corresponding to the
arbitrary problem ATx̂ ¼ b̂, where b̂ can be any vector, but in practice is chosen so that r0 ¼ r̂0. In the
course of the iteration, the residual and shadow residual ri ¼ Pi Að Þr0 and r̂i ¼ Pi ATð Þr̂0 are generated,
where Pi is a polynomial of order i, and bi-orthogonality is exploited by computing the vector product
�i ¼ r̂i; rið Þ ¼ Pi A

Tð Þr̂0;ð
Pi Að Þr0Þ ¼ r̂0; P

2
i Að Þr0

� �
. Applying the ‘contraction’ operator Pi Að Þ twice, the iteration coefficients

can still be recovered without advancing the solution of the shadow problem, which is of no interest.
The CGS method often provides fast convergence; however, there is no reason why the contraction
operator should also reduce the once reduced vector Pi Að Þr0: this may well lead to a highly irregular
convergence which may result in large cancellation errors.

3.3 Bi-Conjugate Gradient Stabilized (‘) Method (Bi-CGSTAB(‘))

The bi-conjugate gradient stabilized (‘) method (Bi-CGSTAB(‘)) (see Van der Vorst (1989), Sleijpen
and Fokkema (1993) and Dias da Cunha and Hopkins (1994)) is similar to the CGS method above.
However, instead of generating the sequence P 2

i Að Þr0
� 

, it generates the sequence Qi Að ÞPi Að Þr0f g,
where the Qi Að Þ are polynomials chosen to minimize the residual after the application of the
contraction operator Pi Að Þ. Two main steps can be identified for each iteration: an OR (Orthogonal
Residuals) step where a basis of order ‘ is generated by a Bi-CG iteration and an MR (Minimum
Residuals) step where the residual is minimized over the basis generated, by a method akin to GMRES.
For ‘ ¼ 1, the method corresponds to the Bi-CGSTAB method of Van der Vorst (1989). For ‘ > 1, more
information about complex eigenvalues of the iteration matrix can be taken into account, and this may
lead to improved convergence and robustness. However, as ‘ increases, numerical instabilities may
arise. For this reason, a maximum value of ‘ ¼ 10 is imposed, but probably ‘ ¼ 4 is sufficient in most
cases.

3.4 Transpose-free Quasi-minimal Residual Method (TFQMR)

The transpose-free quasi-minimal residual method (TFQMR) (see Freund and Nachtigal (1991) and
Freund (1993)) is conceptually derived from the CGS method. The residual is minimized over the space
of the residual vectors generated by the CGS iterations under the simplifying assumption that residuals
are almost orthogonal. In practice, this is not the case but theoretical analysis has proved the validity of
the method. This has the effect of remedying the rather irregular convergence behaviour with wild
oscillations in the residual norm that can degrade the numerical performance and robustness of the CGS
method. In general, the TFQMR method can be expected to converge at least as fast as the CGS
method, in terms of number of iterations, although each iteration involves a higher operation count.
When the CGS method exhibits irregular convergence, the TFQMR method can produce much
smoother, almost monotonic convergence curves. However, the close relationship between the CGS and
TFQMR method implies that the overall speed of convergence is similar for both methods. In some
cases, the TFQMR method may converge faster than the CGS method.

3.5 General Considerations

For each method, a sequence of solution iterates xif g is generated such that, hopefully, the sequence of
the residual norms rik kf g converges to a required tolerance. Note that, in general, convergence, when it
occurs, is not monotonic.

In the RGMRES and Bi-CGSTAB(‘) methods above, your program must provide the maximum number
of basis vectors used, m or ‘, respectively; however, a smaller number of basis vectors may be
generated and used when the stability of the solution process requires this (see Section 9).

Faster convergence can be achieved using a preconditioner (see Golub and Van Loan (1996) and
Barrett et al. (1994)). A preconditioner maps the original system of equations onto a different system,
say
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�A�x ¼ �b; ð1Þ

with, hopefully, better characteristics with respect to its speed of convergence: for example, the
condition number of the coefficients matrix can be improved or eigenvalues in its spectrum can be made
to coalesce. An orthogonal basis for the Krylov subspace span �Ak�r0

� 
, for k ¼ 0; 1; . . ., is generated and

the solution proceeds as outlined above. The algorithms used are such that the solution and residual
iterates of the original system are produced, not their preconditioned counterparts. Note that an
unsuitable preconditioner or no preconditioning at all may result in a very slow rate, or lack, of
convergence. However, preconditioning involves a trade-off between the reduction in the number of
iterations required for convergence and the additional computational costs per iteration. Also, setting up
a preconditioner may involve non-negligible overheads.

A left preconditioner M�1 can be used by the RGMRES, CGS and TFQMR methods, such that
�A ¼M�1A � In in (1), where In is the identity matrix of order n; a right preconditioner M�1 can be
used by the Bi-CGSTAB(‘) method, such that �A ¼ AM�1 � In. These are formal definitions, used only
in the design of the algorithms; in practice, only the means to compute the matrix–vector products
v ¼ Au and v ¼ ATu (the latter only being required when an estimate of Ak k1 or Ak k1 is computed
internally), and to solve the preconditioning equations Mv ¼ u are required, i.e., explicit information
about M, or its inverse is not required at any stage.

The first termination criterion

rkk kp � � bk kp þ Ak kp � xkk kp
� �

ð2Þ

is available for all four methods. In (2), p ¼ 1, 1 or 2 and � denotes a user-specified tolerance subject
to max 10;

ffiffiffi
n
pð Þ, � � � < 1, where � is the machine precision. Facilities are provided for the estimation

of the norm of the coefficients matrix Ak k1 or Ak k1, when this is not known in advance, by applying
Higham's method (see Higham (1988)). Note that Ak k2 cannot be estimated internally. This criterion
uses an error bound derived from backward error analysis to ensure that the computed solution is the
exact solution of a problem as close to the original as the termination tolerance requires. Termination
criteria employing bounds derived from forward error analysis are not used because any such criteria
would require information about the condition number � Að Þ which is not easily obtainable.

The second termination criterion

�rkk k2 � � �r0k k2 þ �1 �A
� �
� ��xkk k2

� �
ð3Þ

is available for all methods except TFQMR. In (3), �1 �A
� �
¼ �A
�� ��

2
is the largest singular value of the

(preconditioned) iteration matrix �A. This termination criterion monitors the progress of the solution of
the preconditioned system of equations and is less expensive to apply than criterion (2) for the Bi-
CGSTAB(‘) method with ‘ > 1. Only the RGMRES method provides facilities to estimate �1 �A

� �
internally, when this is not supplied (see Section 9).

Termination criterion (2) is the recommended choice, despite its additional costs per iteration when
using the Bi-CGSTAB(‘) method with ‘ > 1. Also, if the norm of the initial estimate is much larger
than the norm of the solution, that is, if x0k k � xk k, a dramatic loss of significant digits could result in
complete lack of convergence. The use of criterion (2) will enable the detection of such a situation, and
the iteration will be restarted at a suitable point. No such restart facilities are provided for criterion (3).

Optionally, a vector w of user-specified weights can be used in the computation of the vector norms in

termination criterion (2), i.e., vk k wð Þp ¼ v wð Þ�� ��
p
, where v wð Þ� �

i
¼ wivi, for i ¼ 1; 2; . . . ; n. Note that the

use of weights increases the computational costs.

The sequence of calls to the routines comprising the suite is enforced: first, the setup routine F11BDF
must be called, followed by the solver F11BEF. F11BFF can be called either when F11BEF is carrying
out a monitoring step or after F11BEF has completed its tasks. Incorrect sequencing will raise an error
condition.

In general, it is not possible to recommend one method in preference to another. RGMRES is often used
in the solution of systems arising from PDEs. On the other hand, it can easily stagnate when the size m
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of the orthogonal basis is too small, or the preconditioner is not good enough. CGS can be the fastest
method, but the computed residuals can exhibit instability which may greatly affect the convergence
and quality of the solution. Bi-CGSTAB(‘) seems robust and reliable, but it can be slower than the
other methods: if a preconditioner is used and ‘ > 1, Bi-CGSTAB(‘) computes the solution of the
preconditioned system �xk ¼Mxk: the preconditioning equations must be solved to obtain the required
solution. The algorithm employed limits to 10% or less, when no intermediate monitoring is requested,
the number of times the preconditioner has to be thus applied compared with the total number of
applications of the preconditioner. TFQMR can be viewed as a more robust variant of the CGS method:
it shares the CGS method speed but avoids the CGS fluctuations in the residual, which may give rise to
instability. Also, when the termination criterion (2) is used, the CGS, Bi-CGSTAB(‘) and TFQMR
methods will restart the iteration automatically when necessary in order to solve the given problem.
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5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: the iterative method to be used.

METHOD ¼ RGMRES
Restarted generalized minimum residual method.

METHOD ¼ CGS
Conjugate gradient squared method.

METHOD ¼ BICGSTAB
Bi-conjugate gradient stabilized (‘) method.
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METHOD ¼ TFQMR
Transpose-free quasi-minimal residual method.

Constraint: METHOD ¼ RGMRES , CGS , BICGSTAB or TFQMR .

2: PRECON – CHARACTER(1) Input

On entry: determines whether preconditioning is used.

PRECON ¼ N
No preconditioning.

PRECON ¼ P
Preconditioning.

Constraint: PRECON ¼ N or P .

3: NORM – CHARACTER(1) Input

On entry: defines the matrix and vector norm to be used in the termination criteria.

NORM ¼ 1
l1 norm.

NORM ¼ I
l1 norm.

NORM ¼ 2
l2 norm.

Suggested value:

if ITERM ¼ 1, NORM ¼ I ;
if ITERM ¼ 2, NORM ¼ 2 .

Constraints:

if ITERM ¼ 1, NORM ¼ 1 , I or 2 ;
if ITERM ¼ 2, NORM ¼ 2 .

4: WEIGHT – CHARACTER(1) Input

On entry: specifies whether a vector w of user-supplied weights is to be used in the computation

of the vector norms required in termination criterion (2) (ITERM ¼ 1): vk k wð Þp ¼ v wð Þ�� ��
p
, where

v
wð Þ
i ¼ wivi, for i ¼ 1; 2; . . . ; n. The suffix p ¼ 1; 2;1 denotes the vector norm used, as specified
by the argument NORM. Note that weights cannot be used when ITERM ¼ 2, i.e., when criterion
(3) is used.

WEIGHT ¼ W
User-supplied weights are to be used and must be supplied on initial entry to F11BEF.

WEIGHT ¼ N
All weights are implicitly set equal to one. Weights do not need to be supplied on initial
entry to F11BEF.

Suggested value: WEIGHT ¼ N .

Constraints:

if ITERM ¼ 1, WEIGHT ¼ W or N ;
if ITERM ¼ 2, WEIGHT ¼ N .

5: ITERM – INTEGER Input

On entry: defines the termination criterion to be used.

ITERM ¼ 1
Use the termination criterion defined in (2).
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ITERM ¼ 2
Use the termination criterion defined in (3).

Suggested value: ITERM ¼ 1.

Constraints:

if METHOD ¼ TFQMR or WEIGHT ¼ W or NORM 6¼ 2 , ITERM ¼ 1;
otherwise ITERM ¼ 1 or 2.

Note: ITERM ¼ 2 is only appropriate for a restricted set of choices for METHOD, NORM and
WEIGHT; that is NORM ¼ 2 , WEIGHT ¼ N and METHOD 6¼ TFQMR .

6: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

7: M – INTEGER Input

On entry: if METHOD ¼ RGMRES , M is the dimension m of the restart subspace.

If METHOD ¼ BICGSTAB , M is the order ‘ of the polynomial Bi-CGSTAB method.

Otherwise, M is not referenced.

Constraints:

if METHOD ¼ RGMRES , 0 < M � min N; 50ð Þ;
if METHOD ¼ BICGSTAB , 0 < M � min N; 10ð Þ.

8: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance � for the termination criterion. If TOL � 0:0; � ¼ max
ffiffi
�
p
;
ffiffiffi
n
p

�ð Þ is used,
where � is the machine precision. Otherwise � ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

9: MAXITN – INTEGER Input

On entry: the maximum number of iterations.

Constraint: MAXITN > 0.

10: ANORM – REAL (KIND=nag_wp) Input

On entry: if ANORM > 0:0, the value of Ak kp to be used in the termination criterion (2)
(ITERM ¼ 1).

If ANORM � 0:0, ITERM ¼ 1 and NORM ¼ 1 or I , then Ak k1 ¼ Ak k1 is estimated internally
by F11BEF.

If ITERM ¼ 2, ANORM is not referenced.

Constraint: if ITERM ¼ 1 and NORM ¼ 2 , ANORM > 0:0.

11: SIGMAX – REAL (KIND=nag_wp) Input

On entry: if ITERM ¼ 2, the largest singular value �1 of the preconditioned iteration matrix;
otherwise, SIGMAX is not referenced.

If SIGMAX � 0:0, ITERM ¼ 2 and METHOD ¼ RGMRES , then the value of �1 will be
estimated internally.

Constraint: if METHOD ¼ CGS or BICGSTAB and ITERM ¼ 2, SIGMAX > 0:0.
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12: MONIT – INTEGER Input

On entry: if MONIT > 0, the frequency at which a monitoring step is executed by F11BEF: if
METHOD ¼ CGS or TFQMR , a monitoring step is executed every MONIT iterations;
otherwise, a monitoring step is executed every MONIT super-iterations (groups of up to m or ‘
iterations for RGMRES or Bi-CGSTAB(‘), respectively).

There are some additional computational costs involved in monitoring the solution and residual
vectors when the Bi-CGSTAB(‘) method is used with ‘ > 1.

Constraint: MONIT � MAXITN.

13: LWREQ – INTEGER Output

On exit: the minimum amount of workspace required by F11BEF. (See also Section 5 in
F11BEF.)

14: WORKðLWORKÞ – REAL (KIND=nag_wp) array Communication Array

On exit: the array WORK is initialized by F11BDF. It must not be modified before calling the
next routine in the suite, namely F11BEF.

15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11BDF is called.

Constraint: LWORK � 100.

Note: although the minimum value of LWORK ensures the correct functioning of F11BDF, a
larger value is required by the other routines in the suite, namely F11BEF and F11BFF. The
required value is as follows:

Method Requirements

RGMRES LWORK ¼ 100þ n mþ 3ð Þ þm mþ 5ð Þ þ 1, where m is the dimension of the
basis.

CGS LWORK ¼ 100þ 7n.

Bi-CGSTAB(‘) LWORK ¼ 100þ 2nþ ‘ð Þ ‘þ 2ð Þ þ p, where ‘ is the order of the method.

TFQMR LWORK ¼ 100þ 10n,

where

p ¼ 2n if ‘ > 1 and ITERM ¼ 2 was supplied.

p ¼ n if ‘ > 1 and a preconditioner is used or ITERM ¼ 2 was supplied.

p ¼ 0 otherwise.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

F11BDF has been called out of sequence: either F11BDF has been called twice or F11BEF has
not terminated its current task.

IFAIL ¼ �1
On entry, METHOD ¼ valueh i.
Constraint: METHOD ¼ RGMRES , CGS , BICGSTAB or TFQMR .

IFAIL ¼ �2
On entry, PRECON ¼ valueh i.
Constraint: PRECON ¼ N or P .

IFAIL ¼ �3
On entry, NORM ¼ valueh i.
Constraint: NORM ¼ 1 , I or 2 .

IFAIL ¼ �4
On entry, WEIGHT ¼ valueh i.
Constraint: WEIGHT ¼ N or W.

IFAIL ¼ �5
On entry, ITERM ¼ valueh i.
Constraint: ITERM ¼ 1 or 2.

On entry, ITERM ¼ 2 and METHOD ¼ TFQMR .
Constraint: if ITERM ¼ 2, METHOD 6¼ TFQMR .

On entry, ITERM ¼ 2 and NORM ¼ valueh i.
Constraint: if ITERM ¼ 2, NORM ¼ 2 .

On entry, ITERM ¼ 2 and WEIGHT ¼ valueh i.
Constraint: if ITERM ¼ 2, WEIGHT ¼ N .

IFAIL ¼ �6
On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ �7
On entry, M ¼ valueh i, N ¼ valueh i and METHOD ¼ valueh i.
Cons t ra in t : i f METHOD ¼ RGMRES , M � min N; 50ð Þ. I f METHOD ¼ BICGSTAB ,
M � min N; 10ð Þ.
On entry, M ¼ valueh i and METHOD ¼ valueh i.
Constraint: if METHOD ¼ RGMRES or BICGSTAB , M > 0.

IFAIL ¼ �8
On entry, TOL ¼ valueh i.
Constraint: TOL < 1:0.
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IFAIL ¼ �9
On entry, MAXITN ¼ valueh i.
Constraint: MAXITN > 0.

IFAIL ¼ �10
On entry, ITERM ¼ 1, NORM ¼ 2 and ANORM ¼ valueh i.
Constraint: if ITERM ¼ 1 and NORM ¼ 2 , ANORM > 0:0.

IFAIL ¼ �11
On entry, ITERM ¼ 2, METHOD ¼ valueh i and SIGMAX ¼ valueh i.
Constraint: if ITERM ¼ 2 and METHOD ¼ CGS or BICGSTAB , SIGMAX > 0:0.

IFAIL ¼ �12
On entry, MONIT ¼ valueh i and MAXITN ¼ valueh i.
Constraint: MONIT � MAXITN.

IFAIL ¼ �15
On entry, LWORK ¼ valueh i.
Constraint: LWORK � 100.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F11BDF is not threaded in any implementation.

9 Further Comments

RGMRES can estimate internally the maximum singular value �1 of the iteration matrix, using
�1 � Tk k1, where T is the upper triangular matrix obtained by QR factorization of the upper
Hessenberg matrix generated by the Arnoldi process. The computational costs of this computation are
negligible when compared to the overall costs.

Loss of orthogonality in the RGMRES method, or of bi-orthogonality in the Bi-CGSTAB(‘) method
may degrade the solution and speed of convergence. For both methods, the algorithms employed
include checks on the basis vectors so that the number of basis vectors used for a given super-iteration
may be less than the value specified in the input argument M. Also, if termination criterion (2) is used
the CGS, Bi-CGSTAB(‘) and TFQMR methods will restart automatically the computation from the last
available iterates, when the stability of the solution process requires it.
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Termination criterion (3), when available, involves only the residual (or norm of the residual) produced
directly by the iteration process: this may differ from the norm of the true residual ~rk ¼ b�Axk,
particularly when the norm of the residual is very small. Also, if the norm of the initial estimate of the
solution is much larger than the norm of the exact solution, convergence can be achieved despite very
large errors in the solution. On the other hand, termination criterion (3) is cheaper to use and inspects
the progress of the actual iteration. Termination criterion (2) should be preferred in most cases, despite
its slightly larger costs.

10 Example

This example solves an 8� 8 nonsymmetric system of simultaneous linear equations using the bi-
conjugate gradient stabilized method of order ‘ ¼ 1, where the coefficients matrix A has a random
sparsity pattern. An incomplete LU preconditioner is used (routines F11DAF and F11DBF).

10.1 Program Text

Program f11bdfe

! F11BDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11bdf, f11bef, f11bff, f11daf, f11dbf, f11xaf, &

nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: anorm, dtol, sigmax, stplhs, stprhs, &
tol

Integer :: i, ifail, ifail1, irevcm, iterm, &
itn, la, lfill, liwork, lwork, &
lwreq, m, maxitn, monit, n, nnz, &
nnzc, npivm

Character (8) :: method
Character (1) :: milu, norm, precon, pstrat, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), wgt(:), work(:), x(:)
Integer, Allocatable :: icol(:), idiag(:), ipivp(:), &

ipivq(:), irow(:), istr(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11BDF Example Program Results’

! Skip heading in data file

Read (nin,*)
Read (nin,*) n
Read (nin,*) nnz
la = 3*nnz
liwork = 7*n + 2
lwork = 200
Allocate (a(la),b(n),wgt(n),work(lwork),x(n),icol(la),idiag(n),ipivp(n), &

ipivq(n),irow(la),istr(n+1),iwork(liwork))

! Read or initialize the parameters for the iterative solver

Read (nin,*) method
Read (nin,*) precon, norm, weight, iterm
Read (nin,*) m, tol, maxitn
Read (nin,*) monit
anorm = 0.0E0_nag_wp
sigmax = 0.0E0_nag_wp

! Read the parameters for the preconditioner
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Read (nin,*) lfill, dtol
Read (nin,*) milu, pstrat

! Read the nonzero elements of the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read right-hand side vector b and initial approximate solution

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Calculate incomplete LU factorization

milu = ’N’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11daf(n,nnz,a,la,irow,icol,lfill,dtol,pstrat,milu,ipivp,ipivq, &

istr,idiag,nnzc,npivm,iwork,liwork,ifail)

! Call F11BDF to initialize the solver

ifail = 0
Call f11bdf(method,precon,norm,weight,iterm,n,m,tol,maxitn,anorm,sigmax, &

monit,lwreq,work,lwork,ifail)

! Call repeatedly F11BEF to solve the equations
! Note that the arrays B and X are overwritten

! On final exit, X will contain the solution and B the
! residual vector

irevcm = 0
lwreq = lwork

ifail = 1
loop: Do

Call f11bef(irevcm,x,b,wgt,work,lwreq,ifail)

If (irevcm/=4) Then
ifail1 = -1
Select Case (irevcm)
Case (-1)

Call f11xaf(’Transpose’,n,nnz,a,irow,icol,’No checking’,x,b, &
ifail1)

Case (1)

Call f11xaf(’No transpose’,n,nnz,a,irow,icol,’No checking’,x,b, &
ifail1)

Case (2)

Call f11dbf(’No transpose’,n,a,la,irow,icol,ipivp,ipivq,istr, &
idiag,’No checking’,x,b,ifail1)

Case (3)

ifail1 = 0
Call f11bff(itn,stplhs,stprhs,anorm,sigmax,work,lwreq,ifail1)

Write (nout,99999) itn, stplhs
Write (nout,99998)
Write (nout,99997)(x(i),b(i),i=1,n)

End Select
If (ifail1/=0) Then
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irevcm = 6
End If

Else If (ifail/=0) Then
Write (nout,99993) ifail
Go To 100

Else
Exit loop

End If
End Do loop

! Obtain information about the computation

ifail1 = 0
Call f11bff(itn,stplhs,stprhs,anorm,sigmax,work,lwreq,ifail1)

! Print the output data

Write (nout,99996)
Write (nout,99995) ’Number of iterations for convergence: ’, itn
Write (nout,99994) ’Residual norm: ’, stplhs
Write (nout,99994) ’Right-hand side of termination criterion:’, stprhs
Write (nout,99994) ’1-norm of matrix A: ’, anorm

! Output x

Write (nout,99998)
Write (nout,99997)(x(i),b(i),i=1,n)

100 Continue

99999 Format (/,1X,’Monitoring at iteration no.’,I4,/,1X,1P,’residual no’, &
’rm: ’,E14.4)

99998 Format (/,2X,’ Solution vector’,2X,’ Residual vector’)
99997 Format (1X,1P,E16.4,1X,E16.4)
99996 Format (/,1X,’Final Results’)
99995 Format (1X,A,I4)
99994 Format (1X,A,1P,E14.4)
99993 Format (1X,/,1X,’ ** F11BEF returned with IFAIL = ’,I5)

End Program f11bdfe

10.2 Program Data

F11BDF Example Program Data
8 N

24 NNZ
’BICGSTAB’ METHOD
’P’ ’1’ ’N’ 1 PRECON, NORM, WEIGHT, ITERM
1 1.0D-8 20 M, TOL, MAXITN
1 MONIT
0 0.0 LFILL, DTOL
’N’ ’C’ MILU, PSTRAT
2. 1 1

-1. 1 4
1. 1 8
4. 2 1

-3. 2 2
2. 2 5

-7. 3 3
2. 3 6
3. 4 1

-4. 4 3
5. 4 4
5. 4 7

-1. 5 2
8. 5 5

-3. 5 7
-6. 6 1
5. 6 3
2. 6 6

-5. 7 3
-1. 7 5
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6. 7 7
-1. 8 2
2. 8 6
3. 8 8 A(I), IROW(I), ICOL(I), I=1,...,NNZ
6. 8. -9. 46.

17. 21. 22. 34. B(I), I=1,...,N
0. 0. 0. 0.
0. 0. 0. 0. X(I), I=1,...,N

10.3 Program Results

F11BDF Example Program Results

Monitoring at iteration no. 1
residual norm: 1.4059E+02

Solution vector Residual vector
-4.5858E+00 1.5256E+01
1.0154E+00 2.6624E+01

-2.2234E+00 -8.7498E+00
6.0097E+00 1.8602E+01
1.3827E+00 8.2821E+00

-7.9070E+00 2.0416E+01
4.4270E-01 9.6094E+00
5.9248E+00 3.3055E+01

Monitoring at iteration no. 2
residual norm: 3.2742E+01

Solution vector Residual vector
4.1642E+00 -2.9585E+00
4.9370E+00 -5.5523E+00
4.8101E+00 8.2070E-01
5.4324E+00 -1.6828E+01
5.8531E+00 5.5975E-01
1.1925E+01 -1.9150E+00
8.4826E+00 1.0081E+00
6.0625E+00 -3.1004E+00

Final Results
Number of iterations for convergence: 3
Residual norm: 1.0373E-08
Right-hand side of termination criterion: 5.5900E-06
1-norm of matrix A: 1.1000E+01

Solution vector Residual vector
1.0000E+00 -1.3554E-09
2.0000E+00 -2.6109E-09
3.0000E+00 2.2471E-10
4.0000E+00 -3.2203E-09
5.0000E+00 6.3045E-10
6.0000E+00 -5.2431E-10
7.0000E+00 9.5771E-10
8.0000E+00 -8.4890E-10
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NAG Library Routine Document

F11BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11BEF is an iterative solver for a real general (nonsymmetric) system of simultaneous linear
equations; F11BEF is the second in a suite of three routines, where the first routine, F11BDF, must be
called prior to F11BEF to set up the suite, and the third routine in the suite, F11BFF, can be used to
return additional information about the computation.

These three routines are suitable for the solution of large sparse general (nonsymmetric) systems of
equations.

2 Specification

SUBROUTINE F11BEF (IREVCM, U, V, WGT, WORK, LWORK, IFAIL)

INTEGER IREVCM, LWORK, IFAIL
REAL (KIND=nag_wp) U(*), V(*), WGT(*), WORK(LWORK)

3 Description

F11BEF solves the general (nonsymmetric) system of linear simultaneous equations Ax ¼ b of order n,
where n is large and the coefficient matrix A is sparse, using one of four available methods: RGMRES,
the preconditioned restarted generalized minimum residual method (see Saad and Schultz (1986)); CGS,
the preconditioned conjugate gradient squared method (see Sonneveld (1989)); Bi-CGSTAB(‘), the bi-
conjugate gradient stabilized method of order ‘ (see Van der Vorst (1989) and Sleijpen and Fokkema
(1993)); or TFQMR, the transpose-free quasi-minimal residual method (see Freund and Nachtigal
(1991) and Freund (1993)).

For a general description of the methods employed you are referred to Section 3 in F11BDF.

F11BEF can solve the system after the first routine in the suite, F11BDF, has been called to initialize
the computation and specify the method of solution. The third routine in the suite, F11BFF, can be used
to return additional information generated by the computation, during monitoring steps and after
F11BEF has completed its tasks.

F11BEF uses reverse communication, i.e., it returns repeatedly to the calling program with the
argument IREVCM (see Section 5) set to specified values which require the calling program to carry
out one of the following tasks:

– compute the matrix-vector product v ¼ Au or v ¼ ATu (the four methods require the matrix
transpose-vector product only if Ak k1 or Ak k1 is estimated internally by Higham's method (see
Higham (1988)));

– solve the preconditioning equation Mv ¼ u;
– notify the completion of the computation;

– allow the calling program to monitor the solution.

Through the argument IREVCM the calling program can cause immediate or tidy termination of the
execution. On final exit, the last iterates of the solution and of the residual vectors of the original
system of equations are returned.

Reverse communication has the following advantages.

1. Maximum flexibility in the representation and storage of sparse matrices: all matrix operations are
performed outside the solver routine, thereby avoiding the need for a complicated interface with
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enough flexibility to cope with all types of storage schemes and sparsity patterns. This applies also
to preconditioners.

2. Enhanced user interaction: you can closely monitor the progress of the solution and tidy or
immediate termination can be requested. This is useful, for example, when alternative termination
criteria are to be employed or in case of failure of the external routines used to perform matrix
operations.

4 References

Freund R W (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
SIAM J. Sci. Comput. 14 470–482

Freund R W and Nachtigal N (1991) QMR: a Quasi-Minimal Residual Method for Non-Hermitian
Linear Systems Numer. Math. 60 315–339

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

Saad Y and Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 7 856–869

Sleijpen G L G and Fokkema D R (1993) BiCGSTAB ‘ð Þ for linear equations involving matrices with
complex spectrum ETNA 1 11–32

Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J. Sci.
Statist. Comput. 10 36–52

Van der Vorst H (1989) Bi-CGSTAB, a fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 13 631–644

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than IREVCM and V must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: IREVCM ¼ 0, otherwise an error condition will be raised.

On intermediate re-entry: must either be unchanged from its previous exit value, or can have one
of the following values.

IREVCM ¼ 5
Tidy termination: the computation will terminate at the end of the current iteration. Further
reverse communication exits may occur depending on when the termination request is
issued. F11BEF will then return with the termination code IREVCM ¼ 4. Note that before
calling F11BEF with IREVCM ¼ 5 the calling program must have performed the tasks
required by the value of IREVCM returned by the previous call to F11BEF, otherwise
subsequently returned values may be invalid.

IREVCM ¼ 6
Immediate termination: F11BEF will return immediately with termination code
IREVCM ¼ 4 and with any useful information available. This includes the last iterate
of the solution. The residual vector is generally not available.
Immediate termination may be useful, for example, when errors are detected during
matrix-vector multiplication or during the solution of the preconditioning equation.

Changing IREVCM to any other value between calls will result in an error.
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On intermediate exit: has the following meanings.

IREVCM ¼ �1
The calling program must compute the matrix-vector product v ¼ ATu, where u and v are
stored in U and V, respectively; RGMRES, CGS and Bi-CGSTAB(‘) methods return
IREVCM ¼ �1 only if the matrix norm Ak k1 or Ak k1 is estimated internally using
Higham's method. This can only happen if ITERM ¼ 1 in F11BDF.

IREVCM ¼ 1
The calling program must compute the matrix-vector product v ¼ Au, where u and v are
stored in U and V, respectively.

IREVCM ¼ 2
The calling program must solve the preconditioning equation Mv ¼ u, where u and v are
stored in U and V, respectively.

IREVCM ¼ 3
Monitoring step: the solution and residual at the current iteration are returned in the arrays
U and V, respectively. No action by the calling program is required. F11BFF can be called
at this step to return additional information.

On final exit: IREVCM ¼ 4: F11BEF has completed its tasks. The value of IFAIL determines
whether the iteration has been successfully completed, errors have been detected or the calling
program has requested termination.

Constraint: on initial entry, IREVCM ¼ 0; on re-entry, either IREVCM must remain unchanged
or be reset to 5 or 6.

2: Uð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array U must be at least n.

On initial entry: an initial estimate, x0, of the solution of the system of equations Ax ¼ b.
On intermediate re-entry: must remain unchanged.

On intermediate exit: the returned value of IREVCM determines the contents of U in the
following way:

if IREVCM ¼ �1, 1 or 2, U holds the vector u on which the operation specified by
IREVCM is to be carried out;

if IREVCM ¼ 3, U holds the current iterate of the solution vector.

On final exit: if IFAIL ¼ 3 or IFAIL < 0, the array U is unchanged from the initial entry to
F11BEF.

If IFAIL ¼ 1, the array U is unchanged from the last entry to F11BEF.

Otherwise, U holds the last available iterate of the solution of the system of equations, for all
returned values of IFAIL.

3: Vð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array V must be at least n.

On initial entry: the right-hand side b of the system of equations Ax ¼ b.
On intermediate re-entry: the returned value of IREVCM determines the contents of V in the
following way:

if IREVCM ¼ �1, 1 or 2, V must store the vector v, the result of the operation specified
by the value of IREVCM returned by the previous call to F11BEF;

if IREVCM ¼ 3, V must remain unchanged.

On intermediate exit: if IREVCM ¼ 3, V holds the current iterate of the residual vector. Note that
this is an approximation to the true residual vector. Otherwise, it does not contain any useful
information.
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On final exit: if IFAIL ¼ 3 or IFAIL < 0, the array V is unchanged from the initial entry to
F11BEF.

If IFAIL ¼ 1, the array V is unchanged from the last entry to F11BEF.

If IFAIL ¼ 0 or 2, the array V contains the true residual vector of the system of equations (see
also Section 6).

Otherwise, V stores the last available iterate of the residual vector unless IFAIL ¼ 8 is returned
on last entry, in which case V is set to 0:0.

4: WGTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WGT must be at least max 1;nð Þ.
On entry: the user-supplied weights, if these are to be used in the computation of the vector
norms in the termination criterion (see Sections 3 and 5 in F11BDF).

Constraint: if weights are to be used, at least one element of WGT must be nonzero.

5: WORKðLWORKÞ – REAL (KIND=nag_wp) array Communication Array

On initial entry: the array WORK as returned by F11BDF (see also Section 5 in F11BDF).

On intermediate re-entry: must remain unchanged.

6: LWORK – INTEGER Input

On initial entry: the dimension of the array WORK as declared in the (sub)program from which
F11BEF is called (see also Sections 3 and 5 in F11BDF). The required amount of workspace is
as follows:

Method Requirements

RGMRES LWORK ¼ 100þ n mþ 3ð Þ þm mþ 5ð Þ þ 1, where m is the dimension of the
basis.

CGS LWORK ¼ 100þ 7n.

Bi-CGSTAB(‘) LWORK ¼ 100þ 2n þ ‘ð Þ ‘þ 2ð Þ þ p, where ‘ is the order of the method.

TFQMR LWORK ¼ 100þ 10n,

where

p ¼ 2n if ‘ > 1 and ITERM ¼ 2 was supplied.

p ¼ n if ‘ > 1 and a preconditioner is used or ITERM ¼ 2 was supplied.

p ¼ 0 otherwise.

Constraint: LWORK � LWREQ, where LWREQ is returned by F11BDF.

7: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On intermediate exit: the value of IFAIL is meaningless and should be ignored.

On final exit: (i.e., when IREVCM ¼ 4) IFAIL ¼ 0, unless the routine detects an error or a
warning has been flagged (see Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i
On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11BEF has been called again after returning the termination code IREVCM ¼ 4. No further
computation has been carried out and all input data and data stored for access by F11BFF have
remained unchanged.

IFAIL ¼ 2

The required accuracy could not be obtained. However, F11BEF has terminated with reasonable
accuracy: the last iterate of the residual satisfied the termination criterion but the exact residual
r ¼ b�Ax, did not. After the first occurrence of this situation, the iteration was restarted once,
but F11BEF could not improve on the accuracy. This error code usually implies that your
problem has been fully and satisfactorily solved to within or close to the accuracy available on
your system. Further iterations are unlikely to improve on this situation. You should call F11BFF
to check the values of the left- and right-hand sides of the termination condition.

IFAIL ¼ 3

F11BDF was either not called before calling F11BEF or it returned an error. The arguments U
and V remain unchanged.

IFAIL ¼ 4

The calling program requested a tidy termination before the solution had converged. The arrays
U and V return the last iterates available of the solution and of the residual vector, respectively.

IFAIL ¼ 5

The solution did not converge within the maximum number of iterations allowed. The arrays U
and V return the last iterates available of the solution and of the residual vector, respectively.

IFAIL ¼ 6

Algorithmic breakdown. The last available iterates of the solution and residuals are returned,
although it is possible that they are completely inaccurate.

IFAIL ¼ 8

The calling program requested an immediate termination. However, the array U returns the last
iterate of the solution, the array V returns the last iterate of the residual vector, for the CGS and
TFQMR methods only.

IFAIL ¼ 10

User-supplied weights are to be used, but all elements of the array WGT are zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On completion, i.e., IREVCM ¼ 4 on exit, the arrays U and V will return the solution and residual
vectors, xk and rk ¼ b�Axk, respectively, at the kth iteration, the last iteration performed, unless an
immediate termination was requested.

On successful completion, the termination criterion is satisfied to within the user-specified tolerance, as
described in Section 3 in F11BDF. The computed values of the left- and right-hand sides of the
termination criterion selected can be obtained by a call to F11BFF.

8 Parallelism and Performance

F11BEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11BEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of operations carried out by F11BEF for each iteration is likely to be principally
determined by the computation of the matrix-vector products v ¼ Au and by the solution of the
preconditioning equation Mv ¼ u in the calling program. Each of these operations is carried out once
every iteration.

The number of the remaining operations in F11BEF for each iteration is approximately proportional to
n.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined at the
onset, as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix of
the coefficients �A ¼M�1A (RGMRES, CGS and TFQMR methods) or �A ¼ AM�1 (Bi-CGSTAB(‘)
method).

Additional matrix-vector products are required for the computation of Ak k1 or Ak k1, when this has not
been supplied to F11BDF and is required by the termination criterion employed.

If the termination criterion rkk kp � � bk kp þ Ak kp � xkk kp
� �

is used (see Section 3 in F11BDF) and

x0k k � xkk k, then the required accuracy cannot be obtained due to loss of significant digits. The
iteration is restarted automatically at some suitable point: F11BEF sets x0 ¼ xk and the computation
begins again. For particularly badly scaled problems, more than one restart may be necessary. This does
not apply to the RGMRES method which, by its own nature, self-restarts every super-iteration.
Naturally, restarting adds to computational costs: it is recommended that the iteration should start from
a value x0 which is as close to the true solution ~x as can be estimated. Otherwise, the iteration should
start from x0 ¼ 0.
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10 Example

See Section 10 in F11BDF.
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NAG Library Routine Document

F11BFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11BFF is the third in a suite of three routines for the iterative solution of a real general
(nonsymmetric) system of simultaneous linear equations (see Golub and Van Loan (1996)). F11BFF
returns information about the computations during an iteration and/or after this has been completed. The
first routine of the suite, F11BDF, is a setup routine; the second routine, F11BEF, is the iterative solver
itself.

These three routines are suitable for the solution of large sparse general (nonsymmetric) systems of
equations.

2 Specification

SUBROUTINE F11BFF (ITN, STPLHS, STPRHS, ANORM, SIGMAX, WORK, LWORK,
IFAIL)

&

INTEGER ITN, LWORK, IFAIL
REAL (KIND=nag_wp) STPLHS, STPRHS, ANORM, SIGMAX, WORK(LWORK)

3 Description

F11BFF returns information about the solution process. It can be called either during a monitoring step
of F11BEF or after F11BEF has completed its tasks. Calling F11BFF at any other time will result in an
error condition being raised.

For further information you should read the documentation for F11BDF and F11BEF.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: ITN – INTEGER Output

On exit: the number of iterations carried out by F11BEF.

2: STPLHS – REAL (KIND=nag_wp) Output

On exit: the current value of the left-hand side of the termination criterion used by F11BEF.

3: STPRHS – REAL (KIND=nag_wp) Output

On exit: the current value of the right-hand side of the termination criterion used by F11BEF.

4: ANORM – REAL (KIND=nag_wp) Output

On exit: if ITERM ¼ 1 in the previous call to F11BDF, then ANORM contains Ak kp, where
p ¼ 1, 2 or 1, either supplied or, in the case of 1 or 1, estimated by F11BEF; otherwise
ANORM ¼ 0:0.
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5: SIGMAX – REAL (KIND=nag_wp) Output

On exit: if ITERM ¼ 2 in the previous call to F11BDF, the current estimate of the largest
singular value �1 �A

� �
of the preconditioned iteration matrix, either when it has been supplied to

F11BDF or it has been estimated by F11BEF (see also Sections 3 and 5 in F11BDF); otherwise,
SIGMAX ¼ 0:0 is returned.

6: WORKðLWORKÞ – REAL (KIND=nag_wp) array Communication Array

On entry: the array WORK as returned by F11BEF (see also Sections 3 and 5 in F11BEF).

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11BFF is called (see also Section 5 in F11BDF).

Constraint: LWORK � 100.

Note: although the minimum value of LWORK ensures the correct functioning of F11BFF, a
larger value is required by the iterative solver F11BEF (see also Section 5 in F11BDF).

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i
On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11BFF has been called out of sequence. For example, the last call to F11BEF did not return
IREVCM ¼ 3 or 4.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F11BFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in F11BDF.
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NAG Library Routine Document

F11BRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11BRF is a setup routine, the first in a suite of three routines for the iterative solution of a complex
general (non-Hermitian) system of simultaneous linear equations. F11BRF must be called before
F11BSF, the iterative solver. The third routine in the suite, F11BTF, can be used to return additional
information about the computation.

These three routines are suitable for the solution of large sparse general (non-Hermitian) systems of
equations.

2 Specification

SUBROUTINE F11BRF (METHOD, PRECON, NORM, WEIGHT, ITERM, N, M, TOL,
MAXITN, ANORM, SIGMAX, MONIT, LWREQ, WORK, LWORK,
IFAIL)

&
&

INTEGER ITERM, N, M, MAXITN, MONIT, LWREQ, LWORK, IFAIL
REAL (KIND=nag_wp) TOL, ANORM, SIGMAX
COMPLEX (KIND=nag_wp) WORK(LWORK)
CHARACTER(*) METHOD
CHARACTER(1) PRECON, NORM, WEIGHT

3 Description

The suite consisting of the routines F11BRF, F11BSF and F11BTF is designed to solve the general
(non-Hermitian) system of simultaneous linear equations Ax ¼ b of order n, where n is large and the
coefficient matrix A is sparse.

F11BRF is a setup routine which must be called before F11BSF, the iterative solver. The third routine
in the suite, F11BTF, can be used to return additional information about the computation. A choice of
methods is available:

restarted generalized minimum residual method (RGMRES);

conjugate gradient squared method (CGS);

bi-conjugate gradient stabilized (‘) method (Bi-CGSTAB(‘));

transpose-free quasi-minimal residual method (TFQMR).

3.1 Restarted Generalized Minimum Residual Method (RGMRES)

The restarted generalized minimum residual method (RGMRES) (see Saad and Schultz (1986), Barrett
et al. (1994) and Dias da Cunha and Hopkins (1994)) starts from the residual r0 ¼ b�Ax0, where x0 is
an initial estimate for the solution (often x0 ¼ 0). An orthogonal basis for the Krylov subspace
span Akr0

� 
, for k ¼ 0; 1; . . ., is generated explicitly: this is referred to as Arnoldi's method (see Arnoldi

(1951)). The solution is then expanded onto the orthogonal basis so as to minimize the residual norm
b�Axk k2. The lack of symmetry of A implies that the orthogonal basis is generated by applying a
‘long’ recurrence relation, whose length increases linearly with the iteration count. For all but the most
trivial problems, computational and storage costs can quickly become prohibitive as the iteration count
increases. RGMRES limits these costs by employing a restart strategy: every m iterations at most, the
Arnoldi process is restarted from rl ¼ b�Axl, where the subscript l denotes the last available iterate.
Each group of m iterations is referred to as a ‘super-iteration’. The value of m is chosen in advance and
is fixed throughout the computation. Unfortunately, an optimum value of m cannot easily be predicted.
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3.2 Conjugate Gradient Squared Method (CGS)

The conjugate gradient squared method (CGS) (see Sonneveld (1989), Barrett et al. (1994) and Dias da
Cunha and Hopkins (1994)) is a development of the bi-conjugate gradient method where the
nonsymmetric Lanczos method is applied to reduce the coefficients matrix to tridiagonal form: two bi-
orthogonal sequences of vectors are generated starting from the residual r0 ¼ b�Ax0, where x0 is an
initial estimate for the solution (often x0 ¼ 0) and from the shadow residual r̂0 corresponding to the
arbitrary problem AHx̂ ¼ b̂, where b̂ can be any vector, but in practice is chosen so that r0 ¼ r̂0. In the
course of the iteration, the residual and shadow residual ri ¼ Pi Að Þr0 and r̂i ¼ Pi AHð Þr̂0 are generated,
where Pi is a polynomial of order i, and bi-orthogonality is exploited by computing the vector product
�i ¼ r̂i; rið Þ ¼ Pi A

Hð Þr̂0;ð
Pi Að Þr0Þ ¼ r̂0; P

2
i Að Þr0

� �
. Applying the ‘contraction’ operator Pi Að Þ twice, the iteration coefficients

can still be recovered without advancing the solution of the shadow problem, which is of no interest.
The CGS method often provides fast convergence; however, there is no reason why the contraction
operator should also reduce the once reduced vector Pi Að Þr0: this may well lead to a highly irregular
convergence which may result in large cancellation errors.

3.3 Bi-Conjugate Gradient Stabilized (‘) Method (Bi-CGSTAB(‘))

The bi-conjugate gradient stabilized (‘) method (Bi-CGSTAB(‘)) (see Van der Vorst (1989), Sleijpen
and Fokkema (1993) and Dias da Cunha and Hopkins (1994)) is similar to the CGS method above.
However, instead of generating the sequence P 2

i Að Þr0
� 

, it generates the sequence Qi Að ÞPi Að Þr0f g,
where the Qi Að Þ are polynomials chosen to minimize the residual after the application of the
contraction operator Pi Að Þ. Two main steps can be identified for each iteration: an OR (Orthogonal
Residuals) step where a basis of order ‘ is generated by a Bi-CG iteration and an MR (Minimum
Residuals) step where the residual is minimized over the basis generated, by a method akin to GMRES.
For ‘ ¼ 1, the method corresponds to the Bi-CGSTAB method of Van der Vorst (1989). For ‘ > 1, more
information about complex eigenvalues of the iteration matrix can be taken into account, and this may
lead to improved convergence and robustness. However, as ‘ increases, numerical instabilities may
arise. For this reason, a maximum value of ‘ ¼ 10 is imposed, but probably ‘ ¼ 4 is sufficient in most
cases.

3.4 Transpose-free Quasi-minimal Residual Method (TFQMR)

The transpose-free quasi-minimal residual method (TFQMR) (see Freund and Nachtigal (1991) and
Freund (1993)) is conceptually derived from the CGS method. The residual is minimized over the space
of the residual vectors generated by the CGS iterations under the simplifying assumption that residuals
are almost orthogonal. In practice, this is not the case but theoretical analysis has proved the validity of
the method. This has the effect of remedying the rather irregular convergence behaviour with wild
oscillations in the residual norm that can degrade the numerical performance and robustness of the CGS
method. In general, the TFQMR method can be expected to converge at least as fast as the CGS
method, in terms of number of iterations, although each iteration involves a higher operation count.
When the CGS method exhibits irregular convergence, the TFQMR method can produce much
smoother, almost monotonic convergence curves. However, the close relationship between the CGS and
TFQMR method implies that the overall speed of convergence is similar for both methods. In some
cases, the TFQMR method may converge faster than the CGS method.

3.5 General Considerations

For each method, a sequence of solution iterates xif g is generated such that, hopefully, the sequence of
the residual norms rik kf g converges to a required tolerance. Note that, in general, convergence, when it
occurs, is not monotonic.

In the RGMRES and Bi-CGSTAB(‘) methods above, your program must provide the maximum number
of basis vectors used, m or ‘, respectively; however, a smaller number of basis vectors may be
generated and used when the stability of the solution process requires this (see Section 9).

Faster convergence can be achieved using a preconditioner (see Golub and Van Loan (1996) and
Barrett et al. (1994)). A preconditioner maps the original system of equations onto a different system,
say
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�A�x ¼ �b; ð1Þ

with, hopefully, better characteristics with respect to its speed of convergence: for example, the
condition number of the coefficients matrix can be improved or eigenvalues in its spectrum can be made
to coalesce. An orthogonal basis for the Krylov subspace span �Ak�r0

� 
, for k ¼ 0; 1; . . ., is generated and

the solution proceeds as outlined above. The algorithms used are such that the solution and residual
iterates of the original system are produced, not their preconditioned counterparts. Note that an
unsuitable preconditioner or no preconditioning at all may result in a very slow rate, or lack, of
convergence. However, preconditioning involves a trade-off between the reduction in the number of
iterations required for convergence and the additional computational costs per iteration. Also, setting up
a preconditioner may involve non-negligible overheads.

A left preconditioner M�1 can be used by the RGMRES, CGS and TFQMR methods, such that
�A ¼M�1A � In in (1), where In is the identity matrix of order n; a right preconditioner M�1 can be
used by the Bi-CGSTAB(‘) method, such that �A ¼ AM�1 � In. These are formal definitions, used only
in the design of the algorithms; in practice, only the means to compute the matrix–vector products
v ¼ Au and v ¼ AHu (the latter only being required when an estimate of Ak k1 or Ak k1 is computed
internally), and to solve the preconditioning equations Mv ¼ u are required, i.e., explicit information
about M, or its inverse is not required at any stage.

The first termination criterion

rkk kp � � bk kp þ Ak kp � xkk kp
� �

ð2Þ

is available for all four methods. In (2), p ¼ 1, 1 or 2 and � denotes a user-specified tolerance subject
to max 10;

ffiffiffi
n
pð Þ, � � � < 1, where � is the machine precision. Facilities are provided for the estimation

of the norm of the coefficients matrix Ak k1 or Ak k1, when this is not known in advance, by applying
Higham's method (see Higham (1988)). Note that Ak k2 cannot be estimated internally. This criterion
uses an error bound derived from backward error analysis to ensure that the computed solution is the
exact solution of a problem as close to the original as the termination tolerance requires. Termination
criteria employing bounds derived from forward error analysis are not used because any such criteria
would require information about the condition number � Að Þ which is not easily obtainable.

The second termination criterion

�rkk k2 � � �r0k k2 þ �1 �A
� �
� ��xkk k2

� �
ð3Þ

is available for all methods except TFQMR. In (3), �1 �A
� �
¼ �A
�� ��

2
is the largest singular value of the

(preconditioned) iteration matrix �A. This termination criterion monitors the progress of the solution of
the preconditioned system of equations and is less expensive to apply than criterion (2) for the Bi-
CGSTAB(‘) method with ‘ > 1. Only the RGMRES method provides facilities to estimate �1 �A

� �
internally, when this is not supplied (see Section 9).

Termination criterion (2) is the recommended choice, despite its additional costs per iteration when
using the Bi-CGSTAB(‘) method with ‘ > 1. Also, if the norm of the initial estimate is much larger
than the norm of the solution, that is, if x0k k � xk k, a dramatic loss of significant digits could result in
complete lack of convergence. The use of criterion (2) will enable the detection of such a situation, and
the iteration will be restarted at a suitable point. No such restart facilities are provided for criterion (3).

Optionally, a vector w of user-specified weights can be used in the computation of the vector norms in

termination criterion (2), i.e., vk k wð Þp ¼ v wð Þ�� ��
p
, where v wð Þ� �

i
¼ wivi, for i ¼ 1; 2; . . . ; n. Note that the

use of weights increases the computational costs.

The sequence of calls to the routines comprising the suite is enforced: first, the setup routine F11BRF
must be called, followed by the solver F11BSF. F11BTF can be called either when F11BSF is carrying
out a monitoring step or after F11BSF has completed its tasks. Incorrect sequencing will raise an error
condition.

In general, it is not possible to recommend one method in preference to another. RGMRES is often used
in the solution of systems arising from PDEs. On the other hand, it can easily stagnate when the size m
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of the orthogonal basis is too small, or the preconditioner is not good enough. CGS can be the fastest
method, but the computed residuals can exhibit instability which may greatly affect the convergence
and quality of the solution. Bi-CGSTAB(‘) seems robust and reliable, but it can be slower than the
other methods: if a preconditioner is used and ‘ > 1, Bi-CGSTAB(‘) computes the solution of the
preconditioned system �xk ¼Mxk: the preconditioning equations must be solved to obtain the required
solution. The algorithm employed limits to 10% or less, when no intermediate monitoring is requested,
the number of times the preconditioner has to be thus applied compared with the total number of
applications of the preconditioner. TFQMR can be viewed as a more robust variant of the CGS method:
it shares the CGS method speed but avoids the CGS fluctuations in the residual, which may give rise to
instability. Also, when the termination criterion (2) is used, the CGS, Bi-CGSTAB(‘) and TFQMR
methods will restart the iteration automatically when necessary in order to solve the given problem.
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5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: the iterative method to be used.

METHOD ¼ RGMRES
Restarted generalized minimum residual method.

METHOD ¼ CGS
Conjugate gradient squared method.

METHOD ¼ BICGSTAB
Bi-conjugate gradient stabilized (‘) method.
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METHOD ¼ TFQMR
Transpose-free quasi-minimal residual method.

Constraint: METHOD ¼ RGMRES , CGS , BICGSTAB or TFQMR .

2: PRECON – CHARACTER(1) Input

On entry: determines whether preconditioning is used.

PRECON ¼ N
No preconditioning.

PRECON ¼ P
Preconditioning.

Constraint: PRECON ¼ N or P .

3: NORM – CHARACTER(1) Input

On entry: defines the matrix and vector norm to be used in the termination criteria.

NORM ¼ 1
l1 norm.

NORM ¼ I
l1 norm.

NORM ¼ 2
l2 norm.

Suggested value:

if ITERM ¼ 1, NORM ¼ I ;
if ITERM ¼ 2, NORM ¼ 2 .

Constraints:

if ITERM ¼ 1, NORM ¼ 1 , I or 2 ;
if ITERM ¼ 2, NORM ¼ 2 .

4: WEIGHT – CHARACTER(1) Input

On entry: specifies whether a vector w of user-supplied weights is to be used in the computation

of the vector norms required in termination criterion (2) (ITERM ¼ 1): vk k wð Þp ¼ v wð Þ�� ��
p
, where

v
wð Þ
i ¼ wivi, for i ¼ 1; 2; . . . ; n. The suffix p ¼ 1; 2;1 denotes the vector norm used, as specified
by the argument NORM. Note that weights cannot be used when ITERM ¼ 2, i.e., when criterion
(3) is used.

WEIGHT ¼ W
User-supplied weights are to be used and must be supplied on initial entry to F11BSF.

WEIGHT ¼ N
All weights are implicitly set equal to one. Weights do not need to be supplied on initial
entry to F11BSF.

Suggested value: WEIGHT ¼ N .

Constraints:

if ITERM ¼ 1, WEIGHT ¼ W or N ;
if ITERM ¼ 2, WEIGHT ¼ N .

5: ITERM – INTEGER Input

On entry: defines the termination criterion to be used.

ITERM ¼ 1
Use the termination criterion defined in (2).
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ITERM ¼ 2
Use the termination criterion defined in (3).

Suggested value: ITERM ¼ 1.

Constraints:

if METHOD ¼ TFQMR or WEIGHT ¼ W or NORM 6¼ 2 , ITERM ¼ 1;
otherwise ITERM ¼ 1 or 2.

Note: ITERM ¼ 2 is only appropriate for a restricted set of choices for METHOD, NORM and
WEIGHT; that is NORM ¼ 2 , WEIGHT ¼ N and METHOD 6¼ TFQMR .

6: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

7: M – INTEGER Input

On entry: if METHOD ¼ RGMRES , M is the dimension m of the restart subspace.

If METHOD ¼ BICGSTAB , M is the order ‘ of the polynomial Bi-CGSTAB method.

Otherwise, M is not referenced.

Constraints:

if METHOD ¼ RGMRES , 0 < M � min N; 50ð Þ;
if METHOD ¼ BICGSTAB , 0 < M � min N; 10ð Þ.

8: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance � for the termination criterion. If TOL � 0:0; � ¼ max
ffiffi
�
p
;
ffiffiffi
n
p

�ð Þ is used,
where � is the machine precision. Otherwise � ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

9: MAXITN – INTEGER Input

On entry: the maximum number of iterations.

Constraint: MAXITN > 0.

10: ANORM – REAL (KIND=nag_wp) Input

On entry: if ANORM > 0:0, the value of Ak kp to be used in the termination criterion (2)
(ITERM ¼ 1).

If ANORM � 0:0, ITERM ¼ 1 and NORM ¼ 1 or I , then Ak k1 ¼ Ak k1 is estimated internally
by F11BSF.

If ITERM ¼ 2, ANORM is not referenced.

Constraint: if ITERM ¼ 1 and NORM ¼ 2 , ANORM > 0:0.

11: SIGMAX – REAL (KIND=nag_wp) Input

On entry: if ITERM ¼ 2, the largest singular value �1 of the preconditioned iteration matrix;
otherwise, SIGMAX is not referenced.

If SIGMAX � 0:0, ITERM ¼ 2 and METHOD ¼ RGMRES , then the value of �1 will be
estimated internally.

Constraint: if METHOD ¼ CGS or BICGSTAB and ITERM ¼ 2, SIGMAX > 0:0.
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12: MONIT – INTEGER Input

On entry: if MONIT > 0, the frequency at which a monitoring step is executed by F11BSF: if
METHOD ¼ CGS or TFQMR , a monitoring step is executed every MONIT iterations;
otherwise, a monitoring step is executed every MONIT super-iterations (groups of up to m or ‘
iterations for RGMRES or Bi-CGSTAB(‘), respectively).

There are some additional computational costs involved in monitoring the solution and residual
vectors when the Bi-CGSTAB(‘) method is used with ‘ > 1.

Constraint: MONIT � MAXITN.

13: LWREQ – INTEGER Output

On exit: the minimum amount of workspace required by F11BSF. (See also Section 5 in
F11BSF.)

14: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Communication Array

On exit: the array WORK is initialized by F11BRF. It must not be modified before calling the
next routine in the suite, namely F11BSF.

15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11BRF is called.

Constraint: LWORK � 120.

Note: although the minimum value of LWORK ensures the correct functioning of F11BRF, a
larger value is required by the other routines in the suite, namely F11BSF and F11BTF. The
required value is as follows:

Method Requirements

RGMRES LWORK ¼ 120þ n mþ 3ð Þ þm mþ 5ð Þ þ 1, where m is the dimension of the
basis.

CGS LWORK ¼ 120þ 7n.

Bi-CGSTAB(‘) LWORK ¼ 120þ 2nþ ‘ð Þ ‘þ 2ð Þ þ p, where ‘ is the order of the method.

TFQMR LWORK ¼ 120þ 10n,

where

p ¼ 2n if ‘ > 1 and ITERM ¼ 2 was supplied.

p ¼ n if ‘ > 1 and a preconditioner is used or ITERM ¼ 2 was supplied.

p ¼ 0 otherwise.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i
On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11BRF has been called out of sequence.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F11BRF is not threaded in any implementation.

9 Further Comments

RGMRES can estimate internally the maximum singular value �1 of the iteration matrix, using
�1 � Tk k1, where T is the upper triangular matrix obtained by QR factorization of the upper
Hessenberg matrix generated by the Arnoldi process. The computational costs of this computation are
negligible when compared to the overall costs.

Loss of orthogonality in the RGMRES method, or of bi-orthogonality in the Bi-CGSTAB(‘) method
may degrade the solution and speed of convergence. For both methods, the algorithms employed
include checks on the basis vectors so that the number of basis vectors used for a given super-iteration
may be less than the value specified in the input argument M. Also, if termination criterion (2) is used,
the CGS, Bi-CGSTAB(‘) and TFQMR methods will restart automatically the computation from the last
available iterates, when the stability of the solution process requires it.

Termination criterion (3), when available, involves only the residual (or norm of the residual) produced
directly by the iteration process: this may differ from the norm of the true residual ~rk ¼ b�Axk,
particularly when the norm of the residual is very small. Also, if the norm of the initial estimate of the
solution is much larger than the norm of the exact solution, convergence can be achieved despite very
large errors in the solution. On the other hand, termination criterion (3) is cheaper to use and inspects
the progress of the actual iteration. Termination criterion (2) should be preferred in most cases, despite
its slightly larger costs.
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10 Example

This example solves an 8� 8 non-Hermitian system of simultaneous linear equations using the TFQMR
method where the coefficients matrix A has a random sparsity pattern. An incomplete LU
preconditioner is used (routines F11DNF and F11DPF).

10.1 Program Text

Program f11brfe

! F11BRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11brf, f11bsf, f11btf, f11dnf, f11dpf, f11xnf, &

nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: anorm, dtol, sigmax, stplhs, stprhs, &
tol

Integer :: i, ifail, ifail1, irevcm, iterm, &
itn, la, lfill, liwork, lwork, &
lwreq, m, maxitn, monit, n, nnz, &
nnzc, npivm

Character (8) :: method
Character (1) :: milu, norm, precon, pstrat, weight

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:)
Real (Kind=nag_wp), Allocatable :: wgt(:)
Integer, Allocatable :: icol(:), idiag(:), ipivp(:), &

ipivq(:), irow(:), istr(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11BRF Example Program Results’

! Skip heading in data file

Read (nin,*)
Read (nin,*) n
Read (nin,*) nnz
la = 2*nnz
liwork = 7*n + 2
lwork = 200
Allocate (a(la),b(n),work(lwork),x(n),wgt(n),icol(la),idiag(n),ipivp(n), &

ipivq(n),irow(la),istr(n+1),iwork(liwork))

! Read or initialize the parameters for the iterative solver

Read (nin,*) method
Read (nin,*) precon, norm, weight, iterm
Read (nin,*) m, tol, maxitn
Read (nin,*) monit
anorm = 0.0E0_nag_wp
sigmax = 0.0E0_nag_wp

! Read the parameters for the preconditioner

Read (nin,*) lfill, dtol
Read (nin,*) milu, pstrat

! Read the nonzero elements of the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do
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! Read right-hand side vector b and initial approximate
! solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Calculate incomplete LU factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11dnf(n,nnz,a,la,irow,icol,lfill,dtol,pstrat,milu,ipivp,ipivq, &

istr,idiag,nnzc,npivm,iwork,liwork,ifail)

! Call F11BRF to initialize the solver

ifail = 0
Call f11brf(method,precon,norm,weight,iterm,n,m,tol,maxitn,anorm,sigmax, &

monit,lwreq,work,lwork,ifail)

! Call repeatedly F11BSF to solve the equations
! Note that the arrays B and X are overwritten

! On final exit, X will contain the solution and B the residual
! vector

irevcm = 0
lwreq = lwork

ifail = 1
loop: Do

Call f11bsf(irevcm,x,b,wgt,work,lwreq,ifail)

If (irevcm/=4) Then
ifail1 = -1
Select Case (irevcm)
Case (-1)

Call f11xnf(’Transpose’,n,nnz,a,irow,icol,’No checking’,x,b, &
ifail1)

Case (1)

Call f11xnf(’No transpose’,n,nnz,a,irow,icol,’No checking’,x,b, &
ifail1)

Case (2)

Call f11dpf(’No transpose’,n,a,la,irow,icol,ipivp,ipivq,istr, &
idiag,’No checking’,x,b,ifail1)

Case (3)

ifail1 = 0
Call f11btf(itn,stplhs,stprhs,anorm,sigmax,work,lwreq,ifail1)

Write (nout,99999) itn, stplhs
Write (nout,99998)
Write (nout,99996) x(1:n)
Write (nout,99997)
Write (nout,99996) b(1:n)

End Select
If (ifail1/=0) Then

irevcm = 6
End If

Else If (ifail/=0) Then
Write (nout,99992) ifail
Go To 100

Else
Exit loop
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End If
End Do loop

! Obtain information about the computation

ifail1 = 0
Call f11btf(itn,stplhs,stprhs,anorm,sigmax,work,lwreq,ifail1)

! Print the output data

Write (nout,99995)
Write (nout,99994) ’Number of iterations for convergence: ’, itn
Write (nout,99993) ’Residual norm: ’, stplhs
Write (nout,99993) ’Right-hand side of termination criterion:’, stprhs
Write (nout,99993) ’1-norm of matrix A: ’, anorm

! Output x

Write (nout,99998)
Write (nout,99996) x(1:n)
Write (nout,99997)
Write (nout,99996) b(1:n)

100 Continue

99999 Format (/,1X,’Monitoring at iteration no.’,I4,/,1X,1P,’residual no’, &
’rm: ’,E14.4)

99998 Format (/,2X,’ Solution vector’)
99997 Format (/,2X,’ Residual vector’)
99996 Format (1X,’(’,1P,E16.4,’,’,1P,E16.4,’)’)
99995 Format (/,1X,’Final Results’)
99994 Format (1X,A,I4)
99993 Format (1X,A,1P,E14.4)
99992 Format (1X,/,1X,’ ** F11BSF returned with IFAIL = ’,I5)

End Program f11brfe

10.2 Program Data

F11BRF Example Program Data
8 N
24 NNZ
’TFQMR’ METHOD
’P’ ’1’ ’N’ 1 PRECON, NORM, WEIGHT, ITERM
1 1.0D-8 20 M, TOL, MAXITN
2 MONIT
0 0.0 LFILL, DTOL
’N’ ’C’ MILU, PSTRAT

( 2., 1.) 1 1
(-1., 1.) 1 4
( 1.,-3.) 1 8
( 4., 7.) 2 1
(-3., 0.) 2 2
( 2., 4.) 2 5
(-7.,-5.) 3 3
( 2., 1.) 3 6
( 3., 2.) 4 1
(-4., 2.) 4 3
( 0., 1.) 4 4
( 5.,-3.) 4 7
(-1., 2.) 5 2
( 8., 6.) 5 5
(-3.,-4.) 5 7
(-6.,-2.) 6 1
( 5.,-2.) 6 3
( 2., 0.) 6 6
( 0.,-5.) 7 3
(-1., 5.) 7 5
( 6., 2.) 7 7
(-1., 4.) 8 2
( 2., 0.) 8 6
( 3., 3.) 8 8 A(I), IROW(I), ICOL(I), I=1,...,NNZ
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( 7., 11.)
( 1., 24.)
(-13.,-18.)
(-10., 3.)
( 23., 14.)
( 17., -7.)
( 15., -3.)
( -3., 20.) B(I), I=1,...,N
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.) X(I), I=1,...,N

10.3 Program Results

F11BRF Example Program Results

Monitoring at iteration no. 2
residual norm: 8.2345E+01

Solution vector
( 6.9055E-01, 1.4236E+00)
( 7.3931E-02, -1.1880E+00)
( 1.4778E+00, 4.7846E-01)
( 5.6572E+00, -3.0786E+00)
( 1.4243E+00, -1.1246E+00)
( 1.0374E-01, 1.9740E+00)
( 4.4985E-01, -1.2715E+00)
( 2.5704E+00, 1.7578E+00)

Residual vector
( 1.7772E+00, 4.6797E+00)
( 1.0774E+00, 6.4600E+00)
( -3.2812E+00, -1.1314E+01)
( -3.8698E+00, -1.6438E+00)
( 8.9912E+00, 1.1100E+01)
( 9.7428E+00, -4.6218E-01)
( 3.1668E+00, 2.8721E+00)
( -1.0323E+01, 1.5837E+00)

Final Results
Number of iterations for convergence: 4
Residual norm: 7.9221E-12
Right-hand side of termination criterion: 8.9100E-06
1-norm of matrix A: 2.7000E+01

Solution vector
( 1.0000E+00, 1.0000E+00)
( 2.0000E+00, -1.0000E+00)
( 3.0000E+00, 1.0000E+00)
( 4.0000E+00, -1.0000E+00)
( 3.0000E+00, -1.0000E+00)
( 2.0000E+00, 1.0000E+00)
( 1.0000E+00, -1.0000E+00)
( 5.4088E-13, 3.0000E+00)

Residual vector
( 6.2172E-14, 5.1514E-13)
( -4.8139E-13, 7.9581E-13)
( -2.6645E-13, -8.4910E-13)
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( -4.6896E-13, -6.0396E-14)
( 7.1410E-13, 8.2068E-13)
( 7.3541E-13, -5.4179E-14)
( 2.9843E-13, -8.2645E-13)
( -8.7752E-13, 9.5923E-14)
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NAG Library Routine Document

F11BSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11BSF is an iterative solver for a complex general (non-Hermitian) system of simultaneous linear
equations; F11BSF is the second in a suite of three routines, where the first routine, F11BRF, must be
called prior to F11BSF to set up the suite, and the third routine in the suite, F11BTF, can be used to
return additional information about the computation.

These three routines are suitable for the solution of large sparse general (non-Hermitian) systems of
equations.

2 Specification

SUBROUTINE F11BSF (IREVCM, U, V, WGT, WORK, LWORK, IFAIL)

INTEGER IREVCM, LWORK, IFAIL
REAL (KIND=nag_wp) WGT(*)
COMPLEX (KIND=nag_wp) U(*), V(*), WORK(LWORK)

3 Description

F11BSF solves the general (non-Hermitian) system of linear simultaneous equations Ax ¼ b of order n,
where n is large and the coefficient matrix A is sparse, using one of four available methods: RGMRES,
the preconditioned restarted generalized minimum residual method (see Saad and Schultz (1986)); CGS,
the preconditioned conjugate gradient squared method (see Sonneveld (1989)); Bi-CGSTAB(‘), the bi-
conjugate gradient stabilized method of order ‘ (see Van der Vorst (1989) and Sleijpen and Fokkema
(1993)); or TFQMR, the transpose-free quasi-minimal residual method (see Freund and Nachtigal
(1991) and Freund (1993)).

For a general description of the methods employed you are referred to Section 3 in F11BRF.

F11BSF can solve the system after the first routine in the suite, F11BRF, has been called to initialize the
computation and specify the method of solution. The third routine in the suite, F11BTF, can be used to
return additional information generated by the computation during monitoring steps and after F11BSF
has completed its tasks.

F11BSF uses reverse communication, i.e., it returns repeatedly to the calling program with the
argument IREVCM (see Section 5) set to specified values which require the calling program to carry
out one of the following tasks:

compute the matrix-vector product v ¼ Au or v ¼ AHu (the four methods require the matrix
transpose-vector product only if Ak k1 or Ak k1 is estimated internally by Higham's method (see
Higham (1988)));

solve the preconditioning equation Mv ¼ u;
notify the completion of the computation;

allow the calling program to monitor the solution.

Through the argument IREVCM the calling program can cause immediate or tidy termination of the
execution. On final exit, the last iterates of the solution and of the residual vectors of the original
system of equations are returned.

Reverse communication has the following advantages.
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1. Maximum flexibility in the representation and storage of sparse matrices: all matrix operations are
performed outside the solver routine, thereby avoiding the need for a complicated interface with
enough flexibility to cope with all types of storage schemes and sparsity patterns. This applies also
to preconditioners.

2. Enhanced user interaction: you can closely monitor the progress of the solution and tidy or
immediate termination can be requested. This is useful, for example, when alternative termination
criteria are to be employed or in case of failure of the external routines used to perform matrix
operations.

4 References

Freund R W (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
SIAM J. Sci. Comput. 14 470–482

Freund R W and Nachtigal N (1991) QMR: a Quasi-Minimal Residual Method for Non-Hermitian
Linear Systems Numer. Math. 60 315–339

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

Saad Y and Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 7 856–869

Sleijpen G L G and Fokkema D R (1993) BiCGSTAB ‘ð Þ for linear equations involving matrices with
complex spectrum ETNA 1 11–32

Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J. Sci.
Statist. Comput. 10 36–52

Van der Vorst H (1989) Bi-CGSTAB, a fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 13 631–644

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than IREVCM and V must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: IREVCM ¼ 0, otherwise an error condition will be raised.

On intermediate re-entry: must either be unchanged from its previous exit value, or can have one
of the following values.

IREVCM ¼ 5
Tidy termination: the computation will terminate at the end of the current iteration. Further
reverse communication exits may occur depending on when the termination request is
issued. F11BSF will then return with the termination code IREVCM ¼ 4. Note that before
calling F11BSF with IREVCM ¼ 5 the calling program must have performed the tasks
required by the value of IREVCM returned by the previous call to F11BSF, otherwise
subsequently returned values may be invalid.

IREVCM ¼ 6
Immediate termination: F11BSF will return immediately with termination code
IREVCM ¼ 4 and with any useful information available. This includes the last iterate
of the solution.
Immediate termination may be useful, for example, when errors are detected during
matrix-vector multiplication or during the solution of the preconditioning equation.

Changing IREVCM to any other value between calls will result in an error.
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On intermediate exit: has the following meanings.

IREVCM ¼ �1
The calling program must compute the matrix-vector product v ¼ AHu, where u and v are
stored in U and V, respectively; RGMRES, CGS and Bi-CGSTAB(‘) methods return
IREVCM ¼ �1 only if the matrix norm Ak k1 or Ak k1 is estimated internally using
Higham's method. This can only happen if ITERM ¼ 1 in F11BRF.

IREVCM ¼ 1
The calling program must compute the matrix-vector product v ¼ Au, where u and v are
stored in U and V, respectively.

IREVCM ¼ 2
The calling program must solve the preconditioning equation Mv ¼ u, where u and v are
stored in U and V, respectively.

IREVCM ¼ 3
Monitoring step: the solution and residual at the current iteration are returned in the arrays
U and V, respectively. No action by the calling program is required. F11BTF can be called
at this step to return additional information.

On final exit: IREVCM ¼ 4: F11BSF has completed its tasks. The value of IFAIL determines
whether the iteration has been successfully completed, errors have been detected or the calling
program has requested termination.

Constraint: on initial entry, IREVCM ¼ 0; on re-entry, either IREVCM must remain unchanged
or be reset to IREVCM ¼ 5 or 6.

2: Uð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array U must be at least n.

On initial entry: an initial estimate, x0, of the solution of the system of equations Ax ¼ b.
On intermediate re-entry: must remain unchanged.

On intermediate exit: the returned value of IREVCM determines the contents of U as follows.

If IREVCM ¼ �1, 1 or 2, U holds the vector u on which the operation specified by IREVCM is
to be carried out.

If IREVCM ¼ 3, U holds the current iterate of the solution vector.

On final exit: if IFAIL ¼ 3 or IFAIL < 0, the array U is unchanged from the initial entry to
F11BSF.

If IFAIL ¼ 1, the array U is unchanged from the last entry to F11BSF.

Otherwise, U holds the last available iterate of the solution of the system of equations, for all
returned values of IFAIL.

3: Vð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array V must be at least n.

On initial entry: the right-hand side b of the system of equations Ax ¼ b.
On intermediate re-entry: the returned value of IREVCM determines the contents of V as
follows.

If IREVCM ¼ �1, 1 or 2, V must store the vector v, the result of the operation specified by the
value of IREVCM returned by the previous call to F11BSF.

If IREVCM ¼ 3, V must remain unchanged.

On intermediate exit: if IREVCM ¼ 3, V holds the current iterate of the residual vector. Note that
this is an approximation to the true residual vector. Otherwise, it does not contain any useful
information.
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On final exit: if IFAIL ¼ 3 or IFAIL < 0, the array V is unchanged from the initial entry to
F11BSF.

If IFAIL ¼ 1, the array V is unchanged from the last entry to F11BSF.

If IFAIL ¼ 0 or 2, the array V contains the true residual vector of the system of equations (see
also Section 6).

Otherwise, V stores the last available iterate of the residual vector unless IFAIL ¼ 8 is returned
on last entry, in which case V is set to 0:0.

4: WGTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WGT must be at least max 1;nð Þ.
On entry: the user-supplied weights, if these are to be used in the computation of the vector
norms in the termination criterion (see Sections 3 and 5 in F11BRF).

Constraint: if weights are to be used, at least one element of WGT must be nonzero.

5: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Communication Array

On initial entry: the array WORK as returned by F11BRF (see also Section 5 in F11BRF).

On intermediate re-entry: must remain unchanged.

6: LWORK – INTEGER Input

On initial entry: the dimension of the array WORK as declared in the (sub)program from which
F11BSF is called (see also Sections 3 and 5 in F11BRF). The required amount of workspace is as
follows:

Method Requirements

RGMRES LWORK ¼ 120þ n mþ 3ð Þ þm mþ 5ð Þ þ 1, where m is the dimension of
the basis

CGS LWORK ¼ 120þ 7n

Bi-CGSTAB(‘) LWORK ¼ 120þ 2n þ ‘ð Þ ‘þ 2ð Þ þ p, where ‘ is the order of the method

TFQMR LWORK ¼ 120þ 10n,

where

p ¼ 2n, if ‘ > 1 and ITERM ¼ 2 was supplied;

p ¼ n, if ‘ > 1 and a preconditioner is used or ITERM ¼ 2 was supplied;

p ¼ 0, otherwise.

Constraint: LWORK � LWREQ, where LWREQ is returned by F11BRF.

7: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On intermediate exit: the value of IFAIL is meaningless and should be ignored.

On final exit: (i.e., when IREVCM ¼ 4) IFAIL ¼ 0, unless the routine detects an error or a
warning has been flagged (see Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i
On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11BSF has been called again after returning the termination code IREVCM ¼ 4. No further
computation has been carried out and all input data and data stored for access by F11BTF have
remained unchanged.

IFAIL ¼ 2

The required accuracy could not be obtained. However, F11BSF has terminated with reasonable
accuracy: the last iterate of the residual satisfied the termination criterion but the exact residual
r ¼ b�Ax, did not. After the first occurrence of this situation, the iteration was restarted once,
but F11BSF could not improve on the accuracy. This error code usually implies that your
problem has been fully and satisfactorily solved to within or close to the accuracy available on
your system. Further iterations are unlikely to improve on this situation. You should call F11BTF
to check the values of the left- and right-hand sides of the termination condition.

IFAIL ¼ 3

F11BRF was either not called before calling F11BSF or it returned an error. The arguments U
and V remain unchanged.

IFAIL ¼ 4

The calling program requested a tidy termination before the solution had converged. The arrays
U and V return the last iterates available of the solution and of the residual vector, respectively.

IFAIL ¼ 5

The solution did not converge within the maximum number of iterations allowed. The arrays U
and V return the last iterates available of the solution and of the residual vector, respectively.

IFAIL ¼ 6

Algorithmic breakdown. The last available iterates of the solution and residuals are returned,
although it is possible that they are completely inaccurate.

IFAIL ¼ 8

The calling program requested an immediate termination. However, the array U returns the last
iterate of the solution, the array V returns the last iterate of the residual vector, for the CGS and
TFQMR methods only.

IFAIL ¼ 10

User-supplied weights are to be used, but all elements of the array WGT are zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

F11 – Large Scale Linear Systems F11BSF

Mark 26 F11BSF.5



IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On completion, i.e., IREVCM ¼ 4 on exit, the arrays U and V will return the solution and residual
vectors, xk and rk ¼ b�Axk, respectively, at the kth iteration, the last iteration performed, unless an
immediate termination was requested.

On successful completion, the termination criterion is satisfied to within the user-specified tolerance, as
described in F11BRF. The computed values of the left- and right-hand sides of the termination criterion
selected can be obtained by a call to F11BTF.

8 Parallelism and Performance

F11BSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11BSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of operations carried out by F11BSF for each iteration is likely to be principally
determined by the computation of the matrix-vector products v ¼ Au and by the solution of the
preconditioning equation Mv ¼ u in the calling program. Each of these operations is carried out once
every iteration.

The number of the remaining operations in F11BSF for each iteration is approximately proportional to
n.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined at the
onset, as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix of
the coefficients �A ¼M�1A (RGMRES, CGS and TFQMR methods) or �A ¼ AM�1 (Bi-CGSTAB(‘)
method).

Additional matrix-vector products are required for the computation of Ak k1 or Ak k1, when this has not
been supplied to F11BRF and is required by the termination criterion employed.

If the termination criterion rkk kp � � bk kp þ Ak kp � xkk kp
� �

is used (see Section 3 in F11BRF) and

x0k k � xkk k, then the required accuracy cannot be obtained due to loss of significant digits. The
iteration is restarted automatically at some suitable point: F11BSF sets x0 ¼ xk and the computation
begins again. For particularly badly scaled problems, more than one restart may be necessary. This does
not apply to the RGMRES method which, by its own nature, self-restarts every super-iteration.
Naturally, restarting adds to computational costs: it is recommended that the iteration should start from
a value x0 which is as close to the true solution ~x as can be estimated. Otherwise, the iteration should
start from x0 ¼ 0.
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10 Example

See Section 10 in F11BRF.
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NAG Library Routine Document

F11BTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11BTF is the third in a suite of three routines for the iterative solution of a complex general (non-
Hermitian) system of simultaneous linear equations (see Golub and Van Loan (1996)). F11BTF returns
information about the computations during an iteration and/or after this has been completed. The first
routine of the suite, F11BRF, is a setup routine; the second routine, F11BSF, is the iterative solver
itself.

These three routines are suitable for the solution of large sparse general (non-Hermitian) systems of
equations.

2 Specification

SUBROUTINE F11BTF (ITN, STPLHS, STPRHS, ANORM, SIGMAX, WORK, LWORK,
IFAIL)

&

INTEGER ITN, LWORK, IFAIL
REAL (KIND=nag_wp) STPLHS, STPRHS, ANORM, SIGMAX
COMPLEX (KIND=nag_wp) WORK(LWORK)

3 Description

F11BTF returns information about the solution process. It can be called either during a monitoring step
of F11BSF or after F11BSF has completed its tasks. Calling F11BTF at any other time will result in an
error condition being raised.

For further information you should read the documentation for F11BRF and F11BSF.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: ITN – INTEGER Output

On exit: the number of iterations carried out by F11BSF.

2: STPLHS – REAL (KIND=nag_wp) Output

On exit: the current value of the left-hand side of the termination criterion used by F11BSF.

3: STPRHS – REAL (KIND=nag_wp) Output

On exit: the current value of the right-hand side of the termination criterion used by F11BSF.

4: ANORM – REAL (KIND=nag_wp) Output

On exit: if ITERM ¼ 1 in the previous call to F11BRF, then ANORM contains Ak kp, where
p ¼ 1, 2 or 1, either supplied or, in the case of 1 or 1, estimated by F11BSF; otherwise
ANORM ¼ 0:0.
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5: SIGMAX – REAL (KIND=nag_wp) Output

On exit: if ITERM ¼ 2 in the previous call to F11BRF, the current estimate of the largest singular
value �1 �A

� �
of the preconditioned iteration matrix when it is used by the termination criterion in

F11BSF, either when it has been supplied to F11BRF or it has been estimated by F11BSF (see
also Sections 3 and 5 in F11BRF); otherwise, SIGMAX ¼ 0:0 is returned.

6: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Communication Array

On entry: the array WORK as returned by F11BSF (see also Sections 3 and 5 in F11BSF).

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11BTF is called (see also F11BRF).

Constraint: LWORK � 120.

Note: although the minimum value of LWORK ensures the correct functioning of F11BTF, a
larger value is required by the iterative solver F11BSF (see also F11BRF).

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i
On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11BTF has been called out of sequence. For example, the last call to F11BSF did not return
IREVCM ¼ 3 or 4.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F11BTF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in F11BRF.
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NAG Library Routine Document

F11DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DAF computes an incomplete LU factorization of a real sparse nonsymmetric matrix, represented in
coordinate storage format. This factorization may be used as a preconditioner in combination with
F11BEF or F11DCF.

2 Specification

SUBROUTINE F11DAF (N, NNZ, A, LA, IROW, ICOL, LFILL, DTOL, PSTRAT, MILU,
IPIVP, IPIVQ, ISTR, IDIAG, NNZC, NPIVM, IWORK,
LIWORK, IFAIL)

&
&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), LFILL, IPIVP(N),
IPIVQ(N), ISTR(N+1), IDIAG(N), NNZC, NPIVM,
IWORK(LIWORK), LIWORK, IFAIL

&
&

REAL (KIND=nag_wp) A(LA), DTOL
CHARACTER(1) PSTRAT, MILU

3 Description

F11DAF computes an incomplete LU factorization (see Meijerink and Van der Vorst (1977) and
Meijerink and Van der Vorst (1981)) of a real sparse nonsymmetric n by n matrix A. The factorization
is intended primarily for use as a preconditioner with one of the iterative solvers F11BEF or F11DCF.

The decomposition is written in the form

A ¼M þR

where

M ¼ PLDUQ

and L is lower triangular with unit diagonal elements, D is diagonal, U is upper triangular with unit
diagonals, P and Q are permutation matrices, and R is a remainder matrix.

The amount of fill-in occurring in the factorization can vary from zero to complete fill, and can be
controlled by specifying either the maximum level of fill LFILL, or the drop tolerance DTOL.

The argument PSTRAT defines the pivoting strategy to be used. The options currently available are no
pivoting, user-defined pivoting, partial pivoting by columns for stability, and complete pivoting by rows
for sparsity and by columns for stability. The factorization may optionally be modified to preserve the
row-sums of the original matrix.

The sparse matrix A is represented in coordinate storage (CS) format (see Section 2.1.1 in the F11
Chapter Introduction). The array A stores all the nonzero elements of the matrix A, while arrays IROW
and ICOL store the corresponding row and column indices respectively. Multiple nonzero elements may
not be specified for the same row and column index.

The preconditioning matrix M is returned in terms of the CS representation of the matrix

C ¼ LþD�1 þ U � 2I:

Further algorithmic details are given in Section 9.3.
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: 1 � NNZ � N2.

3: AðLAÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the nonzero elements in the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices
are not permitted. The routine F11ZAF may be used to order the elements in this way.

On exit: the first NNZ entries of A contain the nonzero elements of A and the next NNZC entries
contain the elements of the matrix C. Matrix elements are ordered by increasing row index, and
by increasing column index within each row.

4: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11DAF is called. These arrays must be of sufficient size to store both A (NNZ elements)
and C (NNZC elements).

Constraint: LA � 2� NNZ.

5: IROWðLAÞ – INTEGER array Input/Output
6: ICOLðLAÞ – INTEGER array Input/Output

On entry: the row and column indices of the nonzero elements supplied in A.

Constraints:

IROW and ICOL must satisfy these constraints (which may be imposed by a call to F11ZAF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
e i t h e r IROWði � 1Þ < IROWðiÞ o r b o t h IROWði � 1Þ ¼ IROWðiÞ a n d
ICOLði � 1Þ < ICOLðiÞ, for i ¼ 2; 3; . . . ;NNZ.

On exit: the row and column indices of the nonzero elements returned in A.

7: LFILL – INTEGER Input

On entry: if LFILL � 0 its value is the maximum level of fill allowed in the decomposition (see
Section 9.2). A negative value of LFILL indicates that DTOL will be used to control the fill
instead.
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8: DTOL – REAL (KIND=nag_wp) Input

On entry: if LFILL < 0, DTOL is used as a drop tolerance to control the fill-in (see Section 9.2);
otherwise DTOL is not referenced.

Constraint: if LFILL < 0, DTOL � 0:0.

9: PSTRAT – CHARACTER(1) Input

On entry: specifies the pivoting strategy to be adopted.

PSTRAT ¼ N
No pivoting is carried out.

PSTRAT ¼ U
Pivoting is carried out according to the user-defined input values of IPIVP and IPIVQ.

PSTRAT ¼ P
Partial pivoting by columns for stability is carried out.

PSTRAT ¼ C
Complete pivoting by rows for sparsity, and by columns for stability, is carried out.

Suggested value: PSTRAT ¼ C .

Constraint: PSTRAT ¼ N , U , P or C .

10: MILU – CHARACTER(1) Input

On entry: indicates whether or not the factorization should be modified to preserve row-sums (see
Section 9.4).

MILU ¼ M
The factorization is modified.

MILU ¼ N
The factorization is not modified.

Constraint: MILU ¼ M or N .

11: IPIVPðNÞ – INTEGER array Input/Output
12: IPIVQðNÞ – INTEGER array Input/Output

On entry: if PSTRAT ¼ U , then IPIVPðkÞ and IPIVQðkÞ must specify the row and column
indices of the element used as a pivot at elimination stage k. Otherwise IPIVP and IPIVQ need
not be initialized.

Constraint: if PSTRAT ¼ U , IPIVP and IPIVQ must both hold valid permutations of the
integers on [1,N].

On exit: the pivot indices. If IPIVPðkÞ ¼ i and IPIVQðkÞ ¼ j then the element in row i and
column j was used as the pivot at elimination stage k.

13: ISTRðNþ 1Þ – INTEGER array Output

On exit: ISTRðiÞ, for i ¼ 1; 2; . . . ;N, is the starting address in the arrays A, IROW and ICOL of
row i of the matrix C. ISTRðNþ 1Þ is the address of the last nonzero element in C plus one.

14: IDIAGðNÞ – INTEGER array Output

On exit: IDIAGðiÞ, for i ¼ 1; 2; . . . ;N, holds the index of arrays A, IROW and ICOL which holds
the diagonal element in row i of the matrix C.

15: NNZC – INTEGER Output

On exit: the number of nonzero elements in the matrix C.
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16: NPIVM – INTEGER Output

On exit: if NPIVM > 0 it gives the number of pivots which were modified during the
factorization to ensure that M exists.

If NPIVM ¼ �1 no pivot modifications were required, but a local restart occurred (see
Section 9.3). The quality of the preconditioner will generally depend on the returned value of
NPIVM.

If NPIVM is large the preconditioner may not be satisfactory. In this case it may be advantageous
to call F11DAF again with an increased value of LFILL, a reduced value of DTOL, or set
PSTRAT ¼ C . See also Section 9.5.

17: IWORKðLIWORKÞ – INTEGER array Workspace
18: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F11DAF is called.

Constraint: LIWORK � 7� Nþ 2.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or NNZ < 1,
or NNZ > N2,
or LA < 2� NNZ,
or LFILL < 0 and DTOL < 0:0,
or PSTRAT 6¼ N , U , P or C ,
or MILU 6¼ M or N ,
or LIWORK < 7� Nþ 2.

IFAIL ¼ 2

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;

IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie within the matrix A, is out of
order, or has duplicate row and column indices. Call F11ZAF to reorder and sum or remove
duplicates.
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IFAIL ¼ 3

On entry, PSTRAT ¼ U , but one or both of IPIVP and IPIVQ does not represent a valid
permutation of the integers in [1,N]. An input value of IPIVP or IPIVQ is either out of range or
repeated.

IFAIL ¼ 4

LA is too small, resulting in insufficient storage space for fill-in elements. The decomposition has
been terminated before completion. Either increase LA or reduce the amount of fill by reducing
LFILL, or increasing DTOL.

IFAIL ¼ 5 (F11ZAF)

A serious error has occurred in an internal call to the specified routine. Check all subroutine calls
and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the factorization will be determined by the size of the elements that are dropped and
the size of any modifications made to the pivot elements. If these sizes are small then the computed
factors will correspond to a matrix close to A. The factorization can generally be made more accurate
by increasing LFILL, or by reducing DTOL with LFILL < 0.

If F11DAF is used in combination with F11BEF or F11DCF, the more accurate the factorization the
fewer iterations will be required. However, the cost of the decomposition will also generally increase.

8 Parallelism and Performance

F11DAF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken for a call to F11DAF is roughly proportional to NNZCð Þ2=N.

9.2 Control of Fill-in

If LFILL � 0 the amount of fill-in occurring in the incomplete factorization is controlled by limiting the
maximum level of fill-in to LFILL. The original nonzero elements of A are defined to be of level 0. The
fill level of a new nonzero location occurring during the factorization is defined as:

k ¼ max ke; kcð Þ þ 1;
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where ke is the level of fill of the element being eliminated, and kc is the level of fill of the element
causing the fill-in.

If LFILL < 0 the fill-in is controlled by means of the drop tolerance DTOL. A potential fill-in element
aij occurring in row i and column j will not be included if:

aij
		 		 < DTOL� �;

where � is the maximum absolute value element in the matrix A.

For either method of control, any elements which are not included are discarded unless MILU ¼ M , in
which case their contributions are subtracted from the pivot element in the relevant elimination row, to
preserve the row-sums of the original matrix.

Should the factorization process break down a local restart process is implemented as described in
Section 9.3. This will affect the amount of fill present in the final factorization.

9.3 Algorithmic Details

The factorization is constructed row by row. At each elimination stage a row index is chosen. In the
case of complete pivoting this index is chosen in order to reduce fill-in. Otherwise the rows are treated
in the order given, or some user-defined order.

The chosen row is copied from the original matrix A and modified according to those previous
elimination stages which affect it. During this process any fill-in elements are either dropped or kept
according to the values of LFILL or DTOL. In the case of a modified factorization (MILU ¼ M ) the
sum of the dropped terms for the given row is stored.

Finally the pivot element for the row is chosen and the multipliers are computed for this elimination
stage. For partial or complete pivoting the pivot element is chosen in the interests of stability as the
element of largest absolute value in the row. Otherwise the pivot element is chosen in the order given,
or some user-defined order.

If the factorization breaks down because the chosen pivot element is zero, or there is no nonzero pivot
available, a local restart recovery process is implemented. The modification of the given pivot row
according to previous elimination stages is repeated, but this time keeping all fill. Note that in this case
the final factorization will include more fill than originally specified by the user-supplied value of
LFILL or DTOL. The local restart usually results in a suitable nonzero pivot arising. The original
criteria for dropping fill-in elements is then resumed for the next elimination stage (hence the local
nature of the restart process). Should this restart process also fail to produce a nonzero pivot element an
arbitrary unit pivot is introduced in an arbitrarily chosen column. F11DAF returns an integer argument
NPIVM which gives the number of these arbitrary unit pivots introduced. If no pivots were modified
but local restarts occurred NPIVM ¼ �1 is returned.

9.4 Choice of Arguments

There is unfortunately no choice of the various algorithmic arguments which is optimal for all types of
matrix, and some experimentation will generally be required for each new type of matrix encountered.

If the matrix A is not known to have any particular special properties the following strategy is
recommended. Start with LFILL ¼ 0 and PSTRAT ¼ C . If the value returned for NPIVM is
significantly larger than zero, i.e., a large number of pivot modifications were required to ensure that M
existed, the preconditioner is not likely to be satisfactory. In this case increase LFILL until NPIVM falls
to a value close to zero.

If A has non-positive off-diagonal elements, is nonsingular, and has only non-negative elements in its
inverse, it is called an ‘M-matrix’. It can be shown that no pivot modifications are required in the
incomplete LU factorization of an M-matrix (see Meijerink and Van der Vorst (1977)). In this case a
good preconditioner can generally be expected by setting LFILL ¼ 0, PSTRAT ¼ N and MILU ¼ M .

Some illustrations of the application of F11DAF to linear systems arising from the discretization of
two-dimensional elliptic partial differential equations, and to random-valued randomly structured linear
systems, can be found in Salvini and Shaw (1996).
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9.5 Direct Solution of Sparse Linear Systems

Although it is not their primary purpose F11DAF and F11DBF may be used together to obtain a direct
solution to a nonsingular sparse linear system. To achieve this the call to F11DBF should be preceded
by a complete LU factorization

A ¼ PLDUQ ¼M:

A complete factorization is obtained from a call to F11DAF with LFILL < 0 and DTOL ¼ 0:0,
provided NPIVM � 0 on exit. A positive value of NPIVM indicates that A is singular, or ill-
conditioned. A factorization with positive NPIVM may serve as a preconditioner, but will not result in a
direct solution. It is therefore essential to check the output value of NPIVM if a direct solution is
required.

The use of F11DAF and F11DBF as a direct method is illustrated in Section 10 in F11DBF.

10 Example

This example reads in a sparse matrix A and calls F11DAF to compute an incomplete LU factorization.
It then outputs the nonzero elements of both A and C ¼ LþD�1 þ U � 2I.

The call to F11DAF has LFILL ¼ 0, and PSTRAT ¼ C , giving an unmodified zero-fill LU
factorization, with row pivoting for sparsity and column pivoting for stability.

10.1 Program Text

Program f11dafe

! F11DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11daf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dtol
Integer :: i, ifail, la, lfill, liwork, n, nnz, &

nnzc, npivm
Character (1) :: milu, pstrat

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:)
Integer, Allocatable :: icol(:), idiag(:), ipivp(:), &

ipivq(:), irow(:), istr(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11DAF Example Program Results’
Write (nout,*)

! Skip heading in data file

Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n
Read (nin,*) nnz

la = 2*nnz
liwork = 7*n + 2

Allocate (a(la),icol(la),idiag(n),ipivp(n),ipivq(n),irow(la),istr(n+1), &
iwork(liwork))

Read (nin,*) lfill, dtol
Read (nin,*) pstrat
Read (nin,*) milu
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! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Calculate incomplete LU factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11daf(n,nnz,a,la,irow,icol,lfill,dtol,pstrat,milu,ipivp,ipivq, &

istr,idiag,nnzc,npivm,iwork,liwork,ifail)

! Output original matrix

Write (nout,*) ’ Original Matrix’
Write (nout,’(A,I4)’) ’ N =’, n
Write (nout,’(A,I4)’) ’ NNZ =’, nnz
Do i = 1, nnz

Write (nout,’(I8,E16.4,2I8)’) i, a(i), irow(i), icol(i)
End Do
Write (nout,*)

! Output details of the factorization

Write (nout,*) ’ Factorization’
Write (nout,’(A,I4)’) ’ N =’, n
Write (nout,’(A,I4)’) ’ NNZ =’, nnzc
Write (nout,’(A,I4)’) ’ NPIVM =’, npivm
Do i = nnz + 1, nnz + nnzc

Write (nout,’(I8,E16.4,2I8)’) i, a(i), irow(i), icol(i)
End Do
Write (nout,*)

Write (nout,*) ’ I IPIVP(I) IPIVQ(I)’
Do i = 1, n

Write (nout,’(3I10)’) i, ipivp(i), ipivq(i)
End Do

End Program f11dafe

10.2 Program Data

F11DAF Example Program Data
4 N
11 NNZ
0 0.0 LFILL, DTOL
’C’ PSTRAT
’N’ MILU
1. 1 2
1. 1 3

-1. 2 1
2. 2 3
2. 2 4
3. 3 1

-2. 3 4
1. 4 1

-2. 4 2
1. 4 3
1. 4 4 A(I), IROW(I), ICOL(I), I=1,...,NNZ
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10.3 Program Results

F11DAF Example Program Results

Original Matrix
N = 4
NNZ = 11

1 0.1000E+01 1 2
2 0.1000E+01 1 3
3 -0.1000E+01 2 1
4 0.2000E+01 2 3
5 0.2000E+01 2 4
6 0.3000E+01 3 1
7 -0.2000E+01 3 4
8 0.1000E+01 4 1
9 -0.2000E+01 4 2

10 0.1000E+01 4 3
11 0.1000E+01 4 4

Factorization
N = 4
NNZ = 11
NPIVM = 0

12 0.1000E+01 1 1
13 0.1000E+01 1 3
14 0.3333E+00 2 2
15 -0.6667E+00 2 4
16 -0.3333E+00 3 2
17 0.5000E+00 3 3
18 0.6667E+00 3 4
19 -0.2000E+01 4 1
20 0.3333E+00 4 2
21 0.1500E+01 4 3
22 -0.3000E+01 4 4

I IPIVP(I) IPIVQ(I)
1 1 2
2 3 1
3 2 3
4 4 4
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NAG Library Routine Document

F11DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DBF solves a system of linear equations involving the incomplete LU preconditioning matrix
generated by F11DAF.

2 Specification

SUBROUTINE F11DBF (TRANS, N, A, LA, IROW, ICOL, IPIVP, IPIVQ, ISTR,
IDIAG, CHECK, Y, X, IFAIL)

&

INTEGER N, LA, IROW(LA), ICOL(LA), IPIVP(N), IPIVQ(N),
ISTR(N+1), IDIAG(N), IFAIL

&

REAL (KIND=nag_wp) A(LA), Y(N), X(N)
CHARACTER(1) TRANS, CHECK

3 Description

F11DBF solves a system of linear equations

Mx ¼ y; or MTx ¼ y;

according to the value of the argument TRANS, where the matrix M ¼ PLDUQ, corresponds to an
incomplete LU decomposition of a sparse matrix stored in coordinate storage (CS) format (see
Section 2.1.1 in the F11 Chapter Introduction), as generated by F11DAF.

In the above decomposition L is a lower triangular sparse matrix with unit diagonal elements, D is a
diagonal matrix, U is an upper triangular sparse matrix with unit diagonal elements and, P and Q are
permutation matrices. L, D and U are supplied to F11DBF through the matrix

C ¼ LþD�1 þ U � 2I

which is an N by N sparse matrix, stored in CS format, as returned by F11DAF. The permutation
matrices P and Q are returned from F11DAF via the arrays IPIVP and IPIVQ.

It is envisaged that a common use of F11DBF will be to carry out the preconditioning step required in
the application of F11BEF to sparse linear systems. F11DBF is used for this purpose by the Black Box
routine F11DCF.

F11DBF may also be used in combination with F11DAF to solve a sparse system of linear equations
directly (see Section 9.5 in F11DAF). This use of F11DBF is demonstrated in Section 10.

4 References

None.

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies whether or not the matrix M is transposed.

TRANS ¼ N
Mx ¼ y is solved.
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TRANS ¼ T
MTx ¼ y is solved.

Constraint: TRANS ¼ N or T .

2: N – INTEGER Input

On entry: n, the order of the matrix M. This must be the same value as was supplied in the
preceding call to F11DAF.

Constraint: N � 1.

3: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: the values returned in the array A by a previous call to F11DAF.

4: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11DBF is called. This must be the same value returned by the preceding call to F11DAF.

5: IROWðLAÞ – INTEGER array Input
6: ICOLðLAÞ – INTEGER array Input
7: IPIVPðNÞ – INTEGER array Input
8: IPIVQðNÞ – INTEGER array Input
9: ISTRðNþ 1Þ – INTEGER array Input
10: IDIAGðNÞ – INTEGER array Input

On entry: the values returned in arrays IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG by a
previous call to F11DAF.

11: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the CS representation of the matrix M should be checked.

CHECK ¼ C
Checks are carried on the values of N, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG.

CHECK ¼ N
None of these checks are carried out.

See also Section 9.2.

Constraint: CHECK ¼ C or N .

12: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the right-hand side vector y.

13: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TRANS 6¼ N or T ,
or CHECK 6¼ C or N .

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, the CS representation of the preconditioning matrix M is invalid. Further details are
given in the error message. Check that the call to F11DBF has been preceded by a valid call to
F11DAF and that the arrays A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been
corrupted between the two calls.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If TRANS ¼ N the computed solution x is the exact solution of a perturbed system of equations
M þ �Mð Þx ¼ y, where

�Mj j � c nð Þ�P Lj j Dj j Uj jQ;

c nð Þ is a modest linear function of n, and � is the machine precision. An equivalent result holds when
TRANS ¼ T .

8 Parallelism and Performance

F11DBF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken for a call to F11DBF is proportional to the value of NNZC returned from F11DAF.
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9.2 Use of CHECK

It is expected that a common use of F11DBF will be to carry out the preconditioning step required in
the application of F11BEF to sparse linear systems. In this situation F11DBF is likely to be called many
times with the same matrix M. In the interests of both reliability and efficiency, you are recommended
to set CHECK ¼ C for the first of such calls, and for all subsequent calls set CHECK ¼ N .

10 Example

This example reads in a sparse nonsymmetric matrix A and a vector y. It then calls F11DAF, with
LFILL ¼ �1 and DTOL ¼ 0:0, to compute the complete LU decomposition

A ¼ PLDUQ:

Finally it calls F11DBF to solve the system

PLDUQx ¼ y:

10.1 Program Text

Program f11dbfe

! F11DBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11daf, f11dbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dtol
Integer :: i, ifail, la, lfill, liwork, n, nnz, &

nnzc, npivm
Character (1) :: check, milu, pstrat, trans

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), x(:), y(:)
Integer, Allocatable :: icol(:), idiag(:), ipivp(:), &

ipivq(:), irow(:), istr(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11DBF Example Program Results’
Write (nout,*)

! Skip heading in data file

Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz
la = 2*nnz
liwork = 7*n + 2
Allocate (a(la),x(n),y(n),icol(la),idiag(n),ipivp(n),ipivq(n),irow(la), &

istr(n+1),iwork(liwork))

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read the vector y

Read (nin,*) y(1:n)
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! Calculate LU factorization

lfill = -1
dtol = 0.E0_nag_wp
pstrat = ’C’
milu = ’N’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11daf(n,nnz,a,la,irow,icol,lfill,dtol,pstrat,milu,ipivp,ipivq, &

istr,idiag,nnzc,npivm,iwork,liwork,ifail)

! Check value of npivm

If (npivm>0) Then

Write (nout,*) ’Factorization is not complete’

Else

! Solve P L D U x = y

trans = ’N’
check = ’C’

ifail = 0
Call f11dbf(trans,n,a,la,irow,icol,ipivp,ipivq,istr,idiag,check,y,x, &

ifail)

! Output results

Write (nout,*) ’ Solution of linear system’
Write (nout,’(E16.4)’) x(1:n)

End If

End Program f11dbfe

10.2 Program Data

F11DBF Example Program Data
4 N

11 NNZ
1. 1 2
1. 1 3

-1. 2 1
2. 2 3
2. 2 4
3. 3 1

-2. 3 4
1. 4 1

-2. 4 2
1. 4 3
1. 4 4 A(I), IROW(I), ICOL(I), I=1,...,NNZ
5.0 13.0 -5.0 4.0 Y(I), I=1,...,N

10.3 Program Results

F11DBF Example Program Results

Solution of linear system
0.1000E+01
0.2000E+01
0.3000E+01
0.4000E+01
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NAG Library Routine Document

F11DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DCF solves a real sparse nonsymmetric system of linear equations, represented in coordinate
storage format, using a restarted generalized minimal residual (RGMRES), conjugate gradient squared
(CGS), stabilized bi-conjugate gradient (Bi-CGSTAB), or transpose-free quasi-minimal residual
(TFQMR) method, with incomplete LU preconditioning.

2 Specification

SUBROUTINE F11DCF (METHOD, N, NNZ, A, LA, IROW, ICOL, IPIVP, IPIVQ,
ISTR, IDIAG, B, M, TOL, MAXITN, X, RNORM, ITN, WORK,
LWORK, IFAIL)

&
&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), IPIVP(N), IPIVQ(N),
ISTR(N+1), IDIAG(N), M, MAXITN, ITN, LWORK, IFAIL

&

REAL (KIND=nag_wp) A(LA), B(N), TOL, X(N), RNORM, WORK(LWORK)
CHARACTER(*) METHOD

3 Description

F11DCF solves a real sparse nonsymmetric linear system of equations:

Ax ¼ b;

using a preconditioned RGMRES (see Saad and Schultz (1986)), CGS (see Sonneveld (1989)), Bi-
CGSTAB(‘) (see Van der Vorst (1989) and Sleijpen and Fokkema (1993)), or TFQMR (see Freund and
Nachtigal (1991) and Freund (1993)) method.

F11DCF uses the incomplete LU factorization determined by F11DAF as the preconditioning matrix. A
call to F11DCF must always be preceded by a call to F11DAF. Alternative preconditioners for the same
storage scheme are available by calling F11DEF.

The matrix A, and the preconditioning matrix M, are represented in coordinate storage (CS) format (see
Section 2.1.1 in the F11 Chapter Introduction) in the arrays A, IROW and ICOL, as returned from
F11DAF. The array A holds the nonzero entries in these matrices, while IROW and ICOL hold the
corresponding row and column indices.

F11DCF is a Black Box routine which calls F11BDF, F11BEF and F11BFF. If you wish to use an
alternative storage scheme, preconditioner, or termination criterion, or require additional diagnostic
information, you should call these underlying routines directly.

4 References

Freund R W (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
SIAM J. Sci. Comput. 14 470–482

Freund R W and Nachtigal N (1991) QMR: a Quasi-Minimal Residual Method for Non-Hermitian
Linear Systems Numer. Math. 60 315–339

Saad Y and Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 7 856–869

Salvini S A and Shaw G J (1996) An evaluation of new NAG Library solvers for large sparse
unsymmetric linear systems NAG Technical Report TR2/96
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Sleijpen G L G and Fokkema D R (1993) BiCGSTAB ‘ð Þ for linear equations involving matrices with
complex spectrum ETNA 1 11–32

Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J. Sci.
Statist. Comput. 10 36–52

Van der Vorst H (1989) Bi-CGSTAB, a fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 13 631–644

5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: specifies the iterative method to be used.

METHOD ¼ RGMRES
Restarted generalized minimum residual method.

METHOD ¼ CGS
Conjugate gradient squared method.

METHOD ¼ BICGSTAB
Bi-conjugate gradient stabilized (‘) method.

METHOD ¼ TFQMR
Transpose-free quasi-minimal residual method.

Constraint: METHOD ¼ RGMRES , CGS , BICGSTAB or TFQMR .

2: N – INTEGER Input

On entry: n, the order of the matrix A. This must be the same value as was supplied in the
preceding call to F11DAF.

Constraint: N � 1.

3: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A. This must be the same value as was
supplied in the preceding call to F11DAF.

Constraint: 1 � NNZ � N2.

4: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: the values returned in the array A by a previous call to F11DAF.

5: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11DCF is called. This must be the same value as was supplied in the preceding call to
F11DAF.

Constraint: LA � 2� NNZ.

6: IROWðLAÞ – INTEGER array Input
7: ICOLðLAÞ – INTEGER array Input
8: IPIVPðNÞ – INTEGER array Input
9: IPIVQðNÞ – INTEGER array Input
10: ISTRðNþ 1Þ – INTEGER array Input
11: IDIAGðNÞ – INTEGER array Input

On entry: the values returned in arrays IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG by a
previous call to F11DAF.

IPIVP and IPIVQ are restored on exit.
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12: BðNÞ – REAL (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

13: M – INTEGER Input

On entry: if METHOD ¼ RGMRES , M is the dimension of the restart subspace.

If METHOD ¼ BICGSTAB , M is the order ‘ of the polynomial Bi-CGSTAB method; otherwise,
M is not referenced.

Constraints:

if METHOD ¼ RGMRES , 0 < M � min N; 50ð Þ;
if METHOD ¼ BICGSTAB , 0 < M � min N; 10ð Þ.

14: TOL – REAL (KIND=nag_wp) Input

On entry: the required tolerance. Let xk denote the approximate solution at iteration k, and rk the
corresponding residual. The algorithm is considered to have converged at iteration k if

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

If TOL � 0:0, � ¼ max
ffiffi
�
p
; 10�;

ffiffiffi
n
p

� is used, where � is the machine precision. Otherwise
� ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

15: MAXITN – INTEGER Input

On entry: the maximum number of iterations allowed.

Constraint: MAXITN � 1.

16: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial approximation to the solution vector x.

On exit: an improved approximation to the solution vector x.

17: RNORM – REAL (KIND=nag_wp) Output

On exit: the final value of the residual norm rkk k1, where k is the output value of ITN.

18: ITN – INTEGER Output

On exit: the number of iterations carried out.

19: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
20: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11DCF is called.

Constraints:

if METHOD ¼ RGMRES , LWORK � 4� NþM� Mþ Nþ 5ð Þ þ 101;
if METHOD ¼ CGS , LWORK � 8� Nþ 100;
if METHOD ¼ BICGSTAB , LWORK � 2� N� Mþ 3ð Þ þM� Mþ 2ð Þ þ 100;
if METHOD ¼ TFQMR , LWORK � 11� Nþ 100.

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ RGMRES ; CGS ; BICGSTAB , or `TFQMR',
or N < 1,
or NNZ < 1,
or NNZ > N2,
or LA < 2� NNZ,
or M < 1 and METHOD ¼ RGMRES or METHOD ¼ BICGSTAB ,
or M > min N; 50ð Þ, with METHOD ¼ RGMRES ,
or M > min N; 10ð Þ, with METHOD ¼ BICGSTAB ,
or TOL � 1:0,
or MAXITN < 1,
or LWORK too small.

IFAIL ¼ 2

On entry, the CS representation of A is invalid. Further details are given in the error message.
Check that the call to F11DCF has been preceded by a valid call to F11DAF, and that the arrays
A, IROW, and ICOL have not been corrupted between the two calls.

IFAIL ¼ 3

On entry, the CS representation of the preconditioning matrix M is invalid. Further details are
given in the error message. Check that the call to F11DCF has been preceded by a valid call to
F11DAF and that the arrays A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been
corrupted between the two calls.

IFAIL ¼ 4

The required accuracy could not be obtained. However, a reasonable accuracy may have been
obtained, and further iterations could not improve the result. You should check the output value
of RNORM for acceptability. This error code usually implies that your problem has been fully
and satisfactorily solved to within or close to the accuracy available on your system. Further
iterations are unlikely to improve on this situation.

IFAIL ¼ 5

Required accuracy not obtained in MAXITN iterations.

IFAIL ¼ 6

Algorithmic breakdown. A solution is returned, although it is possible that it is completely
inaccurate.
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IFAIL ¼ 7 (F11BDF, F11BEF or F11BFF)

A serious error has occurred in an internal call to one of the specified routines. Check all
subroutine calls and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful termination, the final residual rk ¼ b�Axk, where k ¼ ITN, satisfies the termination
criterion

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

The value of the final residual norm is returned in RNORM.

8 Parallelism and Performance

F11DCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11DCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F11DCF for each iteration is roughly proportional to the value of NNZC returned
from the preceding call to F11DAF.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined a
priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned coefficient
matrix �A ¼ M�1A.

Some illustrations of the application of F11DCF to linear systems arising from the discretization of two-
dimensional elliptic partial differential equations, and to random-valued randomly structured linear
systems, can be found in Salvini and Shaw (1996).

10 Example

This example solves a sparse linear system of equations using the CGS method, with incomplete LU
preconditioning.
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10.1 Program Text

Program f11dcfe

! F11DCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11daf, f11dcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dtol, rnorm, tol
Integer :: i, ifail, itn, la, lfill, liwork, &

lwork, m, maxitn, n, nnz, nnzc, &
npivm

Character (8) :: method
Character (1) :: milu, pstrat

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:)
Integer, Allocatable :: icol(:), idiag(:), ipivp(:), &

ipivq(:), irow(:), istr(:), iwork(:)
! .. Intrinsic Procedures ..

Intrinsic :: max
! .. Executable Statements ..

Write (nout,*) ’F11DCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n, m
Read (nin,*) nnz
la = 3*nnz
liwork = 7*n + 2
lwork = max(4*n+m*(m+n+5)+101,8*n+100,2*n*(m+3)+m*(m+2)+100,11*n+100)
Allocate (a(la),b(n),work(lwork),x(n),icol(la),idiag(n),ipivp(n), &

ipivq(n),irow(la),istr(n+1),iwork(liwork))
Read (nin,*) method
Read (nin,*) lfill, dtol
Read (nin,*) pstrat
Read (nin,*) milu
Read (nin,*) tol, maxitn

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read right-hand side vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Calculate incomplete LU factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11daf(n,nnz,a,la,irow,icol,lfill,dtol,pstrat,milu,ipivp,ipivq, &

istr,idiag,nnzc,npivm,iwork,liwork,ifail)

! Solve Ax = b using F11DCF

ifail = 0
Call f11dcf(method,n,nnz,a,la,irow,icol,ipivp,ipivq,istr,idiag,b,m,tol, &
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maxitn,x,rnorm,itn,work,lwork,ifail)

Write (nout,99999) itn
If (rnorm<tol) Then

Write (nout,99996) tol
Else

Write (nout,99998) rnorm
End If
Write (nout,*)

! Output solution, x

Write (nout,*) ’ Solution’
Write (nout,99997) x(1:n)

99999 Format (1X,’ Converged in’,I4,’ iterations’)
99998 Format (1X,’ Final residual norm =’,1P,E15.2)
99997 Format (1X,1P,E16.3)
99996 Format (1X,’ Final residual norm < tolerance (’,1P,E10.3,’)’)

End Program f11dcfe

10.2 Program Data

F11DCF Example Program Data
8 4 N, M
24 NNZ
’CGS’ METHOD
0 0.0 LFILL, DTOL
’C’ PSTRAT
’N’ MILU
1.0D-12 100 TOL, MAXITN
2. 1 1

-1. 1 4
1. 1 8
4. 2 1

-3. 2 2
2. 2 5

-7. 3 3
2. 3 6
3. 4 1

-4. 4 3
5. 4 4
5. 4 7

-1. 5 2
8. 5 5

-3. 5 7
-6. 6 1
5. 6 3
2. 6 6

-5. 7 3
-1. 7 5
6. 7 7

-1. 8 2
2. 8 6
3. 8 8 A(I), IROW(I), ICOL(I), I=1,...,NNZ
6. 8. -9. 46.

17. 21. 22. 34. B(I), I=1,...,N
0. 0. 0. 0.
0. 0. 0. 0. X(I), I=1,...,N

10.3 Program Results

F11DCF Example Program Results

Converged in 4 iterations
Final residual norm < tolerance ( 1.000E-12)

Solution
1.000E+00
2.000E+00
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3.000E+00
4.000E+00
5.000E+00
6.000E+00
7.000E+00
8.000E+00
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NAG Library Routine Document

F11DDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DDF solves a system of linear equations involving the preconditioning matrix corresponding to
SSOR applied to a real sparse nonsymmetric matrix, represented in coordinate storage format.

2 Specification

SUBROUTINE F11DDF (TRANS, N, NNZ, A, IROW, ICOL, RDIAG, OMEGA, CHECK, Y,
X, IWORK, IFAIL)

&

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IWORK(2*N+1), IFAIL
REAL (KIND=nag_wp) A(NNZ), RDIAG(N), OMEGA, Y(N), X(N)
CHARACTER(1) TRANS, CHECK

3 Description

F11DDF solves a system of linear equations

Mx ¼ y; or MTx ¼ y;

according to the value of the argument TRANS, where the matrix

M ¼ 1

! 2� !ð Þ Dþ !Lð ÞD�1 Dþ !Uð Þ

corresponds to symmetric successive-over-relaxation (SSOR) (see Young (1971)) applied to a linear
system Ax ¼ b, where A is a real sparse nonsymmetric matrix stored in coordinate storage (CS) format
(see Section 2.1.1 in the F11 Chapter Introduction).

In the definition of M given above D is the diagonal part of A, L is the strictly lower triangular part of
A, U is the strictly upper triangular part of A, and ! is a user-defined relaxation parameter.

It is envisaged that a common use of F11DDF will be to carry out the preconditioning step required in
the application of F11BEF to sparse linear systems. For an illustration of this use of F11DDF see the
example program given in Section 10. F11DDF is also used for this purpose by the Black Box routine
F11DEF.

4 References

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies whether or not the matrix M is transposed.

TRANS ¼ N
Mx ¼ y is solved.

TRANS ¼ T
MTx ¼ y is solved.

Constraint: TRANS ¼ N or T .
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2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

3: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: 1 � NNZ � N2.

4: AðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements in the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices
are not permitted. The routine F11ZAF may be used to order the elements in this way.

5: IROWðNNZÞ – INTEGER array Input
6: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in array A.

Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZAF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
e i t h e r IROWði � 1Þ < IROWðiÞ o r b o t h IROWði � 1Þ ¼ IROWðiÞ a n d
ICOLði � 1Þ < ICOLðiÞ, for i ¼ 2; 3; . . . ;NNZ.

7: RDIAGðNÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of the diagonal matrix D�1, where D is the diagonal part of A.

8: OMEGA – REAL (KIND=nag_wp) Input

On entry: the relaxation parameter !.

Constraint: 0:0 < OMEGA < 2:0.

9: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the CS representation of the matrix M should be checked.

CHECK ¼ C
Checks are carried on the values of N, NNZ, IROW, ICOL and OMEGA.

CHECK ¼ N
None of these checks are carried out.

See also Section 9.2.

Constraint: CHECK ¼ C or N .

10: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the right-hand side vector y.

11: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x.
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12: IWORKð2� Nþ 1Þ – INTEGER array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TRANS 6¼ N or T ,
or CHECK 6¼ C or N .

IFAIL ¼ 2

On entry, N < 1,
or NNZ < 1,
or NNZ > N2,
or OMEGA lies outside the interval 0:0; 2:0ð Þ,

IFAIL ¼ 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie in the matrix A, is out of
order, or has duplicate row and column indices. Call F11ZAF to reorder and sum or remove
duplicates.

IFAIL ¼ 4

On entry, the matrix A has a zero diagonal element. The SSOR preconditioner is not appropriate
for this problem.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If TRANS ¼ N the computed solution x is the exact solution of a perturbed system of equations
M þ �Mð Þx ¼ y, where

�Mj j � c nð Þ� Dþ !Lj j D�1
		 		 Dþ !Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision. An equivalent result holds when
TRANS ¼ T .

8 Parallelism and Performance

F11DDF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken for a call to F11DDF is proportional to NNZ.

9.2 Use of CHECK

It is expected that a common use of F11DDF will be to carry out the preconditioning step required in
the application of F11BEF to sparse linear systems. In this situation F11DDF is likely to be called many
times with the same matrix M. In the interests of both reliability and efficiency, you are recommended
to set CHECK ¼ C for the first of such calls, and for all subsequent calls set CHECK ¼ N .

10 Example

This example solves a sparse linear system of equations:

Ax ¼ b;

using RGMRES with SSOR preconditioning.

The RGMRES algorithm itself is implemented by the reverse communication routine F11BEF, which
returns repeatedly to the calling program with various values of the argument IREVCM. This argument
indicates the action to be taken by the calling program.

If IREVCM ¼ 1, a matrix-vector product v ¼ Au is required. This is implemented by a call to
F11XAF.

If IREVCM ¼ �1, a transposed matrix-vector product v ¼ ATu is required in the estimation of
the norm of A. This is implemented by a call to F11XAF.

If IREVCM ¼ 2, a solution of the preconditioning equation Mv ¼ u is required. This is achieved
by a call to F11DDF.

If IREVCM ¼ 4, F11BEF has completed its tasks. Either the iteration has terminated, or an error
condition has arisen.

For further details see the routine document for F11BEF.
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10.1 Program Text

Program f11ddfe

! F11DDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11bdf, f11bef, f11bff, f11ddf, f11xaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, omega, sigmax, stplhs, &

stprhs, tol
Integer :: i, ifail, irevcm, iterm, itn, la, &

liwork, lwneed, lwork, m, maxitn, &
monit, n, nnz

Character (1) :: ckddf, ckxaf, norm, precon, trans, &
weight

Character (8) :: method
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), b(:), rdiag(:), wgt(:), &
work(:), x(:)

Integer, Allocatable :: icol(:), irow(:), iwork(:)
! .. Intrinsic Procedures ..

Intrinsic :: max
! .. Executable Statements ..

Write (nout,*) ’F11DDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read algorithmic parameters
Read (nin,*) n, m
Read (nin,*) nnz
la = 3*nnz
lwork = max(n*(m+3)+m*(m+5)+101,7*n+100,(2*n+m)*(m+2)+n+100,10*n+100)
liwork = 2*n + 1
Allocate (a(la),b(n),rdiag(n),wgt(n),work(lwork),x(n),icol(la),irow(la), &

iwork(liwork))
Read (nin,*) method
Read (nin,*) precon, norm, iterm
Read (nin,*) tol, maxitn
Read (nin,*) anorm, sigmax
Read (nin,*) omega

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read right-hand side vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Call F11BDF to initialize solver

weight = ’N’
monit = 0

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11bdf(method,precon,norm,weight,iterm,n,m,tol,maxitn,anorm,sigmax, &

monit,lwneed,work,lwork,ifail)
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! Calculate reciprocal diagonal matrix elements if necessary

If (precon==’P’ .Or. precon==’p’) Then

iwork(1:n) = 0

Do i = 1, nnz
If (irow(i)==icol(i)) Then

iwork(irow(i)) = iwork(irow(i)) + 1
If (a(i)/=0.E0_nag_wp) Then

rdiag(irow(i)) = 1.E0_nag_wp/a(i)
Else

Write (nout,*) ’Matrix has a zero diagonal element’
Go To 100

End If
End If

End Do

Do i = 1, n
If (iwork(i)==0) Then

Write (nout,*) ’Matrix has a missing diagonal element’
Go To 100

End If
If (iwork(i)>=2) Then

Write (nout,*) ’Matrix has a multiple diagonal element’
Go To 100

End If
End Do

End If

! Call F11BEF to solve the linear system

irevcm = 0
ckxaf = ’C’
ckddf = ’C’

loop: Do
ifail = 0
Call f11bef(irevcm,x,b,wgt,work,lwork,ifail)

Select Case (irevcm)
Case (1)

! Compute matrix-vector product
trans = ’N’

Call f11xaf(trans,n,nnz,a,irow,icol,ckxaf,x,b,ifail)

ckxaf = ’N’
Case (-1)

! Compute transposed matrix-vector product
trans = ’T’

Call f11xaf(trans,n,nnz,a,irow,icol,ckxaf,x,b,ifail)

ckxaf = ’N’
Case (2)

! SSOR preconditioning
trans = ’N’

Call f11ddf(trans,n,nnz,a,irow,icol,rdiag,omega,ckddf,x,b,iwork, &
ifail)

ckddf = ’N’
Case (4)

! Termination

ifail = 0
Call f11bff(itn,stplhs,stprhs,anorm,sigmax,work,lwork,ifail)
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Write (nout,’(A,I10,A)’) ’ Converged in’, itn, ’ iterations’
Write (nout,’(A,1P,E16.3)’) ’ Matrix norm =’, anorm
Write (nout,’(A,1P,E16.3)’) ’ Final residual norm =’, stplhs
Write (nout,*)

! Output x
Write (nout,*) ’ X’
Write (nout,’(1X,1P,E16.4)’) x(1:n)
Exit loop

Case Default
Exit loop

End Select
End Do loop

100 Continue

End Program f11ddfe

10.2 Program Data

F11DDF Example Program Data
5 2 N, M

16 NNZ
’RGMRES’ METHOD
’P’ ’I’ 1 PRECON, NORM, ITERM
1.D-10 1000 TOL, MAXITN
0.D0 0.D0 ANORM, SIGMAX
1.1D0 OMEGA
2. 1 1
1. 1 2

-1. 1 4
-3. 2 2
-2. 2 3
1. 2 5
1. 3 1
5. 3 3
3. 3 4
1. 3 5

-2. 4 1
-3. 4 4
-1. 4 5
4. 5 2

-2. 5 3
-6. 5 5 A(I), IROW(I), ICOL(I), I=1,...,NNZ
0. -7. 33.

-19. -28. B(I), I=1,...,N
0. 0. 0.
0. 0. X(I), I=1,...,N

10.3 Program Results

F11DDF Example Program Results

Converged in 12 iterations
Matrix norm = 1.200E+01
Final residual norm = 3.841E-09

X
1.0000E+00
2.0000E+00
3.0000E+00
4.0000E+00
5.0000E+00
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NAG Library Routine Document

F11DEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DEF solves a real sparse nonsymmetric system of linear equations, represented in coordinate storage
format, using a restarted generalized minimal residual (RGMRES), conjugate gradient squared (CGS),
stabilized bi-conjugate gradient (Bi-CGSTAB), or transpose-free quasi-minimal residual (TFQMR)
method, without preconditioning, with Jacobi, or with SSOR preconditioning.

2 Specification

SUBROUTINE F11DEF (METHOD, PRECON, N, NNZ, A, IROW, ICOL, OMEGA, B, M,
TOL, MAXITN, X, RNORM, ITN, WORK, LWORK, IWORK,
IFAIL)

&
&

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), M, MAXITN, ITN, LWORK,
IWORK(2*N+1), IFAIL

&

REAL (KIND=nag_wp) A(NNZ), OMEGA, B(N), TOL, X(N), RNORM, WORK(LWORK)
CHARACTER(*) METHOD
CHARACTER(1) PRECON

3 Description

F11DEF solves a real sparse nonsymmetric system of linear equations

Ax ¼ b;

using an RGMRES (see Saad and Schultz (1986)), CGS (see Sonneveld (1989)), Bi-CGSTAB(‘) (see
Van der Vorst (1989) and Sleijpen and Fokkema (1993)), or TFQMR (see Freund and Nachtigal (1991)
and Freund (1993)) method.

The routine allows the following choices for the preconditioner:

no preconditioning;

Jacobi preconditioning (see Young (1971));

symmetric successive-over-relaxation (SSOR) preconditioning (see Young (1971)).

For incomplete LU (ILU) preconditioning see F11DCF.

The matrix A is represented in coordinate storage (CS) format (see Section 2.1.1 in the F11 Chapter
Introduction) in the arrays A, IROW and ICOL. The array A holds the nonzero entries in the matrix,
while IROW and ICOL hold the corresponding row and column indices.

F11DEF is a Black Box routine which calls F11BDF, F11BEF and F11BFF. If you wish to use an
alternative storage scheme, preconditioner, or termination criterion, or require additional diagnostic
information, you should call these underlying routines directly.

4 References

Freund R W (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
SIAM J. Sci. Comput. 14 470–482

Freund R W and Nachtigal N (1991) QMR: a Quasi-Minimal Residual Method for Non-Hermitian
Linear Systems Numer. Math. 60 315–339

Saad Y and Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 7 856–869
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Sleijpen G L G and Fokkema D R (1993) BiCGSTAB ‘ð Þ for linear equations involving matrices with
complex spectrum ETNA 1 11–32

Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J. Sci.
Statist. Comput. 10 36–52

Van der Vorst H (1989) Bi-CGSTAB, a fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 13 631–644

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: the iterative method to be used.

METHOD ¼ RGMRES
Restarted generalized minimum residual method.

METHOD ¼ CGS
Conjugate gradient squared method.

METHOD ¼ BICGSTAB
Bi-conjugate gradient stabilized (‘) method.

METHOD ¼ TFQMR
Transpose-free quasi-minimal residual method.

Constraint: METHOD ¼ RGMRES , CGS , BICGSTAB or TFQMR .

2: PRECON – CHARACTER(1) Input

On entry: specifies the type of preconditioning to be used.

PRECON ¼ N
No preconditioning.

PRECON ¼ J
Jacobi.

PRECON ¼ S
Symmetric successive-over-relaxation.

Constraint: PRECON ¼ N , J or S .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

4: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: 1 � NNZ � N2.

5: AðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements of the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices
are not permitted. The routine F11ZAF may be used to order the elements in this way.

6: IROWðNNZÞ – INTEGER array Input
7: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in A.
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Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZAF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

8: OMEGA – REAL (KIND=nag_wp) Input

On entry: if PRECON ¼ S , OMEGA is the relaxation parameter ! to be used in the SSOR
method. Otherwise OMEGA need not be initialized and is not referenced.

Constraint: 0:0 < OMEGA < 2:0.

9: BðNÞ – REAL (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

10: M – INTEGER Input

On entry: if METHOD ¼ RGMRES , M is the dimension of the restart subspace.

If METHOD ¼ BICGSTAB , M is the order ‘ of the polynomial Bi-CGSTAB method.

Otherwise, M is not referenced.

Constraints:

if METHOD ¼ RGMRES , 0 < M � min N; 50ð Þ;
if METHOD ¼ BICGSTAB , 0 < M � min N; 10ð Þ.

11: TOL – REAL (KIND=nag_wp) Input

On entry: the required tolerance. Let xk denote the approximate solution at iteration k, and rk the
corresponding residual. The algorithm is considered to have converged at iteration k if

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

If TOL � 0:0, � ¼ max
ffiffi
�
p
; 10�;

ffiffiffi
n
p

� is used, where � is the machine precision. Otherwise
� ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

12: MAXITN – INTEGER Input

On entry: the maximum number of iterations allowed.

Constraint: MAXITN � 1.

13: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial approximation to the solution vector x.

On exit: an improved approximation to the solution vector x.

14: RNORM – REAL (KIND=nag_wp) Output

On exit: the final value of the residual norm rkk k1, where k is the output value of ITN.

15: ITN – INTEGER Output

On exit: the number of iterations carried out.
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16: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11DEF is called.

Constraints:

if METHOD ¼ RGMRES , LWORK � 4� NþM� Mþ Nþ 5ð Þ þ � þ 101;
if METHOD ¼ CGS , LWORK � 8� Nþ � þ 100;
if METHOD ¼ BICGSTAB , LWORK � 2� N� Mþ 3ð Þ þM� Mþ 2ð Þ þ � þ 100;
if METHOD ¼ TFQMR , LWORK � 11� Nþ � þ 100.

where � ¼ N for PRECON ¼ J or S , and 0 otherwise

18: IWORKð2� Nþ 1Þ – INTEGER array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ RGMRES ; CGS ; BICGSTAB , or `TFQMR',
or PRECON 6¼ N , J or S ,
or N < 1,
or NNZ < 1,
or NNZ > N2,
or PRECON ¼ S and OMEGA lies outside the interval 0:0; 2:0ð Þ,
or M < 1,
or M > min N; 50ð Þ, with METHOD ¼ RGMRES ,
or M > min N; 10ð Þ, with METHOD ¼ BICGSTAB ,
or TOL � 1:0,
or MAXITN < 1,
or LWORK too small.

IFAIL ¼ 2

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ, or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie within the matrix A, is out of
order, or has duplicate row and column indices. Call F11ZAF to reorder and sum or remove
duplicates.
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IFAIL ¼ 3

On entry, the matrix A has a zero diagonal element. Jacobi and SSOR preconditioners are not
appropriate for this problem.

IFAIL ¼ 4

The required accuracy could not be obtained. However, a reasonable accuracy may have been
obtained, and further iterations could not improve the result. You should check the output value
of RNORM for acceptability. This error code usually implies that your problem has been fully
and satisfactorily solved to within or close to the accuracy available on your system. Further
iterations are unlikely to improve on this situation.

IFAIL ¼ 5

Required accuracy not obtained in MAXITN iterations.

IFAIL ¼ 6

Algorithmic breakdown. A solution is returned, although it is possible that it is completely
inaccurate.

IFAIL ¼ 7 (F11BDF, F11BEF or F11BFF)

A serious error has occurred in an internal call to one of the specified routines. Check all
subroutine calls and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful termination, the final residual rk ¼ b�Axk, where k ¼ ITN, satisfies the termination
criterion

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

The value of the final residual norm is returned in RNORM.

8 Parallelism and Performance

F11DEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11DEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F11DEF for each iteration is roughly proportional to NNZ.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined a
priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned coefficient
matrix �A ¼ M�1A.

10 Example

This example solves a sparse nonsymmetric system of equations using the RGMRES method, with
SSOR preconditioning.

10.1 Program Text

Program f11defe

! F11DEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11def, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: omega, rnorm, tol
Integer :: i, ifail, itn, l, lwork, m, maxitn, &

n, nnz
Character (8) :: method
Character (1) :: precon

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:)
Integer, Allocatable :: icol(:), irow(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’F11DEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read algorithmic parameters
Read (nin,*) n, m
Read (nin,*) nnz
Read (nin,*) method, precon
l = n
If (precon==’N’ .Or. precon==’n’) Then

l = 0
End If
lwork = max(4*n+m*(m+n+5)+l+101,8*n+l+100,2*n*(m+3)+m*(m+2)+l+100, &

11*n+l+100)

Allocate (a(nnz),b(n),work(lwork),x(n),icol(nnz),irow(nnz),iwork(2*n+1))
Read (nin,*) omega
Read (nin,*) tol, maxitn

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)
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End Do

! Read right-hand side vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Solve Ax = b using F11DEF

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11def(method,precon,n,nnz,a,irow,icol,omega,b,m,tol,maxitn,x, &

rnorm,itn,work,lwork,iwork,ifail)

Write (nout,’(A,I10,A)’) ’ Converged in’, itn, ’ iterations’
Write (nout,’(A,1P,E16.3)’) ’ Final residual norm =’, rnorm
Write (nout,*)

! Output x

Write (nout,*) ’ X’
Write (nout,’(1X,1P,E16.4)’) x(1:n)

End Program f11defe

10.2 Program Data

F11DEF Example Program Data
5 1 N, M

16 NNZ
’RGMRES’ ’S’ METHOD, PRECON
1.05 OMEGA
1.D-10 1000 TOL, MAXITN
2. 1 1
1. 1 2

-1. 1 4
-3. 2 2
-2. 2 3
1. 2 5
1. 3 1
5. 3 3
3. 3 4
1. 3 5

-2. 4 1
-3. 4 4
-1. 4 5
4. 5 2

-2. 5 3
-6. 5 5 A(I), IROW(I), ICOL(I), I=1,...,NNZ
0. -7. 33.

-19. -28. B(I), I=1,...,N
0. 0. 0.
0. 0. X(I), I=1,...,N

10.3 Program Results

F11DEF Example Program Results

Converged in 13 iterations
Final residual norm = 5.087E-09

X
1.0000E+00
2.0000E+00
3.0000E+00
4.0000E+00
5.0000E+00
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NAG Library Routine Document

F11DFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DFF computes a block diagonal incomplete LU factorization of a real sparse nonsymmetric matrix,
represented in coordinate storage format. The diagonal blocks may be composed of arbitrary rows and
the corresponding columns, and may overlap. This factorization can be used to provide a block Jacobi
or additive Schwarz preconditioner, for use in combination with F11BEF or F11DGF.

2 Specification

SUBROUTINE F11DFF (N, NNZ, A, LA, IROW, ICOL, NB, ISTB, INDB, LINDB,
LFILL, DTOL, PSTRAT, MILU, IPIVP, IPIVQ, ISTR, IDIAG,
NNZC, NPIVM, IWORK, LIWORK, IFAIL)

&
&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), NB, ISTB(NB+1),
INDB(LINDB), LINDB, LFILL(NB), IPIVP(LINDB),
IPIVQ(LINDB), ISTR(LINDB+1), IDIAG(LINDB), NNZC,
NPIVM(NB), IWORK(LIWORK), LIWORK, IFAIL

&
&
&

REAL (KIND=nag_wp) A(LA), DTOL(NB)
CHARACTER(1) PSTRAT(NB), MILU(NB)

3 Description

F11DFF computes an incomplete LU factorization (see Meijerink and Van der Vorst (1977) and
Meijerink and Van der Vorst (1981)) of the (possibly overlapping) diagonal blocks Ab, for
b ¼ 1; 2; . . . ;NB, of a real sparse nonsymmetric n by n matrix A. The factorization is intended
primarily for use as a block Jacobi or additive Schwarz preconditioner (see Saad (1996)), with one of
the iterative solvers F11BEF and F11DGF.

The NB diagonal blocks need not consist of consecutive rows and columns of A, but may be composed
of arbitrarily indexed rows, and the corresponding columns, as defined in the arguments INDB and
ISTB. Any given row or column index may appear in more than one diagonal block, resulting in
overlap. Each diagonal block Ab, for b ¼ 1; 2; . . . ;NB, is factorized as:

Ab ¼Mb þ Rb

where

Mb ¼ PbLbDbUbQb

and Lb is lower triangular with unit diagonal elements, Db is diagonal, Ub is upper triangular with unit
diagonals, Pb and Qb are permutation matrices, and Rb is a remainder matrix.

The amount of fill-in occurring in the factorization of block b can vary from zero to complete fill, and
can be controlled by specifying either the maximum level of fill LFILLðbÞ, or the drop tolerance
DTOLðbÞ.
The parameter PSTRATðbÞ defines the pivoting strategy to be used in block b. The options currently
available are no pivoting, user-defined pivoting, partial pivoting by columns for stability, and complete
pivoting by rows for sparsity and by columns for stability. The factorization may optionally be modified
to preserve the row-sums of the original block matrix.

The sparse matrix A is represented in coordinate storage (CS) format (see Section 2.1.1 in the F11
Chapter Introduction). The array A stores all the nonzero elements of the matrix A, while arrays IROW
and ICOL store the corresponding row and column indices respectively. Multiple nonzero elements may
not be specified for the same row and column index.
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The preconditioning matrices Mb, for b ¼ 1; 2; . . . ;NB, are returned in terms of the CS representations
of the matrices

Cb ¼ Lb þD�1b þ Ub � 2I:

4 References

Meijerink J and Van der Vorst H (1977) An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162

Meijerink J and Van der Vorst H (1981) Guidelines for the usage of incomplete decompositions in
solving sets of linear equations as they occur in practical problems J. Comput. Phys. 44 134–155

Saad Y (1996) Iterative Methods for Sparse Linear Systems PWS Publishing Company, Boston, MA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: 1 � NNZ � N2.

3: AðLAÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the nonzero elements in the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices
are not permitted. The routine F11ZAF may be used to order the elements in this way.

On exit: the first NNZ entries of A contain the nonzero elements of A and the next NNZC entries
contain the elements of the matrices Cb, for b ¼ 1; 2; . . . ;NB stored consecutively. Within each
block the matrix elements are ordered by increasing row index, and by increasing column index
within each row.

4: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11DFF is called. These arrays must be of sufficient size to store both A (NNZ elements)
and C (NNZC elements).

Note: the minimum value for LA is only appropriate if LFILL and DTOL are set such that
minimal fill-in occurs. If this is not the case then we recommend that LA is set much larger than
the minimum value indicated in the constraint.

Constraint: LA � 2� NNZ.

5: IROWðLAÞ – INTEGER array Input/Output
6: ICOLðLAÞ – INTEGER array Input/Output

On entry: the row and column indices of the nonzero elements supplied in A.

Constraints:

IROW and ICOL must satisfy these constraints (which may be imposed by a call to F11ZAF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
e i t h e r IROWði � 1Þ < IROWðiÞ o r b o t h IROWði � 1Þ ¼ IROWðiÞ a n d
ICOLði � 1Þ < ICOLðiÞ, for i ¼ 2; 3; . . . ;NNZ.

On exit: the row and column indices of the nonzero elements returned in A.
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7: NB – INTEGER Input

On entry: the number of diagonal blocks to factorize.

Constraint: 1 � NB � N.

8: ISTBðNBþ 1Þ – INTEGER array Input

On entry: ISTBðbÞ, for b ¼ 1; 2; . . . ;NB, holds the indices in arrays INDB, IPIVP, IPIVQ and
IDIAG that, on successful exit from this function, define block b. ISTBðNBþ 1Þ holds the sum
of the number of rows in all blocks plus ISTBð1Þ.
Constraint: ISTBð1Þ � 1; ISTBðbÞ < ISTBðbþ 1Þ, for b ¼ 1; 2; . . . ;NB.

9: INDBðLINDBÞ – INTEGER array Input

On entry: INDB must hold the row indices appearing in each diagonal block, stored
consecutively. Thus the elements INDBðISTBðbÞÞ to INDBðISTBðbþ 1Þ � 1Þ are the row indices
in the bth block, for b ¼ 1; 2; . . . ;NB.

Constraint: 1 � INDBðmÞ � N, for m ¼ 1; 2; . . . ; ISTBðNBþ 1Þ � 1.

10: LINDB – INTEGER Input

On entry: the dimension of the arrays INDB, IPIVP, IPIVQ and IDIAG as declared in the (sub)
program from which F11DFF is called.

Constraint: LINDB � ISTBðNBþ 1Þ � 1.

11: LFILLðNBÞ – INTEGER array Input

On entry: if LFILLðbÞ � 0 its value is the maximum level of fill allowed in the decomposition of
the block (see Section 9.2 in F11DAF). A negative value of LFILLðbÞ indicates that DTOLðbÞ
will be used to control the fill in the block instead.

12: DTOLðNBÞ – REAL (KIND=nag_wp) array Input

On entry: if LFILLðbÞ < 0 then DTOLðbÞ is used as a drop tolerance in the block to control the
fill-in (see Section 9.2 in F11DAF); otherwise DTOLðbÞ is not referenced.

Constraint: if LFILLðbÞ < 0, DTOLðbÞ � 0:0, for b ¼ 1; 2; . . . ;NB.

13: PSTRATðNBÞ – CHARACTER(1) array Input

On entry: PSTRATðbÞ, for b ¼ 1; 2; . . . ;NB, specifies the pivoting strategy to be adopted in the
block as follows:

PSTRATðbÞ ¼ N
No pivoting is carried out.

PSTRATðbÞ ¼ U
Pivoting is carried out according to the user-defined input values of IPIVP and IPIVQ.

PSTRATðbÞ ¼ P
Partial pivoting by columns for stability is carried out.

PSTRATðbÞ ¼ C
Complete pivoting by rows for sparsity, and by columns for stability, is carried out.

Suggested value: PSTRATðbÞ ¼ C , for b ¼ 1; 2; . . . ;NB.

Constraint: PSTRATðbÞ ¼ N , U , P or C , for b ¼ 1; 2; . . . ;NB.
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14: MILUðNBÞ – CHARACTER(1) array Input

On entry: MILUðbÞ, for b ¼ 1; 2; . . . ;NB, indicates whether or not the factorization in the block
should be modified to preserve row-sums (see Section 9.4 in F11DAF).

MILUðbÞ ¼ M
The factorization is modified.

MILUðbÞ ¼ N
The factorization is not modified.

Constraint: MILUðbÞ ¼ M or N , for b ¼ 1; 2; . . . ;NB.

15: IPIVPðLINDBÞ – INTEGER array Input/Output
16: IPIVQðLINDBÞ – INTEGER array Input/Output

On entry: if PSTRATðbÞ ¼ U , then IPIVPðISTBðbÞ þ k� 1Þ and IPIVQðISTBðbÞ þ k� 1Þ must
specify the row and column indices of the element used as a pivot at elimination stage k of the
factorization of the block. Otherwise IPIVP and IPIVQ need not be initialized.

Constraint: if PSTRATðbÞ ¼ U , the elements ISTBðbÞ to ISTBðbþ 1Þ � 1 of IPIVP and IPIVQ
must both hold valid permutations of the integers on 1; ISTBðbþ 1Þ � ISTBðbÞ½ �.
On exit: the row and column indices of the pivot elements, arranged consecutively for each
block, as for INDB. If IPIVPðISTBðbÞ þ k� 1Þ ¼ i and IPIVQðISTBðbÞ þ k� 1Þ ¼ j, then the
element in row i and column j of Ab was used as the pivot at elimination stage k.

17: ISTRðLINDBþ 1Þ – INTEGER array Output

On exit: ISTRðISTBðbÞ þ k � 1Þ, gives the index in the arrays A, IROW and ICOL of row k of
the matrix Cb, for b ¼ 1; 2; . . . ;NB and k ¼ 1; 2; . . . ; ISTBðbþ 1Þ � ISTBðbÞ.
ISTRðISTBðNBþ 1ÞÞ contains NNZþ NNZCþ 1.

18: IDIAGðLINDBÞ – INTEGER array Output

On exit: IDIAGðISTBðbÞ þ k � 1Þ, gives the index in the arrays A, IROW and ICOL of the
d i a g o n a l e l em e n t i n r ow k o f t h e m a t r i x Cb, f o r b ¼ 1; 2; . . . ;NB a n d
k ¼ 1; 2; . . . ; ISTBðbþ 1Þ � ISTBðbÞ.

19: NNZC – INTEGER Output

On exit: the sum total number of nonzero elements in the matrices Cb, for b ¼ 1; 2; . . . ;NB.

20: NPIVMðNBÞ – INTEGER array Output

On exit: if NPIVMðbÞ > 0 it gives the number of pivots which were modified during the
factorization to ensure that Mb exists.

If NPIVMðbÞ ¼ �1 no pivot modifications were required, but a local restart occurred (see
Section 9.3 in F11DAF). The quality of the preconditioner will generally depend on the returned
values of NPIVMðbÞ, for b ¼ 1; 2; . . . ;NB.

If NPIVMðbÞ is large, for some block, the preconditioner may not be satisfactory. In this case it
may be advantageous to call F11DFF again with an increased value of LFILLðbÞ, a reduced value
of DTOLðbÞ, or PSTRATðbÞ ¼ C.

21: IWORKðLIWORKÞ – INTEGER array Workspace
22: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F11DFF is called.

Constraint: LIWORK � 9� Nþ 3.
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23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, DTOLð valueh iÞ ¼ valueh i.
Constraint: DTOLðbÞ � 0:0, for b ¼ 1; 2; . . . ;NB.

On entry, for b ¼ valueh i, ISTBðbþ 1Þ ¼ valueh i and ISTBðbÞ ¼ valueh i.
Constraint: ISTBðbþ 1Þ > ISTBðbÞ, for b ¼ 1; 2; . . . ;NB.

On entry, INDBð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � INDBðmÞ � N, for m ¼ 1; 2; . . . ; ISTBðNBþ 1Þ � 1

On entry, ISTBð1Þ ¼ valueh i.
Constraint: ISTBð1Þ � 1.

On entry, LA ¼ valueh i and NNZ ¼ valueh i.
Constraint: LA � 2� NNZ.

On entry, LINDB ¼ valueh i, ISTBðNBþ 1Þ � 1 ¼ valueh i and NB ¼ valueh i.
Constraint: LINDB � ISTBðNBþ 1Þ � 1.

On entry, LIWORK ¼ valueh i.
Constraint: LIWORK � valueh i.
On entry, MILUð valueh iÞ ¼ valueh i.
Constraint: MILUðbÞ ¼ M or N for all b.

On entry, N ¼ valueh i.
Constraint: N � 1.

On entry, NB ¼ valueh i and N ¼ valueh i.
Constraint: 1 � NB � N.

On entry, NNZ ¼ valueh i.
Constraint: NNZ � 1.

On entry, NNZ ¼ valueh i and N ¼ valueh i.
Constraint: NNZ � N2.

On entry, PSTRATð valueh iÞ ¼ valueh i.
Constraint: PSTRATðbÞ ¼ N , U , P or C for all b.

IFAIL ¼ 2

On entry, element valueh i of A was out of order.

On entry, ICOLð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � ICOLðjÞ � N, for j ¼ 1; 2; . . . ;NNZ.
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On entry, IROWð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � IROWðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.

On entry, location valueh i of IROW; ICOLð Þ was a duplicate.

IFAIL ¼ 3

On entry, the user-supplied value of IPIVP for block valueh i lies outside its range.

On entry, the user-supplied value of IPIVP for block valueh i was repeated.

On entry, the user-supplied value of IPIVQ for block valueh i lies outside its range.

On entry, the user-supplied value of IPIVQ for block valueh i was repeated.

IFAIL ¼ 4

The number of nonzero entries in the decomposition is too large.
The decomposition has been terminated before completion.
Either increase LA, or reduce the fill by reducing LFILL, or increasing DTOL.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the factorization of each block Ab will be determined by the size of the elements that
are dropped and the size of any modifications made to the pivot elements. If these sizes are small then
the computed factors will correspond to a matrix close to Ab. The factorization can generally be made
more accurate by increasing the level of fill LFILLðbÞ, or by reducing the drop tolerance DTOLðbÞ with
LFILLðbÞ < 0.

If F11DFF is used in combination with F11BEF or F11DGF, the more accurate the factorization the
fewer iterations will be required. However, the cost of the decomposition will also generally increase.

8 Parallelism and Performance

F11DFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F11DFF calls F11DAF internally for each block Ab. The comments and advice provided in Section 9 in
F11DAF on timing, control of fill, algorithmic details, and choice of parameters, are all therefore
relevant to F11DFF, if interpreted blockwise.
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10 Example

This example program reads in a sparse matrix A and then defines a block partitioning of the row
indices with a user-supplied overlap and computes an overlapping incomplete LU factorization suitable
for use as an additive Schwarz preconditioner. Such a factorization is used for this purpose in the
example program of F11DGF.

10.1 Program Text

! F11DFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Program f11dffe

! .. Use Statements ..
Use nag_library, Only: f11dff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dtolg
Integer :: i, ifail, k, la, lfillg, lindb, &

liwork, mb, n, nb, nnz, nnzc, nover
Character (1) :: milug, pstrag

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), dtol(:)
Integer, Allocatable :: icol(:), idiag(:), indb(:), &

ipivp(:), ipivq(:), irow(:), &
istb(:), istr(:), iwork(:), &
lfill(:), npivm(:)

Character (1), Allocatable :: milu(:), pstrat(:)
! .. Intrinsic Procedures ..

Intrinsic :: maxval, minval
! .. Executable Statements ..

Continue

! Print example header
Write (nout,*) ’F11DFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Get the matrix order and number of nonzero entries.
Read (nin,*) n
Read (nin,*) nnz

! Allocate arrays with lengths based on n and nnz.
liwork = 9*n + 3
Allocate (b(n),iwork(liwork))

la = 20*nnz
Allocate (a(la),irow(la),icol(la))

lindb = 3*n
Allocate (idiag(lindb),indb(lindb),ipivp(lindb),ipivq(lindb), &

istr(lindb+1))

! Read the matrix A
Read (nin,*)(a(i),irow(i),icol(i),i=1,nnz)

! Read algorithmic parameters
Read (nin,*) lfillg, dtolg
Read (nin,*) pstrag
Read (nin,*) milug
Read (nin,*) nb, nover

! Allocate arrays with length based on number of blocks.
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Allocate (dtol(nb),istb(nb+1),lfill(nb),npivm(nb),milu(nb),pstrat(nb))

! Define diagonal block indices.
! In this example use blocks of MB consecutive rows and initialize
! assuming no overlap.

mb = (n+nb-1)/nb
Do k = 1, nb

istb(k) = (k-1)*mb + 1
End Do
istb(nb+1) = n + 1
Do i = 1, n

indb(i) = i
End Do

! Modify INDB and ISTB to account for overlap.
Call f11dffe_overlap(n,nnz,la,irow,icol,nb,istb,indb,lindb,nover,iwork)
If (iwork(1)==-999) Then

Write (nout,*) ’** LINDB too small, LINDB = ’, lindb, ’.’
Go To 100

End If

! Output matrix and blocking details
Write (nout,*) ’ Original Matrix’
Write (nout,99997) ’ N =’, n
Write (nout,99997) ’ NNZ =’, nnz
Write (nout,99997) ’ NB =’, nb
Do k = 1, nb

Write (nout,99993) ’ Block ’, k, ’: order = ’, istb(k+1) - istb(k), &
’, start row = ’, minval(indb(istb(k):istb(k+1)-1))

End Do

! Set algorithmic parameters for each block from global values
lfill(1:nb) = lfillg
dtol(1:nb) = dtolg
pstrat(1:nb) = pstrag
milu(1:nb) = milug

! Calculate factorization
ifail = 1
Call f11dff(n,nnz,a,la,irow,icol,nb,istb,indb,lindb,lfill,dtol,pstrat, &

milu,ipivp,ipivq,istr,idiag,nnzc,npivm,iwork,liwork,ifail)
If (ifail/=0) Then

Write (nout,99995) ifail
Go To 100

End If

! Output details of the factorization
Write (nout,99996) ’ Factorization’
Write (nout,99997) ’ NNZC =’, nnzc

Write (nout,99996) ’ Elements of factorization’
Write (nout,99996) ’ I J C(I,J) Index’
Do k = 1, nb

Write (nout,99994) ’ C_’, k, ’ --------------------------------’
! Elements of the k-th block

Do i = istr(istb(k)), istr(istb(k+1)) - 1
Write (nout,99992) irow(i), icol(i), a(i), i

End Do
End Do

Write (nout,99996) ’ Details of factorized blocks’
If (maxval(npivm(1:nb))>0) Then

! Including pivoting details.
Write (nout,99996) &

’ K I ISTR(I) IDIAG(I) INDB(I) IPIVP(I) IPIVQ(I)’
Do k = 1, nb

i = istb(k)
Write (nout,99999) k, i, istr(i), idiag(i), indb(i), ipivp(i), &

ipivq(i)
Do i = istb(k) + 1, istb(k+1) - 1

Write (nout,99998) i, istr(i), idiag(i), indb(i), ipivp(i), &
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ipivq(i)
End Do
Write (nout,*) &

’ -----------------------------------------------------’
End Do

Else
! No pivoting on any block.

Write (nout,99996) ’ K I ISTR(I) IDIAG(I) INDB(I)’
Do k = 1, nb

i = istb(k)
Write (nout,99999) k, i, istr(i), idiag(i), indb(i)
Do i = istb(k) + 1, istb(k+1) - 1

Write (nout,99998) i, istr(i), idiag(i), indb(i)
End Do
Write (nout,*) ’ ------------------------------------’

End Do
End If

100 Continue

99999 Format (1X,I3,1X,I3,5(I10))
99998 Format (1X,I7,5(I10))
99997 Format (1X,A,I4)
99996 Format (1X,/,1X,A)
99995 Format (1X,/,1X,’ ** F11DFF returned with IFAIL = ’,I5)
99994 Format (1X,A3,I1,A)
99993 Format (1X,A,I3,A,I3,A,I3)
99992 Format (6X,2I4,E16.5,I8)

Contains

Subroutine f11dffe_overlap(n,nnz,la,irow,icol,nb,istb,indb,lindb,nover, &
iwork)

! Purpose
! =======
! This routine takes a set of row indices INDB defining the diagonal
! blocks to be used in F11DFF to define a block Jacobi or additive
! Schwarz preconditioner, and expands them to allow for NOVER levels of
! overlap.
! The pointer array ISTB is also updated accordingly, so that the
! returned values of ISTB and INDB can be passed to F11DFF to define
! overlapping diagonal blocks.
! ----------------------------------------------------------------------

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: la, lindb, n, nb, nnz, nover

! .. Array Arguments ..
Integer, Intent (In) :: icol(la), irow(la)
Integer, Intent (Inout) :: indb(lindb), istb(nb+1)
Integer, Intent (Out) :: iwork(3*n+1)

! .. Local Scalars ..
Integer :: i, ik, ind, iover, k, l, n21, nadd, &

row
! .. Executable Statements ..

Continue

! Find the number of nonzero elements in each row of the matrix A, and
! and start address of each row. Store the start addresses in
! IWORK(N+1,...,2*N+1).

iwork(1:n) = 0
Do k = 1, nnz

iwork(irow(k)) = iwork(irow(k)) + 1
End Do
iwork(n+1) = 1
Do i = 1, n

iwork(n+i+1) = iwork(n+i) + iwork(i)
End Do
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! Loop over blocks.
blocks: Do k = 1, nb

! Initialize marker array.
iwork(1:n) = 0

! Mark the rows already in block K in the workspace array.
Do l = istb(k), istb(k+1) - 1

iwork(indb(l)) = 1
End Do

! Loop over levels of overlap.
Do iover = 1, nover

! Initialize counter of new row indices to be added.
ind = 0

! Loop over the rows currently in the diagonal block.
Do l = istb(k), istb(k+1) - 1

row = indb(l)

! Loop over nonzero elements in row ROW.
Do i = iwork(n+row), iwork(n+row+1) - 1

! If the column index of the nonzero element is not in the
! existing set for this block, store it to be added later, and
! mark it in the marker array.

If (iwork(icol(i))==0) Then
iwork(icol(i)) = 1
ind = ind + 1
iwork(2*n+1+ind) = icol(i)

End If
End Do

End Do

! Shift the indices in INDB and add the new entries for block K.
! Change ISTB accordingly.

nadd = ind
If (istb(nb+1)+nadd-1>lindb) Then

iwork(1) = -999
Exit blocks

End If

Do i = istb(nb+1) - 1, istb(k+1), -1
indb(i+nadd) = indb(i)

End Do
n21 = 2*n + 1
ik = istb(k+1) - 1
indb(ik+1:ik+nadd) = iwork(n21+1:n21+nadd)
istb(k+1:nb+1) = istb(k+1:nb+1) + nadd

End Do
End Do blocks

Return

End Subroutine f11dffe_overlap
End Program f11dffe

10.2 Program Data

F11DFF Example Program Data
9 : n
33 : nnz
64.0 1 1

-20.0 1 2
-20.0 1 4
-12.0 2 1
64.0 2 2

-20.0 2 3
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-20.0 2 5
-12.0 3 2
64.0 3 3

-20.0 3 6
-12.0 4 1
64.0 4 4

-20.0 4 5
-20.0 4 7
-12.0 5 2
-12.0 5 4
64.0 5 5

-20.0 5 6
-20.0 5 8
-12.0 6 3
-12.0 6 5
64.0 6 6

-20.0 6 9
-12.0 7 4
64.0 7 7

-20.0 7 8
-12.0 8 5
-12.0 8 7
64.0 8 8

-20.0 8 9
-12.0 9 6
-12.0 9 8
64.0 9 9 : a(i), irow(i), icol(i) for i=1,nnz
0 0.0 : lfillg, dtolg

’N’ : pstrag
’N’ : milug
3 1 : nb, nover

10.3 Program Results

F11DFF Example Program Results

Original Matrix
N = 9
NNZ = 33
NB = 3
Block 1: order = 6, start row = 1
Block 2: order = 9, start row = 1
Block 3: order = 6, start row = 4

Factorization
NNZC = 73

Elements of factorization

I J C(I,J) Index
C_1 --------------------------------

1 1 0.15625E-01 34
1 2 -0.31250E+00 35
1 4 -0.31250E+00 36
2 1 -0.18750E+00 37
2 2 0.16598E-01 38
2 3 -0.33195E+00 39
2 5 -0.33195E+00 40
3 2 -0.19917E+00 41
3 3 0.16662E-01 42
3 6 -0.33324E+00 43
4 1 -0.18750E+00 44
4 4 0.16598E-01 45
4 5 -0.33195E+00 46
5 2 -0.19917E+00 47
5 4 -0.19917E+00 48
5 5 0.17847E-01 49
5 6 -0.35693E+00 50
6 3 -0.19994E+00 51
6 5 -0.21416E+00 52
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6 6 0.17948E-01 53
C_2 --------------------------------

1 1 0.15625E-01 54
1 2 -0.31250E+00 55
1 4 -0.18750E+00 56
1 5 -0.31250E+00 57
2 1 -0.18750E+00 58
2 2 0.16598E-01 59
2 3 -0.33195E+00 60
2 6 -0.19917E+00 61
2 7 -0.33195E+00 62
3 2 -0.19917E+00 63
3 3 0.16662E-01 64
3 8 -0.19994E+00 65
3 9 -0.33324E+00 66
4 1 -0.31250E+00 67
4 4 0.16598E-01 68
4 6 -0.33195E+00 69
5 1 -0.18750E+00 70
5 5 0.16598E-01 71
5 7 -0.33195E+00 72
6 2 -0.33195E+00 73
6 4 -0.19917E+00 74
6 6 0.17847E-01 75
6 8 -0.35693E+00 76
7 2 -0.19917E+00 77
7 5 -0.19917E+00 78
7 7 0.17847E-01 79
7 9 -0.35693E+00 80
8 3 -0.33324E+00 81
8 6 -0.21416E+00 82
8 8 0.17948E-01 83
9 3 -0.19994E+00 84
9 7 -0.21416E+00 85
9 9 0.17948E-01 86

C_3 --------------------------------
1 1 0.15625E-01 87
1 2 -0.31250E+00 88
1 4 -0.18750E+00 89
2 1 -0.18750E+00 90
2 2 0.16598E-01 91
2 3 -0.33195E+00 92
2 5 -0.19917E+00 93
3 2 -0.19917E+00 94
3 3 0.16662E-01 95
3 6 -0.19994E+00 96
4 1 -0.31250E+00 97
4 4 0.16598E-01 98
4 5 -0.33195E+00 99
5 2 -0.33195E+00 100
5 4 -0.19917E+00 101
5 5 0.17847E-01 102
5 6 -0.35693E+00 103
6 3 -0.33324E+00 104
6 5 -0.21416E+00 105
6 6 0.17948E-01 106

Details of factorized blocks

K I ISTR(I) IDIAG(I) INDB(I)
1 1 34 34 1

2 37 38 2
3 41 42 3
4 44 45 4
5 47 49 5
6 51 53 6

------------------------------------
2 7 54 54 4

8 58 59 5
9 63 64 6

10 67 68 1
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11 70 71 7
12 73 75 2
13 77 79 8
14 81 83 3
15 84 86 9

------------------------------------
3 16 87 87 7

17 90 91 8
18 94 95 9
19 97 98 4
20 100 102 5
21 104 106 6

------------------------------------
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NAG Library Routine Document

F11DGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DGF solves a real sparse nonsymmetric system of linear equations, represented in coordinate
storage format, using a restarted generalized minimal residual (RGMRES), conjugate gradient squared
(CGS), stabilized bi-conjugate gradient (Bi-CGSTAB), or transpose-free quasi-minimal residual
(TFQMR) method, with block Jacobi or additive Schwarz preconditioning.

2 Specification

SUBROUTINE F11DGF (METHOD, N, NNZ, A, LA, IROW, ICOL, NB, ISTB, INDB,
LINDB, IPIVP, IPIVQ, ISTR, IDIAG, B, M, TOL, MAXITN,
X, RNORM, ITN, WORK, LWORK, IFAIL)

&
&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), NB, ISTB(NB+1),
INDB(LINDB), LINDB, IPIVP(LINDB), IPIVQ(LINDB),
ISTR(LINDB+1), IDIAG(LINDB), M, MAXITN, ITN, LWORK,
IFAIL

&
&
&

REAL (KIND=nag_wp) A(LA), B(N), TOL, X(N), RNORM, WORK(LWORK)
CHARACTER(*) METHOD

3 Description

F11DGF solves a real sparse nonsymmetric linear system of equations:

Ax ¼ b;

using a preconditioned RGMRES (see Saad and Schultz (1986)), CGS (see Sonneveld (1989)), Bi-
CGSTAB(‘) (see Van der Vorst (1989) and Sleijpen and Fokkema (1993)), or TFQMR (see Freund and
Nachtigal (1991) and Freund (1993)) method.

F11DGF uses the incomplete (possibly overlapping) block LU factorization determined by F11DFF as
the preconditioning matrix. A call to F11DGF must always be preceded by a call to F11DFF.
Alternative preconditioners for the same storage scheme are available by calling F11DCF or F11DEF.

The matrix A, and the preconditioning matrix M, are represented in coordinate storage (CS) format (see
Section 2.1.1 in the F11 Chapter Introduction) in the arrays A, IROW and ICOL, as returned from
F11DFF. The array A holds the nonzero entries in these matrices, while IROW and ICOL hold the
corresponding row and column indices.

F11DGF is a Black Box routine which calls F11BDF, F11BEF and F11BFF. If you wish to use an
alternative storage scheme, preconditioner, or termination criterion, or require additional diagnostic
information, you should call these underlying routines directly.

4 References

Freund R W (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
SIAM J. Sci. Comput. 14 470–482

Freund R W and Nachtigal N (1991) QMR: a Quasi-Minimal Residual Method for Non-Hermitian
Linear Systems Numer. Math. 60 315–339

Saad Y and Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 7 856–869
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Salvini S A and Shaw G J (1996) An evaluation of new NAG Library solvers for large sparse
unsymmetric linear systems NAG Technical Report TR2/96

Sleijpen G L G and Fokkema D R (1993) BiCGSTAB ‘ð Þ for linear equations involving matrices with
complex spectrum ETNA 1 11–32

Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J. Sci.
Statist. Comput. 10 36–52

Van der Vorst H (1989) Bi-CGSTAB, a fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 13 631–644

5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: specifies the iterative method to be used.

METHOD ¼ RGMRES
Restarted generalized minimum residual method.

METHOD ¼ CGS
Conjugate gradient squared method.

METHOD ¼ BICGSTAB
Bi-conjugate gradient stabilized (‘) method.

METHOD ¼ TFQMR
Transpose-free quasi-minimal residual method.

Constraint: METHOD ¼ RGMRES , CGS , BICGSTAB or TFQMR .

2: N – INTEGER Input
3: NNZ – INTEGER Input
4: AðLAÞ – REAL (KIND=nag_wp) array Input
5: LA – INTEGER Input
6: IROWðLAÞ – INTEGER array Input
7: ICOLðLAÞ – INTEGER array Input
8: NB – INTEGER Input
9: ISTBðNBþ 1Þ – INTEGER array Input
10: INDBðLINDBÞ – INTEGER array Input
11: LINDB – INTEGER Input
12: IPIVPðLINDBÞ – INTEGER array Input
13: IPIVQðLINDBÞ – INTEGER array Input
14: ISTRðLINDBþ 1Þ – INTEGER array Input
15: IDIAGðLINDBÞ – INTEGER array Input

On entry: the values returned in arrays IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG by a
previous call to F11DFF.

The arrays ISTB, INDB and A together with the the scalars N, NNZ, LA, NB and LINDB must
be the same values that were supplied in the preceding call to F11DFF.

16: BðNÞ – REAL (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

17: M – INTEGER Input

On entry: if METHOD ¼ RGMRES , M is the dimension of the restart subspace.

If METHOD ¼ BICGSTAB , M is the order ‘ of the polynomial Bi-CGSTAB method.
Otherwise, M is not referenced.
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Constraints:

if METHOD ¼ RGMRES , 0 < M � min N; 50ð Þ;
if METHOD ¼ BICGSTAB , 0 < M � min N; 10ð Þ.

18: TOL – REAL (KIND=nag_wp) Input

On entry: the required tolerance. Let xk denote the approximate solution at iteration k, and rk the
corresponding residual. The algorithm is considered to have converged at iteration k if

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

If TOL � 0:0, � ¼ max
ffiffi
�
p
;
ffiffiffi
n
p

� is used, where � is the machine precision. Otherwise
� ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

19: MAXITN – INTEGER Input

On entry: the maximum number of iterations allowed.

Constraint: MAXITN � 1.

20: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial approximation to the solution vector x.

On exit: an improved approximation to the solution vector x.

21: RNORM – REAL (KIND=nag_wp) Output

On exit: the final value of the residual norm rkk k1, where k is the output value of ITN.

22: ITN – INTEGER Output

On exit: the number of iterations carried out.

23: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
24: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11DGF is called.

Constraints:

if METHOD ¼ RGMRES , LWORK � 6� NþM� Mþ Nþ 5ð Þ þ 101;
if METHOD ¼ CGS , LWORK � 10� Nþ 100;
if METHOD ¼ BICGSTAB , LWORK � 2� N�Mþ 8� NþM� Mþ 2ð Þ þ 100;
if METHOD ¼ TFQMR , LWORK � 13� Nþ 100.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, for b ¼ valueh i, ISTBðbþ 1Þ ¼ valueh i and ISTBðbÞ ¼ valueh i.
Constraint: ISTBðbþ 1Þ > ISTBðbÞ, for b ¼ 1; 2; . . . ;NB.

On entry, INDBð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � INDBðmÞ � N, for m ¼ 1; 2; . . . ; ISTBðNBþ 1Þ � 1

On entry, ISTBð1Þ ¼ valueh i.
Constraint: ISTBð1Þ � 1.

On entry, LA ¼ valueh i and NNZ ¼ valueh i.
Constraint: LA � 2� NNZ.

On entry, LINDB ¼ valueh i, ISTBðNBþ 1Þ � 1 ¼ valueh i and NB ¼ valueh i.
Constraint: LINDB � ISTBðNBþ 1Þ � 1.

On entry, LWORK ¼ valueh i.
Constraint: LWORK � valueh i.
On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: if METHOD ¼ RGMRES , 1 � M � min N; valueh ið Þ.
If METHOD ¼ BICGSTAB , 1 � M � min N; valueh ið Þ.
On entry, MAXITN ¼ valueh i.
Constraint: MAXITN � 1.

On entry, METHOD ¼ valueh i.
Constraint: METHOD ¼ RGMRES , CGS or BICGSTAB.

On entry, N ¼ valueh i.
Constraint: N � 1.

On entry, NB ¼ valueh i and N ¼ valueh i.
Constraint: 1 � NB � N.

On entry, NNZ ¼ valueh i.
Constraint: NNZ � 1.

On entry, NNZ ¼ valueh i and N ¼ valueh i.
Constraint: NNZ � N2.

On entry, TOL ¼ valueh i.
Constraint: TOL < 1:0.

IFAIL ¼ 2

On entry, element valueh i of A was out of order.
Check that A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been corrupted between
calls to F11DFF and F11DGF.

On entry, ICOLð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.
Check that A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been corrupted between
calls to F11DFF and F11DGF.

On entry, IROWð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � IROWðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.
Check that A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been corrupted between
calls to F11DFF and F11DGF.

F11DGF NAG Library Manual

F11DGF.4 Mark 26



On entry, location valueh i of IROW; ICOLð Þ was a duplicate.
Check that A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been corrupted between
calls to F11DFF and F11DGF.

IFAIL ¼ 3

The CS representation of the preconditioner is invalid.
Check that A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been corrupted between
calls to F11DFF and F11DGF.

IFAIL ¼ 4

The required accuracy could not be obtained. However a reasonable accuracy may have been
achieved. You should check the output value of RNORM for acceptability. This error code
usually implies that your problem has been fully and satisfactorily solved to within or close to
the accuracy available on your system. Further iterations are unlikely to improve on this
situation.

IFAIL ¼ 5

The solution has not converged after valueh i iterations.

IFAIL ¼ 6

Algorithmic breakdown. A solution is returned, although it is possible that it is completely
inaccurate.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful termination, the final residual rk ¼ b�Axk, where k ¼ ITN, satisfies the termination
criterion

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

The value of the final residual norm is returned in RNORM.

8 Parallelism and Performance

F11DGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11DGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F11DGF for each iteration is roughly proportional to the value of NNZC returned
from the preceding call to F11DFF.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined a
priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned coefficient
matrix �A ¼M�1A.

Some illustrations of the application of F11DGF to linear systems arising from the discretization of
two-dimensional elliptic partial differential equations, and to random-valued randomly structured linear
systems, can be found in Salvini and Shaw (1996).

10 Example

This example program reads in a sparse matrix A and a vector b. It calls F11DFF, with the array
LFILL ¼ 0 and the array DTOL ¼ 0:0, to compute an overlapping incomplete LU factorization. This is
then used as an additive Schwarz preconditioner on a call to F11DGF which uses the Bi-CGSTAB
method to solve Ax ¼ b.

10.1 Program Text

! F11DGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Program f11dgfe

! .. Use Statements ..
Use nag_library, Only: f11dff, f11dgf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dtolg, rnorm, tol
Integer :: i, ifail, itn, k, la, lfillg, lindb, &

liwork, lwork, m, maxitn, mb, n, nb, &
nnz, nnzc, nover

Character (8) :: method
Character (1) :: milug, pstrag

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), dtol(:), work(:), x(:)
Integer, Allocatable :: icol(:), idiag(:), indb(:), &

ipivp(:), ipivq(:), irow(:), &
istb(:), istr(:), iwork(:), &
lfill(:), npivm(:)

Character (1), Allocatable :: milu(:), pstrat(:)
! .. Executable Statements ..

Continue

! Print example header
Write (nout,*) ’F11DGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Get the square matrix size
Read (nin,*) n

! Allocate arrays with lengths based on mesh.
liwork = 9*n + 3
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Allocate (b(n),x(n),iwork(liwork))

! Get the number of non zero (nnz) matrix entries
Read (nin,*) nnz
la = 20*nnz
Allocate (a(la),irow(la),icol(la))

lindb = 3*n
Allocate (idiag(lindb),indb(lindb),ipivp(lindb),ipivq(lindb), &

istr(lindb+1))

! Read in matrix A
Read (nin,*)(a(i),irow(i),icol(i),i=1,nnz)

! Read in RHS
Read (nin,*) b(1:n)

! Read algorithmic parameters
Read (nin,*) method
Read (nin,*) lfillg, dtolg
Read (nin,*) pstrag
Read (nin,*) milug
Read (nin,*) m, tol, maxitn
Read (nin,*) nb, nover

! Allocate arrays with length based on number of blocks.
Allocate (dtol(nb),istb(nb+1),lfill(nb),npivm(nb),milu(nb),pstrat(nb))

! Set up initial approximate solution x
x(1:n) = 0.0_nag_wp

! Define diagonal block indices.
! In this example use blocks of MB consecutive rows and initialize
! assuming no overlap.

mb = (n+nb-1)/nb
Do k = 1, nb

istb(k) = (k-1)*mb + 1
End Do
istb(nb+1) = n + 1
Do i = 1, n

indb(i) = i
End Do

! Modify INDB and ISTB to account for overlap.
Call f11dgfe_overlap(n,nnz,la,irow,icol,nb,istb,indb,lindb,nover,iwork)
If (iwork(1)==-999) Then

Write (nout,*) ’** LINDB too small, LINDB = ’, lindb, ’.’
Go To 100

End If

! Set algorithmic parameters for each block from global values
lfill(1:nb) = lfillg
dtol(1:nb) = dtolg
pstrat(1:nb) = pstrag
milu(1:nb) = milug

! Set size of real workspace
lwork = 2*n*m + 8*n + m*(m+2) + 100
Allocate (work(lwork))

! Calculate factorization
ifail = 0
Call f11dff(n,nnz,a,la,irow,icol,nb,istb,indb,lindb,lfill,dtol,pstrat, &

milu,ipivp,ipivq,istr,idiag,nnzc,npivm,iwork,liwork,ifail)

! Solve Ax = b using F11DGF
ifail = 0
Call f11dgf(method,n,nnz,a,la,irow,icol,nb,istb,indb,lindb,ipivp,ipivq, &

istr,idiag,b,m,tol,maxitn,x,rnorm,itn,work,lwork,ifail)

Write (nout,99999) itn

F11 – Large Scale Linear Systems F11DGF

Mark 26 F11DGF.7



Write (nout,99998) rnorm
Write (nout,*)

! Output x
Write (nout,*) ’ Solution vector X’
Write (nout,*) ’ ------------------’
Write (nout,99997) x(1:n)

100 Continue

99999 Format (’ Converged in’,I10,’ iterations’)
99998 Format (’ Final residual norm =’,1P,D16.3)
99997 Format (F8.4)

Contains

Subroutine f11dgfe_overlap(n,nnz,la,irow,icol,nb,istb,indb,lindb,nover, &
iwork)

! Purpose
! =======
! This routine takes a set of row indices INDB defining the diagonal
! blocks to be used in F11DFF to define a block Jacobi or additive
! Schwarz preconditioner, and expands them to allow for NOVER levels of
! overlap.
! The pointer array ISTB is also updated accordingly, so that the
! returned values of ISTB and INDB can be passed to F11DFF to define
! overlapping diagonal blocks.
! ----------------------------------------------------------------------

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: la, lindb, n, nb, nnz, nover

! .. Array Arguments ..
Integer, Intent (In) :: icol(la), irow(la)
Integer, Intent (Inout) :: indb(lindb), istb(nb+1)
Integer, Intent (Out) :: iwork(3*n+1)

! .. Local Scalars ..
Integer :: i, ind, iover, k, l, m, nadd, row

! .. Executable Statements ..
Continue

! Find the number of nonzero elements in each row of the matrix A, and
! the start address of each row. Store the start addresses in
! IWORK(N+1,...,2*N+1).

iwork(1:n) = 0
Do k = 1, nnz

iwork(irow(k)) = iwork(irow(k)) + 1
End Do
iwork(n+1) = 1
Do i = 1, n

iwork(n+i+1) = iwork(n+i) + iwork(i)
End Do

! Loop over blocks.
blocks: Do k = 1, nb

! Initialize marker array.
iwork(1:n) = 0

! Mark the rows already in block K in the workspace array.
Do l = istb(k), istb(k+1) - 1

iwork(indb(l)) = 1
End Do

! Loop over levels of overlap.
Do iover = 1, nover

! Initialize counter of new row indices to be added.
ind = 0
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! Loop over the rows currently in the diagonal block.
Do l = istb(k), istb(k+1) - 1

row = indb(l)

! Loop over nonzero elements in row ROW.
Do i = iwork(n+row), iwork(n+row+1) - 1

! If the column index of the nonzero element is not in the
! existing set for this block, store it to be added later, and
! mark it in the marker array.

If (iwork(icol(i))==0) Then
iwork(icol(i)) = 1
ind = ind + 1
iwork(2*n+1+ind) = icol(i)

End If
End Do

End Do

! Shift the indices in INDB and add the new entries for block K.
! Change ISTB accordingly.

nadd = ind
If (istb(nb+1)+nadd-1>lindb) Then

iwork(1) = -999
Exit blocks

End If

Do i = istb(nb+1) - 1, istb(k+1), -1
indb(i+nadd) = indb(i)

End Do

Do i = 1, nadd
l = istb(k+1) + i - 1
indb(l) = iwork(2*n+1+i)

End Do

Do m = k + 1, nb + 1
istb(m) = istb(m) + nadd

End Do
End Do

End Do blocks

Return

End Subroutine f11dgfe_overlap
End Program f11dgfe

10.2 Program Data

F11DGF Example Program Data
9 : n
33 : nnz
64.0 1 1

-20.0 1 2
-20.0 1 4
-12.0 2 1
64.0 2 2

-20.0 2 3
-20.0 2 5
-12.0 3 2
64.0 3 3

-20.0 3 6
-12.0 4 1
64.0 4 4

-20.0 4 5
-20.0 4 7
-12.0 5 2
-12.0 5 4
64.0 5 5

-20.0 5 6
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-20.0 5 8
-12.0 6 3
-12.0 6 5
64.0 6 6

-20.0 6 9
-12.0 7 4
64.0 7 7

-20.0 7 8
-12.0 8 5
-12.0 8 7
64.0 8 8

-20.0 8 9
-12.0 9 6
-12.0 9 8
64.0 9 9 : a(i), irow(i), icol(i) for i=1,nnz

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0 : b(i) for i=1,n
’BICGSTAB’ : method
0 0.0 : lfillg, dtolg
’N’ : pstrag
’N’ : milug
2 1.D-6 100 : m, tol, maxitn
3 1 : nb, nover

10.3 Program Results

F11DGF Example Program Results

Converged in 4 iterations
Final residual norm = 1.106D-05

Solution vector X
------------------
5.2603
5.9165
4.1131
5.9165
6.6636
4.6119
4.1131
4.6119
3.2919
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NAG Library Routine Document

F11DKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DKF computes the approximate solution of a real, symmetric or nonsymmetric, sparse system of
linear equations applying a number of Jacobi iterations. It is expected that F11DKF will be used as a
preconditioner for the iterative solution of real sparse systems of equations.

2 Specification

SUBROUTINE F11DKF (STORE, TRANS, INIT, NITER, N, NNZ, A, IROW, ICOL,
CHECK, B, X, DIAG, WORK, IFAIL)

&

INTEGER NITER, N, NNZ, IROW(NNZ), ICOL(NNZ), IFAIL
REAL (KIND=nag_wp) A(NNZ), B(N), X(N), DIAG(N), WORK(N)
CHARACTER(1) STORE, TRANS, INIT, CHECK

3 Description

F11DKF computes the approximate solution of the real sparse system of linear equations Ax ¼ b using
NITER iterations of the Jacobi algorithm (see also Golub and Van Loan (1996) and Young (1971)):

xkþ1 ¼ xk þD�1 b�Axkð Þ ð1Þ

where k ¼ 1; 2; . . . ;NITER and x0 ¼ 0.

F11DKF can be used both for nonsymmetric and symmetric systems of equations. For symmetric
matrices, either all nonzero elements of the matrix A can be supplied using coordinate storage (CS), or
only the nonzero elements of the lower triangle of A, using symmetric coordinate storage (SCS) (see
the F11 Chapter Introduction).

It is expected that F11DKF will be used as a preconditioner for the iterative solution of real sparse
systems of equations, using either the suite comprising the routines F11GDF, F11GEF and F11GFF, for
symmetric systems, or the suite comprising the routines F11BDF, F11BEF and F11BFF, for
nonsymmetric systems of equations.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

5 Arguments

1: STORE – CHARACTER(1) Input

On entry: specifies whether the matrix A is stored using symmetric coordinate storage (SCS)
(applicable only to a symmetric matrix A) or coordinate storage (CS) (applicable to both
symmetric and non-symmetric matrices).

STORE ¼ N
The complete matrix A is stored in CS format.
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STORE ¼ S
The lower triangle of the symmetric matrix A is stored in SCS format.

Constraint: STORE ¼ N or S .

2: TRANS – CHARACTER(1) Input

On entry: if STORE ¼ N , specifies whether the approximate solution of Ax ¼ b or of ATx ¼ b
is required.

TRANS ¼ N
The approximate solution of Ax ¼ b is calculated.

TRANS ¼ T
The approximate solution of ATx ¼ b is calculated.

Suggested value: if the matrix A is symmetric and stored in CS format, it is recommended that
TRANS ¼ N for reasons of efficiency.

Constraint: TRANS ¼ N or T .

3: INIT – CHARACTER(1) Input

On entry: on first entry, INIT should be set to `I', unless the diagonal elements of A are already
stored in the array DIAG. If DIAG already contains the diagonal of A, it must be set to `N'.

INIT ¼ N
DIAG must contain the diagonal of A.

INIT ¼ I
DIAG will store the diagonal of A on exit.

Suggested value: INIT ¼ I on first entry; INIT ¼ N , subsequently, unless DIAG has been
overwritten.

Constraint: INIT ¼ N or I .

4: NITER – INTEGER Input

On entry: the number of Jacobi iterations requested.

Constraint: NITER � 1.

5: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

6: NNZ – INTEGER Input

On entry: if STORE ¼ N , the number of nonzero elements in the matrix A.

If STORE ¼ S , the number of nonzero elements in the lower triangle of the matrix A.

Constraints:

if STORE ¼ N , 1 � NNZ � N2;
if STORE ¼ S , 1 � NNZ � N� Nþ 1ð Þ=2.

7: AðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: if STORE ¼ N , the nonzero elements in the matrix A (CS format).

If STORE ¼ S , the nonzero elements in the lower triangle of the matrix A (SCS format).

In both cases, the elements of either A or of its lower triangle must be ordered by increasing row
index and by increasing column index within each row. Multiple entries for the same row and
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columns indices are not permitted. The routine F11ZAF or F11ZBF may be used to reorder the
elements in this way for CS and SCS storage, respectively.

8: IROWðNNZÞ – INTEGER array Input
9: ICOLðNNZÞ – INTEGER array Input

On entry: if STORE ¼ N , the row and column indices of the nonzero elements supplied in A.

If STORE ¼ S , the row and column indices of the nonzero elements of the lower triangle of the
matrix A supplied in A.

Constraints:

1 � IROWðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
if STORE ¼ N , 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
if STORE ¼ S , 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;
e i t h e r IROWði � 1Þ < IROWðiÞ o r b o t h IROWði � 1Þ ¼ IROWðiÞ a n d
ICOLði � 1Þ < ICOLðiÞ, for i ¼ 2; 3; . . . ;NNZ.

10: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the CS or SCS representation of the matrix A should be
checked.

CHECK ¼ C
Checks are carried out on the values of N, NNZ, IROW, ICOL; if INIT ¼ N , DIAG is
also checked.

CHECK ¼ N
None of these checks are carried out.

See also Section 9.2.

Constraint: CHECK ¼ C or N .

11: BðNÞ – REAL (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

12: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the approximate solution vector xNITER.

13: DIAGðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if INIT ¼ N , the diagonal elements of A.

On exit: if INIT ¼ N , unchanged on exit.

If INIT ¼ I , the diagonal elements of A.

14: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, STORE 6¼ N or S ,
or TRANS 6¼ N or T ,
or INIT 6¼ N or I ,
or CHECK 6¼ C or N ,
or NITER � 0.

IFAIL ¼ 2

On entry, N < 1,
or NNZ < 1,
or NNZ > N2, if STORE ¼ N ,
or 1 � NNZ � NðNþ 1Þ½ �=2, if STORE ¼ S .

IFAIL ¼ 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and

if STORE ¼ N then 1 � ICOLðiÞ � N, or

if STORE ¼ S then 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ.

IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie within the matrix A, is out of
order, or has duplicate row and column indices. Call either F11ZAF or F11ZBF to reorder and
sum or remove duplicates when STORE ¼ N or STORE ¼ S , respectively.

IFAIL ¼ 4

On entry, INIT ¼ N and some diagonal elements of A stored in DIAG are zero.

IFAIL ¼ 5

On entry, INIT ¼ I and some diagonal elements of A are zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

F11DKF NAG Library Manual

F11DKF.4 Mark 26



7 Accuracy

In general, the Jacobi method cannot be used on its own to solve systems of linear equations. The rate
of convergence is bound by its spectral properties (see, for example, Golub and Van Loan (1996)) and
as a solver, the Jacobi method can only be applied to a limited set of matrices. One condition that
guarantees convergence is strict diagonal dominance.

However, the Jacobi method can be used successfully as a preconditioner to a wider class of systems of
equations. The Jacobi method has good vector/parallel properties, hence it can be applied very
efficiently. Unfortunately, it is not possible to provide criteria which define the applicability of the
Jacobi method as a preconditioner, and its usefulness must be judged for each case.

8 Parallelism and Performance

F11DKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11DKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to F11DKF is proportional to NITER � NNZ.

9.2 Use of CHECK

It is expected that a common use of F11DKF will be as preconditioner for the iterative solution of real,
symmetric or nonsymmetric, linear systems. In this situation, F11DKF is likely to be called many times.
In the interests of both reliability and efficiency, you are recommended to set CHECK ¼ C for the first
of such calls, and to set CHECK ¼ N for all subsequent calls.

10 Example

This example solves the real sparse nonsymmetric system of equations Ax ¼ b iteratively using
F11DKF as a preconditioner.

10.1 Program Text

Program f11dkfe

! F11DKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11bdf, f11bef, f11bff, f11dkf, f11xaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, sigmax, stplhs, stprhs, tol
Integer :: i, ifail, ifail1, irevcm, iterm, &

itn, lwork, lwreq, m, maxitn, monit, &
n, niter, nnz

Character (1) :: init, norm, precon, weight
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Character (8) :: method
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), b(:), diag(:), wgt(:), &
work(:), x(:)

Integer, Allocatable :: icol(:), irow(:)
! .. Executable Statements ..

Write (nout,*) ’F11DKF Example Program Results’

! Skip heading in data file

Read (nin,*)
Read (nin,*) n
Read (nin,*) nnz
lwork = 200
Allocate (a(nnz),b(n),diag(n),wgt(n),work(lwork),x(n),icol(nnz), &

irow(nnz))

! Read or initialize the parameters for the iterative solver

Read (nin,*) method
Read (nin,*) precon, norm, weight, iterm
Read (nin,*) m, tol, maxitn
Read (nin,*) monit
anorm = 0.0E0_nag_wp
sigmax = 0.0E0_nag_wp

! Read the parameters for the preconditioner

Read (nin,*) niter

! Read the nonzero elements of the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read right-hand side vector b and initial approximate solution

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Call F11BDF to initialize the solver

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11bdf(method,precon,norm,weight,iterm,n,m,tol,maxitn,anorm,sigmax, &

monit,lwreq,work,lwork,ifail)

! Call repeatedly F11BEF to solve the equations
! Note that the arrays B and X are overwritten

! On final exit, X will contain the solution and B the residual
! vector

irevcm = 0
init = ’I’

ifail = 1
loop: Do

Call f11bef(irevcm,x,b,wgt,work,lwreq,ifail)

If (irevcm/=4) Then
ifail1 = -1
Select Case (irevcm)
Case (-1)

Call f11xaf(’Transpose’,n,nnz,a,irow,icol,’No checking’,x,b, &
ifail1)

Case (1)
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Call f11xaf(’No transpose’,n,nnz,a,irow,icol,’No checking’,x,b, &
ifail1)

Case (2)

Call f11dkf(’Non symmetric’,’N’,init,niter,n,nnz,a,irow,icol, &
’Check’,x,b,diag,work(lwreq+1),ifail1)

init = ’N’
Case (3)

ifail1 = 0
Call f11bff(itn,stplhs,stprhs,anorm,sigmax,work,lwreq,ifail1)

Write (nout,99999) itn, stplhs
End Select
If (ifail1/=0) Then

irevcm = 6
End If

Else If (ifail/=0) Then
Write (nout,99993) ifail
Go To 100

Else
Exit loop

End If
End Do loop

! Obtain information about the computation

ifail1 = 0
Call f11bff(itn,stplhs,stprhs,anorm,sigmax,work,lwreq,ifail1)

! Print the output data
Write (nout,99996)
Write (nout,99995) ’Number of iterations for convergence: ’, itn
Write (nout,99994) ’Residual norm: ’, stplhs
Write (nout,99994) ’Right-hand side of termination criterion:’, stprhs
Write (nout,99994) ’1-norm of matrix A: ’, anorm

! Output x

Write (nout,99998)
Write (nout,99997)(x(i),b(i),i=1,n)

100 Continue

99999 Format (/,1X,’Monitoring at iteration no.’,I4,/,1X,1P,’residual no’, &
’rm: ’,E14.4)

99998 Format (/,2X,’ Solution vector’,2X,’ Residual vector’)
99997 Format (1X,1P,E16.4,1X,E16.4)
99996 Format (/,1X,’Final Results’)
99995 Format (1X,A,I4)
99994 Format (1X,A,1P,E14.4)
99993 Format (1X,/,1X,’ ** F11BEF returned with IFAIL = ’,I5)

End Program f11dkfe

10.2 Program Data

F11DKF Example Program Data
8 N

24 NNZ
’BICGSTAB’ METHOD
’P’ ’1’ ’N’ 1 PRECON, NORM, WEIGHT, ITERM
2 1.0D-6 20 M, TOL, MAXITN
1 MONIT
4 NITER
4. 1 1

-1. 1 4
1. 1 8
4. 2 1
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-5. 2 2
2. 2 5

-7. 3 3
2. 3 6
2. 4 1

-1. 4 3
6. 4 4
2. 4 7

-1. 5 2
8. 5 5

-2. 5 7
-2. 6 1
5. 6 3
8. 6 6

-2. 7 3
-1. 7 5
7. 7 7

-1. 8 2
2. 8 6
6. 8 8 A(I), IROW(I), ICOL(I), I=1,...,NNZ
6. 8. -9. 46.

17. 21. 22. 34. B(I), I=1,...,N
0. 0. 0. 0.
0. 0. 0. 0. X(I), I=1,...,N

10.3 Program Results

F11DKF Example Program Results

Final Results
Number of iterations for convergence: 2
Residual norm: 1.1177E-04
Right-hand side of termination criterion: 5.4082E-04
1-norm of matrix A: 1.5000E+01

Solution vector Residual vector
1.7035E+00 3.2377E-07
1.0805E+00 -1.7625E-05
1.8305E+00 2.7964E-05
6.0251E+00 -2.5914E-05
3.2942E+00 7.8156E-06
1.9068E+00 9.2064E-06
4.1365E+00 -3.0848E-06
5.2111E+00 1.9834E-05

F11DKF NAG Library Manual

F11DKF.8 (last) Mark 26



NAG Library Routine Document

F11DNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DNF computes an incomplete LU factorization of a complex sparse non-Hermitian matrix,
represented in coordinate storage format. This factorization may be used as a preconditioner in
combination with F11BSF or F11DQF.

2 Specification

SUBROUTINE F11DNF (N, NNZ, A, LA, IROW, ICOL, LFILL, DTOL, PSTRAT, MILU,
IPIVP, IPIVQ, ISTR, IDIAG, NNZC, NPIVM, IWORK,
LIWORK, IFAIL)

&
&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), LFILL, IPIVP(N),
IPIVQ(N), ISTR(N+1), IDIAG(N), NNZC, NPIVM,
IWORK(LIWORK), LIWORK, IFAIL

&
&

REAL (KIND=nag_wp) DTOL
COMPLEX (KIND=nag_wp) A(LA)
CHARACTER(1) PSTRAT, MILU

3 Description

F11DNF computes an incomplete LU factorization (see Meijerink and Van der Vorst (1977) and
Meijerink and Van der Vorst (1981)) of a complex sparse non-Hermitian n by n matrix A. The
factorization is intended primarily for use as a preconditioner with one of the iterative solvers F11BSF
or F11DQF.

The decomposition is written in the form

A ¼M þR;

where

M ¼ PLDUQ

and L is lower triangular with unit diagonal elements, D is diagonal, U is upper triangular with unit
diagonals, P and Q are permutation matrices, and R is a remainder matrix.

The amount of fill-in occurring in the factorization can vary from zero to complete fill, and can be
controlled by specifying either the maximum level of fill LFILL, or the drop tolerance DTOL.

The argument PSTRAT defines the pivoting strategy to be used. The options currently available are no
pivoting, user-defined pivoting, partial pivoting by columns for stability, and complete pivoting by rows
for sparsity and by columns for stability. The factorization may optionally be modified to preserve the
row-sums of the original matrix.

The sparse matrix A is represented in coordinate storage (CS) format (see Section 2.1.1 in the F11
Chapter Introduction). The array A stores all the nonzero elements of the matrix A, while arrays IROW
and ICOL store the corresponding row and column indices respectively. Multiple nonzero elements may
not be specified for the same row and column index.

The preconditioning matrix M is returned in terms of the CS representation of the matrix

C ¼ LþD�1 þ U � 2I:

Further algorithmic details are given in Section 9.3.
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4 References

Meijerink J and Van der Vorst H (1977) An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162

Meijerink J and Van der Vorst H (1981) Guidelines for the usage of incomplete decompositions in
solving sets of linear equations as they occur in practical problems J. Comput. Phys. 44 134–155

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: 1 � NNZ � N2.

3: AðLAÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the nonzero elements in the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices
are not permitted. The routine F11ZNF may be used to order the elements in this way.

On exit: the first NNZ entries of A contain the nonzero elements of A and the next NNZC entries
contain the elements of the matrix C. Matrix elements are ordered by increasing row index, and
by increasing column index within each row.

4: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11DNF is called. These arrays must be of sufficient size to store both A (NNZ elements)
and C (NNZC elements).

Constraint: LA � 2� NNZ.

5: IROWðLAÞ – INTEGER array Input/Output
6: ICOLðLAÞ – INTEGER array Input/Output

On entry: the row and column indices of the nonzero elements supplied in A.

Constraints:

IROW and ICOL must satisfy these constraints (which may be imposed by a call to F11ZNF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
e i t h e r IROWði � 1Þ < IROWðiÞ o r b o t h IROWði � 1Þ ¼ IROWðiÞ a n d
ICOLði � 1Þ < ICOLðiÞ, for i ¼ 2; 3; . . . ;NNZ.

On exit: the row and column indices of the nonzero elements returned in A.

7: LFILL – INTEGER Input

On entry: if LFILL � 0 its value is the maximum level of fill allowed in the decomposition (see
Section 9.2). A negative value of LFILL indicates that DTOL will be used to control the fill
instead.
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8: DTOL – REAL (KIND=nag_wp) Input

On entry: if LFILL < 0, DTOL is used as a drop tolerance to control the fill-in (see Section 9.2);
otherwise DTOL is not referenced.

Constraint: if LFILL < 0, DTOL � 0:0.

9: PSTRAT – CHARACTER(1) Input

On entry: specifies the pivoting strategy to be adopted.

PSTRAT ¼ N
No pivoting is carried out.

PSTRAT ¼ U
Pivoting is carried out according to the user-defined input values of IPIVP and IPIVQ.

PSTRAT ¼ P
Partial pivoting by columns for stability is carried out.

PSTRAT ¼ C
Complete pivoting by rows for sparsity, and by columns for stability, is carried out.

Suggested value: PSTRAT ¼ C .

Constraint: PSTRAT ¼ N , U , P or C .

10: MILU – CHARACTER(1) Input

On entry: indicates whether or not the factorization should be modified to preserve row-sums (see
Section 9.4).

MILU ¼ M
The factorization is modified.

MILU ¼ N
The factorization is not modified.

Constraint: MILU ¼ M or N .

11: IPIVPðNÞ – INTEGER array Input/Output
12: IPIVQðNÞ – INTEGER array Input/Output

On entry: if PSTRAT ¼ U , then IPIVPðkÞ and IPIVQðkÞ must specify the row and column
indices of the element used as a pivot at elimination stage k. Otherwise IPIVP and IPIVQ need
not be initialized.

Constraint: if PSTRAT ¼ U , IPIVP and IPIVQ must both hold valid permutations of the
integers on [1,N].

On exit: the pivot indices. If IPIVPðkÞ ¼ i and IPIVQðkÞ ¼ j then the element in row i and
column j was used as the pivot at elimination stage k.

13: ISTRðNþ 1Þ – INTEGER array Output

On exit: ISTRðiÞ, for i ¼ 1; 2; . . . ;N, is the starting address in the arrays A, IROW and ICOL of
row i of the matrix C. ISTRðNþ 1Þ is the address of the last nonzero element in C plus one.

14: IDIAGðNÞ – INTEGER array Output

On exit: IDIAGðiÞ, for i ¼ 1; 2; . . . ;N, holds the index of arrays A, IROW and ICOL which holds
the diagonal element in row i of the matrix C.

15: NNZC – INTEGER Output

On exit: the number of nonzero elements in the matrix C.
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16: NPIVM – INTEGER Output

On exit: if NPIVM > 0 it gives the number of pivots which were modified during the
factorization to ensure that M exists.

If NPIVM ¼ �1 no pivot modifications were required, but a local restart occurred (see
Section 9.3). The quality of the preconditioner will generally depend on the returned value of
NPIVM.

If NPIVM is large the preconditioner may not be satisfactory. In this case it may be advantageous
to call F11DNF again with an increased value of LFILL, a reduced value of DTOL, or set
PSTRAT ¼ C . See also Section 9.5.

17: IWORKðLIWORKÞ – INTEGER array Workspace
18: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F11DNF is called.

Constraint: LIWORK � 7� Nþ 2.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or NNZ < 1,
or NNZ > N2,
or LA < 2� NNZ,
or LFILL < 0 and DTOL < 0:0,
or PSTRAT 6¼ N , U , P or C ,
or MILU 6¼ M or N ,
or LIWORK < 7� Nþ 2.

IFAIL ¼ 2

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ, or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie within the matrix A, is out of
order, or has duplicate row and column indices. Call F11ZNF to reorder and sum or remove
duplicates.
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IFAIL ¼ 3

On entry, PSTRAT ¼ U , but one or both of IPIVP and IPIVQ does not represent a valid
permutation of the integers in [1,N]. An input value of IPIVP or IPIVQ is either out of range or
repeated.

IFAIL ¼ 4

LA is too small, resulting in insufficient storage space for fill-in elements. The decomposition has
been terminated before completion. Either increase LA or reduce the amount of fill by reducing
LFILL, or increasing DTOL.

IFAIL ¼ 5 (F11ZNF)

A serious error has occurred in an internal call to the specified routine. Check all subroutine calls
and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the factorization will be determined by the size of the elements that are dropped and
the size of any modifications made to the pivot elements. If these sizes are small then the computed
factors will correspond to a matrix close to A. The factorization can generally be made more accurate
by increasing LFILL, or by reducing DTOL with LFILL < 0.

If F11DNF is used in combination with F11BSF or F11DQF, the more accurate the factorization the
fewer iterations will be required. However, the cost of the decomposition will also generally increase.

8 Parallelism and Performance

F11DNF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken for a call to F11DNF is roughly proportional to NNZC2=N.

9.2 Control of Fill-in

If LFILL � 0 the amount of fill-in occurring in the incomplete factorization is controlled by limiting the
maximum level of fill-in to LFILL. The original nonzero elements of A are defined to be of level 0. The
fill level of a new nonzero location occurring during the factorization is defined as:

k ¼ max ke; kcð Þ þ 1;
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where ke is the level of fill of the element being eliminated, and kc is the level of fill of the element
causing the fill-in.

If LFILL < 0 the fill-in is controlled by means of the drop tolerance DTOL. A potential fill-in element
aij occurring in row i and column j will not be included if:

aij
		 		 < DTOL� �;

where � is the maximum modulus element in the matrix A.

For either method of control, any elements which are not included are discarded unless MILU ¼ M , in
which case their contributions are subtracted from the pivot element in the relevant elimination row, to
preserve the row-sums of the original matrix.

Should the factorization process break down a local restart process is implemented as described in
Section 9.3. This will affect the amount of fill present in the final factorization.

9.3 Algorithmic Details

The factorization is constructed row by row. At each elimination stage a row index is chosen. In the
case of complete pivoting this index is chosen in order to reduce fill-in. Otherwise the rows are treated
in the order given, or some user-defined order.

The chosen row is copied from the original matrix A and modified according to those previous
elimination stages which affect it. During this process any fill-in elements are either dropped or kept
according to the values of LFILL or DTOL. In the case of a modified factorization (MILU ¼ M ) the
sum of the dropped terms for the given row is stored.

Finally the pivot element for the row is chosen and the multipliers are computed for this elimination
stage. For partial or complete pivoting the pivot element is chosen in the interests of stability as the
element of largest absolute value in the row. Otherwise the pivot element is chosen in the order given,
or some user-defined order.

If the factorization breaks down because the chosen pivot element is zero, or there is no nonzero pivot
available, a local restart recovery process is implemented. The modification of the given pivot row
according to previous elimination stages is repeated, but this time keeping all fill-in. Note that in this
case the final factorization will include more fill than originally specified by the user-supplied value of
LFILL or DTOL. The local restart usually results in a suitable nonzero pivot arising. The original
criteria for dropping fill-in elements is then resumed for the next elimination stage (hence the local
nature of the restart process). Should this restart process also fail to produce a nonzero pivot element an
arbitrary unit pivot is introduced in an arbitrarily chosen column. F11DNF returns an integer argument
NPIVM which gives the number of these arbitrary unit pivots introduced. If no pivots were modified
but local restarts occurred NPIVM ¼ �1 is returned.

9.4 Choice of Arguments

There is unfortunately no choice of the various algorithmic arguments which is optimal for all types of
matrix, and some experimentation will generally be required for each new type of matrix encountered.
The recommended approach is to start with LFILL ¼ 0 and PSTRAT ¼ C . If the value returned for
NPIVM is significantly larger than zero, i.e., a large number of pivot modifications were required to
ensure that M existed, the preconditioner is not likely to be satisfactory. In this case increase LFILL
until NPIVM falls to a value close to zero.

For certain classes of matrices (typically those arising from the discretization of elliptic or parabolic
partial differential equations) the convergence rate of the preconditioned iterative solver can sometimes
be significantly improved by using an incomplete factorization which preserves the row-sums of the
original matrix. In these cases try setting MILU ¼ M .

9.5 Direct Solution of Sparse Linear Systems

Although it is not the primary purpose of the routines F11DNF and F11DPF, they may be used together
to obtain a direct solution to a nonsingular sparse complex non-Hermitian linear system. To achieve
this the call to F11DPF should be preceded by a complete LU factorization
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A ¼ PLDUQ ¼M:

A complete factorization is obtained from a call to F11DNF with LFILL < 0 and DTOL ¼ 0:0,
provided NPIVM � 0 on exit. A positive value of NPIVM indicates that A is singular, or ill-
conditioned. A factorization with positive NPIVM may serve as a preconditioner, but will not result in a
direct solution. It is therefore essential to check the output value of NPIVM if a direct solution is
required.

The use of F11DNF and F11DPF as a direct method is illustrated in F11DPF.

10 Example

This example reads in a complex sparse non-Hermitian matrix A and calls F11DNF to compute an
incomplete LU factorization. It then outputs the nonzero elements of both A and
C ¼ LþD�1 þ U � 2I.

The call to F11DNF has LFILL ¼ 0, and PSTRAT ¼ C , giving an unmodified zero-fill LU
factorization, with row pivoting for sparsity and column pivoting for stability.

10.1 Program Text

Program f11dnfe

! F11DNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11dnf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dtol
Integer :: i, ifail, la, lfill, liwork, n, nnz, &

nnzc, npivm
Character (1) :: milu, pstrat

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:)
Integer, Allocatable :: icol(:), idiag(:), ipivp(:), &

ipivq(:), irow(:), istr(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11DNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n
Read (nin,*) nnz
la = 2*nnz
liwork = 7*n + 2
Allocate (a(la),icol(la),idiag(n),ipivp(n),ipivq(n),irow(la),istr(n+1), &

iwork(liwork))
Read (nin,*) lfill, dtol
Read (nin,*) pstrat
Read (nin,*) milu

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do
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! Calculate incomplete LU factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11dnf(n,nnz,a,la,irow,icol,lfill,dtol,pstrat,milu,ipivp,ipivq, &

istr,idiag,nnzc,npivm,iwork,liwork,ifail)

! Output original matrix

Write (nout,*) ’ Original Matrix’
Write (nout,’(A,I4)’) ’ N =’, n
Write (nout,’(A,I4)’) ’ NNZ =’, nnz
Do i = 1, nnz

Write (nout,99999) i, a(i), irow(i), icol(i)
End Do
Write (nout,*)

! Output details of the factorization

Write (nout,*) ’ Factorization’
Write (nout,’(A,I4)’) ’ N =’, n
Write (nout,’(A,I4)’) ’ NNZ =’, nnzc
Write (nout,’(A,I4)’) ’ NPIVM =’, npivm
Do i = nnz + 1, nnz + nnzc

Write (nout,99999) i, a(i), irow(i), icol(i)
End Do
Write (nout,*)

Write (nout,*) ’ I IPIVP(I) IPIVQ(I)’
Do i = 1, n

Write (nout,’(3I10)’) i, ipivp(i), ipivq(i)
End Do

99999 Format (1X,I8,5X,’(’,E16.4,’,’,E16.4,’)’,2I8)
End Program f11dnfe

10.2 Program Data

F11DNF Example Program Data
4 N
11 NNZ
0 0.0 LFILL, DTOL
’C’ PSTRAT
’N’ MILU

( 1., 3.) 1 2
( 1., 0.) 1 3
(-1.,-2.) 2 1
( 2.,-2.) 2 3
( 2., 1.) 2 4
( 0., 5.) 3 1
(-2., 0.) 3 4
( 1., 1.) 4 1
(-2., 4.) 4 2
( 1.,-3.) 4 3
( 0., 7.) 4 4 A(I), IROW(I), ICOL(I), I=1,...,NNZ

10.3 Program Results

F11DNF Example Program Results

Original Matrix
N = 4
NNZ = 11

1 ( 0.1000E+01, 0.3000E+01) 1 2
2 ( 0.1000E+01, 0.0000E+00) 1 3
3 ( -0.1000E+01, -0.2000E+01) 2 1
4 ( 0.2000E+01, -0.2000E+01) 2 3
5 ( 0.2000E+01, 0.1000E+01) 2 4
6 ( 0.0000E+00, 0.5000E+01) 3 1
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7 ( -0.2000E+01, 0.0000E+00) 3 4
8 ( 0.1000E+01, 0.1000E+01) 4 1
9 ( -0.2000E+01, 0.4000E+01) 4 2

10 ( 0.1000E+01, -0.3000E+01) 4 3
11 ( 0.0000E+00, 0.7000E+01) 4 4

Factorization
N = 4
NNZ = 11
NPIVM = 0

12 ( 0.1000E+00, -0.3000E+00) 1 1
13 ( 0.1000E+00, -0.3000E+00) 1 3
14 ( 0.0000E+00, -0.2000E+00) 2 2
15 ( 0.0000E+00, 0.4000E+00) 2 4
16 ( -0.4000E+00, 0.2000E+00) 3 2
17 ( 0.2500E+00, 0.2500E+00) 3 3
18 ( -0.5000E-01, 0.6500E+00) 3 4
19 ( 0.1000E+01, 0.1000E+01) 4 1
20 ( 0.2000E+00, -0.2000E+00) 4 2
21 ( 0.1000E+01, -0.1000E+01) 4 3
22 ( -0.4803E-01, -0.1397E+00) 4 4

I IPIVP(I) IPIVQ(I)
1 1 2
2 3 1
3 2 3
4 4 4
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NAG Library Routine Document

F11DPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DPF solves a system of complex linear equations involving the incomplete LU preconditioning
matrix generated by F11DNF.

2 Specification

SUBROUTINE F11DPF (TRANS, N, A, LA, IROW, ICOL, IPIVP, IPIVQ, ISTR,
IDIAG, CHECK, Y, X, IFAIL)

&

INTEGER N, LA, IROW(LA), ICOL(LA), IPIVP(N), IPIVQ(N),
ISTR(N+1), IDIAG(N), IFAIL

&

COMPLEX (KIND=nag_wp) A(LA), Y(N), X(N)
CHARACTER(1) TRANS, CHECK

3 Description

F11DPF solves a system of complex linear equations

Mx ¼ y; or MTx ¼ y;

according to the value of the argument TRANS, where the matrix M ¼ PLDUQ corresponds to an
incomplete LU decomposition of a complex sparse matrix stored in coordinate storage (CS) format (see
Section 2.1.1 in the F11 Chapter Introduction), as generated by F11DNF.

In the above decomposition L is a lower triangular sparse matrix with unit diagonal elements, D is a
diagonal matrix, U is an upper triangular sparse matrix with unit diagonal elements and, P and Q are
permutation matrices. L, D and U are supplied to F11DPF through the matrix

C ¼ LþD�1 þ U � 2I

which is an N by N sparse matrix, stored in CS format, as returned by F11DNF. The permutation
matrices P and Q are returned from F11DNF via the arrays IPIVP and IPIVQ.

It is envisaged that a common use of F11DPF will be to carry out the preconditioning step required in
the application of F11BSF to sparse complex linear systems. F11DPF is used for this purpose by the
Black Box routine F11DQF.

F11DPF may also be used in combination with F11DNF to solve a sparse system of complex linear
equations directly (see Section 9.5 in F11DNF). This use of F11DPF is illustrated in Section 10.

4 References

None.

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies whether or not the matrix M is transposed.

TRANS ¼ N
Mx ¼ y is solved.
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TRANS ¼ T
MTx ¼ y is solved.

Constraint: TRANS ¼ N or T .

2: N – INTEGER Input

On entry: n, the order of the matrix M. This must be the same value as was supplied in the
preceding call to F11DNF.

Constraint: N � 1.

3: AðLAÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the values returned in the array A by a previous call to F11DNF.

4: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11DPF is called. This must be the same value supplied in the preceding call to F11DNF.

5: IROWðLAÞ – INTEGER array Input
6: ICOLðLAÞ – INTEGER array Input
7: IPIVPðNÞ – INTEGER array Input
8: IPIVQðNÞ – INTEGER array Input
9: ISTRðNþ 1Þ – INTEGER array Input
10: IDIAGðNÞ – INTEGER array Input

On entry: the values returned in arrays IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG by a
previous call to F11DNF.

11: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the CS representation of the matrix M should be checked.

CHECK ¼ C
Checks are carried on the values of N, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG.

CHECK ¼ N
None of these checks are carried out.

See also Section 9.2.

Constraint: CHECK ¼ C or N .

12: YðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the right-hand side vector y.

13: XðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the solution vector x.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TRANS 6¼ N or T ,
or CHECK 6¼ C or N .

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, the CS representation of the preconditioning matrix M is invalid. Further details are
given in the error message. Check that the call to F11DPF has been preceded by a valid call to
F11DNF and that the arrays A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been
corrupted between the two calls.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If TRANS ¼ N the computed solution x is the exact solution of a perturbed system of equations
M þ �Mð Þx ¼ y, where

�Mj j � c nð Þ�P Lj j Dj j Uj jQ;

c nð Þ is a modest linear function of n, and � is the machine precision. An equivalent result holds when
TRANS ¼ T .

8 Parallelism and Performance

F11DPF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken for a call to F11DPF is proportional to the value of NNZC returned from F11DNF.
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9.2 Use of CHECK

It is expected that a common use of F11DPF will be to carry out the preconditioning step required in
the application of F11BSF to sparse complex linear systems. In this situation F11DPF is likely to be
called many times with the same matrix M. In the interests of both reliability and efficiency, you are
recommended to set CHECK ¼ C for the first of such calls, and to set CHECK ¼ N for all subsequent
calls.

10 Example

This example reads in a complex sparse non-Hermitian matrix A and a vector y. It then calls F11DNF,
with LFILL ¼ �1 and DTOL ¼ 0:0, to compute the complete LU decomposition

A ¼ PLDUQ:

Finally it calls F11DPF to solve the system

PLDUQx ¼ y:

10.1 Program Text

Program f11dpfe

! F11DPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11dnf, f11dpf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dtol
Integer :: i, ifail, la, lfill, liwork, n, nnz, &

nnzc, npivm
Character (1) :: check, milu, pstrat, trans

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), x(:), y(:)
Integer, Allocatable :: icol(:), idiag(:), ipivp(:), &

ipivq(:), irow(:), istr(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11DPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz
la = 3*nnz
liwork = 7*n + 2
Allocate (a(la),x(n),y(n),icol(la),idiag(n),ipivp(n),ipivq(n),irow(la), &

istr(n+1),iwork(liwork))

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read the vector y

Read (nin,*) y(1:n)

! Calculate LU factorization
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lfill = -1
dtol = 0.0E0_nag_wp
pstrat = ’C’
milu = ’N’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11dnf(n,nnz,a,la,irow,icol,lfill,dtol,pstrat,milu,ipivp,ipivq, &

istr,idiag,nnzc,npivm,iwork,liwork,ifail)

! Check value of NPIVM

If (npivm>0) Then

Write (nout,*) ’Factorization is not complete’

Else

! Solve P L D U x = y

trans = ’N’
check = ’C’

ifail = 0
Call f11dpf(trans,n,a,la,irow,icol,ipivp,ipivq,istr,idiag,check,y,x, &

ifail)

! Output results

Write (nout,*) ’Solution of linear system’
Write (nout,99999) x(1:n)

End If

99999 Format (1X,’(’,E16.4,’,’,E16.4,’)’)
End Program f11dpfe

10.2 Program Data

F11DPF Example Program Data
4 N

11 NNZ
( 1., 2.) 1 2
( 1., 3.) 1 3
(-1.,-3.) 2 1
( 2., 0.) 2 3
( 0., 4.) 2 4
( 3., 4.) 3 1
(-2., 0.) 3 4
( 1.,-1.) 4 1
(-2.,-1.) 4 2
( 1., 0.) 4 3
( 1., 3.) 4 4 A(I), IROW(I), ICOL(I), I=1,...,NNZ
( 5.0, 14.0)
( 21.0, 5.0)
(-21.0, 18.0)
( 14.0, 4.0) Y(I), I=1,...,N

10.3 Program Results

F11DPF Example Program Results

Solution of linear system
( 0.1000E+01, 0.4000E+01)
( 0.2000E+01, 0.3000E+01)
( 0.3000E+01, -0.2000E+01)
( 0.4000E+01, -0.1000E+01)
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NAG Library Routine Document

F11DQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DQF solves a complex sparse non-Hermitian system of linear equations, represented in coordinate
storage format, using a restarted generalized minimal residual (RGMRES), conjugate gradient squared
(CGS), stabilized bi-conjugate gradient (Bi-CGSTAB), or transpose-free quasi-minimal residual
(TFQMR) method, with incomplete LU preconditioning.

2 Specification

SUBROUTINE F11DQF (METHOD, N, NNZ, A, LA, IROW, ICOL, IPIVP, IPIVQ,
ISTR, IDIAG, B, M, TOL, MAXITN, X, RNORM, ITN, WORK,
LWORK, IFAIL)

&
&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), IPIVP(N),
IPIVQ(N), ISTR(N+1), IDIAG(N), M, MAXITN, ITN,
LWORK, IFAIL

&
&

REAL (KIND=nag_wp) TOL, RNORM
COMPLEX (KIND=nag_wp) A(LA), B(N), X(N), WORK(LWORK)
CHARACTER(*) METHOD

3 Description

F11DQF solves a complex sparse non-Hermitian linear system of equations

Ax ¼ b;

using a preconditioned RGMRES (see Saad and Schultz (1986)), CGS (see Sonneveld (1989)), Bi-
CGSTAB(‘) (see Van der Vorst (1989) and Sleijpen and Fokkema (1993)), or TFQMR (see Freund and
Nachtigal (1991) and Freund (1993)) method.

F11DQF uses the incomplete LU factorization determined by F11DNF as the preconditioning matrix. A
call to F11DQF must always be preceded by a call to F11DNF. Alternative preconditioners for the same
storage scheme are available by calling F11DSF.

The matrix A, and the preconditioning matrix M, are represented in coordinate storage (CS) format (see
Section 2.1.1 in the F11 Chapter Introduction) in the arrays A, IROW and ICOL, as returned from
F11DNF. The array A holds the nonzero entries in these matrices, while IROW and ICOL hold the
corresponding row and column indices.

F11DQF is a Black Box routine which calls F11BRF, F11BSF and F11BTF. If you wish to use an
alternative storage scheme, preconditioner, or termination criterion, or require additional diagnostic
information, you should call these underlying routines directly.

4 References

Freund R W (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
SIAM J. Sci. Comput. 14 470–482

Freund R W and Nachtigal N (1991) QMR: a Quasi-Minimal Residual Method for Non-Hermitian
Linear Systems Numer. Math. 60 315–339

Saad Y and Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 7 856–869
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Sleijpen G L G and Fokkema D R (1993) BiCGSTAB ‘ð Þ for linear equations involving matrices with
complex spectrum ETNA 1 11–32

Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J. Sci.
Statist. Comput. 10 36–52

Van der Vorst H (1989) Bi-CGSTAB, a fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 13 631–644

5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: specifies the iterative method to be used.

METHOD ¼ RGMRES
Restarted generalized minimum residual method.

METHOD ¼ CGS
Conjugate gradient squared method.

METHOD ¼ BICGSTAB
Bi-conjugate gradient stabilized (‘) method.

METHOD ¼ TFQMR
Transpose-free quasi-minimal residual method.

Constraint: METHOD ¼ RGMRES , CGS , BICGSTAB or TFQMR .

2: N – INTEGER Input

On entry: n, the order of the matrix A. This must be the same value as was supplied in the
preceding call to F11DNF.

Constraint: N � 1.

3: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A. This must be the same value as was
supplied in the preceding call to F11DNF.

Constraint: 1 � NNZ � N2.

4: AðLAÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the values returned in the array A by a previous call to F11DNF.

5: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11DQF is called. This must be the same value as was supplied in the preceding call to
F11DNF.

Constraint: LA � 2� NNZ.

6: IROWðLAÞ – INTEGER array Input
7: ICOLðLAÞ – INTEGER array Input
8: IPIVPðNÞ – INTEGER array Input
9: IPIVQðNÞ – INTEGER array Input
10: ISTRðNþ 1Þ – INTEGER array Input
11: IDIAGðNÞ – INTEGER array Input

On entry: the values returned in arrays IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG by a
previous call to F11DNF.

IPIVP and IPIVQ are restored on exit.
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12: BðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

13: M – INTEGER Input

On entry: if METHOD ¼ RGMRES , M is the dimension of the restart subspace.

If METHOD ¼ BICGSTAB , M is the order ‘ of the polynomial Bi-CGSTAB method.

Otherwise, M is not referenced.

Constraints:

if METHOD ¼ RGMRES , 0 < M � min N; 50ð Þ;
if METHOD ¼ BICGSTAB , 0 < M � min N; 10ð Þ.

14: TOL – REAL (KIND=nag_wp) Input

On entry: the required tolerance. Let xk denote the approximate solution at iteration k, and rk the
corresponding residual. The algorithm is considered to have converged at iteration k if

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

If TOL � 0:0, � ¼ max
ffiffi
�
p
; 10�;

ffiffiffi
n
p

� is used, where � is the machine precision. Otherwise
� ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

15: MAXITN – INTEGER Input

On entry: the maximum number of iterations allowed.

Constraint: MAXITN � 1.

16: XðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: an initial approximation to the solution vector x.

On exit: an improved approximation to the solution vector x.

17: RNORM – REAL (KIND=nag_wp) Output

On exit: the final value of the residual norm rkk k1, where k is the output value of ITN.

18: ITN – INTEGER Output

On exit: the number of iterations carried out.

19: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Workspace
20: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11DQF is called.

Constraints:

if METHOD ¼ RGMRES , LWORK � 4� NþM� Mþ Nþ 5ð Þ þ 121;
if METHOD ¼ CGS , LWORK � 8� Nþ 120;
if METHOD ¼ BICGSTAB , LWORK � 2� N� Mþ 3ð Þ þM� Mþ 2ð Þ þ 120;
if METHOD ¼ TFQMR , LWORK � 11� Nþ 120.

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ RGMRES ; CGS ; BICGSTAB , or `TFQMR',
or N < 1,
or NNZ < 1,
or NNZ > N2,
or LA < 2� NNZ,
or M < 1 and METHOD ¼ RGMRES or METHOD ¼ BICGSTAB ,
or M > min N; 50ð Þ, with METHOD ¼ RGMRES ,
or M > min N; 10ð Þ, with METHOD ¼ BICGSTAB ,
or TOL � 1:0,
or MAXITN < 1,
or LWORK too small.

IFAIL ¼ 2

On entry, the CS representation of A is invalid. Further details are given in the error message.
Check that the call to F11DQF has been preceded by a valid call to F11DNF, and that the arrays
A, IROW, and ICOL have not been corrupted between the two calls.

IFAIL ¼ 3

On entry, the CS representation of the preconditioning matrix M is invalid. Further details are
given in the error message. Check that the call to F11DQF has been preceded by a valid call to
F11DNF and that the arrays A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been
corrupted between the two calls.

IFAIL ¼ 4

The required accuracy could not be obtained. However, a reasonable accuracy may have been
obtained, and further iterations could not improve the result. You should check the output value
of RNORM for acceptability. This error code usually implies that your problem has been fully
and satisfactorily solved to within or close to the accuracy available on your system. Further
iterations are unlikely to improve on this situation.

IFAIL ¼ 5

Required accuracy not obtained in MAXITN iterations.

IFAIL ¼ 6

Algorithmic breakdown. A solution is returned, although it is possible that it is completely
inaccurate.
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IFAIL ¼ 7 (F11BRF, F11BSF or F11BTF)

A serious error has occurred in an internal call to one of the specified routines. Check all
subroutine calls and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful termination, the final residual rk ¼ b�Axk, where k ¼ ITN, satisfies the termination
criterion

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

The value of the final residual norm is returned in RNORM.

8 Parallelism and Performance

F11DQF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11DQF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F11DQF for each iteration is roughly proportional to the value of NNZC returned
from the preceding call to F11DNF.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined a
priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned coefficient
matrix �A ¼M�1A.

10 Example

This example solves a complex sparse non-Hermitian linear system of equations using the CGS method,
with incomplete LU preconditioning.
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10.1 Program Text

Program f11dqfe

! F11DQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11dnf, f11dqf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dtol, rnorm, tol
Integer :: i, ifail, itn, la, lfill, liwork, &

lwork, m, maxitn, n, nnz, nnzc, &
npivm

Character (8) :: method
Character (1) :: milu, pstrat

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:)
Integer, Allocatable :: icol(:), idiag(:), ipivp(:), &

ipivq(:), irow(:), istr(:), iwork(:)
! .. Intrinsic Procedures ..

Intrinsic :: max
! .. Executable Statements ..

Write (nout,*) ’F11DQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n, m
Read (nin,*) nnz
la = 2*nnz
liwork = 7*n + 2
lwork = max(4*n+m*(m+n+5)+121,8*n+120,2*n*(m+3)+m*(m+2)+120,11*n+120)

Allocate (a(la),b(n),work(lwork),x(n),icol(la),idiag(n),ipivp(n), &
ipivq(n),irow(la),istr(n+1),iwork(liwork))

Read (nin,*) method
Read (nin,*) lfill, dtol
Read (nin,*) pstrat
Read (nin,*) milu
Read (nin,*) tol, maxitn

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read rhs vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Calculate incomplete LU factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11dnf(n,nnz,a,la,irow,icol,lfill,dtol,pstrat,milu,ipivp,ipivq, &

istr,idiag,nnzc,npivm,iwork,liwork,ifail)

! Solve Ax = b using F11DQF

ifail = 0
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Call f11dqf(method,n,nnz,a,la,irow,icol,ipivp,ipivq,istr,idiag,b,m,tol, &
maxitn,x,rnorm,itn,work,lwork,ifail)

Write (nout,99999) itn
Write (nout,99998) rnorm
Write (nout,*)

! Output x

Write (nout,*) ’ X’
Write (nout,99997) x(1:n)

99999 Format (1X,’Converged in’,I10,’ iterations’)
99998 Format (1X,’Final residual norm =’,1P,E16.3)
99997 Format (1X,’(’,1P,E16.4,’,’,1P,E16.4,’)’)

End Program f11dqfe

10.2 Program Data

F11DQF Example Program Data
8 4 N, M
24 NNZ
’CGS’ METHOD
0 0.0 LFILL, DTOL
’C’ PSTRAT
’N’ MILU
1.0D-10 100 TOL, MAXITN

( 2., 1.) 1 1
(-1., 1.) 1 4
( 1.,-3.) 1 8
( 4., 7.) 2 1
(-3., 0.) 2 2
( 2., 4.) 2 5
(-7.,-5.) 3 3
( 2., 1.) 3 6
( 3., 2.) 4 1
(-4., 2.) 4 3
( 0., 1.) 4 4
( 5.,-3.) 4 7
(-1., 2.) 5 2
( 8., 6.) 5 5
(-3.,-4.) 5 7
(-6.,-2.) 6 1
( 5.,-2.) 6 3
( 2., 0.) 6 6
( 0.,-5.) 7 3
(-1., 5.) 7 5
( 6., 2.) 7 7
(-1., 4.) 8 2
( 2., 0.) 8 6
( 3., 3.) 8 8 A(I), IROW(I), ICOL(I), I=1,...,NNZ
( 7., 11.)
( 1., 24.)
(-13.,-18.)
(-10., 3.)
( 23., 14.)
( 17., -7.)
( 15., -3.)
( -3., 20.) B(I), I=1,...,N
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.) X(I), I=1,...,N
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10.3 Program Results

F11DQF Example Program Results

Converged in 4 iterations
Final residual norm = 2.857E-11

X
( 1.0000E+00, 1.0000E+00)
( 2.0000E+00, -1.0000E+00)
( 3.0000E+00, 1.0000E+00)
( 4.0000E+00, -1.0000E+00)
( 3.0000E+00, -1.0000E+00)
( 2.0000E+00, 1.0000E+00)
( 1.0000E+00, -1.0000E+00)
( 3.0103E-12, 3.0000E+00)
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NAG Library Routine Document

F11DRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DRF solves a system of linear equations involving the preconditioning matrix corresponding to
SSOR applied to a complex sparse non-Hermitian matrix, represented in coordinate storage format.

2 Specification

SUBROUTINE F11DRF (TRANS, N, NNZ, A, IROW, ICOL, RDIAG, OMEGA, CHECK, Y,
X, IWORK, IFAIL)

&

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IWORK(2*N+1),
IFAIL

&

REAL (KIND=nag_wp) OMEGA
COMPLEX (KIND=nag_wp) A(NNZ), RDIAG(N), Y(N), X(N)
CHARACTER(1) TRANS, CHECK

3 Description

F11DRF solves a system of linear equations

Mx ¼ y; or MHx ¼ y;

according to the value of the argument TRANS, where the matrix

M ¼ 1

! 2� !ð Þ Dþ !Lð ÞD�1 Dþ !Uð Þ

corresponds to symmetric successive-over-relaxation (SSOR) Young (1971) applied to a linear system
Ax ¼ b, where A is a complex sparse non-Hermitian matrix stored in coordinate storage (CS) format
(see Section 2.1.1 in the F11 Chapter Introduction).

In the definition of M given above D is the diagonal part of A, L is the strictly lower triangular part of
A, U is the strictly upper triangular part of A, and ! is a user-defined relaxation parameter.

It is envisaged that a common use of F11DRF will be to carry out the preconditioning step required in
the application of F11BSF to sparse linear systems. For an illustration of this use of F11DRF see the
example program given in Section 10. F11DRF is also used for this purpose by the Black Box routine
F11DSF.

4 References

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies whether or not the matrix M is transposed.

TRANS ¼ N
Mx ¼ y is solved.
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TRANS ¼ T
MHx ¼ y is solved.

Constraint: TRANS ¼ N or T .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

3: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: 1 � NNZ � N2.

4: AðNNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nonzero elements in the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices
are not permitted. The routine F11ZNF may be used to order the elements in this way.

5: IROWðNNZÞ – INTEGER array Input
6: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in A.

Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZNF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
e i t h e r IROWði � 1Þ < IROWðiÞ o r b o t h IROWði � 1Þ ¼ IROWðiÞ a n d
ICOLði � 1Þ < ICOLðiÞ, for i ¼ 2; 3; . . . ;NNZ.

7: RDIAGðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the elements of the diagonal matrix D�1, where D is the diagonal part of A.

8: OMEGA – REAL (KIND=nag_wp) Input

On entry: the relaxation parameter !.

Constraint: 0:0 < OMEGA < 2:0.

9: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the CS representation of the matrix M should be checked.

CHECK ¼ C
Checks are carried on the values of N, NNZ, IROW, ICOL and OMEGA.

CHECK ¼ N
None of these checks are carried out.

See also Section 9.2.

Constraint: CHECK ¼ C or N .

10: YðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the right-hand side vector y.
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11: XðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the solution vector x.

12: IWORKð2� Nþ 1Þ – INTEGER array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TRANS 6¼ N or T ,
or CHECK 6¼ C or N .

IFAIL ¼ 2

On entry, N < 1,
or NNZ < 1,
or NNZ > N2,
or OMEGA lies outside the interval 0:0; 2:0ð Þ,

IFAIL ¼ 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie in the matrix A, is out of
order, or has duplicate row and column indices. Call F11ZNF to reorder and sum or remove
duplicates.

IFAIL ¼ 4

On entry, the matrix A has a zero diagonal element. The SSOR preconditioner is not appropriate
for this problem.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If TRANS ¼ N the computed solution x is the exact solution of a perturbed system of equations
M þ �Mð Þx ¼ y, where

�Mj j � c nð Þ� Dþ !Lj j D�1
		 		 Dþ !Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision. An equivalent result holds when
TRANS ¼ T .

8 Parallelism and Performance

F11DRF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken for a call to F11DRF is proportional to NNZ.

9.2 Use of CHECK

It is expected that a common use of F11DRF will be to carry out the preconditioning step required in
the application of F11BSF to sparse linear systems. In this situation F11DRF is likely to be called many
times with the same matrix M. In the interests of both reliability and efficiency, you are recommended
to set CHECK ¼ C for the first of such calls, and CHECK ¼ N for all subsequent calls.

10 Example

This example solves a complex sparse linear system of equations

Ax ¼ b;

using RGMRES with SSOR preconditioning.

The RGMRES algorithm itself is implemented by the reverse communication routine F11BSF, which
returns repeatedly to the calling program with various values of the argument IREVCM. This argument
indicates the action to be taken by the calling program.

If IREVCM ¼ 1, a matrix-vector product v ¼ Au is required. This is implemented by a call to
F11XNF.

If IREVCM ¼ �1, a conjugate transposed matrix-vector product v ¼ AHu is required in the
estimation of the norm of A. This is implemented by a call to F11XNF.

If IREVCM ¼ 2, a solution of the preconditioning equation Mv ¼ u is required. This is achieved
by a call to F11DRF.

If IREVCM ¼ 4, F11BSF has completed its tasks. Either the iteration has terminated, or an error
condition has arisen.

For further details see the routine document for F11BSF.
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10.1 Program Text

Program f11drfe

! F11DRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11brf, f11bsf, f11btf, f11drf, f11xnf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, omega, sigmax, stplhs, &

stprhs, tol
Integer :: i, ifail, ifail1, irevcm, iterm, &

itn, liwork, lwneed, lwork, m, &
maxitn, monit, n, nnz

Character (1) :: ckdrf, ckxnf, norm, precon, trans, &
weight

Character (8) :: method
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:), b(:), rdiag(:), work(:), &
x(:)

Real (Kind=nag_wp), Allocatable :: wgt(:)
Integer, Allocatable :: icol(:), irow(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’F11DRF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n, m
Read (nin,*) nnz
lwork = max(121+n*(3+m)+m*(m+5),120+7*n,120+(2*n+m)*(m+2)+2*n,120+10*n)
liwork = 2*n + 1
Allocate (a(nnz),b(n),rdiag(n),work(lwork),x(n),wgt(n),icol(nnz), &

irow(nnz),iwork(liwork))
Read (nin,*) method
Read (nin,*) precon, norm, iterm
Read (nin,*) tol, maxitn
Read (nin,*) anorm, sigmax
Read (nin,*) omega

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read rhs vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Call F11BRF to initialize solver

weight = ’N’
monit = 0

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11brf(method,precon,norm,weight,iterm,n,m,tol,maxitn,anorm,sigmax, &

monit,lwneed,work,lwork,ifail)

F11 – Large Scale Linear Systems F11DRF

Mark 26 F11DRF.5



! Calculate reciprocal diagonal matrix elements if necessary

If (precon==’P’ .Or. precon==’p’) Then

iwork(1:n) = 0

Do i = 1, nnz
If (irow(i)==icol(i)) Then

iwork(irow(i)) = iwork(irow(i)) + 1
If (a(i)/=(0.0E0_nag_wp,0.0E0_nag_wp)) Then

rdiag(irow(i)) = (1.0E0_nag_wp,0.0E0_nag_wp)/a(i)
Else

Write (nout,*) ’Matrix has a zero diagonal element’
Go To 100

End If
End If

End Do

Do i = 1, n
If (iwork(i)==0) Then

Write (nout,*) ’Matrix has a missing diagonal element’
Go To 100

End If
If (iwork(i)>=2) Then

Write (nout,*) ’Matrix has a multiple diagonal element’
Go To 100

End If
End Do

End If

! Call F11BSF to solve the linear system

irevcm = 0
ckxnf = ’C’
ckdrf = ’C’

ifail = 1
loop: Do

Call f11bsf(irevcm,x,b,wgt,work,lwork,ifail)

If (irevcm/=4) Then
ifail1 = 1
Select Case (irevcm)
Case (1)

! Compute matrix-vector product
trans = ’N’

Call f11xnf(trans,n,nnz,a,irow,icol,ckxnf,x,b,ifail1)

ckxnf = ’N’
Case (-1)

! Compute conjugate transposed matrix-vector product
trans = ’T’

Call f11xnf(trans,n,nnz,a,irow,icol,ckxnf,x,b,ifail1)

ckxnf = ’N’
Case (2)

! SSOR preconditioning
trans = ’N’

Call f11drf(trans,n,nnz,a,irow,icol,rdiag,omega,ckdrf,x,b,iwork, &
ifail1)

ckdrf = ’N’
End Select
If (ifail1/=0) Then

irevcm = 6
End If
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Else If (ifail==0) Then
! Termination

ifail = 0
Call f11btf(itn,stplhs,stprhs,anorm,sigmax,work,lwork,ifail)

Write (nout,99996) itn
Write (nout,99997) ’Matrix norm =’, anorm
Write (nout,99997) ’Final residual norm =’, stplhs
Write (nout,*)

! Output x
Write (nout,*) ’ X’
Write (nout,99998) x(1:n)

Exit loop
Else

Write (nout,99999) ifail
Exit loop

End If
End Do loop

100 Continue

99999 Format (1X,/,1X,’ ** F11BSF returned with IFAIL = ’,I5)
99998 Format (1X,’(’,1P,E16.4,’,’,1P,E16.4,’)’)
99997 Format (1X,A,1P,E16.3)
99996 Format (1X,’Converged in’,I10,’ iterations’)

End Program f11drfe

10.2 Program Data

F11DRF Example Program Data
5 2 N, M

16 NNZ
’CGS’ METHOD
’P’ ’I’ 1 PRECON, NORM, ITERM
1.D-10 1000 TOL, MAXITN
0.D0 0.D0 ANORM, SIGMAX
1.4D0 OMEGA
( 2., 3.) 1 1
( 1.,-1.) 1 2
(-1., 0.) 1 4
( 0., 2.) 2 2
(-2., 1.) 2 3
( 1., 0.) 2 5
( 0.,-1.) 3 1
( 5., 4.) 3 3
( 3.,-1.) 3 4
( 1., 0.) 3 5
(-2., 2.) 4 1
(-3., 1.) 4 4
( 0., 3.) 4 5
( 4.,-2.) 5 2
(-2., 0.) 5 3
(-6., 1.) 5 5 A(I), IROW(I), ICOL(I), I=1,...,NNZ
( -3., 3.)
(-11., 5.)
( 23.,48.)
(-41., 2.)
(-28.,-31.) B(I), I=1,...,N
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.) X(I), I=1,...,N
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10.3 Program Results

F11DRF Example Program Results

Converged in 5 iterations
Matrix norm = 1.500E+01
Final residual norm = 1.776E-14

X
( 1.0000E+00, 2.0000E+00)
( 2.0000E+00, 3.0000E+00)
( 3.0000E+00, 4.0000E+00)
( 4.0000E+00, 5.0000E+00)
( 5.0000E+00, 6.0000E+00)
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NAG Library Routine Document

F11DSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DSF solves a complex sparse non-Hermitian system of linear equations, represented in coordinate
storage format, using a restarted generalized minimal residual (RGMRES), conjugate gradient squared
(CGS), stabilized bi-conjugate gradient (Bi-CGSTAB), or transpose-free quasi-minimal residual
(TFQMR) method, without preconditioning, with Jacobi, or with SSOR preconditioning.

2 Specification

SUBROUTINE F11DSF (METHOD, PRECON, N, NNZ, A, IROW, ICOL, OMEGA, B, M,
TOL, MAXITN, X, RNORM, ITN, WORK, LWORK, IWORK,
IFAIL)

&
&

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), M, MAXITN, ITN,
LWORK, IWORK(2*N+1), IFAIL

&

REAL (KIND=nag_wp) OMEGA, TOL, RNORM
COMPLEX (KIND=nag_wp) A(NNZ), B(N), X(N), WORK(LWORK)
CHARACTER(*) METHOD
CHARACTER(1) PRECON

3 Description

F11DSF solves a complex sparse non-Hermitian system of linear equations:

Ax ¼ b;

using an RGMRES (see Saad and Schultz (1986)), CGS (see Sonneveld (1989)), Bi-CGSTAB(‘) (see
Van der Vorst (1989) and Sleijpen and Fokkema (1993)), or TFQMR (see Freund and Nachtigal (1991)
and Freund (1993)) method.

F11DSF allows the following choices for the preconditioner:

– no preconditioning;

– Jacobi preconditioning (see Young (1971));

– symmetric successive-over-relaxation (SSOR) preconditioning (see Young (1971)).

For incomplete LU (ILU) preconditioning see F11DQF.

The matrix A is represented in coordinate storage (CS) format (see Section 2.1.1 in the F11 Chapter
Introduction) in the arrays A, IROW and ICOL. The array A holds the nonzero entries in the matrix,
while IROW and ICOL hold the corresponding row and column indices.

F11DSF is a Black Box routine which calls F11BRF, F11BSF and F11BTF. If you wish to use an
alternative storage scheme, preconditioner, or termination criterion, or require additional diagnostic
information, you should call these underlying routines directly.

4 References

Freund R W (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
SIAM J. Sci. Comput. 14 470–482

Freund R W and Nachtigal N (1991) QMR: a Quasi-Minimal Residual Method for Non-Hermitian
Linear Systems Numer. Math. 60 315–339
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Saad Y and Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 7 856–869

Sleijpen G L G and Fokkema D R (1993) BiCGSTAB ‘ð Þ for linear equations involving matrices with
complex spectrum ETNA 1 11–32

Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J. Sci.
Statist. Comput. 10 36–52

Van der Vorst H (1989) Bi-CGSTAB, a fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 13 631–644

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: specifies the iterative method to be used.

METHOD ¼ RGMRES
Restarted generalized minimum residual method.

METHOD ¼ CGS
Conjugate gradient squared method.

METHOD ¼ BICGSTAB
Bi-conjugate gradient stabilized (‘) method.

METHOD ¼ TFQMR
Transpose-free quasi-minimal residual method.

Constraint: METHOD ¼ RGMRES , CGS , BICGSTAB or TFQMR .

2: PRECON – CHARACTER(1) Input

On entry: specifies the type of preconditioning to be used.

PRECON ¼ N
No preconditioning.

PRECON ¼ J
Jacobi.

PRECON ¼ S
Symmetric successive-over-relaxation (SSOR).

Constraint: PRECON ¼ N , J or S .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

4: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: 1 � NNZ � N2.

5: AðNNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nonzero elements of the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices
are not permitted. The routine F11ZNF may be used to order the elements in this way.
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6: IROWðNNZÞ – INTEGER array Input
7: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in A.

Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZNF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
e i t h e r IROWði � 1Þ < IROWðiÞ o r b o t h IROWði � 1Þ ¼ IROWðiÞ a n d
ICOLði � 1Þ < ICOLðiÞ, for i ¼ 2; 3; . . . ;NNZ.

8: OMEGA – REAL (KIND=nag_wp) Input

On entry: if PRECON ¼ S , OMEGA is the relaxation parameter ! to be used in the SSOR
method. Otherwise OMEGA need not be initialized and is not referenced.

Constraint: 0:0 < OMEGA < 2:0.

9: BðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

10: M – INTEGER Input

On entry: if METHOD ¼ RGMRES , M is the dimension of the restart subspace.

If METHOD ¼ BICGSTAB , M is the order ‘ of the polynomial Bi-CGSTAB method.

Otherwise, M is not referenced.

Constraints:

if METHOD ¼ RGMRES , 0 < M � min N; 50ð Þ;
if METHOD ¼ BICGSTAB , 0 < M � min N; 10ð Þ.

11: TOL – REAL (KIND=nag_wp) Input

On entry: the required tolerance. Let xk denote the approximate solution at iteration k, and rk the
corresponding residual. The algorithm is considered to have converged at iteration k if

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

If TOL � 0:0, � ¼ max
ffiffi
�
p
; 10�;

ffiffiffi
n
p

� is used, where � is the machine precision. Otherwise
� ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

12: MAXITN – INTEGER Input

On entry: the maximum number of iterations allowed.

Constraint: MAXITN � 1.

13: XðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: an initial approximation to the solution vector x.

On exit: an improved approximation to the solution vector x.

14: RNORM – REAL (KIND=nag_wp) Output

On exit: the final value of the residual norm rkk k1, where k is the output value of ITN.
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15: ITN – INTEGER Output

On exit: the number of iterations carried out.

16: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Workspace
17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11DSF is called.

Constraints:

if METHOD ¼ RGMRES , LWORK � 4� NþM� Mþ Nþ 5ð Þ þ nu þ 121;
if METHOD ¼ CGS , LWORK � 8� Nþ nu þ 120;
if METHOD ¼ BICGSTAB , LWORK � 2� N� Mþ 3ð Þ þM� Mþ 2ð Þ þ nu þ 120;
if METHOD ¼ TFQMR , LWORK � 11� Nþ nu þ 120.

Where nu ¼ N for PRECON ¼ J or S and nu ¼ 0 otherwise.

18: IWORKð2� Nþ 1Þ – INTEGER array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ RGMRES , CGS , BICGSTAB or TFQMR ,
or PRECON 6¼ N , J or S ,
or N < 1,
or NNZ < 1,
or NNZ > N2,
or PRECON ¼ S and OMEGA lies outside the interval 0:0; 2:0ð Þ,
or M < 1,
or M > min N; 50ð Þ, when METHOD ¼ RGMRES ,
or M > min N; 10ð Þ, when METHOD ¼ BICGSTAB ,
or TOL � 1:0,
or MAXITN < 1,
or LWORK is too small.

IFAIL ¼ 2

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:
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1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ, or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie within the matrix A, is out of
order, or has duplicate row and column indices. Call F11ZNF to reorder and sum or remove
duplicates.

IFAIL ¼ 3

On entry, the matrix A has a zero diagonal element. Jacobi and SSOR preconditioners are
therefore not appropriate for this problem.

IFAIL ¼ 4

The required accuracy could not be obtained. However, a reasonable accuracy may have been
obtained, and further iterations could not improve the result. You should check the output value
of RNORM for acceptability. This error code usually implies that your problem has been fully
and satisfactorily solved to within or close to the accuracy available on your system. Further
iterations are unlikely to improve on this situation.

IFAIL ¼ 5

Required accuracy not obtained in MAXITN iterations.

IFAIL ¼ 6

Algorithmic breakdown. A solution is returned, although it is possible that it is completely
inaccurate.

IFAIL ¼ 7 (F11BRF, F11BSF or F11BTF)

A serious error has occurred in an internal call to one of the specified routines. Check all
subroutine calls and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful termination, the final residual rk ¼ b�Axk, where k ¼ ITN, satisfies the termination
criterion

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

The value of the final residual norm is returned in RNORM.
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8 Parallelism and Performance

F11DSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11DSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F11DSF for each iteration is roughly proportional to NNZ.

The number of iterations required to achieve a prescribed accuracy cannot easily be determined a
priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned coefficient
matrix �A ¼M�1A, for some preconditioning matrix M.

10 Example

This example solves a complex sparse non-Hermitian system of equations using the CGS method, with
no preconditioning.

10.1 Program Text

Program f11dsfe

! F11DSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11dsf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: omega, rnorm, tol
Integer :: i, ifail, itn, l, lwork, m, maxitn, &

n, nnz
Character (8) :: method
Character (1) :: precon

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:)
Integer, Allocatable :: icol(:), irow(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’F11DSF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n
Read (nin,*) nnz
Read (nin,*) method, precon
Read (nin,*) omega
Read (nin,*) m, tol, maxitn
l = n
If (precon==’N’ .Or. precon==’n’) Then
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l = 0
End If
lwork = max(4*n+m*(m+n+5)+l+121,8*n+l+120,2*n*(m+3)+m*(m+2)+l+120, &

11*n+l+120)

Allocate (a(nnz),b(n),work(lwork),x(n),icol(nnz),irow(nnz),iwork(2*n+1))

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read rhs vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Solve Ax = b using F11DSF

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11dsf(method,precon,n,nnz,a,irow,icol,omega,b,m,tol,maxitn,x, &

rnorm,itn,work,lwork,iwork,ifail)

Write (nout,99999) itn
Write (nout,99998) rnorm
Write (nout,*)

! Output x

Write (nout,*) ’ X’
Write (nout,99997) x(1:n)

99999 Format (1X,’Converged in’,I10,’ iterations’)
99998 Format (1X,’Final residual norm =’,1P,E16.3)
99997 Format (1X,’(’,1P,E16.4,’,’,1P,E16.4,’)’)

End Program f11dsfe

10.2 Program Data

F11DSF Example Program Data
5 N

16 NNZ
’CGS’ ’N’ METHOD, PRECON
1.05 OMEGA
1 1.D-10 1000 M, TOL, MAXITN

( 2., 3.) 1 1
( 1.,-1.) 1 2
(-1., 0.) 1 4
( 0., 2.) 2 2
(-2., 1.) 2 3
( 1., 0.) 2 5
( 0.,-1.) 3 1
( 5., 4.) 3 3
( 3.,-1.) 3 4
( 1., 0.) 3 5
(-2., 2.) 4 1
(-3., 1.) 4 4
( 0., 3.) 4 5
( 4.,-2.) 5 2
(-2., 0.) 5 3
(-6., 1.) 5 5 A(I), IROW(I), ICOL(I), I=1,...,NNZ
( -3., 3.)
(-11., 5.)
( 23.,48.)
(-41., 2.)
(-28.,-31.) B(I), I=1,...,N
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( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.) X(I), I=1,...,N

10.3 Program Results

F11DSF Example Program Results

Converged in 5 iterations
Final residual norm = 1.020E-10

X
( 1.0000E+00, 2.0000E+00)
( 2.0000E+00, 3.0000E+00)
( 3.0000E+00, 4.0000E+00)
( 4.0000E+00, 5.0000E+00)
( 5.0000E+00, 6.0000E+00)
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NAG Library Routine Document

F11DTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DTF computes a block diagonal incomplete LU factorization of a complex sparse non-Hermitian
matrix, represented in coordinate storage format. The diagonal blocks may be composed of arbitrary
rows and the corresponding columns, and may overlap. This factorization can be used to provide a
block Jacobi or additive Schwarz preconditioner, for use in combination with F11BSF or F11DUF.

2 Specification

SUBROUTINE F11DTF (N, NNZ, A, LA, IROW, ICOL, NB, ISTB, INDB, LINDB,
LFILL, DTOL, PSTRAT, MILU, IPIVP, IPIVQ, ISTR, IDIAG,
NNZC, NPIVM, IWORK, LIWORK, IFAIL)

&
&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), NB, ISTB(NB+1),
INDB(LINDB), LINDB, LFILL(NB), IPIVP(LINDB),
IPIVQ(LINDB), ISTR(LINDB+1), IDIAG(LINDB), NNZC,
NPIVM(NB), IWORK(LIWORK), LIWORK, IFAIL

&
&
&

REAL (KIND=nag_wp) DTOL(NB)
COMPLEX (KIND=nag_wp) A(LA)
CHARACTER(1) PSTRAT(NB), MILU(NB)

3 Description

F11DTF computes an incomplete LU factorization (see Meijerink and Van der Vorst (1977) and
Meijerink and Van der Vorst (1981)) of the (possibly overlapping) diagonal blocks Ab, b ¼ 1; 2; . . . ;NB,
of a complex sparse non-Hermitian n by n matrix A. The factorization is intended primarily for use as a
block Jacobi or additive Schwarz preconditioner (see Saad (1996)), with one of the iterative solvers
F11BSF and F11DUF.

The NB diagonal blocks need not consist of consecutive rows and columns of A, but may be composed
of arbitrarily indexed rows, and the corresponding columns, as defined in the arguments INDB and
ISTB. Any given row or column index may appear in more than one diagonal block, resulting in
overlap. Each diagonal block Ab, b ¼ 1; 2; . . . ;NB, is factorized as:

Ab ¼Mb þ Rb

where

Mb ¼ PbLbDbUbQb

and Lb is lower triangular with unit diagonal elements, Db is diagonal, Ub is upper triangular with unit
diagonals, Pb and Qb are permutation matrices, and Rb is a remainder matrix.

The amount of fill-in occurring in the factorization of block b can vary from zero to complete fill, and
can be controlled by specifying either the maximum level of fill LFILLðbÞ, or the drop tolerance
DTOLðbÞ.
The parameter PSTRATðbÞ defines the pivoting strategy to be used in block b. The options currently
available are no pivoting, user-defined pivoting, partial pivoting by columns for stability, and complete
pivoting by rows for sparsity and by columns for stability. The factorization may optionally be modified
to preserve the row-sums of the original block matrix.

The sparse matrix A is represented in coordinate storage (CS) format (see Section 2.1.1 in the F11
Chapter Introduction). The array A stores all the nonzero elements of the matrix A, while arrays IROW
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and ICOL store the corresponding row and column indices respectively. Multiple nonzero elements may
not be specified for the same row and column index.

The preconditioning matrices Mb, b ¼ 1; 2; . . . ;NB, are returned in terms of the CS representations of
the matrices

Cb ¼ Lb þD�1b þ Ub � 2I:

4 References

Meijerink J and Van der Vorst H (1977) An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162

Meijerink J and Van der Vorst H (1981) Guidelines for the usage of incomplete decompositions in
solving sets of linear equations as they occur in practical problems J. Comput. Phys. 44 134–155

Saad Y (1996) Iterative Methods for Sparse Linear Systems PWS Publishing Company, Boston, MA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: 1 � NNZ � N2.

3: AðLAÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the nonzero elements in the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices
are not permitted. The routine F11ZNF may be used to order the elements in this way.

On exit: the first NNZ entries of A contain the nonzero elements of A and the next NNZC entries
contain the elements of the matrices Cb, for b ¼ 1; 2; . . . ;NB stored consecutively. Within each
block the matrix elements are ordered by increasing row index, and by increasing column index
within each row.

4: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11DTF is called. These arrays must be of sufficient size to store both A (NNZ elements)
and C (NNZC elements).

Note: the minimum value for LA is only appropriate if LFILL and DTOL are set such that
minimal fill-in occurs. If this is not the case then we recommend that LA is set much larger than
the minimum value indicated in the constraint.

Constraint: LA � 2� NNZ.

5: IROWðLAÞ – INTEGER array Input/Output
6: ICOLðLAÞ – INTEGER array Input/Output

On entry: the row and column indices of the nonzero elements supplied in A.

Constraints:
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IROW and ICOL must satisfy these constraints (which may be imposed by a call to F11ZNF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
e i t h e r IROWði � 1Þ < IROWðiÞ o r b o t h IROWði � 1Þ ¼ IROWðiÞ a n d
ICOLði � 1Þ < ICOLðiÞ, for i ¼ 2; 3; . . . ;NNZ.

On exit: the row and column indices of the nonzero elements returned in A.

7: NB – INTEGER Input

On entry: the number of diagonal blocks to factorize.

Constraint: 1 � NB � N.

8: ISTBðNBþ 1Þ – INTEGER array Input

On entry: ISTBðbÞ, for b ¼ 1; 2; . . . ;NB, holds the indices in arrays INDB, IPIVP, IPIVQ and
IDIAG that, on successful exit from this function, define block b. ISTBðNBþ 1Þ holds the sum
of the number of rows in all blocks plus ISTBð1Þ.
Constraint: ISTBð1Þ � 1; ISTBðbÞ < ISTBðbþ 1Þ, for b ¼ 1; 2; . . . ;NB.

9: INDBðLINDBÞ – INTEGER array Input

On entry: INDB must hold the row indices appearing in each diagonal block, stored
consecutively. Thus the elements INDBðISTBðbÞÞ to INDBðISTBðbþ 1Þ � 1Þ are the row indices
in the bth block, for b ¼ 1; 2; . . . ;NB.

Constraint: 1 � INDBðmÞ � N, for m ¼ 1; 2; . . . ; ISTBðNBþ 1Þ � 1.

10: LINDB – INTEGER Input

On entry: the dimension of the arrays INDB, IPIVP, IPIVQ and IDIAG as declared in the (sub)
program from which F11DTF is called.

Constraint: LINDB � ISTBðNBþ 1Þ � 1.

11: LFILLðNBÞ – INTEGER array Input

On entry: if LFILLðbÞ � 0 its value is the maximum level of fill allowed in the decomposition of
the block b (see Section 9.2 in F11DNF). A negative value of LFILLðbÞ indicates that DTOLðbÞ
will be used to control the fill in block b instead.

12: DTOLðNBÞ – REAL (KIND=nag_wp) array Input

On entry: if LFILLðbÞ < 0 then DTOLðbÞ is used as a drop tolerance in block b to control the fill-
in (see Section 9.2 in F11DNF); otherwise DTOLðbÞ is not referenced.

Constraint: if LFILLðbÞ < 0, DTOLðbÞ � 0:0, for b ¼ 1; 2; . . . ;NB.

13: PSTRATðNBÞ – CHARACTER(1) array Input

On entry: PSTRATðbÞ, for b ¼ 1; 2; . . . ;NB, specifies the pivoting strategy to be adopted in the
block as follows:

PSTRATðbÞ ¼ N
No pivoting is carried out.

PSTRATðbÞ ¼ U
Pivoting is carried out according to the user-defined input values of IPIVP and IPIVQ.

PSTRATðbÞ ¼ P
Partial pivoting by columns for stability is carried out.

PSTRATðbÞ ¼ C
Complete pivoting by rows for sparsity, and by columns for stability, is carried out.
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Suggested value: PSTRATðbÞ ¼ C , for b ¼ 1; 2; . . . ;NB.

Constraint: PSTRATðbÞ ¼ N , U , P or C , for b ¼ 1; 2; . . . ;NB.

14: MILUðNBÞ – CHARACTER(1) array Input

On entry: MILUðbÞ, for b ¼ 1; 2; . . . ;NB, indicates whether or not the factorization in block b
should be modified to preserve row-sums (see Section 9.4 in F11DNF).

MILUðbÞ ¼ M
The factorization is modified.

MILUðbÞ ¼ N
The factorization is not modified.

Constraint: MILUðbÞ ¼ M or N , for b ¼ 1; 2; . . . ;NB.

15: IPIVPðLINDBÞ – INTEGER array Input/Output
16: IPIVQðLINDBÞ – INTEGER array Input/Output

On entry: if PSTRATðbÞ ¼ U , then IPIVPðISTBðbÞ þ k� 1Þ and IPIVQðISTBðbÞ þ k� 1Þ must
specify the row and column indices of the element used as a pivot at elimination stage k of the
factorization of the block. Otherwise IPIVP and IPIVQ need not be initialized.

Constraint: if PSTRATðbÞ ¼ U , the elements ISTBðbÞ to ISTBðbþ 1Þ � 1 of IPIVP and IPIVQ
must both hold valid permutations of the integers on 1; ISTBðbþ 1Þ � ISTBðbÞ½ �.
On exit: the row and column indices of the pivot elements, arranged consecutively for each
block, as for INDB. If IPIVPðISTBðbÞ þ k� 1Þ ¼ i and IPIVQðISTBðbÞ þ k� 1Þ ¼ j, then the
element in row i and column j of Ab was used as the pivot at elimination stage k.

17: ISTRðLINDBþ 1Þ – INTEGER array Output

On exit: ISTRðISTBðbÞ þ k � 1Þ, gives the index in the arrays A, IROW and ICOL of row k of
the matrix Cb, for b ¼ 1; 2; . . . ;NB and k ¼ 1; 2; . . . ; ISTBðbþ 1Þ � ISTBðbÞ.
ISTRðISTBðNBþ 1ÞÞ contains NNZþ NNZCþ 1.

18: IDIAGðLINDBÞ – INTEGER array Output

On exit: IDIAGðISTBðbÞ þ k � 1Þ, gives the index in the arrays A, IROW and ICOL of the
d i a g o n a l e l em e n t i n r ow k o f t h e m a t r i x Cb, f o r b ¼ 1; 2; . . . ;NB a n d
k ¼ 1; 2; . . . ; ISTBðbþ 1Þ � ISTBðbÞ.

19: NNZC – INTEGER Output

On exit: the sum total number of nonzero elements in the matrices Cb, for b ¼ 1; 2; . . . ;NB.

20: NPIVMðNBÞ – INTEGER array Output

On exit: if NPIVMðbÞ > 0 it gives the number of pivots which were modified during the
factorization to ensure that Mb exists.

If NPIVMðbÞ ¼ �1 no pivot modifications were required, but a local restart occurred (see
Section 9.3 in F11DNF). The quality of the preconditioner will generally depend on the returned
values of NPIVMðbÞ, for b ¼ 1; 2; . . . ;NB.

If NPIVMðbÞ is large, for some b, the preconditioner may not be satisfactory. In this case it may
be advantageous to call F11DTF again with an increased value of LFILLðbÞ, a reduced value of
DTOLðbÞ, or PSTRATðbÞ ¼ C.
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21: IWORKðLIWORKÞ – INTEGER array Workspace
22: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F11DTF is called.

Constraint: LIWORK � 9� Nþ 3.

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, DTOLð valueh iÞ ¼ valueh i.
Constraint: DTOLðbÞ � 0:0, for b ¼ 1; 2; . . . ;NB.

On entry, for b ¼ valueh i, ISTBðbþ 1Þ ¼ valueh i and ISTBðbÞ ¼ valueh i.
Constraint: ISTBðbþ 1Þ > ISTBðbÞ, for b ¼ 1; 2; . . . ;NB.

On entry, INDBð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � INDBðmÞ � N, for m ¼ 1; 2; . . . ; ISTBðNBþ 1Þ � 1

On entry, ISTBð1Þ ¼ valueh i.
Constraint: ISTBð1Þ � 1.

On entry, LA ¼ valueh i and NNZ ¼ valueh i.
Constraint: LA � 2� NNZ.

On entry, LINDB ¼ valueh i, ISTBðNBþ 1Þ � 1 ¼ valueh i and NB ¼ valueh i.
Constraint: LINDB � ISTBðNBþ 1Þ � 1.

On entry, LIWORK ¼ valueh i.
Constraint: LIWORK � valueh i.
On entry, MILUð valueh iÞ ¼ valueh i.
Constraint: MILUðbÞ ¼ M or N for all b.

On entry, N ¼ valueh i.
Constraint: N � 1.

On entry, NB ¼ valueh i and N ¼ valueh i.
Constraint: 1 � NB � N.

On entry, NNZ ¼ valueh i.
Constraint: NNZ � 1.

On entry, NNZ ¼ valueh i and N ¼ valueh i.
Constraint: NNZ � N2.
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On entry, PSTRATð valueh iÞ ¼ valueh i.
Constraint: PSTRATðbÞ ¼ N , U , P or C for all b.

IFAIL ¼ 2

On entry, element valueh i of A was out of order.

On entry, ICOLð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � ICOLðjÞ � N, for j ¼ 1; 2; . . . ;NNZ.

On entry, IROWð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � IROWðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.

On entry, location valueh i of IROW; ICOLð Þ was a duplicate.

IFAIL ¼ 3

On entry, the user-supplied value of IPIVP for block valueh i lies outside its range.

On entry, the user-supplied value of IPIVP for block valueh i was repeated.

On entry, the user-supplied value of IPIVQ for block valueh i lies outside its range.

On entry, the user-supplied value of IPIVQ for block valueh i was repeated.

IFAIL ¼ 4

The number of nonzero entries in the decomposition is too large.
The decomposition has been terminated before completion.
Either increase LA, or reduce the fill by reducing LFILL, or increasing DTOL.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the factorization of each block Ab will be determined by the size of the elements that
are dropped and the size of any modifications made to the pivot elements. If these sizes are small then
the computed factors will correspond to a matrix close to Ab. The factorization can generally be made
more accurate by increasing the level of fill LFILLðbÞ, or by reducing the drop tolerance DTOLðbÞ with
LFILLðbÞ < 0.

If F11DTF is used in combination with F11BSF or F11DUF, the more accurate the factorization the
fewer iterations will be required. However, the cost of the decomposition will also generally increase.

8 Parallelism and Performance

F11DTF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F11DTF calls F11DNF internally for each block Ab. The comments and advice provided in Section 9 in
F11DNF on timing, control of fill, algorithmic details, and choice of parameters, are all therefore
relevant to F11DTF, if interpreted blockwise.

10 Example

This example program reads in a sparse matrix A and then defines a block partitioning of the row
indices with a user-supplied overlap and computes an overlapping incomplete LU factorization suitable
for use as an additive Schwarz preconditioner. Such a factorization is used for this purpose in the
example program of F11DUF.

10.1 Program Text

! F11DTF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Program f11dtfe

! .. Use Statements ..
Use nag_library, Only: f11dtf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dtolg
Integer :: i, ifail, k, la, lfillg, lindb, &

liwork, mb, n, nb, nnz, nnzc, nover
Character (1) :: milug, pstrag

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), b(:)
Real (Kind=nag_wp), Allocatable :: dtol(:)
Integer, Allocatable :: icol(:), idiag(:), indb(:), &

ipivp(:), ipivq(:), irow(:), &
istb(:), istr(:), iwork(:), &
lfill(:), npivm(:)

Character (1), Allocatable :: milu(:), pstrat(:)
! .. Intrinsic Procedures ..

Intrinsic :: maxval, minval
! .. Executable Statements ..

Continue

! Print example header
Write (nout,*) ’F11DTF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Get the square matrix size
Read (nin,*) n

! Allocate arrays with lengths based on mesh.
liwork = 9*n + 3
Allocate (b(n),iwork(liwork))

! Get the number of non zero (nnz) matrix entries
Read (nin,*) nnz
la = 20*nnz
Allocate (a(la),irow(la),icol(la))
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lindb = 3*n
Allocate (idiag(lindb),indb(lindb),ipivp(lindb),ipivq(lindb), &

istr(lindb+1))

! Read the matrix A
Read (nin,*)(a(i),irow(i),icol(i),i=1,nnz)

! Read algorithmic parameters
Read (nin,*) lfillg, dtolg
Read (nin,*) pstrag
Read (nin,*) milug
Read (nin,*) nb, nover

! Allocate arrays with length based on number of blocks.
Allocate (dtol(nb),istb(nb+1),lfill(nb),npivm(nb),milu(nb),pstrat(nb))

! Define diagonal block indices.
! In this example use blocks of MB consecutive rows and initialize
! assuming no overlap.

mb = (n+nb-1)/nb
Do k = 1, nb

istb(k) = (k-1)*mb + 1
End Do
istb(nb+1) = n + 1
Do i = 1, n

indb(i) = i
End Do

! Modify INDB and ISTB to account for overlap.
Call f11dtfe_overlap(n,nnz,la,irow,icol,nb,istb,indb,lindb,nover,iwork)
If (iwork(1)==-999) Then

Write (nout,*) ’** LINDB too small, LINDB = ’, lindb, ’.’
Go To 100

End If

! Output matrix and blocking details
Write (nout,*) ’ Original Matrix’
Write (nout,99998) ’ N =’, n
Write (nout,99998) ’ NNZ =’, nnz
Write (nout,99998) ’ NB =’, nb
Do k = 1, nb

Write (nout,99994) ’ Block ’, k, ’: order = ’, istb(k+1) - istb(k), &
’, start row = ’, minval(indb(istb(k):istb(k+1)-1))

End Do

! Set algorithmic parameters for each block from global values
lfill(1:nb) = lfillg
dtol(1:nb) = dtolg
pstrat(1:nb) = pstrag
milu(1:nb) = milug

! Calculate factorization
ifail = 0
Call f11dtf(n,nnz,a,la,irow,icol,nb,istb,indb,lindb,lfill,dtol,pstrat, &

milu,ipivp,ipivq,istr,idiag,nnzc,npivm,iwork,liwork,ifail)

! Output details of the factorization
Write (nout,99997) ’ Factorization’
Write (nout,99998) ’ NNZC =’, nnzc

Write (nout,99997) ’ Elements of factorization’
Write (nout,99997) &

’ I J C(I,J) Index’
Do k = 1, nb

Write (nout,99995) ’ C_’, k, &
’ -----------------------------------------------’

! Elements of the k-th block
Do i = istr(istb(k)), istr(istb(k+1)) - 1

Write (nout,99993) irow(i), icol(i), a(i), i
End Do
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End Do

Write (nout,99997) ’ Details of factorized blocks’
If (maxval(npivm(1:nb))>0) Then

! Including pivoting details.
Write (nout,99997) &

’ K I ISTR(I) IDIAG(I) INDB(I) IPIVP(I) IPIVQ(I)’
Do k = 1, nb

i = istb(k)
Write (nout,99996) k, i, istr(i), idiag(i), indb(i), ipivp(i), &

ipivq(i)
Do i = istb(k) + 1, istb(k+1) - 1

Write (nout,99999) i, istr(i), idiag(i), indb(i), ipivp(i), &
ipivq(i)

End Do
Write (nout,*) &

’ -----------------------------------------------------’
End Do

Else
! No pivoting on any block.

Write (nout,99997) ’ K I ISTR(I) IDIAG(I) INDB(I)’
Do k = 1, nb

i = istb(k)
Write (nout,99996) k, i, istr(i), idiag(i), indb(i)
Do i = istb(k) + 1, istb(k+1) - 1

Write (nout,99999) i, istr(i), idiag(i), indb(i)
End Do
Write (nout,*) ’ ------------------------------------’

End Do
End If

100 Continue

99999 Format (1X,I7,5(I10))
99998 Format (1X,A,I4)
99997 Format (1X,/,1X,A)
99996 Format (1X,I3,1X,I3,5(I10))
99995 Format (1X,A3,I1,A)
99994 Format (1X,A,I3,A,I3,A,I3)
99993 Format (4X,2I4,4X,’(’,E13.5,’,’,E13.5,’)’,I8)

Contains
Subroutine f11dtfe_overlap(n,nnz,la,irow,icol,nb,istb,indb,lindb,nover, &

iwork)

! Purpose
! =======
! This routine takes a set of row indices INDB defining the diagonal
! blocks to be used in F11DTF to define a block Jacobi or additive
! Schwarz preconditioner, and expands them to allow for NOVER levels of
! overlap.
! The pointer array ISTB is also updated accordingly, so that the
! returned values of ISTB and INDB can be passed to F11DTF to define
! overlapping diagonal blocks.
! ----------------------------------------------------------------------

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: la, lindb, n, nb, nnz, nover

! .. Array Arguments ..
Integer, Intent (In) :: icol(la), irow(la)
Integer, Intent (Inout) :: indb(lindb), istb(nb+1)
Integer, Intent (Out) :: iwork(3*n+1)

! .. Local Scalars ..
Integer :: i, ik, ind, iover, k, l, n21, nadd, &

row
! .. Executable Statements ..

Continue

! Find the number of nonzero elements in each row of the matrix A, and
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! and start address of each row. Store the start addresses in
! IWORK(N+1,...,2*N+1).

iwork(1:n) = 0
Do k = 1, nnz

iwork(irow(k)) = iwork(irow(k)) + 1
End Do
iwork(n+1) = 1
Do i = 1, n

iwork(n+i+1) = iwork(n+i) + iwork(i)
End Do

! Loop over blocks.
blocks: Do k = 1, nb

! Initialize marker array.
iwork(1:n) = 0

! Mark the rows already in block K in the workspace array.
Do l = istb(k), istb(k+1) - 1

iwork(indb(l)) = 1
End Do

! Loop over levels of overlap.
Do iover = 1, nover

! Initialize counter of new row indices to be added.
ind = 0

! Loop over the rows currently in the diagonal block.
Do l = istb(k), istb(k+1) - 1

row = indb(l)

! Loop over nonzero elements in row ROW.
Do i = iwork(n+row), iwork(n+row+1) - 1

! If the column index of the nonzero element is not in the
! existing set for this block, store it to be added later, and
! mark it in the marker array.

If (iwork(icol(i))==0) Then
iwork(icol(i)) = 1
ind = ind + 1
iwork(2*n+1+ind) = icol(i)

End If
End Do

End Do

! Shift the indices in INDB and add the new entries for block K.
! Change ISTB accordingly.

nadd = ind
If (istb(nb+1)+nadd-1>lindb) Then

iwork(1) = -999
Exit blocks

End If

Do i = istb(nb+1) - 1, istb(k+1), -1
indb(i+nadd) = indb(i)

End Do
n21 = 2*n + 1
ik = istb(k+1) - 1
indb(ik+1:ik+nadd) = iwork(n21+1:n21+nadd)
istb(k+1:nb+1) = istb(k+1:nb+1) + nadd

End Do
End Do blocks

Return

End Subroutine f11dtfe_overlap
End Program f11dtfe
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10.2 Program Data

F11DTF Example Program Data
9 : n
33 : nnz

( 96.0, -64.0) 1 1
(-20.0, 22.0) 1 2
(-36.0, 14.0) 1 4
(-12.0, 10.0) 2 1
( 96.0, -64.0) 2 2
(-20.0, 22.0) 2 3
(-36.0, 14.0) 2 5
(-12.0, 10.0) 3 2
( 96.0, -64.0) 3 3
(-36.0, 14.0) 3 6
(-28.0, 18.0) 4 1
( 96.0, -64.0) 4 4
(-20.0, 22.0) 4 5
(-36.0, 14.0) 4 7
(-28.0, 18.0) 5 2
(-12.0, 10.0) 5 4
( 96.0, -64.0) 5 5
(-20.0, 22.0) 5 6
(-36.0, 14.0) 5 8
(-28.0, 18.0) 6 3
(-12.0, 10.0) 6 5
( 96.0, -64.0) 6 6
(-36.0, 14.0) 6 9
(-28.0, 18.0) 7 4
( 96.0, -64.0) 7 7
(-20.0, 22.0) 7 8
(-28.0, 18.0) 8 5
(-12.0, 10.0) 8 7
( 96.0, -64.0) 8 8
(-20.0, 22.0) 8 9
(-28.0, 18.0) 9 6
(-12.0, 10.0) 9 8
( 96.0, -64.0) 9 9 : a(i), irow(i), icol(i) for i=1,nnz
0 0.0 : lfillg, dtolg
’N’ : pstrag
’N’ : milug
3 1 : nb, nover

10.3 Program Results

F11DTF Example Program Results

Original Matrix
N = 9
NNZ = 33
NB = 3
Block 1: order = 6, start row = 1
Block 2: order = 9, start row = 1
Block 3: order = 6, start row = 4

Factorization
NNZC = 73

Elements of factorization

I J C(I,J) Index
C_1 -----------------------------------------------

1 1 ( 0.72115E-02, 0.48077E-02) 34
1 2 ( -0.25000E+00, 0.62500E-01) 35
1 4 ( -0.32692E+00, -0.72115E-01) 36
2 1 ( -0.13462E+00, 0.14423E-01) 37
2 2 ( 0.75163E-02, 0.48771E-02) 38
2 3 ( -0.25762E+00, 0.67818E-01) 39
2 5 ( -0.33887E+00, -0.70346E-01) 40
3 2 ( -0.13897E+00, 0.16638E-01) 41
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3 3 ( 0.75279E-02, 0.48753E-02) 42
3 6 ( -0.33926E+00, -0.70121E-01) 43
4 1 ( -0.28846E+00, -0.48077E-02) 44
4 4 ( 0.78236E-02, 0.54995E-02) 45
4 5 ( -0.27746E+00, 0.62130E-01) 46
5 2 ( -0.29824E+00, -0.12644E-02) 47
5 4 ( -0.14888E+00, 0.12242E-01) 48
5 5 ( 0.82639E-02, 0.56419E-02) 49
5 6 ( -0.28940E+00, 0.68967E-01) 50
6 3 ( -0.29854E+00, -0.10069E-02) 51
6 5 ( -0.15559E+00, 0.14936E-01) 52
6 6 ( 0.82869E-02, 0.56417E-02) 53

C_2 -----------------------------------------------
1 1 ( 0.72115E-02, 0.48077E-02) 54
1 2 ( -0.25000E+00, 0.62500E-01) 55
1 4 ( -0.28846E+00, -0.48077E-02) 56
1 5 ( -0.32692E+00, -0.72115E-01) 57
2 1 ( -0.13462E+00, 0.14423E-01) 58
2 2 ( 0.75163E-02, 0.48771E-02) 59
2 3 ( -0.25762E+00, 0.67818E-01) 60
2 6 ( -0.29824E+00, -0.12644E-02) 61
2 7 ( -0.33887E+00, -0.70346E-01) 62
3 2 ( -0.13897E+00, 0.16638E-01) 63
3 3 ( 0.75279E-02, 0.48753E-02) 64
3 8 ( -0.29854E+00, -0.10069E-02) 65
3 9 ( -0.33926E+00, -0.70121E-01) 66
4 1 ( -0.32692E+00, -0.72115E-01) 67
4 4 ( 0.78236E-02, 0.54995E-02) 68
4 6 ( -0.27746E+00, 0.62130E-01) 69
5 1 ( -0.28846E+00, -0.48077E-02) 70
5 5 ( 0.78236E-02, 0.54995E-02) 71
5 7 ( -0.27746E+00, 0.62130E-01) 72
6 2 ( -0.33887E+00, -0.70346E-01) 73
6 4 ( -0.14888E+00, 0.12242E-01) 74
6 6 ( 0.82639E-02, 0.56419E-02) 75
6 8 ( -0.28940E+00, 0.68967E-01) 76
7 2 ( -0.29824E+00, -0.12644E-02) 77
7 5 ( -0.14888E+00, 0.12242E-01) 78
7 7 ( 0.82639E-02, 0.56419E-02) 79
7 9 ( -0.28940E+00, 0.68967E-01) 80
8 3 ( -0.33926E+00, -0.70121E-01) 81
8 6 ( -0.15559E+00, 0.14936E-01) 82
8 8 ( 0.82869E-02, 0.56417E-02) 83
9 3 ( -0.29854E+00, -0.10069E-02) 84
9 7 ( -0.15559E+00, 0.14936E-01) 85
9 9 ( 0.82869E-02, 0.56417E-02) 86

C_3 -----------------------------------------------
1 1 ( 0.72115E-02, 0.48077E-02) 87
1 2 ( -0.25000E+00, 0.62500E-01) 88
1 4 ( -0.28846E+00, -0.48077E-02) 89
2 1 ( -0.13462E+00, 0.14423E-01) 90
2 2 ( 0.75163E-02, 0.48771E-02) 91
2 3 ( -0.25762E+00, 0.67818E-01) 92
2 5 ( -0.29824E+00, -0.12644E-02) 93
3 2 ( -0.13897E+00, 0.16638E-01) 94
3 3 ( 0.75279E-02, 0.48753E-02) 95
3 6 ( -0.29854E+00, -0.10069E-02) 96
4 1 ( -0.32692E+00, -0.72115E-01) 97
4 4 ( 0.78236E-02, 0.54995E-02) 98
4 5 ( -0.27746E+00, 0.62130E-01) 99
5 2 ( -0.33887E+00, -0.70346E-01) 100
5 4 ( -0.14888E+00, 0.12242E-01) 101
5 5 ( 0.82639E-02, 0.56419E-02) 102
5 6 ( -0.28940E+00, 0.68967E-01) 103
6 3 ( -0.33926E+00, -0.70121E-01) 104
6 5 ( -0.15559E+00, 0.14936E-01) 105
6 6 ( 0.82869E-02, 0.56417E-02) 106

Details of factorized blocks

K I ISTR(I) IDIAG(I) INDB(I)
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1 1 34 34 1
2 37 38 2
3 41 42 3
4 44 45 4
5 47 49 5
6 51 53 6

------------------------------------
2 7 54 54 4

8 58 59 5
9 63 64 6

10 67 68 1
11 70 71 7
12 73 75 2
13 77 79 8
14 81 83 3
15 84 86 9

------------------------------------
3 16 87 87 7

17 90 91 8
18 94 95 9
19 97 98 4
20 100 102 5
21 104 106 6

------------------------------------
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NAG Library Routine Document

F11DUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DUF solves a complex sparse non-Hermitian system of linear equations, represented in coordinate
storage format, using a restarted generalized minimal residual (RGMRES), conjugate gradient squared
(CGS), stabilized bi-conjugate gradient (Bi-CGSTAB), or transpose-free quasi-minimal residual
(TFQMR) method, with block Jacobi or additive Schwarz preconditioning.

2 Specification

SUBROUTINE F11DUF (METHOD, N, NNZ, A, LA, IROW, ICOL, NB, ISTB, INDB,
LINDB, IPIVP, IPIVQ, ISTR, IDIAG, B, M, TOL, MAXITN,
X, RNORM, ITN, WORK, LWORK, IFAIL)

&
&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), NB, ISTB(NB+1),
INDB(LINDB), LINDB, IPIVP(LINDB), IPIVQ(LINDB),
ISTR(LINDB+1), IDIAG(LINDB), M, MAXITN, ITN,
LWORK, IFAIL

&
&
&

REAL (KIND=nag_wp) TOL, RNORM
COMPLEX (KIND=nag_wp) A(LA), B(N), X(N), WORK(LWORK)
CHARACTER(*) METHOD

3 Description

F11DUF solves a complex sparse non-Hermitian linear system of equations

Ax ¼ b;

using a preconditioned RGMRES (see Saad and Schultz (1986)), CGS (see Sonneveld (1989)), Bi-
CGSTAB(‘) (see Van der Vorst (1989) and Sleijpen and Fokkema (1993)), or TFQMR (see Freund and
Nachtigal (1991) and Freund (1993)) method.

F11DUF uses the incomplete (possibly overlapping) block LU factorization determined by F11DTF as
the preconditioning matrix. A call to F11DUF must always be preceded by a call to F11DTF.
Alternative preconditioners for the same storage scheme are available by calling F11DQF or F11DSF.

The matrix A, and the preconditioning matrix M, are represented in coordinate storage (CS) format (see
Section 2.1.1 in the F11 Chapter Introduction) in the arrays A, IROW and ICOL, as returned from
F11DTF. The array A holds the nonzero entries in these matrices, while IROW and ICOL hold the
corresponding row and column indices.

F11DUF is a Black Box routine which calls F11BRF, F11BSF and F11BTF. If you wish to use an
alternative storage scheme, preconditioner, or termination criterion, or require additional diagnostic
information, you should call these underlying routines directly.

4 References

Freund R W (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
SIAM J. Sci. Comput. 14 470–482

Freund R W and Nachtigal N (1991) QMR: a Quasi-Minimal Residual Method for Non-Hermitian
Linear Systems Numer. Math. 60 315–339

Saad Y and Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 7 856–869
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Sleijpen G L G and Fokkema D R (1993) BiCGSTAB ‘ð Þ for linear equations involving matrices with
complex spectrum ETNA 1 11–32

Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J. Sci.
Statist. Comput. 10 36–52

Van der Vorst H (1989) Bi-CGSTAB, a fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 13 631–644

5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: specifies the iterative method to be used.

METHOD ¼ RGMRES
Restarted generalized minimum residual method.

METHOD ¼ CGS
Conjugate gradient squared method.

METHOD ¼ BICGSTAB
Bi-conjugate gradient stabilized (‘) method.

METHOD ¼ TFQMR
Transpose-free quasi-minimal residual method.

Constraint: METHOD ¼ RGMRES , CGS , BICGSTAB or TFQMR .

2: N – INTEGER Input
3: NNZ – INTEGER Input
4: AðLAÞ – COMPLEX (KIND=nag_wp) array Input
5: LA – INTEGER Input
6: IROWðLAÞ – INTEGER array Input
7: ICOLðLAÞ – INTEGER array Input
8: NB – INTEGER Input
9: ISTBðNBþ 1Þ – INTEGER array Input
10: INDBðLINDBÞ – INTEGER array Input
11: LINDB – INTEGER Input
12: IPIVPðLINDBÞ – INTEGER array Input
13: IPIVQðLINDBÞ – INTEGER array Input
14: ISTRðLINDBþ 1Þ – INTEGER array Input
15: IDIAGðLINDBÞ – INTEGER array Input

On entry: the values returned in arrays IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG by a
previous call to F11DTF.

The arrays ISTB, INDB and A together with the scalars N, NNZ, LA, NB and LINDB must be
the same values that were supplied in the preceding call to F11DTF.

On entry: the values returned in arrays IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG by a
previous call to F11DTF.

The arrays ISTB, INDB and the scalars NB and LINDB must be the same values that were
supplied in the preceding call to F11DTF.

16: BðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

17: M – INTEGER Input

On entry: if METHOD ¼ RGMRES , M is the dimension of the restart subspace.
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If METHOD ¼ BICGSTAB , M is the order ‘ of the polynomial Bi-CGSTAB method.

Otherwise, M is not referenced.

Constraints:

if METHOD ¼ RGMRES , 0 < M � min N; 50ð Þ;
if METHOD ¼ BICGSTAB , 0 < M � min N; 10ð Þ.

18: TOL – REAL (KIND=nag_wp) Input

On entry: the required tolerance. Let xk denote the approximate solution at iteration k, and rk the
corresponding residual. The algorithm is considered to have converged at iteration k if

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

If TOL � 0:0, � ¼ max
ffiffi
�
p
;
ffiffiffi
n
p

� is used, where � is the machine precision. Otherwise
� ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

19: MAXITN – INTEGER Input

On entry: the maximum number of iterations allowed.

Constraint: MAXITN � 1.

20: XðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: an initial approximation to the solution vector x.

On exit: an improved approximation to the solution vector x.

21: RNORM – REAL (KIND=nag_wp) Output

On exit: the final value of the residual norm rkk k1, where k is the output value of ITN.

22: ITN – INTEGER Output

On exit: the number of iterations carried out.

23: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Workspace
24: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11DUF is called.

Constraints:

if METHOD ¼ RGMRES , LWORK � 6� NþM� Mþ Nþ 5ð Þ þ 121;
if METHOD ¼ CGS , LWORK � 10� Nþ 120;
if METHOD ¼ BICGSTAB , LWORK � 2� N�Mþ 8� NþM� Mþ 2ð Þ þ 120;
if METHOD ¼ TFQMR , LWORK � 13� Nþ 120.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, for b ¼ valueh i, ISTBðbþ 1Þ ¼ valueh i and ISTBðbÞ ¼ valueh i.
Constraint: ISTBðbþ 1Þ > ISTBðbÞ, for b ¼ 1; 2; . . . ;NB.

On entry, INDBð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � INDBðmÞ � N, for m ¼ 1; 2; . . . ; ISTBðNBþ 1Þ � 1

On entry, ISTBð1Þ ¼ valueh i.
Constraint: ISTBð1Þ � 1.

On entry, LA ¼ valueh i and NNZ ¼ valueh i.
Constraint: LA � 2� NNZ.

On entry, LINDB ¼ valueh i, ISTBðNBþ 1Þ � 1 ¼ valueh i and NB ¼ valueh i.
Constraint: LINDB � ISTBðNBþ 1Þ � 1.

On entry, LWORK ¼ valueh i.
Constraint: LWORK � valueh i.
On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: if METHOD ¼ RGMRES , 1 � M � min N; valueh ið Þ.
If METHOD ¼ BICGSTAB , 1 � M � min N; valueh ið Þ.
On entry, MAXITN ¼ valueh i.
Constraint: MAXITN � 1.

On entry, METHOD ¼ valueh i.
Constraint: METHOD ¼ RGMRES , CGS or BICGSTAB.

On entry, N ¼ valueh i.
Constraint: N � 1.

On entry, NB ¼ valueh i and N ¼ valueh i.
Constraint: 1 � NB � N.

On entry, NNZ ¼ valueh i.
Constraint: NNZ � 1.

On entry, NNZ ¼ valueh i and N ¼ valueh i.
Constraint: NNZ � N2.

On entry, TOL ¼ valueh i.
Constraint: TOL < 1:0.

IFAIL ¼ 2

On entry, element valueh i of A was out of order.
Check that A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been corrupted between
calls to F11DTF and F11DUF.

On entry, ICOLð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.
Check that A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been corrupted between
calls to F11DTF and F11DUF.

On entry, IROWð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � IROWðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.
Check that A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been corrupted between
calls to F11DTF and F11DUF.
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On entry, location valueh i of IROW; ICOLð Þ was a duplicate.
Check that A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been corrupted between
calls to F11DTF and F11DUF.

IFAIL ¼ 3

The CS representation of the preconditioner is invalid.
Check that A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been corrupted between
calls to F11DTF and F11DUF.

IFAIL ¼ 4

The required accuracy could not be obtained. However, a reasonable accuracy may have been
achieved. You should check the output value of RNORM for acceptability. This error code
usually implies that your problem has been fully and satisfactorily solved to within or close to
the accuracy available on your system. Further iterations are unlikely to improve on this
situation.

IFAIL ¼ 5

The solution has not converged after valueh i iterations.

IFAIL ¼ 6

Algorithmic breakdown. A solution is returned, although it is possible that it is completely
inaccurate.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful termination, the final residual rk ¼ b�Axk, where k ¼ ITN, satisfies the termination
criterion

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

The value of the final residual norm is returned in RNORM.

8 Parallelism and Performance

F11DUF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11DUF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F11DUF for each iteration is roughly proportional to the value of NNZC returned
from the preceding call to F11DTF.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined a
priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned coefficient
matrix �A ¼M�1A.

10 Example

This example program reads in a sparse matrix A and a vector b. It calls F11DTF, with the array
LFILL ¼ 0 and the array DTOL ¼ 0:0, to compute an overlapping incomplete LU factorization. This is
then used as an additive Schwarz preconditioner on a call to F11DUF which uses the RGMRES method
to solve Ax ¼ b.

10.1 Program Text

! F11DUF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Program f11dufe

! .. Use Statements ..
Use nag_library, Only: f11dtf, f11duf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dtolg, rnorm, tol
Integer :: i, ifail, itn, k, la, lfillg, lindb, &

liwork, lwork, m, maxitn, mb, n, nb, &
nnz, nnzc, nover

Character (8) :: method
Character (1) :: milug, pstrag

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:)
Real (Kind=nag_wp), Allocatable :: dtol(:)
Integer, Allocatable :: icol(:), idiag(:), indb(:), &

ipivp(:), ipivq(:), irow(:), &
istb(:), istr(:), iwork(:), &
lfill(:), npivm(:)

Character (1), Allocatable :: milu(:), pstrat(:)
! .. Executable Statements ..

Continue

! Print example header
Write (nout,*) ’F11DUF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Get the square matrix size
Read (nin,*) n

! Allocate arrays with lengths based on mesh.
liwork = 9*n + 3
Allocate (b(n),x(n),iwork(liwork))

! Get the number of non zero (nnz) matrix entries
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Read (nin,*) nnz
la = 20*nnz
Allocate (a(la),irow(la),icol(la))

lindb = 3*n
Allocate (idiag(lindb),indb(lindb),ipivp(lindb),ipivq(lindb), &

istr(lindb+1))

! Read in matrix A
Read (nin,*)(a(i),irow(i),icol(i),i=1,nnz)

! Read in RHS
Read (nin,*) b(1:n)

! Read algorithmic parameters
Read (nin,*) method
Read (nin,*) lfillg, dtolg
Read (nin,*) pstrag
Read (nin,*) milug
Read (nin,*) m, tol, maxitn
Read (nin,*) nb, nover

! Allocate arrays with length based on number of blocks.
Allocate (dtol(nb),istb(nb+1),lfill(nb),npivm(nb),milu(nb),pstrat(nb))

! Set up initial approximate solution x
x(1:n) = (0.0_nag_wp,0.0_nag_wp)

! Define diagonal block indices.
! In this example use blocks of MB consecutive rows and initialize
! assuming no overlap.

mb = (n+nb-1)/nb
Do k = 1, nb

istb(k) = (k-1)*mb + 1
End Do
istb(nb+1) = n + 1
Do i = 1, n

indb(i) = i
End Do

! Modify INDB and ISTB to account for overlap.
Call f11dufe_overlap(n,nnz,la,irow,icol,nb,istb,indb,lindb,nover,iwork)
If (iwork(1)==-999) Then

Write (nout,*) ’** LINDB too small, LINDB = ’, lindb, ’.’
Go To 100

End If

! Set algorithmic parameters for each block from global values
lfill(1:nb) = lfillg
dtol(1:nb) = dtolg
pstrat(1:nb) = pstrag
milu(1:nb) = milug

! Set size of real workspace
lwork = 6*n + m*(m+n+5) + 121
Allocate (work(lwork))

! Calculate factorization
ifail = 0
Call f11dtf(n,nnz,a,la,irow,icol,nb,istb,indb,lindb,lfill,dtol,pstrat, &

milu,ipivp,ipivq,istr,idiag,nnzc,npivm,iwork,liwork,ifail)

! Solve Ax = b using F11DUF
ifail = 0
Call f11duf(method,n,nnz,a,la,irow,icol,nb,istb,indb,lindb,ipivp,ipivq, &

istr,idiag,b,m,tol,maxitn,x,rnorm,itn,work,lwork,ifail)

Write (nout,99999) itn
Write (nout,99998) rnorm
Write (nout,*)

F11 – Large Scale Linear Systems F11DUF

Mark 26 F11DUF.7



! Output x
Write (nout,*) ’Solution vector X’
Write (nout,*) ’-------------------’
Write (nout,99997) x(1:n)

100 Continue

99999 Format (1X,’ Converged in’,I10,’ iterations’)
99998 Format (1X,’ Final residual norm =’,1P,D16.3)
99997 Format (1X,’(’,F8.4,’,’,F8.4,’)’)

Contains
Subroutine f11dufe_overlap(n,nnz,la,irow,icol,nb,istb,indb,lindb,nover, &

iwork)

! Purpose
! =======
! This routine takes a set of row indices INDB defining the diagonal
! blocks to be used in F11DTF to define a block Jacobi or additive
! Schwarz preconditioner, and expands them to allow for NOVER levels of
! overlap.
! The pointer array ISTB is also updated accordingly, so that the
! returned values of ISTB and INDB can be passed to F11DTF to define
! overlapping diagonal blocks.
! ----------------------------------------------------------------------

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: la, lindb, n, nb, nnz, nover

! .. Array Arguments ..
Integer, Intent (In) :: icol(la), irow(la)
Integer, Intent (Inout) :: indb(lindb), istb(nb+1)
Integer, Intent (Out) :: iwork(3*n+1)

! .. Local Scalars ..
Integer :: i, ik, ind, iover, k, l, n21, nadd, &

row
! .. Executable Statements ..

Continue

! Find the number of nonzero elements in each row of the matrix A, and
! and start address of each row. Store the start addresses in
! IWORK(N+1,...,2*N+1).

iwork(1:n) = 0
Do k = 1, nnz

iwork(irow(k)) = iwork(irow(k)) + 1
End Do
iwork(n+1) = 1
Do i = 1, n

iwork(n+i+1) = iwork(n+i) + iwork(i)
End Do

! Loop over blocks.
blocks: Do k = 1, nb

! Initialize marker array.
iwork(1:n) = 0

! Mark the rows already in block K in the workspace array.
Do l = istb(k), istb(k+1) - 1

iwork(indb(l)) = 1
End Do

! Loop over levels of overlap.
Do iover = 1, nover

! Initialize counter of new row indices to be added.
ind = 0

! Loop over the rows currently in the diagonal block.
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Do l = istb(k), istb(k+1) - 1
row = indb(l)

! Loop over nonzero elements in row ROW.
Do i = iwork(n+row), iwork(n+row+1) - 1

! If the column index of the nonzero element is not in the
! existing set for this block, store it to be added later, and
! mark it in the marker array.

If (iwork(icol(i))==0) Then
iwork(icol(i)) = 1
ind = ind + 1
iwork(2*n+1+ind) = icol(i)

End If
End Do

End Do

! Shift the indices in INDB and add the new entries for block K.
! Change ISTB accordingly.

nadd = ind
If (istb(nb+1)+nadd-1>lindb) Then

iwork(1) = -999
Exit blocks

End If

Do i = istb(nb+1) - 1, istb(k+1), -1
indb(i+nadd) = indb(i)

End Do
n21 = 2*n + 1
ik = istb(k+1) - 1
indb(ik+1:ik+nadd) = iwork(n21+1:n21+nadd)
istb(k+1:nb+1) = istb(k+1:nb+1) + nadd

End Do
End Do blocks

Return

End Subroutine f11dufe_overlap
End Program f11dufe

10.2 Program Data

F11DUF Example Program Data
9 : n
33 : nnz
( 96.0, -64.0) 1 1
(-20.0, 22.0) 1 2
(-36.0, 14.0) 1 4
(-12.0, 10.0) 2 1
( 96.0, -64.0) 2 2
(-20.0, 22.0) 2 3
(-36.0, 14.0) 2 5
(-12.0, 10.0) 3 2
( 96.0, -64.0) 3 3
(-36.0, 14.0) 3 6
(-28.0, 18.0) 4 1
( 96.0, -64.0) 4 4
(-20.0, 22.0) 4 5
(-36.0, 14.0) 4 7
(-28.0, 18.0) 5 2
(-12.0, 10.0) 5 4
( 96.0, -64.0) 5 5
(-20.0, 22.0) 5 6
(-36.0, 14.0) 5 8
(-28.0, 18.0) 6 3
(-12.0, 10.0) 6 5
( 96.0, -64.0) 6 6
(-36.0, 14.0) 6 9
(-28.0, 18.0) 7 4
( 96.0, -64.0) 7 7
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(-20.0, 22.0) 7 8
(-28.0, 18.0) 8 5
(-12.0, 10.0) 8 7
( 96.0, -64.0) 8 8
(-20.0, 22.0) 8 9
(-28.0, 18.0) 9 6
(-12.0, 10.0) 9 8
( 96.0, -64.0) 9 9 : a(i), irow(i), icol(i) for i=1,nnz
(100.0, 4.0)
(100.0, 4.0)
(100.0, 4.0)
(100.0, 4.0)
(100.0, 4.0)
(100.0, 4.0)
(100.0, 4.0)
(100.0, 4.0)
(100.0, 4.0) : b(i) for i=1,n
’RGMRES’ : method
0 0.0D-1 : lfillg, dtolg
’N’ : pstrag
’N’ : milug
2 1.0D-6 100 : m, tol, maxitn
3 1 : nb, nover

10.3 Program Results

F11DUF Example Program Results

Converged in 8 iterations
Final residual norm = 6.492D-04

Solution vector X
-------------------
( 2.2040, 1.6972)
( 2.3511, 1.9275)
( 1.5931, 1.4368)
( 2.8641, 1.9762)
( 3.0687, 2.2645)
( 2.0467, 1.6948)
( 2.2065, 1.3244)
( 2.3724, 1.5170)
( 1.6254, 1.1783)
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NAG Library Routine Document

F11DXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DXF computes the approximate solution of a complex, Hermitian or non-Hermitian, sparse system
of linear equations applying a number of Jacobi iterations. It is expected that F11DXF will be used as a
preconditioner for the iterative solution of complex sparse systems of equations.

2 Specification

SUBROUTINE F11DXF (STORE, TRANS, INIT, NITER, N, NNZ, A, IROW, ICOL,
CHECK, B, X, DIAG, WORK, IFAIL)

&

INTEGER NITER, N, NNZ, IROW(NNZ), ICOL(NNZ), IFAIL
COMPLEX (KIND=nag_wp) A(NNZ), B(N), X(N), DIAG(N), WORK(N)
CHARACTER(1) STORE, TRANS, INIT, CHECK

3 Description

F11DXF computes the approximate solution of the complex sparse system of linear equations Ax ¼ b
using NITER iterations of the Jacobi algorithm (see also Golub and Van Loan (1996) and Young
(1971)):

xkþ1 ¼ xk þD�1 b�Axkð Þ ð1Þ

where k ¼ 1; 2; . . . ;NITER and x0 ¼ 0.

F11DXF can be used both for non-Hermitian and Hermitian systems of equations. For Hermitian
matrices, either all nonzero elements of the matrix A can be supplied using coordinate storage (CS), or
only the nonzero elements of the lower triangle of A, using symmetric coordinate storage (SCS) (see
the F11 Chapter Introduction).

It is expected that F11DXF will be used as a preconditioner for the iterative solution of complex sparse
systems of equations, using either the suite comprising the routines F11GRF, F11GSF and F11GTF, for
Hermitian systems, or the suite comprising the routines F11BRF, F11BSF and F11BTF, for non-
Hermitian systems of equations.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

5 Arguments

1: STORE – CHARACTER(1) Input

On entry: specifies whether the matrix A is stored using symmetric coordinate storage (SCS)
(applicable only to a Hermitian matrix A) or coordinate storage (CS) (applicable to both
Hermitian and non-Hermitian matrices).

STORE ¼ N
The complete matrix A is stored in CS format.
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STORE ¼ S
The lower triangle of the Hermitian matrix A is stored in SCS format.

Constraint: STORE ¼ N or S .

2: TRANS – CHARACTER(1) Input

On entry: if STORE ¼ N , specifies whether the approximate solution of Ax ¼ b or of AHx ¼ b
is required.

TRANS ¼ N
The approximate solution of Ax ¼ b is calculated.

TRANS ¼ T
The approximate solution of AHx ¼ b is calculated.

Suggested value: if the matrix A is Hermitian and stored in CS format, it is recommended that
TRANS ¼ N for reasons of efficiency.

Constraint: TRANS ¼ N or T .

3: INIT – CHARACTER(1) Input

On entry: on first entry, INIT should be set to `I', unless the diagonal elements of A are already
stored in the array DIAG. If DIAG already contains the diagonal of A, it must be set to `N'.

INIT ¼ N
DIAG must contain the diagonal of A.

INIT ¼ I
DIAG will store the diagonal of A on exit.

Suggested value: INIT ¼ I on first entry; INIT ¼ N , subsequently, unless DIAG has been
overwritten.

Constraint: INIT ¼ N or I .

4: NITER – INTEGER Input

On entry: the number of Jacobi iterations requested.

Constraint: NITER � 1.

5: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

6: NNZ – INTEGER Input

On entry: if STORE ¼ N , the number of nonzero elements in the matrix A.

If STORE ¼ S , the number of nonzero elements in the lower triangle of the matrix A.

Constraints:

if STORE ¼ N , 1 � NNZ � N2;
if STORE ¼ S , 1 � NNZ � N� Nþ 1ð Þ=2.

7: AðNNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: if STORE ¼ N , the nonzero elements in the matrix A (CS format).

If STORE ¼ S , the nonzero elements in the lower triangle of the matrix A (SCS format).

In both cases, the elements of either A or of its lower triangle must be ordered by increasing row
index and by increasing column index within each row. Multiple entries for the same row and
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columns indices are not permitted. The routine F11ZNF or F11ZPF may be used to reorder the
elements in this way for CS and SCS storage, respectively.

8: IROWðNNZÞ – INTEGER array Input
9: ICOLðNNZÞ – INTEGER array Input

On entry: if STORE ¼ N , the row and column indices of the nonzero elements supplied in A.

If STORE ¼ S , the row and column indices of the nonzero elements of the lower triangle of the
matrix A supplied in A.

Constraints:

1 � IROWðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
if STORE ¼ N , 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
if STORE ¼ S , 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;
e i t h e r IROWði � 1Þ < IROWðiÞ o r b o t h IROWði � 1Þ ¼ IROWðiÞ a n d
ICOLði � 1Þ < ICOLðiÞ, for i ¼ 2; 3; . . . ;NNZ.

10: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the CS or SCS representation of the matrix A should be
checked.

CHECK ¼ C
Checks are carried out on the values of N, NNZ, IROW, ICOL; if INIT ¼ N , DIAG is
also checked.

CHECK ¼ N
None of these checks are carried out.

See also Section 9.2.

Constraint: CHECK ¼ C or N .

11: BðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

12: XðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the approximate solution vector xNITER.

13: DIAGðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: if INIT ¼ N , the diagonal elements of A.

On exit: if INIT ¼ N , unchanged on exit.

If INIT ¼ I , the diagonal elements of A.

14: WORKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, STORE 6¼ N or S ,
or TRANS 6¼ N or T ,
or INIT 6¼ N or I ,
or CHECK 6¼ C or N ,
or NITER � 0.

IFAIL ¼ 2

On entry, N < 1,
or NNZ < 1,
or NNZ > N2, if STORE ¼ N ,
or 1 � NNZ � NðNþ 1Þ½ �=2, if STORE ¼ S .

IFAIL ¼ 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and

if STORE ¼ N then 1 � ICOLðiÞ � N, or

if STORE ¼ S then 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ.

IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie within the matrix A, is out of
order, or has duplicate row and column indices. Call either F11ZAF or F11ZBF to reorder and
sum or remove duplicates when STORE ¼ N or STORE ¼ S , respectively.

IFAIL ¼ 4

On entry, INIT ¼ N and some diagonal elements of A stored in DIAG are zero.

IFAIL ¼ 5

On entry, INIT ¼ I and some diagonal elements of A are zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

In general, the Jacobi method cannot be used on its own to solve systems of linear equations. The rate
of convergence is bound by its spectral properties (see, for example, Golub and Van Loan (1996)) and
as a solver, the Jacobi method can only be applied to a limited set of matrices. One condition that
guarantees convergence is strict diagonal dominance.

However, the Jacobi method can be used successfully as a preconditioner to a wider class of systems of
equations. The Jacobi method has good vector/parallel properties, hence it can be applied very
efficiently. Unfortunately, it is not possible to provide criteria which define the applicability of the
Jacobi method as a preconditioner, and its usefulness must be judged for each case.

8 Parallelism and Performance

F11DXF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11DXF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to F11DXF is proportional to NITER � NNZ.

9.2 Use of CHECK

It is expected that a common use of F11DXF will be as preconditioner for the iterative solution of
complex, Hermitian or non-Hermitian, linear systems. In this situation, F11DXF is likely to be called
many times. In the interests of both reliability and efficiency, you are recommended to set
CHECK ¼ C for the first of such calls, and to set CHECK ¼ N for all subsequent calls.

10 Example

This example solves the complex sparse non-Hermitian system of equations Ax ¼ b iteratively using
F11DXF as a preconditioner.

10.1 Program Text

Program f11dxfe

! F11DXF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11brf, f11bsf, f11btf, f11dxf, f11xnf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, sigmax, stplhs, stprhs, tol
Integer :: i, ifail, ifail1, irevcm, iterm, &

itn, lwork, lwreq, m, maxitn, monit, &
n, niter, nnz

Logical :: verbose
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Character (1) :: init, norm, precon, weight
Character (8) :: method

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), b(:), diag(:), work(:), x(:)
Real (Kind=nag_wp), Allocatable :: wgt(:)
Integer, Allocatable :: icol(:), irow(:)

! .. Intrinsic Procedures ..
Intrinsic :: log, nint

! .. Executable Statements ..
Write (nout,*) ’F11DXF Example Program Results’

! Skip heading in data file

Read (nin,*)
Read (nin,*) n
Read (nin,*) nnz
lwork = 300
Allocate (a(nnz),b(n),diag(n),work(lwork),x(n),wgt(n),icol(nnz), &

irow(nnz))

! Read or initialize the parameters for the iterative solver

Read (nin,*) method
Read (nin,*) precon, norm, weight, iterm
Read (nin,*) m, tol, maxitn
Read (nin,*) monit
anorm = 0.0E0_nag_wp
sigmax = 0.0E0_nag_wp

! Read the parameters for the preconditioner

Read (nin,*) niter

! Read the nonzero elements of the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read right-hand side vector b and initial approximate solution

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Call F11BDF to initialize the solver

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11brf(method,precon,norm,weight,iterm,n,m,tol,maxitn,anorm,sigmax, &

monit,lwreq,work,lwork,ifail)

! Call repeatedly F11BSF to solve the equations
! Note that the arrays B and X are overwritten

! On final exit, X will contain the solution and B the residual
! vector

irevcm = 0
init = ’I’

ifail = 0
loop: Do

Call f11bsf(irevcm,x,b,wgt,work,lwreq,ifail)

If (irevcm/=4) Then
ifail1 = -1
If (irevcm==-1) Then

Call f11xnf(’Transpose’,n,nnz,a,irow,icol,’No checking’,x,b, &
ifail1)

Else If (irevcm==1) Then

F11DXF NAG Library Manual

F11DXF.6 Mark 26



Call f11xnf(’No transpose’,n,nnz,a,irow,icol,’No checking’,x,b, &
ifail1)

Else If (irevcm==2) Then
Call f11dxf(’Non Hermitian’,’N’,init,niter,n,nnz,a,irow,icol, &

’Check’,x,b,diag,work(lwreq+1),ifail1)
init = ’N’

Else If (irevcm==3) Then
Call f11btf(itn,stplhs,stprhs,anorm,sigmax,work,lwreq,ifail1)
If (ifail1==0) Then

If (itn<=3) Then
Write (nout,99999) itn
Write (nout,99998) nint(log(stplhs)/log(10.0_nag_wp))

End If
End If

End If
If (ifail1/=0) Then

irevcm = 6
End If

Else
Exit loop

End If
End Do loop

! Obtain information about the computation

ifail1 = 0
Call f11btf(itn,stplhs,stprhs,anorm,sigmax,work,lwreq,ifail1)

! Print the output data

Write (nout,99997)
verbose = .False.
If (verbose) Then

Write (nout,99996) ’Number of iterations for convergence: ’, itn
Write (nout,99995) ’Residual norm: ’, stplhs
Write (nout,99995) ’Right-hand side of termination criterion:’, stprhs
Write (nout,99995) ’1-norm of matrix A: ’, anorm

End If

! Output x

Write (nout,99994)
Write (nout,99993) x(1:n)

99999 Format (/,1X,’Monitoring at iteration number’,I4)
99998 Format (1X,’ order of residual norm:’,I4)
99997 Format (/,1X,’Final Results’)
99996 Format (1X,A,I5)
99995 Format (1X,A,1P,E11.1)
99994 Format (/,2X,’ Solution vector’)
99993 Format (1X,’(’,F8.3,’,’,F8.3,’)’)

End Program f11dxfe

10.2 Program Data

F11DXF Example Program Data
8 : n

24 : nnz
’TFQMR’ : method
’P’ ’1’ ’N’ 1 : precon, norm, weight, iterm
2 1.0D-12 20 : m, tol, maxitn
1 : monit
2 : niter

( 2., 1.) 1 1
( -1., 1.) 1 4
( 1., -3.) 1 8
( 4., 7.) 2 1
( -3., 0.) 2 2
( 2., 4.) 2 5
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( -7., -5.) 3 3
( 2., 1.) 3 6
( 3., 2.) 4 1
( -4., 2.) 4 3
( 0., 1.) 4 4
( 5., -3.) 4 7
( -1., 2.) 5 2
( 8., 6.) 5 5
( -3., -4.) 5 7
( -6., -2.) 6 1
( 5., -2.) 6 3
( 2., 0.) 6 6
( 0., -5.) 7 3
( -1., 5.) 7 5
( 6., 2.) 7 7
( -1., 4.) 8 2
( 2., 0.) 8 6
( 3., 3.) 8 8 : (A) a(i), irow(i), icol(i), i=1,...,nnz

( 7., 11.)
( 1., 24.)
(-13.,-18.)
(-10., 3.)
( 23., 14.)
( 17., -7.)
( 15., -3.)
( -3., 20.) : b(1:n)

( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.) : (Initial guess) x(1:n)

10.3 Program Results

F11DXF Example Program Results

Monitoring at iteration number 1
order of residual norm: 2

Monitoring at iteration number 2
order of residual norm: 2

Monitoring at iteration number 3
order of residual norm: 2

Final Results

Solution vector
( 1.000, 1.000)
( 2.000, -1.000)
( 3.000, 1.000)
( 4.000, -1.000)
( 3.000, -1.000)
( 2.000, 1.000)
( 1.000, -1.000)
( -0.000, 3.000)
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NAG Library Routine Document

F11GDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11GDF is a setup routine, the first in a suite of three routines for the iterative solution of a symmetric
system of simultaneous linear equations. F11GDF must be called before the iterative solver, F11GEF.
The third routine in the suite, F11GFF, can be used to return additional information about the
computation.

These three routines are suitable for the solution of large sparse symmetric systems of equations.

2 Specification

SUBROUTINE F11GDF (METHOD, PRECON, SIGCMP, NORM, WEIGHT, ITERM, N, TOL,
MAXITN, ANORM, SIGMAX, SIGTOL, MAXITS, MONIT, LWREQ,
WORK, LWORK, IFAIL)

&
&

INTEGER ITERM, N, MAXITN, MAXITS, MONIT, LWREQ, LWORK, IFAIL
REAL (KIND=nag_wp) TOL, ANORM, SIGMAX, SIGTOL, WORK(LWORK)
CHARACTER(*) METHOD
CHARACTER(1) PRECON, SIGCMP, NORM, WEIGHT

3 Description

The suite consisting of the routines F11GDF, F11GEF and F11GFF is designed to solve the symmetric
system of simultaneous linear equations Ax ¼ b of order n, where n is large and the matrix of the
coefficients A is sparse.

F11GDF is a setup routine which must be called before F11GEF, the iterative solver. The third routine
in the suite, F11GFF can be used to return additional information about the computation. One of the
following methods can be used:

1. Conjugate Gradient Method (CG)

For this method (see Hestenes and Stiefel (1952), Golub and Van Loan (1996), Barrett et al. (1994)
and Dias da Cunha and Hopkins (1994)), the matrix A should ideally be positive definite. The
application of the Conjugate Gradient method to indefinite matrices may lead to failure or to lack
of convergence.

2. Lanczos Method (SYMMLQ)

This method, based upon the algorithm SYMMLQ (see Paige and Saunders (1975) and Barrett et
al. (1994)), is suitable for both positive definite and indefinite matrices. It is more robust than the
Conjugate Gradient method but less efficient when A is positive definite.

3. Minimum Residual Method (MINRES)

This method may be used when the matrix is indefinite. It seeks to reduce the norm of the residual
at each iteration and often takes fewer iterations than the other methods. It does however require
slightly more memory.

The CG and SYMMLQ methods start from the residual r0 ¼ b�Ax0, where x0 is an initial estimate for
the solution (often x0 ¼ 0), and generate an orthogonal basis for the Krylov subspace span Akr0

� 
, for

k ¼ 0; 1; . . ., by means of three-term recurrence relations (see Golub and Van Loan (1996)). A sequence
of symmetric tridiagonal matrices Tkf g is also generated. Here and in the following, the index k denotes
the iteration count. The resulting symmetric tridiagonal systems of equations are usually more easily
solved than the original problem. A sequence of solution iterates xkf g is thus generated such that the
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sequence of the norms of the residuals rkk kf g converges to a required tolerance. Note that, in general,
the convergence is not monotonic.

In exact arithmetic, after n iterations, this process is equivalent to an orthogonal reduction of A to
symmetric tridiagonal form, Tn ¼ QTAQ; the solution xn would thus achieve exact convergence. In
finite-precision arithmetic, cancellation and round-off errors accumulate causing loss of orthogonality.
These methods must therefore be viewed as genuinely iterative methods, able to converge to a solution
within a prescribed tolerance.

The orthogonal basis is not formed explicitly in either method. The basic difference between the
Conjugate Gradient and Lanczos methods lies in the method of solution of the resulting symmetric
tridiagonal systems of equations: the conjugate gradient method is equivalent to carrying out an LDLT

(Cholesky) factorization whereas the Lanczos method (SYMMLQ) uses an LQ factorization.

Faster convergence for all the methods can be achieved using a preconditioner (see Golub and Van
Loan (1996) and Barrett et al. (1994)). A preconditioner maps the original system of equations onto a
different system, say

�A�x ¼ �b; ð1Þ

with, hopefully, better characteristics with respect to its speed of convergence: for example, the
condition number of the matrix of the coefficients can be improved or eigenvalues in its spectrum can
be made to coalesce. An orthogonal basis for the Krylov subspace span �Ak�r0

� 
, for k ¼ 0; 1; . . ., is

generated and the solution proceeds as outlined above. The algorithms used are such that the solution
and residual iterates of the original system are produced, not their preconditioned counterparts. Note
that an unsuitable preconditioner or no preconditioning at all may result in a very slow rate, or lack, of
convergence. However, preconditioning involves a trade-off between the reduction in the number of
iterations required for convergence and the additional computational costs per iteration. Also, setting up
a preconditioner may involve non-negligible overheads.

A preconditioner must be symmetric and positive definite, i.e., representable by M ¼ EET, where M
is nonsingular, and such that �A ¼ E�1AE�T � In in (1), where In is the identity matrix of order n.
Also, we can define �r ¼ E�1r and �x ¼ ETx. These are formal definitions, used only in the design of the
algorithms; in practice, only the means to compute the matrix-vector products v ¼ Au and to solve the
preconditioning equations Mv ¼ u are required, that is, explicit information about M, E or their
inverses is not required at any stage.

The first termination criterion

rkk kp � � bk kp þ Ak kp � xkk kp
� �

ð2Þ

is available for both conjugate gradient and Lanczos (SYMMLQ) methods. In (2), p ¼ 1;1 or 2 and �
denotes a user-specified tolerance subject to max 10;

ffiffiffi
n
pð Þ� � � < 1, where � is the machine precision.

Facilities are provided for the estimation of the norm of the matrix of the coefficients Ak k1 ¼ Ak k1,
when this is not known in advance, used in (2), by applying Higham's method (see Higham (1988)).
Note that Ak k2 cannot be estimated internally. This criterion uses an error bound derived from
backward error analysis to ensure that the computed solution is the exact solution of a problem as
close to the original as the termination tolerance requires. Termination criteria employing bounds
derived from forward error analysis could be used, but any such criteria would require information
about the condition number � Að Þ which is not easily obtainable.

The second termination criterion

�rkk k2 � � max 1:0; bk k2= r0k k2
� �

�r0k k2 þ �1 �A
� �
� ��xkk k2

� �
ð3Þ

is available only for the Lanczos method (SYMMLQ). In (3), �1 �A
� �
¼ �A
�� ��

2
is the largest singular

value of the (preconditioned) iteration matrix �A. This termination criterion monitors the progress of the
solution of the preconditioned system of equations and is less expensive to apply than criterion (2).
When �1 �A

� �
is not supplied, facilities are provided for its estimation by �1 �A

� �
� max

k
�1 Tkð Þ. The

interlacing property �1 Tk�1ð Þ � �1 Tkð Þ and Gerschgorin's theorem provide lower and upper bounds
from which �1 Tkð Þ can be easily computed by bisection. Alternatively, the less expensive estimate
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�1 �A
� �
� max

k
Tkk k1 can be used, where �1 �A

� �
� Tkk k1 by Gerschgorin's theorem. Note that only order

of magnitude estimates are required by the termination criterion.

Termination criterion (2) is the recommended choice, despite its (small) additional costs per iteration
when using the Lanczos method (SYMMLQ). Also, if the norm of the initial estimate is much larger
than the norm of the solution, that is, if x0k k � xk k, a dramatic loss of significant digits could result in
complete lack of convergence. The use of criterion (2) will enable the detection of such a situation, and
the iteration will be restarted at a suitable point. No such restart facilities are provided for criterion (3).

Optionally, a vector w of user-specified weights can be used in the computation of the vector norms in

termination criterion (2), i.e., vk k wð Þp ¼ v wð Þ�� ��
p
, where v wð Þ� �

i
¼ wivi, for i ¼ 1; 2; . . . ; n. Note that the

use of weights increases the computational costs.

The MINRES algorithm terminates when the norm of the residual of the preconditioned system F ,
Fk k2 � � � �A

�� ��
2
� xkk k2, where �A is the preconditioned matrix.

The termination criteria discussed are not robust in the presence of a non-trivial nullspace of A, i.e.,
when A is singular. It is then possible for xkk kp to grow without limit, spuriously satisfying the
termination criterion. If singularity is suspected, more robust routines can be found in Chapter E04.

The sequence of calls to the routines comprising the suite is enforced: first, the setup routine F11GDF
must be called, followed by the solver F11GEF. The diagnostic routine F11GFF can be called either
when F11GEF is carrying out a monitoring step or after F11GEF has completed its tasks. Incorrect
sequencing will raise an error condition.

4 References

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C and
Van der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods SIAM, Philadelphia

Dias da Cunha R and Hopkins T (1994) PIM 1.1 — the parallel iterative method package for systems of
linear equations user's guide — Fortran 77 version Technical Report Computing Laboratory, University
of Kent at Canterbury, Kent, UK

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hestenes M and Stiefel E (1952) Methods of conjugate gradients for solving linear systems J. Res. Nat.
Bur. Stand. 49 409–436

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM J.
Numer. Anal. 12 617–629

5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: the iterative method to be used.

METHOD ¼ CG
Conjugate gradient method (CG).

METHOD ¼ SYMMLQ
Lanczos method (SYMMLQ).

METHOD ¼ MINRES
Minimum residual method (MINRES).

Constraint: METHOD ¼ CG , SYMMLQ or MINRES .
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2: PRECON – CHARACTER(1) Input

On entry: determines whether preconditioning is used.

PRECON ¼ N
No preconditioning.

PRECON ¼ P
Preconditioning.

Constraint: PRECON ¼ N or P .

3: SIGCMP – CHARACTER(1) Input

On entry: determines whether an estimate of �1 �A
� �
¼ E�1AE�T
�� ��

2
, the largest singular value of

the preconditioned matrix of the coefficients, is to be computed using the bisection method on the
sequence of tridiagonal matrices Tkf g generated during the iteration. Note that �A ¼ A when a
preconditioner is not used.

If SIGMAX > 0:0 (see below), i.e., when �1 �A
� �

is supplied, the value of SIGCMP is ignored.

SIGCMP ¼ S
�1 �A
� �

is to be computed using the bisection method.

SIGCMP ¼ N
The bisection method is not used.

If the termination criterion (3) is used, requiring �1 �A
� �

, an inexpensive estimate is computed and
used (see Section 3).

It is not used if METHOD ¼ MINRES .

Suggested value: SIGCMP ¼ N .

Constraint: SIGCMP ¼ S or N .

4: NORM – CHARACTER(1) Input

On entry: if METHOD ¼ CG or SYMMLQ , NORM defines the matrix and vector norm to be
used in the termination criteria.

NORM ¼ 1
Use the l1 norm.

NORM ¼ I
Use the l1 norm.

NORM ¼ 2
Use the l2 norm.

It has no effect if METHOD ¼ MINRES .

Suggested value:

if ITERM ¼ 1, NORM ¼ I ;
if ITERM ¼ 2, NORM ¼ 2 .

Constraints:

if ITERM ¼ 1, NORM ¼ 1 , I or 2 ;
if ITERM ¼ 2, NORM ¼ 2 .

5: WEIGHT – CHARACTER(1) Input

On entry: specifies whether a vector w of user-supplied weights is to be used in the vector norms

used in the computation of termination criterion (2) (ITERM ¼ 1): vk k wð Þp ¼ v wð Þ�� ��
p
, where

v
wð Þ
i ¼ wivi, for i ¼ 1; 2; . . . ; n. The suffix p ¼ 1; 2;1 denotes the vector norm used, as specified
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by the argument NORM. Note that weights cannot be used when ITERM ¼ 2, i.e., when criterion
(3) is used.

WEIGHT ¼ W
User-supplied weights are to be used and must be supplied on initial entry to F11GEF.

WEIGHT ¼ N
All weights are implicitly set equal to one. Weights do not need to be supplied on initial
entry to F11GEF.

It has no effect if METHOD ¼ MINRES .

Suggested value: WEIGHT ¼ N .

Constraints:

if ITERM ¼ 1, WEIGHT ¼ W or N ;
if ITERM ¼ 2, WEIGHT ¼ N .

6: ITERM – INTEGER Input

On entry: defines the termination criterion to be used.

ITERM ¼ 1
Use the termination criterion defined in (2) (both conjugate gradient and Lanczos
(SYMMLQ) methods).

ITERM ¼ 2
Use the termination criterion defined in (3) (Lanczos method (SYMMLQ) only).

It has no effect if METHOD ¼ MINRES .

Suggested value: ITERM ¼ 1.

Constraints:

if METHOD ¼ CG , ITERM ¼ 1;
if METHOD ¼ SYMMLQ , ITERM ¼ 1 or 2.

7: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

8: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance � for the termination criterion.

If TOL � 0:0, � ¼ max
ffiffi
�
p
;
ffiffiffi
n
p

�ð Þ is used, where � is the machine precision.

Otherwise � ¼ max TOL; 10�;
ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

9: MAXITN – INTEGER Input

On entry: the maximum number of iterations.

Constraint: MAXITN > 0.

10: ANORM – REAL (KIND=nag_wp) Input

On entry: if ANORM > 0:0, the value of Ak kp to be used in the termination criterion (2)
(ITERM ¼ 1).

If ANORM � 0:0, ITERM ¼ 1 and NORM ¼ 1 or I , then Ak k1 ¼ Ak k1 is estimated internally
by F11GEF.

If ITERM ¼ 2, then ANORM is not referenced.
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It has no effect if METHOD ¼ MINRES .

Constraint: if ITERM ¼ 1 and NORM ¼ 2, ANORM > 0:0.

11: SIGMAX – REAL (KIND=nag_wp) Input

On entry: if SIGMAX > 0:0, the value of �1 �A
� �
¼ E�1AE�T
�� ��

2
.

If SIGMAX � 0:0, �1 �A
� �

is estimated by F11GEF when either SIGCMP ¼ S or termination
criterion (3) (ITERM ¼ 2) is employed, though it will be used only in the latter case.

Otherwise, or if METHOD ¼ MINRES , SIGMAX is not referenced.

12: SIGTOL – REAL (KIND=nag_wp) Input

On entry: the tolerance used in assessing the convergence of the estimate of �1 �A
� �
¼ �A
�� ��

2
when

the bisection method is used.

If SIGTOL � 0:0, the default value SIGTOL ¼ 0:01 is used. The actual value used is
max SIGTOL; �ð Þ.
If SIGCMP ¼ N or SIGMAX > 0:0, then SIGTOL is not referenced.

It has no effect if METHOD ¼ MINRES .

Suggested value: SIGTOL ¼ 0:01 should be sufficient in most cases.

Constraint: if SIGCMP ¼ S and SIGMAX � 0:0, SIGTOL < 1:0.

13: MAXITS – INTEGER Input

On entry: the maximum iteration number k ¼ MAXITS for which �1 Tkð Þ is computed by
bisection (see also Section 3). If SIGCMP ¼ N or SIGMAX > 0:0, or if METHOD ¼ MINRES ,
then MAXITS is not referenced.

Suggested value: MAXITS ¼ min 10; nð Þ when SIGTOL is of the order of its default value 0:01ð Þ.
Constraint: if SIGCMP ¼ S and SIGMAX � 0:0, 1 � MAXITS � MAXITN.

14: MONIT – INTEGER Input

On entry: if MONIT > 0, the frequency at which a monitoring step is executed by F11GEF: the
current solution and residual iterates will be returned by F11GEF and a call to F11GFF made
possible every MONIT iterations, starting from the (MONIT)th. Otherwise, no monitoring takes
place.

There are some additional computational costs involved in monitoring the solution and residual
vectors when the Lanczos method (SYMMLQ) is used.

Constraint: MONIT � MAXITN.

15: LWREQ – INTEGER Output

On exit: the minimum amount of workspace required by F11GEF. (See also Section 5 in
F11GEF.)

16: WORKðLWORKÞ – REAL (KIND=nag_wp) array Communication Array

On exit: the array WORK is initialized by F11GDF. It must not be modified before calling the
next routine in the suite, namely F11GEF.

17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11GDF is called.

Constraint: LWORK � 120.
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Note: although the minimum value of LWORK ensures the correct functioning of F11GDF, a
larger value is required by the other routines in the suite, namely F11GEF and F11GFF. The
required value is as follows:

Method Requirements

CG LWORK ¼ 120þ 5nþ p.
SYMMLQ LWORK ¼ 120þ 6nþ p,
MINRES LWORK ¼ 120þ 9n,

where

p ¼ 2 � MAXITSþ 1ð Þ, when an estimate of �1 Að Þ (SIGMAX) is computed;

p ¼ 0, otherwise.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i
On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11GDF has been called out of sequence.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F11GDF is not threaded in any implementation.

9 Further Comments

When �1 �A
� �

is not supplied (SIGMAX � 0:0) but it is required, it is estimated by F11GEF using either
of the two methods described in Section 3, as specified by the argument SIGCMP. In particular, if
SIGCMP ¼ S , then the computation of �1 �A

� �
is deemed to have converged when the differences

between three successive values of �1 Tkð Þ differ, in a relative sense, by less than the tolerance SIGTOL,
i.e., when

max
�
kð Þ
1 � �

k�1ð Þ
1

			 			
�
kð Þ
1

;
�
kð Þ
1 � �

k�2ð Þ
1

			 			
�
kð Þ
1

0@ 1A � SIGTOL:

The computation of �1 �A
� �

is also terminated when the iteration count exceeds the maximum value
allowed, i.e., k � MAXITS.

Bisection is increasingly expensive with increasing iteration count. A reasonably large value of
SIGTOL, of the order of the suggested value, is recommended and an excessive value of MAXITS
should be avoided. Under these conditions, �1 �A

� �
usually converges within very few iterations.

10 Example

This example solves a symmetric system of simultaneous linear equations using the conjugate gradient
method, where the matrix of the coefficients A, has a random sparsity pattern. An incomplete Cholesky
preconditioner is used (F11JAF and F11JBF).

10.1 Program Text

Program f11gdfe

! F11GDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11gdf, f11gef, f11gff, f11jaf, f11jbf, f11xef, &

nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: anorm, dscale, dtol, sigerr, sigmax, &
sigtol, stplhs, stprhs, tol

Integer :: i, ifail, ifail1, irevcm, iterm, &
itn, its, la, lfill, liwork, lwork, &
lwreq, maxitn, maxits, monit, n, &
nnz, nnzc, npivm

Character (6) :: method
Character (1) :: mic, norm, precon, pstrat, sigcmp, &

weight
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), b(:), wgt(:), work(:), x(:)
Integer, Allocatable :: icol(:), ipiv(:), irow(:), istr(:), &

iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11GDF Example Program Results’

! Skip heading in data file

Read (nin,*)
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Read (nin,*) n
Read (nin,*) nnz
la = 2*nnz
liwork = 2*la + 7*n + 1
lwork = 120

Allocate (a(la),b(n),wgt(n),work(lwork),x(n),icol(la),ipiv(n),irow(la), &
istr(n+1),iwork(liwork))

! Read or initialize the parameters for the iterative solver

Read (nin,*) method
Read (nin,*) precon, sigcmp, norm, weight, iterm
Read (nin,*) tol, maxitn
Read (nin,*) monit
anorm = 0.0E0_nag_wp
sigmax = 0.0E0_nag_wp
sigtol = 1.0E-2_nag_wp
maxits = n

! Read the parameters for the preconditioner

Read (nin,*) lfill, dtol
Read (nin,*) mic, dscale
Read (nin,*) pstrat

! Read the nonzero elements of the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read right-hand side vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

If (method==’CG’) Then
Write (nout,99999)

Else If (method==’SYMMLQ’) Then
Write (nout,99998)

Else If (method==’MINRES’) Then
Write (nout,99997)

End If

! Calculate incomplete Cholesky factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jaf(n,nnz,a,la,irow,icol,lfill,dtol,mic,dscale,pstrat,ipiv,istr, &

nnzc,npivm,iwork,liwork,ifail)

! Call F11GDF to initialize the solver

Do
ifail = 0
Call f11gdf(method,precon,sigcmp,norm,weight,iterm,n,tol,maxitn,anorm, &

sigmax,sigtol,maxits,monit,lwreq,work,lwork,ifail)
If (lwork>=lwreq) Then

Exit
Else

Deallocate (work)
lwork = lwreq
Allocate (work(lwork))

End If
End Do

! Call repeatedly F11GEF to solve the equations
! Note that the arrays B and X are overwritten
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! On final exit, X will contain the solution and B the residual
! vector

irevcm = 0
ifail = 1

loop: Do
Call f11gef(irevcm,x,b,wgt,work,lwork,ifail)

If (irevcm/=4) Then
ifail1 = -1
Select Case (irevcm)
Case (1)

Call f11xef(n,nnz,a,irow,icol,’No checking’,x,b,ifail1)

Case (2)

Call f11jbf(n,a,la,irow,icol,ipiv,istr,’No checking’,x,b,ifail1)

Case (3)

ifail1 = 0
Call f11gff(itn,stplhs,stprhs,anorm,sigmax,its,sigerr,work,lwork, &

ifail1)

Write (nout,99996) itn, stplhs
Write (nout,99995)
Write (nout,99994)(x(i),b(i),i=1,n)

End Select
If (ifail1/=0) Then

irevcm = 6
End If

Else If (ifail/=0) Then
Write (nout,99990) ifail
Go To 100

Else
Exit loop

End If
End Do loop

! Obtain information about the computation

ifail1 = 0
Call f11gff(itn,stplhs,stprhs,anorm,sigmax,its,sigerr,work,lwork,ifail1)

! Print the output data

Write (nout,99993)
Write (nout,99992) ’Number of iterations for convergence: ’, itn
Write (nout,99991) ’Residual norm: ’, stplhs
Write (nout,99991) ’Right-hand side of termination criterion:’, stprhs
Write (nout,99991) ’1-norm of matrix A: ’, anorm
Write (nout,99991) ’Largest singular value of A_bar: ’, sigmax

! Output x

Write (nout,99995)
Write (nout,99994)(x(i),b(i),i=1,n)

100 Continue

99999 Format (/,1X,’Solve a system of linear equations using the conjug’, &
’ate gradient method’)

99998 Format (/,1X,’Solve a system of linear equations using the Lanczo’, &
’s method (SYMMLQ)’)

99997 Format (/,1X,’Solve a system of linear equations using the minimu’, &
’m residual method (MINRES)’)

99996 Format (/,1X,’Monitoring at iteration no.’,I4,/,1X,1P,’residual no’, &
’rm: ’,E14.4)

99995 Format (2X,’Solution vector’,2X,’Residual vector’)
99994 Format (1X,1P,E16.4,1X,E16.4)
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99993 Format (/,1X,’Final Results’)
99992 Format (1X,A,I4)
99991 Format (1X,A,1P,E14.4)
99990 Format (1X,/,1X,’ ** F11GEF returned with IFAIL = ’,I5)

End Program f11gdfe

10.2 Program Data

F11GDF Example Program Data
7 N

16 NNZ
’CG’ METHOD
’P’ ’S’ ’1’ ’N’ 1 PRECON, SIGCMP, NORM, WEIGHT, ITERM
1.0D-6 20 TOL, MAXITN
2 MONIT
0 0.0 LFILL, DTOL
’N’ 0.0 MIC, DSCALE
’M’ PSTRAT
4. 1 1
1. 2 1
5. 2 2
2. 3 3
2. 4 2
3. 4 4

-1. 5 1
1. 5 4
4. 5 5
1. 6 2

-2. 6 5
3. 6 6
2. 7 1

-1. 7 2
-2. 7 3
5. 7 7 A(I), IROW(I), ICOL(I), I=1,...,NNZ

15. 18. -8. 21.
11. 10. 29. B(I), I=1,...,N
0. 0. 0. 0.
0. 0. 0. X(I), I=1,...,N

10.3 Program Results

F11GDF Example Program Results

Solve a system of linear equations using the conjugate gradient method

Monitoring at iteration no. 2
residual norm: 1.9938E+00
Solution vector Residual vector

9.6320E-01 -2.2960E-01
1.9934E+00 2.2254E-01
3.0583E+00 9.5827E-02
4.1453E+00 -2.5155E-01
4.8289E+00 -1.7160E-01
5.6630E+00 6.7533E-01
7.1062E+00 -3.4737E-01

Monitoring at iteration no. 4
residual norm: 6.6574E-03
Solution vector Residual vector

9.9940E-01 -1.0551E-03
2.0011E+00 -2.4675E-03
3.0008E+00 -1.7116E-05
3.9996E+00 4.4929E-05
4.9991E+00 2.1359E-03
5.9993E+00 -8.7482E-04
7.0007E+00 6.2045E-05

Final Results
Number of iterations for convergence: 5
Residual norm: 2.0428E-14
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Right-hand side of termination criterion: 3.9200E-04
1-norm of matrix A: 1.0000E+01
Largest singular value of A_bar: 1.3596E+00
Solution vector Residual vector

1.0000E+00 0.0000E+00
2.0000E+00 0.0000E+00
3.0000E+00 -2.6645E-15
4.0000E+00 -3.5527E-15
5.0000E+00 -5.3291E-15
6.0000E+00 1.7764E-15
7.0000E+00 7.1054E-15
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NAG Library Routine Document

F11GEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11GEF is an iterative solver for a symmetric system of simultaneous linear equations; F11GEF is the
second in a suite of three routines, where the first routine, F11GDF, must be called prior to F11GEF to
set up the suite, and the third routine in the suite, F11GFF, can be used to return additional information
about the computation.

These three routines are suitable for the solution of large sparse symmetric systems of equations.

2 Specification

SUBROUTINE F11GEF (IREVCM, U, V, WGT, WORK, LWORK, IFAIL)

INTEGER IREVCM, LWORK, IFAIL
REAL (KIND=nag_wp) U(*), V(*), WGT(*), WORK(LWORK)

3 Description

F11GEF solves the symmetric system of linear simultaneous equations Ax ¼ b using the preconditioned
conjugate gradient method (see Hestenes and Stiefel (1952), Golub and Van Loan (1996), Barrett et al.
(1994) and Dias da Cunha and Hopkins (1994)), a preconditioned Lanczos method based upon the
algorithm SYMMLQ (see Paige and Saunders (1975) and Barrett et al. (1994)), or the MINRES
algorithm (see Paige and Saunders (1975)).

For a general description of the methods employed you are referred to Section 3 in F11GDF.

F11GEF can solve the system after the first routine in the suite, F11GDF, has been called to initialize
the computation and specify the method of solution. The third routine in the suite, F11GFF, can be used
to return additional information generated by the computation during monitoring steps and after
F11GEF has completed its tasks.

F11GEF uses reverse communication, i.e., F11GEF returns repeatedly to the calling program with the
argument IREVCM (see Section 5) set to specified values which require the calling program to carry
out a specific task: either to compute the matrix-vector product v ¼ Au; to solve the preconditioning
equation Mv ¼ u; to notify the completion of the computation; or, to allow the calling program to
monitor the solution. Through the argument IREVCM the calling program can cause immediate or tidy
termination of the execution. On final exit, the last iterates of the solution and of the residual vectors of
the original system of equations are returned.

Reverse communication has the following advantages.

1. Maximum flexibility in the representation and storage of sparse matrices: all matrix operations are
performed outside the solver routine, thereby avoiding the need for a complicated interface with
enough flexibility to cope with all types of storage schemes and sparsity patterns. This applies also
to preconditioners.

2. Enhanced user interaction: you can closely monitor the solution and tidy or immediate termination
can be requested. This is useful, for example, when alternative termination criteria are to be
employed or in case of failure of the external routines used to perform matrix operations.
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5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than IREVCM and V must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: IREVCM ¼ 0, otherwise an error condition will be raised.

On intermediate re-entry: must either be unchanged from its previous exit value, or can have one
of the following values.

IREVCM ¼ 5
Tidy termination: the computation will terminate at the end of the current iteration. Further
reverse communication exits may occur depending on when the termination request is
issued. F11GEF will then return with the termination code IREVCM ¼ 4. Note that before
calling F11GEF with IREVCM ¼ 5 the calling program must have performed the tasks
required by the value of IREVCM returned by the previous call to F11GEF, otherwise
subsequently returned values may be invalid.

IREVCM ¼ 6
Immediate termination: F11GEF will return immediately with termination code
IREVCM ¼ 4 and with any useful information available. This includes the last iterate
of the solution and, for conjugate gradient only, the last iterate of the residual vector. The
residual vector is generally not available when the Lanczos method (SYMMLQ) is used.
F11GEF will then return with the termination code IREVCM ¼ 4.

Immediate termination may be useful, for example, when errors are detected during matrix-vector
multiplication or during the solution of the preconditioning equation.

Changing IREVCM to any other value between calls will result in an error.

On intermediate exit: has the following meanings.

IREVCM ¼ 1
The calling program must compute the matrix-vector product v ¼ Au, where u and v are
stored in U and V, respectively.

IREVCM ¼ 2
The calling program must solve the preconditioning equation Mv ¼ u, where u and v are
stored in U and V, respectively.
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IREVCM ¼ 3
Monitoring step: the solution and residual at the current iteration are returned in the arrays
U and V, respectively. No action by the calling program is required. To return additional
information F11GFF can be called at this step.

On final exit: if IREVCM ¼ 4, F11GEF has completed its tasks. The value of IFAIL determines
whether the iteration has been successfully completed, errors have been detected or the calling
program has requested termination.

Constraint: on initial entry, IREVCM ¼ 0; on re-entry, either IREVCM must remain unchanged
or be reset to IREVCM ¼ 5 or 6.

2: Uð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array U must be at least n.

On initial entry: an initial estimate, x0, of the solution of the system of equations Ax ¼ b.
On intermediate re-entry: must remain unchanged.

On intermediate exit: the returned value of IREVCM determines the contents of U in the
following way.

If IREVCM ¼ 1 or 2, U holds the vector u on which the operation specified by IREVCM is to be
carried out.

If IREVCM ¼ 3, U holds the current iterate of the solution vector.

On final exit: if IFAIL ¼ 3 or �i, the array U is unchanged from the initial entry to F11GEF. If
IFAIL ¼ 1, the array U is unchanged from the last entry to F11GEF. Otherwise, U holds the last
iterate of the solution of the system of equations, for all returned values of IFAIL.

3: Vð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array V must be at least n.

On initial entry: the right-hand side b of the system of equations Ax ¼ b.
On intermediate re-entry: the returned value of IREVCM determines the contents of V in the
following way.

If IREVCM ¼ 1 or 2, V must store the vector v, the result of the operation specified by the value
of IREVCM returned by the previous call to F11GEF.

If IREVCM ¼ 3, V must remain unchanged.

On intermediate exit: if IREVCM ¼ 3, V holds the current iterate of the residual vector. Note that
this is an approximation to the true residual vector. Otherwise, it does not contain any useful
information.

On final exit: if IFAIL ¼ 3 or �i, the array V is unchanged from the last entry to F11GEF. If
IFAIL ¼ 1, the array V is unchanged from the initial entry to F11GEF. If IFAIL ¼ 0 or 2, the
array V contains the true residual vector of the system of equations (see also Section 6).
Otherwise, V stores the last iterate of the residual vector unless the Lanczos method (SYMMLQ)
was used and IFAIL � 5, in which case V is set to 0:0.

4: WGTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WGT must be at least max 1;nð Þ.
On entry: the user-supplied weights, if these are to be used in the computation of the vector
norms in the termination criterion (see Sections 3 and 5 in F11GDF).

Weights are NOT used in the MINRES algorithm.

Constraint: if weights are to be used, at least one element of WGT must be nonzero.
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5: WORKðLWORKÞ – REAL (KIND=nag_wp) array Communication Array

On initial entry: the array WORK as returned by F11GDF (see also Section 5 in F11GDF).

On intermediate re-entry: must remain unchanged.

6: LWORK – INTEGER Input

On initial entry: the dimension of the array WORK as declared in the (sub)program from which
F11GEF is called (see also Section 3 in F11GDF). The required amount of workspace is as
follows:

Method Requirements

CG LWORK ¼ 120þ 5n þ p.
SYMMLQ LWORK ¼ 120þ 6n þ p,
MINRES LWORK ¼ 120þ 9n,

where

p ¼ 2 � MAXITSþ 1ð Þ, when an estimate of �1 Að Þ (SIGMAX) is computed;

p ¼ 0, otherwise.

Constraint: LWORK � LWREQ, where LWREQ is returned by F11GDF.

7: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On intermediate exit: the value of IFAIL is meaningless and should be ignored.

On final exit: (i.e., when IREVCM ¼ 4) IFAIL ¼ 0, unless the routine detects an error or a
warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

F11GEF has already completed its tasks. You need to set a new problem.

IFAIL ¼ 2

The required accuracy could not be obtained. However, a reasonable accuracy may have been
achieved.

User-requested termination: the required accuracy could not be obtained. However, a reasonable
accuracy may have been achieved.

IFAIL ¼ 3

Either F11GDF was not called before calling this routine or it has returned an error.
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IFAIL ¼ 4

User-requested tidy termination. The solution has not converged after valueh i iterations.

IFAIL ¼ 5

The solution has not converged after valueh i iterations.

IFAIL ¼ 6

The preconditioner appears not to be positive definite. The computation cannot continue.

IFAIL ¼ 7

The matrix of the coefficients A appears not to be positive definite. The computation cannot
continue.

IFAIL ¼ 8

User-requested immediate termination.

IFAIL ¼ 9

The matrix of the coefficients A appears to be singular. The computation cannot continue.

IFAIL ¼ 10

The weights in array WGT are all zero.

IFAIL ¼ �1
On initial entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0.

On intermediate re-entry, IREVCM ¼ valueh i.
Constraint: either IREVCM must be unchanged from its previous exit value or IREVCM ¼ 5 or
6.

IFAIL ¼ �6
On entry, LWORK ¼ valueh i.
Constraint: LWORK � LWREQ, where LWREQ is returned by F11GDF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On completion, i.e., IREVCM ¼ 4 on exit, the arrays U and V will return the solution and residual
vectors, xk and rk ¼ b�Axk, respectively, at the kth iteration, the last iteration performed, unless an
immediate termination was requested and the Lanczos method (SYMMLQ) was used.
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On successful completion, the termination criterion is satisfied to within the user-specified tolerance, as
described in Section 3 in F11GDF. The computed values of the left- and right-hand sides of the
termination criterion selected can be obtained by a call to F11GFF.

8 Parallelism and Performance

F11GEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11GEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of operations carried out by F11GEF for each iteration is likely to be principally
determined by the computation of the matrix-vector products v ¼ Au and by the solution of the
preconditioning equation Mv ¼ u in the calling program. Each of these operations is carried out once
every iteration.

The number of the remaining operations in F11GEF for each iteration is approximately proportional to
n. Note that the Lanczos method (SYMMLQ) requires a slightly larger number of operations than the
conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined at the
onset, as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix of
the coefficients �A ¼ E�1AE�T.
Additional matrix-vector products are required for the computation of Ak k1 ¼ Ak k1, when this has not
been supplied to F11GDF and is required by the termination criterion employed.

The number of operations required to compute �1 �A
� �

is negligible for reasonable values of SIGTOL
and MAXITS (see Sections 5 and 9 in F11GDF).

If the termination criterion rkk kp � � bk kp þ Ak kp � xkk kp
� �

is used (see Section 3 in F11GDF) and

x0k k � xkk k, so that because of loss of significant digits the required accuracy could not be obtained,
the iteration is restarted automatically at some suitable point: F11GEF sets x0 ¼ xk and the computation
begins again. For particularly badly scaled problems, more than one restart may be necessary. Naturally,
restarting adds to computational costs: it is recommended that the iteration should start from a value x0
which is as close to the true solution ~x as can be estimated. Otherwise, the iteration should start from
x0 ¼ 0.

10 Example

See Section 10 in F11GDF.
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NAG Library Routine Document

F11GFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11GFF is the third in a suite of three routines for the iterative solution of a symmetric system of
simultaneous linear equations (see Golub and Van Loan (1996)). F11GFF returns information about the
computations during an iteration and/or after this has been completed. The first routine of the suite,
F11GDF, is a setup routine, the second routine, F11GEF is the proper iterative solver.

These three routines are suitable for the solution of large sparse symmetric systems of equations.

2 Specification

SUBROUTINE F11GFF (ITN, STPLHS, STPRHS, ANORM, SIGMAX, ITS, SIGERR,
WORK, LWORK, IFAIL)

&

INTEGER ITN, ITS, LWORK, IFAIL
REAL (KIND=nag_wp) STPLHS, STPRHS, ANORM, SIGMAX, SIGERR, WORK(LWORK)

3 Description

F11GFF returns information about the solution process. It can be called both during a monitoring step
of the solver F11GEF, or after this solver has completed its tasks. Calling F11GFF at any other time
will result in an error condition being raised.

For further information you should read the documentation for F11GDF and F11GEF.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: ITN – INTEGER Output

On exit: the number of iterations carried out by F11GEF.

2: STPLHS – REAL (KIND=nag_wp) Output

On exit: the current value of the left-hand side of the termination criterion used by F11GEF.

3: STPRHS – REAL (KIND=nag_wp) Output

On exit: the current value of the right-hand side of the termination criterion used by F11GEF.

4: ANORM – REAL (KIND=nag_wp) Output

On exit: for CG and SYMMLQ methods, the norm Ak k1 ¼ Ak k1 when either it has been
supplied to F11GDF or it has been estimated by F11GEF (see also Sections 3 and 5 in F11GDF).
Otherwise, ANORM ¼ 0:0 is returned.

For MINRES method, an estimate of the infinity norm of the preconditioned matrix operator.
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5: SIGMAX – REAL (KIND=nag_wp) Output

On exit: for CG and SYMMLQ methods, the current estimate of the largest singular value �1 �A
� �

of the preconditioned iteration matrix �A ¼ E�1AE�T, when either it has been supplied to
F11GDF or it has been estimated by F11GEF (see also Sections 3 and 5 in F11GDF). Note that if
ITS < ITN then SIGMAX contains the final estimate. If, on final exit from F11GEF, ITS ¼ ITN,
then the estimation of �1 �A

� �
may have not converged; in this case you should look at the value

returned in SIGERR. Otherwise, SIGMAX ¼ 0:0 is returned.

For MINRES method, an estimate of the final transformed residual.

6: ITS – INTEGER Output

On exit: for CG and SYMMLQ methods, the number of iterations employed so far in the
computation of the estimate of �1 �A

� �
, the largest singular value of the preconditioned matrix

�A ¼ E�1AE�T, when �1 �A
� �

has been estimated by F11GEF using the bisection method (see also
Sections 3, 5 and 9 in F11GDF). Otherwise, ITS ¼ 0 is returned.

7: SIGERR – REAL (KIND=nag_wp) Output

On exit: for CG and SYMMLQ methods, if �1 �A
� �

has been estimated by F11GEF using
bisection,

SIGERR ¼ max
�
kð Þ
1 � �

k�1ð Þ
1

			 			
�
kð Þ
1

;
�
kð Þ
1 � �

k�2ð Þ
1

			 			
�
kð Þ
1

0@ 1A;
where k ¼ ITS denotes the iteration number. The estimation has converged if
SIGERR � SIGTOL where SIGTOL is an input argument to F11GDF. Otherwise,
SIGERR ¼ 0:0 is returned.

For MINRES method, an estimate of the condition number of the preconditioned matrix.

8: WORKðLWORKÞ – REAL (KIND=nag_wp) array Communication Array

On entry: the array WORK as returned by F11GEF (see also Section 3 in F11GEF).

9: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11GFF is called (see also Section 5 in F11GDF).

Constraint: LWORK � 120.

Note: although the minimum value of LWORK ensures the correct functioning of F11GFF, a
larger value is required by the iterative solver F11GEF (see also Section 5 in F11GDF).

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i
On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11GFF has been called out of sequence. For example, the last call to F11GEF did not return
IREVCM ¼ 3 or 4.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F11GFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in F11GDF.
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NAG Library Routine Document

F11GRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11GRF is a setup routine, the first in a suite of three routines for the iterative solution of a complex
Hermitian system of simultaneous linear equations. F11GRF must be called before F11GSF, the
iterative solver. The third routine in the suite, F11GTF, can be used to return additional information
about the computation.

These three routines are suitable for the solution of large sparse complex Hermitian systems of
equations.

2 Specification

SUBROUTINE F11GRF (METHOD, PRECON, SIGCMP, NORM, WEIGHT, ITERM, N, TOL,
MAXITN, ANORM, SIGMAX, SIGTOL, MAXITS, MONIT, LWREQ,
WORK, LWORK, IFAIL)

&
&

INTEGER ITERM, N, MAXITN, MAXITS, MONIT, LWREQ, LWORK,
IFAIL

&

REAL (KIND=nag_wp) TOL, ANORM, SIGMAX, SIGTOL
COMPLEX (KIND=nag_wp) WORK(LWORK)
CHARACTER(*) METHOD
CHARACTER(1) PRECON, SIGCMP, NORM, WEIGHT

3 Description

The suite consisting of the routines F11GRF, F11GSF and F11GTF is designed to solve the complex
Hermitian system of simultaneous linear equations Ax ¼ b of order n, where n is large and the matrix
of the coefficients A is sparse.

F11GRF is a setup routine which must be called before the iterative solver F11GSF. F11GTF, the third
routine in the suite, can be used to return additional information about the computation. Either of two
methods can be used:

1. Conjugate Gradient Method (CG)

For this method (see Hestenes and Stiefel (1952), Golub and Van Loan (1996), Barrett et al. (1994)
and Dias da Cunha and Hopkins (1994)), the matrix A should ideally be positive definite. The
application of the Conjugate Gradient method to indefinite matrices may lead to failure or to lack
of convergence.

2. Lanczos Method (SYMMLQ)

This method, based upon the algorithm SYMMLQ (see Paige and Saunders (1975) and Barrett et
al. (1994)), is suitable for both positive definite and indefinite matrices. It is more robust than the
Conjugate Gradient method but less efficient when A is positive definite.

Both CG and SYMMLQ methods start from the residual r0 ¼ b�Ax0, where x0 is an initial estimate
for the solution (often x0 ¼ 0), and generate an orthogonal basis for the Krylov subspace span Akr0

� 
,

for k ¼ 0; 1; . . ., by means of three-term recurrence relations (see Golub and Van Loan (1996)). A
sequence of real symmetric tridiagonal matrices Tkf g is also generated. Here and in the following, the
index k denotes the iteration count. The resulting real symmetric tridiagonal systems of equations are
usually more easily solved than the original problem. A sequence of solution iterates xkf g is thus
generated such that the sequence of the norms of the residuals rkk kf g converges to a required tolerance.
Note that, in general, the convergence is not monotonic.
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In exact arithmetic, after n iterations, this process is equivalent to an orthogonal reduction of A to real
symmetric tridiagonal form, Tn ¼ QHAQ; the solution xn would thus achieve exact convergence. In
finite-precision arithmetic, cancellation and round-off errors accumulate causing loss of orthogonality.
These methods must therefore be viewed as genuinely iterative methods, able to converge to a solution
within a prescribed tolerance.

The orthogonal basis is not formed explicitly in either method. The basic difference between the two
methods lies in the method of solution of the resulting real symmetric tridiagonal systems of equations:
the conjugate gradient method is equivalent to carrying out an LDLH (Cholesky) factorization whereas
the Lanczos method (SYMMLQ) uses an LQ factorization.

Faster convergence can be achieved using a preconditioner (see Golub and Van Loan (1996) and
Barrett et al. (1994)). A preconditioner maps the original system of equations onto a different system,
say

�A�x ¼ �b; ð1Þ

with, hopefully, better characteristics with respect to its speed of convergence: for example, the
condition number of the matrix of the coefficients can be improved or eigenvalues in its spectrum can
be made to coalesce. An orthogonal basis for the Krylov subspace span �Ak�r0

� 
, for k ¼ 0; 1; . . ., is

generated and the solution proceeds as outlined above. The algorithms used are such that the solution
and residual iterates of the original system are produced, not their preconditioned counterparts. Note
that an unsuitable preconditioner or no preconditioning at all may result in a very slow rate, or lack, of
convergence. However, preconditioning involves a trade-off between the reduction in the number of
iterations required for convergence and the additional computational costs per iteration. Also, setting up
a preconditioner may involve non-negligible overheads.

A preconditioner must be Hermitian and positive definite, i.e., representable by M ¼ EEH, where M
is nonsingular, and such that �A ¼ E�1AE�H � In in (1), where In is the identity matrix of order n.
Also, we can define �r ¼ E�1r and �x ¼ EHx. These are formal definitions, used only in the design of the
algorithms; in practice, only the means to compute the matrix-vector products v ¼ Au and to solve the
preconditioning equations Mv ¼ u are required, that is, explicit information about M, E or their
inverses is not required at any stage.

The first termination criterion

rkk kp � � bk kp þ Ak kp � xkk kp
� �

ð2Þ

is available for both conjugate gradient and Lanczos (SYMMLQ) methods. In (2), p ¼ 1;1 or 2 and �
denotes a user-specified tolerance subject to max 10;

ffiffiffi
n
p

ð Þ� � � < 1, where � is the machine precision.
Facilities are provided for the estimation of the norm of the matrix of the coefficients Ak k1 ¼ Ak k1,
when this is not known in advance, used in (2), by applying Higham's method (see Higham (1988)).
Note that Ak k2 cannot be estimated internally. This criterion uses an error bound derived from
backward error analysis to ensure that the computed solution is the exact solution of a problem as
close to the original as the termination tolerance requires. Termination criteria employing bounds
derived from forward error analysis could be used, but any such criteria would require information
about the condition number � Að Þ which is not easily obtainable.

The second termination criterion

�rkk k2 � � max 1:0; bk k2= r0k k2
� �

�r0k k2 þ �1 �A
� �
� ��xkk k2

� �
ð3Þ

is available only for the Lanczos method (SYMMLQ). In (3), �1 �A
� �
¼ �A
�� ��

2
is the largest singular

value of the (preconditioned) iteration matrix �A. This termination criterion monitors the progress of the
solution of the preconditioned system of equations and is less expensive to apply than criterion (2).
When �1 �A

� �
is not supplied, facilities are provided for its estimation by �1 �A

� �
� max

k
�1 Tkð Þ. The

interlacing property �1 Tk�1ð Þ � �1 Tkð Þ and Gerschgorin's theorem provide lower and upper bounds
from which �1 Tkð Þ can be easily computed by bisection. Alternatively, the less expensive estimate
�1 �A
� �
� max

k
Tkk k1 can be used, where �1 �A

� �
� Tkk k1 by Gerschgorin's theorem. Note that only order

of magnitude estimates are required by the termination criterion.
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Termination criterion (2) is the recommended choice, despite its (small) additional costs per iteration
when using the Lanczos method (SYMMLQ). Also, if the norm of the initial estimate is much larger
than the norm of the solution, that is, if x0k k � xk k, a dramatic loss of significant digits could result in
complete lack of convergence. The use of criterion (2) will enable the detection of such a situation, and
the iteration will be restarted at a suitable point. No such restart facilities are provided for criterion (3).

Optionally, a vector w of user-specified weights can be used in the computation of the vector norms in

termination criterion (2), i.e., vk k wð Þp ¼ v wð Þ�� ��
p
, where v wð Þ� �

i
¼ wivi, for i ¼ 1; 2; . . . ; n. Note that the

use of weights increases the computational costs.

The sequence of calls to the routines comprising the suite is enforced: first, the setup routine F11GRF
must be called, followed by the solver F11GSF. F11GTF can be called either when F11GSF is carrying
out a monitoring step or after F11GSF has completed its tasks. Incorrect sequencing will raise an error
condition.

4 References

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C and
Van der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods SIAM, Philadelphia

Dias da Cunha R and Hopkins T (1994) PIM 1.1 — the parallel iterative method package for systems of
linear equations user's guide — Fortran 77 version Technical Report Computing Laboratory, University
of Kent at Canterbury, Kent, UK

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hestenes M and Stiefel E (1952) Methods of conjugate gradients for solving linear systems J. Res. Nat.
Bur. Stand. 49 409–436

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM J.
Numer. Anal. 12 617–629

5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: the iterative method to be used.

METHOD ¼ CG
Conjugate gradient method.

METHOD ¼ SYMMLQ
Lanczos method (SYMMLQ).

Constraint: METHOD ¼ CG or SYMMLQ.

2: PRECON – CHARACTER(1) Input

On entry: determines whether preconditioning is used.

PRECON ¼ N
No preconditioning.

PRECON ¼ P
Preconditioning.

Constraint: PRECON ¼ N or P .
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3: SIGCMP – CHARACTER(1) Input

On entry: determines whether an estimate of �1 �A
� �
¼ E�1AE�H
�� ��

2
, the largest singular value of

the preconditioned matrix of the coefficients, is to be computed using the bisection method on the
sequence of tridiagonal matrices Tkf g generated during the iteration. Note that �A ¼ A when a
preconditioner is not used.

If SIGMAX > 0:0 (see below), i.e., when �1 �A
� �

is supplied, the value of SIGCMP is ignored.

SIGCMP ¼ S
�1 �A
� �

is to be computed using the bisection method.

SIGCMP ¼ N
The bisection method is not used.

If the termination criterion (3) is used, requiring �1 �A
� �

, an inexpensive estimate is computed and
used (see Section 3).

Suggested value: SIGCMP ¼ N .

Constraint: SIGCMP ¼ S or N .

4: NORM – CHARACTER(1) Input

On entry: defines the matrix and vector norm to be used in the termination criteria.

NORM ¼ 1
Use the l1 norm.

NORM ¼ I
Use the l1 norm.

NORM ¼ 2
Use the l2 norm.

Suggested value:

if ITERM ¼ 1, NORM ¼ I ;
if ITERM ¼ 2, NORM ¼ 2 .

Constraints:

if ITERM ¼ 1, NORM ¼ 1 , I or 2 ;
if ITERM ¼ 2, NORM ¼ 2 .

5: WEIGHT – CHARACTER(1) Input

On entry: specifies whether a vector w of user-supplied weights is to be used in the vector norms

used in the computation of termination criterion (2) (ITERM ¼ 1): vk k wð Þp ¼ v wð Þ�� ��
p
, where

v
wð Þ
i ¼ wivi, for i ¼ 1; 2; . . . ; n. The suffix p ¼ 1; 2;1 denotes the vector norm used, as specified
by the argument NORM. Note that weights cannot be used when ITERM ¼ 2, i.e., when criterion
(3) is used.

WEIGHT ¼ W
User-supplied weights are to be used and must be supplied on initial entry to F11GSF.

WEIGHT ¼ N
All weights are implicitly set equal to one. Weights do not need to be supplied on initial
entry to F11GSF.

Suggested value: WEIGHT ¼ N .

Constraints:

if ITERM ¼ 1, WEIGHT ¼ W or N ;
if ITERM ¼ 2, WEIGHT ¼ N .
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6: ITERM – INTEGER Input

On entry: defines the termination criterion to be used.

ITERM ¼ 1
Use the termination criterion defined in (2) (both conjugate gradient and Lanczos
(SYMMLQ) methods).

ITERM ¼ 2
Use the termination criterion defined in (3) (Lanczos method (SYMMLQ) only).

Suggested value: ITERM ¼ 1.

Constraints:

if METHOD ¼ CG , ITERM ¼ 1;
if METHOD ¼ SYMMLQ , ITERM ¼ 1 or 2.

7: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

8: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance � for the termination criterion.

If TOL � 0:0, � ¼ max
ffiffi
�
p
;
ffiffiffi
n
p

�ð Þ is used, where � is the machine precision.

Otherwise � ¼ max TOL; 10�;
ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

9: MAXITN – INTEGER Input

On entry: the maximum number of iterations.

Constraint: MAXITN > 0.

10: ANORM – REAL (KIND=nag_wp) Input

On entry: if ANORM > 0:0, the value of Ak kp to be used in the termination criterion (2)
(ITERM ¼ 1).

If ANORM � 0:0, ITERM ¼ 1 and NORM ¼ 1 or I , then Ak k1 ¼ Ak k1 is estimated internally
by F11GSF.

If ITERM ¼ 2, then ANORM is not referenced.

Constraint: if ITERM ¼ 1 and NORM ¼ 2, ANORM > 0:0.

11: SIGMAX – REAL (KIND=nag_wp) Input

On entry: if SIGMAX > 0:0, the value of �1 �A
� �
¼ E�1AE�H
�� ��

2
.

If SIGMAX � 0:0, �1 �A
� �

is estimated by F11GSF when either SIGCMP ¼ S or termination
criterion (3) (ITERM ¼ 2) is employed, though it will be used only in the latter case.

Otherwise, SIGMAX is not referenced.

12: SIGTOL – REAL (KIND=nag_wp) Input

On entry: the tolerance used in assessing the convergence of the estimate of �1 �A
� �
¼ �A
�� ��

2
when

the bisection method is used.

If SIGTOL � 0:0, the default value SIGTOL ¼ 0:01 is used. The actual value used is
max SIGTOL; �ð Þ.
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If SIGCMP ¼ N or SIGMAX > 0:0, then SIGTOL is not referenced.

Suggested value: SIGTOL ¼ 0:01 should be sufficient in most cases.

Constraint: if SIGCMP ¼ S and SIGMAX � 0:0, SIGTOL < 1:0.

13: MAXITS – INTEGER Input

On entry: the maximum iteration number k ¼ MAXITS for which �1 Tkð Þ is computed by
bisection (see also Section 3). If SIGCMP ¼ N or SIGMAX > 0:0, then MAXITS is not
referenced.

Suggested value: MAXITS ¼ min 10; nð Þ when SIGTOL is of the order of its default value 0:01ð Þ.
Constraint: if SIGCMP ¼ S and SIGMAX � 0:0, 1 � MAXITS � MAXITN.

14: MONIT – INTEGER Input

On entry: if MONIT > 0, the frequency at which a monitoring step is executed by F11GSF: the
current solution and residual iterates will be returned by F11GSF and a call to F11GTF made
possible every MONIT iterations, starting from iteration number MONIT. Otherwise, no
monitoring takes place. There are some additional computational costs involved in monitoring the
solution and residual vectors when the Lanczos method (SYMMLQ) is used.

Constraint: MONIT � MAXITN.

15: LWREQ – INTEGER Output

On exit: the minimum amount of workspace required by F11GSF. (See also Section 5 in
F11GSF.)

16: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Communication Array

On exit: the array WORK is initialized by F11GRF. It must not be modified before calling the
next routine in the suite, namely F11GSF.

17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11GRF is called.

Constraint: LWORK � 120.

Note: although the minimum value of LWORK ensures the correct functioning of F11GRF, a
larger value is required by the other routines in the suite, namely F11GSF and F11GTF. The
required value is as follows:

Method Requirements

CG LWORK ¼ 120þ 5nþ p
SYMMLQ LWORK ¼ 120þ 6nþ p
where

p ¼ 2� MAXITSþ 1ð Þ, when an estimate of �1 Að Þ (SIGMAX) is computed;

p ¼ 0, otherwise.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i
On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11GRF has been called out of sequence.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F11GRF is not threaded in any implementation.

9 Further Comments

When �1 �A
� �

is not supplied (SIGMAX � 0:0) but it is required, it is estimated by F11GSF using either
of the two methods described in Section 3, as specified by the argument SIGCMP. In particular, if
SIGCMP ¼ S , then the computation of �1 �A

� �
is deemed to have converged when the differences

between three successive values of �1 Tkð Þ differ, in a relative sense, by less than the tolerance SIGTOL,
i.e., when

max
�
kð Þ
1 � �

k�1ð Þ
1

			 			
�
kð Þ
1

;
�
kð Þ
1 � �

k�2ð Þ
1

			 			
�
kð Þ
1

0@ 1A � SIGTOL:

The computation of �1 �A
� �

is also terminated when the iteration count exceeds the maximum value
allowed, i.e., k � MAXITS.
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Bisection is increasingly expensive with increasing iteration count. A reasonably large value of
SIGTOL, of the order of the suggested value, is recommended and an excessive value of MAXITS
should be avoided. Under these conditions, �1 �A

� �
usually converges within very few iterations.

10 Example

This example solves a complex Hermitian system of simultaneous linear equations using the conjugate
gradient method, where the matrix of the coefficients A, has a random sparsity pattern. An incomplete
Cholesky preconditioner is used (F11JAF and F11JBF).

10.1 Program Text

Program f11grfe

! F11GRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11grf, f11gsf, f11gtf, f11jnf, f11jpf, f11xsf, &

nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: anorm, dscale, dtol, sigerr, sigmax, &
sigtol, stplhs, stprhs, tol

Integer :: i, ifail, ifail1, irevcm, iterm, &
itn, its, la, lfill, liwork, lwork, &
lwreq, maxitn, maxits, monit, n, &
nnz, nnzc, npivm

Character (6) :: method
Character (1) :: mic, norm, precon, pstrat, sigcmp, &

weight
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:)
Real (Kind=nag_wp), Allocatable :: wgt(:)
Integer, Allocatable :: icol(:), ipiv(:), irow(:), istr(:), &

iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11GRF Example Program Results’

! Skip heading in data file

Read (nin,*)
Read (nin,*) n
Read (nin,*) nnz
la = 2*nnz
liwork = 2*la + 7*n + 1
lwork = 200

Allocate (a(la),b(n),work(lwork),x(n),wgt(n),icol(la),ipiv(n),irow(la), &
istr(n+1),iwork(liwork))

! Read or initialize the parameters for the iterative solver

Read (nin,*) method
Read (nin,*) precon, sigcmp, norm, weight, iterm
Read (nin,*) tol, maxitn
Read (nin,*) monit
anorm = 0.0E0_nag_wp
sigmax = 0.0E0_nag_wp
sigtol = 1.0E-2_nag_wp
maxits = n

! Read the parameters for the preconditioner
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Read (nin,*) lfill, dtol
Read (nin,*) mic, dscale
Read (nin,*) pstrat

! Read the nonzero elements of the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read right-hand side vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Calculate incomplete Cholesky factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jnf(n,nnz,a,la,irow,icol,lfill,dtol,mic,dscale,pstrat,ipiv,istr, &

nnzc,npivm,iwork,liwork,ifail)

! Call F11GRF to initialize the solver

ifail = 0
Call f11grf(method,precon,sigcmp,norm,weight,iterm,n,tol,maxitn,anorm, &

sigmax,sigtol,maxits,monit,lwreq,work,lwork,ifail)

! Call repeatedly F11GSF to solve the equations
! Note that the arrays B and X are overwritten

! On final exit, X will contain the solution and B the residual
! vector

irevcm = 0
lwreq = lwork

ifail = 1
loop: Do

Call f11gsf(irevcm,x,b,wgt,work,lwreq,ifail)

If (irevcm/=4) Then
ifail1 = -1
Select Case (irevcm)
Case (1)

Call f11xsf(n,nnz,a,irow,icol,’No checking’,x,b,ifail1)

Case (2)

Call f11jpf(n,a,la,irow,icol,ipiv,istr,’No checking’,x,b,ifail1)

Case (3)

ifail1 = 0
Call f11gtf(itn,stplhs,stprhs,anorm,sigmax,its,sigerr,work,lwreq, &

ifail1)

Write (nout,99999) itn, stplhs
Write (nout,99998)
Write (nout,99997)(x(i),b(i),i=1,n)

End Select
If (ifail1/=0) Then

irevcm = 6
End If

Else If (ifail/=0) Then
Write (nout,99993) ifail
Go To 100

Else
Exit loop
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End If
End Do loop

! Obtain information about the computation

ifail1 = 0
Call f11gtf(itn,stplhs,stprhs,anorm,sigmax,its,sigerr,work,lwreq,ifail1)

! Print the output data

Write (nout,99996)
Write (nout,99995) ’Number of iterations for convergence: ’, itn
Write (nout,99994) ’Residual norm: ’, stplhs
Write (nout,99994) ’Right-hand side of termination criterion:’, stprhs
Write (nout,99994) ’1-norm of matrix A: ’, anorm
Write (nout,99994) ’Largest singular value of A_bar: ’, sigmax

! Output x

Write (nout,99998)
Write (nout,99997)(x(i),b(i),i=1,n)

100 Continue

99999 Format (/,1X,’Monitoring at iteration no.’,I4,/,1X,1P,’residual no’, &
’rm: ’,E14.4)

99998 Format (6X,’Solution vector’,12X,’Residual vector’)
99997 Format (1X,1P,’(’,E11.4,’,’,E11.4,’)’,2X,’(’,E11.4,’,’,E11.4,’)’)
99996 Format (/,1X,’Final Results’)
99995 Format (1X,A,I4)
99994 Format (1X,A,1P,E14.4)
99993 Format (1X,/,1X,’ ** F11GSF returned with IFAIL = ’,I5)

End Program f11grfe

10.2 Program Data

F11GRF Example Program Data
9 N
23 NNZ
’CG’ METHOD
’P’ ’S’ ’1’ ’N’ 1 PRECON, SIGCMP, NORM, WEIGHT, ITERM
1.0D-6 20 TOL, MAXITN
2 MONIT
0 0.0 LFILL, DTOL
’N’ 0.0 MIC, DSCALE
’M’ PSTRAT

( 6., 0.) 1 1
(-1., 1.) 2 1
( 6., 0.) 2 2
( 0., 1.) 3 2
( 5., 0.) 3 3
( 5., 0.) 4 4
( 2.,-2.) 5 1
( 4., 0.) 5 5
( 1., 1.) 6 3
( 2., 0.) 6 4
( 6., 0.) 6 6
(-4., 3.) 7 2
( 0., 1.) 7 5
(-1., 0.) 7 6
( 6., 0.) 7 7
(-1.,-1.) 8 4
( 0.,-1.) 8 6
( 9., 0.) 8 8
( 1., 3.) 9 1
( 1., 2.) 9 5
(-1., 0.) 9 6
( 1., 4.) 9 8
( 9., 0.) 9 9 A(I), IROW(I), ICOL(I), I=1,...,NNZ
( 8., 54.)
(-10., -92.)
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( 25., 27.)
( 26., -28.)
( 54., 12.)
( 26., -22.)
( 47., 65.)
( 71., -57.)
( 60., 70.) B(I), I=1,...,N
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.) X(I), I=1,...,N

10.3 Program Results

F11GRF Example Program Results

Monitoring at iteration no. 2
residual norm: 1.4937E+01

Solution vector Residual vector
( 2.1423E-01, 4.5333E+00) (-1.8370E+00, 3.6956E+00)
(-1.6589E+00,-1.2672E+01) (-6.5005E-01, 2.5458E-01)
( 2.4101E+00, 7.4551E+00) (-1.2616E-01,-1.3625E-01)
( 4.4400E+00,-6.4174E+00) (-1.3120E-01, 1.4130E-01)
( 9.1135E+00, 3.7812E+00) (-1.1471E+00, 7.3386E-01)
( 4.4419E+00,-4.0382E+00) (-5.5054E-01,-1.0535E+00)
( 1.4757E+00, 1.2662E+00) ( 1.7165E+00,-1.4614E+00)
( 8.4872E+00,-3.5347E+00) (-3.5829E-01, 2.8764E-01)
( 5.9948E+00, 9.6851E-01) (-3.0278E-01,-3.5324E-01)

Monitoring at iteration no. 4
residual norm: 1.4602E+00

Solution vector Residual vector
( 1.0061E+00, 8.9847E+00) ( 1.1524E-02,-2.8188E-02)
( 1.9637E+00,-7.9768E+00) ( 1.3513E-02,-1.7345E-01)
( 3.0067E+00, 7.0285E+00) ( 1.8173E-02, 1.9627E-02)
( 3.9830E+00,-5.9636E+00) ( 1.8900E-02,-2.0354E-02)
( 5.0390E+00, 5.0432E+00) (-9.0877E-02,-1.0895E-01)
( 6.0488E+00,-4.0771E+00) (-2.3890E-01, 3.2440E-01)
( 6.9710E+00, 3.0168E+00) ( 1.9031E-01,-1.5499E-02)
( 8.0118E+00,-1.9806E+00) ( 5.1611E-02,-4.1435E-02)
( 9.0074E+00, 9.6458E-01) ( 4.3615E-02, 5.0884E-02)

Final Results
Number of iterations for convergence: 5
Residual norm: 9.0594E-14
Right-hand side of termination criterion: 2.7340E-03
1-norm of matrix A: 2.2000E+01
Largest singular value of A_bar: 1.9624E+00

Solution vector Residual vector
( 1.0000E+00, 9.0000E+00) (-1.7764E-15, 0.0000E+00)
( 2.0000E+00,-8.0000E+00) ( 3.5527E-15,-2.8422E-14)
( 3.0000E+00, 7.0000E+00) (-3.5527E-15, 3.5527E-15)
( 4.0000E+00,-6.0000E+00) ( 3.5527E-15,-7.1054E-15)
( 5.0000E+00, 5.0000E+00) (-7.1054E-15, 3.5527E-15)
( 6.0000E+00,-4.0000E+00) (-7.1054E-15, 0.0000E+00)
( 7.0000E+00, 3.0000E+00) ( 0.0000E+00, 0.0000E+00)
( 8.0000E+00,-2.0000E+00) ( 0.0000E+00,-7.1054E-15)
( 9.0000E+00, 1.0000E+00) ( 0.0000E+00,-1.4211E-14)
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NAG Library Routine Document

F11GSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11GSF is an iterative solver for a complex Hermitian system of simultaneous linear equations;
F11GSF is the second in a suite of three routines, where the first routine, F11GRF, must be called prior
to F11GSF to set up the suite, and the third routine in the suite, F11GTF, can be used to return
additional information about the computation.

These three routines are suitable for the solution of large sparse complex Hermitian systems of
equations.

2 Specification

SUBROUTINE F11GSF (IREVCM, U, V, WGT, WORK, LWORK, IFAIL)

INTEGER IREVCM, LWORK, IFAIL
REAL (KIND=nag_wp) WGT(*)
COMPLEX (KIND=nag_wp) U(*), V(*), WORK(LWORK)

3 Description

F11GSF solves the complex Hermitian system of linear simultaneous equations Ax ¼ b using either the
preconditioned conjugate gradient method (see Hestenes and Stiefel (1952), Golub and Van Loan
(1996), Barrett et al. (1994) and Dias da Cunha and Hopkins (1994)) or a preconditioned Lanczos
method based upon the algorithm SYMMLQ (see Paige and Saunders (1975) and Barrett et al. (1994)).

For a general description of the methods employed you are referred to Section 3 in F11GRF.

F11GSF can solve the system after the first routine in the suite, F11GRF, has been called to initialize
the computation and specify the method of solution. The third routine in the suite, F11GTF, can be used
to return additional information generated by the computation during monitoring steps and after
F11GSF has completed its tasks.

F11GSF uses reverse communication, i.e., F11GSF returns repeatedly to the calling program with the
argument IREVCM (see Section 5) set to specified values which require the calling program to carry
out a specific task: either to compute the matrix-vector product v ¼ Au; to solve the preconditioning
equation Mv ¼ u; to notify the completion of the computation; or, to allow the calling program to
monitor the solution. Through the argument IREVCM the calling program can cause immediate or tidy
termination of the execution. On final exit, the last iterates of the solution and of the residual vectors of
the original system of equations are returned.

Reverse communication has the following advantages.

1. Maximum flexibility in the representation and storage of sparse matrices. All matrix operations are
performed outside the solver routine, thereby avoiding the need for a complicated interface with
enough flexibility to cope with all types of storage schemes and sparsity patterns. This applies also
to preconditioners.

2. Enhanced user interaction: you can closely monitor the progress of the solution and tidy or
immediate termination can be requested. This is useful, for example, when alternative termination
criteria are to be employed or in case of failure of the external routines used to perform matrix
operations.
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5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than IREVCM and V must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: IREVCM ¼ 0, otherwise an error condition will be raised.

On intermediate re-entry: IREVCM must either be unchanged from its previous exit value, or can
have one of the following values.

IREVCM ¼ 5
Tidy termination: the computation will terminate at the end of the current iteration. Further
reverse communication exits may occur depending on when the termination request is
issued. F11GSF will then return with the termination code IREVCM ¼ 4. Note that before
calling F11GSF with IREVCM ¼ 5 the calling program must have performed the tasks
required by the value of IREVCM returned by the previous call to F11GSF, otherwise
subsequently returned values may be invalid.

IREVCM ¼ 6
Immediate termination: F11GSF will return immediately with termination code
IREVCM ¼ 4 and with any useful information available. This includes the last iterate
of the solution and, for conjugate gradient only, the last iterate of the residual vector. The
residual vector is generally not available when the Lanczos method (SYMMLQ) is used.
F11GSF will then return with the termination code IREVCM ¼ 4.

Immediate termination may be useful, for example, when errors are detected during matrix-vector
multiplication or during the solution of the preconditioning equation.

Changing IREVCM to any other value between calls will result in an error.

On intermediate exit: has the following meanings.

IREVCM ¼ 1
The calling program must compute the matrix-vector product v ¼ Au, where u and v are
stored in U and V, respectively.

IREVCM ¼ 2
The calling program must solve the preconditioning equation Mv ¼ u, where u and v are
stored in U and V, respectively.
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IREVCM ¼ 3
Monitoring step: the solution and residual at the current iteration are returned in the arrays
U and V, respectively. No action by the calling program is required. To return additional
information F11GTF can be called at this step.

On final exit: if IREVCM ¼ 4, F11GSF has completed its tasks. The value of IFAIL determines
whether the iteration has been successfully completed, errors have been detected or the calling
program has requested termination.

Constraint: on initial entry, IREVCM ¼ 0; on re-entry, either IREVCM must remain unchanged
or be reset to IREVCM ¼ 5 or 6.

2: Uð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array U must be at least n.

On initial entry: an initial estimate, x0, of the solution of the system of equations Ax ¼ b.
On intermediate re-entry: must remain unchanged.

On intermediate exit: the returned value of IREVCM determines the contents of U in the
following way.

If IREVCM ¼ 1 or 2, U holds the vector u on which the operation specified by IREVCM is to be
carried out.

If IREVCM ¼ 3, U holds the current iterate of the solution vector.

On final exit: if IFAIL ¼ 3 or �i, the array U is unchanged from the initial entry to F11GSF. If
IFAIL ¼ 1, the array U is unchanged from the last entry to F11GSF. Otherwise, U holds the last
iterate of the solution of the system of equations, for all returned values of IFAIL.

3: Vð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array V must be at least n.

On initial entry: the right-hand side b of the system of equations Ax ¼ b.
On intermediate re-entry: the returned value of IREVCM determines the contents of V in the
following way.

If IREVCM ¼ 1 or 2, V must store the vector v, the result of the operation specified by the value
of IREVCM returned by the previous call to F11GSF

If IREVCM ¼ 3, V must remain unchanged.

On intermediate exit: if IREVCM ¼ 3, V holds the current iterate of the residual vector. Note that
this is an approximation to the true residual vector. Otherwise, it does not contain any useful
information.

On final exit: if IFAIL ¼ 3 or 0, the array V is unchanged from the last entry to F11GSF. If
IFAIL ¼ 1, the array V is unchanged from the initial entry to F11GSF. If IFAIL ¼ 0 or 2, the
array V contains the true residual vector of the system of equations (see also Section 6).
Otherwise, V stores the last iterate of the residual vector unless the Lanczos method (SYMMLQ)
was used and IFAIL � 5, in which case V is set to 0:0.

4: WGTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WGT must be at least max 1;nð Þ.
On entry: the user-supplied weights, if these are to be used in the computation of the vector
norms in the termination criterion (see Sections 3 and 5 in F11GRF).

Constraint: if weights are to be used, at least one element of WGT must be nonzero.

5: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Communication Array

On initial entry: the array WORK as returned by F11GRF (see also Section 5 in F11GRF).
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On intermediate re-entry: must remain unchanged.

6: LWORK – INTEGER Input

On initial entry: the dimension of the array WORK as declared in the (sub)program from which
F11GSF is called (see also Section 3 in F11GRF). The required amount of workspace is as
follows:

Method Requirements

CG LWORK ¼ 120þ 5n þ p.
SYMMLQ LWORK ¼ 120þ 6n þ p.
where

p ¼ 2� MAXITSþ 1ð Þ, when an estimate of �1 Að Þ (SIGMAX) is computed;

p ¼ 0, otherwise.

Constraint: LWORK � LWREQ, where LWREQ is returned by F11GRF.

7: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On intermediate exit: the value of IFAIL is meaningless and should be ignored.

On final exit: (i.e., when IREVCM ¼ 4) IFAIL ¼ 0, unless the routine detects an error or a
warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i
On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11GSF has been called again after returning the termination code IREVCM ¼ 4. No further
computation has been carried out and all input data and data stored for access by F11GTF have
remained unchanged.

IFAIL ¼ 2

The required accuracy could not be obtained. However, F11GSF has terminated with reasonable
accuracy: the last iterate of the residual satisfied the termination criterion but the exact residual
r ¼ b�Ax, did not. A small number of iterations have been carried out after the iterated residual
satisfied the termination criterion, but were unable to improve on the accuracy. This error code
usually implies that your problem has been fully and satisfactorily solved to within or close to
the accuracy available on your system. Further iterations are unlikely to improve on this
situation. You should call F11GTF to check the values of the left- and right-hand side of the
termination condition.
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IFAIL ¼ 3

F11GRF was either not called before calling F11GSF or it returned an error. The arrays U and V
remain unchanged.

IFAIL ¼ 4

The calling program requested a tidy termination before the solution had converged. The arrays
U and V return the last iterates available of the solution and of the residual vector, respectively.

IFAIL ¼ 5

The solution did not converge within the maximum number of iterations allowed. The arrays U
and V return the last iterates available of the solution and of the residual vector, respectively.

IFAIL ¼ 6

The preconditioner appears not to be positive definite. It is likely that your results are
meaningless: both methods require a positive definite preconditioner (see also Section 3).
However, the array U returns the last iterate of the solution, the array V returns the last iterate of
the residual vector, for the conjugate gradient method only.

IFAIL ¼ 7

The matrix of the coefficients appears not to be positive definite (conjugate gradient method
only). The arrays U and V return the last iterates of the solution and residual vector, respectively.
However, you should be warned that the results returned can be be in error.

IFAIL ¼ 8

The calling program requested an immediate termination. However, the array U returns the last
iterate of the solution, the array V returns the last iterate of the residual vector, for the conjugate
gradient method only.

IFAIL ¼ 9

The matrix appears to be singular.

IFAIL ¼ 10

User-supplied weights are to be used, but all elements of the array WGT are zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On completion, i.e., IREVCM ¼ 4 on exit, the arrays U and V will return the solution and residual
vectors, xk and rk ¼ b�Axk, respectively, at the kth iteration, the last iteration performed, unless an
immediate termination was requested and the Lanczos method (SYMMLQ) was used.
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On successful completion, the termination criterion is satisfied to within the user-specified tolerance, as
described in Section 3 in F11GRF. The computed values of the left- and right-hand sides of the
termination criterion selected can be obtained by a call to F11GTF.

8 Parallelism and Performance

F11GSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11GSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of operations carried out by F11GSF for each iteration is likely to be principally
determined by the computation of the matrix-vector products v ¼ Au and by the solution of the
preconditioning equation Mv ¼ u in the calling program. Each of these operations is carried out once
every iteration.

The number of the remaining operations in F11GSF for each iteration is approximately proportional to
n. Note that the Lanczos method (SYMMLQ) requires a slightly larger number of operations than the
conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined at the
onset, as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix of
the coefficients �A ¼ E�1AE�H.
Additional matrix-vector products are required for the computation of Ak k1 ¼ Ak k1, when this has not
been supplied to F11GRF and is required by the termination criterion employed.

The number of operations required to compute �1 �A
� �

is negligible for reasonable values of SIGTOL
and MAXITS (see Sections 5 and 9 in F11GRF).

If the termination criterion rkk kp � � bk kp þ Ak kp � xkk kp
� �

is used (see Section 3 in F11GRF) and

x0k k � xkk k, so that because of loss of significant digits the required accuracy could not be obtained,
the iteration is restarted automatically at some suitable point: F11GSF sets x0 ¼ xk and the computation
begins again. For particularly badly scaled problems, more than one restart may be necessary. Naturally,
restarting adds to computational costs: it is recommended that the iteration should start from a value x0
which is as close to the true solution ~x as can be estimated. Otherwise, the iteration should start from
x0 ¼ 0.

10 Example

See Section 10 in F11GRF.
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NAG Library Routine Document

F11GTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11GTF is the third in a suite of three routines for the iterative solution of a complex Hermitian system
of simultaneous linear equations (see Golub and Van Loan (1996)). F11GTF returns information about
the computations during an iteration and/or after this has been completed. The first routine of the suite,
F11GRF, is a setup routine, the second routine, F11GSF is the proper iterative solver.

These three routines are suitable for the solution of large sparse complex Hermitian systems of
equations.

2 Specification

SUBROUTINE F11GTF (ITN, STPLHS, STPRHS, ANORM, SIGMAX, ITS, SIGERR,
WORK, LWORK, IFAIL)

&

INTEGER ITN, ITS, LWORK, IFAIL
REAL (KIND=nag_wp) STPLHS, STPRHS, ANORM, SIGMAX, SIGERR
COMPLEX (KIND=nag_wp) WORK(LWORK)

3 Description

F11GTF returns information about the solution process. It can be called both during a monitoring step
of the solver F11GSF or after this solver has completed its tasks. Calling F11GTF at any other time will
result in an error condition being raised.

For further information you should read the documentation for F11GRF and F11GSF.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: ITN – INTEGER Output

On exit: the number of iterations carried out by F11GSF.

2: STPLHS – REAL (KIND=nag_wp) Output

On exit: the current value of the left-hand side of the termination criterion used by F11GSF.

3: STPRHS – REAL (KIND=nag_wp) Output

On exit: the current value of the right-hand side of the termination criterion used by F11GSF.

4: ANORM – REAL (KIND=nag_wp) Output

On exit: the norm Ak k1 ¼ Ak k1 when either it has been supplied to F11GRF or it has been
estimated by F11GSF (see also Sections 3 and 5 in F11GRF).
Otherwise, ANORM ¼ 0:0 is returned.
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5: SIGMAX – REAL (KIND=nag_wp) Output

On exit: the current estimate of the largest singular value �1 �A
� �

of the preconditioned iteration
matrix �A ¼ E�1AE�H, when either it has been supplied to F11GRF or it has been estimated by
F11GSF (see also Sections 3 and 5 in F11GRF). Note that if ITS < ITN then SIGMAX contains
the final estimate. If, on final exit from F11GSF, ITS ¼ ITN, then the estimation of �1 �A

� �
may

have not converged: in this case you should look at the value returned in SIGERR. Otherwise,
SIGMAX ¼ 0:0 is returned.

6: ITS – INTEGER Output

On exit: the number of iterations employed so far in the computation of the estimate of �1 �A
� �

,
the largest singular value of the preconditioned matrix �A ¼ E�1AE�H, when �1 �A

� �
has been

estimated by F11GSF using the bisection method (see also Sections 3, 5 and 9 in F11GRF).
Otherwise, ITS ¼ 0 is returned.

7: SIGERR – REAL (KIND=nag_wp) Output

On exit: if �1 �A
� �

has been estimated by F11GSF using bisection,

SIGERR ¼ max
�
kð Þ
1 � �

k�1ð Þ
1

			 			
�
kð Þ
1

;
�
kð Þ
1 � �

k�2ð Þ
1

			 			
�
kð Þ
1

0@ 1A;
where k ¼ ITS denotes the iteration number. The estimation has converged if
SIGERR � SIGTOL where SIGTOL is an input argument to F11GRF.
Otherwise, SIGERR ¼ 0:0 is returned.

8: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Communication Array

On entry: the array WORK as returned by F11GSF (see also Section 3 in F11GSF).

9: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
F11GTF is called (see also Section 5 in F11GRF).

Constraint: LWORK � 120.

Note: although the minimum value of LWORK ensures the correct functioning of F11GTF, a
larger value is required by the iterative solver F11GSF (see also Section 5 in F11GRF).

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �i
On entry, the ith argument had an illegal value.

IFAIL ¼ 1

F11GTF has been called out of sequence. For example, the last call to F11GSF did not return
IREVCM ¼ 3 or 4.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F11GTF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in F11GRF.
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NAG Library Routine Document

F11JAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11JAF computes an incomplete Cholesky factorization of a real sparse symmetric matrix, represented
in symmetric coordinate storage format. This factorization may be used as a preconditioner in
combination with F11GEF or F11JCF.

2 Specification

SUBROUTINE F11JAF (N, NNZ, A, LA, IROW, ICOL, LFILL, DTOL, MIC, DSCALE,
PSTRAT, IPIV, ISTR, NNZC, NPIVM, IWORK, LIWORK,
IFAIL)

&
&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), LFILL, IPIV(N),
ISTR(N+1), NNZC, NPIVM, IWORK(LIWORK), LIWORK,
IFAIL

&
&

REAL (KIND=nag_wp) A(LA), DTOL, DSCALE
CHARACTER(1) MIC, PSTRAT

3 Description

F11JAF computes an incomplete Cholesky factorization (see Meijerink and Van der Vorst (1977)) of a
real sparse symmetric n by n matrix A. It is designed specifically for positive definite matrices, but may
also work for some mildly indefinite cases. The factorization is intended primarily for use as a
preconditioner with one of the symmetric iterative solvers F11GEF or F11JCF.

The decomposition is written in the form

A ¼M þR

where

M ¼ PLDLTPT

and P is a permutation matrix, L is lower triangular with unit diagonal elements, D is diagonal and R
is a remainder matrix.

The amount of fill-in occurring in the factorization can vary from zero to complete fill, and can be
controlled by specifying either the maximum level of fill LFILL, or the drop tolerance DTOL. The
factorization may be modified in order to preserve row sums, and the diagonal elements may be
perturbed to ensure that the preconditioner is positive definite. Diagonal pivoting may optionally be
employed, either with a user-defined ordering, or using the Markowitz strategy (see Markowitz (1957)),
which aims to minimize fill-in. For further details see Section 9.

The sparse matrix A is represented in symmetric coordinate storage (SCS) format (see Section 2.1.2 in
the F11 Chapter Introduction). The array A stores all the nonzero elements of the lower triangular part
of A, while arrays IROW and ICOL store the corresponding row and column indices respectively.
Multiple nonzero elements may not be specified for the same row and column index.

The preconditioning matrix M is returned in terms of the SCS representation of the lower triangular
matrix

C ¼ LþD�1 � I:
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4 References

Chan T F (1991) Fourier analysis of relaxed incomplete factorization preconditioners SIAM J. Sci.
Statist. Comput. 12(2) 668–680

Markowitz H M (1957) The elimination form of the inverse and its application to linear programming
Management Sci. 3 255–269

Meijerink J and Van der Vorst H (1977) An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162

Salvini S A and Shaw G J (1995) An evaluation of new NAG Library solvers for large sparse
symmetric linear systems NAG Technical Report TR1/95

Van der Vorst H A (1990) The convergence behaviour of preconditioned CG and CG-S in the presence
of rounding errors Lecture Notes in Mathematics (eds O Axelsson and L Y Kolotilina) 1457 Springer–
Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input

On entry: the number of nonzero elements in the lower triangular part of the matrix A.

Constraint: 1 � NNZ � N� Nþ 1ð Þ=2.

3: AðLAÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the nonzero elements in the lower triangular part of the matrix A, ordered by
increasing row index, and by increasing column index within each row. Multiple entries for the
same row and column indices are not permitted. The routine F11ZBF may be used to order the
elements in this way.

On exit: the first NNZ elements of A contain the nonzero elements of A and the next NNZC
elements contain the elements of the lower triangular matrix C. Matrix elements are ordered by
increasing row index, and by increasing column index within each row.

4: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11JAF is called. These arrays must be of sufficient size to store both A (NNZ elements)
and C (NNZC elements).

Constraint: LA � 2� NNZ.

5: IROWðLAÞ – INTEGER array Input/Output
6: ICOLðLAÞ – INTEGER array Input/Output

On entry: the row and column indices of the nonzero elements supplied in A.

Constraints:

IROW and ICOL must satisfy these constraints (which may be imposed by a call to F11ZBF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;
IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

On exit: the row and column indices of the nonzero elements returned in A.
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7: LFILL – INTEGER Input

On entry: if LFILL � 0 its value is the maximum level of fill allowed in the decomposition (see
Section 9.2). A negative value of LFILL indicates that DTOL will be used to control the fill
instead.

8: DTOL – REAL (KIND=nag_wp) Input

On entry: if LFILL < 0, DTOL is used as a drop tolerance to control the fill-in (see Section 9.2);
otherwise DTOL is not referenced.

Constraint: if LFILL < 0, DTOL � 0:0.

9: MIC – CHARACTER(1) Input

On entry: indicates whether or not the factorization should be modified to preserve row sums (see
Section 9.3).

MIC ¼ M
The factorization is modified.

MIC ¼ N
The factorization is not modified.

Constraint: MIC ¼ M or N .

10: DSCALE – REAL (KIND=nag_wp) Input

On entry: the diagonal scaling parameter. All diagonal elements are multiplied by the factor
(1þ DSCALE) at the start of the factorization. This can be used to ensure that the preconditioner
is positive definite. See Section 9.3.

11: PSTRAT – CHARACTER(1) Input

On entry: specifies the pivoting strategy to be adopted.

PSTRAT ¼ N
No pivoting is carried out.

PSTRAT ¼ M
Diagonal pivoting aimed at minimizing fill-in is carried out, using the Markowitz strategy.

PSTRAT ¼ U
Diagonal pivoting is carried out according to the user-defined input value of IPIV.

Suggested value: PSTRAT ¼ M .

Constraint: PSTRAT ¼ N , M or U .

12: IPIVðNÞ – INTEGER array Input/Output

On entry: if PSTRAT ¼ U , then IPIVðiÞ must specify the row index of the diagonal element
used as a pivot at elimination stage i. Otherwise IPIV need not be initialized.

Constraint: if PSTRAT ¼ U , IPIV must contain a valid permutation of the integers on [1,N].

On exit: the pivot indices. If IPIVðiÞ ¼ j then the diagonal element in row j was used as the
pivot at elimination stage i.

13: ISTRðNþ 1Þ – INTEGER array Output

On exit: ISTRðiÞ, for i ¼ 1; 2; . . . ;N, is the starting address in the arrays A, IROW and ICOL of
row i of the matrix C. ISTRðNþ 1Þ is the address of the last nonzero element in C plus one.

14: NNZC – INTEGER Output

On exit: the number of nonzero elements in the lower triangular matrix C.
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15: NPIVM – INTEGER Output

On exit: the number of pivots which were modified during the factorization to ensure that M was
positive definite. The quality of the preconditioner will generally depend on the returned value of
NPIVM. If NPIVM is large the preconditioner may not be satisfactory. In this case it may be
advantageous to call F11JAF again with an increased value of either LFILL or DSCALE. See
also Section 9.4.

16: IWORKðLIWORKÞ – INTEGER array Workspace
17: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F11JAF is called.

Constraints:

the minimum permissible value of LIWORK depends on LFILL as follows:

if LFILL � 0, LIWORK � 2� LA� 3� NNZþ 7� Nþ 1;
if LFILL < 0, LIWORK � LA� NNZþ 7� Nþ 1.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or NNZ < 1,
or NNZ > N� Nþ 1ð Þ=2,
or LA < 2� NNZ,
or DTOL < 0:0,
or MIC 6¼ M or N ,
or PSTRAT 6¼ N , M or U ,
or LIWORK < 2� LA� 3� NNZþ 7� Nþ 1, and LFILL � 0,
or LIWORK < LA� NNZþ 7� Nþ 1, and LFILL < 0.

IFAIL ¼ 2

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ, or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.
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Therefore a nonzero element has been supplied which does not lie in the lower triangular part of
A, is out of order, or has duplicate row and column indices. Call F11ZBF to reorder and sum or
remove duplicates.

IFAIL ¼ 3

On entry, PSTRAT ¼ U , but IPIV does not represent a valid permutation of the integers in
1;N½ �. An input value of IPIV is either out of range or repeated.

IFAIL ¼ 4

LA is too small, resulting in insufficient storage space for fill-in elements. The decomposition has
been terminated before completion. Either increase LA or reduce the amount of fill by setting
PSTRAT ¼ M , reducing LFILL, or increasing DTOL.

IFAIL ¼ 5 (F11ZBF)

A serious error has occurred in an internal call to the specified routine. Check all subroutine calls
and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the factorization will be determined by the size of the elements that are dropped and
the size of any modifications made to the diagonal elements. If these sizes are small then the computed
factors will correspond to a matrix close to A. The factorization can generally be made more accurate
by increasing LFILL, or by reducing DTOL with LFILL < 0.

If F11JAF is used in combination with F11GEF or F11JCF, the more accurate the factorization the
fewer iterations will be required. However, the cost of the decomposition will also generally increase.

8 Parallelism and Performance

F11JAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to F11JAF is roughly proportional to NNZCð Þ2=N.
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9.2 Control of Fill-in

If LFILL � 0 the amount of fill-in occurring in the incomplete factorization is controlled by limiting the
maximum level of fill-in to LFILL. The original nonzero elements of A are defined to be of level 0. The
fill level of a new nonzero location occurring during the factorization is defined as

k ¼ max ke; kcð Þ þ 1;

where ke is the level of fill of the element being eliminated, and kc is the level of fill of the element
causing the fill-in.

If LFILL < 0 the fill-in is controlled by means of the drop tolerance DTOL. A potential fill-in element
aij occurring in row i and column j will not be included if

aij
		 		 < DTOL�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiiajj
		 		q

:

For either method of control, any elements which are not included are discarded if MIC ¼ N , or
subtracted from the diagonal element in the elimination row if MIC ¼ M .

9.3 Choice of Arguments

There is unfortunately no choice of the various algorithmic arguments which is optimal for all types of
symmetric matrix, and some experimentation will generally be required for each new type of matrix
encountered.

If the matrix A is not known to have any particular special properties the following strategy is
recommended. Start with LFILL ¼ 0, MIC ¼ N and DSCALE ¼ 0:0. If the value returned for NPIVM
is significantly larger than zero, i.e., a large number of pivot modifications were required to ensure that
M was positive definite, the preconditioner is not likely to be satisfactory. In this case increase either
LFILL or DSCALE until NPIVM falls to a value close to zero. Once suitable values of LFILL and
DSCALE have been found try setting MIC ¼ M to see if any improvement can be obtained by using
modified incomplete Cholesky.

F11JAF is primarily designed for positive definite matrices, but may work for some mildly indefinite
problems. If NPIVM cannot be satisfactorily reduced by increasing LFILL or DSCALE then A is
probably too indefinite for this routine.

If A has non-positive off-diagonal elements, is nonsingular, and has only non-negative elements in its
inverse, it is called an ‘M-matrix’. It can be shown that no pivot modifications are required in the
incomplete Cholesky factorization of an M-matrix (see Meijerink and Van der Vorst (1977)). In this
case a good preconditioner can generally be expected by setting LFILL ¼ 0, MIC ¼ M and
DSCALE ¼ 0:0.

For certain mesh-based problems involving M-matrices it can be shown in theory that setting
MIC ¼ M , and choosing DSCALE appropriately can reduce the order of magnitude of the condition
number of the preconditioned matrix as a function of the mesh steplength (see Chan (1991)). In practise
this property often holds even with DSCALE ¼ 0:0, although an improvement in condition can result
from increasing DSCALE slightly (see Van der Vorst (1990)).

Some illustrations of the application of F11JAF to linear systems arising from the discretization of two-
dimensional elliptic partial differential equations, and to random-valued randomly structured symmetric
positive definite linear systems, can be found in Salvini and Shaw (1995).

9.4 Direct Solution of positive definite Systems

Although it is not their primary purpose, F11JAF and F11JBF may be used together to obtain a direct
solution to a symmetric positive definite linear system. To achieve this the call to F11JBF should be
preceded by a complete Cholesky factorization

A ¼ PLDLTPT ¼M:

A complete factorization is obtained from a call to F11JAF with LFILL < 0 and DTOL ¼ 0:0, provided
NPIVM ¼ 0 on exit. A nonzero value of NPIVM indicates that A is not positive definite, or is ill-
conditioned. A factorization with nonzero NPIVM may serve as a preconditioner, but will not result in a
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direct solution. It is therefore essential to check the output value of NPIVM if a direct solution is
required.

The use of F11JAF and F11JBF as a direct method is illustrated in Section 10 in F11JBF.

10 Example

This example reads in a symmetric sparse matrix A and calls F11JAF to compute an incomplete
Cholesky factorization. It then outputs the nonzero elements of both A and C ¼ LþD�1 � I.
The call to F11JAF has LFILL ¼ 0, MIC ¼ N , DSCALE ¼ 0:0 and PSTRAT ¼ M , giving an
unmodified zero-fill factorization of an unperturbed matrix, with Markowitz diagonal pivoting.

10.1 Program Text

Program f11jafe

! F11JAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11jaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dscale, dtol
Integer :: i, ifail, la, lfill, liwork, n, nnz, &

nnzc, npivm
Character (1) :: mic, pstrat

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:)
Integer, Allocatable :: icol(:), ipiv(:), irow(:), istr(:), &

iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11JAF Example Program Results’
! Skip heading in data file

Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n
Read (nin,*) nnz
la = 2*nnz
liwork = 2*la + 7*n + 1
Allocate (a(la),icol(la),ipiv(n),irow(la),istr(n+1),iwork(liwork))
Read (nin,*) lfill, dtol
Read (nin,*) mic, dscale
Read (nin,*) pstrat

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Calculate incomplete Cholesky factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jaf(n,nnz,a,la,irow,icol,lfill,dtol,mic,dscale,pstrat,ipiv,istr, &

nnzc,npivm,iwork,liwork,ifail)

! Output original matrix
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Write (nout,*) ’ Original Matrix’
Write (nout,99997) ’N =’, n
Write (nout,99997) ’NNZ =’, nnz
Do i = 1, nnz

Write (nout,99999) i, a(i), irow(i), icol(i)
End Do
Write (nout,*)

! Output details of the factorization

Write (nout,*) ’ Factorization’
Write (nout,99997) ’N =’, n
Write (nout,99997) ’NNZ =’, nnzc
Write (nout,99997) ’NPIVM =’, npivm
Do i = nnz + 1, nnz + nnzc

Write (nout,99999) i, a(i), irow(i), icol(i)
End Do
Write (nout,*)

Write (nout,*) ’ I IPIV(I)’
Do i = 1, n

Write (nout,99998) i, ipiv(i)
End Do

99999 Format (1X,I8,E16.4,2I8)
99998 Format (1X,2I8)
99997 Format (1X,A,I16)

End Program f11jafe

10.2 Program Data

F11JAF Example Program Data
7 N

16 NNZ
0 0.0 LFILL, DTOL
’N’ 0.0 MIC, DSCALE
’M’ PSTRAT
4. 1 1
1. 2 1
5. 2 2
2. 3 3
2. 4 2
3. 4 4

-1. 5 1
1. 5 4
4. 5 5
1. 6 2

-2. 6 5
3. 6 6
2. 7 1

-1. 7 2
-2. 7 3
5. 7 7 A(I), IROW(I), ICOL(I), I=1,...,NNZ

10.3 Program Results

F11JAF Example Program Results
Original Matrix

N = 7
NNZ = 16

1 0.4000E+01 1 1
2 0.1000E+01 2 1
3 0.5000E+01 2 2
4 0.2000E+01 3 3
5 0.2000E+01 4 2
6 0.3000E+01 4 4
7 -0.1000E+01 5 1
8 0.1000E+01 5 4
9 0.4000E+01 5 5

10 0.1000E+01 6 2
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11 -0.2000E+01 6 5
12 0.3000E+01 6 6
13 0.2000E+01 7 1
14 -0.1000E+01 7 2
15 -0.2000E+01 7 3
16 0.5000E+01 7 7

Factorization
N = 7
NNZ = 16
NPIVM = 0

17 0.5000E+00 1 1
18 0.3333E+00 2 2
19 0.3333E+00 3 2
20 0.2727E+00 3 3
21 -0.5455E+00 4 3
22 0.5238E+00 4 4
23 -0.2727E+00 5 3
24 0.2683E+00 5 5
25 0.6667E+00 6 2
26 0.5238E+00 6 4
27 0.2683E+00 6 5
28 0.3479E+00 6 6
29 -0.1000E+01 7 1
30 0.5366E+00 7 5
31 -0.5345E+00 7 6
32 0.9046E+00 7 7

I IPIV(I)
1 3
2 4
3 5
4 6
5 1
6 2
7 7
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NAG Library Routine Document

F11JBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11JBF solves a system of linear equations involving the incomplete Cholesky preconditioning matrix
generated by F11JAF.

2 Specification

SUBROUTINE F11JBF (N, A, LA, IROW, ICOL, IPIV, ISTR, CHECK, Y, X, IFAIL)

INTEGER N, LA, IROW(LA), ICOL(LA), IPIV(N), ISTR(N+1), IFAIL
REAL (KIND=nag_wp) A(LA), Y(N), X(N)
CHARACTER(1) CHECK

3 Description

F11JBF solves a system of linear equations

Mx ¼ y

involving the preconditioning matrix M ¼ PLDLTP T, corresponding to an incomplete Cholesky
decomposition of a sparse symmetric matrix stored in symmetric coordinate storage (SCS) format (see
Section 2.1.2 in the F11 Chapter Introduction), as generated by F11JAF.

In the above decomposition L is a lower triangular sparse matrix with unit diagonal, D is a diagonal
matrix and P is a permutation matrix. L and D are supplied to F11JBF through the matrix

C ¼ LþD�1 � I

which is a lower triangular N by N sparse matrix, stored in SCS format, as returned by F11JAF. The
permutation matrix P is returned from F11JAF via the array IPIV.

It is envisaged that a common use of F11JBF will be to carry out the preconditioning step required in
the application of F11GEF to sparse symmetric linear systems. F11JBF is used for this purpose by the
Black Box routine F11JCF.

F11JBF may also be used in combination with F11JAF to solve a sparse symmetric positive definite
system of linear equations directly (see Section 9.4 in F11JAF). This use of F11JBF is demonstrated in
Section 10.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix M. This must be the same value as was supplied in the
preceding call to F11JAF.

Constraint: N � 1.

2: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: the values returned in the array A by a previous call to F11JAF.
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3: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11JBF is called. This must be the same value returned by the preceding call to F11JAF.

4: IROWðLAÞ – INTEGER array Input
5: ICOLðLAÞ – INTEGER array Input
6: IPIVðNÞ – INTEGER array Input
7: ISTRðNþ 1Þ – INTEGER array Input

On entry: the values returned in arrays IROW, ICOL, IPIV and ISTR by a previous call to
F11JAF.

8: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the input data should be checked.

CHECK ¼ C
Checks are carried out on the values of N, IROW, ICOL, IPIV and ISTR.

CHECK ¼ N
No checks are carried out.

See also Section 9.2.

Constraint: CHECK ¼ C or N .

9: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the right-hand side vector y.

10: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CHECK 6¼ C or N .

IFAIL ¼ 2

On entry, N < 1.
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IFAIL ¼ 3

On entry, the SCS representation of the preconditioning matrix M is invalid. Further details are
given in the error message. Check that the call to F11JBF has been preceded by a valid call to
F11JAF and that the arrays A, IROW, ICOL, IPIV and ISTR have not been corrupted between the
two calls.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution x is the exact solution of a perturbed system of equations M þ �Mð Þx ¼ y,
where

�Mj j � c nð Þ�P Lj j Dj j LT
		 		PT;

c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F11JBF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken for a call to F11JBF is proportional to the value of NNZC returned from F11JAF.

9.2 Use of CHECK

It is expected that a common use of F11JBF will be to carry out the preconditioning step required in the
application of F11GEF to sparse symmetric linear systems. In this situation F11JBF is likely to be
called many times with the same matrix M. In the interests of both reliability and efficiency, you are
recommended to set CHECK ¼ C for the first of such calls, and to set CHECK ¼ N for all subsequent
calls.

10 Example

This example reads in a symmetric positive definite sparse matrix A and a vector y. It then calls
F11JAF, with LFILL ¼ �1 and DTOL ¼ 0:0, to compute the complete Cholesky decomposition of A:

A ¼ PLDLTPT:

Then it calls F11JBF to solve the system

PLDLTP Tx ¼ y:
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It then repeats the exercise for the same matrix permuted with the bandwidth-reducing Reverse Cuthill–
McKee permutation, calculated with F11YEF.

10.1 Program Text

Program f11jbfe

! F11JBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11jaf, f11jbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dscale, dtol
Integer :: i, ifail, la, lfill, liwork, n, nnz, &

nnzc, npivm
Character (1) :: check, mic, pstrat

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), x(:), y(:)
Integer, Allocatable :: icol(:), ipiv(:), irow(:), istr(:), &

iwork(:), perm_fwd(:), perm_inv(:)
! .. Executable Statements ..

Write (nout,*) ’F11JBF Example Program Results’
! Skip heading in data file

Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz

la = 3*nnz
liwork = 2*la + 7*n + 1

Allocate (a(la),x(n),y(n),icol(la),ipiv(n),irow(la),istr(n+1), &
iwork(liwork),perm_fwd(n),perm_inv(n))

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read the vector y

Read (nin,*) y(1:n)

! Calculate Cholesky factorization

lfill = -1
dtol = 0.0E0_nag_wp
mic = ’N’
dscale = 0.0E0_nag_wp
pstrat = ’M’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jaf(n,nnz,a,la,irow,icol,lfill,dtol,mic,dscale,pstrat,ipiv,istr, &

nnzc,npivm,iwork,liwork,ifail)

! Check the output value of NPIVM
If (npivm/=0) Then

Write (nout,99998) ’Factorization is not complete’, npivm
Else
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! Solve P L D L^T P^T x = y
check = ’C’
ifail = 0
Call f11jbf(n,a,la,irow,icol,ipiv,istr,check,y,x,ifail)

! Output results
Write (nout,*) ’ Solution of linear system’
Write (nout,99999) x(1:n)

End If

! Compute reverse Cuthill-McKee permutation for bandwidth reduction
Call do_rcm(irow,icol,a,y,istr,perm_fwd,perm_inv,iwork)

ifail = 0
Call f11jaf(n,nnz,a,la,irow,icol,lfill,dtol,mic,dscale,pstrat,ipiv,istr, &

nnzc,npivm,iwork,liwork,ifail)

! Check the output value of NPIVM
If (npivm/=0) Then

Write (nout,99998) ’Factorization is not complete’, npivm
Else

! Solve P L D L^T P^T x = y
ifail = 0
Call f11jbf(n,a,la,irow,icol,ipiv,istr,check,y,x,ifail)

! Output results
Write (nout,*) ’ Solution of linear system with Reverse Cuthill-McKee’
Write (nout,99999)(x(perm_inv(i)),i=1,n)

End If

99999 Format (1X,E16.4)
99998 Format (1X,A,I20)

Contains
Subroutine do_rcm(irow,icol,a,y,istr,perm_fwd,perm_inv,iwork)

! .. Use Statements ..
Use nag_library, Only: f11yef, f11zaf, f11zbf

! .. Parameters ..
Logical, Parameter :: lopts(5) = (/.False.,.False.,.True., &

.True.,.True./)
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (Inout) :: a(la), y(n)
Integer, Intent (Inout) :: icol(la), irow(la), istr(n+1), &

iwork(*)
Integer, Intent (Out) :: perm_fwd(n), perm_inv(n)

! .. Local Scalars ..
Integer :: i, ifail, j, nnz_cs, nnz_scs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer :: info(4), mask(1)

! .. Intrinsic Procedures ..
Intrinsic :: size

! .. Executable Statements ..

! SCS to CS, must add the upper triangle entries.
j = nnz + 1
Do i = 1, nnz

If (irow(i)>icol(i)) Then
! strictly lower triangle, add the transposed

a(j) = a(i)
irow(j) = icol(i)
icol(j) = irow(i)
j = j + 1

End If
End Do
nnz_cs = j - 1

! Reorder, CS to CCS, icolzp in istr
ifail = 0
Call f11zaf(n,nnz_cs,a,icol,irow,’F’,’F’,istr,iwork,ifail)

! Calculate reverse Cuthill-McKee
ifail = 0
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Call f11yef(n,nnz_cs,istr,irow,lopts,mask,perm_fwd,info,ifail)

! compute inverse perm, in perm_inv(1:n)
Do i = 1, n

perm_inv(perm_fwd(i)) = i
End Do

! Apply permutation on column/row indices
icol(1:nnz_cs) = perm_inv(icol(1:nnz_cs))
irow(1:nnz_cs) = perm_inv(irow(1:nnz_cs))

! restrict to lower triangle, SCS format
! copying entries upwards

j = 1
Do i = 1, nnz_cs

If (irow(i)>=icol(i)) Then
! non-upper triangle, bubble up

a(j) = a(i)
icol(j) = icol(i)
irow(j) = irow(i)
j = j + 1

End If
End Do
nnz_scs = j - 1

! sort
ifail = 0
Call f11zbf(n,nnz_scs,a,irow,icol,’S’,’K’,istr,iwork,ifail)

! permute rhs vector
Allocate (rwork(size(perm_fwd)))
rwork(:) = y(perm_fwd(:))
y(:) = rwork(:)
Deallocate (rwork)

End Subroutine do_rcm
End Program f11jbfe

10.2 Program Data

F11JBF Example Program Data
9 N

23 NNZ
4. 1 1

-1. 2 1
6. 2 2
1. 3 2
2. 3 3
3. 4 4
2. 5 1
4. 5 5
1. 6 3
2. 6 4
6. 6 6

-4. 7 2
1. 7 5

-1. 7 6
6. 7 7

-1. 8 4
-1. 8 6
3. 8 8
1. 9 1
1. 9 5

-1. 9 6
1. 9 8
4. 9 9 A(I), IROW(I), ICOL(I), I=1,...,NNZ
4.10 -2.94 1.41
2.53 4.35 1.29
5.01 0.52 4.57 Y(I), I=1,...,N
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10.3 Program Results

F11JBF Example Program Results
Solution of linear system

0.7000E+00
0.1600E+00
0.5200E+00
0.7700E+00
0.2800E+00
0.2100E+00
0.9300E+00
0.2000E+00
0.9000E+00

Solution of linear system with Reverse Cuthill-McKee
0.7000E+00
0.1600E+00
0.5200E+00
0.7700E+00
0.2800E+00
0.2100E+00
0.9300E+00
0.2000E+00
0.9000E+00
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NAG Library Routine Document

F11JCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11JCF solves a real sparse symmetric system of linear equations, represented in symmetric coordinate
storage format, using a conjugate gradient or Lanczos method, with incomplete Cholesky
preconditioning.

2 Specification

SUBROUTINE F11JCF (METHOD, N, NNZ, A, LA, IROW, ICOL, IPIV, ISTR, B,
TOL, MAXITN, X, RNORM, ITN, WORK, LWORK, IFAIL)

&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), IPIV(N), ISTR(N+1),
MAXITN, ITN, LWORK, IFAIL

&

REAL (KIND=nag_wp) A(LA), B(N), TOL, X(N), RNORM, WORK(LWORK)
CHARACTER(*) METHOD

3 Description

F11JCF solves a real sparse symmetric linear system of equations

Ax ¼ b;

using a preconditioned conjugate gradient method (see Meijerink and Van der Vorst (1977)), or a
preconditioned Lanczos method based on the algorithm SYMMLQ (see Paige and Saunders (1975)).
The conjugate gradient method is more efficient if A is positive definite, but may fail to converge for
indefinite matrices. In this case the Lanczos method should be used instead. For further details see
Barrett et al. (1994).

F11JCF uses the incomplete Cholesky factorization determined by F11JAF as the preconditioning
matrix. A call to F11JCF must always be preceded by a call to F11JAF. Alternative preconditioners for
the same storage scheme are available by calling F11JEF.

The matrix A, and the preconditioning matrix M, are represented in symmetric coordinate storage
(SCS) format (see Section 2.1.2 in the F11 Chapter Introduction) in the arrays A, IROW and ICOL, as
returned from F11JAF. The array A holds the nonzero entries in the lower triangular parts of these
matrices, while IROW and ICOL hold the corresponding row and column indices.

4 References

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C and
Van der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods SIAM, Philadelphia

Meijerink J and Van der Vorst H (1977) An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM J.
Numer. Anal. 12 617–629

Salvini S A and Shaw G J (1995) An evaluation of new NAG Library solvers for large sparse
symmetric linear systems NAG Technical Report TR1/95
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5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: specifies the iterative method to be used.

METHOD ¼ CG
Conjugate gradient method.

METHOD ¼ SYMMLQ
Lanczos method (SYMMLQ).

Constraint: METHOD ¼ CG or SYMMLQ.

2: N – INTEGER Input

On entry: n, the order of the matrix A. This must be the same value as was supplied in the
preceding call to F11JAF.

Constraint: N � 1.

3: NNZ – INTEGER Input

On entry: the number of nonzero elements in the lower triangular part of the matrix A. This must
be the same value as was supplied in the preceding call to F11JAF.

Constraint: 1 � NNZ � N� Nþ 1ð Þ=2.

4: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: the values returned in the array A by a previous call to F11JAF.

5: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11JCF is called. This must be the same value as was supplied in the preceding call to
F11JAF.

Constraint: LA � 2� NNZ.

6: IROWðLAÞ – INTEGER array Input
7: ICOLðLAÞ – INTEGER array Input
8: IPIVðNÞ – INTEGER array Input
9: ISTRðNþ 1Þ – INTEGER array Input

On entry: the values returned in arrays IROW, ICOL, IPIV and ISTR by a previous call to
F11JAF.

10: BðNÞ – REAL (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

11: TOL – REAL (KIND=nag_wp) Input

On entry: the required tolerance. Let xk denote the approximate solution at iteration k, and rk the
corresponding residual. The algorithm is considered to have converged at iteration k if

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

If TOL � 0:0, � ¼ max
ffiffi
�
p
; 10�;

ffiffiffi
n
p

� is used, where � is the machine precision. Otherwise
� ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.
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12: MAXITN – INTEGER Input

On entry: the maximum number of iterations allowed.

Constraint: MAXITN � 1.

13: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial approximation to the solution vector x.

On exit: an improved approximation to the solution vector x.

14: RNORM – REAL (KIND=nag_wp) Output

On exit: the final value of the residual norm rkk k1, where k is the output value of ITN.

15: ITN – INTEGER Output

On exit: the number of iterations carried out.

16: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F11JCF
is called.

Constraints:

if METHOD ¼ CG , LWORK � 6� Nþ 120;
if METHOD ¼ SYMMLQ , LWORK � 7� Nþ 120.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ CG or SYMMLQ ,
or N < 1,
or NNZ < 1,
or NNZ > N� Nþ 1ð Þ=2,
or LA too small,
or TOL � 1:0,
or MAXITN < 1,
or LWORK too small.
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IFAIL ¼ 2

On entry, the SCS representation of A is invalid. Further details are given in the error message.
Check that the call to F11JCF has been preceded by a valid call to F11JAF, and that the arrays A,
IROW, and ICOL have not been corrupted between the two calls.

IFAIL ¼ 3

On entry, the SCS representation of the preconditioning matrix M is invalid. Further details are
given in the error message. Check that the call to F11JCF has been preceded by a valid call to
F11JAF and that the arrays A, IROW, ICOL, IPIV and ISTR have not been corrupted between the
two calls.

IFAIL ¼ 4

The required accuracy could not be obtained. However, a reasonable accuracy has been obtained
and further iterations could not improve the result.

IFAIL ¼ 5

Required accuracy not obtained in MAXITN iterations.

IFAIL ¼ 6

The preconditioner appears not to be positive definite.

IFAIL ¼ 7

The matrix of the coefficients appears not to be positive definite (conjugate gradient method
only).

IFAIL ¼ 8 (F11GDF, F11GEF or F11GFF)

A serious error has occurred in an internal call to one of the specified routines. Check all
subroutine calls and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful termination, the final residual rk ¼ b�Axk, where k ¼ ITN, satisfies the termination
criterion

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

The value of the final residual norm is returned in RNORM.
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8 Parallelism and Performance

F11JCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11JCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F11JCF for each iteration is roughly proportional to the value of NNZC returned
from the preceding call to F11JAF. One iteration with the Lanczos method (SYMMLQ) requires a
slightly larger number of operations than one iteration with the conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined a
priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix of
the coefficients �A ¼M�1A.

Some illustrations of the application of F11JCF to linear systems arising from the discretization of two-
dimensional elliptic partial differential equations, and to random-valued randomly structured symmetric
positive definite linear systems, can be found in Salvini and Shaw (1995).

10 Example

This example solves a symmetric positive definite system of equations using the conjugate gradient
method, with incomplete Cholesky preconditioning.

10.1 Program Text

Program f11jcfe

! F11JCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11jaf, f11jcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dscale, dtol, rnorm, tol
Integer :: i, ifail, itn, la, lfill, liwork, &

lwork, maxitn, n, nnz, nnzc, npivm
Character (6) :: method
Character (1) :: mic, pstrat

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:)
Integer, Allocatable :: icol(:), ipiv(:), irow(:), istr(:), &

iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11JCF Example Program Results’
! Skip heading in data file

Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n
Read (nin,*) nnz
la = 3*nnz
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liwork = 2*la + 7*n + 1
lwork = 6*n + 120
Allocate (a(la),b(n),work(lwork),x(n),icol(la),ipiv(n),irow(la), &

istr(n+1),iwork(liwork))
Read (nin,*) method
Read (nin,*) lfill, dtol
Read (nin,*) mic, dscale
Read (nin,*) pstrat
Read (nin,*) tol, maxitn

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read right-hand side vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Calculate incomplete Cholesky factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jaf(n,nnz,a,la,irow,icol,lfill,dtol,mic,dscale,pstrat,ipiv,istr, &

nnzc,npivm,iwork,liwork,ifail)

! Solve Ax = b using F11JCF

ifail = 0
Call f11jcf(method,n,nnz,a,la,irow,icol,ipiv,istr,b,tol,maxitn,x,rnorm, &

itn,work,lwork,ifail)

Write (nout,99999) ’Converged in’, itn, ’ iterations’
Write (nout,99998) ’Final residual norm =’, rnorm

! Output x

Write (nout,99997) x(1:n)

99999 Format (1X,A,I10,A)
99998 Format (1X,A,1P,E16.3)
99997 Format (1X,1P,E16.4)

End Program f11jcfe

10.2 Program Data

F11JCF Example Program Data
7 N
16 NNZ

’CG’ METHOD
1 0.0 LFILL, DTOL
’N’ 0.0 MIC, DSCALE
’M’ PSTRAT
1.0D-6 100 TOL, MAXITN
4. 1 1
1. 2 1
5. 2 2
2. 3 3
2. 4 2
3. 4 4

-1. 5 1
1. 5 4
4. 5 5
1. 6 2

-2. 6 5
3. 6 6
2. 7 1

F11JCF NAG Library Manual

F11JCF.6 Mark 26



-1. 7 2
-2. 7 3
5. 7 7 A(I), IROW(I), ICOL(I), I=1,...,NNZ

15. 18. -8. 21.
11. 10. 29. B(I), I=1,...,N
0. 0. 0. 0.
0. 0. 0. X(I), I=1,...,N

10.3 Program Results

F11JCF Example Program Results
Converged in 1 iterations
Final residual norm = 7.105E-15

1.0000E+00
2.0000E+00
3.0000E+00
4.0000E+00
5.0000E+00
6.0000E+00
7.0000E+00
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NAG Library Routine Document

F11JDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11JDF solves a system of linear equations involving the preconditioning matrix corresponding to
SSOR applied to a real sparse symmetric matrix, represented in symmetric coordinate storage format.

2 Specification

SUBROUTINE F11JDF (N, NNZ, A, IROW, ICOL, RDIAG, OMEGA, CHECK, Y, X,
IWORK, IFAIL)

&

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IWORK(N+1), IFAIL
REAL (KIND=nag_wp) A(NNZ), RDIAG(N), OMEGA, Y(N), X(N)
CHARACTER(1) CHECK

3 Description

F11JDF solves a system of equations

Mx ¼ y

involving the preconditioning matrix

M ¼ 1

! 2� !ð Þ Dþ !Lð ÞD�1 Dþ !Lð ÞT

corresponding to symmetric successive-over-relaxation (SSOR) (see Young (1971)) on a linear system
Ax ¼ b, where A is a sparse symmetric matrix stored in symmetric coordinate storage (SCS) format
(see Section 2.1.2 in the F11 Chapter Introduction).

In the definition of M given above D is the diagonal part of A, L is the strictly lower triangular part of
A, and ! is a user-defined relaxation parameter.

It is envisaged that a common use of F11JDF will be to carry out the preconditioning step required in
the application of F11GEF to sparse linear systems. For an illustration of this use of F11JDF see the
example program given in Section 10.1. F11JDF is also used for this purpose by the Black Box routine
F11JEF.

4 References

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input

On entry: the number of nonzero elements in the lower triangular part of A.

Constraint: 1 � NNZ � N� Nþ 1ð Þ=2.
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3: AðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements in the lower triangular part of the matrix A, ordered by
increasing row index, and by increasing column index within each row. Multiple entries for the
same row and column indices are not permitted. The routine F11ZBF may be used to order the
elements in this way.

4: IROWðNNZÞ – INTEGER array Input
5: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in array A.

Constraints:

IROW and ICOL must satisfy these constraints (which may be imposed by a call to F11ZBF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;
IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

6: RDIAGðNÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of the diagonal matrix D�1, where D is the diagonal part of A.

7: OMEGA – REAL (KIND=nag_wp) Input

On entry: the relaxation parameter !.

Constraint: 0:0 < OMEGA < 2:0.

8: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the input data should be checked.

CHECK ¼ C
Checks are carried out on the values of N, NNZ, IROW, ICOL and OMEGA.

CHECK ¼ N
None of these checks are carried out.

See also Section 9.2.

Constraint: CHECK ¼ C or N .

9: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the right-hand side vector y.

10: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution vector x.

11: IWORKðNþ 1Þ – INTEGER array Workspace

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CHECK 6¼ C or N .

IFAIL ¼ 2

On entry, N < 1,
or NNZ < 1,
or NNZ > N� Nþ 1ð Þ=2,
or OMEGA lies outside the interval 0:0; 2:0ð Þ,

IFAIL ¼ 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie in the lower triangular part of
A, is out of order, or has duplicate row and column indices. Call F11ZBF to reorder and sum or
remove duplicates.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution x is the exact solution of a perturbed system of equations M þ �Mð Þx ¼ y,
where

�Mj j � c nð Þ� Dþ !Lj j D�1
		 		 Dþ !Lð ÞT

		 		;
c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F11JDF is not threaded in any implementation.
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9 Further Comments

9.1 Timing

The time taken for a call to F11JDF is proportional to NNZ.

9.2 Use of CHECK

It is expected that a common use of F11JDF will be to carry out the preconditioning step required in the
application of F11GEF to sparse symmetric linear systems. In this situation F11JDF is likely to be
called many times with the same matrix M. In the interests of both reliability and efficiency, you are
recommended to set CHECK ¼ C for the first of such calls, and to set CHECK ¼ N for all subsequent
calls.

10 Example

This example solves a sparse symmetric linear system of equations

Ax ¼ b;

using the conjugate-gradient (CG) method with SSOR preconditioning.

The CG algorithm itself is implemented by the reverse communication routine F11GEF, which returns
repeatedly to the calling program with various values of the argument IREVCM. This argument
indicates the action to be taken by the calling program.

If IREVCM ¼ 1, a matrix-vector product v ¼ Au is required. This is implemented by a call to
F11XEF.

If IREVCM ¼ 2, a solution of the preconditioning equation Mv ¼ u is required. This is achieved
by a call to F11JDF.

If IREVCM ¼ 4, F11GEF has completed its tasks. Either the iteration has terminated, or an error
condition has arisen.

For further details see the routine document for F11GEF.

10.1 Program Text

Program f11jdfe

! F11JDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11gdf, f11gef, f11gff, f11jdf, f11xef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, omega, sigerr, sigmax, &

sigtol, stplhs, stprhs, tol
Integer :: i, ifail, ifail1, irevcm, iterm, &

itn, its, liwork, lwneed, lwork, &
maxitn, maxits, monit, n, nnz

Character (1) :: ckjdf, ckxef, norm, precon, sigcmp, &
weight

Character (6) :: method
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), b(:), rdiag(:), wgt(:), &
work(:), x(:)

Integer, Allocatable :: icol(:), irow(:), iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11JDF Example Program Results’
! Skip heading in data file
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Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n
Read (nin,*) nnz
liwork = n + 1
lwork = 6*n + 120

Allocate (a(nnz),b(n),rdiag(n),wgt(n),work(lwork),x(n),icol(nnz), &
irow(nnz),iwork(liwork))

Read (nin,*) method
Read (nin,*) precon, sigcmp, norm, iterm
Read (nin,*) tol, maxitn
Read (nin,*) anorm, sigmax
Read (nin,*) sigtol, maxits
Read (nin,*) omega

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read right-hand side vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Call F11GDF to initialize solver

weight = ’N’
monit = 0

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11gdf(method,precon,sigcmp,norm,weight,iterm,n,tol,maxitn,anorm, &

sigmax,sigtol,maxits,monit,lwneed,work,lwork,ifail)

! Calculate reciprocal diagonal matrix elements.

iwork(1:n) = 0

Do i = 1, nnz
If (irow(i)==icol(i)) Then

iwork(irow(i)) = iwork(irow(i)) + 1
If (a(i)/=0.0E0_nag_wp) Then

rdiag(irow(i)) = 1.0E0_nag_wp/a(i)
Else

Write (nout,*) ’Matrix has a zero diagonal element’
Go To 100

End If
End If

End Do

Do i = 1, n
If (iwork(i)==0) Then

Write (nout,*) ’Matrix has a missing diagonal element’
Go To 100

End If
If (iwork(i)>=2) Then

Write (nout,*) ’Matrix has a multiple diagonal element’
Go To 100

End If
End Do

! Call F11GEF to solve the linear system

irevcm = 0
ckxef = ’C’
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ckjdf = ’C’

ifail = 1
loop: Do

Call f11gef(irevcm,x,b,wgt,work,lwork,ifail)

If (irevcm/=4) Then
ifail1 = -1
Select Case (irevcm)
Case (1)

! Compute matrix vector product

Call f11xef(n,nnz,a,irow,icol,ckxef,x,b,ifail1)

ckxef = ’N’
Case (2)

! SSOR preconditioning

Call f11jdf(n,nnz,a,irow,icol,rdiag,omega,ckjdf,x,b,iwork,ifail1)

ckjdf = ’N’
End Select
If (ifail1/=0) Then

irevcm = 6
End If

Else If (ifail/=0) Then
Write (nout,99996) ifail
Go To 100

Else
Exit loop

End If
End Do loop

! Termination

Call f11gff(itn,stplhs,stprhs,anorm,sigmax,its,sigerr,work,lwork,ifail)

Write (nout,99999) ’Converged in’, itn, ’ iterations’
Write (nout,99998) ’Final residual norm =’, stplhs

! Output x

Write (nout,99997) x(1:n)

100 Continue

99999 Format (1X,A,I10,A)
99998 Format (1X,A,1P,E16.3)
99997 Format (1X,1P,E16.4)
99996 Format (1X,/,1X,’ ** F11GEF returned with IFAIL = ’,I5)

End Program f11jdfe

10.2 Program Data

F11JDF Example Program Data
7 N

16 NNZ
’CG’ METHOD
’P’ ’N’ ’I’ 1 PRECON, SIGCMP, NORM, ITERM
1.0D-6 100 TOL, MAXITN
0.0D0 0.0D0 ANORM, SIGMAX
0.0D0 10 SIGTOL, MAXITS
1.0D0 OMEGA
4. 1 1
1. 2 1
5. 2 2
2. 3 3
2. 4 2
3. 4 4

-1. 5 1
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1. 5 4
4. 5 5
1. 6 2

-2. 6 5
3. 6 6
2. 7 1

-1. 7 2
-2. 7 3
5. 7 7 A(I), IROW(I), ICOL(I), I=1,...,NNZ

15. 18. -8. 21.
11. 10. 29. B(I), I=1,...,N
0. 0. 0. 0.
0. 0. 0. X(I), I=1,...,N

10.3 Program Results

F11JDF Example Program Results
Converged in 6 iterations
Final residual norm = 7.105E-15

1.0000E+00
2.0000E+00
3.0000E+00
4.0000E+00
5.0000E+00
6.0000E+00
7.0000E+00
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NAG Library Routine Document

F11JEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11JEF solves a real sparse symmetric system of linear equations, represented in symmetric coordinate
storage format, using a conjugate gradient or Lanczos method, without preconditioning, with Jacobi or
with SSOR preconditioning.

2 Specification

SUBROUTINE F11JEF (METHOD, PRECON, N, NNZ, A, IROW, ICOL, OMEGA, B, TOL,
MAXITN, X, RNORM, ITN, WORK, LWORK, IWORK, IFAIL)

&

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), MAXITN, ITN, LWORK,
IWORK(N+1), IFAIL

&

REAL (KIND=nag_wp) A(NNZ), OMEGA, B(N), TOL, X(N), RNORM, WORK(LWORK)
CHARACTER(*) METHOD
CHARACTER(1) PRECON

3 Description

F11JEF solves a real sparse symmetric linear system of equations

Ax ¼ b;

using a preconditioned conjugate gradient method (see Barrett et al. (1994)), or a preconditioned
Lanczos method based on the algorithm SYMMLQ (see Paige and Saunders (1975)). The conjugate
gradient method is more efficient if A is positive definite, but may fail to converge for indefinite
matrices. In this case the Lanczos method should be used instead. For further details see Barrett et al.
(1994).

The routine allows the following choices for the preconditioner:

no preconditioning;

Jacobi preconditioning (see Young (1971));

symmetric successive-over-relaxation (SSOR) preconditioning (see Young (1971)).

For incomplete Cholesky (IC) preconditioning see F11JCF.

The matrix A is represented in symmetric coordinate storage (SCS) format (see Section 2.1.2 in the F11
Chapter Introduction) in the arrays A, IROW and ICOL. The array A holds the nonzero entries in the
lower triangular part of the matrix, while IROW and ICOL hold the corresponding row and column
indices.

4 References

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C and
Van der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods SIAM, Philadelphia

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM J.
Numer. Anal. 12 617–629

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York
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5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: specifies the iterative method to be used.

METHOD ¼ CG
Conjugate gradient method.

METHOD ¼ SYMMLQ
Lanczos method (SYMMLQ).

Constraint: METHOD ¼ CG or SYMMLQ.

2: PRECON – CHARACTER(1) Input

On entry: specifies the type of preconditioning to be used.

PRECON ¼ N
No preconditioning.

PRECON ¼ J
Jacobi.

PRECON ¼ S
Symmetric successive-over-relaxation (SSOR).

Constraint: PRECON ¼ N , J or S .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

4: NNZ – INTEGER Input

On entry: the number of nonzero elements in the lower triangular part of the matrix A.

Constraint: 1 � NNZ � N� Nþ 1ð Þ=2.

5: AðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements of the lower triangular part of the matrix A, ordered by
increasing row index, and by increasing column index within each row. Multiple entries for the
same row and column indices are not permitted. The routine F11ZBF may be used to order the
elements in this way.

6: IROWðNNZÞ – INTEGER array Input
7: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in array A.

Constraints:

IROW and ICOL must satisfy these constraints (which may be imposed by a call to F11ZBF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;
IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

8: OMEGA – REAL (KIND=nag_wp) Input

On entry: if PRECON ¼ S , OMEGA is the relaxation parameter ! to be used in the SSOR
method. Otherwise OMEGA need not be initialized.

Constraint: 0:0 < OMEGA < 2:0.
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9: BðNÞ – REAL (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

10: TOL – REAL (KIND=nag_wp) Input

On entry: the required tolerance. Let xk denote the approximate solution at iteration k, and rk the
corresponding residual. The algorithm is considered to have converged at iteration k if

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

If TOL � 0:0, � ¼ max
ffiffi
�
p
; 10�;

ffiffiffi
n
p

� is used, where � is the machine precision. Otherwise
� ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

11: MAXITN – INTEGER Input

On entry: the maximum number of iterations allowed.

Constraint: MAXITN � 1.

12: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial approximation to the solution vector x.

On exit: an improved approximation to the solution vector x.

13: RNORM – REAL (KIND=nag_wp) Output

On exit: the final value of the residual norm rkk k1, where k is the output value of ITN.

14: ITN – INTEGER Output

On exit: the number of iterations carried out.

15: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
16: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F11JEF
is called.

Constraints:

if METHOD ¼ CG , LWORK � 6� Nþ � þ 120;
if METHOD ¼ SYMMLQ , LWORK � 7� Nþ � þ 120.

where � ¼ N for PRECON ¼ J or S , and 0 otherwise.

17: IWORKðNþ 1Þ – INTEGER array Workspace

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ CG or SYMMLQ ,
or PRECON 6¼ N , J or S ,
or N < 1,
or NNZ < 1,
or NNZ > N� Nþ 1ð Þ=2,
or OMEGA lies outside the interval 0:0; 2:0ð Þ,
or TOL � 1:0,
or MAXITN < 1,
or LWORK too small.

IFAIL ¼ 2

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ, or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie in the lower triangular part of
A, is out of order, or has duplicate row and column indices. Call F11ZBF to reorder and sum or
remove duplicates.

IFAIL ¼ 3

On entry, the matrix A has a zero diagonal element. Jacobi and SSOR preconditioners are not
appropriate for this problem.

IFAIL ¼ 4

The required accuracy could not be obtained. However, a reasonable accuracy has been obtained
and further iterations could not improve the result.

IFAIL ¼ 5

Required accuracy not obtained in MAXITN iterations.

IFAIL ¼ 6

The preconditioner appears not to be positive definite.

IFAIL ¼ 7

The matrix of the coefficients appears not to be positive definite (conjugate gradient method
only).

IFAIL ¼ 8 (F11GDF, F11GEF or F11GFF)

A serious error has occurred in an internal call to one of the specified routines. Check all
subroutine calls and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful termination, the final residual rk ¼ b�Axk, where k ¼ ITN, satisfies the termination
criterion

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

The value of the final residual norm is returned in RNORM.

8 Parallelism and Performance

F11JEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11JEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F11JEF for each iteration is roughly proportional to NNZ. One iteration with the
Lanczos method (SYMMLQ) requires a slightly larger number of operations than one iteration with the
conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined a
priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix of
the coefficients �A ¼M�1A.

10 Example

This example solves a symmetric positive definite system of equations using the conjugate gradient
method, with SSOR preconditioning.

10.1 Program Text

Program f11jefe

! F11JEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11jef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Real (Kind=nag_wp) :: omega, rnorm, tol
Integer :: i, ifail, itn, lwork, maxitn, n, nnz
Character (6) :: method
Character (1) :: precon

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:)
Integer, Allocatable :: icol(:), irow(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F11JEF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n
Read (nin,*) nnz
lwork = 7*n + 120
Allocate (a(nnz),b(n),work(lwork),x(n),icol(nnz),irow(nnz),iwork(n+1))
Read (nin,*) method, precon
Read (nin,*) omega
Read (nin,*) tol, maxitn

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read right-hand side vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Solve Ax = b using F11JEF

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jef(method,precon,n,nnz,a,irow,icol,omega,b,tol,maxitn,x,rnorm, &

itn,work,lwork,iwork,ifail)

Write (nout,99999) ’Converged in’, itn, ’ iterations’
Write (nout,99998) ’Final residual norm =’, rnorm

! Output x

Write (nout,99997) x(1:n)

99999 Format (1X,A,I10,A)
99998 Format (1X,A,1P,E16.3)
99997 Format (1X,1P,E16.4)

End Program f11jefe

10.2 Program Data

F11JEF Example Program Data
7 N
16 NNZ

’CG’ ’SSOR’ METHOD, PRECON
1.1 OMEGA
1.0D-6 100 TOL, MAXITN
4. 1 1
1. 2 1
5. 2 2
2. 3 3
2. 4 2
3. 4 4

-1. 5 1
1. 5 4
4. 5 5
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1. 6 2
-2. 6 5
3. 6 6
2. 7 1

-1. 7 2
-2. 7 3
5. 7 7 A(I), IROW(I), ICOL(I), I=1,...,NNZ

15. 18. -8. 21.
11. 10. 29. B(I), I=1,...,N
0. 0. 0. 0.
0. 0. 0. X(I), I=1,...,N

10.3 Program Results

F11JEF Example Program Results
Converged in 6 iterations
Final residual norm = 5.026E-06

1.0000E+00
2.0000E+00
3.0000E+00
4.0000E+00
5.0000E+00
6.0000E+00
7.0000E+00
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NAG Library Routine Document

F11JNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11JNF computes an incomplete Cholesky factorization of a complex sparse Hermitian matrix,
represented in symmetric coordinate storage format. This factorization may be used as a preconditioner
in combination with F11JQF.

2 Specification

SUBROUTINE F11JNF (N, NNZ, A, LA, IROW, ICOL, LFILL, DTOL, MIC, DSCALE,
PSTRAT, IPIV, ISTR, NNZC, NPIVM, IWORK, LIWORK,
IFAIL)

&
&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), LFILL, IPIV(N),
ISTR(N+1), NNZC, NPIVM, IWORK(LIWORK), LIWORK,
IFAIL

&
&

REAL (KIND=nag_wp) DTOL, DSCALE
COMPLEX (KIND=nag_wp) A(LA)
CHARACTER(1) MIC, PSTRAT

3 Description

F11JNF computes an incomplete Cholesky factorization (see Meijerink and Van der Vorst (1977)) of a
complex sparse Hermitian n by n matrix A. It is designed specifically for positive definite matrices, but
may also work for some mildly indefinite cases. The factorization is intended primarily for use as a
preconditioner with the complex Hermitian iterative solver F11JQF.

The decomposition is written in the form

A ¼M þR

where

M ¼ PLDLHPT

and P is a permutation matrix, L is lower triangular complex with unit diagonal elements, D is real
diagonal and R is a remainder matrix.

The amount of fill-in occurring in the factorization can vary from zero to complete fill, and can be
controlled by specifying either the maximum level of fill LFILL, or the drop tolerance DTOL. The
factorization may be modified in order to preserve row sums, and the diagonal elements may be
perturbed to ensure that the preconditioner is positive definite. Diagonal pivoting may optionally be
employed, either with a user-defined ordering, or using the Markowitz strategy (see Markowitz (1957)),
which aims to minimize fill-in. For further details see Section 9.

The sparse matrix A is represented in symmetric coordinate storage (SCS) format (see Section 2.1.2 in
the F11 Chapter Introduction). The array A stores all the nonzero elements of the lower triangular part
of A, while arrays IROW and ICOL store the corresponding row and column indices respectively.
Multiple nonzero elements may not be specified for the same row and column index.

The preconditioning matrix M is returned in terms of the SCS representation of the lower triangular
matrix

C ¼ LþD�1 � I:
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5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input

On entry: the number of nonzero elements in the lower triangular part of the matrix A.

Constraint: 1 � NNZ � N� Nþ 1ð Þ=2.

3: AðLAÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the nonzero elements in the lower triangular part of the matrix A, ordered by
increasing row index, and by increasing column index within each row. Multiple entries for the
same row and column indices are not permitted. The routine F11ZPF may be used to order the
elements in this way.

On exit: the first NNZ elements of A contain the nonzero elements of A and the next NNZC
elements contain the elements of the lower triangular matrix C. Matrix elements are ordered by
increasing row index, and by increasing column index within each row.

4: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11JNF is called. These arrays must be of sufficient size to store both A (NNZ elements)
and C (NNZC elements).

Constraint: LA � 2� NNZ.

5: IROWðLAÞ – INTEGER array Input/Output
6: ICOLðLAÞ – INTEGER array Input/Output

On entry: the row and column indices of the nonzero elements supplied in A.

Constraints:

IROW and ICOL must satisfy these constraints (which may be imposed by a call to F11ZPF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;
IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

On exit: the row and column indices of the nonzero elements returned in A.

F11JNF NAG Library Manual

F11JNF.2 Mark 26



7: LFILL – INTEGER Input

On entry: if LFILL � 0 its value is the maximum level of fill allowed in the decomposition (see
Section 9.2). A negative value of LFILL indicates that DTOL will be used to control the fill
instead.

8: DTOL – REAL (KIND=nag_wp) Input

On entry: if LFILL < 0, DTOL is used as a drop tolerance to control the fill-in (see Section 9.2);
otherwise DTOL is not referenced.

Constraint: if LFILL < 0, DTOL � 0:0.

9: MIC – CHARACTER(1) Input

On entry: indicates whether or not the factorization should be modified to preserve row sums (see
Section 9.3).

MIC ¼ M
The factorization is modified.

MIC ¼ N
The factorization is not modified.

Constraint: MIC ¼ M or N .

10: DSCALE – REAL (KIND=nag_wp) Input

On entry: the diagonal scaling parameter. All diagonal elements are multiplied by the factor
(1:0þ DSCALE) at the start of the factorization. This can be used to ensure that the
preconditioner is positive definite. See also Section 9.3.

11: PSTRAT – CHARACTER(1) Input

On entry: specifies the pivoting strategy to be adopted.

PSTRAT ¼ N
No pivoting is carried out.

PSTRAT ¼ M
Diagonal pivoting aimed at minimizing fill-in is carried out, using the Markowitz strategy
(see Markowitz (1957)).

PSTRAT ¼ U
Diagonal pivoting is carried out according to the user-defined input array IPIV.

Suggested value: PSTRAT ¼ M .

Constraint: PSTRAT ¼ N , M or U .

12: IPIVðNÞ – INTEGER array Input/Output

On entry: if PSTRAT ¼ U , IPIVðiÞ must specify the row index of the diagonal element to be
used as a pivot at elimination stage i. Otherwise IPIV need not be initialized.

Constraint: if PSTRAT ¼ U , IPIV must contain a valid permutation of the integers on 1;N½ �.
On exit: the pivot indices. If IPIVðiÞ ¼ j, the diagonal element in row j was used as the pivot at
elimination stage i.

13: ISTRðNþ 1Þ – INTEGER array Output

On exit: ISTRðiÞ, for i ¼ 1; 2; . . . ;N, is the starting address in the arrays A, IROW and ICOL of
row i of the matrix C. ISTRðNþ 1Þ is the address of the last nonzero element in C plus one.
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14: NNZC – INTEGER Output

On exit: the number of nonzero elements in the lower triangular matrix C.

15: NPIVM – INTEGER Output

On exit: the number of pivots which were modified during the factorization to ensure that M was
positive definite. The quality of the preconditioner will generally depend on the returned value of
NPIVM. If NPIVM is large the preconditioner may not be satisfactory. In this case it may be
advantageous to call F11JNF again with an increased value of either LFILL or DSCALE. See
also Sections 9.3 and 9.4.

16: IWORKðLIWORKÞ – INTEGER array Workspace
17: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
F11JNF is called.

Constraints:

the minimum permissible value of LIWORK depends on LFILL as follows:

if LFILL � 0, LIWORK � 2� LA� 3� NNZþ 7� Nþ 1;
otherwise LIWORK � LA� NNZþ 7� Nþ 1.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or NNZ < 1,
or NNZ > N� Nþ 1ð Þ=2,
or LA < 2� NNZ,
or DTOL < 0:0,
or MIC 6¼ M or N ,
or PSTRAT 6¼ N , M or U ,
or LIWORK is too small.

IFAIL ¼ 2

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ, or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.
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Therefore a nonzero element has been supplied which does not lie in the lower triangular part of
A, is out of order, or has duplicate row and column indices. Call F11ZPF to reorder and sum or
remove duplicates.

IFAIL ¼ 3

On entry, PSTRAT ¼ U , but IPIV does not represent a valid permutation of the integers in
1;N½ �. An input value of IPIV is either out of range or repeated.

IFAIL ¼ 4

LA is too small, resulting in insufficient storage space for fill-in elements. The decomposition has
been terminated before completion. Either increase LA or reduce the amount of fill by setting
PSTRAT ¼ M , reducing LFILL, or increasing DTOL.

IFAIL ¼ 5 (F11ZPF)

A serious error has occurred in an internal call to the specified routine. Check all subroutine calls
and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the factorization will be determined by the size of the elements that are dropped and
the size of any modifications made to the diagonal elements. If these sizes are small then the computed
factors will correspond to a matrix close to A. The factorization can generally be made more accurate
by increasing LFILL, or by reducing DTOL with LFILL < 0.

If F11JNF is used in combination with F11JQF, the more accurate the factorization the fewer iterations
will be required. However, the cost of the decomposition will also generally increase.

8 Parallelism and Performance

F11JNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to F11JNF is roughly proportional to NNZC2=N.
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9.2 Control of Fill-in

If LFILL � 0, the amount of fill-in occurring in the incomplete factorization is controlled by limiting
the maximum ‘level’ of fill-in to LFILL. The original nonzero elements of A are defined to be of level
0. The fill level of a new nonzero location occurring during the factorization is defined as:

k ¼ max ke; kcð Þ þ 1;

where ke is the level of fill of the element being eliminated, and kc is the level of fill of the element
causing the fill-in.

If LFILL < 0, the fill-in is controlled by means of the ‘drop tolerance’ DTOL. A potential fill-in
element aij occurring in row i and column j will not be included if

aij
		 		 < DTOL�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiiajj
		 		q

:

For either method of control, any elements which are not included are discarded if MIC ¼ N , or
subtracted from the diagonal element in the elimination row if MIC ¼ M .

9.3 Choice of Arguments

There is unfortunately no choice of the various algorithmic arguments which is optimal for all types of
complex Hermitian matrix, and some experimentation will generally be required for each new type of
matrix encountered.

If the matrix A is not known to have any particular special properties, the following strategy is
recommended. Start with LFILL ¼ 0, MIC ¼ N and DSCALE ¼ 0:0. If the value returned for NPIVM
is significantly larger than zero, i.e., a large number of pivot modifications were required to ensure that
M was positive definite, the preconditioner is not likely to be satisfactory. In this case increase either
LFILL or DSCALE until NPIVM falls to a value close to zero. Once suitable values of LFILL and
DSCALE have been found try setting MIC ¼ M to see if any improvement can be obtained by using
modified incomplete Cholesky.

F11JNF is primarily designed for positive definite matrices, but may work for some mildly indefinite
problems. If NPIVM cannot be satisfactorily reduced by increasing LFILL or DSCALE then A is
probably too indefinite for this routine.

For certain classes of matrices (typically those arising from the discretization of elliptic or parabolic
partial differential equations), the convergence rate of the preconditioned iterative solver can sometimes
be significantly improved by using an incomplete factorization which preserves the row-sums of the
original matrix. In these cases try setting MIC ¼ M .

9.4 Direct Solution of positive definite Systems

Although it is not their primary purpose, F11JNF and F11JPF may be used together to obtain a direct
solution to a complex Hermitian positive definite linear system. To achieve this the call to F11JPF
should be preceded by a complete Cholesky factorization

A ¼ PLDLHPT ¼M:

A complete factorization is obtained from a call to F11JNF with LFILL < 0 and DTOL ¼ 0:0, provided
NPIVM ¼ 0 on exit. A nonzero value of NPIVM indicates that A is not positive definite, or is ill-
conditioned. A factorization with nonzero NPIVM may serve as a preconditioner, but will not result in a
direct solution. It is therefore essential to check the output value of NPIVM if a direct solution is
required.

The use of F11JNF and F11JPF as a direct method is illustrated in F11JPF.

10 Example

This example reads in a complex sparse Hermitian matrix A and calls F11JNF to compute an
incomplete Cholesky factorization. It then outputs the nonzero elements of both A and
C ¼ LþD�1 � I.
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The call to F11JNF has LFILL ¼ 0, MIC ¼ N , DSCALE ¼ 0:0 and PSTRAT ¼ M , giving an
unmodified zero-fill factorization of an unperturbed matrix, with Markowitz diagonal pivoting.

10.1 Program Text

Program f11jnfe

! F11JNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11jnf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dscale, dtol
Integer :: i, ifail, la, lfill, liwork, n, nnz, &

nnzc, npivm
Character (1) :: mic, pstrat

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:)
Integer, Allocatable :: icol(:), ipiv(:), irow(:), istr(:), &

iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11JNF Example Program Results’
! Skip heading in data file

Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n
Read (nin,*) nnz
la = 3*nnz
liwork = 2*la + 7*n + 1
Allocate (a(la),icol(la),ipiv(n),irow(la),istr(n+1),iwork(liwork))
Read (nin,*) lfill, dtol
Read (nin,*) mic, dscale
Read (nin,*) pstrat

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Calculate incomplete Cholesky factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jnf(n,nnz,a,la,irow,icol,lfill,dtol,mic,dscale,pstrat,ipiv,istr, &

nnzc,npivm,iwork,liwork,ifail)

! Output original matrix

Write (nout,*) ’ Original Matrix’
Write (nout,99997) ’N =’, n
Write (nout,99997) ’NNZ =’, nnz
Do i = 1, nnz

Write (nout,99999) i, a(i), irow(i), icol(i)
End Do
Write (nout,*)

! Output details of the factorization

Write (nout,*) ’ Factorization’
Write (nout,99997) ’N =’, n
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Write (nout,99997) ’NNZ =’, nnzc
Write (nout,99997) ’NPIVM =’, npivm
Do i = nnz + 1, nnz + nnzc

Write (nout,99999) i, a(i), irow(i), icol(i)
End Do
Write (nout,*)

Write (nout,*) ’ I IPIV(I)’
Do i = 1, n

Write (nout,99998) i, ipiv(i)
End Do

99999 Format (I8,5X,’(’,E16.4,’,’,E16.4,’)’,2I8)
99998 Format (1X,2I8)
99997 Format (1X,A,I16)

End Program f11jnfe

10.2 Program Data

F11JNF Example Program Data
7 N

16 NNZ
0 0.0 LFILL, DTOL
’N’ 0.0 MIC, DSCALE
’M’ PSTRAT
( 6., 0.) 1 1
( 1.,-2.) 2 1
( 9., 0.) 2 2
( 4., 0.) 3 3
( 2., 2.) 4 2
( 5., 0.) 4 4
( 0.,-1.) 5 1
( 1., 0.) 5 4
( 4., 0.) 5 5
( 1., 3.) 6 2
( 0.,-2.) 6 5
( 3., 0.) 6 6
( 2., 1.) 7 1
(-1., 0.) 7 2
(-3.,-1.) 7 3
( 5., 0.) 7 7 A(I), IROW(I), ICOL(I), I=1,...,NNZ

10.3 Program Results

F11JNF Example Program Results
Original Matrix

N = 7
NNZ = 16

1 ( 0.6000E+01, 0.0000E+00) 1 1
2 ( 0.1000E+01, -0.2000E+01) 2 1
3 ( 0.9000E+01, 0.0000E+00) 2 2
4 ( 0.4000E+01, 0.0000E+00) 3 3
5 ( 0.2000E+01, 0.2000E+01) 4 2
6 ( 0.5000E+01, 0.0000E+00) 4 4
7 ( 0.0000E+00, -0.1000E+01) 5 1
8 ( 0.1000E+01, 0.0000E+00) 5 4
9 ( 0.4000E+01, 0.0000E+00) 5 5

10 ( 0.1000E+01, 0.3000E+01) 6 2
11 ( 0.0000E+00, -0.2000E+01) 6 5
12 ( 0.3000E+01, 0.0000E+00) 6 6
13 ( 0.2000E+01, 0.1000E+01) 7 1
14 ( -0.1000E+01, 0.0000E+00) 7 2
15 ( -0.3000E+01, -0.1000E+01) 7 3
16 ( 0.5000E+01, 0.0000E+00) 7 7

Factorization
N = 7
NNZ = 16
NPIVM = 0

17 ( 0.2500E+00, -0.0000E+00) 1 1
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18 ( 0.2000E+00, -0.0000E+00) 2 2
19 ( 0.2000E+00, 0.0000E+00) 3 2
20 ( 0.2632E+00, -0.0000E+00) 3 3
21 ( 0.0000E+00, -0.5263E+00) 4 3
22 ( 0.5135E+00, -0.0000E+00) 4 4
23 ( 0.0000E+00, 0.2632E+00) 5 3
24 ( 0.1743E+00, -0.0000E+00) 5 5
25 ( -0.7500E+00, -0.2500E+00) 6 1
26 ( 0.3486E+00, 0.1743E+00) 6 5
27 ( 0.6141E+00, -0.0000E+00) 6 6
28 ( 0.4000E+00, -0.4000E+00) 7 2
29 ( 0.5135E+00, -0.1541E+01) 7 4
30 ( 0.1743E+00, -0.3486E+00) 7 5
31 ( -0.6141E+00, 0.5352E+00) 7 6
32 ( 0.3197E+01, -0.0000E+00) 7 7

I IPIV(I)
1 3
2 4
3 5
4 6
5 1
6 7
7 2
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F11JPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11JPF solves a system of complex linear equations involving the incomplete Cholesky preconditioning
matrix generated by F11JNF.

2 Specification

SUBROUTINE F11JPF (N, A, LA, IROW, ICOL, IPIV, ISTR, CHECK, Y, X, IFAIL)

INTEGER N, LA, IROW(LA), ICOL(LA), IPIV(N), ISTR(N+1),
IFAIL

&

COMPLEX (KIND=nag_wp) A(LA), Y(N), X(N)
CHARACTER(1) CHECK

3 Description

F11JPF solves a system of linear equations

Mx ¼ y

involving the preconditioning matrix M ¼ PLDLHP T, corresponding to an incomplete Cholesky
decomposition of a complex sparse Hermitian matrix stored in symmetric coordinate storage (SCS)
format (see Section 2.1.2 in the F11 Chapter Introduction), as generated by F11JNF.

In the above decomposition L is a complex lower triangular sparse matrix with unit diagonal, D is a
real diagonal matrix and P is a permutation matrix. L and D are supplied to F11JPF through the matrix

C ¼ LþD�1 � I

which is a lower triangular n by n complex sparse matrix, stored in SCS format, as returned by
F11JNF. The permutation matrix P is returned from F11JNF via the array IPIV.

F11JPF may also be used in combination with F11JNF to solve a sparse complex Hermitian positive
definite system of linear equations directly (see F11JNF). This is illustrated in Section 10.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix M. This must be the same value as was supplied in the
preceding call to F11JNF.

Constraint: N � 1.

2: AðLAÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the values returned in the array A by a previous call to F11JNF.
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3: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11JPF is called. This must be the same value supplied in the preceding call to F11JNF.

4: IROWðLAÞ – INTEGER array Input
5: ICOLðLAÞ – INTEGER array Input
6: IPIVðNÞ – INTEGER array Input
7: ISTRðNþ 1Þ – INTEGER array Input

On entry: the values returned in arrays IROW, ICOL, IPIV and ISTR by a previous call to
F11JNF.

8: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the input data should be checked.

CHECK ¼ C
Checks are carried out on the values of N, IROW, ICOL, IPIV and ISTR.

CHECK ¼ N
None of these checks are carried out.

Constraint: CHECK ¼ C or N .

9: YðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the right-hand side vector y.

10: XðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the solution vector x.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CHECK 6¼ C or N .

IFAIL ¼ 2

On entry, N < 1.
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IFAIL ¼ 3

On entry, the SCS representation of the preconditioning matrix M is invalid. Further details are
given in the error message. Check that the call to F11JPF has been preceded by a valid call to
F11JNF and that the arrays A, IROW, ICOL, IPIV and ISTR have not been corrupted between the
two calls.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution x is the exact solution of a perturbed system of equations M þ �Mð Þx ¼ y,
where

�Mj j � c nð Þ�P Lj j Dj j LH
		 		PT;

c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F11JPF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken for a call to F11JPF is proportional to the value of NNZC returned from F11JNF.

10 Example

This example reads in a complex sparse Hermitian positive definite matrix A and a vector y. It then
calls F11JNF, with LFILL ¼ �1 and DTOL ¼ 0:0, to compute the complete Cholesky decomposition of
A:

A ¼ PLDLHPT:

Finally it calls F11JPF to solve the system

PLDLHPTx ¼ y:

10.1 Program Text

Program f11jpfe

! F11JPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: f11jnf, f11jpf, nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: dscale, dtol
Integer :: i, ifail, la, lfill, liwork, n, nnz, &

nnzc, npivm
Character (1) :: check, mic, pstrat

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), x(:), y(:)
Integer, Allocatable :: icol(:), ipiv(:), irow(:), istr(:), &

iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11JPF Example Program Results’
! Skip heading in data file

Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz
la = 3*nnz
liwork = 2*la + 7*n + 1
Allocate (a(la),x(n),y(n),icol(la),ipiv(n),irow(la),istr(n+1), &

iwork(liwork))

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read the vector y

Read (nin,*) y(1:n)

! Calculate Cholesky factorization

lfill = -1
dtol = 0.0E0_nag_wp
mic = ’N’
dscale = 0.0E0_nag_wp
pstrat = ’M’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jnf(n,nnz,a,la,irow,icol,lfill,dtol,mic,dscale,pstrat,ipiv,istr, &

nnzc,npivm,iwork,liwork,ifail)

! Check the output value of NPIVM

If (npivm/=0) Then

Write (nout,*) ’Factorization is not complete’

Else

! Solve P L D L^H P^T x = y

check = ’C’

ifail = 0
Call f11jpf(n,a,la,irow,icol,ipiv,istr,check,y,x,ifail)

! Output results

Write (nout,*) ’Solution of linear system’
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Write (nout,99999) x(1:n)
End If

99999 Format (1X,’(’,E16.4,’,’,E16.4,’)’)
End Program f11jpfe

10.2 Program Data

F11JPF Example Program Data
9 N

23 NNZ
( 6., 0.) 1 1
(-1., 1.) 2 1
( 6., 0.) 2 2
( 0., 1.) 3 2
( 5., 0.) 3 3
( 5., 0.) 4 4
( 2.,-2.) 5 1
( 4., 0.) 5 5
( 1., 1.) 6 3
( 2., 0.) 6 4
( 6., 0.) 6 6
(-4., 3.) 7 2
( 0., 1.) 7 5
(-1., 0.) 7 6
( 6., 0.) 7 7
(-1.,-1.) 8 4
( 0.,-1.) 8 6
( 9., 0.) 8 8
( 1., 3.) 9 1
( 1., 2.) 9 5
(-1., 0.) 9 6
( 1., 4.) 9 8
( 9., 0.) 9 9 A(I), IROW(I), ICOL(I), I=1,...,NNZ
( 8.,54.) (-10.,-92.)
(25.,27.) (26., -28.)
(54.,12.) (26.,-22.)
(47.,65.) (71.,-57.)
(60.,70.) Y(I), I=1,...,N

10.3 Program Results

F11JPF Example Program Results
Solution of linear system
( 0.1000E+01, 0.9000E+01)
( 0.2000E+01, -0.8000E+01)
( 0.3000E+01, 0.7000E+01)
( 0.4000E+01, -0.6000E+01)
( 0.5000E+01, 0.5000E+01)
( 0.6000E+01, -0.4000E+01)
( 0.7000E+01, 0.3000E+01)
( 0.8000E+01, -0.2000E+01)
( 0.9000E+01, 0.1000E+01)

F11 – Large Scale Linear Systems F11JPF

Mark 26 F11JPF.5 (last)





NAG Library Routine Document

F11JQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11JQF solves a complex sparse Hermitian system of linear equations, represented in symmetric
coordinate storage format, using a conjugate gradient or Lanczos method, with incomplete Cholesky
preconditioning.

2 Specification

SUBROUTINE F11JQF (METHOD, N, NNZ, A, LA, IROW, ICOL, IPIV, ISTR, B,
TOL, MAXITN, X, RNORM, ITN, WORK, LWORK, IFAIL)

&

INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), IPIV(N),
ISTR(N+1), MAXITN, ITN, LWORK, IFAIL

&

REAL (KIND=nag_wp) TOL, RNORM
COMPLEX (KIND=nag_wp) A(LA), B(N), X(N), WORK(LWORK)
CHARACTER(*) METHOD

3 Description

F11JQF solves a complex sparse Hermitian linear system of equations

Ax ¼ b;

using a preconditioned conjugate gradient method (see Meijerink and Van der Vorst (1977)), or a
preconditioned Lanczos method based on the algorithm SYMMLQ (see Paige and Saunders (1975)).
The conjugate gradient method is more efficient if A is positive definite, but may fail to converge for
indefinite matrices. In this case the Lanczos method should be used instead. For further details see
Barrett et al. (1994).

F11JQF uses the incomplete Cholesky factorization determined by F11JNF as the preconditioning
matrix. A call to F11JQF must always be preceded by a call to F11JNF. Alternative preconditioners for
the same storage scheme are available by calling F11JSF.

The matrix A and the preconditioning matrix M are represented in symmetric coordinate storage (SCS)
format (see Section 2.1.2 in the F11 Chapter Introduction) in the arrays A, IROW and ICOL, as
returned from F11JNF. The array A holds the nonzero entries in the lower triangular parts of these
matrices, while IROW and ICOL hold the corresponding row and column indices.

4 References

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C and
Van der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods SIAM, Philadelphia

Meijerink J and Van der Vorst H (1977) An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM J.
Numer. Anal. 12 617–629
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5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: specifies the iterative method to be used.

METHOD ¼ CG
Conjugate gradient method.

METHOD ¼ SYMMLQ
Lanczos method (SYMMLQ).

Constraint: METHOD ¼ CG or SYMMLQ.

2: N – INTEGER Input

On entry: n, the order of the matrix A. This must be the same value as was supplied in the
preceding call to F11JNF.

Constraint: N � 1.

3: NNZ – INTEGER Input

On entry: the number of nonzero elements in the lower triangular part of the matrix A. This must
be the same value as was supplied in the preceding call to F11JNF.

Constraint: 1 � NNZ � N� Nþ 1ð Þ=2.

4: AðLAÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the values returned in the array A by a previous call to F11JNF.

5: LA – INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11JQF is called. This must be the same value as was supplied in the preceding call to
F11JNF.

Constraint: LA � 2� NNZ.

6: IROWðLAÞ – INTEGER array Input
7: ICOLðLAÞ – INTEGER array Input
8: IPIVðNÞ – INTEGER array Input
9: ISTRðNþ 1Þ – INTEGER array Input

On entry: the values returned in arrays IROW, ICOL, IPIV and ISTR by a previous call to
F11JNF.

10: BðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

11: TOL – REAL (KIND=nag_wp) Input

On entry: the required tolerance. Let xk denote the approximate solution at iteration k, and rk the
corresponding residual. The algorithm is considered to have converged at iteration k if

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

If TOL � 0:0, � ¼ max
ffiffi
�
p
; 10�;

ffiffiffi
n
p

� is used, where � is the machine precision. Otherwise
� ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.
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12: MAXITN – INTEGER Input

On entry: the maximum number of iterations allowed.

Constraint: MAXITN � 1.

13: XðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: an initial approximation to the solution vector x.

On exit: an improved approximation to the solution vector x.

14: RNORM – REAL (KIND=nag_wp) Output

On exit: the final value of the residual norm rkk k1, where k is the output value of ITN.

15: ITN – INTEGER Output

On exit: the number of iterations carried out.

16: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Workspace
17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F11JQF
is called.

Constraints:

if METHOD ¼ CG , LWORK � 6� Nþ 120;
if METHOD ¼ SYMMLQ , LWORK � 7� Nþ 120.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ CG or SYMMLQ ,
or N < 1,
or NNZ < 1,
or NNZ > N� Nþ 1ð Þ=2,
or LA too small,
or TOL � 1:0,
or MAXITN < 1,
or LWORK too small.
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IFAIL ¼ 2

On entry, the SCS representation of A is invalid. Further details are given in the error message.
Check that the call to F11JQF has been preceded by a valid call to F11JNF, and that the arrays A,
IROW, and ICOL have not been corrupted between the two calls.

IFAIL ¼ 3

On entry, the SCS representation of M is invalid. Further details are given in the error message.
Check that the call to F11JQF has been preceded by a valid call to F11JNF, and that the arrays A,
IROW, ICOL, IPIV and ISTR have not been corrupted between the two calls.

IFAIL ¼ 4

The required accuracy could not be obtained. However, a reasonable accuracy has been obtained
and further iterations could not improve the result.

IFAIL ¼ 5

Required accuracy not obtained in MAXITN iterations.

IFAIL ¼ 6

The preconditioner appears not to be positive definite.

IFAIL ¼ 7

The matrix of the coefficients appears not to be positive definite (conjugate gradient method
only).

IFAIL ¼ 8

A serious error has occurred in an internal call to an auxiliary routine. Check all subroutine calls
and array sizes. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful termination, the final residual rk ¼ b�Axk, where k ¼ ITN, satisfies the termination
criterion

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

The value of the final residual norm is returned in RNORM.
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8 Parallelism and Performance

F11JQF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11JQF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F11JQF for each iteration is roughly proportional to the value of NNZC returned
from the preceding call to F11JNF. One iteration with the Lanczos method (SYMMLQ) requires a
slightly larger number of operations than one iteration with the conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot easily be determined a
priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix of
the coefficients �A ¼M�1A.

10 Example

This example solves a complex sparse Hermitian positive definite system of equations using the
conjugate gradient method, with incomplete Cholesky preconditioning.

10.1 Program Text

Program f11jqfe

! F11JQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11jnf, f11jqf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dscale, dtol, rnorm, tol
Integer :: i, ifail, itn, la, lfill, liwork, &

lwork, maxitn, n, nnz, nnzc, npivm
Character (6) :: method
Character (1) :: mic, pstrat

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:)
Integer, Allocatable :: icol(:), ipiv(:), irow(:), istr(:), &

iwork(:)
! .. Executable Statements ..

Write (nout,*) ’F11JQF Example Program Results’
! Skip heading in data file

Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n
Read (nin,*) nnz
la = 3*nnz
liwork = 2*la + 7*n + 1
lwork = 7*n + 120
Allocate (a(la),b(n),work(lwork),x(n),icol(la),ipiv(n),irow(la), &

istr(n+1),iwork(liwork))
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Read (nin,*) method
Read (nin,*) lfill, dtol
Read (nin,*) mic, dscale
Read (nin,*) pstrat
Read (nin,*) tol, maxitn

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read rhs vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Calculate incomplete Cholesky factorization

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jnf(n,nnz,a,la,irow,icol,lfill,dtol,mic,dscale,pstrat,ipiv,istr, &

nnzc,npivm,iwork,liwork,ifail)

! Solve Ax = b using F11JQF

Call f11jqf(method,n,nnz,a,la,irow,icol,ipiv,istr,b,tol,maxitn,x,rnorm, &
itn,work,lwork,ifail)

Write (nout,99999) ’Converged in’, itn, ’ iterations’
Write (nout,99998) ’Final residual norm =’, rnorm

! Output x

Write (nout,99997) x(1:n)

99999 Format (1X,A,I10,A)
99998 Format (1X,A,1P,E16.3)
99997 Format (1X,’(’,E16.4,’,’,E16.4,’)’)

End Program f11jqfe

10.2 Program Data

F11JQF Example Program Data
9 N
23 NNZ

’CG’ METHOD
0 0.0 LFILL, DTOL
’N’ 0.0 MIC, DSCALE
’M’ PSTRAT
1.0D-6 100 TOL, MAXITN

( 6., 0.) 1 1
(-1., 1.) 2 1
( 6., 0.) 2 2
( 0., 1.) 3 2
( 5., 0.) 3 3
( 5., 0.) 4 4
( 2.,-2.) 5 1
( 4., 0.) 5 5
( 1., 1.) 6 3
( 2., 0.) 6 4
( 6., 0.) 6 6
(-4., 3.) 7 2
( 0., 1.) 7 5
(-1., 0.) 7 6
( 6., 0.) 7 7
(-1.,-1.) 8 4
( 0.,-1.) 8 6
( 9., 0.) 8 8
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( 1., 3.) 9 1
( 1., 2.) 9 5
(-1., 0.) 9 6
( 1., 4.) 9 8
( 9., 0.) 9 9 A(I), IROW(I), ICOL(I), I=1,...,NNZ
( 8., 54.)
(-10., -92.)
( 25., 27.)
( 26., -28.)
( 54., 12.)
( 26., -22.)
( 47., 65.)
( 71., -57.)
( 60., 70.) B(I), I=1,...,N
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.) X(I), I=1,...,N

10.3 Program Results

F11JQF Example Program Results
Converged in 5 iterations
Final residual norm = 3.197E-14
( 0.1000E+01, 0.9000E+01)
( 0.2000E+01, -0.8000E+01)
( 0.3000E+01, 0.7000E+01)
( 0.4000E+01, -0.6000E+01)
( 0.5000E+01, 0.5000E+01)
( 0.6000E+01, -0.4000E+01)
( 0.7000E+01, 0.3000E+01)
( 0.8000E+01, -0.2000E+01)
( 0.9000E+01, 0.1000E+01)
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NAG Library Routine Document

F11JRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11JRF solves a system of linear equations involving the preconditioning matrix corresponding to
SSOR applied to a complex sparse Hermitian matrix, represented in symmetric coordinate storage
format.

2 Specification

SUBROUTINE F11JRF (N, NNZ, A, IROW, ICOL, RDIAG, OMEGA, CHECK, Y, X,
IWORK, IFAIL)

&

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IWORK(N+1), IFAIL
REAL (KIND=nag_wp) RDIAG(N), OMEGA
COMPLEX (KIND=nag_wp) A(NNZ), Y(N), X(N)
CHARACTER(1) CHECK

3 Description

F11JRF solves a system of equations

Mx ¼ y

involving the preconditioning matrix

M ¼ 1

! 2� !ð Þ Dþ !Lð ÞD�1 Dþ !Lð ÞH

corresponding to symmetric successive-over-relaxation (SSOR) (see Young (1971)) on a linear system
Ax ¼ b, where A is a sparse complex Hermitian matrix stored in symmetric coordinate storage (SCS)
format (see Section 2.1.2 in the F11 Chapter Introduction).

In the definition of M given above D is the diagonal part of A, L is the strictly lower triangular part of
A and ! is a user-defined relaxation parameter. Note that since A is Hermitian the matrix D is
necessarily real.

4 References

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input

On entry: the number of nonzero elements in the lower triangular part of the matrix A.

Constraint: 1 � NNZ � N� Nþ 1ð Þ=2.
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3: AðNNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nonzero elements in the lower triangular part of the matrix A, ordered by
increasing row index, and by increasing column index within each row. Multiple entries for the
same row and column indices are not permitted. The routine F11ZPF may be used to order the
elements in this way.

4: IROWðNNZÞ – INTEGER array Input
5: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in array A.

Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZPF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;
IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

6: RDIAGðNÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of the diagonal matrix D�1, where D is the diagonal part of A. Note that
since A is Hermitian the elements of D�1 are necessarily real.

7: OMEGA – REAL (KIND=nag_wp) Input

On entry: the relaxation parameter !.

Constraint: 0:0 < OMEGA < 2:0.

8: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the input data should be checked.

CHECK ¼ C
Checks are carried out on the values of N, NNZ, IROW, ICOL and OMEGA.

CHECK ¼ N
None of these checks are carried out.

Constraint: CHECK ¼ C or N .

9: YðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the right-hand side vector y.

10: XðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the solution vector x.

11: IWORKðNþ 1Þ – INTEGER array Workspace

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CHECK 6¼ C or N .

IFAIL ¼ 2

On entry, N < 1,
or NNZ < 1,
or NNZ > N� Nþ 1ð Þ=2,
or OMEGA lies outside the interval 0:0; 2:0ð Þ.

IFAIL ¼ 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie in the lower triangular part of
A, is out of order, or has duplicate row and column indices. Call F11ZPF to reorder and sum or
remove duplicates.

IFAIL ¼ 4

On entry, a row of A has no diagonal entry.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed solution x is the exact solution of a perturbed system of equations M þ �Mð Þx ¼ y,
where

�Mj j � c nð Þ� Dþ !Lj j D�1
		 		 Dþ !Lð ÞT

		 		;
c nð Þ is a modest linear function of n, and � is the machine precision.
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8 Parallelism and Performance

F11JRF is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken for a call to F11JRF is proportional to NNZ.

10 Example

This example program solves the preconditioning equation Mx ¼ y for a 9 by 9 sparse complex
Hermitian matrix A, given in symmetric coordinate storage (SCS) format.

10.1 Program Text

Program f11jrfe

! F11JRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11jrf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: omega
Integer :: i, ifail, n, nnz
Character (1) :: check

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), x(:), y(:)
Real (Kind=nag_wp), Allocatable :: rdiag(:)
Integer, Allocatable :: icol(:), irow(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F11JRF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n
Read (nin,*) nnz

Allocate (a(nnz),x(n),y(n),rdiag(n),icol(nnz),irow(nnz),iwork(n+1))
Read (nin,*) check
Read (nin,*) omega

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read rhs vector y

Read (nin,*) y(1:n)

! Fill in the diagonal part

Do i = 1, nnz
If (irow(i)==icol(i)) Then
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rdiag(irow(i)) = 1.E0_nag_wp/real(a(i))
End If

End Do

! Solve Mx = b using F11JRF

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jrf(n,nnz,a,irow,icol,rdiag,omega,check,y,x,iwork,ifail)

! Output x

Write (nout,99999) x(1:n)

99999 Format (1X,’(’,E16.4,’,’,E16.4,’)’)
End Program f11jrfe

10.2 Program Data

F11JRF Example Program Data
9 N
23 NNZ

’C’ CHECK
1.1 OMEGA

( 6., 0.) 1 1
(-1., 1.) 2 1
( 6., 0.) 2 2
( 0., 1.) 3 2
( 5., 0.) 3 3
( 5., 0.) 4 4
( 2.,-2.) 5 1
( 4., 0.) 5 5
( 1., 1.) 6 3
( 2., 0.) 6 4
( 6., 0.) 6 6
(-4., 3.) 7 2
( 0., 1.) 7 5
(-1., 0.) 7 6
( 6., 0.) 7 7
(-1.,-1.) 8 4
( 0.,-1.) 8 6
( 9., 0.) 8 8
( 1., 3.) 9 1
( 1., 2.) 9 5
(-1., 0.) 9 6
( 1., 4.) 9 8
( 9., 0.) 9 9 A(I), IROW(I), ICOL(I), I=1,...,NNZ
( 8., 54.)
(-10., -92.)
( 25., 27.)
( 26., -28.)
( 54., 12.)
( 26., -22.)
( 47., 65.)
( 71., -57.)
( 60., 70.) Y(I), I=1,...,N
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10.3 Program Results

F11JRF Example Program Results
( 0.1098E+01, 0.5914E+01)
( 0.2230E+00, -0.1408E+02)
( 0.2232E+01, 0.7087E+01)
( 0.4816E+01, -0.6181E+01)
( 0.6763E+01, 0.1569E+01)
( 0.3353E+01, -0.4785E+01)
( 0.6699E+00, -0.1465E+01)
( 0.8832E+01, -0.3633E+01)
( 0.4768E+01, 0.1213E+00)
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NAG Library Routine Document

F11JSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11JSF solves a complex sparse Hermitian system of linear equations, represented in symmetric
coordinate storage format, using a conjugate gradient or Lanczos method, without preconditioning, with
Jacobi or with SSOR preconditioning.

2 Specification

SUBROUTINE F11JSF (METHOD, PRECON, N, NNZ, A, IROW, ICOL, OMEGA, B, TOL,
MAXITN, X, RNORM, ITN, RDIAG, WORK, LWORK, IWORK,
IFAIL)

&
&

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), MAXITN, ITN, LWORK,
IWORK(N+1), IFAIL

&

REAL (KIND=nag_wp) OMEGA, TOL, RNORM, RDIAG(N)
COMPLEX (KIND=nag_wp) A(NNZ), B(N), X(N), WORK(LWORK)
CHARACTER(*) METHOD
CHARACTER(1) PRECON

3 Description

F11JSF solves a complex sparse Hermitian linear system of equations

Ax ¼ b;

using a preconditioned conjugate gradient method (see Barrett et al. (1994)), or a preconditioned
Lanczos method based on the algorithm SYMMLQ (see Paige and Saunders (1975)). The conjugate
gradient method is more efficient if A is positive definite, but may fail to converge for indefinite
matrices. In this case the Lanczos method should be used instead. For further details see Barrett et al.
(1994).

F11JSF allows the following choices for the preconditioner:

– no preconditioning;

– Jacobi preconditioning (see Young (1971));

– symmetric successive-over-relaxation (SSOR) preconditioning (see Young (1971)).

For incomplete Cholesky (IC) preconditioning see F11JQF.

The matrix A is represented in symmetric coordinate storage (SCS) format (see Section 2.1.2 in the F11
Chapter Introduction) in the arrays A, IROW and ICOL. The array A holds the nonzero entries in the
lower triangular part of the matrix, while IROW and ICOL hold the corresponding row and column
indices.

4 References

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C and
Van der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods SIAM, Philadelphia

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM J.
Numer. Anal. 12 617–629

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York
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5 Arguments

1: METHOD – CHARACTER(*) Input

On entry: specifies the iterative method to be used.

METHOD ¼ CG
Conjugate gradient method.

METHOD ¼ SYMMLQ
Lanczos method (SYMMLQ).

Constraint: METHOD ¼ CG or SYMMLQ.

2: PRECON – CHARACTER(1) Input

On entry: specifies the type of preconditioning to be used.

PRECON ¼ N
No preconditioning.

PRECON ¼ J
Jacobi.

PRECON ¼ S
Symmetric successive-over-relaxation (SSOR).

Constraint: PRECON ¼ N , J or S .

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

4: NNZ – INTEGER Input

On entry: the number of nonzero elements in the lower triangular part of the matrix A.

Constraint: 1 � NNZ � N� Nþ 1ð Þ=2.

5: AðNNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nonzero elements of the lower triangular part of the matrix A, ordered by
increasing row index, and by increasing column index within each row. Multiple entries for the
same row and column indices are not permitted. The routine F11ZPF may be used to order the
elements in this way.

6: IROWðNNZÞ – INTEGER array Input
7: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in array A.

Constraints:

IROW and ICOL must satisfy these constraints (which may be imposed by a call to F11ZPF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;
IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

8: OMEGA – REAL (KIND=nag_wp) Input

On entry: if PRECON ¼ S , OMEGA is the relaxation parameter ! to be used in the SSOR
method. Otherwise OMEGA need not be initialized.

Constraint: 0:0 < OMEGA < 2:0.
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9: BðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the right-hand side vector b.

10: TOL – REAL (KIND=nag_wp) Input

On entry: the required tolerance. Let xk denote the approximate solution at iteration k, and rk the
corresponding residual. The algorithm is considered to have converged at iteration k if

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

If TOL � 0:0, � ¼ max
ffiffi
�
p
; 10�;

ffiffiffi
n
p

� is used, where � is the machine precision. Otherwise
� ¼ max TOL; 10�;

ffiffiffi
n
p

�ð Þ is used.

Constraint: TOL < 1:0.

11: MAXITN – INTEGER Input

On entry: the maximum number of iterations allowed.

Constraint: MAXITN � 1.

12: XðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: an initial approximation to the solution vector x.

On exit: an improved approximation to the solution vector x.

13: RNORM – REAL (KIND=nag_wp) Output

On exit: the final value of the residual norm rkk k, where k is the output value of ITN.

14: ITN – INTEGER Output

On exit: the number of iterations carried out.

15: RDIAGðNÞ – REAL (KIND=nag_wp) array Output

On exit: the elements of the diagonal matrix D�1, where D is the diagonal part of A. Note that
since A is Hermitian the elements of D�1 are necessarily real.

16: WORKðLWORKÞ – COMPLEX (KIND=nag_wp) array Workspace
17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F11JSF
is called.

Constraints:

if METHOD ¼ CG , LWORK � 6� Nþ 120;
if METHOD ¼ SYMMLQ , LWORK � 7� Nþ 120.

18: IWORKðNþ 1Þ – INTEGER array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ CG or SYMMLQ ,
or PRECON 6¼ N , J or S ,
or N < 1,
or NNZ < 1,
or NNZ > N� Nþ 1ð Þ=2,
or OMEGA lies outside the interval 0:0; 2:0ð Þ,
or TOL � 1:0,
or MAXITN < 1,
or LWORK is too small.

IFAIL ¼ 2

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ, or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie in the lower triangular part of
A, is out of order, or has duplicate row and column indices. Call F11ZPF to reorder and sum or
remove duplicates.

IFAIL ¼ 3

On entry, the matrix A has a zero diagonal element. Jacobi and SSOR preconditioners are not
appropriate for this problem.

IFAIL ¼ 4

The required accuracy could not be obtained. However, a reasonable accuracy has been obtained
and further iterations could not improve the result.

IFAIL ¼ 5

Required accuracy not obtained in MAXITN iterations.

IFAIL ¼ 6

The preconditioner appears not to be positive definite.

IFAIL ¼ 7

The matrix of the coefficients appears not to be positive definite (conjugate gradient method
only).

IFAIL ¼ 8

A serious error has occurred in an internal call to an auxiliary routine. Check all subroutine calls
and array sizes. Seek expert help.
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IFAIL ¼ 9

The matrix of the coefficients has a non-real diagonal entry, and is therefore not Hermitian.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful termination, the final residual rk ¼ b�Axk, where k ¼ ITN, satisfies the termination
criterion

rkk k1 � � � bk k1 þ Ak k1 xkk k1
� �

:

The value of the final residual norm is returned in RNORM.

8 Parallelism and Performance

F11JSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11JSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F11JSF for each iteration is roughly proportional to NNZ. One iteration with the
Lanczos method (SYMMLQ) requires a slightly larger number of operations than one iteration with the
conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot easily be determined a
priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix of
the coefficients �A ¼M�1A.

10 Example

This example solves a complex sparse Hermitian positive definite system of equations using the
conjugate gradient method, with SSOR preconditioning.
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10.1 Program Text

Program f11jsfe

! F11JSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11jsf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: omega, rnorm, tol
Integer :: i, ifail, itn, lwork, maxitn, n, nnz
Character (6) :: method
Character (1) :: precon

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), b(:), work(:), x(:)
Real (Kind=nag_wp), Allocatable :: rdiag(:)
Integer, Allocatable :: icol(:), irow(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F11JSF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read algorithmic parameters

Read (nin,*) n
Read (nin,*) nnz
lwork = 7*n + 120
Allocate (a(nnz),b(n),work(lwork),x(n),rdiag(n),icol(nnz),irow(nnz), &

iwork(n+1))
Read (nin,*) method, precon
Read (nin,*) omega
Read (nin,*) tol, maxitn

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read rhs vector b and initial approximate solution x

Read (nin,*) b(1:n)
Read (nin,*) x(1:n)

! Solve Ax = b using F11JSF

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jsf(method,precon,n,nnz,a,irow,icol,omega,b,tol,maxitn,x,rnorm, &

itn,rdiag,work,lwork,iwork,ifail)

Write (nout,99999) ’Converged in’, itn, ’ iterations’
Write (nout,99998) ’Final residual norm =’, rnorm

! Output x

Write (nout,99997) x(1:n)

99999 Format (1X,A,I10,A)
99998 Format (1X,A,1P,E16.3)
99997 Format (1X,’(’,E16.4,’,’,E16.4,’)’)

End Program f11jsfe

F11JSF NAG Library Manual

F11JSF.6 Mark 26



10.2 Program Data

F11JSF Example Program Data
9 N
23 NNZ

’CG’ ’SSOR’ METHOD, PRECON
1.1 OMEGA
1.0D-6 100 TOL, MAXITN

( 6., 0.) 1 1
(-1., 1.) 2 1
( 6., 0.) 2 2
( 0., 1.) 3 2
( 5., 0.) 3 3
( 5., 0.) 4 4
( 2.,-2.) 5 1
( 4., 0.) 5 5
( 1., 1.) 6 3
( 2., 0.) 6 4
( 6., 0.) 6 6
(-4., 3.) 7 2
( 0., 1.) 7 5
(-1., 0.) 7 6
( 6., 0.) 7 7
(-1.,-1.) 8 4
( 0.,-1.) 8 6
( 9., 0.) 8 8
( 1., 3.) 9 1
( 1., 2.) 9 5
(-1., 0.) 9 6
( 1., 4.) 9 8
( 9., 0.) 9 9 A(I), IROW(I), ICOL(I), I=1,...,NNZ
( 8., 54.)
(-10., -92.)
( 25., 27.)
( 26., -28.)
( 54., 12.)
( 26., -22.)
( 47., 65.)
( 71., -57.)
( 60., 70.) B(I), I=1,...,N
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.)
( 0., 0.) X(I), I=1,...,N

10.3 Program Results

F11JSF Example Program Results
Converged in 7 iterations
Final residual norm = 1.477E-05
( 0.1000E+01, 0.9000E+01)
( 0.2000E+01, -0.8000E+01)
( 0.3000E+01, 0.7000E+01)
( 0.4000E+01, -0.6000E+01)
( 0.5000E+01, 0.5000E+01)
( 0.6000E+01, -0.4000E+01)
( 0.7000E+01, 0.3000E+01)
( 0.8000E+01, -0.2000E+01)
( 0.9000E+01, 0.1000E+01)
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NAG Library Routine Document

F11MDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11MDF computes a column permutation suitable for LU factorization (by F11MEF) of a real sparse
matrix in compressed column (Harwell–Boeing) format and applies it to the matrix. This routine must
be called prior to F11MEF.

2 Specification

SUBROUTINE F11MDF (SPEC, N, ICOLZP, IROWIX, IPRM, IFAIL)

INTEGER N, ICOLZP(*), IROWIX(*), IPRM(7*N), IFAIL
CHARACTER(1) SPEC

3 Description

Given a sparse matrix in compressed column (Harwell–Boeing) format A and a choice of column
permutation schemes, the routine computes those data structures that will be needed by the LU
factorization routine F11MEF and associated routines F11MMF, F11MFF and F11MHF. The column
permutation choices are:

original order (that is, no permutation);

user-supplied permutation;

a permutation, computed by the routine, designed to minimize fill-in during the LU factorization.

The algorithm for this computed permutation is based on the approximate minimum degree column
ordering algorithm COLAMD. The computed permutation is not sensitive to the magnitude of the
nonzero values of A.

4 References

Amestoy P R, Davis T A and Duff I S (1996) An approximate minimum degree ordering algorithm
SIAM J. Matrix Anal. Appl. 17 886–905

Gilbert J R and Larimore S I (2004) A column approximate minimum degree ordering algorithm ACM
Trans. Math. Software 30,3 353–376

Gilbert J R, Larimore S I and Ng E G (2004) Algorithm 836: COLAMD, an approximate minimum
degree ordering algorithm ACM Trans. Math. Software 30, 3 377–380

5 Arguments

1: SPEC – CHARACTER(1) Input

On entry: indicates the permutation to be applied.

SPEC ¼ N
The identity permutation is used (i.e., the columns are not permuted).

SPEC ¼ U
The permutation in the IPRM array is used, as supplied by you.
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SPEC ¼ M
The permutation computed by the COLAMD algorithm is used

Constraint: SPEC ¼ N , U or M.

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ICOLZPð�Þ – INTEGER array Input

Note: the dimension of the array ICOLZP must be at least Nþ 1.

On entry: ICOLZPðiÞ contains the index in A of the start of a new column. See Section 2.1.3 in
the F11 Chapter Introduction.

4: IROWIXð�Þ – INTEGER array Input

Note: the dimension of the array IROWIX must be at least ICOLZPðNþ 1Þ � 1, the number of
nonzeros of the sparse matrix A.

On entry: IROWIXðiÞ contains the row index in A for element A ið Þ. See Section 2.1.3 in the F11
Chapter Introduction.

5: IPRMð7� NÞ – INTEGER array Input/Output

On entry: the first N entries contain the column permutation supplied by you. This will be used if
SPEC ¼ U , and ignored otherwise. If used, it must consist of a permutation of all the integers in
the range 0; N� 1ð Þ½ �, the leftmost column of the matrix A denoted by 0 and the rightmost by
N� 1. Labelling columns in this way, IPRMðiÞ ¼ j means that column i� 1 of A is in position j
in APc, where PrAPc ¼ LU expresses the factorization to be performed.

On exit: a new permutation is returned in the first N entries. The rest of the array contains data
structures that will be used by other routines. The routine computes the column elimination tree
for A and a post-order permutation on the tree. It then compounds the IPRM permutation given
or computed by the COLAMD algorthm with the post-order permutation. This array is needed by
the LU factorization routine F11MEF and associated routines F11MFF, F11MHF and F11MMF
and should be passed to them unchanged.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

On entry, SPEC ¼ valueh i.
Constraint: SPEC ¼ N , U or M .

IFAIL ¼ 2

Incorrect column permutations in array IPRM.

IFAIL ¼ 3

COLAMD algorithm failed.

IFAIL ¼ 4

Incorrect specification of argument ICOLZP.

IFAIL ¼ 5

Incorrect specification of argument IROWIX.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable. This computation does not use floating-point numbers.

8 Parallelism and Performance

F11MDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

We recommend calling this routine with SPEC ¼ M before calling F11MEF. The COLAMD algorithm
computes a sparsity-preserving permutation Pc solely from the pattern of A such that the LU
factorization PrAPc ¼ LU remains as sparse as possible, regardless of the subsequent choice of Pr. The
algorithm takes advantage of the existence of super-columns (columns with the same sparsity pattern) to
reduce running time.

10 Example

This example computes a sparsity preserving column permutation for the LU factorization of the matrix
A, where

A ¼

2:00 1:00 0 0 0
0 0 1:00 �1:00 0

4:00 0 1:00 0 1:00
0 0 0 1:00 2:00
0 �2:00 0 0 3:00

0BBB@
1CCCA:

10.1 Program Text

Program f11mdfe

! F11MDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11mdf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, n, nnz
Character (1) :: spec

! .. Local Arrays ..
Integer, Allocatable :: icolzp(:), iprm(:), irowix(:)

! .. Executable Statements ..
Write (nout,*) ’F11MDF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read order of matrix

Read (nin,*) n

Allocate (icolzp(n+1),iprm(7*n))

! Read the matrix

Read (nin,*) icolzp(1:n+1)
nnz = icolzp(n+1) - 1

Allocate (irowix(nnz))

Read (nin,*) irowix(1:nnz)

! Calculate COLAMD permutation

spec = ’M’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11mdf(spec,n,icolzp,irowix,iprm,ifail)
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! Output results

Write (nout,*)
Write (nout,*) ’COLAMD Permutation’
Write (nout,’(10I6)’) iprm(1:n)

! Calculate user permutation

spec = ’U’
iprm(1) = 4
iprm(2) = 3
iprm(3) = 2
iprm(4) = 1
iprm(5) = 0

ifail = 0
Call f11mdf(spec,n,icolzp,irowix,iprm,ifail)

! Output results

Write (nout,*)
Write (nout,*) ’User Permutation’
Write (nout,’(10I6)’) iprm(1:n)

! Calculate natural permutation

spec = ’N’

ifail = 0
Call f11mdf(spec,n,icolzp,irowix,iprm,ifail)

! Output results

Write (nout,*)
Write (nout,*) ’Natural Permutation’
Write (nout,’(10I6)’) iprm(1:n)

End Program f11mdfe

10.2 Program Data

F11MDF Example Program Data
5 N

1
3
5
7
9
12 ICOLZP(I) I=1,..,N+1
1
3
1
5
2
3
2
4
3
4
5 IROWIX(I) I=1,...,NNZ
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10.3 Program Results

F11MDF Example Program Results

COLAMD Permutation
1 0 4 3 2

User Permutation
4 3 2 1 0

Natural Permutation
0 1 2 3 4
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NAG Library Routine Document

F11MEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11MEF computes the LU factorization of a real sparse matrix in compressed column (Harwell–
Boeing), column-permuted format.

2 Specification

SUBROUTINE F11MEF (N, IROWIX, A, IPRM, THRESH, NZLMX, NZLUMX, NZUMX, IL,
LVAL, IU, UVAL, NNZL, NNZU, FLOP, IFAIL)

&

INTEGER N, IROWIX(*), IPRM(7*N), NZLMX, NZLUMX, NZUMX,
IL(7*N+NZLMX+4), IU(2*N+NZUMX+1), NNZL, NNZU, IFAIL

&

REAL (KIND=nag_wp) A(*), THRESH, LVAL(NZLUMX), UVAL(NZUMX), FLOP

3 Description

Given a real sparse matrix A, F11MEF computes an LU factorization of A with partial pivoting,
PrAPc ¼ LU , where Pr is a row permutation matrix (computed by F11MEF), Pc is a (supplied) column
permutation matrix, L is unit lower triangular and U is upper triangular. The column permutation
matrix, Pc, must be computed by a prior call to F11MDF. The matrix A must be presented in the
column permuted, compressed column (Harwell–Boeing) format.

The LU factorization is output in the form of four one-dimensional arrays: integer arrays IL and IU and
real-valued arrays LVAL and UVAL. These describe the sparsity pattern and numerical values in the L
and U matrices. The minimum required dimensions of these arrays cannot be given as a simple function
of the size arguments (order and number of nonzero values) of the matrix A. This is due to
unpredictable fill-in created by partial pivoting. F11MEF will, on return, indicate which dimensions of
these arrays were not adequate for the computation or (in the case of one of them) give a firm bound.
You should then allocate more storage and try again.

4 References

Demmel J W, Eisenstat S C, Gilbert J R, Li X S and Li J W H (1999) A supernodal approach to sparse
partial pivoting SIAM J. Matrix Anal. Appl. 20 720–755

Demmel J W, Gilbert J R and Li X S (1999) An asynchronous parallel supernodal algorithm for sparse
gaussian elimination SIAM J. Matrix Anal. Appl. 20 915–952

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: IROWIXð�Þ – INTEGER array Input

Note: the dimension of the array IROWIX must be at least nnz, the number of nonzeros of the
sparse matrix A.

On entry: the row index array of sparse matrix A.
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3: Að�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array A must be at least nnz, the number of nonzeros of the sparse
matrix A.

On entry: the array of nonzero values in the sparse matrix A.

4: IPRMð7� NÞ – INTEGER array Input/Output

On entry: contains the column permutation which defines the permutation Pc and associated data
structures as computed by routine F11MDF.

On exit: part of the array is modified to record the row permutation Pr determined by pivoting.

5: THRESH – REAL (KIND=nag_wp) Input

On entry: the diagonal pivoting threshold, t. At step j of the Gaussian elimination, if

Ajj

		 		 � t max
i�j

Aij

		 		� �
, use Ajj as a pivot, otherwise use max

i�j
Aij

		 		. A value of t ¼ 1 corresponds

to partial pivoting, a value of t ¼ 0 corresponds to always choosing the pivot on the diagonal
(unless it is zero).

Suggested value: THRESH ¼ 1:0. Smaller values may result in a faster factorization, but the
benefits are likely to be small in most cases. It might be possible to use THRESH ¼ 0:0 if you
are confident about the stability of the factorization, for example, if A is diagonally dominant.

Constraint: 0:0 � THRESH � 1:0.

6: NZLMX – INTEGER Input

On entry: indicates the available size of array IL. The dimension of IL should be at least
7� Nþ NZLMXþ 4. A good range for NZLMX that works for many problems is nnz to
8� nnz, where nnz is the number of nonzeros in the sparse matrix A. If, on exit, IFAIL ¼ 2, the
given NZLMX was too small and you should attempt to provide more storage and call the
routine again.

Constraint: NZLMX � 1.

7: NZLUMX – INTEGER Input/Output

On entry: indicates the available size of array LVAL. The dimension of LVAL should be at least
NZLUMX.

Constraint: NZLUMX � 1.

On exit: if IFAIL ¼ 4, the given NZLUMX was too small and is reset to a value that will be
sufficient. You should then provide the indicated storage and call the routine again.

8: NZUMX – INTEGER Input

On entry: indicates the available sizes of arrays IU and UVAL. The dimension of IU should be at
least 2� Nþ NZUMX þ 1 and the dimension of UVAL should be at least NZUMX. A good
range for NZUMX that works for many problems is nnz to 8� nnz, where nnz is the number of
nonzeros in the sparse matrix A. If, on exit, IFAIL ¼ 3, the given NZUMX was too small and
you should attempt to provide more storage and call the routine again.

Constraint: NZUMX � 1.

9: ILð7� Nþ NZLMXþ 4Þ – INTEGER array Output

On exit: encapsulates the sparsity pattern of matrix L.

10: LVALðNZLUMXÞ – REAL (KIND=nag_wp) array Output

On exit: records the nonzero values of matrix L and some of the nonzero values of matrix U .
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11: IUð2� Nþ NZUMXþ 1Þ – INTEGER array Output

On exit: encapsulates the sparsity pattern of matrix U .

12: UVALðNZUMXÞ – REAL (KIND=nag_wp) array Output

On exit: records some of the nonzero values of matrix U .

13: NNZL – INTEGER Output

On exit: the number of nonzero values in the matrix L.

14: NNZU – INTEGER Output

On exit: the number of nonzero values in the matrix U .

15: FLOP – REAL (KIND=nag_wp) Output

On exit: the number of floating-point operations performed.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

On entry, NZLMX ¼ valueh i.
Constraint: NZLMX � 1.

On entry, NZLUMX ¼ valueh i.
Constraint: NZLUMX � 1.

On entry, NZUMX ¼ valueh i.
Constraint: NZUMX � 1.

On entry, THRESH ¼ valueh i.
Constraint: 0:0 � THRESH � 1:0.

IFAIL ¼ 2

Insufficient NZLMX.

IFAIL ¼ 3

Insufficient NZUMX.
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IFAIL ¼ 4

Insufficient NZLUMX.

IFAIL ¼ 5

The matrix is singular – no factorization possible.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed factors L and U are the exact factors of a perturbed matrix Aþ E, where
Ej j � c nð Þ� Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision, when partial pivoting is used. If
no partial pivoting is used, the factorization accuracy can be considerably worse. A call to F11MMF
after F11MEF can help determine the quality of the factorization.

8 Parallelism and Performance

F11MEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11MEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations depends on the sparsity pattern of the matrix A.

A call to F11MEF may be followed by calls to the routines:

F11MFF to solve AX ¼ B or ATX ¼ B;
F11MGF to estimate the condition number of A;

F11MMF to estimate the reciprocal pivot growth of the LU factorization.
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10 Example

This example computes the LU factorization of the matrix A, where

A ¼

2:00 1:00 0 0 0
0 0 1:00 �1:00 0

4:00 0 1:00 0 1:00
0 0 0 1:00 2:00
0 �2:00 0 0 3:00

0BBB@
1CCCA:

10.1 Program Text

Program f11mefe

! F11MEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11mdf, f11mef, nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: flop, thresh
Integer :: i, ifail, n, nnz, nnzl, nnzu, nzlmx, &

nzlumx, nzumx
Character (1) :: spec

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), lval(:), uval(:)
Integer, Allocatable :: icolzp(:), il(:), iprm(:), &

irowix(:), iu(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F11MEF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read order of matrix

Read (nin,*) n

Allocate (icolzp(n+1),iprm(7*n))

! Read the matrix A

Read (nin,*) icolzp(1:n+1)
nnz = icolzp(n+1) - 1

Allocate (a(nnz),lval(8*nnz),uval(8*nnz),il(7*n+8*nnz+4),irowix(nnz), &
iu(2*n+8*nnz+1))

Do i = 1, nnz
Read (nin,*) a(i), irowix(i)

End Do

! Calculate COLAMD permutation

spec = ’M’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11mdf(spec,n,icolzp,irowix,iprm,ifail)

! Factorise
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thresh = one
ifail = 0
nzlmx = 8*nnz
nzlumx = 8*nnz
nzumx = 8*nnz
Call f11mef(n,irowix,a,iprm,thresh,nzlmx,nzlumx,nzumx,il,lval,iu,uval, &

nnzl,nnzu,flop,ifail)

! Output results

Write (nout,99999)
Write (nout,99998) nnzl + nnzu - n
Flush (nout)

Call x04cbf(’G’,’X’,1,10,lval,1,’F7.2’,’Factor elements in LVAL’,’N’, &
rlabs,’N’,clabs,80,0,ifail)

Call x04cbf(’G’,’X’,1,4,uval,1,’F7.2’,’Factor elements in UVAL’,’N’, &
rlabs,’N’,clabs,80,0,ifail)

99999 Format (1X,/,1X,’Number of nonzeros in factors (excluding unit’, &
’ diagonal)’)

99998 Format (1X,I8)
End Program f11mefe

10.2 Program Data

F11MEF Example Program Data
5 N

1
3
5
7
9
12 ICOLZP(I) I=1,..,N+1
2. 1
4. 3
1. 1

-2. 5
1. 2
1. 3

-1. 2
1. 4
1. 3
2. 4
3. 5 A(I), IROWIX(I) I=1,...,NNZ

10.3 Program Results

F11MEF Example Program Results

Number of nonzeros in factors (excluding unit diagonal)
14

Factor elements in LVAL
-2.00 -0.50 4.00 0.50 2.00 0.50 -1.00 0.50 1.00 -1.00

Factor elements in UVAL
1.00 3.00 1.00 1.00
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NAG Library Routine Document

F11MFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11MFF solves a real sparse system of linear equations with multiple right-hand sides given an LU
factorization of the sparse matrix computed by F11MEF.

2 Specification

SUBROUTINE F11MFF (TRANS, N, IPRM, IL, LVAL, IU, UVAL, NRHS, B, LDB,
IFAIL)

&

INTEGER N, IPRM(7*N), IL(*), IU(*), NRHS, LDB, IFAIL
REAL (KIND=nag_wp) LVAL(*), UVAL(*), B(LDB,*)
CHARACTER(1) TRANS

3 Description

F11MFF solves a real system of linear equations with multiple right-hand sides AX ¼ B or ATX ¼ B,
according to the value of the argument TRANS, where the matrix factorization PrAPc ¼ LU
corresponds to an LU decomposition of a sparse matrix stored in compressed column (Harwell–Boeing)
format, as computed by F11MEF.

In the above decomposition L is a lower triangular sparse matrix with unit diagonal elements and U is
an upper triangular sparse matrix; Pr and Pc are permutation matrices.

4 References

None.

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies whether AX ¼ B or ATX ¼ B is solved.

TRANS ¼ N
AX ¼ B is solved.

TRANS ¼ T
ATX ¼ B is solved.

Constraint: TRANS ¼ N or T .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: IPRMð7� NÞ – INTEGER array Input

On entry: the column permutation which defines Pc, the row permutation which defines Pr, plus
associated data structures as computed by F11MEF.
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4: ILð�Þ – INTEGER array Input

Note: the dimension of the array IL must be at least as large as the dimension of the array of the
same name in F11MEF.

On entry: records the sparsity pattern of matrix L as computed by F11MEF.

5: LVALð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array LVAL must be at least as large as the dimension of the array of
the same name in F11MEF.

On entry: records the nonzero values of matrix L and some nonzero values of matrix U as
computed by F11MEF.

6: IUð�Þ – INTEGER array Input

Note: the dimension of the array IU must be at least as large as the dimension of the array of the
same name in F11MEF.

On entry: records the sparsity pattern of matrix U as computed by F11MEF.

7: UVALð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array UVAL must be at least as large as the dimension of the array of
the same name in F11MEF.

On entry: records some nonzero values of matrix U as computed by F11MEF.

8: NRHS – INTEGER Input

On entry: nrhs, the number of right-hand sides in B.

Constraint: NRHS � 0.

9: BðLDB; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the N by NRHS right-hand side matrix B.

On exit: the N by NRHS solution matrix X.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F11MFF
is called.

Constraint: LDB � max 1;Nð Þ.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.
On entry, N ¼ valueh i.
Constraint: N � 0.

On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

On entry, TRANS ¼ valueh i.
Constraint: TRANS ¼ N or T .

IFAIL ¼ 2

Incorrect row permutations in array IPRM.

IFAIL ¼ 3

Incorrect column permutations in array IPRM.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

Ej j � c nð Þ� Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision, when partial pivoting is used.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
xk k1

� c nð Þ cond A; xð Þ�

where cond A; xð Þ ¼ A�1
		 		 Aj j xj j�� ��

1= xk k1 � cond Að Þ ¼ A�1
		 		 Aj j�� ��

1 � �1 Að Þ. Note that cond A; xð Þ
can be much smaller than cond Að Þ, and cond ATð Þ can be much larger (or smaller) than cond Að Þ.
Forward and backward error bounds can be computed by calling F11MHF, and an estimate for �1 Að Þ
can be obtained by calling F11MGF.
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8 Parallelism and Performance

F11MFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11MFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F11MFF may be followed by a call to F11MHF to refine the solution and return an error estimate.

10 Example

This example solves the system of equations AX ¼ B, where

A ¼

2:00 1:00 0 0 0
0 0 1:00 �1:00 0

4:00 0 1:00 0 1:00
0 0 0 1:00 2:00
0 �2:00 0 0 3:00

0BBB@
1CCCA and B ¼

1:56 3:12
�0:25 �0:50
3:60 7:20
1:33 2:66
0:52 1:04

0BBB@
1CCCA:

Here A is nonsymmetric and must first be factorized by F11MEF.

10.1 Program Text

Program f11mffe

! F11MFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11mdf, f11mef, f11mff, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: flop, thresh
Integer :: i, ifail, j, ldb, n, nnz, nnzl, &

nnzu, nrhs, nzlmx, nzlumx, nzumx
Character (1) :: spec, trans

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:,:), lval(:), uval(:)
Integer, Allocatable :: icolzp(:), il(:), iprm(:), &

irowix(:), iu(:)
! .. Executable Statements ..

Write (nout,*) ’F11MFF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of right hand sides

Read (nin,*) n, nrhs
ldb = n

Allocate (b(ldb,nrhs),icolzp(n+1),iprm(7*n))
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! Read the matrix A

Read (nin,*) icolzp(1:n+1)

nnz = icolzp(n+1) - 1

Allocate (a(nnz),lval(8*nnz),uval(8*nnz),il(7*n+8*nnz+4),irowix(nnz), &
iu(2*n+8*nnz+1))

Do i = 1, nnz
Read (nin,*) a(i), irowix(i)

End Do

! Read the right hand sides

Do j = 1, nrhs
Read (nin,*) b(1:n,j)

End Do

! Calculate COLAMD permutation

spec = ’M’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11mdf(spec,n,icolzp,irowix,iprm,ifail)

! Factorise

thresh = one
ifail = 0
nzlmx = 8*nnz
nzlumx = 8*nnz
nzumx = 8*nnz

Call f11mef(n,irowix,a,iprm,thresh,nzlmx,nzlumx,nzumx,il,lval,iu,uval, &
nnzl,nnzu,flop,ifail)

! Solve

trans = ’N’

ifail = 0
Call f11mff(trans,n,iprm,il,lval,iu,uval,nrhs,b,ldb,ifail)

! Output results
Write (nout,*)
Flush (nout)

Call x04caf(’G’,’ ’,n,nrhs,b,ldb,’Solutions’,ifail)

End Program f11mffe

10.2 Program Data

F11MFF Example Program Data
5 2 N, NRHS

1
3
5
7
9
12 ICOLZP(I) I=1,..,N+1
2. 1
4. 3
1. 1

-2. 5
1. 2
1. 3
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-1. 2
1. 4
1. 3
2. 4
3. 5 A(I), IROWIX(I) I=1,NNZ

1.56 -.25 3.6 1.33 .52
3.12 -.50 7.2 2.66 1.04 B(I,J) J=1,NRHS I=1,N

10.3 Program Results

F11MFF Example Program Results

Solutions
1 2

1 0.7000 1.4000
2 0.1600 0.3200
3 0.5200 1.0400
4 0.7700 1.5400
5 0.2800 0.5600
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NAG Library Routine Document

F11MGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11MGF computes an estimate of the reciprocal of the condition number of a sparse matrix given an
LU factorization of the matrix computed by F11MEF.

2 Specification

SUBROUTINE F11MGF (NORM, N, IL, LVAL, IU, UVAL, ANORM, RCOND, IFAIL)

INTEGER N, IL(*), IU(*), IFAIL
REAL (KIND=nag_wp) LVAL(*), UVAL(*), ANORM, RCOND
CHARACTER(1) NORM

3 Description

F11MGF estimates the condition number of a real sparse matrix A, in either the 1-norm or the 1-norm:

�1 Að Þ ¼ Ak k1 A�1
�� ��

1
or �1 Að Þ ¼ Ak k1 A�1

�� ��
1:

Note that �1 Að Þ ¼ �1 ATð Þ.
Because the condition number is infinite if A is singular, the routine actually returns an estimate of the
reciprocal of the condition number.

The routine should be preceded by a call to F11MLF to compute Ak k1 or Ak k1, and a call to F11MEF
to compute the LU factorization of A. The routine then estimates A�1

�� ��
1
or A�1
�� ��

1 and computes the
reciprocal of the condition number.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: indicates whether �1 Að Þ or �1 Að Þ is to be estimated.

NORM ¼ 1 or O
�1 Að Þ is estimated.

NORM ¼ I
�1 Að Þ is estimated.

Constraint: NORM ¼ 1 , O or I .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: ILð�Þ – INTEGER array Input

Note: the dimension of the array IL must be at least as large as the dimension of the array of the
same name in F11MEF.

On entry: records the sparsity pattern of matrix L as computed by F11MEF.

4: LVALð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array LVAL must be at least as large as the dimension of the array of
the same name in F11MEF.

On entry: records the nonzero values of matrix L and some nonzero values of matrix U as
computed by F11MEF.

5: IUð�Þ – INTEGER array Input

Note: the dimension of the array IU must be at least as large as the dimension of the array of the
same name in F11MEF.

On entry: records the sparsity pattern of matrix U as computed by F11MEF.

6: UVALð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array UVAL must be at least as large as the dimension of the array of
the same name in F11MEF.

On entry: records some nonzero values of matrix U as computed by F11MEF.

7: ANORM – REAL (KIND=nag_wp) Input

On entry: if NORM ¼ 1 or O , the 1-norm of the matrix A.

If NORM ¼ I , the 1-norm of the matrix A.

ANORM may be computed by calling F11MLF with the same value for the argument NORM.

Constraint: ANORM � 0:0.

8: RCOND – REAL (KIND=nag_wp) Output

On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if
exact singularity is detected or the estimate underflows. If RCOND is less than machine
precision, A is singular to working precision.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ANORM ¼ valueh i.
Constraint: ANORM � 0:0.

On entry, N ¼ valueh i.
Constraint: N � 0.

On entry, NORM ¼ valueh i.
Constraint: NORM ¼ 1 , O or I .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed estimate RCOND is never less than the true value �, and in practice is nearly always less
than 10�, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F11MGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

A call to F11MGF involves solving a number of systems of linear equations of the form Ax ¼ b or
ATx ¼ b.

F11 – Large Scale Linear Systems F11MGF
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10 Example

This example estimates the condition number in the 1-norm of the matrix A, where

A ¼

2:00 1:00 0 0 0
0 0 1:00 �1:00 0

4:00 0 1:00 0 1:00
0 0 0 1:00 2:00
0 �2:00 0 0 3:00

0BBB@
1CCCA:

Here A is nonsymmetric and must first be factorized by F11MEF. The true condition number in the
1-norm is 20:25.

10.1 Program Text

Program f11mgfe

! F11MGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11mdf, f11mef, f11mgf, f11mlf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, flop, rcond, thresh
Integer :: i, ifail, n, nnz, nnzl, nnzu, nzlmx, &

nzlumx, nzumx
Character (1) :: norm, spec

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), lval(:), uval(:)
Integer, Allocatable :: icolzp(:), il(:), iprm(:), &

irowix(:), iu(:)
! .. Executable Statements ..

Write (nout,*) ’F11MGF Example Program Results’
! Skip heading in data file

Read (nin,*)

! Read order of matrix

Read (nin,*) n

Allocate (icolzp(n+1),iprm(7*n))

! Read the matrix A

Read (nin,*) icolzp(1:n+1)
nnz = icolzp(n+1) - 1

Allocate (a(nnz),lval(8*nnz),uval(8*nnz),il(7*n+8*nnz+4),irowix(nnz), &
iu(2*n+8*nnz+1))

Do i = 1, nnz
Read (nin,*) a(i), irowix(i)

End Do

! Calculate COLAMD permutation

spec = ’M’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11mdf(spec,n,icolzp,irowix,iprm,ifail)
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! Factorise

thresh = one
ifail = 0
nzlmx = 8*nnz
nzlumx = 8*nnz
nzumx = 8*nnz

Call f11mef(n,irowix,a,iprm,thresh,nzlmx,nzlumx,nzumx,il,lval,iu,uval, &
nnzl,nnzu,flop,ifail)

! Calculate norm

norm = ’1’

ifail = 0
Call f11mlf(norm,anorm,n,icolzp,irowix,a,ifail)

! Calculate condition number

ifail = 0
Call f11mgf(norm,n,il,lval,iu,uval,anorm,rcond,ifail)

! Output result

Write (nout,*)
Write (nout,*) ’Norm ,Condition number’
Write (nout,’(F7.3,A1,F7.3)’) anorm, ’,’, 1.0E0_nag_wp/rcond

End Program f11mgfe

10.2 Program Data

F11MGF Example Program Data
5 N

1
3
5
7
9
12 ICOLZP(I) I=1,..,N+1
2. 1
4. 3
1. 1

-2. 5
1. 2
1. 3

-1. 2
1. 4
1. 3
2. 4
3. 5 A(I), IROWIX(I) I=1,NNZ

10.3 Program Results

F11MGF Example Program Results

Norm ,Condition number
6.000, 20.250
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NAG Library Routine Document

F11MHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11MHF returns error bounds for the solution of a real sparse system of linear equations with multiple
right-hand sides, AX ¼ B or ATX ¼ B. It improves the solution by iterative refinement in standard
precision, in order to reduce the backward error as much as possible.

2 Specification

SUBROUTINE F11MHF (TRANS, N, ICOLZP, IROWIX, A, IPRM, IL, LVAL, IU,
UVAL, NRHS, B, LDB, X, LDX, FERR, BERR, IFAIL)

&

INTEGER N, ICOLZP(*), IROWIX(*), IPRM(7*N), IL(*), IU(*),
NRHS, LDB, LDX, IFAIL

&

REAL (KIND=nag_wp) A(*), LVAL(*), UVAL(*), B(LDB,*), X(LDX,*),
FERR(NRHS), BERR(NRHS)

&

CHARACTER(1) TRANS

3 Description

F11MHF returns the backward errors and estimated bounds on the forward errors for the solution of a
real system of linear equations with multiple right-hand sides AX ¼ B or ATX ¼ B. The routine
handles each right-hand side vector (stored as a column of the matrix B) independently, so we describe
the function of F11MHF in terms of a single right-hand side b and solution x.

Given a computed solution x, the routine computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that if x is the exact solution
of a perturbed system:

Aþ �Að Þx ¼ bþ �b
then �aij

		 		 � � aij		 		 and �bij j � � bij j:
Then the routine estimates a bound for the component-wise forward error in the computed solution,
defined by:

max i xi � x̂ij j=max i xij j

where x̂ is the true solution.

The routine uses the LU factorization PrAPc ¼ LU computed by F11MEF and the solution computed
by F11MFF.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies whether AX ¼ B or ATX ¼ B is solved.

TRANS ¼ N
AX ¼ B is solved.
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TRANS ¼ T
ATX ¼ B is solved.

Constraint: TRANS ¼ N or T .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: ICOLZPð�Þ – INTEGER array Input

Note: the dimension of the array ICOLZP must be at least Nþ 1.

On entry: ICOLZPðiÞ contains the index in A of the start of a new column. See Section 2.1.3 in
the F11 Chapter Introduction.

4: IROWIXð�Þ – INTEGER array Input

Note: the dimension of the array IROWIX must be at least ICOLZPðNþ 1Þ � 1, the number of
nonzeros of the sparse matrix A.

On entry: the row index array of sparse matrix A.

5: Að�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array A must be at least ICOLZPðNþ 1Þ � 1, the number of nonzeros
of the sparse matrix A.

On entry: the array of nonzero values in the sparse matrix A.

6: IPRMð7� NÞ – INTEGER array Input

On entry: the column permutation which defines Pc, the row permutation which defines Pr, plus
associated data structures as computed by F11MEF.

7: ILð�Þ – INTEGER array Input

Note: the dimension of the array IL must be at least as large as the dimension of the array of the
same name in F11MEF.

On entry: records the sparsity pattern of matrix L as computed by F11MEF.

8: LVALð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array LVAL must be at least as large as the dimension of the array of
the same name in F11MEF.

On entry: records the nonzero values of matrix L and some nonzero values of matrix U as
computed by F11MEF.

9: IUð�Þ – INTEGER array Input

Note: the dimension of the array IU must be at least as large as the dimension of the array of the
same name in F11MEF.

On entry: records the sparsity pattern of matrix U as computed by F11MEF.

10: UVALð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array UVAL must be at least as large as the dimension of the array of
the same name in F11MEF.

On entry: records some nonzero values of matrix U as computed by F11MEF.
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11: NRHS – INTEGER Input

On entry: nrhs, the number of right-hand sides in B.

Constraint: NRHS � 0.

12: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;NRHSð Þ.
On entry: the n by nrhs right-hand side matrix B.

13: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F11MHF
is called.

Constraint: LDB � max 1;Nð Þ.

14: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least max 1;NRHSð Þ.
On entry: the n by nrhs solution matrix X, as returned by F11MFF.

On exit: the n by nrhs improved solution matrix X.

15: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F11MHF
is called.

Constraint: LDX � max 1;Nð Þ.

16: FERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: FERRðjÞ contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ;nrhs.

17: BERRðNRHSÞ – REAL (KIND=nag_wp) array Output

On exit: BERRðjÞ contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; nrhs.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.
On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � max 1;Nð Þ.
On entry, N ¼ valueh i.
Constraint: N � 0.

On entry, NRHS ¼ valueh i.
Constraint: NRHS � 0.

On entry, TRANS ¼ valueh i.
Constraint: TRANS ¼ N or T .

IFAIL ¼ 2

Incorrect row permutations in array IPRM.

IFAIL ¼ 3

Incorrect column permutations in array IPRM.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but
in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F11MHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11MHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

At most five steps of iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form
Ax ¼ b or ATx ¼ b;

10 Example

This example solves the system of equations AX ¼ B using iterative refinement and to compute the
forward and backward error bounds, where

A ¼

2:00 1:00 0 0 0
0 0 1:00 �1:00 0

4:00 0 1:00 0 1:00
0 0 0 1:00 2:00
0 �2:00 0 0 3:00

0BBB@
1CCCA and B ¼

1:56 3:12
�0:25 �0:50
3:60 7:20
1:33 2:66
0:52 1:04

0BBB@
1CCCA:

Here A is nonsymmetric and must first be factorized by F11MEF.

10.1 Program Text

Program f11mhfe

! F11MHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11mdf, f11mef, f11mff, f11mhf, nag_wp, x04caf, &

x04cbf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: flop, thresh
Integer :: i, ifail, j, ldb, ldx, n, nnz, nnzl, &

nnzu, nrhs, nzlmx, nzlumx, nzumx
Character (1) :: spec, trans

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:,:), berr(:), ferr(:), &

lval(:), uval(:), x(:,:)
Integer, Allocatable :: icolzp(:), il(:), iprm(:), &

irowix(:), iu(:)
Character (1) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’F11MHF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of right hand sides

Read (nin,*) n, nrhs
ldb = n
ldx = n

Allocate (b(ldb,nrhs),berr(nrhs),ferr(nrhs),x(ldx,nrhs),icolzp(n+1), &
iprm(7*n))
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! Read the matrix A

Read (nin,*) icolzp(1:n+1)
nnz = icolzp(n+1) - 1

Allocate (a(nnz),lval(8*nnz),uval(8*nnz),il(7*n+8*nnz+4),irowix(nnz), &
iu(2*n+8*nnz+1))

Do i = 1, nnz
Read (nin,*) a(i), irowix(i)

End Do

! Read the right hand sides

Do j = 1, nrhs
Read (nin,*) x(1:n,j)
b(1:n,j) = x(1:n,j)

End Do

! Calculate COLAMD permutation

spec = ’M’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11mdf(spec,n,icolzp,irowix,iprm,ifail)

! Factorise

thresh = one
ifail = 0
nzlmx = 8*nnz
nzlumx = 8*nnz
nzumx = 8*nnz

Call f11mef(n,irowix,a,iprm,thresh,nzlmx,nzlumx,nzumx,il,lval,iu,uval, &
nnzl,nnzu,flop,ifail)

! Compute solution in array X

trans = ’N’

ifail = 0
Call f11mff(trans,n,iprm,il,lval,iu,uval,nrhs,x,ldx,ifail)

! Improve solution, and compute backward errors and estimated
! bounds on the forward errors

Call f11mhf(trans,n,icolzp,irowix,a,iprm,il,lval,iu,uval,nrhs,b,ldb,x, &
ldx,ferr,berr,ifail)

! Print solution

Write (nout,*)
Flush (nout)

Call x04caf(’G’,’ ’,n,nrhs,x,ldx,’Solutions’,ifail)
Call x04cbf(’G’,’X’,nrhs,1,ferr,nrhs,’1PE8.1’,’Estimated Forward Error’, &

’N’,rlabs,’N’,clabs,80,0,ifail)
Call x04cbf(’G’,’X’,nrhs,1,berr,nrhs,’1PE8.1’,’Backward Error’,’N’, &

rlabs,’N’,clabs,80,0,ifail)

End Program f11mhfe
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10.2 Program Data

F11MHF Example Program Data
5 2 N, NRHS

1
3
5
7
9
12 ICOLZP(I) I=1,..,N+1
2. 1
4. 3
1. 1

-2. 5
1. 2
1. 3

-1. 2
1. 4
1. 3
2. 4
3. 5 A(I), IROWIX(I) I=1,NNZ

1.56 -.25 3.6 1.33 .52
3.12 -.50 7.2 2.66 1.04 X(I,J) J=1,NRHS I=1,N

10.3 Program Results

F11MHF Example Program Results

Solutions
1 2

1 0.7000 1.4000
2 0.1600 0.3200
3 0.5200 1.0400
4 0.7700 1.5400
5 0.2800 0.5600
Estimated Forward Error

5.0E-15
5.0E-15

Backward Error
3.6E-17
3.6E-17

F11 – Large Scale Linear Systems F11MHF

Mark 26 F11MHF.7 (last)





NAG Library Routine Document

F11MKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11MKF computes a matrix-matrix or transposed matrix-matrix product involving a real, square, sparse
nonsymmetric matrix stored in compressed column (Harwell–Boeing) format.

2 Specification

SUBROUTINE F11MKF (TRANS, N, M, ALPHA, ICOLZP, IROWIX, A, B, LDB, BETA,
C, LDC, IFAIL)

&

INTEGER N, M, ICOLZP(*), IROWIX(*), LDB, LDC, IFAIL
REAL (KIND=nag_wp) ALPHA, A(*), B(LDB,*), BETA, C(LDC,*)
CHARACTER(1) TRANS

3 Description

F11MKF computes either the matrix-matrix product C  �ABþ �C, or the transposed matrix-matrix
product C  �ATBþ �C, according to the value of the argument TRANS, where A is a real n by n
sparse nonsymmetric matrix, of arbitrary sparsity pattern with nnz nonzero elements, B and C are n by
m real dense matrices. The matrix A is stored in compressed column (Harwell–Boeing) storage format.
The array A stores all nonzero elements of A, while arrays ICOLZP and IROWIX store the compressed
column indices and row indices of A respectively.

4 References

None.

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies whether or not the matrix A is transposed.

TRANS ¼ N
�ABþ �C is computed.

TRANS ¼ T
�ATBþ �C is computed.

Constraint: TRANS ¼ N or T .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: M – INTEGER Input

On entry: m, the number of columns of matrices B and C.

Constraint: M � 0.
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4: ALPHA – REAL (KIND=nag_wp) Input

On entry: �, the scalar factor in the matrix multiplication.

5: ICOLZPð�Þ – INTEGER array Input

Note: the dimension of the array ICOLZP must be at least Nþ 1.

On entry: ICOLZPðiÞ contains the index in A of the start of a new column. See Section 2.1.3 in
the F11 Chapter Introduction.

6: IROWIXð�Þ – INTEGER array Input

Note: the dimension of the array IROWIX must be at least ICOLZPðNþ 1Þ � 1, the number of
nonzeros of the sparse matrix A.

On entry: the row index array of sparse matrix A.

7: Að�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array A must be at least ICOLZPðNþ 1Þ � 1, the number of nonzeros
of the sparse matrix A.

On entry: the array of nonzero values in the sparse matrix A.

8: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least max 1;Mð Þ.
On entry: the n by m matrix B.

9: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F11MKF
is called.

Constraint: LDB � max 1;Nð Þ.

10: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar factor �.

11: CðLDC; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max 1;Mð Þ.
On entry: the n by m matrix C.

On exit: C is overwritten by �ABþ �C or �ATBþ �C depending on the value of TRANS.

12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which F11MKF
is called.

Constraint: LDC � max 1;Nð Þ.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDB ¼ valueh i and N ¼ valueh i.
Constraint: LDB � max 1;Nð Þ.
On entry, LDC ¼ valueh i and N ¼ valueh i.
Constraint: LDC � max 1;Nð Þ.
On entry, M ¼ valueh i.
Constraint: M � 0.

On entry, N ¼ valueh i.
Constraint: N � 0.

On entry, TRANS ¼ valueh i.
Constraint: TRANS ¼ N or T .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F11MKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.
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10 Example

This example reads in a sparse matrix A and a dense matrix B. It then calls F11MKF to compute the
matrix-matrix product C ¼ AB and the transposed matrix-matrix product C ¼ ATB, where

A ¼

2:00 1:00 0 0 0
0 0 1:00 �1:00 0

4:00 0 1:00 0 1:00
0 0 0 1:00 2:00
0 �2:00 0 0 3:00

0BBB@
1CCCA and B ¼

0:70 1:40
0:16 0:32
0:52 1:04
0:77 1:54
0:28 0:56

0BBB@
1CCCA:

10.1 Program Text

Program f11mkfe

! F11MKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11mkf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = 1.E0_nag_wp
Real (Kind=nag_wp), Parameter :: beta = 0.E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, ldb, ldc, m, n, nnz
Character (1) :: trans

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:,:), c(:,:)
Integer, Allocatable :: icolzp(:), irowix(:)

! .. Executable Statements ..
Write (nout,*) ’F11MKF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read order of matrix

Read (nin,*) n, m
ldb = n
ldc = n

Allocate (b(ldb,m),c(ldc,m),icolzp(n+1))

! Read the matrix A

Read (nin,*) icolzp(1:n+1)
nnz = icolzp(n+1) - 1

Allocate (a(nnz),irowix(nnz))

Do i = 1, nnz
Read (nin,*) a(i), irowix(i)

End Do

! Read the matrix B

Do j = 1, m
Read (nin,*) b(1:n,j)

End Do

! Calculate matrix-matrix product

trans = ’N’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
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ifail = 0
Call f11mkf(trans,n,m,alpha,icolzp,irowix,a,b,ldb,beta,c,ldc,ifail)

! Output results
Write (nout,*)
Flush (nout)

Call x04caf(’G’,’ ’,n,m,c,ldc,’Matrix-matrix product’,ifail)

! Calculate transposed matrix-matrix product
trans = ’T’

ifail = 0
Call f11mkf(trans,n,m,alpha,icolzp,irowix,a,b,ldb,beta,c,ldc,ifail)

! Output results
Write (nout,*)
Flush (nout)

Call x04caf(’G’,’ ’,n,m,c,ldc,’Transposed matrix-matrix product’,ifail)

End Program f11mkfe

10.2 Program Data

F11MKF Example Program Data
5 2 N, M

1
3
5
7
9
12 ICOLZP(I) I=1,..,N+1
2. 1
4. 3
1. 1

-2. 5
1. 2
1. 3

-1. 2
1. 4
1. 3
2. 4
3. 5 A(I), IROWIX(I) I=1,...,NNZ

0.70 0.16 0.52 0.77 0.28
1.40 0.32 1.04 1.54 0.56 matrix B

10.3 Program Results

F11MKF Example Program Results

Matrix-matrix product
1 2

1 1.5600 3.1200
2 -0.2500 -0.5000
3 3.6000 7.2000
4 1.3300 2.6600
5 0.5200 1.0400

Transposed matrix-matrix product
1 2

1 3.4800 6.9600
2 0.1400 0.2800
3 0.6800 1.3600
4 0.6100 1.2200
5 2.9000 5.8000
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NAG Library Routine Document

F11MLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11MLF computes the 1-norm, the 1-norm or the maximum absolute value of the elements of a real,
square, sparse matrix which is held in compressed column (Harwell–Boeing) format.

2 Specification

SUBROUTINE F11MLF (NORM, ANORM, N, ICOLZP, IROWIX, A, IFAIL)

INTEGER N, ICOLZP(*), IROWIX(*), IFAIL
REAL (KIND=nag_wp) ANORM, A(*)
CHARACTER(1) NORM

3 Description

F11MLF computes various quantities relating to norms of a real, sparse n by n matrix A presented in
compressed column (Harwell–Boeing) format.

4 References

None.

5 Arguments

1: NORM – CHARACTER(1) Input

On entry: specifies the value to be returned in ANORM.

NORM ¼ 1 or O

The 1-norm Ak k1 of the matrix is computed, that is max
1�j�n

Xn
i¼1

Aij

		 		.
NORM ¼ I

The 1-norm Ak k1 of the matrix is computed, that is max
1�i�n

Xn
j¼1

Aij

		 		.
NORM ¼ M

The value max
1�i;j�n

Aij

		 		 (not a norm).

Constraint: NORM ¼ 1 , O , I or M .

2: ANORM – REAL (KIND=nag_wp) Output

On exit: the computed quantity relating the matrix.

3: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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4: ICOLZPð�Þ – INTEGER array Input

Note: the dimension of the array ICOLZP must be at least Nþ 1.

On entry: ICOLZPðiÞ contains the index in A of the start of a new column. See Section 2.1.3 in
the F11 Chapter Introduction.

5: IROWIXð�Þ – INTEGER array Input

Note: the dimension of the array IROWIX must be at least ICOLZPðNþ 1Þ � 1, the number of
nonzeros of the sparse matrix A.

On entry: the row index array of sparse matrix A.

6: Að�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array A must be at least ICOLZPðNþ 1Þ � 1, the number of nonzeros
of the sparse matrix A.

On entry: the array of nonzero values in the sparse matrix A.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

On entry, NORM ¼ valueh i.
Constraint: NORM ¼ 1 , O , I or M .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

F11MLF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes norms and maximum absolute value of the matrix A, where

A ¼

2:00 1:00 0 0 0
0 0 1:00 �1:00 0

4:00 0 1:00 0 1:00
0 0 0 1:00 2:00
0 �2:00 0 0 3:00

0BBB@
1CCCA:

10.1 Program Text

Program f11mlfe

! F11MLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11mlf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm
Integer :: i, ifail, n, nnz
Character (1) :: norm

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:)
Integer, Allocatable :: icolzp(:), irowix(:)

! .. Executable Statements ..
Write (nout,*) ’F11MLF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of right hand sides

Read (nin,*) n

Allocate (icolzp(n+1))

! Read the matrix A

Read (nin,*) icolzp(1:n+1)
nnz = icolzp(n+1) - 1

Allocate (a(nnz),irowix(nnz))

Do i = 1, nnz
Read (nin,*) a(i), irowix(i)

End Do

! Calculate 1-norm
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norm = ’1’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11mlf(norm,anorm,n,icolzp,irowix,a,ifail)

! Output norm

Write (nout,*)
Write (nout,*) ’One-norm’
Write (nout,’(F7.3)’) anorm

! Calculate M-norm

norm = ’M’

ifail = 0
Call f11mlf(norm,anorm,n,icolzp,irowix,a,ifail)

! Output norm

Write (nout,*)
Write (nout,*) ’Max’
Write (nout,’(F7.3)’) anorm

! Calculate I-norm

norm = ’I’

ifail = 0
Call f11mlf(norm,anorm,n,icolzp,irowix,a,ifail)

! Output norm

Write (nout,*)
Write (nout,*) ’Infinity-norm’
Write (nout,’(F7.3)’) anorm

End Program f11mlfe

10.2 Program Data

F11MLF Example Program Data
5 N

1
3
5
7
9
12 ICOLZP(I) I=1,..,N+1
2. 1
4. 3
1. 1

-2. 5
1. 2
1. 3

-1. 2
1. 4
1. 3
2. 4
3. 5 A(I), IROWIX(I) I=1,NNZ
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10.3 Program Results

F11MLF Example Program Results

One-norm
6.000

Max
4.000

Infinity-norm
6.000
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NAG Library Routine Document

F11MMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11MMF computes the reciprocal pivot growth factor of an LU factorization of a real sparse matrix in
compressed column (Harwell–Boeing) format.

2 Specification

SUBROUTINE F11MMF (N, ICOLZP, A, IPRM, IL, LVAL, IU, UVAL, RPG, IFAIL)

INTEGER N, ICOLZP(*), IPRM(7*N), IL(*), IU(*), IFAIL
REAL (KIND=nag_wp) A(*), LVAL(*), UVAL(*), RPG

3 Description

F11MMF computes the reciprocal pivot growth factor max j Aj

�� ��
1= Uj
�� ��

1

� �
from the columns Aj and

Uj of an LU factorization of the matrix A, PrAPc ¼ LU where Pr is a row permutation matrix, Pc is a
column permutation matrix, L is unit lower triangular and U is upper triangular as computed by
F11MEF.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: ICOLZPð�Þ – INTEGER array Input

Note: the dimension of the array ICOLZP must be at least Nþ 1.

On entry: ICOLZPðiÞ contains the index in A of the start of a new column. See Section 2.1.3 in
the F11 Chapter Introduction.

3: Að�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array A must be at least ICOLZPðNþ 1Þ � 1, the number of nonzeros
of the sparse matrix A.

On entry: the array of nonzero values in the sparse matrix A.

4: IPRMð7� NÞ – INTEGER array Input

On entry: the column permutation which defines Pc, the row permutation which defines Pr, plus
associated data structures as computed by F11MEF.
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5: ILð�Þ – INTEGER array Input

Note: the dimension of the array IL must be at least as large as the dimension of the array of the
same name in F11MEF.

On entry: records the sparsity pattern of matrix L as computed by F11MEF.

6: LVALð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array LVAL must be at least as large as the dimension of the array of
the same name in F11MEF.

On entry: records the nonzero values of matrix L and some nonzero values of matrix U as
computed by F11MEF.

7: IUð�Þ – INTEGER array Input

Note: the dimension of the array IU must be at least as large as the dimension of the array of the
same name in F11MEF.

On entry: records the sparsity pattern of matrix U as computed by F11MEF.

8: UVALð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array UVAL must be at least as large as the dimension of the array of
the same name in F11MEF.

On entry: records some nonzero values of matrix U as computed by F11MEF.

9: RPG – REAL (KIND=nag_wp) Output

On exit: the reciprocal pivot growth factor max j Aj

�� ��
1= Uj
�� ��

1

� �
. If the reciprocal pivot growth

factor is much less than 1, the stability of the LU factorization may be poor.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

Incorrect column permutations in array IPRM.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F11MMF is not threaded in any implementation.

9 Further Comments

If the reciprocal pivot growth factor, RPG, is much less than 1, then the factorization of the matrix A
could be poor. This means that using the factorization to obtain solutions to a linear system, forward
error bounds and estimates of the condition number could be unreliable. Consider increasing the
THRESH argument in the call to F11MEF.

10 Example

To compute the reciprocal pivot growth for the factorization of the matrix A, where

A ¼

2:00 1:00 0 0 0
0 0 1:00 �1:00 0

4:00 0 1:00 0 1:00
0 0 0 1:00 2:00
0 �2:00 0 0 3:00

0BBB@
1CCCA:

In this case, it should be equal to 1:0.

10.1 Program Text

Program f11mmfe

! F11MMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11mdf, f11mef, f11mmf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.E0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: flop, rpg, thresh
Integer :: i, ifail, n, nnz, nnzl, nnzu, nzlmx, &

nzlumx, nzumx
Character (1) :: spec
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), lval(:), uval(:)
Integer, Allocatable :: icolzp(:), il(:), iprm(:), &

irowix(:), iu(:)
! .. Executable Statements ..

Write (nout,*) ’F11MMF Example Program Results’
! Skip heading in data file

Read (nin,*)

! Read order of matrix

Read (nin,*) n

Allocate (icolzp(n+1),iprm(7*n))

! Read the matrix A

Read (nin,*) icolzp(1:n+1)
nnz = icolzp(n+1) - 1

Allocate (a(nnz),lval(8*nnz),uval(8*nnz),il(7*n+8*nnz+4),irowix(nnz), &
iu(2*n+8*nnz+1))

Do i = 1, nnz
Read (nin,*) a(i), irowix(i)

End Do

! Calculate COLAMD permutation

spec = ’M’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11mdf(spec,n,icolzp,irowix,iprm,ifail)

! Factorise

thresh = one
ifail = 0
nzlmx = 8*nnz
nzlumx = 8*nnz
nzumx = 8*nnz

Call f11mef(n,irowix,a,iprm,thresh,nzlmx,nzlumx,nzumx,il,lval,iu,uval, &
nnzl,nnzu,flop,ifail)

! Calculate reciprocal pivot growth

ifail = 0
Call f11mmf(n,icolzp,a,iprm,il,lval,iu,uval,rpg,ifail)

! Output result

Write (nout,*)
Write (nout,*) ’Reciprocal pivot growth’
Write (nout,’(F7.3)’) rpg

End Program f11mmfe

10.2 Program Data

F11MMF Example Program Data
5 N

1
3
5
7
9
12 ICOLZP(I) I=1,..,N+1
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2. 1
4. 3
1. 1

-2. 5
1. 2
1. 3

-1. 2
1. 4
1. 3
2. 4
3. 5 A(I), IROWIX(I) I=1,NNZ

10.3 Program Results

F11MMF Example Program Results

Reciprocal pivot growth
1.000
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NAG Library Routine Document

F11XAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11XAF computes a matrix-vector or transposed matrix-vector product involving a real sparse
nonsymmetric matrix stored in coordinate storage format.

2 Specification

SUBROUTINE F11XAF (TRANS, N, NNZ, A, IROW, ICOL, CHECK, X, Y, IFAIL)

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IFAIL
REAL (KIND=nag_wp) A(NNZ), X(N), Y(N)
CHARACTER(1) TRANS, CHECK

3 Description

F11XAF computes either the matrix-vector product y ¼ Ax, or the transposed matrix-vector product
y ¼ ATx, according to the value of the argument TRANS, where A is an n by n sparse nonsymmetric
matrix, of arbitrary sparsity pattern. The matrix A is stored in coordinate storage (CS) format (see
Section 2.1.1 in the F11 Chapter Introduction). The array A stores all nonzero elements of A, while
arrays IROW and ICOL store the corresponding row and column indices respectively.

It is envisaged that a common use of F11XAF will be to compute the matrix-vector product required in
the application of F11BEF to sparse linear systems. An illustration of this usage appears in Section 10
in F11DDF.

4 References

None.

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies whether or not the matrix A is transposed.

TRANS ¼ N
y ¼ Ax is computed.

TRANS ¼ T
y ¼ ATx is computed.

Constraint: TRANS ¼ N or T .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

3: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: 1 � NNZ � N2.
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4: AðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements in the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices
are not permitted. The routine F11ZAF may be used to order the elements in this way.

5: IROWðNNZÞ – INTEGER array Input
6: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in array A.

Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZAF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

7: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the CS representation of the matrix A, values of N, NNZ,
IROW and ICOL should be checked.

CHECK ¼ C
Checks are carried on the values of N, NNZ, IROW and ICOL.

CHECK ¼ N
None of these checks are carried out.

See also Section 9.2.

Constraint: CHECK ¼ C or N .

8: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector x.

9: YðNÞ – REAL (KIND=nag_wp) array Output

On exit: the vector y.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TRANS 6¼ N or T ,
or CHECK 6¼ C or N .

IFAIL ¼ 2

On entry, N < 1,
or NNZ < 1,
or NNZ > N2.

IFAIL ¼ 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ, or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie within the matrix A, is out of
order, or has duplicate row and column indices. Call F11ZAF to reorder and sum or remove
duplicates.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed vector y satisfies the error bound:

y�Axk k1 � c nð Þ� Ak k1 xk k1, if TRANS ¼ N , or

y�ATxk k1 � c nð Þ� ATk k1 xk k1, if TRANS ¼ T ,

where c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F11XAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11XAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to F11XAF is proportional to NNZ.

9.2 Use of CHECK

It is expected that a common use of F11XAF will be to compute the matrix-vector product required in
the application of F11BEF to sparse linear systems. In this situation F11XAF is likely to be called many
times with the same matrix A. In the interests of both reliability and efficiency you are recommended to
set CHECK ¼ C for the first of such calls, and to set CHECK ¼ N for all subsequent calls.

10 Example

This example reads in a sparse matrix A and a vector x. It then calls F11XAF to compute the matrix-
vector product y ¼ Ax and the transposed matrix-vector product y ¼ ATx.

10.1 Program Text

Program f11xafe

! F11XAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11xaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n, nnz
Character (1) :: check, trans

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), x(:), y(:)
Integer, Allocatable :: icol(:), irow(:)

! .. Executable Statements ..
Write (nout,*) ’F11XAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz

Allocate (a(nnz),x(n),y(n),icol(nnz),irow(nnz))

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read the vector x

Read (nin,*) x(1:n)

! Calculate matrix-vector product
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trans = ’N’
check = ’C’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11xaf(trans,n,nnz,a,irow,icol,check,x,y,ifail)

! Output results

Write (nout,*)
Write (nout,*) ’ Matrix-vector product’
Write (nout,’(E16.4)’) y(1:n)

! Calculate transposed matrix-vector product

trans = ’T’
check = ’N’

ifail = 0
Call f11xaf(trans,n,nnz,a,irow,icol,check,x,y,ifail)

! Output results

Write (nout,*)
Write (nout,*) ’ Transposed matrix-vector product’
Write (nout,’(E16.4)’) y(1:n)

End Program f11xafe

10.2 Program Data

F11XAF Example Program Data
5 N

11 NNZ
2. 1 1
1. 1 2
1. 2 3

-1. 2 4
4. 3 1
1. 3 3
1. 3 5
1. 4 4
2. 4 5

-2. 5 2
3. 5 5 A(I), IROW(I), ICOL(I), I=1,...,NNZ

0.70 0.16 0.52
0.77 0.28 X(I), I=1,...,N

10.3 Program Results

F11XAF Example Program Results

Matrix-vector product
0.1560E+01

-0.2500E+00
0.3600E+01
0.1330E+01
0.5200E+00

Transposed matrix-vector product
0.3480E+01
0.1400E+00
0.6800E+00
0.6100E+00
0.2900E+01
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NAG Library Routine Document

F11XEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11XEF computes a matrix-vector product involving a real sparse symmetric matrix stored in
symmetric coordinate storage format.

2 Specification

SUBROUTINE F11XEF (N, NNZ, A, IROW, ICOL, CHECK, X, Y, IFAIL)

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IFAIL
REAL (KIND=nag_wp) A(NNZ), X(N), Y(N)
CHARACTER(1) CHECK

3 Description

F11XEF computes the matrix-vector product

y ¼ Ax

where A is an n by n symmetric sparse matrix, of arbitrary sparsity pattern, stored in symmetric
coordinate storage (SCS) format (see Section 2.1.2 in the F11 Chapter Introduction). The array A stores
all nonzero elements in the lower triangular part of A, while arrays IROW and ICOL store the
corresponding row and column indices respectively.

It is envisaged that a common use of F11XEF will be to compute the matrix-vector product required in
the application of F11GEF to sparse symmetric linear systems. An illustration of this usage appears in
F11JDF.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input

On entry: the number of nonzero elements in the lower triangular part of A.

Constraint: 1 � NNZ � N� Nþ 1ð Þ=2.

3: AðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements in the lower triangular part of the matrix A, ordered by
increasing row index, and by increasing column index within each row. Multiple entries for the
same row and column indices are not permitted. The routine F11ZBF may be used to order the
elements in this way.
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4: IROWðNNZÞ – INTEGER array Input
5: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in array A.

Constraints:

IROW and ICOL must satisfy these constraints (which may be imposed by a call to F11ZBF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;
IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

6: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the SCS representation of the matrix A, values of N, NNZ,
IROW and ICOL should be checked.

CHECK ¼ C
Checks are carried out on the values of N, NNZ, IROW and ICOL.

CHECK ¼ N
None of these checks are carried out.

See also Section 9.2.

Constraint: CHECK ¼ C or N .

7: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector x.

8: YðNÞ – REAL (KIND=nag_wp) array Output

On exit: the vector y.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CHECK 6¼ C or N .

IFAIL ¼ 2

On entry, N < 1,
or NNZ < 1,
or NNZ > N� Nþ 1ð Þ=2.
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IFAIL ¼ 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie in the lower triangular part of
A, is out of order, or has duplicate row and column indices. Call F11ZBF to reorder and sum or
remove duplicates.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed vector y satisfies the error bound

y�Axk k1 � c nð Þ� Ak k1 xk k1;

where c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F11XEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11XEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to F11XEF is proportional to NNZ.

9.2 Use of CHECK

It is expected that a common use of F11XEF will be to compute the matrix-vector product required in
the application of F11GEF to sparse symmetric linear systems. In this situation F11XEF is likely to be
called many times with the same matrix A. In the interests of both reliability and efficiency you are
recommended to set CHECK ¼ C for the first of such calls, and to set CHECK ¼ N for all subsequent
calls.
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10 Example

This example reads in a symmetric positive definite sparse matrix A and a vector x. It then calls
F11XEF to compute the matrix-vector product y ¼ Ax.

10.1 Program Text

Program f11xefe

! F11XEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11xef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n, nnz
Character (1) :: check

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), x(:), y(:)
Integer, Allocatable :: icol(:), irow(:)

! .. Executable Statements ..
Write (nout,*) ’F11XEF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz

Allocate (a(nnz),x(n),y(n),icol(nnz),irow(nnz))

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read the vector x

Read (nin,*) x(1:n)

! Calculate matrix-vector product

check = ’C’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11xef(n,nnz,a,irow,icol,check,x,y,ifail)

! Output results

Write (nout,*) ’ Matrix-vector product’
Write (nout,99999) y(1:n)

99999 Format (1X,E16.4)
End Program f11xefe
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10.2 Program Data

F11XEF Example Program Data
9 N

23 NNZ
4. 1 1

-1. 2 1
6. 2 2
1. 3 2
2. 3 3
3. 4 4
2. 5 1
4. 5 5
1. 6 3
2. 6 4
6. 6 6

-4. 7 2
1. 7 5

-1. 7 6
6. 7 7

-1. 8 4
-1. 8 6
3. 8 8
1. 9 1
1. 9 5

-1. 9 6
1. 9 8
4. 9 9 A(I), IROW(I), ICOL(I), I=1,...,NNZ

0.70 0.16 0.52
0.77 0.28 0.21
0.93 0.20 0.90 X(I), I=1,...,N

10.3 Program Results

F11XEF Example Program Results
Matrix-vector product

0.4100E+01
-0.2940E+01
0.1410E+01
0.2530E+01
0.4350E+01
0.1290E+01
0.5010E+01
0.5200E+00
0.4570E+01
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NAG Library Routine Document

F11XNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11XNF computes a matrix-vector or conjugate transposed matrix-vector product involving a complex
sparse non-Hermitian matrix stored in coordinate storage format.

2 Specification

SUBROUTINE F11XNF (TRANS, N, NNZ, A, IROW, ICOL, CHECK, X, Y, IFAIL)

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IFAIL
COMPLEX (KIND=nag_wp) A(NNZ), X(N), Y(N)
CHARACTER(1) TRANS, CHECK

3 Description

F11XNF computes either the matrix-vector product y ¼ Ax, or the conjugate transposed matrix-vector
product y ¼ AHx, according to the value of the argument TRANS, where A is a complex n by n sparse
non-Hermitian matrix, of arbitrary sparsity pattern. The matrix A is stored in coordinate storage (CS)
format (see Section 2.1.1 in the F11 Chapter Introduction). The array A stores all the nonzero elements
of A, while arrays IROW and ICOL store the corresponding row and column indices respectively.

It is envisaged that a common use of F11XNF will be to compute the matrix-vector product required in
the application of F11BSF to sparse complex linear systems. This is illustrated in Section 10 in
F11DRF.

4 References

None.

5 Arguments

1: TRANS – CHARACTER(1) Input

On entry: specifies whether or not the matrix A is conjugate transposed.

TRANS ¼ N
y ¼ Ax is computed.

TRANS ¼ T
y ¼ AHx is computed.

Constraint: TRANS ¼ N or T .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

3: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: 1 � NNZ � N2.
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4: AðNNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nonzero elements in the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices
are not permitted. The routine F11ZNF may be used to order the elements in this way.

5: IROWðNNZÞ – INTEGER array Input
6: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in array A.

Constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;
IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

7: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the CS representation of the matrix A, values of N, NNZ,
IROW and ICOL should be checked.

CHECK ¼ C
Checks are carried on the values of N, NNZ, IROW and ICOL.

CHECK ¼ N
None of these checks are carried out.

See also Section 9.2.

Constraint: CHECK ¼ C or N .

8: XðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the vector x.

9: YðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the vector y.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TRANS 6¼ N or T ,
or CHECK 6¼ C or N .
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IFAIL ¼ 2

On entry, N < 1,
or NNZ < 1,
or NNZ > N2.

IFAIL ¼ 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ, or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie within the matrix A, is out of
order, or has duplicate row and column indices. Call F11ZNF to reorder and sum or remove
duplicates.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed vector y satisfies the error bound:

y�Axk k1 � c nð Þ� Ak k1 xk k1, if TRANS ¼ N , or

y�AHxk k1 � c nð Þ� AHk k1 xk k1, if TRANS ¼ T ,

where c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F11XNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11XNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to F11XNF is proportional to NNZ.
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9.2 Use of CHECK

It is expected that a common use of F11XNF will be to compute the matrix-vector product required in
the application of F11BSF to sparse complex linear systems. In this situation F11XNF is likely to be
called many times with the same matrix A. In the interests of both reliability and efficiency you are
recommended to set CHECK ¼ C for the first of such calls, and to set CHECK ¼ N for all subsequent
calls.

10 Example

This example reads in a complex sparse matrix A and a vector x. It then calls F11XNF to compute the
matrix-vector product y ¼ Ax and the conjugate transposed matrix-vector product y ¼ AHx.

10.1 Program Text

Program f11xnfe

! F11XNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11xnf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n, nnz
Character (1) :: check, trans

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), x(:), y(:)
Integer, Allocatable :: icol(:), irow(:)

! .. Executable Statements ..
Write (nout,*) ’F11XNF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz

Allocate (a(nnz),x(n),y(n),icol(nnz),irow(nnz))

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read the vector x

Read (nin,*) x(1:n)

! Calculate matrix-vector product

trans = ’N’
check = ’C’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11xnf(trans,n,nnz,a,irow,icol,check,x,y,ifail)

! Output results

Write (nout,*)
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Write (nout,*) ’ Matrix-vector product’
Write (nout,’(1X,’’(’’,E16.4,’’,’’,E16.4,’’)’’)’) y(1:n)

! Calculate conjugate transposed matrix-vector product

trans = ’T’
check = ’N’

ifail = 0
Call f11xnf(trans,n,nnz,a,irow,icol,check,x,y,ifail)

! Output results

Write (nout,*)
Write (nout,*) ’ Conjugate transposed matrix-vector product’
Write (nout,’(1X,’’(’’,E16.4,’’,’’,E16.4,’’)’’)’) y(1:n)

End Program f11xnfe

10.2 Program Data

F11XNF Example Program Data
5 N

11 NNZ
( 2., 3.) 1 1
( 1.,-4.) 1 2
( 1., 0.) 2 3
(-1.,-2.) 2 4
( 4., 1.) 3 1
( 0., 1.) 3 3
( 1., 3.) 3 5
( 0.,-1.) 4 4
( 2.,-6.) 4 5
(-2., 0.) 5 2
( 3., 1.) 5 5 A(I), IROW(I), ICOL(I), I=1,...,NNZ

( 0.70, 0.21)
( 0.16,-0.43)
( 0.52, 0.97)
( 0.77, 0.00)
( 0.28,-0.64) X(I), I=1,...,N

10.3 Program Results

F11XNF Example Program Results

Matrix-vector product
( -0.7900E+00, 0.1450E+01)
( -0.2500E+00, -0.5700E+00)
( 0.3820E+01, 0.2260E+01)
( -0.3280E+01, -0.3730E+01)
( 0.1160E+01, -0.7800E+00)

Conjugate transposed matrix-vector product
( 0.5080E+01, 0.1680E+01)
( -0.7000E+00, 0.4290E+01)
( 0.1130E+01, -0.9500E+00)
( 0.7000E+00, 0.1520E+01)
( 0.5170E+01, 0.1830E+01)
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NAG Library Routine Document

F11XSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11XSF computes a matrix-vector product involving a complex sparse Hermitian matrix stored in
symmetric coordinate storage format.

2 Specification

SUBROUTINE F11XSF (N, NNZ, A, IROW, ICOL, CHECK, X, Y, IFAIL)

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IFAIL
COMPLEX (KIND=nag_wp) A(NNZ), X(N), Y(N)
CHARACTER(1) CHECK

3 Description

F11XSF computes the matrix-vector product

y ¼ Ax

where A is an n by n complex Hermitian sparse matrix, of arbitrary sparsity pattern, stored in
symmetric coordinate storage (SCS) format (see Section 2.1.2 in the F11 Chapter Introduction). The
array A stores all the nonzero elements in the lower triangular part of A, while arrays IROW and ICOL
store the corresponding row and column indices respectively.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input

On entry: the number of nonzero elements in the lower triangular part of the matrix A.

Constraint: 1 � NNZ � N� Nþ 1ð Þ=2.

3: AðNNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nonzero elements in the lower triangular part of the matrix A, ordered by
increasing row index, and by increasing column index within each row. Multiple entries for the
same row and column indices are not permitted. The routine F11ZPF may be used to order the
elements in this way.

4: IROWðNNZÞ – INTEGER array Input
5: ICOLðNNZÞ – INTEGER array Input

On entry: the row and column indices of the nonzero elements supplied in array A.
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Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZPF):

1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;
IROWði � 1Þ < IROWðiÞ or IROWði � 1Þ ¼ IROWðiÞ and ICOLði � 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

6: CHECK – CHARACTER(1) Input

On entry: specifies whether or not the SCS representation of the matrix A, values of N, NNZ,
IROW and ICOL should be checked.

CHECK ¼ C
Checks are carried out on the values of N, NNZ, IROW and ICOL.

CHECK ¼ N
None of these checks are carried out.

Constraint: CHECK ¼ C or N .

7: XðNÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the vector x.

8: YðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the vector y.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CHECK 6¼ C or N .

IFAIL ¼ 2

On entry, N < 1,
or NNZ < 1,
or NNZ > N� Nþ 1ð Þ=2.

IFAIL ¼ 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:
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1 � IROWðiÞ � N and 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

Therefore a nonzero element has been supplied which does not lie in the lower triangular part of
A, is out of order, or has duplicate row and column indices. Call F11ZPF to reorder and sum or
remove duplicates.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed vector y satisfies the error bound

y�Axk k1 � c nð Þ� Ak k1 xk k1;

where c nð Þ is a modest linear function of n, and � is the machine precision.

8 Parallelism and Performance

F11XSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11XSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to F11XSF is proportional to NNZ.

10 Example

This example reads in a complex sparse Hermitian positive definite matrix A and a vector x. It then
calls F11XSF to compute the matrix-vector product y ¼ Ax.
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10.1 Program Text

Program f11xsfe

! F11XSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11xsf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n, nnz
Character (1) :: check

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:), x(:), y(:)
Integer, Allocatable :: icol(:), irow(:)

! .. Executable Statements ..
Write (nout,*) ’F11XSF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz

Allocate (a(nnz),x(n),y(n),icol(nnz),irow(nnz))

! Read the matrix A

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do

! Read the vector x

Read (nin,*) x(1:n)

! Calculate matrix-vector product

check = ’C’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11xsf(n,nnz,a,irow,icol,check,x,y,ifail)

! Output results

Write (nout,*) ’ Matrix-vector product’
Write (nout,99999) y(1:n)

99999 Format (1X,’(’,E16.4,’,’,E16.4,’)’)
End Program f11xsfe

10.2 Program Data

F11XSF Example Program Data
9 N

23 NNZ
( 6., 0.) 1 1
(-1., 1.) 2 1
( 6., 0.) 2 2
( 0., 1.) 3 2
( 5., 0.) 3 3
( 5., 0.) 4 4
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( 2.,-2.) 5 1
( 4., 0.) 5 5
( 1., 1.) 6 3
( 2., 0.) 6 4
( 6., 0.) 6 6
(-4., 3.) 7 2
( 0., 1.) 7 5
(-1., 0.) 7 6
( 6., 0.) 7 7
(-1.,-1.) 8 4
( 0.,-1.) 8 6
( 9., 0.) 8 8
( 1., 3.) 9 1
( 1., 2.) 9 5
(-1., 0.) 9 6
( 1., 4.) 9 8
( 9., 0.) 9 9 A(I), IROW(I), ICOL(I), I=1,...,NNZ
(1., 9.) (2.,-8.) (3., 7.)
(4.,-6.) (5., 5.) (6.,-4.)
(7., 3.) (8.,-2.) (9., 1.) X(I), I=1,...,N

10.3 Program Results

F11XSF Example Program Results
Matrix-vector product

( 0.8000E+01, 0.5400E+02)
( -0.1000E+02, -0.9200E+02)
( 0.2500E+02, 0.2700E+02)
( 0.2600E+02, -0.2800E+02)
( 0.5400E+02, 0.1200E+02)
( 0.2600E+02, -0.2200E+02)
( 0.4700E+02, 0.6500E+02)
( 0.7100E+02, -0.5700E+02)
( 0.6000E+02, 0.7000E+02)

F11 – Large Scale Linear Systems F11XSF

Mark 26 F11XSF.5 (last)





NAG Library Routine Document

F11YEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11YEF reduces the bandwidth of a sparse symmetric matrix stored in compressed column storage
format using the Reverse Cuthill–McKee algorithm.

2 Specification

SUBROUTINE F11YEF (N, NNZ, ICOLZP, IROWIX, LOPTS, MASK, PERM, INFO,
IFAIL)

&

INTEGER N, NNZ, ICOLZP(N+1), IROWIX(NNZ), MASK(*), PERM(N), INFO(4),
IFAIL

&

LOGICAL LOPTS(5)

3 Description

F11YEF takes the compressed column storage (CCS) representation (see Section 2.1.3 in the F11
Chapter Introduction) of an n by n symmetric matrix A and applies the Reverse Cuthill–McKee (RCM)
algorithm which aims to minimize the bandwidth of the matrix A by reordering the rows and columns
symmetrically. This also results in a lower profile of the matrix (see Section 9).

F11YEF can be useful for solving systems of equations Ax ¼ b, as the permuted system
PAPT Pxð Þ ¼ Pb (where P is the permutation matrix described by the vector PERM returned by
F11YEF) may require less storage space and/or less computational steps when solving (see Wai-Hung
and Sherman (1976)).

F11YEF may be used prior to F11JAF and F11JBF (see Section 10 in F11JBF).

4 References

Pissanetsky S (1984) Sparse Matrix Technology Academic Press

Wai-Hung L and Sherman A H (1976) Comparative analysis of the Cuthill–McKee and the reverse
Cuthill–McKee ordering algorithms for sparse matrices SIAM J. Numer. Anal. 13(2) 198–213

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input

On entry: the number of nonzero elements in the matrix A.

Constraint: NNZ � 0.

3: ICOLZPðNþ 1Þ – INTEGER array Input

On entry: ICOLZP records the index into IROWIX which starts each new column.
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Constraints:

1 � ICOLZPðiÞ � NNZþ 1, for i ¼ 2; 3; . . . ;N;
ICOLZPð1Þ ¼ 1;
ICOLZPðNþ 1Þ ¼ NNZþ 1, where ICOLZPðiÞ holds the position integer for the starts of
the columns in IROWIX.

4: IROWIXðNNZÞ – INTEGER array Input

On entry: the row indices corresponding to the nonzero elements in the matrix A.

Constraint: 1 � IROWIXðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.

5: LOPTSð5Þ – LOGICAL array Input

On entry: the options to be used by F11YEF.

LOPTSð1Þ ¼ :TRUE:
Row/column i of the matrix A will only be referenced if MASKðiÞ 6¼ 0, otherwise MASK
will be ignored.

LOPTSð2Þ ¼ :TRUE:
The final permutation will not be reversed, that is, the Cuthill–McKee ordering will be
returned. The bandwidth of the non-reversed matrix will be the same but the profile will be
the same or larger (see Wai-Hung and Sherman (1976)).

LOPTSð3Þ ¼ :TRUE:
The matrix A will be checked for symmetrical sparsity pattern, otherwise not.

LOPTSð4Þ ¼ :TRUE:
The bandwidth and profile of the unpermuted matrix will be calculated, otherwise not.

LOPTSð5Þ ¼ :TRUE:
The bandwidth and profile of the permuted matrix will be calculated, otherwise not.

6: MASKð�Þ – INTEGER array Input

Note: the dimension of the array MASK must be at least N if LOPTSð1Þ ¼ :TRUE:, and at least
0 otherwise.

On entry: MASK is only referenced if LOPTSð1Þ is .TRUE.. A value of MASKðiÞ ¼ 0 indicates
that the node corresponding to row or column i is not to be referenced. A value of MASKðiÞ 6¼ 0
indicates that the node corresponding to row or column i is to be referenced. In particular, rows
and columns not referenced will not be permuted.

7: PERMðNÞ – INTEGER array Output

On exit: this will contain the permutation vector that describes the permutation matrix P for the
reordering of the matrix A. The elements of the permutation matrix P are zero except for the unit
elements in row i and column PERMðiÞ, i ¼ 1; 2; . . .n.

8: INFOð4Þ – INTEGER array Output

On exit: statistics about the matrix A and the permuted matrix. The quantities below are
calculated using any masking in effect otherwise the value zero is returned.

INFOð1Þ
The bandwidth of the matrix A, if LOPTSð4Þ ¼ :TRUE:.

INFOð2Þ
The profile of the matrix A, if LOPTSð4Þ ¼ :TRUE:.

INFOð3Þ
The bandwidth of the permuted matrix PAPT, if LOPTSð5Þ ¼ :TRUE:.

INFOð4Þ
The profile of the permuted matrix PAPT, if LOPTSð5Þ ¼ :TRUE:.
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9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 2

On entry, NNZ ¼ valueh i.
Constraint: NNZ � 1.

IFAIL ¼ 3

On entry, IROWIXð valueh iÞ ¼ valueh i and N ¼ valueh i.
Constraint: 1 � IROWIXðiÞ � N for all i.

IFAIL ¼ 4

On entry, ICOLZPð valueh iÞ ¼ valueh i and NNZ ¼ valueh i.
Constraint: 1 � ICOLZPðiÞ � NNZ for all i.

IFAIL ¼ 5

On entry, ICOLZPð1Þ ¼ valueh i.
Constraint: ICOLZPð1Þ ¼ 1.

On entry, ICOLZPðNþ 1Þ ¼ valueh i and NNZ ¼ valueh i.
Constraint: ICOLZPðNþ 1Þ ¼ NNZþ 1.

IFAIL ¼ 6

On entry, the matrix A is not symmetric.
Element valueh i; valueh ið Þ has no symmetric element.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F11YEF is not threaded in any implementation.

9 Further Comments

The bandwidth for a matrix A ¼ aij
� �

is defined as

b ¼ max
ij

i� jj j; i; j ¼ 1; 2; . . . ; n s:t: aij 6¼ 0:

The profile is defined as

p ¼
Xn
j¼1
bj; where bj ¼ max

i
i� jj j; i ¼ 1; 2; . . .n s:t: aij 6¼ 0:

10 Example

This example reads the CCS representation of a real sparse matrix A and calls F11YEF to reorder the
rows and columns and displays the results.

10.1 Program Text

Program f11yefe

! F11YEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11yef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Logical, Parameter :: plotdata = .False.

! .. Local Scalars ..
Integer :: ifail, n, nnz
Logical :: bw_after, bw_before, check_sym, &

do_cm, use_mask
! .. Local Arrays ..

Integer, Allocatable :: icolzp(:), irowix(:), mask(:), &
perm(:)

Integer :: info(4)
Logical :: lopts(5)

! .. Executable Statements ..
Write (nout,*) ’F11YEF Example Program Results’

! Skip heading in data file

Read (nin,*)

! Size of the matrix
Read (nin,*) n
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! Number of nonzero elements
Read (nin,*) nnz

Allocate (icolzp(n+1),irowix(nnz),mask(n),perm(n))

! Read in data
Read (nin,*) irowix(1:nnz)
Read (nin,*) icolzp(1:n+1)

! Set options
use_mask = .False.
do_cm = .False.
check_sym = .True.
bw_before = .True.
bw_after = .True.
lopts(1:5) = (/use_mask,do_cm,check_sym,bw_before,bw_after/)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11yef(n,nnz,icolzp,irowix,lopts,mask,perm,info,ifail)

! Print results
Write (nout,’(A)’) ’Permutation (perm):’
Write (nout,99999) perm(1:n)

Write (nout,*)
Write (nout,’(A)’) ’Statistics:’
Write (nout,’(A,I6)’) ’ Before: Bandwidth = ’, info(1)
Write (nout,’(A,I6)’) ’ Before: Profile = ’, info(2)
Write (nout,’(A,I6)’) ’ After : Bandwidth = ’, info(3)
Write (nout,’(A,I6)’) ’ After : Profile = ’, info(4)

! Print matrix entries and permuted entries in form suitable for printing
If (plotdata) Then

Call plot(n,nnz)
End If

99999 Format (6(4X,I3))

Contains
Subroutine uncompress(n,nnz,icolzp,icol)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: n, nnz

! .. Array Arguments ..
Integer, Intent (Out) :: icol(nnz)
Integer, Intent (In) :: icolzp(n+1)

! .. Local Scalars ..
Integer :: col_beg, col_end, i

! .. Executable Statements ..
Do i = 1, n

col_end = icolzp(i+1) - 1
col_beg = icolzp(i)
If (col_end>=col_beg) Then

icol(col_beg:col_end) = i
End If

End Do
Return

End Subroutine uncompress
Subroutine plot(n,nnz)

! Put data, suitable for plotting matrix structure, in data file

! .. Use Statements ..
Use nag_library, Only: f11zaf

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (In) :: n, nnz
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! .. Local Scalars ..
Integer :: i, ifail, nnz2

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:)
Integer, Allocatable :: icolix(:), ipcolix(:), iperm(:), &

iprowix(:), istr(:), iwork(:)
! .. Executable Statements ..

Allocate (icolix(nnz),ipcolix(nnz),iprowix(nnz))
Allocate (iperm(n),a(nnz),istr(n+1),iwork(n))

! Decompress icolzp to full set of column indices and invert perm
Call uncompress(n,nnz,icolzp,icolix)
Do i = 1, n

iperm(perm(i)) = i
End Do

! Give some nice values, encoding original position
Do i = 1, nnz

a(i) = icolix(i)*.01_nag_wp + 1.0_nag_wp*irowix(i)
End Do

! Original matrix structure
Write (*,’(I8,4X,I8,4X,F8.2)’)(irowix(i),icolix(i),a(i),i=1,nnz)
Write (*,’(/)’)

! Permute
Do i = 1, nnz

a(i) = icolix(i)*.01_nag_wp + 1.0_nag_wp*irowix(i)
ipcolix(i) = iperm(icolix(i))
iprowix(i) = iperm(irowix(i))

End Do

! Reorder (in exit: istr contains new CCS icolzp)
nnz2 = nnz
ifail = 0
Call f11zaf(n,nnz2,a,ipcolix,iprowix,’F’,’K’,istr,iwork,ifail)

! Permuted matrix structure
Write (*,’(I8,4X,I8,4X,F8.2)’)(iprowix(i),ipcolix(i),a(i),i=1,nnz2)
Deallocate (icolix,ipcolix,iprowix,iperm,a,istr,iwork)

Return

End Subroutine plot
End Program f11yefe

10.2 Program Data

F11YEF Example Program Data
60 : n
180 : nnz

2 5 6 1 3 11 2 4 16
3 5 21 1 4 26 1 7 10
6 8 30 7 9 42 8 10 38
6 9 12 2 12 15 10 11 13

12 14 37 13 15 33 11 14 17
3 17 20 15 16 18 17 19 32

18 20 53 16 19 22 4 22 25
20 21 23 22 24 52 23 25 48
21 24 27 5 27 30 25 26 28
27 29 47 28 30 43 7 26 29
32 35 54 18 31 33 14 32 34
33 35 36 31 34 56 34 37 40
13 36 38 9 37 39 38 40 41
36 39 57 39 42 45 8 41 43
29 42 44 43 45 46 41 44 58
44 47 50 28 46 48 24 47 49
48 50 51 46 49 59 49 52 55
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23 51 53 19 52 54 31 53 55
51 54 60 35 57 60 40 56 58
45 57 59 50 58 60 55 56 59 : irowix

1 4 7 10 13 16
19 22 25 28 31 34
37 40 43 46 49 52
55 58 61 64 67 70
73 76 79 82 85 88
91 94 97 100 103 106

109 112 115 118 121 124
127 130 133 136 139 142
145 148 151 154 157 160
163 166 169 172 175 178
181 : icolzp

10.3 Program Results

F11YEF Example Program Results
Permutation (perm):

1 5 2 6 4 3
26 7 30 11 12 10
21 16 27 25 8 29
17 15 13 9 22 20
28 24 42 43 18 14
37 38 23 19 47 48
41 44 32 33 36 39
52 53 46 49 45 31
34 40 51 54 50 58
35 57 55 59 56 60

Statistics:
Before: Bandwidth = 34
Before: Profile = 490
After : Bandwidth = 10
After : Profile = 458

Example Program
Figure 1 : Original Matrix Ordering
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Figure 2 : Reverse Cuthill-McKee Reordering
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NAG Library Routine Document

F11ZAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11ZAF sorts the nonzero elements of a real sparse nonsymmetric matrix, represented in coordinate
storage format.

2 Specification

SUBROUTINE F11ZAF (N, NNZ, A, IROW, ICOL, DUP, ZER, ISTR, IWORK, IFAIL)

INTEGER N, NNZ, IROW(*), ICOL(*), ISTR(N+1), IWORK(N), IFAIL
REAL (KIND=nag_wp) A(*)
CHARACTER(1) DUP, ZER

3 Description

F11ZAF takes a coordinate storage (CS) representation (see Section 2.1.1 in the F11 Chapter
Introduction) of a real n by n sparse nonsymmetric matrix A, and reorders the nonzero elements by
increasing row index and increasing column index within each row. Entries with duplicate row and
column indices may be removed, or the values may be summed. Any entries with zero values may
optionally be removed.

F11ZAF also returns a pointer ISTR to the starting address of each row in A. This can be used to
construct a compressed column storage (CCS) representation of the matrix (see Section 9).

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input/Output

On entry: the number of nonzero elements in the matrix A.

Constraint: NNZ � 0.

On exit: the number of nonzero elements with unique row and column indices.

3: Að�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array A must be at least max 1;NNZð Þ.
On entry: the nonzero elements of the matrix A. These may be in any order and there may be
multiple nonzero elements with the same row and column indices.

On exit: the nonzero elements ordered by increasing row index, and by increasing column index
within each row. Each nonzero element has a unique row and column index.
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4: IROWð�Þ – INTEGER array Input/Output

Note: the dimension of the array IROW must be at least max 1;NNZð Þ.
On entry: the row indices corresponding to the nonzero elements supplied in the array A.

Constraint: 1 � IROWðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.

On exit: the first NNZ elements contain the row indices corresponding to the nonzero elements
returned in the array A.

5: ICOLð�Þ – INTEGER array Input/Output

Note: the dimension of the array ICOL must be at least max 1;NNZð Þ.
On entry: the column indices corresponding to the nonzero elements supplied in the array A.

Constraint: 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.

On exit: the first NNZ elements contain the row indices corresponding to the nonzero elements
returned in the array A.

6: DUP – CHARACTER(1) Input

On entry: indicates how any nonzero elements with duplicate row and column indices are to be
treated.

DUP ¼ R
The entries are removed.

DUP ¼ S
The relevant values in A are summed.

DUP ¼ F
The routine fails on detecting a duplicate, with IFAIL ¼ 3.

Constraint: DUP ¼ R , S or F .

7: ZER – CHARACTER(1) Input

On entry: indicates how any elements with zero values in A are to be treated.

ZER ¼ R
The entries are removed.

ZER ¼ K
The entries are kept.

ZER ¼ F
The routine fails on detecting a zero, with IFAIL ¼ 4.

Constraint: ZER ¼ R , K or F .

8: ISTRðNþ 1Þ – INTEGER array Output

On exit: ISTRðiÞ, for i ¼ 1; 2; . . . ;N, is the starting address in the arrays A, IROW and ICOL of
row i of the matrix A. ISTRðNþ 1Þ is the address of the last nonzero element in A plus one.

9: IWORKðNÞ – INTEGER array Workspace

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or NNZ < 0,
or DUP 6¼ R ; S , or `F',
or ZER 6¼ R ; K , or `F'.

IFAIL ¼ 2

On entry, a nonzero element has been supplied which does not lie within the matrix A, i.e., one
or more of the following constraints has been violated:

1 � IROWðiÞ � N,

1 � ICOLðiÞ � N,

for i ¼ 1; 2; . . . ;NNZ.

IFAIL ¼ 3

On entry, DUP ¼ F and nonzero elements have been supplied which have duplicate row and
column indices.

IFAIL ¼ 4

On entry, ZER ¼ F and at least one matrix element has been supplied with a zero coefficient
value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F11ZAF is not threaded in any implementation.

9 Further Comments

The time taken for a call to F11ZAF is proportional to NNZ.

Note that the resulting matrix may have either rows or columns with no entries. If row i has no entries
then ISTRðiÞ ¼ ISTRðiþ 1Þ.
It is also possible to use this routine to convert between coordinate storage (CS) and compressed
column storage (CCS) formats. To achieve this the CS storage format arrays IROW and ICOL must be
interchanged in the call to F11ZAF. On exit from F11ZAF, the CCS representation of the matrix is then
defined by arrays A, IROW and ISTR. This is illustrated in Section 10.

10 Example

This example reads the CS representation of a real sparse matrix A, calls F11ZAF to reorder the
nonzero elements, and outputs the original and the reordered representations. It then calls F11ZAF
again with the alternative ordering, creating a CCS representation which is then passed to a routine that
computes a matrix norm for that representation.

A ¼

2:00 1:00 0 0 0
0 0 1:00 �1:00 0

4:00 0 1:00 0 1:00
0 0 0 1:00 2:00
0 �2:00 0 0 3:00

0BBB@
1CCCA:

10.1 Program Text

Program f11zafe

! F11ZAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11mlf, f11zaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm
Integer :: i, ifail, n, nnz
Character (1) :: dup, norm, zer

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:)
Integer, Allocatable :: icol(:), irow(:), istr(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F11ZAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz

Allocate (a(nnz),icol(nnz),irow(nnz),istr(n+1),iwork(n))

! Read and output the original nonzero elements

Do i = 1, nnz
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Read (nin,*) a(i), irow(i), icol(i)
End Do
Write (nout,*) ’Original elements’
Write (nout,99999) nnz
Write (nout,99997)
Do i = 1, nnz

Write (nout,99998) i, a(i), irow(i), icol(i)
End Do

! Reorder, sum duplicates and remove zeros

dup = ’S’
zer = ’R’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11zaf(n,nnz,a,irow,icol,dup,zer,istr,iwork,ifail)

! Output results

Write (nout,*) ’Reordered elements, along rows first’
Write (nout,99999) nnz
Do i = 1, nnz

Write (nout,99998) i, a(i), irow(i), icol(i)
End Do

! Reorder down columns, fail on duplicates or zeros.
! Creates CCS storage format as side-effect

dup = ’F’
zer = ’F’
ifail = 0

Call f11zaf(n,nnz,a,icol,irow,dup,zer,istr,iwork,ifail)

! Output results

Write (nout,*) ’Reordered elements, along columns first’
Write (nout,99999) nnz
Do i = 1, nnz

Write (nout,99998) i, a(i), irow(i), icol(i)
End Do
Write (nout,99996)
Do i = 1, n + 1

Write (nout,99995) i, istr(i)
End Do

! Calculate 1-norm in Compressed Column Storage format

norm = ’1’
Call f11mlf(norm,anorm,n,istr,irow,a,ifail)

! Output norm

Write (nout,99994) anorm

99999 Format (1X,’NNZ = ’,I4)
99998 Format (1X,I8,1P,E16.4,2I8)
99997 Format (24X,’A’,4X,’IROW’,4X,’ICOL’)
99996 Format (13X,’ISTR’)
99995 Format (1X,2I8)
99994 Format (1X,’One norm ’,1P,E16.4)

End Program f11zafe
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10.2 Program Data

F11ZAF Example Program Data
5 N
15 NNZ
4. 3 1

-2. 5 2
1. 4 4

-2 4 2
-3 5 5
1. 1 2
0. 1 5
1. 3 5

-1. 2 4
6. 5 5
2. 1 1
2. 4 2
1. 2 3
1. 3 3
2. 4 5 A(I), IROW(I), ICOL(I), I=1,...,NNZ

10.3 Program Results

F11ZAF Example Program Results

Original elements
NNZ = 15

A IROW ICOL
1 4.0000E+00 3 1
2 -2.0000E+00 5 2
3 1.0000E+00 4 4
4 -2.0000E+00 4 2
5 -3.0000E+00 5 5
6 1.0000E+00 1 2
7 0.0000E+00 1 5
8 1.0000E+00 3 5
9 -1.0000E+00 2 4

10 6.0000E+00 5 5
11 2.0000E+00 1 1
12 2.0000E+00 4 2
13 1.0000E+00 2 3
14 1.0000E+00 3 3
15 2.0000E+00 4 5

Reordered elements, along rows first
NNZ = 11

1 2.0000E+00 1 1
2 1.0000E+00 1 2
3 1.0000E+00 2 3
4 -1.0000E+00 2 4
5 4.0000E+00 3 1
6 1.0000E+00 3 3
7 1.0000E+00 3 5
8 1.0000E+00 4 4
9 2.0000E+00 4 5

10 -2.0000E+00 5 2
11 3.0000E+00 5 5

Reordered elements, along columns first
NNZ = 11

1 2.0000E+00 1 1
2 4.0000E+00 3 1
3 1.0000E+00 1 2
4 -2.0000E+00 5 2
5 1.0000E+00 2 3
6 1.0000E+00 3 3
7 -1.0000E+00 2 4
8 1.0000E+00 4 4
9 1.0000E+00 3 5

10 2.0000E+00 4 5
11 3.0000E+00 5 5

ISTR
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1 1
2 3
3 5
4 7
5 9
6 12

One norm 6.0000E+00
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NAG Library Routine Document

F11ZBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11ZBF sorts the nonzero elements of a real sparse symmetric matrix, represented in symmetric
coordinate storage format.

2 Specification

SUBROUTINE F11ZBF (N, NNZ, A, IROW, ICOL, DUP, ZER, ISTR, IWORK, IFAIL)

INTEGER N, NNZ, IROW(*), ICOL(*), ISTR(N+1), IWORK(N), IFAIL
REAL (KIND=nag_wp) A(*)
CHARACTER(1) DUP, ZER

3 Description

F11ZBF takes a symmetric coordinate storage (SCS) representation (see Section 2.1.2 in the F11
Chapter Introduction) of a real n by n sparse symmetric matrix A, and reorders the nonzero elements
by increasing row index and increasing column index within each row. Entries with duplicate row and
column indices may be removed, or the values may be summed. Any entries with zero values may
optionally be removed.

F11ZBF also returns a pointer ISTR to the starting address of each row in A.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input/Output

On entry: the number of nonzero elements in the lower triangular part of the matrix A.

Constraint: NNZ � 0.

On exit: the number of lower triangular nonzero elements with unique row and column indices.

3: Að�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array A must be at least max 1;NNZð Þ.
On entry: the nonzero elements of the lower triangular part of the real matrix A. These may be in
any order and there may be multiple nonzero elements with the same row and column indices.

On exit: the lower triangular nonzero elements ordered by increasing row index, and by
increasing column index within each row. Each nonzero element has a unique row and column
index.
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4: IROWð�Þ – INTEGER array Input/Output

Note: the dimension of the array IROW must be at least max 1;NNZð Þ.
On entry: the row indices corresponding to the nonzero elements supplied in the array A.

Constraint: 1 � IROWðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.

On exit: the first NNZ elements contain the row indices corresponding to the nonzero elements
returned in the array A.

5: ICOLð�Þ – INTEGER array Input/Output

Note: the dimension of the array ICOL must be at least max 1;NNZð Þ.
On entry: the column indices corresponding to the nonzero elements supplied in the array A.

Constraint: 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ.

On exit: the first NNZ elements contain the column indices corresponding to the nonzero
elements returned in the array A.

6: DUP – CHARACTER(1) Input

On entry: indicates how any nonzero elements with duplicate row and column indices are to be
treated.

DUP ¼ R
The entries are removed.

DUP ¼ S
The relevant values in A are summed.

Constraint: DUP ¼ R or S .

7: ZER – CHARACTER(1) Input

On entry: indicates how any elements with zero values in A are to be treated.

ZER ¼ R
The entries are removed.

ZER ¼ K
The entries are kept.

Constraint: ZER ¼ R or K .

8: ISTRðNþ 1Þ – INTEGER array Output

On exit: ISTRðiÞ, for i ¼ 1; 2; . . . ;N, is the starting address in the arrays A, IROW and ICOL of
row i of the matrix A. ISTRðNþ 1Þ is the address of the last nonzero element in A plus one.

9: IWORKðNÞ – INTEGER array Workspace

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

F11ZBF NAG Library Manual

F11ZBF.2 Mark 26



6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or NNZ < 0,
or DUP 6¼ R or S .
or ZER 6¼ R or K .

IFAIL ¼ 2

On entry, a nonzero element has been supplied which does not lie in the lower triangular part of
A, i.e., one or more of the following constraints has been violated:

1 � IROWðiÞ � N,

1 � ICOLðiÞ � IROWðiÞ,
for i ¼ 1; 2; . . . ;NNZ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F11ZBF is not threaded in any implementation.

9 Further Comments

The time taken for a call to F11ZBF is proportional to NNZ.

Note that the resulting matrix may have either rows or columns with no entries. If row i has no entries
then ISTRðiÞ ¼ ISTRðiþ 1Þ.

10 Example

This example reads the SCS representation of a real sparse symmetric matrix A, calls F11ZBF to
reorder the nonzero elements, and outputs the original and the reordered representations.
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10.1 Program Text

Program f11zbfe

! F11ZBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11zbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n, nnz
Character (1) :: dup, zer

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:)
Integer, Allocatable :: icol(:), irow(:), istr(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F11ZBF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz

Allocate (a(nnz),icol(nnz),irow(nnz),istr(n+1),iwork(n))

! Read and output the original nonzero elements

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do
Write (nout,*) ’Original elements’
Write (nout,99997) ’NNZ = ’, nnz
Do i = 1, nnz

Write (nout,99998) i, a(i), irow(i), icol(i)
End Do

! Reorder, sum duplicates and remove zeros

dup = ’S’
zer = ’R’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11zbf(n,nnz,a,irow,icol,dup,zer,istr,iwork,ifail)

! Output results

Write (nout,*) ’Reordered elements’
Write (nout,99999) ’NNZ = ’, nnz
Do i = 1, nnz

Write (nout,99998) i, a(i), irow(i), icol(i)
End Do

99999 Format (1X,A,I4)
99998 Format (1X,I8,E16.4,2I8)
99997 Format (1X,A,I16)

End Program f11zbfe
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10.2 Program Data

F11ZBF Example Program Data
4 N
9 NNZ
1. 3 2
0. 2 1
1. 3 2
3. 4 4
4. 1 1
6. 2 2
2. 3 3
1. 3 2
1. 3 2 A(I), IROW(I), ICOL(I), I=1,...,NNZ

10.3 Program Results

F11ZBF Example Program Results
Original elements
NNZ = 9

1 0.1000E+01 3 2
2 0.0000E+00 2 1
3 0.1000E+01 3 2
4 0.3000E+01 4 4
5 0.4000E+01 1 1
6 0.6000E+01 2 2
7 0.2000E+01 3 3
8 0.1000E+01 3 2
9 0.1000E+01 3 2

Reordered elements
NNZ = 5

1 0.4000E+01 1 1
2 0.6000E+01 2 2
3 0.4000E+01 3 2
4 0.2000E+01 3 3
5 0.3000E+01 4 4
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NAG Library Routine Document

F11ZNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11ZNF sorts the nonzero elements of a complex sparse non-Hermitian matrix, represented in
coordinate storage format.

2 Specification

SUBROUTINE F11ZNF (N, NNZ, A, IROW, ICOL, DUP, ZER, ISTR, IWORK, IFAIL)

INTEGER N, NNZ, IROW(*), ICOL(*), ISTR(N+1), IWORK(N),
IFAIL

&

COMPLEX (KIND=nag_wp) A(*)
CHARACTER(1) DUP, ZER

3 Description

F11ZNF takes a coordinate storage (CS) representation (see Section 2.1.1 in the F11 Chapter
Introduction) of a sparse n by n complex non-Hermitian matrix A, and reorders the nonzero elements
by increasing row index and increasing column index within each row. Entries with duplicate row and
column indices may be removed, or the values may be summed. Any entries with zero values may
optionally be removed.

The routine also returns a pointer array ISTR to the starting address of each row in A.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input/Output

On entry: the number of nonzero elements in the matrix A.

Constraint: NNZ � 0.

On exit: the number of nonzero elements with unique row and column indices.

3: Að�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array A must be at least max 1;NNZð Þ.
On entry: the nonzero elements of the matrix A. These may be in any order and there may be
multiple nonzero elements with the same row and column indices.

On exit: the nonzero elements ordered by increasing row index, and by increasing column index
within each row. Each nonzero element has a unique row and column index.
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4: IROWð�Þ – INTEGER array Input/Output

Note: the dimension of the array IROW must be at least max 1;NNZð Þ.
On entry: the row indices corresponding to the nonzero elements supplied in the array A.

Constraint: 1 � IROWðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.

On exit: the first NNZ elements contain the row indices corresponding to the nonzero elements
returned in the array A.

5: ICOLð�Þ – INTEGER array Input/Output

Note: the dimension of the array ICOL must be at least max 1;NNZð Þ.
On entry: the column indices corresponding to the nonzero elements supplied in the array A.

Constraint: 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.

On exit: the first NNZ elements contain the row indices corresponding to the nonzero elements
returned in the array A.

6: DUP – CHARACTER(1) Input

On entry: indicates how any nonzero elements with duplicate row and column indices are to be
treated.

DUP ¼ R
The entries are removed.

DUP ¼ S
The relevant values in A are summed.

DUP ¼ F
The routine fails with IFAIL ¼ 3 on detecting a duplicate.

Constraint: DUP ¼ R , S or F .

7: ZER – CHARACTER(1) Input

On entry: indicates how any elements with zero values in array A are to be treated.

ZER ¼ R
The entries are removed.

ZER ¼ K
The entries are kept.

ZER ¼ F
The routine fails with IFAIL ¼ 4 on detecting a zero.

Constraint: ZER ¼ R , K or F .

8: ISTRðNþ 1Þ – INTEGER array Output

On exit: ISTRðiÞ, for i ¼ 1; 2; . . . ;N, is the starting address in the arrays A, IROW and ICOL of
row i of the matrix A. ISTRðNþ 1Þ is the address of the last nonzero element in A plus one.

9: IWORKðNÞ – INTEGER array Workspace

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or NNZ < 0,
or DUP 6¼ R , S or F ,
or ZER 6¼ R , K or F .

IFAIL ¼ 2

On entry, a nonzero element has been supplied which does not lie within the matrix A, i.e., one
or more of the following constraints have been violated:

1 � IROWðiÞ � N,

1 � ICOLðiÞ � N,

for i ¼ 1; 2; . . . ;NNZ.

IFAIL ¼ 3

On entry, DUP ¼ F and nonzero elements have been supplied which have duplicate row and
column indices.

IFAIL ¼ 4

On entry, ZER ¼ F and at least one matrix element has been supplied with a zero coefficient
value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F11ZNF is not threaded in any implementation.

9 Further Comments

The time taken for a call to F11ZNF is proportional to NNZ.

Note that the resulting matrix may have either rows or columns with no entries. If row i has no entries
then ISTRðiÞ ¼ ISTRðiþ 1Þ.

10 Example

This example reads the CS representation of a complex sparse matrix A, calls F11ZNF to reorder the
nonzero elements, and outputs the original and the reordered representations.

10.1 Program Text

Program f11znfe

! F11ZNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11znf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n, nnz
Character (1) :: dup, zer

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:)
Integer, Allocatable :: icol(:), irow(:), istr(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F11ZNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz

Allocate (a(nnz),icol(nnz),irow(nnz),istr(n+1),iwork(n))

! Read and output the original nonzero elements

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do
Write (nout,*) ’Original elements’
Write (nout,99999) ’ NNZ = ’, nnz
Do i = 1, nnz

Write (nout,99998) i, a(i), irow(i), icol(i)
End Do

! Reorder, sum duplicates and remove zeros

dup = ’S’
zer = ’R’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
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ifail = 0
Call f11znf(n,nnz,a,irow,icol,dup,zer,istr,iwork,ifail)

! Output results

Write (nout,*) ’Reordered elements’
Write (nout,99999) ’ NNZ = ’, nnz
Do i = 1, nnz

Write (nout,99998) i, a(i), irow(i), icol(i)
End Do

99999 Format (1X,A,I4)
99998 Format (1X,I8,5X,’(’,E16.4,’,’,E16.4,’)’,2I8)

End Program f11znfe

10.2 Program Data

F11ZNF Example Program Data
5 N
15 NNZ
( 4., 1.) 3 1
(-2., 6.) 5 2
( 1.,-3.) 4 4
(-2.,-1.) 4 2
(-3., 0.) 5 5
( 1., 2.) 1 2
( 0., 0.) 1 5
( 1., 3.) 3 5
(-1.,-1.) 2 4
( 6.,-3.) 5 5
( 2., 6.) 1 1
( 2., 1.) 4 2
( 1., 0.) 2 3
( 0.,-3.) 3 3
( 2., 2.) 4 5 A(I), IROW(I), ICOL(I), I=1,...,NNZ

10.3 Program Results

F11ZNF Example Program Results

Original elements
NNZ = 15

1 ( 0.4000E+01, 0.1000E+01) 3 1
2 ( -0.2000E+01, 0.6000E+01) 5 2
3 ( 0.1000E+01, -0.3000E+01) 4 4
4 ( -0.2000E+01, -0.1000E+01) 4 2
5 ( -0.3000E+01, 0.0000E+00) 5 5
6 ( 0.1000E+01, 0.2000E+01) 1 2
7 ( 0.0000E+00, 0.0000E+00) 1 5
8 ( 0.1000E+01, 0.3000E+01) 3 5
9 ( -0.1000E+01, -0.1000E+01) 2 4

10 ( 0.6000E+01, -0.3000E+01) 5 5
11 ( 0.2000E+01, 0.6000E+01) 1 1
12 ( 0.2000E+01, 0.1000E+01) 4 2
13 ( 0.1000E+01, 0.0000E+00) 2 3
14 ( 0.0000E+00, -0.3000E+01) 3 3
15 ( 0.2000E+01, 0.2000E+01) 4 5

Reordered elements
NNZ = 11

1 ( 0.2000E+01, 0.6000E+01) 1 1
2 ( 0.1000E+01, 0.2000E+01) 1 2
3 ( 0.1000E+01, 0.0000E+00) 2 3
4 ( -0.1000E+01, -0.1000E+01) 2 4
5 ( 0.4000E+01, 0.1000E+01) 3 1
6 ( 0.0000E+00, -0.3000E+01) 3 3

F11 – Large Scale Linear Systems F11ZNF

Mark 26 F11ZNF.5



7 ( 0.1000E+01, 0.3000E+01) 3 5
8 ( 0.1000E+01, -0.3000E+01) 4 4
9 ( 0.2000E+01, 0.2000E+01) 4 5

10 ( -0.2000E+01, 0.6000E+01) 5 2
11 ( 0.3000E+01, -0.3000E+01) 5 5
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NAG Library Routine Document

F11ZPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11ZPF sorts the nonzero elements of a sparse complex Hermitian matrix, represented in symmetric
coordinate storage format.

2 Specification

SUBROUTINE F11ZPF (N, NNZ, A, IROW, ICOL, DUP, ZER, ISTR, IWORK, IFAIL)

INTEGER N, NNZ, IROW(*), ICOL(*), ISTR(N+1), IWORK(N),
IFAIL

&

COMPLEX (KIND=nag_wp) A(*)
CHARACTER(1) DUP, ZER

3 Description

F11ZPF takes a symmetric coordinate storage (SCS) representation (see Section 2.1.2 in the F11
Chapter Introduction) of a sparse n by n complex Hermitian matrix A, and reorders the nonzero
elements by increasing row index and increasing column index within each row. Entries with duplicate
row and column indices may be removed, or the values may be summed. Any entries with zero values
may optionally be removed.

The routine also returns a pointer array ISTR to the starting address of each row in A.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

2: NNZ – INTEGER Input/Output

On entry: the number of nonzero elements in the lower triangular part of the matrix A.

Constraint: NNZ � 0.

On exit: the number of lower triangular nonzero elements with unique row and column indices.

3: Að�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array A must be at least max 1;NNZð Þ.
On entry: the nonzero elements of the lower triangular part of the complex matrix A. These may
be in any order and there may be multiple nonzero elements with the same row and column
indices.

On exit: the lower triangular nonzero elements ordered by increasing row index, and by
increasing column index within each row. Each nonzero element has a unique row and column
index.
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4: IROWð�Þ – INTEGER array Input/Output

Note: the dimension of the array IROW must be at least max 1;NNZð Þ.
On entry: the row indices corresponding to the nonzero elements supplied in the array A.

Constraint: 1 � IROWðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.

On exit: the first NNZ elements contain the row indices corresponding to the nonzero elements
returned in the array A.

5: ICOLð�Þ – INTEGER array Input/Output

Note: the dimension of the array ICOL must be at least max 1;NNZð Þ.
On entry: the column indices corresponding to the nonzero elements supplied in the array A.

Constraint: 1 � ICOLðiÞ � IROWðiÞ, for i ¼ 1; 2; . . . ;NNZ.

On exit: the first NNZ elements contain the column indices corresponding to the nonzero
elements returned in the array A.

6: DUP – CHARACTER(1) Input

On entry: indicates how any nonzero elements with duplicate row and column indices are to be
treated.

DUP ¼ R
The entries are removed.

DUP ¼ S
The relevant values in A are summed.

DUP ¼ F
The routine fails with IFAIL ¼ 3 on detecting a duplicate.

Constraint: DUP ¼ R , S or F .

7: ZER – CHARACTER(1) Input

On entry: indicates how any elements with zero values in array A are to be treated.

ZER ¼ R
The entries are removed.

ZER ¼ K
The entries are kept.

ZER ¼ F
The routine fails with IFAIL ¼ 4 on detecting a zero.

Constraint: ZER ¼ R , K or F .

8: ISTRðNþ 1Þ – INTEGER array Output

On exit: ISTRðiÞ, for i ¼ 1; 2; . . . ;N, is the starting address in the arrays A, IROW and ICOL of
row i of the matrix A. ISTRðNþ 1Þ is the address of the last nonzero element in A plus one.

9: IWORKðNÞ – INTEGER array Workspace

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or NNZ < 0,
or DUP 6¼ R , S or F ,
or ZER 6¼ R , K or F .

IFAIL ¼ 2

On entry, a nonzero element has been supplied which does not lie in the lower triangular part of
A, i.e., one or more of the following constraints have been violated:

1 � IROWðiÞ � N,

1 � ICOLðiÞ � IROWðiÞ,
for i ¼ 1; 2; . . . ;NNZ.

IFAIL ¼ 3

On entry, DUP ¼ F and nonzero elements have been supplied which have duplicate row and
column indices.

IFAIL ¼ 4

On entry, ZER ¼ F and at least one matrix element has been supplied with a zero coefficient
value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

F11ZPF is not threaded in any implementation.

9 Further Comments

The time taken for a call to F11ZPF is proportional to NNZ.

Note that the resulting matrix may have either rows or columns with no entries. If row i has no entries
then ISTRðiÞ ¼ ISTRðiþ 1Þ.

10 Example

This example reads the SCS representation of a complex sparse Hermitian matrix A, calls F11ZPF to
reorder the nonzero elements, and outputs the original and the reordered representations.

10.1 Program Text

Program f11zpfe

! F11ZPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11zpf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n, nnz
Character (1) :: dup, zer

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:)
Integer, Allocatable :: icol(:), irow(:), istr(:), iwork(:)

! .. Executable Statements ..
Write (nout,*) ’F11ZPF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read order of matrix and number of nonzero entries

Read (nin,*) n
Read (nin,*) nnz

Allocate (a(nnz),icol(nnz),irow(nnz),istr(n+1),iwork(n))

! Read and output the original nonzero elements

Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)

End Do
Write (nout,*) ’Original elements’
Write (nout,99997) ’NNZ = ’, nnz
Do i = 1, nnz

Write (nout,99998) i, a(i), irow(i), icol(i)
End Do

! Reorder, sum duplicates and remove zeros

dup = ’S’
zer = ’R’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
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Call f11zpf(n,nnz,a,irow,icol,dup,zer,istr,iwork,ifail)

! Output results

Write (nout,*) ’Reordered elements’
Write (nout,99999) ’NNZ = ’, nnz
Do i = 1, nnz

Write (nout,99998) i, a(i), irow(i), icol(i)
End Do

99999 Format (1X,A,I4)
99998 Format (I8,5X,’(’,E16.4,’,’,E16.4,’)’,2I8)
99997 Format (1X,A,I16)

End Program f11zpfe

10.2 Program Data

F11ZPF Example Program Data
4 N
9 NNZ
(1., 2.) 3 2
(0., 0.) 2 1
(0., 3.) 3 2
(3.,-5.) 4 4
(4., 2.) 1 1
(0., 3.) 2 2
(2., 4.) 3 3
(1.,-1.) 3 2
(1., 3.) 3 2 A(I), IROW(I), ICOL(I), I=1,...,NNZ

10.3 Program Results

F11ZPF Example Program Results
Original elements
NNZ = 9

1 ( 0.1000E+01, 0.2000E+01) 3 2
2 ( 0.0000E+00, 0.0000E+00) 2 1
3 ( 0.0000E+00, 0.3000E+01) 3 2
4 ( 0.3000E+01, -0.5000E+01) 4 4
5 ( 0.4000E+01, 0.2000E+01) 1 1
6 ( 0.0000E+00, 0.3000E+01) 2 2
7 ( 0.2000E+01, 0.4000E+01) 3 3
8 ( 0.1000E+01, -0.1000E+01) 3 2
9 ( 0.1000E+01, 0.3000E+01) 3 2

Reordered elements
NNZ = 5

1 ( 0.4000E+01, 0.2000E+01) 1 1
2 ( 0.0000E+00, 0.3000E+01) 2 2
3 ( 0.3000E+01, 0.7000E+01) 3 2
4 ( 0.2000E+01, 0.4000E+01) 3 3
5 ( 0.3000E+01, -0.5000E+01) 4 4
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NAG Library Chapter Contents

F12 – Large Scale Eigenproblems

F12 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

F12AAF 21 nagf_sparseig_real_init
Initialization routine for (F12ABF) computing selected eigenvalues and,
optionally, eigenvectors of a real nonsymmetric sparse (standard or
generalized) eigenproblem

F12ABF 21 nagf_sparseig_real_iter
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric
sparse eigenproblem, reverse communication

F12ACF 21 nagf_sparseig_real_proc
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric
sparse eigenproblem, postprocessing for F12ABF

F12ADF 21 nagf_sparseig_real_option
Set a single option from a string (F12ABF/F12ACF/F12AGF)

F12AEF 21 nagf_sparseig_real_monit
Provides monitoring information for F12ABF

F12AFF 21 nagf_sparseig_real_band_init
Initialization routine for (F12AGF) computing selected eigenvalues and,
optionally, eigenvectors of a real nonsymmetric banded (standard or
generalized) eigenproblem

F12AGF 21 nagf_sparseig_real_band_solve
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric
banded eigenproblem, driver

F12ANF 21 nagf_sparseig_complex_init
Initialization routine for (F12APF) computing selected eigenvalues and,
optionally, eigenvectors of a complex sparse (standard or generalized)
eigenproblem

F12APF 21 nagf_sparseig_complex_iter
Selected eigenvalues and, optionally, eigenvectors of a complex sparse
eigenproblem, reverse communication

F12AQF 21 nagf_sparseig_complex_proc
Selected eigenvalues and, optionally, eigenvectors of a complex sparse
eigenproblem, postprocessing for F12APF

F12ARF 21 nagf_sparseig_complex_option
Set a single option from a string (F12APF/F12AQF)

F12ASF 21 nagf_sparseig_complex_monit
Provides monitoring information for F12APF

F12ATF 24 nagf_sparseig_complex_band_init
Initialization routine for F12AUF computing selected eigenvalues and,
optionally, eigenvectors of a complex banded (standard or generalized)
eigenproblem.

F12AUF 24 nagf_sparseig_complex_band_solve
Selected eigenvalues and, optionally, eigenvectors of complex non-
Hermitian banded eigenproblem, driver

F12FAF 21 nagf_sparseig_real_symm_init
Initialization routine for (F12FBF) computing selected eigenvalues and,
optionally, eigenvectors of a real symmetric sparse (standard or generalized)
eigenproblem
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F12FBF 21 nagf_sparseig_real_symm_iter
Selected eigenvalues and, optionally, eigenvectors of a real symmetric
sparse eigenproblem, reverse communication

F12FCF 21 nagf_sparseig_real_symm_proc
Selected eigenvalues and, optionally, eigenvectors of a real symmetric
sparse eigenproblem, postprocessing for F12FBF

F12FDF 21 nagf_sparseig_real_symm_option
Set a single option from a string (F12FBF/F12FCF/F12FGF)

F12FEF 21 nagf_sparseig_real_symm_monit
Provides monitoring information for F12FBF

F12FFF 21 nagf_sparseig_real_symm_band_init
Initialization routine for (F12FGF) computing selected eigenvalues and,
optionally, eigenvectors of a real symmetric banded (standard or
generalized) eigenproblem

F12FGF 21 nagf_sparseig_real_symm_band_solve
Selected eigenvalues and, optionally, eigenvectors of a real symmetric
banded eigenproblem, driver

Contents – F12 NAG Library Manual

f12conts.2 (last) Mark 26



NAG Library Chapter Introduction

F12 – Large Scale Eigenproblems

Contents

1 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background to the Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Sparse Matrices and their Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Symmetric Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Generalized Symmetric-definite Eigenvalue Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 Nonsymmetric Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.5 Generalized Nonsymmetric Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.6 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.7 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Recommendations on Choice and Use of Available Routines. . . . . . . . . . . . . . 5

3.1 Types of Routine Available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Iterative Methods for Real Nonsymmetric and Complex Eigenvalue Problems . . . . 5

3.3 Iterative Methods for Real Symmetric Eigenvalue Problems. . . . . . . . . . . . . . . . . . . . 6

3.4 Iterative Methods for Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.5 Alternative Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 General Use of Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Shift and Invert Spectral Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2.1 B is Hermitian positive definite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2.2 B is not Hermitian positive semidefinite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Reverse Communication and Shift-invert Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3.1 Shift and invert on a generalized eigenproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.2 Using the computational modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3.3 Computational modes for real symmetric problems . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3.4 Computational modes for non-Hermitian problems. . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.5 Post processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.6 Solution monitoring and printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Functionality Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Auxiliary Routines Associated with Library Routine Arguments . . . . . . . . 14

7 Routines Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . . . . . . . . 14

8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

F12 – Large Scale Eigenproblems Introduction – F12

Mark 26 F12.1



1 Scope of the Chapter

This chapter provides routines for computing some eigenvalues and eigenvectors of large-scale (sparse)
standard and generalized eigenvalue problems. It provides routines for:

solution of symmetric eigenvalue problems;

solution of nonsymmetric eigenvalue problems;

solution of generalized symmetric-definite eigenvalue problems;

solution of generalized nonsymmetric eigenvalue problems;

partial singular value decomposition.

Routines are provided for both real and complex data.

The routines in this chapter have all been derived from the ARPACK software suite (see Lehoucq et al.
(1998)), a collection of Fortran 77 subroutines designed to solve large scale eigenvalue problems. The
interfaces provided in this chapter have been chosen to combine ease of use with the flexibility of the
original ARPACK software. The underlying iterative methods and algorithms remain essentially the
same as those in ARPACK and are described fully in Lehoucq et al. (1998).

The algorithms used are based upon an algorithmic variant of the Arnoldi process called the Implicitly
Restarted Arnoldi Method. For symmetric matrices, this reduces to a variant of the Lanczos process
called the Implicitly Restarted Lanczos Method. These variants may be viewed as a synthesis of the
Arnoldi/Lanczos process with the Implicitly Shifted QR technique that is suitable for large scale
problems. For many standard problems, a matrix factorization is not required. Only the action of the
matrix on a vector is needed.

2 Background to the Problems

This section is only a brief introduction to the solution of large-scale eigenvalue problems. For a more
detailed discussion see, for example, Saad (1992) or Lehoucq (1995) in addition to Lehoucq et al.
(1998). The basic factorization techniques and definitions of terms used for the different problem types
are given in Section 2 in the F08 Chapter Introduction.

2.1 Sparse Matrices and their Storage

A matrix A may be described as sparse if the number of zero elements is so large that it is worthwhile
using algorithms which avoid computations involving zero elements.

If A is sparse, and the chosen algorithm requires the matrix coefficients to be stored, a significant
saving in storage can often be made by storing only the nonzero elements. A number of different
formats may be used to represent sparse matrices economically. These differ according to the amount of
storage required, the amount of indirect addressing required for fundamental operations such as matrix-
vector products, and their suitability for vector and/or parallel architectures. For a survey of some of
these storage formats see Barrett et al. (1994).

Most of the routines in this chapter have been designed to be independent of the matrix storage format.
This allows you to choose your own preferred format, or to avoid storing the matrix altogether. Other
routines are general purpose, which are easier to use, but are based on fixed storage formats. One such
format is currently provided. This is the banded coordinate storage format as used in Chapters F07 and
F08 (LAPACK) for storing general banded matrices.

2.2 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors, z 6¼ 0,
such that

Az ¼ �z; A ¼ AT; where A is real:

For the Hermitian eigenvalue problem we have

Introduction – F12 NAG Library Manual

F12.2 Mark 26



Az ¼ �z; A ¼ AH; where A is complex:

For both problems the eigenvalues � are real.

The basic task of the symmetric eigenproblem routines is to compute some of the values of � and,
optionally, corresponding vectors z for a given matrix A. For example, we may wish to obtain the first
ten eigenvalues of largest magnitude, of a large sparse matrix A.

2.3 Generalized Symmetric-definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az ¼ �Bz,
ABz ¼ �z, and BAz ¼ �z, where A and B are real symmetric or complex Hermitian and B is positive
definite. Each of these problems can be reduced to a standard symmetric eigenvalue problem, using a
Cholesky factorization of B as either B ¼ LLT or B ¼ UTU (LLH or UHU in the Hermitian case).

With B ¼ LLT, we have

Az ¼ �Bz) L�1AL�T
� �

LTz
� �

¼ � LTz
� �

:

Hence the eigenvalues of Az ¼ �Bz are those of Cy ¼ �y, where C is the symmetric matrix
C ¼ L�1AL�T and y ¼ LTz. In the complex, case C is Hermitian with C ¼ L�1AL�H and y ¼ LHz.

The basic task of the generalized symmetric eigenproblem routines is to compute some of the values of
� and, optionally, corresponding vectors z for a given matrix A. For example, we may wish to obtain
the first ten eigenvalues of largest magnitude, of a large sparse matrix pair A and B.

2.4 Nonsymmetric Eigenvalue Problems

The nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors,
v 6¼ 0, such that

Av ¼ �v:

More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u 6¼ 0
satisfying

uTA ¼ �uT uHA ¼ �uH when u is complex
� �

is called a left eigenvector of A.

A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs.

This problem can be solved via the Schur factorization of A, defined in the real case as

A ¼ ZTZT;

where Z is an orthogonal matrix and T is an upper quasi-triangular matrix with 1 by 1 and 2 by 2
diagonal blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the
complex case, the Schur factorization is

A ¼ ZTZH;

where Z is unitary and T is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 � k � n), the first k columns of Z form
an orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal
of T . Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors
rather than eigenvectors. It is possible to order the Schur factorization so that any desired set of k
eigenvalues occupy the k leading positions on the diagonal of T .

The two basic tasks of the nonsymmetric eigenvalue routines are to compute, for a given matrix A,
some values of � and, if desired, their associated right eigenvectors v, and the Schur factorization.
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2.5 Generalized Nonsymmetric Eigenvalue Problem

The generalized nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding
eigenvectors, v 6¼ 0, such that

Av ¼ �Bv; ABv ¼ �v; and BAv ¼ �v:
More precisely, a vector v as just defined is called a right eigenvector of the matrix pair A;Bð Þ, and a
vector u 6¼ 0 satisfying

uTA ¼ �uTB uHA ¼ �uHB when u is complex
� �

is called a left eigenvector of the matrix pair A;Bð Þ.

2.6 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by n matrix A is given by

A ¼ U�V T; A ¼ U�V Hin the complex case
� �

where U and V are orthogonal (unitary) and � is an m by n diagonal matrix with real diagonal
elements, �i, such that

�1 � �2 � � � � � �min m;nð Þ � 0:

The �i are the singular values of A and the first min m;nð Þ columns of U and V are the left and right
singular vectors of A. The singular values and singular vectors satisfy

Avi ¼ �iui and ATui ¼ �ivi or AHui ¼ �ivi
� �

so that ATAui ¼ �2i ui ðAHAui ¼ �2i uiÞ

where ui and vi are the ith columns of U and V respectively.

Thus selected singular values and the corresponding right singular vectors may be computed by finding
eigenvalues and eigenvectors for the symmetric matrix ATA (or the Hermitian matrix AHA if A is
complex).

An alternative approach is to use the relationship

0 A
AT 0

� �
U
V

� �
¼ U

V

� �
�

and thus compute selected singular values and vectors via the symmetric matrix

C ¼ 0 A
AT 0

� �
C ¼ 0 A

AH 0

� �
if A is complex

� �
:

In many applications, one is interested in computing a few (say k) of the largest singular values and
corresponding vectors. If Uk, Vk denote the leading k columns of U and V respectively, and if �k

denotes the leading principal submatrix of �, then

Ak 	 Uk�kV
T
k ðor Uk�kV

H
kÞ

is the best rank-k approximation to A in both the 2-norm and the Frobenius norm. Often a very small k
will suffice to approximate important features of the original A or to approximately solve least squares
problems involving A.

2.7 Iterative Methods

Iterative methods for the solution of the standard eigenproblem

Ax ¼ �x ð1Þ

approach the solution through a sequence of approximations until some user-specified termination
criterion is met or until some predefined maximum number of iterations has been reached. The number
of iterations required for convergence is not generally known in advance, as it depends on the accuracy
required, and on the matrix A, its sparsity pattern, conditioning and eigenvalue spectrum.
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3 Recommendations on Choice and Use of Available Routines

3.1 Types of Routine Available

The routines available in this chapter divide essentially into three suites of basic reverse communication
routines and some general purpose routines for banded systems.

Basic routines are grouped in suites of five, and implement the underlying iterative method. Each suite
comprises a setup routine, an options setting routine, a solver routine, a routine to return additional
monitoring information and a post-processing routine. The solver routine is independent of the matrix
storage format (indeed the matrix need not be stored at all) and the type of preconditioner. It uses
reverse communication (see Section 3.3.3 in How to Use the NAG Library and its Documentation for
further information), i.e., it returns repeatedly to the calling program with the argument IREVCM set to
specified values which require the calling program to carry out a specific task (either to compute a
matrix-vector product or to solve the preconditioning equation), to signal the completion of the
computation or to allow the calling program to monitor the solution. Reverse communication has the
following advantages:

(i) Maximum flexibility in the representation and storage of sparse matrices. All matrix operations are
performed outside the solver routine, thereby avoiding the need for a complicated interface with
enough flexibility to cope with all types of storage schemes and sparsity patterns. This also applies
to preconditioners.

(ii) Enhanced user interaction: you can closely monitor the solution and tidy or immediate termination
can be requested. This is useful, for example, when alternative termination criteria are to be
employed or in case of failure of the external routines used to perform matrix operations.

At present there are suites of basic routines for real symmetric and nonsymmetric systems, and for
complex systems.

General purpose routines call basic routines in order to provide easy-to-use routines for particular
sparse matrix storage formats. They are much less flexible than the basic routines, but do not use
reverse communication, and may be suitable in many cases.

The structure of this chapter has been designed to cater for as many types of application as possible. If
a general purpose routine exists which is suitable for a given application you are recommended to use
it. If you then decide you need some additional flexibility it is easy to achieve this by using basic and
utility routines which reproduce the algorithm used in the general purpose routine, but allow more
access to algorithmic control parameters and monitoring.

3.2 Iterative Methods for Real Nonsymmetric and Complex Eigenvalue Problems

The suite of basic routines F12AAF, F12ABF, F12ACF, F12ADF and F12AEF implements the iterative
solution of real nonsymmetric eigenvalue problems, finding estimates for a specified spectrum of
eigenvalues. These eigenvalue estimates are often referred to as Ritz values and the error bounds
obtained are referred to as the Ritz estimates. These routines allow a choice of termination criteria and
many other options for specifying the problem type, allow monitoring of the solution process, and can
return Ritz estimates of the calculated Ritz values of the problem A.

For complex matrices there is an equivalent suite of routines. F12ANF, F12APF, F12AQF, F12ARF and
F12ASF are the basic routines which implement corresponding methods used for real nonsymmetric
systems. Note that these routines are to be used for both Hermitian and non-Hermitian problems.
Occasionally, when using these routines on a complex Hermitian problem, eigenvalues will be returned
with small but nonzero imaginary part due to unavoidable round-off errors. These should be ignored
unless they are significant with respect to the eigenvalues of largest magnitude that have been
computed.

There are general purpose routines for the case where the matrices are known to be banded. In these
cases an initialization routine is called first to set up default options, and the problem is solved by a
single call to a solver routine. The matrices are supplied, in LAPACK banded-storage format, as
arguments to the solver routine. For real general matrices these routines are F12AFF and F12AGF; and
for complex matrices the pair is F12ATF and F12AUF. With each pair non-default options can be set,
following a call to the initialization routine, using F12ADF for real matrices and F12ARF for complex
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matrices. For real matrices that can be supplied in the sparse matrix compressed column storage (CCS)
format, the driver routine F02EKF is available. This routine uses routines from Chapter F12 in
conjunction with direct solver routines from Chapter F11.

There is little computational penalty in using the non-Hermitian complex routines for a Hermitian
problem. The only additional cost is to compute eigenvalues of a Hessenberg rather than a tridiagonal
matrix. The difference in computational cost should be negligible compared to the overall cost.

3.3 Iterative Methods for Real Symmetric Eigenvalue Problems

The suite of basic routines F12FAF, F12FBF, F12FCF, F12FDF and F12FEF implement a Lanczos
method for the iterative solution of the real symmetric eigenproblem.

There is a general purpose routine pair for the case where the matrices are known to be banded. In this
case an initialization routine, F12FFF, is called first to set up default options, and the problem is solved
by a single call to a solver routine, F12FGF. The matrices are supplied, in LAPACK banded-storage
format, as arguments to F12FGF. Non-default options can be set, following a call to F12FFF, using
F12FDF.

3.4 Iterative Methods for Singular Value Decomposition

The partial singular value decomposition, Ak (as defined in Section 2.6), of an m� nð Þ matrix A can be
computed efficiently using routines from this chapter. For real matrices, the suite of routines listed in
Section 3.3 (for symmetric problems) can be used; for complex matrices, the corresponding suite of
routines for complex problems can be used; however, there are no general purpose routines for complex
problems.

The driver routine F02WGF is available for computing the partial SVD of real matrices. The matrix is
not supplied to F02WGF; rather, a user-defined routine argument provides the results of performing
Matrix-vector products.

For both real and complex matrices, you should use the default options (see, for example, the options
listed in Section 11 in F12FDF) for problem type (Standard), computational mode (Regular) and
spectrum (Largest Magnitude). The operation to be performed on request by the reverse
communication routine (e.g., F12FBF) is, for real matrices, to multiply the returned vector by the
symmetric matrix ATA if m � n, or by AAT if m < n. For complex matrices, the corresponding
Hermitian matrices are AHA and AAH.

The right (m � n) or left (m < n) singular vectors are returned by the post-processing routine (e.g.,
F12FCF). The left (or right) singular vectors can be recovered from the returned singular vectors.
Providing the largest singular vectors are not multiple or tightly clustered, there should be no problem
in obtaining numerically orthogonal left singular vectors from the computed right singular vectors (or
vice versa).

The second example in Section 10 in F12FBF illustrates how the partial singular value decomposition
of a real matrix can be performed using the suite of routines for finding some eigenvalues of a real
symmetric matrix. In this case m � n, however, the program is easily amended to perform the same
task in the case m < n.

Similarly, routines in this chapter may be used to estimate the 2-norm condition number,

K2 Að Þ ¼
�1
�n
:

This can be achieved by setting the option Both Ends to get the largest and smallest few singular
values, then taking the ratio of largest to smallest computed singular values as your estimate.

3.5 Alternative Methods

Other routines for the solution of sparse linear eigenproblems can be found in Chapters F02 and F08. In
particular, tridiagonal and band matrices are addressed in Chapter F08 whereas sparse matrices are
addressed in Chapter F02.
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4 General Use of Routines

This section will describe the complete structure of the reverse communication interfaces contained in
this chapter. Numerous computational modes are available, including several shift-invert strategies
designed to accelerate convergence. Two of the more sophisticated modes will be described in detail.
The remaining ones are quite similar in principle, but require slightly different tasks to be performed
with the reverse communication interface.

This chapter is structured as follows. The naming conventions used in this chapter, and the data types
available are described in Section 4.1, spectral transformations are discussed in Section 4.2. Spectral
transformations are usually extremely effective but there are a number of problem dependent issues that
determine which one to use. In Section 4.3 we describe the reverse communication interface needed to
exercise the various shift-invert options. Each shift-invert option is specified as a computational mode
and all of these are summarised in the remaining sections. There is a subsection for each problem type
and hence these sections are quite similar and repetitive. Once the basic idea is understood, it is
probably best to turn directly to the subsection that describes the problem setting that is most interesting
to you.

Perhaps the easiest way to rapidly become acquainted with the modes in this chapter is to run each of
the example programs which use the various modes. These may be used as templates and adapted to
solve specific problems.

4.1 Naming Conventions

Routines for solving nonsymmetric (real and complex) eigenvalue problems have as first letter after the
chapter name, the letter ‘A’, e.g., F12ABF; equivalent routines for symmetric eigenvalue problems will
have this letter replaced by the letter ‘F’, e.g., F12FBF. For the letter following this, routines for real
eigenvalue problems will have letters in the range ‘A to M’ while those for complex eigenvalue
problems will have letters correspondingly shifted into the range ‘N to Z’; so, for example, the complex
equivalent of F12ADF is F12ARF, while the real symmetric equivalent is F12FDF.

A suite of five routines are named consecutively, e.g., F12AAF, F12ABF, F12ACF, F12ADF and
F12AEF. Each general purpose routine has its own initialization routine, but uses the option setting
routine from the suite relevant to the problem type. Thus each general purpose routine can be viewed as
belonging to a suite of three routines, even though only two routines will be named consecutively. For
example, F12ADF, F12AFF and F12AGF represent the suite of routines for solving a banded real
symmetric eigenvalue problem.

4.2 Shift and Invert Spectral Transformations

The most general problem that may be solved here is to compute a few selected eigenvalues and
corresponding eigenvectors for

Ax ¼ �Bx; where A and B are real or complex n� n matrices: ð2Þ
The shift and invert spectral transformation is used to enhance convergence to a desired portion of the
spectrum. If x; �ð Þ is an eigen-pair for A;Bð Þ and � 6¼ � then

A� �Bð Þ�1Bx ¼ �x; where � ¼ 1

�� �: ð3Þ

This transformation is effective for finding eigenvalues near � since the n� eigenvalues of
C 	 A� �Bð Þ�1B that are largest in magnitude correspond to the n� eigenvalues �j of the original
problem that are nearest to the shift � in absolute value. These transformed eigenvalues of largest
magnitude are precisely the eigenvalues that are easy to compute with a Krylov method. (See Barrett et
al. (1994)). Once they are found, they may be transformed back to eigenvalues of the original problem.
The direct relation is

�j ¼ �þ
1

�j

and the eigenvector xj associated with �j in the transformed problem is also an eigenvector of the
original problem corresponding to �j. Usually the Arnoldi process will rapidly obtain good
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approximations to the eigenvalues of C of largest magnitude. However, to implement this
transformation, you must provide the means to solve linear systems involving A� �B either with a
matrix factorization or with an iterative method.

In general, C will be non-Hermitian even if A and B are both Hermitian. However, this is easily
remedied. The assumption that B is Hermitian positive definite implies that the bilinear form

x; yh i 	 xHBy

is an inner product. If B is positive semidefinite and singular, then a semi-inner product results. This is
a weighted B-inner product and vectors x, y are called B-orthogonal if x; yh i ¼ 0. It is easy to show
that if A is Hermitian (self-adjoint) then C is Hermitian self-adjoint with respect to this B-inner product
(meaning Cx; yh i ¼ x; Cyh i for all vectors x, y). Therefore, symmetry will be preserved if we force the
computed basis vectors to be orthogonal in this B-inner product. Implementing this B-orthogonality
requires you to provide a matrix-vector product Bv on request along with each application of C. In the
following sections we shall discuss some of the more familiar transformations to the standard
eigenproblem. However, when B is positive (semi)definite, we recommend using the shift-invert
spectral transformation with B-inner products if at all possible. This is a far more robust transformation
when B is ill-conditioned or singular. With a little extra manipulation (provided automatically in the
post-processing routines) the semi-inner product induced by B prevents corruption of the computed
basis vectors by roundoff-error associated with the presence of infinite eigenvalues. These very ill-
conditioned eigenvalues are generally associated with a singular or highly ill-conditioned B. A detailed
discussion of this theory may be found in Chapter 4 of Lehoucq et al. (1998).

Shift-invert spectral transformations are very effective and should even be used on standard problems,
B ¼ I, whenever possible. This is particularly true when interior eigenvalues are sought or when the
desired eigenvalues are clustered. Roughly speaking, a set of eigenvalues is clustered if the maximum
distance between any two eigenvalues in that set is much smaller than the minimum distance between
these eigenvalues and any other eigenvalues of A;Bð Þ.
If you have a generalized problem B 6¼ I, then you must provide a way to solve linear systems with
either A, B or a linear combination of the two matrices in order to use the reverse communication suites
in this chapter. In this case, a sparse direct method should be used to factor the appropriate matrix
whenever possible. The resulting factorization may be used repeatedly to solve the required linear
systems once it has been obtained. If instead you decide to use an iterative method, the accuracy of the
solutions must be commensurate with the convergence tolerance used for the Arnoldi iteration. A
slightly more stringent tolerance is needed relative to the desired accuracy of the eigenvalue calculation.

The main drawback with using the shift-invert spectral transformation is that the coefficient matrix
A� �B is typically indefinite in the Hermitian case and has zero-valued eigenvalues in the non-
Hermitian case. These are often the most difficult situations for iterative methods and also for sparse
direct methods.

The decision to use a spectral transformation on a standard eigenvalue problem B ¼ I or to use one of
the simple modes is problem dependent. The simple modes have the advantage that you only need to
supply a matrix vector product Av. However, this approach is usually only successful for problems
where extremal non-clustered eigenvalues are sought. In non-Hermitian problems, extremal means
eigenvalues near the boundary of the spectrum of A. For Hermitian problems, extremal means
eigenvalues at the left- or right-hand end points of the spectrum of A. The notion of non-clustered (or
well separated) is difficult to define without going into considerable detail. A simplistic notion of a
well-separated eigenvalue �j for a Hermitian problem would be �i � �j

�� �� > � �n � �1k k for all j 6¼ i
with � � �, where �1 and �n are the smallest and largest algebraically. Unless a matrix vector product
is quite difficult to code or extremely expensive computationally, it is probably worth trying to use the
simple mode first if you are seeking extremal eigenvalues.

The remainder of this section discusses additional transformations that may be applied to convert a
generalized eigenproblem to a standard eigenproblem. These are appropriate when B is well-
conditioned (Hermitian or non-Hermitian).
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4.2.1 B is Hermitian positive definite

If B is Hermitian positive definite and well-conditioned ( Bk k B�1
�� �� is of modest size), then computing

the Cholesky factorization B ¼ LLH and converting equation (2) to

L�1AL�H
� �

y ¼ �y; where LHx ¼ y

provides a transformation to a standard eigenvalue problem. In this case, a request for a matrix vector
product would be satisfied with the following three steps:

(i) Solve LHz ¼ v for z.

(ii) Matrix-vector multiply z Az.

(iii) Solve Lw ¼ z for w.

Upon convergence, a computed eigenvector y for L�1AL�Hð Þ is converted to an eigenvector x of the
original problem by solving the triangular system LHx ¼ y. This transformation is most appropriate
when A is Hermitian, B is Hermitian positive definite and extremal eigenvalues are sought. This is
because when A is Hermitian, so is L�1AL�Hð Þ.
If A is Hermitian positive definite and the smallest eigenvalues are sought, then it would be best to
reverse the roles of A and B in the above description and ask for the largest algebraic eigenvalues or
those of largest magnitude. Upon convergence, a computed eigenvalue �̂ would then be converted to an

eigenvalue of the original problem by the relation � 1

�̂
.

4.2.2 B is not Hermitian positive semidefinite

If neither A nor B is Hermitian positive semidefinite, then a direct transformation to standard form is
required. One simple way to obtain a direct transformation of equation (2) to a standard eigenvalue
problem Cx ¼ �x is to multiply on the left by B�1 which results in C ¼ B�1A. Of course, you should
not perform this transformation explicitly since it will most likely convert a sparse problem into a dense
one. If possible, you should obtain a direct factorization of B and when a matrix-vector product
involving C is called for, it may be accomplished with the following two steps:

(i) Matrix-vector multiply z Av.

(ii) Solve Bw ¼ z for w.

Several problem-dependent issues may modify this strategy. If B is singular or if you are interested in
eigenvalues near a point � then you may choose to work with C 	 A� �Bð Þ�1B but without using the
B-inner products discussed previously. In this case you will have to transform the converged
eigenvalues of C to eigenvalues of the original problem.

4.3 Reverse Communication and Shift-invert Modes

The reverse communication interface routine for real nonsymmetric problems is F12ABF; for complex
problems is F12APF; and for real symmetric problems is F12FBF. First the reverse communication loop
structure will be described and then the details and nuances of the problem setup will be discussed. We
use the symbol OP for the operator that is applied to vectors in the Arnoldi/Lanczos process and B will
stand for the matrix to use in the weighted inner product described previously. For the shift-invert
spectral transformation mode OP denotes A� �Bð Þ�1B.
The basic idea is to set up a loop that repeatedly call one of F12ABF, F12APF and F12FBF. On each
return, you must either apply OP or B to a specified vector or exit the loop depending upon the value
returned in the reverse communication argument IREVCM.

4.3.1 Shift and invert on a generalized eigenproblem

The example program in Section 10 in F12AEF illustrates the reverse communication loop for F12ABF
in shift-invert mode for a generalized nonsymmetric eigenvalue problem. This loop structure will be
identical for the symmetric problem calling F12FBF. The loop structure is also identical for the
complex arithmetic subroutine F12APF.
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In the example, the matrix B is assumed to be symmetric and positive semidefinite. In the loop
structure, you will have to supply a routine to obtain a matrix factorization of A� �Bð Þ that may
repeatedly be used to solve linear systems. Moreover, a routine needs to be provided to perform the
matrix-vector product z ¼ Bv and a routine is required to solve linear systems of the form
A� �Bð Þw ¼ z as needed using the previously computed factorization.

When convergence has taken place (indicated by IREVCM ¼ 5 and IFAIL ¼ 0), the reverse
communication loop will be exited. Then, post-processing using the relevant routine from F12ACF,
F12AQF and F12FCF must be done to recover the eigenvalues and corresponding eigenvectors of the
original problem. When operating in shift-invert mode, the eigenvalue selection option is normally set
to Largest Magnitude. The post-processing routine is then used to convert the converged eigenvalues
of OP to eigenvalues of the original problem (2). Also, when B is singular or ill-conditioned, the post-
processing routine takes steps to purify the eigenvectors and rid them of numerical corruption from
eigenvectors corresponding to near-infinite eigenvalues. These procedures are performed automatically
when operating in any one of the computational modes described above and later in this section.

You may wish to construct alternative computational modes using spectral transformations that are not
addressed by any of the modes specified in this chapter. The reverse communication interface will
easily accommodate these modifications. However, it will most likely be necessary to construct explicit
transformations of the eigenvalues of OP to eigenvalues of the original problem in these situations.

4.3.2 Using the computational modes

The problem set up is similar for all of the available computational modes. In the previous section, a
detailed description of the reverse communication loop for a specific mode (Shift-invert for a
Generalized Problem) was given. To use this or any of the other modes listed below, you are strongly
urged to modify one of the example programs.

The first thing to decide is whether the problem will require a spectral transformation. If the problem is
generalized, B 6¼ I, then a spectral transformation will be required (see Section 4.2). Such a
transformation will most likely be needed for a standard problem if the desired eigenvalues are in the
interior of the spectrum or if they are clustered at the desired part of the spectrum. Once this decision
has been made and OP has been specified, an efficient means to implement the action of the operator
OP on a vector must be devised. The expense of applying OP to a vector will of course have direct
impact on performance.

Shift-invert spectral transformations may be implemented with or without the use of a weighted B-inner
product. The relation between the eigenvalues of OP and the eigenvalues of the original problem must
also be understood in order to make the appropriate eigenvalue selection option (e.g., Largest
Magnitude) in order to recover eigenvalues of interest for the original problem. You must specify the
number of eigenvalues to compute, which eigenvalues are of interest, the number of basis vectors to
use, and whether or not the problem is standard or generalized. These items are controlled by setting
options via the option setting routine.

Setting the number of eigenvalues NEV and the number of basis vectors NCV (in the setup routine) for
optimal performance is very much problem dependent. If possible, it is best to avoid setting NEV in a
way that will split clusters of eigenvalues. As a rule of thumb NCV � 2� NEV is reasonable. There are
trade-offs due to the cost of the user-supplied matrix-vector products and the cost of the implicit restart
mechanism. If the user-supplied matrix-vector product is relatively cheap, then a smaller value of NCV
may lead to more user matrix-vector products and implicit Arnoldi iterations but an overall decrease in
computation time. Convergence behaviour can be quite different depending on which of the spectrum
options (e.g., Largest Magnitude) is chosen. The Arnoldi process tends to converge most rapidly to
extreme points of the spectrum. Implicit restarting can be effective in focusing on and isolating a
selected set of eigenvalues near these extremes. In principle, implicit restarting could isolate
eigenvalues in the interior, but in practice this is difficult and usually unsuccessful. If you are interested
in eigenvalues near a point that is in the interior of the spectrum, a shift-invert strategy is usually
required for reasonable convergence.

The integer argument IREVCM is the reverse communication flag that will specify a requested action
on return from one of the solver routines F12ABF, F12APF and F12FBF. The options Standard and
Generalized specify if this is a standard or generalized eigenvalue problem. The dimension of the
problem is specified on the call to the initialization routine only; this value, together with the number of
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eigenvalues and the dimension of the basis vectors is passed through the communication array. There
are a number of spectrum options which specify the eigenvalues to be computed; these options differ
depending on whether a Hermitian or non-Hermitian eigenvalue problem is to be solved. For example,
the Both Ends is specific to Hermitian (symmetric) problems while the Largest Imaginary is specific
to non-Hermitian eigenvalue problems (see Section 11.1 in F12ADF). The specification of problem type
will be described separately but the reverse communication interface and loop structure is the same for
each type of the basic modes Regular, Regular Inverse, Shifted Inverse (also Shifted Inverse Real
and Shifted Inverse Imaginary for real nonsymmetric problems), and for the problem type: Standard
or Generalized. There are some additional specialised modes for symmetric problems, Buckling and
Cayley, and for real nonsymmetric problems with complex shifts applied in real arithmetic. You are
encouraged to examine the documented example programs for these modes.

The Tolerance specifies the accuracy requested. If you wish to supply shifts for implicit restarting then
the Supplied Shifts must be selected, otherwise the default Exact Shifts strategy will be used. The
Supplied Shifts should only be used when you have a great deal of knowledge about the spectrum and
about the implicit restarted Arnoldi method and its underlying theory. The Iteration Limit should be
set to the maximum number of implicit restarts allowed. The cost of an implicit restart step (major
iteration) is in the order of 4n NCV� NEVð Þ floating-point operations for the dense matrix operations
and NCV� NEV matrix-vector products w Av with the matrix A.

The choice of computational mode through the option setting routine is very important. The legitimate
computational mode options available differ with each problem type and are listed below for each of
them.

4.3.3 Computational modes for real symmetric problems

The reverse communication interface subroutine for symmetric eigenvalue problems is F12FBF. The
option for selecting the region of the spectrum of interest can be one of those listed in Table 1.

Largest Magnitude The eigenvalues of greatest magnitude

Largest Algebraic The eigenvalues of largest algebraic value (rightmost)

Smallest Magnitude The eigenvalues of least magnitude.

Smallest Algebraic The eigenvalues of smallest algebraic value (leftmost)

Both Ends The eigenvalues from both ends of the algebraic spectrum

Table 1
Eigenvalue spectrum options for symmetric eigenproblems

Table 2 lists the spectral transformation options for symmetric eigenvalue problems together with the
specification of OP and B for each mode and the problem type option setting.
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Problem Type Mode Problem OP B

Standard Regular Ax ¼ �x A I

Standard Shifted Inverse Ax ¼ �x A� �Ið Þ�1 I

Generalized Regular Inverse Ax ¼ �Bx B�1Ax B

Generalized Shifted Inverse Ax ¼ �Bx A� �Bð Þ�1B B

Generalized Buckling Kx ¼ �KGx K � �KGð Þ�1K K

Generalized Cayley Ax ¼ �Bx A� �Bð Þ�1 Aþ �Bð Þ B

Table 2
Problem types, computational modes and spectral transformations for

symmetric eigenproblems

4.3.4 Computational modes for non-Hermitian problems

When A is a general non-Hermitian matrix and B is Hermitian and positive semidefinite, then the
selection of the eigenvalues is controlled by the choice of one of the options in Table 3.

Largest Magnitude The eigenvalues of greatest magnitude

Smallest Magnitude The eigenvalues of least magnitude

Largest Real The eigenvalues with largest real part

Smallest Real The eigenvalues with smallest real part

Largest Imaginary The eigenvalues with largest imaginary part

Smallest Imaginary The eigenvalues with smallest imaginary part

Table 3
Eigenvalue spectrum options for real nonsymmetric and

complex eigenproblems

Table 4 lists the spectral transformation options for real nonsymmetric eigenvalue problems together
with the specification of OP and B for each mode and the problem type option setting. The equivalent
listing for complex non-Hermitian eigenvalue problems is given in Table 5.
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Problem Type Mode Problem OP B

Standard Regular Ax ¼ �x A I

Standard Shifted Inverse Real Ax ¼ �x A� �Ið Þ�1 I

Generalized Regular Inverse Ax ¼ �Bx B�1Ax B

Generalized Shifted Inverse Real with real � Ax ¼ �Bx A� �Bð Þ�1B B

Generalized Shifted Inverse Real with complex � Ax ¼ �Bx real A� �Bð Þ�1B
n o

B

Generalized Shifted Inverse Imaginary
with complex �

Ax ¼ �Bx imag A� �Bð Þ�1B
n o

B

Table 4
Problem types, computational modes and spectral transformations for

real nonsymmetric eigenproblems

Note that there are two shifted inverse modes with complex shifts in Table 4. Since � is complex, these
both require the factorization of the matrix A� �B in complex arithmetic even though, in the case of
real nonsymmetric problems, both A and B are real. The only advantage of using this option for real
nonsymmetric problems instead of using the equivalent suite for complex problems is that all of the
internal operations in the Arnoldi process are executed in real arithmetic. This results in a factor of two
saving in storage and a factor of four saving in computational cost. There is additional post-processing
that is somewhat more complicated than the other modes in order to get the eigenvalues and
eigenvectors of the original problem. These modes are only recommended if storage is extremely
critical.

Problem Type Mode Problem OP B

Standard Regular Ax ¼ �x A I

Standard Shifted Inverse Ax ¼ �x A� �Ið Þ�1 I

Generalized Regular Inverse Ax ¼ �Bx B�1Ax B

Generalized Shifted Inverse Ax ¼ �Bx A� �Bð Þ�1B B

Table 5
Problem types, computational modes and spectral transformations for

complex non-Hermitian eigenproblems

4.3.5 Post processing

On the final successful return from a reverse communication routine, the corresponding post-processing
routine must be called to get eigenvalues of the original problem and the corresponding eigenvectors if
desired. In the case of Shifted Inverse modes for Generalized problems, there are some subtleties to
recovering eigenvectors when B is ill-conditioned. This process is called eigenvector purification. It
prevents eigenvectors from being corrupted with noise due to the presence of eigenvectors
corresponding to near infinite eigenvalues. These operations are completely transparent to you. There
is negligible additional cost to obtain eigenvectors. An orthonormal (Arnoldi/Lanczos) basis is always
computed. The approximate eigenvalues of the original problem are returned in ascending algebraic
order. The option relevant to this routine is Vectors which may be set to values that determine whether
only eigenvalues are desired or whether corresponding eigenvectors and/or Schur vectors are required.
The value of the shift � used in spectral transformations must be passed to the post-processing routine
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through the appropriately named argument(s). The eigenvectors returned are normalized to have unit
length with respect to the semi-inner product that was used. Thus, if B ¼ I then they will have unit
length in the standard-norm. In general, a computed eigenvector x will satisfy xHBx ¼ 1.

4.3.6 Solution monitoring and printing

The option setting routine for each suite allows the setting of three options that control solution printing
and the monitoring of the iterative and post-processing stages. These three options are: Advisory,
Monitoring and Print Level. By default, no solution monitoring or printing is performed. The
Advisory option controls where solution details are printed; the Monitoring option controls where
monitoring details are to be printed and is mainly used for debugging purposes; the Print Level option
controls the amount of detail to be printed, see individual option setting routine documents for
specifications of each print level. The value passed to Advisory and Monitoring can be the same, but it
is recommended that the two sets of information be kept separate. Note that the monitoring information
can become very voluminous for the highest settings of Print Level.

5 Functionality Index

Standard or generalized eigenvalue problems for complex matrices,
banded matrices,

initialize problem and method..................................................................................... F12ATF
selected eigenvalues, eigenvectors and/or Schur vectors............................................. F12AUF

general matrices,
initialize problem and method..................................................................................... F12ANF
option setting .............................................................................................................. F12ARF
reverse communication implicitly restarted Arnoldi method ....................................... F12APF
reverse communication monitoring ............................................................................. F12ASF
selected eigenvalues, eigenvectors and/or Schur vectors of original problem............. F12AQF

Standard or generalized eigenvalue problems for real nonsymmetric matrices,
banded matrices,

initialize problem and method..................................................................................... F12AFF
selected eigenvalues, eigenvectors and/or Schur vectors............................................. F12AGF

general matrices,
initialize problem and method..................................................................................... F12AAF
option setting .............................................................................................................. F12ADF
reverse communication implicitly restarted Arnoldi method ....................................... F12ABF
reverse communication monitoring ............................................................................. F12AEF
selected eigenvalues, eigenvectors and/or Schur vectors of original problem............. F12ACF

Standard or generalized eigenvalue problems for real symmetric matrices,
banded matrices,

initialize problem and method..................................................................................... F12FFF
selected eigenvalues, eigenvectors and/or Schur vectors............................................. F12FGF

general matrices,
initialize problem and method..................................................................................... F12FAF
option setting .............................................................................................................. F12FDF
reverse communication implicitly restarted Arnoldi(Lanczos) method ........................ F12FBF
reverse communication monitoring ............................................................................. F12FEF
selected eigenvalues and eigenvectors and/or Schur vectors of original problem....... F12FCF

6 Auxiliary Routines Associated with Library Routine Arguments

None.

7 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

F12AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F12AAF is a setup routine in a suite of routines consisting of F12AAF, F12ABF, F12ACF, F12ADF and
F12AEF. It is used to find some of the eigenvalues (and optionally the corresponding eigenvectors) of a
standard or generalized eigenvalue problem defined by real nonsymmetric matrices.

The suite of routines is suitable for the solution of large sparse, standard or generalized, nonsymmetric
eigenproblems where only a few eigenvalues from a selected range of the spectrum are required.

2 Specification

SUBROUTINE F12AAF (N, NEV, NCV, ICOMM, LICOMM, COMM, LCOMM, IFAIL)

INTEGER N, NEV, NCV, ICOMM(max(1,LICOMM)), LICOMM, LCOMM,
IFAIL

&

REAL (KIND=nag_wp) COMM(max(1,LCOMM))

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
sparse, real and nonsymmetric. The suite can also be used to find selected eigenvalues/eigenvectors of
smaller scale dense, real and nonsymmetric problems.

F12AAF is a setup routine which must be called before F12ABF, the reverse communication iterative
solver, and before F12ADF, the options setting routine. F12ACF is a post-processing routine that must
be called following a successful final exit from F12ABF, while F12AEF can be used to return additional
monitoring information during the computation.

This setup routine initializes the communication arrays, sets (to their default values) all options that can
be set by you via the option setting routine F12ADF, and checks that the lengths of the communication
arrays as passed by you are of sufficient length. For details of the options available and how to set them
see Section 11.1 in F12ADF.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia
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5 Arguments

1: N – INTEGER Input

On entry: the order of the matrix A (and the order of the matrix B for the generalized problem)
that defines the eigenvalue problem.

Constraint: N > 0.

2: NEV – INTEGER Input

On entry: the number of eigenvalues to be computed.

Constraint: 0 < NEV < N� 1.

3: NCV – INTEGER Input

On entry: the number of Arnoldi basis vectors to use during the computation.

At present there is no a priori analysis to guide the selection of NCV relative to NEV. However,
it is recommended that NCV � 2� NEVþ 1. If many problems of the same type are to be
solved, you should experiment with increasing NCV while keeping NEV fixed for a given test
problem. This will usually decrease the required number of matrix-vector operations but it also
increases the work and storage required to maintain the orthogonal basis vectors. The optimal
‘cross-over’ with respect to CPU time is problem dependent and must be determined empirically.

Constraint: NEVþ 1 < NCV � N.

4: ICOMMðmax 1;LICOMMð ÞÞ – INTEGER array Communication Array

On exit: contains data to be communicated to the other routines in the suite.

5: LICOMM – INTEGER Input

On entry: the dimension of the array ICOMM as declared in the (sub)program from which
F12AAF is called.

If LICOMM ¼ �1, a workspace query is assumed and the routine only calculates the required
dimensions of ICOMM and COMM, which it returns in ICOMMð1Þ and COMMð1Þ respectively.
Constraint: LICOMM � 140 or LICOMM ¼ �1.

6: COMMðmax 1;LCOMMð ÞÞ – REAL (KIND=nag_wp) array Communication Array

On exit: contains data to be communicated to the other routines in the suite.

7: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
F12AAF is called.

If LCOMM ¼ �1, a workspace query is assumed and the routine only calculates the dimensions
of ICOMM and COMM required by F12ABF, which it returns in ICOMMð1Þ and COMMð1Þ
respectively.

Constraint: LCOMM � 3� Nþ 3� NCV� NCVþ 6� NCVþ 60 or LCOMM ¼ �1.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 0.

IFAIL ¼ 2

On entry, NEV � 0.

IFAIL ¼ 3

On entry, NCV < NEVþ 2 or NCV > N.

IFAIL ¼ 4

On entry, LICOMM < 140 and LICOMM 6¼ �1.

IFAIL ¼ 5

On entry, LCOMM < 3� Nþ 3� NCV� NCVþ 6� NCVþ 60 and LCOMM 6¼ �1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F12AAF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example solves Ax ¼ �x in regular mode, where A is obtained from the standard central
difference discretization of the convection-diffusion operator @2u

@x2
þ @2u

@y2
þ �@u@x on the unit square, with

zero Dirichlet boundary conditions, where � ¼ 100.

10.1 Program Text

! F12AAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12aafe_mod

! F12AAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: av

! .. Parameters ..
Integer, Parameter, Public :: imon = 0, ipoint = 0, nin = 5, &

nout = 6
Contains

Subroutine tv(nx,x,y)
! Compute the matrix vector multiplication y<---T*x where T is a nx
! by nx tridiagonal matrix with constant diagonals (DD, DL and DU).

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: half = 0.5_nag_wp
Real (Kind=nag_wp), Parameter :: rho = 100.0_nag_wp

! .. Scalar Arguments ..
Integer, Intent (In) :: nx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(nx)
Real (Kind=nag_wp), Intent (Out) :: y(nx)

! .. Local Scalars ..
Real (Kind=nag_wp) :: dd, dl, du, nx1, nx2
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
nx1 = real(nx+1,kind=nag_wp)
nx2 = nx1*nx1
dd = 4.0_nag_wp*nx2
dl = -nx2 - half*rho*nx1
du = -nx2 + half*rho*nx1
y(1) = dd*x(1) + du*x(2)
Do j = 2, nx - 1

y(j) = dl*x(j-1) + dd*x(j) + du*x(j+1)
End Do
y(nx) = dl*x(nx-1) + dd*x(nx)
Return

End Subroutine tv
Subroutine av(nx,v,w)

! .. Use Statements ..
Use nag_library, Only: daxpy

! .. Scalar Arguments ..
Integer, Intent (In) :: nx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: v(nx*nx)
Real (Kind=nag_wp), Intent (Out) :: w(nx*nx)

! .. Local Scalars ..
Real (Kind=nag_wp) :: nx2
Integer :: j, lo
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! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
nx2 = -real((nx+1)*(nx+1),kind=nag_wp)
Call tv(nx,v(1),w(1))

! The NAG name equivalent of daxpy is f06ecf
Call daxpy(nx,nx2,v(nx+1),1,w(1),1)
Do j = 2, nx - 1

lo = (j-1)*nx
Call tv(nx,v(lo+1),w(lo+1))
Call daxpy(nx,nx2,v(lo-nx+1),1,w(lo+1),1)
Call daxpy(nx,nx2,v(lo+nx+1),1,w(lo+1),1)

End Do
lo = (nx-1)*nx
Call tv(nx,v(lo+1),w(lo+1))
Call daxpy(nx,nx2,v(lo-nx+1),1,w(lo+1),1)
Return

End Subroutine av
End Module f12aafe_mod
Program f12aafe

! F12AAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dnrm2, f12aaf, f12abf, f12acf, f12adf, f12aef, &

nag_wp
Use f12aafe_mod, Only: av, imon, ipoint, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: sigmai, sigmar
Integer :: i, ifail, ifail1, irevcm, lcomm, &

ldv, licomm, n, nconv, ncv, nev, &
niter, nshift, nx

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ax(:), comm(:), d(:,:), mx(:), &

resid(:), v(:,:), x(:)
Integer, Allocatable :: icomm(:)

! .. Executable Statements ..
Write (nout,*) ’F12AAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) nx, nev, ncv
n = nx*nx
ldv = n
lcomm = 3*n + 3*ncv*ncv + 6*ncv + 60
licomm = 140
Allocate (ax(n),comm(lcomm),d(ncv,3),mx(n),resid(n),v(ldv,ncv),x(n), &

icomm(licomm))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f12aaf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Set the region of the spectrum that is required.
ifail = 0
Call f12adf(’SMALLEST MAG’,icomm,comm,ifail)

If (ipoint/=0) Then

! Use pointers to workspace in calculating matrix vector products
! rather than interfacing through the array X.

ifail = 0
Call f12adf(’POINTERS=YES’,icomm,comm,ifail)

End If

irevcm = 0
ifail = -1
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loop: Do
Call f12abf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)

If (irevcm/=5) Then
If (irevcm==-1 .Or. irevcm==1) Then

! Perform matrix vector multiplication y <--- Op*x
If (ipoint==0) Then

Call av(nx,x,ax)
x(1:n) = ax(1:n)

Else

Call av(nx,comm(icomm(1)),comm(icomm(2)))

End If
Else If (irevcm==4 .And. imon/=0) Then

! Set IMON=1 to output monitoring information.
Call f12aef(niter,nconv,d,d(1,2),d(1,3),icomm,comm)

! The NAG name equivalent of dnrm2 is f06ejf
Write (6,99999) niter, nconv, dnrm2(nev,d(1,3),1)

End If
Else

Exit loop
End If

End Do loop

If (ifail==0) Then

! Post-Process using F12ACF to compute eigenvalues and
! (by default) the corresponding eigenvectors.

ifail1 = 0
Call f12acf(nconv,d,d(1,2),v,ldv,sigmar,sigmai,resid,v,ldv,comm,icomm, &

ifail1)

Write (nout,99998) nconv
Do i = 1, nconv

Write (nout,99997) i, d(i,1), d(i,2)
End Do

End If

99999 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &
’f estimates =’,E16.8)

99998 Format (1X,/,’ The ’,I4,’ Ritz values of smallest magnitude are:’,/)
99997 Format (1X,I8,5X,’( ’,F12.4,’ , ’,F12.4,’ )’)

End Program f12aafe

10.2 Program Data

F12AAF Example Program Data
10 10 30 : Values for NX NEV and NCV

10.3 Program Results

F12AAF Example Program Results

The 10 Ritz values of smallest magnitude are:

1 ( 251.8027 , 152.7109 )
2 ( 251.8027 , -152.7109 )
3 ( 280.4166 , 152.7109 )
4 ( 280.4166 , -152.7109 )
5 ( 325.5237 , 152.7109 )
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6 ( 325.5237 , -152.7109 )
7 ( 383.4696 , 152.7109 )
8 ( 383.4696 , -152.7109 )
9 ( 449.5598 , 152.7109 )

10 ( 449.5598 , -152.7109 )
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NAG Library Routine Document

F12ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12ADF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12ADF for a detailed description of the specification of the optional parameters.

1 Purpose

F12ABF is an iterative solver used to find some of the eigenvalues (and optionally the corresponding
eigenvectors) of a standard or generalized eigenvalue problem defined by real nonsymmetric matrices.
This is part of a suite of routines that also includes F12AAF, F12ACF, F12ADF and F12AEF. It is

2 Specification

SUBROUTINE F12ABF (IREVCM, RESID, V, LDV, X, MX, NSHIFT, COMM, ICOMM,
IFAIL)

&

INTEGER IREVCM, LDV, NSHIFT, ICOMM(*), IFAIL
REAL (KIND=nag_wp) RESID(*), V(LDV,*), X(*), MX(*), COMM(*)

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
sparse, real and nonsymmetric. The suite can also be used to find selected eigenvalues/eigenvectors of
smaller scale dense, real and nonsymmetric problems.

F12ABF is a reverse communication routine, based on the ARPACK routine dnaupd, using the
Implicitly Restarted Arnoldi iteration method. The method is described in Lehoucq and Sorensen (1996)
and Lehoucq (2001) while its use within the ARPACK software is described in great detail in Lehoucq
et al. (1998). An evaluation of software for computing eigenvalues of sparse nonsymmetric matrices is
provided in Lehoucq and Scott (1996). This suite of routines offers the same functionality as the
ARPACK software for real nonsymmetric problems, but the interface design is quite different in order
to make the option setting clearer and to simplify the interface of F12ABF.

The setup routine F12AAF must be called before F12ABF, the reverse communication iterative solver.
Options may be set for F12ABF by prior calls to the option setting routine F12ADF and a post-
processing routine F12ACF must be called following a successful final exit from F12ABF. F12AEF,
may be called following certain flagged, intermediate exits from F12ABF to provide additional
monitoring information about the computation.

F12ABF uses reverse communication, i.e., it returns repeatedly to the calling program with the
argument IREVCM (see Section 5) set to specified values which require the calling program to carry
out one of the following tasks:

– compute the matrix-vector product y ¼ OPx, where OP is defined by the computational mode;

– compute the matrix-vector product y ¼ Bx;
– notify the completion of the computation;

– allow the calling program to monitor the solution.

The problem type to be solved (standard or generalized), the spectrum of eigenvalues of interest, the
mode used (regular, regular inverse, shifted inverse, shifted real or shifted imaginary) and other options
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can all be set using the option setting routine F12ADF (see Section 11.1 in F12ADF for details on
setting options and of the default settings).

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than X, MX and COMM must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: IREVCM ¼ 0, otherwise an error condition will be raised.

On intermediate re-entry: must be unchanged from its previous exit value. Changing IREVCM to
any other value between calls will result in an error.

On intermediate exit: has the following meanings.

IREVCM ¼ �1
The calling program must compute the matrix-vector product y ¼ OPx, where x is stored
in X (by default) or in the array COMM (starting from the location given by the first
element of ICOMM) when the option Pointers ¼ YES is set in a prior call to F12ADF.
The result y is returned in X (by default) or in the array COMM (starting from the location
given by the second element of ICOMM) when the option Pointers ¼ YES is set. If B is
not symmetric semidefinite then the precomputed values in MX should not be used (see
the explanation under IREVCM ¼ 2).

IREVCM ¼ 1
The calling program must compute the matrix-vector product y ¼ OPx. This is similar to
the case IREVCM ¼ �1 except that the result of the matrix-vector product Bx (as required
in some computational modes) has already been computed and is available in MX (by
default) or in the array COMM (starting from the location given by the third element of
ICOMM) when the option Pointers ¼ YES is set.

IREVCM ¼ 2
The calling program must compute the matrix-vector product y ¼ Bx, where x is stored as
described in the case IREVCM ¼ �1 and y is returned in the location described by the
case IREVCM ¼ 1. This computation is requested when solving the Generalized problem
using either Shifted Inverse Imaginary or Shifted Inverse Real; in these cases B is used
as an inner-product space and requires that B be symmetric semidefinite. If neither A nor
B is symmetric semidefinite then the problem should be reformulated in a Standard form.

IREVCM ¼ 3
Compute the NSHIFT real and imaginary parts of the shifts where the real parts are to be
returned in the first NSHIFT locations of the array X and the imaginary parts are to be
returned in the first NSHIFT locations of the array MX. Only complex conjugate pairs of
shifts may be applied and the pairs must be placed in consecutive locations. This value of
IREVCM will only arise if the optional parameter Supplied Shifts is set in a prior call to
F12ADF which is intended for experienced users only; the default and recommended
option is to use exact shifts (see Lehoucq et al. (1998) for details).
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IREVCM ¼ 4
Monitoring step: a call to F12AEF can now be made to return the number of Arnoldi
iterations, the number of converged Ritz values, their real and imaginary parts, and the
corresponding Ritz estimates.

On final exit: IREVCM ¼ 5: F12ABF has completed its tasks. The value of IFAIL determines
whether the iteration has been successfully completed, or whether errors have been detected. On
successful completion F12ACF must be called to return the requested eigenvalues and
eigenvectors (and/or Schur vectors).

Constraint: on initial entry, IREVCM ¼ 0; on re-entry IREVCM must remain unchanged.

2: RESIDð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array RESID must be at least N (see F12AAF).

On initial entry: need not be set unless the option Initial Residual has been set in a prior call to
F12ADF in which case RESID should contain an initial residual vector, possibly from a previous
run.

On intermediate re-entry: must be unchanged from its previous exit. Changing RESID to any
other value between calls may result in an error exit.

On intermediate exit: contains the current residual vector.

On final exit: contains the final residual vector.

3: VðLDV; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;NCVð Þ (see F12AAF).

On initial entry: need not be set.

On intermediate re-entry: must be unchanged from its previous exit.

On intermediate exit: contains the current set of Arnoldi basis vectors.

On final exit: contains the final set of Arnoldi basis vectors.

4: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F12ABF
is called.

Constraint: LDV � N.

5: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least N if Pointers ¼ NO (default) and at least 1 if
Pointers ¼ YES (see F12AAF).

On initial entry: need not be set, it is used as a convenient mechanism for accessing elements of
COMM.

On intermediate re-entry: if Pointers ¼ YES, X need not be set.

If Pointers ¼ NO, X must contain the result of y ¼ OPx when IREVCM returns the value �1 or
þ1. It must return the real parts of the computed shifts when IREVCM returns the value 3.

On intermediate exit: if Pointers ¼ YES, X is not referenced.

If Pointers ¼ NO, X contains the vector x when IREVCM returns the value �1 or þ1.
On final exit: does not contain useful data.
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6: MXð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array MX must be at least N if Pointers ¼ NO (default) and at least 1
if Pointers ¼ YES (see F12AAF).

On initial entry: need not be set, it is used as a convenient mechanism for accessing elements of
COMM.

On intermediate re-entry: if Pointers ¼ YES, MX need not be set.

If Pointers ¼ NO, MX must contain the result of y ¼ Bx when IREVCM returns the value 2. It
must return the imaginary parts of the computed shifts when IREVCM returns the value 3.

On intermediate exit: if Pointers ¼ YES, MX is not referenced.

If Pointers ¼ NO, MX contains the vector Bx when IREVCM returns the value þ1.
On final exit: does not contain any useful data.

7: NSHIFT – INTEGER Output

On intermediate exit: if the option Supplied Shifts is set and IREVCM returns a value of 3,
NSHIFT returns the number of complex shifts required.

8: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least max 1;LCOMMð Þ (see F12AAF).

On initial entry: must remain unchanged following a call to the setup routine F12AAF.

On exit: contains data defining the current state of the iterative process.

9: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ (see F12AAF).

On initial entry: must remain unchanged following a call to the setup routine F12AAF.

On exit: contains data defining the current state of the iterative process.

10: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On intermediate exit: the value of IFAIL is meaningless and should be ignored.

On final exit: (i.e., when IREVCM ¼ 5) IFAIL ¼ 0, unless the routine detects an error or a
warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On initial entry, the maximum number of iterations � 0, the option Iteration Limit has been set
to a non-positive value.
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IFAIL ¼ 2

The options Generalized and Regular are incompatible.

IFAIL ¼ 3

The option Initial Residual was selected but the starting vector held in RESID is zero.

IFAIL ¼ 4

The maximum number of iterations has been reached. Some Ritz values may have converged; a
subsequent call to F12ACF will return the number of converged values and the converged values.

IFAIL ¼ 5

No shifts could be applied during a cycle of the implicitly restarted Arnoldi iteration. One
possibility is to increase the size of NCV relative to NEV (see Section 5 in F12AAF for details of
these arguments).

IFAIL ¼ 6

Could not build an Arnoldi factorization. Consider changing NCV or NEV in the initialization
routine (see Section 5 in F12AAF for details of these arguments).

IFAIL ¼ 7

Unexpected error in internal call to compute eigenvalues and corresponding error bounds of the
current upper Hessenberg matrix. Please contact NAG.

IFAIL ¼ 8

Either the initialization routine F12AAF has not been called prior to the first call of this routine
or a communication array has become corrupted.

IFAIL ¼ 9

An unexpected error has occurred. Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy of a Ritz value, �, is considered acceptable if its Ritz estimate
� Tolerance� �j j. The default Tolerance used is the machine precision given by X02AJF.

8 Parallelism and Performance

F12ABF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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F12ABF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example solves Ax ¼ �x in shift-invert mode, where A is obtained from the standard central

difference discretization of the convection-diffusion operator @2u
@x2
þ @2u

@y2
þ �@u

@x
on the unit square, with

zero Dirichlet boundary conditions. The shift used is a real number.

10.1 Program Text

Program f12abfe

! F12ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgttrf, dgttrs, dnrm2, f12aaf, f12abf, f12acf, &

f12adf, f12aef, nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter :: imon = 0, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, rho, s, s1, s2, s3, sigmai, &

sigmar
Integer :: i, ifail, ifail1, info, irevcm, &

lcomm, ldv, licomm, n, nconv, ncv, &
nev, niter, nshift, nx

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: comm(:), d(:,:), dd(:), dl(:), &

du(:), du2(:), mx(:), resid(:), &
v(:,:), x(:)

Integer, Allocatable :: icomm(:), ipiv(:)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Write (nout,*) ’F12ABF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) nx, nev, ncv, rho, sigmar, sigmai
n = nx*nx
ldv = n
licomm = 140
lcomm = 3*n + 3*ncv*ncv + 6*ncv + 60
Allocate (comm(lcomm),d(ncv,3),dd(n),dl(n),du(n),du2(n),mx(n),resid(n), &

v(ldv,ncv),x(n),icomm(licomm),ipiv(n))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f12aaf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)
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! Set the mode.
ifail = 0
Call f12adf(’SHIFTED INVERSE REAL’,icomm,comm,ifail)

! Construct C = A - SIGMA*I, and factorize using DGTTRF/F07CDF.
h = one/real(n+1,kind=nag_wp)
s = rho*h/two
s1 = -one - s
s2 = two - sigmar
s3 = -one + s
dl(1:n-1) = s1
dd(1:n-1) = s2
du(1:n-1) = s3
dd(n) = s2

! The NAG name equivalent of dgttrf is f07cdf
Call dgttrf(n,dl,dd,du,du2,ipiv,info)

irevcm = 0
ifail = -1

loop: Do
Call f12abf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)

If (irevcm/=5) Then
If (irevcm==-1 .Or. irevcm==1) Then

! Perform x <--- OP*x = inv[A-SIGMA*I]*x.
! The NAG name equivalent of dgttrs is f07cef

Call dgttrs(’N’,n,1,dl,dd,du,du2,ipiv,x,n,info)
Else If (irevcm==4 .And. imon/=0) Then

! Output monitoring information
Call f12aef(niter,nconv,d,d(1,2),d(1,3),icomm,comm)

! The NAG name equivalent of dnrm2 is f06ejf
Write (6,99999) niter, nconv, dnrm2(nev,d(1,3),1)

End If
Else

Exit loop
End If

End Do loop
If (ifail==0) Then

! Post-Process using F12ACF to compute eigenvalues/vectors.
ifail1 = 0
Call f12acf(nconv,d,d(1,2),v,ldv,sigmar,sigmai,resid,v,ldv,comm,icomm, &

ifail1)
! Print computed eigenvalues.

Write (nout,99998) nconv
Do i = 1, nconv

Write (nout,99997) i, d(i,1), d(i,2)
End Do

End If

99999 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &
’f estimates =’,E16.8)

99998 Format (1X,/,’ The ’,I4,’ Ritz values of closest to unity are:’,/)
99997 Format (1X,I8,5X,’( ’,F12.4,’ , ’,F12.4,’ )’)

End Program f12abfe

10.2 Program Data

F12ABF Example Program Data
10 4 20 10.0 1.0 0.0 : Values for NX NEV NCV RHO SIGMAR and SIGMAI
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10.3 Program Results

F12ABF Example Program Results

The 4 Ritz values of closest to unity are:

1 ( 1.0192 , 0.0000 )
2 ( 0.9656 , 0.0000 )
3 ( 1.0738 , 0.0000 )
4 ( 0.9129 , 0.0000 )
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NAG Library Routine Document

F12ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12ADF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12ADF for a detailed description of the specification of the optional parameters.

1 Purpose

F12ACF is a post-processing routine that must be called following a final exit from F12ABF. These are
part of a suite of routines for the solution of real sparse eigensystems. The suite also includes F12AAF,
F12ADF and F12AEF.

2 Specification

SUBROUTINE F12ACF (NCONV, DR, DI, Z, LDZ, SIGMAR, SIGMAI, RESID, V, LDV,
COMM, ICOMM, IFAIL)

&

INTEGER NCONV, LDZ, LDV, ICOMM(*), IFAIL
REAL (KIND=nag_wp) DR(*), DI(*), Z(LDZ,*), SIGMAR, SIGMAI, RESID(*),

V(LDV,*), COMM(*)
&

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
sparse, real and nonsymmetric. The suite can also be used to find selected eigenvalues/eigenvectors of
smaller scale dense, real and nonsymmetric problems.

Following a call to F12ABF, F12ACF returns the converged approximations to eigenvalues and
(optionally) the corresponding approximate eigenvectors and/or an orthonormal basis for the associated
approximate invariant subspace. The eigenvalues (and eigenvectors) are selected from those of a
standard or generalized eigenvalue problem defined by real nonsymmetric matrices. There is negligible
additional cost to obtain eigenvectors; an orthonormal basis is always computed, but there is an
additional storage cost if both are requested.

F12ACF is based on the routine dneupd from the ARPACK package, which uses the Implicitly
Restarted Arnoldi iteration method. The method is described in Lehoucq and Sorensen (1996) and
Lehoucq (2001) while its use within the ARPACK software is described in great detail in Lehoucq et al.
(1998). An evaluation of software for computing eigenvalues of sparse nonsymmetric matrices is
provided in Lehoucq and Scott (1996). This suite of routines offers the same functionality as the
ARPACK software for real nonsymmetric problems, but the interface design is quite different in order
to make the option setting clearer and to simplify some of the interfaces.

F12ACF, is a post-processing routine that must be called following a successful final exit from
F12ABF. F12ACF uses data returned from F12ABF and options, set either by default or explicitly by
calling F12ADF, to return the converged approximations to selected eigenvalues and (optionally):

– the corresponding approximate eigenvectors;

– an orthonormal basis for the associated approximate invariant subspace;

– both.
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5 Arguments

1: NCONV – INTEGER Output

On exit: the number of converged eigenvalues as found by F12ABF.

2: DRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array DR must be at least NEV (see F12AAF).

On exit: the first NCONV locations of the array DR contain the real parts of the converged
approximate eigenvalues.

3: DIð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array DI must be at least NEV (see F12AAF).

On exit: the first NCONV locations of the array DI contain the imaginary parts of the converged
approximate eigenvalues.

4: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least NEVþ 1 if the default option
Vectors ¼ RITZ has been selected and at least 1 if the option Vectors ¼ NONE or SCHUR has
been selected (see F12AAF).

On exit: if the default option Vectors ¼ RITZ (see F12ADF) has been selected then Z contains
the final set of eigenvectors corresponding to the eigenvalues held in DR and DI. The complex
eigenvector associated with the eigenvalue with positive imaginary part is stored in two
consecutive columns. The first column holds the real part of the eigenvector and the second
column holds the imaginary part. The eigenvector associated with the eigenvalue with negative
imaginary part is simply the complex conjugate of the eigenvector associated with the positive
imaginary part.

5: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F12ACF
is called.

Constraints:

if the default option Vectors ¼ Ritz has been selected, LDZ � N;
if the option Vectors ¼ None or Schur has been selected, LDZ � 1.

6: SIGMAR – REAL (KIND=nag_wp) Input

On entry: if one of the Shifted Inverse Real modes have been selected then SIGMAR contains
the real part of the shift used; otherwise SIGMAR is not referenced.
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7: SIGMAI – REAL (KIND=nag_wp) Input

On entry: if one of the Shifted Inverse Real modes have been selected then SIGMAI contains
the imaginary part of the shift used; otherwise SIGMAI is not referenced.

8: RESIDð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RESID must be at least N (see F12AAF).

On entry: must not be modified following a call to F12ABF since it contains data required by
F12ACF.

9: VðLDV; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;NCVð Þ (see F12AAF).

On entry: the NCV columns of V contain the Arnoldi basis vectors for OP as constructed by
F12ABF.

On exit: if the option Vectors ¼ SCHUR has been set, or the option Vectors ¼ RITZ has been
set and a separate array Z has been passed (i.e., Z does not equal V), then the first NCONV
columns of V will contain approximate Schur vectors that span the desired invariant subspace.

10: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F12ACF
is called.

Constraint: LDV � N.

11: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least max 1;LCOMMð Þ (see F12AAF).

On initial entry: must remain unchanged from the prior call to F12ABF.

On exit: contains data on the current state of the solution.

12: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ (see F12AAF).

On initial entry: must remain unchanged from the prior call to F12ABF.

On exit: contains data on the current state of the solution.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDZ < max 1;Nð Þ or LDZ < 1 when no vectors are required.

IFAIL ¼ 2

On entry, the option Vectors ¼ Select was selected, but this is not yet implemented.

IFAIL ¼ 3

The number of eigenvalues found to sufficient accuracy prior to calling F12ACF, as
communicated through the argument ICOMM, is zero.

IFAIL ¼ 4

The number of converged eigenvalues as calculated by F12ABF differ from the value passed to it
through the argument ICOMM.

IFAIL ¼ 5

Unexpected error during calculation of a real Schur form: there was a failure to compute all the
converged eigenvalues. Please contact NAG.

IFAIL ¼ 6

Unexpected error: the computed Schur form could not be reordered by an internal call. Please
contact NAG.

IFAIL ¼ 7

Unexpected error in internal call while calculating eigenvectors. Please contact NAG.

IFAIL ¼ 8

Either the solver routine F12ABF has not been called prior to the call of this routine or a
communication array has become corrupted.

IFAIL ¼ 9

The routine was unable to dynamically allocate sufficient internal workspace. Please contact
NAG.

IFAIL ¼ 10

An unexpected error has occurred. Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy of a Ritz value, �, is considered acceptable if its Ritz estimate � Tolerance� �j j.
The default Tolerance used is the machine precision given by X02AJF.

8 Parallelism and Performance

F12ACF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example solves Ax ¼ �Bx in regular-invert mode, where A and B are obtained from the standard
central difference discretization of the one-dimensional convection-diffusion operator d

2u
dx2
þ �dudx on 0; 1½ �,

with zero Dirichlet boundary conditions.

10.1 Program Text

! F12ACF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12acfe_mod

! F12ACF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: av, mv

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Integer, Parameter, Public :: imon = 0, nin = 5, nout = 6

Contains
Subroutine av(nx,rho,v,w)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rho
Integer, Intent (In) :: nx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: v(nx*nx)
Real (Kind=nag_wp), Intent (Out) :: w(nx*nx)

! .. Local Scalars ..
Real (Kind=nag_wp) :: dd, dl, du, h, s

F12 – Large Scale Eigenproblems F12ACF

Mark 26 F12ACF.5



Integer :: j, n
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

n = nx*nx
h = one/real(n+1,kind=nag_wp)
s = rho/two
dd = two/h
dl = -one/h - s
du = -one/h + s
w(1) = dd*v(1) + du*v(2)
Do j = 2, n - 1

w(j) = dl*v(j-1) + dd*v(j) + du*v(j+1)
End Do
w(n) = dl*v(n-1) + dd*v(n)
Return

End Subroutine av

Subroutine mv(nx,v,w)

! .. Use Statements ..
Use nag_library, Only: dscal

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: four = 4.0_nag_wp

! .. Scalar Arguments ..
Integer, Intent (In) :: nx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: v(nx*nx)
Real (Kind=nag_wp), Intent (Out) :: w(nx*nx)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h
Integer :: j, n

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
n = nx*nx
w(1) = four*v(1) + one*v(2)
Do j = 2, n - 1

w(j) = one*v(j-1) + four*v(j) + one*v(j+1)
End Do
w(n) = one*v(n-1) + four*v(n)
h = one/real(n+1,kind=nag_wp)

! The NAG name equivalent of dscal is f06edf
Call dscal(n,h,w,1)
Return

End Subroutine mv
End Module f12acfe_mod

Program f12acfe

! F12ACF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dnrm2, dpttrf, dpttrs, f12aaf, f12abf, f12acf, &

f12adf, f12aef, nag_wp
Use f12acfe_mod, Only: av, imon, mv, nin, nout, one

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, rho, sigmai, sigmar
Integer :: ifail, ifail1, info, irevcm, j, &

lcomm, ldv, licomm, n, nconv, ncv, &
nev, niter, nshift, nx

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: comm(:), d(:,:), md(:), me(:), &

mx(:), resid(:), v(:,:), x(:)
Integer, Allocatable :: icomm(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F12ACF Example Program Results’
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Write (nout,*)
! Skip heading in data file

Read (nin,*)
Read (nin,*) nx, nev, ncv, rho
n = nx*nx
ldv = n
licomm = 140
lcomm = 3*n + 3*ncv*ncv + 6*ncv + 60
Allocate (comm(lcomm),d(ncv,3),md(n),me(n-1),mx(n),resid(n),v(ldv,ncv), &

x(n),icomm(licomm))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f12aaf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Set the mode.
ifail = 0
Call f12adf(’REGULAR INVERSE’,icomm,comm,ifail)

! Set problem type.
Call f12adf(’GENERALIZED’,icomm,comm,ifail)

! Use pointers to Workspace in calculating matrix vector
! products rather than interfacing through the array X

Call f12adf(’POINTERS=YES’,icomm,comm,ifail)

! Construct M, and factorize using DPTTRF/F07JDF.
h = one/real(n+1,kind=nag_wp)
md(1:n-1) = 4.0_nag_wp*h
me(1:n-1) = h
md(n) = 4.0_nag_wp*h

! The NAG name equivalent of dpttrf is f07jdf
Call dpttrf(n,md,me,info)

irevcm = 0

ifail = -1
loop: Do

Call f12abf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)

If (irevcm/=5) Then
Select Case (irevcm)
Case (-1,1)

! Perform y <--- OP*x = inv[M]*A*x using DPTTRS/F07JEF.
Call av(nx,rho,comm(icomm(1)),comm(icomm(2)))

! The NAG name equivalent of dpttrs is f07jef
Call dpttrs(n,1,md,me,comm(icomm(2)),n,info)

Case (2)
! Perform y <--- M*x.

Call mv(nx,comm(icomm(1)),comm(icomm(2)))
Case (4)

If (imon/=0) Then
! Output monitoring information if required.

Call f12aef(niter,nconv,d,d(1,2),d(1,3),icomm,comm)
! The NAG name equivalent of dnrm2 is f06ejf

Write (6,99999) niter, nconv, dnrm2(nev,d(1,3),1)
End If

End Select
Else

Exit loop
End If

End Do loop
If (ifail==0) Then

! Post-Process using F12ACF to compute eigenvalues/vectors.
ifail1 = 0
Call f12acf(nconv,d,d(1,2),v,ldv,sigmar,sigmai,resid,v,ldv,comm,icomm, &

ifail1)
! Print computed eigenvalues.

Write (nout,99998) nconv
Do j = 1, nconv

Write (nout,99997) j, d(j,1), d(j,2)
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End Do
End If

99999 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &
’f estimates =’,E16.8)

99998 Format (1X,/,’ The ’,I4,’ generalized Ritz values of largest ’, &
’magnitude are:’,/)

99997 Format (1X,I8,5X,’( ’,F12.4,’ , ’,F12.4,’ )’)
End Program f12acfe

10.2 Program Data

F12ACF Example Program Data
10 4 20 10.0 : Values for NX NEV NCV RHO

10.3 Program Results

F12ACF Example Program Results

The 4 generalized Ritz values of largest magnitude are:

1 ( 20383.0384 , 0.0000 )
2 ( 20338.7563 , 0.0000 )
3 ( 20265.2844 , 0.0000 )
4 ( 20163.1142 , 0.0000 )
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NAG Library Routine Document

F12ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then this routine need not be called. If,
however, you wish to reset some or all of the settings please refer to Section 11 for a detailed
description of the specification of the optional parameters.

1 Purpose

F12ADF is an option setting routine that may be used to supply individual optional parameters to
F12ABF and F12ACF. These are part of a suite of routines that also includes: F12AAF and F12AEF.
The initialization routine F12AAF must have been called prior to calling F12ADF.

2 Specification

SUBROUTINE F12ADF (STR, ICOMM, COMM, IFAIL)

INTEGER ICOMM(*), IFAIL
REAL (KIND=nag_wp) COMM(*)
CHARACTER(*) STR

3 Description

F12ADF may be used to supply values for optional parameters to F12ABF and F12ACF. It is only
necessary to call F12ADF for those arguments whose values are to be different from their default
values. One call to F12ADF sets one argument value.

Each optional parameter is defined by a single character string consisting of one or more items. The
items associated with a given option must be separated by spaces, or equals signs ¼½ �. Alphabetic
characters may be upper or lower case. The string

’Vectors = None’

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 16 contiguous
characters in Fortran's I, F, E or D format.

F12ADF does not have an equivalent routine from the ARPACK package which passes options by
directly setting values to scalar arguments or to specific elements of array arguments. F12ADF is
intended to make the passing of options more transparent and follows the same principle as the single
option setting routines in Chapter E04.

The setup routine F12AAF must be called prior to the first call to F12ADF and all calls to F12ADF
must precede the first call to F12ABF, the reverse communication iterative solver.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 11.
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5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 and Section 11).

2: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ (see F12AAF).

On initial entry: must remain unchanged following a call to the setup routine F12AAF.

On exit: contains data on the current options set.

3: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least 60.

On initial entry: must remain unchanged following a call to the setup routine F12AAF.

On exit: contains data on the current options set.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The string passed in STR contains an ambiguous keyword.

IFAIL ¼ 2

The string passed in STR contains a keyword that could not be recognized.
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IFAIL ¼ 3

The string passed in STR contains a second keyword that could not be recognized.

IFAIL ¼ 4

The initialization routine F12AAF has not been called or a communication array has become
corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F12ADF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example solves Ax ¼ �Bx in shifted-inverse mode, where A and B are derived from the finite
element discretization of the one-dimensional convection-diffusion operator d2u

dx2
þ �dudx on the interval

0; 1½ �, with zero Dirichlet boundary conditions.

The shift � is a real number, and the operator used in the shifted-inverse iterative process is
OP ¼ A� �Bð Þ�1B.

10.1 Program Text

! F12ADF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12adfe_mod

! F12ADF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
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Public :: mv
! .. Parameters ..

Real (Kind=nag_wp), Parameter, Public :: four = 4.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: six = 6.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: two = 2.0_nag_wp
Integer, Parameter, Public :: imon = 0, nin = 5, nout = 6

Contains
Subroutine mv(n,v)

! Compute the in-place matrix vector multiplication X<---M*X,
! where M is mass matrix formed by using piecewise linear elements
! on [0,1].

! .. Use Statements ..
Use nag_library, Only: dscal

! .. Scalar Arguments ..
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: v(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, vm1, vv
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
vm1 = v(1)
v(1) = (four*v(1)+v(2))/six
Do j = 2, n - 1

vv = v(j)
v(j) = (vm1+four*vv+v(j+1))/six
vm1 = vv

End Do
v(n) = (vm1+four*v(n))/six

h = one/real(n+1,kind=nag_wp)
! The NAG name equivalent of dscal is f06edf

Call dscal(n,h,v,1)
Return

End Subroutine mv
End Module f12adfe_mod

Program f12adfe

! F12ADF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgttrf, dgttrs, dnrm2, f12aaf, f12abf, f12acf, &

f12adf, f12aef, nag_wp
Use f12adfe_mod, Only: four, imon, mv, nin, nout, one, six, two

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, rho, s, s1, s2, s3, sigmai, &

sigmar
Integer :: ifail, ifail1, info, irevcm, j, &

lcomm, ldv, licomm, n, nconv, ncv, &
nev, niter, nshift, nx

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: comm(:), d(:,:), dd(:), dl(:), &

du(:), du2(:), mx(:), resid(:), &
v(:,:), x(:)

Integer, Allocatable :: icomm(:), ipiv(:)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Write (nout,*) ’F12ADF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) nx, nev, ncv, rho, sigmar, sigmai
n = nx*nx
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ldv = n
licomm = 140
lcomm = 3*n + 3*ncv*ncv + 6*ncv + 60
Allocate (comm(lcomm),d(ncv,3),dd(n),dl(n),du(n),du2(n),mx(n),resid(n), &

v(ldv,ncv),x(n),icomm(licomm),ipiv(n))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f12aaf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Set the mode.
Call f12adf(’SHIFTED REAL’,icomm,comm,ifail)

! Set problem type
ifail = 0
Call f12adf(’GENERALIZED’,icomm,comm,ifail)

! Construct C = A - SIGMA*I, and factor C using DGTTRF/F07CDF.
h = one/real(n+1,kind=nag_wp)
s = rho/two
s1 = -one/h - s - sigmar*h/six
s2 = two/h - four*sigmar*h/six
s3 = -one/h + s - sigmar*h/six
dl(1:n-1) = s1
dd(1:n-1) = s2
du(1:n-1) = s3
dd(n) = s2

! The NAG name equivalent of dgttrf is f07cdf
Call dgttrf(n,dl,dd,du,du2,ipiv,info)

irevcm = 0

ifail = -1
loop: Do

Call f12abf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)

If (irevcm/=5) Then
Select Case (irevcm)
Case (-1)

! Perform x <--- OP*x = inv[A-SIGMA*M]*M*x.
Call mv(n,x)

! The NAG name equivalent of dgttrs is f07cef
Call dgttrs(’N’,n,1,dl,dd,du,du2,ipiv,x,n,info)

Case (1)
! Perform x <--- OP*x = inv[A-SIGMA*M]*M*x.

Call dgttrs(’N’,n,1,dl,dd,du,du2,ipiv,mx,n,info)
x(1:n) = mx(1:n)

Case (2)
! Perform y <--- M*x

Call mv(n,x)
Case (4)

If (imon/=0) Then
! Output monitoring information

Call f12aef(niter,nconv,d,d(1,2),d(1,3),icomm,comm)
! The NAG name equivalent of dnrm2 is f06ejf

Write (6,99999) niter, nconv, dnrm2(nev,d(1,3),1)
End If

End Select
Else

Exit loop
End If

End Do loop
If (ifail==0) Then

! Post-Process using F12ACF to compute eigenvalues/vectors.
ifail1 = 0
Call f12acf(nconv,d,d(1,2),v,ldv,sigmar,sigmai,resid,v,ldv,comm,icomm, &

ifail1)
! Print computed eigenvalues.

Write (nout,99998) nconv
Do j = 1, nconv

Write (nout,99997) j, d(j,1), d(j,2)
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End Do
End If

99999 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &
’f estimates =’,E16.8)

99998 Format (1X,/,’ The ’,I4,’ generalized Ritz values closest to ’, &
’unity are:’,/)

99997 Format (1X,I8,5X,’( ’,F12.4,’ , ’,F12.4,’ )’)
End Program f12adfe

10.2 Program Data

F12ADF Example Program Data
10 4 10 10.0 1.0 0.0 : Values for NX NEV NCV RHO SIGMAR and SIGMAI

10.3 Program Results

F12ADF Example Program Results

The 4 generalized Ritz values closest to unity are:

1 ( 34.8634 , 0.0000 )
2 ( 64.4479 , 0.0000 )
3 ( 113.7872 , 0.0000 )
4 ( 182.9293 , 0.0000 )

11 Optional Parameters

Several optional parameters for the computational routines F12ABF and F12ACF define choices in the
problem specification or the algorithm logic. In order to reduce the number of formal arguments of
F12ABF and F12ACF these optional parameters have associated default values that are appropriate for
most problems. Therefore, you need only specify those optional parameters whose values are to be
different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 11.1.

Advisory

Defaults

Exact Shifts

Generalized

Initial Residual

Iteration Limit

Largest Imaginary

Largest Magnitude

Largest Real

List

Monitoring

Nolist

Pointers

Print Level

Random Residual

Regular

Regular Inverse

Shifted Inverse Imaginary
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Shifted Inverse Real

Smallest Imaginary

Smallest Magnitude

Smallest Real

Standard

Supplied Shifts

Tolerance

Vectors

Optional parameters may be specified by calling F12ADF before a call to F12ABF, but after a call to
F12AAF. One call is necessary for each optional parameter.

All optional parameters you do not specify are set to their default values. Optional parameters you
specify are unaltered by F12ABF and F12ACF (unless they define invalid values) and so remain in
effect for subsequent calls unless you alter them.

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Advisory i Default ¼ the value returned by X04ABF

The destination for advisory messages.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Exact Shifts Default
Supplied Shifts

During the Arnoldi iterative process, shifts are applied internally as part of the implicit restarting
scheme. The shift strategy used by default and selected by the Exact Shifts is strongly recommended
over the alternative Supplied Shifts (see Lehoucq et al. (1998) for details of shift strategies).

If Exact Shifts are used then these are computed internally by the algorithm in the implicit restarting
scheme.

If Supplied Shifts are used then, during the Arnoldi iterative process, you must supply shifts through
array arguments of F12ABF when F12ABF returns with IREVCM ¼ 3; the real and imaginary parts of
the shifts are supplied in X and MX respectively (or in COMM when the option Pointers ¼ YES is
set). This option should only be used if you are an experienced user since this requires some
algorithmic knowledge and because more operations are usually required than for the implicit shift
scheme. Details on the use of explicit shifts and further references on shift strategies are available in
Lehoucq et al. (1998).

Iteration Limit i Default ¼ 300

The limit on the number of Arnoldi iterations that can be performed before F12ABF exits. If not all
requested eigenvalues have converged to within Tolerance and the number of Arnoldi iterations has
reached this limit then F12ABF exits with an error; F12ACF can still be called subsequently to return

F12 – Large Scale Eigenproblems F12ADF

Mark 26 F12ADF.7



the number of converged eigenvalues, the converged eigenvalues and, if requested, the corresponding
eigenvectors.

Largest Magnitude Default
Largest Imaginary
Largest Real
Smallest Imaginary
Smallest Magnitude
Smallest Real

The Arnoldi iterative method converges on a number of eigenvalues with given properties. The default
is for F12ABF to compute the eigenvalues of largest magnitude using Largest Magnitude.
Alternatively, eigenvalues may be chosen which have Largest Real part, Largest Imaginary part,
Smallest Magnitude, Smallest Real part or Smallest Imaginary part.

Note that these options select the eigenvalue properties for eigenvalues of OP (and B for Generalized
problems), the linear operator determined by the computational mode and problem type.

Nolist Default
List

Normally each optional parameter specification is not printed to the advisory channel as it is supplied.
Optional parameter List may be used to enable printing and optional parameter Nolist may be used to
suppress the printing.

Monitoring i Default ¼ �1
If i > 0, monitoring information is output to channel number i during the solution of each problem; this
may be the same as the Advisory channel number. The type of information produced is dependent on
the value of Print Level, see the description of the optional parameter Print Level for details of the
information produced. Please see X04ACF to associate a file with a given channel number.

Pointers Default ¼ NO

During the iterative process and reverse communication calls to F12ABF, required data can be
communicated to and from F12ABF in one of two ways. When Pointers ¼ NO is selected (the default)
then the array arguments X and MX are used to supply you with required data and used to return
computed values back to F12ABF. For example, when IREVCM ¼ 1, F12ABF returns the vector x in X
and the matrix-vector product Bx in MX and expects the result or the linear operation OP xð Þ to be
returned in X.

If Pointers ¼ YES is selected then the data is passed through sections of the array argument COMM.
The section corresponding to X when Pointers ¼ NO begins at a location given by the first element of
ICOMM; similarly the section corresponding to MX begins at a location given by the second element of
ICOMM. This option allows F12ABF to perform fewer copy operations on each intermediate exit and
entry, but can also lead to less elegant code in the calling program.

Print Level i Default ¼ 0

This controls the amount of printing produced by F12ADF as follows.

¼ 0 No output except error messages.

> 0 The set of selected options.

¼ 2 Problem and timing statistics on final exit from F12ABF.

� 5 A single line of summary output at each Arnoldi iteration.

� 10 If Monitoring > 0, Monitoring is set, then at each iteration, the length and additional steps of
the current Arnoldi factorization and the number of converged Ritz values; during re-
orthogonalization, the norm of initial/restarted starting vector.
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� 20 Problem and timing statistics on final exit from F12ABF. If Monitoring > 0, Monitoring is
set, then at each iteration, the number of shifts being applied, the eigenvalues and estimates of
the Hessenberg matrix H, the size of the Arnoldi basis, the wanted Ritz values and associated
Ritz estimates and the shifts applied; vector norms prior to and following re-orthogonalization.

� 30 If Monitoring > 0, Monitoring is set, then on final iteration, the norm of the residual; when
computing the Schur form, the eigenvalues and Ritz estimates both before and after sorting;
for each iteration, the norm of residual for compressed factorization and the compressed upper
Hessenberg matrix H; during re-orthogonalization, the initial/restarted starting vector; during
the Arnoldi iteration loop, a restart is flagged and the number of the residual requiring iterative
refinement; while applying shifts, the indices of the shifts being applied.

� 40 If Monitoring > 0, Monitoring is set, then during the Arnoldi iteration loop, the Arnoldi
vector number and norm of the current residual; while applying shifts, key measures of
progress and the order of H; while computing eigenvalues of H, the last rows of the Schur
and eigenvector matrices; when computing implicit shifts, the eigenvalues and Ritz estimates
of H.

� 50 If Monitoring is set, then during Arnoldi iteration loop: norms of key components and the
active column of H, norms of residuals during iterative refinement, the final upper Hessenberg
matrix H; while applying shifts: number of shifts, shift values, block indices, updated matrix
H; while computing eigenvalues of H: the matrix H, the computed eigenvalues and Ritz
estimates.

Random Residual Default
Initial Residual

To begin the Arnoldi iterative process, F12ABF requires an initial residual vector. By default F12ABF
provides its own random initial residual vector; this option can also be set using optional parameter
Random Residual. Alternatively, you can supply an initial residual vector (perhaps from a previous
computation) to F12ABF through the array argument RESID; this option can be set using optional
parameter Initial Residual.

Regular Default
Regular Inverse
Shifted Inverse Imaginary
Shifted Inverse Real

These options define the computational mode which in turn defines the form of operation OP xð Þ to be
performed when F12ABF returns with IREVCM ¼ �1 or 1 and the matrix-vector product Bx when
F12ABF returns with IREVCM ¼ 2.

Given a Standard eigenvalue problem in the form Ax ¼ �x then the following modes are available
with the appropriate operator OP xð Þ.

Regular OP ¼ A
Shifted Inverse Real OP ¼ A� �Ið Þ�1 where � is real

Given a Generalized eigenvalue problem in the form Ax ¼ �Bx then the following modes are
available with the appropriate operator OP xð Þ.

Regular Inverse OP ¼ B�1A
Shifted Inverse Real with real shift OP ¼ A� �Bð Þ�1B, where � is real
Shifted Inverse Real with complex
shift OP ¼ Real A� �Bð Þ�1B

� �
, where � is complex

Shifted Inverse Imaginary OP ¼ Imag A� �Bð Þ�1B
� �

, where � is complex
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Standard Default
Generalized

The problem to be solved is either a standard eigenvalue problem, Ax ¼ �x, or a generalized
eigenvalue problem, Ax ¼ �Bx. The optional parameter Standard should be used when a standard
eigenvalue problem is being solved and the optional parameter Generalized should be used when a
generalized eigenvalue problem is being solved.

Tolerance r Default ¼ �
An approximate eigenvalue has deemed to have converged when the corresponding Ritz estimate is
within Tolerance relative to the magnitude of the eigenvalue.

Vectors Default ¼ RITZ

The routine F12ACF can optionally compute the Schur vectors and/or the eigenvectors corresponding to
the converged eigenvalues. To turn off computation of any vectors the option Vectors ¼ NONE should
be set. To compute only the Schur vectors (at very little extra cost), the option Vectors ¼ SCHUR
should be set and these will be returned in the array argument V of F12ACF. To compute the
eigenvectors (Ritz vectors) corresponding to the eigenvalue estimates, the option Vectors ¼ RITZ
should be set and these will be returned in the array argument Z of F12ACF, if Z is set equal to V (as in
Section 10) then the Schur vectors in V are overwritten by the eigenvectors computed by F12ACF.
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NAG Library Routine Document

F12AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12ADF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12ADF for a detailed description of the specification of the optional parameters.

1 Purpose

F12AEF can be used to return additional monitoring information during computation. It is in a suite of
routines consisting of F12AAF, F12ABF, F12ACF, F12ADF and F12AEF.

2 Specification

SUBROUTINE F12AEF (NITER, NCONV, RITZR, RITZI, RZEST, ICOMM, COMM)

INTEGER NITER, NCONV, ICOMM(*)
REAL (KIND=nag_wp) RITZR(*), RITZI(*), RZEST(*), COMM(*)

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
sparse, real and nonsymmetric. The suite can also be used to find selected eigenvalues/eigenvectors of
smaller scale dense, real and nonsymmetric problems.

On an intermediate exit from F12ABF with IREVCM ¼ 4, F12AEF may be called to return monitoring
information on the progress of the Arnoldi iterative process. The information returned by F12AEF is:

– the number of the current Arnoldi iteration;

– the number of converged eigenvalues at this point;

– the real and imaginary parts of the converged eigenvalues;

– the error bounds on the converged eigenvalues.

F12AEF does not have an equivalent routine from the ARPACK package which prints various levels of
detail of monitoring information through an output channel controlled via an argument value (see
Lehoucq et al. (1998) for details of ARPACK routines). F12AEF should not be called at any time other
than immediately following an IREVCM ¼ 4 return from F12ABF.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia
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5 Arguments

1: NITER – INTEGER Output

On exit: the number of the current Arnoldi iteration.

2: NCONV – INTEGER Output

On exit: the number of converged eigenvalues so far.

3: RITZRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RITZR must be at least NCV (see F12AAF).

On exit: the first NCONV locations of the array RITZR contain the real parts of the converged
approximate eigenvalues.

4: RITZIð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RITZI must be at least NCV (see F12AAF).

On exit: the first NCONV locations of the array RITZI contain the imaginary parts of the
converged approximate eigenvalues.

5: RZESTð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RZEST must be at least NCV (see F12AAF).

On exit: the first NCONV locations of the array RZEST contain the Ritz estimates (error bounds)
on the converged approximate eigenvalues.

6: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ, where LICOMM is
passed to the setup routine (see F12AAF).

On entry: the array ICOMM output by the preceding call to F12ABF.

7: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least max 1;LCOMMð Þ, where LCOMM is
passed to the setup routine (see F12AAF).

On entry: the array COMM output by the preceding call to F12ABF.

6 Error Indicators and Warnings

None.

7 Accuracy

A Ritz value, �, is deemed to have converged if its Ritz estimate � Tolerance� �j j. The default
Tolerance used is the machine precision given by X02AJF.

8 Parallelism and Performance

F12AEF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example solves Ax ¼ �Bx in shifted-real mode, where A is the tridiagonal matrix with 2 on the
diagonal, �2 on the subdiagonal and 3 on the superdiagonal. The matrix B is the tridiagonal matrix
with 4 on the diagonal and 1 on the off-diagonals. The shift sigma, �, is a complex number, and the
operator used in the shifted-real iterative process is OP ¼ real A� �Bð Þ�1B

� �
.

10.1 Program Text

! F12AEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12aefe_mod

! F12AEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: av, mv

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: four = 4.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: three = 3.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine mv(n,v)

! Compute the in-place matrix vector multiplication X<---M*X,
! where M is mass matrix formed by using piecewise linear elements
! on [0,1].

! .. Scalar Arguments ..
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: v(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: vm1, vv
Integer :: j

! .. Executable Statements ..
vm1 = v(1)
v(1) = four*v(1) + v(2)
Do j = 2, n - 1

vv = v(j)
v(j) = vm1 + four*vv + v(j+1)
vm1 = vv

End Do
v(n) = vm1 + four*v(n)
Return

End Subroutine mv

Subroutine av(n,v,w)

! .. Scalar Arguments ..
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: v(n)
Real (Kind=nag_wp), Intent (Out) :: w(n)

! .. Local Scalars ..
Integer :: j

! .. Executable Statements ..
w(1) = two*v(1) + three*v(2)
Do j = 2, n - 1

w(j) = -two*v(j-1) + two*v(j) + three*v(j+1)
End Do
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w(n) = -two*v(n-1) + two*v(n)
Return

End Subroutine av
End Module f12aefe_mod

Program f12aefe

! F12AEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: ddot, dnrm2, f06bnf, f12aaf, f12abf, f12acf, &

f12adf, f12aef, nag_wp, zgttrf, zgttrs
Use f12aefe_mod, Only: av, four, mv, nin, nout, three, two, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Complex (Kind=nag_wp) :: c1, c2, c3, csig
Real (Kind=nag_wp) :: deni, denr, nev_nrm, numi, numr, &

sigmai, sigmar
Integer :: ifail, ifail1, info, irevcm, j, &

lcomm, ldv, licomm, n, nconv, ncv, &
nev, niter, nshift

Logical :: first
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: cdd(:), cdl(:), cdu(:), cdu2(:), &
ctemp(:)

Real (Kind=nag_wp), Allocatable :: ax(:), comm(:), d(:,:), mx(:), &
resid(:), v(:,:), x(:)

Integer, Allocatable :: icomm(:), ipiv(:)
! .. Intrinsic Procedures ..

Intrinsic :: cmplx, real
! .. Executable Statements ..

Write (nout,*) ’F12AEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nev, ncv, sigmar, sigmai
ldv = n
licomm = 140
lcomm = 3*n + 3*ncv*ncv + 6*ncv + 60

Allocate (cdd(n),cdl(n),cdu(n),cdu2(n),ctemp(n),ax(n),comm(lcomm), &
d(ncv,3),mx(n),resid(n),v(ldv,ncv),x(n),icomm(licomm),ipiv(n))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f12aaf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Set the mode.
ifail = 0
Call f12adf(’SHIFTED REAL’,icomm,comm,ifail)

! Set problem type
Call f12adf(’GENERALIZED’,icomm,comm,ifail)

! Solve A*x = lambda*B*x in shift-invert mode.
! The shift, sigma, is a complex number (sigmar, sigmai).
! OP = Real_Part{inv[A-(SIGMAR,SIGMAI)*M]*M and B = M.

csig = cmplx(sigmar,sigmai,kind=nag_wp)
c1 = cmplx(-two,kind=nag_wp) - csig
c2 = cmplx(two,kind=nag_wp) - cmplx(four,kind=nag_wp)*csig
c3 = cmplx(three,kind=nag_wp) - csig

cdl(1:n-1) = c1
cdd(1:n-1) = c2
cdu(1:n-1) = c3
cdd(n) = c2

! The NAG name equivalent of zgttrf is f07crf
Call zgttrf(n,cdl,cdd,cdu,cdu2,ipiv,info)
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irevcm = 0
ifail = -1

loop: Do
Call f12abf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)

If (irevcm/=5) Then
Select Case (irevcm)
Case (-1)

! Perform x <--- OP*x = inv[A-SIGMA*M]*M*x
Call mv(n,x)
ctemp(1:n) = cmplx(x(1:n),kind=nag_wp)

! The NAG name equivalent of zgttrs is f07csf
Call zgttrs(’N’,n,1,cdl,cdd,cdu,cdu2,ipiv,ctemp,n,info)
x(1:n) = real(ctemp(1:n))

Case (1)
! Perform x <--- OP*x = inv[A-SIGMA*M]*M*x,
! M*X stored in MX.

ctemp(1:n) = cmplx(mx(1:n),kind=nag_wp)
! The NAG name equivalent of zgttrs is f07csf

Call zgttrs(’N’,n,1,cdl,cdd,cdu,cdu2,ipiv,ctemp,n,info)
x(1:n) = real(ctemp(1:n))

Case (2)
! Perform y <--- M*x

Call mv(n,x)
Case (4)

! Output monitoring information
Call f12aef(niter,nconv,d,d(1,2),d(1,3),icomm,comm)

! The NAG name equivalent of dnrm2 is f06ejf
nev_nrm = dnrm2(nev,d(1,3),1)
Write (6,99999) niter, nconv, nev_nrm

End Select
Else

Exit loop
End If

End Do loop
If (ifail==0) Then

! Post-Process using F12ACF to compute eigenvalues/vectors.
ifail1 = 0
Call f12acf(nconv,d,d(1,2),v,ldv,sigmar,sigmai,resid,v,ldv,comm,icomm, &

ifail1)

first = .True.
Do j = 1, nconv

! Use Rayleigh Quotient to recover eigenvalues of the original
! problem.
! The NAG name equivalent of ddot is f06eaf

If (d(j,2)==zero) Then
! Ritz value is real. x = v(:,j); eig = x’Ax/x’Mx.

Call av(n,v(1,j),ax)
numr = ddot(n,v(1,j),1,ax,1)
mx(1:n) = v(1:n,j)
Call mv(n,mx)
denr = ddot(n,v(1,j),1,mx,1)
d(j,1) = numr/denr

Else If (first) Then
! Ritz value is complex: x = v(:,j) - i v(:,j+1).

! Compute x’(Ax):
! first (xr,xi)’*(A xr)

Call av(n,v(1,j),ax)
numr = ddot(n,v(1,j),1,ax,1)
numi = ddot(n,v(1,j+1),1,ax,1)

! then add (xi,-xr)’*(A xi)
Call av(n,v(1,j+1),ax)
numr = numr + ddot(n,v(1,j+1),1,ax,1)
numi = -numi + ddot(n,v(1,j),1,ax,1)

! Compute x’(Mx) as above using mv in, place of av.
mx(1:n) = v(1:n,j)
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Call mv(n,mx)
denr = ddot(n,v(1,j),1,mx,1)
deni = ddot(n,v(1,j+1),1,mx,1)
mx(1:n) = v(1:n,j+1)
Call mv(n,mx)
denr = denr + ddot(n,v(1,j+1),1,mx,1)
deni = -deni + ddot(n,v(1,j),1,mx,1)

! Rayleigh quotient, d=x’(Ax)/x’(Mx), (complex division).
d(j,1) = (numr*denr+numi*deni)/f06bnf(denr,deni)
d(j,2) = (numi*denr-numr*deni)/f06bnf(denr,deni)
first = .False.

Else
! Second of complex conjugate pair.

d(j,1) = d(j-1,1)
d(j,2) = -d(j-1,2)
first = .True.

End If
End Do

! Print computed eigenvalues.
Write (nout,99998) nconv, sigmar, sigmai
Write (nout,99997)(j,d(j,1:2),j=1,nconv)

End If

99999 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &
’f estimates =’,E12.4)

99998 Format (1X,/,’ The ’,I4,’ generalized Ritz values closest to (’,F8.4, &
’, ’,F8.4,’) are:’,/)

99997 Format (1X,I8,5X,’(’,F7.4,’,’,F7.4,’)’)
End Program f12aefe

10.2 Program Data

F12AEF Example Program Data
100 4 20 4.0D-1 6.0D-1 : Values for NX NEV NCV SIGMAR SIGMAI

10.3 Program Results

F12AEF Example Program Results

Iteration 1, No. converged = 0, norm of estimates = 0.1052E+00
Iteration 2, No. converged = 0, norm of estimates = 0.1188E-02
Iteration 3, No. converged = 0, norm of estimates = 0.1389E-05
Iteration 4, No. converged = 0, norm of estimates = 0.3939E-08
Iteration 5, No. converged = 0, norm of estimates = 0.1158E-10
Iteration 6, No. converged = 0, norm of estimates = 0.5222E-13

The 4 generalized Ritz values closest to ( 0.4000, 0.6000) are:

1 ( 0.5000,-0.5958)
2 ( 0.5000, 0.5958)
3 ( 0.5000,-0.6331)
4 ( 0.5000, 0.6331)
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NAG Library Routine Document

F12AFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F12AFF is a setup routine for F12AGF which may be used for finding some eigenvalues (and
optionally the corresponding eigenvectors) of a standard or generalized eigenvalue problem defined by
real, banded, nonsymmetric matrices. The banded matrix must be stored using the LAPACK column
ordered storage format for real banded nonsymmetric matrices (see Section 3.3.4 in the F07 Chapter
Introduction).

2 Specification

SUBROUTINE F12AFF (N, NEV, NCV, ICOMM, LICOMM, COMM, LCOMM, IFAIL)

INTEGER N, NEV, NCV, ICOMM(max(1,LICOMM)), LICOMM, LCOMM,
IFAIL

&

REAL (KIND=nag_wp) COMM(max(1,LCOMM))

3 Description

The pair of routines F12AFF and F12AGF together with the option setting routine F12ADF are
designed to calculate some of the eigenvalues, �, (and optionally the corresponding eigenvectors, x) of
a standard eigenvalue problem Ax ¼ �x, or of a generalized eigenvalue problem Ax ¼ �Bx of order n,
where n is large and the coefficient matrices A and B are banded real and nonsymmetric.

F12AFF is a setup routine which must be called before the option setting routine F12ADF and the
solver routine F12AGF. Internally, F12AGF makes calls to F12ABF and F12ACF; the routine
documents for F12ABF and F12ACF should be consulted for details of the algorithm used.

This setup routine initializes the communication arrays, sets (to their default values) all options that can
be set by you via the option setting routine F12ADF, and checks that the lengths of the communication
arrays as passed by you are of sufficient length. For details of the options available and how to set
them, see Section 11.1 in F12ADF.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

1: N – INTEGER Input

On entry: the order of the matrix A (and the order of the matrix B for the generalized problem)
that defines the eigenvalue problem.

Constraint: N > 0.
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2: NEV – INTEGER Input

On entry: the number of eigenvalues to be computed.

Constraint: 0 < NEV < N� 1.

3: NCV – INTEGER Input

On entry: the number of Lanczos basis vectors to use during the computation.

At present there is no a priori analysis to guide the selection of NCV relative to NEV. However,
it is recommended that NCV � 2� NEVþ 1. If many problems of the same type are to be
solved, you should experiment with increasing NCV while keeping NEV fixed for a given test
problem. This will usually decrease the required number of matrix-vector operations but it also
increases the work and storage required to maintain the orthogonal basis vectors. The optimal
‘cross-over’ with respect to CPU time is problem dependent and must be determined empirically.

Constraint: NEVþ 1 < NCV � N.

4: ICOMMðmax 1;LICOMMð ÞÞ – INTEGER array Communication Array

On exit: contains data to be communicated to F12AGF.

5: LICOMM – INTEGER Input

On entry: the dimension of the array ICOMM as declared in the (sub)program from which
F12AFF is called.

If LICOMM ¼ �1, a workspace query is assumed and the routine only calculates the required
dimensions of ICOMM and COMM, which it returns in ICOMMð1Þ and COMMð1Þ respectively.
Constraint: LICOMM � 140 or LICOMM ¼ �1.

6: COMMðmax 1;LCOMMð ÞÞ – REAL (KIND=nag_wp) array Communication Array

On exit: contains data to be communicated to F12AGF.

7: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
F12AFF is called.

If LCOMM ¼ �1, a workspace query is assumed and the routine only calculates the dimensions
of ICOMM and COMM required by F12AGF, which it returns in ICOMMð1Þ and COMMð1Þ
respectively.

Constraint: LCOMM � 60 or LCOMM ¼ �1.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 0.

IFAIL ¼ 2

On entry, NEV � 0.

IFAIL ¼ 3

On entry, NCV < NEVþ 2 or NCV > N.

IFAIL ¼ 4

On entry, LICOMM < 140 and LICOMM 6¼ �1.

IFAIL ¼ 5

On entry, LCOMM < 60 and LCOMM 6¼ �1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F12AFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

The use of F12AFF is illustrated in Section 10 in F12AGF.
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NAG Library Routine Document

F12AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12ADF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12ADF for a detailed description of the specification of the optional parameters.

1 Purpose

F12AGF is the main solver routine in a suite of routines consisting of F12ADF, F12AFF and F12AGF.
It must be called following an initial call to F12AFF and following any calls to F12ADF.

F12AGF returns approximations to selected eigenvalues, and (optionally) the corresponding
eigenvectors, of a standard or generalized eigenvalue problem defined by real banded nonsymmetric
matrices. The banded matrix must be stored using the LAPACK storage format for real banded
nonsymmetric matrices.

2 Specification

SUBROUTINE F12AGF (KL, KU, AB, LDAB, MB, LDMB, SIGMAR, SIGMAI, NCONV,
DR, DI, Z, LDZ, RESID, V, LDV, COMM, ICOMM, IFAIL)

&

INTEGER KL, KU, LDAB, LDMB, NCONV, LDZ, LDV, ICOMM(*), IFAIL
REAL (KIND=nag_wp) AB(LDAB,*), MB(LDMB,*), SIGMAR, SIGMAI, DR(*),

DI(*), Z(LDZ,*), RESID(*), V(LDV,*), COMM(*)
&

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
banded, real and nonsymmetric.

Following a call to the initialization routine F12AFF, F12AGF returns the converged approximations to
eigenvalues and (optionally) the corresponding approximate eigenvectors and/or an orthonormal basis
for the associated approximate invariant subspace. The eigenvalues (and eigenvectors) are selected from
those of a standard or generalized eigenvalue problem defined by real banded nonsymmetric matrices.
There is negligible additional computational cost to obtain eigenvectors; an orthonormal basis is always
computed, but there is an additional storage cost if both are requested.

The banded matrices A and B must be stored using the LAPACK column ordered storage format for
banded nonsymmetric matrices; please refer to Section 3.3.2 in the F07 Chapter Introduction for details
on this storage format.

F12AGF is based on the banded driver routines dnbdr1 to dnbdr6 from the ARPACK package, which
uses the Implicitly Restarted Arnoldi iteration method. The method is described in Lehoucq and
Sorensen (1996) and Lehoucq (2001) while its use within the ARPACK software is described in great
detail in Lehoucq et al. (1998). An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices is provided in Lehoucq and Scott (1996). This suite of routines offers the same
functionality as the ARPACK banded driver software for real nonsymmetric problems, but the interface
design is quite different in order to make the option setting clearer and to combine the different drivers
into a general purpose routine.

F12AGF, is a general purpose routine that must be called following initialization by F12AFF. F12AGF
uses options, set either by default or explicitly by calling F12ADF, to return the converged
approximations to selected eigenvalues and (optionally):
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– the corresponding approximate eigenvectors;

– an orthonormal basis for the associated approximate invariant subspace;

– both.

Please note that for Generalized problems, the Shifted Inverse Imaginary and Shifted Inverse Real
inverse modes are only appropriate if either A or B is symmetric semidefinite. Otherwise, if A or B is
non-singular, the Standard problem can be solved using the matrix B�1A (say).

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

1: KL – INTEGER Input

On entry: the number of subdiagonals of the matrices A and B.

Constraint: KL � 0.

2: KU – INTEGER Input

On entry: the number of superdiagonals of the matrices A and B.

Constraint: KU � 0.

3: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ (see F12AFF).

On entry: must contain the matrix A in LAPACK banded storage format for nonsymmetric
matrices (see Section 3.3.4 in the F07 Chapter Introduction).

4: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F12AGF is called.

Constraint: LDAB � 2� KLþ KUþ 1.

5: MBðLDMB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array MB must be at least max 1;Nð Þ (see F12AFF).

On entry: must contain the matrix B in LAPACK banded storage format for nonsymmetric
matrices (see Section 3.3.4 in the F07 Chapter Introduction).

6: LDMB – INTEGER Input

On entry: the first dimension of the array MB as declared in the (sub)program from which
F12AGF is called.

Constraint: LDMB � 2� KLþ KUþ 1.
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7: SIGMAR – REAL (KIND=nag_wp) Input

On entry: if one of the Shifted Inverse Real modes (see F12ADF) have been selected then
SIGMAR must contain the real part of the shift used; otherwise SIGMAR is not referenced.
Section 4.3.4 in the F12 Chapter Introduction describes the use of shift and inverse
transformations.

8: SIGMAI – REAL (KIND=nag_wp) Input

On entry: if one of the Shifted Inverse Real modes (see F12ADF) have been selected then
SIGMAI must contain the imaginary part of the shift used; otherwise SIGMAI is not referenced.
Section 4.3.4 in the F12 Chapter Introduction describes the use of shift and inverse
transformations.

9: NCONV – INTEGER Output

On exit: the number of converged eigenvalues.

10: DRð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array DR must be at least NEVþ 1 (see F12AFF).

On exit: the first NCONV locations of the array DR contain the real parts of the converged
approximate eigenvalues. The number of eigenvalues returned may be one more than the number
requested by NEV since complex values occur as conjugate pairs and the second in the pair can
be returned in position NEVþ 1 of the array.

11: DIð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array DI must be at least NEVþ 1 (see F12AFF).

On exit: the first NCONV locations of the array DI contain the imaginary parts of the converged
approximate eigenvalues. The number of eigenvalues returned may be one more than the number
requested by NEV since complex values occur as conjugate pairs and the second in the pair can
be returned in position NEVþ 1 of the array.

12: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least NEVþ 1 if the default option
Vectors ¼ Ritz has been selected and at least 1 if the option Vectors ¼ None or Schur has been
selected (see F12AAF).

On exit: if the default option Vectors ¼ Ritz has been selected then Z contains the final set of
eigenvectors corresponding to the eigenvalues held in DR and DI. The complex eigenvector
associated with the eigenvalue with positive imaginary part is stored in two consecutive columns.
The first column holds the real part of the eigenvector and the second column holds the
imaginary part. The eigenvector associated with the eigenvalue with negative imaginary part is
simply the complex conjugate of the eigenvector associated with the positive imaginary part.

13: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F12AGF
is called.

Constraints:

if the default option Vectors ¼ Ritz has been selected, LDZ � N;
if the option Vectors ¼ None or Schur has been selected, LDZ � 1.

14: RESIDð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array RESID must be at least N (see F12AFF).

On entry: need not be set unless the option Initial Residual has been set in a prior call to
F12ADF in which case RESID must contain an initial residual vector.
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On exit: contains the final residual vector.

15: VðLDV; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1;NCVð Þ (see F12AFF).

On exit: if the option Vectors (see F12ADF) has been set to Schur or Ritz then the first
NCONV� n elements of V will contain approximate Schur vectors that span the desired
invariant subspace.

The ith Schur vector is stored in the ith column of V.

16: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F12AGF
is called.

Constraint: LDV � N.

17: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

On entry: must remain unchanged from the prior call to F12ADF and F12AFF.

On exit: contains no useful information.

18: ICOMMð�Þ – INTEGER array Communication Array

On entry: must remain unchanged from the prior call to F12ADF and F12AFF.

On exit: contains no useful information.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, KL < 0.

IFAIL ¼ 2

On entry, KU < 0.

IFAIL ¼ 3

On entry, LDAB < 2� KLþ KUþ 1.
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IFAIL ¼ 4

On entry, the option Shifted Inverse Imaginary was selected, and SIGMAI ¼ zero, but SIGMAI
must be nonzero for this computational mode.

IFAIL ¼ 5

Iteration Limit < 0.

IFAIL ¼ 6

The options Generalized and Regular are incompatible.

IFAIL ¼ 7

The Initial Residual was selected but the starting vector held in RESID is zero.

IFAIL ¼ 8

Either the initialization routine F12AFF has not been called prior to the first call of this routine
or a communication array has become corrupted.

IFAIL ¼ 9

On entry, LDZ < N or LDZ < 1 when no vectors are required.

IFAIL ¼ 10

On entry, the option Vectors ¼ Select was selected, but this is not yet implemented.

IFAIL ¼ 11

The number of eigenvalues found to sufficient accuracy is zero.

IFAIL ¼ 12

Could not build an Arnoldi factorization. Consider changing NCV or NEV in the initialization
routine (see Section 5 in F12AFF for details of these arguments).

IFAIL ¼ 13

Unexpected error in internal call to compute eigenvalues and corresponding error bounds of the
current upper Hessenberg matrix. Please contact NAG.

IFAIL ¼ 14

Unexpected error during calculation of a real Schur form: there was a failure to compute all the
converged eigenvalues. Please contact NAG.

IFAIL ¼ 15

Unexpected error: the computed Schur form could not be reordered by an internal call. Please
contact NAG.

IFAIL ¼ 16

Unexpected error in internal call while calculating eigenvectors. Please contact NAG.

IFAIL ¼ 17

Failure during internal factorization of real banded matrix. Please contact NAG.

IFAIL ¼ 18

Failure during internal solution of real banded system. Please contact NAG.

F12 – Large Scale Eigenproblems F12AGF

Mark 26 F12AGF.5



IFAIL ¼ 19

Failure during internal factorization of complex banded matrix. Please contact NAG.

IFAIL ¼ 20

Failure during internal solution of complex banded system. Please contact NAG.

IFAIL ¼ 21

The maximum number of iterations has been reached. Some Ritz values may have converged;
NCONV returns the number of converged values.

IFAIL ¼ 22

No shifts could be applied during a cycle of the implicitly restarted Arnoldi iteration. One
possibility is to increase the size of NCV relative to NEV (see Section 5 in F12AFF for details of
these arguments).

IFAIL ¼ 23

Overflow occurred during transformation of Ritz values to those of the original problem.

IFAIL ¼ 24

The routine was unable to dynamically allocate sufficient internal workspace. Please contact
NAG.

IFAIL ¼ 25

An unexpected error has occurred. Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy of a Ritz value, �, is considered acceptable if its Ritz estimate � Tolerance� �j j.
The default Tolerance used is the machine precision given by X02AJF.

8 Parallelism and Performance

F12AGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F12AGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example constructs the matrices A and B using LAPACK band storage format and solves
Ax ¼ �Bx in shifted imaginary mode using the complex shift �.

10.1 Program Text

Program f12agfe

! F12AGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgbmv, dnrm2, f06bnf, f12adf, f12aff, f12agf, &

nag_wp, x04abf, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: iset = 1, nin = 5, nout = 6
Logical, Parameter :: printr = .False.

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, rho, sigmai, sigmar
Integer :: i, idiag, ifail, isub, isup, j, kl, &

ku, lcomm, ldab, ldmb, ldv, licomm, &
lo, n, ncol, nconv, ncv, nev, nx, &
outchn

Logical :: first
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ab(:,:), ax(:), comm(:), di(:), &
dr(:), d_print(:,:), mb(:,:), mx(:), &
resid(:), v(:,:)

Integer, Allocatable :: icomm(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs, int, max, real
! .. Executable Statements ..

Write (nout,*) ’F12AGF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) nx, nev, ncv, sigmar, sigmai
n = nx*nx

! Initialize communication arrays.
! Query the required sizes of the communication arrays.

licomm = -1
lcomm = -1
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))

ifail = 0
Call f12aff(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

licomm = icomm(1)
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lcomm = int(comm(1))
Deallocate (icomm,comm)
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))

ifail = 0
Call f12aff(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Set the mode.

ifail = 0
Call f12adf(’SHIFTED IMAGINARY’,icomm,comm,ifail)

! Set problem type

ifail = 0
Call f12adf(’GENERALIZED’,icomm,comm,ifail)

! Construct the matrix A in banded form and store in AB.
! KU, KL are number of superdiagonals and subdiagonals within
! the band of matrices A and M.

kl = nx
ku = nx
ldab = 2*kl + ku + 1
ldmb = 2*kl + ku + 1
Allocate (ab(ldab,n),mb(ldmb,n))

! Zero out AB and MB.

ab(1:ldab,1:n) = 0.0_nag_wp
mb(1:ldmb,1:n) = 0.0_nag_wp

! Main diagonal of A.

idiag = kl + ku + 1
ab(idiag,1:n) = 4.0_nag_wp
mb(idiag,1:n) = 4.0_nag_wp

! First subdiagonal and superdiagonal of A.

isup = kl + ku
isub = kl + ku + 2
rho = 100.0_nag_wp
h = one/real(nx+1,kind=nag_wp)

Do i = 1, nx
lo = (i-1)*nx

Do j = lo + 1, lo + nx - 1
ab(isub,j+1) = -one + 0.5_nag_wp*h*rho
ab(isup,j) = -one - 0.5_nag_wp*h*rho

End Do

End Do

mb(isub,2:n) = one
mb(isup,1:n-1) = one

! KL-th subdiagonal and KU-th superdiagonal.

isup = kl + 1
isub = 2*kl + ku + 1

Do i = 1, nx - 1
lo = (i-1)*nx

Do j = lo + 1, lo + nx
ab(isup,nx+j) = -one
ab(isub,j) = -one

End Do
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End Do

! Find eigenvalues closest in value to SIGMA and corresponding
! eigenvectors.

ldv = n
Allocate (dr(nev+1),di(nev+1),v(ldv,ncv),resid(n))

ifail = -1
Call f12agf(kl,ku,ab,ldab,mb,ldmb,sigmar,sigmai,nconv,dr,di,v,ldv,resid, &

v,ldv,comm,icomm,ifail)

If (ifail/=0) Then
Go To 100

End If

! Compute the residual norm ||A*x - lambda*x||.

first = .True.
Allocate (ax(n),mx(n),d_print(nconv,3))
d_print(1:nconv,1) = dr(1:nconv)
d_print(1:nconv,2) = di(1:nconv)

Do j = 1, nconv

If (di(j)==zero) Then

! The NAG name equivalent of dgbmv is f06pbf
Call dgbmv(’N’,n,n,kl,ku,one,ab(kl+1,1),ldab,v(1,j),1,zero,ax,1)

Call dgbmv(’N’,n,n,kl,ku,one,mb(kl+1,1),ldmb,v(1,j),1,zero,mx,1)

ax(1:n) = -dr(j)*mx(1:n) + ax(1:n)
d_print(j,3) = dnrm2(n,ax,1)/abs(dr(j))

Else If (first) Then

Call dgbmv(’N’,n,n,kl,ku,one,ab(kl+1,1),ldab,v(1,j),1,zero,ax,1)

Call dgbmv(’N’,n,n,kl,ku,one,mb(kl+1,1),ldmb,v(1,j),1,zero,mx,1)

ax(1:n) = -dr(j)*mx(1:n) + ax(1:n)

Call dgbmv(’N’,n,n,kl,ku,one,mb(kl+1,1),ldmb,v(1,j+1),1,zero,mx,1)

ax(1:n) = di(j)*mx(1:n) + ax(1:n)
d_print(j,3) = dnrm2(n,ax,1)

Call dgbmv(’N’,n,n,kl,ku,one,ab(kl+1,1),ldab,v(1,j+1),1,zero,ax,1)

Call dgbmv(’N’,n,n,kl,ku,one,mb(kl+1,1),ldmb,v(1,j+1),1,zero,mx,1)

ax(1:n) = -dr(j)*mx(1:n) + ax(1:n)

Call dgbmv(’N’,n,n,kl,ku,one,mb(kl+1,1),ldmb,v(1,j),1,zero,mx,1)

ax(1:n) = -di(j)*mx(1:n) + ax(1:n)
! The NAG name equivalent of dnrm2 is f06ejf

d_print(j,3) = f06bnf(d_print(j,3),dnrm2(n,ax,1))
d_print(j,3) = d_print(j,3)/f06bnf(dr(j),di(j))
d_print(j+1,3) = d_print(j,3)
first = .False.

Else
first = .True.

End If

End Do

Write (nout,*)
Flush (nout)

outchn = nout
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Call x04abf(iset,outchn)

If (printr) Then
! Print residual associated with each Ritz value.

ncol = 3
Else

ncol = 2
End If
ifail = 0
Call x04caf(’G’,’N’,nconv,ncol,d_print,nconv, &

’ Ritz values closest to sigma’,ifail)

100 Continue
End Program f12agfe

10.2 Program Data

F12AGF Example Program Data
10 4 10 0.4 0.6 : Values for NX NEV NCV SIGMAR SIGMAI

10.3 Program Results

F12AGF Example Program Results

Ritz values closest to sigma
1 2

1 0.3610 0.7223
2 0.3610 -0.7223
3 0.4598 -0.7199
4 0.4598 0.7199
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NAG Library Routine Document

F12ANF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F12ANF is a setup routine in a suite of routines consisting of F12ANF, F12APF, F12AQF, F12ARF and
F12ASF. It is used to find some of the eigenvalues (and optionally the corresponding eigenvectors) of a
standard or generalized eigenvalue problem defined by complex nonsymmetric matrices.

The suite of routines is suitable for the solution of large sparse, standard or generalized, nonsymmetric
complex eigenproblems where only a few eigenvalues from a selected range of the spectrum are
required.

2 Specification

SUBROUTINE F12ANF (N, NEV, NCV, ICOMM, LICOMM, COMM, LCOMM, IFAIL)

INTEGER N, NEV, NCV, ICOMM(max(1,LICOMM)), LICOMM,
LCOMM, IFAIL

&

COMPLEX (KIND=nag_wp) COMM(max(1,LCOMM))

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard complex eigenvalue problem Ax ¼ �x, or of a generalized
complex eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and
B are sparse, complex and nonsymmetric. The suite can also be used to find selected eigenvalues/
eigenvectors of smaller scale dense, complex and nonsymmetric problems.

F12ANF is a setup routine which must be called before F12APF, the reverse communication iterative
solver, and before F12ARF, the options setting routine. F12AQF is a post-processing routine that must
be called following a successful final exit from F12APF, while F12ASF can be used to return additional
monitoring information during the computation.

This setup routine initializes the communication arrays, sets (to their default values) all options that can
be set by you via the option setting routine F12ARF, and checks that the lengths of the communication
arrays as passed by you are of sufficient length. For details of the options available and how to set them
see Section 11.1 in F12ARF.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia
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5 Arguments

1: N – INTEGER Input

On entry: the order of the matrix A (and the order of the matrix B for the generalized problem)
that defines the eigenvalue problem.

Constraint: N > 0.

2: NEV – INTEGER Input

On entry: the number of eigenvalues to be computed.

Constraint: 0 < NEV < N� 1.

3: NCV – INTEGER Input

On entry: the number of Arnoldi basis vectors to use during the computation.

At present there is no a priori analysis to guide the selection of NCV relative to NEV. However,
it is recommended that NCV � 2� NEVþ 1. If many problems of the same type are to be
solved, you should experiment with increasing NCV while keeping NEV fixed for a given test
problem. This will usually decrease the required number of matrix-vector operations but it also
increases the work and storage required to maintain the orthogonal basis vectors. The optimal
‘cross-over’ with respect to CPU time is problem dependent and must be determined empirically.

Constraint: NEVþ 1 < NCV � N.

4: ICOMMðmax 1;LICOMMð ÞÞ – INTEGER array Communication Array

On exit: contains data to be communicated to the other routines in the suite.

5: LICOMM – INTEGER Input

On entry: the dimension of the array ICOMM as declared in the (sub)program from which
F12ANF is called.

If LICOMM ¼ �1, a workspace query is assumed and the routine only calculates the required
dimensions of ICOMM and COMM, which it returns in ICOMMð1Þ and COMMð1Þ respectively.
Constraint: LICOMM � 140 or LICOMM ¼ �1.

6: COMMðmax 1;LCOMMð ÞÞ – COMPLEX (KIND=nag_wp) array Communication Array

On exit: contains data to be communicated to the other routines in the suite.

7: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
F12ANF is called.

If LCOMM ¼ �1, a workspace query is assumed and the routine only calculates the dimensions
of ICOMM and COMM required by F12APF, which it returns in ICOMMð1Þ and COMMð1Þ
respectively.

Constraint: LCOMM � 3� Nþ 3� NCV� NCVþ 5� NCVþ 60 or LCOMM ¼ �1.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 0.

IFAIL ¼ 2

On entry, NEV � 0.

IFAIL ¼ 3

On entry, NCV < NEVþ 2 or NCV > N.

IFAIL ¼ 4

On entry, LICOMM < 140 and LICOMM 6¼ �1.

IFAIL ¼ 5

On entry, LCOMM < 3� Nþ 3� NCV� NCVþ 5� NCVþ 60 and LCOMM 6¼ �1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F12ANF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example solves Ax ¼ �x in regular mode, where A is obtained from the standard central

difference discretization of the convection-diffusion operator @2u
@x2
þ @2u

@y2
þ �@u

@x
on the unit square, with

zero Dirichlet boundary conditions. The eigenvalues of largest magnitude are found.

10.1 Program Text

! F12ANF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12anfe_mod

! F12ANF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: av

! .. Parameters ..
Integer, Parameter, Public :: imon = 0, ipoint = 0, licomm = 140, &

nin = 5, nout = 6
Contains

Subroutine tv(nx,x,y)
! Compute the matrix vector multiplication y<---T*x where T is a nx
! by nx tridiagonal matrix.

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: four = (4.0_nag_wp,0.0_nag_wp)
Complex (Kind=nag_wp), Parameter :: half = (0.5_nag_wp,0.0_nag_wp)
Complex (Kind=nag_wp), Parameter :: rho = (100.0_nag_wp,0.0_nag_wp)

! .. Scalar Arguments ..
Integer, Intent (In) :: nx

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: x(nx)
Complex (Kind=nag_wp), Intent (Out) :: y(nx)

! .. Local Scalars ..
Complex (Kind=nag_wp) :: dd, dl, du, h, h2
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
h = cmplx(nx+1,kind=nag_wp)
h2 = h*h
dd = four*h2
dl = -h2 - half*rho*h
du = -h2 + half*rho*h

y(1) = dd*x(1) + du*x(2)
Do j = 2, nx - 1

y(j) = dl*x(j-1) + dd*x(j) + du*x(j+1)
End Do
y(nx) = dl*x(nx-1) + dd*x(nx)
Return

End Subroutine tv
Subroutine av(nx,v,w)

! .. Use Statements ..
Use nag_library, Only: zaxpy

! .. Scalar Arguments ..
Integer, Intent (In) :: nx

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: v(nx*nx)
Complex (Kind=nag_wp), Intent (Out) :: w(nx*nx)
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! .. Local Scalars ..
Complex (Kind=nag_wp) :: h2
Integer :: j, lo

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
h2 = cmplx(-(nx+1)*(nx+1),kind=nag_wp)

Call tv(nx,v(1),w(1))
! The NAG name equivalent of zaxpy is f06gcf

Call zaxpy(nx,h2,v(nx+1),1,w(1),1)

Do j = 2, nx - 1
lo = (j-1)*nx
Call tv(nx,v(lo+1),w(lo+1))
Call zaxpy(nx,h2,v(lo-nx+1),1,w(lo+1),1)
Call zaxpy(nx,h2,v(lo+nx+1),1,w(lo+1),1)

End Do

lo = (nx-1)*nx
Call tv(nx,v(lo+1),w(lo+1))
Call zaxpy(nx,h2,v(lo-nx+1),1,w(lo+1),1)

Return
End Subroutine av

End Module f12anfe_mod
Program f12anfe

! F12ANF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dznrm2, f12anf, f12apf, f12aqf, f12arf, f12asf, &

nag_wp
Use f12anfe_mod, Only: av, imon, ipoint, licomm, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Complex (Kind=nag_wp) :: sigma
Integer :: i, ifail, ifail1, irevcm, lcomm, &

ldv, n, nconv, ncv, nev, niter, &
nshift, nx

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ax(:), comm(:), d(:,:), mx(:), &

resid(:), v(:,:), x(:)
Integer :: icomm(licomm)

! .. Executable Statements ..
Write (nout,*) ’F12ANF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) nx, nev, ncv

n = nx*nx
ldv = n
lcomm = 3*n + 3*ncv*ncv + 5*ncv + 60
Allocate (ax(n),comm(lcomm),d(ncv,2),mx(n),resid(n),v(n,ncv),x(n))

ifail = 0
Call f12anf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

If (ipoint/=0) Then
! Use pointers to Workspace in calculating matrix vector
! products rather than interfacing through the array X.

ifail = 0
Call f12arf(’POINTERS=YES’,icomm,comm,ifail)

End If

irevcm = 0
ifail = -1

revcm: Do
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Call f12apf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)
If (irevcm==5) Then

Exit revcm
Else If (irevcm==-1 .Or. irevcm==1) Then

! Perform matrix vector multiplication y <--- Op*x.
If (ipoint==0) Then

Call av(nx,x,ax)
x(1:n) = ax(1:n)

Else
Call av(nx,comm(icomm(1)),comm(icomm(2)))

End If
Else If (irevcm==4 .And. imon/=0) Then

! Output monitoring information.
Call f12asf(niter,nconv,d,d(1,2),icomm,comm)

! The NAG name equivalent of dznrm2 is f06jjf
Write (6,99999) niter, nconv, dznrm2(nev,d(1,2),1)

End If
End Do revcm

If (ifail==0) Then
! Post-Process using F12AQF to compute eigenvalues/vectors.

ifail1 = 0
Call f12aqf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail1)

Write (nout,99998) nconv
Write (nout,99997)(i,d(i,1),i=1,nconv)

End If

99999 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &
’f estimates =’,E16.8)

99998 Format (1X,/,’ The ’,I4,’ Ritz values of largest magnitude are:’,/)
99997 Format (1X,I8,5X,’( ’,F12.4,’ , ’,F12.4,’ )’)

End Program f12anfe

10.2 Program Data

F12ANF Example Program Data
10 4 20 : Vaues for NX NEV and NCV

10.3 Program Results

F12ANF Example Program Results

The 4 Ritz values of largest magnitude are:

1 ( 716.1973 , -1029.5838 )
2 ( 716.1973 , 1029.5838 )
3 ( 687.5834 , -1029.5838 )
4 ( 687.5834 , 1029.5838 )
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NAG Library Routine Document

F12APF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12ARF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12ARF for a detailed description of the specification of the optional parameters.

1 Purpose

F12APF is an iterative solver in a suite of routines consisting of F12ANF, F12APF, F12AQF, F12ARF
and F12ASF. It is used to find some of the eigenvalues (and optionally the corresponding eigenvectors)
of a standard or generalized eigenvalue problem defined by complex nonsymmetric matrices.

2 Specification

SUBROUTINE F12APF (IREVCM, RESID, V, LDV, X, MX, NSHIFT, COMM, ICOMM,
IFAIL)

&

INTEGER IREVCM, LDV, NSHIFT, ICOMM(*), IFAIL
COMPLEX (KIND=nag_wp) RESID(*), V(LDV,*), X(*), MX(*), COMM(*)

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
sparse, complex and nonsymmetric. The suite can also be used to find selected eigenvalues/eigenvectors
of smaller scale dense, complex and nonsymmetric problems.

F12APF is a reverse communication routine, based on the ARPACK routine znaupd, using the
Implicitly Restarted Arnoldi iteration method. The method is described in Lehoucq and Sorensen (1996)
and Lehoucq (2001) while its use within the ARPACK software is described in great detail in Lehoucq
et al. (1998). An evaluation of software for computing eigenvalues of sparse nonsymmetric matrices is
provided in Lehoucq and Scott (1996). This suite of routines offers the same functionality as the
ARPACK software for complex nonsymmetric problems, but the interface design is quite different in
order to make the option setting clearer and to simplify the interface of F12APF.

The setup routine F12ANF must be called before F12APF, the reverse communication iterative solver.
Options may be set for F12APF by prior calls to the option setting routine F12ARF and a post-
processing routine F12AQF must be called following a successful final exit from F12APF. F12ASF may
be called following certain flagged intermediate exits from F12APF to provide additional monitoring
information about the computation.

F12APF uses reverse communication, i.e., it returns repeatedly to the calling program with the
argument IREVCM (see Section 5) set to specified values which require the calling program to carry
out one of the following tasks:

– compute the matrix-vector product y ¼ OPx, where OP is defined by the computational mode;

– compute the matrix-vector product y ¼ Bx;
– notify the completion of the computation;

– allow the calling program to monitor the solution.

The problem type to be solved (standard or generalized), the spectrum of eigenvalues of interest, the
mode used (regular, regular inverse, shifted inverse, shifted real or shifted imaginary) and other options
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can all be set using the option setting routine F12ARF (see Section 11.1 in F12ARF for details on
setting options and of the default settings).

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than X, MX and COMM must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: IREVCM ¼ 0, otherwise an error condition will be raised.

On intermediate re-entry: must be unchanged from its previous exit value. Changing IREVCM to
any other value between calls will result in an error.

On intermediate exit: has the following meanings.

IREVCM ¼ �1
The calling program must compute the matrix-vector product y ¼ OPx, where x is stored
in X (by default) or in the array COMM (starting from the location given by the first
element of ICOMM) when the option Pointers ¼ YES is set in a prior call to F12ARF.
The result y is returned in X (by default) or in the array COMM (starting from the location
given by the second element of ICOMM) when the option Pointers ¼ YES is set.

IREVCM ¼ 1
The calling program must compute the matrix-vector product y ¼ OPx. This is similar to
the case IREVCM ¼ �1 except that the result of the matrix-vector product Bx (as required
in some computational modes) has already been computed and is available in MX (by
default) or in the array COMM (starting from the location given by the third element of
ICOMM) when the option Pointers ¼ YES is set.

IREVCM ¼ 2
The calling program must compute the matrix-vector product y ¼ Bx, where x is stored in
X and y is returned in MX (by default) or in the array COMM (starting from the location
given by the second element of ICOMM) when the option Pointers ¼ YES is set.

IREVCM ¼ 3
Compute the NSHIFT complex shifts. This value of IREVCM will only arise if the
optional parameter Supplied Shifts is set in a prior call to F12ARF which is intended for
experienced users only; the default and recommended option is to use exact shifts (see
Lehoucq et al. (1998) for details).

IREVCM ¼ 4
Monitoring step: a call to F12ASF can now be made to return the number of Arnoldi
iterations, the number of converged Ritz values, the array of converged values, and the
corresponding Ritz estimates.

On final exit: IREVCM ¼ 5: F12APF has completed its tasks. The value of IFAIL determines
whether the iteration has been successfully completed, or whether errors have been detected. On
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successful completion F12AQF must be called to return the requested eigenvalues and
eigenvectors (and/or Schur vectors).

Constraint: on initial entry, IREVCM ¼ 0; on re-entry IREVCM must remain unchanged.

2: RESIDð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array RESID must be at least N (see F12ANF).

On initial entry: need not be set unless the option Initial Residual has been set in a prior call to
F12ARF in which case RESID should contain an initial residual vector, possibly from a previous
run.

On intermediate re-entry: must be unchanged from its previous exit. Changing RESID to any
other value between calls may result in an error exit.

On intermediate exit: contains the current residual vector.

On final exit: contains the final residual vector.

3: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;NCVð Þ (see F12ANF).

On initial entry: need not be set.

On intermediate re-entry: must be unchanged from its previous exit.

On intermediate exit: contains the current set of Arnoldi basis vectors.

On final exit: contains the final set of Arnoldi basis vectors.

4: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F12APF
is called.

Constraint: LDV � N.

5: Xð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least N if Pointers ¼ NO (default) and at least 1 if
Pointers ¼ YES (see F12ANF).

On initial entry: need not be set, it is used as a convenient mechanism for accessing elements of
COMM.

On intermediate re-entry: if Pointers ¼ YES, X need not be set.

If Pointers ¼ NO, X must contain the result of y ¼ OPx when IREVCM returns the value �1 or
þ1. It must return the computed shifts when IREVCM returns the value 3.

On intermediate exit: if Pointers ¼ YES, X is not referenced.

If Pointers ¼ NO, X contains the vector x when IREVCM returns the value �1 or þ1.
On final exit: does not contain useful data.

6: MXð�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the dimension of the array MX must be at least N if Pointers ¼ NO (default) and at least 1
if Pointers ¼ YES (see F12ANF).

On initial entry: need not be set, it is used as a convenient mechanism for accessing elements of
COMM.

On intermediate re-entry: if Pointers ¼ YES, MX need not be set.

If Pointers ¼ NO, MX must contain the result of y ¼ Bx when IREVCM returns the value 2.

On intermediate exit: if Pointers ¼ YES, MX is not referenced.
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If Pointers ¼ NO, MX contains the vector Bx when IREVCM returns the value þ1.
On final exit: does not contain any useful data.

7: NSHIFT – INTEGER Output

On intermediate exit: if the option Supplied Shifts is set and IREVCM returns a value of 3,
NSHIFT returns the number of complex shifts required.

8: COMMð�Þ – COMPLEX (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least max 1;LCOMMð Þ (see F12ANF).

On initial entry: must remain unchanged following a call to the setup routine F12ANF.

On exit: contains data defining the current state of the iterative process.

9: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ (see F12ANF).

On initial entry: must remain unchanged following a call to the setup routine F12ANF.

On exit: contains data defining the current state of the iterative process.

10: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On intermediate exit: the value of IFAIL is meaningless and should be ignored.

On final exit: (i.e., when IREVCM ¼ 5) IFAIL ¼ 0, unless the routine detects an error or a
warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On initial entry, the maximum number of iterations � 0, the option Iteration Limit has been set
to a non-positive value.

IFAIL ¼ 2

The options Generalized and Regular are incompatible.

IFAIL ¼ 3

The option Initial Residual was selected but the starting vector held in RESID is zero.

IFAIL ¼ 4

The maximum number of iterations has been reached. Some Ritz values may have converged; a
subsequent call to F12AQF will return the number of converged values and the converged values.
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IFAIL ¼ 5

No shifts could be applied during a cycle of the implicitly restarted Arnoldi iteration. One
possibility is to increase the size of NCV relative to NEV (see Section 5 in F12ANF for details of
these arguments).

IFAIL ¼ 6

Could not build an Arnoldi factorization. Consider changing NCV or NEV in the initialization
routine (see Section 5 in F12ANF for details of these arguments).

IFAIL ¼ 7

Unexpected error in internal call to compute eigenvalues and corresponding error bounds of the
current upper Hessenberg matrix. Please contact NAG.

IFAIL ¼ 8

Either the initialization routine F12ANF has not been called prior to the first call of this routine
or a communication array has become corrupted.

IFAIL ¼ 9

An unexpected error has occurred. Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy of a Ritz value, �, is considered acceptable if its Ritz estimate
� Tolerance� �j j. The default Tolerance used is the machine precision given by X02AJF.

8 Parallelism and Performance

F12APF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F12APF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.
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10 Example

This example solves Ax ¼ �x in shift-invert mode, where A is obtained from the standard central

difference discretization of the convection-diffusion operator @2u
@x2
þ @2u

@y2
þ �@u

@x
on the unit square, with

zero Dirichlet boundary conditions. The shift used is a complex number.

10.1 Program Text

Program f12apfe

! F12APF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, f12anf, f12apf, f12aqf, f12arf, f12asf, &

nag_wp, zgttrf, zgttrs
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Complex (Kind=nag_wp), Parameter :: one = (1.0_nag_wp,0.0_nag_wp)
Complex (Kind=nag_wp), Parameter :: two = (2.0_nag_wp,0.0_nag_wp)
Integer, Parameter :: imon = 0, nerr = 6, nin = 5, &

nout = 6
! .. Local Scalars ..

Complex (Kind=nag_wp) :: h, h2, rho, s, s1, s2, s3, sigma
Integer :: ifail, info, irevcm, j, lcomm, ldv, &

licomm, n, nconv, ncv, nev, niter, &
nshift, nx

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: comm(:), d(:,:), dd(:), dl(:), &

du(:), du2(:), mx(:), resid(:), &
v(:,:), x(:)

Integer, Allocatable :: icomm(:), ipiv(:)
! .. Intrinsic Procedures ..

Intrinsic :: cmplx, int, max
! .. Executable Statements ..

Write (nout,*) ’F12APF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

Read (nin,*) nx, nev, ncv
n = nx*nx

! Initialize communication arrays.
! Query the required sizes of the communication arrays.

licomm = -1
lcomm = -1
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))

ifail = 0
Call f12anf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

licomm = icomm(1)
lcomm = int(comm(1))
Deallocate (icomm,comm)
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))

ifail = 0
Call f12anf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Set the mode.

ifail = 0
Call f12arf(’SHIFTED INVERSE’,icomm,comm,ifail)
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sigma = cmplx(0,kind=nag_wp)
rho = (10.0_nag_wp,0.0_nag_wp)
h = one/cmplx(n+1,kind=nag_wp)
h2 = h*h
s = rho/two

s1 = -one/h2 - s/h
s2 = two/h2 - sigma
s3 = -one/h2 + s/h

Allocate (dl(n-1),dd(n),du(n-1),du2(n-2),ipiv(n))
dl(1:n-1) = s1
dd(1:n-1) = s2
du(1:n-1) = s3
dd(n) = s2

! The NAG name equivalent of zgttrf is f07crf
Call zgttrf(n,dl,dd,du,du2,ipiv,info)

If (info/=0) Then
Write (nerr,99999) info
Go To 110

End If

ldv = n
Allocate (resid(n),v(ldv,ncv),x(n),mx(n),d(ncv,2))

irevcm = 0
ifail = -1

100 Continue

Call f12apf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)

If (irevcm/=5) Then

If (irevcm==-1 .Or. irevcm==1) Then

! Perform x <--- OP*x = inv[A-SIGMA*I]*x

! The NAG name equivalent of zgttrs is f07csf
Call zgttrs(’N’,n,1,dl,dd,du,du2,ipiv,x,n,info)

If (info/=0) Then
Write (nerr,99998) info
Go To 110

End If

Else If (irevcm==4 .And. imon/=0) Then

! Output monitoring information

Call f12asf(niter,nconv,d,d(1,2),icomm,comm)

! The NAG name equivalent of dznrm2 is f06jjf
Write (6,99997) niter, nconv, dznrm2(nev,d(1,2),1)

End If

Go To 100

End If

If (ifail==0) Then

! Post-Process using F12AQF to compute eigenvalues/vectors.

ifail = 0
Call f12aqf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail)

Write (nout,99996) nconv

F12 – Large Scale Eigenproblems F12APF

Mark 26 F12APF.7



Do j = 1, nconv
Write (nout,99995) j, d(j,1)

End Do

End If

110 Continue

99999 Format (1X,’** Error status returned by ZGTTRF, INFO =’,I12)
99998 Format (1X,’** Error status returned by ZGTTRS, INFO =’,I12)
99997 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &

’f estimates =’,E16.8)
99996 Format (1X,/,’ The ’,I4,’ Ritz values of smallest magnitude are:’,/)
99995 Format (1X,I8,5X,’( ’,F12.4,’ , ’,F12.4,’ )’)

End Program f12apfe

10.2 Program Data

F12APF Example Program Data
10 4 20 : Vaues for NX NEV and NCV

10.3 Program Results

F12APF Example Program Results

The 4 Ritz values of smallest magnitude are:

1 ( 34.8720 , 0.0000 )
2 ( 64.4326 , -0.0000 )
3 ( 113.6685 , 0.0000 )
4 ( 182.5320 , 0.0000 )
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NAG Library Routine Document

F12AQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12ARF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12ARF for a detailed description of the specification of the optional parameters.

1 Purpose

F12AQF is a post-processing routine in a suite of routines consisting of F12ANF, F12APF, F12AQF,
F12ARF and F12ASF, that must be called following a final exit from F12AQF.

2 Specification

SUBROUTINE F12AQF (NCONV, D, Z, LDZ, SIGMA, RESID, V, LDV, COMM, ICOMM,
IFAIL)

&

INTEGER NCONV, LDZ, LDV, ICOMM(*), IFAIL
COMPLEX (KIND=nag_wp) D(*), Z(LDZ,*), SIGMA, RESID(*), V(LDV,*),

COMM(*)
&

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
sparse, complex and nonsymmetric. The suite can also be used to find selected eigenvalues/eigenvectors
of smaller scale dense, complex and nonsymmetric problems.

Following a call to F12APF, F12AQF returns the converged approximations to eigenvalues and
(optionally) the corresponding approximate eigenvectors and/or an orthonormal basis for the associated
approximate invariant subspace. The eigenvalues (and eigenvectors) are selected from those of a
standard or generalized eigenvalue problem defined by complex nonsymmetric matrices. There is
negligible additional cost to obtain eigenvectors; an orthonormal basis is always computed, but there is
an additional storage cost if both are requested.

F12AQF is based on the routine zneupd from the ARPACK package, which uses the Implicitly
Restarted Arnoldi iteration method. The method is described in Lehoucq and Sorensen (1996) and
Lehoucq (2001) while its use within the ARPACK software is described in great detail in Lehoucq et al.
(1998). An evaluation of software for computing eigenvalues of sparse nonsymmetric matrices is
provided in Lehoucq and Scott (1996). This suite of routines offers the same functionality as the
ARPACK software for complex nonsymmetric problems, but the interface design is quite different in
order to make the option setting clearer and to simplify some of the interfaces.

F12AQF is a post-processing routine that must be called following a successful final exit from F12APF.
F12AQF uses data returned from F12APF and options set either by default or explicitly by calling
F12ARF, to return the converged approximations to selected eigenvalues and (optionally):

– the corresponding approximate eigenvectors;

– an orthonormal basis for the associated approximate invariant subspace;

– both.
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5 Arguments

1: NCONV – INTEGER Output

On exit: the number of converged eigenvalues as found by F12ARF.

2: Dð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array D must be at least NCV (see F12ANF).

On exit: the first NCONV locations of the array D contain the converged approximate
eigenvalues.

3: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least NEV if the default option
Vectors ¼ RITZ has been selected and at least 1 if the option Vectors ¼ NONE or SCHUR has
been selected (see F12ANF).

On exit: if the default option Vectors ¼ RITZ (see F12ADF) has been selected then Z contains
the final set of eigenvectors corresponding to the eigenvalues held in D. The complex eigenvector
associated with an eigenvalue is stored in the corresponding column of Z.

4: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F12AQF
is called.

Constraints:

if the default option Vectors ¼ Ritz has been selected, LDZ � N;
if the option Vectors ¼ None or Schur has been selected, LDZ � 1.

5: SIGMA – COMPLEX (KIND=nag_wp) Input

On entry: if one of the Shifted Inverse (see F12ARF) modes has been selected then SIGMA
contains the shift used; otherwise SIGMA is not referenced.

6: RESIDð�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array RESID must be at least N (see F12ANF).

On entry: must not be modified following a call to F12APF since it contains data required by
F12AQF.

7: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;NCVð Þ (see F12ANF).

On entry: the NCV columns of V contain the Arnoldi basis vectors for OP as constructed by
F12APF.
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On exit: if the option Vectors ¼ SCHUR or RITZ has been set and a separate array Z has been
passed (i.e., Z does not equal V), then the first NCONV columns of V will contain approximate
Schur vectors that span the desired invariant subspace.

8: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F12AQF
is called.

Constraint: LDV � N.

9: COMMð�Þ – COMPLEX (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least max 1;LCOMMð Þ (see F12ANF).

On initial entry: must remain unchanged from the prior call to F12ANF.

On exit: contains data on the current state of the solution.

10: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ (see F12ANF).

On initial entry: must remain unchanged from the prior call to F12ANF.

On exit: contains data on the current state of the solution.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDZ < max 1;Nð Þ or LDZ < 1 when no vectors are required.

IFAIL ¼ 2

On entry, the option Vectors ¼ Select was selected, but this is not yet implemented.

IFAIL ¼ 3

The number of eigenvalues found to sufficient accuracy prior to calling F12AQF, as
communicated through the argument ICOMM, is zero.

IFAIL ¼ 4

The number of converged eigenvalues as calculated by F12APF differ from the value passed to it
through the argument ICOMM.
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IFAIL ¼ 5

Unexpected error during calculation of a Schur form: there was a failure to compute all the
converged eigenvalues. Please contact NAG.

IFAIL ¼ 6

Unexpected error: the computed Schur form could not be reordered by an internal call. Please
contact NAG.

IFAIL ¼ 7

Unexpected error in internal call while calculating eigenvectors. Please contact NAG.

IFAIL ¼ 8

Either the solver routine F12APF has not been called prior to the call of this routine or a
communication array has become corrupted.

IFAIL ¼ 9

The routine was unable to dynamically allocate sufficient internal workspace. Please contact
NAG.

IFAIL ¼ 10

An unexpected error has occurred. Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy of a Ritz value, �, is considered acceptable if its Ritz estimate � Tolerance� �j j.
The default Tolerance used is the machine precision given by X02AJF.

8 Parallelism and Performance

F12AQF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.
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10 Example

This example solves Ax ¼ �Bx in regular-invert mode, where A and B are derived from the standard
central difference discretization of the one-dimensional convection-diffusion operator d

2u
dx2
þ �dudx on 0; 1½ �,

with zero Dirichlet boundary conditions.

10.1 Program Text

! F12AQF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12aqfe_mod

! F12AQF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: av, mv

! .. Parameters ..
Complex (Kind=nag_wp), Parameter, Public :: four = (4.0_nag_wp, &

0.0_nag_wp)
Complex (Kind=nag_wp), Parameter, Public :: one = (1.0E+0_nag_wp, &

0.0E+0_nag_wp)
Complex (Kind=nag_wp), Parameter :: two = (2.0_nag_wp,0.0_nag_wp)
Integer, Parameter, Public :: imon = 0, licomm = 140, nerr = 6, &

nin = 5, nout = 6
Contains

Subroutine av(nx,v,w)

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: rho = (10.0_nag_wp,0.0_nag_wp)

! .. Scalar Arguments ..
Integer, Intent (In) :: nx

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: v(nx*nx)
Complex (Kind=nag_wp), Intent (Out) :: w(nx*nx)

! .. Local Scalars ..
Complex (Kind=nag_wp) :: dd, dl, du, h, s
Integer :: j, n

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
n = nx*nx
h = one/cmplx(n+1,kind=nag_wp)
s = rho/two
dd = two/h
dl = -one/h - s
du = -one/h + s
w(1) = dd*v(1) + du*v(2)
Do j = 2, n - 1

w(j) = dl*v(j-1) + dd*v(j) + du*v(j+1)
End Do
w(n) = dl*v(n-1) + dd*v(n)
Return

End Subroutine av

Subroutine mv(nx,v,w)

! .. Use Statements ..
Use nag_library, Only: zscal

! .. Scalar Arguments ..
Integer, Intent (In) :: nx

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: v(nx*nx)
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Complex (Kind=nag_wp), Intent (Out) :: w(nx*nx)
! .. Local Scalars ..

Complex (Kind=nag_wp) :: h
Integer :: j, n

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
n = nx*nx
w(1) = four*v(1) + one*v(2)
Do j = 2, n - 1

w(j) = one*v(j-1) + four*v(j) + one*v(j+1)
End Do
w(n) = one*v(n-1) + four*v(n)
h = one/cmplx(n+1,kind=nag_wp)

! The NAG name equivalent of zscal is f06gdf
Call zscal(n,h,w,1)
Return

End Subroutine mv
End Module f12aqfe_mod
Program f12aqfe

! F12AQF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dznrm2, f12anf, f12apf, f12aqf, f12arf, f12asf, &

nag_wp, zgttrf, zgttrs
Use f12aqfe_mod, Only: av, four, imon, licomm, mv, nerr, nin, nout, one

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Complex (Kind=nag_wp) :: h, sigma
Integer :: ifail, ifail1, info, irevcm, j, &

lcomm, ldv, n, nconv, ncv, nev, &
niter, nshift, nx

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: comm(:), d(:,:), dd(:), dl(:), &

du(:), du2(:), mx(:), resid(:), &
v(:,:), x(:)

Integer :: icomm(licomm)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
Write (nout,*) ’F12AQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) nx, nev, ncv

n = nx*nx
lcomm = 3*n + 3*ncv*ncv + 5*ncv + 60
ldv = n
Allocate (comm(lcomm),d(ncv,2),dd(n),dl(n),du(n),du2(n),mx(n),resid(n), &

v(ldv,ncv),x(n),ipiv(n))

ifail = 0
Call f12anf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Set the mode.
ifail = 0
Call f12arf(’REGULAR INVERSE’,icomm,comm,ifail)

! Set problem type.
Call f12arf(’GENERALIZED’,icomm,comm,ifail)

! Use pointers to Workspace rather than interfacing through the array X.
Call f12arf(’POINTERS=YES’,icomm,comm,ifail)
h = one/cmplx(n+1,kind=nag_wp)

dl(1:n-1) = h
dd(1:n-1) = four*h
du(1:n-1) = h
dd(n) = four*h
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! The NAG name equivalent of zgttrf is f07crf
Call zgttrf(n,dl,dd,du,du2,ipiv,info)
If (info/=0) Then

Write (nerr,99999) info
Go To 100

End If

irevcm = 0
ifail = -1

revcm: Do
Call f12apf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)
If (irevcm==5) Then

Exit revcm
Else If (irevcm==-1 .Or. irevcm==1) Then

! Perform y <--- OP*x = inv[M]*A*x |
Call av(nx,comm(icomm(1)),comm(icomm(2)))

! The NAG name equivalent of zgttrs is f07csf
Call zgttrs(’N’,n,1,dl,dd,du,du2,ipiv,comm(icomm(2)),n,info)
If (info/=0) Then

Write (nerr,99998) info
Exit revcm

End If
Else If (irevcm==2) Then

! Perform y <--- M*x
Call mv(nx,comm(icomm(1)),comm(icomm(2)))

Else If (irevcm==4 .And. imon/=0) Then
! Output monitoring information

Call f12asf(niter,nconv,d,d(1,2),icomm,comm)
! The NAG name equivalent of dznrm2 is f06jjf

Write (6,99997) niter, nconv, dznrm2(nev,d(1,2),1)
End If

End Do revcm

If (ifail==0 .And. info==0) Then
! Post-Process using F12AQF to compute eigenvalues/vectors.

ifail1 = 0
Call f12aqf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail1)
Write (nout,99996) nconv
Write (nout,99995)(j,d(j,1),j=1,nconv)

End If
100 Continue

99999 Format (1X,’** Error status returned by ZGTTRF, INFO =’,I12)
99998 Format (1X,’** Error status returned by ZGTTRS, INFO =’,I12)
99997 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &

’f estimates =’,E16.8)
99996 Format (1X,/,’ The ’,I4,’ Ritz values of largest magnitude are:’,/)
99995 Format (1X,I8,5X,’( ’,F12.4,’ , ’,F12.4,’ )’)

End Program f12aqfe

10.2 Program Data

F12AQF Example Program Data
10 4 20 : Vaues for NX NEV and NCV

10.3 Program Results

F12AQF Example Program Results

The 4 Ritz values of largest magnitude are:

1 ( 20383.0384 , 0.0000 )
2 ( 20338.7563 , -0.0000 )
3 ( 20265.2844 , 0.0000 )
4 ( 20163.1142 , -0.0000 )
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NAG Library Routine Document

F12ARF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then this routine need not be called. If,
however, you wish to reset some or all of the settings please refer to Section 11 for a detailed
description of the specification of the optional parameters.

1 Purpose

F12ARF is an option setting routine in a suite of routines consisting of F12ANF, F12APF, F12AQF,
F12ARF and F12ASF, for which it may be used to supply individual optional parameters to F12APF
and F12AQF. F12ARF is also an option setting routine in a suite of routines consisting of F12ANF,
F12ATF and F12AUF for which it may be used to supply individual optional parameters to F12AUF.

The initialization routine for the appropriate suite, F12ANF or F12ATF, must have been called prior to
calling F12ARF.

2 Specification

SUBROUTINE F12ARF (STR, ICOMM, COMM, IFAIL)

INTEGER ICOMM(*), IFAIL
COMPLEX (KIND=nag_wp) COMM(*)
CHARACTER(*) STR

3 Description

F12ARF may be used to supply values for optional parameters to F12APF and F12AQF, or to F12AUF.
It is only necessary to call F12ARF for those arguments whose values are to be different from their
default values. One call to F12ARF sets one argument value.

Each optional parameter is defined by a single character string consisting of one or more items. The
items associated with a given option must be separated by spaces, or equals signs ¼½ �. Alphabetic
characters may be upper or lower case. The string

’Pointers = Yes’

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 16 contiguous characters
in Fortran's I, F, E or D format.

F12ARF does not have an equivalent routine from the ARPACK package which passes options by
directly setting values to scalar arguments or to specific elements of array arguments. F12ARF is
intended to make the passing of options more transparent and follows the same principle as the single
option setting routines in Chapter E04 (see E04NSF for an example).

The setup routine F12ANF must be called prior to the first call to F12ARF or F12ATF, and all calls to
F12ARF must precede the first call to F12APF or F12AUF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 11.
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5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 and Section 11).

2: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ (see F12ANF).

On initial entry: must remain unchanged following a call to the setup routine F12ANF.

On exit: contains data on the current options set.

3: COMMð�Þ – COMPLEX (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least max 1;LCOMMð Þ (see F12ANF).

On initial entry: must remain unchanged following a call to the setup routine F12ANF.

On exit: contains data on the current options set.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The string passed in STR contains an ambiguous keyword.

IFAIL ¼ 2

The string passed in STR contains a keyword that could not be recognized.
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IFAIL ¼ 3

The string passed in STR contains a second keyword that could not be recognized.

IFAIL ¼ 4

The initialization routine F12ANF or F12ATF has not been called or a communication array has
become corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F12ARF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example solves Ax ¼ �Bx in shifted-inverse mode, where A and B are derived from the finite
element discretization of the one-dimensional convection-diffusion operator d2u

dx2
þ �dudx on the interval

0; 1½ �, with zero Dirichlet boundary conditions.

10.1 Program Text

! F12ARF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12arfe_mod

! F12ARF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: mv

! .. Parameters ..
Complex (Kind=nag_wp), Parameter, Public :: four = (4.0_nag_wp, &
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0.0_nag_wp)
Complex (Kind=nag_wp), Parameter, Public :: one = (1.0_nag_wp,0.0_nag_wp &

)
Complex (Kind=nag_wp), Parameter, Public :: six = (6.0_nag_wp,0.0_nag_wp &

)
Complex (Kind=nag_wp), Parameter, Public :: two = (2.0_nag_wp,0.0_nag_wp &

)
Integer, Parameter, Public :: imon = 0, licomm = 140, nerr = 6, &

nin = 5, nout = 6
Contains

Subroutine mv(nx,v,w)
! Compute the out-of--place matrix vector multiplication Y<---M*X,
! where M is mass matrix formed by using piecewise linear elements
! on [0,1].

! .. Use Statements ..
Use nag_library, Only: zscal

! .. Scalar Arguments ..
Integer, Intent (In) :: nx

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: v(nx*nx)
Complex (Kind=nag_wp), Intent (Out) :: w(nx*nx)

! .. Local Scalars ..
Complex (Kind=nag_wp) :: h
Integer :: j, n

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
n = nx*nx
w(1) = (four*v(1)+v(2))/six
Do j = 2, n - 1

w(j) = (v(j-1)+four*v(j)+v(j+1))/six
End Do
w(n) = (v(n-1)+four*v(n))/six

h = one/cmplx(n+1,kind=nag_wp)
! The NAG name equivalent of zscal is f06gdf

Call zscal(n,h,w,1)
Return

End Subroutine mv
End Module f12arfe_mod
Program f12arfe

! F12ARF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dznrm2, f12anf, f12apf, f12aqf, f12arf, f12asf, &

nag_wp, zgttrf, zgttrs
Use f12arfe_mod, Only: four, imon, licomm, mv, nerr, nin, nout, one, &

six, two
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Complex (Kind=nag_wp) :: h, rho, s, s1, s2, s3, sigma
Integer :: ifail, ifail1, info, irevcm, j, &

lcomm, ldv, n, nconv, ncv, nev, &
niter, nshift, nx

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ax(:), comm(:), d(:,:), dd(:), &

dl(:), du(:), du2(:), mx(:), &
resid(:), v(:,:), x(:)

Integer :: icomm(licomm)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
Write (nout,*) ’F12ARF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) nx, nev, ncv
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n = nx*nx
lcomm = 3*n + 3*ncv*ncv + 5*ncv + 60
ldv = n
Allocate (comm(lcomm),ax(n),d(ncv,2),dd(n),dl(n),du(n),du2(n),mx(n), &

resid(n),v(ldv,ncv),x(n),ipiv(n))

ifail = 0
Call f12anf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Set the mode.
ifail = 0
Call f12arf(’SHIFTED INVERSE’,icomm,comm,ifail)

! Set problem type.
Call f12arf(’GENERALIZED’,icomm,comm,ifail)
sigma = (500.0_nag_wp,0.0_nag_wp)
rho = (10.0_nag_wp,0.0_nag_wp)
h = one/cmplx(n+1,kind=nag_wp)
s = rho/two
s1 = -one/h - s - sigma*h/six
s2 = two/h - four*sigma*h/six
s3 = -one/h + s - sigma*h/six

dl(1:n-1) = s1
dd(1:n-1) = s2
du(1:n-1) = s3
dd(n) = s2

! The NAG name equivalent of zgttrf is f07crf
Call zgttrf(n,dl,dd,du,du2,ipiv,info)
If (info/=0) Then

Write (nerr,99999) info
Go To 100

End If

irevcm = 0
ifail = -1

revcm: Do
Call f12apf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)
If (irevcm==5) Then

Exit revcm
Else If (irevcm==-1) Then

! Perform x <--- OP*x = inv[A-SIGMA*M]*M*x
Call mv(nx,x,ax)
x(1:n) = ax(1:n)

! The NAG name equivalent of zgttrs is f07csf
Call zgttrs(’N’,n,1,dl,dd,du,du2,ipiv,x,n,info)
If (info/=0) Then

Write (nerr,99998) info
Exit revcm

End If
Else If (irevcm==1) Then

! Perform x <--- OP*x = inv[A-SIGMA*M]*M*x,
! MX stored in COMM from location IPNTR(3)
! The NAG name equivalent of zgttrs is f07csf

Call zgttrs(’N’,n,1,dl,dd,du,du2,ipiv,mx,n,info)
x(1:n) = mx(1:n)
If (info/=0) Then

Write (nerr,99998) info
Exit revcm

End If
Else If (irevcm==2) Then

! Perform y <--- M*x
Call mv(nx,x,ax)
x(1:n) = ax(1:n)

Else If (irevcm==4 .And. imon/=0) Then
! Output monitoring information

Call f12asf(niter,nconv,d,d(1,2),icomm,comm)
! The NAG name equivalent of dznrm2 is f06jjf

Write (6,99997) niter, nconv, dznrm2(nev,d(1,2),1)
End If
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End Do revcm

If (ifail==0 .And. info==0) Then
! Post-Process using F12AQF to compute eigenvalues/vectors.

ifail1 = 0
Call f12aqf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail1)
Write (nout,99996) nconv, sigma
Write (nout,99995)(j,d(j,1),j=1,nconv)

End If
100 Continue

99999 Format (1X,’** Error status returned by ZGTTRF, INFO =’,I12)
99998 Format (1X,’** Error status returned by ZGTTRS, INFO =’,I12)
99997 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &

’f estimates =’,E16.8)
99996 Format (1X,/,’ The ’,I4,’ generalized Ritz values closest to (’,F7.3, &

’,’,F7.3,’) are:’,/)
99995 Format (1X,I8,5X,’( ’,F10.4,’ , ’,F10.4,’ )’)

End Program f12arfe

10.2 Program Data

F12ARF Example Program Data
10 4 20 : Vaues for NX NEV and NCV

10.3 Program Results

F12ARF Example Program Results

The 4 generalized Ritz values closest to (500.000, 0.000) are:

1 ( 509.9390 , 0.0000 )
2 ( 380.9092 , 0.0000 )
3 ( 659.1558 , 0.0000 )
4 ( 271.9412 , -0.0000 )

11 Optional Parameters

Several optional parameters for the computational suite routines F12APF and F12AQF, and for the
banded driver F12AUF, define choices in the problem specification or the algorithm logic. In order to
reduce the number of formal arguments of F12APF, F12AQF and F12AUF these optional parameters
have associated default values that are appropriate for most problems. Therefore, you need only specify
those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 11.1.

Advisory

Defaults

Exact Shifts

Generalized

Initial Residual

Iteration Limit

Largest Imaginary

Largest Magnitude

Largest Real

List

Monitoring

Nolist
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Pointers

Print Level

Random Residual

Regular

Regular Inverse

Shifted Inverse

Smallest Imaginary

Smallest Magnitude

Smallest Real

Standard

Supplied Shifts

Tolerance

Vectors

Optional parameters may be specified by calling F12ARF before a call to F12APF or F12ATF, but after
a corresponding call to F12ANF or F12AUF. One call is necessary for each optional parameter. Any
optional parameters you do not specify are set to their default values. Optional parameters you do
specify are unaltered by F12APF, F12AQF and F12AUF (unless they define invalid values) and so
remain in effect for subsequent calls unless you alter them.

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Advisory i Default ¼ the value returned by X04ABF

The destination for advisory messages.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Exact Shifts Default
Supplied Shifts

During the Arnoldi iterative process, shifts are applied as part of the implicit restarting scheme. The
shift strategy used by default and selected by the optional parameter Exact Shifts is strongly
recommended over the alternative Supplied Shifts and will always be used by F12AUF.

If Exact Shifts are used then these are computed internally by the algorithm in the implicit restarting
scheme. This strategy is generally effective and cheaper to apply in terms of number of operations than
using explicit shifts.

If Supplied Shifts are used then, during the Arnoldi iterative process, you must supply shifts through
array arguments of F12APF when F12APF returns with IREVCM ¼ 3; the complex shifts are returned
in X (or in COMM when the option Pointers ¼ YES is set). This option should only be used if you are
an experienced user since this requires some algorithmic knowledge and because more operations are
usually required than for the implicit shift scheme. Details on the use of explicit shifts and further
references on shift strategies are available in Lehoucq et al. (1998).
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Iteration Limit i Default ¼ 300

The limit on the number of Arnoldi iterations that can be performed before F12APF or F12AUF exits.
If not all requested eigenvalues have converged to within Tolerance and the number of Arnoldi
iterations has reached this limit then F12APF or F12AUF exits with an error; F12AUF returns the
number of converged eigenvalues, the converged eigenvalues and, if requested, the corresponding
eigenvectors, while F12AQF can be called subsequent to F12APF to do the same.

Largest Magnitude Default
Largest Imaginary
Largest Real
Smallest Imaginary
Smallest Magnitude
Smallest Real

The Arnoldi iterative method converges on a number of eigenvalues with given properties. The default
is for F12APF or F12AUF to compute the eigenvalues of largest magnitude using Largest Magnitude.
Alternatively, eigenvalues may be chosen which have Largest Real part, Largest Imaginary part,
Smallest Magnitude, Smallest Real part or Smallest Imaginary part.

Note that these options select the eigenvalue properties for eigenvalues of OP (and B for Generalized
problems), the linear operator determined by the computational mode and problem type.

Nolist Default
List

Normally each optional parameter specification is not printed to the advisory channel as it is supplied.
Optional parameter List may be used to enable printing and optional parameter Nolist may be used to
suppress the printing.

Monitoring i Default ¼ �1
If i > 0, monitoring information is output to channel number i during the solution of each problem; this
may be the same as the Advisory channel number. The type of information produced is dependent on
the value of Print Level, see the description of the optional parameter Print Level for details of the
information produced. Please see X04ACF to associate a file with a given channel number.

Pointers Default ¼ NO

During the iterative process and reverse communication calls to F12APF, required data can be
communicated to and from F12APF in one of two ways. When Pointers ¼ NO is selected (the default)
then the array arguments X and MX are used to supply you with required data and used to return
computed values back to F12APF. For example, when IREVCM ¼ 1, F12APF returns the vector x in X
and the matrix-vector product Bx in MX and expects the result or the linear operation OP xð Þ to be
returned in X.

If Pointers ¼ YES is selected then the data is passed through sections of the array argument COMM.
The section corresponding to X when Pointers ¼ NO begins at a location given by the first element of
ICOMM; similarly the section corresponding to MX begins at a location given by the second element of
ICOMM. This option allows F12APF to perform fewer copy operations on each intermediate exit and
entry, but can also lead to less elegant code in the calling program.

This option has no affect on F12AUF which sets Pointers ¼ YES internally.

Print Level i Default ¼ 0

This controls the amount of printing produced by F12ARF as follows.

¼ 0 No output except error messages.

> 0 The set of selected options.

¼ 2 Problem and timing statistics on final exit from F12APF or F12AUF.
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� 5 A single line of summary output at each Arnoldi iteration.

� 10 If Monitoring > 0, Monitoring is set, then at each iteration, the length and additional steps of
the current Arnoldi factorization and the number of converged Ritz values; during re-
orthogonalization, the norm of initial/restarted starting vector.

� 20 Problem and timing statistics on final exit from F12APF. If Monitoring > 0, Monitoring is
set, then at each iteration, the number of shifts being applied, the eigenvalues and estimates of
the Hessenberg matrix H, the size of the Arnoldi basis, the wanted Ritz values and associated
Ritz estimates and the shifts applied; vector norms prior to and following re-orthogonalization.

� 30 If Monitoring > 0, Monitoring is set, then on final iteration, the norm of the residual; when
computing the Schur form, the eigenvalues and Ritz estimates both before and after sorting;
for each iteration, the norm of residual for compressed factorization and the compressed upper
Hessenberg matrix H; during re-orthogonalization, the initial/restarted starting vector; during
the Arnoldi iteration loop, a restart is flagged and the number of the residual requiring iterative
refinement; while applying shifts, the indices of the shifts being applied.

� 40 If Monitoring > 0, Monitoring is set, then during the Arnoldi iteration loop, the Arnoldi
vector number and norm of the current residual; while applying shifts, key measures of
progress and the order of H; while computing eigenvalues of H, the last rows of the Schur
and eigenvector matrices; when computing implicit shifts, the eigenvalues and Ritz estimates
of H.

� 50 If Monitoring is set, then during Arnoldi iteration loop: norms of key components and the
active column of H, norms of residuals during iterative refinement, the final upper Hessenberg
matrix H; while applying shifts: number of shifts, shift values, block indices, updated matrix
H; while computing eigenvalues of H: the matrix H, the computed eigenvalues and Ritz
estimates.

Random Residual Default
Initial Residual

To begin the Arnoldi iterative process, F12APF and F12AUF requires an initial residual vector. By
default F12APF and F12AUF provides its own random initial residual vector; this option can also be set
using optional parameter Random Residual. Alternatively, you can supply an initial residual vector
(perhaps from a previous computation) to F12APF and F12AUF through the array argument RESID;
this option can be set using optional parameter Initial Residual.

Regular Default
Regular Inverse
Shifted Inverse

These options define the computational mode which in turn defines the form of operation OP xð Þ to be
performed by F12AUF or when F12APF returns with IREVCM ¼ �1 or 1 and the matrix-vector
product Bx when F12APF returns with IREVCM ¼ �2.
Given a Standard eigenvalue problem in the form Ax ¼ �x then the following modes are available
with the appropriate operator OP xð Þ.

Regular OP ¼ A
Shifted Inverse OP ¼ A� �Ið Þ�1

Given a Generalized eigenvalue problem in the form Ax ¼ �Bx then the following modes are
available with the appropriate operator OP xð Þ.

Regular Inverse OP ¼ B�1A
Shifted Inverse OP ¼ A� �Bð Þ�1B
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Standard Default
Generalized

The problem to be solved is either a standard eigenvalue problem, Ax ¼ �x, or a generalized
eigenvalue problem, Ax ¼ �Bx. The optional parameter Standard should be used when a standard
eigenvalue problem is being solved and the optional parameter Generalized should be used when a
generalized eigenvalue problem is being solved.

Tolerance r Default ¼ �
An approximate eigenvalue has deemed to have converged when the corresponding Ritz estimate is
within Tolerance relative to the magnitude of the eigenvalue.

Vectors Default ¼ RITZ

The routine F12AQF or F12AUF can optionally compute the Schur vectors and/or the eigenvectors
corresponding to the converged eigenvalues. To turn off computation of any vectors the option
Vectors ¼ NONE should be set. To compute only the Schur vectors (at very little extra cost), the option
Vectors ¼ SCHUR should be set and these will be returned in the array argument V of F12AQF or
F12AUF. To compute the eigenvectors (Ritz vectors) corresponding to the eigenvalue estimates, the
option Vectors ¼ RITZ should be set and these will be returned in the array argument Z of F12AQF or
F12AUF, if Z is set equal to V (as in Section 10) then the Schur vectors in V are overwritten by the
eigenvectors computed by F12AQF or F12AUF.
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NAG Library Routine Document

F12ASF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12ARF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12ARF for a detailed description of the specification of the optional parameters.

1 Purpose

F12ASF can be used to return additional monitoring information during computation. It is in a suite of
routines consisting of F12ANF, F12APF, F12AQF, F12ARF and F12ASF.

2 Specification

SUBROUTINE F12ASF (NITER, NCONV, RITZ, RZEST, ICOMM, COMM)

INTEGER NITER, NCONV, ICOMM(*)
COMPLEX (KIND=nag_wp) RITZ(*), RZEST(*), COMM(*)

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard complex eigenvalue problem Ax ¼ �x, or of a generalized
complex eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and
B are sparse and complex. The suite can also be used to find selected eigenvalues/eigenvectors of
smaller scale dense complex problems.

On an intermediate exit from F12APF with IREVCM ¼ 4, F12ASF may be called to return monitoring
information on the progress of the Arnoldi iterative process. The information returned by F12ASF is:

– the number of the current Arnoldi iteration;

– the number of converged eigenvalues at this point;

– the converged eigenvalues;

– the error bounds on the converged eigenvalues.

F12ASF does not have an equivalent routine from the ARPACK package which prints various levels of
detail of monitoring information through an output channel controlled via an argument value (see
Lehoucq et al. (1998) for details of ARPACK routines). F12ASF should not be called at any time other
than immediately following an IREVCM ¼ 4 return from F12APF.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia
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5 Arguments

1: NITER – INTEGER Output

On exit: the number of the current Arnoldi iteration.

2: NCONV – INTEGER Output

On exit: the number of converged eigenvalues so far.

3: RITZð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array RITZ must be at least NCV (see F12ANF).

On exit: the first NCONV locations of the array RITZ contain the converged approximate
eigenvalues.

4: RZESTð�Þ – COMPLEX (KIND=nag_wp) array Output

Note: the dimension of the array RZEST must be at least NCV (see F12ANF).

On exit: the first NCONV locations of the array RZEST contain the complex Ritz estimates on
the converged approximate eigenvalues.

5: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ, where LICOMM is
passed to the setup routine (see F12ANF).

On entry: the array ICOMM output by the preceding call to F12APF.

6: COMMð�Þ – COMPLEX (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least max 1;LCOMMð Þ, where LCOMM is
passed to the setup routine (see F12ANF).

On entry: the array COMM output by the preceding call to F12APF.

6 Error Indicators and Warnings

None.

7 Accuracy

A Ritz value, �, is deemed to have converged if the magnitude of its Ritz estimate � Tolerance� �j j.
The default Tolerance used is the machine precision given by X02AJF.

8 Parallelism and Performance

F12ASF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example solves Ax ¼ �Bx in shifted-inverse mode, where A and B are obtained from the standard
central difference discretization of the one-dimensional convection-diffusion operator d

2u
dx2
þ �dudx on 0; 1½ �,

with zero Dirichlet boundary conditions. The shift, �, is a complex number, and the operator used in the
shifted-inverse iterative process is OP ¼ inv A� �Bð Þ �B.
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10.1 Program Text

! F12ASF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12asfe_mod

! F12ASF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: mv

! .. Parameters ..
Complex (Kind=nag_wp), Parameter, Public :: four = (4.0_nag_wp, &

0.0_nag_wp)
Complex (Kind=nag_wp), Parameter, Public :: one = (1.0_nag_wp,0.0_nag_wp &

)
Complex (Kind=nag_wp), Parameter, Public :: six = (6.0_nag_wp,0.0_nag_wp &

)
Complex (Kind=nag_wp), Parameter, Public :: two = (2.0_nag_wp,0.0_nag_wp &

)
Integer, Parameter, Public :: imon = 1, licomm = 140, nerr = 6, &

nin = 5, nout = 6
Contains

Subroutine mv(nx,v,w)
! Compute the out-of--place matrix vector multiplication Y<---M*X,
! where M is mass matrix formed by using piecewise linear elements
! on [0,1].

! .. Use Statements ..
Use nag_library, Only: zscal

! .. Scalar Arguments ..
Integer, Intent (In) :: nx

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: v(nx*nx)
Complex (Kind=nag_wp), Intent (Out) :: w(nx*nx)

! .. Local Scalars ..
Complex (Kind=nag_wp) :: h
Integer :: j, n

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
n = nx*nx
w(1) = (four*v(1)+v(2))/six
Do j = 2, n - 1

w(j) = (v(j-1)+four*v(j)+v(j+1))/six
End Do
w(n) = (v(n-1)+four*v(n))/six

h = one/cmplx(n+1,kind=nag_wp)
! The NAG name equivalent of zscal is f06gdf

Call zscal(n,h,w,1)
Return

End Subroutine mv
End Module f12asfe_mod

Program f12asfe

! F12ASF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dznrm2, f12anf, f12apf, f12aqf, f12arf, f12asf, &

nag_wp, zgttrf, zgttrs
Use f12asfe_mod, Only: four, imon, licomm, mv, nerr, nin, nout, one, &

six, two
! .. Implicit None Statement ..
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Implicit None
! .. Local Scalars ..

Complex (Kind=nag_wp) :: h, rho, s, s1, s2, s3, sigma
Real (Kind=nag_wp) :: nev_nrm
Integer :: ifail, ifail1, info, irevcm, j, &

lcomm, ldv, n, nconv, ncv, nev, &
niter, nshift, nx

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ax(:), comm(:), d(:,:), dd(:), &

dl(:), du(:), du2(:), mx(:), &
resid(:), v(:,:), x(:)

Integer :: icomm(licomm)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx

! .. Executable Statements ..
Write (nout,*) ’F12ASF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) nx, nev, ncv

n = nx*nx
lcomm = 3*n + 3*ncv*ncv + 5*ncv + 60
ldv = n
Allocate (ax(n),comm(lcomm),d(ncv,2),dd(n),dl(n),du(n),du2(n),mx(n), &

resid(n),v(ldv,ncv),x(n),ipiv(n))

ifail = 0
Call f12anf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Set the mode.
ifail = 0
Call f12arf(’SHIFTED INVERSE’,icomm,comm,ifail)

! Set problem type.
Call f12arf(’GENERALIZED’,icomm,comm,ifail)
sigma = (5000.0_nag_wp,0.0_nag_wp)
rho = (10.0_nag_wp,0.0_nag_wp)
h = one/cmplx(n+1,kind=nag_wp)
s = rho/two
s1 = -one/h - s - sigma*h/six
s2 = two/h - four*sigma*h/six
s3 = -one/h + s - sigma*h/six

dl(1:n-1) = s1
dd(1:n-1) = s2
du(1:n-1) = s3
dd(n) = s2

! The NAG name equivalent of zgttrf is f07crf
Call zgttrf(n,dl,dd,du,du2,ipiv,info)
If (info/=0) Then

Write (nerr,99999) info
Go To 100

End If

irevcm = 0
ifail = -1

revcm: Do
Call f12apf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)
If (irevcm==5) Then

Exit revcm
Else If (irevcm==-1) Then

! Perform x <--- OP*x = inv[A-SIGMA*M]*M*x
Call mv(nx,x,ax)
x(1:n) = ax(1:n)

! The NAG name equivalent of zgttrs is f07csf
Call zgttrs(’N’,n,1,dl,dd,du,du2,ipiv,x,n,info)
If (info/=0) Then

Write (nerr,99998) info
Exit revcm

F12ASF NAG Library Manual

F12ASF.4 Mark 26



End If
Else If (irevcm==1) Then

! Perform x <--- OP*x = inv[A-SIGMA*M]*M*x,
! MX stored in COMM from location IPNTR(3)
! The NAG name equivalent of zgttrs is f07csf

Call zgttrs(’N’,n,1,dl,dd,du,du2,ipiv,mx,n,info)
x(1:n) = mx(1:n)
If (info/=0) Then

Write (nerr,99998) info
Exit revcm

End If
Else If (irevcm==2) Then

! Perform y <--- M*x
Call mv(nx,x,ax)
x(1:n) = ax(1:n)

Else If (irevcm==4 .And. imon/=0) Then
! Output monitoring information

Call f12asf(niter,nconv,d,d(1,2),icomm,comm)
! The NAG name equivalent of dznrm2 is f06jjf

nev_nrm = dznrm2(nev,d(1,2),1)
Write (6,99997) niter, nconv, nev_nrm

End If
End Do revcm

If (ifail==0 .And. info==0) Then
! Post-Process using F12AQF to compute eigenvalues/vectors.

ifail1 = 0
Call f12aqf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail1)
Write (nout,99996) nconv, sigma
Write (nout,99995)(j,d(j,1),j=1,nconv)

End If
100 Continue

99999 Format (1X,’** Error status returned by ZGTTRF, INFO =’,I12)
99998 Format (1X,’** Error status returned by ZGTTRS, INFO =’,I12)
99997 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &

’f estimates =’,E12.4)
99996 Format (1X,/,’ The ’,I4,’ generalized Ritz values closest to (’,F8.3, &

’,’,F8.3,’) are:’,/)
99995 Format (1X,I8,5X,’( ’,F10.4,’ , ’,F10.4,’ )’)

End Program f12asfe

10.2 Program Data

F12ASF Example Program Data
16 4 10 : Vaues for NX NEV and NCV

10.3 Program Results

F12ASF Example Program Results

Iteration 1, No. converged = 0, norm of estimates = 0.5947E-06
Iteration 2, No. converged = 1, norm of estimates = 0.1478E-08
Iteration 3, No. converged = 2, norm of estimates = 0.3293E-10
Iteration 4, No. converged = 2, norm of estimates = 0.5941E-13
Iteration 5, No. converged = 2, norm of estimates = 0.8408E-15
Iteration 6, No. converged = 3, norm of estimates = 0.8134E-17

The 4 generalized Ritz values closest to (5000.000, 0.000) are:

1 ( 4829.8497 , 0.0000 )
2 ( 5279.5223 , -0.0000 )
3 ( 4400.6310 , 0.0000 )
4 ( 5749.7160 , -0.0000 )
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NAG Library Routine Document

F12ATF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F12ATF is a setup routine for F12AUF which may be used for finding some eigenvalues (and optionally
the corresponding eigenvectors) of a standard or generalized eigenvalue problem defined by complex,
banded, non-Hermitian matrices. The banded matrix must be stored using the LAPACK column ordered
storage format for complex banded non-Hermitian matrices (see Section 3.3.4 in the F07 Chapter
Introduction).

2 Specification

SUBROUTINE F12ATF (N, NEV, NCV, ICOMM, LICOMM, COMM, LCOMM, IFAIL)

INTEGER N, NEV, NCV, ICOMM(max(1,LICOMM)), LICOMM,
LCOMM, IFAIL

&

COMPLEX (KIND=nag_wp) COMM(max(1,LCOMM))

3 Description

The pair of routines F12ATF and F12AUF together with the option setting routine F12ARF are
designed to calculate some of the eigenvalues, �, (and optionally the corresponding eigenvectors, x) of
a standard eigenvalue problem Ax ¼ �x, or of a generalized eigenvalue problem Ax ¼ �Bx of order n,
where n is large and the coefficient matrices A and B are banded complex and non-Hermitian.

F12ATF is a setup routine which must be called before the option setting routine F12ARF and the
solver routine F12AUF. Internally, F12AUF makes calls to F12APF and F12AQF; the routine
documents for F12APF and F12AQF should be consulted for details of the algorithm used.

This setup routine initializes the communication arrays, sets (to their default values) all options that can
be set by you via the option setting routine F12ARF, and checks that the lengths of the communication
arrays as passed by you are of sufficient length. For details of the options available and how to set
them, see Section 11.1 in F12ARF.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

1: N – INTEGER Input

On entry: the order of the matrix A (and the order of the matrix B for the generalized problem)
that defines the eigenvalue problem.

Constraint: N > 0.
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2: NEV – INTEGER Input

On entry: the number of eigenvalues to be computed.

Constraint: 0 < NEV < N� 1.

3: NCV – INTEGER Input

On entry: the number of Lanczos basis vectors to use during the computation.

At present there is no a priori analysis to guide the selection of NCV relative to NEV. However,
it is recommended that NCV � 2� NEVþ 1. If many problems of the same type are to be
solved, you should experiment with increasing NCV while keeping NEV fixed for a given test
problem. This will usually decrease the required number of matrix-vector operations but it also
increases the work and storage required to maintain the orthogonal basis vectors. The optimal
‘cross-over’ with respect to CPU time is problem dependent and must be determined empirically.

Constraint: NEVþ 1 < NCV � N.

4: ICOMMðmax 1;LICOMMð ÞÞ – INTEGER array Communication Array

On exit: contains data to be communicated to F12AUF.

5: LICOMM – INTEGER Input

On entry: the dimension of the array ICOMM as declared in the (sub)program from which
F12ATF is called.

If LICOMM ¼ �1, a workspace query is assumed and the routine only calculates the required
dimensions of ICOMM and COMM, which it returns in ICOMMð1Þ and COMMð1Þ respectively.
Constraint: LICOMM � 140 or LICOMM ¼ �1.

6: COMMðmax 1;LCOMMð ÞÞ – COMPLEX (KIND=nag_wp) array Communication Array

On exit: contains data to be communicated to F12AUF.

7: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
F12ATF is called.

If LCOMM ¼ �1, a workspace query is assumed and the routine only calculates the dimensions
of ICOMM and COMM required by F12AUF, which it returns in ICOMMð1Þ and COMMð1Þ
respectively.

Constraint: LCOMM � 60 or LCOMM ¼ �1.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

On entry, NEV ¼ valueh i.
Constraint: NEV > 0.

IFAIL ¼ 3

On entry, NCV ¼ valueh i, NEV ¼ valueh i and N ¼ valueh i.
Constraint: NCV > NEVþ 1 and NCV � N.

IFAIL ¼ 4

The length of the integer array ICOMM is too small LICOMM ¼ valueh i, but must be at least
valueh i.

IFAIL ¼ 5

The length of the complex array COMM is too small LCOMM ¼ valueh i, but must be at least
valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F12ATF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

The use of F12ATF is illustrated in Section 10 in F12AUF.
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NAG Library Routine Document

F12AUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12ARF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12ARF for a detailed description of the specification of the optional parameters.

1 Purpose

F12AUF is the main solver routine in a suite of routines consisting of F12ARF, F12ATF and F12AUF.
It must be called following an initial call to F12ATF and following any calls to F12ARF.

F12AUF returns approximations to selected eigenvalues, and (optionally) the corresponding
eigenvectors, of a standard or generalized eigenvalue problem defined by complex banded non-
Hermitian matrices. The banded matrix must be stored using the LAPACK storage format for complex
banded non-Hermitian matrices.

2 Specification

SUBROUTINE F12AUF (KL, KU, AB, LDAB, MB, LDMB, SIGMA, NCONV, D, Z, LDZ,
RESID, V, LDV, COMM, ICOMM, IFAIL)

&

INTEGER KL, KU, LDAB, LDMB, NCONV, LDZ, LDV, ICOMM(140),
IFAIL

&

COMPLEX (KIND=nag_wp) AB(LDAB,*), MB(LDMB,*), SIGMA, D(NEV), Z(LDZ,*),
RESID(N), V(LDV,*), COMM(60)

&

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
banded, complex and non-Hermitian.

Following a call to the initialization routine F12ATF, F12AUF returns the converged approximations to
eigenvalues and (optionally) the corresponding approximate eigenvectors and/or a unitary basis for the
associated approximate invariant subspace. The eigenvalues (and eigenvectors) are selected from those
of a standard or generalized eigenvalue problem defined by complex banded non-Hermitian matrices.
There is negligible additional computational cost to obtain eigenvectors; a unitary basis is always
computed, but there is an additional storage cost if both are requested.

The banded matrices A and B must be stored using the LAPACK column ordered storage format for
banded non-Hermitian matrices; please refer to Section 3.3.4 in the F07 Chapter Introduction for details
on this storage format.

F12AUF is based on the banded driver routines znbdr1 to znbdr4 from the ARPACK package, which
uses the Implicitly Restarted Arnoldi iteration method. The method is described in Lehoucq and
Sorensen (1996) and Lehoucq (2001) while its use within the ARPACK software is described in great
detail in Lehoucq et al. (1998). An evaluation of software for computing eigenvalues of sparse non-
Hermitian matrices is provided in Lehoucq and Scott (1996). This suite of routines offers the same
functionality as the ARPACK banded driver software for complex non-Hermitian problems, but the
interface design is quite different in order to make the option setting clearer and to combine the
different drivers into a general purpose routine.
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F12AUF, is a general purpose routine that must be called following initialization by F12ATF. F12AUF
uses options, set either by default or explicitly by calling F12ARF, to return the converged
approximations to selected eigenvalues and (optionally):

– the corresponding approximate eigenvectors;

– a unitary basis for the associated approximate invariant subspace;

– both.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

Note: in the following description N, NEV and NCV appears. In every case they should be interpretted
as the value associated with the identically named argument in a prior call to F12ATF.

1: KL – INTEGER Input

On entry: the number of subdiagonals of the matrices A and B.

Constraint: KL � 0.

2: KU – INTEGER Input

On entry: the number of superdiagonals of the matrices A and B.

Constraint: KU � 0.

3: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ (see F12ATF).

On entry: must contain the matrix A in LAPACK banded storage format for non-Hermitian
matrices (see Section 3.3.4 in the F07 Chapter Introduction).

4: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F12AUF is called.

Constraint: LDAB � 2� KLþ KUþ 1.

5: MBðLDMB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array MB must be at least max 1;Nð Þ (see F12ATF).

On entry: must contain the matrix B in LAPACK banded storage format for non-Hermitian
matrices (see Section 3.3.4 in the F07 Chapter Introduction).
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6: LDMB – INTEGER Input

On entry: the first dimension of the array MB as declared in the (sub)program from which
F12AUF is called.

Constraint: LDMB � 2� KLþ KUþ 1.

7: SIGMA – COMPLEX (KIND=nag_wp) Input

On entry: if the Shifted Inverse mode (see F12ARF) has been selected then SIGMA must
contain the shift used; otherwise SIGMA is not referenced. Section 4.2 in the F12 Chapter
Introduction describes the use of shift and invert transformations.

8: NCONV – INTEGER Output

On exit: the number of converged eigenvalues.

9: DðNEVÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the first NCONV locations of the array D contain the converged approximate
eigenvalues.

10: ZðLDZ; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least NEV if the default option
Vectors ¼ Ritz has been selected and at least 1 if the option Vectors ¼ None or Schur has been
selected (see F12ARF and F12ATF).

On exit: if the default option Vectors ¼ RITZ (see F12ARF) has been selected then Z contains
the final set of eigenvectors corresponding to the eigenvalues held in D, otherwise Z is not
referenced. The complex eigenvector associated with an eigenvalue DðjÞ is stored in the
corresponding array section of Z, namely Zði; jÞ, for i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;NCONV.

11: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F12AUF
is called.

Constraints:

if the default option Vectors ¼ Ritz has been selected, LDZ � N;
if the option Vectors ¼ None or Schur has been selected, LDZ � 1.

12: RESIDðNÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: need not be set unless the option Initial Residual has been set in a prior call to
F12ARF in which case RESID must contain an initial residual vector.

On exit: contains the final residual vector. This can be used as the starting residual to improve
convergence on the solution of a closely related eigenproblem. This has no relation to the error
residual Ax� �x or Ax� �Bx.

13: VðLDV; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1;NCVð Þ (see F12ATF).

On exit: if the option Vectors ¼ SCHUR or RITZ (see F12ARF) has been set and a separate
array Z has been passed (i.e., Z does not equal V), then the first NCONV columns of V will
contain approximate Schur vectors that span the desired invariant subspace.

The jth Schur vector is stored in the ith column of V.
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14: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F12AUF
is called.

Constraint: LDV � N.

15: COMMð60Þ – COMPLEX (KIND=nag_wp) array Communication Array

On entry: must remain unchanged from the prior call to F12ARF and F12ATF.

16: ICOMMð140Þ – INTEGER array Communication Array

On entry: must remain unchanged from the prior call to F12ARF and F12ATF.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, KL ¼ valueh i.
Constraint: KL � 0.

IFAIL ¼ 2

On entry, KU ¼ valueh i.
Constraint: KU � 0.

IFAIL ¼ 3

On entry, LDAB ¼ valueh i, 2� KLþ KUþ 1 ¼ valueh i.
Constraint: LDAB � 2� KLþ KUþ 1.

IFAIL ¼ 5

The maximum number of iterations � 0, the option Iteration Limit has been set to valueh i.

IFAIL ¼ 6

The options Generalized and Regular are incompatible.

IFAIL ¼ 7

The option Initial Residual was selected but the starting vector held in RESID is zero.

F12AUF NAG Library Manual

F12AUF.4 Mark 26



IFAIL ¼ 8

Either the initialization routine has not been called prior to the first call of this routine or a
communication array has become corrupted.

IFAIL ¼ 9

On entry, LDZ ¼ valueh i, N ¼ valueh i in F12AFF.
Constraint: LDZ � N.

IFAIL ¼ 10

On entry, Vectors ¼ Select, but this is not yet implemented.

IFAIL ¼ 11

The number of eigenvalues found to sufficient accuracy is zero.

IFAIL ¼ 12

Could not build an Arnoldi factorization. The size of the current Arnoldi factorization ¼ valueh i.

IFAIL ¼ 13

Error in internal call to compute eigenvalues and corresponding error bounds of the current upper
Hessenberg matrix. Please contact NAG.

IFAIL ¼ 14

During calculation of a Schur form, there was a failure to compute a number of eigenvalues
Please contact NAG.

IFAIL ¼ 15

The computed Schur form could not be reordered by an internal call. Please contact NAG.

IFAIL ¼ 16

Error in internal call to compute eigenvectors. Please contact NAG.

IFAIL ¼ 17

Failure during internal factorization of real banded matrix. Please contact NAG.

IFAIL ¼ 18

Failure during internal solution of real banded matrix. Please contact NAG.

IFAIL ¼ 19

Failure during internal factorization of complex banded matrix. Please contact NAG.

IFAIL ¼ 20

Failure during internal solution of complex banded matrix. Please contact NAG.

IFAIL ¼ 21

The maximum number of iterations has been reached. The maximum number of
iterations ¼ valueh i. The number of converged eigenvalues ¼ valueh i.

IFAIL ¼ 22

No shifts could be applied during a cycle of the implicitly restarted Arnoldi iteration.
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IFAIL ¼ 23

Overflow occurred during transformation of Ritz values to those of the original problem.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy of a Ritz value, �, is considered acceptable if its Ritz estimate � Tolerance� �j j.
The default Tolerance used is the machine precision given by X02AJF.

8 Parallelism and Performance

F12AUF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F12AUF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example constructs the matrices A and B using LAPACK band storage format and solves
Ax ¼ �Bx in shifted inverse mode using the complex shift �.

10.1 Program Text

Program f12aufe

! F12AUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dznrm2, f12arf, f12atf, f12auf, nag_wp, x04abf, &

x04caf, zaxpy, zgbmv
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Complex (Kind=nag_wp), Parameter :: one = (1.0_nag_wp,0.0_nag_wp)
Complex (Kind=nag_wp), Parameter :: zero = (0.0_nag_wp,0.0_nag_wp)
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Integer, Parameter :: iset = 1, nin = 5, nout = 6
Logical, Parameter :: printr = .False.

! .. Local Scalars ..
Complex (Kind=nag_wp) :: ch, sigma
Real (Kind=nag_wp) :: h, rho
Integer :: i, idiag, ifail, isub, isup, j, kl, &

ku, lcomm, ldab, ldmb, ldv, licomm, &
lo, n, ncol, nconv, ncv, nev, nx, &
outchn

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), ax(:), comm(:), d(:), &

mb(:,:), mx(:), resid(:), v(:,:)
Real (Kind=nag_wp), Allocatable :: d_print(:,:)
Integer, Allocatable :: icomm(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, aimag, cmplx, int, max, real

! .. Executable Statements ..
Write (nout,*) ’F12AUF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) nx, nev, ncv
Read (nin,*) sigma
n = nx*nx

! Initialize communication arrays.
! Query the required sizes of the communication arrays.

licomm = -1
lcomm = -1
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))

ifail = 0
Call f12atf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

licomm = icomm(1)
lcomm = int(comm(1))
Deallocate (icomm,comm)
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))

ifail = 0
Call f12atf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Set the mode.

ifail = 0
Call f12arf(’SHIFTED INVERSE’,icomm,comm,ifail)

! Set problem type

ifail = 0
Call f12arf(’GENERALIZED’,icomm,comm,ifail)

! Construct the matrix A in banded form and store in AB.
! KU, KL are number of superdiagonals and subdiagonals within
! the band of matrices A and M.

kl = nx
ku = nx
ldab = 2*kl + ku + 1
ldmb = 2*kl + ku + 1
Allocate (ab(ldab,n),mb(ldmb,n))

! Zero out AB and MB.

ab(1:ldab,1:n) = zero
mb(1:ldmb,1:n) = zero
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! Main diagonal of A.

idiag = kl + ku + 1
ab(idiag,1:n) = cmplx(4.0_nag_wp,0.0_nag_wp,kind=nag_wp)
mb(idiag,1:n) = ab(idiag,1)

! First subdiagonal and superdiagonal of A.

isup = kl + ku
isub = kl + ku + 2
rho = 100.0_nag_wp
h = 1._nag_wp/real(nx+1,kind=nag_wp)
ch = cmplx(0.5_nag_wp*h*rho,0.0_nag_wp,kind=nag_wp)

Do i = 1, nx
lo = (i-1)*nx

Do j = lo + 1, lo + nx - 1
ab(isub,j+1) = -one + ch
ab(isup,j) = -one - ch

End Do

End Do

mb(isub,2:n) = one
mb(isup,1:n-1) = one

! KL-th subdiagonal and KU-th superdiagonal.

isup = kl + 1
isub = 2*kl + ku + 1

Do i = 1, nx - 1
lo = (i-1)*nx

Do j = lo + 1, lo + nx
ab(isup,nx+j) = -one
ab(isub,j) = -one

End Do

End Do

! Find eigenvalues closest in value to SIGMA and corresponding
! eigenvectors.

ldv = n
Allocate (d(nev),v(ldv,ncv),resid(n))

ifail = -1
Call f12auf(kl,ku,ab,ldab,mb,ldmb,sigma,nconv,d,v,ldv,resid,v,ldv,comm, &

icomm,ifail)

If (ifail/=0) Then
Go To 100

End If

! Compute the residual norm ||A*x - lambda*x||.

Allocate (ax(n),mx(n),d_print(nconv,3))
d_print(1:nconv,1) = real(d(1:nconv))
d_print(1:nconv,2) = aimag(d(1:nconv))

Do j = 1, nconv

! The NAG name equivalent of zgbmv is f06sbf
Call zgbmv(’N’,n,n,kl,ku,one,ab(kl+1,1),ldab,v(1,j),1,zero,ax,1)

Call zgbmv(’N’,n,n,kl,ku,one,mb(kl+1,1),ldmb,v(1,j),1,zero,mx,1)

Call zaxpy(n,-d(j),mx,1,ax,1)
d_print(j,3) = dznrm2(n,ax,1)/abs(d(j))
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End Do

Write (nout,*)
Flush (nout)

outchn = nout
Call x04abf(iset,outchn)

If (printr) Then
! Print residual associated with each Ritz value.

ncol = 3
Else

ncol = 2
End If
ifail = 0
Call x04caf(’G’,’N’,nconv,ncol,d_print,nconv, &

’ Ritz values closest to sigma’,ifail)

100 Continue
End Program f12aufe

10.2 Program Data

F12AUF Example Program Data
10 4 10 : nx nev ncv

( 0.4, 0.6) : sigma

10.3 Program Results

F12AUF Example Program Results

Ritz values closest to sigma
1 2

1 0.3610 0.7223
2 0.4598 0.7199
3 0.2868 0.7241
4 0.2410 0.7257
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F12FAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F12FAF is a setup routine in a suite of routines consisting of F12FAF, F12FBF, F12FCF, F12FDF and
F12FEF. It is used to find some of the eigenvalues (and optionally the corresponding eigenvectors) of a
standard or generalized eigenvalue problem defined by real symmetric matrices.

The suite of routines is suitable for the solution of large sparse, standard or generalized, symmetric
eigenproblems where only a few eigenvalues from a selected range of the spectrum are required.

2 Specification

SUBROUTINE F12FAF (N, NEV, NCV, ICOMM, LICOMM, COMM, LCOMM, IFAIL)

INTEGER N, NEV, NCV, ICOMM(max(1,LICOMM)), LICOMM, LCOMM,
IFAIL

&

REAL (KIND=nag_wp) COMM(max(1,LCOMM))

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
sparse, real and symmetric. The suite can also be used to find selected eigenvalues/eigenvectors of
smaller scale dense, real and symmetric problems.

F12FAF is a setup routine which must be called before F12FBF, the reverse communication iterative
solver, and before F12FDF, the options setting routine. F12FCF, is a post-processing routine that must
be called following a successful final exit from F12FBF, while F12FEF can be used to return additional
monitoring information during the computation.

This setup routine initializes the communication arrays, sets (to their default values) all options that can
be set by you via the option setting routine F12FDF, and checks that the lengths of the communication
arrays as passed by you are of sufficient length. For details of the options available and how to set them
see Section 11.1 in F12FDF.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia
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5 Arguments

1: N – INTEGER Input

On entry: the order of the matrix A (and the order of the matrix B for the generalized problem)
that defines the eigenvalue problem.

Constraint: N > 0.

2: NEV – INTEGER Input

On entry: the number of eigenvalues to be computed.

Constraint: 0 < NEV < N� 1.

3: NCV – INTEGER Input

On entry: the number of Lanczos basis vectors to use during the computation.

At present there is no a priori analysis to guide the selection of NCV relative to NEV. However,
it is recommended that NCV � 2� NEVþ 1. If many problems of the same type are to be
solved, you should experiment with increasing NCV while keeping NEV fixed for a given test
problem. This will usually decrease the required number of matrix-vector operations but it also
increases the work and storage required to maintain the orthogonal basis vectors. The optimal
‘cross-over’ with respect to CPU time is problem dependent and must be determined empirically.

Constraint: NEV < NCV � N.

4: ICOMMðmax 1;LICOMMð ÞÞ – INTEGER array Communication Array

On exit: contains data to be communicated to the other routines in the suite.

5: LICOMM – INTEGER Input

On entry: the dimension of the array ICOMM as declared in the (sub)program from which
F12FAF is called.

If LICOMM ¼ �1, a workspace query is assumed and the routine only calculates the required
dimensions of ICOMM and COMM, which it returns in ICOMMð1Þ and COMMð1Þ respectively.
Constraint: LICOMM � 140 or LICOMM ¼ �1.

6: COMMðmax 1;LCOMMð ÞÞ – REAL (KIND=nag_wp) array Communication Array

On exit: contains data to be communicated to the other routines in the suite.

7: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
F12FAF is called.

If LCOMM ¼ �1, a workspace query is assumed and the routine only calculates the dimensions
of ICOMM and COMM required by F12FBF, which it returns in ICOMMð1Þ and COMMð1Þ
respectively.

Constraint: LCOMM � 3� Nþ NCV� NCVþ 8� NCVþ 60 or LCOMM ¼ �1.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 0.

IFAIL ¼ 2

On entry, NEV � 0.

IFAIL ¼ 3

On entry, NCV � NEV or NCV > N.

IFAIL ¼ 4

On entry, LICOMM < 140 and LICOMM 6¼ �1.

IFAIL ¼ 5

On entry, LCOMM < 3� Nþ NCV� NCVþ 8� NCV þ 60 and LCOMM 6¼ �1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F12FAF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example solves Ax ¼ �x in regular mode, where A is obtained from the standard central
difference discretization of the Laplacian operator @2u

@x2
þ @2u

@y2
on the unit square, with zero Dirichlet

boundary conditions. Eigenvalues of smallest magnitude are selected.

10.1 Program Text

! F12FAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12fafe_mod

! F12FAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: av

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Integer, Parameter, Public :: imon = 0, ipoint = 0, licomm = 140, &

nin = 5, nout = 6
Contains

Subroutine tv(nx,x,y)
! Compute the matrix vector multiplication y<---T*x where T is a nx
! by nx tridiagonal matrix.

! .. Scalar Arguments ..
Integer, Intent (In) :: nx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(nx)
Real (Kind=nag_wp), Intent (Out) :: y(nx)

! .. Local Scalars ..
Real (Kind=nag_wp) :: dd, dl, du
Integer :: j

! .. Executable Statements ..
dd = 4.0_nag_wp
dl = -one
du = -one
y(1) = dd*x(1) + du*x(2)
Do j = 2, nx - 1

y(j) = dl*x(j-1) + dd*x(j) + du*x(j+1)
End Do
y(nx) = dl*x(nx-1) + dd*x(nx)
Return

End Subroutine tv
Subroutine av(nx,v,w)

! .. Use Statements ..
Use nag_library, Only: daxpy, dscal

! .. Scalar Arguments ..
Integer, Intent (In) :: nx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: v(nx*nx)
Real (Kind=nag_wp), Intent (Out) :: w(nx*nx)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h2
Integer :: j, lo, n

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
h2 = one/real((nx+1)*(nx+1),kind=nag_wp)
Call tv(nx,v(1),w(1))

! The NAG name equivalent of daxpy is f06ecf

F12FAF NAG Library Manual

F12FAF.4 Mark 26



Call daxpy(nx,-one,v(nx+1),1,w(1),1)
Do j = 2, nx - 1

lo = (j-1)*nx
Call tv(nx,v(lo+1),w(lo+1))
Call daxpy(nx,-one,v(lo-nx+1),1,w(lo+1),1)
Call daxpy(nx,-one,v(lo+nx+1),1,w(lo+1),1)

End Do
lo = (nx-1)*nx
Call tv(nx,v(lo+1),w(lo+1))
Call daxpy(nx,-one,v(lo-nx+1),1,w(lo+1),1)
n = nx*nx

! The NAG name equivalent of dscal is f06edf
Call dscal(n,one/h2,w,1)
Return

End Subroutine av
End Module f12fafe_mod
Program f12fafe

! F12FAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dnrm2, f12faf, f12fbf, f12fcf, f12fdf, f12fef, &

nag_wp
Use f12fafe_mod, Only: av, imon, ipoint, licomm, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: sigma
Integer :: ifail, irevcm, j, lcomm, ldv, n, &

nconv, ncv, nev, niter, nshift, nx
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ax(:), comm(:), d(:,:), mx(:), &
resid(:), v(:,:), x(:)

Integer :: icomm(licomm)
! .. Executable Statements ..

Write (nout,*) ’F12FAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) nx, nev, ncv

n = nx*nx
ldv = n
lcomm = 3*n + ncv*ncv + 8*ncv + 60
Allocate (ax(n),comm(lcomm),d(ncv,2),mx(n),resid(n),v(ldv,ncv),x(n))

ifail = 0
Call f12faf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

ifail = 0
Call f12fdf(’SMALLEST MAGNITUDE’,icomm,comm,ifail)

! Increase the iteration limit if required.
Call f12fdf(’ITERATION LIMIT=500’,icomm,comm,ifail)
If (ipoint==1) Then

! Use pointers to Workspace in calculating matrix vector
! products rather than interfacing through the array X.

Call f12fdf(’POINTERS=YES’,icomm,comm,ifail)
End If

irevcm = 0
ifail = -1

revcm: Do
Call f12fbf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)
If (irevcm==5) Then

Exit revcm
Else If (irevcm==-1 .Or. irevcm==1) Then

! Perform matrix vector multiplication y <--- Op*x
If (ipoint==0) Then

Call av(nx,x,ax)
x(1:n) = ax(1:n)

Else
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Call av(nx,comm(icomm(1)),comm(icomm(2)))
End If

Else If (irevcm==4 .And. imon/=0) Then
! Output monitoring information

Call f12fef(niter,nconv,d,d(1,2),icomm,comm)
! The NAG name equivalent of dnrm2 is f06ejf

Write (6,99999) niter, nconv, dnrm2(nev,d(1,2),1)
End If

End Do revcm

If (ifail==0) Then
! Post-Process using F12FCF to compute eigenvalue/vectors.

ifail = 0
Call f12fcf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail)
Write (nout,99998) nconv
Write (nout,99997)(j,d(j,1),j=1,nconv)

End If

99999 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &
’f estimates =’,E16.8)

99998 Format (1X,/,’ The ’,I4,’ Ritz values of smallest magnitude are:’,/)
99997 Format (1X,I8,5X,F12.4)

End Program f12fafe

10.2 Program Data

F12FAF Example Program Data
10 4 10 : Values for NX NEV and NCV

10.3 Program Results

F12FAF Example Program Results

The 4 Ritz values of smallest magnitude are:

1 19.6054
2 48.2193
3 48.2193
4 76.8333
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NAG Library Routine Document

F12FBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12FDF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12FDF for a detailed description of the specification of the optional parameters.

1 Purpose

F12FBF is an iterative solver in a suite of routines consisting of F12FAF, F12FBF, F12FCF, F12FDF
and F12FEF. It is used to find some of the eigenvalues (and optionally the corresponding eigenvectors)
of a standard or generalized eigenvalue problem defined by real symmetric matrices.

2 Specification

SUBROUTINE F12FBF (IREVCM, RESID, V, LDV, X, MX, NSHIFT, COMM, ICOMM,
IFAIL)

&

INTEGER IREVCM, LDV, NSHIFT, ICOMM(*), IFAIL
REAL (KIND=nag_wp) RESID(*), V(LDV,*), X(*), MX(*), COMM(*)

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
sparse, real and symmetric. The suite can also be used to find selected eigenvalues/eigenvectors of
smaller scale dense, real and symmetric problems.

F12FBF is a reverse communication routine, based on the ARPACK routine dsaupd, using the
Implicitly Restarted Arnoldi iteration method, which for symmetric problems reduces to a variant of the
Lanczos method. The method is described in Lehoucq and Sorensen (1996) and Lehoucq (2001) while
its use within the ARPACK software is described in great detail in Lehoucq et al. (1998). An evaluation
of software for computing eigenvalues of sparse symmetric matrices is provided in Lehoucq and Scott
(1996). This suite of routines offers the same functionality as the ARPACK software for real symmetric
problems, but the interface design is quite different in order to make the option setting clearer and to
simplify the interface of F12FBF.

The setup routine F12FAF must be called before F12FBF, the reverse communication iterative solver.
Options may be set for F12FBF by prior calls to the option setting routine F12FDF and a post-
processing routine F12FCF must be called following a successful final exit from F12FBF. F12FEF, may
be called following certain flagged, intermediate exits from F12FBF to provide additional monitoring
information about the computation.

F12FBF uses reverse communication, i.e., it returns repeatedly to the calling program with the
argument IREVCM (see Section 5) set to specified values which require the calling program to carry
out one of the following tasks:

– compute the matrix-vector product y ¼ OPx, where OP is defined by the computational mode;

– compute the matrix-vector product y ¼ Bx;
– notify the completion of the computation;

– allow the calling program to monitor the solution.
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The problem type to be solved (standard or generalized), the spectrum of eigenvalues of interest, the
mode used (regular, regular inverse, shifted inverse, Buckling or Cayley) and other options can all be
set using the option setting routine F12FDF.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than X, MX and COMM must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: IREVCM ¼ 0, otherwise an error condition will be raised.

On intermediate re-entry: must be unchanged from its previous exit value. Changing IREVCM to
any other value between calls will result in an error.

On intermediate exit: has the following meanings.

IREVCM ¼ �1
The calling program must compute the matrix-vector product y ¼ OPx, where x is stored
in X (by default) or in the array COMM (starting from the location given by the first
element of ICOMM) when the option Pointers ¼ YES is set in a prior call to F12FDF.
The result y is returned in X (by default) or in the array COMM (starting from the location
given by the second element of ICOMM) when the option Pointers ¼ YES is set.

IREVCM ¼ 1
The calling program must compute the matrix-vector product y ¼ OPx. This is similar to
the case IREVCM ¼ �1 except that the result of the matrix-vector product Bx (as required
in some computational modes) has already been computed and is available in MX (by
default) or in the array COMM (starting from the location given by the third element of
ICOMM) when the option Pointers ¼ YES is set.

IREVCM ¼ 2
The calling program must compute the matrix-vector product y ¼ Bx, where x is stored in
X and y is returned in MX (by default) or in the array COMM (starting from the location
given by the second element of ICOMM) when the option Pointers ¼ YES is set.

IREVCM ¼ 3
Compute the NSHIFT real and imaginary parts of the shifts where the real parts are to be
returned in the first NSHIFT locations of the array X and the imaginary parts are to be
returned in the first NSHIFT locations of the array MX. Only complex conjugate pairs of
shifts may be applied and the pairs must be placed in consecutive locations. This value of
IREVCM will only arise if the optional parameter Supplied Shifts is set in a prior call to
F12FDF which is intended for experienced users only; the default and recommended
option is to use exact shifts (see Lehoucq et al. (1998) for details and guidance on the
choice of shift strategies).
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IREVCM ¼ 4
Monitoring step: a call to F12FEF can now be made to return the number of Arnoldi
iterations, the number of converged Ritz values, their real and imaginary parts, and the
corresponding Ritz estimates.

On final exit: IREVCM ¼ 5: F12FBF has completed its tasks. The value of IFAIL determines
whether the iteration has been successfully completed, or whether errors have been detected. On
successful completion F12FCF must be called to return the requested eigenvalues and
eigenvectors (and/or Schur vectors).

Constraint: on initial entry, IREVCM ¼ 0; on re-entry IREVCM must remain unchanged.

2: RESIDð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array RESID must be at least N (see F12FAF).

On initial entry: need not be set unless the option Initial Residual has been set in a prior call to
F12FDF in which case RESID should contain an initial residual vector, possibly from a previous
run.

On intermediate re-entry: must be unchanged from its previous exit. Changing RESID to any
other value between calls may result in an error exit.

On intermediate exit: contains the current residual vector.

On final exit: contains the final residual vector.

3: VðLDV; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;NCVð Þ (see F12FAF).

On initial entry: need not be set.

On intermediate re-entry: must be unchanged from its previous exit.

On intermediate exit: contains the current set of Arnoldi basis vectors.

On final exit: contains the final set of Arnoldi basis vectors.

4: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F12FBF
is called.

Constraint: LDV � N.

5: Xð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array X must be at least N if Pointers ¼ NO (default) and at least 1 if
Pointers ¼ YES (see F12FAF).

On initial entry: need not be set, it is used as a convenient mechanism for accessing elements of
COMM.

On intermediate re-entry: if Pointers ¼ YES, X need not be set.

If Pointers ¼ NO, X must contain the result of y ¼ OPx when IREVCM returns the value �1 or
þ1. It must return the real parts of the computed shifts when IREVCM returns the value 3.

On intermediate exit: if Pointers ¼ YES, X is not referenced.

If Pointers ¼ NO, X contains the vector x when IREVCM returns the value �1 or þ1.
On final exit: does not contain useful data.
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6: MXð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array MX must be at least N if Pointers ¼ NO (default) and at least 1
if Pointers ¼ YES (see F12FAF).

On initial entry: need not be set, it is used as a convenient mechanism for accessing elements of
COMM.

On intermediate re-entry: if Pointers ¼ YES, MX need not be set.

If Pointers ¼ NO, MX must contain the result of y ¼ Bx when IREVCM returns the value 2. It
must return the imaginary parts of the computed shifts when IREVCM returns the value 3.

On intermediate exit: if Pointers ¼ YES, MX is not referenced.

If Pointers ¼ NO, MX contains the vector Bx when IREVCM returns the value þ1.
On final exit: does not contain any useful data.

7: NSHIFT – INTEGER Output

On intermediate exit: if the option Supplied Shifts is set and IREVCM returns a value of 3,
NSHIFT returns the number of complex shifts required.

8: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least max 1;LCOMMð Þ (see F12FAF).

On initial entry: must remain unchanged following a call to the setup routine F12FAF.

On exit: contains data defining the current state of the iterative process.

9: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ (see F12FAF).

On initial entry: must remain unchanged following a call to the setup routine F12FAF.

On exit: contains data defining the current state of the iterative process.

10: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On intermediate exit: the value of IFAIL is meaningless and should be ignored.

On final exit: (i.e., when IREVCM ¼ 5) IFAIL ¼ 0, unless the routine detects an error or a
warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On initial entry, the maximum number of iterations � 0, the option Iteration Limit has been set
to a non-positive value.
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IFAIL ¼ 2

The options Generalized and Regular are incompatible.

IFAIL ¼ 3

Eigenvalues from both ends of the spectrum were requested, but the number of eigenvalues
requested is one.

IFAIL ¼ 4

The option Initial Residual was selected but the starting vector held in RESID is zero.

IFAIL ¼ 5

The maximum number of iterations has been reached. Some Ritz values may have converged; a
subsequent call to F12FCF will return the number of converged values and the converged values.

IFAIL ¼ 6

No shifts could be applied during a cycle of the implicitly restarted Arnoldi iteration. One
possibility is to increase the size of NCV relative to NEV (see Section 5 in F12FAF for details of
these arguments).

IFAIL ¼ 7

Could not build a Lanczos factorization. Consider changing NCV or NEV in the initialization
routine (see Section 5 in F12FAF for details of these arguments).

IFAIL ¼ 8

Unexpected error in internal call to compute eigenvalues and corresponding error bounds of the
current upper Hessenberg matrix. Please contact NAG.

IFAIL ¼ 9

Either the routine was called without an initial call to the setup routine or the communication
arrays have become corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy of a Ritz value, �, is considered acceptable if its Ritz estimate
� Tolerance� �j j. The default Tolerance used is the machine precision given by X02AJF.
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8 Parallelism and Performance

F12FBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F12FBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

For this routine two examples are presented, with a main program and two example problems given in
Example 1 (EX1) and Example 2 (EX2).

Example 1 (EX1)

The example solves Ax ¼ �x in shift-invert mode, where A is obtained from the standard central
difference discretization of the one-dimensional Laplacian operator @2u

@x2
with zero Dirichlet boundary

conditions. Eigenvalues closest to the shift � ¼ 0 are sought.

Example 2 (EX2)

This example illustrates the use of F12FBF to compute the leading terms in the singular value
decomposition of a real general matrix A. The example finds a few of the largest singular values (�)
and corresponding right singular values (�) for the matrix A by solving the symmetric problem:

ATA
� �

� ¼ ��:
Here A is the m by n real matrix derived from the simplest finite difference discretization of the two-
dimensional kernel k s; tð Þdt where

k s; tð Þ ¼ s t� 1ð Þ if 0 � s � t � 1
t s� 1ð Þ if 0 � t < s � 1



:

Note: this formulation is appropriate for the case m � n. Reverse the rules of A and AT in the case of
m < n.

10.1 Program Text

! F12FBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12fbfe_mod

! F12FBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: atv, av

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
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Integer, Parameter, Public :: imon = 0, licomm = 140, nin = 5, &
nout = 6

Contains
Subroutine av(m,n,x,w)

! Computes w <- A*x.

! .. Scalar Arguments ..
Integer, Intent (In) :: m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: w(m)
Real (Kind=nag_wp), Intent (In) :: x(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, k, s, t
Integer :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
h = one/real(m+1,kind=nag_wp)
k = one/real(n+1,kind=nag_wp)
w(1:m) = zero
t = zero

Do j = 1, n
t = t + k
s = zero
Do i = 1, j

s = s + h
w(i) = w(i) + k*s*(t-one)*x(j)

End Do
Do i = j + 1, m

s = s + h
w(i) = w(i) + k*t*(s-one)*x(j)

End Do
End Do

Return
End Subroutine av

Subroutine atv(m,n,w,y)

! Computes y <- A’*w.

! .. Scalar Arguments ..
Integer, Intent (In) :: m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: w(m)
Real (Kind=nag_wp), Intent (Out) :: y(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, k, s, t
Integer :: i, j

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
h = one/real(m+1,kind=nag_wp)
k = one/real(n+1,kind=nag_wp)
y(1:n) = zero
t = zero

Do j = 1, n
t = t + k
s = zero
Do i = 1, j

s = s + h
y(j) = y(j) + k*s*(t-one)*w(i)

End Do
Do i = j + 1, m

s = s + h
y(j) = y(j) + k*t*(s-one)*w(i)

End Do
End Do
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Return
End Subroutine atv

End Module f12fbfe_mod
Program f12fbfe

! F12FBF Example Main Program

! .. Use Statements ..
Use f12fbfe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’F12FBF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: dgttrf, dgttrs, dnrm2, f12faf, f12fbf, f12fcf, &

f12fdf, f12fef, nag_wp
Use f12fbfe_mod, Only: imon, licomm, nin, one, two, zero

! .. Local Scalars ..
Real (Kind=nag_wp) :: h2, sigma
Integer :: ifail, info, irevcm, j, lcomm, ldv, &

n, nconv, ncv, nev, niter, nshift
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ad(:), adl(:), adu(:), adu2(:), &
comm(:), d(:,:), mx(:), resid(:), &
v(:,:), x(:)

Integer :: icomm(licomm)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’F12FBF Example 1’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*)
Read (nin,*) n, nev, ncv

ldv = n
lcomm = 3*n + ncv*ncv + 8*ncv + 60
Allocate (ad(n),adl(n),adu(n),adu2(n),comm(lcomm),d(ncv,2),mx(n), &

resid(n),v(ldv,ncv),x(n),ipiv(n))

ifail = 0
Call f12faf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Set the region of the spectrum that is required.
Call f12fdf(’LARGEST MAGNITUDE’,icomm,comm,ifail)

! Use the Shifted Inverse mode.
Call f12fdf(’SHIFTED INVERSE’,icomm,comm,ifail)

h2 = one/real((n+1)*(n+1),kind=nag_wp)
sigma = zero
ad(1:n) = two/h2 - sigma
adl(1:n) = -one/h2
adu(1:n) = adl(1:n)

! The NAG name equivalent of dgttrf is f07cdf
Call dgttrf(n,adl,ad,adu,adu2,ipiv,info)

irevcm = 0
ifail = -1
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revcm: Do
Call f12fbf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)
If (irevcm==5) Then

Exit revcm
Else If (irevcm==-1 .Or. irevcm==1) Then

! Perform matrix vector multiplication
! y <--- inv[A-sigma*I]*x
! The NAG name equivalent of dgttrs is f07cef

Call dgttrs(’N’,n,1,adl,ad,adu,adu2,ipiv,x,n,info)
Else If (irevcm==4 .And. imon/=0) Then

! Output monitoring information
Call f12fef(niter,nconv,d,d(1,2),icomm,comm)

! The NAG name equivalent of dnrm2 is f06ejf
Write (6,99999) niter, nconv, dnrm2(nev,d(1,2),1)
Flush (nout)

End If
End Do revcm

If (ifail==0) Then
! Post-Process using F12FCF to compute eigenvalues/vectors.

Call f12fcf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail)
Write (nout,99998) nconv, sigma
Write (nout,99997)(j,d(j,1),j=1,nconv)

End If

Deallocate (ad,adl,adu,adu2,comm,d,mx,resid,v,x,ipiv)

Return

99999 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &
’f estimates =’,E16.8)

99998 Format (1X,/,’ The ’,I4,’ Ritz values of closest to ’,F8.4,’ are:’,/)
99997 Format (1X,I8,5X,F12.4)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: daxpy, dnrm2, dscal, f12faf, f12fbf, f12fcf, &

nag_wp, x04caf
Use f12fbfe_mod, Only: atv, av, licomm, nin, one

! .. Local Scalars ..
Real (Kind=nag_wp) :: sigma, temp
Integer :: ifail, ifail1, irevcm, j, lcomm, &

ldu, ldv, m, n, nconv, ncv, nev, &
nshift

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ax(:), comm(:), d(:,:), mx(:), &

resid(:), u(:,:), v(:,:), x(:)
Integer :: icomm(licomm)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Write (nout,*)
Write (nout,*) ’F12FBF Example 2’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nev, ncv

ldu = m
ldv = n
lcomm = 3*n + ncv*ncv + 8*ncv + 60
Allocate (ax(m),comm(lcomm),d(ncv,2),mx(m),resid(n),u(ldu,nev), &

v(ldv,ncv),x(m))

! Initialize for problem.
ifail = 0
Call f12faf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Main reverse communication loop.
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irevcm = 0
ifail = -1

revcm: Do
Call f12fbf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)
If (irevcm==5) Then

Exit revcm
Else If (irevcm==-1 .Or. irevcm==1) Then

! Perform the operation X <- A’AX
Call av(m,n,x,ax)
Call atv(m,n,ax,x)

End If
End Do revcm

If (ifail==0) Then
! Post-Process using F12FCF.
! Computed singular values may be extracted.
! Singular vectors may also be computed now if desired.

ifail1 = 0
Call f12fcf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail1)

! Singular values (squared) are returned in the first column
! of D and the corresponding right singular vectors are
! returned in the first NEV columns of V.

Do j = 1, nconv
d(j,1) = sqrt(d(j,1))

! Compute the left singular vectors from the formula
! u = Av/sigma/norm(Av).

Call av(m,n,v(1,j),ax)
u(1:m,j) = ax(1:m)

! The NAG name equivalent of dnrm2 is f06ejf
temp = one/dnrm2(m,u(1,j),1)

! The NAG name equivalent of dscal is f06edf
Call dscal(m,temp,u(1,j),1)

! Compute the residual norm ||A*v - sigma*u|| for the nconv
! accurately computed singular values and vectors.
! Store the result in 2nd column of array D.

! The NAG name equivalent of daxpy is f06ecf
Call daxpy(m,-d(j,1),u(1,j),1,ax,1)
d(j,2) = dnrm2(m,ax,1)

End Do

! Print computed residuals

Call x04caf(’G’,’N’,nconv,2,d,ncv, &
’ Singular values and direct residuals’,ifail1)

End If

Deallocate (ax,comm,d,mx,resid,u,v,x)

Return

End Subroutine ex2
End Program f12fbfe

10.2 Program Data

F12FBF Example Program Data
Example 1
100 4 10 : Values for N NEV and NCV

Example 2
500 100 4 10 : Values for M N NEV and NCV
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10.3 Program Results

F12FBF Example Program Results

F12FBF Example 1

The 4 Ritz values of closest to 0.0000 are:

1 9.8688
2 39.4657
3 88.7620
4 157.7101

F12FBF Example 2

Singular values and direct residuals
1 2

1 4.1012E-02 1.1877E-17
2 6.0488E-02 2.6231E-17
3 1.1784E-01 1.6455E-17
4 5.5723E-01 3.2163E-16
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NAG Library Routine Document

F12FCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12FDF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12FDF for a detailed description of the specification of the optional parameters.

1 Purpose

F12FCF is a post-processing routine in a suite of routines which includes F12FAF, F12FBF, F12FDF
and F12FEF. F12FCF must be called following a final exit from F12FBF.

2 Specification

SUBROUTINE F12FCF (NCONV, D, Z, LDZ, SIGMA, RESID, V, LDV, COMM, ICOMM,
IFAIL)

&

INTEGER NCONV, LDZ, LDV, ICOMM(*), IFAIL
REAL (KIND=nag_wp) D(*), Z(LDZ,*), SIGMA, RESID(*), V(LDV,*), COMM(*)

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
sparse, real and symmetric. The suite can also be used to find selected eigenvalues/eigenvectors of
smaller scale dense, real and symmetric problems.

Following a call to F12FBF, F12FCF returns the converged approximations to eigenvalues and
(optionally) the corresponding approximate eigenvectors and/or an orthonormal basis for the associated
approximate invariant subspace. The eigenvalues (and eigenvectors) are selected from those of a
standard or generalized eigenvalue problem defined by real symmetric matrices. There is negligible
additional cost to obtain eigenvectors; an orthonormal basis is always computed, but there is an
additional storage cost if both are requested.

F12FCF is based on the routine dseupd from the ARPACK package, which uses the Implicitly
Restarted Lanczos iteration method. The method is described in Lehoucq and Sorensen (1996) and
Lehoucq (2001) while its use within the ARPACK software is described in great detail in Lehoucq et al.
(1998). An evaluation of software for computing eigenvalues of sparse symmetric matrices is provided
in Lehoucq and Scott (1996). This suite of routines offers the same functionality as the ARPACK
software for real symmetric problems, but the interface design is quite different in order to make the
option setting clearer and to simplify some of the interfaces.

F12FCF, is a post-processing routine that must be called following a successful final exit from F12FBF.
F12FCF uses data returned from F12FBF and options, set either by default or explicitly by calling
F12FDF, to return the converged approximations to selected eigenvalues and (optionally):

– the corresponding approximate eigenvectors;

– an orthonormal basis for the associated approximate invariant subspace;

– both.
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5 Arguments

1: NCONV – INTEGER Output

On exit: the number of converged eigenvalues as found by F12FBF.

2: Dð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array D must be at least NCV (see F12FAF).

On exit: the first NCONV locations of the array D contain the converged approximate
eigenvalues.

3: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least NCV if the default option
Vectors ¼ RITZ has been selected and at least 1 if the option Vectors ¼ NONE or SCHUR has
been selected (see F12FAF).

On exit: if the default option Vectors ¼ RITZ (see F12FDF) has been selected then Z contains
the final set of eigenvectors corresponding to the eigenvalues held in D. The real eigenvector
associated with an eigenvalue is stored in the corresponding column of Z.

4: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F12FCF
is called.

Constraints:

if the default option Vectors ¼ Ritz has been selected, LDZ � N;
if the option Vectors ¼ None or Schur has been selected, LDZ � 1.

5: SIGMA – REAL (KIND=nag_wp) Input

On entry: if one of the Shifted Inverse (see F12FDF) modes has been selected then SIGMA
contains the real shift used; otherwise SIGMA is not referenced.

6: RESIDð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RESID must be at least N (see F12FAF).

On entry: must not be modified following a call to F12FBF since it contains data required by
F12FCF.

7: VðLDV; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;NCVð Þ (see F12FAF).

On entry: the NCV columns of V contain the Lanczos basis vectors for OP as constructed by
F12FBF.
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On exit: if the option Vectors ¼ SCHUR has been set, or the option Vectors ¼ RITZ has been
set and a separate array Z has been passed (i.e., Z does not equal V), then the first NCONV
columns of V will contain approximate Schur vectors that span the desired invariant subspace.

8: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F12FCF
is called.

Constraint: LDV � n.

9: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least max 1;LCOMMð Þ (see F12FAF).

On initial entry: must remain unchanged from the prior call to F12FAF.

On exit: contains data on the current state of the solution.

10: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ (see F12FAF).

On initial entry: must remain unchanged from the prior call to F12FAF.

On exit: contains data on the current state of the solution.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDZ < max 1;Nð Þ or LDZ < 1 when no vectors are required.

IFAIL ¼ 2

On entry, the option Vectors ¼ Select was selected, but this is not yet implemented.

IFAIL ¼ 3

The number of eigenvalues found to sufficient accuracy prior to calling F12FCF, as
communicated through the argument ICOMM, is zero.

IFAIL ¼ 4

The number of converged eigenvalues as calculated by F12FBF differ from the value passed to it
through the argument ICOMM.
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IFAIL ¼ 5

Unexpected error during calculation of a tridiagonal form: there was a failure to compute all the
converged eigenvalues. Please contact NAG.

IFAIL ¼ 8

Either the routine was called out of sequence (following an initial call
to the setup routine and following completion of calls to the reverse
communication routine) or the communication arrays have become corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy of a Ritz value, �, is considered acceptable if its Ritz estimate � Tolerance� �j j.
The default Tolerance used is the machine precision given by X02AJF.

8 Parallelism and Performance

F12FCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F12FCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example solves Ax ¼ �Bx in regular mode, where A and B are obtained from the standard central
difference discretization of the one-dimensional Laplacian operator d2u

dx2
on 0; 1½ �, with zero Dirichlet

boundary conditions.
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10.1 Program Text

! F12FCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12fcfe_mod

! F12FCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: av, mv

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: four = 4.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: six = 6.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Integer, Parameter, Public :: imon = 0, licomm = 140, nin = 5, &

nout = 6
Contains

Subroutine mv(n,v,w)

! .. Use Statements ..
Use nag_library, Only: dscal

! .. Scalar Arguments ..
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: v(n)
Real (Kind=nag_wp), Intent (Out) :: w(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
h = one/(real(n+1,kind=nag_wp)*six)
w(1) = four*v(1) + v(2)
Do j = 2, n - 1

w(j) = v(j-1) + four*v(j) + v(j+1)
End Do
j = n
w(j) = v(j-1) + four*v(j)

! The NAG name equivalent of dscal is f06edf
Call dscal(n,h,w,1)
Return

End Subroutine mv

Subroutine av(n,v,w)

! .. Use Statements ..
Use nag_library, Only: dscal

! .. Scalar Arguments ..
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: v(n)
Real (Kind=nag_wp), Intent (Out) :: w(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
h = one/real(n+1,kind=nag_wp)
w(1) = two*v(1) - v(2)
Do j = 2, n - 1
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w(j) = -v(j-1) + two*v(j) - v(j+1)
End Do
j = n
w(j) = -v(j-1) + two*v(j)

! The NAG name equivalent of dscal is f06edf
Call dscal(n,one/h,w,1)
Return

End Subroutine av
End Module f12fcfe_mod
Program f12fcfe

! F12FCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgttrf, dgttrs, dnrm2, f12faf, f12fbf, f12fcf, &

f12fdf, f12fef, nag_wp
Use f12fcfe_mod, Only: av, four, imon, licomm, mv, nin, nout, one, six, &

zero
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, r1, r2, sigma
Integer :: ifail, info, irevcm, j, lcomm, ldv, &

n, nconv, ncv, nev, niter, nshift
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ad(:), adl(:), adu(:), adu2(:), &
comm(:), d(:,:), mx(:), resid(:), &
v(:,:), x(:)

Integer :: icomm(licomm)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F12FCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nev, ncv

lcomm = 3*n + ncv*ncv + 8*ncv + 60
ldv = n
Allocate (ad(n),adl(n),adu(n),adu2(n),comm(lcomm),d(ncv,2),mx(n), &

resid(n),v(ldv,ncv),x(n),ipiv(n))

ifail = 0
Call f12faf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! We are solving a generalized problem
ifail = 0
Call f12fdf(’GENERALIZED’,icomm,comm,ifail)

h = one/real(n+1,kind=nag_wp)
r1 = (four/six)*h
r2 = (one/six)*h
ad(1:n) = r1
adl(1:n) = r2
adu(1:n) = adl(1:n)

! The NAG name equivalent of dgttrf is f07cdf
Call dgttrf(n,adl,ad,adu,adu2,ipiv,info)

irevcm = 0
ifail = -1

revcm: Do
Call f12fbf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)
If (irevcm==5) Then

Exit revcm
Else If (irevcm==-1 .Or. irevcm==1) Then

! Perform X <--- OP*x = inv[M]*A*x.
Call av(n,x,mx)
x(1:n) = mx(1:n)

! The NAG name equivalent of dgttrs is f07cef
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Call dgttrs(’N’,n,1,adl,ad,adu,adu2,ipiv,x,n,info)
Else If (irevcm==2) Then

! Perform MX <--- M*x.
Call mv(n,x,mx)

Else If (irevcm==4 .And. imon/=0) Then
! Output monitoring information

Call f12fef(niter,nconv,d,d(1,2),icomm,comm)
! The NAG name equivalent of dnrm2 is f06ejf

Write (6,99999) niter, nconv, dnrm2(nev,d(1,2),1)
End If

End Do revcm

If (ifail==0) Then
! Post-Process using F12FCF to compute eigenvalues/vectors.

sigma = zero
ifail = 0
Call f12fcf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail)
Write (nout,99998) nconv
Write (nout,99997)(j,d(j,1),j=1,nconv)

End If

99999 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &
’f estimates =’,E16.8)

99998 Format (1X,/,’ The ’,I4,’ generalized Ritz values of largest magn’, &
’itude are:’,/)

99997 Format (1X,I8,5X,F9.1)
End Program f12fcfe

10.2 Program Data

F12FCF Example Program Data
100 4 10 : Values for N NEV and NCV

10.3 Program Results

F12FCF Example Program Results

The 4 generalized Ritz values of largest magnitude are:

1 121003.5
2 121616.6
3 122057.5
4 122323.2
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NAG Library Routine Document

F12FDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then this routine need not be called. If,
however, you wish to reset some or all of the settings please refer to Section 11 for a detailed
description of the specification of the optional parameters.

1 Purpose

F12FDF is an option setting routine in a suite of routines consisting of F12FAF, F12FBF, F12FCF,
F12FDF and F12FEF, and may be used to supply individual optional parameters to F12FBF and
F12FCF. The initialization routine F12FAF must have been called prior to calling F12FDF.

2 Specification

SUBROUTINE F12FDF (STR, ICOMM, COMM, IFAIL)

INTEGER ICOMM(*), IFAIL
REAL (KIND=nag_wp) COMM(*)
CHARACTER(*) STR

3 Description

F12FDF may be used to supply values for optional parameters to F12FBF and F12FCF. It is only
necessary to call F12FDF for those arguments whose values are to be different from their default
values. One call to F12FDF sets one argument value.

Each optional parameter is defined by a single character string consisting of one or more items. The
items associated with a given option must be separated by spaces, or equals signs ¼½ �. Alphabetic
characters may be upper or lower case. The string

’Pointers = Yes’

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 16 contiguous characters
in Fortran's I, F, E or D format.

F12FDF does not have an equivalent routine from the ARPACK package which passes options by
directly setting values to scalar arguments or to specific elements of array arguments. F12FDF is
intended to make the passing of options more transparent and follows the same principle as the single
option setting routines in Chapter E04.

The setup routine F12FAF must be called prior to the first call to F12FDF and all calls to F12FDF must
precede the first call to F12FBF, the reverse communication iterative solver.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 11.
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4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 and Section 11).

2: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ (see F12FAF).

On initial entry: must remain unchanged following a call to the setup routine F12FAF.

On exit: contains data on the current options set.

3: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least 60.

On initial entry: must remain unchanged following a call to the setup routine F12FAF.

On exit: contains data on the current options set.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The string passed in STR contains an ambiguous keyword.

IFAIL ¼ 2

The string passed in STR contains a keyword that could not be recognized.
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IFAIL ¼ 3

The string passed in STR contains a second keyword that could not be recognized.

IFAIL ¼ 4

The initialization routine F12FAF has not been called or a communication array has become
corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F12FDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example solves Ax ¼ �Bx in Shifted Inverse mode, where A and B are obtained from the
standard central difference discretization of the one-dimensional Laplacian operator @2u

@x2
on 0; 1½ �, with

zero Dirichlet boundary conditions. Data is passed to and from the reverse communication routine
F12FBF using pointers to the communication array.

10.1 Program Text

! F12FDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12fdfe_mod

! F12FDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: mv

! .. Parameters ..
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Real (Kind=nag_wp), Parameter, Public :: four = 4.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: six = 6.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: imon = 0, ipoint = 1, licomm = 140, &

nin = 5, nout = 6
Contains

Subroutine mv(n,v,w)

! .. Use Statements ..
Use nag_library, Only: dscal

! .. Scalar Arguments ..
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: v(n)
Real (Kind=nag_wp), Intent (Out) :: w(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
h = one/(real(n+1,kind=nag_wp)*six)
w(1) = four*v(1) + v(2)
Do j = 2, n - 1

w(j) = v(j-1) + four*v(j) + v(j+1)
End Do
j = n
w(j) = v(j-1) + four*v(j)

! The NAG name equivalent of dscal is f06edf
Call dscal(n,h,w,1)
Return

End Subroutine mv
End Module f12fdfe_mod
Program f12fdfe

! F12FDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dcopy, dgttrf, dgttrs, dnrm2, f12faf, f12fbf, &

f12fcf, f12fdf, f12fef, nag_wp
Use f12fdfe_mod, Only: four, imon, ipoint, licomm, mv, nin, nout, one, &

six, two, zero
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, r1, r2, sigma
Integer :: ifail, info, irevcm, j, lcomm, ldv, &

n, nconv, ncv, nev, niter, nshift
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ad(:), adl(:), adu(:), adu2(:), &
comm(:), d(:,:), mx(:), resid(:), &
v(:,:), x(:)

Integer :: icomm(licomm)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F12FDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nev, ncv

lcomm = 3*n + ncv*ncv + 8*ncv + 60
ldv = n
Allocate (ad(n),adl(n),adu(n),adu2(n),comm(lcomm),d(ncv,2),mx(n), &

resid(n),v(ldv,ncv),x(n),ipiv(n))

ifail = 0
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Call f12faf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! We are solving a generalized problem
ifail = 0
Call f12fdf(’GENERALIZED’,icomm,comm,ifail)

! Indicate that we are using the shift and invert mode.
Call f12fdf(’SHIFTED INVERSE’,icomm,comm,ifail)
If (ipoint==1) Then

! Use pointers to Workspace in calculating matrix vector
! products rather than interfacing through the array X

Call f12fdf(’POINTERS=YES’,icomm,comm,ifail)
End If

h = one/real(n+1,kind=nag_wp)
r1 = (four/six)*h
r2 = (one/six)*h
sigma = zero
ad(1:n) = two/h - sigma*r1
adl(1:n) = -one/h - sigma*r2
adu(1:n) = adl(1:n)

! The NAG name equivalent of dgttrf is f07cdf
Call dgttrf(n,adl,ad,adu,adu2,ipiv,info)

irevcm = 0
ifail = -1

revcm: Do
Call f12fbf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)
If (irevcm==5) Then

Exit revcm
Else If (irevcm==-1) Then

! Perform y <--- OP*x = inv[A-SIGMA*M]*M*x
! The NAG name equivalent of dgttrs is f07cef

If (ipoint==0) Then
Call mv(n,x,mx)
x(1:n) = mx(1:n)
Call dgttrs(’N’,n,1,adl,ad,adu,adu2,ipiv,x,n,info)

Else
Call mv(n,comm(icomm(1)),comm(icomm(2)))
Call dgttrs(’N’,n,1,adl,ad,adu,adu2,ipiv,comm(icomm(2)),n,info)

End If
Else If (irevcm==1) Then

! Perform y <-- OP*x = inv[A-sigma*M]*M*x
! The NAG name equivalent of dgttrs is f07cef.
! M*x has been saved in COMM(ICOMM(3)) or MX.

If (ipoint==0) Then
x(1:n) = mx(1:n)
Call dgttrs(’N’,n,1,adl,ad,adu,adu2,ipiv,x,n,info)

Else
! The NAG name equivalent of dcopy is f06eff

Call dcopy(n,comm(icomm(3)),1,comm(icomm(2)),1)
Call dgttrs(’N’,n,1,adl,ad,adu,adu2,ipiv,comm(icomm(2)),n,info)

End If
Else If (irevcm==2) Then

! Perform y <--- M*x.
If (ipoint==0) Then

Call mv(n,x,mx)
Else

Call mv(n,comm(icomm(1)),comm(icomm(2)))
End If

Else If (irevcm==4 .And. imon/=0) Then
! Output monitoring information

Call f12fef(niter,nconv,d,d(1,2),icomm,comm)
! The NAG name equivalent of dnrm2 is f06ejf

Write (6,99999) niter, nconv, dnrm2(nev,d(1,2),1)
End If

End Do revcm

If (ifail==0) Then
! Post-Process using F12FCF to compute eigenvalues/values.

ifail = 0
Call f12fcf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail)
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Write (nout,99998) nconv, sigma
Write (nout,99997)(j,d(j,1),j=1,nconv)

End If

99999 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &
’f estimates =’,E16.8)

99998 Format (1X,/,’ The ’,I4,’ Ritz values of closest to ’,F8.4,’ are:’,/)
99997 Format (1X,I8,5X,F12.4)

End Program f12fdfe

10.2 Program Data

F12FDF Example Program Data
100 4 10 : Values for N NEV and NCV

10.3 Program Results

F12FDF Example Program Results

The 4 Ritz values of closest to 0.0000 are:

1 9.8704
2 39.4912
3 88.8909
4 158.1175

11 Optional Parameters

Several optional parameters for the computational routines F12FBF and F12FCF define choices in the
problem specification or the algorithm logic. In order to reduce the number of formal arguments of
F12FBF and F12FCF these optional parameters have associated default values that are appropriate for
most problems. Therefore, you need only specify those optional parameters whose values are to be
different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 11.1.

Advisory

Both Ends

Buckling

Cayley

Defaults

Exact Shifts

Generalized

Initial Residual

Iteration Limit

Largest Algebraic

Largest Magnitude

List

Monitoring

Nolist

Pointers

Print Level

Random Residual

Regular
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Regular Inverse

Shifted Inverse

Smallest Algebraic

Smallest Magnitude

Standard

Supplied Shifts

Tolerance

Vectors

Optional parameters may be specified by calling F12FDF before a call to F12FBF, but after a call to
F12FAF. One call is necessary for each optional parameter.

All optional parameters you do not specify are set to their default values. Optional parameters you do
specify are unaltered by F12FBF and F12FCF (unless they define invalid values) and so remain in
effect for subsequent calls unless you alter them.

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Advisory i Default ¼ the value returned by X04ABF

The destination for advisory messages.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Exact Shifts Default
Supplied Shifts

During the Lanczos iterative process, shifts are applied internally as part of the implicit restarting
scheme. The shift strategy used by default and selected by the Exact Shifts is strongly recommended
over the alternative Supplied Shifts (see Lehoucq et al. (1998) for details of shift strategies).

If Exact Shifts are used then these are computed internally by the algorithm in the implicit restarting
scheme.

If Supplied Shifts are used then, during the Lanczos iterative process, you must supply shifts through
array arguments of F12FBF when F12FBF returns with IREVCM ¼ 3; the real and imaginary parts of
the shifts are returned in X and MX respectively (or in COMM when the option Pointers ¼ YES is
set). This option should only be used if you are an experienced user since this requires some
algorithmic knowledge and because more operations are usually required than for the implicit shift
scheme. Details on the use of explicit shifts and further references on shift strategies are available in
Lehoucq et al. (1998).

Iteration Limit i Default ¼ 300

The limit on the number of Lanczos iterations that can be performed before F12FBF exits. If not all
requested eigenvalues have converged to within Tolerance and the number of Lanczos iterations has
reached this limit then F12FBF exits with an error; F12FCF can still be called subsequently to return
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the number of converged eigenvalues, the converged eigenvalues and, if requested, the corresponding
eigenvectors.

Largest Magnitude Default
Both Ends
Largest Algebraic
Smallest Algebraic
Smallest Magnitude

The Lanczos iterative method converges on a number of eigenvalues with given properties. The default
is for F12FBF to compute the eigenvalues of largest magnitude using Largest Magnitude.
Alternatively, eigenvalues may be chosen which have Largest Algebraic part, Smallest Magnitude,
or Smallest Algebraic part; or eigenvalues which are from Both Ends of the algebraic spectrum.

Note that these options select the eigenvalue properties for eigenvalues of OP (and B for Generalized
problems), the linear operator determined by the computational mode and problem type.

Nolist Default
List

Normally each optional parameter specification is not printed to the advisory channel as it is supplied.
Optional parameter List may be used to enable printing and optional parameter Nolist may be used to
suppress the printing.

Monitoring i Default ¼ �1
If i > 0, monitoring information is output to channel number i during the solution of each problem; this
may be the same as the Advisory channel number. The type of information produced is dependent on
the value of Print Level, see the description of the optional parameter Print Level for details of the
information produced. Please see X04ACF to associate a file with a given channel number.

Pointers Default ¼ NO

During the iterative process and reverse communication calls to F12FBF, required data can be
communicated to and from F12FBF in one of two ways. When Pointers ¼ NO is selected (the default)
then the array arguments X and MX are used to supply you with required data and used to return
computed values back to F12FBF. For example, when IREVCM ¼ 1, F12FBF returns the vector x in X
and the matrix-vector product Bx in MX and expects the result or the linear operation OP xð Þ to be
returned in X.

If Pointers ¼ YES is selected then the data is passed through sections of the array argument COMM.
The section corresponding to X when Pointers ¼ NO begins at a location given by the first element of
ICOMM; similarly the section corresponding to MX begins at a location given by the second element of
ICOMM. This option allows F12FBF to perform fewer copy operations on each intermediate exit and
entry, but can also lead to less elegant code in the calling program.

Print Level i Default ¼ 0

This controls the amount of printing produced by F12FDF as follows.

¼ 0 No output except error messages. If you want to suppress all output, set Print Level ¼ 0.

> 0 The set of selected options.

¼ 2 Problem and timing statistics on final exit from F12FBF.

� 5 A single line of summary output at each Lanczos iteration.

� 10 If Monitoring > 0, Monitoring is set, then at each iteration, the length and additional steps of
the current Lanczos factorization and the number of converged Ritz values; during re-
orthogonalization, the norm of initial/restarted starting vector; on a final Lanczos iteration, the
number of update iterations taken, the number of converged eigenvalues, the converged
eigenvalues and their Ritz estimates.
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� 20 Problem and timing statistics on final exit from F12FBF. If Monitoring > 0, Monitoring is
set, then at each iteration, the number of shifts being applied, the eigenvalues and estimates of
the symmetric tridiagonal matrix H, the size of the Lanczos basis, the wanted Ritz values and
associated Ritz estimates and the shifts applied; vector norms prior to and following re-
orthogonalization.

� 30 If Monitoring > 0, Monitoring is set, then on final iteration, the norm of the residual; when
computing the Schur form, the eigenvalues and Ritz estimates both before and after sorting;
for each iteration, the norm of residual for compressed factorization and the symmetric
tridiagonal matrix H; during re-orthogonalization, the initial/restarted starting vector; during
the Lanczos iteration loop, a restart is flagged and the number of the residual requiring
iterative refinement; while applying shifts, some indices.

� 40 If Monitoring > 0, Monitoring is set, then during the Lanczos iteration loop, the Lanczos
vector number and norm of the current residual; while applying shifts, key measures of
progress and the order of H; while computing eigenvalues of H, the last rows of the Schur
and eigenvector matrices; when computing implicit shifts, the eigenvalues and Ritz estimates
of H.

� 50 If Monitoring is set, then during Lanczos iteration loop: norms of key components and the
active column of H, norms of residuals during iterative refinement, the final symmetric
tridiagonal matrix H; while applying shifts: number of shifts, shift values, block indices,
updated tridiagonal matrix H; while computing eigenvalues of H: the diagonals of H, the
computed eigenvalues and Ritz estimates.

Note that setting Print Level � 30 can result in very lengthy Monitoring output.

Note that setting Print Level � 30 can result in very lengthy Monitoring output.

Random Residual Default
Initial Residual

To begin the Lanczos iterative process, F12FBF requires an initial residual vector. By default F12FBF
provides its own random initial residual vector; this option can also be set using optional parameter
Random Residual. Alternatively, you can supply an initial residual vector (perhaps from a previous
computation) to F12FBF through the array argument RESID; this option can be set using optional
parameter Initial Residual.

Regular Default
Regular Inverse
Shifted Inverse
Buckling
Cayley

These options define the computational mode which in turn defines the form of operation OP xð Þ to be
performed when F12FBF returns with IREVCM ¼ �1 or 1 and the matrix-vector product Bx when
F12FBF returns with IREVCM ¼ 2.

Given a Standard eigenvalue problem in the form Ax ¼ �x then the following modes are available
with the appropriate operator OP xð Þ.

Regular OP ¼ A
Shifted Inverse OP ¼ A� �Ið Þ�1 where � is real

Given a Generalized eigenvalue problem in the form Ax ¼ �Bx then the following modes are
available with the appropriate operator OP xð Þ.

Regular Inverse OP ¼ B�1A
Shifted Inverse OP ¼ A� �Bð Þ�1B, where � is real
Buckling OP ¼ B� �Að Þ�1A, where � is real
Cayley OP ¼ A� �Bð Þ�1 Aþ �Bð Þ, where � is real
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Standard Default
Generalized

The problem to be solved is either a standard eigenvalue problem, Ax ¼ �x, or a generalized
eigenvalue problem, Ax ¼ �Bx. The optional parameter Standard should be used when a standard
eigenvalue problem is being solved and the optional parameter Generalized should be used when a
generalized eigenvalue problem is being solved.

Tolerance r Default ¼ �
An approximate eigenvalue has deemed to have converged when the corresponding Ritz estimate is
within Tolerance relative to the magnitude of the eigenvalue.

Vectors Default ¼ RITZ

The routine F12FCF can optionally compute the Schur vectors and/or the eigenvectors corresponding to
the converged eigenvalues. To turn off computation of any vectors the option Vectors ¼ NONE should
be set. To compute only the Schur vectors (at very little extra cost), the option Vectors ¼ SCHUR
should be set and these will be returned in the array argument V of F12FCF. To compute the
eigenvectors (Ritz vectors) corresponding to the eigenvalue estimates, the option Vectors ¼ RITZ
should be set and these will be returned in the array argument Z of F12FCF, if Z is set equal to V (as in
Section 10) then the Schur vectors in V are overwritten by the eigenvectors computed by F12FCF.
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NAG Library Routine Document

F12FEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12FDF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12FDF for a detailed description of the specification of the optional parameters.

1 Purpose

F12FEF can be used to return additional monitoring information during computation. It is in a suite of
routines which includes F12FAF, F12FBF, F12FCF and F12FDF.

2 Specification

SUBROUTINE F12FEF (NITER, NCONV, RITZ, RZEST, ICOMM, COMM)

INTEGER NITER, NCONV, ICOMM(*)
REAL (KIND=nag_wp) RITZ(*), RZEST(*), COMM(*)

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
sparse, real and symmetric. The suite can also be used to find selected eigenvalues/eigenvectors of
smaller scale dense, real and symmetric problems.

On an intermediate exit from F12FBF with IREVCM ¼ 4, F12FEF may be called to return monitoring
information on the progress of the Arnoldi iterative process. The information returned by F12FEF is:

– the number of the current Arnoldi iteration;

– the number of converged eigenvalues at this point;

– the real and imaginary parts of the converged eigenvalues;

– the error bounds on the converged eigenvalues.

F12FEF does not have an equivalent routine from the ARPACK package which prints various levels of
detail of monitoring information through an output channel controlled via an argument value (see
Lehoucq et al. (1998) for details of ARPACK routines). F12FEF should not be called at any time other
than immediately following an IREVCM ¼ 4 return from F12FBF.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

F12 – Large Scale Eigenproblems F12FEF

Mark 26 F12FEF.1



5 Arguments

1: NITER – INTEGER Output

On exit: the number of the current Arnoldi iteration.

2: NCONV – INTEGER Output

On exit: the number of converged eigenvalues so far.

3: RITZð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RITZ must be at least NCV (see F12FAF).

On exit: the first NCONV locations of the array RITZ contain the real converged approximate
eigenvalues.

4: RZESTð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RZEST must be at least NCV (see F12FAF).

On exit: the first NCONV locations of the array RZEST contain the Ritz estimates (error bounds)
on the real NCONV converged approximate eigenvalues.

5: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ, where LICOMM is
passed to the setup routine (see F12FAF).

On entry: the array ICOMM output by the preceding call to F12FBF.

6: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least max 1;LCOMMð Þ, where LCOMM is
passed to the setup routine (see F12FAF).

On entry: the array COMM output by the preceding call to F12FBF.

6 Error Indicators and Warnings

None.

7 Accuracy

A Ritz value, �, is deemed to have converged if its Ritz estimate � Tolerance� �j j. The default
Tolerance used is the machine precision given by X02AJF.

8 Parallelism and Performance

F12FEF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example solves Kx ¼ �KGx using the Buckling option (see F12FDF, where K and KG are
obtained by the finite element method applied to the one-dimensional discrete Laplacian operator @

2u
@x2

on
0; 1½ �, with zero Dirichlet boundary conditions using piecewise linear elements. The shift, �, is a real
number, and the operator used in the Buckling iterative process is OP ¼ inv K � �KGð Þ �K and
B ¼ K.
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10.1 Program Text

! F12FEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f12fefe_mod

! F12FEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: av

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: four = 4.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: six = 6.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: two = 2.0_nag_wp
Integer, Parameter, Public :: imon = 1, ipoint = 0, licomm = 140, &

nin = 5, nout = 6
Contains

Subroutine av(n,v,w)

! .. Use Statements ..
Use nag_library, Only: dscal

! .. Scalar Arguments ..
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: v(n)
Real (Kind=nag_wp), Intent (Out) :: w(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: h
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
h = one/real(n+1,kind=nag_wp)
w(1) = two*v(1) - v(2)
Do j = 2, n - 1

w(j) = -v(j-1) + two*v(j) - v(j+1)
End Do
j = n
w(j) = -v(j-1) + two*v(j)

! The NAG name equivalent of dscal is f06edf
Call dscal(n,one/h,w,1)
Return

End Subroutine av
End Module f12fefe_mod
Program f12fefe

! F12FEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dcopy, dgttrf, dgttrs, dnrm2, f12faf, f12fbf, &

f12fcf, f12fdf, f12fef, nag_wp
Use f12fefe_mod, Only: av, four, imon, ipoint, licomm, nin, nout, one, &

six, two
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, r1, r2, sigma
Integer :: ifail, info, irevcm, j, lcomm, ldv, &

n, nconv, ncv, nev, niter, nshift
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ad(:), adl(:), adu(:), adu2(:), &
comm(:), d(:,:), mx(:), resid(:), &
v(:,:), x(:)
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Integer :: icomm(licomm)
Integer, Allocatable :: ipiv(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F12FEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nev, ncv

lcomm = 3*n + ncv*ncv + 8*ncv + 60
ldv = n
Allocate (ad(n),adl(n),adu(n),adu2(n),comm(lcomm),d(ncv,2),mx(n), &

resid(n),v(ldv,ncv),x(n),ipiv(n))

ifail = 0
Call f12faf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! We are solving a generalized problem
ifail = 0
Call f12fdf(’GENERALIZED’,icomm,comm,ifail)

! Indicate that we are using the buckling mode.
Call f12fdf(’BUCKLING’,icomm,comm,ifail)
If (ipoint==1) Then

Call f12fdf(’POINTERS=YES’,icomm,comm,ifail)
End If

h = one/real(n+1,kind=nag_wp)
r1 = (four/six)*h
r2 = (one/six)*h
sigma = one
ad(1:n) = two/h - sigma*r1
adl(1:n) = -one/h - sigma*r2
adu(1:n) = adl(1:n)

! The NAG name equivalent of dgttrf is f07cdf
Call dgttrf(n,adl,ad,adu,adu2,ipiv,info)

irevcm = 0
ifail = -1

revcm: Do
Call f12fbf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)
If (irevcm==5) Then

Exit revcm
Else If (irevcm==-1) Then

! Perform y <--- OP*x = inv[K-SIGMA*KG]*K*x
! The NAG name equivalent of dgttrs is f07cef

If (ipoint==0) Then
Call av(n,x,mx)
x(1:n) = mx(1:n)
Call dgttrs(’N’,n,1,adl,ad,adu,adu2,ipiv,x,n,info)

Else
Call av(n,comm(icomm(1)),comm(icomm(2)))
Call dgttrs(’N’,n,1,adl,ad,adu,adu2,ipiv,comm(icomm(2)),n,info)

End If
Else If (irevcm==1) Then

! Perform y <-- OP*x = inv[K-sigma*KG]*K*x.
! The NAG name equivalent of dgttrs is f07cef

If (ipoint==0) Then
x(1:n) = mx(1:n)
Call dgttrs(’N’,n,1,adl,ad,adu,adu2,ipiv,x,n,info)

Else
! The NAG name equivalent of dcopy is f06eff

Call dcopy(n,comm(icomm(3)),1,comm(icomm(2)),1)
Call dgttrs(’N’,n,1,adl,ad,adu,adu2,ipiv,comm(icomm(2)),n,info)

End If
Else If (irevcm==2) Then

! Perform y <--- M*x.
If (ipoint==0) Then

Call av(n,x,mx)
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Else
Call av(n,comm(icomm(1)),comm(icomm(2)))

End If
Else If (irevcm==4 .And. imon/=0) Then

! Output monitoring information
Call f12fef(niter,nconv,d,d(1,2),icomm,comm)

! The NAG name equivalent of dnrm2 is f06ejf
Write (6,99999) niter, nconv, dnrm2(nev,d(1,2),1)

End If
End Do revcm

If (ifail==0) Then
! Post-Process using F12FCF to compute eigenvalues/vectors.

Call f12fcf(nconv,d,v,ldv,sigma,resid,v,ldv,comm,icomm,ifail)
Write (nout,99998) nconv, sigma
Write (nout,99997)(j,d(j,1),j=1,nconv)

End If

99999 Format (1X,’Iteration’,1X,I3,’, No. converged =’,1X,I3,’, norm o’, &
’f estimates =’,E16.8)

99998 Format (1X,/,’ The ’,I4,’ generalized Ritz values closest to ’,F8.4, &
’ are:’,/)

99997 Format (1X,I8,5X,F12.4)
End Program f12fefe

10.2 Program Data

F12FEF Example Program Data
100 4 10 : Values for N NEV and NCV

10.3 Program Results

F12FEF Example Program Results

Iteration 1, No. converged = 0, norm of estimates = 0.20534331E-05
Iteration 2, No. converged = 2, norm of estimates = 0.60759940E-10
Iteration 3, No. converged = 3, norm of estimates = 0.52652580E-14

The 4 generalized Ritz values closest to 1.0000 are:

1 9.8704
2 39.4912
3 88.8909
4 158.1175
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NAG Library Routine Document

F12FFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F12FFF is a setup routine for F12FGF which can be used to find some eigenvalues (and optionally the
corresponding eigenvectors) of a standard or generalized eigenvalue problem defined by real, banded,
symmetric matrices. The banded matrix must be stored using the LAPACK storage format for real
banded nonsymmetric matrices.

2 Specification

SUBROUTINE F12FFF (N, NEV, NCV, ICOMM, LICOMM, COMM, LCOMM, IFAIL)

INTEGER N, NEV, NCV, ICOMM(max(1,LICOMM)), LICOMM, LCOMM,
IFAIL

&

REAL (KIND=nag_wp) COMM(max(1,LCOMM))

3 Description

The pair of routines F12FFF and F12FGF together with the option setting routine F12FDF are designed
to calculate some of the eigenvalues, �, (and optionally the corresponding eigenvectors, x) of a standard
eigenvalue problem Ax ¼ �x, or of a generalized eigenvalue problem Ax ¼ �Bx of order n, where n is
large and the coefficient matrices A and B are banded real and symmetric.

F12FFF is a setup routine which must be called before the option setting routine F12FDF and the solver
routine F12FGF. Internally, F12FGF makes calls to F12FBF and F12FCF; the routine documents for
F12FBF and F12FCF should be consulted for details of the algorithm used.

This setup routine initializes the communication arrays, sets (to their default values) all options that can
be set by you via the option setting routine F12FDF, and checks that the lengths of the communication
arrays as passed by you are of sufficient length. For details of the options available and how to set
them, see Section 11.1 in F12FDF.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

1: N – INTEGER Input

On entry: the order of the matrix A (and the order of the matrix B for the generalized problem)
that defines the eigenvalue problem.

Constraint: N > 0.
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2: NEV – INTEGER Input

On entry: the number of eigenvalues to be computed.

Constraint: 0 < NEV < N� 1.

3: NCV – INTEGER Input

On entry: the number of Lanczos basis vectors to use during the computation.

At present there is no a priori analysis to guide the selection of NCV relative to NEV. However,
it is recommended that NCV � 2� NEVþ 1. If many problems of the same type are to be
solved, you should experiment with increasing NCV while keeping NEV fixed for a given test
problem. This will usually decrease the required number of matrix-vector operations but it also
increases the work and storage required to maintain the orthogonal basis vectors. The optimal
‘cross-over’ with respect to CPU time is problem dependent and must be determined empirically.

Constraint: NEV < NCV � N.

4: ICOMMðmax 1;LICOMMð ÞÞ – INTEGER array Communication Array

On exit: contains data to be communicated to F12FGF.

5: LICOMM – INTEGER Input

On entry: the dimension of the array ICOMM as declared in the (sub)program from which
F12FFF is called.

If LICOMM ¼ �1, a workspace query is assumed and the routine only calculates the required
dimensions of ICOMM and COMM, which it returns in ICOMMð1Þ and COMMð1Þ respectively.
Constraint: LICOMM � 140 or LICOMM ¼ �1.

6: COMMðmax 1;LCOMMð ÞÞ – REAL (KIND=nag_wp) array Communication Array

On exit: contains data to be communicated to F12FGF.

7: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which
F12FFF is called.

If LCOMM ¼ �1, a workspace query is assumed and the routine only calculates the dimensions
of ICOMM and COMM required by F12FGF, which it returns in ICOMMð1Þ and COMMð1Þ
respectively.

Constraint: LCOMM � 60 or LCOMM ¼ �1.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 0.

IFAIL ¼ 2

On entry, NEV � 0.

IFAIL ¼ 3

On entry, NCV � NEV or NCV > N.

IFAIL ¼ 4

On entry, LICOMM < 140 and LICOMM 6¼ �1.

IFAIL ¼ 5

On entry, LCOMM < 60 and LCOMM 6¼ �1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

F12FFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

The use of F12FFF is illustrated by the example program of F12FGF (see Section 10 in F12FGF).
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NAG Library Routine Document

F12FGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, then the option setting routine F12FDF need
not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in
F12FDF for a detailed description of the specification of the optional parameters.

1 Purpose

F12FGF is the main solver routine in a suite of routines which includes F12FDF and F12FFF. F12FGF
must be called following an initial call to F12FFF and following any calls to F12FDF.

F12FGF returns approximations to selected eigenvalues, and (optionally) the corresponding
eigenvectors, of a standard or generalized eigenvalue problem defined by real banded symmetric
matrices. The banded matrix must be stored using the LAPACK storage format for real banded
nonsymmetric matrices.

2 Specification

SUBROUTINE F12FGF (KL, KU, AB, LDAB, MB, LDMB, SIGMA, NCONV, D, Z, LDZ,
RESID, V, LDV, COMM, ICOMM, IFAIL)

&

INTEGER KL, KU, LDAB, LDMB, NCONV, LDZ, LDV, ICOMM(*), IFAIL
REAL (KIND=nag_wp) AB(LDAB,*), MB(LDMB,*), SIGMA, D(*), Z(LDZ,*),

RESID(*), V(LDV,*), COMM(*)
&

3 Description

The suite of routines is designed to calculate some of the eigenvalues, �, (and optionally the
corresponding eigenvectors, x) of a standard eigenvalue problem Ax ¼ �x, or of a generalized
eigenvalue problem Ax ¼ �Bx of order n, where n is large and the coefficient matrices A and B are
banded, real and symmetric.

Following a call to the initialization routine F12FFF, F12FGF returns the converged approximations to
eigenvalues and (optionally) the corresponding approximate eigenvectors and/or an orthonormal basis
for the associated approximate invariant subspace. The eigenvalues (and eigenvectors) are selected from
those of a standard or generalized eigenvalue problem defined by real banded symmetric matrices.
There is negligible additional computational cost to obtain eigenvectors; an orthonormal basis is always
computed, but there is an additional storage cost if both are requested.

The banded matrices A and B must be stored using the LAPACK storage format for banded
nonsymmetric matrices; please refer to Section 3.3.2 in the F07 Chapter Introduction for details on this
storage format.

F12FGF is based on the banded driver routines dsbdr1 to dsbdr6 from the ARPACK package, which
uses the Implicitly Restarted Lanczos iteration method. The method is described in Lehoucq and
Sorensen (1996) and Lehoucq (2001) while its use within the ARPACK software is described in great
detail in Lehoucq et al. (1998). This suite of routines offers the same functionality as the ARPACK
banded driver software for real symmetric problems, but the interface design is quite different in order
to make the option setting clearer and to combine the different drivers into a general purpose routine.

F12FGF, is a general purpose direct communication routine that must be called following initialization
by F12FFF. F12FGF uses options, set either by default or explicitly by calling F12FDF, to return the
converged approximations to selected eigenvalues and (optionally):
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– the corresponding approximate eigenvectors;

– an orthonormal basis for the associated approximate invariant subspace;

– both.

4 References

Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on
Matrix Analysis and Applications 23 551–562

Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse
nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

1: KL – INTEGER Input

On entry: the number of subdiagonals of the matrices A and B.

Constraint: KL � 0.

2: KU – INTEGER Input

On entry: the number of superdiagonals of the matrices A and B. Since A and B are symmetric,
the normal case is KU ¼ KL.

Constraint: KU � 0.

3: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ (see F12FFF).

On entry: must contain the matrix A in LAPACK banded storage format for nonsymmetric
matrices (see Section 3.3.4 in the F07 Chapter Introduction).

4: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F12FGF is called.

Constraint: LDAB � 2� KLþ KUþ 1.

5: MBðLDMB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array MB must be at least max 1;Nð Þ (see F12FFF).

On entry: must contain the matrix B in LAPACK banded storage format for nonsymmetric
matrices (see Section 3.3.4 in the F07 Chapter Introduction).

6: LDMB – INTEGER Input

On entry: the first dimension of the array MB as declared in the (sub)program from which
F12FGF is called.

Constraint: LDMB � 2� KLþ KUþ 1.

F12FGF NAG Library Manual

F12FGF.2 Mark 26



7: SIGMA – REAL (KIND=nag_wp) Input

On entry: if one of the Shifted Inverse (see F12FDF) modes has been selected then SIGMA
contains the real shift used; otherwise SIGMA is not referenced.

8: NCONV – INTEGER Output

On exit: the number of converged eigenvalues.

9: Dð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array D must be at least NCV (see F12FFF).

On exit: the first NCONV locations of the array D contain the converged approximate
eigenvalues.

10: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least NCVþ 1 if the default option
Vectors ¼ RITZ has been selected and at least 1 if the option Vectors ¼ NONE or SCHUR has
been selected (see F12FFF).

On exit: if the default option Vectors ¼ RITZ (see F12FDF) has been selected then Z contains
the final set of eigenvectors corresponding to the eigenvalues held in D. The real eigenvector
associated with eigenvalue i � 1, for i ¼ 1; 2; . . . ;NCONV, is stored in the ith column of Z.

11: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F12FGF
is called.

Constraints:

if the default option Vectors ¼ Ritz has been selected, LDZ � N;
if the option Vectors ¼ None or Schur has been selected, LDZ � 1.

12: RESIDð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array RESID must be at least N (see F12FFF).

On entry: need not be set unless the option Initial Residual has been set in a prior call to
F12FDF in which case RESID must contain an initial residual vector.

On exit: contains the final residual vector.

13: VðLDV; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1;NCVð Þ (see F12FFF).

On exit: if the option Vectors (see F12FDF) has been set to Schur or Ritz and a separate array Z
has been passed then the first NCONV� n elements of V will contain approximate Schur vectors
that span the desired invariant subspace.

The jth Schur vector is stored in the ith column of V.

14: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F12FGF
is called.

Constraint: LDV � n.

15: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array COMM must be at least max 1;LCOMMð Þ (see F12FFF).

On initial entry: must remain unchanged from the prior call to F12FDF and F12FFF.
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On exit: contains no useful information.

16: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least max 1;LICOMMð Þ (see F12FFF).

On initial entry: must remain unchanged from the prior call to F12FBF and F12FDF.

On exit: contains no useful information.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, KL < 0.

IFAIL ¼ 2

On entry, KU < 0.

IFAIL ¼ 3

On entry, LDAB < 2� KLþ KUþ 1.

IFAIL ¼ 4

Iteration Limit < 0.

IFAIL ¼ 5

The options Generalized and Regular are incompatible.

IFAIL ¼ 6

Eigenvalues from Both Ends of the spectrum were requested, but only one eigenvalue (NEV) is
requested.

IFAIL ¼ 7

The Initial Residual was selected but the starting vector held in RESID is zero.

IFAIL ¼ 8

On entry, LDZ < max 1;Nð Þ or LDZ < 1 when no vectors are required.
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IFAIL ¼ 9

On entry, the option Vectors ¼ Select was selected, but this is not yet implemented.

IFAIL ¼ 10

The number of eigenvalues found to sufficient accuracy is zero.

IFAIL ¼ 11

Could not build a Lanczos factorization. Consider changing NCV or NEV in the initialization
routine (see Section 5 in F12FAF for details of these arguments).

IFAIL ¼ 12

Unexpected error in internal call to compute eigenvalues and corresponding error bounds of the
current symmetric tridiagonal matrix. Please contact NAG.

IFAIL ¼ 13

Unexpected error during calculation of a real Schur form: there was a failure to compute all the
converged eigenvalues. Please contact NAG.

IFAIL ¼ 14

Failure during internal factorization of real banded matrix. Please contact NAG.

IFAIL ¼ 15

Failure during internal solution of real banded system. Please contact NAG.

IFAIL ¼ 16

The maximum number of iterations has been reached. Some Ritz values may have converged;
NCONV returns the number of converged values.

IFAIL ¼ 17

No shifts could be applied during a cycle of the implicitly restarted Lanczos iteration. One
possibility is to increase the size of NCV relative to NEV (see Section 5 in F12FFF for details of
these arguments).

IFAIL ¼ 18

Either an initial call to the setup routine has not been made
or the communication arrays have become corrupted.

IFAIL ¼ 19

The routine was unable to dynamically allocate sufficient internal workspace. Please contact
NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy of a Ritz value, �, is considered acceptable if its Ritz estimate � Tolerance� �j j.
The default Tolerance used is the machine precision given by X02AJF.

8 Parallelism and Performance

F12FGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F12FGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example solves Ax ¼ �x in regular mode, where A is obtained from the standard central
difference discretization of the two-dimensional convection-diffusion operator d

2u
dx2
þ d2u

dy2
¼ �dudx on the unit

square with zero Dirichlet boundary conditions. A is stored in LAPACK banded storage format.

10.1 Program Text

Program f12fgfe

! F12FGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: daxpy, dgbmv, dnrm2, f12fff, f12fgf, nag_wp, &

x04abf, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: inc1 = 1, iset = 1, nin = 5, &

nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: h2, sigma
Integer :: i, idiag, ifail, isub, isup, j, kl, &

ku, lcomm, ldab, ldmb, ldv, licomm, &
lo, n, nconv, ncv, nev, nx, outchn

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ab(:,:), ax(:), comm(:), d(:), &

d_print(:,:), mb(:,:), resid(:), &
v(:,:)

Integer, Allocatable :: icomm(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs, int, max, real
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! .. Executable Statements ..
Write (nout,*) ’F12FGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

Read (nin,*) nx, nev, ncv
n = nx*nx

! Initialize communication arrays.
! Query the required sizes of the communication arrays.

licomm = -1
lcomm = -1
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))

ifail = 0
Call f12fff(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

licomm = icomm(1)
lcomm = int(comm(1))
Deallocate (icomm,comm)
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))

ifail = 0
Call f12fff(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

! Construct the matrix A in banded form and store in AB.
! KU, KL are number of superdiagonals and subdiagonals within
! the band of matrices A and M.

kl = nx
ku = nx
ldab = 2*kl + ku + 1
Allocate (ab(ldab,n))

! Zero out AB.

ab(1:ldab,1:n) = 0.0_nag_wp

! Main diagonal of A.

h2 = one/real((nx+1)*(nx+1),kind=nag_wp)
idiag = kl + ku + 1
ab(idiag,1:n) = 4.0_nag_wp/h2

! First subdiagonal and superdiagonal of A.

isup = kl + ku
isub = kl + ku + 2

Do i = 1, nx
lo = (i-1)*nx

Do j = lo + 1, lo + nx - 1
ab(isup,j+1) = -one/h2
ab(isub,j) = -one/h2

End Do

End Do

! KL-th subdiagonal and KU-th superdiagonal.

isup = kl + 1
isub = 2*kl + ku + 1

Do i = 1, nx - 1
lo = (i-1)*nx

Do j = lo + 1, lo + nx
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ab(isup,nx+j) = -one/h2
ab(isub,j) = -one/h2

End Do

End Do

! Find eigenvalues of largest magnitude and the corresponding
! eigenvectors.

ldmb = 2*kl + ku + 1
ldv = n
Allocate (mb(ldmb,n),d(ncv),v(ldv,ncv+1),resid(n))

ifail = -1
Call f12fgf(kl,ku,ab,ldab,mb,ldmb,sigma,nconv,d,v,ldv,resid,v,ldv,comm, &

icomm,ifail)

If (ifail/=0) Then
Go To 100

End If

! Compute the residual norm ||A*x - lambda*x||.

Allocate (d_print(nconv,2),ax(n))
d_print(1:nconv,1) = d(1:nconv)

Do j = 1, nconv

! The NAG name equivalent of dgbmv is f06pbf
Call dgbmv(’N’,n,n,kl,ku,one,ab(kl+1,1),ldab,v(1,j),inc1,zero,ax,inc1)

! The NAG name equivalent of daxpy is f06ecf
Call daxpy(n,-d_print(j,1),v(1,j),inc1,ax,inc1)

! The NAG name equivalent of dnrm2 is f06ejf
d_print(j,2) = dnrm2(n,ax,1)

End Do

d_print(1:nconv,2) = d_print(1:nconv,2)/abs(d_print(1:nconv,1))

Write (nout,*)
Flush (nout)

outchn = nout
Call x04abf(iset,outchn)

ifail = 0
Call x04caf(’G’,’N’,nconv,2,d_print,nconv,’ Ritz values and residuals’, &

ifail)

100 Continue
End Program f12fgfe

10.2 Program Data

F12FGF Example Program Data
10 4 10 : Values for NX NEV and NCV
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10.3 Program Results

F12FGF Example Program Results

Ritz values and residuals
1 2

1 8.9117E+02 1.7472E-15
2 9.1978E+02 7.7418E-16
3 9.1978E+02 5.7476E-16
4 9.4839E+02 1.0840E-15
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NAG Library Chapter Contents

F16 – Further Linear Algebra Support Routines

F16 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

F16DLF 22 nagf_blast_isum
Sum elements of integer vector

F16DNF 22 nagf_blast_imax_val
Maximum value and location, integer vector

F16DPF 22 nagf_blast_imin_val
Minimum value and location, integer vector

F16DQF 22 nagf_blast_iamax_val
Maximum absolute value and location, integer
vector

F16DRF 22 nagf_blast_iamin_val
Minimum absolute value and location, integer
vector

F16EAF (BLAS_DDOT) 25 BLAS_DDOT
nagf_blast_ddot
Dot product of two vectors, allows scaling and
accumulation.

F16ECF (BLAS_DAXPBY) 24 BLAS_DAXPBY
nagf_blast_daxpby
Real weighted vector addition

F16EHF (BLAS_DWAXPBY) 22 BLAS_DWAXPBY
nagf_blast_dwaxpby
Real weighted vector addition preserving input

F16ELF (BLAS_DSUM) 22 BLAS_DSUM
nagf_blast_dsum
Sum elements of real vector

F16GCF (BLAS_ZAXPBY) 24 BLAS_ZAXPBY
nagf_blast_zaxpby
Complex weighted vector addition

F16GHF (BLAS_ZWAXPBY) 22 BLAS_ZWAXPBY
nagf_blast_zwaxpby
Complex weighted vector addition preserving input

F16GLF (BLAS_ZSUM) 22 BLAS_ZSUM
nagf_blast_zsum
Sum elements of complex vector

F16JNF (BLAS_DMAX_VAL) 22 BLAS_DMAX_VAL
nagf_blast_dmax_val
Maximum value and location, real vector

F16JPF (BLAS_DMIN_VAL) 22 BLAS_DMIN_VAL
nagf_blast_dmin_val
Minimum value and location, real vector

F16JQF (BLAS_DAMAX_VAL) 22 BLAS_DAMAX_VAL
nagf_blast_damax_val
Maximum absolute value and location, real vector

F16JRF (BLAS_DAMIN_VAL) 22 BLAS_DAMIN_VAL
nagf_blast_damin_val
Minimum absolute value and location, real vector
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F16JSF (BLAS_ZAMAX_VAL) 22 BLAS_ZAMAX_VAL
nagf_blast_zamax_val
Maximum absolute value and location, complex
vector

F16JTF (BLAS_ZAMIN_VAL) 22 BLAS_ZAMIN_VAL
nagf_blast_zamin_val
Minimum absolute value and location, complex
vector

F16RBF 23 nagf_blast_dgb_norm
1-norm, 1-norm, Frobenius norm, largest absolute
element, real band matrix

F16UBF 23 nagf_blast_zgb_norm
1-norm, 1-norm, Frobenius norm, largest absolute
element, complex band matrix
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1 Scope of the Chapter

This chapter is concerned with basic linear algebra routines which perform elementary algebraic
operations involving scalars, vectors and matrices. Most routines for such operations conform either to
the specifications of the BLAS (Basic Linear Algebra Subprograms) or to the specifications of the
BLAST (Basic Linear Algebra Subprograms Technical) Forum. This chapter includes routines from the
BLAST specifications. Most (BLAS) routines for such operations are available in Chapter F06.

2 Background to the Problems

Most of the routines in this chapter meet the specification of Basic Linear Algebra Subprograms
Technical (BLAST) Forum (2001).

They are called extensively by routines in other chapters of the NAG Library, especially in the linear
algebra chapters. They are intended to be useful building-blocks for users of the Library who are
developing their own applications. The routines fall into four main groups (following the definitions
introduced by the BLAS):

Level 0: scalar operations;

Level 1: vector operations;

Level 2: matrix-vector operations and matrix operations which includes single matrix operations;

Level 3: matrix-matrix operations.

The terminology reflects the number of operations involved, so for example a Level 2 routine involves
O n2
� �

operations, for vectors and matrices of order n.

Because of the overlap of functionality with Chapter F06, only a subset of BLAST routines are
implemented in this chapter. A full descripion of the

3 Recommendations on Choice and Use of Available Routines

3.1 Naming Scheme

3.1.1 NAG names

Table 1 shows the naming scheme for the routines in this chapter which follows the naming scheme
used in Chapter F06.

Level-0 Level-1 Level-2 Level-3

integer – F16D_F – –
‘real’ – F16E_F – –
‘real’ – – F16R_F –
‘complex’ – F16G_F – –
‘complex’ – – F16U_F –
‘mixed type’ – F16J_F – –

Table 1

The heading ‘mixed type’ is for routines where a mixture of data types is involved, such as a routine
that returns the real norm of a complex vector. In future marks of the Library, routines may be included
in categories that are currently empty and further categories may be introduced.

3.1.2 BLAS names

Those routines which conform to the specifications of the BLAS may be called either by their NAG
names or by their BLAS names.

In many implementations of the NAG Library, references to Chapter F06 BLAS names may be linked
to an efficient machine-specific implementation of the BLAS, usually provided by the vendor of the
machine; Chapter F16 BLAS routines are unlikely to be provide by a vendor. Such implementations are
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stringently tested before being used with the NAG Library, to ensure that they correctly meet the
specifications of the BLAS, and that they return the desired accuracy. Use of BLAS names is
recommended for efficiency.

References to NAG routine names (beginning F06- or F16-) are always linked to the code provided in
the NAG Library and may be significantly slower (in the case of Chapter F06 routines) than the
equivalent BLAS routine.

The names of the Level-2 and Level-3 BLAS follow a simple scheme (which is similar to that used for
LAPACK routines in Chapters F07 and F08). Each name has the structure XYYZZZ, where the
components have the following meanings:

– the initial letter X indicates the data type (real or complex) and precision:

S real, single precision (in Fortran, REAL)

D real, double precision (in Fortran, DOUBLE PRECISION)

C complex, single precision (in Fortran, COMPLEX)

Z complex, double precision (in Fortran, COMPLEX*16 or DOUBLE COMPLEX)

– the second and third letters YY indicate the type of the matrix A (and in some cases its storage
scheme):

GE general

GB general band

SY symmetric

SP symmetric (packed storage)

SB symmetric band

HE (complex) Hermitian

HP (complex) Hermitian (packed storage)

HB (complex) Hermitian band

TR triangular

TP triangular (packed storage)

TB triangular band

– the remaining 1, 2 or 3 letters ZZZ indicate the computation performed:

MV matrix-vector product

MM matrix-matrix product

R rank-1 update

R2 rank-2 update

RK rank-k update

R2K rank-2k update

SV solve a system of linear equations

SM solve a system of linear equations with a matrix of right-hand sides

Thus the routine BLAS_DAXPBY performs a sum of two real, scaled vectors in double precision; the
corresponding routine for complex scalars and vectors is BLAS_ZAXPBY.

The names of the Level-1 BLAS mostly follow the same convention for the initial letter (S-, C-, D- or
Z-), except for a few involving data of mixed type, where the first two characters are precision-
dependent.
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3.2 The Level-0 Scalar Routines

The Level-0 routines perform operations on scalars or on vectors or matrices of order 2.

3.3 The Level-1 Vector Routines

The Level-1 routines perform operations either on a single vector or on a pair of vectors.

3.4 The Level-2 Matrix-vector and Matrix Routines

The Level-2 routines perform operations involving either a matrix on its own, or a matrix and one or
more vectors.

3.5 The Level-3 Matrix-matrix Routines

The Level-3 routines perform operations involving matrix-matrix products.

3.6 Vector Arguments

Vector arguments (except in the Level-1 Sparse BLAS) are represented by a one-dimensional array,
immediately followed by an increment argument whose name consists of the three characters INC
followed by the name of the array. For example, a vector x is represented by the two arguments X and
INCX. The length of the vector, n say, is passed as a separate argument, N.

The increment argument is the spacing (stride) in the array between the elements of the vector. For
instance, if INCX ¼ 2, then the elements of x are in locations x 1ð Þ; x 3ð Þ; . . . ; x 2n� 1ð Þ of the array X
and the intermediate locations x 2ð Þ; x 4ð Þ; . . . ; x 2n� 2ð Þ are not referenced.

When INCX > 0, the vector element xi is in the array element X 1þ i� 1ð Þ � INCXð Þ. When
INCX � 0, the elements are stored in the reverse order so that the vector element xi is in the array
element X 1� n� ið Þ � INCXð Þ and hence, in particular, the element xn is in X 1ð Þ. The declared length
of the array X in the calling subroutine must be at least 1þ N� 1ð Þ � INCXj jð Þ.
Negative increments are permitted only for:

Level-1 routines which have more than one vector argument;

Level-2 BLAS routines (but not for other Level-2 routines)

Zero increments are formally permitted for Level-1 routines with more than one argument (in which
case the element X 1ð Þ is accessed repeatedly), but their use is strongly discouraged since the effect may
be implementation-dependent. There is usually an alternative routine in this chapter, with a simplified
argument list, to achieve the required purpose. Zero increments are not permitted in the Level-2 BLAS.

3.7 Matrix Arguments and Storage Schemes

In this chapter the following different storage schemes are used for matrices:

– conventional storage in a two-dimensional array;

– packed and RFP storage for symmetric, Hermitian or triangular matrices;

– band storage for band matrices;

– storage for spiked matrices.

These storage schemes are compatible with those used in Chapters F07 and F08. (Different schemes for
packed or band storage are used in a few older routines in Chapters F01, F02, F03 and F04.)

Chapter F01 provides some utility routines for conversion between storage schemes.

In the examples, � indicates an array element which need not be set and is not referenced by the
routines. The examples illustrate only the relevant leading rows and columns of the arrays; array
arguments may of course have additional rows or columns, according to the usual rules for passing
array arguments in Fortran.
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3.7.1 Conventional storage

Please see Section 3.3.1 in the F07 Chapter Introduction for full details.

3.7.2 Packed storage

Please see Section 3.3.2 in the F07 Chapter Introduction for full details.

3.7.3 Rectangular Full Packed (RFP) storage

Please see Section 3.3.3 in the F07 Chapter Introduction for full details.

3.7.4 Band storage

Please see Section 3.3.4 in the F07 Chapter Introduction for full details.

3.7.5 Unit triangular matrices

Please see Section 3.3.5 in the F07 Chapter Introduction for full details.

3.7.6 Real diagonal elements of complex Hermitian matrices

Please see Section 3.3.6 in the F07 Chapter Introduction for full details.

3.8 Option Arguments

Many of the routines in this chapter have one or more option arguments, of type CHARACTER. The
descriptions in the routine documents refer only to upper-case values (for example UPLO ¼ U or
UPLO ¼ L ); however, in every case, the corresponding lower-case characters may be supplied (with
the same meaning). Any other value is illegal.

A longer character string can be passed as the actual argument, making the calling program more
readable, but only the first character is significant. (This is a feature of Fortran.) For example:

CALL DTRSV(’Upper’,’Transpose’,’Non-unit’,...)

The following option arguments are used in this chapter:

If TRANS ¼ N , operate with the matrix (Not transposed);

if TRANS ¼ T , operate with the Transpose of the matrix;

if TRANS ¼ C , operate with the Conjugate transpose of the matrix.

If UPLO ¼ U , upper triangle or trapezoid of matrix;

if UPLO ¼ L , lower triangle or trapezoid of matrix.

If DIAG ¼ U , unit triangular;

if DIAG ¼ N , nonunit triangular.

If SIDE ¼ L , operate from the left-hand side;

if SIDE ¼ R , operate from the right-hand side.

If NORM ¼ 1 or O , 1-norm of a matrix;

if NORM ¼ I , 1-norm of a matrix;

if NORM ¼ F or E , Frobenius or Euclidean norm of a matrix;

if NORM ¼ M , maximum absolute value of the elements of a matrix (not strictly a norm).

3.8.1 Matrix norms

The option argument NORM specifies different matrix norms whose definitions are given here for
reference (for a general m by n matrix A):
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One-norm (NORM ¼ O or 1 ):

Ak k1 ¼ max
j

Xm
i¼1

aij
		 		;

Infinity-norm (NORM ¼ I ):

Ak k1 ¼ max
i

Xn
j¼1

aij
		 		;

Frobenius or Euclidean norm (NORM ¼ F or E ):

Ak kF ¼
Xm
i¼1

Xn
j¼1

aij
		 		2 !1=2

:

If A is symmetric or Hermitian, Ak k1 ¼ Ak k1.

The argument NORM can also be used to specify the maximum absolute value max i;j aij
		 		 (if

NORM ¼ M ), but this is not a norm in the strict mathematical sense.

3.9 Error Handling

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving the
argument IFAIL.

If one of the Level-2 or Level-3 BLAS routines is called with an invalid value of one of its arguments,
then an error message is output on the error message unit (see X04AAF), giving the name of the routine
and the number of the first invalid argument, and execution of the program is terminated. The following
values of arguments are invalid:

– any value of the arguments TRANS, TRANSA, TRANSB, UPLO, SIDE or DIAG, whose
meaning is not specified;

– a negative value of any of the arguments M, N, K, KL or KU;

– too small a value for any of the leading dimension arguments;

– a zero value for the increment arguments INCX and INCY.

Zero values for the matrix dimensions M, N or K are considered valid.

The other routines in this chapter do not report any errors in their arguments. Normally, if called, for
example, with an unspecified value for one of the option arguments, or with a negative value of one of
the problem dimensions M or N, they simply do nothing and return immediately.

4 Functionality Index

Matrix-vector operations,
complex matrix and vector(s),

compute a norm or the element of largest absolute value,
band matrix ...................................................................... F16UBF

real matrix and vector(s),
compute a norm or the element of largest absolute value,

band matrix ...................................................................... F16RBF

Scalar and vector operations,
complex vector(s),

maximum absolute value and location .................................. F16JSF (BLAS_ZAMAX_VAL)
minimum absolute value and location................................... F16JTF (BLAS_ZAMIN_VAL)
sum of elements.................................................................... F16GLF (BLAS_ZSUM)
sum of two scaled vectors .................................................... F16GCF (BLAS_ZAXPBY)
sum of two scaled vectors preserving input.......................... F16GHF (BLAS_ZWAXPBY)

integer vector(s),
maximum absolute value and location .................................. F16DQF
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maximum value and location ................................................ F16DNF
minimum absolute value and location................................... F16DRF
minimum value and location................................................. F16DPF
sum of elements.................................................................... F16DLF

real vector(s),
dot product of two vectors with optional scaling and
accumulation .........................................................................

F16EAF (BLAS_DDOT)

maximum absolute value and location .................................. F16JQF (BLAS_DAMAX_VAL)
maximum value and location ................................................ F16JNF (BLAS_DMAX_VAL)
minimum absolute value and location................................... F16JRF (BLAS_DAMIN_VAL)
minimum value and location................................................. F16JPF (BLAS_DMIN_VAL)
sum of elements.................................................................... F16ELF (BLAS_DSUM)
sum of two scaled vectors .................................................... F16ECF (BLAS_DAXPBY)
sum of two scaled vectors preserving input.......................... F16EHF (BLAS_DWAXPBY)

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

F16DLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16DLF sums the elements of an integer vector.

2 Specification

FUNCTION F16DLF (N, X, INCX)
INTEGER F16DLF

INTEGER N, X(1+(N-1)*ABS(INCX)), INCX

3 Description

F16DLF returns the sum

x1 þ x2 þ � � � þ xn
of the elements of an n-element integer vector x, via the function name.

If N � 0 on entry, F16DLF immediately returns the value 0.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – INTEGER array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.
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7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16DLF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the sum of the elements of

x ¼ 1; 10; 11;�2; 9ð ÞT:

10.1 Program Text

Program f16dlfe

! F16DLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f16dlf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, incx, ix, n, sumval

! .. Local Arrays ..
Integer, Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16DLF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
ix = 1

Else
ix = 1 - (n-1)*incx

End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

! Sum the elements of x

sumval = f16dlf(n,x,incx)
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Write (nout,*)
Write (nout,99999) sumval

99999 Format (1X,’Sum of elements of x is’,I5)
End Program f16dlfe

10.2 Program Data

F16DLF Example Program Data
5 1 : n and incx
1
10
11
-2
9 : Vector x

10.3 Program Results

F16DLF Example Program Results

Sum of elements of x is 29
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NAG Library Routine Document

F16DNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16DNF computes the largest component of an integer vector, along with the index of that component.

2 Specification

SUBROUTINE F16DNF (N, X, INCX, K, I)

INTEGER N, X(1+(N-1)*ABS(INCX)), INCX, K, I

3 Description

F16DNF computes the largest component, i, of an n-element integer vector x, and determines the
smallest index, k, such that

i ¼ xk ¼ max
j
xj:

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – INTEGER array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

4: K – INTEGER Output

On exit: k, the index, from the set 1; 2; . . . ;Nf g, of the largest component of x. If N � 0 on input
then K is returned as 0.

5: I – INTEGER Output

On exit: i, the largest component of x. If N � 0 on input then I is returned as 0.
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6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16DNF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the largest component and index of that component for the vector

x ¼ 1; 10; 11;�2; 9ð ÞT:

10.1 Program Text

Program f16dnfe

! F16DNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f16dnf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, incx, j, jx, k, n

! .. Local Arrays ..
Integer, Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16DNF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
jx = 1

Else
jx = 1 - (n-1)*incx

End If

Do j = 1, n
Read (nin,*) x(jx)
jx = jx + incx

End Do

F16DNF NAG Library Manual

F16DNF.2 Mark 26



! Find k = argmax(x) and i = max(x).

Call f16dnf(n,x,incx,k,i)

Write (nout,*)
Write (nout,99999) k
Write (nout,99998) i

99999 Format (1X,’Index of largest component of x is’,I3)
99998 Format (1X,’Largest component of x is’,I12)

End Program f16dnfe

10.2 Program Data

F16DNF Example Program Data
5 1 : n and incx
1
10
11
-2
9 : Vector x

10.3 Program Results

F16DNF Example Program Results

Index of largest component of x is 3
Largest component of x is 11
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NAG Library Routine Document

F16DPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16DPF computes the smallest component of an integer vector, along with the index of that component.

2 Specification

SUBROUTINE F16DPF (N, X, INCX, K, I)

INTEGER N, X(1+(N-1)*ABS(INCX)), INCX, K, I

3 Description

F16DPF computes the smallest component, i, of an n-element integer vector x, and determines the
smallest index, k, such that

i ¼ xk ¼ min
j
xj:

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – INTEGER array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

4: K – INTEGER Output

On exit: k, the index, from the set 1; 2; . . . ;Nf g, of the smallest component of x. If N � 0 on
input then K is returned as 0.

5: I – INTEGER Output

On exit: i, the smallest component of x. If N � 0 on input then I is returned as 0.
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6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16DPF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the smallest component and index of that component for the vector

x ¼ 1; 10; 11;�2; 9ð ÞT:

10.1 Program Text

Program f16dpfe

! F16DPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f16dpf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, incx, j, jx, k, n

! .. Local Arrays ..
Integer, Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16DPF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
jx = 1

Else
jx = 1 - (n-1)*incx

End If

Do j = 1, n
Read (nin,*) x(jx)
jx = jx + incx

End Do
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! Find k = argmin(x) and i = min(x).

Call f16dpf(n,x,incx,k,i)

Write (nout,*)
Write (nout,99999) k
Write (nout,99998) i

99999 Format (1X,’Index of smallest component of x is’,I3)
99998 Format (1X,’Smallest component of x is’,I12)

End Program f16dpfe

10.2 Program Data

F16DPF Example Program Data
5 1 : n and incx
1
10
11
-2
9 : Vector x

10.3 Program Results

F16DPF Example Program Results

Index of smallest component of x is 4
Smallest component of x is -2
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F16DQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16DQF computes, with respect to absolute value, the largest component of an integer vector, along
with the index of that component.

2 Specification

SUBROUTINE F16DQF (N, X, INCX, K, I)

INTEGER N, X(1+(N-1)*ABS(INCX)), INCX, K, I

3 Description

F16DQF computes, with respect to absolute value, the largest component, i, of an n-element integer
vector x, and determines the smallest index, k, such that

i ¼ xkj j ¼ max
j

xj
		 		:

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – INTEGER array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

4: K – INTEGER Output

On exit: k, the index, from the set 1; 2; . . . ;Nf g, of the largest component of x with respect to
absolute value. If N � 0 on input then K is returned as 0.
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5: I – INTEGER Output

On exit: i, the largest component of x with respect to absolute value. If N � 0 on input then I is
returned as 0.

6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16DQF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the largest component with respect to absolute value and index of that
component for the vector

x ¼ 1; 10; 11;�2; 9ð ÞT:

10.1 Program Text

Program f16dqfe

! F16DQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f16dqf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, incx, j, jx, k, n

! .. Local Arrays ..
Integer, Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16DQF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
jx = 1

Else
jx = 1 - (n-1)*incx
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End If

Do j = 1, n
Read (nin,*) x(jx)
jx = jx + incx

End Do

! Find k = argmax(abs(x)) and i = max(abs(x)).

Call f16dqf(n,x,incx,k,i)

Write (nout,*)
Write (nout,99999) k
Write (nout,99998) i

99999 Format (1X,’Index of absolutely largest component of x is’,I3)
99998 Format (1X,’Absolutely largest component of x is’,I12)

End Program f16dqfe

10.2 Program Data

F16DQF Example Program Data
5 1 : n and incx
1
10
11
-2
9 : Vector x

10.3 Program Results

F16DQF Example Program Results

Index of absolutely largest component of x is 3
Absolutely largest component of x is 11
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NAG Library Routine Document

F16DRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16DRF computes, with respect to absolute value, the smallest component of an integer vector, along
with the index of that component.

2 Specification

SUBROUTINE F16DRF (N, X, INCX, K, I)

INTEGER N, X(1+(N-1)*ABS(INCX)), INCX, K, I

3 Description

F16DRF computes, with respect to absolute value, the smallest component, i, of an n-element integer
vector x, and determines the smallest index, k, such that

i ¼ xkj j ¼ min
j
xj
		 		:

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – INTEGER array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

4: K – INTEGER Output

On exit: k, the index, from the set 1; 2; . . . ;Nf g, of the smallest component of x with respect to
absolute value. If N � 0 on input then K is returned as 0.
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5: I – INTEGER Output

On exit: i, the smallest component of x with respect to absolute value. If N � 0 on input then I is
returned as 0.

6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16DRF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the smallest component with respect to absolute value and index of that
component for the vector

x ¼ 1; 10; 11;�2; 9ð ÞT:

10.1 Program Text

Program f16drfe

! F16DRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f16drf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, incx, j, jx, k, n

! .. Local Arrays ..
Integer, Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16DRF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
jx = 1

Else
jx = 1 - (n-1)*incx
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End If

Do j = 1, n
Read (nin,*) x(jx)
jx = jx + incx

End Do

! Find k = argmin(abs(x)) and i = min(abs(x)).

Call f16drf(n,x,incx,k,i)

Write (nout,*)
Write (nout,99999) k
Write (nout,99998) i

99999 Format (1X,’Index of absolutely smallest component of x is’,I3)
99998 Format (1X,’Absolutely smallest component of x is’,I12)

End Program f16drfe

10.2 Program Data

F16DRF Example Program Data
5 1 : n and incx
1
10
11
-2
9 : Vector x

10.3 Program Results

F16DRF Example Program Results

Index of absolutely smallest component of x is 1
Absolutely smallest component of x is 1
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F16EAF (BLAS_DDOT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16EAF (BLAS_DDOT) updates a scalar by a scaled dot product of two real vectors.

2 Specification

SUBROUTINE F16EAF (CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)

INTEGER CONJ, N, INCX, INCY
REAL (KIND=nag_wp) ALPHA, X(1+(N-1)*ABS(INCX)), BETA,

Y(1+(N-1)*ABS(INCY)), R
&

The routine may be called by its BLAST name blas_ddot.

3 Description

F16EAF (BLAS_DDOT) performs the operation

r �rþ �xTy

where x and y are n-element real vectors, and r, � and � real scalars. If n is less than zero, or, if � is
equal to one and either � or n is equal to zero, this routine returns immediately.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: CONJ – INTEGER Input

On entry: CONJ is not referenced and need not be set. The presence of this argument in the
BLAST standard is for consistency with the interface of the complex variant of this routine.

2: N – INTEGER Input

On entry: n, the number of elements in x and y.

3: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

4: Xð1þ N� 1ð Þ � INCXj jÞ – REAL (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If � ¼ 0:0 or N ¼ 0, X is not referenced.
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5: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

7: Yð1þ N� 1ð Þ � INCYj jÞ – REAL (KIND=nag_wp) array Input

On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð i � 1ð Þ � INCY þ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð N� ið Þ � INCYj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced. If � ¼ 0:0 or N ¼ 0, Y is not referenced.

8: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

9: R – REAL (KIND=nag_wp) Input/Output

On entry: the initial value, r, to be updated. If � ¼ 0:0, R need not be set on entry.

On exit: the value r, scaled by � and updated by the scaled dot product of x and y.

6 Error Indicators and Warnings

If INCX ¼ 0 or INCY ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The dot product xTy is computed using the BLAS routine DDOT.

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16EAF (BLAS_DDOT) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the scaled sum of two dot products, r ¼ �1x
Tyþ �2u

Tv, where

�1 ¼ 0:3; x ¼ 1; 2; 3; 4; 5ð Þ; y ¼ �5;�4; 3; 2; 1ð Þ;
�2 ¼ �7:0; u ¼ v ¼ 0:4; 0:3; 0:2; 0:1ð Þ:

y and v are stored in reverse order, and u is stored in reverse order in every other element of a real
array.
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10.1 Program Text

Program f16eafe

! F16EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_ddot, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, beta, r
Integer :: conj, i, incx, incy, ix, iy, j, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16EAF Example Program Results’
Write (nout,*)

! Skip heading in data file.
Read (nin,*)

! Accumulate two dot products, set beta=zero initially.
beta = 0.0_nag_wp

Do j = 1, 2
! Read data for dot product.

Read (nin,*) n
Read (nin,*) incx, incy
Allocate (x(1+(n-1)*abs(incx)),y(1+(n-1)*abs(incy)))

Read (nin,*) alpha

! Read the vectors x and y and store forwards or backwards
! as determined by incx (resp. incy).

If (incx>0) Then
ix = 1

Else
ix = 1 - (n-1)*incx

End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

If (incy>0) Then
iy = 1

Else
iy = 1 - (n-1)*incy

End If

Do i = 1, n
Read (nin,*) y(iy)
iy = iy + incy

End Do

! Compute r = beta*r + alpha*(x^T*y).
! The NAG name equivalent of blas_ddot is f16eaf.

Call blas_ddot(conj,n,alpha,x,incx,beta,y,incy,r)

! Reset beta for accumulation and deallocate x, y.
beta = 1.0_nag_wp
Deallocate (x,y)

End Do
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Write (nout,99999) r

99999 Format (1X,’Accumulated dot product, r = ’,F9.4)
End Program f16eafe

10.2 Program Data

F16EAF Example Program Data

5 : first dot product, n
1 -1 : incx and incy
0.3 : alpha
1.0
2.0
3.0
4.0
5.0 : Vector x

-5.0
-4.0
3.0
2.0
1.0 : Vector y

4 : second dot product, n
-2 -1 : incx and incy
-7.0 : alpha
0.4
0.3
0.2
0.1 : Vector x
0.4
0.3
0.2
0.1 : Vector y

10.3 Program Results

F16EAF Example Program Results

Accumulated dot product, r = 0.6000
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NAG Library Routine Document

F16ECF (BLAS_DAXPBY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16ECF (BLAS_DAXPBY) computes the sum of two scaled vectors, for real vectors and scalars.

2 Specification

SUBROUTINE F16ECF (N, ALPHA, X, INCX, BETA, Y, INCY)

INTEGER N, INCX, INCY
REAL (KIND=nag_wp) ALPHA, X(1+(N-1)*ABS(INCX)), BETA,

Y(1+(N-1)*ABS(INCY))
&

The routine may be called by its BLAST name blas_daxpby.

3 Description

F16ECF (BLAS_DAXPBY) performs the operation

y �xþ �y

where x and y are n-element real vectors, and � and � real scalars. If n is equal to zero, or if � is equal
to zero and � is equal to 1, this routine returns immediately.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð1þ N� 1ð Þ � INCXj jÞ – REAL (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

F16 – Further Linear Algebra Support Routines F16ECF

Mark 26 F16ECF.1

http://www.netlib.org/blas/blast-forum/blas-report.pdf


5: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

6: Yð1þ N� 1ð Þ � INCYj jÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð i � 1ð Þ � INCY þ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð N� ið Þ � INCYj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

Intermediate elements of Y are unchanged.

7: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

If INCX ¼ 0 or INCY ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16ECF (BLAS_DAXPBY) makes calls to BLAS and/or LAPACK routines, which may be threaded
within the vendor library used by this implementation. Consult the documentation for the vendor library
for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the result of a scaled vector accumulation for

� ¼ 3; x ¼ �6; 4:5; 3:7; 2:1;�4ð ÞT;
� ¼ �1; y ¼ �5:1;�5; 6:4;�2:4;�3ð ÞT:

x and y are stored in reverse order.
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10.1 Program Text

Program f16ecfe

! F16ECF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_daxpby, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, beta
Integer :: i, incx, incy, ix, iy, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16ECF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Read (nin,*) incx, incy
Allocate (x(1+(n-1)*abs(incx)),y(1+(n-1)*abs(incy)))

Read (nin,*) alpha, beta

! Read the vectors x and y and store forwards or backwards
! as determined by incx (resp. incy).

If (incx>0) Then
ix = 1

Else
ix = 1 - (n-1)*incx

End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

If (incy>0) Then
iy = 1

Else
iy = 1 - (n-1)*incy

End If

Do i = 1, n
Read (nin,*) y(iy)
iy = iy + incy

End Do

! Compute y = alpha*x + beta*y

Call blas_daxpby(n,alpha,x,incx,beta,y,incy)

! Display the vector y forwards or backwards
! as determined by incy.

Write (nout,*)
Write (nout,99999)
If (incy>0) Then

Write (nout,99998) y(1:1+(n-1)*incy:incy)
Else

Write (nout,99998) y(1-(n-1)*incy:1:incy)
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End If

99999 Format (1X,’Result of scaled vector addition is’)
99998 Format (1X,’y =’,5F9.4)

End Program f16ecfe

10.2 Program Data

F16ECF Example Program Data
5 : n

-1 -1 : incx and incy
3.0 -1.0 : alpha and beta

-6.0
4.5
3.7
2.1

-4.0 : Vector x
-5.1
-5.0
6.4

-2.4
-3.0 : Vector y

10.3 Program Results

F16ECF Example Program Results

Result of scaled vector addition is
y = -12.9000 18.5000 4.7000 8.7000 -9.0000
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NAG Library Routine Document

F16EHF (BLAS_DWAXPBY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16EHF (BLAS_DWAXPBY) computes the sum of two scaled vectors, preserving input, for real
scalars and vectors.

2 Specification

SUBROUTINE F16EHF (N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)

INTEGER N, INCX, INCY, INCW
REAL (KIND=nag_wp) ALPHA, X(1+(N-1)*ABS(INCX)), BETA,

Y(1+(N-1)*ABS(INCY)), W(1+(N-1)*ABS(INCW))
&

The routine may be called by its BLAST name blas_dwaxpby.

3 Description

F16EHF (BLAS_DWAXPBY) performs the operation

w �xþ �y;

where x and y are n-element real vectors, and � and � are real scalars.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x, y and w.

2: ALPHA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð1þ N� 1ð Þ � INCXj jÞ – REAL (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.
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5: BETA – REAL (KIND=nag_wp) Input

On entry: the scalar �.

6: Yð1þ N� 1ð Þ � INCYj jÞ – REAL (KIND=nag_wp) array Input

On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð i � 1ð Þ � INCY þ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð N� ið Þ � INCYj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced. If � ¼ 0:0 or N ¼ 0, Y is not referenced.

7: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

8: Wð1þ N� 1ð Þ � INCWj jÞ – REAL (KIND=nag_wp) array Output

On exit: the n-element vector w.

If INCW > 0, wi is in Wð i � 1ð Þ � INCWþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCW < 0, wi is in Wð N� ið Þ � INCWj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of W are not referenced.

9: INCW – INTEGER Input

On entry: the increment in the subscripts of W between successive elements of w.

Constraint: INCW 6¼ 0.

6 Error Indicators and Warnings

If INCX ¼ 0 or INCY ¼ 0 or INCW ¼ 0, an error message is printed and program execution is
terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16EHF (BLAS_DWAXPBY) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the result of a scaled vector accumulation for

� ¼ 3; x ¼ �6; 4:5; 3:7; 2:1;�4ð ÞT;
� ¼ �1; y ¼ �5:1;�5; 6:4;�2:4;�3ð ÞT:

x and y, and also the sum vector w, are stored in reverse order.
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10.1 Program Text

Program f16ehfe

! F16EHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_dwaxpby, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, beta
Integer :: i, incw, incx, incy, ix, iy, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:), x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16EHF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Read (nin,*) incx, incy, incw
Allocate (w(1+(n-1)*abs(incw)),x(1+(n-1)*abs(incx)),y(1+(n- &

1)*abs(incy)))

Read (nin,*) alpha, beta

! Read the vectors x and y and store forwards or backwards
! as determined by incx (resp. incy).

If (incx>0) Then
ix = 1

Else
ix = 1 - (n-1)*incx

End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

If (incy>0) Then
iy = 1

Else
iy = 1 - (n-1)*incy

End If

Do i = 1, n
Read (nin,*) y(iy)
iy = iy + incy

End Do

! Compute w = alpha*x + beta*y

Call blas_dwaxpby(n,alpha,x,incx,beta,y,incy,w,incw)

! Display the vector w forwards or backwards
! as determined by incw.

Write (nout,*)
Write (nout,99999)
If (incw>0) Then

Write (nout,99998) w(1:1+(n-1)*incw:incw)
Else

Write (nout,99998) w(1-(n-1)*incw:1:incw)
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End If

99999 Format (1X,’Result of scaled vector addition is’)
99998 Format (1X,’w =’,5F9.4)

End Program f16ehfe

10.2 Program Data

F16EHF Example Program Data
5 : n

-1 -1 -1 : incx, incy and incw
3.0 -1.0 : alpha and beta

-6.0
4.5
3.7
2.1

-4.0 : Vector x
-5.1
-5.0
6.4

-2.4
-3.0 : Vector y

10.3 Program Results

F16EHF Example Program Results

Result of scaled vector addition is
w = -12.9000 18.5000 4.7000 8.7000 -9.0000
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NAG Library Routine Document

F16ELF (BLAS_DSUM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16ELF (BLAS_DSUM) sums the elements of a real vector.

2 Specification

FUNCTION F16ELF (N, X, INCX)
REAL (KIND=nag_wp) F16ELF

INTEGER N, INCX
REAL (KIND=nag_wp) X(1+(N-1)*ABS(INCX))

The routine may be called by its BLAST name blas_dsum.

3 Description

F16ELF (BLAS_DSUM) returns the sum

x1 þ x2 þ � � � þ xn
of the elements of an n-element real vector x, via the function name.

If N � 0 on entry, F16ELF (BLAS_DSUM) returns the value 0.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – REAL (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.
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7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16ELF (BLAS_DSUM) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the sum of the elements of

x ¼ 1:1; 10:2; 11:5;�2:7; 9:2ð ÞT:

10.1 Program Text

Program f16elfe

! F16ELF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_dsum, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: sumval
Integer :: i, incx, ix, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16ELF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
ix = 1

Else
ix = 1 - (n-1)*incx

End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

! Sum the elements of x

sumval = blas_dsum(n,x,incx)
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Write (nout,*)
Write (nout,99999) sumval

99999 Format (1X,’Sum of elements of x is’,F9.5)
End Program f16elfe

10.2 Program Data

F16ELF Example Program Data
5 1 : n and incx
1.1

10.2
11.5
-2.7
9.2 : Vector x

10.3 Program Results

F16ELF Example Program Results

Sum of elements of x is 29.30000
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NAG Library Routine Document

F16GCF (BLAS_ZAXPBY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16GCF (BLAS_ZAXPBY) computes the sum of two scaled vectors, for complex scalars and vectors.

2 Specification

SUBROUTINE F16GCF (N, ALPHA, X, INCX, BETA, Y, INCY)

INTEGER N, INCX, INCY
COMPLEX (KIND=nag_wp) ALPHA, X(1+(N-1)*ABS(INCX)), BETA,

Y(1+(N-1)*ABS(INCY))
&

The routine may be called by its BLAST name blas_zaxpby.

3 Description

F16GCF (BLAS_ZAXPBY) performs the operation

y �xþ �y;

where x and y are n-element complex vectors, and � and � are complex scalars. If n is less than or
equal to zero, or if � is equal to zero and � is equal to 1, this routine returns immediately.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x and y.

2: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð1þ N� 1ð Þ � INCXj jÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.
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5: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

6: Yð1þ N� 1ð Þ � INCYj jÞ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð i � 1ð Þ � INCY þ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð N� ið Þ � INCYj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced.

On exit: the updated vector y stored in the array elements used to supply the original vector y.

Intermediate elements of Y are unchanged.

7: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

6 Error Indicators and Warnings

If INCX ¼ 0 or INCY ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16GCF (BLAS_ZAXPBY) makes calls to BLAS and/or LAPACK routines, which may be threaded
within the vendor library used by this implementation. Consult the documentation for the vendor library
for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the result of a scaled vector accumulation for

� ¼ 3þ 2i; x ¼ �6þ 1:2i; 3:7þ 4:5i;�4þ 2:1ið ÞT;
� ¼ �i; y ¼ �5:1; 6:4� 5i;�3� 2:4ið ÞT:

x and y are stored in reverse order.
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10.1 Program Text

Program f16gcfe

! F16GCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_zaxpby, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: alpha, beta
Integer :: i, incx, incy, ix, iy, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16GCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Read (nin,*) incx, incy

Allocate (x(1+(n-1)*abs(incx)),y(1+(n-1)*abs(incy)))

Read (nin,*) alpha, beta

! Read the vectors x and y and store forwards or backwards
! as determined by incx (resp. incy).

If (incx>0) Then
ix = 1

Else
ix = 1 - (n-1)*incx

End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

If (incy>0) Then
iy = 1

Else
iy = 1 - (n-1)*incy

End If

Do i = 1, n
Read (nin,*) y(iy)
iy = iy + incy

End Do

! Compute y = alpha*x + beta*y

Call blas_zaxpby(n,alpha,x,incx,beta,y,incy)

! Display the vector y forwards or backwards
! as determined by incy.

Write (nout,*)
Write (nout,99999)
If (incy>0) Then

Write (nout,99998) y(1:1+(n-1)*incy:incy)
Else

Write (nout,99998) y(1-(n-1)*incy:1:incy)
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End If

99999 Format (1X,’Result of scaled vector addition is’)
99998 Format (1X,’y = ( ’,2(’(’,F9.4,’,’,F9.4,’), ’),’(’,F9.4,’,’,F9.4,’) )’)

End Program f16gcfe

10.2 Program Data

F16GCF Example Program Data
3 : n

-1 -1 : incx and incy
( 3., 2.0) ( 0.0,-1.0) : alpha and beta
(-6.0, 1.2)
( 3.7, 4.5)
(-4., 2.1) : Vector x
(-5.1, 0.0)
( 6.4,-5.0)
(-3.,-2.4) : Vector y

10.3 Program Results

F16GCF Example Program Results

Result of scaled vector addition is
y = ( ( -20.4000, -3.3000), ( -2.9000, 14.5000), ( -18.6000, 1.3000) )
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NAG Library Routine Document

F16GHF (BLAS_ZWAXPBY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16GHF (BLAS_ZWAXPBY) computes the sum of two scaled vectors, preserving input, for complex
scalars and vectors.

2 Specification

SUBROUTINE F16GHF (N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)

INTEGER N, INCX, INCY, INCW
COMPLEX (KIND=nag_wp) ALPHA, X(1+(N-1)*ABS(INCX)), BETA,

Y(1+(N-1)*ABS(INCY)), W(1+(N-1)*ABS(INCW))
&

The routine may be called by its BLAST name blas_zwaxpby.

3 Description

F16GHF (BLAS_ZWAXPBY) performs the operation

w �xþ �y;

where x and y are n-element complex vectors, and � and � are complex scalars.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x, y and w.

2: ALPHA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

3: Xð1þ N� 1ð Þ � INCXj jÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

4: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.
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5: BETA – COMPLEX (KIND=nag_wp) Input

On entry: the scalar �.

6: Yð1þ N� 1ð Þ � INCYj jÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the n-element vector y.

If INCY > 0, yi must be stored in Yð i � 1ð Þ � INCY þ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCY < 0, yi must be stored in Yð N� ið Þ � INCYj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of Y are not referenced. If � ¼ 0:0 or N ¼ 0, Y is not referenced.

7: INCY – INTEGER Input

On entry: the increment in the subscripts of Y between successive elements of y.

Constraint: INCY 6¼ 0.

8: Wð1þ N� 1ð Þ � INCWj jÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the n-element vector w.

If INCW > 0, wi is in Wð i � 1ð Þ � INCWþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCW < 0, wi is in Wð N� ið Þ � INCWj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of W are not referenced.

9: INCW – INTEGER Input

On entry: the increment in the subscripts of W between successive elements of w.

Constraint: INCW 6¼ 0.

6 Error Indicators and Warnings

If INCX ¼ 0 or INCY ¼ 0 or INCW ¼ 0, an error message is printed and program execution is
terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16GHF (BLAS_ZWAXPBY) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the result of a scaled vector accumulation for

� ¼ 3þ 2i; x ¼ �6þ 1:2i; 3:7þ 4:5i;�4þ 2:1ið ÞT;
� ¼ �i; y ¼ �5:1; 6:4� 5i;�3� 2:4ið ÞT:

x and y, and also the sum vector w, are stored in reverse order.
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10.1 Program Text

Program f16ghfe

! F16GHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_zwaxpby, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: alpha, beta
Integer :: i, incw, incx, incy, ix, iy, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: w(:), x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16GHF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
Read (nin,*) incx, incy, incw
Allocate (w(1+(n-1)*abs(incw)),x(1+(n-1)*abs(incx)),y(1+(n- &

1)*abs(incy)))

Read (nin,*) alpha, beta

! Read the vectors x and y and store forwards or backwards
! as determined by incx (resp. incy).

If (incx>0) Then
ix = 1

Else
ix = 1 - (n-1)*incx

End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

If (incy>0) Then
iy = 1

Else
iy = 1 - (n-1)*incy

End If

Do i = 1, n
Read (nin,*) y(iy)
iy = iy + incy

End Do

! Compute w = alpha*x + beta*y

Call blas_zwaxpby(n,alpha,x,incx,beta,y,incy,w,incw)

! Display the vector w forwards or backwards
! as determined by incw.

Write (nout,*)
Write (nout,99999)
If (incw>0) Then

Write (nout,99998) w(1:1+(n-1)*incw:incw)
Else

Write (nout,99998) w(1-(n-1)*incw:1:incw)
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End If

99999 Format (1X,’Result of scaled vector addition is’)
99998 Format (1X,’w = ( ’,2(’(’,F9.4,’,’,F9.4,’), ’),’(’,F9.4,’,’,F9.4,’) )’)

End Program f16ghfe

10.2 Program Data

F16GHF Example Program Data
3 : n

-1 -1 -1 : incx, incy and incw
( 3.0, 2.0) ( 0.0,-1.0) : alpha and beta
(-6.0, 1.2)
( 3.7, 4.5)
(-4.0, 2.1) : Vector x
(-5.1, 0.0)
( 6.4,-5.0)
(-3.0,-2.4) : Vector y

10.3 Program Results

F16GHF Example Program Results

Result of scaled vector addition is
w = ( ( -20.4000, -3.3000), ( -2.9000, 14.5000), ( -18.6000, 1.3000) )
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NAG Library Routine Document

F16GLF (BLAS_ZSUM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16GLF (BLAS_ZSUM) sums the elements of a complex vector.

2 Specification

FUNCTION F16GLF (N, X, INCX)
COMPLEX (KIND=nag_wp) F16GLF

INTEGER N, INCX
COMPLEX (KIND=nag_wp) X(1+(N-1)*ABS(INCX))

The routine may be called by its BLAST name blas_zsum.

3 Description

F16GLF (BLAS_ZSUM) returns the sum

x1 þ x2 þ � � � þ xn
of the elements of an n-element complex vector x, via the function name.

If N � 0 on entry, F16GLF (BLAS_ZSUM) returns the value 0þ 0i.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.
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7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16GLF (BLAS_ZSUM) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the sum of the elements of

x ¼ 1:1þ 10:2i; 11:5� 2:7i; 9:2ð ÞT:

10.1 Program Text

Program f16glfe

! F16GLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_zsum, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: sumval
Integer :: i, incx, ix, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16GLF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
ix = 1

Else
ix = 1 - (n-1)*incx

End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

! Sum the elements of x

sumval = blas_zsum(n,x,incx)
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Write (nout,*)
Write (nout,99999) sumval

99999 Format (1X,’Sum of elements of x is (’,F9.5,’,’,F9.5,’)’)
End Program f16glfe

10.2 Program Data

F16GLF Example Program Data
3 1 : n and incx
( 1.1, 10.2)
( 11.5,-2.7)
( 9.2, 0.) : Vector x

10.3 Program Results

F16GLF Example Program Results

Sum of elements of x is ( 21.80000, 7.50000)
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NAG Library Routine Document

F16JNF (BLAS_DMAX_VAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16JNF (BLAS_DMAX_VAL) computes the largest component of a real vector, along with the index of
that component.

2 Specification

SUBROUTINE F16JNF (N, X, INCX, K, R)

INTEGER N, INCX, K
REAL (KIND=nag_wp) X(1+(N-1)*ABS(INCX)), R

The routine may be called by its BLAST name blas_dmax_val.

3 Description

F16JNF (BLAS_DMAX_VAL) computes the largest component, r, of an n-element real vector x, and
determines the smallest index, k, such that

r ¼ xk ¼ max
j
xj:

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – REAL (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

4: K – INTEGER Output

On exit: k, the index, from the set 1; 2; . . . ;Nf g, of the largest component of x. If N � 0 on input
then K is returned as 0.
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5: R – REAL (KIND=nag_wp) Output

On exit: r, the largest component of x. If N � 0 on input then R is returned as 0:0.

6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16JNF (BLAS_DMAX_VAL) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the largest component and index of that component for the vector

x ¼ 1; 10; 11;�2; 9ð ÞT:

10.1 Program Text

Program f16jnfe

! F16JNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_dmax_val, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, incx, ix, k, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16JNF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
ix = 1

Else
ix = 1 - (n-1)*incx

End If
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Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

! Find k = argmax(x) and r = max(x).

Call blas_dmax_val(n,x,incx,k,r)

Write (nout,*)
Write (nout,99999) k
Write (nout,99998) r

99999 Format (1X,’Index of largest component of x is’,I3)
99998 Format (1X,’Largest component of x is’,F12.5)

End Program f16jnfe

10.2 Program Data

F16JNF Example Program Data
5 1 : n and incx
1.0
10.0
11.0
-2.0
9.0 : Vector x

10.3 Program Results

F16JNF Example Program Results

Index of largest component of x is 3
Largest component of x is 11.00000

F16 – Further Linear Algebra Support Routines F16JNF

Mark 26 F16JNF.3 (last)





NAG Library Routine Document

F16JPF (BLAS_DMIN_VAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16JPF (BLAS_DMIN_VAL) computes the smallest component of a real vector, along with the index
of that component.

2 Specification

SUBROUTINE F16JPF (N, X, INCX, K, R)

INTEGER N, INCX, K
REAL (KIND=nag_wp) X(1+(N-1)*ABS(INCX)), R

The routine may be called by its BLAST name blas_dmin_val.

3 Description

F16JPF (BLAS_DMIN_VAL) computes the smallest component, r, of an n-element real vector x, and
determines the smallest index, k, such that

r ¼ xk ¼ min
j
xj:

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – REAL (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

4: K – INTEGER Output

On exit: k, the index, from the set 1; 2; . . . ;Nf g, of the smallest component of x. If N � 0 on
input then K is returned as 0.
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5: R – REAL (KIND=nag_wp) Output

On exit: r, the smallest component of x. If N � 0 on input then R is returned as 0:0.

6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16JPF (BLAS_DMIN_VAL) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the smallest component and index of that component for the vector

x ¼ 1; 10; 11;�2; 9ð ÞT:

10.1 Program Text

Program f16jpfe

! F16JPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_dmin_val, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, incx, ix, k, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16JPF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
ix = 1

Else
ix = 1 - (n-1)*incx

End If
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Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

! Find k = argmin(x) and r = min(x).

Call blas_dmin_val(n,x,incx,k,r)

Write (nout,*)
Write (nout,99999) k
Write (nout,99998) r

99999 Format (1X,’Index of smallest component of x is’,I3)
99998 Format (1X,’Smallest component of x is’,F12.5)

End Program f16jpfe

10.2 Program Data

F16JPF Example Program Data
5 1 : n and incx
1.0
10.0
11.0
-2.0
9.0 : Vector x

10.3 Program Results

F16JPF Example Program Results

Index of smallest component of x is 4
Smallest component of x is -2.00000
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NAG Library Routine Document

F16JQF (BLAS_DAMAX_VAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16JQF (BLAS_DAMAX_VAL) computes, with respect to absolute value, the largest component of a
real vector, along with the index of that component.

2 Specification

SUBROUTINE F16JQF (N, X, INCX, K, R)

INTEGER N, INCX, K
REAL (KIND=nag_wp) X(1+(N-1)*ABS(INCX)), R

The routine may be called by its BLAST name blas_damax_val.

3 Description

F16JQF (BLAS_DAMAX_VAL) computes, with respect to absolute value, the largest component, r, of
an n-element real vector x, and determines the smallest index, k, such that

r ¼ xkj j ¼ max
j

xj
		 		:

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – REAL (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

4: K – INTEGER Output

On exit: k, the index, from the set 1; 2; . . . ;Nf g, of the largest component of x with respect to
absolute value. If N � 0 on input then K is returned as 0.

F16 – Further Linear Algebra Support Routines F16JQF

Mark 26 F16JQF.1

http://www.netlib.org/blas/blast-forum/blas-report.pdf


5: R – REAL (KIND=nag_wp) Output

On exit: r, the largest component of x with respect to absolute value. If N � 0 on input then R is
returned as 0:0.

6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16JQF (BLAS_DAMAX_VAL) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the largest component with respect to absolute value and index of that
component for the vector

x ¼ 1; 10; 11;�2; 9ð ÞT:

10.1 Program Text

Program f16jqfe

! F16JQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damax_val, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, incx, ix, k, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16JQF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
ix = 1

Else
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ix = 1 - (n-1)*incx
End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

! Find k = argmax(abs(x)) and r = max(abs(x)).

Call blas_damax_val(n,x,incx,k,r)

Write (nout,*)
Write (nout,99999) k
Write (nout,99998) r

99999 Format (1X,’Index of absolutely largest component of x is’,I3)
99998 Format (1X,’Absolutely largest component of x is’,F12.5)

End Program f16jqfe

10.2 Program Data

F16JQF Example Program Data
5 1 : n and incx
1.0
10.0
11.0
-2.0
9.0 : Vector x

10.3 Program Results

F16JQF Example Program Results

Index of absolutely largest component of x is 3
Absolutely largest component of x is 11.00000
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NAG Library Routine Document

F16JRF (BLAS_DAMIN_VAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16JRF (BLAS_DAMIN_VAL) computes, with respect to absolute value, the smallest component of a
real vector, along with the index of that component.

2 Specification

SUBROUTINE F16JRF (N, X, INCX, K, R)

INTEGER N, INCX, K
REAL (KIND=nag_wp) X(1+(N-1)*ABS(INCX)), R

The routine may be called by its BLAST name blas_damin_val.

3 Description

F16JRF (BLAS_DAMIN_VAL) computes, with respect to absolute value, the smallest component, r, of
an n-element real vector x, and determines the smallest index, k, such that

r ¼ xkj j ¼ min
j
xj
		 		:

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – REAL (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

4: K – INTEGER Output

On exit: k, the index, from the set 1; 2; . . . ;Nf g, of the smallest component of x with respect to
absolute value. If N � 0 on input then K is returned as 0.

F16 – Further Linear Algebra Support Routines F16JRF

Mark 26 F16JRF.1

http://www.netlib.org/blas/blast-forum/blas-report.pdf


5: R – REAL (KIND=nag_wp) Output

On exit: r, the smallest component of x with respect to absolute value. If N � 0 on input then R
is returned as 0:0.

6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16JRF (BLAS_DAMIN_VAL) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the smallest component with respect to absolute value and index of that
component for the vector

x ¼ 1; 10; 11;�2; 9ð ÞT:

10.1 Program Text

Program f16jrfe

! F16JRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_damin_val, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, incx, ix, k, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16JRF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
ix = 1

Else
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ix = 1 - (n-1)*incx
End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

! Find k = argmin(abs(x)) and r = min(abs(x)).

Call blas_damin_val(n,x,incx,k,r)

Write (nout,*)
Write (nout,99999) k
Write (nout,99998) r

99999 Format (1X,’Index of absolutely smallest component of x is’,I3)
99998 Format (1X,’Absolutely smallest component of x is’,F12.5)

End Program f16jrfe

10.2 Program Data

F16JRF Example Program Data
5 1 : n and incx
1.0
10.0
11.0
-2.0
9.0 : Vector x

10.3 Program Results

F16JRF Example Program Results

Index of absolutely smallest component of x is 1
Absolutely smallest component of x is 1.00000
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NAG Library Routine Document

F16JSF (BLAS_ZAMAX_VAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16JSF (BLAS_ZAMAX_VAL) computes, with respect to absolute value, the largest component of a
complex vector, along with the index of that component.

2 Specification

SUBROUTINE F16JSF (N, X, INCX, K, R)

INTEGER N, INCX, K
REAL (KIND=nag_wp) R
COMPLEX (KIND=nag_wp) X(1+(N-1)*ABS(INCX))

The routine may be called by its BLAST name blas_zamax_val.

3 Description

F16JSF (BLAS_ZAMAX_VAL) computes, with respect to absolute value, the largest component, r, of
an n-element complex vector x, and determines the smallest index, k, such that

r ¼ Re xkj j þ Im xkj j ¼ max
j

Re xj
		 		þ Imxj

		 		:
4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

4: K – INTEGER Output

On exit: k, the index, from the set 1; 2; . . . ;Nf g, of the largest component of x with respect to
absolute value. If N � 0 on input then K is returned as 0.
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5: R – REAL (KIND=nag_wp) Output

On exit: r, the largest component of x with respect to absolute value. If N � 0 on input then R is
returned as 0:0.

6 Error Indicators and Warnings

None.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16JSF (BLAS_ZAMAX_VAL) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the largest component with respect to absolute value and index of that
component for the vector

x ¼ �4þ 2:1i; 3:7þ 4:5i;�6þ 1:2ið ÞT:

10.1 Program Text

Program f16jsfe

! F16JSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_zamax_val, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, incx, ix, k, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16JSF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
ix = 1

Else
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ix = 1 - (n-1)*incx
End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

! Find k = argmax(abs(Re(x))+abs(Im(x))) and
! r = max(abs(Re(x))+abs(Im(x))).

Call blas_zamax_val(n,x,incx,k,r)

Write (nout,*)
Write (nout,99999) k
Write (nout,99998) r

99999 Format (1X,’Index of absolutely largest component of x is’,I3)
99998 Format (1X,’Absolutely largest component of x is’,F12.5)

End Program f16jsfe

10.2 Program Data

F16JSF Example Program Data
3 1 : n and incx
(-4., 2.1)
( 3.7, 4.5)
(-6., 1.2) : Vector x

10.3 Program Results

F16JSF Example Program Results

Index of absolutely largest component of x is 2
Absolutely largest component of x is 8.20000
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NAG Library Routine Document

F16JTF (BLAS_ZAMIN_VAL)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16JTF (BLAS_ZAMIN_VAL) computes, with respect to absolute value, the smallest component of a
complex vector, along with the index of that component.

2 Specification

SUBROUTINE F16JTF (N, X, INCX, K, R)

INTEGER N, INCX, K
REAL (KIND=nag_wp) R
COMPLEX (KIND=nag_wp) X(1+(N-1)*ABS(INCX))

The routine may be called by its BLAST name blas_zamin_val.

3 Description

F16JTF (BLAS_ZAMIN_VAL) computes, with respect to absolute value, the smallest component, r, of
an n-element complex vector x, and determines the smallest index, k, such that

r ¼ Rexkj j þ Imxkj j ¼ min
j

Re xj
		 		þ Imxj

		 		:
4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: N – INTEGER Input

On entry: n, the number of elements in x.

2: Xð1þ N� 1ð Þ � INCXj jÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the n-element vector x.

If INCX > 0, xi must be stored in Xð i � 1ð Þ � INCXþ 1Þ, for i ¼ 1; 2; . . . ;N.

If INCX < 0, xi must be stored in Xð N� ið Þ � INCXj j þ 1Þ, for i ¼ 1; 2; . . . ;N.

Intermediate elements of X are not referenced. If N ¼ 0, X is not referenced.

3: INCX – INTEGER Input

On entry: the increment in the subscripts of X between successive elements of x.

Constraint: INCX 6¼ 0.

4: K – INTEGER Output

On exit: k, the index, from the set 1; 2; . . . ;Nf g, of the smallest component of x with respect to
absolute value. If N � 0 on input then K is returned as 0.
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5: R – REAL (KIND=nag_wp) Output

On exit: r, the smallest component of x with respect to absolute value. If N � 0 on input then R
is returned as 0:0.

6 Error Indicators and Warnings

If INCX ¼ 0, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16JTF (BLAS_ZAMIN_VAL) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the smallest component with respect to absolute value and index of that
component for the vector

x ¼ �4þ 2:1i; 3:7þ 4:5i;�6þ 1:2ið ÞT:

10.1 Program Text

Program f16jtfe

! F16JTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: blas_zamin_val, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r
Integer :: i, incx, ix, k, n

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F16JTF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, incx
Allocate (x(1+(n-1)*abs(incx)))

! Read the vector x and store forwards or backwards
! as determined by incx.

If (incx>0) Then
ix = 1

Else
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ix = 1 - (n-1)*incx
End If

Do i = 1, n
Read (nin,*) x(ix)
ix = ix + incx

End Do

! Find k = argmin(abs(Re(x))+abs(Im(x))) and
! r = min(abs(Re(x))+abs(Im(x))).

Call blas_zamin_val(n,x,incx,k,r)

Write (nout,*)
Write (nout,99999) k
Write (nout,99998) r

99999 Format (1X,’Index of absolutely smallest component of x is’,I3)
99998 Format (1X,’Absolutely smallest component of x is’,F12.5)

End Program f16jtfe

10.2 Program Data

F16JTF Example Program Data
3 1 : n and incx
(-4., 2.1)
( 3.7, 4.5)
(-6., 1.2) : Vector x

10.3 Program Results

F16JTF Example Program Results

Index of absolutely smallest component of x is 1
Absolutely smallest component of x is 6.10000
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NAG Library Routine Document

F16RBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16RBF calculates the value of the 1-norm, the 1-norm, the Frobenius norm or the maximum absolute
value of the elements of a real m by n band matrix stored in banded form.

It can also be used to compute the value of the 2-norm of a row n-vector or a column m-vector.

2 Specification

FUNCTION F16RBF (INORM, M, N, KL, KU, AB, LDAB)
REAL (KIND=nag_wp) F16RBF

INTEGER INORM, M, N, KL, KU, LDAB
REAL (KIND=nag_wp) AB(LDAB,*)

3 Description

Given a real m by n banded matrix, A, F16RBF calculates one of the values given by

Ak k1 ¼ max
j

Xm
i¼1

aij
		 		 (the 1-norm of A),

Ak k1 ¼ max
i

Xn
j¼1

aij
		 		 (the 1-norm of A),

Ak kF ¼
Xm
i¼1

Xn
j¼1

aij
		 		2 !1=2

(the Frobenius norm of A), or

max
i;j

aij
		 		

(the maximum absolute element value of A).

If m or n is 1 then additionally F16RBF can calculate the value Ak k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiP
a2i

p
(the 2-norm of A).

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: INORM – INTEGER Input

On entry: specifies the value to be returned. The integer codes shown below can be replaced by
the equivalent named constants of the form NAG_?_NORM. These named constants are available
via the nag_library module and are also used in the example program for clarity.

INORM ¼ 171 (NAG_ONE_NORM)
The 1-norm.

INORM ¼ 173 (NAG_TWO_NORM)
The 2-norm of a row or column vector.
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INORM ¼ 174 (NAG_FROBENIUS_NORM)
The Frobenius (or Euclidean) norm.

INORM ¼ 175 (NAG_INF_NORM)
The 1-norm.

INORM ¼ 177 (NAG_MAX_NORM)
The value max

i;j
aij
		 		 (not a norm).

Constraints:

INORM ¼ 171, 173, 174, 175 or 177;
if INORM ¼ 173, M ¼ 1 or N ¼ 1.

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A. If M � 0 on input, F16RBF returns 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A. If N � 0 on input, F16RBF returns 0.

4: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of A. If KL � 0 on input, F16RBF
returns 0.

5: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of A. If KU � 0 on input, F16RBF
returns 0.

6: ABðLDAB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the m by n band matrix A.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F16RBF is called.

Constraint: LDAB � KLþ KUþ 1.

6 Error Indicators and Warnings

If any constraint on an input parameter is violated, an error message is printed and program execution is
terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

F16RBF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

Calculates the various norms of a 6 by 4 banded matrix with two subdiagonals and one superdiagonal.

10.1 Program Text

Program f16rbfe

! F16RBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01zcf, f16rbf, nag_frobenius_norm, nag_inf_norm, &

nag_max_norm, nag_one_norm, nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: r_fro, r_inf, r_max, r_one
Integer :: i, ifail, j, kl, ku, lda, ldab, m, n
Character (1) :: job

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ab(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F16RBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m, n, kl, ku
lda = m
ldab = kl + ku + 1
Allocate (a(lda,n),ab(ldab,n))

! Read A from data file into rectangular storage

Do i = 1, m
Read (nin,*)(a(i,j),j=max(1,i-kl),min(n,i+ku))

End Do

! Convert A to packed storage

job = ’P’

ifail = 0
Call f01zcf(job,m,n,kl,ku,a,lda,ab,ldab,ifail)

Write (nout,*)
Write (nout,99999) ’Norms of banded matrix AB:’
Write (nout,*)

r_one = f16rbf(nag_one_norm,m,n,kl,ku,ab,ldab)
Write (nout,99998) ’One norm = ’, r_one

r_inf = f16rbf(nag_inf_norm,m,n,kl,ku,ab,ldab)
Write (nout,99998) ’Infinity norm = ’, r_inf

r_fro = f16rbf(nag_frobenius_norm,m,n,kl,ku,ab,ldab)
Write (nout,99998) ’Frobenius norm = ’, r_fro

r_max = f16rbf(nag_max_norm,m,n,kl,ku,ab,ldab)
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Write (nout,99998) ’Maximum norm = ’, r_max

99999 Format (1X,A)
99998 Format (1X,A,F9.4)

End Program f16rbfe

10.2 Program Data

F16RBF Example Program Data
6 4 2 1 : M, N, KL, KU
1.0 1.0
2.0 2.0 2.0
3.0 3.0 3.0 3.0

4.0 4.0 4.0
5.0 5.0

6.0 : AB

10.3 Program Results

F16RBF Example Program Results

Norms of banded matrix AB:

One norm = 18.0000
Infinity norm = 12.0000
Frobenius norm = 13.5647
Maximum norm = 6.0000
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NAG Library Routine Document

F16UBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F16UBF calculates the value of the 1-norm, the 1-norm, the Frobenius norm or the maximum absolute
value of the elements of a complex m by n band matrix stored in banded packed form.

It can also be used to compute the value of the 2-norm of a row n-vector or a column m-vector.

2 Specification

FUNCTION F16UBF (INORM, M, N, KL, KU, AB, LDAB)
REAL (KIND=nag_wp) F16UBF

INTEGER INORM, M, N, KL, KU, LDAB
COMPLEX (KIND=nag_wp) AB(LDAB,*)

3 Description

Given a complex m by n band matrix, A, F16UBF calculates one of the values given by

Ak k1 ¼ max
j

Xm
i¼1

aij
		 		 (the 1-norm of A),

Ak k1 ¼ max
i

Xn
j¼1

aij
		 		 (the 1-norm of A),

Ak kF ¼
Xm
i¼1

Xn
j¼1

aij
		 		2 !1=2

(the Frobenius norm of A), or

max
i;j

aij
		 		

(the maximum absolute element value of A).

If m or n is 1 then additionally F16UBF can calculate the value Ak k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

aij j2
q

(the 2-norm of A).

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: INORM – INTEGER Input

On entry: specifies the value to be returned. The integer codes shown below can be replaced by
the equivalent named constants of the form NAG_?_NORM. These named constants are available
via the nag_library module and are also used in the example program for clarity.

INORM ¼ 171 (NAG_ONE_NORM)
The 1-norm.
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INORM ¼ 173 (NAG_TWO_NORM)
The 2-norm of a row or column vector.

INORM ¼ 174 (NAG_FROBENIUS_NORM)
The Frobenius (or Euclidean) norm.

INORM ¼ 175 (NAG_INF_NORM)
The 1-norm.

INORM ¼ 177 (NAG_MAX_NORM)
The value max

i;j
aij
		 		 (not a norm).

Constraints:

INORM ¼ 171, 173, 174, 175 or 177;
if INORM ¼ 173, M ¼ 1 or N ¼ 1.

2: M – INTEGER Input

On entry: m, the number of rows of the matrix A. If M � 0 on input, F16UBF returns 0.

3: N – INTEGER Input

On entry: n, the number of columns of the matrix A. If N � 0 on input, F16UBF returns 0.

4: KL – INTEGER Input

On entry: kl, the number of subdiagonals within the band of A. If KL � 0 on input, F16UBF
returns 0.

5: KU – INTEGER Input

On entry: ku, the number of superdiagonals within the band of A. If KU � 0 on input, F16UBF
returns 0.

6: ABðLDAB; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array AB must be at least max 1;Nð Þ.
On entry: the m by n band matrix A.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

ABðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:

7: LDAB – INTEGER Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
F16UBF is called.

Constraint: LDAB � KLþ KUþ 1.

6 Error Indicators and Warnings

If any constraint on an input parameter is violated, an error message is printed and program execution is
terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).
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8 Parallelism and Performance

F16UBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

Reads in a 6 by 4 banded complex matrix A with two subdiagonals and one superdiagonal, and prints
the four norms of A.

10.1 Program Text

Program f16ubfe

! F16UBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01zdf, f16ubf, nag_frobenius_norm, nag_inf_norm, &

nag_max_norm, nag_one_norm, nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: r_fro, r_inf, r_max, r_one
Integer :: i, ifail, j, kl, ku, lda, ldab, m, n
Character (1) :: job

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ab(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’F16UBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m, n, kl, ku
lda = m
ldab = kl + ku + 1
Allocate (a(lda,n),ab(ldab,n))

! Read A from data file into rectangular storage

Do i = 1, m
Read (nin,*)(a(i,j),j=max(1,i-kl),min(n,i+ku))

End Do

! Convert A to packed storage

job = ’P’

ifail = 0
Call f01zdf(job,m,n,kl,ku,a,lda,ab,ldab,ifail)

Write (nout,*)
Write (nout,99999) ’Norms of banded matrix AB:’
Write (nout,*)

r_one = f16ubf(nag_one_norm,m,n,kl,ku,ab,ldab)
Write (nout,99998) ’One norm = ’, r_one
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r_inf = f16ubf(nag_inf_norm,m,n,kl,ku,ab,ldab)
Write (nout,99998) ’Infinity norm = ’, r_inf

r_fro = f16ubf(nag_frobenius_norm,m,n,kl,ku,ab,ldab)
Write (nout,99998) ’Frobenius norm = ’, r_fro

r_max = f16ubf(nag_max_norm,m,n,kl,ku,ab,ldab)
Write (nout,99998) ’Maximum norm = ’, r_max

99999 Format (1X,A)
99998 Format (1X,A,F9.4)

End Program f16ubfe

10.2 Program Data

F16UBF Example Program Data
6 4 2 1 : M, N, KL, KU
( 1.0, 1.0) ( 1.0, 2.0)
( 2.0, 1.0) ( 2.0, 2.0) ( 2.0, 3.0)
( 3.0, 1.0) ( 3.0, 2.0) ( 3.0, 3.0) ( 3.0, 4.0)

( 4.0, 2.0) ( 4.0, 3.0) ( 4.0, 4.0)
( 5.0, 3.0) ( 5.0, 4.0)

( 6.0, 4.0) : AB

10.3 Program Results

F16UBF Example Program Results

Norms of banded matrix AB:

One norm = 24.2711
Infinity norm = 16.0105
Frobenius norm = 17.4069
Maximum norm = 7.2111
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NAG Library Chapter Contents

G01 – Simple Calculations on Statistical Data

G01 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

G01ABF 4 nagf_stat_summary_2var
Means, corrected sums of squares and cross-products, etc., two variables,
from raw data

G01ADF 4 nagf_stat_summary_freq
Mean, variance, skewness, kurtosis, etc., one variable, from frequency table

G01AEF 4 nagf_stat_frequency_table
Frequency table from raw data

G01AFF 4 nagf_stat_contingency_table
Two-way contingency table analysis, with �2/Fisher's exact test

G01AGF 8 nagf_stat_plot_scatter_2var
Lineprinter scatterplot of two variables

G01AHF 8 nagf_stat_plot_scatter_normal
Lineprinter scatterplot of one variable against Normal scores

G01AJF 10 nagf_stat_plot_histogram
Lineprinter histogram of one variable

G01ALF 14 nagf_stat_5pt_summary
Computes a five-point summary (median, hinges and extremes)

G01AMF 22 nagf_stat_quantiles
Find quantiles of an unordered vector, real numbers

G01ANF 23 nagf_stat_quantiles_stream_fixed
Calculates approximate quantiles from a data stream of known size

G01APF 23 nagf_stat_quantiles_stream_arbitrary
Calculates approximate quantiles from a data stream of unknown size

G01ARF 14 nagf_stat_plot_stem_leaf
Constructs a stem and leaf plot

G01ASF 14 nagf_stat_plot_box_whisker
Constructs a box and whisker plot

G01ATF 24 nagf_stat_summary_onevar
Computes univariate summary information: mean, variance, skewness,
kurtosis

G01AUF 24 nagf_stat_summary_onevar_combine
Combines multiple sets of summary information, for use after G01ATF

G01BJF 13 nagf_stat_prob_binomial
Binomial distribution function

G01BKF 13 nagf_stat_prob_poisson
Poisson distribution function

G01BLF 13 nagf_stat_prob_hypergeom
Hypergeometric distribution function

G01DAF 8 nagf_stat_normal_scores_exact
Normal scores, accurate values

G01DBF 12 nagf_stat_normal_scores_approx
Normal scores, approximate values

G01DCF 12 nagf_stat_normal_scores_var
Normal scores, approximate variance-covariance matrix

G01DDF 12 nagf_stat_test_shapiro_wilk
Shapiro and Wilk's W test for Normality
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G01DHF 15 nagf_stat_ranks_and_scores
Ranks, Normal scores, approximate Normal scores or exponential (Savage)
scores

G01EAF 15 nagf_stat_prob_normal
Computes probabilities for the standard Normal distribution

G01EBF 14 nagf_stat_prob_students_t
Computes probabilities for Student's t-distribution

G01ECF 14 nagf_stat_prob_chisq
Computes probabilities for �2 distribution

G01EDF 14 nagf_stat_prob_f
Computes probabilities for F -distribution

G01EEF 14 nagf_stat_prob_beta
Computes upper and lower tail probabilities and probability density
function for the beta distribution

G01EFF 14 nagf_stat_prob_gamma
Computes probabilities for the gamma distribution

G01EMF 15 nagf_stat_prob_studentized_range
Computes probability for the Studentized range statistic

G01EPF 15 nagf_stat_prob_durbin_watson
Computes bounds for the significance of a Durbin–Watson statistic

G01ERF 16 nagf_stat_prob_vonmises
Computes probability for von Mises distribution

G01ETF 21 nagf_stat_prob_landau
Landau distribution function

G01EUF 21 nagf_stat_prob_vavilov
Vavilov distribution function

G01EWF 25 nagf_stat_prob_dickey_fuller_unit
Computes probabilities for the Dickey–Fuller unit root test

G01EYF 14 nagf_stat_prob_kolmogorov1
Computes probabilities for the one-sample Kolmogorov–Smirnov
distribution

G01EZF 14 nagf_stat_prob_kolmogorov2
Computes probabilities for the two-sample Kolmogorov–Smirnov
distribution

G01FAF 15 nagf_stat_inv_cdf_normal
Computes deviates for the standard Normal distribution

G01FBF 14 nagf_stat_inv_cdf_students_t
Computes deviates for Student's t-distribution

G01FCF 14 nagf_stat_inv_cdf_chisq
Computes deviates for the �2 distribution

G01FDF 14 nagf_stat_inv_cdf_f
Computes deviates for the F -distribution

G01FEF 14 nagf_stat_inv_cdf_beta
Computes deviates for the beta distribution

G01FFF 14 nagf_stat_inv_cdf_gamma
Computes deviates for the gamma distribution

G01FMF 15 nagf_stat_inv_cdf_studentized_range
Computes deviates for the Studentized range statistic

G01FTF 21 nagf_stat_inv_cdf_landau
Landau inverse function � xð Þ

G01GBF 14 nagf_stat_prob_students_t_noncentral
Computes probabilities for the non-central Student's t-distribution

G01GCF 14 nagf_stat_prob_chisq_noncentral
Computes probabilities for the non-central �2 distribution

G01GDF 14 nagf_stat_prob_f_noncentral
Computes probabilities for the non-central F -distribution

G01GEF 14 nagf_stat_prob_beta_noncentral
Computes probabilities for the non-central beta distribution
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G01HAF 14 nagf_stat_prob_bivariate_normal
Computes probability for the bivariate Normal distribution

G01HBF 15 nagf_stat_prob_multi_normal
Computes probabilities for the multivariate Normal distribution

G01HCF 23 nagf_stat_prob_bivariate_students_t
Computes probabilities for the bivariate Student's t-distribution

G01HDF 24 nagf_multi_students_t
Computes the probability for the multivariate Student's t-distribution

G01JCF 14 nagf_stat_prob_chisq_noncentral_lincomb
Computes probability for a positive linear combination of �2 variables

G01JDF 15 nagf_stat_prob_chisq_lincomb
Computes lower tail probability for a linear combination of (central) �2

variables
G01KAF 23 nagf_stat_pdf_normal

Calculates the value for the probability density function of the Normal
distribution at a chosen point

G01KFF 23 nagf_stat_pdf_gamma
Calculates the value for the probability density function of the gamma
distribution at a chosen point

G01KKF 24 nagf_stat_pdf_gamma_vector
Computes a vector of values for the probability density function of the
gamma distribution

G01KQF 24 nagf_stat_pdf_normal_vector
Computes a vector of values for the probability density function of the
Normal distribution

G01LBF 24 nagf_stat_pdf_multi_normal_vector
Computes a vector of values for the probability density function of the
multivariate Normal distribution

G01MBF 15 nagf_stat_mills_ratio
Computes reciprocal of Mills' Ratio

G01MTF 21 nagf_stat_pdf_landau
Landau density function 
 �ð Þ

G01MUF 21 nagf_stat_pdf_vavilov
Vavilov density function 
V �;�; �2

� �
G01NAF 16 nagf_stat_moments_quad_form

Cumulants and moments of quadratic forms in Normal variables
G01NBF 16 nagf_stat_moments_ratio_quad_forms

Moments of ratios of quadratic forms in Normal variables, and related
statistics

G01PTF 21 nagf_stat_pdf_landau_moment1
Landau first moment function �1 xð Þ

G01QTF 21 nagf_stat_pdf_landau_moment2
Landau second moment function �2 xð Þ

G01RTF 21 nagf_stat_pdf_landau_deriv
Landau derivative function 
0 �ð Þ

G01SAF 24 nagf_stat_prob_normal_vector
Computes a vector of probabilities for the standard Normal distribution

G01SBF 24 nagf_stat_prob_students_t_vector
Computes a vector of probabilities for the Student's t-distribution

G01SCF 24 nagf_stat_prob_chisq_vector
Computes a vector of probabilities for �2 distribution

G01SDF 24 nagf_stat_prob_f_vector
Computes a vector of probabilities for F -distribution

G01SEF 24 nagf_stat_prob_beta_vector
Computes a vector of probabilities for the beta distribution

G01SFF 24 nagf_stat_prob_gamma_vector
Computes a vector of probabilities for the gamma distribution
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G01SJF 24 nagf_stat_prob_binomial_vector
Computes a vector of probabilities for the binomial distribution

G01SKF 24 nagf_stat_prob_poisson_vector
Computes a vector of probabilities for the Poisson distribution

G01SLF 24 nagf_stat_prob_hypergeom_vector
Computes a vector of probabilities for the hypergeometric distribution

G01TAF 24 nagf_stat_inv_cdf_normal_vector
Computes a vector of deviates for the standard Normal distribution

G01TBF 24 nagf_stat_inv_cdf_students_t_vector
Computes a vector of deviates for Student's t-distribution

G01TCF 24 nagf_stat_inv_cdf_chisq_vector
Computes a vector of deviates for �2 distribution

G01TDF 24 nagf_stat_inv_cdf_f_vector
Computes a vector of deviates for F -distribution

G01TEF 24 nagf_stat_inv_cdf_beta_vector
Computes a vector of deviates for the beta distribution

G01TFF 24 nagf_stat_inv_cdf_gamma_vector
Computes a vector of deviates for the gamma distribution

G01WAF 24 nagf_stat_moving_average
Computes the mean and standard deviation using a rolling window

G01ZUF 21 nagf_stat_init_vavilov
Initialization routine for G01MUF and G01EUF
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1 Scope of the Chapter

This chapter covers three topics:

plots, descriptive statistics, and exploratory data analysis;

statistical distribution functions and their inverses;

testing for Normality and other distributions.

2 Background to the Problems

2.1 Plots, Descriptive Statistics and Exploratory Data Analysis

Plots and simple descriptive statistics are generally used for one of two purposes:

the presentation of data;

exploratory data analysis.

Exploratory data analysis (EDA) is used to pick out the important features of the data in order to guide
the choice of appropriate models. EDA makes use of simple displays and summary statistics. These
may suggest models or transformations of the data which can then be confirmed by further plots. The
process is interactive between you, the data, and the program producing the EDA displays.

The summary statistics consist of two groups. The first group are those based on moments; for example
mean, standard deviation, coefficient of skewness, and coefficient of kurtosis (sometimes called the
‘excess of kurtosis’, which has the value 0 for the Normal distribution). These statistics may be
sensitive to extreme observations and some robust versions are available in Chapter G07. The second
group of summary statistics are based on the order statistics, where the ith order statistic in a sample is
the ith smallest observation in that sample. Examples of such statistics are minimum, maximum,
median, hinges and quantiles.

In addition to summarising the data by using suitable statistics the data can be displayed using tables
and diagrams. Such data displays include frequency tables, stem and leaf displays, box and whisker
plots, histograms and scatter plots.

2.2 Statistical Distribution Functions and Their Inverses

Statistical distributions are commonly used in three problems:

evaluation of probabilities and expected frequencies for a distribution model;

testing of hypotheses about the variables being observed;

evaluation of confidence limits for parameters of fitted model, for example the mean of a Normal
distribution.

Random variables can be either discrete (i.e., they can take only a limited number of values) or
continuous (i.e., can take any value in a given range). However, for a large sample from a discrete
distribution an approximation by a continuous distribution, usually the Normal distribution, can be used.
Distributions commonly used as a model for discrete random variables are the binomial,
hypergeometric, and Poisson distributions. The binomial distribution arises when there is a fixed
probability of a selected outcome as in sampling with replacement, the hypergeometric distribution is
used in sampling from a finite population without replacement, and the Poisson distribution is often
used to model counts.

Distributions commonly used as a model for continuous random variables are the Normal, gamma, and
beta distributions. The Normal is a symmetric distribution whereas the gamma is skewed and only
appropriate for non-negative values. The beta is for variables in the range 0; 1½ � and may take many
different shapes. For circular data, the ‘equivalent’ to the Normal distribution is the von Mises
distribution. The assumption of the Normal distribution leads to procedures for testing and interval
estimation based on the �2, F (variance ratio), and Student's t-distributions.

In the hypothesis testing situation, a statistic X with known distribution under the null hypothesis is
evaluated, and the probability � of observing such a value or one more ‘extreme’ value is found. This
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probability (the significance) is usually then compared with a preassigned value (the significance level
of the test), to decide whether the null hypothesis can be rejected in favour of an alternate hypothesis on
the basis of the sample values. Many tests make use of those distributions derived from the Normal
distribution as listed above, but for some tests specific distributions such as the Studentized range
distribution and the distribution of the Durbin–Watson test have been derived. Nonparametric tests as
given in Chapter G08, such as the Kolmogorov–Smirnov test, often use statistics with distributions
specific to the test. The probability that the null hypothesis will be rejected when the simple alternate
hypothesis is true (the power of the test) can be found from the noncentral distribution.

The confidence interval problem requires the inverse calculation. In other words, given a probability �,
the value x is to be found, such that the probability that a value not exceeding x is observed is equal to
�. A confidence interval of size 1� 2�, for the quantity of interest, can then be computed as a function
of x and the sample values.

The required statistics for either testing hypotheses or constructing confidence intervals can be
computed with the aid of routines in this chapter, and Chapter G02 (for regression), Chapter G04 (for
analysis of designed experiments), Chapter G13 (for time series), and Chapter E04 (for nonlinear least
squares problems).

Pseudorandom numbers from many statistical distributions can be generated by routines in Chapter
G05.

2.3 Testing for Normality and Other Distributions

Methods of checking that observations (or residuals from a model) come from a specified distribution,
for example, the Normal distribution, are often based on order statistics. Graphical methods include the
use of probability plots. These can be either P � P plots (probability–probability plots), in which the
empirical probabilities are plotted against the theoretical probabilities for the distribution, or Q�Q
plots (quantile–quantile plots), in which the sample points are plotted against the theoretical quantiles.
Q�Q plots are more common, partly because they are invariant to differences in scale and location. In
either case if the observations come from the specified distribution then the plotted points should
roughly lie on a straight line.

If yi is the ith smallest observation from a sample of size n (i.e., the ith order statistic) then in a Q�Q
plot for a distribution with cumulative distribution function F , the value yi is plotted against xi, where
F xið Þ ¼ i� �ð Þ= n� 2�þ 1ð Þ, a common value of � being 1

2 . For the Normal distribution, the Q�Q
plot is known as a Normal probability plot.

The values xi used in Q�Q plots can be regarded as approximations to the expected values of the
order statistics. For a sample from a Normal distribution the expected values of the order statistics are
known as Normal scores and for an exponential distribution they are known as Savage scores.

An alternative approach to probability plots are the more formal tests. A test for Normality is the
Shapiro and Wilk's W Test, which uses Normal scores. Other tests are the �2 goodness-of-fit test and
the Kolmogorov–Smirnov test; both can be found in Chapter G08.

2.4 Distribution of Quadratic Forms

Many test statistics for Normally distributed data lead to quadratic forms in Normal variables. If X is a
n-dimensional Normal variable with mean � and variance-covariance matrix � then for an n by n
matrix A the quadratic form is

Q ¼ XTAX:

The distribution of Q depends on the relationship between A and �: if A� is idempotent then the
distribution of Q will be central or noncentral �2 depending on whether � is zero.

The distribution of other statistics may be derived as the distribution of linear combinations of quadratic
forms, for example the Durbin–Watson test statistic, or as ratios of quadratic forms. In some cases
rather than the distribution of these functions of quadratic forms the values of the moments may be all
that is required.

G01 – Simple Calculations on Statistical Data Introduction – G01

Mark 26 G01.3



2.5 Energy Loss Distributions

An application of distributions in the field of high-energy physics where there is a requirement to model
fluctuations in energy loss experienced by a particle passing through a layer of material. Three models
are commonly used:

(i) Gaussian (Normal) distribution;

(ii) the Landau distribution;

(iii) the Vavilov distribution.

Both the Landau and the Vavilov density functions can be defined in terms of a complex integral. The
Vavilov distribution is the more general energy loss distribution with the Landau and Gaussian being
suitable when the Vavilov parameter � is less than 0:01 and greater than 10:0 respectively.

2.6 Vectorized Routines

A number of vectorized routines are included in this chapter. Unlike their scalar counterparts, which
take a single set of parameters and perform a single function evaluation, these routines take vectors of
parameters and perform multiple function evaluations in a single call. The input arrays to these
vectorized routines are designed to allow maximum flexibility in the supply of the parameters by
reusing, in a cyclic manner, elements of any arrays that are shorter than the number of functions to be
evaluated, where the total number of functions evaluated is the size of the largest array.

To illustrate this we will consider G01SFF, a vectorized version of G01EFF, which calculates the
probabilities for a gamma distribution. The gamma distribution has two parameters � and � therefore
G01SFF has four input arrays, one indicating the tail required (TAIL), one giving the value of the
gamma variate, g, whose probability is required (G), one for � (A) and one for � (B). The lengths of
these arrays are LTAIL, LG, LA and LB respectively.

For sake of argument, lets assume that LTAIL ¼ 1, LG ¼ 2, LA ¼ 3 and LB ¼ 4, then
max LTAIL;LG;LA;LBð Þ ¼ 4 values will be returned. These four probabilities would be calculated
using the following parameters:

i Tail g � �
1 TAILð1Þ Gð1Þ Að1Þ Bð1Þ
2 TAILð1Þ Gð2Þ Að2Þ Bð2Þ
3 TAILð1Þ Gð1Þ Að3Þ Bð3Þ
4 TAILð1Þ Gð2Þ Að1Þ Bð4Þ

3 Recommendations on Choice and Use of Available Routines

Descriptive statistics / Exploratory analysis,
plots,

box and whisker......................................................................................................... G01ASF
histogram ................................................................................................................... G01AJF
Normal probability (Q�Q) plot ............................................................................... G01AHF
scatter plot ................................................................................................................. G01AGF
stem and leaf ............................................................................................................. G01ARF

summaries,
frequency / contingency table,

one variable .......................................................................................................... G01AEF
two variables, with �2 and Fisher's exact test ...................................................... G01AFF

mean, variance, skewness, kurtosis (one variable),
combine summaries............................................................................................... G01AUF
from frequency table............................................................................................. G01ADF
from raw data ....................................................................................................... G01ATF

mean, variance, sums of squares and products (two variables) ................................. G01ABF
median, hinges / quartiles, minimum, maximum ....................................................... G01ALF
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quantiles,
approximate,

large data stream of fixed size......................................................................... G01ANF
large data stream of unknown size .................................................................. G01APF

unordered vector ................................................................................................... G01AMF
rolling window,

mean, standard deviation (one variable)................................................................ G01WAF

Distributions,
Beta,

central,
deviates,

scalar................................................................................................................ G01FEF
vectorized......................................................................................................... G01TEF

probabilities and probability density function,
scalar................................................................................................................ G01EEF
vectorized......................................................................................................... G01SEF

non-central,
probabilities........................................................................................................... G01GEF

binomial,
distribution function,

scalar..................................................................................................................... G01BJF
vectorized.............................................................................................................. G01SJF

Dickey–Fuller unit root test,
probabilities,............................................................................................................... G01EWF

Durbin–Watson statistic,
probabilities................................................................................................................ G01EPF

energy loss distributions,
Landau,

density................................................................................................................... G01MTF
derivative of density ............................................................................................. G01RTF
distribution ............................................................................................................ G01ETF
first moment.......................................................................................................... G01PTF
inverse distribution................................................................................................ G01FTF
second moment ..................................................................................................... G01QTF

Vavilov,
density................................................................................................................... G01MUF
distribution ............................................................................................................ G01EUF
initialization .......................................................................................................... G01ZUF

F :
central,

deviates,
scalar................................................................................................................ G01FDF
vectorized......................................................................................................... G01TDF

probabilities,
scalar................................................................................................................ G01EDF
vectorized......................................................................................................... G01SDF

non-central,
probabilities........................................................................................................... G01GDF

gamma,
deviates,

scalar..................................................................................................................... G01FFF
vectorized.............................................................................................................. G01TFF

probabilities,
scalar..................................................................................................................... G01EFF
vectorized.............................................................................................................. G01SFF

probability density function,
scalar..................................................................................................................... G01KFF
vectorized.............................................................................................................. G01KKF
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Hypergeometric,
distribution function,

scalar..................................................................................................................... G01BLF
vectorized.............................................................................................................. G01SLF

Kolomogorov–Smirnov,
probabilities,

one-sample ............................................................................................................ G01EYF
two-sample ............................................................................................................ G01EZF

Normal,
bivariate,

probabilities........................................................................................................... G01HAF
multivariate,

probabilities........................................................................................................... G01HBF
probability density function,

vectorized......................................................................................................... G01LBF
quadratic forms,

cumulants and moments ................................................................................... G01NAF
moments of ratios ............................................................................................ G01NBF

univariate,
deviates,

scalar................................................................................................................ G01FAF
vectorized......................................................................................................... G01TAF

probabilities,
scalar................................................................................................................ G01EAF
vectorized......................................................................................................... G01SAF

probability density function,
scalar................................................................................................................ G01KAF
vectorized......................................................................................................... G01KQF

reciprocal of Mill's Ratio ...................................................................................... G01MBF
Shapiro and Wilk's test for Normality .................................................................. G01DDF

Poisson,
distribution function,

scalar..................................................................................................................... G01BKF
vectorized.............................................................................................................. G01SKF

Student's t:
central,

bivariate,
probabilities...................................................................................................... G01HCF

multivariate,
probabilities...................................................................................................... G01HDF

univariate,
deviates,

scalar........................................................................................................... G01FBF
vectorized.................................................................................................... G01TBF

probabilities,
scalar........................................................................................................... G01EBF
vectorized.................................................................................................... G01SBF

non-central,
probabilities........................................................................................................... G01GBF

Studentized range statistic,
deviates ...................................................................................................................... G01FMF
probabilities................................................................................................................ G01EMF

von Mises,
probabilities................................................................................................................ G01ERF

�2:
central,

deviates ................................................................................................................. G01FCF
probabilities........................................................................................................... G01ECF
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probability of linear combination .......................................................................... G01JDF
non-central,

probabilities........................................................................................................... G01GCF
probability of linear combination .......................................................................... G01JCF

vectorized deviates ..................................................................................................... G01TCF
vectorized probabilities .............................................................................................. G01SCF

Scores,
Normal scores,

accurate ...................................................................................................................... G01DAF
approximate................................................................................................................ G01DBF
variance-covariance matrix......................................................................................... G01DCF

Normal scores, ranks or exponential (Savage) scores ..................................................... G01DHF

Note: the Student's t, �2, and F routines do not aim to achieve a high degree of accuracy, only about
four or five significant figures, but this should be quite sufficient for hypothesis testing. However, both
the Student's t and the F -distributions can be transformed to a beta distribution and the �2-distribution
can be transformed to a gamma distribution, so a higher accuracy can be obtained by calls to the
gamma or beta routines.

Note: G01DHF computes either ranks, approximations to the Normal scores, Normal, or Savage scores
for a given sample. G01DHF also gives you control over how it handles tied observations. G01DAF
computes the Normal scores for a given sample size to a requested accuracy; the scores are returned in
ascending order. G01DAF can be used if either high accuracy is required or if Normal scores are
required for many samples of the same size, in which case you will have to sort the data or scores.

3.1 Working with Streamed or Extremely Large Datasets

The majority of the routines in this chapter are ‘in-core’, that is all the data required must be held in
memory prior to calling the routine. In some situations this might not be possible, for example, when
working with extremely large datasets or where all of the data is not available at once (i.e., the data is
being streamed).

There are five routines in this chapter applicable to datasets of this form:

G01ATF computes the mean, variance and the coefficients of skewness and kurtosis for a single
variable.

G01AUF, takes the results from two calls to G01ATF and combines them, returning the mean, variance
and the coefficients of skewness and kurtosis for the combined dataset. This routine allows the easy
utilization of more than one processor to spread the computational burden inherent in summarising a
very large dataset.

G01ANF and G01APF compute the approximate quantiles for a dataset of known and unknown size
respectively.

G01WAF computes the mean and standard deviation in a rolling window.

In addition, see G02BUF and G02BZF for routines to summarise two or more variables.

4 Auxiliary Routines Associated with Library Routine Arguments

None.

5 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

G01AAF 26 G01ATF
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NAG Library Routine Document

G01ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01ABF computes the means, standard deviations, corrected sums of squares and products, maximum
and minimum values, and the product-moment correlation coefficient for two variables. Unequal
weighting may be given.

2 Specification

SUBROUTINE G01ABF (N, X1, X2, IWT, WT, RES, IFAIL)

INTEGER N, IWT, IFAIL
REAL (KIND=nag_wp) X1(N), X2(N), WT(N), RES(13)

3 Description

The data consist of two samples of n observations, denoted by xi, and yi, for i ¼ 1; 2; . . . ; n, with
corresponding weights wi, for i ¼ 1; 2; . . . ; n.

If no specific weighting is given, then each wi is set to 1:0 in G01ABF.

The quantities calculated are:

(a) The sum of weights,

W ¼
Xn
i¼1
wi:

(b) The means,

�x ¼

Xn
i¼1
wixi

W
; �y ¼

Xn
i¼1
wiyi

W
:

(c) The corrected sums of squares and products

c11 ¼
Xn
i¼1
wi xi � �xð Þ2

c21 ¼ c12 ¼
Xn
i¼1
wi xi � �xð Þ yi � �yð Þ

c22 ¼
Xn
i¼1
wi yi � �yð Þ2:

(d) The standard deviations

sj ¼
ffiffiffiffiffiffi
cjj
d

r
; where j ¼ 1; 2 and d ¼W �

Xn
i¼1
w2
i

W
:
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(e) The product-moment correlation coefficient

R ¼ c12ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22
p :

(f) The minimum and maximum elements in each of the two samples.

(g) The number of pairs of observations, m, for which wi > 0, i.e., the number of valid observations.
The quantities in (d) and (e) above will only be computed if m � 2. All other items are computed
if m � 1.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pairs of observations.

Constraint: N � 1.

2: X1ðNÞ – REAL (KIND=nag_wp) array Input

On entry: the observations from the first sample, xi, for i ¼ 1; 2; . . . ; n.

3: X2ðNÞ – REAL (KIND=nag_wp) array Input

On entry: the observations from the second sample, yi, for i ¼ 1; 2; . . . ; n.

4: IWT – INTEGER Input/Output

On entry: indicates whether user-supplied weights are provided by you:

IWT ¼ 1

Indicates that user-supplied weights are given in the array WT.

IWT 6¼ 0

Indicates that user-supplied weights are not given. In this case the routine assigns the value
1:0 to each element of the weight array, WT.

On exit: is used to indicate the number of valid observations, m; see Section 3(g), above.

5: WTðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if weights are being supplied then the elements of WT must contain the weights
associated with the observations, wi, for i ¼ 1; 2; . . . ; n.

Constraint: if IWT ¼ 1, WTðiÞ � 0:0, for i ¼ 1; 2; . . . ;N.

On exit: if IWT ¼ 1, the elements of WT are unchanged, otherwise each element of WT will be
assigned the value 1:0.

6: RESð13Þ – REAL (KIND=nag_wp) array Output

On exit: the elements of RES contain the following results:

RESð1Þ mean of the first sample, �x;
RESð2Þ mean of the second sample, �y;
RESð3Þ standard deviation of the first sample, s1;
RESð4Þ standard deviation of the second sample, s2;
RESð5Þ corrected sum of squares of the first sample, c11;
RESð6Þ corrected sum of products of the two samples, c12;
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RESð7Þ corrected sum of squares of the second sample, c22;
RESð8Þ product-moment correlation coefficient, R;
RESð9Þ minimum of the first sample;
RESð10Þ maximum of the first sample;
RESð11Þ minimum of the second sample;
RESð12Þ maximum of the second sample;
RESð13Þ

sum of weights,
Xn
i¼1
wi ( ¼ N, if IWT ¼ 0, on entry).

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

IFAIL ¼ 2

The number of valid cases, m, is 1, hence the standard deviation, 3(d), and the product-moment
correlation coefficient, 3(e), cannot be calculated.

IFAIL ¼ 3

The number of valid cases, m, is 0, or at least one of the weights is negative.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The method used is believed to be stable.
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8 Parallelism and Performance

G01ABF is not threaded in any implementation.

9 Further Comments

The time taken by G01ABF increases linearly with n.

10 Example

In the program below, NPROB determines the number of datasets to be analysed. For each analysis, a
set of observations and, optionally, weights, is read and printed. After calling G01ABF, all the
calculated quantities are printed. In the example, there is one set of data, with 29 (unweighted) pairs of
observations.

10.1 Program Text

Program g01abfe

! G01ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01abf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, iwt, n

! .. Local Arrays ..
Real (Kind=nag_wp) :: res(13)
Real (Kind=nag_wp), Allocatable :: wt(:), wtin(:), x1(:), x2(:)

! .. Executable Statements ..
Write (nout,*) ’G01ABF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, iwt

Allocate (wt(n),wtin(n),x1(n),x2(n))

! Read in data
Read (nin,*)(x1(i),x2(i),i=1,n)
If (iwt==1) Then

Read (nin,*) wtin(1:n)
wt(1:n) = wtin(1:n)

End If

! Display data
Write (nout,99999) ’Number of cases’, n
Write (nout,*) ’Data as input -’
Write (nout,*) &

’ Var 1 Var 2 Var 1 Var 2 Var 1 Var 2’

Write (nout,99995)(x1(i),x2(i),i=1,n)
If (iwt==1) Then

Write (nout,*) ’Weights as input -’
Write (nout,99994) wtin(1:n)

End If
Write (nout,*)

! Calculate summary statistics
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ifail = -1
Call g01abf(n,x1,x2,iwt,wt,res,ifail)
If (ifail/=0) Then

If (ifail/=2) Then
Go To 100

End If
End If

! Display results
Write (nout,99999) ’No. of valid cases’, iwt
Write (nout,99993) ’Variable 1’, ’Variable 2’
Write (nout,99998) ’Mean ’, res(1), res(2)
Write (nout,99997) ’Corr SSP’, res(5), res(6), res(7)
Write (nout,99998) ’Minimum ’, res(9), res(11)
Write (nout,99998) ’Maximum ’, res(10), res(12)
Write (nout,99998) ’Sum of weights ’, res(13)
If (ifail==0) Then

Write (nout,99998) ’Std devn’, res(3), res(4)
Write (nout,99996) ’Correln ’, res(8)

Else
Write (nout,*) ’Std devn and Correln not defined’

End If

100 Continue

99999 Format (1X,A,I5)
99998 Format (1X,A,F15.1,F30.1)
99997 Format (1X,A,3E15.5)
99996 Format (1X,A,F30.4)
99995 Format (5X,6F11.1)
99994 Format (13X,F9.3)
99993 Format (13X,A,20X,A)

End Program g01abfe

10.2 Program Data

G01ABF Example Program Data
29 0

350 47 550 95 380 211 510 122 1270 530
300 38 2630 278 810 309 140 75 450 43

2280 407 250 142 540 89 720 159 90 35
480 103 180 78 3160 969 220 120 860 333
300 73 1460 147 400 30 620 100 120 55
780 145 230 101 1070 468 160 86

10.3 Program Results

G01ABF Example Program Results

Number of cases 29
Data as input -

Var 1 Var 2 Var 1 Var 2 Var 1 Var 2
350.0 47.0 550.0 95.0 380.0 211.0
510.0 122.0 1270.0 530.0 300.0 38.0

2630.0 278.0 810.0 309.0 140.0 75.0
450.0 43.0 2280.0 407.0 250.0 142.0
540.0 89.0 720.0 159.0 90.0 35.0
480.0 103.0 180.0 78.0 3160.0 969.0
220.0 120.0 860.0 333.0 300.0 73.0

1460.0 147.0 400.0 30.0 620.0 100.0
120.0 55.0 780.0 145.0 230.0 101.0

1070.0 468.0 160.0 86.0

No. of valid cases 29
Variable 1 Variable 2

Mean 734.8 185.8
Corr SSP 0.16396E+08 0.34830E+07 0.11319E+07
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Minimum 90.0 30.0
Maximum 3160.0 969.0
Sum of weights 29.0
Std devn 765.2 201.1
Correln 0.8085
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NAG Library Routine Document

G01ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01ADF calculates the mean, standard deviation and coefficients of skewness and kurtosis for data
grouped in a frequency distribution.

2 Specification

SUBROUTINE G01ADF (K, X, IFREQ, XMEAN, S2, S3, S4, N, IFAIL)

INTEGER K, IFREQ(K), N, IFAIL
REAL (KIND=nag_wp) X(K), XMEAN, S2, S3, S4

3 Description

The input data consist of a univariate frequency distribution, denoted by fi, for i ¼ 1; 2; . . . ; k� 1, and
the boundary values of the classes xi, for i ¼ 1; 2; . . . ; k. Thus the frequency associated with the interval
xi; xiþ1ð Þ is fi, and G01ADF assumes that all the values in this interval are concentrated at the point

yi ¼ xiþ1 þ xið Þ=2; i ¼ 1; 2; . . . ; k� 1:

The following quantities are calculated:

(a) total frequency,

n ¼
Xk�1
i¼1
fi:

(b) mean,

�y ¼

Xk�1
i¼1
fiyi

n
:

(c) standard deviation,

s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk�1
i¼1
fi yi � �yð Þ2

n� 1ð Þ

vuuuut
; n � 2:

(d) coefficient of skewness,

s3 ¼

Xk�1
i¼1
fi yi � �yð Þ3

n� 1ð Þ � s32
; n � 2:

(e) coefficient of kurtosis,

s4 ¼

Xk�1
i¼1
fi yi � �yð Þ4

n� 1ð Þ � s42
� 3; n � 2:
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The routine has been developed primarily for groupings of a continuous variable. If, however, the
routine is to be used on the frequency distribution of a discrete variable, taking the values y1; . . . ; yk�1,
then the boundary values for the classes may be defined as follows:

(i) for k > 2,

x1 ¼ 3y1 � y2ð Þ=2
xj ¼ yj�1 þ yj

� �
=2; j ¼ 2; . . . ; k� 1

xk ¼ 3yk�1 � yk�2ð Þ=2
(ii) for k ¼ 2,

x1 ¼ y1 � a and x2 ¼ y1 þ a for any a > 0:

4 References

None.

5 Arguments

1: K – INTEGER Input

On entry: k, the number of class boundaries, which is one more than the number of classes of the
frequency distribution.

Constraint: K > 1.

2: XðKÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of X must contain the boundary values of the classes in ascending order,
so that class i is bounded by the values in XðiÞ and Xði þ 1Þ, for i ¼ 1; 2; . . . ; k� 1.

Constraint: XðiÞ < Xði þ 1Þ, for i ¼ 1; 2; . . . ; k� 1.

3: IFREQðKÞ – INTEGER array Input

On entry: the ith element of IFREQ must contain the frequency associated with the ith class, for
i ¼ 1; 2; . . . ; k� 1. IFREQðkÞ is not used by the routine.

Constraints:

IFREQðiÞ � 0, for i ¼ 1; 2; . . . ; k� 1;Xk�1
i¼1

IFREQðiÞ > 0.

4: XMEAN – REAL (KIND=nag_wp) Output

On exit: the mean value, �y.

5: S2 – REAL (KIND=nag_wp) Output

On exit: the standard deviation, s2.

6: S3 – REAL (KIND=nag_wp) Output

On exit: the coefficient of skewness, s3.

7: S4 – REAL (KIND=nag_wp) Output

On exit: the coefficient of kurtosis, s4.

8: N – INTEGER Output

On exit: the total frequency, n.
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9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K � 1.

IFAIL ¼ 2

On entry, the boundary values of the classes in X are not in ascending order.

IFAIL ¼ 3

On entry,
Xk�1
i¼1

IFREQðiÞ ¼ 0 or IFREQðiÞ < 0 for some i, for i ¼ 1; 2; . . . ; k� 1.

IFAIL ¼ 4

The total frequency, n, is less than 2, hence the quantities s2, s3 and s4 cannot be calculated.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The method used is believed to be stable.

8 Parallelism and Performance

G01ADF is not threaded in any implementation.
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9 Further Comments

The time taken by G01ADF increases linearly with k.

10 Example

In the example program, NPROB determines the number of sets of data to be analysed. For each
analysis, the boundary values of the classes and the frequencies are read. After G01ADF has been
successfully called, the input data and calculated quantities are printed. In the example, there is one set
of data, with 14 classes.

10.1 Program Text

Program g01adfe

! G01ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01adf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: s2, s3, s4, xmean
Integer :: i, ifail, k, kmin1, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer, Allocatable :: ifreq(:)

! .. Executable Statements ..
Write (nout,*) ’G01ADF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) kmin1
k = kmin1 + 1

Allocate (ifreq(k),x(k))

! Read in data
Read (nin,*)(x(i),ifreq(i),i=1,kmin1), x(k)

! Calculate summary statistics
ifail = 0
Call g01adf(k,x,ifreq,xmean,s2,s3,s4,n,ifail)

! Display results
Write (nout,99999) ’Number of classes ’, kmin1
Write (nout,*)
Write (nout,*) ’ Class Frequency’
Write (nout,*)
Write (nout,99998)(x(i),x(i+1),ifreq(i),i=1,kmin1)
Write (nout,*)
Write (nout,99997) ’ Mean ’, xmean
Write (nout,99996) ’ Std devn’, s2
Write (nout,99996) ’ Skewness’, s3
Write (nout,99996) ’ Kurtosis’, s4
Write (nout,99995) ’ Number of cases’, n

99999 Format (1X,A,I4)
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99998 Format (1X,2F10.2,I12)
99997 Format (1X,A,F16.4)
99996 Format (1X,A,F13.4)
99995 Format (1X,A,I8)

End Program g01adfe

10.2 Program Data

G01ADF Example Program Data
14

9.3 3 12 19 14 52 16 96
18 121 20 115 22 86 24 70
26 49 28 31 30 16 32 6
34 8 36 7 39.7

10.3 Program Results

G01ADF Example Program Results

Number of classes 14

Class Frequency

9.30 12.00 3
12.00 14.00 19
14.00 16.00 52
16.00 18.00 96
18.00 20.00 121
20.00 22.00 115
22.00 24.00 86
24.00 26.00 70
26.00 28.00 49
28.00 30.00 31
30.00 32.00 16
32.00 34.00 6
34.00 36.00 8
36.00 39.70 7

Mean 21.4932
Std devn 4.9325
Skewness 0.7072
Kurtosis 0.5738
Number of cases 679
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NAG Library Routine Document

G01AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01AEF constructs a frequency distribution of a variable, according to either user-supplied, or routine-
calculated class boundary values.

2 Specification

SUBROUTINE G01AEF (N, K, X, ICLASS, CB, IFREQ, XMIN, XMAX, IFAIL)

INTEGER N, K, ICLASS, IFREQ(K), IFAIL
REAL (KIND=nag_wp) X(N), CB(K), XMIN, XMAX

3 Description

The data consists of a sample of n observations of a continuous variable, denoted by xi, for
i ¼ 1; 2; . . . ; n. Let a ¼ min x1; . . . ; xnð Þ and b ¼ max x1; . . . ; xnð Þ.
G01AEF constructs a frequency distribution with k > 1ð Þ classes denoted by fi, for i ¼ 1; 2; . . . ; k.

The boundary values may be either user-supplied, or routine-calculated, and are denoted by yj, for
j ¼ 1; 2; . . . ; k� 1.

If the boundary values of the classes are to be routine-calculated, then they are determined in one of the
following ways:

(a) if k > 2, the range of x values is divided into k� 2 intervals of equal length, and two extreme
intervals, defined by the class boundary values y1; y2; . . . ; yk�1;

(b) if k ¼ 2, y1 ¼ 1
2 aþ bð Þ .

However formed, the values y1; . . . ; yk�1 are assumed to be in ascending order. The class frequencies
are formed with

f1 ¼ the number of x values in the interval �1; y1ð Þ
fi ¼ the number of x values in the interval yi�1; yi½ Þ, i ¼ 2; . . . ; k� 1

fk ¼ the number of x values in the interval yk�1;1½ Þ,
where [ means inclusive, and ) means exclusive. If the class boundary values are routine-calculated and
k > 2, then f1 ¼ fk ¼ 0, and y1 and yk�1 are chosen so that y1 < a and yk�1 > b.

If a frequency distribution is required for a discrete variable, then it is suggested that you supply the
class boundary values; routine-calculated boundary values may be slightly imprecise (due to the
adjustment of y1 and yk�1 outlined above) and cause values very close to a class boundary to be
assigned to the wrong class.

4 References

None.

G01 – Simple Calculations on Statistical Data G01AEF

Mark 26 G01AEF.1



5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

2: K – INTEGER Input

On entry: k, the number of classes desired in the frequency distribution. Whether or not class
boundary values are user-supplied, K must include the two extreme classes which stretch to 
1.

Constraint: K � 2.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sample of observations of the variable for which the frequency distribution is
required, xi, for i ¼ 1; 2; . . . ; n. The values may be in any order.

4: ICLASS – INTEGER Input

On entry: indicates whether class boundary values are to be calculated within G01AEF, or are
supplied by you.

If ICLASS ¼ 0, then the class boundary values are to be calculated within the routine.

If ICLASS ¼ 1, they are user-supplied.

Constraint: ICLASS ¼ 0 or 1.

5: CBðKÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if ICLASS ¼ 0, then the elements of CB need not be assigned values, as G01AEF
calculates k� 1 class boundary values.

If ICLASS ¼ 1, the first k� 1 elements of CB must contain the class boundary values you
supplied, in ascending order.

In both cases, the element CBðkÞ need not be assigned, as it is not used in the routine.

On exit: the first k� 1 elements of CB contain the class boundary values in ascending order.

Constraint: if ICLASS ¼ 1, CBðiÞ < CBði þ 1Þ, for i ¼ 1; 2; . . . ; k� 2.

6: IFREQðKÞ – INTEGER array Output

On exit: the elements of IFREQ contain the frequencies in each class, fi, for i ¼ 1; 2; . . . ; k. In
particular IFREQð1Þ contains the frequency of the class up to CBð1Þ, f1, and IFREQðkÞ contains
the frequency of the class greater than CBðk� 1Þ, fk.

7: XMIN – REAL (KIND=nag_wp) Output

On exit: the smallest value in the sample, a.

8: XMAX – REAL (KIND=nag_wp) Output

On exit: the largest value in the sample, b.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 2.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, the user-supplied class boundary values are not in ascending order.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The method used is believed to be stable.

8 Parallelism and Performance

G01AEF is not threaded in any implementation.

9 Further Comments

The time taken by G01AEF increases with K and N. It also depends on the distribution of the sample
observations.

10 Example

This example summarises a number of datasets. For each dataset the sample observations and optionally
class boundary values are read. G01AEF is then called and the frequency distribution and largest and
smallest observations printed.
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10.1 Program Text

Program g01aefe

! G01AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01aef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xmax, xmin
Integer :: iclass, ifail, j, k, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cb(:), x(:)
Integer, Allocatable :: ifreq(:)

! .. Executable Statements ..
Write (nout,*) ’G01AEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, iclass, k

Allocate (x(n),cb(k),ifreq(k))

! Read in data
Read (nin,*) x(1:n)

Write (nout,99997) ’Number of cases’, n
Write (nout,99997) ’Number of classes’, k

! Get the class boundaries
If (iclass/=1) Then

Write (nout,*) ’Routine-supplied class boundaries’
Else

Read (nin,*) cb(1:(k-1))
Write (nout,*) ’User-supplied class boundaries’

End If
Write (nout,*)

! Construct the frequency table
ifail = 0
Call g01aef(n,k,x,iclass,cb,ifreq,xmin,xmax,ifail)

! Display results
Write (nout,*) ’*** Frequency distribution ***’
Write (nout,*)
Write (nout,*) ’ Class Frequency’
Write (nout,*)
Write (nout,99999) ’ Up to ’, cb(1), ifreq(1)
k = k - 1
If (k>1) Then

Write (nout,99998)(cb(j-1),’ to ’,cb(j),ifreq(j),j=2,k)
End If
Write (nout,99996) cb(k), ’ and over ’, ifreq(k+1)
Write (nout,*)
Write (nout,99995) ’Total frequency = ’, n
Write (nout,99994) ’Minimum = ’, xmin
Write (nout,99994) ’Maximum = ’, xmax

99999 Format (1X,A,F8.2,I11)
99998 Format (1X,F8.2,A,F8.2,I11)
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99997 Format (1X,A,I4)
99996 Format (1X,F8.2,A,I9)
99995 Format (1X,A,I6)
99994 Format (1X,A,F9.2)

End Program g01aefe

10.2 Program Data

G01AEF Example Program Data
70 0 7

22.3 21.6 22.6 22.4 22.4 22.4 22.1 21.9 23.1 23.4
23.4 22.6 22.5 22.5 22.1 22.6 22.3 22.4 21.8 22.3
22.1 23.6 20.8 22.2 23.1 21.1 21.7 21.4 21.6 22.5
21.2 22.6 22.2 22.2 21.4 21.7 23.2 23.1 22.3 22.3
21.1 21.4 21.5 21.8 22.8 21.4 20.7 21.6 23.2 23.6
22.7 21.7 23.0 21.9 22.6 22.1 22.2 23.4 21.5 23.0
22.8 21.4 23.2 21.8 21.2 22.0 22.4 22.8 23.2 23.6

10.3 Program Results

G01AEF Example Program Results

Number of cases 70
Number of classes 7
Routine-supplied class boundaries

*** Frequency distribution ***

Class Frequency

Up to 20.70 0
20.70 to 21.28 6
21.28 to 21.86 16
21.86 to 22.44 21
22.44 to 23.02 14
23.02 to 23.60 13
23.60 and over 0

Total frequency = 70
Minimum = 20.70
Maximum = 23.60
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NAG Library Routine Document

G01AFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01AFF performs the analysis of a two-way r� c contingency table or classification. If r ¼ c ¼ 2, and
the total number of objects classified is 40 or fewer, then the probabilities for Fisher's exact test are
computed. Otherwise, a test statistic is computed (with Yates' correction when r ¼ c ¼ 2), which under
the assumption of no association between the classifications has approximately a chi-square distribution
with r� 1ð Þ � c� 1ð Þ degrees of freedom.

2 Specification

SUBROUTINE G01AFF (LDNOB, LDPRED, M, N, NOBS, NUM, PRED, CHIS, P, NPOS,
NDF, M1, N1, IFAIL)

&

INTEGER LDNOB, LDPRED, M, N, NOBS(LDNOB,N), NUM, NPOS, NDF,
M1, N1, IFAIL

&

REAL (KIND=nag_wp) PRED(LDPRED,N), CHIS, P(21)

3 Description

The data consist of the frequencies for the two-way classification, denoted by nij, for i ¼ 1; 2; . . . ;m
and j ¼ 1; 2; . . . ; n with m;n > 1.

A check is made to see whether any row or column of the matrix of frequencies consists entirely of
zeros, and if so, the matrix of frequencies is reduced by omitting that row or column. Suppose the final
size of the matrix is m1 by n1 (m1; n1 > 1), and let

Ri ¼
Xn1
j¼1

nij, the total frequency for the ith row, for i ¼ 1; 2; . . . ;m1,

Cj ¼
Xm1

i¼1
nij , the total frequency for the jth column, for j ¼ 1; 2; . . . ; n1, and

T ¼
Xm1

i¼1
Ri ¼

Xn1
j¼1

Cj, the total frequency.

There are two situations:

(i) If m1 > 2 and/or n1 > 2, or m1 ¼ n1 ¼ 2 and T > 40, then the matrix of expected frequencies,
denoted by rij, for i ¼ 1; 2; . . . ;m1 and j ¼ 1; 2; . . . ; n1, and the test statistic, �2, are computed,
where

rij ¼ RiCj=T ; i ¼ 1; 2; . . . ;m1;j ¼ 1; 2; . . . ; n1

and

�2 ¼
Xm1

i¼1

Xn1
j¼1

rij � nij
		 		� Y� �2

=rij;

where

Y ¼
1
2 if m1 ¼ n1 ¼ 2
0 otherwise



is Yates' correction for continuity.
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Under the assumption that there is no association between the two classifications, �2 will have
approximately a chi-square distribution with m1 � 1ð Þ � n1 � 1ð Þ degrees of freedom.

An option exists which allows for further ‘shrinkage’ of the matrix of frequencies in the case where
rij < 1 for the (i; j)th cell. If this is the case, then row i or column j will be combined with the
adjacent row or column with smaller total. Row i is selected for combination if
Ri �m1 � Cj � n1. This ‘shrinking’ process is continued until rij � 1 for all cells (i; j).

(ii) If m1 ¼ n1 ¼ 2 and T � 40, the probabilities to enable Fisher's exact test to be made are computed.

The matrix of frequencies may be rearranged so that R1 is the smallest marginal (i.e., column and
row) total, and C2 � C1. Under the assumption of no association between the classifications, the
probability of obtaining r entries in cell 1; 1ð Þ is computed where

Prþ1 ¼
R1!R2!C1!C2!

T !r! R1 � rð Þ! C1 � rð Þ! T � C1 �R1 þ rð Þ!; r ¼ 0; 1; . . . ; R1:

The probability of obtaining the table of given frequencies is returned. A test of the assumption
against some alternative may then be made by summing the relevant values of Pr.

4 References

None.

5 Arguments

1: LDNOB – INTEGER Input

On entry: the first dimension of the array NOBS as declared in the (sub)program from which
G01AFF is called.

Constraint: LDNOB � M.

2: LDPRED – INTEGER Input

On entry: the first dimension of the array PRED as declared in the (sub)program from which
G01AFF is called.

Constraint: LDPRED � M.

3: M – INTEGER Input

On entry: mþ 1, one more than the number of rows of the frequency matrix.

Constraint: M > 2.

4: N – INTEGER Input

On entry: nþ 1, one more than the number of columns of the frequency matrix.

Constraint: N > 2.

5: NOBSðLDNOB;NÞ – INTEGER array Input/Output

On entry: the elements NOBSði; jÞ, for i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n, must contain the
frequencies for the two-way classification. The mþ 1ð Þth row and the nþ 1ð Þth column of
NOBS need not be set.

On exit: contains the following information:

NOBSði; jÞ, for i ¼ 1; 2; . . . ;m1 and j ¼ 1; 2; . . . ; n1, contain the frequencies for the two-
way classification after ‘shrinkage’ has taken place (see Section 3).

NOBSði; nþ 1Þ, for i ¼ 1; 2; . . . ;m1, contain the total frequencies in the remaining rows,
Ri.
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NOBSðmþ 1; jÞ, for j ¼ 1; 2; . . . ; n1, contain the total frequencies in the remaining
columns, Cj.

NOBSðmþ 1; nþ 1Þ, contains the total frequency, T.

If any ‘shrinkage’ has occurred, then all other cells contain no useful information.

Constraint: NOBSði; jÞ � 0, for i ¼ 1; 2; . . . ;M� 1 and j ¼ 1; 2; . . . ;N� 1.

6: NUM – INTEGER Input/Output

On entry: the value assigned to NUM must determine whether automatic ‘shrinkage’ is required
when any rij < 1, as outlined in Section 3(i).

If NUM ¼ 1, shrinkage is required, otherwise shrinkage is not required.

On exit: when Fisher's exact test for a 2� 2 classification is used then NUM contains the number
of elements used in the array P, otherwise NUM is set to zero.

7: PREDðLDPRED;NÞ – REAL (KIND=nag_wp) array Output

On exit: the elements PREDði; jÞ, where i ¼ 1; 2; . . . ;M1 and j ¼ 1; 2; . . . ;N1 contain the
expected frequencies, rij corresponding to the observed frequencies NOBSði; jÞ, except in the
case when Fisher's exact test for a 2� 2 classification is to be used, when PRED is not used. No
other elements are utilized.

8: CHIS – REAL (KIND=nag_wp) Output

On exit: the value of the test statistic, �2, except when Fisher's exact test for a 2� 2 classification
is used in which case it is unspecified.

9: Pð21Þ – REAL (KIND=nag_wp) array Output

P is used only when Fisher's exact test for a 2� 2 classification is to be used.

On exit: the first NUM elements contain the probabilities associated with the various possible
frequency tables, Pr , for r ¼ 0; 1; . . . ; R1, the remainder are unspecified.

10: NPOS – INTEGER Output

NPOS is used only when Fisher's exact test for a 2� 2 classification is to be used.

On exit: PðNPOSÞ holds the probability associated with the given table of frequencies.

11: NDF – INTEGER Output

On exit: the value of NDF gives the number of degrees of freedom for the chi-square distribution,
m1 � 1ð Þ � n1 � 1ð Þ; when Fisher's exact test is used NDF ¼ 1.

12: M1 – INTEGER Output

On exit: the number of rows of the two-way classification, after any ‘shrinkage’, m1.

13: N1 – INTEGER Output

On exit: the number of columns of the two-way classification, after any ‘shrinkage’, n1.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The number of rows or columns of NOBS is less than 2, possibly after shrinkage.

IFAIL ¼ 2

At least one frequency is negative, or all frequencies are zero.

IFAIL ¼ 4

On entry, LDPRED < M,
or LDNOB < M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The method used is believed to be stable.

8 Parallelism and Performance

G01AFF is not threaded in any implementation.

9 Further Comments

The time taken by G01AFF will increase with M and N, except when Fisher's exact test is to be used,
in which case it increases with size of the marginal and total frequencies.

If, on exit, NUM > 0, or alternatively NDF is 1 and NOBSðM;NÞ � 40, the probabilities for use in
Fisher's exact test for a 2� 2 classification will be calculated, and not the test statistic with
approximately a chi-square distribution.
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10 Example

In the example program, NPROB determines the number of two-way classifications to be analysed. For
each classification the frequencies are read, G01AFF called, and information given on how much
‘shrinkage’ has taken place. If Fisher's exact test is to be used, the given frequencies and the array of
probabilities associated with the possible frequency tables are printed. Otherwise, if the chi-square test
is to be used, the given and expected frequencies, and the test statistic with its degrees of freedom are
printed. In the example, there is one 2� 3 classification, with shrinkage not requested.

10.1 Program Text

Program g01affe

! G01AFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01aff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: chis
Integer :: ifail, im, in, j, k, ldnob, ldpred, &

m, m1, m2, n, n1, n2, ndf, npos, num
! .. Local Arrays ..

Real (Kind=nag_wp) :: p(21)
Real (Kind=nag_wp), Allocatable :: pred(:,:)
Integer, Allocatable :: nobs(:,:)

! .. Executable Statements ..
Write (nout,*) ’G01AFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size (where N and M are the number of
! rows and columns in the two way table NOBS)

Read (nin,*) im, in, num

! M and N as supplied to G01AFF must be 1 more than the number
! of rows and columns of data in NOBS

m = im + 1
n = in + 1

ldnob = m
ldpred = m
Allocate (nobs(ldnob,n),pred(ldpred,n))

! Read in data
Read (nin,*)(nobs(j,1:in),j=1,im)

Write (nout,*) ’Data as input -’
Write (nout,99992) ’Number of rows’, im
Write (nout,99992) ’Number of columns’, in
Write (nout,99992) ’NUM =’, num, &

’ (NUM = 1 means table reduced in size if necessary)’

! Perform the analysis
ifail = 0
Call g01aff(ldnob,ldpred,m,n,nobs,num,pred,chis,p,npos,ndf,m1,n1,ifail)

! Display results
If (num==0) Then

m2 = m - 1
n2 = n - 1
If (m1/=m2) Then
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Write (nout,99992) ’No. of rows reduced from ’, m2, ’ to ’, m1
End If
If (n1/=n2) Then

Write (nout,99992) ’No. of cols reduced from ’, n2, ’ to ’, n1
End If
Write (nout,*)
Write (nout,*) ’Table of observed and expected frequencies’
Write (nout,*)
Write (nout,*) ’ Column’
Write (nout,99991)(k,k=1,n1)
Write (nout,*) ’Row’
Do j = 1, m1

Write (nout,99999) j, nobs(j,1:n1)
Write (nout,99998) pred(j,1:n1)
Write (nout,99994) ’Row total = ’, nobs(j,n)

End Do
Write (nout,*)
Write (nout,*) ’Column’
Write (nout,99993) ’totals’, nobs(m,1:n1)
Write (nout,99994) ’Grand total = ’, nobs(m,n)
Write (nout,*)
Write (nout,99997) ’Chi-squared = ’, chis, ’ D.F. = ’, ndf

Else
Write (nout,*) ’Fisher’’s exact test for 2*2 table’
Write (nout,*)
Write (nout,*) ’Table of observed frequencies’
Write (nout,*)
Write (nout,*) ’ Column’
Write (nout,*) ’ 1 2’
Write (nout,*) ’Row’
Do j = 1, 2

Write (nout,99999) j, nobs(j,1:2)
Write (nout,99994) ’Row total = ’, nobs(j,n)

End Do
Write (nout,*)
Write (nout,*) ’Column’
Write (nout,99993) ’totals’, nobs(m,1:2)
Write (nout,99994) ’Grand total = ’, nobs(m,n)
Write (nout,*)
Write (nout,99996) ’This table corresponds to element ’, npos, &

’ in vector P below’
Write (nout,*)
Write (nout,*) ’Vector P’
Write (nout,*)
Write (nout,*) ’ I P(I)’
Write (nout,99995)(j,p(j),j=1,num)

End If

99999 Format (1X,I2,4X,10I6)
99998 Format (8X,12F6.0)
99997 Format (1X,A,F10.3,A,I3)
99996 Format (1X,A,I4,A)
99995 Format (1X,I2,F9.4)
99994 Format (49X,A,I7)
99993 Format (1X,A,10I6)
99992 Format (1X,A,I3,A,I3)
99991 Format (7X,10I6)

End Program g01affe

10.2 Program Data

G01AFF Example Program Data
2 3 0
86 51 13

130 115 41
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10.3 Program Results

G01AFF Example Program Results

Data as input -
Number of rows 2
Number of columns 3
NUM = 0 (NUM = 1 means table reduced in size if necessary)

Table of observed and expected frequencies

Column
1 2 3

Row
1 86 51 13

74. 57. 19.
Row total = 150

2 130 115 41
142. 109. 35.

Row total = 286

Column
totals 216 166 54

Grand total = 436

Chi-squared = 6.352 D.F. = 2
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NAG Library Routine Document

G01AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01AGF performs a scatter plot of two variables on a character printing device, with a chosen number
of character positions in each direction.

2 Specification

SUBROUTINE G01AGF (X, Y, NOBS, ISORT, NSTEPX, NSTEPY, IFAIL)

INTEGER NOBS, ISORT(NOBS), NSTEPX, NSTEPY, IFAIL
REAL (KIND=nag_wp) X(NOBS), Y(NOBS)

3 Description

G01AGF finds the range of the data in each dimension and calculates a step size for each division on
the axes; these step sizes are selected from the list

0:1; 0:15; 0:2; 0:25; 0:4; 0:5; 0:6; 0:75; 0:8ð Þ � power of 10:

The axes are drawn and annotated and data points are plotted on the nearest character position. The
character plotted is either a digit 1 to 9 for the equivalent number of occurrences of a point at a
particular character position, an alphabetic A–Z for 10�35 occurrences, or * if there are more than 35
coincident occurrences. Axes are drawn on all sides of the plot with the left-hand and bottom ones
annotated; zero axes are also marked if included in the plotting area.

The Fortran logical unit number used for the output is the current advisory message unit number
defined for each implementation. This number may be changed by an appropriate call to X04ABF
before calling G01AGF.

4 References

None.

5 Arguments

1: XðNOBSÞ – REAL (KIND=nag_wp) array Input

On entry: the values to be plotted in the x-direction.

2: YðNOBSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the values to be plotted in the y-direction.

On exit: the elements of Y are sorted into descending order of magnitude.

3: NOBS – INTEGER Input

On entry: the number of observations to be plotted.

Constraint: NOBS � 1.
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4: ISORTðNOBSÞ – INTEGER array Output

On exit: the key to the descending order of the elements in array Y, i.e., ISORTðiÞ contains the
position of the value YðiÞ in the original array Y, for i ¼ 1; 2; . . . ;NOBS.

5: NSTEPX – INTEGER Input

On entry: the number of steps (character positions) to be plotted in the x-direction. If the
supplied value of NSTEPX is less than 10, the value 10 will be used by G01AGF. The maximum
value for NSTEPX is the number of character positions available on the chosen output device
less 15, up to a maximum of 133. If NSTEPX exceeds 133 on input, the value 133 will be used
by the routine.

6: NSTEPY – INTEGER Input

On entry: the number of steps (character positions) to be plotted in the y-direction. If the supplied
value of NSTEPY is less than 10, the value 10 will be used by G01AGF. There is no maximum
value for NSTEPY, but you should bear in mind that NSTEPYþ 5ð Þ records (lines) of output are
generated by the routine.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NOBS < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Accuracy is limited by the number of plotting points available.

8 Parallelism and Performance

G01AGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G01AGF may be expected to be approximately proportional to the product
NOBS� NSTEPX� NSTEPY.

No blank records are output before or after the plot.

You must make sure that it is permissible to write records containing NSTEPX characters to the current
advisory message unit.

10 Example

The data relate to wheat and potato yields in 48 counties in England in 1936. The example illustrates
the use of X04ABF to set the logical unit number, used for the output of G01AGF, to a specified value.

10.1 Program Text

Program g01agfe

! G01AGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01agf, nag_wp, x04abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, nobs, nstepx, nstepy, &

outchn
Character (80) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), y(:)
Integer, Allocatable :: isort(:)

! .. Intrinsic Procedures ..
Intrinsic :: len_trim

! .. Executable Statements ..
Write (nout,*) ’G01AGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nobs, nstepx, nstepy

Allocate (x(nobs),y(nobs),isort(nobs))

! Read in data
Read (nin,*)(x(i),y(i),i=1,nobs)
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! Read in the title
Read (nin,99999) title

! Set advisory channel
outchn = nout
Call x04abf(iset,outchn)

! Display title
Write (nout,*) title(1:len_trim(title))
Write (nout,*)
Flush (nout)

! Produce the plot
ifail = 0
Call g01agf(x,y,nobs,isort,nstepx,nstepy,ifail)

99999 Format (A80)
End Program g01agfe

10.2 Program Data

G01AGF Example Program Data
48 40 32
16.0 5.3 16.0 6.6 16.4 6.1 20.5 5.5 18.3 6.9 16.3 6.1
17.7 6.4 15.3 6.3 16.5 7.8 16.9 8.3 21.9 5.7 15.5 6.2
15.9 6.0 16.1 6.1 18.5 6.6 12.7 4.8 15.7 4.9 14.3 5.1
13.9 5.5 12.8 6.7 12.0 6.5 15.6 5.2 15.9 5.2 16.7 7.1
14.3 4.9 14.4 5.6 15.2 6.4 14.1 6.9 15.5 5.6 16.5 6.1
14.3 5.7 13.2 5.0 13.9 6.5 14.4 6.2 13.5 5.2 11.2 6.6
14.4 5.8 15.5 6.3 18.5 6.3 16.4 5.8 17.1 5.9 16.9 6.5
17.5 5.8 15.9 5.7 19.2 7.2 17.7 6.5 15.2 5.4 17.1 6.3

Plot of wheat (X) and potato (Y) yields in 48 counties in England in 1936.
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10.3 Program Results

G01AGF Example Program Results

Plot of wheat (X) and potato (Y) yields in 48 counties in England in 1936.
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+....+....+....+....+....+....+....+....+.
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NAG Library Routine Document

G01AHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01AHF performs a Normal probability plot on a character printing device, with a chosen number of
character positions in each direction.

2 Specification

SUBROUTINE G01AHF (X, NOBS, NSTEPX, NSTEPY, ISTAND, IWORK, WORK, LWORK,
XSORT, XBAR, XSTD, IFAIL)

&

INTEGER NOBS, NSTEPX, NSTEPY, ISTAND, IWORK(NOBS), LWORK,
IFAIL

&

REAL (KIND=nag_wp) X(NOBS), WORK(LWORK), XSORT(NOBS), XBAR, XSTD

3 Description

In a Normal probability plot, the data xð Þ are plotted against Normal scores yð Þ. The degree of linearity
in the resultant plot provides a visual indication of the Normality of distribution of a set of residuals
from some fitting process, such as multiple regression.

The data values are sorted into descending order prior to plotting, and may also be standardized to zero
mean and unit standard deviation, if requested.

The plot is produced on a character printing device, using a chosen number of character positions in
each direction. The output is directed to the current advisory message unit number (see the Users' Note
for your implementation). This number may be changed by an appropriate call to X04ABF before
calling G01AHF.

Axes are drawn and annotated and data points are plotted on the nearest character position. An
appropriate step size for each axis is computed from the list

0:1; 0:15; 0:2; 0:25; 0:4; 0:5; 0:6; 0:75; 0:8ð Þ � power of 10.

Points are plotted using the digits 1 to 9 to indicate the equivalent number of observations at a
particular character position, a letter A–Z for 10�35 occurrences, or * if there are 36 or more
coincident occurrences. Zero axes are marked if included in the plotting area.

4 References

None.

5 Arguments

1: XðNOBSÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of data values.

Constraint: all data values must not be equal.

2: NOBS – INTEGER Input

On entry: the number of data values.

Constraint: NOBS � 2.
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3: NSTEPX – INTEGER Input

On entry: the number of steps (character positions) to be plotted in the x-direction. If the
supplied value of NSTEPX is less than 10, the value 10 will be used by G01AHF. The maximum
value for NSTEPX is the number of character positions available on the chosen output device
less 15, up to a maximum of 133. If NSTEPX exceeds 133 on input, the value 133 will be used
by the routine.

4: NSTEPY – INTEGER Input

On entry: the number of steps (character positions) to be plotted in the y-direction. If the supplied
value of NSTEPY is less than 10, the value 10 will be used by G01AHF. There is no maximum
value for NSTEPY, but you should bear in mind that (NSTEPYþ 5) records (lines) of output are
generated by the routine.

5: ISTAND – INTEGER Input

On entry: indicates whether the residuals are to be standardized prior to plotting.

If ISTAND > 0, the elements of X are standardized to zero mean and unit standard deviation.

6: IWORKðNOBSÞ – INTEGER array Workspace

7: WORKðLWORKÞ – REAL (KIND=nag_wp) array Output

On exit: the first NOBS elements of WORK contain the Normal scores in ascending magnitude.
The rest of the array is used as workspace.

8: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G01AHF is called.

Constraint: LWORK � 5� NOBSð Þ=2.

9: XSORTðNOBSÞ – REAL (KIND=nag_wp) array Output

On exit: the data values, sorted into descending order, and standardized if ISTAND was positive
on entry.

10: XBAR – REAL (KIND=nag_wp) Output

On exit: the mean of the data values.

11: XSTD – REAL (KIND=nag_wp) Output

On exit: the standard deviation of the data values.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NOBS < 2.

IFAIL ¼ 2

All the supplied data values are equal.

IFAIL ¼ 3

On entry, LWORK < 5� NOBSð Þ=2, i.e., the array WORK is too small.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy is limited by the number of plotting positions available.

8 Parallelism and Performance

G01AHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For details of timing see G01AGF and G01DAF.

No blank records are output before or after the plot.

You must make sure that it is permissible to write records containing NSTEPX characters to the current
advisory message unit.

10 Example

The data are residuals from a linear regression. The 25 values are standardized and plotted against the
Normal scores, and are seen to follow a straight line fairly closely, indicating that Normality
assumptions are justified.
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10.1 Program Text

Program g01ahfe

! G01AHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01ahf, nag_wp, x04abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xbar, xstd
Integer :: ifail, istand, lwork, nobs, nstepx, &

nstepy, outchn
Character (80) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:), x(:), xsort(:)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: len_trim

! .. Executable Statements ..
Write (nout,*) ’G01AHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nobs, nstepx, nstepy, istand

lwork = 5*nobs/2
Allocate (iwork(nobs),xsort(nobs),x(nobs),work(lwork))

! Read in data
Read (nin,*) x(1:nobs)

! Read in the title
Read (nin,99997) title

! Set advisory channel
outchn = nout
Call x04abf(iset,outchn)

! Display data to be plotted
Write (nout,*) ’Data values to be plotted’
Write (nout,99998) x(1:nobs)
Write (nout,*)
Write (nout,*)

! Display title
Write (nout,*)
Write (nout,*) title(1:len_trim(title))
Write (nout,*)
Flush (nout)

! Produce the plot
ifail = 0
Call g01ahf(x,nobs,nstepx,nstepy,istand,iwork,work,lwork,xsort,xbar, &

xstd,ifail)

! Display additional results
Write (nout,*)
Write (nout,99999) ’Mean of data values = ’, xbar
Write (nout,99999) ’Standard deviation = ’, xstd
Write (nout,*)
Write (nout,*) ’Sorted standardised data values’
Write (nout,99998) xsort(1:nobs)

G01AHF NAG Library Manual

G01AHF.4 Mark 26



99999 Format (1X,A,F5.2)
99998 Format (5X,5F7.2)
99997 Format (A80)

End Program g01ahfe

10.2 Program Data

G01AHF Example Program Data
25 50 40 1

0.35 0.10 0.95 -0.53 0.33
0.30 0.39 0.26 -0.45 0.12

-1.58 0.90 0.53 -0.58 0.54
-0.09 0.79 -0.41 0.54 0.48
-0.28 -0.71 -1.10 -0.41 -0.44

Plot of normal scores (Y) against standardised residuals (X)
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10.3 Program Results

G01AHF Example Program Results

Data values to be plotted
0.35 0.10 0.95 -0.53 0.33
0.30 0.39 0.26 -0.45 0.12

-1.58 0.90 0.53 -0.58 0.54
-0.09 0.79 -0.41 0.54 0.48
-0.28 -0.71 -1.10 -0.41 -0.44

Plot of normal scores (Y) against standardised residuals (X)

+....+....+....+....+....+....+....+....+....+....+.
2.000+ + 1 +

. . .

. . .

. . .

. . .
1.500+ + 1 +

. . .

. . 1 .

. . .

. . 1 .
1.000+ + +

. . 1 .

. . 1 .

. . .

. . 1 .
0.500+ + 1 +

. . 1 .

. . 1 .

. . 1 .

. . 1 .
0.000+....+....+....+....+....+....+.1..+....+....+....++

. . 1 .

. 1. .

. 1 . .

. 1 . .
-0.500+ 1 + +

. 1 . .

. . .

. 1 . .

. 1 . .
-1.000+ + +

. 1 . .

. . .

. 1 . .

. . .
-1.500+ 1 + +

. . .

. . .

. . .

. . .
-2.000+ 1 + +

+....+....+....+....+....+....+....+....+....+....+.
-3.000 -2.000 -1.000 0.000 1.000 2.000

-2.500 -1.500 -0.500 0.500 1.500

Mean of data values = 0.00
Standard deviation = 0.63

Sorted standardised data values
1.50 1.42 1.25 0.85 0.85
0.84 0.76 0.62 0.55 0.52
0.47 0.41 0.19 0.16 -0.14

-0.44 -0.65 -0.65 -0.69 -0.71
-0.84 -0.92 -1.12 -1.74 -2.49
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NAG Library Routine Document

G01AJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01AJF prints a histogram on a character printing device, allowing you control over size, positioning,
and the range of data values included.

2 Specification

SUBROUTINE G01AJF (X, N, NSTEPX, NSTEPY, ITYPE, ISPACE, XMIN, XMAX,
XSTEP, N1, MULTY, IFAIL)

&

INTEGER N, NSTEPX, NSTEPY, ITYPE, ISPACE, N1, MULTY, IFAIL
REAL (KIND=nag_wp) X(N), XMIN, XMAX, XSTEP

3 Description

A histogram is printed using vertical bars consisting of * characters. The output is directed to the
current advisory message unit (see the Users' Note for your implementation). It may be redirected by a
call to X04ABF before calling G01AJF.

The following options are available:

(a) inclusion of all data values, or only of those lying within a specified range;

(b) specification of the size of the histogram in the vertical and horizontal directions, and of
positioning in the horizontal direction;

(c) calculation of frequencies or cumulative frequencies in the histogram.

The maximum and minimum data values used, the (integral) number of observations represented by
each * in the histogram, and the step size per character position in the horizontal direction, are returned.

The histogram is headed FREQUENCY or CUM.FREQ. depending on the option selected. Each line is
annotated with the minimum frequency which a bar reaching that line represents. The data maximum
and minimum are printed under the histogram, unless either exceeds 9999:99 in modulus, in which case
they are not printed (although they are still returned).

4 References

None.

5 Arguments

1: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the data values.

2: N – INTEGER Input

On entry: the number of data values.

Constraint: N � 1.
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3: NSTEPX – INTEGER Input/Output

On entry: the number of character positions to be used in the horizontal direction, i.e., the
number of categories in the histogram.

On exit: if NSTEPX < 10 on entry, NSTEPX is reset to 10.

If NSTEPX > 99 on entry, NSTEPX is reset to 99.

Otherwise, NSTEPX is unchanged on exit.

4: NSTEPY – INTEGER Input/Output

On entry: the number of character positions to be used in the vertical direction, i.e., the
maximum height of a histogram bar.

On exit: if NSTEPY < 10 on entry, NSTEPY is reset to 10.

If NSTEPY > 99 on entry, NSTEPY is reset to 99.

Otherwise, NSTEPY is unchanged on exit.

5: ITYPE – INTEGER Input

On entry: indicates whether a histogram of frequencies or cumulative frequencies is required.

ITYPE ¼ 0 for frequencies.

ITYPE 6¼ 0 for cumulative frequencies.

The second option effectively displays the distribution function of the data rather than the density
function.

6: ISPACE – INTEGER Input/Output

On entry: indicates how many spaces are to be inserted at the beginning of each output line.

If ISPACE < 0 on input, ISPACE ¼ 0 is used

If ISPACEþ NSTEPXþ 14 > 120, then ISPACE ¼ 0 is used.

The second condition imposes an effective line length limit of 120 characters.

On exit: unchanged unless ISPACE < 0 or ISPACEþ NSTEPXþ 14 > 120, in which case
ISPACE is set to 0.

7: XMIN – REAL (KIND=nag_wp) Input/Output
8: XMAX – REAL (KIND=nag_wp) Input/Output

On entry: if XMIN < XMAX, only those values in X such that XMIN � XðiÞ � XMAX, for
i ¼ 1; 2; . . . ; n, are included in the histogram.

If XMIN � XMAX, all the data are included.

On exit: if XMIN < XMAX on entry, then XMIN and XMAX are unchanged.

If XMIN � XMAX then XMIN and XMAX contain the minimum and maximum data values
respectively.

9: XSTEP – REAL (KIND=nag_wp) Output

On exit: the width of each class interval.

10: N1 – INTEGER Output

On exit: the total number of observations actually included in the histogram.

11: MULTY – INTEGER Output

On exit: the number of observations represented by each * in the histogram.
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12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy is limited by the number of plotting positions available.

8 Parallelism and Performance

G01AJF is not threaded in any implementation.

9 Further Comments

The time taken by G01AJF increases with N, NSTEPX and NSTEPY.

A total of NSTEPXþ ISPACEþ 14ð Þ character positions are used in the horizontal direction, not
including the carriage control character. It is important that this total does not exceed the maximum line
length available on the output device.

A total of NSTEPYþ 3ð Þ output lines are normally generated, one less if XMIN and/or XMAX is too
large in modulus to be printed.
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10 Example

A sample of 50 random numbers form the data, which correspond to a Normal distribution with mean
and standard deviation both equal to 5:0. A histogram of the entire sample is drawn first, followed by a
cumulative histogram of all data values lying between �10:0 and 5:0. The first histogram is indented 10
character positions. Note the use of X04ABF to direct the output to unit number 6.

10.1 Program Text

Program g01ajfe

! G01AJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01ajf, nag_wp, x04abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xmax, xmin, xstep
Integer :: ifail, ispace, itype, multy, n, n1, &

nstepx, nstepy, outchn
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: x(:)
! .. Executable Statements ..

Write (nout,*) ’G01AJF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, nstepx, nstepy

Allocate (x(n))

! Read in data
Read (nin,*) x(1:n)

! Set advisory channel
outchn = nout
Call x04abf(iset,outchn)

! Display histogram
itype = 0

! Indent 10 spaces
ispace = 10

! Display all the data
xmin = 0.0E0_nag_wp
xmax = 0.0E0_nag_wp

! Produce the plot
ifail = 0
Call g01ajf(x,n,nstepx,nstepy,itype,ispace,xmin,xmax,xstep,n1,multy, &

ifail)

Write (nout,*)
Write (nout,*)
Write (nout,*)
Flush (nout)

! Display cumulative histogram
itype = 1
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! Don’t indent
ispace = 0

! Display only data between -10 and 5
xmin = -10.0E0_nag_wp
xmax = 5.0E0_nag_wp

! Produce the plot
ifail = 0
Call g01ajf(x,n,nstepx,nstepy,itype,ispace,xmin,xmax,xstep,n1,multy, &

ifail)

End Program g01ajfe

10.2 Program Data

G01AJF Example Program Data
50 10 10

2.68 8.23 0.11 1.39 -2.77 -1.17 3.49 7.39 5.22 5.44
7.06 6.17 -4.44 5.98 14.02 8.06 10.96 0.99 7.87 4.85
9.76 3.30 4.45 7.02 5.43 3.57 1.98 3.09 -2.66 5.04

14.52 -0.61 5.04 6.85 3.94 4.87 3.82 5.93 7.89 9.48
6.81 6.91 7.76 6.21 0.55 -2.44 18.09 6.19 9.19 10.55

10.3 Program Results

G01AJF Example Program Results

FREQUENCY
20 . . 20
18 . . 18
16 . . 16
14 . . 14
12 . * . 12
10 . ** . 10
8 . *** . 8
6 . *** . 6
4 .* ***** . 4
2 .******* * . 2

------------
-4.44 18.09

CUM. FREQ.
30 . . 30
27 . . 27
24 . . 24
21 . *. 21
18 . *. 18
15 . **. 15
12 . **. 12
9 . ***. 9
6 . ****. 6
3 . ******. 3

------------
-10.00 5.00
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NAG Library Routine Document

G01ALF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01ALF calculates a five-point summary for a single sample.

2 Specification

SUBROUTINE G01ALF (N, X, IWRK, RES, IFAIL)

INTEGER N, IWRK(N), IFAIL
REAL (KIND=nag_wp) X(N), RES(5)

3 Description

G01ALF calculates the minimum, lower hinge, median, upper hinge and the maximum of a sample of n
observations.

The data consist of a single sample of n observations denoted by xi and let zi, for i ¼ 1; 2; . . . ; n,
represent the sample observations sorted into ascending order.

Let m ¼ n
2
if n is even and

nþ 1ð Þ
2

if n is odd,

and k ¼ m
2

if m is even and
mþ 1ð Þ

2
if m is odd.

Then we have

Minimum ¼ z1,
Maximum ¼ zn,
Median ¼ zm if n is odd,

¼ zm þ zmþ1
2

if n is even,

Lower hinge ¼ zk if m is odd,

¼ zk þ zkþ1
2

if m is even,

Upper hinge ¼ zn�kþ1 if m is odd,

¼ zn�k þ zn�kþ1
2

if m is even.

4 References

Erickson B H and Nosanchuk T A (1985) Understanding Data Open University Press, Milton Keynes

Tukey J W (1977) Exploratory Data Analysis Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, number of observations in the sample.

Constraint: N � 5.
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2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sample observations, x1; x2; . . . ; xn.

3: IWRKðNÞ – INTEGER array Workspace

4: RESð5Þ – REAL (KIND=nag_wp) array Output

On exit: RES contains the five-point summary.

RESð1Þ
The minimum.

RESð2Þ
The lower hinge.

RESð3Þ
The median.

RESð4Þ
The upper hinge.

RESð5Þ
The maximum.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 5.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The computations are stable.

8 Parallelism and Performance

G01ALF is not threaded in any implementation.

9 Further Comments

The time taken by G01ALF is proportional to n.

10 Example

This example calculates a five-point summary for a sample of 12 observations.

10.1 Program Text

Program g01alfe

! G01ALF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01alf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp) :: res(5)
Real (Kind=nag_wp), Allocatable :: x(:)
Integer, Allocatable :: iwrk(:)

! .. Executable Statements ..
Write (nout,*) ’G01ALF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n

Allocate (x(n),iwrk(n))

! Read in data
Read (nin,*) x(1:n)

! Calculate summary statistics
ifail = 0
Call g01alf(n,x,iwrk,res,ifail)

! Display results
Write (nout,99999) ’Maximum ’, res(5)
Write (nout,99999) ’Upper Hinge (75% quantile)’, res(4)
Write (nout,99999) ’Median (50% quantile)’, res(3)
Write (nout,99999) ’Lower Hinge (25% quantile)’, res(2)
Write (nout,99999) ’Minimum ’, res(1)

99999 Format (1X,A,F16.4)
End Program g01alfe
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10.2 Program Data

G01ALF Example Program Data
12
12.0 9.0 2.0 5.0 6.0 8.0 2.0 7.0 3.0 1.0 11.0 10.0

10.3 Program Results

G01ALF Example Program Results

Maximum 12.0000
Upper Hinge (75% quantile) 9.5000
Median (50% quantile) 6.5000
Lower Hinge (25% quantile) 2.5000
Minimum 1.0000
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NAG Library Routine Document

G01AMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01AMF finds specified quantiles from a vector of unsorted data.

2 Specification

SUBROUTINE G01AMF (N, RV, NQ, Q, QV, IFAIL)

INTEGER N, NQ, IFAIL
REAL (KIND=nag_wp) RV(N), Q(NQ), QV(NQ)

3 Description

A quantile is a value which divides a frequency distribution such that there is a given proportion of data
values below the quantile. For example, the median of a dataset is the 0:5 quantile because half the
values are less than or equal to it; and the 0:25 quantile is the 25th percentile.

G01AMF uses a modified version of Singleton's ‘median-of-three’ Quicksort algorithm (Singleton
(1969)) to determine specified quantiles of a vector of real values. The input vector is partially sorted,
as far as is required to compute desired quantiles; for a single quantile, this is much faster than sorting
the entire vector. Where necessary, linear interpolation is also carried out to return the values of
quantiles which lie between two data points.

4 References

Singleton R C (1969) An efficient algorithm for sorting with minimal storage: Algorithm 347 Comm.
ACM 12 185–187

5 Arguments

1: N – INTEGER Input

On entry: the number of elements in the input vector RV.

Constraint: N > 0.

2: RVðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the vector whose quantiles are to be determined.

On exit: the order of the elements in RV is not, in general, preserved.

3: NQ – INTEGER Input

On entry: the number of quantiles requested.

Constraint: NQ > 0.

4: QðNQÞ – REAL (KIND=nag_wp) array Input

On entry: the quantiles to be calculated, in ascending order. Note that these must be between 0:0
and 1:0, with 0:0 returning the smallest element and 1:0 the largest.
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Constraints:

0:0 � QðiÞ � 1:0, for i ¼ 1; 2; . . . ;NQ;
QðiÞ � Qði þ 1Þ, for i ¼ 1; 2; . . . ;NQ� 1.

5: QVðNQÞ – REAL (KIND=nag_wp) array Output

On exit: QVðiÞ contains the quantile specified by the value provided in QðiÞ, or an interpolated
value if the quantile falls between two data values.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

On entry, NQ ¼ valueh i.
Constraint: NQ > 0.

IFAIL ¼ 3

On entry, an element of Q was less than 0:0 or greater than 1:0.

IFAIL ¼ 4

On entry, Q was not in ascending order.

IFAIL ¼ 5

Internal error. Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G01AMF is not threaded in any implementation.

9 Further Comments

The average time taken by G01AMF is approximately proportional to N� 1þ log NQð Þð Þ. The worst
case time is proportional to N2 but this is extremely unlikely to occur.

10 Example

This example computes a list of quantiles from an array of reals and an array of point values.

10.1 Program Text

Program g01amfe

! G01AMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01amf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n, nq

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: q(:), qv(:), rv(:)

! .. Executable Statements ..
Write (nout,*) ’G01AMF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, nq

Allocate (q(nq),qv(nq),rv(n))

! Read in data
Read (nin,*) rv(1:n)

! Read in the required quantiles
Read (nin,*) q(1:nq)

! Display data
Write (nout,*) ’Data Values:’
Write (nout,99998) rv(1:n)
Write (nout,*)

! Calculate the quantiles
ifail = 0
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Call g01amf(n,rv,nq,q,qv,ifail)

! Display results
Write (nout,*) ’Quantile Result’
Write (nout,*)
Write (nout,99999)(q(i),qv(i),i=1,nq)

99999 Format (1X,F7.2,4X,F7.2)
99998 Format (1X,20F7.2)

End Program g01amfe

10.2 Program Data

G01AMF Example Program Data
11 3 : N and NQ
4.9 7.0 3.9 9.5 1.3 3.1 9.7 0.3 8.5 0.6 6.2 : The N data values
0.25 0.5 1.0 : The NQ required quantiles

10.3 Program Results

G01AMF Example Program Results

Data Values:
4.90 7.00 3.90 9.50 1.30 3.10 9.70 0.30 8.50 0.60 6.20

Quantile Result

0.25 2.20
0.50 4.90
1.00 9.70
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NAG Library Routine Document

G01ANF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01ANF finds approximate quantiles from a data stream of known size using an out-of-core algorithm.

2 Specification

SUBROUTINE G01ANF (IND, N, RV, NB, EPS, NP, Q, QV, NQ, RCOMM, LRCOMM,
ICOMM, LICOMM, IFAIL)

&

INTEGER IND, N, NB, NP, NQ, LRCOMM, ICOMM(LICOMM), LICOMM,
IFAIL

&

REAL (KIND=nag_wp) RV(*), EPS, Q(*), QV(*), RCOMM(LRCOMM)

3 Description

A quantile is a value which divides a frequency distribution such that there is a given proportion of data
values below the quantile. For example, the median of a dataset is the 0:5 quantile because half the
values are less than or equal to it.

G01ANF uses a slightly modified version of an algorithm described in a paper by Zhang and Wang
(2007) to determine �-approximate quantiles of a data stream of n real values, where n is known. Given
any quantile q 2 0:0; 1:0½ �, an �-approximate quantile is defined as an element in the data stream whose
rank falls within q � �ð Þn; q þ �ð Þn½ �. In case of more than one �-approximate quantile being available,
the one closest to qn is returned.

4 References

Zhang Q and Wang W (2007) A fast algorithm for approximate quantiles in high speed data streams
Proceedings of the 19th International Conference on Scientific and Statistical Database Management
IEEE Computer Society 29

5 Arguments

1: IND – INTEGER Input/Output

On entry: indicates the action required in the current call to G01ANF.

IND ¼ 0
Return the required length of RCOMM and ICOMM in ICOMMð1Þ and ICOMMð2Þ
respectively. N and EPS must be set and LICOMM must be at least 2.

IND ¼ 1
Initialise the communication arrays and process the first NB values from the data stream as
supplied in RV.

IND ¼ 2
Process the next block of NB values from the data stream. The calling program must
update RV and (if required) NB, and re-enter G01ANF with all other parameters
unchanged.
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IND ¼ 3
Calculate the NQ �-approximate quantiles specified in Q. The calling program must set Q
and NQ and re-enter G01ANF with all other parameters unchanged. This option can be
chosen only when NP � exp 1:0ð Þ=EPSd e.

On exit: indicates output from a successful call.

IND ¼ 1
Lengths of RCOMM and ICOMM have been returned in ICOMMð1Þ and ICOMMð2Þ
respectively.

IND ¼ 2
G01ANF has processed NP data points and expects to be called again with additional data
(i.e., NP < N).

IND ¼ 3
G01ANF has returned the requested �-approximate quantiles in QV. These quantiles are
based on NP data points.

IND ¼ 4
Routine has processed all N data points (i.e., NP ¼ N).

Constraint: on entry IND ¼ 0, 1, 2 or 3.

2: N – INTEGER Input

On entry: n, the total number of values in the data stream.

Constraint: N > 0.

3: RVð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RV must be at least NB if IND ¼ 1 or 2.

On entry: if IND ¼ 1 or 2, the vector containing the current block of data, otherwise RV is not
referenced.

4: NB – INTEGER Input

On entry: if IND ¼ 1 or 2, the size of the current block of data. The size of blocks of data in
array RV can vary; therefore NB can change between calls to G01ANF.

Constraint: if IND ¼ 1 or 2, NB > 0.

5: EPS – REAL (KIND=nag_wp) Input

On entry: approximation factor �.

Constraint: EPS � exp 1:0ð Þ=N and EPS � 1:0.

6: NP – INTEGER Output

On exit: the number of elements processed so far.

7: Qð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Q must be at least NQ if IND ¼ 3.

On entry: if IND ¼ 3, the quantiles to be calculated, otherwise Q is not referenced. Note that
QðiÞ ¼ 0:0, corresponds to the minimum value and QðiÞ ¼ 1:0 to the maximum value.

Constraint: if IND ¼ 3, 0:0 � QðiÞ � 1:0, for i ¼ 1; 2; . . . ;NQ.
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8: QVð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array QV must be at least NQ if IND ¼ 3.

On exit: if IND ¼ 3, QVðiÞ contains the �-approximate quantiles specified by the value provided
in QðiÞ.

9: NQ – INTEGER Input

On entry: if IND ¼ 3, the number of quantiles requested, otherwise NQ is not referenced.

Constraint: if IND ¼ 3, NQ > 0.

10: RCOMMðLRCOMMÞ – REAL (KIND=nag_wp) array Communication Array
11: LRCOMM – INTEGER Input

On entry: the dimension of the array RCOMM as declared in the (sub)program from which
G01ANF is called.

Constraint: if IND 6¼ 0, LRCOMM must be at least equal to the value returned in ICOMMð1Þ by
a c a l l t o G 0 1 A N F w i t h IND ¼ 0. T h i s w i l l n o t b e m o r e t h a n
xþ 2�min x; x=2:0d e þ 1ð Þ � log2 N=xþ 1:0ð Þ þ 1, where x ¼ max 1; log EPS� Nð Þ=EPSb cð Þ.

12: ICOMMðLICOMMÞ – INTEGER array Communication Array
13: LICOMM – INTEGER Input

On entry: the dimension of the array ICOMM as declared in the (sub)program from which
G01ANF is called.

Constraints:

if IND ¼ 0, LICOMM � 2;
otherwise LICOMM must be at least equal to the value returned in ICOMMð2Þ by a call to
G 0 1 A N F w i t h IND ¼ 0. T h i s w i l l n o t b e m o r e t h a n
2� xþ 2�min x; x=2:0d e þ 1ð Þ � yð Þ þ yþ 6, where x ¼ max 1; log EPS� Nð Þ=EPSb cð Þ
and y ¼ log2 N=xþ 1:0ð Þ þ 1.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

As an out-of-core routine G01ANF will only perform certain argument checks when a data
checkpoint (including completion of data input) is signaled. As such it will usually be
inappropriate to halt program execution when an error is detected since any errors may be
subsequently resolved without losing any processing already carried out. Therefore setting IFAIL
to a value of �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IND ¼ valueh i.
Constraint: IND ¼ 0, 1, 2 or 3.
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IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 3

On entry, EPS ¼ valueh i.
Constraint: exp 1:0ð Þ=N � EPS � 1:0.

IFAIL ¼ 4

On entry, IND ¼ 1 or 2 and NB ¼ valueh i.
Constraint: if IND ¼ 1 or 2 then NB > 0.

IFAIL ¼ 5

On entry, LICOMM is too small: LICOMM ¼ valueh i.

IFAIL ¼ 6

On entry, LRCOMM is too small: LRCOMM ¼ valueh i.

IFAIL ¼ 7

Number of data elements streamed, valueh i is not sufficient for a quantile query when
EPS ¼ valueh i.
Supply more data or reprocess the data with a higher EPS value.

IFAIL ¼ 8

On entry, IND ¼ 3 and NQ ¼ valueh i.
Constraint: if IND ¼ 3 then NQ > 0.

IFAIL ¼ 9

On entry, IND ¼ 3 and Qð valueh iÞ ¼ valueh i.
Constraint: if IND ¼ 3 then 0:0 � QðiÞ � 1:0 for all i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G01ANF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The average time taken by G01ANF is Nlog 1=�log �Nð Þð Þ.

10 Example

This example calculates �-approximate quantile for q ¼ 0:25, 0:5 and 1:0 for a data stream of 60 values.
The stream is read in four blocks of varying size.

10.1 Program Text

Program g01anfe

! G01ANF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01anf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps
Integer :: i, ifail, ind, licomm, lrcomm, n, &

nb, np, nq, nrv, onb
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: q(:), qv(:), rcomm(:), rv(:)
Integer, Allocatable :: icomm(:)

! .. Executable Statements ..
Write (nout,*) ’G01ANF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in stream size and approximation factor
Read (nin,*) n, eps

! Read in number of elements in the output vector qv
Read (nin,*) nq
Allocate (qv(nq),q(nq))

! Read in vector q
Read (nin,*) q(1:nq)

! Dummy allocation for the communication arrays
lrcomm = 1
licomm = 2
nb = 1
Allocate (rv(nb),rcomm(lrcomm),icomm(licomm))

! Call NAG routine for the first time to obtain lrcomm and licomm
ind = 0
ifail = 0
Call g01anf(ind,n,rv,nb,eps,np,q,qv,nq,rcomm,lrcomm,icomm,licomm,ifail)

! Reallocate the communication arrays to the required size
lrcomm = icomm(1)
licomm = icomm(2)
Deallocate (rcomm,icomm)
Allocate (rcomm(lrcomm),icomm(licomm))
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! Read in number of vectors with dataset blocks
Read (nin,*) nrv

onb = 0
d_lp: Do i = 1, nrv
! Read in number of elements in the first/next vector rv

Read (nin,*) nb

If (onb/=nb) Then
! Reallocate RV if required

Deallocate (rv)
Allocate (rv(nb))

End If
onb = nb

! Read in vector rv
Read (nin,*) rv(1:nb)

! Repeat calls to NAG routine for every dataset block rv
! until n observations have been passed

ifail = 1
Call g01anf(ind,n,rv,nb,eps,np,q,qv,nq,rcomm,lrcomm,icomm,licomm, &

ifail)
If (ifail/=0) Then

! This routine is most likely to be used to process large datasets,
! certain parameter checks will only be done once all the data has
! been processed. Calling the routine with a hard failure (IFAIL=0)
! would cause any processing to be lost as the program terminates.
! It is likely that a soft failure would be more appropriate. This
! would allow any issues with the input parameters to be resolved
! without losing any processing already carried out.

! In this small example we are just calling the routine again with
! a hard failure so that the error messages are displayed.

ifail = 0
Call g01anf(ind,n,rv,nb,eps,np,q,qv,nq,rcomm,lrcomm,icomm,licomm, &

ifail)
End If
If (ind==4) Then

Exit d_lp
End If

End Do d_lp

! Call NAG routine again to calculate quantiles specified in vector q
ind = 3
ifail = 0
Call g01anf(ind,n,rv,nb,eps,np,q,qv,nq,rcomm,lrcomm,icomm,licomm,ifail)

! Print the results
Write (nout,*) ’Input data:’
Write (nout,99999) n, ’ observations’
Write (nout,99998) ’eps = ’, eps
Write (nout,*)
Write (nout,*) ’Quantile Result’
Write (nout,99997)(q(i),qv(i),i=1,nq)

99999 Format (1X,I2,A)
99998 Format (1X,A,F5.2)
99997 Format (1X,F7.2,4X,F7.2)

End Program g01anfe

10.2 Program Data

G01ANF Example Program Data
60 0.2 : N, EPS
3 : NQ
0.25 0.5 1.0 : Q
4 : NRV
16 : 1st LRV
34.01 57.95 44.88 22.04 28.84 4.43 0.32 20.82
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20.53 13.08 7.99 54.03 23.21 26.73 39.72 0.97 : 1st RV
24 : 2nd LRV
39.05 38.78 19.38 51.34 24.08 12.41 58.11 35.90
40.38 27.41 19.80 6.02 45.33 36.34 43.14 53.84
39.49 9.04 36.74 58.72 59.95 15.41 33.05 39.54 : 2nd RV
8 : 3rd LRV
33.24 58.67 54.12 39.48 43.73 24.15 55.72 8.87 : 3rd RV
12 : 4th LRV
40.47 46.18 20.36 6.95 36.86 49.24 56.83 43.87
29.86 22.49 25.29 33.17 : 4th RV

10.3 Program Results

G01ANF Example Program Results

Input data:
60 observations
eps = 0.20

Quantile Result
0.25 22.49
0.50 36.86
1.00 59.95
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NAG Library Routine Document

G01APF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01APF finds approximate quantiles from a large arbitrary-sized data stream using an out-of-core
algorithm.

2 Specification

SUBROUTINE G01APF (IND, RV, NB, EPS, NP, Q, QV, NQ, RCOMM, LRCOMM,
ICOMM, LICOMM, IFAIL)

&

INTEGER IND, NB, NP, NQ, LRCOMM, ICOMM(LICOMM), LICOMM,
IFAIL

&

REAL (KIND=nag_wp) RV(*), EPS, Q(*), QV(*), RCOMM(LRCOMM)

3 Description

A quantile is a value which divides a frequency distribution such that there is a given proportion of data
values below the quantile. For example, the median of a dataset is the 0:5 quantile because half the
values are less than or equal to it.

G01APF uses a slightly modified version of an algorithm described in a paper by Zhang and Wang
(2007) to determine �-approximate quantiles of a large arbitrary-sized data stream of real values, where
� is a user-defined approximation factor. Let m denote the number of data elements processed so far
then, given any quantile q 2 0:0; 1:0½ �, an �-approximate quantile is defined as an element in the data
stream whose rank falls within q � �ð Þm; q þ �ð Þm½ �. In case of more than one �-approximate quantile
being available, the one closest to qm is used.

4 References

Zhang Q and Wang W (2007) A fast algorithm for approximate quantiles in high speed data streams
Proceedings of the 19th International Conference on Scientific and Statistical Database Management
IEEE Computer Society 29

5 Arguments

1: IND – INTEGER Input/Output

On initial entry: must be set to 0.

On entry: indicates the action required in the current call to G01APF.

IND ¼ 0
Initialize the communication arrays and attempt to process the first NB values from the
data stream. EPS, RV and NB must be set and LICOMM must be at least 10.

IND ¼ 1
Attempt to process the next block of NB values from the data stream. The calling program
must update RV and (if required) NB, and re-enter G01APF with all other parameters
unchanged.

IND ¼ 2
Continue calculation following the reallocation of either or both of the communication
arrays RCOMM and ICOMM.
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IND ¼ 3
Calculate the NQ �-approximate quantiles specified in Q. The calling program must set Q
and NQ and re-enter G01APF with all other parameters unchanged. This option can be
chosen only when NP � exp 1:0ð Þ=EPSd e.

On exit: indicates output from the call.

IND ¼ 1
G01APF has processed NP data points and expects to be called again with additional data.

IND ¼ 2
Either one or more of the communication arrays RCOMM and ICOMM is too small. The
new minimum lengths of RCOMM and ICOMM have been returned in ICOMMð1Þ and
ICOMMð2Þ respectively. If the new minimum length is greater than the current length then
the corresponding communication array needs to be reallocated, its contents preserved and
G01APF called again with all other parameters unchanged.

If there is more data to be processed, it is recommended that LRCOMM and LICOMM are made
significantly bigger than the minimum to limit the number of reallocations.

IND ¼ 3
G01APF has returned the requested �-approximate quantiles in QV. These quantiles are
based on NP data points.

Constraint: IND ¼ 0, 1, 2 or 3.

2: RVð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RV must be at least NB if IND ¼ 0, 1 or 2.

On entry: if IND ¼ 0, 1 or 2, the vector containing the current block of data, otherwise RV is not
referenced.

3: NB – INTEGER Input

On entry: if IND ¼ 0, 1 or 2, the size of the current block of data. The size of blocks of data in
array RV can vary; therefore NB can change between calls to G01APF.

Constraint: if IND ¼ 0, 1 or 2, NB > 0.

4: EPS – REAL (KIND=nag_wp) Input

On entry: approximation factor �.

Constraint: EPS > 0:0 and EPS � 1:0.

5: NP – INTEGER Output

On exit: m, the number of elements processed so far.

6: Qð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array Q must be at least NQ if IND ¼ 3.

On entry: if IND ¼ 3, the quantiles to be calculated, otherwise Q is not referenced. Note that
QðiÞ ¼ 0:0, corresponds to the minimum value and QðiÞ ¼ 1:0 to the maximum value.

Constraint: if IND ¼ 3, 0:0 � QðiÞ � 1:0, for i ¼ 1; 2; . . . ;NQ.

7: QVð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array QV must be at least NQ if IND ¼ 3.

On exit: if IND ¼ 3, QVðiÞ contains the �-approximate quantiles specified by the value provided
in QðiÞ.
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8: NQ – INTEGER Input

On entry: if IND ¼ 3, the number of quantiles requested, otherwise NQ is not referenced.

Constraint: if IND ¼ 3, NQ > 0.

9: RCOMMðLRCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if IND ¼ 1 or 2 then the first l elements of RCOMM as supplied to G01APF must be
identical to the first l elements of RCOMM returned from the last call to G01APF, where l is the
value of LRCOMM used in the last call. In other words, the contents of RCOMM must not be
altered between calls to this routine. If RCOMM needs to be reallocated then its contents must be
preserved. If IND ¼ 0 then RCOMM need not be set.

On exit: RCOMM holds information required by subsequent calls to G01APF

10: LRCOMM – INTEGER Input

On entry: the dimension of the array RCOMM as declared in the (sub)program from which
G01APF is called.

Constraints:

if IND ¼ 0, LRCOMM � 1;
otherwise LRCOMM � ICOMMð1Þ.

11: ICOMMðLICOMMÞ – INTEGER array Communication Array

On entry: if IND ¼ 1 or 2 then the first l elements of ICOMM as supplied to G01APF must be
identical to the first l elements of ICOMM returned from the last call to G01APF, where l is the
value of LICOMM used in the last call. In other words, the contents of ICOMM must not be
altered between calls to this routine. If ICOMM needs to be reallocated then its contents must be
preserved. If IND ¼ 0 then ICOMM need not be set.

On exit: ICOMMð1Þ holds the minimum required length for RCOMM and ICOMMð2Þ holds the
minimum required length for ICOMM. The remaining elements of ICOMM are used for
communication between subsequent calls to G01APF.

12: LICOMM – INTEGER Input

On entry: the dimension of the array ICOMM as declared in the (sub)program from which
G01APF is called.

Constraints:

if IND ¼ 0, LICOMM � 10;
otherwise LICOMM � ICOMMð2Þ.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

As an out-of-core routine G01APF will only perform certain argument checks when a data
checkpoint (including completion of data input) is signaled. As such it will usually be
inappropriate to halt program execution when an error is detected since any errors may be
subsequently resolved without losing any processing already carried out. Therefore setting IFAIL
to a value of �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IND ¼ valueh i.
Constraint: IND ¼ 0, 1, 2 or 3.

IFAIL ¼ 2

On entry, EPS ¼ valueh i.
Constraint: 0:0 < EPS � 1:0.

IFAIL ¼ 3

On entry, IND ¼ 0, 1 or 2 and NB ¼ valueh i.
Constraint: if IND ¼ 0, 1 or 2 then NB > 0.

IFAIL ¼ 4

On entry, LICOMM ¼ valueh i.
Constraint: LICOMM � 10.

IFAIL ¼ 5

On entry, LRCOMM ¼ valueh i.
Constraint: LRCOMM � 1.

IFAIL ¼ 6

The contents of ICOMM have been altered between calls to this routine.

IFAIL ¼ 7

The contents of RCOMM have been altered between calls to this routine.

IFAIL ¼ 8

Number of data elements streamed, valueh i is not sufficient for a quantile query when
EPS ¼ valueh i.
Supply more data or reprocess the data with a higher EPS value.

IFAIL ¼ 9

On entry, IND ¼ 3 and NQ ¼ valueh i.
Constraint: if IND ¼ 3 then NQ > 0.

IFAIL ¼ 10

On entry, IND ¼ 3 and Qð valueh iÞ ¼ valueh i.
Constraint: if IND ¼ 3 then 0:0 � QðiÞ � 1:0 for all i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G01APF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The average time taken by G01APF scales as NPlog 1=�log �NPð Þð Þ.
It is not possible to determine in advance the final size of the communication arrays RCOMM and
ICOMM without knowing the size of the dataset. However, if a rough size (n) is known, the speed of
the computation can be increased if the sizes of the communication arrays are not smaller than

LRCOMM ¼ log2 n� EPSþ 1:0ð Þ � 2ð Þ � 1:0=EPSd e þ 1þ xþ 2�min x; x=2:0d e þ 1ð Þ � yþ 1
LICOMM ¼ log2 n� EPSþ 1:0ð Þ � 2ð Þ � 2� 1:0=EPSd e þ 1ð Þ þ 1ð Þþ

2� xþ 2�min x; x=2:0d e þ 1ð Þ � yð Þ þ yþ 11

where

x ¼ max 1; log EPS� nð Þ=EPSb cð Þ
y ¼ log2 n=xþ 1:0ð Þ þ 1:

10 Example

This example computes a list of �-approximate quantiles. The data is processed in blocks of 20
observations at a time to simulate a situation in which the data is made available in a piecemeal fashion.

10.1 Program Text

Program g01apfe

! G01APF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01apf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps
Integer :: i, ifail, ind, licomm, lrcomm, &

ltcomm, n, nb, np, nq
Logical :: repeat
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: q(:), qv(:), rcomm(:), rv(:), &

trcomm(:)
Integer, Allocatable :: icomm(:), ticomm(:)

! .. Executable Statements ..
Write (nout,*) ’G01APF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in approximation factor
Read (nin,*) eps

! Read in number of elements in the output vector qv
Read (nin,*) nq
Allocate (qv(nq),q(nq))

! Read in vector q
Read (nin,*) q(1:nq)

lrcomm = 100
licomm = 400
nb = 20
Allocate (rcomm(lrcomm),icomm(licomm),rv(nb))

ind = 0
repeat = .True.
n = 0

m_lp: Do While (repeat)

If (ind==0 .Or. ind==1) Then
d_lp: Do i = 1, nb

Read (nin,*,Iostat=ifail) rv(i)
If (ifail/=0) Then

Exit d_lp
End If

End Do d_lp

If (i==1) Then
Exit m_lp

Else If (i-1<nb) Then
nb = i - 1
repeat = .False.

End If
n = n + nb

End If

! Call the routine
ifail = 1
Call g01apf(ind,rv,nb,eps,np,q,qv,nq,rcomm,lrcomm,icomm,licomm,ifail)
If (ifail/=0) Then

! This routine is most likely to be used to process large datasets,
! certain parameter checks will only be done once all the data has
! been processed. Calling the routine with a hard failure (IFAIL=0)
! would cause any processing to be lost as the program terminates.
! It is likely that a soft failure would be more appropriate. This
! would allow any issues with the input parameters to be resolved
! without losing any processing already carried out.

! In this small example we are just calling the routine again with
! a hard failure so that the error messages are displayed.

ifail = 0
Call g01apf(ind,rv,nb,eps,np,q,qv,nq,rcomm,lrcomm,icomm,licomm, &

ifail)
End If

! If ind=2, the communication arrays are too small.
! Allocate more memory, copy the content back to the communication
! arrays and call the routine again with the same rv
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If (ind==2) Then
If (lrcomm<icomm(1)) Then

ltcomm = lrcomm
lrcomm = icomm(1)
Allocate (trcomm(ltcomm))
trcomm(1:ltcomm) = rcomm(1:ltcomm)
Deallocate (rcomm)
Allocate (rcomm(lrcomm))
rcomm(1:ltcomm) = trcomm(1:ltcomm)
Deallocate (trcomm)

End If
If (licomm<icomm(2)) Then

ltcomm = licomm
licomm = icomm(2)
Allocate (ticomm(ltcomm))
ticomm(1:ltcomm) = icomm(1:ltcomm)
Deallocate (icomm)
Allocate (icomm(licomm))
icomm(1:ltcomm) = ticomm(1:ltcomm)
Deallocate (ticomm)

End If
End If

End Do m_lp

! Call NAG again with ind=3 to calculate quantiles specified in vector q
ind = 3
ifail = 0
Call g01apf(ind,rv,nb,eps,np,q,qv,nq,rcomm,lrcomm,icomm,licomm,ifail)

! Print the results
Write (nout,*) ’Input data:’
Write (nout,99999) n, ’ observations’
Write (nout,99998) ’eps = ’, eps
Write (nout,*)
Write (nout,*) ’Quantile Result’
Write (nout,99997)(q(i),qv(i),i=1,nq)

99999 Format (1X,I2,A)
99998 Format (1X,A,F5.2)
99997 Format (1X,F7.2,4X,F7.2)

End Program g01apfe

10.2 Program Data

G01APF Example Program Data
0.2 : EPS
3 : NQ
0.25 0.5 1.0 : Q
34.01
57.95
44.88
22.04
28.84
4.43
0.32

20.82
20.53
13.08
7.99

54.03
23.21
26.73
39.72
0.97

39.05
38.78
19.38
51.34
24.08
12.41
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58.11
35.90
40.38
27.41
19.80
6.02

45.33
36.34
43.14
53.84
39.49
9.04

36.74
58.72
59.95
15.41
33.05
39.54
33.24
58.67
54.12
39.48
43.73
24.15
55.72
8.87

40.47
46.18
20.36
6.95

36.86
49.24
56.83
43.87
29.86
22.49
25.29
33.17

10.3 Program Results

G01APF Example Program Results

Input data:
60 observations
eps = 0.20

Quantile Result
0.25 22.49
0.50 39.54
1.00 59.95
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NAG Library Routine Document

G01ARF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01ARF produces a stem and leaf display for a single sample of observations.

2 Specification

SUBROUTINE G01ARF (RANGE, PRT, N, Y, NSTEPX, NSTEPY, UNIT, PLOT, LDPLOT,
LINES, SORTY, IWORK, IFAIL)

&

INTEGER N, NSTEPX, NSTEPY, LDPLOT, LINES, IWORK(N), IFAIL
REAL (KIND=nag_wp) Y(N), UNIT, SORTY(N)
CHARACTER(1) RANGE, PRT, PLOT(LDPLOT,NSTEPX)

3 Description

G01ARF produces a stem and leaf display for a single sample of n observations. The stem and leaf
display shows data values separated into the form of a ‘stem’ and a ‘leaf’. For example, a value of 473
could be represented as 47 3 where the stem is 47 and the leaf is 3. The data is scaled using a value
known as the ‘leaf digit unit’. In the above example the leaf digit unit would be 1:0.

The following example illustrates a stem and leaf display.

For the 10 observations:

1:8 2:3 2:1 1:9 2:1 2:4 2:0 2:0 1:9 2:1

the stem and leaf display is:

1 1 8
3 1 99
5 2 00
5 2 111
2 2
2 2 3
1 2 4

where the leaf digit unit is 0:1 so that 1 8 represents 1:8 (i.e., 18� 0:1). The leaf digit unit distinguishes
between the numbers 18:0, 1:8, 0:18, etc. which may otherwise all be represented by 1 8.

Included in the above display is an initial column specifying the cumulative count of values, up to and
including that particular line, from either the top or bottom of the display, whichever is smaller. An
exception to this is when the line on which the median lies is reached, in which case the actual count of
values on that line is displayed, rather than a cumulative count, and this is highlighted by enclosing the
count in parentheses. In this case the median is 2:05 and thus falls between the two lines at which the
cumulative count has reached n=2 where n is the number of observations.

Some of the other features of the stem and leaf display are illustrated by the following two examples.

For the 30 observations:

�19:0 �3:0 �1:0 0:0 1:0 2:0 2:0 3:0 3:0 3:0
4:0 4:0 4:0 4:0 4:0 5:0 5:0 5:0 5:0 6:0
6:0 6:0 7:0 7:0 8:0 10:0 11:0 11:0 13:0 31:0

the stem and leaf display may be:

1 1. 9
1 1*
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1 -0.
3 -0* 13

15 +0* 012233344444
15 +0. 55556667788
5 1* 011
2 1. 3
1 2
1 2.
1 3 1

In the above display all the data are plotted and the leaf digit unit is 1:0. Also in this display different
leaves, that is different digits, may be plotted on a particular line. In this case we have 5 possible digits
per line, that is 2 lines per stem, and these are represented as follows:

* indicates that the line may contain the digits 0 to 4;

. indicates that the line may contain the digits 5 to 9.

Alternatively the stem and leaf display may look like:

LO -19

2 -0* 3
3 +0T 1
5 +0* 01

10 +0T 22333
( 9) +0F 444445555
11 +0* 66677
6 +0T 8
5 1* 011
2 1T 3

HI 31

Again the leaf digit unit is 1:0 but in this display just the data between the fences, which are the hinges

112� the inter-hinge range, are plotted. Any data points that fall outside the fences are presented
separately in the display under the headings LO for those points below the lower fence and HI for those
points above the upper fence.

Again in this display different leaves, that is different digits, may be plotted on a particular line.
However in this case we have 2 possible digits per line, that is 5 lines per stem, and these are
represented as follows

* indicates that the line may contain the digits 0 or 1;

T indicates that the line may contain the digits 2 or 3;

F indicates that the line may contain the digits 4 or 5;

S indicates that the line may contain the digits 6 or 7;

. indicates that the line may contain the digits 8 or 9.

A display may also allow 10 different digits (0 to 9) per line, that is 1 line per stem, or just 1 digit per
line, that is 10 lines per stem, as in the first of the three examples above.

Note that the median here is 4:5. This falls between two lines in the first display but is highlighted on
the second display since it lies on a particular line.

Finally if there are positive and negative numbers on the display these are highlighted by a þ or � sign
where the distinction is required, that is near the zero-point.

If there are too many leaves to fit in the plot width allowed, G01ARF plots as many leaves as possible
and places an asterisk to the right to indicate that some leaves are not displayed. If this occurs and you
wish to be able to plot all the leaves then the width of the plot may be adjusted.
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Options also allow the leaf unit and the height of the display to be specified by you or calculated by
G01ARF. These arguments may be used to control the type of the display you wish to obtain. Fixing the
unit and changing the height of the display may alter the number of lines used per stem, that is the
number of different digits per line. G01ARF will choose a display for the fixed unit that attempts to
make as much use of the available height as possible, thus increasing the height may allow for more
lines per stem whereas decreasing the height may force the display to use fewer lines per stem.
Similarly you may wish to fix the height and vary the leaf digit unit used on the display. See Section 9
for further details.

The display is returned in a character array with the option of printing the display.

4 References

Erickson B H and Nosanchuk T A (1985) Understanding Data Open University Press, Milton Keynes

Tukey J W (1977) Exploratory Data Analysis Addison–Wesley

Velleman P F and Hoaglin D C (1981) Applications, Basics, and Computing of Exploratory Data
Analysis Duxbury Press, Boston, MA

5 Arguments

1: RANGE – CHARACTER(1) Input

On entry: indicates whether you wish to scale the plot to the extremes of the data or to the
fences.

RANGE ¼ E
The display is a plot to the extremes, that is a plot of all the data.

RANGE ¼ F
The display is a plot of the data between the fences.

Constraint: RANGE ¼ E or F .

2: PRT – CHARACTER(1) Input

On entry: indicates whether the stem and leaf display is to be output to an external file.

PRT ¼ N
The display is not output to an external file.

PRT ¼ P
The display is output to the current advisory message unit as defined by X04ABF. Only
the first 132 characters of each line are actually printed.

Constraint: PRT ¼ P or N .

3: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

4: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n observations.

5: NSTEPX – INTEGER Input

On entry: the number of character positions to be plotted horizontally.

Constraint: NSTEPX � 35.
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6: NSTEPY – INTEGER Input

On entry: the maximum number of character positions to be plotted vertically.

If NSTEPY � 0 a suitable value will be used by G01ARF for the number of character positions
to be plotted vertically. This will clearly be less than or equal to the value of LDPLOT.

Constraint: NSTEPY � 0 or NSTEPY � 5.

7: UNIT – REAL (KIND=nag_wp) Input/Output

On entry: indicates the leaf digit unit to be used.

If UNIT > 0:0 and is not a power of ten, it will be converted to the nearest power of ten below
the input value for unit.

If UNIT � 0:0, the optimum unit will be used. This is based on the range of the data to be
plotted and the number of lines available for the display.

On exit: contains the actual unit used in the stem and leaf display.

8: PLOTðLDPLOT;NSTEPXÞ – CHARACTER(1) array Output

On exit: the stem and leaf display.

9: LDPLOT – INTEGER Input

On entry: the first dimension of the array PLOT as declared in the (sub)program from which
G01ARF is called.

Constraint: LDPLOT � max 5;NSTEPYð Þ.

10: LINES – INTEGER Output

On exit: the actual number of lines needed for the display.

11: SORTYðNÞ – REAL (KIND=nag_wp) array Output

On exit: the observations sorted into ascending order.

12: IWORKðNÞ – INTEGER array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or NSTEPX < 35,
or 0 < NSTEPY < 5,
or LDPLOT < 5,
or LDPLOT < NSTEPY.

IFAIL ¼ 2

On entry, PRT 6¼ P or N ,
or RANGE 6¼ E or F .

IFAIL ¼ 3

The number of lines needed to produce the display exceeds the maximum number of lines
allowed. You may wish to increase NSTEPY.

IFAIL ¼ 4

One of the observations is too large and causes a value to exceed the maximum integer allowed.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy is limited by the number of significant figures that may be represented on the display which
will depend on the data, the number of lines available and the unit used.

8 Parallelism and Performance

G01ARF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

G01ARF uses integer representations of the data. If very large data values are being used they should
be scaled before using this routine. The largest integer can be found by calling X02BBF.

If an asterisk is plotted at the end of a line to indicate that some leaves are not displayed you should
increase NSTEPX if they wish to be able to print the rest of the leaves on that line.

Note that if you request G01ARF to print the plot only the first 132 characters of each line are printed.
The full plot is stored in the array PLOT so you do have the option of printing a plot which has more
than 132 characters on a line.

When the leaf digit unit is set, the number of lines per stem is decided as follows:

Let r be the range of the data to be plotted:

r = largest observation – smallest observation: if all the data to both extremes are to be plotted
(that is if RANGE ¼ E ),

r = upper fence – lower fence: if only the data between the fences are to be plotted (that is if
RANGE ¼ F ).

Let l be the number of lines available for the plot:

l ¼ NSTEPY� 4 if NSTEPY > 0,

l ¼ LDPLOT� 4 if NSTEPY � 0.

The 4 lines are subtracted to allow space for the display headings. If only the data between the
fences are to be plotted then l must be further reduced to allow space to present those values
outside the fences. This will involve a minimum of another 4 lines.

Let e ¼ r=UNITð Þ þ 1

l
,

then the number of lines per stem is:

1 if 5 < e � 10; that is digits per line is 10;
2 if 2 < e � 5; that is digits per line is 5;
5 if 1 < e � 2; that is digits per line is 2;
10 if 0 < e � 1; that is digits per line is 1:

The time taken by the routine increases with n.

10 Example

A program to produce two stem and leaf displays for a sample of 30 observations. The first illustrates a
plot produced automatically by G01ARF and the second shows how to print the display under your
control.

10.1 Program Text

Program g01arfe

! G01ARF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01arf, nag_wp, x04abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: unit, unit1, unit2
Integer :: i, ifail, ldplot, lines, n, nstepx, &

nstepy, outchn
! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: sorty(:), y(:)
Integer, Allocatable :: iwork(:)
Character (1), Allocatable :: plot(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G01ARF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, unit, nstepx, nstepy

! Make sure there is more than the minimum number of lines available
! for the plot

ldplot = max(100,nstepy)

Allocate (y(n),iwork(n),sorty(n),plot(ldplot,nstepx))

! Read in data
Read (nin,*) y(1:n)

! Set advisory channel
outchn = nout
Call x04abf(iset,outchn)

! Produce and display the plot
unit1 = unit
ifail = 0
Call g01arf(’Fences’,’Print’,n,y,nstepx,nstepy,unit1,plot,ldplot,lines, &

sorty,iwork,ifail)

Write (nout,*)
Flush (nout)

! Produce the plot, without printing it
unit2 = unit
ifail = 0
Call g01arf(’Extremes’,’Noprint’,n,y,nstepx,nstepy,unit2,plot,ldplot, &

lines,sorty,iwork,ifail)

! Display the plot
Do i = 1, lines

Write (nout,99999) plot(i,1:nstepx)
End Do

99999 Format (1X,132A)
End Program g01arfe

10.2 Program Data

G01ARF Example Program Data
30 0.0 72 0
31.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 -9.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 2.0 3.0
4.0 5.0 6.0 7.0 3.0 4.0 5.0 6.0 4.0 5.0

10.3 Program Results

G01ARF Example Program Results

Stem-and-leaf display
Leaf digit unit = 1.0
1 2 represents 12.

LO -9
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3 0 11
6 0 222

10 0 3333
15 0 44444
15 0 55555
10 0 6666
6 0 777
3 0 88

HI 31

Stem-and-leaf display
Leaf digit unit = 1.0
1 2 represents 12.

1 -0. 9
1 -0*

15 +0* 11222333344444
15 +0. 55555666677788
1 1*
1 1.
1 2*
1 2.
1 3* 1
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NAG Library Routine Document

G01ASF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01ASF produces a specified number of box and whisker plots on a character printing device, with a
chosen number of character positions in each direction.

2 Specification

SUBROUTINE G01ASF (PRT, M, N, X, LDX, NSTEPX, NSTEPY, PLOT, LDPLOT,
WORK, IWORK, IFAIL)

&

INTEGER M, N(M), LDX, NSTEPX, NSTEPY, LDPLOT, IWORK(LDX),
IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), WORK(5*M)
CHARACTER(1) PRT, PLOT(LDPLOT,NSTEPX)

3 Description

G01ASF produces a series of box and whisker plots representing m data batches each of size ni, for
i ¼ 1; 2; . . . ;m. A box and whisker plot is a diagrammatic representation of the five-point summary of a
data batch. The plot consists of a box spanning the hinges with the median indicated by a third line and
two whiskers to represent the extreme values. The five-point summary is calculated internally and is
returned in the workspace array.

The plot is returned in the character array PLOT. The size of the plot may be controlled using the
arguments NSTEPX and NSTEPY. Optionally the plot can be output to an external file, in which case
output is directed to the current advisory message unit as defined by X04ABF.

An axis corresponding to the y axis is drawn and annotated and data points are plotted to the nearest
character position.

4 References

Erickson B H and Nosanchuk T A (1985) Understanding Data Open University Press, Milton Keynes

Tukey J W (1977) Exploratory Data Analysis Addison–Wesley

5 Arguments

1: PRT – CHARACTER(1) Input

On entry: indicates whether the box and whisker plot is to be output to an external file.

PRT ¼ N
The box and whisker plot is not output to an external file.

PRT ¼ P
The box and whisker plot is output to the current advisory message unit as defined by
X04ABF.

Constraint: PRT ¼ P or N .
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2: M – INTEGER Input

On entry: m, the number of data batches that are to be represented.

Constraint: M > 0.

3: NðMÞ – INTEGER array Input

On entry: NðiÞ contains the number of observations in the ith batch, ni, for i ¼ 1; 2; . . . ;m.

If ni < 5 the ith batch is omitted from the plot.

Constraint: at least one NðiÞ must be greater than or equal to 5, for i ¼ 1; 2; . . . ;m.

4: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: the ith column of X must contain the data for the ith batch, that is Xðj; iÞ must contain
the jth observation of the ith batch, for i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; ni.

5: LDX – INTEGER Input

On entry: the first dimension of the array X and the dimension of the array IWORK as declared
in the (sub)program from which G01ASF is called.

Constraint: LDX � max NðiÞf g.

6: NSTEPX – INTEGER Input

On entry: the number of character positions to be plotted in the x-direction.

Constraint: NSTEPX � max 19; 15�M=4þ 9ð Þð Þ.

7: NSTEPY – INTEGER Input

On entry: the number of character positions to be plotted in the y-direction.

Constraint: NSTEPY � 9.

8: PLOTðLDPLOT;NSTEPXÞ – CHARACTER(1) array Output

On exit: contains the box and whisker plots.

9: LDPLOT – INTEGER Input

On entry: the first dimension of the array PLOT as declared in the (sub)program from which
G01ASF is called.

Constraint: LDPLOT � NSTEPY.

10: WORKð5�MÞ – REAL (KIND=nag_wp) array Output

On exit: WORKðjÞ, for j ¼ i� 1ð Þ � 5þ 1; . . . ; i� 1ð Þ � 5þ 5, contains the five-point summary
of the ith batch.

11: IWORKðLDXÞ – INTEGER array Workspace

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NðiÞ < 5 for some i, for i ¼ 1; 2; . . . ;m. For each batch where this occurs, 5 crosses are
plotted in a vertical line to indicate that insufficient data was provided to produce a five-point
summary and box-plot for that particular batch.

IFAIL ¼ 2

On entry, NSTEPX < max 19; 15�M=4þ 9ð Þ. This indicates that the data region defined by
NSTEPX is too small to produce the required plot.

IFAIL ¼ 3

On entry, NSTEPY < 9.

IFAIL ¼ 4

On entry, LDPLOT < NSTEPY.

IFAIL ¼ 5

On entry, PRT 6¼ P or N .

IFAIL ¼ 6

On entry, LDX < max NðiÞð Þ, for i ¼ 1; 2; . . . ;m.

IFAIL ¼ 7

The number of observations in all batches is less than 5.

IFAIL ¼ 8

On entry, the data values are all identical.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

If the range of observations in a particular batch is too small to allow each item of the five-point
summary to be plotted separately, then a sequence of stars are plotted at the median point of the batch
to indicate that the full box-plot could not be plotted.

8 Parallelism and Performance

G01ASF is not threaded in any implementation.

9 Further Comments

The time taken by G01ASF increases with m and ni, for i ¼ 1; 2; . . . ;m.

10 Example

The following program produces a box and whisker plot for each one of 5 data batches of sizes 5, 6, 8,
8 and 7 respectively and prints the 5 box and whisker plots on the current advisory message unit.

10.1 Program Text

Program g01asfe

! G01ASF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01asf, nag_wp, x04abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, j, ldplot, ldx, m, nstepx, &

nstepy, outchn
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: work(:), x(:,:)
Integer, Allocatable :: iwork(:), n(:)
Character (1), Allocatable :: plot(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: maxval

! .. Executable Statements ..
Write (nout,*) ’G01ASF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) m, nstepx, nstepy

ldplot = nstepy
Allocate (n(m))

! Read in number of observations in each batch
Read (nin,*) n(1:m)

ldx = maxval(n(1:m))
Allocate (iwork(ldx),x(ldx,m),work(5*m),plot(ldplot,nstepx))

! Read in data
Read (nin,*)(x(1:n(j),j),j=1,m)

! Set advisory channel
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outchn = nout
Call x04abf(iset,outchn)

! Produce the plot
ifail = 0
Call g01asf(’Print’,m,n,x,ldx,nstepx,nstepy,plot,ldplot,work,iwork, &

ifail)

End Program g01asfe

10.2 Program Data

G01ASF Example Program Data
5 55 21 : M, NSTEPX, NSTEPY
5 6 8 8 7 : N(i)
-9.0 -7.3 -4.9 -2.4 -0.6
-5.6 12.0 -9.0 -3.9 -2.4 -7.3
-9.0 12.0 -6.0 -3.0 0.0 3.0 6.0 9.0
12.0 10.0 10.0 8.0 6.0 4.0 4.0 -9.0
-5.0 8.0 1.5 -3.2 -3.2 6.2 6.2 :X(i,j)

10.3 Program Results

G01ASF Example Program Results

0.1E+02+ --- --- ---
: : : :
: : : -----

0.8E+01+ : : : :
: : ----- : : ---
: : : : :---: :
: : : : : : -----

0.4E+01+ : : : : : : :
: : : : ----- : :
: : : : : : :
: : :---: : :---:
: : : : : : :

-0.6E+00+ --- : : : : : :
: : : : : : : :
: ----- ----- : : : -----
: : : : : : : : :

-0.5E+01+ :---: :---: ----- : ---
: : : : : : :
: ----- ----- : :
: : : : :

-0.9E+01+ --- --- --- ---
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NAG Library Routine Document

G01ATF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01ATF calculates the mean, standard deviation, coefficients of skewness and kurtosis, and the
maximum and minimum values for a set of (optionally weighted) data. The input data can be split into
arbitrary sized blocks, allowing large datasets to be summarised.

2 Specification

SUBROUTINE G01ATF (NB, X, IWT, WT, PN, XMEAN, XSD, XSKEW, XKURT, XMIN,
XMAX, RCOMM, IFAIL)

&

INTEGER NB, IWT, PN, IFAIL
REAL (KIND=nag_wp) X(NB), WT(*), XMEAN, XSD, XSKEW, XKURT, XMIN, XMAX,

RCOMM(20)
&

3 Description

Given a sample of n observations, denoted by x ¼ xi : i ¼ 1; 2; . . . ; nf g and a set of non-negative
weights, w ¼ wi : i ¼ 1; 2; . . . ; nf g, G01ATF calculates a number of quantities:

(a) Mean

�x ¼

Xn
i¼1
wixi

W
; where W ¼

Xn
i¼1
wi:

(b) Standard deviation

s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wi xi � �xð Þ2

d

vuuut
; where d ¼ W �

Xn
i¼1
w2
i

W
:

(c) Coefficient of skewness

s3 ¼

Xn
i¼1
wi xi � �xð Þ3

ds32
:

(d) Coefficient of kurtosis

s4 ¼

Xn
i¼1
wi xi � �xð Þ4

ds42
� 3:

(e) Maximum and minimum elements, with wi 6¼ 0.

These quantities are calculated using the one pass algorithm of West (1979).

For large datasets, or where all the data is not available at the same time, x and w can be split into
arbitrary sized blocks and G01ATF called multiple times.

G01 – Simple Calculations on Statistical Data G01ATF

Mark 26 G01ATF.1



4 References

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555

5 Arguments

1: NB – INTEGER Input

On entry: b, the number of observations in the current block of data. The size of the block of data
supplied in X and WT can vary; therefore NB can change between calls to G01ATF.

Constraint: NB � 0.

2: XðNBÞ – REAL (KIND=nag_wp) array Input

On entry: the current block of observations, corresponding to xi, for i ¼ kþ 1; . . . ; kþ b, where
k is the number of observations processed so far and b is the size of the current block of data.

3: IWT – INTEGER Input

On entry: indicates whether user-supplied weights are provided:

IWT ¼ 1
User-supplied weights are given in the array WT.

IWT ¼ 0
wi ¼ 1, for all i, so no user-supplied weights are given and WT is not referenced.

Constraint: IWT ¼ 0 or 1.

4: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least NB if IWT ¼ 1.

On entry: if IWT ¼ 1, WT must contain the user-supplied weights corresponding to the block of
data supplied in X, that is wi, for i ¼ kþ 1; . . . ; kþ b.
Constraint: if IWT ¼ 1, WTðiÞ � 0, for i ¼ 1; 2; . . . ;NB.

5: PN – INTEGER Input/Output

On entry: the number of valid observations processed so far, that is the number of observations
with wi > 0, for i ¼ 1; 2; . . . ; k. On the first call to G01ATF, or when starting to summarise a new
dataset, PN must be set to 0.

If PN 6¼ 0, it must be the same value as returned by the last call to G01ATF.

On exit: the updated number of valid observations processed, that is the number of observations
with wi > 0, for i ¼ 1; 2; . . . ; kþ b.
Constraint: PN � 0.

6: XMEAN – REAL (KIND=nag_wp) Output

On exit: �x, the mean of the first kþ b observations.

7: XSD – REAL (KIND=nag_wp) Output

On exit: s2, the standard deviation of the first kþ b observations.

8: XSKEW – REAL (KIND=nag_wp) Output

On exit: s3, the coefficient of skewness for the first kþ b observations.
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9: XKURT – REAL (KIND=nag_wp) Output

On exit: s4, the coefficient of kurtosis for the first kþ b observations.

10: XMIN – REAL (KIND=nag_wp) Output

On exit: the smallest value in the first kþ b observations.

11: XMAX – REAL (KIND=nag_wp) Output

On exit: the largest value in the first kþ b observations.

12: RCOMMð20Þ – REAL (KIND=nag_wp) array Communication Array

On entry: communication array, used to store information between calls to G01ATF. If PN ¼ 0,
RCOMM need not be initialized, otherwise it must be unchanged since the last call to this
routine.

On exit: the updated communication array. The first five elements of RCOMM hold information
that may be of interest with

RCOMMð1Þ ¼
Xkþb
i¼1
wi

RCOMMð2Þ ¼
Xkþb
i¼1
wi

 !2

�
Xkþb
i¼1
w2
i

RCOMMð3Þ ¼
Xkþb
i¼1
wi xi � �xð Þ2

RCOMMð4Þ ¼
Xkþb
i¼1
wi xi � �xð Þ3

RCOMMð5Þ ¼
Xkþb
i¼1
wi xi � �xð Þ4

the remaining elements of RCOMM are used for workspace and so are undefined.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, NB ¼ valueh i.
Constraint: NB � 0.
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IFAIL ¼ 31

On entry, IWT ¼ valueh i.
Constraint: IWT ¼ 0 or 1.

IFAIL ¼ 41

On entry, WTð valueh iÞ ¼ valueh i.
Constraint: if IWT ¼ 1 then WTðiÞ � 0, for i ¼ 1; 2; . . . ;NB.

IFAIL ¼ 51

On entry, PN ¼ valueh i.
Constraint: PN � 0.

IFAIL ¼ 52

On entry, PN ¼ valueh i.
On exit from previous call, PN ¼ valueh i.
Constraint: if PN > 0, PN must be unchanged since previous call.

IFAIL ¼ 53

On entry, the number of valid observations is zero.

IFAIL ¼ 71

On exit we were unable to calculate XSKEW or XKURT. A value of 0 has been returned.

IFAIL ¼ 72

On exit we were unable to calculate XSD, XSKEW or XKURT. A value of 0 has been returned.

IFAIL ¼ 121

RCOMM has been corrupted between calls.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G01ATF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Both G01ATF and G01AUF consolidate results from multiple summaries. Whereas the former can only
be used to combine summaries calculated sequentially, the latter combines summaries calculated in an
arbitrary order allowing, for example, summaries calculated on different processing units to be
combined.

10 Example

This example summarises some simulated data. The data is supplied in three blocks, the first consisting
of 21 observations, the second 51 observations and the last 28 observations.

10.1 Program Text

Program g01atfe
! G01ATF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01atf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xkurt, xmax, xmean, xmin, xsd, xskew
Integer :: b, i, ierr, ifail, iwt, nb, pn

! .. Local Arrays ..
Real (Kind=nag_wp) :: rcomm(20)
Real (Kind=nag_wp), Allocatable :: wt(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’G01ATF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Initialize the number of valid observations processed so far
pn = 0

! Loop over each block of data
b = 0
Do

! Read in the number of observations in this block and the weight flag
Read (nin,*,Iostat=ierr) nb, iwt
If (ierr/=0) Then

Exit
End If

! Keep a running total of the number of blocks of data
b = b + 1

! Allocate X to the required size
Allocate (x(nb))

! Read in the data for this block
If (iwt==0) Then

Allocate (wt(0))
Read (nin,*) x(1:nb)

Else
Allocate (wt(nb))
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Read (nin,*)(x(i),wt(i),i=1,nb)
End If

! IFAIL = 53, 71 or 72 are warnings and return valid information in some
! fields, so we don’t want to terminate on any nonzero IFAIL. Therefore
! we set the flag for a quiet exit

ifail = 1

! Update the summaries for this block of data
Call g01atf(nb,x,iwt,wt,pn,xmean,xsd,xskew,xkurt,xmin,xmax,rcomm, &

ifail)
If (ifail/=0 .And. ifail/=71 .And. ifail/=72 .And. ifail/=53) Then

Write (nout,*) ’G01ATF failed with IFAIL = ’, ifail
Exit

End If

Deallocate (x,wt)
End Do

If (ifail==0 .Or. ifail==71 .Or. ifail==72 .Or. ifail==53) Then
! Display the results

Write (nout,99999) ’Data supplied in ’, b, ’ blocks’
If (ifail==53) Then

Write (nout,*) &
’No valid observations supplied. All weights are zero.’

Else
Write (nout,99997) pn, ’valid observations’
Write (nout,99998) ’Mean ’, xmean
If (ifail==72) Then

Write (nout,*) &
’ Unable to calculate the standard deviation, skewness or ’, &
’kurtosis’

Else
Write (nout,99998) ’Std devn ’, xsd
If (ifail==71) Then

Write (nout,*) ’ Unable to calculate the skewness or kurtosis’
Else

Write (nout,99998) ’Skewness ’, xskew
Write (nout,99998) ’Kurtosis ’, xkurt

End If
End If
Write (nout,99998) ’Minimum ’, xmin
Write (nout,99998) ’Maximum ’, xmax

End If
End If

99999 Format (1X,A,I0,A)
99998 Format (1X,A,F13.2)
99997 Format (1X,I0,1X,A)

End Program g01atfe

10.2 Program Data

G01ATF Example Program Data
21 1 :: NB,IWT (1st block)
-0.62 4.91 -1.92 0.25
-1.72 3.90 -6.35 3.75
2.00 1.17 7.65 3.19
6.15 2.66 3.81 0.02
4.87 3.59 -0.51 3.63
6.88 4.83 -5.85 3.72

-0.72 1.72 0.66 0.78
2.23 4.74 -1.61 1.72

-0.15 3.94 -1.15 1.33
-8.74 0.51 -3.94 2.40
3.61 3.90 :: End of X,WT for 1st block
51 0 :: NB,IWT (2nd block)

-0.66 -2.39 -6.25 1.23 2.27 -2.27
10.12 8.29 -2.99 8.71 -0.74 0.02
1.22 1.70 4.30 2.99 -0.83 -1.00

G01ATF NAG Library Manual

G01ATF.6 Mark 26



6.57 2.32 -3.47 -1.41 -5.26 0.53
1.80 4.79 -3.04 1.20 -3.21 -3.75
0.86 1.27 -5.95 -5.27 1.63 3.59

-0.01 -1.38 -4.71 -4.82 3.55 0.46
2.57 1.76 -4.05 1.23 -1.99 3.20

-0.65 8.42 -6.01 :: End of X for 2nd block
28 0 :: NB,IWT (3rd block)
1.13 -8.86 5.92 -1.71 -3.99 6.57

-2.01 -2.29 -1.11 7.14 4.84 -4.44
-3.32 10.25 -2.11 8.02 -7.31 2.80
-1.20 1.01 1.37 -2.28 1.28 -3.95
3.43 -0.61 4.85 -0.11 :: End of X for 3rd block

10.3 Program Results

G01ATF Example Program Results

Data supplied in 3 blocks
100 valid observations
Mean 0.51
Std devn 4.24
Skewness 0.18
Kurtosis -0.59
Minimum -8.86
Maximum 10.25
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NAG Library Routine Document

G01AUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01AUF combines sets of summaries produced by G01ATF.

2 Specification

SUBROUTINE G01AUF (B, MRCOMM, PN, XMEAN, XSD, XSKEW, XKURT, XMIN, XMAX,
RCOMM, IFAIL)

&

INTEGER B, PN, IFAIL
REAL (KIND=nag_wp) MRCOMM(20,B), XMEAN, XSD, XSKEW, XKURT, XMIN, XMAX,

RCOMM(20)
&

3 Description

Assume a dataset containing n observations, denoted by x ¼ xi : i ¼ 1; 2; . . . ; nf g and a set of weights,
w ¼ wi : i ¼ 1; 2; . . . ; nf g, has been split into b blocks, and each block summarised via a call to
G01ATF. Then G01AUF takes the b communication arrays returned by G01ATF and returns the mean
(�x), standard deviation (s2), coefficients of skewness (s3) and kurtosis (s4), and the maximum and
minimum values for the whole dataset.

For a definition of �x; s2; s3 and s4 see Section 3 in G01ATF.

4 References

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555

5 Arguments

1: B – INTEGER Input

On entry: b, the number of blocks the full dataset was split into.

Constraint: B � 1.

2: MRCOMMð20;BÞ – REAL (KIND=nag_wp) array Communication Array

On entry: the jth column of MRCOMM must contain the information returned in RCOMM from
one of the runs of G01ATF.

3: PN – INTEGER Output

On exit: the number of valid observations, that is the number of observations with wi > 0, for
i ¼ 1; 2; . . . ; n.

4: XMEAN – REAL (KIND=nag_wp) Output

On exit: �x, the mean.

5: XSD – REAL (KIND=nag_wp) Output

On exit: s2, the standard deviation.
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6: XSKEW – REAL (KIND=nag_wp) Output

On exit: s3, the coefficient of skewness.

7: XKURT – REAL (KIND=nag_wp) Output

On exit: s4, the coefficient of kurtosis.

8: XMIN – REAL (KIND=nag_wp) Output

On exit: the smallest value.

9: XMAX – REAL (KIND=nag_wp) Output

On exit: the largest value.

10: RCOMMð20Þ – REAL (KIND=nag_wp) array Communication Array

On exit: an amalgamation of the information held in MRCOMM. This is in the same format as
RCOMM from G01ATF.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, B ¼ valueh i.
Constraint: B � 1.

IFAIL ¼ 21

On entry, MRCOMM is not in the expected format.

IFAIL ¼ 31

On entry, the number of valid observations is zero.

IFAIL ¼ 51

On exit we were unable to calculate XSKEW or XKURT. A value of 0 has been returned.

IFAIL ¼ 52

On exit we were unable to calculate XSD, XSKEW or XKURT. A value of 0 has been returned.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G01AUF is not threaded in any implementation.

9 Further Comments

The order that the b communication arrays are stored in MRCOMM is arbitrary. Different orders can
lead to slightly different results due to numerical accuracy of floating-point calculations.

Both G01AUF and G01ATF consolidate results from multiple summaries. Whereas the former can only
be used to combine summaries calculated sequentially, the latter combines summaries calculated in an
arbitrary order allowing, for example, summaries calculated on different processing units to be
combined.

10 Example

This example summarises some simulated data. The data is supplied in three blocks, the first consisting
of 21 observations, the second 51 observations and the last 28 observations. Summaries are produced
for each block of data separately and then an overall summary is produced.

10.1 Program Text

Program g01aufe
! G01AUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01atf, g01auf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xkurt, xmax, xmean, xmin, xsd, xskew
Integer :: b, i, ifail, iwt, j, nb, pn

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: mrcomm(:,:), wt(:), x(:)
Real (Kind=nag_wp) :: rcomm(20)

! .. Executable Statements ..
Write (nout,*) ’G01AUF Example Program Results’
Write (nout,*)
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! Skip heading in data file
Read (nin,*)

! Read in the number of block of data we have
Read (nin,*) b

Allocate (mrcomm(20,b))

! Loop over each block of data
Do i = 1, b

! Read in the number of observations in this block and the weight flag
Read (nin,*) nb, iwt

! Allocate X to the required size
Allocate (x(nb))

! Read in the data for this block
If (iwt==0) Then

Allocate (wt(0))
Read (nin,*) x(1:nb)

Else
Allocate (wt(nb))
Read (nin,*)(x(j),wt(j),j=1,nb)

End If

! IFAIL = 53, 71 or 72 are warnings and so we don’t want to terminate
! on any nonzero IFAIL. Therefore we set the flag for a quiet exit

ifail = 1

! Summarise this block of data
pn = 0
Call g01atf(nb,x,iwt,wt,pn,xmean,xsd,xskew,xkurt,xmin,xmax, &

mrcomm(1:20,i),ifail)
If (ifail/=0 .And. ifail/=71 .And. ifail/=72 .And. ifail/=53) Then

Write (nout,*) ’G01ATF failed with IFAIL = ’, ifail
Exit

End If

! Display the results for this block
Write (nout,99999) ’Summary for block ’, i
If (ifail==53) Then

Write (nout,*) &
’No valid observations supplied. All weights are zero.’

Else
Write (nout,99997) pn, ’valid observations’
Write (nout,99998) ’ Mean ’, xmean
If (ifail==72) Then

Write (nout,*) &
’ Unable to calculate the standard deviation, skewness or ’, &
’kurtosis’

Else
Write (nout,99998) ’ Std devn ’, xsd
If (ifail==71) Then

Write (nout,*) ’ Unable to calculate the skewness or kurtosis’
Else

Write (nout,99998) ’ Skewness ’, xskew
Write (nout,99998) ’ Kurtosis ’, xkurt

End If
End If
Write (nout,99998) ’ Minimum ’, xmin
Write (nout,99998) ’ Maximum ’, xmax

End If
Write (nout,*)

Deallocate (x,wt)
End Do

If (ifail==0 .Or. ifail==71 .Or. ifail==72 .Or. ifail==53) Then
! Combine the summaries across all the blocks

Call g01auf(b,mrcomm,pn,xmean,xsd,xskew,xkurt,xmin,xmax,rcomm,ifail)
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! Display the combined results
Write (nout,99999) ’Summary for the combined data’
If (ifail==53) Then

Write (nout,*) &
’No valid observations supplied. All weights are zero.’

Else
Write (nout,99997) pn, ’valid observations’
Write (nout,99998) ’ Mean ’, xmean
If (ifail==72) Then

Write (nout,*) &
’ Unable to calculate the standard deviation, skewness and ’, &
’kurtosis’

Else
Write (nout,99998) ’ Std devn ’, xsd
If (ifail==71) Then

Write (nout,*) ’ Unable to calculate the skewness and kurtosis’
Else

Write (nout,99998) ’ Skewness ’, xskew
Write (nout,99998) ’ Kurtosis ’, xkurt

End If
End If
Write (nout,99998) ’ Minimum ’, xmin
Write (nout,99998) ’ Maximum ’, xmax

End If
End If

99999 Format (1X,A,I0,A)
99998 Format (1X,A,F13.2)
99997 Format (1X,I0,1X,A)

End Program g01aufe

10.2 Program Data

G01AUF Example Program Data
3 :: B
21 1 :: NB,IWT (1st block)
-0.62 4.91 -1.92 0.25
-1.72 3.90 -6.35 3.75
2.00 1.17 7.65 3.19
6.15 2.66 3.81 0.02
4.87 3.59 -0.51 3.63
6.88 4.83 -5.85 3.72

-0.72 1.72 0.66 0.78
2.23 4.74 -1.61 1.72

-0.15 3.94 -1.15 1.33
-8.74 0.51 -3.94 2.40
3.61 3.90 :: End of X,WT for 1st block
51 0 :: NB,IWT (2nd block)

-0.66 -2.39 -6.25 1.23 2.27 -2.27
10.12 8.29 -2.99 8.71 -0.74 0.02
1.22 1.70 4.30 2.99 -0.83 -1.00
6.57 2.32 -3.47 -1.41 -5.26 0.53
1.80 4.79 -3.04 1.20 -3.21 -3.75
0.86 1.27 -5.95 -5.27 1.63 3.59

-0.01 -1.38 -4.71 -4.82 3.55 0.46
2.57 1.76 -4.05 1.23 -1.99 3.20

-0.65 8.42 -6.01 :: End of X for 2nd block
28 0 :: NB,IWT (3rd block)
1.13 -8.86 5.92 -1.71 -3.99 6.57

-2.01 -2.29 -1.11 7.14 4.84 -4.44
-3.32 10.25 -2.11 8.02 -7.31 2.80
-1.20 1.01 1.37 -2.28 1.28 -3.95
3.43 -0.61 4.85 -0.11 :: End of X for 3rd block
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10.3 Program Results

G01AUF Example Program Results

Summary for block 1
21 valid observations

Mean 0.73
Std devn 4.40
Skewness -0.05
Kurtosis -1.00
Minimum -8.74
Maximum 7.65

Summary for block 2
51 valid observations

Mean 0.28
Std devn 3.96
Skewness 0.46
Kurtosis -0.16
Minimum -6.25
Maximum 10.12

Summary for block 3
28 valid observations

Mean 0.48
Std devn 4.65
Skewness 0.19
Kurtosis -0.58
Minimum -8.86
Maximum 10.25

Summary for the combined data
100 valid observations

Mean 0.51
Std devn 4.24
Skewness 0.18
Kurtosis -0.59
Minimum -8.86
Maximum 10.25
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NAG Library Routine Document

G01BJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01BJF returns the lower tail, upper tail and point probabilities associated with a binomial distribution.

2 Specification

SUBROUTINE G01BJF (N, P, K, PLEK, PGTK, PEQK, IFAIL)

INTEGER N, K, IFAIL
REAL (KIND=nag_wp) P, PLEK, PGTK, PEQK

3 Description

Let X denote a random variable having a binomial distribution with parameters n and p (n � 0 and
0 < p < 1). Then

Prob X ¼ kf g ¼ n
k

� �
pk 1� pð Þn�k; k ¼ 0; 1; . . . ; n:

The mean of the distribution is np and the variance is np 1� pð Þ.
G01BJF computes for given n, p and k the probabilities:

PLEK ¼ Prob X � kf g
PGTK ¼ Prob X > kf g
PEQK ¼ Prob X ¼ kf g:

The method is similar to the method for the Poisson distribution described in KnÏsel (1986).

4 References

KnÏsel L (1986) Computation of the chi-square and Poisson distribution SIAM J. Sci. Statist. Comput. 7
1022–1036

5 Arguments

1: N – INTEGER Input

On entry: the parameter n of the binomial distribution.

Constraint: N � 0.

2: P – REAL (KIND=nag_wp) Input

On entry: the parameter p of the binomial distribution.

Constraint: 0:0 < P < 1:0.

3: K – INTEGER Input

On entry: the integer k which defines the required probabilities.

Constraint: 0 � K � N.
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4: PLEK – REAL (KIND=nag_wp) Output

On exit: the lower tail probability, Prob X � kf g.

5: PGTK – REAL (KIND=nag_wp) Output

On exit: the upper tail probability, Prob X > kf g.

6: PEQK – REAL (KIND=nag_wp) Output

On exit: the point probability, Prob X ¼ kf g.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 0.

IFAIL ¼ 2

On entry, P � 0:0,
or P � 1:0.

IFAIL ¼ 3

On entry, K < 0,
or K > N.

IFAIL ¼ 4

On entry, N is too large to be represented exactly as a real number.

IFAIL ¼ 5

On entry, the variance ( ¼ np 1� pð Þ) exceeds 106.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Results are correct to a relative accuracy of at least 10�6 on machines with a precision of 9 or more
decimal digits, and to a relative accuracy of at least 10�3 on machines of lower precision (provided that
the results do not underflow to zero).

8 Parallelism and Performance

G01BJF is not threaded in any implementation.

9 Further Comments

The time taken by G01BJF depends on the variance ( ¼ np 1� pð Þ) and on k. For given variance, the
time is greatest when k � np ( ¼ the mean), and is then approximately proportional to the square-root
of the variance.

10 Example

This example reads values of n and p from a data file until end-of-file is reached, and prints the
corresponding probabilities.

10.1 Program Text

Program g01bjfe

! G01BJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01bjf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, peqk, pgtk, plek
Integer :: ifail, k, n

! .. Executable Statements ..
Write (nout,*) ’G01BJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ N P K PLEK PGTK PEQK’
Write (nout,*)

! Loop over all data
d_lp: Do

Read (nin,*,Iostat=ifail) n, p, k
If (ifail/=0) Then

! All data processed
Exit d_lp

End If

! Calculate probability
ifail = 0
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Call g01bjf(n,p,k,plek,pgtk,peqk,ifail)

! Display results
Write (nout,99999) n, p, k, plek, pgtk, peqk

End Do d_lp

99999 Format (1X,I4,F8.3,I5,3F10.5)
End Program g01bjfe

10.2 Program Data

G01BJF Example Program Data
4 0.50 2 : N, P, K

19 0.44 13
100 0.75 67

2000 0.33 700

10.3 Program Results

G01BJF Example Program Results

N P K PLEK PGTK PEQK

4 0.500 2 0.68750 0.31250 0.37500
19 0.440 13 0.99138 0.00862 0.01939

100 0.750 67 0.04460 0.95540 0.01700
2000 0.330 700 0.97251 0.02749 0.00312
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NAG Library Routine Document

G01BKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01BKF returns the lower tail, upper tail and point probabilities associated with a Poisson distribution.

2 Specification

SUBROUTINE G01BKF (RLAMDA, K, PLEK, PGTK, PEQK, IFAIL)

INTEGER K, IFAIL
REAL (KIND=nag_wp) RLAMDA, PLEK, PGTK, PEQK

3 Description

Let X denote a random variable having a Poisson distribution with parameter � > 0ð Þ. Then

Prob X ¼ kf g ¼ e���
k

k!
; k ¼ 0; 1; 2; . . .

The mean and variance of the distribution are both equal to �.

G01BKF computes for given � and k the probabilities:

PLEK ¼ Prob X � kf g
PGTK ¼ Prob X > kf g
PEQK ¼ Prob X ¼ kf g:

The method is described in KnÏsel (1986).

4 References

KnÏsel L (1986) Computation of the chi-square and Poisson distribution SIAM J. Sci. Statist. Comput. 7
1022–1036

5 Arguments

1: RLAMDA – REAL (KIND=nag_wp) Input

On entry: the parameter � of the Poisson distribution.

Constraint: 0:0 < RLAMDA � 106.

2: K – INTEGER Input

On entry: the integer k which defines the required probabilities.

Constraint: K � 0.

3: PLEK – REAL (KIND=nag_wp) Output

On exit: the lower tail probability, Prob X � kf g.

4: PGTK – REAL (KIND=nag_wp) Output

On exit: the upper tail probability, Prob X > kf g.
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5: PEQK – REAL (KIND=nag_wp) Output

On exit: the point probability, Prob X ¼ kf g.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, RLAMDA � 0:0.

IFAIL ¼ 2

On entry, K < 0.

IFAIL ¼ 3

On entry, RLAMDA > 106.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Results are correct to a relative accuracy of at least 10�6 on machines with a precision of 9 or more
decimal digits, and to a relative accuracy of at least 10�3 on machines of lower precision (provided that
the results do not underflow to zero).

8 Parallelism and Performance

G01BKF is not threaded in any implementation.
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9 Further Comments

The time taken by G01BKF depends on � and k. For given �, the time is greatest when k � �, and is
then approximately proportional to

ffiffiffi
�
p

.

10 Example

This example reads values of � and k from a data file until end-of-file is reached, and prints the
corresponding probabilities.

10.1 Program Text

Program g01bkfe

! G01BKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01bkf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: peqk, pgtk, plek, rlamda
Integer :: ifail, k

! .. Executable Statements ..
Write (nout,*) ’G01BKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ RLAMDA K PLEK PGTK PEQK’
Write (nout,*)

! Loop over all data
d_lp: Do

Read (nin,*,Iostat=ifail) rlamda, k
If (ifail/=0) Then

! All data processed
Exit d_lp

End If

! Calculate probability
ifail = 0
Call g01bkf(rlamda,k,plek,pgtk,peqk,ifail)

! Display results
Write (nout,99999) rlamda, k, plek, pgtk, peqk

End Do d_lp

99999 Format (1X,F10.3,I6,3F10.5)
End Program g01bkfe

10.2 Program Data

G01BKF Example Program Data
0.75 3 : RLAMDA, K
9.20 12

34.00 25
175.00 175
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10.3 Program Results

G01BKF Example Program Results

RLAMDA K PLEK PGTK PEQK

0.750 3 0.99271 0.00729 0.03321
9.200 12 0.86074 0.13926 0.07755

34.000 25 0.06736 0.93264 0.02140
175.000 175 0.52009 0.47991 0.03014
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NAG Library Routine Document

G01BLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01BLF returns the lower tail, upper tail and point probabilities associated with a hypergeometric
distribution.

2 Specification

SUBROUTINE G01BLF (N, L, M, K, PLEK, PGTK, PEQK, IFAIL)

INTEGER N, L, M, K, IFAIL
REAL (KIND=nag_wp) PLEK, PGTK, PEQK

3 Description

Let X denote a random variable having a hypergeometric distribution with parameters n, l and m
(n � l � 0, n � m � 0). Then

Prob X ¼ kf g ¼

m
k

� �
n�m
l� k

� �
n
l

� � ;

where max 0; l� n�mð Þð Þ � k � min l;mð Þ, 0 � l � n and 0 � m � n.
The hypergeometric distribution may arise if in a population of size n a number m are marked. From
this population a sample of size l is drawn and of these k are observed to be marked.

The mean of the distribution ¼ lm
n

, and the variance ¼ lm n� lð Þ n�mð Þ
n2 n� 1ð Þ .

G01BLF computes for given n, l, m and k the probabilities:

PLEK ¼ Prob X � kf g
PGTK ¼ Prob X > kf g
PEQK ¼ Prob X ¼ kf g:

The method is similar to the method for the Poisson distribution described in KnÏsel (1986).

4 References

KnÏsel L (1986) Computation of the chi-square and Poisson distribution SIAM J. Sci. Statist. Comput. 7
1022–1036

5 Arguments

1: N – INTEGER Input

On entry: the parameter n of the hypergeometric distribution.

Constraint: N � 0.
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2: L – INTEGER Input

On entry: the parameter l of the hypergeometric distribution.

Constraint: 0 � L � N.

3: M – INTEGER Input

On entry: the parameter m of the hypergeometric distribution.

Constraint: 0 � M � N.

4: K – INTEGER Input

On entry: the integer k which defines the required probabilities.

Constraint: max 0;L� N�Mð Þð Þ � K � min L;Mð Þ.

5: PLEK – REAL (KIND=nag_wp) Output

On exit: the lower tail probability, Prob X � kf g.

6: PGTK – REAL (KIND=nag_wp) Output

On exit: the upper tail probability, Prob X > kf g.

7: PEQK – REAL (KIND=nag_wp) Output

On exit: the point probability, Prob X ¼ kf g.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 0.

IFAIL ¼ 2

On entry, L < 0,
or L > N.

IFAIL ¼ 3

On entry, M < 0,
or M > N.
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IFAIL ¼ 4

On entry, K < 0,
or K > L,
or K > M,
or K < LþM� N.

IFAIL ¼ 5

On entry, N is too large to be represented exactly as a real number.

IFAIL ¼ 6

On entry, the variance (see Section 3) exceeds 106.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Results are correct to a relative accuracy of at least 10�6 on machines with a precision of 9 or more
decimal digits, and to a relative accuracy of at least 10�3 on machines of lower precision (provided that
the results do not underflow to zero).

8 Parallelism and Performance

G01BLF is not threaded in any implementation.

9 Further Comments

The time taken by G01BLF depends on the variance (see Section 3) and on k. For given variance, the
time is greatest when k � lm=n (¼ the mean), and is then approximately proportional to the square-root
of the variance.

10 Example

This example reads values of n, l, m and k from a data file until end-of-file is reached, and prints the
corresponding probabilities.

10.1 Program Text

Program g01blfe

! G01BLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: g01blf, nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: peqk, pgtk, plek
Integer :: ifail, k, l, m, n

! .. Executable Statements ..
Write (nout,*) ’G01BLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ N L M K PLEK PGTK PEQK’
Write (nout,*)

! Loop over all dta
d_lp: Do

Read (nin,*,Iostat=ifail) n, l, m, k
If (ifail/=0) Then

! All data processed
Exit d_lp

End If

! Calculate probability
ifail = 0
Call g01blf(n,l,m,k,plek,pgtk,peqk,ifail)

! Display results
Write (nout,99999) n, l, m, k, plek, pgtk, peqk

End Do d_lp

99999 Format (1X,4I4,3F10.5)
End Program g01blfe

10.2 Program Data

G01BLF Example Program Data
10 2 5 1 : N, L, M, K
40 10 3 2

155 35 122 22
1000 444 500 220

10.3 Program Results

G01BLF Example Program Results

N L M K PLEK PGTK PEQK

10 2 5 1 0.77778 0.22222 0.55556
40 10 3 2 0.98785 0.01215 0.13664

155 35 122 22 0.01101 0.98899 0.00779
1000 444 500 220 0.42429 0.57571 0.04913
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NAG Library Routine Document

G01DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01DAF computes a set of Normal scores, i.e., the expected values of an ordered set of independent
observations from a Normal distribution with mean 0:0 and standard deviation 1:0.

2 Specification

SUBROUTINE G01DAF (N, PP, ETOL, ERREST, WORK, IW, IFAIL)

INTEGER N, IW, IFAIL
REAL (KIND=nag_wp) PP(N), ETOL, ERREST, WORK(IW)

3 Description

If a sample of n observations from any distribution (which may be denoted by x1; x2; . . . ; xn), is sorted
into ascending order, the rth smallest value in the sample is often referred to as the rth ‘order
statistic’, sometimes denoted by x rð Þ (see Kendall and Stuart (1969)).

The order statistics therefore have the property

x 1ð Þ � x 2ð Þ � . . . � x nð Þ:

(If n ¼ 2rþ 1, xrþ1 is the sample median.)

For samples originating from a known distribution, the distribution of each order statistic in a sample of
given size may be determined. In particular, the expected values of the order statistics may be found by
integration. If the sample arises from a Normal distribution, the expected values of the order statistics
are referred to as the ‘Normal scores’. The Normal scores provide a set of reference values against
which the order statistics of an actual data sample of the same size may be compared, to provide an
indication of Normality for the sample (see G01AHF). Normal scores have other applications; for
instance, they are sometimes used as alternatives to ranks in nonparametric testing procedures.

G01DAF computes the rth Normal score for a given sample size n as

E x rð Þ
� �

¼
Z 1
�1
xrdGr;

where

dGr ¼
Ar�1
r 1�Arð Þn�rdAr

� r; n� rþ 1ð Þ ; Ar ¼
1ffiffiffiffiffiffi
2	
p

Z xr

�1
e�t

2=2 dt; r ¼ 1; 2; . . . ; n;

and � denotes the complete beta function.

The routine attempts to evaluate the scores so that the estimated error in each score is less than the
value ETOL specified by you. All integrations are performed in parallel and arranged so as to give good
speed and reasonable accuracy.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin
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5 Arguments

1: N – INTEGER Input

On entry: n, the size of the set.

Constraint: N > 0.

2: PPðNÞ – REAL (KIND=nag_wp) array Output

On exit: the Normal scores. PPðiÞ contains the value E x ið Þ
� �

, for i ¼ 1; 2; . . . ; n.

3: ETOL – REAL (KIND=nag_wp) Input

On entry: the maximum value for the estimated absolute error in the computed scores.

Constraint: ETOL > 0:0.

4: ERREST – REAL (KIND=nag_wp) Output

On exit: a computed estimate of the maximum error in the computed scores (see Section 7).

5: WORKðIWÞ – REAL (KIND=nag_wp) array Workspace
6: IW – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G01DAF is called.

Constraints:

if N must be even, IW � 3� N=2;
otherwise IW � 3� N� 1ð Þ=2.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

IFAIL ¼ 2

On entry, ETOL � 0:0.

IFAIL ¼ 3

The routine was unable to estimate the scores with estimated error less than ETOL. The best
result obtained is returned together with the associated value of ERREST.
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IFAIL ¼ 4

On entry, if N is even, IW < 3� N=2;
or if N is odd, IW < 3� N� 1ð Þ=2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Errors are introduced by evaluation of the functions dGr and errors in the numerical integration process.
Errors are also introduced by the approximation of the true infinite range of integration by a finite range
a; b½ � but a and b are chosen so that this effect is of lower order than that of the other two factors. In
order to estimate the maximum error the functions dGr are also integrated over the range a; b½ �.
G01DAF returns the estimated maximum error as

ERREST ¼ max
r

max aj j; bj jð Þ �
Z b

a

dGr � 1:0

				 				� �
:

8 Parallelism and Performance

G01DAF is not threaded in any implementation.

9 Further Comments

The time taken by G01DAF depends on ETOL and N. For a given value of ETOL the timing varies
approximately linearly with N.

10 Example

The program below generates the Normal scores for samples of size 5, 10, 15, and prints the scores and
the computed error estimates.

10.1 Program Text

Program g01dafe

! G01DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01daf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errest, etol

G01 – Simple Calculations on Statistical Data G01DAF
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Integer :: ifail, iw, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: pp(:), work(:)
! .. Executable Statements ..

Write (nout,*) ’G01DAF Example Program Results’
Write (nout,*)

! Set the problem size
n = 15
etol = 0.001E0_nag_wp

iw = 3*n/2
Allocate (pp(n),work(iw))

! Compute the normal scores
ifail = 0
Call g01daf(n,pp,etol,errest,work,iw,ifail)

! Display results
Write (nout,99999) ’Set size = ’, n
Write (nout,99998) ’Error tolerance (input) = ’, etol
Write (nout,99998) ’Error estimate (output) = ’, errest
Write (nout,*) ’Normal scores’
Write (nout,99997) pp(1:n)

99999 Format (1X,A,I2)
99998 Format (1X,A,E13.3)
99997 Format (10X,5F10.3)

End Program g01dafe

10.2 Program Data

None.

10.3 Program Results

G01DAF Example Program Results

Set size = 15
Error tolerance (input) = 0.100E-02
Error estimate (output) = 0.222E-07
Normal scores

-1.736 -1.248 -0.948 -0.715 -0.516
-0.335 -0.165 0.000 0.165 0.335
0.516 0.715 0.948 1.248 1.736

This shows a Q-Q plot for a randomly generated set of data. The normal scores have been calculated
using G01DAF and the sample quantiles obtained by sorting the observed data using M01CAF. A
reference line at y ¼ x is also shown.
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NAG Library Routine Document

G01DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01DBF calculates an approximation to the set of Normal Scores, i.e., the expected values of an
ordered set of independent observations from a Normal distribution with mean 0:0 and standard
deviation 1:0.

2 Specification

SUBROUTINE G01DBF (N, PP, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) PP(N)

3 Description

G01DBF is an adaptation of the Applied Statistics Algorithm AS 177:3, see Royston (1982). If you are
particularly concerned with the accuracy with which G01DBF computes the expected values of the
order statistics (see Section 7), then G01DAF which is more accurate should be used instead at a cost of
increased storage and computing time.

Let x 1ð Þ; x 2ð Þ; . . . ; x nð Þ be the order statistics from a random sample of size n from the standard Normal
distribution. Defining

Pr;n ¼ � �E x rð Þ
� �� �

and

Qr;n ¼
r� �
nþ �; r ¼ 1; 2; . . . ; n;

where E x rð Þ
� �

is the expected value of x rð Þ, the current routine approximates the Normal upper tail area
corresponding to E x rð Þ

� �
as,

~Pr;n ¼ Qr ;n þ
�1
n
Q�

r ;n þ
�2
n
Q2�

r ;n � Cr;n:

for r ¼ 1; 2; 3, and r � 4. Estimates of �, �, �1, �2 and � are obtained. A small correction Cr;n to ~Pr;n is
necessary when r � 7 and n � 20.

The approximation to E X rð Þ
� �

is thus given by

E x rð Þ
� �

¼ ���1 ~Pr;n
� �

; r ¼ 1; 2; . . . ; n:

Values of the inverse Normal probability integral ��1 are obtained from G01FAF.

4 References

Royston J P (1982) Algorithm AS 177: expected normal order statistics (exact and approximate) Appl.
Statist. 31 161–165
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5 Arguments

1: N – INTEGER Input

On entry: n, the size of the sample.

Constraint: N � 1.

2: PPðNÞ – REAL (KIND=nag_wp) array Output

On exit: the Normal scores. PPðiÞ contains the value E x ið Þ
� �

, for i ¼ 1; 2; . . . ; n.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For n � 2000, the maximum error is 0:0001, but G01DBF is usually accurate to 5 or 6 decimal places.
For n up to 5000, comparison with the exact scores calculated by G01DAF shows that the maximum
error is 0:001.

8 Parallelism and Performance

G01DBF is not threaded in any implementation.
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9 Further Comments

The time taken by G01DBF is proportional to n.

10 Example

A program to calculate the expected values of the order statistics for a sample of size 10.

10.1 Program Text

Program g01dbfe

! G01DBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01dbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Integer :: ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: pp(:)

! .. Executable Statements ..
Write (nout,*) ’G01DBF Example Program Results’
Write (nout,*)

! Set the problem size
n = 10

Allocate (pp(n))

! Calculate the normal scores
ifail = 0
Call g01dbf(n,pp,ifail)

! Display results
Write (nout,99999) ’Sample size = ’, n
Write (nout,*) ’Normal scores’
Write (nout,99998) pp(1:n)

99999 Format (1X,A,I2)
99998 Format (10X,5F12.4)

End Program g01dbfe

10.2 Program Data

None.

10.3 Program Results

G01DBF Example Program Results

Sample size = 10
Normal scores

-1.5388 -1.0014 -0.6561 -0.3757 -0.1227
0.1227 0.3757 0.6561 1.0014 1.5388

This shows a Q-Q plot for a randomly generated set of data. The normal scores have been calculated
using G01DBF and the sample quantiles obtained by sorting the observed data using M01CAF. A
reference line at y ¼ x is also shown.
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NAG Library Routine Document

G01DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01DCF computes an approximation to the variance-covariance matrix of an ordered set of independent
observations from a Normal distribution with mean 0:0 and standard deviation 1:0.

2 Specification

SUBROUTINE G01DCF (N, EXP1, EXP2, SUMSSQ, VEC, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) EXP1, EXP2, SUMSSQ, VEC(N*(N+1)/2)

3 Description

G01DCF is an adaptation of the Applied Statistics Algorithm AS 128, see Davis and Stephens (1978).
An approximation to the variance-covariance matrix, V , using a Taylor series expansion of the Normal
distribution function is discussed in David and Johnson (1954).

However, convergence is slow for extreme variances and covariances. The present routine uses the
David–Johnson approximation to provide an initial approximation and improves upon it by use of the
following identities for the matrix.

For a sample of size n, let mi be the expected value of the ith largest order statistic, then:

(a) for any i ¼ 1; 2; . . . ; n,
Xn
j¼1

Vij ¼ 1

(b) V12 ¼ V11 þm2
n �mnmn�1 � 1

(c) the trace of V is tr Vð Þ ¼ n�
Xn
i¼1
m2
i

(d) Vij ¼ Vji ¼ Vrs ¼ Vsr where r ¼ nþ 1� i, s ¼ nþ 1� j and i; j ¼ 1; 2; . . . ; n. Note that only the
upper triangle of the matrix is calculated and returned column-wise in vector form.

4 References

David F N and Johnson N L (1954) Statistical treatment of censored data, Part 1. Fundamental formulae
Biometrika 41 228–240

Davis C S and Stephens M A (1978) Algorithm AS 128: approximating the covariance matrix of
Normal order statistics Appl. Statist. 27 206–212

5 Arguments

1: N – INTEGER Input

On entry: n, the sample size.

Constraint: N > 0.

2: EXP1 – REAL (KIND=nag_wp) Input

On entry: the expected value of the largest Normal order statistic, mn, from a sample of size n.
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3: EXP2 – REAL (KIND=nag_wp) Input

On entry: the expected value of the second largest Normal order statistic, mn�1, from a sample of
size n.

4: SUMSSQ – REAL (KIND=nag_wp) Input

On entry: the sum of squares of the expected values of the Normal order statistics from a sample
of size n.

5: VECðN� Nþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper triangle of the n by n variance-covariance matrix packed by column. Thus
element Vij is stored in VECðiþ j� j� 1ð Þ=2Þ, for 1 � i � j � n.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For n � 20, where comparison with the exact values can be made, the maximum error is less than
0:0001.
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8 Parallelism and Performance

G01DCF is not threaded in any implementation.

9 Further Comments

The time taken by G01DCF is approximately proportional to n2.

The arguments EXP1 ( ¼ mn), EXP2 ( ¼ mn�1) and SUMSSQ ( ¼
Xn
j¼1

m2
j ) may be found from the

expected values of the Normal order statistics obtained from G01DAF (exact) or G01DBF
(approximate).

10 Example

A program to compute the variance-covariance matrix for a sample of size 6. G01DAF is called to
provide values for EXP1, EXP2 and SUMSSQ.

10.1 Program Text

Program g01dcfe

! G01DCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01daf, g01dcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errest, etol, exp1, exp2, sumssq
Integer :: i, ifail, iw, j, k, lvec, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: pp(:), vec(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’G01DCF Example Program Results’
Write (nout,*)

! Set the problem size
n = 6
etol = 0.0001E0_nag_wp

lvec = n*(n+1)/2
iw = 3*n/2
Allocate (pp(n),work(iw),vec(lvec))

! Compute normal scores
ifail = 0
Call g01daf(n,pp,etol,errest,work,iw,ifail)

exp1 = pp(n)
exp2 = pp(n-1)
sumssq = 0.0E0_nag_wp
Do i = 1, n

sumssq = sumssq + pp(i)*pp(i)
End Do

! Compute approximate variance-covariance matrix
ifail = 0
Call g01dcf(n,exp1,exp2,sumssq,vec,ifail)

! Display results
Write (nout,99999) ’Sample size = ’, n
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Write (nout,*) ’Variance-covariance matrix’
k = 1
Do j = 1, n

Write (nout,99998) vec(k:(k+j-1))
k = k + j

End Do

99999 Format (1X,A,I2)
99998 Format (1X,6F8.4)

End Program g01dcfe

10.2 Program Data

None.

10.3 Program Results

G01DCF Example Program Results

Sample size = 6
Variance-covariance matrix

0.4159
0.2085 0.2796
0.1394 0.1889 0.2462
0.1025 0.1397 0.1834 0.2462
0.0774 0.1060 0.1397 0.1889 0.2796
0.0563 0.0774 0.1025 0.1394 0.2085 0.4159
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NAG Library Routine Document

G01DDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01DDF calculates Shapiro and Wilk's W statistic and its significance level for testing Normality.

2 Specification

SUBROUTINE G01DDF (X, N, CALWTS, A, W, PW, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), A(N), W, PW
LOGICAL CALWTS

3 Description

G01DDF calculates Shapiro and Wilk's W statistic and its significance level for any sample size
between 3 and 5000. It is an adaptation of the Applied Statistics Algorithm AS R94, see Royston
(1995). The full description of the theory behind this algorithm is given in Royston (1992).

Given a set of observations x1; x2; . . . ; xn sorted into either ascending or descending order (M01CAF
may be used to sort the data) this routine calculates the value of Shapiro and Wilk's W statistic defined
as:

W ¼

Xn
i¼1
aixi

 !2

Xn
i¼1

xi � �xð Þ2
;

where �x ¼ 1

n

Xn
1

xi is the sample mean and ai, for i ¼ 1; 2; . . . ; n, are a set of ‘weights’ whose values

depend only on the sample size n.

On exit, the values of ai, for i ¼ 1; 2; . . . ; n, are only of interest should you wish to call the routine
again to calculate W and its significance level for a different sample of the same size.

It is recommended that the routine is used in conjunction with a Normal Q�Qð Þ plot of the data.
Routines G01DAF and G01DBF can be used to obtain the required Normal scores.

4 References

Royston J P (1982) Algorithm AS 181: the W test for normality Appl. Statist. 31 176–180

Royston J P (1986) A remark on AS 181: the W test for normality Appl. Statist. 35 232–234

Royston J P (1992) Approximating the Shapiro–Wilk's W test for non-normality Statistics &
Computing 2 117–119

Royston J P (1995) A remark on AS R94: A remark on Algorithm AS 181: the W test for normality
Appl. Statist. 44(4) 547–551
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5 Arguments

1: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the ordered sample values, xi, for i ¼ 1; 2; . . . ; n.

2: N – INTEGER Input

On entry: n, the sample size.

Constraint: 3 � N � 5000.

3: CALWTS – LOGICAL Input

On entry: must be set to .TRUE. if you wish G01DDF to calculate the elements of A.

CALWTS should be set to .FALSE. if you have saved the values in A from a previous call to
G01DDF.

If in doubt, set CALWTS equal to .TRUE..

4: AðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if CALWTS has been set to .FALSE. then before entry A must contain the n weights as
calculated in a previous call to G01DDF, otherwise A need not be set.

On exit: the n weights required to calculate W.

5: W – REAL (KIND=nag_wp) Output

On exit: the value of the statistic, W.

6: PW – REAL (KIND=nag_wp) Output

On exit: the significance level of W.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 3.

IFAIL ¼ 2

On entry, N > 5000.
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IFAIL ¼ 3

On entry, the elements in X are not in ascending or descending order or are all equal.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

There may be a loss of significant figures for large n.

8 Parallelism and Performance

G01DDF is not threaded in any implementation.

9 Further Comments

The time taken by G01DDF depends roughly linearly on the value of n.

For very small samples the power of the test may not be very high.

The contents of the array A should not be modified between calls to G01DDF for a given sample size,
unless CALWTS is reset to .TRUE. before each call of G01DDF.

The Shapiro and Wilk's W test is very sensitive to ties. If the data has been rounded the test can be
improved by using Sheppard's correction to adjust the sum of squares about the mean. This produces an
adjusted value of W,

WA ¼ W
P
x ið Þ � �x2Xn

i¼1
x ið Þ ¼ �x2 � n�1

12 !
2

( );
where ! is the rounding width. WA can be compared with a standard Normal distribution, but a further
approximation is given by Royston (1986).

If N > 5000, a value for W and PW is returned, but its accuracy may not be acceptable. See Section 4
for more details.

10 Example

This example tests the following two samples (each of size 20) for Normality.

Sample
Number

Data

1 0:11, 7:87, 4:61, 10:14, 7:95, 3:14, 0:46, 4:43, 0:21, 4:75, 0:71, 1:52, 3:24, 0:93, 0:42, 4:97,
9:53, 4:55, 0:47, 6:66

2 1:36, 1:14, 2:92, 2:55, 1:46, 1:06, 5:27, �1:11, 3:48, 1:10, 0:88, �0:51, 1:46, 0:52, 6:20,
1:69, 0:08, 3:67, 2:81, 3:49
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The elements of A are calculated only in the first call of G01DDF, and are re-used in the second call.

10.1 Program Text

Program g01ddfe

! G01DDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01ddf, m01caf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: pw, w
Integer :: ifail, j, n, pn
Logical :: calwts

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: allocated

! .. Executable Statements ..
Write (nout,*) ’G01DDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

pn = 0
j = 0

d_lp: Do
! Read in the problem size

Read (nin,*,Iostat=ifail) n
If (ifail/=0) Then

Exit d_lp
End If

If (pn/=n) Then
If (allocated(x)) Then

Deallocate (x)
Deallocate (a)

End If
Allocate (a(n),x(n))

! Need to re-calculate the weights
calwts = .True.

Else
! Use the previously calculated weights

calwts = .False.
End If
pn = n

! Read in data
Read (nin,*) x(1:n)

! Sort the data
ifail = 0
Call m01caf(x,1,n,’A’,ifail)

! Calculate the test statistic
ifail = 0
Call g01ddf(x,n,calwts,a,w,pw,ifail)

j = j + 1

! Display results
Write (nout,99999) ’For sample number ’, j, &

G01DDF NAG Library Manual

G01DDF.4 Mark 26



’, value of W statistic = ’, w
Write (nout,99998) ’ Significance level is ’, pw
Write (nout,*)

End Do d_lp

99999 Format (1X,A,I1,A,F7.4)
99998 Format (1X,A,F8.4)

End Program g01ddfe

10.2 Program Data

G01DDF Example Program Data
20

0.11 7.87 4.61 10.14 7.95 3.14 0.46 4.43 0.21 4.75
0.71 1.52 3.24 0.93 0.42 4.97 9.53 4.55 0.47 6.66

20
1.36 1.14 2.92 2.55 1.46 1.06 5.27 -1.11 3.48 1.10
0.88 -0.51 1.46 0.52 6.20 1.69 0.08 3.67 2.81 3.49

10.3 Program Results

G01DDF Example Program Results

For sample number 1, value of W statistic = 0.9005
Significance level is 0.0421

For sample number 2, value of W statistic = 0.9590
Significance level is 0.5246

G01 – Simple Calculations on Statistical Data G01DDF

Mark 26 G01DDF.5 (last)





NAG Library Routine Document

G01DHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01DHF computes the ranks, Normal scores, an approximation to the Normal scores or the exponential
scores as requested by you.

2 Specification

SUBROUTINE G01DHF (SCORES, TIES, N, X, R, IWRK, IFAIL)

INTEGER N, IWRK(N), IFAIL
REAL (KIND=nag_wp) X(N), R(N)
CHARACTER(1) SCORES, TIES

3 Description

G01DHF computes one of the following scores for a sample of observations, x1; x2; . . . ; xn.

1. Rank Scores

The ranks are assigned to the data in ascending order, that is the ith observation has score si ¼ k if
it is the kth smallest observation in the sample.

2. Normal Scores

The Normal scores are the expected values of the Normal order statistics from a sample of size n.
If xi is the kth smallest observation in the sample, then the score for that observation, si, is E Zkð Þ
where Zk is the kth order statistic in a sample of size n from a standard Normal distribution and E
is the expectation operator.

3. Blom, Tukey and van der Waerden Scores

These scores are approximations to the Normal scores. The scores are obtained by evaluating the
inverse cumulative Normal distribution function, ��1 �ð Þ, at the values of the ranks scaled into the
interval 0; 1ð Þ using different scaling transformations.

The Blom scores use the scaling transformation
ri�3

8

nþ1
4
for the rank ri, for i ¼ 1; 2; . . . ; n. Thus the

Blom score corresponding to the observation xi is

si ¼ ��1
ri � 3

8

nþ 1
4

 !
:

The Tukey scores use the scaling transformation
ri�1

3

nþ1
3
; the Tukey score corresponding to the

observation xi is

si ¼ ��1
ri � 1

3

nþ 1
3

 !
:

The van der Waerden scores use the scaling transformation ri
nþ1 ; the van der Waerden score

corresponding to the observation xi is

si ¼ ��1
ri

nþ 1

� �
:
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The van der Waerden scores may be used to carry out the van der Waerden test for testing for
differences between several population distributions, see Conover (1980).

4. Savage Scores

The Savage scores are the expected values of the exponential order statistics from a sample of size
n. They may be used in a test discussed by Savage (1956) and Lehmann (1975). If xi is the kth
smallest observation in the sample, then the score for that observation is

si ¼ E Ykð Þ ¼ 1
nþ

1

n� 1
þ � � � þ 1

n� kþ 1
;

where Yk is the kth order statistic in a sample of size n from a standard exponential distribution
and E is the expectation operator.

Ties may be handled in one of five ways. Let xt ið Þ, for i ¼ 1; 2; . . . ;m, denote m tied observations, that
is xt 1ð Þ ¼ xt 2ð Þ ¼ � � � ¼ xt mð Þ with t 1ð Þ < t 2ð Þ < � � � < t mð Þ. If the rank of xt 1ð Þ is k, then if ties are
ignored the rank of xt jð Þ will be kþ j� 1. Let the scores ignoring ties be s�t 1ð Þ; s

�
t 2ð Þ; . . . ; s

�
t mð Þ. Then the

scores, st ið Þ, for i ¼ 1; 2; . . . ;m, may be calculated as follows:

–if averages are used, then st ið Þ ¼
Xm
j¼1

s�t jð Þ=m;

–if the lowest score is used, then st ið Þ ¼ s�t 1ð Þ;

–if the highest score is used, then st ið Þ ¼ s�t mð Þ;

– i f t i e s a r e t o b e b r o k e n r a n d o m l y , t h e n st ið Þ ¼ s�t Ið Þ w h e r e

I 2 random permutation of 1; 2; . . . ;mf g;
–if ties are to be ignored, then st ið Þ ¼ s�t ið Þ.

4 References

Blom G (1958) Statistical Estimates and Transformed Beta-variables Wiley

Conover W J (1980) Practical Nonparametric Statistics Wiley

Lehmann E L (1975) Nonparametrics: Statistical Methods Based on Ranks Holden–Day

Savage I R (1956) Contributions to the theory of rank order statistics – the two-sample case Ann. Math.
Statist. 27 590–615

Tukey J W (1962) The future of data analysis Ann. Math. Statist. 33 1–67

5 Arguments

1: SCORES – CHARACTER(1) Input

On entry: indicates which of the following scores are required.

SCORES ¼ R
The ranks.

SCORES ¼ N
The Normal scores, that is the expected value of the Normal order statistics.

SCORES ¼ B
The Blom version of the Normal scores.

SCORES ¼ T
The Tukey version of the Normal scores.

SCORES ¼ V
The van der Waerden version of the Normal scores.
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SCORES ¼ S
The Savage scores, that is the expected value of the exponential order statistics.

Constraint: SCORES ¼ R , N , B , T , V or S .

2: TIES – CHARACTER(1) Input

On entry: indicates which of the following methods is to be used to assign scores to tied
observations.

TIES ¼ A
The average of the scores for tied observations is used.

TIES ¼ L
The lowest score in the group of ties is used.

TIES ¼ H
The highest score in the group of ties is used.

TIES ¼ N
The nonrepeatable random number generator is used to randomly untie any group of tied
observations.

TIES ¼ R
The repeatable random number generator is used to randomly untie any group of tied
observations.

TIES ¼ I
Any ties are ignored, that is the scores are assigned to tied observations in the order that
they appear in the data.

Constraint: TIES ¼ A , L , H , N , R or I .

3: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

4: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sample of observations, xi, for i ¼ 1; 2; . . . ; n.

5: RðNÞ – REAL (KIND=nag_wp) array Output

On exit: contains the scores, si, for i ¼ 1; 2; . . . ; n, as specified by SCORES.

6: IWRKðNÞ – INTEGER array Workspace

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, SCORES 6¼ R , N , B , T , V or S ,
or TIES 6¼ A , L , H , N , R or I ,
or N < 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For SCORES ¼ R , the results should be accurate to machine precision.

For SCORES ¼ S , the results should be accurate to a small multiple of machine precision.

For SCORES ¼ N , the results should have a relative accuracy of at least max 100� �; 10�8
� �

where � is
the machine precision.

For SCORES ¼ B , T or V , the results should have a relative accuracy of at least max 10� �; 10�12
� �

.

8 Parallelism and Performance

G01DHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If more accurate Normal scores are required G01DAF should be used with appropriate settings for the
input argument ETOL.

10 Example

This example computes and prints the Savage scores for a sample of five observations. The average of
the scores of any tied observations is used.
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10.1 Program Text

Program g01dhfe

! G01DHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01dhf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, n
Character (20) :: scores, ties

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:), x(:)
Integer, Allocatable :: iwrk(:)

! .. Executable Statements ..
Write (nout,*) ’G01DHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) scores, ties, n

Allocate (r(n),x(n),iwrk(n))

! Read in data
Read (nin,*) x(1:n)

! Compute ranks
ifail = 0
Call g01dhf(scores,ties,n,x,r,iwrk,ifail)

! Display results
Write (nout,*) ’Scores: ’, scores
Write (nout,*) ’Ties : ’, ties
Write (nout,*)
Write (nout,99999) r(1:n)

99999 Format (1X,F10.4)
End Program g01dhfe

10.2 Program Data

G01DHF Example Program Data
Savage Average 5 :: SCORES,TIES,N
2 0 2 2 0 :: End of X

10.3 Program Results

G01DHF Example Program Results

Scores: Savage
Ties : Average

1.4500
0.3250
1.4500
1.4500
0.3250
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NAG Library Routine Document

G01EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01EAF returns a one or two tail probability for the standard Normal distribution, via the routine name.

2 Specification

FUNCTION G01EAF (TAIL, X, IFAIL)
REAL (KIND=nag_wp) G01EAF

INTEGER IFAIL
REAL (KIND=nag_wp) X
CHARACTER(1) TAIL

3 Description

The lower tail probability for the standard Normal distribution, P X � xð Þ is defined by:

P X � xð Þ ¼
Z x

�1
Z Xð Þ dX;

where

Z Xð Þ ¼ 1ffiffiffiffiffiffi
2	
p e�X

2=2;�1 < X <1:

The relationship

P X � xð Þ ¼ 1
2 erfc

�xffiffiffi
2
p
� �

is used, where erfc is the complementary error function, and is computed using S15ADF. For the upper
tail probability the relationship P X � xð Þ ¼ P X � �xð Þ is used and for the two tail significance level
probability twice the probability obtained from the absolute value of x is returned.

When the two tail confidence probability is required the relationship

P X � xj jð Þ � P X � � xj jð Þ ¼ erf
xj jffiffiffi
2
p
� �

;

is used, where erf is the error function, and is computed using S15AEF.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth
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5 Arguments

1: TAIL – CHARACTER(1) Input

On entry: indicates which tail the returned probability should represent.

TAIL ¼ L
The lower tail probability is returned, i.e., P X � xð Þ.

TAIL ¼ U
The upper tail probability is returned, i.e., P X � xð Þ.

TAIL ¼ S
The two tail (significance level) probability is returned, i.e., P X � xj jð Þ þ P X � � xj jð Þ.

TAIL ¼ C
The two tail (confidence interval) probability is returned, i.e., P X � xj jð Þ � P X � � xj jð Þ.

Constraint: TAIL ¼ L , U , S or C .

2: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the standard Normal variate.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

If IFAIL 6¼ 0, then G01EAF returns 0:0.

IFAIL ¼ 1

On entry, TAIL 6¼ L , U , S or C .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Accuracy is limited by machine precision. For detailed error analysis see S15ADF and S15AEF.

8 Parallelism and Performance

G01EAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

Four values of TAIL and X are input and the probabilities calculated and printed.

10.1 Program Text

Program g01eafe

! G01EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01eaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: prob, x
Integer :: ifail
Character (1) :: tail

! .. Executable Statements ..
Write (nout,*) ’G01EAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display title
Write (nout,*) ’ TAIL X Probability’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) tail, x
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = 0
prob = g01eaf(tail,x,ifail)

! Display results
Write (nout,99999) tail, x, prob

End Do d_lp

99999 Format (3X,A1,4X,F5.2,6X,F7.4)
End Program g01eafe
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10.2 Program Data

G01EAF Example Program Data
’L’ 1.96 : TAIL X
’U’ 1.96
’C’ 1.96
’S’ 1.96

10.3 Program Results

G01EAF Example Program Results

TAIL X Probability

L 1.96 0.9750
U 1.96 0.0250
C 1.96 0.9500
S 1.96 0.0500
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NAG Library Routine Document

G01EBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01EBF returns the lower tail, upper tail or two tail probability for the Student's t-distribution with real
degrees of freedom, via the routine name.

2 Specification

FUNCTION G01EBF (TAIL, T, DF, IFAIL)
REAL (KIND=nag_wp) G01EBF

INTEGER IFAIL
REAL (KIND=nag_wp) T, DF
CHARACTER(1) TAIL

3 Description

The lower tail probability for the Student's t-distribution with � degrees of freedom, P T � t : �ð Þ is
defined by:

P T � t : �ð Þ ¼  � þ 1ð Þ=2ð Þffiffiffiffiffiffi
	�
p

 �=2ð Þ

Z t

�1
1þ T

2

�

� �� �þ1ð Þ=2
dT ; � � 1:

Computationally, there are two situations:

(i) when � < 20, a transformation of the beta distribution, P� B � � : a; bð Þ is used

P T � t : �ð Þ ¼ 1
2P� B � �

� þ t2 : �=2;
1
2

� �
when t < 0:0

or

P T � t : �ð Þ ¼ 1
2þ 1

2P� B � �

� þ t2 : �=2;
1
2

� �
when t > 0:0;

(ii) when � � 20, an asymptotic normalizing expansion of the Cornish–Fisher type is used to evaluate
the probability, see Hill (1970).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Hill G W (1970) Student's t-distribution Comm. ACM 13(10) 617–619

5 Arguments

1: TAIL – CHARACTER(1) Input

On entry: indicates which tail the returned probability should represent.

TAIL ¼ U
The upper tail probability is returned, i.e., P T � t : �ð Þ.
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TAIL ¼ S
The two tail (significance level) probability is returned,
i.e., P T � tj j : �ð Þ þ P T � � tj j : �ð Þ.

TAIL ¼ C
The two tail (confidence interval) probability is returned,
i.e., P T � tj j : �ð Þ � P T � � tj j : �ð Þ.

TAIL ¼ L
The lower tail probability is returned, i.e., P T � t : �ð Þ.

Constraint: TAIL ¼ U , S , C or L .

2: T – REAL (KIND=nag_wp) Input

On entry: t, the value of the Student's t variate.

3: DF – REAL (KIND=nag_wp) Input

On entry: �, the degrees of freedom of the Student's t-distribution.

Constraint: DF � 1:0.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

If IFAIL 6¼ 0, then G01EBF returns 0:0.

IFAIL ¼ 1

On entry, TAIL 6¼ U , S , C or L .

IFAIL ¼ 2

On entry, DF < 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed probability should be accurate to five significant places for reasonable probabilities but
there will be some loss of accuracy for very low probabilities (less than 10�10), see Hastings and
Peacock (1975).

8 Parallelism and Performance

G01EBF is not threaded in any implementation.

9 Further Comments

The probabilities could also be obtained by using the appropriate transformation to a beta distribution
(see Abramowitz and Stegun (1972)) and using G01EEF. This routine allows you to set the required
accuracy.

10 Example

This example reads values from, and degrees of freedom for Student's t-distributions along with the
required tail. The probabilities are calculated and printed until the end of data is reached.

10.1 Program Text

Program g01ebfe

! G01EBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01ebf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df, prob, t
Integer :: ifail
Character (1) :: tail

! .. Executable Statements ..
Write (nout,*) ’G01EBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ TAIL T DF Probability’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) tail, t, df
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = 0
prob = g01ebf(tail,t,df,ifail)
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! Display results
Write (nout,99999) tail, t, df, prob

End Do d_lp

99999 Format (3X,A1,4X,F6.3,F8.1,7X,F7.4)
End Program g01ebfe

10.2 Program Data

G01EBF Example Program Data
’L’ 0.85 20.0 : TAIL T DF
’S’ 0.85 20.0
’C’ 0.85 20.0
’U’ 0.85 20.0

10.3 Program Results

G01EBF Example Program Results

TAIL T DF Probability

L 0.850 20.0 0.7973
S 0.850 20.0 0.4054
C 0.850 20.0 0.5946
U 0.850 20.0 0.2027
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NAG Library Routine Document

G01ECF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01ECF returns the lower or upper tail probability for the �2-distribution with real degrees of freedom,
via the routine name.

2 Specification

FUNCTION G01ECF (TAIL, X, DF, IFAIL)
REAL (KIND=nag_wp) G01ECF

INTEGER IFAIL
REAL (KIND=nag_wp) X, DF
CHARACTER(1) TAIL

3 Description

The lower tail probability for the �2-distribution with � degrees of freedom, P X � x : �ð Þ is defined
by:

P X � x : �ð Þ ¼ 1

2�=2 �=2ð Þ

Z x

0:0
X�=2�1e�X=2 dX; x � 0; � > 0:

To calculate P X � x : �ð Þ a transformation of a gamma distribution is employed, i.e., a �2-distribution
with � degrees of freedom is equal to a gamma distribution with scale parameter 2 and shape parameter
�=2.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: TAIL – CHARACTER(1) Input

On entry: indicates whether the upper or lower tail probability is required.

TAIL ¼ L
The lower tail probability is returned, i.e., P X � x : �ð Þ.

TAIL ¼ U
The upper tail probability is returned, i.e., P X � x : �ð Þ.

Constraint: TAIL ¼ L or U .

2: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the �2 variate with � degrees of freedom.

Constraint: X � 0:0.
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3: DF – REAL (KIND=nag_wp) Input

On entry: �, the degrees of freedom of the �2-distribution.

Constraint: DF > 0:0.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01ECF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If IFAIL ¼ 1, 2 or 3 on exit, then G01ECF returns 0:0.

IFAIL ¼ 1

On entry, TAIL 6¼ L or U .

IFAIL ¼ 2

On entry, X < 0:0.

IFAIL ¼ 3

On entry, DF � 0:0.

IFAIL ¼ 4

The solution has failed to converge while calculating the gamma variate. The result returned
should represent an approximation to the solution.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

A relative accuracy of five significant figures is obtained in most cases.

8 Parallelism and Performance

G01ECF is not threaded in any implementation.

9 Further Comments

For higher accuracy the transformation described in Section 3 may be used with a direct call to
S14BAF.

10 Example

Values from various �2-distributions are read, the lower tail probabilities calculated, and all these values
printed out, until the end of data is reached.

10.1 Program Text

Program g01ecfe

! G01ECF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01ecf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df, prob, x
Integer :: ifail
Character (1) :: tail

! .. Executable Statements ..
Write (nout,*) ’G01ECF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ TAIL X DF Probability’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) tail, x, df
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = -1
prob = g01ecf(tail,x,df,ifail)
If (ifail/=0) Then

If (ifail/=4) Then
Exit d_lp

End If
End If

! Display results
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Write (nout,99999) tail, x, df, prob
End Do d_lp

99999 Format (3X,A1,4X,F6.3,F8.1,7X,F7.4)
End Program g01ecfe

10.2 Program Data

G01ECF Example Program Data
’L’ 8.26 20.0 : TAIL X DF
’L’ 6.2 7.5
’L’ 55.76 45.0

10.3 Program Results

G01ECF Example Program Results

TAIL X DF Probability

L 8.260 20.0 0.0100
L 6.200 7.5 0.4279
L 55.760 45.0 0.8694
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NAG Library Routine Document

G01EDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01EDF returns the probability for the lower or upper tail of the F or variance-ratio distribution with
real degrees of freedom, via the routine name.

2 Specification

FUNCTION G01EDF (TAIL, F, DF1, DF2, IFAIL)
REAL (KIND=nag_wp) G01EDF

INTEGER IFAIL
REAL (KIND=nag_wp) F, DF1, DF2
CHARACTER(1) TAIL

3 Description

The lower tail probability for the F , or variance-ratio distribution, with �1 and �2 degrees of freedom,
P F � f : �1; �2ð Þ, is defined by:

P F � f : �1; �2ð Þ ¼ �
�1=2
1 �

�2=2
2  �1 þ �2ð Þ=2ð Þ

 �1=2ð Þ �2=2ð Þ

Z f

0
F �1�2ð Þ=2 �1F þ �2ð Þ� �1þ�2ð Þ=2dF;

for �1, �2 > 0, f � 0.

The probability is computed by means of a transformation to a beta distribution, P� B � � : a; bð Þ:

P F � f : �1; �2ð Þ ¼ P� B � �1f

�1f þ �2
: �1=2; �2=2

� �
and using a call to G01EEF.

For very large values of both �1 and �2, greater than 105, a normal approximation is used. If only one of
�1 or �2 is greater than 105 then a �2 approximation is used, see Abramowitz and Stegun (1972).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: TAIL – CHARACTER(1) Input

On entry: indicates whether an upper or lower tail probability is required.

TAIL ¼ L
The lower tail probability is returned, i.e., P F � f : �1; �2ð Þ.

TAIL ¼ U
The upper tail probability is returned, i.e., P F � f : �1; �2ð Þ.

Constraint: TAIL ¼ L or U .
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2: F – REAL (KIND=nag_wp) Input

On entry: f , the value of the F variate.

Constraint: F � 0:0.

3: DF1 – REAL (KIND=nag_wp) Input

On entry: the degrees of freedom of the numerator variance, �1.

Constraint: DF1 > 0:0.

4: DF2 – REAL (KIND=nag_wp) Input

On entry: the degrees of freedom of the denominator variance, �2.

Constraint: DF2 > 0:0.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01EDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If IFAIL ¼ 1, 2 or 3 on exit, then G01EDF returns 0:0.

IFAIL ¼ 1

On entry, TAIL 6¼ L or U .

IFAIL ¼ 2

On entry, F < 0:0.

IFAIL ¼ 3

On entry, DF1 � 0:0,
or DF2 � 0:0.

IFAIL ¼ 4

F is too far out into the tails for the probability to be evaluated exactly. The result tends to
approach 1:0 if f is large, or 0:0 if f is small. The result returned is a good approximation to the
required solution.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The result should be accurate to five significant digits.

8 Parallelism and Performance

G01EDF is not threaded in any implementation.

9 Further Comments

For higher accuracy G01EEF can be used along with the transformations given in Section 3.

10 Example

This example reads values from, and degrees of freedom for, a number of F -distributions and computes
the associated lower tail probabilities.

10.1 Program Text

Program g01edfe

! G01EDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01edf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df1, df2, f, prob
Integer :: ifail
Character (1) :: tail

! .. Executable Statements ..
Write (nout,*) ’G01EDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ TAIL F DF1 DF2 Probability’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) tail, f, df1, df2

G01 – Simple Calculations on Statistical Data G01EDF

Mark 26 G01EDF.3



If (ifail/=0) Then
Exit d_lp

End If

! Calculate probability
ifail = -1
prob = g01edf(tail,f,df1,df2,ifail)
If (ifail/=0) Then

If (ifail/=4) Then
Exit d_lp

End If
End If

! Display results
Write (nout,99999) tail, f, df1, df2, prob

End Do d_lp

99999 Format (3X,A1,4X,F6.3,2F8.2,7X,F7.4)
End Program g01edfe

10.2 Program Data

G01EDF Example Program Data
’L’ 5.5 1.5 25.5 : TAIL F DF1 DF2
’L’ 39.9 1.0 1.0
’L’ 2.5 20.25 1.0

10.3 Program Results

G01EDF Example Program Results

TAIL F DF1 DF2 Probability

L 5.500 1.50 25.50 0.9837
L 39.900 1.00 1.00 0.9000
L 2.500 20.25 1.00 0.5342
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NAG Library Routine Document

G01EEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01EEF computes the upper and lower tail probabilities and the probability density function of the beta
distribution with parameters a and b.

2 Specification

SUBROUTINE G01EEF (X, A, B, TOL, P, Q, PDF, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) X, A, B, TOL, P, Q, PDF

3 Description

The probability density function of the beta distribution with parameters a and b is:

f B : a; bð Þ ¼  aþ bð Þ
 að Þ bð ÞB

a�1 1�Bð Þb�1; 0 � B � 1;a; b > 0:

The lower tail probability, P B � � : a; bð Þ is defined by

P B � � : a; bð Þ ¼  aþ bð Þ
 að Þ bð Þ

Z �

0
Ba�1 1�Bð Þb�1 dB ¼ I� a; bð Þ; 0 � � � 1;a; b > 0:

The function Ix a; bð Þ, also known as the incomplete beta function is calculated using S14CCF.

4 References

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: �, the value of the beta variate.

Constraint: 0:0 � X � 1:0.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the first parameter of the required beta distribution.

Constraint: 0:0 < A � 106.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the second parameter of the required beta distribution.

Constraint: 0:0 < B � 106.

4: TOL – REAL (KIND=nag_wp) Input

On entry: this argument is no longer referenced, but is included for backwards compatability.
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5: P – REAL (KIND=nag_wp) Output

On exit: the lower tail probability, P B � � : a; bð Þ.

6: Q – REAL (KIND=nag_wp) Output

On exit: the upper tail probability, P B � � : a; bð Þ.

7: PDF – REAL (KIND=nag_wp) Output

On exit: the probability density function, f B : a; bð Þ.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01EEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X < 0:0,
or X > 1:0.

IFAIL ¼ 2

On entry, A � 0:0,
or A > 106,
or B � 0:0,
or B > 106.

IFAIL ¼ 4

X is too far out into the tails for the probability to be evaluated exactly. The results returned are
0 and 1 as appropriate. These should be a good approximation to the required solution.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is limited by the error in the incomplete beta function. See Section 7 in S14CCF for
further details.

8 Parallelism and Performance

G01EEF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values from a number of beta distributions and computes the associated upper and
lower tail probabilities and the corresponding value of the probability density function.

10.1 Program Text

Program g01eefe

! G01EEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01eef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, p, pdf, q, tol, x
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01EEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ X A B P Q PDF’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x, a, b
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
! NB: parameter tol is no longer referenced

ifail = -1
Call g01eef(x,a,b,tol,p,q,pdf,ifail)
If (ifail/=0) Then

If (ifail/=3 .And. ifail/=4) Then
Exit d_lp
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End If
End If

! Display results
Write (nout,99999) x, a, b, p, q, pdf

End Do d_lp

99999 Format (1X,6(F7.4,2X),A,I1)
End Program g01eefe

10.2 Program Data

G01EEF Example Program Data
0.25 1.0 2.0
0.75 1.5 1.5
0.5 2.0 1.0

10.3 Program Results

G01EEF Example Program Results

X A B P Q PDF

0.2500 1.0000 2.0000 0.4375 0.5625 1.5000
0.7500 1.5000 1.5000 0.8045 0.1955 1.1027
0.5000 2.0000 1.0000 0.2500 0.7500 1.0000
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NAG Library Routine Document

G01EFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01EFF returns the lower or upper tail probability of the gamma distribution, with parameters � and �,
via the routine name.

2 Specification

FUNCTION G01EFF (TAIL, G, A, B, IFAIL)
REAL (KIND=nag_wp) G01EFF

INTEGER IFAIL
REAL (KIND=nag_wp) G, A, B
CHARACTER(1) TAIL

3 Description

The lower tail probability for the gamma distribution with parameters � and �, P G � gð Þ, is defined by:

P G � g;�; �ð Þ ¼ 1

�� �ð Þ

Z g

0
G��1e�G=� dG; � > 0:0; � > 0:0:

The mean of the distribution is �� and its variance is ��2. The transformation Z ¼ G
�

is applied to

yield the following incomplete gamma function in normalized form,

P G � g;�; �ð Þ ¼ P Z � g=� : �; 1:0ð Þ ¼ 1

 �ð Þ

Z g=�

0
Z��1e�Z dZ:

This is then evaluated using S14BAF.

4 References

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: TAIL – CHARACTER(1) Input

On entry: indicates whether an upper or lower tail probability is required.

TAIL ¼ L
The lower tail probability is returned, that is P G � g : �; �ð Þ.

TAIL ¼ U
The upper tail probability is returned, that is P G � g : �; �ð Þ.

Constraint: TAIL ¼ L or U .

2: G – REAL (KIND=nag_wp) Input

On entry: g, the value of the gamma variate.

Constraint: G � 0:0.
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3: A – REAL (KIND=nag_wp) Input

On entry: the parameter � of the gamma distribution.

Constraint: A > 0:0.

4: B – REAL (KIND=nag_wp) Input

On entry: the parameter � of the gamma distribution.

Constraint: B > 0:0.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

If IFAIL ¼ 1, 2, 3 or 4 on exit, then G01EFF returns 0:0.

IFAIL ¼ 1

On entry, TAIL 6¼ L or U .

IFAIL ¼ 2

On entry, G < 0:0.

IFAIL ¼ 3

On entry, A � 0:0,
or B � 0:0.

IFAIL ¼ 4

The solution did not converge in 600 iterations. See S14BAF. The probability returned should be
a reasonable approximation to the solution.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The result should have a relative accuracy of machine precision. There are rare occasions when the
relative accuracy attained is somewhat less than machine precision but the error should not exceed
more than 1 or 2 decimal places. Note also that there is a limit of 18 decimal places on the achievable
accuracy, because constants in S14BAF are given to this precision.

8 Parallelism and Performance

G01EFF is not threaded in any implementation.

9 Further Comments

The time taken by G01EFF varies slightly with the input arguments G, A and B.

10 Example

This example reads in values from a number of gamma distributions and computes the associated lower
tail probabilities.

10.1 Program Text

Program g01effe

! G01EFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01eff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, g, p
Integer :: ifail
Character (1) :: tail

! .. Executable Statements ..
Write (nout,*) ’G01EFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ TAIL G A B Probability’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) tail, g, a, b
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = 0
p = g01eff(tail,g,a,b,ifail)
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! Display results
Write (nout,99999) tail, g, a, b, p

End Do d_lp

99999 Format (3X,A1,4X,F9.2,F13.2,F9.2,7X,F7.4)
End Program g01effe

10.2 Program Data

G01EFF Example Program Data
’L’ 15.5 4.0 2.0 :TAIL G A B
’L’ 0.5 4.0 1.0
’L’ 10.0 1.0 2.0
’L’ 5.0 2.0 2.0

10.3 Program Results

G01EFF Example Program Results

TAIL G A B Probability

L 15.50 4.00 2.00 0.9499
L 0.50 4.00 1.00 0.0018
L 10.00 1.00 2.00 0.9933
L 5.00 2.00 2.00 0.7127
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NAG Library Routine Document

G01EMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01EMF returns the probability associated with the lower tail of the distribution of the Studentized
range statistic, via the routine name.

2 Specification

FUNCTION G01EMF (Q, V, IR, IFAIL)
REAL (KIND=nag_wp) G01EMF

INTEGER IR, IFAIL
REAL (KIND=nag_wp) Q, V

3 Description

The externally Studentized range, q, for a sample, x1; x2; . . . ; xr, is defined as:

q ¼ maxxi �minxi
�̂e

;

where �̂e is an independent estimate of the standard error of the xi's. The most common use of this
statistic is in the testing of means from a balanced design. In this case for a set of group means,
�T1; �T2; . . . ; �Tr, the Studentized range statistic is defined to be the difference between the largest and
smallest means, �Tlargest and �Tsmallest, divided by the square root of the mean-square experimental error,
MSerror, over the number of observations in each group, n, i.e.,

q ¼
�Tlargest � �Tsmallestffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSerror=n
p :

The Studentized range statistic can be used as part of a multiple comparisons procedure such as the
Newman–Keuls procedure or Duncan's multiple range test (see Montgomery (1984) and Winer (1970)).

For a Studentized range statistic the probability integral, P q; v; rð Þ, for v degrees of freedom and r
groups can be written as:

P q; v; rð Þ ¼ C
Z 1
0
xv�1e�vx

2=2 r

Z 1
�1

 yð Þ � yð Þ � � y� qxð Þ½ �r�1 dy


 �
dx;

where

C ¼ vv=2

 v=2ð Þ2v=2�1
; 
 yð Þ ¼ 1ffiffiffiffiffiffi

2	
p e�y

2=2 and � yð Þ ¼
Z y

�1

 tð Þ dt:

The above two-dimensional integral is evaluated using D01DAF with the upper and lower limits
computed to give stated accuracy (see Section 7).

If the degrees of freedom v are greater than 2000 the probability integral can be approximated by its
asymptotic form:

P q; rð Þ ¼ r
Z 1
�1

 yð Þ � yð Þ � � y� qð Þ½ �r�1 dy:

This integral is evaluated using D01AMF.
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4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Lund R E and Lund J R (1983) Algorithm AS 190: probabilities and upper quartiles for the studentized
range Appl. Statist. 32(2) 204–210

Montgomery D C (1984) Design and Analysis of Experiments Wiley

Winer B J (1970) Statistical Principles in Experimental Design McGraw–Hill

5 Arguments

1: Q – REAL (KIND=nag_wp) Input

On entry: q, the Studentized range statistic.

Constraint: Q > 0:0.

2: V – REAL (KIND=nag_wp) Input

On entry: v, the number of degrees of freedom for the experimental error.

Constraint: V � 1:0.

3: IR – INTEGER Input

On entry: r, the number of groups.

Constraint: IR � 2.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

If on exit IFAIL ¼ 1, then G01EMF returns to 0:0.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01EMF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, Q � 0:0,
or V < 1:0,
or IR < 2.
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IFAIL ¼ 2

There is some doubt as to whether full accuracy has been achieved.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The returned value will have absolute accuracy to at least four decimal places (usually five), unless
IFAIL ¼ 2. When IFAIL ¼ 2 it is usual that the returned value will be a good estimate of the true
value.

8 Parallelism and Performance

G01EMF is not threaded in any implementation.

9 Further Comments

None.

10 Example

The lower tail probabilities for the distribution of the Studentized range statistic are computed and
printed for a range of values of q, � and r.

10.1 Program Text

Program g01emfe

! G01EMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01emf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: q, v, valp
Integer :: ifail, ir

! .. Executable Statements ..
Write (nout,*) ’G01EMF Example Program Results ’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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! Display titles
Write (nout,*) ’ Q V IR Prob ’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) q, v, ir
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = 0
valp = g01emf(q,v,ir,ifail)

! Display data
Write (nout,99999) q, v, ir, valp

End Do d_lp

99999 Format (1X,F7.4,2X,F4.1,1X,I3,1X,F10.4)
End Program g01emfe

10.2 Program Data

G01EMF Example Program Data
4.6543 10.0 5
2.8099 60.0 12
4.2636 5.0 4

10.3 Program Results

G01EMF Example Program Results

Q V IR Prob

4.6543 10.0 5 0.9500
2.8099 60.0 12 0.3000
4.2636 5.0 4 0.9000
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NAG Library Routine Document

G01EPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01EPF calculates upper and lower bounds for the significance of a Durbin–Watson statistic.

2 Specification

SUBROUTINE G01EPF (N, IP, D, PDL, PDU, WORK, IFAIL)

INTEGER N, IP, IFAIL
REAL (KIND=nag_wp) D, PDL, PDU, WORK(N)

3 Description

Let r ¼ r1; r2; . . . ; rnð ÞT be the residuals from a linear regression of y on p independent variables,
including the mean, where the y values y1; y2; . . . ; yn can be considered as a time series. The Durbin–
Watson test (see Durbin and Watson (1950), Durbin and Watson (1951) and Durbin and Watson (1971))
can be used to test for serial correlation in the error term in the regression.

The Durbin–Watson test statistic is:

d ¼

Xn�1
i¼1

riþ1 � rið Þ2

Xn
i¼1
r2i

;

which can be written as

d ¼ r
TAr

rTr
;

where the n by n matrix A is given by

A ¼

1 �1 0 . . . :
�1 2 �1 . . . :
0 �1 2 . . . :
: 0 �1 . . . :
: : : . . . :
: : : . . . �1
0 0 0 . . . 1

266666664

377777775
with the nonzero eigenvalues of the matrix A being �j ¼ 1� cos 	j=nð Þð Þ, for j ¼ 1; 2; . . . ; n� 1.

Durbin and Watson show that the exact distribution of d depends on the eigenvalues of a matrix HA,
where H is the hat matrix of independent variables, i.e., the matrix such that the vector of fitted values,
ŷ, can be written as ŷ ¼ Hy. However, bounds on the distribution can be obtained, the lower bound
being

dl ¼

Xn�p
i¼1
�iu

2
i

Xn�p
i¼1
u2i
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and the upper bound being

du ¼

Xn�p
i¼1
�i�1þpu

2
i

Xn�p
i¼1
u2i

;

where ui are independent standard Normal variables.

Two algorithms are used to compute the lower tail (significance level) probabilities, pl and pu,
associated with dl and du. If n � 60 the procedure due to Pan (1964) is used, see Farebrother (1980),
otherwise Imhof's method (see Imhof (1961)) is used.

The bounds are for the usual test of positive correlation; if a test of negative correlation is required the
value of d should be replaced by 4� d.

4 References

Durbin J and Watson G S (1950) Testing for serial correlation in least squares regression. I Biometrika
37 409–428

Durbin J and Watson G S (1951) Testing for serial correlation in least squares regression. II Biometrika
38 159–178

Durbin J and Watson G S (1971) Testing for serial correlation in least squares regression. III Biometrika
58 1–19

Farebrother R W (1980) Algorithm AS 153. Pan's procedure for the tail probabilities of the Durbin–
Watson statistic Appl. Statist. 29 224–227

Imhof J P (1961) Computing the distribution of quadratic forms in Normal variables Biometrika 48
419–426

Newbold P (1988) Statistics for Business and Economics Prentice–Hall

Pan Jie–Jian (1964) Distributions of the noncircular serial correlation coefficients Shuxue Jinzhan 7
328–337

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations used in calculating the Durbin–Watson statistic.

Constraint: N > IP.

2: IP – INTEGER Input

On entry: p, the number of independent variables in the regression model, including the mean.

Constraint: IP � 1.

3: D – REAL (KIND=nag_wp) Input

On entry: d, the Durbin–Watson statistic.

Constraint: D � 0:0.

4: PDL – REAL (KIND=nag_wp) Output

On exit: lower bound for the significance of the Durbin–Watson statistic, pl.

5: PDU – REAL (KIND=nag_wp) Output

On exit: upper bound for the significance of the Durbin–Watson statistic, pu.
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6: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � IP,
or IP < 1.

IFAIL ¼ 2

On entry, D < 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit at least 4 decimal places of accuracy are achieved.

8 Parallelism and Performance

G01EPF is not threaded in any implementation.

9 Further Comments

If the exact probabilities are required, then the first n� p eigenvalues of HA can be computed and
G01JDF used to compute the required probabilities with C set to 0:0 and D to the Durbin–Watson
statistic.

G01 – Simple Calculations on Statistical Data G01EPF

Mark 26 G01EPF.3



10 Example

The values of n, p and the Durbin–Watson statistic d are input and the bounds for the significance level
calculated and printed.

10.1 Program Text

Program g01epfe

! G01EPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01epf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, pdl, pdu
Integer :: ifail, ip, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: work(:)

! .. Executable Statements ..
Write (nout,*) ’G01EPF Example Program Results ’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, ip, d

Allocate (work(n))

! Calculate the probability
ifail = 0
Call g01epf(n,ip,d,pdl,pdu,work,ifail)

! Display results
Write (nout,99999) ’ Durbin-Watson statistic ’, d
Write (nout,*)
Write (nout,99998) ’ Probability for the lower bound = ’, pdl
Write (nout,99998) ’ Probability for the upper bound = ’, pdu

99999 Format (1X,A,F10.4)
99998 Format (1X,A,F10.4)

End Program g01epfe

10.2 Program Data

G01EPF Example Program Data
10 2 0.9238

10.3 Program Results

G01EPF Example Program Results

Durbin-Watson statistic 0.9238

Probability for the lower bound = 0.0610
Probability for the upper bound = 0.0060
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NAG Library Routine Document

G01ERF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01ERF returns the probability associated with the lower tail of the von Mises distribution between �	
and 	 through the function name.

2 Specification

FUNCTION G01ERF (T, VK, IFAIL)
REAL (KIND=nag_wp) G01ERF

INTEGER IFAIL
REAL (KIND=nag_wp) T, VK

3 Description

The von Mises distribution is a symmetric distribution used in the analysis of circular data. The lower
tail area of this distribution on the circle with mean direction �0 ¼ 0 and concentration argument kappa,
�, can be written as

Pr � � � : �ð Þ ¼ 1

2	I0 �ð Þ

Z �

�	
e� cos�d�;

where � is reduced modulo 2	 so that �	 � � < 	 and � � 0. Note that if � ¼ 	 then G01ERF returns a
probability of 1. For very small � the distribution is almost the uniform distribution, whereas for
�!1 all the probability is concentrated at one point.

The method of calculation for small � involves backwards recursion through a series expansion in terms
of modified Bessel functions, while for large � an asymptotic Normal approximation is used.

In the case of small � the series expansion of Pr(� � �: �) can be expressed as

Pr � � � : �ð Þ ¼ 1
2þ

�

2	ð Þ þ
1

	I0 �ð Þ
X1
n¼1

n�1In �ð Þ sinn�;

where In �ð Þ is the modified Bessel function. This series expansion can be represented as a nested
expression of terms involving the modified Bessel function ratio Rn,

Rn �ð Þ ¼
In �ð Þ
In�1 �ð Þ

; n ¼ 1; 2; 3; . . . ;

which is calculated using backwards recursion.

For large values of � (see Section 7) an asymptotic Normal approximation is used. The angle � is
transformed to the nearly Normally distributed variate Z,

Z ¼ b �ð Þ sin �2 ;

where

b �ð Þ ¼

ffiffi
2
	

q
e�

I0 �ð Þ

and b �ð Þ is computed from a continued fraction approximation. An approximation to order ��4 of the
asymptotic normalizing series for z is then used. Finally the Normal probability integral is evaluated.
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For a more detailed analysis of the methods used see Hill (1977).

4 References

Hill G W (1977) Algorithm 518: Incomplete Bessel function I0: The Von Mises distribution ACM
Trans. Math. Software 3 279–284

Mardia K V (1972) Statistics of Directional Data Academic Press

5 Arguments

1: T – REAL (KIND=nag_wp) Input

On entry: �, the observed von Mises statistic measured in radians.

2: VK – REAL (KIND=nag_wp) Input

On entry: the concentration parameter �, of the von Mises distribution.

Constraint: VK � 0:0.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, VK < 0:0 and G01ERF returns 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

G01ERF uses one of two sets of constants depending on the value of machine precision. One set gives
an accuracy of six digits and uses the Normal approximation when VK � 6:5, the other gives an
accuracy of 12 digits and uses the Normal approximation when VK � 50:0.

8 Parallelism and Performance

G01ERF is not threaded in any implementation.

9 Further Comments

Using the series expansion for small � the time taken by G01ERF increases linearly with �; for larger
�, for which the asymptotic Normal approximation is used, the time taken is much less.

If angles outside the region �	 � � < 	 are used care has to be taken in evaluating the probability of
being in a region �1 � � � �2 if the region contains an odd multiple of 	, 2nþ 1ð Þ	. The value of
F �2;�ð Þ � F �1;�ð Þ will be negative and the correct probability should then be obtained by adding one to
the value.

10 Example

This example inputs four values from the von Mises distribution along with the values of the argument
�. The probabilities are computed and printed.

10.1 Program Text

Program g01erfe

! G01ERF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01erf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, t, vk
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01ERF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ T VK Probability’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) t, vk
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = 0
p = g01erf(t,vk,ifail)

! Display the results

G01 – Simple Calculations on Statistical Data G01ERF

Mark 26 G01ERF.3



Write (nout,99999) t, vk, p
End Do d_lp

99999 Format (F10.4,2X,F10.4,2X,F10.4)
End Program g01erfe

10.2 Program Data

G01ERF Example Program Data
7.0 0.0
2.8 2.4
1.0 1.0

-1.4 1.3

10.3 Program Results

G01ERF Example Program Results

T VK Probability

7.0000 0.0000 0.6141
2.8000 2.4000 0.9983
1.0000 1.0000 0.7944

-1.4000 1.3000 0.1016
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NAG Library Routine Document

G01ETF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01ETF returns the value of the Landau distribution function � �ð Þ, via the routine name.

2 Specification

FUNCTION G01ETF (X)
REAL (KIND=nag_wp) G01ETF

REAL (KIND=nag_wp) X

3 Description

G01ETF evaluates an approximation to the Landau distribution function � �ð Þ given by

� �ð Þ ¼
Z �

�1

 �ð Þ d�;

where 
 �ð Þ is described in G01MTF, using piecewise approximation by rational functions. Further
details can be found in KÎlbig and Schorr (1984).

4 References

KÎlbig K S and Schorr B (1984) A program package for the Landau distribution Comp. Phys. Comm. 31
97–111

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument � of the function.

6 Error Indicators and Warnings

None.

7 Accuracy

At least 7 significant digits are usually correct, but occasionally only 6. Such accuracy is normally
considered to be adequate for applications in experimental physics.

Because of the asymptotic behaviour of � �ð Þ, which is of the order of exp � exp ��ð Þ½ �, underflow may
occur on some machines when � is moderately large and negative.

8 Parallelism and Performance

G01ETF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example evaluates � �ð Þ at � ¼ 0:5, and prints the results.

10.1 Program Text

Program g01etfe

! G01ETF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a00acf, g01etf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01ETF Example Program Results’
Write (nout,*)

! Check for valid licence prior to calling G01ETF
If (.Not. a00acf()) Then

Write (nout,*) ’ ** A valid licence key was not found’

Else
! Skip heading in data file

Read (nin,*)

! Display titles
Write (nout,*) ’ X Y’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x
If (ifail/=0) Then

Exit d_lp
End If

! Compute the value of the Landau distribution function
y = g01etf(x)

! Display the results
Write (nout,99999) x, y

End Do d_lp
End If

99999 Format (1X,F4.1,3X,1P,E12.4)
End Program g01etfe

10.2 Program Data

G01ETF Example Program Data
0.5 : Value of X

10.3 Program Results

G01ETF Example Program Results

X Y

0.5 3.7328E-01
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NAG Library Routine Document

G01EUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01EUF returns the value of the Vavilov distribution function �V �;�; �2
� �

, via the routine name.

It is intended to be used after a call to G01ZUF.

2 Specification

FUNCTION G01EUF (X, RCOMM, IFAIL)
REAL (KIND=nag_wp) G01EUF

INTEGER IFAIL
REAL (KIND=nag_wp) X, RCOMM(322)

3 Description

G01EUF evaluates an approximation to the Vavilov distribution function �V �;�; �2
� �

given by

�V �;�; �2
� �

¼
Z �

�1

V �;�; �2
� �

d�;

where 
 �ð Þ is described in G01MUF. The method used is based on Fourier expansions. Further details
can be found in Schorr (1974).

4 References

Schorr B (1974) Programs for the Landau and the Vavilov distributions and the corresponding random
numbers Comp. Phys. Comm. 7 215–224

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument � of the function.

2: RCOMMð322Þ – REAL (KIND=nag_wp) array Communication Array

On entry: this must be the same argument RCOMM as returned by a previous call to G01ZUF.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Either the initialization routine has not been called prior to the first call of this routine or a
communication array has become corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

At least five significant digits are usually correct.

8 Parallelism and Performance

G01EUF is not threaded in any implementation.

9 Further Comments

G01EUF can be called repeatedly with different values of � provided that the values of � and �2 remain
unchanged between calls. Otherwise, G01ZUF must be called again. This is illustrated in Section 10.

10 Example

This example evaluates �V �;�; �2
� �

at � ¼ 0:1, � ¼ 2:5 and �2 ¼ 0:7, and prints the results.

10.1 Program Text

Program g01eufe

! G01EUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01euf, g01zuf, nag_wp, x02alf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: mode = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta2, c1, c2, rkappa, x, xl, xu, y
Integer :: ifail
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! .. Local Arrays ..
Real (Kind=nag_wp) :: rcomm(322)

! .. Executable Statements ..
Write (nout,*) ’G01EUF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,99998) ’X’, ’RKAPPA’, ’BETA2’, ’Y’, ’IFAIL’
Write (nout,*)

c1 = -x02alf()
c2 = -x02alf()

d_lp: Do
Read (nin,*,Iostat=ifail) x, rkappa, beta2
If (ifail/=0) Then

Exit d_lp
End If

If ((rkappa/=c1) .Or. (beta2/=c2)) Then
! If RKAPPA or BETA2 have changed, initialize array RCOMM

ifail = 0
Call g01zuf(rkappa,beta2,mode,xl,xu,rcomm,ifail)

End If

! Compute the value of the Vavilov distribution function
ifail = 0
y = g01euf(x,rcomm,ifail)

! Display results
Write (nout,99999) x, rkappa, beta2, y, ifail
c1 = rkappa
c2 = beta2

End Do d_lp

99999 Format (1X,F4.1,5X,F4.1,5X,F4.1,3X,1P,E12.4,I6)
99998 Format (1X,A2,5X,A6,4X,A5,8X,A1,8X,A5)

End Program g01eufe

10.2 Program Data

G01EUF Example Program Data
0.1 2.5 0.7 : Values of X, RKAPPA and BETA2

10.3 Program Results

G01EUF Example Program Results

X RKAPPA BETA2 Y IFAIL

0.1 2.5 0.7 9.9982E-01 0
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NAG Library Routine Document

G01EWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01EWF returns the probability associated with the lower tail of the distribution for the Dickey–Fuller
unit root test statistic.

2 Specification

FUNCTION G01EWF (METHOD, TYPE, N, TS, NSAMP, STATE, IFAIL)
REAL (KIND=nag_wp) G01EWF

INTEGER METHOD, TYPE, N, NSAMP, STATE(*), IFAIL
REAL (KIND=nag_wp) TS

3 Description

If the root of the characteristic equation for a time series is one then that series is said to have a unit
root. Such series are nonstationary. G01EWF is designed to be called after G13AWF and returns the
probability associated with one of three types of (augmented) Dickey–Fuller test statistic: � , �� or �� ,
used to test for a unit root, a unit root with drift or a unit root with drift and a deterministic time trend,
respectively. The three types of test statistic are constructed as follows:

1. To test whether a time series, yt, for t ¼ 1; 2; . . . ; n, has a unit root the regression model

ryt ¼ �1yt�1 þ
Xp�1
i¼1
�iryt�i þ �t

is fit and the test statistic � constructed as

� ¼ �̂1
�11

where r is the difference operator, with ryt ¼ yt � yt�1, and where �̂1 and �11 are the least
squares estimate and associated standard error for �1 respectively.

2. To test for a unit root with drift the regression model

ryt ¼ �1yt�1 þ
Xp�1
i¼1
�iryt�i þ �þ �t

is fit and the test statistic �� constructed as

�� ¼
�̂1
�11

:

3. To test for a unit root with drift and deterministic time trend the regression model

ryt ¼ �1yt�1 þ
Xp�1
i¼1
�iryt�i þ �þ �2tþ �t

is fit and the test statistic �� constructed as

�� ¼
�̂1
�11

:
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All three test statistics: � , �� and �� can be calculated using G13AWF.

The probability distributions of these statistics are nonstandard and are a function of the length of the
series of interest, n. The probability associated with a given test statistic, for a given n, can therefore
only be calculated by simulation as described in Dickey and Fuller (1979). However, such simulations
require a significant number of iterations and are therefore prohibitively expensive in terms of the time
taken. As such G01EWF also allows the probability to be interpolated from a look-up table. Two such
tables are provided, one from Dickey (1976) and one constructed as described in Section 9. The three
different methods of obtaining an estimate of the probability can be chosen via the METHOD argument.
Unless there is a specific reason for choosing otherwise, METHOD ¼ 1 should be used.

4 References

Dickey A D (1976) Estimation and hypothesis testing in nonstationary time series PhD Thesis Iowa
State University, Ames, Iowa

Dickey A D and Fuller W A (1979) Distribution of the estimators for autoregressive time series with a
unit root J. Am. Stat. Assoc. 74 366 427–431

5 Arguments

1: METHOD – INTEGER Input

On entry: the method used to calculate the probability.

METHOD ¼ 1
The probability is interpolated from a look-up table, whose values were obtained via
simulation.

METHOD ¼ 2
The probability is interpolated from a look-up table, whose values were obtained from
Dickey (1976).

METHOD ¼ 3
The probability is obtained via simulation.

The probability calculated from the look-up table should give sufficient accuracy for most
applications.

Suggested value: METHOD ¼ 1.

Constraint: METHOD ¼ 1, 2 or 3.

2: TYPE – INTEGER Input

On entry: the type of test statistic, supplied in TS.

Constraint: TYPE ¼ 1, 2 or 3.

3: N – INTEGER Input

On entry: n, the length of the time series used to calculate the test statistic.

Constraints:

if METHOD 6¼ 3, N > 0;
if METHOD ¼ 3 and TYPE ¼ 1, N > 2;
if METHOD ¼ 3 and TYPE ¼ 2, N > 3;
if METHOD ¼ 3 and TYPE ¼ 3, N > 4.

4: TS – REAL (KIND=nag_wp) Input

On entry: the Dickey–Fuller test statistic for which the probability is required. If

TYPE ¼ 1
TS must contain � .
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TYPE ¼ 2
TS must contain ��.

TYPE ¼ 3
TS must contain �� .

If the test statistic was calculated using G13AWF the value of TYPE and N must not change
between calls to G01EWF and G13AWF.

5: NSAMP – INTEGER Input

On entry: if METHOD ¼ 3, the number of samples used in the simulation; otherwise NSAMP is
not referenced and need not be set.

Constraint: if METHOD ¼ 3, NSAMP > 0.

6: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: if METHOD ¼ 3, STATE must contain information on the selected base generator and
its current state; otherwise STATE is not referenced and need not be set.

On exit: if METHOD ¼ 3, STATE contains updated information on the state of the generator
otherwise a zero length vector is returned.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, METHOD ¼ valueh i.
Constraint: METHOD ¼ 1, 2 or 3.

IFAIL ¼ 21

On entry, TYPE ¼ valueh i.
Constraint: TYPE ¼ 1, 2 or 3.

IFAIL ¼ 31

On entry, N ¼ valueh i.
Constraint: if METHOD 6¼ 3, N > 0.

On entry, N ¼ valueh i.
Constraint: if METHOD ¼ 3 and TYPE ¼ 1, N > 2.
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On entry, N ¼ valueh i.
Constraint: if METHOD ¼ 3 and TYPE ¼ 2, N > 3.

On entry, N ¼ valueh i.
Constraint: if METHOD ¼ 3 and TYPE ¼ 3, N > 4.

IFAIL ¼ 51

On entry, NSAMP ¼ valueh i.
Constraint: if METHOD ¼ 3, NSAMP > 0.

IFAIL ¼ 61

On entry, METHOD ¼ 3 and the STATE vector has been corrupted or not initialized.

IFAIL ¼ 201

The supplied input values were outside the range of at least one look-up table, therefore
extrapolation was used.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

When METHOD ¼ 1, the probability returned by this routine is unlikely to be accurate to more than 4
or 5 decimal places, for METHOD ¼ 2 this accuracy is likely to drop to 2 or 3 decimal places (see
Section 9 for details on how these probabilities are constructed). In both cases the accuracy of the
probability is likely to be lower when extrapolation is used, particularly for small values of N (less than
around 15). When METHOD ¼ 3 the accuracy of the returned probability is controlled by the number
of simulations performed (i.e., the value of NSAMP used).

8 Parallelism and Performance

G01EWF is not threaded in any implementation.

9 Further Comments

When METHOD ¼ 1 or 2 the probability returned is constructed by interpolating from a series of look-
up tables. In the case of METHOD ¼ 2 the look-up tables are taken directly from Dickey (1976) and
the interpolation is carried out using E01SAF and E01SBF . For METHOD ¼ 1 the look-up tables were
constructed as follows:

(i) A sample size, n was chosen.

(ii) 228 simulations were run.

(iii) At each simulation, a time series was constructed as described in chapter five of Dickey (1976).
The relevant test statistic was then calculated for each of these time series.
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(iv) A series of quantiles were calculated from the sample of 228 test statistics. The quantiles were
calculated at intervals of 0:0005 between 0:0005 and 0:9995.

(v) A spline was fit to the quantiles using E02BEF.

This process was repeated for n ¼ 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800;
900; 1000; 1500; 2000; 2500; 5000; 10000, resulting in 22 splines.

Given the 22 splines, and a user-supplied sample size, n and test statistic, � , an estimated p-value is
calculated as follows:

(i) Evaluate each of the 22 splines, at � , using E02BEF. If, for a particular spline, the supplied value
of � lies outside of the range of the simulated data, then a third-order Taylor expansion is used to
extrapolate, with the derivatives being calculated using E02BCF.

(ii) Fit a spline through these 22 points using E01BEF.

(iii) Estimate the p-value using E01BFF.

10 Example

See Section 10 in G13AWF.
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NAG Library Routine Document

G01EYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01EYF returns the upper tail probability associated with the one sample Kolmogorov–Smirnov
distribution, via the routine name.

2 Specification

FUNCTION G01EYF (N, D, IFAIL)
REAL (KIND=nag_wp) G01EYF

INTEGER N, IFAIL
REAL (KIND=nag_wp) D

3 Description

Let Sn xð Þ be the sample cumulative distribution function and F0 xð Þ the hypothesised theoretical
distribution function.

G01EYF returns the upper tail probability, p, associated with the one-sided Kolmogorov–Smirnov test
statistic Dþn or D�n , where these one-sided statistics are defined as follows;

Dþn ¼ supx Sn xð Þ � F0 xð Þ½ �;

D�n ¼ supx F0 xð Þ � Sn xð Þ½ ½:

If n � 100 an exact method is used; for the details see Conover (1980). Otherwise a large sample
approximation derived by Smirnov is used; see Feller (1948), Kendall and Stuart (1973) or Smirnov
(1948).

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Feller W (1948) On the Kolmogorov–Smirnov limit theorems for empirical distributions Ann. Math.
Statist. 19 179–181

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions Ann. Math. Statist.
19 279–281

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations in the sample.

Constraint: N � 1.

2: D – REAL (KIND=nag_wp) Input

On entry: contains the test statistic, Dþn or D�n .

Constraint: 0:0 � D � 1:0.
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3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

IFAIL ¼ 2

On entry, D < 0:0,
or D > 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The large sample distribution used as an approximation to the exact distribution should have a relative
error of less than 2:5% for most cases.

8 Parallelism and Performance

G01EYF is not threaded in any implementation.

9 Further Comments

The upper tail probability for the two-sided statistic, Dn ¼ max Dþn ;D
�
n

� �
, can be approximated by

twice the probability returned via G01EYF, that is 2p. (Note that if the probability from G01EYF is
greater than 0:5 then the two-sided probability should be truncated to 1:0). This approximation to the
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tail probability for Dn is good for small probabilities, (e.g., p � 0:10) but becomes very poor for larger
probabilities.

The time taken by the routine increases with n, until n > 100. At this point the approximation is used
and the time decreases significantly. The time then increases again modestly with n.

10 Example

The following example reads in 10 different sample sizes and values for the test statistic Dn. The upper
tail probability is computed and printed for each case.

10.1 Program Text

Program g01eyfe

! G01EYF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01eyf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, prob
Integer :: ifail, n

! .. Executable Statements ..
Write (nout,*) ’G01EYF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ D N One-sided probability’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) n, d
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = 0
prob = g01eyf(n,d,ifail)

! Display results
Write (nout,99999) d, n, prob

End Do d_lp

99999 Format (1X,F7.4,2X,I4,10X,F7.4)
End Program g01eyfe

10.2 Program Data

G01EYF Example Program Data
10 0.323
10 0.369
10 0.409
10 0.457
10 0.489
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400 0.0535
400 0.061
400 0.068
400 0.076
400 0.0815

10.3 Program Results

G01EYF Example Program Results

D N One-sided probability

0.3230 10 0.0994
0.3690 10 0.0497
0.4090 10 0.0251
0.4570 10 0.0099
0.4890 10 0.0050
0.0535 400 0.1001
0.0610 400 0.0502
0.0680 400 0.0243
0.0760 400 0.0096
0.0815 400 0.0048
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NAG Library Routine Document

G01EZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01EZF returns the probability associated with the upper tail of the Kolmogorov–Smirnov two sample
distribution, via the routine name.

2 Specification

FUNCTION G01EZF (N1, N2, D, IFAIL)
REAL (KIND=nag_wp) G01EZF

INTEGER N1, N2, IFAIL
REAL (KIND=nag_wp) D

3 Description

Let Fn1 xð Þ and Gn2 xð Þ denote the empirical cumulative distribution functions for the two samples,
where n1 and n2 are the sizes of the first and second samples respectively.

The function G01EZF computes the upper tail probability for the Kolmogorov–Smirnov two sample
two-sided test statistic Dn1;n2 , where

Dn1;n2 ¼ supx Fn1 xð Þ �Gn2 xð Þj j:

The probability is computed exactly if n1; n2 � 10000 and max n1; n2ð Þ � 2500 using a method given by
Kim and Jenrich (1973). For the case where min n1; n2ð Þ � 10% of the max n1; n2ð Þ and
min n1; n2ð Þ � 80 the Smirnov approximation is used. For all other cases the Kolmogorov
approximation is used. These two approximations are discussed in Kim and Jenrich (1973).

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Feller W (1948) On the Kolmogorov–Smirnov limit theorems for empirical distributions Ann. Math.
Statist. 19 179–181

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin

Kim P J and Jenrich R I (1973) Tables of exact sampling distribution of the two sample Kolmogorov–
Smirnov criterion Dmn m < nð Þ Selected Tables in Mathematical Statistics 1 80–129 American
Mathematical Society

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions Ann. Math. Statist.
19 279–281

5 Arguments

1: N1 – INTEGER Input

On entry: the number of observations in the first sample, n1.

Constraint: N1 � 1.
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2: N2 – INTEGER Input

On entry: the number of observations in the second sample, n2.

Constraint: N2 � 1.

3: D – REAL (KIND=nag_wp) Input

On entry: the test statistic Dn1;n2 , for the two sample Kolmogorov–Smirnov goodness-of-fit test,
that is the maximum difference between the empirical cumulative distribution functions (CDFs)
of the two samples.

Constraint: 0:0 � D � 1:0.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 1,
or N2 < 1.

IFAIL ¼ 2

On entry, D < 0:0,
or D > 1:0.

IFAIL ¼ 3

The approximation solution did not converge in 500 iterations. A tail probability of 1:0 is
returned by G01EZF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The large sample distributions used as approximations to the exact distribution should have a relative
error of less than 5% for most cases.

8 Parallelism and Performance

G01EZF is not threaded in any implementation.

9 Further Comments

The upper tail probability for the one-sided statistics, Dþn1;n2 or D�n1;n2, can be approximated by halving
the two-sided upper tail probability returned by G01EZF, that is p=2. This approximation to the upper
tail probability for either Dþn1;n2 or D�n1;n2 is good for small probabilities, (e.g., p � 0:10) but becomes
poor for larger probabilities.

The time taken by the routine increases with n1 and n2, until n1n2 > 10000 or max n1; n2ð Þ � 2500. At
this point one of the approximations is used and the time decreases significantly. The time then
increases again modestly with n1 and n2.

10 Example

The following example reads in 10 different sample sizes and values for the test statistic Dn1;n2 . The
upper tail probability is computed and printed for each case.

10.1 Program Text

Program g01ezfe

! G01EZF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01ezf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, prob
Integer :: ifail, n1, n2

! .. Executable Statements ..
Write (nout,*) ’G01EZF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ D N1 N2 Two-sided probability’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) n1, n2, d
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = -1
prob = g01ezf(n1,n2,d,ifail)
If (ifail/=0) Then

If (ifail/=3) Then
Exit d_lp
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End If
End If

! Display results
Write (nout,99999) d, n1, n2, prob

End Do d_lp

99999 Format (1X,F7.4,2X,I4,2X,I4,10X,F7.4)
End Program g01ezfe

10.2 Program Data

G01EZF Example Program Data
5 10 0.5

10 10 0.5
20 10 0.5
20 15 0.4833

400 200 0.1412
200 20 0.2861
1000 20 0.2113
200 50 0.1796
15 200 0.18

100 100 0.18

10.3 Program Results

G01EZF Example Program Results

D N1 N2 Two-sided probability

0.5000 5 10 0.3506
0.5000 10 10 0.1678
0.5000 20 10 0.0623
0.4833 20 15 0.0261
0.1412 400 200 0.0083
0.2861 200 20 0.0789
0.2113 1000 20 0.2941
0.1796 200 50 0.1392
0.1800 15 200 0.6926
0.1800 100 100 0.0782
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NAG Library Routine Document

G01FAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01FAF returns the deviate associated with the given probability of the standard Normal distribution,
via the routine name.

2 Specification

FUNCTION G01FAF (TAIL, P, IFAIL)
REAL (KIND=nag_wp) G01FAF

INTEGER IFAIL
REAL (KIND=nag_wp) P
CHARACTER(1) TAIL

3 Description

The deviate, xp associated with the lower tail probability, p, for the standard Normal distribution is
defined as the solution to

P X � xp
� �

¼ p ¼
Z xp

�1
Z Xð Þ dX;

where

Z Xð Þ ¼ 1ffiffiffiffiffiffi
2	
p e�X

2=2; �1 < X <1:

The method used is an extension of that of Wichura (1988). p is first replaced by q ¼ p� 0:5.

(a) If qj j � 0:3, xp is computed by a rational Chebyshev approximation

xp ¼ s
A s2
� �

B s2ð Þ;

where s ¼
ffiffiffiffiffiffi
2	
p

q and A, B are polynomials of degree 7.

(b) If 0:3 < qj j � 0:42, xp is computed by a rational Chebyshev approximation

xp ¼ sign q
C tð Þ
D tð Þ

� �
;

where t ¼ qj j � 0:3 and C, D are polynomials of degree 5.

(c) If qj j > 0:42, xp is computed as

xp ¼ sign q
E uð Þ
F uð Þ

� �
þ u

� �
;

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� log min p; 1� pð Þð Þ

p
and E, F are polynomials of degree 6.

For the upper tail probability �xp is returned, while for the two tail probabilities the value xp� is
returned, where p� is the required tail probability computed from the input value of p.
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4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Wichura (1988) Algorithm AS 241: the percentage points of the Normal distribution Appl. Statist. 37
477–484

5 Arguments

1: TAIL – CHARACTER(1) Input

On entry: indicates which tail the supplied probability represents.

TAIL ¼ L
The lower probability, i.e., P X � xp

� �
.

TAIL ¼ U
The upper probability, i.e., P X � xp

� �
.

TAIL ¼ S
The two tail (significance level) probability, i.e., P X � xp

		 		� �
þ P X � � xp

		 		� �
.

TAIL ¼ C
The two tail (confidence interval) probability, i.e., P X � xp

		 		� �
� P X � � xp

		 		� �
.

Constraint: TAIL ¼ L , U , S or C .

2: P – REAL (KIND=nag_wp) Input

On entry: p, the probability from the standard Normal distribution as defined by TAIL.

Constraint: 0:0 < P < 1:0.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

If on exit IFAIL 6¼ 0, then G01FAF returns 0:0.

IFAIL ¼ 1

On entry, TAIL 6¼ L , U , S or C .
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IFAIL ¼ 2

On entry, P � 0:0,
or P � 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is mainly limited by the machine precision.

8 Parallelism and Performance

G01FAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

Four values of TAIL and P are input and the deviates calculated and printed.

10.1 Program Text

Program g01fafe

! G01FAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01faf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dev, p
Integer :: ifail
Character (1) :: tail

! .. Executable Statements ..
Write (nout,*) ’G01FAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
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Write (nout,*) ’ Tail Probability Deviate ’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) tail, p
If (ifail/=0) Then

Exit d_lp
End If

! Calculate the deviate (inverse CDF)
ifail = 0
dev = g01faf(tail,p,ifail)

! Display results
Write (nout,99999) tail, p, dev

End Do d_lp

99999 Format (3X,A1,8X,F6.3,8X,F7.4)
End Program g01fafe

10.2 Program Data

G01FAF Example Program Data
’L’ 0.975
’U’ 0.025
’C’ 0.95
’S’ 0.05

10.3 Program Results

G01FAF Example Program Results

Tail Probability Deviate

L 0.975 1.9600
U 0.025 1.9600
C 0.950 1.9600
S 0.050 1.9600
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NAG Library Routine Document

G01FBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01FBF returns the deviate associated with the given tail probability of Student's t-distribution with
real degrees of freedom, via the routine name.

2 Specification

FUNCTION G01FBF (TAIL, P, DF, IFAIL)
REAL (KIND=nag_wp) G01FBF

INTEGER IFAIL
REAL (KIND=nag_wp) P, DF
CHARACTER(1) TAIL

3 Description

The deviate, tp associated with the lower tail probability, p, of the Student's t-distribution with �
degrees of freedom is defined as the solution to

P T < tp : �
� �

¼ p ¼  � þ 1ð Þ=2ð Þffiffiffiffiffiffi
�	
p

 �=2ð Þ

Z tp

�1
1þ T

2

�

� �� �þ1ð Þ=2
dT ; � � 1; �1 < tp <1:

For � ¼ 1 or 2 the integral equation is easily solved for tp.

For other values of � < 3 a transformation to the beta distribution is used and the result obtained from
G01FEF.

For � � 3 an inverse asymptotic expansion of Cornish–Fisher type is used. The algorithm is described
by Hill (1970).

4 References

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Hill G W (1970) Student's t-distribution Comm. ACM 13(10) 617–619

5 Arguments

1: TAIL – CHARACTER(1) Input

On entry: indicates which tail the supplied probability represents.

TAIL ¼ U
The upper tail probability, i.e., P T � tp : �

� �
.

TAIL ¼ L
The lower tail probability, i.e., P T � tp : �

� �
.

TAIL ¼ S
The two tail (significance level) probability, i.e., P T � tp

		 		 : �� �
þ P T � � tp

		 		 : �� �
.

TAIL ¼ C
The two tail (confidence interval) probability, i.e., P T � tp

		 		 : �� �
� P T � � tp

		 		 : �� �
.

Constraint: TAIL ¼ U , L , S or C .
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2: P – REAL (KIND=nag_wp) Input

On entry: p, the probability from the required Student's t-distribution as defined by TAIL.

Constraint: 0:0 < P < 1:0.

3: DF – REAL (KIND=nag_wp) Input

On entry: �, the degrees of freedom of the Student's t-distribution.

Constraint: DF � 1:0.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01FBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If IFAIL ¼ 1, 2 or 3 on exit, then G01FBF returns zero.

IFAIL ¼ 1

On entry, TAIL 6¼ U , S , C or L .

IFAIL ¼ 2

On entry, P � 0:0,
or P � 1:0.

IFAIL ¼ 3

On entry, DF < 1:0.

IFAIL ¼ 5

Convergence in the calculation of the inverse beta value was not achieved. However, the result
should be a reasonable approximation to the correct value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

G01FBF NAG Library Manual

G01FBF.2 Mark 26



IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The results should be accurate to five significant digits, for most argument values. The error behaviour
for various argument values is discussed in Hill (1970).

8 Parallelism and Performance

G01FBF is not threaded in any implementation.

9 Further Comments

The value tp may be calculated by using the transformation described in Section 3 and using G01FEF.
This routine allows you to set the required accuracy.

10 Example

This example reads the probability, the tail that probability represents and the degrees of freedom for a
number of Student's t-distributions and computes the corresponding deviates.

10.1 Program Text

Program g01fbfe

! G01FBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01fbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df, p, x
Integer :: ifail
Character (1) :: tail

! .. Executable Statements ..
Write (nout,*) ’G01FBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ P DF TAIL X’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) p, df, tail
If (ifail/=0) Then

Exit d_lp
End If

! Calculate deviates (inverse CDF)
ifail = -1
x = g01fbf(tail,p,df,ifail)
If (ifail/=0) Then

If (ifail/=4 .And. ifail/=5) Then
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Exit d_lp
End If

End If

! Display results
Write (nout,99999) p, df, tail, x

End Do d_lp

99999 Format (1X,2F8.3,3X,A1,3X,F8.3,A,I1)
End Program g01fbfe

10.2 Program Data

G01FBF Example Program Data
0.0100 20.0 ’S’ :P DF TAIL
0.01 7.5 ’L’ :P DF TAIL
0.99 45.0 ’C’ :P DF TAIL

10.3 Program Results

G01FBF Example Program Results

P DF TAIL X

0.010 20.000 S 2.845
0.010 7.500 L -2.943
0.990 45.000 C 2.690
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NAG Library Routine Document

G01FCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01FCF returns the deviate associated with the given lower tail probability of the �2-distribution with
real degrees of freedom, via the routine name.

2 Specification

FUNCTION G01FCF (P, DF, IFAIL)
REAL (KIND=nag_wp) G01FCF

INTEGER IFAIL
REAL (KIND=nag_wp) P, DF

3 Description

The deviate, xp, associated with the lower tail probability p of the �2-distribution with � degrees of
freedom is defined as the solution to

P X � xp : �
� �

¼ p ¼ 1

2�=2 �=2ð Þ

Z xp

0
e�X=2Xv=2�1 dX; 0 � xp <1;� > 0:

The required xp is found by using the relationship between a �2-distribution and a gamma distribution,
i.e., a �2-distribution with � degrees of freedom is equal to a gamma distribution with scale parameter 2
and shape parameter �=2.

For very large values of �, greater than 105, Wilson and Hilferty's normal approximation to the �2 is
used; see Kendall and Stuart (1969).

4 References

Best D J and Roberts D E (1975) Algorithm AS 91. The percentage points of the �2 distribution Appl.
Statist. 24 385–388

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

5 Arguments

1: P – REAL (KIND=nag_wp) Input

On entry: p, the lower tail probability from the required �2-distribution.

Constraint: 0:0 � P < 1:0.

2: DF – REAL (KIND=nag_wp) Input

On entry: �, the degrees of freedom of the �2-distribution.

Constraint: DF > 0:0.
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3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01FCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If IFAIL ¼ 1, 2, 3 or 5 on exit, then G01FCF returns 0:0.

IFAIL ¼ 1

On entry, P < 0:0,
or P � 1:0.

IFAIL ¼ 2

On entry, DF � 0:0.

IFAIL ¼ 3

P is too close to 0 or 1 for the result to be calculated.

IFAIL ¼ 4

The solution has failed to converge. The result should be a reasonable approximation.

IFAIL ¼ 5

The series used to calculate the gamma function has failed to converge. This is an unlikely error
exit.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The results should be accurate to five significant digits for most argument values. Some accuracy is lost
for p close to 0:0.

8 Parallelism and Performance

G01FCF is not threaded in any implementation.

9 Further Comments

For higher accuracy the relationship described in Section 3 may be used and a direct call to G01FFF
made.

10 Example

This example reads lower tail probabilities for several �2-distributions, and calculates and prints the
corresponding deviates until the end of data is reached.

10.1 Program Text

Program g01fcfe

! G01FCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01fcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df, p, x
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01FCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ P DF X’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) p, df
If (ifail/=0) Then

Exit d_lp
End If

! Calculate deviates (inverse CDF)
ifail = -1
x = g01fcf(p,df,ifail)
If (ifail/=0) Then

If (ifail/=4 .And. ifail/=5) Then
Exit d_lp

End If
End If

! Display results
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Write (nout,99999) p, df, x
End Do d_lp

99999 Format (1X,3F8.3,A,I1)
End Program g01fcfe

10.2 Program Data

G01FCF Example Program Data
0.0100 20.0 :P DF
0.4279 7.5 :P DF
0.8694 45.0 :P DF

10.3 Program Results

G01FCF Example Program Results

P DF X

0.010 20.000 8.260
0.428 7.500 6.200
0.869 45.000 55.759
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NAG Library Routine Document

G01FDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01FDF returns the deviate associated with the given lower tail probability of the F or variance-ratio
distribution with real degrees of freedom, via the routine name.

2 Specification

FUNCTION G01FDF (P, DF1, DF2, IFAIL)
REAL (KIND=nag_wp) G01FDF

INTEGER IFAIL
REAL (KIND=nag_wp) P, DF1, DF2

3 Description

The deviate, fp, associated with the lower tail probability, p, of the F -distribution with degrees of
freedom �1 and �2 is defined as the solution to

P F � fp : �1; �2
� �

¼ p ¼
�

1
2�1
1 �

1
2�2
2  �1þ�2

2

� �
 �1

2

� �
 �2

2

� � Z fp

0
F

1
2 �1�2ð Þ �2 þ �1Fð Þ�

1
2 �1þ�2ð Þ dF;

where �1; �2 > 0; 0 � fp <1.

The value of fp is computed by means of a transformation to a beta distribution, P� B � � : a; bð Þ:

P F � f : �1; �2ð Þ ¼ P� B � �1f

�1f þ �2
: �1=2; �2=2

� �
and using a call to G01FEF.

For very large values of both �1 and �2, greater than 105, a normal approximation is used. If only one of
�1 or �2 is greater than 105 then a �2 approximation is used; see Abramowitz and Stegun (1972).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: P – REAL (KIND=nag_wp) Input

On entry: p, the lower tail probability from the required F -distribution.

Constraint: 0:0 � P < 1:0.

2: DF1 – REAL (KIND=nag_wp) Input

On entry: the degrees of freedom of the numerator variance, �1.

Constraint: DF1 > 0:0.
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3: DF2 – REAL (KIND=nag_wp) Input

On entry: the degrees of freedom of the denominator variance, �2.

Constraint: DF2 > 0:0.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01FDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If on exit IFAIL ¼ 1, 2 or 4, then G01FDF returns 0:0.

IFAIL ¼ 1

On entry, P < 0:0,
or P � 1:0.

IFAIL ¼ 2

On entry, DF1 � 0:0,
or DF2 � 0:0.

IFAIL ¼ 3

The solution has not converged. The result should still be a reasonable approximation to the
solution. Alternatively, G01FEF can be used with a suitable setting of the argument TOL.

IFAIL ¼ 4

The value of P is too close to 0 or 1 for the value of fp to be computed. This will only occur
when the large sample approximations are used.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The result should be accurate to five significant digits.

8 Parallelism and Performance

G01FDF is not threaded in any implementation.

9 Further Comments

For higher accuracy G01FEF can be used along with the transformations given in Section 3.

10 Example

This example reads the lower tail probabilities for several F -distributions, and calculates and prints the
corresponding deviates until the end of data is reached.

10.1 Program Text

Program g01fdfe

! G01FDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01fdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df1, df2, f, p
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01FDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ P DF1 DF2 F’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) p, df1, df2
If (ifail/=0) Then

Exit d_lp
End If

! Calculate deviates (inverse CDF)
ifail = -1
f = g01fdf(p,df1,df2,ifail)
If (ifail/=0) Then

If (ifail/=3 .And. ifail/=4) Then
Exit d_lp

End If
End If

G01 – Simple Calculations on Statistical Data G01FDF

Mark 26 G01FDF.3



! Display results
Write (nout,99999) p, df1, df2, f

End Do d_lp

99999 Format (1X,4F8.3,A,I1)
End Program g01fdfe

10.2 Program Data

G01FDF Example Program Data
0.9837 10.0 25.5 :P DF1 DF2
0.9000 1.0 1.0 :P DF1 DF2
0.5342 20.25 1.0 :P DF1 DF2

10.3 Program Results

G01FDF Example Program Results

P DF1 DF2 F

0.984 10.000 25.500 2.837
0.900 1.000 1.000 39.863
0.534 20.250 1.000 2.500
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NAG Library Routine Document

G01FEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01FEF returns the deviate associated with the given lower tail probability of the beta distribution, via
the routine name.

2 Specification

FUNCTION G01FEF (P, A, B, TOL, IFAIL)
REAL (KIND=nag_wp) G01FEF

INTEGER IFAIL
REAL (KIND=nag_wp) P, A, B, TOL

3 Description

The deviate, �p, associated with the lower tail probability, p, of the beta distribution with parameters a
and b is defined as the solution to

P B � �p : a; b
� �

¼ p ¼  aþ bð Þ
 að Þ bð Þ

Z �p

0
Ba�1 1�Bð Þb�1 dB; 0 � �p � 1;a; b > 0:

The algorithm is a modified version of the Newton–Raphson method, following closely that of Cran et
al. (1977).

An initial approximation, �0, to �p is found (see Cran et al. (1977)), and the Newton–Raphson iteration

�i ¼ �i�1 �
f �i�1ð Þ
f 0 �i�1ð Þ;

where f �ð Þ ¼ P B � � : a; bð Þ � p is used, with modifications to ensure that � remains in the range
0; 1ð Þ.

4 References

Cran G W, Martin K J and Thomas G E (1977) Algorithm AS 109. Inverse of the incomplete beta
function ratio Appl. Statist. 26 111–114

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: P – REAL (KIND=nag_wp) Input

On entry: p, the lower tail probability from the required beta distribution.

Constraint: 0:0 � P � 1:0.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the first parameter of the required beta distribution.

Constraint: 0:0 < A � 106.
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3: B – REAL (KIND=nag_wp) Input

On entry: b, the second parameter of the required beta distribution.

Constraint: 0:0 < B � 106.

4: TOL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required by you in the result. If G01FEF is entered with TOL
greater than or equal to 1:0 or less than 10�machine precision (see X02AJF), then the value of
10�machine precision is used instead.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01FEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If on exit IFAIL ¼ 1 or 2, then G01FEF returns 0:0.

IFAIL ¼ 1

On entry, P < 0:0,
or P > 1:0.

IFAIL ¼ 2

On entry, A � 0:0,
or A > 106,
or B � 0:0,
or B > 106.

IFAIL ¼ 3

There is doubt concerning the accuracy of the computed result. 100 iterations of the Newton–
Raphson method have been performed without satisfying the accuracy criterion (see Section 7).
The result should be a reasonable approximation of the solution.

IFAIL ¼ 4

Requested accuracy not achieved when calculating beta probability. The result should be a
reasonable approximation to the correct solution. You should try setting TOL larger.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The required precision, given by TOL, should be achieved in most circumstances.

8 Parallelism and Performance

G01FEF is not threaded in any implementation.

9 Further Comments

The typical timing will be several times that of G01EEF and will be very dependent on the input
argument values. See G01EEF for further comments on timings.

10 Example

This example reads lower tail probabilities for several beta distributions and calculates and prints the
corresponding deviates until the end of data is reached.

10.1 Program Text

Program g01fefe

! G01FEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01fef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, p, tol, x
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01FEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ Probability A B Deviate’
Write (nout,*)

! Use default tolerance
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tol = 0.0E0_nag_wp

d_lp: Do
Read (nin,*,Iostat=ifail) p, a, b
If (ifail/=0) Then

Exit d_lp
End If

! Calculate deviates (inverse CDF)
ifail = -1
x = g01fef(p,a,b,tol,ifail)
If (ifail/=0) Then

If (ifail/=3 .And. ifail/=4) Then
Exit d_lp

End If
End If

! Display results
Write (nout,99999) p, a, b, x

End Do d_lp

99999 Format (1X,F9.4,2F10.3,F10.4,A,I1)
End Program g01fefe

10.2 Program Data

G01FEF Example Program Data
0.5000 1.0 2.0 :P A B
0.9900 1.5 1.5 :P A B
0.2500 20.0 10.0 :P A B

10.3 Program Results

G01FEF Example Program Results

Probability A B Deviate

0.5000 1.000 2.000 0.2929
0.9900 1.500 1.500 0.9672
0.2500 20.000 10.000 0.6105
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NAG Library Routine Document

G01FFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01FFF returns the deviate associated with the given lower tail probability of the gamma distribution,
via the routine name.

2 Specification

FUNCTION G01FFF (P, A, B, TOL, IFAIL)
REAL (KIND=nag_wp) G01FFF

INTEGER IFAIL
REAL (KIND=nag_wp) P, A, B, TOL

3 Description

The deviate, gp, associated with the lower tail probability, p, of the gamma distribution with shape
parameter � and scale parameter �, is defined as the solution to

P G � gp : �; �
� �

¼ p ¼ 1

�� �ð Þ

Z gp

0
e�G=�G��1 dG; 0 � gp <1;�; � > 0:

The method used is described by Best and Roberts (1975) making use of the relationship between the
gamma distribution and the �2-distribution.

Let y ¼ 2
gp
�
. The required y is found from the Taylor series expansion

y ¼ y0 þ
X
r

Cr y0ð Þ
r!

E


 y0ð Þ

� �r
;

where y0 is a starting approximation

C1 uð Þ ¼ 1,

Crþ1 uð Þ ¼ r� þ d

du

� �
Cr uð Þ ,

� ¼ 1
2�

�� 1

u
,

E ¼ p�
Z y0

0

 uð Þ du,


 uð Þ ¼ 1

2� �ð Þe
�u=2u��1 .

For most values of p and � the starting value

y01 ¼ 2� z

ffiffiffiffiffiffi
1

9�

r
þ 1� 1

9�

 !3

is used, where z is the deviate associated with a lower tail probability of p for the standard Normal
distribution.
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For p close to zero,

y02 ¼ p�2� �ð Þð Þ1=�

is used.

For large p values, when y01 > 4:4�þ 6:0,

y03 ¼ �2 ln 1� pð Þ � �� 1ð Þ ln 1
2y01
� �

þ ln  �ð Þð Þ
� �

is found to be a better starting value than y01.

For small � � � 0:16ð Þ, p is expressed in terms of an approximation to the exponential integral and y04
is found by Newton–Raphson iterations.

Seven terms of the Taylor series are used to refine the starting approximation, repeating the process if
necessary until the required accuracy is obtained.

4 References

Best D J and Roberts D E (1975) Algorithm AS 91. The percentage points of the �2 distribution Appl.
Statist. 24 385–388

5 Arguments

1: P – REAL (KIND=nag_wp) Input

On entry: p, the lower tail probability from the required gamma distribution.

Constraint: 0:0 � P < 1:0.

2: A – REAL (KIND=nag_wp) Input

On entry: �, the shape parameter of the gamma distribution.

Constraint: 0:0 < A � 106.

3: B – REAL (KIND=nag_wp) Input

On entry: �, the scale parameter of the gamma distribution.

Constraint: B > 0:0.

4: TOL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required by you in the results. The smallest recommended value
is 50� �, where � ¼ max 10�18;machine precision

� �
. If G01FFF is entered with TOL less than

50� � or greater or equal to 1:0, then 50� � is used instead.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01FFF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If on exit IFAIL ¼ 1, 2, 3 or 5, then G01FFF returns 0:0.

IFAIL ¼ 1

On entry, P < 0:0,
or P � 1:0,

IFAIL ¼ 2

On entry, A � 0:0,
or A > 106,
or B � 0:0

IFAIL ¼ 3

P is too close to 0:0 or 1:0 to enable the result to be calculated.

IFAIL ¼ 4

The solution has failed to converge in 100 iterations. A larger value of TOL should be tried. The
result may be a reasonable approximation.

IFAIL ¼ 5

The series to calculate the gamma function has failed to converge. This is an unlikely error exit.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In most cases the relative accuracy of the results should be as specified by TOL. However, for very
small values of � or very small values of p there may be some loss of accuracy.

8 Parallelism and Performance

G01FFF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example reads lower tail probabilities for several gamma distributions, and calculates and prints
the corresponding deviates until the end of data is reached.

10.1 Program Text

Program g01fffe

! G01FFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01fff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, p, tol, x
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01FFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ P A B X’
Write (nout,*)

! Use default tolerance
tol = 0.0E0_nag_wp

d_lp: Do
Read (nin,*,Iostat=ifail) p, a, b
If (ifail/=0) Then

Exit d_lp
End If

! Calculate deviates (inverse CDF)
ifail = -1
x = g01fff(p,a,b,tol,ifail)
If (ifail/=0) Then

If (ifail/=4 .And. ifail/=5) Then
Exit d_lp

End If
End If

! Display results
Write (nout,99999) p, a, b, x

End Do d_lp

99999 Format (1X,3F8.3,F10.3,A,I1)
End Program g01fffe

10.2 Program Data

G01FFF Example Program Data
0.0100 1.0 20.0 :P A B
0.4279 7.5 0.1 :P A B
0.8694 45.0 10.0 :P A B
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10.3 Program Results

G01FFF Example Program Results

P A B X

0.010 1.000 20.000 0.201
0.428 7.500 0.100 0.670
0.869 45.000 10.000 525.979
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NAG Library Routine Document

G01FMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01FMF returns the deviate associated with the lower tail probability of the distribution of the
Studentized range statistic, via the routine name.

2 Specification

FUNCTION G01FMF (P, V, IR, IFAIL)
REAL (KIND=nag_wp) G01FMF

INTEGER IR, IFAIL
REAL (KIND=nag_wp) P, V

3 Description

The externally Studentized range, q, for a sample, x1; x2; . . . ; xr, is defined as

q ¼ max xið Þ �min xið Þ
�̂e

;

where �̂e is an independent estimate of the standard error of the xi. The most common use of this
statistic is in the testing of means from a balanced design. In this case for a set of group means,
�T1; �T2; . . . ; �Tr, the Studentized range statistic is defined to be the difference between the largest and
smallest means, �Tlargest and �Tsmallest, divided by the square root of the mean-square experimental error,
MSerror, over the number of observations in each group, n, i.e.,

q ¼
�Tlargest � �Tsmallestffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSerror=n
p :

The Studentized range statistic can be used as part of a multiple comparisons procedure such as the
Newman–Keuls procedure or Duncan's multiple range test (see Montgomery (1984) and Winer (1970)).

For a Studentized range statistic the probability integral, P q; v; rð Þ, for v degrees of freedom and r
groups, can be written as:

P q; v; rð Þ ¼ C
Z 1
0
xv�1e�vx

2=2 r

Z 1
�1

 yð Þ � yð Þ � � y� qxð Þð Þr�1 dy

� �
dx;

where

C ¼ vv=2

 v=2ð Þ2v=2�1
; 
 yð Þ ¼ 1ffiffiffiffiffiffi

2	
p e�y

2=2 and � yð Þ ¼
Z y

�1

 tð Þ dt:

For a given probability p0, the deviate q0 is found as the solution to the equation

P q0;v; rð Þ ¼ p0; ð1Þ

using C05AZF . Initial estimates are found using the approximation given in Lund and Lund (1983) and
a simple search procedure.
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4 References

Lund R E and Lund J R (1983) Algorithm AS 190: probabilities and upper quartiles for the studentized
range Appl. Statist. 32(2) 204–210

Montgomery D C (1984) Design and Analysis of Experiments Wiley

Winer B J (1970) Statistical Principles in Experimental Design McGraw–Hill

5 Arguments

1: P – REAL (KIND=nag_wp) Input

On entry: the lower tail probability for the Studentized range statistic, p0.

Constraint: 0:0 < P < 1:0.

2: V – REAL (KIND=nag_wp) Input

On entry: v, the number of degrees of freedom.

Constraint: V � 1:0.

3: IR – INTEGER Input

On entry: r, the number of groups.

Constraint: IR � 2.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01FMF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If on exit IFAIL ¼ 1, then G01FMF returns 0:0.

IFAIL ¼ 1

On entry, P � 0:0,
or P � 1:0,
or V < 1:0,
or IR < 2.

IFAIL ¼ 2

The routine was unable to find an upper bound for the value of q0. This will be caused by p0
being too close to 1:0.
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IFAIL ¼ 3

There is some doubt as to whether full accuracy has been achieved. The returned value should be
a reasonable estimate of the true value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The returned solution, q�, to equation (1) is determined so that at least one of the following criteria
apply.

(a) P q�;v; rð Þ � p0j j � 0:000005

(b) q0 � q�j j � 0:000005�max 1:0; q�j jð Þ.

8 Parallelism and Performance

G01FMF is not threaded in any implementation.

9 Further Comments

To obtain the factors for Duncan's multiple-range test, equation (1) has to be solved for p1, where
p1 ¼ pr�10 , so on input P should be set to pr�10 .

10 Example

Three values of p, � and r are read in and the Studentized range deviates or quantiles are computed and
printed.

10.1 Program Text

Program g01fmfe

! G01FMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01fmf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, v, valq
Integer :: ifail, ir

! .. Executable Statements ..
Write (nout,*) ’G01FMF Example Program Results’
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Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ P V IR Quantile ’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) p, v, ir
If (ifail/=0) Then

Exit d_lp
End If

! Compute deviate
ifail = -1
valq = g01fmf(p,v,ir,ifail)
If (ifail/=0) Then

If (ifail/=3) Then
Exit d_lp

End If
End If

! Display results
Write (nout,99999) p, v, ir, valq

End Do d_lp

99999 Format (1X,F5.2,2X,F4.1,1X,I3,1X,F10.4)
End Program g01fmfe

10.2 Program Data

G01FMF Example Program Data
0.95 10.0 5
0.3 60.0 12
0.9 5.0 4

10.3 Program Results

G01FMF Example Program Results

P V IR Quantile

0.95 10.0 5 4.6543
0.30 60.0 12 2.8099
0.90 5.0 4 4.2636
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NAG Library Routine Document

G01FTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01FTF returns the value of the inverse ��1 xð Þ of the Landau distribution function, via the routine
name.

2 Specification

FUNCTION G01FTF (X, IFAIL)
REAL (KIND=nag_wp) G01FTF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

G01FTF evaluates an approximation to the inverse ��1 xð Þ of the Landau distribution function given by

� xð Þ ¼ ��1 xð Þ

(where � �ð Þ is described in G01ETF and G01MTF), using either linear or quadratic interpolation or
rational approximations which mimic the asymptotic behaviour. Further details can be found in KÎlbig
and Schorr (1984).

It can also be used to generate Landau distributed random numbers in the range 0 < x < 1.

4 References

KÎlbig K S and Schorr B (1984) A program package for the Landau distribution Comp. Phys. Comm. 31
97–111

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: 0:0 < X < 1:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X � 0:0,
or X � 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

At least 5� 6 significant digits are correct. Such accuracy is normally considered to be adequate for
applications in large scale Monte–Carlo simulations.

8 Parallelism and Performance

G01FTF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example evaluates ��1 xð Þ at x ¼ 0:5, and prints the results.

10.1 Program Text

Program g01ftfe

! G01FTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01ftf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail

! .. Executable Statements ..
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Write (nout,*) ’G01FTF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ X Y IFAIL’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x
If (ifail/=0) Then

Exit d_lp
End If

! Compute the value of the inverse of the Landau distribution function
ifail = 0
y = g01ftf(x,ifail)

! Display results
Write (nout,99999) x, y, ifail

End Do d_lp

99999 Format (1X,F4.1,3X,1P,E12.4,I6)
End Program g01ftfe

10.2 Program Data

G01FTF Example Program Data
0.5 : Value of X

10.3 Program Results

G01FTF Example Program Results

X Y IFAIL

0.5 1.3558E+00 0
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NAG Library Routine Document

G01GBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01GBF returns the lower tail probability for the noncentral Student's t-distribution, via the routine
name.

2 Specification

FUNCTION G01GBF (T, DF, DELTA, TOL, MAXIT, IFAIL)
REAL (KIND=nag_wp) G01GBF

INTEGER MAXIT, IFAIL
REAL (KIND=nag_wp) T, DF, DELTA, TOL

3 Description

The lower tail probability of the noncentral Student's t-distribution with � degrees of freedom and
noncentrality parameter �, P T � t : �;�ð Þ, is defined by

P T � t : �;�ð Þ ¼ C�
Z 1
0

1ffiffiffiffiffiffi
2	
p

Z �u��

�1
e�x

2=2 dx

� �
u��1e�u

2=2du; � > 0:0

with

C� ¼
1

 1
2�
� �

2 ��2ð Þ=2; � ¼ tffiffiffi
�
p :

The probability is computed in one of two ways.

(i) When t ¼ 0:0, the relationship to the normal is used:

P T � t : �;�ð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z 1
�

e�u
2=2 du:

(ii) Otherwise the series expansion described in Equation 9 of Amos (1964) is used. This involves the
sums of confluent hypergeometric functions, the terms of which are computed using recurrence
relationships.

4 References

Amos D E (1964) Representations of the central and non-central t-distributions Biometrika 51 451–458

5 Arguments

1: T – REAL (KIND=nag_wp) Input

On entry: t, the deviate from the Student's t-distribution with � degrees of freedom.

2: DF – REAL (KIND=nag_wp) Input

On entry: �, the degrees of freedom of the Student's t-distribution.

Constraint: DF � 1:0.
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3: DELTA – REAL (KIND=nag_wp) Input

On entry: �, the noncentrality argument of the Students t-distribution.

4: TOL – REAL (KIND=nag_wp) Input

On entry: the absolute accuracy required by you in the results. If G01GBF is entered with TOL
greater than or equal to 1:0 or less than 10�machine precision (see X02AJF), then the value of
10�machine precision is used instead.

5: MAXIT – INTEGER Input

On entry: the maximum number of terms that are used in each of the summations.

Suggested value: 100. See Section 9 for further comments.

Constraint: MAXIT � 1.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

If on exit IFAIL 6¼ 0, then G01GBF returns 0:0.

IFAIL ¼ 1

On entry, DF < 1:0.

IFAIL ¼ 2

On entry, MAXIT < 1.

IFAIL ¼ 3

One of the series has failed to converge. Reconsider the requested tolerance and/or maximum
number of iterations.

IFAIL ¼ 4

The probability is too small to calculate accurately.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The series described in Amos (1964) are summed until an estimated upper bound on the contribution of
future terms to the probability is less than TOL. There may also be some loss of accuracy due to
calculation of gamma functions.

8 Parallelism and Performance

G01GBF is not threaded in any implementation.

9 Further Comments

The rate of convergence of the series depends, in part, on the quantity t2= t2 þ �
� �

. The smaller this
quantity the faster the convergence. Thus for large t and small � the convergence may be slow. If � is
an integer then one of the series to be summed is of finite length.

If two tail probabilities are required then the relationship of the t-distribution to the F -distribution can
be used:

F ¼ T 2; � ¼ �2; �1 ¼ 1 and �2 ¼ �;

and a call made to G01GDF.

Note that G01GBF only allows degrees of freedom greater than or equal to 1 although values between 0
and 1 are theoretically possible.

10 Example

This example reads values from, and degrees of freedom for, and noncentrality arguments of the
noncentral Student's t-distributions, calculates the lower tail probabilities and prints all these values
until the end of data is reached.

10.1 Program Text

Program g01gbfe

! G01GBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01gbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: delta, df, prob, t, tol
Integer :: ifail, maxit

! .. Executable Statements ..
Write (nout,*) ’G01GBF Example Program Results’
Write (nout,*)
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! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ T DF DELTA PROB’
Write (nout,*)

! Use default tolerance and suggested number of iterations
tol = 0.0E0_nag_wp
maxit = 100

d_lp: Do
Read (nin,*,Iostat=ifail) t, df, delta
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = 0
prob = g01gbf(t,df,delta,tol,maxit,ifail)

! Display results
Write (nout,99999) t, df, delta, prob

End Do d_lp

99999 Format (1X,3F8.3,F8.4)
End Program g01gbfe

10.2 Program Data

G01GBF Example Program Data
-1.528 20.0 2.0 :T DF DELTA
-0.188 7.5 1.0 :T DF DELTA
1.138 45.0 0.0 :T DF DELTA

10.3 Program Results

G01GBF Example Program Results

T DF DELTA PROB

-1.528 20.000 2.000 0.0003
-0.188 7.500 1.000 0.1189
1.138 45.000 0.000 0.8694
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NAG Library Routine Document

G01GCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01GCF returns the probability associated with the lower tail of the noncentral �2-distribution via the
routine name.

2 Specification

FUNCTION G01GCF (X, DF, RLAMDA, TOL, MAXIT, IFAIL)
REAL (KIND=nag_wp) G01GCF

INTEGER MAXIT, IFAIL
REAL (KIND=nag_wp) X, DF, RLAMDA, TOL

3 Description

The lower tail probability of the noncentral �2-distribution with � degrees of freedom and noncentrality
parameter �, P X � x : �;�ð Þ, is defined by

P X � x : �;�ð Þ ¼
X1
j¼0

e��=2
�=2ð Þj

j!
P X � x : � þ 2j;0ð Þ; ð1Þ

where P X � x : � þ 2j;0ð Þ is a central �2-distribution with � þ 2j degrees of freedom.

The value of j at which the Poisson weight, e��=2
�=2ð Þj

j!
, is greatest is determined and the summation

(1) is made forward and backward from that value of j.

The recursive relationship:

P X � x : aþ 2;0ð Þ ¼ P X � x : a;0ð Þ � xa=2ð Þe�x=2
 aþ 1ð Þ ð2Þ

is used during the summation in (1).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the deviate from the noncentral �2-distribution with � degrees of freedom and
noncentrality parameter �.

Constraint: X � 0:0.

2: DF – REAL (KIND=nag_wp) Input

On entry: �, the degrees of freedom of the noncentral �2-distribution.

Constraint: DF � 0:0.
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3: RLAMDA – REAL (KIND=nag_wp) Input

On entry: �, the noncentrality parameter of the noncentral �2-distribution.

Constraint: RLAMDA � 0:0 if DF > 0:0 or RLAMDA > 0:0 if DF ¼ 0:0.

4: TOL – REAL (KIND=nag_wp) Input

On entry: the required accuracy of the solution. If G01GCF is entered with TOL greater than or
equal to 1:0 or less than 10�machine precision (see X02AJF), then the value of
10�machine precision is used instead.

5: MAXIT – INTEGER Input

On entry: the maximum number of iterations to be performed.

Suggested value: 100. See Section 9 for further discussion.

Constraint: MAXIT � 1.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01GCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If on exit IFAIL ¼ 1, 2, 4 or 5, then G01GCF returns 0:0.

IFAIL ¼ 1

On entry, DF < 0:0,
or RLAMDA < 0:0,
or DF ¼ 0:0 and RLAMDA ¼ 0:0,
or X < 0:0,
or MAXIT < 1.

IFAIL ¼ 2

The initial value of the Poisson weight used in the summation (1) was too small to be calculated.
The value of P X � x : �;�ð Þ is likely to be zero.

IFAIL ¼ 3

The solution has failed to converge in MAXIT iterations.
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IFAIL ¼ 4

The value of a term required in (2) is too large to be evaluated accurately. The most likely cause
of this error is both X and RLAMDA being very large.

IFAIL ¼ 5

The calculations for the central �2 probability has failed to converge. This is an unlikely error
exit. A larger value of TOL should be used.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The summations described in Section 3 are made until an upper bound on the truncation error relative
to the current summation value is less than TOL.

8 Parallelism and Performance

G01GCF is not threaded in any implementation.

9 Further Comments

The number of terms in (1) required for a given accuracy will depend on the following factors:

(i) The rate at which the Poisson weights tend to zero. This will be slower for larger values of �.

(ii) The rate at which the central �2 probabilities tend to zero. This will be slower for larger values of
� and x.

10 Example

This example reads values from various noncentral �2-distributions, calculates the lower tail
probabilities and prints all these values until the end of data is reached.

10.1 Program Text

Program g01gcfe

! G01GCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01gcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: df, prob, rlamda, tol, x
Integer :: ifail, maxit

! .. Executable Statements ..
Write (nout,*) ’G01GCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ X DF RLAMDA PROB’
Write (nout,*)

! Use default tolerance and suggested number of iterations
tol = 0.0E0_nag_wp
maxit = 100

d_lp: Do
Read (nin,*,Iostat=ifail) x, df, rlamda
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = 0
prob = g01gcf(x,df,rlamda,tol,maxit,ifail)

! Display results
Write (nout,99999) x, df, rlamda, prob

End Do d_lp

99999 Format (1X,3F8.3,F8.4,A,I1)
End Program g01gcfe

10.2 Program Data

G01GCF Example Program Data
8.26 20.0 3.5 :X DF RLAMDA
6.2 7.5 2.0 :X DF RLAMDA

55.76 45.0 1.0 :X DF RLAMDA

10.3 Program Results

G01GCF Example Program Results

X DF RLAMDA PROB

8.260 20.000 3.500 0.0032
6.200 7.500 2.000 0.2699

55.760 45.000 1.000 0.8443
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NAG Library Routine Document

G01GDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01GDF returns the probability associated with the lower tail of the noncentral F or variance-ratio
distribution, via the routine name.

2 Specification

FUNCTION G01GDF (F, DF1, DF2, RLAMDA, TOL, MAXIT, IFAIL)
REAL (KIND=nag_wp) G01GDF

INTEGER MAXIT, IFAIL
REAL (KIND=nag_wp) F, DF1, DF2, RLAMDA, TOL

3 Description

The lower tail probability of the noncentral F -distribution with �1 and �2 degrees of freedom and
noncentrality parameter �, P F � f : �1; �2;�ð Þ, is defined by

P F � f : �1; �2;�ð Þ ¼
Z x

0
p F : �1; �2;�ð Þ dF;

where

P F : �1; �2;�ð Þ ¼
X1
j¼0

e��=2
�=2ð Þj

j!
� �1 þ 2jð Þ �1þ2jð Þ=2�

�2=2
2

B �1 þ 2jð Þ=2; �2=2ð Þ

�u �1þ2j�2ð Þ=2 �2 þ �1 þ 2jð Þu½ �� �1þ2jþ�2ð Þ=2

and B �; �ð Þ is the beta function.

The probability is computed by means of a transformation to a noncentral beta distribution:

P F � f : �1; �2;�ð Þ ¼ P� X � x : a; b;�ð Þ;

where x ¼ �1f

�1f þ �2
and P� X � x : a; b;�ð Þ is the lower tail probability integral of the noncentral beta

distribution with parameters a, b, and �.

If �2 is very large, greater than 106, then a �2 approximation is used.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: F – REAL (KIND=nag_wp) Input

On entry: f , the deviate from the noncentral F -distribution.

Constraint: F > 0:0.
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2: DF1 – REAL (KIND=nag_wp) Input

On entry: the degrees of freedom of the numerator variance, �1.

Constraint: 0:0 < DF1 � 106.

3: DF2 – REAL (KIND=nag_wp) Input

On entry: the degrees of freedom of the denominator variance, �2.

Constraint: DF2 > 0:0.

4: RLAMDA – REAL (KIND=nag_wp) Input

On entry: �, the noncentrality parameter.

Constraint: 0:0 � RLAMDA � �2:0log Uð Þ where U is the safe range parameter as defined by
X02AMF.

5: TOL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required by you in the results. If G01GDF is entered with TOL
greater than or equal to 1:0 or less than 10�machine precision (see X02AJF), then the value of
10�machine precision is used instead.

6: MAXIT – INTEGER Input

On entry: the maximum number of iterations to be used.

Suggested value: 500. See G01GCF and G01GEF for further details.

Constraint: MAXIT � 1.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01GDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If on exit IFAIL ¼ 1 or 3, then G01GDF returns 0:0.

IFAIL ¼ 1

On entry, DF1 � 0:0,
or DF1 > 106,
or DF2 � 0:0,
or F � 0:0,
or RLAMDA < 0:0,
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or MAXIT < 1,
or RLAMDA > �2:0log Uð Þ, where U ¼ safe range argument as defined by X02AMF.

IFAIL ¼ 2

The solution has failed to converge in MAXIT iterations. You should try a larger value of
MAXIT or TOL.

IFAIL ¼ 3

The required probability cannot be computed accurately. This may happen if the result would be
very close to 0:0 or 1:0. Alternatively the values of DF1 and F may be too large. In the latter case
you could try using a normal approximation; see Abramowitz and Stegun (1972).

IFAIL ¼ 4

The required accuracy was not achieved when calculating the initial value of the central F (or
�2) probability. You should try a larger value of TOL. If the �2 approximation is being used then
G01GDF returns zero otherwise the value returned should be an approximation to the correct
value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy should be as specified by TOL. For further details see G01GCF and G01GEF.

8 Parallelism and Performance

G01GDF is not threaded in any implementation.

9 Further Comments

When both �1 and �2 are large a Normal approximation may be used and when only �1 is large a �2

approximation may be used. In both cases � is required to be of the same order as �1. See Abramowitz
and Stegun (1972) for further details.

10 Example

This example reads values from, and degrees of freedom for, F -distributions, computes the lower tail
probabilities and prints all these values until the end of data is reached.
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10.1 Program Text

Program g01gdfe

! G01GDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01gdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df1, df2, f, prob, rlamda, tol
Integer :: ifail, maxit

! .. Executable Statements ..
Write (nout,*) ’G01GDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ F DF1 DF2 RLAMDA PROB’
Write (nout,*)

! Use default tolerance and suggested number of iterations
tol = 0.0E0_nag_wp
maxit = 100

d_lp: Do
Read (nin,*,Iostat=ifail) f, df1, df2, rlamda
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = -1
prob = g01gdf(f,df1,df2,rlamda,tol,maxit,ifail)
If (ifail/=0) Then

If (ifail<3) Then
Exit d_lp

End If
End If

! Display results
Write (nout,99999) f, df1, df2, rlamda, prob

End Do d_lp

99999 Format (1X,4F8.3,F8.4,A,I1)
End Program g01gdfe

10.2 Program Data

G01GDF Example Program Data
5.5 1.5 25.5 3.0 :F DF1 DF2 RLAMDA

39.9 1.0 1.0 2.0 :F DF1 DF2 RLAMDA
2.5 20.25 1.0 0.0 :F DF1 DF2 RLAMDA
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10.3 Program Results

G01GDF Example Program Results

F DF1 DF2 RLAMDA PROB

5.500 1.500 25.500 3.000 0.8214
39.900 1.000 1.000 2.000 0.8160
2.500 20.250 1.000 0.000 0.5342
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NAG Library Routine Document

G01GEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01GEF returns the probability associated with the lower tail of the noncentral beta distribution, via the
routine name.

2 Specification

FUNCTION G01GEF (X, A, B, RLAMDA, TOL, MAXIT, IFAIL)
REAL (KIND=nag_wp) G01GEF

INTEGER MAXIT, IFAIL
REAL (KIND=nag_wp) X, A, B, RLAMDA, TOL

3 Description

The lower tail probability for the noncentral beta distribution with parameters a and b and noncentrality
parameter �, P B � � : a; b;�ð Þ, is defined by

P B � � : a; b;�ð Þ ¼
X1
j¼0

e��=2
�=2ð Þ
j!

P B � � : a; b;0ð Þ; ð1Þ

where

P B � � : a; b;0ð Þ ¼  aþ bð Þ
 að Þ bð Þ

Z �

0
Ba�1 1� Bð Þb�1 dB;

which is the central beta probability function or incomplete beta function.

Recurrence relationships given in Abramowitz and Stegun (1972) are used to compute the values of
P B � � : a; b;0ð Þ for each step of the summation (1).

The algorithm is discussed in Lenth (1987).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Lenth R V (1987) Algorithm AS 226: Computing noncentral beta probabilities Appl. Statist. 36 241–
244

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: �, the deviate from the beta distribution, for which the probability P B � � : a; b;�ð Þ is
to be found.

Constraint: 0:0 � X � 1:0.
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2: A – REAL (KIND=nag_wp) Input

On entry: a, the first parameter of the required beta distribution.

Constraint: 0:0 < A � 106.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the second parameter of the required beta distribution.

Constraint: 0:0 < B � 106.

4: RLAMDA – REAL (KIND=nag_wp) Input

On entry: �, the noncentrality parameter of the required beta distribution.

Constraint: 0:0 � RLAMDA � �2:0log Uð Þ, where U is the safe range parameter as defined by
X02AMF.

5: TOL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required by you in the results. If G01GEF is entered with TOL
greater than or equal to 1:0 or less than 10�machine precision (see X02AJF), then the value of
10�machine precision is used instead.

See Section 7 for the relationship between TOL and MAXIT.

6: MAXIT – INTEGER Input

On entry: the maximum number of iterations that the algorithm should use.

See Section 7 for suggestions as to suitable values for MAXIT for different values of the
arguments.

Suggested value: 500.

Constraint: MAXIT � 1.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01GEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, A � 0:0,
or A > 106,
or B � 0:0,

G01GEF NAG Library Manual

G01GEF.2 Mark 26



or B > 106,
or RLAMDA < 0:0,
or RLAMDA > �2:0log Uð Þ, where U ¼ safe range argument as defined by X02AMF,
or X < 0:0,
or X > 1:0,
or MAXIT < 1.

If on exit IFAIL ¼ 1 then G01GEF returns zero.

IFAIL ¼ 2

The solution has failed to converge in MAXIT iterations. You should try a larger value of
MAXIT or TOL. The returned value will be an approximation to the correct value.

IFAIL ¼ 3

The probability is too close to 0:0 or 1:0 for the algorithm to be able to calculate the required
probability. G01GEF will return 0:0 or 1:0 as appropriate, this should be a reasonable
approximation.

IFAIL ¼ 4

The required accuracy was not achieved when calculating the initial value of P B � � : a; b;�ð Þ.
You should try a larger value of TOL. The returned value will be an approximation to the correct
value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Convergence is theoretically guaranteed whenever P Y > MAXITð Þ � TOL where Y has a Poisson
distribution with mean �=2. Excessive round-off errors are possible when the number of iterations used
is high and TOL is close to machine precision. See Lenth (1987) for further comments on the error
bound.

8 Parallelism and Performance

G01GEF is not threaded in any implementation.

9 Further Comments

The central beta probabilities can be obtained by setting RLAMDA ¼ 0:0.

10 Example

This example reads values for several beta distributions and calculates and prints the lower tail
probabilities until the end of data is reached.
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10.1 Program Text

Program g01gefe

! G01GEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01gef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, prob, rlamda, tol, x
Integer :: ifail, maxit

! .. Executable Statements ..
Write (nout,*) ’G01GEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ X A B RLAMDA PROB’
Write (nout,*)

! Use default tolerance
tol = 0.0E0_nag_wp
maxit = 100

d_lp: Do
Read (nin,*,Iostat=ifail) x, a, b, rlamda
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = -1
prob = g01gef(x,a,b,rlamda,tol,maxit,ifail)
If (ifail/=0) Then

If (ifail<3) Then
Exit d_lp

End If
End If

! Display results
Write (nout,99999) x, a, b, rlamda, prob

End Do d_lp

99999 Format (1X,4F8.3,F8.4,A,I1)
End Program g01gefe

10.2 Program Data

G01GEF Example Program Data
0.25 1.0 2.0 1.0 :X A B RLAMDA
0.75 1.5 1.5 0.5 :X A B RLAMDA
0.5 2.0 1.0 0.0 :X A B RLAMDA
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10.3 Program Results

G01GEF Example Program Results

X A B RLAMDA PROB

0.250 1.000 2.000 1.000 0.3168
0.750 1.500 1.500 0.500 0.7705
0.500 2.000 1.000 0.000 0.2500
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NAG Library Routine Document

G01HAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01HAF returns the lower tail probability for the bivariate Normal distribution, via the routine name.

2 Specification

FUNCTION G01HAF (X, Y, RHO, IFAIL)
REAL (KIND=nag_wp) G01HAF

INTEGER IFAIL
REAL (KIND=nag_wp) X, Y, RHO

3 Description

For the two random variables X; Yð Þ following a bivariate Normal distribution with

E X½ � ¼ 0; E Y½ � ¼ 0; E X2
� �

¼ 1; E Y 2
� �

¼ 1 and E XY½ � ¼ �;

the lower tail probability is defined by:

P X � x; Y � y : �ð Þ ¼ 1

2	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p Z y

�1

Z x

�1
exp �

X2 � 2�XY þ Y 2
� �

2 1� �2ð Þ

� �
dXdY :

For a more detailed description of the bivariate Normal distribution and its properties see Abramowitz
and Stegun (1972) and Kendall and Stuart (1969). The method used is described by Genz (2004).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Genz A (2004) Numerical computation of rectangular bivariate and trivariate Normal and t probabilities
Statistics and Computing 14 151–160

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: x, the first argument for which the bivariate Normal distribution function is to be
evaluated.

2: Y – REAL (KIND=nag_wp) Input

On entry: y, the second argument for which the bivariate Normal distribution function is to be
evaluated.

3: RHO – REAL (KIND=nag_wp) Input

On entry: �, the correlation coefficient.

Constraint: �1:0 � RHO � 1:0.
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4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, RHO < �1:0,
or RHO > 1:0.

If on exit IFAIL ¼ 1 then G01HAF returns zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy of the hybrid algorithm implemented here is discussed in Genz (2004). This algorithm should
give a maximum absolute error of less than 5� 10�16.

8 Parallelism and Performance

G01HAF is not threaded in any implementation.

9 Further Comments

The probabilities for the univariate Normal distribution can be computed using S15ABF and S15ACF.

10 Example

This example reads values of x and y for a bivariate Normal distribution along with the value of � and
computes the lower tail probabilities.
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10.1 Program Text

Program g01hafe

! G01HAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01haf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: prob, rho, x, y
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01HAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ X Y RHO PROB’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x, y, rho
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
ifail = 0
prob = g01haf(x,y,rho,ifail)

! Display results
Write (nout,99999) x, y, rho, prob

End Do d_lp

99999 Format (1X,3F8.3,F8.4)
End Program g01hafe

10.2 Program Data

G01HAF Example Program Data
1.7 23.1 0.0 :X Y RHO
0.0 0.0 0.1 :X Y RHO
3.3 11.1 0.54 :X Y RHO
9.1 9.1 0.17 :X Y RHO

10.3 Program Results

G01HAF Example Program Results

X Y RHO PROB

1.700 23.100 0.000 0.9554
0.000 0.000 0.100 0.2659
3.300 11.100 0.540 0.9995
9.100 9.100 0.170 1.0000
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NAG Library Routine Document

G01HBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01HBF returns the upper tail, lower tail or central probability associated with a multivariate Normal
distribution of up to ten dimensions.

2 Specification

FUNCTION G01HBF (TAIL, N, A, B, XMU, SIG, LDSIG, TOL, WK, LWK, IFAIL)
REAL (KIND=nag_wp) G01HBF

INTEGER N, LDSIG, LWK, IFAIL
REAL (KIND=nag_wp) A(N), B(N), XMU(N), SIG(LDSIG,N), TOL, WK(LWK)
CHARACTER(1) TAIL

3 Description

Let the vector random variable X ¼ X1;X2; . . . ; Xnð ÞT follow an n-dimensional multivariate Normal
distribution with mean vector � and n by n variance-covariance matrix �, then the probability density
function, f X : �;�ð Þ, is given by

f X : �;�ð Þ ¼ 2	ð Þ� 1=2ð Þn �j j�1=2 exp �1
2 X � �ð ÞT��1 X � �ð Þ

� �
:

The lower tail probability is defined by:

P X1 � b1; . . . ; Xn � bn : �;�ð Þ ¼
Z b1

�1
� � �
Z bn

�1
f X : �;�ð Þ dXn � � � dX1:

The upper tail probability is defined by:

P X1 � a1; . . . ; Xn � an : �;�ð Þ ¼
Z 1
a1

� � �
Z 1
an

f X : �;�ð Þ dXn � � � dX1:

The central probability is defined by:

P a1 � X1 � b1; . . . ; an � Xn � bn : �;�ð Þ ¼
Z b1

a1

� � �
Z bn

an

f X : �;�ð Þ dXn � � � dX1:

To evaluate the probability for n � 3, the probability density function of X1; X2; . . . ; Xn is considered
as the product of the conditional probability of X1; X2; . . . ; Xn�2 given Xn�1 and Xn and the marginal
bivariate Normal distribution of Xn�1 and Xn. The bivariate Normal probability can be evaluated as
described in G01HAF and numerical integration is then used over the remaining n� 2 dimensions. In
the case of n ¼ 3, D01AJF is used and for n > 3 D01FCF is used.

To evaluate the probability for n ¼ 1 a direct call to G01EAF is made and for n ¼ 2 calls to G01HAF
are made.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin
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5 Arguments

1: TAIL – CHARACTER(1) Input

On entry: indicates which probability is to be returned.

TAIL ¼ L
The lower tail probability is returned.

TAIL ¼ U
The upper tail probability is returned.

TAIL ¼ C
The central probability is returned.

Constraint: TAIL ¼ L , U or C .

2: N – INTEGER Input

On entry: n, the number of dimensions.

Constraint: 1 � N � 10.

3: AðNÞ – REAL (KIND=nag_wp) array Input

On entry: if TAIL ¼ C or U , the lower bounds, ai, for i ¼ 1; 2; . . . ; n.

If TAIL ¼ L , A is not referenced.

4: BðNÞ – REAL (KIND=nag_wp) array Input

On entry: if TAIL ¼ C or L , the upper bounds, bi, for i ¼ 1; 2; . . . ; n.

If TAIL ¼ U , B is not referenced.

Constraint: if TAIL ¼ C , AðiÞ < BðiÞ, for i ¼ 1; 2; . . . ; n.

5: XMUðNÞ – REAL (KIND=nag_wp) array Input

On entry: �, the mean vector of the multivariate Normal distribution.

6: SIGðLDSIG;NÞ – REAL (KIND=nag_wp) array Input

On entry: �, the variance-covariance matrix of the multivariate Normal distribution. Only the
lower triangle is referenced.

Constraint: � must be positive definite.

7: LDSIG – INTEGER Input

On entry: the first dimension of the array SIG as declared in the (sub)program from which
G01HBF is called.

Constraint: LDSIG � N.

8: TOL – REAL (KIND=nag_wp) Input

On entry: if n > 2 the relative accuracy required for the probability, and if the upper or the lower
tail probability is requested then TOL is also used to determine the cut-off points, see Section 7.

If n ¼ 1, TOL is not referenced.

Suggested value: TOL ¼ 0:0001.

Constraint: if N > 1, TOL > 0:0.
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9: WKðLWKÞ – REAL (KIND=nag_wp) array Workspace
10: LWK – INTEGER Input

On entry: the length of workspace provided in array WK. This workspace is used by the
numerical integration routines D01AJF for n ¼ 3 and D01FCF for n > 3.

If n ¼ 3, then the maximum number of sub-intervals used by D01AJF is LWK=4. Note, however,
increasing LWK above 1000 will not increase the maximum number of sub-intervals above 250.

If n > 3 the maximum number of integrand evaluations used by D01FCF is � LWK=n� 1ð Þ,
where � ¼ 2n�2 þ 2 n� 2ð Þ2 þ 2 n� 2ð Þ þ 1.

If n ¼ 1 or 2, then WK will not be used.

Suggested value: 2000 if n > 3 and 1000 if n ¼ 3.

Constraints:

if N � 2, LWK � 1;
if N � 3, LWK � 4� N.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01HBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If on exit IFAIL ¼ 1, 2 or 3, then G01HBF returns zero.

IFAIL ¼ 1

On entry, LDSIG ¼ valueh i and N ¼ valueh i.
Constraint: LDSIG � N.

On entry, LWK ¼ valueh i.
Constraint: if N � 2, LWK � 1.

On entry, LWK ¼ valueh i.
Constraint: if N � 3, LWK � 4� N.

On entry, N ¼ valueh i.
Constraint: 1 � N � 10.

On entry, TAIL is not valid: TAIL ¼ valueh i.
On entry, TOL ¼ valueh i.
Constraint: TOL > 0:0.
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IFAIL ¼ 2

On entry, the valueh i value in B is less than or equal to the corresponding value in A.

IFAIL ¼ 3

On entry, SIG is not positive definite.

IFAIL ¼ 4

Full accuracy not achieved, relative accuracy ¼ valueh i. A larger value of TOL can be tried or
the length of the workspace increased. The returned value is an approximation to the required
result.

IFAIL ¼ 5

Accuracy requested by TOL is too strict: TOL ¼ valueh i. Round-off error has prevented the
requested accuracy from being achieved; a larger value of TOL can be tried. The returned value
will be an approximation to the required result.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy should be as specified by TOL. When on exit IFAIL ¼ 4 the approximate accuracy
achieved is given in the error message. For the upper and lower tail probabilities the infinite limits are
approximated by cut-off points for the n� 2 dimensions over which the numerical integration takes
place; these cut-off points are given by ��1 TOL= 10� nð Þð Þ, where ��1 is the inverse univariate
Normal distribution function.

8 Parallelism and Performance

G01HBF is not threaded in any implementation.

9 Further Comments

The time taken is related to the number of dimensions, the range over which the integration takes place
(bi � ai, for i ¼ 1; 2; . . . ; n) and the value of � as well as the accuracy required. As the numerical
integration does not take place over the last two dimensions speed may be improved by arranging X so
that the largest ranges of integration are for Xn�1 and Xn.

10 Example

This example reads in the mean and covariance matrix for a multivariate Normal distribution and
computes and prints the associated central probability.
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10.1 Program Text

Program g01hbfe

! G01HBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01hbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: prob, tol
Integer :: i, ifail, ldsig, lwk, n
Character (1) :: tail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), sig(:,:), wk(:), xmu(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G01HBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, tol, tail

! Use more workspace, unless N is very large
! as LWK also defines the number of sub-intervals

lwk = max(2000,4*n)

ldsig = n
Allocate (a(n),b(n),xmu(n),sig(ldsig,n),wk(lwk))

! Read in the means
Read (nin,*) xmu(1:n)

! Read in the variance covariance matrix
Read (nin,*)(sig(i,1:n),i=1,n)

! Read in bounds
If (tail==’C’ .Or. tail==’c’ .Or. tail==’U’ .Or. tail==’u’) Then

Read (nin,*) a(1:n)
End If
If (tail==’C’ .Or. tail==’c’ .Or. tail==’L’ .Or. tail==’l’) Then

Read (nin,*) b(1:n)
End If

! Calculate probability
ifail = -1
prob = g01hbf(tail,n,a,b,xmu,sig,ldsig,tol,wk,lwk,ifail)
If (ifail/=0) Then

If (ifail<=3) Then
Go To 100

End If
End If

! Display results
Write (nout,99999) ’Multivariate Normal probability =’, prob

100 Continue

99999 Format (1X,A,F7.4)
End Program g01hbfe
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10.2 Program Data

G01HBF Example Program Data
4 0.00001 ’c’
0.0 0.0 0.0 0.0
1.0 0.9 0.9 0.9
0.9 1.0 0.9 0.9
0.9 0.9 1.0 0.9
0.9 0.9 0.9 1.0

-2.0 -2.0 -2.0 -2.0
2.0 2.0 2.0 2.0

10.3 Program Results

G01HBF Example Program Results

Multivariate Normal probability = 0.9142
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NAG Library Routine Document

G01HCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01HCF returns probabilities for the bivariate Student's t-distribution, via the routine name.

2 Specification

FUNCTION G01HCF (TAIL, A, B, DF, RHO, IFAIL)
REAL (KIND=nag_wp) G01HCF

INTEGER DF, IFAIL
REAL (KIND=nag_wp) A(2), B(2), RHO
CHARACTER(1) TAIL

3 Description

Let the vector random variable X ¼ X1; X2ð ÞT follow a bivariate Student's t-distribution with degrees
of freedom � and correlation �, then the probability density function is given by

f X : �; �ð Þ ¼ 1

2	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p 1þX
2
1 þX2

2 � 2�X1X2

� 1� �2ð Þ

� ���=2�1
:

The lower tail probability is defined by:

P X1 � b1;X2 � b2 : �; �ð Þ ¼
Z b1

�1

Z b2

�1
f X : �; �ð ÞdX2dX1:

The upper tail probability is defined by:

P X1 � a1;X2 � a2 : �; �ð Þ ¼
Z 1
a1

Z 1
a2

f X : �; �ð ÞdX2dX1:

The central probability is defined by:

P a1 � X1 � b1; a2 � X2 � b2 : �; �ð Þ ¼
Z b1

a1

Z b2

a2

f X : �; �ð ÞdX2dX1:

Calculations use the Dunnet and Sobel (1954) method, as described by Genz (2004).

4 References

Dunnet C W and Sobel M (1954) A bivariate generalization of Student's t-distribution, with tables for
certain special cases Biometrika 41 153–169

Genz A (2004) Numerical computation of rectangular bivariate and trivariate Normal and t probabilities
Statistics and Computing 14 151–160

5 Arguments

1: TAIL – CHARACTER(1) Input

On entry: indicates which probability is to be returned.

TAIL ¼ L
The lower tail probability is returned.
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TAIL ¼ U
The upper tail probability is returned.

TAIL ¼ C
The central probability is returned.

Constraint: TAIL ¼ L , U or C .

2: Að2Þ – REAL (KIND=nag_wp) array Input

On entry: if TAIL ¼ C or U , the lower bounds a1 and a2.

If TAIL ¼ L , A is not referenced.

3: Bð2Þ – REAL (KIND=nag_wp) array Input

On entry: if TAIL ¼ C or L , the upper bounds b1 and b2.

If TAIL ¼ U , B is not referenced.

Constraint: if TAIL ¼ C , ai < bi, for i ¼ 1; 2.

4: DF – INTEGER Input

On entry: �, the degrees of freedom of the bivariate Student's t-distribution.

Constraint: DF � 1.

5: RHO – REAL (KIND=nag_wp) Input

On entry: �, the correlation of the bivariate Student's t-distribution.

Constraint: �1:0 � RHO � 1:0.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

If on exit, IFAIL 6¼ 0, then G01HCF returns zero.

IFAIL ¼ 1

On entry, TAIL is not valid: TAIL ¼ valueh i.

IFAIL ¼ 3

On entry, BðiÞ � AðiÞ for central probability, for some i ¼ 1; 2.
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IFAIL ¼ 4

On entry, DF ¼ valueh i.
Constraint: DF � 1.

IFAIL ¼ 5

On entry, RHO ¼ valueh i.
Constraint: �1:0 � RHO � 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy of the algorithm implemented here is discussed in comparison with algorithms based on a
generalized Placket formula by Genz (2004), who recommends the Dunnet and Sobel method. This
implementation should give a maximum absolute error of the order of 10�16.

8 Parallelism and Performance

G01HCF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example calculates the bivariate Student's t probability given the choice of tail and degrees of
freedom, correlation and bounds.

10.1 Program Text

Program g01hcfe

! G01HCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01hcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: prob, rho
Integer :: df, ierr, ifail
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Character (1) :: tail
! .. Local Arrays ..

Real (Kind=nag_wp) :: a(2), b(2)
! .. Executable Statements ..

Write (nout,*) ’G01HCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) &

’ A(1) B(1) A(2) B(2) DF RHO TAIL P’
Write (nout,*)

d_lp: Do
ierr = 0
a(1:2) = 0.0_nag_wp
b(1:2) = 0.0_nag_wp

Read (nin,Fmt=’(a1)’,Advance=’no’,Iostat=ierr) tail

! Read parameter values
Select Case (tail)
Case (’l’,’L’)

Read (nin,*,Iostat=ierr) df, rho, b(1), b(2)
Case (’c’,’C’)

Read (nin,*,Iostat=ierr) df, rho, a(1), b(1), a(2), b(2)
Case (’u’,’U’)

Read (nin,*,Iostat=ierr) df, rho, a(1), a(2)
Case Default

Write (nout,*) ’Invalid problem specification in data file’
Exit d_lp

End Select

If (ierr/=0) Then
Exit d_lp

End If

! Calculate probability
ifail = 0
prob = g01hcf(tail,a,b,df,rho,ifail)

! Display results
Select Case (tail)
Case (’l’,’L’)

Write (nout,99999,Advance=’no’) ’-Inf’, b(1), ’-Inf’, b(2)
Case (’u’,’U’)

Write (nout,99998,Advance=’no’) a(1), ’Inf’, a(2), ’Inf’
Case (’c’,’C’)

Write (nout,99997,Advance=’no’) a(1), b(1), a(2), b(2)
End Select

Write (nout,99996) df, rho, tail, prob
End Do d_lp

99999 Format (1X,2(A4,8X,E11.4,1X))
99998 Format (1X,2(E11.4,2X,A3,8X))
99997 Format (1X,4(E11.4,1X))
99996 Format (I3,1X,F7.4,2X,A1,2X,F8.4)

End Program g01hcfe

10.2 Program Data

G01HCF Example Program Data
L 8 0.6 4.0 0.8 :LOWER_TAIL DF RHO B(1) B(2)
C 12 -0.2 -40.0 2.0 0.0 4.0 :CENTRAL DF RHO A(1) B(1) A(2) B(2)
U 2 0.3 -2.0 8.0 :UPPER_TAIL DF RHO A(1) A(2)
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10.3 Program Results

G01HCF Example Program Results

A(1) B(1) A(2) B(2) DF RHO TAIL P

-Inf 0.4000E+01 -Inf 0.8000E+00 8 0.6000 L 0.7764
-0.4000E+02 0.2000E+01 0.0000E+00 0.4000E+01 12 -0.2000 C 0.4876
-0.2000E+01 Inf 0.8000E+01 Inf 2 0.3000 U 0.0059
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NAG Library Routine Document

G01HDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01HDF returns a probability associated with a multivariate Student's t-distribution.

2 Specification

FUNCTION G01HDF (N, TAIL, A, B, NU, DELTA, ISCOV, RC, LDRC, EPSABS,
EPSREL, NUMSUB, NSAMPL, FMAX, ERREST, IFAIL)

&

REAL (KIND=nag_wp) G01HDF

INTEGER N, ISCOV, LDRC, NUMSUB, NSAMPL, FMAX, IFAIL
REAL (KIND=nag_wp) A(N), B(N), NU, DELTA(N), RC(LDRC,N), EPSABS,

EPSREL, ERREST
&

CHARACTER(1) TAIL(N)

3 Description

A random vector x 2 R
n that follows a Student's t-distribution with � degrees of freedom and

covariance matrix � has density:

 � þ nð Þ=2ð Þ
 �=2ð Þ�n=2	n=2 �j j1=2 1þ 1

�x
T��1x

� � �þnð Þ=2;

and probability p given by:

p ¼  � þ nð Þ=2ð Þ
 �=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j j 	�ð Þn

p Z b1

a1

Z b2

a2

� � �
Z bn

an

1þ xT��1x=�
� �� �þnð Þ=2

dx:

The method of calculation depends on the dimension n and degrees of freedom �. The method of
Dunnet and Sobel is used in the bivariate case if � is a whole number. A Plackett transform followed by
quadrature method is adopted in other bivariate cases and trivariate cases. In dimensions higher than
three a number theoretic approach to evaluating multidimensional integrals is adopted.

Error estimates are supplied as the published accuracy in the Dunnet and Sobel case, a Monte–Carlo
standard error for multidimensional integrals, and otherwise the quadrature error estimate.

A parameter � allows for non-central probabilities. The number theoretic method is used if any � is
nonzero.

In cases other than the central bivariate with whole �, G01HDF attempts to evaluate probabilities within
a requested accuracy max �a; �r � Ið Þ, for an approximate integral value I, absolute accuracy �a and
relative accuracy �r.

4 References

Dunnet C W and Sobel M (1954) A bivariate generalization of Student's t-distribution, with tables for
certain special cases Biometrika 41 153–169

Genz A and Bretz F (2002) Methods for the computation of multivariate t-probabilities Journal of
Computational and Graphical Statistics (11) 950–971
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of dimensions.

Constraint: 1 < N � 1000.

2: TAILðNÞ – CHARACTER(1) array Input

On entry: defines the calculated probability, set TAILðiÞ to:
TAILðiÞ ¼ L

If the ith lower limit ai is negative infinity.

TAILðiÞ ¼ U
If the ith upper limit bi is infinity.

TAILðiÞ ¼ C
If both ai and bi are finite.

Constraint: TAILðiÞ ¼ L , U or C , for i ¼ 1; 2; . . . ;N.

3: AðNÞ – REAL (KIND=nag_wp) array Input

On entry: ai, for i ¼ 1; 2; . . . ; n, the lower integral limits of the calculation.

If TAILðiÞ ¼ L , AðiÞ is not referenced and the ith lower limit of integration is �1.

4: BðNÞ – REAL (KIND=nag_wp) array Input

On entry: bi, for i ¼ 1; 2; . . . ; n, the upper integral limits of the calculation.

If TAILðiÞ ¼ U , BðiÞ is not referenced and the ith upper limit of integration is 1.

Constraint: if TAILðiÞ ¼ C , BðiÞ > AðiÞ.

5: NU – REAL (KIND=nag_wp) Input

On entry: �, the degrees of freedom.

Constraint: NU > 0:0.

6: DELTAðNÞ – REAL (KIND=nag_wp) array Input

On entry: DELTAðiÞ the noncentrality parameter for the ith dimension, for i ¼ 1; 2; . . . ;N; set
DELTAðiÞ ¼ 0 for the central probability.

7: ISCOV – INTEGER Input

On entry: set ISCOV ¼ 1 if the covariance matrix is supplied and ISCOV ¼ 2 if the correlation
matrix is supplied.

Constraint: ISCOV ¼ 1 or 2.

8: RCðLDRC;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the lower triangle of either the covariance matrix (if ISCOV ¼ 1) or the correlation
matrix (if ISCOV ¼ 2). In either case the array elements corresponding to the upper triangle of
the matrix need not be set.

On exit: the strict upper triangle of RC contains the correlation matrix used in the calculations.

9: LDRC – INTEGER Input

On entry: the first dimension of the array RC as declared in the (sub)program from which
G01HDF is called.

Constraint: LDRC � N.
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10: EPSABS – REAL (KIND=nag_wp) Input

On entry: �a, the absolute accuracy requested in the approximation. If EPSABS is negative, the
absolute value is used.

Suggested value: 0:0.

11: EPSREL – REAL (KIND=nag_wp) Input

On entry: �r, the relative accuracy requested in the approximation. If EPSREL is negative, the
absolute value is used.

Suggested value: 0:001.

12: NUMSUB – INTEGER Input

On entry: if quadrature is used, the number of sub-intervals used by the quadrature algorithm;
otherwise NUMSUB is not referenced.

Suggested value: 350.

Constraint: if referenced, NUMSUB > 0.

13: NSAMPL – INTEGER Input

On entry: if quadrature is used, NSAMPL is not referenced; otherwise NSAMPL is the number
of samples used to estimate the error in the approximation.

Suggested value: 8.

Constraint: if referenced, NSAMPL > 0.

14: FMAX – INTEGER Input

On entry: if a number theoretic approach is used, the maximum number of evaluations for each
integrand function.

Suggested value: 1000� N.

Constraint: if referenced, FMAX � 1.

15: ERREST – REAL (KIND=nag_wp) Output

On exit: an estimate of the error in the calculated probability.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: 1 < N � 1000.

IFAIL ¼ 2

On entry, TAILðkÞ ¼ valueh i.
Constraint: TAILðkÞ ¼ L , U or C .

IFAIL ¼ 4

On entry, k ¼ valueh i.
Constraint: BðkÞ > AðkÞ for a central probability.

IFAIL ¼ 5

On entry, NU ¼ valueh i.
Constraint: degrees of freedom NU > 0:0.

IFAIL ¼ 8

On entry, ISCOV ¼ valueh i.
Constraint: ISCOV ¼ 1 or 2.

IFAIL ¼ 9

On entry, the information supplied in RC is invalid.

IFAIL ¼ 10

On entry, LDRC ¼ valueh i and N ¼ valueh i.
Constraint: LDRC � N.

IFAIL ¼ 12

On entry, NUMSUB ¼ valueh i.
Constraint: NUMSUB � 1.

IFAIL ¼ 13

On entry, NSAMPL ¼ valueh i.
Constraint: NSAMPL � 1.

IFAIL ¼ 14

On entry, FMAX ¼ valueh i.
Constraint: FMAX � 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

An estimate of the error in the calculation is given by the value of ERREST on exit.

8 Parallelism and Performance

G01HDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example prints two probabilities from the Student's t-distribution.

10.1 Program Text

Program g01hdfe

! G01HDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01hdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: epsabs, epsrel, errest, nu, prob
Integer :: fmax, i, ifail, iscov, ldrc, n, &

nsampl, numsub
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), b(:), delta(:), rc(:,:)
Character (1), Allocatable :: tail(:)

! .. Executable Statements ..
Write (nout,*) ’G01HDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, iscov

ldrc = n

numsub = 200
nsampl = 8
fmax = 25000
epsabs = 0.0E0_nag_wp
epsrel = 1.0E-3_nag_wp
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Allocate (tail(n),a(n),b(n),delta(n),rc(ldrc,n))

d_lp: Do
ifail = 0

Read (nin,*,Iostat=ifail)
If (ifail==0) Then

Read (nin,*,Iostat=ifail) nu
If (ifail/=0) Then

Exit d_lp
End If

Else
Exit d_lp

End If
Read (nin,*) tail(1:n)
Read (nin,*) a(1:n)
Read (nin,*) b(1:n)
Read (nin,*) delta(1:n)
Read (nin,*)(rc(i,1:n),i=1,n)

! Calculate probability
ifail = 0
prob = g01hdf(n,tail,a,b,nu,delta,iscov,rc,ldrc,epsabs,epsrel,numsub, &

nsampl,fmax,errest,ifail)

Write (nout,99999) ’Probability: ’, prob
Write (nout,99998) ’Error estimate:’, errest
Write (nout,*)

End Do d_lp

99999 Format (2X,A24,E24.8)
99998 Format (2X,A24,E24.2)

End Program g01hdfe

10.2 Program Data

G01HDF Example Program Data
5 1 : n iscov
Example 1
10.0 : nu
U U U U U : tails
-1.0e-1 -1.0e-1 -1.0e-1 -1.0e-1 -1.0e-1 : lower bounds
888 888 888 888 888 : upper bounds
0.0 0.0 0.0 0.0 0.0 : delta

1.0 0.75 0.75 0.75 0.75
0.75 1.0 0.75 0.75 0.75
0.75 0.75 1.0 0.75 0.75
0.75 0.75 0.75 1.0 0.75
0.75 0.75 0.75 0.75 1.0 : correlation matrix
Example 2
3.0 : nu
L L L L L : tails
888 888 888 888 888 : lower bounds

-1.0e-1 -1.0e-1 -1.0e-1 -1.0e-1 -1.0e-1 : upper bounds
1.0 2.0 3.0 3.0 3.0 : delta

1.0 0.75 0.75 0.75 0.75
0.75 1.0 0.75 0.75 0.75
0.75 0.75 1.0 0.75 0.75
0.75 0.75 0.75 1.0 0.75
0.75 0.75 0.75 0.75 1.0 : correlation matrix
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10.3 Program Results

G01HDF Example Program Results

Probability: 0.30164222E+00
Error estimate: 0.11E-04

Probability: 0.86224881E-04
Error estimate: 0.73E-07
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NAG Library Routine Document

G01JCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01JCF returns the lower tail probability of a distribution of a positive linear combination of �2

random variables.

2 Specification

SUBROUTINE G01JCF (A, MULT, RLAMDA, N, C, P, PDF, TOL, MAXIT, WRK,
IFAIL)

&

INTEGER MULT(N), N, MAXIT, IFAIL
REAL (KIND=nag_wp) A(N), RLAMDA(N), C, P, PDF, TOL, WRK(N+2*MAXIT)

3 Description

For a linear combination of noncentral �2 random variables with integer degrees of freedom the lower
tail probability is

P
Xn
j¼1

aj�
2 mj; �j
� �

� c
 !

; ð1Þ

where aj and c are positive constants and where �2 mj; �j
� �

represents an independent �2 random
variable with mj degrees of freedom and noncentrality argument �j. The linear combination may arise
from considering a quadratic form in Normal variables.

Ruben's method as described in Farebrother (1984) is used. Ruben has shown that (1) may be expanded
as an infinite series of the form X1

k¼0
dkF mþ 2k; c=�ð Þ; ð2Þ

where F mþ 2k; c=�ð Þ ¼ P �2 mþ 2kð Þ < c=�
� �

, i.e., the probability that a central �2 is less than c=�.

The value of � is set at

� ¼ �B ¼
2

1=amin þ 1=amaxð Þ

unless �B > 1:8amin , in which case

� ¼ �A ¼ amin

is used, where amin ¼ min aj
� 

and amax ¼ max aj
� 

, for j ¼ 1; 2; . . . ; n.

4 References

Farebrother R W (1984) The distribution of a positive linear combination of �2 random variables Appl.
Statist. 33(3)
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5 Arguments

1: AðNÞ – REAL (KIND=nag_wp) array Input

On entry: the weights, a1; a2; . . . ; an.

Constraint: AðiÞ > 0:0, for i ¼ 1; 2; . . . ; n.

2: MULTðNÞ – INTEGER array Input

On entry: the degrees of freedom, m1;m2; . . . ;mn.

Constraint: MULTðiÞ � 1, for i ¼ 1; 2; . . . ;N.

3: RLAMDAðNÞ – REAL (KIND=nag_wp) array Input

On entry: the noncentrality parameters, �1; �2; . . . ; �n.

Constraint: RLAMDAðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

4: N – INTEGER Input

On entry: n, the number of �2 random variables in the combination, i.e., the number of terms in
equation (1).

Constraint: N � 1.

5: C – REAL (KIND=nag_wp) Input

On entry: c, the point for which the lower tail probability is to be evaluated.

Constraint: C � 0:0.

6: P – REAL (KIND=nag_wp) Output

On exit: the lower tail probability associated with the linear combination of n �2 random
variables with mj degrees of freedom, and noncentrality arguments �j , for j ¼ 1; 2; . . . ; n.

7: PDF – REAL (KIND=nag_wp) Output

On exit: the value of the probability density function of the linear combination of �2 variables.

8: TOL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required by you in the results. If G01JCF is entered with TOL
greater than or equal to 1:0 or less than 10�machine precision (see X02AJF), then the value of
10�machine precision is used instead.

9: MAXIT – INTEGER Input

On entry: the maximum number of terms that should be used during the summation.

Suggested value: 500.

Constraint: MAXIT � 1.

10: WRKðNþ 2�MAXITÞ – REAL (KIND=nag_wp) array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
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arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01JCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

If on exit IFAIL ¼ 1 or 2, then G01JCF returns 0:0.

IFAIL ¼ 1

On entry, N < 1,
or MAXIT < 1,
or C < 0:0.

IFAIL ¼ 2

On entry, A has an element � 0:0,
or MULT has an element < 1,
or RLAMDA has an element < 0:0.

IFAIL ¼ 3

The central �2 calculation has failed to converge. This is an unlikely exit. A larger value of TOL
should be tried.

IFAIL ¼ 4

The solution has failed to converge within MAXIT iterations. A larger value of MAXIT or TOL
should be used. The returned value should be a reasonable approximation to the correct value.

IFAIL ¼ 5

The solution appears to be too close to 0 or 1 for accurate calculation. The value returned is 0 or
1 as appropriate.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The series (2) is summed until a bound on the truncation error is less than TOL. See Farebrother (1984)
for further discussion.

8 Parallelism and Performance

G01JCF is not threaded in any implementation.

9 Further Comments

None.

10 Example

The number of �2 variables is read along with their coefficients, degrees of freedom and noncentrality
arguments. The lower tail probability is then computed and printed.

10.1 Program Text

Program g01jcfe

! G01JCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01jcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, p, pdf, tol
Integer :: i, ifail, lwrk, maxit, n, pn

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), rlamda(:), wrk(:)
Integer, Allocatable :: mult(:)

! .. Executable Statements ..
Write (nout,*) ’G01JCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ A MULT RLAMDA’
Write (nout,*)

! Use default tolerance
tol = 0.0E0_nag_wp
maxit = 500

! Dummy allocation for the arrays
Allocate (a(1),rlamda(1),mult(1),wrk(1))

pn = 0
d_lp: Do

Read (nin,*,Iostat=ifail) n, c
If (ifail/=0) Then

Exit d_lp
End If

! Reallocate arrays if required
If (pn/=n) Then

Deallocate (a,rlamda,mult,wrk)
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lwrk = n + 2*maxit
Allocate (a(n),rlamda(n),mult(n),wrk(lwrk))

End If
pn = n

! Read in weights, degrees of freedom and distribution parameter
Read (nin,*) a(1:n)
Read (nin,*) mult(1:n)
Read (nin,*) rlamda(1:n)

! Calculate probability
ifail = -1
Call g01jcf(a,mult,rlamda,n,c,p,pdf,tol,maxit,wrk,ifail)
If (ifail/=0) Then

If (ifail<4) Then
Exit d_lp

End If
End If

! Display results
Write (nout,99999)(a(i),mult(i),rlamda(i),i=1,n)
Write (nout,99998) ’C = ’, c, ’ PROB =’, p

End Do d_lp

99999 Format (1X,F10.2,I6,F9.2)
99998 Format (1X,A,F6.2,A,F7.4)

End Program g01jcfe

10.2 Program Data

G01JCF Example Program Data
3 20.0 :N C
6.0 3.0 1.0 :A(I), I=1,N
1 1 1 :MULT(I), I=1,N
0.0 0.0 0.0 :RLAMDA(I), I=1,N
2 10.0 :N C
7.0 3.0 :A(I), I=1,N
1 1 :MULT(I), I=1,N
6.0 2.0 :RLAMDA(I), I=1,N

10.3 Program Results

G01JCF Example Program Results

A MULT RLAMDA

6.00 1 0.00
3.00 1 0.00
1.00 1 0.00

C = 20.00 PROB = 0.8760
7.00 1 6.00
3.00 1 2.00

C = 10.00 PROB = 0.0451
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NAG Library Routine Document

G01JDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01JDF calculates the lower tail probability for a linear combination of (central) �2 variables.

2 Specification

SUBROUTINE G01JDF (METHOD, N, RLAM, D, C, PROB, WORK, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) RLAM(N), D, C, PROB, WORK(N+1)
CHARACTER(1) METHOD

3 Description

Let u1; u2; . . . ; un be independent Normal variables with mean zero and unit variance, so that
u21; u

2
2; . . . ; u

2
n have independent �2-distributions with unit degrees of freedom. G01JDF evaluates the

probability that

�1u
2
1 þ �2u22 þ � � � þ �nu2n < d u21 þ u22 þ � � � þ u2n

� �
þ c:

If c ¼ 0:0 this is equivalent to the probability that

�1u
2
1 þ �2u22 þ � � � þ �nu2n
u21 þ u22 þ � � � þ u2n

< d:

Alternatively let

��i ¼ �i � d; i ¼ 1; 2; . . . ; n;

then G01JDF returns the probability that

��1u
2
1 þ ��2u22 þ � � � þ ��nu2n < c:

Two methods are available. One due to Pan (1964) (see Farebrother (1980)) makes use of series
approximations. The other method due to Imhof (1961) reduces the problem to a one-dimensional
integral. If n � 6 then a non-adaptive method described in D01BDF is used to compute the value of the
integral otherwise D01AJF is used.

Pan's procedure can only be used if the ��i are sufficiently distinct; G01JDF requires the ��i to be at least
1% distinct; see Section 9. If the ��i are at least 1% distinct and n � 60, then Pan's procedure is
recommended; otherwise Imhof's procedure is recommended.

4 References

Farebrother R W (1980) Algorithm AS 153. Pan's procedure for the tail probabilities of the Durbin–
Watson statistic Appl. Statist. 29 224–227

Imhof J P (1961) Computing the distribution of quadratic forms in Normal variables Biometrika 48
419–426

Pan Jie–Jian (1964) Distributions of the noncircular serial correlation coefficients Shuxue Jinzhan 7
328–337
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5 Arguments

1: METHOD – CHARACTER(1) Input

On entry: indicates whether Pan's, Imhof's or an appropriately selected procedure is to be used.

METHOD ¼ P
Pan's method is used.

METHOD ¼ I
Imhof's method is used.

METHOD ¼ D
Pan's method is used if ��i , for i ¼ 1; 2; . . . ; n are at least 1% distinct and n � 60;
otherwise Imhof's method is used.

Constraint: METHOD ¼ P , I or D .

2: N – INTEGER Input

On entry: n, the number of independent standard Normal variates, (central �2 variates).

Constraint: N � 1.

3: RLAMðNÞ – REAL (KIND=nag_wp) array Input

On entry: the weights, �i, for i ¼ 1; 2; . . . ; n, of the central �2 variables.

Constraint: RLAMðiÞ 6¼ D for at least one i. If METHOD ¼ P , then the ��i must be at least 1%
distinct; see Section 9, for i ¼ 1; 2; . . . ; n.

4: D – REAL (KIND=nag_wp) Input

On entry: d, the multiplier of the central �2 variables.

Constraint: D � 0:0.

5: C – REAL (KIND=nag_wp) Input

On entry: c, the value of the constant.

6: PROB – REAL (KIND=nag_wp) Output

On exit: the lower tail probability for the linear combination of central �2 variables.

7: WORKðNþ 1Þ – REAL (KIND=nag_wp) array Workspace

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or D < 0:0,
or METHOD 6¼ P , I or D .

IFAIL ¼ 2

On entry, RLAMðiÞ ¼ D for all values of i, for i ¼ 1; 2; . . . ; n.

IFAIL ¼ 3

On entry, METHOD ¼ P yet two successive values of the ordered ��i , for i ¼ 1; 2; . . . ; n, were
not at least 1% distinct.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit at least four decimal places of accuracy should be achieved.

8 Parallelism and Performance

G01JDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Pan's procedure can only work if the ��i are sufficiently distinct. G01JDF uses the check
wj � wj�1
		 		 � 0:01�max wj

		 		; wj�1		 		� �
, where the wj are the ordered nonzero values of ��i .

For the situation when all the �i are positive G01JCF may be used. If the probabilities required are for
the Durbin–Watson test, then the bounds for the probabilities are given by G01EPF.
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10 Example

For n ¼ 10, the choice of method, values of c and d and the �i are input and the probabilities computed
and printed.

10.1 Program Text

Program g01jdfe

! G01JDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01jdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, d, prob
Integer :: ifail, n
Character (1) :: method

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rlam(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’G01JDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, method, d, c

Allocate (rlam(n),work(n+1))

! Read in data
Read (nin,*) rlam(1:n)

! Calculate probability
ifail = 0
Call g01jdf(method,n,rlam,d,c,prob,work,ifail)

! Display results
Write (nout,99999) ’ Values of lambda ’, rlam(1:n)
Write (nout,99999) ’ Value of D ’, d
Write (nout,99999) ’ value of C ’, c
Write (nout,*)
Write (nout,99998) ’ Probability = ’, prob

99999 Format (1X,A,10F6.2)
99998 Format (1X,A,F10.4)

End Program g01jdfe

10.2 Program Data

G01JDF Example Program Data
10 ’P’ 1.0 0.0
-9.0 -7.0 -5.0 -3.0 -1.0 2.0 4.0 6.0 8.0 10.0
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10.3 Program Results

G01JDF Example Program Results

Values of lambda -9.00 -7.00 -5.00 -3.00 -1.00 2.00 4.00 6.00 8.00 10.00
Value of D 1.00
value of C 0.00

Probability = 0.5749
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NAG Library Routine Document

G01KAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01KAF returns the value of the probability density function (PDF) for the Normal (Gaussian)
distribution with mean � and variance �2 at a point x.

2 Specification

FUNCTION G01KAF (X, XMEAN, XSTD, IFAIL)
REAL (KIND=nag_wp) G01KAF

INTEGER IFAIL
REAL (KIND=nag_wp) X, XMEAN, XSTD

3 Description

The Normal distribution has probability density function (PDF)

f xð Þ ¼ 1

�
ffiffiffiffiffiffi
2	
p e� x��ð Þ2=2�2 ; � > 0:

4 References

None.

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value at which the PDF is to be evaluated.

2: XMEAN – REAL (KIND=nag_wp) Input

On entry: �, the mean of the Normal distribution.

3: XSTD – REAL (KIND=nag_wp) Input

On entry: �, the standard deviation of the Normal distribution.

Constraint: z < XSTD
ffiffiffiffiffiffi
2	
p

< 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

If IFAIL 6¼ 0, then G01KAF returns 0:0.

IFAIL ¼ 1

On entry, XSTD ¼ valueh i.
Constraint: XSTD�

ffiffiffiffiffiffiffiffiffi
2:0	
p

> U , where U is the safe range parameter as defined by X02AMF.

IFAIL ¼ 2

Computation abandoned owing to underflow of 1
��
ffiffiffiffi
2	
pð Þ .

IFAIL ¼ 3

Computation abandoned owing to an internal calculation overflowing.

This rarely occurs, and is the result of extreme values of the arguments X, XMEAN or XSTD.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G01KAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example prints the value of the Normal distribution PDF at four different points X with differing
XMEAN and XSTD.
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10.1 Program Text

Program g01kafe

! G01KAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01kaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: f, x, xmean, xstd
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01KAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ X MEAN STANDARD RESULT ’
Write (nout,*) ’ DEVIATION’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x, xmean, xstd
If (ifail/=0) Then

Exit d_lp
End If

ifail = 0
f = g01kaf(x,xmean,xstd,ifail)

! Display results
Write (nout,99999) x, xmean, xstd, f

End Do d_lp

99999 Format (1X,1P,4(1X,E13.5))
End Program g01kafe

10.2 Program Data

G01KAF Example Program Data
1.0E0 0.0E0 1.0E0
4.0E0 2.0E0 1.0E0
1.0E-1 0.0E0 1.0E-2
1.0E0 0.0E0 1.0E1 : X, XMEAN, XSTD

10.3 Program Results

G01KAF Example Program Results

X MEAN STANDARD RESULT
DEVIATION

1.00000E+00 0.00000E+00 1.00000E+00 2.41971E-01
4.00000E+00 2.00000E+00 1.00000E+00 5.39910E-02
1.00000E-01 0.00000E+00 1.00000E-02 7.69460E-21
1.00000E+00 0.00000E+00 1.00000E+01 3.96953E-02
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NAG Library Routine Document

G01KFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01KFF returns the value of the probability density function (PDF) for the gamma distribution with
shape argument � and scale argument � at a point x.

2 Specification

FUNCTION G01KFF (X, A, B, IFAIL)
REAL (KIND=nag_wp) G01KFF

INTEGER IFAIL
REAL (KIND=nag_wp) X, A, B

3 Description

The gamma distribution has PDF

f xð Þ ¼ 1

�� �ð Þx
��1e�x=� if x � 0; �; � > 0

f xð Þ ¼ 0 otherwise:

If 0:01 � x; �; � � 100 then an algorithm based directly on the gamma distribution's PDF is used. For
values outside this range, the function is calculated via the Poisson distribution's PDF as described in
Loader (2000) (see Section 9).

4 References

Loader C (2000) Fast and accurate computation of binomial probabilities (not yet published)

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value at which the PDF is to be evaluated.

2: A – REAL (KIND=nag_wp) Input

On entry: �, the shape argument of the gamma distribution.

Constraint: A > 0:0.

3: B – REAL (KIND=nag_wp) Input

On entry: �, the scale argument of the gamma distribution.

Constraints:

B > 0:0;
X
B <

1
X02AMFðÞ.
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4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

If IFAIL 6¼ 0, then G01KFF returns 0:0.

IFAIL ¼ 1

On entry, A ¼ valueh i.
Constraint: A > 0:0.

IFAIL ¼ 2

On entry, B ¼ valueh i.
Constraint: B > 0:0.

IFAIL ¼ 3

Computation abandoned owing to overflow due to extreme parameter values.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G01KFF is not threaded in any implementation.
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9 Further Comments

Due to the lack of a stable link to Loader (2000) paper, we give a brief overview of the method, as
applied to the Poisson distribution. The Poisson distribution has a continuous mass function given by,

p x;�ð Þ ¼ �
x

x!
e��: ð1Þ

The usual way of computing this quantity would be to take the logarithm and calculate,

log x;�ð Þ ¼ xlog�� log x!ð Þ � �:
For large x and �, xlog� and log x!ð Þ are very large, of the same order of magnitude and when
calculated have rounding errors. The subtraction of these two terms can therefore result in a number,
many orders of magnitude smaller and hence we lose accuracy due to subtraction errors. For example
for x ¼ 2� 106 and � ¼ 2� 106, log x!ð Þ � 2:7� 107 and log p x;�ð Þð Þ ¼ �8:17326744645834. But
calculated with the method shown later we have log p x;�ð Þð Þ ¼ �8:1732674441334492. The difference
between these two results suggests a loss of about 7 significant figures of precision.

Loader introduces an alternative way of expressing (1) based on the saddle point expansion,

log p x;�ð Þð Þ ¼ log p x; xð Þð Þ �D x;�ð Þ; ð2Þ

where D x;�ð Þ, the deviance for the Poisson distribution is given by,

D x;�ð Þ ¼ log p x; xð Þð Þ � log p x;�ð Þð Þ;
¼ �D0

x
�

� �
;

ð3Þ

and

D0 �ð Þ ¼ �log �þ 1� �:
For � close to 1, D0 �ð Þ can be evaluated through the series expansion

�D0
x

�

� �
¼ x� �ð Þ2

xþ � þ 2x
X1
j¼1

v2jþ1

2jþ 1
; where v ¼ x� �

xþ �;

otherwise D0 �ð Þ can be evaluated directly. In addition, Loader suggests evaluating log x!ð Þ using the
Stirling–De Moivre series,

log x!ð Þ ¼ 1

2
log 2	xð Þ þ xlog xð Þ�xþ � xð Þ; ð4Þ

where the error � xð Þ is given by

� xð Þ ¼ 1

12x
� 1

360x3
þ 1

1260x5
þO x�7

� �
:

Finally log p x;�ð Þð Þ can be evaluated by combining equations (1)–(4) to get,

p x;�ð Þ ¼ 1ffiffiffiffiffiffiffiffi
2	x
p e�� xð Þ��D0 x=�ð Þ:

10 Example

This example prints the value of the gamma distribution PDF at six different points X with differing A
and B.

10.1 Program Text

Program g01kffe

! G01KFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01kff, nag_wp

G01 – Simple Calculations on Statistical Data G01KFF
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, f, x
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01KFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ X A B RESULT’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x, a, b
If (ifail/=0) Then

Exit d_lp
End If

ifail = 0
f = g01kff(x,a,b,ifail)

! Display results
Write (nout,99999) x, a, b, f

End Do d_lp

99999 Format (1X,1P,4(1X,E12.4))
End Program g01kffe

10.2 Program Data

G01KFF Example Program Data
1.0E-1 3.0E0 2.0E0
3.0E0 1.0E1 1.1E1
6.0E0 5.0E0 1.0E0
4.0E0 1.0E1 1.0E-1
9.0E0 9.0E0 5.0E-1
1.6E1 3.5E0 2.5E0 : X, A, B

10.3 Program Results

G01KFF Example Program Results

X A B RESULT

1.0000E-01 3.0000E+00 2.0000E+00 5.9452E-04
3.0000E+00 1.0000E+01 1.1000E+01 1.5921E-12
6.0000E+00 5.0000E+00 1.0000E+00 1.3385E-01
4.0000E+00 1.0000E+01 1.0000E-01 3.0690E-08
9.0000E+00 9.0000E+00 5.0000E-01 8.3251E-03
1.6000E+01 3.5000E+00 2.5000E+00 2.0723E-02
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NAG Library Routine Document

G01KKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01KKF returns a number of values of the probability density function (PDF), or its logarithm, for the
gamma distribution.

2 Specification

SUBROUTINE G01KKF (ILOG, LX, X, LA, A, LB, B, PDF, IVALID, IFAIL)

INTEGER ILOG, LX, LA, LB, IVALID(*), IFAIL
REAL (KIND=nag_wp) X(LX), A(LA), B(LB), PDF(*)

3 Description

The gamma distribution with shape parameter �i and scale parameter �i has PDF

f xi; �i; �ið Þ ¼ 1

�i
�i �ið Þ

xi
�i�1e�xi=�i if xi � 0; �i; �i > 0

f xi; �i; �ið Þ ¼ 0 otherwise:

If 0:01 � xi; �i; �i � 100 then an algorithm based directly on the gamma distribution's PDF is used. For
values outside this range, the function is calculated via the Poisson distribution's PDF as described in
Loader (2000) (see Section 9).

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Loader C (2000) Fast and accurate computation of binomial probabilities (not yet published)

5 Arguments

1: ILOG – INTEGER Input

On entry: the value of ILOG determines whether the logarithmic value is returned in PDF.

ILOG ¼ 0
f xi; �i; �ið Þ, the probability density function is returned.

ILOG ¼ 1
log f xi; �i; �ið Þð Þ, the logarithm of the probability density function is returned.

Constraint: ILOG ¼ 0 or 1.

2: LX – INTEGER Input

On entry: the length of the array X.

Constraint: LX > 0.

G01 – Simple Calculations on Statistical Data G01KKF
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3: XðLXÞ – REAL (KIND=nag_wp) array Input

On entry: xi, the values at which the PDF is to be evaluated with xi ¼ XðjÞ,
j ¼ i� 1ð Þ mod LXð Þ þ 1, for i ¼ 1; 2; . . . ;max LX;LA;LBð Þ.

4: LA – INTEGER Input

On entry: the length of the array A.

Constraint: LA > 0.

5: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the shape parameter with �i ¼ AðjÞ, j ¼ i� 1ð Þ mod LAð Þ þ 1.

Constraint: AðjÞ > 0:0, for j ¼ 1; 2; . . . ;LA.

6: LB – INTEGER Input

On entry: the length of the array B.

Constraint: LB > 0.

7: BðLBÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the scale parameter with �i ¼ BðjÞ, j ¼ i� 1ð Þ mod LBð Þ þ 1.

Constraint: BðjÞ > 0:0, for j ¼ 1; 2; . . . ;LB.

8: PDFð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array PDF must be at least max LX;LA;LBð Þ.
On exit: f xi; �i; �ið Þ or log f xi; �i; �ið Þð Þ.

9: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LX;LA;LBð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
�i � 0:0.

IVALIDðiÞ ¼ 2
�i � 0:0.

IVALIDðiÞ ¼ 3
xi
�i

overflows, the value returned should be a reasonable approximation.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X, A or B was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, ILOG ¼ valueh i.
Constraint: ILOG ¼ 0 or 1.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LX > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LA > 0.

IFAIL ¼ 5

On entry, array size ¼ valueh i.
Constraint: LB > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G01KKF is not threaded in any implementation.
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9 Further Comments

Due to the lack of a stable link to Loader (2000) paper, we give a brief overview of the method, as
applied to the Poisson distribution. The Poisson distribution has a continuous mass function given by,

p x;�ð Þ ¼ �
x

x!
e��: ð1Þ

The usual way of computing this quantity would be to take the logarithm and calculate,

log p x;�ð Þð Þ ¼ xlog�� log x!ð Þ � �:
For large x and �, xlog� and log x!ð Þ are very large, of the same order of magnitude and when
calculated have rounding errors. The subtraction of these two terms can therefore result in a number,
many orders of magnitude smaller and hence we lose accuracy due to subtraction errors. For example
for x ¼ 2� 106 and � ¼ 2� 106, log x!ð Þ � 2:7� 107 and log p x;�ð Þð Þ ¼ �8:17326744645834. But
calculated with the method shown later we have log p x;�ð Þð Þ ¼ �8:1732674441334492. The difference
between these two results suggests a loss of about 7 significant figures of precision.

Loader introduces an alternative way of expressing (1) based on the saddle point expansion,

log p x;�ð Þð Þ ¼ log p x; xð Þð Þ �D x;�ð Þ; ð2Þ

where D x;�ð Þ, the deviance for the Poisson distribution is given by,

D x;�ð Þ ¼ log p x; xð Þð Þ � log p x;�ð Þð Þ;
¼ �D0

x
�

� �
;

ð3Þ

and

D0 �ð Þ ¼ �log �þ 1� �:
For � close to 1, D0 �ð Þ can be evaluated through the series expansion

�D0
x

�

� �
¼ x� �ð Þ2

xþ � þ 2x
X1
j¼1

v2jþ1

2jþ 1
; where v ¼ x� �

xþ �;

otherwise D0 �ð Þ can be evaluated directly. In addition, Loader suggests evaluating log x!ð Þ using the
Stirling–De Moivre series,

log x!ð Þ ¼ 1

2
log 2	xð Þ þ xlog xð Þ�xþ � xð Þ; ð4Þ

where the error � xð Þ is given by

� xð Þ ¼ 1

12x
� 1

360x3
þ 1

1260x5
þO x�7

� �
:

Finally log p x;�ð Þð Þ can be evaluated by combining equations (1)–(4) to get,

p x;�ð Þ ¼ 1ffiffiffiffiffiffiffiffi
2	x
p e�� xð Þ��D0 x=�ð Þ:

10 Example

This example prints the value of the gamma distribution PDF at six different points xi with differing �i
and �i.

10.1 Program Text

Program g01kkfe
! G01KKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01kkf, nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, ilog, la, lb, lout, lx
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), b(:), pdf(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01KKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in flag indicating whether logs are required
Read (nin,*) ilog

! Read in the input vectors
Read (nin,*) lx
Allocate (x(lx))
Read (nin,*) x(1:lx)

Read (nin,*) la
Allocate (a(la))
Read (nin,*) a(1:la)

Read (nin,*) lb
Allocate (b(lb))
Read (nin,*) b(1:lb)

! Allocate memory for output
lout = max(lx,la,lb)
Allocate (pdf(lout),ivalid(lout))

! Calculate the PDF
ifail = -1
Call g01kkf(ilog,lx,x,la,a,lb,b,pdf,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) ’ X A B PDF IVALID’
Write (nout,*) repeat(’-’,50)

! Display results
Do i = 1, lout

Write (nout,99999) x(mod(i-1,lx)+1), a(mod(i-1,la)+1), &
b(mod(i-1,lb)+1), pdf(i), ivalid(i)

End Do
End If

99999 Format (1X,3(F6.2,4X),E10.3,4X,I3)
End Program g01kkfe

10.2 Program Data

G01KKF Example Program Data
0 :: ILOG
5 :: LX
0.1 3.0 6.0 4.0 9.0 :: X
5 :: LA
3.0 10.0 5.0 10.0 9.0 :: A
5 :: LB
2.0 11.0 1.0 0.1 0.5 :: B
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10.3 Program Results

G01KKF Example Program Results

X A B PDF IVALID
--------------------------------------------------

0.10 3.00 2.00 0.595E-03 0
3.00 10.00 11.00 0.159E-11 0
6.00 5.00 1.00 0.134E+00 0
4.00 10.00 0.10 0.307E-07 0
9.00 9.00 0.50 0.833E-02 0
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NAG Library Routine Document

G01KQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01KQF returns a number of values of the probability density function (PDF), or its logarithm, for the
Normal (Gaussian) distributions.

2 Specification

SUBROUTINE G01KQF (ILOG, LX, X, LXMU, XMU, LXSTD, XSTD, PDF, IVALID,
IFAIL)

&

INTEGER ILOG, LX, LXMU, LXSTD, IVALID(*), IFAIL
REAL (KIND=nag_wp) X(LX), XMU(LXMU), XSTD(LXSTD), PDF(*)

3 Description

The Normal distribution with mean �i, variance �i2; has probability density function (PDF)

f xi; �i; �ið Þ ¼ 1

�i
ffiffiffiffiffiffi
2	
p e� xi��ið Þ2=2�i2 ; �i > 0:

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

None.

5 Arguments

1: ILOG – INTEGER Input

On entry: the value of ILOG determines whether the logarithmic value is returned in PDF.

ILOG ¼ 0
f xi; �i; �ið Þ, the probability density function is returned.

ILOG ¼ 1
log f xi; �i; �ið Þð Þ, the logarithm of the probability density function is returned.

Constraint: ILOG ¼ 0 or 1.

2: LX – INTEGER Input

On entry: the length of the array X.

Constraint: LX > 0.

3: XðLXÞ – REAL (KIND=nag_wp) array Input

On entry: xi, the values at which the PDF is to be evaluated with xi ¼ XðjÞ,
j ¼ i� 1ð Þ mod LXð Þ þ 1, for i ¼ 1; 2; . . . ;max LX;LXSTD;LXMUð Þ.
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4: LXMU – INTEGER Input

On entry: the length of the array XMU.

Constraint: LXMU > 0.

5: XMUðLXMUÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the means with �i ¼ XMUðjÞ, j ¼ i� 1ð Þ mod LXMUð Þ þ 1.

6: LXSTD – INTEGER Input

On entry: the length of the array XSTD.

Constraint: LXSTD > 0.

7: XSTDðLXSTDÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the standard deviations with �i ¼ XSTDðjÞ, j ¼ i� 1ð Þ mod LXSTDð Þ þ 1.

Constraint: XSTDðjÞ � 0:0, for j ¼ 1; 2; . . . ;LXSTD.

8: PDFð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array PDF must be at least max LX;LXSTD;LXMUð Þ.
On exit: f xi; �i; �ið Þ or log f xi; �i; �ið Þð Þ.

9: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LX;LXSTD;LXMUð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
�i < 0.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of XSTD was invalid.
Check IVALID for more information.
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IFAIL ¼ 2

On entry, ILOG ¼ valueh i.
Constraint: ILOG ¼ 0 or 1.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LX > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LXMU > 0.

IFAIL ¼ 5

On entry, array size ¼ valueh i.
Constraint: LXSTD > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G01KQF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example prints the value of the Normal distribution PDF at four different points xi with differing
�i and �i.

10.1 Program Text

Program g01kqfe
! G01KQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01kqf, nag_wp
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ilog, lout, lx, lxmu, &

lxstd
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: pdf(:), x(:), xmu(:), xstd(:)
Integer, Allocatable :: ivalid(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01KQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in flag indicating whether logs are required
Read (nin,*) ilog

! Read in the input vectors
Read (nin,*) lx
Allocate (x(lx))
Read (nin,*) x(1:lx)

Read (nin,*) lxmu
Allocate (xmu(lxmu))
Read (nin,*) xmu(1:lxmu)

Read (nin,*) lxstd
Allocate (xstd(lxstd))
Read (nin,*) xstd(1:lxstd)

! Allocate memory for output
lout = max(lx,lxmu,lxstd)
Allocate (pdf(lout),ivalid(lout))

! Calculate the PDF
ifail = -1
Call g01kqf(ilog,lx,x,lxmu,xmu,lxstd,xstd,pdf,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) ’ X XMU XSTD PDF IVALID’
Write (nout,*) repeat(’-’,50)

! Display results
Do i = 1, lout

Write (nout,99999) x(mod(i-1,lx)+1), xmu(mod(i-1,lxmu)+1), &
xstd(mod(i-1,lxstd)+1), pdf(i), ivalid(i)

End Do
End If

99999 Format (1X,3(F6.2,4X),E10.3,4X,I3)
End Program g01kqfe

10.2 Program Data

G01KQF Example Program Data
0 :: ILOG
4 :: LX
1.0 4.0 0.1 1.0 :: X
4 :: LXMU
0.0 2.0 0.0 0.0 :: XMU
4 :: LXSTD
1.0 1.0 0.01 10.0 :: XSTD
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10.3 Program Results

G01KQF Example Program Results

X XMU XSTD PDF IVALID
--------------------------------------------------

1.00 0.00 1.00 0.242E+00 0
4.00 2.00 1.00 0.540E-01 0
0.10 0.00 0.01 0.769E-20 0
1.00 0.00 10.00 0.397E-01 0
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NAG Library Routine Document

G01LBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01LBF returns a number of values of the probability density function (PDF), or its logarithm, for the
multivariate Normal (Gaussian) distribution.

2 Specification

SUBROUTINE G01LBF (ILOG, K, N, X, LDX, XMU, IULD, SIG, LDSIG, PDF, RANK,
IFAIL)

&

INTEGER ILOG, K, N, LDX, IULD, LDSIG, RANK, IFAIL
REAL (KIND=nag_wp) X(LDX,*), XMU(N), SIG(LDSIG,*), PDF(K)

3 Description

The probability density function, f X : �;�ð Þ of an n-dimensional multivariate Normal distribution
with mean vector � and n by n variance-covariance matrix �, is given by

f X : �;�ð Þ ¼ 2	ð Þn �j jð Þ�1=2 exp �1
2 X � �ð ÞT��1 X � �ð Þ

� �
:

If the variance-covariance matrix, �, is not of full rank then the probability density function, is
calculated as

f X : �;�ð Þ ¼ 2	ð Þrpdet �ð Þð Þ�1=2 exp �1
2 X � �ð ÞT�� X � �ð Þ

� �
where pdet �ð Þ is the pseudo-determinant, �� a generalized inverse of � and r its rank.

G01LBF evaluates the PDF at k points with a single call.

4 References

None.

5 Arguments

1: ILOG – INTEGER Input

On entry: the value of ILOG determines whether the logarithmic value is returned in PDF.

ILOG ¼ 0
f X : �;�ð Þ, the probability density function is returned.

ILOG ¼ 1
log f X : �;�ð Þð Þ, the logarithm of the probability density function is returned.

Constraint: ILOG ¼ 0 or 1.

2: K – INTEGER Input

On entry: k, the number of points the PDF is to be evaluated at.

Constraint: K � 0.
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3: N – INTEGER Input

On entry: n, the number of dimensions.

Constraint: N � 2.

4: XðLDX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least K.

On entry: X, the matrix of k points at which to evaluate the probability density function, with the
ith dimension for the jth point held in Xði; jÞ.

5: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G01LBF
is called.

Constraint: LDX � N.

6: XMUðNÞ – REAL (KIND=nag_wp) array Input

On entry: �, the mean vector of the multivariate Normal distribution.

7: IULD – INTEGER Input

On entry: indicates the form of � and how it is stored in SIG.

IULD ¼ 1
SIG holds the lower triangular portion of �.

IULD ¼ 2
SIG holds the upper triangular portion of �.

IULD ¼ 3
� is a diagonal matrix and SIG only holds the diagonal elements.

IULD ¼ 4
SIG holds the lower Cholesky decomposition, L such that LLT ¼ �.

IULD ¼ 5
SIG holds the upper Cholesky decomposition, U such that UTU ¼ �.

Constraint: IULD ¼ 1, 2, 3, 4 or 5.

8: SIGðLDSIG; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array SIG must be at least N.

On entry: information defining the variance-covariance matrix, �.

IULD ¼ 1 or 2
SIG must hold the lower or upper portion of �, with �ij held in SIGði; jÞ. The supplied
variance-covariance matrix must be positive semidefinite.

IULD ¼ 3
� is a diagonal matrix and the ith diagonal element, �ii, must be held in SIGð1; iÞ

IULD ¼ 4 or 5
SIG must hold L or U, the lower or upper Cholesky decomposition of �, with Lij or Uij
held in SIGði; jÞ, depending on the value of IULD. No check is made that LLT or UTU is
a valid variance-covariance matrix. The diagonal elements of the supplied L or U must be
greater than zero

9: LDSIG – INTEGER Input

On entry: the first dimension of the array SIG as declared in the (sub)program from which
G01LBF is called.
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Constraints:

if IULD ¼ 3, LDSIG � 1;
otherwise LDSIG � N.

10: PDFðKÞ – REAL (KIND=nag_wp) array Output

On exit: f X : �;�ð Þ or log f X : �;�ð Þð Þ depending on the value of ILOG.

11: RANK – INTEGER Output

On exit: r, rank of �.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, ILOG ¼ valueh i.
Constraint: ILOG ¼ 0 or 1.

IFAIL ¼ 21

On entry, K ¼ valueh i.
Constraint: K � 0.

IFAIL ¼ 31

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ 51

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ 71

On entry, IULD ¼ valueh i.
Constraint: IULD ¼ 1, 2, 3, 4 or 5.

IFAIL ¼ 81

On entry, � is not positive semidefinite.
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IFAIL ¼ 82

On entry, at least one diagonal element of � is less than or equal to 0.

IFAIL ¼ 83

On entry, � is not positive definite and eigenvalue decomposition failed.

IFAIL ¼ 91

On entry, LDSIG ¼ valueh i.
Constraint: if IULD ¼ 3, LDSIG � 1.

IFAIL ¼ 92

On entry, LDSIG ¼ valueh i.
Constraint: if IULD 6¼ 3, LDSIG � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G01LBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G01LBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints the value of the multivariate Normal PDF at a number of different points.
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10.1 Program Text

Program g01lbfe

! G01LBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01lbf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ilog, iuld, k, ldsig, ldx, &

n, rank
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: pdf(:), sig(:,:), x(:,:), xmu(:)
! .. Intrinsic Procedures ..

Intrinsic :: repeat
! .. Executable Statements ..

Write (nout,*) ’G01LBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size and how the covariance matrix is stored
! and whether the log PDF is required

Read (nin,*) k, n, iuld, ilog

! Allocate arrays
ldx = n
Allocate (x(ldx,k),xmu(n),pdf(k))

! Read in and echo the vector of means
Read (nin,*) xmu(1:n)
Write (nout,*) ’Vector of Means: ’
Write (nout,99999) xmu(1:n)
Write (nout,*)

! Read in and echo the covariance matrix
If (iuld==3) Then

! Covariance matrix is diagonal
ldsig = 1
Allocate (sig(ldsig,n))
Read (nin,*) sig(1,1:n)

Write (nout,*) ’Diagonal Elements of Covariance Matrix: ’
Write (nout,99999) sig(1,1:n)

Else
! Read in an upper or lower triangular matrix

ldsig = n
Allocate (sig(ldsig,n))
If (iuld==1 .Or. iuld==4) Then

! Lower triangular matrix
Read (nin,*)(sig(i,1:i),i=1,n)

If (iuld==1) Then
Call x04caf(’Lower’,’Nonunit’,n,n,sig,ldsig,’Covariance Matrix:’, &

ifail)
Else

Call x04caf(’Lower’,’Nonunit’,n,n,sig,ldsig, &
’Lower Triangular Cholesky Factor of Covariance Matrix:’,ifail)

End If
Else

! Upper triangular matrix
Read (nin,*)(sig(i,i:n),i=1,n)
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If (iuld==2) Then
Call x04caf(’Upper’,’Nonunit’,n,n,sig,ldsig,’Covariance Matrix:’, &

ifail)
Else

Call x04caf(’Upper’,’Nonunit’,n,n,sig,ldsig, &
’Upper Triangular Cholesky Factor of Covariance Matrix:’,ifail)

End If
End If

End If

! Read in the points at which to evaluate the PDF
Read (nin,*)(x(1:n,i),i=1,k)

! Evaluate the PDF
ifail = 0
Call g01lbf(ilog,k,n,x,ldx,xmu,iuld,sig,ldsig,pdf,rank,ifail)

! Display results
Write (nout,*)
Write (nout,*) ’Rank of the covariance matrix: ’, rank
Write (nout,*)
If (ilog==1) Then

Write (nout,*) ’ log(PDF) X’
Else

Write (nout,*) ’ PDF X’
End If
Write (nout,*) ’ ’, repeat(’-’,48)
Do i = 1, k

Write (nout,99998) pdf(i), x(1:n,i)
End Do

99999 Format (1X,100(F8.4,1X))
99998 Format (1X,1P,E13.4,0P,10(1X,F8.4))

End Program g01lbfe

10.2 Program Data

G01LBF Example Program Data
2 4 1 0 : K,N,IULD,ILOG
0.10 0.20 0.30 0.40 : End XMU
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 : End SIG
1.00 1.00 1.00 1.00
1.00 2.00 3.00 4.00 : End of X

10.3 Program Results

G01LBF Example Program Results

Vector of Means:
0.1000 0.2000 0.3000 0.4000

Covariance Matrix:
1 2 3 4

1 4.1600
2 -3.1200 5.0300
3 0.5600 -0.8300 0.7600
4 -0.1000 1.1800 0.3400 1.1800

Rank of the covariance matrix: 4

PDF X
------------------------------------------------
3.0307E-03 1.0000 1.0000 1.0000 1.0000
4.5232E-06 1.0000 2.0000 3.0000 4.0000
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NAG Library Routine Document

G01MBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01MBF returns the reciprocal of Mills' Ratio, via the routine name.

2 Specification

FUNCTION G01MBF (X)
REAL (KIND=nag_wp) G01MBF

REAL (KIND=nag_wp) X

3 Description

G01MBF calculates the reciprocal of Mills' Ratio, the hazard rate, � xð Þ, for the standard Normal
distribution. It is defined as the ratio of the ordinate to the upper tail area of the standard Normal
distribution, that is,

� xð Þ ¼ Z xð Þ
Q xð Þ ¼

1ffiffiffiffi
2	
p e� x2=2ð Þ

1ffiffiffiffi
2	
p
Z 1
x

e� t2=2ð Þ dt

:

The calculation is based on a Chebyshev expansion as described in S15AGF.

4 References

Gross A J and Clark V A (1975) Survival Distributions: Reliability Applications in the Biomedical
Sciences Wiley

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: x, the argument of the reciprocal of Mills' Ratio.

6 Error Indicators and Warnings

None.

7 Accuracy

In the left-hand tail, x < 0:0, if 1
2e
� 1=2ð Þx2 � the safe range argument (X02AMF), then 0:0 is returned,

which is close to the true value.

The relative accuracy is bounded by the effective machine precision. See S15AGF for further
discussion.

8 Parallelism and Performance

G01MBF is not threaded in any implementation.
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9 Further Comments

If, before entry, x is not a standard Normal variable, it has to be standardized, and on exit, G01MBF
has to be divided by the standard deviation. That is, if the Normal distribution has mean � and variance
�2, then its hazard rate, � x;�; �2

� �
, is given by

� x;�; �2
� �

¼ � x� �ð Þ=�ð Þ=�:

10 Example

The hazard rate is evaluated at different values of x for Normal distributions with different means and
variances. The results are then printed.

10.1 Program Text

Program g01mbfe

! G01MBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a00acf, g01mbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rm, x, xmu, xsig, z
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01MBF Example Program Results ’
Write (nout,*)

! Check for valid licence prior to calling G01MBF
If (.Not. a00acf()) Then

Write (nout,*) ’ ** A valid licence key was not found’

Else
! Skip heading in data file

Read (nin,*)

! Display titles
Write (nout,*) ’ Mean Sigma X Reciprocal’
Write (nout,*) ’ Mills Ratio’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x, xmu, xsig
If (ifail/=0) Then

Exit d_lp
End If

z = (x-xmu)/xsig
rm = g01mbf(z)/xsig

! Display results
Write (nout,99999) xmu, xsig, x, rm

End Do d_lp
End If

99999 Format (1X,4(F7.4,2X))
End Program g01mbfe
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10.2 Program Data

G01MBF Example Program Data
0.0 0.0 1.0
-2.0 1.0 2.5
10.3 9.0 1.6

10.3 Program Results

G01MBF Example Program Results

Mean Sigma X Reciprocal
Mills Ratio

0.0000 1.0000 0.0000 0.7979
1.0000 2.5000 -2.0000 0.0878
9.0000 1.6000 10.3000 0.8607
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NAG Library Routine Document

G01MTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01MTF returns the value of the Landau density function 
 �ð Þ, via the routine name.

2 Specification

FUNCTION G01MTF (X)
REAL (KIND=nag_wp) G01MTF

REAL (KIND=nag_wp) X

3 Description

G01MTF evaluates an approximation to the Landau density function 
 �ð Þ given by


 �ð Þ ¼ 1

2	i

Z cþi1

c�i1
exp �sþ s ln sð Þ ds;

where c is an arbitrary real constant, using piecewise approximation by rational functions. Further
details can be found in KÎlbig and Schorr (1984).

To obtain the value of 
0 �ð Þ, G01RTF can be used.

4 References

KÎlbig K S and Schorr B (1984) A program package for the Landau distribution Comp. Phys. Comm. 31
97–111

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument � of the function.

6 Error Indicators and Warnings

None.

7 Accuracy

At least 7 significant digits are usually correct, but occasionally only 6. Such accuracy is normally
considered to be adequate for applications in experimental physics.

Because of the asymptotic behaviour of 
 �ð Þ, which is of the order of exp � exp ��ð Þ½ �, underflow may
occur on some machines when � is moderately large and negative.

8 Parallelism and Performance

G01MTF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example evaluates 
 �ð Þ at � ¼ 0:5, and prints the results.

10.1 Program Text

Program g01mtfe

! G01MTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a00acf, g01mtf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01MTF Example Program Results’
Write (nout,*)

! Check for valid licence prior to calling G01MTF
If (.Not. a00acf()) Then

Write (nout,*) ’ ** A valid licence key was not found’

Else
! Skip heading in data file

Read (nin,*)

! Display titles
Write (nout,*) ’ X Y’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x
If (ifail/=0) Then

Exit d_lp
End If

! Compute the value of the Landau density function
y = g01mtf(x)

! Display results
Write (nout,99999) x, y

End Do d_lp
End If

99999 Format (1X,F4.1,3X,1P,E12.4)
End Program g01mtfe

10.2 Program Data

G01MTF Example Program Data
0.5 : Value of X
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10.3 Program Results

G01MTF Example Program Results

X Y

0.5 1.6523E-01
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NAG Library Routine Document

G01MUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01MUF returns the value of the Vavilov density function 
V �;�; �2
� �

, via the routine name.

It is intended to be used after a call to G01ZUF.

2 Specification

FUNCTION G01MUF (X, RCOMM, IFAIL)
REAL (KIND=nag_wp) G01MUF

INTEGER IFAIL
REAL (KIND=nag_wp) X, RCOMM(322)

3 Description

G01MUF evaluates an approximation to the Vavilov density function 
V �;�; �2
� �

given by


V �;�; �2
� �

¼ 1

2	i

Z cþi1

c�i1
e�sf s;�; �2

� �
ds;

where � > 0 and 0 � �2 � 1, c is an arbitrary real constant and

f s;�; �2
� �

¼ C �; �2
� �

exp s ln �þ sþ ��2
� �

ln
s

�

� �
þ E1

s

�

� �h i
� � exp �s

�

� �n o
:

E1 xð Þ ¼
Z x

0
t�1 1� e�tð Þ dt is the exponential integral, C �; �2

� �
¼ exp � 1þ ��2

� �� 
and � is Euler's

constant.

The method used is based on Fourier expansions. Further details can be found in Schorr (1974).

For values of � � 0:01, the Vavilov distribution can be replaced by the Landau distribution since
�V ¼ �L � ln�ð Þ=�. For values of � � 10, the Vavilov distribution can be replaced by a Gaussian
distribution with mean � ¼ � � 1� �2 � ln� and variance �2 ¼ 2� �2

� �
=2�.

4 References

Schorr B (1974) Programs for the Landau and the Vavilov distributions and the corresponding random
numbers Comp. Phys. Comm. 7 215–224

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument � of the function.

2: RCOMMð322Þ – REAL (KIND=nag_wp) array Communication Array

On entry: this must be the same argument RCOMM as returned by a previous call to G01ZUF.
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3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Either the initialization routine has not been called prior to the first call of this routine or a
communication array has become corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

At least five significant digits are usually correct.

8 Parallelism and Performance

G01MUF is not threaded in any implementation.

9 Further Comments

G01MUF can be called repeatedly with different values of � provided that the values of � and �2

remain unchanged between calls. Otherwise, G01ZUF must be called again. This is illustrated in
Section 10.

10 Example

This example evaluates 
V �;�; �2
� �

at � ¼ 2:5, � ¼ 0:4 and �2 ¼ 0:1, and prints the results.
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10.1 Program Text

Program g01mufe

! G01MUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01muf, g01zuf, nag_wp, x02alf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: mode = 0, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta2, c1, c2, rkappa, x, xl, xu, y
Integer :: ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: rcomm(322)

! .. Executable Statements ..
Write (nout,*) ’G01MUF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
c1 = -x02alf()
c2 = -x02alf()

! Display titles
Write (nout,*) ’ X RKAPPA BETA2 Y IFAIL’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x, rkappa, beta2
If (ifail/=0) Then

Exit d_lp
End If

If ((rkappa/=c1) .Or. (beta2/=c2)) Then
! Initialize the RCOMM array if RKAPPA or BETA2 has changed

ifail = 0
Call g01zuf(rkappa,beta2,mode,xl,xu,rcomm,ifail)

End If

! Compute the value of the Vavilov density function
ifail = 0
y = g01muf(x,rcomm,ifail)

! Display results
Write (nout,99999) x, rkappa, beta2, y, ifail
c1 = rkappa
c2 = beta2

End Do d_lp

99999 Format (1X,F4.1,5X,F4.1,5X,F4.1,3X,1P,E12.4,I6)
End Program g01mufe

10.2 Program Data

G01MUF Example Program Data
2.5 0.4 0.1 : Values of X, RKAPPA and BETA2
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10.3 Program Results

G01MUF Example Program Results

X RKAPPA BETA2 Y IFAIL

2.5 0.4 0.1 8.3675E-02 0
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NAG Library Routine Document

G01NAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01NAF computes the cumulants and moments of quadratic forms in Normal variates.

2 Specification

SUBROUTINE G01NAF (MOM, MEAN, N, A, LDA, EMU, SIGMA, LDSIG, L, RKUM,
RMOM, WK, IFAIL)

&

INTEGER N, LDA, LDSIG, L, IFAIL
REAL (KIND=nag_wp) A(LDA,N), EMU(*), SIGMA(LDSIG,N), RKUM(L), RMOM(*),

WK(3*N*(N+1)/2+N)
&

CHARACTER(1) MOM, MEAN

3 Description

Let x have an n-dimensional multivariate Normal distribution with mean � and variance-covariance
matrix �. Then for a symmetric matrix A, G01NAF computes up to the first 12 moments and cumulants
of the quadratic form Q ¼ xTAx. The sth moment (about the origin) is defined as

E Qsð Þ;

where E denotes expectation. The sth moment of Q can also be found as the coefficient of ts=s! in the
expansion of E eQt

� �
. The sth cumulant is defined as the coefficient of ts=s! in the expansion of

log E eQt
� �� �

.

The routine is based on the routine CUM written by Magnus and Pesaran (1993a) and based on the
theory given by Magnus (1978), Magnus (1979) and Magnus (1986).

4 References

Magnus J R (1978) The moments of products of quadratic forms in Normal variables Statist.
Neerlandica 32 201–210

Magnus J R (1979) The expectation of products of quadratic forms in Normal variables: the practice
Statist. Neerlandica 33 131–136

Magnus J R (1986) The exact moments of a ratio of quadratic forms in Normal variables Ann. Üconom.
Statist. 4 95–109

Magnus J R and Pesaran B (1993a) The evaluation of cumulants and moments of quadratic forms in
Normal variables (CUM): Technical description Comput. Statist. 8 39–45

Magnus J R and Pesaran B (1993b) The evaluation of moments of quadratic forms and ratios of
quadratic forms in Normal variables: Background, motivation and examples Comput. Statist. 8 47–55

5 Arguments

1: MOM – CHARACTER(1) Input

On entry: indicates if moments are computed in addition to cumulants.

MOM ¼ C
Only cumulants are computed.
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MOM ¼ M
Moments are computed in addition to cumulants.

Constraint: MOM ¼ C or M.

2: MEAN – CHARACTER(1) Input

On entry: indicates if the mean, �, is zero.

MEAN ¼ Z
� is zero.

MEAN ¼ M
The value of � is supplied in EMU.

Constraint: MEAN ¼ Z or M .

3: N – INTEGER Input

On entry: n, the dimension of the quadratic form.

Constraint: N > 1.

4: AðLDA;NÞ – REAL (KIND=nag_wp) array Input

On entry: the n by n symmetric matrix A. Only the lower triangle is referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
G01NAF is called.

Constraint: LDA � N.

6: EMUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array EMU must be at least N if MEAN ¼ M , and at least 1
otherwise.

On entry: if MEAN ¼ M , EMU must contain the n elements of the vector �.

If MEAN ¼ Z , EMU is not referenced.

7: SIGMAðLDSIG;NÞ – REAL (KIND=nag_wp) array Input

On entry: the n by n variance-covariance matrix �. Only the lower triangle is referenced.

Constraint: the matrix � must be positive definite.

8: LDSIG – INTEGER Input

On entry: the first dimension of the array SIGMA as declared in the (sub)program from which
G01NAF is called.

Constraint: LDSIG � N.

9: L – INTEGER Input

On entry: the required number of cumulants, and moments if specified.

Constraint: 1 � L � 12.

10: RKUMðLÞ – REAL (KIND=nag_wp) array Output

On exit: the L cumulants of the quadratic form.
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11: RMOMð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array RMOM must be at least L if MOM ¼ M , and at least 1
otherwise.

On exit: if MOM ¼ M , the L moments of the quadratic form.

12: WKð3� N� Nþ 1ð Þ=2þ NÞ – REAL (KIND=nag_wp) array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1,
or L < 1,
or L > 12,
or LDA < N,
or LDSIG < N,
or MOM 6¼ C or M ,
or MEAN 6¼ M or Z .

IFAIL ¼ 2

On entry, the matrix � is not positive definite.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

In a range of tests the accuracy was found to be a modest multiple of machine precision. See Magnus
and Pesaran (1993b).

8 Parallelism and Performance

G01NAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example is given by Magnus and Pesaran (1993b) and considers the simple autoregression

yt ¼ �yt�1 þ ut; t ¼ 1; 2; . . .n;

where utf g is a sequence of independent Normal variables with mean zero and variance one, and y0 is
known. The moments of the quadratic form

Q ¼
Xn
t¼2
ytyt�1

are computed using G01NAF. The matrix A is given by:

A iþ 1; ið Þ ¼ 1
2; i ¼ 1; 2; . . .n� 1;

A i; jð Þ ¼ 0; otherwise:

The value of � can be computed using the relationships

var ytð Þ ¼ �2 var yt�1ð Þ þ 1

and

cov ytytþkð Þ ¼ � cov ytytþk�1ð Þ

for k � 0 and var y1ð Þ ¼ 1.

The values of �, y0, n, and the number of moments required are read in and the moments and
cumulants printed.

10.1 Program Text

Program g01nafe

! G01NAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01naf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Real (Kind=nag_wp) :: beta, con
Integer :: i, ifail, j, l, lda, ldsig, lwk, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), emu(:), rkum(:), rmom(:), &

sigma(:,:), wk(:)
! .. Executable Statements ..

Write (nout,*) ’G01NAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) beta, con
Read (nin,*) n, l

ldsig = n
lda = n
lwk = 3*n*(n+1)/2 + n
Allocate (a(lda,n),emu(n),sigma(ldsig,n),rkum(l),rmom(l),wk(lwk))

! Compute A, EMU, and SIGMA for simple autoregression
Do i = 1, n

Do j = i, n
a(j,i) = 0.0E0_nag_wp

End Do
End Do
Do i = 1, n - 1

a(i+1,i) = 0.5E0_nag_wp
End Do
emu(1) = con*beta
Do i = 1, n - 1

emu(i+1) = beta*emu(i)
End Do
sigma(1,1) = 1.0E0_nag_wp
Do i = 2, n

sigma(i,i) = beta*beta*sigma(i-1,i-1) + 1.0E0_nag_wp
End Do
Do i = 1, n

Do j = i + 1, n
sigma(j,i) = beta*sigma(j-1,i)

End Do
End Do

! Compute cumulants
ifail = 0
Call g01naf(’M’,’M’,n,a,lda,emu,sigma,ldsig,l,rkum,rmom,wk,ifail)

! Display results
Write (nout,99999) ’ N = ’, n, ’ BETA = ’, beta, ’ CON = ’, con
Write (nout,*)
Write (nout,*) ’ Cumulants Moments’
Write (nout,*)
Write (nout,99998)(i,rkum(i),rmom(i),i=1,l)

99999 Format (A,I3,2(A,F6.3))
99998 Format (I3,E12.4,4X,E12.4)

End Program g01nafe

10.2 Program Data

G01NAF Example Program Data
0.8 1.0 : BETA, CON
10 4 : N, L
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10.3 Program Results

G01NAF Example Program Results

N = 10 BETA = 0.800 CON = 1.000

Cumulants Moments

1 0.1752E+02 0.1752E+02
2 0.3501E+03 0.6569E+03
3 0.1609E+05 0.3986E+05
4 0.1170E+07 0.3404E+07
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NAG Library Routine Document

G01NBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01NBF computes the moments of ratios of quadratic forms in Normal variables and related statistics.

2 Specification

SUBROUTINE G01NBF (CASE, MEAN, N, A, LDA, B, LDB, C, LDC, ELA, EMU,
SIGMA, LDSIG, L1, L2, LMAX, RMOM, ABSERR, EPS, WK,
IFAIL)

&
&

INTEGER N, LDA, LDB, LDC, LDSIG, L1, L2, LMAX, IFAIL
REAL (KIND=nag_wp) A(LDA,N), B(LDB,N), C(LDC,*), ELA(*), EMU(*),

SIGMA(LDSIG,N), RMOM(L2-L1+1), ABSERR, EPS,
WK(3*N*N+(8+L2)*N)

&
&

CHARACTER(1) CASE, MEAN

3 Description

Let x have an n-dimensional multivariate Normal distribution with mean � and variance-covariance
matrix �. Then for a symmetric matrix A and symmetric positive semidefinite matrix B, G01NBF
computes a subset, l1 to l2, of the first 12 moments of the ratio of quadratic forms

R ¼ xTAx=xTBx:

The sth moment (about the origin) is defined as

E Rsð Þ; ð1Þ

where E denotes the expectation. Alternatively, this routine will compute the following expectations:

E Rs aTx
� �� �

ð2Þ

and

E Rs xTCx
� �� �

; ð3Þ

where a is a vector of length n and C is a n by n symmetric matrix, if they exist. In the case of (2) the
moments are zero if � ¼ 0.

The conditions of theorems 1, 2 and 3 of Magnus (1986) and Magnus (1990) are used to check for the
existence of the moments. If all the requested moments do not exist, the computations are carried out
for those moments that are requested up to the maximum that exist, lMAX.

This routine is based on the routine QRMOM written by Magnus and Pesaran (1993a) and based on the
theory given by Magnus (1986) and Magnus (1990). The computation of the moments requires first the
computation of the eigenvectors of the matrix LTBL, where LLT ¼ �. The matrix LTBL must be
positive semidefinite and not null. Given the eigenvectors of this matrix, a function which has to be
integrated over the range zero to infinity can be computed. This integration is performed using
D01AMF.
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4 References

Magnus J R (1986) The exact moments of a ratio of quadratic forms in Normal variables Ann. Üconom.
Statist. 4 95–109

Magnus J R (1990) On certain moments relating to quadratic forms in Normal variables: Further results
Sankhy�a, Ser. B 52 1–13

Magnus J R and Pesaran B (1993a) The evaluation of cumulants and moments of quadratic forms in
Normal variables (CUM): Technical description Comput. Statist. 8 39–45

Magnus J R and Pesaran B (1993b) The evaluation of moments of quadratic forms and ratios of
quadratic forms in Normal variables: Background, motivation and examples Comput. Statist. 8 47–55

5 Arguments

1: CASE – CHARACTER(1) Input

On entry: indicates the moments of which function are to be computed.

CASE ¼ R (Ratio)
E Rsð Þ is computed.

CASE ¼ L (Linear with ratio)
E Rs aTxð Þð Þ is computed.

CASE ¼ Q (Quadratic with ratio)
E Rs xTCxð Þð Þ is computed.

Constraint: CASE ¼ R , L or Q .

2: MEAN – CHARACTER(1) Input

On entry: indicates if the mean, �, is zero.

MEAN ¼ Z
� is zero.

MEAN ¼ M
The value of � is supplied in EMU.

Constraint: MEAN ¼ Z or M .

3: N – INTEGER Input

On entry: n, the dimension of the quadratic form.

Constraint: N > 1.

4: AðLDA;NÞ – REAL (KIND=nag_wp) array Input

On entry: the n by n symmetric matrix A. Only the lower triangle is referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which G01NBF
is called.

Constraint: LDA � N.

6: BðLDB;NÞ – REAL (KIND=nag_wp) array Input

On entry: the n by n positive semidefinite symmetric matrix B. Only the lower triangle is
referenced.

Constraint: the matrix B must be positive semidefinite.
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7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which G01NBF
is called.

Constraint: LDB � N.

8: CðLDC; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array C must be at least N if CASE ¼ Q , and at least 1
otherwise.

On entry: if CASE ¼ Q , C must contain the n by n symmetric matrix C; only the lower triangle
is referenced.

If CASE 6¼ Q , C is not referenced.

9: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G01NBF
is called.

Constraints:

if CASE ¼ Q , LDC � N;
otherwise LDC � 1.

10: ELAð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ELA must be at least N if CASE ¼ L , and at least 1 otherwise.

On entry: if CASE ¼ L , ELA must contain the vector a of length n, otherwise ELA is not
referenced.

11: EMUð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array EMU must be at least N if MEAN ¼ M , and at least 1
otherwise.

On entry: if MEAN ¼ M , EMU must contain the n elements of the vector �.

If MEAN ¼ Z , EMU is not referenced.

12: SIGMAðLDSIG;NÞ – REAL (KIND=nag_wp) array Input

On entry: the n by n variance-covariance matrix �. Only the lower triangle is referenced.

Constraint: the matrix � must be positive definite.

13: LDSIG – INTEGER Input

On entry: the first dimension of the array SIGMA as declared in the (sub)program from which
G01NBF is called.

Constraint: LDSIG � N.

14: L1 – INTEGER Input

On entry: the first moment to be computed, l1.

Constraint: 0 < L1 � L2.

15: L2 – INTEGER Input

On entry: the last moment to be computed, l2.

Constraint: L1 � L2 � 12.

G01 – Simple Calculations on Statistical Data G01NBF

Mark 26 G01NBF.3



16: LMAX – INTEGER Output

On exit: the highest moment computed, lMAX. This will be l2 if IFAIL ¼ 0 on exit.

17: RMOMðL2� L1þ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the l1 to lMAX moments.

18: ABSERR – REAL (KIND=nag_wp) Output

On exit: the estimated maximum absolute error in any computed moment.

19: EPS – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required for the moments, this value is also used in the checks for
the existence of the moments.

If EPS ¼ 0:0, a value of
ffiffi
�
p

where � is the machine precision used.

Constraint: EPS ¼ 0:0 or EPS � machine precision.

20: WKð3� N� Nþ 8þ L2ð Þ � NÞ – REAL (KIND=nag_wp) array Workspace

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01NBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1,
or LDA < N,
or LDB < N,
or LDSIG < N,
or CASE ¼ Q and LDC < N,
or CASE 6¼ Q and LDC < 1,
or L1 < 1,
or L1 > L2,
or L2 > 12,
or CASE 6¼ R , L or Q ,
or MEAN 6¼ M or Z ,
or EPS 6¼ 0:0 and EPS < machine precision.
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IFAIL ¼ 2

On entry, � is not positive definite,
or B is not positive semidefinite or is null.

IFAIL ¼ 3

None of the required moments can be computed.

IFAIL ¼ 4

The matrix LTBL is not positive semidefinite or is null.

IFAIL ¼ 5

The computation to compute the eigenvalues required in the calculation of moments has failed to
converge: this is an unlikely error exit.

IFAIL ¼ 6

Only some of the required moments have been computed, the highest is given by LMAX.

IFAIL ¼ 7

The required accuracy has not been achieved in the integration. An estimate of the accuracy is
returned in ABSERR.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative accuracy is specified by EPS and an estimate of the maximum absolute error for all
computed moments is returned in ABSERR.

8 Parallelism and Performance

G01NBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.
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10 Example

This example is given by Magnus and Pesaran (1993b) and considers the simple autoregression:

yt ¼ �yt�1 þ ut; t ¼ 1; 2; . . . ; n;

where utf g is a sequence of independent Normal variables with mean zero and variance one, and y0 is
known. The least squares estimate of �, �̂, is given by

�̂ ¼

Xn
t¼2
ytyt�1

Xn
t¼2
y2t

:

Thus �̂ can be written as a ratio of quadratic forms and its moments computed using G01NBF. The
matrix A is given by

A iþ 1; ið Þ ¼ 1
2; i ¼ 1; 2; . . .n� 1;

A i; jð Þ ¼ 0; otherwise;

and the matrix B is given by

B i; ið Þ ¼ 1; i ¼ 1; 2; . . .n� 1;

B i; jð Þ ¼ 0; otherwise:

The value of � can be computed using the relationships

var ytð Þ ¼ �2 var yt�1ð Þ þ 1

and

cov ytytþkð Þ ¼ � cov ytytþk�1ð Þ

for k � 0 and var y1ð Þ ¼ 1.

The values of �, y0, n, and the number of moments required are read in and the moments computed and
printed.

10.1 Program Text

Program g01nbfe

! G01NBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01nbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: abserr, beta, eps, y0
Integer :: i, ifail, j, l1, l2, lda, ldb, ldc, &

ldsig, lmax, lwk, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:), ela(:), &
emu(:), rmom(:), sigma(:,:), wk(:)

! .. Executable Statements ..
Write (nout,*) ’G01NBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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! Read in the problem size
Read (nin,*) beta, y0
Read (nin,*) n, l1, l2

lda = n
ldb = n
ldc = n
ldsig = n
lwk = 3*n*n + (8+l2)*n
Allocate (a(lda,n),b(ldb,n),c(ldc,n),ela(n),emu(n),sigma(ldsig,n), &

wk(lwk),rmom(l2-l1+1))

! Compute A, EMU, and SIGMA for simple autoregression
Do i = 1, n

Do j = i, n
a(j,i) = 0.0E0_nag_wp
b(j,i) = 0.0E0_nag_wp

End Do
End Do
Do i = 1, n - 1

a(i+1,i) = 0.5E0_nag_wp
b(i,i) = 1.0E0_nag_wp

End Do
emu(1) = y0*beta
Do i = 1, n - 1

emu(i+1) = beta*emu(i)
End Do
sigma(1,1) = 1.0E0_nag_wp
Do i = 2, n

sigma(i,i) = beta*beta*sigma(i-1,i-1) + 1.0E0_nag_wp
End Do
Do i = 1, n

Do j = i + 1, n
sigma(j,i) = beta*sigma(j-1,i)

End Do
End Do

! Use default accuracy
eps = 0.0E0_nag_wp

! Compute moments
ifail = -1
Call g01nbf(’Ratio’,’Mean’,n,a,lda,b,ldb,c,ldc,ela,emu,sigma,ldsig,l1, &

l2,lmax,rmom,abserr,eps,wk,ifail)
If (ifail/=0) Then

If (ifail<6) Then
Go To 100

End If
End If

! Display results
Write (nout,99999) ’ N = ’, n, ’ BETA = ’, beta, ’ Y0 = ’, y0
Write (nout,*)
Write (nout,*) ’ Moments’
Write (nout,*)
j = 0
Do i = l1, lmax

j = j + 1
Write (nout,99998) i, rmom(j)

End Do

100 Continue

99999 Format (A,I3,2(A,F6.3))
99998 Format (I3,E12.3)

End Program g01nbfe
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10.2 Program Data

G01NBF Example Program Data
0.8 1.0 : Beta Y0
10 1 3 : N L1 L1

10.3 Program Results

G01NBF Example Program Results

N = 10 BETA = 0.800 Y0 = 1.000

Moments

1 0.682E+00
2 0.536E+00
3 0.443E+00
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NAG Library Routine Document

G01PTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01PTF returns the value of the first moment �1 xð Þ of the Landau density function, via the routine
name.

2 Specification

FUNCTION G01PTF (X)
REAL (KIND=nag_wp) G01PTF

REAL (KIND=nag_wp) X

3 Description

G01PTF evaluates an approximation to the first moment �1 xð Þ of the Landau density function given by

�1 xð Þ ¼
1

� xð Þ

Z x

�1
�
 �ð Þ d�;

where 
 �ð Þ is described in G01MTF, using piecewise approximation by rational functions. Further
details can be found in KÎlbig and Schorr (1984).

To obtain the value of �2 xð Þ, G01QTF can be used.

4 References

KÎlbig K S and Schorr B (1984) A program package for the Landau distribution Comp. Phys. Comm. 31
97–111

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

6 Error Indicators and Warnings

None.

7 Accuracy

At least 7 significant digits are usually correct, but occasionally only 6. Such accuracy is normally
considered to be adequate for applications in experimental physics.

8 Parallelism and Performance

G01PTF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example evaluates �1 xð Þ at x ¼ 0:5, and prints the results.

10.1 Program Text

Program g01ptfe

! G01PTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a00acf, g01ptf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01PTF Example Program Results’
Write (nout,*)

! Check for valid licence prior to calling G01PTF
If (.Not. a00acf()) Then

Write (nout,*) ’ ** A valid licence key was not found’

Else
! Skip heading in data file

Read (nin,*)

! Display title
Write (nout,*) ’ X Y’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x
If (ifail/=0) Then

Exit d_lp
End If

! Compute the value of the 1st moment of the Landau density function
y = g01ptf(x)

! Display results
Write (nout,99999) x, y

End Do d_lp
End If

99999 Format (1X,F4.1,3X,1P,E12.4)
End Program g01ptfe

10.2 Program Data

G01PTF Example Program Data
0.5 : Value of X

10.3 Program Results

G01PTF Example Program Results

X Y

0.5 -6.2932E-01
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NAG Library Routine Document

G01QTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01QTF returns the value of the second moment �2 xð Þ of the Landau density function, via the routine
name.

2 Specification

FUNCTION G01QTF (X)
REAL (KIND=nag_wp) G01QTF

REAL (KIND=nag_wp) X

3 Description

G01QTF evaluates an approximation to the second moment �2 xð Þ of the Landau density function given
by

�2 xð Þ ¼
1

� xð Þ

Z x

�1
�2
 �ð Þ d�;

where 
 �ð Þ is described in G01MTF, using piecewise approximation by rational functions. Further
details can be found in KÎlbig and Schorr (1984).

To obtain the value of �1 xð Þ, G01PTF can be used.

4 References

KÎlbig K S and Schorr B (1984) A program package for the Landau distribution Comp. Phys. Comm. 31
97–111

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

6 Error Indicators and Warnings

None.

7 Accuracy

At least 7 significant digits are usually correct, but occasionally only 6. Such accuracy is normally
considered to be adequate for applications in experimental physics.

8 Parallelism and Performance

G01QTF is not threaded in any implementation.

G01 – Simple Calculations on Statistical Data G01QTF
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9 Further Comments

None.

10 Example

This example evaluates �2 xð Þ at x ¼ 0:5, and prints the results.

10.1 Program Text

Program g01qtfe

! G01QTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a00acf, g01qtf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01QTF Example Program Results’
Write (nout,*)

! Check for valid licence prior to calling G01QTF
If (.Not. a00acf()) Then

Write (nout,*) ’ ** A valid licence key was not found’

Else
! Skip heading in data file

Read (nin,*)

! Display title
Write (nout,*) ’ X Y’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x
If (ifail/=0) Then

Exit d_lp
End If

! Compute the value of the 2nd moment of the Landau density function
y = g01qtf(x)

! Display results
Write (nout,99999) x, y

End Do d_lp
End If

99999 Format (1X,F4.1,3X,1P,E12.4)
End Program g01qtfe

10.2 Program Data

G01QTF Example Program Data
0.5 : Value of X
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10.3 Program Results

G01QTF Example Program Results

X Y

0.5 9.0868E-01
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NAG Library Routine Document

G01RTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01RTF returns the value of the derivative 
0 �ð Þ of the Landau density function, via the routine name.

2 Specification

FUNCTION G01RTF (X)
REAL (KIND=nag_wp) G01RTF

REAL (KIND=nag_wp) X

3 Description

G01RTF evaluates an approximation to the derivative 
0 �ð Þ of the Landau density function given by


0 �ð Þ ¼ d
 �ð Þ
d�

;

where 
 �ð Þ is described in G01MTF, using piecewise approximation by rational functions. Further
details can be found in KÎlbig and Schorr (1984).

To obtain the value of 
 �ð Þ, G01MTF can be used.

4 References

KÎlbig K S and Schorr B (1984) A program package for the Landau distribution Comp. Phys. Comm. 31
97–111

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument � of the function.

6 Error Indicators and Warnings

None.

7 Accuracy

At least 7 significant digits are usually correct, but occasionally only 6. Such accuracy is normally
considered to be adequate for applications in experimental physics.

Because of the asymptotic behaviour of 
0 �ð Þ, which is of the order of exp � exp ��ð Þ½ �, underflow may
occur on some machines when � is moderately large and negative.

8 Parallelism and Performance

G01RTF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example evaluates 
0 �ð Þ at � ¼ 0:5, and prints the results.

10.1 Program Text

Program g01rtfe

! G01RTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: a00acf, g01rtf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’G01RTF Example Program Results’
Write (nout,*)

! Check for valid licence prior to calling G01RTF
If (.Not. a00acf()) Then

Write (nout,*) ’ ** A valid licence key was not found’

Else
! Skip heading in data file

Read (nin,*)

! Display title
Write (nout,*) ’ X Y’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) x
If (ifail/=0) Then

Exit d_lp
End If

! Compute the value of the derivative of the Landau density function
y = g01rtf(x)

! Display results
Write (nout,99999) x, y

End Do d_lp
End If

99999 Format (1X,F4.1,3X,1P,E12.4)
End Program g01rtfe

10.2 Program Data

G01RTF Example Program Data
0.5 : Value of X
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10.3 Program Results

G01RTF Example Program Results

X Y

0.5 -3.6034E-02
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NAG Library Routine Document

G01SAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01SAF returns a number of one or two tail probabilities for the Normal distribution.

2 Specification

SUBROUTINE G01SAF (LTAIL, TAIL, LX, X, LXMU, XMU, LXSTD, XSTD, P,
IVALID, IFAIL)

&

INTEGER LTAIL, LX, LXMU, LXSTD, IVALID(*), IFAIL
REAL (KIND=nag_wp) X(LX), XMU(LXMU), XSTD(LXSTD), P(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The lower tail probability for the Normal distribution, P Xi � xið Þ is defined by:

P Xi � xið Þ ¼
Z xi

�1
Zi Xið Þ dXi;

where

Zi Xið Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2	�i2

p e� Xi��ið Þ2= 2�i2ð Þ;�1 < Xi <1:

The relationship

P Xi � xið Þ ¼ 1
2 erfc

� xi � �ið Þffiffiffi
2
p

�i

� �
is used, where erfc is the complementary error function, and is computed using S15ADF.

When the two tail confidence probability is required the relationship

P Xi � xij jð Þ � P Xi � � xij jð Þ ¼ erf
xi � �ij jffiffiffi

2
p

�i

� �
;

is used, where erf is the error function, and is computed using S15AEF.

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth
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5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.

2: TAILðLTAILÞ – CHARACTER(1) array Input

On entry: indicates which tail the returned probabilities should represent. Letting Z denote a
v a r i a t e f r om a s t a n d a r d No rm a l d i s t r i b u t i o n , a n d zi ¼ xi��i

�i
, t h e n f o r

j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for i ¼ 1; 2; . . . ;max LX;LTAIL;LXMU;LXSTDð Þ:
TAILðjÞ ¼ L

The lower tail probability is returned, i.e., pi ¼ P Z � zið Þ.
TAILðjÞ ¼ U

The upper tail probability is returned, i.e., pi ¼ P Z � zið Þ.
TAILðjÞ ¼ C

Th e two t a i l ( c o nfi d e n c e i n t e r v a l ) p r o b a b i l i t y i s r e t u r n e d , i . e . ,
pi ¼ P Z � zij jð Þ � P Z � � zij jð Þ.

TAILðjÞ ¼ S
T h e t w o t a i l ( s i g n i fi c a n c e l e v e l ) p r o b a b i l i t y i s r e t u r n e d , i . e . ,
pi ¼ P Z � zij jð Þ þ P Z � � zij jð Þ.

Constraint: TAILðjÞ ¼ L , U , C or S , for j ¼ 1; 2; . . . ;LTAIL.

3: LX – INTEGER Input

On entry: the length of the array X.

Constraint: LX > 0.

4: XðLXÞ – REAL (KIND=nag_wp) array Input

On entry: xi, the Normal variate values with xi ¼ XðjÞ, j ¼ i� 1ð Þ mod LXð Þ þ 1.

5: LXMU – INTEGER Input

On entry: the length of the array XMU.

Constraint: LXMU > 0.

6: XMUðLXMUÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the means with �i ¼ XMUðjÞ, j ¼ i� 1ð Þ mod LXMUð Þ þ 1.

7: LXSTD – INTEGER Input

On entry: the length of the array XSTD.

Constraint: LXSTD > 0.

8: XSTDðLXSTDÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the standard deviations with �i ¼ XSTDðjÞ, j ¼ i� 1ð Þ mod LXSTDð Þ þ 1.

Constraint: XSTDðjÞ > 0:0, for j ¼ 1; 2; . . . ;LXSTD.

9: Pð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array P must be at least max LX;LTAIL;LXMU;LXSTDð Þ.
On exit: pi, the probabilities for the Normal distribution.
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10: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LX;LTAIL;LXMU;LXSTDð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating pi.

IVALIDðiÞ ¼ 2

On entry, �i � 0:0.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of TAIL or XSTD was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, LTAIL ¼ valueh i.
Constraint: LTAIL > 0.

IFAIL ¼ 3

On entry, LX ¼ valueh i.
Constraint: LX > 0.

IFAIL ¼ 4

On entry, LXMU ¼ valueh i.
Constraint: LXMU > 0.

IFAIL ¼ 5

On entry, LXSTD ¼ valueh i.
Constraint: LXSTD > 0.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy is limited by machine precision. For detailed error analysis see S15ADF and S15AEF.

8 Parallelism and Performance

G01SAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

Four values of TAIL, X, XMU and XSTD are input and the probabilities calculated and printed.

10.1 Program Text

Program g01safe
! G01SAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01saf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lout, ltail, lx, lxmu, &

lxstd
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: p(:), x(:), xmu(:), xstd(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01SAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ltail
Allocate (tail(ltail))
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Read (nin,*) tail(1:ltail)

Read (nin,*) lx
Allocate (x(lx))
Read (nin,*) x(1:lx)

Read (nin,*) lxmu
Allocate (xmu(lxmu))
Read (nin,*) xmu(1:lxmu)

Read (nin,*) lxstd
Allocate (xstd(lxstd))
Read (nin,*) xstd(1:lxstd)

! Allocate memory for output
lout = max(ltail,lx,lxmu,lxstd)
Allocate (p(lout),ivalid(lout))

! Calculate probability
ifail = -1
Call g01saf(ltail,tail,lx,x,lxmu,xmu,lxstd,xstd,p,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display title

Write (nout,*) &
’ TAIL X XMU XSTD P IVALID’

Write (nout,*) repeat(’-’,56)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), x(mod(i-1,lx)+1), &
xmu(mod(i-1,lxmu)+1), xstd(mod(i-1,lxstd)+1), p(i), ivalid(i)

End Do
End If

99999 Format (5X,A1,3(4X,F6.2),4X,F6.3,4X,I3)
End Program g01safe

10.2 Program Data

G01SAF Example Program Data
4 :: LTAIL
’L’ ’U’ ’C’ ’S’ :: TAIL
1 :: LX
1.96 :: X
1 :: LXMU
0.0 :: XMU
1 :: LXSTD
1.0 :: XSTD

10.3 Program Results

G01SAF Example Program Results

TAIL X XMU XSTD P IVALID
--------------------------------------------------------

L 1.96 0.00 1.00 0.975 0
U 1.96 0.00 1.00 0.025 0
C 1.96 0.00 1.00 0.950 0
S 1.96 0.00 1.00 0.050 0

G01 – Simple Calculations on Statistical Data G01SAF

Mark 26 G01SAF.5 (last)





NAG Library Routine Document

G01SBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01SBF returns a number of one or two tail probabilities for the Student's t-distribution with real
degrees of freedom.

2 Specification

SUBROUTINE G01SBF (LTAIL, TAIL, LT, T, LDF, DF, P, IVALID, IFAIL)

INTEGER LTAIL, LT, LDF, IVALID(*), IFAIL
REAL (KIND=nag_wp) T(LT), DF(LDF), P(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The lower tail probability for the Student's t-distribution with �i degrees of freedom, P Ti � ti : �ið Þ is
defined by:

P Ti � ti : �ið Þ ¼  �i þ 1ð Þ=2ð Þffiffiffiffiffiffiffi
	�i
p

 �i=2ð Þ

Z ti

�1
1þ Ti

2

�i

� �� �iþ1ð Þ=2

dTi; �i � 1:

Computationally, there are two situations:

(i) when �i < 20, a transformation of the beta distribution, P�i Bi � �i : ai; bið Þ is used

P Ti � ti : �ið Þ ¼ 1
2P�i Bi �

�i

�i þ ti2
: �i=2; 12

� �
when ti < 0:0

or

P Ti � ti : �ið Þ ¼ 1
2þ 1

2P�i Bi �
�i

�i þ ti2
: �i=2; 12

� �
when ti > 0:0;

(ii) when �i � 20, an asymptotic normalizing expansion of the Cornish–Fisher type is used to evaluate
the probability, see Hill (1970).

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Hill G W (1970) Student's t-distribution Comm. ACM 13(10) 617–619
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5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.

2: TAILðLTAILÞ – CHARACTER(1) array Input

On entry: indicates which tail the returned probabilities should represent. For
j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for i ¼ 1; 2; . . . ;max LTAIL;LT;LDFð Þ:
TAILðjÞ ¼ L

The lower tail probability is returned, i.e., pi ¼ P Ti � ti : �ið Þ.
TAILðjÞ ¼ U

The upper tail probability is returned, i.e., pi ¼ P Ti � ti : �ið Þ.
TAILðjÞ ¼ C

The two tail (confidence interval) probability is returned,
i.e., pi ¼ P Ti � tij j : �ið Þ � P Ti � � tij j : �ið Þ.

TAILðjÞ ¼ S
The two tail (significance level) probability is returned,
i.e., pi ¼ P Ti � tij j : �ið Þ þ P Ti � � tij j : �ið Þ.

Constraint: TAILðjÞ ¼ L , U , C or S , for j ¼ 1; 2; . . . ;LTAIL.

3: LT – INTEGER Input

On entry: the length of the array T.

Constraint: LT > 0.

4: TðLTÞ – REAL (KIND=nag_wp) array Input

On entry: ti, the values of the Student's t variates with ti ¼ TðjÞ, j ¼ i� 1ð Þ mod LTð Þ þ 1.

5: LDF – INTEGER Input

On entry: the length of the array DF.

Constraint: LDF > 0.

6: DFðLDFÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the degrees of freedom of the Student's t-distribution with �i ¼ DFðjÞ,
j ¼ i� 1ð Þ mod LDFð Þ þ 1.

Constraint: DFðjÞ � 1:0, for j ¼ 1; 2; . . . ;LDF.

7: Pð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array P must be at least max LTAIL;LT;LDFð Þ.
On exit: pi, the probabilities for the Student's t distribution.

8: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LTAIL;LT;LDFð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.
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IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating pi.

IVALIDðiÞ ¼ 2

On entry, �i < 1:0.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of TAIL or DF was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LTAIL > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LT > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LDF > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The computed probability should be accurate to five significant places for reasonable probabilities but
there will be some loss of accuracy for very low probabilities (less than 10�10), see Hastings and
Peacock (1975).

8 Parallelism and Performance

G01SBF is not threaded in any implementation.

9 Further Comments

The probabilities could also be obtained by using the appropriate transformation to a beta distribution
(see Abramowitz and Stegun (1972)) and using G01SEF. This routine allows you to set the required
accuracy.

10 Example

This example reads values from, and degrees of freedom for Student's t-distributions along with the
required tail. The probabilities are calculated and printed.

10.1 Program Text

Program g01sbfe
! G01SBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01sbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldf, lout, lt, ltail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: df(:), p(:), t(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01SBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ltail
Allocate (tail(ltail))
Read (nin,*) tail(1:ltail)

Read (nin,*) lt
Allocate (t(lt))
Read (nin,*) t(1:lt)

Read (nin,*) ldf
Allocate (df(ldf))
Read (nin,*) df(1:ldf)

! Allocate memory for output
lout = max(lt,ldf,ltail)
Allocate (p(lout),ivalid(lout))
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! Calculate probability
ifail = -1
Call g01sbf(ltail,tail,lt,t,ldf,df,p,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) ’ TAIL T DF P IVALID’
Write (nout,*) repeat(’-’,47)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), t(mod(i-1,lt)+1), &
df(mod(i-1,ldf)+1), p(i), ivalid(i)

End Do
End If

99999 Format (5X,A1,2(4X,F6.2),4X,F6.3,4X,I3)
End Program g01sbfe

10.2 Program Data

G01SBF Example Program Data
4 :: LTAIL
’L’ ’S’ ’C’ ’U’ :: TAIL
1 :: LT
0.85 :: T
1 :: LDF
20.0 :: DF

10.3 Program Results

G01SBF Example Program Results

TAIL T DF P IVALID
-----------------------------------------------

L 0.85 20.00 0.797 0
S 0.85 20.00 0.405 0
C 0.85 20.00 0.595 0
U 0.85 20.00 0.203 0
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NAG Library Routine Document

G01SCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01SCF returns a number of lower or upper tail probabilities for the �2-distribution with real degrees
of freedom.

2 Specification

SUBROUTINE G01SCF (LTAIL, TAIL, LX, X, LDF, DF, P, IVALID, IFAIL)

INTEGER LTAIL, LX, LDF, IVALID(*), IFAIL
REAL (KIND=nag_wp) X(LX), DF(LDF), P(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The lower tail probability for the �2-distribution with �i degrees of freedom, P ¼ Xi � xi : �ið Þ is
defined by:

P ¼ Xi � xi : �ið Þ ¼ 1

2�i=2 �i=2ð Þ

Z xi

0:0
Xi

�i=2�1e�Xi=2 dXi; xi � 0; �i > 0:

To calculate P ¼ Xi � xi : �ið Þ a transformation of a gamma distribution is employed, i.e., a
�2-distribution with �i degrees of freedom is equal to a gamma distribution with scale parameter 2 and
shape parameter �i=2.

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.

2: TAILðLTAILÞ – CHARACTER(1) array Input

On entry: indicates whether the lower or upper tail probabilities are required. For
j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for i ¼ 1; 2; . . . ;max LTAIL;LX;LDFð Þ:
TAILðjÞ ¼ L

The lower tail probability is returned, i.e., pi ¼ P Xi � xi : �ið Þ.
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TAILðjÞ ¼ U
The upper tail probability is returned, i.e., pi ¼ P Xi � xi : �ið Þ.

Constraint: TAILðjÞ ¼ L or U , for j ¼ 1; 2; . . . ;LTAIL.

3: LX – INTEGER Input

On entry: the length of the array X.

Constraint: LX > 0.

4: XðLXÞ – REAL (KIND=nag_wp) array Input

On entry: xi, the values of the �2 variates with �i degrees of freedom with xi ¼ XðjÞ,
j ¼ i� 1ð Þ mod LXð Þ þ 1.

Constraint: XðjÞ � 0:0, for j ¼ 1; 2; . . . ;LX.

5: LDF – INTEGER Input

On entry: the length of the array DF.

Constraint: LDF > 0.

6: DFðLDFÞ – REAL (KIND=nag_wp) array Input

On entry : �i, the degrees of freedom of the �2-distribution with �i ¼ DFðjÞ,
j ¼ i� 1ð Þ mod LDFð Þ þ 1.

Constraint: DFðjÞ > 0:0, for j ¼ 1; 2; . . . ;LDF.

7: Pð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array P must be at least max LTAIL;LDF;LXð Þ.

On exit: pi, the probabilities for the �2 distribution.

8: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LTAIL;LDF;LXð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating pi.

IVALIDðiÞ ¼ 2

On entry, xi < 0:0.

IVALIDðiÞ ¼ 3

On entry, �i � 0:0.

IVALIDðiÞ ¼ 4
The solution has failed to converge while calculating the gamma variate. The result
returned should represent an approximation to the solution.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01SCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X, DF or TAIL was invalid, or the solution failed to converge.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LTAIL > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LX > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LDF > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

A relative accuracy of five significant figures is obtained in most cases.

8 Parallelism and Performance

G01SCF is not threaded in any implementation.
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9 Further Comments

For higher accuracy the transformation described in Section 3 may be used with a direct call to
S14BAF.

10 Example

Values from various �2-distributions are read, the lower tail probabilities calculated, and all these values
printed out.

10.1 Program Text

Program g01scfe
! G01SCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01scf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldf, lout, ltail, lx

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: df(:), p(:), x(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01SCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ltail
Allocate (tail(ltail))
Read (nin,*) tail(1:ltail)

Read (nin,*) lx
Allocate (x(lx))
Read (nin,*) x(1:lx)

Read (nin,*) ldf
Allocate (df(ldf))
Read (nin,*) df(1:ldf)

! Allocate memory for output
lout = max(ltail,lx,ldf)
Allocate (p(lout),ivalid(lout))

! Calculate probability
ifail = -1
Call g01scf(ltail,tail,lx,x,ldf,df,p,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) ’ TAIL X DF P IVALID’
Write (nout,*) repeat(’-’,45)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), x(mod(i-1,lx)+1), &
df(mod(i-1,ldf)+1), p(i), ivalid(i)
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End Do
End If

99999 Format (5X,A1,2(4X,F6.2),4X,F6.3,4X,I3)
End Program g01scfe

10.2 Program Data

G01SCF Example Program Data
1 :: LTAIL
’L’ :: TAIL
3 :: LX
8.26 6.2 55.76 :: X
3 :: LDF
20.0 7.5 45.0 :: DF

10.3 Program Results

G01SCF Example Program Results

TAIL X DF P IVALID
---------------------------------------------

L 8.26 20.00 0.010 0
L 6.20 7.50 0.428 0
L 55.76 45.00 0.869 0
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NAG Library Routine Document

G01SDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01SDF returns a number of lower or upper tail probabilities for the F or variance-ratio distribution
with real degrees of freedom.

2 Specification

SUBROUTINE G01SDF (LTAIL, TAIL, LF, F, LDF1, DF1, LDF2, DF2, P, IVALID,
IFAIL)

&

INTEGER LTAIL, LF, LDF1, LDF2, IVALID(*), IFAIL
REAL (KIND=nag_wp) F(LF), DF1(LDF1), DF2(LDF2), P(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The lower tail probability for the F , or variance-ratio, distribution with ui and vi degrees of freedom,
P Fi � fi : ui; við Þ, is defined by:

P Fi � fi : ui; við Þ ¼ ui
ui=2vi

vi=2 ui þ við Þ=2ð Þ
 ui=2ð Þ vi=2ð Þ

Z fi

0
Fi

ui�2ð Þ=2 uiFi þ við Þ� uiþvið Þ=2dFi;

for ui, vi > 0, fi � 0.

The probability is computed by means of a transformation to a beta distribution, P�i Bi � �i : ai; bið Þ:

P Fi � fi : ui; við Þ ¼ P�i Bi �
uifi

uifi þ vi
: ui=2; vi=2

� �
and using a call to G01EEF.

For very large values of both ui and vi, greater than 105, a normal approximation is used. If only one of
ui or vi is greater than 105 then a �2 approximation is used, see Abramowitz and Stegun (1972).

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.
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2: TAILðLTAILÞ – CHARACTER(1) array Input

On entry: indicates whether the lower or upper tail probabilities are required. For
j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for i ¼ 1; 2; . . . ;max LTAIL;LF;LDF1;LDF2ð Þ:
TAILðjÞ ¼ L

The lower tail probability is returned, i.e., pi ¼ P Fi � fi : ui; við Þ.
TAILðjÞ ¼ U

The upper tail probability is returned, i.e., pi ¼ P Fi � fi : ui; við Þ.
Constraint: TAILðjÞ ¼ L or U , for j ¼ 1; 2; . . . ;LTAIL.

3: LF – INTEGER Input

On entry: the length of the array F.

Constraint: LF > 0.

4: FðLFÞ – REAL (KIND=nag_wp) array Input

On entry: fi, the value of the F variate with fi ¼ FðjÞ, j ¼ i� 1ð Þ mod LFð Þ þ 1.

Constraint: FðjÞ � 0:0, for j ¼ 1; 2; . . . ;LF.

5: LDF1 – INTEGER Input

On entry: the length of the array DF1.

Constraint: LDF1 > 0.

6: DF1ðLDF1Þ – REAL (KIND=nag_wp) array Input

On entry: ui, the degrees of freedom of the numerator variance with ui ¼ DF1ðjÞ,
j ¼ i� 1ð Þ mod LDF1ð Þ þ 1.

Constraint: DF1ðjÞ > 0:0, for j ¼ 1; 2; . . . ;LDF1.

7: LDF2 – INTEGER Input

On entry: the length of the array DF2.

Constraint: LDF2 > 0.

8: DF2ðLDF2Þ – REAL (KIND=nag_wp) array Input

On entry: vi, the degrees of freedom of the denominator variance with vi ¼ DF2ðjÞ,
j ¼ i� 1ð Þ mod LDF2ð Þ þ 1.

Constraint: DF2ðjÞ > 0:0, for j ¼ 1; 2; . . . ;LDF2.

9: Pð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array P must be at least max LTAIL;LF;LDF1;LDF2ð Þ.
On exit: pi, the probabilities for the F -distribution.

10: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LTAIL;LF;LDF1;LDF2ð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating pi.
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IVALIDðiÞ ¼ 2

On entry, fi < 0:0.

IVALIDðiÞ ¼ 3

On entry, ui � 0:0,
or vi � 0:0.

IVALIDðiÞ ¼ 4
The solution has failed to converge. The result returned should represent an approximation
to the solution.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01SDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of F, DF1, DF2 or TAIL was invalid, or the solution failed to
converge.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LTAIL > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LF > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LDF1 > 0.

IFAIL ¼ 5

On entry, array size ¼ valueh i.
Constraint: LDF2 > 0.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The result should be accurate to five significant digits.

8 Parallelism and Performance

G01SDF is not threaded in any implementation.

9 Further Comments

For higher accuracy G01SEF can be used along with the transformations given in Section 3.

10 Example

This example reads values from, and degrees of freedom for, a number of F -distributions and computes
the associated lower tail probabilities.

10.1 Program Text

Program g01sdfe
! G01SDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01sdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldf1, ldf2, lf, lout, &

ltail
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: df1(:), df2(:), f(:), p(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01SDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ltail
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Allocate (tail(ltail))
Read (nin,*) tail(1:ltail)

Read (nin,*) lf
Allocate (f(lf))
Read (nin,*) f(1:lf)

Read (nin,*) ldf1
Allocate (df1(ldf1))
Read (nin,*) df1(1:ldf1)

Read (nin,*) ldf2
Allocate (df2(ldf2))
Read (nin,*) df2(1:ldf2)

! Allocate memory for output
lout = max(lf,ldf1,ldf2,ltail)
Allocate (p(lout),ivalid(lout))

! Calculate probability
ifail = -1
Call g01sdf(ltail,tail,lf,f,ldf1,df1,ldf2,df2,p,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) &
’ TAIL F DF1 DF2 P IVALID’

Write (nout,*) repeat(’-’,56)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), f(mod(i-1,lf)+1), &
df1(mod(i-1,ldf1)+1), df2(mod(i-1,ldf2)+1), p(i), ivalid(i)

End Do
End If

99999 Format (5X,A1,3(4X,F6.2),4X,F6.3,4X,I3)
End Program g01sdfe

10.2 Program Data

G01SDF Example Program Data
1 :: LTAIL
’L’ :: TAIL
3 :: LF1
5.5 39.9 2.5 :: F
3 :: LDF1
1.5 1.0 20.25 :: DF1
3 :: LDF2
25.5 1.0 1.0 :: DF2

10.3 Program Results

G01SDF Example Program Results

TAIL F DF1 DF2 P IVALID
--------------------------------------------------------

L 5.50 1.50 25.50 0.984 0
L 39.90 1.00 1.00 0.900 0
L 2.50 20.25 1.00 0.534 0
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NAG Library Routine Document

G01SEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01SEF computes a number of lower or upper tail probabilities for the beta distribution.

2 Specification

SUBROUTINE G01SEF (LTAIL, TAIL, LBETA, BETA, LA, A, LB, B, P, IVALID,
IFAIL)

&

INTEGER LTAIL, LBETA, LA, LB, IVALID(*), IFAIL
REAL (KIND=nag_wp) BETA(LBETA), A(LA), B(LB), P(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The lower tail probability, P Bi � �i : ai; bið Þ is defined by

P Bi � �i : ai; bið Þ ¼  ai þ bið Þ
 aið Þ bið Þ

Z �i

0
Bi

ai�1 1� Bið Þbi�1 dBi ¼ I�i ai; bið Þ; 0 � �i � 1; ai; bi > 0:

The function I�i ai; bið Þ, also known as the incomplete beta function is calculated using S14CCF.

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Majumder K L and Bhattacharjee G P (1973) Algorithm AS 63. The incomplete beta integral Appl.
Statist. 22 409–411

5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.

2: TAILðLTAILÞ – CHARACTER(1) array Input

On entry: indicates whether a lower or upper tail probabilities are required. For
j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for i ¼ 1; 2; . . . ;max LTAIL;LBETA;LA;LBð Þ:
TAILðjÞ ¼ L

The lower tail probability is returned, i.e., pi ¼ P Bi � �i : ai; bið Þ.
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TAILðjÞ ¼ U
The upper tail probability is returned, i.e., pi ¼ P Bi � �i : ai; bið Þ.

Constraint: TAILðjÞ ¼ L or U , for j ¼ 1; 2; . . . ;LTAIL.

3: LBETA – INTEGER Input

On entry: the length of the array BETA.

Constraint: LBETA > 0.

4: BETAðLBETAÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the value of the beta variate with �i ¼ BETAðjÞ, j ¼ i� 1ð Þ mod LBETAð Þ þ 1.

Constraint: 0:0 � BETAðjÞ � 1:0, for j ¼ 1; 2; . . . ;LBETA.

5: LA – INTEGER Input

On entry: the length of the array A.

Constraint: LA > 0.

6: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: ai, the first parameter of the required beta distribution with ai ¼ AðjÞ,
j ¼ i� 1ð Þ mod LAð Þ þ 1.

Constraint: AðjÞ > 0:0, for j ¼ 1; 2; . . . ;LA.

7: LB – INTEGER Input

On entry: the length of the array B.

Constraint: LB > 0.

8: BðLBÞ – REAL (KIND=nag_wp) array Input

On entry: bi, the second parameter of the required beta distribution with bi ¼ BðjÞ,
j ¼ i� 1ð Þ mod LBð Þ þ 1.

Constraint: BðjÞ > 0:0, for j ¼ 1; 2; . . . ;LB.

9: Pð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array P must be at least max LTAIL;LBETA;LA;LBð Þ.
On exit: pi, the probabilities for the beta distribution.

10: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LTAIL;LBETA;LA;LBð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating pi.

IVALIDðiÞ ¼ 2

On entry, �i < 0:0,
or �i > 1:0.
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IVALIDðiÞ ¼ 3

On entry, ai � 0:0,
or bi � 0:0,

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01SEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of BETA, A, B or TAIL was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LTAIL > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LBETA > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LA > 0.

IFAIL ¼ 5

On entry, array size ¼ valueh i.
Constraint: LB > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is limited by the error in the incomplete beta function. See Section 7 in S14CCF for
further details.

8 Parallelism and Performance

G01SEF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values from a number of beta distributions and computes the associated lower tail
probabilities.

10.1 Program Text

Program g01sefe
! G01SEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01sef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, la, lb, lbeta, lout, ltail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), beta(:), p(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01SEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ltail
Allocate (tail(ltail))
Read (nin,*) tail(1:ltail)

Read (nin,*) lbeta
Allocate (beta(lbeta))
Read (nin,*) beta(1:lbeta)

Read (nin,*) la
Allocate (a(la))
Read (nin,*) a(1:la)
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Read (nin,*) lb
Allocate (b(lb))
Read (nin,*) b(1:lb)

! Allocate memory for output
lout = max(ltail,lbeta,la,lb)
Allocate (p(lout),ivalid(lout))

! Calculate probability
ifail = -1
Call g01sef(ltail,tail,lbeta,beta,la,a,lb,b,p,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) &
’ TAIL BETA A B P IVALID’

Write (nout,*) repeat(’-’,56)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), beta(mod(i-1,lbeta)+1), &
a(mod(i-1,la)+1), b(mod(i-1,lb)+1), p(i), ivalid(i)

End Do
End If

99999 Format (5X,A1,3(4X,F6.2),4X,F6.3,4X,I3)
End Program g01sefe

10.2 Program Data

G01SEF Example Program Data
1 :: LTAIL
’L’ :: TAIL
3 :: LBETA
0.26 0.75 0.5 :: BETA
3 :: LA
1.0 1.5 2.0 :: A
3 :: LB
2.0 1.5 1.0 :: B

10.3 Program Results

G01SEF Example Program Results

TAIL BETA A B P IVALID
--------------------------------------------------------

L 0.26 1.00 2.00 0.452 0
L 0.75 1.50 1.50 0.804 0
L 0.50 2.00 1.00 0.250 0
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G01SFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01SFF returns a number of lower or upper tail probabilities for the gamma distribution.

2 Specification

SUBROUTINE G01SFF (LTAIL, TAIL, LG, G, LA, A, LB, B, P, IVALID, IFAIL)

INTEGER LTAIL, LG, LA, LB, IVALID(*), IFAIL
REAL (KIND=nag_wp) G(LG), A(LA), B(LB), P(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The lower tail probability for the gamma distribution with parameters �i and �i, P Gi � gið Þ, is defined
by:

P Gi � gi : �i; �ið Þ ¼ 1

�i
�i �ið Þ

Z gi

0
Gi

�i�1e�Gi=�i dGi; �i > 0:0; �i > 0:0:

The mean of the distribution is �i�i and its variance is �i�i
2. The transformation Zi ¼

Gi

�i
is applied to

yield the following incomplete gamma function in normalized form,

P Gi � gi : �i; �ið Þ ¼ P Zi � gi=�i : �i; 1:0ð Þ ¼ 1

 �ið Þ

Z gi=�i

0
Zi

�i�1e�Zi dZi:

This is then evaluated using S14BAF.

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.

2: TAILðLTAILÞ – CHARACTER(1) array Input

On entry: indicates whether a lower or upper tail probability is required. For
j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for i ¼ 1; 2; . . . ;max LTAIL;LG;LA;LBð Þ:
TAILðjÞ ¼ L

The lower tail probability is returned, i.e., pi ¼ P Gi � gi : �i; �ið Þ.
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TAILðjÞ ¼ U
The upper tail probability is returned, i.e., pi ¼ P Gi � gi : �i; �ið Þ.

Constraint: TAILðjÞ ¼ L or U , for j ¼ 1; 2; . . . ;LTAIL.

3: LG – INTEGER Input

On entry: the length of the array G.

Constraint: LG > 0.

4: GðLGÞ – REAL (KIND=nag_wp) array Input

On entry: gi, the value of the gamma variate with gi ¼ GðjÞ, j ¼ i� 1ð Þ mod LGð Þ þ 1.

Constraint: GðjÞ � 0:0, for j ¼ 1; 2; . . . ;LG.

5: LA – INTEGER Input

On entry: the length of the array A.

Constraint: LA > 0.

6: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: the parameter �i of the gamma distribution with �i ¼ AðjÞ, j ¼ i� 1ð Þ mod LAð Þ þ 1.

Constraint: AðjÞ > 0:0, for j ¼ 1; 2; . . . ;LA.

7: LB – INTEGER Input

On entry: the length of the array B.

Constraint: LB > 0.

8: BðLBÞ – REAL (KIND=nag_wp) array Input

On entry: the parameter �i of the gamma distribution with �i ¼ BðjÞ, j ¼ i� 1ð Þ mod LBð Þ þ 1.

Constraint: BðjÞ > 0:0, for j ¼ 1; 2; . . . ;LB.

9: Pð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array P must be at least max LG;LA;LB;LTAILð Þ.
On exit: pi, the probabilities of the beta distribution.

10: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LG;LA;LB;LTAILð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating pi.

IVALIDðiÞ ¼ 2

On entry, gi < 0:0.

IVALIDðiÞ ¼ 3

On entry, �i � 0:0,
or �i � 0:0.
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IVALIDðiÞ ¼ 4
The solution did not converge in 600 iterations, see S14BAF for details. The probability
returned should be a reasonable approximation to the solution.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of G, A, B or TAIL was invalid, or the solution did not converge.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LTAIL > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LG > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LA > 0.

IFAIL ¼ 5

On entry, array size ¼ valueh i.
Constraint: LB > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The result should have a relative accuracy of machine precision. There are rare occasions when the
relative accuracy attained is somewhat less than machine precision but the error should not exceed
more than 1 or 2 decimal places.

8 Parallelism and Performance

G01SFF is not threaded in any implementation.

9 Further Comments

The time taken by G01SFF to calculate each probability varies slightly with the input arguments gi, �i
and �i.

10 Example

This example reads in values from a number of gamma distributions and computes the associated lower
tail probabilities.

10.1 Program Text

Program g01sffe
! G01SFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01sff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, la, lb, lg, lout, ltail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), g(:), p(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01SFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ltail
Allocate (tail(ltail))
Read (nin,*) tail(1:ltail)

Read (nin,*) lg
Allocate (g(lg))
Read (nin,*) g(1:lg)

Read (nin,*) la
Allocate (a(la))
Read (nin,*) a(1:la)
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Read (nin,*) lb
Allocate (b(lb))
Read (nin,*) b(1:lb)

! Allocate memory for output
lout = max(ltail,lg,la,lb)
Allocate (p(lout),ivalid(lout))

! Calculate probability
ifail = -1
Call g01sff(ltail,tail,lg,g,la,a,lb,b,p,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) &
’ TAIL G A B P IVALID’

Write (nout,*) repeat(’-’,57)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), g(mod(i-1,lg)+1), &
a(mod(i-1,la)+1), b(mod(i-1,lb)+1), p(i), ivalid(i)

End Do
End If

99999 Format (5X,A1,3(4X,F6.2),4X,F6.3,4X,I3)
End Program g01sffe

10.2 Program Data

G01SFF Example Program Data
1 :: LTAIL
’L’ :: TAIL
4 :: LG
15.5 0.5 10.0 5.0 :: G
4 :: LA
4.0 4.0 1.0 2.0 :: A

4 :: LB
2.0 1.0 2.0 2.0 :: B

10.3 Program Results

G01SFF Example Program Results

TAIL G A B P IVALID
---------------------------------------------------------

L 15.50 4.00 2.00 0.950 0
L 0.50 4.00 1.00 0.002 0
L 10.00 1.00 2.00 0.993 0
L 5.00 2.00 2.00 0.713 0
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G01SJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01SJF returns a number of the lower tail, upper tail and point probabilities for the binomial
distribution.

2 Specification

SUBROUTINE G01SJF (LN, N, LP, P, LK, K, PLEK, PGTK, PEQK, IVALID, IFAIL)

INTEGER LN, N(LN), LP, LK, K(LK), IVALID(*), IFAIL
REAL (KIND=nag_wp) P(LP), PLEK(*), PGTK(*), PEQK(*)

3 Description

Let X ¼ Xi : i ¼ 1; 2; . . . ;mf g denote a vector of random variables each having a binomial distribution
with parameters ni and pi (ni � 0 and 0 < pi < 1). Then

Prob Xi ¼ kif g ¼ ni
ki

� �
pi
ki 1� pið Þni�ki ; ki ¼ 0; 1; . . . ; ni:

The mean of the each distribution is given by nipi and the variance by nipi 1� pið Þ.
G01SJF computes, for given ni, pi and ki, the probabilities: Prob Xi � kif g, Prob Xi > kif g and
Prob Xi ¼ kif g using an algorithm similar to that described in KnÏsel (1986) for the Poisson
distribution.

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

KnÏsel L (1986) Computation of the chi-square and Poisson distribution SIAM J. Sci. Statist. Comput. 7
1022–1036

5 Arguments

1: LN – INTEGER Input

On entry: the length of the array N

Constraint: LN > 0.

2: NðLNÞ – INTEGER array Input

On entry: ni, the first parameter of the binomial distribution with ni ¼ NðjÞ,
j ¼ i� 1ð Þ mod LNð Þ þ 1, for i ¼ 1; 2; . . . ;max LN;LP;LKð Þ.
Constraint: NðjÞ � 0, for j ¼ 1; 2; . . . ;LN.

3: LP – INTEGER Input

On entry: the length of the array P

Constraint: LP > 0.
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4: PðLPÞ – REAL (KIND=nag_wp) array Input

On entry: pi, the second parameter of the binomial distribution with pi ¼ PðjÞ,
j ¼ i� 1ð Þ mod LPð Þ þ 1.

Constraint: 0:0 < PðjÞ < 1:0, for j ¼ 1; 2; . . . ;LP.

5: LK – INTEGER Input

On entry: the length of the array K

Constraint: LK > 0.

6: KðLKÞ – INTEGER array Input

On entry: ki, the integer which defines the required probabilities with ki ¼ KðjÞ,
j ¼ i� 1ð Þ mod LKð Þ þ 1.

Constraint: 0 � ki � ni.

7: PLEKð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array PLEK must be at least max LN;LP;LKð Þ.
On exit: Prob Xi � kif g, the lower tail probabilities.

8: PGTKð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array PGTK must be at least max LN;LP;LKð Þ.
On exit: Prob Xi > kif g, the upper tail probabilities.

9: PEQKð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array PEQK must be at least max LN;LP;LKð Þ.
On exit: Prob Xi ¼ kif g, the point probabilities.

10: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LN;LP;LKð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, ni < 0.

IVALIDðiÞ ¼ 2

On entry, pi � 0:0,
or pi � 1:0.

IVALIDðiÞ ¼ 3

On entry, ki < 0,
or ki > ni.

IVALIDðiÞ ¼ 4

On entry, ni is too large to be represented exactly as a real number.

IVALIDðiÞ ¼ 5

On entry, the variance ( ¼ nipi 1� pið Þ) exceeds 106.
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11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of N, P or K was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LN > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LP > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LK > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Results are correct to a relative accuracy of at least 10�6 on machines with a precision of 9 or more
decimal digits, and to a relative accuracy of at least 10�3 on machines of lower precision (provided that
the results do not underflow to zero).
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8 Parallelism and Performance

G01SJF is not threaded in any implementation.

9 Further Comments

The time taken by G01SJF to calculate each probability depends on the variance ( ¼ nipi 1� pið Þ) and
on ki. For given variance, the time is greatest when ki � nipi ( ¼ the mean), and is then approximately
proportional to the square-root of the variance.

10 Example

This example reads a vector of values for n, p and k, and prints the corresponding probabilities.

10.1 Program Text

Program g01sjfe
! G01SJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01sjf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lk, ln, lout, lp

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:), peqk(:), pgtk(:), plek(:)
Integer, Allocatable :: ivalid(:), k(:), n(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01SJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ln
Allocate (n(ln))
Read (nin,*) n(1:ln)

Read (nin,*) lp
Allocate (p(lp))
Read (nin,*) p(1:lp)

Read (nin,*) lk
Allocate (k(lk))
Read (nin,*) k(1:lk)

! Allocate memory for output
lout = max(ln,lp,lk)
Allocate (peqk(lout),pgtk(lout),plek(lout),ivalid(lout))

! Calculate probability
ifail = -1
Call g01sjf(ln,n,lp,p,lk,k,plek,pgtk,peqk,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) &
’ N P K PLEK PGTK PEQK IVALID’

Write (nout,*) repeat(’-’,68)
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! Display results
Do i = 1, lout

Write (nout,99999) n(mod(i-1,ln)+1), p(mod(i-1,lp)+1), &
k(mod(i-1,lk)+1), plek(i), pgtk(i), peqk(i), ivalid(i)

End Do
End If

99999 Format (1X,I6,4X,F6.2,4X,I6,3(4X,F6.3),4X,I3)
End Program g01sjfe

10.2 Program Data

G01SJF Example Program Data
4 :: LN
4 19 100 2000 :: N
4 :: LP
0.500 0.440 0.750 0.330 :: P
4 :: LK
2 13 67 700 :: K

10.3 Program Results

G01SJF Example Program Results

N P K PLEK PGTK PEQK IVALID
--------------------------------------------------------------------

4 0.50 2 0.688 0.312 0.375 0
19 0.44 13 0.991 0.009 0.019 0

100 0.75 67 0.045 0.955 0.017 0
2000 0.33 700 0.973 0.027 0.003 0
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G01SKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01SKF returns a number of the lower tail, upper tail and point probabilities for the Poisson
distribution.

2 Specification

SUBROUTINE G01SKF (LL, L, LK, K, PLEK, PGTK, PEQK, IVALID, IFAIL)

INTEGER LL, LK, K(LK), IVALID(*), IFAIL
REAL (KIND=nag_wp) L(LL), PLEK(*), PGTK(*), PEQK(*)

3 Description

Let X ¼ Xi : i ¼ 1; 2; . . . ;mf g denote a vector of random variables each having a Poisson distribution
with parameter �i > 0ð Þ. Then

Prob Xi ¼ kif g ¼ e��i�i
ki

ki!
; ki ¼ 0; 1; 2; . . .

The mean and variance of each distribution are both equal to �i.

G01SKF computes, for given �i and ki the probabilities: Prob Xi � kif g, Prob Xi > kif g and
Prob Xi ¼ kif g using the algorithm described in KnÏsel (1986).

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

KnÏsel L (1986) Computation of the chi-square and Poisson distribution SIAM J. Sci. Statist. Comput. 7
1022–1036

5 Arguments

1: LL – INTEGER Input

On entry: the length of the array L

Constraint: LL > 0.

2: LðLLÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the parameter of the Poisson distribution with �i ¼ LðjÞ, j ¼ i� 1ð Þ mod LLð Þ þ 1,
for i ¼ 1; 2; . . . ;max LL;LKð Þ.

Constraint: 0:0 < LðjÞ � 106, for j ¼ 1; 2; . . . ;LL.

3: LK – INTEGER Input

On entry: the length of the array K

Constraint: LK > 0.
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4: KðLKÞ – INTEGER array Input

On entry: ki, the integer which defines the required probabilities with ki ¼ KðjÞ,
j ¼ i� 1ð Þ mod LKð Þ þ 1.

Constraint: KðjÞ � 0, for j ¼ 1; 2; . . . ;LK.

5: PLEKð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array PLEK must be at least max LL;LKð Þ.
On exit: Prob Xi � kif g, the lower tail probabilities.

6: PGTKð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array PGTK must be at least max LL;LKð Þ.
On exit: Prob Xi > kif g, the upper tail probabilities.

7: PEQKð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array PEQK must be at least max LL;LKð Þ.
On exit: Prob Xi ¼ kif g, the point probabilities.

8: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LL;LKð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, �i � 0:0.

IVALIDðiÞ ¼ 2

On entry, ki < 0.

IVALIDðiÞ ¼ 3

On entry, �i > 106.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of L or K was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LL > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LK > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Results are correct to a relative accuracy of at least 10�6 on machines with a precision of 9 or more
decimal digits (provided that the results do not underflow to zero).

8 Parallelism and Performance

G01SKF is not threaded in any implementation.

9 Further Comments

The time taken by G01SKF to calculate each probability depends on �i and ki. For given �i, the time is
greatest when ki � �i, and is then approximately proportional to

ffiffiffiffiffi
�i
p

.

10 Example

This example reads a vector of values for � and k, and prints the corresponding probabilities.
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10.1 Program Text

Program g01skfe
! G01SKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01skf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lk, ll, lout

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: l(:), peqk(:), pgtk(:), plek(:)
Integer, Allocatable :: ivalid(:), k(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01SKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ll
Allocate (l(ll))
Read (nin,*) l(1:ll)

Read (nin,*) lk
Allocate (k(lk))
Read (nin,*) k(1:lk)

! Allocate memory for output
lout = max(ll,lk)
Allocate (peqk(lout),pgtk(lout),plek(lout),ivalid(lout))

! Calculate probability
ifail = -1
Call g01skf(ll,l,lk,k,plek,pgtk,peqk,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) &
’ L K PLEK PGTK PEQK IVALID’

Write (nout,*) repeat(’-’,58)

! Display results
Do i = 1, lout

Write (nout,99999) l(mod(i-1,ll)+1), k(mod(i-1,lk)+1), plek(i), &
pgtk(i), peqk(i), ivalid(i)

End Do
End If

99999 Format (1X,F6.2,4X,I6,3(4X,F6.3),4X,I3)
End Program g01skfe

10.2 Program Data

G01SKF Example Program Data
4 :: LL
0.75 9.20 34.0 175.0 :: L
4 :: LK
3 12 25 175 :: K
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10.3 Program Results

G01SKF Example Program Results

L K PLEK PGTK PEQK IVALID
----------------------------------------------------------

0.75 3 0.993 0.007 0.033 0
9.20 12 0.861 0.139 0.078 0

34.00 25 0.067 0.933 0.021 0
175.00 175 0.520 0.480 0.030 0
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NAG Library Routine Document

G01SLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01SLF returns a number of the lower tail, upper tail and point probabilities for the hypergeometric
distribution.

2 Specification

SUBROUTINE G01SLF (LN, N, LL, L, LM, M, LK, K, PLEK, PGTK, PEQK, IVALID,
IFAIL)

&

INTEGER LN, N(LN), LL, L(LL), LM, M(LM), LK, K(LK),
IVALID(*), IFAIL

&

REAL (KIND=nag_wp) PLEK(*), PGTK(*), PEQK(*)

3 Description

Let X ¼ Xi : i ¼ 1; 2; . . . ; rf g denote a vector of random variables having a hypergeometric distribution
with parameters ni, li and mi. Then

Prob Xi ¼ kif g ¼

mi

ki

� �
ni �mi

li � ki

� �
ni
li

� � ;

where max 0; li þmi � nið Þ � ki � min li;mið Þ, 0 � li � ni and 0 � mi � ni.
The hypergeometric distribution may arise if in a population of size ni a number mi are marked. From
this population a sample of size li is drawn and of these ki are observed to be marked.

The mean of the distribution ¼ limi

ni
, and the variance ¼ limi ni � lið Þ ni �mið Þ

ni2 ni � 1ð Þ .

G01SLF computes for given ni, li, mi and ki the probabilities: Prob Xi � kif g, Prob Xi > kif g and
Prob Xi ¼ kif g using an algorithm similar to that described in KnÏsel (1986) for the Poisson
distribution.

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

KnÏsel L (1986) Computation of the chi-square and Poisson distribution SIAM J. Sci. Statist. Comput. 7
1022–1036

5 Arguments

1: LN – INTEGER Input

On entry: the length of the array N

Constraint: LN > 0.
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2: NðLNÞ – INTEGER array Input

On entry: ni, the parameter of the hypergeometric distribution with ni ¼ NðjÞ,
j ¼ i� 1ð Þ mod LNð Þ þ 1, for i ¼ 1; 2; . . . ;max LN;LL;LM;LKð Þ.
Constraint: NðjÞ � 0, for j ¼ 1; 2; . . . ;LN.

3: LL – INTEGER Input

On entry: the length of the array L

Constraint: LL > 0.

4: LðLLÞ – INTEGER array Input

On entry: li, the parameter of the hypergeometric distribution with li ¼ LðjÞ,
j ¼ i� 1ð Þ mod LLð Þ þ 1.

Constraint: 0 � li � ni.

5: LM – INTEGER Input

On entry: the length of the array M

Constraint: LM > 0.

6: MðLMÞ – INTEGER array Input

On entry: mi, the parameter of the hypergeometric distribution with mi ¼ MðjÞ,
j ¼ i� 1ð Þ mod LMð Þ þ 1.

Constraint: 0 � mi � ni.

7: LK – INTEGER Input

On entry: the length of the array K

Constraint: LK > 0.

8: KðLKÞ – INTEGER array Input

On entry: ki, the integer which defines the required probabilities with ki ¼ KðjÞ,
j ¼ i� 1ð Þ mod LKð Þ þ 1.

Constraint: max 0; li þmi � nið Þ � ki � min li;mið Þ.

9: PLEKð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array PLEK must be at least max LN;LL;LM;LKð Þ.
On exit: Prob Xi � kif g, the lower tail probabilities.

10: PGTKð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array PGTK must be at least max LN;LL;LM;LKð Þ.
On exit: Prob Xi > kif g, the upper tail probabilities.

11: PEQKð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array PEQK must be at least max LN;LL;LM;LKð Þ.
On exit: Prob Xi ¼ kif g, the point probabilities.
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12: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LN;LL;LM;LKð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, ni < 0.

IVALIDðiÞ ¼ 2

On entry, li < 0,
or li > ni.

IVALIDðiÞ ¼ 3

On entry, mi < 0,
or mi > ni.

IVALIDðiÞ ¼ 4

On entry, ki < 0,
or ki > li,
or ki > mi,
or ki < li þmi � ni.

IVALIDðiÞ ¼ 5

On entry, ni is too large to be represented exactly as a real number.

IVALIDðiÞ ¼ 6

On entry, the variance (see Section 3) exceeds 106.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of N, L, M or K was invalid, or the variance was too large.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LN > 0.
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IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LL > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LM > 0.

IFAIL ¼ 5

On entry, array size ¼ valueh i.
Constraint: LK > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Results are correct to a relative accuracy of at least 10�6 on machines with a precision of 9 or more
decimal digits (provided that the results do not underflow to zero).

8 Parallelism and Performance

G01SLF is not threaded in any implementation.

9 Further Comments

The time taken by G01SLF to calculate each probability depends on the variance (see Section 3) and on
ki. For given variance, the time is greatest when ki � limi=ni (¼ the mean), and is then approximately
proportional to the square-root of the variance.

10 Example

This example reads a vector of values for n, l, m and k, and prints the corresponding probabilities.

10.1 Program Text

Program g01slfe
! G01SLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01slf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, lk, ll, lm, ln, lout
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: peqk(:), pgtk(:), plek(:)
Integer, Allocatable :: ivalid(:), k(:), l(:), m(:), n(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01SLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ln
Allocate (n(ln))
Read (nin,*) n(1:ln)

Read (nin,*) ll
Allocate (l(ll))
Read (nin,*) l(1:ll)

Read (nin,*) lm
Allocate (m(lm))
Read (nin,*) m(1:lm)

Read (nin,*) lk
Allocate (k(lk))
Read (nin,*) k(1:lk)

! Allocate memory for output
lout = max(ln,ll,lm,lk)
Allocate (pgtk(lout),plek(lout),peqk(lout),ivalid(lout))

! Calculate probability
ifail = -1
Call g01slf(ln,n,ll,l,lm,m,lk,k,plek,pgtk,peqk,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) &
’ N L M K PLEK PGTK ’, &
’PEQK IVALID’

Write (nout,*) repeat(’-’,78)

! Display results
Do i = 1, lout

Write (nout,99999) n(mod(i-1,ln)+1), l(mod(i-1,ll)+1), &
m(mod(i-1,lm)+1), k(mod(i-1,lk)+1), plek(i), pgtk(i), peqk(i), &
ivalid(i)

End Do
End If

99999 Format (1X,4(I6,4X),3(F6.3,4X),I3)
End Program g01slfe

10.2 Program Data

G01SLF Example Program Data
4 :: LN
10 40 155 1000 :: N
4 :: LL
2 10 35 444 :: L
4 :: LM
5 3 122 500 :: M
4 :: LK
1 2 22 220 :: K
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10.3 Program Results

G01SLF Example Program Results

N L M K PLEK PGTK PEQK IVALID
------------------------------------------------------------------------------

10 2 5 1 0.778 0.222 0.556 0
40 10 3 2 0.988 0.012 0.137 0

155 35 122 22 0.011 0.989 0.008 0
1000 444 500 220 0.424 0.576 0.049 0
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NAG Library Routine Document

G01TAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01TAF returns a number of deviates associated with given probabilities of the Normal distribution.

2 Specification

SUBROUTINE G01TAF (LTAIL, TAIL, LP, P, LXMU, XMU, LXSTD, XSTD, X,
IVALID, IFAIL)

&

INTEGER LTAIL, LP, LXMU, LXSTD, IVALID(*), IFAIL
REAL (KIND=nag_wp) P(LP), XMU(LXMU), XSTD(LXSTD), X(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The deviate, xpi associated with the lower tail probability, pi, for the Normal distribution is defined as
the solution to

P Xi � xpi
� �

¼ pi ¼
Z xpi

�1
Zi Xið Þ dXi;

where

Zi Xið Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2	�i2

p e� Xi��ið Þ2= 2�i2ð Þ; �1 < Xi <1:

The method used is an extension of that of Wichura (1988). pi is first replaced by qi ¼ pi � 0:5.

(a) If qij j � 0:3, zi is computed by a rational Chebyshev approximation

zi ¼ si
Ai si

2
� �

Bi si2ð Þ;

where si ¼
ffiffiffiffiffiffi
2	
p

qi and Ai, Bi are polynomials of degree 7.

(b) If 0:3 < qij j � 0:42, zi is computed by a rational Chebyshev approximation

zi ¼ sign qi
Ci tið Þ
Di tið Þ

� �
;

where ti ¼ qij j � 0:3 and Ci, Di are polynomials of degree 5.

(c) If qij j > 0:42, zi is computed as

zi ¼ sign qi
Ei uið Þ
Fi uið Þ

� �
þ ui

� �
;

where ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� log min pi; 1� pið Þð Þ

p
and Ei, Fi are polynomials of degree 6.

xpi is then calculated from zi, using the relationsship zpi ¼ xi��i
�i

.

For the upper tail probability �xpi is returned, while for the two tail probabilities the value xipi� is
returned, where pi� is the required tail probability computed from the input value of pi.
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The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Wichura (1988) Algorithm AS 241: the percentage points of the Normal distribution Appl. Statist. 37
477–484

5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.

2: TAILðLTAILÞ – CHARACTER(1) array Input

On entry: indicates which tail the supplied probabilities represent. Letting Z denote a variate
from a standard Normal distribution, and zi ¼

xpi��i
�i

, then for j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for
i ¼ 1; 2; . . . ;max LTAIL;LP;LXMU;LXSTDð Þ:
TAILðjÞ ¼ L

The lower tail probability, i.e., pi ¼ P Z � zið Þ.
TAILðjÞ ¼ U

The upper tail probability, i.e., pi ¼ P Z � zið Þ.
TAILðjÞ ¼ C

The two tail (confidence interval) probability, i.e., pi ¼ P Z � zij jð Þ � P Z � � zij jð Þ.
TAILðjÞ ¼ S

The two tail (significance level) probability, i.e., pi ¼ P Z � zij jð Þ þ P Z � � zij jð Þ.
Constraint: TAILðjÞ ¼ L , U , C or S , for j ¼ 1; 2; . . . ;LTAIL.

3: LP – INTEGER Input

On entry: the length of the array P.

Constraint: LP > 0.

4: PðLPÞ – REAL (KIND=nag_wp) array Input

On entry: pi, the probabilities for the Normal distribution as defined by TAIL with pi ¼ PðjÞ,
j ¼ i� 1ð Þ mod LPþ 1.

Constraint: 0:0 < PðjÞ < 1:0, for j ¼ 1; 2; . . . ;LP.

5: LXMU – INTEGER Input

On entry: the length of the array XMU.

Constraint: LXMU > 0.

6: XMUðLXMUÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the means with �i ¼ XMUðjÞ, j ¼ i� 1ð Þ mod LXMUð Þ þ 1.
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7: LXSTD – INTEGER Input

On entry: the length of the array XSTD.

Constraint: LXSTD > 0.

8: XSTDðLXSTDÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the standard deviations with �i ¼ XSTDðjÞ, j ¼ i� 1ð Þ mod LXSTDð Þ þ 1.

Constraint: XSTDðjÞ > 0:0, for j ¼ 1; 2; . . . ;LXSTD.

9: Xð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array X must be at least max LTAIL;LXMU;LXSTD;LPð Þ.
On exit: xpi , the deviates for the Normal distribution.

10: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LTAIL;LXMU;LXSTD;LPð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating xpi .

IVALIDðiÞ ¼ 2

On entry, pi � 0:0,
or pi � 1:0.

IVALIDðiÞ ¼ 3

On entry, �i � 0:0.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of TAIL, XSTD or P was invalid.
Check IVALID for more information.
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IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LTAIL > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LP > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LXMU > 0.

IFAIL ¼ 5

On entry, array size ¼ valueh i.
Constraint: LXSTD > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is mainly limited by the machine precision.

8 Parallelism and Performance

G01TAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads vectors of values for �i, �i and pi and prints the corresponding deviates.

10.1 Program Text

Program g01tafe
! G01TAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01taf, nag_wp

! .. Implicit None Statement ..

G01TAF NAG Library Manual

G01TAF.4 Mark 26



Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, lout, lp, ltail, lxmu, &
lxstd

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:), x(:), xmu(:), xstd(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01TAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ltail
Allocate (tail(ltail))
Read (nin,*) tail(1:ltail)

Read (nin,*) lp
Allocate (p(lp))
Read (nin,*) p(1:lp)

Read (nin,*) lxmu
Allocate (xmu(lxmu))
Read (nin,*) xmu(1:lxmu)

Read (nin,*) lxstd
Allocate (xstd(lxstd))
Read (nin,*) xstd(1:lxstd)

! Allocate memory for output
lout = max(lp,ltail,lxmu,lxstd)
Allocate (x(lout),ivalid(lout))

! Calculate the deviate (inverse CDF)
ifail = -1
Call g01taf(ltail,tail,lp,p,lxmu,xmu,lxstd,xstd,x,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*)
Write (nout,*) &

’ TAIL P XMU XSTD X IVALID’
Write (nout,*) repeat(’-’,56)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), p(mod(i-1,lp)+1), &
xmu(mod(i-1,lxmu)+1), xstd(mod(i-1,lxstd)+1), x(i), ivalid(i)

End Do
End If

99999 Format (5X,A1,4X,F6.3,2(4X,F6.3),3X,F7.3,4X,I3)
End Program g01tafe
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10.2 Program Data

G01TAF Example Program Data
4 :: LTAIL
’L’ ’U’ ’C’ ’S’ :: TAIL
4 :: LP
0.975 0.025 0.95 0.05 :: P
1 :: LXMU
0.0 :: XMU
1 :: LXSTD
1.0 :: XSTD

10.3 Program Results

G01TAF Example Program Results

TAIL P XMU XSTD X IVALID
--------------------------------------------------------

L 0.975 0.000 1.000 1.960 0
U 0.025 0.000 1.000 1.960 0
C 0.950 0.000 1.000 1.960 0
S 0.050 0.000 1.000 1.960 0
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NAG Library Routine Document

G01TBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01TBF returns a number of deviates associated with given probabilities of Student's t-distribution
with real degrees of freedom.

2 Specification

SUBROUTINE G01TBF (LTAIL, TAIL, LP, P, LDF, DF, T, IVALID, IFAIL)

INTEGER LTAIL, LP, LDF, IVALID(*), IFAIL
REAL (KIND=nag_wp) P(LP), DF(LDF), T(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The deviate, tpi associated with the lower tail probability, pi, of the Student's t-distribution with �i
degrees of freedom is defined as the solution to

P Ti < tpi : �i
� �

¼ pi ¼
 �i þ 1ð Þ=2ð Þffiffiffiffiffiffiffi
�i	
p

 �i=2ð Þ

Z tpi

�1
1þ Ti

2

�i

� �� �iþ1ð Þ=2

dTi; �i � 1; �1 < tpi <1:

For �i ¼ 1 or 2 the integral equation is easily solved for tpi.

For other values of �i < 3 a transformation to the beta distribution is used and the result obtained from
G01FEF.

For �i � 3 an inverse asymptotic expansion of Cornish–Fisher type is used. The algorithm is described
by Hill (1970).

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Hill G W (1970) Student's t-distribution Comm. ACM 13(10) 617–619

5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.

2: TAILðLTAILÞ – CHARACTER(1) array Input

On en t ry : i nd ica te s which ta i l the supp l i ed probab i l i t i e s r ep resen t . For
j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for i ¼ 1; 2; . . . ;max LTAIL;LP;LDFð Þ:
TAILðjÞ ¼ L

The lower tail probability, i.e., pi ¼ P Ti � tpi : �i
� �

.
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TAILðjÞ ¼ U
The upper tail probability, i.e., pi ¼ P Ti � tpi : �i

� �
.

TAILðjÞ ¼ C
The two tail (confidence interval) probability,
i.e., pi ¼ P Ti � tpi

		 		 : �i� �
� P Ti � � tpi

		 		 : �i� �
.

TAILðjÞ ¼ S
The two tail (significance level) probability,
i.e., pi ¼ P Ti � tpi

		 		 : �i� �
þ P Ti � � tpi

		 		 : �i� �
.

Constraint: TAILðjÞ ¼ L , U , C or S , for j ¼ 1; 2; . . . ;LTAIL.

3: LP – INTEGER Input

On entry: the length of the array P.

Constraint: LP > 0.

4: PðLPÞ – REAL (KIND=nag_wp) array Input

On entry: pi, the probability of the required Student's t-distribution as defined by TAIL with
pi ¼ PðjÞ, j ¼ i� 1ð Þ mod LPð Þ þ 1.

Constraint: 0:0 < PðjÞ < 1:0, for j ¼ 1; 2; . . . ;LP.

5: LDF – INTEGER Input

On entry: the length of the array DF.

Constraint: LDF > 0.

6: DFðLDFÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the degrees of freedom of the Student's t-distribution with �i ¼ DFðjÞ,
j ¼ i� 1ð Þ mod LDFð Þ þ 1.

Constraint: DFðjÞ � 1:0, for j ¼ 1; 2; . . . ;LDF.

7: Tð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array T must be at least max LTAIL;LP;LDFð Þ.
On exit: tpi , the deviates for the Student's t-distribution.

8: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LTAIL;LP;LDFð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating tpi .

IVALIDðiÞ ¼ 2

On entry, pi � 0:0,
or pi � 1:0.

IVALIDðiÞ ¼ 3

On entry, �i < 1:0.
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IVALIDðiÞ ¼ 4
The solution has failed to converge. The result returned should represent an approximation
to the solution.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of TAIL, P or DF was invalid, or the solution failed to converge.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LTAIL > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LP > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LDF > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The results should be accurate to five significant digits, for most argument values. The error behaviour
for various argument values is discussed in Hill (1970).

8 Parallelism and Performance

G01TBF is not threaded in any implementation.

9 Further Comments

The value tpi may be calculated by using a transformation to the beta distribution and calling G01TEF.
This routine allows you to set the required accuracy.

10 Example

This example reads the probability, the tail that probability represents and the degrees of freedom for a
number of Student's t-distributions and computes the corresponding deviates.

10.1 Program Text

Program g01tbfe
! G01TBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01tbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldf, lout, lp, ltail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: df(:), p(:), t(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01TBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ltail
Allocate (tail(ltail))
Read (nin,*) tail(1:ltail)

Read (nin,*) lp
Allocate (p(lp))
Read (nin,*) p(1:lp)

Read (nin,*) ldf
Allocate (df(ldf))
Read (nin,*) df(1:ldf)

! Allocate memory for output
lout = max(lp,ldf,ltail)
Allocate (ivalid(lout),t(lout))

! Calculate deviates (inverse CDF)
ifail = -1
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Call g01tbf(ltail,tail,lp,p,ldf,df,t,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) ’ TAIL P DF T IVALID’
Write (nout,*) repeat(’-’,47)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), p(mod(i-1,lp)+1), &
df(mod(i-1,ldf)+1), t(i), ivalid(i)

End Do
End If

99999 Format (5X,A1,4X,F6.3,4X,F6.2,3X,F7.3,4X,I3)
End Program g01tbfe

10.2 Program Data

G01TBF Example Program Data
3 :: LTAIL
’S’ ’L’ ’C’ :: TAIL
3 :: LP
0.01 0.01 0.99 :: P
3 :: LDF
20.0 7.5 45.0 :: DF

10.3 Program Results

G01TBF Example Program Results

TAIL P DF T IVALID
-----------------------------------------------

S 0.010 20.00 2.845 0
L 0.010 7.50 -2.943 0
C 0.990 45.00 2.690 0
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NAG Library Routine Document

G01TCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01TCF returns a number of deviates associated with the given probabilities of the �2-distribution with
real degrees of freedom.

2 Specification

SUBROUTINE G01TCF (LTAIL, TAIL, LP, P, LDF, DF, X, IVALID, IFAIL)

INTEGER LTAIL, LP, LDF, IVALID(*), IFAIL
REAL (KIND=nag_wp) P(LP), DF(LDF), X(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The deviate, xpi , associated with the lower tail probability pi of the �2-distribution with �i degrees of
freedom is defined as the solution to

P Xi � xpi : �i
� �

¼ pi ¼
1

2�i=2 �i=2ð Þ

Z xpi

0
e�Xi=2Xi

vi=2�1 dXi; 0 � xpi <1; �i > 0:

The required xpi is found by using the relationship between a �2-distribution and a gamma distribution,
i.e., a �2-distribution with �i degrees of freedom is equal to a gamma distribution with scale parameter
2 and shape parameter �i=2.

For very large values of �i, greater than 105, Wilson and Hilferty's Normal approximation to the �2 is
used; see Kendall and Stuart (1969).

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Best D J and Roberts D E (1975) Algorithm AS 91. The percentage points of the �2 distribution Appl.
Statist. 24 385–388

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.
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2: TAILðLTAILÞ – CHARACTER(1) array Input

On en t ry : i nd ica te s which ta i l the supp l i ed probab i l i t i e s r ep resen t . For
j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for i ¼ 1; 2; . . . ;max LTAIL;LP;LDFð Þ:
TAILðjÞ ¼ L

The lower tail probability, i.e., pi ¼ P Xi � xpi : �i
� �

.

TAILðjÞ ¼ U
The upper tail probability, i.e., pi ¼ P Xi � xpi : �i

� �
.

Constraint: TAILðjÞ ¼ L or U , for j ¼ 1; 2; . . . ;LTAIL.

3: LP – INTEGER Input

On entry: the length of the array P.

Constraint: LP > 0.

4: PðLPÞ – REAL (KIND=nag_wp) array Input

On entry: pi, the probability of the required �2-distribution as defined by TAIL with pi ¼ PðjÞ,
j ¼ i� 1ð Þ mod LPð Þ þ 1.

Constraints:

if TAILðkÞ ¼ L , 0:0 � PðjÞ < 1:0;
otherwise 0:0 < PðjÞ � 1:0.

Where k ¼ i� 1ð Þ mod LTAILþ 1 and j ¼ i� 1ð Þ mod LPþ 1.

5: LDF – INTEGER Input

On entry: the length of the array DF.

Constraint: LDF > 0.

6: DFðLDFÞ – REAL (KIND=nag_wp) array Input

On entry : �i, the degrees of freedom of the �2-distribution with �i ¼ DFðjÞ,
j ¼ i� 1ð Þ mod LDFð Þ þ 1.

Constraint: DFðjÞ > 0:0, for j ¼ 1; 2; . . . ;LDF.

7: Xð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array X must be at least max LTAIL;LP;LDFð Þ.

On exit: xpi , the deviates for the �2-distribution.

8: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LTAIL;LP;LDFð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating xpi .

IVALIDðiÞ ¼ 2

On entry, invalid value for pi.

IVALIDðiÞ ¼ 3

On entry, �i � 0:0.
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IVALIDðiÞ ¼ 4
pi is too close to 0:0 or 1:0 for the result to be calculated.

IVALIDðiÞ ¼ 5
The solution has failed to converge. The result should be a reasonable approximation.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of TAIL, P or DF was invalid, or the solution failed to converge.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LTAIL > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LP > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LDF > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The results should be accurate to five significant digits for most argument values. Some accuracy is lost
for pi close to 0:0 or 1:0.

8 Parallelism and Performance

G01TCF is not threaded in any implementation.

9 Further Comments

For higher accuracy the relationship described in Section 3 may be used and a direct call to G01TFF
made.

10 Example

This example reads lower tail probabilities for several �2-distributions, and calculates and prints the
corresponding deviates.

10.1 Program Text

Program g01tcfe
! G01TCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01tcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldf, lout, lp, ltail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: df(:), p(:), x(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01TCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ltail
Allocate (tail(ltail))
Read (nin,*) tail(1:ltail)

Read (nin,*) lp
Allocate (p(lp))
Read (nin,*) p(1:lp)

Read (nin,*) ldf
Allocate (df(ldf))
Read (nin,*) df(1:ldf)

! Allocate memory for output
lout = max(ltail,lp,ldf)
Allocate (x(lout),ivalid(lout))

! Calculate deviates (inverse CDF)
ifail = -1
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Call g01tcf(ltail,tail,lp,p,ldf,df,x,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) ’ TAIL P DF X IVALID’
Write (nout,*) repeat(’-’,48)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), p(mod(i-1,lp)+1), &
df(mod(i-1,ldf)+1), x(i), ivalid(i)

End Do
End If

99999 Format (5X,A1,4X,F6.3,4X,F6.2,3X,F7.3,4X,I3)
End Program g01tcfe

10.2 Program Data

G01TCF Example Program Data
1 :: LTAIL
’L’ :: TAIL
3 :: LP
0.01 0.428 0.869 :: P
3 :: LDF
20.0 7.5 45.0 :: DF

10.3 Program Results

G01TCF Example Program Results

TAIL P DF X IVALID
------------------------------------------------

L 0.010 20.00 8.260 0
L 0.428 7.50 6.201 0
L 0.869 45.00 55.738 0
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NAG Library Routine Document

G01TDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01TDF returns a number of deviates associated with given probabilities of the F or variance-ratio
distribution with real degrees of freedom.

2 Specification

SUBROUTINE G01TDF (LTAIL, TAIL, LP, P, LDF1, DF1, LDF2, DF2, F, IVALID,
IFAIL)

&

INTEGER LTAIL, LP, LDF1, LDF2, IVALID(*), IFAIL
REAL (KIND=nag_wp) P(LP), DF1(LDF1), DF2(LDF2), F(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The deviate, fpi , associated with the lower tail probability, pi, of the F -distribution with degrees of
freedom ui and vi is defined as the solution to

P Fi � fpi : ui; vi
� �

¼ pi ¼
u

1
2ui
i v

1
2vi
i 

uiþvi
2

� �
 ui

2

� �
 vi

2

� � Z fpi

0
Fi

1
2 ui�2ð Þ vi þ uiFið Þ�

1
2 uiþvið Þ dFi;

where ui; vi > 0; 0 � fpi <1.

The value of fpi is computed by means of a transformation to a beta distribution, Pi�i Bi � �i : ai; bið Þ:

P Fi � fpi : ui; vi
� �

¼ Pi�i Bi �
uifpi

uifpi þ vi
: ui=2; vi=2

� �
and using a call to G01TEF.

For very large values of both ui and vi, greater than 105, a Normal approximation is used. If only one of
ui or vi is greater than 105 then a �2 approximation is used; see Abramowitz and Stegun (1972).

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.
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2: TAILðLTAILÞ – CHARACTER(1) array Input

On en t ry : i nd ica te s which ta i l the supp l i ed probab i l i t i e s r ep resen t . For
j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for i ¼ 1; 2; . . . ;max LTAIL;LP;LDF1;LDF2ð Þ:
TAILðjÞ ¼ L

The lower tail probability, i.e., pi ¼ P Fi � fpi : ui; vi
� �

.

TAILðjÞ ¼ U
The upper tail probability, i.e., pi ¼ P Fi � fpi : ui; vi

� �
.

Constraint: TAILðjÞ ¼ L or U , for j ¼ 1; 2; . . . ;LTAIL.

3: LP – INTEGER Input

On entry: the length of the array P.

Constraint: LP > 0.

4: PðLPÞ – REAL (KIND=nag_wp) array Input

On entry: pi, the probability of the required F -distribution as defined by TAIL with pi ¼ PðjÞ,
j ¼ i� 1ð Þ mod LPð Þ þ 1.

Constraints:

if TAILðkÞ ¼ L , 0:0 � PðjÞ < 1:0;
otherwise 0:0 < PðjÞ � 1:0.

Where k ¼ i� 1ð Þ mod LTAILþ 1 and j ¼ i� 1ð Þ mod LPþ 1.

5: LDF1 – INTEGER Input

On entry: the length of the array DF1.

Constraint: LDF1 > 0.

6: DF1ðLDF1Þ – REAL (KIND=nag_wp) array Input

On entry: ui, the degrees of freedom of the numerator variance with ui ¼ DF1ðjÞ,
j ¼ i� 1ð Þ mod LDF1ð Þ þ 1.

Constraint: DF1ðjÞ > 0:0, for j ¼ 1; 2; . . . ;LDF1.

7: LDF2 – INTEGER Input

On entry: the length of the array DF2.

Constraint: LDF2 > 0.

8: DF2ðLDF2Þ – REAL (KIND=nag_wp) array Input

On entry: vi, the degrees of freedom of the denominator variance with vi ¼ DF2ðjÞ,
j ¼ i� 1ð Þ mod LDF2ð Þ þ 1.

Constraint: DF2ðjÞ > 0:0, for j ¼ 1; 2; . . . ;LDF2.

9: Fð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array F must be at least max LTAIL;LP;LDF1;LDF2ð Þ.
On exit: fpi , the deviates for the F -distribution.
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10: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LTAIL;LP;LDF1;LDF2ð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating fpi .

IVALIDðiÞ ¼ 2

On entry, invalid value for pi.

IVALIDðiÞ ¼ 3

On entry, ui � 0:0,
or vi � 0:0.

IVALIDðiÞ ¼ 4
The solution has not converged. The result should still be a reasonable approximation to
the solution.

IVALIDðiÞ ¼ 5
The value of pi is too close to 0:0 or 1:0 for the result to be computed. This will only
occur when the large sample approximations are used.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01TDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of TAIL, P, DF1, DF2 was invalid, or the solution failed to converge.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LTAIL > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LP > 0.
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IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LDF1 > 0.

IFAIL ¼ 5

On entry, array size ¼ valueh i.
Constraint: LDF2 > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The result should be accurate to five significant digits.

8 Parallelism and Performance

G01TDF is not threaded in any implementation.

9 Further Comments

For higher accuracy G01TEF can be used along with the transformations given in Section 3.

10 Example

This example reads the lower tail probabilities for several F -distributions, and calculates and prints the
corresponding deviates.

10.1 Program Text

Program g01tdfe
! G01TDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01tdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldf1, ldf2, lout, lp, &

ltail
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: df1(:), df2(:), f(:), p(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)
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! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01TDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the input vectors
Read (nin,*) ltail
Allocate (tail(ltail))
Read (nin,*) tail(1:ltail)

Read (nin,*) lp
Allocate (p(lp))
Read (nin,*) p(1:lp)

Read (nin,*) ldf1
Allocate (df1(ldf1))
Read (nin,*) df1(1:ldf1)

Read (nin,*) ldf2
Allocate (df2(ldf2))
Read (nin,*) df2(1:ldf2)

! Allocate memory for output
lout = max(ltail,lp,ldf1,ldf2)
Allocate (f(lout),ivalid(lout))

! Calculate deviates (inverse CDF)
ifail = -1
Call g01tdf(ltail,tail,lp,p,ldf1,df1,ldf2,df2,f,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) &
’ TAIL P DF1 DF2 F IVALID’

Write (nout,*) repeat(’-’,57)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), p(mod(i-1,lp)+1), &
df1(mod(i-1,ldf1)+1), df2(mod(i-1,ldf2)+1), f(i), ivalid(i)

End Do
End If

99999 Format (5X,A1,4X,F6.3,2(4X,F6.2),3X,F7.3,4X,I3)
End Program g01tdfe

10.2 Program Data

G01TDF Example Program Data
1 :: LTAIL
’L’ :: TAIL
3 :: LP
0.984 0.9 0.534 :: P
3 :: LDF1
10.0 1.0 20.25 :: DF1
3 :: LDF2
25.5 1.0 1.0 :: DF2

G01 – Simple Calculations on Statistical Data G01TDF

Mark 26 G01TDF.5



10.3 Program Results

G01TDF Example Program Results

TAIL P DF1 DF2 F IVALID
---------------------------------------------------------

L 0.984 10.00 25.50 2.847 0
L 0.900 1.00 1.00 39.863 0
L 0.534 20.25 1.00 2.498 0
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NAG Library Routine Document

G01TEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01TEF returns a number of deviates associated with given probabilities of the beta distribution.

2 Specification

SUBROUTINE G01TEF (LTAIL, TAIL, LP, P, LA, A, LB, B, TOL, BETA, IVALID,
IFAIL)

&

INTEGER LTAIL, LP, LA, LB, IVALID(*), IFAIL
REAL (KIND=nag_wp) P(LP), A(LA), B(LB), TOL, BETA(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The deviate, �pi , associated with the lower tail probability, pi, of the beta distribution with parameters
ai and bi is defined as the solution to

P Bi � �pi : ai; bi
� �

¼ pi ¼
 ai þ bið Þ
 aið Þ bið Þ

Z �pi

0
Bi

ai�1 1�Bið Þbi�1 dBi; 0 � �pi � 1; ai; bi > 0:

The algorithm is a modified version of the Newton–Raphson method, following closely that of Cran et
al. (1977).

An initial approximation, �i0, to �pi is found (see Cran et al. (1977)), and the Newton–Raphson
iteration

�k ¼ �k�1 �
fi �k�1ð Þ
fi
0 �k�1ð Þ;

where fi �kð Þ ¼ P Bi � �k : ai; bið Þ � pi is used, with modifications to ensure that �k remains in the
range 0; 1ð Þ.
The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Cran G W, Martin K J and Thomas G E (1977) Algorithm AS 109. Inverse of the incomplete beta
function ratio Appl. Statist. 26 111–114

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.
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2: TAILðLTAILÞ – CHARACTER(1) array Input

On en t ry : i nd ica te s which ta i l the supp l i ed probab i l i t i e s r ep resen t . For
j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for i ¼ 1; 2; . . . ;max LTAIL;LP;LA;LBð Þ:
TAILðjÞ ¼ L

The lower tail probability, i.e., pi ¼ P Bi � �pi : ai; bi
� �

.

TAILðjÞ ¼ U
The upper tail probability, i.e., pi ¼ P Bi � �pi : ai; bi

� �
.

Constraint: TAILðjÞ ¼ L or U , for j ¼ 1; 2; . . . ;LTAIL.

3: LP – INTEGER Input

On entry: the length of the array P.

Constraint: LP > 0.

4: PðLPÞ – REAL (KIND=nag_wp) array Input

On entry: pi, the probability of the required beta distribution as defined by TAIL with pi ¼ PðjÞ,
j ¼ i� 1ð Þ mod LPð Þ þ 1.

Constraint: 0:0 � PðjÞ � 1:0, for j ¼ 1; 2; . . . ;LP.

5: LA – INTEGER Input

On entry: the length of the array A.

Constraint: LA > 0.

6: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: ai, the first parameter of the required beta distribution with ai ¼ AðjÞ,
j ¼ i� 1ð Þ mod LAð Þ þ 1.

Constraint: 0:0 < AðjÞ � 106, for j ¼ 1; 2; . . . ;LA.

7: LB – INTEGER Input

On entry: the length of the array B.

Constraint: LB > 0.

8: BðLBÞ – REAL (KIND=nag_wp) array Input

On entry: bi, the second parameter of the required beta distribution with bi ¼ BðjÞ,
j ¼ i� 1ð Þ mod LBð Þ þ 1.

Constraint: 0:0 < BðjÞ � 106, for j ¼ 1; 2; . . . ;LB.

9: TOL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required by you in the results. If G01TEF is entered with TOL
greater than or equal to 1:0 or less than 10�machine precision (see X02AJF), then the value of
10�machine precision is used instead.

10: BETAð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array BETA must be at least max LTAIL;LP;LA;LBð Þ.
On exit: �pi , the deviates for the beta distribution.
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11: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LTAIL;LP;LA;LBð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating �pi .

IVALIDðiÞ ¼ 2

On entry, pi < 0:0,
or pi > 1:0.

IVALIDðiÞ ¼ 3

On entry, ai � 0:0,
or ai > 106,
or bi � 0:0,
or bi > 106.

IVALIDðiÞ ¼ 4
The solution has not converged but the result should be a reasonable approximation to the
solution.

IVALIDðiÞ ¼ 5
Requested accuracy not achieved when calculating the beta probability. The result should
be a reasonable approximation to the correct solution.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01TEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of TAIL, P, A, or B was invalid, or the solution failed to converge.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LTAIL > 0.
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IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LP > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LA > 0.

IFAIL ¼ 5

On entry, array size ¼ valueh i.
Constraint: LB > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The required precision, given by TOL, should be achieved in most circumstances.

8 Parallelism and Performance

G01TEF is not threaded in any implementation.

9 Further Comments

The typical timing will be several times that of G01SEF and will be very dependent on the input
argument values. See G01SEF for further comments on timings.

10 Example

This example reads lower tail probabilities for several beta distributions and calculates and prints the
corresponding deviates.

10.1 Program Text

Program g01tefe
! G01TEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01tef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, la, lb, lout, lp, ltail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), beta(:), p(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01TEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the tolerance
Read (nin,*) tol

! Read in the input vectors
Read (nin,*) ltail
Allocate (tail(ltail))
Read (nin,*) tail(1:ltail)

Read (nin,*) lp
Allocate (p(lp))
Read (nin,*) p(1:lp)

Read (nin,*) la
Allocate (a(la))
Read (nin,*) a(1:la)

Read (nin,*) lb
Allocate (b(lb))
Read (nin,*) b(1:lb)

! Allocate memory for output
lout = max(ltail,la,lb,lp)
Allocate (beta(lout),ivalid(lout))

! Calculate deviates (inverse CDF)
ifail = -1
Call g01tef(ltail,tail,lp,p,la,a,lb,b,tol,beta,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) &
’ TAIL P A B BETA IVALID’

Write (nout,*) repeat(’-’,55)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), p(mod(i-1,lp)+1), &
a(mod(i-1,la)+1), b(mod(i-1,lb)+1), beta(i), ivalid(i)

End Do
End If

99999 Format (5X,A1,4X,F6.3,2(4X,F6.2),3X,F7.3,4X,I3)
End Program g01tefe
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10.2 Program Data

G01TEF Example Program Data
0.0 :: TOL
1 :: LTAIL
’L’ :: TAIL
3 :: LP
0.5 0.99 0.25 :: P
3 :: LA
1.0 1.5 20.0 :: A
3 :: LB
2.0 1.5 10.0 :: B

10.3 Program Results

G01TEF Example Program Results

TAIL P A B BETA IVALID
-------------------------------------------------------

L 0.500 1.00 2.00 0.293 0
L 0.990 1.50 1.50 0.967 0
L 0.250 20.00 10.00 0.611 0
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NAG Library Routine Document

G01TFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01TFF returns a number of deviates associated with given probabilities of the gamma distribution.

2 Specification

SUBROUTINE G01TFF (LTAIL, TAIL, LP, P, LA, A, LB, B, TOL, G, IVALID,
IFAIL)

&

INTEGER LTAIL, LP, LA, LB, IVALID(*), IFAIL
REAL (KIND=nag_wp) P(LP), A(LA), B(LB), TOL, G(*)
CHARACTER(1) TAIL(LTAIL)

3 Description

The deviate, gpi , associated with the lower tail probability, pi, of the gamma distribution with shape
parameter �i and scale parameter �i, is defined as the solution to

P Gi � gpi : �i; �i
� �

¼ pi ¼
1

�i
�i �ið Þ

Z gpi

0
ei
�Gi=�iGi

�i�1 dGi; 0 � gpi <1; �i; �i > 0:

The method used is described by Best and Roberts (1975) making use of the relationship between the
gamma distribution and the �2-distribution.

Let yi ¼ 2
gpi
�i

. The required yi is found from the Taylor series expansion

yi ¼ y0 þ
X
r

Cr y0ð Þ
r!

Ei


 y0ð Þ

� �r
;

where y0 is a starting approximation

C1 uið Þ ¼ 1,

Crþ1 uið Þ ¼ r� þ d

dui

� �
Cr uið Þ ,

�i ¼ 1
2�

�i � 1

ui
,

Ei ¼ pi �
Z y0

0

i uið Þ dui,


i uið Þ ¼
1

2�i �ið Þ
ei
�ui=2ui

�i�1 .

For most values of pi and �i the starting value

y01 ¼ 2�i zi

ffiffiffiffiffiffiffi
1

9�i

r
þ 1� 1

9�i

� �3

is used, where zi is the deviate associated with a lower tail probability of pi for the standard Normal
distribution.
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For pi close to zero,

y02 ¼ pi�i2
�i �ið Þð Þ1=�i

is used.

For large pi values, when y01 > 4:4�i þ 6:0,

y03 ¼ �2 ln 1� pið Þ � �i � 1ð Þ ln 1
2y01
� �

þ ln  �ið Þð Þ
� �

is found to be a better starting value than y01.

For small �i �i � 0:16ð Þ, pi is expressed in terms of an approximation to the exponential integral and
y04 is found by Newton–Raphson iterations.

Seven terms of the Taylor series are used to refine the starting approximation, repeating the process if
necessary until the required accuracy is obtained.

The input arrays to this routine are designed to allow maximum flexibility in the supply of vector
arguments by re-using elements of any arrays that are shorter than the total number of evaluations
required. See Section 2.6 in the G01 Chapter Introduction for further information.

4 References

Best D J and Roberts D E (1975) Algorithm AS 91. The percentage points of the �2 distribution Appl.
Statist. 24 385–388

5 Arguments

1: LTAIL – INTEGER Input

On entry: the length of the array TAIL.

Constraint: LTAIL > 0.

2: TAILðLTAILÞ – CHARACTER(1) array Input

On en t ry : i nd ica te s which ta i l the supp l i ed probab i l i t i e s r ep resen t . For
j ¼ i � 1ð Þ mod LTAILð Þ þ 1, for i ¼ 1; 2; . . . ;max LTAIL;LP;LA;LBð Þ:
TAILðjÞ ¼ L

The lower tail probability, i.e., pi ¼ P Gi � gpi : �i; �i
� �

.

TAILðjÞ ¼ U
The upper tail probability, i.e., pi ¼ P Gi � gpi : �i; �i

� �
.

Constraint: TAILðjÞ ¼ L or U , for j ¼ 1; 2; . . . ;LTAIL.

3: LP – INTEGER Input

On entry: the length of the array P.

Constraint: LP > 0.

4: PðLPÞ – REAL (KIND=nag_wp) array Input

On entry: pi, the probability of the required gamma distribution as defined by TAIL with
pi ¼ PðjÞ, j ¼ i� 1ð Þ mod LPð Þ þ 1.

Constraints:

if TAILðkÞ ¼ L , 0:0 � PðjÞ < 1:0;
otherwise 0:0 < PðjÞ � 1:0.

Where k ¼ i� 1ð Þ mod LTAILþ 1 and j ¼ i� 1ð Þ mod LPþ 1.
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5: LA – INTEGER Input

On entry: the length of the array A.

Constraint: LA > 0.

6: AðLAÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the first parameter of the required gamma distribution with �i ¼ AðjÞ,
j ¼ i� 1ð Þ mod LAð Þ þ 1.

Constraint: 0:0 < AðjÞ � 106, for j ¼ 1; 2; . . . ;LA.

7: LB – INTEGER Input

On entry: the length of the array B.

Constraint: LB > 0.

8: BðLBÞ – REAL (KIND=nag_wp) array Input

On entry: �i, the second parameter of the required gamma distribution with �i ¼ BðjÞ,
j ¼ i� 1ð Þ mod LBð Þ þ 1.

Constraint: BðjÞ > 0:0, for j ¼ 1; 2; . . . ;LB.

9: TOL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required by you in the results. If G01TFF is entered with TOL
greater than or equal to 1:0 or less than 10�machine precision (see X02AJF), then the value of
10�machine precision is used instead.

10: Gð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array G must be at least max LTAIL;LP;LA;LBð Þ.
On exit: gpi , the deviates for the gamma distribution.

11: IVALIDð�Þ – INTEGER array Output

Note: the dimension of the array IVALID must be at least max LTAIL;LP;LA;LBð Þ.
On exit: IVALIDðiÞ indicates any errors with the input arguments, with

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, invalid value supplied in TAIL when calculating gpi .

IVALIDðiÞ ¼ 2

On entry, invalid value for pi.

IVALIDðiÞ ¼ 3

On entry, �i � 0:0,
or �i > 106,
or �i � 0:0.

IVALIDðiÞ ¼ 4
pi is too close to 0:0 or 1:0 to enable the result to be calculated.

IVALIDðiÞ ¼ 5
The solution has failed to converge. The result may be a reasonable approximation.
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12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G01TFF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of TAIL, P, A, or B was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, array size ¼ valueh i.
Constraint: LTAIL > 0.

IFAIL ¼ 3

On entry, array size ¼ valueh i.
Constraint: LP > 0.

IFAIL ¼ 4

On entry, array size ¼ valueh i.
Constraint: LA > 0.

IFAIL ¼ 5

On entry, array size ¼ valueh i.
Constraint: LB > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

G01TFF NAG Library Manual

G01TFF.4 Mark 26



7 Accuracy

In most cases the relative accuracy of the results should be as specified by TOL. However, for very
small values of �i or very small values of pi there may be some loss of accuracy.

8 Parallelism and Performance

G01TFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads lower tail probabilities for several gamma distributions, and calculates and prints
the corresponding deviates until the end of data is reached.

10.1 Program Text

Program g01tffe
! G01TFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01tff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, la, lb, lout, lp, ltail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), g(:), p(:)
Integer, Allocatable :: ivalid(:)
Character (1), Allocatable :: tail(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, mod, repeat

! .. Executable Statements ..
Write (nout,*) ’G01TFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the tolerance
Read (nin,*) tol

! Read in the input vectors
Read (nin,*) ltail
Allocate (tail(ltail))
Read (nin,*) tail(1:ltail)

Read (nin,*) lp
Allocate (p(lp))
Read (nin,*) p(1:lp)

Read (nin,*) la
Allocate (a(la))
Read (nin,*) a(1:la)

Read (nin,*) lb
Allocate (b(lb))
Read (nin,*) b(1:lb)
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! Allocate memory for output
lout = max(ltail,lp,la,lb)
Allocate (g(lout),ivalid(lout))

! Calculate deviates (inverse CDF)
ifail = -1
Call g01tff(ltail,tail,lp,p,la,a,lb,b,tol,g,ivalid,ifail)

If (ifail==0 .Or. ifail==1) Then
! Display titles

Write (nout,*) ’ TAIL P A B G IVALID’
Write (nout,*) repeat(’-’,55)

! Display results
Do i = 1, lout

Write (nout,99999) tail(mod(i-1,ltail)+1), p(mod(i-1,lp)+1), &
a(mod(i-1,la)+1), b(mod(i-1,lb)+1), g(i), ivalid(i)

End Do
End If

99999 Format (5X,A,4X,F6.3,2(4X,F6.2),3X,F7.3,4X,I3)
End Program g01tffe

10.2 Program Data

G01TFF Example Program Data
0.0 :: TOL
1 :: LTAIL
’L’ :: TAIL
3 :: LP
0.01 0.428 0.869 :: P
3 :: LA
1.0 7.500 45.0 :: A
3 :: LB
20.0 0.1 10.0 :: B

10.3 Program Results

G01TFF Example Program Results

TAIL P A B G IVALID
-------------------------------------------------------

L 0.010 1.00 20.00 0.201 0
L 0.428 7.50 0.10 0.670 0
L 0.869 45.00 10.00 525.839 0
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NAG Library Routine Document

G01WAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01WAF calculates the mean and, optionally, the standard deviation using a rolling window for an
arbitrary sized data stream.

2 Specification

SUBROUTINE G01WAF (M, NB, X, IWT, WT, PN, RMEAN, RSD, LRSD, RCOMM,
LRCOMM, IFAIL)

&

INTEGER M, NB, IWT, PN, LRSD, LRCOMM, IFAIL
REAL (KIND=nag_wp) X(NB), WT(*), RMEAN(max(0,NB+min(0,PN-M+1))),

RSD(LRSD), RCOMM(LRCOMM)
&

3 Description

Given a sample of n observations, denoted by x ¼ xi : i ¼ 1; 2; . . . ; nf g and a set of weights,
w ¼ wj : j ¼ 1; 2; . . . ;m

� 
, G01WAF calculates the mean and, optionally, the standard deviation, in a

rolling window of length m.

For the ith window the mean is defined as

�i ¼

Xm
j¼1

wjxiþj�1

W
ð1Þ

and the standard deviation as

�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

wj xiþj�1 � �i
� �2

W �

Xm
j¼1

w2
j

W

vuuuuuuuuut
ð2Þ

with W ¼
Xm
j¼1

wj.

Four different types of weighting are possible:

(i) No weights (wj ¼ 1)

When no weights are required both the mean and standard deviations can be calculated in an
iterative manner, with

G01 – Simple Calculations on Statistical Data G01WAF

Mark 26 G01WAF.1



�iþ1 ¼ �i þ xiþm�xið Þ
m

�2iþ1 ¼ m� 1ð Þ�2i þ xiþm � �ið Þ2 � xi � �ið Þ2 � xiþm�xið Þ2
m

where the initial values �1 and �1 are obtained using the one pass algorithm of West (1979).

(ii) Each observation has its own weight

In this case, rather than supplying a vector of m weights a vector of n weights is supplied instead,
v ¼ vj : j ¼ 1; 2; . . . ; n

� 
and wj ¼ viþj�1 in (1) and (2).

If the standard deviations are not required then the mean is calculated using the iterative formula:

Wiþ1 ¼ Wi þ viþm � við Þ
�iþ1 ¼ �i þW�1

i viþmxiþm � vixið Þ

where W1 ¼
Xm
i¼1
vi and �1 ¼ W�1

1

Xm
i¼1
vixi.

If both the mean and standard deviation are required then the one pass algorithm of West (1979) is
used in each window.

(iii) Each position in the window has its own weight

This is the case as described in (1) and (2), where the weight given to each observation differs
depending on which summary is being produced. When these types of weights are specified both
the mean and standard deviation are calculated by applying the one pass algorithm of West (1979)
multiple times.

(iv) Each position in the window has a weight equal to its position number (wj ¼ j)

This is a special case of (iii).

If the standard deviations are not required then the mean is calculated using the iterative formula:

Siþ1 ¼ Si þ xiþm � xið Þ
�iþ1 ¼ �i þ 2 mxiþm�Sið Þ

m mþ1ð Þ

where S1 ¼
Xm
i¼1
xi and �1 ¼ 2 m2 þm

� ��1
S1.

If both the mean and standard deviation are required then the one pass algorithm of West is applied
multiple times.

For large datasets, or where all the data is not available at the same time, x (and if each observation has
its own weight, v) can be split into arbitrary sized blocks and G01WAF called multiple times.

4 References

Chan T F, Golub G H and Leveque R J (1982) Updating Formulae and a Pairwise Algorithm for
Computing Sample Variances Compstat, Physica-Verlag

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555

5 Arguments

1: M – INTEGER Input

On entry: m, the length of the rolling window.

If PN 6¼ 0, M must be unchanged since the last call to G01WAF.

Constraint: M � 1.
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2: NB – INTEGER Input

On entry: b, the number of observations in the current block of data. The size of the block of data
supplied in X (and when IWT ¼ 1, WT) can vary; therefore NB can change between calls to
G01WAF.

Constraints:

NB � 0;
if LRCOMM ¼ 0, NB � M.

3: XðNBÞ – REAL (KIND=nag_wp) array Input

On entry: the current block of observations, corresponding to xi, for i ¼ kþ 1; . . . ; kþ b, where
k is the number of observations processed so far and b is the size of the current block of data.

4: IWT – INTEGER Input

On entry: the type of weighting to use.

IWT ¼ 0
No weights are used.

IWT ¼ 1
Each observation has its own weight.

IWT ¼ 2
Each position in the window has its own weight.

IWT ¼ 3
Each position in the window has a weight equal to its position number.

If PN 6¼ 0, IWT must be unchanged since the last call to G01WAF.

Constraint: IWT ¼ 0, 1, 2 or 3.

5: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least NB if IWT ¼ 1 and at least M if IWT ¼ 2.

On entry: the user-supplied weights.

If IWT ¼ 1, WTðiÞ ¼ �iþk, for i ¼ 1; 2; . . . ; b.

If IWT ¼ 2, WTðjÞ ¼ wj , for j ¼ 1; 2; . . . ;m.

Otherwise, WT is not referenced.

Constraints:

if IWT ¼ 1, WTðiÞ � 0, for i ¼ 1; 2; . . . ;NB;
if IWT ¼ 2, WTð1Þ 6¼ 0 and

Pm
j¼1WTðjÞ > 0;

if IWT ¼ 2 and LRSD 6¼ 0, WTðjÞ � 0, for j ¼ 1; 2; . . . ;M.

6: PN – INTEGER Input/Output

On entry: k, the number of observations processed so far. On the first call to G01WAF, or when
starting to summarise a new dataset, PN must be set to 0.

If PN 6¼ 0, it must be the same value as returned by the last call to G01WAF.

On exit: kþ b, the updated number of observations processed so far.

Constraint: PN � 0.

7: RMEANðmax 0;NBþmin 0; PN�Mþ 1ð Þð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: �l , the (weighted) moving averages, for l ¼ 1; 2; . . . ; bþmin 0; k�mþ 1ð Þ. Therefore,
�l is the mean of the data in the window that ends on Xðlþm�min k;m� 1ð Þ � 1Þ.
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If, on entry, PN � M� 1, i.e., at least one windows worth of data has been previously processed,
then RMEANðlÞ is the summary corresponding to the window that ends on XðlÞ. On the other
hand, if, on entry, PN ¼ 0, i.e., no data has been previously processed, then RMEANðlÞ is the
summary corresponding to the window that ends on XðMþ l� 1Þ (or, equivalently, starts on
XðlÞ).

8: RSDðLRSDÞ – REAL (KIND=nag_wp) array Output

On exit: if LRSD 6¼ 0 then �l, the (weighted) standard deviation. The ordering of RSD is the
same as the ordering of RMEAN.

If LRSD ¼ 0, RSD is not referenced.

9: LRSD – INTEGER Input

On entry: the dimension of the array RSD as declared in the (sub)program from which G01WAF
is called. If the standard deviations are not required then LRSD should be set to zero.

Constraint: LRSD ¼ 0 or LRSD � max 0;NBþmin 0; PN�Mþ 1ð Þð Þ.

10: RCOMMðLRCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: communication array, used to store information between calls to G01WAF. If
LRCOMM ¼ 0, RCOMM is not referenced and all the data must be supplied in one go.

11: LRCOMM – INTEGER Input

On entry: the dimension of the array RCOMM as declared in the (sub)program from which
G01WAF is called.

Constraint: LRCOMM ¼ 0 or LRCOMM � 2Mþ 20.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 12

On entry, M ¼ valueh i.
On entry at previous call, M ¼ valueh i.
Constraint: if PN > 0, M must be unchanged since previous call.
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IFAIL ¼ 21

On entry, NB ¼ valueh i.
Constraint: NB � 0.

IFAIL ¼ 22

On entry, NB ¼ valueh i, M ¼ valueh i.
Constraint: if LRCOMM ¼ 0, NB � M.

IFAIL ¼ 41

On entry, IWT ¼ valueh i.
Constraint: IWT ¼ 0, 1, 2 or 3.

IFAIL ¼ 42

On entry, IWT ¼ valueh i.
On entry at previous call, IWT ¼ valueh i.
Constraint: if PN > 0, IWT must be unchanged since previous call.

IFAIL ¼ 51

On entry, WTð valueh iÞ ¼ valueh i.
Constraint: WTðiÞ � 0.

IFAIL ¼ 52

On entry, WTð1Þ ¼ valueh i.
Constraint: if IWT ¼ 2, WTð1Þ > 0.

IFAIL ¼ 53

On entry, at least one window had all zero weights.

IFAIL ¼ 54

On entry, unable to calculate at least one standard deviation due to the weights supplied.

IFAIL ¼ 55

On entry, sum of weights supplied in WT is valueh i.
Constraint: if IWT ¼ 2, the sum of the weights > 0.

IFAIL ¼ 61

On entry, PN ¼ valueh i.
Constraint: PN � 0.

IFAIL ¼ 62

On entry, PN ¼ valueh i.
On exit from previous call, PN ¼ valueh i.
Constraint: if PN > 0, PN must be unchanged since previous call.

IFAIL ¼ 91

On entry, LRSD ¼ valueh i.
Constraint: LRSD ¼ 0 or LRSD � valueh i.

IFAIL ¼ 101

RCOMM has been corrupted between calls.
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IFAIL ¼ 111

On entry, LRCOMM ¼ valueh i.
Constraint: LRCOMM � valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G01WAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G01WAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The more data that is supplied to G01WAF in one call, i.e., the larger NB is, the more efficient the
routine will be.

10 Example

This example calculates Spencer's 15-point moving average for the change in rate of the Earth's rotation
between 1821 and 1850. The data is supplied in three chunks, the first consisting of five observations,
the second 10 observations and the last 15 observations.

10.1 Program Text

Program g01wafe

! G01WAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01waf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ierr, ifail, iwt, lrcomm, lrsd, &
m, nb, nsummaries, offset, pn

Logical :: want_sd
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: rcomm(:), rmean(:), rsd(:), wt(:), &
x(:)

! .. Intrinsic Procedures ..
Intrinsic :: allocated, max, min

! .. Executable Statements ..
Write (nout,*) ’G01WAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem type
Read (nin,*) iwt, m

! Read in a flag indicating whether we want the standard deviations
Read (nin,*) want_sd

! Initial handling of weights
Select Case (iwt)
Case (1)

! Weights will be read in with the data
Case (2)

! Each observation in the rolling window has its own weight
Allocate (wt(m))
Read (nin,*) wt(1:m)

Case Default
! No weights need supplying

Allocate (wt(0))
End Select

lrcomm = 2*m + 20
Allocate (rcomm(lrcomm))

! Print some titles
If (want_sd) Then

Write (nout,99997) ’ Standard’
Write (nout,99997) ’ Interval Mean Deviation’
Write (nout,99997) ’---------------------------------------’

Else
Write (nout,99997) ’ Interval Mean ’
Write (nout,99997) ’------------------------’

End If

! Loop over each block of data
pn = 0

blk_lp: Do
! Read in the number of observations in this block

Read (nin,*,Iostat=ierr) nb
If (ierr/=0) Then

Exit blk_lp
End If

! Reallocate X to the required size
If (allocated(x)) Then

Deallocate (x)
End If
Allocate (x(nb))

! Read in the data for this block
Read (nin,*) x(1:nb)

If (iwt==1) Then
! User supplied weights are present

! Reallocate WT to the required size
If (allocated(wt)) Then
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Deallocate (wt)
End If
Allocate (wt(nb))

! Read in the weights for this block
Read (nin,*) wt(1:nb)

End If

! Calculate the number of summaries we can produce
nsummaries = max(0,nb+min(0,pn-m+1))
If (want_sd) Then

lrsd = nsummaries
Else

lrsd = 0
End If

! Reallocate the output arrays
If (allocated(rmean)) Then

Deallocate (rmean)
End If
Allocate (rmean(nsummaries))

If (allocated(rsd)) Then
Deallocate (rsd)

End If
Allocate (rsd(lrsd))

! Calculate summary statistics for this block of data
ifail = 0
Call g01waf(m,nb,x,iwt,wt,pn,rmean,rsd,lrsd,rcomm,lrcomm,ifail)

! Number of results printed so far
offset = max(0,pn-nb-m+1)

! Display the results for this block of data
If (want_sd) Then

Do i = 1, nsummaries
Write (nout,99998) ’[’, i + offset, ’,’, i + m - 1 + offset, ’]’, &

rmean(i), rsd(i)
End Do

Else
Do i = 1, nsummaries

Write (nout,99998) ’[’, i + offset, ’,’, i + m - 1 + offset, ’]’, &
rmean(i)

End Do
End If

End Do blk_lp

Write (nout,*)
Write (nout,99999) ’Total number of observations : ’, pn
Write (nout,99999) ’Length of window : ’, m

99999 Format (1X,A,I5)
99998 Format (1X,A,2(I3,A),2(4X,F10.1))
99997 Format (1X,A)

End Program g01wafe

10.2 Program Data

G01WAF Example Program Data
2 15 :: IWT,M
FALSE :: If TRUE sd’s are calculated
-3.0 -6.0 -5.0 3.0 21.0 46.0 67.0
74.0 67.0 46.0 21.0 3.0 -5.0 -6.0 -3.0 :: WT
5 :: NB
-2170.0 -1770.0 -1660.0 -1360.0 -1100.0 :: End of X for first block

10 :: NB
-950.0 -640.0 -370.0 -140.0 -250.0
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-510.0 -620.0 -730.0 -880.0 -1130.0 :: End of X for second block
15 :: NB
-1200.0 -830.0 -330.0 -190.0 210.0

170.0 440.0 440.0 780.0 880.0
1220.0 1260.0 1140.0 850.0 640.0 :: End of X for third block

10.3 Program Results

G01WAF Example Program Results

Interval Mean
------------------------
[ 1, 15] -427.6
[ 2, 16] -332.5
[ 3, 17] -337.1
[ 4, 18] -438.2
[ 5, 19] -604.4
[ 6, 20] -789.4
[ 7, 21] -935.4
[ 8, 22] -990.6
[ 9, 23] -927.1
[ 10, 24] -752.1
[ 11, 25] -501.3
[ 12, 26] -227.2
[ 13, 27] 23.2
[ 14, 28] 236.2
[ 15, 29] 422.4
[ 16, 30] 604.2

Total number of observations : 30
Length of window : 15
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This example plot shows the smoothing effect of using different length rolling windows on the mean
and standard deviation. Two different window lengths, m ¼ 5 and 10, are used to produce the
unweighted rolling mean and standard deviations for the change in rate of the Earth's rotation between
1821 and 1850. The values of the rolling mean and standard deviations are plotted at the centre points
of their respective windows.
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NAG Library Routine Document

G01ZUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G01ZUF is used to initialize routines G01EUF and G01MUF.

It is intended to be used before a call to G01EUF or G01MUF.

2 Specification

SUBROUTINE G01ZUF (RKAPPA, BETA2, MODE, XL, XU, RCOMM, IFAIL)

INTEGER MODE, IFAIL
REAL (KIND=nag_wp) RKAPPA, BETA2, XL, XU, RCOMM(322)

3 Description

G01ZUF initializes the array RCOMM for use by G01EUF or G01MUF in the evaluation of the
Vavilov functions 
V �;�; �2

� �
and �V �;�; �2

� �
respectively.

Multiple calls to G01EUF or G01MUF can be made following a single call to G01ZUF, provided that
RKAPPA or BETA2 do not change, and that either all calls are to G01EUF or all calls are to G01MUF.
If you wish to call both G01EUF and G01MUF, then you will need to initialize both separately.

4 References

Schorr B (1974) Programs for the Landau and the Vavilov distributions and the corresponding random
numbers Comp. Phys. Comm. 7 215–224

5 Arguments

1: RKAPPA – REAL (KIND=nag_wp) Input

On entry: the argument � of the function.

Constraint: 0:01 � RKAPPA � 10:0.

2: BETA2 – REAL (KIND=nag_wp) Input

On entry: the argument �2 of the function.

Constraint: 0:0 � BETA2 � 1:0.

3: MODE – INTEGER Input

On entry: if MODE ¼ 0, then G01MUF is to be called after the call to G01ZUF. Otherwise,
G01EUF is to be called.

4: XL – REAL (KIND=nag_wp) Output

On exit: xl, a threshold value below which 
V �;�; �2
� �

will be set to zero by G01MUF and
�V �;�; �2
� �

will be set to zero by G01EUF if � < xl.
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5: XU – REAL (KIND=nag_wp) Output

On exit: xu, a threshold value above which 
V �;�; �2
� �

will be set to zero by G01MUF and
�V �;�; �2
� �

will be set to unity by G01EUF if � > xu.

6: RCOMMð322Þ – REAL (KIND=nag_wp) array Communication Array

On exit: this argument should be passed unchanged to G01EUF or G01MUF.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, RKAPPA < 0:01,
or RKAPPA > 10:0,
or BETA2 < 0:0,
or BETA2 > 1:0.

IFAIL ¼ 2

The initialization has been abandoned due to an internal error. This error exit is unlikely to occur,
but if it does change the values of RKAPPA and/or BETA2 and rerun G01ZUF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

At least five significant digits are usually correct.
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8 Parallelism and Performance

G01ZUF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in G01MUF and G01EUF.
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NAG Library Chapter Contents

G02 – Correlation and Regression Analysis

G02 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

G02AAF 22 nagf_correg_corrmat_nearest
Computes the nearest correlation matrix to a real square matrix, using the
method of Qi and Sun

G02ABF 23 nagf_correg_corrmat_nearest_bounded
Computes the nearest correlation matrix to a real square matrix, augmented
G02AAF to incorporate weights and bounds

G02AEF 23 nagf_correg_corrmat_nearest_kfactor
Computes the nearest correlation matrix with k-factor structure to a real
square matrix

G02AJF 24 nagf_nearest_correlation_h_weight
Computes the nearest correlation matrix to a real square matrix, using
element-wise weighting

G02ANF 25 nagf_nearest_correlation_shrinking
Computes a correlation matrix from an approximate matrix with fixed
submatrix

G02APF 26 nagf_nearest_correlation_target
Computes a correlation matrix from an approximate one using a specified
target matrix

G02BAF 4 nagf_correg_coeffs_pearson
Pearson product-moment correlation coefficients, all variables, no missing
values

G02BBF 4 nagf_correg_coeffs_pearson_miss_case
Pearson product-moment correlation coefficients, all variables, casewise
treatment of missing values

G02BCF 4 nagf_correg_coeffs_pearson_miss_pair
Pearson product-moment correlation coefficients, all variables, pairwise
treatment of missing values

G02BDF 4 nagf_correg_coeffs_zero
Correlation-like coefficients (about zero), all variables, no missing values

G02BEF 4 nagf_correg_coeffs_zero_miss_case
Correlation-like coefficients (about zero), all variables, casewise treatment
of missing values

G02BFF 4 nagf_correg_coeffs_zero_miss_pair
Correlation-like coefficients (about zero), all variables, pairwise treatment
of missing values

G02BGF 4 nagf_correg_coeffs_pearson_subset
Pearson product-moment correlation coefficients, subset of variables, no
missing values

G02BHF 4 nagf_correg_coeffs_pearson_subset_miss_case
Pearson product-moment correlation coefficients, subset of variables,
casewise treatment of missing values

G02BJF 4 nagf_correg_coeffs_pearson_subset_miss_pair
Pearson product-moment correlation coefficients, subset of variables,
pairwise treatment of missing values

G02BKF 4 nagf_correg_coeffs_zero_subset
Correlation-like coefficients (about zero), subset of variables, no missing
values
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G02BLF 4 nagf_correg_coeffs_zero_subset_miss_case
Correlation-like coefficients (about zero), subset of variables, casewise
treatment of missing values

G02BMF 4 nagf_correg_coeffs_zero_subset_miss_pair
Correlation-like coefficients (about zero), subset of variables, pairwise
treatment of missing values

G02BNF 4 nagf_correg_coeffs_kspearman_overwrite
Kendall/Spearman non-parametric rank correlation coefficients, no missing
values, overwriting input data

G02BPF 4 nagf_correg_coeffs_kspearman_miss_case_overwrite
Kendall/Spearman non-parametric rank correlation coefficients, casewise
treatment of missing values, overwriting input data

G02BQF 4 nagf_correg_coeffs_kspearman
Kendall/Spearman non-parametric rank correlation coefficients, no missing
values, preserving input data

G02BRF 4 nagf_correg_coeffs_kspearman_miss_case
Kendall/Spearman non-parametric rank correlation coefficients, casewise
treatment of missing values, preserving input data

G02BSF 4 nagf_correg_coeffs_kspearman_miss_pair
Kendall/Spearman non-parametric rank correlation coefficients, pairwise
treatment of missing values

G02BTF 14 nagf_correg_ssqmat_update
Update a weighted sum of squares matrix with a new observation

G02BUF 14 nagf_correg_ssqmat
Computes a weighted sum of squares matrix

G02BWF 14 nagf_correg_ssqmat_to_corrmat
Computes a correlation matrix from a sum of squares matrix

G02BXF 14 nagf_correg_corrmat
Computes (optionally weighted) correlation and covariance matrices

G02BYF 17 nagf_correg_corrmat_partial
Computes partial correlation/variance-covariance matrix from correlation/
variance-covariance matrix computed by G02BXF

G02BZF 24 nagf_correg_ssqmat_combine
Combines two sums of squares matrices, for use after G02BUF

G02CAF 4 nagf_correg_linregs_const
Simple linear regression with constant term, no missing values

G02CBF 4 nagf_correg_linregs_noconst
Simple linear regression without constant term, no missing values

G02CCF 4 nagf_correg_linregs_const_miss
Simple linear regression with constant term, missing values

G02CDF 4 nagf_correg_linregs_noconst_miss
Simple linear regression without constant term, missing values

G02CEF 4 nagf_correg_linregm_service_select
Service routine for multiple linear regression, select elements from vectors
and matrices

G02CFF 4 nagf_correg_linregm_service_reorder
Service routine for multiple linear regression, reorder elements of vectors
and matrices

G02CGF 4 nagf_correg_linregm_coeffs_const
Multiple linear regression, from correlation coefficients, with constant term

G02CHF 4 nagf_correg_linregm_coeffs_noconst
Multiple linear regression, from correlation-like coefficients, without
constant term

G02DAF 14 nagf_correg_linregm_fit
Fits a general (multiple) linear regression model

G02DCF 14 nagf_correg_linregm_obs_edit
Add/delete an observation to/from a general linear regression model
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G02DDF 14 nagf_correg_linregm_update
Estimates of linear parameters and general linear regression model from
updated model

G02DEF 14 nagf_correg_linregm_var_add
Add a new independent variable to a general linear regression model

G02DFF 14 nagf_correg_linregm_var_del
Delete an independent variable from a general linear regression model

G02DGF 14 nagf_correg_linregm_fit_newvar
Fits a general linear regression model to new dependent variable

G02DKF 14 nagf_correg_linregm_constrain
Estimates and standard errors of parameters of a general linear regression
model for given constraints

G02DNF 14 nagf_correg_linregm_estfunc
Computes estimable function of a general linear regression model and its
standard error

G02EAF 14 nagf_correg_linregm_rssq
Computes residual sums of squares for all possible linear regressions for a
set of independent variables

G02ECF 14 nagf_correg_linregm_rssq_stat
Calculates R2 and CP values from residual sums of squares

G02EEF 14 nagf_correg_linregm_fit_onestep
Fits a linear regression model by forward selection

G02EFF 21 nagf_correg_linregm_fit_stepwise
Stepwise linear regression

G02FAF 14 nagf_correg_linregm_stat_resinf
Calculates standardized residuals and influence statistics

G02FCF 15 nagf_correg_linregm_stat_durbwat
Computes Durbin–Watson test statistic

G02GAF 14 nagf_correg_glm_normal
Fits a generalized linear model with Normal errors

G02GBF 14 nagf_correg_glm_binomial
Fits a generalized linear model with binomial errors

G02GCF 14 nagf_correg_glm_poisson
Fits a generalized linear model with Poisson errors

G02GDF 14 nagf_correg_glm_gamma
Fits a generalized linear model with gamma errors

G02GKF 14 nagf_correg_glm_constrain
Estimates and standard errors of parameters of a general linear model for
given constraints

G02GNF 14 nagf_correg_glm_estfunc
Computes estimable function of a generalized linear model and its standard
error

G02GPF 22 nagf_correg_glm_predict
Computes a predicted value and its associated standard error based on a
previously fitted generalized linear model

G02HAF 13 nagf_correg_robustm
Robust regression, standard M-estimates

G02HBF 13 nagf_correg_robustm_wts
Robust regression, compute weights for use with G02HDF

G02HDF 13 nagf_correg_robustm_user
Robust regression, compute regression with user-supplied functions and
weights

G02HFF 13 nagf_correg_robustm_user_varmat
Robust regression, variance-covariance matrix following G02HDF

G02HKF 14 nagf_correg_robustm_corr_huber
Calculates a robust estimation of a covariance matrix, Huber's weight
function
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G02HLF 14 nagf_correg_robustm_corr_user_deriv
Calculates a robust estimation of a covariance matrix, user-supplied weight
function plus derivatives

G02HMF 14 nagf_correg_robustm_corr_user
Calculates a robust estimation of a covariance matrix, user-supplied weight
function

G02JAF 21 nagf_correg_mixeff_reml
Linear mixed effects regression using Restricted Maximum Likelihood
(REML)

G02JBF 21 nagf_correg_mixeff_ml
Linear mixed effects regression using Maximum Likelihood (ML)

G02JCF 23 nagf_correg_mixeff_hier_init
Hierarchical mixed effects regression, initialization routine for G02JDF and
G02JEF

G02JDF 23 nagf_correg_mixeff_hier_reml
Hierarchical mixed effects regression using Restricted Maximum
Likelihood (REML)

G02JEF 23 nagf_correg_mixeff_hier_ml
Hierarchical mixed effects regression using Maximum Likelihood (ML)

G02KAF 22 nagf_correg_ridge_opt
Ridge regression, optimizing a ridge regression parameter

G02KBF 22 nagf_correg_ridge
Ridge regression using a number of supplied ridge regression parameters

G02LAF 22 nagf_correg_pls_svd
Partial least squares (PLS) regression using singular value decomposition

G02LBF 22 nagf_correg_pls_wold
Partial least squares (PLS) regression using Wold's iterative method

G02LCF 22 nagf_correg_pls_fit
PLS parameter estimates following partial least squares regression by
G02LAF or G02LBF

G02LDF 22 nagf_correg_pls_pred
PLS predictions based on parameter estimates from G02LCF

G02MAF 25 nagf_correg_lars
Least angle regression (LARS), least absolute shrinkage and selection
operator (LASSO) and forward stagewise regression

G02MBF 25 nagf_correg_lars_xtx
Least Angle Regression (LARS), Least Absolute Shrinkage and Selection
Operator (LASSO) and forward stagewise regression using the cross-
products matrix

G02MCF 25 nagf_correg_lars_param
Calculates additional parameter estimates following Least Angle Regression
(LARS), Least Absolute Shrinkage and Selection Operator (LASSO) or
forward stagewise regression

G02QFF 23 nagf_correg_quantile_linreg_easy
Linear quantile regression, simple interface, independent, identically
distributed (IID) errors

G02QGF 23 nagf_correg_quantile_linreg
Linear quantile regression, comprehensive interface

G02ZKF 23 nagf_correg_optset
Option setting routine for G02QGF

G02ZLF 23 nagf_correg_optget
Option getting routine for G02QGF
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1 Scope of the Chapter

This chapter is concerned with two techniques

(i) correlation analysis and

(ii) regression modelling,

both of which are concerned with determining the inter-relationships among two or more variables.

Other chapters of the NAG Library which cover similar problems are Chapters E02 and E04. Chapter
E02 routines may be used to fit linear models by criteria other than least squares, and also for
polynomial regression; Chapter E04 routines may be used to fit nonlinear models and linearly
constrained linear models.

2 Background to the Problems

2.1 Correlation

2.1.1 Aims of correlation analysis

Correlation analysis provides a single summary statistic – the correlation coefficient – describing the
strength of the association between two variables. The most common types of association which are
investigated by correlation analysis are linear relationships, and there are a number of forms of linear
correlation coefficients for use with different types of data.

2.1.2 Correlation coefficients

The (Pearson) product-moment correlation coefficients measure a linear relationship, while Kendall's
tau and Spearman's rank order correlation coefficients measure monotonicity only. All three coefficients
range from �1:0 to þ1:0. A coefficient of zero always indicates that no linear relationship exists; a
þ1:0 coefficient implies a ‘perfect’ positive relationship (i.e., an increase in one variable is always
associated with a corresponding increase in the other variable); and a coefficient of �1:0 indicates a
‘perfect’ negative relationship (i.e., an increase in one variable is always associated with a
corresponding decrease in the other variable).

Consider the bivariate scattergrams in Figure 1: (a) and (b) show strictly linear functions for which the
values of the product-moment correlation coefficient, and (since a linear function is also monotonic)
both Kendall's tau and Spearman's rank order coefficients, would be þ1:0 and �1:0 respectively.
However, though the relationships in figures (c) and (d) are respectively monotonically increasing and
monotonically decreasing, for which both Kendall's and Spearman's nonparametric coefficients would
be þ1:0 (in (c)) and �1:0 (in (d)), the functions are nonlinear so that the product-moment coefficients
would not take such ‘perfect’ extreme values. There is no obvious relationship between the variables in
figure (e), so all three coefficients would assume values close to zero, while in figure (f) though there is
an obvious parabolic relationship between the two variables, it would not be detected by any of the
correlation coefficients which would again take values near to zero; it is important therefore to examine
scattergrams as well as the correlation coefficients.

In order to decide which type of correlation is the most appropriate, it is necessary to appreciate the
different groups into which variables may be classified. Variables are generally divided into four types
of scales: the nominal scale, the ordinal scale, the interval scale, and the ratio scale. The nominal scale
is used only to categorise data; for each category a name, perhaps numeric, is assigned so that two
different categories will be identified by distinct names. The ordinal scale, as well as categorising the
observations, orders the categories. Each category is assigned a distinct identifying symbol, in such a
way that the order of the symbols corresponds to the order of the categories. (The most common system
for ordinal variables is to assign numerical identifiers to the categories, though if they have previously
been assigned alphabetic characters, these may be transformed to a numerical system by any convenient
method which preserves the ordering of the categories.) The interval scale not only categorises and
orders the observations, but also quantifies the comparison between categories; this necessitates a
common unit of measurement and an arbitrary zero-point. Finally, the ratio scale is similar to the
interval scale, except that it has an absolute (as opposed to arbitrary) zero-point.
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For a more complete discussion of these four types of scales, and some examples, you are referred to
Churchman and Ratoosh (1959) and Hays (1970).
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Figure 1

Product-moment correlation coefficients are used with variables which are interval (or ratio) scales;
these coefficients measure the amount of spread about the linear least squares equation. For a product-
moment correlation coefficient, r, based on n pairs of observations, testing against the null hypothesis
that there is no correlation between the two variables, the statistic

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1� r2

r
has a Student's t-distribution with n� 2 degrees of freedom; its significance can be tested accordingly.

Ranked and ordinal scale data are generally analysed by nonparametric methods – usually either
Spearman's or Kendall's tau rank order correlation coefficients, which, as their names suggest, operate
solely on the ranks, or relative orders, of the data values. Interval or ratio scale variables may also be
validly analysed by nonparametric methods, but such techniques are statistically less powerful than a
product-moment method. For a Spearman rank order correlation coefficient, R, based on n pairs of
observations, testing against the null hypothesis that there is no correlation between the two variables,
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for large samples the statistic

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1�R2

r
has approximately a Student's t-distribution with n� 2 degrees of freedom, and may be treated
accordingly. (This is similar to the product-moment correlation coefficient, r, see above.) Kendall's tau
coefficient, based on n pairs of observations, has, for large samples, an approximately Normal
distribution with mean zero and standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4nþ 10

9n n� 1ð Þ

s
when tested against the null hypothesis that there is no correlation between the two variables; the
coefficient should therefore be divided by this standard deviation and tested against the standard Normal
distribution, N 0; 1ð Þ.
When the number of ordinal categories a variable takes is large, and the number of ties is relatively
small, Spearman's rank order correlation coefficients have advantages over Kendall's tau; conversely,
when the number of categories is small, or there are a large number of ties, Kendall's tau is usually
preferred. Thus when the ordinal scale is more or less continuous, Spearman's rank order coefficients
are preferred, whereas Kendall's tau is used when the data is grouped into a smaller number of
categories; both measures do however include corrections for the occurrence of ties, and the basic
concepts underlying the two coefficients are quite similar. The absolute value of Kendall's tau
coefficient tends to be slightly smaller than Spearman's coefficient for the same set of data.

There is no authoritative dictum on the selection of correlation coefficients – particularly on the
advisability of using correlations with ordinal data. This is a matter of discretion for you.

2.1.3 Partial correlation

The correlation coefficients described above measure the association between two variables ignoring
any other variables in the system. Suppose there are three variables X;Y and Z as shown in the path
diagram below.

X

Z Y

Figure 2

The association between Y and Z is made up of the direct association between Y and Z and the
association caused by the path through X, that is the association of both Y and Z with the third variable
X. For example if Z and Y were cholesterol level and blood pressure and X were age since both blood
pressure and cholesterol level may increase with age the correlation between blood pressure and
cholesterol level eliminating the effect of age is required.

The correlation between two variables eliminating the effect of a third variable is known as the partial
correlation. If �zy, �zx and �xy represent the correlations between x, y and z then the partial correlation
between Z and Y given X is

�zy � �zx�xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2zx
� �

1� �2xy
� �r :

The partial correlation is then estimated by using product-moment correlation coefficients.

In general, let a set of variables be partitioned into two groups Y and X with ny variables in Y and nx
variables in X and let the variance-covariance matrix of all ny þ nx variables be partitioned into
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�xx �yx

�xy �yy

� �
:

Then the variance-covariance of Y conditional on fixed values of the X variables is given by

�yjx ¼ �yy ��yx�
�1
xx�xy:

The partial correlation matrix is then computed by standardizing �yjx.

2.1.4 Robust estimation of correlation coefficients

The product-moment correlation coefficient can be greatly affected by the presence of a few extreme
observations or outliers. There are robust estimation procedures which aim to decrease the effect of
extreme values.

Mathematically these methods can be described as follows. A robust estimate of the variance-
covariance matrix, C, can be written as

C ¼ �2 ATA
� ��1

where �2 is a correction factor to give an unbiased estimator if the data is Normal and A is a lower
triangular matrix. Let xi be the vector of values for the ith observation and let zi ¼ A xi � �ð Þ, � being a
robust estimate of location, then � and A are found as solutions to

1

n

Xn
i¼1
w zik k2
� �

zi ¼ 0

and

1

n

Xn
i¼1
w zik k2
� �

ziz
T
i � v zik k2

� �
I ¼ 0;

where w tð Þ, u tð Þ and v tð Þ are functions such that they return a value of 1 for reasonable values of t and
decreasing values for large t. The correlation matrix can then be calculated from the variance-
covariance matrix. If w, u, and v returned 1 for all values then the product-moment correlation
coefficient would be calculated.

2.1.5 Missing values

When there are missing values in the data these may be handled in one of two ways. Firstly, if a case
contains a missing observation for any variable, then that case is omitted in its entirety from all
calculations; this may be termed casewise treatment of missing data. Secondly, if a case contains a
missing observation for any variable, then the case is omitted from only those calculations involving the
variable for which the value is missing; this may be called pairwise treatment of missing data. Pairwise
deletion of missing data has the advantage of using as much of the data as possible in the computation
of each coefficient. In extreme circumstances, however, it can have the disadvantage of producing
coefficients which are based on a different number of cases, and even on different selections of cases or
samples; furthermore, the ‘correlation’ matrices formed in this way need not necessarily be positive
semidefinite, a requirement for a correlation matrix. Casewise deletion of missing data generally causes
fewer cases to be used in the calculation of the coefficients than does pairwise deletion. How great this
difference is will obviously depend on the distribution of the missing data, both among cases and
among variables.

Pairwise treatment does therefore use more information from the sample, but should not be used
without careful consideration of the location of the missing observations in the data matrix, and the
consequent effect of processing the missing data in that fashion.

2.1.6 Nearest Correlation Matrix

A correlation matrix is, by definition, a symmetric, positive semidefinite matrix with unit diagonals and
all elements in the range �1; 1½ �.
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In practice, rather than having a true correlation matrix, you may find that you have a matrix of
pairwise correlations. This usually occurs in the presence of missing values, when the missing values
are treated in a pairwise fashion as discussed in Section 2.1.5. Matrices constructed in this way may not
be not positive semidefinite, and therefore are not a valid correlation matrix. However, a valid
correlation matrix can be calculated that is in some sense ‘close’ to the original.

Given an n� n matrix, G, there are a number of available ways of computing the ‘nearest’ correlation
matrix, � to G:

(a) Frobenius Norm

Find � such that Xn
i¼1

Xn
j¼1

sij � �ij
� �2

is minimized.

Where S is the symmetric matrix defined as S ¼ 1
2 GþGTð Þ and sij and �ij denotes the elements of

S and � respectively.

A weighted Frobenius norm can also be used. The term being summed across therefore becomes

wiwj sij � �ij
� �2

if row and column weights are being used or wij sij � �ij
� �2

when element-wise
weights are used.

(b) Factor Loading Method

This method is similar to (a) in that it finds a � that is closest to S in the Frobenius norm.
However, it also ensures that � has a k-factor structure, that is � can be written as

� ¼ XXT þ diag I �XXT
� �

where I is the identity matrix and X has n rows and k columns.

X is often referred to as the factor loading matrix. This problem primarily arises when a factor
model � ¼ X� þD� is used to describe a multivariate time series or collateralized debt obligations.
In this model � 2 R

k and � 2 R
n are vectors of independent random variables having zero mean

and unit variance, with � and � independent of each other, and X 2 R
n�k with D 2 R

n�n diagonal.
In the case of modelling debt obligations � can, for example, model the equity returns of n
different companies of a portfolio where � describes k factors influencing all companies, in contrast
to the elements of � having only an effect on the equity of the corresponding company. With this
model the complex behaviour of a portfolio, with potentially thousands of equities, is captured by
looking at the major factors driving the behaviour.

The number of factors usually chosen is a lot smaller than n, perhaps between 1 and 10, yielding a
large reduction in the complexity. The number of the factors, k, which yields a matrix X such that
G�XXT þ diag I �XXTð Þk kF is within a required tolerance can also be determined, by
experimenting with the input k and comparing the norms.

(c) Shrinking

Find the smallest � such that

�T þ 1� �ð ÞS

is a correlation matrix. Here T is a positive definite target matrix with unit diagonal. T can be
chosen to fix elements in the resulting matrix by having elements equal to the corresponding
element in S.

Shrinking algorithms can be very efficient, using bisection to find �. A solution is always found, as
� ¼ 1 gives the result T , which is necessarily a valid correlation matrix.

Note that shrinking algorithms do not find the nearest correlation matrix in any mathematical
sense, simply the smallest � in the structure above.
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2.2 Regression

2.2.1 Aims of regression modelling

In regression analysis the relationship between one specific random variable, the dependent or
response variable, and one or more known variables, called the independent variables or covariates,
is studied. This relationship is represented by a mathematical model, or an equation, which associates
the dependent variable with the independent variables, together with a set of relevant assumptions. The
independent variables are related to the dependent variable by a function, called the regression
function, which involves a set of unknown parameters. Values of the parameters which give the best
fit for a given set of data are obtained; these values are known as the estimates of the parameters.

The reasons for using a regression model are twofold. The first is to obtain a description of the
relationship between the variables as an indicator of possible causality. The second reason is to predict
the value of the dependent variable from a set of values of the independent variables. Accordingly, the
most usual statistical problems involved in regression analysis are:

(i) to obtain best estimates of the unknown regression parameters;

(ii) to test hypotheses about these parameters;

(iii) to determine the adequacy of the assumed model; and

(iv) to verify the set of relevant assumptions.

2.2.2 Regression models and designed experiments

One application of regression models is in the analysis of experiments. In this case the model relates the
dependent variable to qualitative independent variables known as factors. Factors may take a number of
different values known as levels. For example, in an experiment in which one of four different
treatments is applied, the model will have one factor with four levels. Each level of the factor can be
represented by a dummy variable taking the values 0 or 1. So in the example there are four dummy
variables xj, for j ¼ 1; 2; 3; 4, such that:

xij ¼ 1 if the ith observation received the jth treatment
¼ 0 otherwise;

along with a variable for the mean x0:

xi0 ¼ 1 for all i:

If there were 7 observations the data would be:

Treatment Y x0 x1 x2 x3 x4
1 y1 1 1 0 0 0
2 y2 1 0 1 0 0
2 y3 1 0 1 0 0
3 y4 1 0 0 1 0
3 y5 1 0 0 1 0
4 y6 1 0 0 0 1
4 y7 1 0 0 0 1

When dummy variables are used it is common for the model not to be of full rank. In the case above,
the model would not be of full rank because

xi4 ¼ xi0 � xi1 � xi2 � xi3; i ¼ 1; 2; . . . ; 7:

This means that the effect of x4 cannot be distinguished from the combined effect of x0; x1; x2 and x3.
This is known as aliasing. In this situation, the aliasing can be deduced from the experimental design
and as a result the model to be fitted; in such situations it is known as intrinsic aliasing. In the example
above no matter how many times each treatment is replicated (other than 0) the aliasing will still be
present. If the aliasing is due to a particular dataset to which the model is to be fitted then it is known
as extrinsic aliasing. If in the example above observation 1 was missing then the x1 term would also be
aliased. In general intrinsic aliasing may be overcome by changing the model, e.g., remove x0 or x1
from the model, or by introducing constraints on the parameters, e.g., �1 þ �2 þ �3 þ �4 ¼ 0.
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If aliasing is present then there will no longer be a unique set of least squares estimates for the
parameters of the model but the fitted values will still have a unique estimate. Some linear functions of
the parameters will also have unique estimates; these are known as estimable functions. In the example
given above the functions (�0 þ �1) and (�2 � �3) are both estimable.

2.2.3 Selecting the regression model

In many situations there are several possible independent variables, not all of which may be needed in
the model. In order to select a suitable set of independent variables, two basic approaches can be used.

(a) All possible regressions

In this case all the possible combinations of independent variables are fitted and the one considered
the best selected. To choose the best, two conflicting criteria have to be balanced. One is the fit of
the model which will improve as more variables are added to the model. The second criterion is the
desire to have a model with a small number of significant terms. Depending on how the model is
fit, statistics such as R2, which gives the proportion of variation explained by the model, and Cp,
which tries to balance the size of the residual sum of squares against the number of terms in the
model, can be used to aid in the choice of model.

(b) Stepwise model building

In stepwise model building the regression model is constructed recursively, adding or deleting the
independent variables one at a time. When the model is built up the procedure is known as forward
selection. The first step is to choose the single variable which is the best predictor. The second
independent variable to be added to the regression equation is that which provides the best fit in
conjunction with the first variable. Further variables are then added in this recursive fashion,
adding at each step the optimum variable, given the other variables already in the equation.
Alternatively, backward elimination can be used. This is when all variables are added and then the
variables dropped one at a time, the variable dropped being the one which has the least effect on
the fit of the model at that stage. There are also hybrid techniques which combine forward selection
with backward elimination.

2.3 Linear Regression Models

When the regression model is linear in the parameters (but not necessarily in the independent variables),
then the regression model is said to be linear; otherwise the model is classified as nonlinear.

The most elementary form of regression model is the simple linear regression of the dependent
variable, Y , on a single independent variable, x, which takes the form

E Yð Þ ¼ �0 þ �1x ð1Þ

where E Yð Þ is the expected or average value of Y and �0 and �1 are the parameters whose values are
to be estimated, or, if the regression is required to pass through the origin (i.e., no constant term),

E Yð Þ ¼ �1x ð2Þ

where �1 is the only unknown parameter.

An extension of this is multiple linear regression in which the dependent variable, Y , is regressed on
the p (p > 1) independent variables, x1; x2; . . . ; xp, which takes the form

E Yð Þ ¼ �0 þ �1x1 þ �2x2 þ � � � þ �pxp ð3Þ

where �1; �2; . . . ; �p and �0 are the unknown parameters. Multiple linear regression models test include
factors are sometimes known as General Linear (Regression) Models.

A special case of multiple linear regression is polynomial linear regression, in which the p
independent variables are in fact powers of the same single variable x (i.e., xj ¼ xj, for j ¼ 1; 2; . . . ; p).

In this case, the model defined by (3) becomes

E Yð Þ ¼ �0 þ �1xþ �2x2 þ � � � þ �pxp: ð4Þ

There are a great variety of nonlinear regression models; one of the most common is exponential
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regression, in which the equation may take the form

E Yð Þ ¼ aþ becx: ð5Þ

It should be noted that equation (4) represents a linear regression, since even though the equation is not
linear in the independent variable, x, it is linear in the parameters �0; �1; �2; . . . :; �p, whereas the
regression model of equation (5) is nonlinear, as it is nonlinear in the parameters (a, b and c).

2.3.1 Fitting the regression model – least squares estimation

One method used to determine values for the parameters is, based on a given set of data, to minimize
the sums of squares of the differences between the observed values of the dependent variable and the
values predicted by the regression equation for that set of data – hence the term least squares
estimation. For example, if a regression model of the type given by equation (3), namely

E Yð Þ ¼ �0x0 þ �1x1 þ �2x2 þ � � � þ �pxp;

where x0 ¼ 1 for all observations, is to be fitted to the n data points

x01; x11; x21; . . . ; xp1; y1
� �
x02; x12; x22; . . . ; xp2; y2
� �

..

.

x0n; x1n; x2n; . . . ; xpn; yn
� � ð6Þ

such that

yi ¼ �0x0 þ �1x1i þ �2x2i þ � � � þ �pxpi þ ei; i ¼ 1; 2; . . . ; n

where ei are unknown independent random errors with E eið Þ ¼ 0 and var eið Þ ¼ �2, �2 being a constant,
then the method used is to calculate the estimates of the regression parameters �0; �1; �2; . . . ; �p by
minimizing Xn

i¼1
e2i : ð7Þ

If the errors do not have constant variance, i.e.,

var eið Þ ¼ �2i ¼
�2

wi

then weighted least squares estimation is used in whichXn
i¼1
wie

2
i

is minimized. For a more complete discussion of these least squares regression methods, and details of
the mathematical techniques used, see Draper and Smith (1985) or Kendall and Stuart (1973).

2.3.2 Computational methods for least squares regression

Let X be the n by p matrix of independent variables and y be the vector of values for the dependent
variable. To find the least squares estimates of the vector of parameters, �̂, the QR decomposition of X
is found, i.e.,

X ¼ QR�

where R� ¼ R
0

� �
, R being a p by p upper triangular matrix, and Q an n by n orthogonal matrix. If R

is of full rank then �̂ is the solution to

R�̂ ¼ c1
where c ¼ QTy and c1 is the first p rows of c. If R is not of full rank, a solution is obtained by means of
a singular value decomposition (SVD) of R,
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R ¼ Q� D 0
0 0

� �
PT;

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R, and Q� and
P are p by p orthogonal matrices. This gives the solution

�̂ ¼ P1D
�1QT

�1c1;

P1 being the first k columns of P and Q�1 being the first k columns of Q�.

This will be only one of the possible solutions. Other estimates may be obtained by applying constraints
to the parameters. If weighted regression with a vector of weights w is required then both X and y are
premultiplied by w1=2.

The method described above will, in general, be more accurate than methods based on forming (XTX),
(or a scaled version), and then solving the equations

XTX
� �

�̂ ¼ XTy:

2.3.3 Examining the fit of the model

Having fitted a model two questions need to be asked: first, ‘are all the terms in the model needed?’ and
second, ‘is there some systematic lack of fit?’. To answer the first question either confidence intervals
can be computed for the parameters or t-tests can be calculated to test hypotheses about the regression
parameters – for example, whether the value of the parameter, �k, is significantly different from a

specified value, bk (often zero). If the estimate of �k is �̂k and its standard error is se �̂k

� �
then the

t-statistic is

�̂k � bkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se �̂k

� �r :

It should be noted that both the tests and the confidence intervals may not be independent. Alternatively
F -tests based on the residual sums of squares for different models can also be used to test the
significance of terms in the model. If model 1, giving residual sum of squares RSS1 with degrees of
freedom �1, is a sub-model of model 2, giving residual sum of squares RSS2 with degrees of freedom
�2, i.e., all terms in model 1 are also in model 2, then to test if the extra terms in model 2 are needed
the F -statistic

F ¼ RSS1 � RSS2ð Þ= �1 � �2ð Þ
RSS2=�2

may be used. These tests and confidence intervals require the additional assumption that the errors, ei,
are Normally distributed.

To check for systematic lack of fit the residuals, ri ¼ yi � ŷi, where ŷi is the fitted value, should be
examined. If the model is correct then they should be random with no discernible pattern. Due to the
way they are calculated the residuals do not have constant variance. Now the vector of fitted values can
be written as a linear combination of the vector of observations of the dependent variable, y, ŷ ¼ Hy.
The variance-covariance matrix of the residuals is then I �Hð Þ�2, I being the identity matrix. The
diagonal elements of H, hii, can therefore be used to standardize the residuals. The hii are a measure of
the effect of the ith observation on the fitted model and are sometimes known as leverages.

If the observations were taken serially the residuals may also be used to test the assumption of the
independence of the ei and hence the independence of the observations.

2.3.4 Ridge regression

When data on predictor variables x are multicollinear, ridge regression models provide an alternative
to variable selection in the multiple regression model. In the ridge regression case, parameter estimates
in the linear model are found by penalised least squares:
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Xn
i¼1

Xp
j¼1

xij�̂j

 !
� yi

" #2
þ h

Xp
j¼1

�̂2j ; h 2 R
þ;

where the value of the ridge parameter h controls the trade-off between the goodness-of-fit and
smoothness of a solution.

2.4 Robust Estimation

Least squares regression can be greatly affected by a small number of unusual, atypical, or extreme
observations. To protect against such occurrences, robust regression methods have been developed.
These methods aim to give less weight to an observation which seems to be out of line with the rest of
the data given the model under consideration. That is to seek to bound the influence. For a discussion of
influence in regression, see Hampel et al. (1986) and Huber (1981).

There are two ways in which an observation for a regression model can be considered atypical. The
values of the independent variables for the observation may be atypical or the residual from the model
may be large.

The first problem of atypical values of the independent variables can be tackled by calculating weights
for each observation which reflect how atypical it is, i.e., a strongly atypical observation would have a
low weight. There are several ways of finding suitable weights; some are discussed in Hampel et al.
(1986).

The second problem is tackled by bounding the contribution of the individual ei to the criterion to be
minimized. When minimizing (7) a set of linear equations is formed, the solution of which gives the
least squares estimates. The equations areXn

i¼1
eixij ¼ 0; j ¼ 0; 1; . . . ; k:

These equations are replaced by Xn
i¼1
 ei=�ð Þxij ¼ 0; j ¼ 0; 1; . . . ; k; ð8Þ

where �2 is the variance of the ei, and  is a suitable function which down weights large values of the
standardized residuals ei=�. There are several suggested forms for  , one of which is Huber's function,

 tð Þ ¼
�c; t < c
t; tj j � c
c; t > c

8<: ð9Þ

-c

c
t

ψ (t)

Figure 3

The solution to (8) gives the M-estimates of the regression coefficients. The weights can be included in
(8) to protect against both types of extreme value. The parameter � can be estimated by the median
absolute deviations of the residuals or as a solution to, in the unweighted case,Xn

i¼1
� ei=�̂ð Þ ¼ n� kð Þ�;

where � is a suitable function and � is a constant chosen to make the estimate unbiased. � is often
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chosen to be  2=2 where  is given in (9). Another form of robust regression is to minimize the sum of
absolute deviations, i.e., Xn

i¼1
eij j:

For details of robust regression, see Hampel et al. (1986) and Huber (1981).

Robust regressions using least absolute deviations can be computed using routines in Chapter E02.

2.5 Generalized Linear Models

Generalized linear models are an extension of the general linear regression model discussed above.
They allow a wide range of models to be fitted. These included certain nonlinear regression models,
logistic and probit regression models for binary data, and log-linear models for contingency tables. A
generalized linear model consists of three basic components:

(a) A suitable distribution for the dependent variable Y . The following distributions are common:

(i) Normal

(ii) binomial

(iii) Poisson

(iv) gamma

In addition to the obvious uses of models with these distributions it should be noted that the
Poisson distribution can be used in the analysis of contingency tables while the gamma distribution
can be used to model variance components. The effect of the choice of the distribution is to define
the relationship between the expected value of Y , E Yð Þ ¼ �, and its variance and so a generalized
linear model with one of the above distributions may be used in a wider context when that
relationship holds.

(b) A linear model � ¼
P
�jxj, � is known as a linear predictor.

(c) A link function g �ð Þ between the expected value of Y and the linear predictor, g �ð Þ ¼ �. The
following link functions are available:

For the binomial distribution �, observing y out of t:

(i) logistic link: � ¼ log �
t��

� �
;

(ii) probit link: � ¼ ��1 �
t

� �
;

(iii) complementary log-log: � ¼ log �log 1� �
t

� �� �
.

For the Normal, Poisson, and gamma distributions:

(i) exponent link: � ¼ �a, for a constant a;

(ii) identity link: � ¼ �;
(iii) log link: � ¼ log�;

(iv) square root link: � ¼ ffiffiffi
�
p

;

(v) reciprocal link: � ¼ 1
� .

For each distribution there is a canonical link. For the canonical link there exist sufficient statistics
for the parameters. The canonical links are:

(i) Normal – identity;

(ii) binomial – logistic;

(iii) Poisson – logarithmic;
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(iv) gamma – reciprocal.

For the general linear regression model described above the three components are:

(i) Distribution – Normal;

(ii) Linear model –
P
�jxj;

(iii) Link – identity.

The model is fitted by maximum likelihood; this is equivalent to least squares in the case of the
Normal distribution. The residual sums of squares used in regression models is generalized to the
concept of deviance. The deviance is the logarithm of the ratio of the likelihood of the model to the full
model in which �̂i ¼ yi, where �̂i is the estimated value of �i. For the Normal distribution the deviance
is the residual sum of squares. Except for the case of the Normal distribution with the identity link, the
�2 and F -tests based on the deviance are only approximate; also the estimates of the parameters will
only be approximately Normally distributed. Thus only approximate z- or t-tests may be performed on
the parameter values and approximate confidence intervals computed.

The estimates are found by using an iterative weighted least squares procedure. This is equivalent to
the Fisher scoring method in which the Hessian matrix used in the Newton–Raphson method is
replaced by its expected value. In the case of canonical links the Fisher scoring method and the
Newton–Raphson method are identical. Starting values for the iterative procedure are obtained by
replacing the �i by yi in the appropriate equations.

2.6 Linear Mixed Effects Regression

In a standard linear model the independent (or explanatory) variables are assumed to take the same set
of values for all units in the population of interest. This type of variable is called fixed. In contrast, an
independent variable that fluctuates over the different units is said to be random. Modelling a variable
as fixed allows conclusions to be drawn only about the particular set of values observed. Modelling a
variable as random allows the results to be generalized to the different levels that may have been
observed. In general, if the effects of the levels of a variable are thought of as being drawn from a
probability distribution of such effects then the variable is random. If the levels are not a sample of
possible levels then the variable is fixed. In practice many qualitative variables can be considered as
having fixed effects and most blocking, sampling design, control and repeated measures as having
random effects.

In a general linear regression model, defined by

y ¼ X� þ �

where y is a vector of n observations on the dependent variable,

X is an n by p design matrix of independent variables,

� is a vector of p unknown parameters,

and � is a vector of n, independent and identically distributed, unknown errors, with �eN 0; �2
� �

,

there are p fixed effects (the �) and a single random effect (the error term �).

An extension to the general linear regression model that allows for additional random effects is the
linear mixed effects regression model, (sometimes called the variance components model). One
parameterisation of a linear mixed effects model is

y ¼ X� þ Z� þ �

where y is a vector of n observations on the dependent variable,

X is an n by p design matrix of fixed independent variables,

� is a vector of p unknown fixed effects,

Z is an n by q design matrix of random independent variables,
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� is a vector of length q of unknown random effects,

� is a vector of length n of unknown random errors,

and � and � are normally distributed with expectation zero and variance / covariance matrix defined by

Var �
�

� �
¼ G 0

0 R

� �
:

The routines currently available in this chapter are restricted to cases where R ¼ �2RI, I is the n� n
identity matrix and G is a diagonal matrix. Given this restriction the random variables, Z, can be
subdivided into g � q groups containing one or more variables. The variables in the ith group are
identically distributed with expectation zero and variance �2i . The model therefore contains three sets of
unknowns, the fixed effects, �, the random effects, �, and a vector of gþ 1 variance components, �,

with � ¼ �21; �
2
2; . . . ; ; ; �

2
g�1; �

2
g; �

2
R

n o
. Rather than work directly with � and the full likelihood function,

� is replaced by �� ¼ �21=�
2
R; �

2
2=�

2
R; . . . ; �

2
g�1=�

2
R; �

2
g=�

2
R; 1

n o
and the profiled likelihood function is

used instead.

The model parameters are estimated using an iterative method based on maximizing either the restricted
(profiled) likelihood function or the (profiled) likelihood functions. Fitting the model via restricted
maximum likelihood involves maximizing the function

�2lR ¼ log Vj jð Þ þ n� pð Þlog rTV �1r
� �

þ log XTV �1X
		 		þ n� pð Þ 1þ log 2	= n� pð Þð Þð Þ þ n� pð Þ:

Whereas fitting the model via maximum likelihood involves maximizing

�2lR ¼ log Vj jð Þ þ nlog rTV �1r
� �

þ nlog 2	=nð Þ þ n:
In both cases

V ¼ ZGZT þR; r ¼ y�Xb and b ¼ XTV �1X
� ��1

XTV �1y:

Once the final estimates for �� have been obtained, the value of �2R is given by

�2R ¼ rTV �1r
� �

= n� pð Þ:

Case weights, Wc, can be incorporated into the model by replacing XTX and ZTZ with XTWcX and
ZTWcZ respectively, for a diagonal weight matrix Wc.

2.7 Quantile Regression

Quantile regression is related to least squares regression in that both are interested in studying the
relationship between a response variable and one or more independent or explanatory variables.
However, whereas least squares regression is concerned with modelling the conditional mean of the
dependent variable, quantile regression models the conditional � th quantile of the dependent variable,
for some value of � 2 0; 1ð Þ. So, for example, � ¼ 0:5 would be the median.

Throughout this section we will be making use of the following definitions:

(a) If Z is a real valued random variable with distribution function F and density function f , such that

F �ð Þ ¼ P Z � �ð Þ ¼
Z �

�1
f zð Þdz

then the � th quantile, �, can be defined as

� ¼ F�1 �ð Þ ¼ inf z : F zð Þ � �f g; � 2 0; 1ð Þ:
(b) I Lð Þ denotes an indicator function taking the value 1 if the logical expression L is true and 0

otherwise, e.g., I z < 0ð Þ ¼ 1 if z < 0 and 0 if z � 0.

(c) y denotes a vector of n observations on the dependent (or response) variable,
y ¼ yi : i ¼ 1; 2; . . . ; nf g.

(d) X denotes an n� p matrix of explanatory or independent variables, often referred to as the design
matrix, and xi denotes a column vector of length p which holds the ith row of X.
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2.7.1 Finding a sample quantile as an optimization problem

Consider the piecewise linear loss function

�� zð Þ ¼ z � � I z < 0ð Þð Þ
The minimum of the expectation

E �� z� �ð Þð Þ ¼ � � 1ð Þ
Z �

�1
z� �ð Þf zð Þdzþ �

Z 1
�

z� �ð Þf zð Þdz

can be obtained by using the integral rule of Leibnitz to differentiate with respect to z and then setting
the result to zero, giving

1� �ð Þ
Z �

�1
f zð Þdz�

Z 1
�

f zð Þdz ¼ F �ð Þ � � ¼ 0

hence � ¼ F�1 �ð Þ when the solution is unique. If the solution is not unique then there exists a range of
quantiles, each of which is equally valid. Taking the smallest value of such a range ensures that the
empirical quantile function is left-continuous. Therefore obtaining the � th quantile of a distribution F
can be achieved by minimizing the expected value of the loss function �� .

This idea of obtaining the quantile by solving an optimization problem can be extended to finding the
� th sample quantile. Given a vector of n observed values, y, from some distribution the empirical

distribution function, Fn �ð Þ ¼ n�1
Xn
i¼1
I yi � �ð Þ provides an estimate of the unknown distribution

function F giving an expected loss of

E �� y� �ð Þð Þ ¼ n�1
Xn
i¼1
�� yi � �ð Þ

and therefore the problem of finding the � th sample quantile, �̂ �ð Þ, can be expressed as finding the
solution to the problem

minimize
�2R

Xn
i¼1
�� yi � �ð Þ

effectively replacing the operation of sorting, usually required when obtaining a sample quantile, with
an optimization.

2.7.2 From least squares to quantile regression

Given the vector y it is a well known result that the sample mean, ŷ, solves the least squares problem

minimize
�2R

Xn
i¼1

yi � �ð Þ2:

This result leads to least squares regression where, given design matrix X and defining the conditional
mean of y as � Xð Þ ¼ X�, an estimate of � is obtained from the solution to

minimize
�2Rp

Xn
i¼1

yi � xTi �
� �2

:

Quantile regression can be derived in a similar manner by specifying the � th conditional quantile as
Qy � jXð Þ ¼ X� �ð Þ and estimating � �ð Þ as the solution to

minimize
�2Rp

Xn
i¼1
�� yi � xTi �
� �

: ð10Þ
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2.7.3 Quantile regression as a linear programming problem

By introducing 2n slack variables, u ¼ ui : i ¼ 1; 2; . . . ; nf g and v ¼ ui : i ¼ 1; 2; . . . ; nf g, the quantile
regression minimization problem, (10), can be expressed as a linear programming (LP) problem, with
primal and associated dual formulations

(a) Primal form

minimize
u;v;�ð Þ2Rn

þ�Rn
þ�Rp

�eTuþ 1� �ð ÞeTv subject to y ¼ X� þ u� v ð11Þ

where e is a vector of length n, where each element is 1.

If ri denotes the ith residual, ri ¼ yi � xTi �, then the slack variables, u; vð Þ, can be thought as
corresponding to the absolute value of the positive and negative residuals respectively with

ui ¼ ri if ri > 0
0 otherwise



vi ¼ �ri if ri < 0

0 otherwise



(b) Dual form

The dual formulation of (11) is given by

maximize
d

yTd subject to XTd ¼ 0; d 2 � � 1; �½ �n

which, on setting a ¼ dþ 1� �ð Þe, is equivalent to

maximize
a

yTa subject to XTa ¼ 1� �ð ÞXTe; a 2 0; 1½ �n ð12Þ

(c) Canonical form

Linear programming problems are often described in a standard way, called the canonical form.
The canonical form of an LP problem is

minimize
z

cTz subject to ll � z
Az


 �
� lu:

Letting 0p denote a vector of p zeros 
1p denote a vector of p arbitarily small or large values,
In�n denote the n� n identity matrix, c ¼ a; bf g denote the row vector constructed by
concatenating the elements of vector b to the elements of vector a and C ¼ A;B½ � denote the
matrix constructed by concatenating the columns of matrix B onto the columns of matrix A then
setting

cT ¼ 0p; �eT; 1� �ð ÞeT
� 

zT ¼ �T; uT; vTf g
A ¼ X; In�n;�In�n½ � b ¼ y
lu ¼ þ1p;1n;1n; y

� 
ll ¼ �1p; 0n; 0n; y

� 
gives the quantile regression LP problem as described in (11).

Once expressed as an LP problem the parameter estimates �̂ �ð Þ can be obtained in a number of ways,
for example via the inertia-controlling method of Gill and Murray (1978) (see E04MFF/E04MFA), the
simplex method or an interior point method as used by G02QFF and G02QGF.

2.7.4 Estimation of the covariance matrix

Koenker (2005) shows that the limiting covariance matrix of
ffiffiffi
n
p

�̂ �ð Þ � � �ð Þ
� �

is of the form of a

Huber Sandwich. Therefore, under the assumption of Normally distributed errorsffiffiffi
n
p

�̂ �ð Þ � � �ð Þ
� �

� N 0; � 1� �ð ÞHn �ð Þ�1JnHn �ð Þ�1
� �

ð13Þ

where
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Jn ¼ n�1
Xn
i¼1
xix

T
i

Hn �ð Þ ¼ lim
n!1

n�1
Xn
i¼1
xix

T
i fi Qyi � jxið Þ
� �

and fi Qyi � jxið Þ
� �

denotes the conditional density of the response y evaluated at the � th conditional
quantile.

More generally, the asymptotic covariance matrix for �̂ �1ð Þ; �̂ �1ð Þ; . . . ; �̂ �nð Þ has blocks defined by

cov
ffiffiffi
n
p

�̂ �ið Þ � � �ið Þ
� �

;
ffiffiffi
n
p

�̂ �j
� �
� � �j

� �� �� �
¼ min �i; �j

� �
� �i�j

� �
Hn �ið Þ�1JnHn �j

� ��1 ð14Þ

Under the assumption of independent, identically distributed (iid) errors, (13) simplifies toffiffiffi
n
p

�̂ �ð Þ � � �ð Þ
� �

� N 0; � 1� �ð Þs �ð Þ2 XTX
� ��1� �

where s �ð Þ is the sparsity function, given by

s �ð Þ ¼ 1

f F�1 �ð Þð Þ

a similar simplification occurs with (14).

In cases where the assumption of iid errors does not hold, Powell (1991) suggests using a kernel
estimator of the form

Ĥn �ð Þ ¼ ncnð Þ�1
Xn
i¼1
K

yi � xTi �̂ �ð Þ
cn

 !
xix

T
i

for some bandwidth parameter cn satisfying lim
n!1

cn ! 0 and lim
n!1

ffiffiffi
n
p

cn !1 and Hendricks and

Koenker (1991) suggest a method based on an extension of the idea of sparsity.

Rather than use an asymptotic estimate of the covariance matrix, it is also possible to use bootstrapping.
Roughly speaking the original data is resampled and a set of parameter estimates obtained from each
new sample. A sample covariance matrix is then constructed from the resulting matrix of parameter
estimates.

2.8 Latent Variable Methods

Regression by means of projections to latent structures also known as partial least squares, is a latent
variable linear model suited to data for which:

the number of x-variables is high compared to the number of observations;

x-variables and/or y-variables are multicollinear.

Latent variables are linear combinations of x-variables that explain variance in x and y-variables. These
latent variables, known as factors, are extracted iteratively from the data. A choice of the number of
factors to include in a model can be made by considering diagnostic statistics such as the variable
influence on projections (VIP).

2.9 LARS, LASSO and Forward Stagewise Regression

Least Angle Regression (LARS), Least Absolute Shrinkage Selection Operator (LASSO) and forward
stagewise regression are three closely related regression techniques. Of the three, only LASSO has an
easily accessible mathematical description suitable for being summarised here. A full description of the
all three methods and the relationship between them can be found in Efron et al. (2004) and the
references there in.

Given a vector of n observed values, y ¼ yi : i ¼ 1; 2; . . . ; nf g and an n� p design matrix X, where the
jth column of X, denoted xj, is a vector of length n representing the jth independent variable xj,
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standardized such that
Xn
i¼1
xij ¼ 0, and

Xn
i¼1
x2ij ¼ 1 and a set of model parameters � to be estimated from

the observed values, the LASSO model of Tibshirani (1996) is given by

minimize
�;�2Rp

y� ��XT�
�� ��2 subject to �k k1 � t ð15Þ

for a given value of t, where � ¼ �y ¼ n�1
Xn
i¼1
yi. The positive LASSO model is the same as the standard

LASSO model, given above, with the added constraint that

�j � 0; j ¼ 1; 2; . . . ; p:

Rather than solve (15) for a given value of t, Efron et al. (2004) defined an algorithm that returns a full
solution path for all possible values of t. It turns out that this path is piecewise linear with a finite
number of pieces, denoted K, corresponding to K sets of parameter estimates.

3 Recommendations on Choice and Use of Available Routines

3.1 Correlation

3.1.1 Product-moment correlation

Let SSx be the sum of squares of deviations from the mean, �x, for the variable x for a sample of size n,
i.e.,

SSx ¼
Xn
i¼1

xi � �xð Þ2

and let SCxy be the cross-products of deviations from the means, �x and �y, for the variables x and y for
a sample of size n, i.e.,

SCxy ¼
Xn
i¼1

xi � �xð Þ yi � �yð Þ:

Then the sample covariance of x and y is

cov x; yð Þ ¼ SCxy

n� 1ð Þ

and the product-moment correlation coefficient is

r ¼ cov x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var xð Þ var yð Þ

p ¼ SCxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSxSSy

p :

G02BAF computes the product-moment correlation coefficients.

G02BTF updates the sample sums of squares and cross-products and deviations from the means by the
addition/deletion of a (weighted) observation.

G02BUF computes the sample sums of squares and cross-products deviations from the means
(optionally weighted). The output from multiple calls to G02BUF can be combined via a call to
G02BZF, allowing large datasets to be summarised across multiple processing units.

G02BTF updates the sample sums of squares and cross-products and deviations from the means by the
addition/deletion of a (weighted) observation.

G02BWF computes the product-moment correlation coefficients from the sample sums of squares and
cross-products of deviations from the means.

The three routines compute only the upper triangle of the correlation matrix which is stored in a one-
dimensional array in packed form.
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G02BXF computes both the (optionally weighted) covariance matrix and the (optionally weighted)
correlation matrix. These are returned in two-dimensional arrays. (Note that G02BTF and G02BUF can
be used to compute the sums of squares from zero.)

G02BGF can be used to calculate the correlation coefficients for a subset of variables in the data
matrix.

3.1.2 Product-moment correlation with missing values

If there are missing values then G02BUF and G02BXF, as described above, will allow casewise
deletion by you giving the observation zero weight (compared with unit weight for an otherwise
unweighted computation).

Other routines also handle missing values in the calculation of unweighted product-moment correlation
coefficients. Casewise exclusion of missing values is provided by G02BBF while pairwise omission of
missing values is carried out by G02BCF. These two routines calculate a correlation matrix for all the
variables in the data matrix; similar output but for only a selected subset of variables is provided by
routines G02BHF and G02BJF respectively. As well as providing the Pearson product-moment
correlation coefficients, these routines also calculate the means and standard deviations of the variables,
and the matrix of sums of squares and cross-products of deviations from the means. For all four
routines you are free to select appropriate values for consideration as missing values, bearing in mind
the nature of the data and the possible range of valid values. The missing values for each variable may
be either different or alike and it is not necessary to specify missing values for all the variables.

3.1.3 Nonparametric correlation

There are five routines which perform nonparametric correlations, each of which is capable of
producing both Spearman's rank order and Kendall's tau correlation coefficients. The basic underlying
concept of both these methods is to replace each observation by its corresponding rank or order within
the observations on that variable, and the correlations are then calculated using these ranks.

It is obviously more convenient to order the observations and calculate the ranks for a particular
variable just once, and to store these ranks for subsequent use in calculating all coefficients involving
that variable; this does however require an amount of store of the same size as the original data matrix,
which in some cases might be excessive. Accordingly, some routines calculate the ranks only once, and
replace the input data matrix by the matrix of ranks, which are then also made available to you on exit
from the routine, while others preserve the data matrix and calculate the ranks a number of times within
the routine; the ranks of the observations are not provided as output by routines which work in the latter
way. If it is possible to arrange the program in such a way that the first technique can be used, then
efficiency of timing is achieved with no additional storage, whereas in the second case, it is necessary
to have a second matrix of the same size as the data matrix, which may not be acceptable in certain
circumstances; in this case it is necessary to reach a compromise between efficiency of time and of
storage, and this may well be dependent upon local conditions.

Routines G02BNF and G02BQF both calculate Kendall's tau and/or Spearman's rank order correlation
coefficients taking no account of missing values; G02BNF does so by calculating the ranks of each
variable only once, and replacing the data matrix by the matrix of ranks, whereas G02BQF calculates
the ranks of each variable several times. Routines G02BPF and G02BRF provide the same output, but
treat missing values in a ‘casewise’ manner (see above); G02BPF calculates the ranks of each variable
only once, and overwrites the data matrix of ranks, while G02BRF determines the ranks of each
variable several times. For ‘pairwise’ omission of missing data (see above), the routine G02BSF
provides Kendall and/or Spearman coefficients.

Since G02BNF and G02BPF order the observations and calculate the ranks of each variable only once,
then if there are M variables involved, there are only M separate ‘ranking’ operations; this should be
contrasted with the method used by routines G02BQF and G02BRF which perform M M � 1ð Þ=2þ 1
similar ranking operations. These ranking operations are by far the most time-consuming parts of these
nonparametric routines, so for a matrix of as few as five variables, the time taken by one of the slower
routines can be expected to be at least a factor of two slower than the corresponding efficient routine; as
the number of variables increases, so this relative efficiency factor increases. Only one routine,
G02BSF, is provided for pairwise missing values, and this routine carries out M M � 1ð Þ separate
rankings; since by the very nature of the pairwise method it is necessary to treat each pair of variables
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separately and rank them individually, it is impossible to reduce this number of operations, and so no
alternative routine is provided.

3.1.4 Partial correlation

G02BYF computes a matrix of partial correlation coefficients from the correlation coefficients or
variance-covariance matrix returned by G02BXF.

3.1.5 Robust correlation

G02HLF and G02HMF compute robust estimates of the variance-covariance matrix by solving the
equations

1

n

Xn
i¼1
w zik k2
� �

zi ¼ 0

and

1

n

Xn
i¼1
u zik k2
� �

ziz
T
i � v zik k2

� �
I ¼ 0;

as described in Section 2.1.4 for user-supplied functions w and u. Two options are available for v, either
v tð Þ ¼ 1 for all t or v tð Þ ¼ u tð Þ.
G02HMF requires only the function w and u to be supplied while G02HLF also requires their
derivatives.

In general G02HLF will be considerably faster than G02HMF and should be used if derivatives are
available.

G02HKF computes a robust variance-covariance matrix for the following functions:

u tð Þ ¼ au=t2 if t < a2u
u tð Þ ¼ 1 if a2u � t � b2u
u tð Þ ¼ bu=t2 if t > b2u

and

w tð Þ ¼ 1 if t � cw
w tð Þ ¼ cw=t if t > cw

for constants au, bu and cw.

These functions solve a minimax space problem considered by Huber (1981). The values of au, bu and
cw are calculated from the fraction of gross errors; see Hampel et al. (1986) and Huber (1981).

To compute a correlation matrix from the variance-covariance matrix G02BWF may be used.

3.1.6 Nearest correlation matrix

A number of routines are provided to calculate a nearest correlation matrix. The choice of routine will
depend on what definition of ‘nearest’ is required and whether there is any particular structure desired
in the resulting correlation matrix.

G02AAF computes the nearest correlation matrix in the Frobenius norm, using the method of Qi and
Sun (2006), modified by Borsdorf and Higham (2010). An extension to this routine is G02ABF which
allows a row and column weighted Frobenius norm to be used as well as a bound on the minimum
eigenvalue of the resulting correlation matrix to be specified.

If elementwise weighting is required G02AJF can be used which again computes the nearest correlation
matrix in the Frobenius norm and provides a bound on the eigenvalues. It should be noted, that this
routine is computationally expensive. If it is desired to fix elements in the input matrix then you should
consider a shrinking algorithm.

G02ANF uses the shrinking method of Higham et al. (2014) to fix the leading block of the input.
However, it does not compute the nearest correlation matrix in the Frobenius norm but finds the

G02 – Correlation and Regression Analysis Introduction – G02

Mark 26 G02.21



smallest relative perturbation to the unfixed elements to give a positive definite output. This
functionality is extended in G02APF which allows an arbitrary target matrix to be specified via
elementwise weights.

G02AEF computes the factor loading matrix, allowing a correlation matrix with a k-factor structure to
be computed.

See also the Pennon optimization suite in Chapter E04 which can be used to solve a variety of nearest
correlation matrix problems. See for example Section 10 in E04RFF.

3.2 Regression

3.2.1 Simple linear regression

Four routines are provided for simple linear regressions: G02CAF and G02CCF perform the simple
linear regression with a constant term (equation (1) above), while G02CBF and G02CDF fit the simple
linear regression with no constant term (equation (2) above). Two of these routines, G02CCF and
G02CDF, take account of missing values, which the others do not. In these two routines, an observation
is omitted if it contains a missing value for either the dependent or the independent variable; this is
equivalent to both the casewise and pairwise methods, since both are identical when there are only two
variables involved. Input to these routines consists of the raw data, and output includes the coefficients,
their standard errors and t values for testing the significance of the coefficients; the F value for testing
the overall significance of the regression is also given.

3.2.2 Ridge regression

G02KAF calculates a ridge regression, optimizing the ridge parameter according to one of four
prediction error criteria.

G02KBF calculates ridge regressions for a given set of ridge parameters.

3.2.3 Polynomial regression and nonlinear regression

No routines are currently provided in this chapter for polynomial regression. If you wish to perform
polynomial regressions you have three alternatives: you can use the multiple linear regression routines,
G02DAF, with a set of independent variables which are in fact simply the same single variable raised to
different powers, or you can use the routine G04EAF to compute orthogonal polynomials which can
then be used with G02DAF, or you can use the routines in Chapter E02 (Curve and Surface Fitting)
which fit polynomials to sets of data points using the techniques of orthogonal polynomials. This latter
course is to be preferred, since it is more efficient and liable to be more accurate, but in some cases
more statistical information may be required than is provided by those routines, and it may be necessary
to use the routines of this chapter.

More general nonlinear regression models may be fitted using the optimization routines in Chapter E04,
which contains routines to minimize the functionXn

i¼1
e2i

where the regression parameters are the variables of the minimization problem.

3.2.4 Multiple linear regression – general linear model

G02DAF fits a general linear regression model using the QR method and an SVD if the model is not of
full rank. The results returned include: residual sum of squares, parameter estimates, their standard
errors and variance-covariance matrix, residuals and leverages. There are also several routines to
modify the model fitted by G02DAF and to aid in the interpretation of the model.

G02DCF adds or deletes an observation from the model.

G02DDF computes the parameter estimates, and their standard errors and variance-covariance matrix
for a model that is modified by G02DCF, G02DEF or G02DFF.

G02DEF adds a new variable to a model.
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G02DFF drops a variable from a model.

G02DGF fits the regression to a new dependent variable, i.e., keeping the same independent variables.

G02DKF calculates the estimates of the parameters for a given set of constraints, (e.g., parameters for
the levels of a factor sum to zero) for a model which is not of full rank and the SVD has been used.

G02DNF calculates the estimate of an estimable function and its standard error.

Note: G02DEF also allows you to initialize a model building process and then to build up the model
by adding variables one at a time.

If you wish to use methods based on forming the cross-products/correlation matrix (i.e., (XTX) matrix)
rather than the recommended use of G02DAF then the following routines should be used.

For regression through the origin (i.e., no constant) G02CHF preceded by:

G02BDF (no missing values, all variables)

G02BKF (no missing values, subset of variables)

G02BEF (casewise missing values, all variables)

G02BLF(casewise missing values, subset of variables)

G02BFF* (pairwise missing values, all variables)

G02BMF* (pairwise missing values, subset of variables)

For regression with intercept (i.e., with constant) G02CGF preceded by:

G02BAF (no missing values, all variables)

G02BGF (no missing values, subset of variables)

G02BBF (casewise missing values, all variables)

G02BHF (casewise missing values, subset of variables)

G02BCF* (pairwise missing values, all variables)

G02BJF* (pairwise missing values, subset of variables)

Note that the four routines using pairwise deletion of missing value (marked with �) should be used
with great caution as the use of this method can lead to misleading results, particularly if a significant
proportion of values are missing.

Both G02CGF and G02CHF require that the correlations/sums of squares involving the dependent
variable must appear as the last row/column. Because the layout of the variables in your data array may
not be arranged in this way, two routines, G02CEF and G02CFF, are provided for rearranging the rows
and columns of vectors and matrices. G02CFF simply reorders the rows and columns while G02CEF
forms smaller vectors and matrices from larger ones.

Output from G02CGF and G02CHF consists of the coefficients, their standard errors, R2-values, t and
F statistics.

3.2.5 Selecting regression models

To aid the selection of a regression model the following routines are available.

G02EAF computes the residual sums of squares for all possible regressions for a given set of dependent
variables. The routine allows some variables to be forced into all regressions.

G02ECF computes the values of R2 and Cp from the residual sums of squares as provided by G02EAF.

G02EEF enables you to fit a model by forward selection. You may call G02EEF a number of times. At
each call the routine will calculate the changes in the residual sum of squares from adding each of the
variables not already included in the model, select the variable which gives the largest change and then
if the change in residual sum of squares meets the given criterion will add it to the model.
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G02EFF uses a full stepwise selection to choose a subset of the explanatory variables. The method
repeatedly applies a forward selection step followed by a backward elimination step until neither step
updates the current model.

3.2.6 Residuals

G02FAF computes the following standardized residuals and measures of influence for the residuals and
leverages produced by G02DAF:

(i) Internally studentized residual;

(ii) Externally studentized residual;

(iii) Cook's D statistic;

(iv) Atkinson's T statistic.

G02FCF computes the Durbin–Watson test statistic and bounds for its significance to test for serial
correlation in the errors, ei.

3.2.7 Robust regression

For robust regression using M-estimates instead of least squares the routine G02HAF will generally be
suitable. G02HAF provides a choice of four  -functions (Huber's, Hampel's, Andrew's and Tukey's)
plus two different weighting methods and the option not to use weights. If other weights or different
 -functions are needed the routine G02HDF may be used. G02HDF requires you to supply weights, if
required, and also routines to calculate the  -function and, optionally, the �-function. G02HBF can be
used in calculating suitable weights. The routine G02HFF can be used after a call to G02HDF in order
to calculate the variance-covariance estimate of the estimated regression coefficients.

For robust regression, using least absolute deviation, E02GAF can be used.

3.2.8 Generalized linear models

There are four routines for fitting generalized linear models. The output includes: the deviance,
parameter estimates and their standard errors, fitted values, residuals and leverages.

G02GAF Normal distribution.

G02GBF binomial distribution.

G02GCF Poisson distribution.

G02GDF gamma distribution.

While G02GAF can be used to fit linear regression models (i.e., by using an identity link) this is not
recommended as G02DAF will fit these models more efficiently. G02GCF can be used to fit log-linear
models to contingency tables.

In addition to the routines to fit the models there is one routine to predict from the fitted model and two
routines to aid interpretation when the fitted model is not of full rank, i.e., aliasing is present.

G02GPF computes a predicted value and its associated standard error based on a previously fitted
generalized linear model.

G02GKF computes parameter estimates for a set of constraints, (e.g., sum of effects for a factor is
zero), from the SVD solution provided by the fitting routine.

G02GNF calculates an estimate of an estimable function along with its standard error.

3.2.9 Linear mixed effects regression

There are four routines for fitting linear mixed effects regression.

G02JAF and G02JDF uses restricted maximum likelihood (REML) to fit the model.

G02JBF and G02JEF uses maximum likelihood to fit the model.
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For all routines the output includes: either the maximum likelihood or restricted maximum likelihood
and the fixed and random parameter estimates, along with their standard errors. Whilst it is possible to
fit a hierachical model using G02JAF or G02JBF, G02JDF and G02JEF allow the model to be specified
in a more intuitive way. G02JCF must be called prior to calling G02JDF or G02JEF.

As the estimates of the variance components are found using an iterative procedure initial values must
be supplied for each �. In all four routines you can either specify these initial values, or allow the
routine to calculate them from the data using minimum variance quadratic unbiased estimation
(MIVQUE0). Setting the maximum number of iterations to zero in any of the routines will return the
corresponding likelihood, parameter estimates and standard errors based on these initial values.

3.2.10Linear quantile regression

Two routines are provided for performing linear quantile regression, G02QFF and G02QGF. Of these,
G02QFF provides a simplified interface to G02QGF, where many of the input parameters have been
given default values and the amount of output available has been reduced.

Prior to calling G02QGF the optional parameter array must be initialized by calling G02ZKF with
OPTSTR set to Initialize. Once these arrays have been initialized G02ZLF can be called to query the
value of an optional parameter.

3.2.11 Partial Least Squares (PLS)

G02LAF calculates a nonlinear, iterative PLS by using singular value decomposition.

G02LBF calculates a nonlinear, iterative PLS by using Wold's method.

G02LCF calculates parameter estimates for a given number of PLS factors.

G02LDF calculates predictions given a PLS model.

3.2.12LARS, LASSO and Forward Stagewise Regression

Two routines for fitting a LARS, LASSO or forward stagewise regression are supplied: G02MAF and
G02MBF. The difference between the two routines is in the way that the data, X and y, are supplied.
The first routine, G02MAF takes X and y directly, whereas G02MBF takes the data in the form of the
cross-products: XTX, XTy and yTy. In most situations G02MAF will be the recommended routine as
the full data tends to be available. However when there is a large number of observations (i.e., n is
large) it might be preferable to split the data into smaller blocks and process one block at a time. In
such situations G02BUF and G02BZF can be used to construct the required cross-products and
G02MBF called to fit the required model.

Both G02MAF and G02MBF return K sets of parameter estimates, which, because of it's piecewise
linear nature, define the full LARS, LASSO or forward stagewise regression solution path. However,
parameter estimates are sometimes required at points along the solution path that differ from those
returned by G02MAF and G02MBF, for example when performing a cross-validation. G02MCF will
return the parameter estimates in such cases.

4 Functionality Index

Computes a correlation matrix from an approximate one using a specified target matrix... G02APF

Computes a correlation matrix with fixed submatrix ........................................................... G02ANF

Computes the nearest correlation matrix using element-wise weights ................................. G02AJF

Computes the nearest correlation matrix using the k-factor model...................................... G02AEF

Computes the nearest correlation matrix using the method of Qi and Sun,
augmented G02AAF to incorporate weights and bounds ................................................ G02ABF
unweighted ...................................................................................................................... G02AAF

Correlation-like coefficients,
all variables,

casewise treatment of missing values ........................................................................ G02BEF
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no missing values ...................................................................................................... G02BDF
pairwise treatment of missing values ......................................................................... G02BFF

subset of variables,
casewise treatment of missing values ........................................................................ G02BLF
no missing values ...................................................................................................... G02BKF
pairwise treatment of missing values ......................................................................... G02BMF

Generalized linear models,
binomial errors................................................................................................................ G02GBF
computes estimable function ........................................................................................... G02GNF
gamma errors .................................................................................................................. G02GDF
Normal errors.................................................................................................................. G02GAF
Poisson errors ................................................................................................................. G02GCF
prediction ........................................................................................................................ G02GPF
transform model parameters ............................................................................................ G02GKF

Hierarchical mixed effects regression,
initiation.......................................................................................................................... G02JCF
using maximum likelihood.............................................................................................. G02JEF
using restricted maximum likelihood .............................................................................. G02JDF

Least angle regression (includes LASSO),
Additional parameter calculation..................................................................................... G02MCF
Model fitting,

Cross-product matrix.................................................................................................. G02MBF
Raw data .................................................................................................................... G02MAF

Linear mixed effects regression,
via maximum likelihood (ML)........................................................................................ G02JBF
via restricted maximum likelihood (REML) ................................................................... G02JAF

Multiple linear regression,
from correlation coefficients ........................................................................................... G02CGF
from correlation-like coefficients..................................................................................... G02CHF

Multiple linear regression/General linear model,
add/delete observation from model ................................................................................. G02DCF
add independent variable to model ................................................................................. G02DEF
computes estimable function ........................................................................................... G02DNF
delete independent variable from model ......................................................................... G02DFF
general linear regression model ...................................................................................... G02DAF
regression for new dependent variable............................................................................ G02DGF
regression parameters from updated model ..................................................................... G02DDF
transform model parameters ............................................................................................ G02DKF

Non-parametric rank correlation (Kendall and/or Spearman):
missing values,

casewise treatment of missing values,
overwriting input data ........................................................................................... G02BPF
preserving input data............................................................................................. G02BRF

pairwise treatment of missing values ......................................................................... G02BSF
no missing values,

overwriting input data ................................................................................................ G02BNF
preserving input data.................................................................................................. G02BQF

Partial least squares,
calculates predictions given an estimated PLS model..................................................... G02LDF
fits a PLS model for a given number of factors............................................................. G02LCF
orthogonal scores using SVD.......................................................................................... G02LAF
orthogonal scores using Wold's method .......................................................................... G02LBF
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Product-moment correlation,
correlation coefficients, all variables,

casewise treatment of missing values ........................................................................ G02BBF
no missing values ...................................................................................................... G02BAF
pairwise treatment of missing values ......................................................................... G02BCF

correlation coefficients, subset of variables,
casewise treatment of missing values ........................................................................ G02BHF
no missing values ...................................................................................................... G02BGF
pairwise treatment of missing values ......................................................................... G02BJF

correlation matrix,
compute correlation and covariance matrices............................................................. G02BXF
compute from sum of squares matrix ........................................................................ G02BWF
compute partial correlation and covariance matrices.................................................. G02BYF

sum of squares matrix,
combine...................................................................................................................... G02BZF
compute...................................................................................................................... G02BUF
update ........................................................................................................................ G02BTF

Quantile regression,
linear,

comprehensive............................................................................................................ G02QGF
simple ........................................................................................................................ G02QFF

Residuals,
Durbin–Watson test......................................................................................................... G02FCF
standardized residuals and influence statistics................................................................. G02FAF

Ridge regression,
ridge parameter(s) supplied ............................................................................................. G02KBF
ridge parameter optimized............................................................................................... G02KAF

Robust correlation,
Huber's method ............................................................................................................... G02HKF
user-supplied weight function only ................................................................................. G02HMF
user-supplied weight function plus derivatives................................................................ G02HLF

Robust regression,
compute weights for use with G02HDF ......................................................................... G02HBF
standard M-estimates ...................................................................................................... G02HAF
user-supplied weight functions ........................................................................................ G02HDF
variance-covariance matrix following G02HDF .............................................................. G02HFF

Selecting regression model,
all possible regressions ................................................................................................... G02EAF
forward selection............................................................................................................. G02EEF
R2 and Cp statistics ........................................................................................................ G02ECF

Service routines,
for multiple linear regression,

reorder elements from vectors and matrices .............................................................. G02CFF
select elements from vectors and matrices................................................................. G02CEF

general option getting routine ......................................................................................... G02ZLF
general option setting routine.......................................................................................... G02ZKF

Simple linear regression,
no intercept ..................................................................................................................... G02CBF
no intercept with missing values..................................................................................... G02CDF
with intercept .................................................................................................................. G02CAF
with intercept and with missing values........................................................................... G02CCF

Stepwise linear regression,
Clarke's sweep algorithm ................................................................................................ G02EFF

G02 – Correlation and Regression Analysis Introduction – G02

Mark 26 G02.27



5 Auxiliary Routines Associated with Library Routine Arguments

G02EFH nagf_correg_linregm_fit_stepwise_sample_monfun
See the description of the argument MONFUN in G02EFF.

G02HDZ nagf_correg_robustm_user_dummy_chi
See the description of the argument CHI in G02HDF.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

G02AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02AAF computes the nearest correlation matrix, in the Frobenius norm, to a given square, input
matrix.

2 Specification

SUBROUTINE G02AAF (G, LDG, N, ERRTOL, MAXITS, MAXIT, X, LDX, ITER,
FEVAL, NRMGRD, IFAIL)

&

INTEGER LDG, N, MAXITS, MAXIT, LDX, ITER, FEVAL, IFAIL
REAL (KIND=nag_wp) G(LDG,N), ERRTOL, X(LDX,N), NRMGRD

3 Description

A correlation matrix may be characterised as a real square matrix that is symmetric, has a unit diagonal
and is positive semidefinite.

G02AAF applies an inexact Newton method to a dual formulation of the problem, as described by Qi
and Sun (2006). It applies the improvements suggested by Borsdorf and Higham (2010).

4 References

Borsdorf R and Higham N J (2010) A preconditioned (Newton) algorithm for the nearest correlation
matrix IMA Journal of Numerical Analysis 30(1) 94–107

Qi H and Sun D (2006) A quadratically convergent Newton method for computing the nearest
correlation matrix SIAM J. Matrix AnalAppl 29(2) 360–385

5 Arguments

1: GðLDG;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: G, the initial matrix.

On exit: a symmetric matrix 1
2 GþGTð Þ with the diagonal set to I.

2: LDG – INTEGER Input

On entry: the first dimension of the array G as declared in the (sub)program from which
G02AAF is called.

Constraint: LDG � N.

3: N – INTEGER Input

On entry: the size of the matrix G.

Constraint: N > 0.

4: ERRTOL – REAL (KIND=nag_wp) Input

On entry: the termination tolerance for the Newton iteration. If ERRTOL � 0:0 then
N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

is used.
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5: MAXITS – INTEGER Input

On entry: MAXITS specifies the maximum number of iterations used for the iterative scheme
used to solve the linear algebraic equations at each Newton step.

If MAXITS � 0, 2� N is used.

6: MAXIT – INTEGER Input

On entry: specifies the maximum number of Newton iterations.

If MAXIT � 0, 200 is used.

7: XðLDX;NÞ – REAL (KIND=nag_wp) array Output

On exit: contains the nearest correlation matrix.

8: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G02AAF is called.

Constraint: LDX � N.

9: ITER – INTEGER Output

On exit: the number of Newton steps taken.

10: FEVAL – INTEGER Output

On exit: the number of function evaluations of the dual problem.

11: NRMGRD – REAL (KIND=nag_wp) Output

On exit: the norm of the gradient of the last Newton step.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDG ¼ valueh i and N ¼ valueh i.
Constraint: LDG � N.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.
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On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

Newton iteration fails to converge in valueh i iterations.

IFAIL ¼ 3

Machine precision is limiting convergence.
The array returned in X may still be of interest.

IFAIL ¼ 4

An intermediate eigenproblem could not be solved. This should not occur. Please contact NAG
with details of your call.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The returned accuracy is controlled by ERRTOL and limited by machine precision.

8 Parallelism and Performance

G02AAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02AAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Arrays are internal ly al located by G02AAF. The total s ize of these arrays is
11� Nþ 3� N� Nþmax 2� N� Nþ 6� Nþ 1; 120þ 9� Nð Þ real elements and 5� Nþ 3 integer
elements.
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10 Example

This example finds the nearest correlation matrix to:

G ¼
2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

0B@
1CA

10.1 Program Text

Program g02aafe

! G02AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02aaf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errtol, nrmgrd
Integer :: feval, i, ifail, iter, ldg, ldx, &

maxit, maxits, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: g(:,:), x(:,:)
! .. Executable Statements ..

Write (nout,*) ’G02AAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n

ldg = n
ldx = n
Allocate (g(ldg,n),x(ldx,n))

! Read in the matrix G
Read (nin,*)(g(i,1:n),i=1,n)

! Use the defaults for ERRTOL, MAXITS and MAXIT
errtol = 0.0E0_nag_wp
maxits = 0
maxit = 0

! Calculate nearest correlation matrix
ifail = 0
Call g02aaf(g,ldg,n,errtol,maxits,maxit,x,ldx,iter,feval,nrmgrd,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,n,n,x,ldx,’Nearest Correlation Matrix’,ifail)
Write (nout,*)
Write (nout,99999) ’ Number of Newton steps taken:’, iter
Write (nout,99998) ’ Number of function evaluations:’, feval

99999 Format (1X,A,I11)
99998 Format (1X,A,I9)

End Program g02aafe
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10.2 Program Data

G02AAF Example Program Data
4 :: N
2.0 -1.0 0.0 0.0

-1.0 2.0 -1.0 0.0
0.0 -1.0 2.0 -1.0
0.0 0.0 -1.0 2.0 :: End of G

10.3 Program Results

G02AAF Example Program Results

Nearest Correlation Matrix
1 2 3 4

1 1.0000 -0.8084 0.1916 0.1068
2 -0.8084 1.0000 -0.6562 0.1916
3 0.1916 -0.6562 1.0000 -0.8084
4 0.1068 0.1916 -0.8084 1.0000

Number of Newton steps taken: 3
Number of function evaluations: 4
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NAG Library Routine Document

G02ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02ABF computes the nearest correlation matrix, in the Frobenius norm or weighted Frobenius norm,
and optionally with bounds on the eigenvalues, to a given square, input matrix.

2 Specification

SUBROUTINE G02ABF (G, LDG, N, OPT, ALPHA, W, ERRTOL, MAXITS, MAXIT, X,
LDX, ITER, FEVAL, NRMGRD, IFAIL)

&

INTEGER LDG, N, MAXITS, MAXIT, LDX, ITER, FEVAL, IFAIL
REAL (KIND=nag_wp) G(LDG,N), ALPHA, W(N), ERRTOL, X(LDX,N), NRMGRD
CHARACTER(1) OPT

3 Description

Finds the nearest correlation matrix X by minimizing 1
2 G�Xk k2 where G is an approximate

correlation matrix.

The norm can either be the Frobenius norm or the weighted Frobenius norm 1
2 W

1
2 G�Xð ÞW 1

2

��� ���2
F
.

You can optionally specify a lower bound on the eigenvalues, �, of the computed correlation matrix,
forcing the matrix to be positive definite, 0 < � < 1.

Note that if the weights vary by several orders of magnitude from one another the algorithm may fail to
converge.

4 References

Borsdorf R and Higham N J (2010) A preconditioned (Newton) algorithm for the nearest correlation
matrix IMA Journal of Numerical Analysis 30(1) 94–107

Qi H and Sun D (2006) A quadratically convergent Newton method for computing the nearest
correlation matrix SIAM J. Matrix AnalAppl 29(2) 360–385

5 Arguments

1: GðLDG;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: G, the initial matrix.

On exit: G is overwritten.

2: LDG – INTEGER Input

On entry: the first dimension of the array G as declared in the (sub)program from which G02ABF
is called.

Constraint: LDG � N.
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3: N – INTEGER Input

On entry: the order of the matrix G.

Constraint: N > 0.

4: OPT – CHARACTER(1) Input

On entry: indicates the problem to be solved.

OPT ¼ A
The lower bound problem is solved.

OPT ¼ W
The weighted norm problem is solved.

OPT ¼ B
Both problems are solved.

Constraint: OPT ¼ A , W or B .

5: ALPHA – REAL (KIND=nag_wp) Input

On entry: the value of �.

If OPT ¼ W , ALPHA need not be set.

Constraint: 0:0 < ALPHA < 1:0.

6: WðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the square roots of the diagonal elements of W , that is the diagonal of W
1
2 .

If OPT ¼ A , W is not referenced and need not be set.

On exit: if OPT ¼ W or B , the array is scaled so 0 <WðiÞ � 1, for i ¼ 1; 2; . . . ; n.

Constraint: WðiÞ > 0:0, for i ¼ 1; 2; . . . ; n.

7: ERRTOL – REAL (KIND=nag_wp) Input

On entry: the termination tolerance for the Newton iteration. If ERRTOL � 0:0 then
N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

is used.

8: MAXITS – INTEGER Input

On entry: specifies the maximum number of iterations to be used by the iterative scheme to solve
the linear algebraic equations at each Newton step.

If MAXITS � 0, 2� N is used.

9: MAXIT – INTEGER Input

On entry: specifies the maximum number of Newton iterations.

If MAXIT � 0, 200 is used.

10: XðLDX;NÞ – REAL (KIND=nag_wp) array Output

On exit: contains the nearest correlation matrix.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02ABF
is called.

Constraint: LDX � N.
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12: ITER – INTEGER Output

On exit: the number of Newton steps taken.

13: FEVAL – INTEGER Output

On exit: the number of function evaluations of the dual problem.

14: NRMGRD – REAL (KIND=nag_wp) Output

On exit: the norm of the gradient of the last Newton step.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, all elements of W were not positive.

On entry, ALPHA ¼ valueh i.
Constraint: 0:0 < ALPHA < 1:0.

On entry, LDG ¼ valueh i and N ¼ valueh i.
Constraint: LDG � N.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, OPT 6¼ A , W or B .

IFAIL ¼ 2

Newton iteration fails to converge in valueh i iterations. Increase MAXIT or check the call to the
routine.

IFAIL ¼ 3

The machine precision is limiting convergence. In this instance the returned value of X may be
useful.

IFAIL ¼ 4

An intermediate eigenproblem could not be solved. This should not occur. Please contact NAG
with details of your call.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The returned accuracy is controlled by ERRTOL and limited by machine precision.

8 Parallelism and Performance

G02ABF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02ABF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Arrays are internal ly al located by G02ABF. The total s ize of these arrays is
12� Nþ 3� N� Nþmax 2� N� Nþ 6� Nþ 1; 120þ 9� Nð Þ real elements and 5� Nþ 3 integer
elements. All allocated memory is freed before return of G02ABF.

10 Example

This example finds the nearest correlation matrix to:

G ¼
2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

0B@
1CA

weighted by W
1
2 ¼ diag 100; 20; 20; 20ð Þ with minimum eigenvalue 0:02.

10.1 Program Text

Program g02abfe

! G02ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsyev, g02abf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

G02ABF NAG Library Manual

G02ABF.4 Mark 26



! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, errtol, nrmgrd
Integer :: feval, i, ifail, iter, ldg, ldx, &

lwork, maxit, maxits, n
Character (1) :: opt

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: eig(:), g(:,:), w(:), work(:), &

x(:,:)
! .. Executable Statements ..

Write (nout,*) ’G02ABF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size, opt and alpha
Read (nin,*) n, opt, alpha

ldg = n
ldx = n
lwork = 66*n
Allocate (g(ldg,n),w(n),x(ldx,n),eig(n),work(lwork))

! Read in the matrix G
Read (nin,*)(g(i,1:n),i=1,n)

! Read in the vector W
Read (nin,*) w(1:n)

! Use the defaults for ERRTOL, MAXITS and MAXIT
errtol = 0.0E0_nag_wp
maxits = 0
maxit = 0

! Calculate nearest correlation matrix
ifail = 0

Call g02abf(g,ldg,n,opt,alpha,w,errtol,maxits,maxit,x,ldx,iter,feval, &
nrmgrd,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,n,n,x,ldx,’Nearest Correlation Matrix X’, &

ifail)
Write (nout,*)
Write (nout,99999) ’Number of Newton steps taken:’, iter
Write (nout,99998) ’Number of function evaluations:’, feval

Write (nout,*)
Write (nout,99997) ’ALPHA: ’, alpha

ifail = 0
! The NAG name equivalent of dsyev is f08faf

Call dsyev(’N’,’U’,n,x,ldx,eig,work,lwork,ifail)
Write (nout,*)
Flush (nout)
Call x04caf(’General’,’ ’,1,n,eig,1,’Eigenvalues of X’,ifail)

99999 Format (1X,A,I11)
99998 Format (1X,A,I9)
99997 Format (1X,A,F37.3)

End Program g02abfe
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10.2 Program Data

G02ABF Example Program Data
4 ’B’ 0.02 :: N, OPT, ALPHA

2.0 -1.0 0.0 0.0
-1.0 2.0 -1.0 0.0
0.0 -1.0 2.0 -1.0
0.0 0.0 -1.0 2.0 :: End of G

100.0 20.0 20.0 20.0 :: W

10.3 Program Results

G02ABF Example Program Results

Nearest Correlation Matrix X
1 2 3 4

1 1.0000 -0.9187 0.0257 0.0086
2 -0.9187 1.0000 -0.3008 0.2270
3 0.0257 -0.3008 1.0000 -0.8859
4 0.0086 0.2270 -0.8859 1.0000

Number of Newton steps taken: 5
Number of function evaluations: 6

ALPHA: 0.020

Eigenvalues of X
1 2 3 4

1 0.0392 0.1183 1.6515 2.1910
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NAG Library Routine Document

G02AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02AEF computes the factor loading matrix associated with the nearest correlation matrix with k-factor
structure, in the Frobenius norm, to a given square, input matrix.

2 Specification

SUBROUTINE G02AEF (G, LDG, N, K, ERRTOL, MAXIT, X, LDX, ITER, FEVAL,
NRMPGD, IFAIL)

&

INTEGER LDG, N, K, MAXIT, LDX, ITER, FEVAL, IFAIL
REAL (KIND=nag_wp) G(LDG,N), ERRTOL, X(LDX,K), NRMPGD

3 Description

A correlation matrix C with k-factor structure may be characterised as a real square matrix that is
symmetric, has a unit diagonal, is posit ive semidefinite and can be writ ten as
C ¼ XXT þ diag I �XXTð Þ, where I is the identity matrix and X has n rows and k columns. X is
often referred to as the factor loading matrix.

G02AEF applies a spectral projected gradient method to the modified problem
min G�XXT þ diag XXT � Ið Þk kF such that xTi

�� ��
2
� 1, for i ¼ 1; 2; . . . ; n, where xi is the ith row

of the factor loading matrix, X, which gives us the solution.

4 References

Birgin E G, MartÕnez J M and Raydan M (2001) Algorithm 813: SPG–software for convex-
constrained optimization ACM Trans. Math. Software 27 340–349

Borsdorf R, Higham N J and Raydan M (2010) Computing a nearest correlation matrix with factor
structure. SIAM J. Matrix Anal. Appl. 31(5) 2603–2622

5 Arguments

1: GðLDG;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: G, the initial matrix.

On exit: a symmetric matrix 1
2 GþGTð Þ with the diagonal elements set to unity.

2: LDG – INTEGER Input

On entry: the first dimension of the array G as declared in the (sub)program from which G02AEF
is called.

Constraint: LDG � N.

3: N – INTEGER Input

On entry: n, the order of the matrix G.

Constraint: N > 0.
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4: K – INTEGER Input

On entry: k, the number of factors and columns of X.

Constraint: 0 < K � N.

5: ERRTOL – REAL (KIND=nag_wp) Input

On entry: the termination tolerance for the projected gradient norm. See references for further
details. If ERRTOL � 0:0 then 0:01 is used. This is often a suitable default value.

6: MAXIT – INTEGER Input

On entry: specifies the maximum number of iterations in the spectral projected gradient method.

If MAXIT � 0, 40000 is used.

7: XðLDX;KÞ – REAL (KIND=nag_wp) array Output

On exit: contains the matrix X.

8: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02AEF
is called.

Constraint: LDX � N.

9: ITER – INTEGER Output

On exit: the number of steps taken in the spectral projected gradient method.

10: FEVAL – INTEGER Output

On exit: the number of evaluations of G�XXT þ diag XXT � Ið Þk kF .

11: NRMPGD – REAL (KIND=nag_wp) Output

On exit: the norm of the projected gradient at the final iteration.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K ¼ valueh i and N ¼ valueh i.
Constraint: 0 < K � N.
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On entry, LDG ¼ valueh i and N ¼ valueh i.
Constraint: LDG � N.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

Spectral gradient method fails to converge in valueh i iterations.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The returned accuracy is controlled by ERRTOL and limited by machine precision.

8 Parallelism and Performance

G02AEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02AEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Arrays are internal ly al located by G02AEF. The tota l s ize of these arrays is
N� Nþ 4� N� K þ nbþ 3ð Þ � Nþ Nþ 50 real elements and 6� N integer elements. Here nb is
the block size required for optimal performance by F08FEF (DSYTRD) and F08FGF (DORMTR)
which are called internally. All allocated memory is freed before return of G02AEF.

See G03CAF for constructing the factor loading matrix from a known correlation matrix.
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10 Example

This example finds the nearest correlation matrix with k ¼ 2 factor structure to:

G ¼
2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

0B@
1CA

10.1 Program Text

Program g02aefe

! G02AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dgemm, g02aef, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: errtol, nrmpgd
Integer :: feval, i, ifail, iter, k, lda, ldg, &

ldx, maxit, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), g(:,:), x(:,:)
! .. Executable Statements ..

Write (nout,*) ’G02AEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n

lda = n
ldg = n
ldx = n
Allocate (a(lda,n),g(ldg,n),x(ldx,n))

! Read in the matrix G
Read (nin,*)(g(i,1:n),i=1,n)

! Use the defaults for ERRTOL and MAXIT
errtol = zero
maxit = 0

! Set k value
k = 2

! Calculate the nearest factor loading matrix
ifail = 0

Call g02aef(g,ldg,n,k,errtol,maxit,x,ldx,iter,feval,nrmpgd,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,n,k,x,ldx,’Factor Loading Matrix X’,ifail)
Write (nout,*)
Write (nout,99999) ’Number of steps taken:’, iter
Write (nout,99998) ’Number of function evaluations:’, feval
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! Generate Nearest k factor correlation matrix
! The NAG name equivalent of dgemm is f06yaf

Call dgemm(’N’,’T’,n,n,k,one,x,n,x,n,zero,a,n)
Do i = 1, n

a(i,i) = one
End Do
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,n,a,lda,’Nearest Correlation Matrix’,ifail)

99999 Format (1X,A,I11)
99998 Format (1X,A,I9)

End Program g02aefe

10.2 Program Data

G02AEF Example Program Data
4 :: N
2.0 -1.0 0.0 0.0

-1.0 2.0 -1.0 0.0
0.0 -1.0 2.0 -1.0
0.0 0.0 -1.0 2.0 :: End of G

10.3 Program Results

G02AEF Example Program Results

Factor Loading Matrix X
1 2

1 0.7665 -0.6271
2 -0.4250 0.9052
3 -0.4250 -0.9052
4 0.7665 0.6271

Number of steps taken: 5
Number of function evaluations: 6

Nearest Correlation Matrix
1 2 3 4

1 1.0000 -0.8935 0.2419 0.1943
2 -0.8935 1.0000 -0.6388 0.2419
3 0.2419 -0.6388 1.0000 -0.8935
4 0.1943 0.2419 -0.8935 1.0000
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NAG Library Routine Document

G02AJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02AJF computes the nearest correlation matrix, using element-wise weighting in the Frobenius norm
and optionally with bounds on the eigenvalues, to a given square, input matrix.

2 Specification

SUBROUTINE G02AJF (G, LDG, N, ALPHA, H, LDH, ERRTOL, MAXIT, X, LDX,
ITER, NORM, IFAIL)

&

INTEGER LDG, N, LDH, MAXIT, LDX, ITER, IFAIL
REAL (KIND=nag_wp) G(LDG,N), ALPHA, H(LDH,N), ERRTOL, X(LDX,N), NORM

3 Description

G02AJF finds the nearest correlation matrix, X, to an approximate correlation matrix, G, using element-
wise weighting, this minimizes H � G�Xð Þk kF , where C ¼ A �B denotes the matrix C with elements
Cij ¼ Aij � Bij.

You can optionally specify a lower bound on the eigenvalues, �, of the computed correlation matrix,
forcing the matrix to be strictly positive definite, if 0 < � < 1.

Zero elements in H should be used when you wish to put no emphasis on the corresponding element of
G. The algorithm scales H so that the maximum element is 1. It is this scaled matrix that is used in
computing the norm above and for the stopping criteria described in Section 7.

Note that if the elements in H vary by several orders of magnitude from one another the algorithm may
fail to converge.

4 References

Borsdorf R and Higham N J (2010) A preconditioned (Newton) algorithm for the nearest correlation
matrix IMA Journal of Numerical Analysis 30(1) 94–107

Jiang K, Sun D and Toh K-C (To appear) An inexact accelerated proximal gradient method for large
scale linearly constrained convex SDP

Qi H and Sun D (2006) A quadratically convergent Newton method for computing the nearest
correlation matrix SIAM J. Matrix AnalAppl 29(2) 360–385

5 Arguments

1: GðLDG;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: G, the initial matrix.

On exit: G is overwritten.

2: LDG – INTEGER Input

On entry: the first dimension of the array G as declared in the (sub)program from which G02AJF
is called.

Constraint: LDG � N.
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3: N – INTEGER Input

On entry: the order of the matrix G.

Constraint: N > 0.

4: ALPHA – REAL (KIND=nag_wp) Input

On entry: the value of �.

If ALPHA < 0:0, 0:0 is used.

Constraint: ALPHA < 1:0.

5: HðLDH;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the matrix of weights H.

On exit: a symmetric matrix 1
2 H þHTð Þ with its diagonal elements set to zero and the remaining

elements scaled so that the maximum element is 1:0.

Constraint: Hði; jÞ � 0:0, for all i and j ¼ 1; 2; . . . ; n, i 6¼ j.

6: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which G02AJF
is called.

Constraint: LDH � N.

7: ERRTOL – REAL (KIND=nag_wp) Input

On entry : the termination tolerance for the iteration. If ERRTOL � 0:0 then
N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

is used. See Section 7 for further details.

8: MAXIT – INTEGER Input

On entry: specifies the maximum number of iterations to be used.

If MAXIT � 0, 200 is used.

9: XðLDX;NÞ – REAL (KIND=nag_wp) array Output

On exit: contains the nearest correlation matrix.

10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02AJF
is called.

Constraint: LDX � N.

11: ITER – INTEGER Output

On exit: the number of iterations taken.

12: NORM – REAL (KIND=nag_wp) Output

On exit: the value of H � G�Xð Þk kF after the final iteration.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

On entry, LDG ¼ valueh i and N ¼ valueh i.
Constraint: LDG � N.

IFAIL ¼ 3

On entry, LDH ¼ valueh i and N ¼ valueh i.
Constraint: LDH � N.

IFAIL ¼ 4

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ 5

On entry, ALPHA ¼ valueh i.
Constraint: ALPHA < 1:0.

IFAIL ¼ 6

On entry, one or more of the off-diagonal elements of H were negative.

IFAIL ¼ 7

Routine fails to converge in valueh i iterations.
Increase MAXIT or check the call to the routine.

IFAIL ¼ 8

Failure to solve intermediate eigenproblem. This should not occur. Please contact NAG with
details of your call.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

G02 – Correlation and Regression Analysis G02AJF

Mark 26 G02AJF.3



IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The returned accuracy is controlled by ERRTOL and limited by machine precision. If ei is the value of
NORM at the ith iteration, that is

ei ¼ H � G�Xð Þk kF ;

where H has been scaled as described above, then the algorithm terminates when:

ei � ei�1j j
1þmax ei; ei�1ð Þ � ERRTOL:

8 Parallelism and Performance

G02AJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02AJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Arrays are in ternal ly al loca ted by G02AJF. The tota l s ize of these arrays is
15� Nþ 5� N� Nþmax 2� N� Nþ 6� Nþ 1; 120þ 9� Nð Þ real elements and 5� Nþ 3 integer
elements. All allocated memory is freed before return of G02AJF.

10 Example

This example finds the nearest correlation matrix to:

G ¼
2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

0B@
1CA

weighted by:

H ¼
0:0 10:0 0:0 0:0

10:0 0:0 1:5 1:5
0:0 1:5 0:0 0:0
0:0 1:5 0:0 0:0

0B@
1CA

with minimum eigenvalue 0:04.

10.1 Program Text

Program g02ajfe

! G02AJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: dsyev, g02ajf, nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: alpha, errtol, norm
Integer :: i, ifail, iter, ldg, ldh, ldx, &

lwork, maxit, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: eig(:), g(:,:), h(:,:), work(:), &
x(:,:)

! .. Executable Statements ..
Write (nout,*) ’G02AJF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size and alpha
Read (nin,*) n, alpha

ldg = n
ldh = n
ldx = n
lwork = 66*n
Allocate (g(ldg,n),h(ldh,n),x(ldx,n),eig(n),work(lwork))

! Read in the matrix G
Read (nin,*)(g(i,1:n),i=1,n)

! Read in the matrix H
Read (nin,*)(h(i,1:n),i=1,n)

! Use the defaults for ERRTOL and MAXIT
errtol = 0.0E0_nag_wp
maxit = 0

! Calculate nearest correlation matrix
ifail = 0

Call g02ajf(g,ldg,n,alpha,h,ldh,errtol,maxit,x,ldx,iter,norm,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,n,n,h,ldh,’Returned H Matrix’,ifail)
Write (nout,*)

ifail = 0
Call x04caf(’General’,’ ’,n,n,x,ldx,’Nearest Correlation Matrix X’, &

ifail)
Write (nout,*)

Write (nout,99999) ’Number of iterations:’, iter
Write (nout,*)
Write (nout,99998) ’Norm value:’, norm
Write (nout,*)
Write (nout,99997) ’ALPHA: ’, alpha

ifail = 0
! The NAG name equivalent of dsyev is f08faf

Call dsyev(’N’,’U’,n,x,ldx,eig,work,lwork,ifail)
Write (nout,*)
Flush (nout)
Call x04caf(’General’,’ ’,1,n,eig,1,’Eigenvalues of X’,ifail)
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99999 Format (1X,A,I11)
99998 Format (1X,A,F26.4)
99997 Format (1X,A,F30.4)

End Program g02ajfe

10.2 Program Data

G02AJF Example Program Data
4 0.04 :: N, ALPHA

2.0 -1.0 0.0 0.0
-1.0 2.0 -1.0 0.0
0.0 -1.0 2.0 -1.0
0.0 0.0 -1.0 2.0 :: End of G
0.0 10.0 0.0 0.0

10.0 0.0 1.5 1.5
0.0 1.5 0.0 0.0
0.0 1.5 0.0 0.0 :: End of H

10.3 Program Results

G02AJF Example Program Results

Returned H Matrix
1 2 3 4

1 0.0000 1.0000 0.0000 0.0000
2 1.0000 0.0000 0.1500 0.1500
3 0.0000 0.1500 0.0000 0.0000
4 0.0000 0.1500 0.0000 0.0000

Nearest Correlation Matrix X
1 2 3 4

1 1.0000E+00 -9.2285E-01 7.7335E-01 2.5854E-03
2 -9.2285E-01 1.0000E+00 -7.8433E-01 -8.4891E-07
3 7.7335E-01 -7.8433E-01 1.0000E+00 -6.1477E-02
4 2.5854E-03 -8.4891E-07 -6.1477E-02 1.0000E+00

Number of iterations: 66

Norm value: 0.1183

ALPHA: 0.0400

Eigenvalues of X
1 2 3 4

1 0.0769 0.2637 1.0031 2.6563
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NAG Library Routine Document

G02ANF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02ANF computes a correlation matrix, subject to preserving a leading principal submatrix and
applying the smallest relative perturbation to the remainder of the approximate input matrix.

2 Specification

SUBROUTINE G02ANF (G, LDG, N, K, ERRTOL, EIGTOL, X, LDX, ALPHA, ITER,
EIGMIN, NORM, IFAIL)

&

INTEGER LDG, N, K, LDX, ITER, IFAIL
REAL (KIND=nag_wp) G(LDG,N), ERRTOL, EIGTOL, X(LDX,N), ALPHA, EIGMIN,

NORM
&

3 Description

G02ANF finds a correlation matrix, X, starting from an approximate correlation matrix, G, with
positive definite leading principal submatrix of order k. The returned correlation matrix, X, has the
following structure:

X ¼ � A 0
0 I

� �
þ 1� �ð ÞG

where A is the k by k leading principal submatrix of the input matrix G and positive definite, and
� 2 0; 1½ �.
G02ANF utilizes a shrinking method to find the minimum value of � such that X is positive definite
with unit diagonal.

4 References

Higham N J, Strabi�c N and �Sego V (2014) Restoring definiteness via shrinking, with an application to
correlation matrices with a fixed block MIMS EPrint 2014.54 Manchester Institute for Mathematical
Sciences, The University of Manchester, UK

5 Arguments

1: GðLDG;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: G, the initial matrix.

On exit: a symmetric matrix 1
2 GþGTð Þ with the diagonal set to I.

2: LDG – INTEGER Input

On entry: the first dimension of the array G as declared in the (sub)program from which
G02ANF is called.

Constraint: LDG � N.

G02 – Correlation and Regression Analysis G02ANF

Mark 26 G02ANF.1



3: N – INTEGER Input

On entry: the order of the matrix G.

Constraint: N > 0.

4: K – INTEGER Input

On entry: k, the order of the leading principal submatrix A.

Constraint: N � K > 0.

5: ERRTOL – REAL (KIND=nag_wp) Input

On entry: the termination tolerance for the iteration.

If ERRTOL � 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

is used. See Section 7 for further details.

6: EIGTOL – REAL (KIND=nag_wp) Input

On entry: the tolerance used in determining the definiteness of A.

If �min Að Þ > N� �max Að Þ � EIGTOL, where �min Að Þ and �max Að Þ denote the minimum and
maximum eigenvalues of A respectively, A is positive definite.

If EIGTOL � 0, machine precision is used.

7: XðLDX;NÞ – REAL (KIND=nag_wp) array Output

On exit: contains the matrix X.

8: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G02ANF is called.

Constraint: LDX � N.

9: ALPHA – REAL (KIND=nag_wp) Output

On exit: �.

10: ITER – INTEGER Output

On exit: the number of iterations taken.

11: EIGMIN – REAL (KIND=nag_wp) Output

On exit: the smallest eigenvalue of the leading principal submatrix A.

12: NORM – REAL (KIND=nag_wp) Output

On exit: the value of G�Xk kF after the final iteration.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

On entry, LDG ¼ valueh i and N ¼ valueh i.
Constraint: LDG � N.

IFAIL ¼ 3

On entry, K ¼ valueh i and N ¼ valueh i.
Constraint: N � K > 0.

IFAIL ¼ 4

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ 5

The k by k principal leading submatrix of the initial matrix G is not positive definite.

IFAIL ¼ 6

Failure to solve intermediate eigenproblem. This should not occur. Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The algorithm uses a bisection method. It is terminated when the computed � is within ERRTOL of the
minimum value. The positive definiteness of X is such that it can be successfully factorized with a call
to F07FDF (DPOTRF).

The number of iterations taken for the bisection will be:

log2
1

ERRTOL

� �� �
:
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8 Parallelism and Performance

G02ANF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02ANF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Arrays are internally allocated by G02ANF. The total size of these arrays does not exceed
2� n2 þ 3� n real elements. All allocated memory is freed before return of G02ANF.

10 Example

This example finds the smallest uniform perturbation � to G, such that the output is a correlation matrix
and the k by k leading principal submatrix of the input is preserved,

G ¼

1:0000 �0:0991 0:5665 �0:5653 �0:3441
�0:0991 1:0000 �0:4273 0:8474 0:4975
0:5665 �0:4273 1:0000 �0:1837 �0:0585
�0:5653 0:8474 �0:1837 1:0000 �0:2713
�0:3441 0:4975 �0:0585 �0:2713 1:0000

0BBB@
1CCCA:

10.1 Program Text

Program g02anfe

! G02ANF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02anf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, eigmin, eigtol, errtol, norm
Integer :: i, ifail, iter, k, ldg, ldx, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: g(:,:), x(:,:)

! .. Executable Statements ..
Write (nout,*) ’G02ANF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem sizes
Read (nin,*) n, k

ldg = n
ldx = n
Allocate (g(ldg,n),x(ldx,n))

! Read in the matrix G
Read (nin,*)(g(i,1:n),i=1,n)
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! Use the defaults for EIGTOL and ERRTOL
eigtol = -1.E0_nag_wp
errtol = -1.E0_nag_wp

! Calculate nearest correlation matrix
ifail = 0

Call g02anf(g,ldg,n,k,errtol,eigtol,x,ldx,alpha,iter,eigmin,norm,ifail)

ifail = 0
! Display the symmetrised input matrix

Call x04caf(’General’,’ ’,n,n,g,ldg,’Symmetrised Input Matrix G’,ifail)
Write (nout,*)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,n,n,x,ldx, &

’Nearest Perturbed Correlation Matrix X’,ifail)
Write (nout,*)
Write (nout,99999) ’K: ’, k
Write (nout,*)
Write (nout,99999) ’Number of iterations taken:’, iter
Write (nout,*)
Write (nout,99998) ’ALPHA: ’, alpha
Write (nout,*)
Write (nout,99998) ’Norm value: ’, norm
Write (nout,*)
Write (nout,99998) ’Smallest eigenvalue of A:’, eigmin

99999 Format (1X,A,I9)
99998 Format (1X,A,F16.4)

End Program g02anfe

10.2 Program Data

G02ANF Example Program Data
5 3 :: N, K
1.0000 -0.0991 0.5665 -0.5653 -0.3441

-0.0991 1.0000 -0.4273 0.8474 0.4975
0.5665 -0.4273 1.0000 -0.1837 -0.0585

-0.5653 0.8474 -0.1837 1.0000 -0.2713
-0.3441 0.4975 -0.0585 -0.2713 1.0000 :: End of G

10.3 Program Results

G02ANF Example Program Results

Symmetrised Input Matrix G
1 2 3 4 5

1 1.0000 -0.0991 0.5665 -0.5653 -0.3441
2 -0.0991 1.0000 -0.4273 0.8474 0.4975
3 0.5665 -0.4273 1.0000 -0.1837 -0.0585
4 -0.5653 0.8474 -0.1837 1.0000 -0.2713
5 -0.3441 0.4975 -0.0585 -0.2713 1.0000

Nearest Perturbed Correlation Matrix X
1 2 3 4 5

1 1.0000 -0.0991 0.5665 -0.3826 -0.2329
2 -0.0991 1.0000 -0.4273 0.5735 0.3367
3 0.5665 -0.4273 1.0000 -0.1243 -0.0396
4 -0.3826 0.5735 -0.1243 1.0000 -0.1836
5 -0.2329 0.3367 -0.0396 -0.1836 1.0000

K: 3

Number of iterations taken: 27
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ALPHA: 0.3232

Norm value: 0.5624

Smallest eigenvalue of A: 0.3359
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NAG Library Routine Document

G02APF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02APF computes a correlation matrix, by using a positive definite target matrix derived from
weighting the approximate input matrix, with an optional bound on the minimum eigenvalue.

2 Specification

SUBROUTINE G02APF (G, LDG, N, THETA, H, LDH, ERRTOL, EIGTOL, X, LDX,
ALPHA, ITER, EIGMIN, NORM, IFAIL)

&

INTEGER LDG, N, LDH, LDX, ITER, IFAIL
REAL (KIND=nag_wp) G(LDG,N), THETA, H(LDH,N), ERRTOL, EIGTOL,

X(LDX,N), ALPHA, EIGMIN, NORM
&

3 Description

Starting from an approximate correlation matrix, G, G02APF finds a correlation matrix, X, which has
the form

X ¼ �T þ 1� �ð ÞG;

where � 2 0; 1½ � and T ¼ H �G is a target matrix. C ¼ A �B denotes the matrix C with elements
Cij ¼ Aij � Bij. H is a matrix of weights that defines the target matrix. The target matrix must be
positive definite and thus have off-diagonal elements less than 1 in magnitude. A value of 1 in H
essentially fixes an element in G so it is unchanged in X.

G02APF utilizes a shrinking method to find the minimum value of � such that X is positive definite
with unit diagonal and with a smallest eigenvalue of at least � 2 0; 1½ Þ times the smallest eigenvalue of
the target matrix.

4 References

Higham N J, Strabi�c N and �Sego V (2014) Restoring definiteness via shrinking, with an application to
correlation matrices with a fixed block MIMS EPrint 2014.54 Manchester Institute for Mathematical
Sciences, The University of Manchester, UK

5 Arguments

1: GðLDG;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: G, the initial matrix.

On exit: a symmetric matrix 1
2 GþGTð Þ with the diagonal elements set to 1:0.

2: LDG – INTEGER Input

On entry: the first dimension of the array G as declared in the (sub)program from which G02APF
is called.

Constraint: LDG � N.
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3: N – INTEGER Input

On entry: the order of the matrix G.

Constraint: N > 0.

4: THETA – REAL (KIND=nag_wp) Input

On entry: the value of �. If THETA < 0:0, 0:0 is used.

Constraint: THETA < 1:0.

5: HðLDH;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the matrix of weights H.

On exit: a symmetric matrix 1
2 H þHTð Þ with its diagonal elements set to 1:0.

6: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which G02APF
is called.

Constraint: LDH � N.

7: ERRTOL – REAL (KIND=nag_wp) Input

On entry: the termination tolerance for the iteration.

If ERRTOL � 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

is used. See Section 7 for further details.

8: EIGTOL – REAL (KIND=nag_wp) Input

On entry: the tolerance used in determining the definiteness of the target matrix T ¼ H �G.
If �min Tð Þ > N� �max Tð Þ � EIGTOL, where �min Tð Þ and �max Tð Þ denote the minimum and
maximum eigenvalues of T respectively, T is positive definite.

If EIGTOL � 0, machine precision is used.

9: XðLDX;NÞ – REAL (KIND=nag_wp) array Output

On exit: contains the matrix X.

10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02APF
is called.

Constraint: LDX � N.

11: ALPHA – REAL (KIND=nag_wp) Output

On exit: the constant � used in the formation of X.

12: ITER – INTEGER Output

On exit: the number of iterations taken.

13: EIGMIN – REAL (KIND=nag_wp) Output

On exit: the smallest eigenvalue of the target matrix T .

14: NORM – REAL (KIND=nag_wp) Output

On exit: the value of G�Xk kF after the final iteration.
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15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

On entry, LDG ¼ valueh i and N ¼ valueh i.
Constraint: LDG � N.

IFAIL ¼ 3

On entry, THETA ¼ valueh i.
Constraint: THETA < 1:0.

IFAIL ¼ 4

On entry, LDH ¼ valueh i and N ¼ valueh i.
Constraint: LDH � N.

IFAIL ¼ 5

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ 6

The target matrix is not positive definite.

IFAIL ¼ 7

Failure to solve intermediate eigenproblem. This should not occur. Please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The algorithm uses a bisection method. It is terminated when the computed � is within ERRTOL of the
minimum value.

Note: when � is zero X is still positive definite, in that it can be successfully factorized with a call to
F07FDF (DPOTRF).

The number of iterations taken for the bisection will be:

log2
1

ERRTOL

� �� �
:

8 Parallelism and Performance

G02APF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02APF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Arrays are internally allocated by G02APF. The total size of these arrays does not exceed
2� n2 þ 3� n real elements. All allocated memory is freed before return of G02APF.

10 Example

This example finds the smallest � such that � H �Gð Þ þ 1� �ð ÞG is a correlation matrix. The 2 by 2
leading principal submatrix of the input is preserved, and the last 2 by 2 diagonal block is weighted to
give some emphasis to the off diagonal elements.

G ¼

1:0000 �0:0991 0:5665 �0:5653 �0:3441
�0:0991 1:0000 �0:4273 0:8474 0:4975
0:5665 �0:4273 1:0000 �0:1837 �0:0585
�0:5653 0:8474 �0:1837 1:0000 �0:2713
�0:3441 0:4975 �0:0585 �0:2713 1:0000

0BBB@
1CCCA

and

H ¼

1:0000 1:0000 0:0000 0:0000 0:0000
1:0000 1:0000 0:0000 0:0000 0:0000
0:0000 0:0000 1:0000 0:0000 0:0000
0:0000 0:0000 0:0000 1:0000 0:5000
0:0000 0:0000 0:0000 0:5000 1:0000

0BBB@
1CCCA:
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10.1 Program Text

Program g02apfe

! G02APF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dsyev, g02apf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, eigmin, eigtol, errtol, norm, &

theta
Integer :: i, ifail, iter, ldg, ldh, ldx, &

lwork, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: eig(:), g(:,:), h(:,:), work(:), &
x(:,:)

! .. Executable Statements ..
Write (nout,*) ’G02APF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size and theta
Read (nin,*) n, theta

ldg = n
ldh = n
ldx = n
lwork = 66*n
Allocate (g(ldg,n),h(ldh,n),x(ldx,n),eig(n),work(lwork))

! Read in the matrix G
Read (nin,*)(g(i,1:n),i=1,n)

! Read in the matrix H
Read (nin,*)(h(i,1:n),i=1,n)

! Use the defaults for EIGTOL and ERRTOL
eigtol = -1.E0_nag_wp
errtol = -1.E0_nag_wp

! Calculate nearest correlation matrix using target matrix
ifail = 0

Call g02apf(g,ldg,n,theta,h,ldh,errtol,eigtol,x,ldx,alpha,iter,eigmin, &
norm,ifail)

ifail = 0
! Display the symmetrised input matrix

Call x04caf(’General’,’ ’,n,n,g,ldg,’Symmetrised Input Matrix G’,ifail)
Write (nout,*)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,n,n,x,ldx,’Nearest Correlation Matrix X’, &

ifail)
Write (nout,*)
Write (nout,99999) ’Number of iterations taken:’, iter
Write (nout,*)
Write (nout,99998) ’ALPHA: ’, alpha
Write (nout,*)
Write (nout,99998) ’Norm value: ’, norm
Write (nout,*)
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Write (nout,99998) ’THETA: ’, theta
Write (nout,*)
Write (nout,99998) ’Smallest eigenvalue of target:’, eigmin

ifail = 0
! Compute the eigenvalues of X

Call dsyev(’N’,’U’,n,x,ldx,eig,work,lwork,ifail)
Write (nout,*)
Flush (nout)
Call x04caf(’General’,’ ’,1,n,eig,1,’Eigenvalues of X’,ifail)

99999 Format (1X,A,I9)
99998 Format (1X,A,F11.4)

End Program g02apfe

10.2 Program Data

G02APF Example Program Data
5, 0.1 :: N, THETA
1.0000 -0.0991 0.5665 -0.5653 -0.3441

-0.0991 1.0000 -0.4273 0.8474 0.4975
0.5665 -0.4273 1.0000 -0.1837 -0.0585

-0.5653 0.8474 -0.1837 1.0000 -0.2713
-0.3441 0.4975 -0.0585 -0.2713 1.0000 :: End of G
1.0000 1.0000 0.0000 0.0000 0.0000
1.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.5000
0.0000 0.0000 0.0000 0.5000 1.0000 :: End of H

10.3 Program Results

G02APF Example Program Results

Symmetrised Input Matrix G
1 2 3 4 5

1 1.0000 -0.0991 0.5665 -0.5653 -0.3441
2 -0.0991 1.0000 -0.4273 0.8474 0.4975
3 0.5665 -0.4273 1.0000 -0.1837 -0.0585
4 -0.5653 0.8474 -0.1837 1.0000 -0.2713
5 -0.3441 0.4975 -0.0585 -0.2713 1.0000

Nearest Correlation Matrix X
1 2 3 4 5

1 1.0000 -0.0991 0.3799 -0.3791 -0.2308
2 -0.0991 1.0000 -0.2865 0.5683 0.3336
3 0.3799 -0.2865 1.0000 -0.1232 -0.0392
4 -0.3791 0.5683 -0.1232 1.0000 -0.2266
5 -0.2308 0.3336 -0.0392 -0.2266 1.0000

Number of iterations taken: 27

ALPHA: 0.3294

Norm value: 0.6526

THETA: 0.1000

Smallest eigenvalue of target: 0.8643

Eigenvalues of X
1 2 3 4 5

1 0.0864 0.7431 1.0044 1.2018 1.9642
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NAG Library Routine Document

G02BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BAF computes means and standard deviations of variables, sums of squares and cross-products of
deviations from means, and Pearson product-moment correlation coefficients for a set of data.

2 Specification

SUBROUTINE G02BAF (N, M, X, LDX, XBAR, STD, SSP, LDSSP, R, LDR, IFAIL)

INTEGER N, M, LDX, LDSSP, LDR, IFAIL
REAL (KIND=nag_wp) X(LDX,M), XBAR(M), STD(M), SSP(LDSSP,M), R(LDR,M)

3 Description

The input data consist of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable.

The quantities calculated are:

(a) Means:

�xj ¼ 1
n

Xn
i¼1
xij; j ¼ 1; 2; . . . ;m:

(b) Standard deviations:

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xij � �xj
� �2s

; j ¼ 1; 2; . . . ;m:

(c) Sums of squares and cross-products of deviations from means:

Sjk ¼
Xn
i¼1

xij � �xj
� �

xik � �xkð Þ; j; k ¼ 1; 2; . . . ;m:

(d) Pearson product-moment correlation coefficients:

Rjk ¼
Sjkffiffiffiffiffiffiffiffiffiffiffiffiffi
SjjSkk

p ; j; k ¼ 1; 2; . . . ;m:

If Sjj or Skk is zero, Rjk is set to zero.

4 References

None.
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the ith observation on the jth variable, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BAF
is called.

Constraint: LDX � N.

5: XBARðMÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value, �xj , of the jth variable, for j ¼ 1; 2; . . . ;m.

6: STDðMÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the jth variable, for j ¼ 1; 2; . . . ;m.

7: SSPðLDSSP;MÞ – REAL (KIND=nag_wp) array Output

On exit: SSPðj; kÞ is the cross-product of deviations Sjk , for j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

8: LDSSP – INTEGER Input

On entry: the first dimension of the array SSP as declared in the (sub)program from which
G02BAF is called.

Constraint: LDSSP � M.

9: RðLDR;MÞ – REAL (KIND=nag_wp) array Output

On exit: Rðj; kÞ is the product-moment correlation coefficient Rjk between the jth and kth
variables, for j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

10: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G02BAF
is called.

Constraint: LDR � M.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, M < 2.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSP < M,
or LDR < M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02BAF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

8 Parallelism and Performance

G02BAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G02BAF depends on n and m.

The routine uses a two-pass algorithm.
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10 Example

This example reads in a set of data consisting of five observations on each of three variables. The
means, standard deviations, sums of squares and cross-products of deviations from means, and Pearson
product-moment correlation coefficients for all three variables are then calculated and printed.

10.1 Program Text

Program g02bafe

! G02BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02baf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldr, ldssp, ldx, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:,:), ssp(:,:), std(:), x(:,:), &

xbar(:)
! .. Executable Statements ..

Write (nout,*) ’G02BAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldr = m
ldssp = m
ldx = n
Allocate (x(ldx,m),r(ldr,m),ssp(ldssp,m),std(m),xbar(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Display data
Write (nout,99999) ’Number of variables (columns) = ’, m
Write (nout,99999) ’Number of cases (rows) = ’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Compute summary statistics
ifail = 0
Call g02baf(n,m,x,ldx,xbar,std,ssp,ldssp,r,ldr,ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99996)(i,xbar(i),std(i),i=1,m)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products of deviations’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,ssp(i,1:m),i=1,m)
Write (nout,*)
Write (nout,*) ’Correlation coefficients’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,r(i,1:m),i=1,m)
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99999 Format (1X,A,I0)
99998 Format (1X,6I12)
99997 Format (1X,I3,3F12.4)
99996 Format (1X,I5,2F11.4)

End Program g02bafe

10.2 Program Data

G02BAF Example Program Data
5 3 :: N, M
2.0 3.0 3.0
4.0 6.0 4.0
9.0 9.0 0.0
0.0 12.0 2.0

12.0 -1.0 5.0 :: End of X

10.3 Program Results

G02BAF Example Program Results

Number of variables (columns) = 3
Number of cases (rows) = 5

Data matrix is:-

1 2 3
1 2.0000 3.0000 3.0000
2 4.0000 6.0000 4.0000
3 9.0000 9.0000 0.0000
4 0.0000 12.0000 2.0000
5 12.0000 -1.0000 5.0000

Variable Mean St. dev.
1 5.4000 4.9800
2 5.8000 5.0695
3 2.8000 1.9235

Sums of squares and cross-products of deviations
1 2 3

1 99.2000 -57.6000 6.4000
2 -57.6000 102.8000 -29.2000
3 6.4000 -29.2000 14.8000

Correlation coefficients
1 2 3

1 1.0000 -0.5704 0.1670
2 -0.5704 1.0000 -0.7486
3 0.1670 -0.7486 1.0000
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NAG Library Routine Document

G02BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BBF computes means and standard deviations of variables, sums of squares and cross-products of
deviations from means, and Pearson product-moment correlation coefficients for a set of data omitting
completely any cases with a missing observation for any variable.

2 Specification

SUBROUTINE G02BBF (N, M, X, LDX, MISS, XMISS, XBAR, STD, SSP, LDSSP, R,
LDR, NCASES, IFAIL)

&

INTEGER N, M, LDX, MISS(M), LDSSP, LDR, NCASES, IFAIL
REAL (KIND=nag_wp) X(LDX,M), XMISS(M), XBAR(M), STD(M), SSP(LDSSP,M),

R(LDR,M)
&

3 Description

The input data consist of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable. In addition, each of the m variables may optionally
have associated with it a value which is to be considered as representing a missing observation for that
variable; the missing value for the jth variable is denoted by xmj. Missing values need not be specified
for all variables.

Let wi ¼ 0 if observation i contains a missing value for any of those variables for which missing values
have been declared, i.e., if xij ¼ xmj for any j for which an xmj has been assigned (see also
Section 7); and wi ¼ 1 otherwise, for i ¼ 1; 2; . . . ; n.

The quantities calculated are:

(a) Means:

�xj ¼

Xn
i¼1
wixij

Xn
i¼1
wi

; j ¼ 1; 2; . . . ;m:

(b) Standard deviations:

sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wi xij � �xj
� �2

Xn
i¼1
wi � 1

vuuuuuuut ; j ¼ 1; 2; . . . ;m:

(c) Sums of squares and cross-products of deviations from means:

Sjk ¼
Xn
i¼1
wi xij � �xj
� �

xik � �xkð Þ; j; k ¼ 1; 2; . . . ;m:
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(d) Pearson product-moment correlation coefficients:

Rjk ¼
Sjkffiffiffiffiffiffiffiffiffiffiffiffiffi
SjjSkk

p ; j; k ¼ 1; 2; . . . ;m:

If Sjj or Skk is zero, Rjk is set to zero.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BBF
is called.

Constraint: LDX � N.

5: MISSðMÞ – INTEGER array Input/Output

On entry: MISSðjÞ must be set equal to 1 if a missing value, xmj, is to be specified for the jth
variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m
variables in the array X.

On exit: the array MISS is overwritten by the routine, and the information it contained on entry is
lost.

6: XMISSðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XMISSðjÞ must be set to the missing value, xmj, to be associated with the jth variable
in the array X, for those variables for which missing values are specified by means of the array
MISS (see Section 7).

On exit: the array XMISS is overwritten by the routine, and the information it contained on entry
is lost.

7: XBARðMÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value, �xj , of the jth variable, for j ¼ 1; 2; . . . ;m.

8: STDðMÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the jth variable, for j ¼ 1; 2; . . . ;m.
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9: SSPðLDSSP;MÞ – REAL (KIND=nag_wp) array Output

On exit: SSPðj; kÞ is the cross-product of deviations Sjk , for j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

10: LDSSP – INTEGER Input

On entry: the first dimension of the array SSP as declared in the (sub)program from which
G02BBF is called.

Constraint: LDSSP � M.

11: RðLDR;MÞ – REAL (KIND=nag_wp) array Output

On exit: Rðj; kÞ is the product-moment correlation coefficient Rjk between the jth and kth
variables, for j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

12: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G02BBF
is called.

Constraint: LDR � M.

13: NCASES – INTEGER Output

On exit: the number of cases actually used in the calculations (when cases involving missing
values have been eliminated).

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, M < 2.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSP < M,
or LDR < M.
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IFAIL ¼ 4

After observations with missing values were omitted, no cases remained.

IFAIL ¼ 5

After observations with missing values were omitted, only one case remained.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02BBF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

You are warned of the need to exercise extreme care in your selection of missing values. G02BBF treats
all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for variable
j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

8 Parallelism and Performance

G02BBF is not threaded in any implementation.

9 Further Comments

The time taken by G02BBF depends on n and m, and the occurrence of missing values.

The routine uses a two-pass algorithm.

10 Example

This example reads in a set of data consisting of five observations on each of three variables. Missing
values of 0:0 are declared for the first and third variables; no missing value is specified for the second
variable. The means, standard deviations, sums of squares and cross-products of deviations from means,
and Pearson product-moment correlation coefficients for all three variables are then calculated and
printed, omitting completely all cases containing missing values; cases 3 and 4 are therefore eliminated,
leaving only three cases in the calculations.

G02BBF NAG Library Manual

G02BBF.4 Mark 26



10.1 Program Text

Program g02bbfe

! G02BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldr, ldssp, ldx, m, n, &

ncases
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: r(:,:), ssp(:,:), std(:), x(:,:), &
xbar(:), xmiss(:)

Integer, Allocatable :: miss(:)
! .. Executable Statements ..

Write (nout,*) ’G02BBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldr = m
ldssp = m
ldx = n
Allocate (x(ldx,m),r(ldr,m),ssp(ldssp,m),std(m),xbar(m),xmiss(m), &

miss(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in missing value flags
Read (nin,*) miss(1:m)
Read (nin,*) xmiss(1:m)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate summary statistics
ifail = 0
Call g02bbf(n,m,x,ldx,miss,xmiss,xbar,std,ssp,ldssp,r,ldr,ncases,ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99996)(i,xbar(i),std(i),i=1,m)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products of deviations’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,ssp(i,1:m),i=1,m)
Write (nout,*)
Write (nout,*) ’Correlation coefficients’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,r(i,1:m),i=1,m)
Write (nout,*)
Write (nout,99999) ’Number of cases actually used: ’, ncases
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99999 Format (1X,A,I5)
99998 Format (1X,6I12)
99997 Format (1X,I3,3F12.4)
99996 Format (1X,I5,2F11.4)

End Program g02bbfe

10.2 Program Data

G02BBF Example Program Data
5 3 :: N, M
2.0 3.0 3.0
4.0 6.0 4.0
9.0 9.0 0.0
0.0 12.0 2.0

12.0 -1.0 5.0 :: End of X
1 0 1 :: MISS

0.0 0.0 0.0 :: XMISS

10.3 Program Results

G02BBF Example Program Results

Number of variables (columns) = 3
Number of cases (rows) = 5

Data matrix is:-

1 2 3
1 2.0000 3.0000 3.0000
2 4.0000 6.0000 4.0000
3 9.0000 9.0000 0.0000
4 0.0000 12.0000 2.0000
5 12.0000 -1.0000 5.0000

Variable Mean St. dev.
1 6.0000 5.2915
2 2.6667 3.5119
3 4.0000 1.0000

Sums of squares and cross-products of deviations
1 2 3

1 56.0000 -30.0000 10.0000
2 -30.0000 24.6667 -4.0000
3 10.0000 -4.0000 2.0000

Correlation coefficients
1 2 3

1 1.0000 -0.8072 0.9449
2 -0.8072 1.0000 -0.5695
3 0.9449 -0.5695 1.0000

Number of cases actually used: 3
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NAG Library Routine Document

G02BCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BCF computes means and standard deviations of variables, sums of squares and cross-products of
deviations from means, and Pearson product-moment correlation coefficients for a set of data omitting
cases with missing values from only those calculations involving the variables for which the values are
missing.

2 Specification

SUBROUTINE G02BCF (N, M, X, LDX, MISS, XMISS, XBAR, STD, SSP, LDSSP, R,
LDR, NCASES, CNT, LDCNT, IFAIL)

&

INTEGER N, M, LDX, MISS(M), LDSSP, LDR, NCASES, LDCNT, IFAIL
REAL (KIND=nag_wp) X(LDX,M), XMISS(M), XBAR(M), STD(M), SSP(LDSSP,M),

R(LDR,M), CNT(LDCNT,M)
&

3 Description

The input data consist of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable. In addition, each of the m variables may optionally
have associated with it a value which is to be considered as representing a missing observation for that
variable; the missing value for the jth variable is denoted by xmj. Missing values need not be specified
for all variables.

Let wij ¼ 0 if the ith observation for the jth variable is a missing value, i.e., if a missing value, xmj ,
has been declared for the jth variable, and xij ¼ xmj (see also Section 7); and wij ¼ 1 otherwise, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

The quantities calculated are:

(a) Means:

�xj ¼

Xn
i¼1
wijxij

Xn
i¼1
wij

; j ¼ 1; 2; . . . ;m:

(b) Standard deviations:

sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wij xij � �xj
� �2

Xn
i¼1
wij

 !
� 1

vuuuuuuut ; j ¼ 1; 2; . . . ;m:

(c) Sums of squares and cross-products of deviations from means:

Sjk ¼
Xn
i¼1
wijwik xij � �xj kð Þ

� �
xik � �xk jð Þ
� �

; j; k ¼ 1; 2; . . . ;m;
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where

�xj kð Þ ¼

Xn
i¼1
wijwikxij

Xn
i¼1
wijwik

and �xk jð Þ ¼

Xn
i¼1
wikwijxik

Xn
i¼1
wikwij

;

(i.e., the means used in the calculation of the sums of squares and cross-products of deviations are
based on the same set of observations as are the cross-products.)

(d) Pearson product-moment correlation coefficients:

Rjk ¼
Sjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sjj kð ÞSkk jð Þ
p ; j; k;¼ 1; 2; . . . ;m;

where Sjj kð Þ ¼
Xn
i¼1
wijwik xij � �xj kð Þ

� �2
and Skk jð Þ ¼

Xn
i¼1
wikwij xik � �xk jð Þ

� �2
and �xj kð Þ and �xk jð Þ are as

defined in (c) above

(i.e., the sums of squares of deviations used in the denominator are based on the same set of
observations as are used in the calculation of the numerator).

If Sjj kð Þ or Skk jð Þ is zero, Rjk is set to zero.

(e) The number of cases used in the calculation of each of the correlation coefficients:

cjk ¼
Xn
i¼1
wijwik; j; k ¼ 1; 2; . . . ;m:

(The diagonal terms, cjj , for j ¼ 1; 2; . . . ;m, also give the number of cases used in the calculation
of the means, �xj , and the standard deviations, sj .)

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BCF
is called.

Constraint: LDX � N.
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5: MISSðMÞ – INTEGER array Input

On entry: MISSðjÞ must be set equal to 1 if a missing value, xmj, is to be specified for the jth
variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m
variables in the array X.

6: XMISSðMÞ – REAL (KIND=nag_wp) array Input

On entry: XMISSðjÞ must be set to the missing value, xmj, to be associated with the jth variable
in the array X, for those variables for which missing values are specified by means of the array
MISS (see Section 7).

7: XBARðMÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value, �xj , of the jth variable, for j ¼ 1; 2; . . . ;m.

8: STDðMÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the jth variable, for j ¼ 1; 2; . . . ;m.

9: SSPðLDSSP;MÞ – REAL (KIND=nag_wp) array Output

On exit: SSPðj; kÞ is the cross-product of deviations Sjk , for j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

10: LDSSP – INTEGER Input

On entry: the first dimension of the array SSP as declared in the (sub)program from which
G02BCF is called.

Constraint: LDSSP � M.

11: RðLDR;MÞ – REAL (KIND=nag_wp) array Output

On exit: Rðj; kÞ is the product-moment correlation coefficient Rjk between the jth and kth
variables, for j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

12: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G02BCF
is called.

Constraint: LDR � M.

13: NCASES – INTEGER Output

On exit: the minimum number of cases used in the calculation of any of the sums of squares and
cross-products and correlation coefficients (when cases involving missing values have been
eliminated).

14: CNTðLDCNT;MÞ – REAL (KIND=nag_wp) array Output

On exit: CNTðj; kÞ is the number of cases, cjk , actually used in the calculation of Sjk , and Rjk , the
sum of cross-products and correlation coefficient for the jth and kth variables, for j ¼ 1; 2; . . . ;m
and k ¼ 1; 2; . . . ;m.

15: LDCNT – INTEGER Input

On entry: the first dimension of the array CNT as declared in the (sub)program from which
G02BCF is called.

Constraint: LDCNT � M.
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16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02BCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, M < 2.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSP < M,
or LDR < M,
or LDCNT < M.

IFAIL ¼ 4

After observations with missing values were omitted, fewer than two cases remained for at least
one pair of variables. (The pairs of variables involved can be determined by examination of the
contents of the array CNT.) All means, standard deviations, sums of squares and cross-products,
and correlation coefficients based on two or more cases are returned by the routine even if
IFAIL ¼ 4.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

G02BCF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

You are warned of the need to exercise extreme care in your selection of missing values. G02BCF treats
all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for variable
j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

8 Parallelism and Performance

G02BCF is not threaded in any implementation.

9 Further Comments

The time taken by G02BCF depends on n and m, and the occurrence of missing values.

The routine uses a two-pass algorithm.

10 Example

This example reads in a set of data consisting of five observations on each of three variables. Missing
values of 0:0, �1:0 and 0:0 are declared for the first, second and third variables respectively. The
means, standard deviations, sums of squares and cross-products of deviations from means, and Pearson
product-moment correlation coefficients for all three variables are then calculated and printed, omitting
cases with missing values from only those calculations involving the variables for which the values are
missing. The program therefore omits cases 4 and 5 in calculating the correlation between the first and
second variables, and cases 3 and 4 for the first and third variables etc.

10.1 Program Text

Program g02bcfe

! G02BCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldcnt, ldr, ldssp, ldx, m, &

n, ncases
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: cnt(:,:), r(:,:), ssp(:,:), std(:), &
x(:,:), xbar(:), xmiss(:)

Integer, Allocatable :: miss(:)
! .. Executable Statements ..

Write (nout,*) ’G02BCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldcnt = m
ldr = m
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ldssp = m
ldx = n
Allocate (cnt(ldcnt,m),r(ldr,m),ssp(ldssp,m),std(m),x(ldx,m),xbar(m), &

xmiss(m),miss(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in missing value flags
Read (nin,*) miss(1:m)
Read (nin,*) xmiss(1:m)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate summary statistics
ifail = 0
Call g02bcf(n,m,x,ldx,miss,xmiss,xbar,std,ssp,ldssp,r,ldr,ncases,cnt, &

ldcnt,ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99996)(i,xbar(i),std(i),i=1,m)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products of deviations’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,ssp(i,1:m),i=1,m)
Write (nout,*)
Write (nout,*) ’Correlation coefficients’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,r(i,1:m),i=1,m)
Write (nout,*)
Write (nout,99999) &

’Minimum number of cases used for any pair of variables: ’, ncases
Write (nout,*)
Write (nout,*) ’Numbers used for each pair are:’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,cnt(i,1:m),i=1,m)

99999 Format (1X,A,I2)
99998 Format (1X,6I12)
99997 Format (1X,I3,3F12.4)
99996 Format (1X,I5,2F11.4)

End Program g02bcfe

10.2 Program Data

G02BCF Example Program Data
5 3 :: N, M
2.0 3.0 3.0
4.0 6.0 4.0
9.0 9.0 0.0
0.0 12.0 2.0

12.0 -1.0 5.0 :: End of X
1 1 1 :: MISS

0.0 -1.0 0.0 :: XMISS
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10.3 Program Results

G02BCF Example Program Results

Number of variables (columns) = 3
Number of cases (rows) = 5

Data matrix is:-

1 2 3
1 2.0000 3.0000 3.0000
2 4.0000 6.0000 4.0000
3 9.0000 9.0000 0.0000
4 0.0000 12.0000 2.0000
5 12.0000 -1.0000 5.0000

Variable Mean St. dev.
1 6.7500 4.5735
2 7.5000 3.8730
3 3.5000 1.2910

Sums of squares and cross-products of deviations
1 2 3

1 62.7500 21.0000 10.0000
2 21.0000 45.0000 -6.0000
3 10.0000 -6.0000 5.0000

Correlation coefficients
1 2 3

1 1.0000 0.9707 0.9449
2 0.9707 1.0000 -0.6547
3 0.9449 -0.6547 1.0000

Minimum number of cases used for any pair of variables: 3

Numbers used for each pair are:
1 2 3

1 4.0000 3.0000 3.0000
2 3.0000 4.0000 3.0000
3 3.0000 3.0000 4.0000
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NAG Library Routine Document

G02BDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BDF computes means and standard deviations of variables, sums of squares and cross-products
about zero, and correlation-like coefficients for a set of data.

2 Specification

SUBROUTINE G02BDF (N, M, X, LDX, XBAR, STD, SSPZ, LDSSPZ, RZ, LDRZ,
IFAIL)

&

INTEGER N, M, LDX, LDSSPZ, LDRZ, IFAIL
REAL (KIND=nag_wp) X(LDX,M), XBAR(M), STD(M), SSPZ(LDSSPZ,M),

RZ(LDRZ,M)
&

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable.

The quantities calculated are:

(a) Means:

�xj ¼ 1
n

Xn
i¼1
xij; j ¼ 1; 2; . . . ;m:

(b) Standard deviations:

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xij � �xj
� �2s

; j ¼ 1; 2; . . . ;m:

(c) Sums of squares and cross-products about zero:

~Sjk ¼
Xn
i¼1
xijxik; j; k ¼ 1; 2; . . . ;m:

(d) Correlation-like coefficients:

~Rjk ¼
~Sjkffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sjj ~Skk

q ; j; k ¼ 1; 2; . . . ;m:

If ~Sjj or ~Skk is zero, ~Rjk is set to zero.

4 References

None.
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to the value of xij , the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BDF
is called.

Constraint: LDX � N.

5: XBARðMÞ – REAL (KIND=nag_wp) array Output

On exit: XBARðjÞ contains the mean value, �xj , of the jth variable, for j ¼ 1; 2; . . . ;m.

6: STDðMÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the jth variable, for j ¼ 1; 2; . . . ;m.

7: SSPZðLDSSPZ;MÞ – REAL (KIND=nag_wp) array Output

On exit: SSPZðj; kÞ is the cross-product about zero, ~Sjk , for j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

8: LDSSPZ – INTEGER Input

On entry: the first dimension of the array SSPZ as declared in the (sub)program from which
G02BDF is called.

Constraint: LDSSPZ � M.

9: RZðLDRZ;MÞ – REAL (KIND=nag_wp) array Output

On exit: RZðj; kÞ is the correlation-like coefficient, ~Rjk , between the jth and kth variables, for
j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

10: LDRZ – INTEGER Input

On entry: the first dimension of the array RZ as declared in the (sub)program from which
G02BDF is called.

Constraint: LDRZ � M.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, M < 2.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSPZ < M,
or LDRZ < M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02BDF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

8 Parallelism and Performance

G02BDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G02BDF depends on n and m.

The routine uses a two-pass algorithm.
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10 Example

This example reads in a set of data consisting of five observations on each of three variables. The
means, standard deviations, sums of squares and cross-products about zero, and correlation-like
coefficients for all three variables are then calculated and printed.

10.1 Program Text

Program g02bdfe

! G02BDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldrz, ldsspz, ldx, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rz(:,:), sspz(:,:), std(:), x(:,:), &

xbar(:)
! .. Executable Statements ..

Write (nout,*) ’G02BDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldrz = m
ldsspz = m
ldx = n
Allocate (rz(ldrz,m),sspz(ldsspz,m),std(m),x(ldx,m),xbar(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Compute summary statistics
ifail = 0
Call g02bdf(n,m,x,ldx,xbar,std,sspz,ldsspz,rz,ldrz,ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99996)(i,xbar(i),std(i),i=1,m)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products about’ // ’ zero’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,sspz(i,1:m),i=1,m)
Write (nout,*)
Write (nout,*) ’Correlation-like coefficients’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,rz(i,1:m),i=1,m)
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99999 Format (1X,A,I5)
99998 Format (1X,6I12)
99997 Format (1X,I3,3F12.4)
99996 Format (1X,I5,2F11.4)

End Program g02bdfe

10.2 Program Data

G02BDF Example Program Data
5 3 :: N, M
2.0 3.0 3.0
4.0 6.0 4.0
9.0 9.0 0.0
0.0 12.0 2.0

12.0 -1.0 5.0 :: End of X

10.3 Program Results

G02BDF Example Program Results

Number of variables (columns) = 3
Number of cases (rows) = 5

Data matrix is:-

1 2 3
1 2.0000 3.0000 3.0000
2 4.0000 6.0000 4.0000
3 9.0000 9.0000 0.0000
4 0.0000 12.0000 2.0000
5 12.0000 -1.0000 5.0000

Variable Mean St. dev.
1 5.4000 4.9800
2 5.8000 5.0695
3 2.8000 1.9235

Sums of squares and cross-products about zero
1 2 3

1 245.0000 99.0000 82.0000
2 99.0000 271.0000 52.0000
3 82.0000 52.0000 54.0000

Correlation-like coefficients
1 2 3

1 1.0000 0.3842 0.7129
2 0.3842 1.0000 0.4299
3 0.7129 0.4299 1.0000
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NAG Library Routine Document

G02BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BEF computes means and standard deviations of variables, sums of squares and cross-products
about zero, and correlation-like coefficients for a set of data omitting completely any cases with a
missing observation for any variable.

2 Specification

SUBROUTINE G02BEF (N, M, X, LDX, MISS, XMISS, XBAR, STD, SSPZ, LDSSPZ,
RZ, LDRZ, NCASES, IFAIL)

&

INTEGER N, M, LDX, MISS(M), LDSSPZ, LDRZ, NCASES, IFAIL
REAL (KIND=nag_wp) X(LDX,M), XMISS(M), XBAR(M), STD(M),

SSPZ(LDSSPZ,M), RZ(LDRZ,M)
&

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable. In addition, each of the m variables may optionally
have associated with it a value which is to be considered as representing a missing observation for that
variable; the missing value for the jth variable is denoted by xmj. Missing values need not be specified
for all variables.

Let wi ¼ 0 if observation i contains a missing value for any of those variables for which missing values
have been declared, i.e., if xij ¼ xmj for any j for which an xmj has been assigned (see also Section 7);
and wi ¼ 1 otherwise, for i ¼ 1; 2; . . . ; n.

The quantities calculated are:

(a) Means:

�xj ¼

Xn
i¼1
wixij

Xn
i¼1
wi

; j ¼ 1; 2; . . . ;m:

(b) Standard deviations:

sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wi xij � �xj
� �2

Xn
i¼1
wi � 1

vuuuuuuut ; j ¼ 1; 2; . . . ;m:

(c) Sums of squares and cross-products about zero:

~Sjk ¼
Xn
i¼1
wixijxik; j; k ¼ 1; 2; . . . ;m:

G02 – Correlation and Regression Analysis G02BEF

Mark 26 G02BEF.1



(d) Correlation-like coefficients:

~Rjk ¼
~Sjkffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sjj ~Skk

q ; j; k ¼ 1; 2; . . . ;m:

If ~Sjj or ~Skk is zero, ~Rjk is set to zero.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BEF
is called.

Constraint: LDX � N.

5: MISSðMÞ – INTEGER array Input/Output

On entry: MISSðjÞ must be set equal to 1 if a missing value, xmj, is to be specified for the jth
variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m
variables in the array X.

On exit: the array MISS is overwritten by the routine, and the information it contained on entry is
lost.

6: XMISSðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XMISSðjÞ must be set to the missing value, xmj, to be associated with the jth variable
in the array X, for those variables for which missing values are specified by means of the array
MISS (see Section 7).

On exit: the array XMISS is overwritten by the routine, and the information it contained on entry
is lost.

7: XBARðMÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value, �xj , of the jth variable, for j ¼ 1; 2; . . . ;m.

8: STDðMÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the jth variable, for j ¼ 1; 2; . . . ;m.
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9: SSPZðLDSSPZ;MÞ – REAL (KIND=nag_wp) array Output

On exit: SSPZðj; kÞ is the cross-product about zero, ~Sjk , for j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

10: LDSSPZ – INTEGER Input

On entry: the first dimension of the array SSPZ as declared in the (sub)program from which
G02BEF is called.

Constraint: LDSSPZ � M.

11: RZðLDRZ;MÞ – REAL (KIND=nag_wp) array Output

On exit: RZðj; kÞ is the correlation-like coefficient, ~Rjk , between the jth and kth variables, for
j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

12: LDRZ – INTEGER Input

On entry: the first dimension of the array RZ as declared in the (sub)program from which
G02BEF is called.

Constraint: LDRZ � M.

13: NCASES – INTEGER Output

On exit: the number of cases actually used in the calculations (when cases involving missing
values have been eliminated).

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, M < 2.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSPZ < M,
or LDRZ < M.
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IFAIL ¼ 4

After observations with missing values were omitted, no cases remained.

IFAIL ¼ 5

After observations with missing values were omitted, only one case remained.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02BEF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

You are warned of the need to exercise extreme care in your selection of missing values. G02BEF treats
all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for variable
j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

8 Parallelism and Performance

G02BEF is not threaded in any implementation.

9 Further Comments

The time taken by G02BEF depends on n and m, and the occurrence of missing values.

The routine uses a two-pass algorithm.

10 Example

This example reads in a set of data consisting of five observations on each of three variables. Missing
values of 0:0 are declared for the first and third variables; no missing value is specified for the second
variable. The means, standard deviations, sums of squares and cross-products about zero, and
correlation-like coefficients for all three variables are then calculated and printed, omitting completely
all cases containing missing values; cases 3 and 4 are therefore eliminated, leaving only three cases in
the calculations.
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10.1 Program Text

Program g02befe

! G02BEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldrz, ldsspz, ldx, m, n, &

ncases
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: rz(:,:), sspz(:,:), std(:), x(:,:), &
xbar(:), xmiss(:)

Integer, Allocatable :: miss(:)
! .. Executable Statements ..

Write (nout,*) ’G02BEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldrz = m
ldsspz = m
ldx = n
Allocate (rz(ldrz,m),sspz(ldsspz,m),std(m),x(ldx,m),xbar(m),xmiss(m), &

miss(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in missing value flags
Read (nin,*) miss(1:m)
Read (nin,*) xmiss(1:m)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate summary statistics
ifail = 0
Call g02bef(n,m,x,ldx,miss,xmiss,xbar,std,sspz,ldsspz,rz,ldrz,ncases, &

ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99996)(i,xbar(i),std(i),i=1,m)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products about’ // ’ zero’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,sspz(i,1:m),i=1,m)
Write (nout,*)
Write (nout,*) ’Correlation-like coefficients’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,rz(i,1:m),i=1,m)
Write (nout,*)
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Write (nout,99999) ’Number of cases actually used: ’, ncases

99999 Format (1X,A,I5)
99998 Format (1X,6I12)
99997 Format (1X,I3,3F12.4)
99996 Format (1X,I5,2F11.4)

End Program g02befe

10.2 Program Data

G02BEF Example Program Data
5 3 :: N, M
2.0 3.0 3.0
4.0 6.0 4.0
9.0 9.0 0.0
0.0 12.0 2.0

12.0 -1.0 5.0 :: End of X
1 0 1 :: MISS

0.0 0.0 0.0 :: XMISS

10.3 Program Results

G02BEF Example Program Results

Number of variables (columns) = 3
Number of cases (rows) = 5

Data matrix is:-

1 2 3
1 2.0000 3.0000 3.0000
2 4.0000 6.0000 4.0000
3 9.0000 9.0000 0.0000
4 0.0000 12.0000 2.0000
5 12.0000 -1.0000 5.0000

Variable Mean St. dev.
1 6.0000 5.2915
2 2.6667 3.5119
3 4.0000 1.0000

Sums of squares and cross-products about zero
1 2 3

1 164.0000 18.0000 82.0000
2 18.0000 46.0000 28.0000
3 82.0000 28.0000 50.0000

Correlation-like coefficients
1 2 3

1 1.0000 0.2072 0.9055
2 0.2072 1.0000 0.5838
3 0.9055 0.5838 1.0000

Number of cases actually used: 3
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NAG Library Routine Document

G02BFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BFF computes means and standard deviations of variables, sums of squares and cross-products
about zero and correlation-like coefficients for a set of data omitting cases with missing values from
only those calculations involving the variables for which the values are missing.

2 Specification

SUBROUTINE G02BFF (N, M, X, LDX, MISS, XMISS, XBAR, STD, SSPZ, LDSSPZ,
RZ, LDRZ, NCASES, CNT, LDCNT, IFAIL)

&

INTEGER N, M, LDX, MISS(M), LDSSPZ, LDRZ, NCASES, LDCNT,
IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), XMISS(M), XBAR(M), STD(M),
SSPZ(LDSSPZ,M), RZ(LDRZ,M), CNT(LDCNT,M)

&

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable. In addition, each of the m variables may optionally
have associated with it a value which is to be considered as representing a missing observation for that
variable; the missing value for the jth variable is denoted by xmj. Missing values need not be specified
for all variables.

Let wij ¼ 0 if the ith observation for the jth variable is a missing value, i.e., if a missing value, xmj ,
has been declared for the jth variable, and xij ¼ xmj (see also Section 7); and wij ¼ 1 otherwise, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

The quantities calculated are:

(a) Means:

�xj ¼

Xn
i¼1
wijxij

Xn
i¼1
wij

; j ¼ 1; 2; . . . ;m:

(b) Standard deviations:

sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wij xij � �xj
� �2

Xn
i¼1
wij � 1

vuuuuuuut ; j ¼ 1; 2; . . . ;m:

(c) Sums of squares and cross-products about zero:

~Sjk ¼
Xn
i¼1
wijwikxijxik; j; k ¼ 1; 2; . . . ;m:
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(d) Correlation-like coefficients:

~Rjk ¼
~Sjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Sjj kð Þj kð Þ ~Skk jð Þ
q ; j; k ¼ 1; 2; . . . ;m;

where ~Sjj kð Þ ¼
Xn
i¼1
wijwikx

2
ij and

~Skk jð Þ ¼
Xn
i¼1
wikwijx

2
ik

(i.e., the sums of squares about zero are based on the same set of observations as are used in the
calculation of the numerator).

If ~Sjj kð Þ or ~Skk jð Þ is zero, ~Rjk is set to zero.

(e) The number of cases used in the calculation of each of the correlation-like coefficients:

cjk ¼
Xn
i¼1
wijwik; j; k ¼ 1; 2; . . . ;m:

(The diagonal terms, cjj , for j ¼ 1; 2; . . . ;m, also give the number of cases used in the calculation
of the means �xj and the standard deviations sj .)

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BFF
is called.

Constraint: LDX � N.

5: MISSðMÞ – INTEGER array Input

On entry: MISSðjÞ must be set equal to 1 if a missing value, xmj, is to be specified for the jth
variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m
variables in the array X.

6: XMISSðMÞ – REAL (KIND=nag_wp) array Input

On entry: XMISSðjÞ must be set to the missing value, xmj, to be associated with the jth variable
in the array X, for those variables for which missing values are specified by means of the array
MISS (see Section 7).
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7: XBARðMÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value, �xj , of the jth variable, for j ¼ 1; 2; . . . ;m.

8: STDðMÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the jth variable, for j ¼ 1; 2; . . . ;m.

9: SSPZðLDSSPZ;MÞ – REAL (KIND=nag_wp) array Output

On exit: SSPZðj; kÞ is the cross-product about zero, ~Sjk , for j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

10: LDSSPZ – INTEGER Input

On entry: the first dimension of the array SSPZ as declared in the (sub)program from which
G02BFF is called.

Constraint: LDSSPZ � M.

11: RZðLDRZ;MÞ – REAL (KIND=nag_wp) array Output

On exit: RZðj; kÞ is the correlation-like coefficient, ~Rjk , between the jth and kth variables, for
j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

12: LDRZ – INTEGER Input

On entry: the first dimension of the array RZ as declared in the (sub)program from which
G02BFF is called.

Constraint: LDRZ � M.

13: NCASES – INTEGER Output

On exit: the minimum number of cases used in the calculation of any of the sums of squares and
cross-products and correlation-like coefficients (when cases involving missing values have been
eliminated).

14: CNTðLDCNT;MÞ – REAL (KIND=nag_wp) array Output

On exit: CNTðj; kÞ is the number of cases, cjk , actually used in the calculation of ~Sjk , and ~Rjk , the
sum of cross-products and correlation-like coefficient for the jth and kth variables, for
j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

15: LDCNT – INTEGER Input

On entry: must specify the first dimension of the array CNT as declared in the (sub)program from
which G02BFF is called.

Constraint: LDCNT � M.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02BFF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, M < 2.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSPZ < M,
or LDRZ < M,
or LDCNT < M.

IFAIL ¼ 4

After observations with missing values were omitted, fewer than two cases remained for at least
one pair of variables. (The pairs of variables involved can be determined by examination of the
contents of the array CNT). All means, standard deviations, sums of squares and cross-products,
and correlation-like coefficients based on two or more cases are returned by the routine even if
IFAIL ¼ 4.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02BFF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

You are warned of the need to exercise extreme care in your selection of missing values. G02BFF treats
all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for variable
j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.
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8 Parallelism and Performance

G02BFF is not threaded in any implementation.

9 Further Comments

The time taken by G02BFF depends on n and m, and the occurrence of missing values.

The routine uses a two-pass algorithm.

10 Example

This example reads in a set of data consisting of five observations on each of three variables. Missing
values of 0:0, �1:0 and 0:0 are declared for the first, second and third variables respectively. The
means, standard deviations, sums of squares and cross-products about zero, and correlation-like
coefficients for all three variables are then calculated and printed, omitting cases with missing values
from only those calculations involving the variables for which the values are missing. The program
therefore omits cases 4 and 5 in calculating the correlation between the first and second variables, and
cases 3 and 4 for the first and third variables, etc.

10.1 Program Text

Program g02bffe

! G02BFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldcnt, ldrz, ldsspz, ldx, &

m, n, ncases
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: cnt(:,:), rz(:,:), sspz(:,:), &
std(:), x(:,:), xbar(:), xmiss(:)

Integer, Allocatable :: miss(:)
! .. Executable Statements ..

Write (nout,*) ’G02BFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldcnt = m
ldrz = m
ldsspz = m
ldx = n
Allocate (cnt(ldcnt,m),rz(ldrz,m),sspz(ldsspz,m),std(m),x(ldx,m), &

xbar(m),xmiss(m),miss(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in missing value flags
Read (nin,*) miss(1:m)
Read (nin,*) xmiss(1:m)

! Display data
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Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate summary statistics
ifail = 0
Call g02bff(n,m,x,ldx,miss,xmiss,xbar,std,sspz,ldsspz,rz,ldrz,ncases, &

cnt,ldcnt,ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99996)(i,xbar(i),std(i),i=1,m)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products about’ // ’ zero’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,sspz(i,1:m),i=1,m)
Write (nout,*)
Write (nout,*) ’Correlation-like coefficients’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,rz(i,1:m),i=1,m)
Write (nout,*)
Write (nout,99999) &

’Minimum number of cases used for any pair of variables: ’, ncases
Write (nout,*)
Write (nout,*) ’Numbers used for each pair are:’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,cnt(i,1:m),i=1,m)

99999 Format (1X,A,I5)
99998 Format (1X,6I12)
99997 Format (1X,I3,3F12.4)
99996 Format (1X,I5,2F11.4)

End Program g02bffe

10.2 Program Data

G02BFF Example Program Data
5 3 :: N, M
2.0 3.0 3.0
4.0 6.0 4.0
9.0 9.0 0.0
0.0 12.0 2.0

12.0 -1.0 5.0 :: End of X
1 1 1 :: MISS

0.0 -1.0 0.0 :: XMISS

10.3 Program Results

G02BFF Example Program Results

Number of variables (columns) = 3
Number of cases (rows) = 5

Data matrix is:-

1 2 3
1 2.0000 3.0000 3.0000
2 4.0000 6.0000 4.0000
3 9.0000 9.0000 0.0000
4 0.0000 12.0000 2.0000
5 12.0000 -1.0000 5.0000

Variable Mean St. dev.
1 6.7500 4.5735
2 7.5000 3.8730
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3 3.5000 1.2910

Sums of squares and cross-products about zero
1 2 3

1 245.0000 111.0000 82.0000
2 111.0000 270.0000 57.0000
3 82.0000 57.0000 54.0000

Correlation-like coefficients
1 2 3

1 1.0000 0.9840 0.9055
2 0.9840 1.0000 0.7699
3 0.9055 0.7699 1.0000

Minimum number of cases used for any pair of variables: 3

Numbers used for each pair are:
1 2 3

1 4.0000 3.0000 3.0000
2 3.0000 4.0000 3.0000
3 3.0000 3.0000 4.0000
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NAG Library Routine Document

G02BGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BGF computes means and standard deviations, sums of squares and cross-products of deviations
from means, and Pearson product-moment correlation coefficients for selected variables.

2 Specification

SUBROUTINE G02BGF (N, M, X, LDX, NVARS, KVAR, XBAR, STD, SSP, LDSSP, R,
LDR, IFAIL)

&

INTEGER N, M, LDX, NVARS, KVAR(NVARS), LDSSP, LDR, IFAIL
REAL (KIND=nag_wp) X(LDX,M), XBAR(NVARS), STD(NVARS),

SSP(LDSSP,NVARS), R(LDR,NVARS)
&

3 Description

The input data consist of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable, together with the subset of these variables,
v1; v2; . . . ; vp, for which information is required.

The quantities calculated are:

(a) Means:

�xj ¼ 1
n

Xn
i¼1
xij; j ¼ v1; v2; . . . ; vp:

(b) Standard deviations:

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xij � �xj
� �2s

; j ¼ v1; v2; . . . ; vp:

(c) Sums of squares and cross-products of deviations from zero:

Sjk ¼
Xn
i¼1

xij � �xj
� �

xik � �xkð Þ; j; k ¼ v1; v2; . . . ; vp:

(d) Pearson product-moment correlation coefficients:

Rjk ¼
Sjkffiffiffiffiffiffiffiffiffiffiffiffiffi
SjjSkk

p ; j; k ¼ v1; v2; . . . vp:

If Sjj or Skk is zero, Rjk is set to zero.

4 References

None.

G02 – Correlation and Regression Analysis G02BGF

Mark 26 G02BGF.1



5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BGF
is called.

Constraint: LDX � N.

5: NVARS – INTEGER Input

On entry: p, the number of variables for which information is required.

Constraint: 2 � NVARS � M.

6: KVARðNVARSÞ – INTEGER array Input

On entry: KVARðjÞ must be set to the column number in X of the jth variable for which
information is required, for j ¼ 1; 2; . . . ; p.

Constraint: 1 � KVARðjÞ � M, for j ¼ 1; 2; . . . ; p.

7: XBARðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value, �xj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

8: STDðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

9: SSPðLDSSP;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: SSPðj; kÞ is the cross-product of deviations, Sjk , for the variables specified in KVARðjÞ
and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

10: LDSSP – INTEGER Input

On entry: the first dimension of the array SSP as declared in the (sub)program from which
G02BGF is called.

Constraint: LDSSP � NVARS.

11: RðLDR;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: Rðj; kÞ is the product-moment correlation coefficient, Rjk , between the variables
specified in KVARðjÞ and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

G02BGF NAG Library Manual

G02BGF.2 Mark 26



12: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G02BGF
is called.

Constraint: LDR � NVARS.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, NVARS < 2,
or NVARS > M.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSP < NVARS,
or LDR < NVARS.

IFAIL ¼ 4

On entry, KVARðjÞ < 1,
or KVARðjÞ > M for some j ¼ 1; 2; . . . ;NVARS.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

G02BGF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

8 Parallelism and Performance

G02BGF is not threaded in any implementation.

9 Further Comments

The time taken by G02BGF depends on n and p.

The routine uses a two pass algorithm.

10 Example

This example reads in a set of data consisting of five observations on each of four variables. The means,
standard deviations, sums of squares and cross-products of deviations from means, and Pearson
product-moment correlation coefficients for the fourth, first and second variables are then calculated and
printed.

10.1 Program Text

Program g02bgfe

! G02BGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bgf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldr, ldssp, ldx, m, n, &

nvars
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: r(:,:), ssp(:,:), std(:), x(:,:), &
xbar(:)

Integer, Allocatable :: kvar(:)
! .. Executable Statements ..

Write (nout,*) ’G02BGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, nvars

ldr = nvars
ldssp = nvars
ldx = n
Allocate (r(ldr,nvars),ssp(ldssp,nvars),std(nvars),x(ldx,m),xbar(nvars), &

kvar(nvars))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in column IDs
Read (nin,*) kvar(1:nvars)

! Display data
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Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate summary statistics
ifail = 0
Call g02bgf(n,m,x,ldx,nvars,kvar,xbar,std,ssp,ldssp,r,ldr,ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99995)(kvar(i),xbar(i),std(i),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products of deviations’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),ssp(i,1:nvars),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Correlation coefficients’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),r(i,1:nvars),i=1,nvars)

99999 Format (1X,A,I5)
99998 Format (1X,6I12)
99997 Format (1X,I3,4F12.4)
99996 Format (1X,I3,3F12.4)
99995 Format (1X,I5,2F11.4)

End Program g02bgfe

10.2 Program Data

G02BGF Example Program Data
5 4 3 :: N, M, NVARS
3.0 3.0 1.0 2.0
6.0 4.0 -1.0 4.0
9.0 0.0 5.0 9.0

12.0 2.0 0.0 0.0
-1.0 5.0 4.0 12.0 :: End of X
4 1 2 :: KVARS

10.3 Program Results

G02BGF Example Program Results

Number of variables (columns) = 4
Number of cases (rows) = 5

Data matrix is:-

1 2 3 4
1 3.0000 3.0000 1.0000 2.0000
2 6.0000 4.0000 -1.0000 4.0000
3 9.0000 0.0000 5.0000 9.0000
4 12.0000 2.0000 0.0000 0.0000
5 -1.0000 5.0000 4.0000 12.0000

Variable Mean St. dev.
4 5.4000 4.9800
1 5.8000 5.0695
2 2.8000 1.9235

Sums of squares and cross-products of deviations
4 1 2

4 99.2000 -57.6000 6.4000
1 -57.6000 102.8000 -29.2000
2 6.4000 -29.2000 14.8000
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Correlation coefficients
4 1 2

4 1.0000 -0.5704 0.1670
1 -0.5704 1.0000 -0.7486
2 0.1670 -0.7486 1.0000
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NAG Library Routine Document

G02BHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BHF computes means and standard deviations, sums of squares and cross-products of deviations
from means, and Pearson product-moment correlation coefficients for selected variables omitting
completely any cases with a missing observation for any variable (either over all variables in the dataset
or over only those variables in the selected subset).

2 Specification

SUBROUTINE G02BHF (N, M, X, LDX, MISS, XMISS, MISTYP, NVARS, KVAR, XBAR,
STD, SSP, LDSSP, R, LDR, NCASES, IFAIL)

&

INTEGER N, M, LDX, MISS(M), MISTYP, NVARS, KVAR(NVARS),
LDSSP, LDR, NCASES, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), XMISS(M), XBAR(NVARS), STD(NVARS),
SSP(LDSSP,NVARS), R(LDR,NVARS)

&

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable, together with the subset of these variables,
v1; v2; . . . ; vp, for which information is required.

In addition, each of the m variables may optionally have associated with it a value which is to be
considered as representing a missing observation for that variable; the missing value for the jth variable
is denoted by xmj. Missing values need not be specified for all variables. The missing values can be
utilized in two slightly different ways; you can indicate which scheme is required.

Firstly, let wi ¼ 0 if observation i contains a missing value for any of those variables in the set
1; 2; . . . ;m for which missing values have been declared, i.e., if xij ¼ xmj for any j (j ¼ 1; 2; . . . ;m)
for which an xmj has been assigned (see also Section 7); and wi ¼ 1 otherwise, for i ¼ 1; 2; . . . ; n.

Secondly, let wi ¼ 0 if observation i contains a missing value for any of those variables in the selected
subset v1; v2; . . . ; vp for which missing values have been declared, i.e., if xij ¼ xmj for any j
(j ¼ v1; v2; . . . ; vp) for which an xmj has been assigned (see also Section 7); and wi ¼ 1 otherwise, for
i ¼ 1; 2; . . . ; n.

The quantities calculated are:

(a) Means:

�xj ¼

Xn
i¼1
wixij

Xn
i¼1
wi

; j ¼ v1; v2; . . . ; vp:
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(b) Standard deviations:

sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wi xij � �xj
� �2

Xn
i¼1
wi � 1

vuuuuuuut ; j ¼ v1; v2; . . . ; vp:

(c) Sums of squares and cross-products of deviations from means:

Sjk ¼
Xn
i¼1
wi xij � �xj
� �

xik � �xkð Þ; j; k ¼ v1; v2; . . . ; vp:

(d) Pearson product-moment correlation coefficients:

Rjk ¼
Sjkffiffiffiffiffiffiffiffiffiffiffiffiffi
SjjSkk

p ; j; k ¼ v1; v2; . . . ; vp:

If Sjj or Skk is zero, Rjk is set to zero.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BHF
is called.

Constraint: LDX � N.

5: MISSðMÞ – INTEGER array Input/Output

On entry: MISSðjÞ must be set equal to 1 if a missing value, xmj, is to be specified for the jth
variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m
variables in the array X.

On exit: the array MISS is overwritten by the routine, and the information it contained on entry is
lost.
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6: XMISSðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XMISSðjÞ must be set to the missing value, xmj, to be associated with the jth variable
in the array X, for those variables for which missing values are specified by means of the array
MISS (see Section 7).

On exit: the array XMISS is overwritten by the routine, and the information it contained on entry
is lost.

7: MISTYP – INTEGER Input

On entry: indicates the manner in which missing observations are to be treated.

MISTYP ¼ 1
A case is excluded if it contains a missing value for any of the variables 1; 2; . . . ;m.

MISTYP ¼ 0
A case is excluded if it contains a missing value for any of the p � mð Þ variables specified
in the array KVAR.

8: NVARS – INTEGER Input

On entry: p, the number of variables for which information is required.

Constraint: 2 � NVARS � M.

9: KVARðNVARSÞ – INTEGER array Input

On entry: KVARðjÞ must be set to the column number in X of the jth variable for which
information is required, for j ¼ 1; 2; . . . ; p.

Constraint: 1 � KVARðjÞ � M, for j ¼ 1; 2; . . . ; p.

10: XBARðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value, of �xj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

11: STDðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

12: SSPðLDSSP;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: SSPðj; kÞ is the cross-product of deviations, Sjk , for the variables specified in KVARðjÞ
and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

13: LDSSP – INTEGER Input

On entry: the first dimension of the array SSP as declared in the (sub)program from which
G02BHF is called.

Constraint: LDSSP � NVARS.

14: RðLDR;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: Rðj; kÞ is the product-moment correlation coefficient, Rjk , between the variables
specified in KVARðjÞ and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

15: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G02BHF
is called.

Constraint: LDR � NVARS.
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16: NCASES – INTEGER Output

On exit: the number of cases actually used in the calculations (when cases involving missing
values have been eliminated).

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, NVARS < 2,
or NVARS > M.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSP < NVARS,
or LDR < NVARS.

IFAIL ¼ 4

On entry, KVARðjÞ < 1,
or KVARðjÞ > M for some j ¼ 1; 2; . . . ;NVARS.

IFAIL ¼ 5

On entry, MISTYP 6¼ 1 or 0

IFAIL ¼ 6

After observations with missing values were omitted, no cases remained.

IFAIL ¼ 7

After observations with missing values were omitted, only one case remained.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02BHF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

You are warned of the need to exercise extreme care in your selection of missing values. G02BHF
treats all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for
variable j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

8 Parallelism and Performance

G02BHF is not threaded in any implementation.

9 Further Comments

The time taken by G02BHF depends on n and p, and the occurrence of missing values.

The routine uses a two-pass algorithm.

10 Example

This example reads in a set of data consisting of five observations on each of four variables. Missing
values of 0:0 are declared for the second and fourth variables; no missing values are specified for the
first and third variables. The means, standard deviations, sums of squares and cross-products of
deviations from means, and Pearson product-moment correlation coefficients for the fourth, first and
second variables are then calculated and printed, omitting completely all cases containing missing
values for these three selected variables; cases 3 and 4 are therefore eliminated, leaving only three cases
in the calculations.

10.1 Program Text

Program g02bhfe

! G02BHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bhf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldr, ldssp, ldx, m, &

mistyp, n, ncases, nvars
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: r(:,:), ssp(:,:), std(:), x(:,:), &
xbar(:), xmiss(:)
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Integer, Allocatable :: kvar(:), miss(:)
! .. Executable Statements ..

Write (nout,*) ’G02BHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, nvars, mistyp

ldr = nvars
ldssp = nvars
ldx = n
Allocate (r(ldr,nvars),ssp(ldssp,nvars),std(nvars),x(ldx,m),xbar(nvars), &

xmiss(m),kvar(nvars),miss(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in missing value flags
Read (nin,*) miss(1:m)
Read (nin,*) xmiss(1:m)

! Read in column IDs
Read (nin,*) kvar(1:nvars)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate summary statistics
ifail = 0
Call g02bhf(n,m,x,ldx,miss,xmiss,mistyp,nvars,kvar,xbar,std,ssp,ldssp,r, &

ldr,ncases,ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99995)(kvar(i),xbar(i),std(i),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products of deviations’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),ssp(i,1:nvars),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Correlation coefficients’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),r(i,1:nvars),i=1,nvars)
Write (nout,*)
Write (nout,99999) ’Number of cases actually used:’, ncases

99999 Format (1X,A,I5)
99998 Format (1X,4I12)
99997 Format (1X,I3,4F12.4)
99996 Format (1X,I3,3F12.4)
99995 Format (1X,I5,2F11.4)

End Program g02bhfe
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10.2 Program Data

G02BHF Example Program Data
5 4 3 0 :: N, M, NVARS, MISTYP
3.0 3.0 1.0 2.0
6.0 4.0 -1.0 4.0
9.0 0.0 5.0 9.0

12.0 2.0 0.0 0.0
-1.0 5.0 4.0 12.0 :: End of X

0 1 0 1 :: MISS
0.0 0.0 0.0 0.0 :: XMISS

4 1 2 :: KVAR

10.3 Program Results

G02BHF Example Program Results

Number of variables (columns) = 4
Number of cases (rows) = 5

Data matrix is:-
1 2 3 4

1 3.0000 3.0000 1.0000 2.0000
2 6.0000 4.0000 -1.0000 4.0000
3 9.0000 0.0000 5.0000 9.0000
4 12.0000 2.0000 0.0000 0.0000
5 -1.0000 5.0000 4.0000 12.0000

Variable Mean St. dev.
4 6.0000 5.2915
1 2.6667 3.5119
2 4.0000 1.0000

Sums of squares and cross-products of deviations
4 1 2

4 56.0000 -30.0000 10.0000
1 -30.0000 24.6667 -4.0000
2 10.0000 -4.0000 2.0000

Correlation coefficients
4 1 2

4 1.0000 -0.8072 0.9449
1 -0.8072 1.0000 -0.5695
2 0.9449 -0.5695 1.0000

Number of cases actually used: 3
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NAG Library Routine Document

G02BJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BJF computes means and standard deviations, sums of squares and cross-products of deviations
from means, and Pearson product-moment correlation coefficients for selected variables omitting cases
with missing values from only those calculations involving the variables for which the values are
missing.

2 Specification

SUBROUTINE G02BJF (N, M, X, LDX, MISS, XMISS, NVARS, KVAR, XBAR, STD,
SSP, LDSSP, R, LDR, NCASES, CNT, LDCNT, IFAIL)

&

INTEGER N, M, LDX, MISS(M), NVARS, KVAR(NVARS), LDSSP, LDR,
NCASES, LDCNT, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), XMISS(M), XBAR(NVARS), STD(NVARS),
SSP(LDSSP,NVARS), R(LDR,NVARS), CNT(LDCNT,NVARS)

&

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable, together with the subset of these variables,
v1; v2; . . . ; vp, for which information is required.

In addition, each of the m variables may optionally have associated with it a value which is to be
considered as representing a missing observation for that variable; the missing value for the jth variable
is denoted by xmj. Missing values need not be specified for all variables.

Let wij ¼ 0 if the ith observation for the jth variable is a missing value, i.e., if a missing value, xmj ,
has been declared for the jth variable, and xij ¼ xmj (see also Section 7); and wij ¼ 1 otherwise, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

The quantities calculated are:

(a) Means:

�xj ¼

Xn
i¼1
wijxij

Xn
i¼1
wij

; j ¼ v1; v2; . . . ; vp:

(b) Standard deviations:

sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wij xij � �xj
� �2

Xn
i¼1
wij � 1

vuuuuuuut ; j ¼ v1; v2; . . . ; vp:
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(c) Sums of squares and cross-products of deviations from means:

Sjk ¼
Xn
i¼1
wijwik xij � �xj kð Þ

� �
xik � �xk jð Þ
� �

; j; k ¼ v1; v2; . . . ; vp;

where

�xj kð Þ ¼

Xn
i¼1
wijwikxij

Xn
i¼1
wijwik

and �xk jð Þ ¼

Xn
i¼1
wikwijxik

Xn
i¼1
wikwij

;

(i.e., the means used in the calculation of the sum of squares and cross-products of deviations are
based on the same set of observations as are the cross-products).

(d) Pearson product-moment correlation coefficients:

Rjk ¼
Sjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sjj kð ÞSkk jð Þ
p ; j; k ¼ v1; v2; . . . ; vp;

where

Sjj kð Þ ¼
Xn
i¼1
wijwik xij � �xj kð Þ

� �2
and Skk jð Þ ¼

Xn
i¼1
wikwij xik � �xk jð Þ

� �2
;

(i.e., the sums of squares of deviations used in the denominator are based on the same set of
observations as are used in the calculation of the numerator).

If Sjj kð Þ or Skk jð Þ is zero, Rjk is set to zero.

(e) The number of cases used in the calculation of each of the correlation coefficients:

cjk ¼
Xn
i¼1
wijwik; j; k ¼ v1; v2; . . . ; vp:

(The diagonal terms, cjj, for j ¼ v1; v2; . . . ; vp, also give the number of cases used in the calculation
of the means, �xj, and the standard deviations, sj.)

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.
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4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BJF
is called.

Constraint: LDX � N.

5: MISSðMÞ – INTEGER array Input

On entry: MISSðjÞ must be set equal to 1 if a missing value, xmj, is to be specified for the jth
variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m
variables in the array X.

6: XMISSðMÞ – REAL (KIND=nag_wp) array Input

On entry: XMISSðjÞ must be set to the missing value, xmj, to be associated with the jth variable
in the array X, for those variables for which missing values are specified by means of the array
MISS (see Section 7).

7: NVARS – INTEGER Input

On entry: p, the number of variables for which information is required.

Constraint: 2 � NVARS � M.

8: KVARðNVARSÞ – INTEGER array Input

On entry: KVARðjÞ must be set to the column number in X of the jth variable for which
information is required, for j ¼ 1; 2; . . . ; p.

Constraint: 1 � KVARðjÞ � M, for j ¼ 1; 2; . . . ; p.

9: XBARðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value, �xj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

10: STDðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

11: SSPðLDSSP;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: SSPðj; kÞ is the cross-product of deviations, Sjk , for the variables specified in KVARðjÞ
and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

12: LDSSP – INTEGER Input

On entry: the first dimension of the array SSP as declared in the (sub)program from which
G02BJF is called.

Constraint: LDSSP � NVARS.

13: RðLDR;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: Rðj; kÞ is the product-moment correlation coefficient, Rjk , between the variables
specified in KVARðjÞ and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

14: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G02BJF
is called.

Constraint: LDR � NVARS.
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15: NCASES – INTEGER Output

On exit: the minimum number of cases used in the calculation of any of the sums of squares and
cross-products and correlation coefficients (when cases involving missing values have been
eliminated).

16: CNTðLDCNT;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: CNTðj; kÞ is the number of cases, cjk , actually used in the calculation of Sjk , and Rjk , the
sum of cross-products and correlation coefficient for the variables specified in KVARðjÞ and
KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

17: LDCNT – INTEGER Input

On entry: the first dimension of the array CNT as declared in the (sub)program from which
G02BJF is called.

Constraint: LDCNT � NVARS.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02BJF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, NVARS < 2,
or NVARS > M.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSP < NVARS,
or LDR < NVARS,
or LDCNT < NVARS.

IFAIL ¼ 4

On entry, KVARðjÞ < 1,
or KVARðjÞ > M for some j ¼ 1; 2; . . . ;NVARS.
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IFAIL ¼ 5

After observations with missing values were omitted, fewer than two cases remained for at least
one pair of variables. (The pairs of variables involved can be determined by examination of the
contents of the array CNT.) All means, standard deviations, sums of squares and cross-products,
and correlation coefficients based on two or more cases are returned by the routine even if
IFAIL ¼ 5.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02BJF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

You are warned of the need to exercise extreme care in your selection of missing values. G02BJF treats
all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for variable
j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

8 Parallelism and Performance

G02BJF is not threaded in any implementation.

9 Further Comments

The time taken by G02BJF depends on n and p, and the occurrence of missing values.

The routine uses a two-pass algorithm.

10 Example

This example reads in a set of data consisting of five observations on each of four variables. Missing
values of �1:0, 0:0 and 0:0 are declared for the first, second and fourth variables respectively; no
missing value is specified for the third variable. The means, standard deviations, sums of squares and
cross-products of deviations from means, and Pearson product-moment correlation coefficients for the
fourth, first and second variables are then calculated and printed, omitting cases with missing values
from only those calculations involving the variables for which the values are missing. The program
therefore eliminates cases 4 and 5 in calculating the correlation between the fourth and first variables,
and cases 3 and 4 for the fourth and second variables etc.
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10.1 Program Text

Program g02bjfe

! G02BJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bjf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldcnt, ldr, ldssp, ldx, m, &

n, ncases, nvars
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: cnt(:,:), r(:,:), ssp(:,:), std(:), &
x(:,:), xbar(:), xmiss(:)

Integer, Allocatable :: kvar(:), miss(:)
! .. Executable Statements ..

Write (nout,*) ’G02BJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, nvars

ldcnt = nvars
ldr = nvars
ldssp = nvars
ldx = n
Allocate (cnt(ldcnt,nvars),r(ldr,nvars),ssp(ldssp,nvars),std(nvars), &

x(ldx,m),xbar(nvars),xmiss(m),kvar(nvars),miss(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in missing value flags
Read (nin,*) miss(1:m)
Read (nin,*) xmiss(1:m)

! Read in column IDs
Read (nin,*) kvar(1:nvars)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate summary statistics
ifail = 0
Call g02bjf(n,m,x,ldx,miss,xmiss,nvars,kvar,xbar,std,ssp,ldssp,r,ldr, &

ncases,cnt,ldcnt,ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99995)(kvar(i),xbar(i),std(i),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products of deviations’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),ssp(i,1:nvars),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Correlation coefficients’
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Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),r(i,1:nvars),i=1,nvars)
Write (nout,*)
Write (nout,99999) &

’Minimum number of cases used for any pair of variables:’, ncases
Write (nout,*)
Write (nout,*) ’Numbers used for each pair are:’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),cnt(i,1:nvars),i=1,nvars)

99999 Format (1X,A,I5)
99998 Format (1X,4I12)
99997 Format (1X,I3,4F12.4)
99996 Format (1X,I3,3F12.4)
99995 Format (1X,I5,2F11.4)

End Program g02bjfe

10.2 Program Data

G02BJF Example Program Data
5 4 3 :: N, M, NVARS
3.0 3.0 1.0 2.0
6.0 4.0 -1.0 4.0
9.0 0.0 5.0 9.0

12.0 2.0 0.0 0.0
-1.0 5.0 4.0 12.0 :: End of X

1 1 0 1 :: MISS
-1.0 0.0 0.0 0.0 :: XMISS
4 1 2 :: KVAR

10.3 Program Results

G02BJF Example Program Results

Number of variables (columns) = 4
Number of cases (rows) = 5

Data matrix is:-
1 2 3 4

1 3.0000 3.0000 1.0000 2.0000
2 6.0000 4.0000 -1.0000 4.0000
3 9.0000 0.0000 5.0000 9.0000
4 12.0000 2.0000 0.0000 0.0000
5 -1.0000 5.0000 4.0000 12.0000

Variable Mean St. dev.
4 6.7500 4.5735
1 7.5000 3.8730
2 3.5000 1.2910

Sums of squares and cross-products of deviations
4 1 2

4 62.7500 21.0000 10.0000
1 21.0000 45.0000 -6.0000
2 10.0000 -6.0000 5.0000

Correlation coefficients
4 1 2

4 1.0000 0.9707 0.9449
1 0.9707 1.0000 -0.6547
2 0.9449 -0.6547 1.0000

Minimum number of cases used for any pair of variables: 3
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Numbers used for each pair are:
4 1 2

4 4.0000 3.0000 3.0000
1 3.0000 4.0000 3.0000
2 3.0000 3.0000 4.0000
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NAG Library Routine Document

G02BKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BKF computes means and standard deviations, sums of squares and cross-products about zero, and
correlation-like coefficients for selected variables.

2 Specification

SUBROUTINE G02BKF (N, M, X, LDX, NVARS, KVAR, XBAR, STD, SSPZ, LDSSPZ,
RZ, LDRZ, IFAIL)

&

INTEGER N, M, LDX, NVARS, KVAR(NVARS), LDSSPZ, LDRZ, IFAIL
REAL (KIND=nag_wp) X(LDX,M), XBAR(NVARS), STD(NVARS),

SSPZ(LDSSPZ,NVARS), RZ(LDRZ,NVARS)
&

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable, together with the subset of these variables,
v1; v2; . . . ; vp, for which information is required.

The quantities calculated are:

(a) Means:

�xj ¼

Xn
i¼1
xij

n
; j ¼ v1; v2; . . . ; vp:

(b) Standard deviations:

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xij � �xj
� �2s

; j ¼ v1; v2; . . . ; vp:

(c) Sums of squares and cross-products about zero:

~Sjk ¼
Xn
i¼1
xijxik; j; k ¼ v1; v2; . . . ; vp:

(d) Correlation-like coefficients:

~Rjk ¼
~Sjkffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sjj ~Skk

q ; j; k ¼ v1; v2; . . . ; vp:

If ~Sjj or ~Skk is zero, ~Rjk is set to zero.

4 References

None.
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BKF
is called.

Constraint: LDX � N.

5: NVARS – INTEGER Input

On entry: p, the number of variables for which information is required.

Constraint: 2 � NVARS � M.

6: KVARðNVARSÞ – INTEGER array Input

On entry: KVARðjÞ must be set to the column number in X of the jth variable for which
information is required, for j ¼ 1; 2; . . . ; p.

Constraint: 1 � KVARðjÞ � M, for j ¼ 1; 2; . . . ; p.

7: XBARðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value, �xj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

8: STDðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

9: SSPZðLDSSPZ;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: SSPZðj; kÞ is the cross-product about zero, ~Sjk , for the variables specified in KVARðjÞ
and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

10: LDSSPZ – INTEGER Input

On entry: the first dimension of the array SSPZ as declared in the (sub)program from which
G02BKF is called.

Constraint: LDSSPZ � NVARS.

11: RZðLDRZ;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: RZðj; kÞ is the correlation-like coefficient, ~Rjk , between the variables specified in
KVARðjÞ and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.
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12: LDRZ – INTEGER Input

On entry: the first dimension of the array RZ as declared in the (sub)program from which
G02BKF is called.

Constraint: LDRZ � NVARS.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, NVARS < 2,
or NVARS > M.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSPZ < NVARS,
or LDRZ < NVARS.

IFAIL ¼ 4

On entry, KVARðjÞ < 1,
or KVARðjÞ > M for some j ¼ 1; 2; . . . ;NVARS.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

G02BKF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

8 Parallelism and Performance

G02BKF is not threaded in any implementation.

9 Further Comments

The time taken by G02BKF depends on n and p.

The routine uses a two-pass algorithm.

10 Example

This example reads in a set of data consisting of five observations on each of four variables. The means,
standard deviations, sums of squares and cross-products about zero, and correlation-like coefficients for
the fourth, first and second variables are then calculated and printed.

10.1 Program Text

Program g02bkfe

! G02BKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bkf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldrz, ldsspz, ldx, m, n, &

nvars
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: rz(:,:), sspz(:,:), std(:), x(:,:), &
xbar(:)

Integer, Allocatable :: kvar(:)
! .. Executable Statements ..

Write (nout,*) ’G02BKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, nvars

ldrz = nvars
ldsspz = nvars
ldx = n
Allocate (rz(ldrz,nvars),sspz(ldsspz,nvars),std(nvars),x(ldx,m), &

xbar(nvars),kvar(nvars))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in column IDs
Read (nin,*) kvar(1:nvars)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
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Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate summary statistics
ifail = 0
Call g02bkf(n,m,x,ldx,nvars,kvar,xbar,std,sspz,ldsspz,rz,ldrz,ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99995)(kvar(i),xbar(i),std(i),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products about’ // ’ zero’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),sspz(i,1:nvars),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Correlation-like coefficients’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),rz(i,1:nvars),i=1,nvars)

99999 Format (1X,A,I5)
99998 Format (1X,4I12)
99997 Format (1X,I3,4F12.4)
99996 Format (1X,I3,3F12.4)
99995 Format (1X,I5,2F11.4)

End Program g02bkfe

10.2 Program Data

G02BKF Example Program Data
5 4 3 :: N, M, NVARS
3.0 3.0 1.0 2.0
6.0 4.0 -1.0 4.0
9.0 0.0 5.0 9.0

12.0 2.0 0.0 0.0
-1.0 5.0 4.0 12.0 :: End of X
4 1 2 :: KVAR

10.3 Program Results

G02BKF Example Program Results

Number of variables (columns) = 4
Number of cases (rows) = 5

Data matrix is:-

1 2 3 4
1 3.0000 3.0000 1.0000 2.0000
2 6.0000 4.0000 -1.0000 4.0000
3 9.0000 0.0000 5.0000 9.0000
4 12.0000 2.0000 0.0000 0.0000
5 -1.0000 5.0000 4.0000 12.0000

Variable Mean St. dev.
4 5.4000 4.9800
1 5.8000 5.0695
2 2.8000 1.9235

Sums of squares and cross-products about zero
4 1 2

4 245.0000 99.0000 82.0000
1 99.0000 271.0000 52.0000
2 82.0000 52.0000 54.0000
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Correlation-like coefficients
4 1 2

4 1.0000 0.3842 0.7129
1 0.3842 1.0000 0.4299
2 0.7129 0.4299 1.0000

G02BKF NAG Library Manual

G02BKF.6 (last) Mark 26



NAG Library Routine Document

G02BLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BLF computes means and standard deviations, sums of squares and cross-products about zero, and
correlation-like coefficients for selected variables omitting completely any cases with a missing
observation for any variable (either over all variables in the dataset or over only those variables in the
selected subset).

2 Specification

SUBROUTINE G02BLF (N, M, X, LDX, MISS, XMISS, MISTYP, NVARS, KVAR, XBAR,
STD, SSPZ, LDSSPZ, RZ, LDRZ, NCASES, IFAIL)

&

INTEGER N, M, LDX, MISS(M), MISTYP, NVARS, KVAR(NVARS),
LDSSPZ, LDRZ, NCASES, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), XMISS(M), XBAR(NVARS), STD(NVARS),
SSPZ(LDSSPZ,NVARS), RZ(LDRZ,NVARS)

&

3 Description

The input data consist of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ and j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable, together with the subset of these variables,
v1; v2; . . . ; vp, for which information is required.

In addition, each of the m variables may optionally have associated with it a value which is to be
considered as representing a missing observation for that variable; the missing value for the jth variable
is denoted by xmj. Missing values need not be specified for all variables.

The missing values can be utilized in two slightly different ways, you can indicate which scheme is
required.

Firstly, let wi ¼ 0 if observation i contains a missing value for any of those variables in the set
1; 2; . . . ;m for which missing values have been declared, i.e., if xij ¼ xmj for any j (j ¼ 1; 2; . . . ;m)
for which an xmj has been assigned (see also Section 7); and wi ¼ 1 otherwise, for i ¼ 1; 2; . . . ; n.

Secondly, let wi ¼ 0 if observation i contains a missing value for any of those variables in the selected
subset v1; v2; . . . ; vp for which missing values have been declared, i.e., if xij ¼ xmj for any
j j ¼ v1; v2; . . . ; vp
� �

for which an xmj has been assigned (see also Section 7); and wi ¼ 1 otherwise,
for i ¼ 1; 2; . . . ; n.

The quantities calculated are:

(a) Means:

�xj ¼

Xn
i¼1
wixij

Xn
i¼1
wi

; j ¼ v1; v2; . . . ; vp:
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(b) Standard deviations:

Sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wi xij � �xj
� �2

Xn
i¼1
wi � 1

vuuuuuuut ; j ¼ v1; v2; . . . ; vp:

(c) Sums of squares and cross-products about zero:

~Sjk ¼
Xn
i¼1
wixijxik; j;k ¼ v1; v2; . . . ; vp:

(d) Correlation-like coefficients:

~Rjk ¼
~Sjkffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sjj ~Skk

q ; j; k ¼ v1; v2; . . . ; vp:

If ~Sjj or ~Skk is zero, ~Rjk is set to zero.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BLF
is called.

Constraint: LDX � N.

5: MISSðMÞ – INTEGER array Input/Output

On entry: MISSðjÞ must be set equal to 1 if a missing value, xmj, is to be specified for the jth
variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m
variables in the array X.

On exit: the array MISS is overwritten by the routine, and the information it contained on entry is
lost.
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6: XMISSðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XMISSðjÞ must be set to the missing value, xmj, to be associated with the jth variable
in the array X, for those variables for which missing values are specified by means of the array
MISS (see Section 7).

On exit: the array XMISS is overwritten by the routine, and the information it contained on entry
is lost.

7: MISTYP – INTEGER Input

On entry: indicates the manner in which missing observations are to be treated.

MISTYP ¼ 1
A case is excluded if it contains a missing value for any of the variables 1; 2; . . . ;m.

MISTYP ¼ 0
A case is excluded if it contains a missing value for any of the p � mð Þ variables specified
in the array KVAR.

8: NVARS – INTEGER Input

On entry: p, the number of variables for which information is required.

Constraint: 2 � NVARS � M.

9: KVARðNVARSÞ – INTEGER array Input

On entry: KVARðjÞ must be set to the column number in X of the jth variable for which
information is required, for j ¼ 1; 2; . . . ; p.

Constraint: 1 � KVARðjÞ � M, for j ¼ 1; 2; . . . ; p.

10: XBARðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value, �xj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

11: STDðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

12: SSPZðLDSSPZ;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: SSPZðj; kÞ is the cross-product about zero, ~Sjk , for the variables specified in KVARðjÞ
and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

13: LDSSPZ – INTEGER Input

On entry: the first dimension of the array SSPZ as declared in the (sub)program from which
G02BLF is called.

Constraint: LDSSPZ � NVARS.

14: RZðLDRZ;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: RZðj; kÞ is the correlation-like coefficient, ~Rjk , between the variables specified in
KVARðjÞ and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

15: LDRZ – INTEGER Input

On entry: the first dimension of the array RZ as declared in the (sub)program from which
G02BLF is called.

Constraint: LDRZ � NVARS.
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16: NCASES – INTEGER Output

On exit: the number of cases actually used in the calculations (when cases involving missing
values have been eliminated).

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, NVARS < 2,
or NVARS > M.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSPZ < NVARS,
or LDRZ < NVARS.

IFAIL ¼ 4

On entry, KVARðjÞ < 1,
or KVARðjÞ > M for some j ¼ 1; 2; . . . ;NVARS.

IFAIL ¼ 5

On entry, MISTYP 6¼ 1 or 0.

IFAIL ¼ 6

After observations with missing values were omitted, no cases remained.

IFAIL ¼ 7

After observations with missing values were omitted, only one case remained.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02BLF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

You are warned of the need to exercise extreme care in your selection of missing values. G02BLF treats
all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for variable
j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

8 Parallelism and Performance

G02BLF is not threaded in any implementation.

9 Further Comments

The time taken by G02BLF depends on n and p, and the occurrence of missing values.

The routine uses a two-pass algorithm.

10 Example

This example reads in a set of data consisting of five observations on each of four variables. Missing
values of 0:0 are declared for the second and fourth variables; no missing values are specified for the
first and third variables. The means, standard deviations, sums of squares and cross-products about zero,
and correlation-like coefficients for the fourth, first and second variables are then calculated and printed,
omitting completely all cases containing missing values for these three selected variables; cases 3 and 4
are therefore eliminated, leaving only three cases in the calculations.

10.1 Program Text

Program g02blfe

! G02BLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02blf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldrz, ldsspz, ldx, m, &

mistyp, n, ncases, nvars
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: rz(:,:), sspz(:,:), std(:), x(:,:), &
xbar(:), xmiss(:)

Integer, Allocatable :: kvar(:), miss(:)
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! .. Executable Statements ..
Write (nout,*) ’G02BLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, nvars, mistyp

ldrz = nvars
ldsspz = nvars
ldx = n
Allocate (rz(ldrz,nvars),sspz(ldsspz,nvars),std(nvars),x(ldx,m), &

xbar(nvars),xmiss(m),kvar(nvars),miss(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in missing value flags
Read (nin,*) miss(1:m)
Read (nin,*) xmiss(1:m)

! Read in column IDs
Read (nin,*) kvar(1:nvars)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate summary statistics
ifail = 0
Call g02blf(n,m,x,ldx,miss,xmiss,mistyp,nvars,kvar,xbar,std,sspz,ldsspz, &

rz,ldrz,ncases,ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99995)(kvar(i),xbar(i),std(i),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products about’ // ’ zero’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),sspz(i,1:nvars),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Correlation-like coefficients’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),rz(i,1:nvars),i=1,nvars)
Write (nout,*)
Write (nout,99999) ’Number of cases actually used:’, ncases

99999 Format (1X,A,I5)
99998 Format (1X,4I12)
99997 Format (1X,I3,4F12.4)
99996 Format (1X,I3,3F12.4)
99995 Format (1X,I5,2F11.4)

End Program g02blfe
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10.2 Program Data

G02BLF Example Program Data
5 4 3 0 :: N, M, NVARS, MISTYP
3.0 3.0 1.0 2.0
6.0 4.0 -1.0 4.0
9.0 0.0 5.0 9.0

12.0 2.0 0.0 0.0
-1.0 5.0 4.0 12.0 :: End of X

0 1 0 1 :: MISS
0.0 0.0 0.0 0.0 :: XMISS

4 1 2 :: KVAR

10.3 Program Results

G02BLF Example Program Results

Number of variables (columns) = 4
Number of cases (rows) = 5

Data matrix is:-

1 2 3 4
1 3.0000 3.0000 1.0000 2.0000
2 6.0000 4.0000 -1.0000 4.0000
3 9.0000 0.0000 5.0000 9.0000
4 12.0000 2.0000 0.0000 0.0000
5 -1.0000 5.0000 4.0000 12.0000

Variable Mean St. dev.
4 6.0000 5.2915
1 2.6667 3.5119
2 4.0000 1.0000

Sums of squares and cross-products about zero
4 1 2

4 164.0000 18.0000 82.0000
1 18.0000 46.0000 28.0000
2 82.0000 28.0000 50.0000

Correlation-like coefficients
4 1 2

4 1.0000 0.2072 0.9055
1 0.2072 1.0000 0.5838
2 0.9055 0.5838 1.0000

Number of cases actually used: 3
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NAG Library Routine Document

G02BMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BMF computes means and standard deviations, sums of squares and cross-products about zero, and
correlation-like coefficients for selected variables omitting cases with missing values from only those
calculations involving the variables for which the values are missing.

2 Specification

SUBROUTINE G02BMF (N, M, X, LDX, MISS, XMISS, NVARS, KVAR, XBAR, STD,
SSPZ, LDSSPZ, RZ, LDRZ, NCASES, CNT, LDCNT, IFAIL)

&

INTEGER N, M, LDX, MISS(M), NVARS, KVAR(NVARS), LDSSPZ,
LDRZ, NCASES, LDCNT, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), XMISS(M), XBAR(NVARS), STD(NVARS),
SSPZ(LDSSPZ,NVARS), RZ(LDRZ,NVARS),
CNT(LDCNT,NVARS)

&
&

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable, together with the subset of these variables,
v1; v2; . . . ; vp, for which information is required.

In addition, each of the m variables may optionally have associated with it a value which is to be
considered as representing a missing observation for that variable; the missing value for the jth variable
is denoted by xmj. Missing values need not be specified for all variables.

Let wij ¼ 0, if the ith observation for the jth variable is a missing value, i.e., if a missing value, xmj ,
has been declared for the jth variable, and xij ¼ xmj (see also Section 7); and wij ¼ 1 otherwise, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

The quantities calculated are:

(a) Means:

�xj ¼

Xn
i¼1
wijxij

Xn
i¼1
wij

; j ¼ v1; v2; . . . ; vp:

(b) Standard deviations:

sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wij xij � �xj
� �2

Xn
i¼1
wij � 1

vuuuuuuut ; j ¼ v1; v2; . . . ; vp:
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(c) Sums of squares and cross-products about zero:

~Sjk ¼
Xn
i¼1
wijwikxijxik; j; k ¼ v1; v2; . . . ; vp:

(d) Correlation-like coefficients:

~Rjk ¼
~Sjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Sjj kð Þ ~Skk jð Þ

q ; j; k ¼ v1;v2; . . . ; vp;

where ~Sjj kð Þ ¼
Xn
i¼1
wijwikx

2
ij and ~Skk jð Þ ¼

Xn
i¼1
wikwijx

2
ik

(i.e., the sums of squares about zero are based on the same set of observations as are used in the
calculation of the numerator).

If ~Sjj kð Þ or ~Skk jð Þ is zero, ~Rjk is set to zero.

(e) The number of cases used in the calculation of each of the correlation-like coefficients:

cjk ¼
Xn
i¼1
wijwik; j; k ¼ v1; v2; . . . ; vp:

(The diagonal terms, cjj , for j ¼ 1; 2; . . . ; n, also give the number of cases used in the calculation of
the means �xj and the standard deviations sj .)

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G02BMF is called.

Constraint: LDX � N.

5: MISSðMÞ – INTEGER array Input

On entry: MISSðjÞ must be set equal to 1 if a missing value, xmj, is to be specified for the jth
variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m
variables in the array X.
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6: XMISSðMÞ – REAL (KIND=nag_wp) array Input

On entry: XMISSðjÞ must be set to the missing value, xmj, to be associated with the jth variable
in the array X, for those variables for which missing values are specified by means of the array
MISS (see Section 7).

7: NVARS – INTEGER Input

On entry: p, the number of variables for which information is required.

Constraint: 2 � NVARS � M.

8: KVARðNVARSÞ – INTEGER array Input

On entry: KVARðjÞ must be set to the column number in X of the jth variable for which
information is required, for j ¼ 1; 2; . . . ; p.

Constraint: 1 � KVARðjÞ � M, for j ¼ 1; 2; . . . ; p.

9: XBARðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value, �xj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

10: STDðNVARSÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation, sj , of the variable specified in KVARðjÞ, for j ¼ 1; 2; . . . ; p.

11: SSPZðLDSSPZ;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: SSPZðj; kÞ is the cross-product about zero, ~Sjk , for the variables specified in KVARðjÞ
and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

12: LDSSPZ – INTEGER Input

On entry: the first dimension of the array SSPZ as declared in the (sub)program from which
G02BMF is called.

Constraint: LDSSPZ � NVARS.

13: RZðLDRZ;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: RZðj; kÞ is the correlation-like coefficient, ~Rjk , between the variables specified in
KVARðjÞ and KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.

14: LDRZ – INTEGER Input

On entry: the first dimension of the array RZ as declared in the (sub)program from which
G02BMF is called.

Constraint: LDRZ � NVARS.

15: NCASES – INTEGER Output

On exit: the minimum number of cases used in the calculation of any of the sums of squares and
cross-products and correlation-like coefficients (when cases involving missing values have been
eliminated).

16: CNTðLDCNT;NVARSÞ – REAL (KIND=nag_wp) array Output

On exit: CNTðj; kÞ is the number of cases, cjk , actually used in the calculation of the sum of
cross-product and correlation-like coefficient for the variables specified in KVARðjÞ and
KVARðkÞ, for j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p.
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17: LDCNT – INTEGER Input

On entry: the first dimension of the array CNT as declared in the (sub)program from which
G02BMF is called.

Constraint: LDCNT � NVARS.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02BMF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, NVARS < 2,
or NVARS > M.

IFAIL ¼ 3

On entry, LDX < N,
or LDSSPZ < NVARS,
or LDRZ < NVARS,
or LDCNT < NVARS.

IFAIL ¼ 4

On entry, KVARðjÞ < 1,
or KVARðjÞ > M for some j ¼ 1; 2; . . . ;NVARS.

IFAIL ¼ 5

After observations with missing values were omitted, fewer than two cases remained for at least
one pair of variables. (The pairs of variables involved can be determined by examination of the
contents of the array CNT.) All means, standard deviations, sums of squares and cross-products,
and correlation-like coefficients based on two or more cases are returned by the routine even if
IFAIL ¼ 5.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02BMF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

You are warned of the need to exercise extreme care in your selection of missing values. G02BMF
treats all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for
variable j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

8 Parallelism and Performance

G02BMF is not threaded in any implementation.

9 Further Comments

The time taken by G02BMF depends on n and p, and the occurrence of missing values.

The routine uses a two-pass algorithm.

10 Example

This example reads in a set of data consisting of five observations on each of four variables. Missing
values of �1:0, 0:0 and 0:0 are declared for the first, second and fourth variables respectively; no
missing value is specified for the third variable. The means, standard deviations, sums of squares and
cross-products about zero, and correlation-like coefficients for the fourth, first and second variables are
then calculated and printed, omitting cases with missing values from only those calculations involving
the variables for which the values are missing. The program therefore eliminates cases 4 and 5 in
calculating the correlation between the fourth and first variable, and cases 3 and 4 for the fourth and
second variables, etc.

10.1 Program Text

Program g02bmfe

! G02BMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bmf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldcnt, ldrz, ldsspz, ldx, &

m, n, ncases, nvars
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: cnt(:,:), rz(:,:), sspz(:,:), &
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std(:), x(:,:), xbar(:), xmiss(:)
Integer, Allocatable :: kvar(:), miss(:)

! .. Executable Statements ..
Write (nout,*) ’G02BMF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, nvars

ldcnt = nvars
ldrz = nvars
ldsspz = nvars
ldx = n
Allocate (cnt(ldcnt,nvars),rz(ldrz,nvars),sspz(ldsspz,nvars),std(nvars), &

x(ldx,m),xbar(nvars),xmiss(m),kvar(nvars),miss(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in missing value flags
Read (nin,*) miss(1:m)
Read (nin,*) xmiss(1:m)

! Read in column IDs
Read (nin,*) kvar(1:nvars)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate summary statistics
ifail = 0
Call g02bmf(n,m,x,ldx,miss,xmiss,nvars,kvar,xbar,std,sspz,ldsspz,rz, &

ldrz,ncases,cnt,ldcnt,ifail)

! Display results
Write (nout,*) ’Variable Mean St. dev.’
Write (nout,99995)(kvar(i),xbar(i),std(i),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products about’ // ’ zero’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),sspz(i,1:nvars),i=1,nvars)
Write (nout,*)
Write (nout,*) ’Correlation-like coefficients’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),rz(i,1:nvars),i=1,nvars)
Write (nout,*)
Write (nout,99999) &

’Minimum number of cases used for any pair of variables:’, ncases
Write (nout,*)
Write (nout,*) ’Numbers used for each pair are:’
Write (nout,99998) kvar(1:nvars)
Write (nout,99996)(kvar(i),cnt(i,1:nvars),i=1,nvars)

99999 Format (1X,A,I5)
99998 Format (1X,4I12)
99997 Format (1X,I3,4F12.4)
99996 Format (1X,I3,3F12.4)
99995 Format (1X,I5,2F11.4)

End Program g02bmfe
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10.2 Program Data

G02BMF Example Program Data
5 4 3 :: N, M, NVARS
3.0 3.0 1.0 2.0
6.0 4.0 -1.0 4.0
9.0 0.0 5.0 9.0

12.0 2.0 0.0 0.0
-1.0 5.0 4.0 12.0 :: End of X

1 1 0 1 :: MISS
-1.0 0.0 0.0 0.0 :: XMISS
4 1 2 :: KVAR

10.3 Program Results

G02BMF Example Program Results

Number of variables (columns) = 4
Number of cases (rows) = 5

Data matrix is:-

1 2 3 4
1 3.0000 3.0000 1.0000 2.0000
2 6.0000 4.0000 -1.0000 4.0000
3 9.0000 0.0000 5.0000 9.0000
4 12.0000 2.0000 0.0000 0.0000
5 -1.0000 5.0000 4.0000 12.0000

Variable Mean St. dev.
4 6.7500 4.5735
1 7.5000 3.8730
2 3.5000 1.2910

Sums of squares and cross-products about zero
4 1 2

4 245.0000 111.0000 82.0000
1 111.0000 270.0000 57.0000
2 82.0000 57.0000 54.0000

Correlation-like coefficients
4 1 2

4 1.0000 0.9840 0.9055
1 0.9840 1.0000 0.7699
2 0.9055 0.7699 1.0000

Minimum number of cases used for any pair of variables: 3

Numbers used for each pair are:
4 1 2

4 4.0000 3.0000 3.0000
1 3.0000 4.0000 3.0000
2 3.0000 3.0000 4.0000
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NAG Library Routine Document

G02BNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BNF computes Kendall and/or Spearman nonparametric rank correlation coefficients for a set of
data; the data array is overwritten with the ranks of the observations.

2 Specification

SUBROUTINE G02BNF (N, M, X, LDX, ITYPE, RR, LDRR, KWORKA, KWORKB, WORK1,
WORK2, IFAIL)

&

INTEGER N, M, LDX, ITYPE, LDRR, KWORKA(N), KWORKB(N), IFAIL
REAL (KIND=nag_wp) X(LDX,M), RR(LDRR,M), WORK1(M), WORK2(M)

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation of the jth variable.

The quantities calculated are:

(a) Ranks

For a given variable, j say, each of the n observations, x1j; x2j; . . . ; xnj, has associated with it an
additional number, the ‘rank’ of the observation, which indicates the magnitude of that observation
relative to the magnitudes of the other n� 1 observations on that same variable.

The smallest observation for variable j is assigned the rank 1, the second smallest observation for
variable j the rank 2, the third smallest the rank 3, and so on until the largest observation for
variable j is given the rank n.

If a number of cases all have the same value for the given variable, j, then they are each given an
‘average’ rank, e.g., if in attempting to assign the rank hþ 1, k observations were found to have
the same value, then instead of giving them the ranks

hþ 1; hþ 2; . . . ; hþ k;

all k observations would be assigned the rank

2hþ kþ 1

2

and the next value in ascending order would be assigned the rank

hþ kþ 1:

The process is repeated for each of the m variables.

Let yij be the rank assigned to the observation xij when the jth variable is being ranked. The actual
observations xij are replaced by the ranks yij.
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(b) Nonparametric rank correlation coefficients

(i) Kendall's tau:

Rjk ¼

Xn
h¼1

Xn
i¼1

sign yhj � yij
� �

sign yhk � yikð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n� 1ð Þ � Tj
� �

n n� 1ð Þ � Tk½ �
q ; j; k ¼ 1; 2; . . . ;m;

where signu ¼ 1 if u > 0,

signu ¼ 0 if u ¼ 0,

signu ¼ �1 if u < 0,

and Tj ¼
P
tj tj � 1
� �

, where tj is the number of ties of a particular value of variable j, and
the summation is over all tied values of variable j.

(ii) Spearman's:

R�jk ¼
n n2 � 1
� �

� 6
Xn
i¼1

yij � yik
� �2 � 1

2 T �j þ T �k
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n2 � 1ð Þ � T �j
h i

n n2 � 1ð Þ � T �k
� �r ; j; k ¼ 1; 2; . . . ;m;

where T �j ¼
P
tj t2j � 1
� �

, tj being the number of ties of a particular value of variable j, and

the summation being over all tied values of variable j.

4 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

On exit: Xði; jÞ contains the rank yij of the observation xij , for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BNF
is called.

Constraint: LDX � N.
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5: ITYPE – INTEGER Input

On entry: the type of correlation coefficients which are to be calculated.

ITYPE ¼ �1
Only Kendall's tau coefficients are calculated.

ITYPE ¼ 0
Both Kendall's tau and Spearman's coefficients are calculated.

ITYPE ¼ 1
Only Spearman's coefficients are calculated.

Constraint: ITYPE ¼ �1, 0 or 1.

6: RRðLDRR;MÞ – REAL (KIND=nag_wp) array Output

On exit: the requested correlation coefficients.

If only Kendall's tau coefficients are requested (ITYPE ¼ �1), RRðj; kÞ contains Kendall's tau for
the jth and kth variables.

If only Spearman's coefficients are requested (ITYPE ¼ 1), RRðj; kÞ contains Spearman's rank
correlation coefficient for the jth and kth variables.

If both Kendall's tau and Spearman's coefficients are requested (ITYPE ¼ 0), the upper triangle
of RR contains the Spearman coefficients and the lower triangle the Kendall coefficients. That is,
for the jth and kth variables, where j is less than k, RRðj; kÞ contains the Spearman rank
correlation coefficient, and RRðk; jÞ contains Kendall's tau, for j ¼ 1; 2; . . . ;m and
k ¼ 1; 2; . . . ;m.

(Diagonal terms, RRðj; jÞ, are unity for all three values of ITYPE.)

7: LDRR – INTEGER Input

On entry: the first dimension of the array RR as declared in the (sub)program from which
G02BNF is called.

Constraint: LDRR � M.

8: KWORKAðNÞ – INTEGER array Workspace
9: KWORKBðNÞ – INTEGER array Workspace
10: WORK1ðMÞ – REAL (KIND=nag_wp) array Workspace
11: WORK2ðMÞ – REAL (KIND=nag_wp) array Workspace

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, M < 2.

IFAIL ¼ 3

On entry, LDX < N,
or LDRR < M.

IFAIL ¼ 4

On entry, ITYPE < �1,
or ITYPE > 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The method used is believed to be stable.

8 Parallelism and Performance

G02BNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G02BNF depends on n and m.
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10 Example

This example reads in a set of data consisting of nine observations on each of three variables. The
program then calculates and prints the rank of each observation, and both Kendall's tau and Spearman's
rank correlation coefficients for all three variables.

10.1 Program Text

Program g02bnfe

! G02BNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bnf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, itype, ldrr, ldx, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rr(:,:), work1(:), work2(:), x(:,:)
Integer, Allocatable :: kworka(:), kworkb(:)

! .. Executable Statements ..
Write (nout,*) ’G02BNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, itype

ldrr = m
ldx = n
Allocate (rr(ldrr,m),work1(m),work2(m),x(ldx,m),kworka(n),kworkb(n))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate correlation coefficients
ifail = 0
Call g02bnf(n,m,x,ldx,itype,rr,ldrr,kworka,kworkb,work1,work2,ifail)

! Display results
Write (nout,*) ’Matrix of ranks:-’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)
Write (nout,*) ’Matrix of rank correlation coefficients:’
Write (nout,*) ’Upper triangle -- Spearman’’s’
Write (nout,*) ’Lower triangle -- Kendall’’s tau’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,rr(i,1:m),i=1,m)
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99999 Format (1X,A,I5)
99998 Format (1X,3I12)
99997 Format (1X,I3,3F12.4)

End Program g02bnfe

10.2 Program Data

G02BNF Example Program Data
9 3 0 :: N, M, ITYPE
1.70 1.00 0.50
2.80 4.00 3.00
0.60 6.00 2.50
1.80 9.00 6.00
0.99 4.00 2.50
1.40 2.00 5.50
1.80 9.00 7.50
2.50 7.00 0.00
0.99 5.00 3.00 :: End of X

10.3 Program Results

G02BNF Example Program Results

Number of variables (columns) = 3
Number of cases (rows) = 9

Data matrix is:-

1 2 3
1 1.7000 1.0000 0.5000
2 2.8000 4.0000 3.0000
3 0.6000 6.0000 2.5000
4 1.8000 9.0000 6.0000
5 0.9900 4.0000 2.5000
6 1.4000 2.0000 5.5000
7 1.8000 9.0000 7.5000
8 2.5000 7.0000 0.0000
9 0.9900 5.0000 3.0000

Matrix of ranks:-
1 2 3

1 5.0000 1.0000 2.0000
2 9.0000 3.5000 5.5000
3 1.0000 6.0000 3.5000
4 6.5000 8.5000 8.0000
5 2.5000 3.5000 3.5000
6 4.0000 2.0000 7.0000
7 6.5000 8.5000 9.0000
8 8.0000 7.0000 1.0000
9 2.5000 5.0000 5.5000

Matrix of rank correlation coefficients:
Upper triangle -- Spearman’s
Lower triangle -- Kendall’s tau

1 2 3
1 1.0000 0.2246 0.1186
2 0.0294 1.0000 0.3814
3 0.1176 0.2353 1.0000
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NAG Library Routine Document

G02BPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BPF computes Kendall and/or Spearman nonparametric rank correlation coefficients for a set of
data omitting completely any cases with a missing observation for any variable; the data array is
overwritten with the ranks of the observations.

2 Specification

SUBROUTINE G02BPF (N, M, X, LDX, MISS, XMISS, ITYPE, RR, LDRR, NCASES,
INCASE, KWORKA, KWORKB, KWORKC, WORK1, WORK2, IFAIL)

&

INTEGER N, M, LDX, MISS(M), ITYPE, LDRR, NCASES, INCASE(N),
KWORKA(N), KWORKB(N), KWORKC(N), IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), XMISS(M), RR(LDRR,M), WORK1(M), WORK2(M)

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable. In addition, each of the m variables may optionally
have associated with it a value which is to be considered as representing a missing observation for that
variable; the missing value for the jth variable is denoted by xmj. Missing values need not be specified
for all variables.

Let wi ¼ 0 if observation i contains a missing value for any of those variables for which missing values
have been declared; i.e., if xij ¼ xmj for any j for which an xmj has been assigned (see also Section 7);
and wi ¼ 1 otherwise, for i ¼ 1; 2; . . . ; n.

The quantities calculated are:

(a) Ranks

For a given variable, j say, each of the observations xij for which wi ¼ 1, for i ¼ 1; 2; . . . ; n, has
associated with it an additional number, the ‘rank’ of the observation, which indicates the
magnitude of that observation relative to the magnitudes of the other observations on that same
variable for which wi ¼ 1.

The smallest of these valid observations for variable j is assigned the rank 1, the second smallest
observation for variable j the rank 2, the third smallest the rank 3, and so on until the largest such

observation is given the rank nc, where nc ¼
Xn
i¼1
wi.

If a number of cases all have the same value for the given variable, j, then they are each given an
‘average’ rank, e.g., if in attempting to assign the rank hþ 1, k observations for which wi ¼ 1 were
found to have the same value, then instead of giving them the ranks

hþ 1; hþ 2; . . . ; hþ k;

all k observations would be assigned the rank

2hþ kþ 1

2

and the next value in ascending order would be assigned the rank
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hþ kþ 1:

The process is repeated for each of the m variables.

Let yij be the rank assigned to the observation xij when the jth variable is being ranked. For those
observations, i, for which wi ¼ 0, yij ¼ 0, for j ¼ 1; 2; . . . ;m.

The actual observations xij are replaced by the ranks yij, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

(b) Nonparametric rank correlation coefficients

(i) Kendall's tau:

Rjk ¼

Xn
h¼1

Xn
i¼1
whwi sign yhj � yij

� �
sign yhk � yikð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nc nc � 1ð Þ � Tj
� �

nc nc � 1ð Þ � Tk½ �
q ; j; k ¼ 1; 2; . . . ;m;

where nc ¼
Xn
i¼1
wi

and signu ¼ 1 if u > 0

signu ¼ 0 if u ¼ 0

signu ¼ �1 if u < 0

and Tj ¼
P
tj tj � 1
� �

where tj is the number of ties of a particular value of variable j, and the
summation is over all tied values of variable j.

(ii) Spearman's:

R�jk ¼
nc n

2
c � 1

� �
� 6
Xn
i¼1
wi yij � yik
� �2 � 1

2 T �j þ T �k
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nc n2c � 1
� �

� T �j
h i

nc n2c � 1
� �

� T �k
� �r ; j; k ¼ 1; 2; . . . ;m;

where nc ¼
Xn
i¼1
wi

and T �j ¼
P
tj t2j � 1
� �

where tj is the number of ties of a particular value of variable j, and

the summation is over all tied values of variable j.

4 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.
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3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

On exit: Xði; jÞ contains the rank yij of the observation xij , for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.
(For those observations containing missing values, and therefore excluded from the calculation,
yij ¼ 0, for j ¼ 1; 2; . . . ;m.)

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BPF
is called.

Constraint: LDX � N.

5: MISSðMÞ – INTEGER array Input/Output

On entry: MISSðjÞ must be set to 1 if a missing value, xmj, is to be specified for the jth variable
in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m variables in
the array X.

On exit: the array MISS is overwritten by the routine, and the information it contained on entry is
lost.

6: XMISSðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XMISSðjÞ must be set to the missing value, xmj, to be associated with the jth variable
in the array X, for those variables for which missing values are specified by means of the array
MISS (see Section 7).

On exit: the array XMISS is overwritten by the routine, and the information it contained on entry
is lost.

7: ITYPE – INTEGER Input

On entry: the type of correlation coefficients which are to be calculated.

ITYPE ¼ �1
Only Kendall's tau coefficients are calculated.

ITYPE ¼ 0
Both Kendall's tau and Spearman's coefficients are calculated.

ITYPE ¼ 1
Only Spearman's coefficients are calculated.

Constraint: ITYPE ¼ �1, 0 or 1.

8: RRðLDRR;MÞ – REAL (KIND=nag_wp) array Output

On exit: the requested correlation coefficients.

If only Kendall's tau coefficients are requested (ITYPE ¼ �1), RRðj; kÞ contains Kendall's tau for
the jth and kth variables.

If only Spearman's coefficients are requested (ITYPE ¼ 1), RRðj; kÞ contains Spearman's rank
correlation coefficient for the jth and kth variables.

If both Kendall's tau and Spearman's coefficients are requested (ITYPE ¼ 0), the upper triangle
of RR contains the Spearman coefficients and the lower triangle the Kendall coefficients. That is,
for the jth and kth variables, where j is less than k, RRðj; kÞ contains the Spearman rank
correlation coefficient, and RRðk; jÞ contains Kendall's tau, for j ¼ 1; 2; . . . ;m and
k ¼ 1; 2; . . . ;m.

(Diagonal terms, RRðj; jÞ, are unity for all three values of ITYPE.)
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9: LDRR – INTEGER Input

On entry: the first dimension of the array RR as declared in the (sub)program from which
G02BPF is called.

Constraint: LDRR � M.

10: NCASES – INTEGER Output

On exit: the number of cases, nc, actually used in the calculations (when cases involving missing
values have been eliminated).

11: INCASEðNÞ – INTEGER array Output

On exit: INCASEðiÞ holds the value 1 if the ith case was included in the calculations, and the
value 0 if the ith case contained a missing value for at least one variable. That is,
INCASEðiÞ ¼ wi (see Section 3), for i ¼ 1; 2; . . . ; n.

12: KWORKAðNÞ – INTEGER array Workspace
13: KWORKBðNÞ – INTEGER array Workspace
14: KWORKCðNÞ – INTEGER array Workspace
15: WORK1ðMÞ – REAL (KIND=nag_wp) array Workspace
16: WORK2ðMÞ – REAL (KIND=nag_wp) array Workspace

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, M < 2.

IFAIL ¼ 3

On entry, LDX < N,
or LDRR < M.

IFAIL ¼ 4

On entry, ITYPE < �1,
or ITYPE > 1.
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IFAIL ¼ 5

After observations with missing values were omitted, fewer than 2 cases remained.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

You are warned of the need to exercise extreme care in your selection of missing values. G02BPF treats
all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for variable
j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

8 Parallelism and Performance

G02BPF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G02BPF depends on n and m, and the occurrence of missing values.

10 Example

This example reads in a set of data consisting of nine observations on each of three variables. Missing
values of 0:99 and 0:0 are declared for the first and third variables respectively; no missing value is
specified for the second variable. The program then calculates and prints the rank of each observation,
and both Kendall's tau and Spearman's rank correlation coefficients for all three variables, omitting
completely all cases containing missing values; cases 5, 8 and 9 are therefore eliminated, leaving only
six cases in the calculations.

10.1 Program Text

Program g02bpfe

! G02BPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bpf, nag_wp

! .. Implicit None Statement ..

G02 – Correlation and Regression Analysis G02BPF

Mark 26 G02BPF.5



Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, itype, ldrr, ldx, m, n, &
ncases

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rr(:,:), work1(:), work2(:), x(:,:), &

xmiss(:)
Integer, Allocatable :: incase(:), kworka(:), kworkb(:), &

kworkc(:), miss(:)
! .. Executable Statements ..

Write (nout,*) ’G02BPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, itype

ldrr = m
ldx = n
Allocate (rr(ldrr,m),work1(m),work2(m),x(ldx,m),xmiss(m),incase(n), &

kworka(n),kworkb(n),kworkc(n),miss(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in missing value flags
Read (nin,*) miss(1:m)
Read (nin,*) xmiss(1:m)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate correlation coefficients
ifail = 0
Call g02bpf(n,m,x,ldx,miss,xmiss,itype,rr,ldrr,ncases,incase,kworka, &

kworkb,kworkc,work1,work2,ifail)

! Display results
Write (nout,*) ’Matrix of ranks:-’
Write (nout,*)
Write (nout,*) &

’(1 in the column headed In/Out indicates the case was included,’
Write (nout,*) &

’ 0 in the column headed In/Out indicates the case was omitted.)’
Write (nout,*)
Write (nout,99996) ’Case In/Out’, (i,i=1,m)
Write (nout,99995)(i,incase(i),x(i,1:m),i=1,n)
Write (nout,*)
Write (nout,*) ’Matrix of rank correlation coefficients:’
Write (nout,*) ’Upper triangle -- Spearman’’s’
Write (nout,*) ’Lower triangle -- Kendall’’s tau’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,rr(i,1:m),i=1,m)
Write (nout,*)
Write (nout,99999) ’Number of cases actually used:’, ncases

99999 Format (1X,A,I5)
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99998 Format (1X,3I12)
99997 Format (1X,I3,3F12.4)
99996 Format (1X,A,I6,2I12)
99995 Format (1X,I3,I7,3F12.4)

End Program g02bpfe

10.2 Program Data

G02BPF Example Program Data
9 3 0 :: N, M, ITYPE
1.70 1.00 0.50
2.80 4.00 3.00
0.60 6.00 2.50
1.80 9.00 6.00
0.99 4.00 2.50
1.40 2.00 5.50
1.80 9.00 7.50
2.50 7.00 0.00
0.99 5.00 3.00 :: End of X
1 0 1 :: MISS

0.99 0.0 0.0 :: XMISS

10.3 Program Results

G02BPF Example Program Results

Number of variables (columns) = 3
Number of cases (rows) = 9

Data matrix is:-

1 2 3
1 1.7000 1.0000 0.5000
2 2.8000 4.0000 3.0000
3 0.6000 6.0000 2.5000
4 1.8000 9.0000 6.0000
5 0.9900 4.0000 2.5000
6 1.4000 2.0000 5.5000
7 1.8000 9.0000 7.5000
8 2.5000 7.0000 0.0000
9 0.9900 5.0000 3.0000

Matrix of ranks:-

(1 in the column headed In/Out indicates the case was included,
0 in the column headed In/Out indicates the case was omitted.)

Case In/Out 1 2 3
1 1 3.0000 1.0000 1.0000
2 1 6.0000 3.0000 3.0000
3 1 1.0000 4.0000 2.0000
4 1 4.5000 5.5000 5.0000
5 0 0.0000 0.0000 0.0000
6 1 2.0000 2.0000 4.0000
7 1 4.5000 5.5000 6.0000
8 0 0.0000 0.0000 0.0000
9 0 0.0000 0.0000 0.0000

Matrix of rank correlation coefficients:
Upper triangle -- Spearman’s
Lower triangle -- Kendall’s tau

1 2 3
1 1.0000 0.2941 0.4058
2 0.1429 1.0000 0.7537
3 0.2760 0.5521 1.0000

Number of cases actually used: 6
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NAG Library Routine Document

G02BQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BQF computes Kendall and/or Spearman nonparametric rank correlation coefficients for a set of
data; the data array is preserved, and the ranks of the observations are not available on exit from the
routine.

2 Specification

SUBROUTINE G02BQF (N, M, X, LDX, ITYPE, RR, LDRR, KWORKA, KWORKB, WORK1,
WORK2, IFAIL)

&

INTEGER N, M, LDX, ITYPE, LDRR, KWORKA(N), KWORKB(N), IFAIL
REAL (KIND=nag_wp) X(LDX,M), RR(LDRR,M), WORK1(N), WORK2(N)

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable.

The observations are first ranked, as follows.

For a given variable, j say, each of the n observations, x1j; x2j; . . . ; xnj, has associated with it an
additional number, the ‘rank’ of the observation, which indicates the magnitude of that observation
relative to the magnitude of the other n� 1 observations on that same variable.

The smallest observation for variable j is assigned the rank 1, the second smallest observation for
variable j the rank 2, the third smallest the rank 3, and so on until the largest observation for variable j
is given the rank n.

If a number of cases all have the same value for the given variable, j, then they are each given an
‘average’ rank – e.g., if in attempting to assign the rank hþ 1, k observations were found to have the
same value, then instead of giving them the ranks

hþ 1; hþ 2; . . . ; hþ k;

all k observations would be assigned the rank

2hþ kþ 1

2

and the next value in ascending order would be assigned the rank

hþ kþ 1:

The process is repeated for each of the m variables.

Let yij be the rank assigned to the observation xij when the jth variable is being ranked.

The quantities calculated are:
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(a) Kendall's tau rank correlation coefficients:

Rjk ¼

Xn
h¼1

Xn
i¼1

sign yhj � yij
� �

sign yhk � yikð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n� 1ð Þ � Tj
� �

n n� 1ð Þ � Tk½ �
q ; j; k ¼ 1; 2; . . . ;m;

and signu ¼ 1 if u > 0

signu ¼ 0 if u ¼ 0

signu ¼ �1 if u < 0

and Tj ¼
P
tj tj � 1
� �

, tj being the number of ties of a particular value of variable j, and the
summation being over all tied values of variable j.

(b) Spearman's rank correlation coefficients:

R�jk ¼
n n2 � 1
� �

� 6
Xn
i¼1

yij � yik
� �2 � 1

2 T �j þ T �k
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n2 � 1ð Þ � T �j
h i

n n2 � 1ð Þ � T �k
� �r ; j; k ¼ 1; 2; . . . ;m;

where T �j ¼
P
tj t2j � 1
� �

where tj is the number of ties of a particular value of variable j, and the

summation is over all tied values of variable j.

4 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to data value xij , the value of the ith observation on the jth variable,
for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BQF
is called.

Constraint: LDX � N.

5: ITYPE – INTEGER Input

On entry: the type of correlation coefficients which are to be calculated.

ITYPE ¼ �1
Only Kendall's tau coefficients are calculated.
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ITYPE ¼ 0
Both Kendall's tau and Spearman's coefficients are calculated.

ITYPE ¼ 1
Only Spearman's coefficients are calculated.

Constraint: ITYPE ¼ �1, 0 or 1.

6: RRðLDRR;MÞ – REAL (KIND=nag_wp) array Output

On exit: the requested correlation coefficients.

If only Kendall's tau coefficients are requested (ITYPE ¼ �1), RRðj; kÞ contains Kendall's tau for
the jth and kth variables.

If only Spearman's coefficients are requested (ITYPE ¼ 1), RRðj; kÞ contains Spearman's rank
correlation coefficient for the jth and kth variables.

If both Kendall's tau and Spearman's coefficients are requested (ITYPE ¼ 0), the upper triangle
of RR contains the Spearman coefficients and the lower triangle the Kendall coefficients. That is,
for the jth and kth variables, where j is less than k, RRðj; kÞ contains the Spearman rank
correlation coefficient, and RRðk; jÞ contains Kendall's tau, for j ¼ 1; 2; . . . ;m and
k ¼ 1; 2; . . . ;m.

(Diagonal terms, RRðj; jÞ, are unity for all three values of ITYPE.)

7: LDRR – INTEGER Input

On entry: the first dimension of the array RR as declared in the (sub)program from which
G02BQF is called.

Constraint: LDRR � M.

8: KWORKAðNÞ – INTEGER array Workspace
9: KWORKBðNÞ – INTEGER array Workspace
10: WORK1ðNÞ – REAL (KIND=nag_wp) array Workspace
11: WORK2ðNÞ – REAL (KIND=nag_wp) array Workspace

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.
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IFAIL ¼ 2

On entry, M < 2.

IFAIL ¼ 3

On entry, LDX < N,
or LDRR < M.

IFAIL ¼ 4

On entry, ITYPE < �1,
or ITYPE > 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The method used is believed to be stable.

8 Parallelism and Performance

G02BQF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G02BQF depends on n and m.

10 Example

This example reads in a set of data consisting of nine observations on each of three variables. The
program then calculates and prints both Kendall's tau and Spearman's rank correlation coefficients for
all three variables.

10.1 Program Text

Program g02bqfe

! G02BQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: g02bqf, nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, itype, ldrr, ldx, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: rr(:,:), work1(:), work2(:), x(:,:)
Integer, Allocatable :: kworka(:), kworkb(:)

! .. Executable Statements ..
Write (nout,*) ’G02BQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, itype

ldrr = m
ldx = n
Allocate (rr(ldrr,m),work1(n),work2(n),x(ldx,m),kworka(n),kworkb(n))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate correlation coefficients
ifail = 0
Call g02bqf(n,m,x,ldx,itype,rr,ldrr,kworka,kworkb,work1,work2,ifail)

! Display results
Write (nout,*) ’Matrix of rank correlation coefficients:’
Write (nout,*) ’Upper triangle -- Spearman’’s’
Write (nout,*) ’Lower triangle -- Kendall’’s tau’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,rr(i,1:m),i=1,m)

99999 Format (1X,A,I5)
99998 Format (1X,3I12)
99997 Format (1X,I3,3F12.4)

End Program g02bqfe

10.2 Program Data

G02BQF Example Program Data
9 3 0 :: N, M, ITYPE
1.70 1.00 0.50
2.80 4.00 3.00
0.60 6.00 2.50
1.80 9.00 6.00
0.99 4.00 2.50
1.40 2.00 5.50
1.80 9.00 7.50
2.50 7.00 0.00
0.99 5.00 3.00 :: End of X
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10.3 Program Results

G02BQF Example Program Results

Number of variables (columns) = 3
Number of cases (rows) = 9

Data matrix is:-

1 2 3
1 1.7000 1.0000 0.5000
2 2.8000 4.0000 3.0000
3 0.6000 6.0000 2.5000
4 1.8000 9.0000 6.0000
5 0.9900 4.0000 2.5000
6 1.4000 2.0000 5.5000
7 1.8000 9.0000 7.5000
8 2.5000 7.0000 0.0000
9 0.9900 5.0000 3.0000

Matrix of rank correlation coefficients:
Upper triangle -- Spearman’s
Lower triangle -- Kendall’s tau

1 2 3
1 1.0000 0.2246 0.1186
2 0.0294 1.0000 0.3814
3 0.1176 0.2353 1.0000

G02BQF NAG Library Manual

G02BQF.6 (last) Mark 26



NAG Library Routine Document

G02BRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BRF computes Kendall and/or Spearman nonparametric rank correlation coefficients for a set of
data, omitting completely any cases with a missing observation for any variable; the data array is
preserved, and the ranks of the observations are not available on exit from the routine.

2 Specification

SUBROUTINE G02BRF (N, M, X, LDX, MISS, XMISS, ITYPE, RR, LDRR, NCASES,
INCASE, KWORKA, KWORKB, KWORKC, WORK1, WORK2, IFAIL)

&

INTEGER N, M, LDX, MISS(M), ITYPE, LDRR, NCASES, INCASE(N),
KWORKA(N), KWORKB(N), KWORKC(N), IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), XMISS(M), RR(LDRR,M), WORK1(N), WORK2(N)

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ; j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable. In addition, each of the m variables may optionally
have associated with it a value which is to be considered as representing a missing observation for that
variable; the missing value for the jth variable is denoted by xmj. Missing values need not be specified
for all variables.

Let wi ¼ 0 if observation i contains a missing value for any of those variables for which missing values
have been declared, i.e., if xij ¼ xmj for any j for which an xmj has been assigned (see also Section 7);
and wi ¼ 1 otherwise, for i ¼ 1; 2; . . . ; n.

The observations are first ranked as follows.

For a given variable, j say, each of the observations xij for which wi ¼ 1, (i ¼ 1; 2; . . . ; n) has
associated with it an additional number, the ‘rank’ of the observation, which indicates the magnitude of
that observation relative to the magnitudes of the other observations on that same variable for which
wi ¼ 1.

The smallest of these valid observations for variable j is assigned the rank 1, the second smallest
observation for variable j the rank 2, the third smallest the rank 3, and so on until the largest such

observation is given the rank nc, where nc ¼
Xn
i¼1
wi.

If a number of cases all have the same value for the given variable, j, then they are each given an
‘average’ rank, e.g., if in attempting to assign the rank hþ 1, k observations for which wi ¼ 1 were
found to have the same value, then instead of giving them the ranks

hþ 1; hþ 2; . . . ; hþ k;

all k observations would be assigned the rank

2hþ kþ 1

2

and the next value in ascending order would be assigned the rank
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hþ kþ 1:

The process is repeated for each of the m variables.

Let yij be the rank assigned to the observation xij when the jth variable is being ranked. For those
observations, i, for which wi ¼ 0, yij ¼ 0, for j ¼ 1; 2; . . . ;m.

The quantities calculated are:

(a) Kendall's tau rank correlation coefficients:

Rjk ¼

Xn
h¼1

Xn
i¼1
whwi sign yhj � yij

� �
sign yhk � yikð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nc nc � 1ð Þ � Tj
� �

nc nc � 1ð Þ � Tk½ �
q ; j; k ¼ 1; 2; . . . ;m;

where nc ¼
Xn
i¼1
wi

and signu ¼ 1 if u > 0

signu ¼ 0 if u ¼ 0

signu ¼ �1 if u < 0

and Tj ¼
P
tj tj � 1
� �

where tj is the number of ties of a particular value of variable j, and the
summation is over all tied values of variable j.

(b) Spearman's rank correlation coefficients:

R�jk ¼
nc n

2
c � 1

� �
� 6
Xn
i¼1
wi yij � yik
� �2 � 1

2 T �j þ T �k
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nc n2c � 1
� �

� T �j
h i

nc n2c � 1
� �

� T �k
� �r ; j; k ¼ 1; 2; . . . ;m;

where nc ¼
Xn
i¼1
wi and T �j ¼

P
tj t2j � 1
� �

where tj is the number of ties of a particular value of

variable j, and the summation is over all tied values of variable j.

4 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij, the value of the ith observation on the jth variable, where
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m:
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4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BRF
is called.

Constraint: LDX � N.

5: MISSðMÞ – INTEGER array Input/Output

On entry: MISSðjÞ must be set equal to 1 if a missing value, xmj, is to be specified for the jth
variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m
variables in the array X.

On exit: the array MISS is overwritten by the routine, and the information it contained on entry is
lost.

6: XMISSðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XMISSðjÞ must be set to the missing value, xmj, to be associated with the jth variable
in the array X, for those variables for which missing values are specified by means of the array
MISS (see Section 7).

On exit: the array XMISS is overwritten by the routine, and the information it contained on entry
is lost.

7: ITYPE – INTEGER Input

On entry: the type of correlation coefficients which are to be calculated.

ITYPE ¼ �1
Only Kendall's tau coefficients are calculated.

ITYPE ¼ 0
Both Kendall's tau and Spearman's coefficients are calculated.

ITYPE ¼ 1
Only Spearman's coefficients are calculated.

Constraint: ITYPE ¼ �1, 0 or 1.

8: RRðLDRR;MÞ – REAL (KIND=nag_wp) array Output

On exit: the requested correlation coefficients.

If only Kendall's tau coefficients are requested (ITYPE ¼ �1), RRðj; kÞ contains Kendall's tau for
the jth and kth variables.

If only Spearman's coefficients are requested (ITYPE ¼ 1), RRðj; kÞ contains Spearman's rank
correlation coefficient for the jth and kth variables.

If both Kendall's tau and Spearman's coefficients are requested (ITYPE ¼ 0), the upper triangle
of RR contains the Spearman coefficients and the lower triangle the Kendall coefficients. That is,
for the jth and kth variables, where j is less than k, RRðj; kÞ contains the Spearman rank
correlation coefficient, and RRðk; jÞ contains Kendall's tau, for j ¼ 1; 2; . . . ;m and
k ¼ 1; 2; . . . ;m.

(Diagonal terms, RRðj; jÞ, are unity for all three values of ITYPE.)

9: LDRR – INTEGER Input

On entry: the first dimension of the array RR as declared in the (sub)program from which
G02BRF is called.

Constraint: LDRR � M.
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10: NCASES – INTEGER Output

On exit: the number of cases, nc, actually used in the calculations (when cases involving missing
values have been eliminated).

11: INCASEðNÞ – INTEGER array Output

On exit: INCASEðiÞ holds the value 1 if the ith case was included in the calculations, and the
value 0 if the ith case contained a missing value for at least one variable. That is,
INCASEðiÞ ¼ wi (see Section 3), for i ¼ 1; 2; . . . ; n.

12: KWORKAðNÞ – INTEGER array Workspace
13: KWORKBðNÞ – INTEGER array Workspace
14: KWORKCðNÞ – INTEGER array Workspace
15: WORK1ðNÞ – REAL (KIND=nag_wp) array Workspace
16: WORK2ðNÞ – REAL (KIND=nag_wp) array Workspace

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, M < 2.

IFAIL ¼ 3

On entry, LDX < N,
or LDRR < M.

IFAIL ¼ 4

On entry, ITYPE < �1,
or ITYPE > 1.

IFAIL ¼ 5

After observations with missing values were omitted, fewer than 2 cases remained.

G02BRF NAG Library Manual

G02BRF.4 Mark 26



IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

You are warned of the need to exercise extreme care in your selection of missing values. G02BRF treats
all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for variable
j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

8 Parallelism and Performance

G02BRF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G02BRF depends on n and m, and the occurrence of missing values.

10 Example

This example reads in a set of data consisting of nine observations on each of three variables. Missing
values of 0:99 and 0:0 are declared for the first and third variables respectively; no missing value is
specified for the second variable. The program then calculates and prints both Kendall's tau and
Spearman's rank correlation coefficients for all three variables, omitting completely all cases containing
missing values; cases 5, 8 and 9 are therefore eliminated, leaving only six cases in the calculations.

10.1 Program Text

Program g02brfe

! G02BRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02brf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, itype, ldrr, ldx, m, n, &
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ncases
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: rr(:,:), work1(:), work2(:), x(:,:), &
xmiss(:)

Integer, Allocatable :: incase(:), kworka(:), kworkb(:), &
kworkc(:), miss(:)

! .. Executable Statements ..
Write (nout,*) ’G02BRF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, itype

ldrr = m
ldx = n
Allocate (rr(ldrr,m),work1(n),work2(n),x(ldx,m),xmiss(m),incase(n), &

kworka(n),kworkb(n),kworkc(n),miss(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in missing value flags
Read (nin,*) miss(1:m)
Read (nin,*) xmiss(1:m)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate correlation coefficients
ifail = 0
Call g02brf(n,m,x,ldx,miss,xmiss,itype,rr,ldrr,ncases,incase,kworka, &

kworkb,kworkc,work1,work2,ifail)

! Display results
Write (nout,*) ’Matrix of rank correlation coefficients:’
Write (nout,*) ’Upper triangle -- Spearman’’s’
Write (nout,*) ’Lower triangle -- Kendall’’s tau’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,rr(i,1:m),i=1,m)
Write (nout,*)
Write (nout,99999) ’Number of cases actually used:’, ncases

99999 Format (1X,A,I5)
99998 Format (1X,3I12)
99997 Format (1X,I3,3F12.4)

End Program g02brfe

10.2 Program Data

G02BRF Example Program Data
9 3 0 :: N, M, ITYPE
1.70 1.00 0.50
2.80 4.00 3.00
0.60 6.00 2.50
1.80 9.00 6.00
0.99 4.00 2.50
1.40 2.00 5.50
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1.80 9.00 7.50
2.50 7.00 0.00
0.99 5.00 3.00 :: End of X
1 0 1 :: MISS

0.99 0.00 0.00 :: XMISS

10.3 Program Results

G02BRF Example Program Results

Number of variables (columns) = 3
Number of cases (rows) = 9

Data matrix is:-

1 2 3
1 1.7000 1.0000 0.5000
2 2.8000 4.0000 3.0000
3 0.6000 6.0000 2.5000
4 1.8000 9.0000 6.0000
5 0.9900 4.0000 2.5000
6 1.4000 2.0000 5.5000
7 1.8000 9.0000 7.5000
8 2.5000 7.0000 0.0000
9 0.9900 5.0000 3.0000

Matrix of rank correlation coefficients:
Upper triangle -- Spearman’s
Lower triangle -- Kendall’s tau

1 2 3
1 1.0000 0.2941 0.4058
2 0.1429 1.0000 0.7537
3 0.2760 0.5521 1.0000

Number of cases actually used: 6
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NAG Library Routine Document

G02BSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BSF computes Kendall and/or Spearman nonparametric rank correlation coefficients for a set of
data omitting cases with missing values from only those calculations involving the variables for which
the values are missing; the data array is preserved, and the ranks of the observations are not available
on exit from the routine.

2 Specification

SUBROUTINE G02BSF (N, M, X, LDX, MISS, XMISS, ITYPE, RR, LDRR, NCASES,
CNT, LDCNT, KWORKA, KWORKB, KWORKC, KWORKD, WORK1,
WORK2, IFAIL)

&
&

INTEGER N, M, LDX, MISS(M), ITYPE, LDRR, NCASES, LDCNT,
KWORKA(N), KWORKB(N), KWORKC(N), KWORKD(N), IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), XMISS(M), RR(LDRR,M), CNT(LDCNT,M),
WORK1(N), WORK2(N)

&

3 Description

The input data consists of n observations for each of m variables, given as an array

xij
� �

; i ¼ 1; 2; . . . ; n n � 2ð Þ and j ¼ 1; 2; . . . ;m m � 2ð Þ;

where xij is the ith observation on the jth variable. In addition each of the m variables may optionally
have associated with it a value which is to be considered as representing a missing observation for that
variable; the missing value for the jth variable is denoted by xmj. Missing values need not be specified
for all variables.

Let wij ¼ 0 if the ith observation for the jth variable is a missing value, i.e., if a missing value, xmj ,
has been declared for the jth variable, and xij ¼ xmj (see also Section 7); and wij ¼ 1 otherwise, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

The observations are first ranked, a pair of variables at a time as follows:

For a given pair of variables, j and l say, each of the observations xij for which the product wijwil ¼ 1,
for i ¼ 1; 2; . . . ; n, has associated with it an additional number, the ‘rank’ of the observation, which
indicates the magnitude of that observation relative to the magnitude of the other observations on
variable j for which wijwil ¼ 1.

The smallest of these valid observations for variable j is assigned to rank 1, the second smallest valid
observation for variable j the rank 2, the third smallest rank 3, and so on until the largest such
observation is given the rank njl, where

njl ¼
Xn
i¼1
wijwil:

If a number of cases all have the same value for the variable j, then they are each given an ‘average’
rank, e.g., if in attempting to assign the rank hþ 1, k observations for which wijwil ¼ 1 were found to
have the same value, then instead of giving them the ranks

hþ 1; hþ 2; . . . ; hþ k;

all k observations would be assigned the rank
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2hþ kþ 1

2

and the next value in ascending order would be assigned the rank

hþ kþ 1:

The variable l is then ranked in a similar way. The process is then repeated for all pairs of variables j
and l, for j ¼ 1; 2; . . . ;m and l ¼ j; . . . ;m. Let yij lð Þ be the rank assigned to the observation xij when
the jth and lth variables are being ranked, and yil jð Þ be the rank assigned to the observation xil during
the same process, for i ¼ 1; 2; . . . ; n, j ¼ 1; 2; . . . ;m and l ¼ j; . . . ;m.

The quantities calculated are:

(a) Kendall's tau rank correlation coefficients:

Rjk ¼

Xn
h¼1

Xn
i¼1
whjwhkwijwik sign yhj kð Þ � yij kð Þ

� �
sign yhk jð Þ � yik jð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
njk njk � 1
� �

� Tj kð Þ
� �

njk njk � 1
� �

� Tk jð Þ
� �q ; j; k ¼ 1; 2; . . . ;m;

where njk ¼
Xn
i¼1
wijwik

and signu ¼ 1 if u > 0

signu ¼ 0 if u ¼ 0

signu ¼ �1 if u < 0

and Tj kð Þ ¼
P
tj tj � 1
� �

where tj is the number of ties of a particular value of variable j when the
jth and kth variables are being ranked, and the summation is over all tied values of variable j.

(b) Spearman's rank correlation coefficients:

R�jk ¼
njk n2jk � 1
� �

� 6
Xn
i¼1
wijwik yij kð Þ � yik jð Þ

� �2 � 1
2 T �j kð Þ þ T �k jð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
njk n2jk � 1
� �

� T �j kð Þ
h i

njk n2jk � 1
� �

� T �k jð Þ
h ir ; j; k ¼ 1; 2; . . . ;m;

where njk ¼
Xn
i¼1
wijwik

and T �j kð Þ ¼
P
tj t2j � 1
� �

, where tj is the number of ties of a particular value of variable j when

the jth and kth variables are being ranked, and the summation is over all tied values of variable j.

4 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations or cases.

Constraint: N � 2.
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2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 2.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to xij , the value of the ith observation on the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BSF
is called.

Constraint: LDX � N.

5: MISSðMÞ – INTEGER array Input

On entry: MISSðjÞ must be set equal to 1 if a missing value, xmj, is to be specified for the jth
variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m
variables in the array X.

6: XMISSðMÞ – REAL (KIND=nag_wp) array Input

On entry: XMISSðjÞ must be set to the missing value, xmj, to be associated with the jth variable
in the array X, for those variables for which missing values are specified by means of the array
MISS (see Section 7).

7: ITYPE – INTEGER Input

On entry: the type of correlation coefficients which are to be calculated.

ITYPE ¼ �1
Only Kendall's tau coefficients are calculated.

ITYPE ¼ 0
Both Kendall's tau and Spearman's coefficients are calculated.

ITYPE ¼ 1
Only Spearman's coefficients are calculated.

Constraint: ITYPE ¼ �1, 0 or 1.

8: RRðLDRR;MÞ – REAL (KIND=nag_wp) array Output

On exit: the requested correlation coefficients.

If only Kendall's tau coefficients are requested (ITYPE ¼ �1), RRðj; kÞ contains Kendall's tau for
the jth and kth variables.

If only Spearman's coefficients are requested (ITYPE ¼ 1), RRðj; kÞ contains Spearman's rank
correlation coefficient for the jth and kth variables.

If both Kendall's tau and Spearman's coefficients are requested (ITYPE ¼ 0), the upper triangle
of RR contains the Spearman coefficients and the lower triangle the Kendall coefficients. That is,
for the jth and kth variables, where j is less than k, RRðj; kÞ contains the Spearman rank
correlation coefficient, and RRðk; jÞ contains Kendall's tau, for j ¼ 1; 2; . . . ;m and
k ¼ 1; 2; . . . ;m.

(Diagonal terms, RRðj; jÞ, are unity for all three values of ITYPE.)
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9: LDRR – INTEGER Input

On entry: the first dimension of the array RR as declared in the (sub)program from which
G02BSF is called.

Constraint: LDRR � M.

10: NCASES – INTEGER Output

On exit: the minimum number of cases used in the calculation of any of the correlation
coefficients (when cases involving missing values have been eliminated).

11: CNTðLDCNT;MÞ – REAL (KIND=nag_wp) array Output

On exit: the number of cases, njk , actually used in the calculation of the rank correlation
coefficient for the jth and kth variables, for j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ;m.

12: LDCNT – INTEGER Input

On entry: the first dimension of the array CNT as declared in the (sub)program from which
G02BSF is called.

Constraint: LDCNT � M.

13: KWORKAðNÞ – INTEGER array Workspace
14: KWORKBðNÞ – INTEGER array Workspace
15: KWORKCðNÞ – INTEGER array Workspace
16: KWORKDðNÞ – INTEGER array Workspace
17: WORK1ðNÞ – REAL (KIND=nag_wp) array Workspace
18: WORK2ðNÞ – REAL (KIND=nag_wp) array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02BSF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, M < 2.
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IFAIL ¼ 3

On entry, LDX < N,
or LDRR < M,
or LDCNT < M.

IFAIL ¼ 4

On entry, ITYPE < �1,
or ITYPE > 1.

IFAIL ¼ 5

After observations with missing values were omitted, fewer than two cases remained for at least
one pair of variables. (The pairs of variables involved can be determined by examination of the
contents of the array CNT.) All correlation coefficients based on two or more cases are returned
by the routine even if IFAIL ¼ 5.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

You are warned of the need to exercise extreme care in your selection of missing values. G02BSF treats
all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for variable
j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

8 Parallelism and Performance

G02BSF is not threaded in any implementation.

9 Further Comments

The time taken by G02BSF depends on n and m, and the occurrence of missing values.

10 Example

This example reads in a set of data consisting of nine observations on each of three variables. Missing
values of 0:99, 9:0 and 0:0 are declared for the first, second and third variables respectively. The
program then calculates and prints both Kendall's tau and Spearman's rank correlation coefficients for
all three variables, omitting cases with missing values from only those calculations involving the
variables for which the values are missing. The program therefore eliminates cases 4, 5, 7 and 9 in
calculating and correlation between the first and second variables, cases 5, 8 and 9 for the first and third
variables, and cases 4, 7 and 8 for the second and third variables.
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10.1 Program Text

Program g02bsfe

! G02BSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bsf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, itype, ldcnt, ldrr, ldx, &

m, n, ncases
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: cnt(:,:), rr(:,:), work1(:), &
work2(:), x(:,:), xmiss(:)

Integer, Allocatable :: kworka(:), kworkb(:), kworkc(:), &
kworkd(:), miss(:)

! .. Executable Statements ..
Write (nout,*) ’G02BSF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, itype

ldcnt = m
ldrr = m
ldx = n
Allocate (cnt(ldcnt,m),rr(ldrr,m),work1(n),work2(n),x(ldx,m),xmiss(m), &

kworka(n),kworkb(n),kworkc(n),kworkd(n),miss(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in missing value flags
Read (nin,*) miss(1:m)
Read (nin,*) xmiss(1:m)

! Display data
Write (nout,99999) ’Number of variables (columns) =’, m
Write (nout,99999) ’Number of cases (rows) =’, n
Write (nout,*)
Write (nout,*) ’Data matrix is:-’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,x(i,1:m),i=1,n)
Write (nout,*)

! Calculate correlation coefficients
ifail = 0
Call g02bsf(n,m,x,ldx,miss,xmiss,itype,rr,ldrr,ncases,cnt,ldcnt,kworka, &

kworkb,kworkc,kworkd,work1,work2,ifail)

! Display results
Write (nout,*) ’Matrix of rank correlation coefficients:’
Write (nout,*) ’Upper triangle -- Spearman’’s’
Write (nout,*) ’Lower triangle -- Kendall’’s tau’
Write (nout,*)
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,rr(i,1:m),i=1,m)
Write (nout,*)
Write (nout,99999) &

’Minimum number of cases used for any pair of variables:’, ncases
Write (nout,*)
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Write (nout,*) ’Numbers used for each pair are:’
Write (nout,99998)(i,i=1,m)
Write (nout,99997)(i,cnt(i,1:m),i=1,m)

99999 Format (1X,A,I5)
99998 Format (1X,3I12)
99997 Format (1X,I3,3F12.4)

End Program g02bsfe

10.2 Program Data

G02BSF Example Program Data
9 3 0 :: N, M, ITYPE
1.70 1.00 0.50
2.80 4.00 3.00
0.60 6.00 2.50
1.80 9.00 6.00
0.99 4.00 2.50
1.40 2.00 5.50
1.80 9.00 7.50
2.50 7.00 0.00
0.99 5.00 3.00 :: End of X
1 1 1 :: MISS

0.99 9.00 0.00 :: XMISS

10.3 Program Results

G02BSF Example Program Results

Number of variables (columns) = 3
Number of cases (rows) = 9

Data matrix is:-

1 2 3
1 1.7000 1.0000 0.5000
2 2.8000 4.0000 3.0000
3 0.6000 6.0000 2.5000
4 1.8000 9.0000 6.0000
5 0.9900 4.0000 2.5000
6 1.4000 2.0000 5.5000
7 1.8000 9.0000 7.5000
8 2.5000 7.0000 0.0000
9 0.9900 5.0000 3.0000

Matrix of rank correlation coefficients:
Upper triangle -- Spearman’s
Lower triangle -- Kendall’s tau

1 2 3
1 1.0000 0.1000 0.4058
2 0.0000 1.0000 0.0896
3 0.2760 0.0000 1.0000

Minimum number of cases used for any pair of variables: 5

Numbers used for each pair are:
1 2 3

1 7.0000 5.0000 6.0000
2 5.0000 7.0000 6.0000
3 6.0000 6.0000 8.0000
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NAG Library Routine Document

G02BTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BTF updates the sample means and sums of squares and cross-products, or sums of squares and
cross-products of deviations about the mean, for a new observation. The data may be weighted.

2 Specification

SUBROUTINE G02BTF (MEAN, M, WT, X, INCX, SW, XBAR, C, IFAIL)

INTEGER M, INCX, IFAIL
REAL (KIND=nag_wp) WT, X(M*INCX), SW, XBAR(M), C((M*M+M)/2)
CHARACTER(1) MEAN

3 Description

G02BTF is an adaptation of West's WV2 algorithm; see West (1979). This routine updates the weighted
means of variables and weighted sums of squares and cross-products or weighted sums of squares and
cross-products of deviations about the mean for observations on m variables Xj, for j ¼ 1; 2; . . . ;m.
For the first i� 1 observations let the mean of the jth variable be �xj i� 1ð Þ, the cross-product about the
mean for the jth and kth variables be cjk i� 1ð Þ and the sum of weights be Wi�1. These are updated by
the ith observation, xij, for j ¼ 1; 2; . . . ;m, with weight wi as follows:

Wi ¼ Wi�1 þ wi; �xj ið Þ ¼ �xj i� 1ð Þ þ wi
Wi

xj � �xj i� 1ð Þ
� �

; j ¼ 1; 2; . . . ;m

and

cjk ið Þ ¼ cjk i� 1ð Þ þ wi
Wi

xj � �xj i� 1ð Þ
� �

xk � �xk i� 1ð Þð ÞWi�1; j ¼ 1; 2; . . . ;m;k ¼ j; jþ 1; 2; . . . ;m:

The algorithm is initialized by taking �xj 1ð Þ ¼ x1j, the first observation and cij 1ð Þ ¼ 0:0.

For the unweighted case wi ¼ 1 and Wi ¼ i for all i.

4 References

Chan T F, Golub G H and Leveque R J (1982) Updating Formulae and a Pairwise Algorithm for
Computing Sample Variances Compstat, Physica-Verlag

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555

5 Arguments

1: MEAN – CHARACTER(1) Input

On entry: indicates whether G02BTF is to calculate sums of squares and cross-products, or sums
of squares and cross-products of deviations about the mean.

MEAN ¼ M
The sums of squares and cross-products of deviations about the mean are calculated.
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MEAN ¼ Z
The sums of squares and cross-products are calculated.

Constraint: MEAN ¼ M or Z .

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 1.

3: WT – REAL (KIND=nag_wp) Input

On entry: the weight to use for the current observation, wi.

For unweighted means and cross-products set WT ¼ 1:0. The use of a suitable negative value of
WT, e.g., �wi will have the effect of deleting the observation.

4: XðM� INCXÞ – REAL (KIND=nag_wp) array Input

On entry: Xð j� 1ð Þ � INCXþ 1Þ must contain the value of the jth variable for the current
observation, j ¼ 1; 2; . . . ;m.

5: INCX – INTEGER Input

On entry: the increment of X. Two situations are common.

If INCX ¼ 1, the data values are to be found in consecutive locations in X, i.e., in a column.

If INCX ¼ ldx, for some positive integer ldx, the data values are to be found as a row of an array
with first dimension ldx.

Constraint: INCX > 0.

6: SW – REAL (KIND=nag_wp) Input/Output

On entry: the sum of weights for the previous observations, Wi�1.

SW ¼ 0:0
The update procedure is initialized.

SWþWT ¼ 0:0
All elements of XBAR and C are set to zero.

Constraint: SW � 0:0 and SWþWT � 0:0.

On exit: contains the updated sum of weights, Wi.

7: XBARðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if SW ¼ 0:0, XBAR is initialized, otherwise XBARðjÞ must contain the weighted mean
of the jth variable for the previous i � 1ð Þ observations, �xj i � 1ð Þ, for j ¼ 1; 2; . . . ;m.

On exit: XBARðjÞ contains the weighted mean of the jth variable, �xj ið Þ, for j ¼ 1; 2; . . . ;m.

8: Cð M�MþMð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if SW 6¼ 0:0, C must contain the upper triangular part of the matrix of weighted sums
of squares and cross-products or weighted sums of squares and cross-products of deviations
about the mean. It is stored packed form by column, i.e., the cross-product between the jth and
kth variable, k � j, is stored in Cðk� k� 1ð Þ=2þ jÞ.
On exit: the update sums of squares and cross-products stored as on input.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or INCX < 1.

IFAIL ¼ 2

On entry, SW < 0:0.

IFAIL ¼ 3

On entry, SWþWTð Þ < 0:0, the current weight causes the sum of weights to be less than 0:0.

IFAIL ¼ 4

On entry, MEAN 6¼ M or Z .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a detailed discussion of the accuracy of this method see Chan et al. (1982) and West (1979).

8 Parallelism and Performance

G02BTF is not threaded in any implementation.

9 Further Comments

G02BTF may be used to update the results returned by G02BUF.

G02 – Correlation and Regression Analysis G02BTF

Mark 26 G02BTF.3



G02BWF may be used to calculate the correlation matrix from the matrix of sums of squares and cross-
products of deviations about the mean and the matrix may be scaled using F06EDF (DSCAL) or
F06FDF to produce a variance-covariance matrix.

10 Example

A program to calculate the means, the required sums of squares and cross-products matrix, and the
variance matrix for a set of 3 observations of 3 variables.

10.1 Program Text

Program g02btfe

! G02BTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02btf, nag_wp, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, sw, wt
Integer :: i, ifail, incx, lc, m, n, nprint
Character (1) :: mean

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), v(:), x(:), xbar(:)

! .. Intrinsic Procedures ..
Intrinsic :: mod

! .. Executable Statements ..
Write (nout,*) ’G02BTF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) mean, m, n, nprint

lc = (m*m+m)/2
Allocate (x(m),xbar(m),c(lc),v(lc))

! Elements of X are stored consecutively
incx = 1

! Loop over each observation individually, updating the sums of squares
! and cross-product matrix at each iteration

sw = zero
i = 0

data_lp: Do
Read (nin,*,Iostat=ifail) wt, x(1:m)
If (ifail/=0) Then

! Finished processing all the data
Exit data_lp

End If

i = i + 1

! Update the sums of squares and cross-products matrix
ifail = 0
Call g02btf(mean,m,wt,x,incx,sw,xbar,c,ifail)

! Display the results, either at the end or every NPRINT iterations
If (mod(i,nprint)==0 .Or. i==n) Then
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Write (nout,*) ’---------------------------------------------’
Write (nout,99999) ’Observation: ’, i, ’ Weight = ’, wt
Write (nout,*) ’---------------------------------------------’
Write (nout,*)
Write (nout,*) ’Means’
Write (nout,99998) xbar(1:m)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04ccf(’Upper’,’Non-unit’,m,c, &

’Sums of squares and cross-products’,ifail)

! Convert the sums of squares and cross-products to a variance matrix
If (sw>one) Then

alpha = one/(sw-one)
v(1:lc) = alpha*c(1:lc)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04ccf(’Upper’,’Non-unit’,m,v,’Variance matrix’,ifail)

End If
Write (nout,*)

End If
End Do data_lp

99999 Format (1X,A,I4,A,F13.4)
99998 Format (1X,4F14.4)

End Program g02btfe

10.2 Program Data

G02BTF Example Program Data
’M’ 3 3 3
0.1300 9.1231 3.7011 4.5230
1.3070 0.9310 0.0900 0.8870
0.3700 0.0009 0.0099 0.0999

10.3 Program Results

G02BTF Example Program Results

---------------------------------------------
Observation: 3 Weight = 0.3700
---------------------------------------------

Means
1.3299 0.3334 0.9874

Sums of squares and cross-products
1 2 3

1 8.7569 3.6978 4.0707
2 1.5905 1.6861
3 1.9297

Variance matrix
1 2 3

1 10.8512 4.5822 5.0443
2 1.9709 2.0893
3 2.3912
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NAG Library Routine Document

G02BUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BUF calculates the sample means and sums of squares and cross-products, or sums of squares and
cross-products of deviations from the mean, in a single pass for a set of data. The data may be
weighted.

2 Specification

SUBROUTINE G02BUF (MEAN, WEIGHT, N, M, X, LDX, WT, SW, WMEAN, C, IFAIL)

INTEGER N, M, LDX, IFAIL
REAL (KIND=nag_wp) X(LDX,M), WT(*), SW, WMEAN(M), C((M*M+M)/2)
CHARACTER(1) MEAN, WEIGHT

3 Description

G02BUF is an adaptation of West's WV2 algorithm; see West (1979). This routine calculates the
(optionally weighted) sample means and (optionally weighted) sums of squares and cross-products or
sums of squares and cross-products of deviations from the (weighted) mean for a sample of n
observations on m variables Xj, for j ¼ 1; 2; . . . ;m. The algorithm makes a single pass through the
data.

For the first i� 1 observations let the mean of the jth variable be �xj i� 1ð Þ, the cross-product about the
mean for the jth and kth variables be cjk i� 1ð Þ and the sum of weights be Wi�1. These are updated by
the ith observation, xij, for j ¼ 1; 2; . . . ;m, with weight wi as follows:

Wi ¼Wi�1 þ wi
�xj ið Þ ¼ �xj i� 1ð Þ þ wi

Wi
xj � �xj i� 1ð Þ
� �

; j ¼ 1; 2; . . . ;m

and

cjk ið Þ ¼ cjk i� 1ð Þ þ wi
Wi

xj � �xj i� 1ð Þ
� �

xk � �xk i� 1ð Þð ÞWi�1; j ¼ 1; 2; . . . ;m and k ¼ j; jþ 1; . . . ;m:

The algorithm is initialized by taking �xj 1ð Þ ¼ x1j, the first observation, and cij 1ð Þ ¼ 0:0.

For the unweighted case wi ¼ 1 and Wi ¼ i for all i.
Note that only the upper triangle of the matrix is calculated and returned packed by column.

4 References

Chan T F, Golub G H and Leveque R J (1982) Updating Formulae and a Pairwise Algorithm for
Computing Sample Variances Compstat, Physica-Verlag

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555
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5 Arguments

1: MEAN – CHARACTER(1) Input

On entry: indicates whether G02BUF is to calculate sums of squares and cross-products, or sums
of squares and cross-products of deviations about the mean.

MEAN ¼ M
The sums of squares and cross-products of deviations about the mean are calculated.

MEAN ¼ Z
The sums of squares and cross-products are calculated.

Constraint: MEAN ¼ M or Z .

2: WEIGHT – CHARACTER(1) Input

On entry: indicates whether the data is weighted or not.

WEIGHT ¼ U
The calculations are performed on unweighted data.

WEIGHT ¼ W
The calculations are performed on weighted data.

Constraint: WEIGHT ¼ W or U .

3: N – INTEGER Input

On entry: n, the number of observations in the dataset.

Constraint: N � 1.

4: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 1.

5: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation on the jth variable, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ;m.

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BUF
is called.

Constraint: LDX � N.

7: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: the optional weights of each observation.

If WEIGHT ¼ U , WT is not referenced.

If WEIGHT ¼ W , WTðiÞ must contain the weight for the ith observation.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

8: SW – REAL (KIND=nag_wp) Output

On exit: the sum of weights.

If WEIGHT ¼ U , SW contains the number of observations, n.
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9: WMEANðMÞ – REAL (KIND=nag_wp) array Output

On exit: the sample means. WMEANðjÞ contains the mean for the jth variable.

10: Cð M�MþMð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the cross-products.

If MEAN ¼ M , C contains the upper triangular part of the matrix of (weighted) sums of squares
and cross-products of deviations about the mean.

If MEAN ¼ Z , C contains the upper triangular part of the matrix of (weighted) sums of squares
and cross-products.

These are stored packed by columns, i.e., the cross-product between the jth and kth variable,
k � j, is stored in Cðk� k� 1ð Þ=2þ jÞ.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or N < 1,
or LDX < N.

IFAIL ¼ 2

On entry, MEAN 6¼ M or Z .

IFAIL ¼ 3

On entry, WEIGHT 6¼ W or U .

IFAIL ¼ 4

On entry, WEIGHT ¼ W , and a value of WT < 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a detailed discussion of the accuracy of this algorithm see Chan et al. (1982) or West (1979).

8 Parallelism and Performance

G02BUF is not threaded in any implementation.

9 Further Comments

G02BWF may be used to calculate the correlation coefficients from the cross-products of deviations
about the mean. The cross-products of deviations about the mean may be scaled using F06EDF
(DSCAL) or F06FDF to give a variance-covariance matrix.

The means and cross-products produced by G02BUF may be updated by adding or removing
observations using G02BTF.

Two sets of means and cross-products, as produced by G02BUF, can be combined using G02BZF.

10 Example

A program to calculate the means, the required sums of squares and cross-products matrix, and the
variance matrix for a set of 3 observations of 3 variables.

10.1 Program Text

Program g02bufe

! G02BUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dscal, g02buf, nag_wp, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Integer, Parameter :: inc1 = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, sw
Integer :: i, ifail, lc, ldx, lwt, m, n
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:), wmean(:), wt(:), x(:,:)

! .. Executable Statements ..
Write (nout,*) ’G02BUF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) mean, weight, m, n

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else

G02BUF NAG Library Manual

G02BUF.4 Mark 26



lwt = 0
End If
ldx = n
lc = (m*m+m)/2
Allocate (wt(lwt),x(ldx,m),wmean(m),c(lc))

! Read in data
If (lwt>0) Then

Read (nin,*) wt(1:n)
End If
Read (nin,*)(x(i,1:m),i=1,n)

! Calculate sums of squares and cross-products matrix
ifail = 0
Call g02buf(mean,weight,n,m,x,ldx,wt,sw,wmean,c,ifail)

! Display results
Write (nout,*) ’Means’
Write (nout,99999) wmean(1:m)
Write (nout,*)
Write (nout,*) ’Weights’
Write (nout,99999) wt(1:n)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04ccf(’Upper’,’Non-unit’,m,c,’Sums of squares and cross-products’, &

ifail)

! Convert the sums of squares and cross-products to a variance matrix
If (sw>one) Then

alpha = one/(sw-one)
! The NAG name equivalent of dscal is f06edf

Call dscal(lc,alpha,c,inc1)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04ccf(’Upper’,’Non-unit’,m,c,’Variance matrix’,ifail)

End If

99999 Format (1X,6F14.4)
End Program g02bufe

10.2 Program Data

G02BUF Example Program Data
’M’ ’W’ 3 3
0.1300 1.3070 0.3700
9.1231 3.7011 4.5230
0.9310 0.0900 0.8870
0.0009 0.0099 0.0999

10.3 Program Results

G02BUF Example Program Results

Means
1.3299 0.3334 0.9874

Weights
0.1300 1.3070 0.3700

Sums of squares and cross-products
1 2 3

1 8.7569 3.6978 4.0707
2 1.5905 1.6861
3 1.9297
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Variance matrix
1 2 3

1 10.8512 4.5822 5.0443
2 1.9709 2.0893
3 2.3912
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NAG Library Routine Document

G02BWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BWF calculates a matrix of Pearson product-moment correlation coefficients from sums of squares
and cross-products of deviations about the mean.

2 Specification

SUBROUTINE G02BWF (M, R, IFAIL)

INTEGER M, IFAIL
REAL (KIND=nag_wp) R((M*M+M)/2)

3 Description

G02BWF calculates a matrix of Pearson product-moment correlation coefficients from sums of squares
and cross-products about the mean for observations on m variables which can be computed by a single
call to G02BUF or a series of calls to G02BTF. The sums of squares and cross-products are stored in an
array packed by column and are overwritten by the correlation coefficients.

Let cjk be the cross-product of deviations from the mean, for j ¼ 1; 2; . . . ;m and k ¼ j; . . . ;m, then the
product-moment correlation coefficient, rjk is given by

rjk ¼
cjkffiffiffiffiffiffiffiffiffiffiffi
cjjckk
p :

4 References

None.

5 Arguments

1: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 1.

2: Rð M�MþMð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: contains the upper triangular part of the sums of squares and cross-products matrix of
deviations from the mean. These are stored packed by column, i.e., the cross-product between
variable j and k, k � j, is stored in Rð k� k� 1ð Þ=2þ jð ÞÞ.
On exit: the Pearson product-moment correlation coefficients.

These are stored packed by column corresponding to the input cross-products.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then

G02 – Correlation and Regression Analysis G02BWF

Mark 26 G02BWF.1



the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02BWF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

A variable has a zero variance. All correlations involving the variable with zero variance will be
returned as zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of G02BWF is entirely dependent upon the accuracy of the elements of array R.

8 Parallelism and Performance

G02BWF is not threaded in any implementation.

9 Further Comments

G02BWF may also be used to calculate the correlations between parameter estimates from the variance-
covariance matrix of the parameter estimates as is given by several routines in this chapter.

10 Example

A program to calculate the correlation matrix from raw data. The sum of squares and cross-products
about the mean are calculated from the raw data by a call to G02BUF. The correlation matrix is then
calculated from these values.
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10.1 Program Text

Program g02bwfe

! G02BWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02buf, g02bwf, nag_wp, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: sw
Integer :: i, ifail, ldx, lr, lwt, m, n
Logical :: zero_var
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:), wmean(:), wt(:), x(:,:)

! .. Executable Statements ..
Write (nout,*) ’G02BWF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) mean, weight, m, n

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
lr = (m*m+m)/2
Allocate (r(lr),wmean(m),wt(lwt),x(ldx,m))

! Read in data
Read (nin,*) wt(1:n)
Read (nin,*)(x(i,1:m),i=1,n)

! Calculate the sums of squares and cross-products matrix
ifail = 0
Call g02buf(mean,weight,n,m,x,ldx,wt,sw,wmean,r,ifail)

! Calculate the correlation matrix
ifail = -1
Call g02bwf(m,r,ifail)
If (ifail/=0) Then

If (ifail==2) Then
zero_var = .True.

Else
Go To 100

End If
Else

zero_var = .False.
End If

! Display the results
ifail = 0
Call x04ccf(’Upper’,’Non-unit’,m,r,’Correlation matrix’,ifail)
If (zero_var) Then

Write (nout,*) ’ NOTE: some variances are zero’
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End If

100 Continue

End Program g02bwfe

10.2 Program Data

G02BWF Example Program Data
’M’ ’W’ 3 3
0.1300 1.3070 0.3700
9.1231 3.7011 4.5230
0.9310 0.0900 0.8870
0.0009 0.0099 0.0999

10.3 Program Results

G02BWF Example Program Results

Correlation matrix
1 2 3

1 1.0000 0.9908 0.9903
2 1.0000 0.9624
3 1.0000
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NAG Library Routine Document

G02BXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BXF calculates the sample means, the standard deviations, the variance-covariance matrix, and the
matrix of Pearson product-moment correlation coefficients for a set of data. Weights may be used.

2 Specification

SUBROUTINE G02BXF (WEIGHT, N, M, X, LDX, WT, XBAR, STD, V, LDV, R,
IFAIL)

&

INTEGER N, M, LDX, LDV, IFAIL
REAL (KIND=nag_wp) X(LDX,M), WT(*), XBAR(M), STD(M), V(LDV,M),

R(LDV,M)
&

CHARACTER(1) WEIGHT

3 Description

For n observations on m variables the one-pass algorithm of West (1979) as implemented in G02BUF
is used to compute the means, the standard deviations, the variance-covariance matrix, and the Pearson
product-moment correlation matrix for p selected variables. Suitables weights may be used to indicate
multiple observations and to remove missing values. The quantities are defined by:

(a) The means

�xj ¼

Xn
i¼1
wixij

Xn
i¼1
wi

j ¼ 1; . . . ; p

(b) The variance-covariance matrix

Cjk ¼

Xn
i¼1
wi xij � �xj
� �

xik � �xkð Þ

Xn
i¼1
wi � 1

j; k ¼ 1; . . . ; p

(c) The standard deviations

sj ¼
ffiffiffiffiffiffiffi
Cjj

p
j ¼ 1; . . . ; p

(d) The Pearson product-moment correlation coefficients

Rjk ¼
Cjkffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CjjCkk

p j; k ¼ 1; . . . ; p

where xij is the value of the ith observation on the jth variable and wi is the weight for the ith
observation which will be 1 in the unweighted case.

Note that the denominator for the variance-covariance is
Pn

i¼1wi � 1, so the weights should be scaled
so that the sum of weights reflects the true sample size.
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4 References

Chan T F, Golub G H and Leveque R J (1982) Updating Formulae and a Pairwise Algorithm for
Computing Sample Variances Compstat, Physica-Verlag

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555

5 Arguments

1: WEIGHT – CHARACTER(1) Input

On entry: indicates whether weights are to be used.

WEIGHT ¼ U
Weights are not used and unit weights are assumed.

WEIGHT ¼ W or V
Weights are used and must be supplied in WT. The only difference between
WEIGHT ¼ W or WEIGHT ¼ V is in computing the variance. If WEIGHT ¼ W the
divisor for the variance is the sum of the weights minus one and if WEIGHT ¼ V the
divisor is the number of observations with nonzero weights minus one. The former is
useful if the weights represent the frequency of the observed values.

Constraint: WEIGHT ¼ U , V or W.

2: N – INTEGER Input

On entry: the number of data observations in the sample.

Constraint: N > 1.

3: M – INTEGER Input

On entry: the number of variables.

Constraint: M � 1.

4: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation for the jth variable, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;M.

5: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BXF
is called.

Constraint: LDX � N.

6: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W or V , and at least 1
otherwise.

On entry: w, the optional frequency weighting for each observation, with WTðiÞ ¼ wi. Usually wi
will be an integral value corresponding to the number of observations associated with the ith data
value, or zero if the ith data value is to be ignored. If WEIGHT ¼ U , wi is set to 1 for all i and
WT is not referenced.

Constraint: if WEIGHT ¼ W or V ,
XN
i¼1

WTðiÞ > 1:0, WTðiÞ � 0:0, for i ¼ 1; 2; . . . ;N.
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7: XBARðMÞ – REAL (KIND=nag_wp) array Output

On exit: the sample means. XBARðjÞ contains the mean of the jth variable.

8: STDðMÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviations. STDðjÞ contains the standard deviation for the jth variable.

9: VðLDV;MÞ – REAL (KIND=nag_wp) array Output

On exit: the variance-covariance matrix. Vðj; kÞ contains the covariance between variables j and
k, for j ¼ 1; 2; . . . ;M and k ¼ 1; 2; . . . ;M.

10: LDV – INTEGER Input

On entry: the first dimension of the arrays R and V as declared in the (sub)program from which
G02BXF is called.

Constraint: LDV � M.

11: RðLDV;MÞ – REAL (KIND=nag_wp) array Output

On exit: the matrix of Pearson product-moment correlation coefficients. Rðj; kÞ contains the
correlation coefficient between variables j and k.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02BXF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or N � 1,
or LDX < N,
or LDV < M.

IFAIL ¼ 2

On entry, WEIGHT 6¼ U , V or W.

IFAIL ¼ 3

On entry, WEIGHT ¼ W or V and a value of WT < 0:0.
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IFAIL ¼ 4

WEIGHT ¼ W and the sum of weights is not greater than 1:0, or WEIGHT ¼ V and fewer than
2 observations have nonzero weights.

IFAIL ¼ 5

A variable has a zero variance. In this case V and STD are returned as calculated but R will
contain zero for any correlation involving a variable with zero variance.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a discussion of the accuracy of the one pass algorithm see Chan et al. (1982) and West (1979).

8 Parallelism and Performance

G02BXF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

The data are some of the results from 1988 Olympic Decathlon. They are the times (in seconds) for the
100m and 400m races and the distances (in metres) for the long jump, high jump and shot. Twenty
observations are input and the correlation matrix is computed and printed.

10.1 Program Text

Program g02bxfe

! G02BXF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bxf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None
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! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldv, ldx, lwt, m, n
Logical :: zero_var
Character (1) :: weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:,:), std(:), v(:,:), wt(:), &

x(:,:), xbar(:)
! .. Executable Statements ..

Write (nout,*) ’G02BXF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) weight, n, m
If (weight==’W’ .Or. weight==’w’) Then

lwt = n
Else

lwt = 0
End If
ldx = n
ldv = m
Allocate (x(ldx,m),wt(lwt),xbar(m),std(m),v(ldv,m),r(ldv,m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),i=1,n)
End If

! Calculate summary statistics
ifail = -1
Call g02bxf(weight,n,m,x,ldx,wt,xbar,std,v,ldv,r,ifail)
If (ifail/=0) Then

If (ifail==5) Then
zero_var = .True.

Else
Go To 100

End If
Else

zero_var = .False.
End If

! Display results
Write (nout,*) ’ Means’
Write (nout,*)
Write (nout,99999)(xbar(i),i=1,m)
Write (nout,*)
Write (nout,*) ’ Standard deviations’
Write (nout,*)
Write (nout,99999)(std(i),i=1,m)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’Upper’,’Non-unit’,m,m,r,ldv,’ Correlation matrix’, &

ifail)
If (zero_var) Then

Write (nout,*) ’ NOTE: some variances are zero’
End If

100 Continue

99999 Format (1X,10F13.4)
End Program g02bxfe
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10.2 Program Data

G02BXF Example Program Data
’u’ 20 5

11.25 48.9 7.43 2.270 15.48
10.87 47.7 7.45 1.971 14.97
11.18 48.2 7.44 1.979 14.20
10.62 49.0 7.38 2.026 15.02
11.02 47.4 7.43 1.974 12.92
10.83 48.3 7.72 2.124 13.58
11.18 49.3 7.05 2.064 14.12
11.05 48.2 6.95 2.001 15.34
11.15 49.1 7.12 2.035 14.52
11.23 48.6 7.28 1.970 15.25
10.94 49.9 7.45 1.974 15.34
11.18 49.0 7.34 1.942 14.48
11.02 48.2 7.29 2.063 12.92
10.99 47.8 7.37 1.973 13.61
11.03 48.9 7.45 1.974 14.20
11.09 48.8 7.08 2.039 14.51
11.46 51.2 6.75 2.008 16.07
11.57 49.8 7.00 1.944 16.60
11.07 47.9 7.04 1.947 13.41
10.89 49.6 7.07 1.798 15.84

10.3 Program Results

G02BXF Example Program Results

Means

11.0810 48.7900 7.2545 2.0038 14.6190

Standard deviations

0.2132 0.9002 0.2349 0.0902 1.0249

Correlation matrix
1 2 3 4 5

1 1.0000 0.4416 -0.5427 0.0696 0.3912
2 1.0000 -0.5058 -0.0678 0.7057
3 1.0000 0.2768 -0.4352
4 1.0000 -0.1494
5 1.0000
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NAG Library Routine Document

G02BYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BYF computes a partial correlation/variance-covariance matrix from a correlation or variance-
covariance matrix computed by G02BXF.

2 Specification

SUBROUTINE G02BYF (M, NY, NX, ISZ, R, LDR, P, LDP, WK, IFAIL)

INTEGER M, NY, NX, ISZ(M), LDR, LDP, IFAIL
REAL (KIND=nag_wp) R(LDR,M), P(LDP,NY), WK(NY*NX+NX*(NX+1)/2)

3 Description

Partial correlation can be used to explore the association between pairs of random variables in the
presence of other variables. For three variables, y1, y2 and x3, the partial correlation coefficient between
y1 and y2 given x3 is computed as:

r12 � r13r23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r213
� �

1� r223
� �q ;

where rij is the product-moment correlation coefficient between variables with subscripts i and j. The
partial correlation coefficient is a measure of the linear association between y1 and y2 having eliminated
the effect due to both y1 and y2 being linearly associated with x3. That is, it is a measure of association
between y1 and y2 conditional upon fixed values of x3. Like the full correlation coefficients the partial
correlation coefficient takes a value in the range (�1; 1) with the value 0 indicating no association.

In general, let a set of variables be partitioned into two groups Y and X with ny variables in Y and nx
variables in X and let the variance-covariance matrix of all ny þ nx variables be partitioned into,

�xx �xy

�yx �yy

� �
:

The variance-covariance of Y conditional on fixed values of the X variables is given by:

�yjx ¼ �yy ��yx�
�1
xx�xy:

The partial correlation matrix is then computed by standardizing �yjx,

diag �yjx
� ��12�yjx diag �yjx

� ��12:
To test the hypothesis that a partial correlation is zero under the assumption that the data has an
approximately Normal distribution a test similar to the test for the full correlation coefficient can be
used. If r is the computed partial correlation coefficient then the appropriate t statistic is

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� nx � 2

1� r2

r
;

which has approximately a Student's t-distribution with n� nx � 2 degrees of freedom, where n is the
number of observations from which the full correlation coefficients were computed.
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4 References

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

Morrison D F (1967) Multivariate Statistical Methods McGraw–Hill

Osborn J F (1979) Statistical Exercises in Medical Research Blackwell

Snedecor G W and Cochran W G (1967) Statistical Methods Iowa State University Press

5 Arguments

1: M – INTEGER Input

On entry: the number of variables in the variance-covariance/correlation matrix given in R.

Constraint: M � 3.

2: NY – INTEGER Input

On entry: the number of Y variables, ny, for which partial correlation coefficients are to be
computed.

Constraint: NY � 2.

3: NX – INTEGER Input

On entry: the number of X variables, nx, which are to be considered as fixed.

Constraints:

NX � 1;
NYþ NX � M.

4: ISZðMÞ – INTEGER array Input

On entry: indicates which variables belong to set X and Y .

ISZðiÞ < 0
The ith variable is a Y variable, for i ¼ 1; 2; . . . ;M.

ISZðiÞ > 0
The ith variable is a X variable.

ISZðiÞ ¼ 0
The ith variable is not included in the computations.

Constraints:

exactly NY elements of ISZ must be < 0;
exactly NX elements of ISZ must be > 0.

5: RðLDR;MÞ – REAL (KIND=nag_wp) array Input

On entry: the variance-covariance or correlation matrix for the M variables as given by G02BXF.
Only the upper triangle need be given.

Note: the matrix must be a full rank variance-covariance or correlation matrix and so be positive
definite. This condition is not directly checked by the routine.

6: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G02BYF
is called.

Constraint: LDR � M.
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7: PðLDP;NYÞ – REAL (KIND=nag_wp) array Output

On exit: the strict upper triangle of P contains the strict upper triangular part of the ny by ny
partial correlation matrix. The lower triangle contains the lower triangle of the ny by ny partial
variance-covariance matrix if the matrix given in R is a variance-covariance matrix. If the matrix
given in R is a partial correlation matrix then the variance-covariance matrix is for standardized
variables.

8: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which G02BYF
is called.

Constraint: LDP � NY.

9: WKðNY� NXþ NX� NXþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Workspace

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 3,
or NY < 2,
or NX < 1,
or NYþ NX > M,
or LDR < M,
or LDP < NY.

IFAIL ¼ 2

On entry, there are not exactly NY elements of ISZ < 0,
or there are not exactly NX elements of ISZ > 0.

IFAIL ¼ 3

On entry, the variance-covariance/correlation matrix of the X variables, �xx, is not of full rank.
Try removing some of the X variables by setting the appropriate element of ISZ ¼ 0.

IFAIL ¼ 4

Either a diagonal element of the partial variance-covariance matrix, �yjx, is zero and/or a
computed partial correlation coefficient is greater than one. Both indicate that the matrix input in
R was not positive definite.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02BYF computes the partial variance-covariance matrix, �yjx, by computing the Cholesky
factorization of �xx. If �xx is not of full rank the computation will fail. For a statement on the
accuracy of the Cholesky factorization see F07GDF (DPPTRF).

8 Parallelism and Performance

G02BYF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02BYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Models that represent the linear associations given by partial correlations can be fitted using the
multiple regression routine G02DAF.

10 Example

Data, given by Osborn (1979), on the number of deaths, smoke (mg=m3) and sulphur dioxide (parts/
million) during an intense period of fog is input. The correlations are computed using G02BXF and the
partial correlation between deaths and smoke given sulphur dioxide is computed using G02BYF. Both
correlation matrices are printed using the routine X04CAF.

10.1 Program Text

Program g02byfe

! G02BYF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02bxf, g02byf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Integer :: i, ifail, ldp, ldr, ldx, lwt, m, n, &
nx, ny

Character (1) :: weight
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: p(:,:), r(:,:), std(:), v(:,:), &
wk(:), wt(:), x(:,:), xbar(:)

Integer, Allocatable :: isz(:)
! .. Executable Statements ..

Write (nout,*) ’G02BYF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) weight, n, m

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldp = m
ldr = m
ldx = n
Allocate (p(ldp,m),v(ldr,m),std(m),wk(m*m),wt(lwt),x(ldx,m),xbar(m), &

isz(m),r(ldr,m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in number of variables and variable flags for partial correlation
! coefficients.

Read (nin,*) ny, nx
Read (nin,*) isz(1:m)

! Calculate correlation matrix
ifail = 0
Call g02bxf(weight,n,m,x,ldx,wt,xbar,std,v,ldr,r,ifail)

! Calculate partial correlation matrix
ifail = 0
Call g02byf(m,ny,nx,isz,r,ldr,p,ldp,wk,ifail)

! Display results
ifail = 0
Call x04caf(’Upper’,’Non-unit’,m,m,r,ldr,’Correlation matrix’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’Upper’,’Unit’,ny,ny,p,ldp,’Partial Correlation matrix’, &

ifail)

End Program g02byfe

10.2 Program Data

G02BYF Example Program Data
’u’ 15 3 :: WEIGHT,N,M (G02BXF)
112 0.30 0.09
140 0.49 0.16
143 0.61 0.22
120 0.49 0.14
196 2.64 0.75
294 3.45 0.86
513 4.46 1.34
518 4.46 1.34
430 1.22 0.47
274 1.22 0.47
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255 0.32 0.22
236 0.29 0.23
256 0.50 0.26
222 0.32 0.16
213 0.32 0.16 :: End of X (G02BXF)
2 1 :: NY,NX

-1 -1 1 :: ISZ

10.3 Program Results

G02BYF Example Program Results

Correlation matrix
1 2 3

1 1.0000 0.7560 0.8309
2 1.0000 0.9876
3 1.0000

Partial Correlation matrix
1 2

1 1.0000 -0.7381
2 1.0000
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NAG Library Routine Document

G02BZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02BZF combines two sets of sample means and sums of squares and cross-products matrices. It is
designed to be used in conjunction with G02BUF to allow large datasets to be summarised.

2 Specification

SUBROUTINE G02BZF (MEAN, M, XSW, XMEAN, XC, YSW, YMEAN, YC, IFAIL)

INTEGER M, IFAIL
REAL (KIND=nag_wp) XSW, XMEAN(M), XC((M*M+M)/2), YSW, YMEAN(M),

YC((M*M+M)/2)
&

CHARACTER(1) MEAN

3 Description

Let X and Y denote two sets of data, each with m variables and nx and ny observations respectively.
Let �x denote the (optionally weighted) vector of m means for the first dataset and Cx denote either the
sums of squares and cross-products of deviations from �x

Cx ¼ X � e�Tx
� �T

Dx X � e�Tx
� �

or the sums of squares and cross-products, in which case

Cx ¼ XTDxX

where e is a vector of nx ones and Dx is a diagonal matrix of (optional) weights and Wx is defined as
the sum of the diagonal elements of D. Similarly, let �y, Cy and Wy denote the same quantities for the
second dataset.

Given �x; �y; Cx; Cy;Wx and Wy G02BZF calculates �z, Cz and Wz as if a dataset Z, with m variables
and nx þ ny observations were supplied to G02BUF, with Z constructed as

Z ¼ X
Y

� �
:

G02BZF has been designed to combine the results from two calls to G02BUF allowing large datasets,
or cases where all the data is not available at the same time, to be summarised.

4 References

Bennett J, Pebay P, Roe D and Thompson D (2009) Numerically stable, single-pass, parallel statistics
algorithms Proceedings of IEEE International Conference on Cluster Computing

5 Arguments

1: MEAN – CHARACTER(1) Input

On entry: indicates whether the matrices supplied in XC and YC are sums of squares and cross-
products, or sums of squares and cross-products of deviations about the mean.

MEAN ¼ M
Sums of squares and cross-products of deviations about the mean have been supplied.
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MEAN ¼ Z
Sums of squares and cross-products have been supplied.

Constraint: MEAN ¼ M or Z .

2: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 1.

3: XSW – REAL (KIND=nag_wp) Input/Output

On entry: Wx, the sum of weights, from the first set of data, X. If the data is unweighted then
this will be the number of observations in the first dataset.

On exit: Wz, the sum of weights, from the combined dataset, Z. If both datasets are unweighted
then this will be the number of observations in the combined dataset.

Constraint: XSW � 0.

4: XMEANðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: �x, the sample means for the first set of data, X.

On exit: �z, the sample means for the combined data, Z.

5: XCð M�MþMð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Cx, the sums of squares and cross-products matrix for the first set of data, X, as
returned by G02BUF.

G02BUF, returns this matrix packed by columns, i.e., the cross-product between the jth and kth
variable, k � j, is stored in XCðk� k� 1ð Þ=2þ jÞ.
No check is made that Cx is a valid cross-products matrix.

On exit: Cz, the sums of squares and cross-products matrix for the combined dataset, Z.

This matrix is again stored packed by columns.

6: YSW – REAL (KIND=nag_wp) Input

On entry: Wy, the sum of weights, from the second set of data, Y . If the data is unweighted then
this will be the number of observations in the second dataset.

Constraint: YSW � 0.

7: YMEANðMÞ – REAL (KIND=nag_wp) array Input

On entry: �y, the sample means for the second set of data, Y .

8: YCð M�MþMð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: Cy, the sums of squares and cross-products matrix for the second set of data, Y , as
returned by G02BUF.

G02BUF, returns this matrix packed by columns, i.e., the cross-product between the jth and kth
variable, k � j, is stored in YCðk� k� 1ð Þ=2þ jÞ.
No check is made that Cy is a valid cross-products matrix.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

G02BZF NAG Library Manual

G02BZF.2 Mark 26



For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, MEAN ¼ valueh i was an illegal value.

IFAIL ¼ 21

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 31

On entry, XSW ¼ valueh i.
Constraint: XSW � 0:0.

IFAIL ¼ 61

On entry, YSW ¼ valueh i.
Constraint: YSW � 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02BZF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example illustrates the use of G02BZF by dividing a dataset into three blocks of 4, 5 and 3
observations respectively. Each block of data is summarised using G02BUF and then the three
summaries combined using G02BZF.

The resulting sums of squares and cross-products matrix is then scaled to obtain the covariance matrix
for the whole dataset.

10.1 Program Text

Program g02bzfe
! G02BZF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dscal, g02buf, g02bzf, nag_wp, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, xsw, ysw
Integer :: b, i, ierr, ifail, lc, ldx, m, n
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: wt(:), x(:,:), xc(:), xmean(:), &

yc(:), ymean(:)
! .. Executable Statements ..

Write (nout,*) ’G02BZF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem defining variables
Read (nin,*) mean, m

! Allocate memory for output arrays
lc = (m*m+m)/2
Allocate (xmean(m),ymean(m),xc(lc),yc(lc))

! Loop over each block of data
b = 0
Do

! Read in the number of observations in this block and the weight flag
Read (nin,*,Iostat=ierr) n, weight
If (ierr/=0) Then

Exit
End If

! Keep a running total of the number of blocks of data
b = b + 1

! Allocate arrays to hold data and read the current block of data in
ldx = n
Allocate (x(ldx,m))
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If (weight==’W’ .Or. weight==’w’) Then
! Weighted

Allocate (wt(n))
Do i = 1, n

Read (nin,*) x(i,1:m), wt(i)
End Do

Else
! Unweighted

Allocate (wt(0))
Do i = 1, n

Read (nin,*) x(i,1:m)
End Do

End If

! Summarise this block of data
If (b==1) Then

! This is the first block of data, so summarise the data into XMEAN
! and XC

ifail = 0
Call g02buf(mean,weight,n,m,x,ldx,wt,xsw,xmean,xc,ifail)

Else
! This is not the first block of data, so summarise the data into
! YMEAN and YC

ifail = 0
Call g02buf(mean,weight,n,m,x,ldx,wt,ysw,ymean,yc,ifail)

! Update the running summaries
ifail = 0
Call g02bzf(mean,m,xsw,xmean,xc,ysw,ymean,yc,ifail)

End If

Deallocate (x,wt)
End Do

! Display results
Write (nout,*) ’Means’
Write (nout,99999) xmean(1:m)

Write (nout,*)
ifail = 0
Call x04ccf(’Upper’,’Non-unit’,m,xc,’Sums of squares and cross-products’ &

,ifail)

If (xsw>1.0_nag_wp .And. (mean==’M’ .Or. mean==’m’)) Then
! Use DSCAL (F06EDF) to scale the sums of squares and cross-products
! matrix XC, and so convert it to a covariance matrix

alpha = 1.0_nag_wp/(xsw-1.0_nag_wp)
Call dscal(lc,alpha,xc,1)

Write (nout,*)
ifail = 0
Call x04ccf(’Upper’,’Non-unit’,m,xc,’Covariance matrix’,ifail)

End If

99999 Format (1X,6F14.4)
End Program g02bzfe

10.2 Program Data

G02BZF Example Program Data
M 5 :: MEAN,M
4 U :: N,WEIGHT (1st block)
-1.10 4.06 -0.95 8.53 10.41
1.63 -3.22 -1.15 -1.30 3.78

-2.23 -8.19 -3.50 4.31 -1.11
0.92 0.33 -1.60 5.80 -1.15 :: End of X for 1st block

5 W :: N,WEIGHT (2nd block)
2.12 5.00 -11.69 -1.22 2.86 2.00
4.82 -7.23 -4.67 0.83 3.46 0.89
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-0.51 -1.12 -1.76 1.45 0.26 0.32
-4.32 4.89 1.34 -1.12 -2.49 4.19
0.02 -0.74 0.94 -0.99 -2.61 4.33 :: End of X,WT for 2nd block

3 U :: N,WEIGHT (3rd block)
1.37 0.00 -0.53 -7.98 3.32
4.15 -2.81 -4.09 -7.96 -2.13

13.09 -1.43 5.16 -1.83 1.58 :: End of X for 3rd block

10.3 Program Results

G02BZF Example Program Results

Means
0.4369 0.4929 -1.3387 -0.5684 0.0987

Sums of squares and cross-products
1 2 3 4 5

1 304.5052 -123.7700 -27.1830 -60.7092 83.4830
2 298.9148 -17.3196 -2.1710 5.2072
3 332.1639 -3.9445 -96.9299
4 264.7684 79.6211
5 225.5948

Covariance matrix
1 2 3 4 5

1 17.1746 -6.9808 -1.5332 -3.4241 4.7086
2 16.8593 -0.9769 -0.1224 0.2937
3 18.7346 -0.2225 -5.4670
4 14.9334 4.4908
5 12.7239
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NAG Library Routine Document

G02CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02CAF performs a simple linear regression with dependent variable y and independent variable x.

2 Specification

SUBROUTINE G02CAF (N, X, Y, RESULT, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), RESULT(20)

3 Description

G02CAF fits a straight line of the form

y ¼ aþ bx

to the data points

x1; y1ð Þ; x2; y2ð Þ; . . . ; xn; ynð Þ;

such that

yi ¼ aþ bxi þ ei; i ¼ 1; 2; . . . ; n n > 2ð Þ:

The routine calculates the regression coefficient, b, the regression constant, a (and various other
statistical quantities) by minimizing Xn

i¼1
e2i :

The input data consist of the n pairs of observations

x1; y1ð Þ; x2; y2ð Þ; . . . ; xn; ynð Þ

on the independent variable x and the dependent variable y.

The quantities calculated are:

(a) Means:

�x ¼ 1
n

Xn
i¼1
xi; �y ¼ 1

n

Xn
i¼1
yi:

(b) Standard deviations:

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xi � �xð Þ2
s

; sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

yi � �yð Þ2
s

:

(c) Pearson product-moment correlation coefficient:

r ¼

Xn
i¼1

xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � �xð Þ2
Xn
i¼1

yi � �yð Þ2
s :
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(d) The regression coefficient, b, and the regression constant, a:

b ¼

Xn
i¼1

xi � �xð Þ yi � �yð Þ

Xn
i¼1

xi � �xð Þ2
;a ¼ �y� b�x:

(e) The sum of squares attributable to the regression, SSR, the sum of squares of deviations about
the regression, SSD, and the total sum of squares, SST:

SST ¼
Xn
i¼1

yi � �yð Þ2;SSD ¼
Xn
i¼1

yi � a� bxið Þ2;SSR ¼ SST� SSD:

(f) The degrees of freedom attributable to the regression, DFR, the degrees of freedom of deviations
about the regression, DFD, and the total degrees of freedom, DFT:

DFT ¼ n� 1; DFD ¼ n� 2; DFR ¼ 1:

(g) The mean square attributable to the regression, MSR, and the mean square of deviations about
the regression, MSD:

MSR ¼ SSR=DFR;MSD ¼ SSD=DFD:

(h) The F value for the analysis of variance:

F ¼ MSR=MSD:

(i) The standard error of the regression coefficient, se bð Þ, and the standard error of the regression
constant, se að Þ:

se bð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSDXn

i¼1
xi � �xð Þ2

vuuuut ; se að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSD 1

nþ
�x2Xn

i¼1
xi � �xð Þ2

0BBB@
1CCCA

vuuuuuut :

(j) The t value for the regression coefficient, t bð Þ, and the t value for the regression constant, t að Þ:

t bð Þ ¼ b

se bð Þ; t að Þ ¼ a

se að Þ:

4 References

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pairs of observations.

Constraint: N > 2.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain xi, for i ¼ 1; 2; . . . ; n.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ must contain yi, for i ¼ 1; 2; . . . ; n.

4: RESULTð20Þ – REAL (KIND=nag_wp) array Output

On exit: the following information:
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RESULTð1Þ �x, the mean value of the independent variable, x;
RESULTð2Þ �y, the mean value of the dependent variable, y;
RESULTð3Þ sx the standard deviation of the independent variable, x;
RESULTð4Þ sy the standard deviation of the dependent variable, y;
RESULTð5Þ r, the Pearson product-moment correlation between the independent variable x

and the dependent variable y;
RESULTð6Þ b, the regression coefficient;
RESULTð7Þ a, the regression constant;
RESULTð8Þ se bð Þ, the standard error of the regression coefficient;
RESULTð9Þ se að Þ, the standard error of the regression constant;
RESULTð10Þ t bð Þ, the t value for the regression coefficient;
RESULTð11Þ t að Þ, the t value for the regression constant;
RESULTð12Þ SSR, the sum of squares attributable to the regression;
RESULTð13Þ DFR, the degrees of freedom attributable to the regression;
RESULTð14Þ MSR, the mean square attributable to the regression;
RESULTð15Þ F , the F value for the analysis of variance;
RESULTð16Þ SSD, the sum of squares of deviations about the regression;
RESULTð17Þ DFD, the degrees of freedom of deviations about the regression
RESULTð18Þ MSD, the mean square of deviations about the regression;
RESULTð19Þ SST, the total sum of squares;
RESULTð20Þ DFT, the total degrees of freedom.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 2.

IFAIL ¼ 2

On entry, all N values of at least one of the variables x and y are identical.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02CAF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

If, in calculating F , t að Þ or t bð Þ (see Section 3), the numbers involved are such that the result would be
outside the range of numbers which can be stored by the machine, then the answer is set to the largest
quantity which can be stored as a real variable, by means of a call to X02ALF.

8 Parallelism and Performance

G02CAF is not threaded in any implementation.

9 Further Comments

The time taken by G02CAF depends on n.

The routine uses a two-pass algorithm.

10 Example

This example reads in eight observations on each of two variables, and then performs a simple linear
regression with the first variable as the independent variable, and the second variable as the dependent
variable. Finally the results are printed.

10.1 Program Text

Program g02cafe

! G02CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02caf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp) :: reslt(20)
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’G02CAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n

Allocate (x(n),y(n))

! Read in data
Read (nin,*)(x(i),y(i),i=1,n)
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! Display data
Write (nout,*) ’ Case Independent Dependent’
Write (nout,*) ’number variable variable’
Write (nout,*)
Write (nout,99999)(i,x(i),y(i),i=1,n)
Write (nout,*)

! Fit linear regression model
ifail = 0
Call g02caf(n,x,y,reslt,ifail)

! Display results
Write (nout,99998) ’Mean of independent variable = ’, &

reslt(1)
Write (nout,99998) ’Mean of dependent variable = ’, &

reslt(2)
Write (nout,99998) ’Standard deviation of independent variable = ’, &

reslt(3)
Write (nout,99998) ’Standard deviation of dependent variable = ’, &

reslt(4)
Write (nout,99998) ’Correlation coefficient = ’, &

reslt(5)
Write (nout,*)
Write (nout,99998) ’Regression coefficient = ’, &

reslt(6)
Write (nout,99998) ’Standard error of coefficient = ’, &

reslt(8)
Write (nout,99998) ’t-value for coefficient = ’, &

reslt(10)
Write (nout,*)
Write (nout,99998) ’Regression constant = ’, &

reslt(7)
Write (nout,99998) ’Standard error of constant = ’, &

reslt(9)
Write (nout,99998) ’t-value for constant = ’, &

reslt(11)
Write (nout,*)
Write (nout,*) ’Analysis of regression table :-’
Write (nout,*)
Write (nout,*) &

’ Source Sum of squares D.F. Mean square F-value’
Write (nout,*)
Write (nout,99997) ’Due to regression’, reslt(12:15)
Write (nout,99997) ’About regression’, reslt(16:18)
Write (nout,99997) ’Total ’, reslt(19:20)

99999 Format (1X,I4,2F15.4)
99998 Format (1X,A,F8.4)
99997 Format (1X,A,F14.3,F8.0,2F14.3)

End Program g02cafe

10.2 Program Data

G02CAF Example Program Data
8 :: N
1.0 20.0
0.0 15.5
4.0 28.3
7.5 45.0
2.5 24.5
0.0 10.0
10.0 99.0
5.0 31.2 :: End of X,Y
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10.3 Program Results

G02CAF Example Program Results

Case Independent Dependent
number variable variable

1 1.0000 20.0000
2 0.0000 15.5000
3 4.0000 28.3000
4 7.5000 45.0000
5 2.5000 24.5000
6 0.0000 10.0000
7 10.0000 99.0000
8 5.0000 31.2000

Mean of independent variable = 3.7500
Mean of dependent variable = 34.1875
Standard deviation of independent variable = 3.6253
Standard deviation of dependent variable = 28.2604
Correlation coefficient = 0.9096

Regression coefficient = 7.0905
Standard error of coefficient = 1.3224
t-value for coefficient = 5.3620

Regression constant = 7.5982
Standard error of constant = 6.6858
t-value for constant = 1.1365

Analysis of regression table :-

Source Sum of squares D.F. Mean square F-value

Due to regression 4625.303 1. 4625.303 28.751
About regression 965.245 6. 160.874
Total 5590.549 7.
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NAG Library Routine Document

G02CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02CBF performs a simple linear regression with no constant, with dependent variable y and
independent variable x.

2 Specification

SUBROUTINE G02CBF (N, X, Y, RESULT, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), RESULT(20)

3 Description

G02CBF fits a straight line of the form

y ¼ bx

to the data points

x1; y1ð Þ; x2; y2ð Þ; . . . ; xn; ynð Þ;

such that

yi ¼ bxi þ ei; i ¼ 1; 2; . . . ; n n � 2ð Þ:

The routine calculates the regression coefficient, b, and the various other statistical quantities by
minimizing Xn

i¼1
e2i :

The input data consists of the n pairs of observations x1; y1ð Þ; x2; y2ð Þ; . . . ; xn; ynð Þ on the independent
variable x and the dependent variable y.

The quantities calculated are:

(a) Means:

�x ¼ 1
n

Xn
i¼1
xi; �y ¼ 1

n

Xn
i¼1
yi:

(b) Standard deviations:

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xi � �xð Þ2
s

; sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

yi � �yð Þ2
s

:

(c) Pearson product-moment correlation coefficient:

r ¼

Xn
i¼1

xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � �xð Þ2
Xn
i¼1

yi � �yð Þ2
s :
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(d) The regression coefficient, b:

b ¼

Xn
i¼1
xiyi

Xn
i¼1
x2i

:

(e) The sum of squares attributable to the regression, SSR, the sum of squares of deviations about
the regression, SSD, and the total sum of squares, SST :

SST ¼
Xn
i¼1
y2i ; SSD ¼

Xn
i¼1

yi � bxið Þ2; SSR ¼ SST � SSD:

(f) The degrees of freedom attributable to the regression, DFR, the degrees of freedom of deviations
about the regression, DFD, and the total degrees of freedom, DFT :

DFT ¼ n; DFD ¼ n� 1; DFR ¼ 1:

(g) The mean square attributable to the regression, MSR, and the mean square of deviations about
the regression, MSD:

MSR ¼ SSR=DFR; MSD ¼ SSD=DFD:
(h) The F value for the analysis of variance:

F ¼MSR=MSD:

(i) The standard error of the regression coefficient:

se bð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSDXn
i¼1
x2i

vuuuut :

(j) The t value for the regression coefficient:

t bð Þ ¼ b

se bð Þ:

4 References

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pairs of observations.

Constraint: N > 2.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain xi, for i ¼ 1; 2; . . . ; n.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ must contain yi, for i ¼ 1; 2; . . . ; n.

4: RESULTð20Þ – REAL (KIND=nag_wp) array Output

On exit: the following information:
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RESULTð1Þ �x, the mean value of the independent variable, x;
RESULTð2Þ �y, the mean value of the dependent variable, y;
RESULTð3Þ sx, the standard deviation of the independent variable, x;
RESULTð4Þ sy, the standard deviation of the dependent variable, y;
RESULTð5Þ r, the Pearson product-moment correlation between the independent variable x

and the dependent variable y;
RESULTð6Þ b, the regression coefficient;
RESULTð7Þ the value 0:0;
RESULTð8Þ se bð Þ, the standard error of the regression coefficient;
RESULTð9Þ the value 0:0;
RESULTð10Þ t bð Þ, the t value for the regression coefficient;
RESULTð11Þ the value 0:0;
RESULTð12Þ SSR, the sum of squares attributable to the regression;
RESULTð13Þ DFR, the degrees of freedom attributable to the regression;
RESULTð14Þ MSR, the mean square attributable to the regression;
RESULTð15Þ F , the F value for the analysis of variance;
RESULTð16Þ SSD, the sum of squares of deviations about the regression;
RESULTð17Þ DFD, the degrees of freedom of deviations about the regression;
RESULTð18Þ MSD, the mean square of deviations about the regression;
RESULTð19Þ SST , the total sum of squares;
RESULTð20Þ DFT , the total degrees of freedom.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, all N values of at least one of the variables x and y are identical.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02CBF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

If, in calculating F or t bð Þ (see Section 3), the numbers involved are such that the result would be
outside the range of numbers which can be stored by the machine, then the answer is set to the largest
quantity which can be stored as a real variable, by means of a call to X02ALF.

8 Parallelism and Performance

G02CBF is not threaded in any implementation.

9 Further Comments

Computation time depends on n.

G02CBF uses a two-pass algorithm.

10 Example

This example reads in eight observations on each of two variables, and then performs a simple linear
regression with no constant with the first variable as the independent variable, and the second variable
as the dependent variable. Finally the results are printed.

10.1 Program Text

Program g02cbfe

! G02CBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02cbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp) :: reslt(20)
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’G02CBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n

Allocate (x(n),y(n))

! Read in data
Read (nin,*)(x(i),y(i),i=1,n)
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! Display data
Write (nout,*) ’ Case Independent Dependent’
Write (nout,*) ’number variable variable’
Write (nout,*)
Write (nout,99999)(i,x(i),y(i),i=1,n)
Write (nout,*)

! Fit linear regression model
ifail = 0
Call g02cbf(n,x,y,reslt,ifail)

! Display results
Write (nout,99998) ’Mean of independent variable = ’, &

reslt(1)
Write (nout,99998) ’Mean of dependent variable = ’, &

reslt(2)
Write (nout,99998) ’Standard deviation of independent variable = ’, &

reslt(3)
Write (nout,99998) ’Standard deviation of dependent variable = ’, &

reslt(4)
Write (nout,99998) ’Correlation coefficient = ’, &

reslt(5)
Write (nout,*)
Write (nout,99998) ’Regression coefficient = ’, &

reslt(6)
Write (nout,99998) ’Standard error of coefficient = ’, &

reslt(8)
Write (nout,99998) ’t-value for coefficient = ’, &

reslt(10)
Write (nout,*)
Write (nout,*) ’Analysis of regression table :-’
Write (nout,*)
Write (nout,*) &

’ Source Sum of squares D.F. Mean square F-value’
Write (nout,*)
Write (nout,99997) ’Due to regression’, reslt(12:15)
Write (nout,99997) ’About regression’, reslt(16:18)
Write (nout,99997) ’Total ’, reslt(19:20)

99999 Format (1X,I4,2F15.4)
99998 Format (1X,A,F8.4)
99997 Format (1X,A,F14.4,F8.0,2F14.4)

End Program g02cbfe

10.2 Program Data

G02CBF Example Program Data
8 :: N
1.0 20.0
0.0 15.5
4.0 28.3
7.5 45.0
2.5 24.5
0.0 10.0
10.0 99.0
5.0 31.2 :: End of X,Y

10.3 Program Results

G02CBF Example Program Results

Case Independent Dependent
number variable variable

1 1.0000 20.0000
2 0.0000 15.5000
3 4.0000 28.3000
4 7.5000 45.0000
5 2.5000 24.5000
6 0.0000 10.0000
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7 10.0000 99.0000
8 5.0000 31.2000

Mean of independent variable = 3.7500
Mean of dependent variable = 34.1875
Standard deviation of independent variable = 3.6253
Standard deviation of dependent variable = 28.2604
Correlation coefficient = 0.9096

Regression coefficient = 8.2051
Standard error of coefficient = 0.9052
t-value for coefficient = 9.0642

Analysis of regression table :-

Source Sum of squares D.F. Mean square F-value

Due to regression 13767.8054 1. 13767.8054 82.1591
About regression 1173.0246 7. 167.5749
Total 14940.8300 8.
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NAG Library Routine Document

G02CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02CCF performs a simple linear regression with dependent variable y and independent variable x,
omitting cases involving missing values.

2 Specification

SUBROUTINE G02CCF (N, X, Y, XMISS, YMISS, RESULT, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), XMISS, YMISS, RESULT(21)

3 Description

G02CCF fits a straight line of the form

y ¼ aþ bx

to those of the data points

x1; y1ð Þ; x2; y2ð Þ; . . . ; xn; ynð Þ

that do not include missing values, such that

yi ¼ aþ bxi þ ei
for those xi; yið Þ, i ¼ 1; 2; . . . ; n n > 2ð Þ which do not include missing values.

The routine eliminates all pairs of observations xi; yið Þ which contain a missing value for either x or y,
and then calculates the regression coefficient, b, the regression constant, a, and various other statistical
quantities, by minimizing the sum of the e2i over those cases remaining in the calculations.

The input data consists of the n pairs of observations x1; y1ð Þ; x2; y2ð Þ; . . . ; xn; ynð Þ on the independent
variable x and the dependent variable y.

In addition two values, xm and ym, are given which are considered to represent missing observations
for x and y respectively. (See Section 7).

Let wi ¼ 0 if the ith observation of either x or y is missing, i.e., if xi ¼ xm and/or yi ¼ ym; and wi ¼ 1
otherwise, for i ¼ 1; 2; . . . ; n.

The quantities calculated are:

(a) Means:

�x ¼

Xn
i¼1
wixi

Xn
i¼1
wi

; �y ¼

Xn
i¼1
wiyi

Xn
i¼1
wi

:
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(b) Standard deviations:

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wi xi � �xð Þ2

Xn
i¼1
wi � 1

vuuuuuuut ; sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wi yi � �yð Þ2

Xn
i¼1
wi � 1

vuuuuuuut :

(c) Pearson product-moment correlation coefficient:

r ¼

Xn
i¼1
wi xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
wi xi � �xð Þ2

Xn
i¼1
wi yi � �yð Þ2

s :

(d) The regression coefficient, b, and the regression constant, a:

b ¼

Xn
i¼1
wi xi � �xð Þ yi � �yð Þ

Xn
i¼1
wi xi � �xð Þ2

; a ¼ �y� b�x:

(e) The sum of squares attributable to the regression, SSR, the sum of squares of deviations about
the regression, SSD, and the total sum of squares, SST :

SST ¼
Xn
i¼1
wi yi � �yð Þ2; SSD ¼

Xn
i¼1
wi yi � a� bxið Þ2; SSR ¼ SST � SSD:

(f) The degrees of freedom attributable to the regression, DFR, the degrees of freedom of deviations
about the regression, DFD, and the total degrees of freedom, DFT :

DFT ¼
Xn
i¼1
wi � 1; DFD ¼

Xn
i¼1
wi � 2; DFR ¼ 1:

(g) The mean square attributable to the regression, MSR, and the mean square of deviations about
the regression, MSD:

MSR ¼ SSR=DFR; MSD ¼ SSD=DFD:
(h) The F value for the analysis of variance:

F ¼MSR=MSD:

(i) The standard error of the regression coefficient, se bð Þ, and the standard error of the regression
constant, se að Þ:

se bð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSDXn

i¼1
wi xi � �xð Þ2

vuuuut ; se að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSD

1Xn
i¼1
wi

þ �x2Xn
i¼1
wi xi � �xð Þ2

0BBB@
1CCCA

vuuuuuut :

(j) The t value for the regression coefficient, t bð Þ, and the t value for the regression constant, t að Þ:

t bð Þ ¼ b

se bð Þ; t að Þ ¼ a

se að Þ:

(k) The number of observations used in the calculations:

nc ¼
Xn
i¼1
wi:
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4 References

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pairs of observations.

Constraint: N > 2.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain xi, for i ¼ 1; 2; . . . ; n.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ must contain yi, for i ¼ 1; 2; . . . ; n.

4: XMISS – REAL (KIND=nag_wp) Input

On entry: the value xm which is to be taken as the missing value for the variable x. See
Section 7.

5: YMISS – REAL (KIND=nag_wp) Input

On entry: the value ym which is to be taken as the missing value for the variable y. See
Section 7.

6: RESULTð21Þ – REAL (KIND=nag_wp) array Output

On exit: the following information:

RESULTð1Þ �x, the mean value of the independent variable, x;
RESULTð2Þ �y, the mean value of the dependent variable, y;
RESULTð3Þ sx, the standard deviation of the independent variable, x;
RESULTð4Þ sy, the standard deviation of the dependent variable, y;
RESULTð5Þ r, the Pearson product-moment correlation between the independent variable x

and the dependent variable y
RESULTð6Þ b, the regression coefficient;
RESULTð7Þ a, the regression constant;
RESULTð8Þ se bð Þ, the standard error of the regression coefficient;
RESULTð9Þ se að Þ, the standard error of the regression constant;
RESULTð10Þ t bð Þ, the t value for the regression coefficient;
RESULTð11Þ t að Þ, the t value for the regression constant;
RESULTð12Þ SSR, the sum of squares attributable to the regression;
RESULTð13Þ DFR, the degrees of freedom attributable to the regression;
RESULTð14Þ MSR, the mean square attributable to the regression;
RESULTð15Þ F , the F value for the analysis of variance;
RESULTð16Þ SSD, the sum of squares of deviations about the regression;
RESULTð17Þ DFD, the degrees of freedom of deviations about the regression;
RESULTð18Þ MSD, the mean square of deviations about the regression;
RESULTð19Þ SST , the total sum of squares;
RESULTð20Þ DFT , the total degrees of freedom;
RESULTð21Þ nc, the number of observations used in the calculations.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 2.

IFAIL ¼ 2

After observations with missing values were omitted, two or fewer cases remained.

IFAIL ¼ 3

After observations with missing values were omitted, all remaining values of at least one of the
variables x and y were identical.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02CCF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

You are warned of the need to exercise extreme care in your selection of missing values. G02CCF treats
all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for variable
j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

If, in calculating F or t að Þ (see Section 3), the numbers involved are such that the result would be
outside the range of numbers which can be stored by the machine, then the answer is set to the largest
quantity which can be stored as a real variable, by means of a call to X02ALF.
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8 Parallelism and Performance

G02CCF is not threaded in any implementation.

9 Further Comments

The time taken by G02CCF depends on n and the number of missing observations.

The routine uses a two-pass algorithm.

10 Example

This example reads in eight observations on each of two variables, and then performs a simple linear
regression with the first variable as the independent variable, and the second variable as the dependent
variable, omitting cases involving missing values (0:0 for the first variable, 99:0 for the second). Finally
the results are printed.

10.1 Program Text

Program g02ccfe

! G02CCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02ccf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xmiss, ymiss
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp) :: reslt(21)
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’G02CCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n

Allocate (x(n),y(n))

! Read in data
Read (nin,*)(x(i),y(i),i=1,n)

! Read in missing value flags
Read (nin,*) xmiss, ymiss

! Display data
Write (nout,*) ’ Case Independent Dependent’
Write (nout,*) ’number variable variable’
Write (nout,*)
Write (nout,99999)(i,x(i),y(i),i=1,n)
Write (nout,*)

! Fit linear regression model
ifail = 0
Call g02ccf(n,x,y,xmiss,ymiss,reslt,ifail)

Write (nout,99998) ’Mean of independent variable = ’, &
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reslt(1)
Write (nout,99998) ’Mean of dependent variable = ’, &

reslt(2)
Write (nout,99998) ’Standard deviation of independent variable = ’, &

reslt(3)
Write (nout,99998) ’Standard deviation of dependent variable = ’, &

reslt(4)
Write (nout,99998) ’Correlation coefficient = ’, &

reslt(5)
Write (nout,*)
Write (nout,99998) ’Regression coefficient = ’, &

reslt(6)
Write (nout,99998) ’Standard error of coefficient = ’, &

reslt(8)
Write (nout,99998) ’t-value for coefficient = ’, &

reslt(10)
Write (nout,*)
Write (nout,99998) ’Regression constant = ’, &

reslt(7)
Write (nout,99998) ’Standard error of constant = ’, &

reslt(9)
Write (nout,99998) ’t-value for constant = ’, &

reslt(11)
Write (nout,*)
Write (nout,*) ’Analysis of regression table :-’
Write (nout,*)
Write (nout,*) &

’ Source Sum of squares D.F. Mean square F-value’
Write (nout,*)
Write (nout,99997) ’Due to regression’, reslt(12:15)
Write (nout,99997) ’About regression’, reslt(16:18)
Write (nout,99997) ’Total ’, reslt(19:20)
Write (nout,*)
Write (nout,99996) ’Number of cases used = ’, reslt(21)

99999 Format (1X,I4,2F15.4)
99998 Format (1X,A,F8.4)
99997 Format (1X,A,F14.4,F8.0,2F14.4)
99996 Format (1X,A,F3.0)

End Program g02ccfe

10.2 Program Data

G02CCF Example Program Data
8 :: N
1.0 20.0
0.0 15.5
4.0 28.3
7.5 45.0
2.5 24.5
0.0 10.0
10.0 99.0
5.0 31.2 :: End of X, Y
0.0 99.0 :: XMISS, YMISS

10.3 Program Results

G02CCF Example Program Results

Case Independent Dependent
number variable variable

1 1.0000 20.0000
2 0.0000 15.5000
3 4.0000 28.3000
4 7.5000 45.0000
5 2.5000 24.5000
6 0.0000 10.0000
7 10.0000 99.0000
8 5.0000 31.2000
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Mean of independent variable = 4.0000
Mean of dependent variable = 29.8000
Standard deviation of independent variable = 2.4749
Standard deviation of dependent variable = 9.4787
Correlation coefficient = 0.9799

Regression coefficient = 3.7531
Standard error of coefficient = 0.4409
t-value for coefficient = 8.5128

Regression constant = 14.7878
Standard error of constant = 2.0155
t-value for constant = 7.3370

Analysis of regression table :-

Source Sum of squares D.F. Mean square F-value

Due to regression 345.0940 1. 345.0940 72.4682
About regression 14.2860 3. 4.7620
Total 359.3800 4.

Number of cases used = 5.
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NAG Library Routine Document

G02CDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02CDF performs a simple linear regression with no constant, with dependent variable y and
independent variable x, omitting cases involving missing values.

2 Specification

SUBROUTINE G02CDF (N, X, Y, XMISS, YMISS, RESULT, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), XMISS, YMISS, RESULT(21)

3 Description

G02CDF fits a straight line of the form

y ¼ bx

to those of the data points

x1; y1ð Þ; x2; y2ð Þ; . . . ; xn; ynð Þ

that do not include missing values, such that

yi ¼ bxi þ ei
for those xi; yið Þ, for i ¼ 1; 2; . . . ; n n � 2ð Þ which do not include missing values.

The routine eliminates all pairs of observations xi; yið Þ which contain a missing value for either x or y,
and then calculates the regression coefficient, b, and various other statistical quantities by minimizing
the sum of the e2i over those cases remaining in the calculations.

The input data consists of the n pairs of observations x1; y1ð Þ; x2; y2ð Þ; . . . ; xn; ynð Þ on the independent
variable x and the dependent variable y.

In addition two values, xm and ym, are given which are considered to represent missing observations
for x and y respectively. (See Section 7).

Let wi ¼ 0, if the ith observation of either x or y is missing, i.e., if xi ¼ xm and/or yi ¼ ym; and
wi ¼ 1 otherwise, for i ¼ 1; 2; . . . ; n.

The quantities calculated are:

(a) Means:

�x ¼

Xn
i¼1
wixi

Xn
i¼1
wi

; �y ¼

Xn
i¼1
wiyi

Xn
i¼1
wi

:
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(b) Standard deviations:

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wi xi � �xð Þ2

Xn
i¼1
wi � 1

vuuuuuuut ; sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
wi yi � �yð Þ2

Xn
i¼1
wi � 1

vuuuuuuut :

(c) Pearson product-moment correlation coefficient:

r ¼

Xn
i¼1
wi xi � �xð Þ yi � �yð Þ

Xn
i¼1
wi xi � �xð Þ2

Xn
i¼1
wi yi � �yð Þ2

:

(d) The regression coefficient, b:

b ¼

Xn
i¼1
wixiyi

Xn
i¼1
wix2i

:

(e) The sum of squares attributable to the regression, SSR, the sum of squares of deviations about
the regression, SSD, and the total sum of squares, SST :

SST ¼
Xn
i¼1
wiy

2
i ; SSD ¼

Xn
i¼1
wi yi � bxið Þ2; SSR ¼ SST � SSD:

(f) The degrees of freedom attributable to the regression, DFR, the degrees of freedom of deviations
about the regression, DFD, and the total degrees of freedom, DFT :

DFT ¼
Xn
i¼1
wi; DFD ¼

Xn
i¼1
wi � 1; DFR ¼ 1:

(g) The mean square attributable to the regression, MSR, and the mean square of deviations about
the regression, MSD:

MSR ¼ SSR=DFR; MSD ¼ SSD=DFD:
(h) The F value for the analysis of variance:

F ¼MSR=MSD:

(i) The standard error of the regression coefficient:

se bð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSDXn
i¼1
wix2i

vuuuut :

(j) The t value for the regression coefficient:

t bð Þ ¼ b

se bð Þ:

(k) The number of observations used in the calculations:

nc ¼
Xn
i¼1
wi:
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4 References

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pairs of observations.

Constraint: N � 2.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain xi, for i ¼ 1; 2; . . . ; n.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ must contain yi, for i ¼ 1; 2; . . . ; n.

4: XMISS – REAL (KIND=nag_wp) Input

On entry: the value xm, which is to be taken as the missing value for the variable x (see
Section 7).

5: YMISS – REAL (KIND=nag_wp) Input

On entry: the value ym, which is to be taken as the missing value for the variable y (see
Section 7).

6: RESULTð21Þ – REAL (KIND=nag_wp) array Output

On exit: the following information:

RESULTð1Þ �x, the mean value of the independent variable, x;
RESULTð2Þ �y, the mean value of the dependent variable, y;
RESULTð3Þ sx, the standard deviation of the independent variable, x;
RESULTð4Þ sy, the standard deviation of the dependent variable, y;
RESULTð5Þ r, the Pearson product-moment correlation between the independent variable x

and the dependent variable, y;
RESULTð6Þ b, the regression coefficient;
RESULTð7Þ the value 0:0;
RESULTð8Þ se bð Þ, the standard error of the regression coefficient;
RESULTð9Þ the value 0:0;
RESULTð10Þ t bð Þ, the t value for the regression coefficient;
RESULTð11Þ the value 0:0;
RESULTð12Þ SSR, the sum of squares attributable to the regression;
RESULTð13Þ DFR, the degrees of freedom attributable to the regression;
RESULTð14Þ MSR, the mean square attributable to the regression;
RESULTð15Þ F , the F value for the analysis of variance;
RESULTð16Þ SSD, the sum of squares of deviations about the regression;
RESULTð17Þ DFD, the degrees of freedom of deviations about the regression;
RESULTð18Þ MSD, the mean square of deviations about the regression;
RESULTð19Þ SST , the total sum of squares
RESULTð20Þ DFT , the total degrees of freedom;
RESULTð21Þ nc, the number of observations used in the calculations.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

After observations with missing values were omitted, fewer than two cases remained.

IFAIL ¼ 3

After observations with missing values were omitted, all remaining values of at least one of the
variables x and y were identical.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02CDF does not use additional precision arithmetic for the accumulation of scalar products, so there
may be a loss of significant figures for large n.

You are warned of the need to exercise extreme care in your selection of missing values. G02CDF
treats all values in the inclusive range 1
 0:1 X02BEF�2ð Þ� �

� xmj, where xmj is the missing value for
variable j specified in XMISS.

You must therefore ensure that the missing value chosen for each variable is sufficiently different from
all valid values for that variable so that none of the valid values fall within the range indicated above.

If, in calculating F or t bð Þ (see Section 3), the numbers involved are such that the result would be
outside the range of numbers which can be stored by the machine, then the answer is set to the largest
quantity which can be stored as a real variable, by means of a call to X02ALF.
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8 Parallelism and Performance

G02CDF is not threaded in any implementation.

9 Further Comments

The time taken by G02CDF depends on n and the number of missing observations.

The routine uses a two-pass algorithm.

10 Example

This example reads in eight observations on each of two variables, and then performs a simple linear
regression with no constant, with the first variable as the independent variable, and the second variable
as the dependent variable, omitting cases involving missing values (0:0 for the first variable, 99:0 for
the second). Finally the results are printed.

10.1 Program Text

Program g02cdfe

! G02CDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02cdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xmiss, ymiss
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp) :: reslt(21)
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’G02CDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n

Allocate (x(n),y(n))

! Read in data
Read (nin,*)(x(i),y(i),i=1,n)

! Read in missing value flags
Read (nin,*) xmiss, ymiss

! Display data
Write (nout,*) ’ Case Independent Dependent’
Write (nout,*) ’number variable variable’
Write (nout,*)
Write (nout,99999)(i,x(i),y(i),i=1,n)
Write (nout,*)

! Fit linear regression model
ifail = 0
Call g02cdf(n,x,y,xmiss,ymiss,reslt,ifail)

! Display results
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Write (nout,99998) ’Mean of independent variable = ’, &
reslt(1)

Write (nout,99998) ’Mean of dependent variable = ’, &
reslt(2)

Write (nout,99998) ’Standard deviation of independent variable = ’, &
reslt(3)

Write (nout,99998) ’Standard deviation of dependent variable = ’, &
reslt(4)

Write (nout,99998) ’Correlation coefficient = ’, &
reslt(5)

Write (nout,*)
Write (nout,99998) ’Regression coefficient = ’, &

reslt(6)
Write (nout,99998) ’Standard error of coefficient = ’, &

reslt(8)
Write (nout,99998) ’t-value for coefficient = ’, &

reslt(10)
Write (nout,*)
Write (nout,*) ’Analysis of regression table :-’
Write (nout,*)
Write (nout,*) &

’ Source Sum of squares D.F. Mean square F-value’
Write (nout,*)
Write (nout,99997) ’Due to regression’, reslt(12:15)
Write (nout,99997) ’About regression’, reslt(16:18)
Write (nout,99997) ’Total ’, reslt(19:20)
Write (nout,*)
Write (nout,99996) ’Number of cases used = ’, reslt(21)

99999 Format (1X,I4,2F15.4)
99998 Format (1X,A,F8.4)
99997 Format (1X,A,F14.4,F8.0,2F14.4)
99996 Format (1X,A,F3.0)

End Program g02cdfe

10.2 Program Data

G02CDF Example Program Data
8 :: N
1.0 20.0
0.0 15.5
4.0 28.3
7.5 45.0
2.5 24.5
0.0 10.0
10.0 99.0
5.0 31.2 :: End of X, Y
0.0 99.0 :: XMISS, YMISS

10.3 Program Results

G02CDF Example Program Results

Case Independent Dependent
number variable variable

1 1.0000 20.0000
2 0.0000 15.5000
3 4.0000 28.3000
4 7.5000 45.0000
5 2.5000 24.5000
6 0.0000 10.0000
7 10.0000 99.0000
8 5.0000 31.2000

Mean of independent variable = 4.0000
Mean of dependent variable = 29.8000
Standard deviation of independent variable = 2.4749
Standard deviation of dependent variable = 9.4787
Correlation coefficient = 0.9799
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Regression coefficient = 6.5833
Standard error of coefficient = 0.8046
t-value for coefficient = 8.1816

Analysis of regression table :-

Source Sum of squares D.F. Mean square F-value

Due to regression 4528.9493 1. 4528.9493 66.9392
About regression 270.6307 4. 67.6577
Total 4799.5800 5.

Number of cases used = 5.
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NAG Library Routine Document

G02CEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02CEF takes selected elements from two vectors (typically vectors of means and standard deviations)
to form two smaller vectors, and selected rows and columns from two matrices (typically either
matrices of sums of squares and cross-products of deviations from means and Pearson product-moment
correlation coefficients, or matrices of sums of squares and cross-products about zero and correlation-
like coefficients) to form two smaller matrices, allowing reordering of elements in the process.

2 Specification

SUBROUTINE G02CEF (N, XBAR, STD, SSP, LDSSP, R, LDR, M, KORDER, XBAR2,
STD2, SSP2, LDSSP2, R2, LDR2, IFAIL)

&

INTEGER N, LDSSP, LDR, M, KORDER(M), LDSSP2, LDR2, IFAIL
REAL (KIND=nag_wp) XBAR(N), STD(N), SSP(LDSSP,N), R(LDR,N), XBAR2(M),

STD2(M), SSP2(LDSSP2,M), R2(LDR2,M)
&

3 Description

Input to the routine consists of:

(a) A vector of means:

�x1; �x2; �x3; . . . ; �xnð Þ;

where n is the number of input variables.

(b) A vector of standard deviations:

s1; s2; s3; . . . ; snð Þ:
(c) A matrix of sums of squares and cross-products of deviations from means:

S11 S12 S13 : : : S1n
S21 S22 S2n
S31 :
: :
: :
: :
Sn1 Sn2 : : : : Snn

0BBBBBBB@

1CCCCCCCA
:

(d) A matrix of correlation coefficients:

R11 R12 R13 : : : R1n
R21 R22 R2n
R31 :
: :
: :
: :
Rn1 Rn2 : : : : Rnn

0BBBBBBB@

1CCCCCCCA:

(e) The number of variables, m, in the required subset, and their row/column numbers in the input
data, i1; i2; i3; . . . ; im,

i � ik � n for k ¼ 1; 2; . . . ;m n � 2;m � 1 and m � nð Þ:
New vectors and matrices are output containing the following information:
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(i) A vector of means:

�xi1 ; �xi2 ; �xi3 ; . . . ; �ximð Þ:
(ii) A vector of standard deviations:

si1 ; si2 ; si3 ; . . . ; simð Þ:
(iii) A matrix of sums of squares and cross-products of deviations from means:

Si1i1 Si1i2 Si1i3 : : : Si1im
Si2i1 Si2i2 :
Si3i1 :
: :
: :
: :

Simi1 Simi2 : : : : Simim

0BBBBBBB@

1CCCCCCCA
:

(iv) A matrix of correlation coefficients:

Ri1i1 Ri1i2 Ri1i3 : : : Ri1im
Ri2i1 Ri2i2 :
Ri3i1 :
: :
: :
: :

Rimi1 Rimi2 : : : : Rimim

0BBBBBBB@

1CCCCCCCA
:

Note: for sums of squares of cross-products of deviations about zero and correlation-like coefficients
Sij and Rij should be replaced by ~Sij and ~Rij in the description of the input and output above.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables in the input data.

Constraint: N � 2.

2: XBARðNÞ – REAL (KIND=nag_wp) array Input

On entry: XBARðiÞ must be set to �xi, the mean of variable i, for i ¼ 1; 2; . . . ; n.

3: STDðNÞ – REAL (KIND=nag_wp) array Input

On entry: STDðiÞ must be set to si, the standard deviation of variable i, for i ¼ 1; 2; . . . ; n.

4: SSPðLDSSP;NÞ – REAL (KIND=nag_wp) array Input

On entry: SSPði; jÞ must be set to the sum of cross-products of deviations from means Sij (or
about zero, ~Sij) for variables i and j, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

5: LDSSP – INTEGER Input

On entry: the first dimension of the array SSP as declared in the (sub)program from which
G02CEF is called.

Constraint: LDSSP � N.
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6: RðLDR;NÞ – REAL (KIND=nag_wp) array Input

On entry: Rði; jÞ must be set to the Pearson product-moment correlation coefficient Rij (or the
correlation-like coefficient, ~Rij) for variables i and j, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

7: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G02CEF
is called.

Constraint: LDR � N.

8: M – INTEGER Input

On entry: the number of variables m, required in the reduced vectors and matrices.

Constraint: 1 � M � N.

9: KORDERðMÞ – INTEGER array Input

On entry: KORDERðiÞ must be set to the number of the original variable which is to be the ith
variable in the output vectors and matrices, for i ¼ 1; 2; . . . ;m.

Constraint: 1 � KORDERðiÞ � N, for i ¼ 1; 2; . . . ;m.

10: XBAR2ðMÞ – REAL (KIND=nag_wp) array Output

On exit: the mean of variable i, XBARðiÞ, where i ¼ KORDERðkÞ, for k ¼ 1; 2; . . . ;m. (The
array XBAR2 must differ from XBAR and STD.)

11: STD2ðMÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviation of variable i, STDðiÞ, where i ¼ KORDERðkÞ, for
k ¼ 1; 2; . . . ;m. (The array STD2 must differ from both XBAR and STD.)

12: SSP2ðLDSSP2;MÞ – REAL (KIND=nag_wp) array Output

On exit: SSP2ðk; lÞ contains the value of SSPði; jÞ, where i ¼ KORDERðkÞ and j ¼ KORDERðlÞ,
for k ¼ 1; 2; . . . ;m and l ¼ 1; 2; . . . ;m. (The array SSP2 must differ from both SSP and R.)

That is to say: on exit, SSP2ðk; lÞ contains the sum of cross-products of deviations from means
Sij (or about zero, ~Sij).

13: LDSSP2 – INTEGER Input

On entry: the first dimension of the array SSP2 as declared in the (sub)program from which
G02CEF is called.

Constraint: LDSSP2 � M.

14: R2ðLDR2;MÞ – REAL (KIND=nag_wp) array Output

On exit: R2ðk; lÞ contains the value of Rði; jÞ, where i ¼ KORDERðkÞ and j ¼ KORDERðlÞ, for
k ¼ 1; 2; . . . ;m and l ¼ 1; 2; . . . ;m. (The array R2 must differ from both SSP and R.)

That is to say: on exit, R2ðk; lÞ contains the Pearson product-moment coefficient Rij (or the
correlation-like coefficient, ~Rij).

15: LDR2 – INTEGER Input

On entry: the first dimension of the array R2 as declared in the (sub)program from which
G02CEF is called.

Constraint: LDR2 � M.
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16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or M < 1.

IFAIL ¼ 2

On entry, N < M.

IFAIL ¼ 3

On entry, LDSSP < N,
or LDR < N,
or LDSSP < M,
or LDR2 < M.

IFAIL ¼ 4

On entry, KORDERðiÞ < 1,
or KORDERðiÞ > N for some i ¼ 1; 2; . . . ;m.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

G02CEF is not threaded in any implementation.

9 Further Comments

The time taken by G02CEF depends on n and m.

The routine is intended primarily for use when a subset of variables from a larger set of variables is to
be used in a regression, and is described accordingly. There is however no reason why the routine
should not also be used to select specific rows and columns from vectors and arrays which contain any
other non-statistical information; the matrices need not be symmetric.

The routine may be used either with sums of squares and cross-products of deviations from means and
Pearson product-moment correlation coefficients in connection with a regression involving a constant,
or with sums of squares and cross-products about zero and correlation-like coefficients in connection
with a regression with no constant.

10 Example

This example reads in the means, standard deviations, sums of squares and cross-products, and
correlation coefficients for four variables. New vectors and matrices are created containing the means,
standard deviations, sums of squares and cross-products, and correlation coefficients for the fourth, first
and second variables (in that order). Finally these new vectors and matrices are printed.

10.1 Program Text

Program g02cefe

! G02CEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02cef, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldr, ldr2, ldssp, ldssp2, &

m, n
Character (80) :: fmt

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:,:), r2(:,:), ssp(:,:), &

ssp2(:,:), std(:), std2(:), xbar(:), &
xbar2(:)

Integer, Allocatable :: korder(:)
! .. Executable Statements ..

Write (nout,*) ’G02CEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldr = n
ldr2 = m
ldssp = n
ldssp2 = m
Allocate (r(ldr,n),r2(ldr2,m),ssp(ldssp,n),ssp2(ldssp2,m),std(n), &

std2(m),xbar(n),xbar2(m),korder(m))

! Read in the data
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Read (nin,*) xbar(1:n)
Read (nin,*) std(1:n)
Read (nin,*)(ssp(i,1:n),i=1,n)
Read (nin,*)(r(i,1:n),i=1,n)

! Read in the reordering vector
Read (nin,*) korder(1:m)

! Format for displaying vectors
Write (fmt,99999) ’(1x,a,’, n, ’(1x,f10.4))’

! Display data
Write (nout,fmt) ’Original vector XBAR : ’, xbar(1:n)
Write (nout,*)
Write (nout,fmt) ’Original vector STD : ’, std(1:n)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,n,ssp,ldssp,’Original matrix SSP :’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,n,r,ldr,’Original matrix R :’,ifail)
Write (nout,*)

! Calculate summaries on reduced number of variables
ifail = 0
Call g02cef(n,xbar,std,ssp,ldssp,r,ldr,m,korder,xbar2,std2,ssp2,ldssp2, &

r2,ldr2,ifail)

! Display results
Write (nout,fmt) ’New vector XBAR2 : ’, xbar2(1:m)
Write (nout,*)
Write (nout,fmt) ’New vector STD2 : ’, std2(1:m)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,m,m,ssp2,ldssp2,’New matrix SSP2 :’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,m,m,r2,ldr2,’New matrix R2 :’,ifail)

99999 Format (A,I0,A)
End Program g02cefe

10.2 Program Data

G02CEF Example Program Data
4 3 :: N, M

5.8000 2.8000 1.8000 5.4000 :: XBAR
5.0695 1.9240 2.5884 4.9800 :: STD

102.8000 -29.2000 -14.2000 -57.6000
-29.2000 14.8000 -6.2000 6.4000
-14.2000 -6.2000 28.6000 42.4000
-57.6000 6.4000 42.4000 99.2000 :: End of SSP

1.0000 -0.7486 -0.2619 -0.5704
-0.7486 1.0000 -0.3014 0.1670
-0.2619 -0.3014 1.0000 0.7960
-0.5704 0.1670 0.7960 1.0000 :: End of R

4 1 2 :: KORDER

10.3 Program Results

G02CEF Example Program Results

Original vector XBAR : 5.8000 2.8000 1.8000 5.4000

Original vector STD : 5.0695 1.9240 2.5884 4.9800
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Original matrix SSP :
1 2 3 4

1 102.8000 -29.2000 -14.2000 -57.6000
2 -29.2000 14.8000 -6.2000 6.4000
3 -14.2000 -6.2000 28.6000 42.4000
4 -57.6000 6.4000 42.4000 99.2000

Original matrix R :
1 2 3 4

1 1.0000 -0.7486 -0.2619 -0.5704
2 -0.7486 1.0000 -0.3014 0.1670
3 -0.2619 -0.3014 1.0000 0.7960
4 -0.5704 0.1670 0.7960 1.0000

New vector XBAR2 : 5.4000 5.8000 2.8000

New vector STD2 : 4.9800 5.0695 1.9240

New matrix SSP2 :
1 2 3

1 99.2000 -57.6000 6.4000
2 -57.6000 102.8000 -29.2000
3 6.4000 -29.2000 14.8000

New matrix R2 :
1 2 3

1 1.0000 -0.5704 0.1670
2 -0.5704 1.0000 -0.7486
3 0.1670 -0.7486 1.0000
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NAG Library Routine Document

G02CFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02CFF reorders the elements in two vectors (typically vectors of means and standard deviations), and
the rows and columns in two matrices (typically either matrices of sums of squares and cross-products
of deviations from means and Pearson product-moment correlation coefficients, or matrices of sums of
squares and cross-products about zero and correlation-like coefficients).

2 Specification

SUBROUTINE G02CFF (N, KORDER, XBAR, STD, SSP, LDSSP, R, LDR, KWORK,
IFAIL)

&

INTEGER N, KORDER(N), LDSSP, LDR, KWORK(N), IFAIL
REAL (KIND=nag_wp) XBAR(N), STD(N), SSP(LDSSP,N), R(LDR,N)

3 Description

Input to the routine consists of:

(a) A list of the order in which the n variables are to be arranged on exit:

i1; i2; i3; . . . ; in:

(b) A vector of means:

�x1; �x2; �x3; . . . ; �xnð Þ:
(c) A vector of standard deviations:

s1; s2; s3; . . . ; snð Þ:
(d) A matrix of sums of squares and cross-products of deviations from means:

S11 S12 S13 : : : S1n
S21 S22 :
S31 :
: :
: :
: :
Sn1 Sn2 : : : : Snn

0BBBBBBB@

1CCCCCCCA
:

(e) A matrix of correlation coefficients:

R11 R12 R13 : : : R1n
R21 R22 :
R31 :
: :
: :
: :
Rn1 Rn2 : : : : Rnn

0BBBBBBB@

1CCCCCCCA
:

On exit from the routine, these same vectors and matrices are reordered, in the manner specified, and
contain the following information:
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(i) The vector of means:

�xi1 ; �xi2 ; �xi3 ; . . . ; �xinð Þ:
(ii) The vector of standard deviations:

si1 ; si2 ; si3 ; . . . sinð Þ:
(iii) The matrix of sums of squares and cross-products of deviations from means:

Si1i1 Si1i2 Si1i3 : : : Si1in
Si2i1 Si2i2 :
Si3i1 :
: :
: :
: :
Sini1 Sini2 : : : : Sinin

0BBBBBBB@

1CCCCCCCA
:

(iv) The matrix of correlation coefficients:

Ri1i1 Ri1i2 Ri1i3 : : : Ri1in
Ri2i1 Ri2i2 :
Ri3i1 :
: :
: :
: :
Rini1 Rini2 : : : : Rinin

0BBBBBBB@

1CCCCCCCA
:

Note: for sums of squares of cross-products of deviations about zero and correlation-like coefficients
Sij and Rij should be replaced by ~Sij and ~Rij in the description of the input and output above.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables in the input data.

Constraint: N � 2.

2: KORDERðNÞ – INTEGER array Input

On entry: KORDERðiÞ must be set to the number of the original variable which is to be the ith
variable in the re-arranged data, for i ¼ 1; 2; . . . ; n.

Constraint: 1 � KORDERðiÞ � N, for i ¼ 1; 2; . . . ; n.

3: XBARðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XBARðiÞ must be set to the mean of variable i, for i ¼ 1; 2; . . . ; n.

On exit: XBARðiÞ contains the mean of variable k where k ¼ KORDERðiÞ, for i ¼ 1; 2; . . . ; n.

4: STDðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: STDðiÞ must be set to the standard deviation of variable i, for i ¼ 1; 2; . . . ; n.

On exit: STDðiÞ contains the standard deviation of variable k where k ¼ KORDERðiÞ, for
i ¼ 1; 2; . . . ; n.
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5: SSPðLDSSP;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: SSPði; jÞ must be set to the sum of cross-products of deviations from means Sij (or
about zero ~Sij) for variables i and j, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

On exit: SSPði; jÞ contains the sum of cross-products of deviations from means Skl (or about zero
~Skl) for variables k and l, where k ¼ KORDERðiÞ, and l ¼ KORDERðjÞ, i; j ¼ 1; 2; . . . ; n.

6: LDSSP – INTEGER Input

On entry: the first dimension of the array SSP as declared in the (sub)program from which
G02CFF is called.

Constraint: LDSSP � N.

7: RðLDR;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: Rði; jÞ must be set to the Pearson product-moment correlation coefficient Rij (or the
correlation-like coefficient ~Rij) for variables i and j, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

On exit: Rði; jÞ contains the Pearson product-moment correlation coefficient Rkl (or the
correlation-like coefficient ~Rkl) for variables k and l, where k ¼ KORDERðiÞ and
l ¼ KORDERðjÞ, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

8: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G02CFF
is called.

Constraint: LDR � N.

9: KWORKðNÞ – INTEGER array Workspace

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, LDSSP < N,
or LDR < N.
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IFAIL ¼ 3

On entry, KORDERðiÞ < 1,
or KORDERðiÞ > N for some i ¼ 1; 2; . . . ; n.

IFAIL ¼ 4

On entry, there is not a one-to-one correspondence between the old variables and the new
variables; at least one of the original variables is not included in the new set, and consequently at
least one other variable has been included more than once.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02CFF is not threaded in any implementation.

9 Further Comments

The time taken by G02CFF depends on n and the amount of re-arrangement involved.

The routine is intended primarily for use when a set of variables is to be reordered for use in a
regression, and is described accordingly. There is however no reason why the routine should not also be
used to reorder vectors and matrices which contain any other non-statistical information; the matrices
need not be symmetric.

The routine may be used either with sums of squares and cross-products of deviations from means and
Pearson product-moment correlation coefficients in connection with a regression involving a constant,
or with sums of squares and cross-products about zero and correlation-like coefficients in connection
with a regression with no constant.

10 Example

This example reads in the means, standard deviations, sums of squares and cross-products, and
correlation coefficients for three variables. The vectors and matrices are reordered so that they contain
the means, standard deviations, sums of squares and cross-products, and correlation coefficients for the
first, third and second variables (in that order). Finally the reordered vectors and matrices are printed.
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10.1 Program Text

Program g02cffe

! G02CFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02cff, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldr, ldssp, n
Character (80) :: fmt

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:,:), ssp(:,:), std(:), xbar(:)
Integer, Allocatable :: korder(:), kwork(:)

! .. Executable Statements ..
Write (nout,*) ’G02CFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n

ldr = n
ldssp = n
Allocate (r(ldr,n),ssp(ldssp,n),std(n),xbar(n),korder(n),kwork(n))

! Read in data
Read (nin,*) xbar(1:n)
Read (nin,*) std(1:n)
Read (nin,*)(ssp(i,1:n),i=1,n)
Read (nin,*)(r(i,1:n),i=1,n)

! Read in the reordering vector
Read (nin,*) korder(1:n)

! Format for displaying vectors
Write (fmt,99999) ’(1x,A,’, n, ’(1X,F10.4))’

! Display data
Write (nout,fmt) ’Original vector XBAR : ’, xbar(1:n)
Write (nout,*)
Write (nout,fmt) ’Original vector STD : ’, std(1:n)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,n,ssp,ldssp,’Original matrix SSP :’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,n,r,ldr,’Original matrix R :’,ifail)
Write (nout,*)

! Reorder the results
ifail = 0
Call g02cff(n,korder,xbar,std,ssp,ldssp,r,ldr,kwork,ifail)

! Display results
Write (nout,fmt) ’New vector XBAR : ’, xbar(1:n)
Write (nout,*)
Write (nout,fmt) ’New vector STD : ’, std(1:n)
Write (nout,*)
Flush (nout)
ifail = 0
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Call x04caf(’General’,’ ’,n,n,ssp,ldssp,’New matrix SSP :’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,n,r,ldr,’New matrix R :’,ifail)

99999 Format (A,I0,A)
End Program g02cffe

10.2 Program Data

G02CFF Example Program Data
3 :: N

5.4000 5.8000 2.8000 :: XBAR
4.9800 5.0695 1.9240 :: STD

99.2000 -57.6000 6.4000
-57.6000 102.8000 -29.2000

6.4000 -29.2000 14.8000 :: End of SSP
1.0000 -0.5704 0.1670

-0.5704 1.0000 -0.7486
0.1670 -0.7486 1.0000 :: End of R

1 3 2 :: KORDER

10.3 Program Results

G02CFF Example Program Results

Original vector XBAR : 5.4000 5.8000 2.8000

Original vector STD : 4.9800 5.0695 1.9240

Original matrix SSP :
1 2 3

1 99.2000 -57.6000 6.4000
2 -57.6000 102.8000 -29.2000
3 6.4000 -29.2000 14.8000

Original matrix R :
1 2 3

1 1.0000 -0.5704 0.1670
2 -0.5704 1.0000 -0.7486
3 0.1670 -0.7486 1.0000

New vector XBAR : 5.4000 2.8000 5.8000

New vector STD : 4.9800 1.9240 5.0695

New matrix SSP :
1 2 3

1 99.2000 6.4000 -57.6000
2 6.4000 14.8000 -29.2000
3 -57.6000 -29.2000 102.8000

New matrix R :
1 2 3

1 1.0000 0.1670 -0.5704
2 0.1670 1.0000 -0.7486
3 -0.5704 -0.7486 1.0000
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NAG Library Routine Document

G02CGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02CGF performs a multiple linear regression on a set of variables whose means, sums of squares and
cross-products of deviations from means, and Pearson product-moment correlation coefficients are
given.

2 Specification

SUBROUTINE G02CGF (N, K1, K, XBAR, SSP, LDSSP, R, LDR, RESULT, COEF,
LDCOEF, CON, RINV, LDRINV, C, LDC, WKZ, LDWKZ, IFAIL)

&

INTEGER N, K1, K, LDSSP, LDR, LDCOEF, LDRINV, LDC, LDWKZ,
IFAIL

&

REAL (KIND=nag_wp) XBAR(K1), SSP(LDSSP,K1), R(LDR,K1), RESULT(13),
COEF(LDCOEF,3), CON(3), RINV(LDRINV,K), C(LDC,K),
WKZ(LDWKZ,K)

&
&

3 Description

G02CGF fits a curve of the form

y ¼ aþ b1x1 þ b2x2 þ � � � þ bkxk
to the data points

x11; x21; . . . ; xk1; y1ð Þ
x12; x22; . . . ; xk2; y2ð Þ

..

.

x1n; x2n; . . . ; xkn; ynð Þ

such that

yi ¼ aþ b1x1i þ b2x2i þ � � � þ bkxki þ ei; i ¼ 1; 2; . . . ; n:

The routine calculates the regression coefficients, b1; b2; . . . ; bk, the regression constant, a, and various
other statistical quantities by minimizing Xn

i¼1
e2i :

The actual data values x1i; x2i; . . . ; xki; yið Þ are not provided as input to the routine. Instead, input
consists of:

(i) The number of cases, n, on which the regression is based.

(ii) The total number of variables, dependent and independent, in the regression, kþ 1ð Þ.
(iii) The number of independent variables in the regression, k.

(iv) The means of all kþ 1 variables in the regression, both the independent variables x1; x2; . . . ; xkð Þ
and the dependent variable yð Þ, which is the kþ 1ð Þth variable: i.e., �x1; �x2; . . . ; �xk; �y.

(v) The kþ 1ð Þ by kþ 1ð Þ matrix [Sij] of sums of squares and cross-products of deviations from
means of all the variables in the regression; the terms involving the dependent variable, y, appear
in the kþ 1ð Þth row and column.
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(vi) The kþ 1ð Þ by kþ 1ð Þ matrix [Rij] of the Pearson product-moment correlation coefficients for all
the variables in the regression; the correlations involving the dependent variable, y, appear in the
kþ 1ð Þth row and column.

The quantities calculated are:

(a) The inverse of the k by k partition of the matrix of correlation coefficients, [Rij], involving only
the independent variables. The inverse is obtained using an accurate method which assumes that
this sub-matrix is positive definite.

(b) The modified inverse matrix, C ¼ cij
� �

, where

cij ¼
Rijrij
Sij

; i; j ¼ 1; 2; . . . ; k;

where rij is the i; jð Þth element of the inverse matrix of [Rij] as described in (a) above. Each
element of C is thus the corresponding element of the matrix of correlation coefficients
multiplied by the corresponding element of the inverse of this matrix, divided by the
corresponding element of the matrix of sums of squares and cross-products of deviations from
means.

(c) The regression coefficients:

bi ¼
Xk
j¼i
cijSj kþ1ð Þ; i ¼ 1; 2; . . . ; k;

where Sj kþ1ð Þ is the sum of cross-products of deviations from means for the independent variable
xj and the dependent variable y.

(d) The sum of squares attributable to the regression, SSR, the sum of squares of deviations about
the regression, SSD, and the total sum of squares, SST :

SST ¼ S kþ1ð Þ kþ1ð Þ, the sum of squares of deviations from the mean for the dependent
variable, y;

SSR ¼
Xk
j¼1

bjSj kþ1ð Þ; SSD ¼ SST � SSR

(e) The degrees of freedom attributable to the regression, DFR, the degrees of freedom of deviations
about the regression, DFD, and the total degrees of freedom, DFT :

DFR ¼ k; DFD ¼ n� k� 1; DFT ¼ n� 1:

(f) The mean square attributable to the regression, MSR, and the mean square of deviations about
the regression, MSD:

MSR ¼ SSR=DFR; MSD ¼ SSD=DFD:
(g) The F values for the analysis of variance:

F ¼MSR=MSD:

(h) The standard error estimate:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSD
p

:

(i) The coefficient of multiple correlation, R, the coefficient of multiple determination, R2 and the
coefficient of multiple determination corrected for the degrees of freedom, �R2;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SSD

SST

r
; R2 ¼ 1� SSD

SST
; �R2 ¼ 1� SSD�DFT

SST �DFD:

(j) The standard error of the regression coefficients:

se bið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSD� cii

p
; i ¼ 1; 2; . . . ; k:
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(k) The t values for the regression coefficients:

t bið Þ ¼
bi

se bið Þ
; i ¼ 1; 2; . . . ; k:

(l) The regression constant, a, its standard error, se að Þ, and its t value, t að Þ:

a ¼ �y�
Xk
i¼1
bi�xi; se að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSD� 1

nþ
Xk
i¼1

Xk
j¼1

�xicij�xj

 !vuut ; t að Þ ¼ a

se að Þ:

4 References

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

5 Arguments

1: N – INTEGER Input

On entry: the number of cases n, used in calculating the sums of squares and cross-products and
correlation coefficients.

2: K1 – INTEGER Input

On entry: the total number of variables, independent and dependent, kþ 1ð Þ, in the regression.

Constraint: 2 � K1 < N.

3: K – INTEGER Input

On entry: the number of independent variables k in the regression.

Constraint: K ¼ K1� 1.

4: XBARðK1Þ – REAL (KIND=nag_wp) array Input

On entry: XBARðiÞ must be set to �xi, the mean value of the ith variable, for i ¼ 1; 2; . . . ; kþ 1;
the mean of the dependent variable must be contained in XBARðkþ 1Þ.

5: SSPðLDSSP;K1Þ – REAL (KIND=nag_wp) array Input

On entry: SSPði; jÞ must be set to Sij , the sum of cross-products of deviations from means for the
ith and jth variables, for i ¼ 1; 2; . . . ; kþ 1 and j ¼ 1; 2; . . . ; kþ 1; terms involving the
dependent variable appear in row kþ 1 and column kþ 1.

6: LDSSP – INTEGER Input

On entry: the first dimension of the array SSP as declared in the (sub)program from which
G02CGF is called.

Constraint: LDSSP � K1.

7: RðLDR;K1Þ – REAL (KIND=nag_wp) array Input

On entry: Rði; jÞ must be set to Rij , the Pearson product-moment correlation coefficient for the
ith and jth variables, for i ¼ 1; 2; . . . ; kþ 1 and j ¼ 1; 2; . . . ; kþ 1; terms involving the
dependent variable appear in row kþ 1 and column kþ 1.

8: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G02CGF
is called.

Constraint: LDR � K1.
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9: RESULTð13Þ – REAL (KIND=nag_wp) array Output

On exit: the following information:

RESULTð1Þ SSR, the sum of squares attributable to the regression;
RESULTð2Þ DFR, the degrees of freedom attributable to the regression;
RESULTð3Þ MSR, the mean square attributable to the regression;
RESULTð4Þ F , the F value for the analysis of variance;
RESULTð5Þ SSD, the sum of squares of deviations about the regression;
RESULTð6Þ DFD, the degrees of freedom of deviations about the regression;
RESULTð7Þ MSD, the mean square of deviations about the regression;
RESULTð8Þ SST , the total sum of squares;
RESULTð9Þ DFT , the total degrees of freedom;
RESULTð10Þ s, the standard error estimate;
RESULTð11Þ R, the coefficient of multiple correlation;
RESULTð12Þ R2, the coefficient of multiple determination;
RESULTð13Þ �R2, the coefficient of multiple determination corrected for the degrees of

freedom.

10: COEFðLDCOEF; 3Þ – REAL (KIND=nag_wp) array Output

On exit: for i ¼ 1; 2; . . . ; k, the following information:

COEFði; 1Þ
bi, the regression coefficient for the ith variable.

COEFði; 2Þ
se bið Þ, the standard error of the regression coefficient for the ith variable.

COEFði; 3Þ
t bið Þ, the t value of the regression coefficient for the ith variable.

11: LDCOEF – INTEGER Input

On entry: the first dimension of the array COEF as declared in the (sub)program from which
G02CGF is called.

Constraint: LDCOEF � K.

12: CONð3Þ – REAL (KIND=nag_wp) array Output

On exit: the following information:

CONð1Þ a, the regression constant;
CONð2Þ se að Þ, the standard error of the regression constant;
CONð3Þ t að Þ, the t value for the regression constant.

13: RINVðLDRINV;KÞ – REAL (KIND=nag_wp) array Output

On exit: the inverse of the matrix of correlation coefficients for the independent variables; that is,
the inverse of the matrix consisting of the first k rows and columns of R.

14: LDRINV – INTEGER Input

On entry: the first dimension of the array RINV as declared in the (sub)program from which
G02CGF is called.

Constraint: LDRINV � K.

15: CðLDC;KÞ – REAL (KIND=nag_wp) array Output

On exit: the modified inverse matrix, where

Cði; jÞ ¼ Rði; jÞ � RINVði; jÞ=SSPði; jÞ, for i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k.
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16: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G02CGF
is called.

Constraint: LDC � K.

17: WKZðLDWKZ;KÞ – REAL (KIND=nag_wp) array Workspace
18: LDWKZ – INTEGER Input

On entry: the first dimension of the array WKZ as declared in the (sub)program from which
G02CGF is called.

Constraint: LDWKZ � K.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K1 < 2.

IFAIL ¼ 2

On entry, K1 6¼ K þ 1ð Þ.

IFAIL ¼ 3

On entry, N � K1.

IFAIL ¼ 4

On entry, LDSSP < K1,
or LDR < K1,
or LDCOEF < K,
or LDRINV < K,
or LDC < K,
or LDWKZ < K.

IFAIL ¼ 5

The k by k partition of the matrix R which is to be inverted is not positive definite.

IFAIL ¼ 6

The refinement following the actual inversion fails, indicating that the k by k partition of the
matrix R, which is to be inverted, is ill-conditioned. The use of G02DAF, which employs a
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different numerical technique, may avoid this difficulty (an extra ‘variable’ representing the
constant term must be introduced for G02DAF).

IFAIL ¼ 7

An unexpected error has been triggered internally whilst solving a set of linear equations. Please
contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of G02CGF is almost entirely dependent on the accuracy of the matrix inversion method
used. As G02CGF works with the matrix of correlation coefficients rather than that of the sums of
squares and cross-products of deviations from means all terms in the matrix being inverted are of a
similar order and therefore the scope for computational error is reduced. An alternative, and potentially
more numerically reliable, routine is G02DAF. G02DAF works directly with the data matrix and
therefore avoids explicitly performing a matrix inversion. However, G02DAF does not handle missing
values, nor does it provide the same output as this routine.

If, in calculating F , t að Þ, or any of the t bið Þ (see Section 3), the numbers involved are such that the
result would be outside the range of numbers which can be stored by the machine, then the answer is
set to the largest quantity which can be stored as a real variable, by means of a call to X02ALF.

8 Parallelism and Performance

G02CGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02CGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G02CGF depends on k.

This routine assumes that the matrix of correlation coefficients for the independent variables in the
regression is positive definite; it fails if this is not the case.

This correlation matrix will in fact be positive definite whenever the correlation matrix and the sums of
squares and cross-products (of deviations from means) matrix have been formed either without regard
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to missing values, or by eliminating completely any cases involving missing values, for any variable.
If, however, these matrices are formed by eliminating cases with missing values from only those
calculations involving the variables for which the values are missing, no such statement can be made,
and the correlation matrix may or may not be positive definite. You should be aware of the possible
dangers of using correlation matrices formed in this way (see the G02 Chapter Introduction), but if they
nevertheless wish to carry out regression using such matrices, this routine is capable of handling the
inversion of such matrices provided they are positive definite.

If a matrix is positive definite, its subsequent re-organisation by either G02CEF or G02CFF will not
affect this property, and the new matrix can safely be used in this routine. Thus correlation matrices
produced by any of G02BAF, G02BBF, G02BGF or G02BHF, even if subsequently modified by either
G02CEF or G02CFF, can be handled by this routine.

It should be noted that in forming the sums of squares and cross-products matrix and the correlation
matrix a column of constants should not be added to the data as an additional ‘variable’ in order to
obtain a constant term in the regression. This routine automatically calculates the regression constant, a,
and any attempt to insert such a ‘dummy variable’ is likely to cause the routine to fail.

It should also be noted that the routine requires the dependent variable to be the last of the kþ 1
variables whose statistics are provided as input to the routine. If this variable is not correctly positioned
in the original data, the means, standard deviations, sums of squares and cross-products of deviations
from means, and correlation coefficients can be manipulated by using G02CEF or G02CFF to reorder
the variables as necessary.

10 Example

This example reads in the means, sums of squares and cross-products of deviations from means, and
correlation coefficients for three variables. A multiple linear regression is then performed with the third
and final variable as the dependent variable. Finally the results are printed.

10.1 Program Text

Program g02cgfe

! G02CGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02cgf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, k, k1, ldc, ldcoef, ldr, &

ldrinv, ldssp, ldwkz, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), coef(:,:), r(:,:), &
rinv(:,:), ssp(:,:), wkz(:,:), &
xbar(:)

Real (Kind=nag_wp) :: con(3), reslt(13)
! .. Executable Statements ..

Write (nout,*) ’G02CGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n, k
k1 = k + 1
ldr = k1
ldssp = k1
ldc = k
ldcoef = k
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ldrinv = k
ldwkz = k
Allocate (c(ldc,k),coef(ldcoef,3),r(ldr,k1),rinv(ldrinv,k), &

ssp(ldssp,k1),wkz(ldwkz,k),xbar(k1))

! Read in data
Read (nin,*) xbar(1:k1)
Read (nin,*)(ssp(i,1:k1),i=1,k1)
Read (nin,*)(r(i,1:k1),i=1,k1)

! Display data
Write (nout,*) ’Means:’
Write (nout,99999)(i,xbar(i),i=1,k1)
Write (nout,*)
Write (nout,*) ’Sums of squares and cross-products about means:’
Write (nout,99998)(i,i=1,k1)
Write (nout,99997)(i,ssp(i,1:k1),i=1,k1)
Write (nout,*)
Write (nout,*) ’Correlation coefficients:’
Write (nout,99998)(i,i=1,k1)
Write (nout,99997)(i,r(i,1:k1),i=1,k1)
Write (nout,*)

! Fit multiple linear regression model
ifail = 0
Call g02cgf(n,k1,k,xbar,ssp,ldssp,r,ldr,reslt,coef,ldcoef,con,rinv, &

ldrinv,c,ldc,wkz,ldwkz,ifail)

! Display results
Write (nout,*) ’Vble Coef Std err t-value’
Write (nout,99996)(i,coef(i,1:3),i=1,k)
Write (nout,*)
Write (nout,99995) ’Const’, con(1:3)
Write (nout,*)
Write (nout,*) ’Analysis of regression table :-’
Write (nout,*)
Write (nout,*) &

’ Source Sum of squares D.F. Mean square F-value’
Write (nout,*)
Write (nout,99994) ’Due to regression’, reslt(1:4)
Write (nout,99994) ’About regression’, reslt(5:7)
Write (nout,99994) ’Total ’, reslt(8:9)
Write (nout,*)
Write (nout,99993) ’Standard error of estimate =’, reslt(10)
Write (nout,99993) ’Multiple correlation (R) =’, reslt(11)
Write (nout,99993) ’Determination (R squared) =’, reslt(12)
Write (nout,99993) ’Corrected R squared =’, reslt(13)
Write (nout,*)
Write (nout,*) ’Inverse of correlation matrix of independent variables:’
Write (nout,99992)(i,i=1,k)
Write (nout,99991)(i,rinv(i,1:k),i=1,k)
Write (nout,*)
Write (nout,*) ’Modified inverse matrix:’
Write (nout,99992)(i,i=1,k)
Write (nout,99991)(i,c(i,1:k),i=1,k)

99999 Format (1X,I4,F10.4)
99998 Format (1X,3I10)
99997 Format (1X,I4,3F10.4)
99996 Format (1X,I3,3F12.4)
99995 Format (1X,A,F11.4,2F13.4)
99994 Format (1X,A,F14.4,F8.0,2F14.4)
99993 Format (1X,A,F8.4)
99992 Format (1X,2I10)
99991 Format (1X,I4,2F10.4)

End Program g02cgfe
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10.2 Program Data

G02CGF Example Program Data
5 2 :: N, K

5.4000 5.8000 2.8000 :: XBAR
99.2000 -57.6000 6.4000

-57.6000 102.8000 -29.2000
6.4000 -29.2000 14.8000 :: End of SSP
1.0000 -0.5704 0.1670

-0.5704 1.0000 -0.7486
0.1670 -0.7486 1.0000 :: End of R

10.3 Program Results

G02CGF Example Program Results

Means:
1 5.4000
2 5.8000
3 2.8000

Sums of squares and cross-products about means:
1 2 3

1 99.2000 -57.6000 6.4000
2 -57.6000 102.8000 -29.2000
3 6.4000 -29.2000 14.8000

Correlation coefficients:
1 2 3

1 1.0000 -0.5704 0.1670
2 -0.5704 1.0000 -0.7486
3 0.1670 -0.7486 1.0000

Vble Coef Std err t-value
1 -0.1488 0.1937 -0.7683
2 -0.3674 0.1903 -1.9309

Const 5.7350 2.0327 2.8213

Analysis of regression table :-

Source Sum of squares D.F. Mean square F-value

Due to regression 9.7769 2. 4.8884 1.9464
About regression 5.0231 2. 2.5116
Total 14.8000 4.

Standard error of estimate = 1.5848
Multiple correlation (R) = 0.8128
Determination (R squared) = 0.6606
Corrected R squared = 0.3212

Inverse of correlation matrix of independent variables:
1 2

1 1.4823 0.8455
2 0.8455 1.4823

Modified inverse matrix:
1 2

1 0.0149 0.0084
2 0.0084 0.0144
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NAG Library Routine Document

G02CHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02CHF performs a multiple linear regression with no constant on a set of variables whose sums of
squares and cross-products about zero and correlation-like coefficients are given.

2 Specification

SUBROUTINE G02CHF (N, K1, K, SSPZ, LDSSPZ, RZ, LDRZ, RESULT, COEF,
LDCOEF, RZNV, LDRZNV, CZ, LDCZ, WKZ, LDWKZ, IFAIL)

&

INTEGER N, K1, K, LDSSPZ, LDRZ, LDCOEF, LDRZNV, LDCZ, LDWKZ,
IFAIL

&

REAL (KIND=nag_wp) SSPZ(LDSSPZ,K1), RZ(LDRZ,K1), RESULT(13),
COEF(LDCOEF,3), RZNV(LDRZNV,K), CZ(LDCZ,K),
WKZ(LDWKZ,K)

&
&

3 Description

G02CHF fits a curve of the form

y ¼ b1x1 þ b2x2 þ � � � þ bkxk
to the data points

x11; x21; . . . ; xk1; y1ð Þ
x12; x22; . . . ; xk2; y2ð Þ

..

.

x1n; x2n; . . . ; xkn; ynð Þ

such that

yi ¼ b1x1i þ b2x2i þ � � � þ bkxki þ ei; i ¼ 1; 2; . . . ; n:

The routine calculates the regression coefficients, b1; b2; . . . ; bk, (and various other statistical quantities)
by minimizing Xn

i¼1
e2i :

The actual data values x1i; x2i; . . . ; xki; yið Þ are not provided as input to the routine. Instead, input to the
routine consists of:

(i) The number of cases, n, on which the regression is based.

(ii) The total number of variables, dependent and independent, in the regression, kþ 1ð Þ.
(iii) The number of independent variables in the regression, k.

(iv) The kþ 1ð Þ by kþ 1ð Þ matrix ~Sij
� �

of sums of squares and cross-products about zero of all the
variables in the regression; the terms involving the dependent variable, y, appear in the kþ 1ð Þth
row and column.

(v) The kþ 1ð Þ by kþ 1ð Þ matrix ~Rij

� �
of correlation-like coefficients for all the variables in the

regression; the correlations involving the dependent variable, y, appear in the kþ 1ð Þth row and
column.
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The quantities calculated are:

(a) The inverse of the k by k partition of the matrix of correlation-like coefficients, ~Rij

� �
, involving

only the independent variables. The inverse is obtained using an accurate method which assumes
that this sub-matrix is positive definite (see Section 9).

(b) The modified matrix, C ¼ cij
� �

, where

cij ¼
~Rij~r

ij

~Sij
; i; j ¼ 1; 2; . . . ; k;

where ~rij is the i; jð Þth element of the inverse matrix of ~Rij

� �
as described in (a) above. Each

element of C is thus the corresponding element of the matrix of correlation-like coefficients
multiplied by the corresponding element of the inverse of this matrix, divided by the
corresponding element of the matrix of sums of squares and cross-products about zero.

(c) The regression coefficients:

bi ¼
Xk
j¼1

cij ~Sj kþ1ð Þ; i ¼ 1; 2; . . . ; k;

where ~Sj kþ1ð Þ is the sum of cross-products about zero for the independent variable xj and the
dependent variable y.

(d) The sum of squares attributable to the regression, SSR, the sum of squares of deviations about
the regression, SSD, and the total sum of squares, SST :

SST ¼ ~S kþ1ð Þ kþ1ð Þ, the sum of squares about zero for the dependent variable, y;

SSR ¼
Xk
j¼1

bj ~Sj kþ1ð Þ; SSD ¼ SST � SSR.

(e) The degrees of freedom attributable to the regression, DFR, the degrees of freedom of deviations
about the regression, DFD, and the total degrees of freedom, DFT :

DFR ¼ k; DFD ¼ n� k; DFT ¼ n:
(f) The mean square attributable to the regression, MSR, and the mean square of deviations about

the regression, MSD:

MSR ¼ SSR=DFR; MSD ¼ SSD=DFD:
(g) The F value for the analysis of variance:

F ¼MSR=MSD:

(h) The standard error estimate:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSD
p

:

(i) The coefficient of multiple correlation, R, the coefficient of multiple determination, R2, and the
coefficient of multiple determination corrected for the degrees of freedom, �R2:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SSD

SST

r
; R2 ¼ 1� SSD

SST
; �R2 ¼ 1� SSD�DFT

SST �DFD:

(j) The standard error of the regression coefficients:

se bið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSD� cii

p
; i ¼ 1; 2; . . . ; k:

(k) The t values for the regression coefficients:

t bið Þ ¼
bi

se bið Þ
; i ¼ 1; 2; . . . ; k:
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4 References

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of cases used in calculating the sums of squares and cross-products and
correlation-like coefficients.

2: K1 – INTEGER Input

On entry: the total number of variables, independent and dependent kþ 1ð Þ, in the regression.

Constraint: 2 � K1 � N.

3: K – INTEGER Input

On entry: the number of independent variables k in the regression.

Constraint: K ¼ K1� 1.

4: SSPZðLDSSPZ;K1Þ – REAL (KIND=nag_wp) array Input

On entry: SSPZði; jÞ must be set to ~Sij , the sum of cross-products about zero for the ith and jth
variables, for i ¼ 1; 2; . . . ; kþ 1 and j ¼ 1; 2; . . . ; kþ 1; terms involving the dependent variable
appear in row kþ 1 and column kþ 1.

5: LDSSPZ – INTEGER Input

On entry: the first dimension of the array SSPZ as declared in the (sub)program from which
G02CHF is called.

Constraint: LDSSPZ � K1.

6: RZðLDRZ;K1Þ – REAL (KIND=nag_wp) array Input

On entry: RZði; jÞ must be set to ~Rij , the correlation-like coefficient for the ith and jth variables,
for i ¼ 1; 2; . . . ; kþ 1 and j ¼ 1; 2; . . . ; kþ 1; coefficients involving the dependent variable
appear in row kþ 1 and column kþ 1.

7: LDRZ – INTEGER Input

On entry: the first dimension of the array RZ as declared in the (sub)program from which
G02CHF is called.

Constraint: LDRZ � K1.

8: RESULTð13Þ – REAL (KIND=nag_wp) array Output

On exit: the following information:

RESULTð1Þ SSR, the sum of squares attributable to the regression;
RESULTð2Þ DFR, the degrees of freedom attributable to the regression;
RESULTð3Þ MSR, the mean square attributable to the regression;
RESULTð4Þ F , the F value for the analysis of variance;
RESULTð5Þ SSD, the sum of squares of deviations about the regression;
RESULTð6Þ DFD, the degrees of freedom of deviations about the regression;
RESULTð7Þ MSD, the mean square of deviations about the regression;
RESULTð8Þ SST , the total sum of squares;
RESULTð9Þ DFT , the total degrees of freedom;
RESULTð10Þ s, the standard error estimate;
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RESULTð11Þ R, the coefficient of multiple correlation;
RESULTð12Þ R2, the coefficient of multiple determination;
RESULTð13Þ �R2, the coefficient of multiple determination corrected for the degrees of

freedom.

9: COEFðLDCOEF; 3Þ – REAL (KIND=nag_wp) array Output

On exit: for i ¼ 1; 2; . . . ; k, the following information:

COEFði; 1Þ
bi, the regression coefficient for the ith variable.

COEFði; 2Þ
se bið Þ, the standard error of the regression coefficient for the ith variable.

COEFði; 3Þ
t bið Þ, the t value of the regression coefficient for the ith variable.

10: LDCOEF – INTEGER Input

On entry: the first dimension of the array COEF as declared in the (sub)program from which
G02CHF is called.

Constraint: LDCOEF � K.

11: RZNVðLDRZNV;KÞ – REAL (KIND=nag_wp) array Output

On exit: the inverse of the matrix of correlation-like coefficients for the independent variables;
that is, the inverse of the matrix consisting of the first k rows and columns of RZ.

12: LDRZNV – INTEGER Input

On entry: the first dimension of the array RZNV as declared in the (sub)program from which
G02CHF is called.

Constraint: LDRZNV � K.

13: CZðLDCZ;KÞ – REAL (KIND=nag_wp) array Output

On exit: the modified inverse matrix, C, where

CZði; jÞ ¼ RZði; jÞ � RZNVði; jÞ
SSPZði; jÞ ; i; j ¼ 1; 2; . . . ; k:

14: LDCZ – INTEGER Input

On entry: the first dimension of the array CZ as declared in the (sub)program from which
G02CHF is called.

Constraint: LDCZ � K.

15: WKZðLDWKZ;KÞ – REAL (KIND=nag_wp) array Workspace
16: LDWKZ – INTEGER Input

On entry: the first dimension of the array WKZ as declared in the (sub)program from which
G02CHF is called.

Constraint: LDWKZ � K.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K1 < 2.

IFAIL ¼ 2

On entry, K1 6¼ K þ 1ð Þ.

IFAIL ¼ 3

On entry, N < K1.

IFAIL ¼ 4

On entry, LDSSPZ < K1,
or LDRZ < K1,
or LDCOEF < K,
or LDRZNV < K,
or LDCZ < K,
or LDWKZ < K.

IFAIL ¼ 5

This indicates that the k by k partition of the matrix held in RZ, which is to be inverted, is not
positive definite.

IFAIL ¼ 6

This indicates that the refinement following the actual inversion fails, indicating that the k by k
partition of the matrix held in RZ, which is to be inverted, is ill-conditioned. The use of
G02DAF, which employs a different numerical technique, may avoid the difficulty.

IFAIL ¼ 7

An unexpected error has been triggered internally whilst solving a set of linear equations. Please
contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of G02CHF is almost entirely dependent on the accuracy of the matrix inversion method
used. As G02CHF works with the matrix of correlation coefficients rather than that of the sums of
squares and cross-products of deviations from means all terms in the matrix being inverted are of a
similar order and therefore the scope for computational error is reduced. An alternative, and potentially
more numerically reliable, routine is G02DAF. G02DAF works directly with the data matrix and
therefore avoids explicitly performing a matrix inversion. However, G02DAF does not handle missing
values, nor does it provide the same output as this routine.

If, in calculating F or any of the t bið Þ (see Section 3), the numbers involved are such that the result
would be outside the range of numbers which can be stored by the machine, then the answer is set to
the largest quantity which can be stored as a real variable, by means of a call to X02ALF.

8 Parallelism and Performance

G02CHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02CHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G02CHF depends on k.

This routine assumes that the matrix of correlation-like coefficients for the independent variables in the
regression is positive definite; it fails if this is not the case.

This correlation matrix will in fact be positive definite whenever the correlation-like matrix and the
sums of squares and cross-products (about zero) matrix have been formed either without regard to
missing values, or by eliminating completely any cases involving missing values for any variable. If,
however, these matrices are formed by eliminating cases with missing values from only those
calculations involving the variables for which the values are missing, no such statement can be made,
and the correlation-like matrix may or may not be positive definite. You should be aware of the possible
dangers of using correlation matrices formed in this way (see the G02 Chapter Introduction), but if they
nevertheless wish to carry out regressions using such matrices, this routine is capable of handling the
inversion of such matrices, provided they are positive definite.

If a matrix is positive definite, its subsequent re-organisation by either of G02CEF or G02CFF will not
affect this property and the new matrix can safely be used in this routine. Thus correlation matrices
produced by any of G02BDF, G02BEF, G02BKF or G02BLF, even if subsequently modified by either
G02CEF or G02CFF, can be handled by this routine.

It should be noted that the routine requires the dependent variable to be the last of the kþ 1 variables
whose statistics are provided as input to the routine. If this variable is not correctly positioned in the
original data, the means, standard deviations, sums of squares and cross-products about zero, and
correlation-like coefficients can be manipulated by using G02CEF or G02CFF to reorder the variables
as necessary.
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10 Example

This example reads in the sums of squares and cross-products about zero, and correlation-like
coefficients for three variables. A multiple linear regression with no constant is then performed with the
third and final variable as the dependent variable. Finally the results are printed.

10.1 Program Text

Program g02chfe

! G02CHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02chf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, k, k1, ldcoef, ldcz, ldrz, &

ldrznv, ldsspz, ldwkz, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: coef(:,:), cz(:,:), rz(:,:), &
rznv(:,:), sspz(:,:), wkz(:,:)

Real (Kind=nag_wp) :: reslt(13)
! .. Executable Statements ..

Write (nout,*) ’G02CHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, k
k1 = k + 1
ldcoef = k
ldcz = k
ldrz = k1
ldrznv = k
ldsspz = k1
ldwkz = k
Allocate (coef(ldcoef,3),cz(ldcz,k),rz(ldrz,k1),rznv(ldrznv,k), &

sspz(ldsspz,k1),wkz(ldwkz,k))

! Read in data
Read (nin,*)(sspz(i,1:k1),i=1,k1)
Read (nin,*)(rz(i,1:k1),i=1,k1)

! Display data
Write (nout,*) ’Sums of squares and cross-products about zero:’
Write (nout,99999)(i,i=1,k1)
Write (nout,99998)(i,sspz(i,1:k1),i=1,k1)
Write (nout,*)
Write (nout,*) ’Correlation-like coefficients:’
Write (nout,99999)(i,i=1,k1)
Write (nout,99998)(i,rz(i,1:k1),i=1,k1)
Write (nout,*)

! Fit multiple linear regression model
ifail = 0
Call g02chf(n,k1,k,sspz,ldsspz,rz,ldrz,reslt,coef,ldcoef,rznv,ldrznv,cz, &

ldcz,wkz,ldwkz,ifail)

! Display results
Write (nout,*) ’Vble Coef Std err t-value’
Write (nout,99997)(i,coef(i,1:3),i=1,k)
Write (nout,*)
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Write (nout,*) ’Analysis of regression table :-’
Write (nout,*)
Write (nout,*) &

’ Source Sum of squares D.F. Mean square F-value’
Write (nout,*)
Write (nout,99996) ’Due to regression’, reslt(1:4)
Write (nout,99996) ’About regression’, reslt(5:7)
Write (nout,99996) ’Total ’, reslt(8:9)
Write (nout,*)
Write (nout,99995) ’Standard error of estimate =’, reslt(10)
Write (nout,99995) ’Multiple correlation (R) =’, reslt(11)
Write (nout,99995) ’Determination (R squared) =’, reslt(12)
Write (nout,99995) ’Corrected R squared =’, reslt(13)
Write (nout,*)
Write (nout,*) ’Inverse of correlation matrix of independent variables:’
Write (nout,99994)(i,i=1,k)
Write (nout,99993)(i,rznv(i,1:k),i=1,k)
Write (nout,*)
Write (nout,*) ’Modified inverse matrix:’
Write (nout,99994)(i,i=1,k)
Write (nout,99993)(i,cz(i,1:k),i=1,k)

99999 Format (1X,3I10)
99998 Format (1X,I4,3F10.4)
99997 Format (1X,I3,3F12.4)
99996 Format (1X,A,F14.4,F8.0,2F14.4)
99995 Format (1X,A,F8.4)
99994 Format (1X,2I10)
99993 Format (1X,I4,2F10.4)

End Program g02chfe

10.2 Program Data

G02CHF Example Program Data
5 2 :: N, K
245.0000 99.0000 82.0000
99.0000 271.0000 52.0000
82.0000 52.0000 54.0000 :: End of SSPZ
1.0000 0.3842 0.7129
0.3842 1.0000 0.4299
0.7129 0.4299 1.0000 :: End of RZ

10.3 Program Results

G02CHF Example Program Results

Sums of squares and cross-products about zero:
1 2 3

1 245.0000 99.0000 82.0000
2 99.0000 271.0000 52.0000
3 82.0000 52.0000 54.0000

Correlation-like coefficients:
1 2 3

1 1.0000 0.3842 0.7129
2 0.3842 1.0000 0.4299
3 0.7129 0.4299 1.0000

Vble Coef Std err t-value
1 0.3017 0.1998 1.5098
2 0.0817 0.1900 0.4299

Analysis of regression table :-

Source Sum of squares D.F. Mean square F-value

Due to regression 28.9857 2. 14.4929 1.7382
About regression 25.0143 3. 8.3381
Total 54.0000 5.
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Standard error of estimate = 2.8876
Multiple correlation (R) = 0.7326
Determination (R squared) = 0.5368
Corrected R squared = 0.2280

Inverse of correlation matrix of independent variables:
1 2

1 1.1732 -0.4507
2 -0.4507 1.1732

Modified inverse matrix:
1 2

1 0.0048 -0.0017
2 -0.0017 0.0043
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NAG Library Routine Document

G02DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02DAF performs a general multiple linear regression when the independent variables may be linearly
dependent. Parameter estimates, standard errors, residuals and influence statistics are computed.
G02DAF may be used to perform a weighted regression.

2 Specification

SUBROUTINE G02DAF (MEAN, WEIGHT, N, X, LDX, M, ISX, IP, Y, WT, RSS, IDF,
B, SE, COV, RES, H, Q, LDQ, SVD, IRANK, P, TOL, WK,
IFAIL)

&
&

INTEGER N, LDX, M, ISX(M), IP, IDF, LDQ, IRANK, IFAIL
REAL (KIND=nag_wp) X(LDX,M), Y(N), WT(*), RSS, B(IP), SE(IP),

COV(IP*(IP+1)/2), RES(N), H(N), Q(LDQ,IP+1),
P(2*IP+IP*IP), TOL, WK(max(2,5*(IP-1)+IP*IP))

&
&

LOGICAL SVD
CHARACTER(1) MEAN, WEIGHT

3 Description

The general linear regression model is defined by

y ¼ X� þ �;

where

y is a vector of n observations on the dependent variable,

X is an n by p matrix of the independent variables of column rank k,

� is a vector of length p of unknown arguments, and

� is a vector of length n of unknown random errors such that var � ¼ V �2, where V is a known
diagonal matrix.

If V ¼ I, the identity matrix, then least squares estimation is used. If V 6¼ I, then for a given weight
matrix W / V �1, weighted least squares estimation is used.

The least squares estimates �̂ of the arguments � minimize y�X�ð ÞT y�X�ð Þ while the weighted
least squares estimates minimize y�X�ð ÞTW y�X�ð Þ.

G02DAF finds a QR decomposition of X (or W 1=2X in weighted case), i.e.,

X ¼ QR� or W 1=2X ¼ QR�
� �

;

where R� ¼ R
0

� �
and R is a p by p upper triangular matrix and Q is an n by n orthogonal matrix. If

R is of full rank, then �̂ is the solution to

R�̂ ¼ c1;

where c ¼ QTy (or QTW 1=2y) and c1 is the first p elements of c. If R is not of full rank a solution is
obtained by means of a singular value decomposition (SVD) of R,
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R ¼ Q� D 0
0 0

� �
PT;

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R, and Q� and
P are p by p orthogonal matrices. This gives the solution

�̂ ¼ P1D
�1QT

�1c1;

P1 being the first k columns of P , i.e., P ¼ P1 P0

� �
, and Q�1 being the first k columns of Q�.

Details of the SVD, are made available, in the form of the matrix P �:

P � ¼ D�1P T
1

PT
0

� �
:

This will be only one of the possible solutions. Other estimates may be obtained by applying constraints
to the arguments. These solutions can be obtained by using G02DKF after using G02DAF. Only certain
linear combinations of the arguments will have unique estimates; these are known as estimable
functions.

The fit of the model can be examined by considering the residuals, ri ¼ yi � ŷ, where ŷ ¼ X�̂ are the
fitted values. The fitted values can be written as Hy for an n by n matrix H. The ith diagonal elements
of H, hi, give a measure of the influence of the ith values of the independent variables on the fitted
regression model. The values hi are sometimes known as leverages. Both ri and hi are provided by
G02DAF.

The output of G02DAF also includes �̂, the residual sum of squares and associated degrees of freedom,
n� kð Þ, the standard errors of the parameter estimates and the variance-covariance matrix of the
parameter estimates.

In many linear regression models the first term is taken as a mean term or an intercept, i.e., Xi;1 ¼ 1,
for i ¼ 1; 2; . . . ; n. This is provided as an option. Also only some of the possible independent variables
are required to be included in a model, a facility to select variables to be included in the model is
provided.

Details of the QR decomposition and, if used, the SVD, are made available. These allow the regression
to be updated by adding or deleting an observation using G02DCF, adding or deleting a variable using
G02DEF and G02DFF or estimating and testing an estimable function using G02DNF.

4 References

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall

Searle S R (1971) Linear Models Wiley

5 Arguments

1: MEAN – CHARACTER(1) Input

On entry: indicates if a mean term is to be included.

MEAN ¼ M
A mean term, intercept, will be included in the model.
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MEAN ¼ Z
The model will pass through the origin, zero-point.

Constraint: MEAN ¼ M or Z .

2: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
Least squares estimation is used.

WEIGHT ¼ W
Weighted least squares is used and weights must be supplied in array WT.

Constraint: WEIGHT ¼ U or W.

3: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

4: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation for the jth independent variable, for
i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;M.

5: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G02DAF is called.

Constraint: LDX � N.

6: M – INTEGER Input

On entry: m, the total number of independent variables in the dataset.

Constraint: M � 1.

7: ISXðMÞ – INTEGER array Input

On entry: indicates which independent variables are to be included in the model.

ISXðjÞ > 0
The variable contained in the jth column of X is included in the regression model.

Constraints:

ISXðjÞ � 0, for j ¼ 1; 2; . . . ;m;
if MEAN ¼ M , exactly IP� 1 values of ISX must be > 0;
if MEAN ¼ Z , exactly IP values of ISX must be > 0.

8: IP – INTEGER Input

On entry: the number of independent variables in the model, including the mean or intercept if
present.

Constraints:

if MEAN ¼ M , 1 � IP � Mþ 1;
if MEAN ¼ Z , 1 � IP � M;
otherwise 1 � IP � N.

9: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: y, the observations on the dependent variable.
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10: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W , WT must contain the weights to be used in the weighted regression.

If WTðiÞ ¼ 0:0, the ith observation is not included in the model, in which case the effective
number of observations is the number of observations with nonzero weights. The values of RES
and H will be set to zero for observations with zero weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is n.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

11: RSS – REAL (KIND=nag_wp) Output

On exit: the residual sum of squares for the regression.

12: IDF – INTEGER Output

On exit: the degrees of freedom associated with the residual sum of squares.

13: BðIPÞ – REAL (KIND=nag_wp) array Output

On exit: BðiÞ, i ¼ 1; 2; . . . ; IP contains the least squares estimates of the parameters of the
regression model, �̂.

If MEAN ¼ M , Bð1Þ will contain the estimate of the mean parameter and Bðiþ 1Þ will contain
the coefficient of the variable contained in column j of X, where ISXðjÞ is the ith positive value
in the array ISX.

If MEAN ¼ Z , BðiÞ will contain the coefficient of the variable contained in column j of X,
where ISXðjÞ is the ith positive value in the array ISX.

14: SEðIPÞ – REAL (KIND=nag_wp) array Output

On exit: SEðiÞ, i ¼ 1; 2; . . . ; IP contains the standard errors of the IP parameter estimates given in
B.

15: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the first IP� IPþ 1ð Þ=2 elements of COV contain the upper triangular part of the
variance-covariance matrix of the IP parameter estimates given in B. They are stored packed by
column, i.e., the covariance between the parameter estimate given in BðiÞ and the parameter
estimate given in BðjÞ, j � i, is stored in COVðj� j� 1ð Þ=2þ iÞ.

16: RESðNÞ – REAL (KIND=nag_wp) array Output

On exit: the (weighted) residuals, ri, for i ¼ 1; 2; . . . ; n.

17: HðNÞ – REAL (KIND=nag_wp) array Output

On exit: the diagonal elements of H, hi, for i ¼ 1; 2; . . . ; n.

18: QðLDQ; IPþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the results of the QR decomposition:

the first column of Q contains c;

the upper triangular part of columns 2 to IPþ 1 contain the R matrix;

the strictly lower triangular part of columns 2 to IPþ 1 contain details of the Q matrix.
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19: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which
G02DAF is called.

Constraint: LDQ � N.

20: SVD – LOGICAL Output

On exit: if a singular value decomposition has been performed then SVD will be .TRUE.,
otherwise SVD will be .FALSE..

21: IRANK – INTEGER Output

On exit: the rank of the independent variables.

If SVD ¼ :FALSE:, IRANK ¼ IP.

If SVD ¼ :TRUE:, IRANK is an estimate of the rank of the independent variables.

IRANK is calculated as the number of singular values greater that TOL� (largest singular
value). It is possible for the SVD to be carried out but IRANK to be returned as IP.

22: Pð2� IPþ IP� IPÞ – REAL (KIND=nag_wp) array Output

On exit: details of the QR decomposition and SVD if used.

If SVD ¼ :FALSE:, only the first IP elements of P are used these will contain the zeta values for
the QR decomposition (see F08AEF (DGEQRF) for details).

If SVD ¼ :TRUE:, the first IP elements of P will contain the zeta values for the QR
decomposition (see F08AEF (DGEQRF) for details) and the next IP elements of P contain
singular values. The following IP by IP elements contain the matrix P � stored by columns.

23: TOL – REAL (KIND=nag_wp) Input

On entry: the value of TOL is used to decide if the independent variables are of full rank and if
not what is the rank of the independent variables. The smaller the value of TOL the stricter the
criterion for selecting the singular value decomposition. If TOL ¼ 0:0, the singular value
decomposition will never be used; this may cause run time errors or inaccurate results if the
independent variables are not of full rank.

Suggested value: TOL ¼ 0:000001.

Constraint: TOL � 0:0.

24: WKðmax 2; 5� IP� 1ð Þ þ IP� IPð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: if on exit SVD ¼ :TRUE:, WK contains information which is needed by G02DGF;
otherwise WK is used as workspace.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or M < 1,
or LDX < N,
or LDQ < N,
or TOL < 0:0,
or IP � 0,
or IP > N.

IFAIL ¼ 2

On entry, MEAN 6¼ M or Z ,
or WEIGHT 6¼ W or U .

IFAIL ¼ 3

On entry, WEIGHT ¼ W and a value of WT < 0:0.

IFAIL ¼ 4

On entry, a value of ISX < 0,
or the value of IP is incompatible with the values of MEAN and ISX,
or IP is greater than the effective number of observations.

IFAIL ¼ 5

The degrees of freedom for the residuals are zero, i.e., the designated number of arguments is
equal to the effective number of observations. In this case the parameter estimates will be
returned along with the diagonal elements of H, but neither standard errors nor the variance-
covariance matrix will be calculated.

IFAIL ¼ 6

The singular value decomposition has failed to converge, see F02WUF. This is an unlikely error.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of G02DAF is closely related to the accuracy of F02WUF and F08AEF (DGEQRF).
These routine documents should be consulted.
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8 Parallelism and Performance

G02DAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02DAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Standardized residuals and further measures of influence can be computed using G02FAF. G02FAF
requires, in particular, the results stored in RES and H.

10 Example

Data from an experiment with four treatments and three observations per treatment are read in. The
treatments are represented by dummy (0� 1) variables. An unweighted model is fitted with a mean
included in the model. G02BUF is then called to calculate the total sums of squares and the coefficient
of determination (R2), adjusted R2 and Akaike's information criteria (AIC) are calculated.

G02BUF is then called to calculate the total sums of squares and the coefficient of determination (R2),
adjusted R2 and Akaike's information criteria (AIC) are calculated.

10.1 Program Text

Program g02dafe

! G02DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02buf, g02daf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: aic, arsq, en, mult, rsq, rss, sw, &

tol
Integer :: i, idf, ifail, ip, irank, ldq, ldx, &

lwt, m, n
Logical :: svd
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), h(:), p(:), q(:,:), &

res(:), se(:), wk(:), wt(:), x(:,:), &
y(:)

Real (Kind=nag_wp) :: c(1), wmean(1)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: count, log, real

! .. Executable Statements ..
Write (nout,*) ’G02DAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, weight, mean
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If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),y(n),wt(lwt),isx(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),y(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

ldq = n
Allocate (b(ip),cov((ip*ip+ip)/2),h(n),p(ip*(ip+ &

2)),q(ldq,ip+1),res(n),se(ip),wk(ip*ip+5*(ip-1)))

! Use suggested value for tolerance
tol = 0.000001E0_nag_wp

! Fit general linear regression model
ifail = -1
Call g02daf(mean,weight,n,x,ldx,m,isx,ip,y,wt,rss,idf,b,se,cov,res,h,q, &

ldq,svd,irank,p,tol,wk,ifail)
If (ifail/=0) Then

If (ifail/=5) Then
Go To 100

End If
End If

! Calculate (weighted) total sums of squares, adjusted for mean if
! required
! If in G02DAF, an intercept is added to the regression by including a
! column of 1’s in X, rather than by using the MEAN argument then
! MEAN = ’M’ should be used in this call to G02BUF.

ifail = 0
Call g02buf(mean,weight,n,1,y,n,wt,sw,wmean,c,ifail)

! Get effective number of observations (=N if there are no zero weights)
en = real(idf+irank,kind=nag_wp)

! Calculate R-squared, corrected R-squared and AIC
rsq = 1.0_nag_wp - rss/c(1)
If (mean==’M’ .Or. mean==’m’) Then

mult = (en-1.0E0_nag_wp)/(en-real(irank,kind=nag_wp))
Else

mult = en/(en-real(irank,kind=nag_wp))
End If
arsq = 1.0_nag_wp - mult*(1.0_nag_wp-rsq)
aic = en*log(rss/en) + 2.0_nag_wp*real(irank,kind=nag_wp)

! Display results
If (svd) Then

Write (nout,99999) ’Model not of full rank, rank = ’, irank
Write (nout,*)

End If
Write (nout,99998) ’Residual sum of squares = ’, rss
Write (nout,99999) ’Degrees of freedom = ’, idf
Write (nout,99998) ’R-squared = ’, rsq
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Write (nout,99998) ’Adjusted R-squared = ’, arsq
Write (nout,99998) ’AIC = ’, aic
Write (nout,*)
Write (nout,*) ’Variable Parameter estimate Standard error’
Write (nout,*)
If (ifail==0) Then

Write (nout,99997)(i,b(i),se(i),i=1,ip)
Else

Write (nout,99996)(i,b(i),i=1,ip)
End If
Write (nout,*)
Write (nout,*) ’ Obs Residuals H’
Write (nout,*)
Write (nout,99997)(i,res(i),h(i),i=1,n)

100 Continue

99999 Format (1X,A,I4)
99998 Format (1X,A,E12.4)
99997 Format (1X,I6,2E20.4)
99996 Format (1X,I6,E20.4)

End Program g02dafe

10.2 Program Data

G02DAF Example Program Data
12 4 ’U’ ’M’

1.0 0.0 0.0 0.0 33.63
0.0 0.0 0.0 1.0 39.62
0.0 1.0 0.0 0.0 38.18
0.0 0.0 1.0 0.0 41.46
0.0 0.0 0.0 1.0 38.02
0.0 1.0 0.0 0.0 35.83
0.0 0.0 0.0 1.0 35.99
1.0 0.0 0.0 0.0 36.58
0.0 0.0 1.0 0.0 42.92
1.0 0.0 0.0 0.0 37.80
0.0 0.0 1.0 0.0 40.43
0.0 1.0 0.0 0.0 37.89
1 1 1 1

10.3 Program Results

G02DAF Example Program Results

Model not of full rank, rank = 4

Residual sum of squares = 0.2223E+02
Degrees of freedom = 8
R-squared = 0.7004E+00
Adjusted R-squared = 0.5881E+00
AIC = 0.1540E+02

Variable Parameter estimate Standard error

1 0.3056E+02 0.3849E+00
2 0.5447E+01 0.8390E+00
3 0.6743E+01 0.8390E+00
4 0.1105E+02 0.8390E+00
5 0.7320E+01 0.8390E+00

Obs Residuals H

1 -0.2373E+01 0.3333E+00
2 0.1743E+01 0.3333E+00
3 0.8800E+00 0.3333E+00
4 -0.1433E+00 0.3333E+00
5 0.1433E+00 0.3333E+00
6 -0.1470E+01 0.3333E+00
7 -0.1887E+01 0.3333E+00
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8 0.5767E+00 0.3333E+00
9 0.1317E+01 0.3333E+00

10 0.1797E+01 0.3333E+00
11 -0.1173E+01 0.3333E+00
12 0.5900E+00 0.3333E+00
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NAG Library Routine Document

G02DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02DCF adds or deletes an observation from a general regression model fitted by G02DAF.

2 Specification

SUBROUTINE G02DCF (UPDATE, MEAN, WEIGHT, M, ISX, Q, LDQ, IP, X, IX, Y,
WT, RSS, WK, IFAIL)

&

INTEGER M, ISX(M), LDQ, IP, IX, IFAIL
REAL (KIND=nag_wp) Q(LDQ,IP+1), X(*), Y, WT, RSS, WK(3*IP)
CHARACTER(1) UPDATE, MEAN, WEIGHT

3 Description

G02DAF fits a general linear regression model to a dataset. You may wish to change the model by
either adding or deleting an observation from the dataset. G02DCF takes the results from G02DAF and
makes the required changes to the vector c and the upper triangular matrix R produced by G02DAF.
The regression coefficients, standard errors and the variance-covariance matrix of the regression
coefficients can be obtained from G02DDF after all required changes to the dataset have been made.

G02DAF performs a QR decomposition on the (weighted) X matrix of independent variables. To add a
new observation to a model with p arguments, the upper triangular matrix R and vector c1 (the first p
elements of c) are augmented by the new observation on independent variables in xT and dependent
variable ynew. Givens rotations are then used to restore the upper triangular form.

R : c1
x : ynew

� �
! R� : c�1

0 : y�new

� �
:

Note: only R and the upper part of c are updated the remainder of the Q matrix is unchanged.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

5 Arguments

1: UPDATE – CHARACTER(1) Input

On entry: indicates if an observation is to be added or deleted.

UPDATE ¼ A
The observation is added.

UPDATE ¼ D
The observation is deleted.

Constraint: UPDATE ¼ A or D .
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2: MEAN – CHARACTER(1) Input

On entry: indicates if a mean has been used in the model.

MEAN ¼ M
A mean term or intercept will have been included in the model by G02DAF.

MEAN ¼ Z
A model with no mean term or intercept will have been fitted by G02DAF.

Constraint: MEAN ¼ M or Z .

3: WEIGHT – CHARACTER(1) Input

On entry: indicates if a weight is to be used.

WEIGHT ¼ U
The new observation is unweighted.

WEIGHT ¼ W
The new observation is to be weighted and the weight must be supplied in WT.

Constraint: WEIGHT ¼ U or W.

4: M – INTEGER Input

On entry: m, the total number of independent variables in the dataset.

Constraint: M � 1.

5: ISXðMÞ – INTEGER array Input

On entry: if ISXðjÞ is greater than 0, the value contained in Xð j � 1ð Þ � IXþ 1Þ is to be included
as a value of xT, for j ¼ 1; 2; . . . ;M.

Constraint: if MEAN ¼ M , exactly IP� 1 elements of ISX must be > 0 and if MEAN ¼ Z ,
exactly IP elements of ISX must be > 0.

6: QðLDQ; IPþ 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: must be array Q as output by G02DAF, G02DEF, G02DFF or G02EEF, or a previous
call to G02DCF.

On exit: the first IP elements of the first column of Q will contain c�1 the upper triangular part of
columns 2 to IPþ 1 will contain R� the remainder is unchanged.

7: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which G02DCF
is called.

Constraint: LDQ � IP.

8: IP – INTEGER Input

On entry: the number of linear terms in general linear regression model (including mean if there
is one).

Constraint: IP � 1.

9: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least M � 1ð Þ � IXþ 1.

On entry: the IP values for the dependent variables of the new observation, xT. The positions will
depend on the value of IX.
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10: IX – INTEGER Input

On entry: the increment for elements of X. Two situations are common:

IX ¼ 1
The values of x are to be chosen from consecutive locations in X, i.e.,
Xð1Þ;Xð2Þ; . . . ;XðMÞ.

IX ¼ LDX
The values of x are to be chosen from a row of a two-dimensional array with first
dimension LDX, i.e., Xð1Þ;XðLDXþ 1Þ; . . . ;Xð M� 1ð ÞLDXþ 1Þ.

Constraint: IX � 1.

11: Y – REAL (KIND=nag_wp) Input

On entry: the value of the dependent variable for the new observation, ynew.

12: WT – REAL (KIND=nag_wp) Input

On entry: if WEIGHT ¼ W , WT must contain the weight to be used with the new observation.

If WT ¼ 0:0, the observation is not included in the model.

If WEIGHT ¼ U , WT is not referenced.

Constraint: if WT � 0:0, WEIGHT ¼ W .

13: RSS – REAL (KIND=nag_wp) Input/Output

On entry: the value of the residual sums of squares for the original set of observations.

Constraint: RSS � 0:0.

On exit: the updated values of the residual sums of squares.

Note: this will only be valid if the model is of full rank.

14: WKð3� IPÞ – REAL (KIND=nag_wp) array Workspace

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP < 1,
or LDQ < IP,
or M < 1,
or IX < 1,
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or RSS < 0:0,
or UPDATE 6¼ A or D ,
or MEAN 6¼ M or Z ,
or WEIGHT 6¼ U or W ,
or MEAN ¼ M and there are not exactly IP� 1 nonzero values of ISX,
or MEAN ¼ Z and there are not exactly IP nonzero values of ISX,

IFAIL ¼ 2

On entry, WEIGHT ¼ W and WT < 0:0.

IFAIL ¼ 3

The R matrix could not be updated. This may occur if an attempt is made to delete an
observation which was not in the original dataset or to add an observation to a R matrix with a
zero diagonal element. This error is also possible when removing an observation which reduces
the rank of design matrix. In such cases the model should be recomputed using G02DAF.

IFAIL ¼ 4

The residual sums of squares cannot be updated. This will occur if the input residual sum of
squares is less than the calculated decrease in residual sum of squares when the new observation
is deleted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Higher accuracy is achieved by updating the R matrix rather than the traditional methods of updating
X0X.

8 Parallelism and Performance

G02DCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Care should be taken with the use of G02DCF.
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(a) It is possible to delete observations which were not included in the original model.

(b) If several additions/deletions have been performed you are advised to recompute the regression
using G02DAF.

(c) Adding or deleting observations can alter the rank of the model. Such changes will only be
detected when a call to G02DDF has been made. G02DDF should also be used to compute the new
residual sum of squares when the model is not of full rank.

G02DCF may also be used after G02DEF, G02DFF and G02EEF.

10 Example

A dataset consisting of 12 observations with four independent variables is read in and a general linear
regression model fitted by G02DAF and parameter estimates printed. The last observation is then
dropped and the parameter estimates recalculated, using G02DDF, and printed. Finally a new
observation is added and new parameter estimates computed and printed.

10.1 Program Text

Program g02dcfe

! G02DCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02daf, g02dcf, g02ddf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rss, tol, wt, y
Integer :: i, idf, ifail, ip, irank, ix, ldq, &

ldxm, lwt, m, n
Logical :: svd
Character (1) :: mean, update, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), h(:), p(:), q(:,:), &

res(:), se(:), wk(:), wtm(:), x(:), &
xm(:,:), ym(:)

Integer, Allocatable :: isx(:)
! .. Intrinsic Procedures ..

Intrinsic :: count
! .. Executable Statements ..

Write (nout,*) ’G02DCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, weight, mean

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldxm = n
Allocate (xm(ldxm,m),ym(n),wtm(lwt),isx(m),x(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(xm(i,1:m),ym(i),wtm(i),i=1,n)
Else

Read (nin,*)(xm(i,1:m),ym(i),i=1,n)
End If
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! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

ldq = n
Allocate (b(ip),cov((ip*ip+ip)/2),h(n),p(ip*(ip+ &

2)),q(ldq,ip+1),res(n),se(ip),wk(ip*ip+5*(ip-1)))

! Use suggested value for tolerance
tol = 0.000001E0_nag_wp

! Fit initial model using G02DAF
ifail = 0
Call g02daf(mean,weight,n,xm,ldxm,m,isx,ip,ym,wtm,rss,idf,b,se,cov,res, &

h,q,ldq,svd,irank,p,tol,wk,ifail)

! Display results from initial model fit
Write (nout,*) ’Results from initial model fit using G02DAF’
If (svd) Then

Write (nout,*)
Write (nout,*) ’Model not of full rank’

End If
Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’Variable Parameter estimate ’, ’Standard error’
Write (nout,*)
Write (nout,99997)(i,b(i),se(i),i=1,ip)

! Updating data is held in X consecutively
ix = 1

! Add or delete observations supplied in the data file
u_lp: Do

Read (nin,*,Iostat=ifail) update
If (ifail/=0) Then

Exit u_lp
End If

If (lwt>0) Then
Read (nin,*) x(1:m), y, wt

Else
Read (nin,*) x(1:m), y

End If

! Update the regression
ifail = 0
Call g02dcf(update,mean,weight,m,isx,q,ldq,ip,x,ix,y,wt,rss,wk,ifail)

! Display titles and update observation count
Write (nout,*)
Select Case (update)
Case (’a’,’A’)

Write (nout,*) ’Results from adding an observation using G02DCF’
n = n + 1

Case (’d’,’D’)
Write (nout,*) ’Results from dropping an observation using G02DCF’
n = n - 1

Case Default
Write (nout,*) ’Unknown update flag read in from data file’
Go To 100

End Select

! Recalculate the parameter estimates etc
ifail = 0
Call g02ddf(n,ip,q,ldq,rss,idf,b,se,cov,svd,irank,p,tol,wk,ifail)
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! Display updated results
Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’Variable Parameter estimate ’, ’Standard error’
Write (nout,*)
Write (nout,99997)(i,b(i),se(i),i=1,ip)

End Do u_lp

100 Continue

99999 Format (1X,A,E12.4)
99998 Format (1X,A,I4)
99997 Format (1X,I6,2E20.4)

End Program g02dcfe

10.2 Program Data

G02DCF Example Program Data
12 4 ’U’ ’Z’ :: N, M, MEAN, WEIGHT

1.0 0.0 0.0 0.0 33.63
0.0 0.0 0.0 1.0 39.62
0.0 1.0 0.0 0.0 38.18
0.0 0.0 1.0 0.0 41.46
0.0 0.0 0.0 1.0 38.02
0.0 1.0 0.0 0.0 35.83
0.0 0.0 0.0 1.0 35.99
1.0 0.0 0.0 0.0 36.58
0.0 0.0 1.0 0.0 42.92
1.0 0.0 0.0 0.0 37.80
0.0 0.0 1.0 0.0 40.43
1.0 1.0 1.0 1.0 37.89 :: End of X, Y
1 1 1 1 :: ISX

’D’ :: UPDATE (delete observation)
1.0 1.0 1.0 1.0 37.89 :: X and Y for observation to be deleted
’A’ :: UPDATE (add observation)
0.0 1.0 0.0 0.0 37.89 :: X and Y for observation to be added

10.3 Program Results

G02DCF Example Program Results

Results from initial model fit using G02DAF
Residual sum of squares = 0.5275E+04
Degrees of freedom = 8

Variable Parameter estimate Standard error

1 0.2072E+02 0.1380E+02
2 0.1409E+02 0.1624E+02
3 0.2632E+02 0.1380E+02
4 0.2260E+02 0.1380E+02

Results from dropping an observation using G02DCF
Residual sum of squares = 0.2170E+02
Degrees of freedom = 7

Variable Parameter estimate Standard error

1 0.3600E+02 0.1017E+01
2 0.3701E+02 0.1245E+01
3 0.4160E+02 0.1017E+01
4 0.3788E+02 0.1017E+01

Results from adding an observation using G02DCF
Residual sum of squares = 0.2223E+02
Degrees of freedom = 8

Variable Parameter estimate Standard error
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1 0.3600E+02 0.9623E+00
2 0.3730E+02 0.9623E+00
3 0.4160E+02 0.9623E+00
4 0.3788E+02 0.9623E+00
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NAG Library Routine Document

G02DDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02DDF calculates the regression arguments for a general linear regression model. It is intended to be
called after G02DCF, G02DEF or G02DFF.

2 Specification

SUBROUTINE G02DDF (N, IP, Q, LDQ, RSS, IDF, B, SE, COV, SVD, IRANK, P,
TOL, WK, IFAIL)

&

INTEGER N, IP, LDQ, IDF, IRANK, IFAIL
REAL (KIND=nag_wp) Q(LDQ,IP+1), RSS, B(IP), SE(IP), COV(IP*(IP+1)/2),

P(IP*IP+2*IP), TOL, WK(IP*IP+(IP-1)*5)
&

LOGICAL SVD

3 Description

A general linear regression model fitted by G02DAF may be adjusted by adding or deleting an
observation using G02DCF, adding a new independent variable using G02DEF or deleting an existing
independent variable using G02DFF. Alternatively a model may be constructed by a forward selection
procedure using G02EEF. These routines compute the vector c and the upper triangular matrix R.
G02DDF takes these basic results and computes the regression coefficients, �̂, their standard errors and
their variance-covariance matrix.

If R is of full rank, then �̂ is the solution to

R�̂ ¼ c1;

where c1 is the first p elements of c.

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R,

R ¼ Q� D 0
0 0

� �
PT;

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R, and Q� and
P are p by p orthogonal matrices. This gives the solution

�̂ ¼ P1D
�1QT

�1c1:

P1 being the first k columns of P , i.e., P ¼ P1P0ð Þ, and Q�1 being the first k columns of Q�.

Details of the SVD are made available in the form of the matrix P �:

P � ¼ D�1P T
1

PT
0

� �
:

This will be only one of the possible solutions. Other estimates may be obtained by applying constraints
to the arguments. These solutions can be obtained by calling G02DKF after calling G02DDF. Only
certain linear combinations of the arguments will have unique estimates; these are known as estimable
functions. These can be estimated using G02DNF.

The residual sum of squares required to calculate the standard errors and the variance-covariance matrix
can either be input or can be calculated if additional information on c for the whole sample is provided.
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

Searle S R (1971) Linear Models Wiley

5 Arguments

1: N – INTEGER Input

On entry: the number of observations.

Constraint: N � 1.

2: IP – INTEGER Input

On entry: p, the number of terms in the regression model.

Constraint: IP � 1.

3: QðLDQ; IPþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: must be the array Q as output by G02DCF, G02DEF, G02DFF or G02EEF. If on entry
RSS � 0:0 then all N elements of c are needed. This is provided by routines G02DEF, G02DFF
or G02EEF.

4: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which
G02DDF is called.

Constraints:

if RSS � 0:0, LDQ � N;
otherwise LDQ � IP.

5: RSS – REAL (KIND=nag_wp) Input/Output

On entry: either the residual sum of squares or a value less than or equal to 0:0 to indicate that
the residual sum of squares is to be calculated by the routine.

On exit: if RSS � 0:0 on entry, then on exit RSS will contain the residual sum of squares as
calculated by G02DDF.

If RSS was positive on entry, it will be unchanged.

6: IDF – INTEGER Output

On exit: the degrees of freedom associated with the residual sum of squares.

7: BðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the estimates of the p parameters, �̂.

8: SEðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors of the p parameters given in B.

9: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper triangular part of the variance-covariance matrix of the p parameter estimates
given in B. They are stored packed by column, i.e., the covariance between the parameter
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estimate given in BðiÞ and the parameter estimate given in BðjÞ, j � i, is stored in
COVðj� j� 1ð Þ=2þ iÞ.

10: SVD – LOGICAL Output

On exit: if a singular value decomposition has been performed, SVD ¼ :TRUE:, otherwise
SVD ¼ :FALSE:.

11: IRANK – INTEGER Output

On exit: the rank of the independent variables.

If SVD ¼ :FALSE:, IRANK ¼ IP.

If SVD ¼ :TRUE:, IRANK is an estimate of the rank of the independent variables.

IRANK is calculated as the number of singular values greater than TOL� (largest singular
value). It is possible for the SVD to be carried out but IRANK to be returned as IP.

12: PðIP� IPþ 2� IPÞ – REAL (KIND=nag_wp) array Output

On exit: contains details of the singular value decomposition if used.

If SVD ¼ :FALSE:, P is not referenced.

If SVD ¼ :TRUE:, the first IP elements of P will not be referenced, the next IP values contain the
singular values. The following IP� IP values contain the matrix P � stored by columns.

13: TOL – REAL (KIND=nag_wp) Input

On entry: the value of TOL is used to decide if the independent variables are of full rank and, if
not, what is the rank of the independent variables. The smaller the value of TOL the stricter the
criterion for selecting the singular value decomposition. If TOL ¼ 0:0, the singular value
decomposition will never be used, this may cause run time errors or inaccuracies if the
independent variables are not of full rank.

Suggested value: TOL ¼ 0:000001.

Constraint: TOL � 0:0.

14: WKðIP� IPþ IP� 1ð Þ � 5Þ – REAL (KIND=nag_wp) array Workspace

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or IP < 1,
or LDQ < IP,
or LDQ < N,
or TOL < 0:0.

IFAIL ¼ 2

The degrees of freedom for error are less than or equal to 0. In this case the estimates of � are
returned but not the standard errors or covariances.

IFAIL ¼ 3

The singular value decomposition, if used, has failed to converge, see F02WUF. This is an
unlikely error exit.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the results will depend on the accuracy of the input R matrix, which may lose accuracy
if a large number of observations or variables have been dropped.

8 Parallelism and Performance

G02DDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02DDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.
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10 Example

A dataset consisting of 12 observations and four independent variables is input and a regression model
fitted by calls to G02DEF. The arguments are then calculated by G02DDF and the results printed.

10.1 Program Text

Program g02ddfe

! G02DDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02ddf, g02def, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rss, tol
Integer :: i, idf, ifail, ip, irank, ldq, lwt, &

m, n
Logical :: svd
Character (1) :: weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), p(:), q(:,:), se(:), &

wk(:), wt(:), x(:,:)
! .. Executable Statements ..

Write (nout,*) ’G02DDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, weight

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldq = n
Allocate (b(m),cov(m*(m+1)/2),p(m*(m+2)),q(ldq,m+1),se(m),wk(m*m+5*m),wt &

(n),x(n,m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),q(i,1),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),q(i,1),i=1,n)
End If

! Use suggested value for tolerance
tol = 0.000001E0_nag_wp

! Fit general linear regression model, adding each variable in turn
ip = 0
Do i = 1, m

ifail = -1
Call g02def(weight,n,ip,q,ldq,p,wt,x(1,i),rss,tol,ifail)
If (ifail==0) Then

ip = ip + 1
Else If (ifail==3) Then

Write (nout,99996) ’ * Variable ’, ip, &
’ is linear combination of previous columns’

Write (nout,99996) ’ so it has not been added’
Else
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Go To 100
End If

End Do

! Get G02DDF to calculate RSS
rss = 0.0E0_nag_wp

! Calculate parameter estimates, RSS etc
ifail = 0
Call g02ddf(n,ip,q,ldq,rss,idf,b,se,cov,svd,irank,p,tol,wk,ifail)

! Display results
If (svd) Then

Write (nout,*) ’Model not of full rank’
Write (nout,*)

End If
Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’Variable Parameter estimate Standard error’
Write (nout,*)
Write (nout,99997)(i,b(i),se(i),i=1,ip)

100 Continue

99999 Format (1X,A,E12.4)
99998 Format (1X,A,I4)
99997 Format (1X,I6,2E20.4)
99996 Format (1X,A,I0,A)

End Program g02ddfe

10.2 Program Data

G02DDF Example Program Data
12 4 ’U’

1.0 0.0 0.0 0.0 33.63
0.0 0.0 0.0 1.0 39.62
0.0 1.0 0.0 0.0 38.18
0.0 0.0 1.0 0.0 41.46
0.0 0.0 0.0 1.0 38.02
0.0 1.0 0.0 0.0 35.83
0.0 0.0 0.0 1.0 35.99
1.0 0.0 0.0 0.0 36.58
0.0 0.0 1.0 0.0 42.92
1.0 0.0 0.0 0.0 37.80
0.0 0.0 1.0 0.0 40.43
0.0 1.0 0.0 0.0 37.89

10.3 Program Results

G02DDF Example Program Results

Residual sum of squares = 0.2223E+02
Degrees of freedom = 8

Variable Parameter estimate Standard error

1 0.3600E+02 0.9623E+00
2 0.3730E+02 0.9623E+00
3 0.4160E+02 0.9623E+00
4 0.3788E+02 0.9623E+00
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NAG Library Routine Document

G02DEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02DEF adds a new independent variable to a general linear regression model.

2 Specification

SUBROUTINE G02DEF (WEIGHT, N, IP, Q, LDQ, P, WT, X, RSS, TOL, IFAIL)

INTEGER N, IP, LDQ, IFAIL
REAL (KIND=nag_wp) Q(LDQ,IP+2), P(IP+1), WT(*), X(N), RSS, TOL
CHARACTER(1) WEIGHT

3 Description

A linear regression model may be built up by adding new independent variables to an existing model.
G02DEF updates the QR decomposition used in the computation of the linear regression model. The
QR decomposition may come from G02DAF or a previous call to G02DEF. The general linear
regression model is defined by

y ¼ X� þ �;

where y is a vector of n observations on the dependent variable,

X is an n by p matrix of the independent variables of column rank k,

� is a vector of length p of unknown arguments,

and � is a vector of length n of unknown random errors such that var � ¼ V �2, where V is a known
diagonal matrix.

If V ¼ I, the identity matrix, then least squares estimation is used. If V 6¼ I, then for a given weight
matrix W / V �1, weighted least squares estimation is used.

The least squares estimates, �̂ of the arguments � minimize y�X�ð ÞT y�X�ð Þ while the weighted
least squares estimates, minimize y�X�ð ÞTW y�X�ð Þ.

The parameter estimates may be found by computing a QR decomposition of X (or W
1
2X in the

weighted case), i.e.,

X ¼ QR� or W
1
2X ¼ QR�

� �
;

where R� ¼ R
0

� �
and R is a p by p upper triangular matrix and Q is an n by n orthogonal matrix.

If R is of full rank, then �̂ is the solution to

R�̂ ¼ c1;

where c ¼ QTy (or QTW
1
2y) and c1 is the first p elements of c.

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R.
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To add a new independent variable, xpþ1, R and c have to be updated. The matrix Qpþ1 is found such

that QT
pþ1 R : QTxpþ1
� �

(or QT
pþ1 R : QTW

1
2xpþ1

h i
) is upper triangular. The vector c is then updated by

multiplying by QT
pþ1.

The new independent variable is tested to see if it is linearly related to the existing independent
variables by checking that at least one of the values QTxpþ1

� �
i
, for i ¼ pþ 2; . . . ; n, is nonzero.

The new parameter estimates, �̂, can then be obtained by a call to G02DDF.

The routine can be used with p ¼ 0, in which case R and c are initialized.

4 References

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall

Searle S R (1971) Linear Models Wiley

5 Arguments

1: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
Least squares estimation is used.

WEIGHT ¼ W
Weighted least squares is used and weights must be supplied in array WT.

Constraint: WEIGHT ¼ U or W.

2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

3: IP – INTEGER Input

On entry: p, the number of independent variables already in the model.

Constraint: IP � 0 and IP < N.

4: QðLDQ; IPþ 2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if IP 6¼ 0, Q must contain the results of the QR decomposition for the model with p
arguments as returned by G02DAF or a previous call to G02DEF.

If IP ¼ 0, the first column of Q should contain the n values of the dependent variable, y.

On exit: the results of the QR decomposition for the model with pþ 1 arguments:

the first column of Q contains the updated value of c;

the columns 2 to IPþ 1 are unchanged;

the first IPþ 1 elements of column IPþ 2 contain the new column of R, while the
remaining N� IP� 1 elements contain details of the matrix Qpþ1.
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5: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which G02DEF
is called.

Constraint: LDQ � N.

6: PðIPþ 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: contains further details of the QR decomposition used. The first IP elements of P must
contain the zeta values for the QR decomposition (see F08AEF (DGEQRF) for details).

The first IP elements of array P are provided by G02DAF or by previous calls to G02DEF.

On exit: the first IP elements of P are unchanged and the IPþ 1ð Þth element contains the zeta
value for Qpþ1.

7: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W , WT must contain the weights to be used.

If WTðiÞ ¼ 0:0, the ith observation is not included in the model, in which case the effective
number of observations is the number of observations with nonzero weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is n.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

8: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the new independent variable.

9: RSS – REAL (KIND=nag_wp) Output

On exit: the residual sum of squares for the new fitted model.

Note: this will only be valid if the model is of full rank, see Section 9.

10: TOL – REAL (KIND=nag_wp) Input

On entry: the value of TOL is used to decide if the new independent variable is linearly related to
independent variables already included in the model. If the new variable is linearly related then c
is not updated. The smaller the value of TOL the stricter the criterion for deciding if there is a
linear relationship.

Suggested value: TOL ¼ 0:000001.

Constraint: TOL > 0:0.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02DEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or IP < 0,
or IP � N,
or LDQ < N,
or TOL � 0:0,
or WEIGHT 6¼ U or W.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WT < 0:0.

IFAIL ¼ 3

The new independent variable is a linear combination of existing variables. The IPþ 2ð Þth
column of Q will therefore be null.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is closely related to the accuracy of F08AGF (DORMQR) which should be consulted for
further details.

8 Parallelism and Performance

G02DEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02DEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

It should be noted that the residual sum of squares produced by G02DEF may not be correct if the
model to which the new independent variable is added is not of full rank. In such a case G02DDF
should be used to calculate the residual sum of squares.

10 Example

A dataset consisting of 12 observations is read in. The four independent variables are stored in the array
X while the dependent variable is read into the first column of Q. If the character variable mean
indicates that a mean should be included in the model a variable taking the value 1:0 for all
observations is set up and fitted. Subsequently, one variable at a time is selected to enter the model as
indicated by the input value of indx. After the variable has been added the parameter estimates are
calculated by G02DDF and the results printed. This is repeated until the input value of indx is 0.

10.1 Program Text

Program g02defe

! G02DEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02ddf, g02def, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rss, rsst, tol
Integer :: i, idf, ifail, ip, irank, ldq, lwt, &

m, n
Logical :: svd
Character (1) :: weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), p(:), q(:,:), se(:), &

wk(:), wt(:), x(:)
! .. Executable Statements ..

Write (nout,*) ’G02DEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, weight

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldq = n
Allocate (b(m),cov(m*(m+1)/2),p(m*(m+2)),q(ldq,m+1),se(m),wk(m*m+5*m),wt &

(n),x(n))

! Read in the dependent variable, Y, and store in first column of Q
Read (nin,*) q(1:n,1)

! Read in weights
If (lwt>0) Then

Read (nin,*) wt(1:n)
End If

! Use suggested value for tolerance
tol = 0.000001E0_nag_wp
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! Loop over each of the supplied variables
ip = 0

u_lp: Do
Read (nin,*,Iostat=ifail) x(1:n)
If (ifail/=0) Then

Exit u_lp
End If

! Add the new variable to the model
ifail = -1
Call g02def(weight,n,ip,q,ldq,p,wt,x,rss,tol,ifail)
If (ifail/=0) Then

If (ifail==3) Then
Write (nout,99999) ’ * Variable ’, ip, &

’ is linear combination of previous columns’
Write (nout,*) ’ so it has not been added’
Write (nout,*)
Cycle u_lp

Else
Go To 100

End If
End If

ip = ip + 1
Write (nout,99999) ’Variable ’, ip, ’ added’

! Get G02DDF to recalculate RSS
rsst = 0.0E0_nag_wp

! Calculate the parameter estimates
ifail = 0
Call g02ddf(n,ip,q,ldq,rsst,idf,b,se,cov,svd,irank,p,tol,wk,ifail)

If (svd) Then
Write (nout,*) ’Model not of full rank’
Write (nout,*)

End If
Write (nout,99998) ’Residual sum of squares = ’, rsst
Write (nout,99999) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’Variable Parameter estimate Standard error’
Write (nout,*)
Write (nout,99997)(i,b(i),se(i),i=1,ip)
Write (nout,*)

End Do u_lp

100 Continue

99999 Format (1X,A,I0,A)
99998 Format (1X,A,E13.4)
99997 Format (1X,I6,2E20.4)

End Program g02defe

10.2 Program Data

G02DEF Example Program Data
12 5 ’U’ :: N, M (max. number of variables), WEIGHT

4.32 5.21 6.49 7.10 7.94 8.53
8.84 9.02 9.27 9.43 9.68 9.83 :: End of Y
1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 :: End of X0 (intercept)
1.0 1.5 2.0 2.5 3.0 3.5
4.0 4.5 5.0 5.5 6.0 6.5 :: End of X1
0.0 0.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 1.0 1.0 :: End of X2
0.0 0.0 0.0 0.0 0.0 0.0
4.0 4.5 5.0 5.5 6.0 6.5 :: End of X3
1.4 2.2 4.5 6.1 7.1 7.7
8.3 8.6 8.8 9.0 9.3 9.2 :: End of X4
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10.3 Program Results

G02DEF Example Program Results

Variable 1 added
Residual sum of squares = 0.3627E+02
Degrees of freedom = 11

Variable Parameter estimate Standard error

1 0.7972E+01 0.5242E+00

Variable 2 added
Residual sum of squares = 0.4016E+01
Degrees of freedom = 10

Variable Parameter estimate Standard error

1 0.4410E+01 0.4376E+00
2 0.9498E+00 0.1060E+00

Variable 3 added
Residual sum of squares = 0.3887E+01
Degrees of freedom = 9

Variable Parameter estimate Standard error

1 0.4224E+01 0.5673E+00
2 0.1055E+01 0.2222E+00
3 -0.4196E+00 0.7670E+00

Variable 4 added
Residual sum of squares = 0.1870E+00
Degrees of freedom = 8

Variable Parameter estimate Standard error

1 0.2760E+01 0.1759E+00
2 0.1706E+01 0.7310E-01
3 0.4458E+01 0.4268E+00
4 -0.1301E+01 0.1034E+00

Variable 5 added
Residual sum of squares = 0.8407E-01
Degrees of freedom = 7

Variable Parameter estimate Standard error

1 0.3144E+01 0.1818E+00
2 0.9075E+00 0.2776E+00
3 0.2079E+01 0.8680E+00
4 -0.6159E+00 0.2453E+00
5 0.2922E+00 0.9981E-01
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NAG Library Routine Document

G02DFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02DFF deletes an independent variable from a general linear regression model.

2 Specification

SUBROUTINE G02DFF (IP, Q, LDQ, INDX, RSS, WK, IFAIL)

INTEGER IP, LDQ, INDX, IFAIL
REAL (KIND=nag_wp) Q(LDQ,IP+1), RSS, WK(2*IP)

3 Description

When selecting a linear regression model it is sometimes useful to drop independent variables from the
model and to examine the resulting sub-model. G02DFF updates the QR decomposition used in the
computation of the linear regression model. The QR decomposition may come from G02DAF or
G02DEF, or a previous call to G02DFF.

For the general linear regression model with p independent variables fitted G02DAF or G02DEF
compute a QR decomposition of the (weighted) independent variables and form an upper triangular
matrix R and a vector c. To remove an independent variable R and c have to be updated. The column of
R corresponding to the variable to be dropped is removed and the matrix is then restored to upper
triangular form by applying a series of Givens rotations. The rotations are then applied to c. Note only
the first p elements of c are affected.

The method used means that while the updated values of R and c are computed an updated value of Q
from the QR decomposition is not available so a call to G02DEF cannot be made after a call to
G02DFF.

G02DDF can be used to calculate the parameter estimates, �̂, from the information provided by
G02DFF.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

5 Arguments

1: IP – INTEGER Input

On entry: p, the number of independent variables already in the model.

Constraint: IP � 1.

2: QðLDQ; IPþ 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the results of the QR decomposition as returned by routines G02DAF, G02DCF,
G02DEF or G02EEF, or previous calls to G02DFF.

On exit: the updated QR decomposition.
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3: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which G02DFF
is called.

Constraint: LDQ � IP.

4: INDX – INTEGER Input

On entry: indicates which independent variable is to be deleted from the model.

Constraint: 1 � INDX � IP.

5: RSS – REAL (KIND=nag_wp) Input/Output

On entry: the residual sum of squares for the full regression.

Constraint: RSS � 0:0.

On exit: the residual sum of squares with the (INDX)th variable removed. Note that the residual
sum of squares will only be valid if the regression is of full rank, otherwise the residual sum of
squares should be obtained using G02DDF.

6: WKð2� IPÞ – REAL (KIND=nag_wp) array Workspace

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP < 1,
or LDQ < IP,
or INDX < 1,
or INDX > IP,
or RSS < 0:0.

IFAIL ¼ 2

On entry, a diagonal element of R is zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

There will inevitably be some loss in accuracy in fitting a model by dropping terms from a more
complex model rather than fitting it afresh using G02DAF.

8 Parallelism and Performance

G02DFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

A dataset consisting of 12 observations on four independent variables and one dependent variable is
read in. The full model, including a mean term, is fitted using G02DAF. The value of INDX is read in
and that variable dropped from the regression. The parameter estimates are calculated by G02DDF and
printed. This process is repeated until INDX is 0.

10.1 Program Text

Program g02dffe

! G02DFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02daf, g02ddf, g02dff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rss, tol
Integer :: i, idf, ifail, indx, ip, irank, ldq, &

ldx, lwk, lwt, m, n
Logical :: svd
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), h(:), p(:), q(:,:), &

res(:), se(:), wk(:), wt(:), x(:,:), &
y(:)

Integer, Allocatable :: isx(:)
! .. Intrinsic Procedures ..
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Intrinsic :: max
! .. Executable Statements ..

Write (nout,*) ’G02DFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, weight, mean

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),isx(m),y(n),wt(lwt))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),y(i),i=1,n)
End If

! Include all variables in the model
isx(1:m) = 1
ip = m
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

lwk = max(5*(ip-1)+ip*ip,2*ip)
ldq = n
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),res(n),h(n),q(ldq,ip+1),p(2*ip+ &

ip*ip),wk(lwk))

! Use suggested value for tolerance
tol = 0.000001E0_nag_wp

! Fit general linear regression model
ifail = 0
Call g02daf(mean,weight,n,x,ldx,m,isx,ip,y,wt,rss,idf,b,se,cov,res,h,q, &

ldq,svd,irank,p,tol,wk,ifail)

! Display results from G02DAF
Write (nout,*) ’Results from full model’
If (svd) Then

Write (nout,*) ’Model not of full rank’
Write (nout,*)

End If
Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)

! Loop over list of variables to drop
u_lp: Do

Read (nin,*,Iostat=ifail) indx
If (ifail/=0) Then

Exit u_lp
End If

If (ip<=0) Then
Write (nout,*) ’No terms left in model’
Exit u_lp

End If

! Drop variable INDX from the model
ifail = 0
Call g02dff(ip,q,ldq,indx,rss,wk,ifail)

ip = ip - 1
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Write (nout,99998) ’Variable’, indx, ’ dropped’

! Calculate parameter estimates etc
ifail = 0
Call g02ddf(n,ip,q,ldq,rss,idf,b,se,cov,svd,irank,p,tol,wk,ifail)

! Display the results for model with variable INDX dropped
Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’Parameter estimate Standard error’
Write (nout,*)
Write (nout,99997)(b(i),se(i),i=1,ip)

End Do u_lp

99999 Format (1X,A,E13.4)
99998 Format (1X,A,I4,A)
99997 Format (1X,E15.4,E20.4)

End Program g02dffe

10.2 Program Data

G02DFF Example Program Data
12 4 ’U’ ’M’ :: N, M, WEIGHT, MEAN

1.0 1.4 0.0 0.0 4.32
1.5 2.2 0.0 0.0 5.21
2.0 4.5 0.0 0.0 6.49
2.5 6.1 0.0 0.0 7.10
3.0 7.1 0.0 0.0 7.94
3.5 7.7 0.0 0.0 8.53
4.0 8.3 1.0 4.0 8.84
4.5 8.6 1.0 4.5 9.02
5.0 8.8 1.0 5.0 9.27
5.5 9.0 1.0 5.5 9.43
6.0 9.3 1.0 6.0 9.68
6.5 9.2 1.0 6.5 9.83 :: End of X, Y
2 :: Start of variables to drop
4

10.3 Program Results

G02DFF Example Program Results

Results from full model
Residual sum of squares = 0.8407E-01
Degrees of freedom = 7

Variable 2 dropped
Residual sum of squares = 0.2124E+00
Degrees of freedom = 8

Parameter estimate Standard error

0.3637E+01 0.1508E+00
0.6126E+00 0.2801E-01

-0.6015E+00 0.4234E+00
0.1671E+00 0.7866E-01

Variable 4 dropped
Residual sum of squares = 0.3322E+00
Degrees of freedom = 9

Parameter estimate Standard error

0.3597E+01 0.1765E+00
0.6209E+00 0.3271E-01
0.2425E+00 0.1724E+00
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NAG Library Routine Document

G02DGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02DGF calculates the estimates of the arguments of a general linear regression model for a new
dependent variable after a call to G02DAF.

2 Specification

SUBROUTINE G02DGF (WEIGHT, N, WT, RSS, IP, IRANK, COV, Q, LDQ, SVD, P,
Y, B, SE, RES, WK, IFAIL)

&

INTEGER N, IP, IRANK, LDQ, IFAIL
REAL (KIND=nag_wp) WT(*), RSS, COV(IP*(IP+1)/2), Q(LDQ,IP+1), P(*),

Y(N), B(IP), SE(IP), RES(N), WK(5*(IP-1)+IP*IP)
&

LOGICAL SVD
CHARACTER(1) WEIGHT

3 Description

G02DGF uses the results given by G02DAF to fit the same set of independent variables to a new
dependent variable.

G02DAF computes a QR decomposition of the matrix of p independent variables and also, if the model
is not of full rank, a singular value decomposition (SVD). These results can be used to compute
estimates of the arguments for a general linear model with a new dependent variable. The QR
decomposition leads to the formation of an upper triangular p by p matrix R and an n by n orthogonal
matrix Q. In addition the vector c ¼ QTy (or QTW 1=2y) is computed. For a new dependent variable,
ynew, G02DGF computes a new value of c ¼ QTynew or QTW 1=2ynew.

If R is of full rank, then the least squares parameter estimates, �̂, are the solution to

R�̂ ¼ c1;

where c1 is the first p elements of c.

If R is not of full rank, then G02DAF will have computed an SVD of R,

R ¼ Q� D 0
0 0

� �
PT;

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R, and Q� and
P are p by p orthogonal matrices. This gives the solution

�̂ ¼ P1D
�1QT

�1c1;

P1 being the first k columns of P , i.e., P ¼ P1P0ð Þ, and Q�1 being the first k columns of Q�. Details of
the SVD are made available by G02DAF in the form of the matrix P �:

P � ¼ D�1P T
1

PT
0

� �
:

The matrix Q� is made available through the workspace of G02DAF.

In addition to parameter estimates, the new residuals are computed and the variance-covariance matrix
of the parameter estimates are found by scaling the variance-covariance matrix for the original
regression.
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

Searle S R (1971) Linear Models Wiley

5 Arguments

1: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
Least squares estimation is used.

WEIGHT ¼ W
Weighted least squares is used and weights must be supplied in array WT.

Constraint: WEIGHT ¼ U or W.

2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � IP.

3: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W >, WT must contain the weights to be used in the weighted
regression.

If WTðiÞ ¼ 0:0, the ith observation is not included in the model, in which case the effective
number of observations is the number of observations with nonzero weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is n.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

4: RSS – REAL (KIND=nag_wp) Input/Output

On entry: the residual sum of squares for the original dependent variable.

On exit: the residual sum of squares for the new dependent variable.

Constraint: RSS > 0:0.

5: IP – INTEGER Input

On entry: p, the number of independent variables (including the mean if fitted).

Constraint: 1 � IP � N.

6: IRANK – INTEGER Input

On entry: the rank of the independent variables, as given by G02DAF.

Constraint: IRANK > 0, and if SVD ¼ :FALSE:, then IRANK ¼ IP, else IRANK � IP.

7: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the covariance matrix of the parameter estimates as given by G02DAF.
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On exit: the upper triangular part of the variance-covariance matrix of the IP parameter estimates
given in B. They are stored packed by column, i.e., the covariance between the parameter
estimate given in BðiÞ and the parameter estimate given in BðjÞ, j � i, is stored in
COVð j� j� 1ð Þ=2þ ið ÞÞ.

8: QðLDQ; IPþ 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the results of the QR decomposition as returned by G02DAF.

On exit: the first column of Q contains the new values of c, the remainder of Q will be
unchanged.

9: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which
G02DGF is called.

Constraint: LDQ � N.

10: SVD – LOGICAL Input

On entry: indicates if a singular value decomposition was used by G02DAF.

SVD ¼ :TRUE:
A singular value decomposition was used by G02DAF.

SVD ¼ :FALSE:
A singular value decomposition was not used by G02DAF.

11: Pð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array P must be at least IP if SVD ¼ :FALSE:, and at least
IP� IPþ 2� IP otherwise.

On entry: details of the QR decomposition and SVD, if used, as returned in array P by G02DAF.

If SVD ¼ :FALSE:, only the first IP elements of P are used; these contain the zeta values for the
QR decomposition (see F08AEF (DGEQRF) for details).

If SVD ¼ :TRUE:, the first IP elements of P contain the zeta values for the QR decomposition
(see F08AEF (DGEQRF) for details) and the next IP� IPþ IP elements of P contain details of
the singular value decomposition.

12: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the new dependent variable, ynew.

13: BðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the least squares estimates of the parameters of the regression model, �̂.

14: SEðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the standard error of the estimates of the parameters.

15: RESðNÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals for the new regression model.

16: WKð5� IP� 1ð Þ þ IP� IPÞ – REAL (KIND=nag_wp) array Input

On entry: if SVD ¼ :TRUE:, WK must be unaltered from the previous call to G02DAF or
G02DGF.

If SVD ¼ :FALSE:, WK is used as workspace.

G02 – Correlation and Regression Analysis G02DGF

Mark 26 G02DGF.3



17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP < 1,
or N < IP,
or IRANK � 0,
or SVD ¼ :FALSE: and IRANK 6¼ IP,
or SVD ¼ :TRUE: and IRANK > IP,
or LDQ < N,
or RSS � 0:0,
or WEIGHT 6¼ U or W.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WT < 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The same accuracy as G02DAF is obtained.

8 Parallelism and Performance

G02DGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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G02DGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The values of the leverages, hi, are unaltered by a change in the dependent variable so a call to
G02FAF can be made using the value of H from G02DAF.

10 Example

A dataset consisting of 12 observations with four independent variables and two dependent variables are
read in. A model with all four independent variables is fitted to the first dependent variable by G02DAF
and the results printed. The model is then fitted to the second dependent variable by G02DGF and those
results printed.

10.1 Program Text

Program g02dgfe

! G02DGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02daf, g02dgf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rss, tol
Integer :: i, idf, ifail, ip, irank, ldq, ldx, &

lwk, lwt, m, n
Logical :: svd
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), h(:), oy(:), p(:), &

q(:,:), res(:), se(:), wk(:), wt(:), &
x(:,:), y(:)

Integer, Allocatable :: isx(:)
! .. Intrinsic Procedures ..

Intrinsic :: count
! .. Executable Statements ..

Write (nout,*) ’G02DGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, weight, mean

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),isx(m),oy(n),y(n),wt(lwt))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),oy(i),wt(i),i=1,n)
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Else
Read (nin,*)(x(i,1:m),oy(i),i=1,n)

End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

lwk = 5*(ip-1) + ip*ip
ldq = n
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),res(n),h(n),q(ldq,ip+1),p(2*ip+ &

ip*ip),wk(lwk))

! Use suggested value for tolerance
tol = 0.000001E0_nag_wp

! Fit general linear regression model to first dependent variable
ifail = 0
Call g02daf(mean,weight,n,x,ldx,m,isx,ip,oy,wt,rss,idf,b,se,cov,res,h,q, &

ldq,svd,irank,p,tol,wk,ifail)

! Display results for model fit to original dependent variable
Write (nout,*) ’Results for original y-variable using G02DAF’
Write (nout,*)
If (svd) Then

Write (nout,*) ’Model not of full rank’
Write (nout,*)

End If
Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’Variable Parameter estimate Standard error’
Write (nout,*)
Write (nout,99997)(i,b(i),se(i),i=1,ip)
Write (nout,*)

! Read in the new dependent variable
Read (nin,*) y(1:n)

! Fit same model to different dependent variable
ifail = 0
Call g02dgf(weight,n,wt,rss,ip,irank,cov,q,ldq,svd,p,y,b,se,res,wk, &

ifail)

! Display results for model fit to new dependent variable
Write (nout,*) ’Results for second y-variable using G02DGF’
Write (nout,*)
Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’Variable Parameter estimate ’, ’Standard error’
Write (nout,*)
Write (nout,99997)(i,b(i),se(i),i=1,ip)

99999 Format (1X,A,E12.4)
99998 Format (1X,A,I4)
99997 Format (1X,I6,2E20.4)

End Program g02dgfe
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10.2 Program Data

G02DGF Example Program Data
12 4 ’U’ ’M’ :: N, M, MEAN, WEIGHT

1.0 0.0 0.0 0.0 33.63
0.0 0.0 0.0 1.0 39.62
0.0 1.0 0.0 0.0 38.18
0.0 0.0 1.0 0.0 41.46
0.0 0.0 0.0 1.0 38.02
0.0 1.0 0.0 0.0 35.83
0.0 0.0 0.0 1.0 35.99
1.0 0.0 0.0 0.0 36.58
0.0 0.0 1.0 0.0 42.92
1.0 0.0 0.0 0.0 37.80
0.0 0.0 1.0 0.0 40.43
0.0 1.0 0.0 0.0 37.89 :: End of X, OY (original dependent variable)
1 1 1 1 :: ISX

63.0 69.0 68.0 71.0 68.0 65.0
65.0 66.0 72.0 67.0 70.0 67.0 :: Y (new dependent variable)

10.3 Program Results

G02DGF Example Program Results

Results for original y-variable using G02DAF

Model not of full rank

Residual sum of squares = 0.2223E+02
Degrees of freedom = 8

Variable Parameter estimate Standard error

1 0.3056E+02 0.3849E+00
2 0.5447E+01 0.8390E+00
3 0.6743E+01 0.8390E+00
4 0.1105E+02 0.8390E+00
5 0.7320E+01 0.8390E+00

Results for second y-variable using G02DGF

Residual sum of squares = 0.2400E+02
Degrees of freedom = 8

Variable Parameter estimate Standard error

1 0.5407E+02 0.4000E+00
2 0.1127E+02 0.8718E+00
3 0.1260E+02 0.8718E+00
4 0.1693E+02 0.8718E+00
5 0.1327E+02 0.8718E+00
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NAG Library Routine Document

G02DKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02DKF calculates the estimates of the arguments of a general linear regression model for given
constraints from the singular value decomposition results.

2 Specification

SUBROUTINE G02DKF (IP, ICONST, P, C, LDC, B, RSS, IDF, SE, COV, WK,
IFAIL)

&

INTEGER IP, ICONST, LDC, IDF, IFAIL
REAL (KIND=nag_wp) P(IP*IP+2*IP), C(LDC,ICONST), B(IP), RSS, SE(IP),

COV(IP*(IP+1)/2),
WK(2*IP*IP+IP*ICONST+2*ICONST*ICONST+4*ICONST)

&
&

3 Description

G02DKF computes the estimates given a set of linear constraints for a general linear regression model
which is not of full rank. It is intended for use after a call to G02DAF or G02DDF.

In the case of a model not of full rank the routines use a singular value decomposition (SVD) to find
the parameter estimates, �̂svd, and their variance-covariance matrix. Details of the SVD are made
available in the form of the matrix P �:

P � ¼ D�1P T
1

PT
0

� �
;

as described by G02DAF and G02DDF.

Alternative solutions can be formed by imposing constraints on the arguments. If there are p arguments
and the rank of the model is k, then nc ¼ p� k constraints will have to be imposed to obtain a unique
solution.

Let C be a p by nc matrix of constraints, such that

CT� ¼ 0

then the new parameter estimates �̂c are given by

�̂c ¼ A�̂svd;

¼ I � P0 C
TP0ð Þ�1

� �
�̂svd;

where I is the identity matrix, and the variance-covariance matrix is given by

AP1D
�2PT

1 A
T;

provided CTP0ð Þ�1 exists.
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

Searle S R (1971) Linear Models Wiley

5 Arguments

1: IP – INTEGER Input

On entry: p, the number of terms in the linear model.

Constraint: IP � 1.

2: ICONST – INTEGER Input

On entry: the number of constraints to be imposed on the arguments, nc.

Constraint: 0 < ICONST < IP.

3: PðIP� IPþ 2� IPÞ – REAL (KIND=nag_wp) array Input

On entry: as returned by G02DAF and G02DDF.

4: CðLDC; ICONSTÞ – REAL (KIND=nag_wp) array Input

On entry: the ICONST constraints stored by column, i.e., the ith constraint is stored in the ith
column of C.

5: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G02DKF
is called.

Constraint: LDC � IP.

6: BðIPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the parameter estimates computed by using the singular value decomposition, �̂svd.

On exit: the parameter estimates of the arguments with the constraints imposed, �̂c.

7: RSS – REAL (KIND=nag_wp) Input

On entry: the residual sum of squares as returned by G02DAF or G02DDF.

Constraint: RSS > 0:0.

8: IDF – INTEGER Input

On entry: the degrees of freedom associated with the residual sum of squares as returned by
G02DAF or G02DDF.

Constraint: IDF > 0.

9: SEðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the standard error of the parameter estimates in B.
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10: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper triangular part of the variance-covariance matrix of the IP parameter estimates
given in B. They are stored packed by column, i.e., the covariance between the parameter
estimate given in BðiÞ and the parameter estimate given in BðjÞ, j � i, is stored in
COVð j� j� 1ð Þ=2þ ið ÞÞ.

11: WKð2� IP� IPþ IP� ICONSTþ 2� ICONST� ICONSTþ 4� ICONSTÞ
– REAL (KIND=nag_wp) array Workspace

Note that a simple upper bound for the size of the workspace is 5� IP� IP.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP < 1,
or ICONST � 0,
or ICONST � IP,
or LDC < IP,
or RSS � 0:0,
or IDF � 0.

IFAIL ¼ 2

C does not give a model of full rank.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

It should be noted that due to rounding errors an argument that should be zero when the constraints
have been imposed may be returned as a value of order machine precision.

8 Parallelism and Performance

G02DKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02DKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02DKF is intended for use in situations in which dummy (0�1) variables have been used such as in
the analysis of designed experiments when you do not wish to change the arguments of the model to
give a full rank model. The routine is not intended for situations in which the relationships between the
independent variables are only approximate.

10 Example

Data from an experiment with four treatments and three observations per treatment are read in. A
model, including the mean term, is fitted by G02DAF and the results printed. The constraint that the
sum of treatment effect is zero is then read in and the parameter estimates with this constraint imposed
are computed by G02DKF and printed.

10.1 Program Text

Program g02dkfe

! G02DKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02daf, g02dkf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rss, tol
Integer :: i, iconst, idf, ifail, ip, irank, &

ldc, ldq, ldx, lwk, lwt, m, n, tlwk
Logical :: svd
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), c(:,:), cov(:), h(:), p(:), &

q(:,:), res(:), se(:), wk(:), wt(:), &
x(:,:), y(:)

Integer, Allocatable :: isx(:)
! .. Intrinsic Procedures ..

Intrinsic :: count
! .. Executable Statements ..

Write (nout,*) ’G02DKF Example Program Results’
Write (nout,*)

! Skip heading in data file
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Read (nin,*)
Read (nin,*) n, m, weight, mean

! Read in data
If (weight==’W’ .Or. weight==’w’) Then

lwt = n
Else

lwt = 0
End If
ldx = n
Allocate (x(ldx,m),isx(m),y(n),wt(lwt))

If (lwt>0) Then
Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)

Else
Read (nin,*)(x(i,1:m),y(i),i=1,n)

End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

lwk = 5*(ip-1) + ip*ip
ldq = n
ldc = ip
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),res(n),h(n),q(ldq,ip+1),p(2*ip+ &

ip*ip),wk(lwk),c(ldc,ip))

! Use suggested value for tolerance
tol = 0.000001E0_nag_wp

! Fit general linear regression model
ifail = 0
Call g02daf(mean,weight,n,x,ldx,m,isx,ip,y,wt,rss,idf,b,se,cov,res,h,q, &

ldq,svd,irank,p,tol,wk,ifail)

! Display the initial estimates
Write (nout,*) ’Estimates from G02DAF’
Write (nout,*)
Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’Variable Parameter estimate Standard error’
Write (nout,*)
Write (nout,99997)(i,b(i),se(i),i=1,ip)

! Read in constraints
iconst = ip - irank
Read (nin,*)(c(i,1:iconst),i=1,ip)

tlwk = 2*ip*ip + ip*iconst + 2*iconst*iconst + 4*iconst
If (tlwk>lwk) Then

! Reallocate workspace
Deallocate (wk)
Allocate (wk(tlwk))

End If

! Re-estimate the parameters given the constraints
ifail = 0
Call g02dkf(ip,iconst,p,c,ldc,b,rss,idf,se,cov,wk,ifail)

! Display the results
Write (nout,*)
Write (nout,*) ’Estimates from G02DKF using constraints’
Write (nout,*)
Write (nout,*) ’Variable Parameter estimate Standard error’
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Write (nout,*)
Write (nout,99997)(i,b(i),se(i),i=1,ip)

99999 Format (1X,A,E13.3)
99998 Format (1X,A,I4)
99997 Format (1X,I6,2E20.3)

End Program g02dkfe

10.2 Program Data

G02DKF Example Program Data
12 4 ’U’ ’M’ :: N, M, MEAN, WEIGHT

1.0 0.0 0.0 0.0 33.63
0.0 0.0 0.0 1.0 39.62
0.0 1.0 0.0 0.0 38.18
0.0 0.0 1.0 0.0 41.46
0.0 0.0 0.0 1.0 38.02
0.0 1.0 0.0 0.0 35.83
0.0 0.0 0.0 1.0 35.99
1.0 0.0 0.0 0.0 36.58
0.0 0.0 1.0 0.0 42.92
1.0 0.0 0.0 0.0 37.80
0.0 0.0 1.0 0.0 40.43
0.0 1.0 0.0 0.0 37.89 :: End of X, Y
1 1 1 1 :: ISX

0.0
1.0
1.0
1.0
1.0 :: C (constraints)

10.3 Program Results

G02DKF Example Program Results

Estimates from G02DAF

Residual sum of squares = 0.222E+02
Degrees of freedom = 8

Variable Parameter estimate Standard error

1 0.306E+02 0.385E+00
2 0.545E+01 0.839E+00
3 0.674E+01 0.839E+00
4 0.110E+02 0.839E+00
5 0.732E+01 0.839E+00

Estimates from G02DKF using constraints

Variable Parameter estimate Standard error

1 0.382E+02 0.481E+00
2 -0.219E+01 0.833E+00
3 -0.896E+00 0.833E+00
4 0.341E+01 0.833E+00
5 -0.319E+00 0.833E+00
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NAG Library Routine Document

G02DNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02DNF gives the estimate of an estimable function along with its standard error.

2 Specification

SUBROUTINE G02DNF (IP, IRANK, B, COV, P, F, EST, STAT, SESTAT, T, TOL,
WK, IFAIL)

&

INTEGER IP, IRANK, IFAIL
REAL (KIND=nag_wp) B(IP), COV(IP*(IP+1)/2), P(IP*IP+2*IP), F(IP),

STAT, SESTAT, T, TOL, WK(IP)
&

LOGICAL EST

3 Description

G02DNF computes the estimates of an estimable function for a general linear regression model which is
not of full rank. It is intended for use after a call to G02DAF or G02DDF. An estimable function is a
linear combination of the arguments such that it has a unique estimate. For a full rank model all linear
combinations of arguments are estimable.

In the case of a model not of full rank the routines use a singular value decomposition (SVD) to find
the parameter estimates, �̂, and their variance-covariance matrix. Given the upper triangular matrix R
obtained from the QR decomposition of the independent variables the SVD gives

R ¼ Q� D 0
0 0

� �
PT;

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R, and Q� and
P are p by p orthogonal matrices. This gives the solution

�̂ ¼ P1D
�1QT

�1c1;

P1 being the first k columns of P , i.e., P ¼ P1P0ð Þ, Q�1 being the first k columns of Q�, and c1 being
the first p elements of c.

Details of the SVD are made available in the form of the matrix P �:

P � ¼ D�1P T
1

PT
0

� �
;

as given by G02DAF and G02DDF.

A linear function of the arguments, F ¼ fT�, can be tested to see if it is estimable by computing
� ¼ PT

0 f . If � is zero, then the function is estimable; if not, the function is not estimable. In practice �j j
is tested against some small quantity �.

Given that F is estimable it can be estimated by fT�̂ and its standard error calculated from the
variance-covariance matrix of �̂, C�, as

se Fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTC�f

q
:

Also a t-statistic,
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t ¼ fT�̂

se Fð Þ;

can be computed. The t-statistic will have a Student's t-distribution with degrees of freedom as given by
the degrees of freedom for the residual sum of squares for the model.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

Searle S R (1971) Linear Models Wiley

5 Arguments

1: IP – INTEGER Input

On entry: p, the number of terms in the linear model.

Constraint: IP � 1.

2: IRANK – INTEGER Input

On entry: k, the rank of the independent variables.

Constraint: 1 � IRANK � IP.

3: BðIPÞ – REAL (KIND=nag_wp) array Input

On entry: the IP values of the estimates of the arguments of the model, �̂.

4: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the upper triangular part of the variance-covariance matrix of the IP parameter
estimates given in B. They are stored packed by column, i.e., the covariance between the
parameter estimate given in BðiÞ and the parameter estimate given in BðjÞ, j � i, is stored in
COVð j� j� 1ð Þ=2þ ið ÞÞ.

5: PðIP� IPþ 2� IPÞ – REAL (KIND=nag_wp) array Input

On entry: as returned by G02DAF and G02DDF.

6: FðIPÞ – REAL (KIND=nag_wp) array Input

On entry: f , the linear function to be estimated.

7: EST – LOGICAL Output

On exit: indicates if the function was estimable.

EST ¼ :TRUE:
The function is estimable.

EST ¼ :FALSE:
The function is not estimable and STAT, SESTAT and T are not set.

8: STAT – REAL (KIND=nag_wp) Output

On exit: if EST ¼ :TRUE:, STAT contains the estimate of the function, fT�̂.
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9: SESTAT – REAL (KIND=nag_wp) Output

On exit: if EST ¼ :TRUE:, SESTAT contains the standard error of the estimate of the function,
se Fð Þ.

10: T – REAL (KIND=nag_wp) Output

On exit: if EST ¼ :TRUE:, T contains the t-statistic for the test of the function being equal to
zero.

11: TOL – REAL (KIND=nag_wp) Input

On entry: �, the tolerance value used in the check for estimability.

TOL � 0:0ffiffi
�
p

, where � is the machine precision, is used instead.

12: WKðIPÞ – REAL (KIND=nag_wp) array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02DNF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP < 1,
or IRANK < 1,
or IRANK > IP.

IFAIL ¼ 2

On entry, IRANK ¼ IP. In this case EST is returned as true and all statistics are calculated.

IFAIL ¼ 3

Standard error of statistic ¼ 0:0; this may be due to rounding errors if the standard error is very
small or due to mis-specified inputs COV and F.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G02DNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The value of estimable functions is independent of the solution chosen from the many possible
solutions. While G02DNF may be used to estimate functions of the arguments of the model as
computed by G02DKF, �c, these must be expressed in terms of the original arguments, �. The relation
between the two sets of arguments may not be straightforward.

10 Example

Data from an experiment with four treatments and three observations per treatment are read in. A
model, with a mean term, is fitted by G02DAF. The number of functions to be tested is read in, then the
linear functions themselves are read in and tested with G02DNF. The results of G02DNF are printed.

10.1 Program Text

Program g02dnfe

! G02DNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02daf, g02dnf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rss, sestat, stat, t, tol
Integer :: i, idf, ifail, ip, irank, ldq, ldx, &

lwk, lwt, m, n
Logical :: est, svd
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), f(:), h(:), p(:), &

q(:,:), res(:), se(:), wk(:), wt(:), &
x(:,:), y(:)

Integer, Allocatable :: isx(:)
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! .. Intrinsic Procedures ..
Intrinsic :: count, max

! .. Executable Statements ..
Write (nout,*) ’G02DNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, weight, mean

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),isx(m),y(n),wt(lwt))

If (lwt>0) Then
Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)

Else
Read (nin,*)(x(i,1:m),y(i),i=1,n)

End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

lwk = max(5*(ip-1)+ip*ip,ip)
ldq = n
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),res(n),h(n),q(ldq,ip+1),p(2*ip+ &

ip*ip),wk(lwk),f(ip))

! Use suggested value for tolerance
tol = 0.000001E0_nag_wp

! Fit general linear regression model
ifail = 0
Call g02daf(mean,weight,n,x,ldx,m,isx,ip,y,wt,rss,idf,b,se,cov,res,h,q, &

ldq,svd,irank,p,tol,wk,ifail)

! Display initial parameter estimates
Write (nout,*) ’Estimates from G02DAF’
Write (nout,*)
Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’Variable Parameter estimate Standard error’
Write (nout,*)
Write (nout,99997)(i,b(i),se(i),i=1,ip)
Write (nout,*)

i = 0
estfn_lp: Do

Read (nin,*,Iostat=ifail) f(1:ip)
If (ifail/=0) Then

Exit estfn_lp
End If

i = i + 1

! Compute the estimable function
ifail = -1
Call g02dnf(ip,irank,b,cov,p,f,est,stat,sestat,t,tol,wk,ifail)
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If (ifail/=0) Then
If (ifail/=2) Then

Go To 100
End If

End If

! Display results
Write (nout,99996) ’Function ’, i
Write (nout,*)
Write (nout,99995) f(1:ip)
Write (nout,*)
If (est) Then

Write (nout,99994) ’STAT = ’, stat, ’ SE = ’, sestat, ’ T = ’, t
Else

Write (nout,*) ’Function not estimable’
End If
Write (nout,*)

End Do estfn_lp

100 Continue

99999 Format (1X,A,E12.4)
99998 Format (1X,A,I4)
99997 Format (1X,I6,2E20.4)
99996 Format (1X,A,I4)
99995 Format (1X,5F8.2)
99994 Format (1X,A,F10.4,A,F10.4,A,F10.4)

End Program g02dnfe

10.2 Program Data

G02DNF Example Program Data
12 4 ’U’ ’M’ :: N, M, WEIGHT, MEAN

1.0 0.0 0.0 0.0 33.63
0.0 0.0 0.0 1.0 39.62
0.0 1.0 0.0 0.0 38.18
0.0 0.0 1.0 0.0 41.46
0.0 0.0 0.0 1.0 38.02
0.0 1.0 0.0 0.0 35.83
0.0 0.0 0.0 1.0 35.99
1.0 0.0 0.0 0.0 36.58
0.0 0.0 1.0 0.0 42.92
1.0 0.0 0.0 0.0 37.80
0.0 0.0 1.0 0.0 40.43
0.0 1.0 0.0 0.0 37.89 :: End of X, Y
1 1 1 1 :: ISX
1.0 1.0 0.0 0.0 0.0 :: Estimable function 1
0.0 1.0 -1.0 0.0 0.0 :: Estimable function 2
0.0 1.0 0.0 0.0 0.0 :: Estimable function 3

10.3 Program Results

G02DNF Example Program Results

Estimates from G02DAF

Residual sum of squares = 0.2223E+02
Degrees of freedom = 8

Variable Parameter estimate Standard error

1 0.3056E+02 0.3849E+00
2 0.5447E+01 0.8390E+00
3 0.6743E+01 0.8390E+00
4 0.1105E+02 0.8390E+00
5 0.7320E+01 0.8390E+00

Function 1

1.00 1.00 0.00 0.00 0.00
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STAT = 36.0033 SE = 0.9623 T = 37.4119

Function 2

0.00 1.00 -1.00 0.00 0.00

STAT = -1.2967 SE = 1.3610 T = -0.9528

Function 3

0.00 1.00 0.00 0.00 0.00

Function not estimable
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NAG Library Routine Document

G02EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02EAF calculates the residual sums of squares for all possible linear regressions for a given set of
independent variables.

2 Specification

SUBROUTINE G02EAF (MEAN, WEIGHT, N, M, X, LDX, VNAME, ISX, Y, WT, NMOD,
MODL, LDMODL, RSS, NTERMS, MRANK, WK, IFAIL)

&

INTEGER N, M, LDX, ISX(M), NMOD, LDMODL, NTERMS(LDMODL),
MRANK(LDMODL), IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), Y(N), WT(*), RSS(LDMODL), WK(N*(M+1))
CHARACTER(*) VNAME(M), MODL(LDMODL,M)
CHARACTER(1) MEAN, WEIGHT

3 Description

For a set of k possible independent variables there are 2k linear regression models with from zero to k
independent variables in each model. For example if k ¼ 3 and the variables are A, B and C then the
possible models are:

(i) null model

(ii) A

(iii) B

(iv) C

(v) A and B

(vi) A and C

(vii) B and C

(viii) A, B and C.

G02EAF calculates the residual sums of squares from each of the 2k possible models. The method used
involves a QR decomposition of the matrix of possible independent variables. Independent variables are
then moved into and out of the model by a series of Givens rotations and the residual sums of squares
computed for each model; see Clark (1981) and Smith and Bremner (1989).

The computed residual sums of squares are then ordered first by increasing number of terms in the
model, then by decreasing size of residual sums of squares. So the first model will always have the
largest residual sum of squares and the 2k th will always have the smallest. This aids you in selecting the
best possible model from the given set of independent variables.

G02EAF allows you to specify some independent variables that must be in the model, the forced
variables. The other independent variables from which the possible models are to be formed are the free
variables.
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4 References

Clark M R B (1981) A Givens algorithm for moving from one linear model to another without going
back to the data Appl. Statist. 30 198–203

Smith D M and Bremner J M (1989) All possible subset regressions using the QR decomposition
Comput. Statist. Data Anal. 7 217–236

Weisberg S (1985) Applied Linear Regression Wiley

5 Arguments

1: MEAN – CHARACTER(1) Input

On entry: indicates if a mean term is to be included.

MEAN ¼ M
A mean term, intercept, will be included in the model.

MEAN ¼ Z
The model will pass through the origin, zero-point.

Constraint: MEAN ¼ M or Z .

2: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
Least squares estimation is used.

WEIGHT ¼ W
Weighted least squares is used and weights must be supplied in array WT.

Constraint: WEIGHT ¼ U or W.

3: N – INTEGER Input

On entry: n, the number of observations.

Constraints:

N � 2;
N � m, is the number of independent variables to be considered (forced plus free plus
mean if included), as specified by MEAN and ISX.

4: M – INTEGER Input

On entry: the number of variables contained in X.

Constraint: M � 2.

5: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation for the jth independent variable, for
i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;M.

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02EAF
is called.

Constraint: LDX � N.
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7: VNAMEðMÞ – CHARACTER(*) array Input

On entry: VNAMEðjÞ must contain the name of the variable in column j of X, for
j ¼ 1; 2; . . . ;M.

8: ISXðMÞ – INTEGER array Input

On entry: indicates which independent variables are to be considered in the model.

ISXðjÞ � 2
The variable contained in the jth column of X is included in all regression models, i.e., is
a forced variable.

ISXðjÞ ¼ 1
The variable contained in the jth column of X is included in the set from which the
regression models are chosen, i.e., is a free variable.

ISXðjÞ ¼ 0
The variable contained in the jth column of X is not included in the models.

Constraints:

ISXðjÞ � 0, for j ¼ 1; 2; . . . ;M;
at least one value of ISX ¼ 1.

9: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: YðiÞ must contain the ith observation on the dependent variable, yi, for i ¼ 1; 2; . . . ; n.

10: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W .

On entry: if WEIGHT ¼ W , WT must contain the weights to be used in the weighted regression.

If WTðiÞ ¼ 0:0, the ith observation is not included in the model, in which case the effective
number of observations is the number of observations with nonzero weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is N.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

11: NMOD – INTEGER Output

On exit: the total number of models for which residual sums of squares have been calculated.

12: MODLðLDMODL;MÞ – CHARACTER(*) array Output

On exit: the first NTERMSðiÞ elements of the ith row of MODL contain the names of the
independent variables, as given in VNAME, that are included in the ith model.

Constraint: the length of MODL should be greater or equal to the length of VNAME.

13: LDMODL – INTEGER Input

On entry: the first dimension of the array MODL and the dimension of the arrays RSS, NTERMS
and MRANK as declared in the (sub)program from which G02EAF is called.

Constraints:

LDMODL � M;
LDMODL � 2k , k is the number of free variables in the model as specified in ISX, and
hence 2k is the total number of models to be generated.

14: RSSðLDMODLÞ – REAL (KIND=nag_wp) array Output

On exit: RSSðiÞ contains the residual sum of squares for the ith model, for i ¼ 1; 2; . . . ;NMOD.

G02 – Correlation and Regression Analysis G02EAF

Mark 26 G02EAF.3



15: NTERMSðLDMODLÞ – INTEGER array Output

On exit: NTERMSðiÞ contains the number of independent variables in the ith model, not
including the mean if one is fitted, for i ¼ 1; 2; . . . ;NMOD.

16: MRANKðLDMODLÞ – INTEGER array Output

On exit: MRANKðiÞ contains the rank of the residual sum of squares for the ith model.

17: WKðN� Mþ 1ð ÞÞ – REAL (KIND=nag_wp) array Workspace

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or M < 2,
or LDX < N,
or LDMODL < M,
or MEAN 6¼ M or Z ,
or WEIGHT 6¼ U or W.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WT < 0:0.

IFAIL ¼ 3

On entry, a value of ISX < 0,
or there are no free variables, i.e., no element of ISX ¼ 1.

IFAIL ¼ 4

On entry, LDMODL < the number of possible models ¼ 2k , where k is the number of free
independent variables from ISX.

IFAIL ¼ 5

On entry, the number of independent variables to be considered (forced plus free plus mean if
included) is greater or equal to the effective number of observations.
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IFAIL ¼ 6

The full model is not of full rank, i.e., some of the independent variables may be linear
combinations of other independent variables. Variables must be excluded from the model in order
to give full rank.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a discussion of the improved accuracy obtained by using a method based on the QR decomposition
see Smith and Bremner (1989).

8 Parallelism and Performance

G02EAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02EAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02ECF may be used to compute R2 and Cp-values from the results of G02EAF.

If a mean has been included in the model and no variables are forced in then RSSð1Þ contains the total
sum of squares and in many situations a reasonable estimate of the variance of the errors is given by
RSSðNMODÞ= N� 1� NTERMSðNMODÞð Þ.

10 Example

The data for this example is given in Weisberg (1985). The independent variables and the dependent
variable are read, as are the names of the variables. These names are as given in Weisberg (1985). The
residual sums of squares computed and printed with the names of the variables in the model.
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10.1 Program Text

Program g02eafe

! G02EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02eaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6, vnlen = 3

! .. Local Scalars ..
Integer :: i, ifail, k, ldmodl, ldx, lwt, m, n, &

nmod
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rss(:), wk(:), wt(:), x(:,:), y(:)
Integer, Allocatable :: isx(:), mrank(:), nterms(:)
Character (vnlen), Allocatable :: modl(:,:), vname(:)

! .. Intrinsic Procedures ..
Intrinsic :: count, max

! .. Executable Statements ..
Write (nout,*) ’G02EAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, mean, weight

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),vname(m),isx(m),y(n),wt(lwt))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),y(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in first VNLEN characters of the variable names
Read (nin,*) vname(1:m)

! Calculate the number of free variables
k = count(isx(1:m)==1)

ldmodl = max(m,2**k)
Allocate (modl(ldmodl,m),rss(ldmodl),nterms(ldmodl),mrank(ldmodl),wk(n*( &

m+1)))

! Calculate residual sums of squares for all possible models
ifail = 0
Call g02eaf(mean,weight,n,m,x,ldx,vname,isx,y,wt,nmod,modl,ldmodl,rss, &

nterms,mrank,wk,ifail)

! Display results
Write (nout,*) ’Number of RSS RANK MODL’
Write (nout,*) ’parameters’
Do i = 1, nmod
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Write (nout,99999) nterms(i), rss(i), mrank(i), modl(i,1:nterms(i))
End Do

99999 Format (1X,I8,F11.4,I4,3X,5(1X,A))
End Program g02eafe

10.2 Program Data

G02EAF Example Program Data
20 6 ’M’ ’U’ :: N,M,MEAN,WEIGHT
0.0 1125.0 232.0 7160.0 85.9 8905.0 1.5563
7.0 920.0 268.0 8804.0 86.5 7388.0 0.8976

15.0 835.0 271.0 8108.0 85.2 5348.0 0.7482
22.0 1000.0 237.0 6370.0 83.8 8056.0 0.7160
29.0 1150.0 192.0 6441.0 82.1 6960.0 0.3010
37.0 990.0 202.0 5154.0 79.2 5690.0 0.3617
44.0 840.0 184.0 5896.0 81.2 6932.0 0.1139
58.0 650.0 200.0 5336.0 80.6 5400.0 0.1139
65.0 640.0 180.0 5041.0 78.4 3177.0 -0.2218
72.0 583.0 165.0 5012.0 79.3 4461.0 -0.1549
80.0 570.0 151.0 4825.0 78.7 3901.0 0.0000
86.0 570.0 171.0 4391.0 78.0 5002.0 0.0000
93.0 510.0 243.0 4320.0 72.3 4665.0 -0.0969

100.0 555.0 147.0 3709.0 74.9 4642.0 -0.2218
107.0 460.0 286.0 3969.0 74.4 4840.0 -0.3979
122.0 275.0 198.0 3558.0 72.5 4479.0 -0.1549
129.0 510.0 196.0 4361.0 57.7 4200.0 -0.2218
151.0 165.0 210.0 3301.0 71.8 3410.0 -0.3979
171.0 244.0 327.0 2964.0 72.5 3360.0 -0.5229
220.0 79.0 334.0 2777.0 71.9 2599.0 -0.0458 :: End of X, Y
0 1 1 1 1 1 :: ISX

’DAY’ ’BOD’ ’TKN’ ’TS ’ ’TVS’ ’COD’ :: VNAME

10.3 Program Results

G02EAF Example Program Results

Number of RSS RANK MODL
parameters

0 5.0634 32
1 5.0219 31 TKN
1 2.5044 30 TVS
1 2.0338 28 BOD
1 1.5563 25 COD
1 1.5370 24 TS
2 2.4381 29 TKN TVS
2 1.7462 27 BOD TVS
2 1.5921 26 BOD TKN
2 1.4963 23 BOD COD
2 1.4707 22 TKN TS
2 1.4590 21 TS TVS
2 1.4397 20 BOD TS
2 1.4388 19 TKN COD
2 1.3287 15 TVS COD
2 1.0850 8 TS COD
3 1.4257 18 BOD TKN TVS
3 1.3900 17 TKN TS TVS
3 1.3894 16 BOD TS TVS
3 1.3204 14 BOD TVS COD
3 1.2764 13 BOD TKN COD
3 1.2582 12 BOD TKN TS
3 1.2179 10 TKN TVS COD
3 1.0644 7 BOD TS COD
3 1.0634 6 TS TVS COD
3 0.9871 4 TKN TS COD
4 1.2199 11 BOD TKN TS TVS
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4 1.1565 9 BOD TKN TVS COD
4 1.0388 5 BOD TS TVS COD
4 0.9871 3 BOD TKN TS COD
4 0.9653 2 TKN TS TVS COD
5 0.9652 1 BOD TKN TS TVS COD
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NAG Library Routine Document

G02ECF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02ECF calculates R2 and Cp-values from the residual sums of squares for a series of linear regression
models.

2 Specification

SUBROUTINE G02ECF (MEAN, N, SIGSQ, TSS, NMOD, NTERMS, RSS, RSQ, CP,
IFAIL)

&

INTEGER N, NMOD, NTERMS(NMOD), IFAIL
REAL (KIND=nag_wp) SIGSQ, TSS, RSS(NMOD), RSQ(NMOD), CP(NMOD)
CHARACTER(1) MEAN

3 Description

When selecting a linear regression model for a set of n observations a balance has to be found between
the number of independent variables in the model and fit as measured by the residual sum of squares.
The more variables included the smaller will be the residual sum of squares. Two statistics can help in
selecting the best model.

(a) R2 represents the proportion of variation in the dependent variable that is explained by the
independent variables.

R2 ¼ Regression Sum of Squares

Total Sum of Squares
;

where Total Sum of Squares ¼ TSS ¼
P

y� �yð Þ2 (if mean is fitted, otherwise TSS ¼
P
y2) and

Regression Sum of Squares ¼ RegSS ¼ TSS� RSS, where
RSS ¼ residual sum of squares ¼

P
y� ŷð Þ2.

The R2-values can be examined to find a model with a high R2-value but with small number of
independent variables.

(b) Cp statistic.

Cp ¼
RSS

�̂2
� n� 2pð Þ;

where p is the number of arguments (including the mean) in the model and �̂2 is an estimate of the
true variance of the errors. This can often be obtained from fitting the full model.

A well fitting model will have Cp ’ p. Cp is often plotted against p to see which models are closest
to the Cp ¼ p line.

G02ECF may be called after G02EAF which calculates the residual sums of squares for all possible
linear regression models.

4 References

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

Weisberg S (1985) Applied Linear Regression Wiley
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5 Arguments

1: MEAN – CHARACTER(1) Input

On entry: indicates if a mean term is to be included.

MEAN ¼ M
A mean term, intercept, will be included in the model.

MEAN ¼ Z
The model will pass through the origin, zero-point.

Constraint: MEAN ¼ M or Z .

2: N – INTEGER Input

On entry: n, the number of observations used in the regression model.

Constraint: N must be greater than 2� pmax , where pmax is the largest number of independent
variables fitted (including the mean if fitted).

3: SIGSQ – REAL (KIND=nag_wp) Input

On entry: the best estimate of true variance of the errors, �̂2.

Constraint: SIGSQ > 0:0.

4: TSS – REAL (KIND=nag_wp) Input

On entry: the total sum of squares for the regression model.

Constraint: TSS > 0:0.

5: NMOD – INTEGER Input

On entry: the number of regression models.

Constraint: NMOD > 0.

6: NTERMSðNMODÞ – INTEGER array Input

On entry: NTERMSðiÞ must contain the number of independent variables (not counting the
mean) fitted to the ith model, for i ¼ 1; 2; . . . ;NMOD.

7: RSSðNMODÞ – REAL (KIND=nag_wp) array Input

On entry: RSSðiÞ must contain the residual sum of squares for the ith model.

Constraint: RSSðiÞ � TSS, for i ¼ 1; 2; . . . ;NMOD.

8: RSQðNMODÞ – REAL (KIND=nag_wp) array Output

On exit: RSQðiÞ contains the R2-value for the ith model, for i ¼ 1; 2; . . . ;NMOD.

9: CPðNMODÞ – REAL (KIND=nag_wp) array Output

On exit: CPðiÞ contains the Cp-value for the ith model, for i ¼ 1; 2; . . . ;NMOD.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NMOD < 1,
or SIGSQ � 0:0,
or TSS � 0:0.
or MEAN 6¼ M or Z .

IFAIL ¼ 2

On entry, the number of arguments for a model is too large for the number of observations, i.e.,
2� p � n.

IFAIL ¼ 3

On entry, RSSðiÞ > TSS, for some i ¼ 1; 2; . . . ;NMOD.

IFAIL ¼ 4

A value of Cp is less than 0:0. This may occur if SIGSQ is too large or if RSS, N or IP are
incorrect.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy is sufficient for all practical purposes.

8 Parallelism and Performance

G02ECF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

The data, from an oxygen uptake experiment, is given by Weisberg (1985). The independent and
dependent variables are read and the residual sums of squares for all possible models computed using
G02EAF. The values of R2 and Cp are then computed and printed along with the names of variables in
the models.

10.1 Program Text

Program g02ecfe

! G02ECF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02eaf, g02ecf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6, vnlen = 3

! .. Local Scalars ..
Real (Kind=nag_wp) :: sigsq, tss
Integer :: i, ifail, k, ldmodl, ldx, lwt, m, n, &

nmod
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cp(:), rsq(:), rss(:), wk(:), wt(:), &

x(:,:), y(:)
Integer, Allocatable :: isx(:), mrank(:), nterms(:)
Character (vnlen), Allocatable :: modl(:,:), vname(:)

! .. Intrinsic Procedures ..
Intrinsic :: count, max, real

! .. Executable Statements ..
Write (nout,*) ’G02ECF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, mean, weight

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),wt(lwt),y(n),isx(m),vname(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),y(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in first VNLEN characters of the variable names
Read (nin,*) vname(1:m)

! Calculate the number of free variables
k = count(isx(1:m)==1)

ldmodl = max(m,2**k)
Allocate (modl(ldmodl,m),rss(ldmodl),nterms(ldmodl),mrank(ldmodl),wk(n*( &

G02ECF NAG Library Manual

G02ECF.4 Mark 26



m+1)))

! Calculate residual sums of squares
ifail = 0
Call g02eaf(mean,weight,n,m,x,ldx,vname,isx,y,wt,nmod,modl,ldmodl,rss, &

nterms,mrank,wk,ifail)

! Extract total sums of squares
tss = rss(1)

! Calculate best estimate of true variance from full model
sigsq = rss(nmod)/real(n-nterms(nmod)-1,kind=nag_wp)

Allocate (rsq(nmod),cp(nmod))

! Calculate R-squared and Mallows Cp
ifail = 0
Call g02ecf(’M’,n,sigsq,tss,nmod,nterms,rss,rsq,cp,ifail)

! Display results
Write (nout,*) ’Number of CP RSQ MODEL’
Write (nout,*) ’parameters’
Write (nout,*)
Do i = 1, nmod

Write (nout,99999) nterms(i), cp(i), rsq(i), modl(i,1:nterms(i))
End Do

99999 Format (1X,I7,F11.2,F8.4,1X,5(1X,A))
End Program g02ecfe

10.2 Program Data

G02ECF Example Program Data
20 6 ’M’ ’U’ :: N,M,MEAN,WEIGHT
0. 1125.0 232.0 7160.0 85.9 8905.0 1.5563
7. 920.0 268.0 8804.0 86.5 7388.0 0.8976

15. 835.0 271.0 8108.0 85.2 5348.0 0.7482
22. 1000.0 237.0 6370.0 83.8 8056.0 0.7160
29. 1150.0 192.0 6441.0 82.1 6960.0 0.3010
37. 990.0 202.0 5154.0 79.2 5690.0 0.3617
44. 840.0 184.0 5896.0 81.2 6932.0 0.1139
58. 650.0 200.0 5336.0 80.6 5400.0 0.1139
65. 640.0 180.0 5041.0 78.4 3177.0 -0.2218
72. 583.0 165.0 5012.0 79.3 4461.0 -0.1549
80. 570.0 151.0 4825.0 78.7 3901.0 0.0000
86. 570.0 171.0 4391.0 78.0 5002.0 0.0000
93. 510.0 243.0 4320.0 72.3 4665.0 -0.0969

100. 555.0 147.0 3709.0 74.9 4642.0 -0.2218
107. 460.0 286.0 3969.0 74.4 4840.0 -0.3979
122. 275.0 198.0 3558.0 72.5 4479.0 -0.1549
129. 510.0 196.0 4361.0 57.7 4200.0 -0.2218
151. 165.0 210.0 3301.0 71.8 3410.0 -0.3979
171. 244.0 327.0 2964.0 72.5 3360.0 -0.5229
220. 79.0 334.0 2777.0 71.9 2599.0 -0.0458 :: End of X,Y
0 1 1 1 1 1 :: ISX

’DAY’ ’BOD’ ’TKN’ ’TS ’ ’TVS’ ’COD’ :: VNAME

10.3 Program Results

G02ECF Example Program Results

Number of CP RSQ MODEL
parameters

0 55.45 0.0000
1 56.84 0.0082 TKN
1 20.33 0.5054 TVS
1 13.50 0.5983 BOD
1 6.57 0.6926 COD
1 6.29 0.6965 TS
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2 21.36 0.5185 TKN TVS
2 11.33 0.6551 BOD TVS
2 9.09 0.6856 BOD TKN
2 7.70 0.7045 BOD COD
2 7.33 0.7095 TKN TS
2 7.16 0.7119 TS TVS
2 6.88 0.7157 BOD TS
2 6.87 0.7158 TKN COD
2 5.27 0.7376 TVS COD
2 1.74 0.7857 TS COD
3 8.68 0.7184 BOD TKN TVS
3 8.16 0.7255 TKN TS TVS
3 8.15 0.7256 BOD TS TVS
3 7.15 0.7392 BOD TVS COD
3 6.51 0.7479 BOD TKN COD
3 6.25 0.7515 BOD TKN TS
3 5.67 0.7595 TKN TVS COD
3 3.44 0.7898 BOD TS COD
3 3.42 0.7900 TS TVS COD
3 2.32 0.8050 TKN TS COD
4 7.70 0.7591 BOD TKN TS TVS
4 6.78 0.7716 BOD TKN TVS COD
4 5.07 0.7948 BOD TS TVS COD
4 4.32 0.8050 BOD TKN TS COD
4 4.00 0.8094 TKN TS TVS COD
5 6.00 0.8094 BOD TKN TS TVS COD
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NAG Library Routine Document

G02EEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02EEF carries out one step of a forward selection procedure in order to enable the ‘best’ linear
regression model to be found.

2 Specification

SUBROUTINE G02EEF (ISTEP, MEAN, WEIGHT, N, M, X, LDX, VNAME, ISX, MAXIP,
Y, WT, FIN, ADDVAR, NEWVAR, CHRSS, F, MODEL, NTERM,
RSS, IDF, IFR, FREE, EXSS, Q, LDQ, P, WK, IFAIL)

&
&

INTEGER ISTEP, N, M, LDX, ISX(M), MAXIP, NTERM, IDF, IFR,
LDQ, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), Y(N), WT(*), FIN, CHRSS, F, RSS,
EXSS(MAXIP), Q(LDQ,MAXIP+2), P(MAXIP+1),
WK(2*MAXIP)

&
&

LOGICAL ADDVAR
CHARACTER(*) VNAME(M), NEWVAR, MODEL(MAXIP), FREE(MAXIP)
CHARACTER(1) MEAN, WEIGHT

3 Description

One method of selecting a linear regression model from a given set of independent variables is by
forward selection. The following procedure is used:

(i) Select the best fitting independent variable, i.e., the independent variable which gives the smallest
residual sum of squares. If the F -test for this variable is greater than a chosen critical value, Fc,
then include the variable in the model, else stop.

(ii) Find the independent variable that leads to the greatest reduction in the residual sum of squares
when added to the current model.

(iii) If the F -test for this variable is greater than a chosen critical value, Fc, then include the variable in
the model and go to (ii), otherwise stop.

At any step the variables not in the model are known as the free terms.

G02EEF allows you to specify some independent variables that must be in the model, these are known
as forced variables.

The computational procedure involves the use of QR decompositions, the R and the Q matrices being
updated as each new variable is added to the model. In addition the matrix QTXfree, where Xfree is the
matrix of variables not included in the model, is updated.

G02EEF computes one step of the forward selection procedure at a call. The results produced at each
step may be printed or used as inputs to G02DDF, in order to compute the regression coefficients for
the model fitted at that step. Repeated calls to G02EEF should be made until F < Fc is indicated.

4 References

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

Weisberg S (1985) Applied Linear Regression Wiley
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5 Arguments

Note: after the initial call to G02EEF with ISTEP ¼ 0 all arguments except FIN must not be changed
by you between calls.

1: ISTEP – INTEGER Input/Output

On entry: indicates which step in the forward selection process is to be carried out.

ISTEP ¼ 0
The process is initialized.

Constraint: ISTEP � 0.

On exit: is incremented by 1.

2: MEAN – CHARACTER(1) Input

On entry: indicates if a mean term is to be included.

MEAN ¼ M
A mean term, intercept, will be included in the model.

MEAN ¼ Z
The model will pass through the origin, zero-point.

Constraint: MEAN ¼ M or Z .

3: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
Least squares estimation is used.

WEIGHT ¼ W
Weighted least squares is used and weights must be supplied in array WT.

Constraint: WEIGHT ¼ U or W.

4: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

5: M – INTEGER Input

On entry: m, the total number of independent variables in the dataset.

Constraint: M � 1.

6: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation for the jth independent variable, for
i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;M.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02EEF
is called.

Constraint: LDX � N.

8: VNAMEðMÞ – CHARACTER(*) array Input

On entry: VNAMEðjÞ must contain the name of the independent variable in column j of X, for
j ¼ 1; 2; . . . ;M.
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9: ISXðMÞ – INTEGER array Input

On entry: indicates which independent variables could be considered for inclusion in the
regression.

ISXðjÞ � 2
The variable contained in the jth column of X is automatically included in the regression
model, for j ¼ 1; 2; . . . ;M.

ISXðjÞ ¼ 1
The variable contained in the jth column of X is considered for inclusion in the regression
model, for j ¼ 1; 2; . . . ;M.

ISXðjÞ ¼ 0
The variable in the jth column is not considered for inclusion in the model, for
j ¼ 1; 2; . . . ;M.

Constraint: ISXðjÞ � 0 and at least one value of ISXðjÞ ¼ 1, for j ¼ 1; 2; . . . ;M.

10: MAXIP – INTEGER Input

On entry: the maximum number of independent variables to be included in the model.

Constraints:

if MEAN ¼ M , MAXIP � 1þ number of values of ISX > 0;
if MEAN ¼ Z , MAXIP � number of values of ISX > 0.

11: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the dependent variable.

12: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W .

On entry: if WEIGHT ¼ W , WT must contain the weights to be used in the weighted regression,
W .

If WTðiÞ ¼ 0:0, the ith observation is not included in the model, in which case the effective
number of observations is the number of observations with nonzero weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is N.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ;N.

13: FIN – REAL (KIND=nag_wp) Input

On entry: the critical value of the F statistic for the term to be included in the model, Fc.

Suggested value: 2:0 is a commonly used value in exploratory modelling.

Constraint: FIN � 0:0.

14: ADDVAR – LOGICAL Output

On exit: indicates if a variable has been added to the model.

ADDVAR ¼ :TRUE:
A variable has been added to the model.

ADDVAR ¼ :FALSE:
No variable had an F value greater than Fc and none were added to the model.
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15: NEWVAR – CHARACTER(*) Output

On exit: if ADDVAR ¼ :TRUE:, NEWVAR contains the name of the variable added to the
model.

Constraint: the declared size of NEWVAR must be greater than or equal to the declared size of
VNAME.

16: CHRSS – REAL (KIND=nag_wp) Output

On exit: if ADDVAR ¼ :TRUE:, CHRSS contains the change in the residual sum of squares due
to adding variable NEWVAR.

17: F – REAL (KIND=nag_wp) Output

On exit: if ADDVAR ¼ :TRUE:, F contains the F statistic for the inclusion of the variable in
NEWVAR.

18: MODELðMAXIPÞ – CHARACTER(*) array Input/Output

On entry: if ISTEP ¼ 0, MODEL need not be set.

If ISTEP 6¼ 0, MODEL must contain the values returned by the previous call to G02EEF.

Constraint: the declared size of MODEL must be greater than or equal to the declared size of
VNAME.

On exit: the names of the variables in the current model.

19: NTERM – INTEGER Input/Output

On entry: if ISTEP ¼ 0, NTERM need not be set.

If ISTEP 6¼ 0, NTERM must contain the value returned by the previous call to G02EEF.

Constraint: if ISTEP 6¼ 0, NTERM > 0.

On exit: the number of independent variables in the current model, not including the mean, if
any.

20: RSS – REAL (KIND=nag_wp) Input/Output

On entry: if ISTEP ¼ 0, RSS need not be set.

If ISTEP 6¼ 0, RSS must contain the value returned by the previous call to G02EEF.

Constraint: if ISTEP 6¼ 0, RSS > 0:0.

On exit: the residual sums of squares for the current model.

21: IDF – INTEGER Input/Output

On entry: if ISTEP ¼ 0, IDF need not be set.

If ISTEP 6¼ 0, IDF must contain the value returned by the previous call to G02EEF.

On exit: the degrees of freedom for the residual sum of squares for the current model.

22: IFR – INTEGER Input/Output

On entry: if ISTEP ¼ 0, IFR need not be set.

If ISTEP 6¼ 0, IFR must contain the value returned by the previous call to G02EEF.

On exit: the number of free independent variables, i.e., the number of variables not in the model
that are still being considered for selection.
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23: FREEðMAXIPÞ – CHARACTER(*) array Input/Output

On entry: if ISTEP ¼ 0, FREE need not be set.

If ISTEP 6¼ 0, FREE must contain the values returned by the previous call to G02EEF.

Constraint: the declared size of FREE must be greater than or equal to the declared size of
VNAME.

On exit: the first IFR values of FREE contain the names of the free variables.

24: EXSSðMAXIPÞ – REAL (KIND=nag_wp) array Output

On exit: the first IFR values of EXSS contain what would be the change in regression sum of
squares if the free variables had been added to the model, i.e., the extra sum of squares for the
free variables. EXSSðiÞ contains what would be the change in regression sum of squares if the
variable FREEðiÞ had been added to the model.

25: QðLDQ;MAXIPþ 2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if ISTEP ¼ 0, Q need not be set.

If ISTEP 6¼ 0, Q must contain the values returned by the previous call to G02EEF.

On exit: the results of the QR decomposition for the current model:

the first column of Q contains c ¼ QTy (or QTW
1
2y where W is the vector of weights if

used);

the upper triangular part of columns 2 to pþ 1 contain the R matrix;

the strictly lower triangular part of columns 2 to pþ 1 contain details of the Q matrix;

the remaining pþ 1 to pþ IFR columns of contain QTXfree (or QTW
1
2Xfree),

where p ¼ NTERM, or p ¼ NTERMþ 1 if MEAN ¼ M .

26: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which G02EEF
is called.

Constraint: LDQ � N.

27: PðMAXIPþ 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if ISTEP ¼ 0, P need not be set.

If ISTEP 6¼ 0, P must contain the values returned by the previous call to G02EEF.

On exit: the first p elements of P contain details of the QR decomposition, where p ¼ NTERM,
or p ¼ NTERMþ 1 if MEAN ¼ M .

28: WKð2�MAXIPÞ – REAL (KIND=nag_wp) array Workspace

29: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or M < 1,
or LDX < N,
or LDQ < N,
or ISTEP < 0,
or ISTEP 6¼ 0 and NTERM ¼ 0,
or ISTEP 6¼ 0 and RSS � 0:0,
or FIN < 0:0,
or MEAN 6¼ M or Z ,
or WEIGHT 6¼ U or W.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WT < 0:0.

IFAIL ¼ 3

On entry, the degrees of freedom will be zero if a variable is selected, i.e., the number of
variables in the model plus 1 is equal to the effective number of observations.

IFAIL ¼ 4

On entry, a value of ISX < 0,
or there are no forced or free variables, i.e., no element of ISX > 0,
or the value of MAXIP is too small for number of variables indicated by ISX.

IFAIL ¼ 5

On entry, the variables forced into the model are not of full rank, i.e., some of these variables are
linear combinations of others.

IFAIL ¼ 6

On entry, there are no free variables, i.e., no element of ISX ¼ 0.

IFAIL ¼ 7

The value of the change in the sum of squares is greater than the input value of RSS. This may
occur due to rounding errors if the true residual sum of squares for the new model is small
relative to the residual sum of squares for the previous model.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

G02EEF NAG Library Manual

G02EEF.6 Mark 26



IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

As G02EEF uses a QR transformation the results will often be more accurate than traditional
algorithms using methods based on the cross-products of the dependent and independent variables.

8 Parallelism and Performance

G02EEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02EEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

The data, from an oxygen uptake experiment, is given by Weisberg (1985). The names of the variables
are as given in Weisberg (1985). The independent and dependent variables are read and G02EEF is
repeatedly called until ADDVAR ¼ :FALSE:. At each step the F statistic, the free variables and their
extra sum of squares are printed; also, except for when ADDVAR ¼ :FALSE:, the new variable, the
change in the residual sum of squares and the terms in the model are printed.

10.1 Program Text

Program g02eefe

! G02EEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02eef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6, vnlen = 3

! .. Local Scalars ..
Real (Kind=nag_wp) :: chrss, f, fin, rss
Integer :: i, idf, ifail, ifr, istep, ldq, ldx, &

lwt, m, maxip, n, nterm
Logical :: addvar
Character (1) :: mean, weight
Character (3) :: newvar

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: exss(:), p(:), q(:,:), wk(:), wt(:), &

x(:,:), y(:)
Integer, Allocatable :: isx(:)
Character (vnlen), Allocatable :: free(:), model(:), vname(:)

! .. Intrinsic Procedures ..
Intrinsic :: count
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! .. Executable Statements ..
Write (nout,*) ’G02EEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size and various control parameters
Read (nin,*) n, m, mean, weight, fin

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),y(n),wt(lwt),isx(m),vname(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),y(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in first VNLEN characters of the variable names
Read (nin,*) vname(1:m)

! Calculate the maximum number of parameters in the model
maxip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

maxip = maxip + 1
End If

ldq = n
Allocate (model(maxip),free(maxip),exss(maxip),q(ldq,maxip+2), &

p(maxip+1),wk(2*maxip))

! Loop over each variable, attempting to add each in turn
istep = 0
Do i = 1, m

! Fit the linear regression model
ifail = 0
Call g02eef(istep,mean,weight,n,m,x,ldx,vname,isx,maxip,y,wt,fin, &

addvar,newvar,chrss,f,model,nterm,rss,idf,ifr,free,exss,q,ldq,p,wk, &
ifail)

! Display the results at each step
Write (nout,99999) ’Step ’, istep
If (.Not. addvar) Then

Write (nout,99998) ’No further variables added maximum F =’, f
Write (nout,99993) ’Free variables: ’, free(1:ifr)
Write (nout,*) &

’Change in residual sums of squares for free variables:’
Write (nout,99992) ’ ’, exss(1:ifr)
Go To 100

Else
Write (nout,99997) ’Added variable is ’, newvar
Write (nout,99996) ’Change in residual sum of squares =’, chrss
Write (nout,99998) ’F Statistic = ’, f
Write (nout,*)
Write (nout,99995) ’Variables in model:’, model(1:nterm)
Write (nout,*)
Write (nout,99994) ’Residual sum of squares = ’, rss
Write (nout,99999) ’Degrees of freedom = ’, idf
Write (nout,*)
If (ifr==0) Then

Write (nout,*) ’No free variables remaining’
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Go To 100
End If
Write (nout,99993) ’Free variables: ’, free(1:ifr)
Write (nout,*) &

’Change in residual sums of squares for free variables:’
Write (nout,99992) ’ ’, exss(1:ifr)
Write (nout,*)

End If
End Do

100 Continue

99999 Format (1X,A,I2)
99998 Format (1X,A,F7.2)
99997 Format (1X,2A)
99996 Format (1X,A,E13.4)
99995 Format (1X,A,6(1X,A))
99994 Format (1X,A,E13.4)
99993 Format (1X,A,6(6X,A))
99992 Format (1X,A,6(F9.4))

End Program g02eefe

10.2 Program Data

G02EEF Example Program Data
20 6 ’M’ ’U’ 2.0 :: N,M,MEAN,WEIGHT,FIN
0.0 1125.0 232.0 7160.0 85.9 8905.0 1.5563
7.0 920.0 268.0 8804.0 86.5 7388.0 0.8976

15.0 835.0 271.0 8108.0 85.2 5348.0 0.7482
22.0 1000.0 237.0 6370.0 83.8 8056.0 0.7160
29.0 1150.0 192.0 6441.0 82.1 6960.0 0.3010
37.0 990.0 202.0 5154.0 79.2 5690.0 0.3617
44.0 840.0 184.0 5896.0 81.2 6932.0 0.1139
58.0 650.0 200.0 5336.0 80.6 5400.0 0.1139
65.0 640.0 180.0 5041.0 78.4 3177.0 -0.2218
72.0 583.0 165.0 5012.0 79.3 4461.0 -0.1549
80.0 570.0 151.0 4825.0 78.7 3901.0 0.0000
86.0 570.0 171.0 4391.0 78.0 5002.0 0.0000
93.0 510.0 243.0 4320.0 72.3 4665.0 -0.0969

100.0 555.0 147.0 3709.0 74.9 4642.0 -0.2218
107.0 460.0 286.0 3969.0 74.4 4840.0 -0.3979
122.0 275.0 198.0 3558.0 72.5 4479.0 -0.1549
129.0 510.0 196.0 4361.0 57.7 4200.0 -0.2218
151.0 165.0 210.0 3301.0 71.8 3410.0 -0.3979
171.0 244.0 327.0 2964.0 72.5 3360.0 -0.5229
220.0 79.0 334.0 2777.0 71.9 2599.0 -0.0458 :: End of X,Y
0 1 1 1 1 2 :: ISX

’DAY’ ’BOD’ ’TKN’ ’TS ’ ’TVS’ ’COD’ :: VNAME
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10.3 Program Results

G02EEF Example Program Results

Step 1
Added variable is TS
Change in residual sum of squares = 0.4713E+00
F Statistic = 7.38

Variables in model: COD TS

Residual sum of squares = 0.1085E+01
Degrees of freedom = 17

Free variables: TKN BOD TVS
Change in residual sums of squares for free variables:

0.1175 0.0600 0.2276

Step 2
No further variables added maximum F = 1.59
Free variables: TKN BOD TVS
Change in residual sums of squares for free variables:

0.0979 0.0207 0.0217
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NAG Library Routine Document

G02EFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02EFF calculates a full stepwise selection from p variables by using Clarke's sweep algorithm on the
correlation matrix of a design and data matrix, Z. The (weighted) variance-covariance, (weighted)
means and sum of weights of Z must be supplied.

2 Specification

SUBROUTINE G02EFF (M, N, WMEAN, C, SW, ISX, FIN, FOUT, TAU, B, SE, RSQ,
RMS, DF, MONLEV, MONFUN, IUSER, RUSER, IFAIL)

&

INTEGER M, N, ISX(M), DF, MONLEV, IUSER(*), IFAIL
REAL (KIND=nag_wp) WMEAN(M+1), C((M+1)*(M+2)/2), SW, FIN, FOUT, TAU,

B(M+1), SE(M+1), RSQ, RMS, RUSER(*)
&

EXTERNAL MONFUN

3 Description

The general multiple linear regression model is defined by

y ¼ �0 þX� þ �;

where

y is a vector of n observations on the dependent variable,

�0 is an intercept coefficient,

X is an n by p matrix of p explanatory variables,

� is a vector of p unknown coefficients, and

� is a vector of length n of unknown, Normally distributed, random errors.

G02EFF employs a full stepwise regression to select a subset of explanatory variables from the p
available variables (the intercept is included in the model) and computes regression coefficients and
their standard errors, and various other statistical quantities, by minimizing the sum of squares of
residuals. The method applies repeatedly a forward selection step followed by a backward elimination
step and halts when neither step updates the current model.

The criterion used to update a current model is the variance ratio of residual sum of squares. Let s1 and
s2 be the residual sum of squares of the current model and this model after undergoing a single update,
with degrees of freedom q1 and q2, respectively. Then the condition:

s2 � s1ð Þ= q2 � q1ð Þ
s1=q1

> f1;

must be satisfied if a variable k will be considered for entry to the current model, and the condition:

s1 � s2ð Þ= q1 � q2ð Þ
s1=q1

< f2;

must be satisfied if a variable k will be considered for removal from the current model, where f1 and f2
are user-supplied values and f2 � f1.
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In the entry step the entry statistic is computed for each variable not in the current model. If no variable
is associated with a test value that exceeds f1 then this step is terminated; otherwise the variable
associated with the largest value for the entry statistic is entered into the model.

In the removal step the removal statistic is computed for each variable in the current model. If no
variable is associated with a test value less than f2 then this step is terminated; otherwise the variable
associated with the smallest value for the removal statistic is removed from the model.

The data values X and y are not provided as input to the routine. Instead, summary statistics of the
design and data matrix Z ¼ X j yð Þ are required.

Explanatory variables are entered into and removed from the current model by using sweep operations
on the correlation matrix R of Z, given by:

R ¼

1 . . . r1p r1y

..

. . .
. ..

. ..
.

rp1 . . . 1 rpy

ry1 . . . ryp 1

0BBBBB@

1CCCCCA;

where rij is the correlation between the explanatory variables i and j, for i ¼ 1; 2; . . . ; p and
j ¼ 1; 2; . . . ; p, and ryi (and riy) is the correlation between the response variable y and the ith
explanatory variable, for i ¼ 1; 2; . . . ; p.

A sweep operation on the kth row and column (k � p) of R replaces:

rkk by �1=rkk;
rik by rik= rkkj j; i ¼ 1; 2; . . . ; pþ 1 i 6¼ kð Þ;
rkj by rkj= rkkj j; j ¼ 1; 2; . . . ; pþ 1 j 6¼ kð Þ;
rij by rij � rikrkj= rkkj j; i ¼ 1; 2; . . . ; pþ 1 i 6¼ kð Þ; j ¼ 1; 2; . . . ; pþ 1 j 6¼ kð Þ:

The kth explanatory variable is eligible for entry into the current model if it satisfies the collinearity
tests: rkk > � and

rii �
rikrki
rkk

� �
� � 1;

for a user-supplied value (> 0) of � and where the index i runs over explanatory variables in the current
model. The sweep operation is its own inverse, therefore pivoting on an explanatory variable k in the
current model has the effect of removing it from the model.

Once the stepwise model selection procedure is finished, the routine calculates:

(a) the least squares estimate for the ith explanatory variable included in the fitted model;

(b) standard error estimates for each coefficient in the final model;

(c) the square root of the mean square of residuals and its degrees of freedom;

(d) the multiple correlation coefficient.

The routine makes use of the symmetry of the sweep operations and correlation matrix which reduces
by almost one half the storage and computation required by the sweep algorithm, see Clarke (1981) for
details.

4 References

Clarke M R B (1981) Algorithm AS 178: the Gauss–Jordan sweep operator with detection of
collinearity Appl. Statist. 31 166–169

Dempster A P (1969) Elements of Continuous Multivariate Analysis Addison–Wesley

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley
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5 Arguments

1: M – INTEGER Input

On entry: the number of explanatory variables available in the design matrix, Z.

Constraint: M > 1.

2: N – INTEGER Input

On entry: the number of observations used in the calculations.

Constraint: N > 1.

3: WMEANðMþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the mean of the design matrix, Z.

4: Cð Mþ 1ð Þ � Mþ 2ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the upper-triangular variance-covariance matrix packed by column for the design
matrix, Z. Because the routine computes the correlation matrix R from C, the variance-
covariance matrix need only be supplied up to a scaling factor.

5: SW – REAL (KIND=nag_wp) Input

On entry: if weights were used to calculate C then SW is the sum of positive weight values;
otherwise SW is the number of observations used to calculate C.

Constraint: SW > 1:0.

6: ISXðMÞ – INTEGER array Input/Output

On entry: the value of ISXðjÞ determines the set of variables used to perform full stepwise model
selection, for j ¼ 1; 2; . . . ;M.

ISXðjÞ ¼ �1
To exclude the variable corresponding to the jth column of X from the final model.

ISXðjÞ ¼ 1
To consider the variable corresponding to the jth column of X for selection in the final
model.

ISXðjÞ ¼ 2
To force the inclusion of the variable corresponding to the jth column of X in the final
model.

Constraint: ISXðjÞ ¼ �1; 1 or 2, for j ¼ 1; 2; . . . ;M.

On exit: the value of ISXðjÞ indicates the status of the jth explanatory variable in the model.

ISXðjÞ ¼ �1
Forced exclusion.

ISXðjÞ ¼ 0
Excluded.

ISXðjÞ ¼ 1
Selected.

ISXðjÞ ¼ 2
Forced selection.

7: FIN – REAL (KIND=nag_wp) Input

On entry: the value of the variance ratio which an explanatory variable must exceed to be
included in a model.
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Suggested value: FIN ¼ 4:0.

Constraint: FIN > 0:0.

8: FOUT – REAL (KIND=nag_wp) Input

On entry: the explanatory variable in a model with the lowest variance ratio value is removed
from the model if its value is less than FOUT. FOUT is usually set equal to the value of FIN; a
value less than FIN is occasionally preferred.

Suggested value: FOUT ¼ FIN.

Constraint: 0:0 � FOUT � FIN.

9: TAU – REAL (KIND=nag_wp) Input

On entry: the tolerance, � , for detecting collinearities between variables when adding or
removing an explanatory variable from a model. Explanatory variables deemed to be collinear are
excluded from the final model.

Suggested value: TAU ¼ 1:0� 10�6.

Constraint: TAU > 0:0.

10: BðMþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: Bð1Þ contains the estimate for the intercept term in the fitted model. If ISXðjÞ 6¼ 0 then
Bðjþ 1Þ contains the estimate for the jth explanatory variable in the fitted model; otherwise
Bðjþ 1Þ ¼ 0.

11: SEðMþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: SEðjÞ contains the standard error for the estimate of BðjÞ, for j ¼ 1; 2; . . . ;Mþ 1.

12: RSQ – REAL (KIND=nag_wp) Output

On exit: the R2-statistic for the fitted regression model.

13: RMS – REAL (KIND=nag_wp) Output

On exit: the mean square of residuals for the fitted regression model.

14: DF – INTEGER Output

On exit: the number of degrees of freedom for the sum of squares of residuals.

15: MONLEV – INTEGER Input

On entry: if a subroutine is provided by you to monitor the model selection process, set
MONLEV to 1; otherwise set MONLEV to 0.

Constraint: MONLEV ¼ 0 or 1.

16: MONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

You may define your own function or specify the NAG defined default function G02EFH.

If MONLEV ¼ 0, MONFUN is not referenced; otherwise its specification is:

The specification of MONFUN is:

SUBROUTINE MONFUN (FLAG, VAR, VAL, IUSER, RUSER)

INTEGER VAR, IUSER(*)
REAL (KIND=nag_wp) VAL, RUSER(*)
CHARACTER(1) FLAG
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1: FLAG – CHARACTER(1) Input

On entry: the value of FLAG indicates the stage of the stepwise selection of
explanatory variables.

FLAG ¼ A
Variable VAR was added to the current model.

FLAG ¼ B
Beginning the backward elimination step.

FLAG ¼ C
Variable VAR failed the collinearity test and is excluded from the model.

FLAG ¼ D
Variable VAR was dropped from the current model.

FLAG ¼ F
Beginning the forward selection step

FLAG ¼ K
Backward elimination did not remove any variables from the current model.

FLAG ¼ S
Starting stepwise selection procedure.

FLAG ¼ V
The variance ratio for variable VAR takes the value VAL.

FLAG ¼ X
Finished stepwise selection procedure.

2: VAR – INTEGER Input

On entry: the index of the explanatory variable in the design matrix Z to which FLAG
pertains.

3: VAL – REAL (KIND=nag_wp) Input

On entry: if FLAG ¼ V , VAL is the variance ratio value for the coefficient associated
with explanatory variable index VAR.

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONFUN is called with the arguments IUSER and RUSER as supplied to G02EFF.
You should use the arrays IUSER and RUSER to supply information to MONFUN.

MONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which G02EFF is called. Arguments denoted as Input must not be changed
by this procedure.

17: IUSERð�Þ – INTEGER array User Workspace
18: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by G02EFF, but are passed directly to MONFUN and should be
used to pass information to this routine.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, FIN ¼ valueh i.
Constraint: FIN > 0:0.

On entry, FOUT ¼ valueh i; FIN ¼ valueh i.
Constraint: 0:0 � FOUT � FIN.

On entry, M ¼ valueh i.
Constraint: M > 1.

On entry, MONLEV ¼ valueh i.
Constraint: MONLEV ¼ 0 or 1.

On entry, N ¼ valueh i.
Constraint: N > 1.

On entry, SW ¼ valueh i.
Constraint: SW > 1:0.

On entry, TAU ¼ valueh i.
Constraint: TAU > 0:0.

IFAIL ¼ 2

No free variables from which to select.
At least one element of ISX should be set to 1.

On entry, invalid value for ISXð valueh iÞ ¼ valueh i.
On entry at least one diagonal element of C � 0:0.

IFAIL ¼ 3

The design and data matrix Z is not positive definite, results may be inaccurate. All output is
returned as documented.

IFAIL ¼ 4

All variables are collinear, no model to select.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G02EFF returns a warning if the design and data matrix is not positive definite.

8 Parallelism and Performance

G02EFF is not threaded in any implementation.

9 Further Comments

Although the condition for removing or adding a variable to the current model is based on a ratio of
variances, these values should not be interpreted as F -statistics with the usual interpretation of
significance unless the probability levels are adjusted to account for correlations between variables
under consideration and the number of possible updates (see, e.g., Draper and Smith (1985)).

G02EFF allocates internally O 4�Mþ Mþ 1ð Þ � Mþ 2ð Þ=2þ 2ð Þ of real storage.

10 Example

This example calculates a full stepwise model selection for the Hald data described in Dempster (1969).
Means, the upper-triangular variance-covariance matrix and the sum of weights are calculated by
G02BUF. The NAG defined default monitor function G02EFH is used to print information at each step
of the model selection process.

10.1 Program Text

Program g02effe

! G02EFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02buf, g02eff, g02efh, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fin, fout, rms, rsq, sw, tau
Integer :: df, i, ifail, ldz, liuser, lruser, &

m, m1, monlev, n
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), c(:), ruser(:), se(:), &

wmean(:), z(:,:)
Real (Kind=nag_wp) :: wt(1)
Integer, Allocatable :: isx(:), iuser(:)

! .. Executable Statements ..
Write (nout,*) ’G02EFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size and various control parameters
Read (nin,*) n, m, fin, fout, tau, monlev
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! Not using the user supplied arrays RUSER and IUSER
liuser = 0
lruser = 0

m1 = m + 1
ldz = n
Allocate (wmean(m1),c(m1*(m+2)/2),isx(m),b(m1),se(m1),iuser(liuser), &

ruser(lruser),z(ldz,m1))

! Read in augmented design matrix Z = (X | Y)
Read (nin,*)(z(i,1:m1),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! No weights in this example
weight = ’U’

! Compute upper-triangular sums of squares and cross-products of deviations
! from the mean for the augmented matrix

mean = ’M’
ifail = 0
Call g02buf(mean,weight,n,m1,z,ldz,wt,sw,wmean,c,ifail)

! Perform stepwise selection of variables.
ifail = 0
Call g02eff(m,n,wmean,c,sw,isx,fin,fout,tau,b,se,rsq,rms,df,monlev, &

g02efh,iuser,ruser,ifail)

! Display results
Write (nout,*)
Write (nout,99999) ’Fitted Model Summary’
Write (nout,99999) ’Term Estimate Standard Error’
Write (nout,99998) ’Intercept:’, b(1), se(1)
Do i = 1, m

If (isx(i)==1 .Or. isx(i)==2) Then
Write (nout,99997) ’Variable:’, i, b(i+1), se(i+1)

End If
End Do
Write (nout,*)
Write (nout,99996) ’RMS:’, rms

99999 Format (1X,A)
99998 Format (1X,A,4X,1P,E12.3,5X,E12.3)
99997 Format (1X,A,1X,I3,1X,1P,E12.3,5X,E12.3)
99996 Format (1X,A,1X,1P,E12.3)

End Program g02effe

10.2 Program Data

G02EFF Example Program Data
13 4 4.0 2.0 1.0D-6 1 : N,M,FIN,FOUT,TAU,MONLEV
7.0 26.0 6.0 60.0 78.5
1.0 29.0 15.0 52.0 74.3

11.0 56.0 8.0 20.0 104.3
11.0 31.0 8.0 47.0 87.6
7.0 52.0 6.0 33.0 95.9

11.0 55.0 9.0 22.0 109.2
3.0 71.0 17.0 6.0 102.7
1.0 31.0 22.0 44.0 72.5
2.0 54.0 18.0 22.0 93.1

21.0 47.0 4.0 26.0 115.9
1.0 40.0 23.0 34.0 83.8

11.0 66.0 9.0 12.0 113.3
10.0 68.0 8.0 12.0 109.4 : End of augmented design matrix Z = (X | Y)
1 1 1 1 : ISX
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10.3 Program Results

G02EFF Example Program Results

Starting Stepwise Selection

Forward Selection
Variable 1 Variance ratio = 1.260E+01
Variable 2 Variance ratio = 2.196E+01
Variable 3 Variance ratio = 4.403E+00
Variable 4 Variance ratio = 2.280E+01

Adding variable 4 to model

Backward Selection
Variable 4 Variance ratio = 2.280E+01

Keeping all current variables

Forward Selection
Variable 1 Variance ratio = 1.082E+02
Variable 2 Variance ratio = 1.725E-01
Variable 3 Variance ratio = 4.029E+01

Adding variable 1 to model

Backward Selection
Variable 1 Variance ratio = 1.082E+02
Variable 4 Variance ratio = 1.593E+02

Keeping all current variables

Forward Selection
Variable 2 Variance ratio = 5.026E+00
Variable 3 Variance ratio = 4.236E+00

Adding variable 2 to model

Backward Selection
Variable 1 Variance ratio = 1.540E+02
Variable 2 Variance ratio = 5.026E+00
Variable 4 Variance ratio = 1.863E+00

Dropping variable 4 from model

Forward Selection
Variable 3 Variance ratio = 1.832E+00
Variable 4 Variance ratio = 1.863E+00

Finished Stepwise Selection

Fitted Model Summary
Term Estimate Standard Error
Intercept: 5.258E+01 2.294E+00
Variable: 1 1.468E+00 1.213E-01
Variable: 2 6.623E-01 4.585E-02

RMS: 5.790E+00
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NAG Library Routine Document

G02FAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02FAF calculates two types of standardized residuals and two measures of influence for a linear
regression.

2 Specification

SUBROUTINE G02FAF (N, IP, NRES, RES, H, RMS, SRES, LDSRES, IFAIL)

INTEGER N, IP, NRES, LDSRES, IFAIL
REAL (KIND=nag_wp) RES(NRES), H(NRES), RMS, SRES(LDSRES,4)

3 Description

For the general linear regression model

y ¼ X� þ �;

where y is a vector of length n of the dependent variable,

X is an n by p matrix of the independent variables,

� is a vector of length p of unknown arguments,

and � is a vector of length n of unknown random errors such that var � ¼ �2I.
The residuals are given by

r ¼ y� ŷ ¼ y�X�̂

and the fitted values, ŷ ¼ X�̂, can be written as Hy for an n by n matrix H. The ith diagonal elements
of H, hi, give a measure of the influence of the ith values of the independent variables on the fitted
regression model. The values of r and the hi are returned by G02DAF.

G02FAF calculates statistics which help to indicate if an observation is extreme and having an undue
influence on the fit of the regression model. Two types of standardized residual are calculated:

(i) The ith residual is standardized by its variance when the estimate of �2, s2, is calculated from all
the data; this is known as internal Studentization.

RIi ¼
ri

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hi
p :

(ii) The ith residual is standardized by its variance when the estimate of �2, s2�i is calculated from the
data excluding the ith observation; this is known as external Studentization.

REi ¼
ri

s�i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hi
p ¼ ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� p� 1

n� p�RI2i

s
:

The two measures of influence are:
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(i) Cook's D

Di ¼ 1
pRE

2
i

hi
1� hi

:

(ii) Atkinson's T

Ti ¼ REij j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

� �
hi

1� hi

� �s
:

4 References

Atkinson A C (1981) Two graphical displays for outlying and influential observations in regression
Biometrika 68 13–20

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations included in the regression.

Constraint: N > IPþ 1.

2: IP – INTEGER Input

On entry: p, the number of linear arguments estimated in the regression model.

Constraint: IP � 1.

3: NRES – INTEGER Input

On entry: the number of residuals.

Constraint: 1 � NRES � N.

4: RESðNRESÞ – REAL (KIND=nag_wp) array Input

On entry: the residuals, ri.

5: HðNRESÞ – REAL (KIND=nag_wp) array Input

On entry: the diagonal elements of H, hi, corresponding to the residuals in RES.

Constraint: 0:0 < HðiÞ < 1:0, for i ¼ 1; 2; . . . ;NRES.

6: RMS – REAL (KIND=nag_wp) Input

On entry: the estimate of �2 based on all n observations, s2, i.e., the residual mean square.

Constraint: RMS > 0:0.

7: SRESðLDSRES; 4Þ – REAL (KIND=nag_wp) array Output

On exit: the standardized residuals and influence statistics.

For the observation with residual, ri, given in RESðiÞ.
SRESði; 1Þ

Is the internally standardized residual, RIi.

SRESði; 2Þ
Is the externally standardized residual, REi.

SRESði; 3Þ
Is Cook's D statistic, Di.
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SRESði; 4Þ
Is Atkinson's T statistic, Ti.

8: LDSRES – INTEGER Input

On entry: the first dimension of the array SRES as declared in the (sub)program from which
G02FAF is called.

Constraint: LDSRES � NRES.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP < 1,
or N � IPþ 1,
or NRES < 1,
or NRES > N,
or LDSRES < NRES,
or RMS � 0:0.

IFAIL ¼ 2

On entry, HðiÞ � 0:0 or � 1:0, for some i ¼ 1; 2; . . . ;NRES.

IFAIL ¼ 3

On entry, the value of a residual is too large for the given value of RMS.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Accuracy is sufficient for all practical purposes.

8 Parallelism and Performance

G02FAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

A set of 24 residuals and hi values from a 11 argument model fitted to the cloud seeding data
considered in Cook and Weisberg (1982) are input and the standardized residuals etc calculated and
printed for the first 10 observations.

10.1 Program Text

Program g02fafe

! G02FAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02faf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rms
Integer :: i, ifail, ip, ldsres, n, nres

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: h(:), res(:), sres(:,:)

! .. Executable Statements ..
Write (nout,*) ’G02FAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, ip, nres, rms

ldsres = nres
Allocate (res(nres),h(nres),sres(ldsres,4))

! Read in the data
Read (nin,*)(res(i),h(i),i=1,nres)

! Calculate standardised residuals
ifail = 0
Call g02faf(n,ip,nres,res,h,rms,sres,ldsres,ifail)

! Display results
Write (nout,*) ’ Internally Internally’
Write (nout,*) &

’Obs. standardized standardized Cook’’s D Atkinson’’s T’
Write (nout,*) ’ residuals residuals’

G02FAF NAG Library Manual

G02FAF.4 Mark 26



Write (nout,*)
Write (nout,99999)(i,sres(i,1:4),i=1,nres)

99999 Format (1X,I2,4F13.3)
End Program g02fafe

10.2 Program Data

G02FAF Example Program Data
24 11 10 .5798

0.2660 0.5519
-0.1387 0.9746
-0.2971 0.6256
0.5926 0.3144

-0.4013 0.4106
0.1396 0.6268

-1.3173 0.5479
1.1226 0.2325
0.0321 0.4115

-0.7111 0.3577
0.3439 0.3342

-0.4379 0.1673
0.0633 0.3874

-0.0936 0.1705
0.9968 0.3466
0.0209 0.3743

-0.4056 0.7527
0.1396 0.9069
0.0327 0.2610
0.2970 0.6256

-0.2277 0.2485
0.5180 0.3072
0.5301 0.5848

-1.0650 0.4794

10.3 Program Results

G02FAF Example Program Results

Internally Internally
Obs. standardized standardized Cook’s D Atkinson’s T

residuals residuals

1 0.522 0.507 0.030 0.611
2 -1.143 -1.158 4.557 -7.797
3 -0.638 -0.622 0.062 -0.875
4 0.940 0.935 0.037 0.689
5 -0.686 -0.672 0.030 -0.610
6 0.300 0.289 0.014 0.408
7 -2.573 -3.529 0.729 -4.223
8 1.683 1.828 0.078 1.094
9 0.055 0.053 0.000 0.048

10 -1.165 -1.183 0.069 -0.960
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NAG Library Routine Document

G02FCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02FCF calculates the Durbin–Watson statistic, for a set of residuals, and the upper and lower bounds
for its significance.

2 Specification

SUBROUTINE G02FCF (N, IP, RES, D, PDL, PDU, WORK, IFAIL)

INTEGER N, IP, IFAIL
REAL (KIND=nag_wp) RES(N), D, PDL, PDU, WORK(N)

3 Description

For the general linear regression model

y ¼ X� þ �;

where y is a vector of length n of the dependent variable,

X is a n by p matrix of the independent variables,

� is a vector of length p of unknown arguments,

and � is a vector of length n of unknown random errors.

The residuals are given by

r ¼ y� ŷ ¼ y�X�̂

and the fitted values, ŷ ¼ X�̂, can be written as Hy for a n by n matrix H. Note that when a mean term
is included in the model the sum of the residuals is zero. If the observations have been taken serially,
that is y1; y2; . . . ; yn can be considered as a time series, the Durbin–Watson test can be used to test for
serial correlation in the �i, see Durbin and Watson (1950), Durbin and Watson (1951) and Durbin and
Watson (1971).

The Durbin–Watson statistic is

d ¼

Xn�1
i¼1

riþ1 � rið Þ2

Xn
i¼1
r2i

:

Positive serial correlation in the �i will lead to a small value of d while for independent errors d will be
close to 2. Durbin and Watson show that the exact distribution of d depends on the eigenvalues of the
matrix HA where the matrix A is such that d can be written as

d ¼ r
TAr

rTr

and the eigenvalues of the matrix A are �j ¼ 1� cos 	j=nð Þð Þ, for j ¼ 1; 2; . . . ; n� 1.
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However bounds on the distribution can be obtained, the lower bound being

dl ¼

Xn�p
i¼1
�iu

2
i

Xn�p
i¼1
u2i

and the upper bound being

du ¼

Xn�p
i¼1
�i�1þpu

2
i

Xn�p
i¼1
u2i

;

where the ui are independent standard Normal variables. The lower tail probabilities associated with
these bounds, pl and pu, are computed by G01EPF. The interpretation of the bounds is that, for a test of
size (significance) �, if pl � � the test is significant, if pu > � the test is not significant, while if pl > �
and pu � � no conclusion can be reached.

The above probabilities are for the usual test of positive auto-correlation. If the alternative of negative
auto-correlation is required, then a call to G01EPF should be made with the argument D taking the
value of 4� d; see Newbold (1988).

4 References

Durbin J and Watson G S (1950) Testing for serial correlation in least squares regression. I Biometrika
37 409–428

Durbin J and Watson G S (1951) Testing for serial correlation in least squares regression. II Biometrika
38 159–178

Durbin J and Watson G S (1971) Testing for serial correlation in least squares regression. III Biometrika
58 1–19

Granger C W J and Newbold P (1986) Forecasting Economic Time Series (2nd Edition) Academic
Press

Newbold P (1988) Statistics for Business and Economics Prentice–Hall

5 Arguments

1: N – INTEGER Input

On entry: n, the number of residuals.

Constraint: N > IP.

2: IP – INTEGER Input

On entry: p, the number of independent variables in the regression model, including the mean.

Constraint: IP � 1.

3: RESðNÞ – REAL (KIND=nag_wp) array Input

On entry: the residuals, r1; r2; . . . ; rn.

Constraint: the mean of the residuals �
ffiffi
�
p

, where � ¼ machine precision.

4: D – REAL (KIND=nag_wp) Output

On exit: the Durbin–Watson statistic, d.
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5: PDL – REAL (KIND=nag_wp) Output

On exit: lower bound for the significance of the Durbin–Watson statistic, pl.

6: PDU – REAL (KIND=nag_wp) Output

On exit: upper bound for the significance of the Durbin–Watson statistic, pu.

7: WORKðNÞ – REAL (KIND=nag_wp) array Workspace

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � IP,
or IP < 1.

IFAIL ¼ 2

On entry, the mean of the residuals was >
ffiffi
�
p

, where � ¼ machine precision.

IFAIL ¼ 3

On entry, all residuals are identical.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The probabilities are computed to an accuracy of at least 4 decimal places.
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8 Parallelism and Performance

G02FCF is not threaded in any implementation.

9 Further Comments

If the exact probabilities are required, then the first n� p eigenvalues of HA can be computed and
G01JDF used to compute the required probabilities with the argument C set to 0:0 and the argument D
set to the Durbin–Watson statistic d.

10 Example

A set of 10 residuals are read in and the Durbin–Watson statistic along with the probability bounds are
computed and printed.

10.1 Program Text

Program g02fcfe

! G02FCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02fcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, pdl, pdu
Integer :: i, ifail, ip, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: res(:), work(:)

! .. Executable Statements ..
Write (nout,*) ’G02FCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, ip

Allocate (res(n),work(n))

! Read in the data
Read (nin,*)(res(i),i=1,n)

! Calculate the statistic
ifail = 0
Call g02fcf(n,ip,res,d,pdl,pdu,work,ifail)

! Display the results
Write (nout,99999) ’ Durbin-Watson statistic ’, d
Write (nout,*)
Write (nout,99998) ’ Lower and upper bound ’, pdl, pdu

99999 Format (1X,A,F10.4)
99998 Format (1X,A,2F10.4)

End Program g02fcfe
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10.2 Program Data

G02FCF Example Program Data
10 2 :: N, IP
3.735719 0.912755 0.683626 0.416693 1.990200

-0.444816 -1.283088 -3.666035 -0.426357 -1.918697 :: End of RES

10.3 Program Results

G02FCF Example Program Results

Durbin-Watson statistic 0.9238

Lower and upper bound 0.0610 0.0060
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NAG Library Routine Document

G02GAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02GAF fits a generalized linear model with normal errors.

2 Specification

SUBROUTINE G02GAF (LINK, MEAN, OFFSET, WEIGHT, N, X, LDX, M, ISX, IP, Y,
WT, S, A, RSS, IDF, B, IRANK, SE, COV, V, LDV, TOL,
MAXIT, IPRINT, EPS, WK, IFAIL)

&
&

INTEGER N, LDX, M, ISX(M), IP, IDF, IRANK, LDV, MAXIT,
IPRINT, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), Y(N), WT(*), S, A, RSS, B(IP), SE(IP),
COV(IP*(IP+1)/2), V(LDV,IP+7), TOL, EPS,
WK((IP*IP+3*IP+22)/2)

&
&

CHARACTER(1) LINK, MEAN, OFFSET, WEIGHT

3 Description

A generalized linear model with Normal errors consists of the following elements:

(a) a set of n observations, yi, from a Normal distribution with probability density function:

1ffiffiffiffiffiffi
2	
p

�
exp � y� �ð Þ2

2�2

 !
;

where � is the mean and �2 is the variance.

(b) X, a set of p independent variables for each observation, x1; x2; . . . ; xp.

(c) a linear model:

� ¼
X

�jxj:

(d) a link between the linear predictor, �, and the mean of the distribution, �, i.e., � ¼ g �ð Þ. The
possible link functions are:

(i) exponent link: � ¼ �a, for a constant a,

(ii) identity link: � ¼ �,
(iii) log link: � ¼ log�,

(iv) square root link: � ¼ ffiffiffi
�
p

,

(v) reciprocal link: � ¼ 1
� .

(e) a measure of fit, the residual sum of squares ¼
P

yi � �̂ið Þ2.
The linear arguments are estimated by iterative weighted least squares. An adjusted dependent variable,
z, is formed:

z ¼ � þ y� �ð Þd�
d�

and a working weight, w,
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w ¼ d�

d�

� �2

:

At each iteration an approximation to the estimate of �, �̂, is found by the weighted least squares
regression of z on X with weights w.

G02GAF finds a QR decomposition of w
1
2X , i.e., w

1
2X ¼ QR where R is a p by p triangular matrix and

Q is an n by p column orthogonal matrix.

If R is of full rank, then �̂ is the solution to

R�̂ ¼ QTw
1
2z:

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R.

R ¼ Q� D 0
0 0

� �
PT;

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R and w
1
2X .

This gives the solution

�̂ ¼ P1D
�1 Q� 0

0 I

� �
QTw

1
2z

P1 being the first k columns of P , i.e., P ¼ P1P0ð Þ.
The iterations are continued until there is only a small change in the residual sum of squares.

The initial values for the algorithm are obtained by taking

�̂ ¼ g yð Þ:

The fit of the model can be assessed by examining and testing the residual sum of squares, in particular
comparing the difference in residual sums of squares between nested models, i.e., when one model is a
sub-model of the other.

Let RSSf be the residual sum of squares for the full model with degrees of freedom �f and let RSSs be
the residual sum of squares for the sub-model with degrees of freedom �s then:

F ¼
RSSs � RSSf
� �

= �s � �f
� �

RSSf=�f
;

has, approximately, an F -distribution with (�s � �f ), �f degrees of freedom.

The parameter estimates, �̂, are asymptotically Normally distributed with variance-covariance matrix:

C ¼ R�1R�1T�2 in the full rank case,

otherwise C ¼ P1D
�2P T

1 �
2

The residuals and influence statistics can also be examined.

The estimated linear predictor �̂ ¼ X�̂, can be written as Hw
1
2z for an n by n matrix H. The ith

diagonal elements of H, hi, give a measure of the influence of the ith values of the independent
variables on the fitted regression model. These are sometimes known as leverages.

The fitted values are given by �̂ ¼ g�1 �̂ð Þ.
G02GAF also computes the residuals, r:

ri ¼ yi � �̂i:

An option allows prior weights !i to be used; this gives a model with:
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�2i ¼
�2

!i
:

In many linear regression models the first term is taken as a mean term or an intercept, i.e., xi;1 ¼ 1, for
i ¼ 1; 2; . . . ; n; this is provided as an option.

Often only some of the possible independent variables are included in a model, the facility to select
variables to be included in the model is provided.

If part of the linear predictor can be represented by a variable with a known coefficient, then this can be
included in the model by using an offset, o:

� ¼ oþ
X

�jxj:

If the model is not of full rank the solution given will be only one of the possible solutions. Other
estimates may be obtained by applying constraints to the arguments. These solutions can be obtained by
using G02GKF after using G02GAF. Only certain linear combinations of the arguments will have
unique estimates; these are known as estimable functions and can be estimated and tested using
G02GNF.

Details of the SVD are made available, in the form of the matrix P �:

P � ¼ D�1P T
1

PT
0

� �
:

4 References

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall

5 Arguments

1: LINK – CHARACTER(1) Input

On entry: indicates which link function is to be used.

LINK ¼ E
An exponent link is used.

LINK ¼ I
An identity link is used. You are advised not to use G02GAF with an identity link as
G02DAF provides a more efficient way of fitting such a model.

LINK ¼ L
A log link is used.

LINK ¼ S
A square root link is used.

LINK ¼ R
A reciprocal link is used.

Constraint: LINK ¼ E , I , L , S or R .

2: MEAN – CHARACTER(1) Input

On entry: indicates if a mean term is to be included.

MEAN ¼ M
A mean term, intercept, will be included in the model.
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MEAN ¼ Z
The model will pass through the origin, zero-point.

Constraint: MEAN ¼ M or Z .

3: OFFSET – CHARACTER(1) Input

On entry: indicates if an offset is required.

OFFSET ¼ Y
An offset is required and the offsets must be supplied in the seventh column of V.

OFFSET ¼ N
No offset is required.

Constraint: OFFSET ¼ N or Y .

4: WEIGHT – CHARACTER(1) Input

On entry: indicates if prior weights are to be used.

WEIGHT ¼ U
No prior weights are used.

WEIGHT ¼ W
Prior weights are used and weights must be supplied in WT.

Constraint: WEIGHT ¼ U or W.

5: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

6: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation for the jth independent variable, for
i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;M.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G02GAF is called.

Constraint: LDX � N.

8: M – INTEGER Input

On entry: m, the total number of independent variables.

Constraint: M � 1.

9: ISXðMÞ – INTEGER array Input

On entry: indicates which independent variables are to be included in the model.

If ISXðjÞ > 0, the variable contained in the jth column of X is included in the regression model.

Constraints:

ISXðjÞ � 0, for i ¼ 1; 2; . . . ;M;
if MEAN ¼ M , exactly IP� 1 values of ISX must be > 0;
if MEAN ¼ Z , exactly IP values of ISX must be > 0.
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10: IP – INTEGER Input

On entry: the number of independent variables in the model, including the mean or intercept if
present.

Constraint: IP > 0.

11: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the observations on the dependent variable, yi, for i ¼ 1; 2; . . . ; n.

12: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W , WT must contain the weights to be used with the model, !i. If
WTðiÞ ¼ 0:0, the ith observation is not included in the model, in which case the effective number
of observations is the number of observations with nonzero weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is n.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

13: S – REAL (KIND=nag_wp) Input/Output

On entry: the scale argument for the model, �2.

If S ¼ 0:0, the scale argument is estimated with the routine using the residual mean square.

On exit: if on input S ¼ 0:0, S contains the estimated value of the scale argument, �̂2.

If on input S 6¼ 0:0, S is unchanged on exit.

Constraint: S � 0:0.

14: A – REAL (KIND=nag_wp) Input

On entry: if LINK ¼ E , A must contain the power of the exponential.

If LINK 6¼ E , A is not referenced.

Constraint: if LINK ¼ E , A 6¼ 0:0.

15: RSS – REAL (KIND=nag_wp) Output

On exit: the residual sum of squares for the fitted model.

16: IDF – INTEGER Output

On exit: the degrees of freedom associated with the residual sum of squares for the fitted model.

17: BðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the estimates of the parameters of the generalized linear model, �̂.

If MEAN ¼ M , Bð1Þ will contain the estimate of the mean parameter and Bðiþ 1Þ will contain
the coefficient of the variable contained in column j of X, where ISXðjÞ is the ith positive value
in the array ISX.

If MEAN ¼ Z , BðiÞ will contain the coefficient of the variable contained in column j of X,
where ISXðjÞ is the ith positive value in the array ISX.

18: IRANK – INTEGER Output

On exit: the rank of the independent variables.

If the model is of full rank, IRANK ¼ IP.
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If the model is not of full rank, IRANK is an estimate of the rank of the independent variables.
IRANK is calculated as the number of singular values greater than EPS� (largest singular
value). It is possible for the SVD to be carried out but for IRANK to be returned as IP.

19: SEðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors of the linear parameters.

SEðiÞ contains the standard error of the parameter estimate in BðiÞ, for i ¼ 1; 2; . . . ; IP.

20: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper triangular part of the variance-covariance matrix of the IP parameter estimates
given in B. They are stored packed by column, i.e., the covariance between the parameter
estimate given in BðiÞ and the parameter estimate given in BðjÞ, j � i, is stored in
COVð j� j� 1ð Þ=2þ ið ÞÞ.

21: VðLDV; IPþ 7Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if OFFSET ¼ N , V need not be set.

If OFFSET ¼ Y , Vði; 7Þ, for i ¼ 1; 2; . . . ; n, must contain the offset values oi. All other values
need not be set.

On exit: auxiliary information on the fitted model.

Vði; 1Þ contains the linear predictor value, �i, for i ¼ 1; 2; . . . ; n.

Vði; 2Þ contains the fitted value, �̂i, for i ¼ 1; 2; . . . ; n.

Vði; 3Þ is only included for consistency with other routines. Vði; 3Þ ¼ 1:0, for i ¼ 1; 2; . . . ; n.

Vði; 4Þ contains the square root of the working weight, w
1
2
i , for i ¼ 1; 2; . . . ; n.

Vði; 5Þ contains the residual, ri, for i ¼ 1; 2; . . . ; n.

Vði; 6Þ contains the leverage, hi, for i ¼ 1; 2; . . . ; n.

Vði; 7Þ contains the offset, for i ¼ 1; 2; . . . ; n. If OFFSET ¼ N , all values will be zero.

Vði; jÞ, for j ¼ 8; . . . ; IPþ 7, contains the results of the QR decomposition or the singular value
decomposition.

If the model is not of full rank, i.e., IRANK < IP, the first IP rows of columns 8 to IPþ 7
contain the P � matrix.

22: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which G02GAF
is called.

Constraint: LDV � N.

23: TOL – REAL (KIND=nag_wp) Input

On entry: indicates the accuracy required for the fit of the model.

The iterative weighted least squares procedure is deemed to have converged if the absolute
c h a n g e i n d e v i a n c e b e t w e e n i n t e r a c t i o n s i s l e s s t h a n
TOL� 1:0þ current residual sum of squaresð Þ. This is approximately an absolute precision if
the residual sum of squares is small and a relative precision if the residual sum of squares is
large.

If 0:0 � TOL < machine precision, G02GAF will use 10�machine precision.

Constraint: TOL � 0:0.
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24: MAXIT – INTEGER Input

On entry: the maximum number of iterations for the iterative weighted least squares.

If MAXIT ¼ 0, a default value of 10 is used.

Constraint: MAXIT � 0.

25: IPRINT – INTEGER Input

On entry: indicates if the printing of information on the iterations is required.

IPRINT � 0
There is no printing.

IPRINT > 0
Every IPRINT iteration, the following is printed:

the deviance,

the current estimates,

and if the weighted least squares equations are singular then this is indicated.

When printing occurs the output is directed to the current advisory message unit (see X04ABF).

26: EPS – REAL (KIND=nag_wp) Input

On entry: the value of EPS is used to decide if the independent variables are of full rank and, if
not, what is the rank of the independent variables. The smaller the value of EPS the stricter the
criterion for selecting the singular value decomposition.

If 0:0 � EPS < machine precision, the routine will use machine precision instead.

Constraint: EPS � 0:0.

27: WKð IP� IPþ 3� IPþ 22ð Þ=2Þ – REAL (KIND=nag_wp) array Workspace

28: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02GAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or M < 1,
or LDX < N,
or LDV < N,

G02 – Correlation and Regression Analysis G02GAF

Mark 26 G02GAF.7



or IP < 1,
or LINK 6¼ E ; I ; L ; S or `R',
or S < 0:0,
or LINK ¼ E and A ¼ 0:0,
or MEAN 6¼ M or Z ,
or WEIGHT 6¼ U or W ,
or OFFSET 6¼ N or `Y',
or MAXIT < 0,
or TOL < 0:0,
or EPS < 0:0.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WT < 0:0.

IFAIL ¼ 3

On entry, a value of ISX < 0,
or the value of IP is incompatible with the values of MEAN and ISX,
or IP is greater than the effective number of observations.

IFAIL ¼ 4

A fitted value is at a boundary. This will only occur with LINK ¼ L , R or E . This may occur if
there are small values of y and the model is not suitable for the data. The model should be
reformulated with, perhaps, some observations dropped.

IFAIL ¼ 5

The singular value decomposition has failed to converge. This is an unlikely error exit, see
F02WUF.

IFAIL ¼ 6

The iterative weighted least squares has failed to converge in MAXIT (or default 10) iterations.
The value of MAXIT could be increased but it may be advantageous to examine the convergence
using the IPRINT option. This may indicate that the convergence is slow because the solution is
at a boundary in which case it may be better to reformulate the model.

IFAIL ¼ 7

The rank of the model has changed during the weighted least squares iterations. The estimate for
� returned may be reasonable, but you should check how the deviance has changed during
iterations.

IFAIL ¼ 8

The degrees of freedom for error are 0. A saturated model has been fitted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is determined by TOL as described in Section 5. As the residual sum of squares is a
function of �2 the accuracy of the �̂ will depend on the link used and may be of the order

ffiffiffiffiffiffiffiffiffiffi
TOL
p

.

8 Parallelism and Performance

G02GAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02GAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

The model:

y ¼ 1

�1 þ �2x
þ �

for a sample of five observations.

10.1 Program Text

Program g02gafe

! G02GAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02gaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, eps, rss, s, tol
Integer :: i, idf, ifail, ip, iprint, irank, &

ldv, ldx, lwt, m, maxit, n
Character (1) :: link, mean, offset, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), se(:), v(:,:), wk(:), &

wt(:), x(:,:), y(:)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: count

! .. Executable Statements ..
Write (nout,*) ’G02GAF Example Program Results’
Write (nout,*)
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! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) link, mean, offset, weight, n, m, s

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),isx(m),y(n),wt(lwt))

! Read in the data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),y(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

! Read in power for exponential link
If (link==’E’ .Or. link==’e’) Then

Read (nin,*) a
End If

ldv = n
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),v(ldv,ip+7),wk((ip*ip+3*ip+ &

22)/2))

! Read in the offset
If (offset==’Y’ .Or. offset==’y’) Then

Read (nin,*) v(1:n,7)
End If

! Read in control parameters
Read (nin,*) iprint, eps, tol, maxit

! Fit the generalized linear model with Normal errors
ifail = -1
Call g02gaf(link,mean,offset,weight,n,x,ldx,m,isx,ip,y,wt,s,a,rss,idf,b, &

irank,se,cov,v,ldv,tol,maxit,iprint,eps,wk,ifail)
If (ifail/=0) Then

If (ifail<6) Then
Go To 100

End If
End If

! Display results
Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99998) ’ Residual degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’ Estimate Standard error’
Write (nout,*)
Write (nout,99997)(b(i),se(i),i=1,ip)
Write (nout,*)
Write (nout,*) ’ Y FV Residual H’
Write (nout,*)
Write (nout,99996)(y(i),v(i,2),v(i,5),v(i,6),i=1,n)

100 Continue
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99999 Format (1X,A,E12.4)
99998 Format (1X,A,I2)
99997 Format (1X,2F14.4)
99996 Format (1X,F7.1,F10.2,F12.4,F10.3)

End Program g02gafe

10.2 Program Data

G02GAF Example Program Data
’R’ ’M’ ’N’ ’U’ 5 1 0.0 :: LINK,MEAN,OFFSET,WEIGHT,N,M,S
1.0 25.0
2.0 10.0
3.0 6.0
4.0 4.0
5.0 3.0 :: End of X,Y
1 :: ISX

0 1.0E-6 5.0E-5 10 :: IPRINT,EPS,TOL,MAXIT

10.3 Program Results

G02GAF Example Program Results

Residual sum of squares = 0.3872E+00
Residual degrees of freedom = 3

Estimate Standard error

-0.0239 0.0028
0.0638 0.0026

Y FV Residual H

25.0 25.04 -0.0387 0.995
10.0 9.64 0.3613 0.458
6.0 5.97 0.0320 0.268
4.0 4.32 -0.3221 0.167
3.0 3.39 -0.3878 0.112
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NAG Library Routine Document

G02GBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02GBF fits a generalized linear model with binomial errors.

2 Specification

SUBROUTINE G02GBF (LINK, MEAN, OFFSET, WEIGHT, N, X, LDX, M, ISX, IP, Y,
T, WT, DEV, IDF, B, IRANK, SE, COV, V, LDV, TOL,
MAXIT, IPRINT, EPS, WK, IFAIL)

&
&

INTEGER N, LDX, M, ISX(M), IP, IDF, IRANK, LDV, MAXIT,
IPRINT, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), Y(N), T(N), WT(*), DEV, B(IP), SE(IP),
COV(IP*(IP+1)/2), V(LDV,IP+7), TOL, EPS,
WK((IP*IP+3*IP+22)/2)

&
&

CHARACTER(1) LINK, MEAN, OFFSET, WEIGHT

3 Description

A generalized linear model with binomial errors consists of the following elements:

(a) a set of n observations, yi, from a binomial distribution:

t
y

� �
	y 1� 	ð Þt�y:

(b) X, a set of p independent variables for each observation, x1; x2; . . . ; xp.

(c) a linear model:

� ¼
X

�jxj:

(d) a link between the linear predictor, �, and the mean of the distribution, � ¼ 	t, the link function,
� ¼ g �ð Þ. The possible link functions are:

(i) logistic link: � ¼ log �
t��

� �
,

(ii) probit link: � ¼ ��1 �
t

� �
,

(iii) complementary log-log link: log �log 1� �
t

� �� �
:

(e) a measure of fit, the deviance:Xn
i¼1

dev yi; �̂ið Þ ¼
Xn
i¼1

2 yilog
yi
�̂i

� �
þ ti � yið Þlog ti � yið Þ

ti � �̂ið Þ

� �� �
:

The linear arguments are estimated by iterative weighted least squares. An adjusted dependent variable,
z, is formed:

z ¼ � þ y� �ð Þd�
d�

and a working weight, w,

w ¼ �
d�

d�

� �2

; where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t

� t� �ð Þ

s
:
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At each iteration an approximation to the estimate of �, �̂, is found by the weighted least squares
regression of z on X with weights w.

G02GBF finds a QR decomposition of w1=2X, i.e., w1=2X ¼ QR where R is a p by p triangular matrix
and Q is an n by p column orthogonal matrix.

If R is of full rank, then �̂ is the solution to

R�̂ ¼ QTw1=2z:

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R.

R ¼ Q� D 0
0 0

� �
PT;

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R and w1=2X.

This gives the solution

�̂ ¼ P1D
�1 Q� 0

0 I

� �
QTw1=2z;

P1 being the first k columns of P , i.e., P ¼ P1P0ð Þ.
The iterations are continued until there is only a small change in the deviance.

The initial values for the algorithm are obtained by taking

�̂ ¼ g yð Þ:

The fit of the model can be assessed by examining and testing the deviance, in particular by comparing
the difference in deviance between nested models, i.e., when one model is a sub-model of the other. The
difference in deviance between two nested models has, asymptotically, a �2-distribution with degrees of
freedom given by the difference in the degrees of freedom associated with the two deviances.

The arguments estimates, �̂, are asymptotically Normally distributed with variance-covariance matrix

C ¼ R�1R�1T in the full rank case, otherwise

C ¼ P1D
�2PT

1 .

The residuals and influence statistics can also be examined.

The estimated linear predictor �̂ ¼ X�̂, can be written as Hw1=2z for an n by n matrix H. The ith
diagonal elements of H, hi, give a measure of the influence of the ith values of the independent
variables on the fitted regression model. These are sometimes known as leverages.

The fitted values are given by �̂ ¼ g�1 �̂ð Þ.
G02GBF also computes the deviance residuals, r:

ri ¼ sign yi � �̂ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dev yi; �̂ið Þ

p
:

An option allows the use of prior weights in the model.

In many linear regression models the first term is taken as a mean term or an intercept, i.e., xi;1 ¼ 1, for
i ¼ 1; 2; . . . ; n. This is provided as an option.

Often only some of the possible independent variables are included in a model; the facility to select
variables to be included in the model is provided.

If part of the linear predictor can be represented by variables with a known coefficient then this can be
included in the model by using an offset, o:

� ¼ oþ
X

�jxj:

If the model is not of full rank the solution given will be only one of the possible solutions. Other
estimates may be obtained by applying constraints to the arguments. These solutions can be obtained by
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using G02GKF after using G02GBF. Only certain linear combinations of the arguments will have
unique estimates, these are known as estimable functions and can be estimated and tested using
G02GNF.

Details of the SVD are made available in the form of the matrix P �:

P � ¼ D�1P T
1

PT
0

� �
:

4 References

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall

Cox D R (1983) Analysis of Binary Data Chapman and Hall

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall

5 Arguments

1: LINK – CHARACTER(1) Input

On entry: indicates which link function is to be used.

LINK ¼ G
A logistic link is used.

LINK ¼ P
A probit link is used.

LINK ¼ C
A complementary log-log link is used.

Constraint: LINK ¼ G , P or C .

2: MEAN – CHARACTER(1) Input

On entry: indicates if a mean term is to be included.

MEAN ¼ M
A mean term, intercept, will be included in the model.

MEAN ¼ Z
The model will pass through the origin, zero-point.

Constraint: MEAN ¼ M or Z .

3: OFFSET – CHARACTER(1) Input

On entry: indicates if an offset is required.

OFFSET ¼ Y
An offset is required and the offsets must be supplied in the seventh column of V.

OFFSET ¼ N
No offset is required.

Constraint: OFFSET ¼ N or Y .

4: WEIGHT – CHARACTER(1) Input

On entry: indicates if prior weights are to be used.

WEIGHT ¼ U
No prior weights are used.

G02 – Correlation and Regression Analysis G02GBF

Mark 26 G02GBF.3



WEIGHT ¼ W
Prior weights are used and weights must be supplied in WT.

Constraint: WEIGHT ¼ U or W.

5: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

6: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation for the jth independent variable, for
i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;M.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02GBF
is called.

Constraint: LDX � N.

8: M – INTEGER Input

On entry: m, the total number of independent variables.

Constraint: M � 1.

9: ISXðMÞ – INTEGER array Input

On entry: indicates which independent variables are to be included in the model.

ISXðjÞ > 0
The variable contained in the jth column of X is included in the regression model.

Constraints:

ISXðjÞ � 0, for j ¼ 1; 2; . . . ;M;
if MEAN ¼ M , exactly IP� 1 values of ISX must be > 0;
if MEAN ¼ Z , exactly IP values of ISX must be > 0.

10: IP – INTEGER Input

On entry: the number of independent variables in the model, including the mean or intercept if
present.

Constraint: IP > 0.

11: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the observations on the dependent variable, yi, for i ¼ 1; 2; . . . ; n.

Constraint: 0:0 � YðiÞ � TðiÞ, for i ¼ 1; 2; . . . ; n.

12: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: t, the binomial denominator.

Constraint: TðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.
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13: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W , WT must contain the weights to be used in the weighted regression.
If WTðiÞ ¼ 0:0, the ith observation is not included in the model, in which case the effective
number of observations is the number of observations with nonzero weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is n.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

14: DEV – REAL (KIND=nag_wp) Output

On exit: the deviance for the fitted model.

15: IDF – INTEGER Output

On exit: the degrees of freedom associated with the deviance for the fitted model.

16: BðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the estimates of the parameters of the generalized linear model, �̂.

If MEAN ¼ M , the first element of B will contain the estimate of the mean parameter and
Bðiþ 1Þ will contain the coefficient of the variable contained in column j of X, where ISXðjÞ is
the ith positive value in the array ISX.

If MEAN ¼ Z , BðiÞ will contain the coefficient of the variable contained in column j of X,
where ISXðjÞ is the ith positive value in the array ISX.

17: IRANK – INTEGER Output

On exit: the rank of the independent variables.

If the model is of full rank, IRANK ¼ IP.

If the model is not of full rank, IRANK is an estimate of the rank of the independent variables.
IRANK is calculated as the number of singular values greater that EPS� (largest singular value).

It is possible for the SVD to be carried out but for IRANK to be returned as IP.

18: SEðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors of the linear parameters.

SEðiÞ contains the standard error of the parameter estimate in BðiÞ, for i ¼ 1; 2; . . . ; IP.

19: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper triangular part of the variance-covariance matrix of the IP parameter estimates
given in B. They are stored in packed form by column, i.e., the covariance between the parameter
estimate given in BðiÞ and the parameter estimate given in BðjÞ, j � i, is stored in
COVð j� j� 1ð Þ=2þ ið ÞÞ.

20: VðLDV; IPþ 7Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if OFFSET ¼ N , V need not be set.

If OFFSET ¼ Y , Vði; 7Þ, for i ¼ 1; 2; . . . ; n must contain the offset values oi. All other values
need not be set.

On exit: auxiliary information on the fitted model.

Vði; 1Þ contains the linear predictor value, �i, for i ¼ 1; 2; . . . ; n.

Vði; 2Þ contains the fitted value, �̂i, for i ¼ 1; 2; . . . ; n.
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Vði; 3Þ contains the variance standardization, 1
�i
, for i ¼ 1; 2; . . . ; n.

Vði; 4Þ contains the square root of the working weight, w
1
2
i , for i ¼ 1; 2; . . . ; n.

Vði; 5Þ contains the deviance residual, ri, for i ¼ 1; 2; . . . ; n.

Vði; 6Þ contains the leverage, hi, for i ¼ 1; 2; . . . ; n.

Vði; 7Þ contains the offset, oi, for i ¼ 1; 2; . . . ; n. If OFFSET ¼ N , all values will be zero.

Vði; jÞ for j ¼ 8; . . . ; IPþ 7, contains the results of the QR decomposition or the singular
value decomposition.

If the model is not of full rank, i.e., IRANK < IP, the first IP rows of columns 8 to IPþ 7
contain the P � matrix.

21: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which G02GBF
is called.

Constraint: LDV � N.

22: TOL – REAL (KIND=nag_wp) Input

On entry: indicates the accuracy required for the fit of the model.

The iterative weighted least squares procedure is deemed to have converged if the absolute
change in deviance between iterations is less than TOL� 1:0þ Current Devianceð Þ. This is
approximately an absolute precision if the deviance is small and a relative precision if the
deviance is large.

If 0:0 � TOL < machine precision, the routine will use 10�machine precision instead.

Constraint: TOL � 0:0.

23: MAXIT – INTEGER Input

On entry: the maximum number of iterations for the iterative weighted least squares.

If MAXIT ¼ 0, a default value of 10 is used.

Constraint: MAXIT � 0.

24: IPRINT – INTEGER Input

On entry: indicates if the printing of information on the iterations is required.

IPRINT � 0
There is no printing.

IPRINT > 0
The following is printed every IPRINT iterations:

the deviance,

the current estimates,

and if the weighted least squares equations are singular, then this is indicated.

When printing occurs the output is directed to the current advisory message unit (see X04ABF).

25: EPS – REAL (KIND=nag_wp) Input

On entry: the value of EPS is used to decide if the independent variables are of full rank and, if
not, what is the rank of the independent variables. The smaller the value of EPS the stricter the
criterion for selecting the singular value decomposition.
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If 0:0 � EPS < machine precision, the routine will use machine precision instead.

Constraint: EPS � 0:0.

26: WKð IP� IPþ 3� IPþ 22ð Þ=2Þ – REAL (KIND=nag_wp) array Workspace

27: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02GBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or M < 1,
or LDX < N,
or LDV < N,
or IP < 1,
or LINK 6¼ G , P or C .
or MEAN 6¼ M or Z .
or WEIGHT 6¼ U or W.
or OFFSET 6¼ N or Y .
or MAXIT < 0,
or TOL < 0:0,
or EPS < 0:0.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WT < 0:0.

IFAIL ¼ 3

On entry, a value of ISX < 0,
or the value of IP is incompatible with the values of MEAN and ISX,
or IP is greater than the effective number of observations.

IFAIL ¼ 4

On entry, TðiÞ < 0 for some i ¼ 1; 2; . . . ; n.

IFAIL ¼ 5

On entry, YðiÞ < 0:0,
or YðiÞ > TðiÞ for some i ¼ 1; 2; . . . ; n.
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IFAIL ¼ 6

A fitted value is at the boundary, i.e., 0:0 or 1:0. This may occur if there are y values of 0:0 or t
and the model is too complex for the data. The model should be reformulated with, perhaps,
some observations dropped.

IFAIL ¼ 7

The singular value decomposition has failed to converge. This is an unlikely error exit.

IFAIL ¼ 8

The iterative weighted least squares has failed to converge in MAXIT (or default 10) iterations.
The value of MAXIT could be increased but it may be advantageous to examine the convergence
using the IPRINT option. This may indicate that the convergence is slow because the solution is
at a boundary in which case it may be better to reformulate the model.

IFAIL ¼ 9

The rank of the model has changed during the weighted least squares iterations. The estimate for
� returned may be reasonable, but you should check how the deviance has changed during
iterations.

IFAIL ¼ 10

The degrees of freedom for error are 0. A saturated model has been fitted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy will depend on the value of TOL as described in Section 5. As the deviance is a function
of log� the accuracy of the �̂ will be only a function of TOL, so TOL should be set smaller than the
required accuracy for �̂.

8 Parallelism and Performance

G02GBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02GBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

None.

10 Example

A linear trend x ¼ �1; 0; 1ð Þ is fitted to data relating the incidence of carriers of Streptococcus
pyogenes to size of tonsils. The data is described in Cox (1983).

10.1 Program Text

Program g02gbfe

! G02GBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02gbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dev, eps, tol
Integer :: i, idf, ifail, ip, iprint, irank, &

ldv, ldx, lwk, lwt, m, maxit, n
Character (1) :: link, mean, offset, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), se(:), t(:), v(:,:), &

wk(:), wt(:), x(:,:), y(:)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: count

! .. Executable Statements ..
Write (nout,*) ’G02GBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) link, mean, offset, weight, n, m

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),y(n),t(n),wt(lwt),isx(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),y(i),t(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),y(i),t(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If
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ldv = n
lwk = (ip*ip+3*ip+22)/2
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),v(ldv,ip+7),wk(lwk))

! Read in the offset
If (offset==’Y’ .Or. offset==’y’) Then

Read (nin,*) v(1:n,7)
End If

! Read in the control parameters
Read (nin,*) iprint, eps, tol, maxit

! Fit generalized linear model with Binomial errors
ifail = -1
Call g02gbf(link,mean,offset,weight,n,x,ldx,m,isx,ip,y,t,wt,dev,idf,b, &

irank,se,cov,v,ldv,tol,maxit,iprint,eps,wk,ifail)
If (ifail/=0) Then

If (ifail<7) Then
Go To 100

End If
End If

! Display results
Write (nout,99999) ’Deviance = ’, dev
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’ Estimate Standard error’
Write (nout,*)
Write (nout,99997)(b(i),se(i),i=1,ip)
Write (nout,*)
Write (nout,*) ’ N Y FV Residual H’
Write (nout,*)
Write (nout,99996)(t(i),y(i),v(i,2),v(i,5),v(i,6),i=1,n)

100 Continue

99999 Format (1X,A,E12.4)
99998 Format (1X,A,I0)
99997 Format (1X,2F14.4)
99996 Format (1X,2F10.1,F10.2,F12.4,F10.3)

End Program g02gbfe

10.2 Program Data

G02GBF Example Program Data
’G’ ’M’ ’N’ ’U’ 3 1 :: LINK,OFFSET,WEIGHT,N,M
1.0 19. 516.
0.0 29. 560.

-1.0 24. 293. :: End of X,Y,T
1 :: ISX

0 1.0E-6 5.0E-5 10 :: IPRINT,EPS,TOL,MAXIT

10.3 Program Results

G02GBF Example Program Results

Deviance = 0.7354E-01
Degrees of freedom = 1

Estimate Standard error

-2.8682 0.1217
-0.4264 0.1598
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N Y FV Residual H

516.0 19.0 18.45 0.1296 0.769
560.0 29.0 30.10 -0.2070 0.422
293.0 24.0 23.45 0.1178 0.809
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NAG Library Routine Document

G02GCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02GCF fits a generalized linear model with Poisson errors.

2 Specification

SUBROUTINE G02GCF (LINK, MEAN, OFFSET, WEIGHT, N, X, LDX, M, ISX, IP, Y,
WT, A, DEV, IDF, B, IRANK, SE, COV, V, LDV, TOL,
MAXIT, IPRINT, EPS, WK, IFAIL)

&
&

INTEGER N, LDX, M, ISX(M), IP, IDF, IRANK, LDV, MAXIT,
IPRINT, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), Y(N), WT(*), A, DEV, B(IP), SE(IP),
COV(IP*(IP+1)/2), V(LDV,IP+7), TOL, EPS,
WK((IP*IP+3*IP+22)/2)

&
&

CHARACTER(1) LINK, MEAN, OFFSET, WEIGHT

3 Description

A generalized linear model with Poisson errors consists of the following elements:

(a) a set of n observations, yi, from a Poisson distribution:

�ye��

y!
:

(b) X, a set of p independent variables for each observation, x1; x2; . . . ; xp.

(c) a linear model:

� ¼
X

�jxj:

(d) a link between the linear predictor, �, and the mean of the distribution, �, � ¼ g �ð Þ. The possible
link functions are:

(i) exponent link: � ¼ �a, for a constant a,

(ii) identity link: � ¼ �,
(iii) log link: � ¼ log�,

(iv) square root link: � ¼ ffiffiffi
�
p

,

(v) reciprocal link: � ¼ 1
� .

(e) a measure of fit, the deviance:Xn
i¼1

dev yi; �̂ið Þ ¼
Xn
i¼1

2 yilog
yi
�̂i

� �
� yi � �̂ið Þ

� �
:

The linear arguments are estimated by iterative weighted least squares. An adjusted dependent variable,
z, is formed:

z ¼ � þ y� �ð Þd�
d�

and a working weight, w,
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w ¼ �d
d�

d�

� �2

;

where � ¼ ffiffiffi
�
p

.

At each iteration an approximation to the estimate of �, �̂, is found by the weighted least squares
regression of z on X with weights w.

G02GCF finds a QR decomposition of w1=2X, i.e., w1=2X ¼ QR where R is a p by p triangular matrix
and Q is an n by p column orthogonal matrix.

If R is of full rank, then �̂ is the solution to:

R�̂ ¼ QTw1=2z:

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R.

R ¼ Q� D 0
0 0

� �
PT;

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R and w1=2X.

This gives the solution

�̂ ¼ P1D
�1 Q� 0

0 I

� �
QTw1=2z;

P1 being the first k columns of P , i.e., P ¼ P1P0ð Þ.
The iterations are continued until there is only a small change in the deviance.

The initial values for the algorithm are obtained by taking

�̂ ¼ g yð Þ:

The fit of the model can be assessed by examining and testing the deviance, in particular by comparing
the difference in deviance between nested models, i.e., when one model is a sub-model of the other. The
difference in deviance between two nested models has, asymptotically, a �2-distribution with degrees of
freedom given by the difference in the degrees of freedom associated with the two deviances.

The arguments estimates, �̂, are asymptotically Normally distributed with variance-covariance matrix

C ¼ R�1R�1T in the full rank case, otherwise

C ¼ P1D
�2PT

1 .

The residuals and influence statistics can also be examined.

The estimated linear predictor �̂ ¼ X�̂, can be written as Hw1=2z for an n by n matrix H. The ith
diagonal elements of H, hi, give a measure of the influence of the ith values of the independent
variables on the fitted regression model. These are known as leverages.

The fitted values are given by �̂ ¼ g�1 �̂ð Þ.
G02GCF also computes the deviance residuals, r:

ri ¼ sign yi � �̂ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dev yi; �̂ið Þ

p
:

An option allows prior weights to be used with the model.

In many linear regression models the first term is taken as a mean term or an intercept, i.e., xi;1 ¼ 1, for
i ¼ 1; 2; . . . ; n. This is provided as an option.

Often only some of the possible independent variables are included in a model; the facility to select
variables to be included in the model is provided.
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If part of the linear predictor can be represented by a variables with a known coefficient then this can
be included in the model by using an offset, o:

� ¼ oþ
X

�jxj:

If the model is not of full rank the solution given will be only one of the possible solutions. Other
estimates may be obtained by applying constraints to the arguments. These solutions can be obtained by
using G02GKF after using G02GCF. Only certain linear combinations of the arguments will have
unique estimates, these are known as estimable functions, these can be estimated and tested using
G02GNF.

Details of the SVD are made available in the form of the matrix P �:

P � ¼ D�1P T
1

PT
0

� �
:

The generalized linear model with Poisson errors can be used to model contingency table data; see
Cook and Weisberg (1982) and McCullagh and Nelder (1983).

4 References

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall

Plackett R L (1974) The Analysis of Categorical Data Griffin

5 Arguments

1: LINK – CHARACTER(1) Input

On entry: indicates which link function is to be used.

LINK ¼ E
An exponent link is used.

LINK ¼ I
An identity link is used.

LINK ¼ L
A log link is used;

LINK ¼ S
A square root link is used.

LINK ¼ R
A reciprocal link is used.

Constraint: LINK ¼ E , I , L , S or R .

2: MEAN – CHARACTER(1) Input

On entry: indicates if a mean term is to be included.

MEAN ¼ M
A mean term, intercept, will be included in the model.

MEAN ¼ Z
The model will pass through the origin, zero-point.

Constraint: MEAN ¼ M or Z .
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3: OFFSET – CHARACTER(1) Input

On entry: indicates if an offset is required.

OFFSET ¼ Y
An offset is required and the offsets must be supplied in the seventh column of V.

OFFSET ¼ N
No offset is required.

Constraint: OFFSET ¼ N or Y .

4: WEIGHT – CHARACTER(1) Input

On entry: indicates if prior weights are to be used.

WEIGHT ¼ U
No prior weights are used.

WEIGHT ¼ W
Prior weights are used and weights must be supplied in WT.

Constraint: WEIGHT ¼ U or W.

5: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

6: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: the matrix of all possible independent variables. Xði; jÞ must contain the ijth element
of X, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;M.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02GCF
is called.

Constraint: LDX � N.

8: M – INTEGER Input

On entry: m, the total number of independent variables.

Constraint: M � 1.

9: ISXðMÞ – INTEGER array Input

On entry: indicates which independent variables are to be included in the model.

ISXðjÞ > 0
The variable contained in the jth column of X is included in the regression model.

Constraints:

ISXðjÞ � 0, for j ¼ 1; 2; . . . ;M;
if MEAN ¼ M , exactly IP� 1 values of ISX must be > 0;
if MEAN ¼ Z , exactly IP values of ISX must be > 0.

10: IP – INTEGER Input

On entry: the number of independent variables in the model, including the mean or intercept if
present.

Constraint: IP > 0.
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11: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: y, observations on the dependent variable.

Constraint: YðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

12: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W >, WT must contain the weights to be used in the weighted
regression.

If WTðiÞ ¼ 0:0, the ith observation is not included in the model, in which case the effective
number of observations is the number of observations with nonzero weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is n.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

13: A – REAL (KIND=nag_wp) Input

On entry: if LINK ¼ E , A must contain the power of the exponential.

If LINK 6¼ E , A is not referenced.

Constraint: if A 6¼ 0:0, LINK ¼ E .

14: DEV – REAL (KIND=nag_wp) Output

On exit: the deviance for the fitted model.

15: IDF – INTEGER Output

On exit: the degrees of freedom asociated with the deviance for the fitted model.

16: BðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the estimates of the parameters of the generalized linear model, �̂.

If MEAN ¼ M , the first element of B will contain the estimate of the mean parameter and
Bðiþ 1Þ will contain the coefficient of the variable contained in column j of X, where ISXðjÞ is
the ith positive value in the array ISX.

If MEAN ¼ Z , BðiÞ will contain the coefficient of the variable contained in column j of X,
where ISXðjÞ is the ith positive value in the array ISX.

17: IRANK – INTEGER Output

On exit: the rank of the independent variables.

If the model is of full rank, IRANK ¼ IP.

If the model is not of full rank, IRANK is an estimate of the rank of the independent variables.
IRANK is calculated as the number of singular values greater that EPS� (largest singular value).
It is possible for the SVD to be carried out but for IRANK to be returned as IP.

18: SEðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors of the linear parameters.

SEðiÞ contains the standard error of the parameter estimate in BðiÞ, for i ¼ 1; 2; . . . ; IP.

19: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper triangular part of the variance-covariance matrix of the IP parameter estimates
given in B. They are stored packed by column, i.e., the covariance between the parameter
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estimate given in BðiÞ and the parameter estimate given in BðjÞ, j � i, is stored in
COVð j� j� 1ð Þ=2þ ið ÞÞ.

20: VðLDV; IPþ 7Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if OFFSET ¼ N , V need not be set.

If OFFSET ¼ Y , Vði; 7Þ, for i ¼ 1; 2; . . . ; n must contain the offset values oi. All other values
need not be set.

On exit: auxiliary information on the fitted model.

Vði; 1Þ contains the linear predictor value, �i, for i ¼ 1; 2; . . . ; n.

Vði; 2Þ contains the fitted value, �̂i, for i ¼ 1; 2; . . . ; n.

Vði; 3Þ contains the variance standardization, 1
�i
, for i ¼ 1; 2; . . . ; n.

Vði; 4Þ contains the square root of the working weight, w
1
2
i , for i ¼ 1; 2; . . . ; n.

Vði; 5Þ contains the deviance residual, ri, for i ¼ 1; 2; . . . ; n.

Vði; 6Þ contains the leverage, hi, for i ¼ 1; 2; . . . ; n.

Vði; 7Þ contains the offset, oi, for i ¼ 1; 2; . . . ; n. If OFFSET ¼ N , all values will be zero.

Vði; jÞ for j ¼ 8; . . . ; IPþ 7, contains the results of the QR decomposition or the singular
value decomposition.

If the model is not of full rank, i.e., IRANK < IP, the first IP rows of columns 8 to IPþ 7
contain the P � matrix.

21: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which G02GCF
is called.

Constraint: LDV � N.

22: TOL – REAL (KIND=nag_wp) Input

On entry: indicates the accuracy required for the fit of the model.

The iterative weighted least squares procedure is deemed to have converged if the absolute
change in deviance between iterations is less than TOL� 1:0þ Current Devianceð Þ. This is
approximately an absolute precision if the deviance is small and a relative precision if the
deviance is large.

If 0:0 � TOL < machine precision, the routine will use 10�machine precision instead.

Constraint: TOL � 0:0.

23: MAXIT – INTEGER Input

On entry: the maximum number of iterations for the iterative weighted least squares.

If MAXIT ¼ 0, a default value of 10 is used.

Constraint: MAXIT � 0.

24: IPRINT – INTEGER Input

On entry: indicates if the printing of information on the iterations is required.

IPRINT � 0
There is no printing.

IPRINT > 0
Every IPRINT iteration, the following are printed:
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the deviance;

the current estimates;

and if the weighted least squares equations are singular then this is indicated.

When printing occurs the output is directed to the current advisory message unit (see X04ABF).

25: EPS – REAL (KIND=nag_wp) Input

On entry: the value of EPS is used to decide if the independent variables are of full rank and, if
not, what is the rank of the independent variables. The smaller the value of EPS the stricter the
criterion for selecting the singular value decomposition.

If 0:0 � EPS < machine precision, the routine will use machine precision instead.

Constraint: EPS � 0:0.

26: WKð IP� IPþ 3� IPþ 22ð Þ=2Þ – REAL (KIND=nag_wp) array Workspace

27: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02GCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or M < 1,
or LDX < N,
or LDV < N,
or IP < 1,
or LINK 6¼ E , I , L , S or R ,
or LINK ¼ E and A ¼ 0:0,
or MEAN 6¼ M or Z ,
or WEIGHT 6¼ U or W ,
or OFFSET 6¼ N or Y ,
or MAXIT < 0,
or TOL < 0:0,
or EPS < 0:0.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WT < 0:0.
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IFAIL ¼ 3

On entry, a value of ISX < 0,
or the value of IP is incompatible with the values of MEAN and ISX,
or IP is greater than the effective number of observations.

IFAIL ¼ 4

On entry, YðiÞ < 0:0 for some i ¼ 1; 2; . . . ; n.

IFAIL ¼ 5

A fitted value is at the boundary, i.e., �̂ ¼ 0:0. This may occur if there are y values of 0:0 and the
model is too complex for the data. The model should be reformulated with, perhaps, some
observations dropped.

IFAIL ¼ 6

The singular value decomposition has failed to converge. This is an unlikely error exit.

IFAIL ¼ 7

The iterative weighted least squares has failed to converge in MAXIT (or default 10) iterations.
The value of MAXIT could be increased but it may be advantageous to examine the convergence
using the IPRINT option. This may indicate that the convergence is slow because the solution is
at a boundary in which case it may be better to reformulate the model.

IFAIL ¼ 8

The rank of the model has changed during the weighted least squares iterations. The estimate for
� returned may be reasonable, but you should check how the deviance has changed during
iterations.

IFAIL ¼ 9

The degrees of freedom for error are 0. A saturated model has been fitted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy depends on the value of TOL as described in Section 5. As the deviance is a function of
log� the accuracy of the �̂ will only be a function of TOL. TOL should therefore be set smaller than
the accuracy required for �̂.
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8 Parallelism and Performance

G02GCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02GCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

A 3 by 5 contingency table given by Plackett (1974) is analysed by fitting terms for rows and columns.
The table is:

141 67 114 79 39
131 66 143 72 35
36 14 38 28 16

:

10.1 Program Text

Program g02gcfe

! G02GCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02gcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, dev, eps, tol
Integer :: i, idf, ifail, ip, iprint, irank, &

ldv, ldx, lwk, lwt, m, maxit, n
Character (1) :: link, mean, offset, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), se(:), v(:,:), wk(:), &

wt(:), x(:,:), y(:)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: count

! .. Executable Statements ..
Write (nout,*) ’G02GCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) link, mean, offset, weight, n, m

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
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ldx = n
Allocate (x(ldx,m),y(n),wt(lwt),isx(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),y(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

! Read in power for exponential link
If (link==’E’ .Or. link==’e’) Then

Read (nin,*) a
End If

ldv = n
lwk = (ip*ip+3*ip+22)/2
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),v(ldv,ip+7),wk(lwk))

! Read in the offset
If (offset==’Y’ .Or. offset==’y’) Then

Read (nin,*) v(1:n,7)
End If

! Read in control parameters
Read (nin,*) iprint, eps, tol, maxit

! Fit generalized linear model with Poisson errors
ifail = -1
Call g02gcf(link,mean,offset,weight,n,x,ldx,m,isx,ip,y,wt,a,dev,idf,b, &

irank,se,cov,v,ldv,tol,maxit,iprint,eps,wk,ifail)
If (ifail/=0) Then

If (ifail<7) Then
Go To 100

End If
End If

! Display results
Write (nout,99999) ’Deviance = ’, dev
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’ Estimate Standard error’
Write (nout,*)
Write (nout,99997)(b(i),se(i),i=1,ip)
Write (nout,*)
Write (nout,*) ’ Y FV Residual H’
Write (nout,*)
Write (nout,99996)(y(i),v(i,2),v(i,5),v(i,6),i=1,n)

100 Continue

99999 Format (1X,A,E12.4)
99998 Format (1X,A,I0)
99997 Format (1X,2F14.4)
99996 Format (1X,F7.1,F10.2,F12.4,F10.3)

End Program g02gcfe
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10.2 Program Data

G02GCF Example Program Data
’L’ ’M’ ’N’ ’U’ 15 8 :: LINK,MEAN,OFFSET,WEIGHT,N,M
1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 141.0
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 67.0
1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 114.0
1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 79.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 39.0
0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 131.0
0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 66.0
0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 143.0
0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 72.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 35.0
0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 36.0
0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 14.0
0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 38.0
0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 28.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 16.0 :: End of X, Y
1 1 1 1 1 1 1 1 :: ISX

0 1.0E-6 5.0E-5 0 :: IPRINT,EPS,TOL,MAXIT

10.3 Program Results

G02GCF Example Program Results

Deviance = 0.9038E+01
Degrees of freedom = 8

Estimate Standard error

2.5977 0.0258
1.2619 0.0438
1.2777 0.0436
0.0580 0.0668
1.0307 0.0551
0.2910 0.0732
0.9876 0.0559
0.4880 0.0675

-0.1996 0.0904

Y FV Residual H

141.0 132.99 0.6875 0.604
67.0 63.47 0.4386 0.514

114.0 127.38 -1.2072 0.596
79.0 77.29 0.1936 0.532
39.0 38.86 0.0222 0.482

131.0 135.11 -0.3553 0.608
66.0 64.48 0.1881 0.520

143.0 129.41 1.1749 0.601
72.0 78.52 -0.7465 0.537
35.0 39.48 -0.7271 0.488
36.0 39.90 -0.6276 0.393
14.0 19.04 -1.2131 0.255
38.0 38.21 -0.0346 0.382
28.0 23.19 0.9675 0.282
16.0 11.66 1.2028 0.206
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NAG Library Routine Document

G02GDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02GDF fits a generalized linear model with gamma errors.

2 Specification

SUBROUTINE G02GDF (LINK, MEAN, OFFSET, WEIGHT, N, X, LDX, M, ISX, IP, Y,
WT, S, A, DEV, IDF, B, IRANK, SE, COV, V, LDV, TOL,
MAXIT, IPRINT, EPS, WK, IFAIL)

&
&

INTEGER N, LDX, M, ISX(M), IP, IDF, IRANK, LDV, MAXIT,
IPRINT, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), Y(N), WT(*), S, A, DEV, B(IP), SE(IP),
COV(IP*(IP+1)/2), V(LDV,IP+7), TOL, EPS,
WK((IP*IP+3*IP+22)/2)

&
&

CHARACTER(1) LINK, MEAN, OFFSET, WEIGHT

3 Description

A generalized linear model with gamma errors consists of the following elements:

(a) a set of n observations, yi, from a gamma distribution with probability density function:

1

 �ð Þ
�y

�

� ��
exp ��y

�

� �
1
y

� being constant for the sample.

(b) X, a set of p independent variables for each observation, x1; x2; . . . ; xp.

(c) a linear model:

� ¼
X

�jxj:

(d) a link between the linear predictor, �, and the mean of the distribution, �, � ¼ g �ð Þ. The possible
link functions are:

(i) exponent link: � ¼ �a, for a constant a,

(ii) identity link: � ¼ �,
(iii) log link: � ¼ log�,

(iv) square root link: � ¼ ffiffiffi
�
p

,

(v) reciprocal link: � ¼ 1

�
.

(e) a measure of fit, an adjusted deviance. This is a function related to the deviance, but defined for
y ¼ 0: Xn

i¼1
dev� yi; �̂ið Þ ¼

Xn
i¼1

2 log �̂ið Þ þ
yi
�̂i

� �� �
:

The linear arguments are estimated by iterative weighted least squares. An adjusted dependent variable,
z, is formed:
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z ¼ � þ y� �ð Þd�
d�

and a working weight, w,

w ¼ �
d�

d�

� �2

; where � ¼ 1

�
:

At each iteration an approximation to the estimate of �, �̂ is found by the weighted least squares
regression of z on X with weights w.

G02GDF finds a QR decomposition of w
1
2X , i.e.,

w
1
2X ¼ QR where R is a p by p triangular matrix and Q is an n by p column orthogonal matrix.

If R is of full rank then �̂ is the solution to:

R�̂ ¼ QTw
1
2z

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R.

R ¼ Q� D 0
0 0

� �
PT:

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R and w
1
2X .

This gives the solution

�̂ ¼ P1D
�1 Q� 0

0 I

� �
QTw

1
2z;

where P1 is the first k columns of P , i.e., P ¼ P1P0ð Þ.
The iterations are continued until there is only a small change in the deviance.

The initial values for the algorithm are obtained by taking

�̂ ¼ g yð Þ:
The scale argument, ��1 is estimated by a moment estimator:

�̂�1 ¼
Xn
i¼1

yi � �̂ið Þ=�̂½ �2

n� kð Þ :

The fit of the model can be assessed by examining and testing the deviance, in particular, by comparing
the difference in deviance between nested models, i.e., when one model is a sub-model of the other. The
difference in deviance or adjusted deviance between two nested models with known � has,
asymptotically, a �2-distribution with degrees of freedom given by the difference in the degrees of
freedom associated with the two deviances.

The arguments estimates, �̂, are asymptotically Normally distributed with variance-covariance matrix:

C ¼ R�1R�1T��1 in the full rank case, otherwise

C ¼ P1D
�2PT

1 �
�1.

The residuals and influence statistics can also be examined.

The estimated linear predictor �̂ ¼ X�̂, can be written as Hw
1
2z for an n by n matrix H. The ith

diagonal elements of H, hi, give a measure of the influence of the ith values of the independent
variables on the fitted regression model. These are known as leverages.

The fitted values are given by �̂ ¼ g�1 �̂ð Þ.
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G02GDF also computes the Anscombe residuals, r:

ri ¼
3 y

1
3
i � �̂

1
3
i

� �
�̂

1
3
i

:

An option allows the use of prior weights, !i. This gives a model with:

�i ¼ �!i:
In many linear regression models the first term is taken as a mean term or an intercept, i.e., xi;1 ¼ 1, for
i ¼ 1; 2; . . . ; n. This is provided as an option.

Often only some of the possible independent variables are included in a model, the facility to select
variables to be included in the model is provided.

If part of the linear predictor can be represented by a variables with a known coefficient then this can
be included in the model by using an offset, o:

� ¼ oþ
X

�jxj:

If the model is not of full rank the solution given will be only one of the possible solutions. Other
estimates may be obtained by applying constraints to the arguments. These solutions can be obtained by
using G02GKF after using G02GDF. Only certain linear combinations of the arguments will have
unique estimates, these are known as estimable functions, and can be estimated and tested using
G02GNF.

Details of the SVD are made available in the form of the matrix P �:

P � ¼ D�1P T
1

PT
0

� �
:

4 References

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall

5 Arguments

1: LINK – CHARACTER(1) Input

On entry: indicates which link function is to be used.

LINK ¼ E
An exponential link is used.

LINK ¼ I
An identity link is used.

LINK ¼ L
A log link is used.

LINK ¼ S
A square root link is used.

LINK ¼ R
A reciprocal link is used.

Constraint: LINK ¼ E , I , L , S or R .

2: MEAN – CHARACTER(1) Input

On entry: indicates if a mean term is to be included.

MEAN ¼ M
A mean term, intercept, will be included in the model.
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MEAN ¼ Z
The model will pass through the origin, zero-point.

Constraint: MEAN ¼ M or Z .

3: OFFSET – CHARACTER(1) Input

On entry: indicates if an offset is required.

OFFSET ¼ Y
An offset is required and the offsets must be supplied in the seventh column of V.

OFFSET ¼ N
No offset is required.

Constraint: OFFSET ¼ N or Y .

4: WEIGHT – CHARACTER(1) Input

On entry: indicates if prior weights are to be used.

WEIGHT ¼ U
No prior weights are used.

WEIGHT ¼ W
Prior weights are used and weights must be supplied in WT.

Constraint: WEIGHT ¼ U or W.

5: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

6: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation for the jth independent variable, for
i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;M.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G02GDF is called.

Constraint: LDX � N.

8: M – INTEGER Input

On entry: m, the total number of independent variables.

Constraint: M � 1.

9: ISXðMÞ – INTEGER array Input

On entry: indicates which independent variables are to be included in the model.

If ISXðjÞ > 0, the variable contained in the jth column of X is included in the regression model.

Constraints:

ISXðjÞ � 0, for i ¼ 1; 2; . . . ;M;
if MEAN ¼ M , exactly IP� 1 values of ISX must be > 0;
if MEAN ¼ Z , exactly IP values of ISX must be > 0.
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10: IP – INTEGER Input

On entry: the number of independent variables in the model, including the mean or intercept if
present.

Constraint: IP > 0.

11: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: y, the dependent variable.

Constraint: YðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

12: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W , WT must contain the weights to be used in the weighted regression.
If WTðiÞ ¼ 0:0, the ith observation is not included in the model, in which case the effective
number of observations is the number of observations with nonzero weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is n.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

13: S – REAL (KIND=nag_wp) Input/Output

On entry: the scale argument for the gamma model, ��1.

S ¼ 0:0
The scale argument is estimated with the routine using the formula described in Section 3.

Constraint: S � 0:0.

On exit: if on input S ¼ 0:0, S contains the estimated value of the scale argument, �̂�1.

If on input S 6¼ 0:0, S is unchanged on exit.

14: A – REAL (KIND=nag_wp) Input

On entry: if LINK ¼ E , A must contain the power of the exponential.

If LINK 6¼ E , A is not referenced.

Constraint: if LINK ¼ E , A 6¼ 0:0.

15: DEV – REAL (KIND=nag_wp) Output

On exit: the adjusted deviance for the fitted model.

16: IDF – INTEGER Output

On exit: the degrees of freedom asociated with the deviance for the fitted model.

17: BðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the estimates of the parameters of the generalized linear model, �̂.

If MEAN ¼ M , the first element of B will contain the estimate of the mean parameter and
Bðiþ 1Þ will contain the coefficient of the variable contained in column j of X, where ISXðjÞ is
the ith positive value in the array ISX.

If MEAN ¼ Z , BðiÞ will contain the coefficient of the variable contained in column j of X,
where ISXðjÞ is the ith positive value in the array ISX.

18: IRANK – INTEGER Output

On exit: the rank of the independent variables.
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If the model is of full rank then IRANK ¼ IP.

If the model is not of full rank then IRANK is an estimate of the rank of the independent
variables. IRANK is calculated as the number of singular values greater that EPS� (largest
singular value). It is possible for the SVD to be carried out but for IRANK to be returned as IP.

19: SEðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors of the linear parameters.

SEðiÞ contains the standard error of the parameter estimate in BðiÞ, for i ¼ 1; 2; . . . ; IP.

20: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper triangular part of the variance-covariance matrix of the IP parameter estimates
given in B. They are stored in packed form by column, i.e., the covariance between the parameter
estimate given in BðiÞ and the parameter estimate given in BðjÞ, j � i, is stored in
COVð j� j� 1ð Þ=2þ ið ÞÞ.

21: VðLDV; IPþ 7Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if OFFSET ¼ N , V need not be set.

If OFFSET ¼ Y , Vði; 7Þ, for i ¼ 1; 2; . . . ; n, must contain the offset values oi. All other values
need not be set.

On exit: auxiliary information on the fitted model.

Vði; 1Þ contains the linear predictor value, �i, for i ¼ 1; 2; . . . ; n.

Vði; 2Þ contains the fitted value, �̂i, for i ¼ 1; 2; . . . ; n.

Vði; 3Þ contains the variance standardization, 1
�i
, for i ¼ 1; 2; . . . ; n.

Vði; 4Þ contains the square root of the working weight, w
1
2
i , for i ¼ 1; 2; . . . ; n.

Vði; 5Þ contains the Anscombe residual, ri, for i ¼ 1; 2; . . . ; n.

Vði; 6Þ contains the leverage, hi, for i ¼ 1; 2; . . . ; n.

Vði; 7Þ contains the offset, oi, for i ¼ 1; 2; . . . ; n. If OFFSET ¼ N , all values will be zero.

Vði; jÞ, for j ¼ 8; . . . ; IPþ 7, contains the results of the QR decomposition or the singular value
decomposition.

If the model is not of full rank, i.e., IRANK < IP, the first IP rows of columns 8 to IPþ 7
contain the P � matrix.

22: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which G02GDF
is called.

Constraint: LDV � N.

23: TOL – REAL (KIND=nag_wp) Input

On entry: indicates the accuracy required for the fit of the model.

The iterative weighted least squares procedure is deemed to have converged if the absolute
change in deviance between iterations is less than TOL� 1:0þ Current Devianceð Þ. This is
approximately an absolute precision if the deviance is small and a relative precision if the
deviance is large.

If 0:0 � TOL < machine precision then the routine will use 10�machine precision instead.

Constraint: TOL � 0:0.
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24: MAXIT – INTEGER Input

On entry: the maximum number of iterations for the iterative weighted least squares.

MAXIT ¼ 0
A default value of 10 is used.

Constraint: MAXIT � 0.

25: IPRINT – INTEGER Input

On entry: indicates if the printing of information on the iterations is required.

IPRINT � 0
There is no printing.

IPRINT > 0
Every IPRINT iteration, the following are printed:

the deviance;

the current estimates;

and if the weighted least squares equations are singular then this is indicated.

When printing occurs the output is directed to the current advisory message unit (see X04ABF).

26: EPS – REAL (KIND=nag_wp) Input

On entry: the value of EPS is used to decide if the independent variables are of full rank and, if
not, what is the rank of the independent variables. The smaller the value of EPS the stricter the
criterion for selecting the singular value decomposition.

If 0:0 � EPS < machine precision then the routine will use machine precision instead.

Constraint: EPS � 0:0.

27: WKð IP� IPþ 3� IPþ 22ð Þ=2Þ – REAL (KIND=nag_wp) array Workspace

28: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02GDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or M < 1,
or LDX < N,
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or LDV < N,
or IP < 1,
or LINK 6¼ E ; I ; L ; S or `R',
or S < 0:0,
or LINK ¼ E and A ¼ 0:0,
or MEAN 6¼ M or Z ,
or WEIGHT 6¼ U or W ,
or OFFSET 6¼ N or `Y',
or MAXIT < 0,
or TOL < 0:0,
or EPS < 0:0.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WT < 0:0.

IFAIL ¼ 3

On entry, a value of ISX < 0,
or the value of IP is incompatible with the values of MEAN and ISX,
or IP is greater than the effective number of observations.

IFAIL ¼ 4

On entry, YðiÞ < 0:0 for some i ¼ 1; 2; . . . ; n.

IFAIL ¼ 5

A fitted value is at the boundary, i.e., �̂ ¼ 0:0. This may occur if there are small values of y and
the model is not suitable for the data. The model should be reformulated with, perhaps, some
observations dropped.

IFAIL ¼ 6

The singular value decomposition has failed to converge. This is an unlikely error exit.

IFAIL ¼ 7

The iterative weighted least squares has failed to converge in MAXIT (or default 10) iterations.
The value of MAXIT could be increased but it may be advantageous to examine the convergence
using the IPRINT option. This may indicate that the convergence is slow because the solution is
at a boundary in which case it may be better to reformulate the model.

IFAIL ¼ 8

The rank of the model has changed during the weighted least squares iterations. The estimate for
� returned may be reasonable, but you should check how the deviance has changed during
iterations.

IFAIL ¼ 9

The degrees of freedom for error are 0. A saturated model has been fitted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy depends on TOL as described in Section 5. As the adjusted deviance is a function of
log�, the accuracy of the �̂s will be a function of TOL, so TOL should be set to a smaller value than
the accuracy required for �̂.

8 Parallelism and Performance

G02GDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02GDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

A set of 10 observations from two groups is input and a model for the two groups is fitted.

10.1 Program Text

Program g02gdfe

! G02GDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02gdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, dev, eps, s, tol
Integer :: i, idf, ifail, ip, iprint, irank, &

ldv, ldx, lwk, lwt, m, maxit, n
Character (1) :: link, mean, offset, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), se(:), v(:,:), wk(:), &

wt(:), x(:,:), y(:)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: count

! .. Executable Statements ..
Write (nout,*) ’G02GDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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! Read in the problem size
Read (nin,*) link, mean, offset, weight, n, m, s

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),y(n),wt(lwt),isx(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),y(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

! Read in power for exponential link
If (link==’E’ .Or. link==’e’) Then

Read (nin,*) a
End If

ldv = n
lwk = (ip*ip+3*ip+22)/2
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),v(ldv,ip+7),wk(lwk))

! Read in the offset
If (offset==’Y’ .Or. offset==’y’) Then

Read (nin,*) v(1:n,7)
End If

! Read in control parameters
Read (nin,*) iprint, eps, tol, maxit

! Fit generalized linear model with Gamma errors
ifail = -1
Call g02gdf(link,mean,offset,weight,n,x,ldx,m,isx,ip,y,wt,s,a,dev,idf,b, &

irank,se,cov,v,ldv,tol,maxit,iprint,eps,wk,ifail)
If (ifail/=0) Then

If (ifail<7) Then
Go To 100

End If
End If

! Display results
Write (nout,99999) ’Deviance = ’, dev
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’ Estimate Standard error’
Write (nout,*)
Write (nout,99997)(b(i),se(i),i=1,ip)
Write (nout,*)
Write (nout,*) ’ Y FV Residual H’
Write (nout,*)
Write (nout,99996)(y(i),v(i,2),v(i,5),v(i,6),i=1,n)

100 Continue
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99999 Format (1X,A,E12.4)
99998 Format (1X,A,I0)
99997 Format (1X,2F14.4)
99996 Format (1X,F7.1,F10.2,F12.4,F10.3)

End Program g02gdfe

10.2 Program Data

G02GDF Example Program Data
’R’ ’M’ ’N’ ’U’ 10 1 0.0 :: LINK,MEAN,OFFSET,WEIGHT,N,M,S
1.0 1.0
1.0 0.3
1.0 10.5
1.0 9.7
1.0 10.9
0.0 0.62
0.0 0.12
0.0 0.09
0.0 0.50
0.0 2.14 :: End of X,Y
1 :: ISX

0 1.0E-6 5.0E-5 0 :: IPRINT,EPS,TOL,MAXIT

10.3 Program Results

G02GDF Example Program Results

Deviance = 0.3503E+02
Degrees of freedom = 8

Estimate Standard error

1.4408 0.6678
-1.2865 0.6717

Y FV Residual H

1.0 6.48 -1.3909 0.200
0.3 6.48 -1.9228 0.200

10.5 6.48 0.5236 0.200
9.7 6.48 0.4318 0.200

10.9 6.48 0.5678 0.200
0.6 0.69 -0.1107 0.200
0.1 0.69 -1.3287 0.200
0.1 0.69 -1.4815 0.200
0.5 0.69 -0.3106 0.200
2.1 0.69 1.3665 0.200
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NAG Library Routine Document

G02GKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02GKF calculates the estimates of the arguments of a generalized linear model for given constraints
from the singular value decomposition results.

2 Specification

SUBROUTINE G02GKF (IP, ICONST, V, LDV, C, LDC, B, S, SE, COV, WK, IFAIL)

INTEGER IP, ICONST, LDV, LDC, IFAIL
REAL (KIND=nag_wp) V(LDV,IP+7), C(LDC,ICONST), B(IP), S, SE(IP),

COV(IP*(IP+1)/2),
WK(2*IP*IP+IP*ICONST+2*ICONST*ICONST+4*ICONST)

&
&

3 Description

G02GKF computes the estimates given a set of linear constraints for a generalized linear model which
is not of full rank. It is intended for use after a call to G02GAF, G02GBF, G02GCF or G02GDF.

In the case of a model not of full rank the routines use a singular value decomposition to find the
parameter estimates, �̂svd, and their variance-covariance matrix. Details of the SVD are made available
in the form of the matrix P �:

P � ¼ D�1PT
1

PT
0

� �
as described by G02GAF, G02GBF, G02GCF and G02GDF. Alternative solutions can be formed by
imposing constraints on the arguments. If there are p arguments and the rank of the model is k then
nc ¼ p� k constraints will have to be imposed to obtain a unique solution.

Let C be a p by nc matrix of constraints, such that

CT� ¼ 0;

then the new parameter estimates �̂c are given by:

�̂c ¼ A�̂svd
¼ I � P0 C

TP0ð Þ�1
� �

�̂svd; where I is the identity matrix;

and the variance-covariance matrix is given by

AP1D
�2PT

1 A
T

provided CTP0ð Þ�1 exists.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall

Searle S R (1971) Linear Models Wiley
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5 Arguments

1: IP – INTEGER Input

On entry: p, the number of terms in the linear model.

Constraint: IP � 1.

2: ICONST – INTEGER Input

On entry: the number of constraints to be imposed on the arguments, nc.

Constraint: 0 < ICONST < IP.

3: VðLDV; IPþ 7Þ – REAL (KIND=nag_wp) array Input

On entry: the array V as returned by G02GAF, G02GBF, G02GCF or G02GDF.

4: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which G02GKF
is called.

Constraint: LDV � IP.

LDV should be as supplied to G02GAF, G02GBF, G02GCF or G02GDF

5: CðLDC; ICONSTÞ – REAL (KIND=nag_wp) array Input

On entry: contains the ICONST constraints stored by column, i.e., the ith constraint is stored in
the ith column of C.

6: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G02GKF
is called.

Constraint: LDC � IP.

7: BðIPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the parameter estimates computed by using the singular value decomposition, �̂svd.

On exit: the parameter estimates of the arguments with the constraints imposed, �̂c.

8: S – REAL (KIND=nag_wp) Input

On entry: the estimate of the scale argument.

For results from G02GAF and G02GDF then S is the scale argument for the model.

For results from G02GBF and G02GCF then S should be set to 1:0.

Constraint: S > 0:0.

9: SEðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the standard error of the parameter estimates in B.

10: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the upper triangular part of the variance-covariance matrix of the IP parameter estimates
given in B. They are stored packed by column, i.e., the covariance between the parameter
estimate given in BðiÞ and the parameter estimate given in BðjÞ, j � i, is stored in
COVð j� j� 1ð Þ=2þ ið ÞÞ.
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11: WKð2� IP� IPþ IP� ICONSTþ 2� ICONST� ICONSTþ 4� ICONSTÞ
– REAL (KIND=nag_wp) array Workspace

Note: a simple upper bound for the size of the workspace is 5� IP� IPþ 4� IP.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP < 1.
or ICONST � IP,
or ICONST � 0,
or LDV < IP,
or LDC < IP,
or S � 0:0.

IFAIL ¼ 2

C does not give a model of full rank.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

It should be noted that due to rounding errors an argument that should be zero when the constraints
have been imposed may be returned as a value of order machine precision.
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8 Parallelism and Performance

G02GKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02GKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02GKF is intended for use in situations in which dummy (0�1) variables have been used such as in
the analysis of designed experiments when you do not wish to change the arguments of the model to
give a full rank model. The routine is not intended for situations in which the relationships between the
independent variables are only approximate.

10 Example

A loglinear model is fitted to a 3 by 5 contingency table by G02GCF. The model consists of terms for
rows and columns. The table is

141 67 114 79 39
131 66 143 72 35
36 14 38 28 16

:

The constraints that the sum of row effects and the sum of column effects are zero are then read in and
the parameter estimates with these constraints imposed are computed by G02GKF and printed.

10.1 Program Text

Program g02gkfe

! G02GKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02gcf, g02gkf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, dev, eps, tol
Integer :: i, iconst, idf, ifail, ip, iprint, &

irank, ldc, ldv, ldx, lwk, lwt, m, &
maxit, n

Character (1) :: link, mean, offset, weight
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:), c(:,:), cov(:), se(:), v(:,:), &
wk(:), wt(:), x(:,:), y(:)

Integer, Allocatable :: isx(:)
! .. Intrinsic Procedures ..

Intrinsic :: count
! .. Executable Statements ..

Write (nout,*) ’G02GKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
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Read (nin,*) link, mean, offset, weight, n, m

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),y(n),wt(lwt),isx(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),y(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

! Read in power for exponential link
If (link==’E’ .Or. link==’e’) Then

Read (nin,*) a
End If

ldv = n
lwk = (ip*ip+3*ip+22)/2
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),v(ldv,ip+7),wk(lwk))

! Read in the offset
If (offset==’Y’ .Or. offset==’y’) Then

Read (nin,*) v(1:n,7)
End If

! Read in control parameters
Read (nin,*) iprint, eps, tol, maxit

! Fit generalized linear model with Poisson errors
ifail = -1
Call g02gcf(link,mean,offset,weight,n,x,ldx,m,isx,ip,y,wt,a,dev,idf,b, &

irank,se,cov,v,ldv,tol,maxit,iprint,eps,wk,ifail)
If (ifail/=0) Then

If (ifail<7) Then
Go To 100

End If
End If

! Display initial results
Write (nout,99999) ’Deviance = ’, dev
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)

! Calculate the number of constraints required
iconst = ip - irank

! Going to reallocate workspace, so deallocate it
Deallocate (wk)
lwk = 2*ip*ip + ip*iconst + 2*iconst*iconst + 4*iconst

ldc = ip
Allocate (c(ldc,iconst),wk(lwk))

! Read in constraints
Read (nin,*,Iostat=ifail)(c(i,1:iconst),i=1,ip)
If (ifail/=0) Then

G02 – Correlation and Regression Analysis G02GKF

Mark 26 G02GKF.5



Write (nout,99996) &
’ ** Insufficient constraints supplied, was expecting ’, iconst

Go To 100
End If

! Re-estimate the model given the constraints
ifail = 0
Call g02gkf(ip,iconst,v,ldv,c,ldc,b,1.0E0_nag_wp,se,cov,wk,ifail)

! Display the constrained parameter estimates
Write (nout,*) ’ Estimate Standard error’
Write (nout,*)
Write (nout,99997)(b(i),se(i),i=1,ip)

100 Continue

99999 Format (1X,A,E12.4)
99998 Format (1X,A,I2)
99997 Format (1X,2F14.4)
99996 Format (1X,A,I5)

End Program g02gkfe

10.2 Program Data

G02GKF Example Program Data
’L’ ’M’ ’N’ ’U’ 15 8 :: LINK,MEAN,OFFSET,WEIGHT,N,M
1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 141.0
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 67.0
1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 114.0
1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 79.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 39.0
0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 131.0
0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 66.0
0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 143.0
0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 72.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 35.0
0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 36.0
0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 14.0
0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 38.0
0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 28.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 16.0 :: End of X,Y
1 1 1 1 1 1 1 1 :: ISX

0 1.0E-6 5.0E-5 0 :: IPRINT,EPS,TOL,MAXIT
0.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0 :: End of constraints, C

10.3 Program Results

G02GKF Example Program Results

Deviance = 0.9038E+01
Degrees of freedom = 8

Estimate Standard error

3.9831 0.0396
0.3961 0.0458
0.4118 0.0457

-0.8079 0.0622
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0.5112 0.0562
-0.2285 0.0727
0.4680 0.0569

-0.0316 0.0675
-0.7191 0.0887
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NAG Library Routine Document

G02GNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02GNF gives the estimate of an estimable function along with its standard error from the results from
fitting a generalized linear model.

2 Specification

SUBROUTINE G02GNF (IP, IRANK, B, COV, V, LDV, F, EST, STAT, SESTAT, Z,
TOL, WK, IFAIL)

&

INTEGER IP, IRANK, LDV, IFAIL
REAL (KIND=nag_wp) B(IP), COV(IP*(IP+1)/2), V(LDV,IP+7), F(IP), STAT,

SESTAT, Z, TOL, WK(IP)
&

LOGICAL EST

3 Description

G02GNF computes the estimates of an estimable function for a generalized linear model which is not of
full rank. It is intended for use after a call to G02GAF, G02GBF, G02GCF or G02GDF. An estimable
function is a linear combination of the arguments such that it has a unique estimate. For a full rank
model all linear combinations of arguments are estimable.

In the case of a model not of full rank the routines use a singular value decomposition (SVD) to find
the parameter estimates, �̂, and their variance-covariance matrix. Given the upper triangular matrix R
obtained from the QR decomposition of the independent variables the SVD gives

R ¼ Q� D 0
0 0

� �
PT;

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R, and Q� and
P are p by p orthogonal matrices. This leads to a solution:

�̂ ¼ P1D
�1QT

�1c1;

P1 being the first k columns of P , i.e., P ¼ P1P0ð Þ; Q�1 being the first k columns of Q�, and c1 being
the first p elements of c.

Details of the SVD are made available in the form of the matrix P �:

P � ¼ D�1PT
1

PT
0

� �
as described by G02GAF, G02GBF, G02GCF and G02GDF.

A linear function of the arguments, F ¼ fT�, can be tested to see if it is estimable by computing
� ¼ PT

0 f . If � is zero, then the function is estimable, if not; the function is not estimable. In practice �j j
is tested against some small quantity �.

Given that F is estimable it can be estimated by fT�̂ and its standard error calculated from the
variance-covariance matrix of �̂, C�, as

se Fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTC�f

q
:

Also a z statistic
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z ¼ fT�̂

se Fð Þ;

can be computed. The distribution of z will be approximately Normal.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall

Searle S R (1971) Linear Models Wiley

5 Arguments

1: IP – INTEGER Input

On entry: p, the number of terms in the linear model.

Constraint: IP � 1.

2: IRANK – INTEGER Input

On entry: k, the rank of the dependent variables.

Constraint: 1 � IRANK � IP.

3: BðIPÞ – REAL (KIND=nag_wp) array Input

On entry: the IP values of the estimates of the arguments of the model, �̂.

4: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the upper triangular part of the variance-covariance matrix of the IP parameter
estimates given in B. They are stored packed by column, i.e., the covariance between the
parameter estimate given in BðiÞ and the parameter estimate given in BðjÞ, j � i, is stored in
COVð j� j� 1ð Þ=2þ ið ÞÞ.

5: VðLDV; IPþ 7Þ – REAL (KIND=nag_wp) array Input

On entry: as returned by G02GAF, G02GBF, G02GCF and G02GDF.

6: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which G02GNF
is called.

Constraint: LDV � IP.

7: FðIPÞ – REAL (KIND=nag_wp) array Input

On entry: f , the linear function to be estimated.

8: EST – LOGICAL Output

On exit: indicates if the function was estimable.

EST ¼ :TRUE:
The function is estimable.

EST ¼ :FALSE:
The function is not estimable and STAT, SESTAT and Z are not set.
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9: STAT – REAL (KIND=nag_wp) Output

On exit: if EST ¼ :TRUE:, STAT contains the estimate of the function, fT�̂

10: SESTAT – REAL (KIND=nag_wp) Output

On exit: if EST ¼ :TRUE:, SESTAT contains the standard error of the estimate of the function,
se Fð Þ.

11: Z – REAL (KIND=nag_wp) Output

On exit: if EST ¼ :TRUE:, Z contains the z statistic for the test of the function being equal to
zero.

12: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance value used in the check for estimability, �.

If TOL � 0:0 then
ffiffi
�
p

, where � is the machine precision, is used instead.

13: WKðIPÞ – REAL (KIND=nag_wp) array Workspace

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02GNF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP < 1,
or IRANK < 1,
or IRANK > IP,
or LDV < IP.

IFAIL ¼ 2

On entry, IRANK ¼ IP. In this case EST is returned as true and all statistics are calculated.

IFAIL ¼ 3

Standard error of statistic ¼ 0:0; this may be due to rounding errors if the standard error is very
small or due to mis-specified inputs COV and F.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G02GNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The value of estimable functions is independent of the solution chosen from the many possible
solutions. While G02GNF may be used to estimate functions of the arguments of the model as
computed by G02GKF, �c, these must be expressed in terms of the original arguments, �. The relation
between the two sets of arguments may not be straightforward.

10 Example

A loglinear model is fitted to a 3 by 5 contingency table by G02GCF. The model consists of terms for
rows and columns. The table is:

141 67 114 79 39
131 66 143 72 35
36 14 38 28 16

The number of functions to be tested is read in, then the linear functions themselves are read in and
tested with G02GNF. The results of G02GNF are printed.

10.1 Program Text

Program g02gnfe

! G02GNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02gcf, g02gnf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: a, dev, eps, sestat, stat, tol, z
Integer :: i, idf, ifail, ip, iprint, irank, &

ldv, ldx, lwk, lwt, m, maxit, n
Logical :: est
Character (1) :: link, mean, offset, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), f(:), se(:), v(:,:), &

wk(:), wt(:), x(:,:), y(:)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: count, max

! .. Executable Statements ..
Write (nout,*) ’G02GNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) link, mean, offset, weight, n, m

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),y(n),wt(lwt),isx(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),y(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

! Read in power for exponential link
If (link==’E’ .Or. link==’e’) Then

Read (nin,*) a
End If

ldv = n
lwk = max((ip*ip+3*ip+22)/2,ip)
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),v(ldv,ip+7),wk(lwk),f(ip))

! Read in the offset
If (offset==’Y’ .Or. offset==’y’) Then

Read (nin,*) v(1:n,7)
End If

! Read in control parameters
Read (nin,*) iprint, eps, tol, maxit

! Fit generalized linear model with Poisson errors
ifail = -1
Call g02gcf(’L’,’M’,’N’,’U’,n,x,ldx,m,isx,ip,y,wt,a,dev,idf,b,irank,se, &

cov,v,ldv,tol,maxit,iprint,eps,wk,ifail)
If (ifail/=0) Then

If (ifail<7) Then
Go To 100
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End If
End If

! Display initial results
Write (nout,99999) ’Deviance = ’, dev
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’ Estimate Standard error’
Write (nout,*)
Write (nout,99997)(b(i),se(i),i=1,ip)

! Estimate the estimable functions
i = 0

fun_lp: Do
! Read in the function

Read (nin,*,Iostat=ifail) f(1:ip)
If (ifail/=0) Then

Exit fun_lp
End If

i = i + 1

! Estimate it
ifail = -1
Call g02gnf(ip,irank,b,cov,v,ldv,f,est,stat,sestat,z,tol,wk,ifail)
If (ifail/=0) Then

If (ifail/=2) Then
Go To 100

End If
End If

! Display results
Write (nout,*)
Write (nout,99996) ’Function ’, i
Write (nout,99995) f(1:ip)
Write (nout,*)
If (est) Then

Write (nout,99994) ’STAT = ’, stat, ’ SE = ’, sestat, ’ Z = ’, z
Else

Write (nout,*) ’Function not estimable’
End If

End Do fun_lp

100 Continue

99999 Format (1X,A,E12.4)
99998 Format (1X,A,I2)
99997 Format (1X,2F14.4)
99996 Format (1X,A,I4)
99995 Format (1X,5F8.2)
99994 Format (1X,A,F10.4,A,F10.4,A,F10.4)

End Program g02gnfe

10.2 Program Data

G02GNF Example Program Data
’L’ ’M’ ’N’ ’U’ 15 8 :: LINK,MEAN,OFFSET,WEIGHT,N,M
1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 141.0
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 67.0
1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 114.0
1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 79.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 39.0
0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 131.0
0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 66.0
0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 143.0
0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 72.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 35.0
0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 36.0
0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 14.0
0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 38.0
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0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 28.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 16.0 :: End of X, Y
1 1 1 1 1 1 1 1 :: ISX
0 1.0E-6 5.0E-5 0 :: IPRINT,EPS,TOL,MAXIT
1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 :: Estimable function 1 (F)
0.0 1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 :: Estimable function 2 (F)
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 :: Estimable function 3 (F)

10.3 Program Results

G02GNF Example Program Results

Deviance = 0.9038E+01
Degrees of freedom = 8

Estimate Standard error

2.5977 0.0258
1.2619 0.0438
1.2777 0.0436
0.0580 0.0668
1.0307 0.0551
0.2910 0.0732
0.9876 0.0559
0.4880 0.0675

-0.1996 0.0904

Function 1
1.00 1.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00

STAT = 4.8903 SE = 0.0674 Z = 72.5934

Function 2
0.00 1.00 -1.00 0.00 0.00
0.00 0.00 0.00 0.00

STAT = -0.0158 SE = 0.0672 Z = -0.2350

Function 3
0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

Function not estimable
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NAG Library Routine Document

G02GPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02GPF allows prediction from a generalized linear model fit via G02GAF, G02GBF, G02GCF or
G02GDF.

2 Specification

SUBROUTINE G02GPF (ERRFN, LINK, MEAN, OFFSET, WEIGHT, N, X, LDX, M, ISX,
IP, T, OFF, WT, S, A, B, COV, VFOBS, ETA, SEETA,
PRED, SEPRED, IFAIL)

&
&

INTEGER N, LDX, M, ISX(M), IP, IFAIL
REAL (KIND=nag_wp) X(LDX,*), T(*), OFF(*), WT(*), S, A, B(IP),

COV(IP*(IP+1)/2), ETA(N), SEETA(N), PRED(N),
SEPRED(N)

&
&

LOGICAL VFOBS
CHARACTER(1) ERRFN, LINK, MEAN, OFFSET, WEIGHT

3 Description

A generalized linear model consists of the following elements:

(i) A suitable distribution for the dependent variable y.

(ii) A linear model, with linear predictor � ¼ X�, where X is a matrix of independent variables and �
a column vector of p parameters.

(iii) A link function g :ð Þ between the expected value of y and the linear predictor, that is
E yð Þ ¼ � ¼ g �ð Þ.

In order to predict from a generalized linear model, that is estimate a value for the dependent variable,
y, given a set of independent variables X, the matrix X must be supplied, along with values for the
parameters � and their associated variance-covariance matrix, C. Suitable values for � and C are
usually estimated by first fitting the prediction model to a training dataset with known responses, using
for example G02GAF, G02GBF, G02GCF or G02GDF. The predicted variable, and its standard error
can then be obtained from:

ŷ ¼ g�1 �ð Þ; se ŷð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g�1 xð Þ
�x

� �
�

s
se �ð Þ þ Ifobs Var yð Þ

where

� ¼ oþX�; se �ð Þ ¼ diag
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XCXT
p

;

o is a vector of offsets and Ifobs ¼ 0, if the variance of future observations is not taken into account, and
1 otherwise. Here diagA indicates the diagonal elements of matrix A.

If required, the variance for the ith future observation, Var yið Þ, can be calculated as:

Var yið Þ ¼

V �ð Þ
wi

where wi is a weight, 
 is the scale (or dispersion) parameter, and V �ð Þ is the variance function. Both
the scale parameter and the variance function depend on the distribution used for the y, with:
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Poisson V �ð Þ ¼ �i, 
 ¼ 1

binomial V �ð Þ ¼ �i ti��ið Þ
ti

, 
 ¼ 1

Normal V �ð Þ ¼ 1

gamma V �ð Þ ¼ �2i
In the cases of a Normal and gamma error structure, the scale parameter (
), is supplied by you. This
value is usually obtained from the routine used to fit the prediction model. In many cases, for a Normal
error structure, 
 ¼ �̂2, i.e., the estimated variance.

4 References

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall

5 Arguments

1: ERRFN – CHARACTER(1) Input

On entry: indicates the distribution used to model the dependent variable, y.

ERRFN ¼ B
The binomial distribution is used.

ERRFN ¼ G
The gamma distribution is used.

ERRFN ¼ N
The Normal (Gaussian) distribution is used.

ERRFN ¼ P
The Poisson distribution is used.

Constraint: ERRFN ¼ B , G , N or P .

2: LINK – CHARACTER(1) Input

On entry: indicates which link function to be used.

LINK ¼ C
A complementary log-log link is used.

LINK ¼ E
An exponent link is used.

LINK ¼ G
A logistic link is used.

LINK ¼ I
An identity link is used.

LINK ¼ L
A log link is used.

LINK ¼ P
A probit link is used.

LINK ¼ R
A reciprocal link is used.

LINK ¼ S
A square root link is used.

Details on the functional form of the different links can be found in the G02 Chapter
Introduction.
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Constraints:

if ERRFN ¼ B , LINK ¼ C , G or P ;
otherwise LINK ¼ E , I , L , R or S .

3: MEAN – CHARACTER(1) Input

On entry: indicates if a mean term is to be included.

MEAN ¼ M
A mean term, intercept, will be included in the model.

MEAN ¼ Z
The model will pass through the origin, zero-point.

Constraint: MEAN ¼ M or Z .

4: OFFSET – CHARACTER(1) Input

On entry: indicates if an offset is required.

OFFSET ¼ Y
An offset must be supplied in OFF.

OFFSET ¼ N
OFF is not referenced.

Constraint: OFFSET ¼ Y or N .

5: WEIGHT – CHARACTER(1) Input

On entry: if VFOBS ¼ :TRUE: indicates if weights are used, otherwise WEIGHT is not
referenced.

WEIGHT ¼ U
No weights are used.

WEIGHT ¼ W
Weights are used and must be supplied in WT.

Constraint: if VFOBS ¼ :TRUE:, WEIGHT ¼ U or W.

6: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

7: XðLDX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least M.

On entry: Xði; jÞ must contain the ith observation for the jth independent variable, for
i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;M.

8: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02GPF
is called.

Constraint: LDX � N.

9: M – INTEGER Input

On entry: m, the total number of independent variables.

Constraint: M � 1.
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10: ISXðMÞ – INTEGER array Input

On entry: indicates which independent variables are to be included in the model.

If ISXðjÞ > 0, the jth independent variable is included in the regression model.

Constraints:

ISXðjÞ � 0, for i ¼ 1; 2; . . . ;M;
if MEAN ¼ M , exactly IP� 1 values of ISX must be > 0;
if MEAN ¼ Z , exactly IP values of ISX must be > 0.

11: IP – INTEGER Input

On entry: the number of independent variables in the model, including the mean or intercept if
present.

Constraint: IP > 0.

12: Tð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array must be at least N if ERRFN ¼ B , and at least 1 otherwise.

On entry: if ERRFN ¼ B , TðiÞ must contain the binomial denominator, ti, for the ith
observation.

Otherwise T is not referenced.

Constraint: if ERRFN ¼ B , TðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

13: OFFð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array must be at least N if OFFSET ¼ Y , and at least 1 otherwise.

On entry: if OFFSET ¼ Y , OFFðiÞ must contain the offset oi, for the ith observation.

Otherwise OFF is not referenced.

14: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array must be at least N if WEIGHT ¼ W and VFOBS ¼ :TRUE:,
and at least 1 otherwise.

On entry: if WEIGHT ¼ W and VFOBS ¼ :TRUE:, WTðiÞ must contain the weight, wi, for the
ith observation.

If the variance of future observations is not included in the standard error of the predicted
variable, WT is not referenced.

Constraint: if VFOBS ¼ :TRUE: and WEIGHT ¼ W , WTðiÞ � 0., for i ¼ 1; 2; . . . ; i.

15: S – REAL (KIND=nag_wp) Input

On entry: if ERRFN ¼ N or G and VFOBS ¼ :TRUE:, the scale parameter, 
.

Otherwise S is not referenced and 
 ¼ 1.

Constraint: if ERRFN ¼ N or G and VFOBS ¼ :TRUE:, S > 0:0.

16: A – REAL (KIND=nag_wp) Input

On entry: if LINK ¼ E , A must contain the power of the exponential.

If LINK 6¼ E , A is not referenced.

Constraint: if LINK ¼ E , A 6¼ 0:0.

17: BðIPÞ – REAL (KIND=nag_wp) array Input

On entry: the model parameters, �.
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If MEAN ¼ M , Bð1Þ must contain the mean parameter and Bðiþ 1Þ the coefficient of the
variable contained in the jth independent X, where ISXðjÞ is the ith positive value in the array
ISX.

If MEAN ¼ Z , BðiÞ must contain the coefficient of the variable contained in the jth independent
X, where ISXðjÞ is the ith positive value in the array ISX.

18: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the upper triangular part of the variance-covariance matrix, C, of the model
parameters. This matrix should be supplied packed by column, i.e., the covariance between
parameters �i and �j, that is the values stored in BðiÞ and BðjÞ, should be supplied in
COVðj � j � 1ð Þ=2þ iÞ, for i ¼ 1; 2; . . . ; IP and j ¼ i; . . . ; IP.

Constraint: the matrix represented in COV must be a valid variance-covariance matrix.

19: VFOBS – LOGICAL Input

On entry: if VFOBS ¼ :TRUE:, the variance of future observations is included in the standard
error of the predicted variable (i.e., Ifobs ¼ 1), otherwise Ifobs ¼ 0.

20: ETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: the linear predictor, �.

21: SEETAðNÞ – REAL (KIND=nag_wp) array Output

On exit: the standard error of the linear predictor, se �ð Þ.

22: PREDðNÞ – REAL (KIND=nag_wp) array Output

On exit: the predicted value, ŷ.

23: SEPREDðNÞ – REAL (KIND=nag_wp) array Output

On exit: the standard error of the predicted value, se ŷð Þ. If PREDðiÞ could not be calculated, then
G02GPF returns IFAIL ¼ 22, and SEPREDðiÞ is set to �99:0.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02GPF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ERRFN is invalid: ERRFN ¼ valueh i.
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IFAIL ¼ 2

On entry, ERRFN and LINK combination is invalid: ERRFN ¼ valueh i, LINK ¼ valueh i.
On entry, LINK is invalid: LINK ¼ valueh i.

IFAIL ¼ 3

On entry, MEAN is invalid: MEAN ¼ valueh i.

IFAIL ¼ 4

On entry, OFFSET is invalid: OFFSET ¼ valueh i.

IFAIL ¼ 5

On entry, WEIGHT is invalid: WEIGHT ¼ valueh i.

IFAIL ¼ 6

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 8

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ 9

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 10

On entry, ISX not consistent with IP: valueh i values > 0, expected valueh i.

IFAIL ¼ 11

On entry, IP ¼ valueh i.
Constraint: IP > 0.

IFAIL ¼ 12

On entry, i ¼ valueh i and TðiÞ ¼ valueh i.
Constraint: TðiÞ � 0:0, for all i.

IFAIL ¼ 14

On entry, i ¼ valueh i and WTðiÞ ¼ valueh i.
Constraint: WTðiÞ � 0:0, for all i.

IFAIL ¼ 15

On entry, S ¼ valueh i.
Constraint: S > 0:0.

IFAIL ¼ 16

On entry, A ¼ 0:0.

IFAIL ¼ 18

On entry, COVðiÞ < 0:0 for at least one diagonal element: i ¼ valueh i, COVðiÞ ¼ valueh i.
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IFAIL ¼ 22

At least one predicted value could not be calculated as required. SEPRED is set to �99:0 for
affected predicted values.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02GPF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

The model

y ¼ 1

�1 þ �2x
þ �

is fitted to a training dataset with five observations. The resulting model is then used to predict the
response for two new observations.

10.1 Program Text

Program g02gpfe

! G02GPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02gaf, g02gpf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: a, eps, rss, s, tol
Integer :: i, idf, ifail, ip, iprint, irank, &

ldv, ldx, loff, lt, lwk, lwt, m, &
maxit, n, tldx

Logical :: vfobs
Character (1) :: errfn, link, mean, offset, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), eta(:), off(:), &

pred(:), se(:), seeta(:), sepred(:), &
t(:), twt(:), tx(:,:), ty(:), &
v(:,:), wk(:), wt(:), x(:,:), y(:)

Integer, Allocatable :: isx(:)
! .. Intrinsic Procedures ..

Intrinsic :: count
! .. Executable Statements ..

Write (nout,*) ’G02GPF Example Program Results’
Write (nout,*)

! Skip headings in data file
Read (nin,*)
Read (nin,*)

! Read in training data for model that will be used for prediction
Read (nin,*) link, mean, offset, weight, n, m, s

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
tldx = n
Allocate (tx(tldx,m),ty(n),twt(lwt),isx(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(tx(i,1:m),ty(i),twt(i),i=1,n)
Else

Read (nin,*)(tx(i,1:m),ty(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

! Read in power for exponential link
If (link==’E’ .Or. link==’e’) Then

Read (nin,*) a
End If

ldv = n
lwk = (ip*ip+3*ip+22)/2
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),v(ldv,ip+7),wk(lwk))

! Read in the offset
If (offset==’Y’ .Or. offset==’y’) Then

Read (nin,*) v(1:n,7)
End If

! Read in control parameters
Read (nin,*) iprint, eps, tol, maxit

! Call routine to fit generalized linear model, with Normal errors,
! to training data

ifail = -1
Call g02gaf(link,mean,offset,weight,n,tx,tldx,m,isx,ip,ty,twt,s,a,rss, &
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idf,b,irank,se,cov,v,ldv,tol,maxit,iprint,eps,wk,ifail)
If (ifail/=0) Then

If (ifail<6) Then
Go To 100

End If
End If

! Display parameter estimates for training data
Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99998) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’ Estimate Standard error’
Write (nout,*)
Write (nout,99997)(b(i),se(i),i=1,ip)

! Skip second lot of headings in data file
Read (nin,*)

! Read in size of prediction data
Read (nin,*) n, vfobs, offset, weight

! Used G02GAF to fit training model, so error structure is normal is
! do not require T array

errfn = ’N’
lt = 0

ldx = n
If (weight==’W’ .Or. weight==’w’) Then

lwt = n
Else

lwt = 0
End If
If (offset==’Y’ .Or. offset==’y’) Then

loff = n
Else

loff = 0
End If
Allocate (x(ldx,m),y(n),wt(lwt),off(loff),eta(n),seeta(n),pred(n), &

sepred(n),t(lt))

! Read in predication data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),i=1,n)
End If

! Read in offset for the prediction data
If (offset==’Y’ .Or. offset==’y’) Then

Read (nin,*) off(1:n)
End If

! Call prediction routine
ifail = -1
Call g02gpf(errfn,link,mean,offset,weight,n,x,ldx,m,isx,ip,t,off,wt,s,a, &

b,cov,vfobs,eta,seeta,pred,sepred,ifail)
If (ifail/=0) Then

Write (nout,99995) ifail
If (ifail/=22) Then

Go To 100
End If

End If

! Display predicted values
Write (nout,*)
Write (nout,*) ’ I ETA SE(ETA) Predicted ’, &

’ SE(Predicted)’
Write (nout,*)
Write (nout,99996)(i,eta(i),seeta(i),pred(i),sepred(i),i=1,n)

100 Continue
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99999 Format (1X,A,E12.4)
99998 Format (1X,A,I0)
99997 Format (1X,2F14.4)
99996 Format (1X,I3,’)’,F10.5,3F14.5)
99995 Format (1X,A,I5)

End Program g02gpfe

10.2 Program Data

G02GPF Example Program Data
Training Data
’R’ ’M’ ’N’ ’U’ 5 1 0.0 :: LINK,MEAN,OFFSET,WEIGHT,N,M,S
1.0 25.0
2.0 10.0
3.0 6.0
4.0 4.0
5.0 3.0 :: End of X,Y
1 :: ISX
0 1.0E-6 5.0E-5 0 :: IPRINT,EPS,TOL,MAXIT
Prediction Data
2 .TRUE. ’N’ ’U’ :: N,VFOBS,OFFSET,WEIGHT
32.0
18.0 :: End of X

10.3 Program Results

G02GPF Example Program Results

Residual sum of squares = 0.3872E+00
Degrees of freedom = 3

Estimate Standard error

-0.0239 0.0028
0.0638 0.0026

I ETA SE(ETA) Predicted SE(Predicted)

1) 2.01807 0.08168 0.49552 0.35981
2) 1.12472 0.04476 0.88911 0.36098
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NAG Library Routine Document

G02HAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02HAF performs bounded influence regression (M-estimates). Several standard methods are available.

2 Specification

SUBROUTINE G02HAF (INDW, IPSI, ISIGMA, INDC, N, M, X, LDX, Y, CPSI, H1,
H2, H3, CUCV, DCHI, THETA, SIGMA, C, LDC, RS, WGT,
TOL, MAXIT, NITMON, WORK, IFAIL)

&
&

INTEGER INDW, IPSI, ISIGMA, INDC, N, M, LDX, LDC, MAXIT,
NITMON, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), Y(N), CPSI, H1, H2, H3, CUCV, DCHI,
THETA(M), SIGMA, C(LDC,M), RS(N), WGT(N), TOL,
WORK(4*N+M*(N+M))

&
&

3 Description

For the linear regression model

y ¼ X�þ �;

where y is a vector of length n of the dependent variable,

X is a n by m matrix of independent variables of column rank k,

� is a vector of length m of unknown arguments,

and � is a vector of length n of unknown errors with var �ið Þ ¼ �2,

G02HAF calculates the M-estimates given by the solution, �̂, to the equationXn
i¼1
 ri= �wið Þð Þwixij ¼ 0; j ¼ 1; 2; . . . ;m; ð1Þ

where ri is the ith residual, i.e., the ith element of r ¼ y�X�̂,
 is a suitable weight function,

wi are suitable weights,

and � may be estimated at each iteration by the median absolute deviation of the residuals

�̂ ¼ med
i

rij j½ �=�1

or as the solution to Xn
i¼1
� ri= �̂wið Þð Þw2

i ¼ n� kð Þ�2

for suitable weight function �, where �1 and �2 are constants, chosen so that the estimator of � is
asymptotically unbiased if the errors, �i, have a Normal distribution. Alternatively � may be held at a
constant value.
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The above describes the Schweppe type regression. If the wi are assumed to equal 1 for all i then Huber
type regression is obtained. A third type, due to Mallows, replaces (1) byXn

i¼1
 ri=�ð Þwixij ¼ 0; j ¼ 1; 2; . . . ;m:

This may be obtained by use of the transformations

w�i  
ffiffiffiffiffi
wi
p

y�i  yi
ffiffiffiffiffi
wi
p

x�ij  xij
ffiffiffiffiffi
wi
p

; j ¼ 1; 2; . . . ;m

(see Section 3 of Marazzi (1987a)).

For Huber and Schweppe type regressions, �1 is the 75th percentile of the standard Normal distribution.
For Mallows type regression �1 is the solution to

1
n

Xn
i¼1
� �1=

ffiffiffiffiffi
wi
pð Þ ¼ 0:75;

where � is the standard Normal cumulative distribution function (see S15ABF).

�2 is given by

�2 ¼
Z 1
�1
� zð Þ
 zð Þ dz in the Huber case;

�2 ¼
1

n

Xn
i¼1
wi

Z 1
�1
� zð Þ
 zð Þ dz in the Mallows case;

�2 ¼
1

n

Xn
i¼1
w2
i

Z 1
�1
� z=wið Þ
 zð Þ dz in the Schweppe case;

where 
 is the standard Normal density, i.e., 1ffiffiffiffi
2	
p exp �1

2x
2

� �
:

The calculation of the estimates of � can be formulated as an iterative weighted least squares problem
with a diagonal weight matrix G given by

Gii ¼
 ri= �wið Þð Þ
ri= �wið Þð Þ ; ri 6¼ 0

 0 0ð Þ; ri ¼ 0

;

8><>:
where  0 tð Þ is the derivative of  at the point t.

The value of � at each iteration is given by the weighted least squares regression of y on X. This is
carried out by first transforming the y and X by

~yi ¼ yi
ffiffiffiffiffiffiffi
Gii

p

~xij ¼ xij
ffiffiffiffiffiffiffi
Gii

p
; j ¼ 1; 2; . . . ;m

and then using F04JGF. If X is of full column rank then an orthogonal-triangular (QR) decomposition
is used; if not, a singular value decomposition is used.

The following functions are available for  and � in G02HAF.

(a) Unit Weights

 tð Þ ¼ t; � tð Þ ¼ t
2

2
:
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This gives least squares regression.

(b) Huber's Function

 tð Þ ¼ max �c;min c; tð Þð Þ; � tð Þ ¼

t2

2
; tj j � d

d2

2
; tj j > d

8>>><>>>:
(c) Hampel's Piecewise Linear Function

 h1;h2;h3 tð Þ ¼ � h1;h2;h3 �tð Þ ¼

t; 0 � t � h1

h1; h1 � t � h2

h1 h3 � tð Þ= h3 � h2ð Þ; h2 � t � h3

0; h3 < t

8>>>>>>><>>>>>>>:

� tð Þ ¼

t2

2
; tj j � d

d2

2
; tj j > d

8>>><>>>:
(d) Andrew's Sine Wave Function

 tð Þ ¼
sin t; �	 � t � 	

0; tj j > 	

8<: � tð Þ ¼

t2

2
; tj j � d

d2

2
; tj j > d

8>>><>>>:
(e) Tukey's Bi-weight

 tð Þ ¼
t 1� t2
� �2

; tj j � 1

0; tj j > 1

8<: � tð Þ ¼

t2

2
; tj j � d

d2

2
; tj j > d

8>>><>>>:
where c, h1, h2, h3, and d are given constants.

Several schemes for calculating weights have been proposed, see Hampel et al. (1986) and Marazzi
(1987a). As the different independent variables may be measured on different scales, one group of
proposed weights aims to bound a standardized measure of influence. To obtain such weights the matrix
A has to be found such that:

1

n

Xn
i¼1
u zik k2
� �

ziz
T
i ¼ I

and

zi ¼ Axi;

where xi is a vector of length m containing the ith row of X,

A is an m by m lower triangular matrix,

and u is a suitable function.
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The weights are then calculated as

wi ¼ f zik k2
� �

for a suitable function f .

G02HAF finds A using the iterative procedure

Ak ¼ Sk þ Ið ÞAk�1;

where Sk ¼ sjl
� �

,

sjl ¼
�min max hjl=n;�BL

� �
; BL

� �
; j > l

�min max 1
2 hjj=n� 1
� �

;�BD
� �

; BD
� �

; j ¼ l

8<:
and

hjl ¼
Xn
i¼1
u zik k2
� �

zijzil

and BL and BD are bounds set at 0:9.

Two weights are available in G02HAF:

(i) Krasker–Welsch Weights

u tð Þ ¼ g1
c

t

� �
;

where g1 tð Þ ¼ t2 þ 1� t2
� �

2� tð Þ � 1ð Þ � 2t
 tð Þ,

� tð Þ is the standard Normal cumulative distribution function,


 tð Þ is the standard Normal probability density function,

and f tð Þ ¼ 1

t
.

These are for use with Schweppe type regression.

(ii) Maronna's Proposed Weights

u tð Þ ¼
c

t2
tj j > c

1 tj j � c

(
f tð Þ ¼

ffiffiffiffiffiffiffiffiffi
u tð Þ

p
:

These are for use with Mallows type regression.

Finally the asymptotic variance-covariance matrix, C, of the estimates � is calculated.

For Huber type regression

C ¼ fH XTX
� ��1

�̂2;

where

fH ¼
1

n�m

Xn
i¼1
 2 ri=�̂ð Þ

1
n

Xn
i¼1
 0 ri�̂
� � !2�

2
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�2 ¼ 1þm
n

1
n

Xn
i¼1

 0 ri=�̂ð Þ � 1
n

Xn
i¼1
 0 ri=�̂ð Þ

 !2

1
n

Xn
i¼1
 0 ri�̂
� � !2 :

See Huber (1981) and Marazzi (1987b).

For Mallows and Schweppe type regressions C is of the form

�̂

n

2

S�11 S2S
�1
1 ;

where S1 ¼ 1
nX

TDX and S2 ¼ 1
nX

TPX .

D is a diagonal matrix such that the ith element approximates E  0 ri= �wið Þð Þð Þ in the Schweppe case
and E  0 ri=�ð Þwið Þ in the Mallows case.

P is a diagonal matrix such that the ith element approximates E  2 ri= �wið Þð Þw2
i

� �
in the Schweppe case

and E  2 ri=�ð Þw2
i

� �
in the Mallows case.

Two approximations are available in G02HAF:

1. Average over the ri

Schweppe Mallows

Di ¼ 1
n

Xn
j¼1

 0
rj
�̂wi

� � !
wi Di ¼ 1

n

Xn
j¼1

 0
rj
�̂

� � !
wi

Pi ¼ 1
n

Xn
j¼1

 2 rj
�̂wi

� � !
w2
i Pi ¼ 1

n

Xn
j¼1

 2 rj
�̂

� � !
w2
i

2. Replace expected value by observed

Schweppe Mallows

Di ¼  0 ri
�̂wi

� �
wi Di ¼  0 ri�̂

� �
wi

Pi ¼  2 ri
�̂wi

� �
w2
i Pi ¼  2 ri

�̂

� �
w2
i

:

See Hampel et al. (1986) and Marazzi (1987b).

Note: there is no explicit provision in the routine for a constant term in the regression model.
However, the addition of a dummy variable whose value is 1:0 for all observations will produce a value
of �̂ corresponding to the usual constant term.

G02HAF is based on routines in ROBETH; see Marazzi (1987a).

4 References

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach
Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987a) Weights for bounded influence regression in ROBETH Cah. Rech. Doc. IUMSP, No.
3 ROB 3 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

Marazzi A (1987b) Subroutines for robust and bounded influence regression in ROBETH Cah. Rech.
Doc. IUMSP, No. 3 ROB 2 Institut Universitaire de Médecine Sociale et Préventive, Lausanne
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5 Arguments

1: INDW – INTEGER Input

On entry: specifies the type of regression to be performed.

INDW < 0
Mallows type regression with Maronna's proposed weights.

INDW ¼ 0
Huber type regression.

INDW > 0
Schweppe type regression with Krasker–Welsch weights.

2: IPSI – INTEGER Input

On entry: specifies which  function is to be used.

IPSI ¼ 0
 tð Þ ¼ t, i.e., least squares.

IPSI ¼ 1
Huber's function.

IPSI ¼ 2
Hampel's piecewise linear function.

IPSI ¼ 3
Andrew's sine wave.

IPSI ¼ 4
Tukey's bi-weight.

Constraint: 0 � IPSI � 4.

3: ISIGMA – INTEGER Input

On entry: specifies how � is to be estimated.

ISIGMA < 0
� is estimated by median absolute deviation of residuals.

ISIGMA ¼ 0
� is held constant at its initial value.

ISIGMA > 0
� is estimated using the � function.

4: INDC – INTEGER Input

On entry: if INDW 6¼ 0, INDC specifies the approximations used in estimating the covariance
matrix of �̂.

INDC ¼ 1
Averaging over residuals.

INDC 6¼ 1
Replacing expected by observed.

INDW ¼ 0
INDC is not referenced.

5: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.
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6: M – INTEGER Input

On entry: m, the number of independent variables.

Constraint: 1 � M < N.

7: XðLDX;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the values of the X matrix, i.e., the independent variables. Xði; jÞ must contain the ijth
element of X, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

If INDW < 0, then during calculations the elements of X will be transformed as described in
Section 3. Before exit the inverse transformation will be applied. As a result there may be slight
differences between the input X and the output X.

On exit: unchanged, except as described above.

8: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G02HAF is called.

Constraint: LDX � N.

9: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data values of the dependent variable.

YðiÞ must contain the value of y for the ith observation, for i ¼ 1; 2; . . . ; n.

If INDW < 0, then during calculations the elements of Y will be transformed as described in
Section 3. Before exit the inverse transformation will be applied. As a result there may be slight
differences between the input Y and the output Y.

On exit: unchanged, except as described above.

10: CPSI – REAL (KIND=nag_wp) Input

On entry: if IPSI ¼ 1, CPSI must specify the argument, c, of Huber's  function.

If IPSI 6¼ 1 on entry, CPSI is not referenced.

Constraint: if CPSI > 0:0, IPSI ¼ 1.

11: H1 – REAL (KIND=nag_wp) Input
12: H2 – REAL (KIND=nag_wp) Input
13: H3 – REAL (KIND=nag_wp) Input

On entry: if IPSI ¼ 2, H1, H2, and H3 must specify the arguments h1, h2, and h3, of Hampel's
piecewise linear  function. H1, H2, and H3 are not referenced if IPSI 6¼ 2.

Constraint: if IPSI ¼ 2, 0:0 � H1 � H2 � H3 and H3 > 0:0.

14: CUCV – REAL (KIND=nag_wp) Input

On entry: if INDW < 0, must specify the value of the constant, c, of the function u for Maronna's
proposed weights.

If INDW > 0, must specify the value of the function u for the Krasker–Welsch weights.

If INDW ¼ 0, is not referenced.

Constraints:

if INDW < 0, CUCV � M;
if INDW > 0, CUCV �

ffiffiffiffiffi
M
p

.
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15: DCHI – REAL (KIND=nag_wp) Input

On entry: d, the constant of the � function. DCHI is not referenced if IPSI ¼ 0, or if
ISIGMA � 0.

Constraint: if IPSI 6¼ 0 and ISIGMA > 0, DCHI > 0:0.

16: THETAðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: starting values of the argument vector �. These may be obtained from least squares
regression. Alternatively if ISIGMA < 0 and SIGMA ¼ 1 or if ISIGMA > 0 and SIGMA
approximately equals the standard deviation of the dependent variable, y, then THETAðiÞ ¼ 0:0,
for i ¼ 1; 2; . . . ;m may provide reasonable starting values.

On exit: THETAðiÞ contains the M-estimate of �i, for i ¼ 1; 2; . . . ;m.

17: SIGMA – REAL (KIND=nag_wp) Input/Output

On entry: a starting value for the estimation of �. SIGMA should be approximately the standard
deviation of the residuals from the model evaluated at the value of � given by THETA on entry.

Constraint: SIGMA > 0:0.

On exit: contains the final estimate of � if ISIGMA 6¼ 0 or the value assigned on entry if
ISIGMA ¼ 0.

18: CðLDC;MÞ – REAL (KIND=nag_wp) array Output

On exit: the diagonal elements of C contain the estimated asymptotic standard errors of the
estimates of �, i.e., Cði; iÞ contains the estimated asymptotic standard error of the estimate
contained in THETAðiÞ.
The elements above the diagonal contain the estimated asymptotic correlation between the
estimates of �, i.e., Cði; jÞ, 1 � i < j � m contains the asymptotic correlation between the
estimates contained in THETAðiÞ and THETAðjÞ.
The elements below the diagonal contain the estimated asymptotic covariance between the
estimates of �, i.e., Cði; jÞ, 1 � j < i � m contains the estimated asymptotic covariance between
the estimates contained in THETAðiÞ and THETAðjÞ.

19: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G02HAF
is called.

Constraint: LDC � M.

20: RSðNÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals from the model evaluated at final value of THETA, i.e., RS contains the

vector y�X�̂
� �

.

21: WGTðNÞ – REAL (KIND=nag_wp) array Output

On exit: the vector of weights. WGTðiÞ contains the weight for the ith observation, for
i ¼ 1; 2; . . . ; n.

22: TOL – REAL (KIND=nag_wp) Input

On entry: the relative precision for the calculation of A (if INDW 6¼ 0), the estimates of � and the
estimate of � (if ISIGMA 6¼ 0). Convergence is assumed when the relative change in all elements
being considered is less than TOL.

If INDW < 0 and ISIGMA < 0, TOL is also used to determine the precision of �1.
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It is advisable for TOL to be greater than 100�machine precision.

Constraint: TOL > 0:0.

23: MAXIT – INTEGER Input

On entry: the maximum number of iterations that should be used in the calculation of A (if
INDW 6¼ 0), and of the estimates of � and �, and of �1 (if INDW < 0 and ISIGMA < 0).

A value of MAXIT ¼ 50 should be adequate for most uses.

Constraint: MAXIT > 0.

24: NITMON – INTEGER Input

On entry: the amount of information that is printed on each iteration.

NITMON ¼ 0
No information is printed.

NITMON 6¼ 0
The current estimate of �, the change in � during the current iteration and the current value
of � are printed on the first and every abs NITMONð Þ iterations.

Also, if INDW 6¼ 0 and NITMON > 0 then information on the iterations to calculate A is
printed. This is the current estimate of A and the maximum value of Sij (see Section 3).

When printing occurs the output is directed to the current advisory message unit (see X04ABF).

25: WORKð4� NþM� NþMð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the following values are assigned to WORK:

WORKð1Þ ¼ �1 if ISIGMA < 0, or WORKð1Þ ¼ �2 if ISIGMA > 0.

WORKð2Þ ¼ number of iterations used to calculate A.

WORKð3Þ ¼ number of iterations used to calculate final estimates of � and �.

WORKð4Þ ¼ k, the rank of the weighted least squares equations.

The rest of the array is used as workspace.

26: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02HAF may return useful information for one or more of the following detected errors or
warnings.

G02 – Correlation and Regression Analysis G02HAF

Mark 26 G02HAF.9



Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1,
or M < 1,
or N � M,
or LDX < N,
or LDC < M.

IFAIL ¼ 2

On entry, IPSI < 0,
or IPSI > 4.

IFAIL ¼ 3

On entry, SIGMA � 0:0,
or IPSI ¼ 1 and CPSI � 0:0,
or IPSI ¼ 2 and H1 < 0:0,
or IPSI ¼ 2 and H1 > H2,
or IPSI ¼ 2 and H2 > H3,
or IPSI ¼ 2 and H1 ¼ H2 ¼ H3 ¼ 0:0,
or IPSI 6¼ 0 and ISIGMA > 0 and DCHI � 0:0,
or INDW > 0 and CUCV <

ffiffiffiffiffi
M
p

,
or INDW < 0 and CUCV < M.

IFAIL ¼ 4

On entry, TOL � 0:0,
or MAXIT � 0.

IFAIL ¼ 5

The number of iterations required to calculate the weights exceeds MAXIT. (Only if INDW 6¼ 0.)

IFAIL ¼ 6

The number of iterations required to calculate �1 exceeds MAXIT. (Only if INDW < 0 and
ISIGMA < 0.)

IFAIL ¼ 7

Either the number of iterations required to calculate � and � exceeds MAXIT (note that, in this
case WORKð3Þ ¼ MAXIT on exit), or the iterations to solve the weighted least squares equations
failed to converge. The latter is an unlikely error exit.

IFAIL ¼ 8

The weighted least squares equations are not of full rank.

IFAIL ¼ 9

If INDW ¼ 0 then XTXð Þ is almost singular.

If INDW 6¼ 0 then S1 is singular or almost singular. This may be due to too many diagonal
elements of the matrix being zero, see Section 9.

IFAIL ¼ 10

In calculating the correlation factor for the asymptotic variance-covariance matrix either the
value of
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1
n

Xn
i¼1
 0 ri=�̂ð Þ ¼ 0; or � ¼ 0; or

Xn
i¼1
 2 ri=�̂ð Þ ¼ 0:

See Section 9. In this case C is returned as XTX.

(Only if INDW ¼ 0.)

IFAIL ¼ 11

The estimated variance for an element of � � 0.

In this case the diagonal element of C will contain the negative variance and the above diagonal
elements in the row and column corresponding to the element will be returned as zero.

This error may be caused by rounding errors or too many of the diagonal elements of P being
zero, where P is defined in Section 3. See Section 9.

IFAIL ¼ 12

The degrees of freedom for error, n� k � 0 (this is an unlikely error exit), or the estimated value
of � was 0 during an iteration.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The precision of the estimates is determined by TOL. As a more stable method is used to calculate the
estimates of � than is used to calculate the covariance matrix, it is possible for the least squares
equations to be of full rank but the XTXð Þ matrix to be too nearly singular to be inverted.

8 Parallelism and Performance

G02HAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02HAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

In cases when ISIGMA � 0 it is important for the value of SIGMA to be of a reasonable magnitude.
Too small a value may cause too many of the winsorized residuals, i.e.,  ri=�ð Þ, to be zero or a value
of  0 ri=�ð Þ, used to estimate the asymptotic covariance matrix, to be zero. This can lead to errors
IFAIL ¼ 8 or 9 (if INDW 6¼ 0), IFAIL ¼ 10 (if INDW ¼ 0) and IFAIL ¼ 11.

G02HBF, G02HDF and G02HFF together carry out the same calculations as G02HAF but for user-
supplied functions for  , �,  0 and u.

10 Example

The number of observations and the number of x variables are read in followed by the data. The option
arguments are then read in (in this case giving Schweppe type regression with Hampel's  function and
Huber's � function and then using the ‘replace expected by observed’ option in calculating the
covariances). Finally a set of values for the constants are read in.

After a call to G02HAF, �̂, its standard error and �̂ are printed. In addition the weight and residual for
each observation is printed.

10.1 Program Text

Program g02hafe

! G02HAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02haf, nag_wp, x04abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: cpsi, cucv, dchi, h1, h2, h3, sigma, &

tol
Integer :: i, ifail, indc, indw, ipsi, isigma, &

ldc, ldx, lwork, m, maxit, n, nadv, &
nitmon

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:,:), rs(:), theta(:), wgt(:), &

work(:), x(:,:), y(:)
! .. Executable Statements ..

Write (nout,*) ’G02HAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldx = n
ldc = m
lwork = 4*n + m*(n+m)
Allocate (x(ldx,m),y(n),theta(m),c(ldc,m),work(lwork),rs(n),wgt(n))

! Read in data
Read (nin,*)(x(i,1:m),y(i),i=1,n)

! Read in control parameters
Read (nin,*) indw, ipsi, isigma, nitmon, maxit, tol

! Read in appropriate weight function parameters
If (indw/=0) Then

Read (nin,*) cucv, indc
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End If
If (ipsi>0) Then

If (ipsi==1) Then
Read (nin,*) cpsi

Else If (ipsi==2) Then
Read (nin,*) h1, h2, h3

End If
If (isigma>0) Then

Read (nin,*) dchi
End If

End If

! Set the advisory channel to NOUT for monitoring information
If (nitmon/=0) Then

nadv = nout
Call x04abf(iset,nadv)

End If

! Read in initial values
Read (nin,*) sigma
Read (nin,*) theta(1:m)

! Perform M-estimate regression
ifail = -1
Call g02haf(indw,ipsi,isigma,indc,n,m,x,ldx,y,cpsi,h1,h2,h3,cucv,dchi, &

theta,sigma,c,ldc,rs,wgt,tol,maxit,nitmon,work,ifail)
If (ifail/=0) Then

If (ifail<7) Then
Go To 100

Else
Write (nout,*) &

’ Some of the following reslts may be unreliable’
End If

End If

! Display results
Write (nout,99999) ’Sigma = ’, sigma
Write (nout,*)
Write (nout,*) ’ THETA Standard’
Write (nout,*) ’ errors’
Write (nout,99998)(theta(i),c(i,i),i=1,m)
Write (nout,*)
Write (nout,*) ’ Weights Residuals’
Write (nout,99998)(wgt(i),rs(i),i=1,n)

100 Continue

99999 Format (1X,A,F10.4)
99998 Format (1X,F12.4,F13.4)

End Program g02hafe

10.2 Program Data

G02HAF Example Program Data
8 3 : N,M
1. -1. -1. 2.1
1. -1. 1. 3.6
1. 1. -1. 4.5
1. 1. 1. 6.1
1. -2. 0. 1.3
1. 0. -2. 1.9
1. 2. 0. 6.7
1. 0. 2. 5.5 : End of X1 X2 X3 and Y values
1 2 1 0 50 1.0E-5 : INDW,IPSI,ISIGMA,NITMON,MAXIT,TOL
3.0 0 : CUCV,INDC
1.5 3.0 4.5 : H1,H2,H3
1.5 : DCHI
1.0 : Initial value for SIGMA
0.0 0.0 0.0 : Initial values for THETA
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10.3 Program Results

G02HAF Example Program Results

Sigma = 0.2026

THETA Standard
errors

4.0423 0.0384
1.3083 0.0272
0.7519 0.0311

Weights Residuals
0.5783 0.1179
0.5783 0.1141
0.5783 -0.0987
0.5783 -0.0026
0.4603 -0.1256
0.4603 -0.6385
0.4603 0.0410
0.4603 -0.0462
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NAG Library Routine Document

G02HBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02HBF finds, for a real matrix X of full column rank, a lower triangular matrix A such that ATAð Þ�1
is proportional to a robust estimate of the covariance of the variables. G02HBF is intended for the
calculation of weights of bounded influence regression using G02HDF.

2 Specification

SUBROUTINE G02HBF (UCV, N, M, X, LDX, A, Z, BL, BD, TOL, MAXIT, NITMON,
NIT, WK, IFAIL)

&

INTEGER N, M, LDX, MAXIT, NITMON, NIT, IFAIL
REAL (KIND=nag_wp) UCV, X(LDX,M), A(M*(M+1)/2), Z(N), BL, BD, TOL,

WK(M*(M+1)/2)
&

EXTERNAL UCV

3 Description

In fitting the linear regression model

y ¼ X�þ �;

where y is a vector of length n of the dependent variable,

X is an n by m matrix of independent variables,

� is a vector of length m of unknown arguments,

and � is a vector of length n of unknown errors,

it may be desirable to bound the influence of rows of the X matrix. This can be achieved by calculating
a weight for each observation. Several schemes for calculating weights have been proposed (see
Hampel et al. (1986) and Marazzi (1987)). As the different independent variables may be measured on
different scales one group of proposed weights aims to bound a standardized measure of influence. To
obtain such weights the matrix A has to be found such that

1

n

Xn
i¼1
u zik k2
� �

ziz
T
i ¼ I I is the identity matrixð Þ

and

zi ¼ Axi;

where xi is a vector of length m containing the elements of the ith row of X,

A is an m by m lower triangular matrix,

zi is a vector of length m,

and u is a suitable function.
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The weights for use with G02HDF may then be computed using

wi ¼ f zik k2
� �

for a suitable user-supplied function f .

G02HBF finds A using the iterative procedure

Ak ¼ Sk þ Ið ÞAk�1;

where Sk ¼ sjl
� �

, for j ¼ 1; 2; . . . ;m and l ¼ 1; 2; . . . ;m, is a lower triangular matrix such that

sjl ¼
�min max hjl=n;�BL

� �
;BL

� �
; j > l

�min max 1
2 hjj=n� 1
� �

;�BD
� �

;BD
� �

; j ¼ l

8<:
hjl ¼

Xn
i¼1
u zik k2
� �

zijzil

and BD and BL are suitable bounds.

In addition the values of zik k2, for i ¼ 1; 2; . . . ; n, are calculated.

G02HBF is based on routines in ROBETH; see Marazzi (1987).

4 References

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach
Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Weights for bounded influence regression in ROBETH Cah. Rech. Doc. IUMSP, No.
3 ROB 3 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Arguments

1: UCV – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

UCV must return the value of the function u for a given value of its argument. The value of u
must be non-negative.

The specification of UCV is:

FUNCTION UCV (T)
REAL (KIND=nag_wp) UCV

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: the argument for which UCV must be evaluated.

UCV must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G02HBF is called. Arguments denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.
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3: M – INTEGER Input

On entry: m, the number of independent variables.

Constraint: 1 � M � N.

4: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: the real matrix X, i.e., the independent variables. Xði; jÞ must contain the ijth element
of X, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

5: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02HBF
is called.

Constraint: LDX � N.

6: AðM� Mþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the lower triangular real matrix A. Only the lower triangular
elements must be given and these should be stored row-wise in the array.

The diagonal elements must be 6¼ 0, although in practice will usually be > 0. If the magnitudes
of the columns of X are of the same order the identity matrix will often provide a suitable initial
value for A. If the columns of X are of different magnitudes, the diagonal elements of the initial
value of A should be approximately inversely proportional to the magnitude of the columns of X.

On exit: the lower triangular elements of the matrix A, stored row-wise.

7: ZðNÞ – REAL (KIND=nag_wp) array Output

On exit: the value zik k2, for i ¼ 1; 2; . . . ; n.

8: BL – REAL (KIND=nag_wp) Input

On entry: the magnitude of the bound for the off-diagonal elements of Sk.

Suggested value: BL ¼ 0:9.

Constraint: BL > 0:0.

9: BD – REAL (KIND=nag_wp) Input

On entry: the magnitude of the bound for the diagonal elements of Sk.

Suggested value: BD ¼ 0:9.

Constraint: BD > 0:0.

10: TOL – REAL (KIND=nag_wp) Input

On entry: the relative precision for the final value of A. Iteration will stop when the maximum
value of sjl

		 		 is less than TOL.

Constraint: TOL > 0:0.

11: MAXIT – INTEGER Input

On entry: the maximum number of iterations that will be used during the calculation of A.

A value of MAXIT ¼ 50 will often be adequate.

Constraint: MAXIT > 0.
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12: NITMON – INTEGER Input

On entry: determines the amount of information that is printed on each iteration.

NITMON > 0
The value of A and the maximum value of sjl

		 		 will be printed at the first and every
NITMON iterations.

NITMON � 0
No iteration monitoring is printed.

When printing occurs the output is directed to the current advisory message unit (see X04ABF).

13: NIT – INTEGER Output

On exit: the number of iterations performed.

14: WKðM� Mþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Workspace

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1,
or M < 1,
or N < M,
or LDX < N.

IFAIL ¼ 2

On entry, TOL � 0:0,
or MAXIT � 0,
or diagonal element of A ¼ 0:0,
or BL � 0:0,
or BD � 0:0.

IFAIL ¼ 3

Value returned by UCV < 0.

IFAIL ¼ 4

The routine has failed to converge in MAXIT iterations.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit the accuracy of the results is related to the value of TOL; see Section 5.

8 Parallelism and Performance

G02HBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The existence of A will depend upon the function u; (see Hampel et al. (1986) and Marazzi (1987)),
also if X is not of full rank a value of A will not be found. If the columns of X are almost linearly
related then convergence will be slow.

10 Example

This example reads in a matrix of real numbers and computes the Krasker–Welsch weights (see
Marazzi (1987)). The matrix A and the weights are then printed.

10.1 Program Text

! G02HBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g02hbfe_mod

! G02HBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: ucv

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter, Public :: iset = 1, nin = 5, nout = 6
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Contains
Function ucv(t)

! UCV function for Krasker-Welsch weights

! .. Use Statements ..
Use nag_library, Only: s15abf, x01aaf, x02akf

! .. Function Return Value ..
Real (Kind=nag_wp) :: ucv

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: ucvc = 2.5_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Local Scalars ..
Real (Kind=nag_wp) :: pc, pd, q, q2
Integer :: ifail

! .. Intrinsic Procedures ..
Intrinsic :: exp, log, sqrt

! .. Executable Statements ..
ucv = one
If (t/=zero) Then

q = ucvc/t
q2 = q*q
ifail = 0
pc = s15abf(q,ifail)
If (q2<-log(x02akf())) Then

pd = exp(-q2/two)/sqrt(x01aaf(zero)*two)
Else

pd = zero
End If
ucv = (two*pc-one)*(one-q2) + q2 - two*q*pd

End If
Return

End Function ucv
End Module g02hbfe_mod
Program g02hbfe

! G02HBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g02hbf, nag_wp, x04abf, x04ccf
Use g02hbfe_mod, Only: iset, nin, nout, one, ucv

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: bd, bl, tol
Integer :: i, ifail, la, ldx, m, maxit, n, &

nadv, nit, nitmon
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), wk(:), x(:,:), z(:)
! .. Executable Statements ..

Write (nout,*) ’G02HBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldx = n
la = (m+1)*m/2
Allocate (x(ldx,m),a(la),wk(la),z(n))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in initial value of A
Read (nin,*) a(1:la)

! Read in control parameters
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Read (nin,*) nitmon, bl, bd, maxit, tol

! Set the advisory channel to NOUT for monitoring information
If (nitmon/=0) Then

nadv = nout
Call x04abf(iset,nadv)

End If

! Calculate A
ifail = 0
Call g02hbf(ucv,n,m,x,ldx,a,z,bl,bd,tol,maxit,nitmon,nit,wk,ifail)

! Display results
Write (nout,99999) ’G02HBF required ’, nit, ’ iterations to converge’
Write (nout,*)
Flush (nout)
ifail = 0
Call x04ccf(’Lower’,’Non-Unit’,m,a,’Matrix A’,ifail)
Write (nout,*)
Write (nout,*) ’Vector Z’
Write (nout,99998)(z(i),i=1,n)
Write (nout,*)
Write (nout,*) ’Vector of Krasker-Welsch weights’
Write (nout,99998)(one/z(i),i=1,n)

99999 Format (1X,A,I0,A)
99998 Format (1X,F9.4)

End Program g02hbfe

10.2 Program Data

G02HBF Example Program Data
5 3 : N,M

1.0 -1.0 -1.0
1.0 -1.0 1.0
1.0 1.0 -1.0
1.0 1.0 1.0
1.0 0.0 3.0 : End of X1,X2 and X3 values
1.0 0.0 1.0 0.0 0.0 1.0 : Initial values for A

0 0.9 0.9 50 5.0E-5 : NITMON,BL,BD,MAXIT,TOL

10.3 Program Results

G02HBF Example Program Results

G02HBF required 16 iterations to converge

Matrix A
1 2 3

1 1.3208E+00
2 1.7023E-17 -5.7532E-01
3 1.4518E+00 2.7351E-17 9.3403E-01

Vector Z
2.4760
1.9953
2.4760
1.9953
2.5890

Vector of Krasker-Welsch weights
0.4039
0.5012
0.4039
0.5012
0.3862
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NAG Library Routine Document

G02HDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02HDF performs bounded influence regression (M-estimates) using an iterative weighted least squares
algorithm.

2 Specification

SUBROUTINE G02HDF (CHI, PSI, PSIP0, BETA, INDW, ISIGMA, N, M, X, LDX, Y,
WGT, THETA, K, SIGMA, RS, TOL, EPS, MAXIT, NITMON,
NIT, WK, IFAIL)

&
&

INTEGER INDW, ISIGMA, N, M, LDX, K, MAXIT, NITMON, NIT,
IFAIL

&

REAL (KIND=nag_wp) CHI, PSI, PSIP0, BETA, X(LDX,M), Y(N), WGT(N),
THETA(M), SIGMA, RS(N), TOL, EPS, WK((M+4)*N)

&

EXTERNAL CHI, PSI

3 Description

For the linear regression model

y ¼ X�þ �;

where y is a vector of length n of the dependent variable,

X is a n by m matrix of independent variables of column rank k,

� is a vector of length m of unknown arguments,

and � is a vector of length n of unknown errors with var �ið Þ ¼ �2,

G02HDF calculates the M-estimates given by the solution, �̂, to the equationXn
i¼1
 ri= �wið Þð Þwixij ¼ 0; j ¼ 1; 2; . . . ;m; ð1Þ

where ri is the ith residual, i.e., the ith element of the vector r ¼ y�X�̂,
 is a suitable weight function,

wi are suitable weights such as those that can be calculated by using output from G02HBF,

and � may be estimated at each iteration by the median absolute deviation of the residuals
�̂ ¼ medi rij j½ �=�1

or as the solution to Xn
i¼1
� ri= �̂wið Þð Þw2

i ¼ n� kð Þ�2

for a suitable weight function �, where �1 and �2 are constants, chosen so that the estimator of � is
asymptotically unbiased if the errors, �i, have a Normal distribution. Alternatively � may be held at a
constant value.
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The above describes the Schweppe type regression. If the wi are assumed to equal 1 for all i, then
Huber type regression is obtained. A third type, due to Mallows, replaces (1) byXn

i¼1
 ri=�ð Þwixij ¼ 0; j ¼ 1; 2; . . . ;m:

This may be obtained by use of the transformations

w�i  ffiffiffiffiffi
wi
p

y�i  yi
ffiffiffiffiffi
wi
p

x�ij  xij
ffiffiffiffiffi
wi
p

; j ¼ 1; 2; . . . ;m

(see Marazzi (1987)).

The calculation of the estimates of � can be formulated as an iterative weighted least squares problem
with a diagonal weight matrix G given by

Gii ¼
 ri= �wið Þð Þ
ri= �wið Þð Þ ; ri 6¼ 0

 0 0ð Þ; ri ¼ 0:

8><>: :

The value of � at each iteration is given by the weighted least squares regression of y on X. This is
carried out by first transforming the y and X by

~yi ¼ yi
ffiffiffiffiffiffiffi
Gii

p

~xij ¼ xij
ffiffiffiffiffiffiffi
Gii

p
; j ¼ 1; 2; . . . ;m

and then using F04JGF . If X is of full column rank then an orthogonal-triangular (QR) decomposition
is used; if not, a singular value decomposition is used.

Observations with zero or negative weights are not included in the solution.

Note: there is no explicit provision in the routine for a constant term in the regression model.
However, the addition of a dummy variable whose value is 1:0 for all observations will produce a value
of �̂ corresponding to the usual constant term.

G02HDF is based on routines in ROBETH, see Marazzi (1987).

4 References

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach
Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Subroutines for robust and bounded influence regression in ROBETH Cah. Rech.
Doc. IUMSP, No. 3 ROB 2 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Arguments

1: CHI – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

If ISIGMA > 0, CHI must return the value of the weight function � for a given value of its
argument. The value of � must be non-negative.

The specification of CHI is:

FUNCTION CHI (T)
REAL (KIND=nag_wp) CHI

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: the argument for which CHI must be evaluated.
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CHI must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G02HDF is called. Arguments denoted as Input must not be changed by
this procedure.

If ISIGMA � 0, the actual argument CHI may be the dummy routine G02HDZ. (G02HDZ is
included in the NAG Library.)

2: PSI – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

PSI must return the value of the weight function  for a given value of its argument.

The specification of PSI is:

FUNCTION PSI (T)
REAL (KIND=nag_wp) PSI

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: the argument for which PSI must be evaluated.

PSI must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G02HDF is called. Arguments denoted as Input must not be changed by
this procedure.

3: PSIP0 – REAL (KIND=nag_wp) Input

On entry: the value of  0 0ð Þ.

4: BETA – REAL (KIND=nag_wp) Input

On entry: if ISIGMA < 0, BETA must specify the value of �1.

For Huber and Schweppe type regressions, �1 is the 75th percentile of the standard Normal
distribution (see G01FAF). For Mallows type regression �1 is the solution to

1

n

Xn
i¼1
� �1=

ffiffiffiffiffi
wi
pð Þ ¼ 0:75;

where � is the standard Normal cumulative distribution function (see S15ABF).

If ISIGMA > 0, BETA must specify the value of �2.

�2 ¼
Z 1
�1
� zð Þ
 zð Þ dz; in the Huber case;

�2 ¼
1

n

Xn
i¼1
wi

Z 1
�1
� zð Þ
 zð Þ dz; in the Mallows case;

�2 ¼
1

n

Xn
i¼1
w2
i

Z 1
�1
� z=wið Þ
 zð Þ dz; in the Schweppe case;

where 
 is the standard normal density, i.e.,
1ffiffiffiffiffiffi
2	
p exp �1

2x
2

� �
.

If ISIGMA ¼ 0, BETA is not referenced.

Constraint: if ISIGMA 6¼ 0, BETA > 0:0.
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5: INDW – INTEGER Input

On entry: determines the type of regression to be performed.

INDW ¼ 0
Huber type regression.

INDW < 0
Mallows type regression.

INDW > 0
Schweppe type regression.

6: ISIGMA – INTEGER Input

On entry: determines how � is to be estimated.

ISIGMA ¼ 0
� is held constant at its initial value.

ISIGMA < 0
� is estimated by median absolute deviation of residuals.

ISIGMA > 0
� is estimated using the � function.

7: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

8: M – INTEGER Input

On entry: m, the number of independent variables.

Constraint: 1 � M < N.

9: XðLDX;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the values of the X matrix, i.e., the independent variables. Xði; jÞ must contain the ijth
element of X, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

If INDW < 0, during calculations the elements of X will be transformed as described in
Section 3. Before exit the inverse transformation will be applied. As a result there may be slight
differences between the input X and the output X.

On exit: unchanged, except as described above.

10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G02HDF is called.

Constraint: LDX � N.

11: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data values of the dependent variable.

YðiÞ must contain the value of y for the ith observation, for i ¼ 1; 2; . . . ; n.

If INDW < 0, during calculations the elements of Y will be transformed as described in
Section 3. Before exit the inverse transformation will be applied. As a result there may be slight
differences between the input Y and the output Y.

On exit: unchanged, except as described above.
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12: WGTðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the weight for the ith observation, for i ¼ 1; 2; . . . ; n.

If INDW < 0, during calculations elements of WGT will be transformed as described in
Section 3. Before exit the inverse transformation will be applied. As a result there may be slight
differences between the input WGT and the output WGT.

If WGTðiÞ � 0, the ith observation is not included in the analysis.

If INDW ¼ 0, WGT is not referenced.

On exit: unchanged, except as described above.

13: THETAðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: starting values of the argument vector �. These may be obtained from least squares
regression. Alternatively if ISIGMA < 0 and SIGMA ¼ 1 or if ISIGMA > 0 and SIGMA
approximately equals the standard deviation of the dependent variable, y, then THETAðiÞ ¼ 0:0,
for i ¼ 1; 2; . . . ;m may provide reasonable starting values.

On exit: the M-estimate of �i, for i ¼ 1; 2; . . . ;m.

14: K – INTEGER Output

On exit: the column rank of the matrix X.

15: SIGMA – REAL (KIND=nag_wp) Input/Output

On entry: a starting value for the estimation of �. SIGMA should be approximately the standard
deviation of the residuals from the model evaluated at the value of � given by THETA on entry.

Constraint: SIGMA > 0:0.

On exit: the final estimate of � if ISIGMA 6¼ 0 or the value assigned on entry if ISIGMA ¼ 0.

16: RSðNÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals from the model evaluated at final value of THETA, i.e., RS contains the

vector y�X�̂
� �

.

17: TOL – REAL (KIND=nag_wp) Input

On entry: the relative precision for the final estimates. Convergence is assumed when both the
relative change in the value of SIGMA and the relative change in the value of each element of
THETA are less than TOL.

It is advisable for TOL to be greater than 100�machine precision.

Constraint: TOL > 0:0.

18: EPS – REAL (KIND=nag_wp) Input

On entry: a relative tolerance to be used to determine the rank of X. See F04JGF for further
details.

If EPS < machine precision or EPS > 1:0 then machine precision will be used in place of TOL.

A reasonable value for EPS is 5:0� 10�6 where this value is possible.

19: MAXIT – INTEGER Input

On entry: the maximum number of iterations that should be used during the estimation.

A value of MAXIT ¼ 50 should be adequate for most uses.

Constraint: MAXIT > 0.
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20: NITMON – INTEGER Input

On entry: determines the amount of information that is printed on each iteration.

NITMON � 0
No information is printed.

NITMON > 0
On the first and every NITMON iterations the values of SIGMA, THETA and the change
in THETA during the iteration are printed.

When printing occurs the output is directed to the current advisory message unit (see X04ABF).

21: NIT – INTEGER Output

On exit: the number of iterations that were used during the estimation.

22: WKð Mþ 4ð Þ � NÞ – REAL (KIND=nag_wp) array Workspace

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02HDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1,
or M < 1,
or N � M,
or LDX < N.

IFAIL ¼ 2

On entry, BETA � 0:0, and ISIGMA 6¼ 0,
or SIGMA � 0:0.

IFAIL ¼ 3

On entry, TOL � 0:0,
or MAXIT � 0.

IFAIL ¼ 4

A value returned by the CHI function is negative.
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IFAIL ¼ 5

During iterations a value of SIGMA � 0:0 was encountered.

IFAIL ¼ 6

A failure occurred in F04JGF . This is an extremely unlikely error. If it occurs, please contact
NAG.

IFAIL ¼ 7

The weighted least squares equations are not of full rank. This may be due to the X matrix not
being of full rank, in which case the results will be valid. It may also occur if some of the Gii

values become very small or zero, see Section 9. The rank of the equations is given by K. If the
matrix just fails the test for nonsingularity then the result IFAIL ¼ 7 and K ¼ M is possible (see
F04JGF).

IFAIL ¼ 8

The routine has failed to converge in MAXIT iterations.

IFAIL ¼ 9

Having removed cases with zero weight, the value of N� K � 0, i.e., no degree of freedom for
error. This error will only occur if ISIGMA > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the results is controlled by TOL. For the accuracy of the weighted least squares see
F04JGF.

8 Parallelism and Performance

G02HDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02HDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

In cases when ISIGMA 6¼ 0 it is important for the value of SIGMA to be of a reasonable magnitude.
Too small a value may cause too many of the winsorized residuals, i.e.,  ri=�ð Þ, to be zero, which will
lead to convergence problems and may trigger the IFAIL ¼ 7 error.

By suitable choice of the functions CHI and PSI this routine may be used for other applications of
iterative weighted least squares.

For the variance-covariance matrix of � see G02HFF.

10 Example

Having input X, Y and the weights, a Schweppe type regression is performed using Huber's  function.
The subroutine BETCAL calculates the appropriate value of �2.

10.1 Program Text

! G02HDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g02hdfe_mod

! G02HDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: betcal, chi, psi

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: dchi = 1.5_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter, Public :: iset = 1, nin = 5, nout = 6

Contains
Function psi(t)

! .. Function Return Value ..
Real (Kind=nag_wp) :: psi

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: c = 1.5_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
If (t<=-c) Then

psi = -c
Else If (abs(t)<c) Then

psi = t
Else

psi = c
End If
Return

End Function psi

Function chi(t)

! .. Function Return Value ..
Real (Kind=nag_wp) :: chi

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Local Scalars ..
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Real (Kind=nag_wp) :: ps
! .. Intrinsic Procedures ..

Intrinsic :: abs
! .. Executable Statements ..

ps = dchi
If (abs(t)<dchi) Then

ps = t
End If
chi = ps*ps/two
Return

End Function chi

Subroutine betcal(n,wgt,beta)
! Calculate BETA for Schweppe type regression

! .. Use Statements ..
Use nag_library, Only: s15abf, x01aaf, x02akf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: beta
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: wgt(n)

! .. Local Scalars ..
Real (Kind=nag_wp) :: amaxex, anormc, b, d2, dc, dw, dw2, &

pc, w2
Integer :: i, ifail

! .. Intrinsic Procedures ..
Intrinsic :: exp, log, real, sqrt

! .. Executable Statements ..
amaxex = -log(x02akf())
anormc = sqrt(x01aaf(zero)*two)
d2 = dchi*dchi
beta = zero
Do i = 1, n

w2 = wgt(i)*wgt(i)
dw = wgt(i)*dchi
ifail = 0
pc = s15abf(dw,ifail)
dw2 = dw*dw
dc = zero
If (dw2<amaxex) Then

dc = exp(-dw2/two)/anormc
End If
b = (-dw*dc+pc-0.5_nag_wp)/w2 + (one-pc)*d2
beta = b*w2/real(n,kind=nag_wp) + beta

End Do
Return

End Subroutine betcal
End Module g02hdfe_mod
Program g02hdfe

! G02HDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g02hdf, nag_wp, x04abf
Use g02hdfe_mod, Only: betcal, chi, iset, nin, nout, psi

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta, eps, psip0, sigma, tol
Integer :: i, ifail, indw, isigma, k, ldx, m, &

maxit, n, nadv, nit, nitmon
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: rs(:), theta(:), wgt(:), wk(:), &
x(:,:), y(:)

! .. Executable Statements ..
Write (nout,*) ’G02HDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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! Read in the problem size
Read (nin,*) n, m

ldx = n
Allocate (x(ldx,m),y(n),wgt(n),theta(m),rs(n),wk((m+4)*n))

! Read in data
Read (nin,*)(x(i,2:m),y(i),wgt(i),i=1,n)

! Set first column of X to 1 for the constant term
x(1:n,1) = 1.0E0_nag_wp

! Set BETA
Call betcal(n,wgt,beta)

! Read in value for PSI(0)
Read (nin,*) psip0

! Read in control parameters
Read (nin,*) indw, isigma, nitmon, maxit, tol, eps

! Set the advisory channel to NOUT for monitoring information
If (nitmon/=0) Then

nadv = nout
Call x04abf(iset,nadv)

End If

! Read in initial values
Read (nin,*) sigma
Read (nin,*) theta(1:m)

! Perform bounded influence regression
ifail = -1
Call g02hdf(chi,psi,psip0,beta,indw,isigma,n,m,x,ldx,y,wgt,theta,k, &

sigma,rs,tol,eps,maxit,nitmon,nit,wk,ifail)
If (ifail==7) Then

Write (nout,*) ’Some of the following results may be unreliable’
Else If (ifail/=0) Then

Go To 100
End If

! Display results
Write (nout,99999) ’G02HDF required ’, nit, ’ iterations to converge’
Write (nout,99999) ’ K = ’, k
Write (nout,99998) ’ Sigma = ’, sigma
Write (nout,*) ’ THETA’
Write (nout,99997)(theta(i),i=1,m)
Write (nout,*)
Write (nout,*) ’ Weights Residuals’
Write (nout,99996)(wgt(i),rs(i),i=1,n)

100 Continue

99999 Format (1X,A,I0,A)
99998 Format (1X,A,F9.4)
99997 Format (1X,F9.4)
99996 Format (1X,2F9.4)

End Program g02hdfe

10.2 Program Data

G02HDF Example Program Data
5 3 :: N,M

-1.0 -1.0 10.5 0.4039
-1.0 1.0 11.3 0.5012
1.0 -1.0 12.6 0.4039
1.0 1.0 13.4 0.5012
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0.0 3.0 17.1 0.3862 :: End of X,Y and WT
1.0 :: PSIP0
1 1 0 50 1.0E-5 1.0E-5 :: INDW,ISIGMA,NITMON,MAXIT,TOL,EPS
1.0 :: SIGMA
0.0 0.0 0.0 :: THETA

10.3 Program Results

G02HDF Example Program Results

G02HDF required 5 iterations to converge
K = 3

Sigma = 2.7783
THETA

12.2321
1.0500
1.2464

Weights Residuals
0.4039 0.5643
0.5012 -1.1286
0.4039 0.5643
0.5012 -1.1286
0.3862 1.1286
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NAG Library Routine Document

G02HFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02HFF calculates an estimate of the asymptotic variance-covariance matrix for the bounded influence
regression estimates (M-estimates). It is intended for use with G02HDF.

2 Specification

SUBROUTINE G02HFF (PSI, PSP, INDW, INDC, SIGMA, N, M, X, LDX, RS, WGT,
C, LDC, WK, IFAIL)

&

INTEGER INDW, INDC, N, M, LDX, LDC, IFAIL
REAL (KIND=nag_wp) PSI, PSP, SIGMA, X(LDX,M), RS(N), WGT(N), C(LDC,M),

WK(M*(N+M+1)+2*N)
&

EXTERNAL PSI, PSP

3 Description

For a description of bounded influence regression see G02HDF. Let � be the regression arguments and
let C be the asymptotic variance-covariance matrix of �̂. Then for Huber type regression

C ¼ fH XTX
� ��1

�̂2;

where

fH ¼
1

n�m

Xn
i¼1
 2 ri=�̂ð Þ

1
n

P
 0 ri�̂
� �� �2�2

�2 ¼ 1þm
n

1
n

Xn
i¼1

 0 ri=�̂ð Þ � 1
n

Xn
i¼1
 0 ri=�̂ð Þ

 !2

1
n

Xn
i¼1
 0 ri�̂
� � !2 ;

see Huber (1981) and Marazzi (1987).

For Mallows and Schweppe type regressions, C is of the form

�̂

n

2

S�11 S2S
�1
1 ;

where S1 ¼ 1
nX

TDX and S2 ¼ 1
nX

TPX .

D is a diagonal matrix such that the ith element approximates E  0 ri= �wið Þð Þð Þ in the Schweppe case
and E  0 ri=�ð Þwið Þ in the Mallows case.

P is a diagonal matrix such that the ith element approximates E  2 ri= �wið Þð Þw2
i

� �
in the Schweppe case

and E  2 ri=�ð Þw2
i

� �
in the Mallows case.

Two approximations are available in G02HFF:
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1. Average over the ri

Schweppe Mallows

Di ¼ 1
n

Xn
j¼1

 0
rj
�̂wi

� � !
wi Di ¼ 1

n

Xn
j¼1

 0
rj
�̂

� � !
wi

Pi ¼ 1
n

Xn
j¼1

 2 rj
�̂wi

� � !
w2
i Pi ¼ 1

n

Xn
j¼1

 2 rj
�̂

� � !
w2
i

2. Replace expected value by observed

Schweppe Mallows

Di ¼  0
ri
�̂wi

� �
wi Di ¼  0

ri
�̂

� �
wi

Pi ¼  2 ri
�̂wi

� �
w2
i Pi ¼  2 ri

�̂

� �
w2
i

See Hampel et al. (1986) and Marazzi (1987).

In all cases �̂ is a robust estimate of �.

G02HFF is based on routines in ROBETH; see Marazzi (1987).

4 References

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach
Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Subroutines for robust and bounded influence regression in ROBETH Cah. Rech.
Doc. IUMSP, No. 3 ROB 2 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Arguments

1: PSI – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

PSI must return the value of the  function for a given value of its argument.

The specification of PSI is:

FUNCTION PSI (T)
REAL (KIND=nag_wp) PSI

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: the argument for which PSI must be evaluated.

PSI must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G02HFF is called. Arguments denoted as Input must not be changed by this
procedure.

2: PSP – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

PSP must return the value of  0 tð Þ ¼ d
dt tð Þ for a given value of its argument.
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The specification of PSP is:

FUNCTION PSP (T)
REAL (KIND=nag_wp) PSP

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: the argument for which PSP must be evaluated.

PSP must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G02HFF is called. Arguments denoted as Input must not be changed by this
procedure.

3: INDW – INTEGER Input

On entry: the type of regression for which the asymptotic variance-covariance matrix is to be
calculated.

INDW < 0
Mallows type regression.

INDW ¼ 0
Huber type regression.

INDW > 0
Schweppe type regression.

4: INDC – INTEGER Input

On entry: if INDW 6¼ 0, INDC must specify the approximation to be used.

If INDC ¼ 1, averaging over residuals.

If INDC 6¼ 1 , replacing expected by observed.

If INDW ¼ 0, INDC is not referenced.

5: SIGMA – REAL (KIND=nag_wp) Input

On entry: the value of �̂, as given by G02HDF.

Constraint: SIGMA > 0:0.

6: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

7: M – INTEGER Input

On entry: m, the number of independent variables.

Constraint: 1 � M < N.

8: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: the values of the X matrix, i.e., the independent variables. Xði; jÞ must contain the ijth
element of X, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

9: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02HFF
is called.

Constraint: LDX � N.
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10: RSðNÞ – REAL (KIND=nag_wp) array Input

On entry: the residuals from the bounded influence regression. These are given by G02HDF.

11: WGTðNÞ – REAL (KIND=nag_wp) array Input

On entry: if INDW 6¼ 0, WGT must contain the vector of weights used by the bounded influence
regression. These should be used with G02HDF.

If INDW ¼ 0, WGT is not referenced.

12: CðLDC;MÞ – REAL (KIND=nag_wp) array Output

On exit: the estimate of the variance-covariance matrix.

13: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G02HFF
is called.

Constraint: LDC � M.

14: WKðM� NþMþ 1ð Þ þ 2� NÞ – REAL (KIND=nag_wp) array Output

On exit: if INDW 6¼ 0, WKðiÞ, for i ¼ 1; 2; . . . ; n, will contain the diagonal elements of the
matrix D and WKðiÞ, for i ¼ nþ 1; . . . ; 2n, will contain the diagonal elements of matrix P .

The rest of the array is used as workspace.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1,
or M < 1,
or N � M,
or LDC < M,
or LDX < N.

IFAIL ¼ 2

On entry, SIGMA � 0:0.
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IFAIL ¼ 3

If INDW ¼ 0 then the matrix XTX is either not positive definite, possibly due to rounding errors,
or is ill-conditioned.

If INDW 6¼ 0 then the matrix S1 is singular or almost singular. This may be due to many
elements of D being zero.

IFAIL ¼ 4

Either the value of
1

n

Xn
i¼1
 0

ri
�̂

� �
¼ 0 ,

or � ¼ 0,

or
Xn
i¼1
 2 ri

�̂

� �
¼ 0.

In this situation G02HFF returns C as XTXð Þ�1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In general, the accuracy of the variance-covariance matrix will depend primarily on the accuracy of the
results from G02HDF.

8 Parallelism and Performance

G02HFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02HFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02HFF is only for situations in which X has full column rank.

Care has to be taken in the choice of the  function since if  0 tð Þ ¼ 0 for too wide a range then either
the value of fH will not exist or too many values of Di will be zero and it will not be possible to
calculate C.
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10 Example

The asymptotic variance-covariance matrix is calculated for a Schweppe type regression. The values of
X, �̂ and the residuals and weights are read in. The averaging over residuals approximation is used.

10.1 Program Text

! G02HFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g02hffe_mod

! G02HFF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: psi, psp

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: tc = 1.5_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function psi(t)

! .. Function Return Value ..
Real (Kind=nag_wp) :: psi

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
If (t<=-tc) Then

psi = -tc
Else If (abs(t)<tc) Then

psi = t
Else

psi = tc
End If
Return

End Function psi

Function psp(t)

! .. Function Return Value ..
Real (Kind=nag_wp) :: psp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
psp = 0.0_nag_wp
If (abs(t)<tc) Then

psp = 1.0_nag_wp
End If
Return

End Function psp
End Module g02hffe_mod
Program g02hffe

! G02HFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g02hff, nag_wp, x04cbf
Use g02hffe_mod, Only: nin, nout, psi, psp

! .. Implicit None Statement ..

G02HFF NAG Library Manual
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Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: sigma
Integer :: i, ifail, indc, indw, ldc, ldx, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:,:), rs(:), wgt(:), wk(:), x(:,:)
Character (0) :: clabs(1), rlabs(1)

! .. Executable Statements ..
Write (nout,*) ’G02HFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldx = n
ldc = m
Allocate (x(ldx,m),wgt(n),rs(n),wk(m*(n+m+1)+2*n),c(ldc,m))

! Read in the data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in SIGMA
Read (nin,*) sigma

! Read in weights and residuals
Read (nin,*)(wgt(i),rs(i),i=1,n)

! Read in control parameters
Read (nin,*) indw, indc

! Estimate variance-covariance matrix
ifail = 0
Call g02hff(psi,psp,indw,indc,sigma,n,m,x,ldx,rs,wgt,c,ldc,wk,ifail)

! Display results
ifail = 0
Call x04cbf(’General’,’ ’,m,m,c,ldc,’F8.4’,’Covariance matrix’,’I’, &

rlabs,’I’,clabs,80,0,ifail)

End Program g02hffe

10.2 Program Data

G02HFF Example Program Data
5 3 : N M

1.0 -1.0 -1.0
1.0 -1.0 1.0
1.0 1.0 -1.0
1.0 1.0 1.0
1.0 0.0 3.0 : End of X1 X2 and X3 values

20.7783 : SIGMA
0.4039 0.5643
0.5012 -1.1286
0.4039 0.5643
0.5012 -1.1286
0.3862 1.1286 : End of weights and residuals, WGT and RS

1 1 : INDW,INDC
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10.3 Program Results

G02HFF Example Program Results

Covariance matrix
1 2 3

1 0.2070 0.0000 -0.0478
2 0.0000 0.2229 0.0000
3 -0.0478 0.0000 0.0796
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NAG Library Routine Document

G02HKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02HKF computes a robust estimate of the covariance matrix for an expected fraction of gross errors.

2 Specification

SUBROUTINE G02HKF (N, M, X, LDX, EPS, COV, THETA, MAXIT, NITMON, TOL,
NIT, WK, IFAIL)

&

INTEGER N, M, LDX, MAXIT, NITMON, NIT, IFAIL
REAL (KIND=nag_wp) X(LDX,M), EPS, COV(M*(M+1)/2), THETA(M), TOL,

WK(N+M*(M+5)/2)
&

3 Description

For a set of n observations on m variables in a matrix X, a robust estimate of the covariance matrix, C,
and a robust estimate of location, �, are given by

C ¼ �2 ATA
� ��1

;

where �2 is a correction factor and A is a lower triangular matrix found as the solution to the following
equations:

zi ¼ A xi � �ð Þ;

1

n

Xn
i¼1
w zik k2
� �

zi ¼ 0;

and

1

n

Xn
i¼1
u zik k2
� �

ziz
T
i � I ¼ 0;

where xi is a vector of length m containing the elements of the ith row of X,

zi is a vector of length m,

I is the identity matrix and 0 is the zero matrix,

and w and u are suitable functions.

G02HKF uses weight functions:

u tð Þ ¼ au
t2
; if t < a2u

u tð Þ ¼ 1; if a2u � t � b2u

u tð Þ ¼ bu
t2
; if t > b2u

and
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w tð Þ ¼ 1; if t � cw

w tð Þ ¼ cw
t
; if t > cw

for constants au, bu and cw.

These functions solve a minimax problem considered by Huber (see Huber (1981)). The values of au,
bu and cw are calculated from the expected fraction of gross errors, � (see Huber (1981) and Marazzi
(1987)). The expected fraction of gross errors is the estimated proportion of outliers in the sample.

In order to make the estimate asymptotically unbiased under a Normal model a correction factor, �2, is
calculated, (see Huber (1981) and Marazzi (1987)).

The matrix C is calculated using G02HLF. Initial estimates of �j, for j ¼ 1; 2; . . . ;m, are given by the
median of the jth column of X and the initial value of A is based on the median absolute deviation (see
Marazzi (1987)). G02HKF is based on routines in ROBETH; see Marazzi (1987).

4 References

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Weights for bounded influence regression in ROBETH Cah. Rech. Doc. IUMSP, No.
3 ROB 3 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

2: M – INTEGER Input

On entry: m, the number of columns of the matrix X, i.e., number of independent variables.

Constraint: 1 � M � N.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation for the jth variable, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;M.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G02HKF is called.

Constraint: LDX � N.

5: EPS – REAL (KIND=nag_wp) Input

On entry: �, the expected fraction of gross errors expected in the sample.

Constraint: 0:0 � EPS < 1:0.

6: COVðM� Mþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: a robust estimate of the covariance matrix, C. The upper triangular part of the matrix C
is stored packed by columns. Cij is returned in COVð j� j� 1ð Þ=2þ ið ÞÞ, i � j.
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7: THETAðMÞ – REAL (KIND=nag_wp) array Output

On exit: the robust estimate of the location arguments �j , for j ¼ 1; 2; . . . ;m.

8: MAXIT – INTEGER Input

On entry: the maximum number of iterations that will be used during the calculation of the
covariance matrix.

Suggested value: 150.

Constraint: MAXIT > 0.

9: NITMON – INTEGER Input

On entry: indicates the amount of information on the iteration that is printed.

NITMON > 0
The value of A, � and � (see Section 7) will be printed at the first and every NITMON
iterations.

NITMON � 0
No iteration monitoring is printed.

When printing occurs the output is directed to the current advisory message unit (see X04ABF).

10: TOL – REAL (KIND=nag_wp) Input

On entry: the relative precision for the final estimates of the covariance matrix.

Constraint: TOL > 0:0.

11: NIT – INTEGER Output

On exit: the number of iterations performed.

12: WKðNþM� Mþ 5ð Þ=2Þ – REAL (KIND=nag_wp) array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1,
or M < 1,
or N < M,
or LDX < N,
or EPS < 0:0,
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or EPS � 1:0,
or TOL � 0:0,
or MAXIT � 0.

IFAIL ¼ 2

On entry, a variable has a constant value, i.e., all elements in a column of X are identical.

IFAIL ¼ 3

The iterative procedure to find C has failed to converge in MAXIT iterations.

IFAIL ¼ 4

The iterative procedure to find C has become unstable. This may happen if the value of EPS is
too large for the sample.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit the accuracy of the results is related to the value of TOL; see Section 5. At an
iteration let

(i) d1 ¼ the maximum value of the absolute relative change in A

(ii) d2 ¼ the maximum absolute change in u zik k2
� �

(iii) d3 ¼ the maximum absolute relative change in �j

and let � ¼ max d1; d2; d3ð Þ. Then the iterative procedure is assumed to have converged when � < TOL.

8 Parallelism and Performance

G02HKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02HKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The existence of A, and hence C, will depend upon the function u (see Marazzi (1987)); also if X is
not of full rank a value of A will not be found. If the columns of X are almost linearly related, then
convergence will be slow.

10 Example

A sample of 10 observations on three variables is read in and the robust estimate of the covariance
matrix is computed assuming 10% gross errors are to be expected. The robust covariance is then
printed.

10.1 Program Text

Program g02hkfe

! G02HKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02hkf, nag_wp, x04abf, x04ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, tol
Integer :: i, ifail, j, ldx, m, maxit, n, nadv, &

nit, nitmon
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: cov(:), theta(:), wk(:), x(:,:)
! .. Executable Statements ..

Write (nout,*) ’G02HKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size and control parameters
Read (nin,*) n, m

ldx = n
Allocate (x(ldx,m),cov(m*(m+1)/2),theta(m),wk(n+m*(m+5)/2))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in the control parameters
Read (nin,*) nitmon, maxit, tol, eps

! Set the advisory channel to NOUT for monitoring information
If (nitmon/=0) Then

nadv = nout
Call x04abf(iset,nadv)

End If

! Compute robust estimate of variance / covariance matrix
ifail = 0
Call g02hkf(n,m,x,ldx,eps,cov,theta,maxit,nitmon,tol,nit,wk,ifail)

! Display results
Write (nout,99999) ’G02HKF required ’, nit, ’ iterations to converge’
Write (nout,*)
Flush (nout)
ifail = 0
Call x04ccf(’Upper’,’Non-Unit’,m,cov,’Covariance matrix’,ifail)
Write (nout,*)
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Write (nout,*) ’THETA’
Write (nout,99998)(theta(j),j=1,m)

99999 Format (1X,A,I0,A)
99998 Format (1X,F10.3)

End Program g02hkfe

10.2 Program Data

G02HKF Example Program Data
10 3 : N M

3.4 6.9 12.2
6.4 2.5 15.1
4.9 5.5 14.2
7.3 1.9 18.2
8.8 3.6 11.7
8.4 1.3 17.9
5.3 3.1 15.0
2.7 8.1 7.7
6.1 3.0 21.9
5.3 2.2 13.9 : End of X1 X2 and X3 values

0 100 5.0E-5 0.1 : NITMON,MAXIT,TOL,EPS

10.3 Program Results

G02HKF Example Program Results

G02HKF required 23 iterations to converge

Covariance matrix
1 2 3

1 3.4611 -3.6806 4.6818
2 5.3477 -6.6445
3 14.4389

THETA
5.818
3.681

15.037
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NAG Library Routine Document

G02HLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02HLF calculates a robust estimate of the covariance matrix for user-supplied weight functions and
their derivatives.

2 Specification

SUBROUTINE G02HLF (UCV, RUSER, INDM, N, M, X, LDX, COV, A, WT, THETA,
BL, BD, MAXIT, NITMON, TOL, NIT, WK, IFAIL)

&

INTEGER INDM, N, M, LDX, MAXIT, NITMON, NIT, IFAIL
REAL (KIND=nag_wp) RUSER(*), X(LDX,M), COV(M*(M+1)/2), A(M*(M+1)/2),

WT(N), THETA(M), BL, BD, TOL, WK(2*M)
&

EXTERNAL UCV

3 Description

For a set of n observations on m variables in a matrix X, a robust estimate of the covariance matrix, C,
and a robust estimate of location, �, are given by:

C ¼ �2 ATA
� ��1

;

where �2 is a correction factor and A is a lower triangular matrix found as the solution to the following
equations.

zi ¼ A xi � �ð Þ

1
n

Xn
i¼1
w zik k2
� �

zi ¼ 0

and

1
n

Xn
i¼1
u zik k2
� �

ziz
T
i � v zik k2

� �
I ¼ 0;

where xi is a vector of length m containing the elements of the ith row of X,

zi is a vector of length m,

I is the identity matrix and 0 is the zero matrix,

and w and u are suitable functions.

G02HLF covers two situations:

(i) v tð Þ ¼ 1 for all t,

(ii) v tð Þ ¼ u tð Þ.
The robust covariance matrix may be calculated from a weighted sum of squares and cross-products
matrix about � using weights wti ¼ u zik kð Þ. In case (i) a divisor of n is used and in case (ii) a divisor

of
Xn
i¼1

wti is used. If w :ð Þ ¼
ffiffiffiffiffiffiffiffi
u :ð Þ

p
, then the robust covariance matrix can be calculated by scaling each

row of X by
ffiffiffiffiffiffiffi
wti
p

and calculating an unweighted covariance matrix about �.
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In order to make the estimate asymptotically unbiased under a Normal model a correction factor, �2, is
needed. The value of the correction factor will depend on the functions employed (see Huber (1981)
and Marazzi (1987)).

G02HLF finds A using the iterative procedure as given by Huber.

Ak ¼ Sk þ Ið ÞAk�1

and

�jk ¼
bj
D1
þ �jk�1 ;

where Sk ¼ sjl
� �

, for j ¼ 1; 2; . . . ;m and l ¼ 1; 2; . . . ;m, is a lower triangular matrix such that:

sjl ¼
�min max hjl=D3;�BL

� �
;BL

� �
; j > l

�min max hjj= 2D3 �D4=D2ð Þ
� �

;�BD
� �

;BD
� �

; j ¼ l

8<: ;

where

D1 ¼
Xn
i¼1

w zik k2
� �

þ 1
mw
0 zik k2
� �

zik k2
� 

D2 ¼
Xn
i¼1

1
p u
0 zik k2
� �

zik k2 þ 2u zik k2
� �� �

zik k2 � v0 zik k2
� �n o

zik k2

D3 ¼ 1
mþ2

Xn
i¼1

1
m u0 zik k2

� �
zik k2 þ 2u zik k2

� �� �
þ u zik k2
� �� 

zik k22

D4 ¼
Xn
i¼1

1
mu zik k2
� �

zik k22 � v zik k22
� �n o

hjl ¼
Xn
i¼1
u zik k2
� �

zijzil, for j > l

hjj ¼
Xn
i¼1
u zik k2
� �

z2ij � zij
�� ��2

2
=m

� �
bj ¼

Xn
i¼1
w zik k2
� �

xij � bj
� �

and BD and BL are suitable bounds.

G02HLF is based on routines in ROBETH; see Marazzi (1987).

4 References

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Weights for bounded influence regression in ROBETH Cah. Rech. Doc. IUMSP, No.
3 ROB 3 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Arguments

1: UCV – SUBROUTINE, supplied by the user. External Procedure

UCV must return the values of the functions u and w and their derivatives for a given value of its
argument.
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The specification of UCV is:

SUBROUTINE UCV (T, RUSER, U, UD, W, WD)

REAL (KIND=nag_wp) T, RUSER(*), U, UD, W, WD

1: T – REAL (KIND=nag_wp) Input

On entry: the argument for which the functions u and w must be evaluated.

2: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

UCV is called with the argument RUSER as supplied to G02HLF. You should use the
array RUSER to supply information to UCV.

3: U – REAL (KIND=nag_wp) Output

On exit: the value of the u function at the point T.

Constraint: U � 0:0.

4: UD – REAL (KIND=nag_wp) Output

On exit: the value of the derivative of the u function at the point T.

5: W – REAL (KIND=nag_wp) Output

On exit: the value of the w function at the point T.

Constraint: W � 0:0.

6: WD – REAL (KIND=nag_wp) Output

On exit: the value of the derivative of the w function at the point T.

UCV must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G02HLF is called. Arguments denoted as Input must not be changed by this
procedure.

2: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by G02HLF, but is passed directly to UCV and should be used to pass
information to this routine.

3: INDM – INTEGER Input

On entry: indicates which form of the function v will be used.

INDM ¼ 1
v ¼ 1.

INDM 6¼ 1
v ¼ u.

4: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

5: M – INTEGER Input

On entry: m, the number of columns of the matrix X, i.e., number of independent variables.

Constraint: 1 � M � N.
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6: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation on the jth variable, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ;m.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02HLF
is called.

Constraint: LDX � N.

8: COVðM� Mþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: contains a robust estimate of the covariance matrix, C. The upper triangular part of the
matrix C is stored packed by columns (lower triangular stored by rows), Cij is returned in
COVð j� j� 1ð Þ=2þ ið ÞÞ, i � j.

9: AðM� Mþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the lower triangular real matrix A. Only the lower triangular
elements must be given and these should be stored row-wise in the array.

The diagonal elements must be 6¼ 0, and in practice will usually be > 0. If the magnitudes of
the columns of X are of the same order, the identity matrix will often provide a suitable initial
value for A. If the columns of X are of different magnitudes, the diagonal elements of the initial
value of A should be approximately inversely proportional to the magnitude of the columns of X.

Constraint: Aðj � j � 1ð Þ=2þ jÞ 6¼ 0:0, for j ¼ 1; 2; . . . ;m.

On exit: the lower triangular elements of the inverse of the matrix A, stored row-wise.

10: WTðNÞ – REAL (KIND=nag_wp) array Output

On exit: WTðiÞ contains the weights, wti ¼ u zik k2
� �

, for i ¼ 1; 2; . . . ; n.

11: THETAðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the location argument, �j , for j ¼ 1; 2; . . . ;m.

In many cases an initial estimate of �j ¼ 0, for j ¼ 1; 2; . . . ;m, will be adequate. Alternatively
medians may be used as given by G07DAF.

On exit: contains the robust estimate of the location argument, �j , for j ¼ 1; 2; . . . ;m.

12: BL – REAL (KIND=nag_wp) Input

On entry: the magnitude of the bound for the off-diagonal elements of Sk, BL.

Suggested value: BL ¼ 0:9.

Constraint: BL > 0:0.

13: BD – REAL (KIND=nag_wp) Input

On entry: the magnitude of the bound for the diagonal elements of Sk, BD.

Suggested value: BD ¼ 0:9.

Constraint: BD > 0:0.

14: MAXIT – INTEGER Input

On entry: the maximum number of iterations that will be used during the calculation of A.

Suggested value: MAXIT ¼ 150.

Constraint: MAXIT > 0.
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15: NITMON – INTEGER Input

On entry: indicates the amount of information on the iteration that is printed.

NITMON > 0
The value of A, � and � (see Section 7) will be printed at the first and every NITMON
iterations.

NITMON � 0
No iteration monitoring is printed.

When printing occurs the output is directed to the current advisory message unit (see X04ABF).

16: TOL – REAL (KIND=nag_wp) Input

On entry: the relative precision for the final estimates of the covariance matrix. Iteration will stop
when maximum � (see Section 7) is less than TOL.

Constraint: TOL > 0:0.

17: NIT – INTEGER Output

On exit: the number of iterations performed.

18: WKð2�MÞ – REAL (KIND=nag_wp) array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1,
or M < 1,
or N < M,
or LDX < N.

IFAIL ¼ 2

On entry, TOL � 0:0,
or MAXIT � 0,
or diagonal element of A ¼ 0:0,
or BL � 0:0,
or BD � 0:0.

IFAIL ¼ 3

A column of X has a constant value.
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IFAIL ¼ 4

Value of U or W returned by UCV < 0.

IFAIL ¼ 5

The routine has failed to converge in MAXIT iterations.

IFAIL ¼ 6

One of the following is zero: D1, D2 or D3.

This may be caused by the functions u or w being too strict for the current estimate of A (or C).
You should try either a larger initial estimate of A or make u and w less strict.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit the accuracy of the results is related to the value of TOL; see Section 5. At an
iteration let

(i) d1 ¼ the maximum value of sjl
		 		

(ii) d2 ¼ the maximum absolute change in wt ið Þ
(iii) d3 ¼ the maximum absolute relative change in �j

and let � ¼ max d1; d2; d3ð Þ. Then the iterative procedure is assumed to have converged when � < TOL.

8 Parallelism and Performance

G02HLF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The existence of A will depend upon the function u (see Marazzi (1987)); also if X is not of full rank a
value of A will not be found. If the columns of X are almost linearly related, then convergence will be
slow.
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10 Example

A sample of 10 observations on three variables is read in along with initial values for A and THETA
and argument values for the u and w functions, cu and cw. The covariance matrix computed by G02HLF
is printed along with the robust estimate of �. UCV computes the Huber's weight functions:

u tð Þ ¼ 1; if t � c2u

u tð Þ ¼ cu
t2
; if t > c2u

and

w tð Þ ¼ 1; if t � cw

w tð Þ ¼ cw
t
; if t > cw

and their derivatives.

10.1 Program Text

! G02HLF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g02hlfe_mod

! G02HLF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: ucv

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, nin = 5, nout = 6

Contains
Subroutine ucv(t,ruser,u,ud,w,wd)

! u function and derivative

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Real (Kind=nag_wp), Intent (Out) :: u, ud, w, wd

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: cu, cw, t2

! .. Executable Statements ..
cu = ruser(1)
u = 1.0_nag_wp
ud = 0.0_nag_wp
If (t/=0.0_nag_wp) Then

t2 = t*t
If (t2>cu) Then

u = cu/t2
ud = -2.0_nag_wp*u/t

End If
End If

! w function and derivative
cw = ruser(2)
If (t>cw) Then

w = cw/t
wd = -w/t

Else
w = 1.0_nag_wp
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wd = 0.0_nag_wp
End If

End Subroutine ucv
End Module g02hlfe_mod
Program g02hlfe

! G02HLF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g02hlf, nag_wp, x04abf, x04ccf
Use g02hlfe_mod, Only: iset, nin, nout, ucv

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: bd, bl, tol
Integer :: i, ifail, indm, la, lcov, ldx, &

lruser, m, maxit, n, nadv, nit, &
nitmon

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), cov(:), ruser(:), theta(:), &

wk(:), wt(:), x(:,:)
! .. Executable Statements ..

Write (nout,*) ’G02HLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldx = n
lruser = 2
la = (m+1)*m/2
lcov = la
Allocate (x(ldx,m),ruser(lruser),cov(lcov),a(la),wt(n),theta(m),wk(2*m))

! Read in the data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in the initial value of A
Read (nin,*) a(1:la)

! Read in the initial value of THETA
Read (nin,*) theta(1:m)

! Read in the values of the parameters of the ucv functions
Read (nin,*) ruser(1:lruser)

! Read in the control parameters
Read (nin,*) indm, nitmon, bl, bd, maxit, tol

! Set the advisory channel to NOUT for monitoring information
If (nitmon/=0) Then

nadv = nout
Call x04abf(iset,nadv)

End If

! Compute robust estimate of variance / covariance matrix
ifail = 0
Call g02hlf(ucv,ruser,indm,n,m,x,ldx,cov,a,wt,theta,bl,bd,maxit,nitmon, &

tol,nit,wk,ifail)

! Display results
Write (nout,99999) ’G02HLF required ’, nit, ’ iterations to converge’
Write (nout,*)
Flush (nout)
ifail = 0
Call x04ccf(’Upper’,’Non-Unit’,m,cov,’Robust covariance matrix’,ifail)
Write (nout,*)
Write (nout,*) ’Robust estimates of THETA’
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Write (nout,99998) theta(1:m)

99999 Format (1X,A,I0,A)
99998 Format (1X,F10.3)

End Program g02hlfe

10.2 Program Data

G02HLF Example Program Data
10 3 : N,M

3.4 6.9 12.2
6.4 2.5 15.1
4.9 5.5 14.2
7.3 1.9 18.2
8.8 3.6 11.7
8.4 1.3 17.9
5.3 3.1 15.0
2.7 8.1 7.7
6.1 3.0 21.9
5.3 2.2 13.9 : End of X
1.0 0.0 1.0 0.0 0.0 1.0 : A
0.0 0.0 0.0 : THETA
4.0 2.0 : RUSER

1 0 0.9 0.9 50 5.0E-5 : INDM,NITMON,BL,BD,MAXIT,TOL

10.3 Program Results

G02HLF Example Program Results

G02HLF required 25 iterations to converge

Robust covariance matrix
1 2 3

1 3.2778 -3.6918 4.7391
2 5.2841 -6.4086
3 11.8371

Robust estimates of THETA
5.700
3.864

14.704
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NAG Library Routine Document

G02HMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02HMF computes a robust estimate of the covariance matrix for user-supplied weight functions. The
derivatives of the weight functions are not required.

2 Specification

SUBROUTINE G02HMF (UCV, RUSER, INDM, N, M, X, LDX, COV, A, WT, THETA,
BL, BD, MAXIT, NITMON, TOL, NIT, WK, IFAIL)

&

INTEGER INDM, N, M, LDX, MAXIT, NITMON, NIT, IFAIL
REAL (KIND=nag_wp) RUSER(*), X(LDX,M), COV(M*(M+1)/2), A(M*(M+1)/2),

WT(N), THETA(M), BL, BD, TOL, WK(2*M)
&

EXTERNAL UCV

3 Description

For a set of n observations on m variables in a matrix X, a robust estimate of the covariance matrix, C,
and a robust estimate of location, �, are given by

C ¼ �2 ATA
� ��1

;

where �2 is a correction factor and A is a lower triangular matrix found as the solution to the following
equations.

zi ¼ A xi � �ð Þ

1

n

Xn
i¼1
w zik k2
� �

zi ¼ 0

and

1

n

Xn
i¼1
u zik k2
� �

ziz
T
i � v zik k2

� �
I ¼ 0;

where xi is a vector of length m containing the elements of the ith row of X,

zi is a vector of length m,

I is the identity matrix and 0 is the zero matrix.

and w and u are suitable functions.

G02HMF covers two situations:

(i) v tð Þ ¼ 1 for all t,

(ii) v tð Þ ¼ u tð Þ.
The robust covariance matrix may be calculated from a weighted sum of squares and cross-products
matrix about � using weights wti ¼ u zik kð Þ. In case (i) a divisor of n is used and in case (ii) a divisor

of
Xn
i¼1

wti is used. If w :ð Þ ¼
ffiffiffiffiffiffiffiffi
u :ð Þ

p
, then the robust covariance matrix can be calculated by scaling each

row of X by
ffiffiffiffiffiffiffi
wti
p

and calculating an unweighted covariance matrix about �.
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In order to make the estimate asymptotically unbiased under a Normal model a correction factor, �2, is
needed. The value of the correction factor will depend on the functions employed (see Huber (1981)
and Marazzi (1987)).

G02HMF finds A using the iterative procedure as given by Huber; see Huber (1981).

Ak ¼ Sk þ Ið ÞAk�1

and

�jk ¼
bj
D1
þ �jk�1 ;

where Sk ¼ sjl
� �

, for j ¼ 1; 2; . . . ;m and l ¼ 1; 2; . . . ;m is a lower triangular matrix such that

sjl ¼
�min max hjl=D2;�BL

� �
;BL

� �
; j > l

�min max 1
2 hjj=D2 � 1
� �

;�BD
� �

;BD
� �

; j ¼ l

8<: ;

where

D1 ¼
Xn
i¼1
w zik k2
� �

D2 ¼
Xn
i¼1
u zik k2
� �

hjl ¼
Xn
i¼1
u zik k2
� �

zijzil, for j � l

bj ¼
Xn
i¼1
w zik k2
� �

xij � bj
� �

and BD and BL are suitable bounds.

The value of � may be chosen so that C is unbiased if the observations are from a given distribution.

G02HMF is based on routines in ROBETH; see Marazzi (1987).

4 References

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Weights for bounded influence regression in ROBETH Cah. Rech. Doc. IUMSP, No.
3 ROB 3 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Arguments

1: UCV – SUBROUTINE, supplied by the user. External Procedure

UCV must return the values of the functions u and w for a given value of its argument.

The specification of UCV is:

SUBROUTINE UCV (T, RUSER, U, W)

REAL (KIND=nag_wp) T, RUSER(*), U, W

1: T – REAL (KIND=nag_wp) Input

On entry: the argument for which the functions u and w must be evaluated.
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2: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

UCV is called with the argument RUSER as supplied to G02HMF. You should use the
array RUSER to supply information to UCV.

3: U – REAL (KIND=nag_wp) Output

On exit: the value of the u function at the point T.

Constraint: U � 0:0.

4: W – REAL (KIND=nag_wp) Output

On exit: the value of the w function at the point T.

Constraint: W � 0:0.

UCV must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G02HMF is called. Arguments denoted as Input must not be changed by
this procedure.

2: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by G02HMF, but is passed directly to UCV and should be used to pass
information to this routine.

3: INDM – INTEGER Input

On entry: indicates which form of the function v will be used.

INDM ¼ 1
v ¼ 1.

INDM 6¼ 1
v ¼ u.

4: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

5: M – INTEGER Input

On entry: m, the number of columns of the matrix X, i.e., number of independent variables.

Constraint: 1 � M � N.

6: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation on the jth variable, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ;m.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G02HMF is called.

Constraint: LDX � N.

8: COVðM� Mþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: a robust estimate of the covariance matrix, C. The upper triangular part of the matrix C
is stored packed by columns (lower triangular stored by rows), that is Cij is returned in
COVðj� j� 1ð Þ=2þ iÞ, i � j.
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9: AðM� Mþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the lower triangular real matrix A. Only the lower triangular
elements must be given and these should be stored row-wise in the array.

The diagonal elements must be 6¼ 0, and in practice will usually be > 0. If the magnitudes of
the columns of X are of the same order, the identity matrix will often provide a suitable initial
value for A. If the columns of X are of different magnitudes, the diagonal elements of the initial
value of A should be approximately inversely proportional to the magnitude of the columns of X.

Constraint: Aðj � j � 1ð Þ=2þ jÞ 6¼ 0:0, for j ¼ 1; 2; . . . ;m.

On exit: the lower triangular elements of the inverse of the matrix A, stored row-wise.

10: WTðNÞ – REAL (KIND=nag_wp) array Output

On exit: WTðiÞ contains the weights, wti ¼ u zik k2
� �

, for i ¼ 1; 2; . . . ; n.

11: THETAðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the location argument, �j , for j ¼ 1; 2; . . . ;m.

In many cases an initial estimate of �j ¼ 0, for j ¼ 1; 2; . . . ;m, will be adequate. Alternatively
medians may be used as given by G07DAF.

On exit: contains the robust estimate of the location argument, �j , for j ¼ 1; 2; . . . ;m.

12: BL – REAL (KIND=nag_wp) Input

On entry: the magnitude of the bound for the off-diagonal elements of Sk, BL.

Suggested value: BL ¼ 0:9.

Constraint: BL > 0:0.

13: BD – REAL (KIND=nag_wp) Input

On entry: the magnitude of the bound for the diagonal elements of Sk, BD.

Suggested value: BD ¼ 0:9.

Constraint: BD > 0:0.

14: MAXIT – INTEGER Input

On entry: the maximum number of iterations that will be used during the calculation of A.

Suggested value: MAXIT ¼ 150.

Constraint: MAXIT > 0.

15: NITMON – INTEGER Input

On entry: indicates the amount of information on the iteration that is printed.

NITMON > 0
The value of A, � and � (see Section 7) will be printed at the first and every NITMON
iterations.

NITMON � 0
No iteration monitoring is printed.

When printing occurs the output is directed to the current advisory message channel (See
X04ABF.)
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16: TOL – REAL (KIND=nag_wp) Input

On entry: the relative precision for the final estimate of the covariance matrix. Iteration will stop
when maximum � (see Section 7) is less than TOL.

Constraint: TOL > 0:0.

17: NIT – INTEGER Output

On exit: the number of iterations performed.

18: WKð2�MÞ – REAL (KIND=nag_wp) array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1,
or M < 1,
or N < M,
or LDX < N.

IFAIL ¼ 2

On entry, TOL � 0:0,
or MAXIT � 0,
or diagonal element of A ¼ 0:0,
or BL � 0:0,
or BD � 0:0.

IFAIL ¼ 3

A column of X has a constant value.

IFAIL ¼ 4

Value of U or W returned by UCV < 0.

IFAIL ¼ 5

The routine has failed to converge in MAXIT iterations.
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IFAIL ¼ 6

Either the sum D1 or the sum D2 is zero. This may be caused by the functions u or w being too
strict for the current estimate of A (or C). You should either try a larger initial estimate of A or
make the u and w functions less strict.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit the accuracy of the results is related to the value of TOL; see Section 5. At an
iteration let

(i) d1 ¼ the maximum value of sjl
		 		

(ii) d2 ¼ the maximum absolute change in wt ið Þ
(iii) d3 ¼ the maximum absolute relative change in �j

and let � ¼ max d1; d2; d3ð Þ. Then the iterative procedure is assumed to have converged when � < TOL.

8 Parallelism and Performance

G02HMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The existence of A will depend upon the function u (see Marazzi (1987)); also if X is not of full rank a
value of A will not be found. If the columns of X are almost linearly related, then convergence will be
slow.

If derivatives of the u and w functions are available then the method used in G02HLF will usually give
much faster convergence.

10 Example

A sample of 10 observations on three variables is read in along with initial values for A and � and
argument values for the u and w functions, cu and cw. The covariance matrix computed by G02HMF is
printed along with the robust estimate of �.
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UCV computes the Huber's weight functions:

u tð Þ ¼ 1; if t � c2u

u tð Þ ¼ cu
t2
; if t > c2u

and

w tð Þ ¼ 1; if t � cw

w tð Þ ¼ cw
t
; if t > cw:

10.1 Program Text

! G02HMF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g02hmfe_mod

! G02HMF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: ucv

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, nin = 5, nout = 6

Contains
Subroutine ucv(t,ruser,u,w)

! u function

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Real (Kind=nag_wp), Intent (Out) :: u, w

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: cu, cw, t2

! .. Executable Statements ..
cu = ruser(1)
u = 1.0_nag_wp
If (t/=0.0_nag_wp) Then

t2 = t*t
If (t2>cu) Then

u = cu/t2
End If

End If
! w function

cw = ruser(2)
If (t>cw) Then

w = cw/t
Else

w = 1.0_nag_wp
End If

End Subroutine ucv
End Module g02hmfe_mod
Program g02hmfe

! G02HMF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g02hmf, nag_wp, x04abf, x04ccf
Use g02hmfe_mod, Only: iset, nin, nout, ucv
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! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: bd, bl, tol
Integer :: i, ifail, indm, la, lcov, ldx, &

lruser, m, maxit, n, nadv, nit, &
nitmon

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), cov(:), ruser(:), theta(:), &

wk(:), wt(:), x(:,:)
! .. Executable Statements ..

Write (nout,*) ’G02HMF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldx = n
lruser = 2
la = ((m+1)*m)/2
lcov = la
Allocate (x(ldx,m),ruser(lruser),cov(lcov),a(la),wt(n),theta(m),wk(2*m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in the initial value of A
Read (nin,*) a(1:la)

! Read in the initial value of THETA
Read (nin,*) theta(1:m)

! Read in the values of the parameters of the ucv functions
Read (nin,*) ruser(1:lruser)

! Read in the control parameters
Read (nin,*) indm, nitmon, bl, bd, maxit, tol

! Set the advisory channel to NOUT for monitoring information
If (nitmon/=0) Then

nadv = nout
Call x04abf(iset,nadv)

End If

! Compute robust estimate of variance / covariance matrix
ifail = 0
Call g02hmf(ucv,ruser,indm,n,m,x,ldx,cov,a,wt,theta,bl,bd,maxit,nitmon, &

tol,nit,wk,ifail)

! Display results
Write (nout,99999) ’G02HMF required ’, nit, ’ iterations to converge’
Write (nout,*)
Flush (nout)
ifail = 0
Call x04ccf(’Upper’,’Non-Unit’,m,cov,’Robust covariance matrix’,ifail)
Write (nout,*)
Write (nout,*) ’Robust estimates of THETA’
Write (nout,99998) theta(1:m)

99999 Format (1X,A,I0,A)
99998 Format (1X,F10.3)

End Program g02hmfe
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10.2 Program Data

G02HMF Example Program Data
10 3 : N,M

3.4 6.9 12.2
6.4 2.5 15.1
4.9 5.5 14.2
7.3 1.9 18.2
8.8 3.6 11.7
8.4 1.3 17.9
5.3 3.1 15.0
2.7 8.1 7.7
6.1 3.0 21.9
5.3 2.2 13.9 : End of X
1.0 0.0 1.0 0.0 0.0 1.0 : A
0.0 0.0 0.0 : THETA
4.0 2.0 : RUSER

1 0 0.9 0.9 50 5.0E-5 : INDM,NITMON,BL,BD,MAXIT,TOL

10.3 Program Results

G02HMF Example Program Results

G02HMF required 34 iterations to converge

Robust covariance matrix
1 2 3

1 3.2779 -3.6918 4.7391
2 5.2841 -6.4087
3 11.8373

Robust estimates of THETA
5.700
3.864

14.704
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NAG Library Routine Document

G02JAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02JAF fits a linear mixed effects regression model using restricted maximum likelihood (REML).

2 Specification

SUBROUTINE G02JAF (N, NCOL, LDDAT, DAT, LEVELS, YVID, CWID, NFV, FVID,
FINT, NRV, RVID, NVPR, VPR, RINT, SVID, GAMMA, NFF,
NRF, DF, REML, LB, B, SE, MAXIT, TOL, WARN, IFAIL)

&
&

INTEGER N, NCOL, LDDAT, LEVELS(NCOL), YVID, CWID, NFV,
FVID(NFV), FINT, NRV, RVID(NRV), NVPR, VPR(NRV),
RINT, SVID, NFF, NRF, DF, LB, MAXIT, WARN, IFAIL

&
&

REAL (KIND=nag_wp) DAT(LDDAT,NCOL), GAMMA(NVPR+2), REML, B(LB),
SE(LB), TOL

&

3 Description

G02JAF fits a model of the form:

y ¼ X� þ Z� þ �

where

y is a vector of n observations on the dependent variable,

X is a known n by p design matrix for the fixed independent variables,

� is a vector of length p of unknown fixed effects,

Z is a known n by q design matrix for the random independent variables,

� is a vector of length q of unknown random effects,

and

� is a vector of length n of unknown random errors.

Both � and � are assumed to have a Gaussian distribution with expectation zero and

Var �
�

� �
¼ G 0

0 R

� �
where R ¼ �2RI, I is the n� n identity matrix and G is a diagonal matrix. It is assumed that the
random variables, Z, can be subdivided into g � q groups with each group being identically distributed
with expectations zero and variance �2i . The diagonal elements of matrix G therefore take one of the
values �2i : i ¼ 1; 2; . . . ; g

� 
, depending on which group the associated random variable belongs to.

The model therefore contains three sets of unknowns, the fixed effects, �, the random effects � and a

vector of gþ 1 variance components, �, where � ¼ �21; �
2
2; . . . ; �

2
g�1; �

2
g; �

2
R

n o
. Rather than working

d i r e c t l y w i t h �, G 0 2 J A F u s e s a n i t e r a t i v e p r o c e s s t o e s t i m a t e

�� ¼ �21=�
2
R; �

2
2=�

2
R; . . . ; �

2
g�1=�

2
R; �

2
g=�

2
R; 1

n o
. Due to the iterative nature of the estimation a set of

initial values, �0, for �� is required. G02JAF allows these initial values either to be supplied by you or
calculated from the data using the minimum variance quadratic unbiased estimators (MIVQUE0)
suggested by Rao (1972).
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G02JAF fits the model using a quasi-Newton algorithm to maximize the restricted log-likelihood
function:

�2lR ¼ log Vj jð Þ þ n� pð Þlog r0V �1r
� �

þ log X0V �1X
		 		þ n� pð Þ 1þ log 2	= n� pð Þð Þð Þ

where

V ¼ ZGZ0 þR; r ¼ y�Xb and b ¼ X0V �1X
� ��1

X0V �1y:

Once the final estimates for �� have been obtained, the value of �2R is given by:

�2R ¼ r0V �1r
� �

= n� pð Þ:
Case weights, Wc, can be incorporated into the model by replacing X0X and Z0Z with X0WcX and
Z0WcZ respectively, for a diagonal weight matrix Wc.

The log-likelihood, lR, is calculated using the sweep algorithm detailed in Wolfinger et al. (1994).

4 References

Goodnight J H (1979) A tutorial on the SWEEP operator The American Statistician 33(3) 149–158

Harville D A (1977) Maximum likelihood approaches to variance component estimation and to related
problems JASA 72 320–340

Rao C R (1972) Estimation of variance and covariance components in a linear model J. Am. Stat.
Assoc. 67 112–115

Stroup W W (1989) Predictable functions and prediction space in the mixed model procedure
Applications of Mixed Models in Agriculture and Related Disciplines Southern Cooperative Series
Bulletin No. 343 39–48

Wolfinger R, Tobias R and Sall J (1994) Computing Gaussian likelihoods and their derivatives for
general linear mixed models SIAM Sci. Statist. Comput. 15 1294–1310

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

2: NCOL – INTEGER Input

On entry: the number of columns in the data matrix, DAT.

Constraint: NCOL � 1.

3: LDDAT – INTEGER Input

On entry: the first dimension of the array DAT as declared in the (sub)program from which
G02JAF is called.

Constraint: LDDAT � N.

4: DATðLDDAT;NCOLÞ – REAL (KIND=nag_wp) array Input

On entry: array containing all of the data. For the ith observation:

DATði;YVIDÞ holds the dependent variable, y;

if CWID 6¼ 0, DATði;CWIDÞ holds the case weights;

if SVID 6¼ 0, DATði; SVIDÞ holds the subject variable.

The remaining columns hold the values of the independent variables.

G02JAF NAG Library Manual

G02JAF.2 Mark 26



Constraints:

if CWID 6¼ 0, DATði;CWIDÞ � 0:0;
if LEVELSðjÞ 6¼ 1, 1 � DATði; jÞ � LEVELSðjÞ.

5: LEVELSðNCOLÞ – INTEGER array Input

On entry: LEVELSðiÞ contains the number of levels associated with the ith variable of the data
matrix DAT. If this variable is continuous or binary (i.e., only takes the values zero or one) then
LEVELSðiÞ should be 1; if the variable is discrete then LEVELSðiÞ is the number of levels
associated with it and DATðj; iÞ is assumed to take the values 1 to LEVELSðiÞ, for
j ¼ 1; 2; . . . ;N.

Constraint: LEVELSðiÞ � 1, for i ¼ 1; 2; . . . ;NCOL.

6: YVID – INTEGER Input

On entry: the column of DAT holding the dependent, y, variable.

Constraint: 1 � YVID � NCOL.

7: CWID – INTEGER Input

On entry: the column of DAT holding the case weights.

If CWID ¼ 0, no weights are used.

Constraint: 0 � CWID � NCOL.

8: NFV – INTEGER Input

On entry: the number of independent variables in the model which are to be treated as being
fixed.

Constraint: 0 � NFV < NCOL.

9: FVIDðNFVÞ – INTEGER array Input

On entry: the columns of the data matrix DAT holding the fixed independent variables with
FVIDðiÞ holding the column number corresponding to the ith fixed variable.

Constraint: 1 � FVIDðiÞ � NCOL, for i ¼ 1; 2; . . . ;NFV.

10: FINT – INTEGER Input

On entry: flag indicating whether a fixed intercept is included (FINT ¼ 1).

Constraint: FINT ¼ 0 or 1.

11: NRV – INTEGER Input

On entry: the number of independent variables in the model which are to be treated as being
random.

Constraints:

0 � NRV < NCOL;
NRVþ RINT > 0.

12: RVIDðNRVÞ – INTEGER array Input

On entry: the columns of the data matrix DAT holding the random independent variables with
RVIDðiÞ holding the column number corresponding to the ith random variable.

Constraint: 1 � RVIDðiÞ � NCOL, for i ¼ 1; 2; . . . ;NRV.
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13: NVPR – INTEGER Input

On entry: if RINT ¼ 1 and SVID 6¼ 0, NVPR is the number of variance components being
estimated� 2, (g� 1), else NVPR ¼ g.
If NRV ¼ 0, NVPR is not referenced.

Constraint: if NRV 6¼ 0, 1 � NVPR � NRV.

14: VPRðNRVÞ – INTEGER array Input

On entry: VPRðiÞ holds a flag indicating the variance of the ith random variable. The variance of
the ith random variable is �2j , where j ¼ VPRðiÞ þ 1 if RINT ¼ 1 and SVID 6¼ 0 and j ¼ VPRðiÞ
otherwise. Random variables with the same value of j are assumed to be taken from the same
distribution.

Constraint: 1 � VPRðiÞ � NVPR, for i ¼ 1; 2; . . . ;NRV.

15: RINT – INTEGER Input

On entry: flag indicating whether a random intercept is included (RINT ¼ 1).

If SVID ¼ 0, RINT is not referenced.

Constraint: RINT ¼ 0 or 1.

16: SVID – INTEGER Input

On entry: the column of DAT holding the subject variable.

If SVID ¼ 0, no subject variable is used.

Specifying a subject variable is equivalent to specifying the interaction between that variable and
all of the random-effects. Letting the notation Z1 � ZS denote the interaction between variables
Z1 and ZS , fitting a model with RINT ¼ 0, random-effects Z1 þ Z2 and subject variable ZS is
equivalent to fitting a model with random-effects Z1 � ZS þ Z2 � ZS and no subject variable. If
RINT ¼ 1 the model is equivalent to fitting ZS þ Z1 � ZS þ Z2 � ZS and no subject variable.

Constraint: 0 � SVID � NCOL.

17: GAMMAðNVPR þ 2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: holds the initial values of the variance components, �0, with GAMMAðiÞ the initial
value for �2i =�

2
R, for i ¼ 1; 2; . . . ; g. If RINT ¼ 1 and SVID 6¼ 0, g ¼ NVPRþ 1, else g ¼ NVPR.

If GAMMAð1Þ ¼ �1:0, the remaining elements of GAMMA are ignored and the initial values
for the variance components are estimated from the data using MIVQUE0.

On exit: GAMMAðiÞ, for i ¼ 1; 2; . . . ; g, holds the final estimate of �2i and GAMMAðgþ 1Þ holds
the final estimate for �2R.

Constraint: GAMMAð1Þ ¼ �1:0 or GAMMAðiÞ � 0:0, for i ¼ 1; 2; . . . ; g.

18: NFF – INTEGER Output

On exit: the number of fixed effects estimated (i.e., the number of columns, p, in the design
matrix X).

19: NRF – INTEGER Output

On exit: the number of random effects estimated (i.e., the number of columns, q, in the design
matrix Z).

20: DF – INTEGER Output

On exit: the degrees of freedom.
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21: REML – REAL (KIND=nag_wp) Output

On exit: �2lR �̂ð Þ where lR is the log of the restricted maximum likelihood calculated at �̂, the
estimated variance components returned in GAMMA.

22: LB – INTEGER Input

On entry: the size of the array B.

C o n s t r a i n t :

LB � FINTþ
XNFV
i¼1

max LEVELSðFVIDðiÞÞ � 1; 1ð Þ þ LS � RINTþ
XNRV
i¼1

LEVELSðRVIDðiÞÞ
 !

where LS ¼ LEVELSðSVIDÞ if SVID 6¼ 0 and 1 otherwise.

23: BðLBÞ – REAL (KIND=nag_wp) array Output

On exit: the parameter estimates, �; �ð Þ, with the first NFF elements of B containing the fixed
effect parameter estimates, � and the next NRF elements of B containing the random effect
parameter estimates, �.

Fixed effects

If FINT ¼ 1, Bð1Þ contains the estimate of the fixed intercept. Let Li denote the number of levels
associated with the ith fixed variable, that is Li ¼ LEVELSðFVIDðiÞÞ. Define

if FINT ¼ 1, F1 ¼ 2 else if FINT ¼ 0, F1 ¼ 1;

Fiþ1 ¼ Fi þmax Li � 1; 1ð Þ, i � 1.

Then for i ¼ 1; 2; . . . ;NFV:

if Li > 1, BðFi þ j � 2Þ contains the parameter estimate for the jth level of the ith fixed
variable, for j ¼ 2; 3; . . . ; Li;

if Li � 1, BðFiÞ contains the parameter estimate for the ith fixed variable.

Random effects

Redefining Li to denote the number of levels associated with the ith random variable, that is
Li ¼ LEVELSðRVIDðiÞÞ. Define

if RINT ¼ 1, R1 ¼ 2 else if RINT ¼ 0, R1 ¼ 1;
Riþ1 ¼ Ri þ Li, i � 1.

Then for i ¼ 1; 2; . . . ;NRV:

if SVID ¼ 0,

if Li > 1, BðNFFþRi þ j � 1Þ contains the parameter estimate for the jth level of
the ith random variable, for j ¼ 1; 2; . . . ; Li;

if Li � 1, BðNFFþRiÞ contains the parameter estimate for the ith random variable;

if SVID 6¼ 0,

let LS denote the number of levels associated with the subject variable, that is
LS ¼ LEVELSðSVIDÞ;
if Li > 1, BðNFFþ s � 1ð ÞLS þRi þ j � 1Þ contains the parameter estimate for the
interaction between the sth level of the subject variable and the jth level of the ith
random variable, for s ¼ 1; 2; . . . ; LS and j ¼ 1; 2; . . . ; Li;

if Li � 1, BðNFFþ s � 1ð ÞLS þRiÞ contains the parameter estimate for the
interaction between the sth level of the subject variable and the ith random
variable, for s ¼ 1; 2; . . . ; LS;

if RINT ¼ 1, BðNFFþ 1Þ contains the estimate of the random intercept.
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24: SEðLBÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors of the parameter estimates given in B.

25: MAXIT – INTEGER Input

On entry: the maximum number of iterations.

If MAXIT < 0, the default value of 100 is used.

If MAXIT ¼ 0, the parameter estimates �; �ð Þ and corresponding standard errors are calculated
based on the value of �0 supplied in GAMMA.

26: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance used to assess convergence.

If TOL � 0:0, the default value of �0:7 is used, where � is the machine precision.

27: WARN – INTEGER Output

On exit: is set to 1 if a variance component was estimated to be a negative value during the
fitting process. Otherwise WARN is set to 0.

If WARN ¼ 1, the negative estimate is set to zero and the estimation process allowed to
continue.

28: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CWID ¼ valueh i and NCOL ¼ valueh i.
Constraint: 0 � CWID � NCOL and any supplied weights must be � 0:0.

On entry, FINT ¼ valueh i.
Constraint: FINT ¼ 0 or 1.

On entry, LB too small: LB ¼ valueh i.
On entry, LDDAT ¼ valueh i and N ¼ valueh i.
Constraint: LDDAT � N.

On entry, N ¼ valueh i.
Constraint: N � 1.

On entry, N < 1 (nonzero weighted observations): N ¼ valueh i.
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On entry, NCOL ¼ valueh i.
Constraint: NCOL � 1.

On entry, NFV ¼ valueh i and NCOL ¼ valueh i.
Constraint: 0 � NFV < NCOL.

On entry, NRV ¼ valueh i and NCOL ¼ valueh i.
Constraint: 0 � NRV < NCOL and NRVþ RINT > 0.

On entry, NVPR ¼ valueh i and NRV ¼ valueh i.
Constraint: 0 � NVPR � NRV and (NRV 6¼ 0 or NVPR � 1).

On entry, RINT ¼ valueh i.
Constraint: RINT ¼ 0 or 1.

On entry, SVID ¼ valueh i and NCOL ¼ valueh i.
Constraint: 0 � SVID � NCOL.

On entry, YVID ¼ valueh i and NCOL ¼ valueh i.
Constraint: 1 � YVID � NCOL.

IFAIL ¼ 2

On entry, GAMMAðiÞ < 0:0, for at least one i.

On entry, invalid data: categorical variable with value greater than that specified in LEVELS.

On entry, LEVELSðI Þ < 1, for at least one I .

On entry, NCOL ¼ valueh i.
Constraint: 1 � FVIDðiÞ � NCOL, for all i.

On entry, NCOL ¼ valueh i.
Constraint: 1 � RVIDðiÞ � NCOL, for all i.

On entry, NVPR ¼ valueh i.
Constraint: 1 � VPRðiÞ � NVPR, for all i.

IFAIL ¼ 3

Degrees of freedom < 1: DF ¼ valueh i.
This is due to the number of parameters exceeding the effective number of observations.

IFAIL ¼ 4

Routine failed to converge in MAXIT iterations: MAXIT ¼ valueh i.
See Section 10 for advice.

Routine failed to converge to specified tolerance: TOL ¼ valueh i.
See Section 10 for advice.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The accuracy of the results can be adjusted through the use of the TOL argument.

8 Parallelism and Performance

G02JAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02JAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Wherever possible any block structure present in the design matrix Z should be modelled through a
subject variable, specified via SVID, rather than being explicitly entered into DAT.

G02JAF uses an iterative process to fit the specified model and for some problems this process may fail
to converge (see IFAIL ¼ 4). If the routine fails to converge then the maximum number of iterations
(see MAXIT) or tolerance (see TOL) may require increasing; try a different starting estimate in
GAMMA. Alternatively, the model can be fit using maximum likelihood (see G02JBF) or using the
noniterative MIVQUE0.

To fit the model just using MIVQUE0, the first element of GAMMA should be set to �1:0 and MAXIT
should be set to zero.

Although the quasi-Newton algorithm used in G02JAF tends to require more iterations before
converging compared to the Newton–Raphson algorithm recommended by Wolfinger et al. (1994), it
does not require the second derivatives of the likelihood function to be calculated and consequentially
takes significantly less time per iteration.

10 Example

The following dataset is taken from Stroup (1989) and arises from a balanced split-plot design with the
whole plots arranged in a randomized complete block-design.
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In this example the full design matrix for the random independent variable, Z, is given by:

Z ¼

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼

A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A
A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A

0BBBBBBBBB@

1CCCCCCCCCA
; ð1Þ

where

A ¼
1 1 0 0
1 0 1 0
1 0 0 1

0@ 1A:
The block structure evident in (1) is modelled by specifying a four-level subject variable, taking the
values 1; 1; 1; 2; 2; 2; 3; 3; 3; 4; 4; 4; 1; 1; 1; 2; 2; 2; 3; 3; 3; 4; 4; 4f g. The first column of 1s is added to A by
setting RINT ¼ 1. The remaining columns of A are specified by a three level factor, taking the values,
1; 2; 3; 1; 2; 3; 1; . . .f g.

10.1 Program Text

Program g02jafe

! G02JAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02jaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: reml, tol
Integer :: cwid, df, fint, i, ifail, j, k, l, &
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lb, lddat, maxit, n, ncol, nff, nfv, &
nrf, nrv, nvpr, rint, svid, warn, &
yvid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), dat(:,:), gamma(:), se(:)
Integer, Allocatable :: fvid(:), levels(:), rvid(:), vpr(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G02JAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, ncol, nfv, nrv, nvpr

Allocate (levels(ncol),fvid(nfv),rvid(nrv))

! Read in number of levels for each variable
Read (nin,*) levels(1:ncol)

! Read in model information
Read (nin,*) yvid, fvid(1:nfv), rvid(1:nrv), svid, cwid, fint, rint

! If no subject specified, then ignore RINT
If (svid==0) Then

rint = 0
End If

! Calculate LB
lb = rint
Do i = 1, nrv

lb = lb + levels(rvid(i))
End Do
If (svid/=0) Then

lb = lb*levels(svid)
End If
lb = lb + fint
Do i = 1, nfv

lb = lb + max(levels(fvid(i))-1,1)
End Do

lddat = n
Allocate (vpr(nrv),dat(lddat,ncol),gamma(nvpr+2),b(lb),se(lb))

! Read in the variance component flag
Read (nin,*) vpr(1:nrv)

! Read in the Data matrix
Read (nin,*)(dat(i,1:ncol),i=1,n)

! Read in the initial values for GAMMA
Read (nin,*) gamma(1:(nvpr+rint))

! Read in the maximum number of iterations
Read (nin,*) maxit

! Use default value for tolerance
tol = 0.0E0_nag_wp

! Fit the linear mixed effects regression model
ifail = 0
Call g02jaf(n,ncol,lddat,dat,levels,yvid,cwid,nfv,fvid,fint,nrv,rvid, &

nvpr,vpr,rint,svid,gamma,nff,nrf,df,reml,lb,b,se,maxit,tol,warn,ifail)

! Display results
If (warn/=0) Then

Write (nout,*) ’Warning: At least one variance component was ’, &
’estimated to be negative and then reset to zero’
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Write (nout,*)
End If
Write (nout,*) ’Fixed effects (Estimate and Standard Deviation)’
Write (nout,*)
k = 1
If (fint==1) Then

Write (nout,99999) ’Intercept ’, b(k), se(k)
k = k + 1

End If
Do i = 1, nfv

Do j = 1, levels(fvid(i))
If (levels(fvid(i))==1 .Or. j/=1) Then

Write (nout,99995) ’Variable’, i, ’ Level’, j, b(k), se(k)
k = k + 1

End If
End Do

End Do

Write (nout,*)
Write (nout,*) ’Random Effects (Estimate and Standard’, ’ Deviation)’
Write (nout,*)
If (svid==0) Then

Do i = 1, nrv
Do j = 1, levels(rvid(i))

Write (nout,99995) ’Variable’, i, ’ Level’, j, b(k), se(k)
k = k + 1

End Do
End Do

Else
Do l = 1, levels(svid)

If (rint==1) Then
Write (nout,99998) ’Intercept for Subject Level’, l, ’ ’, &

b(k), se(k)
k = k + 1

End If
Do i = 1, nrv

Do j = 1, levels(rvid(i))
Write (nout,99997) ’Subject Level’, l, ’ Variable’, i, ’ Level’, &

j, b(k), se(k)
k = k + 1

End Do
End Do

End Do
End If

Write (nout,*)
Write (nout,*) ’ Variance Components’
Write (nout,99996)(i,gamma(i),i=1,nvpr+rint)

Write (nout,*)
Write (nout,99994) ’SIGMA^2 = ’, gamma(nvpr+rint+1)
Write (nout,99994) ’-2LOG LIKE = ’, reml
Write (nout,99993) ’DF = ’, df

99999 Format (1X,A,2F10.4)
99998 Format (1X,A,I4,A,2F10.4)
99997 Format (1X,3(A,I4),2F10.4)
99996 Format (1X,I4,F10.4)
99995 Format (1X,2(A,I4),2F10.4)
99994 Format (1X,A,F10.4)
99993 Format (1X,A,I16)

End Program g02jafe
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10.2 Program Data

G02JAF Example Program Data
24 5 3 1 1
1 4 3 2 3
1 3 4 5 3 2 0 1 1
1
56 1 1 1 1
50 1 2 1 1
39 1 3 1 1
30 2 1 1 1
36 2 2 1 1
33 2 3 1 1
32 3 1 1 1
31 3 2 1 1
15 3 3 1 1
30 4 1 1 1
35 4 2 1 1
17 4 3 1 1
41 1 1 2 1
36 1 2 2 2
35 1 3 2 3
25 2 1 2 1
28 2 2 2 2
30 2 3 2 3
24 3 1 2 1
27 3 2 2 2
19 3 3 2 3
25 4 1 2 1
30 4 2 2 2
18 4 3 2 3
1.0 1.0
-1

10.3 Program Results

G02JAF Example Program Results

Fixed effects (Estimate and Standard Deviation)

Intercept 37.0000 4.6674
Variable 1 Level 2 1.0000 3.5173
Variable 1 Level 3 -11.0000 3.5173
Variable 2 Level 2 -8.2500 2.1635
Variable 3 Level 2 0.5000 3.0596
Variable 3 Level 3 7.7500 3.0596

Random Effects (Estimate and Standard Deviation)

Intercept for Subject Level 1 10.7631 4.4865
Subject Level 1 Variable 1 Level 1 3.7276 3.0331
Subject Level 1 Variable 1 Level 2 -1.4476 3.0331
Subject Level 1 Variable 1 Level 3 0.3733 3.0331
Intercept for Subject Level 2 -0.5269 4.4865
Subject Level 2 Variable 1 Level 1 -3.7171 3.0331
Subject Level 2 Variable 1 Level 2 -1.2253 3.0331
Subject Level 2 Variable 1 Level 3 4.8125 3.0331
Intercept for Subject Level 3 -5.6450 4.4865
Subject Level 3 Variable 1 Level 1 0.5903 3.0331
Subject Level 3 Variable 1 Level 2 0.3987 3.0331
Subject Level 3 Variable 1 Level 3 -2.3806 3.0331
Intercept for Subject Level 4 -4.5912 4.4865
Subject Level 4 Variable 1 Level 1 -0.6009 3.0331
Subject Level 4 Variable 1 Level 2 2.2742 3.0331
Subject Level 4 Variable 1 Level 3 -2.8052 3.0331

Variance Components
1 62.3958
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2 15.3819

SIGMA^2 = 9.3611
-2LOG LIKE = 119.7618
DF = 16
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NAG Library Routine Document

G02JBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02JBF fits a linear mixed effects regression model using maximum likelihood (ML).

2 Specification

SUBROUTINE G02JBF (N, NCOL, LDDAT, DAT, LEVELS, YVID, CWID, NFV, FVID,
FINT, NRV, RVID, NVPR, VPR, RINT, SVID, GAMMA, NFF,
NRF, DF, ML, LB, B, SE, MAXIT, TOL, WARN, IFAIL)

&
&

INTEGER N, NCOL, LDDAT, LEVELS(NCOL), YVID, CWID, NFV,
FVID(NFV), FINT, NRV, RVID(NRV), NVPR, VPR(NRV),
RINT, SVID, NFF, NRF, DF, LB, MAXIT, WARN, IFAIL

&
&

REAL (KIND=nag_wp) DAT(LDDAT,NCOL), GAMMA(NVPR+2), ML, B(LB), SE(LB),
TOL

&

3 Description

G02JBF fits a model of the form:

y ¼ X� þ Z� þ �

where

y is a vector of n observations on the dependent variable,

X is a known n by p design matrix for the fixed independent variables,

� is a vector of length p of unknown fixed effects,

Z is a known n by q design matrix for the random independent variables,

� is a vector of length q of unknown random effects;

and

� is a vector of length n of unknown random errors.

Both � and � are assumed to have a Gaussian distribution with expectation zero and

Var �
�

� �
¼ G 0

0 R

� �
where R ¼ �2RI, I is the n� n identity matrix and G is a diagonal matrix. It is assumed that the
random variables, Z, can be subdivided into g � q groups with each group being identically distributed
with expectations zero and variance �2i . The diagonal elements of matrix G therefore take one of the
values �2i : i ¼ 1; 2; . . . ; g

� 
, depending on which group the associated random variable belongs to.

The model therefore contains three sets of unknowns, the fixed effects, �, the random effects � and a

vector of gþ 1 variance components, �, where � ¼ �21; �
2
2; . . . ; �

2
g�1; �

2
g; �

2
R

n o
. Rather than working

d i r e c t l y w i t h �, G 0 2 J B F u s e s a n i t e r a t i v e p r o c e s s t o e s t i m a t e

�� ¼ �21=�
2
R; �

2
2=�

2
R; . . . ; �

2
g�1=�

2
R; �

2
g=�

2
R; 1

n o
. Due to the iterative nature of the estimation a set of

initial values, �0, for �� is required. G02JBF allows these initial values either to be supplied by you or
calculated from the data using the minimum variance quadratic unbiased estimators (MIVQUE0)
suggested by Rao (1972).
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G02JBF fits the model using a quasi-Newton algorithm to maximize the log-likelihood function:

�2lR ¼ log Vj jð Þ þ nð Þlog r0V �1r
� �

þ log 2	=nð Þ

where

V ¼ ZGZ0 þR; r ¼ y�Xb and b ¼ X0V �1X
� ��1

X0V �1y:

Once the final estimates for �� have been obtained, the value of �2R is given by:

�2R ¼ r0V �1r
� �

= n� pð Þ:
Case weights, Wc, can be incorporated into the model by replacing X0X and Z0Z with X0WcX and
Z0WcZ respectively, for a diagonal weight matrix Wc.

The log-likelihood, lR, is calculated using the sweep algorithm detailed in Wolfinger et al. (1994).

4 References

Goodnight J H (1979) A tutorial on the SWEEP operator The American Statistician 33(3) 149–158

Harville D A (1977) Maximum likelihood approaches to variance component estimation and to related
problems JASA 72 320–340

Rao C R (1972) Estimation of variance and covariance components in a linear model J. Am. Stat.
Assoc. 67 112–115

Stroup W W (1989) Predictable functions and prediction space in the mixed model procedure
Applications of Mixed Models in Agriculture and Related Disciplines Southern Cooperative Series
Bulletin No. 343 39–48

Wolfinger R, Tobias R and Sall J (1994) Computing Gaussian likelihoods and their derivatives for
general linear mixed models SIAM Sci. Statist. Comput. 15 1294–1310

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

2: NCOL – INTEGER Input

On entry: the number of columns in the data matrix, DAT.

Constraint: NCOL � 1.

3: LDDAT – INTEGER Input

On entry: the first dimension of the array DAT as declared in the (sub)program from which
G02JBF is called.

Constraint: LDDAT � N.

4: DATðLDDAT;NCOLÞ – REAL (KIND=nag_wp) array Input

On entry: array containing all of the data. For the ith observation:

DATði;YVIDÞ holds the dependent variable, y;

if CWID 6¼ 0, DATði;CWIDÞ holds the case weights;

if SVID 6¼ 0, DATði; SVIDÞ holds the subject variable.

The remaining columns hold the values of the independent variables.
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Constraints:

if CWID 6¼ 0, DATði;CWIDÞ � 0:0;
if LEVELSðjÞ 6¼ 1, 1 � DATði; jÞ � LEVELSðjÞ.

5: LEVELSðNCOLÞ – INTEGER array Input

On entry: LEVELSðiÞ contains the number of levels associated with the ith variable of the data
matrix DAT. If this variable is continuous or binary (i.e., only takes the values zero or one) then
LEVELSðiÞ should be 1; if the variable is discrete then LEVELSðiÞ is the number of levels
associated with it and DATðj; iÞ is assumed to take the values 1 to LEVELSðiÞ, for
j ¼ 1; 2; . . . ;N.

Constraint: LEVELSðiÞ � 1, for i ¼ 1; 2; . . . ;NCOL.

6: YVID – INTEGER Input

On entry: the column of DAT holding the dependent, y, variable.

Constraint: 1 � YVID � NCOL.

7: CWID – INTEGER Input

On entry: the column of DAT holding the case weights.

If CWID ¼ 0, no weights are used.

Constraint: 0 � CWID � NCOL.

8: NFV – INTEGER Input

On entry: the number of independent variables in the model which are to be treated as being
fixed.

Constraint: 0 � NFV < NCOL.

9: FVIDðNFVÞ – INTEGER array Input

On entry: the columns of the data matrix DAT holding the fixed independent variables with
FVIDðiÞ holding the column number corresponding to the ith fixed variable.

Constraint: 1 � FVIDðiÞ � NCOL, for i ¼ 1; 2; . . . ;NFV.

10: FINT – INTEGER Input

On entry: flag indicating whether a fixed intercept is included (FINT ¼ 1).

Constraint: FINT ¼ 0 or 1.

11: NRV – INTEGER Input

On entry: the number of independent variables in the model which are to be treated as being
random.

Constraints:

0 � NRV < NCOL;
NRVþ RINT > 0.

12: RVIDðNRVÞ – INTEGER array Input

On entry: the columns of the data matrix DAT holding the random independent variables with
RVIDðiÞ holding the column number corresponding to the ith random variable.

Constraint: 1 � RVIDðiÞ � NCOL, for i ¼ 1; 2; . . . ;NRV.
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13: NVPR – INTEGER Input

On entry: if RINT ¼ 1 and SVID 6¼ 0, NVPR is the number of variance components being
estimated� 2, (g� 1), else NVPR ¼ g.
If NRV ¼ 0, NVPR is not referenced.

Constraint: if NRV 6¼ 0, 1 � NVPR � NRV.

14: VPRðNRVÞ – INTEGER array Input

On entry: VPRðiÞ holds a flag indicating the variance of the ith random variable. The variance of
the ith random variable is �2j , where j ¼ VPRðiÞ þ 1 if RINT ¼ 1 and SVID 6¼ 0 and j ¼ VPRðiÞ
otherwise. Random variables with the same value of j are assumed to be taken from the same
distribution.

Constraint: 1 � VPRðiÞ � NVPR, for i ¼ 1; 2; . . . ;NRV.

15: RINT – INTEGER Input

On entry: flag indicating whether a random intercept is included (RINT ¼ 1).

If SVID ¼ 0, RINT is not referenced.

Constraint: RINT ¼ 0 or 1.

16: SVID – INTEGER Input

On entry: the column of DAT holding the subject variable.

If SVID ¼ 0, no subject variable is used.

Specifying a subject variable is equivalent to specifying the interaction between that variable and
all of the random-effects. Letting the notation Z1 � ZS denote the interaction between variables
Z1 and ZS , fitting a model with RINT ¼ 0, random-effects Z1 þ Z2 and subject variable ZS is
equivalent to fitting a model with random-effects Z1 � ZS þ Z2 � ZS and no subject variable. If
RINT ¼ 1 the model is equivalent to fitting ZS þ Z1 � ZS þ Z2 � ZS and no subject variable.

Constraint: 0 � SVID � NCOL.

17: GAMMAðNVPR þ 2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: holds the initial values of the variance components, �0, with GAMMAðiÞ the initial
value for �2i =�

2
R, for i ¼ 1; 2; . . . ; g. If RINT ¼ 1 and SVID 6¼ 0, g ¼ NVPRþ 1, else g ¼ NVPR.

If GAMMAð1Þ ¼ �1:0, the remaining elements of GAMMA are ignored and the initial values
for the variance components are estimated from the data using MIVQUE0.

On exit: GAMMAðiÞ, for i ¼ 1; 2; . . . ; g, holds the final estimate of �2i and GAMMAðgþ 1Þ holds
the final estimate for �2R.

Constraint: GAMMAð1Þ ¼ �1:0 or GAMMAðiÞ � 0:0, for i ¼ 1; 2; . . . ; g.

18: NFF – INTEGER Output

On exit: the number of fixed effects estimated (i.e., the number of columns, p, in the design
matrix X).

19: NRF – INTEGER Output

On exit: the number of random effects estimated (i.e., the number of columns, q, in the design
matrix Z).

20: DF – INTEGER Output

On exit: the degrees of freedom.

G02JBF NAG Library Manual

G02JBF.4 Mark 26



21: ML – REAL (KIND=nag_wp) Output

On exit: �2lR �̂ð Þ where lR is the log of the maximum likelihood calculated at �̂, the estimated
variance components returned in GAMMA.

22: LB – INTEGER Input

On entry: the size of the array B.

C o n s t r a i n t :

LB � FINTþ
XNFV
i¼1

max LEVELSðFVIDðiÞÞ � 1; 1ð Þ þ LS � RINTþ
XNRV
i¼1

LEVELSðRVIDðiÞÞ
 !

where LS ¼ LEVELSðSVIDÞ if SVID 6¼ 0 and 1 otherwise.

23: BðLBÞ – REAL (KIND=nag_wp) array Output

On exit: the parameter estimates, �; �ð Þ, with the first NFF elements of B containing the fixed
effect parameter estimates, � and the next NRF elements of B containing the random effect
parameter estimates, �.

Fixed effects

If FINT ¼ 1, Bð1Þ contains the estimate of the fixed intercept. Let Li denote the number of levels
associated with the ith fixed variable, that is Li ¼ LEVELSðFVIDðiÞÞ. Define

if FINT ¼ 1, F1 ¼ 2 else if FINT ¼ 0, F1 ¼ 1;

Fiþ1 ¼ Fi þmax Li � 1; 1ð Þ, i � 1.

Then for i ¼ 1; 2; . . . ;NFV:

if Li > 1, BðFi þ j � 2Þ contains the parameter estimate for the jth level of the ith fixed
variable, for j ¼ 2; 3; . . . ; Li;

if Li � 1, BðFiÞ contains the parameter estimate for the ith fixed variable.

Random effects

Redefining Li to denote the number of levels associated with the ith random variable, that is
Li ¼ LEVELSðRVIDðiÞÞ. Define

if RINT ¼ 1, R1 ¼ 2 else if RINT ¼ 0, R1 ¼ 1;
Riþ1 ¼ Ri þ Li, i � 1.

Then for i ¼ 1; 2; . . . ;NRV:

if SVID ¼ 0,

if Li > 1, BðNFFþRi þ j � 1Þ contains the parameter estimate for the jth level of
the ith random variable, for j ¼ 1; 2; . . . ; Li;

if Li � 1, BðNFFþRiÞ contains the parameter estimate for the ith random variable;

if SVID 6¼ 0,

let LS denote the number of levels associated with the subject variable, that is
LS ¼ LEVELSðSVIDÞ;
if Li > 1, BðNFFþ s � 1ð ÞLS þRi þ j � 1Þ contains the parameter estimate for the
interaction between the sth level of the subject variable and the jth level of the ith
random variable, for s ¼ 1; 2; . . . ; LS and j ¼ 1; 2; . . . ; Li;

if Li � 1, BðNFFþ s � 1ð ÞLS þRiÞ contains the parameter estimate for the
interaction between the sth level of the subject variable and the ith random
variable, for s ¼ 1; 2; . . . ; LS;

if RINT ¼ 1, BðNFFþ 1Þ contains the estimate of the random intercept.

G02 – Correlation and Regression Analysis G02JBF

Mark 26 G02JBF.5



24: SEðLBÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors of the parameter estimates given in B.

25: MAXIT – INTEGER Input

On entry: the maximum number of iterations.

If MAXIT < 0, the default value of 100 is used.

If MAXIT ¼ 0, the parameter estimates �; �ð Þ and corresponding standard errors are calculated
based on the value of �0 supplied in GAMMA.

26: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance used to assess convergence.

If TOL � 0:0, the default value of �0:7 is used, where � is the machine precision.

27: WARN – INTEGER Output

On exit: is set to 1 if a variance component was estimated to be a negative value during the
fitting process. Otherwise WARN is set to 0.

If WARN ¼ 1, the negative estimate is set to zero and the estimation process allowed to
continue.

28: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or NCOL < 1,
or LDDAT < N,
or YVID < 1 or YVID > NCOL,
or CWID < 0 or CWID > NCOL,
or NFV < 0 or NFV � NCOL,
or FINT 6¼ 0 and FINT 6¼ 1,
or NRV < 0 or NRV > NCOL or NRVþ RINT < 1,
or NVPR < 0 or NVPR > NRV,
or RINT 6¼ 0 and RINT 6¼ 1,
or SVID < 0 or SVID > NCOL,
or LB is too small.
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IFAIL ¼ 2

On entry, LEVELSðiÞ < 1, for at least one i,
or FVIDðiÞ < 1, or FVIDðiÞ > NCOL, for at least one i,
or RVIDðiÞ < 1, or RVIDðiÞ > NCOL, for at least one i,
or VPRðiÞ < 1 or VPRðiÞ > NVPR, for at least one i,
or at least one discrete variable in array DAT has a value greater than that specified in

LEVELS,
or GAMMAðiÞ < 0, for at least one i, and GAMMAð1Þ 6¼ �1.

IFAIL ¼ 3

Degrees of freedom < 1. The number of arguments exceed the effective number of observations.

IFAIL ¼ 4

The routine failed to converge to the specified tolerance in MAXIT iterations. See Section 9 for
advice.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the results can be adjusted through the use of the TOL argument.

8 Parallelism and Performance

G02JBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02JBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Wherever possible any block structure present in the design matrix Z should be modelled through a
subject variable, specified via SVID, rather than being explicitly entered into DAT.

G02JBF uses an iterative process to fit the specified model and for some problems this process may fail
to converge (see IFAIL ¼ 4). If the routine fails to converge then the maximum number of iterations
(see MAXIT) or tolerance (see TOL) may require increasing; try a different starting estimate in
GAMMA. Alternatively, the model can be fit using restricted maximum likelihood (see G02JAF) or
using the noniterative MIVQUE0.
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To fit the model just using MIVQUE0, the first element of GAMMA should be set to �1 and MAXIT
should be set to zero.

Although the quasi-Newton algorithm used in G02JBF tends to require more iterations before
converging compared to the Newton–Raphson algorithm recommended by Wolfinger et al. (1994), it
does not require the second derivatives of the likelihood function to be calculated and consequentially
takes significantly less time per iteration.

10 Example

The following dataset is taken from Stroup (1989) and arises from a balanced split-plot design with the
whole plots arranged in a randomized complete block-design.

In this example the full design matrix for the random independent variable, Z, is given by:

Z ¼

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼

A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A
A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A

0BBBBBBBBB@

1CCCCCCCCCA
; ð1Þ

where

A ¼
1 1 0 0
1 0 1 0
1 0 0 1

0@ 1A:
The block structure evident in (1) is modelled by specifying a four-level subject variable, taking the
values 1; 1; 1; 2; 2; 2; 3; 3; 3; 4; 4; 4; 1; 1; 1; 2; 2; 2; 3; 3; 3; 4; 4; 4f g. The first column of 1s is added to A by
setting RINT ¼ 1. The remaining columns of A are specified by a three level factor, taking the values,
1; 2; 3; 1; 2; 3; 1; . . .f g.
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10.1 Program Text

Program g02jbfe

! G02JBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02jbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: reml, tol
Integer :: cwid, df, fint, i, ifail, j, k, l, &

lb, lddat, maxit, n, ncol, nff, nfv, &
nrf, nrv, nvpr, rint, svid, warn, &
yvid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), dat(:,:), gamma(:), se(:)
Integer, Allocatable :: fvid(:), levels(:), rvid(:), vpr(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G02JBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, ncol, nfv, nrv, nvpr

Allocate (levels(ncol),fvid(nfv),rvid(nrv))

! Read in number of levels for each variable
Read (nin,*) levels(1:ncol)

! Read in model information
Read (nin,*) yvid, fvid(1:nfv), rvid(1:nrv), svid, cwid, fint, rint

! If no subject specified, then ignore RINT
If (svid==0) Then

rint = 0
End If

! Calculate LB
lb = rint
Do i = 1, nrv

lb = lb + levels(rvid(i))
End Do
If (svid/=0) Then

lb = lb*levels(svid)
End If
lb = lb + fint
Do i = 1, nfv

lb = lb + max(levels(fvid(i))-1,1)
End Do

lddat = n
Allocate (vpr(nrv),dat(lddat,ncol),gamma(nvpr+2),b(lb),se(lb))

! Read in the variance component flag
Read (nin,*) vpr(1:nrv)

! Read in the Data matrix
Read (nin,*)(dat(i,1:ncol),i=1,n)

! Read in the initial values for GAMMA
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Read (nin,*) gamma(1:(nvpr+rint))

! Read in the maximum number of iterations
Read (nin,*) maxit

! Use default value for tolerance
tol = 0.0E0_nag_wp

! Fit the linear mixed effects regression model
ifail = 0
Call g02jbf(n,ncol,lddat,dat,levels,yvid,cwid,nfv,fvid,fint,nrv,rvid, &

nvpr,vpr,rint,svid,gamma,nff,nrf,df,reml,lb,b,se,maxit,tol,warn,ifail)

! Display results
If (warn/=0) Then

Write (nout,*) ’Warning: At least one variance component was ’, &
’estimated to be negative and then reset to zero’

Write (nout,*)
End If
Write (nout,*) ’Fixed effects (Estimate and Standard Deviation)’
Write (nout,*)
k = 1
If (fint==1) Then

Write (nout,99999) ’Intercept ’, b(k), se(k)
k = k + 1

End If
Do i = 1, nfv

Do j = 1, levels(fvid(i))
If (levels(fvid(i))==1 .Or. j/=1) Then

Write (nout,99995) ’Variable’, i, ’ Level’, j, b(k), se(k)
k = k + 1

End If
End Do

End Do

Write (nout,*)
Write (nout,*) ’Random Effects (Estimate and Standard’, ’ Deviation)’
Write (nout,*)
If (svid==0) Then

Do i = 1, nrv
Do j = 1, levels(rvid(i))

Write (nout,99995) ’Variable’, i, ’ Level’, j, b(k), se(k)
k = k + 1

End Do
End Do

Else
Do l = 1, levels(svid)

If (rint==1) Then
Write (nout,99998) ’Intercept for Subject Level’, l, ’ ’, &

b(k), se(k)
k = k + 1

End If
Do i = 1, nrv

Do j = 1, levels(rvid(i))
Write (nout,99997) ’Subject Level’, l, ’ Variable’, i, ’ Level’, &

j, b(k), se(k)
k = k + 1

End Do
End Do

End Do
End If

Write (nout,*)
Write (nout,*) ’ Variance Components’
Write (nout,99996)(i,gamma(i),i=1,nvpr+rint)

Write (nout,*)
Write (nout,99994) ’SIGMA^2 = ’, gamma(nvpr+rint+1)
Write (nout,99994) ’-2LOG LIKE = ’, reml
Write (nout,99993) ’DF = ’, df
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99999 Format (1X,A,2F10.4)
99998 Format (1X,A,I4,A,2F10.4)
99997 Format (1X,3(A,I4),2F10.4)
99996 Format (1X,I4,F10.4)
99995 Format (1X,2(A,I4),2F10.4)
99994 Format (1X,A,F10.4)
99993 Format (1X,A,I16)

End Program g02jbfe

10.2 Program Data

G02JBF Example Program Data
24 5 3 1 1
1 4 3 2 3
1 3 4 5 3 2 0 1 1
1
56 1 1 1 1
50 1 2 1 1
39 1 3 1 1
30 2 1 1 1
36 2 2 1 1
33 2 3 1 1
32 3 1 1 1
31 3 2 1 1
15 3 3 1 1
30 4 1 1 1
35 4 2 1 1
17 4 3 1 1
41 1 1 2 1
36 1 2 2 2
35 1 3 2 3
25 2 1 2 1
28 2 2 2 2
30 2 3 2 3
24 3 1 2 1
27 3 2 2 2
19 3 3 2 3
25 4 1 2 1
30 4 2 2 2
18 4 3 2 3
1.0 1.0
-1

10.3 Program Results

G02JBF Example Program Results

Fixed effects (Estimate and Standard Deviation)

Intercept 37.0000 4.0421
Variable 1 Level 2 1.0000 3.0461
Variable 1 Level 3 -11.0000 3.0461
Variable 2 Level 2 -8.2500 1.8736
Variable 3 Level 2 0.5000 2.6497
Variable 3 Level 3 7.7500 2.6497

Random Effects (Estimate and Standard Deviation)

Intercept for Subject Level 1 10.7631 3.8855
Subject Level 1 Variable 1 Level 1 3.7276 2.6268
Subject Level 1 Variable 1 Level 2 -1.4476 2.6268
Subject Level 1 Variable 1 Level 3 0.3733 2.6268
Intercept for Subject Level 2 -0.5269 3.8855
Subject Level 2 Variable 1 Level 1 -3.7171 2.6268
Subject Level 2 Variable 1 Level 2 -1.2253 2.6268
Subject Level 2 Variable 1 Level 3 4.8125 2.6268
Intercept for Subject Level 3 -5.6450 3.8855
Subject Level 3 Variable 1 Level 1 0.5903 2.6268
Subject Level 3 Variable 1 Level 2 0.3987 2.6268
Subject Level 3 Variable 1 Level 3 -2.3806 2.6268
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Intercept for Subject Level 4 -4.5912 3.8855
Subject Level 4 Variable 1 Level 1 -0.6009 2.6268
Subject Level 4 Variable 1 Level 2 2.2742 2.6268
Subject Level 4 Variable 1 Level 3 -2.8052 2.6268

Variance Components
1 46.7969
2 11.5365

SIGMA^2 = 7.0208
-2LOG LIKE = 141.6877
DF = 16
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NAG Library Routine Document

G02JCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02JCF preprocesses a dataset prior to fitting a linear mixed effects regression model of the following
form via either G02JDF or G02JEF.

2 Specification

SUBROUTINE G02JCF (WEIGHT, N, NCOL, DAT, LDDAT, LEVELS, Y, WT, FIXED,
LFIXED, NRNDM, RNDM, LDRNDM, NFF, NLSV, NRF, RCOMM,
LRCOMM, ICOMM, LICOMM, IFAIL)

&
&

INTEGER N, NCOL, LDDAT, LEVELS(NCOL), FIXED(LFIXED),
LFIXED, NRNDM, RNDM(LDRNDM,NRNDM), LDRNDM, NFF,
NLSV, NRF, LRCOMM, ICOMM(LICOMM), LICOMM, IFAIL

&
&

REAL (KIND=nag_wp) DAT(LDDAT,NCOL), Y(N), WT(*), RCOMM(LRCOMM)
CHARACTER(1) WEIGHT

3 Description

G02JCF must be called prior to fitting a linear mixed effects regression model with either G02JDF or
G02JEF.

The model fitting routines G02JDF and G02JEF fit a model of the following form:

y ¼ X� þ Z� þ �

where y is a vector of n observations on the dependent variable,

X is an n by p design matrix of fixed independent variables,

� is a vector of p unknown fixed effects,

Z is an n by q design matrix of random independent variables,

� is a vector of length q of unknown random effects,

� is a vector of length n of unknown random errors,

and � and � are Normally distributed with expectation zero and variance/covariance matrix defined by

Var �
�

� �
¼ G 0

0 R

� �
where R ¼ �2RI, I is the n� n identity matrix and G is a diagonal matrix.

Case weights can be incorporated into the model by replacing X and Z with W 1=2
c X and W 1=2

c Z
respectively where Wc is a diagonal weight matrix.

4 References

None.

G02 – Correlation and Regression Analysis G02JCF

Mark 26 G02JCF.1



5 Arguments

1: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
No weights are used.

WEIGHT ¼ W
Case weights are used and must be supplied in array WT.

Constraint: WEIGHT ¼ U or W.

2: N – INTEGER Input

On entry: n, the number of observations.

The effective number of observations, that is the number of observations with nonzero weight
(see WT for more detail), must be greater than the number of fixed effects in the model (as
returned in NFF).

Constraint: N � 1.

3: NCOL – INTEGER Input

On entry: the number of columns in the data matrix, DAT.

Constraint: NCOL � 0.

4: DATðLDDAT;NCOLÞ – REAL (KIND=nag_wp) array Input

On entry: a matrix of data, with DATði; jÞ holding the ith observation on the jth variable. The
two design matrices X and Z are constructed from DAT and the information given in FIXED (for
X) and RNDM (for Z).

Constraint: if LEVELSðjÞ 6¼ 1; 1 � DATði; jÞ � LEVELSðjÞ.

5: LDDAT – INTEGER Input

On entry: the first dimension of the array DAT as declared in the (sub)program from which
G02JCF is called.

Constraint: LDDAT � N.

6: LEVELSðNCOLÞ – INTEGER array Input

On entry: LEVELSðiÞ contains the number of levels associated with the ith variable held in DAT.

If the ith variable is continuous or binary (i.e., only takes the values zero or one) then
LEVELSðiÞ must be set to 1. Otherwise the ith variable is assumed to take an integer value
between 1 and LEVELSðiÞ, (i.e., the ith variable is discrete with LEVELSðiÞ levels).
Constraint: LEVELSðiÞ � 1, for i ¼ 1; 2; . . . ;NCOL.

7: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: y, the vector of observations on the dependent variable.

8: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W .

On entry: if WEIGHT ¼ W , WT must contain the diagonal elements of the weight matrix Wc.

If WTðiÞ ¼ 0:0, the ith observation is not included in the model and the effective number of
observations is the number of observations with nonzero weights.
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If WEIGHT ¼ U , WT is not referenced and the effective number of observations is n.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

9: FIXEDðLFIXEDÞ – INTEGER array Input

On entry: defines the structure of the fixed effects design matrix, X.

FIXEDð1Þ
The number of variables, NF , to include as fixed effects (not including the intercept if
present).

FIXEDð2Þ
The fixed intercept flag which must contain 1 if a fixed intercept is to be included and 0
otherwise.

FIXEDð2þ iÞ
The column of DAT holding the ith fixed variable, for i ¼ 1; 2; . . . ; FIXEDð1Þ.

See Section 9.1 for more details on the construction of X.

Constraints:

FIXEDð1Þ � 0;
FIXEDð2Þ ¼ 0 or 1;
1 � FIXEDð2þ iÞ � NCOL, for i ¼ 1; 2; . . . ;FIXEDð1Þ.

10: LFIXED – INTEGER Input

On entry: length of the vector FIXED.

Constraint: LFIXED � 2þ FIXEDð1Þ.

11: NRNDM – INTEGER Input

On entry: the second dimension of the array RNDM as declared in the (sub)program from which
G02JCF is called.

Constraint: NRNDM > 0.

12: RNDMðLDRNDM;NRNDMÞ – INTEGER array Input

On entry: RNDMði; jÞ defines the structure of the random effects design matrix, Z. The bth
column of RNDM defines a block of columns in the design matrix Z.

RNDMð1; bÞ
The number of variables, NRb

, to include as random effects in the bth block (not including
the random intercept if present).

RNDMð2; bÞ
The random intercept flag which must contain 1 if block b includes a random intercept and
0 otherwise.

RNDMð2þ i; bÞ
The column of DAT holding the ith random variable in the bth block, for
i ¼ 1; 2; . . . ;RNDMð1; bÞ.

RNDMð3þNRb
; bÞ

The number of subject variables, NSb , for the bth block. The subject variables define the
nesting structure for this block.

RNDMð3þNRb
þ i; bÞ

The column of DAT holding the ith subject variable in the bth block, for
i ¼ 1; 2; . . . ;RNDMð3þNRb

; bÞ.
See Section 9.2 for more details on the construction of Z.
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Constraints:

RNDMð1; bÞ � 0;
RNDMð2; bÞ ¼ 0 or 1;
at least one random variable or random intercept must be specified in each block, i.e.,
RNDMð1; bÞ þ RNDMð2; bÞ > 0;
the column identifiers associated with the random variables must be in the range 1 to
NCOL, i.e., 1 � RNDMð2þ i; bÞ � NCOL, for i ¼ 1; 2; . . . ;RNDMð1; bÞ;
RNDMð3þNRb

; bÞ � 0;
the column identifiers associated with the subject variables must be in the range 1 to
NCOL, i.e., 1 � RNDMð3þNRb

þ i; bÞ � NCOL, for i ¼ 1; 2; . . . ;RNDMð3þNRb
; bÞ.

13: LDRNDM – INTEGER Input

On entry: the first dimension of the array RNDM as declared in the (sub)program from which
G02JCF is called.

Constraint: LDRNDM � max
b

3þNRb
þNSbð Þ.

14: NFF – INTEGER Output

On exit: p, the number of fixed effects estimated, i.e., the number of columns in the design matrix
X.

15: NLSV – INTEGER Output

On exit: the number of levels for the overall subject variable (see Section 9.2 for a description of
what this means). If there is no overall subject variable, NLSV ¼ 1.

16: NRF – INTEGER Output

On exit: the number of random effects estimated in each of the overall subject blocks. The
number of columns in the design matrix Z is given by q ¼ NRF� NLSV.

17: RCOMMðLRCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On exit: communication array as required by the analysis routines G02JDF and G02JEF.

18: LRCOMM – INTEGER Input

On entry: the dimension of the array RCOMM as declared in the (sub)program from which
G02JCF is called.

Constraint: LRCOMM � NRF� NLSVþ NFFþ NFF� NLSVþ NRF� NLSVþ NFFþ 2.

19: ICOMMðLICOMMÞ – INTEGER array Communication Array

On exit: if LICOMM ¼ 2, ICOMMð1Þ holds the minimum required value for LICOMM and
ICOMMð2Þ holds the minimum required value for LRCOMM, otherwise ICOMM is a
communication array as required by the analysis routines G02JDF and G02JEF.

20: LICOMM – INTEGER Input

On entry: the dimension of the array ICOMM as declared in the (sub)program from which
G02JCF is called.

Constraint: LICOMM ¼ 2 or
LICOMM � 34þNF � MFLþ 1ð Þ þ NRNDM�MNR�MRLþ LRNDMþ 2ð Þ � NRNDMþ
NCOLþ LDID� LB;

where
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MNR ¼ max
b

NRb
ð Þ,

MFL ¼ max
i

LEVELSðFIXEDð2þ iÞÞð Þ,

MRL ¼ max
b;i

LEVELSðRNDMð2þ i; bÞÞð Þ,

LDID ¼ max
b
NSb ,

LB ¼ NFFþ NRF� NLSV, and

LRNDM ¼ max
b

3þNRb
þNSbð Þ

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, WEIGHT had an illegal value.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 3

On entry, NCOL ¼ valueh i.
Constraint: NCOL � 0.

IFAIL ¼ 4

On entry, variable j of observation i is less than 1 or greater than LEVELSðjÞ: i ¼ valueh i,
j ¼ valueh i, value ¼ valueh i, LEVELSðjÞ ¼ valueh i.

IFAIL ¼ 5

On entry, LDDAT ¼ valueh i and N ¼ valueh i.
Constraint: LDDAT � N.

IFAIL ¼ 6

On entry, LEVELSð valueh iÞ ¼ valueh i.
Constraint: LEVELSðiÞ � 1.
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IFAIL ¼ 8

On entry, WTð valueh iÞ ¼ valueh i.
Constraint: WTðiÞ � 0:0.

IFAIL ¼ 9

On entry, number of fixed parameters, valueh i is less than zero.

IFAIL ¼ 10

On entry, LFIXED ¼ valueh i.
Constraint: LFIXED � valueh i.

IFAIL ¼ 11

On entry, NRNDM ¼ valueh i.
Constraint: NRNDM > 0.

IFAIL ¼ 12

On entry, number of random parameters for random statement i is less than 0: i ¼ valueh i,
number of parameters ¼ valueh i.

IFAIL ¼ 13

On entry, LDRNDM ¼ valueh i.
Constraint: LDRNDM � valueh i.

IFAIL ¼ 18

On entry, LRCOMM ¼ valueh i.
Constraint: LRCOMM � valueh i.

IFAIL ¼ 20

On entry, LICOMM ¼ valueh i.
Constraint: LICOMM � valueh i.

IFAIL ¼ 102

On entry, more fixed factors than observations, N ¼ valueh i.
Constraint: N � valueh i.

IFAIL ¼ 108

On entry, no observations due to zero weights.

IFAIL ¼ 109

On entry, invalid value for fixed intercept flag: value ¼ valueh i.

IFAIL ¼ 112

On entry, invalid value for random intercept flag for random statement i: i ¼ valueh i, value
¼ valueh i.

IFAIL ¼ 209

On entry, index of fixed variable j is less than 1 or greater than NCOL: j ¼ valueh i, index
¼ valueh i and NCOL ¼ valueh i.

IFAIL ¼ 212

On entry, must be at least one parameter, or an intercept in each random statement i: i ¼ valueh i.
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IFAIL ¼ 312

On entry, index of random variable j in random statement i is less than 1 or greater than NCOL:
i ¼ valueh i, j ¼ valueh i, index ¼ valueh i and NCOL ¼ valueh i.

IFAIL ¼ 412

On entry, number of subject parameters for random statement i is less than 0: i ¼ valueh i,
number of parameters ¼ valueh i.

IFAIL ¼ 512

On entry, nesting variable j in random statement i has one level: j ¼ valueh i, i ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02JCF is not threaded in any implementation.

9 Further Comments

9.1 Construction of the fixed effects design matrix, X

Let

NF denote the number of fixed variables, that is FIXEDð1Þ ¼ NF ;

Fj denote the jth fixed variable, that is the vector of values held in the kth column of DAT when
FIXEDð2þ jÞ ¼ k;
Fij denote the ith element of Fj;

L Fj
� �

denote the number of levels for Fj, that is L Fj
� �

¼ LEVELSðFIXEDð2þ jÞÞ;

Dv Fj
� �

denoted an indicator function that returns a vector of values whose ith element is 1 if Fij ¼ v
and 0 otherwise.

The design matrix for the fixed effects, X, is constructed as follows:

set k to one and the flag done first to false;

if a fixed intercept is included, that is FIXEDð2Þ ¼ 1,

set the first column of X to a vector of 1s;

set k ¼ kþ 1;
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set done first to true;

loop over each fixed variable, so for each j ¼ 1; 2; . . . ; NF ,

if L Fj
� �

¼ 1,

set the kth column of X to be Fj;

set k ¼ kþ 1;

else

if done first is false then

set the L Fj
� �

columns, k to kþ L Fj
� �

� 1, of X to Dv Fj
� �

, for v ¼ 1; 2; . . . ; L Fj
� �

;

set k ¼ kþ L Fj
� �

;

set done first to true;

else

set the L Fj
� �

� 1 columns, k to kþ L Fj
� �

� 2, of X to Dv Fj
� �

, for v ¼ 2; 3; . . . ; L Fj
� �

;

set k ¼ kþ L Fj
� �

� 1.

The number of columns in the design matrix, X, is therefore given by

p ¼ 1þ
XNF

j¼1
LEVELSðFIXEDð2þ jÞÞ � 1ð Þ:

This quantity is returned in NFF.

In summary, G02JCF converts all non-binary categorical variables (i.e., where L Fj
� �

> 1) to dummy
variables. If a fixed intercept is included in the model then the first level of all such variables is
dropped. If a fixed intercept is not included in the model then the first level of all such variables, other
than the first, is dropped. The variables are added into the model in the order they are specified in
FIXED.

9.2 Construction of random effects design matrix, Z

Let

NRb
denote the number of random variables in the bth random statement, that is NRb

¼ RNDMð1; bÞ;
Rjb denote the jth random variable from the bth random statement, that is the vector of values held in
the kth column of DAT when RNDMð2þ j; bÞ ¼ k;
Rijb denote the ith element of Rjb;

L Rjb

� �
denote the number of levels for Rjb, that is L Rjb

� �
¼ LEVELSðRNDMð2þ j; bÞÞ;

Dv Rjb

� �
denoted an indicator function that returns a vector of values whose ith element is 1 if

Rijb ¼ v and 0 otherwise;

NSb denote the number of subject variables in the bth random statement, that is
NSb ¼ RNDMð3þNRb

; bÞ;
Sjb denote the jth subject variable from the bth random statement, that is the vector of values held in
the kth column of DAT when RNDMð3þNRb

þ j; bÞ ¼ k;
Sijb denote the ith element of Sjb;

L Sjb
� �

denote the number of levels for Sjb, that is L Sjb
� �

¼ LEVELSðRNDMð3þNRb
þ j; bÞÞ;

Ib s1; s2; . . . ; sNSb

� �
denoted an indicator function that returns a vector of values whose ith element is

1 if Sijb ¼ sj for all j ¼ 1; 2; . . . ; NSb and 0 otherwise.

The design matrix for the random effects, Z, is constructed as follows:
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set k to one;

loop over each random statement, so for each b ¼ 1; 2; . . . ;NRNDM,

loop over each level of the last subject variable, so for each sNSb
¼ 1; 2; . . . ; L RNSb

b

� �
,

..

.

loop over each level of the second subject variable, so for each s2 ¼ 1; 2; . . . ; L R2bð Þ,
loop over each level of the first subject variable, so for each s1 ¼ 1; 2; . . . ; L R1bð Þ,

if a random intercept is included, that is RNDMð2; bÞ ¼ 1,

set the kth column of Z to Ib s1; s2; . . . ; sNSb

� �
;

set k ¼ kþ 1;

loop over each random variable in the bth random statement, so for each
j ¼ 1; 2; . . . ; NRb

,

if L Rjb

� �
¼ 1,

set the kth column of Z to Rjb � Ib s1; s2; . . . ; sNSb

� �
where � indicates an

element-wise multiplication between the two vectors, Rjb and Ib . . .ð Þ;
set k ¼ kþ 1;

else

set the L Rbj

� �
columns, k to kþ L Rbj

� �
, of Z to Dv Rjb

� �
� Ib s1; s2; . . . ; sNSb

� �
,

for v ¼ 1; 2; . . . ; L Rjb

� �
. As before, � indicates an element-wise multiplication

between the two vectors, Dv . . .ð Þ and Ib . . .ð Þ;

set k ¼ kþ L Rjb

� �
.

In summary, each column of RNDM defines a block of consecutive columns in Z. G02JCF converts all
non-binary categorical variables (i.e., where L Rjb

� �
or L Sjb

� �
> 1) to dummy variables. All random

variables defined within a column of RNDM are nested within all subject variables defined in the same
column of RNDM. In addition each of the subject variables are nested within each other, starting with
the first (i.e., each of the Rjb; j ¼ 1; 2; . . . ; NRb

are nested within S1b which in turn is nested within S2b,
which in turn is nested within S3b, etc.).

If the last subject variable in each column of RNDM are the same (i.e., SNS1
1 ¼ SNS2

2 ¼ . . . ¼ SNSb
b)

then all random effects in the model are nested within this variable. In such instances the last subject
variable (SNS1

1) is called the overall subject variable. The fact that all of the random effects in the

model are nested within the overall subject variable means that ZTZ is block diagonal in structure. This
fact can be utilised to improve the efficiency of the underlying computation and reduce the amount of
internal storage required. The number of levels in the overall subject variable is returned in

NLSV ¼ L SNS1
1

� �
.

If the last k subject variables in each column of RNDM are the same, for k > 1 then the overall subject
variable is defined as the interaction of these k variables and

NLSV ¼
YNS1

j¼NS1
�kþ1

L Sj1
� �

:

If there is no overall subject variable then NLSV ¼ 1.

The number of columns in the design matrix Z is given by q ¼ NRF� NLSV.
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9.3 The RNDM argument

To illustrate some additional points about the RNDM argument, we assume that we have a dataset with
three discrete variables, V1, V2 and V3, with 2; 4 and 3 levels respectively, and that V1 is in the first
column of DAT, V2 in the second and V3 the third. Also assume that we wish to fit a model containing
V1 along with V2 nested within V3, as random effects. In order to do this the RNDM matrix requires two
columns:

RNDM ¼

1 1
0 0
1 2
0 1
0 3

0BBB@
1CCCA

The first column, 1; 0; 1; 0; 0ð Þ, indicates one random variable (RNDMð1; 1Þ ¼ 1), no intercept
(RNDMð2; 1Þ ¼ 0), the random variable is in the first column of DAT (RNDMð3; 1Þ ¼ 1), there are
no subject variables; as no nesting is required for V1 (RNDMð4; 1Þ ¼ 0). The last element in this
column is ignored.

The second column, 1; 0; 2; 1; 3ð Þ, indicates one random variable (RNDMð1; 2Þ ¼ 1), no intercept
(RNDMð2; 2Þ ¼ 0), the random variable is in the second column of DAT RNDMð3; 2Þ ¼ 2ð Þ, there is
one subject variable (RNDMð4; 2Þ ¼ 1), and the subject variable is in the third column of DAT
RNDMð5; 2Þ ¼ 3ð Þ.
The corresponding Z matrix would have 14 columns, with 2 coming from V1 and 12 (4� 3) from V2
nested within V3. The, symmetric, ZTZ matrix has the form

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � 0 0 0 0 0 0 0 0
� � � � � � 0 0 0 0 0 0 0 0
� � � � � � 0 0 0 0 0 0 0 0
� � � � � � 0 0 0 0 0 0 0 0
� � 0 0 0 0 � � � � 0 0 0 0
� � 0 0 0 0 � � � � 0 0 0 0
� � 0 0 0 0 � � � � 0 0 0 0
� � 0 0 0 0 � � � � 0 0 0 0
� � 0 0 0 0 0 0 0 0 � � � �
� � 0 0 0 0 0 0 0 0 � � � �
� � 0 0 0 0 0 0 0 0 � � � �
� � 0 0 0 0 0 0 0 0 � � � �

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA
where 0 indicates a structural zero, i.e., it always takes the value 0, irrespective of the data, and � a
value that is not a structural zero. The first two rows and columns of ZTZ correspond to V1. The block
diagonal matrix in the 12 rows and columns in the bottom right correspond to V2 nested within V3. With
the 4� 4 blocks corresponding to the levels of V2. There are three blocks as the subject variable (V3)
has three levels.

The model fitting routines, G02JDF and G02JEF, use the sweep algorithm to calculate the log-
likelihood function for a given set of variance components. This algorithm consists of moving down the
diagonal elements (called pivots) of a matrix which is similar in structure to ZTZ, and updating each
element in that matrix. When using the k diagonal element of a matrix A, an element aij; i 6¼ k; j 6¼ k, is
adjusted by an amount equal to aikaij=akk. This process can be referred to as sweeping on the kth pivot.
As there are no structural zeros in the first row or column of the above ZTZ, sweeping on the first pivot
of ZTZ would alter each element of the matrix and therefore destroy the structural zeros, i.e., we could
no longer guarantee they would be zero.
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Reordering the RNDM matrix to

RNDM ¼

1 1
0 0
2 1
1 0
3 0

0BBB@
1CCCA

i.e., the swapping the two columns, results in a ZTZ matrix of the form

� � � � 0 0 0 0 0 0 0 0 � �
� � � � 0 0 0 0 0 0 0 0 � �
� � � � 0 0 0 0 0 0 0 0 � �
� � � � 0 0 0 0 0 0 0 0 � �
0 0 0 0 � � � � 0 0 0 0 � �
0 0 0 0 � � � � 0 0 0 0 � �
0 0 0 0 � � � � 0 0 0 0 � �
0 0 0 0 � � � � 0 0 0 0 � �
0 0 0 0 0 0 0 0 � � � � � �
0 0 0 0 0 0 0 0 � � � � � �
0 0 0 0 0 0 0 0 � � � � � �
0 0 0 0 0 0 0 0 � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA
This matrix is identical to the previous one, except the first two rows and columns have become the last
two rows and columns. Sweeping a matrix, A ¼ aij

� 
, of this form on the first pivot will only affect

those elements aij, where ai1 6¼ 0 and a1j 6¼ 0, which is only the 13th and 14th row and columns, and
the top left hand block of 4 rows and columns. The block diagonal nature of the first 12 rows and
columns therefore greatly reduces the amount of work the algorithm needs to perform.

G02JCF constructs the ZTZ as specified by the RNDM matrix, and does not attempt to reorder it to
improve performance. Therefore for best performance some thought is required on what ordering to use.
In general it is more efficient to structure RNDM in such a way that the first row relates to the deepest
level of nesting, the second to the next level, etc..

10 Example

See Section 10 in G02JDF and G02JEF.
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NAG Library Routine Document

G02JDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02JDF fits a multi-level linear mixed effects regression model using restricted maximum likelihood
(REML). Prior to calling G02JDF the initialization routine G02JCF must be called.

2 Specification

SUBROUTINE G02JDF (LVPR, VPR, NVPR, GAMMA, EFFN, RNKX, NCOV, LNLIKE, LB,
ID, LDID, B, SE, CZZ, LDCZZ, CXX, LDCXX, CXZ, LDCXZ,
RCOMM, ICOMM, IOPT, LIOPT, ROPT, LROPT, IFAIL)

&
&

INTEGER LVPR, VPR(LVPR), NVPR, EFFN, RNKX, NCOV, LB,
ID(LDID,LB), LDID, LDCZZ, LDCXX, LDCXZ, ICOMM(*),
IOPT(LIOPT), LIOPT, LROPT, IFAIL

&
&

REAL (KIND=nag_wp) GAMMA(NVPR+1), LNLIKE, B(LB), SE(LB), CZZ(LDCZZ,*),
CXX(LDCXX,*), CXZ(LDCXZ,*), RCOMM(*), ROPT(LROPT)

&

3 Description

G02JDF fits a model of the form:

y ¼ X� þ Z� þ �
where y is a vector of n observations on the dependent variable,

X is a known n by p design matrix for the fixed independent variables,

� is a vector of length p of unknown fixed effects,

Z is a known n by q design matrix for the random independent variables,

� is a vector of length q of unknown random effects,

and � is a vector of length n of unknown random errors.

Both � and � are assumed to have a Gaussian distribution with expectation zero and variance/covariance
matrix defined by

Var �
�

� �
¼ G 0

0 R

� �
where R ¼ �2RI, I is the n� n identity matrix and G is a diagonal matrix. It is assumed that the
random variables, Z, can be subdivided into g � q groups with each group being identically distributed
with expectation zero and variance �2i . The diagonal elements of matrix G therefore take one of the
values �2i : i ¼ 1; 2; . . . ; g

� 
, depending on which group the associated random variable belongs to.

The model therefore contains three sets of unknowns: the fixed effects �, the random effects � and a

vector of gþ 1 variance components �, where � ¼ �21; �
2
2; . . . ; �

2
g�1; �

2
g; �

2
R

n o
. Rather than working

d i r e c t l y w i t h �, G 0 2 J D F u s e s a n i t e r a t i v e p r o c e s s t o e s t i m a t e

�� ¼ �21=�
2
R; �

2
2=�

2
R; . . . ; �

2
g�1=�

2
R; �

2
g=�

2
R; 1

n o
. Due to the iterative nature of the estimation a set of

initial values, �0, for �� is required. G02JDF allows these initial values either to be supplied by you or
calculated from the data using the minimum variance quadratic unbiased estimators (MIVQUE0)
suggested by Rao (1972).
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G02JDF fits the model by maximizing the restricted log-likelihood function:

�2lR ¼ log Vj jð Þ þ n� pð Þlog rTV �1r
� �

þ log XTV �1X
		 		þ n� pð Þ 1þ log 2	= n� pð Þð Þð Þ

where

V ¼ ZGZT þR; r ¼ y�Xb and b ¼ XTV �1X
� ��1

XTV �1y:

Once the final estimates for �� have been obtained, the value of �2R is given by

�2R ¼ rTV �1r
� �

= n� pð Þ:

Case weights, Wc, can be incorporated into the model by replacing XTX and ZTZ with XTWcX and
ZTWcZ respectively, for a diagonal weight matrix Wc.

The log-likelihood, lR, is calculated using the sweep algorithm detailed in Wolfinger et al. (1994).

4 References

Goodnight J H (1979) A tutorial on the SWEEP operator The American Statistician 33(3) 149–158

Harville D A (1977) Maximum likelihood approaches to variance component estimation and to related
problems JASA 72 320–340

Rao C R (1972) Estimation of variance and covariance components in a linear model J. Am. Stat.
Assoc. 67 112–115

Stroup W W (1989) Predictable functions and prediction space in the mixed model procedure
Applications of Mixed Models in Agriculture and Related Disciplines Southern Cooperative Series
Bulletin No. 343 39–48

Wolfinger R, Tobias R and Sall J (1994) Computing Gaussian likelihoods and their derivatives for
general linear mixed models SIAM Sci. Statist. Comput. 15 1294–1310

5 Arguments

Note: prior to calling G02JDF the initialization routine G02JCF must be called, therefore this
documention should be read in conjunction with the document for G02JCF.

In particular some argument names and conventions described in that document are also relevant here,
but their definition has not been repeated. Specifically, RNDM, WEIGHT, N, NFF, NRF, NLSV,
LEVELS, FIXED, DAT, LICOMM and LRCOMM should be interpreted identically in both routines.

1: LVPR – INTEGER Input

On entry: the sum of the number of random parameters and the random intercept flags specified
in the call to G02JCF.

Constraint: LVPR ¼
P

iRNDM 1; ið Þ þ RNDM 2; ið Þ.

2: VPRðLVPRÞ – INTEGER array Input

On entry: a vector of flags indicating the mapping between the random variables specified in
RNDM and the variance components, �2i . See Section 9 for more details.

Constraint: 1 � VPRðiÞ � NVPR, for i ¼ 1; 2; . . . ;LVPR.

3: NVPR – INTEGER Input

On entry: g, the number of variance components being estimated (excluding the overall variance,
�2R).

Constraint: 1 � NVPR � LVPR.
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4: GAMMAðNVPR þ 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: holds the initial values of the variance components, �0, with GAMMAðiÞ the initial
value for �2i =�

2
R, for i ¼ 1; 2; . . . ;NVPR.

If GAMMAð1Þ ¼ �1:0, the remaining elements of GAMMA are ignored and the initial values
for the variance components are estimated from the data using MIVQUE0.

On exit: GAMMAðiÞ, for i ¼ 1; 2; . . . ;NVPR, holds the final estimate of �2i and
GAMMAðNVPR þ 1Þ holds the final estimate for �2R.

Constraint: GAMMAð1Þ ¼ �1:0 or GAMMAðiÞ � 0:0, for i ¼ 1; 2; . . . ; g.

5: EFFN – INTEGER Output

On exit: effective number of observations. If there are no weights (i.e., WEIGHT ¼ U ), or all
weights are nonzero, then EFFN ¼ N.

6: RNKX – INTEGER Output

On exit: the rank of the design matrix, X, for the fixed effects.

7: NCOV – INTEGER Output

On exit: number of variance components not estimated to be zero. If none of the variance
components are estimated to be zero, then NCOV ¼ NVPR.

8: LNLIKE – REAL (KIND=nag_wp) Output

On exit: �2lR �̂ð Þ where lR is the log of the restricted maximum likelihood calculated at �̂, the
estimated variance components returned in GAMMA.

9: LB – INTEGER Input

On entry: the dimension of the arrays B and SE and the second dimension of the array ID as
declared in the (sub)program from which G02JDF is called.

Constraint: LB � NFFþ NRF� NLSV.

10: IDðLDID;LBÞ – INTEGER array Output

On exit: an array describing the parameter estimates returned in B. The first NLSV� NRF
columns of ID describe the parameter estimates for the random effects and the last NFF columns
the parameter estimates for the fixed effects.

The example program for this routine includes a demonstration of decoding the parameter
estimates given in B using information from ID.

For fixed effects:

for l ¼ NRF� NLSVþ 1; . . . ;NRF� NLSVþ NFF

if BðlÞ contains the parameter estimate for the intercept then

IDð1; lÞ ¼ IDð2; lÞ ¼ IDð3; lÞ ¼ 0;

if BðlÞ contains the parameter estimate for the ith level of the jth fixed variable, that is the
vector of values held in the kth column of DAT when FIXEDðjþ 2Þ ¼ k then

IDð1; lÞ ¼ 0;
IDð2; lÞ ¼ j;
IDð3; lÞ ¼ i;

if the jth variable is continuous or binary, that is LEVELSðFIXEDðjþ 2ÞÞ ¼ 1, then
IDð3; lÞ ¼ 0;

any remaining rows of the lth column of ID are set to 0.
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For random effects:

let

NRb
denote the number of random variables in the bth random statement, that is

NRb
¼ RNDM 1; bð Þ;

Rjb denote the jth random variable from the bth random statement, that is the vector of
values held in the kth column of DAT when RNDM 2þ j; bð Þ ¼ k;
NSb denote the number of subject variables in the bth random statement, that is
NSb ¼ RNDM 3þNRb

; bð Þ;
Sjb denote the jth subject variable from the bth random statement, that is the vector of
values held in the kth column of DAT when RNDM 3þNRb

þ j; bð Þ ¼ k;

L Sjb
� �

d e n o t e t h e n u m b e r o f l e v e l s f o r Sjb, t h a t i s
L Sjb
� �

¼ LEVELSðRNDM 3þNRb
þ j; bð ÞÞ;

then

for l ¼ 1; 2; . . .NRF� NLSV, if BðlÞ contains the parameter estimate for the ith level of Rjb

when Skb ¼ sk , for k ¼ 1; 2; . . . ; NSb and 1 � sk � L Sjb
� �

, i.e., sk is a valid value for the kth
subject variable, then

IDð1; lÞ ¼ b;
IDð2; lÞ ¼ j;
IDð3; lÞ ¼ i;
IDð3þ k; lÞ ¼ sk; k ¼ 1; 2; . . . ; NSb ;

if the parameter being estimated is for the intercept then IDð2; lÞ ¼ IDð3; lÞ ¼ 0;

if the jth variable is continuous, or binary, that is L Sjb
� �

¼ 1, then IDð3; lÞ ¼ 0;

the remaining rows of the lth column of ID are set to 0.

In some situations, certain combinations of variables are never observed. In such circumstances
all elements of the lth row of ID are set to �999.

11: LDID – INTEGER Input

On entry: the first dimension of the array ID as declared in the (sub)program from which
G02JDF is called.

Constraint: LDID � 3þmax
j

RNDM 3þ RNDM 1; jð Þ; jð Þð Þ, i.e., 3þ maximum number of

subject variables (see G02JCF).

12: BðLBÞ – REAL (KIND=nag_wp) array Output

On exit: the parameter estimates, with the first NRF� NLSV elements of B containing the
parameter estimates for the random effects, �, and the remaining NFF elements containing the
parameter estimates for the fixed effects, �. The order of these estimates are described by the ID
argument.

13: SEðLBÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors of the parameter estimates given in B.

14: CZZðLDCZZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CZZ must be at least NRF� NLSV (see G02JCF).

On exit: if NLSV ¼ 1, then CZZ holds the lower triangular portion of the matrix

1=�2
� �

ZTR̂�1Z þ Ĝ�1
� �

, where R̂ and Ĝ are the estimates of R and G respectively. If

NLSV > 1 then CZZ holds this matrix in compressed form, with the first NRF columns holding
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the part of the matrix corresponding to the first level of the overall subject variable, the next NRF
columns the part corresponding to the second level of the overall subject variable etc.

15: LDCZZ – INTEGER Input

On entry: the first dimension of the array CZZ as declared in the (sub)program from which
G02JDF is called.

Constraint: LDCZZ � NRF.

16: CXXðLDCXX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CXX must be at least NFF (see G02JCF).

On exit: CXX holds the lower triangular portion of the matrix 1=�2
� �

XTV̂ �1X, where V̂ is the
estimated value of V .

17: LDCXX – INTEGER Input

On entry: the first dimension of the array CXX as declared in the (sub)program from which
G02JDF is called.

Constraint: LDCXX � NFF.

18: CXZðLDCXZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CXZ must be at least NLSV� NRF (see G02JCF).

On exit: if NLSV ¼ 1, then CXZ holds the matrix 1=�2
� �

XTV̂ �1Z
� �

Ĝ, where V̂ and Ĝ are the
estimates of V and G respectively. If NLSV > 1 then CXZ holds this matrix in compressed form,
with the first NRF columns holding the part of the matrix corresponding to the first level of the
overall subject variable, the next NRF columns the part corresponding to the second level of the
overall subject variable etc.

19: LDCXZ – INTEGER Input

On entry: the first dimension of the array CXZ as declared in the (sub)program from which
G02JDF is called.

Constraint: LDCXZ � NFF.

20: RCOMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RCOMM must be at least LRCOMM (see G02JCF).

On entry: communication array initialized by a call to G02JCF.

21: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least LICOMM (see G02JCF).

On entry: communication array initialized by a call to G02JCF.

22: IOPTðLIOPTÞ – INTEGER array Input

On entry: optional parameters passed to the optimization routine.

By default G02JDF fits the specified model using a modified Newton optimization algorithm as
implemented in E04LBF. In some cases, where the calculation of the derivatives is
computationally expensive it may be more efficient to use a sequential QP algorithm. The
sequential QP algorithm as implemented in E04UCA can be chosen by setting IOPTð5Þ ¼ 1. If
LIOPT < 5 or IOPTð5Þ 6¼ 1 then E04LBF will be used.

Different optional parameters are available depending on the optimization routine used. In all
cases, using a value of �1 will cause the default value to be used. In addition only the first
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LIOPT values of IOPT are used, so for example, if only the first element of IOPT needs changing
and default values for all other optional parameters are sufficient LIOPT can be set to 1.

E04LBF is being used.

i Description

Equivalent
E04LBF
argument Default Value

1 Number of iterations MAXCAL 1000
2 Unit number for monitoring information n/a As returned by X04ABF
3 Print optional parameters (1 ¼ print) n/a �1 (no printing performed)
4 Frequency that monitoring information is printed IPRINT �1
5 Optimizer used n/a n/a

If requested, monitoring information is displayed in a similar format to that given by E04LBF.

E04UCA is being used.

i Description

Equivalent
E04UCA
argument Default Value

1 Number of iterations Major Iteration Limit max 50; 3� NVPRð Þ
2 Unit number for monitoring information n/a As returned by X04ABF
3 Print optional parameters (1 ¼ print, otherwise no

print)
List/Nolist �1 (no printing performed)

4 Frequency that monitoring information is printed Major Print Level 0
5 Optimizer used n/a n/a
6 Number of minor iterations Minor Iteration Limit max 50; 3� NVPRð Þ
7 Frequency that additional monitoring information is

printed
Minor Print Level 0

If LIOPT � 0 then default values are used for all optional parameters and IOPT is not referenced.

23: LIOPT – INTEGER Input

On entry: length of the options array IOPT.

24: ROPTðLROPTÞ – REAL (KIND=nag_wp) array Input

On entry: optional parameters passed to the optimization routine.

Different optional parameters are available depending on the optimization routine used. In all
cases, using a value of �1:0 will cause the default value to be used. In addition only the first
LROPT values of ROPT are used, so for example, if only the first element of ROPT needs
changing and default values for all other optional parameters are sufficient LROPT can be set to
1.

E04LBF is being used.

i Description

Equivalent
E04LBF
argument Default Value

1 Sweep tolerance n/a
max

ffiffiffiffiffiffiffi
eps
p

;
ffiffiffiffiffiffiffi
eps
p �max

i
zziið Þ

� �
2 Lower bound for �� n/a eps=100
3 Upper bound for �� n/a 1020

4 Accuracy of linear minimizations ETA 0:9
5 Accuracy to which solution is required XTOL 0:0
6 Initial distance from solution STEPMX 100000:0

E04UCA is being used.
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i Description

Equivalent
E04UCA
argument Default Value

1 Sweep tolerance n/a
max

ffiffiffiffiffiffiffi
eps
p

;
ffiffiffiffiffiffiffi
eps
p �max

i
zziið Þ

� �
2 Lower bound for �� n/a eps=100
3 Upper bound for �� n/a 1020

4 Line search tolerance Line Search Tolerance 0:9
5 Optimality tolerance Optimality Tolerance eps0:72

where eps is the machine precision returned by X02AJF and zzii denotes the i diagonal element
of ZTZ.

If LROPT � 0 then default values are used for all optional parameters and ROPT is not
referenced.

25: LROPT – INTEGER Input

On entry: length of the options array ROPT.

26: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LVPR ¼ valueh i.
Constraint: LVPR � valueh i.

IFAIL ¼ 2

On entry, VPRð valueh iÞ ¼ valueh i and NVPR ¼ valueh i.
Constraint: 1 � VPRðiÞ � NVPR.

IFAIL ¼ 3

On entry, NVPR ¼ valueh i.
Constraint: 1 � NVPR � valueh i.

IFAIL ¼ 4

On entry, GAMMAð valueh iÞ ¼ valueh i.
Constraint: GAMMAð1Þ ¼ �1:0 or GAMMAðiÞ � 0:0.
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IFAIL ¼ 9

On entry, LB ¼ valueh i.
Constraint: LB � valueh i.

IFAIL ¼ 11

On entry, LDID ¼ valueh i.
Constraint: LDID � valueh i.

IFAIL ¼ 15

On entry, LDCZZ ¼ valueh i.
Constraint: LDCZZ � valueh i.

IFAIL ¼ 17

On entry, LDCXX ¼ valueh i.
Constraint: LDCXX � valueh i.

IFAIL ¼ 19

On entry, LDCXZ ¼ valueh i.
Constraint: LDCXZ � valueh i.

IFAIL ¼ 21

On entry, ICOMM has not been initialized correctly.

IFAIL ¼ 32

On entry, at least one value of i, for i ¼ 1; 2; . . . ;NVPR, does not appear in VPR.

IFAIL ¼ 101

Optimal solution found, but requested accuracy not achieved.

IFAIL ¼ 102

Too many major iterations.

IFAIL ¼ 103

Current point cannot be improved upon.

IFAIL ¼ 104

At least one negative estimate for GAMMA was obtained. All negative estimates have been set to
zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

G02JDF NAG Library Manual

G02JDF.8 Mark 26



7 Accuracy

Not applicable.

8 Parallelism and Performance

G02JDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02JDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The argument VPR gives the mapping between the random variables and the variance components. In
most cases VPRðiÞ ¼ i, for i ¼ 1; 2; . . . ;

P
iRNDM 1; ið Þ þ RNDM 2; ið Þ. However, in some cases it

might be necessary to associate more than one random variable with a single variance component, for
example, when the columns of DAT hold dummy variables.

Consider a dataset with three variables:

DAT ¼

1 1 3:6
2 1 4:5
3 1 1:1
1 2 8:3
2 2 7:2
3 2 6:1

0BBBBB@

1CCCCCA
where the first column corresponds to a categorical variable with three levels, the next to a categorical
variable with two levels and the last column to a continuous variable. So in a call to G02JCF

LEVELS ¼ 3 2 1
� �

also assume a model with no fixed effects, no random intercept, no nesting and all three variables being
included as random effects, then

FIXED ¼ 0 0
� �

;

RNDM ¼ 3 0 1 2 3
� �T

:

Each of the three columns in DAT therefore correspond to a single variable and hence there are three
variance components, one for each random variable included in the model, so

VPR ¼ 1 2 3
� �

:

This is the recommended way of supplying the data to G02JDF, however it is possible to reformat the
above dataset by replacing each of the categorical variables with a series of dummy variables, one for
each level. The dataset then becomes

DAT ¼

1 0 0 1 0 3:6
0 1 0 1 0 4:5
0 0 1 1 0 1:1
1 0 0 0 1 8:3
0 1 0 0 1 7:2
0 0 1 0 1 6:1

0BBBBB@

1CCCCCA
where each column only has one level

LEVELS ¼ 1 1 1 1 1 1
� �

:
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Again a model with no fixed effects, no random intercept, no nesting and all variables being included as
random effects is required, so

FIXED ¼ 0 0
� �

;

RNDM ¼ 6 0 1 2 3 4 5 6
� �T

:

With the data entered in this manner, the first three columns of DAT correspond to a single variable (the
first column of the original dataset) as do the next two columns (the second column of the original
dataset). Therefore VPR must reflect this

VPR ¼ 1 1 1 2 2 3
� �

:

In most situations it is more efficient to supply the data to G02JCF in terms of categorical variables
rather than transform them into dummy variables.

10 Example

This example fits a random effects model with three levels of nesting to a simulated dataset with 90
observations and 12 variables.

10.1 Program Text

! G02JDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g02jdfe_mod

! G02JDF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: print_results

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine print_results(n,nff,nlsv,nrf,fixed,lfixed,nrndm,rndm,ldrndm, &

nvpr,vpr,lvpr,gamma,effn,rnkx,ncov,lnlike,lb,id,ldid,b,se)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: lnlike
Integer, Intent (In) :: effn, lb, ldid, ldrndm, lfixed, &

lvpr, n, ncov, nff, nlsv, nrf, &
nrndm, nvpr, rnkx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: b(lb), gamma(nvpr+1), se(lb)
Integer, Intent (In) :: fixed(lfixed), id(ldid,lb), &

rndm(ldrndm,nrndm), vpr(lvpr)
! .. Local Scalars ..

Integer :: aid, i, k, l, ns, nv, p, pb, tb, &
tdid, vid

Character (120) :: pfmt, tfmt
! .. Executable Statements ..
! Display the output

Write (nout,*) ’Number of observations (N) = ’, n
Write (nout,*) ’Number of random factors (NRF) = ’, nrf
Write (nout,*) ’Number of fixed factors (NFF) = ’, nff
Write (nout,*) ’Number of subject levels (NLSV) = ’, &

nlsv
Write (nout,*) ’Rank of X (RNKX) = ’, &

rnkx
Write (nout,*) ’Effective N (EFFN) = ’, &

effn
Write (nout,*) ’Number of nonzero variance components (NCOV) = ’, ncov
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Write (nout,99990) ’Parameter Estimates’
tdid = nff + nrf*nlsv

If (nrf>0) Then
Write (nout,*)
Write (nout,99990) ’Random Effects’

End If
pb = -999
pfmt = ’ ’
Do k = 1, nrf*nlsv

tb = id(1,k)
If (tb/=-999) Then

vid = id(2,k)
nv = rndm(1,tb)
ns = rndm(3+nv,tb)
Write (tfmt,*)(id(3+l,k),l=1,ns)
If (pb/=tb .Or. tfmt/=pfmt) Then

If (k/=1) Then
Write (nout,*)

End If
Write (nout,99991) ’ Subject: ’, (’Variable ’,rndm(3+nv+l,tb), &

’ (Level ’,id(3+l,k),’)’,l=1,ns)
End If
If (vid==0) Then

! Intercept
Write (nout,99994) b(k), se(k)

Else
! VID’th variable specified in RNDM

aid = rndm(2+vid,tb)
If (id(3,k)==0) Then

Write (nout,99992) aid, b(k), se(k)
Else

Write (nout,99993) aid, id(3,k), b(k), se(k)
End If

End If
pfmt = tfmt

End If
pb = tb

End Do

If (nff>0) Then
Write (nout,*)
Write (nout,99990) ’Fixed Effects’

End If
Do k = nrf*nlsv + 1, tdid

If (vid/=-999) Then
vid = id(2,k)
If (vid==0) Then

! Intercept
Write (nout,99997) b(k), se(k)

Else
! VID’th variable specified in FIXED

aid = fixed(2+vid)
If (id(3,k)==0) Then

Write (nout,99995) aid, b(k), se(k)
Else

Write (nout,99996) aid, id(3,k), b(k), se(k)
End If

End If
End If

End Do

Write (nout,*)
Write (nout,*) ’Variance Components’
Write (nout,*) ’ Estimate Parameter Subject’
Do k = 1, nvpr

Write (nout,99999,Advance=’NO’) gamma(k)
p = 0
Do tb = 1, nrndm

nv = rndm(1,tb)
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ns = rndm(3+nv,tb)
If (rndm(2,tb)==1) Then

p = p + 1
If (vpr(p)==k) Then

Write (nout,99988,Advance=’NO’)(rndm(3+nv+l,tb),l=1,ns)
End If

End If
Do i = 1, nv

p = p + 1
If (vpr(p)==k) Then

Write (nout,99989,Advance=’NO’) rndm(2+i,tb), &
(rndm(3+nv+l,tb),l=1,ns)

End If
End Do

End Do
Write (nout,*)

End Do
Write (nout,*)
Write (nout,99998) ’SIGMA**2 = ’, gamma(nvpr+1)
Write (nout,99998) ’-2LOG LIKELIHOOD = ’, lnlike

Return
99999 Format (1X,F10.5,5X)
99998 Format (1X,A,F15.5)
99997 Format (3X,’Intercept’,20X,F10.4,1X,F10.4)
99996 Format (3X,’Variable ’,I2,’ (Level ’,I2,’)’,7X,F10.4,1X,F10.4)
99995 Format (3X,’Variable ’,I2,18X,F10.4,1X,F10.4)
99994 Format (5X,’Intercept’,18X,F10.4,1X,F10.4)
99993 Format (5X,’Variable ’,I2,’ (Level ’,I2,’)’,5X,F10.4,1X,F10.4)
99992 Format (5X,’Variable ’,I2,16X,F10.4,1X,F10.4)
99991 Format (1X,A,4(A,I2,A,I2,A,1X))
99990 Format (1X,A)
99989 Format (1X,’Variable’,1X,I2,5X,’Variables’,1X,100(I2,1X))
99988 Format (1X,’Intercept’,7X,’Variables’,1X,100(I2,1X))

End Subroutine print_results
End Module g02jdfe_mod
Program g02jdfe

! G02JDF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g02jcf, g02jdf, nag_wp
Use g02jdfe_mod, Only: nin, nout, print_results

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: lnlike
Integer :: effn, i, ifail, j, lb, ldcxx, ldcxz, &

ldczz, lddat, ldid, ldrndm, lfixed, &
licomm, liopt, lrcomm, lropt, lvpr, &
lwt, n, ncol, ncov, nff, nl, nlsv, &
nrf, nrndm, nv, nvpr, nzz, rnkx

Character (1) :: weight
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:), cxx(:,:), cxz(:,:), czz(:,:), &
dat(:,:), gamma(:), rcomm(:), &
ropt(:), se(:), wt(:), y(:)

Integer, Allocatable :: fixed(:), icomm(:), id(:,:), &
iopt(:), levels(:), rndm(:,:), &
vpr(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G02JDF Example Program Results’
Write (nout,*)

! Skip the heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) weight, n, ncol, nrndm, nvpr
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! Set LFIXED and LDRNDM to maximum value they could
! be for this dataset

lfixed = ncol + 2
ldrndm = 3 + 2*ncol

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
lddat = n
Allocate (dat(lddat,ncol),levels(ncol),y(n),wt(lwt),fixed(lfixed), &

rndm(ldrndm,nrndm))

! Read in the number of levels associated with each of the
! independent variables

Read (nin,*) levels(1:ncol)

! Read in the fixed part of the model
Read (nin,*)

! Number of variables
Read (nin,*) fixed(1)
nv = fixed(1)

! Intercept
Read (nin,*) fixed(2)

! Variable IDs
If (nv>0) Then

Read (nin,*) fixed(3:(nv+2))
End If

! Read in the random part of the model
lvpr = 0
Do j = 1, nrndm

! Skip header
Read (nin,*)

! Number of variables and intercept
Read (nin,*) rndm(1,j)
Read (nin,*) rndm(2,j)
nv = rndm(1,j)

! Variable IDs
If (nv>0) Then

Read (nin,*)(rndm(i,j),i=3,nv+2)
End If

! Number of subject variables
Read (nin,*) rndm(nv+3,j)
nl = rndm(nv+3,j)

! Subject variable IDs
If (nl>0) Then

Read (nin,*)(rndm(i,j),i=nv+4,nv+nl+3)
End If
lvpr = lvpr + rndm(2,j) + nv

End Do

! Read in the dependent and independent data
If (lwt>0) Then

Read (nin,*)(y(i),dat(i,1:ncol),wt(i),i=1,n)
Else

Read (nin,*)(y(i),dat(i,1:ncol),i=1,n)
End If

licomm = 2
lrcomm = 0
Allocate (icomm(licomm),rcomm(lrcomm))
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! Call the initialization routine once to get LRCOMM and LICOMM
ifail = 0
Call g02jcf(weight,n,ncol,dat,lddat,levels,y,wt,fixed,lfixed,nrndm,rndm, &

ldrndm,nff,nlsv,nrf,rcomm,lrcomm,icomm,licomm,ifail)

! Reallocate ICOMM and RCOMM
licomm = icomm(1)
lrcomm = icomm(2)
Deallocate (icomm,rcomm)
Allocate (icomm(licomm),rcomm(lrcomm))

! Pre-process the data
ifail = 0
Call g02jcf(weight,n,ncol,dat,lddat,levels,y,wt,fixed,lfixed,nrndm,rndm, &

ldrndm,nff,nlsv,nrf,rcomm,lrcomm,icomm,licomm,ifail)

! Use the default options
liopt = 0
lropt = 0

! Calculate LDID
ldid = 0
Do i = 1, nrndm

nv = rndm(1,i)
ldid = max(rndm(3+nv,i),ldid)

End Do
ldid = ldid + 3

lb = nff + nrf*nlsv
nzz = nrf*nlsv
ldczz = nzz
ldcxx = nff
ldcxz = nff
Allocate (vpr(lvpr),gamma(nvpr+1),id(ldid,lb),b(lb),se(lb), &

czz(ldczz,nzz),cxx(ldcxx,nff),cxz(ldcxz,nzz),iopt(liopt),ropt(lropt))

! Read in VPR
Read (nin,*) vpr(1:lvpr)

! Read in GAMMA
Read (nin,*) gamma(1:nvpr)

! Perform the analysis
ifail = -1
Call g02jdf(lvpr,vpr,nvpr,gamma,effn,rnkx,ncov,lnlike,lb,id,ldid,b,se, &

czz,ldczz,cxx,ldcxx,cxz,ldcxz,rcomm,icomm,iopt,liopt,ropt,lropt,ifail)
If (ifail/=0 .And. ifail<100) Then

Go To 100
End If

! Display results
Call print_results(n,nff,nlsv,nrf,fixed,lfixed,nrndm,rndm,ldrndm,nvpr, &

vpr,lvpr,gamma,effn,rnkx,ncov,lnlike,lb,id,ldid,b,se)

100 Continue

End Program g02jdfe

10.2 Program Data

G02JDF Example Program Data
U 90 12 3 7 :: WEIGHT,N,NCOL,NRNDM,NVPR
2 3 2 3 2 3 1 4 5 2 3 3 :: LEVELS(1:NCOL)
## FIXED
2 :: number of variables
1 :: intercept
1 2 :: variable IDs
## RANDOM 1
2 :: number of variables
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0 :: intercept
3 4 :: variable IDs
3 :: number of subject variables
10 11 12 :: subject variable IDs
## RANDOM 2
2 :: number of variables
0 :: intercept
5 6 :: variable IDs
2 :: number of subject variables
11 12 :: subject variable IDs
## RANDOM 3
3 :: number of variables
0 :: intercept
7 8 9 :: variable IDs
1 :: number of subject variables
12 :: subject variable IDs

3.1100 1.0 3.0 2.0 1.0 2.0 2.0 -0.3160 4.0 2.0 1.0 1.0 1.0
2.8226 1.0 1.0 1.0 3.0 1.0 2.0 -1.3377 1.0 4.0 1.0 1.0 1.0
7.4543 1.0 3.0 1.0 3.0 1.0 3.0 -0.7610 4.0 2.0 1.0 1.0 1.0
4.4313 2.0 3.0 2.0 1.0 1.0 3.0 -2.2976 4.0 2.0 1.0 1.0 1.0
6.1543 2.0 2.0 1.0 3.0 2.0 3.0 -0.4263 2.0 1.0 1.0 1.0 1.0

-0.1783 2.0 1.0 2.0 3.0 1.0 3.0 1.4067 3.0 3.0 2.0 1.0 1.0
4.6748 2.0 3.0 2.0 1.0 2.0 1.0 -1.4669 1.0 2.0 2.0 1.0 1.0
7.0667 1.0 1.0 1.0 3.0 2.0 3.0 0.4717 2.0 4.0 2.0 1.0 1.0
1.4262 1.0 3.0 2.0 3.0 2.0 1.0 0.4436 1.0 3.0 2.0 1.0 1.0
7.7290 1.0 1.0 1.0 2.0 2.0 3.0 -0.5950 3.0 4.0 2.0 1.0 1.0

-2.1806 1.0 3.0 1.0 3.0 1.0 1.0 -1.7981 4.0 2.0 1.0 2.0 1.0
6.8419 2.0 3.0 1.0 2.0 1.0 1.0 0.2397 1.0 4.0 1.0 2.0 1.0
1.2590 1.0 2.0 2.0 1.0 2.0 3.0 0.4742 1.0 1.0 1.0 2.0 1.0
8.8405 2.0 2.0 2.0 2.0 2.0 3.0 0.6888 3.0 1.0 1.0 2.0 1.0
6.1657 2.0 1.0 2.0 3.0 1.0 3.0 -1.0616 3.0 5.0 1.0 2.0 1.0

-4.5605 1.0 2.0 2.0 2.0 2.0 1.0 -0.5356 1.0 3.0 2.0 2.0 1.0
-1.2367 1.0 3.0 2.0 2.0 1.0 1.0 -1.2963 2.0 5.0 2.0 2.0 1.0

-12.2932 1.0 2.0 2.0 1.0 2.0 2.0 -1.5389 3.0 2.0 2.0 2.0 1.0
-2.3374 2.0 3.0 1.0 1.0 2.0 2.0 -0.6408 2.0 1.0 2.0 2.0 1.0
0.0716 1.0 2.0 2.0 2.0 1.0 1.0 0.6574 1.0 1.0 2.0 2.0 1.0
0.1895 2.0 1.0 1.0 1.0 1.0 3.0 0.9259 1.0 2.0 1.0 3.0 1.0
1.5608 2.0 2.0 2.0 1.0 2.0 2.0 1.5080 3.0 1.0 1.0 3.0 1.0

-0.8529 2.0 3.0 1.0 1.0 1.0 3.0 2.5821 2.0 3.0 1.0 3.0 1.0
-4.1169 1.0 2.0 2.0 1.0 2.0 3.0 0.4102 1.0 4.0 1.0 3.0 1.0
3.9977 2.0 1.0 2.0 3.0 2.0 2.0 0.7839 2.0 5.0 1.0 3.0 1.0

-8.1277 1.0 2.0 2.0 3.0 2.0 1.0 -1.8812 4.0 2.0 2.0 3.0 1.0
-4.9656 1.0 2.0 1.0 3.0 2.0 3.0 0.7770 4.0 1.0 2.0 3.0 1.0
-0.6428 2.0 2.0 1.0 2.0 1.0 3.0 0.2590 3.0 1.0 2.0 3.0 1.0
-5.5152 2.0 3.0 2.0 2.0 2.0 3.0 -0.9250 3.0 3.0 2.0 3.0 1.0
-5.5657 2.0 2.0 1.0 3.0 2.0 3.0 -0.4831 1.0 5.0 2.0 3.0 1.0
14.8177 2.0 2.0 1.0 3.0 1.0 3.0 0.5046 3.0 3.0 1.0 1.0 2.0
16.9783 2.0 1.0 1.0 2.0 2.0 1.0 -0.6903 2.0 1.0 1.0 1.0 2.0
13.8966 1.0 3.0 2.0 2.0 2.0 1.0 1.6166 2.0 5.0 1.0 1.0 2.0
14.8166 2.0 2.0 2.0 2.0 1.0 3.0 0.2778 2.0 3.0 1.0 1.0 2.0
19.3640 2.0 3.0 2.0 2.0 1.0 2.0 1.9586 4.0 2.0 1.0 1.0 2.0
9.5299 1.0 3.0 1.0 1.0 1.0 3.0 1.0506 2.0 5.0 2.0 1.0 2.0

12.0102 2.0 1.0 1.0 3.0 2.0 3.0 0.4871 1.0 1.0 2.0 1.0 2.0
6.1551 2.0 1.0 2.0 3.0 2.0 1.0 2.0891 4.0 4.0 2.0 1.0 2.0

-1.7048 1.0 2.0 1.0 1.0 2.0 2.0 1.4338 4.0 3.0 2.0 1.0 2.0
2.7640 1.0 1.0 2.0 3.0 1.0 2.0 -1.1196 3.0 4.0 2.0 1.0 2.0
2.8065 1.0 3.0 1.0 1.0 2.0 1.0 0.3367 3.0 2.0 1.0 2.0 2.0
0.0974 2.0 2.0 1.0 3.0 1.0 1.0 0.1092 2.0 2.0 1.0 2.0 2.0

-7.8080 1.0 1.0 1.0 2.0 2.0 2.0 0.4007 4.0 1.0 1.0 2.0 2.0
-18.0450 2.0 3.0 1.0 1.0 1.0 2.0 0.1460 3.0 5.0 1.0 2.0 2.0
-2.8199 2.0 1.0 2.0 3.0 1.0 3.0 -0.3877 3.0 4.0 1.0 2.0 2.0
8.9893 1.0 1.0 1.0 2.0 2.0 1.0 0.6957 4.0 3.0 2.0 2.0 2.0
3.7978 2.0 1.0 1.0 1.0 2.0 1.0 -0.4664 3.0 3.0 2.0 2.0 2.0

-6.3493 1.0 1.0 1.0 1.0 2.0 3.0 0.2067 2.0 4.0 2.0 2.0 2.0
8.1411 2.0 1.0 2.0 1.0 1.0 2.0 0.4112 1.0 4.0 2.0 2.0 2.0

-7.5483 2.0 2.0 1.0 1.0 1.0 2.0 -1.3734 3.0 3.0 2.0 2.0 2.0
-0.4600 2.0 1.0 2.0 3.0 1.0 3.0 0.7065 1.0 3.0 1.0 3.0 2.0
-3.2135 1.0 2.0 2.0 2.0 1.0 2.0 1.3628 4.0 2.0 1.0 3.0 2.0
-6.6562 2.0 1.0 2.0 2.0 2.0 3.0 -0.5052 4.0 5.0 1.0 3.0 2.0
5.1267 2.0 1.0 1.0 1.0 2.0 1.0 -1.3457 2.0 5.0 1.0 3.0 2.0
3.5592 1.0 1.0 2.0 1.0 2.0 3.0 -1.8022 3.0 4.0 1.0 3.0 2.0
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-4.4420 2.0 3.0 1.0 2.0 1.0 1.0 0.0116 2.0 4.0 2.0 3.0 2.0
-8.5965 2.0 2.0 1.0 3.0 2.0 3.0 -0.9075 1.0 3.0 2.0 3.0 2.0
-6.3187 2.0 2.0 2.0 2.0 2.0 3.0 -1.4707 1.0 1.0 2.0 3.0 2.0
-7.8953 2.0 2.0 1.0 1.0 2.0 1.0 -1.2938 2.0 3.0 2.0 3.0 2.0

-10.1383 1.0 3.0 1.0 3.0 2.0 2.0 -1.1660 4.0 4.0 2.0 3.0 2.0
-7.8850 1.0 2.0 1.0 1.0 2.0 3.0 0.0397 4.0 4.0 1.0 1.0 3.0
23.2001 1.0 3.0 1.0 2.0 1.0 3.0 -0.5987 3.0 2.0 1.0 1.0 3.0
5.5829 2.0 3.0 2.0 2.0 1.0 1.0 0.6683 3.0 3.0 1.0 1.0 3.0

-4.3698 2.0 2.0 1.0 1.0 2.0 2.0 -0.0106 1.0 3.0 1.0 1.0 3.0
2.1274 1.0 2.0 1.0 3.0 2.0 2.0 0.5885 1.0 3.0 1.0 1.0 3.0

-2.7184 1.0 1.0 1.0 1.0 1.0 2.0 0.4555 1.0 5.0 2.0 1.0 3.0
-17.9128 2.0 2.0 2.0 1.0 1.0 2.0 0.6502 4.0 3.0 2.0 1.0 3.0
-1.2708 1.0 1.0 1.0 3.0 1.0 1.0 -0.1601 1.0 3.0 2.0 1.0 3.0

-24.2735 2.0 2.0 1.0 3.0 2.0 3.0 1.6910 1.0 1.0 2.0 1.0 3.0
-14.7374 2.0 2.0 2.0 3.0 1.0 2.0 0.1053 4.0 4.0 2.0 1.0 3.0

0.1713 2.0 1.0 2.0 3.0 2.0 2.0 -0.4037 3.0 4.0 1.0 2.0 3.0
8.0006 1.0 3.0 2.0 3.0 1.0 3.0 -0.5853 3.0 2.0 1.0 2.0 3.0
1.2100 2.0 3.0 2.0 1.0 1.0 1.0 -0.3037 1.0 3.0 1.0 2.0 3.0
3.3307 1.0 3.0 1.0 1.0 2.0 2.0 -0.0774 1.0 4.0 1.0 2.0 3.0

-22.6713 2.0 3.0 1.0 2.0 2.0 1.0 0.4733 4.0 5.0 1.0 2.0 3.0
7.5562 1.0 3.0 2.0 2.0 1.0 2.0 -0.0354 4.0 2.0 2.0 2.0 3.0

-7.0694 1.0 3.0 2.0 2.0 1.0 1.0 -0.6640 2.0 1.0 2.0 2.0 3.0
3.7159 2.0 3.0 1.0 3.0 1.0 1.0 0.0335 4.0 4.0 2.0 2.0 3.0

-4.3135 1.0 2.0 2.0 2.0 1.0 3.0 0.1351 1.0 1.0 2.0 2.0 3.0
-14.5577 1.0 1.0 2.0 1.0 2.0 3.0 -0.5951 3.0 4.0 2.0 2.0 3.0
-12.5107 2.0 2.0 2.0 3.0 1.0 3.0 0.2735 3.0 2.0 1.0 3.0 3.0

4.7708 2.0 2.0 1.0 1.0 1.0 3.0 0.3157 1.0 2.0 1.0 3.0 3.0
13.2797 2.0 2.0 2.0 1.0 1.0 1.0 -1.0843 2.0 3.0 1.0 3.0 3.0
-6.3243 1.0 2.0 2.0 1.0 2.0 2.0 -0.0836 4.0 2.0 1.0 3.0 3.0
-7.0549 2.0 1.0 2.0 1.0 1.0 2.0 -0.2884 2.0 1.0 1.0 3.0 3.0
-9.2713 2.0 3.0 2.0 3.0 2.0 3.0 -0.1006 1.0 2.0 2.0 3.0 3.0

-18.7788 1.0 3.0 1.0 2.0 2.0 3.0 0.5710 1.0 3.0 2.0 3.0 3.0
-7.7230 1.0 1.0 2.0 1.0 1.0 2.0 0.2776 2.0 3.0 2.0 3.0 3.0

-22.7230 2.0 3.0 2.0 2.0 1.0 3.0 -0.7561 4.0 4.0 2.0 3.0 3.0
-11.6609 1.0 2.0 2.0 2.0 1.0 2.0 1.5549 1.0 4.0 2.0 3.0 3.0 :: Y, X
1 2 3 4 5 6 7 :: VPR
-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 :: GAMMA(1:NVPR)

10.3 Program Results

G02JDF Example Program Results

Number of observations (N) = 90
Number of random factors (NRF) = 55
Number of fixed factors (NFF) = 4
Number of subject levels (NLSV) = 3
Rank of X (RNKX) = 4
Effective N (EFFN) = 90
Number of nonzero variance components (NCOV) = 7
Parameter Estimates

Random Effects
Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 1)

Variable 3 (Level 1) 2.1561 3.7946
Variable 3 (Level 2) 1.8951 3.9284
Variable 4 (Level 1) 0.6496 3.1617

Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 1)
Variable 4 (Level 3) 0.7390 3.1424

Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 1)
Variable 3 (Level 1) 1.4216 3.3773
Variable 3 (Level 2) -2.8921 3.3953
Variable 4 (Level 1) 3.6789 2.3162
Variable 4 (Level 2) -1.9742 2.3887
Variable 4 (Level 3) -2.2088 2.0697

Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 1)
Variable 3 (Level 1) -2.9659 3.9127
Variable 3 (Level 2) 2.7951 4.7183
Variable 4 (Level 1) -4.7330 2.3094
Variable 4 (Level 2) 5.5161 2.2330
Variable 4 (Level 3) -0.8417 2.3826
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Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 1)
Variable 3 (Level 1) 4.2202 3.6675
Variable 3 (Level 2) -4.3883 3.4424
Variable 4 (Level 1) -1.1391 3.2187
Variable 4 (Level 2) 1.0814 3.0654

Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 1)
Variable 3 (Level 1) 0.3391 4.0647
Variable 3 (Level 2) 0.1502 3.4787
Variable 4 (Level 1) -1.0026 2.4363

Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 1)
Variable 4 (Level 3) 1.1703 2.6365

Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 1)
Variable 3 (Level 1) 1.2658 3.4819
Variable 3 (Level 2) -1.5356 3.9097

Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 1)
Variable 4 (Level 2) 0.7992 2.7902
Variable 4 (Level 3) -0.8916 2.8763

Subject: Variable 11 (Level 1) Variable 12 (Level 1)
Variable 5 (Level 1) -0.4885 2.8206
Variable 5 (Level 2) 1.8829 2.7530
Variable 6 (Level 1) 0.9249 3.7747
Variable 6 (Level 2) -2.3568 3.1624
Variable 6 (Level 3) 4.3117 3.1474

Subject: Variable 11 (Level 2) Variable 12 (Level 1)
Variable 5 (Level 1) 1.3898 2.9362
Variable 5 (Level 2) -1.5729 2.8909
Variable 6 (Level 1) 0.2111 3.9967
Variable 6 (Level 2) -3.7083 4.2866
Variable 6 (Level 3) 3.1190 4.7983

Subject: Variable 11 (Level 3) Variable 12 (Level 1)
Variable 5 (Level 1) 1.7352 3.1370
Variable 5 (Level 2) -1.6165 3.1713
Variable 6 (Level 1) -1.1102 3.9374
Variable 6 (Level 2) 4.4877 3.6980
Variable 6 (Level 3) -3.1325 3.1966

Subject: Variable 12 (Level 1)
Variable 7 0.6827 0.5060
Variable 8 (Level 1) 1.5964 1.3206
Variable 8 (Level 2) -0.7533 1.5663
Variable 8 (Level 3) 0.4035 1.6840
Variable 8 (Level 4) -0.8523 1.7518
Variable 9 (Level 1) 0.5699 1.6236
Variable 9 (Level 2) 0.0012 1.9111
Variable 9 (Level 3) -0.2850 1.9245
Variable 9 (Level 4) 0.4468 2.0329
Variable 9 (Level 5) 0.0030 2.1390

Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 2)
Variable 3 (Level 1) 6.2551 3.3595
Variable 3 (Level 2) 5.6085 3.4127

Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 2)
Variable 4 (Level 2) 2.6922 2.7542
Variable 4 (Level 3) 1.3742 2.8068

Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 2)
Variable 3 (Level 1) 1.5647 3.8353
Variable 3 (Level 2) -2.7565 3.9041
Variable 4 (Level 1) -0.8621 2.8257

Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 2)
Variable 4 (Level 3) 0.4536 2.8070

Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 2)
Variable 3 (Level 1) -10.1544 3.3433
Variable 3 (Level 2) 3.2446 4.1221
Variable 4 (Level 1) -2.9419 2.3508
Variable 4 (Level 2) 0.2510 3.0675
Variable 4 (Level 3) 0.3224 2.9710
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Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 2)
Variable 3 (Level 1) -1.3577 3.1925
Variable 3 (Level 2) 8.1277 3.9975
Variable 4 (Level 1) -0.4290 2.4578
Variable 4 (Level 2) 2.7495 2.5821

Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 2)
Variable 3 (Level 1) 4.8432 4.0069
Variable 3 (Level 2) 0.0370 3.6006
Variable 4 (Level 1) 3.0713 2.2706
Variable 4 (Level 2) -1.8899 2.4756
Variable 4 (Level 3) 0.4914 2.2914

Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 2)
Variable 3 (Level 1) -4.4766 3.3355
Variable 3 (Level 2) -3.7936 4.0759
Variable 4 (Level 1) -0.5459 2.7097
Variable 4 (Level 2) -1.5619 2.7412
Variable 4 (Level 3) -0.7269 2.9735

Subject: Variable 11 (Level 1) Variable 12 (Level 2)
Variable 5 (Level 1) 4.8653 3.0706
Variable 5 (Level 2) 0.9011 3.0696
Variable 6 (Level 1) 6.9277 3.8411
Variable 6 (Level 2) -1.3108 3.1667
Variable 6 (Level 3) 6.2916 3.5327

Subject: Variable 11 (Level 2) Variable 12 (Level 2)
Variable 5 (Level 1) -0.4047 3.0956
Variable 5 (Level 2) 0.3291 3.0784
Variable 6 (Level 1) 6.9096 3.3073
Variable 6 (Level 2) -1.0680 3.6213
Variable 6 (Level 3) -5.9977 3.7299

Subject: Variable 11 (Level 3) Variable 12 (Level 2)
Variable 5 (Level 1) -1.0925 3.0994
Variable 5 (Level 2) -0.7392 2.9900
Variable 6 (Level 1) 2.7758 3.8748
Variable 6 (Level 2) -6.3526 3.3014
Variable 6 (Level 3) -0.2060 3.6481

Subject: Variable 12 (Level 2)
Variable 7 0.1711 0.5785
Variable 8 (Level 1) 1.7186 1.9143
Variable 8 (Level 2) -0.6768 1.7352
Variable 8 (Level 3) -0.0439 1.6395
Variable 8 (Level 4) 0.1463 1.5358
Variable 9 (Level 1) 0.9761 2.3930
Variable 9 (Level 2) 6.5436 1.8193
Variable 9 (Level 3) -1.5504 1.8527
Variable 9 (Level 4) 0.1047 2.0244
Variable 9 (Level 5) -3.9386 1.7937

Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 3)
Variable 3 (Level 1) 10.6802 3.2596
Variable 3 (Level 2) -1.0290 3.7842
Variable 4 (Level 1) -2.8612 2.2917
Variable 4 (Level 2) 3.9265 2.8934
Variable 4 (Level 3) 2.2427 2.3737

Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 3)
Variable 3 (Level 1) -6.2076 3.3642
Variable 3 (Level 2) -8.7670 3.8463
Variable 4 (Level 1) -2.9251 2.4657

Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 3)
Variable 4 (Level 3) -2.2077 2.3743

Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 3)
Variable 3 (Level 1) -3.3334 3.4665
Variable 3 (Level 2) -0.3111 3.2650
Variable 4 (Level 1) 1.5131 2.4890
Variable 4 (Level 2) -3.0345 3.0562
Variable 4 (Level 3) 0.2722 2.8300

Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 3)
Variable 3 (Level 1) 6.5905 4.0386
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Variable 3 (Level 2) -5.3168 3.4549
Variable 4 (Level 1) -3.5280 2.9663
Variable 4 (Level 2) 1.7056 2.9293
Variable 4 (Level 3) 2.2590 3.1780

Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 3)
Variable 3 (Level 1) 8.1889 4.1429
Variable 3 (Level 2) -1.5388 3.3333
Variable 4 (Level 1) 3.4338 2.6376

Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 3)
Variable 4 (Level 3) -1.1544 2.9885

Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 3)
Variable 3 (Level 1) -4.4243 4.0049
Variable 3 (Level 2) -4.1349 3.1248
Variable 4 (Level 1) 1.0460 2.6550
Variable 4 (Level 2) -4.4844 2.2843
Variable 4 (Level 3) 0.5046 2.6926

Subject: Variable 11 (Level 1) Variable 12 (Level 3)
Variable 5 (Level 1) 5.3030 3.0278
Variable 5 (Level 2) -8.1794 3.1335
Variable 6 (Level 1) -0.8188 3.7810
Variable 6 (Level 2) -2.5078 3.1514
Variable 6 (Level 3) -2.6138 3.4600

Subject: Variable 11 (Level 2) Variable 12 (Level 3)
Variable 5 (Level 1) 4.3331 3.1489
Variable 5 (Level 2) -5.6142 3.1649
Variable 6 (Level 1) -5.8804 3.1770
Variable 6 (Level 2) 5.4265 3.3006
Variable 6 (Level 3) -2.1917 3.2156

Subject: Variable 11 (Level 3) Variable 12 (Level 3)
Variable 5 (Level 1) 0.4305 2.9144
Variable 5 (Level 2) -1.4620 3.0119
Variable 6 (Level 1) 14.3595 3.9254
Variable 6 (Level 2) -5.2399 3.3099
Variable 6 (Level 3) -11.2498 3.2212

Subject: Variable 12 (Level 3)
Variable 7 -0.3839 0.6755
Variable 8 (Level 1) 2.7549 1.6017
Variable 8 (Level 2) 0.4377 1.8826
Variable 8 (Level 3) -0.2261 1.9909
Variable 8 (Level 4) -4.5051 1.5398
Variable 9 (Level 1) -4.7091 2.1458
Variable 9 (Level 2) 3.7940 1.9872
Variable 9 (Level 3) -1.7994 1.8614
Variable 9 (Level 4) 0.4480 1.9016
Variable 9 (Level 5) -0.6047 2.4729

Fixed Effects
Intercept 1.6433 2.4596
Variable 1 (Level 2) -1.6224 0.8549
Variable 2 (Level 2) -2.4817 1.1414
Variable 2 (Level 3) 0.4624 1.2133

Variance Components
Estimate Parameter Subject
36.32491 Variable 3 Variables 10 11 12
12.45090 Variable 4 Variables 10 11 12
19.62767 Variable 5 Variables 11 12
40.53480 Variable 6 Variables 11 12
0.56320 Variable 7 Variables 12
5.81968 Variable 8 Variables 12

10.86069 Variable 9 Variables 12

SIGMA**2 = 0.00239
-2LOG LIKELIHOOD = 608.19449
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NAG Library Routine Document

G02JEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02JEF fits a multi-level linear mixed effects regression model using maximum likelihood (ML). Prior
to calling G02JEF the initialization routine G02JCF must be called.

2 Specification

SUBROUTINE G02JEF (LVPR, VPR, NVPR, GAMMA, EFFN, RNKX, NCOV, LNLIKE, LB,
ID, LDID, B, SE, CZZ, LDCZZ, CXX, LDCXX, CXZ, LDCXZ,
RCOMM, ICOMM, IOPT, LIOPT, ROPT, LROPT, IFAIL)

&
&

INTEGER LVPR, VPR(LVPR), NVPR, EFFN, RNKX, NCOV, LB,
ID(LDID,LB), LDID, LDCZZ, LDCXX, LDCXZ, ICOMM(*),
IOPT(LIOPT), LIOPT, LROPT, IFAIL

&
&

REAL (KIND=nag_wp) GAMMA(NVPR+1), LNLIKE, B(LB), SE(LB), CZZ(LDCZZ,*),
CXX(LDCXX,*), CXZ(LDCXZ,*), RCOMM(*), ROPT(LROPT)

&

3 Description

G02JEF fits a model of the form:

y ¼ X� þ Z� þ �

where y is a vector of n observations on the dependent variable,

X is a known n by p design matrix for the fixed independent variables,

� is a vector of length p of unknown fixed effects,

Z is a known n by q design matrix for the random independent variables,

� is a vector of length q of unknown random effects,

and � is a vector of length n of unknown random errors.

Both � and � are assumed to have a Gaussian distribution with expectation zero and variance/covariance
matrix defined by

Var �
�

� �
¼ G 0

0 R

� �
where R ¼ �2RI, I is the n� n identity matrix and G is a diagonal matrix. It is assumed that the
random variables, Z, can be subdivided into g � q groups with each group being identically distributed
with expectation zero and variance �2i . The diagonal elements of matrix G therefore take one of the
values �2i : i ¼ 1; 2; . . . ; g

� 
, depending on which group the associated random variable belongs to.

The model therefore contains three sets of unknowns: the fixed effects �, the random effects � and a

vector of gþ 1 variance components �, where � ¼ �21; �
2
2; . . . ; �

2
g�1; �

2
g; �

2
R

n o
. Rather than working

d i r e c t l y w i t h �, G 0 2 J E F u s e s a n i t e r a t i v e p r o c e s s t o e s t i m a t e

�� ¼ �21=�
2
R; �

2
2=�

2
R; . . . ; �

2
g�1=�

2
R; �

2
g=�

2
R; 1

n o
. Due to the iterative nature of the estimation a set of

initial values, �0, for �� is required. G02JEF allows these initial values either to be supplied by you or
calculated from the data using the minimum variance quadratic unbiased estimators (MIVQUE0)
suggested by Rao (1972).
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G02JEF fits the model by maximizing the log-likelihood function:

�2lR ¼ log Vj jð Þ þ nlog rTV �1r
� �

þ log 2	=nð Þ

where

V ¼ ZGZT þR; r ¼ y�Xb and b ¼ XTV �1X
� ��1

XTV �1y:

Once the final estimates for �� have been obtained, the value of �2R is given by

�2R ¼ rTV �1r
� �

= n� pð Þ:

Case weights, Wc, can be incorporated into the model by replacing XTX and ZTZ with XTWcX and
ZTWcZ respectively, for a diagonal weight matrix Wc.

The log-likelihood, lR, is calculated using the sweep algorithm detailed in Wolfinger et al. (1994).

4 References

Goodnight J H (1979) A tutorial on the SWEEP operator The American Statistician 33(3) 149–158

Harville D A (1977) Maximum likelihood approaches to variance component estimation and to related
problems JASA 72 320–340

Rao C R (1972) Estimation of variance and covariance components in a linear model J. Am. Stat.
Assoc. 67 112–115

Stroup W W (1989) Predictable functions and prediction space in the mixed model procedure
Applications of Mixed Models in Agriculture and Related Disciplines Southern Cooperative Series
Bulletin No. 343 39–48

Wolfinger R, Tobias R and Sall J (1994) Computing Gaussian likelihoods and their derivatives for
general linear mixed models SIAM Sci. Statist. Comput. 15 1294–1310

5 Arguments

Note: prior to calling G02JEF the initialization routine G02JCF must be called, therefore this
documention should be read in conjunction with the document for G02JCF.

In particular some argument names and conventions described in that document are also relevant here,
but their definition has not been repeated. Specifically, RNDM, WEIGHT, N, NFF, NRF, NLSV,
LEVELS, FIXED, DAT, LICOMM and LRCOMM should be interpreted identically in both routines.

1: LVPR – INTEGER Input

On entry: the sum of the number of random parameters and the random intercept flags specified
in the call to G02JCF.

Constraint: LVPR ¼
P

iRNDM 1; ið Þ þ RNDM 2; ið Þ.

2: VPRðLVPRÞ – INTEGER array Input

On entry: a vector of flags indicating the mapping between the random variables specified in
RNDM and the variance components, �2i . See Section 9 for more details.

Constraint: 1 � VPRðiÞ � NVPR, for i ¼ 1; 2; . . . ;LVPR.

3: NVPR – INTEGER Input

On entry: g, the number of variance components being estimated (excluding the overall variance,
�2R).

Constraint: 1 � NVPR � LVPR.
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4: GAMMAðNVPR þ 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: holds the initial values of the variance components, �0, with GAMMAðiÞ the initial
value for �2i =�

2
R, for i ¼ 1; 2; . . . ;NVPR.

If GAMMAð1Þ ¼ �1:0, the remaining elements of GAMMA are ignored and the initial values
for the variance components are estimated from the data using MIVQUE0.

On exit: GAMMAðiÞ, for i ¼ 1; 2; . . . ;NVPR, holds the final estimate of �2i and
GAMMAðNVPR þ 1Þ holds the final estimate for �2R.

Constraint: GAMMAð1Þ ¼ �1:0 or GAMMAðiÞ � 0:0, for i ¼ 1; 2; . . . ; g.

5: EFFN – INTEGER Output

On exit: effective number of observations. If there are no weights (i.e., WEIGHT ¼ U ), or all
weights are nonzero, then EFFN ¼ N.

6: RNKX – INTEGER Output

On exit: the rank of the design matrix, X, for the fixed effects.

7: NCOV – INTEGER Output

On exit: number of variance components not estimated to be zero. If none of the variance
components are estimated to be zero, then NCOV ¼ NVPR.

8: LNLIKE – REAL (KIND=nag_wp) Output

On exit: �2lR �̂ð Þ where lR is the log of the maximum likelihood calculated at �̂, the estimated
variance components returned in GAMMA.

9: LB – INTEGER Input

On entry: the dimension of the arrays B and SE and the second dimension of the array ID as
declared in the (sub)program from which G02JEF is called.

Constraint: LB � NFFþ NRF� NLSV.

10: IDðLDID;LBÞ – INTEGER array Output

On exit: an array describing the parameter estimates returned in B. The first NLSV� NRF
columns of ID describe the parameter estimates for the random effects and the last NFF columns
the parameter estimates for the fixed effects.

The example program for this routine includes a demonstration of decoding the parameter
estimates given in B using information from ID.

For fixed effects:

for l ¼ NRF� NLSVþ 1; . . . ;NRF� NLSVþ NFF

if BðlÞ contains the parameter estimate for the intercept then

IDð1; lÞ ¼ IDð2; lÞ ¼ IDð3; lÞ ¼ 0;

if BðlÞ contains the parameter estimate for the ith level of the jth fixed variable, that is the
vector of values held in the kth column of DAT when FIXEDðjþ 2Þ ¼ k then

IDð1; lÞ ¼ 0;
IDð2; lÞ ¼ j;
IDð3; lÞ ¼ i;

if the jth variable is continuous or binary, that is LEVELSðFIXEDðjþ 2ÞÞ ¼ 1, then
IDð3; lÞ ¼ 0;

any remaining rows of the lth column of ID are set to 0.

G02 – Correlation and Regression Analysis G02JEF

Mark 26 G02JEF.3



For random effects:

let

NRb
denote the number of random variables in the bth random statement, that is

NRb
¼ RNDM 1; bð Þ;

Rjb denote the jth random variable from the bth random statement, that is the vector of
values held in the kth column of DAT when RNDM 2þ j; bð Þ ¼ k;
NSb denote the number of subject variables in the bth random statement, that is
NSb ¼ RNDM 3þNRb

; bð Þ;
Sjb denote the jth subject variable from the bth random statement, that is the vector of
values held in the kth column of DAT when RNDM 3þNRb

þ j; bð Þ ¼ k;

L Sjb
� �

d e n o t e t h e n u m b e r o f l e v e l s f o r Sjb, t h a t i s
L Sjb
� �

¼ LEVELSðRNDM 3þNRb
þ j; bð ÞÞ;

then

for l ¼ 1; 2; . . .NRF� NLSV, if BðlÞ contains the parameter estimate for the ith level of Rjb

when Skb ¼ sk , for k ¼ 1; 2; . . . ; NSb and 1 � sk � L Sjb
� �

, i.e., sk is a valid value for the kth
subject variable, then

IDð1; lÞ ¼ b;
IDð2; lÞ ¼ j;
IDð3; lÞ ¼ i;
IDð3þ k; lÞ ¼ sk; k ¼ 1; 2; . . . ; NSb ;

if the parameter being estimated is for the intercept then IDð2; lÞ ¼ IDð3; lÞ ¼ 0;

if the jth variable is continuous, or binary, that is L Sjb
� �

¼ 1, then IDð3; lÞ ¼ 0;

the remaining rows of the lth column of ID are set to 0.

In some situations, certain combinations of variables are never observed. In such circumstances
all elements of the lth row of ID are set to �999.

11: LDID – INTEGER Input

On entry: the first dimension of the array ID as declared in the (sub)program from which G02JEF
is called.

Constraint: LDID � 3þmax
j

RNDM 3þ RNDM 1; jð Þ; jð Þð Þ, i.e., 3þ maximum number of

subject variables (see G02JCF).

12: BðLBÞ – REAL (KIND=nag_wp) array Output

On exit: the parameter estimates, with the first NRF� NLSV elements of B containing the
parameter estimates for the random effects, �, and the remaining NFF elements containing the
parameter estimates for the fixed effects, �. The order of these estimates are described by the ID
argument.

13: SEðLBÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors of the parameter estimates given in B.

14: CZZðLDCZZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CZZ must be at least NRF� NLSV (see G02JCF).

On exit: if NLSV ¼ 1, then CZZ holds the lower triangular portion of the matrix

1=�2
� �

ZTR̂�1Z þ Ĝ�1
� �

, where R̂ and Ĝ are the estimates of R and G respectively. If

NLSV > 1 then CZZ holds this matrix in compressed form, with the first NRF columns holding
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the part of the matrix corresponding to the first level of the overall subject variable, the next NRF
columns the part corresponding to the second level of the overall subject variable etc.

15: LDCZZ – INTEGER Input

On entry: the first dimension of the array CZZ as declared in the (sub)program from which
G02JEF is called.

Constraint: LDCZZ � NRF.

16: CXXðLDCXX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CXX must be at least NFF (see G02JCF).

On exit: CXX holds the lower triangular portion of the matrix 1=�2
� �

XTV̂ �1X, where V̂ is the
estimated value of V .

17: LDCXX – INTEGER Input

On entry: the first dimension of the array CXX as declared in the (sub)program from which
G02JEF is called.

Constraint: LDCXX � NFF.

18: CXZðLDCXZ; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CXZ must be at least NLSV� NRF (see G02JCF).

On exit: if NLSV ¼ 1, then CXZ holds the matrix 1=�2
� �

XTV̂ �1Z
� �

Ĝ, where V̂ and Ĝ are the
estimates of V and G respectively. If NLSV > 1 then CXZ holds this matrix in compressed form,
with the first NRF columns holding the part of the matrix corresponding to the first level of the
overall subject variable, the next NRF columns the part corresponding to the second level of the
overall subject variable etc.

19: LDCXZ – INTEGER Input

On entry: the first dimension of the array CXZ as declared in the (sub)program from which
G02JEF is called.

Constraint: LDCXZ � NFF.

20: RCOMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of the array RCOMM must be at least LRCOMM (see G02JCF).

On entry: communication array initialized by a call to G02JCF.

21: ICOMMð�Þ – INTEGER array Communication Array

Note: the dimension of the array ICOMM must be at least LICOMM (see G02JCF).

On entry: communication array initialized by a call to G02JCF.

22: IOPTðLIOPTÞ – INTEGER array Input

On entry: optional parameters passed to the optimization routine.

By default G02JEF fits the specified model using a modified Newton optimization algorithm as
implemented in E04LBF. In some cases, where the calculation of the derivatives is
computationally expensive it may be more efficient to use a sequential QP algorithm. The
sequential QP algorithm as implemented in E04UCA can be chosen by setting IOPTð5Þ ¼ 1. If
LIOPT < 5 or IOPTð5Þ 6¼ 1 then E04LBF will be used.

Different optional parameters are available depending on the optimization routine used. In all
cases, using a value of �1 will cause the default value to be used. In addition only the first
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LIOPT values of IOPT are used, so for example, if only the first element of IOPT needs changing
and default values for all other optional parameters are sufficient LIOPT can be set to 1.

E04LBF is being used.

i Description

Equivalent
E04LBF
argument Default Value

1 Number of iterations MAXCAL 1000
2 Unit number for monitoring information n/a As returned by X04ABF
3 Print optional parameters (1 ¼ print) n/a �1 (no printing performed)
4 Frequency that monitoring information is printed IPRINT �1
5 Optimizer used n/a n/a

If requested, monitoring information is displayed in a similar format to that given by E04LBF.

E04UCA is being used.

i Description

Equivalent
E04UCA
argument Default Value

1 Number of iterations Major Iteration Limit max 50; 3� NVPRð Þ
2 Unit number for monitoring information n/a As returned by X04ABF
3 Print optional parameters (1 ¼ print, otherwise no

print)
List/Nolist �1 (no printing performed)

4 Frequency that monitoring information is printed Major Print Level 0
5 Optimizer used n/a n/a
6 Number of minor iterations Minor Iteration Limit max 50; 3� NVPRð Þ
7 Frequency that additional monitoring information is

printed
Minor Print Level 0

If LIOPT � 0 then default values are used for all optional parameters and IOPT is not referenced.

23: LIOPT – INTEGER Input

On entry: length of the options array IOPT.

24: ROPTðLROPTÞ – REAL (KIND=nag_wp) array Input

On entry: optional parameters passed to the optimization routine.

Different optional parameters are available depending on the optimization routine used. In all
cases, using a value of �1:0 will cause the default value to be used. In addition only the first
LROPT values of ROPT are used, so for example, if only the first element of ROPT needs
changing and default values for all other optional parameters are sufficient LROPT can be set to
1.

E04LBF is being used.

i Description

Equivalent
E04LBF
argument Default Value

1 Sweep tolerance n/a
max

ffiffiffiffiffiffiffi
eps
p

;
ffiffiffiffiffiffiffi
eps
p �max

i
zziið Þ

� �
2 Lower bound for �� n/a eps=100
3 Upper bound for �� n/a 1020

4 Accuracy of linear minimizations ETA 0:9
5 Accuracy to which solution is required XTOL 0:0
6 Initial distance from solution STEPMX 100000:0

E04UCA is being used.
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i Description

Equivalent
E04UCA
argument Default Value

1 Sweep tolerance n/a
max

ffiffiffiffiffiffiffi
eps
p

;
ffiffiffiffiffiffiffi
eps
p �max

i
zziið Þ

� �
2 Lower bound for �� n/a eps=100
3 Upper bound for �� n/a 1020

4 Line search tolerance Line Search Tolerance 0:9
5 Optimality tolerance Optimality Tolerance eps0:72

where eps is the machine precision returned by X02AJF and zzii denotes the i diagonal element
of ZTZ.

If LROPT � 0 then default values are used for all optional parameters and ROPT is not
referenced.

25: LROPT – INTEGER Input

On entry: length of the options array ROPT.

26: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LVPR ¼ valueh i.
Constraint: LVPR � valueh i.

IFAIL ¼ 2

On entry, VPRð valueh iÞ ¼ valueh i and NVPR ¼ valueh i.
Constraint: 1 � VPRðiÞ � NVPR.

IFAIL ¼ 3

On entry, NVPR ¼ valueh i.
Constraint: 1 � NVPR � valueh i.

IFAIL ¼ 4

On entry, GAMMAð valueh iÞ ¼ valueh i.
Constraint: GAMMAð1Þ ¼ �1:0 or GAMMAðiÞ � 0:0.
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IFAIL ¼ 9

On entry, LB ¼ valueh i.
Constraint: LB � valueh i.

IFAIL ¼ 11

On entry, LDID ¼ valueh i.
Constraint: LDID � valueh i.

IFAIL ¼ 15

On entry, LDCZZ ¼ valueh i.
Constraint: LDCZZ � valueh i.

IFAIL ¼ 17

On entry, LDCXX ¼ valueh i.
Constraint: LDCXX � valueh i.

IFAIL ¼ 19

On entry, LDCXZ ¼ valueh i.
Constraint: LDCXZ � valueh i.

IFAIL ¼ 21

On entry, ICOMM has not been initialized correctly.

IFAIL ¼ 32

On entry, at least one value of i, for i ¼ 1; 2; . . . ;NVPR, does not appear in VPR.

IFAIL ¼ 101

Optimal solution found, but requested accuracy not achieved.

IFAIL ¼ 102

Too many major iterations.

IFAIL ¼ 103

Current point cannot be improved upon.

IFAIL ¼ 104

At least one negative estimate for GAMMA was obtained. All negative estimates have been set to
zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

G02JEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02JEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The argument VPR gives the mapping between the random variables and the variance components. In
most cases VPRðiÞ ¼ i, for i ¼ 1; 2; . . . ;

P
iRNDM 1; ið Þ þ RNDM 2; ið Þ. However, in some cases it

might be necessary to associate more than one random variable with a single variance component, for
example, when the columns of DAT hold dummy variables.

Consider a dataset with three variables:

DAT ¼

1 1 3:6
2 1 4:5
3 1 1:1
1 2 8:3
2 2 7:2
3 2 6:1

0BBBBB@

1CCCCCA
where the first column corresponds to a categorical variable with three levels, the next to a categorical
variable with two levels and the last column to a continuous variable. So in a call to G02JCF

LEVELS ¼ 3 2 1
� �

also assume a model with no fixed effects, no random intercept, no nesting and all three variables being
included as random effects, then

FIXED ¼ 0 0
� �

;

RNDM ¼ 3 0 1 2 3
� �T

:

Each of the three columns in DAT therefore correspond to a single variable and hence there are three
variance components, one for each random variable included in the model, so

VPR ¼ 1 2 3
� �

:

This is the recommended way of supplying the data to G02JEF, however it is possible to reformat the
above dataset by replacing each of the categorical variables with a series of dummy variables, one for
each level. The dataset then becomes

DAT ¼

1 0 0 1 0 3:6
0 1 0 1 0 4:5
0 0 1 1 0 1:1
1 0 0 0 1 8:3
0 1 0 0 1 7:2
0 0 1 0 1 6:1

0BBBBB@

1CCCCCA
where each column only has one level

LEVELS ¼ 1 1 1 1 1 1
� �

:
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Again a model with no fixed effects, no random intercept, no nesting and all variables being included as
random effects is required, so

FIXED ¼ 0 0
� �

;

RNDM ¼ 6 0 1 2 3 4 5 6
� �T

:

With the data entered in this manner, the first three columns of DAT correspond to a single variable (the
first column of the original dataset) as do the next two columns (the second column of the original
dataset). Therefore VPR must reflect this

VPR ¼ 1 1 1 2 2 3
� �

:

In most situations it is more efficient to supply the data to G02JCF in terms of categorical variables
rather than transform them into dummy variables.

10 Example

This example fits a random effects model with three levels of nesting to a simulated dataset with 90
observations and 12 variables.

10.1 Program Text

! G02JEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g02jefe_mod

! G02JEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: print_results

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine print_results(n,nff,nlsv,nrf,fixed,lfixed,nrndm,rndm,ldrndm, &

nvpr,vpr,lvpr,gamma,effn,rnkx,ncov,lnlike,lb,id,ldid,b,se)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: lnlike
Integer, Intent (In) :: effn, lb, ldid, ldrndm, lfixed, &

lvpr, n, ncov, nff, nlsv, nrf, &
nrndm, nvpr, rnkx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: b(lb), gamma(nvpr+1), se(lb)
Integer, Intent (In) :: fixed(lfixed), id(ldid,lb), &

rndm(ldrndm,nrndm), vpr(lvpr)
! .. Local Scalars ..

Integer :: aid, i, k, l, ns, nv, p, pb, tb, &
tdid, vid

Character (120) :: pfmt, tfmt
! .. Executable Statements ..
! Display the output

Write (nout,*) ’Number of observations (N) = ’, n
Write (nout,*) ’Number of random factors (NRF) = ’, nrf
Write (nout,*) ’Number of fixed factors (NFF) = ’, nff
Write (nout,*) ’Number of subject levels (NLSV) = ’, &

nlsv
Write (nout,*) ’Rank of X (RNKX) = ’, &

rnkx
Write (nout,*) ’Effective N (EFFN) = ’, &

effn
Write (nout,*) ’Number of nonzero variance components (NCOV) = ’, ncov
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Write (nout,99990) ’Parameter Estimates’
tdid = nff + nrf*nlsv

If (nrf>0) Then
Write (nout,*)
Write (nout,99990) ’Random Effects’

End If
pb = -999
pfmt = ’ ’
Do k = 1, nrf*nlsv

tb = id(1,k)
If (tb/=-999) Then

vid = id(2,k)
nv = rndm(1,tb)
ns = rndm(3+nv,tb)
Write (tfmt,*)(id(3+l,k),l=1,ns)
If (pb/=tb .Or. tfmt/=pfmt) Then

If (k/=1) Then
Write (nout,*)

End If
Write (nout,99991) ’ Subject: ’, (’Variable ’,rndm(3+nv+l,tb), &

’ (Level ’,id(3+l,k),’)’,l=1,ns)
End If
If (vid==0) Then

! Intercept
Write (nout,99994) b(k), se(k)

Else
! VID’th variable specified in RNDM

aid = rndm(2+vid,tb)
If (id(3,k)==0) Then

Write (nout,99992) aid, b(k), se(k)
Else

Write (nout,99993) aid, id(3,k), b(k), se(k)
End If

End If
pfmt = tfmt

End If
pb = tb

End Do

If (nff>0) Then
Write (nout,*)
Write (nout,99990) ’Fixed Effects’

End If
Do k = nrf*nlsv + 1, tdid

If (vid/=-999) Then
vid = id(2,k)
If (vid==0) Then

! Intercept
Write (nout,99997) b(k), se(k)

Else
! VID’th variable specified in FIXED

aid = fixed(2+vid)
If (id(3,k)==0) Then

Write (nout,99995) aid, b(k), se(k)
Else

Write (nout,99996) aid, id(3,k), b(k), se(k)
End If

End If
End If

End Do

Write (nout,*)
Write (nout,*) ’Variance Components’
Write (nout,*) ’ Estimate Parameter Subject’
Do k = 1, nvpr

Write (nout,99999,Advance=’NO’) gamma(k)
p = 0
Do tb = 1, nrndm

nv = rndm(1,tb)
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ns = rndm(3+nv,tb)
If (rndm(2,tb)==1) Then

p = p + 1
If (vpr(p)==k) Then

Write (nout,99988,Advance=’NO’)(rndm(3+nv+l,tb),l=1,ns)
End If

End If
Do i = 1, nv

p = p + 1
If (vpr(p)==k) Then

Write (nout,99989,Advance=’NO’) rndm(2+i,tb), &
(rndm(3+nv+l,tb),l=1,ns)

End If
End Do

End Do
Write (nout,*)

End Do
Write (nout,*)
Write (nout,99998) ’SIGMA**2 = ’, gamma(nvpr+1)
Write (nout,99998) ’-2LOG LIKELIHOOD = ’, lnlike

Return
99999 Format (1X,F10.5,5X)
99998 Format (1X,A,F15.5)
99997 Format (3X,’Intercept’,20X,F10.4,1X,F10.4)
99996 Format (3X,’Variable ’,I2,’ (Level ’,I2,’)’,7X,F10.4,1X,F10.4)
99995 Format (3X,’Variable ’,I2,18X,F10.4,1X,F10.4)
99994 Format (5X,’Intercept’,18X,F10.4,1X,F10.4)
99993 Format (5X,’Variable ’,I2,’ (Level ’,I2,’)’,5X,F10.4,1X,F10.4)
99992 Format (5X,’Variable ’,I2,16X,F10.4,1X,F10.4)
99991 Format (1X,A,4(A,I2,A,I2,A,1X))
99990 Format (1X,A)
99989 Format (1X,’Variable’,1X,I2,5X,’Variables’,1X,100(I2,1X))
99988 Format (1X,’Intercept’,7X,’Variables’,1X,100(I2,1X))

End Subroutine print_results
End Module g02jefe_mod
Program g02jefe

! G02JEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g02jcf, g02jef, nag_wp
Use g02jefe_mod, Only: nin, nout, print_results

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: lnlike
Integer :: effn, i, ifail, j, lb, ldcxx, ldcxz, &

ldczz, lddat, ldid, ldrndm, lfixed, &
licomm, liopt, lrcomm, lropt, lvpr, &
lwt, n, ncol, ncov, nff, nl, nlsv, &
nrf, nrndm, nv, nvpr, nzz, rnkx

Character (1) :: weight
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:), cxx(:,:), cxz(:,:), czz(:,:), &
dat(:,:), gamma(:), rcomm(:), &
ropt(:), se(:), wt(:), y(:)

Integer, Allocatable :: fixed(:), icomm(:), id(:,:), &
iopt(:), levels(:), rndm(:,:), &
vpr(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G02JEF Example Program Results’
Write (nout,*)

! Skip the heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) weight, n, ncol, nrndm, nvpr
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! Set LFIXED and LDRNDM to maximum value they could
! be for this dataset

lfixed = ncol + 2
ldrndm = 3 + 2*ncol

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
lddat = n
Allocate (dat(lddat,ncol),levels(ncol),y(n),wt(lwt),fixed(lfixed), &

rndm(ldrndm,nrndm))

! Read in the number of levels associated with each of the
! independent variables

Read (nin,*) levels(1:ncol)

! Read in the fixed part of the model
Read (nin,*)

! Number of variables
Read (nin,*) fixed(1)
nv = fixed(1)

! Intercept
Read (nin,*) fixed(2)

! Variable IDs
If (nv>0) Then

Read (nin,*) fixed(3:(nv+2))
End If

! Read in the random part of the model
lvpr = 0
Do j = 1, nrndm

! Skip header
Read (nin,*)

! Number of variables
Read (nin,*) rndm(1,j)
nv = rndm(1,j)

! Intercept
Read (nin,*) rndm(2,j)

! Variable IDs
If (nv>0) Then

Read (nin,*)(rndm(i,j),i=3,nv+2)
End If

! Number of subject variables
Read (nin,*) rndm(nv+3,j)
nl = rndm(nv+3,j)

! Subject variable IDs
If (nl>0) Then

Read (nin,*)(rndm(i,j),i=nv+4,nv+nl+3)
End If
lvpr = lvpr + rndm(2,j) + nv

End Do

! Read in the dependent and independent data
If (lwt>0) Then

Read (nin,*)(y(i),dat(i,1:ncol),wt(i),i=1,n)
Else

Read (nin,*)(y(i),dat(i,1:ncol),i=1,n)
End If

licomm = 2
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lrcomm = 0
Allocate (icomm(licomm),rcomm(lrcomm))

! Call the initialization routine once to get LRCOMM and LICOMM
ifail = 0
Call g02jcf(weight,n,ncol,dat,lddat,levels,y,wt,fixed,lfixed,nrndm,rndm, &

ldrndm,nff,nlsv,nrf,rcomm,lrcomm,icomm,licomm,ifail)

! Reallocate ICOMM and RCOMM
licomm = icomm(1)
lrcomm = icomm(2)
Deallocate (icomm,rcomm)
Allocate (icomm(licomm),rcomm(lrcomm))

! Pre-process the data
ifail = 0
Call g02jcf(weight,n,ncol,dat,lddat,levels,y,wt,fixed,lfixed,nrndm,rndm, &

ldrndm,nff,nlsv,nrf,rcomm,lrcomm,icomm,licomm,ifail)

! Use the default options
liopt = 0
lropt = 0

! Calculate LDID
ldid = 0
Do i = 1, nrndm

nv = rndm(1,i)
ldid = max(rndm(3+nv,i),ldid)

End Do
ldid = ldid + 3

lb = nff + nrf*nlsv
nzz = nrf*nlsv
ldczz = nzz
ldcxx = nff
ldcxz = nff
Allocate (vpr(lvpr),gamma(nvpr+1),id(ldid,lb),b(lb),se(lb), &

czz(ldczz,nzz),cxx(ldcxx,nff),cxz(ldcxz,nzz),iopt(liopt),ropt(lropt))

! Read in VPR
Read (nin,*) vpr(1:lvpr)

! Read in GAMMA
Read (nin,*) gamma(1:nvpr)

! Perform the analysis
ifail = -1
Call g02jef(lvpr,vpr,nvpr,gamma,effn,rnkx,ncov,lnlike,lb,id,ldid,b,se, &

czz,ldczz,cxx,ldcxx,cxz,ldcxz,rcomm,icomm,iopt,liopt,ropt,lropt,ifail)
If (ifail/=0) Then

If (ifail<100) Then
Go To 100

End If
End If

! Display results
Call print_results(n,nff,nlsv,nrf,fixed,lfixed,nrndm,rndm,ldrndm,nvpr, &

vpr,lvpr,gamma,effn,rnkx,ncov,lnlike,lb,id,ldid,b,se)

100 Continue

End Program g02jefe
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10.2 Program Data

G02JEF Example Program Data
U 90 12 3 7 :: WEIGHT,N,NCOL,NRNDM,NVPR
2 3 2 3 2 3 1 4 5 2 3 3 :: LEVELS(1:NCOL)
## FIXED
2 :: number of variables
1 :: intercept
1 2 :: variable IDs
## RANDOM 1
2 :: number of variables
0 :: intercept
3 4 :: variable IDs
3 :: number of subject variables
10 11 12 :: subject variable IDs
## RANDOM 2
2 :: number of variables
0 :: intercept
5 6 :: variable IDs
2 :: number of subject variables
11 12 :: subject variable IDs
## RANDOM 3
3 :: number of variables
0 :: intercept
7 8 9 :: variable IDs
1 :: number of subject variables
12 :: subject variable IDs

3.1100 1.0 3.0 2.0 1.0 2.0 2.0 -0.3160 4.0 2.0 1.0 1.0 1.0
2.8226 1.0 1.0 1.0 3.0 1.0 2.0 -1.3377 1.0 4.0 1.0 1.0 1.0
7.4543 1.0 3.0 1.0 3.0 1.0 3.0 -0.7610 4.0 2.0 1.0 1.0 1.0
4.4313 2.0 3.0 2.0 1.0 1.0 3.0 -2.2976 4.0 2.0 1.0 1.0 1.0
6.1543 2.0 2.0 1.0 3.0 2.0 3.0 -0.4263 2.0 1.0 1.0 1.0 1.0

-0.1783 2.0 1.0 2.0 3.0 1.0 3.0 1.4067 3.0 3.0 2.0 1.0 1.0
4.6748 2.0 3.0 2.0 1.0 2.0 1.0 -1.4669 1.0 2.0 2.0 1.0 1.0
7.0667 1.0 1.0 1.0 3.0 2.0 3.0 0.4717 2.0 4.0 2.0 1.0 1.0
1.4262 1.0 3.0 2.0 3.0 2.0 1.0 0.4436 1.0 3.0 2.0 1.0 1.0
7.7290 1.0 1.0 1.0 2.0 2.0 3.0 -0.5950 3.0 4.0 2.0 1.0 1.0

-2.1806 1.0 3.0 1.0 3.0 1.0 1.0 -1.7981 4.0 2.0 1.0 2.0 1.0
6.8419 2.0 3.0 1.0 2.0 1.0 1.0 0.2397 1.0 4.0 1.0 2.0 1.0
1.2590 1.0 2.0 2.0 1.0 2.0 3.0 0.4742 1.0 1.0 1.0 2.0 1.0
8.8405 2.0 2.0 2.0 2.0 2.0 3.0 0.6888 3.0 1.0 1.0 2.0 1.0
6.1657 2.0 1.0 2.0 3.0 1.0 3.0 -1.0616 3.0 5.0 1.0 2.0 1.0

-4.5605 1.0 2.0 2.0 2.0 2.0 1.0 -0.5356 1.0 3.0 2.0 2.0 1.0
-1.2367 1.0 3.0 2.0 2.0 1.0 1.0 -1.2963 2.0 5.0 2.0 2.0 1.0

-12.2932 1.0 2.0 2.0 1.0 2.0 2.0 -1.5389 3.0 2.0 2.0 2.0 1.0
-2.3374 2.0 3.0 1.0 1.0 2.0 2.0 -0.6408 2.0 1.0 2.0 2.0 1.0
0.0716 1.0 2.0 2.0 2.0 1.0 1.0 0.6574 1.0 1.0 2.0 2.0 1.0
0.1895 2.0 1.0 1.0 1.0 1.0 3.0 0.9259 1.0 2.0 1.0 3.0 1.0
1.5608 2.0 2.0 2.0 1.0 2.0 2.0 1.5080 3.0 1.0 1.0 3.0 1.0

-0.8529 2.0 3.0 1.0 1.0 1.0 3.0 2.5821 2.0 3.0 1.0 3.0 1.0
-4.1169 1.0 2.0 2.0 1.0 2.0 3.0 0.4102 1.0 4.0 1.0 3.0 1.0
3.9977 2.0 1.0 2.0 3.0 2.0 2.0 0.7839 2.0 5.0 1.0 3.0 1.0

-8.1277 1.0 2.0 2.0 3.0 2.0 1.0 -1.8812 4.0 2.0 2.0 3.0 1.0
-4.9656 1.0 2.0 1.0 3.0 2.0 3.0 0.7770 4.0 1.0 2.0 3.0 1.0
-0.6428 2.0 2.0 1.0 2.0 1.0 3.0 0.2590 3.0 1.0 2.0 3.0 1.0
-5.5152 2.0 3.0 2.0 2.0 2.0 3.0 -0.9250 3.0 3.0 2.0 3.0 1.0
-5.5657 2.0 2.0 1.0 3.0 2.0 3.0 -0.4831 1.0 5.0 2.0 3.0 1.0
14.8177 2.0 2.0 1.0 3.0 1.0 3.0 0.5046 3.0 3.0 1.0 1.0 2.0
16.9783 2.0 1.0 1.0 2.0 2.0 1.0 -0.6903 2.0 1.0 1.0 1.0 2.0
13.8966 1.0 3.0 2.0 2.0 2.0 1.0 1.6166 2.0 5.0 1.0 1.0 2.0
14.8166 2.0 2.0 2.0 2.0 1.0 3.0 0.2778 2.0 3.0 1.0 1.0 2.0
19.3640 2.0 3.0 2.0 2.0 1.0 2.0 1.9586 4.0 2.0 1.0 1.0 2.0
9.5299 1.0 3.0 1.0 1.0 1.0 3.0 1.0506 2.0 5.0 2.0 1.0 2.0

12.0102 2.0 1.0 1.0 3.0 2.0 3.0 0.4871 1.0 1.0 2.0 1.0 2.0
6.1551 2.0 1.0 2.0 3.0 2.0 1.0 2.0891 4.0 4.0 2.0 1.0 2.0

-1.7048 1.0 2.0 1.0 1.0 2.0 2.0 1.4338 4.0 3.0 2.0 1.0 2.0
2.7640 1.0 1.0 2.0 3.0 1.0 2.0 -1.1196 3.0 4.0 2.0 1.0 2.0
2.8065 1.0 3.0 1.0 1.0 2.0 1.0 0.3367 3.0 2.0 1.0 2.0 2.0
0.0974 2.0 2.0 1.0 3.0 1.0 1.0 0.1092 2.0 2.0 1.0 2.0 2.0

-7.8080 1.0 1.0 1.0 2.0 2.0 2.0 0.4007 4.0 1.0 1.0 2.0 2.0
-18.0450 2.0 3.0 1.0 1.0 1.0 2.0 0.1460 3.0 5.0 1.0 2.0 2.0
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-2.8199 2.0 1.0 2.0 3.0 1.0 3.0 -0.3877 3.0 4.0 1.0 2.0 2.0
8.9893 1.0 1.0 1.0 2.0 2.0 1.0 0.6957 4.0 3.0 2.0 2.0 2.0
3.7978 2.0 1.0 1.0 1.0 2.0 1.0 -0.4664 3.0 3.0 2.0 2.0 2.0

-6.3493 1.0 1.0 1.0 1.0 2.0 3.0 0.2067 2.0 4.0 2.0 2.0 2.0
8.1411 2.0 1.0 2.0 1.0 1.0 2.0 0.4112 1.0 4.0 2.0 2.0 2.0

-7.5483 2.0 2.0 1.0 1.0 1.0 2.0 -1.3734 3.0 3.0 2.0 2.0 2.0
-0.4600 2.0 1.0 2.0 3.0 1.0 3.0 0.7065 1.0 3.0 1.0 3.0 2.0
-3.2135 1.0 2.0 2.0 2.0 1.0 2.0 1.3628 4.0 2.0 1.0 3.0 2.0
-6.6562 2.0 1.0 2.0 2.0 2.0 3.0 -0.5052 4.0 5.0 1.0 3.0 2.0
5.1267 2.0 1.0 1.0 1.0 2.0 1.0 -1.3457 2.0 5.0 1.0 3.0 2.0
3.5592 1.0 1.0 2.0 1.0 2.0 3.0 -1.8022 3.0 4.0 1.0 3.0 2.0

-4.4420 2.0 3.0 1.0 2.0 1.0 1.0 0.0116 2.0 4.0 2.0 3.0 2.0
-8.5965 2.0 2.0 1.0 3.0 2.0 3.0 -0.9075 1.0 3.0 2.0 3.0 2.0
-6.3187 2.0 2.0 2.0 2.0 2.0 3.0 -1.4707 1.0 1.0 2.0 3.0 2.0
-7.8953 2.0 2.0 1.0 1.0 2.0 1.0 -1.2938 2.0 3.0 2.0 3.0 2.0

-10.1383 1.0 3.0 1.0 3.0 2.0 2.0 -1.1660 4.0 4.0 2.0 3.0 2.0
-7.8850 1.0 2.0 1.0 1.0 2.0 3.0 0.0397 4.0 4.0 1.0 1.0 3.0
23.2001 1.0 3.0 1.0 2.0 1.0 3.0 -0.5987 3.0 2.0 1.0 1.0 3.0
5.5829 2.0 3.0 2.0 2.0 1.0 1.0 0.6683 3.0 3.0 1.0 1.0 3.0

-4.3698 2.0 2.0 1.0 1.0 2.0 2.0 -0.0106 1.0 3.0 1.0 1.0 3.0
2.1274 1.0 2.0 1.0 3.0 2.0 2.0 0.5885 1.0 3.0 1.0 1.0 3.0

-2.7184 1.0 1.0 1.0 1.0 1.0 2.0 0.4555 1.0 5.0 2.0 1.0 3.0
-17.9128 2.0 2.0 2.0 1.0 1.0 2.0 0.6502 4.0 3.0 2.0 1.0 3.0
-1.2708 1.0 1.0 1.0 3.0 1.0 1.0 -0.1601 1.0 3.0 2.0 1.0 3.0

-24.2735 2.0 2.0 1.0 3.0 2.0 3.0 1.6910 1.0 1.0 2.0 1.0 3.0
-14.7374 2.0 2.0 2.0 3.0 1.0 2.0 0.1053 4.0 4.0 2.0 1.0 3.0

0.1713 2.0 1.0 2.0 3.0 2.0 2.0 -0.4037 3.0 4.0 1.0 2.0 3.0
8.0006 1.0 3.0 2.0 3.0 1.0 3.0 -0.5853 3.0 2.0 1.0 2.0 3.0
1.2100 2.0 3.0 2.0 1.0 1.0 1.0 -0.3037 1.0 3.0 1.0 2.0 3.0
3.3307 1.0 3.0 1.0 1.0 2.0 2.0 -0.0774 1.0 4.0 1.0 2.0 3.0

-22.6713 2.0 3.0 1.0 2.0 2.0 1.0 0.4733 4.0 5.0 1.0 2.0 3.0
7.5562 1.0 3.0 2.0 2.0 1.0 2.0 -0.0354 4.0 2.0 2.0 2.0 3.0

-7.0694 1.0 3.0 2.0 2.0 1.0 1.0 -0.6640 2.0 1.0 2.0 2.0 3.0
3.7159 2.0 3.0 1.0 3.0 1.0 1.0 0.0335 4.0 4.0 2.0 2.0 3.0

-4.3135 1.0 2.0 2.0 2.0 1.0 3.0 0.1351 1.0 1.0 2.0 2.0 3.0
-14.5577 1.0 1.0 2.0 1.0 2.0 3.0 -0.5951 3.0 4.0 2.0 2.0 3.0
-12.5107 2.0 2.0 2.0 3.0 1.0 3.0 0.2735 3.0 2.0 1.0 3.0 3.0

4.7708 2.0 2.0 1.0 1.0 1.0 3.0 0.3157 1.0 2.0 1.0 3.0 3.0
13.2797 2.0 2.0 2.0 1.0 1.0 1.0 -1.0843 2.0 3.0 1.0 3.0 3.0
-6.3243 1.0 2.0 2.0 1.0 2.0 2.0 -0.0836 4.0 2.0 1.0 3.0 3.0
-7.0549 2.0 1.0 2.0 1.0 1.0 2.0 -0.2884 2.0 1.0 1.0 3.0 3.0
-9.2713 2.0 3.0 2.0 3.0 2.0 3.0 -0.1006 1.0 2.0 2.0 3.0 3.0

-18.7788 1.0 3.0 1.0 2.0 2.0 3.0 0.5710 1.0 3.0 2.0 3.0 3.0
-7.7230 1.0 1.0 2.0 1.0 1.0 2.0 0.2776 2.0 3.0 2.0 3.0 3.0

-22.7230 2.0 3.0 2.0 2.0 1.0 3.0 -0.7561 4.0 4.0 2.0 3.0 3.0
-11.6609 1.0 2.0 2.0 2.0 1.0 2.0 1.5549 1.0 4.0 2.0 3.0 3.0 :: Y, X
1 2 3 4 5 6 7 :: VPR
-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 :: GAMMA(1:NVPR)

10.3 Program Results

G02JEF Example Program Results

Number of observations (N) = 90
Number of random factors (NRF) = 55
Number of fixed factors (NFF) = 4
Number of subject levels (NLSV) = 3
Rank of X (RNKX) = 4
Effective N (EFFN) = 90
Number of nonzero variance components (NCOV) = 7
Parameter Estimates

Random Effects
Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 1)

Variable 3 (Level 1) 2.1566 3.7320
Variable 3 (Level 2) 1.7769 3.8543
Variable 4 (Level 1) 0.5583 3.0508

Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 1)
Variable 4 (Level 3) 0.6776 3.0358

Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 1)
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Variable 3 (Level 1) 1.4448 3.3293
Variable 3 (Level 2) -2.8634 3.3533
Variable 4 (Level 1) 3.6811 2.2253
Variable 4 (Level 2) -1.9988 2.2929
Variable 4 (Level 3) -2.1281 1.9896

Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 1)
Variable 3 (Level 1) -3.1562 3.8624
Variable 3 (Level 2) 2.8856 4.6985
Variable 4 (Level 1) -4.6811 2.2236
Variable 4 (Level 2) 5.5794 2.1390
Variable 4 (Level 3) -0.9832 2.2841

Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 1)
Variable 3 (Level 1) 4.3449 3.6258
Variable 3 (Level 2) -4.4285 3.4096
Variable 4 (Level 1) -1.0798 3.1008
Variable 4 (Level 2) 1.0536 2.9612

Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 1)
Variable 3 (Level 1) 0.4216 4.0146
Variable 3 (Level 2) 0.2268 3.4265
Variable 4 (Level 1) -1.0626 2.3505

Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 1)
Variable 4 (Level 3) 1.2664 2.5276

Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 1)
Variable 3 (Level 1) 1.2785 3.4331
Variable 3 (Level 2) -1.6652 3.8605

Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 1)
Variable 4 (Level 2) 0.7332 2.6958
Variable 4 (Level 3) -0.8547 2.7819

Subject: Variable 11 (Level 1) Variable 12 (Level 1)
Variable 5 (Level 1) -0.5540 2.8120
Variable 5 (Level 2) 1.9179 2.7500
Variable 6 (Level 1) 0.6925 3.6813
Variable 6 (Level 2) -2.2632 3.1202
Variable 6 (Level 3) 4.3216 3.1131

Subject: Variable 11 (Level 2) Variable 12 (Level 1)
Variable 5 (Level 1) 1.5151 2.9154
Variable 5 (Level 2) -1.7072 2.8715
Variable 6 (Level 1) 0.2154 3.9398
Variable 6 (Level 2) -3.7591 4.2153
Variable 6 (Level 3) 3.1563 4.7621

Subject: Variable 11 (Level 3) Variable 12 (Level 1)
Variable 5 (Level 1) 1.7892 3.1214
Variable 5 (Level 2) -1.6473 3.1579
Variable 6 (Level 1) -1.2268 3.8853
Variable 6 (Level 2) 4.6247 3.6412
Variable 6 (Level 3) -3.1117 3.1648

Subject: Variable 12 (Level 1)
Variable 7 0.6016 0.4634
Variable 8 (Level 1) 1.5887 1.2518
Variable 8 (Level 2) -0.7951 1.4856
Variable 8 (Level 3) 0.3798 1.6037
Variable 8 (Level 4) -0.8295 1.6629
Variable 9 (Level 1) 0.5197 1.5510
Variable 9 (Level 2) 0.0156 1.8248
Variable 9 (Level 3) -0.1723 1.8271
Variable 9 (Level 4) 0.4305 1.9494
Variable 9 (Level 5) -0.1412 2.0379

Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 2)
Variable 3 (Level 1) 6.3424 3.3173
Variable 3 (Level 2) 5.7538 3.3626

Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 2)
Variable 4 (Level 2) 2.5053 2.6520
Variable 4 (Level 3) 1.2953 2.6978

Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 2)
Variable 3 (Level 1) 1.6342 3.7874
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Variable 3 (Level 2) -2.8693 3.8549
Variable 4 (Level 1) -0.9274 2.7266

Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 2)
Variable 4 (Level 3) 0.5394 2.7100

Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 2)
Variable 3 (Level 1) -10.2379 3.2977
Variable 3 (Level 2) 3.2457 4.0593
Variable 4 (Level 1) -2.8362 2.2599
Variable 4 (Level 2) 0.2805 2.9513
Variable 4 (Level 3) 0.3587 2.8663

Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 2)
Variable 3 (Level 1) -1.3161 3.1545
Variable 3 (Level 2) 8.2719 3.9322
Variable 4 (Level 1) -0.4813 2.3705
Variable 4 (Level 2) 2.6668 2.4832

Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 2)
Variable 3 (Level 1) 4.9485 3.9465
Variable 3 (Level 2) 0.0987 3.5531
Variable 4 (Level 1) 3.0791 2.1790
Variable 4 (Level 2) -1.9469 2.3796
Variable 4 (Level 3) 0.4536 2.1984

Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 2)
Variable 3 (Level 1) -4.5419 3.2940
Variable 3 (Level 2) -3.9095 4.0163
Variable 4 (Level 1) -0.4456 2.6194
Variable 4 (Level 2) -1.5462 2.6514
Variable 4 (Level 3) -0.6636 2.8738

Subject: Variable 11 (Level 1) Variable 12 (Level 2)
Variable 5 (Level 1) 4.9921 3.0570
Variable 5 (Level 2) 0.8986 3.0576
Variable 6 (Level 1) 7.0091 3.7851
Variable 6 (Level 2) -1.3173 3.1348
Variable 6 (Level 3) 6.1881 3.4928

Subject: Variable 11 (Level 2) Variable 12 (Level 2)
Variable 5 (Level 1) -0.3947 3.0751
Variable 5 (Level 2) 0.3750 3.0579
Variable 6 (Level 1) 6.9902 3.2654
Variable 6 (Level 2) -1.0683 3.5699
Variable 6 (Level 3) -5.9617 3.6688

Subject: Variable 11 (Level 3) Variable 12 (Level 2)
Variable 5 (Level 1) -1.0471 3.0732
Variable 5 (Level 2) -0.7991 2.9597
Variable 6 (Level 1) 2.7549 3.8142
Variable 6 (Level 2) -6.3441 3.2624
Variable 6 (Level 3) -0.1341 3.5956

Subject: Variable 12 (Level 2)
Variable 7 0.1533 0.5196
Variable 8 (Level 1) 1.6630 1.8224
Variable 8 (Level 2) -0.6835 1.6502
Variable 8 (Level 3) -0.0959 1.5604
Variable 8 (Level 4) 0.1696 1.4537
Variable 9 (Level 1) 1.0203 2.2901
Variable 9 (Level 2) 6.4354 1.7420
Variable 9 (Level 3) -1.5942 1.7761
Variable 9 (Level 4) 0.0955 1.9436
Variable 9 (Level 5) -3.9588 1.7124

Subject: Variable 10 (Level 1) Variable 11 (Level 1) Variable 12 (Level 3)
Variable 3 (Level 1) 10.9751 3.2085
Variable 3 (Level 2) -1.0674 3.7219
Variable 4 (Level 1) -2.8350 2.2037
Variable 4 (Level 2) 3.7075 2.7912
Variable 4 (Level 3) 2.2405 2.2796

Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 3)
Variable 3 (Level 1) -6.2719 3.3190
Variable 3 (Level 2) -9.2923 3.7884
Variable 4 (Level 1) -2.8586 2.3728
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Subject: Variable 10 (Level 2) Variable 11 (Level 1) Variable 12 (Level 3)
Variable 4 (Level 3) -2.0316 2.2895

Subject: Variable 10 (Level 1) Variable 11 (Level 2) Variable 12 (Level 3)
Variable 3 (Level 1) -3.3222 3.4246
Variable 3 (Level 2) -0.3111 3.2221
Variable 4 (Level 1) 1.6131 2.3970
Variable 4 (Level 2) -3.0099 2.9300
Variable 4 (Level 3) 0.2552 2.7229

Subject: Variable 10 (Level 2) Variable 11 (Level 2) Variable 12 (Level 3)
Variable 3 (Level 1) 6.6372 3.9751
Variable 3 (Level 2) -5.4249 3.4039
Variable 4 (Level 1) -3.2357 2.8565
Variable 4 (Level 2) 1.5313 2.8232
Variable 4 (Level 3) 2.0854 3.0661

Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 3)
Variable 3 (Level 1) 8.5902 4.0894
Variable 3 (Level 2) -1.6058 3.2906
Variable 4 (Level 1) 3.2575 2.5450

Subject: Variable 10 (Level 1) Variable 11 (Level 3) Variable 12 (Level 3)
Variable 4 (Level 3) -1.0630 2.8692

Subject: Variable 10 (Level 2) Variable 11 (Level 3) Variable 12 (Level 3)
Variable 3 (Level 1) -4.5747 3.9475
Variable 3 (Level 2) -4.1752 3.0911
Variable 4 (Level 1) 1.0578 2.5496
Variable 4 (Level 2) -4.4284 2.2029
Variable 4 (Level 3) 0.6214 2.5884

Subject: Variable 11 (Level 1) Variable 12 (Level 3)
Variable 5 (Level 1) 5.4387 3.0091
Variable 5 (Level 2) -8.5065 3.1099
Variable 6 (Level 1) -0.9179 3.7257
Variable 6 (Level 2) -2.4920 3.1176
Variable 6 (Level 3) -2.7772 3.4083

Subject: Variable 11 (Level 2) Variable 12 (Level 3)
Variable 5 (Level 1) 4.4193 3.1282
Variable 5 (Level 2) -5.7324 3.1435
Variable 6 (Level 1) -5.9992 3.1431
Variable 6 (Level 2) 5.5657 3.2599
Variable 6 (Level 3) -2.2147 3.1758

Subject: Variable 11 (Level 3) Variable 12 (Level 3)
Variable 5 (Level 1) 0.3594 2.9017
Variable 5 (Level 2) -1.3169 3.0004
Variable 6 (Level 1) 14.5815 3.8519
Variable 6 (Level 2) -5.2262 3.2578
Variable 6 (Level 3) -11.2864 3.1821

Subject: Variable 12 (Level 3)
Variable 7 -0.2970 0.5930
Variable 8 (Level 1) 2.6255 1.5201
Variable 8 (Level 2) 0.5048 1.7865
Variable 8 (Level 3) -0.1518 1.8905
Variable 8 (Level 4) -4.3754 1.4651
Variable 9 (Level 1) -4.4219 2.0532
Variable 9 (Level 2) 3.7058 1.9085
Variable 9 (Level 3) -1.7524 1.7894
Variable 9 (Level 4) 0.4339 1.8210
Variable 9 (Level 5) -0.6161 2.3700

Fixed Effects
Intercept 1.5913 2.4106
Variable 1 (Level 2) -1.5994 0.8183
Variable 2 (Level 2) -2.3793 1.0996
Variable 2 (Level 3) 0.5328 1.1677

Variance Components
Estimate Parameter Subject
36.38867 Variable 3 Variables 10 11 12
11.43322 Variable 4 Variables 10 11 12
19.73586 Variable 5 Variables 11 12
39.80174 Variable 6 Variables 11 12
0.41583 Variable 7 Variables 12
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5.16442 Variable 8 Variables 12
9.79904 Variable 9 Variables 12

SIGMA**2 = 0.00042
-2LOG LIKELIHOOD = 617.11969
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NAG Library Routine Document

G02KAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02KAF calculates a ridge regression, optimizing the ridge parameter according to one of four
prediction error criteria.

2 Specification

SUBROUTINE G02KAF (N, M, X, LDX, ISX, IP, TAU, Y, H, OPT, NITER, TOL,
NEP, ORIG, B, VIF, RES, RSS, DF, OPTLOO, PERR, IFAIL)

&

INTEGER N, M, LDX, ISX(M), IP, OPT, NITER, ORIG, DF, OPTLOO,
IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), TAU, Y(N), H, TOL, NEP, B(IP+1), VIF(IP),
RES(N), RSS, PERR(5)

&

3 Description

A linear model has the form:

y ¼ cþX� þ �;

where

y is an n by 1 matrix of values of a dependent variable;

c is a scalar intercept term;

X is an n by m matrix of values of independent variables;

� is an m by 1 matrix of unknown values of parameters;

� is an n by 1 matrix of unknown random errors such that variance of � ¼ �2I.

Let ~X be the mean-centred X and ~y the mean-centred y. Furthermore, ~X is scaled such that the
diagonal elements of the cross product matrix ~XT ~X are one. The linear model now takes the form:

~y ¼ ~X ~� þ �:

Ridge regression estimates the parameters ~� in a penalised least squares sense by finding the ~b that
minimizes

~X~b� ~y
�� ��2 þ h ~b

�� ��2; h > 0;

where �k k denotes the ‘2-norm and h is a scalar regularization or ridge parameter. For a given value of
h, the parameter estimates ~b are found by evaluating

~b ¼ ~XT ~X þ hI
� ��1 ~XT~y:

Note that if h ¼ 0 the ridge regression solution is equivalent to the ordinary least squares solution.

Rather than calculate the inverse of ( ~XT ~X þ hI) directly, G02KAF uses the singular value
decomposition (SVD) of ~X. After decomposing ~X into UDV T where U and V are orthogonal
matrices and D is a diagonal matrix, the parameter estimates become

~b ¼ V DTDþ hI
� ��1

DUT~y:
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A consequence of introducing the ridge parameter is that the effective number of parameters, �, in the
model is given by the sum of diagonal elements of

DTD DTDþ hI
� ��1

;

see Moody (1992) for details.

Any multi-collinearity in the design matrix X may be highlighted by calculating the variance inflation
factors for the fitted model. The jth variance inflation factor, vj, is a scaled version of the multiple
correlation coefficient between independent variable j and the other independent variables, Rj, and is
given by

vj ¼
1

1�Rj
; j ¼ 1; 2; . . . ;m:

The m variance inflation factors are calculated as the diagonal elements of the matrix:

~XT ~X þ hI
� ��1 ~XT ~X ~XT ~X þ hI

� ��1
;

which, using the SVD of ~X, is equivalent to the diagonal elements of the matrix:

V DTDþ hI
� ��1

DTD DTDþ hI
� ��1

V T:

Although parameter estimates ~b are calculated by using ~X, it is usual to report the parameter estimates b
associated with X. These are calculated from ~b, and the means and scalings of X. Optionally, either ~b or
b may be calculated.

The method can adopt one of four criteria to minimize while calculating a suitable value for h:

(a) Generalized cross-validation (GCV):

ns

n� �ð Þ2
;

(b) Unbiased estimate of variance (UEV):

s

n� �;

(c) Future prediction error (FPE):

1

n
sþ 2�s

n� �

� �
;

(d) Bayesian information criterion (BIC):

1

n
sþ log nð Þ�s

n� �

� �
;

where s is the sum of squares of residuals. However, the function returns all four of the above
prediction errors regardless of the one selected to minimize the ridge parameter, h. Furthermore, the
function will optionally return the leave-one-out cross-validation (LOOCV) prediction error.

4 References

Hastie T, Tibshirani R and Friedman J (2003) The Elements of Statistical Learning: Data Mining,
Inference and Prediction Springer Series in Statistics

Moody J.E. (1992) The effective number of parameters: An analysis of generalisation and regularisation
in nonlinear learning systems In: Neural Information Processing Systems (eds J E Moody, S J Hanson,
and R P Lippmann) 4 847–854 Morgan Kaufmann San Mateo CA
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

2: M – INTEGER Input

On entry: the number of independent variables available in the data matrix X.

Constraint: M � N.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: the values of independent variables in the data matrix X.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G02KAF is called.

Constraint: LDX � N.

5: ISXðMÞ – INTEGER array Input

On entry: indicates which m independent variables are included in the model.

ISXðjÞ ¼ 1
The jth variable in X will be included in the model.

ISXðjÞ ¼ 0
Variable j is excluded.

Constraint: ISXðjÞ ¼ 0 or 1, for j ¼ 1; 2; . . . ;M.

6: IP – INTEGER Input

On entry: m, the number of independent variables in the model.

Constraints:

1 � IP � M;
Exactly IP elements of ISX must be equal to 1.

7: TAU – REAL (KIND=nag_wp) Input

On entry: singular values less than TAU of the SVD of the data matrix X will be set equal to
zero.

Suggested value: TAU ¼ 0:0.

Constraint: TAU � 0:0.

8: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n values of the dependent variable y.

9: H – REAL (KIND=nag_wp) Input/Output

On entry: an initial value for the ridge regression parameter h; used as a starting point for the
optimization.

Constraint: H > 0:0.

On exit: H is the optimized value of the ridge regression parameter h.
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10: OPT – INTEGER Input

On entry: the measure of prediction error used to optimize the ridge regression parameter h. The
value of OPT must be set equal to one of:

OPT ¼ 1
Generalized cross-validation (GCV);

OPT ¼ 2
Unbiased estimate of variance (UEV)

OPT ¼ 3
Future prediction error (FPE)

OPT ¼ 4
Bayesian information criteron (BIC).

Constraint: OPT ¼ 1, 2, 3 or 4.

11: NITER – INTEGER Input/Output

On entry: the maximum number of iterations allowed to optimize the ridge regression parameter
h.

Constraint: NITER � 1.

On exit: the number of iterations used to optimize the ridge regression parameter h within TOL.

12: TOL – REAL (KIND=nag_wp) Input

On entry: iterations of the ridge regression parameter h will halt when consecutive values of h lie
within TOL.

Constraint: TOL > 0:0.

13: NEP – REAL (KIND=nag_wp) Output

On exit: the number of effective parameters, �, in the model.

14: ORIG – INTEGER Input

On entry: if ORIG ¼ 1, the parameter estimates b are calculated for the original data; otherwise
ORIG ¼ 2 and the parameter estimates ~b are calculated for the standardized data.

Constraint: ORIG ¼ 1 or 2.

15: BðIPþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: contains the intercept and parameter estimates for the fitted ridge regression model in the
order indicated by ISX. The first element of B contains the estimate for the intercept; Bðj þ 1Þ
contains the parameter estimate for the jth independent variable in the model, for j ¼ 1; 2; . . . ; IP.

16: VIFðIPÞ – REAL (KIND=nag_wp) array Output

On exit: the variance inflation factors in the order indicated by ISX. For the jth independent
variable in the model, VIFðjÞ is the value of vj , for j ¼ 1; 2; . . . ; IP.

17: RESðNÞ – REAL (KIND=nag_wp) array Output

On exit: RESðiÞ is the value of the ith residual for the fitted ridge regression model, for
i ¼ 1; 2; . . . ;N.

18: RSS – REAL (KIND=nag_wp) Output

On exit: the sum of squares of residual values.
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19: DF – INTEGER Output

On exit: the degrees of freedom for the residual sum of squares RSS.

20: OPTLOO – INTEGER Input

On entry: if OPTLOO ¼ 2, the leave-one-out cross-validation estimate of prediction error is
calculated; otherwise no such estimate is calculated and OPTLOO ¼ 1.

Constraint: OPTLOO ¼ 1 or 2.

21: PERRð5Þ – REAL (KIND=nag_wp) array Output

On exit: the first four elements contain, in this order, the measures of prediction error: GCV,
UEV, FPE and BIC.

If OPTLOO ¼ 2, PERRð5Þ is the LOOCV estimate of prediction error; otherwise PERRð5Þ is not
referenced.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, H ¼ valueh i.
Constraint: H > 0:0.

On entry, N ¼ valueh i.
Constraint: N > 1.

On entry, NITER ¼ valueh i.
Constraint: NITER � 1.

On entry, OPT ¼ valueh i.
Constraint: OPT ¼ 1, 2, 3 or 4.

On entry, OPTLOO ¼ valueh i.
Constraint: OPTLOO ¼ 1 or 2.

On entry, ORIG ¼ valueh i.
Constraint: ORIG ¼ 1 or 2.

On entry, TAU ¼ valueh i.
Constraint: TAU � 0:0.

On entry, TOL ¼ valueh i.
Constraint: TOL > 0:0.
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IFAIL ¼ 2

On entry, IP ¼ valueh i; M ¼ valueh i.
Constraint: 1 � IP � M.

On entry, IP ¼ valueh i.
Constraint: sum ISXð Þ ¼ IP.

On entry, ISXð valueh iÞ ¼ valueh i.
Constraint: ISXðjÞ ¼ 0 or 1.

On entry, LDX ¼ valueh i; N ¼ valueh i.
Constraint: LDX � N.

On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: M � N.

IFAIL ¼ 3

SVD failed to converge.

IFAIL ¼ �1
Maximum number of iterations used.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02KAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02KAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02KAF allocates internally max 5� N� 1ð Þ; 2� IP� IPð Þ þ Nþ 3ð Þ � IPþ N elements of double
precision storage.
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10 Example

This example reads in data from an experiment to model body fat, and a ridge regression is calculated
that optimizes GCV prediction error.

10.1 Program Text

Program g02kafe

! G02KAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02kaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, nep, rss, tau, tol
Integer :: df, i, ifail, ip, ldx, m, n, niter, &

opt, optloo, orig
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:), res(:), vif(:), x(:,:), y(:)
Real (Kind=nag_wp) :: perr(5)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: count

! .. Executable Statements ..
Write (nout,*) ’G02KAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, h, opt, tol, niter, orig, optloo, tau

ldx = n
Allocate (x(ldx,m),y(n),isx(m))

! Read in data
Read (nin,*)(x(i,1:m),y(i),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)==1)

Allocate (b(ip+1),vif(ip),res(n))

! Fit ridge regression model
ifail = -1
Call g02kaf(n,m,x,ldx,isx,ip,tau,y,h,opt,niter,tol,nep,orig,b,vif,res, &

rss,df,optloo,perr,ifail)
If (ifail/=0) Then

If (ifail/=-1) Then
Go To 100

End If
End If

! Display results
Write (nout,99999) ’Value of ridge parameter:’, h
Write (nout,*)
Write (nout,99998) ’Sum of squares of residuals:’, rss
Write (nout,99997) ’Degrees of freedom: ’, df
Write (nout,99999) ’Number of effective parameters:’, nep
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Write (nout,*)
Write (nout,*) ’Parameter estimates’
Write (nout,99995)(i,b(i),i=1,ip+1)
Write (nout,*)
Write (nout,99996) ’Number of iterations:’, niter
Write (nout,*)
If (opt==1) Then

Write (nout,*) ’Ridge parameter minimises GCV’
Else If (opt==2) Then

Write (nout,*) ’Ridge parameter minimises UEV’
Else If (opt==3) Then

Write (nout,*) ’Ridge parameter minimises FPE’
Else If (opt==4) Then

Write (nout,*) ’Ridge parameter minimises BIC’
End If
Write (nout,*)
Write (nout,*) ’Estimated prediction errors:’
Write (nout,99999) ’GCV =’, perr(1)
Write (nout,99999) ’UEV =’, perr(2)
Write (nout,99999) ’FPE =’, perr(3)
Write (nout,99999) ’BIC =’, perr(4)
If (optloo==2) Then

Write (nout,99999) ’LOO CV =’, perr(5)
End If
Write (nout,*)
Write (nout,*) ’Residuals’
Write (nout,99995)(i,res(i),i=1,n)
Write (nout,*)
Write (nout,*) ’Variance inflation factors’
Write (nout,99995)(i,vif(i),i=1,ip)

100 Continue

99999 Format (1X,A,1X,F10.4)
99998 Format (1X,A,E11.4)
99997 Format (1X,A,1X,I5)
99996 Format (1X,A,I16)
99995 Format (1X,I4,1X,F11.4)

End Program g02kafe

10.2 Program Data

G02KAF Example Program Data
20 3 0.5 1 1.0e-4 25 2 2 0.0 : N, M, H, OPT, TOL, NITER, ORIG, OPTLOO, TAU
19.5 43.1 29.1 11.9
24.7 49.8 28.2 22.8
30.7 51.9 37.0 18.7
29.8 54.3 31.1 20.1
19.1 42.2 30.9 12.9
25.6 53.9 23.7 21.7
31.4 58.5 27.6 27.1
27.9 52.1 30.6 25.4
22.1 49.9 23.2 21.3
25.5 53.5 24.8 19.3
31.1 56.6 30.0 25.4
30.4 56.7 28.3 27.2
18.7 46.5 23.0 11.7
19.7 44.2 28.6 17.8
14.6 42.7 21.3 12.8
29.5 54.4 30.1 23.9
27.7 55.3 25.7 22.6
30.2 58.6 24.6 25.4
22.7 48.2 27.1 14.8
25.2 51.0 27.5 21.1 : End of data
1 1 1 : ISX

G02KAF NAG Library Manual

G02KAF.8 Mark 26



10.3 Program Results

G02KAF Example Program Results

Value of ridge parameter: 0.0712

Sum of squares of residuals: 0.1092E+03
Degrees of freedom: 16
Number of effective parameters: 2.9059

Parameter estimates
1 20.1950
2 9.7934
3 9.9576
4 -2.0125

Number of iterations: 6

Ridge parameter minimises GCV

Estimated prediction errors:
GCV = 7.4718
UEV = 6.3862
FPE = 7.3141
BIC = 8.2380
LOO CV = 7.5495

Residuals
1 -1.9894
2 3.5469
3 -3.0392
4 -3.0309
5 -0.1899
6 -0.3146
7 0.9775
8 4.0157
9 2.5332

10 -2.3560
11 0.5446
12 2.3989
13 -4.0876
14 3.2778
15 0.2894
16 0.7330
17 -0.7116
18 -0.6092
19 -2.9995
20 1.0110

Variance inflation factors
1 0.2928
2 0.4162
3 0.8089
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NAG Library Routine Document

G02KBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02KBF calculates a ridge regression, with ridge parameters supplied by you.

2 Specification

SUBROUTINE G02KBF (N, M, X, LDX, ISX, IP, Y, LH, H, NEP, WANTB, B, LDB,
WANTVF, VF, LDVF, LPEC, PEC, PE, LDPE, IFAIL)

&

INTEGER N, M, LDX, ISX(M), IP, LH, WANTB, LDB, WANTVF, LDVF,
LPEC, LDPE, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), Y(N), H(LH), NEP(LH), B(LDB,*),
VF(LDVF,*), PE(LDPE,*)

&

CHARACTER(1) PEC(LPEC)

3 Description

A linear model has the form:

y ¼ cþX� þ �;

where

y is an n by 1 matrix of values of a dependent variable;

c is a scalar intercept term;

X is an n by m matrix of values of independent variables;

� is a m by 1 matrix of unknown values of parameters;

� is an n by 1 matrix of unknown random errors such that variance of � ¼ �2I.

Let ~X be the mean-centred X and ~y the mean-centred y. Furthermore, ~X is scaled such that the
diagonal elements of the cross product matrix ~XT ~X are one. The linear model now takes the form:

~y ¼ ~X ~� þ �:

Ridge regression estimates the parameters ~� in a penalised least squares sense by finding the ~b that
minimizes

~X~b� ~y
�� ��2 þ h ~b

�� ��2; h > 0;

where �k k denotes the ‘2-norm and h is a scalar regularization or ridge parameter. For a given value of
h, the parameters estimates ~b are found by evaluating

~b ¼ ~XT ~X þ hI
� ��1 ~XT~y:

Note that if h ¼ 0 the ridge regression solution is equivalent to the ordinary least squares solution.

Rather than calculate the inverse of ( ~XT ~X þ hI) directly, G02KBF uses the singular value
decomposition (SVD) of ~X. After decomposing ~X into UDV T where U and V are orthogonal
matrices and D is a diagonal matrix, the parameter estimates become

~b ¼ V DTDþ hI
� ��1

DUT~y:
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A consequence of introducing the ridge parameter is that the effective number of parameters, �, in the
model is given by the sum of diagonal elements of

DTD DTDþ hI
� ��1

;

see Moody (1992) for details.

Any multi-collinearity in the design matrix X may be highlighted by calculating the variance inflation
factors for the fitted model. The jth variance inflation factor, vj, is a scaled version of the multiple
correlation coefficient between independent variable j and the other independent variables, Rj, and is
given by

vj ¼
1

1�Rj
; j ¼ 1; 2; . . . ;m:

The m variance inflation factors are calculated as the diagonal elements of the matrix:

~XT ~X þ hI
� ��1 ~XT ~X ~XT ~X þ hI

� ��1
;

which, using the SVD of ~X, is equivalent to the diagonal elements of the matrix:

V DTDþ hI
� ��1

DTD DTDþ hI
� ��1

V T:

Given a value of h, any or all of the following prediction criteria are available:

(a) Generalized cross-validation (GCV):

ns

n� �ð Þ2
;

(b) Unbiased estimate of variance (UEV):

s

n� �;

(c) Future prediction error (FPE):

1

n
sþ 2�s

n� �

� �
;

(d) Bayesian information criterion (BIC):

1

n
sþ log nð Þ�s

n� �

� �
;

(e) Leave-one-out cross-validation (LOOCV),

where s is the sum of squares of residuals.

Although parameter estimates ~b are calculated by using ~X, it is usual to report the parameter estimates b
associated with X. These are calculated from ~b, and the means and scalings of X. Optionally, either ~b or
b may be calculated.

4 References

Hastie T, Tibshirani R and Friedman J (2003) The Elements of Statistical Learning: Data Mining,
Inference and Prediction Springer Series in Statistics

Moody J.E. (1992) The effective number of parameters: An analysis of generalisation and regularisation
in nonlinear learning systems In: Neural Information Processing Systems (eds J E Moody, S J Hanson,
and R P Lippmann) 4 847–854 Morgan Kaufmann San Mateo CA
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

2: M – INTEGER Input

On entry: the number of independent variables available in the data matrix X.

Constraint: M � N.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: the values of independent variables in the data matrix X.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02KBF
is called.

Constraint: LDX � N.

5: ISXðMÞ – INTEGER array Input

On entry: indicates which m independent variables are included in the model.

ISXðjÞ ¼ 1
The jth variable in X will be included in the model.

ISXðjÞ ¼ 0
Variable j is excluded.

Constraint: ISXðjÞ ¼ 0 or 1, for j ¼ 1; 2; . . . ;M.

6: IP – INTEGER Input

On entry: m, the number of independent variables in the model.

Constraints:

1 � IP � M;
Exactly IP elements of ISX must be equal to 1.

7: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n values of the dependent variable y.

8: LH – INTEGER Input

On entry: the number of supplied ridge parameters.

Constraint: LH > 0.

9: HðLHÞ – REAL (KIND=nag_wp) array Input

On entry: HðjÞ is the value of the jth ridge parameter h.

Constraint: HðjÞ � 0:0, for j ¼ 1; 2; . . . ;LH.

10: NEPðLHÞ – REAL (KIND=nag_wp) array Output

On exit: NEPðjÞ is the number of effective parameters, �, in the jth model, for j ¼ 1; 2; . . . ;LH.
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11: WANTB – INTEGER Input

On entry: defines the options for parameter estimates.

WANTB ¼ 0
Parameter estimates are not calculated and B is not referenced.

WANTB ¼ 1
Parameter estimates b are calculated for the original data.

WANTB ¼ 2
Parameter estimates ~b are calculated for the standardized data.

Constraint: WANTB ¼ 0, 1 or 2.

12: BðLDB; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array B must be at least LH if WANTB 6¼ 0, and at least 1
otherwise.

On exit: if WANTB 6¼ 0, B contains the intercept and parameter estimates for the fitted ridge
regression model in the order indicated by ISX. Bð1; jÞ, for j ¼ 1; 2; . . . ;LH, contains the
estimate for the intercept; Bði þ 1; jÞ contains the parameter estimate for the ith independent
variable in the model fitted with ridge parameter HðjÞ, for i ¼ 1; 2; . . . ; IP.

13: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which G02KBF
is called.

Constraints:

if WANTB 6¼ 0, LDB � IPþ 1;
otherwise LDB � 1.

14: WANTVF – INTEGER Input

On entry: defines the options for variance inflation factors.

WANTVF ¼ 0
Variance inflation factors are not calculated and the array VF is not referenced.

WANTVF ¼ 1
Variance inflation factors are calculated.

Constraints:

WANTVF ¼ 0 or 1;
if WANTB ¼ 0, WANTVF ¼ 1.

15: VFðLDVF; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array VF must be at least LH if WANTVF 6¼ 0, and at least 1
otherwise.

On exit: if WANTVF ¼ 1, the variance inflation factors. For the ith independent variable in a
model fitted with ridge parameter HðjÞ, VFði; jÞ is the value of vi, for i ¼ 1; 2; . . . ; IP.

16: LDVF – INTEGER Input

On entry: the first dimension of the array VF as declared in the (sub)program from which
G02KBF is called.

Constraints:

if WANTVF 6¼ 0, LDVF � IP;
otherwise LDVF � 1.
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17: LPEC – INTEGER Input

On entry: the number of prediction error statistics to return; set LPEC � 0 for no prediction error
estimates.

18: PECðLPECÞ – CHARACTER(1) array Input

On entry: if LPEC > 0, PECðjÞ defines the jth prediction error, for j ¼ 1; 2; . . . ;LPEC; otherwise
PEC is not referenced.

PECðjÞ ¼ B
Bayesian information criterion (BIC).

PECðjÞ ¼ F
Future prediction error (FPE).

PECðjÞ ¼ G
Generalized cross-validation (GCV).

PECðjÞ ¼ L
Leave-one-out cross-validation (LOOCV).

PECðjÞ ¼ U
Unbiased estimate of variance (UEV).

Constraint: if LPEC > 0, PECðjÞ ¼ B , F , G , L or U , for j ¼ 1; 2; . . . ;LPEC.

19: PEðLDPE; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array PE must be at least LH if LPEC > 0, and at least 1
otherwise.

On exit: if LPEC � 0, PE is not referenced; otherwise PEði; jÞ contains the prediction error of
criterion PECðiÞ for the model fitted with ridge parameter HðjÞ, for i ¼ 1; 2; . . . ;LPEC and
j ¼ 1; 2; . . . ;LH.

20: LDPE – INTEGER Input

On entry: the first dimension of the array PE as declared in the (sub)program from which
G02KBF is called.

Constraints:

if LPEC > 0, LDPE � LPEC;
otherwise LDPE � 1.

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, HðiÞ < 0 for at least one i.

On entry, LH ¼ valueh i.
Constraint: LH > 0.

On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: M � N.

On entry, N ¼ valueh i.
Constraint: N � 1.

On entry, PECðiÞ is invalid for at least one i.

On entry, WANTB ¼ valueh i.
Constraint: WANTB ¼ 0, 1 or 2.

On entry, WANTVF ¼ valueh i.
Constraint: WANTVF ¼ 0 or 1.

IFAIL ¼ 2

IP does not equal the sum of elements in ISX.

On entry, ISXðiÞ 6¼ 0 or 1 for at least one i.

On entry, LDB ¼ valueh i and IP ¼ valueh i.
Constraint: if WANTB 6¼ 0, LDB � IPþ 1.

On entry, LDPE ¼ valueh i and LPEC ¼ valueh i.
Constraint: LDPE � LPEC.

On entry, LDVF ¼ valueh i and IP ¼ valueh i.
Constraint: if WANTVF 6¼ 0, LDVF � IP.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ 3

On entry, WANTB ¼ 0 and WANTVF ¼ 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The accuracy of G02KBF is closely related to that of the singular value decomposition.

8 Parallelism and Performance

G02KBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02KBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02KBF allocates internally max 5� N� 1ð Þ; 2� IP� IPð Þ þ Nþ 3ð Þ � IPþ N elements of double
precision storage.

10 Example

This example reads in data from an experiment to model body fat, and a selection of ridge regression
models are calculated.

10.1 Program Text

Program g02kbfe

! G02KBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02kbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ip, ldb, ldpe, ldvf, ldx, &

lh, lpec, m, n, pl, tdb, tdpe, tdvf, &
wantb, wantvf

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), h(:), nep(:), pe(:,:), &

vf(:,:), x(:,:), y(:)
Integer, Allocatable :: isx(:)
Character (1), Allocatable :: pec(:)

! .. Intrinsic Procedures ..
Intrinsic :: count, min

! .. Executable Statements ..
Write (nout,*) ’G02KBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, lh, lpec, wantb, wantvf

ldx = n
Allocate (x(ldx,m),isx(m),y(n),h(lh),pec(lpec))
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! Read in data
If (lpec>0) Then

Read (nin,*) pec(1:lpec)
End If
Read (nin,*)(x(i,1:m),y(i),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in the ridge coefficients
Read (nin,*) h(1:lh)

! Calculate IP
ip = count(isx(1:m)==1)

If (wantb/=0) Then
ldb = ip + 1
tdb = lh

Else
ldb = 0
tdb = 0

End If
If (wantvf/=0) Then

ldvf = ip
tdvf = lh

Else
ldvf = 0
tdvf = 0

End If
If (lpec>0) Then

ldpe = lpec
tdpe = lh

Else
ldpe = 0
tdpe = 0

End If
Allocate (nep(lh),b(ldb,tdb),vf(ldvf,tdvf),pe(ldpe,tdpe))

! Fit ridge regression
ifail = 0
Call g02kbf(n,m,x,ldx,isx,ip,y,lh,h,nep,wantb,b,ldb,wantvf,vf,ldvf,lpec, &

pec,pe,ldpe,ifail)

! Display results
Write (nout,99994) ’Number of parameters used = ’, ip + 1
Write (nout,*) ’Effective number of parameters (NEP):’
Write (nout,*) ’ Ridge ’
Write (nout,*) ’ Coeff. ’, ’NEP’
Write (nout,99993)(h(i),nep(i),i=1,lh)

! Parameter estimates
If (wantb/=0) Then

Write (nout,*)
If (wantb==1) Then

Write (nout,*) ’Parameter Estimates (Original scalings)’
Else

Write (nout,*) ’Parameter Estimates (Standarised)’
End If
pl = min(ip,4)
Write (nout,*) ’ Ridge ’
Write (nout,99997) ’ Coeff. ’, ’ Intercept ’, (i,i=1,pl)
If (pl<ip-1) Then

Write (nout,99996)(i,i=pl+1,ip-1)
End If
pl = min(ip+1,5)
Do i = 1, lh

Write (nout,99999) h(i), b(1:pl,i)
If (pl<ip) Then

Write (nout,99998) b((pl+1):ip,i)
End If

End Do
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End If

! Variance inflation factors
If (wantvf/=0) Then

Write (nout,*)
Write (nout,*) ’Variance Inflation Factors’
pl = min(ip,5)
Write (nout,*) ’ Ridge ’
Write (nout,99995) ’ Coeff. ’, (i,i=1,pl)
If (pl<ip) Then

Write (nout,99996)(i,i=pl+1,ip)
End If
Do i = 1, lh

Write (nout,99999) h(i), vf(1:pl,i)
If (pl<ip) Then

Write (nout,99998) vf((pl+1):ip,i)
End If

End Do
End If

! Prediction error criterion
If (lpec>0) Then

Write (nout,*)
Write (nout,*) ’Prediction error criterion’
pl = min(lpec,5)
Write (nout,*) ’ Ridge ’
Write (nout,99995) ’ Coeff. ’, (i,i=1,pl)
If (pl<lpec) Then

Write (nout,99996)(i,i=pl+1,lpec)
End If
Do i = 1, lh

Write (nout,99999) h(i), pe(1:pl,i)
If (pl<ip) Then

Write (nout,99998) pe((pl+1):ip,i)
End If

End Do
Write (nout,*)
Write (nout,*) ’Key:’
Do i = 1, lpec

Select Case (pec(i))
Case (’L’)

Write (nout,99992) i, ’Leave one out cross-validation’
Case (’G’)

Write (nout,99992) i, ’Generalized cross-validation’
Case (’U’)

Write (nout,99992) i, ’Unbiased estimate of variance’
Case (’F’)

Write (nout,99992) i, ’Final prediction error’
Case (’B’)

Write (nout,99992) i, ’Bayesian information criterion’
End Select

End Do
End If

99999 Format (1X,F10.4,5F10.4)
99998 Format (1X,10X,5F10.4)
99997 Format (1X,A,A,4I10)
99996 Format (10X,5I10)
99995 Format (1X,A,5I10)
99994 Format (1X,A,I10)
99993 Format (1X,F10.4,F10.4)
99992 Format (1X,1X,I5,1X,A)

End Program g02kbfe
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10.2 Program Data

G02KBF Example Program Data
20 3 16 5 1 1 : N, M, LH, LPEC, WANTB, WANTVF

L G U F B : PEC
19.5 43.1 29.1 11.9
24.7 49.8 28.2 22.8
30.7 51.9 37.0 18.7
29.8 54.3 31.1 20.1
19.1 42.2 30.9 12.9
25.6 53.9 23.7 21.7
31.4 58.5 27.6 27.1
27.9 52.1 30.6 25.4
22.1 49.9 23.2 21.3
25.5 53.5 24.8 19.3
31.1 56.6 30.0 25.4
30.4 56.7 28.3 27.2
18.7 46.5 23.0 11.7
19.7 44.2 28.6 17.8
14.6 42.7 21.3 12.8
29.5 54.4 30.1 23.9
27.7 55.3 25.7 22.6
30.2 58.6 24.6 25.4
22.7 48.2 27.1 14.8
25.2 51.0 27.5 21.1 : End of observations

1 1 1 : ISX
0.0 0.002 0.004 0.006
0.008 0.010 0.012 0.014
0.016 0.018 0.020 0.022
0.024 0.026 0.028 0.030 : Ridge co-efficients

10.3 Program Results

G02KBF Example Program Results

Number of parameters used = 4
Effective number of parameters (NEP):

Ridge
Coeff. NEP
0.0000 4.0000
0.0020 3.2634
0.0040 3.1475
0.0060 3.0987
0.0080 3.0709
0.0100 3.0523
0.0120 3.0386
0.0140 3.0278
0.0160 3.0189
0.0180 3.0112
0.0200 3.0045
0.0220 2.9984
0.0240 2.9928
0.0260 2.9876
0.0280 2.9828
0.0300 2.9782

Parameter Estimates (Original scalings)
Ridge
Coeff. Intercept 1 2 3
0.0000 117.0847 4.3341 -2.8568 -2.1861
0.0020 22.2748 1.4644 -0.4012 -0.6738
0.0040 7.7209 1.0229 -0.0242 -0.4408
0.0060 1.8363 0.8437 0.1282 -0.3460
0.0080 -1.3396 0.7465 0.2105 -0.2944
0.0100 -3.3219 0.6853 0.2618 -0.2619
0.0120 -4.6734 0.6432 0.2968 -0.2393
0.0140 -5.6511 0.6125 0.3222 -0.2228
0.0160 -6.3891 0.5890 0.3413 -0.2100
0.0180 -6.9642 0.5704 0.3562 -0.1999
0.0200 -7.4236 0.5554 0.3681 -0.1916
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0.0220 -7.7978 0.5429 0.3779 -0.1847
0.0240 -8.1075 0.5323 0.3859 -0.1788
0.0260 -8.3673 0.5233 0.3926 -0.1737
0.0280 -8.5874 0.5155 0.3984 -0.1693
0.0300 -8.7758 0.5086 0.4033 -0.1653

Variance Inflation Factors
Ridge
Coeff. 1 2 3

0.0000 708.8429 564.3434 104.6060
0.0020 50.5592 40.4483 8.2797
0.0040 16.9816 13.7247 3.3628
0.0060 8.5033 6.9764 2.1185
0.0080 5.1472 4.3046 1.6238
0.0100 3.4855 2.9813 1.3770
0.0120 2.5434 2.2306 1.2356
0.0140 1.9581 1.7640 1.1463
0.0160 1.5698 1.4541 1.0859
0.0180 1.2990 1.2377 1.0428
0.0200 1.1026 1.0805 1.0105
0.0220 0.9556 0.9627 0.9855
0.0240 0.8427 0.8721 0.9655
0.0260 0.7541 0.8007 0.9491
0.0280 0.6832 0.7435 0.9353
0.0300 0.6257 0.6969 0.9235

Prediction error criterion
Ridge
Coeff. 1 2 3 4 5

0.0000 8.0368 7.6879 6.1503 7.3804 8.6052
0.0020 7.5464 7.4238 6.2124 7.2261 8.2355
0.0040 7.5575 7.4520 6.2793 7.2675 8.2515
0.0060 7.5656 7.4668 6.3100 7.2876 8.2611
0.0080 7.5701 7.4749 6.3272 7.2987 8.2661
0.0100 7.5723 7.4796 6.3381 7.3053 8.2685
0.0120 7.5732 7.4823 6.3455 7.3095 8.2695
0.0140 7.5734 7.4838 6.3508 7.3122 8.2696
0.0160 7.5731 7.4845 6.3548 7.3140 8.2691
0.0180 7.5724 7.4848 6.3578 7.3151 8.2683
0.0200 7.5715 7.4847 6.3603 7.3158 8.2671
0.0220 7.5705 7.4843 6.3623 7.3161 8.2659
0.0240 7.5694 7.4838 6.3639 7.3162 8.2645
0.0260 7.5682 7.4832 6.3654 7.3162 8.2630
0.0280 7.5669 7.4825 6.3666 7.3161 8.2615
0.0300 7.5657 7.4818 6.3677 7.3159 8.2600

Key:
1 Leave one out cross-validation
2 Generalized cross-validation
3 Unbiased estimate of variance
4 Final prediction error
5 Bayesian information criterion
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NAG Library Routine Document

G02LAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02LAF fits an orthogonal scores partial least squares (PLS) regression by using singular value
decomposition.

2 Specification

SUBROUTINE G02LAF (N, MX, X, LDX, ISX, IP, MY, Y, LDY, XBAR, YBAR,
ISCALE, XSTD, YSTD, MAXFAC, XRES, LDXRES, YRES,
LDYRES, W, LDW, P, LDP, T, LDT, C, LDC, U, LDU, XCV,
YCV, LDYCV, IFAIL)

&
&
&

INTEGER N, MX, LDX, ISX(MX), IP, MY, LDY, ISCALE, MAXFAC,
LDXRES, LDYRES, LDW, LDP, LDT, LDC, LDU, LDYCV,
IFAIL

&
&

REAL (KIND=nag_wp) X(LDX,MX), Y(LDY,MY), XBAR(IP), YBAR(MY), XSTD(IP),
YSTD(MY), XRES(LDXRES,IP), YRES(LDYRES,MY),
W(LDW,MAXFAC), P(LDP,MAXFAC), T(LDT,MAXFAC),
C(LDC,MAXFAC), U(LDU,MAXFAC), XCV(MAXFAC),
YCV(LDYCV,MY)

&
&
&
&

3 Description

Let X1 be the mean-centred n by m data matrix X of n observations on m predictor variables. Let Y1
be the mean-centred n by r data matrix Y of n observations on r response variables.

The first of the k factors PLS methods extract from the data predicts both X1 and Y1 by regressing on t1
a column vector of n scores:

X̂1 ¼ t1pT1
Ŷ1 ¼ t1cT1 ; with tT1 t1 ¼ 1;

where the column vectors of m x-loadings p1 and r y-loadings c1 are calculated in the least squares
sense:

pT1 ¼ tT1X1
cT1 ¼ tT1Y1:

The x-score vector t1 ¼ X1w1 is the linear combination of predictor data X1 that has maximum
covariance with the y-scores u1 ¼ Y1c1, where the x-weights vector w1 is the normalised first left
singular vector of XT

1Y1.

The method extracts subsequent PLS factors by repeating the above process with the residual matrices:

Xi ¼ Xi�1 � X̂i�1
Yi ¼ Yi�1 � Ŷi�1; i ¼ 2; 3; . . . ; k;

and with orthogonal scores:

tTi tj ¼ 0; j ¼ 1; 2; . . . ; i� 1:

Optionally, in addition to being mean-centred, the data matrices X1 and Y1 may be scaled by standard
deviations of the variables. If data are supplied mean-centred, the calculations are not affected within
numerical accuracy.
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4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

2: MX – INTEGER Input

On entry: the number of predictor variables.

Constraint: MX > 1.

3: XðLDX;MXÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation on the jth predictor variable, for i ¼ 1; 2; . . . ;N
and j ¼ 1; 2; . . . ;MX.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02LAF
is called.

Constraint: LDX � N.

5: ISXðMXÞ – INTEGER array Input

On entry: indicates which predictor variables are to be included in the model.

ISXðjÞ ¼ 1
The jth predictor variable (with variates in the jth column of X) is included in the model.

ISXðjÞ ¼ 0
Otherwise.

Constraint: the sum of elements in ISX must equal IP.

6: IP – INTEGER Input

On entry: m, the number of predictor variables in the model.

Constraint: 1 < IP � MX.

7: MY – INTEGER Input

On entry: r, the number of response variables.

Constraint: MY � 1.

8: YðLDY;MYÞ – REAL (KIND=nag_wp) array Input

On entry: Yði; jÞ must contain the ith observation for the jth response variable, for i ¼ 1; 2; . . . ;N
and j ¼ 1; 2; . . . ;MY.

9: LDY – INTEGER Input

On entry: the first dimension of the array Y as declared in the (sub)program from which G02LAF
is called.

Constraint: LDY � N.
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10: XBARðIPÞ – REAL (KIND=nag_wp) array Output

On exit: mean values of predictor variables in the model.

11: YBARðMYÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value of each response variable.

12: ISCALE – INTEGER Input

On entry: indicates how predictor variables are scaled.

ISCALE ¼ 1
Data are scaled by the standard deviation of variables.

ISCALE ¼ 2
Data are scaled by user-supplied scalings.

ISCALE ¼ �1
No scaling.

Constraint: ISCALE ¼ �1, 1 or 2.

13: XSTDðIPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if ISCALE ¼ 2, XSTDðjÞ must contain the user-supplied scaling for the jth predictor
variable in the model, for j ¼ 1; 2; . . . ; IP. Otherwise XSTD need not be set.

On exit: if ISCALE ¼ 1, standard deviations of predictor variables in the model. Otherwise
XSTD is not changed.

14: YSTDðMYÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if ISCALE ¼ 2, YSTDðjÞ must contain the user-supplied scaling for the jth response
variable in the model, for j ¼ 1; 2; . . . ;MY. Otherwise YSTD need not be set.

On exit: if ISCALE ¼ 1, the standard deviation of each response variable. Otherwise YSTD is
not changed.

15: MAXFAC – INTEGER Input

On entry: k, the number of latent variables to calculate.

Constraint: 1 � MAXFAC � IP.

16: XRESðLDXRES; IPÞ – REAL (KIND=nag_wp) array Output

On exit: the predictor variables' residual matrix Xk.

17: LDXRES – INTEGER Input

On entry: the first dimension of the array XRES as declared in the (sub)program from which
G02LAF is called.

Constraint: LDXRES � N.

18: YRESðLDYRES;MYÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals for each response variable, Yk.

19: LDYRES – INTEGER Input

On entry: the first dimension of the array YRES as declared in the (sub)program from which
G02LAF is called.

Constraint: LDYRES � N.
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20: WðLDW;MAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: the jth column of W contains the x-weights wj , for j ¼ 1; 2; . . . ;MAXFAC.

21: LDW – INTEGER Input

On entry: the first dimension of the array W as declared in the (sub)program from which
G02LAF is called.

Constraint: LDW � IP.

22: PðLDP;MAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: the jth column of P contains the x-loadings pj , for j ¼ 1; 2; . . . ;MAXFAC.

23: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which G02LAF
is called.

Constraint: LDP � IP.

24: TðLDT;MAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: the jth column of T contains the x-scores tj , for j ¼ 1; 2; . . . ;MAXFAC.

25: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which G02LAF
is called.

Constraint: LDT � N.

26: CðLDC;MAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: the jth column of C contains the y-loadings cj , for j ¼ 1; 2; . . . ;MAXFAC.

27: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G02LAF
is called.

Constraint: LDC � MY.

28: UðLDU;MAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: the jth column of U contains the y-scores uj , for j ¼ 1; 2; . . . ;MAXFAC.

29: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which G02LAF
is called.

Constraint: LDU � N.

30: XCVðMAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: XCVðjÞ contains the cumulative percentage of variance in the predictor variables
explained by the first j factors, for j ¼ 1; 2; . . . ;MAXFAC.

31: YCVðLDYCV;MYÞ – REAL (KIND=nag_wp) array Output

On exit: YCVði; jÞ is the cumulative percentage of variance of the jth response variable explained
by the first i factors, for i ¼ 1; 2; . . . ;MAXFAC and j ¼ 1; 2; . . . ;MY.
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32: LDYCV – INTEGER Input

On entry: the first dimension of the array YCV as declared in the (sub)program from which
G02LAF is called.

Constraint: LDYCV � MAXFAC.

33: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, element valueh i of ISX is invalid.

On entry, ISCALE ¼ valueh i.
Constraint: ISCALE ¼ �1 or 1.

On entry, MX ¼ valueh i.
Constraint: MX > 1.

On entry, MY ¼ valueh i.
Constraint: MY � 1.

On entry, N ¼ valueh i.
Constraint: N > 1.

IFAIL ¼ 2

On entry, IP ¼ valueh i and MX ¼ valueh i.
Constraint: 1 < IP � MX.

On entry, LDC ¼ valueh i and MY ¼ valueh i.
Constraint: LDC � MY.

On entry, LDP ¼ valueh i and IP ¼ valueh i.
Constraint: LDP � IP.

On entry, LDT ¼ valueh i and N ¼ valueh i.
Constraint: LDT � N.

On entry, LDU ¼ valueh i and N ¼ valueh i.
Constraint: LDU � N.

On entry, LDW ¼ valueh i and IP ¼ valueh i.
Constraint: LDW � IP.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.
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On entry, LDXRES ¼ valueh i and N ¼ valueh i.
Constraint: LDXRES � N.

On entry, LDY ¼ valueh i and N ¼ valueh i.
Constraint: LDY � N.

On entry, LDYCV ¼ valueh i and MAXFAC ¼ valueh i.
Constraint: LDYCV � MAXFAC.

On entry, LDYRES ¼ valueh i and N ¼ valueh i.
Constraint: LDYRES � N.

On entry, MAXFAC ¼ valueh i and IP ¼ valueh i.
Constraint: 1 � MAXFAC � IP.

IFAIL ¼ 3

On entry, IP is not equal to the sum of ISX elements: IP ¼ valueh i, sum ISXð Þ ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

G02LAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02LAF allocates internally 2mrþAþmax 3 AþBð Þ; 5Að Þ þ r elements of real storage, where
A ¼ min m; rð Þ and B ¼ max m; rð Þ.
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10 Example

This example reads in data from an experiment to measure the biological activity in a chemical
compound, and a PLS model is estimated.

10.1 Program Text

Program g02lafe

! G02LAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02laf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ip, iscale, j, ldc, ldp, &

ldt, ldu, ldw, ldx, ldxres, ldy, &
ldycv, ldyres, maxfac, mx, my, n

Character (80) :: fmt
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), p(:,:), t(:,:), u(:,:), &
w(:,:), x(:,:), xbar(:), xcv(:), &
xres(:,:), xstd(:), y(:,:), ybar(:), &
ycv(:,:), yres(:,:), ystd(:)

Integer, Allocatable :: isx(:)
! .. Intrinsic Procedures ..

Intrinsic :: count
! .. Executable Statements ..

Write (nout,*) ’G02LAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, mx, my, iscale, maxfac

ldx = n
ldy = n
Allocate (x(ldx,mx),isx(mx),y(ldy,my))

! Read in data
Read (nin,*)(x(i,1:mx),y(i,1:my),i=1,n)

! Read in variable inclusion flags
Read (nin,*)(isx(j),j=1,mx)

! Calculate IP
ip = count(isx(1:mx)==1)

ldxres = n
ldyres = n
ldw = ip
ldp = ip
ldt = n
ldc = my
ldu = n
ldycv = maxfac
Allocate (xbar(ip),ybar(my),xstd(ip),ystd(my),xres(ldxres,ip), &

yres(ldyres,my),w(ldw,maxfac),p(ldp,maxfac),t(ldt,maxfac), &
c(ldc,maxfac),u(ldu,maxfac),xcv(maxfac),ycv(ldycv,my))

! Fit a PLS model
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ifail = 0
Call g02laf(n,mx,x,ldx,isx,ip,my,y,ldy,xbar,ybar,iscale,xstd,ystd, &

maxfac,xres,ldxres,yres,ldyres,w,ldw,p,ldp,t,ldt,c,ldc,u,ldu,xcv,ycv, &
ldycv,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,ip,maxfac,p,ldp,’x-loadings, P’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,maxfac,t,ldt,’x-scores, T’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,my,maxfac,c,ldc,’y-loadings, C’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,maxfac,u,ldu,’y-scores, U’,ifail)
Write (nout,*)
Write (nout,*) ’Explained Variance’
Write (nout,*) ’ Model effects Dependent variable(s)’
Write (fmt,99999) ’(’, my + 1, ’(F12.6,3X))’
Write (nout,fmt)(xcv(i),ycv(i,1:my),i=1,maxfac)

99999 Format (A,I0,A)
End Program g02lafe

10.2 Program Data

G02LAF Example Program Data
15 15 1 1 4 : N, MX, MY, SCALE, MAXFAC
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 1.9607 -1.6324 0.5746 1.9607
-1.6324 0.5740 2.8369 1.4092 -3.1398 0.00
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 1.9607 -1.6324 0.5746 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.28
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 0.0744 -1.7333 0.0902 1.9607
-1.6324 0.5746 2.8369 1.4092 -3.1398 0.20
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.51
-2.6931 -2.5271 -1.2871 2.8369 1.4092
-3.1398 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.11
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 -4.7548 3.6521 0.8524 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 2.73
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 -1.2201 0.8829 2.2253 0.18
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 2.4064 1.7438 1.1057 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 1.53
-2.6931 -2.5271 -1.2871 0.0744 -1.7333
0.0902 0.0744 -1.7333 0.0902 0.0744

-1.7333 0.0902 2.8369 1.4092 -3.1398 -0.10
2.2261 -5.3648 0.3049 3.0777 0.3891

-0.0701 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 -0.52
-4.1921 -1.0285 -0.9801 3.0777 0.3891
-0.0701 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.40
-4.9217 1.2977 0.4473 3.0777 0.3891
-0.0701 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.30
-2.6931 -2.5271 -1.2871 3.0777 0.3891
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-0.0701 2.2261 -5.3648 0.3049 2.2261
-5.3648 0.3049 2.8369 1.4092 -3.1398 -1.00
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 -4.9217 1.2977 0.4473 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 1.57
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 -4.1921 -1.0285 -0.9801 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.59 : End of X,Y
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 : ISX

10.3 Program Results

G02LAF Example Program Results

x-loadings, P
1 2 3 4

1 -0.6708 -1.0047 0.6505 0.6169
2 0.4943 0.1355 -0.9010 -0.2388
3 -0.4167 -1.9983 -0.5538 0.8474
4 0.3930 1.2441 -0.6967 -0.4336
5 0.3267 0.5838 -1.4088 -0.6323
6 0.0145 0.9607 1.6594 0.5361
7 -2.4471 0.3532 -1.1321 -1.3554
8 3.5198 0.6005 0.2191 0.0380
9 1.0973 2.0635 -0.4074 -0.3522

10 -2.4466 2.5640 -0.4806 0.3819
11 2.2732 -1.3110 -0.7686 -1.8959
12 -1.7987 2.4088 -0.9475 -0.4727
13 0.3629 0.2241 -2.6332 2.3739
14 0.3629 0.2241 -2.6332 2.3739
15 -0.3629 -0.2241 2.6332 -2.3739

x-scores, T
1 2 3 4

1 -0.1896 0.3898 -0.2502 -0.2479
2 0.0201 -0.0013 -0.1726 -0.2042
3 -0.1889 0.3141 -0.1727 -0.1350
4 0.0210 -0.0773 -0.0950 -0.0912
5 -0.0090 -0.2649 -0.4195 -0.1327
6 0.5479 0.2843 0.1914 0.2727
7 -0.0937 -0.0579 0.6799 -0.6129
8 0.2500 0.2033 -0.1046 -0.1014
9 -0.1005 -0.2992 0.2131 0.1223

10 -0.1810 -0.4427 0.0559 0.2114
11 0.0497 -0.0762 -0.1526 -0.0771
12 0.0173 -0.2517 -0.2104 0.1044
13 -0.6002 0.3596 0.1876 0.4812
14 0.3796 0.1338 0.1410 0.1999
15 0.0773 -0.2139 0.1085 0.2106

y-loadings, C
1 2 3 4

1 3.5425 1.0475 0.2548 0.1866

y-scores, U
1 2 3 4

1 -1.7670 0.1812 -0.0600 -0.0320
2 -0.6724 -0.2735 -0.0662 -0.0402
3 -0.9852 0.4097 0.0158 0.0198
4 0.2267 -0.0107 0.0180 0.0177
5 -1.3370 -0.3619 -0.0173 0.0073
6 8.9056 0.6000 0.0701 0.0422
7 -1.0634 0.0332 0.0235 -0.0151
8 4.2143 0.3184 0.0232 0.0219
9 -2.1580 -0.2652 0.0153 0.0011

10 -3.7999 -0.4520 0.0082 0.0034
11 -0.2033 -0.2446 -0.0392 -0.0214
12 -0.5942 -0.2398 0.0089 0.0165
13 -5.6764 0.5487 0.0375 0.0185
14 4.3707 -0.1161 -0.0639 -0.0535
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15 0.5395 -0.1274 0.0261 0.0139

Explained Variance
Model effects Dependent variable(s)
16.902124 89.638060
29.674338 97.476270
44.332404 97.939839
56.172041 98.188474
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NAG Library Routine Document

G02LBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02LBF fits an orthogonal scores partial least squares (PLS) regression by using Wold's iterative
method.

2 Specification

SUBROUTINE G02LBF (N, MX, X, LDX, ISX, IP, MY, Y, LDY, XBAR, YBAR,
ISCALE, XSTD, YSTD, MAXFAC, MAXIT, TAU, XRES, LDXRES,
YRES, LDYRES, W, LDW, P, LDP, T, LDT, C, LDC, U, LDU,
XCV, YCV, LDYCV, IFAIL)

&
&
&

INTEGER N, MX, LDX, ISX(MX), IP, MY, LDY, ISCALE, MAXFAC,
MAXIT, LDXRES, LDYRES, LDW, LDP, LDT, LDC, LDU,
LDYCV, IFAIL

&
&

REAL (KIND=nag_wp) X(LDX,MX), Y(LDY,MY), XBAR(IP), YBAR(MY), XSTD(IP),
YSTD(MY), TAU, XRES(LDXRES,IP), YRES(LDYRES,MY),
W(LDW,MAXFAC), P(LDP,MAXFAC), T(LDT,MAXFAC),
C(LDC,MAXFAC), U(LDU,MAXFAC), XCV(MAXFAC),
YCV(LDYCV,MY)

&
&
&
&

3 Description

Let X1 be the mean-centred n by m data matrix X of n observations on m predictor variables. Let Y1
be the mean-centred n by r data matrix Y of n observations on r response variables.

The first of the k factors PLS methods extract from the data predicts both X1 and Y1 by regressing on a
t1 column vector of n scores:

X̂1 ¼ t1pT1
Ŷ1 ¼ t1cT1 ; with tT1 t1 ¼ 1;

where the column vectors of m x-loadings p1 and r y-loadings c1 are calculated in the least squares
sense:

pT1 ¼ tT1X1
cT1 ¼ tT1Y1:

The x-score vector t1 ¼ X1w1 is the linear combination of predictor data X1 that has maximum
covariance with the y-scores u1 ¼ Y1c1, where the x-weights vector w1 is the normalised first left
singular vector of XT

1Y1.

The method extracts subsequent PLS factors by repeating the above process with the residual matrices:

Xi ¼ Xi�1 � X̂i�1
Yi ¼ Yi�1 � Ŷi�1; i ¼ 2; 3; . . . ; k;

and with orthogonal scores:

tTi tj ¼ 0; j ¼ 1; 2; . . . ; i� 1:

Optionally, in addition to being mean-centred, the data matrices X1 and Y1 may be scaled by standard
deviations of the variables. If data are supplied mean-centred, the calculations are not affected within
numerical accuracy.

G02 – Correlation and Regression Analysis G02LBF

Mark 26 G02LBF.1



4 References

Wold H (1966) Estimation of principal components and related models by iterative least squares In:
Multivariate Analysis (ed P R Krishnaiah) 391–420 Academic Press NY

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

2: MX – INTEGER Input

On entry: the number of predictor variables.

Constraint: MX > 1.

3: XðLDX;MXÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation on the jth predictor variable, for i ¼ 1; 2; . . . ;N
and j ¼ 1; 2; . . . ;MX.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02LBF
is called.

Constraint: LDX � N.

5: ISXðMXÞ – INTEGER array Input

On entry: indicates which predictor variables are to be included in the model.

ISXðjÞ ¼ 1
The jth predictor variable (with variates in the jth column of X) is included in the model.

ISXðjÞ ¼ 0
Otherwise.

Constraint: the sum of elements in ISX must equal IP.

6: IP – INTEGER Input

On entry: m, the number of predictor variables in the model.

Constraint: 1 < IP � MX.

7: MY – INTEGER Input

On entry: r, the number of response variables.

Constraint: MY � 1.

8: YðLDY;MYÞ – REAL (KIND=nag_wp) array Input

On entry: Yði; jÞ must contain the ith observation for the jth response variable, for i ¼ 1; 2; . . . ;N
and j ¼ 1; 2; . . . ;MY.

9: LDY – INTEGER Input

On entry: the first dimension of the array Y as declared in the (sub)program from which G02LBF
is called.

Constraint: LDY � N.

G02LBF NAG Library Manual

G02LBF.2 Mark 26



10: XBARðIPÞ – REAL (KIND=nag_wp) array Output

On exit: mean values of predictor variables in the model.

11: YBARðMYÞ – REAL (KIND=nag_wp) array Output

On exit: the mean value of each response variable.

12: ISCALE – INTEGER Input

On entry: indicates how predictor variables are scaled.

ISCALE ¼ 1
Data are scaled by the standard deviation of variables.

ISCALE ¼ 2
Data are scaled by user-supplied scalings.

ISCALE ¼ �1
No scaling.

Constraint: ISCALE ¼ �1, 1 or 2.

13: XSTDðIPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if ISCALE ¼ 2, XSTDðjÞ must contain the user-supplied scaling for the jth predictor
variable in the model, for j ¼ 1; 2; . . . ; IP. Otherwise XSTD need not be set.

On exit: if ISCALE ¼ 1, standard deviations of predictor variables in the model. Otherwise
XSTD is not changed.

14: YSTDðMYÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if ISCALE ¼ 2, YSTDðjÞ must contain the user-supplied scaling for the jth response
variable in the model, for j ¼ 1; 2; . . . ;MY. Otherwise YSTD need not be set.

On exit: if ISCALE ¼ 1, the standard deviation of each response variable. Otherwise YSTD is
not changed.

15: MAXFAC – INTEGER Input

On entry: k, the number of latent variables to calculate.

Constraint: 1 � MAXFAC � IP.

16: MAXIT – INTEGER Input

On entry: if MY ¼ 1, MAXIT is not referenced; otherwise the maximum number of iterations
used to calculate the x-weights.

Suggested value: MAXIT ¼ 200.

Constraint: if MY > 1, MAXIT > 1.

17: TAU – REAL (KIND=nag_wp) Input

On entry: if MY ¼ 1, TAU is not referenced; otherwise the iterative procedure used to calculate
the x-weights will halt if the Euclidean distance between two subsequent estimates is less than or
equal to TAU.

Suggested value: TAU ¼ 1:0E�4.
Constraint: if MY > 1, TAU > 0:0.

18: XRESðLDXRES; IPÞ – REAL (KIND=nag_wp) array Output

On exit: the predictor variables' residual matrix Xk.
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19: LDXRES – INTEGER Input

On entry: the first dimension of the array XRES as declared in the (sub)program from which
G02LBF is called.

Constraint: LDXRES � N.

20: YRESðLDYRES;MYÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals for each response variable, Yk.

21: LDYRES – INTEGER Input

On entry: the first dimension of the array YRES as declared in the (sub)program from which
G02LBF is called.

Constraint: LDYRES � N.

22: WðLDW;MAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: the jth column of W contains the x-weights wj , for j ¼ 1; 2; . . . ;MAXFAC.

23: LDW – INTEGER Input

On entry: the first dimension of the array W as declared in the (sub)program from which G02LBF
is called.

Constraint: LDW � IP.

24: PðLDP;MAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: the jth column of P contains the x-loadings pj , for j ¼ 1; 2; . . . ;MAXFAC.

25: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which G02LBF
is called.

Constraint: LDP � IP.

26: TðLDT;MAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: the jth column of T contains the x-scores tj , for j ¼ 1; 2; . . . ;MAXFAC.

27: LDT – INTEGER Input

On entry: the first dimension of the array T as declared in the (sub)program from which G02LBF
is called.

Constraint: LDT � N.

28: CðLDC;MAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: the jth column of C contains the y-loadings cj , for j ¼ 1; 2; . . . ;MAXFAC.

29: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G02LBF
is called.

Constraint: LDC � MY.

30: UðLDU;MAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: the jth column of U contains the y-scores uj , for j ¼ 1; 2; . . . ;MAXFAC.
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31: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which G02LBF
is called.

Constraint: LDU � N.

32: XCVðMAXFACÞ – REAL (KIND=nag_wp) array Output

On exit: XCVðjÞ contains the cumulative percentage of variance in the predictor variables
explained by the first j factors, for j ¼ 1; 2; . . . ;MAXFAC.

33: YCVðLDYCV;MYÞ – REAL (KIND=nag_wp) array Output

On exit: YCVði; jÞ is the cumulative percentage of variance of the jth response variable explained
by the first i factors, for i ¼ 1; 2; . . . ;MAXFAC and j ¼ 1; 2; . . . ;MY.

34: LDYCV – INTEGER Input

On entry: the first dimension of the array YCV as declared in the (sub)program from which
G02LBF is called.

Constraint: LDYCV � MAXFAC.

35: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, element valueh i of ISX is invalid.

On entry, ISCALE ¼ valueh i.
Constraint: ISCALE ¼ �1 or 1.

On entry, MX ¼ valueh i.
Constraint: MX > 1.

On entry, MY ¼ valueh i.
Constraint: MY � 1.

On entry, N ¼ valueh i.
Constraint: N > 1.

IFAIL ¼ 2

On entry, IP ¼ valueh i and MX ¼ valueh i.
Constraint: 1 < IP � MX.
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On entry, LDC ¼ valueh i and MY ¼ valueh i.
Constraint: LDC � MY.

On entry, LDP ¼ valueh i and IP ¼ valueh i.
Constraint: LDP � IP.

On entry, LDT ¼ valueh i and N ¼ valueh i.
Constraint: LDT � N.

On entry, LDU ¼ valueh i and N ¼ valueh i.
Constraint: LDU � N.

On entry, LDW ¼ valueh i and IP ¼ valueh i.
Constraint: LDW � IP.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

On entry, LDXRES ¼ valueh i and N ¼ valueh i.
Constraint: LDXRES � N.

On entry, LDY ¼ valueh i and N ¼ valueh i.
Constraint: LDY � N.

On entry, LDYCV ¼ valueh i and MAXFAC ¼ valueh i.
Constraint: LDYCV � MAXFAC.

On entry, LDYRES ¼ valueh i and N ¼ valueh i.
Constraint: LDYRES < N.

On entry, MAXFAC ¼ valueh i and IP ¼ valueh i.
Constraint: 1 � MAXFAC � IP.

On entry, MY ¼ valueh i and MAXIT ¼ valueh i.
Constraint: if MY > 1, MAXIT > 1.

On entry, TAU ¼ valueh i.
Constraint: if MY > 1, TAU > 0:0.

IFAIL ¼ 3

On entry, IP is not equal to the sum of ISX elements: IP ¼ valueh i, sum ISXð Þ ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In general, the iterative method used in the calculations is less accurate (but faster) than the singular
value decomposition approach adopted by G02LAF.
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8 Parallelism and Performance

G02LBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02LBF allocates internally (nþ r) elements of real storage.

10 Example

This example reads in data from an experiment to measure the biological activity in a chemical
compound, and a PLS model is estimated.

10.1 Program Text

Program g02lbfe

! G02LBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02lbf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tau
Integer :: i, ifail, ip, iscale, ldc, ldp, ldt, &

ldu, ldw, ldx, ldxres, ldy, ldycv, &
ldyres, maxfac, maxit, mx, my, n

Character (80) :: fmt
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), p(:,:), t(:,:), u(:,:), &
w(:,:), x(:,:), xbar(:), xcv(:), &
xres(:,:), xstd(:), y(:,:), ybar(:), &
ycv(:,:), yres(:,:), ystd(:)

Integer, Allocatable :: isx(:)
! .. Intrinsic Procedures ..

Intrinsic :: count
! .. Executable Statements ..

Write (nout,*) ’G02LBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, mx, my, iscale, maxfac

ldx = n
ldy = n
Allocate (x(ldx,mx),isx(mx),y(ldy,my))

! Read in data
Read (nin,*)(x(i,1:mx),y(i,1:my),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:mx)
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! Calculate IP
ip = count(isx(1:mx)==1)

ldxres = n
ldyres = n
ldt = n
ldc = my
ldu = n
ldycv = maxfac
ldw = ip
ldp = ip
Allocate (xbar(ip),ybar(my),xstd(ip),ystd(my),xres(ldxres,ip), &

yres(ldyres,ip),w(ldw,maxfac),p(ldp,maxfac),t(ldt,maxfac), &
c(ldc,maxfac),u(ldu,maxfac),xcv(maxfac),ycv(ldycv,my))

! Use suggested values for control parameters
maxit = 200
tau = 1.0E-4_nag_wp

! Fit a PLS model
ifail = 0
Call g02lbf(n,mx,x,ldx,isx,ip,my,y,ldy,xbar,ybar,iscale,xstd,ystd, &

maxfac,maxit,tau,xres,ldxres,yres,ldyres,w,ldw,p,ldp,t,ldt,c,ldc,u, &
ldu,xcv,ycv,ldycv,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,ip,maxfac,p,ldp,’x-loadings, P’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,maxfac,t,ldt,’x-scores, T’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,my,maxfac,c,ldc,’y-loadings, C’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,maxfac,u,ldu,’y-scores, U’,ifail)
Write (nout,*)
Write (nout,*) ’Explained Variance’
Write (nout,*) ’ Model effects Dependent variable(s)’
Write (fmt,99999) ’(’, my + 1, ’(F12.6,3X))’
Write (nout,fmt)(xcv(i),ycv(i,1:my),i=1,maxfac)

99999 Format (A,I0,A)
End Program g02lbfe

10.2 Program Data

G02LBF Example Program Data
15 15 1 1 4 : N, MX, MY, SCALE, MAXFAC
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 1.9607 -1.6324 0.5746 1.9607
-1.6324 0.5740 2.8369 1.4092 -3.1398 0.00
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 1.9607 -1.6324 0.5746 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.28
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 0.0744 -1.7333 0.0902 1.9607
-1.6324 0.5746 2.8369 1.4092 -3.1398 0.20
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.51
-2.6931 -2.5271 -1.2871 2.8369 1.4092
-3.1398 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.11
-2.6931 -2.5271 -1.2871 3.0777 0.3891
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-0.0701 -4.7548 3.6521 0.8524 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 2.73
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 -1.2201 0.8829 2.2253 0.18
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 2.4064 1.7438 1.1057 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 1.53
-2.6931 -2.5271 -1.2871 0.0744 -1.7333
0.0902 0.0744 -1.7333 0.0902 0.0744

-1.7333 0.0902 2.8369 1.4092 -3.1398 -0.10
2.2261 -5.3648 0.3049 3.0777 0.3891

-0.0701 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 -0.52
-4.1921 -1.0285 -0.9801 3.0777 0.3891
-0.0701 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.40
-4.9217 1.2977 0.4473 3.0777 0.3891
-0.0701 0.0744 -1.7333 0.0902 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.30
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 2.2261 -5.3648 0.3049 2.2261
-5.3648 0.3049 2.8369 1.4092 -3.1398 -1.00
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 -4.9217 1.2977 0.4473 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 1.57
-2.6931 -2.5271 -1.2871 3.0777 0.3891
-0.0701 -4.1921 -1.0285 -0.9801 0.0744
-1.7333 0.0902 2.8369 1.4092 -3.1398 0.59 : End of observations
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 : ISX

10.3 Program Results

G02LBF Example Program Results

x-loadings, P
1 2 3 4

1 -0.6708 -1.0047 0.6505 0.6169
2 0.4943 0.1355 -0.9010 -0.2388
3 -0.4167 -1.9983 -0.5538 0.8474
4 0.3930 1.2441 -0.6967 -0.4336
5 0.3267 0.5838 -1.4088 -0.6323
6 0.0145 0.9607 1.6594 0.5361
7 -2.4471 0.3532 -1.1321 -1.3554
8 3.5198 0.6005 0.2191 0.0380
9 1.0973 2.0635 -0.4074 -0.3522

10 -2.4466 2.5640 -0.4806 0.3819
11 2.2732 -1.3110 -0.7686 -1.8959
12 -1.7987 2.4088 -0.9475 -0.4727
13 0.3629 0.2241 -2.6332 2.3739
14 0.3629 0.2241 -2.6332 2.3739
15 -0.3629 -0.2241 2.6332 -2.3739

x-scores, T
1 2 3 4

1 -0.1896 0.3898 -0.2502 -0.2479
2 0.0201 -0.0013 -0.1726 -0.2042
3 -0.1889 0.3141 -0.1727 -0.1350
4 0.0210 -0.0773 -0.0950 -0.0912
5 -0.0090 -0.2649 -0.4195 -0.1327
6 0.5479 0.2843 0.1914 0.2727
7 -0.0937 -0.0579 0.6799 -0.6129
8 0.2500 0.2033 -0.1046 -0.1014
9 -0.1005 -0.2992 0.2131 0.1223

10 -0.1810 -0.4427 0.0559 0.2114
11 0.0497 -0.0762 -0.1526 -0.0771
12 0.0173 -0.2517 -0.2104 0.1044
13 -0.6002 0.3596 0.1876 0.4812
14 0.3796 0.1338 0.1410 0.1999
15 0.0773 -0.2139 0.1085 0.2106

G02 – Correlation and Regression Analysis G02LBF

Mark 26 G02LBF.9



y-loadings, C
1 2 3 4

1 3.5425 1.0475 0.2548 0.1866

y-scores, U
1 2 3 4

1 -1.7670 0.1812 -0.0600 -0.0320
2 -0.6724 -0.2735 -0.0662 -0.0402
3 -0.9852 0.4097 0.0158 0.0198
4 0.2267 -0.0107 0.0180 0.0177
5 -1.3370 -0.3619 -0.0173 0.0073
6 8.9056 0.6000 0.0701 0.0422
7 -1.0634 0.0332 0.0235 -0.0151
8 4.2143 0.3184 0.0232 0.0219
9 -2.1580 -0.2652 0.0153 0.0011

10 -3.7999 -0.4520 0.0082 0.0034
11 -0.2033 -0.2446 -0.0392 -0.0214
12 -0.5942 -0.2398 0.0089 0.0165
13 -5.6764 0.5487 0.0375 0.0185
14 4.3707 -0.1161 -0.0639 -0.0535
15 0.5395 -0.1274 0.0261 0.0139

Explained Variance
Model effects Dependent variable(s)
16.902124 89.638060
29.674338 97.476270
44.332404 97.939839
56.172041 98.188474
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NAG Library Routine Document

G02LCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02LCF calculates parameter estimates for a given number of factors given the output from an
orthogonal scores PLS regression (G02LAF or G02LBF).

2 Specification

SUBROUTINE G02LCF (IP, MY, MAXFAC, NFACT, P, LDP, C, LDC, W, LDW, RCOND,
B, LDB, ORIG, XBAR, YBAR, ISCALE, XSTD, YSTD, OB,
LDOB, VIPOPT, YCV, LDYCV, VIP, LDVIP, IFAIL)

&
&

INTEGER IP, MY, MAXFAC, NFACT, LDP, LDC, LDW, LDB, ORIG,
ISCALE, LDOB, VIPOPT, LDYCV, LDVIP, IFAIL

&

REAL (KIND=nag_wp) P(LDP,MAXFAC), C(LDC,MAXFAC), W(LDW,MAXFAC), RCOND,
B(LDB,MY), XBAR(IP), YBAR(MY), XSTD(IP), YSTD(MY),
OB(LDOB,MY), YCV(LDYCV,MY), VIP(LDVIP,VIPOPT)

&
&

3 Description

The parameter estimates B for a l-factor orthogonal scores PLS model with m predictor variables and r
response variables are given by,

B ¼ W PTW
� ��1

CT; B 2 R
m�r;

where W is the m by k (� l) matrix of x-weights; P is the m by k matrix of x-loadings; and C is the r
by k matrix of y-loadings for a fitted PLS model.

The parameter estimates B are for centred, and possibly scaled, predictor data X1 and response data Y1.
Parameter estimates may also be given for the predictor data X and response data Y .

Optionally, G02LCF will calculate variable influence on projection (VIP) statistics, see Wold (1994).

4 References

Wold S (1994) PLS for multivariate linear modelling QSAR: chemometric methods in molecular design
Methods and Principles in Medicinal Chemistry (ed van de Waterbeemd H) Verlag-Chemie

5 Arguments

1: IP – INTEGER Input

On entry: m, the number of predictor variables in the fitted model.

Constraint: IP > 1.

2: MY – INTEGER Input

On entry: r, the number of response variables.

Constraint: MY � 1.
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3: MAXFAC – INTEGER Input

On entry: k, the number of factors available in the PLS model.

Constraint: 1 � MAXFAC � IP.

4: NFACT – INTEGER Input

On entry: l, the number of factors to include in the calculation of parameter estimates.

Constraint: 1 � NFACT � MAXFAC.

5: PðLDP;MAXFACÞ – REAL (KIND=nag_wp) array Input

On entry: x-loadings as returned from G02LAF and G02LBF.

6: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which G02LCF
is called.

Constraint: LDP � IP.

7: CðLDC;MAXFACÞ – REAL (KIND=nag_wp) array Input

On entry: y-loadings as returned from G02LAF and G02LBF.

8: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G02LCF
is called.

Constraint: LDC � MY.

9: WðLDW;MAXFACÞ – REAL (KIND=nag_wp) array Input

On entry: x-weights as returned from G02LAF and G02LBF.

10: LDW – INTEGER Input

On entry: the first dimension of the array W as declared in the (sub)program from which G02LCF
is called.

Constraint: LDW � IP.

11: RCOND – REAL (KIND=nag_wp) Input

On entry: singular values of PTW less than RCOND times the maximum singular value are
treated as zero when calculating parameter estimates. If RCOND is negative, a value of 0:005 is
used.

12: BðLDB;MYÞ – REAL (KIND=nag_wp) array Output

On exit: Bði; jÞ contains the parameter estimate for the ith predictor variable in the model for the
jth response variable, for i ¼ 1; 2; . . . ; IP and j ¼ 1; 2; . . . ;MY.

13: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which G02LCF
is called.

Constraint: LDB � IP.
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14: ORIG – INTEGER Input

On entry: indicates how parameter estimates are calculated.

ORIG ¼ �1
Parameter estimates for the centred, and possibly, scaled data.

ORIG ¼ 1
Parameter estimates for the original data.

Constraint: ORIG ¼ �1 or 1.

15: XBARðIPÞ – REAL (KIND=nag_wp) array Input

On entry: if ORIG ¼ 1, mean values of predictor variables in the model; otherwise XBAR is not
referenced.

16: YBARðMYÞ – REAL (KIND=nag_wp) array Input

On entry: if ORIG ¼ 1, mean value of each response variable in the model; otherwise YBAR is
not referenced.

17: ISCALE – INTEGER Input

On entry: if ORIG ¼ 1, ISCALE must take the value supplied to either G02LAF or G02LBF;
otherwise ISCALE is not referenced.

Constraint: if ORIG ¼ 1, ISCALE ¼ �1, 1 or 2.

18: XSTDðIPÞ – REAL (KIND=nag_wp) array Input

On entry: if ORIG ¼ 1 and ISCALE 6¼ �1, the scalings of predictor variables in the model as
returned from either G02LAF or G02LBF; otherwise XSTD is not referenced.

19: YSTDðMYÞ – REAL (KIND=nag_wp) array Input

On entry: if ORIG ¼ 1 and ISCALE 6¼ �1, the scalings of response variables as returned from
either G02LAF or G02LBF; otherwise YSTD is not referenced.

20: OBðLDOB;MYÞ – REAL (KIND=nag_wp) array Output

On exit: if ORIG ¼ 1, OBð1; jÞ contains the intercept value for the jth response variable, and
OBði þ 1; jÞ contains the parameter estimate on the original scale for the ith predictor variable in
the model, for i ¼ 1; 2; . . . ; IP and j ¼ 1; 2; . . . ;MY. Otherwise OB is not referenced.

21: LDOB – INTEGER Input

On entry: the first dimension of the array OB as declared in the (sub)program from which
G02LCF is called.

Constraints:

if ORIG ¼ 1, LDOB � IPþ 1;
otherwise LDOB � 1.

22: VIPOPT – INTEGER Input

On entry: a flag that determines variable influence on projections (VIP) options.

VIPOPT ¼ 0
VIP are not calculated.

VIPOPT ¼ 1
VIP are calculated for predictor variables using the mean explained variance in responses.

VIPOPT ¼ MY
VIP are calculated for predictor variables for each response variable in the model.

G02 – Correlation and Regression Analysis G02LCF

Mark 26 G02LCF.3



Note that setting VIPOPT ¼ MY when MY ¼ 1 gives the same result as setting VIPOPT ¼ 1
directly.

Constraint: VIPOPT ¼ 0, 1 or MY.

23: YCVðLDYCV;MYÞ – REAL (KIND=nag_wp) array Input

On entry: if VIPOPT 6¼ 0, YCVði; jÞ is the cumulative percentage of variance of the jth response
variable explained by the first i factors, for i ¼ 1; 2; . . . ;NFACT and j ¼ 1; 2; . . . ;MY; otherwise
YCV is not referenced.

24: LDYCV – INTEGER Input

On entry: the first dimension of the array YCV as declared in the (sub)program from which
G02LCF is called.

Constraint: if VIPOPT 6¼ 0, LDYCV � NFACT.

25: VIPðLDVIP;VIPOPTÞ – REAL (KIND=nag_wp) array Output

On exit: if VIPOPT ¼ 1, VIPði; 1Þ contains the VIP statistic for the ith predictor variable in the
model for all response variables, for i ¼ 1; 2; . . . ; IP.

If VIPOPT ¼ MY, VIPði; jÞ contains the VIP statistic for the ith predictor variable in the model
for the jth response variable, for i ¼ 1; 2; . . . ; IP and j ¼ 1; 2; . . . ;MY.

Otherwise VIP is not referenced.

26: LDVIP – INTEGER Input

On entry: the first dimension of the array VIP as declared in the (sub)program from which
G02LCF is called.

Constraint: if VIPOPT 6¼ 0, LDVIP � IP.

27: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP ¼ valueh i.
Constraint: IP > 1.

On entry, ISCALE ¼ valueh i.
Constraint: if ORIG ¼ 1, ISCALE ¼ �1 or 1.

On entry, MY ¼ valueh i.
Constraint: MY � 1.
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On entry, ORIG ¼ valueh i.
Constraint: ORIG ¼ �1 or 1.

On entry, VIPOPT ¼ valueh i and MY ¼ valueh i.
Constraint: VIPOPT ¼ 0, 1 or MY.

IFAIL ¼ 2

On entry, LDB ¼ valueh i and IP ¼ valueh i.
Constraint: LDB � IP.

On entry, LDC ¼ valueh i and MY ¼ valueh i.
Constraint: LDC � MY.

On entry, LDOB ¼ valueh i and IP ¼ valueh i.
Constraint: if ORIG ¼ 1, LDOB � IPþ 1.

On entry, LDP ¼ valueh i and IP ¼ valueh i.
Constraint: LDP � IP.

On entry, LDVIP ¼ valueh i and IP ¼ valueh i.
Constraint: if VIPOPT 6¼ 0, LDVIP � IP.

On entry, LDW ¼ valueh i and IP ¼ valueh i.
Constraint: LDW � IP.

On entry, LDYCV ¼ valueh i and NFACT ¼ valueh i.
Constraint: if VIPOPT 6¼ 0, LDYCV � NFACT.

On entry, MAXFAC ¼ valueh i and IP ¼ valueh i.
Constraint: 1 � MAXFAC � IP.

On entry, NFACT ¼ valueh i and MAXFAC ¼ valueh i.
Constraint: 1 � NFACT � MAXFAC.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The calculations are based on the singular value decomposition of PTW .

8 Parallelism and Performance

G02LCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02LCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02LCF allocates internally l lþ rþ 4ð Þ þmax 2l; rð Þ elements of real storage.

10 Example

This example reads in details of a PLS model, and a set of parameter estimates are calculated along
with their VIP statistics.

10.1 Program Text

Program g02lcfe

! G02LCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02lcf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, ip, iscale, ldb, ldc, &

ldob, ldp, ldvip, ldw, ldycv, &
maxfac, my, nfact, orig, vipopt

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), c(:,:), ob(:,:), p(:,:), &

vip(:,:), w(:,:), xbar(:), xstd(:), &
ybar(:), ycv(:,:), ystd(:)

! .. Executable Statements ..
Write (nout,*) ’G02LCF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read problem size
Read (nin,*) ip, my, maxfac, nfact, orig, iscale, vipopt

ldp = ip
ldc = my
ldw = ip
ldb = ip
If (orig==1) Then

ldob = ip + 1
Else

ldob = 1
End If
If (vipopt/=0) Then

ldycv = nfact
ldvip = ip

Else
ldycv = 0
ldvip = 0

End If
Allocate (p(ldp,maxfac),c(ldc,maxfac),w(ldw,maxfac),b(ldb,my),xbar(ip), &

ybar(my),xstd(ip),ystd(my),ob(ldob,my),ycv(ldycv,my), &
vip(ldvip,vipopt))
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! Read in data
Read (nin,*)(p(i,1:maxfac),i=1,ip)
Read (nin,*)(c(i,1:maxfac),i=1,my)
Read (nin,*)(w(i,1:maxfac),i=1,ip)
If (vipopt/=0) Then

Read (nin,*)(ycv(i,1:my),i=1,nfact)
End If

! Read means and scalings
If (orig==1) Then

Read (nin,*) xbar(1:ip)
Read (nin,*) ybar(1:my)
If (iscale/=-1) Then

Read (nin,*) xstd(1:ip)
Read (nin,*) ystd(1:my)

End If
End If

! Calculate predictions
rcond = -1.0E0_nag_wp
ifail = 0
Call g02lcf(ip,my,maxfac,nfact,p,ldp,c,ldc,w,ldw,rcond,b,ldb,orig,xbar, &

ybar,iscale,xstd,ystd,ob,ldob,vipopt,ycv,ldycv,vip,ldvip,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,ip,my,b,ldb,’B’,ifail)
If (orig==1) Then

Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,ip+1,my,ob,ldob,’OB’,ifail)

End If
If (vipopt/=0) Then

Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,ip,vipopt,vip,ldvip,’VIP’,ifail)

End If

End Program g02lcfe

10.2 Program Data

G02LCF Example Program Data
15 1 4 2 1 1 1 : IP, MY, MAXFAC, NFACT, ORIG, SCALE, VIPOPT
-0.6708 -1.0047 0.6505 0.6169
0.4943 0.1355 -0.9010 -0.2388

-0.4167 -1.9983 -0.5538 0.8474
0.3930 1.2441 -0.6967 -0.4336
0.3267 0.5838 -1.4088 -0.6323
0.0145 0.9607 1.6594 0.5361

-2.4471 0.3532 -1.1321 -1.3554
3.5198 0.6005 0.2191 0.0380
1.0973 2.0635 -0.4074 -0.3522

-2.4466 2.5640 -0.4806 0.3819
2.2732 -1.3110 -0.7686 -1.8959

-1.7987 2.4088 -0.9475 -0.4727
0.3629 0.2241 -2.6332 2.3739
0.3629 0.2241 -2.6332 2.3739

-0.3629 -0.2241 2.6332 -2.3739 : P
3.5425 1.0475 0.2548 0.1866 : C

-1.5764E-01 -1.5935E-01 1.7774E-01 5.4029E-02
8.5680E-02 -1.5240E-04 -1.2179E-01 1.0989E-01

-1.6931E-01 -3.7431E-01 9.4348E-02 3.1878E-01
1.2153E-01 2.0589E-01 -1.8144E-01 -4.4610E-02
7.1133E-02 5.5884E-02 -2.6916E-01 5.4912E-02
6.5188E-02 2.4170E-01 2.3365E-01 -1.8849E-01

-4.2481E-01 -1.8798E-03 -3.2413E-01 -1.1600E-01
6.5370E-01 1.6725E-01 2.1908E-01 2.5461E-01
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2.8504E-01 3.6549E-01 -1.9244E-01 -1.5430E-01
-2.9341E-01 5.0464E-01 -1.0952E-02 1.3881E-01
2.9829E-01 -3.6979E-01 -4.9942E-01 -4.9355E-01

-2.0313E-01 4.1952E-01 -2.5684E-01 -7.5647E-02
5.6905E-02 -2.3197E-02 -3.0503E-01 3.9673E-01
5.6905E-02 -2.3197E-02 -3.0503E-01 3.9673E-01

-5.6905E-02 2.3197E-02 3.0503E-01 -3.9673E-01 : W
89.638060 97.476270 97.939839 98.188474 : YCV
-2.6137 -2.3614 -1.0449 2.8614 0.3156
-0.2641 -0.3146 -1.1221 0.2401 0.4694
-1.9619 0.1691 2.5664 1.3741 -2.7821 : XBAR
0.4520 : YBAR
1.4956 1.3233 0.5829 0.7735 0.6247
0.7966 2.4113 2.0421 0.4678 0.8197
0.9420 0.1735 1.0475 0.1359 1.3853 : XSTD
0.9062 : YSTD

10.3 Program Results

G02LCF Example Program Results

B
1

1 -0.1383
2 0.0572
3 -0.1906
4 0.1238
5 0.0591
6 0.0936
7 -0.2842
8 0.4713
9 0.2661

10 -0.0914
11 0.1226
12 -0.0488
13 0.0332
14 0.0332
15 -0.0332

OB
1

1 -0.4374
2 -0.0838
3 0.0392
4 -0.2964
5 0.1451
6 0.0857
7 0.1065
8 -0.1068
9 0.2091

10 0.5155
11 -0.1011
12 0.1180
13 -0.2548
14 0.0287
15 0.2214
16 -0.0217

VIP
1

1 0.6111
2 0.3182
3 0.7513
4 0.5048
5 0.2712
6 0.3593
7 1.5777
8 2.4348
9 1.1322

10 1.2226
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11 1.1799
12 0.8840
13 0.2129
14 0.2129
15 0.2129
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NAG Library Routine Document

G02LDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02LDF calculates predictions given the output from an orthogonal scores PLS regression (G02LAF or
G02LBF) and G02LCF.

2 Specification

SUBROUTINE G02LDF (IP, MY, ORIG, XBAR, YBAR, ISCALE, XSTD, YSTD, B, LDB,
N, MZ, ISZ, Z, LDZ, YHAT, LDYHAT, IFAIL)

&

INTEGER IP, MY, ORIG, ISCALE, LDB, N, MZ, ISZ(MZ), LDZ,
LDYHAT, IFAIL

&

REAL (KIND=nag_wp) XBAR(IP), YBAR(MY), XSTD(IP), YSTD(MY), B(LDB,MY),
Z(LDZ,MZ), YHAT(LDYHAT,MY)

&

3 Description

G02LDF calculates the predictions Ŷ of a PLS model given a set Z of test data and a set B of
parameter estimates as returned by G02LCF.

If G02LCF returns parameter estimates for the original data scale, no further information is required.

If G02LCF returns parameter estimates for the centred, and possibly scaled, data, further information is
required. The means of variables in the fitted model must be supplied. In the case of a PLS model fitted
by using scaled data, the means and standard deviations of variables in the fitted model must also be
supplied. These means and standard deviations are those returned by either G02LAF and G02LBF.

4 References

None.

5 Arguments

1: IP – INTEGER Input

On entry: the number of predictor variables in the fitted model. IP must take the same value as
that supplied to G02LAF or G02LBF to fit the model.

Constraint: IP > 1.

2: MY – INTEGER Input

On entry: the number of response variables in the fitted model. MY must take the same value as
that supplied to G02LAF or G02LBF to fit the model.

Constraint: MY � 1.

3: ORIG – INTEGER Input

On entry: indicates how parameter estimates are supplied.

ORIG ¼ 1
Parameter estimates are for the original data.
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ORIG ¼ �1
Parameter estimates are for the centred, and possibly scaled, data.

Constraint: ORIG ¼ �1 or 1.

4: XBARðIPÞ – REAL (KIND=nag_wp) array Input

On entry: if ORIG ¼ �1, XBAR must contain mean values of predictor variables in the model;
otherwise XBAR is not referenced.

5: YBARðMYÞ – REAL (KIND=nag_wp) array Input

On entry: if ORIG ¼ �1, YBAR must contain the mean value of each response variable in the
model; otherwise YBAR is not referenced.

6: ISCALE – INTEGER Input

On entry: if ORIG ¼ �1, ISCALE must take the value supplied to either G02LAF or G02LBF;
otherwise ISCALE is not referenced.

Constraint: if ORIG ¼ �1, ISCALE ¼ �1, 1 or 2.

7: XSTDðIPÞ – REAL (KIND=nag_wp) array Input

On entry: if ORIG ¼ �1 and ISCALE 6¼ �1, XSTD must contain the scalings of predictor
variables in the model as returned from either G02LAF or G02LBF; otherwise XSTD is not
referenced.

8: YSTDðMYÞ – REAL (KIND=nag_wp) array Input

On entry: if ORIG ¼ �1 and ISCALE 6¼ �1, YSTD must contain the scalings of response
variables as returned from either G02LAF or G02LBF; otherwise YSTD is not referenced.

9: BðLDB;MYÞ – REAL (KIND=nag_wp) array Input

On entry: if ORIG ¼ �1, B must contain the parameter estimate for the centred, and possibly
scaled, data as returned by G02LCF; otherwise B must contain the parameter estimates for the
original data as returned by G02LCF.

10: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which G02LDF
is called. If ORIG ¼ �1, LDB must be at least IP; otherwise B also contains the estimate for the
intercept parameter and consequently LDB must be at least 1þ IP.

Constraints:

if ORIG ¼ �1, LDB � IP;
if ORIG ¼ 1, LDB � 1þ IP.

11: N – INTEGER Input

On entry: n, the number of observations in the test data Z.

Constraint: N � 1.

12: MZ – INTEGER Input

On entry: the number of available predictor variables in the test data.

Constraint: MZ � IP.

13: ISZðMZÞ – INTEGER array Input

On entry: indicates which predictor variables are to be included in the model. Predictor variables
included from Z must be in the same order as those included in the fitted model.
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If ISZðjÞ ¼ 1, the jth predictor variable is included in the model, for j ¼ 1; 2; . . . ;MZ, otherwise
ISZðjÞ ¼ 0.

Constraints:

ISZðjÞ ¼ 0 or 1, for j ¼ 1; 2; . . . ;MZ;P
jISZðjÞ ¼ IP.

14: ZðLDZ;MZÞ – REAL (KIND=nag_wp) array Input

On entry: Zði; jÞ contains the ith observation on the jth available predictor variable, for
i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;MZ.

15: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which G02LDF
is called.

Constraint: LDZ � N.

16: YHATðLDYHAT;MYÞ – REAL (KIND=nag_wp) array Output

On exit: YHATði; jÞ contains the ith predicted value of the jth y-variable in the model.

17: LDYHAT – INTEGER Input

On entry: the first dimension of the array YHAT as declared in the (sub)program from which
G02LDF is called.

Constraint: LDYHAT � N.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP ¼ valueh i.
Constraint: IP > 1.

On entry, ISCALE ¼ valueh i.
Constraint: if ORIG ¼ �1, ISCALE ¼ �1, 1 or 2.

On entry, ISZðjÞ ¼ valueh i, j ¼ valueh i.
Constraint: ISZðjÞ ¼ 0 or 1.

On entry, MY ¼ valueh i.
Constraint: MY � 1.
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On entry, N ¼ valueh i.
Constraint: N � 1.

On entry, ORIG ¼ valueh i.
Constraint: ORIG ¼ �1 or 1.

IFAIL ¼ 2

On entry, LDB ¼ valueh i and IP ¼ valueh i.
Constraint: if ORIG ¼ �1, LDB � IP.

On entry, LDB ¼ valueh i and IPþ 1 ¼ valueh i.
Constraint: if ORIG ¼ 1, LDB � 1þ IP.

On entry, LDYHAT ¼ valueh i and N ¼ valueh i.
Constraint: LDYHAT � N.

On entry, LDZ ¼ valueh i and N ¼ valueh i.
Constraint: LDZ � N.

On entry, MZ ¼ valueh i and IP ¼ valueh i.
Constraint: MZ � IP.

IFAIL ¼ 3

On entry, the number of elements of ISZ equal to 1 is not IP.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02LDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02LDF allocates internally 3� IPþMY elements of real storage.
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10 Example

This example reads in parameter estimates for a fitted PLS model and prediction data, and the PLS
model predictions are calculated.

10.1 Program Text

Program g02ldfe

! G02LDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02ldf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ip, iscale, ldb, ldyhat, &

ldz, my, mz, n, orig
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:,:), xbar(:), xstd(:), ybar(:), &
yhat(:,:), ystd(:), z(:,:)

Integer, Allocatable :: isz(:)
! .. Intrinsic Procedures ..

Intrinsic :: sum
! .. Executable Statements ..

Write (nout,*) ’G02LDF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) my, orig, iscale, n, mz

ldyhat = n
ldz = n
Allocate (ybar(my),ystd(my),isz(mz),z(ldz,mz),yhat(ldyhat,my))

! Read prediction x-data
Read (nin,*)(z(i,1:mz),i=1,n)

! Read in elements of ISZ
Read (nin,*) isz(1:mz)

! Calculate IP
ip = sum(isz(1:mz))

ldb = ip
If (orig==1) Then

ldb = ldb + 1
End If
Allocate (xbar(ip),xstd(ip),b(ldb,my))

! Read parameter estimates
Read (nin,*)(b(i,1:my),i=1,ldb)

! Read means
If (orig==-1) Then

Read (nin,*) xbar(1:ip)
Read (nin,*) ybar(1:my)

If (iscale/=-1) Then
! Read scalings

Read (nin,*) xstd(1:ip)
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Read (nin,*) ystd(1:my)
End If

End If

! Calculate predictions
ifail = 0
Call g02ldf(ip,my,orig,xbar,ybar,iscale,xstd,ystd,b,ldb,n,mz,isz,z,ldz, &

yhat,ldyhat,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,n,my,yhat,ldyhat,’YHAT’,ifail)

End Program g02ldfe

10.2 Program Data

G02LDF Example Program Data
1 -1 1 15 15 : MY, ORIG, SCALE, N, MZ
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
1.9607 -1.6324 0.5746 1.9607 -1.6324 0.5740
2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
1.9607 -1.6324 0.5746 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 1.9607 -1.6324 0.5746
2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 2.8369 1.4092 -3.1398
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
-4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902

-1.2201 0.8829 2.2253
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
2.4064 1.7438 1.1057 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 0.0744 -1.7333 0.0902
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398
2.2261 -5.3648 0.3049 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398

-4.1921 -1.0285 -0.9801 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398

-4.9217 1.2977 0.4473 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
2.2261 -5.3648 0.3049 2.2261 -5.3648 0.3049
2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
-4.9217 1.2977 0.4473 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
-4.1921 -1.0285 -0.9801 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 : End of Z
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 : Elements of ISZ

-0.1383 0.0572 -0.1906 0.1238 0.0591 0.0936
-0.2842 0.4713 0.2661 -0.0914 0.1226 -0.0488
0.0332 0.0332 -0.0332 : End of B

-2.6137 -2.3614 -1.0449 2.8614 0.3156 -0.2641
-0.3146 -1.1221 0.2401 0.4694 -1.9619 0.1691
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2.5664 1.3741 -2.7821 : End of XBAR
0.4520 : YBAR
1.4956 1.3233 0.5829 0.7735 0.6247 0.7966
2.4113 2.0421 0.4678 0.8197 0.9420 0.1735
1.0475 0.1359 1.3853 : End of XSTD
0.9062 : YSTD

10.3 Program Results

G02LDF Example Program Results

YHAT
1

1 0.2132
2 0.5152
3 0.1437
4 0.4459
5 0.1716
6 2.4809
7 0.0964
8 1.4475
9 -0.1546

10 -0.5492
11 0.5393
12 0.2686
13 -1.1332
14 1.7975
15 0.4973
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NAG Library Routine Document

G02MAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02MAF performs Least Angle Regression (LARS), forward stagewise linear regression or Least
Absolute Shrinkage and Selection Operator (LASSO).

2 Specification

SUBROUTINE G02MAF (MTYPE, PRED, PREY, N, M, D, LDD, ISX, LISX, Y,
MNSTEP, IP, NSTEP, B, LDB, FITSUM, ROPT, LROPT,
IFAIL)

&
&

INTEGER MTYPE, PRED, PREY, N, M, LDD, ISX(LISX), LISX,
MNSTEP, IP, NSTEP, LDB, LROPT, IFAIL

&

REAL (KIND=nag_wp) D(LDD,*), Y(N), B(LDB,*), FITSUM(6,MNSTEP+1),
ROPT(LROPT)

&

3 Description

G02MAF implements the LARS algorithm of Efron et al. (2004) as well as the modifications needed to
perform forward stagewise linear regression and fit LASSO and positive LASSO models.

Given a vector of n observed values, y ¼ yi : i ¼ 1; 2; . . . ; nf g and an n� p design matrix X, where the
jth column of X, denoted xj, is a vector of length n representing the jth independent variable xj,

standardized such that
Xn
i¼1
xij ¼ 0, and

Xn
i¼1
x2ij ¼ 1 and a set of model parameters � to be estimated from

the observed values, the LARS algorithm can be summarised as:

1. Set k ¼ 1 and all coefficients to zero, that is � ¼ 0.

2. Find the variable most correlated with y, say xj1. Add xj1 to the ‘most correlated’ set A. If p ¼ 1
go to 8.

3. Take the largest possible step in the direction of xj1 (i.e., increase the magnitude of �j1 ) until
some other variable, say xj2, has the same correlation with the current residual, y� xj1�j1 .

4. Increment k and add xjk to A.
5. If Aj j ¼ p go to 8.

6. Proceed in the ‘least angle direction’, that is, the direction which is equiangular between all
variables in A, altering the magnitude of the parameter estimates of those variables in A, until
the kth variable, xjk , has the same correlation with the current residual.

7. Go to 4.

8. Let K ¼ k.
As well as being a model selection process in its own right, with a small number of modifications the
LARS algorithm can be used to fit the LASSO model of Tibshirani (1996), a positive LASSO model,
where the independent variables enter the model in their defined direction (i.e., �kj � 0), forward
stagewise linear regression (Hastie et al. (2001)) and forward selection (Weisberg (1985)). Details of
the required modifications in each of these cases are given in Efron et al. (2004).

G02 – Correlation and Regression Analysis G02MAF

Mark 26 G02MAF.1



The LASSO model of Tibshirani (1996) is given by

minimize
�;�k2Rp

y� ��XT�k
�� ��2 subject to �kk k1 � tk

for all values of tk, where � ¼ �y ¼ n�1
Xn
i¼1
yi. The positive LASSO model is the same as the standard

LASSO model, given above, with the added constraint that

�kj � 0; j ¼ 1; 2; . . . ; p:

Unlike the standard LARS algorithm, when fitting either of the LASSO models, variables can be
dropped as well as added to the set A. Therefore the total number of steps K is no longer bounded by
p.

Forward stagewise linear regression is an iterative procedure of the form:

1. Initialize k ¼ 1 and the vector of residuals r0 ¼ y� �.
2. For each j ¼ 1; 2; . . . ; p calculate cj ¼ xTj rk�1. The value cj is therefore proportional to the

correlation between the jth independent variable and the vector of previous residual values, rk.

3. Calculate jk ¼ argmax
j

cj
		 		, the value of j with the largest absolute value of cj.

4. If cjk
		 		 < � then go to 7.

5. Update the residual values, with

rk ¼ rk�1 þ � sign cjk
� �

xjk

where � is a small constant and sign cjk
� �

¼ �1 when cjk < 0 and 1 otherwise.

6. Increment k and go to 2.

7. Set K ¼ k.

If the largest possible step were to be taken, that is � ¼ cjk
		 		 then forward stagewise linear regression

reverts to the standard forward selection method as implemented in G02EEF.

The LARS procedure results in K models, one for each step of the fitting process. In order to aid in
choosing which is the most suitable Efron et al. (2004) introduced a Cp-type statistic given by

C kð Þ
p ¼

y�XT�kk k2

�2
� nþ 2�k;

where �k is the approximate degrees of freedom for the kth step and

�2 ¼ n� y
Ty

�K
:

One way of choosing a model is therefore to take the one with the smallest value of C kð Þ
p .

4 References

Efron B, Hastie T, Johnstone I and Tibshirani R (2004) Least Angle Regression The Annals of Statistics
(Volume 32) 2 407–499

Hastie T, Tibshirani R and Friedman J (2001) The Elements of Statistical Learning: Data Mining,
Inference and Prediction Springer (New York)

Tibshirani R (1996) Regression Shrinkage and Selection via the Lasso Journal of the Royal Statistics
Society, Series B (Methodological) (Volume 58) 1 267–288

Weisberg S (1985) Applied Linear Regression Wiley
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5 Arguments

1: MTYPE – INTEGER Input

On entry: indicates the type of model to fit.

MTYPE ¼ 1
LARS is performed.

MTYPE ¼ 2
Forward linear stagewise regression is performed.

MTYPE ¼ 3
LASSO model is fit.

MTYPE ¼ 4
A positive LASSO model is fit.

Constraint: MTYPE ¼ 1, 2, 3 or 4.

2: PRED – INTEGER Input

On entry: indicates the type of data preprocessing to perform on the independent variables
supplied in D to comply with the standardized form of the design matrix.

PRED ¼ 0
No preprocessing is performed.

PRED ¼ 1
Each of the independent variables, xj , for j ¼ 1; 2; . . . ; p, are mean centred prior to fitting
the model. The means of the independent variables, �x, are returned in B, with
�xj ¼ Bðj;NSTEPþ 2Þ, for j ¼ 1; 2; . . . ; p.

PRED ¼ 2

Each independent variable is normalized, with the jth variable scaled by 1=
ffiffiffiffiffiffiffiffiffiffi
xTj xj

q
. The

scaling factor used by variable j is returned in Bðj;NSTEPþ 1Þ.
PRED ¼ 3

As PRED ¼ 1 and 2, all of the independent variables are mean centred prior to being
normalized.

Suggested value: PRED ¼ 3.

Constraint: PRED ¼ 0, 1, 2 or 3.

3: PREY – INTEGER Input

On entry: indicates the type of data preprocessing to perform on the dependent variable supplied
in Y.

PREY ¼ 0
No preprocessing is performed, this is equivalent to setting � ¼ 0.

PREY ¼ 1
The dependent variable, y, is mean centred prior to fitting the model, so � ¼ �y. Which is
equivalent to fitting a non-penalized intercept to the model and the degrees of freedom etc.
are adjusted accordingly.

The value of � used is returned in FITSUMð1;NSTEPþ 1Þ.
Suggested value: PREY ¼ 1.

Constraint: PREY ¼ 0 or 1.
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4: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

5: M – INTEGER Input

On entry: m, the total number of independent variables.

Constraint: M � 1.

6: DðLDD; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array D must be at least M.

On entry: D, the data, which along with PRED and ISX, defines the design matrix X. The ith
observation for the jth variable must be supplied in Dði; jÞ, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;M.

7: LDD – INTEGER Input

On entry: the first dimension of the array D as declared in the (sub)program from which
G02MAF is called.

Constraint: LDD � N.

8: ISXðLISXÞ – INTEGER array Input

On entry: indicates which independent variables from D will be included in the design matrix, X.

If LISX ¼ 0, all variables are included in the design matrix and ISX is not referenced.

If LISX ¼ M, for j ¼ 1; 2; . . . ;M when ISXðjÞ must be set as follows:

ISXðjÞ ¼ 1
To indicate that the jth variable, as supplied in D, is included in the design matrix;

ISXðjÞ ¼ 0
To indicated that the jth variable, as supplied in D, is not included in the design matrix;

and p ¼
Xm
j¼1

ISXðjÞ.

Constraint: if LISX ¼ M, ISXðjÞ ¼ 0 or 1 and at least one value of ISXðjÞ 6¼ 0, for
j ¼ 1; 2; . . . ;M.

9: LISX – INTEGER Input

On entry: length of the ISX array.

Constraint: LISX ¼ 0 or M.

10: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: y, the observations on the dependent variable.

11: MNSTEP – INTEGER Input

On entry: the maximum number of steps to carry out in the model fitting process.

If MTYPE ¼ 1, i.e., a LARS is being performed, the maximum number of steps the algorithm
will take is min p; nð Þ if PREY ¼ 0, otherwise min p; n� 1ð Þ.
If MTYPE ¼ 2, i.e., a forward linear stagewise regression is being performed, the maximum
number of steps the algorithm will take is likely to be several orders of magnitude more and is no
longer bound by p or n.
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If MTYPE ¼ 3 or 4, i.e., a LASSO or positive LASSO model is being fit, the maximum number
of steps the algorithm will take lies somewhere between that of the LARS and forward linear
stagewise regression, again it is no longer bound by p or n.

Constraint: MNSTEP � 1.

12: IP – INTEGER Output

On exit: p, number of parameter estimates.

If LISX ¼ 0, p ¼ M, i.e., the number of variables in D.

Otherwise p is the number of nonzero values in ISX.

13: NSTEP – INTEGER Output

On exit: K, the actual number of steps carried out in the model fitting process.

14: BðLDB; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array B must be at least MNSTEPþ 2.

On exit: � the parameter estimates, with Bðj; kÞ ¼ �kj, the parameter estimate for the jth variable,
j ¼ 1; 2; . . . ; p at the kth step of the model fitting process, k ¼ 1; 2; . . . ;NSTEP.

By default, when PRED ¼ 2 or 3 the parameter estimates are rescaled prior to being returned. If
the parameter estimates are required on the normalized scale, then this can be overridden via
ROPT.

The values held in the remaining part of B depend on the type of preprocessing performed.

If PRED ¼ 0,
Bðj;NSTEPþ 1Þ ¼ 1
Bðj;NSTEPþ 2Þ ¼ 0

If PRED ¼ 1,
Bðj;NSTEPþ 1Þ ¼ 1
Bðj;NSTEPþ 2Þ ¼ �xj

If PRED ¼ 2,

Bðj;NSTEPþ 1Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
xTj xj

q
Bðj;NSTEPþ 2Þ ¼ 0

If PRED ¼ 3,

Bðj;NSTEPþ 1Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � �xj
� �T

xj � �xj
� �q

Bðj;NSTEPþ 2Þ ¼ �xj

for j ¼ 1; 2; . . . ; p.

15: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which
G02MAF is called.

Constraint: LDB � p, where p is the number of parameter estimates as described in IP.

16: FITSUMð6;MNSTEPþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: summaries of the model fitting process. When k ¼ 1; 2; . . . ;NSTEP,

FITSUMð1; kÞ
�kk k1, the sum of the absolute values of the parameter estimates for the kth step of the
modelling fitting process. If PRED ¼ 2 or 3, the scaled parameter estimates are used in the
summation.
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FITSUMð2; kÞ
RSSk, the residual sums of squares for the kth step, where RSSk ¼ y�XT�kk k2.

FITSUMð3; kÞ
�k, approximate degrees of freedom for the kth step.

FITSUMð4; kÞ
C kð Þ
p , a Cp-type statistic for the kth step, where C kð Þ

p ¼ RSSk
�2
� nþ 2�k .

FITSUMð5; kÞ
Ĉk, correlation between the residual at step k� 1 and the most correlated variable not yet
in the active set A, where the residual at step 0 is y.

FITSUMð6; kÞ
�̂k, the step size used at step k.

In addition

FITSUMð1;NSTEPþ 1Þ
�, with � ¼ �y if PREY ¼ 1 and 0 otherwise.

FITSUMð2;NSTEPþ 1Þ
RSS0, the residual sums of squares for the null model, where RSS0 ¼ yTy when PREY ¼ 0
and RSS0 ¼ y� �yð ÞT y� �yð Þ otherwise.

FITSUMð3;NSTEPþ 1Þ
�0, the degrees of freedom for the null model, where �0 ¼ 0 if PREY ¼ 0 and �0 ¼ 1
otherwise.

FITSUMð4;NSTEPþ 1Þ
C 0ð Þ
p , a Cp-type statistic for the null model, where C 0ð Þ

p ¼ RSS0
�2
� nþ 2�0 .

FITSUMð5;NSTEPþ 1Þ
�2, where �2 ¼ n�RSSK

�K
and K ¼ NSTEP.

Although the Cp statistics described above are returned when IFAIL ¼ 112 they may not be
meaningful due to the estimate �2 not being based on the saturated model.

17: ROPTðLROPTÞ – REAL (KIND=nag_wp) array Input

On entry: optional parameters to control various aspects of the LARS algorithm.

The default value will be used for ROPTðiÞ if LROPT < i, therefore setting LROPT ¼ 0 will use
the default values for all optional arguments and ROPT need not be set. The default value will
also be used if an invalid value is supplied for a particular argument, for example, setting
ROPTðiÞ ¼ �1 will use the default value for argument i.

ROPTð1Þ
The minimum step size that will be taken.

Default is 100� eps is used, where eps is the machine precision returned by X02AJF.

ROPTð2Þ
General tolerance, used amongst other things, for comparing correlations.

Default is ROPTð1Þ.
ROPTð3Þ

If set to 1, parameter estimates are rescaled before being returned.

If set to 0, no rescaling is performed.

This argument has no effect when PRED ¼ 0 or 1.

Default is for the parameter estimates to be rescaled.
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ROPTð4Þ
If set to 1, it is assumed that the model contains an intercept during the model fitting
process and when calculating the degrees of freedom.

If set to 0, no intercept is assumed.

This has no effect on the amount of preprocessing performed on Y.

Default is to treat the model as having an intercept when PREY ¼ 1 and as not having an
intercept when PREY ¼ 0.

ROPTð5Þ
As implemented, the LARS algorithm can either work directly with y and X, or it can
work with the cross-product matrices, XTy and XTX. In most cases it is more efficient to
work with the cross-product matrices. This flag allows you direct control over which
method is used, however, the default value will usually be the best choice.

If ROPTð5Þ ¼ 1, y and X are worked with directly.

If ROPTð5Þ ¼ 0, the cross-product matrices are used.

Default is 1 when p � 500 and n < p and 0 otherwise.

Constraints:

ROPTð1Þ > machine precision;
ROPTð2Þ > machine precision;
ROPTð3Þ ¼ 0 or 1;
ROPTð4Þ ¼ 0 or 1;
ROPTð5Þ ¼ 0 or 1.

18: LROPT – INTEGER Input

On entry: length of the options array ROPT.

Constraint: 0 � LROPT � 5.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02MAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, MTYPE ¼ valueh i.
Constraint: MTYPE ¼ 1, 2, 3 or 4.
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IFAIL ¼ 21

On entry, PRED ¼ valueh i.
Constraint: PRED ¼ 0, 1, 2 or 3.

IFAIL ¼ 31

On entry, PREY ¼ valueh i.
Constraint: PREY ¼ 0 or 1.

IFAIL ¼ 41

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 51

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 71

On entry, LDD ¼ valueh i and N ¼ valueh i.
Constraint: LDD � N.

IFAIL ¼ 81

On entry, ISXð valueh iÞ ¼ valueh i.
Constraint: ISXðiÞ ¼ 0 or 1 for all i.

IFAIL ¼ 82

On entry, all values of ISX are zero.
Constraint: at least one value of ISX must be nonzero.

IFAIL ¼ 91

On entry, LISX ¼ valueh i and M ¼ valueh i.
Constraint: LISX ¼ 0 or M.

IFAIL ¼ 111

On entry, MNSTEP ¼ valueh i.
Constraint: MNSTEP � 1.

IFAIL ¼ 112

Fitting process did not finish in MNSTEP steps. Try increasing the size of MNSTEP and
supplying larger output arrays.
All output is returned as documented, up to step MNSTEP, however, � and the Cp statistics may
not be meaningful.

IFAIL ¼ 151

On entry, LDB ¼ valueh i and M ¼ valueh i.
Constraint: if LISX ¼ 0 then LDB � M.

IFAIL ¼ 152

On entry, LDB ¼ valueh i and p ¼ valueh i.
Constraint: if LISX ¼ M then LDB � p.
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IFAIL ¼ 161

�2 is approximately zero and hence the Cp-type criterion cannot be calculated. All other output is
returned as documented.

IFAIL ¼ 162

�K ¼ n, therefore � has been set to a large value. Output is returned as documented.

IFAIL ¼ 163

Degenerate model, no variables added and NSTEP ¼ 0. Output is returned as documented.

IFAIL ¼ 181

On entry, LROPT ¼ valueh i.
Constraint: 0 � LROPT � 5.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02MAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02MAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02MAF returns the parameter estimates at various points along the solution path of a LARS, LASSO
or stagewise regression analysis. If the solution is required at a different set of points, for example
when performing cross-validation, then G02MCF can be used.

For datasets with a large number of observations, n, it may be impractical to store the full X matrix in
memory in one go. In such instances the cross-product matrices XTy and XTX can be calculated, using
for example, multiple calls to G02BUF and G02BZF, and G02MBF called to perform the analysis.

The amount of workspace used by G02MAF depends on whether the cross-product matrices are being
used internally (as controlled by ROPT). If the cross-product matrices are being used then G02MAF
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internally allocates approximately 2p2 þ 4pþmax npð Þ elements of real storage compared to
p2 þ 3pþmax npð Þ þ 2nþ n� p elements when X and y are used directly. In both cases approximately
5p elements of integer storage are also used. If a forward linear stagewise analysis is performed than an
additional p2 þ 5p elements of real storage are required.

10 Example

This example performs a LARS on a simulated dataset with 20 observations and 6 independent
variables.

10.1 Program Text

Program g02mafe

! G02MAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02maf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ip, k, ldb, ldd, lisx, &

lropt, m, mnstep, mtype, n, nstep, &
pred, prey

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), d(:,:), fitsum(:,:), &

ropt(:), y(:)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: count, floor, max, repeat

! .. Executable Statements ..
Write (nout,*) ’G02MAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

! Read in the model specification
Read (nin,*) mtype, pred, prey, mnstep, lisx

! Read in variable inclusion flags (if specified) and calculate IP
Allocate (isx(lisx))
If (lisx==m) Then

Read (nin,*) isx(1:lisx)
ip = count(isx(1:m)==1)

Else
ip = m

End If

! Optional arguments (using defaults)
lropt = 0
Allocate (ropt(lropt))

! Read in the data
ldd = n
Allocate (y(n),d(ldd,m))
Read (nin,*)(d(i,1:m),y(i),i=1,n)

! Allocate output arrays
ldb = ip
Allocate (b(ldb,mnstep+2),fitsum(6,mnstep+1))
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! Call the model fitting routine
ifail = -1
Call g02maf(mtype,pred,prey,n,m,d,ldd,isx,lisx,y,mnstep,ip,nstep,b,ldb, &

fitsum,ropt,lropt,ifail)
If (ifail/=0) Then

If (ifail/=112 .And. ifail/=161 .And. ifail/=162 .And. ifail/=163) &
Then

! IFAIL = 112, 161, 162 and 163 are warnings, so no need to terminate
! if they occur

Go To 100
End If

End If

! Display the parameter estimates
Write (nout,*) ’ Step ’, repeat(’ ’,max((ip-2),0)*5), &

’ Parameter Estimate’
Write (nout,*) repeat(’-’,5+ip*10)
Do k = 1, nstep

Write (nout,99998) k, b(1:ip,k)
End Do
Write (nout,*)
Write (nout,99999) ’alpha: ’, fitsum(1,nstep+1)
Write (nout,*)
Write (nout,*) &

’ Step Sum RSS df Cp Ck Step Size’
Write (nout,*) repeat(’-’,64)
Do k = 1, nstep

Write (nout,99997) k, fitsum(1:2,k), floor(fitsum(3,k)+0.5_nag_wp), &
fitsum(4:6,k)

End Do
Write (nout,*)
Write (nout,99999) ’sigma^2: ’, fitsum(5,nstep+1)

100 Continue
99999 Format (1X,A,F9.3)
99998 Format (2X,I3,10(1X,F9.3))
99997 Format (2X,I3,2(1X,F9.3),1X,I6,1X,3(1X,F9.3))

End Program g02mafe

10.2 Program Data

G02MAF Example Program Data
20 6 :: N,M
1 3 1 6 0 :: MTYPE,PRED,PREY,MNSTEP,LISX
10.28 1.77 9.69 15.58 8.23 10.44 -46.47
9.08 8.99 11.53 6.57 15.89 12.58 -35.80

17.98 13.10 1.04 10.45 10.12 16.68 -129.22
14.82 13.79 12.23 7.00 8.14 7.79 -42.44
17.53 9.41 6.24 3.75 13.12 17.08 -73.51
7.78 10.38 9.83 2.58 10.13 4.25 -26.61

11.95 21.71 8.83 11.00 12.59 10.52 -63.90
14.60 10.09 -2.70 9.89 14.67 6.49 -76.73
3.63 9.07 12.59 14.09 9.06 8.19 -32.64
6.35 9.79 9.40 12.79 8.38 16.79 -83.29
4.66 3.55 16.82 13.83 21.39 13.88 -16.31
8.32 14.04 17.17 7.93 7.39 -1.09 -5.82

10.86 13.68 5.75 10.44 10.36 10.06 -47.75
4.76 4.92 17.83 2.90 7.58 11.97 18.38
5.05 10.41 9.89 9.04 7.90 13.12 -54.71
5.41 9.32 5.27 15.53 5.06 19.84 -55.62
9.77 2.37 9.54 20.23 9.33 8.82 -45.28

14.28 4.34 14.23 14.95 18.16 11.03 -22.76
10.17 6.80 3.17 8.57 16.07 15.93 -104.32
5.39 2.67 6.37 13.56 10.68 7.35 -55.94 :: End of D, Y
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10.3 Program Results

G02MAF Example Program Results

Step Parameter Estimate
-----------------------------------------------------------------

1 0.000 0.000 3.125 0.000 0.000 0.000
2 0.000 0.000 3.792 0.000 0.000 -0.713
3 -0.446 0.000 3.998 0.000 0.000 -1.151
4 -0.628 -0.295 4.098 0.000 0.000 -1.466
5 -1.060 -1.056 4.110 -0.864 0.000 -1.948
6 -1.073 -1.132 4.118 -0.935 -0.059 -1.981

alpha: -50.037

Step Sum RSS df Cp Ck Step Size
----------------------------------------------------------------

1 72.446 8929.855 2 13.355 123.227 72.446
2 103.385 6404.701 3 7.054 50.781 24.841
3 126.243 5258.247 4 5.286 30.836 16.225
4 145.277 4657.051 5 5.309 19.319 11.587
5 198.223 3959.401 6 5.016 12.266 24.520
6 203.529 3954.571 7 7.000 0.910 2.198

sigma^2: 304.198

This example plot shows the regression coefficients (�k) plotted against the scaled absolute sum of the
parameter estimates ( �kk k1).
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NAG Library Routine Document

G02MBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02MBF performs Least Angle Regression (LARS), forward stagewise linear regression or Least
Absolute Shrinkage and Selection Operator (LASSO) using cross-product matrices.

2 Specification

SUBROUTINE G02MBF (MTYPE, PRED, INTCPT, N, M, DTD, LDDTD, ISX, LISX,
DTY, YTY, MNSTEP, IP, NSTEP, B, LDB, FITSUM, ROPT,
LROPT, IFAIL)

&
&

INTEGER MTYPE, PRED, INTCPT, N, M, LDDTD, ISX(LISX), LISX,
MNSTEP, IP, NSTEP, LDB, LROPT, IFAIL

&

REAL (KIND=nag_wp) DTD(LDDTD,*), DTY(M), YTY, B(LDB,*),
FITSUM(6,MNSTEP+1), ROPT(LROPT)

&

3 Description

G02MBF implements the LARS algorithm of Efron et al. (2004) as well as the modifications needed to
perform forward stagewise linear regression and fit LASSO and positive LASSO models.

Given a vector of n observed values, y ¼ yi : i ¼ 1; 2; . . . ; nf g and an n� p design matrix X, where the
jth column of X, denoted xj, is a vector of length n representing the jth independent variable xj,

standardized such that
Xn
i¼1
xij ¼ 0, and

Xn
i¼1
x2ij ¼ 1 and a set of model parameters � to be estimated from

the observed values, the LARS algorithm can be summarised as:

1. Set k ¼ 1 and all coefficients to zero, that is � ¼ 0.

2. Find the variable most correlated with y, say xj1. Add xj1 to the ‘most correlated’ set A. If p ¼ 1
go to 8.

3. Take the largest possible step in the direction of xj1 (i.e., increase the magnitude of �j1 ) until
some other variable, say xj2, has the same correlation with the current residual, y� xj1�j1 .

4. Increment k and add xjk to A.
5. If Aj j ¼ p go to 8.

6. Proceed in the ‘least angle direction’, that is, the direction which is equiangular between all
variables in A, altering the magnitude of the parameter estimates of those variables in A, until
the kth variable, xjk , has the same correlation with the current residual.

7. Go to 4.

8. Let K ¼ k.
As well as being a model selection process in its own right, with a small number of modifications the
LARS algorithm can be used to fit the LASSO model of Tibshirani (1996), a positive LASSO model,
where the independent variables enter the model in their defined direction, forward stagewise linear
regression (Hastie et al. (2001)) and forward selection (Weisberg (1985)). Details of the required
modifications in each of these cases are given in Efron et al. (2004).
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The LASSO model of Tibshirani (1996) is given by

minimize
�;�k2Rp

y� ��XT�k
�� ��2 subject to �kk k1 � tk

for all values of tk, where � ¼ �y ¼ n�1
Xn
i¼1
yi. The positive LASSO model is the same as the standard

LASSO model, given above, with the added constraint that

�kj � 0; j ¼ 1; 2; . . . ; p:

Unlike the standard LARS algorithm, when fitting either of the LASSO models, variables can be
dropped as well as added to the set A. Therefore the total number of steps K is no longer bounded by
p.

Forward stagewise linear regression is an iterative procedure of the form:

1. Initialize k ¼ 1 and the vector of residuals r0 ¼ y� �.
2. For each j ¼ 1; 2; . . . ; p calculate cj ¼ xTj rk�1. The value cj is therefore proportional to the

correlation between the jth independent variable and the vector of previous residual values, rk.

3. Calculate jk ¼ argmax
j

cj
		 		, the value of j with the largest absolute value of cj.

4. If cjk
		 		 < � then go to 7.

5. Update the residual values, with

rk ¼ rk�1 þ � sign cjk
� �

xjk

where � is a small constant and sign cjk
� �

¼ �1 when cjk < 0 and 1 otherwise.

6. Increment k and go to 2.

7. Set K ¼ k.

If the largest possible step were to be taken, that is � ¼ cjk
		 		 then forward stagewise linear regression

reverts to the standard forward selection method as implemented in G02EEF.

The LARS procedure results in K models, one for each step of the fitting process. In order to aid in
choosing which is the most suitable Efron et al. (2004) introduced a Cp-type statistic given by

C kð Þ
p ¼

y�XT�kk k2

�2
� nþ 2�k;

where �k is the approximate degrees of freedom for the kth step and

�2 ¼ n� y
Ty

�K
:

One way of choosing a model is therefore to take the one with the smallest value of C kð Þ
p .

4 References

Efron B, Hastie T, Johnstone I and Tibshirani R (2004) Least Angle Regression The Annals of Statistics
(Volume 32) 2 407–499

Hastie T, Tibshirani R and Friedman J (2001) The Elements of Statistical Learning: Data Mining,
Inference and Prediction Springer (New York)

Tibshirani R (1996) Regression Shrinkage and Selection via the Lasso Journal of the Royal Statistics
Society, Series B (Methodological) (Volume 58) 1 267–288

Weisberg S (1985) Applied Linear Regression Wiley
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5 Arguments

1: MTYPE – INTEGER Input

On entry: indicates the type of model to fit.

MTYPE ¼ 1
LARS is performed.

MTYPE ¼ 2
Forward linear stagewise regression is performed.

MTYPE ¼ 3
LASSO model is fit.

MTYPE ¼ 4
A positive LASSO model is fit.

Constraint: MTYPE ¼ 1, 2, 3 or 4.

2: PRED – INTEGER Input

On entry: indicates the type of preprocessing to perform on the cross-products involving the
independent variables, i.e., those supplied in DTD and DTY.

PRED ¼ 0
No preprocessing is performed.

PRED ¼ 2

Each independent variable is normalized, with the jth variable scaled by 1=
ffiffiffiffiffiffiffiffiffiffi
xTj xj

q
. The

scaling factor used by variable j is returned in Bðj;NSTEPþ 1Þ.
Constraint: PRED ¼ 0 or 2.

3: INTCPT – INTEGER Input

On entry: indicates the type of data preprocessing that was perform on the dependent variable, y,
prior to calling this routine.

INTCPT ¼ 0
No preprocessing was performed.

INTCPT ¼ 1
The dependent variable, y, was mean centred.

Constraint: INTCPT ¼ 0 or 1.

4: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

5: M – INTEGER Input

On entry: m, the total number of independent variables.

Constraint: M � 1.

6: DTDðLDDTD; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array DTD must be at least M Mþ 1ð Þ=2 if LDDTD ¼ 1, and
at least M otherwise.

On entry: DTD, the cross-product matrix, which along with ISX, defines the design matrix cross-
product XTX.
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If LDDTD ¼ 1, DTDð1; i � i � 1ð Þ=2þ jÞ must contain the cross-product of the ith and jth
variable, for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;M. That is the cross-product stacked by columns as
returned by G02BUF, for example.

Otherwise DTDði; jÞ must contain the cross-product of the ith and jth variable, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;M. It should be noted that, even though DTD is symmetric,
the full matrix must be supplied.

The matrix specified in DTD must be a valid cross-products matrix.

7: LDDTD – INTEGER Input

On entry: the first dimension of the array DTD as declared in the (sub)program from which
G02MBF is called.

Constraint: LDDTD ¼ 1 or LDDTD � M.

8: ISXðLISXÞ – INTEGER array Input

On entry: indicates which independent variables from DTD will be included in the design matrix,
X.

If LISX ¼ 0, all variables are included in the design matrix and ISX is not referenced.

If LISX ¼ M,, for j ¼ 1; 2; . . . ;M when ISXðjÞ must be set as follows:

ISXðjÞ ¼ 1
To indicate that the jth variable, as supplied in DTD, is included in the design matrix;

ISXðjÞ ¼ 0
To indicate that the jth variable, as supplied in DTD, is not included in the design matrix;

and p ¼
Xm
j¼1

ISXðjÞ.

Constraint: if LISX ¼ M, ISXðjÞ ¼ 0 or 1 and at least one value of ISXðjÞ 6¼ 0, for
j ¼ 1; 2; . . . ;M.

9: LISX – INTEGER Input

On entry: length of the ISX array.

Constraint: LISX ¼ 0 or M.

10: DTYðMÞ – REAL (KIND=nag_wp) array Input

On entry: DTy, the cross-product between the dependent variable, y, and the independent
variables D.

11: YTY – REAL (KIND=nag_wp) Input

On entry: yTy, the sums of squares of the dependent variable.

Constraint: YTY > 0:0.

12: MNSTEP – INTEGER Input

On entry: the maximum number of steps to carry out in the model fitting process.

If MTYPE ¼ 1, i.e., a LARS is being performed, the maximum number of steps the algorithm
will take is min p; nð Þ if INTCPT ¼ 0, otherwise min p; n� 1ð Þ.
If MTYPE ¼ 2, i.e., a forward linear stagewise regression is being performed, the maximum
number of steps the algorithm will take is likely to be several orders of magnitude more and is no
longer bound by p or n.

G02MBF NAG Library Manual

G02MBF.4 Mark 26



If MTYPE ¼ 3 or 4, i.e., a LASSO or positive LASSO model is being fit, the maximum number
of steps the algorithm will take lies somewhere between that of the LARS and forward linear
stagewise regression, again it is no longer bound by p or n.

Constraint: MNSTEP � 1.

13: IP – INTEGER Output

On exit: p, number of parameter estimates.

If LISX ¼ 0, p ¼ M, i.e., the number of variables in DTD.

Otherwise p is the number of nonzero values in ISX.

14: NSTEP – INTEGER Output

On exit: K, the actual number of steps carried out in the model fitting process.

15: BðLDB; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array B must be at least MNSTEPþ 1.

On exit: � the parameter estimates, with Bðj; kÞ ¼ �kj, the parameter estimate for the jth variable,
j ¼ 1; 2; . . . ; p at the kth step of the model fitting process, k ¼ 1; 2; . . . ;NSTEP.

By default, when PRED ¼ 2 the parameter estimates are rescaled prior to being returned. If the
parameter estimates are required on the normalized scale, then this can be overridden via ROPT.

The values held in the remaining part of B depend on the type of preprocessing performed.

If PRED ¼ 0 Bðj;NSTEPþ 1Þ ¼ 1;

if PRED ¼ 2 Bðj;NSTEPþ 1Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
xTj xj

q
;

for j ¼ 1; 2; . . . p.

16: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which
G02MBF is called.

Constraint: LDB � p, where p is the number of parameter estimates as described in IP.

17: FITSUMð6;MNSTEPþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: summaries of the model fitting process. When k ¼ 1; 2; . . . ;NSTEP

FITSUMð1; kÞ
�kk k1, the sum of the absolute values of the parameter estimates for the kth step of the
modelling fitting process. If PRED ¼ 2, the scaled parameter estimates are used in the
summation.

FITSUMð2; kÞ
RSSk, the residual sums of squares for the kth step, where RSSk ¼ y�XT�kk k2.

FITSUMð3; kÞ
�k, approximate degrees of freedom for the kth step.

FITSUMð4; kÞ
C kð Þ
p , a Cp-type statistic for the kth step, where C kð Þ

p ¼ RSSk
�2
� nþ 2�k .

FITSUMð5; kÞ
Ĉk, correlation between the residual at step k� 1 and the most correlated variable not yet
in the active set A, where the residual at step 0 is y.

FITSUMð6; kÞ
�̂k, the step size used at step k.
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In addition

FITSUMð1;NSTEPþ 1Þ
0.

FITSUMð2;NSTEPþ 1Þ
RSS0, the residual sums of squares for the null model, where RSS0 ¼ yTy.

FITSUMð3;NSTEPþ 1Þ
�0, the degrees of freedom for the null model, where �0 ¼ 0 if INTCPT ¼ 0 and �0 ¼ 1
otherwise.

FITSUMð4;NSTEPþ 1Þ
C 0ð Þ
p , a Cp-type statistic for the null model, where C 0ð Þ

p ¼ RSS0
�2
� nþ 2�0 .

FITSUMð5;NSTEPþ 1Þ
�2, where �2 ¼ n�RSSK

�K
and K ¼ NSTEP.

Although the Cp statistics described above are returned when IFAIL ¼ 122 they may not be
meaningful due to the estimate �2 not being based on the saturated model.

18: ROPTðLROPTÞ – REAL (KIND=nag_wp) array Input

On entry: optional parameters to control various aspects of the LARS algorithm.

The default value will be used for ROPTðiÞ if LROPT < i, therefore setting LROPT ¼ 0 will use
the default values for all optional arguments and ROPT need not be set. The default value will
also be used if an invalid value is supplied for a particular argument, for example, setting
ROPTðiÞ ¼ �1 will use the default value for argument i.

ROPTð1Þ
The minimum step size that will be taken.

Default is 100� eps is used, where eps is the machine precision returned by X02AJF.

ROPTð2Þ
General tolerance, used amongst other things, for comparing correlations.

Default is ROPTð1Þ.
ROPTð3Þ

If set to 1 then parameter estimates are rescaled before being returned. If set to 0 then no
rescaling is performed. This argument has no effect when PRED ¼ 0.

Default is for the parameter estimates to be rescaled.

Constraints:

ROPTð1Þ > machine precision;
ROPTð2Þ > machine precision.

19: LROPT – INTEGER Input

On entry: length of the options array ROPT.

Constraint: 0 � LROPT � 3.

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02MBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, MTYPE ¼ valueh i.
Constraint: MTYPE ¼ 1, 2, 3 or 4.

IFAIL ¼ 21

On entry, PRED ¼ valueh i.
Constraint: PRED ¼ 0 or 2.

IFAIL ¼ 31

On entry, INTCPT ¼ valueh i.
Constraint: INTCPT ¼ 0 or 1.

IFAIL ¼ 41

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 51

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 61

The cross-product matrix supplied in DTD is not symmetric.

IFAIL ¼ 62

On entry, DTDð1; valueh iÞ ¼ valueh i.
Constraint: diagonal elements of DTD must be positive.

On entry, i ¼ valueh i and DTDði; iÞ ¼ valueh i.
Constraint: diagonal elements of DTD must be positive.

IFAIL ¼ 71

On entry, LDDTD ¼ valueh i and M ¼ valueh i
Constraint: LDDTD ¼ 1 or LDDTD � M.

IFAIL ¼ 81

On entry, ISXð valueh iÞ ¼ valueh i.
Constraint: ISXðiÞ ¼ 0 or 1 for all i.

IFAIL ¼ 82

On entry, all values of ISX are zero.
Constraint: at least one value of ISX must be nonzero.
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IFAIL ¼ 91

On entry, LISX ¼ valueh i and M ¼ valueh i.
Constraint: LISX ¼ 0 or M.

IFAIL ¼ 111

On entry, YTY ¼ valueh i.
Constraint: YTY > 0:0.

IFAIL ¼ 112

A negative value for the residual sums of squares was obtained. Check the values of DTD, DTY
and YTY.

IFAIL ¼ 121

On entry, MNSTEP ¼ valueh i.
Constraint: MNSTEP � 1.

IFAIL ¼ 122

Fitting process did not finished in MNSTEP steps. Try increasing the size of MNSTEP and
supplying larger output arrays.
All output is returned as documented, up to step MNSTEP, however, � and the Cp statistics may
not be meaningful.

IFAIL ¼ 161

On entry, LDB ¼ valueh i and M ¼ valueh i.
Constraint: if LISX ¼ 0 then LDB � M.

IFAIL ¼ 162

On entry, LDB ¼ valueh i and p ¼ valueh i.
Constraint: if LISX ¼ M, LDB � p.

IFAIL ¼ 171

�2 is approximately zero and hence the Cp-type criterion cannot be calculated. All other output is
returned as documented.

IFAIL ¼ 172

�K ¼ n, therefore sigma has been set to a large value. Output is returned as documented.

IFAIL ¼ 173

Degenerate model, no variables added and NSTEP ¼ 0. Output is returned as documented.

IFAIL ¼ 191

On entry, LROPT ¼ valueh i.
Constraint: 0 � LROPT � 3.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02MBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02MBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The solution path to the LARS, LASSO and stagewise regression analysis is a continuous, piecewise
linear. G02MBF returns the parameter estimates at various points along this path. G02MCF can be used
to obtain estimates at different points along the path.

If you have the raw data values, that is D and y, then G02MAF can be used instead of G02MBF.

10 Example

This example performs a LARS on a simulated dataset with 20 observations and 6 independent
variables.

The example uses G02BUF to get the cross-products of the augmented matrix D y½ �. The first
m mþ 1ð Þ=2 elements of the (column packed) cross-products matrix returned therefore contain the
elements of DTD, the next m elements contain DTy and the last element yTy.

10.1 Program Text

Program g02mbfe

! G02MBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02buf, g02mbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: sw
Integer :: i, ifail, intcpt, ip, k, ldb, lddtd, &

lisx, lropt, m, mnstep, mtype, n, &
nstep, pm, pm2, pred

Character (10) :: mean
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:,:), dtd(:,:), dy(:,:), &
fitsum(:,:), ropt(:), wmean(:)

Real (Kind=nag_wp) :: wt(1)
Integer, Allocatable :: isx(:)
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! .. Intrinsic Procedures ..
Intrinsic :: count, floor, max, repeat

! .. Executable Statements ..

! .. Executable Statements ..
Write (nout,*) ’G02MBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

! Read in the model specification
Read (nin,*) mtype, pred, intcpt, mnstep, lisx

! Read in variable inclusion flags (if specified) and calculate IP
Allocate (isx(lisx))
If (lisx==m) Then

Read (nin,*) isx(1:lisx)
ip = count(isx(1:m)==1)

Else
ip = m

End If

! Optional arguments (using defaults)
lropt = 0
Allocate (ropt(lropt))

! Read in the augmented matrix [D y] and calculate cross-product matrices
! (NB: Datasets with a large number of observations can be split into
! blocks with the resulting cross-product matrices being combined
! using G02BZF)

Allocate (dy(n,m+1))
Read (nin,*)(dy(i,1:m),dy(i,m+1),i=1,n)

pm = m*(m+1)/2
pm2 = (m+1)*(m+2)/2

! We are calculating the cross-product matrix using G02BUF
! which returns it in packed storage

lddtd = 1

! Calculate the cross-product matrices
Allocate (wmean(m+1),dtd(1,pm2))
If (intcpt==1) Then

mean = ’Mean’
Else

mean = ’Zero’
End If
ifail = 0
Call g02buf(mean,’UnWeighted’,n,m+1,dy,n,wt,sw,wmean,dtd(1,:),ifail)

! The first PM elements of DTD(1,:) contain the cross-products of D
! elements DTD(1,PM+1:PM2-1) contains cross-product of D with y and
! DTD(1,PM2) contains cross-product of y with itself

! Allocate output arrays
ldb = ip
Allocate (b(ldb,mnstep+1),fitsum(6,mnstep+1))

! Call the model fitting routine
ifail = -1
Call g02mbf(mtype,pred,intcpt,n,m,dtd,lddtd,isx,lisx,dtd(1,pm+1:pm2-1), &

dtd(1,pm2),mnstep,ip,nstep,b,ldb,fitsum,ropt,lropt,ifail)
If (ifail/=0) Then

If (ifail/=112 .And. ifail/=161 .And. ifail/=162 .And. ifail/=163) &
Then

! IFAIL = 112, 161, 162 and 163 are warnings, so no need to terminate
! if they occur

Go To 100
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End If
End If

! Display the parameter estimates
Write (nout,*) ’ Step ’, repeat(’ ’,max((ip-2),0)*5), &

’ Parameter Estimate’
Write (nout,*) repeat(’-’,5+ip*10)
Do k = 1, nstep

Write (nout,99998) k, b(1:ip,k)
End Do
Write (nout,*)
Write (nout,99999) ’alpha: ’, wmean(m+1)
Write (nout,*)
Write (nout,*) &

’ Step Sum RSS df Cp Ck Step Size’
Write (nout,*) repeat(’-’,64)
Do k = 1, nstep

Write (nout,99997) k, fitsum(1:2,k), floor(fitsum(3,k)+0.5_nag_wp), &
fitsum(4:6,k)

End Do
Write (nout,*)
Write (nout,99999) ’sigma^2: ’, fitsum(5,nstep+1)

100 Continue
99999 Format (1X,A,F9.3)
99998 Format (2X,I3,10(1X,F9.3))
99997 Format (2X,I3,2(1X,F9.3),1X,I6,1X,3(1X,F9.3))

End Program g02mbfe

10.2 Program Data

G02MBF Example Program Data
20 6 :: N,M
1 2 1 6 0 :: MTYPE,PRED,INTCPT,MNSTEP,LISX
10.28 1.77 9.69 15.58 8.23 10.44 -46.47
9.08 8.99 11.53 6.57 15.89 12.58 -35.80

17.98 13.10 1.04 10.45 10.12 16.68 -129.22
14.82 13.79 12.23 7.00 8.14 7.79 -42.44
17.53 9.41 6.24 3.75 13.12 17.08 -73.51
7.78 10.38 9.83 2.58 10.13 4.25 -26.61

11.95 21.71 8.83 11.00 12.59 10.52 -63.90
14.60 10.09 -2.70 9.89 14.67 6.49 -76.73
3.63 9.07 12.59 14.09 9.06 8.19 -32.64
6.35 9.79 9.40 12.79 8.38 16.79 -83.29
4.66 3.55 16.82 13.83 21.39 13.88 -16.31
8.32 14.04 17.17 7.93 7.39 -1.09 -5.82

10.86 13.68 5.75 10.44 10.36 10.06 -47.75
4.76 4.92 17.83 2.90 7.58 11.97 18.38
5.05 10.41 9.89 9.04 7.90 13.12 -54.71
5.41 9.32 5.27 15.53 5.06 19.84 -55.62
9.77 2.37 9.54 20.23 9.33 8.82 -45.28

14.28 4.34 14.23 14.95 18.16 11.03 -22.76
10.17 6.80 3.17 8.57 16.07 15.93 -104.32
5.39 2.67 6.37 13.56 10.68 7.35 -55.94 :: End of D, Y

10.3 Program Results

G02MBF Example Program Results

Step Parameter Estimate
-----------------------------------------------------------------

1 0.000 0.000 3.125 0.000 0.000 0.000
2 0.000 0.000 3.792 0.000 0.000 -0.713
3 -0.446 0.000 3.998 0.000 0.000 -1.151
4 -0.628 -0.295 4.098 0.000 0.000 -1.466
5 -1.060 -1.056 4.110 -0.864 0.000 -1.948
6 -1.073 -1.132 4.118 -0.935 -0.059 -1.981

alpha: -50.037
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Step Sum RSS df Cp Ck Step Size
----------------------------------------------------------------

1 72.446 8929.855 2 13.355 123.227 72.446
2 103.385 6404.701 3 7.054 50.781 24.841
3 126.243 5258.247 4 5.286 30.836 16.225
4 145.277 4657.051 5 5.309 19.319 11.587
5 198.223 3959.401 6 5.016 12.266 24.520
6 203.529 3954.571 7 7.000 0.910 2.198

sigma^2: 304.198

This example plot shows the regression coefficients (�k) plotted against the scaled absolute sum of the
parameter estimates ( �kk k1).
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NAG Library Routine Document

G02MCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02MCF calculates additional parameter estimates following Least Angle Regression (LARS), forward
stagewise linear regression or Least Absolute Shrinkage and Selection Operator (LASSO) as performed
by G02MAF and G02MBF.

2 Specification

SUBROUTINE G02MCF (NSTEP, IP, B, LDB, FITSUM, KTYPE, NK, LNK, NB, LDNB,
IFAIL)

&

INTEGER NSTEP, IP, LDB, KTYPE, LNK, LDNB, IFAIL
REAL (KIND=nag_wp) B(LDB,*), FITSUM(6,NSTEP+1), NK(LNK), NB(LDNB,*)

3 Description

G02MAF and G02MBF fit either a LARS, forward stagewise linear regression, LASSO or positive
LASSO model to a vector of n observed values, y ¼ yi : i ¼ 1; 2; . . . ; nf g and an n� p design matrix
X, where the jth column of X is given by the jth independent variable xj. The models are fit using the
LARS algorithm of Efron et al. (2004).
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The full solution path for all four of these models follow a similar pattern where the parameter estimate
for a given variable is piecewise linear. One such path, for a LARS model with six variables p ¼ 6ð Þ
can be seen in Figure 1. Both G02MAF and G02MBF return the vector of p parameter estimates, �k, at
K points along this path (so k ¼ 1; 2; . . . ; K). Each point corresponds to a step of the LARS algorithm.
The number of steps taken depends on the model being fitted. In the case of a LARS model, K ¼ p and
each step corresponds to a new variable being included in the model. In the case of the LASSO models,
each step corresponds to either a new variable being included in the model or an existing variable being
removed from the model; the value of K is therefore no longer bound by the number of parameters. For
forward stagewise linear regression, each step no longer corresponds to the addition or removal of a
variable; therefore the number of possible steps is often markedly greater than for a corresponding
LASSO model.

G02MCF uses the piecewise linear nature of the solution path to predict the parameter estimates, ~�, at a
different point on this path. The location of the solution can either be defined in terms of a (fractional)
step number or a function of the L1 norm of the parameter estimates.

4 References

Efron B, Hastie T, Johnstone I and Tibshirani R (2004) Least Angle Regression The Annals of Statistics
(Volume 32) 2 407–499

Hastie T, Tibshirani R and Friedman J (2001) The Elements of Statistical Learning: Data Mining,
Inference and Prediction Springer (New York)

Tibshirani R (1996) Regression Shrinkage and Selection via the Lasso Journal of the Royal Statistics
Society, Series B (Methodological) (Volume 58) 1 267–288

Weisberg S (1985) Applied Linear Regression Wiley

5 Arguments

1: NSTEP – INTEGER Input

On entry: K, the number of steps carried out in the model fitting process, as returned by
G02MAF and G02MBF.

Constraint: NSTEP � 0.

2: IP – INTEGER Input

On entry: p, number of parameter estimates, as returned by G02MAF and G02MBF.

Constraint: IP � 1.

3: BðLDB; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array B must be at least NSTEPþ 1.

On entry: � the parameter estimates, as returned by G02MAF and G02MBF, with Bðj; kÞ ¼ �kj ,
the parameter estimate for the jth variable, for j ¼ 1; 2; . . . ; p, at the kth step of the model fitting
process.

Constraint: B should be unchanged since the last call to G02MAF or G02MBF.

4: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which
G02MCF is called.

Constraint: LDB � IP.
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5: FITSUMð6;NSTEPþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: summaries of the model fitting process, as returned by G02MAF and G02MBF.

Constraint: FITSUM should be unchanged since the last call to G02MAF or G02MBF..

6: KTYPE – INTEGER Input

On entry: indicates what target values are held in NK.

KTYPE ¼ 1
NK holds (fractional) LARS step numbers.

KTYPE ¼ 2
NK holds values for L1 norm of the (scaled) parameters.

KTYPE ¼ 3
NK holds ratios with respect to the largest (scaled) L1 norm.

KTYPE ¼ 4
NK holds values for the L1 norm of the (unscaled) parameters.

KTYPE ¼ 5
NK holds ratios with respect to the largest (unscaled) L1 norm.

If G02MAF was called with PRED ¼ 0 or 1 or G02MBF was called with PRED ¼ 0 then the
model fitting routine did not rescale the independent variables, X, prior to fitting the model and
therefore there is no difference between KTYPE ¼ 2 or 3 and KTYPE ¼ 4 or 5.

Constraint: KTYPE ¼ 1, 2, 3, 4 or 5.

7: NKðLNKÞ – REAL (KIND=nag_wp) array Input

On entry: target values used for predicting the new set of parameter estimates.

Constraints:

if KTYPE ¼ 1, 0 � NKðiÞ � NSTEP, for i ¼ 1; 2; . . . ;LNK;
if KTYPE ¼ 2, 0 � NKðiÞ � FITSUMð1;NSTEPÞ, for i ¼ 1; 2; . . . ;LNK;
if KTYPE ¼ 3 or 5, 0 � NKðiÞ � 1, for i ¼ 1; 2; . . . ;LNK;
if KTYPE ¼ 4, 0 � NKðiÞ � �Kk k1, for i ¼ 1; 2; . . . ;LNK.

8: LNK – INTEGER Input

On entry: number of values supplied in NK.

Constraint: LNK � 1.

9: NBðLDNB; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array NB must be at least LNK.

On exit: ~� the predicted parameter estimates, with Bðj; iÞ ¼ ~�ij, the parameter estimate for
variable j, j ¼ 1; 2; . . . ; p at the point in the fitting process associated with NKðiÞ,
i ¼ 1; 2; . . . ;LNK.

10: LDNB – INTEGER Input

On entry: the first dimension of the array NB as declared in the (sub)program from which
G02MCF is called.

Constraint: LDNB � IP.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G02MCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, NSTEP ¼ valueh i.
Constraint: NSTEP � 0.

IFAIL ¼ 21

On entry, IP ¼ valueh i.
Constraint: IP � 1.

IFAIL ¼ 31

B has been corrupted since the last call to G02MAF or G02MBF.

IFAIL ¼ 41

On entry, LDB ¼ valueh i and IP ¼ valueh i
Constraint: LDB � IP.

IFAIL ¼ 51

FITSUM has been corrupted since the last call to G02MAF or G02MBF.

IFAIL ¼ 61

On entry, KTYPE ¼ valueh i.
Constraint: KTYPE ¼ 1, 2, 3, 4 or 5.

IFAIL ¼ 71

On entry, KTYPE ¼ 1, NKð valueh iÞ ¼ valueh i and NSTEP ¼ valueh i
Constraint: 0 � NKðiÞ � NSTEP for all i.

IFAIL ¼ 72

O n e n t r y , KTYPE ¼ 2, NKð valueh iÞ ¼ valueh i, NSTEP ¼ valueh i a n d
FITSUMð1;NSTEPÞ ¼ valueh i.
Constraint: 0 � NKðiÞ � FITSUMð1;NSTEPÞ for all i.

IFAIL ¼ 73

On entry, KTYPE ¼ 3 or 5, NKð valueh iÞ ¼ valueh i.
Constraint: 0 � NKðiÞ � 1 for all i.
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IFAIL ¼ 74

On entry, KTYPE ¼ 4, NKð valueh iÞ ¼ valueh i and �Kk k1 ¼ valueh i
Constraint: 0 � NKðiÞ � �Kk k1 for all i.

IFAIL ¼ 81

On entry, LNK ¼ valueh i.
Constraint: LNK � 1.

IFAIL ¼ 101

On entry, LDNB ¼ valueh i and IP ¼ valueh i.
Constraint: LDNB � IP.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02MCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02MCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example performs a LARS on a set a simulated dataset with 20 observations and 6 independent
variables.

Additional parameter estimates are obtained corresponding to a LARS step number of 0:2; 1:2; 3:2; 4:5
and 5:2. Where, for example, 4:5 corresponds to the solution halfway between that obtained at step 4
and that obtained at step 5.
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10.1 Program Text

Program g02mcfe

! G02MCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02maf, g02mcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ip, k, ktype, ldb, ldd, &

ldnb, lisx, lnk, lropt, m, mnstep, &
mtype, n, nstep, pred, prey

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), d(:,:), fitsum(:,:), &

nb(:,:), nk(:), ropt(:), y(:)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, repeat

! .. Executable Statements ..
Write (nout,*) ’G02MCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

! Read in the model specification
Read (nin,*) mtype, pred, prey, mnstep

! Use all of the variables
lisx = 0
Allocate (isx(lisx))

! Optional arguments (using defaults)
lropt = 0
Allocate (ropt(lropt))

! Read in the data
ldd = n
Allocate (y(n),d(ldd,m))
Read (nin,*)(d(i,1:m),y(i),i=1,n)

! Allocate output arrays
ldb = m
Allocate (b(ldb,mnstep+2),fitsum(6,mnstep+1))

! Call the model fitting routine
ifail = -1
Call g02maf(mtype,pred,prey,n,m,d,ldd,isx,lisx,y,mnstep,ip,nstep,b,ldb, &

fitsum,ropt,lropt,ifail)
If (ifail/=0) Then

If (ifail/=112 .And. ifail/=161 .And. ifail/=162 .And. ifail/=163) &
Then

! IFAIL = 112, 161, 162 and 163 are warnings, so no need to terminate
! if they occur

Go To 100
End If

End If

! Read in the number of additional parameter estimates required and the
! way they will be specified

Read (nin,*) ktype, lnk
ldnb = ip
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Allocate (nk(lnk),nb(ip,lnk))

! Read in the target values
Read (nin,*) nk(1:lnk)

! Calculate the additional parameter estimates
ifail = 0
Call g02mcf(nstep,ip,b,ldb,fitsum,ktype,nk,lnk,nb,ldnb,ifail)

Write (nout,*) ’Parameter Estimates from G02MAF’
Write (nout,*) ’ Step ’, repeat(’ ’,max((ip-2),0)*5), &

’ Parameter Estimate’
Write (nout,*) repeat(’-’,5+ip*10)
Do k = 1, nstep

Write (nout,99999) k, b(1:ip,k)
End Do
Write (nout,*)

Write (nout,*) ’Additional Parameter Estimates from G02MCF’
Write (nout,*) ’ NK ’, repeat(’ ’,max((ip-2),0)*5), &

’ Parameter Estimate’
Write (nout,*) repeat(’-’,5+ip*10)
Do k = 1, lnk

Write (nout,99998) nk(k), nb(1:ip,k)
End Do

100 Continue
99999 Format (2X,I3,10(1X,F9.3))
99998 Format (1X,F4.1,10(1X,F9.3))

End Program g02mcfe

10.2 Program Data

G02MCF Example Program Data
20 6 :: N,M
1 3 1 6 :: MTYPE,PRED,PREY,MNSTEP
10.28 1.77 9.69 15.58 8.23 10.44 -46.47
9.08 8.99 11.53 6.57 15.89 12.58 -35.80

17.98 13.10 1.04 10.45 10.12 16.68 -129.22
14.82 13.79 12.23 7.00 8.14 7.79 -42.44
17.53 9.41 6.24 3.75 13.12 17.08 -73.51
7.78 10.38 9.83 2.58 10.13 4.25 -26.61

11.95 21.71 8.83 11.00 12.59 10.52 -63.90
14.60 10.09 -2.70 9.89 14.67 6.49 -76.73
3.63 9.07 12.59 14.09 9.06 8.19 -32.64
6.35 9.79 9.40 12.79 8.38 16.79 -83.29
4.66 3.55 16.82 13.83 21.39 13.88 -16.31
8.32 14.04 17.17 7.93 7.39 -1.09 -5.82

10.86 13.68 5.75 10.44 10.36 10.06 -47.75
4.76 4.92 17.83 2.90 7.58 11.97 18.38
5.05 10.41 9.89 9.04 7.90 13.12 -54.71
5.41 9.32 5.27 15.53 5.06 19.84 -55.62
9.77 2.37 9.54 20.23 9.33 8.82 -45.28

14.28 4.34 14.23 14.95 18.16 11.03 -22.76
10.17 6.80 3.17 8.57 16.07 15.93 -104.32
5.39 2.67 6.37 13.56 10.68 7.35 -55.94 :: End of D, Y

1 5 :: KTYPE,LNK
0.2 1.2 3.2 4.5 5.2 :: End of NK

10.3 Program Results

G02MCF Example Program Results

Parameter Estimates from G02MAF
Step Parameter Estimate

-----------------------------------------------------------------
1 0.000 0.000 3.125 0.000 0.000 0.000
2 0.000 0.000 3.792 0.000 0.000 -0.713
3 -0.446 0.000 3.998 0.000 0.000 -1.151
4 -0.628 -0.295 4.098 0.000 0.000 -1.466
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5 -1.060 -1.056 4.110 -0.864 0.000 -1.948
6 -1.073 -1.132 4.118 -0.935 -0.059 -1.981

Additional Parameter Estimates from G02MCF
NK Parameter Estimate

-----------------------------------------------------------------
0.2 0.000 0.000 0.625 0.000 0.000 0.000
1.2 0.000 0.000 3.258 0.000 0.000 -0.143
3.2 -0.483 -0.059 4.018 0.000 0.000 -1.214
4.5 -0.844 -0.676 4.104 -0.432 0.000 -1.707
5.2 -1.062 -1.071 4.112 -0.878 -0.012 -1.955
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NAG Library Routine Document

G02QFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02QFF performs a multiple linear quantile regression, returning the parameter estimates and
associated confidence limits based on an assumption of Normal, independent, identically distributed
errors. G02QFF is a simplified version of G02QGF.

2 Specification

SUBROUTINE G02QFF (N, M, X, Y, NTAU, TAU, DF, B, BL, BU, INFO, IFAIL)

INTEGER N, M, NTAU, INFO(NTAU), IFAIL
REAL (KIND=nag_wp) X(N,M), Y(N), TAU(NTAU), DF, B(M,NTAU), BL(M,NTAU),

BU(M,NTAU)
&

3 Description

Given a vector of n observed values, y ¼ yi : i ¼ 1; 2; . . . ; nf g, an n� p design matrix X, a column
vector, x, of length p holding the ith row of X and a quantile � 2 0; 1ð Þ, G02QFF estimates the
p-element vector � as the solution to

minimize
�2Rp

Xn
i¼1
�� yi � xTi �
� �

ð1Þ

where �� is the piecewise linear loss function �� zð Þ ¼ z � � I z < 0ð Þð Þ, and I z < 0ð Þ is an indicator
function taking the value 1 if z < 0 and 0 otherwise.

G02QFF assumes Normal, independent, identically distributed (IID) errors and calculates the
asymptotic covariance matrix from

� ¼ � 1� �ð Þ
n

s �ð Þð Þ2 XTX
� ��1

where s is the sparsity function, which is estimated from the residuals, ri ¼ yi � xTi �̂ (see Koenker
(2005)).

Given an estimate of the covariance matrix, �̂, lower, �̂L, and upper, �̂U , limits for a 95% confidence
interval are calculated for each of the p parameters, via

�̂Li ¼ �̂i � tn�p;0:975
ffiffiffiffiffiffiffi
�̂ii

q
; �̂Ui ¼ �̂i þ tn�p;0:975

ffiffiffiffiffiffiffi
�̂ii

q
where tn�p;0:975 is the 97:5 percentile of the Student's t distribution with n� k degrees of freedom,
where k is the rank of the cross-product matrix XTX.

Further details of the algorithms used by G02QFF can be found in the documentation for G02QGF.

4 References

Koenker R (2005) Quantile Regression Econometric Society Monographs, Cambridge University Press,
New York
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations in the dataset.

Constraint: N � 2.

2: M – INTEGER Input

On entry: p, the number of variates in the model.

Constraint: 1 � M < N.

3: XðN;MÞ – REAL (KIND=nag_wp) array Input

On entry: X, the design matrix, with the ith value for the jth variate supplied in Xði; jÞ, for
i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;M.

4: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: y, the observations on the dependent variable.

5: NTAU – INTEGER Input

On entry: the number of quantiles of interest.

Constraint: NTAU � 1.

6: TAUðNTAUÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of quantiles of interest. A separate model is fitted to each quantile.

Constraint:
ffiffi
�
p

< TAUðlÞ < 1�
ffiffi
�
p

where � is the machine precision returned by X02AJF, for
l ¼ 1; 2; . . . ;NTAU.

7: DF – REAL (KIND=nag_wp) Output

On exit: the degrees of freedom given by n� k, where n is the number of observations and k is
the rank of the cross-product matrix XTX.

8: BðM;NTAUÞ – REAL (KIND=nag_wp) array Output

On exit: �̂, the estimates of the parameters of the regression model, with Bðj; lÞ containing the
coefficient for the variable in column j of X, estimated for � ¼ TAUðlÞ.

9: BLðM;NTAUÞ – REAL (KIND=nag_wp) array Output

On exit: �̂L, the lower limit of a 95% confidence interval for �̂, with BLðj; lÞ holding the lower
limit associated with Bðj; lÞ.

10: BUðM;NTAUÞ – REAL (KIND=nag_wp) array Output

On exit: �̂U , the upper limit of a 95% confidence interval for �̂, with BUðj; lÞ holding the upper
limit associated with Bðj; lÞ.

11: INFOðNTAUÞ – INTEGER array Output

On exit: INFOðlÞ holds additional information concerning the model fitting and confidence limit
calculations when � ¼ TAUðlÞ.

Code Warning
0 Model fitted and confidence limits calculated successfully.
1 The routine did not converge whilst calculating the parameter estimates. The returned

values are based on the estimate at the last iteration.
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2 A singular matrix was encountered during the optimization. The model was not fitted
for this value of � .

8 The routine did not converge whilst calculating the confidence limits. The returned
limits are based on the estimate at the last iteration.

16 Confidence limits for this value of � could not be calculated. The returned upper and
lower limits are set to a large positive and large negative value respectively.

It is possible for multiple warnings to be applicable to a single model. In these cases the value
returned in INFO is the sum of the corresponding individual nonzero warning codes.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ 21

On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: 1 � M < N.

IFAIL ¼ 51

On entry, NTAU ¼ valueh i.
Constraint: NTAU � 1.

IFAIL ¼ 61

On entry, TAUð valueh iÞ ¼ valueh i is invalid.

IFAIL ¼ 111

A potential problem occurred whilst fitting the model(s).
Additional information has been returned in INFO.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02QFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02QFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Calling G02QFF is equivalent to calling G02QGF with

SORDER ¼ 1,

INTCPT ¼ N ,

WEIGHT ¼ U ,

LDDAT ¼ N,

setting each element of ISX to 1,

IP ¼ M,

Interval Method ¼ IID, and

Significance Level ¼ 0:95.

10 Example

A quantile regression model is fitted to Engels 1857 study of household expenditure on food. The
model regresses the dependent variable, household food expenditure, against household income. An
intercept is included in the model by augmenting the dataset with a column of ones.

10.1 Program Text

Program g02qffe

! G02QFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02qff, nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: df
Integer :: i, ifail, j, l, m, n, ntau

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), bl(:,:), bu(:,:), tau(:), &

x(:,:), y(:)
Integer, Allocatable :: info(:)

! .. Executable Statements ..
Write (nout,*) ’G02QFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, ntau

! Read in the data
Allocate (y(n),tau(ntau),x(n,m))
Read (nin,*)(x(i,1:m),y(i),i=1,n)

! Read in the quantiles required
Read (nin,*) tau(1:ntau)

! Allocate memory for output arrays
Allocate (b(m,ntau),info(ntau),bl(m,ntau),bu(m,ntau))

! Call the model fitting routine
ifail = -1
Call g02qff(n,m,x,y,ntau,tau,df,b,bl,bu,info,ifail)
If (ifail/=0) Then

If (ifail==111) Then
Write (nout,*) ’Additional error information (INFO): ’, info(1:ntau)

Else
Go To 100

End If
End If

! Display the parameter estimates
Do l = 1, ntau

Write (nout,99999) ’Quantile: ’, tau(l)
Write (nout,*)
Write (nout,*) ’ Lower Parameter Upper’
Write (nout,*) ’ Limit Estimate Limit’
Do j = 1, m

Write (nout,99998) j, bl(j,l), b(j,l), bu(j,l)
End Do
Write (nout,*)
Write (nout,*)

End Do

100 Continue

99999 Format (1X,A,F6.3)
99998 Format (1X,I3,3(3X,F7.3))

End Program g02qffe

10.2 Program Data

G02QFF Example Program Data
235 2 5 :: N,M,NTAU

1.0 420.1577 255.8394 1.0 800.7990 572.0807 1.0 643.3571 459.8177
1.0 541.4117 310.9587 1.0 1245.6964 907.3969 1.0 2551.6615 863.9199
1.0 901.1575 485.6800 1.0 1201.0002 811.5776 1.0 1795.3226 831.4407
1.0 639.0802 402.9974 1.0 634.4002 427.7975 1.0 1165.7734 534.7610
1.0 750.8756 495.5608 1.0 956.2315 649.9985 1.0 815.6212 392.0502
1.0 945.7989 633.7978 1.0 1148.6010 860.6002 1.0 1264.2066 934.9752

G02 – Correlation and Regression Analysis G02QFF

Mark 26 G02QFF.5



1.0 829.3979 630.7566 1.0 1768.8236 1143.4211 1.0 1095.4056 813.3081
1.0 979.1648 700.4409 1.0 2822.5330 2032.6792 1.0 447.4479 263.7100
1.0 1309.8789 830.9586 1.0 922.3548 590.6183 1.0 1178.9742 769.0838
1.0 1492.3987 815.3602 1.0 2293.1920 1570.3911 1.0 975.8023 630.5863
1.0 502.8390 338.0014 1.0 627.4726 483.4800 1.0 1017.8522 645.9874
1.0 616.7168 412.3613 1.0 889.9809 600.4804 1.0 423.8798 319.5584
1.0 790.9225 520.0006 1.0 1162.2000 696.2021 1.0 558.7767 348.4518
1.0 555.8786 452.4015 1.0 1197.0794 774.7962 1.0 943.2487 614.5068
1.0 713.4412 512.7201 1.0 530.7972 390.5984 1.0 1348.3002 662.0096
1.0 838.7561 658.8395 1.0 1142.1526 612.5619 1.0 2340.6174 1504.3708
1.0 535.0766 392.5995 1.0 1088.0039 708.7622 1.0 587.1792 406.2180
1.0 596.4408 443.5586 1.0 484.6612 296.9192 1.0 1540.9741 692.1689
1.0 924.5619 640.1164 1.0 1536.0201 1071.4627 1.0 1115.8481 588.1371
1.0 487.7583 333.8394 1.0 678.8974 496.5976 1.0 1044.6843 511.2609
1.0 692.6397 466.9583 1.0 671.8802 503.3974 1.0 1389.7929 700.5600
1.0 997.8770 543.3969 1.0 690.4683 357.6411 1.0 2497.7860 1301.1451
1.0 506.9995 317.7198 1.0 860.6948 430.3376 1.0 1585.3809 879.0660
1.0 654.1587 424.3209 1.0 873.3095 624.6990 1.0 1862.0438 912.8851
1.0 933.9193 518.9617 1.0 894.4598 582.5413 1.0 2008.8546 1509.7812
1.0 433.6813 338.0014 1.0 1148.6470 580.2215 1.0 697.3099 484.0605
1.0 587.5962 419.6412 1.0 926.8762 543.8807 1.0 571.2517 399.6703
1.0 896.4746 476.3200 1.0 839.0414 588.6372 1.0 598.3465 444.1001
1.0 454.4782 386.3602 1.0 829.4974 627.9999 1.0 461.0977 248.8101
1.0 584.9989 423.2783 1.0 1264.0043 712.1012 1.0 977.1107 527.8014
1.0 800.7990 503.3572 1.0 1937.9771 968.3949 1.0 883.9849 500.6313
1.0 502.4369 354.6389 1.0 698.8317 482.5816 1.0 718.3594 436.8107
1.0 713.5197 497.3182 1.0 920.4199 593.1694 1.0 543.8971 374.7990
1.0 906.0006 588.5195 1.0 1897.5711 1033.5658 1.0 1587.3480 726.3921
1.0 880.5969 654.5971 1.0 891.6824 693.6795 1.0 4957.8130 1827.2000
1.0 796.8289 550.7274 1.0 889.6784 693.6795 1.0 969.6838 523.4911
1.0 854.8791 528.3770 1.0 1221.4818 761.2791 1.0 419.9980 334.9998
1.0 1167.3716 640.4813 1.0 544.5991 361.3981 1.0 561.9990 473.2009
1.0 523.8000 401.3204 1.0 1031.4491 628.4522 1.0 689.5988 581.2029
1.0 670.7792 435.9990 1.0 1462.9497 771.4486 1.0 1398.5203 929.7540
1.0 377.0584 276.5606 1.0 830.4353 757.1187 1.0 820.8168 591.1974
1.0 851.5430 588.3488 1.0 975.0415 821.5970 1.0 875.1716 637.5483
1.0 1121.0937 664.1978 1.0 1337.9983 1022.3202 1.0 1392.4499 674.9509
1.0 625.5179 444.8602 1.0 867.6427 679.4407 1.0 1256.3174 776.7589
1.0 805.5377 462.8995 1.0 725.7459 538.7491 1.0 1362.8590 959.5170
1.0 558.5812 377.7792 1.0 989.0056 679.9981 1.0 1999.2552 1250.9643
1.0 884.4005 553.1504 1.0 1525.0005 977.0033 1.0 1209.4730 737.8201
1.0 1257.4989 810.8962 1.0 672.1960 561.2015 1.0 1125.0356 810.6772
1.0 2051.1789 1067.9541 1.0 923.3977 728.3997 1.0 1827.4010 983.0009
1.0 1466.3330 1049.8788 1.0 472.3215 372.3186 1.0 1014.1540 708.8968
1.0 730.0989 522.7012 1.0 590.7601 361.5210 1.0 880.3944 633.1200
1.0 2432.3910 1424.8047 1.0 831.7983 620.8006 1.0 873.7375 631.7982
1.0 940.9218 517.9196 1.0 1139.4945 819.9964 1.0 951.4432 608.6419
1.0 1177.8547 830.9586 1.0 507.5169 360.8780 1.0 473.0022 300.9999
1.0 1222.5939 925.5795 1.0 576.1972 395.7608 1.0 601.0030 377.9984
1.0 1519.5811 1162.0024 1.0 696.5991 442.0001 1.0 713.9979 397.0015
1.0 687.6638 383.4580 1.0 650.8180 404.0384 1.0 829.2984 588.5195
1.0 953.1192 621.1173 1.0 949.5802 670.7993 1.0 959.7953 681.7616
1.0 953.1192 621.1173 1.0 497.1193 297.5702 1.0 1212.9613 807.3603
1.0 953.1192 621.1173 1.0 570.1674 353.4882 1.0 958.8743 696.8011
1.0 939.0418 548.6002 1.0 724.7306 383.9376 1.0 1129.4431 811.1962
1.0 1283.4025 745.2353 1.0 408.3399 284.8008 1.0 1943.0419 1305.7201
1.0 1511.5789 837.8005 1.0 638.6713 431.1000 1.0 539.6388 442.0001
1.0 1342.5821 795.3402 1.0 1225.7890 801.3518 1.0 463.5990 353.6013
1.0 511.7980 418.5976 1.0 715.3701 448.4513 1.0 562.6400 468.0008
1.0 689.7988 508.7974 1.0 800.4708 577.9111 1.0 736.7584 526.7573
1.0 1532.3074 883.2780 1.0 975.5974 570.5210 1.0 1415.4461 890.2390
1.0 1056.0808 742.5276 1.0 1613.7565 865.3205 1.0 2208.7897 1318.8033
1.0 387.3195 242.3202 1.0 608.5019 444.5578 1.0 636.0009 331.0005
1.0 387.3195 242.3202 1.0 958.6634 680.4198 1.0 759.4010 416.4015
1.0 410.9987 266.0010 1.0 835.9426 576.2779 1.0 1078.8382 596.8406
1.0 499.7510 408.4992 1.0 1024.8177 708.4787 1.0 748.6413 429.0399
1.0 832.7554 614.7588 1.0 1006.4353 734.2356 1.0 987.6417 619.6408
1.0 614.9986 385.3184 1.0 726.0000 433.0010 1.0 788.0961 400.7990
1.0 887.4658 515.6200 1.0 494.4174 327.4188 1.0 1020.0225 775.0209
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1.0 1595.1611 1138.1620 1.0 776.5958 485.5198 1.0 1230.9235 772.7611
1.0 1807.9520 993.9630 1.0 415.4407 305.4390 1.0 440.5174 306.5191
1.0 541.2006 299.1993 1.0 581.3599 468.0008 1.0 743.0772 522.6019
1.0 1057.6767 750.3202 :: End of X,Y (in three set of columns)
0.10 0.25 0.50 0.75 0.90 :: TAU

10.3 Program Results

G02QFF Example Program Results

Quantile: 0.100

Lower Parameter Upper
Limit Estimate Limit

1 74.946 110.142 145.337
2 0.370 0.402 0.433

Quantile: 0.250

Lower Parameter Upper
Limit Estimate Limit

1 64.232 95.483 126.735
2 0.446 0.474 0.502

Quantile: 0.500

Lower Parameter Upper
Limit Estimate Limit

1 55.399 81.482 107.566
2 0.537 0.560 0.584

Quantile: 0.750

Lower Parameter Upper
Limit Estimate Limit

1 41.372 62.396 83.421
2 0.625 0.644 0.663

Quantile: 0.900

Lower Parameter Upper
Limit Estimate Limit

1 26.829 67.351 107.873
2 0.650 0.686 0.723
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NAG Library Routine Document

G02QGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

G02QGF performs a multiple linear quantile regression. Parameter estimates and, if required,
confidence limits, covariance matrices and residuals are calculated. G02QGF may be used to perform a
weighted quantile regression. A simplified interface for G02QGF is provided by G02QFF.

2 Specification

SUBROUTINE G02QGF (SORDER, INTCPT, WEIGHT, N, M, DAT, LDDAT, ISX, IP, Y,
WT, NTAU, TAU, DF, B, BL, BU, CH, RES, IOPTS, OPTS,
STATE, INFO, IFAIL)

&
&

INTEGER SORDER, N, M, LDDAT, ISX(M), IP, NTAU, IOPTS(*),
STATE(*), INFO(NTAU), IFAIL

&

REAL (KIND=nag_wp) DAT(LDDAT,*), Y(N), WT(*), TAU(NTAU), DF,
B(IP,NTAU), BL(IP,*), BU(IP,*), CH(IP,IP,*),
RES(N,*), OPTS(*)

&
&

CHARACTER(1) INTCPT, WEIGHT

3 Description

Given a vector of n observed values, y ¼ yi : i ¼ 1; 2; . . . ; nf g, an n� p design matrix X, a column
vector, x, of length p holding the ith row of X and a quantile � 2 0; 1ð Þ, G02QGF estimates the
p-element vector � as the solution to

minimize
�2Rp

Xn
i¼1
�� yi � xTi �
� �

ð1Þ

where �� is the piecewise linear loss function �� zð Þ ¼ z � � I z < 0ð Þð Þ, and I z < 0ð Þ is an indicator
function taking the value 1 if z < 0 and 0 otherwise. Weights can be incorporated by replacing X and y
with WX and Wy respectively, where W is an n� n diagonal matrix. Observations with zero weights
can either be included or excluded from the analysis; this is in contrast to least squares regression
where such observations do not contribute to the objective function and are therefore always dropped.

G02QGF uses the interior point algorithm of Portnoy and Koenker (1997), described briefly in
Section 11, to obtain the parameter estimates �̂, for a given value of � .

Under the assumption of Normally distributed errors, Koenker (2005) shows that the limiting
covariance matrix of �̂ � � has the form

� ¼ � 1� �ð Þ
n

Hn
�1JnHn

�1

where Jn ¼ n�1
Xn
i¼1
xix

T
i and Hn is a function of � , as described below. Given an estimate of the

covariance matrix, �̂, lower (�̂L) and upper (�̂U ) limits for an 100� �ð Þ% confidence interval can be
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calculated for each of the p parameters, via

�̂Li ¼ �̂i � tn�p; 1þ�ð Þ=2

ffiffiffiffiffiffiffi
�̂ii

q
; �̂Ui ¼ �̂i þ tn�p; 1þ�ð Þ=2

ffiffiffiffiffiffiffi
�̂ii

q
where tn�p;0:975 is the 97:5 percentile of the Student's t distribution with n� k degrees of freedom,
where k is the rank of the cross-product matrix XTX.

Four methods for estimating the covariance matrix, �, are available:

(i) Independent, identically distributed (IID) errors

Under an assumption of IID errors the asymptotic relationship for � simplifies to

� ¼ � 1� �ð Þ
n

s �ð Þð Þ2 XTX
� ��1

where s is the sparsity function. G02QGF estimates s �ð Þ from the residuals, ri ¼ yi � xTi �̂ and a
bandwidth hn.

(ii) Powell Sandwich

Powell (1991) suggested estimating the matrix Hn by a kernel estimator of the form

Ĥn ¼ ncnð Þ�1
Xn
i¼1
K

ri
cn

� �
xix

T
i

where K is a kernel function and cn satisfies lim
n!1

cn ! 0 and lim
n!1

ffiffiffi
n
p

cn !1. When the Powell

method is chosen, G02QGF uses a Gaussian kernel (i.e., K ¼ 
) and sets

cn ¼ min �r; qr3 � qr1ð Þ=1:34ð Þ � ��1 � þ hnð Þ � ��1 � � hnð Þ
� �

where hn is a bandwidth, �r; qr1 and qr3 are, respectively, the standard deviation and the 25% and
75% quantiles for the residuals, ri.

(iii) Hendricks–Koenker Sandwich

Koenker (2005) suggested estimating the matrix Hn using

Ĥn ¼ n�1
Xn
i¼1

2hn

xTi �̂ � þ hnð Þ � �̂ � � hnð Þ
� �

24 35xixTi
where hn is a bandwidth and �̂ � þ hnð Þ denotes the parameter estimates obtained from a quantile
regression using the � þ hnð Þth quantile. Similarly with �̂ � � hnð Þ.

(iv) Bootstrap

The last method uses bootstrapping to either estimate a covariance matrix or obtain confidence
intervals for the parameter estimates directly. This method therefore does not assume Normally
distributed errors. Samples of size n are taken from the paired data yi; xif g (i.e., the independent
and dependent variables are sampled together). A quantile regression is then fitted to each sample
resulting in a series of bootstrap estimates for the model parameters, �. A covariance matrix can
then be calculated directly from this series of values. Alternatively, confidence limits, �̂L and �̂U ,
can be obtained directly from the 1� �ð Þ=2 and 1þ �ð Þ=2 sample quantiles of the bootstrap
estimates.

Further details of the algorithms used to calculate the covariance matrices can be found in Section 11.

All three asymptotic estimates of the covariance matrix require a bandwidth, hn. Two alternative
methods for determining this are provided:
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(i) Sheather–Hall

hn ¼
1:5 ��1 �bð Þ
 ��1 �ð Þ

� �� �2
n 2��1 �ð Þ þ 1
� � !1

3

for a user-supplied value �b,

(ii) Bofinger

hn ¼
4:5 
 ��1 �ð Þ

� �� �4
n 2��1 �ð Þ þ 1
� �2

 !1
5

G02QGF allows optional arguments to be supplied via the IOPTS and OPTS arrays (see Section 12 for
details of the available options). Prior to calling G02QGF the optional parameter arrays, IOPTS and
OPTS must be initialized by calling G02ZKF with OPTSTR set to Initialize ¼ G02QGF (see
Section 12 for details on the available options). If bootstrap confidence limits are required
(Interval Method ¼ BOOTSTRAP XY) then one of the random number initialization routines
G05KFF (for a repeatable analysis) or G05KGF (for an unrepeatable analysis) must also have been
previously called.

4 References

Koenker R (2005) Quantile Regression Econometric Society Monographs, Cambridge University Press,
New York

Mehrotra S (1992) On the implementation of a primal-dual interior point method SIAM J. Optim. 2
575–601

Nocedal J and Wright S J (1999) Numerical Optimization Springer Series in Operations Research,
Springer, New York

Portnoy S and Koenker R (1997) The Gaussian hare and the Laplacian tortoise: computability of
squared-error versus absolute error estimators Statistical Science 4 279–300

Powell J L (1991) Estimation of monotonic regression models under quantile restrictions
Nonparametric and Semiparametric Methods in Econometrics Cambridge University Press, Cambridge

5 Arguments

1: SORDER – INTEGER Input

On entry: determines the storage order of variates supplied in DAT.

Constraint: SORDER ¼ 1 or 2.

2: INTCPT – CHARACTER(1) Input

On entry: indicates whether an intercept will be included in the model. The intercept is included
by adding a column of ones as the first column in the design matrix, X.

INTCPT ¼ Y
An intercept will be included in the model.

INTCPT ¼ N
An intercept will not be included in the model.

Constraint: INTCPT ¼ N or Y .

3: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ W
A weighted regression model is fitted to the data using weights supplied in array WT.
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WEIGHT ¼ U
An unweighted regression model is fitted to the data and array WT is not referenced.

Constraint: WEIGHT ¼ U or W.

4: N – INTEGER Input

On entry: the total number of observations in the dataset. If no weights are supplied, or no zero
weights are supplied or observations with zero weights are included in the model then N ¼ n.
Otherwise N ¼ nþ the number of observations with zero weights.

Constraint: N � 2.

5: M – INTEGER Input

On entry: m, the total number of variates in the dataset.

Constraint: M � 0.

6: DATðLDDAT; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array DAT must be at least M if SORDER ¼ 1 and at least N
if SORDER ¼ 2.

On entry: the ith value for the jth variate, for i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;M, must be
supplied in

DATði; jÞ if SORDER ¼ 1, and

DATðj; iÞ if SORDER ¼ 2.

The design matrix X is constructed from DAT, ISX and INTCPT.

7: LDDAT – INTEGER Input

On entry: the first dimension of the array DAT as declared in the (sub)program from which
G02QGF is called.

Constraints:

if SORDER ¼ 1, LDDAT � N;
otherwise LDDAT � M.

8: ISXðMÞ – INTEGER array Input

On entry: indicates which independent variables are to be included in the model.

ISXðjÞ ¼ 0
The jth variate, supplied in DAT, is not included in the regression model.

ISXðjÞ ¼ 1
The jth variate, supplied in DAT, is included in the regression model.

Constraints:

ISXðjÞ ¼ 0 or 1, for j ¼ 1; 2; . . . ;M;
if INTCPT ¼ Y , exactly IP� 1 values of ISX must be set to 1;
if INTCPT ¼ N , exactly IP values of ISX must be set to 1.

9: IP – INTEGER Input

On entry: p, the number of independent variables in the model, including the intercept, see
INTCPT, if present.

Constraints:

1 � IP < N;
if INTCPT ¼ Y , 1 � IP � Mþ 1;
if INTCPT ¼ N , 1 � IP � M.
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10: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: y, the observations on the dependent variable.

11: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W .

On entry: if WEIGHT ¼ W , WT must contain the diagonal elements of the weight matrix W .
Otherwise WT is not referenced.

When

Drop Zero Weights ¼ YES
If WTðiÞ ¼ 0:0, the ith observation is not included in the model, in which case the
effective number of observations, n, is the number of observations with nonzero weights.
If Return Residuals ¼ YES, the values of RES will be set to zero for observations with
zero weights.

Drop Zero Weights ¼ NO
All observations are included in the model and the effective number of observations is N,
i.e., n ¼ N.

Constraints:

If WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ;N;
The effective number of observations � 2.

12: NTAU – INTEGER Input

On entry: the number of quantiles of interest.

Constraint: NTAU � 1.

13: TAUðNTAUÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of quantiles of interest. A separate model is fitted to each quantile.

Constraint:
ffiffi
�
p

< TAUðjÞ < 1�
ffiffi
�
p

where � is the machine precision returned by X02AJF, for
j ¼ 1; 2; . . . ;NTAU.

14: DF – REAL (KIND=nag_wp) Output

On exit: the degrees of freedom given by n� k, where n is the effective number of observations
and k is the rank of the cross-product matrix XTX.

15: BðIP;NTAUÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if Calculate Initial Values ¼ NO, Bði; lÞ must hold an initial estimates for �̂i, for
i ¼ 1; 2; . . . ; IP and l ¼ 1; 2; . . . ;NTAU. If Calculate Initial Values ¼ YES, B need not be set.

On exit: Bði; lÞ, for i ¼ 1; 2; . . . ; IP, contains the estimates of the parameters of the regression
model, �̂, estimated for � ¼ TAUðlÞ.
If INTCPT ¼ Y , Bð1; lÞ will contain the estimate corresponding to the intercept and Bðiþ 1; lÞ
will contain the coefficient of the jth variate contained in DAT, where ISXðjÞ is the ith nonzero
value in the array ISX.

If INTCPT ¼ N , Bði; lÞ will contain the coefficient of the jth variate contained in DAT, where
ISXðjÞ is the ith nonzero value in the array ISX.
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16: BLðIP; �Þ – REAL (KIND=nag_wp) array Output

Note : the second dimension of the array BL must be at leas t NTAU if
Interval Method 6¼ NONE.

On exit: if Interval Method 6¼ NONE, BLði; lÞ contains the lower limit of an 100� �ð Þ%
confidence interval for Bði; lÞ, for i ¼ 1; 2; . . . ; IP and l ¼ 1; 2; . . . ;NTAU.

If Interval Method ¼ NONE, BL is not referenced.

The method used for calculating the interval is controlled by the optional parameters Interval
Method and Bootstrap Interval Method. The size of the interval, �, is controlled by the
optional parameter Significance Level.

17: BUðIP; �Þ – REAL (KIND=nag_wp) array Output

Note : the second dimension of the array BU must be at leas t NTAU if
Interval Method 6¼ NONE.

On exit: if Interval Method 6¼ NONE, BUði; lÞ contains the upper limit of an 100� �ð Þ%
confidence interval for Bði; lÞ, for i ¼ 1; 2; . . . ; IP and l ¼ 1; 2; . . . ;NTAU.

If Interval Method ¼ NONE, BU is not referenced.

The method used for calculating the interval is controlled by the optional parameters Interval
Method and Bootstrap Interval Method. The size of the interval, � is controlled by the optional
parameter Significance Level.

18: CHðIP; IP; �Þ – REAL (KIND=nag_wp) array Output

Note: the last dimension of the array CH must be at least NTAU if Interval Method 6¼ NONE
and Matrix Returned ¼ COVARIANCE and at least NTAUþ 1 if Interval Method 6¼ NONE,
IID or BOOTSTRAP XY and Matrix Returned ¼ H INVERSE.

On exit: depending on the supplied optional parameters, CH will either not be referenced, hold an
estimate of the upper triangular part of the covariance matrix, �, or an estimate of the upper
triangular parts of nJn and n�1H�1n .

If Interval Method ¼ NONE or Matrix Returned ¼ NONE, CH is not referenced.

If Interval Method ¼ BOOTSTRAP XY or IID and Matrix Returned ¼ H INVERSE, CH is
not referenced.

Otherwise, for i; j ¼ 1; 2; . . . ; IP; j � i and l ¼ 1; 2; . . . ;NTAU:

If Matrix Returned ¼ COVARIANCE, CHði; j; lÞ holds an estimate of the covariance
between Bði; lÞ and Bðj; lÞ.
If Matrix Returned ¼ H INVERSE, CHði; j; 1Þ holds an estimate of the i; jð Þth element
of nJn and CHði; j; lþ 1Þ holds an estimate of the i; jð Þth element of n�1H�1n , for
� ¼ TAUðlÞ.

The method used for calculating � and H�1n is controlled by the optional parameter Interval
Method.

19: RESðN; �Þ – REAL (KIND=nag_wp) array Output

Note : the second dimension of the array RES must be at least NTAU if
Return Residuals ¼ YES.

On exit: if Return Residuals ¼ YES, RESði; lÞ holds the (weighted) residuals, ri, for
� ¼ TAUðlÞ, for i ¼ 1; 2; . . . ;N and l ¼ 1; 2; . . . ;NTAU.

If WEIGHT ¼ W and Drop Zero Weights ¼ YES, the value of RES will be set to zero for
observations with zero weights.

If Return Residuals ¼ NO, RES is not referenced.
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20: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to G02ZKF.

On entry: optional parameter array, as initialized by a call to G02ZKF.

21: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to G02ZKF.

On entry: optional parameter array, as initialized by a call to G02ZKF.

22: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

The actual argument supplied must be the array STATE supplied to the initialization routines
G05KFF or G05KGF.

If Interval Method ¼ BOOTSTRAP XY, STATE contains information about the selected
random number generator. Otherwise STATE is not referenced.

23: INFOðNTAUÞ – INTEGER array Output

On exit: INFOðiÞ holds additional information concerning the model fitting and confidence limit
calculations when � ¼ TAUðiÞ.

Code Warning
0 Model fitted and confidence limits (if requested) calculated successfully
1 The routine did not converge. The returned values are based on the estimate at the last

iteration. Try increasing Iteration Limit whilst calculating the parameter estimates or
relaxing the definition of convergence by increasing Tolerance.

2 A singular matrix was encountered during the optimization. The model was not fitted
for this value of � .

4 Some truncation occurred whilst calculating the confidence limits for this value of � .
See Section 11 for details. The returned upper and lower limits may be narrower than
specified.

8 The routine did not converge whilst calculating the confidence limits. The returned
limits are based on the estimate at the last iteration. Try increasing Iteration Limit.

16 Confidence limits for this value of � could not be calculated. The returned upper and
lower limits are set to a large positive and large negative value respectively as defined
by the optional parameter Big.

It is possible for multiple warnings to be applicable to a single model. In these cases the value
returned in INFO is the sum of the corresponding individual nonzero warning codes.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, SORDER ¼ valueh i.
Constraint: SORDER ¼ 1 or 2.

IFAIL ¼ 21

On entry, INTCPT ¼ valueh i was an illegal value.

IFAIL ¼ 31

On entry, WEIGHT had an illegal value.

IFAIL ¼ 41

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ 51

On entry, M ¼ valueh i.
Constraint: M � 0.

IFAIL ¼ 71

On entry, LDDAT ¼ valueh i and N ¼ valueh i.
Constraint: LDDAT � N.

IFAIL ¼ 72

On entry, LDDAT ¼ valueh i and M ¼ valueh i.
Constraint: LDDAT � M.

IFAIL ¼ 81

On entry, ISXð valueh iÞ ¼ valueh i.
Constraint: ISXðiÞ ¼ 0 or 1 for all i.

IFAIL ¼ 91

On entry, IP ¼ valueh i and N ¼ valueh i.
Constraint: 1 � IP < N.

IFAIL ¼ 92

On entry, IP is not consistent with ISX or INTCPT: IP ¼ valueh i, expected value ¼ valueh i.

IFAIL ¼ 111

On entry, WTð valueh iÞ ¼ valueh i.
Constraint: WTðiÞ � 0:0 for all i.

IFAIL ¼ 112

On entry, effective number of observations ¼ valueh i.
Constraint: effective number of observations � valueh i.
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IFAIL ¼ 121

On entry, NTAU ¼ valueh i.
Constraint: NTAU � 1.

IFAIL ¼ 131

On entry, TAUð valueh iÞ ¼ valueh i is invalid.

IFAIL ¼ 201

On entry, either the option arrays have not been initialized or they have been corrupted.

IFAIL ¼ 221

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 231

A potential problem occurred whilst fitting the model(s).
Additional information has been returned in INFO.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02QGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02QGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G02QGF allocates internally approximately the following elements of real storage:
13nþ npþ 3p2 þ 6pþ 3 pþ 1ð Þ � NTAU. If Interval Method ¼ BOOTSTRAP XY then a further np
e l emen t s a r e r e qu i r e d , a nd t h i s i n c r e a s e s by p� NTAU� Bootstrap Iterations i f
Bootstrap Interval Method ¼ QUANTILE. Where possible, any user-supplied output arrays are used
as workspace and so the amount actually allocated may be less. If SORDER ¼ 2, WEIGHT ¼ U ,
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INTCPT ¼ N and IP ¼ M an internal copy of the input data is avoided and the amount of locally
allocated memory is reduced by np.

10 Example

A quantile regression model is fitted to Engels 1857 study of household expenditure on food. The
model regresses the dependent variable, household food expenditure, against two explanatory variables,
a column of ones and household income. The model is fit for five different values of � and the
covariance matrix is estimated assuming Normal IID errors. Both the covariance matrix and the
residuals are returned.

10.1 Program Text

Program g02qgfe

! G02QGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02qgf, g02zkf, g02zlf, g05kff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df, rvalue
Integer :: genid, i, ifail, ip, ivalue, j, l, &

ldbl, lddat, ldres, liopts, lopts, &
lstate, lwt, m, n, ntau, optype, &
sorder, subid, tdch

Character (1) :: c1, weight
Character (30) :: cvalue, semeth
Character (100) :: optstr

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:,:), bl(:,:), bu(:,:), ch(:,:,:), &

dat(:,:), opts(:), res(:,:), tau(:), &
wt(:), y(:)

Integer, Allocatable :: info(:), iopts(:), isx(:), state(:)
Integer :: seed(lseed)

! .. Intrinsic Procedures ..
Intrinsic :: count, len_trim, min

! .. Executable Statements ..
Write (nout,*) ’G02QGF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) sorder, c1, weight, n, m, ntau

! Read in the data
If (weight==’W’ .Or. weight==’w’) Then

lwt = n
Else

lwt = 0
End If
Allocate (wt(lwt),isx(m),y(n),tau(ntau))

If (sorder==1) Then
! DAT(N,M)

lddat = n
Allocate (dat(lddat,m))
If (lwt==0) Then

Read (nin,*)(dat(i,1:m),y(i),i=1,n)
Else
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Read (nin,*)(dat(i,1:m),y(i),wt(i),i=1,n)
End If

Else
! DAT(M,N)

lddat = m
Allocate (dat(lddat,n))
If (lwt==0) Then

Read (nin,*)(dat(1:m,i),y(i),i=1,n)
Else

Read (nin,*)(dat(1:m,i),y(i),wt(i),i=1,n)
End If

End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate IP
ip = count(isx(1:m)==1)
If (c1==’Y’ .Or. c1==’y’) Then

ip = ip + 1
End If

! Read in the quantiles required
Read (nin,*) tau(1:ntau)

liopts = 100
lopts = 100
Allocate (iopts(liopts),opts(lopts))

! Initialize the optional argument array
ifail = 0
Call g02zkf(’INITIALIZE = G02QGF’,iopts,liopts,opts,lopts,ifail)

c_lp: Do
! Read in any optional arguments. Reads in to the end of
! the input data, or until a blank line is reached

ifail = 1
Read (nin,99994,Iostat=ifail) optstr
If (ifail/=0) Then

Exit c_lp
Else If (len_trim(optstr)==0) Then

Exit c_lp
End If

! Set the supplied option
ifail = 0
Call g02zkf(optstr,iopts,liopts,opts,lopts,ifail)

End Do c_lp

! Assume that no intervals or output matrices are required
! unless the optional argument state differently

ldbl = 0
tdch = 0
ldres = 0
lstate = 0

! Query the optional arguments to see what output is required
ifail = 0
Call g02zlf(’INTERVAL METHOD’,ivalue,rvalue,cvalue,optype,iopts,opts, &

ifail)
semeth = cvalue
If (semeth/=’NONE’) Then

! Require the intervals to be output
ldbl = ip

If (semeth==’BOOTSTRAP XY’) Then
! Need to find the length of the state array for the random
! number generator

! Read in the generator ID and a seed
Read (nin,*) genid, subid, seed(1)
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! Query the length of the state array
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Deallocate STATE so that it can reallocated later
Deallocate (state)

End If

ifail = 0
Call g02zlf(’MATRIX RETURNED’,ivalue,rvalue,cvalue,optype,iopts,opts, &

ifail)
If (cvalue==’COVARIANCE’) Then

tdch = ntau
Else If (cvalue==’H INVERSE’) Then

If (semeth==’BOOTSTRAP XY’ .Or. semeth==’IID’) Then
! NB: If we are using bootstrap or IID errors then any request for
! H INVERSE is ignored

tdch = 0
Else

tdch = ntau + 1
End If

End If

ifail = 0
Call g02zlf(’RETURN RESIDUALS’,ivalue,rvalue,cvalue,optype,iopts,opts, &

ifail)
If (cvalue==’YES’) Then

ldres = n
End If

End If

! Allocate memory for output arrays
Allocate (b(ip,ntau),info(ntau),bl(ldbl,ntau),bu(ldbl,ntau), &

ch(ldbl,ldbl,tdch),state(lstate),res(ldres,ntau))

If (lstate>0) Then
! Doing bootstrap, so initialize the RNG

ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End If

! Call the model fitting routine
ifail = -1
Call g02qgf(sorder,c1,weight,n,m,dat,lddat,isx,ip,y,wt,ntau,tau,df,b,bl, &

bu,ch,res,iopts,opts,state,info,ifail)
If (ifail/=0) Then

If (ifail==231) Then
Write (nout,*) ’Additional error information (INFO): ’, info(1:ntau)

Else
Go To 100

End If
End If

! Display the parameter estimates
Do l = 1, ntau

Write (nout,99999) ’Quantile: ’, tau(l)
Write (nout,*)
If (ldbl>0) Then

Write (nout,*) ’ Lower Parameter Upper’
Write (nout,*) ’ Limit Estimate Limit’

Else
Write (nout,*) ’ Parameter’
Write (nout,*) ’ Estimate’

End If
Do j = 1, ip

If (ldbl>0) Then
Write (nout,99998) j, bl(j,l), b(j,l), bu(j,l)

Else
Write (nout,99998) j, b(j,l)
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End If
End Do
Write (nout,*)
If (tdch==ntau) Then

Write (nout,*) ’Covariance matrix’
Do i = 1, ip

Write (nout,99997) ch(1:i,i,l)
End Do
Write (nout,*)

Else If (tdch==ntau+1) Then
Write (nout,*) ’J’
Do i = 1, ip

Write (nout,99997) ch(1:i,i,1)
End Do
Write (nout,*)
Write (nout,*) ’H inverse’
Do i = 1, ip

Write (nout,99997) ch(1:i,i,l+1)
End Do
Write (nout,*)

End If
Write (nout,*)

End Do

If (ldres>0) Then
Write (nout,*) ’First 10 Residuals’
Write (nout,*) ’ Quantile’
Write (nout,99995) ’Obs.’, tau(1:ntau)
Do i = 1, min(n,10)

Write (nout,99996) i, res(i,1:ntau)
End Do

Else
Write (nout,*) ’Residuals not returned’

End If
Write (nout,*)

100 Continue

99999 Format (1X,A,F6.3)
99998 Format (1X,I3,3(3X,F7.3))
99997 Format (1X,10(E10.3,3X))
99996 Format (2X,I3,10(1X,F10.5))
99995 Format (1X,A,10(3X,F6.3,2X))
99994 Format (A100)

End Program g02qgfe

10.2 Program Data

G02QGF Example Program Data
1 ’Y’ ’U’ 235 1 5 :: SORDER,C1,WEIGHT,N,M,NTAU
420.1577 255.8394 800.7990 572.0807 643.3571 459.8177
541.4117 310.9587 1245.6964 907.3969 2551.6615 863.9199
901.1575 485.6800 1201.0002 811.5776 1795.3226 831.4407
639.0802 402.9974 634.4002 427.7975 1165.7734 534.7610
750.8756 495.5608 956.2315 649.9985 815.6212 392.0502
945.7989 633.7978 1148.6010 860.6002 1264.2066 934.9752
829.3979 630.7566 1768.8236 1143.4211 1095.4056 813.3081
979.1648 700.4409 2822.5330 2032.6792 447.4479 263.7100

1309.8789 830.9586 922.3548 590.6183 1178.9742 769.0838
1492.3987 815.3602 2293.1920 1570.3911 975.8023 630.5863
502.8390 338.0014 627.4726 483.4800 1017.8522 645.9874
616.7168 412.3613 889.9809 600.4804 423.8798 319.5584
790.9225 520.0006 1162.2000 696.2021 558.7767 348.4518
555.8786 452.4015 1197.0794 774.7962 943.2487 614.5068
713.4412 512.7201 530.7972 390.5984 1348.3002 662.0096
838.7561 658.8395 1142.1526 612.5619 2340.6174 1504.3708
535.0766 392.5995 1088.0039 708.7622 587.1792 406.2180
596.4408 443.5586 484.6612 296.9192 1540.9741 692.1689
924.5619 640.1164 1536.0201 1071.4627 1115.8481 588.1371
487.7583 333.8394 678.8974 496.5976 1044.6843 511.2609
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692.6397 466.9583 671.8802 503.3974 1389.7929 700.5600
997.8770 543.3969 690.4683 357.6411 2497.7860 1301.1451
506.9995 317.7198 860.6948 430.3376 1585.3809 879.0660
654.1587 424.3209 873.3095 624.6990 1862.0438 912.8851
933.9193 518.9617 894.4598 582.5413 2008.8546 1509.7812
433.6813 338.0014 1148.6470 580.2215 697.3099 484.0605
587.5962 419.6412 926.8762 543.8807 571.2517 399.6703
896.4746 476.3200 839.0414 588.6372 598.3465 444.1001
454.4782 386.3602 829.4974 627.9999 461.0977 248.8101
584.9989 423.2783 1264.0043 712.1012 977.1107 527.8014
800.7990 503.3572 1937.9771 968.3949 883.9849 500.6313
502.4369 354.6389 698.8317 482.5816 718.3594 436.8107
713.5197 497.3182 920.4199 593.1694 543.8971 374.7990
906.0006 588.5195 1897.5711 1033.5658 1587.3480 726.3921
880.5969 654.5971 891.6824 693.6795 4957.8130 1827.2000
796.8289 550.7274 889.6784 693.6795 969.6838 523.4911
854.8791 528.3770 1221.4818 761.2791 419.9980 334.9998

1167.3716 640.4813 544.5991 361.3981 561.9990 473.2009
523.8000 401.3204 1031.4491 628.4522 689.5988 581.2029
670.7792 435.9990 1462.9497 771.4486 1398.5203 929.7540
377.0584 276.5606 830.4353 757.1187 820.8168 591.1974
851.5430 588.3488 975.0415 821.5970 875.1716 637.5483

1121.0937 664.1978 1337.9983 1022.3202 1392.4499 674.9509
625.5179 444.8602 867.6427 679.4407 1256.3174 776.7589
805.5377 462.8995 725.7459 538.7491 1362.8590 959.5170
558.5812 377.7792 989.0056 679.9981 1999.2552 1250.9643
884.4005 553.1504 1525.0005 977.0033 1209.4730 737.8201

1257.4989 810.8962 672.1960 561.2015 1125.0356 810.6772
2051.1789 1067.9541 923.3977 728.3997 1827.4010 983.0009
1466.3330 1049.8788 472.3215 372.3186 1014.1540 708.8968
730.0989 522.7012 590.7601 361.5210 880.3944 633.1200

2432.3910 1424.8047 831.7983 620.8006 873.7375 631.7982
940.9218 517.9196 1139.4945 819.9964 951.4432 608.6419

1177.8547 830.9586 507.5169 360.8780 473.0022 300.9999
1222.5939 925.5795 576.1972 395.7608 601.0030 377.9984
1519.5811 1162.0024 696.5991 442.0001 713.9979 397.0015
687.6638 383.4580 650.8180 404.0384 829.2984 588.5195
953.1192 621.1173 949.5802 670.7993 959.7953 681.7616
953.1192 621.1173 497.1193 297.5702 1212.9613 807.3603
953.1192 621.1173 570.1674 353.4882 958.8743 696.8011
939.0418 548.6002 724.7306 383.9376 1129.4431 811.1962

1283.4025 745.2353 408.3399 284.8008 1943.0419 1305.7201
1511.5789 837.8005 638.6713 431.1000 539.6388 442.0001
1342.5821 795.3402 1225.7890 801.3518 463.5990 353.6013
511.7980 418.5976 715.3701 448.4513 562.6400 468.0008
689.7988 508.7974 800.4708 577.9111 736.7584 526.7573

1532.3074 883.2780 975.5974 570.5210 1415.4461 890.2390
1056.0808 742.5276 1613.7565 865.3205 2208.7897 1318.8033
387.3195 242.3202 608.5019 444.5578 636.0009 331.0005
387.3195 242.3202 958.6634 680.4198 759.4010 416.4015
410.9987 266.0010 835.9426 576.2779 1078.8382 596.8406
499.7510 408.4992 1024.8177 708.4787 748.6413 429.0399
832.7554 614.7588 1006.4353 734.2356 987.6417 619.6408
614.9986 385.3184 726.0000 433.0010 788.0961 400.7990
887.4658 515.6200 494.4174 327.4188 1020.0225 775.0209

1595.1611 1138.1620 776.5958 485.5198 1230.9235 772.7611
1807.9520 993.9630 415.4407 305.4390 440.5174 306.5191
541.2006 299.1993 581.3599 468.0008 743.0772 522.6019

1057.6767 750.3202 :: End of X,Y (in three set of columns)
1 :: ISX
0.10 0.25 0.50 0.75 0.90 :: TAU
Return Residuals = Yes
Matrix Returned = Covariance
Interval Method = IID
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10.3 Program Results

G02QGF Example Program Results

Quantile: 0.100

Lower Parameter Upper
Limit Estimate Limit

1 74.946 110.142 145.337
2 0.370 0.402 0.433

Covariance matrix
0.319E+03

-0.254E+00 0.259E-03

Quantile: 0.250

Lower Parameter Upper
Limit Estimate Limit

1 64.232 95.483 126.735
2 0.446 0.474 0.502

Covariance matrix
0.252E+03

-0.200E+00 0.204E-03

Quantile: 0.500

Lower Parameter Upper
Limit Estimate Limit

1 55.399 81.482 107.566
2 0.537 0.560 0.584

Covariance matrix
0.175E+03

-0.140E+00 0.142E-03

Quantile: 0.750

Lower Parameter Upper
Limit Estimate Limit

1 41.372 62.396 83.421
2 0.625 0.644 0.663

Covariance matrix
0.114E+03

-0.907E-01 0.923E-04

Quantile: 0.900

Lower Parameter Upper
Limit Estimate Limit

1 26.829 67.351 107.873
2 0.650 0.686 0.723

Covariance matrix
0.423E+03

-0.337E+00 0.343E-03

First 10 Residuals
Quantile

Obs. 0.100 0.250 0.500 0.750 0.900
1 -23.10718 -38.84219 -61.00711 -77.14462 -99.86551
2 140.20549 96.93582 42.00636 -6.04177 -44.85812
3 91.19725 59.31654 17.93924 -16.90993 -49.06884
4 -16.70358 -41.20981 -73.81193 -100.11463 -127.96277
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5 296.77717 221.32470 128.09970 42.75414 -14.87476
6 -271.39185 -441.31464 -646.95350 -841.78309 -954.63488
7 13.48419 -37.04518 -100.61322 -157.07478 -200.13481
8 218.91527 146.69601 57.31834 -24.28017 -80.01908
9 0.00000 -115.21109 -255.74639 -387.16920 -468.03911

10 36.09526 4.52393 -36.48522 -70.97584 -102.95390
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11 Algorithmic Details

By the addition of slack variables the minimization (1) can be reformulated into the linear programming
problem

minimize
u;v;�ð Þ2Rn

þ�Rn
þ�Rp

�eTuþ 1� �ð ÞeTv subject to y ¼ X� þ u� v ð2Þ

and its associated dual

maximize
d

yTd subject to XTd ¼ 0; d 2 � � 1; �½ �n ð3Þ

where e is a vector of n 1s. Setting a ¼ dþ 1� �ð Þe gives the equivalent formulation

maximize
a

yTa subject to XTa ¼ 1� �ð ÞXTe; a 2 0; 1½ �n: ð4Þ

The algorithm introduced by Portnoy and Koenker (1997) and used by G02QGF, uses the primal-dual
formulation expressed in equations (2) and (4) along with a logarithmic barrier function to obtain
estimates for �. The algorithm is based on the predictor-corrector algorithm of Mehrotra (1992) and
further details can be obtained from Portnoy and Koenker (1997) and Koenker (2005). A good
description of linear programming, interior point algorithms, barrier functions and Mehrotra's predictor-
corrector algorithm can be found in Nocedal and Wright (1999).

G02QGF NAG Library Manual

G02QGF.16 Mark 26



11.1 Interior Point Algorithm

In this section a brief description of the interior point algorithm used to estimate the model parameters
is presented. It should be noted that there are some differences in the equations given here –
particularly (7) and (9) – compared to those given in Koenker (2005) and Portnoy and Koenker (1997).

11.1.1 Central path

Rather than optimize (4) directly, an additional slack variable s is added and the constraint a 2 0; 1½ �n is
replaced with aþ s ¼ e; ai � 0; si � 0, for i ¼ 1; 2; . . . ; n.

The positivity constraint on a and s is handled using the logarithmic barrier function

B a; s; �ð Þ ¼ yTaþ �
Xn
i¼1

log ai þ log sið Þ:

The primal-dual form of the problem is used giving the Lagrangian

L a; s; �; u; �ð Þ ¼ B a; s; �ð Þ � �T XTa� 1� �ð ÞXTe
� �

� uT aþ s� eð Þ

whose central path is described by the following first order conditions

XTa ¼ 1� �ð ÞXTe
aþ s ¼ e

X� þ u� v ¼ y
SUe ¼ �e
AV e ¼ �e

ð5Þ

where A denotes the diagonal matrix with diagonal elements given by a, similarly with S;U and V . By
enforcing the inequalities on s and a strictly, i.e., ai > 0 and si > 0 for all i we ensure that A and S are
positive definite diagonal matrices and hence A�1 and S�1 exist.

Rather than applying Newton's method to the system of equations given in (5) to obtain the step
directions ��; �a; �s; �u and �v, Mehrotra substituted the steps directly into (5) giving the augmented
system of equations

XT aþ �að Þ ¼ 1� �ð ÞXTe
aþ �að Þ þ sþ �sð Þ ¼ e

X � þ ��
� �

þ uþ �uð Þ � vþ �vð Þ ¼ y
S þ�sð Þ U þ�uð Þe ¼ �e
Aþ�að Þ V þ�vð Þe ¼ �e

ð6Þ

where �a;�s;�u and �v denote the diagonal matrices with diagonal elements given by �a; �s; �u and �v
respectively.

11.1.2 Affine scaling step

The affine scaling step is constructed by setting � ¼ 0 in (5) and applying Newton's method to obtain
an intermediate set of step directions

XTWXð Þ�� ¼ XTW y�X�ð Þ þ � � 1ð ÞXTeþXTa
�a ¼ W y�X� �X��

� �
�s ¼ ��a
�u ¼ S�1U�a � Ue
�v ¼ A�1V �s � V e

ð7Þ

where W ¼ S�1U þA�1Vð Þ�1.
Initial step sizes for the primal (�̂P ) and dual (�̂D) parameters are constructed as

�̂P ¼ � min min
i;�ai<0

ai=�aif g; min
i;�si<0

si=�sif g

 �

�̂D ¼ � min min
i;�ui<0

ui=�uif g; min
i;�vi<0

vi=�vif g

 � ð8Þ
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where � is a user-supplied scaling factor. If �̂P � �̂D � 1 then the nonlinearity adjustment, described in
Section 11.1.3, is not made and the model parameters are updated using the current step size and
directions.

11.1.3 Nonlinearity Adjustment

In the nonlinearity adjustment step a new estimate of � is obtained by letting

ĝ �̂P ; �̂Dð Þ ¼ sþ �̂P �sð ÞT uþ �̂D�uð Þ þ aþ �̂P �að ÞT vþ �̂D�vð Þ

and estimating � as

� ¼ ĝ �̂P ; �̂Dð Þ
ĝ 0; 0ð Þ

� �3ĝ 0; 0ð Þ
2n

:

This estimate, along with the nonlinear terms (�u, �s, �a and �v) from (6) are calculated using the
values of �a; �s; �u and �v obtained from the affine scaling step.

Given an updated estimate for � and the nonlinear terms the system of equations

XTWXð Þ�� ¼ XTW y�X� þ � S�1 �A�1ð Þeþ S�1�s�ue�A�1�a�veð Þ þ � � 1ð ÞXTeþXTa
�a ¼ W y�X� �X�� þ � S�1 �A�1ð Þ

� �
�s ¼ ��a
�u ¼ �S�1eþ S�1U�a � Ue� S�1�s�ue
�v ¼ �A�1eþA�1V �s � V e�A�1�a�ve

ð9Þ

are solved and updated values for ��; �a; �s; �u; �v; �̂P and �̂D calculated.

11.1.4 Update and convergence

At each iteration the model parameters �; a; s; u; vð Þ are updated using step directions, ��; �a; �s; �u; �v
� �

and step lengths �̂P ; �̂Dð Þ.
Convergence is assessed using the duality gap, that is, the differences between the objective function in
the primal and dual formulations. For any feasible point u; v; s; að Þ the duality gap can be calculated
from equations (2) and (3) as

�eTuþ 1� �ð ÞeTv� dTy ¼ �eTuþ 1� �ð ÞeTv� a� 1� �ð Þeð ÞTy
¼ sTuþ aTv
¼ eTu� aTyþ 1� �ð ÞeTX�

and the optimization terminates if the duality gap is smaller than the tolerance supplied in the optional
parameter Tolerance.

11.1.5 Additional information

Initial values are required for the parameters a; s; u; v and �. If not supplied by the user, initial values
for � are calculated from a least squares regression of y on X. This regression is carried out by first
constructing the cross-product matrix XTX and then using a pivoted QR decomposition as performed
by F08BFF (DGEQP3). In addition, if the cross-product matrix is not of full rank, a rank reduction is
carried out and, rather than using the full design matrix, X, a matrix formed from the first p-rank
columns of XP is used instead, where P is the pivot matrix used during the QR decomposition.
Parameter estimates, confidence intervals and the rows and columns of the matrices returned in the
argument CH (if any) are set to zero for variables dropped during the rank-reduction. The rank
reduction step is performed irrespective of whether initial values are supplied by the user.

Once initial values have been obtained for �, the initial values for u and v are calculated from the
residuals. If rij j < �u then a value of 
�u is used instead, where �u is supplied in the optional parameter
Epsilon. The initial values for the a and s are always set to 1� � and � respectively.

The solution for �� in both (7) and (9) is obtained using a Bunch–Kaufman decomposition, as
implemented in F07MDF (DSYTRF).
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11.2 Calculation of Covariance Matrix

G02QGF supplies four methods to calculate the covariance matrices associated with the parameter
estimates for �. This section gives some additional detail on three of the algorithms, the fourth, (which
uses bootstrapping), is described in Section 3.

(i) Independent, identically distributed (IID) errors

When assuming IID errors, the covariance matrices depend on the sparsity, s �ð Þ, which G02QGF
estimates as follows:

(a) Let ri denote the residuals from the original quantile regression, that is ri ¼ yi � xTi �̂.
(b) Drop any residual where rij j is less than �u, supplied in the optional parameter Epsilon.

(c) Sort and relabel the remaining residuals in ascending order, by absolute value, so that
�u < r1j j < r2j j < . . ..

(d) Select the first l values where l ¼ hnn, for some bandwidth hn.

(e) Sort and relabel these l residuals again, so that r1 < r2 < . . . < rl and regress them against a
design matrix with two columns (p ¼ 2) and rows given by xi ¼ 1; i= n� pð Þf g using quantile
regression with � ¼ 0:5.

(f) Use the resulting estimate of the slope as an estimate of the sparsity.

(ii) Powell Sandwich

When using the Powell Sandwich to estimate the matrix Hn, the quantity

cn ¼ min �r; qr3 � qr1ð Þ=1:34ð Þ � ��1 � þ hnð Þ � ��1 � � hnð Þ
� �

is calculated. Dependent on the value of � and the method used to calculate the bandwidth (hn), it
is possible for the quantities � 
 hn to be too large or small, compared to machine precision (�).
More specifically, when � � hn �

ffiffi
�
p

, or � þ hn � 1�
ffiffi
�
p

, a warning flag is raised in INFO, the
value is truncated to

ffiffi
�
p

or 1�
ffiffi
�
p

respectively and the covariance matrix calculated as usual.

(iii) Hendricks–Koenker Sandwich

The Hendr icks –Koenker Sandwich requi res the ca lcu la t ion of the quant i ty

di ¼ xTi �̂ � þ hnð Þ � �̂ � � hnð Þ
� �

. As with the Powell Sandwich, in cases where � � hn �
ffiffi
�
p

, or

� þ hn � 1�
ffiffi
�
p

, a warning flag is raised in INFO, the value truncated to
ffiffi
�
p

or 1�
ffiffi
�
p

respectively and the covariance matrix calculated as usual.

In addition, it is required that di > 0, in this method. Hence, instead of using 2hn=di in the
calculation of Hn, max 2hn= di þ �uð Þ; 0ð Þ is used instead, where �u is supplied in the optional
parameter Epsilon.

12 Optional Parameters

Several optional parameters in G02QGF control aspects of the optimization algorithm, methodology
used, logic or output. Their values are contained in the arrays IOPTS and OPTS; these must be
initialized before calling G02QGF by first calling G02ZKF with OPTSTR set to Initialize ¼ G02QGF.

Each optional parameter has an associated default value; to set any of them to a non-default value, use
G02ZKF. The current value of an optional parameter can be queried using G02ZLF.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Band Width Alpha

Band Width Method

Big
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Bootstrap Interval Method

Bootstrap Iterations

Bootstrap Monitoring

Calculate Initial Values

Defaults

Drop Zero Weights

Epsilon

Interval Method

Iteration Limit

Matrix Returned

Monitoring

QR Tolerance

Return Residuals

Sigma

Significance Level

Tolerance

Unit Number

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Band Width Alpha r Default ¼ 1:0

A multiplier used to construct the parameter �b used when calculating the Sheather–Hall bandwidth
(see Section 3), with �b ¼ 1� �ð Þ � Band Width Alpha. Here, � is the Significance Level.

Constraint: Band Width Alpha > 0:0.

Band Width Method a Default ¼ SHEATHER HALL

The method used to calculate the bandwidth used in the calculation of the asymptotic covariance matrix
� and H�1 if Interval Method ¼ HKS, KERNEL or IID (see Section 3).

Constraint: Band Width Method ¼ SHEATHER HALL or BOFINGER.

Big r Default ¼ 10:020

This parameter should be set to something larger than the biggest value supplied in DAT and Y.

Constraint: Big > 0:0.
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Bootstrap Interval Method a Default ¼ QUANTILE

If Interval Method ¼ BOOTSTRAP XY, Bootstrap Interval Method controls how the confidence
intervals are calculated from the bootstrap estimates.

Bootstrap Interval Method ¼ T
t intervals are calculated. That is, the covariance matrix, � ¼ �ij : i; j ¼ 1; 2; . . . ; p

� 
is

calculated from the bootstrap estimates and the limits calculated as �i 
 t n�p; 1þ�ð Þ=2ð Þ�ii where
t n�p; 1þ�ð Þ=2ð Þ is the 1þ �ð Þ=2 percentage point from a Student's t distribution on n� p degrees of
freedom, n is the effective number of observations and � is given by the optional parameter
Significance Level.

Bootstrap Interval Method ¼ QUANTILE
Quantile intervals are calculated. That is, the upper and lower limits are taken as the 1þ �ð Þ=2
and 1� �ð Þ=2 quantiles of the bootstrap estimates, as calculated using G01AMF.

Constraint: Bootstrap Interval Method ¼ T or QUANTILE.

Bootstrap Iterations i Default ¼ 100

The number of bootstrap samples used to calculate the confidence limits and covariance matrix (if
requested) when Interval Method ¼ BOOTSTRAP XY.

Constraint: Bootstrap Iterations > 1.

Bootstrap Monitoring a Default ¼ NO

If Bootstrap Monitoring ¼ YES and Interval Method ¼ BOOTSTRAP XY, then the parameter
estimates for each of the bootstrap samples are displayed. This information is sent to the unit number
specified by Unit Number.

Constraint: Bootstrap Monitoring ¼ YES or NO.

Calculate Initial Values a Default ¼ YES

If Calculate Initial Values ¼ YES then the initial values for the regression parameters, �, are
calculated from the data. Otherwise they must be supplied in B.

Constraint: Calculate Initial Values ¼ YES or NO.

Defaults

This special keyword is used to reset all optional parameters to their default values.

Drop Zero Weights a Default ¼ YES

If a weighted regression is being performed and Drop Zero Weights ¼ YES then observations with
zero weight are dropped from the analysis. Otherwise such observations are included.

Constraint: Drop Zero Weights ¼ YES or NO.

Epsilon r Default ¼
ffiffi
�
p

�u, the tolerance used when calculating the covariance matrix and the initial values for u and v. For
additional details see Section 11.2 and Section 11.1.5 respectively.

Constraint: Epsilon � 0:0.

Interval Method a Default ¼ IID

The value of Interval Method controls whether confidence limits are returned in BL and BU and how
these limits are calculated. This parameter also controls how the matrices returned in CH are calculated.

Interval Method ¼ NONE
No limits are calculated and BL, BU and CH are not referenced.
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Interval Method ¼ KERNEL
The Powell Sandwich method with a Gaussian kernel is used.

Interval Method ¼ HKS
The Hendricks–Koenker Sandwich is used.

Interval Method ¼ IID
The errors are assumed to be identical, and independently distributed.

Interval Method ¼ BOOTSTRAP XY
A bootstrap method is used, where sampling is done on the pair yi; xið Þ. The number of bootstrap
samples is controlled by the parameter Bootstrap Iterations and the type of interval constructed
from the bootstrap samples is controlled by Bootstrap Interval Method.

Constraint: Interval Method ¼ NONE, KERNEL, HKS, IID or BOOTSTRAP XY.

Iteration Limit i Default ¼ 100

The maximum number of iterations to be performed by the interior point optimization algorithm.

Constraint: Iteration Limit > 0.

Matrix Returned a Default ¼ NONE

The value of Matrix Returned controls the type of matrices returned in CH. If
Interval Method ¼ NONE, this parameter is ignored and CH is not referenced. Otherwise:

Matrix Returned ¼ NONE
No matrices are returned and CH is not referenced.

Matrix Returned ¼ COVARIANCE
The covariance matrices are returned.

Matrix Returned ¼ H INVERSE
If Interval Method ¼ KERNEL or HKS, the matrices J and H�1 are returned. Otherwise no
matrices are returned and CH is not referenced.

The matrices returned are calculated as described in Section 3, with the algorithm used specified by
Interval Method. In the case of Interval Method ¼ BOOTSTRAP XY the covariance matrix is
calculated directly from the bootstrap estimates.

Constraint: Matrix Returned ¼ NONE, COVARIANCE or H INVERSE.

Monitoring a Default ¼ NO

If Monitoring ¼ YES then the duality gap is displayed at each iteration of the interior point
optimization algorithm. In addition, the final estimates for � are also displayed.

The monitoring information is sent to the unit number specified by Unit Number.

Constraint: Monitoring ¼ YES or NO.

QR Tolerance r Default ¼ �0:9

The tolerance used to calculate the rank, k, of the p� p cross-product matrix, XTX. Letting Q be the
orthogonal matrix obtained from a QR decomposition of XTX, then the rank is calculated by
comparing Qii with Q11 �QR Tolerance.

If the cross-product matrix is rank deficient, then the parameter estimates for the p� k columns with
the smallest values of Qii are set to zero, along with the corresponding entries in BL, BU and CH, if
returned. This is equivalent to dropping these variables from the model. Details on the QR
decomposition used can be found in F08BFF (DGEQP3).

Constraint: QR Tolerance > 0:0.
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Return Residuals a Default ¼ NO

If Return Residuals ¼ YES, the residuals are returned in RES. Otherwise RES is not referenced.

Constraint: Return Residuals ¼ YES or NO.

Sigma r Default ¼ 0:99995

The scaling factor used when calculating the affine scaling step size (see equation (8)).

Constraint: 0:0 < Sigma < 1:0.

Significance Level r Default ¼ 0:95

�, the size of the confidence interval whose limits are returned in BL and BU.

Constraint: 0:0 < Significance Level < 1:0.

Tolerance r Default ¼
ffiffi
�
p

Convergence tolerance. The optimization is deemed to have converged if the duality gap is less than
Tolerance (see Section 11.1.4).

Constraint: Tolerance > 0:0.

Unit Number i Default taken from X04ABF

The unit number to which any monitoring information is sent.

Constraint: Unit Number > 1.

13 Description of Monitoring Information

See the description of the optional argument Monitoring.
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NAG Library Routine Document

G02ZKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02ZKF either initializes or resets the optional parameter arrays or sets a single optional parameter for
supported problem solving routines in Chapter G02. Currently, only G02QGF is supported.

2 Specification

SUBROUTINE G02ZKF (OPTSTR, IOPTS, LIOPTS, OPTS, LOPTS, IFAIL)

INTEGER IOPTS(LIOPTS), LIOPTS, LOPTS, IFAIL
REAL (KIND=nag_wp) OPTS(LOPTS)
CHARACTER(*) OPTSTR

3 Description

G02ZKF has three purposes: to initialize optional parameter arrays, to reset all optional parameters to
their default values or to set a single optional parameter to a user-supplied value.

Optional parameters and their values are, in general, presented as a character string, OPTSTR, of the
form ‘option ¼ optval’; alphabetic characters can be supplied in either upper or lower case. Both
option and optval may consist of one or more tokens separated by white space. The tokens that
comprise optval will normally be either an integer, real or character value as defined in the description
of the specific optional argument. In addition all optional parameters can take an optval DEFAULT
which resets the optional parameter to its default value.

It is imperative that optional parameter arrays are initialized before any options are set, before the
relevant problem solving routine is called and before any options are queried using G02ZLF. To
initialize the optional parameter arrays IOPTS and OPTS for a specific problem solving routine, the
option Initialize is used with value identifying the problem solving routine to be called, via its short
name. For example, to initialize optional parameter arrays to be passed to G02QGF, G02ZKF is called
as follows:

call G02ZKF(’Initialize = g02qgf’, IOPTS, LIOPTS, OPTS, LOPTS, IFAIL)

Information relating to available option names and their corresponding valid values is given in
Section 12 in G02QGF.

4 References

None.
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5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option to be set.

Initialize ¼ routine name
Initialize the optional parameter arrays IOPTS and OPTS for use with routine
routine name, where routine name is the short name of the problem solving routine
you wish to use.

Defaults
Resets all options to their default values.

option ¼ optval
See Section 12 in G02QGF for details of valid values for option and optval. The equals
sign (¼) delimiter must be used to separate the option from its optval value.

OPTSTR is case insensitive. Each token in the option and optval component must be separated
by at least one space.

2: IOPTSðLIOPTSÞ – INTEGER array Communication Array

On entry: optional parameter array.

If OPTSTR has the form Initialize ¼ routine name, the contents of IOPTS need not be set.

Otherwise, IOPTS must not have been altered since the last call to G02ZKF, G02ZLF or the
selected problem solving routine.

On exit: dependent on the contents of OPTSTR, either an initialized, reset or updated version of
the optional parameter array.

3: LIOPTS – INTEGER Input

On entry: the length of the array IOPTS.

Constraint: unless otherwise stated in the documentation for a specific, supported, problem
solving routine, LIOPTS � 100.

4: OPTSðLOPTSÞ – REAL (KIND=nag_wp) array Communication Array

On entry: optional parameter array.

If OPTSTR has the form Initialize ¼ routine name, the contents of OPTS need not be set.

Otherwise, OPTS must not have been altered since the last call to G02ZKF, G02ZLF or the
selected problem solving routine.

On exit: dependent on the contents of OPTSTR, either an initialized, reset or updated version of
the optional parameter array.

5: LOPTS – INTEGER Input

On entry: the length of the array OPTS.

Constraint: unless otherwise stated in the documentation for a specific, supported, problem
solving routine, LOPTS � 100.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, the option supplied in OPTSTR was not recognized: OPTSTR ¼ valueh i.

IFAIL ¼ 12

On entry, the expected delimiter ‘¼’ was not found in OPTSTR: OPTSTR ¼ valueh i.

IFAIL ¼ 13

On entry, could not convert the specified optval to an integer: OPTSTR ¼ valueh i.
On entry, could not convert the specified optval to a real: OPTSTR ¼ valueh i.

IFAIL ¼ 14

On entry, attempting to initialize the optional parameter arrays but specified routine name was
not valid: name ¼ valueh i.

IFAIL ¼ 15

On entry, the optval supplied for the integer optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 16

On entry, the optval supplied for the real optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 17

On entry, the optval supplied for the character optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 21

On entry, either the option arrays have not been initialized or they have been corrupted.

IFAIL ¼ 31

On entry, LIOPTS ¼ valueh i.
Constraint: LIOPTS � valueh i.

IFAIL ¼ 51

On entry, LOPTS ¼ valueh i.
Constraint: LOPTS � valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02ZKF is not threaded in any implementation.

9 Further Comments

Not applicable.

10 Example

See the example programs associated with the problem solving routine you wish to use for a
demonstration of how to use G02ZKF to initialize option arrays and set options.
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NAG Library Routine Document

G02ZLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02ZLF is used to query the value of optional parameters available to supported problem solving
routines in Chapter G02. Currently, only G02QGF is supported.

2 Specification

SUBROUTINE G02ZLF (OPTSTR, IVALUE, RVALUE, CVALUE, OPTYPE, IOPTS, OPTS,
IFAIL)

&

INTEGER IVALUE, OPTYPE, IOPTS(*), IFAIL
REAL (KIND=nag_wp) RVALUE, OPTS(*)
CHARACTER(*) OPTSTR, CVALUE

3 Description

G02ZLF is used to query the current values of options. It is necessary to initalize optional parameter
arrays using G02ZKF before any options are queried.

G02ZLF will normally return either an integer, real or character value dependent upon the type
associated with the optional parameter being queried. Whether the option queried is of integer, real or
character type is indicated by the returned value of OPTYPE.

Information on optional parameter names and whether these options are real, integer or character can be
found in Section 12 in G02QGF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option whose current value is required. See Section 12 in
G02QGF for information on valid options. In addition, the following is a valid option:

Identify
G02ZLF returns in CVALUE the routine name supplied to G02ZKF when the optional
parameter arrays IOPTS and OPTS were initialized.

2: IVALUE – INTEGER Output

On exit: if the optional parameter supplied in OPTSTR is an integer valued argument, IVALUE
will hold its current value.

3: RVALUE – REAL (KIND=nag_wp) Output

On exit: if the optional parameter supplied in OPTSTR is a real valued argument, RVALUE will
hold its current value.

4: CVALUE – CHARACTER(*) Output

Note: the string returned in CVALUE will never exceed 40 characters in length.
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On exit: if the optional parameter supplied in OPTSTR is a character valued argument, CVALUE
will hold its current value, unless Identify is specified, see OPTSTR.

5: OPTYPE – INTEGER Output

On exit: indicates whether the optional parameter supplied in OPTSTR is an integer, real or
character valued argument and hence which of IVALUE, RVALUE or CVALUE holds the current
value.

OPTYPE ¼ 1
OPTSTR is an integer valued optional parameter, its current value has been returned in
IVALUE.

OPTYPE ¼ 2
OPTSTR is a real valued optional parameter, its current value has been returned in
RVALUE.

OPTYPE ¼ 3
OPTSTR is a character valued optional parameter, its current value has been returned in
CVALUE.

6: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to G02ZKF.

7: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to G02ZKF.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, the option in OPTSTR was not recognized: OPTSTR ¼ valueh i.

IFAIL ¼ 41

On entry, OPTSTR indicates a character optional parameter, but CVALUE is too short to hold the
stored value. The returned value will be truncated.
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IFAIL ¼ 61

On entry, either the option arrays have not been initialized or they have been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02ZLF is not threaded in any implementation.

9 Further Comments

Not applicable.

10 Example

See the example programs associated with the problem solving routine you wish to use for a
demonstration of how to use G02ZLF to query options.
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NAG Library Chapter Contents

G03 – Multivariate Methods

G03 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

G03AAF 14 nagf_mv_prin_comp
Performs principal component analysis

G03ACF 14 nagf_mv_canon_var
Performs canonical variate analysis

G03ADF 14 nagf_mv_canon_corr
Performs canonical correlation analysis

G03BAF 15 nagf_mv_rot_orthomax
Computes orthogonal rotations for loading matrix, generalized orthomax
criterion

G03BCF 15 nagf_mv_rot_procrustes
Computes Procrustes rotations

G03BDF 22 nagf_mv_rot_promax
ProMax rotations

G03CAF 15 nagf_mv_factor
Computes maximum likelihood estimates of the parameters of a factor
analysis model, factor loadings, communalities and residual correlations

G03CCF 15 nagf_mv_factor_score
Computes factor score coefficients (for use after G03CAF)

G03DAF 15 nagf_mv_discrim
Computes test statistic for equality of within-group covariance matrices and
matrices for discriminant analysis

G03DBF 15 nagf_mv_discrim_mahal
Computes Mahalanobis squared distances for group or pooled variance-
covariance matrices (for use after G03DAF)

G03DCF 15 nagf_mv_discrim_group
Allocates observations to groups according to selected rules (for use after
G03DAF)

G03EAF 16 nagf_mv_distance_mat
Computes distance matrix

G03ECF 16 nagf_mv_cluster_hier
Hierarchical cluster analysis

G03EFF 16 nagf_mv_cluster_kmeans
K-means cluster analysis

G03EHF 16 nagf_mv_cluster_hier_dendrogram
Constructs dendrogram (for use after G03ECF)

G03EJF 16 nagf_mv_cluster_hier_indicator
Computes cluster indicator variable (for use after G03ECF)

G03FAF 17 nagf_mv_multidimscal_metric
Performs principal coordinate analysis, classical metric scaling

G03FCF 17 nagf_mv_multidimscal_ordinal
Performs non-metric (ordinal) multidimensional scaling

G03GAF 24 nagf_mv_gaussian_mixture
Fits a Gaussian mixture model

G03ZAF 15 nagf_mv_z_scores
Produces standardized values (z-scores) for a data matrix
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1 Scope of the Chapter

This chapter is concerned with methods for studying multivariate data. A multivariate dataset consists
of several variables recorded on a number of objects or individuals. Multivariate methods can be
classified as those that seek to examine the relationships between the variables (e.g., principal
components), known as variable-directed methods, and those that seek to examine the relationships
between the objects (e.g., cluster analysis), known as individual-directed methods.

Multiple regression is not included in this chapter as it involves the relationship of a single variable,
known as the response variable, to the other variables in the dataset, the explanatory variables. Routines
for multiple regression are provided in Chapter G02.

2 Background to the Problems

2.1 Variable-directed Methods

Let the n by p data matrix consist of p variables, x1; x2; . . . ; xp, observed on n objects or individuals.
Variable-directed methods seek to examine the linear relationships between the p variables with the aim
of reducing the dimensionality of the problem. There are different methods depending on the structure
of the problem. Principal component analysis and factor analysis examine the relationships between
all the variables. If the individuals are classified into groups, then canonical variate analysis examines
the between group structure. If the variables can be considered as coming from two sets, then canonical
correlation analysis examines the relationships between the two sets of variables. All four methods are
based on an eigenvalue decomposition or a singular value decomposition (SVD) of an appropriate
matrix.

The above methods may reduce the dimensionality of the data from the original p variables to a smaller
number, k, of derived variables that adequately represent the data. In general, these k derived variables
will be unique only up to an orthogonal rotation. Therefore, it may be useful to see if there exists
suitable rotations of these variables that lead to a simple interpretation of the new variables in terms of
the original variables.

2.1.1 Principal component analysis

Principal component analysis finds new variables which are linear combinations of the p observed
variables so that they have maximum variation and are orthogonal (uncorrelated).

Let S be the p by p variance-covariance matrix of the n by p data matrix. A vector a1 of length p is
found such that

aT1Sa1 is maximized subject to aT1a1 ¼ 1:

The variable z1 ¼
Xp
i¼1
a1ixi is known as the first principal component and gives the linear combination

of the variables that gives the maximum variation. A second principal component, z2 ¼
Xp
i¼1
a2ixi, is

found such that

aT2Sa2 is maximized subject to aT2a2 ¼ 1 and aT2a1 ¼ 0:

This gives the linear combination of variables, orthogonal to the first principal component, that gives
the maximum variation. Further principal components are derived in a similar way.

The vectors ai, for i ¼ 1; 2; . . . ; p, are the eigenvectors of the matrix S and associated with each
eigenvector is the eigenvalue, �2i . The value of �2i =

P
�2i gives the proportion of variation explained by

the ith principal component. Alternatively, the ai can be considered as the right singular vectors in a
SVD of a scaled mean-centred data matrix. The singular values of the SVD are the �i-values.

Often fewer than p dimensions (principal components) are needed to represent most of the variation in
the data. A test on the smaller eigenvalues can be used to investigate the number of dimensions needed.
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The values of the principal component variables for the individuals are known as the principal
component scores. These can be standardized so that the variance of these scores for each principal
component is 1:0 or equal to the corresponding eigenvalue. The principal component scores correspond
to the left-hand singular vectors in the SVD.

2.1.2 Factor analysis

Let the p variables have variance-covariance matrix �. The aim of factor analysis is to account for the
covariances in these p variables in terms of a smaller number, k, of hypothetical variables or factors,
f1; f2; . . . ; fk. These are assumed to be independent and to have unit variance. The relationship between
the observed variables and the factors is given by the model

xi ¼
Xk
j¼1

�ijfj þ ei; i ¼ 1; 2; . . . ; p

where �ij , for i ¼ 1; 2; . . . ; p and j ¼ 1; 2; . . . ; k, are the factor loadings and ei, for i ¼ 1; 2; . . . ; p, are
independent random variables with variances  i. These represent the unique component of the variation
of each observed variable. The proportion of variation for each variable accounted for by the factors is
known as the communality.

The model for the variance-covariance matrix, �, can then be written as

� ¼ ��T þ �;

where � is the matrix of the factor loadings, �ij, and � is a diagonal matrix of the unique variances  i.

If it is assumed that both the k factors and the ei follow independent Normal distributions then the
parameters of the model, � and � , can be estimated by maximum likelihood, as described by Lawley
and Maxwell (1971). The computation of the maximum likelihood estimates is an iterative procedure
which involves computing the eigenvalues and eigenvectors of the matrix

S� ¼ ��1=2S��1=2;

where S is the sample variance-covariance matrix. Alternatively, the SVD of the matrix R��1=2 can be
used, where RTR ¼ S. When convergence has been achieved, the estimates �̂, of �, are obtained by
scaling the eigenvectors of S�. The use of maximum likelihood estimation means that likelihood ratio
tests can be constructed to test for the number of factors required.

Having found the estimates of the parameters of the model, the estimates of the values of the factors for
the individuals, the factor scores, can be computed. These involve the calculation of the factor score
coefficients. Two common methods of computing factor score coefficients are the regression method
and Bartlett's method. Bartlett's method gives unbiased estimates of the factor scores while the
estimates from the regression method are biased but have smaller variance; see Lawley and Maxwell
(1971).

2.1.3 Canonical variate analysis

If the individuals can be classified into one of g groups, then canonical variate analysis finds the linear
combinations of the p variables that maximize the ratio of the between-group variation to the within-
group variation. These variables are known as canonical variates. As the canonical variates provide
discrimination between the groups, the method is also known as canonical discrimination.

The canonical variates can be calculated from the eigenvectors of the within-group sums of squares and
cross-products matrix or from the SVD of the matrix

V ¼ QT
xQg;

where Qg is an orthogonal matrix that defines the groups and Qx is the first p columns of the orthogonal
matrix Q from the QR decomposition of the data matrix with the variable means subtracted. If the data
matrix is not of full rank, the Qx matrix can be obtained from a SVD. If the SVD of V is

V ¼ Ux�UT
g ;
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then the nonzero elements (�i > 0) of the diagonal matrix � are the canonical correlations. The largest
�i is called the first canonical correlation and associated with it is the first canonical variate.

The eigenvalues, �2i , of the within-group sums of squares matrix are given by

�2i ¼
�2i

1� �2i
:

The value of 	i ¼ �2i =
P
�2i gives the proportion of variation explained by the ith canonical variate. The

values of the 	i give an indication as to how many canonical variates are needed to adequately describe
the data, i.e., the dimensionality of the problem. The number of dimensions can be investigated by
means of a test on the smaller canonical correlations.

The canonical variate loadings and the relationship between the original variables and the canonical
variates are calculated from the matrix Ux. This matrix is scaled so that the canonical variates have unit
variance.

2.1.4 Canonical correlation analysis

If the p variables can be considered as coming from two sets then canonical correlation analysis finds
linear combinations of the variables in each set, known as canonical variates, such that the correlations
between corresponding canonical variates for the two sets are maximized. Let the two sets of variables
be denoted by x and y, with px and py variables in each set respectively. Let the variance-covariance of
the dataset be

S ¼ Sxx Sxy
Syx Syy

� �
and let

� ¼ S�1yy SyxS�1xx Sxy;

then the canonical correlations can be calculated from the eigenvalues of the matrix �. Alternatively,
the canonical correlations can be calculated by means of a SVD of the matrix

V ¼ QT
xQy;

where Qx is the first px columns of the orthogonal matrix Q from the QR decomposition of the
x-variables in the data matrix, and Qy is the first py columns of the Q matrix of the QR decomposition
of the y-variables in the data matrix. In both cases, the variable means are subtracted before the QR
decomposition is computed. If either set of variables is not of full rank, an SVD can be used instead of
the QR decomposition. If the SVD of V is

V ¼ Ux�UT
y ;

then the nonzero elements (�i > 0) of the diagonal matrix � are the canonical correlations. The largest
�i is called the first canonical correlation and associated with it is the first canonical variate. The
eigenvalues, �2i , of the matrix � are given by

�2i ¼
�2i

1þ �2i
:

The value of 	i ¼ �2i =
P
�2i gives the proportion of variation explained by the ith canonical variate. The

values of the 	i give an indication as to how many canonical variates are needed to adequately describe
the data, i.e., the dimensionality of the problem; this can also be investigated by means of a test on the
smaller values of the �2i .

The relationship between the canonical variables and the original variables, the canonical variate
loadings, can be computed from the Ux and Uy matrices.

2.1.5 Rotations

There are two principal reasons for using rotations: either
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(a) simplifying the structure to aid interpretation of derived variables, or

(b) comparing two or more datasets or sets of derived variables.

The most common type of rotations used for (a) are orthogonal rotations. If � is the p by k loading
matrix from a variable-directed multivariate method, then the rotations are selected such that the
elements, ��ij, of the rotated loading matrix, ��, are either relatively large or small. The rotations may
be found by minimizing the criterion

V ¼
Xk
j¼1

Xp
i¼1

��ij

� �4
� �
p

Xk
j¼1

Xp
i¼1

��ij

� �2 !2

where the constant, �, gives a family of rotations, with � ¼ 1 giving varimax rotations and � ¼ 0
giving quartimax rotations.

Given an orthogonal rotation matrix X, a solution may be further simplified by removing the
orthogonality restriction with an oblique ProMax rotation. Let Y denote the matrix defined by a power
transformation of X, designed to increase high values in X and decrease low values. Then the ProMax
solution is based on a least squares fit of X to Y .

For (b) Procrustes rotations are used. Let A and B be two l by m matrices, which can be considered as
representing l points in m dimensions. One example is if A is the loading matrix from a variable-
directed multivariate method and B is a hypothesised pattern matrix. In order to try to match the points
in A and B there are three steps:

(i) translate so that centroids of both matrices are at the origin,

(ii) find a rotation that minimizes the sum of squared distances between corresponding points of the
matrices,

(iii) scale the matrices.

For a more detailed description, see Krzanowski (1990).

2.2 Individual-directed Methods

While dealing with the same n by p data matrix as variable-directed methods, the emphasis is the n
objects or individuals rather than the p variables. The methods are generally based on an n by n
distance or dissimilarity matrix such that the (k; j)th element gives a measure of how ‘far apart’ the
individuals k and j are. Alternatively, a similarity matrix can be used which measures how ‘close’
individuals are. The form of the measure of distance or similarity will depend upon the form of the p
variables. For continuous variables it is usually assumed that some form of Euclidean distance is
suitable. That is, for xki and xji measured for individuals k and j on variable i respectively, the
contribution to distance between individuals k and j from variable i is given by

xki � xji
� �2

:

Often there will be a need to scale the variables to produce satisfactory distances. For discrete variables,
there are various measures of similarity or distance that can easily be computed. For example, for
binary data a measure of similarity could be

1 – if the individuals take the same value,

0 – otherwise.

Given a measure of distance between individuals, there are three basic tasks that can be performed.

(i) Group the individuals; that is, collect the individuals into groups so that those within a group are
closer to each other than they are to members of another group.

(ii) Classify individuals; that is, if some individuals are known to come from certain groups, allocate
individuals whose group membership is unknown, to the nearest group.

(iii) Map the individuals; that is, produce a multidimensional diagram in which the distances on the
diagram represent the distances between the individuals.
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In the above, (i) leads to cluster analysis, (ii) leads to discriminant analysis and (iii) leads to scaling
methods.

2.2.1 Hierarchical cluster analysis

Approaches for cluster analysis can be classified into two types: hierarchical and non-hierarchical.
Hierarchical cluster analysis produces a series of overlapping groups or clusters ranging from separate
individuals to one single cluster. For example, five individuals could be hierarchically clustered as
follows.

Step 1 1ð Þ 2ð Þ 3ð Þ 4ð Þ 5ð Þ
Step 2 1; 2ð Þ 3ð Þ 4ð Þ 5ð Þ
Step 3 1; 2ð Þ 3; 4ð Þ 5ð Þ
Step 4 1; 2ð Þ 3; 4; 5ð Þ
Step 5 1; 2; 3; 4; 5ð Þ

The clusters at a level are constructed from the clusters at a previous level. There are two basic
approaches to hierarchical cluster analysis: agglomerative methods which build up clusters starting from
individuals until there is only one cluster, or divisive methods which start with a single cluster and split
clusters until the individual level is reached. This chapter contains the more common agglomerative
methods.

The stages in a hierarchical cluster analysis are usually as follows.

(i) form a distance matrix;

(ii) use selected criterion to form hierarchy;

(iii) print cluster information in the form of a dendrogram or use information to form a set of clusters.

These three stages will be considered in turn.

(i) Form a distance matrix

For the n by p data matrix X, a general measure of the distance between object j and object k, djk,
is

djk ¼
Xp
i¼1
D xji=si; xki=si
� � !�

;

where xji and xki are the j; ið Þth and k; ið Þth elements of X, si is a standardization for the ith
variable and D u; vð Þ is a suitable function. Three common distances for continuous variables are:

(a) Euclidean distance: D u; vð Þ ¼ u� vð Þ2 and � ¼ 1
2 .

(b) Euclidean squared distance: D u; vð Þ ¼ u� vð Þ2 and � ¼ 1.

(c) Absolute distance (city block metric): D u; vð Þ ¼ u� vj j and � ¼ 1.

The common standardizations are the standard deviation and the range. For dichotomous variables
there are a number of different measures (see Krzanowski (1990) and Everitt (1974)); these are
usually easy to compute. If the individuals in a cluster analysis are themselves variables, then a
suitable distance measure will be based on the correlation coefficient for continuous variables and
contingency table statistics for discrete data.

(ii) Form Hierarchy

Given a distance matrix for the n individuals, an agglomerative clustering method produces a
hierarchical tree by starting with n clusters, each with a single individual and then at each of n� 1
stages, merging two clusters to form a larger cluster until all individuals are in a single cluster. At
each stage, the two clusters that are nearest are merged to form a new cluster and a new distance
matrix is computed for the reduced number of clusters.

Methods differ as to how the distances between the new cluster and other clusters are computed.
For three clusters i, j and k, let ni, nj and nk be the number of objects in each cluster, and let dij,
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dik and djk be the distances between the clusters. If clusters j and k, are to be merged to give
cluster jk, then the distance from cluster i to cluster jk, di:jk, can be computed in the following
ways.

(a) Single link or nearest neighbour: di:jk ¼ min dij; dik
� �

.

(b) Complete link or furthest neighbour: di:jk ¼ max dij; dik
� �

.

(c) Group average: di:jk ¼ nj
njþnkdij þ

nk
njþnkdik .

(d) Centroid: di:jk ¼ nj
njþnkdij þ

nk
njþnkdik �

njnk

njþnkð Þ2djk .

(e) Median: di:jk ¼ 1
2dij þ 1

2dik � 1
4djk .

(f) Minimum variance: di:jk ¼ ni þ nj
� �

dij þ ni þ nkð Þdik � nidjk
� �

= ni þ nj þ nk
� �

.

For further details, see Everitt (1974) or Krzanowski (1990).

(iii) Produce Dendrogram and Clusters

Hierarchical cluster analysis can be represented by a tree that shows at which distance the clusters
merge. Such a tree is known as a dendrogram; see Everitt (1974) and Krzanowski (1990).

A simple example is

D
i
s
t
a
n
c
e

Individuals

54321

Figure 1

The end points of the dendrogram represent the individuals that have been clustered.

Alternatively, the information from the tree can be used to produce either a chosen number of
clusters or the clusters that exist at a given distance. The latter is equivalent to taking the
dendrogram and drawing a line across at a given distance to produce clusters.

2.2.2 Non-hierarchical clustering

Non-hierarchical cluster analysis usually forms a given number of clusters from the data. There is no
requirement that if first k� 1 and then k clusters were requested then the k� 1 clusters would be
formed from the k clusters.

Most non-hierarchical methods of cluster analysis seek to partition the set of individuals into a number
of clusters so as to optimize a criterion. The number of clusters is usually specified prior to the analysis.
One commonly used criterion is the within-cluster sum of squares. Given n individuals with p variables
measured on each individual, xij , for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; p, the within-cluster sum of
squares for K clusters is

SSc ¼
XK
k¼1

X
i2Sk

Xp
j¼1

xij � �xkj
� �2

;
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where Sk is the set of objects in the kth cluster and �xkj is the mean for the variable j over cluster k.
Starting with an initial allocation of individuals to clusters, the method then seeks to minimize SSc by a
series of re-allocations. This is often known as K-means clustering.

In the K-means case individuals belong to a single cluster and are excluded from all remaining clusters.
Alternatively, probabilities of cluster membership can be estimated and each cluster can have its own
distributional properties. For example, given an initial set of probabilities, the Normal (Gaussian)
mixture model uses the E–M method of Dempster et al. (1977) to maximize the sum of log-likelihoods
over K clusters for a given covariance model ranging from pooled variance to individual covariance
matrices.

2.2.3 Discriminant analysis

Discriminant analysis is concerned with the allocation of objects to ng groups on the basis of
observations on those objects using an allocation rule. This rule is computed from observations coming
from a training set in which group membership is known. The allocation rule is based on the distance
between the object and an estimate of the location of the groups. If p variables are observed and the
vector of means for the jth group in the training set are �xj then the usual measure of the distance of an
observation, xk, from the jth group mean is given by Mahalanobis squared distance

D2
kj ¼ xk � �xj

� �T
S�1� xk � �xj

� �
;

where S� is either the within-group variance-covariance matrix, Sj, for the nj objects in the jth group,
or a pooled variance-covariance matrix, S, computed from all n objects from all groups where

S ¼

Xng
j¼1

nj � 1
� �

Sj

n� ng
� � :

If the within-group variance-covariance matrices can be assumed to be equal then the pooled variance-
covariance matrix can be used. This assumption can be tested using the test statistic

G ¼ C n� ng
� �

log Sj j �
Xng
j¼1

nj � 1
� �

log Sj
		 		 !

;

where

C ¼ 1� 2p2 þ 3p� 1

6 pþ 1ð Þ ng � 1
� � Xng

j¼1

1

nj � 1
� �� 1

n� ng
� � !

:

For large n, G is approximately distributed as a �2 variable with 1
2p pþ 1ð Þ ng � 1

� �
degrees of freedom;

see Morrison (1967).

In addition to the distances, a set of prior probabilities of group membership, 	j , for j ¼ 1; 2; . . . ; ng,
may be used. The prior probabilities reflect your view as to the likelihood of the objects coming from
the different groups.

It is generally assumed that the p variables follow a multivariate Normal distribution with, for the jth
group, mean �j and variance-covariance matrix �j. If p xk j �j;�j

� �
is the probability of observing the

observation xk from group j, then the posterior probability of belonging to group j is

p j j xk; �j; �j

� �
/ p xk j �j;�j

� �
	j:

An observation is allocated to the group with the highest posterior probability.

In the estimative approach to discrimination, the parameters �j and �j in p j j xk; �j; �j

� �
are replaced

by their estimates calculated from the training set. If it is assumed that the within-group variance-
covariance matrices are equal then the linear discriminant function is obtained; otherwise if it is
assumed that the variance-covariance matrices are unequal then the quadratic discriminant function is
obtained.
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In the Bayesian predictive approach, a non-informative prior distribution is used for the parameters
giving the posterior distribution for the parameters from the training set, Xt, of, p �j; �j j Xt

� �
. A

predictive distribution is then obtained by integrating p j j xk; �j;�j

� �
p �j; �j j X
� �

over the parameter
space. This predictive distribution, p xk j Xtð Þ, then replaces p xk j �j;�j

� �
to give

p j j xk; �j; �j

� �
/ p xk j Xtð Þ	j:

In addition to allocating the objects to groups, an atypicality index for each object and for each group
can be computed. This represents the probability of obtaining an observation more typical of the group
than that observed. A high value of the atypicality index for all groups indicates that the observation
may in fact come from a group not represented in the training set.

Alternative approaches to discrimination are the use of canonical variates and logistic discrimination.
Canonical variate analysis is described above and as it seeks to find the directions that best discriminate
between groups these directions can also be used to allocate further observations. This can be viewed as
an extension of Fisher's linear discriminant function. This approach does not assume that the data is
Normally distributed, but Fisher's linear discriminant function may not perform well on non-Normal
data. In the case of two groups, logistic regression can be performed with the response variable
indicating the group allocation and the variables in the discriminant analysis being the explanatory
variables. Allocation can then be made on the basis of the fitted response value. This is known as
logistic discrimination and can be shown to be valid for a wide range of distributional assumptions.

2.2.4 Scaling methods

Scaling methods seek to represent the observed dissimilarities or distances between objects as distances
between points in Euclidean space. For example if the distances between objects A, B and C were 3, 4
and 5, the distances could be represented exactly by three points in two-dimensional space. Only their
relative positions would be important, the whole configuration of points could be rotated or shifted
without effecting the distances between the points. If a one-dimensional representation was required, the
‘best’ representation might give distances of 213; 3

1
3 and 523 , which may be an adequate representation. If

the distances were 3, 4 and 8 then these distances could not be exactly represented in Euclidean space,
even in two dimensions, the best representation being the three points in a straight line giving distances
3, 4 and 7.

In practice, the use of scaling methods has to decide upon the number of dimensions in which the data
is to be represented. The smaller the number the easier it will be to assimilate the information. The
chosen number of dimensions needs to give an adequate representation of the data but will often not
give an exact representation because either the number of chosen dimensions is too small or the data
cannot be represented in Euclidean space.

Two basic methods are available depending on the nature of the dissimilarities or distances being
analysed. If the distances can be assumed to satisfy the metric inequality

dij � dik þ dkj;

then the distances can be represented exactly by points in Euclidean space and the technique known as
metric scaling, classical scaling or principal coordinate analysis can be used. This technique involves
the computing of the eigenvalues of a matrix derived from the distance matrix. The eigenvectors
corresponding to the k largest positive eigenvalues gives the best k dimensions in which to represent the
objects. If there are negative eigenvalues then the distance matrix cannot be represented in Euclidean
space.

Instead of the above approach of requiring the distances from the points to match the distances from the
objects as closely as possible, sometimes only a rank order equivalence is required. That is, the ith
largest distance between objects should, as far as possible, be represented by the ith largest distance
between points. This would be appropriate when the dissimilarities are based on subjective rankings.
For example, if the objects were foods then a number of judges rank the foods for different qualities
such as taste and texture, the resulting distances would not necessarily obey the metric inequality, but
the rank order would be significant. Alternatively, by relaxing the requirement from matching distances
to rank order equivalence only, the number of dimensions required to represent the distance matrix may
be decreased. The requirement of rank order equivalence leads to non-metric or ordinal multi-
dimensional scaling. The criterion used to measure the closeness of the fitted distance matrix to the
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observed distance matrix is known as STRESS, which is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xi�1
j¼1

d̂ij � ~dij

� �2
Xn
i¼1

Xi�1
j¼1

d̂2ij

vuuuuuuuut ;

where d̂2ij is the Euclidean squared distance between the computed points i and j, and ~dij is the fitted

distance obtained when d̂ij is monotonically regressed on the observed distances dij; that is, ~dij is

monotonic relative to dij and is obtained from d̂ij with the smallest number of changes. Thus STRESS
is a measure of by how much the set of points preserve the order of the distances in the original
distance matrix, and non-metric multidimensional scaling seeks to find the set of points that minimize
the STRESS.

3 Recommendations on Choice and Use of Available Routines

See Section 4 for a list of routines available in this Chapter.

Note also that G02GBF will fit a logistic regression model and can be used for logistic discrimination.

4 Functionality Index

Canonical correlation analysis.............................................................................................. G03ADF

Canonical variate analysis.................................................................................................... G03ACF

Cluster Analysis,
compute distance matrix ................................................................................................. G03EAF
construct clusters following G03ECF.............................................................................. G03EJF
construct dendrogram following G03ECF ....................................................................... G03EHF
Gaussian mixture model.................................................................................................. G03GAF
hierarchical...................................................................................................................... G03ECF
K-means .......................................................................................................................... G03EFF

Discriminant Analysis,
allocation of observations to groups, following G03DAF............................................... G03DCF
Mahalanobis squared distances, following G03DAF....................................................... G03DBF
test for equality of within-group covariance matrices..................................................... G03DAF

Factor Analysis,
factor score coefficients, following G03CAF .................................................................. G03CCF
maximum likelihood estimates of parameters ................................................................. G03CAF

Principal component analysis ............................................................................................... G03AAF

Rotations,
orthogonal rotations for loading matrix .......................................................................... G03BAF
Procustes rotations .......................................................................................................... G03BCF
ProMax rotations............................................................................................................. G03BDF

Scaling Methods,
multidimensional scaling ................................................................................................. G03FCF
principal coordinate analysis ........................................................................................... G03FAF

Standardize values of a data matrix..................................................................................... G03ZAF

5 Auxiliary Routines Associated with Library Routine Arguments

None.
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6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References

Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall

Dempster A P, Laird N M and Rubin D B (1977) Maximum likelihood from incomplete data via the
EM algorithm (with discussion) J. Roy. Statist. Soc. Ser. B 39 1–38

Everitt B S (1974) Cluster Analysis Heinemann

Gnanadesikan R (1977) Methods for Statistical Data Analysis of Multivariate Observations Wiley

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method (2nd Edition)
Butterworths

Morrison D F (1967) Multivariate Statistical Methods McGraw–Hill
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NAG Library Routine Document

G03AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03AAF performs a principal component analysis on a data matrix; both the principal component
loadings and the principal component scores are returned.

2 Specification

SUBROUTINE G03AAF (MATRIX, STD, WEIGHT, N, M, X, LDX, ISX, S, WT, NVAR,
E, LDE, P, LDP, V, LDV, WK, IFAIL)

&

INTEGER N, M, LDX, ISX(M), NVAR, LDE, LDP, LDV, IFAIL
REAL (KIND=nag_wp) X(LDX,M), S(M), WT(*), E(LDE,6), P(LDP,NVAR),

V(LDV,NVAR), WK(1)
&

CHARACTER(1) MATRIX, STD, WEIGHT

3 Description

Let X be an n by p data matrix of n observations on p variables x1; x2; . . . ; xp and let the p by p
variance-covariance matrix of x1; x2; . . . ; xp be S. A vector a1 of length p is found such that:

aT1Sa1 is maximized subject to aT1a1 ¼ 1:

The variable z1 ¼
Xp
i¼1
a1ixi is known as the first principal component and gives the linear combination

of the variables that gives the maximum variation. A second principal component, z2 ¼
Xp
i¼1
a2ixi, is

found such that:

aT2Sa2 is maximized subject to aT2a2 ¼ 1and aT2a1 ¼ 0:

This gives the linear combination of variables that is orthogonal to the first principal component that
gives the maximum variation. Further principal components are derived in a similar way.

The vectors a1; a2; . . . ; ap, are the eigenvectors of the matrix S and associated with each eigenvector is
the eigenvalue, �2i . The value of �2i =

P
�2i gives the proportion of variation explained by the ith

principal component. Alternatively, the ai's can be considered as the right singular vectors in a singular
value decomposition with singular values �i of the data matrix centred about its mean and scaled by
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þ

p
, Xs. This latter approach is used in G03AAF, with

Xs ¼ V �P 0

where � is a diagonal matrix with elements �i, P is the p by p matrix with columns ai and V is an n by
p matrix with V 0V ¼ I, which gives the principal component scores.

Principal component analysis is often used to reduce the dimension of a dataset, replacing a large
number of correlated variables with a smaller number of orthogonal variables that still contain most of
the information in the original dataset.

The choice of the number of dimensions required is usually based on the amount of variation accounted
for by the leading principal components. If k principal components are selected, then a test of the
equality of the remaining p� k eigenvalues is
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n� 2pþ 5ð Þ=6ð Þ �
Xp
i¼kþ1

log �2i
� �

þ p� kð Þlog
Xp
i¼kþ1

�2i = p� kð Þ
 !( )

which has, asymptotically, a �2-distribution with 1
2 p� k� 1ð Þ p� kþ 2ð Þ degrees of freedom.

Equality of the remaining eigenvalues indicates that if any more principal components are to be
considered then they all should be considered.

Instead of the variance-covariance matrix the correlation matrix, the sums of squares and cross-products
matrix or a standardized sums of squares and cross-products matrix may be used. In the last case S is

replaced by ��
1
2S��

1
2 for a diagonal matrix � with positive elements. If the correlation matrix is used,

the �2 approximation for the statistic given above is not valid.

The principal component scores, F , are the values of the principal component variables for the
observations. These can be standardized so that the variance of these scores for each principal
component is 1:0 or equal to the corresponding eigenvalue.

Weights can be used with the analysis, in which case the matrix X is first centred about the weighted
means then each row is scaled by an amount

ffiffiffiffiffi
wi
p

, where wi is the weight for the ith observation.

4 References

Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall

Cooley W C and Lohnes P R (1971) Multivariate Data Analysis Wiley

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Morrison D F (1967) Multivariate Statistical Methods McGraw–Hill

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: indicates for which type of matrix the principal component analysis is to be carried out.

MATRIX ¼ C
It is for the correlation matrix.

MATRIX ¼ S
It is for a standardized matrix, with standardizations given by S.

MATRIX ¼ U
It is for the sums of squares and cross-products matrix.

MATRIX ¼ V
It is for the variance-covariance matrix.

Constraint: MATRIX ¼ C , S , U or V .

2: STD – CHARACTER(1) Input

On entry: indicates if the principal component scores are to be standardized.

STD ¼ S
The principal component scores are standardized so that F 0F ¼ I, i.e., F ¼ XsP�

�1 ¼ V .
STD ¼ U

The principal component scores are unstandardized, i.e., F ¼ XsP ¼ V �.
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STD ¼ Z
The principal component scores are standardized so that they have unit variance.

STD ¼ E
The principal component scores are standardized so that they have variance equal to the
corresponding eigenvalue.

Constraint: STD ¼ E , S , U or Z .

3: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
No weights are used.

WEIGHT ¼ W
Weights are used and must be supplied in WT.

Constraint: WEIGHT ¼ U or W.

4: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

5: M – INTEGER Input

On entry: m, the number of variables in the data matrix.

Constraint: M � 1.

6: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation for the jth variable, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ;m.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G03AAF is called.

Constraint: LDX � N.

8: ISXðMÞ – INTEGER array Input

On entry: ISXðjÞ indicates whether or not the jth variable is to be included in the analysis.

If ISXðjÞ > 0, the variable contained in the jth column of X is included in the principal
component analysis, for j ¼ 1; 2; . . . ;m.

Constraint: ISXðjÞ > 0 for NVAR values of j.

9: SðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the standardizations to be used, if any.

If MATRIX ¼ S , the first m elements of S must contain the standardization coefficients, the
diagonal elements of �.

Constraint: if ISXðjÞ > 0, SðjÞ > 0:0, for j ¼ 1; 2; . . . ;m.

On exit: if MATRIX ¼ S , S is unchanged on exit.

If MATRIX ¼ C , S contains the variances of the selected variables. SðjÞ contains the variance
of the variable in the jth column of X if ISXðjÞ > 0.

If MATRIX ¼ U or V , S is not referenced.
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10: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W , the first n elements of WT must contain the weights to be used in
the principal component analysis.

If WTðiÞ ¼ 0:0, the ith observation is not included in the analysis. The effective number of
observations is the sum of the weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is n.

Constraints:

WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n;
the sum of weights � NVAR þ 1.

11: NVAR – INTEGER Input

On entry: p, the number of variables in the principal component analysis.

Constraint: 1 � NVAR � min N� 1;Mð Þ.

12: EðLDE; 6Þ – REAL (KIND=nag_wp) array Output

On exit: the statistics of the principal component analysis.

Eði; 1Þ
The eigenvalues associated with the ith principal component, �2i , for i ¼ 1; 2; . . . ; p.

Eði; 2Þ
The proportion of variation explained by the ith principal component, for i ¼ 1; 2; . . . ; p.

Eði; 3Þ
The cumulative proportion of variation explained by the first ith principal components, for
i ¼ 1; 2; . . . ; p.

Eði; 4Þ
The �2 statistics, for i ¼ 1; 2; . . . ; p.

Eði; 5Þ
The degrees of freedom for the �2 statistics, for i ¼ 1; 2; . . . ; p.

If MATRIX 6¼ C , Eði; 6Þ contains significance level for the �2 statistic, for i ¼ 1; 2; . . . ; p.

If MATRIX ¼ C , Eði; 6Þ is returned as zero.

13: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which G03AAF
is called.

Constraint: LDE � NVAR.

14: PðLDP;NVARÞ – REAL (KIND=nag_wp) array Output

On exit: the first NVAR columns of P contain the principal component loadings, ai. The jth
column of P contains the NVAR coefficients for the jth principal component.

15: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which G03AAF
is called.

Constraint: LDP � NVAR.
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16: VðLDV;NVARÞ – REAL (KIND=nag_wp) array Output

On exit: the first NVAR columns of V contain the principal component scores. The jth column of
V contains the N scores for the jth principal component.

If WEIGHT ¼ W , any rows for which WTðiÞ is zero will be set to zero.

17: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which G03AAF
is called.

Constraint: LDV � N.

18: WKð1Þ – REAL (KIND=nag_wp) array Input

This argument is no longer accessed by G03AAF. Workspace is provided internally by dynamic
allocation instead.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or N < 2,
or NVAR < 1,
or NVAR > M,
or NVAR � N,
or LDX < N,
or LDV < N,
or LDP < NVAR,
or LDE < NVAR,
or MATRIX 6¼ C , S , U or V ,
or STD 6¼ S , U , Z or E ,
or WEIGHT 6¼ U or W.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WT < 0:0.

IFAIL ¼ 3

On entry, there are not NVAR values of ISX > 0,
or WEIGHT ¼ W and the effective number of observations is less than NVAR þ 1.
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IFAIL ¼ 4

On entry, SðjÞ � 0:0 for some j ¼ 1; 2; . . . ;m, when MATRIX ¼ S and ISXðjÞ > 0.

IFAIL ¼ 5

The singular value decomposition has failed to converge. This is an unlikely error exit.

IFAIL ¼ 6

All eigenvalues/singular values are zero. This will be caused by all the variables being constant.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

As G03AAF uses a singular value decomposition of the data matrix, it will be less affected by ill-
conditioned problems than traditional methods using the eigenvalue decomposition of the variance-
covariance matrix.

8 Parallelism and Performance

G03AAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

A dataset is taken from Cooley and Lohnes (1971), it consists of ten observations on three variables.
The unweighted principal components based on the variance-covariance matrix are computed and the
principal component scores requested. The principal component scores are standardized so that they
have variance equal to the corresponding eigenvalue.
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10.1 Program Text

Program g03aafe

! G03AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03aaf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lde, ldp, ldv, ldx, lwt, &

m, n, nvar
Logical :: verbose
Character (1) :: matrix, std, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: e(:,:), p(:,:), s(:), v(:,:), wk(:), &

wt(:), x(:,:)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: count

! .. Executable Statements ..
Write (nout,*) ’G03AAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) matrix, std, weight, n, m

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),wt(lwt),isx(m),s(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in standardizations
If (matrix==’S’ .Or. matrix==’s’) Then

Read (nin,*) s(1:m)
End If

! Calculate NVAR
nvar = count(isx(1:m)==1)

lde = nvar
ldp = nvar
ldv = n
Allocate (e(lde,6),p(ldp,nvar),v(ldv,nvar),wk(1))

! Perform PCA
ifail = 0
Call g03aaf(matrix,std,weight,n,m,x,ldx,isx,s,wt,nvar,e,lde,p,ldp,v,ldv, &

wk,ifail)
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! Display results
Write (nout,*) &

’Eigenvalues Percentage Cumulative Chisq DF Sig’
Write (nout,*) ’ variation variation’
Write (nout,*)
Write (nout,99999)(e(i,1:6),i=1,nvar)

! Set verbose to .True. to see principal component loadings and scores
verbose = .False.
If (verbose) Then

Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,nvar,nvar,p,ldp, &

’Principal component loadings’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,nvar,v,ldv,’Principal component scores’, &

ifail)
End If

99999 Format (1X,F11.4,2F12.4,F10.4,F8.1,F8.4)
End Program g03aafe

10.2 Program Data

G03AAF Example Program Data
’V’ ’E’ ’U’ 10 3

7.0 4.0 3.0
4.0 1.0 8.0
6.0 3.0 5.0
8.0 6.0 1.0
8.0 5.0 7.0
7.0 2.0 9.0
5.0 3.0 3.0
9.0 5.0 8.0
7.0 4.0 5.0
8.0 2.0 2.0
1 1 1

10.3 Program Results

G03AAF Example Program Results

Eigenvalues Percentage Cumulative Chisq DF Sig
variation variation

8.2739 0.6515 0.6515 8.6127 5.0 0.1255
3.6761 0.2895 0.9410 4.1183 2.0 0.1276
0.7499 0.0590 1.0000 0.0000 0.0 0.0000
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Example Program
Principal Component Analysis
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NAG Library Routine Document

G03ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03ACF performs a canonical variate (canonical discrimination) analysis.

2 Specification

SUBROUTINE G03ACF (WEIGHT, N, M, X, LDX, ISX, NX, ING, NG, WT, NIG, CVM,
LDCVM, E, LDE, NCV, CVX, LDCVX, TOL, IRANKX, WK, IWK,
IFAIL)

&
&

INTEGER N, M, LDX, ISX(M), NX, ING(N), NG, NIG(NG), LDCVM,
LDE, NCV, LDCVX, IRANKX, IWK, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), WT(*), CVM(LDCVM,NX), E(LDE,6),
CVX(LDCVX,NG-1), TOL, WK(IWK)

&

CHARACTER(1) WEIGHT

3 Description

Let a sample of n observations on nx variables in a data matrix come from ng groups with
n1; n2; . . . ; nng observations in each group,

P
ni ¼ n. Canonical variate analysis finds the linear

combination of the nx variables that maximizes the ratio of between-group to within-group variation.
The variables formed, the canonical variates can then be used to discriminate between groups.

The canonical variates can be calculated from the eigenvectors of the within-group sums of squares and
cross-products matrix. However, G03ACF calculates the canonical variates by means of a singular value
decomposition (SVD) of a matrix V . Let the data matrix with variable (column) means subtracted be X,
and let its rank be k; then the k by (ng � 1) matrix V is given by:

V ¼ QT
XQg;

where Qg is an n by ng � 1
� �

orthogonal matrix that defines the groups and QX is the first k rows of
the orthogonal matrix Q either from the QR decomposition of X:

X ¼ QR

if X is of full column rank, i.e., k ¼ nx, else from the SVD of X:

X ¼ QDPT:

Let the SVD of V be:

V ¼ Ux�UT
g

then the nonzero elements of the diagonal matrix �, �i, for i ¼ 1; 2; . . . ; l, are the l canonical
correlations associated with the l ¼ min k; ng � 1

� �
canonical variates, where l ¼ min k; ng

� �
.

The eigenvalues, �2i , of the within-group sums of squares matrix are given by:

�2i ¼
�2i

1� �2i
and the value of 	i ¼ �2i =

P
�2i gives the proportion of variation explained by the ith canonical variate.

The values of the 	i's give an indication as to how many canonical variates are needed to adequately
describe the data, i.e., the dimensionality of the problem.
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To test for a significant dimensionality greater than i the �2 statistic:

n� 1� ng � 1
2 k� ng
� �� �Xl

j¼iþ1
log 1þ �2j
� �

can be used. This is asymptotically distributed as a �2-distribution with k� ið Þ ng � 1� i
� �

degrees of
freedom. If the test for i ¼ h is not significant, then the remaining tests for i > h should be ignored.

The loadings for the canonical variates are calculated from the matrix Ux. This matrix is scaled so that
the canonical variates have unit within-group variance.

In addition to the canonical variates loadings the means for each canonical variate are calculated for
each group.

Weights can be used with the analysis, in which case the weighted means are subtracted from each
column and then each row is scaled by an amount

ffiffiffiffiffi
wi
p

, where wi is the weight for the ith observation
(row).

4 References

Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall

Gnanadesikan R (1977) Methods for Statistical Data Analysis of Multivariate Observations Wiley

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

5 Arguments

1: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
No weights are used.

WEIGHT ¼ W or V
Weights are used and must be supplied in WT.

If WEIGHT ¼ W , the weights are treated as frequencies and the effective number of
observations is the sum of the weights.

If WEIGHT ¼ V , the weights are treated as being inversely proportional to the variance of the
observations and the effective number of observations is the number of observations with
nonzero weights.

Constraint: WEIGHT ¼ U , W or V .

2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � NXþ NG.

3: M – INTEGER Input

On entry: m, the total number of variables.

Constraint: M � NX.

4: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith observation for the jth variable, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ;m.
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5: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03ACF
is called.

Constraint: LDX � N.

6: ISXðMÞ – INTEGER array Input

On entry: ISXðjÞ indicates whether or not the jth variable is to be included in the analysis.

If ISXðjÞ > 0, the variables contained in the jth column of X is included in the canonical variate
analysis, for j ¼ 1; 2; . . . ;m.

Constraint: ISXðjÞ > 0 for NX values of j.

7: NX – INTEGER Input

On entry: the number of variables in the analysis, nx.

Constraint: NX � 1.

8: INGðNÞ – INTEGER array Input

On entry: INGðiÞ indicates which group the ith observation is in, for i ¼ 1; 2; . . . ; n. The effective
number of groups is the number of groups with nonzero membership.

Constraint: 1 � INGðiÞ � NG, for i ¼ 1; 2; . . . ; n.

9: NG – INTEGER Input

On entry: the number of groups, ng.

Constraint: NG � 2.

10: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W or V , and at least 1
otherwise.

On entry: if WEIGHT ¼ W or V , the first n elements of WT must contain the weights to be
used in the analysis.

If WTðiÞ ¼ 0:0, the ith observation is not included in the analysis.

If WEIGHT ¼ U , WT is not referenced.

Constraints:

WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n;Xn
1

WTðiÞ � NXþ effective number of groups.

11: NIGðNGÞ – INTEGER array Output

On exit: NIGðjÞ gives the number of observations in group j, for j ¼ 1; 2; . . . ; ng.

12: CVMðLDCVM;NXÞ – REAL (KIND=nag_wp) array Output

On exit: CVMði; jÞ contains the mean of the jth canonical variate for the ith group, for
i ¼ 1; 2; . . . ; ng and j ¼ 1; 2; . . . ; l; the remaining columns, if any, are used as workspace.

13: LDCVM – INTEGER Input

On entry: the first dimension of the array CVM as declared in the (sub)program from which
G03ACF is called.

Constraint: LDCVM � NG.
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14: EðLDE; 6Þ – REAL (KIND=nag_wp) array Output

On exit: the statistics of the canonical variate analysis.

Eði; 1Þ
The canonical correlations, �i, for i ¼ 1; 2; . . . ; l.

Eði; 2Þ
The eigenvalues of the within-group sum of squares matrix, �2i , for i ¼ 1; 2; . . . ; l.

Eði; 3Þ
The proportion of variation explained by the ith canonical variate, for i ¼ 1; 2; . . . ; l.

Eði; 4Þ
The �2 statistic for the ith canonical variate, for i ¼ 1; 2; . . . ; l.

Eði; 5Þ
The degrees of freedom for �2 statistic for the ith canonical variate, for i ¼ 1; 2; . . . ; l.

Eði; 6Þ
The significance level for the �2 statistic for the ith canonical variate, for i ¼ 1; 2; . . . ; l.

15: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which G03ACF
is called.

Constraint: LDE � min NX;NG� 1ð Þ.

16: NCV – INTEGER Output

On exit: the number of canonical variates, l. This will be the minimum of ng � 1 and the rank of
X.

17: CVXðLDCVX;NG� 1Þ – REAL (KIND=nag_wp) array Output

On exit: the canonical variate loadings. CVXði; jÞ contains the loading coefficient for the ith
variable on the jth canonical variate, for i ¼ 1; 2; . . . ; nx and j ¼ 1; 2; . . . ; l; the remaining
columns, if any, are used as workspace.

18: LDCVX – INTEGER Input

On entry: the first dimension of the array CVX as declared in the (sub)program from which
G03ACF is called.

Constraint: LDCVX � NX.

19: TOL – REAL (KIND=nag_wp) Input

On entry: the value of TOL is used to decide if the variables are of full rank and, if not, what is
the rank of the variables. The smaller the value of TOL the stricter the criterion for selecting the
singular value decomposition. If a non-negative value of TOL less than machine precision is
entered, the square root of machine precision is used instead.

Constraint: TOL � 0:0.

20: IRANKX – INTEGER Output

On exit: the rank of the dependent variables.

If the variables are of full rank then IRANKX ¼ NX.

If the variables are not of full rank then IRANKX is an estimate of the rank of the dependent
variables. IRANKX is calculated as the number of singular values greater than
TOL� ðlargest singular valueÞ.
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21: WKðIWKÞ – REAL (KIND=nag_wp) array Workspace
22: IWK – INTEGER Input

On entry: the dimension of the array WK as declared in the (sub)program from which G03ACF
is called.

Constraints:

if NX � NG� 1, IWK � N� NXþmax 5� NX� 1ð Þ þ NXþ 1ð Þ � NX;Nð Þ þ 1;
if NX < NG� 1, IWK � N� NXþmax 5� NX� 1ð Þ þ NG� 1ð Þ � NX;Nð Þ þ 1.

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NX < 1,
or NG < 2,
or M < NX,
or N < NXþ NG,
or LDX < N,
or LDCVX < NX,
or LDCVM < NG,
or LDE < min NX;NG� 1ð Þ,
or NX � NG� 1 and IWK < N� NXþmax 5� NX� 1ð Þ þ NXþ 1ð Þ � NX;Nð Þ,
or NX < NG� 1 and IWK < N� NXþmax 5� NX� 1ð Þ þ NG� 1ð Þ � NX;Nð Þ,
or WEIGHT 6¼ U , W or V ,
or TOL < 0:0.

IFAIL ¼ 2

On entry, WEIGHT ¼ W or V and a value of WT < 0:0.

IFAIL ¼ 3

On entry, a value of ING < 1,
or a value of ING > NG.

IFAIL ¼ 4

On entry, the number of variables to be included in the analysis as indicated by ISX is not equal
to NX.

IFAIL ¼ 5

A singular value decomposition has failed to converge. This is an unlikely error exit.
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IFAIL ¼ 6

A canonical correlation is equal to 1. This will happen if the variables provide an exact indication
as to which group every observation is allocated.

IFAIL ¼ 7

On entry, less than two groups have nonzero membership, i.e., the effective number of groups is
less than 2,

or the effective number of groups plus the number of variables, NX, is greater than the
effective number of observations.

IFAIL ¼ 8

The rank of the variables is 0. This will happen if all the variables are constants.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

As the computation involves the use of orthogonal matrices and a singular value decomposition rather
than the traditional computing of a sum of squares matrix and the use of an eigenvalue decomposition,
G03ACF should be less affected by ill-conditioned problems.

8 Parallelism and Performance

G03ACF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G03ACF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example uses a sample of nine observations, each consisting of three variables plus a group
indicator. There are three groups. An unweighted canonical variate analysis is performed and the results
printed.
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10.1 Program Text

Program g03acfe

! G03ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03acf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, irankx, iwk, ldcvm, ldcvx, &

lde, ldx, lwt, m, n, ncv, ng, nx
Character (1) :: weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cvm(:,:), cvx(:,:), e(:,:), wk(:), &

wt(:), x(:,:)
Integer, Allocatable :: ing(:), isx(:), nig(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’G03ACF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, nx, ng, weight

Select Case (weight)
Case (’W’,’w’,’V’,’v’)

lwt = n
Case Default

lwt = 0
End Select
ldx = n
ldcvm = ng
lde = min(nx,ng-1)
ldcvx = nx
If (nx>=ng-1) Then

iwk = n*nx + max(5*(nx-1)+(nx+1)*nx,n) + 1
Else

iwk = n*nx + max(5*(nx-1)+(ng-1)*nx,n) + 1
End If
Allocate (x(ldx,m),isx(m),ing(n),wt(lwt),nig(ng),cvm(ldcvm,nx),e(lde,6), &

cvx(ldcvx,nx),wk(iwk))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),wt(i),ing(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),ing(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Use default tolerance
tol = 0.0E0_nag_wp

! Perform canonical variate analysis
ifail = 0
Call g03acf(weight,n,m,x,ldx,isx,nx,ing,ng,wt,nig,cvm,ldcvm,e,lde,ncv, &

cvx,ldcvx,tol,irankx,wk,iwk,ifail)
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! Display results
Write (nout,99999) ’Rank of X = ’, irankx
Write (nout,*)
Write (nout,*) &

’Canonical Eigenvalues Percentage CHISQ DF SIG’
Write (nout,*) ’Correlations Variation’
Write (nout,99998)(e(i,1:6),i=1,ncv)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,nx,ncv,cvx,ldcvx, &

’Canonical Coefficients for X’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,ng,ncv,cvm,ldcvm,’Canonical variate means’, &

ifail)

99999 Format (1X,A,I0)
99998 Format (1X,2F12.4,F11.4,F10.4,F8.1,F8.4)

End Program g03acfe

10.2 Program Data

G03ACF Example Program Data
9 3 3 3 ’U’
13.3 10.6 21.2 1
13.6 10.2 21.0 2
14.2 10.7 21.1 3
13.4 9.4 21.0 1
13.2 9.6 20.1 2
13.9 10.4 19.8 3
12.9 10.0 20.5 1
12.2 9.9 20.7 2
13.9 11.0 19.1 3
1 1 1

10.3 Program Results

G03ACF Example Program Results

Rank of X = 3

Canonical Eigenvalues Percentage CHISQ DF SIG
Correlations Variation

0.8826 3.5238 0.9795 7.9032 6.0 0.2453
0.2623 0.0739 0.0205 0.3564 2.0 0.8368

Canonical Coefficients for X
1 2

1 -1.7070 0.7277
2 -1.3481 0.3138
3 0.9327 1.2199

Canonical variate means
1 2

1 0.9841 0.2797
2 1.1805 -0.2632
3 -2.1646 -0.0164
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NAG Library Routine Document

G03ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03ADF performs canonical correlation analysis upon input data matrices.

2 Specification

SUBROUTINE G03ADF (WEIGHT, N, M, Z, LDZ, ISZ, NX, NY, WT, E, LDE, NCV,
CVX, LDCVX, MCV, CVY, LDCVY, TOL, WK, IWK, IFAIL)

&

INTEGER N, M, LDZ, ISZ(M), NX, NY, LDE, NCV, LDCVX, MCV,
LDCVY, IWK, IFAIL

&

REAL (KIND=nag_wp) Z(LDZ,M), WT(*), E(LDE,6), CVX(LDCVX,MCV),
CVY(LDCVY,MCV), TOL, WK(IWK)

&

CHARACTER(1) WEIGHT

3 Description

Let there be two sets of variables, x and y. For a sample of n observations on nx variables in a data
matrix X and ny variables in a data matrix Y , canonical correlation analysis seeks to find a small
number of linear combinations of each set of variables in order to explain or summarise the
relationships between them. The variables thus formed are known as canonical variates.

Let the variance-covariance matrix of the two datasets be

Sxx Sxy
Syx Syy

� �
and let

� ¼ S�1yy SyxS�1xx Sxy

then the canonical correlations can be calculated from the eigenvalues of the matrix �. However,
G03ADF calculates the canonical correlations by means of a singular value decomposition (SVD) of a
matrix V . If the rank of the data matrix X is kx and the rank of the data matrix Y is ky, and both X and
Y have had variable (column) means subtracted then the kx by ky matrix V is given by:

V ¼ QT
xQy;

where Qx is the first kx columns of the orthogonal matrix Q either from the QR decomposition of X if
X is of full column rank, i.e., kx ¼ nx:

X ¼ QxRx

or from the SVD of X if kx < nx:

X ¼ QxDxP
T
x :

Similarly Qy is the first ky columns of the orthogonal matrix Q either from the QR decomposition of Y
if Y is of full column rank, i.e., ky ¼ ny:

Y ¼ QyRy

or from the SVD of Y if ky < ny:

Y ¼ QyDyP
T
y :
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Let the SVD of V be:

V ¼ Ux�UT
y

then the nonzero elements of the diagonal matrix �, �i, for i ¼ 1; 2; . . . ; l, are the l canonical
correlations associated with the l canonical variates, where l ¼ min kx; ky

� �
.

The eigenvalues, �2i , of the matrix � are given by:

�2i ¼ �2i :

The value of 	i ¼ �2i =
P
�2i gives the proportion of variation explained by the ith canonical variate. The

values of the 	i's give an indication as to how many canonical variates are needed to adequately
describe the data, i.e., the dimensionality of the problem.

To test for a significant dimensionality greater than i the �2 statistic:

n� 1
2 kx þ ky þ 3
� �� �Xl

j¼iþ1
log 1� �2j
� �

can be used. This is asymptotically distributed as a �2-distribution with kx � ið Þ ky � i
� �

degrees of
freedom. If the test for i ¼ kmin is not significant, then the remaining tests for i > kmin should be
ignored.

The loadings for the canonical variates are calculated from the matrices Ux and Uy respectively. These
matrices are scaled so that the canonical variates have unit variance.

4 References

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin

Morrison D F (1967) Multivariate Statistical Methods McGraw–Hill

5 Arguments

1: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
No weights are used.

WEIGHT ¼ W
Weights are used and must be supplied in WT.

Constraint: WEIGHT ¼ U or W.

2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > NXþ NY.

3: M – INTEGER Input

On entry: m, the total number of variables.

Constraint: M � NXþ NY.

4: ZðLDZ;MÞ – REAL (KIND=nag_wp) array Input

On entry: Zði; jÞ must contain the ith observation for the jth variable, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ;m.
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Both x and y variables are to be included in Z, the indicator array, ISZ, being used to assign the
variables in Z to the x or y sets as appropriate.

5: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which G03ADF
is called.

Constraint: LDZ � N.

6: ISZðMÞ – INTEGER array Input

On entry: ISZðjÞ indicates whether or not the jth variable is included in the analysis and to which
set of variables it belongs.

ISZðjÞ > 0
The variable contained in the jth column of Z is included as an x variable in the analysis.

ISZðjÞ < 0
The variable contained in the jth column of Z is included as a y variable in the analysis.

ISZðjÞ ¼ 0
The variable contained in the jth column of Z is not included in the analysis.

Constraint: only NX elements of ISZ can be > 0 and only NY elements of ISZ can be < 0.

7: NX – INTEGER Input

On entry: the number of x variables in the analysis, nx.

Constraint: NX � 1.

8: NY – INTEGER Input

On entry: the number of y variables in the analysis, ny.

Constraint: NY � 1.

9: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W , the first n elements of WT must contain the weights to be used in
the analysis.

If WTðiÞ ¼ 0:0, the ith observation is not included in the analysis. The effective number of
observations is the sum of weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is n.

Constraints:

WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n;
the sum of weights � NXþ NYþ 1.

10: EðLDE; 6Þ – REAL (KIND=nag_wp) array Output

On exit: the statistics of the canonical variate analysis.

Eði; 1Þ
The canonical correlations, �i, for i ¼ 1; 2; . . . ; l.

Eði; 2Þ
The eigenvalues of �, �2i , for i ¼ 1; 2; . . . ; l.

Eði; 3Þ
The proportion of variation explained by the ith canonical variate, for i ¼ 1; 2; . . . ; l.
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Eði; 4Þ
The �2 statistic for the ith canonical variate, for i ¼ 1; 2; . . . ; l.

Eði; 5Þ
The degrees of freedom for �2 statistic for the ith canonical variate, for i ¼ 1; 2; . . . ; l.

Eði; 6Þ
The significance level for the �2 statistic for the ith canonical variate, for i ¼ 1; 2; . . . ; l.

11: LDE – INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which G03ADF
is called.

Constraint: LDE � min NX;NYð Þ.

12: NCV – INTEGER Output

On exit: the number of canonical correlations, l. This will be the minimum of the rank of X and
the rank of Y.

13: CVXðLDCVX;MCVÞ – REAL (KIND=nag_wp) array Output

On exit: the canonical variate loadings for the x variables. CVXði; jÞ contains the loading
coefficient for the ith x variable on the jth canonical variate.

14: LDCVX – INTEGER Input

On entry: the first dimension of the array CVX as declared in the (sub)program from which
G03ADF is called.

Constraint: LDCVX � NX.

15: MCV – INTEGER Input

On entry: an upper limit to the number of canonical variates.

Constraint: MCV � min NX;NYð Þ.

16: CVYðLDCVY;MCVÞ – REAL (KIND=nag_wp) array Output

On exit: the canonical variate loadings for the y variables. CVYði; jÞ contains the loading
coefficient for the ith y variable on the jth canonical variate.

17: LDCVY – INTEGER Input

On entry: the first dimension of the array CVY as declared in the (sub)program from which
G03ADF is called.

Constraint: LDCVY � NY.

18: TOL – REAL (KIND=nag_wp) Input

On entry: the value of TOL is used to decide if the variables are of full rank and, if not, what is
the rank of the variables. The smaller the value of TOL the stricter the criterion for selecting the
singular value decomposition. If a non-negative value of TOL less than machine precision is
entered, the square root of machine precision is used instead.

Constraint: TOL � 0:0.

19: WKðIWKÞ – REAL (KIND=nag_wp) array Workspace
20: IWK – INTEGER Input

On entry: the dimension of the array WK as declared in the (sub)program from which G03ADF
is called.
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Constraints:

if NX � NY,
IWK � N� NXþ NXþ NYþmax 5� NX� 1ð Þ þ NX� NXð Þ;N� NYð Þ þ 1;
if NX < NY,
IWK � N� NYþ NXþ NYþmax 5� NY� 1ð Þ þ NY� NYð Þ;N� NXð Þ þ 1.

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NX < 1,
or NY < 1,
or M < NXþ NY,
or N � NXþ NY,
or MCV < min NX;NYð Þ,
or LDZ < N,
or LDCVX < NX,
or LDCVY < NY,
or LDE < min NX;NYð Þ,
or NX � NY and

IWK < N� NXþ NXþ NYþmax 5� NX� 1ð Þ þ NX� NXð Þ;N� NYð Þ,
or NX < NY and

IWK < N� NYþ NXþ NYþmax 5� NY� 1ð Þ þ NY� NYð Þ;N� NXð Þ,
or WEIGHT 6¼ U or W ,
or TOL < 0:0.

IFAIL ¼ 2

On entry, a WEIGHT ¼ W and value of WT < 0:0.

IFAIL ¼ 3

On entry, the number of x variables to be included in the analysis as indicated by ISZ is not
equal to NX.

or the number of y variables to be included in the analysis as indicated by ISZ is not
equal to NY.

IFAIL ¼ 4

On entry, the effective number of observations is less than NX þ NYþ 1.
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IFAIL ¼ 5

A singular value decomposition has failed to converge. See F02WUF. This is an unlikely error
exit.

IFAIL ¼ 6

A canonical correlation is equal to 1. This will happen if the x and y variables are perfectly
correlated.

IFAIL ¼ 7

On entry, the rank of the X matrix or the rank of the Y matrix is 0. This will happen if all the x
or y variables are constants.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

As the computation involves the use of orthogonal matrices and a singular value decomposition rather
than the traditional computing of a sum of squares matrix and the use of an eigenvalue decomposition,
G03ADF should be less affected by ill-conditioned problems.

8 Parallelism and Performance

G03ADF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G03ADF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example has nine observations and two variables in each set of the four variables read in, the
second and third are x variables while the first and last are y variables. Canonical variate analysis is
performed and the results printed.
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10.1 Program Text

Program g03adfe

! G03ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03adf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, ifail, iwk, ldcvx, ldcvy, lde, &

ldz, lwt, m, mcv, n, ncv, nx, ny
Character (1) :: weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cvx(:,:), cvy(:,:), e(:,:), wk(:), &

wt(:), z(:,:)
Integer, Allocatable :: isz(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G03ADF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n, m, nx, ny, weight

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
If (nx>=ny) Then

iwk = n*nx + nx*ny + max(5*(nx-1)+nx*nx,n*ny) + 1
lde = ny
mcv = ny

Else
iwk = n*ny + nx*ny + max(5*(ny-1)+ny*ny,n*nx) + 1
lde = nx
mcv = nx

End If
ldz = n
ldcvx = nx
ldcvy = ny
Allocate (z(ldz,m),isz(m),wt(lwt),e(lde,6),cvx(ldcvx,mcv), &

cvy(ldcvy,mcv),wk(iwk))

! Read in data
If (lwt>0) Then

Read (nin,*)(z(i,1:m),wt(i),i=1,n)
Else

Read (nin,*)(z(i,1:m),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isz(1:m)

! Use default tolerance
tol = 0.0E0_nag_wp

! Perform canonical correlation analysis
ifail = 0
Call g03adf(weight,n,m,z,ldz,isz,nx,ny,wt,e,lde,ncv,cvx,ldcvx,mcv,cvy, &
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ldcvy,tol,wk,iwk,ifail)

! Display results
Write (nout,99999) ’Rank of X = ’, nx, ’ Rank of Y = ’, ny
Write (nout,*)
Write (nout,*) &

’Canonical Eigenvalues Percentage Chisq DF Sig’
Write (nout,*) ’correlations variation’
Write (nout,99998)(e(i,1:6),i=1,ncv)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,nx,ncv,cvx,ldcvx, &

’Canonical Coefficients for X’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,ny,ncv,cvy,ldcvy, &

’Canonical Coefficients for Y’,ifail)

99999 Format (1X,A,I0,A,I0)
99998 Format (1X,2F12.4,F11.4,F10.4,F8.1,F8.4)

End Program g03adfe

10.2 Program Data

G03ADF Example Program Data
9 4 2 2 ’U’
80.0 58.4 14.0 21.0
75.0 59.2 15.0 27.0
78.0 60.3 15.0 27.0
75.0 57.4 13.0 22.0
79.0 59.5 14.0 26.0
78.0 58.1 14.5 26.0
75.0 58.0 12.5 23.0
64.0 55.5 11.0 22.0
80.0 59.2 12.5 22.0
-1 1 1 -1

10.3 Program Results

G03ADF Example Program Results

Rank of X = 2 Rank of Y = 2

Canonical Eigenvalues Percentage Chisq DF Sig
correlations variation

0.9570 0.9159 0.8746 14.3914 4.0 0.0061
0.3624 0.1313 0.1254 0.7744 1.0 0.3789

Canonical Coefficients for X
1 2

1 -0.4261 1.0337
2 -0.3444 -1.1136

Canonical Coefficients for Y
1 2

1 -0.1415 0.1504
2 -0.2384 -0.3424
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NAG Library Routine Document

G03BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03BAF computes orthogonal rotations for a matrix of loadings using a generalized orthomax criterion.

2 Specification

SUBROUTINE G03BAF (STAND, G, NVAR, K, FL, LDFL, FLR, R, LDR, ACC, MAXIT,
ITER, WK, IFAIL)

&

INTEGER NVAR, K, LDFL, LDR, MAXIT, ITER, IFAIL
REAL (KIND=nag_wp) G, FL(LDFL,K), FLR(LDFL,K), R(LDR,K), ACC,

WK(2*NVAR+K*K+5*(K-1))
&

CHARACTER(1) STAND

3 Description

Let � be the p by k matrix of loadings from a variable-directed multivariate method, e.g., canonical
variate analysis or factor analysis. This matrix represents the relationship between the original p
variables and the k orthogonal linear combinations of these variables, the canonical variates or factors.
The latter are only unique up to a rotation in the k-dimensional space they define. A rotation can then
be found that simplifies the structure of the matrix of loadings, and hence the relationship between the
original and the derived variables. That is, the elements, ��ij, of the rotated matrix, ��, are either
relatively large or small. The rotations may be found by minimizing the criterion:

V ¼
Xk
j¼1

Xp
i¼1

��ij

� �4
� �
p

Xk
j¼1

Xp
i¼1

��ij

� �2" #2
where the constant � gives a family of rotations with � ¼ 1 giving varimax rotations and � ¼ 0 giving
quartimax rotations.

It is generally advised that factor loadings should be standardized, so that the sum of squared elements
for each row is one, before computing the rotations.

The matrix of rotations, R, such that �� ¼ �R, is computed using first an algorithm based on that
described by Cooley and Lohnes (1971), which involves the pairwise rotation of the factors. Then a
final refinement is made using a method similar to that described by Lawley and Maxwell (1971), but
instead of the eigenvalue decomposition, the algorithm has been adapted to incorporate a singular value
decomposition.

4 References

Cooley W C and Lohnes P R (1971) Multivariate Data Analysis Wiley

Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method (2nd Edition)
Butterworths
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5 Arguments

1: STAND – CHARACTER(1) Input

On entry: indicates if the matrix of loadings is to be row standardized before rotation.

STAND ¼ S
The loadings are row standardized.

STAND ¼ U
The loadings are left unstandardized.

Constraint: STAND ¼ S or U .

2: G – REAL (KIND=nag_wp) Input

On entry: �, the criterion constant with � ¼ 1:0 giving varimax rotations and � ¼ 0:0 giving
quartimax rotations.

Constraint: G � 0:0.

3: NVAR – INTEGER Input

On entry: p, the number of original variables.

Constraint: NVAR � K.

4: K – INTEGER Input

On entry: k, the number of derived variates or factors.

Constraint: K � 2.

5: FLðLDFL;KÞ – REAL (KIND=nag_wp) array Input/Output

On entry: �, the matrix of loadings. FLði; jÞ must contain the loading for the ith variable on the
jth factor, for i ¼ 1; 2; . . . ; p and j ¼ 1; 2; . . . ; k.

On exit: if STAND ¼ S , the elements of FL are standardized so that the sum of squared
elements for each row is 1:0 and then after the computation of the rotations are rescaled; this may
lead to slight differences between the input and output values of FL.

If STAND ¼ U , FL will be unchanged on exit.

6: LDFL – INTEGER Input

On entry: the first dimension of the arrays FL and FLR as declared in the (sub)program from
which G03BAF is called.

Constraint: LDFL � NVAR.

7: FLRðLDFL;KÞ – REAL (KIND=nag_wp) array Output

On exit: the rotated matrix of loadings, ��. FLRði; jÞ will contain the rotated loading for the ith
variable on the jth factor, for i ¼ 1; 2; . . . ; p and j ¼ 1; 2; . . . ; k.

8: RðLDR;KÞ – REAL (KIND=nag_wp) array Output

On exit: the matrix of rotations, R.

9: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G03BAF
is called.

Constraint: LDR � K.
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10: ACC – REAL (KIND=nag_wp) Input

On entry: indicates the accuracy required. The iterative procedure of Cooley and Lohnes (1971)
will be stopped and the final refinement computed when the change in V is less than
ACC�max 1:0; Vð Þ. If ACC is greater than or equal to 0:0 but less than machine precision or if
ACC is greater than 1:0, then machine precision will be used instead.

Suggested value: 0:00001.

Constraint: ACC � 0:0.

11: MAXIT – INTEGER Input

On entry: the maximum number of iterations.

Suggested value: 30.

Constraint: MAXIT � 1.

12: ITER – INTEGER Output

On exit: the number of iterations performed.

13: WKð2� NVAR þ K � K þ 5� K � 1ð ÞÞ – REAL (KIND=nag_wp) array Workspace

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 2,
or NVAR < K,
or G < 0:0,
or LDFL < NVAR,
or LDR < K,
or ACC < 0:0,
or MAXIT � 0,
or STAND 6¼ S or U .

IFAIL ¼ 2

The singular value decomposition has failed to converge. This is an unlikely error exit.
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IFAIL ¼ 3

The algorithm to find R has failed to reach the required accuracy in the given number of
iterations. You should try increasing ACC or increasing MAXIT. The returned solution should be
a reasonable approximation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is determined by the value of ACC.

8 Parallelism and Performance

G03BAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If the results of a principal component analysis as carried out by G03AAF are to be rotated, the
loadings as returned in the array P by G03AAF can be supplied via the argument FL to G03BAF. The
resulting rotation matrix can then be used to rotate the principal component scores as returned in the
array V by G03AAF. The routine F06YAF (DGEMM) may be used for this matrix multiplication.

10 Example

This example is taken from page 75 of Lawley and Maxwell (1971). The results from a factor analysis
of ten variables using three factors are input and rotated using varimax rotations without standardizing
rows.

10.1 Program Text

Program g03bafe

! G03BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03baf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: acc, g
Integer :: i, ifail, iter, k, ldfl, ldr, lwk, &

maxit, nvar
Character (1) :: stand

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fl(:,:), flr(:,:), r(:,:), wk(:)

! .. Executable Statements ..
Write (nout,*) ’G03BAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nvar, k, g, stand, acc, maxit

ldfl = nvar
ldr = k
lwk = 2*nvar + k*k + 5*(k-1)
Allocate (fl(ldfl,k),flr(ldfl,k),r(ldr,k),wk(lwk))

! Read in loadings
Read (nin,*)(fl(i,1:k),i=1,nvar)

! Compute rotations
ifail = 0
Call g03baf(stand,g,nvar,k,fl,ldfl,flr,r,ldr,acc,maxit,iter,wk,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,nvar,k,flr,ldfl,’Rotated factor loadings’, &

ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,k,k,r,ldr,’Rotated matrix’,ifail)

End Program g03bafe

10.2 Program Data

G03BAF Example Program Data
10 3 1.0 ’U’ 0.00001 20

0.788 -0.152 -0.352
0.874 0.381 0.041
0.814 -0.043 -0.213
0.798 -0.170 -0.204
0.641 0.070 -0.042
0.755 -0.298 0.067
0.782 -0.221 0.028
0.767 -0.091 0.358
0.733 -0.384 0.229
0.771 -0.101 0.071

10.3 Program Results

G03BAF Example Program Results

Rotated factor loadings
1 2 3

1 0.3293 -0.2888 -0.7590
2 0.8488 -0.2735 -0.3397
3 0.4500 -0.3266 -0.6330
4 0.3450 -0.3965 -0.6566
5 0.4526 -0.2758 -0.3696
6 0.2628 -0.6154 -0.4642
7 0.3322 -0.5614 -0.4854
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8 0.4725 -0.6841 -0.1832
9 0.2088 -0.7537 -0.3543

10 0.4229 -0.5135 -0.4089

Rotated matrix
1 2 3

1 0.6335 -0.5337 -0.5603
2 0.7580 0.5733 0.3109
3 0.1553 -0.6217 0.7677
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NAG Library Routine Document

G03BCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03BCF computes Procrustes rotations in which an orthogonal rotation is found so that a transformed
matrix best matches a target matrix.

2 Specification

SUBROUTINE G03BCF (STAND, PSCALE, N, M, X, LDX, Y, LDY, YHAT, R, LDR,
ALPHA, RSS, RES, WK, IFAIL)

&

INTEGER N, M, LDX, LDY, LDR, IFAIL
REAL (KIND=nag_wp) X(LDX,M), Y(LDY,M), YHAT(LDY,M), R(LDR,M), ALPHA,

RSS, RES(N), WK(M*M+7*M)
&

CHARACTER(1) STAND, PSCALE

3 Description

Let X and Y be n by m matrices. They can be considered as representing sets of n points in an
m-dimensional space. The X matrix may be a matrix of loadings from say factor or canonical variate
analysis, and the Y matrix may be a postulated pattern matrix or the loadings from a different sample.
The problem is to relate the two sets of points without disturbing the relationships between the points in
each set. This can be achieved by translating, rotating and scaling the sets of points. The Y matrix is
considered as the target matrix and the X matrix is rotated to match that matrix.

First the two sets of points are translated so that their centroids are at the origin to give Xc and Yc, i.e.,
the matrices will have zero column means. Then the rotation of the translated Xc matrix which
minimizes the sum of squared distances between corresponding points in the two sets is found. This is
computed from the singular value decomposition of the matrix:

XT
c Yc ¼ UDV T;

where U and V are orthogonal matrices and D is a diagonal matrix. The matrix of rotations, R, is
computed as:

R ¼ UV T:

After rotation, a scaling or dilation factor, �, may be estimated by least squares. Thus, the final set of
points that best match Yc is given by:

Ŷc ¼ �XcR:

Before rotation, both sets of points may be normalized to have unit sums of squares or the X matrix
may be normalized to have the same sum of squares as the Y matrix. After rotation, the results may be
translated to the original Y centroid.

The ith residual, ri, is given by the distance between the point given in the ith row of Y and the point
given in the ith row of Ŷ . The residual sum of squares is also computed.

4 References

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method (2nd Edition)
Butterworths
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5 Arguments

1: STAND – CHARACTER(1) Input

On entry: indicates if translation/normalization is required.

STAND ¼ N
There is no translation or normalization.

STAND ¼ Z
There is translation to the origin (i.e., to zero).

STAND ¼ C
There is translation to origin and then to the Y centroid after rotation.

STAND ¼ U
There is unit normalization.

STAND ¼ S
There is translation and normalization (i.e., there is standardization).

STAND ¼ M
There is translation and normalization to Y scale, then translation to the Y centroid after
rotation (i.e., they are matched).

Constraint: STAND ¼ N , Z , C , U , S or M .

2: PSCALE – CHARACTER(1) Input

On entry: indicates if least squares scaling is to be applied after rotation.

PSCALE ¼ S
Scaling is applied.

PSCALE ¼ U
No scaling is applied.

Constraint: PSCALE ¼ S or U .

3: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � M.

4: M – INTEGER Input

On entry: m, the number of dimensions.

Constraint: M � 1.

5: XðLDX;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: X, the matrix to be rotated.

On exit: if STAND ¼ N , X will be unchanged.

If STAND ¼ Z , C , S or M , X will be translated to have zero column means.

If STAND ¼ U or S , X will be scaled to have unit sum of squares.

If STAND ¼ M , X will be scaled to have the same sum of squares as Y.

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03BCF
is called.

Constraint: LDX � N.
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7: YðLDY;MÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the target matrix, Y.

On exit: if STAND ¼ N , Y will be unchanged.

If STAND ¼ Z or S , Y will be translated to have zero column means.

If STAND ¼ U or S , Y will be scaled to have unit sum of squares.

If STAND ¼ C or M , Y will be translated and then after rotation translated back. The output Y
should be the same as the input Y except for rounding errors.

8: LDY – INTEGER Input

On entry: the first dimension of the arrays Y and YHAT as declared in the (sub)program from
which G03BCF is called.

Constraint: LDY � N.

9: YHATðLDY;MÞ – REAL (KIND=nag_wp) array Output

On exit: the fitted matrix, Ŷ .

10: RðLDR;MÞ – REAL (KIND=nag_wp) array Output

On exit: the matrix of rotations, R, see Section 9.

11: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G03BCF
is called.

Constraint: LDR � M.

12: ALPHA – REAL (KIND=nag_wp) Output

On exit: if PSCALE ¼ S the scaling factor, �; otherwise ALPHA is not set.

13: RSS – REAL (KIND=nag_wp) Output

On exit: the residual sum of squares.

14: RESðNÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals, ri, for i ¼ 1; 2; . . . ; n.

15: WKðM�Mþ 7�MÞ – REAL (KIND=nag_wp) array Workspace

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < M,
or M < 1,
or LDX < N,
or LDY < N,
or LDR < M,
or STAND 6¼ N , Z , C , U , S or M ,
or PSCALE 6¼ S or U .

IFAIL ¼ 2

On entry, either X or Y contain only zero-points (possibly after translation) when normalization
is to be applied.

IFAIL ¼ 3

The Ŷ matrix contains only zero-points when least squares scaling is applied.

IFAIL ¼ 4

The singular value decomposition has failed to converge. This is an unlikely error exit.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the calculation of the rotation matrix largely depends upon the singular value
decomposition. See the F08 Chapter Introduction for further details.

8 Parallelism and Performance

G03BCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

Note that if the matrix XT
c Y is not of full rank, then the matrix of rotations, R, may not be unique even

if there is a unique solution in terms of the rotated matrix, Ŷc. The matrix R may also include
reflections as well as pure rotations, see Krzanowski (1990).

If the column dimensions of the X and Y matrices are not equal, the smaller of the two should be
supplemented by columns of zeros. Adding a column of zeros to both X and Y will have the effect of
allowing reflections as well as rotations.

10 Example

Three points representing the vertices of a triangle in two dimensions are input. The points are
translated and rotated to match the triangle given by 0; 0ð Þ, 1; 0ð Þ, 0; 2ð Þ and scaling is applied after
rotation. The target matrix and fitted matrix are printed along with additional information.

10.1 Program Text

Program g03bcfe

! G03BCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03bcf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, rss
Integer :: i, ifail, ldr, ldx, ldy, lwk, m, n
Character (1) :: pscale, stand

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:,:), res(:), wk(:), x(:,:), &

y(:,:), yhat(:,:)
! .. Executable Statements ..

Write (nout,*) ’G03BCF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n, m, stand, pscale

ldx = n
ldy = n
ldr = m
lwk = m*m + 7*m
Allocate (x(ldx,m),y(ldy,m),yhat(ldy,m),r(ldr,m),res(n),wk(lwk))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)
Read (nin,*)(y(i,1:m),i=1,n)

! Calculate rotations
ifail = 0
Call g03bcf(stand,pscale,n,m,x,ldx,y,ldy,yhat,r,ldr,alpha,rss,res,wk, &

ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,m,m,r,ldr,’Rotation Matrix’,ifail)
If (pscale==’S’ .Or. pscale==’s’) Then
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Write (nout,*)
Write (nout,99999) ’ Scale factor = ’, alpha

End If
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,m,y,ldy,’Target Matrix’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,m,yhat,ldy,’Fitted Matrix’,ifail)
Write (nout,*)
Write (nout,99999) ’RSS = ’, rss

99999 Format (1X,A,F10.3)
End Program g03bcfe

10.2 Program Data

G03BCF Example Program Data
3 2 ’c’ ’s’
0.63 0.58
1.36 0.39
1.01 1.76
0.0 0.0
1.0 0.0
0.0 2.0

10.3 Program Results

G03BCF Example Program Results

Rotation Matrix
1 2

1 0.9673 0.2536
2 -0.2536 0.9673

Scale factor = 1.556

Target Matrix
1 2

1 0.0000 0.0000
2 1.0000 0.0000
3 0.0000 2.0000

Fitted Matrix
1 2

1 -0.0934 0.0239
2 1.0805 0.0259
3 0.0130 1.9502

RSS = 0.019
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NAG Library Routine Document

G03BDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03BDF calculates a ProMax rotation, given information following an orthogonal rotation.

2 Specification

SUBROUTINE G03BDF (STAND, N, M, X, LDX, RO, LDRO, POWER, FP, LDFP, R,
LDR, PHI, LDPHI, FS, LDFS, IFAIL)

&

INTEGER N, M, LDX, LDRO, LDFP, LDR, LDPHI, LDFS, IFAIL
REAL (KIND=nag_wp) X(LDX,M), RO(LDRO,M), POWER, FP(LDFP,M), R(LDR,M),

PHI(LDPHI,M), FS(LDFS,M)
&

CHARACTER(1) STAND

3 Description

Let X and Y denote n by m matrices each representing a set of n points in an m-dimensional space.
The X matrix is a matrix of loadings as returned by G03BAF, that is following an orthogonal rotation
of a loadings matrix Z. The target matrix Y is calculated as a power transformation of X that preserves
the sign of the loadings. Let Xij and Yij denote the i; jð Þth element of matrices X and Y . Given a value
greater than one for the exponent p:

Yij ¼ �ij Xij

�� ��p;
for

i ¼ 1; 2; . . . ; n;

j ¼ 1; 2; . . . ;m;

�ij ¼ �1; if Xij < 0;
1; otherwise:



The above power transformation tends to increase the difference between high and low values of
loadings and is intended to increase the interpretability of a solution.

In the second step a solution of:

XW ¼ Y ; X; Y 2 R
n�m; W 2 R

m�m;

is found for W in the least squares sense by use of singular value decomposition of the orthogonal
loadings X. The ProMax rotation matrix R is then given by

R ¼ OW ~W; O; ~W 2 R
m�m;

where O is the rotation matrix from an orthogonal transformation, and ~W is a matrix with the square

root of diagonal elements of WTWð Þ�1 on its diagonal and zeros elsewhere.

The ProMax factor pattern matrix P is given by

P ¼ XW ~W; P 2 R
n�m;

the inter-factor correlations � are given by

� ¼ QTQ
� ��1

; � 2 R
m�m;

where Q ¼W ~W ; and the factor structure S is given by
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S ¼ P�; S 2 R
n�m:

Optionally, the rows of target matrix Y can be scaled by the communalities of loadings.

4 References

None.

5 Arguments

1: STAND – CHARACTER(1) Input

On entry: indicates how loadings are normalized.

STAND ¼ S
Rows of Y are (Kaiser) normalized by the communalities of the loadings.

STAND ¼ U
Rows are not normalized.

Constraint: STAND ¼ U or S .

2: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � M.

3: M – INTEGER Input

On entry: m, the number of dimensions.

Constraint: M � 1.

4: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: the loadings matrix following an orthogonal rotation, X.

5: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03BDF
is called.

Constraint: LDX � N.

6: ROðLDRO;MÞ – REAL (KIND=nag_wp) array Input

On entry: the orthogonal rotation matrix, O.

7: LDRO – INTEGER Input

On entry: the first dimension of the array RO as declared in the (sub)program from which
G03BDF is called.

Constraint: LDRO � M.

8: POWER – REAL (KIND=nag_wp) Input

On entry: p, the value of exponent.

Constraint: POWER > 1:0.

9: FPðLDFP;MÞ – REAL (KIND=nag_wp) array Output

On exit: the factor pattern matrix, P .
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10: LDFP – INTEGER Input

On entry: the first dimension of the array FP as declared in the (sub)program from which
G03BDF is called.

Constraint: LDFP � N.

11: RðLDR;MÞ – REAL (KIND=nag_wp) array Output

On exit: the ProMax rotation matrix, R.

12: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G03BDF
is called.

Constraint: LDR � M.

13: PHIðLDPHI;MÞ – REAL (KIND=nag_wp) array Output

On exit: the matrix of inter-factor correlations, �.

14: LDPHI – INTEGER Input

On entry: the first dimension of the array PHI as declared in the (sub)program from which
G03BDF is called.

Constraint: LDPHI � M.

15: FSðLDFS;MÞ – REAL (KIND=nag_wp) array Output

On exit: the factor structure matrix, S.

16: LDFS – INTEGER Input

On entry: the first dimension of the array FS as declared in the (sub)program from which
G03BDF is called.

Constraint: LDFS � N.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 1.
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On entry, POWER ¼ valueh i.
Constraint: POWER > 1:0.

On entry, STAND ¼ valueh i.
Constraint: STAND ¼ U or S .

IFAIL ¼ 2

On entry, LDFP ¼ valueh i and N ¼ valueh i.
Constraint: LDFP � N.

On entry, LDFS ¼ valueh i and N ¼ valueh i.
Constraint: LDFS � N.

On entry, LDPHI ¼ valueh i and M ¼ valueh i.
Constraint: LDPHI � M.

On entry, LDR ¼ valueh i and M ¼ valueh i.
Constraint: LDR � M.

On entry, LDRO ¼ valueh i and M ¼ valueh i.
Constraint: LDRO � M.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

On entry, N ¼ valueh i and M ¼ valueh i.
Constraint: N � M.

IFAIL ¼ 20

SVD failed to converge.

IFAIL ¼ 100

An internal error has occurred in this routine. Check the routine call and any array sizes. If the
call is correct then please contact NAG for assistance.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The calculations are believed to be stable.

8 Parallelism and Performance

G03BDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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G03BDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example reads a loadings matrix and calculates a varimax transformation before calculating P , R
and � for a ProMax rotation.

10.1 Program Text

Program g03bdfe

! G03BDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03baf, g03bdf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: acc, g, power
Integer :: i, ifail, iter, ldfp, ldfs, ldphi, &

ldr, ldro, ldx, lwk, m, maxit, n
Character (1) :: stand

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fp(:,:), fs(:,:), phi(:,:), r(:,:), &

ro(:,:), wk(:), x(:,:)
! .. Executable Statements ..

Write (nout,*) ’G03BDF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n, m, g, stand, acc, maxit, power

ldx = n
ldro = m
ldfp = n
ldfs = n
ldr = m
ldphi = m
lwk = 2*n + m*m + 5*(m-1)
Allocate (fp(ldx,m),x(ldx,m),ro(ldro,m),wk(lwk),phi(ldphi,m),fs(ldfs,m), &

r(ldr,m))

! Read loadings matrix
Read (nin,*)(fp(i,1:m),i=1,n)

! Calculate orthogonal rotation
ifail = 0
Call g03baf(stand,g,n,m,fp,ldx,x,ro,ldro,acc,maxit,iter,wk,ifail)
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! Calculate ProMax rotation
ifail = 0
Call g03bdf(stand,n,m,x,ldx,ro,ldro,power,fp,ldfp,r,ldr,phi,ldphi,fs, &

ldfs,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,n,m,fp,ldfp,’Factor pattern’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,m,m,r,ldr,’ProMax rotation’,ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,m,m,phi,ldphi,’Inter-factor correlations’, &

ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,m,fs,ldfs,’Factor structure’,ifail)

End Program g03bdfe

10.2 Program Data

G03BDF Example Program Data
5 2 1 ’S’ 1.0E-5 200 3.0 : N,M,G,STAND,ACC,MAXIT,POWER
0.74215 -0.57806
0.71370 -0.55515
0.87899 -0.15847
0.62533 0.76621
0.71447 0.67936 :: End of FP

10.3 Program Results

G03BDF Example Program Results

Factor pattern
1 2

1 0.9556 -0.0979
2 0.9184 -0.0935
3 0.7605 0.3393
4 -0.0791 1.0019
5 0.0480 0.9751

ProMax rotation
1 2

1 0.7380 0.5420
2 -0.7055 0.8653

Inter-factor correlations
1 2

1 1.0000 0.2019
2 0.2019 1.0000

Factor structure
1 2

1 0.9358 0.0950
2 0.8995 0.0919
3 0.8290 0.4928
4 0.1232 0.9860
5 0.2448 0.9848
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NAG Library Routine Document

G03CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03CAF computes the maximum likelihood estimates of the arguments of a factor analysis model.
Either the data matrix or a correlation/covariance matrix may be input. Factor loadings, communalities
and residual correlations are returned.

2 Specification

SUBROUTINE G03CAF (MATRIX, WEIGHT, N, M, X, LDX, NVAR, ISX, NFAC, WT, E,
STAT, COM, PSI, RES, FL, LDFL, IOP, IWK, WK, LWK,
IFAIL)

&
&

INTEGER N, M, LDX, NVAR, ISX(M), NFAC, LDFL, IOP(5),
IWK(4*NVAR+2), LWK, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), WT(*), E(NVAR), STAT(4), COM(NVAR),
PSI(NVAR), RES(NVAR*(NVAR-1)/2), FL(LDFL,NFAC),
WK(LWK)

&
&

CHARACTER(1) MATRIX, WEIGHT

3 Description

Let p variables, x1; x2; . . . ; xp, with variance-covariance matrix � be observed. The aim of factor
analysis is to account for the covariances in these p variables in terms of a smaller number, k, of
hypothetical variables, or factors, f1; f2; . . . ; fk. These are assumed to be independent and to have unit
variance. The relationship between the observed variables and the factors is given by the model:

xi ¼
Xk
j¼1

�ijfj þ ei; i ¼ 1; 2; . . . ; p

where �ij , for i ¼ 1; 2; . . . ; p and j ¼ 1; 2; . . . ; k, are the factor loadings and ei, for i ¼ 1; 2; . . . ; p, are
independent random variables with variances  i, for i ¼ 1; 2; . . . ; p. The  i represent the unique
component of the variation of each observed variable. The proportion of variation for each variable
accounted for by the factors is known as the communality. For this routine it is assumed that both the k
factors and the ei's follow independent Normal distributions.

The model for the variance-covariance matrix, �, can be written as:

� ¼ ��T þ � ð1Þ

where � is the matrix of the factor loadings, �ij, and � is a diagonal matrix of unique variances,  i, for
i ¼ 1; 2; . . . ; p.

The estimation of the arguments of the model, � and � , by maximum likelihood is described by Lawley
and Maxwell (1971). The log-likelihood is:

�1
2 n� 1ð Þlog �j jð Þ � 1

2 n� 1ð Þtrace S;��1
� �

þ constant;

where n is the number of observations, S is the sample variance-covariance matrix or, if weights are
used, S is the weighted sample variance-covariance matrix and n is the effective number of
observations, that is, the sum of the weights. The constant is independent of the arguments of the
model. A two stage maximization is employed. It makes use of the function F �ð Þ, which is, up to a
constant, �2= n� 1ð Þ times the log-likelihood maximized over �. This is then minimized with respect
to � to give the estimates, �̂ , of � . The function F �ð Þ can be written as:
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F �ð Þ ¼
Xp
j¼kþ1

�j � log �j
� �

� p� kð Þ

where values �j , for j ¼ 1; 2; . . . ; p are the eigenvalues of the matrix:

S� ¼ ��1=2S��1=2:

The estimates �̂, of �, are then given by scaling the eigenvectors of S�, which are denoted by V :

�̂ ¼ �1=2V �� Ið Þ1=2:

where � is the diagonal matrix with elements �i, and I is the identity matrix.

The minimization of F �ð Þ is performed using E04LBF which uses a modified Newton algorithm. The
computation of the Hessian matrix is described by Clark (1970). However, instead of using the
eigenvalue decomposition of the matrix S� as described above, the singular value decomposition of the
matrix R��1=2 is used, where R is obtained either from the QR decomposition of the (scaled) mean
centred data matrix or from the Cholesky decomposition of the correlation/covariance matrix. The
routine E04LBF ensures that the values of  i are greater than a given small positive quantity, �, so that
the communality is always less than one. This avoids the so called Heywood cases.

In addition to the values of �, � and the communalities, G03CAF returns the residual correlations, i.e.,
the off-diagonal elements of C � ��T þ �

� �
where C is the sample correlation matrix. G03CAF also

returns the test statistic:

�2 ¼ n� 1� 2pþ 5ð Þ=6� 2k=3½ �F �̂
� �

which can be used to test the goodness-of-fit of the model (1), see Lawley and Maxwell (1971) and
Morrison (1967).

4 References

Clark M R B (1970) A rapidly convergent method for maximum likelihood factor analysis British J.
Math. Statist. Psych.

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method (2nd Edition)
Butterworths

Morrison D F (1967) Multivariate Statistical Methods McGraw–Hill

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: selects the type of matrix on which factor analysis is to be performed.

MATRIX ¼ D
The data matrix will be input in X and factor analysis will be computed for the correlation
matrix.

MATRIX ¼ S
The data matrix will be input in X and factor analysis will be computed for the covariance
matrix, i.e., the results are scaled as described in Section 9.

MATRIX ¼ C
The correlation/variance-covariance matrix will be input in X and factor analysis computed
for this matrix.
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See Section 9.

Constraint: MATRIX ¼ D , S or C .

2: WEIGHT – CHARACTER(1) Input

On entry: if MATRIX ¼ D or S , WEIGHT indicates if weights are to be used.

WEIGHT ¼ U
No weights are used.

WEIGHT ¼ W
Weights are used and must be supplied in WT.

Note: if MATRIX ¼ C , WEIGHT is not referenced.

Constraint: if MATRIX ¼ D or S , WEIGHT ¼ U or W.

3: N – INTEGER Input

On entry: if MATRIX ¼ D or S the number of observations in the data array X.

If MATRIX ¼ C the (effective) number of observations used in computing the (possibly
weighted) correlation/variance-covariance matrix input in X.

Constraint: N > NVAR.

4: M – INTEGER Input

On entry: the number of variables in the data/correlation/variance-covariance matrix.

Constraint: M � NVAR.

5: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: the input matrix.

If MATRIX ¼ D or S , X must contain the data matrix, i.e., Xði; jÞ must contain the ith
observation for the jth variable, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;M.

If MATRIX ¼ C , X must contain the correlation or variance-covariance matrix. Only the upper
triangular part is required.

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03CAF
is called.

Constraints:

if MATRIX ¼ D or S , LDX � N;
if MATRIX ¼ C , LDX � M.

7: NVAR – INTEGER Input

On entry: p, the number of variables in the factor analysis.

Constraint: NVAR � 2.

8: ISXðMÞ – INTEGER array Input

On entry: ISXðjÞ indicates whether or not the jth variable is included in the factor analysis. If
ISXðjÞ � 1, the variable represented by the jth column of X is included in the analysis; otherwise
it is excluded, for j ¼ 1; 2; . . . ;M.

Constraint: ISXðjÞ > 0 for NVAR values of j.
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9: NFAC – INTEGER Input

On entry: k, the number of factors.

Constraint: 1 � NFAC � NVAR.

10: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W and MATRIX ¼ D
or S , and at least 1 otherwise.

On entry: if WEIGHT ¼ W and MATRIX ¼ D or S , WT must contain the weights to be used
in the factor analysis. The effective number of observations in the analysis will then be the sum
of weights. If WTðiÞ ¼ 0:0, the ith observation is not included in the analysis.

If WEIGHT ¼ U or MATRIX ¼ C , WT is not referenced and the effective number of
observations is n.

Constraint: if WEIGHT ¼ W , the sum of weights > NVAR, WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; n.

11: EðNVARÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvalues �i, for i ¼ 1; 2; . . . ; p.

12: STATð4Þ – REAL (KIND=nag_wp) array Output

On exit: the test statistics.

STATð1Þ
Contains the value F �̂

� �
.

STATð2Þ
Contains the test statistic, �2.

STATð3Þ
Contains the degrees of freedom associated with the test statistic.

STATð4Þ
Contains the significance level.

13: COMðNVARÞ – REAL (KIND=nag_wp) array Output

On exit: the communalities.

14: PSIðNVARÞ – REAL (KIND=nag_wp) array Output

On exit: the estimates of  i, for i ¼ 1; 2; . . . ; p.

15: RESðNVAR � NVAR � 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the residual correlations. The residual correlation for the ith and jth variables is stored in
RESð j� 1ð Þ j� 2ð Þ=2þ iÞ, i < j.

16: FLðLDFL;NFACÞ – REAL (KIND=nag_wp) array Output

On exit: the factor loadings. FLði; jÞ contains �ij , for i ¼ 1; 2; . . . ; p and j ¼ 1; 2; . . . ; k.

17: LDFL – INTEGER Input

On entry: the first dimension of the array FL as declared in the (sub)program from which
G03CAF is called.

Constraint: LDFL � NVAR.

18: IOPð5Þ – INTEGER array Input

On entry: options for the optimization. There are four options to be set:
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iprint controls iteration monitoring;
if iprint � 0, then there is no printing of information else if iprint > 0, then
information is printed at every iprint iterations. The information printed consists of the
value of F �ð Þ at that iteration, the number of evaluations of F �ð Þ, the current
estimates of the communalities and an indication of whether or not they are at the
boundary.

maxfun the maximum number of function evaluations.
acc the required accuracy for the estimates of  i.
eps a lower bound for the values of  , see Section 3.

Let � ¼ machine precision then if IOPð1Þ ¼ 0, then the following default values are used:

iprint ¼ �1
maxfun ¼ 100p

acc ¼ 10
ffiffi
�
p

eps ¼ �
If IOPð1Þ 6¼ 0, then

iprint ¼ IOPð2Þ
maxfun ¼ IOPð3Þ

acc ¼ 10�l where l ¼ IOPð4Þ

eps ¼ 10�l where l ¼ IOPð5Þ
Constraint: if IOPð1Þ 6¼ 0, IOPðiÞ must be such that maxfun � 1, � � acc < 1 and � � eps < 1,
for i ¼ 3; 4; 5.

19: IWKð4� NVARþ 2Þ – INTEGER array Workspace
20: WKðLWKÞ – REAL (KIND=nag_wp) array Workspace
21: LWK – INTEGER Input

On entry: the dimension of the array WK as declared in the (sub)program from which G03CAF
is called. The length of the workspace.

Constraints:

if MATRIX ¼ D or S , LWK � max 5� NVAR� NVARþ 33� NVAR � 4ð Þ=2;ð
N� NVARþ 7� NVAR þ NVAR � NVAR � 1ð Þ=2Þ;
if MATRIX ¼ C , LWK � 5� NVAR� NVARþ 33� NVAR � 4ð Þ=2.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G03CAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDFL < NVAR,
or NVAR < 2,
or N � NVAR,
or NFAC < 1,
or NVAR < NFAC,
or M < NVAR,
or MATRIX ¼ D or S and LDX < N,
or MATRIX ¼ C and LDX < M,
or MATRIX 6¼ D , S or C ,
or MATRIX ¼ D or S and WEIGHT 6¼ U or W ,
or IOPð1Þ 6¼ 0 and IOPð3Þ is such that maxfun < 1,
or IOPð1Þ 6¼ 0 and IOPð4Þ is such that acc � 1:0,
or IOPð1Þ 6¼ 0 and IOPð4Þ is such that acc < machine precision,
or IOPð1Þ 6¼ 0 and IOPð5Þ is such that eps � 1:0,
or IOPð1Þ 6¼ 0 and IOPð5Þ is such that eps < machine precision,
or MATRIX ¼ C and LWK < 5� NVAR � NVAR þ 33� NVAR� 4ð Þ=2,
or MATRIX ¼ D or S and

LWK < max 5� NVAR � NVAR þ 33� NVAR � 4ð Þ=2;N� NVAR þ 7�ð
NVAR þ NVAR � NVAR � 1ð Þ=2Þ.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WT < 0:0.

IFAIL ¼ 3

On entry, there are not exactly NVAR elements of ISX > 0, or the effective number of
observations � NVAR.

IFAIL ¼ 4

On entry, MATRIX ¼ D or S and the data matrix is not of full column rank, or MATRIX ¼ C
and the input correlation/variance-covariance matrix is not positive definite.

This exit may also be caused by two of the eigenvalues of S� being equal; this is rare (see
Lawley and Maxwell (1971)), and may be due to the data/correlation matrix being almost
singular.

IFAIL ¼ 5

A singular value decomposition has failed to converge. This is a very unlikely error exit.

IFAIL ¼ 6

The estimation procedure has failed to converge in the given number of iterations. Change IOP to
either increase number of iterations maxfun or increase the value of acc.

IFAIL ¼ 7

The convergence is not certain but a lower point could not be found. See E04LBF for further
details. In this case all results are computed.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy achieved is discussed in E04LBF with the value of the argument XTOL given by acc as
described in parameter IOP.

8 Parallelism and Performance

G03CAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G03CAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The factor loadings may be orthogonally rotated by using G03BAF and factor score coefficients can be
computed using G03CCF. The maximum likelihood estimators are invariant to a change in scale. This
means that the results obtained will be the same (up to a scaling factor) if either the correlation matrix
or the variance-covariance matrix is used. As the correlation matrix ensures that all values of  i are
between 0 and 1 it will lead to a more efficient optimization. In the situation when the data matrix is
input the results are always computed for the correlation matrix and then scaled if the results for the
covariance matrix are required. When you input the covariance/correlation matrix the input matrix itself
is used and you are advised to input the correlation matrix rather than the covariance matrix.

10 Example

This example is taken from Lawley and Maxwell (1971). The correlation matrix for nine variables is
input and the arguments of a factor analysis model with three factors are estimated and printed.

10.1 Program Text

Program g03cafe

! G03CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03caf, nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, l, ldfl, ldx, liwk, lres, &
lwk, lwt, m, n, nfac, nvar

Character (1) :: matrix, weight
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: com(:), e(:), fl(:,:), psi(:), &
res(:), wk(:), wt(:), x(:,:)

Real (Kind=nag_wp) :: stat(4)
Integer :: iop(5)
Integer, Allocatable :: isx(:), iwk(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G03CAF Example Program Results’
Write (nout,*)

! Skip headings in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) matrix, weight, n, m, nvar, nfac

lwk = (5*nvar*nvar+33*nvar-4)/2
If (matrix==’C’ .Or. matrix==’c’) Then

lwt = 0
ldx = m

Else
If (weight==’W’ .Or. weight==’w’) Then

lwt = n
Else

lwt = 0
End If
ldx = n
lwk = max(lwk,n*nvar+7*nvar+nvar*(nvar-1)/2)

End If
ldfl = nvar
lres = nvar*(nvar-1)/2
liwk = 4*nvar + 2
Allocate (x(ldx,m),isx(m),wt(lwt),e(nvar),com(nvar),psi(nvar),res(lres), &

fl(ldfl,nfac),iwk(liwk),wk(lwk))

! Read in the data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),wt(i),i=1,ldx)
Else

Read (nin,*)(x(i,1:m),i=1,ldx)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in options
Read (nin,*) iop(1:5)

! Fit factor analysis model
ifail = -1
Call g03caf(matrix,weight,n,m,x,ldx,nvar,isx,nfac,wt,e,stat,com,psi,res, &

fl,ldfl,iop,iwk,wk,lwk,ifail)
If (ifail/=0) Then

If (ifail<=4) Then
Go To 100

End If
End If

! Display results
Write (nout,*) ’ Eigenvalues’
Write (nout,*)
Write (nout,99998) e(1:nvar)
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Write (nout,*)
Write (nout,99997) ’ Test Statistic = ’, stat(2)
Write (nout,99997) ’ df = ’, stat(3)
Write (nout,99997) ’ Significance level = ’, stat(4)
Write (nout,*)
Write (nout,*) ’ Residuals’
Write (nout,*)
l = 1
Do i = 1, nvar - 1

Write (nout,99999) res(l:(l+i-1))
l = l + i

End Do
Write (nout,*)
Write (nout,*) ’ Loadings, Communalities and PSI’
Write (nout,*)
Do i = 1, nvar

Write (nout,99999) fl(i,1:nfac), com(i), psi(i)
End Do

100 Continue

99999 Format (2X,9F8.3)
99998 Format (2X,6E12.4)
99997 Format (A,F6.3)

End Program g03cafe

10.2 Program Data

G03CAF Example Program Data
’C’ ’U’ 211 9 9 3
1.000 0.523 0.395 0.471 0.346 0.426 0.576 0.434 0.639
0.523 1.000 0.479 0.506 0.418 0.462 0.547 0.283 0.645
0.395 0.479 1.000 0.355 0.270 0.254 0.452 0.219 0.504
0.471 0.506 0.355 1.000 0.691 0.791 0.443 0.285 0.505
0.346 0.418 0.270 0.691 1.000 0.679 0.383 0.149 0.409
0.426 0.462 0.254 0.791 0.679 1.000 0.372 0.314 0.472
0.576 0.547 0.452 0.443 0.383 0.372 1.000 0.385 0.680
0.434 0.283 0.219 0.285 0.149 0.314 0.385 1.000 0.470
0.639 0.645 0.504 0.505 0.409 0.472 0.680 0.470 1.000
1 1 1 1 1 1 1 1 1

1 -1 500 2 5

10.3 Program Results

G03CAF Example Program Results

Eigenvalues

0.1597E+02 0.4358E+01 0.1847E+01 0.1156E+01 0.1119E+01 0.1027E+01
0.9257E+00 0.8951E+00 0.8771E+00

Test Statistic = 7.149
df = 12.000

Significance level = 0.848

Residuals

0.000
-0.013 0.022
0.011 -0.005 0.023

-0.010 -0.019 -0.016 0.003
-0.005 0.011 -0.012 -0.001 -0.001
0.015 -0.022 -0.011 0.002 0.029 -0.012

-0.001 -0.011 0.013 0.005 -0.006 -0.001 0.003
-0.006 0.010 -0.005 -0.011 0.002 0.007 0.003 -0.001

Loadings, Communalities and PSI

0.664 -0.321 0.074 0.550 0.450
0.689 -0.247 -0.193 0.573 0.427
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0.493 -0.302 -0.222 0.383 0.617
0.837 0.292 -0.035 0.788 0.212
0.705 0.315 -0.153 0.619 0.381
0.819 0.377 0.105 0.823 0.177
0.661 -0.396 -0.078 0.600 0.400
0.458 -0.296 0.491 0.538 0.462
0.766 -0.427 -0.012 0.769 0.231
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NAG Library Routine Document

G03CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03CCF computes factor score coefficients from the result of fitting a factor analysis model by
maximum likelihood as performed by G03CAF.

2 Specification

SUBROUTINE G03CCF (METHOD, ROTATE, NVAR, NFAC, FL, LDFL, PSI, E, R, LDR,
FS, LDFS, WK, IFAIL)

&

INTEGER NVAR, NFAC, LDFL, LDR, LDFS, IFAIL
REAL (KIND=nag_wp) FL(LDFL,NFAC), PSI(NVAR), E(NVAR), R(LDR,*),

FS(LDFS,NFAC), WK(NVAR)
&

CHARACTER(1) METHOD, ROTATE

3 Description

A factor analysis model aims to account for the covariances among p variables, observed on n
individuals, in terms of a smaller number, k, of unobserved variables or factors. The values of the
factors for an individual are known as factor scores. G03CAF fits the factor analysis model by
maximum likelihood and returns the estimated factor loading matrix, �, and the diagonal matrix of
variances of the unique components, � . To obtain estimates of the factors, a p by k matrix of factor
score coefficients, �, is formed. The estimated vector of factor scores, f̂ , is then given by:

f̂ ¼ xT�;

where x is the vector of observed variables for an individual.

There are two commonly used methods of obtaining factor score coefficients.

The regression method:

� ¼ ��1� I þ �T��1�
� ��1

;

and Bartlett's method:

� ¼ ��1� �T��1�
� ��1

:

See Lawley and Maxwell (1971) for details of both methods. In the regression method as given above,
it is assumed that the factors are not correlated and have unit variance; this is true for models fitted by
G03CAF. Further, for models fitted by G03CAF,

�T��1� ¼ �� I;

where � is the diagonal matrix of eigenvalues of the matrix S�, as described in G03CAF.

The factors may be orthogonally rotated using an orthogonal rotation matrix, R, as computed by
G03BAF. The factor scores for the rotated matrix are then given by �R.

4 References

Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method (2nd Edition)
Butterworths
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5 Arguments

1: METHOD – CHARACTER(1) Input

On entry: indicates which method is to be used to compute the factor score coefficients.

METHOD ¼ R
The regression method is used.

METHOD ¼ B
Bartlett's method is used.

Constraint: METHOD ¼ B or R .

2: ROTATE – CHARACTER(1) Input

On entry: indicates whether a rotation is to be applied.

ROTATE ¼ R
A rotation will be applied to the coefficients and the rotation matrix, R, must be given in
R.

ROTATE ¼ U
No rotation is applied.

Constraint: ROTATE ¼ R or U .

3: NVAR – INTEGER Input

On entry: p, the number of observed variables in the factor analysis.

Constraint: NVAR � NFAC.

4: NFAC – INTEGER Input

On entry: k, the number of factors in the factor analysis.

Constraint: NFAC � 1.

5: FLðLDFL;NFACÞ – REAL (KIND=nag_wp) array Input

On entry: �, the matrix of unrotated factor loadings as returned by G03CAF.

6: LDFL – INTEGER Input

On entry: the first dimension of the array FL as declared in the (sub)program from which
G03CCF is called.

Constraint: LDFL � NVAR.

7: PSIðNVARÞ – REAL (KIND=nag_wp) array Input

On entry: the diagonal elements of � , as returned by G03CAF.

Constraint: PSIðiÞ > 0:0, for i ¼ 1; 2; . . . ; p.

8: EðNVARÞ – REAL (KIND=nag_wp) array Input

On entry: the eigenvalues of the matrix S�, as returned by G03CAF.

Constraint: EðiÞ > 1:0, for i ¼ 1; 2; . . . ; p.

9: RðLDR; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array R must be at least 1 if ROTATE ¼ U and at least
NFAC if ROTATE ¼ R .

On entry: if ROTATE ¼ R , R must contain the orthogonal rotation matrix, R, as returned by
G03BAF.
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If ROTATE ¼ U , R need not be set.

10: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which G03CCF
is called.

Constraints:

if ROTATE ¼ R , LDR � NFAC;
otherwise 1.

11: FSðLDFS;NFACÞ – REAL (KIND=nag_wp) array Output

On exit: the matrix of factor score coefficients, �. FSði; jÞ contains the factor score coefficient for
the jth factor and the ith observed variable, for i ¼ 1; 2; . . . ; p and j ¼ 1; 2; . . . ; k.

12: LDFS – INTEGER Input

On entry: the first dimension of the array FS as declared in the (sub)program from which
G03CCF is called.

Constraint: LDFS � NVAR.

13: WKðNVARÞ – REAL (KIND=nag_wp) array Workspace

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NFAC < 1,
or NVAR < NFAC,
or LDFL < NVAR,
or LDFS < NVAR,
or ROTATE ¼ R and LDR < NFAC,
or METHOD 6¼ R or B ,
or ROTATE 6¼ R or U .

IFAIL ¼ 2

On entry, a value of PSI � 0:0,
or a value of E � 1:0.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy will depend on the accuracy requested when computing the estimated factor loadings using
G03CAF.

8 Parallelism and Performance

G03CCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

To compute the factor scores using the factor score coefficients the values for the observed variables
first need to be standardized by subtracting the sample means and, if the factor analysis is based upon a
correlation matrix, dividing by the sample standard deviations. This may be performed using G03ZAF.
The standardized variables are then post-multiplied by the factor score coefficients. This may be
performed using routines from Chapter F06, for example F06YAF (DGEMM).

If principal component analysis is required the routine G03AAF computes the principal component
scores directly. Hence, the factor score coefficients are not needed.

10 Example

This example is taken from Lawley and Maxwell (1971). The correlation matrix for 220 observations
on six school subjects is input and a factor analysis model with two factors fitted using G03CAF. The
factor score coefficients are computed using the regression method.

10.1 Program Text

Program g03ccfe

! G03CCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03caf, g03ccf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Integer :: i, ifail, ldfl, ldfs, ldr, ldx, &

liwk, lres, lwk, lwt, m, n, nfac, &
nvar, tdr

Character (80) :: fmt
Character (1) :: matrix, method, rotate, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: com(:), e(:), fl(:,:), fs(:,:), &

psi(:), r(:,:), res(:), wk(:), &
wt(:), x(:,:)

Real (Kind=nag_wp) :: stat(4)
Integer :: iop(5)
Integer, Allocatable :: isx(:), iwk(:)

! .. Intrinsic Procedures ..
Intrinsic :: count, max

! .. Executable Statements ..
Write (nout,*) ’G03CCF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip headings in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) matrix, weight, n, m, nfac

If (matrix==’C’ .Or. matrix==’c’) Then
lwt = 0
ldx = m

Else
If (weight==’W’ .Or. weight==’w’) Then

lwt = n
Else

lwt = 0
End If
ldx = n

End If
Allocate (x(ldx,m),isx(m),wt(lwt))

! Read in the data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),wt(i),i=1,ldx)
Else

Read (nin,*)(x(i,1:m),i=1,ldx)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate NVAR
nvar = count(isx(1:m)==1)

! Do not apply a rotation
rotate = ’U’
tdr = 1
ldr = 1

lres = nvar*(nvar-1)/2
liwk = 4*nvar + 2
lwk = 5*nvar*nvar + 33*nvar - 4/2
If (matrix/=’C’ .And. matrix/=’c’) Then

lwk = max(lwk,n*nvar+7*nvar+nvar*(nvar-1)/2)
End If
lwk = max(lwk,nvar)
ldfs = nvar
ldfl = nvar
Allocate (e(nvar),com(nvar),psi(nvar),res(lres),fl(ldfl,nfac),wk(lwk), &

iwk(liwk),fs(ldfs,nfac),r(ldr,tdr))

! Read in options
Read (nin,*) iop(1:5)
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! Fit factor analysis model
ifail = -1
Call g03caf(matrix,weight,n,m,x,ldx,nvar,isx,nfac,wt,e,stat,com,psi,res, &

fl,ldfl,iop,iwk,wk,lwk,ifail)
If (ifail/=0) Then

If (ifail<=4) Then
Go To 100

End If
End If

! Display results
Write (nout,*) ’ Loadings, Communalities and PSI’
Write (nout,*)
Write (fmt,99999) ’(’, nfac + 2, ’(1X,F8.3))’
Write (nout,fmt)(fl(i,1:nfac),com(i),psi(i),i=1,nvar)

! Read in details of how to compute factor scores
Read (nin,*) method

! Compute factor scores
ifail = 0
Call g03ccf(method,rotate,nvar,nfac,fl,ldfl,psi,e,r,ldr,fs,ldfs,wk, &

ifail)

! Display factor score coefficients
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,nvar,nfac,fs,ldfs,’Factor score coefficients’, &

ifail)

100 Continue

99999 Format (A,I0,A)
End Program g03ccfe

10.2 Program Data

G03CCF Example Program Data
’C’ ’U’ 220 6 2
1.000 0.439 0.410 0.288 0.329 0.248
0.439 1.000 0.351 0.354 0.320 0.329
0.410 0.351 1.000 0.164 0.190 0.181
0.288 0.354 0.164 1.000 0.595 0.470
0.329 0.320 0.190 0.595 1.000 0.464
0.248 0.329 0.181 0.470 0.464 1.000

1 1 1 1 1 1
1 -1 500 3 5
’R’

10.3 Program Results

G03CCF Example Program Results

Loadings, Communalities and PSI

0.553 -0.429 0.490 0.510
0.568 -0.288 0.406 0.594
0.392 -0.450 0.356 0.644
0.740 0.273 0.623 0.377
0.724 0.211 0.569 0.431
0.595 0.132 0.372 0.628

Factor score coefficients
1 2

1 0.1932 -0.3920
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2 0.1703 -0.2265
3 0.1085 -0.3262
4 0.3495 0.3374
5 0.2989 0.2286
6 0.1688 0.0978
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NAG Library Routine Document

G03DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03DAF computes a test statistic for the equality of within-group covariance matrices and also
computes matrices for use in discriminant analysis.

2 Specification

SUBROUTINE G03DAF (WEIGHT, N, M, X, LDX, ISX, NVAR, ING, NG, WT, NIG,
GMN, LDGMN, DET, GC, STAT, DF, SIG, WK, IWK, IFAIL)

&

INTEGER N, M, LDX, ISX(M), NVAR, ING(N), NG, NIG(NG), LDGMN,
IWK(NG), IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), WT(*), GMN(LDGMN,NVAR), DET(NG),
GC((NG+1)*NVAR*(NVAR+1)/2), STAT, DF, SIG,
WK(N*(NVAR+1))

&
&

CHARACTER(1) WEIGHT

3 Description

Let a sample of n observations on p variables come from ng groups with nj observations in the jth
group and

P
nj ¼ n. If the data is assumed to follow a multivariate Normal distribution with the

variance-covariance matrix of the jth group �j, then to test for equality of the variance-covariance
matrices between groups, that is, �1 ¼ �2 ¼ � � � ¼ �ng ¼ �, the following likelihood-ratio test statistic,
G, can be used;

G ¼ C n� ng
� �

log Sj j �
Xng
j¼1

nj � 1
� �

log Sj
		 		( )

;

where

C ¼ 1� 2p2 þ 3p� 1

6 pþ 1ð Þ ng � 1
� � Xng

j¼1

1

nj � 1
� �� 1

n� ng
� � !

;

and Sj are the within-group variance-covariance matrices and S is the pooled variance-covariance
matrix given by

S ¼

Xng
j¼1

nj � 1
� �

Sj

n� ng
� � :

For large n, G is approximately distributed as a �2 variable with 1
2p pþ 1ð Þ ng � 1

� �
degrees of freedom,

see Morrison (1967) for further comments. If weights are used, then S and Sj are the weighted pooled
and within-group variance-covariance matrices and n is the effective number of observations, that is,
the sum of the weights.

Instead of calculating the within-group variance-covariance matrices and then computing their
determinants in order to calculate the test statistic, G03DAF uses a QR decomposition. The group
means are subtracted from the data and then for each group, a QR decomposition is computed to give
an upper triangular matrix R�j . This matrix can be scaled to give a matrix Rj such that Sj ¼ RT

j Rj. The

pooled R matrix is then computed from the Rj matrices. The values of Sj j and the Sj
		 		 can then be

calculated from the diagonal elements of R and the Rj.
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This approach means that the Mahalanobis squared distances for a vector observation x can be
computed as zTz, where Rjz ¼ x� �xj

� �
, �xj being the vector of means of the jth group. These distances

can be calculated by G03DBF. The distances are used in discriminant analysis and G03DCF uses the
results of G03DAF to perform several different types of discriminant analysis. The differences between
the discriminant methods are, in part, due to whether or not the within-group variance-covariance
matrices are equal.

4 References

Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge

Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

Morrison D F (1967) Multivariate Statistical Methods McGraw–Hill

5 Arguments

1: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
No weights are used.

WEIGHT ¼ W
Weights are to be used and must be supplied in WT.

Constraint: WEIGHT ¼ U or W.

2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

3: M – INTEGER Input

On entry: the number of variables in the data array X.

Constraint: M � NVAR.

4: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xðk; lÞ must contain the kth observation for the lth variable, for k ¼ 1; 2; . . . ; n and
l ¼ 1; 2; . . . ;M.

5: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G03DAF is called.

Constraint: LDX � N.

6: ISXðMÞ – INTEGER array Input

On entry: ISXðlÞ indicates whether or not the lth variable in X is to be included in the variance-
covariance matrices.

If ISXðlÞ > 0 the lth variable is included, for l ¼ 1; 2; . . . ;M; otherwise it is not referenced.

Constraint: ISXðlÞ > 0 for NVAR values of l.
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7: NVAR – INTEGER Input

On entry: p, the number of variables in the variance-covariance matrices.

Constraint: NVAR � 1.

8: INGðNÞ – INTEGER array Input

On entry: INGðkÞ indicates to which group the kth observation belongs, for k ¼ 1; 2; . . . ; n.

Constraint: 1 � INGðkÞ � NG, for k ¼ 1; 2; . . . ; n

The values of ING must be such that each group has at least NVAR members.

9: NG – INTEGER Input

On entry: the number of groups, ng.

Constraint: NG � 2.

10: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W the first n elements of WT must contain the weights to be used in
the analysis and the effective number of observations for a group is the sum of the weights of the
observations in that group. If WTðkÞ ¼ 0:0 the kth observation is excluded from the calculations.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations for a group is
the number of observations in that group.

Constraint: if WEIGHT ¼ W , WTðkÞ � 0:0, for k ¼ 1; 2; . . . ; n.

11: NIGðNGÞ – INTEGER array Output

On exit: NIGðjÞ contains the number of observations in the jth group, for j ¼ 1; 2; . . . ; ng.

12: GMNðLDGMN;NVARÞ – REAL (KIND=nag_wp) array Output

On exit: the jth row of GMN contains the means of the p selected variables for the jth group, for
j ¼ 1; 2; . . . ; ng.

13: LDGMN – INTEGER Input

On entry: the first dimension of the array GMN as declared in the (sub)program from which
G03DAF is called.

Constraint: LDGMN � NG.

14: DETðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the logarithm of the determinants of the within-group variance-covariance matrices.

15: GCð NGþ 1ð Þ � NVAR � NVAR þ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the first p pþ 1ð Þ=2 elements of GC contain R and the remaining ng blocks of
p pþ 1ð Þ=2 elements contain the Rj matrices. All are stored in packed form by columns.

16: STAT – REAL (KIND=nag_wp) Output

On exit: the likelihood-ratio test statistic, G.

17: DF – REAL (KIND=nag_wp) Output

On exit: the degrees of freedom for the distribution of G.

G03 – Multivariate Methods G03DAF

Mark 26 G03DAF.3



18: SIG – REAL (KIND=nag_wp) Output

On exit: the significance level for G.

19: WKðN� NVAR þ 1ð ÞÞ – REAL (KIND=nag_wp) array Workspace

20: IWKðNGÞ – INTEGER array Workspace

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NVAR < 1,
or N < 1,
or NG < 2,
or M < NVAR,
or LDX < N,
or LDGMN < NG,
or WEIGHT 6¼ U or W.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WT < 0:0.

IFAIL ¼ 3

On entry, there are not exactly NVAR elements of ISX > 0,
or a value of ING is not in the range 1 to NG,
or the effective number of observations for a group is less than 1,
or a group has less than NVAR members.

IFAIL ¼ 4

R or one of the Rj is not of full rank.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is dependent on the accuracy of the computation of the QR decomposition. See F08AEF
(DGEQRF) for further details.

8 Parallelism and Performance

G03DAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G03DAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken will be approximately proportional to np2.

10 Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three ‘types’
of Cushing's syndrome. The variables are the logarithms of the urinary excretion rates (mg/24hr) of two
steroid metabolites. Observations for a total of 21 patients are input and the statistics computed by
G03DAF. The printed results show that there is evidence that the within-group variance-covariance
matrices are not equal.

10.1 Program Text

Program g03dafe

! G03DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03daf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df, sig, stat
Integer :: i, ifail, ldgmn, ldx, lgc, lwk, lwt, &

m, n, ng, nvar
Character (1) :: weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: det(:), gc(:), gmn(:,:), wk(:), &

wt(:), x(:,:)
Integer, Allocatable :: ing(:), isx(:), iwk(:), nig(:)

! .. Intrinsic Procedures ..
Intrinsic :: count

! .. Executable Statements ..
Write (nout,*) ’G03DAF Example Program Results’
Write (nout,*)
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Flush (nout)

! Skip headings in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, ng, weight

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),ing(n),wt(lwt),isx(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),ing(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),ing(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate NVAR
nvar = count(isx(1:m)==1)

ldgmn = ng
lgc = (ng+1)*nvar*(nvar+1)/2
lwk = n*(nvar+1)
Allocate (nig(ng),gmn(ldgmn,nvar),det(ng),gc(lgc),wk(lwk),iwk(ng))

! Compute test statistic
ifail = 0
Call g03daf(weight,n,m,x,ldx,isx,nvar,ing,ng,wt,nig,gmn,ldgmn,det,gc, &

stat,df,sig,wk,iwk,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,ng,nvar,gmn,ldgmn,’Group means’,ifail)
Write (nout,*)
Write (nout,*) ’ LOG of determinants’
Write (nout,*)
Write (nout,99999) det(1:ng)
Write (nout,*)
Write (nout,99998) ’ STAT = ’, stat
Write (nout,99998) ’ DF = ’, df
Write (nout,99998) ’ SIG = ’, sig

99999 Format (1X,3F10.4)
99998 Format (1X,A,F7.4)

End Program g03dafe

10.2 Program Data

G03DAF Example Program Data
21 2 3 ’U’ : N,M,NG,WEIGHT
1.1314 2.4596 1
1.0986 0.2624 1
0.6419 -2.3026 1
1.3350 -3.2189 1
1.4110 0.0953 1
0.6419 -0.9163 1
2.1163 0.0000 2
1.3350 -1.6094 2
1.3610 -0.5108 2
2.0541 0.1823 2
2.2083 -0.5108 2
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2.7344 1.2809 2
2.0412 0.4700 2
1.8718 -0.9163 2
1.7405 -0.9163 2
2.6101 0.4700 2
2.3224 1.8563 3
2.2192 2.0669 3
2.2618 1.1314 3
3.9853 0.9163 3
2.7600 2.0281 3 : End of X,ING
1 1 : ISX

10.3 Program Results

G03DAF Example Program Results

Group means
1 2

1 1.0433 -0.6034
2 2.0073 -0.2060
3 2.7097 1.5998

LOG of determinants

-0.8273 -3.0460 -2.2877

STAT = 19.2410
DF = 6.0000

SIG = 0.0038
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NAG Library Routine Document

G03DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03DBF computes Mahalanobis squared distances for group or pooled variance-covariance matrices. It
is intended for use after G03DAF.

2 Specification

SUBROUTINE G03DBF (EQUAL, MODE, NVAR, NG, GMN, LDGMN, GC, NOBS, M, ISX,
X, LDX, D, LDD, WK, IFAIL)

&

INTEGER NVAR, NG, LDGMN, NOBS, M, ISX(*), LDX, LDD, IFAIL
REAL (KIND=nag_wp) GMN(LDGMN,NVAR), GC((NG+1)*NVAR*(NVAR+1)/2),

X(LDX,*), D(LDD,NG), WK(2*NVAR)
&

CHARACTER(1) EQUAL, MODE

3 Description

Consider p variables observed on ng populations or groups. Let �xj be the sample mean and Sj the
within-group variance-covariance matrix for the jth group and let xk be the kth sample point in a
dataset. A measure of the distance of the point from the jth population or group is given by the
Mahalanobis distance, Dkj:

D2
kj ¼ xk � �xj

� �T
S�1j xk � �xj

� �
:

If the pooled estimated of the variance-covariance matrix S is used rather than the within-group
variance-covariance matrices, then the distance is:

D2
kj ¼ xk � �xj

� �T
S�1 xk � �xj

� �
:

Instead of using the variance-covariance matrices S and Sj, G03DBF uses the upper triangular matrices
R and Rj supplied by G03DAF such that S ¼ RTR and Sj ¼ RT

j Rj. D2
kj can then be calculated as zTz

where Rjz ¼ xk � �xj
� �

or Rz ¼ xk � �xj
� �

as appropriate.

A particular case is when the distance between the group or population means is to be estimated. The
Mahalanobis squared distance between the ith and jth groups is:

D2
ij ¼ �xi � �xj

� �T
S�1j �xi � �xj

� �
or

D2
ij ¼ �xi � �xj

� �T
S�1 �xi � �xj

� �
:

Note: D2
jj ¼ 0 and that in the case when the pooled variance-covariance matrix is used D2

ij ¼ D2
ji so in

this case only the lower triangular values of D2
ij, i > j, are computed.

4 References

Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge

Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press
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5 Arguments

1: EQUAL – CHARACTER(1) Input

On entry: indicates whether or not the within-group variance-covariance matrices are assumed to
be equal and the pooled variance-covariance matrix used.

EQUAL ¼ E
The within-group variance-covariance matrices are assumed equal and the matrix R stored
in the first p pþ 1ð Þ=2 elements of GC is used.

EQUAL ¼ U
The within-group variance-covariance matrices are assumed to be unequal and the matrices
Rj , for j ¼ 1; 2; . . . ; ng, stored in the remainder of GC are used.

Constraint: EQUAL ¼ E or U .

2: MODE – CHARACTER(1) Input

On entry: indicates whether distances from sample points are to be calculated or distances
between the group means.

MODE ¼ S
The distances between the sample points given in X and the group means are calculated.

MODE ¼ M
The distances between the group means will be calculated.

Constraint: MODE ¼ M or S .

3: NVAR – INTEGER Input

On entry: p, the number of variables in the variance-covariance matrices as specified to G03DAF.

Constraint: NVAR � 1.

4: NG – INTEGER Input

On entry: the number of groups, ng.

Constraint: NG � 2.

5: GMNðLDGMN;NVARÞ – REAL (KIND=nag_wp) array Input

On entry: the jth row of GMN contains the means of the p selected variables for the jth group,
for j ¼ 1; 2; . . . ; ng. These are returned by G03DAF.

6: LDGMN – INTEGER Input

On entry: the first dimension of the array GMN as declared in the (sub)program from which
G03DBF is called.

Constraint: LDGMN � NG.

7: GCð NGþ 1ð Þ � NVAR � NVAR þ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the first p pþ 1ð Þ=2 elements of GC should contain the upper triangular matrix R and
the next ng blocks of p pþ 1ð Þ=2 elements should contain the upper triangular matrices Rj. All
matrices must be stored packed by column. These matrices are returned by G03DAF. If
EQUAL ¼ E only the first p pþ 1ð Þ=2 elements are referenced, if EQUAL ¼ U only the
elements p pþ 1ð Þ=2þ 1 to ng þ 1

� �
p pþ 1ð Þ=2 are referenced.

Constraints:

if EQUAL ¼ E , R 6¼ 0:0;
if EQUAL ¼ U , the diagonal elements of the Rj 6¼ 0:0, for j ¼ 1; 2; . . . ;NG.

G03DBF NAG Library Manual

G03DBF.2 Mark 26



8: NOBS – INTEGER Input

On entry: if MODE ¼ S , the number of sample points in X for which distances are to be
calculated.

If MODE ¼ M , NOBS is not referenced.

Constraint: if NOBS � 1, MODE ¼ S .

9: M – INTEGER Input

On entry: if MODE ¼ S , the number of variables in the data array X.

If MODE ¼ M , M is not referenced.

Constraint: if M � NVAR, MODE ¼ S .

10: ISXð�Þ – INTEGER array Input

Note: the dimension of the array ISX must be at least max 1;Mð Þ.
On entry: if MODE ¼ S , ISXðlÞ indicates if the lth variable in X is to be included in the
distance calculations. If ISXðlÞ > 0 the lth variable is included, for l ¼ 1; 2; . . . ;M; otherwise the
lth variable is not referenced.

If MODE ¼ M , ISX is not referenced.

Constraint: if MODE ¼ S , ISXðlÞ > 0 for NVAR values of l.

11: XðLDX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least max 1;Mð Þ.
On entry: if MODE ¼ S the kth row of X must contain xk . That is Xðk; lÞ must contain the kth
sample value for the lth variable, for k ¼ 1; 2; . . . ;NOBS and l ¼ 1; 2; . . . ;M. Otherwise X is not
referenced.

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03DBF
is called.

Constraints:

if MODE ¼ S , LDX � NOBS;
otherwise 1.

13: DðLDD;NGÞ – REAL (KIND=nag_wp) array Output

On exit: the squared distances.

If MODE ¼ S , Dðk; jÞ contains the squared distance of the kth sample point from the jth group
mean, D2

kj , for k ¼ 1; 2; . . . ;NOBS and j ¼ 1; 2; . . . ; ng.

If MODE ¼ M and EQUAL ¼ U , Dði; jÞ contains the squared distance between the ith mean
and the jth mean, D2

ij , for i ¼ 1; 2; . . . ; ng and j ¼ 1; 2; . . . ; i � 1; i þ 1; . . . ; ng. The elements
Dði; iÞ are not referenced, for i ¼ 1; 2; . . . ; ng.

If MODE ¼ M and EQUAL ¼ E , Dði; jÞ contains the squared distance between the ith mean
and the jth mean, D2

ij , for i ¼ 1; 2; . . . ; ng and j ¼ 1; 2; . . . ; i � 1. Since Dij ¼ Dji the elements
Dði; jÞ are not referenced, for i ¼ 1; 2; . . . ; ng and j ¼ i þ 1; . . . ; ng.

14: LDD – INTEGER Input

On entry: the first dimension of the array D as declared in the (sub)program from which G03DBF
is called.
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Constraints:

if MODE ¼ S , LDD � NOBS;
if MODE ¼ M , LDD � NG.

15: WKð2� NVARÞ – REAL (KIND=nag_wp) array Workspace

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NVAR < 1,
or NG < 2,
or LDGMN < NG,
or MODE ¼ S and NOBS < 1,
or MODE ¼ S and M < NVAR,
or MODE ¼ S and LDX < NOBS,
or MODE ¼ S and LDD < NOBS,
or MODE ¼ M and LDD < NG,
or EQUAL 6¼ E or ‘U’,
or MODE 6¼ M or ‘S’.

IFAIL ¼ 2

On entry, MODE ¼ S and the number of variables indicated by ISX is not equal to NVAR,
or EQUAL ¼ E and a diagonal element of R is zero,
or EQUAL ¼ U and a diagonal element of Rj for some j is zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The accuracy will depend upon the accuracy of the input R or Rj matrices.

8 Parallelism and Performance

G03DBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If the distances are to be used for discrimination, see also G03DCF.

10 Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three ‘types’
of Cushing's syndrome. The variables are the logarithms of the urinary excretion rates (mg/24hr) of two
steroid metabolites. Observations for a total of 21 patients are input and the group means and R
matrices are computed by G03DAF. A further six observations of unknown type are input, and the
distances from the group means of the 21 patients of known type are computed under the assumption
that the within-group variance-covariance matrices are not equal. These results are printed and indicate
that the first four are close to one of the groups while observations 5 and 6 are some distance from any
group.

10.1 Program Text

Program g03dbfe

! G03DBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03daf, g03dbf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df, sig, stat
Integer :: i, ifail, ldd, ldgmn, ldox, ldx, &

lgc, lwk, lwt, m, n, ng, nobs, nvar
Character (1) :: equal, mode, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:,:), det(:), gc(:), gmn(:,:), &

ox(:,:), wk(:), wt(:), x(:,:)
Integer, Allocatable :: ing(:), isx(:), iwk(:), nig(:)

! .. Intrinsic Procedures ..
Intrinsic :: count, max

! .. Executable Statements ..
Write (nout,*) ’G03DBF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip headings in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, ng, weight
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If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldox = n
Allocate (ox(ldox,m),ing(n),wt(lwt),isx(m))

! Read in original data
If (lwt>0) Then

Read (nin,*)(ox(i,1:m),ing(i),wt(i),i=1,n)
Else

Read (nin,*)(ox(i,1:m),ing(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate NVAR
nvar = count(isx(1:m)==1)

ldgmn = ng
lgc = (ng+1)*nvar*(nvar+1)/2
lwk = max(n*(nvar+1),2*nvar)
Allocate (nig(ng),gmn(ldgmn,nvar),det(ng),gc(lgc),wk(lwk),iwk(ng))

! Compute covariance matrix
ifail = 0
Call g03daf(weight,n,m,ox,ldox,isx,nvar,ing,ng,wt,nig,gmn,ldgmn,det,gc, &

stat,df,sig,wk,iwk,ifail)

! Read in size data from which to compute distances
Read (nin,*) mode, equal

If (mode==’S’ .Or. mode==’s’) Then
Read (nin,*) nobs
ldd = nobs

Else
nobs = 0
ldd = ng

End If

ldx = nobs
Allocate (x(ldx,m),d(ldd,ng))

! Read in data from which to compute distances
If (nobs>0) Then

Read (nin,*)(x(i,1:m),i=1,nobs)
End If

! Compute distances
ifail = 0
Call g03dbf(equal,mode,nvar,ng,gmn,ldgmn,gc,nobs,m,isx,x,ldx,d,ldd,wk, &

ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,nobs,ng,d,ldd,’Distances’,ifail)

End Program g03dbfe

10.2 Program Data

G03DBF Example Program Data
21 2 3 ’U’ : N,M,NG,WEIGHT
1.1314 2.4596 1
1.0986 0.2624 1
0.6419 -2.3026 1
1.3350 -3.2189 1
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1.4110 0.0953 1
0.6419 -0.9163 1
2.1163 0.0000 2
1.3350 -1.6094 2
1.3610 -0.5108 2
2.0541 0.1823 2
2.2083 -0.5108 2
2.7344 1.2809 2
2.0412 0.4700 2
1.8718 -0.9163 2
1.7405 -0.9163 2
2.6101 0.4700 2
2.3224 1.8563 3
2.2192 2.0669 3
2.2618 1.1314 3
3.9853 0.9163 3
2.7600 2.0281 3 : End of X,ING (G03EAF)
1 1 : ISX
’S’ ’U’ : MODE,EQUAL
6 : NOBS

1.6292 -0.9163
2.5572 1.6094
2.5649 -0.2231
0.9555 -2.3026
3.4012 -2.3026
3.0204 -0.2231 : End of X

10.3 Program Results

G03DBF Example Program Results

Distances
1 2 3

1 3.3393 0.7521 50.9283
2 20.7771 5.6559 0.0597
3 21.3631 4.8411 19.4978
4 0.7184 6.2803 124.7323
5 55.0003 88.8604 71.7852
6 36.1703 15.7849 15.7489
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NAG Library Routine Document

G03DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03DCF allocates observations to groups according to selected rules. It is intended for use after
G03DAF.

2 Specification

SUBROUTINE G03DCF (TYP, EQUAL, PRIORS, NVAR, NG, NIG, GMN, LDGMN, GC,
DET, NOBS, M, ISX, X, LDX, PRIOR, P, LDP, IAG, ATIQ,
ATI, WK, IFAIL)

&
&

INTEGER NVAR, NG, NIG(NG), LDGMN, NOBS, M, ISX(M), LDX, LDP,
IAG(NOBS), IFAIL

&

REAL (KIND=nag_wp) GMN(LDGMN,NVAR), GC((NG+1)*NVAR*(NVAR+1)/2),
DET(NG), X(LDX,M), PRIOR(NG), P(LDP,NG),
ATI(LDP,*), WK(2*NVAR)

&
&

LOGICAL ATIQ
CHARACTER(1) TYP, EQUAL, PRIORS

3 Description

Discriminant analysis is concerned with the allocation of observations to groups using information from
other observations whose group membership is known, Xt; these are called the training set. Consider p
variables observed on ng populations or groups. Let �xj be the sample mean and Sj the within-group
variance-covariance matrix for the jth group; these are calculated from a training set of n observations
with nj observations in the jth group, and let xk be the kth observation from the set of observations to
be allocated to the ng groups. The observation can be allocated to a group according to a selected rule.
The allocation rule or discriminant function will be based on the distance of the observation from an
estimate of the location of the groups, usually the group means. A measure of the distance of the
observation from the jth group mean is given by the Mahalanobis distance, Dkj:

D2
kj ¼ xk � �xj

� �T
S�1j xk � �xj

� �
: ð1Þ

If the pooled estimate of the variance-covariance matrix S is used rather than the within-group
variance-covariance matrices, then the distance is:

D2
kj ¼ xk � �xj

� �T
S�1 xk � �xj

� �
: ð2Þ

Instead of using the variance-covariance matrices S and Sj, G03DCF uses the upper triangular matrices
R and Rj supplied by G03DAF such that S ¼ RTR and Sj ¼ RT

j Rj. D2
kj can then be calculated as zTz

where RT
jz ¼ xk � xj

� �
or RTz ¼ xk � xð Þ as appropriate.

In addition to the distances, a set of prior probabilities of group membership, 	j, for j ¼ 1; 2; . . . ; ng,
may be used, with

P
	j ¼ 1. The prior probabilities reflect your view as to the likelihood of the

observations coming from the different groups. Two common cases for prior probabilities are
	1 ¼ 	2 ¼ � � � ¼ 	ng , that is, equal prior probabilities, and 	j ¼ nj=n, for j ¼ 1; 2; . . . ; ng, that is, prior
probabilities proportional to the number of observations in the groups in the training set.

G03DCF uses one of four allocation rules. In all four rules the p variables are assumed to follow a
multivariate Normal distribution with mean �j and variance-covariance matrix �j if the observation
comes from the jth group. The different rules depend on whether or not the within-group variance-
covariance matrices are assumed equal, i.e., �1 ¼ �2 ¼ � � � ¼ �ng , and whether a predictive or
estimative approach is used. If p xk j �j; �j

� �
is the probability of observing the observation xk from
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group j, then the posterior probability of belonging to group j is:

p j j xk; �j; �j

� �
/ p xk j �j;�j

� �
	j: ð3Þ

In the estimative approach, the arguments �j and �j in (3) are replaced by their estimates calculated
from Xt. In the predictive approach, a non-informative prior distribution is used for the arguments and
a posterior distribution for the arguments, p �j; �j j Xt

� �
, is found. A predictive distribution is then

obtained by integrating p j j xk; �j;�j

� �
p �j; �j j X
� �

over the argument space. This predictive
distribution then replaces p xk j �j; �j

� �
in (3). See Aitchison and Dunsmore (1975), Aitchison et al.

(1977) and Moran and Murphy (1979) for further details.

The observation is allocated to the group with the highest posterior probability. Denoting the posterior
probabilities, p j j xk; �j;�j

� �
, by qj, the four allocation rules are:

(i) Estimative with equal variance-covariance matrices – Linear Discrimination

log qj / �1
2D

2
kj þ log	j

(ii) Estimative with unequal variance-covariance matrices – Quadratic Discrimination

log qj / �1
2D

2
kj þ log	j � 1

2log Sj
		 		

(iii) Predictive with equal variance-covariance matrices

q�1j / nj þ 1
� �

=nj
� �p=2

1þ nj= n� ng
� �

nj þ 1
� �� �� �

D2
kj

n o nþ1�ngð Þ=2

(iv) Predictive with unequal variance-covariance matrices

q�1j / C n2j � 1
� �

=nj

� �
Sj
		 		n op=2

1þ nj= n2j � 1
� �� �

D2
kj

n onj=2
;

where

C ¼
 1

2 nj � p
� �� �
 1

2nj
� � :

In the above the appropriate value of D2
kj from (1) or (2) is used. The values of the qj are standardized

so that, Xng
j¼1

qj ¼ 1:

Moran and Murphy (1979) show the similarity between the predictive methods and methods based upon
likelihood ratio tests.

In addition to allocating the observation to a group, G03DCF computes an atypicality index, Ij xkð Þ. The
predictive atypicality index is returned, irrespective of the value of the parameter TYP. This represents
the probability of obtaining an observation more typical of group j than the observed xk (see Aitchison
and Dunsmore (1975) and Aitchison et al. (1977)). The atypicality index is computed for unequal
within-group variance-covariance matrices as:

Ij xkð Þ ¼ P B � z : 12p; 12 nj � p
� �� �

where P B � � : a; bð Þ is the lower tail probability from a beta distribution and

z ¼ D2
kj= D2

kj þ n2j � 1
� �

=nj

� �
;

and for equal within-group variance-covariance matrices as:

Ij xkð Þ ¼ P B � z : 12p; 12 n� ng � pþ 1
� �� �

;

with

z ¼ D2
kj= D2

kj þ n� ng
� �

nj þ 1
� �

=nj

� �
:
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If Ij xkð Þ is close to 1 for all groups it indicates that the observation may come from a grouping not
represented in the training set. Moran and Murphy (1979) provide a frequentist interpretation of Ij xkð Þ.

4 References

Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge

Aitchison J, Habbema J D F and Kay J W (1977) A critical comparison of two methods of statistical
discrimination Appl. Statist. 26 15–25

Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

Moran M A and Murphy B J (1979) A closer look at two alternative methods of statistical
discrimination Appl. Statist. 28 223–232

Morrison D F (1967) Multivariate Statistical Methods McGraw–Hill

5 Arguments

1: TYP – CHARACTER(1) Input

On entry: whether the estimative or predictive approach is used.

TYP ¼ E
The estimative approach is used.

TYP ¼ P
The predictive approach is used.

Constraint: TYP ¼ E or P .

2: EQUAL – CHARACTER(1) Input

On entry: indicates whether or not the within-group variance-covariance matrices are assumed to
be equal and the pooled variance-covariance matrix used.

EQUAL ¼ E
The within-group variance-covariance matrices are assumed equal and the matrix R stored
in the first p pþ 1ð Þ=2 elements of GC is used.

EQUAL ¼ U
The within-group variance-covariance matrices are assumed to be unequal and the matrices
Ri, for i ¼ 1; 2; . . . ; ng, stored in the remainder of GC are used.

Constraint: EQUAL ¼ E or U .

3: PRIORS – CHARACTER(1) Input

On entry: indicates the form of the prior probabilities to be used.

PRIORS ¼ E
Equal prior probabilities are used.

PRIORS ¼ P
Prior probabilities proportional to the group sizes in the training set, nj, are used.

PRIORS ¼ I
The prior probabilities are input in PRIOR.

Constraint: PRIORS ¼ E , I or P .

4: NVAR – INTEGER Input

On entry: p, the number of variables in the variance-covariance matrices.

Constraint: NVAR � 1.
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5: NG – INTEGER Input

On entry: the number of groups, ng.

Constraint: NG � 2.

6: NIGðNGÞ – INTEGER array Input

On entry: the number of observations in each group in the training set, nj.

Constraints:

if EQUAL ¼ E , NIGðjÞ > 0 and
Xng
j¼1

NIGðjÞ > NGþ NVAR, for j ¼ 1; 2; . . . ; ng;

if EQUAL ¼ U , NIGðjÞ > NVAR, for j ¼ 1; 2; . . . ; ng.

7: GMNðLDGMN;NVARÞ – REAL (KIND=nag_wp) array Input

On entry: the jth row of GMN contains the means of the p variables for the jth group, for
j ¼ 1; 2; . . . ; nj. These are returned by G03DAF.

8: LDGMN – INTEGER Input

On entry: the first dimension of the array GMN as declared in the (sub)program from which
G03DCF is called.

Constraint: LDGMN � NG.

9: GCð NGþ 1ð Þ � NVAR � NVAR þ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the first p pþ 1ð Þ=2 elements of GC should contain the upper triangular matrix R and
the next ng blocks of p pþ 1ð Þ=2 elements should contain the upper triangular matrices Rj.

All matrices must be stored packed by column. These matrices are returned by G03DAF. If
EQUAL ¼ E only the first p pþ 1ð Þ=2 elements are referenced, if EQUAL ¼ U only the
elements p pþ 1ð Þ=2þ 1 to ng þ 1

� �
p pþ 1ð Þ=2 are referenced.

Constraints:

if EQUAL ¼ E , the diagonal elements of R must be 6¼ 0:0;
if EQUAL ¼ U , the diagonal elements of the Rj must be 6¼ 0:0, for j ¼ 1; 2; . . . ; ng.

10: DETðNGÞ – REAL (KIND=nag_wp) array Input

On entry: if EQUAL ¼ U . the logarithms of the determinants of the within-group variance-
covariance matrices as returned by G03DAF. Otherwise DET is not referenced.

11: NOBS – INTEGER Input

On entry: the number of observations in X which are to be allocated.

Constraint: NOBS � 1.

12: M – INTEGER Input

On entry: the number of variables in the data array X.

Constraint: M � NVAR.

13: ISXðMÞ – INTEGER array Input

On entry: ISXðlÞ indicates if the lth variable in X is to be included in the distance calculations.

If ISXðlÞ > 0, the lth variable is included, for l ¼ 1; 2; . . . ;M; otherwise the lth variable is not
referenced.

Constraint: ISXðlÞ > 0 for NVAR values of l.
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14: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xðk; lÞ must contain the kth observation for the lth variable, for k ¼ 1; 2; . . . ;NOBS
and l ¼ 1; 2; . . . ;M.

15: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03DCF
is called.

Constraint: LDX � NOBS.

16: PRIORðNGÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if PRIORS ¼ I , the prior probabilities for the ng groups.

Constraint: if PRIORS ¼ I , PRIORðjÞ > 0:0 and 1�
Xng
j¼1

PRIORðjÞ
					

					 � 10�machine precision,

for j ¼ 1; 2; . . . ; ng.

On exit: if PRIORS ¼ P , the computed prior probabilities in proportion to group sizes for the ng
groups.

If PRIORS ¼ I , the input prior probabilities will be unchanged.

If PRIORS ¼ E , PRIOR is not set.

17: PðLDP;NGÞ – REAL (KIND=nag_wp) array Output

On exit: Pðk; jÞ contains the posterior probability pkj for allocating the kth observation to the jth
group, for k ¼ 1; 2; . . . ;NOBS and j ¼ 1; 2; . . . ; ng.

18: LDP – INTEGER Input

On entry: the first dimension of the arrays P and ATI as declared in the (sub)program from which
G03DCF is called.

Constraint: LDP � NOBS.

19: IAGðNOBSÞ – INTEGER array Output

On exit: the groups to which the observations have been allocated.

20: ATIQ – LOGICAL Input

On entry: ATIQ must be .TRUE. if atypicality indices are required. If ATIQ is .FALSE. the array
ATI is not set.

21: ATIðLDP; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array ATI must be at least NG if ATIQ ¼ :TRUE:, and at least
1 otherwise.

On exit: if ATIQ is .TRUE., ATIðk; jÞ will contain the predictive atypicality index for the kth
observation with respect to the jth group, for k ¼ 1; 2; . . . ;NOBS and j ¼ 1; 2; . . . ; ng.

If ATIQ is .FALSE., ATI is not set.

22: WKð2� NVARÞ – REAL (KIND=nag_wp) array Workspace

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NVAR < 1,
or NG < 2,
or NOBS < 1,
or M < NVAR,
or LDGMN < NG,
or LDX < NOBS,
or LDP < NOBS,
or TYP 6¼ E or ‘P’,
or EQUAL 6¼ E or ‘U’,
or PRIORS 6¼ E , ‘I’ or ‘P’.

IFAIL ¼ 2

On entry, the number of variables indicated by ISX is not equal to NVAR,
or EQUAL ¼ E and NIGðjÞ � 0, for some j,

or EQUAL ¼ E and
Xng
j¼1

NIGðjÞ � NGþ NVAR,

or EQUAL ¼ U and NIGðjÞ � NVAR for some j.

IFAIL ¼ 3

On entry, PRIORS ¼ I and PRIORðjÞ � 0:0 for some j,

or PRIORS ¼ I and
Xng
j¼1

PRIORðjÞ is not within 10�machine precision of 1.

IFAIL ¼ 4

On entry, EQUAL ¼ E and a diagonal element of R is zero,
or EQUAL ¼ U and a diagonal element of Rj for some j is zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the returned posterior probabilities will depend on the accuracy of the input R or Rj

matrices. The atypicality index should be accurate to four significant places.

8 Parallelism and Performance

G03DCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The distances D2
kj can be computed using G03DBF if other forms of discrimination are required.

10 Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three ‘types’
of Cushing's syndrome. The variables are the logarithms of the urinary excretion rates (mg/24hr) of two
steroid metabolites. Observations for a total of 21 patients are input and the group means and R
matrices are computed by G03DAF. A further six observations of unknown type are input and
allocations made using the predictive approach and under the assumption that the within-group
covariance matrices are not equal. The posterior probabilities of group membership, qj, and the
atypicality index are printed along with the allocated group. The atypicality index shows that
observations 5 and 6 do not seem to be typical of the three types present in the initial 21 observations.

10.1 Program Text

Program g03dcfe

! G03DCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03daf, g03dcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df, sig, stat
Integer :: i, ifail, ldgmn, ldox, ldp, ldx, &

lgc, lwk, lwt, m, n, ng, nobs, nvar, &
tdati

Logical :: atiq
Character (1) :: equal, priors, typ, weight
Character (80) :: fmt

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ati(:,:), det(:), gc(:), gmn(:,:), &

ox(:,:), p(:,:), prior(:), wk(:), &
wt(:), x(:,:)

Integer, Allocatable :: iag(:), ing(:), isx(:), iwk(:), &
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nig(:)
! .. Intrinsic Procedures ..

Intrinsic :: count, max
! .. Executable Statements ..

Write (nout,*) ’G03DCF Example Program Results’
Write (nout,*)

! Skip headings in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, ng, weight

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldox = n
Allocate (ox(ldox,m),ing(n),wt(lwt),isx(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(ox(i,1:m),ing(i),wt(i),i=1,n)
Else

Read (nin,*)(ox(i,1:m),ing(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate NVAR
nvar = count(isx(1:m)==1)

lwk = max(n*(nvar+1),2*nvar)
ldgmn = ng
lgc = (ng+1)*nvar*(nvar+1)/2
Allocate (nig(ng),gmn(ldgmn,nvar),det(ng),gc(lgc),wk(lwk),iwk(ng))

! Compute covariance matrix
ifail = 0
Call g03daf(weight,n,m,ox,ldox,isx,nvar,ing,ng,wt,nig,gmn,ldgmn,det,gc, &

stat,df,sig,wk,iwk,ifail)

! Read in parameters controlling grouping
Read (nin,*) typ, equal, priors, nobs, atiq

If (atiq) Then
tdati = ng

Else
tdati = 1

End If
ldx = nobs
ldp = nobs
Allocate (x(ldx,m),prior(ng),p(ldp,ng),iag(nobs),ati(ldp,tdati))

! Read in data to group
Read (nin,*)(x(i,1:m),i=1,nobs)

! Read in priors
If (priors==’I’ .Or. priors==’i’) Then

Read (nin,*) prior(1:ng)
End If

! Allocate observations to groups
ifail = 0
Call g03dcf(typ,equal,priors,nvar,ng,nig,gmn,ldgmn,gc,det,nobs,m,isx,x, &

ldx,prior,p,ldp,iag,atiq,ati,wk,ifail)

! Display results
If (atiq) Then
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Write (fmt,99999) ’(2(I6,5X,’, ng, ’F6.3))’
Write (nout,*) ’ Obs Posterior Allocated’, &

’ Atypicality’
Write (nout,*) ’ probabilities to group index’
Write (nout,*)
Write (nout,fmt)(i,p(i,1:ng),iag(i),ati(i,1:ng),i=1,nobs)

Else
Write (fmt,99999) ’(I6,5X,’, ng, ’F6.3,I6))’
Write (nout,*) ’ Obs Posterior Allocated’
Write (nout,*) ’ probabilities to group ’
Write (nout,*)
Write (nout,fmt)(i,p(i,1:ng),iag(i),i=1,nobs)

End If

99999 Format (A,I0,A)
End Program g03dcfe

10.2 Program Data

G03DCF Example Program Data
21 2 3 ’U’ : N,M,NG,WEIGHT
1.1314 2.4596 1
1.0986 0.2624 1
0.6419 -2.3026 1
1.3350 -3.2189 1
1.4110 0.0953 1
0.6419 -0.9163 1
2.1163 0.0000 2
1.3350 -1.6094 2
1.3610 -0.5108 2
2.0541 0.1823 2
2.2083 -0.5108 2
2.7344 1.2809 2
2.0412 0.4700 2
1.8718 -0.9163 2
1.7405 -0.9163 2
2.6101 0.4700 2
2.3224 1.8563 3
2.2192 2.0669 3
2.2618 1.1314 3
3.9853 0.9163 3
2.7600 2.0281 3 : End of X,ING (G03DAF)
1 1 : ISX
’P’ ’U’ ’E’ 6 T : TYP,EQUAL,PRIORS,NOBS,ATIQ

1.6292 -0.9163
2.5572 1.6094
2.5649 -0.2231
0.9555 -2.3026
3.4012 -2.3026
3.0204 -0.2231 : End of X

10.3 Program Results

G03DCF Example Program Results

Obs Posterior Allocated Atypicality
probabilities to group index

1 0.094 0.905 0.002 2 0.596 0.254 0.975
2 0.005 0.168 0.827 3 0.952 0.836 0.018
3 0.019 0.920 0.062 2 0.954 0.797 0.912
4 0.697 0.303 0.000 1 0.207 0.860 0.993
5 0.317 0.013 0.670 3 0.991 1.000 0.984
6 0.032 0.366 0.601 3 0.981 0.978 0.887
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NAG Library Routine Document

G03EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03EAF computes a distance (dissimilarity) matrix.

2 Specification

SUBROUTINE G03EAF (UPDATE, DIST, SCAL, N, M, X, LDX, ISX, S, D, IFAIL)

INTEGER N, M, LDX, ISX(M), IFAIL
REAL (KIND=nag_wp) X(LDX,M), S(M), D(N*(N-1)/2)
CHARACTER(1) UPDATE, DIST, SCAL

3 Description

Given n objects, a distance or dissimilarity matrix is a symmetric matrix with zero diagonal elements
such that the ijth element represents how far apart or how dissimilar the ith and jth objects are.

Let X be an n by p data matrix of observations of p variables on n objects, then the distance between
object j and object k, djk, can be defined as:

djk ¼
Xp
i¼1
D xji=si; xki=si
� �( )�

;

where xji and xki are the jith and kith elements of X, si is a standardization for the ith variable and
D u; vð Þ is a suitable function. Three functions are provided in G03EAF.

(a) Euclidean distance: D u; vð Þ ¼ u� vð Þ2 and � ¼ 1
2 .

(b) Euclidean squared distance: D u; vð Þ ¼ u� vð Þ2 and � ¼ 1.

(c) Absolute distance (city block metric): D u; vð Þ ¼ u� vj j and � ¼ 1.

Three standardizations are available.

(a) Standard deviation: si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

xji � �x
� �2

= n� 1ð Þ
s

(b) Range: si ¼ max x1i; x2i; . . . ; xnið Þ �min x1i; x2i; . . . ; xnið Þ
(c) User-supplied values of si.

In addition to the above distances there are a large number of other dissimilarity measures, particularly
for dichotomous variables (see Krzanowski (1990) and Everitt (1974)). For the dichotomous case these
measures are simple to compute and can, if suitable scaling is used, be combined with the distances
computed by G03EAF using the updating option.

Dissimilarity measures for variables can be based on the correlation coefficient for continuous variables
and contingency table statistics for dichotomous data, see chapters G02 and G11 respectively.

G03EAF returns the strictly lower triangle of the distance matrix.

4 References

Everitt B S (1974) Cluster Analysis Heinemann

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press
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5 Arguments

1: UPDATE – CHARACTER(1) Input

On entry: indicates whether or not an existing matrix is to be updated.

UPDATE ¼ U
The matrix D is updated and distances are added to D.

UPDATE ¼ I
The matrix D is initialized to zero before the distances are added to D.

Constraint: UPDATE ¼ U or I .

2: DIST – CHARACTER(1) Input

On entry: indicates which type of distances are computed.

DIST ¼ A
Absolute distances.

DIST ¼ E
Euclidean distances.

DIST ¼ S
Euclidean squared distances.

Constraint: DIST ¼ A , E or S .

3: SCAL – CHARACTER(1) Input

On entry: indicates the standardization of the variables to be used.

SCAL ¼ S
Standard deviation.

SCAL ¼ R
Range.

SCAL ¼ G
Standardizations given in array S.

SCAL ¼ U
Unscaled.

Constraint: SCAL ¼ S , R , G or U .

4: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

5: M – INTEGER Input

On entry: the total number of variables in array X.

Constraint: M > 0.

6: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the value of the jth variable for the ith object, for i ¼ 1; 2; . . . ; n
and j ¼ 1; 2; . . . ;M.
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7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03EAF
is called.

Constraint: LDX � N.

8: ISXðMÞ – INTEGER array Input

On entry: ISXðjÞ indicates whether or not the jth variable in X is to be included in the distance
computations.

If ISXðjÞ > 0 the jth variable is included, for j ¼ 1; 2; . . . ;M; otherwise it is not referenced.

Constraint: ISXðjÞ > 0 for at least one j, for j ¼ 1; 2; . . . ;M.

9: SðMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if SCAL ¼ G and ISXðjÞ > 0 then SðjÞ must contain the scaling for variable j, for
j ¼ 1; 2; . . . ;M.

Constraint: if SCAL ¼ G and ISXðjÞ > 0, SðjÞ > 0:0, for j ¼ 1; 2; . . . ;M.

On exit: if SCAL ¼ S and ISXðjÞ > 0 then SðjÞ contains the standard deviation of the variable
in the jth column of X.

If SCAL ¼ R and ISXðjÞ > 0, SðjÞ contains the range of the variable in the jth column of X.

If SCAL ¼ U and ISXðjÞ > 0, SðjÞ ¼ 1:0.

If SCAL ¼ G , S is unchanged.

10: DðN� N� 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if UPDATE ¼ U , D must contain the strictly lower triangle of the distance matrix D
to be updated. D must be stored packed by rows, i.e., Dð i� 1ð Þ i� 2ð Þ=2þ jÞ, i > j must contain
dij.

If UPDATE ¼ I , D need not be set.

Constraint: if UPDATE ¼ U , DðjÞ � 0:0, for j ¼ 1; 2; . . . ; n n� 1ð Þ=2.
On exit: the strictly lower triangle of the distance matrix D stored packed by rows, i.e., dij is
contained in Dð i� 1ð Þ i� 2ð Þ=2þ jÞ, i > j.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or LDX < N,
or M � 0,
or UPDATE 6¼ I or U ,
or DIST 6¼ A , E or S ,
or SCAL 6¼ S , R , G or U .

IFAIL ¼ 2

On entry, ISXðjÞ � 0, for j ¼ 1; 2; . . . ;M,
or UPDATE ¼ U and DðjÞ < 0:0, for some j ¼ 1; 2; . . . ; n n� 1ð Þ=2,
or SCAL ¼ S or R and Xði; jÞ ¼ Xðiþ 1; jÞ for i ¼ 1; 2; . . . ; n� 1, for some j with

ISXðiÞ > 0.
or SðjÞ � 0:0 for some j when SCAL ¼ G and ISXðjÞ > 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G03EAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G03ECF can be used to perform cluster analysis on the computed distance matrix.

10 Example

A data matrix of five observations and three variables is read in and a distance matrix is calculated from
variables 2 and 3 using squared Euclidean distance with no scaling. This matrix is then printed.

G03EAF NAG Library Manual

G03EAF.4 Mark 26



10.1 Program Text

Program g03eafe

! G03EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03eaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ld, ldx, lj, m, n, uj
Character (1) :: dist, scal, update
Character (80) :: fmt

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), s(:), x(:,:)
Integer, Allocatable :: isx(:)

! .. Executable Statements ..
Write (nout,*) ’G03EAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

! Read in information on the type of distance matrix to use
Read (nin,*) update, dist, scal

ldx = n
ld = n*(n-1)/2
Allocate (x(ldx,m),isx(m),s(m),d(ld))

! Read in the data used to construct distance matrix
Read (nin,*)(x(i,1:m),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in scaling
If (scal==’G’ .Or. scal==’g’) Then

Read (nin,*) s(1:m)
End If

! Compute the distance matrix
ifail = 0
Call g03eaf(update,dist,scal,n,m,x,ldx,isx,s,d,ifail)

! Display results
Write (nout,*) ’ Distance Matrix’
Write (nout,*)
Write (fmt,99999) ’(3X,’, n - 1, ’I8)’
Write (nout,fmt)(i,i=1,n-1)
Write (nout,*)
Write (fmt,99999) ’(1X,I2,2X,’, n - 1, ’(3X,F5.2))’
Do i = 2, n

lj = (i-1)*(i-2)/2 + 1
uj = i*(i-1)/2
Write (nout,fmt) i, d(lj:uj)

End Do

99999 Format (A,I0,A)
End Program g03eafe
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10.2 Program Data

G03EAF Example Program Data
5 3 : N,M
’I’ ’S’ ’U’ : UPDATE,DIST,SCAL
1.0 1.0 1.0
2.0 1.0 2.0
3.0 6.0 3.0
4.0 8.0 2.0
5.0 8.0 0.0 : End of X
0 1 1 : ISX

10.3 Program Results

G03EAF Example Program Results

Distance Matrix

1 2 3 4

2 1.00
3 29.00 26.00
4 50.00 49.00 5.00
5 50.00 53.00 13.00 4.00
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NAG Library Routine Document

G03ECF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03ECF performs hierarchical cluster analysis.

2 Specification

SUBROUTINE G03ECF (METHOD, N, D, ILC, IUC, CD, IORD, DORD, IWK, IFAIL)

INTEGER METHOD, N, ILC(N-1), IUC(N-1), IORD(N), IWK(2*N),
IFAIL

&

REAL (KIND=nag_wp) D(N*(N-1)/2), CD(N-1), DORD(N)

3 Description

Given a distance or dissimilarity matrix for n objects (see G03EAF), cluster analysis aims to group the
n objects into a number of more or less homogeneous groups or clusters. With agglomerative clustering
methods, a hierarchical tree is produced by starting with n clusters, each with a single object and then
at each of n� 1 stages, merging two clusters to form a larger cluster, until all objects are in a single
cluster. This process may be represented by a dendrogram (see G03EHF).

At each stage, the clusters that are nearest are merged, methods differ as to how the distances between
the new cluster and other clusters are computed. For three clusters i, j and k let ni, nj and nk be the
number of objects in each cluster and let dij, dik and djk be the distances between the clusters. Let
clusters j and k be merged to give cluster jk, then the distance from cluster i to cluster jk, di:jk can be
computed in the following ways.

1. Single link or nearest neighbour : di:jk ¼ min dij; dik
� �

.

2. Complete link or furthest neighbour : di:jk ¼ max dij; dik
� �

.

3. Group average : di:jk ¼
nj

nj þ nk
dij þ

nk
nj þ nk

dik .

4. Centroid : di:jk ¼
nj

nj þ nk
dij þ

nk
nj þ nk

dik �
njnk

nj þ nk
� �2djk .

5. Median : di:jk ¼ 1
2dij þ 1

2dik � 1
4djk .

6. Minimum variance : di:jk ¼ ni þ nj
� �

dij þ ni þ nkð Þdik � nidjk
� 

= ni þ nj þ nk
� �

.

For further details see Everitt (1974) or Krzanowski (1990).

If the clusters are numbered 1; 2; . . . ; n then, for convenience, if clusters j and k, j < k, merge then the
new cluster will be referred to as cluster j. Information on the clustering history is given by the values
of j, k and djk for each of the n� 1 clustering steps. In order to produce a dendrogram, the ordering of
the objects such that the clusters that merge are adjacent is required. This ordering is computed so that
the first element is 1. The associated distances with this ordering are also computed.

4 References

Everitt B S (1974) Cluster Analysis Heinemann

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press
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5 Arguments

1: METHOD – INTEGER Input

On entry: indicates which clustering method is used.

METHOD ¼ 1
Single link.

METHOD ¼ 2
Complete link.

METHOD ¼ 3
Group average.

METHOD ¼ 4
Centroid.

METHOD ¼ 5
Median.

METHOD ¼ 6
Minimum variance.

Constraint: METHOD ¼ 1, 2, 3, 4, 5 or 6.

2: N – INTEGER Input

On entry: n, the number of objects.

Constraint: N � 2.

3: DðN� N� 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the strictly lower triangle of the distance matrix. D must be stored packed by rows, i.e.,
Dð i� 1ð Þ i� 2ð Þ=2þ jÞ, i > j must contain dij.

On exit: is overwritten.

Constraint: DðiÞ � 0:0, for i ¼ 1; 2; . . . ; n n� 1ð Þ=2.

4: ILCðN� 1Þ – INTEGER array Output

On exit: ILCðlÞ contains the number, j, of the cluster merged with cluster k (see IUC), j < k, at
step l, for l ¼ 1; 2; . . . ; n� 1.

5: IUCðN� 1Þ – INTEGER array Output

On exit: IUCðlÞ contains the number, k, of the cluster merged with cluster j, j < k, at step l, for
l ¼ 1; 2; . . . ; n� 1.

6: CDðN� 1Þ – REAL (KIND=nag_wp) array Output

On exit: CDðlÞ contains the distance djk, between clusters j and k, j < k, merged at step l, for
l ¼ 1; 2; . . . ; n� 1.

7: IORDðNÞ – INTEGER array Output

On exit: the objects in dendrogram order.

8: DORDðNÞ – REAL (KIND=nag_wp) array Output

On exit: the clustering distances corresponding to the order in IORD. DORDðlÞ contains the
distance at which cluster IORDðlÞ and IORDðl þ 1Þ merge, for l ¼ 1; 2; . . . ; n� 1. DORDðnÞ
contains the maximum distance.
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9: IWKð2� NÞ – INTEGER array Workspace

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ 1, 2, 3, 4, 5 or 6,
or N < 2.

IFAIL ¼ 2

On entry, DðiÞ < 0:0 for some i ¼ 1; 2; . . . ; n n� 1ð Þ=2.

IFAIL ¼ 3

A true dendrogram cannot be formed because the distances at which clusters have merged are not
increasing for all steps, i.e., CDðlÞ < CDðl� 1Þ for some l ¼ 2; 3; . . . ; n� 1. This can occur for
the median and centroid methods.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For METHOD � 3 slight rounding errors may occur in the calculations of the updated distances. These
would not normally significantly affect the results, however there may be an effect if distances are
(almost) equal.

If at a stage, two distances dij and dkl, (i < k) or (i ¼ k), and j < l, are equal then clusters k and l will
be merged rather than clusters i and j. For single link clustering this choice will only affect the order of
the objects in the dendrogram. However, for other methods the choice of kl rather than ij may affect the
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shape of the dendrogram. If either of the distances dij and dkl is affected by rounding errors then their
equality, and hence the dendrogram, may be affected.

8 Parallelism and Performance

G03ECF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The dendrogram may be formed using G03EHF. Groupings based on the clusters formed at a given
distance can be computed using G03EJF.

10 Example

Data consisting of three variables on five objects are read in. Euclidean squared distances based on two
variables are computed using G03EAF, the objects are clustered using G03ECF and the dendrogram
computed using G03EHF. The dendrogram is then printed.

10.1 Program Text

Program g03ecfe

! G03ECF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03eaf, g03ecf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6, rnlen = 3

! .. Local Scalars ..
Integer :: i, ifail, ld, ldx, liwk, m, method, &

n, n1
Character (1) :: dist, scal, update

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cd(:), d(:), dord(:), s(:), x(:,:)
Integer, Allocatable :: ilc(:), iord(:), isx(:), iuc(:), &

iwk(:)
Character (rnlen), Allocatable :: row_name(:)

! .. Executable Statements ..
Write (nout,*) ’G03ECF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

! Read in information on the type of distance matrix to use
Read (nin,*) update, dist, scal

ldx = n
ld = n*(n-1)/2
n1 = n - 1
liwk = 2*n
Allocate (x(ldx,m),isx(m),s(m),d(ld),ilc(n1),iuc(n1),cd(n1),iord(n), &

dord(n),iwk(liwk),row_name(n))
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! Read in the data used to construct distance matrix
Read (nin,*)(x(i,1:m),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in scaling
If (scal==’G’ .Or. scal==’g’) Then

Read (nin,*) s(1:m)
End If

! Compute the distance matrix
ifail = 0
Call g03eaf(update,dist,scal,n,m,x,ldx,isx,s,d,ifail)

! Read in information on the clustering method to use
Read (nin,*) method

! Read in first RNLEN characters of row names. Used to make example
! output easier to read

Read (nin,*) row_name(1:n)

! Perform clustering
ifail = 0
Call g03ecf(method,n,d,ilc,iuc,cd,iord,dord,iwk,ifail)

! Display results
Write (nout,*) ’ Distance Clusters Joined’
Write (nout,*)
Write (nout,99999)(cd(i),row_name(ilc(i)),row_name(iuc(i)),i=1,n1)

99999 Format (F10.3,5X,2A)
End Program g03ecfe

10.2 Program Data

G03ECF Example Program Data
5 3 : N,M (G03EAF)
’I’ ’S’ ’U’ : UPDATE,DIST,SCAL (G03EAF)
1 5.0 2.0
2 1.0 1.0
3 4.0 3.0
4 1.0 2.0
5 5.0 0.0 : End of X (G03EAF)
0 1 1 : ISX (G03EAF)

5 : METHOD (G03ECF)
’A’ ’B’ ’C’ ’D’ ’E’ : Row names (ROW_NAME)

10.3 Program Results

G03ECF Example Program Results

Distance Clusters Joined

1.000 B D
2.000 A C
6.500 A E

14.125 A B
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NAG Library Routine Document

G03EFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03EFF performs K-means cluster analysis.

2 Specification

SUBROUTINE G03EFF (WEIGHT, N, M, X, LDX, ISX, NVAR, K, CMEANS, LDC, WT,
INC, NIC, CSS, CSW, MAXIT, IWK, WK, IFAIL)

&

INTEGER N, M, LDX, ISX(M), NVAR, K, LDC, INC(N), NIC(K),
MAXIT, IWK(N+3*K), IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), CMEANS(LDC,NVAR), WT(*), CSS(K), CSW(K),
WK(N+2*K)

&

CHARACTER(1) WEIGHT

3 Description

Given n objects with p variables measured on each object, xij , for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; p,
G03EFF allocates each object to one of K groups or clusters to minimize the within-cluster sum of
squares: XK

k¼1

X
i2Sk

Xp
j¼1

xij � �xkj
� �2

;

where Sk is the set of objects in the kth cluster and �xkj is the mean for the variable j over cluster k.
This is often known as K-means clustering.

In addition to the data matrix, a K by p matrix giving the initial cluster centres for the K clusters is
required. The objects are then initially allocated to the cluster with the nearest cluster mean. Given the
initial allocation, the procedure is to iteratively search for the K-partition with locally optimal within-
cluster sum of squares by moving points from one cluster to another.

Optionally, weights for each object, wi, can be used so that the clustering is based on within-cluster
weighted sums of squares: XK

k¼1

X
i2Sk

Xp
j¼1

wi xij � ~xkj
� �2

;

where ~xkj is the weighted mean for variable j over cluster k.

The routine is based on the algorithm of Hartigan and Wong (1979).

4 References

Everitt B S (1974) Cluster Analysis Heinemann

Hartigan J A and Wong M A (1979) Algorithm AS 136: A K-means clustering algorithm Appl. Statist.
28 100–108

Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press
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5 Arguments

1: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
No weights are used.

WEIGHT ¼ W
Weights are used and must be supplied in WT.

Constraint: WEIGHT ¼ U or W.

2: N – INTEGER Input

On entry: n, the number of objects.

Constraint: N > 1.

3: M – INTEGER Input

On entry: the total number of variables in array X.

Constraint: M � NVAR.

4: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the value of the jth variable for the ith object, for i ¼ 1; 2; . . . ; n
and j ¼ 1; 2; . . . ;M.

5: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03EFF
is called.

Constraint: LDX � N.

6: ISXðMÞ – INTEGER array Input

On entry: ISXðjÞ indicates whether or not the jth variable is to be included in the analysis. If
ISXðjÞ > 0, the variable contained in the jth column of X is included, for j ¼ 1; 2; . . . ;M.

Constraint: ISXðjÞ > 0 for NVAR values of j.

7: NVAR – INTEGER Input

On entry: p, the number of variables included in the sums of squares calculations.

Constraint: 1 � NVAR � M.

8: K – INTEGER Input

On entry: K, the number of clusters.

Constraint: K � 2.

9: CMEANSðLDC;NVARÞ – REAL (KIND=nag_wp) array Input/Output

On entry: CMEANSði; jÞ must contain the value of the jth variable for the ith initial cluster
centre, for i ¼ 1; 2; . . . ;K and j ¼ 1; 2; . . . ; p.

On exit: CMEANSði; jÞ contains the value of the jth variable for the ith computed cluster centre,
for i ¼ 1; 2; . . . ; K and j ¼ 1; 2; . . . ; p.
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10: LDC – INTEGER Input

On entry: the first dimension of the array CMEANS as declared in the (sub)program from which
G03EFF is called.

Constraint: LDC � K.

11: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W , the first n elements of WT must contain the weights to be used.

If WTðiÞ ¼ 0:0, the ith observation is not included in the analysis. The effective number of
observation is the sum of the weights.

If WEIGHT ¼ U , WT is not referenced and the effective number of observations is n.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0 and WTðiÞ > 0:0 for at least two values of i, for
i ¼ 1; 2; . . . ; n.

12: INCðNÞ – INTEGER array Output

On exit: INCðiÞ contains the cluster to which the ith object has been allocated, for i ¼ 1; 2; . . . ; n.

13: NICðKÞ – INTEGER array Output

On exit: NICðiÞ contains the number of objects in the ith cluster, for i ¼ 1; 2; . . . ;K.

14: CSSðKÞ – REAL (KIND=nag_wp) array Output

On exit: CSSðiÞ contains the within-cluster (weighted) sum of squares of the ith cluster, for
i ¼ 1; 2; . . . ;K.

15: CSWðKÞ – REAL (KIND=nag_wp) array Output

On exit: CSWðiÞ contains the within-cluster sum of weights of the ith cluster, for i ¼ 1; 2; . . . ;K.
If WEIGHT ¼ U , the sum of weights is the number of objects in the cluster.

16: MAXIT – INTEGER Input

On entry: the maximum number of iterations allowed in the analysis.

Suggested value: MAXIT ¼ 10.

Constraint: MAXIT > 0.

17: IWKðNþ 3� KÞ – INTEGER array Workspace

18: WKðNþ 2� KÞ – REAL (KIND=nag_wp) array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

G03 – Multivariate Methods G03EFF

Mark 26 G03EFF.3



6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, WEIGHT 6¼ W or U ,
or N < 2,
or NVAR < 1,
or M < NVAR,
or K < 2,
or LDX < N,
or LDC < K,
or MAXIT � 0.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and a value of WTðiÞ < 0:0 for some i,
or WEIGHT ¼ W and WTðiÞ ¼ 0:0 for all or all but one values of i.

IFAIL ¼ 3

On entry, the number of positive values in ISX does not equal NVAR.

IFAIL ¼ 4

On entry, at least one cluster is empty after the initial assignment. Try a different set of initial
cluster centres in CMEANS and also consider decreasing the value of K. The empty clusters may
be found by examining the values in NIC.

IFAIL ¼ 5

Convergence has not been achieved within the maximum number of iterations given by MAXIT.
Try increasing MAXIT and, if possible, use the returned values in CMEANS as the initial cluster
centres.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G03EFF produces clusters that are locally optimal; the within-cluster sum of squares may not be
decreased by transferring a point from one cluster to another, but different partitions may have the same
or smaller within-cluster sum of squares.
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8 Parallelism and Performance

G03EFF is not threaded in any implementation.

9 Further Comments

The time per iteration is approximately proportional to npK.

10 Example

The data consists of observations of five variables on twenty soils (see Hartigan and Wong (1979)). The
data is read in, the K-means clustering performed and the results printed.

10.1 Program Text

Program g03effe

! G03EFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03eff, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, k, ldc, ldx, lwt, m, &

maxit, n, nvar
Character (1) :: weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cmeans(:,:), css(:), csw(:), wk(:), &

wt(:), x(:,:)
Integer, Allocatable :: inc(:), isx(:), iwk(:), nic(:)

! .. Intrinsic Procedures ..
Intrinsic :: count

! .. Executable Statements ..
Write (nout,*) ’G03EFF Example Program Results’
Write (nout,*)

! Skip heading in the data file
Read (nin,*)

! Read in the problem size and control parameters
Read (nin,*) weight, n, m, k, maxit

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldx = n
Allocate (x(ldx,m),wt(n),isx(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i,1:m),wt(i),i=1,n)
Else

Read (nin,*)(x(i,1:m),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate NVAR
nvar = count(isx(1:m)==1)

G03 – Multivariate Methods G03EFF

Mark 26 G03EFF.5



ldc = k
Allocate (cmeans(ldc,nvar),inc(n),nic(k),css(k),csw(k),iwk(n+3*k), &

wk(n+2*k))

! Read in the initial cluster centres
Read (nin,*)(cmeans(i,1:nvar),i=1,k)

! Perform k means clustering
ifail = 0
Call g03eff(weight,n,m,x,ldx,isx,nvar,k,cmeans,ldc,wt,inc,nic,css,csw, &

maxit,iwk,wk,ifail)

! Display results
Write (nout,*) ’ The cluster each point belongs to’
Write (nout,99999) inc(1:n)
Write (nout,*)
Write (nout,*) ’ The number of points in each cluster’
Write (nout,99999) nic(1:k)
Write (nout,*)
Write (nout,*) ’ The within-cluster sum of weights of each cluster’
Write (nout,99998) csw(1:k)
Write (nout,*)
Write (nout,*) ’ The within-cluster sum of squares of each cluster’
Write (nout,99997) css(1:k)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,k,nvar,cmeans,ldc,’The final cluster centres’, &

ifail)

99999 Format (1X,10I6)
99998 Format (1X,5F9.2)
99997 Format (1X,5F13.4)

End Program g03effe

10.2 Program Data

G03EFF Example Program Data
’u’ 20 5 3 10 : WEIGHT,N,M,K,MAXIT
77.3 13.0 9.7 1.5 6.4
82.5 10.0 7.5 1.5 6.5
66.9 20.6 12.5 2.3 7.0
47.2 33.8 19.0 2.8 5.8
65.3 20.5 14.2 1.9 6.9
83.3 10.0 6.7 2.2 7.0
81.6 12.7 5.7 2.9 6.7
47.8 36.5 15.7 2.3 7.2
48.6 37.1 14.3 2.1 7.2
61.6 25.5 12.9 1.9 7.3
58.6 26.5 14.9 2.4 6.7
69.3 22.3 8.4 4.0 7.0
61.8 30.8 7.4 2.7 6.4
67.7 25.3 7.0 4.8 7.3
57.2 31.2 11.6 2.4 6.5
67.2 22.7 10.1 3.3 6.2
59.2 31.2 9.6 2.4 6.0
80.2 13.2 6.6 2.0 5.8
82.2 11.1 6.7 2.2 7.2
69.7 20.7 9.6 3.1 5.9 : End of X
1 1 1 1 1 : ISX
82.5 10.0 7.5 1.5 6.5
47.8 36.5 15.7 2.3 7.2
67.2 22.7 10.1 3.3 6.2 : End of CMEANS
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10.3 Program Results

G03EFF Example Program Results

The cluster each point belongs to
1 1 3 2 3 1 1 2 2 3
3 3 3 3 3 3 3 1 1 3

The number of points in each cluster
6 3 11

The within-cluster sum of weights of each cluster
6.00 3.00 11.00

The within-cluster sum of squares of each cluster
46.5717 20.3800 468.8964

The final cluster centres
1 2 3 4 5

1 81.1833 11.6667 7.1500 2.0500 6.6000
2 47.8667 35.8000 16.3333 2.4000 6.7333
3 64.0455 25.2091 10.7455 2.8364 6.6545
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NAG Library Routine Document

G03EHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03EHF produces a dendrogram from the results of G03ECF.

2 Specification

SUBROUTINE G03EHF (ORIENT, N, DORD, DMIN, DSTEP, NSYM, C, LENC, IFAIL)

INTEGER N, NSYM, LENC, IFAIL
REAL (KIND=nag_wp) DORD(N), DMIN, DSTEP
CHARACTER(*) C(LENC)
CHARACTER(1) ORIENT

3 Description

Hierarchical cluster analysis, as performed by G03ECF, can be represented by a tree that shows at
which distance the clusters merge. Such a tree is known as a dendrogram. See Everitt (1974) and
Krzanowski (1990) for examples of dendrograms. A simple example is,

D
i
s
t
a
n
c
e

Individuals

54321

Figure 1

The end points of the dendrogram represent the objects that have been clustered. They should be in a
suitable order as given by G03ECF. Object 1 is always the first object. In the example above the height
represents the distance at which the clusters merge.

The dendrogram is produced in a character array using the ordering and distances provided by G03ECF.
Suitable characters are used to represent parts of the tree.

There are four possible orientations for the dendrogram. The example above has the end points at the
bottom of the diagram which will be referred to as south. If the dendrogram was the other way around
with the end points at the top of the diagram then the orientation would be north. If the end points are
at the left-hand or right-hand side of the diagram the orientation is west or east. Different symbols are
used for east/west and north/south orientations.
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4 References

Everitt B S (1974) Cluster Analysis Heinemann

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

5 Arguments

1: ORIENT – CHARACTER(1) Input

On entry: indicates which orientation the dendrogram is to take.

ORIENT ¼ N
The end points of the dendrogram are to the north.

ORIENT ¼ S
The end points of the dendrogram are to the south.

ORIENT ¼ E
The end points of the dendrogram are to the east.

ORIENT ¼ W
The end points of the dendrogram are to the west.

Constraint: ORIENT ¼ N , S , E or W.

2: N – INTEGER Input

On entry: the number of objects in the cluster analysis.

Constraint: N > 2.

3: DORDðNÞ – REAL (KIND=nag_wp) array Input

On entry: the array DORD as output by G03ECF. DORD contains the distances, in dendrogram
order, at which clustering takes place.

Constraint: DORDðNÞ � DORDðiÞ, for i ¼ 1; 2; . . . ;N� 1.

4: DMIN – REAL (KIND=nag_wp) Input

On entry: the clustering distance at which the dendrogram begins.

Constraint: DMIN � 0:0.

5: DSTEP – REAL (KIND=nag_wp) Input

On entry: the distance represented by one symbol of the dendrogram.

Constraint: DSTEP > 0:0.

6: NSYM – INTEGER Input

On entry: the number of character positions used in the dendrogram. Hence the clustering
distance at which the dendrogram terminates is given by DMINþ NSYM� DSTEP.

Constraint: NSYM � 1.

7: CðLENCÞ – CHARACTER(*) array Output

Note: the length of each element of C must be at least 3� N if ORIENT ¼ N or S , or at least
NSYM if ORIENT ¼ E or W.

On exit: the elements of C contain consecutive lines of the dendrogram.
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8: LENC – INTEGER Input

On entry: the dimension of the array C as declared in the (sub)program from which G03EHF is
called.

Constraints:

if ORIENT ¼ N or S , LENC � NSYM;
if ORIENT ¼ E or W , LENC � N.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 2,
or NSYM < 1,
or DMIN < 0:0,
or DSTEP � 0:0,
or ORIENT 6¼ N ; S ; E , or `W',
or ORIENT ¼ N or S , LENC < NSYM,
or ORIENT ¼ E or W , LENC < N,
or the number of characters that can be stored in each element of array C is insufficient

for the requested orientation.

IFAIL ¼ 2

On entry, DORDðNÞ < DORDðiÞ, for some i ¼ 1; 2; . . . ;N� 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

G03EHF is not threaded in any implementation.

9 Further Comments

The scale of the dendrogram is controlled by DSTEP. The smaller the value DSTEP is, the greater the
amount of detail that will be given but NSYM will have to be larger to give the full dendrogram. The
range of distances represented by the dendrogram is DMIN to NSYM� DSTEP. The values of DMIN,
DSTEP and NSYM can thus be set so that only part of the dendrogram is produced.

The dendrogram does not include any labelling of the objects. You can print suitable labels using the
ordering given by the array IORD returned by G03ECF.

10 Example

Data consisting of three variables on five objects are read in. Euclidean squared distances are computed
using G03EAF and median clustering performed by G03ECF. G03EHF is used to produce a
dendrogram with orientation east and a dendrogram with orientation south. The two dendrograms are
printed.

10.1 Program Text

Program g03ehfe

! G03EHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03eaf, g03ecf, g03ehf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: llen = 50, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dmin, dstep
Integer :: ellen, i, ifail, ld, ldx, lenc, &

liwk, m, method, n, n1, nsym, olenc
Character (1) :: dist, orient, scal, update

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cd(:), d(:), dord(:), s(:), x(:,:)
Integer, Allocatable :: ilc(:), iord(:), isx(:), iuc(:), &

iwk(:)
Character (llen), Allocatable :: c(:)

! .. Executable Statements ..
Write (nout,*) ’G03EHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

! Read in information on the type of distance matrix to use
Read (nin,*) update, dist, scal

ldx = n
ld = n*(n-1)/2
n1 = n - 1
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liwk = 2*n
Allocate (x(ldx,m),isx(m),s(m),d(ld),ilc(n1),iuc(n1),cd(n1),iord(n), &

dord(n),iwk(liwk),c(1))

! Read in the data used to construct distance matrix
Read (nin,*)(x(i,1:m),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in scaling
If (scal==’G’ .Or. scal==’g’) Then

Read (nin,*) s(1:m)
End If

! Compute the distance matrix
ifail = 0
Call g03eaf(update,dist,scal,n,m,x,ldx,isx,s,d,ifail)

! Read in information on the clustering method to use
Read (nin,*) method

! Perform clustering
ifail = 0
Call g03ecf(method,n,d,ilc,iuc,cd,iord,dord,iwk,ifail)

! Produce some example dendrogram
olenc = 0

d_lp: Do
Read (nin,*,Iostat=ifail) orient, dmin, dstep, nsym
If (ifail/=0) Then

Go To 100
End If

! Display the dendrogram
Select Case (orient)
Case (’N’)

Write (nout,*) ’Dendrogram, Orientation North’
lenc = nsym
ellen = n

Case (’E’)
Write (nout,*) ’Dendrogram, Orientation East’
lenc = n
ellen = nsym

Case (’S’)
Write (nout,*) ’Dendrogram, Orientation South’
lenc = nsym
ellen = n

Case (’W’)
Write (nout,*) ’Dendrogram, Orientation West’
lenc = n
ellen = nsym

End Select

! Check that each element in the character array is sufficiently large
If (llen<ellen) Then

Write (nout,*) &
’Each element of character array C needs to be at least ’, ellen

Write (nout,*) ’elements long, current length is ’, llen
Go To 100

End If

If (olenc<lenc) Then
! Reallocate matrix

Deallocate (c)
Allocate (c(lenc))

End If

! Generate character array holding the dendrogram
ifail = 0
Call g03ehf(orient,n,dord,dmin,dstep,nsym,c,lenc,ifail)
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Write (nout,99999) c(1:lenc)
Write (nout,*)

End Do d_lp

100 Continue

99999 Format (1X,A)
End Program g03ehfe

10.2 Program Data

G03EHF Example Program Data
5 3 : N,M (G03EAF)
’I’ ’S’ ’U’ : UPDATE,DIST,SCALE (G03EAF)
1 1.0 1.0
2 1.0 2.0
3 6.0 3.0
4 8.0 2.0
5 8.0 0.0 : End of X (G03EAF)
0 1 1 : ISX (G03EAF)
5 : METHOD (G03ECF)
’E’ 0.0 1.1 40 : ORIENT,DMIN,DSTEP,NSYM (First dendogram)
’S’ 0.0 1.0 40 : ORIENT,DMIN,DSTEP,NSYM (Second dendogram)
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10.3 Program Results

G03EHF Example Program Results

Dendrogram, Orientation East

...............................(
( .......
( ( ...
(........................(...(...

Dendrogram, Orientation South

----------
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I ------*
I I I
I I I
I I I
I I ---*
I I I I
I I I I

---* I I I
I I I I I
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NAG Library Routine Document

G03EJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03EJF computes a cluster indicator variable from the results of G03ECF.

2 Specification

SUBROUTINE G03EJF (N, CD, IORD, DORD, K, DLEVEL, IC, IFAIL)

INTEGER N, IORD(N), K, IC(N), IFAIL
REAL (KIND=nag_wp) CD(N-1), DORD(N), DLEVEL

3 Description

Given a distance or dissimilarity matrix for n objects, cluster analysis aims to group the n objects into a
number of more or less homogeneous groups or clusters. With agglomerative clustering methods (see
G03ECF), a hierarchical tree is produced by starting with n clusters each with a single object and then
at each of n� 1 stages, merging two clusters to form a larger cluster until all objects are in a single
cluster. G03EJF takes the information from the tree and produces the clusters that exist at a given
distance. This is equivalent to taking the dendrogram (see G03EHF) and drawing a line across at a
given distance to produce clusters.

As an alternative to giving the distance at which clusters are required, you can specify the number of
clusters required and G03EJF will compute the corresponding distance. However, it may not be possible
to compute the number of clusters required due to ties in the distance matrix.

If there are k clusters then the indicator variable will assign a value between 1 and k to each object to
indicate to which cluster it belongs. Object 1 always belongs to cluster 1.

4 References

Everitt B S (1974) Cluster Analysis Heinemann

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

5 Arguments

1: N – INTEGER Input

On entry: n, the number of objects.

Constraint: N � 2.

2: CDðN� 1Þ – REAL (KIND=nag_wp) array Input

On entry: the clustering distances in increasing order as returned by G03ECF.

Constraint: CDði þ 1Þ � CDðiÞ, for i ¼ 1; 2; . . . ;N�2.

3: IORDðNÞ – INTEGER array Input

On entry: the objects in dendrogram order as returned by G03ECF.
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4: DORDðNÞ – REAL (KIND=nag_wp) array Input

On entry: the clustering distances corresponding to the order in IORD.

5: K – INTEGER Input/Output

On entry: indicates if a specified number of clusters is required.

If K > 0 then G03EJF will attempt to find K clusters.

If K � 0 then G03EJF will find the clusters based on the distance given in DLEVEL.

Constraint: K � N.

On exit: the number of clusters produced, k.

6: DLEVEL – REAL (KIND=nag_wp) Input/Output

On entry: if K � 0, DLEVEL must contain the distance at which clusters are produced.
Otherwise DLEVEL need not be set.

Constraint: if DLEVEL > 0:0, K � 0.

On exit: if K > 0 on entry, DLEVEL contains the distance at which the required number of
clusters are found. Otherwise DLEVEL remains unchanged.

7: ICðNÞ – INTEGER array Output

On exit: ICðiÞ indicates to which of k clusters the ith object belongs, for i ¼ 1; 2; . . . ; n.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K > N,
or K � 0 and DLEVEL � 0:0.
or N < 2.

IFAIL ¼ 2

On entry, CD is not in increasing order,
or DORD is incompatible with CD.

IFAIL ¼ 3

On entry, K ¼ 1,
or K ¼ N,
or DLEVEL � CDðN� 1Þ,
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or DLEVEL < CDð1Þ.
Note: on exit with this value of IFAIL the trivial clustering solution is returned.

IFAIL ¼ 4

The precise number of clusters requested is not possible because of tied clustering distances. The
actual number of clusters, less than the number requested, is returned in K.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy will depend upon the accuracy of the distances in CD and DORD (see G03ECF).

8 Parallelism and Performance

G03EJF is not threaded in any implementation.

9 Further Comments

A fixed number of clusters can be found using the non-hierarchical method used in G03EFF.

10 Example

Data consisting of three variables on five objects are input. Euclidean squared distances are computed
using G03EAF and median clustering performed using G03ECF. A dendrogram is produced by
G03EHF and printed. G03EJF finds two clusters and the results are printed.

10.1 Program Text

Program g03ejfe

! G03EJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03eaf, g03ecf, g03ejf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6, rnlen = 3

! .. Local Scalars ..
Real (Kind=nag_wp) :: dlevel
Integer :: i, ifail, k, ld, ldx, liwk, m, &

method, n, n1
Character (1) :: dist, scal, update

! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: cd(:), d(:), dord(:), s(:), x(:,:)
Integer, Allocatable :: ic(:), ilc(:), iord(:), isx(:), &

iuc(:), iwk(:)
Character (rnlen), Allocatable :: row_name(:)

! .. Executable Statements ..
Write (nout,*) ’G03EJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

! Read in information on the type of distance matrix to use
Read (nin,*) update, dist, scal

ldx = n
ld = n*(n-1)/2
n1 = n - 1
liwk = 2*n
Allocate (x(ldx,m),isx(m),s(m),d(ld),ilc(n1),iuc(n1),cd(n1),iord(n), &

dord(n),iwk(liwk),ic(n),row_name(n))

! Read in the data used to construct distance matrix
Read (nin,*)(x(i,1:m),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in scaling
If (scal==’G’ .Or. scal==’g’) Then

Read (nin,*) s(1:m)
End If

! Compute the distance matrix
ifail = 0
Call g03eaf(update,dist,scal,n,m,x,ldx,isx,s,d,ifail)

! Read in information on the clustering method to use
Read (nin,*) method

! Read in first RNLEN characters of row names. Used to make example
! output easier to read

Read (nin,*) row_name(1:n)

! Perform clustering
ifail = 0
Call g03ecf(method,n,d,ilc,iuc,cd,iord,dord,iwk,ifail)

! Display full clustering information
Write (nout,*) ’ Distance Clusters Joined’
Write (nout,*)
Do i = 1, n - 1

Write (nout,99999) cd(i), row_name(ilc(i)), row_name(iuc(i))
End Do
Write (nout,*)

! Read in number of clusters required (K) and
! distance (DLEVEL). If K > 0 then DLEVEL is
! ignored (i.e. attempt to find K clusters,
! irrespective of distance), else all clusters at
! level DLEVEL are used

Read (nin,*) k, dlevel

! Compute cluster indicator
ifail = 0
Call g03ejf(n,cd,iord,dord,k,dlevel,ic,ifail)

! Display the indicators
Write (nout,99998) ’ Allocation to ’, k, ’ clusters’
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Write (nout,99996) ’ Clusters found at distance ’, dlevel
Write (nout,*)
Write (nout,*) ’ Object Cluster’
Write (nout,*)
Write (nout,99997)(row_name(i),ic(i),i=1,n)

99999 Format (1X,F10.3,5X,2A)
99998 Format (1X,A,I0,A)
99997 Format (6X,A,5X,I2)
99996 Format (1X,A,F0.3)

End Program g03ejfe

10.2 Program Data

G03EJF Example Program Data
5 3 : N,M (G03EAF)
’I’ ’S’ ’U’ : UPDATE,DIST,SCAL (G03EAF)
1 5.0 2.0
2 1.0 1.0
3 4.0 3.0
4 1.0 2.0
5 5.0 0.0 : End of X (G03EAF)
0 1 1 : ISX

5 : METHOD (G03ECF)
’A’ ’B’ ’C’ ’D’ ’E’ : Row names (NAME)
2 0.0 : K, DLEVEL

10.3 Program Results

G03EJF Example Program Results

Distance Clusters Joined

1.000 B D
2.000 A C
6.500 A E

14.125 A B

Allocation to 2 clusters
Clusters found at distance 6.500

Object Cluster

A 1
B 2
C 1
D 2
E 1
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NAG Library Routine Document

G03FAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03FAF performs a principal coordinate analysis also known as classical metric scaling.

2 Specification

SUBROUTINE G03FAF (ROOTS, N, D, NDIM, X, LDX, EVAL, WK, IWK, IFAIL)

INTEGER N, NDIM, LDX, IWK(5*N), IFAIL
REAL (KIND=nag_wp) D(N*(N-1)/2), X(LDX,NDIM), EVAL(N),

WK(N*(N+17)/2-1)
&

CHARACTER(1) ROOTS

3 Description

For a set of n objects a distance matrix D can be calculated such that dij is a measure of how ‘far apart’
are objects i and j (see G03EAF for example). Principal coordinate analysis or metric scaling starts
with a distance matrix and finds points X in Euclidean space such that those points have the same
distance matrix. The aim is to find a small number of dimensions, k n� 1ð Þ, that provide an
adequate representation of the distances.

The principal coordinates of the points are computed from the eigenvectors of the matrix E where

eij ¼ �1=2 d2ij � d2i: � d2:j þ d2::
� �

with d2i: denoting the average of d2ij over the suffix j, etc.. The

eigenvectors are then scaled by multiplying by the square root of the value of the corresponding
eigenvalue.

Provided that the ordered eigenvalues, �i, of the matrix E are all positive,
Xk
i¼1
�i=
Xn�1
i¼1
�i shows how well

the data is represented in k dimensions. The eigenvalues will be non-negative if E is positive
semidefinite. This will be true provided dij satisfies the inequality: dij � dik þ djk for all i; j; k. If this is
not the case the size of the negative eigenvalue reflects the amount of deviation from this condition and
the results should be treated cautiously in the presence of large negative eigenvalues. See Krzanowski
(1990) for further discussion. G03FAF provides the option for all eigenvalues to be computed so that
the smallest eigenvalues can be checked.

4 References

Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall

Gower J C (1966) Some distance properties of latent root and vector methods used in multivariate
analysis Biometrika 53 325–338

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

5 Arguments

1: ROOTS – CHARACTER(1) Input

On entry: indicates if all the eigenvalues are to be computed or just the NDIM largest.

ROOTS ¼ A
All the eigenvalues are computed.
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ROOTS ¼ L
Only the largest NDIM eigenvalues are computed.

Constraint: ROOTS ¼ A or L .

2: N – INTEGER Input

On entry: n, the number of objects in the distance matrix.

Constraint: N > NDIM.

3: DðN� N� 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the lower triangle of the distance matrix D stored packed by rows. That is
Dð i� 1ð Þ � i� 2ð Þ=2þ jÞ must contain dij for i ¼ 2; 3; . . . ; n;j ¼ 1; 2; . . . ; i� 1.

Constraint: DðiÞ � 0:0, for i ¼ 1; 2; . . . ; n n� 1ð Þ=2.

4: NDIM – INTEGER Input

On entry: k, the number of dimensions used to represent the data.

Constraint: NDIM � 1.

5: XðLDX;NDIMÞ – REAL (KIND=nag_wp) array Output

On exit: the ith row contains k coordinates for the ith point, i ¼ 1; 2; . . . ; n.

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03FAF
is called.

Constraint: LDX � N.

7: EVALðNÞ – REAL (KIND=nag_wp) array Output

On exit: if ROOTS ¼ A , EVAL contains the n scaled eigenvalues of the matrix E.

If ROOTS ¼ L , EVAL contains the largest k scaled eigenvalues of the matrix E.

In both cases the eigenvalues are divided by the sum of the eigenvalues (that is, the trace of E).

8: WKðN� Nþ 17ð Þ=2� 1Þ – REAL (KIND=nag_wp) array Workspace

9: IWKð5� NÞ – INTEGER array Workspace

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1,
or N < NDIM,
or ROOTS 6¼ A or L ,
or LDX < N.

IFAIL ¼ 2

On entry, DðiÞ < 0:0 for some i, i ¼ 1; 2; . . . ; n n� 1ð Þ=2,
or all elements of D ¼ 0:0.

IFAIL ¼ 3

There are less than NDIM eigenvalues greater than zero. Try a smaller number of dimensions
(NDIM) or use non-metric scaling (G03FCF).

IFAIL ¼ 4

The computation of the eigenvalues or eigenvectors has failed. Seek expert help.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G03FAF uses F08JFF (DSTERF) or F08JJF (DSTEBZ) to compute the eigenvalues and F08JKF
(DSTEIN) to compute the eigenvectors. These routines should be consulted for a discussion of the
accuracy of the computations involved.

8 Parallelism and Performance

G03FAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G03FAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

Alternative, non-metric, methods of scaling are provided by G03FCF.

The relationship between principal coordinates and principal components, see G03FCF, is discussed in
Krzanowski (1990) and Gower (1966).

10 Example

The data, given by Krzanowski (1990), are dissimilarities between water vole populations in Europe.
The first two principal coordinates are computed.

10.1 Program Text

Program g03fafe

! G03FAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03faf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, ld, ldx, liwk, lwk, n, ndim
Character (1) :: roots

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), eval(:), wk(:), x(:,:)
Integer, Allocatable :: iwk(:)

! .. Executable Statements ..
Write (nout,*) ’G03FAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, ndim, roots

ld = n*(n-1)/2
ldx = n
lwk = n*(n+17)/2 - 1
liwk = 5*n
Allocate (d(ld),x(ldx,ndim),eval(n),wk(lwk),iwk(liwk))

! Read in the lower triangular part of the distance matrix
Read (nin,*) d(1:ld)

! Perform principal co-ordinate analysis
ifail = 0
Call g03faf(roots,n,d,ndim,x,ldx,eval,wk,iwk,ifail)

! Display results
Write (nout,*) ’ Scaled Eigenvalues’
Write (nout,*)
If (roots==’L’ .Or. roots==’l’) Then

Write (nout,99999) eval(1:ndim)
Else

Write (nout,99999) eval(1:n)
End If
Write (nout,*)
Flush (nout)
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ifail = 0
Call x04caf(’General’,’ ’,n,ndim,x,ldx,’Co-ordinates’,ifail)

99999 Format (8F10.4)
End Program g03fafe

10.2 Program Data

G03FAF Example Program Data
14 2 ’l’
0.099
0.033 0.022
0.183 0.114 0.042
0.148 0.224 0.059 0.068
0.198 0.039 0.053 0.085 0.051
0.462 0.266 0.322 0.435 0.268 0.025
0.628 0.442 0.444 0.406 0.240 0.129 0.014
0.113 0.070 0.046 0.047 0.034 0.002 0.106 0.129
0.173 0.119 0.162 0.331 0.177 0.039 0.089 0.237 0.071
0.434 0.419 0.339 0.505 0.469 0.390 0.315 0.349 0.151 0.430
0.762 0.633 0.781 0.700 0.758 0.625 0.469 0.618 0.440 0.538 0.607
0.530 0.389 0.482 0.579 0.597 0.498 0.374 0.562 0.247 0.383 0.387 0.084
0.586 0.435 0.550 0.530 0.552 0.509 0.369 0.471 0.234 0.346 0.456 0.090 0.038

10.3 Program Results

G03FAF Example Program Results

Scaled Eigenvalues

0.7871 0.2808

Co-ordinates
1 2

1 0.2408 0.2337
2 0.1137 0.1168
3 0.2394 0.0760
4 0.2129 0.0605
5 0.2495 -0.0693
6 0.1487 -0.0778
7 -0.0514 -0.1623
8 0.0115 -0.3446
9 -0.0039 0.0059

10 0.0386 -0.0089
11 -0.0421 -0.0566
12 -0.5158 0.0291
13 -0.3180 0.1501
14 -0.3238 0.0475
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NAG Library Routine Document

G03FCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03FCF performs non-metric (ordinal) multidimensional scaling.

2 Specification

SUBROUTINE G03FCF (TYP, N, NDIM, D, X, LDX, STRESS, DFIT, ITER, IOPT,
WK, IWK, IFAIL)

&

INTEGER N, NDIM, LDX, ITER, IOPT, IWK(N*(N-1)/2+N*NDIM+5),
IFAIL

&

REAL (KIND=nag_wp) D(N*(N-1)/2), X(LDX,NDIM), STRESS, DFIT(2*N*(N-1)),
WK(15*N*NDIM)

&

CHARACTER(1) TYP

3 Description

For a set of n objects, a distance or dissimilarity matrix D can be calculated such that dij is a measure
of how ‘far apart’ the objects i and j are. If p variables xk have been recorded for each observation this

measure may be based on Euclidean distance, dij ¼
Xp
k¼1

xki � xkj
� �2

, or some other calculation such as

the number of variables for which xkj 6¼ xki. Alternatively, the distances may be the result of a
subjective assessment. For a given distance matrix, multidimensional scaling produces a configuration
of n points in a chosen number of dimensions, m, such that the distance between the points in some
way best matches the distance matrix. For some distance measures, such as Euclidean distance, the size
of distance is meaningful, for other measures of distance all that can be said is that one distance is
greater or smaller than another. For the former metric scaling can be used, see G03FAF, for the latter, a
non-metric scaling is more appropriate.

For non-metric multidimensional scaling, the criterion used to measure the closeness of the fitted
distance matrix to the observed distance matrix is known as STRESS. STRESS is given by,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Xi�1
j¼1

d̂ij � ~dij

� �2
Xn
i¼1

Xi�1
j¼1

d̂ij
2

vuuuuuuuut
where d̂ij

2 is the Euclidean squared distance between points i and j and ~dij is the fitted distance

obtained when d̂ij is monotonically regressed on dij, that is ~dij is monotonic relative to dij and is

obtained from d̂ij with the smallest number of changes. So STRESS is a measure of by how much the
set of points preserve the order of the distances in the original distance matrix. Non-metric
multidimensional scaling seeks to find the set of points that minimize the STRESS.
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An alternate measure is squared STRESS, sstress,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xi�1
j¼1

d̂ij
2 � ~dij

2
� �2

Xn
i¼1

Xi�1
j¼1

d̂ij
4

vuuuuuuuut
in which the distances in STRESS are replaced by squared distances.

In order to perform a non-metric scaling, an initial configuration of points is required. This can be
obtained from principal coordinate analysis, see G03FAF. Given an initial configuration, G03FCF uses
the optimization routine E04DGF/E04DGA to find the configuration of points that minimizes STRESS
or sstress. The routine E04DGF/E04DGA uses a conjugate gradient algorithm. G03FCF will find an
optimum that may only be a local optimum, to be more sure of finding a global optimum several
different initial configurations should be used; these can be obtained by randomly perturbing the
original initial configuration using routines from Chapter G05.

4 References

Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

5 Arguments

1: TYP – CHARACTER(1) Input

On entry: indicates whether STRESS or sstress is to be used as the criterion.

TYP ¼ T
STRESS is used.

TYP ¼ S
sstress is used.

Constraint: TYP ¼ S or T .

2: N – INTEGER Input

On entry: n, the number of objects in the distance matrix.

Constraint: N > NDIM.

3: NDIM – INTEGER Input

On entry: m, the number of dimensions used to represent the data.

Constraint: NDIM � 1.

4: DðN� N� 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the lower triangle of the distance matrix D stored packed by rows. That is
Dð i � 1ð Þ � i � 2ð Þ=2þ jÞ must contain dij , for i ¼ 2; 3; . . . ; n and j ¼ 1; 2; . . . ; i � 1. If dij is
missing then set dij < 0; for further comments on missing values see Section 9.

5: XðLDX;NDIMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the ith row must contain an initial estimate of the coordinates for the ith point, for
i ¼ 1; 2; . . . ; n. One method of computing these is to use G03FAF.

On exit: the ith row contains m coordinates for the ith point, for i ¼ 1; 2; . . . ; n.
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6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03FCF
is called.

Constraint: LDX � N.

7: STRESS – REAL (KIND=nag_wp) Output

On exit: the value of STRESS or sstress at the final iteration.

8: DFITð2� N� N� 1ð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: auxiliary outputs.

If TYP ¼ T , the first n n� 1ð Þ=2 elements contain the distances, d̂ij, for the points returned in X,

the second set of n n� 1ð Þ=2 contains the distances d̂ij ordered by the input distances, dij, the
third set of n n� 1ð Þ=2 elements contains the monotonic distances, ~dij, ordered by the input
distances, dij and the final set of n n� 1ð Þ=2 elements contains fitted monotonic distances, ~dij, for
the points in X. The ~dij corresponding to distances which are input as missing are set to zero.

If TYP ¼ S , the results are as above except that the squared distances are returned.

Each distance matrix is stored in lower triangular packed form in the same way as the input
matrix D.

9: ITER – INTEGER Input

On entry: the maximum number of iterations in the optimization process.

ITER ¼ 0
A default value of 50 is used.

ITER < 0
A default value of max 50; 5nmð Þ (the default for E04DGF/E04DGA) is used.

10: IOPT – INTEGER Input

On entry: selects the options, other than the number of iterations, that control the optimization.

IOPT ¼ 0
Default values are selected as described in Section 9. In particular if an accuracy
requirement of � ¼ 0:00001 is selected, see Section 7.

IOPT > 0
The default values are used except that the accuracy is given by 10�i where i ¼ IOPT.

IOPT < 0
The option setting mechanism of E04DGF/E04DGA can be used to set all options except
Iteration Limit; this option is only recommended if you are an experienced user of NAG
optimization routines. For further details see E04DGF/E04DGA.

11: WKð15� N� NDIMÞ – REAL (KIND=nag_wp) array Workspace

12: IWKðN� N� 1ð Þ=2þ N� NDIMþ 5Þ – INTEGER array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 1,
or N � NDIM,
or TYP 6¼ T or S ,
or LDX < N.

IFAIL ¼ 2

On entry, all elements of D � 0:0.

IFAIL ¼ 3

The optimization has failed to converge in ITER function iterations. Try either increasing the
number of iterations using ITER or increasing the value of �, given by IOPT, used to determine
convergence. Alternatively try a different starting configuration.

IFAIL ¼ 4

The conditions for an acceptable solution have not been met but a lower point could not be
found. Try using a larger value of �, given by IOPT.

IFAIL ¼ 5

The optimization cannot begin from the initial configuration. Try a different set of points.

IFAIL ¼ 6

The optimization has failed. This error is only likely if IOPT < 0. It corresponds to IFAIL ¼ 4, 7
and 9 in E04DGF/E04DGA.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

After a successful optimization the relative accuracy of STRESS should be approximately �, as specified
by IOPT.

8 Parallelism and Performance

G03FCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The optimization routine E04DGF/E04DGA used by G03FCF has a number of options to control the
process. The options for the maximum number of iterations (Iteration Limit) and accuracy
(Optimality Tolerance) can be controlled by ITER and IOPT respectively. The printing option (Print
Level) is set to �1 to give no printing. The other option set is to stop the checking of derivatives
(Verify ¼ NO) for efficiency. All other options are left at their default values. If however IOPT < 0 is
used, only the maximum number of iterations is set. All other options can be controlled by the option
setting mechanism of E04DGF/E04DGA with the defaults as given by that routine.

Missing values in the input distance matrix can be specified by a negative value and providing there are
not more than about two thirds of the values missing the algorithm may still work. However the routine
G03FAF does not allow for missing values so an alternative method of obtaining an initial set of
coordinates is required. It may be possible to estimate the missing values with some form of average
and then use G03FAF to give an initial set of coordinates.

10 Example

The data, given by Krzanowski (1990), are dissimilarities between water vole populations in Europe.
Initial estimates are provided by the first two principal coordinates computed.

10.1 Program Text

Program g03fcfe

! G03FCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03faf, g03fcf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: stress
Integer :: ifail, iopt, iter, ld, ldfit, ldx, &

liwk, lwk, n, ndim
Character (1) :: roots, typ

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), dfit(:), eval(:), wk(:), &

x(:,:)
Integer, Allocatable :: iwk(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G03FCF Example Program Results’
Write (nout,*)
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! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, ndim, roots, typ

ld = n*(n-1)/2
ldx = n
lwk = max(n*(n+17)/2-1,15*n*ndim)
liwk = max(5*n,n*(n-1)/2+n*ndim+5)
ldfit = 2*n*(n-1)
Allocate (d(ld),x(ldx,ndim),eval(n),wk(lwk),iwk(liwk),dfit(ldfit))

! Read in the lower triangular part of the distance matrix
Read (nin,*) d(1:ld)

! Perform principal co-ordinate analysis
ifail = 0
Call g03faf(roots,n,d,ndim,x,ldx,eval,wk,iwk,ifail)

! Use default values for number of iterations and options
iter = 0
iopt = 0

! Perform multi-dimensional scaling
ifail = 0
Call g03fcf(typ,n,ndim,d,x,ldx,stress,dfit,iter,iopt,wk,iwk,ifail)

! Display the results
Write (nout,99999) ’STRESS = ’, stress
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,ndim,x,ldx,’Co-ordinates’,ifail)

99999 Format (10X,A,E13.4)
End Program g03fcfe

10.2 Program Data

G03FCF Example Program Data
14 2 ’L’ ’T’ :N,NDIM,ROOTS,TYP
0.099
0.033 0.022
0.183 0.114 0.042
0.148 0.224 0.059 0.068
0.198 0.039 0.053 0.085 0.051
0.462 0.266 0.322 0.435 0.268 0.025
0.628 0.442 0.444 0.406 0.240 0.129 0.014
0.113 0.070 0.046 0.047 0.034 0.002 0.106 0.129
0.173 0.119 0.162 0.331 0.177 0.039 0.089 0.237 0.071
0.434 0.419 0.339 0.505 0.469 0.390 0.315 0.349 0.151 0.430
0.762 0.633 0.781 0.700 0.758 0.625 0.469 0.618 0.440 0.538 0.607
0.530 0.389 0.482 0.579 0.597 0.498 0.374 0.562 0.247 0.383 0.387 0.084
0.586 0.435 0.550 0.530 0.552 0.509 0.369 0.471 0.234 0.346 0.456 0.090 0.038 :D

10.3 Program Results

G03FCF Example Program Results

STRESS = 0.1256E+00

Co-ordinates
1 2

1 0.2060 0.2438
2 0.1063 0.1418
3 0.2224 0.0817
4 0.3032 0.0355
5 0.2645 -0.0698
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6 0.1554 -0.0435
7 -0.0070 -0.1612
8 0.0749 -0.3275
9 0.0488 0.0289

10 0.0124 -0.0267
11 -0.1649 -0.2500
12 -0.5073 0.1267
13 -0.3093 0.1590
14 -0.3498 0.0700
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NAG Library Routine Document

G03GAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03GAF performs a mixture of Normals (Gaussians) for a given (co)variance structure.

2 Specification

SUBROUTINE G03GAF (N, M, X, LDX, ISX, NVAR, NG, POPT, PROB, LPROB,
NITER, RITER, W, G, SOPT, S, LDS, SDS, F, TOL,
LOGLIK, IFAIL)

&
&

INTEGER N, M, LDX, ISX(M), NVAR, NG, POPT, LPROB, NITER,
RITER, SOPT, LDS, SDS, IFAIL

&

REAL (KIND=nag_wp) X(LDX,M), PROB(LPROB,NG), W(NG), G(NVAR,NG),
S(LDS,SDS,*), F(N,NG), TOL, LOGLIK

&

3 Description

A Normal (Gaussian) mixture model is a weighted sum of k group Normal densities given by,

p x j w; �;�ð Þ ¼
Xk
j¼1
wjg x j �j; �j

� �
; x 2 R

p

where:

x is a p-dimensional object of interest;

wj is the mixture weight for the jth group and
Xk
j¼1
wj ¼ 1;

�j is a p-dimensional vector of means for the jth group;

�j is the covariance structure for the jth group;

g �ð Þ is the p-variate Normal density:

g x j �j;�j

� �
¼ 1

2	ð Þp=2 �j

		 		1=2 exp �12 x� �j
� �

��1j x� �j
� �T� �

:

Optionally, the (co)variance structure may be pooled (common to all groups) or calculated for each
group, and may be full or diagonal.

4 References

Hartigan J A (1975) Clustering Algorithms Wiley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of objects. There must be more objects than parameters in the model.
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Constraints:

if SOPT ¼ 1, N > NG� NVAR � NVAR þ NVARð Þ;
if SOPT ¼ 2, N > NVAR� NGþ NVARð Þ;
if SOPT ¼ 3, N > 2� NG� NVAR;
if SOPT ¼ 4, N > NVAR� NGþ 1ð Þ;
if SOPT ¼ 5, N > NVAR� NGþ 1.

2: M – INTEGER Input

On entry: the total number of variables in array X.

Constraint: M � 1.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the value of the jth variable for the ith object, for i ¼ 1; 2; . . . ; n
and j ¼ 1; 2; . . . ;M.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G03GAF is called.

Constraint: LDX � N.

5: ISXðMÞ – INTEGER array Input

On entry: if NVAR ¼ M all available variables are included in the model and ISX is not
referenced; otherwise the jth variable will be included in the analysis if ISXðjÞ ¼ 1 and excluded
if ISXðjÞ ¼ 0, for j ¼ 1; 2; . . . ;M.

Constraint: if NVAR 6¼ M, ISXðjÞ ¼ 1 for NVAR values of j and ISXðjÞ ¼ 0 for the remaining
M� NVAR values of j, for j ¼ 1; 2; . . . ;M.

6: NVAR – INTEGER Input

On entry: p, the number of variables included in the calculations.

Constraint: 1 � NVAR � M.

7: NG – INTEGER Input

On entry: k, the number of groups in the mixture model.

Constraint: NG � 1.

8: POPT – INTEGER Input

On entry: if POPT ¼ 1, the initial membership probabilities in PROB are set internally; otherwise
these probabilities must be supplied.

9: PROBðLPROB;NGÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if POPT 6¼ 1, PROBði; jÞ is the probability that the ith object belongs to the jth group.
(These probabilities are normalised internally.)

On exit: PROBði; jÞ is the probability of membership of the ith object to the jth group for the
fitted model.

10: LPROB – INTEGER Input

On entry: the first dimension of the array PROB as declared in the (sub)program from which
G03GAF is called.

Constraint: LPROB � N.
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11: NITER – INTEGER Input/Output

On entry: the maximum number of iterations.

Suggested value: 15

On exit: the number of completed iterations.

Constraint: NITER � 1.

12: RITER – INTEGER Input

On entry: if RITER > 0, membership probabilities are rounded to 0:0 or 1:0 after the completion
of every RITER iterations.

Suggested value: 5

13: WðNGÞ – REAL (KIND=nag_wp) array Output

On exit: wj, the mixing probability for the jth group.

14: GðNVAR;NGÞ – REAL (KIND=nag_wp) array Output

On exit: Gði; jÞ gives the estimated mean of the ith variable in the jth group.

15: SOPT – INTEGER Input

On entry: determines the (co)variance structure:

SOPT ¼ 1
Groupwise covariance matrices.

SOPT ¼ 2
Pooled covariance matrix.

SOPT ¼ 3
Groupwise variances.

SOPT ¼ 4
Pooled variances.

SOPT ¼ 5
Overall variance.

Constraint: SOPT ¼ 1, 2, 3, 4 or 5.

16: SðLDS; SDS; �Þ – REAL (KIND=nag_wp) array Output

Note: the last dimension of the array S must be at least NG if SOPT ¼ 1, and at least 1
otherwise.

On exit: if SOPT ¼ 1, Sði; j; kÞ gives the i; jð Þth element of the kth group.

If SOPT ¼ 2, Sði; j; 1Þ gives the i; jð Þth element of the pooled covariance.

If SOPT ¼ 3, Sðj; k; 1Þ gives the jth variance in the kth group.

If SOPT ¼ 4, Sðj; 1; 1Þ gives the jth pooled variance.

If SOPT ¼ 5, Sð1; 1; 1Þ gives the overall variance.

17: LDS – INTEGER Input

On entry: the first dimension of the (co)variance structure S.

Constraints:

if SOPT ¼ 5, LDS ¼ 1;
otherwise LDS ¼ NVAR.
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18: SDS – INTEGER Input

On entry: the second dimension of the (co)variance structure S.

Constraints:

if SOPT ¼ 1 or 2, SDS must be at least NVAR;
if SOPT ¼ 3, SDS must be at least NG;
if SOPT ¼ 4 or 5, SDS must be at least 1.

19: FðN;NGÞ – REAL (KIND=nag_wp) array Output

On exit: Fði; jÞ gives the p-variate Normal (Gaussian) density of the ith object in the jth group.

20: TOL – REAL (KIND=nag_wp) Input

On entry: iterations cease the first time an improvement in log-likelihood is less than TOL. If
TOL � 0 a value of 10�3 is used.

21: LOGLIK – REAL (KIND=nag_wp) Output

On exit: the log-likelihood for the fitted mixture model.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i and p ¼ valueh i.
Constraint: N > p, the number of parameters, i.e., too few objects have been supplied for the
model.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 4

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ 5

On entry, NVAR ¼ valueh i and M ¼ valueh i.
Constraint: 1 � NVAR � M.
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IFAIL ¼ 6

On entry, NVAR 6¼ M and ISX is invalid.

IFAIL ¼ 7

On entry, NG ¼ valueh i.
Constraint: NG � 1.

IFAIL ¼ 8

On entry, POPT 6¼ 1 or 2.

IFAIL ¼ 9

On entry, row valueh i of supplied PROB does not sum to 1.

IFAIL ¼ 10

On entry, LPROB ¼ valueh i and N ¼ valueh i.
Constraint: LPROB � N.

IFAIL ¼ 11

On entry, NITER ¼ valueh i.
Constraint: NITER � 1.

IFAIL ¼ 16

On entry, SOPT < 1 or SOPT > 5.

IFAIL ¼ 18

On entry, LDS ¼ valueh i was invalid.

IFAIL ¼ 19

On entry, SDS ¼ valueh i was invalid.

IFAIL ¼ 44

A covariance matrix is not positive definite, try a different initial allocation.

IFAIL ¼ 45

An iteration cannot continue due to an empty group, try a different initial allocation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

G03GAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G03GAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example fits a Gaussian mixture model with pooled covariance structure to New Haven schools
test data, see Table 5.1 (p. 118) in Hartigan (1975).

10.1 Program Text

Program g03gafe

! G03GAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03gaf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: loglik, tol
Integer :: i, ifail, ldprob, lds, ldx, m, n, &

ng, niter, nvar, popt, riter, sds, &
sopt

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:,:), g(:,:), prob(:,:), s(:,:,:), &

w(:), x(:,:)
Integer, Allocatable :: isx(:)

! .. Executable Statements ..
Write (nout,*) ’G03GAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Problem size
Read (nin,*) n, m, nvar

! Number of groups
Read (nin,*) ng

! Scaling option
Read (nin,*) sopt

! Initial probabilities option
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Read (nin,*) popt

! Maximum number of iterations
Read (nin,*) niter

! Leading dimensions
ldx = n
ldprob = n

Select Case (sopt)
Case (1)

Allocate (s(nvar,nvar,ng))
lds = nvar
sds = nvar

Case (2)
Allocate (s(nvar,nvar,1))
lds = nvar
sds = nvar

Case (3)
Allocate (s(nvar,ng,1))
lds = nvar
sds = ng

Case (4)
Allocate (s(nvar,1,1))
lds = nvar
sds = 1

Case Default
Allocate (s(1,1,1))
lds = 1
sds = 1

End Select

Allocate (x(ldx,m),prob(ldprob,ng),g(nvar,ng),w(ng),isx(m),f(n,ng))

! Data matrix X
Read (nin,*)(x(i,1:m),i=1,n)

! Included variables
If (nvar/=m) Then

Read (nin,*) isx(1:m)
End If

! Optionally read initial probabilities of group membership
If (popt==2) Then

Read (nin,*)(prob(i,1:ng),i=1,n)
End If

tol = 0.0E0_nag_wp
riter = 5

ifail = 0
Call g03gaf(n,m,x,ldx,isx,nvar,ng,popt,prob,ldprob,niter,riter,w,g,sopt, &

s,lds,sds,f,tol,loglik,ifail)

! Results
Write (nout,*)
ifail = 0
Call x04caf(’g’,’n’,1,ng,w,1,’Mixing proportions’,ifail)

Write (nout,*)
ifail = 0
Call x04caf(’g’,’n’,nvar,ng,g,nvar,’Group means’,ifail)

Write (nout,*)
Select Case (sopt)
Case (1)

Do i = 1, ng
ifail = 0
Call x04caf(’g’,’n’,nvar,nvar,s(1,1,i),lds, &

’Variance-covariance matrix’,ifail)
End Do
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Case (2)
ifail = 0
Call x04caf(’g’,’n’,nvar,nvar,s,lds, &

’Pooled Variance-covariance matrix’,ifail)
Case (3)

ifail = 0
Call x04caf(’g’,’n’,nvar,ng,s,lds,’Groupwise Variance’,ifail)

Case (4)
ifail = 0
Call x04caf(’g’,’n’,nvar,1,s,lds,’Pooled Variance’,ifail)

Case (5)
ifail = 0
Call x04caf(’g’,’n’,1,1,s,lds,’Overall Variance’,ifail)

End Select

Write (nout,*)
ifail = 0
Call x04caf(’g’,’n’,n,ng,f,n,’Densities’,ifail)

Write (nout,*)
ifail = 0
Call x04caf(’g’,’n’,n,ng,prob,n,’Membership probabilities’,ifail)

Write (nout,*)
Write (nout,’(1X,A,1X,I16)’) ’No. iterations:’, niter

Write (nout,’(1X,A,1X,F16.4)’) ’Log-likelihood:’, loglik

Deallocate (x,prob,g,s,w,isx,f)
End Program g03gafe

10.2 Program Data

G03GAF Example Program Data
25 4 4 : N M IP
2 : NG
2 : SOPT
2 : POPT
15 : NITER
2.7 3.2 4.5 4.8
3.9 3.8 5.9 6.2
4.8 4.1 6.8 5.5
3.1 3.5 4.3 4.6
3.4 3.7 5.1 5.6
3.1 3.4 4.1 4.7
4.6 4.4 6.6 6.1
3.1 3.3 4.0 4.9
3.8 3.7 4.7 4.9
5.2 4.9 8.2 6.9
3.9 3.8 5.2 5.4
4.1 4.0 5.6 5.6
5.7 5.1 7.0 6.3
3.0 3.2 4.5 5.0
2.9 3.3 4.5 5.1
3.4 3.3 4.4 5.0
4.0 4.2 5.2 5.4
3.0 3.0 4.6 5.0
4.0 4.1 5.9 5.8
3.0 3.2 4.4 5.1
3.6 3.6 5.3 5.4
3.1 3.2 4.6 5.0
3.2 3.3 5.4 5.3
3.0 3.4 4.2 4.7
3.8 4.0 6.9 6.7 : X
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
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1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0 : P

10.3 Program Results

G03GAF Example Program Results

Mixing proportions
1 2

1 0.4798 0.5202

Group means
1 2

1 4.0041 3.3350
2 3.9949 3.4434
3 5.5894 4.9870
4 5.4432 5.3602

Pooled Variance-covariance matrix
1 2 3 4

1 0.4539 0.2891 0.6075 0.3413
2 0.2891 0.2048 0.4101 0.2490
3 0.6075 0.4101 1.0648 0.6011
4 0.3413 0.2490 0.6011 0.3759

Densities
1 2

1 2.5836E-01 1.1853E-02
2 3.7065E-07 1.1241E-01
3 5.3069E-03 1.8080E-06
4 4.2461E-01 2.8584E-05
5 5.0387E-02 1.1544E+00
6 1.1260E+00 7.2224E-02
7 2.0911E+00 2.1224E-02
8 5.7856E-03 1.3227E+00
9 1.1609E+00 2.9411E-02

10 8.9826E-02 2.4260E-05
11 3.0170E-01 1.0106E+00
12 1.2930E+00 3.5422E-01
13 2.8644E-02 6.7851E-07
14 2.0759E-02 3.1690E+00
15 7.6461E-02 1.5231E+00
16 3.0279E-04 8.4017E-01
17 5.6101E-01 4.6699E-05
18 2.6573E-05 6.4442E-01
19 2.1250E+00 5.1006E-02
20 8.6822E-04 2.7626E+00
21 1.9223E-01 2.3971E+00
22 1.2469E-02 2.8179E+00
23 1.8389E-02 5.3572E-01
24 1.2409E+00 9.6489E-03
25 2.1037E-05 4.8674E-02
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Membership probabilities
1 2

1 9.5018E-01 4.9823E-02
2 3.3259E-06 1.0000E+00
3 9.9961E-01 3.8664E-04
4 9.9992E-01 7.9913E-05
5 3.8999E-02 9.6100E-01
6 9.3270E-01 6.7295E-02
7 9.8881E-01 1.1190E-02
8 4.1252E-03 9.9587E-01
9 9.7252E-01 2.7479E-02

10 9.9969E-01 3.0805E-04
11 2.1722E-01 7.8278E-01
12 7.6938E-01 2.3062E-01
13 9.9997E-01 2.6937E-05
14 6.1133E-03 9.9389E-01
15 4.4189E-02 9.5581E-01
16 3.5006E-04 9.9965E-01
17 9.9990E-01 9.7029E-05
18 4.0270E-05 9.9996E-01
19 9.7380E-01 2.6202E-02
20 3.0204E-04 9.9970E-01
21 6.9471E-02 9.3053E-01
22 4.1603E-03 9.9584E-01
23 3.0839E-02 9.6916E-01
24 9.9116E-01 8.8421E-03
25 4.1534E-04 9.9958E-01

No. iterations: 14
Log-likelihood: -29.6831

G03GAF NAG Library Manual

G03GAF.10 (last) Mark 26



NAG Library Routine Document

G03ZAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03ZAF produces standardized values (z-scores) for a data matrix.

2 Specification

SUBROUTINE G03ZAF (N, M, X, LDX, NVAR, ISX, S, E, Z, LDZ, IFAIL)

INTEGER N, M, LDX, NVAR, ISX(M), LDZ, IFAIL
REAL (KIND=nag_wp) X(LDX,M), S(M), E(M), Z(LDZ,NVAR)

3 Description

For a data matrix, X, consisting of n observations on p variables, with elements xij, G03ZAF computes
a matrix, Z, with elements zij such that:

zij ¼
xij � �j
�j

; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; p;

where �j is a location shift and �j is a scaling factor. Typically, �j will be the mean and �j will be the
standard deviation of the jth variable and therefore the elements in column j of Z will have zero mean
and unit variance.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations in the data matrix.

Constraint: N � 1.

2: M – INTEGER Input

On entry: the number of variables in the data array X.

Constraint: M � NVAR.

3: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must contain the ith sample point for the jth variable, xij , for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ;M.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03ZAF
is called.

Constraint: LDX � N.
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5: NVAR – INTEGER Input

On entry: p, the number of variables to be standardized.

Constraint: NVAR � 1.

6: ISXðMÞ – INTEGER array Input

On entry: ISXðjÞ indicates whether or not the observations on the jth variable are included in the
matrix of standardized values.

If ISXðjÞ 6¼ 0, the observations from the jth variable are included.

If ISXðjÞ ¼ 0, the observations from the jth variable are not included.

Constraint: ISXðjÞ 6¼ 0 for NVAR values of j.

7: SðMÞ – REAL (KIND=nag_wp) array Input

On entry: if ISXðjÞ 6¼ 0, SðjÞ must contain the scaling (standard deviation), �j, for the jth
variable.

If ISXðjÞ ¼ 0, SðjÞ is not referenced.

Constraint: if ISXðjÞ 6¼ 0, SðjÞ > 0:0, for j ¼ 1; 2; . . . ;M.

8: EðMÞ – REAL (KIND=nag_wp) array Input

On entry: if ISXðjÞ 6¼ 0, EðjÞ must contain the location shift (mean), �j, for the jth variable.

If ISXðjÞ ¼ 0, EðjÞ is not referenced.

9: ZðLDZ;NVARÞ – REAL (KIND=nag_wp) array Output

On exit: the matrix of standardized values (z-scores), Z.

10: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which G03ZAF
is called.

Constraint: LDZ � N.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or NVAR < 1,
or M < NVAR,
or LDX < N,
or LDZ < N.

IFAIL ¼ 2

On entry, there are not precisely NVAR elements of ISX 6¼ 0.

IFAIL ¼ 3

On entry, ISXðjÞ 6¼ 0 and SðjÞ � 0:0 for some j.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Standard accuracy is achieved.

8 Parallelism and Performance

G03ZAF is not threaded in any implementation.

9 Further Comments

Means and standard deviations may be obtained using G01ATF or G02BXF.

10 Example

A 4 by 3 data matrix is input along with location and scaling values. The first and third columns are
scaled and the results printed.
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10.1 Program Text

Program g03zafe

! G03ZAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g03zaf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ldx, ldz, m, n, nvar

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: e(:), s(:), x(:,:), z(:,:)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: count

! .. Executable Statements ..
Write (nout,*) ’G03ZAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip headings in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ldx = n
Allocate (x(ldx,m),isx(m),e(m),s(m))

! Read in data
Read (nin,*)(x(i,1:m),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in shift and scaling
Read (nin,*) e(1:m)
Read (nin,*) s(1:m)

! Calculate NVAR
nvar = count(isx(1:m)/=0)

ldz = n
Allocate (z(ldz,nvar))

! Standardize data
ifail = 0
Call g03zaf(n,m,x,ldx,nvar,isx,s,e,z,ldz,ifail)

! Display results
ifail = 0
Call x04caf(’General’,’ ’,n,nvar,z,ldz,’Standardized Values’,ifail)

End Program g03zafe
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10.2 Program Data

G03ZAF Example Program Data
4 3 :: N, M
15.0 0.0 1500.0
12.0 1.0 1000.0
18.0 2.0 1200.0
14.0 3.0 500.0 :: End of X
1 0 1 :: ISX

14.75 0.0 1050.0 :: E
2.50 0.0 420.3 :: S

10.3 Program Results

G03ZAF Example Program Results

Standardized Values
1 2

1 0.1000 1.0707
2 -1.1000 -0.1190
3 1.3000 0.3569
4 -0.3000 -1.3086
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NAG Library Chapter Contents

G04 – Analysis of Variance

G04 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

G04AGF 8 nagf_anova_hier2
Two-way analysis of variance, hierarchical classification, subgroups of
unequal size

G04BBF 16 nagf_anova_random
Analysis of variance, randomized block or completely randomized design,
treatment means and standard errors

G04BCF 17 nagf_anova_rowcol
Analysis of variance, general row and column design, treatment means and
standard errors

G04CAF 16 nagf_anova_factorial
Analysis of variance, complete factorial design, treatment means and
standard errors

G04DAF 17 nagf_anova_contrasts
Computes sum of squares for contrast between means

G04DBF 17 nagf_anova_confidence
Computes confidence intervals for differences between means computed by
G04BBF or G04BCF

G04EAF 17 nagf_anova_dummyvars
Computes orthogonal polynomials or dummy variables for factor/
classification variable
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1 Scope of the Chapter

This chapter is concerned with methods for analysing the results of designed experiments. The range of
experiments covered include:

single factor designs with equal sized blocks such as randomized complete block and balanced
incomplete block designs,

row and column designs such as Latin squares, and

complete factorial designs.

Further designs may be analysed by combining the analyses provided by multiple calls to routines or by
using general linear model routines provided in Chapter G02.

2 Background to the Problems

2.1 Experimental Designs

An experimental design consists of a plan for allocating a set of controlled conditions, the treatments, to
subsets of the experimental material, the plots or units. Two examples are:

(i) In an experiment to examine the effects of different diets on the growth of chickens, the chickens
were kept in pens and a different diet was fed to the birds in each pen. In this example the pens are
the units and the different diets are the treatments.

(ii) In an experiment to compare four materials for wear-loss, a sample from each of the materials is
tested in a machine that simulates wear. The machine can take four samples at a time and a number
of runs are made. In this experiment the treatments are the materials and the units are the samples
from the materials.

In designing an experiment the following principles are important.

(a) Randomization: given the overall plan of the experiment, the final allocation of treatments to units
is performed using a suitable random allocation. This avoids the possibility of a systematic bias in
the allocation and gives a basis for the statistical analysis of the experiment.

(b) Replication: each treatment should be ‘observed’ more than once. So in example (b) more than one
sample from each material should be tested. Replication allows for an estimate of the variability of
the treatment effect to be measured.

(c) Blocking: in many situations the experimental material will not be homogeneous and there may be
some form of systematic variation in the experimental material. In order to reduce the effect of
systematic variation the material can be grouped into blocks so that units within a block are similar
but there is variation between blocks. For example, in an animal experiment litters may be
considered as blocks; in an industrial experiment it may be material from one production batch.

(d) Factorial designs: if more than one type of treatment is under consideration, for example the effect
of changes in temperature and changes in pressure, a factorial design consists of looking at all
combinations of temperature and pressure. The different types of treatment are known as factors
and the different values of the factors that are considered in the experiment are known as levels. So
if three temperatures and four different pressures were being considered, then factor 1
(temperature) would have 3 levels and factor 2 (pressure) would have four levels and the design
would be a 3� 4 factorial giving a total of 12 treatment combinations. This design has the
advantage of being able to detect the interaction between factors, that is, the effect of the
combination of factors.

The following are examples of standard experimental designs; in the descriptions, it is assumed that
there are t treatments.

(a) Completely Randomised Design: there are no blocks and the treatments are allocated to units at
random.

(b) Randomised Complete Block Design: the experimental units are grouped into b blocks of t units
and each treatment occurs once in each block. The treatments are allocated to units within blocks at
random.
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(c) Latin Square Designs: the units can be represented as cells of a t by t square classified by rows and
columns. The t rows and t columns represent sources of variation in the experimental material. The
design allocates the treatments to the units so that each treatment occurs once in each row and each
column.

(d) Balanced Incomplete Block Designs: the experimental units are grouped into b blocks of k < t
units. The treatments are allocated so that each treatment is replicated the same number of times
and each treatment occurs in the same block with any other treatment the same number of times.
The treatments are allocated to units within blocks at random.

(e) Complete Factorial Experiments: if there are t treatment combinations derived from the levels of
all factors then either there are no blocks or the blocks are of size t units.

Other designs include: partially balanced incomplete block designs, split-plot designs, factorial designs
with confounding, and fractional factorial designs. For further information on these designs, see
Cochran and Cox (1957), Davis (1978) or John and Quenouille (1977).

2.2 Analysis of Variance

The analysis of a designed experiment usually consists of two stages. The first is the computation of the
estimate of variance of the underlying random variation in the experiment along with tests for the
overall effect of treatments. This results in an analysis of variance (ANOVA) table. The second stage is
a more detailed examination of the effect of different treatments either by comparing the difference in
treatment means with an appropriate standard error or by the use of orthogonal contrasts.

The analysis assumes a linear model such as

yij ¼ �þ �i þ �l þ eij;

where yij is the observed value for unit j of block i, � is the overall mean, �i is the effect of the ith
block, �l is the effect of the lth treatment which has been applied to the unit, and eij is the random error
term associated with this unit. The expected value of eij is zero and its variance is �2.

In the analysis of variance, the total variation, measured by the sum of squares of observations about
the overall mean, is partitioned into the sum of squares due to blocks, the sum of squares due to
treatments, and a residual or error sum of squares. This partition corresponds to the parameters �, � and
�. In parallel to the partition of the sum of squares there is a partition of the degrees of freedom
associated with the sums of squares. The total degrees of freedom is n� 1, where n is the number of
observations. This is partitioned into b� 1 degrees of freedom for blocks, t� 1 degrees of freedom for
treatments, and n� t� bþ 1 degrees of freedom for the residual sum of squares. From these the mean
squares can be computed as the sums of squares divided by their degrees of freedom. The residual mean
square is an estimate of �2. An F -test for an overall effect of the treatments can be calculated as the
ratio of the treatment mean square to the residual mean square.

For row and column designs the model is

yij ¼ �þ �i þ �j þ �l þ eij;

where �i is the effect of the ith row and �j is the effect of the jth column. Usually the rows and
columns are orthogonal. In the analysis of variance the total variation is partitioned into rows, columns
treatments and residual.

In the case of factorial experiments, the treatment sum of squares and degrees of freedom may be
partitioned into main effects for the factors and interactions between factors. The main effect of a factor
is the effect of the factor averaged over all other factors. The interaction between two factors is the
additional effect of the combination of the two factors, over and above the additive effects of the two
factors, averaged over all other factors. For a factorial experiment in blocks with two factors, A and B,
in which the jth unit of the ith block received level l of factor A and level k of factor B the model is

yij ¼ �þ �i þ �l þ �k þ ��lkð Þ þ eij;

where �l is the main effect of level l of factor a, �k is the main effect of level k of factor B, and ��lk is
the interaction between level l of A and level k of B. Higher-order interactions can be defined in a
similar way.
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Once the significant treatment effects have been uncovered they can be further investigated by
comparing the differences between the means with the appropriate standard error. Some of the
assumptions of the analysis can be checked by examining the residuals.

3 Recommendations on Choice and Use of Available Routines

This chapter contains routines that can handle a wide range of experimental designs plus routines for
further analysis and a routine to compute dummy variables for use in a general linear model.

G04BBF computes the analysis of variance and treatment means with standard errors for any block
design with equal sized blocks. The routine will handle both complete block designs and balanced and
partially balanced incomplete block designs.

G04BCF computes the analysis of variance and treatment means with standard errors for a row and
column designs such as a Latin square.

G04CAF computes the analysis of variance and treatment means with standard errors for a complete
factorial experiment.

Other designs can be analysed by combinations of calls to G04BBF, G04BCF and G04CAF. The
routines compute the residuals from the model specified by the design, so these can then be input as the
response variable in a second call to one of the routines. For example a factorial experiment in a Latin
square design can be analysed by first calling G04BCF to remove the row and column effects and then
calling G04CAF with the residuals from G04BCF as the response variable to compute the ANOVA for
the treatments. Another example would be to use both G02DAF and G04BBF to compute an analysis of
covariance.

For experiments with missing values, these values can be estimated by using the Healy and Westmacott
procedure; see John and Quenouille (1977). This procedure involves starting with initial estimates for
the missing values and then making adjustments based on the residuals from the analysis. The improved
estimates are then used in further iterations of the process.

For designs that cannot be analysed by the above approach the routine G04EAF can be used to compute
dummy variables from the classification variables or factors that define the design. These dummy
variables can then be used with the general linear model routine G02DAF.

As well as the routines considered above the routine G04AGF computes the analysis of variance for a
two strata nested design.

In addition to the routines for computing the means and the basic analysis of variance two routines are
available for further analysis.

G04DAF computes the sum of squares for a user-defined contrast between means. For example, if there
are four treatments, the first is a control and the other three are different amounts of a chemical the
contrasts that are the difference between no chemical and chemical and the linear effect of chemical
could be defined. G04DAF could be used to compute the sums of squares for these contrasts from
which the appropriate F -tests could be computed.

G04DBF computes simultaneous confidence intervals for the differences between means with the choice
of different methods such as the Tukey–Kramer, Bonferron and Dunn–Sidak.

4 Functionality Index

Analysis of variance for,
complete factorial design ................................................................................................ G04CAF
general block design or completely randomized design.................................................. G04BBF
general block design or completely randomized design,

row and column design.............................................................................................. G04BCF
two-way hierarchical classification, subgroups of unequal size ...................................... G04AGF

General linear model,
generate dummy variables and orthogonal polynomials.................................................. G04EAF
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Inferences on means,
simultaneous confidence intervals ................................................................................... G04DBF
sum of squares for contrast between means ................................................................... G04DAF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References

Cochran W G and Cox G M (1957) Experimental Designs Wiley

Davis O L (1978) The Design and Analysis of Industrial Experiments Longman

John J A (1987) Cyclic Designs Chapman and Hall

John J A and Quenouille M H (1977) Experiments: Design and Analysis Griffin

Searle S R (1971) Linear Models Wiley
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NAG Library Routine Document

G04AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G04AGF performs an analysis of variance for a two-way hierarchical classification with subgroups of
possibly unequal size, and also computes the treatment group and subgroup means. A fixed effects
model is assumed.

2 Specification

SUBROUTINE G04AGF (Y, N, K, LSUB, NOBS, L, NGP, GBAR, SGBAR, GM, SS,
IDF, F, FP, IFAIL)

&

INTEGER N, K, LSUB(K), NOBS(L), L, NGP(K), IDF(4), IFAIL
REAL (KIND=nag_wp) Y(N), GBAR(K), SGBAR(L), GM, SS(4), F(2), FP(2)

3 Description

In a two-way hierarchical classification, there are k ( � 2) treatment groups, the ith of which is
subdivided into li treatment subgroups. The jth subgroup of group i contains nij observations, which
may be denoted by

y1ij; y2ij; . . . ; ynijij:

The general observation is denoted by ymij, being the mth observation in subgroup j of group i, for
1 � i � k, 1 � j � li, 1 � m � nij.
The following quantities are computed

(i) The subgroup means

�y:ij ¼

Xnij
m¼1

ymij

nij

(ii) The group means

�y:i: ¼

Xli
j¼1

Xnij
m¼1

ymij

Xli
j¼1

nij

(iii) The grand mean

�y... ¼

Xk
i¼1

Xli
j¼1

Xnij
m¼1

ymij

Xk
i¼1

Xli
j¼1

nij
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(iv) The number of observations in each group

ni: ¼
Xli
j¼1

nij

(v) Sums of squares

Between groups ¼ SSg ¼
Xk
i¼1
ni: �y:i: � �y...ð Þ2

Between subgroups within groups ¼ SSsg ¼
Xk
i¼1

Xli
j¼1

nij y:ij � �y:i:
� �2

Residual ðwithin subgroupsÞ ¼ SSres ¼
Xk
i¼1

Xli
j¼1

Xnij
m¼1

ymij � �y:ij
� �2 ¼ SStot � SSg � SSsg

Corrected total ¼ SStot ¼
Xk
i¼1

Xli
j¼1

Xnij
m¼1

ymij � �y...
� �2

(vi) Degrees of freedom of variance components

Between groups: k� 1

Subgroups within groups: l� k
Residual: n� l
Total: n� 1

where

l ¼
Xk
i¼1
li,

n ¼
Xk
i¼1
ni:

(vii) F ratios. These are the ratios of the group and subgroup mean squares to the residual mean
square.

Groups F1 ¼
Between groups sum of squares= k� 1ð Þ

Residual sum of squares= n� lð Þ ¼ SSg= k� 1ð Þ
SSres= n� lð Þ

Subgroups F2 ¼
Between subgroups ðwithin groupÞ sum of squares= l� kð Þ

Residual sum of squares= n� lð Þ ¼ SSsg= l� kð Þ
SSres= n� lð Þ

If either F ratio exceeds 9999:0, the value 9999:0 is assigned instead.

(viii) F significances. The probability of obtaining a value from the appropriate F -distribution which
exceeds the computed mean square ratio.

Groups p1 ¼ Prob F k�1ð Þ; n�lð Þ > F1

� �
Subgroups p2 ¼ Prob F l�kð Þ; n�lð Þ > F2

� �
where F�1;�2 denotes the central F -distribution with degrees of freedom �1 and �2.

If any Fi ¼ 9999:0, then pi is set to zero, i ¼ 1; 2.

4 References

Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin

Moore P G, Shirley E A and Edwards D E (1972) Standard Statistical Calculations Pitman
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5 Arguments

1: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of Y must contain the observations ymij in the following order:

y111; y211; . . . ; yn1111; y112; y212; . . . ; yn1212; . . . ; y11l1 ; . . . ;

yn1l1 1l1 ; . . . ; y1ij; . . . ; ynijij; . . . ; y1klk ; . . . ; ynklk klk :

In words, the ordering is by group, and within each group is by subgroup, the members of each
subgroup being in consecutive locations in Y.

2: N – INTEGER Input

On entry: n, the total number of observations.

3: K – INTEGER Input

On entry: k, the number of groups.

Constraint: K � 2.

4: LSUBðKÞ – INTEGER array Input

On entry: the number of subgroups within group i, li, for i ¼ 1; 2; . . . ; k.

Constraint: LSUBðiÞ > 0, for i ¼ 1; 2; . . . ; k.

5: NOBSðLÞ – INTEGER array Input

On entry: the numbers of observations in each subgroup, nij, in the following order:

n11; n12; . . . ; n1l1 ; n21; . . . ; n2l2 ; . . . ; nk1; . . . ; nklk

Constraint: n ¼
Xk
i¼1

Xli
j¼1

nij, that is N ¼
Xl
i¼1

NOBSðiÞ and NOBSðiÞ > 0, for i ¼ 1; 2; . . . ; l.

6: L – INTEGER Input

On entry: l, the total number of subgroups.

Constraint: L ¼
Xk
i¼1

LSUBðiÞ.

7: NGPðKÞ – INTEGER array Output

On exit: the total number of observations in group i, ni:, for i ¼ 1; 2; . . . ; k.

8: GBARðKÞ – REAL (KIND=nag_wp) array Output

On exit: the mean for group i, �y:i:, for i ¼ 1; 2; . . . ; k.

9: SGBARðLÞ – REAL (KIND=nag_wp) array Output

On exit: the subgroup means, �y:ij, in the following order:

�y:11; �y:12; . . . ; �y:1l1 ; �y:21; �y:22; . . . ; �y:2l2 ; . . . ; �y:k1; �y:k2; . . . ; �y:klk :

10: GM – REAL (KIND=nag_wp) Output

On exit: the grand mean, �y....
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11: SSð4Þ – REAL (KIND=nag_wp) array Output

On exit: contains the sums of squares for the analysis of variance, as follows;

SSð1Þ ¼ Between group sum of squares, SSg,

SSð2Þ ¼ Between subgroup within groups sum of squares, SSsg,

SSð3Þ ¼ Residual sum of squares, SSres,

SSð4Þ ¼ Corrected total sum of squares, SStot.

12: IDFð4Þ – INTEGER array Output

On exit: contains the degrees of freedom attributable to each sum of squares in the analysis of
variance, as follows:

IDFð1Þ ¼ Degrees of freedom for between group sum of squares,

IDFð2Þ ¼ Degrees of freedom for between subgroup within groups sum of squares,

IDFð3Þ ¼ Degrees of freedom for residual sum of squares,

IDFð4Þ ¼ Degrees of freedom for corrected total sum of squares.

13: Fð2Þ – REAL (KIND=nag_wp) array Output

On exit: contains the mean square ratios, F1 and F2, for the between groups variation, and the
between subgroups within groups variation, with respect to the residual, respectively.

14: FPð2Þ – REAL (KIND=nag_wp) array Output

On exit: contains the significances of the mean square ratios, p1 and p2 respectively.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K � 1.

IFAIL ¼ 2

On entry, LSUBðiÞ � 0, for some i ¼ 1; 2; . . . ; k.

IFAIL ¼ 3

On entry, L 6¼
Xk
i¼1

LSUBðiÞ
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IFAIL ¼ 4

On entry, NOBSðiÞ � 0, for some i ¼ 1; 2; . . . ; l.

IFAIL ¼ 5

On entry, N 6¼
Xl
i¼1

NOBSðiÞ.

IFAIL ¼ 6

The total corrected sum of squares is zero, indicating that all the data values are equal. The
means returned are therefore all equal, and the sums of squares are zero. No assignments are
made to IDF, F, and FP.

IFAIL ¼ 7

The residual sum of squares is zero. This arises when either each subgroup contains exactly one
observation, or the observations within each subgroup are equal. The means, sums of squares,
and degrees of freedom are computed, but no assignments are made to F and FP.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G04AGF is not threaded in any implementation.

9 Further Comments

The time taken by G04AGF increases approximately linearly with the total number of observations, n.

10 Example

This example has two groups, the first of which consists of five subgroups, and the second of three
subgroups. The numbers of observations in each subgroup are not equal. The data represent the
percentage stretch in the length of samples of sack kraft drawn from consignments (subgroups) received
over two years (groups). For details see Moore et al. (1972).

G04 – Analysis of Variance G04AGF

Mark 26 G04AGF.5



10.1 Program Text

Program g04agfe

! G04AGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g04agf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: gm
Integer :: i, ifail, ii, j, k, l, li, n, nhi, &

nij, nlo, nsub
! .. Local Arrays ..

Real (Kind=nag_wp) :: f(2), fp(2), ss(4)
Real (Kind=nag_wp), Allocatable :: gbar(:), sgbar(:), y(:)
Integer :: idf(4)
Integer, Allocatable :: lsub(:), ngp(:), nobs(:)

! .. Intrinsic Procedures ..
Intrinsic :: sum

! .. Executable Statements ..
Write (nout,*) ’G04AGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in number of groups
Read (nin,*) k

Allocate (lsub(k),ngp(k),gbar(k))

! Read in number of subgroups
Read (nin,*) lsub(1:k)

! Total number of subgroups
l = sum(lsub(1:k))

Allocate (nobs(l),sgbar(l))

! Read in the number of observations
Read (nin,*) nobs(1:l)

! Total number of observations
n = sum(nobs(1:l))

Allocate (y(n))

! Read in the data
Read (nin,*) y(1:n)

! Display data
Write (nout,*) ’Data values’
Write (nout,*)
Write (nout,*) ’ Group Subgroup Observations’
nsub = 0
nlo = 1
Do i = 1, k

li = lsub(i)
Do j = 1, li

nsub = nsub + 1
nij = nobs(nsub)
nhi = nlo + nij - 1
Write (nout,99999) i, j, y(nlo:nhi)
nlo = nlo + nij

End Do
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End Do

! Perform ANOVA
ifail = 0
Call g04agf(y,n,k,lsub,nobs,l,ngp,gbar,sgbar,gm,ss,idf,f,fp,ifail)

! Display results
Write (nout,*)
Write (nout,*) ’Subgroup means’
Write (nout,*)
Write (nout,*) ’ Group Subgroup Mean’
ii = 0
Do i = 1, k

li = lsub(i)
Do j = 1, li

ii = ii + 1
Write (nout,99998) i, j, sgbar(ii)

End Do
End Do
Write (nout,*)
Write (nout,99997) ’ Group 1 mean =’, gbar(1), ’ (’, ngp(1), &

’ observations)’
Write (nout,99997) ’ Group 2 mean =’, gbar(2), ’ (’, ngp(2), &

’ observations)’
Write (nout,99997) ’ Grand mean =’, gm, ’ (’, n, ’ observations)’
Write (nout,*)
Write (nout,*) ’Analysis of variance table’
Write (nout,*)
Write (nout,*) ’ Source SS DF F ratio Sig’
Write (nout,*)
Write (nout,99996) ’Between groups ’, ss(1), idf(1), f(1), fp(1)
Write (nout,99996) ’Bet sbgps within gps ’, ss(2), idf(2), f(2), fp(2)
Write (nout,99996) ’Residual ’, ss(3), idf(3)
Write (nout,*)
Write (nout,99996) ’Total ’, ss(4), idf(4)

99999 Format (1X,I5,I9,4X,10F4.1)
99998 Format (1X,I6,I8,F10.2)
99997 Format (1X,A,F5.2,A,I2,A)
99996 Format (1X,A,F6.3,I5,F7.2,F8.3)

End Program g04agfe

10.2 Program Data

G04AGF Example Program Data
2 :: K (number of groups)
5 3 :: LSUB (number of subgroups per group)
5 3 3 3 2 3 5 3 :: NOBS (number of observations per subgroup)
2.1 2.4 2.0 2.0 2.0
2.4 2.1 2.2 2.4 2.2
2.6 2.4 2.4 2.5 1.9
1.7 2.1 1.5 2.0 1.9
1.7 1.9 1.9 1.9 2.0 2.1 2.3 :: Y (observed data)

10.3 Program Results

G04AGF Example Program Results

Data values

Group Subgroup Observations
1 1 2.1 2.4 2.0 2.0 2.0
1 2 2.4 2.1 2.2
1 3 2.4 2.2 2.6
1 4 2.4 2.4 2.5
1 5 1.9 1.7
2 1 2.1 1.5 2.0
2 2 1.9 1.7 1.9 1.9 1.9
2 3 2.0 2.1 2.3
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Subgroup means

Group Subgroup Mean
1 1 2.10
1 2 2.23
1 3 2.40
1 4 2.43
1 5 1.80
2 1 1.87
2 2 1.86
2 3 2.13

Group 1 mean = 2.21 (16 observations)
Group 2 mean = 1.94 (11 observations)
Grand mean = 2.10 (27 observations)

Analysis of variance table

Source SS DF F ratio Sig

Between groups 0.475 1 16.15 0.001
Bet sbgps within gps 0.816 6 4.63 0.005
Residual 0.559 19

Total 1.850 26
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NAG Library Routine Document

G04BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G04BBF computes the analysis of variance and treatment means and standard errors for a randomized
block or completely randomized design.

2 Specification

SUBROUTINE G04BBF (N, Y, IBLOCK, NT, IT, GMEAN, BMEAN, TMEAN, TABL,
LDTABL, C, LDC, IREP, R, EF, TOL, IRDF, WK, IFAIL)

&

INTEGER N, IBLOCK, NT, IT(*), LDTABL, LDC, IREP(NT), IRDF,
IFAIL

&

REAL (KIND=nag_wp) Y(N), GMEAN, BMEAN(abs(IBLOCK)), TMEAN(NT),
TABL(LDTABL,5), C(LDC,NT), R(N), EF(NT), TOL,
WK(3*NT)

&
&

3 Description

In a completely randomized design, experimental material is divided into a number of units, or plots, to
which a treatment can be applied. In a randomized block design the units are grouped into blocks so
that the variation within blocks is less than the variation between blocks. If every treatment is applied to
one plot in each block it is a complete block design. If there are fewer plots per block than treatments
then the design will be an incomplete block design and may be balanced or partially balanced.

For a completely randomized design, with t treatments and nt plots per treatment, the linear model is

yij ¼ �þ �j þ eij; j ¼ 1; 2; . . . ; t and i ¼ 1; 2; . . . ; nj;

where yij is the ith observation for the jth treatment, � is the overall mean, �j is the effect of the jth
treatment and eij is the random error term. For a randomized block design, with t treatments and b
blocks of k plots, the linear model is

yij lð Þ ¼ �þ �i þ �l þ eij; i ¼ 1; 2; . . . ; b; j ¼ 1; 2; . . . ; k and l ¼ 1; 2; . . . ; t;

where �i is the effect of the ith block and the ij lð Þ notation indicates that the lth treatment is applied to
the jth plot in the ith block.

The completely randomized design gives rise to a one-way analysis of variance. The treatments do not
have to be equally replicated, i.e., do not have to occur the same number of times. First the overall
mean, �̂, is computed and subtracted from the observations to give y0ij ¼ yij � �̂. The estimated
treatment effects, �̂j are then computed as the treatment means of the mean adjusted observations, y0ij,
and the treatment sum of squares can be computed from the sum of squares of the treatment totals of
the y0ij divided by the number of observations per treatment total, nj. The final residuals are computed
as rij ¼ y0ij � �̂j, and, from the residuals, the residual sum of squares is calculated.

For the randomized block design the mean is computed and subtracted from the observations to give
y0ij lð Þ ¼ yij lð Þ � �̂. The estimated block effects, ignoring treatment effects, �̂i, are then computed using

the block means of the y0ij lð Þ and the unadjusted sum of squares computed as the sum of squared block

totals for the y0ij lð Þ divided by number of plots per block, k. The block adjusted observations are then

computed as y00ij lð Þ ¼ y0ij lð Þ ¼ �̂i. In the case of the complete block design, with the same replication for

each treatment within each block, the blocks and treatments are orthogonal, and so the treatment effects
are estimated as the treatment means of the block adjusted observations, y00ij lð Þ. The treatment sum of
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squares is computed as the sum of squared treatment totals of the y00ij lð Þ divided by the number of

replicates to the treatments, r ¼ bk=t. Finally the residuals, and hence the residual sum of squares, are
given by rij lð Þ ¼ y00ij lð Þ � �̂l.

For a design without the same replication for each treatment within each block the treatments and the
blocks will not be orthogonal, so the treatments adjusted for blocks need to be computed. The adjusted
treatment effects are found as the solution to the equations

R�NNT=k
� �

�̂ ¼ q;

where q is the vector of the treatment totals for block adjusted observations, y00ij lð Þ, R is a diagonal

matrix with Rll equal to the number of times the lth treatment is replicated, and N is the t by b
incidence matrix, with Nlj equal to the number of times treatment l occurs in block j. The solution to
the equations can be written as

�̂ ¼ �q

where � is a generalized inverse of R�NNT=kð Þ. The solution is found from the eigenvalue
decomposition of R�NNT=kð Þ. The residuals are first calculated by subtracting the estimated
treatment effects from the block adjusted observations to give r0ij lð Þ ¼ y00ij lð Þ � �̂l. However, since only the

unadjusted block effects have been removed and blocks and treatments are not orthogonal, the block
means of the r0ij lð Þ have to be subtracted to give the correct residuals, rij lð Þ and residual sum of squares.

The mean squares are computed as the sum of squares divided by the degrees of freedom. The degrees
of freedom for the unadjusted blocks is b� 1, for the completely randomized and the complete block
designs the degrees of freedom for the treatments is t� 1. In the general case the degrees of freedom
for treatments is the rank of the matrix �. The F -statistic given by the ratio of the treatment mean
square to the residual mean square tests the hypothesis

H0 : �1 ¼ �2 ¼ � � � ¼ �t ¼ 0:

The standard errors for the difference in treatment effects, or treatment means, for the completely
randomized or the complete block designs, are given by:

se �j � �j�
� �

¼ 1

nj
þ 1

nj�

� �
s2

where s2 is the residual mean square and nj ¼ nj� ¼ b in the complete block design. In the general case
the variances of the treatment effects are given by

var �ð Þ ¼ �s2

from which the appropriate standard errors of the difference between treatment effects or the difference
between adjusted means can be calculated.

In the complete block design all the information on the treatment effects is given by the within block
analysis. In other designs there may be a loss of information due to the non-orthogonality of treatments
and blocks. The efficiency of the within block analysis in these cases is given by the (canonical)
efficiency factors, these are the nonzero eigenvalues of the matrix R�NNT=kð Þ, divided by the
number of replicates in the case of equal replication, or by the mean of the number of replicates in the
unequally replicated case, see John (1987). If more than one eigenvalue is zero then the design is said
to be disconnected and some treatments can only be compared using a between block analysis.

4 References

Cochran W G and Cox G M (1957) Experimental Designs Wiley

Davis O L (1978) The Design and Analysis of Industrial Experiments Longman

John J A (1987) Cyclic Designs Chapman and Hall
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John J A and Quenouille M H (1977) Experiments: Design and Analysis Griffin

Searle S R (1971) Linear Models Wiley

5 Arguments

1: N – INTEGER Input

On entry: the number of observations.

Constraint: N � 2 and if abs IBLOCKð Þ � 2, N must be a multiple of abs IBLOCKð Þ.

2: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the observations in the order as described by IBLOCK and NT.

3: IBLOCK – INTEGER Input

On entry: indicates the block structure.

abs IBLOCKð Þ � 1
There are no blocks, i.e., it is a completely randomized design.

IBLOCK � 2
There are IBLOCK blocks and the data should be input by blocks, i.e., Y must contain the
observations for block 1 followed by the observations for block 2, etc.

IBLOCK � �2
There are abs IBLOCKð Þ blocks and the data is input in parallel with respect to blocks, i.e.,
Yð1Þ must contain the first observation for block 1, Yð2Þ must contain the first observation
for block 2 � � �Yðabs IBLOCKð ÞÞ must contain the first observation for block
abs IBLOCKð Þ;Yðabs IBLOCKþ 1ð ÞÞ must contain the second observation for block 1, etc.

Constraint: IBLOCK ¼ 1, 2 or �2.

4: NT – INTEGER Input

On entry: the number of treatments. If only blocks are required in the analysis then set NT ¼ 1.

Constraints:

if abs IBLOCKð Þ � 2, NT � 1;
otherwise NT � 2.

5: ITð�Þ – INTEGER array Input

Note: the dimension of the array IT must be at least N if NT � 2, and at least 1 otherwise.

On entry: ITðiÞ indicates which of the NT treatments plot i received, for i ¼ 1; 2; . . . ;N.

If NT ¼ 1, IT is not referenced.

Constraint: 1 � ITðiÞ � NT, for i ¼ 1; 2; . . . ;N.

6: GMEAN – REAL (KIND=nag_wp) Output

On exit: the grand mean, �̂.

7: BMEANðabs IBLOCKð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: if abs IBLOCKð Þ � 2, BMEANðjÞ contains the mean for the jth block, �̂j , for
j ¼ 1; 2; . . . ; b.

8: TMEANðNTÞ – REAL (KIND=nag_wp) array Output

On exit: if NT � 2, TMEANðlÞ contains the (adjusted) mean for the lth treatment, �̂� þ �̂l , for
l ¼ 1; 2; . . . ; t, where �̂� is the mean of the treatment adjusted observations, yij lð Þ � �̂l.
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9: TABLðLDTABL; 5Þ – REAL (KIND=nag_wp) array Output

On exit: the analysis of variance table. Column 1 contains the degrees of freedom, column 2 the
sum of squares, and where appropriate, column 3 the mean squares, column 4 the F -statistic and
column 5 the significance level of the F -statistic. Row 1 is for Blocks, row 2 for Treatments, row
3 for Residual and row 4 for Total. Mean squares are computed for all but the Total row;
F -statistics and significance are computed for Treatments and Blocks, if present. Any unfilled
cells are set to zero.

10: LDTABL – INTEGER Input

On entry: the first dimension of the array TABL as declared in the (sub)program from which
G04BBF is called.

Constraint: LDTABL � 4.

11: CðLDC;NTÞ – REAL (KIND=nag_wp) array Output

On exit: if NT � 2, the upper triangular part of C contains the variance-covariance matrix of the
treatment effects, the strictly lower triangular part contains the standard errors of the difference
between two treatment effects (means), i.e., Cði; jÞ contains the covariance of treatment i and j if
j � i and the standard error of the difference between treatment i and j if j < i, for i ¼ 1; 2; . . . ; t
and j ¼ 1; 2; . . . ; t.

12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G04BBF
is called.

Constraint: LDC � NT.

13: IREPðNTÞ – INTEGER array Output

On exit: if NT � 2, the treatment replications, Rll , for l ¼ 1; 2; . . . ;NT.

14: RðNÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals, ri, for i ¼ 1; 2; . . . ;N.

15: EFðNTÞ – REAL (KIND=nag_wp) array Output

On exit: if NT � 2, the canonical efficiency factors.

16: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance value used to check for zero eigenvalues of the matrix �. If TOL ¼ 0:0 a
default value of 10�5 is used.

Constraint: TOL � 0:0.

17: IRDF – INTEGER Input

On entry: an adjustment to the degrees of freedom for the residual and total.

IRDF � 1
The degrees of freedom for the total is set to N� IRDF and the residual degrees of
freedom adjusted accordingly.

IRDF ¼ 0
The total degrees of freedom for the total is set to N� 1, as usual.

Constraint: IRDF � 0.
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18: WKð3� NTÞ – REAL (KIND=nag_wp) array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G04BBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or NT � 0,
or NT ¼ 1 and abs IBLOCKð Þ � 1,
or LDTABL < 4,
or LDC < NT,
or TOL < 0:0,
or IRDF < 0.

IFAIL ¼ 2

On entry, abs IBLOCKð Þ � 2 and N is not a multiple of abs IBLOCKð Þ.

IFAIL ¼ 3

On entry, ITðiÞ < 1 or ITðiÞ > NT for some i when NT � 2,
or no value of IT ¼ j for some j ¼ 1; 2; . . . ;NT, when NT � 2.

IFAIL ¼ 4

On entry, the values of Y are constant.

IFAIL ¼ 5

A computed standard error is zero due to rounding errors, or the eigenvalue computation failed to
converge. Both are unlikely error exits.

IFAIL ¼ 6

The treatments are totally confounded with blocks, so the treatment sum of squares and degrees
of freedom are zero. The analysis of variance table is not computed, except for block and total
sums of squares and degrees of freedom.
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IFAIL ¼ 7

The residual degrees of freedom or the residual sum of squares are zero, columns 3, 4 and 5 of
the analysis of variance table will not be computed and the matrix of standard errors and
covariances, C, will not be scaled by s or s2.

IFAIL ¼ 8

The design is disconnected; the standard errors may not be valid. The design may be nested.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The algorithm used by G04BBF, described in Section 3, achieves greater accuracy than the traditional
algorithms based on the subtraction of sums of squares.

8 Parallelism and Performance

G04BBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G04BBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

To estimate missing values the Healy and Westmacott procedure or its derivatives may be used, see
John and Quenouille (1977). This is an iterative procedure in which estimates of the missing values are
adjusted by subtracting the corresponding values of the residuals. The new estimates are then used in
the analysis of variance. This process is repeated until convergence. A suitable initial value may be the
grand mean �̂. When using this procedure IRDF should be set to the number of missing values plus one
to obtain the correct degrees of freedom for the residual sum of squares.

For designs such as Graeco–Latin squares one or more of the blocking factors has to be removed in a
preliminary analysis before the final analysis using calls to G04BBF or G04BCF. The residuals from the
preliminary analysis are then input to G04BBF. In these cases IRDF should be set to the difference
between N and the residual degrees of freedom from preliminary analysis. Care should be taken when
using this approach as there is no check on the orthogonality of the two analyses.

For analysis of covariance the residuals are obtained from an analysis of variance of both the response
variable and the covariates. The residuals from the response variable are then regressed on the residuals
from the covariates using, say, G02CBF or G02DAF. The results from those routines can be used to test
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for the significance of the covariates. To test the significance of the treatment effects after fitting the
covariate, the residual sum of squares from the regression should be compared with the residual sum of
squares obtained from the equivalent regression but using the residuals from fitting blocks only.

10 Example

The data, given by John and Quenouille (1977), are for a balanced incomplete block design with 10
blocks and 6 treatments and with 3 plots per block. The observations are the degree of pain experienced
and the treatments are penicillin of different potency. The data is input and the analysis of variance
table and treatment means are printed.

10.1 Program Text

Program g04bbfe

! G04BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g04bbf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: ldtabl = 4, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: gmean, tol
Integer :: iblock, ifail, irdf, ldc, lit, n, nt

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: bmean(:), c(:,:), ef(:), r(:), &

tmean(:), wk(:), y(:)
Real (Kind=nag_wp) :: tabl(ldtabl,5)
Integer, Allocatable :: irep(:), it(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’G04BBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, nt, iblock

ldc = nt
If (nt>1) Then

lit = n
Else

lit = 1
End If
Allocate (y(n),bmean(abs(iblock)),tmean(nt),irep(nt),c(ldc,nt),r(n), &

ef(nt),wk(3*nt),it(lit))

! Read in the data and plot information
Read (nin,*) y(1:n)
If (nt>1) Then

Read (nin,*) it(1:n)
End If

! Use default tolerance
tol = 0.0E0_nag_wp

! Use standard degrees of freedom
irdf = 0

! Calculate the ANOVA table
ifail = 0
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Call g04bbf(n,y,iblock,nt,it,gmean,bmean,tmean,tabl,ldtabl,c,ldc,irep,r, &
ef,tol,irdf,wk,ifail)

! Display results
Write (nout,*) ’ ANOVA table’
Write (nout,*)
Write (nout,*) ’ Source df SS MS F’, &

’ Prob’
Write (nout,*)
Write (nout,99998) ’ Blocks ’, tabl(1,1:5)
Write (nout,99998) ’ Treatments ’, tabl(2,1:5)
Write (nout,99998) ’ Residual ’, tabl(3,1:3)
Write (nout,99998) ’ Total ’, tabl(4,1:2)
Write (nout,*)
Write (nout,*) ’ Efficiency Factors’
Write (nout,*)
Write (nout,99999) ef(1:nt)
Write (nout,*)
Write (nout,99997) ’ Grand Mean’, gmean
Write (nout,*)
Write (nout,*) ’ Treatment Means’
Write (nout,*)
Write (nout,99999) tmean(1:nt)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’Lower’,’B’,nt,nt,c,ldc, &

’Standard errors of differences between means’,ifail)

99999 Format (8F10.2)
99998 Format (A,3X,F3.0,2X,3(F10.2,2X),F9.4)
99997 Format (A,F10.2)

End Program g04bbfe

10.2 Program Data

G04BBF Example Program Data
30 6 10 : N, NT, IBLOCK
1 5 4
5 10 6
2 9 3
4 8 6
2 4 7
6 7 5
5 7 2
7 2 4
8 4 2
10 8 7 : End of Y
1 2 3
1 2 4
1 3 5
1 4 6
1 5 6
2 3 6
2 4 5
2 5 6
3 4 5
3 4 6 : End of IT

10.3 Program Results

G04BBF Example Program Results

ANOVA table

Source df SS MS F Prob

Blocks 9. 60.00 6.67 4.79 0.0039
Treatments 5. 101.78 20.36 14.62 0.0000
Residual 15. 20.89 1.39
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Total 29. 182.67

Efficiency Factors

0.00 0.80 0.80 0.80 0.80 0.80

Grand Mean 5.33

Treatment Means

2.50 7.25 8.08 5.92 2.92 5.33

Standard errors of differences between means
1 2 3 4 5 6

1
2 0.8344
3 0.8344 0.8344
4 0.8344 0.8344 0.8344
5 0.8344 0.8344 0.8344 0.8344
6 0.8344 0.8344 0.8344 0.8344 0.8344
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NAG Library Routine Document

G04BCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G04BCF computes the analysis of variance for a general row and column design together with the
treatment means and standard errors.

2 Specification

SUBROUTINE G04BCF (NREP, NROW, NCOL, Y, NT, IT, GMEAN, TMEAN, TABL,
LDTABL, C, LDC, IREP, RPMEAN, RMEAN, CMEAN, R, EF,
TOL, IRDF, WK, IFAIL)

&
&

INTEGER NREP, NROW, NCOL, NT, IT(*), LDTABL, LDC, IREP(NT),
IRDF, IFAIL

&

REAL (KIND=nag_wp) Y(NREP*NROW*NCOL), GMEAN, TMEAN(NT),
TABL(LDTABL,5), C(LDC,NT), RPMEAN(NREP),
RMEAN(NREP*NROW), CMEAN(NREP*NCOL),
R(NREP*NROW*NCOL), EF(NT), TOL, WK(3*NT)

&
&
&

3 Description

In a row and column design the experimental material can be characterised by a two-way classification,
nominally called rows and columns. Each experimental unit can be considered as being located in a
particular row and column. It is assumed that all rows are of the same length and all columns are of the
same length. Sets of equal numbers of rows/columns can be grouped together to form replicates,
sometimes known as squares or rectangles, as appropriate.

If for a replicate, the number of rows, the number of columns and the number of treatments are equal
and every treatment occurs once in each row and each column then the design is a Latin square. If this
is not the case the treatments will be non-orthogonal to rows and columns. For example in the case of a
lattice square each treatment occurs only once in each square.

For a row and column design, with t treatments in r rows and c columns and b replicates or squares
with n ¼ brc observations the linear model is:

yijk lð Þ ¼ �þ �i þ �j þ �k þ �l þ eijk

for i ¼ 1; 2 . . . ; b, j ¼ 1; 2; . . . ; r, k ¼ 1; 2 . . . ; c and l ¼ 1; 2; . . . ; t, where �i is the effect of the ith
replicate, �j is the effect of the jth row, �k is the effect of the kth column and the ijk lð Þ notation
indicates that the lth treatment is applied to the unit in row j, column k of replicate i.

To compute the analysis of variance for a row and column design the mean is computed and subtracted
from the observations to give, y0ijk lð Þ ¼ yijk lð Þ � �̂. Since the replicates, rows and columns are orthogonal

the estimated effects, ignoring treatment effects, �̂i, �̂j, �̂k, can be computed using the appropriate
means of the y0ijk lð Þ, and the unadjusted sum of squares computed as the appropriate sum of squared

totals for the y0ijk lð Þ divided by number of units per total. The observations adjusted for replicates, rows

and columns can then be computed by subtracting the estimated effects from y0ijk lð Þ to give y00ijk lð Þ.

In the case of a Latin square design the treatments are orthogonal to replicates, rows and columns and
so the treatment effects, �̂l, can be estimated as the treatment means of the adjusted observations, y00ijk lð Þ.

The treatment sum of squares is computed as the sum of squared treatment totals of the y00ij lð Þ divided by

the number of times each treatment is replicated. Finally the residuals, and hence the residual sum of
squares, are given by rij lð Þ ¼ y00ij lð Þ � �̂l.
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For a design which is not orthogonal, for example a lattice square or an incomplete Latin square, the
treatment effects adjusted for replicates, rows and columns need to be computed. The adjusted treatment
effects are found as the solution to the equations:

A�̂ ¼ R�NbN
T
b = rcð Þ �NrN

T
r = bcð Þ �NcN

T
c = brð Þ

� �
�̂ ¼ q

where q is the vector of the treatment totals of the observations adjusted for replicates, rows and
columns, y00ijk lð Þ, R is a diagonal matrix with Rll equal to the number of times the lth treatment is

replicated, and Nb is the t by b incidence matrix, with Nl;i equal to the number of times treatment l
occurs in replicate i, with Nr and Nc being similarly defined for rows and columns. The solution to the
equations can be written as:

�̂ ¼ �q

where, � is a generalized inverse of A. The solution is found from the eigenvalue decomposition of A.
The residuals are first calculated by subtracting the estimated adjusted treatment effects from the
adjusted observations to give r0ij lð Þ ¼ y00ij lð Þ � �̂l. However, since only the unadjusted replicate, row and

column effects have been removed and they are not orthogonal to treatments, the replicate, row and
column means of the r0ij lð Þ have to be subtracted to give the correct residuals, rij lð Þ and residual sum of

squares.

Given the sums of squares, the mean squares are computed as the sums of squares divided by the
degrees of freedom. The degrees of freedom for the unadjusted replicates, rows and columns are b� 1,
r� 1 and c� 1 respectively and for the Latin square designs the degrees of freedom for the treatments
is t� 1. In the general case the degrees of freedom for treatments is the rank of the matrix �. The
F -statistic given by the ratio of the treatment mean square to the residual mean square tests the
hypothesis:

H0 : �1 ¼ �2 ¼ � � � ¼ �t ¼ 0:

The standard errors for the difference in treatment effects, or treatment means, for Latin square designs,
are given by:

se �̂j � �̂j�
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2= btð Þ

q
where s2 is the residual mean square. In the general case the variances of the treatment effects are given
by:

Var �̂ð Þ ¼ �s2

from which the appropriate standard errors of the difference between treatment effects or the difference
between adjusted means can be calculated.

The analysis of a row-column design can be considered as consisting of different strata: the replicate
stratum, the rows within replicate and the columns within replicate strata and the units stratum. In the
Latin square design all the information on the treatment effects is given at the units stratum. In other
designs there may be a loss of information due to the non-orthogonality of treatments and replicates,
rows and columns and information on treatments may be available in higher strata. The efficiency of the
estimation at the units stratum is given by the (canonical) efficiency factors, these are the nonzero
eigenvalues of the matrix, A, divided by the number of replicates in the case of equal replication, or by
the mean of the number of replicates in the unequally replicated case, see John (1987). If more than one
eigenvalue is zero then the design is said to be disconnected and information on some treatment
comparisons can only be obtained from higher strata.

4 References

Cochran W G and Cox G M (1957) Experimental Designs Wiley

Davis O L (1978) The Design and Analysis of Industrial Experiments Longman

John J A (1987) Cyclic Designs Chapman and Hall
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John J A and Quenouille M H (1977) Experiments: Design and Analysis Griffin

Searle S R (1971) Linear Models Wiley

5 Arguments

1: NREP – INTEGER Input

On entry: b, the number of replicates.

Constraint: NREP � 1.

2: NROW – INTEGER Input

On entry: r, the number of rows per replicate.

Constraint: NROW � 2.

3: NCOL – INTEGER Input

On entry: c, the number of columns per replicate.

Constraint: NCOL � 2.

4: YðNREP� NROW� NCOLÞ – REAL (KIND=nag_wp) array Input

On entry: the n ¼ brc observations ordered by columns within rows within replicates. That is
Yðrc i � 1ð Þ þ r j � 1ð Þ þ kÞ contains the observation from the kth column of the jth row of the
ith replicate, for i ¼ 1; 2; . . . ; b, j ¼ 1; 2; . . . ; r and k ¼ 1; 2; . . . ; c.

5: NT – INTEGER Input

On entry: the number of treatments. If only replicates, rows and columns are required in the
analysis then set NT ¼ 1.

Constraint: NT � 1.

6: ITð�Þ – INTEGER array Input

Note: the dimension of the array IT must be at least NREP� NROW� NCOL if NT > 1, and at
least 1 otherwise.

On entry: if NT > 1, ITðiÞ indicates which of the NT treatments unit i received, for
i ¼ 1; 2; . . . ; n.

If NT ¼ 1, IT is not referenced.

Constraint: if NT � 2, 1 � ITðiÞ � NT, for i ¼ 1; 2; . . . ; n.

7: GMEAN – REAL (KIND=nag_wp) Output

On exit: the grand mean, �̂.

8: TMEANðNTÞ – REAL (KIND=nag_wp) array Output

On exit: if NT � 2, TMEANðlÞ contains the (adjusted) mean for the lth treatment, �̂� þ �̂l , for
l ¼ 1; 2; . . . ; t, where �̂� is the mean of the treatment adjusted observations yijk lð Þ � �̂l. Otherwise
TMEAN is not referenced.

9: TABLðLDTABL; 5Þ – REAL (KIND=nag_wp) array Output

On exit: the analysis of variance table. Column 1 contains the degrees of freedom, column 2 the
sum of squares, and where appropriate, column 3 the mean squares, column 4 the F -statistic and
column 5 the significance level of the F -statistic. Row 1 is for replicates, row 2 for rows, row 3
for columns, row 4 for treatments (if NT > 1), row 5 for residual and row 6 for total. Mean
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squares are computed for all but the total row, F -statistics and significance are computed for
treatments, replicates, rows and columns. Any unfilled cells are set to zero.

10: LDTABL – INTEGER Input

On entry: the first dimension of the array TABL as declared in the (sub)program from which
G04BCF is called.

Constraint: LDTABL � 6.

11: CðLDC;NTÞ – REAL (KIND=nag_wp) array Output

On exit: the upper triangular part of C contains the variance-covariance matrix of the treatment
effects, the strictly lower triangular part contains the standard errors of the difference between
two treatment effects (means), i.e., Cði; jÞ contains the covariance of treatment i and j if j � i
and the standard error of the difference between treatment i and j if j < i, for i ¼ 1; 2; . . . ; t and
j ¼ 1; 2; . . . ; t.

12: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G04BCF
is called.

Constraint: LDC � NT.

13: IREPðNTÞ – INTEGER array Output

On exit: if NT > 1, the treatment replications, Rll , for l ¼ 1; 2; . . . ;NT. Otherwise IREP is not
referenced.

14: RPMEANðNREPÞ – REAL (KIND=nag_wp) array Output

On exit: if NREP > 1, RPMEANðiÞ contains the mean for the ith replicate, �̂þ �̂i, for
i ¼ 1; 2; . . . ; b. Otherwise RPMEAN is not referenced.

15: RMEANðNREP� NROWÞ – REAL (KIND=nag_wp) array Output

On exit: RMEANðjÞ contains the mean for the jth row, �̂þ �̂i, for j ¼ 1; 2; . . . ; r.

16: CMEANðNREP� NCOLÞ – REAL (KIND=nag_wp) array Output

On exit: CMEANðkÞ contains the mean for the kth column, �̂þ �̂k , for k ¼ 1; 2; . . . ; c.

17: RðNREP� NROW� NCOLÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals, ri, for i ¼ 1; 2; . . . ; n.

18: EFðNTÞ – REAL (KIND=nag_wp) array Output

On exit: if NT � 2, the canonical efficiency factors. Otherwise EF is not referenced.

19: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance value used to check for zero eigenvalues of the matrix �. If TOL ¼ 0:0 a
default value of 0:00001 is used.

Constraint: TOL � 0:0.

20: IRDF – INTEGER Input

On entry: an adjustment to the degrees of freedom for the residual and total.

IRDF � 1
The degrees of freedom for the total is set to n� IRDF and the residual degrees of
freedom adjusted accordingly.
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IRDF ¼ 0
the total degrees of freedom for the total is set to n� 1, as usual.

Constraint: IRDF � 0.

21: WKð3� NTÞ – REAL (KIND=nag_wp) array Workspace

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G04BCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NREP < 1,
or NROW < 2,
or NCOL < 2,
or NT < 1,
or LDTABL < 6,
or LDC < NT,
or TOL < 0:0,
or IRDF < 0.

IFAIL ¼ 2

On entry, ITðiÞ < 1 or ITðiÞ > NT for some i when NT � 2,
or no value of IT ¼ j for some j ¼ 1; 2; . . . ;NT, when NT � 2.

IFAIL ¼ 3

On entry, the values of Y are constant.

IFAIL ¼ 4

A computed standard error is zero due to rounding errors, or the eigenvalue computation failed to
converge. Both are unlikely error exits.

IFAIL ¼ 5

The treatments are totally confounded with replicates, rows and columns, so the treatment sum of
squares and degrees of freedom are zero. The analysis of variance table is not computed, except
for replicate, row, column and total sums of squares and degrees of freedom.
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IFAIL ¼ 6

The residual degrees of freedom or the residual sum of squares are zero, columns 3, 4 and 5 of
the analysis of variance table will not be computed and the matrix of standard errors and
covariances, C, will not be scaled by s or s2.

IFAIL ¼ 7

The design is disconnected, the standard errors may not be valid. The design may have a nested
structure.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The algorithm used in G04BCF, described in Section 3, achieves greater accuracy than the traditional
algorithms based on the subtraction of sums of squares.

8 Parallelism and Performance

G04BCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G04BCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

To estimate missing values the Healy and Westmacott procedure or its derivatives may be used, see
John and Quenouille (1977). This is an iterative procedure in which estimates of the missing values are
adjusted by subtracting the corresponding values of the residuals. The new estimates are then used in
the analysis of variance. This process is repeated until convergence. A suitable initial value may be the
grand mean. When using this procedure IRDF should be set to the number of missing values plus one to
obtain the correct degrees of freedom for the residual sum of squares.

For analysis of covariance the residuals are obtained from an analysis of variance of both the response
variable and the covariates. The residuals from the response variable are then regressed on the residuals
from the covariates using, say, G02CBF or G02DAF. The results from those routines can be used to test
for the significance of the covariates. To test the significance of the treatment effects after fitting the
covariate, the residual sum of squares from the regression should be compared with the residual sum of
squares obtained from the equivalent regression but using the residuals from fitting replicates, rows and
columns only.
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10 Example

The data for a 5� 5 Latin square is input and the ANOVA and treatment means computed and printed.
Since the design is orthogonal only one standard error need be printed

10.1 Program Text

Program g04bcfe

! G04BCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g04bcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: ldtabl = 6, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: gmean, tol
Integer :: ifail, irdf, ldc, lit, n, ncol, &

nrep, nrow, nt
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), cmean(:), ef(:), r(:), &
rmean(:), rpmean(:), tmean(:), &
wk(:), y(:)

Real (Kind=nag_wp) :: tabl(ldtabl,5)
Integer, Allocatable :: irep(:), it(:)

! .. Executable Statements ..
Write (nout,*) ’G04BCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nrep, nrow, ncol, nt

n = nrep*nrow*ncol
If (nt>1) Then

lit = n
Else

lit = 1
End If
ldc = nt
Allocate (irep(nt),y(n),tmean(nt),it(lit),c(ldc,nt),rpmean(nrep), &

rmean(nrep*nrow),cmean(nrep*ncol),r(n),ef(nt),wk(3*nt))

! Read in the data
Read (nin,*) y(1:n)
If (nt>1) Then

Read (nin,*) it(1:n)
End If

! Use default tolerance
tol = 0.0E0_nag_wp

! Use standard degrees of freedom
irdf = 0

! Calculate the ANOVA table
ifail = 0
Call g04bcf(nrep,nrow,ncol,y,nt,it,gmean,tmean,tabl,ldtabl,c,ldc,irep, &

rpmean,rmean,cmean,r,ef,tol,irdf,wk,ifail)

! Display results
Write (nout,*) ’ ANOVA TABLE’
Write (nout,*)
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If (nrep>1) Then
Write (nout,99998) ’ Reps ’, tabl(1,1:5)

End If
Write (nout,99998) ’ Rows ’, tabl(2,1:5)
Write (nout,99998) ’ Columns ’, tabl(3,1:5)
If (nt>1) Then

Write (nout,99998) ’ Treatments ’, tabl(4,1:5)
End If
Write (nout,99998) ’ Residual ’, tabl(5,1:3)
Write (nout,99998) ’ Total ’, tabl(6,1:2)
If (nt>1) Then

Write (nout,*)
Write (nout,*) ’ Treatment means’
Write (nout,*)
Write (nout,99999) tmean(1:nt)
Write (nout,*)
Write (nout,99997) ’ S.E. of difference (orthogonal design) = ’, &

c(2,1)
End If

99999 Format (10F10.4)
99998 Format (A,F3.0,2X,3(F10.4,2X),F8.4)
99997 Format (A,F10.4)

End Program g04bcfe

10.2 Program Data

G04BCF Example Program Data
1 5 5 5
6.67 7.15 8.29 8.95 9.62
5.40 4.77 5.40 7.54 6.93
7.32 8.53 8.50 9.99 9.68
4.92 5.00 7.29 7.85 7.08
4.88 6.16 7.83 5.38 8.51
5 4 1 3 2
2 5 4 1 3
3 2 5 4 1
1 3 2 5 4
4 1 3 2 5

10.3 Program Results

G04BCF Example Program Results

ANOVA TABLE

Rows 4. 29.4231 7.3558 9.0266 0.0013
Columns 4. 22.9950 5.7487 7.0545 0.0037
Treatments 4. 0.5423 0.1356 0.1664 0.9514
Residual 12. 9.7788 0.8149
Total 24. 62.7392

Treatment means

7.3180 7.2440 7.2060 6.9000 7.2600

S.E. of difference (orthogonal design) = 0.5709
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NAG Library Routine Document

G04CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G04CAF computes an analysis of variance table and treatment means for a complete factorial design.

2 Specification

SUBROUTINE G04CAF (N, Y, NFAC, LFAC, NBLOCK, INTER, IRDF, MTERM, TABLE,
ITOTAL, TMEAN, MAXT, E, IMEAN, SEMEAN, BMEAN, R, IWK,
IFAIL)

&
&

INTEGER N, NFAC, LFAC(NFAC), NBLOCK, INTER, IRDF, MTERM,
ITOTAL, MAXT, IMEAN(MTERM), IWK(N+3*NFAC), IFAIL

&

REAL (KIND=nag_wp) Y(N), TABLE(MTERM,5), TMEAN(MAXT), E(MAXT),
SEMEAN(MTERM), BMEAN(NBLOCK+1), R(N)

&

3 Description

An experiment consists of a collection of units, or plots, to which a number of treatments are applied.
In a factorial experiment the effects of several different sets of conditions are compared, e.g., three
different temperatures, T1, T2 and T3, and two different pressures, P1 and P2. The conditions are known
as factors and the different values the conditions take are known as levels. In a factorial experiment the
experimental treatments are the combinations of all the different levels of all factors, e.g.,

T1P1; T2P1; T3P1

T1P2; T2P2; T3P2

The effect of a factor averaged over all other factors is known as a main effect, and the effect of a
combination of some of the factors averaged over all other factors is known as an interaction. This can
be represented by a linear model. In the above example if the response was yijk for the kth replicate of
the ith level of T and the jth level of P the linear model would be

yijk ¼ �þ ti þ pj þ �ij þ eijk
where � is the overall mean, ti is the main effect of T , pj is the main effect of P , �ij is the T � P
interaction and eijk is the random error term. In order to find unique estimates constraints are placed on
the arguments estimates. For the example here these are:X3

i¼1
t̂i ¼ 0;

X2
j¼1

p̂j ¼ 0;

X3
i¼1
�̂ij ¼ 0; for j ¼ 1; 2 and

X2
j¼1

�̂ij ¼ 0; for i ¼ 1; 2; 3;

where ^ denotes the estimate.
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If there is variation in the experimental conditions (e.g., in an experiment on the production of a
material different batches of raw material may be used, or the experiment may be carried out on
different days), then plots that are similar are grouped together into blocks. For a balanced complete
factorial experiment all the treatment combinations occur the same number of times in each block.

G04CAF computes the analysis of variance (ANOVA) table by sequentially computing the totals and
means for an effect from the residuals computed when previous effects have been removed. The effect
sum of squares is the sum of squared totals divided by the number of observations per total. The means
are then subtracted from the residuals to compute a new set of residuals. At the same time the means
for the original data are computed. When all effects are removed the residual sum of squares is
computed from the residuals. Given the sums of squares an ANOVA table is then computed along with
standard errors for the difference in treatment means.

The data for G04CAF has to be in standard order given by the order of the factors. Let there be k
factors, f1; f2; . . . ; fk in that order with levels l1; l2; . . . ; lk respectively. Standard order requires the
levels of factor f1 are in order 1; 2; . . . ; l1 and within each level of f1 the levels of f2 are in order
1; 2; . . . ; l2 and so on.

For an experiment with blocks the data is for block 1 then for block 2, etc. Within each block the data
must be arranged so that the levels of factor f1 are in order 1; 2; . . . ; l1 and within each level of f1 the
levels of f2 are in order 1; 2; . . . ; l2 and so on. Any within block replication of treatment combinations
must occur within the levels of fk.

The ANOVA table is given in the following order. For a complete factorial experiment the first row is
for blocks, if present, then the main effects of the factors in their order, e.g., f1 followed by f2, etc.
These are then followed by all the two factor interactions then all the three factor interactions, etc., the
last two rows being for the residual and total sums of squares. The interactions are arranged in lexical
order for the given factor order. For example, for the three factor interactions for a five factor
experiment the 10 interactions would be in the following order:

f1f2f3
f1f2f4
f1f2f5
f1f3f4
f1f3f5
f1f4f5
f2f3f4
f2f3f5
f2f4f5
f3f4f5

4 References

Cochran W G and Cox G M (1957) Experimental Designs Wiley

Davis O L (1978) The Design and Analysis of Industrial Experiments Longman

John J A and Quenouille M H (1977) Experiments: Design and Analysis Griffin

5 Arguments

1: N – INTEGER Input

On entry: the number of observations.

Constraints:

N � 4;
if NBLOCK > 1, N must be a multiple of NBLOCK;
N must be a multiple of the number of treatment combinations, that is a multiple ofYk
i¼1

LFACðiÞ.
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2: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the observations in standard order, see Section 3.

3: NFAC – INTEGER Input

On entry: k, the number of factors.

Constraint: NFAC � 1.

4: LFACðNFACÞ – INTEGER array Input

On entry: LFACðiÞ must contain the number of levels for the ith factor, for i ¼ 1; 2; . . . ; k.

Constraint: LFACðiÞ � 2, for i ¼ 1; 2; . . . ; k.

5: NBLOCK – INTEGER Input

On entry: the number of blocks. If there are no blocks, set NBLOCK ¼ 0 or 1.

Constraints:

NBLOCK � 0;
if NBLOCK � 2, N=NBLOCK must be a multiple of the number of treatment

combinations, that is a multiple of
Yk
i¼1

LFACðiÞ.

6: INTER – INTEGER Input

On entry: the maximum number of factors in an interaction term. If no interaction terms are to be
computed, set INTER ¼ 0 or 1.

Constraint: 0 � INTER � NFAC.

7: IRDF – INTEGER Input

On entry: the adjustment to the residual and total degrees of freedom. The total degrees of
freedom are set to N� IRDF and the residual degrees of freedom adjusted accordingly. For
examples of the use of IRDF see Section 9.

Constraint: IRDF � 0.

8: MTERM – INTEGER Input

On entry: the maximum number of terms in the analysis of variance table, see Section 9.

Constraint: MTERM must be large enough to contain the terms specified by NFAC, INTER and
NBLOCK. If the routine exits with IFAIL � 2, the required minimum value of MTERM is
returned in ITOTAL.

9: TABLEðMTERM; 5Þ – REAL (KIND=nag_wp) array Output

On exit: the first ITOTAL rows of TABLE contain the analysis of variance table. The first
column contains the degrees of freedom, the second column contains the sum of squares, the
third column (except for the row corresponding to the total sum of squares) contains the mean
squares, i.e., the sums of squares divided by the degrees of freedom, and the fourth and fifth
columns contain the F ratio and significance level, respectively (except for rows corresponding
to the total sum of squares, and the residual sum of squares). All other cells of the table are set to
zero.

The first row corresponds to the blocks and is set to zero if there are no blocks. The ITOTALth
row corresponds to the total sum of squares for Y and the ITOTAL� 1ð Þth row corresponds to
the residual sum of squares. The central rows of the table correspond to the main effects followed
by the interaction if specified by INTER. The main effects are in the order specified by LFAC
and the interactions are in lexical order, see Section 3.
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10: ITOTAL – INTEGER Output

On exit: the row in TABLE corresponding to the total sum of squares. The number of treatment
effects is ITOTAL� 3.

11: TMEANðMAXTÞ – REAL (KIND=nag_wp) array Output

On exit: the treatment means. The position of the means for an effect is given by the index in
IMEAN. For a given effect the means are in standard order, see Section 3.

12: MAXT – INTEGER Input

On entry: the maximum number of treatment means to be computed, see Section 9. If the value
of MAXT is too small for the required analysis then the minimum number is returned in
IMEANð1Þ.
Constraint: MAXT must be large enough for the number of means specified by LFAC and

INTER; if INTER ¼ NFAC then MAXT �
Yk
i¼1

LFACðiÞ þ 1ð Þ � 1.

13: EðMAXTÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated effects in the same order as for the means in TMEAN.

14: IMEANðMTERMÞ – INTEGER array Output

On exit: indicates the position of the effect means in TMEAN. The effect means corresponding to
the first treatment effect in the ANOVA table are stored in TMEANð1Þ up to
TMEANðIMEANð1ÞÞ. Other effect means corresponding to the ith treatment effect,
i ¼ 1; 2; . . . ; ITOTAL� 3, a r e s t o r e d i n TMEANðIMEANði� 1Þ þ 1Þ u p t o
TMEANðIMEANðiÞÞ.

15: SEMEANðMTERMÞ – REAL (KIND=nag_wp) array Output

On exit: the standard error of the difference between means corresponding to the ith treatment
effect in the ANOVA table.

16: BMEANðNBLOCKþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: BMEANð1Þ contains the grand mean, if NBLOCK > 1, BMEANð2Þ up to
BMEANðNBLOCKþ 1Þ contain the block means.

17: RðNÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals.

18: IWKðNþ 3� NFACÞ – INTEGER array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 4,
or NFAC < 1,
or NBLOCK < 0,
or INTER < 0,
or INTER > NFAC,
or IRDF < 0.

IFAIL ¼ 2

On entry, LFACðiÞ � 1, for some i ¼ 1; 2; . . . ;NFAC,
or the value of MAXT is too small,
or the value of MTERM is too small,
or NBLOCK > 1 and N is not a multiple of NBLOCK,
or the number of plots per block is not a multiple of the number of treatment

combinations.

IFAIL ¼ 3

On entry, the values of Y are constant.

IFAIL ¼ 4

There are no degrees of freedom for the residual or the residual sum of squares is zero. In either
case the standard errors and F -statistics cannot be computed.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The block and treatment sums of squares are computed from the block and treatment residual totals.
The residuals are updated as each effect is computed and the residual sum of squares computed directly
from the residuals. This avoids any loss of accuracy in subtracting sums of squares.

8 Parallelism and Performance

G04CAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of rows in the ANOVA table and the number of treatment means are given by the
following formulae.

Let there be k factors with levels li for i ¼ 1; 2; . . . ; k, and let t be the maximum number of terms in an
interaction then the number of rows in the ANOVA tables is:Xt

i¼1

k
i

� �
þ 3:

The number of treatment means is: Xt
i¼1

Y
j2Si

lj;

where Si is the set of all combinations of the k factors i at a time.

To estimate missing values the Healy and Westmacott procedure or its derivatives may be used, see
John and Quenouille (1977). This is an iterative procedure in which estimates of the missing values are
adjusted by subtracting the corresponding values of the residuals. The new estimates are then used in
the analysis of variance. This process is repeated until convergence. A suitable initial value may be the
grand mean. When using this procedure IRDF should be set to the number of missing values plus one to
obtain the correct degrees of freedom for the residual sum of squares.

For analysis of covariance the residuals are obtained from an analysis of variance of both the response
variable and the covariates. The residuals from the response variable are then regressed on the residuals
from the covariates using, say, G02CBF or G02DAF. The coefficients obtained from the regression can
be examined for significance and used to produce an adjusted dependent variable using the original
response variable and covariate. An approximate adjusted analysis of variance table can then be
produced by using the adjusted dependent variable. In this case IRDF should be set to one plus the
number of fitted covariates.

For designs such as Latin squares one more of the blocking factors has to be removed in a preliminary
analysis before the final analysis. This preliminary analysis can be performed using G04BBF or a prior
call to G04CAF if the data is reordered between calls. The residuals from the preliminary analysis are
then input to G04CAF. In these cases IRDF should be set to the difference between N and the residual
degrees of freedom from preliminary analysis. Care should be taken when using this approach as there
is no check on the orthogonality of the two analyses.

10 Example

The data, given by John and Quenouille (1977), is for the yield of turnips for a factorial experiment
with two factors, the amount of phosphate with 6 levels and the amount of liming with 3 levels. The
design was replicated in 3 blocks. The data is input and the analysis of variance computed. The analysis
of variance table and tables of means with their standard errors are printed.

10.1 Program Text

Program g04cafe

! G04CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g04caf, nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, inter, irdf, itotal, k, l, &
maxt, mterm, n, nblock, nfac, ntreat

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: bmean(:), e(:), r(:), semean(:), &

table(:,:), tmean(:), y(:)
Integer, Allocatable :: imean(:), iwk(:), lfac(:)

! .. Executable Statements ..
Write (nout,*) ’G04CAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n, nblock, nfac, inter

Allocate (lfac(nfac),iwk(n+3*nfac),y(n),bmean(nblock+1),r(n))

! Read in the number of levels for each factor
Read (nin,*) lfac(1:nfac)

! Read in the observations
Read (nin,*) y(1:n)

! Use standard degrees of freedom
irdf = 0

! Using call to G04CAF to calculate required values for MAXT and MTERM ...

! Setting MAXT to zero ensures it is too small and hence the routine
! will calculate its correct size, IMEAN needs to be at least 1 element
! long so set MTERM to 1.

maxt = 0
mterm = 1

! Dummy allocation
Allocate (tmean(maxt),e(maxt),table(mterm,5),semean(mterm),imean(mterm))

! Call the routine initially to get MTERM and MAXT
ifail = 1
Call g04caf(n,y,nfac,lfac,nblock,inter,irdf,mterm,table,itotal,tmean, &

maxt,e,imean,semean,bmean,r,iwk,ifail)
If (ifail/=0 .And. ifail/=2) Then

Write (nout,99996) ’ ** G04CAF exited with IFAIL = ’, ifail
Go To 100

End If

! Allocate remaining output arrays
mterm = itotal
maxt = imean(1)
Deallocate (tmean,e,table,semean,imean)
Allocate (tmean(maxt),e(maxt),table(mterm,5),semean(mterm),imean(mterm))

! Calculate the ANOVA table
ifail = 0
Call g04caf(n,y,nfac,lfac,nblock,inter,irdf,mterm,table,itotal,tmean, &

maxt,e,imean,semean,bmean,r,iwk,ifail)

! Display results
Write (nout,*) ’ ANOVA table’
Write (nout,*)
Write (nout,*) ’ Source df SS MS F’, &

’ Prob’
Write (nout,*)
k = 0
If (nblock>1) Then

k = k + 1
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Write (nout,99998) ’ Blocks ’, table(1,1:5)
End If
ntreat = itotal - 2 - k
Do i = 1, ntreat

Write (nout,99997) ’ Effect ’, i, table(k+i,1:5)
End Do
Write (nout,99998) ’ Residual ’, table(itotal-1,1:3)
Write (nout,99998) ’ Total ’, table(itotal,1:2)
Write (nout,*)
Write (nout,*) ’ Treatment Means and Standard Errors’
Write (nout,*)
k = 1
Do i = 1, ntreat

l = imean(i)
Write (nout,99996) ’ Effect ’, i
Write (nout,*)
Write (nout,99999) tmean(k:l)
Write (nout,*)
Write (nout,99995) ’ SE of difference in means = ’, semean(i)
Write (nout,*)
k = l + 1

End Do

100 Continue

99999 Format (8F10.2)
99998 Format (A,3X,F3.0,2X,2(F10.0,2X),F10.3,2X,F9.4)
99997 Format (A,I2,3X,F3.0,2X,2(F10.0,2X),F10.3,2X,F9.4)
99996 Format (A,I5)
99995 Format (A,F10.2)

End Program g04cafe

10.2 Program Data

G04CAF Example Program Data
54 3 2 2 : N NBLOCK NFAC INTER
6 3 : LFAC
274 361 253 325 317 339 326 402 336 379 345 361 352 334 318 339 393 358
350 340 203 397 356 298 382 376 355 418 387 379 432 339 293 322 417 342
82 297 133 306 352 361 220 333 270 388 379 274 336 307 266 389 333 353

10.3 Program Results

G04CAF Example Program Results

ANOVA table

Source df SS MS F Prob

Blocks 2. 30119. 15059. 7.685 0.0018
Effect 1 5. 73008. 14602. 7.451 0.0001
Effect 2 2. 21596. 10798. 5.510 0.0085
Effect 3 10. 31192. 3119. 1.592 0.1513
Residual 34. 66628. 1960.
Total 53. 222543.

Treatment Means and Standard Errors

Effect 1

254.78 339.00 333.33 367.78 330.78 360.67

SE of difference in means = 20.87

Effect 2

334.28 353.78 305.11

SE of difference in means = 14.76
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Effect 3

235.33 332.67 196.33 342.67 341.67 332.67 309.33 370.33
320.33 395.00 370.33 338.00 373.33 326.67 292.33 350.00
381.00 351.00

SE of difference in means = 36.14
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NAG Library Routine Document

G04DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G04DAF computes sum of squares for a user-defined contrast between means.

2 Specification

SUBROUTINE G04DAF (NT, TMEAN, IREP, RMS, RDF, NC, CT, LDCT, EST, TABL,
LDTABL, TOL, USETX, TX, IFAIL)

&

INTEGER NT, IREP(NT), NC, LDCT, LDTABL, IFAIL
REAL (KIND=nag_wp) TMEAN(NT), RMS, RDF, CT(LDCT,NC), EST(NC),

TABL(LDTABL,*), TOL, TX(NT)
&

LOGICAL USETX

3 Description

In the analysis of designed experiments the first stage is to compute the basic analysis of variance table,
the estimate of the error variance (the residual or error mean square), �̂2, and the (variance ratio)
F -statistic for the t treatments. If this F -test is significant then the second stage of the analysis is to
explore which treatments are significantly different.

If there is a structure to the treatments then this may lead to hypotheses that can be defined before the
analysis and tested using linear contrasts. For example, if the treatments were three different fixed
temperatures, say 18, 20 and 22, and an uncontrolled temperature (denoted by N) then the following
contrasts might be of interest.

18 20 22 N

að Þ 1
3

1
3

1
3 �1

bð Þ �1 0 1 0

The first represents the average difference between the controlled temperatures and the uncontrolled
temperature. The second represents the linear effect of an increasing fixed temperature.

For a randomized complete block design or a completely randomized design, let the treatment means be
�̂i, i ¼ 1; 2; . . . ; t, and let the jth contrast be defined by �ij, i ¼ 1; 2; . . . ; t, then the estimate of the
contrast is simply:

�j ¼
Xt
i¼1
�̂i�ij

and the sum of squares for the contrast is:

SSj ¼
�2
jXt

i¼1
�2ij=ni

ð1Þ

where ni is the number of observations for the ith treatment. Such a contrast has one degree of freedom
so that the appropriate F -statistic is SSj=�̂2.
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The two contrasts �ij and �ij0 are orthogonal if
Xt
i¼1
�ij�ij0 ¼ 0 and the contrast �ij is orthogonal to the

overall mean if
Xt
i¼1
�ij ¼ 0. In practice these sums will be tested against a small quantity, �. If each of a

set of contrasts is orthogonal to the mean and they are all mutually orthogonal then the contrasts
provide a partition of the treatment sum of squares into independent components. Hence the resulting
F -tests are independent.

If the treatments come from a design in which treatments are not orthogonal to blocks then the sum of
squares for a contrast is given by:

SSj ¼
�j�

�
jXt

i¼1
�2ij=ni

ð2Þ

where

��j ¼
Xt
i¼1
��i �ij

with ��i , for i ¼ 1; 2; . . . ; t, being adjusted treatment means computed by first eliminating blocks then
computing the treatment means from the block adjusted observations without taking into account the
non-orthogonality between treatments and blocks. For further details see John (1987).

4 References

Cochran W G and Cox G M (1957) Experimental Designs Wiley

John J A (1987) Cyclic Designs Chapman and Hall

Winer B J (1970) Statistical Principles in Experimental Design McGraw–Hill

5 Arguments

1: NT – INTEGER Input

On entry: t, the number of treatment means.

Constraint: NT � 2.

2: TMEANðNTÞ – REAL (KIND=nag_wp) array Input

On entry: the treatment means, �̂i, for i ¼ 1; 2; . . . ; t.

3: IREPðNTÞ – INTEGER array Input

On entry: the replication for each treatment mean, ni, for i ¼ 1; 2; . . . ; t.

4: RMS – REAL (KIND=nag_wp) Input

On entry: the residual mean square, �̂2.

Constraint: RMS > 0:0.

5: RDF – REAL (KIND=nag_wp) Input

On entry: the residual degrees of freedom.

Constraint: RDF � 1:0.
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6: NC – INTEGER Input

On entry: the number of contrasts.

Constraint: NC � 1.

7: CTðLDCT;NCÞ – REAL (KIND=nag_wp) array Input

On entry: the columns of CT must contain the NC contrasts, that is CTði; jÞ must contain �ij , for
i ¼ 1; 2; . . . ; t and j ¼ 1; 2; . . . ;NC.

8: LDCT – INTEGER Input

On entry: the first dimension of the array CT as declared in the (sub)program from which
G04DAF is called.

Constraint: LDCT � NT.

9: ESTðNCÞ – REAL (KIND=nag_wp) array Output

On exit: the estimates of the contrast, �j , for j ¼ 1; 2; . . . ;NC.

10: TABLðLDTABL; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array TABL must be at least 5.

On entry: the elements of TABL that are not referenced as described below remain unchanged.

On exit: the rows of the analysis of variance table for the contrasts. For each row column 1
contains the degrees of freedom, column 2 contains the sum of squares, column 3 contains the
mean square, column 4 the F -statistic and column 5 the significance level for the contrast. Note
that the degrees of freedom are always one and so the mean square equals the sum of squares.

11: LDTABL – INTEGER Input

On entry: the first dimension of the array TABL as declared in the (sub)program from which
G04DAF is called.

Constraint: LDTABL � NC.

12: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance, � used to check if the contrasts are orthogonal and if they are orthogonal
to the mean. If TOL � 0:0 the value machine precision is used.

13: USETX – LOGICAL Input

On entry: if USETX ¼ :TRUE: the means ��i are provided in TX and the formula (2) is used
instead of formula (1).

If USETX ¼ :FALSE: formula (1) is used and TX is not referenced.

14: TXðNTÞ – REAL (KIND=nag_wp) array Input

On entry: if USETX ¼ :TRUE: TX must contain the means ��i , for i ¼ 1; 2; . . . ; t.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G04DAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NC < 1,
or NT < 2,
or LDCT < NT,
or LDTABL < NC,
or RMS � 0:0,
or RDF < 1:0.

IFAIL ¼ 2

On entry, a contrast is not orthogonal to the mean,
or at least two contrasts are not orthogonal.

If IFAIL ¼ 2 full results are returned but they should be interpreted with care.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are stable.

8 Parallelism and Performance

G04DAF is not threaded in any implementation.

9 Further Comments

If the treatments have a factorial structure G04CAF should be used and if the treatments have no
structure the means can be compared using G04DBF.
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10 Example

The data is from a completely randomized experiment on potato scab with seven treatments
representing amounts of sulphur applied, whether the application was in spring or autumn and a control
treatment. The one-way anova is computed using G02BBF. Two contrasts are analysed, one comparing
the control with use of sulphur, the other comparing spring with autumn application.

10.1 Program Text

Program g04dafe

! G04DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g04bbf, g04daf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: gmean, rdf, rms, tol
Integer :: i, iblock, ifail, irdf, ldc, ldct, &

ldtabl, lit, n, nc, nt
Logical :: usetx

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: bmean(:), c(:,:), ct(:,:), ef(:), &

est(:), r(:), tabl(:,:), tmean(:), &
tx(:), wk(:), y(:)

Integer, Allocatable :: irep(:), it(:)
Character (11), Allocatable :: names(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’G04DAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size for G04BBF
Read (nin,*) n, nt, iblock

ldc = nt
If (nt>1) Then

lit = n
Else

lit = 1
End If
Allocate (y(n),bmean(abs(iblock)),tmean(nt),irep(nt),c(ldc,nt),r(n), &

ef(nt),wk(3*nt),it(lit))

! Read in the data and plot information for G04BBF
Read (nin,*) y(1:n)
If (nt>1) Then

Read (nin,*) it(1:n)
End If

! Don’t use TX when calling G04DAF
usetx = .False.

! Read in the number of contrasts
Read (nin,*) nc

! Using first 4 rows of TABL in G04BBF next NC rows in G04DAF
ldtabl = nc + 4

ldct = nt
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Allocate (ct(ldct,nc),est(nc),tabl(ldtabl,5),tx(nt),names(nc))

! Read in the contrasts and their names
Do i = 1, nc

Read (nin,*) ct(1:nt,i)
Read (nin,99999) names(i)

End Do

! Use default tolerance
tol = 0.0E0_nag_wp

! Use standard degrees of freedom
irdf = 0

! Calculate the ANOVA table
ifail = 0
Call g04bbf(n,y,iblock,nt,it,gmean,bmean,tmean,tabl,ldtabl,c,ldc,irep,r, &

ef,tol,irdf,wk,ifail)

! Display results from G04BBF
Write (nout,*) ’ ANOVA table’
Write (nout,*)
Write (nout,*) ’ Source df SS MS F’, &

’ Prob’
Write (nout,*)
If (iblock>1) Then

Write (nout,99998) ’ Blocks ’, tabl(1,1:5)
End If
Write (nout,99998) ’ Treatments’, tabl(2,1:5)
Write (nout,99998) ’ Residual ’, tabl(3,1:3)
Write (nout,99998) ’ Total ’, tabl(4,1:2)
Write (nout,*)

! Extract the residual mean square and degrees of freedom from ANOVA
! table

rms = tabl(3,3)
rdf = tabl(3,1)

! Compute sums of squares for contrast
ifail = -1
Call g04daf(nt,tmean,irep,rms,rdf,nc,ct,ldct,est,tabl(5,1),ldtabl,tol, &

usetx,tx,ifail)
If (ifail/=0) Then

If (ifail/=2) Then
Go To 100

End If
End If

! Display results from G04DAF
Write (nout,*) ’ Orthogonal Contrasts’
Write (nout,*)
Write (nout,99998)(names(i),tabl(i+4,1:5),i=1,nc)

100 Continue

99999 Format (A)
99998 Format (A,3X,F3.0,2X,F10.1,2X,F10.1,2X,F10.3,2X,F9.4)

End Program g04dafe

10.2 Program Data

G04DAF Example Program Data
32 7 1 :: N, NT, IBLOCK (see G04BBF)
12 10 24 29 30 18 32 26
9 9 16 4 30 7 21 9 16 10 18 18
18 24 12 19 10 4 4 5 17 7 16 17 :: End of Y (see G04BBF)
1 1 1 1 1 1 1 1
2 2 2 2 3 3 3 3 4 4 4 4
5 5 5 5 6 6 6 6 7 7 7 7 :: End of IT (see G04BBF)
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2 :: NC
6 -1 -1 -1 -1 -1 -1 :: First contrast
Cntl v S :: Name of first contrast

0 1 -1 1 -1 1 -1 :: Second contrast
Spring v A :: Name of second contrast

10.3 Program Results

G04DAF Example Program Results

ANOVA table

Source df SS MS F Prob

Treatments 6. 972.3 162.1 3.608 0.0103
Residual 25. 1122.9 44.9
Total 31. 2095.2

Orthogonal Contrasts

Cntl v S 1. 518.0 518.0 11.533 0.0023
Spring v A 1. 228.2 228.2 5.080 0.0332
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NAG Library Routine Document

G04DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G04DBF computes simultaneous confidence intervals for the differences between means. It is intended
for use after G04BBF or G04BCF.

2 Specification

SUBROUTINE G04DBF (TYP, NT, TMEAN, RDF, C, LDC, CLEVEL, CIL, CIU, ISIG,
IFAIL)

&

INTEGER NT, LDC, ISIG(NT*(NT-1)/2), IFAIL
REAL (KIND=nag_wp) TMEAN(NT), RDF, C(LDC,NT), CLEVEL,

CIL(NT*(NT-1)/2), CIU(NT*(NT-1)/2)
&

CHARACTER(1) TYP

3 Description

In the computation of analysis of a designed experiment the first stage is to compute the basic analysis
of variance table, the estimate of the error variance (the residual or error mean square), �̂2, the residual
degrees of freedom, �, and the (variance ratio) F -statistic for the t treatments. The second stage of the
analysis is to compare the treatment means. If the treatments have no structure, for example the
treatments are different varieties, rather than being structured, for example a set of different
temperatures, then a multiple comparison procedure can be used.

A multiple comparison procedure looks at all possible pairs of means and either computes confidence
intervals for the difference in means or performs a suitable test on the difference. If there are t
treatments then there are t t� 1ð Þ=2 comparisons to be considered. In tests the type 1 error or
significance level is the probability that the result is considered to be significant when there is no
difference in the means. If the usual t-test is used with, say, a 6% significance level then the type 1
error for all k ¼ t t� 1ð Þ=2 tests will be much higher. If the tests were independent then if each test is
carried out at the 100� percent level then the overall type 1 error would be �� ¼ 1� 1� �ð Þk ’ k�. In
order to provide an overall protection the individual tests, or confidence intervals, would have to be
carried out at a value of � such that �� is the required significance level, e.g., five percent.

The 100 1� �ð Þ percent confidence interval for the difference in two treatment means, �̂i and �̂j is given
by

�̂i � �̂j
� �


 T ��;�;tð Þse �̂i � �̂j
� �

;

where seðÞ denotes the standard error of the difference in means and T ��;�;tð Þ is an appropriate percentage

point from a distribution. There are several possible choices for T ��;�;tð Þ. These are:

(a) 1
2q 1��;�;tð Þ , the studentized range statistic, see G01FMF. It is the appropriate statistic to compare the
largest mean with the smallest mean. This is known as Tukey–Kramer method.

(b) t �=k;�ð Þ, this is the Bonferroni method.

(c) t �0;�ð Þ, where �0 ¼ 1� 1� �ð Þ1=k, this is known as the Dunn–Sidak method.

(d) t �;�ð Þ, this is known as Fisher's LSD (least significant difference) method. It should only be used if
the overall F -test is significant, the number of treatment comparisons is small and were planned
before the analysis.
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(e)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� 1ð ÞF1��;k�1;�

p
where F1��;k�1;� is the deviate corresponding to a lower tail probability of

1� � from an F -distribution with k� 1 and � degrees of freedom. This is Scheffe's method.

In cases (b), (c) and (d), t �;�ð Þ denotes the � two tail significance level for the Student's t-distribution
with � degrees of freedom, see G01FBF.

The Scheffe method is the most conservative, followed closely by the Dunn–Sidak and Tukey–Kramer
methods.

To compute a test for the difference between two means the statistic,

�̂i � �̂j
se �̂i � �̂j
� �

is compared with the appropriate value of T ��;�;tð Þ.

4 References

Kotz S and Johnson N L (ed.) (1985a) Multiple range and associated test procedures Encyclopedia of
Statistical Sciences 5 Wiley, New York

Kotz S and Johnson N L (ed.) (1985b) Multiple comparison Encyclopedia of Statistical Sciences 5
Wiley, New York

Winer B J (1970) Statistical Principles in Experimental Design McGraw–Hill

5 Arguments

1: TYP – CHARACTER(1) Input

On entry: indicates which method is to be used.

TYP ¼ T
The Tukey–Kramer method is used.

TYP ¼ B
The Bonferroni method is used.

TYP ¼ D
The Dunn–Sidak method is used.

TYP ¼ L
The Fisher LSD method is used.

TYP ¼ S
The Scheffe's method is used.

Constraint: TYP ¼ T , B , D , L or S .

2: NT – INTEGER Input

On entry: t, the number of treatment means.

Constraint: NT � 2.

3: TMEANðNTÞ – REAL (KIND=nag_wp) array Input

On entry: the treatment means, �̂i, for i ¼ 1; 2; . . . ; t.

4: RDF – REAL (KIND=nag_wp) Input

On entry: �, the residual degrees of freedom.

Constraint: RDF � 1:0.
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5: CðLDC;NTÞ – REAL (KIND=nag_wp) array Input

On entry: the strictly lower triangular part of C must contain the standard errors of the
differences between the means as returned by G04BBF and G04BCF. That is Cði; jÞ, i > j,
contains the standard error of the difference between the ith and jth mean in TMEAN.

Constraint: Cði; jÞ > 0:0, for i ¼ 2; 3; . . . ; t and j ¼ 1; 2; . . . ; i � 1.

6: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G04DBF
is called.

Constraint: LDC � NT.

7: CLEVEL – REAL (KIND=nag_wp) Input

On entry: the required confidence level for the computed intervals, (1� �).
Constraint: 0:0 < CLEVEL < 1:0.

8: CILðNT� NT� 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the i � 1ð Þ i � 2ð Þ=2þ jð Þth element contains the lower limit to the confidence interval
for the difference between ith and jth means in TMEAN, for i ¼ 2; 3; . . . ; t and
j ¼ 1; 2; . . . ; i � 1.

9: CIUðNT� NT� 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the i � 1ð Þ i � 2ð Þ=2þ jð Þth element contains the upper limit to the confidence interval
for the difference between ith and jth means in TMEAN, for i ¼ 2; 3; . . . ; t and
j ¼ 1; 2; . . . ; i � 1.

10: ISIGðNT� NT� 1ð Þ=2Þ – INTEGER array Output

On exit: the i � 1ð Þ i � 2ð Þ=2þ jð Þth element indicates if the difference between ith and jth means
in TMEAN is significant, for i ¼ 2; 3; . . . ; t and j ¼ 1; 2; . . . ; i � 1. If the difference is significant
then the returned value is 1; otherwise the returned value is 0.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NT < 2,
or LDC < NT,
or RDF < 1:0,
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or CLEVEL � 0:0,
or CLEVEL � 1:0,
or TYP 6¼ T , B , D , L or S .

IFAIL ¼ 2

On entry, Cði; jÞ � 0:0 for some i; j, i ¼ 2; 3; . . . ; t and j ¼ 1; 2; . . . ; i� 1.

IFAIL ¼ 3

There has been a failure in the computation of the studentized range statistic. This is an unlikely
error. Try using a small value of CLEVEL.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For the accuracy of the percentage point statistics see G01FBF and G01FMF.

8 Parallelism and Performance

G04DBF is not threaded in any implementation.

9 Further Comments

If the treatments have a structure then the use of linear contrasts as computed by G04DAF may be more
appropriate.

An alternative approach to one used in G04DBF is the sequential testing of the Student–Newman–
Keuls procedure. This, in effect, uses the Tukey–Kramer method but first ordering the treatment means
and examining only subsets of the treatment means in which the largest and smallest are significantly
different. At each stage the third argument of the Studentized range statistic is the number of means in
the subset rather than the total number of means.

10 Example

In the example taken from Winer (1970) a completely randomized design with unequal treatment
replication is analysed using G04BBF and then confidence intervals are computed by G04DBF using
the Tukey–Kramer method.
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10.1 Program Text

Program g04dbfe

! G04DBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g04bbf, g04dbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: clevel, gmean, rdf, tol
Integer :: i, iblock, ifail, ij, irdf, j, ldc, &

lit, n, nt
Character (1) :: typ

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: bmean(:), c(:,:), cil(:), ciu(:), &

ef(:), r(:), tmean(:), wk(:), y(:)
Real (Kind=nag_wp) :: table(4,5)
Integer, Allocatable :: irep(:), isig(:), it(:)
Character (1) :: star(2)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’G04DBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, nt, iblock

ldc = nt
If (nt>1) Then

lit = n
Else

lit = 1
End If
Allocate (y(n),bmean(abs(iblock)),tmean(nt),irep(nt),c(ldc,nt),r(n), &

ef(nt),wk(3*nt),it(lit),cil(nt*(nt-1)/2),ciu(nt*(nt-1)/2),isig(nt*(nt- &
1)/2))

! Read in the data and plot information
Read (nin,*) y(1:n)
If (nt>1) Then

Read (nin,*) it(1:n)
End If

! Read in the type of level for the CIs
Read (nin,*) typ, clevel

! Use default tolerance
tol = 0.0E0_nag_wp

! Use standard degrees of freedom
irdf = 0

! Calculate the ANOVA table
ifail = 0
Call g04bbf(n,y,iblock,nt,it,gmean,bmean,tmean,table,4,c,ldc,irep,r,ef, &

tol,irdf,wk,ifail)

! Display results from G04BBF
Write (nout,*) ’ ANOVA table’
Write (nout,*)
Write (nout,*) ’ Source df SS MS F’, &
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’ Prob’
Write (nout,*)
If (iblock>1) Then

Write (nout,99998) ’ Blocks ’, table(1,1:5)
End If
Write (nout,99998) ’ Treatments’, table(2,1:5)
Write (nout,99998) ’ Residual ’, table(3,1:3)
Write (nout,99998) ’ Total ’, table(4,1:2)
Write (nout,*)
Write (nout,*) ’ Treatment means’
Write (nout,*)
Write (nout,99999) tmean(1:nt)
Write (nout,*)

! Extract the residual degrees of freedom
rdf = table(3,1)

! Calculate simultaneous CIs
ifail = 0
Call g04dbf(typ,nt,tmean,rdf,c,ldc,clevel,cil,ciu,isig,ifail)

! Display results from G04DBF
Write (nout,*) ’ Simultaneous Confidence Intervals’
Write (nout,*)
star(2) = ’*’
star(1) = ’ ’
ij = 0
Do i = 1, nt

Do j = 1, i - 1
ij = ij + 1
Write (nout,99997) i, j, cil(ij), ciu(ij), star(isig(ij)+1)

End Do
End Do

99999 Format (10F8.3)
99998 Format (A,3X,F3.0,2X,2(F10.1,2X),F10.3,2X,F9.4)
99997 Format (2X,2I2,3X,2(F10.3,3X),A)

End Program g04dbfe

10.2 Program Data

G04DBF Example Program Data
26 4 1 :: N, NT, IBLOCK (G04BBF)
3 2 4 3 1 5
7 8 4 10 6
3 2 1 2 4 2 3 1

10 12 8 5 12 10 9 :: End of Y (G04BBF)
1 1 1 1 1 1
2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 :: End of IT (G04BBF)
’T’ .95 :: TYP, CLEVEL

10.3 Program Results

G04DBF Example Program Results

ANOVA table

Source df SS MS F Prob

Treatments 3. 239.9 80.0 24.029 0.0000
Residual 22. 73.2 3.3
Total 25. 313.1

Treatment means

3.000 7.000 2.250 9.429

Simultaneous Confidence Intervals
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2 1 0.933 7.067 *
3 1 -3.486 1.986
3 2 -7.638 -1.862 *
4 1 3.610 9.247 *
4 2 -0.538 5.395
4 3 4.557 9.800 *
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NAG Library Routine Document

G04EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G04EAF computes orthogonal polynomial or dummy variables for a factor or classification variable.

2 Specification

SUBROUTINE G04EAF (TYP, N, LEVELS, IFACT, X, LDX, V, REP, IFAIL)

INTEGER N, LEVELS, IFACT(N), LDX, IFAIL
REAL (KIND=nag_wp) X(LDX,*), V(*), REP(LEVELS)
CHARACTER(1) TYP

3 Description

In the analysis of an experimental design using a general linear model the factors or classification
variables that specify the design have to be coded as dummy variables. G04EAF computes dummy
variables that can then be used in the fitting of the general linear model using G02DAF.

If the factor of length n has k levels then the simplest representation is to define k dummy variables, Xj

such that Xj ¼ 1 if the factor is at level j and 0 otherwise for j ¼ 1; 2; . . . ; k. However, there is usually
a mean included in the model and the sum of the dummy variables will be aliased with the mean. To
avoid the extra redundant argument k� 1 dummy variables can be defined as the contrasts between one
level of the factor, the reference level, and the remaining levels. If the reference level is the first level
then the dummy variables can be defined as Xj ¼ 1 if the factor is at level j and 0 otherwise, for
j ¼ 2; 3; . . . ; k. Alternatively, the last level can be used as the reference level.

A second way of defining the k� 1 dummy variables is to use a Helmert matrix in which levels
2; 3; . . . ; k are compared with the average effect of the previous levels. For example if k ¼ 4 then the
contrasts would be:

1 �1 �1 �1
2 1 �1 �1
3 0 2 �1
4 0 0 3

Thus variable j, for j ¼ 1; 2; . . . ; k� 1 is given by

Xj ¼ �1 if factor is at level less than jþ 1

Xj ¼
Xj
i¼1
ri=rjþ1 if factor is at level jþ 1

Xj ¼ 0 if factor is at level greater than jþ 1

where rj is the number of replicates of level j.

If the factor can be considered as a set of values from an underlying continuous variable then the factor
can be represented by a set of k� 1 orthogonal polynomials representing the linear, quadratic etc.
effects of the underlying variable. The orthogonal polynomial is computed using Forsythe's algorithm
(Forsythe (1957), see also Cooper (1968)). The values of the underlying continuous variable represented
by the factor levels have to be supplied to the routine.

The orthogonal polynomials are standardized so that the sum of squares for each dummy variable is
one. For the other methods integer (
1) representations are retained except that in the Helmert
representation the code of level jþ 1 in dummy variable j will be a fraction.
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4 References

Cooper B E (1968) Algorithm AS 10. The use of orthogonal polynomials Appl. Statist. 17 283–287

Forsythe G E (1957) Generation and use of orthogonal polynomials for data fitting with a digital
computer J. Soc. Indust. Appl. Math. 5 74–88

5 Arguments

1: TYP – CHARACTER(1) Input

On entry: the type of dummy variable to be computed.

If TYP ¼ P , an orthogonal Polynomial representation is computed.

If TYP ¼ H , a Helmert matrix representation is computed.

If TYP ¼ F , the contrasts relative to the First level are computed.

If TYP ¼ L , the contrasts relative to the Last level are computed.

If TYP ¼ C , a Complete set of dummy variables is computed.

Constraint: TYP ¼ P , H , F , L or C .

2: N – INTEGER Input

On entry: n, the number of observations for which the dummy variables are to be computed.

Constraint: N � LEVELS.

3: LEVELS – INTEGER Input

On entry: k, the number of levels of the factor.

Constraint: LEVELS � 2.

4: IFACTðNÞ – INTEGER array Input

On entry: the n values of the factor.

Constraint: 1 � IFACTðiÞ � LEVELS, for i ¼ 1; 2; . . . ; n.

5: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least LEVELS� 1 if TYP ¼ P , H , F or
L and at least LEVELS if TYP ¼ C .

On exit: the n by k� matrix of dummy variables, where k� ¼ k� 1 if TYP ¼ P , H , F or L and
k� ¼ k if TYP ¼ C .

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G04EAF
is called.

Constraint: LDX � N.

7: Vð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array V must be at least LEVELS if TYP ¼ P , and at least 1
otherwise.

On entry: if TYP ¼ P , the k distinct values of the underlying variable for which the orthogonal
polynomial is to be computed.

If TYP 6¼ P , V is not referenced.

Constraint: if TYP ¼ P , the k values of V must be distinct.
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8: REPðLEVELSÞ – REAL (KIND=nag_wp) array Output

On exit: the number of replications for each level of the factor, ri, for i ¼ 1; 2; . . . ; k.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LEVELS < 2,
or N < LEVELS,
or LDX < N,
or TYP 6¼ P , H , F , L or C .

IFAIL ¼ 2

On entry, a value of IFACT is not in the range 1 � IFACTðiÞ � LEVELS, for i ¼ 1; 2; . . . ; n,
or TYP ¼ P and not all values of V are distinct,
or not all levels are represented in IFACT.

IFAIL ¼ 3

An orthogonal polynomial has all values zero. This will be due to some values of V being very
close together. Note this can only occur if TYP ¼ P .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are stable.
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8 Parallelism and Performance

G04EAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G04EAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Other routines for fitting polynomials can be found in Chapter E02.

10 Example

Data are read in from an experiment with four treatments and three observations per treatment with the
treatment coded as a factor. G04EAF is used to compute the required dummy variables and the model is
then fitted by G02DAF.

10.1 Program Text

Program g04eafe

! G04EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02daf, g04eaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rss, tol
Integer :: i, idf, ifail, ip, irank, j, ldq, &

ldx, levels, lv, lwt, m, n, tdx
Logical :: svd
Character (1) :: mean, typ, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), h(:), p(:), q(:,:), &

rep(:), res(:), se(:), v(:), wk(:), &
wt(:), x(:,:), y(:)

Integer, Allocatable :: ifact(:), isx(:)
! .. Executable Statements ..

Write (nout,*) ’G04EAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem information
Read (nin,*) n, levels, typ, weight, mean

If (typ==’P’ .Or. typ==’p’) Then
lv = levels

Else
lv = 1

End If
If (typ==’C’ .Or. typ==’c’) Then

tdx = levels
Else
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tdx = levels - 1
End If
If (weight==’w’ .Or. weight==’W’) Then

lwt = n
Else

lwt = 1
End If
ldx = n
Allocate (x(ldx,tdx),ifact(n),v(lv),rep(levels),y(n),wt(lwt))

! Read in data
If (weight==’W’ .Or. weight==’w’) Then

Read (nin,*)(ifact(i),y(i),wt(i),i=1,n)
Else

Read (nin,*)(ifact(i),y(i),i=1,n)
End If
If (typ==’P’ .Or. typ==’p’) Then

Read (nin,*) v(1:levels)
End If

! Calculate dummy variables
ifail = 0
Call g04eaf(typ,n,levels,ifact,x,ldx,v,rep,ifail)

If (typ==’C’ .Or. typ==’c’) Then
m = levels

Else
m = levels - 1

End If
ip = m
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

ldq = n
Allocate (isx(m),b(ip),se(ip),cov(ip*(ip+1)/2),res(n),h(n),q(ldq,ip+1),p &

(2*ip+ip*ip),wk(5*(ip-1)+ip*ip))

! Use all the variables in the regression
isx(1:m) = 1

! Use the suggested value for tolerance
tol = 0.00001E0_nag_wp

! Fit linear regression model
ifail = 0
Call g02daf(mean,weight,n,x,ldx,m,isx,ip,y,wt,rss,idf,b,se,cov,res,h,q, &

ldq,svd,irank,p,tol,wk,ifail)

! Display the results of the regression
If (svd) Then

Write (nout,99999) ’Model not of full rank, rank = ’, irank
Write (nout,*)

End If
Write (nout,99998) ’Residual sum of squares = ’, rss
Write (nout,99999) ’Degrees of freedom = ’, idf
Write (nout,*)
Write (nout,*) ’Variable Parameter estimate Standard error’
Write (nout,*)
Write (nout,99997)(j,b(j),se(j),j=1,ip)

99999 Format (1X,A,I4)
99998 Format (1X,A,E12.4)
99997 Format (1X,I6,2E20.4)

End Program g04eafe
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10.2 Program Data

G04EAF Example Program Data
12 4 ’C’ ’U’ ’M’

1 33.63
4 39.62
2 38.18
3 41.46
4 38.02
2 35.83
4 35.99
1 36.58
3 42.92
1 37.80
3 40.43
2 37.89

10.3 Program Results

G04EAF Example Program Results

Model not of full rank, rank = 4

Residual sum of squares = 0.2223E+02
Degrees of freedom = 8

Variable Parameter estimate Standard error

1 0.3056E+02 0.3849E+00
2 0.5447E+01 0.8390E+00
3 0.6743E+01 0.8390E+00
4 0.1105E+02 0.8390E+00
5 0.7320E+01 0.8390E+00
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NAG Library Chapter Contents

G05 – Random Number Generators

G05 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

G05KFF 22 nagf_rand_init_repeat
Initializes a pseudorandom number generator to give a repeatable sequence

G05KGF 22 nagf_rand_init_nonrepeat
Initializes a pseudorandom number generator to give a non-repeatable
sequence

G05KHF 22 nagf_rand_init_leapfrog
Primes a pseudorandom number generator for generating multiple streams
using leap-frog

G05KJF 22 nagf_rand_init_skipahead
Primes a pseudorandom number generator for generating multiple streams
using skip-ahead

G05KKF 23 nagf_rand_init_skipahead_power2
Primes a pseudorandom number generator for generating multiple streams
using skip-ahead, skipping ahead a power of 2

G05NCF 22 nagf_rand_permute
Pseudorandom permutation of an integer vector

G05NDF 22 nagf_rand_sample
Pseudorandom sample from an integer vector

G05NEF 23 nagf_rand_sample_wgt
Pseudorandom sample, without replacement, unequal weights

G05PDF 22 nagf_rand_times_garch_asym1
Generates a realization of a time series from a GARCH process with
asymmetry of the form �t�1 þ �ð Þ2

G05PEF 22 nagf_rand_times_garch_asym2
Generates a realization of a time series from a GARCH process with
asymmetry of the form �t�1j j þ ��t�1ð Þ2

G05PFF 22 nagf_rand_times_garch_GJR
Generates a realization of a time series from an asymmetric Glosten,
Jagannathan and Runkle (GJR) GARCH process

G05PGF 22 nagf_rand_times_garch_exp
Generates a realization of a time series from an exponential GARCH
(EGARCH) process

G05PHF 22 nagf_rand_times_arma
Generates a realization of a time series from an ARMA model

G05PJF 22 nagf_rand_times_mv_varma
Generates a realization of a multivariate time series from a VARMA model

G05PMF 22 nagf_rand_times_smooth_exp
Generates a realization of a time series from an exponential smoothing
model

G05PVF 25 nagf_rand_kfold_xyw
Permutes a matrix, vector, vector triplet into a form suitable for K-fold
cross validation

G05PWF 25 nagf_rand_subsamp_xyw
Permutes a matrix, vector, vector triplet into a form suitable for random
sub-sampling validation

G05PXF 22 nagf_rand_matrix_orthog
Generates a random orthogonal matrix
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G05PYF 22 nagf_rand_matrix_corr
Generates a random correlation matrix

G05PZF 22 nagf_rand_matrix_2waytable
Generates a random two-way table

G05RCF 22 nagf_rand_copula_students_t
Generates a matrix of pseudorandom numbers from a Student's t-copula

G05RDF 22 nagf_rand_copula_normal
Generates a matrix of pseudorandom numbers from a Gaussian copula

G05REF 23 nagf_rand_copula_clayton_bivar
Generates a matrix of pseudorandom numbers from a bivariate Clayton/
Cook–Johnson copula

G05RFF 23 nagf_rand_copula_frank_bivar
Generates a matrix of pseudorandom numbers from a bivariate Frank
copula

G05RGF 23 nagf_rand_copula_plackett_bivar
Generates a matrix of pseudorandom numbers from a bivariate Plackett
copula

G05RHF 23 nagf_rand_copula_clayton
Generates a matrix of pseudorandom numbers from a multivariate Clayton/
Cook–Johnson copula

G05RJF 23 nagf_rand_copula_frank
Generates a matrix of pseudorandom numbers from a multivariate Frank
copula

G05RKF 23 nagf_rand_copula_gumbel
Generates a matrix of pseudorandom numbers from a Gumbel–Hougaard
copula

G05RYF 22 nagf_rand_multivar_students_t
Generates a matrix of pseudorandom numbers from a multivariate Student's
t-distribution

G05RZF 22 nagf_rand_multivar_normal
Generates a matrix of pseudorandom numbers from a multivariate Normal
distribution

G05SAF 22 nagf_rand_dist_uniform01
Generates a vector of pseudorandom numbers from a uniform distribution
over 0; 1ð �

G05SBF 22 nagf_rand_dist_beta
Generates a vector of pseudorandom numbers from a beta distribution

G05SCF 22 nagf_rand_dist_cauchy
Generates a vector of pseudorandom numbers from a Cauchy distribution

G05SDF 22 nagf_rand_dist_chisq
Generates a vector of pseudorandom numbers from a �2 distribution

G05SEF 22 nagf_rand_dist_dirichlet
Generates a vector of pseudorandom numbers from a Dirichlet distribution

G05SFF 22 nagf_rand_dist_exp
Generates a vector of pseudorandom numbers from an exponential
distribution

G05SGF 22 nagf_rand_dist_expmix
Generates a vector of pseudorandom numbers from an exponential mix
distribution

G05SHF 22 nagf_rand_dist_f
Generates a vector of pseudorandom numbers from an F -distribution

G05SJF 22 nagf_rand_dist_gamma
Generates a vector of pseudorandom numbers from a gamma distribution

G05SKF 22 nagf_rand_dist_normal
Generates a vector of pseudorandom numbers from a Normal distribution

G05SLF 22 nagf_rand_dist_logistic
Generates a vector of pseudorandom numbers from a logistic distribution
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G05SMF 22 nagf_rand_dist_lognormal
Generates a vector of pseudorandom numbers from a log-normal
distribution

G05SNF 22 nagf_rand_dist_students_t
Generates a vector of pseudorandom numbers from a Student's
t-distribution

G05SPF 22 nagf_rand_dist_triangular
Generates a vector of pseudorandom numbers from a triangular distribution

G05SQF 22 nagf_rand_dist_uniform
Generates a vector of pseudorandom numbers from a uniform distribution
over a; b½ �

G05SRF 22 nagf_rand_dist_vonmises
Generates a vector of pseudorandom numbers from a von Mises
distribution

G05SSF 22 nagf_rand_dist_weibull
Generates a vector of pseudorandom numbers from a Weibull distribution

G05TAF 22 nagf_rand_int_binomial
Generates a vector of pseudorandom integers from a binomial distribution

G05TBF 22 nagf_rand_logical
Generates a vector of pseudorandom logical values

G05TCF 22 nagf_rand_int_geom
Generates a vector of pseudorandom integers from a geometric distribution

G05TDF 22 nagf_rand_int_general
Generates a vector of pseudorandom integers from a general discrete
distribution

G05TEF 22 nagf_rand_int_hypergeom
Generates a vector of pseudorandom integers from a hypergeometric
distribution

G05TFF 22 nagf_rand_int_log
Generates a vector of pseudorandom integers from a logarithmic
distribution

G05TGF 22 nagf_rand_int_multinomial
Generates a vector of pseudorandom integers from a multinomial
distribution

G05THF 22 nagf_rand_int_negbin
Generates a vector of pseudorandom integers from a negative binomial
distribution

G05TJF 22 nagf_rand_int_poisson
Generates a vector of pseudorandom integers from a Poisson distribution

G05TKF 22 nagf_rand_int_poisson_varmean
Generates a vector of pseudorandom integers from a Poisson distribution
with varying mean

G05TLF 22 nagf_rand_int_uniform
Generates a vector of pseudorandom integers from a uniform distribution

G05XAF 24 nagf_rand_bb_init
Initializes the Brownian bridge generator

G05XBF 24 nagf_rand_bb
Generate paths for a free or non-free Wiener process using the Brownian
bridge algorithm

G05XCF 24 nagf_rand_bb_inc_init
Initializes the generator which backs out the increments of sample paths
generated by a Brownian bridge algorithm

G05XDF 24 nagf_rand_bb_inc
Backs out the increments from sample paths generated by a Brownian
bridge algorithm

G05XEF 24 nagf_rand_bb_make_bridge_order
Creates a Brownian bridge construction order out of a set of input times

G05YJF 21 nagf_rand_quasi_normal
Generates a Normal quasi-random number sequence
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G05YKF 21 nagf_rand_quasi_lognormal
Generates a log-normal quasi-random number sequence

G05YLF 22 nagf_rand_quasi_init
Initializes a quasi-random number generator

G05YMF 22 nagf_rand_quasi_uniform
Generates a uniform quasi-random number sequence

G05YNF 22 nagf_rand_quasi_init_scrambled
Initializes a scrambled quasi-random number generator

G05ZMF 24 nagf_rand_field_1d_user_setup
Setup for simulating one-dimensional random fields, user-defined variogram

G05ZNF 24 nagf_rand_field_1d_predef_setup
Setup for simulating one-dimensional random fields

G05ZPF 24 nagf_rand_field_1d_generate
Generates realizations of a one-dimensional random field

G05ZQF 24 nagf_rand_field_2d_user_setup
Setup for simulating two-dimensional random fields, user-defined
variogram

G05ZRF 24 nagf_rand_field_2d_predef_setup
Setup for simulating two-dimensional random fields, preset variogram

G05ZSF 24 nagf_rand_field_2d_generate
Generates realizations of a two-dimensional random field

G05ZTF 24 nagf_rand_field_fracbm_generate
Generates realizations of fractional Brownian motion
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1 Scope of the Chapter

This chapter is concerned with the generation of sequences of independent pseudorandom and quasi-
random numbers from various distributions, and models.

2 Background to the Problems

2.1 Pseudorandom Numbers

A sequence of pseudorandom numbers is a sequence of numbers generated in some systematic way
such that they are independent and statistically indistinguishable from a truly random sequence. A
pseudorandom number generator (PRNG) is a mathematical algorithm that, given an initial state,
produces a sequence of pseudorandom numbers. A PRNG has several advantages over a true random
number generator in that the generated sequence is repeatable, has known mathematical properties and
can be implemented without needing any specialist hardware. Many books on statistics and computer
science have good introductions to PRNGs, for example Knuth (1981) or Banks (1998).

PRNGs can be split into base generators, and distributional generators. Within the context of this
document a base generator is defined as a PRNG that produces a sequence (or stream) of variates (or
values) uniformly distributed over the interval 0; 1ð Þ. Depending on the algorithm being considered, this
interval may be open, closed or half-closed. A distribution generator is a routine that takes variates
generated from a base generator and transforms them into variates from a specified distribution, for
example a uniform, Gaussian (Normal) or gamma distribution.

The period (or cycle length) of a base generator is defined as the maximum number of values that can
be generated before the sequence starts to repeat. The initial state of the base generator is often called
the seed.

There are six base generators currently available in the NAG Library, these are; a basic linear
congruential generator (LCG) (referred to as the NAG basic generator) (see Knuth (1981)), two sets of
Wichmann–Hill generators (see Maclaren (1989) and Wichmann and Hill (2006)), the Mersenne
Twister (see Matsumoto and Nishimura (1998)), the ACORN generator (see Wikramaratna (1989)) and
L'Ecuyer generator (see L'Ecuyer and Simard (2002)).

2.1.1 NAG Basic Generator

The NAG basic generator is a linear congruential generator (LCG) and, like all linear congruential
generators, has the form:

xi ¼ a1xi�1 mod m1;
ui ¼ xi

m1
;

where the ui, for i ¼ 1; 2; . . ., form the required sequence.

The NAG basic generator uses a1 ¼ 1313 and m1 ¼ 259, which gives a period of approximately 257.

This generator has been part of the NAG Library since Mark 6 and as such has been widely used. It
suffers from no known problems, other than those due to the lattice structure inherent in all linear
congruential generators, and, even though the period is relatively short compared to many of the newer
generators, it is sufficiently large for many practical problems.

The performance of the NAG basic generator has been analysed by the Spectral Test, see Section 3.3.4
of Knuth (1981), yielding the following results in the notation of Knuth (1981).

G05 – Random Number Generators Introduction – G05

Mark 26 G05.3



n �n Upper bound for �n
2 3:44� 108 4:08� 108

3 4:29� 105 5:88� 105

4 1:72� 104 2:32� 104

5 1:92� 103 3:33� 103

6 593 939
7 198 380
8 108 197
9 67 120

The right-hand column gives an upper bound for the values of �n attainable by any multiplicative
congruential generator working modulo 259.

An informal interpretation of the quantities �n is that consecutive n-tuples are statistically uncorrelated
to an accuracy of 1=�n. This is a theoretical result; in practice the degree of randomness is usually
much greater than the above figures might support. More details are given in Knuth (1981), and in the
references cited therein.

Note that the achievable accuracy drops rapidly as the number of dimensions increases. This is a
property of all multiplicative congruential generators and is the reason why very long periods are
needed even for samples of only a few random numbers.

2.1.2 Wichmann–Hill I Generator

This series of Wichmann–Hill base generators (see Maclaren (1989)) use a combination of four linear
congruential generators and has the form:

wi ¼ a1wi�1 mod m1
xi ¼ a2xi�1 mod m2
yi ¼ a3yi�1 mod m3
zi ¼ a4zi�1 mod m4

ui ¼ wi
m1
þ xi

m2
þ yi

m3
þ zi

m4

� �
mod 1;

ð1Þ

where the ui, for i ¼ 1; 2; . . ., form the required sequence. The NAG Library implementation includes
273 sets of parameters, aj ;mj , for j ¼ 1; 2; 3; 4, to choose from.

The constants ai are in the range 112 to 127 and the constants mj are prime numbers in the range
16718909 to 16776971, which are close to 224 ¼ 16777216. These constants have been chosen so that
each of the resulting 273 generators are essentially independent, all calculations can be carried out in
32-bit integer arithmetic and the generators give good results with the spectral test, see Knuth (1981)
and Maclaren (1989). The period of each of these generators would be at least 292 if it were not for
common factors between m1 � 1ð Þ, m2 � 1ð Þ, m3 � 1ð Þ and m4 � 1ð Þ. However, each generator should
still have a period of at least 280. Further discussion of the properties of these generators is given in
Maclaren (1989).

2.1.3 Wichmann–Hill II Generator

This Wichmann–Hill base generator (see Wichmann and Hill (2006)) is of the same form as that
described in Section 2.1.2, i.e., a combination of four linear congruential generators. In this case
a1 ¼ 11600, m1 ¼ 2147483579, a2 ¼ 47003, m2 ¼ 2147483543, a3 ¼ 23000, m3 ¼ 2147483423,
a4 ¼ 33000, m4 ¼ 2147483123.

Unlike in the original Wichmann–Hill generator, these values are too large to carry out the calculations
detailed in (1) using 32-bit integer arithmetic, however, if

wi ¼ 11600endgroupwi�1 mod 2147483579

then setting

Wi ¼ 11600 wi�1 mod 185127ð Þ � 10379 wi�1=185127ð Þ

gives
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wi ¼ Wi if Wi � 0
2147483579þWi otherwise



and Wi can be calculated in 32-bit integer arithmetic. Similar expressions exist for xi, yi and zi. The
period of this generator is approximately 2121.

Further details of implementing this algorithm and its properties are given in Wichmann and Hill
(2006). This paper also gives some useful guidelines on testing PRNGs.

2.1.4 Mersenne Twister Generator

The Mersenne Twister (see Matsumoto and Nishimura (1998)) is a twisted generalized feedback shift
register generator. The algorithm underlying the Mersenne Twister is as follows:

(i) Set some arbitrary initial values x1; x2; . . . ; xr, each consisting of w bits.

(ii) Letting

A ¼ 0 Iw�1
aw aw�1 � � � a1

� �
;

where Iw�1 is the w� 1ð Þ � w� 1ð Þ identity matrix and each of the ai; i ¼ 1 to w take a value of
either 0 or 1 (i.e., they can be represented as bits). Define

xiþr ¼ xiþs � x
!: lþ1ð Þð Þ
i jx l:1ð Þ

iþ1

� �
A

� �
;

where x !: lþ1ð Þð Þ
i jx l:1ð Þ

iþ1 indicates the concatenation of the most significant (upper) w� l bits of xi and
the least significant (lower) l bits of xiþ1.

(iii) Perform the following operations sequentially:

z ¼ xiþr � xiþr � t1ð Þ
z ¼ z� z t2ð Þ AND m1ð Þ
z ¼ z� z t3ð Þ AND m2ð Þ
z ¼ z� z� t4ð Þ
uiþr ¼ z= 2w � 1ð Þ;

where t1, t2, t3 and t4 are integers and m1 and m2 are bit-masks and ‘� t’ and ‘ t’ represent a t
bit shift right and left respectively, � is bit-wise exclusively or (xor) operation and ‘AND’ is a bit-
wise and operation.

The uiþr, for i ¼ 1; 2; . . ., form the required sequence. The supplied implementation of the Mersenne
Twister uses the following values for the algorithmic constants:

w ¼ 32
a ¼ 0x9908b0df
l ¼ 31
r ¼ 624
s ¼ 397
t1 ¼ 11
t2 ¼ 7
t3 ¼ 15
t4 ¼ 18
m1 ¼ 0x9d2c5680
m2 ¼ 0xefc60000

where the notation 0xDD. . . indicates the bit pattern of the integer whose hexadecimal representation is
DD. . ..

This algorithm has a period length of approximately 219;937 � 1 and has been shown to be uniformly
distributed in 623 dimensions (see Matsumoto and Nishimura (1998)).
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2.1.5 ACORN Generator

The ACORN generator is a special case of a multiple recursive generator (see Wikramaratna (1989) and
Wikramaratna (2007)). The algorithm underlying ACORN is as follows:

(i) Choose an integer value k � 1.

(ii) Choose an integer value M, and an integer seed Y 0ð Þ
0 , such that 0 < Y

0ð Þ
0 < M and Y 0ð Þ

0 and M are
relatively prime.

(iii) Choose an arbitrary set of k initial integer values, Y 1ð Þ
0 ; Y

2ð Þ
0 ; . . . ; Y

kð Þ
0 , such that 0 � Y mð Þ

0 < M, for
all m ¼ 1; 2; . . . ; k.

(iv) Perform the following sequentially:

Y
mð Þ

i ¼ Y
m�1ð Þ

i þ Y mð Þ
i�1

� �
mod M

for m ¼ 1; 2; . . . ; k.

(v) Set ui ¼ Y kð Þ
i =M.

The ui, for i ¼ 1; 2; . . ., then form a pseudorandom sequence, with ui 2 0; 1½ Þ, for all i.

Although you can choose any value for k, M, Y 0ð Þ
0 and the Y mð Þ

0 , within the constraints mentioned in (i)
to (iii) above, it is recommended that k � 10, M is chosen to be a large power of two with M � 260

and Y 0ð Þ
0 is chosen to be odd.

The period of the ACORN generator, with the modulus M equal to a power of two, and an odd value

for Y 0ð Þ
0 has been shown to be an integer multiple of M (see Wikramaratna (1992)). Therefore,

increasing M will give a series with a longer period.

2.1.6 L'Ecuyer MRG32k3a Combined Recursive Generator

The base generator L'Ecuyer MRG32k3a (see L'Ecuyer and Simard (2002)) combines two multiple
recursive generators:

xi ¼ a11xi�1 þ a12xi�2 þ a13xi�3ð Þ mod m1
yi ¼ a21yi�1 þ a22yi�2 þ a23yi�3ð Þ mod m2
zi ¼ xi � yið Þ mod m1
ui ¼ zi þ 1ð Þ=d

w h e r e a11 ¼ 0, a12 ¼ 1403580, a13 ¼ �810728, m1 ¼ 232 � 209, a21 ¼ 527612, a22 ¼ 0,
a23 ¼ �1370589, m2 ¼ 232 � 22853, and ui; i ¼ 1; 2; . . . form the required sequence. If d ¼ m1 then
ui 2 0; 1ð � else if d ¼ m1 þ 1 then ui 2 0; 1ð Þ. Combining the two multiple recursive generators (MRG)
results in sequences with better statistical properties in high dimensions and longer periods compared
with those generated from a single MRG. The combined generator described above has a period length
of approximately 2191.

2.2 Quasi-random Numbers

Low discrepancy (quasi-random) sequences are used in numerical integration, simulation and
optimization. Like pseudorandom numbers they are uniformly distributed but they are not statistically
independent, rather they are designed to give more even distribution in multidimensional space
(uniformity). Therefore they are often more efficient than pseudorandom numbers in multidimensional
Monte–Carlo methods.

The quasi-random number generators implemented in this chapter generate a set of points x1; x2; . . . ; xN

with high uniformity in the S-dimensional unit cube IS ¼ 0; 1½ �S . One measure of the uniformity is the
discrepancy which is defined as follows:

Given a set of points x1; x2; . . . ; xN 2 IS and a subset G � IS , define the counting function
SN Gð Þ as the number of points xi 2 G. For each x ¼ x1; x2; . . . ; xSð Þ 2 IS , let Gx be the
rectangular S-dimensional region

Introduction – G05 NAG Library Manual

G05.6 Mark 26



Gx ¼ 0; x1½ Þ � 0; x2½ Þ � � � � � 0; xS½ Þ

with volume x1; x2; . . . ; xS . Then the discrepancy of the points x1; x2; . . . ; xN is

D�N x1; x2; . . . ; xN
� �

¼ sup
x2IS

SN Gxð Þ �N
XS
k¼1

xk

					
					:

The discrepancy of the first N terms of such a sequence has the form

D�N x1; x2; . . . ; xN
� �

� CS logNð ÞS þO logNð ÞS�1
� �

for all N � 2:

The principal aim in the construction of low-discrepancy sequences is to find sequences of points
in IS with a bound of this form where the constant CS is as small as possible.

Three types of low-discrepancy sequences are supplied in this library, these are due to Sobol, Faure and
Niederreiter. Two sets of Sobol sequences are supplied, the first is based on work of Joe and Kuo
(2008) and the second on the work of Bratley and Fox (1988). More information on quasi-random
number generation and the Sobol, Faure and Niederreiter sequences in particular can be found in
Bratley and Fox (1988) and Fox (1986).

The efficiency of a simulation exercise may often be increased by the use of variance reduction methods
(see Morgan (1984)). It is also worth considering whether a simulation is the best approach to solving
the problem. For example, low-dimensional integrals are usually more efficiently calculated by routines
in Chapter D01 rather than by Monte–Carlo integration.

2.3 Scrambled Quasi-random Numbers

Scrambled quasi-random sequences are an extension of standard quasi-random sequences that attempt to
eliminate the bias inherent in a quasi-random sequence whilst retaining the low-discrepancy properties.
The use of a scrambled sequence allows error estimation of Monte–Carlo results by performing a
number of iterates and computing the variance of the results.

This implementation of scrambled quasi-random sequences is based on TOMS algorithm 823 and
details can be found in the accompanying paper, Hong and Hickernell (2003). Three methods of
scrambling are supplied; the first a restricted form of Owen's scrambling (Owen (1995)), the second
based on the method of Faure and Tezuka (2000) and the last method combines the first two.

Scrambled versions of both Sobol sequences and the Niederreiter sequence can be obtained.

2.4 Non-uniform Random Numbers

Random numbers from other distributions may be obtained from the uniform random numbers by the
use of transformations and rejection techniques, and for discrete distributions, by table based methods.

(a) Transformation Methods

For a continuous random variable, if the cumulative distribution function (CDF) is F xð Þ then for a
uniform 0; 1ð Þ random variate u, y ¼ F�1 uð Þ will have CDF F xð Þ. This method is only efficient in
a few simple cases such as the exponential distribution with mean �, in which case
F�1 uð Þ ¼ ��log uð Þ. Other transformations are based on the joint distribution of several random
variables. In the bivariate case, if v and w are random variates there may be a function g such that
y ¼ g v; wð Þ has the required distribution; for example, the Student's t-distribution with n degrees of
freedom in which v has a Normal distribution, w has a gamma distribution and g v; wð Þ ¼ v

ffiffiffiffiffiffiffiffiffi
n=w

p
.

(b) Rejection Methods

Rejection techniques are based on the ability to easily generate random numbers from a distribution
(called the envelope) similar to the distribution required. The value from the envelope distribution
is then accepted as a random number from the required distribution with a certain probability;
otherwise, it is rejected and a new number is generated from the envelope distribution.
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(c) Table Search Methods

For discrete distributions, if the cumulative probabilities, Pi ¼ Prob x � ið Þ, are stored in a table
then, given u from a uniform 0; 1ð Þ distribution, the table is searched for i such that Pi�1 < u � Pi.
The returned value i will have the required distribution. The table searching can be made faster by
means of an index, see Ripley (1987). The effort required to set up the table and its index may be
considerable, but the methods are very efficient when many values are needed from the same
distribution.

2.5 Copulas

A copula is a function that links the univariate marginal distributions with their multivariate
distribution. Sklar's theorem (see Sklar (1973)) states that if f is an m-dimensional distribution function
with continuous margins f1; f2; . . . ; fm, then f has a unique copula representation, c, such that

f x1; x2; . . . ; xmð Þ ¼ c f1 x1ð Þ; f2 x2ð Þ; . . . ; fm xmð Þð Þ
The copula, c, is a multivariate uniform distribution whose dependence structure is defined by the
dependence structure of the multivariate distribution f , with

c u1; u2; . . . ; umð Þ ¼ f f�11 u1ð Þ; f�12 u2ð Þ; . . . ; f�1m umð Þ
� �

where ui 2 0; 1½ �. This relationship can be used to simulate variates from distributions defined by the
dependence structure of one distribution and each of the marginal distributions given by another. For
additional information see Nelsen (1998) or Boye (Unpublished manuscript) and the references therein.

2.6 Brownian Bridge

2.6.1 Brownian Bridge Process

Fix two times t0 < T and let W ¼ Wtð Þ0�t�T�t0 be a standard d-dimensional Wiener process on the
interval 0; T � t0½ �. Recall that the terms Wiener process and Brownian motion are often used
interchangeably.

A standard d-dimensional Brownian bridge B ¼ Btð Þt0�t�T on t0; T½ � is defined (see Revuz and Yor
(1999)) as

Bt ¼ Wt�t0 �
t� t0
T � t0

WT�t0 :

The process is continuous, starts at zero at time t0 and ends at zero at time T . It is Gaussian, has zero
mean and has a covariance structure given by

E BsB
T
t

� �
¼ s� t0ð Þ T � tð Þ

T � t0
Id

for any s � t in t0; T½ � where Id is the d-dimensional identity matrix. The Brownian bridge is often
called a non-free or ‘pinned’ Wiener process since it is forced to be 0 at time T , but is otherwise very
similar to a standard Wiener process.

We can generalize this construction as follows. Fix points x;w 2 R
d, let � be a d� d covariance matrix

and choose any d� d matrix C such that CCT ¼ �. The generalized d-dimensional Brownian bridge
X ¼ Xtð Þt0�t�T is defined by setting

Xt ¼
t� t0ð Þwþ T � tð Þx

T � t0
þ CBt ¼

t� t0ð Þwþ T � tð Þx
T � t0

þ CWt�t0 �
t� t0ð Þ
T � t0

CWT�t0

for all t 2 t0; T½ �. The process X is continuous, starts at x at time t0 and ends at w at time T . It has
mean t� t0ð Þwþ T � tð Þxð Þ= T � t0ð Þ and covariance structure

E Xs � EXsð Þ Xt � EXtð ÞT ¼ E CBsB
T
t C

T
� �

¼ s� t0ð Þ T � tð Þ
T � t0

�

for all s � t in t0; T½ �. This is a non-free Wiener process since it is forced to be equal to w at time T .
However if we set w ¼ xþ CWT�t0 , then X simplifies to
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Xt ¼ xþ CWt�t0

for all t 2 t0; T½ � which is nothing other than a d-dimensional Wiener process with covariance given by
�.

Figure 1
Two sample paths for a two-dimensional free Wiener process

Figure 1 shows two sample paths for a two-dimensional free Wiener process X ¼ X1
t ; X

2
t

� �
0�t�2. The

correlation coefficient between the one-dimensional processes X1 and X2 at any time is � ¼ 0:80. Note
that the red and green paths in each figure are uncorrelated, however it is fairly evident that the two red
paths are correlated, and that the two green paths are correlated (when one path increases so does the
other, and vice versa).

Figure 2
Two sample paths for a two-dimensional non-free Wiener process. The process starts at 0; 0ð Þ and ends

at 1;�1ð Þ
Figure 2 shows two sample paths for a two-dimensional non-free Wiener process. The process starts at
0; 0ð Þ and ends at 1;�1ð Þ. The correlation coefficient between the one-dimensional processes is again
� ¼ 0:80. The red and green paths in each figure are uncorrelated, while the two red paths tend to
increase and decrease together, as do the two green paths. Both Figure 1 and Figure 2 were constructed
using G05XBF.

2.6.2 Brownian Bridge Algorithm

The ideas above can also be used to construct sample paths of a free or non-free Wiener process (recall
that a non-free Wiener process is the Brownian bridge process outlined above). Fix two times t0 < T
and let tið Þ1�i�N be any set of time points satisfying t0 < t1 < t2 < � � � < tN < T . Let Xtið Þ1�i�N
denote a d-dimensional (free or non-free) Wiener sample path at these times. These values can be
generated by the so-called Brownian bridge algorithm (see Glasserman (2004)) which works as follows.
From any two known points Xti at time ti and Xtk at time tk with ti < tk, a new point Xtj can be
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interpolated at any time tj 2 ti; tkð Þ by setting

Xtj ¼
Xti tk � tj
� �

þXtk tj � ti
� �

tk � ti
þ CZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tk � tj
� �

tj � ti
� �

tk � tið Þ

s
ð2Þ

where Z is a d-dimensional standard Normal random variable and C is any d� d matrix such that CCT

is the desired covariance structure for the (free or non-free) Wiener process X. Clearly this algorithm is
iterative in nature. All that is needed to complete the specification is to fix the start point Xt0 and end
point XT , and to specify how successive interpolation times tj are chosen. For X to behave like a usual
(free) Wiener process we should set Xt0 equal to some value x 2 R

d and then set
XT ¼ xþ C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T � t0
p

Z where Z is any d-dimensional standard Normal random variable. However
when it comes to deciding how the successive interpolation times tj should be chosen, there is virtually
no restriction. Any method of choosing which tj 2 ti; tkð Þ to interpolate next is equally valid, provided
ti is the nearest known point to the left of tj and tk is the nearest known point to the right of tj. In other
words, the interpolation interval ti; tkð Þ must not contain any other known points, otherwise the
covariance structure of the process will be incorrect.

The order in which the successive interpolation times tj are chosen is called the bridge construction
order. Since all construction orders will produce a correct process, the question arises whether one
construction order should be preferred over another. When the Z values are drawn from a
pseudorandom generator, the answer is typically no. However the bridge algorithm is frequently used
with quasi-random numbers, and in this case the bridge construction order can be important.

2.6.3 Bridge Construction Order and Quasi-random Sequences

Consider the one-dimensional case of a free Wiener process where d ¼ C ¼ 1. The Brownian bridge is
frequently combined with low-discrepancy (quasi-random) sequences to perform quasi-Monte–Carlo
integration. Quasi-random points Z1; Z2; Z3; . . . are generated from the standard Normal distribution,
where each quasi-random point Zi ¼ Zi

1; Z
i
2; � � � ; Zi

D

� �
consists of D one-dimensional values. The

process X starts at Xt0 ¼ x which is known. There remain N þ 1 time points at which the bridge is to
be computed, namely Xtið Þ1�i�N and XT (recall we are considering a free Wiener process). In this case
D is set equal to N þ 1, so that N þ 1 dimensional quasi-random points are generated. A single quasi-
random point is used to construct one Wiener sample path.

The question is how to use the dimension values of each N þ 1 dimensional quasi-random point. Often
the ‘lower’ dimension values (Zi

1; Z
i
2, etc.) display better uniformity properties than the ‘higher’

dimension values (Zi
Nþ1; Z

i
N , etc.) so that the ‘lower’ dimension values should be used to construct the

most important sections of the sample path. For example, consider a model which is particularly
sensitive to the behaviour of the underlying process at time 3. When constructing the sample paths, one
would therefore ensure that time 3 was one of the interpolation points of the bridge, and that a ‘lower’
dimension value was used in (2) to construct the corresponding bridge point X3. Indeed, one would
most likely also ensure that time X3 was one of the first bridge points that was constructed: ‘lower’
dimension values would be used to construct both the left and right bridge points used in (2) to
interpolate X3, so that the distribution of X3 benefits as much as possible from the uniformity
properties of the quasi-random sequence. For further discussions in this regard we refer to Glasserman
(2004). These remarks extend readily to the case of a non-free Wiener process.

2.6.4 Brownian Bridge and Stochastic Differential Equations

The Brownian bridge algorithm, especially when combined with quasi-random variates, is frequently
used to obtain numerical solutions to stochastic differential equations (SDEs) driven by (free or non-
free) Wiener processes. The quasi-random variates produce a family of Wiener sample paths which
cover the space of all Wiener sample paths fairly evenly. This is analogous to the way in which a two-
dimensional quasi-random sequence covers the unit square 0; 1½ �2 evenly. When solving SDEs one is
typically interested in the increments of the driving Wiener process between two time points, rather than
the value of the process at a particular time point. Section 3.3 contains details on which routines can be
used to obtain such Wiener increments.
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2.7 Random Fields

A random field is a stochastic process, taking values in a Euclidean space, and defined over a parameter
space of dimensionality at least one. They are often used to simulate some physical space-dependent
parameter, such as the permeability of rock, which cannot be measured at every point in the space. The
simulated values can then be used to model other dependent quantities, for example, underground flow
of water, often through the use of partial differential equations (PDEs).

A d-dimensional random field Z xð Þ is a function which is random at every point x 2 Dð Þ for some
domain D � R

d, so Z xð Þ is a random variable for each x. The random field has a mean function
� xð Þ ¼ E Z xð Þ½ � a n d a s ymm e t r i c p o s i t i v e s e m i d e fi n i t e c o v a r i a n c e f u n c t i o n
C x; yð Þ ¼ E Z xð Þ � � xð Þð Þ Z yð Þ � � yð Þð Þ½ �.

A random field, Z xð Þ, is a Gaussian random field if, for any choice of n 2 N and x1; . . . ; xn 2 R
d, the

random vector Z x1ð Þ; . . . ; Z xnð Þ½ �T follows a multivariate Gaussian distribution.

A Gaussian random field Z xð Þ is stationary if � xð Þ is constant for all x 2 R and
C x; yð Þ ¼ C xþ a; yþ að Þ for all x; y; a 2 R

d and hence we can express the covariance function
C x; yð Þ as a function � of one variable: C x; yð Þ ¼ � x� yð Þ. � is known as a variogram (or more
correctly, a semivariogram) and includes the multiplicative factor �2 representing the variance such that
� 0ð Þ ¼ �2. There are a number of commonly used variograms, including:

Symmetric stable variogram

� xð Þ ¼ �2 exp � x0ð Þ�
� �

:

Cauchy variogram

� xð Þ ¼ �2 1þ x0ð Þ2
� ���

:

Differential variogram with compact support

� xð Þ ¼ �2 1þ 8x0 þ 25 x0ð Þ2 þ 32 x0ð Þ3
� �

1� x0ð Þ8; x0 < 1;

0; x0 � 1:

(
Exponential variogram

� xð Þ ¼ �2 exp �x0ð Þ:
Gaussian variogram

� xð Þ ¼ �2 exp � x0ð Þ2
� �

:

Nugget variogram

� xð Þ ¼ �2; x ¼ 0;
0; x 6¼ 0:



Spherical variogram

� xð Þ ¼ �2 1� 1:5x0 þ 0:5 x0ð Þ3
� �

; x0 < 1;

0; x0 � 1:

(
Bessel variogram

� xð Þ ¼ �22
� � þ 1ð ÞJ� x0ð Þ

x0ð Þ� ;

Hole effect variogram

� xð Þ ¼ �2sin x
0ð Þ

x0
:
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Whittle–Matérn variogram

� xð Þ ¼ �22
1�� x0ð Þ�K� x

0ð Þ
 �ð Þ :

Continuously parameterised variogram with compact support

� xð Þ ¼ �22
1�� x0ð Þ�K� x

0ð Þ
 �ð Þ 1þ 8x00 þ 25 x00ð Þ2 þ 32 x00ð Þ3

� �
1� x00ð Þ8; x00 < 1;

0; x00 � 1:

(
Generalized hyperbolic distribution variogram

� xð Þ ¼ �2
�2 þ x0ð Þ2
� ��

2

��K� ��ð Þ
K� � �2 þ x0ð Þ2

� �1
2

� �
:

Cosine variogram

� xð Þ ¼ �2 cos x0ð Þ:
Where x0 is a scaled norm of x.

2.8 Sampling

The term sampling can have a number of different meanings. Here we are using it to mean randomly
selecting one or more observations or records from a particular dataset. Sampling can be performed in
one of two ways:

With replacement:
where each observation in the original dataset can appear multiple times in the sample. The
sample can therefore be larger than the original dataset.

Without replacement:
where each observation in the original dataset can appear at most once in the sample. The
sample is therefore no larger than the original dataset.

Each of these sampling methods can be further divided into two categories:

With equal weights:
where each observation in the original dataset has the same probability of appearing in the
sample as every other observation.

With unequal weights:
where the probability of an observation from the original dataset appearing in the sample is
proportional to the weight assigned to that observation.

The need to sample from a dataset appears in many areas. For example, it forms the basis for:
bootstrapping (sampling with replacement, usually using equal weights); cross-validation (sampling
without replacement, using equal weights); importance sampling (sampling with replacement, using
unequal weights); randomization of experimental units in designed experiments or reducing the size of
large databases (sampling with replacement with either equal or unequal weights).

Rather than drawing a sample from the whole dataset it is sometimes desirable to take samples from
different strata or subpopulations within that dataset, referred to as stratified sampling. Within each
stratum one or more of the above sampling methods may be adopted.

2.9 Sampling Based Validation

Let Yo;Xoð Þ denote a dataset of observed values from a known population, where Yo is a matrix of one
or more dependent or response variables and Xo a matrix of one more more independent variables or
covariates. Let M denote a model described in terms � a vector of one or more unknown parameters.
The purpose of model M is to describe the behaviour of the dependent variables in terms of the
independent variables. In order to do this the parameter estimates must first be estimated and then how
well the models fits, that is, how well it describes the dependent variables, assessed.
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An example of such a model would be a simple linear regression as described in Section 2.3 in the G02
Chapter Introduction. The simple linear regression has two parameters, an intercept, �0 and slope, �1
and the observed dataset consists of the dependent variable y and the single independent variable x. The
parameter estimates are usually obtained via least squares.

Given a set of parameter estimates and a matrix of independent variables one way of assessing how
well a model fits is to use the model to predict the values of the dependent variable and compare these
predictions to the observed values. Ideally two datasets will be involved, a training dataset, Yt;Xtð Þ,
used to estimate the model parameters and a validation dataset, Yv;Xvð Þ, used for the prediction and
comparison. These two datasets should be drawn independently from the same population. However, in
practice, this is often not possible either because a second dataset can not be drawn from the same
population or because the value of the dependent variables are unknowable (for example the dataset in
question is a time series and the event of interest has not yet happened). Rather than use the same
dataset as both the training and validation dataset, which leads to overfitting and hence an over
estimation of how well the model fits, a sampling based validation method can be used.

In K-fold cross-validation the original dataset is randomly divided into K equally sized folds (or
groups). The model fitting and assessment process is performed using a validation dataset consisting of
those observations in the kth group and a training dataset consisting of all observations not in the kth
group. This is repeated K times, with k ¼ 1; 2; . . . ;K, and the results combined. Repeated random
sub-sampling validation is similar, but rather than systematically dividing the original dataset into a
training and validation dataset, whether an observation resides in a given dataset is chosen randomly
each time the model fitting and assessment process is repeated.

2.10 Other Random Structures

In addition to random numbers from various distributions, random compound structures can be
generated. These include random time series and random matrices.

2.11 Multiple Streams of Pseudorandom Numbers

It is often advantageous to be able to generate variates from multiple, independent, streams (or
sequences) of random variates. For example when running a simulation in parallel on several
processors. There are four ways of generating multiple streams using the routines available in this
chapter:

(i) using different initial values (seeds);

(ii) using different generators;

(iii) skip ahead (also called block-splitting);

(iv) leap-frogging.

2.11.1 Multiple Streams via Different Initial Values (Seeds)

A different sequence of variates can be generated from the same base generator by initializing the
generator using a different set of seeds. The statistical properties of the base generators are only
guaranteed within, not between sequences. For example, two sequences generated from two different
starting points may overlap if these initial values are not far enough apart. The potential for overlapping
sequences is reduced if the period of the generator being used is large. In general, of the four methods
for creating multiple streams described here, this is the least satisfactory.

The one exception to this is the Wichmann–Hill II generator. The Wichmann and Hill (2006) paper
describes a method of generating blocks of variates, with lengths up to 290, by fixing the first three seed
values of the generator (w0, x0 and y0), and setting z0 to a different value for each stream required. This
is similar to the skip-ahead method described in Section 2.11.3, in that the full sequence of the
Wichmann–Hill II generator is split into a number of different blocks, in this case with a fixed length of
290. But without the computationally intensive initialization usually required for the skip-ahead method.
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2.11.2 Multiple Streams via Different Generators

Independent sequences of variates can be generated using a different base generator for each sequence.
For example, sequence 1 can be generated using the NAG basic generator, sequence 2 using Mersenne
Twister, sequence 3 the ACORN generator and sequence 4 using L'Ecuyer generator. The Wichmann–
Hill I generator implemented in this chapter is, in fact, a series of 273 independent generators. The
particular sub-generator to use is selected using the SUBID variable. Therefore, in total, 278
independent streams can be generated with each using a different generator (273 Wichmann–Hill I
generators, and 5 additional base generators).

2.11.3 Multiple Streams via Skip-ahead

Independent sequences of variates can be generated from a single base generator through the use of
block-splitting, or skipping-ahead. This method consists of splitting the sequence into k non-
overlapping blocks, each of length n, where n is no smaller than the maximum number of variates
required from any of the sequences. For example,

x1; x2; . . . ; xn
block 1

;
xnþ1; xnþ2; . . . ; x2n

block 2
;
x2nþ1; x2nþ2; . . . ; x3n

block 3
; etc:

where x1; x2; . . . is the sequence produced by the generator of interest. Each of the k blocks provide an
independent sequence.

The skip-ahead algorithm therefore requires the sequence to be advanced a large number of places, as to
generate values from say, block b, you must skip over the b� 1ð Þn values in the first b� 1 blocks.
Owing to their form this can be done efficiently for linear congruential generators and multiple
congruential generators. A skip-ahead algorithm is also provided for the Mersenne Twister generator.

Although skip-ahead requires some additional computation at the initialization stage (to ‘fast forward’
the sequence) no additional computation is required at the generation stage.

This method of producing multiple streams can also be used for the Sobol and Niederreiter quasi-
random number generator via the argument ISKIP in G05YLF.

2.11.4 Multiple Streams via Leap-frog

Independent sequences of variates can also be generated from a single base generator through the use of
leap-frogging. This method involves splitting the sequence from a single generator into k disjoint
subsequences. For example:

Subsequence 1 : x1; xkþ1; x2kþ1; . . .
Subsequence 2 : x2; xkþ2; x2kþ2; . . .

..

.

Subsequence k: xk; x2k; x3k; . . . ;

where x1; x2; . . . is the sequence produced by the generator of interest. Each of the k subsequences then
provides an independent stream of variates.

The leap-frog algorithm therefore requires the generation of every kth variate from the base generator.
Owing to their form this can be done efficiently for linear congruential generators and multiple
congruential generators. A leap-frog algorithm is provided for the NAG Basic generator, both the
Wichmann–Hill I and Wichmann–Hill II generators and L'Ecuyer generator.

It is known that, dependent on the number of streams required, leap-frogging can lead to sequences
with poor statistical properties, especially when applied to linear congruential generators. In addition,
leap-frogging can increase the time required to generate each variate. Therefore leap-frogging should be
avoided unless absolutely necessary.

2.11.5 Skip-ahead and Leap-frog for a Linear Congruential Generator (LCG):
An Example

As an illustrative example, a brief description of the algebra behind the implementation of the leap-frog
and skip-ahead algorithms for a linear congruential generator is given. A linear congruential generator
has the form xiþ1 ¼ a1xi mod m1. The recursive nature of a linear congruential generator means that
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xiþv ¼ a1xiþv�1 mod m1
¼ a1 a1xiþv�2 mod m1ð Þ mod m1
¼ a21xiþv�2 mod m1
¼ av1xi mod m1:

The sequence can therefore be quickly advanced v places by multiplying the current state (xi) by
av1 mod m1, hence skipping the sequence ahead. Leap-frogging can be implemented by using ak1, where
k is the number of streams required, in place of a1 in the standard linear congruential generator
recursive formula, in order to advance k places, rather than one, at each iteration.

In a linear congruential generator the multiplier a1 is constructed so that the generator has good
statistical properties in, for example, the spectral test. When using leap-frogging to construct multiple
streams this multiplier is replaced with ak1, and there is no guarantee that this new multiplier will have
suitable properties especially as the value of k depends on the number of streams required and so is
likely to change depending on the application. This problem can be emphasized by the lattice structure
of linear congruential generators. Similiarly, the value of a1 is often chosen such that the computation
a1xi mod m1 can be performed efficiently. When a1 is replaced by ak1, this is often no longer the case.

Note that, due to rounding, when using a distributional generator, a sequence generated using leap-
frogging and a sequence constructed by taking every k value from a set of variates generated without
leap-frogging may differ slightly. These differences should only affect the least significant digit.

2.11.6 Skip-ahead and Leap-frog for the Mersenne Twister: An Example

Skipping ahead with the Mersenne Twister generator is based on the definition of a k� k (where
k ¼ 19937) transition matrix, A, over the finite field F2 (with elements 0 and 1). Multiplying A by the
current state xn, represented as a vector of bits, produces the next state vector xnþ1:

xnþ1 ¼ Axn:
Thus, skipping ahead v places in a sequence is equivalent to multiplying by Av:

xnþv ¼ Avxn:

Since calculating Av by a standard square and multiply algorithm is O k3log vð Þ
� �

and requires over
47MB of memory (see Haramoto et al. (2008)), an indirect calculation is performed which relies on a
property of the characteristic polynomial p zð Þ of A, namely that p Að Þ ¼ 0. We then define

g zð Þ ¼ zv mod p zð Þ ¼ ak�1zk�1 þ . . .þ a1zþ a0;

and observe that

g zð Þ ¼ zv þ q zð Þp zð Þ

for a polynomial q zð Þ. Since p Að Þ ¼ 0, we have that g Að Þ ¼ Av and

Avxn ¼ ak�1A
k�1 þ . . .þ a1Aþ a0I

� �
xn:

This polynomial evaluation can be performed using Horner's method:

Avxn ¼ A . . .A A Aak�1xn þ ak�2xnð Þ þ ak�3xnð Þ þ � � � þ a1xnð Þ þ a0xn;

which reduces the problem to advancing the generator k� 1 places from state xn and adding (where
addition is as defined over F2) the intermediate states for which ai is nonzero.

There are therefore two stages to skipping the Mersenne Twister ahead v places:

(i) Calculate the coefficients of the polynomial g zð Þ ¼ zv mod p zð Þ;
(ii) advance the sequence k� 1 places from the starting state and add the intermediate states that

correspond to nonzero coefficients in the polynomial calculated in the first step.

The resulting state is that for position v in the sequence.
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The cost of calculating the polynomial is O k2log vð Þ
� �

and the cost of applying it to state is constant.
Skip ahead functionality is typically used in order to generate n independent pseudorandom number
streams (e.g., for separate threads of computation). There are two options for generating the n states:

(i) On the master thread calculate the polynomial for a skip ahead distance of v and apply this
polynomial to state n times, after each iteration j saving the current state for later usage by thread
j.

(ii) Have each thread j independently and in parallel with other threads calculate the polynomial for a
distance of jþ 1ð Þv and apply to the original state.

Since lim
v!1

log vð Þ ¼ lognv, then for large v the cost of generating the polynomial for a skip ahead

distance of nv (i.e., the calculation performed by thread n� 1 in option (ii) above) is approximately the
same as generating that for a distance of v (i.e., the calculation performed by thread 0). However, only
one application to state need be made per thread, and if n is sufficiently large the cost of applying the
polynomial to state becomes the dominant cost in option (i), in which case it is desirable to use option
(ii). Tests have shown that as a guideline it becomes worthwhile to switch from option (i) to option (ii)
for approximately n > 30.

Leap frog calculations with the Mersenne Twister are performed by computing the sequence fully up to
the required size and discarding the redundant numbers for a given stream.

3 Recommendations on Choice and Use of Available Routines

3.1 Pseudorandom Numbers

Before generating any pseudorandom variates the base generator being used must be initialized. Once
initialized, a distributional generator can be called to obtain the variates required. No interfaces have
been supplied for direct access to the base generators. If a sequence of random variates from a uniform
distribution on the open interval 0; 1ð Þ, is required, then the uniform distribution routine (G05SAF)
should be called.

3.1.1 Initialization

Before generating any variates the base generator must be initialized. Two utility routines are provided
for this, G05KFF and G05KGF, both of which allow any of the base generators to be chosen.

G05KFF selects and initializes a base generator to a repeatable (when executed serially) state: two calls
of G05KFF with the same argument-values will result in the same subsequent sequences of random
numbers (when both generated serially).

G05KGF selects and initializes a base generator to a non-repeatable state in such a way that different
calls of G05KGF, either in the same run or different runs of the program, will almost certainly result in
different subsequent sequences of random numbers.

No utilities for saving, retrieving or copying the current state of a generator have been provided. All of
the information on the current state of a generator (or stream, if multiple streams are being used) is
stored in the integer array STATE and as such this array can be treated as any other integer array,
allowing for easy copying, restoring, etc.

3.1.2 Repeated initialization

As mentioned in Section 2.11.1, it is important to note that the statistical properties of pseudorandom
numbers are only guaranteed within sequences and not between sequences produced by the same
generator. Repeated initialization will thus render the numbers obtained less rather than more
independent. In a simple case there should be only one call to G05KFF or G05KGF and this call should
be before any call to an actual generation routine.
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3.1.3 Choice of Base Generator

If a single sequence is required then it is recommended that the Mersenne Twister is used as the base
generator (GENID ¼ 3). This generator is fast, has an extremely long period and has been shown to
perform well on various test suites, see Matsumoto and Nishimura (1998), L'Ecuyer and Simard (2002)
and Wichmann and Hill (2006) for example.

When choosing a base generator, the period of the chosen generator should be borne in mind. A good
rule of thumb is never to use more numbers than the square root of the period in any one experiment as
the statistical properties are impaired. For closely related reasons, breaking numbers down into their bit
patterns and using individual bits may also cause trouble.

3.1.4 Choice of Method for Generating Multiple Streams

If the Wichmann–Hill II base generator is being used, and a period of 290 is sufficient, then the method
described in Section 2.11.1 can be used. If a different generator is used, or a longer period length is
required then generating multiple streams by altering the initial values should be avoided.

Using a different generator works well if less than 277 streams are required.

Of the remaining two methods, both skip-ahead and leap-frogging use the sequence from a single
generator, both guarantee that the different sequences will not overlap and both can be scaled to an
arbitrary number of streams. Leap-frogging requires no a-priori knowledge about the number of
variates being generated, whereas skip-ahead requires you to know (approximately) the maximum
number of variates required from each stream. Skip-ahead requires no a-priori information on the
number of streams required. In contrast leap-frogging requires you to know the maximum number of
streams required, prior to generating the first value. Of these two, if possible, skip-ahead should be used
in preference to leap-frogging. Both methods required additional computation compared with generating
a single sequence, but for skip-ahead this computation occurs only at initialization. For leap-frogging
additional computation is required both at initialization and during the generation of the variates. In
addition, as mentioned in Section 2.11.4, using leap-frogging can, in some instances, change the
statistical properties of the sequences being generated.

Leap-frogging is performed by calling G05KHF after the initialization routine (G05KFF or G05KGF).
For skip-ahead, either G05KJF or G05KKF can be called. Of these, G05KKF restricts the amount being
skipped to a power of 2, but allows for a large ‘skip’ to be performed.

3.1.5 Copulas

After calling one of the copula routines the inverse cumulative distribution function (CDF) can be
applied to convert the uniform marginal distribution into the required form. Scalar and vector routines
for evaluating the CDF, for a range of distributions, are supplied in Chapter G01. It should be noted that
these routines are often described as computing the ‘deviates’ of the distribution.

When using the inverse CDF routines from Chapter G01 it should be noted that some are limited in the
number of significant figures they return. This may affect the statistical properties of the resulting
sequence of variates. Section 7 of the individual routine documentation will give a discussion of the
accuracy of the particular algorithm being used and any available alternatives.

3.2 Quasi-random Numbers

Prior to generating any quasi-random variates the generator being used must be initialized via G05YLF
or G05YNF. Of these, G05YLF can be used to initialize a standard Sobol, Faure or Niederreiter
sequence and G05YNF can be used to initialize a scrambled Sobol or Niederreiter sequence.

Owing to the random nature of the scrambling, before calling the initialization routine G05YNF one of
the pseudorandom initialization routines, G05KFF or G05KGF, must be called.

Once a quasi-random generator has been initialized, using either G05YLF or G05YNF, one of three
generation routines can be called to generate uniformly distributed sequences (G05YMF), Normally
distributed sequences (G05YJF) or sequences with a log-normal distribution (G05YKF). For example,
for a repeatable sequence of scrambled quasi-random variates from the Normal distribution, G05KFF
must be called first (to initialize a pseudorandom generator), followed by G05YNF (to initialize a
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scrambled quasi-random generator) and then G05YJF can be called to generate the sequence from the
required distribution.

See the last paragraph of Section 3.1.5 on how sequences from other distributions can be obtained using
the inverse CDF.

3.3 Brownian Bridge

G05XBF may be used to generate sample paths from a (free or non-free) Wiener process using the
Brownian bridge algorithm. Prior to calling G05XBF, the generator must be initialized by a call to
G05XAF. G05XAF requires you to specify a bridge construction order. The routine G05XEF can be
used to convert a set of input times into one of several common bridge construction orders, which can
then be used in the initialization call to G05XAF.

G05XDF may be used to generate the scaled increments of the sample paths of a (free or non-free)
Wiener process. Prior to calling G05XDF, the generator must be initialized by a call to G05XCF. Note
that G05XDF generates these scaled increments directly; it is not necessary to call G05XBF before
calling G05XDF. As before, G05XEF can be used to convert a set of input times into a bridge
construction order which can be passed to G05XCF.

3.4 Random Fields

Routines for simulating from either a one-dimensional or a two-dimensional stationary Gaussian
random field are provided. These routines use the circulant embedding method of Dietrich and Newsam
(1997) to efficiently generate from the required field. In both cases a setup routine is called, which
defines the domain and variogram to use, followed by the generation routine. A number of preset
variograms are supplied or a user-defined subroutine can be used.

One-dimensional random field:

G05ZNF setup routine, using a preset variogram.

G05ZMF setup routine, using a user-defined variogram.

G05ZPF generation routine.

Two-dimension random field:

G05ZQF setup routine, using a preset variogram.

G05ZRF setup routine, using a user-defined variogram.

G05ZSF generation routine.

In addition to generating a random field, it is possible to use the circulant embedding method to
generate realizations of fractional Brownian motion, this functionality is provided in G05ZTF.

Before calling G05ZPF, G05ZRF or G05ZTF one of the initialization routines, G05KFF or G05KGF
must be called.

3.5 Sampling

Each of the four sampling methods described in Section 2.8 can be performed using the following
routines:

G05TLF Sampling with replacement, equal weights.

G05TDF Sampling with replacement, unequal weights.

G05NDF Sampling without replacement, equal weights.

G05NEF Sampling without replacement, unequal weights.

In addition to these routines for directly sampling from a dataset two utility routines that perform an in-
place permutation to give datasets suitable for use in validation are provided. G05PVF generates
training and validation datasets suitable for K-fold cross-validation and G05PWF generates training and
validation datasets suitable for random sub-sampling validation. To perform stratified sampling the
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dataset should first be ordered by stratum using a sorting routine from Chapter M01 and then one of the
above sampling routines can be applied to each stratum.

4 Functionality Index

Brownian bridge,
circulant embedding generator,

generate fractional Brownian motion ......................................................................... G05ZTF
increments generator,

generate Wiener increments ....................................................................................... G05XDF
initialize generator...................................................................................................... G05XCF

path generator,
create bridge construction order................................................................................. G05XEF
generate a free or non-free (pinned) Wiener process for a given set of time steps .. G05XBF
initialize generator...................................................................................................... G05XAF

Generating samples, matrices and tables,
permutation of real matrix, vector, vector triplet

K�fold cross-validation............................................................................................. G05PVF
random sub-sampling validation................................................................................. G05PWF

random correlation matrix............................................................................................... G05PYF
random orthogonal matrix ............................................................................................... G05PXF
random permutation of an integer vector........................................................................ G05NCF
random sample from an integer vector,

unequal weights, without replacement........................................................................ G05NEF
unweighted, without replacement ............................................................................... G05NDF

random table ................................................................................................................... G05PZF

Generation of time series,
asymmetric GARCH Type II .......................................................................................... G05PEF
asymmetric GJR GARCH ............................................................................................... G05PFF
EGARCH ........................................................................................................................ G05PGF
exponential smoothing..................................................................................................... G05PMF
type I AGARCH............................................................................................................. G05PDF
univariate ARMA............................................................................................................ G05PHF
vector ARMA ................................................................................................................. G05PJF

Pseudorandom numbers,
array of variates from multivariate distributions,

Dirichlet distribution .................................................................................................. G05SEF
multinomial distribution ............................................................................................. G05TGF
Normal distribution .................................................................................................... G05RZF
Student's t distribution ............................................................................................... G05RYF

copulas,
Clayton/Cook–Johnson copula (bivariate) .................................................................. G05REF
Clayton/Cook–Johnson copula (multivariate) ............................................................. G05RHF
Frank copula (bivariate) ............................................................................................. G05RFF
Frank copula (multivariate) ........................................................................................ G05RJF
Gaussian copula ......................................................................................................... G05RDF
Gumbel–Hougaard copula.......................................................................................... G05RKF
Plackett copula........................................................................................................... G05RGF
Student's t copula....................................................................................................... G05RCF

initialize generator,
multiple streams,

leap-frog................................................................................................................ G05KHF
skip-ahead ............................................................................................................. G05KJF
skip-ahead (power of 2)........................................................................................ G05KKF

nonrepeatable sequence .............................................................................................. G05KGF
repeatable sequence.................................................................................................... G05KFF
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vector of variates from discrete univariate distributions,
binomial distribution .................................................................................................. G05TAF
geometric distribution................................................................................................. G05TCF
hypergeometric distribution ........................................................................................ G05TEF
logarithmic distribution .............................................................................................. G05TFF
logical value .TRUE. or .FALSE. .............................................................................. G05TBF
negative binomial distribution .................................................................................... G05THF
Poisson distribution.................................................................................................... G05TJF
uniform distribution ................................................................................................... G05TLF
user-supplied distribution ........................................................................................... G05TDF
variate array from discrete distributions with array of parameters,

Poisson distribution with varying mean ................................................................ G05TKF
vectors of variates from continuous univariate distributions,

beta distribution ......................................................................................................... G05SBF
Cauchy distribution .................................................................................................... G05SCF
exponential mix distribution....................................................................................... G05SGF
F -distribution ............................................................................................................. G05SHF
gamma distribution..................................................................................................... G05SJF
logistic distribution .................................................................................................... G05SLF
log-normal distribution............................................................................................... G05SMF
negative exponential distribution................................................................................ G05SFF
Normal distribution .................................................................................................... G05SKF
real number from the continuous uniform distribution .............................................. G05SAF
Student's t-distribution ............................................................................................... G05SNF
triangular distribution ................................................................................................. G05SPF
uniform distribution ................................................................................................... G05SQF
von Mises distribution ............................................................................................... G05SRF
Weibull distribution.................................................................................................... G05SSF
�2 square distribution................................................................................................. G05SDF

Quasi-random numbers,
array of variates from univariate distributions,

log-normal distribution............................................................................................... G05YKF
Normal distribution .................................................................................................... G05YJF
uniform distribution ................................................................................................... G05YMF

initialize generator,
scrambled Sobol or Niederreiter ................................................................................ G05YNF
Sobol, Niederreiter or Faure ...................................................................................... G05YLF

Random fields,
one-dimensional,

generation................................................................................................................... G05ZPF
initialize generator,

preset variogram.................................................................................................... G05ZNF
user-defined variogram.......................................................................................... G05ZMF

two-dimensional,
generation................................................................................................................... G05ZSF
initialize generator,

preset variogram.................................................................................................... G05ZRF
user-defined variogram.......................................................................................... G05ZQF

5 Auxiliary Routines Associated with Library Routine Arguments

None.
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6 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

G05CAF 22 G05SAF
G05CBF 22 G05KFF
G05CCF 22 G05KGF
G05CFF 22 F06DFF
G05CGF 22 F06DFF
G05DAF 22 G05SQF
G05DBF 22 G05SFF
G05DCF 22 G05SLF
G05DDF 22 G05SKF
G05DEF 22 G05SMF
G05DFF 22 G05SCF
G05DHF 22 G05SDF
G05DJF 22 G05SNF
G05DKF 22 G05SHF
G05DPF 22 G05SSF
G05DRF 22 G05TKF
G05DYF 22 G05TLF
G05DZF 22 G05TBF
G05EAF 22 G05RZF
G05EBF 22 G05TLF
G05ECF 22 G05TJF
G05EDF 22 G05TAF
G05EEF 22 G05THF
G05EFF 22 G05TEF
G05EGF 22 G05PHF
G05EHF 22 G05NCF
G05EJF 22 G05NDF
G05EWF 22 G05PHF
G05EXF 22 G05TDF
G05EYF 22 G05TDF
G05EZF 22 G05RZF
G05FAF 22 G05SQF
G05FBF 22 G05SFF
G05FDF 22 G05SKF
G05FEF 22 G05SBF
G05FFF 22 G05SJF
G05FSF 22 G05SRF
G05GAF 22 G05PXF
G05GBF 22 G05PYF
G05HDF 22 G05PJF
G05HKF 24 G05PDF
G05HLF 24 G05PEF
G05HMF 24 G05PFF
G05HNF 24 G05PGF
G05KAF 24 G05SAF
G05KBF 24 G05KFF
G05KCF 24 G05KGF
G05KEF 24 G05TBF
G05LAF 24 G05SKF
G05LBF 24 G05SNF
G05LCF 24 G05SDF
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G05LDF 24 G05SHF
G05LEF 24 G05SBF
G05LFF 24 G05SJF
G05LGF 24 G05SQF
G05LHF 24 G05SPF
G05LJF 24 G05SFF
G05LKF 24 G05SMF
G05LLF 24 G05SJF
G05LMF 24 G05SSF
G05LNF 24 G05SLF
G05LPF 24 G05SRF
G05LQF 24 G05SGF
G05LXF 24 G05RYF
G05LYF 24 G05RZF
G05LZF 24 G05RZF
G05MAF 24 G05TLF
G05MBF 24 G05TCF
G05MCF 24 G05THF
G05MDF 24 G05TFF
G05MEF 24 G05TKF
G05MJF 24 G05TAF
G05MKF 24 G05TJF
G05MLF 24 G05TEF
G05MRF 24 G05TGF
G05MZF 24 G05TDF
G05NAF 24 G05NCF
G05NBF 24 G05NDF
G05PAF 24 G05PHF
G05PCF 24 G05PJF
G05QAF 24 G05PXF
G05QBF 24 G05PYF
G05QDF 24 G05PZF
G05RAF 24 G05RDF
G05RBF 24 G05RCF
G05YAF 23 G05YLF and G05YMF
G05YBF 23 G05YLF and either G05YJF or G05YKF
G05YCF 24 G05YLF
G05YDF 24 G05YMF
G05YEF 24 G05YLF
G05YFF 24 G05YMF
G05YGF 24 G05YLF
G05YHF 24 G05YMF
G05ZAF 22 No replacement routine required
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NAG Library Routine Document

G05KFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05KFF initializes the selected base generator, as used by the group of pseudorandom number routines
(see G05KHF–G05KJF, G05NCF, G05NDF, G05PDF–G05PJF, G05PXF–G05PZF, G05RCF, G05RDF,
G05RYF, G05RZF and G05SAF–G05TLF) and the quasi-random scrambled sequence initialization
routine, G05YNF.

2 Specification

SUBROUTINE G05KFF (GENID, SUBID, SEED, LSEED, STATE, LSTATE, IFAIL)

INTEGER GENID, SUBID, SEED(LSEED), LSEED, STATE(LSTATE), LSTATE, IFAIL

3 Description

G05KFF selects a base generator through the input value of the arguments GENID and SUBID, and
then initializes it based on the values given in the array SEED.

A given base generator will yield different sequences of random numbers if initialized with different
values of SEED. Alternatively, the same sequence of random numbers will be generated if the same
value of SEED is used. It should be noted that there is no guarantee of statistical properties between
sequences, only within sequences.

A definition of some of the terms used in this description, along with details of the various base
generators can be found in the G05 Chapter Introduction.

4 References

L'Ecuyer P and Simard R (2002) TestU01: a software library in ANSI C for empirical testing of random
number generators Departement d'Informatique et de Recherche Operationnelle, Universite de Montreal
http://www.iro.umontreal.ca/~lecuyer

Maclaren N M (1989) The generation of multiple independent sequences of pseudorandom numbers
Appl. Statist. 38 351–359

Matsumoto M and Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform
pseudorandom number generator ACM Transactions on Modelling and Computer Simulations

Wichmann B A and Hill I D (2006) Generating good pseudo-random numbers Computational Statistics
and Data Analysis 51 1614–1622

Wikramaratna R S (1989) ACORN - a new method for generating sequences of uniformly distributed
pseudo-random numbers Journal of Computational Physics 83 16–31

5 Arguments

1: GENID – INTEGER Input

On entry: must contain the type of base generator to use.

GENID ¼ 1
NAG basic generator.

GENID ¼ 2
Wichmann Hill I generator.
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GENID ¼ 3
Mersenne Twister.

GENID ¼ 4
Wichmann Hill II generator.

GENID ¼ 5
ACORN generator.

GENID ¼ 6
L'Ecuyer MRG32k3a generator.

See the G05 Chapter Introduction for details of each of the base generators.

Constraint: GENID ¼ 1, 2, 3, 4, 5 or 6.

2: SUBID – INTEGER Input

On entry: if GENID ¼ 2, SUBID indicates which of the 273 sub-generators to use. In this case,
the SUBIDj j þ 272ð Þ mod 273ð Þ þ 1 sub-generator is used.

If GENID ¼ 5, SUBID indicates the values of k and p to use, where k is the order of the
generator, and p controls the size of the modulus, M, with M ¼ 2 p�30ð Þ. If SUBID < 1, the
default values of k ¼ 10 and p ¼ 2 are used, otherwise values for k and p are calculated from the
formula, SUBID ¼ kþ 1000 p� 1ð Þ.
If GENID ¼ 6 and SUBID mod 2 ¼ 0 the range of the generator is set to 0; 1ð �, otherwise the
range is set to 0; 1ð Þ; in this case the sequence is identical to the implementation of MRG32k3a
in TestU01 (see L'Ecuyer and Simard (2002)) for identical seeds.

For all other values of GENID, SUBID is not referenced.

3: SEEDðLSEEDÞ – INTEGER array Input

On entry: the initial (seed) values for the selected base generator. The number of initial values
required varies with each of the base generators.

If GENID ¼ 1, one seed is required.

If GENID ¼ 2, four seeds are required.

If GENID ¼ 3, 624 seeds are required.

If GENID ¼ 4, four seeds are required.

If GENID ¼ 5, kþ 1ð Þp seeds are required, where k and p are defined by SUBID. For the
ACORN generator it is recommended that an odd value is used for SEEDð1Þ.
If GENID ¼ 6, six seeds are required.

If insufficient seeds are provided then the first LSEED� 1 values supplied in SEED are used and
the remaining values are randomly generated using the NAG basic generator. In such cases the
NAG basic generator is initialized using the value supplied in SEEDðLSEEDÞ.
Constraint: SEEDðiÞ � 1, for i ¼ 1; 2; . . . ;LSEED.

4: LSEED – INTEGER Input

On entry: the size of the SEED array.

Constraint: LSEED � 1.

5: STATEðLSTATEÞ – INTEGER array Communication Array

On exit: contains information on the selected base generator and its current state.
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6: LSTATE – INTEGER Input/Output

On entry: the dimension of the STATE array, or a value < 1. If the Mersenne Twister
(GENID ¼ 3) is being used and the skip ahead routine G05KJF or G05KKF will be called
subsequently, then you must ensure that LSTATE � 1260.

On exit: if LSTATE < 1 on entry, then the required length of the STATE array for the chosen
base generator, otherwise LSTATE is unchanged. When GENID ¼ 3 (Mersenne Twister) a value
of 1260 is returned, allowing for the skip ahead routine to be subsequently called. In all other
cases the minimum length, as documented in the constraints below, is returned.

Constraints:

if GENID ¼ 1, LSTATE � 17;
if GENID ¼ 2, LSTATE � 21;
if GENID ¼ 3, LSTATE � 633;
if GENID ¼ 4, LSTATE � 29;
if GENID ¼ 5, LSTATE � max kþ 1ð Þ � pþ 9; 14ð Þ þ 3, where k and p are defined by
SUBID;
if GENID ¼ 6, LSTATE � 61;
otherwise LSTATE < 1.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

On exit: IFAIL ¼ 0 or �1 unless the routine detects an error or a warning has been flagged (see
Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, GENID ¼ valueh i.
Constraint: GENID ¼ 1, 2, 3, 4, 5 or 6.

IFAIL ¼ 3

On entry, invalid SEED.

IFAIL ¼ 4

On entry, LSEED ¼ valueh i.
Constraint: LSEED � 1.

IFAIL ¼ 6

On entry, LSTATE ¼ valueh i.
Constraint: LSTATE � 0 or LSTATE � valueh i.

IFAIL ¼ �1
Required length of STATE array returned in LSTATE but STATE array not initialized.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05KFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example prints the first five pseudorandom real numbers from a uniform distribution between 0
and 1, generated by G05SAF after initialization by G05KFF.

10.1 Program Text

Program g05kffe

! G05KFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05saf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05KFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
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lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Generate the variates
ifail = 0
Call g05saf(n,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05kffe

10.2 Program Data

G05KFF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 :: N

10.3 Program Results

G05KFF Example Program Results

0.6364
0.1065
0.7460
0.7983
0.1046
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NAG Library Routine Document

G05KGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05KGF initializes the selected base generator to generate a non-repeatable sequence of variates. The
base generator can then be used by the group of pseudorandom number routines (see G05KHF–
G05KJF, G05NCF, G05NDF, G05PDF–G05PJF, G05PXF–G05PZF, G05RCF, G05RDF, G05RYF,
G05RZF and G05SAF–G05TLF) and the quasi-random scrambled sequence initialization routine,
G05YNF.

2 Specification

SUBROUTINE G05KGF (GENID, SUBID, STATE, LSTATE, IFAIL)

INTEGER GENID, SUBID, STATE(LSTATE), LSTATE, IFAIL

3 Description

G05KGF selects a base generator through the input value of the arguments GENID and SUBID, and
then initializes it based on the values taken from the real-time clock, resulting in the same base
generator yielding different sequences of random numbers each time the calling program is run. It
should be noted that there is no guarantee of statistical properties between sequences, only within
sequences.

A definition of some of the terms used in this description, along with details of the various base
generators can be found in the G05 Chapter Introduction.

4 References

L'Ecuyer P and Simard R (2002) TestU01: a software library in ANSI C for empirical testing of random
number generators Departement d'Informatique et de Recherche Operationnelle, Universite de Montreal
http://www.iro.umontreal.ca/~lecuyer

Maclaren N M (1989) The generation of multiple independent sequences of pseudorandom numbers
Appl. Statist. 38 351–359

Matsumoto M and Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform
pseudorandom number generator ACM Transactions on Modelling and Computer Simulations

Wichmann B A and Hill I D (2006) Generating good pseudo-random numbers Computational Statistics
and Data Analysis 51 1614–1622

Wikramaratna R S (1989) ACORN - a new method for generating sequences of uniformly distributed
pseudo-random numbers Journal of Computational Physics 83 16–31

5 Arguments

1: GENID – INTEGER Input

On entry: must contain the type of base generator to use.

GENID ¼ 1
NAG basic generator.

GENID ¼ 2
Wichmann Hill I generator.
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GENID ¼ 3
Mersenne Twister.

GENID ¼ 4
Wichmann Hill II generator.

GENID ¼ 5
ACORN generator.

GENID ¼ 6
L'Ecuyer MRG32k3a generator.

See the G05 Chapter Introduction for details of each of the base generators.

Constraint: GENID ¼ 1, 2, 3, 4, 5 or 6.

2: SUBID – INTEGER Input

On entry: if GENID ¼ 2, SUBID indicates which of the 273 sub-generators to use. In this case,
the SUBIDj j þ 272ð Þ mod 273ð Þ þ 1 sub-generator is used.

If GENID ¼ 5, SUBID indicates the values of k and p to use, where k is the order of the
generator, and p controls the size of the modulus, M, with M ¼ 2 p�30ð Þ. If SUBID < 1, the
default values of k ¼ 10 and p ¼ 2 are used, otherwise values for k and p are calculated from the
formula, SUBID ¼ kþ 1000 p� 1ð Þ.
If GENID ¼ 6 and SUBID mod 2 ¼ 0 the range of the generator is set to 0; 1ð �, otherwise the
range is set to 0; 1ð Þ; in this case the sequence is identical to the implementation of MRG32k3a
in TestU01 (see L'Ecuyer and Simard (2002)) for identical seeds.

For all other values of GENID, SUBID is not referenced.

3: STATEðLSTATEÞ – INTEGER array Communication Array

On exit: contains information on the selected base generator and its current state.

4: LSTATE – INTEGER Input/Output

On entry: the dimension of the STATE array, or a value < 1. If the Mersenne Twister
(GENID ¼ 3) is being used and the skip ahead routine G05KJF or G05KKF will be called
subsequently, then you must ensure that LSTATE � 1260.

On exit: if LSTATE < 1 on entry, then the required length of the STATE array for the chosen
base generator, otherwise LSTATE is unchanged. When GENID ¼ 3 (Mersenne Twister) a value
of 1260 is returned, allowing for the skip ahead routine to be subsequently called. In all other
cases the minimum length, as documented in the constraints below, is returned.

Constraints:

if GENID ¼ 1, LSTATE � 17;
if GENID ¼ 2, LSTATE � 21;
if GENID ¼ 3, LSTATE � 633;
if GENID ¼ 4, LSTATE � 29;
if GENID ¼ 5, LSTATE � max kþ 1ð Þ � pþ 9; 14ð Þ þ 3, where k and p are defined by
SUBID;
if GENID ¼ 6, LSTATE � 61;
otherwise LSTATE < 1.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

On exit: IFAIL ¼ 0 or �1 unless the routine detects an error or a warning has been flagged (see
Section 6).
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, GENID ¼ valueh i.
Constraint: GENID ¼ 1, 2, 3, 4, 5 or 6.

IFAIL ¼ 4

On entry, LSTATE ¼ valueh i.
Constraint: LSTATE � 0 or LSTATE � valueh i.

IFAIL ¼ �1
Required length of STATE array returned in LSTATE but STATE array not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05KGF is not threaded in any implementation.

9 Further Comments

None.

10 Example

In order to preserve the statistical properties of the base generators, G05KGF should only be called
once. If multiple streams of values are required then one of the methods described in Section 2.1.1 in
the G05 Chapter Introduction should be used.

G05 – Random Number Generators G05KGF

Mark 26 G05KGF.3



However, for illustrative purposes only, this example calls G05KGF twice. At each call a sample of 500
values from a discrete uniform distribution are generated and then the two samples are compared.

10.1 Program Text

Program g05kgfe

! G05KGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kgf, g05tlf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Integer, Allocatable :: state(:), x1(:), x2(:)

! .. Intrinsic Procedures ..
Intrinsic :: any

! .. Executable Statements ..
Write (nout,*) ’G05KGF Example Program Results’
Write (nout,*)

! Choose the base generator
genid = 3
subid = 1

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kgf(genid,subid,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a non-repeatable sequence
ifail = 0
Call g05kgf(genid,subid,state,lstate,ifail)

! Using samples of size 500
n = 500
Allocate (x1(n),x2(n))

! Generate a sample of values from a discrete uniform distribution
Call g05tlf(n,-100,100,state,x1,ifail)

! Re-initialize the generator to another non-repeatable sequence
! NB: In practice, in order to preserve its statistical properties,
! you should only initialize the RNG generators once

ifail = 0
Call g05kgf(genid,subid,state,lstate,ifail)

! Generate a second sample of values from the same distribution
Call g05tlf(n,-100,100,state,x2,ifail)

! Check that the two samples are different
If (any(x1/=x2)) Then

Write (nout,*) ’The two samples differ, as expected’
Else

Write (nout,*) ’The two samples are the same’
Write (nout,*) ’whilst this is possible, it is unlikely’

End If

End Program g05kgfe
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10.2 Program Data

None.

10.3 Program Results

G05KGF Example Program Results

The two samples differ, as expected
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NAG Library Routine Document

G05KHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05KHF allows for the generation of multiple, independent, sequences of pseudorandom numbers using
the leap-frog method.

2 Specification

SUBROUTINE G05KHF (N, K, STATE, IFAIL)

INTEGER N, K, STATE(*), IFAIL

3 Description

G05KHF adjusts a base generator to allow multiple, independent, sequences of pseudorandom numbers
to be generated via the leap-frog method (see the G05 Chapter Introduction for details).

If, prior to calling G05KHF the base generator defined by STATE would produce random numbers
x1; x2; x3; . . ., then after calling G05KHF the generator will produce random numbers
xk; xkþn; xkþ2n; xkþ3n; . . ..

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05KHF.

The leap-frog algorithm can be used in conjunction with the NAG basic generator, both the Wichmann–
Hill I and Wichmann–Hill II generators, the Mersenne Twister and L'Ecuyer.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the total number of sequences required.

Constraint: N > 0.

2: K – INTEGER Input

On entry: k, the number of the current sequence.

Constraint: 0 < K � N.

3: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.
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4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 2

On entry, K ¼ valueh i and N ¼ valueh i.
Constraint: 0 < K � N.

IFAIL ¼ 3

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 4

On entry, cannot use leap-frog with the base generator defined by STATE.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05KHF is not threaded in any implementation.
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9 Further Comments

The leap-frog method tends to be less efficient than other methods of producing multiple, independent
sequences. See the G05 Chapter Introduction for alternative choices.

10 Example

This example creates three independent sequences using G05KHF, after initialization by G05KFF. Five
variates from a uniform distribution are then generated from each sequence using G05SAF.

10.1 Program Text

Program g05khfe

! G05KHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05khf, g05saf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, ifail, lstate, n, nv, &

subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: x(:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:,:)

! .. Executable Statements ..
Write (nout,*) ’G05KHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Read in number of streams and sample size for each stream
Read (nin,*) n, nv

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate,1))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate,n))

Allocate (x(nv,n))

! Prepare N streams
Do i = 1, n

! Initialize each stream to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state(1,i),lstate,ifail)

! Prepare the I’th out of N streams
ifail = 0
Call g05khf(n,i,state(1,i),ifail)

End Do

! Generate a NV variates, from a uniform distribution, from each stream
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Do i = 1, n
ifail = 0
Call g05saf(nv,state(1,i),x(1,i),ifail)

End Do

! Display results
Do i = 1, n

Write (nout,99998) ’Stream ’, i
Write (nout,99999) x(1:nv,i)
Write (nout,*)

End Do

99999 Format (1X,F10.4)
99998 Format (1X,A,I16)

End Program g05khfe

10.2 Program Data

G05KHF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
3 5 :: N,NV

10.3 Program Results

G05KHF Example Program Results

Stream 1
0.7460
0.4925
0.4982
0.2580
0.5938

Stream 2
0.7983
0.3843
0.6717
0.6238
0.2785

Stream 3
0.1046
0.7871
0.0505
0.0535
0.2375
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NAG Library Routine Document

G05KJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05KJF allows for the generation of multiple, independent, sequences of pseudorandom numbers using
the skip-ahead method.

The base pseudorandom number sequence defined by STATE is advanced n places.

2 Specification

SUBROUTINE G05KJF (N, STATE, IFAIL)

INTEGER N, STATE(*), IFAIL

3 Description

G05KJF adjusts a base generator to allow multiple, independent, sequences of pseudorandom numbers
to be generated via the skip-ahead method (see the G05 Chapter Introduction for details).

If, prior to calling G05KJF the base generator defined by STATE would produce random numbers
x1; x2; x3; . . ., then after calling G05KJF the generator will produce random numbers
xnþ1; xnþ2; xnþ3; . . ..

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05KJF.

The skip-ahead algorithm can be used in conjunction with any of the six base generators discussed in
Chapter G05.

4 References

Haramoto H, Matsumoto M, Nishimura T, Panneton F and L'Ecuyer P (2008) Efficient jump ahead for
F2-linear random number generators INFORMS J. on Computing 20(3) 385–390

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of places to skip ahead.

Constraint: N � 0.

2: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.
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3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 3

On entry, cannot use skip-ahead with the base generator defined by STATE.

IFAIL ¼ 4

On entry, the base generator is Mersenne Twister, but the STATE vector defined on initialization
is not large enough to perform a skip ahead. See the initialization routine G05KFF or G05KGF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05KJF is not threaded in any implementation.
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9 Further Comments

Calling G05KJF and then generating a series of uniform values using G05SAF is more efficient than,
but equivalent to, calling G05SAF and discarding the first n values. This may not be the case for
distributions other than the uniform, as some distributional generators require more than one uniform
variate to generate a single draw from the required distribution.

To skip ahead k�m places you can either

(a) call G05KJF once with N ¼ k�m, or

(b) call G05KJF k times with N ¼ m, using the STATE vector output by the previous call as input to
the next call

both approaches would result in the same sequence of values. When working in a multithreaded
environment, where you want to generate (at most) m values on each of K threads, this would translate
into either

(a) spawning the K threads and calling G05KJF once on each thread with N ¼ k� 1ð Þ �m, where k
is a thread ID, taking a value between 1 and K, or

(b) calling G05KJF on a single thread with N ¼ m, spawning the K threads and then calling G05KJF a
further k� 1 times on each of the thread.

Due to the way skip ahead is implemented for the Mersenne Twister, approach (a) will tend to be more
efficient if more than 30 threads are being used (i.e., K > 30), otherwise approach (b) should probably
be used. For all other base generators, approach (a) should be used. See the G05 Chapter Introduction
for more details.

10 Example

This example initializes a base generator using G05KFF and then uses G05KJF to advance the sequence
50 places before generating five variates from a uniform distribution using G05SAF.

10.1 Program Text

Program g05kjfe

! G05KJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05kjf, g05saf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, ifail, lstate, n, nv, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05KJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Query G05KFF to get the require length of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
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Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in the skip ahead and sample size
Read (nin,*) n, nv

Allocate (x(nv))

! Advance the sequence N places
ifail = 0
Call g05kjf(n,state,ifail)

! Generate a NV variates from a uniform distribution
ifail = 0
Call g05saf(nv,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:nv)

99999 Format (1X,F10.4)
End Program g05kjfe

10.2 Program Data

G05KJF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
50 5 :: N,NV

10.3 Program Results

G05KJF Example Program Results

0.2071
0.8413
0.8817
0.5494
0.5248
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NAG Library Routine Document

G05KKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05KKF allows for the generation of multiple, independent, sequences of pseudorandom numbers using
the skip-ahead method. The base pseudorandom number sequence defined by STATE is advanced 2n

places.

2 Specification

SUBROUTINE G05KKF (N, STATE, IFAIL)

INTEGER N, STATE(*), IFAIL

3 Description

G05KKF adjusts a base generator to allow multiple, independent, sequences of pseudorandom numbers
to be generated via the skip-ahead method (see the G05 Chapter Introduction for details).

If, prior to calling G05KKF the base generator defined by STATE would produce random numbers
x1; x2; x3; . . ., then after calling G05KKF the generator will produce random numbers
x2nþ1; x2nþ2; x2nþ3; . . ..

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05KKF.

The skip-ahead algorithm can be used in conjunction with any of the six base generators discussed in
the G05 Chapter Introduction.

4 References

Haramoto H, Matsumoto M, Nishimura T, Panneton F and L'Ecuyer P (2008) Efficient jump ahead for
F2-linear random number generators INFORMS J. on Computing 20(3) 385–390

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, where the number of places to skip-ahead is defined as 2n.

Constraint: N � 0.

2: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 3

On entry, cannot use skip-ahead with the base generator defined by STATE.

IFAIL ¼ 4

On entry, the STATE vector defined on initialization is not large enough to perform a skip-ahead
(applies to Mersenne Twister base generator). See the initialization routine G05KFF or G05KGF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05KKF is not threaded in any implementation.
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9 Further Comments

Calling G05KKF and then generating a series of uniform values using G05SAF is equivalent to, but
more efficient than, calling G05SAF and discarding the first 2n values. This may not be the case for
distributions other than the uniform, as some distributional generators require more than one uniform
variate to generate a single draw from the required distribution.

10 Example

This example initializes a base generator using G05KFF and then uses G05KKF to advance the
sequence 217 places before generating five variates from a uniform distribution using G05SAF.

10.1 Program Text

Program g05kkfe

! G05KKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05kkf, g05saf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, ifail, lstate, n, nv, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05KKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Query G05KFF to get the require length of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in the skip ahead and sample size
Read (nin,*) n, nv

Allocate (x(nv))

! Advance the sequence 2**N places
ifail = 0
Call g05kkf(n,state,ifail)

! Generate a NV variates from a uniform distribution
ifail = 0
Call g05saf(nv,state,x,ifail)
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! Display the variates
Write (nout,99999) x(1:nv)

99999 Format (1X,F10.4)
End Program g05kkfe

10.2 Program Data

G05KKF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
17 5 :: N,NV

10.3 Program Results

G05KKF Example Program Results

0.7357
0.3521
0.4188
0.0046
0.0365
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NAG Library Routine Document

G05NCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05NCF performs a pseudorandom permutation of a vector of integers.

2 Specification

SUBROUTINE G05NCF (INDX, N, STATE, IFAIL)

INTEGER INDX(N), N, STATE(*), IFAIL

3 Description

G05NCF permutes the elements of an integer array without inspecting their values. Each of the n!
possible permutations of the n values may be regarded as being equally probable.

Even for modest values of n it is theoretically impossible that all n! permutations may occur, as n! is
likely to exceed the cycle length of any of the base generators. For practical purposes this is irrelevant,
as the time necessary to generate all possible permutations is many millenia.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05NCF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: INDXðNÞ – INTEGER array Input/Output

On entry: the n integer values to be permuted.

On exit: the n permuted integer values.

2: N – INTEGER Input

On entry: the number of values to be permuted.

Constraint: N � 1.

3: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 3

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05NCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.
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10 Example

In the example program a vector containing the first eight positive integers in ascending order is
permuted by a call to G05NCF and the permutation is printed. This is repeated a total of ten times, after
initialization by G05KFF.

10.1 Program Text

Program g05ncfe

! G05NCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05ncf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, ifail, j, lstate, n, &

nperm, subid
! .. Local Arrays ..

Integer, Allocatable :: indx(:), state(:)
Integer :: seed(lseed)

! .. Executable Statements ..
Write (nout,*) ’G05NCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and number of permutations
Read (nin,*) n, nperm

Allocate (indx(n))

Write (nout,99998) nperm, ’ Permutations of first ’, n, ’ integers’
Write (nout,*)

! Permutate NPERM times
Do j = 1, nperm

! Set up the index vector
Do i = 1, n

indx(i) = i
End Do

! Call the permutation routine
ifail = 0
Call g05ncf(indx,n,state,ifail)
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! Display the results
Write (nout,99999) indx(1:n)

End Do

99999 Format (1X,8I3)
99998 Format (1X,I0,A,I0,A)

End Program g05ncfe

10.2 Program Data

G05NCF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
8 10 :: N,NPERM

10.3 Program Results

G05NCF Example Program Results

10 Permutations of first 8 integers

6 2 4 8 1 3 5 7
8 6 4 2 7 3 1 5
4 2 8 7 5 6 3 1
1 6 4 5 2 3 7 8
1 7 3 8 4 2 5 6
6 3 4 7 1 2 8 5
6 4 1 8 2 5 3 7
3 2 1 7 5 8 6 4
4 2 1 5 3 6 8 7
1 5 6 4 2 7 8 3
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NAG Library Routine Document

G05NDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05NDF selects a pseudorandom sample without replacement from an integer vector.

2 Specification

SUBROUTINE G05NDF (IPOP, N, ISAMPL, M, STATE, IFAIL)

INTEGER IPOP(N), N, ISAMPL(M), M, STATE(*), IFAIL

3 Description

G05NDF selects m elements from a population vector IPOP of length n and places them in a sample

vector ISAMPL. Their order in IPOP will be preserved in ISAMPL. Each of the n
m

� �
possible

combinations of elements of ISAMPL may be regarded as being equally probable.

For moderate or large values of n it is theoretically impossible that all combinations of size m may

occur, unless m is near 1 or near n. This is because n
m

� �
exceeds the cycle length of any of the base

generators. For practical purposes this is irrelevant, as the time taken to generate all possible
combinations is many millenia.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05NDF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: IPOPðNÞ – INTEGER array Input

On entry: the population to be sampled.

2: N – INTEGER Input

On entry: the number of elements in the population vector to be sampled.

Constraint: N � 1.

3: ISAMPLðMÞ – INTEGER array Output

On exit: the selected sample.

4: M – INTEGER Input

On entry: the sample size.

Constraint: 1 � M � N.

G05 – Random Number Generators G05NDF

Mark 26 G05NDF.1



5: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: 1 � M � N.

IFAIL ¼ 5

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

G05NDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G05NDF is of order n.

In order to sample other kinds of vectors, or matrices of higher dimension, the following technique may
be used:

(a) set IPOPðiÞ ¼ i, for i ¼ 1; 2; . . . ; n;

(b) use G05NDF to take a sample from IPOP and put it into ISAMPL;

(c) use the contents of ISAMPL as a set of indices to access the relevant vector or matrix.

In order to divide a population into several groups, G05NCF is more efficient.

10 Example

In the example program random samples of size 1; 2; . . . ; 8 are selected from a vector containing the
first eight positive integers in ascending order. The samples are generated and printed for each sample
size by a call to G05NDF after initialization by G05KFF.

10.1 Program Text

Program g05ndfe

! G05NDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05ndf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, ifail, lstate, m, n, pm, &

subid
! .. Local Arrays ..

Integer, Allocatable :: ipop(:), isampl(:), state(:)
Integer :: seed(lseed)

! .. Executable Statements ..
Write (nout,*) ’G05NDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
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Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (ipop(n))

! Display title
Write (nout,99999) ’ Samples from the first ’, n, ’ integers’
Write (nout,*)
Write (nout,*) ’ Sample size Values’

! Initialize the population
Do i = 1, n

ipop(i) = i
End Do

! Dummy allocation
Allocate (isampl(1))

! Loop over different sample sizes
pm = 0

d_lp: Do
Read (nin,*,Iostat=ifail) m
If (ifail/=0) Then

Exit d_lp
End If

! Reallocate ISAMPL
If (pm/=m) Then

Deallocate (isampl)
Allocate (isampl(m))
pm = m

End If

! Generate sample
ifail = 0
Call g05ndf(ipop,n,isampl,m,state,ifail)

! Display the results
Write (nout,99998) m, isampl(1:m)

End Do d_lp

99999 Format (1X,A,I0,A)
99998 Format (1X,I6,9X,8(1X,I3))

End Program g05ndfe

10.2 Program Data

G05NDF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
8 :: N
1 :: List of sample sizes (M)
2
3
4
5
6
7
8
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10.3 Program Results

G05NDF Example Program Results

Samples from the first 8 integers

Sample size Values
1 2
2 3 6
3 1 5 7
4 2 6 7 8
5 1 2 3 4 8
6 1 3 4 5 6 7
7 1 3 4 5 6 7 8
8 1 2 3 4 5 6 7 8
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NAG Library Routine Document

G05NEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05NEF selects a pseudorandom sample, without replacement and allowing for unequal probabilities.

2 Specification

SUBROUTINE G05NEF (ORDER, WT, POP, IPOP, N, ISAMPL, M, STATE, IFAIL)

INTEGER IPOP(*), N, ISAMPL(M), M, STATE(*), IFAIL
REAL (KIND=nag_wp) WT(N)
CHARACTER(1) ORDER, POP

3 Description

G05NEF selects m elements from either the set of values 1; 2; . . . ; nð Þ or a supplied population vector
of length n. The probability of selecting the ith element is proportional to a user-supplied weight, wi.
Each element will appear at most once in the sample, i.e., the sampling is done without replacement.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05NEF.

4 References

None.

5 Arguments

1: ORDER – CHARACTER(1) Input

On entry: a flag indicating the sorted status of the WT vector.

ORDER ¼ A
WT is sorted in ascending order,

ORDER ¼ D
WT is sorted in descending order,

ORDER ¼ U
WT is unsorted and G05NEF will sort the weights prior to using them.

Irrespective of the value of ORDER, no checks are made on the sorted status of WT, e.g., it is
possible to supply ORDER ¼ A, even when WT is not sorted. In such cases the WT array will
not be sorted internally, but G05NEF will still work correctly except, possibly, in cases of
extreme weight values.

It is usually more efficient to specify a value of ORDER that is consistent with the status of WT.

Constraint: ORDER ¼ A , D or U .

2: WTðNÞ – REAL (KIND=nag_wp) array Input

On entry: wi, the relative probability weights. These weights need not sum to 1:0.
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Constraints:

WTðiÞ � 0:0, for i ¼ 1; 2; . . . ;N;
at least M values must be nonzero.

3: POP – CHARACTER(1) Input

On entry: a flag indicating whether a population to be sampled has been supplied.

POP ¼ D
the population is assumed to be the integers 1; 2; . . . ;Nð Þ and IPOP is not referenced,

POP ¼ S
the population must be supplied in IPOP.

Constraint: POP ¼ D or S .

4: IPOPð�Þ – INTEGER array Input

Note: the dimension of the array IPOP must be at least N if POP ¼ S .

On entry: the population to be sampled. If POP ¼ D then the population is assumed to be the set
of values 1; 2; . . . ;Nð Þ and the array IPOP is not referenced. Elements of IPOP with the same
value are not combined, therefore if WTðiÞ 6¼ 0;WTðjÞ 6¼ 0 and i 6¼ j then there is a nonzero
probability that the sample will contain both IPOPðiÞ and IPOPðjÞ. If IPOPðiÞ ¼ IPOPðjÞ then
that value can appear in ISAMPL more than once.

5: N – INTEGER Input

On entry: n, the size of the population.

Constraint: N � 1.

6: ISAMPLðMÞ – INTEGER array Output

On exit: the selected sample.

7: M – INTEGER Input

On entry: m, the size of the sample required.

Constraint: 0 � M � N.

8: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ORDER ¼ valueh i was an illegal value.

On entry, ORDER had an illegal value.

IFAIL ¼ 2

On entry, at least one weight was less than zero.

IFAIL ¼ 3

On entry, POP had an illegal value.

IFAIL ¼ 5

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 7

On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: 0 � M � N.

IFAIL ¼ 8

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 21

On entry, M ¼ valueh i, number of nonzero weights ¼ valueh i.
Constraint: must be at least M nonzero weights.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05NEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G05NEF internally allocates Nþ 1ð Þ reals and N integers.

Although it is possible to use G05NEF to sample using equal probabilities, by setting all elements of
the input array WT to the same positive value, it is more efficient to use G05NDF. To sample with
replacement, G05TDF can be used when the probabilities are unequal and G05TLF when the
probabilities are equal.

10 Example

This example samples from a population of 25.

10.1 Program Text

Program g05nefe

! G05NEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05nef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, ifail, lipop, lstate, m, &

n, subid
Character (1) :: order, pop

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: wt(:)
Integer, Allocatable :: ipop(:), isampl(:), state(:)
Integer :: seed(lseed)

! .. Executable Statements ..
Write (nout,*) ’G05NEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in population size, sample size and order
Read (nin,*) n, m, pop
Read (nin,*) order
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Select Case (pop)
Case (’S’,’s’)

lipop = n
Case Default

lipop = 0
End Select

Allocate (ipop(lipop),wt(n),isampl(m))

If (lipop==n) Then
! Read in the population and weights

Do i = 1, n
Read (nin,*) ipop(i), wt(i)

End Do
Else

! Read in just the weights
Do i = 1, n

Read (nin,*) wt(i)
End Do

End If

! Generate the sample without replacement, unequal weights
Call g05nef(order,wt,pop,ipop,n,isampl,m,state,ifail)

! Display the results
Write (nout,99999)(isampl(i),i=1,m)

99999 Format (10(1X,I4))
End Program g05nefe

10.2 Program Data

G05NEF Example Program Data
3 0 1762543 :: GENID,SUBID,SEED(1)
25 10 ’S’ :: N,M,POP
’U’ :: ORDER
171 85.54
52 71.78

172 118.13
139 13.68
196 153.60
125 165.35
36 122.35
70 35.87
25 151.78
86 128.33
76 178.27
37 183.37

185 165.81
40 101.41
90 145.16
27 42.01
79 59.08

118 17.53
142 87.14
127 69.20
101 31.13
22 60.26
41 21.00

199 85.06
59 119.73 :: End of IPOP,WT

10.3 Program Results

G05NEF Example Program Results

125 41 185 40 37 196 22 25 76 172
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NAG Library Routine Document

G05PDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PDF generates a given number of terms of a type I AGARCH p; qð Þ process (see Engle and Ng
(1993)).

2 Specification

SUBROUTINE G05PDF (DIST, NUM, IP, IQ, THETA, GAMMA, DF, HT, ET, FCALL,
R, LR, STATE, IFAIL)

&

INTEGER NUM, IP, IQ, DF, LR, STATE(*), IFAIL
REAL (KIND=nag_wp) THETA(IQ+IP+1), GAMMA, HT(NUM), ET(NUM), R(LR)
LOGICAL FCALL
CHARACTER(1) DIST

3 Description

A type I AGARCH p; qð Þ process can be represented by:

ht ¼ �0 þ
Xq
i¼1
�i �t�i þ �ð Þ2 þ

Xp
i¼1
�iht�i; t ¼ 1; 2; . . . ; T ;

where �t j  t�1 ¼ N 0; htð Þ or �t j  t�1 ¼ St df ; htð Þ. Here St is a standardized Student's t-distribution
with df degrees of freedom and variance ht, T is the number of observations in the sequence, �t is the
observed value of the GARCH p; qð Þ process at time t, ht is the conditional variance at time t, and  t
the set of all information up to time t. Symmetric GARCH sequences are generated when � is zero,
otherwise asymmetric GARCH sequences are generated with � specifying the amount by which positive
(or negative) shocks are to be enhanced.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PDF.

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Hamilton J (1994) Time Series Analysis Princeton University Press

5 Arguments

1: DIST – CHARACTER(1) Input

On entry: the type of distribution to use for �t.

DIST ¼ N
A Normal distribution is used.
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DIST ¼ T
A Student's t-distribution is used.

Constraint: DIST ¼ N or T .

2: NUM – INTEGER Input

On entry: T , the number of terms in the sequence.

Constraint: NUM � 0.

3: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.

Constraint: IP � 0.

4: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraint: IQ � 1.

5: THETAðIQþ IPþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the first element must contain the coefficient �o, the next IQ elements must contain the
coefficients �i, for i ¼ 1; 2; . . . ; q. The remaining IP elements must contain the coefficients �j , for
j ¼ 1; 2; . . . ; p.

Constraints:XIQþIPþ1

i¼2
THETAðiÞ < 1:0;

THETAðiÞ � 0:0, for i ¼ 2; 3; . . . ; IPþ IQþ 1.

6: GAMMA – REAL (KIND=nag_wp) Input

On entry: the asymmetry parameter � for the GARCH p; qð Þ sequence.

7: DF – INTEGER Input

On entry: the number of degrees of freedom for the Student's t-distribution.

If DIST ¼ N , DF is not referenced.

Constraint: if DIST ¼ T , DF > 2.

8: HTðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the conditional variances ht , for t ¼ 1; 2; . . . ; T , for the GARCH p; qð Þ sequence.

9: ETðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the observations �t , for t ¼ 1; 2; . . . ; T , for the GARCH p; qð Þ sequence.

10: FCALL – LOGICAL Input

On entry: if FCALL ¼ :TRUE:, a new sequence is to be generated, otherwise a given sequence is
to be continued using the information in R.

11: RðLRÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the array contains information required to continue a sequence if FCALL ¼ :FALSE:.
On exit: contains information that can be used in a subsequent call of G05PDF, with
FCALL ¼ :FALSE:.
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12: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05PDF is
called.

Constraint: LR � 2� IPþ IQþ 2ð Þ.

13: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, DIST is not valid: DIST ¼ valueh i.

IFAIL ¼ 2

On entry, NUM ¼ valueh i.
Constraint: NUM � 0.

IFAIL ¼ 3

On entry, IP ¼ valueh i.
Constraint: IP � 0.

IFAIL ¼ 4

On entry, IQ ¼ valueh i.
Constraint: IQ � 1.

IFAIL ¼ 5

On entry, THETAð valueh iÞ ¼ valueh i.
Constraint: THETAðiÞ � 0:0.

IFAIL ¼ 7

On entry, DF ¼ valueh i.
Constraint: DF � 3.
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IFAIL ¼ 11

IP or IQ is not the same as when R was set up in a previous call.
Previous value of IP ¼ valueh i and IP ¼ valueh i.
Previous value of IQ ¼ valueh i and IQ ¼ valueh i.

IFAIL ¼ 12

On entry, LR is not large enough, LR ¼ valueh i: minimum length required ¼ valueh i.

IFAIL ¼ 13

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 51

On entry, sum of THETAðiÞ, for i ¼ 2; 3; . . . ; IPþ IQþ 1 is � 1:0: sum ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05PDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example first calls G05KFF to initialize a base generator then calls G05PDF to generate two
realizations, each consisting of ten observations, from a symmetric GARCH 1; 1ð Þ model.
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10.1 Program Text

Program g05pdfe

! G05PDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05pdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: gamma
Integer :: df, genid, i, ifail, ip, iq, lr, &

lstate, ltheta, nreal, num, rn, &
subid

Logical :: fcall
Character (1) :: dist

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: et(:), ht(:), r(:), theta(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05PDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and number of realizations
Read (nin,*) num, nreal

! Read in number of coefficients
Read (nin,*) ip, iq

lr = 2*(ip+iq+2)
ltheta = ip + iq + 1
Allocate (theta(ip+iq+1),ht(num),et(num),r(lr))

! Read in error distribution
Read (nin,*) dist

! Read in degrees of freedom if required
If (dist==’T’ .Or. dist==’t’) Then

Read (nin,*) df
End If

! Read in rest of series parameters
Read (nin,*) theta(1:ltheta)
Read (nin,*) gamma
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! Set FCALL for first realization
fcall = .True.

! Generate NREAL realizations
Do rn = 1, nreal

ifail = 0
Call g05pdf(dist,num,ip,iq,theta,gamma,df,ht,et,fcall,r,lr,state, &

ifail)

! Display the results
Write (nout,99998) ’ Realization Number ’, rn
Write (nout,*) ’ I HT(I) ET(I)’
Write (nout,*) ’ --------------------------------------’
Write (nout,99999)(i,ht(i),et(i),i=1,num)
Write (nout,*)

! Set FCALL flag for any further realizations
fcall = .False.

End Do

99999 Format (1X,I5,1X,F16.4,1X,F16.4)
99998 Format (1X,A,I0)

End Program g05pdfe

10.2 Program Data

G05PDF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 2 :: NUM,NREAL
0 3 :: IP,IQ
’N’
0.8 0.6 0.2 0.1 :: THETA
-0.4 :: GAMMA

10.3 Program Results

G05PDF Example Program Results

Realization Number 1
I HT(I) ET(I)

--------------------------------------
1 0.9440 0.3389
2 0.8502 -1.1484
3 2.2553 0.9943
4 1.4918 1.0204
5 1.3413 -1.4544
6 2.9757 -0.0326
7 1.6386 -0.3767
8 1.5433 0.9892
9 1.1477 -0.0049

10 1.0281 0.4508

Realization Number 2
I HT(I) ET(I)

--------------------------------------
1 0.8691 -1.5286
2 3.0485 -1.1339
3 2.9558 0.5424
4 1.6547 -2.0734
5 4.7100 0.5153
6 2.0336 -0.8373
7 2.3331 -1.0912
8 2.4417 3.8999
9 8.7473 3.8171

10 10.4783 0.2480
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NAG Library Routine Document

G05PEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PEF generates a given number of terms of a type II AGARCH p; qð Þ process (see Engle and Ng
(1993)).

2 Specification

SUBROUTINE G05PEF (DIST, NUM, IP, IQ, THETA, GAMMA, DF, HT, ET, FCALL,
R, LR, STATE, IFAIL)

&

INTEGER NUM, IP, IQ, DF, LR, STATE(*), IFAIL
REAL (KIND=nag_wp) THETA(IQ+IP+1), GAMMA, HT(NUM), ET(NUM), R(LR)
LOGICAL FCALL
CHARACTER(1) DIST

3 Description

A type II AGARCH p; qð Þ process can be represented by:

ht ¼ �0 þ
Xq
i¼1
�i �t�ij j þ ��t�ið Þ2 þ

Xp
i¼1
�iht�i; t ¼ 1; 2; . . . ; T ;

where �t j  t�1 ¼ N 0; htð Þ or �t j  t�1 ¼ St df ; htð Þ. Here St is a standardized Student's t-distribution
with df degrees of freedom and variance ht, T is the number of observations in the sequence, �t is the
observed value of the GARCH p; qð Þ process at time t, ht is the conditional variance at time t, and  t
the set of all information up to time t. Symmetric GARCH sequences are generated when � is zero,
otherwise asymmetric GARCH sequences are generated with � specifying the amount by which positive
(or negative) shocks are to be enhanced.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PEF.

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Hamilton J (1994) Time Series Analysis Princeton University Press

5 Arguments

1: DIST – CHARACTER(1) Input

On entry: the type of distribution to use for �t.

DIST ¼ N
A Normal distribution is used.
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DIST ¼ T
A Student's t-distribution is used.

Constraint: DIST ¼ N or T .

2: NUM – INTEGER Input

On entry: T , the number of terms in the sequence.

Constraint: NUM � 0.

3: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.

Constraint: IP � 0.

4: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraint: IQ � 1.

5: THETAðIQþ IPþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the first element must contain the coefficient �o, the next IQ elements must contain the
coefficients �i, for i ¼ 1; 2; . . . ; q. The remaining IP elements must contain the coefficients �j , for
j ¼ 1; 2; . . . ; p.

Constraints:XIQþIPþ1

i¼2
THETAðiÞ < 1:0;

THETAðiÞ � 0:0, for i ¼ 2; 3; . . . ; IPþ IQþ 1.

6: GAMMA – REAL (KIND=nag_wp) Input

On entry: the asymmetry parameter � for the GARCH p; qð Þ sequence.

7: DF – INTEGER Input

On entry: the number of degrees of freedom for the Student's t-distribution.

If DIST ¼ N , DF is not referenced.

Constraint: if DIST ¼ T , DF > 2.

8: HTðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the conditional variances ht , for t ¼ 1; 2; . . . ; T , for the GARCH p; qð Þ sequence.

9: ETðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the observations �t , for t ¼ 1; 2; . . . ; T , for the GARCH p; qð Þ sequence.

10: FCALL – LOGICAL Input

On entry: if FCALL ¼ :TRUE:, a new sequence is to be generated, otherwise a given sequence is
to be continued using the information in R.

11: RðLRÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the array contains information required to continue a sequence if FCALL ¼ :FALSE:.
On exit: contains information that can be used in a subsequent call of G05PEF, with
FCALL ¼ :FALSE:.
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12: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05PEF is
called.

Constraint: LR � 2� IPþ IQþ 2ð Þ.

13: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, DIST is not valid: DIST ¼ valueh i.

IFAIL ¼ 2

On entry, NUM ¼ valueh i.
Constraint: NUM � 0.

IFAIL ¼ 3

On entry, IP ¼ valueh i.
Constraint: IP � 0.

IFAIL ¼ 4

On entry, IQ ¼ valueh i.
Constraint: IQ � 1.

IFAIL ¼ 5

On entry, THETAð valueh iÞ ¼ valueh i.
Constraint: THETAðiÞ � 0:0.

IFAIL ¼ 7

On entry, DF ¼ valueh i.
Constraint: DF � 3.
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IFAIL ¼ 11

IP or IQ is not the same as when R was set up in a previous call.
Previous value of IP ¼ valueh i and IP ¼ valueh i.
Previous value of IQ ¼ valueh i and IQ ¼ valueh i.

IFAIL ¼ 12

On entry, LR is not large enough, LR ¼ valueh i: minimum length required ¼ valueh i.

IFAIL ¼ 13

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 51

On entry, sum of THETAðiÞ, for i ¼ 2; 3; . . . ; IPþ IQþ 1 is � 1:0: sum ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05PEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example first calls G05KFF to initialize a base generator then calls G05PEF to generate two
realizations, each consisting of ten observations, from an asymmetric GARCH 1; 1ð Þ model.
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10.1 Program Text

Program g05pefe

! G05PEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05pef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: gamma
Integer :: df, genid, i, ifail, ip, iq, lr, &

lstate, ltheta, nreal, num, rn, &
subid

Logical :: fcall
Character (1) :: dist

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: et(:), ht(:), r(:), theta(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05PEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and number of realizations
Read (nin,*) num, nreal

! Read in number of coefficients
Read (nin,*) ip, iq

lr = 2*(ip+iq+2)
ltheta = iq + ip + 1
Allocate (theta(ltheta),ht(num),et(num),r(lr))

! Read in error distribution
Read (nin,*) dist

! Read in degrees of freedom if required
If (dist==’T’ .Or. dist==’t’) Then

Read (nin,*) df
End If

! Read in rest of series parameters
Read (nin,*) theta(1:ltheta)
Read (nin,*) gamma
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! Set FCALL for first realization
fcall = .True.

! Generate NREAL realizations
Do rn = 1, nreal

ifail = 0
Call g05pef(dist,num,ip,iq,theta,gamma,df,ht,et,fcall,r,lr,state, &

ifail)

! Display the results
Write (nout,99998) ’Realization Number ’, rn
Write (nout,*) ’ I HT(I) ET(I)’
Write (nout,*) ’ --------------------------------------’
Write (nout,99999)(i,ht(i),et(i),i=1,num)
Write (nout,*)

! Set FCALL flag for any further realizations
fcall = .False.

End Do

99999 Format (1X,I5,1X,F16.4,1X,F16.4)
99998 Format (1X,A,I0)

End Program g05pefe

10.2 Program Data

G05PEF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 2 :: NUM,NREAL
1 1 :: IP,IQ
’N’
0.08 0.2 0.7 :: THETA
-0.4 :: GAMMA

10.3 Program Results

G05PEF Example Program Results

Realization Number 1
I HT(I) ET(I)

--------------------------------------
1 0.6400 0.2790
2 0.5336 -0.9098
3 0.7780 0.5840
4 0.6491 0.6731
5 0.5670 -0.9456
6 0.8275 -0.0172
7 0.6593 -0.2390
8 0.5639 0.5980
9 0.5005 -0.0032

10 0.4303 0.2917

Realization Number 2
I HT(I) ET(I)

--------------------------------------
1 0.3874 -1.0205
2 0.7594 -0.5659
3 0.7371 0.2709
4 0.6013 -1.2499
5 1.1133 0.2505
6 0.8638 -0.5457
7 0.8014 -0.6395
8 0.8013 2.2341
9 1.0003 1.2908

10 0.9002 0.0727
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NAG Library Routine Document

G05PFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PFF generates a given number of terms of a GJR GARCH p; qð Þ process (see Glosten et al. (1993)).

2 Specification

SUBROUTINE G05PFF (DIST, NUM, IP, IQ, THETA, GAMMA, DF, HT, ET, FCALL,
R, LR, STATE, IFAIL)

&

INTEGER NUM, IP, IQ, DF, LR, STATE(*), IFAIL
REAL (KIND=nag_wp) THETA(IQ+IP+1), GAMMA, HT(NUM), ET(NUM), R(LR)
LOGICAL FCALL
CHARACTER(1) DIST

3 Description

A GJR GARCH p; qð Þ process is represented by:

ht ¼ �0 þ
Xq
i¼1

�i þ �It�ið Þ�2t�i þ
Xp
i¼1
�iht�i; t ¼ 1; 2; . . . ; T ;

where It ¼ 1 if �t < 0, It ¼ 0 if �t � 0, and �t j  t�1 ¼ N 0; htð Þ or �t j  t�1 ¼ St df ; htð Þ. Here St is a
standardized Student's t-distribution with df degrees of freedom and variance ht, T is the number of
observations in the sequence, �t is the observed value of the GARCH p; qð Þ process at time t, ht is the
conditional variance at time t, and  t the set of all information up to time t. Symmetric GARCH
sequences are generated when � is zero, otherwise asymmetric GARCH sequences are generated with �
specifying the amount by which negative shocks are to be enhanced.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PFF.

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Glosten L, Jagannathan R and Runkle D (1993) Relationship between the expected value and the
volatility of nominal excess return on stocks Journal of Finance 48 1779–1801

Hamilton J (1994) Time Series Analysis Princeton University Press
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5 Arguments

1: DIST – CHARACTER(1) Input

On entry: the type of distribution to use for �t.

DIST ¼ N
A Normal distribution is used.

DIST ¼ T
A Student's t-distribution is used.

Constraint: DIST ¼ N or T .

2: NUM – INTEGER Input

On entry: T , the number of terms in the sequence.

Constraint: NUM > 0.

3: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.

Constraint: IP � 0.

4: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraint: IQ � 1.

5: THETAðIQþ IPþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the first element must contain the coefficient �o, the next IQ elements must contain the
coefficients �i, for i ¼ 1; 2; . . . ; q. The remaining IP elements must contain the coefficients �j , for
j ¼ 1; 2; . . . ; p.

Constraints:XIQþIPþ1

i¼2
THETAðiÞ < 1:0;

THETAðiÞ � 0:0, for i ¼ 1 and i ¼ IQþ 2; . . . ; IQþ IPþ 1.

6: GAMMA – REAL (KIND=nag_wp) Input

On entry: the asymmetry parameter � for the GARCH p; qð Þ sequence.
Constraint: GAMMAþ THETAðiÞ � 0:0, for i ¼ 2; 3; . . . ; IQþ 1.

7: DF – INTEGER Input

On entry: the number of degrees of freedom for the Student's t-distribution.

If DIST ¼ N , DF is not referenced.

Constraint: if DIST ¼ T , DF > 2.

8: HTðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the conditional variances ht , for t ¼ 1; 2; . . . ; T , for the GARCH p; qð Þ sequence.

9: ETðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the observations �t , for t ¼ 1; 2; . . . ; T , for the GARCH p; qð Þ sequence.
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10: FCALL – LOGICAL Input

On entry: if FCALL ¼ :TRUE:, a new sequence is to be generated, otherwise a given sequence is
to be continued using the information in R.

11: RðLRÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the array contains information required to continue a sequence if FCALL ¼ :FALSE:.
On exit: contains information that can be used in a subsequent call of G05PFF, with
FCALL ¼ :FALSE:.

12: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05PFF is
called.

Constraint: LR � 2� IPþ IQþ 2ð Þ.

13: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, DIST is not valid: DIST ¼ valueh i.

IFAIL ¼ 2

On entry, NUM ¼ valueh i.
Constraint: NUM � 0.

IFAIL ¼ 3

On entry, IP ¼ valueh i.
Constraint: IP � 0.
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IFAIL ¼ 4

On entry, IQ ¼ valueh i.
Constraint: IQ � 1.

IFAIL ¼ 5

On entry, THETAð valueh iÞ ¼ valueh i and � ¼ valueh i.
Constraint: �i þ � � 0.

IFAIL ¼ 7

On entry, DF ¼ valueh i.
Constraint: DF � 3.

IFAIL ¼ 11

IP or IQ is not the same as when R was set up in a previous call.
Previous value of IP ¼ valueh i and IP ¼ valueh i.
Previous value of IQ ¼ valueh i and IQ ¼ valueh i.

IFAIL ¼ 12

On entry, LR is not large enough, LR ¼ valueh i: minimum length required ¼ valueh i.

IFAIL ¼ 13

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 51

On entry, THETAð valueh iÞ ¼ valueh i.
Constraint: THETAðiÞ � 0:0.

IFAIL ¼ 52

On entry, sum of THETAðiÞ ¼ valueh i.
Constraint: sum of THETAðiÞ, for i ¼ 1; 2; . . . ; IPþ IQ is < 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05PFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example first calls G05KFF to initialize a base generator then calls G05PFF to generate two
realizations, each consisting of ten observations, from a GJR GARCH 1; 1ð Þ model.

10.1 Program Text

Program g05pffe

! G05PFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05pff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: gamma
Integer :: df, genid, i, ifail, ip, iq, lr, &

lstate, ltheta, nreal, num, rn, &
subid

Logical :: fcall
Character (1) :: dist

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: et(:), ht(:), r(:), theta(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05PFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and number of realizations
Read (nin,*) num, nreal

! Read in number of coefficients
Read (nin,*) ip, iq

G05 – Random Number Generators G05PFF

Mark 26 G05PFF.5



lr = 2*(ip+iq+2)
ltheta = ip + iq + 1
Allocate (theta(ltheta),ht(num),et(num),r(lr))

! Read in error distribution
Read (nin,*) dist

! Read in degrees of freedom if required
If (dist==’T’ .Or. dist==’t’) Then

Read (nin,*) df
End If

! Read in rest of series parameters
Read (nin,*) theta(1:ltheta)
Read (nin,*) gamma

! Set FCALL for first realization
fcall = .True.

! Generate NREAL realizations
Do rn = 1, nreal

ifail = 0
Call g05pff(dist,num,ip,iq,theta,gamma,df,ht,et,fcall,r,lr,state, &

ifail)

! Display the results
Write (nout,99998) ’Realization Number ’, rn
Write (nout,*) ’ I HT(I) ET(I)’
Write (nout,*) ’ --------------------------------------’
Write (nout,99999)(i,ht(i),et(i),i=1,num)
Write (nout,*)

! Set FCALL flag for any further realizations
fcall = .False.

End Do

99999 Format (1X,I5,1X,F16.4,1X,F16.4)
99998 Format (1X,A,I0)

End Program g05pffe

10.2 Program Data

G05PFF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 2 :: NUM,NREAL
1 1 :: IP,IQ
’N’
0.4 0.1 0.7 :: THETA
0.1 :: GAMMA

10.3 Program Results

G05PFF Example Program Results

Realization Number 1
I HT(I) ET(I)

--------------------------------------
1 1.8000 0.4679
2 1.6819 -1.6152
3 2.0991 0.9592
4 1.9614 1.1701
5 1.9099 -1.7355
6 2.3393 -0.0289
7 2.0377 -0.4201
8 1.8617 1.0865
9 1.8212 -0.0061

10 1.6749 0.5754
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Realization Number 2
I HT(I) ET(I)

--------------------------------------
1 1.6055 -2.0776
2 2.3872 -1.0034
3 2.2724 0.4756
4 2.0133 -2.2871
5 2.8554 0.4012
6 2.4149 -0.9125
7 2.2570 -1.0732
8 2.2102 3.7105
9 3.3239 2.3530

10 3.2804 0.1388
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NAG Library Routine Document

G05PGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PGF generates a given number of terms of an exponential GARCH p; qð Þ process (see Engle and Ng
(1993)).

2 Specification

SUBROUTINE G05PGF (DIST, NUM, IP, IQ, THETA, DF, HT, ET, FCALL, R, LR,
STATE, IFAIL)

&

INTEGER NUM, IP, IQ, DF, LR, STATE(*), IFAIL
REAL (KIND=nag_wp) THETA(2*IQ+IP+1), HT(NUM), ET(NUM), R(LR)
LOGICAL FCALL
CHARACTER(1) DIST

3 Description

An exponential GARCH p; qð Þ process is represented by:

ln htð Þ ¼ �0 þ
Xq
i¼1
�izt�i þ

Xq
i¼1

i zt�ij j � E zt�ij j½ �ð Þ þ

Xp
j¼1

�jln ht�j
� �

; t ¼ 1; 2; . . . ; T ;

where zt ¼
�tffiffiffiffiffi
ht
p , E zt�ij j½ � denotes the expected value of zt�ij j, and �t j  t�1 ¼ N 0; htð Þ or

�t j  t�1 ¼ St df ; htð Þ. Here St is a standardized Student's t-distribution with df degrees of freedom
and variance ht, T is the number of observations in the sequence, �t is the observed value of the
GARCH p; qð Þ process at time t, ht is the conditional variance at time t, and  t the set of all information
up to time t.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PGF.

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Glosten L, Jagannathan R and Runkle D (1993) Relationship between the expected value and the
volatility of nominal excess return on stocks Journal of Finance 48 1779–1801

Hamilton J (1994) Time Series Analysis Princeton University Press
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5 Arguments

1: DIST – CHARACTER(1) Input

On entry: the type of distribution to use for �t.

DIST ¼ N
A Normal distribution is used.

DIST ¼ T
A Student's t-distribution is used.

Constraint: DIST ¼ N or T .

2: NUM – INTEGER Input

On entry: T , the number of terms in the sequence.

Constraint: NUM � 0.

3: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.

Constraint: IP � 0.

4: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraint: IQ � 1.

5: THETAð2� IQþ IPþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the initial parameter estimates for the vector �. The first element must contain the
coefficient �o and the next IQ elements must contain the autoregressive coefficients �i, for
i ¼ 1; 2; . . . ; q. The next IQ elements must contain the coefficients 
i, for i ¼ 1; 2; . . . ; q. The next
IP elements must contain the moving average coefficients �j , for j ¼ 1; 2; . . . ; p.

Constraints:Xp
i¼1
�i 6¼ 1:0;

�0

1�
Xp
i¼1

�i

� �log X02AMFð Þ.

6: DF – INTEGER Input

On entry: the number of degrees of freedom for the Student's t-distribution.

If DIST ¼ N , DF is not referenced.

Constraint: if DIST ¼ T , DF > 2.

7: HTðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the conditional variances ht , for t ¼ 1; 2; . . . ; T , for the GARCH p; qð Þ sequence.

8: ETðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the observations �t , for t ¼ 1; 2; . . . ; T , for the GARCH p; qð Þ sequence.

9: FCALL – LOGICAL Input

On entry: if FCALL ¼ :TRUE:, a new sequence is to be generated, otherwise a given sequence is
to be continued using the information in R.
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10: RðLRÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the array contains information required to continue a sequence if FCALL ¼ :FALSE:.
On exit: contains information that can be used in a subsequent call of G05PGF, with
FCALL ¼ :FALSE:.

11: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05PGF is
called.

Constraint: LR � 2� IPþ 2� IQþ 2ð Þ.

12: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, DIST is not valid: DIST ¼ valueh i.

IFAIL ¼ 2

On entry, NUM ¼ valueh i.
Constraint: NUM � 0.

IFAIL ¼ 3

On entry, IP ¼ valueh i.
Constraint: IP � 0.

IFAIL ¼ 4

On entry, IQ ¼ valueh i.
Constraint: IQ � 1.
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IFAIL ¼ 6

On entry, DF ¼ valueh i.
Constraint: DF � 3.

IFAIL ¼ 10

IP or IQ is not the same as when R was set up in a previous call.
Previous value of IP ¼ valueh i and IP ¼ valueh i.
Previous value of IQ ¼ valueh i and IQ ¼ valueh i.

IFAIL ¼ 11

On entry, LR is not large enough, LR ¼ valueh i: minimum length required ¼ valueh i.

IFAIL ¼ 12

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 20

Invalid sequence generated, use different parameters.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05PGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example first calls G05KFF to initialize a base generator then calls G05PGF to generate two
realizations, each consisting of ten observations, from an exponential GARCH 1; 1ð Þ model.
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10.1 Program Text

Program g05pgfe

! G05PGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05pgf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: df, genid, i, ifail, ip, iq, lr, &

lstate, ltheta, nreal, num, rn, &
subid

Logical :: fcall
Character (1) :: dist

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: et(:), ht(:), r(:), theta(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05PGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and number of realizations
Read (nin,*) num, nreal

! Read in number of coefficients
Read (nin,*) ip, iq

lr = 2*(ip+2*iq+2)
ltheta = 2*iq + ip + 1
Allocate (theta(ltheta),ht(num),et(num),r(lr))

! Read in error distribution
Read (nin,*) dist

! Read in degrees of freedom if required
If (dist==’T’ .Or. dist==’t’) Then

Read (nin,*) df
End If

! Read in rest of series parameters
Read (nin,*) theta(1:ltheta)

! Set FCALL for first realization
fcall = .True.
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! Generate NREAL realizations
Do rn = 1, nreal

ifail = 0
Call g05pgf(dist,num,ip,iq,theta,df,ht,et,fcall,r,lr,state,ifail)

! Display the results
Write (nout,99998) ’Realization Number ’, rn
Write (nout,*) ’ I HT(I) ET(I)’
Write (nout,*) ’ --------------------------------------’
Write (nout,99999)(i,ht(i),et(i),i=1,num)
Write (nout,*)

! Set FCALL flag for any further realizations
fcall = .False.

End Do

99999 Format (1X,I5,1X,F16.4,1X,F16.4)
99998 Format (1X,A,I0)

End Program g05pgfe

10.2 Program Data

G05PGF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 2 :: NUM,NREAL
1 1 :: IP,IQ
’N’
0.1 -0.3 0.1 0.9 :: THETA

10.3 Program Results

G05PGF Example Program Results

Realization Number 1
I HT(I) ET(I)

--------------------------------------
1 2.5098 0.5526
2 2.1785 -1.8383
3 3.3844 1.2180
4 2.6780 1.3672
5 2.0953 -1.8178
6 3.2813 -0.0343
7 2.9958 -0.5094
8 3.0815 1.3978
9 2.3961 -0.0070

10 2.2445 0.6661

Realization Number 2
I HT(I) ET(I)

--------------------------------------
1 1.9327 -2.2795
2 3.5577 -1.2249
3 4.1461 0.6424
4 3.4455 -2.9920
5 5.9199 0.5777
6 4.8221 -1.2894
7 5.3174 -1.6473
8 6.1095 6.1689
9 3.1579 2.2935

10 2.2189 0.1141
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NAG Library Routine Document

G05PHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PHF generates a realization of a univariate time series from an autoregressive moving average
(ARMA) model. The realization may be continued or a new realization generated at subsequent calls to
G05PHF.

2 Specification

SUBROUTINE G05PHF (MODE, N, XMEAN, IP, PHI, IQ, THETA, AVAR, R, LR,
STATE, VAR, X, IFAIL)

&

INTEGER MODE, N, IP, IQ, LR, STATE(*), IFAIL
REAL (KIND=nag_wp) XMEAN, PHI(IP), THETA(IQ), AVAR, R(LR), VAR, X(N)

3 Description

Let the vector xt, denote a time series which is assumed to follow an autoregressive moving average
(ARMA) model of the form:

xt � � ¼ 
1 xt�1 � �ð Þ þ 
2 xt�2 � �ð Þ þ � � � þ 
p xt�p � �
� �

þ
�t � �1�t�1 � �2�t�2 � � � � � �q�t�q

where �t, is a residual series of independent random perturbations assumed to be Normally distributed
with zero mean and variance �2. The parameters 
if g, for i ¼ 1; 2; . . . ; p, are called the autoregressive
(AR) parameters, and �j

� 
, for j ¼ 1; 2; . . . ; q, the moving average (MA) parameters. The parameters in

the model are thus the p 
 values, the q � values, the mean � and the residual variance �2.

G05PHF sets up a reference vector containing initial values corresponding to a stationary position using
the method described in Tunnicliffe–Wilson (1979). The routine can then return a realization of
x1; x2; . . . ; xn. On a successful exit, the recent history is updated and saved in the reference vector R so
that G05PHF may be called again to generate a realization of xnþ1; xnþ2; . . ., etc. See the description of
the argument MODE in Section 5 for details.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PHF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Tunnicliffe–Wilson G (1979) Some efficient computational procedures for high order ARMA models J.
Statist. Comput. Simulation 8 301–309

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate terms in the time series using reference vector set up in a prior call to G05PHF.

G05 – Random Number Generators G05PHF

Mark 26 G05PHF.1



MODE ¼ 2
Set up reference vector and generate terms in the time series.

Constraint: MODE ¼ 0, 1 or 2.

2: N – INTEGER Input

On entry: n, the number of observations to be generated.

Constraint: N � 0.

3: XMEAN – REAL (KIND=nag_wp) Input

On entry: the mean of the time series.

4: IP – INTEGER Input

On entry: p, the number of autoregressive coefficients supplied.

Constraint: IP � 0.

5: PHIðIPÞ – REAL (KIND=nag_wp) array Input

On entry: the autoregressive coefficients of the model, 
1; 
2; . . . ; 
p.

6: IQ – INTEGER Input

On entry: q, the number of moving average coefficients supplied.

Constraint: IQ � 0.

7: THETAðIQÞ – REAL (KIND=nag_wp) array Input

On entry: the moving average coefficients of the model, �1; �2; . . . ; �q.

8: AVAR – REAL (KIND=nag_wp) Input

On entry: �2, the variance of the Normal perturbations.

Constraint: AVAR � 0:0.

9: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector from the previous call to G05PHF.

On exit: the reference vector.

10: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05PHF is
called.

Constraint: LR � IPþ IQþ 6þmax IP; IQþ 1ð Þ.

11: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

12: VAR – REAL (KIND=nag_wp) Output

On exit: the proportion of the variance of a term in the series that is due to the moving-average
(error) terms in the model. The smaller this is, the nearer is the model to non-stationarity.
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13: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: contains the next n observations from the time series.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1 or 2.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 4

On entry, IP ¼ valueh i.
Constraint: IP � 0.

IFAIL ¼ 5

On entry, the AR parameters are outside the stationarity region.

IFAIL ¼ 6

On entry, IQ ¼ valueh i.
Constraint: IQ � 0.

IFAIL ¼ 8

On entry, AVAR ¼ valueh i.
Constraint: AVAR � 0:0.

IFAIL ¼ 9

IP or IQ is not the same as when R was set up in a previous call.
Previous value of IP ¼ valueh i and IP ¼ valueh i.
Previous value of IQ ¼ valueh i and IQ ¼ valueh i.
Reference vector R has been corrupted or not initialized correctly.

IFAIL ¼ 10

On entry, LR is not large enough, LR ¼ valueh i: minimum length required ¼ valueh i.
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IFAIL ¼ 11

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Any errors in the reference vector's initial values should be very much smaller than the error term; see
Tunnicliffe–Wilson (1979).

8 Parallelism and Performance

G05PHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G05PHF is essentially of order IPð Þ2.
Note: The reference vector, R, contains a copy of the recent history of the series. If attempting to re-
initialize the series by calling G05KFF or G05KGF a call to G05PHF with MODE ¼ 0 must also be
made. In the repeatable case the calls to G05PHF should be performed in the same order (at the same
point(s) in simulation) every time G05KFF is used. When the generator state is saved and restored
using the argument STATE, the time series reference vector must be saved and restored as well.

The ARMA model for a time series can also be written as:

xn � Eð Þ ¼ A1 xn�1 � Eð Þ þ � � � þANA xn�NA � Eð Þ þB1an þ � � � þBNBan�NBþ1

where

xn is the observed value of the time series at time n,

NA is the number of autoregressive parameters, Ai,

NB is the number of moving average parameters, Bi,

E is the mean of the time series,

and

at is a series of independent random Standard Normal perturbations.

This is the form used in G05PHF. This is related to the form given in Section 3 by:
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B2
1 ¼ �2,

Biþ1 ¼ ��i� ¼ ��iB1; i ¼ 1; 2; . . . ; q,

NB ¼ q þ 1,

E ¼ �,
Ai ¼ 
i; i ¼ 1; 2; . . . ; p,

NA ¼ p.

10 Example

This example generates values for an autoregressive model given by

xt ¼ 0:4xt�1 þ 0:2xt�2 þ �t
where �t is a series of independent random Normal perturbations with variance 1:0. The random number
generators are initialized by G05KFF and then G05PHF is called to initialize a reference vector and
generate a sample of ten observations.

10.1 Program Text

Program g05phfe

! G05PHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05phf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: avar, var, xmean
Integer :: genid, ifail, ip, iq, lr, lstate, &

mode, n, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: phi(:), r(:), theta(:), x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G05PHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
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! Read in sample size
Read (nin,*) n

! Read in number of coefficients
Read (nin,*) ip, iq

lr = ip + iq + 6 + max(ip,iq+1)
Allocate (phi(ip),theta(iq),x(n),r(lr))

! Read in mean
Read (nin,*) xmean

! Read in autoregressive coefficients
If (ip>0) Then

Read (nin,*) phi(1:ip)
End If

! Read in moving average coefficients
If (iq>0) Then

Read (nin,*) theta(1:iq)
End If

! Read in variance
Read (nin,*) avar

! Using a single call to G05PHF, so set up reference vector
! and generate values in one go

mode = 2

ifail = 0
Call g05phf(mode,n,xmean,ip,phi,iq,theta,avar,r,lr,state,var,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F12.4)
End Program g05phfe

10.2 Program Data

G05PHF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 :: N
2 0 :: IP,IQ
0.0 :: XMEAN
0.4 0.2 :: PHI
1.0 :: AVAR

10.3 Program Results

G05PHF Example Program Results

-1.7103
-0.4042
-0.1845
-1.5004
-1.1946
-1.8184
-1.0895
1.6408
1.3555
1.1908
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NAG Library Routine Document

G05PJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PJF generates a realization of a multivariate time series from a vector autoregressive moving
average (VARMA) model. The realization may be continued or a new realization generated at
subsequent calls to G05PJF.

2 Specification

SUBROUTINE G05PJF (MODE, N, K, XMEAN, IP, PHI, IQ, THETA, VAR, LDVAR, R,
LR, STATE, X, LDX, IFAIL)

&

INTEGER MODE, N, K, IP, IQ, LDVAR, LR, STATE(*), LDX, IFAIL
REAL (KIND=nag_wp) XMEAN(K), PHI(K*K*IP), THETA(K*K*IQ), VAR(LDVAR,K),

R(LR), X(LDX,N)
&

3 Description

Let the vector Xt ¼ x1t; x2t; . . . ; xktð ÞT, denote a k-dimensional time series which is assumed to follow a
vector autoregressive moving average (VARMA) model of the form:

Xt � � ¼ 
1 Xt�1 � �ð Þ þ 
2 Xt�2 � �ð Þ þ � � � þ 
p Xt�p � �
� �

þ
�t � �1�t�1 � �2�t�2 � � � � � �q�t�q

ð1Þ

where �t ¼ �1t; �2t; . . . ; �ktð ÞT, is a vector of k residual series assumed to be Normally distributed with
zero mean and covariance matrix �. The components of �t are assumed to be uncorrelated at non-
simultaneous lags. The 
i's and �j's are k by k matrices of parameters. 
if g, for i ¼ 1; 2; . . . ; p, are
called the autoregressive (AR) parameter matrices, and �j

� 
, for j ¼ 1; 2; . . . ; q, the moving average

(MA) parameter matrices. The parameters in the model are thus the p k by k 
-matrices, the q k by k
�-matrices, the mean vector � and the residual error covariance matrix �. Let

A 
ð Þ ¼


1 I 0 : : : 0

2 0 I 0 : : 0
: :
: :
: :


p�1 0 : : : 0 I

p 0 : : : 0 0

266666664

377777775
pk�pk

and B �ð Þ ¼

�1 I 0 : : : 0
�2 0 I 0 : : 0
: :
: :
: :

�q�1 0 : : : 0 I
�q 0 : : : 0 0

266666664

377777775
qk�qk

where I denotes the k by k identity matrix.

The model (1) must be both stationary and invertible. The model is said to be stationary if the
eigenvalues of A 
ð Þ lie inside the unit circle and invertible if the eigenvalues of B �ð Þ lie inside the unit
circle.

For k � 6 the VARMA model (1) is recast into state space form and a realization of the state vector at
time zero computed. For all other cases the routine computes a realization of the pre-observed vectors
X0; X�1; . . . ;X1�p, �0; ��1; . . . ; �1�q, from (1), see Shea (1988). This realization is then used to generate
a sequence of successive time series observations. Note that special action is taken for pure MA
models, that is for p ¼ 0.

At your request a new realization of the time series may be generated more efficiently using the
information in a reference vector created during a previous call to G05PJF. See the description of the
argument MODE in Section 5 for details.
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The routine returns a realization of X1; X2; . . . ; Xn. On a successful exit, the recent history is updated
and saved in the array R so that G05PJF may be called again to generate a realization of
Xnþ1; Xnþ2; . . ., etc. See the description of the argument MODE in Section 5 for details.

Further computational details are given in Shea (1988). Note, however, that G05PJF uses a spectral
decomposition rather than a Cholesky factorization to generate the multivariate Normals. Although this
method involves more multiplications than the Cholesky factorization method and is thus slightly
slower it is more stable when faced with ill-conditioned covariance matrices. A method of assigning the
AR and MA coefficient matrices so that the stationarity and invertibility conditions are satisfied is
described in Barone (1987).

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PJF.

4 References

Barone P (1987) A method for generating independent realisations of a multivariate normal stationary
and invertible ARMA p; qð Þ process J. Time Ser. Anal. 8 125–130

Shea B L (1988) A note on the generation of independent realisations of a vector autoregressive moving
average process J. Time Ser. Anal. 9 403–410

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector and compute a realization of the recent history.

MODE ¼ 1
Generate terms in the time series using reference vector set up in a prior call to G05PJF.

MODE ¼ 2
Combine the operations of MODE ¼ 0 and 1.

MODE ¼ 3
A new realization of the recent history is computed using information stored in the
reference vector, and the following sequence of time series values are generated.

If MODE ¼ 1 or 3, then you must ensure that the reference vector R and the values of K, IP, IQ,
XMEAN, PHI, THETA, VAR and LDVAR have not been changed between calls to G05PJF.

Constraint: MODE ¼ 0, 1, 2 or 3.

2: N – INTEGER Input

On entry: n, the number of observations to be generated.

Constraint: N � 0.

3: K – INTEGER Input

On entry: k, the dimension of the multivariate time series.

Constraint: K � 1.

4: XMEANðKÞ – REAL (KIND=nag_wp) array Input

On entry: �, the vector of means of the multivariate time series.
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5: IP – INTEGER Input

On entry: p, the number of autoregressive parameter matrices.

Constraint: IP � 0.

6: PHIðK � K � IPÞ – REAL (KIND=nag_wp) array Input

On entry: must contain the elements of the IP� K � K autoregressive parameter matrices of the
model, 
1; 
2; . . . ; 
p. If PHI is considered as a three-dimensional array, dimensioned as
PHIðK;K; IPÞ, then the i; jð Þth element of 
l would be stored in PHIði; j; lÞ; that is,
PHIð l � 1ð Þ � k� kþ j� 1ð Þ � kþ iÞ must be set equal to the i; jð Þth element of 
l , for
l ¼ 1; 2; . . . ; p, i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k.

Constraint: the elements of PHI must satisfy the stationarity condition.

7: IQ – INTEGER Input

On entry: q, the number of moving average parameter matrices.

Constraint: IQ � 0.

8: THETAðK � K � IQÞ – REAL (KIND=nag_wp) array Input

On entry: must contain the elements of the IQ� K � K moving average parameter matrices of
the model, �1; �2; . . . ; �q. If THETA is considered as a three-dimensional array, dimensioned as
THETA(K,K,IQ), then the i; jð Þth element of �l would be stored in THETAði; j; lÞ; that is,
THETAð l � 1ð Þ � k� kþ j � 1ð Þ � kþ iÞ must be set equal to the i; jð Þth element of �l , for
l ¼ 1; 2; . . . ; q, i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k.

Constraint: the elements of THETA must be within the invertibility region.

9: VARðLDVAR;KÞ – REAL (KIND=nag_wp) array Input

On entry: VARði; jÞ must contain the (i; j)th element of �, for i ¼ 1; 2; . . . ;K and j ¼ 1; 2; . . . ;K.
Only the lower triangle is required.

Constraint: the elements of VAR must be such that � is positive semidefinite.

10: LDVAR – INTEGER Input

On entry: the first dimension of the array VAR as declared in the (sub)program from which
G05PJF is called.

Constraint: LDVAR � K.

11: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1 or 3, the array R as output from the previous call to G05PJF must be
input without any change.

If MODE ¼ 0 or 2, the contents of R need not be set.

On exit: information required for any subsequent calls to the routine with MODE ¼ 1 or 3. See
Section 9.

12: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05PJF is
called.

Constraints:

if K � 6, LR � 5r2 þ 1
� �

� K2 þ 4r þ 3ð Þ � Kþ 4;

if K < 6, LR � IPþ IQð Þ2 þ 1
� �

� K2 þ

4� IPþ IQð Þ þ 3ð Þ � K þmax Kr Kr þ 2ð Þ;K2 IPþ IQð Þ2 þ l l þ 3ð Þ þ K2 IQþ 1ð Þ
n o

þ 4.
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W h e r e r ¼ max IP; IQð Þ a n d i f IP ¼ 0, l ¼ K K þ 1ð Þ=2, o r i f IP � 1,
l ¼ K K þ 1ð Þ=2þ IP� 1ð ÞK2.

See Section 9 for some examples of the required size of the array R.

13: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

14: XðLDX;NÞ – REAL (KIND=nag_wp) array Output

On exit: Xði; tÞ will contain a realization of the ith component of Xt , for i ¼ 1; 2; . . . ; k and
t ¼ 1; 2; . . . ; n.

15: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05PJF
is called.

Constraint: LDX � K.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1, 2 or 3.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, K ¼ valueh i.
Constraint: K � 1.
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IFAIL ¼ 5

On entry, IP ¼ valueh i.
Constraint: IP � 0.

IFAIL ¼ 6

On entry, the AR parameters are outside the stationarity region.

IFAIL ¼ 7

On entry, IQ ¼ valueh i.
Constraint: IQ � 0.

IFAIL ¼ 8

On entry, the moving average parameter matrices are such that the model is non-invertible.

IFAIL ¼ 9

On entry, the covariance matrix VAR is not positive semidefinite to machine precision.

IFAIL ¼ 10

On entry, LDVAR ¼ valueh i and K ¼ valueh i.
Constraint: LDVAR � K.

IFAIL ¼ 11

K is not the same as when R was set up in a previous call.
Previous value of K ¼ valueh i and K ¼ valueh i.

IFAIL ¼ 12

On entry, LR is not large enough, LR ¼ valueh i: minimum length required ¼ valueh i.

IFAIL ¼ 13

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 15

On entry, LDX ¼ valueh i and K ¼ valueh i.
Constraint: LDX � K.

IFAIL ¼ 20

An excessive number of iterations were required by the NAG routine used to evaluate the
eigenvalues of the matrices used to test for stationarity or invertibility.

IFAIL ¼ 21

The reference vector cannot be computed because the AR parameters are too close to the
boundary of the stationarity region.

IFAIL ¼ 22

An excessive number of iterations were required by the NAG routine used to evaluate the
eigenvalues of the covariance matrix.

IFAIL ¼ 23

An excessive number of iterations were required by the NAG routine used to evaluate the
eigenvalues stored in the reference vector.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is limited by the matrix computations performed, and this is dependent on the condition
of the argument and covariance matrices.

8 Parallelism and Performance

G05PJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05PJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Note that, in reference to IFAIL ¼ 8, G05PJF will permit moving average parameters on the boundary
of the invertibility region.

The elements of R contain amongst other information details of the spectral decompositions which are
used to generate future multivariate Normals. Note that these eigenvectors may not be unique on
different machines. For example the eigenvectors corresponding to multiple eigenvalues may be
permuted. Although an effort is made to ensure that the eigenvectors have the same sign on all
machines, differences in the signs may theoretically still occur.

The following table gives some examples of the required size of the array R, specified by the argument
LR, for k ¼ 1; 2 or 3, and for various values of p and q.
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q

0 1 2 3

13 20 31 46
0 36 56 92 144

85 124 199 310

19 30 45 64
1 52 88 140 208

115 190 301 448
p

35 50 69 92
2 136 188 256 340

397 508 655 838

57 76 99 126
3 268 336 420 520

877 1024 1207 1426

Note that G13DXF may be used to check whether a VARMA model is stationary and invertible.

The time taken depends on the values of p, q and especially n and k.

10 Example

This program generates two realizations, each of length 48, from the bivariate AR(1) model

Xt � � ¼ 
1 Xt�1 � �ð Þ þ �t
with


1 ¼ 0:80 0:07
0:00 0:58

� �
;

� ¼ 5:00
9:00

� �
;

and

� ¼ 2:97 0
0:64 5:38

� �
:

The pseudorandom number generator is initialized by a call to G05KFF. Then, in the first call to
G05PJF, MODE ¼ 2 in order to set up the reference vector before generating the first realization. In the
subsequent call MODE ¼ 3 and a new recent history is generated and used to generate the second
realization.

10.1 Program Text

Program g05pjfe

! G05PJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05pjf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, ifail, ii, ip, iq, j, k, &
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k2, l, ldvar, ldx, lphi, lr, lstate, &
ltheta, mode, n, nreal, rn, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: phi(:), r(:), theta(:), var(:,:), &

x(:,:), xmean(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G05PJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in the sample size and number of realizations
Read (nin,*) n, nreal

! Read in the number of coefficients
Read (nin,*) k, ip, iq

k2 = k**2
rn = max(ip,iq)
l = k*(k+1)/2
If (ip>0) Then

l = l + (ip-1)*k2
End If
If (k>=6) Then

lr = (5*rn**2+1)*k2 + (4*rn+3) + 4
Else

lr = ((ip+iq)**2+1)*k2 + (4*(ip+iq)+3)*k + max(k*rn*(k*rn+2),k2*(ip+iq &
)**2+l*(l+3)+k2*(iq+1)) + 4

End If
lphi = ip*k*k
ltheta = iq*k*k
ldvar = k
ldx = k
Allocate (phi(lphi),theta(ltheta),var(ldvar,k),r(lr),x(ldx,n),xmean(k))

! Read in the AR parameters
Do l = 1, ip

Do i = 1, k
ii = (l-1)*k*k + i
Read (nin,*)(phi(ii+k*(j-1)),j=1,k)

End Do
End Do

! Read in the MA parameters
Do l = 1, iq

Do i = 1, k
ii = (l-1)*k*k + i
Read (nin,*)(theta(ii+k*(j-1)),j=1,k)

End Do
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End Do

! Read in the means
Read (nin,*) xmean(1:k)

! Read in the variance / covariance matrix
Read (nin,*)(var(i,1:i),i=1,k)

! For the first realization we need to set up the reference vector
! as well as generate the series

mode = 2

! Generate NREAL realizations
d_lp: Do rn = 1, nreal

ifail = 0
Call g05pjf(mode,n,k,xmean,ip,phi,iq,theta,var,ldvar,r,lr,state,x,ldx, &

ifail)

! Display the results
Write (nout,99999) ’ Realization Number ’, rn
Do i = 1, k

Write (nout,*)
Write (nout,99999) ’ Series number ’, i
Write (nout,*) ’ -------------’
Write (nout,*)
Write (nout,99998) x(i,1:n)

End Do
Write (nout,*)

! For subsequent realizations we use previous reference vector
mode = 3

End Do d_lp

99999 Format (1X,A,I0)
99998 Format (8(2X,F8.3))

End Program g05pjfe

10.2 Program Data

G05PJF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
48 2 :: N,NREAL
2 1 0 :: K, IP, IQ
0.80 0.07
0.00 0.58 :: End of PHI
5.00 9.00 :: XMEAN
2.97
0.64 5.38 :: End of VAR (lower triangle)

10.3 Program Results

G05PJF Example Program Results

Realization Number 1

Series number 1
-------------

4.833 2.813 3.224 3.825 1.023 1.415 2.184 3.005
5.547 4.832 4.705 5.484 9.407 10.335 8.495 7.478
6.373 6.692 6.698 6.976 6.200 4.458 2.520 3.517
3.054 5.439 5.699 7.136 5.750 8.497 9.563 11.604
9.020 10.063 7.976 5.927 4.992 4.222 3.982 7.107
3.554 7.045 7.025 4.106 5.106 5.954 8.026 7.212

Series number 2
-------------
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8.458 9.140 10.866 10.975 9.245 5.054 5.023 12.486
10.534 10.590 11.376 8.793 14.445 13.237 11.030 8.405
7.187 8.291 5.920 9.390 10.055 6.222 7.751 10.604

12.441 10.664 10.960 8.022 10.073 12.870 12.665 14.064
11.867 12.894 10.546 12.754 8.594 9.042 12.029 12.557
9.746 5.487 5.500 8.629 9.723 8.632 6.383 12.484

Realization Number 2

Series number 1
-------------

5.396 4.811 2.685 5.824 2.449 3.563 5.663 6.209
3.130 4.308 4.333 4.903 1.770 1.278 1.340 -0.527
1.745 3.211 4.478 5.170 5.365 4.852 6.080 6.464
2.765 2.148 6.641 7.224 10.316 7.102 5.604 3.934
4.839 3.698 5.210 5.384 7.652 7.315 7.332 7.561
7.537 7.788 6.868 7.575 6.108 6.188 8.132 10.310

Series number 2
-------------

11.345 10.070 13.654 12.409 11.329 13.054 12.465 9.867
10.263 13.394 10.553 10.331 7.814 8.747 10.025 11.167
10.626 9.366 9.607 9.662 10.492 10.766 11.512 10.813
10.799 8.780 9.221 14.245 11.575 10.620 8.282 5.447
9.935 9.386 11.627 10.066 11.394 7.951 7.907 12.616

15.246 9.962 13.216 11.350 11.227 6.021 6.968 12.428
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NAG Library Routine Document

G05PMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PMF simulates from an exponential smoothing model, where the model uses either single
exponential, double exponential or a Holt–Winters method.

2 Specification

SUBROUTINE G05PMF (MODE, N, ITYPE, P, PARAM, INIT, VAR, R, STATE, E, EN,
X, IFAIL)

&

INTEGER MODE, N, ITYPE, P, STATE(*), EN, IFAIL
REAL (KIND=nag_wp) PARAM(*), INIT(*), VAR, R(*), E(EN), X(N)

3 Description

G05PMF returns xt : t ¼ 1; 2; . . . ; nf g, a realization of a time series from an exponential smoothing
model defined by one of five smoothing functions:

Single Exponential Smoothing

xt ¼ mt�1 þ �t
mt ¼ �xt þ 1� �ð Þmt�1

Brown Double Exponential Smoothing

xt ¼ mt�1 þ rt�1
� þ �t

mt ¼ �xt þ 1� �ð Þmt�1
rt ¼ � mt �mt�1ð Þ þ 1� �ð Þrt�1

Linear Holt Exponential Smoothing

xt ¼ mt�1 þ 
rt�1 þ �t
mt ¼ �xt þ 1� �ð Þ mt�1 þ 
rt�1ð Þ
rt ¼ � mt �mt�1ð Þ þ 1� �ð Þ
rt�1

Additive Holt–Winters Smoothing

xt ¼ mt�1 þ 
rt�1 þ st�1�p þ �t
mt ¼ � xt � st�p

� �
þ 1� �ð Þ mt�1 þ 
rt�1ð Þ

rt ¼ � mt �mt�1ð Þ þ 1� �ð Þ
rt�1
st ¼ � xt �mtð Þ þ 1� �ð Þst�p

Multiplicative Holt–Winters Smoothing

xt ¼ mt�1 þ 
rt�1ð Þ � st�1�p þ �t
mt ¼ �xt=st�p þ 1� �ð Þ mt�1 þ 
rt�1ð Þ
rt ¼ � mt �mt�1ð Þ þ 1� �ð Þ
rt�1
st ¼ �xt=mt þ 1� �ð Þst�p

where mt is the mean, rt is the trend and st is the seasonal component at time t with p being the
seasonal order. The errors, �t are either drawn from a normal distribution with mean zero and variance
�2 or randomly sampled, with replacement, from a user-supplied vector.

4 References

Chatfield C (1980) The Analysis of Time Series Chapman and Hall
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5 Arguments

1: MODE – INTEGER Input

On entry: indicates if G05PMF is continuing from a previous call or, if not, how the initial values
are computed.

MODE ¼ 0
Values for m0, r0 and s�j , for j ¼ 0; 1; . . . ; p� 1, are supplied in INIT.

MODE ¼ 1
G05PMF continues from a previous call using values that are supplied in R. R is not
updated.

MODE ¼ 2
G05PMF continues from a previous call using values that are supplied in R. R is updated.

Constraint: MODE ¼ 0, 1 or 2.

2: N – INTEGER Input

On entry: the number of terms of the time series being generated.

Constraint: N � 0.

3: ITYPE – INTEGER Input

On entry: the smoothing function.

ITYPE ¼ 1
Single exponential.

ITYPE ¼ 2
Brown's double exponential.

ITYPE ¼ 3
Linear Holt.

ITYPE ¼ 4
Additive Holt–Winters.

ITYPE ¼ 5
Multiplicative Holt–Winters.

Constraint: ITYPE ¼ 1, 2, 3, 4 or 5.

4: P – INTEGER Input

On entry: if ITYPE ¼ 4 or 5, the seasonal order, p, otherwise P is not referenced.

Constraint: if ITYPE ¼ 4 or 5, P > 1.

5: PARAMð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array PARAM must be at least 1 if ITYPE ¼ 1 or 2, 3 if ITYPE ¼ 3
and at least 4 if ITYPE ¼ 4 or 5.

On entry: the smoothing parameters.

If ITYPE ¼ 1 or 2, PARAMð1Þ ¼ � and any remaining elements of PARAM are not referenced.

If ITYPE ¼ 3, PARAMð1Þ ¼ �, PARAMð2Þ ¼ �, PARAMð3Þ ¼ 
 and any remaining elements
of PARAM are not referenced.

If ITYPE ¼ 4 or 5, PARAMð1Þ ¼ �, PARAMð2Þ ¼ �, PARAMð3Þ ¼ � and PARAMð4Þ ¼ 
 and
any remaining elements of PARAM are not referenced.
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Constraints:

if ITYPE ¼ 1, 0:0 � � � 1:0;
if ITYPE ¼ 2, 0:0 < � � 1:0;
if ITYPE ¼ 3, 0:0 � � � 1:0 and 0:0 � � � 1:0 and 
 � 0:0;
if ITYPE ¼ 4 or 5, 0:0 � � � 1:0 and 0:0 � � � 1:0 and 0:0 � � � 1:0 and 
 � 0:0.

6: INITð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array INIT must be at least 1 if ITYPE ¼ 1, 2 if ITYPE ¼ 2 or 3 and
at least 2þ P if ITYPE ¼ 4 or 5.

On entry: if MODE ¼ 0, the initial values for m0, r0 and s�j , for j ¼ 0; 1; . . . ; p� 1, used to
initialize the smoothing.

If ITYPE ¼ 1, INITð1Þ ¼ m0 and any remaining elements of INIT are not referenced.

If ITYPE ¼ 2 or 3, INITð1Þ ¼ m0 and INITð2Þ ¼ r0 and any remaining elements of INIT are not
referenced.

If ITYPE ¼ 4 or 5, INITð1Þ ¼ m0, INITð2Þ ¼ r0 and INITð3Þ to INITð2þ pÞ hold the values for
s�j , for j ¼ 0; 1; . . . ; p� 1. Any remaining elements of INIT are not referenced.

7: VAR – REAL (KIND=nag_wp) Input

On entry: the variance, �2 of the Normal distribution used to generate the errors �i. If VAR � 0:0
then Normally distributed errors are not used.

8: Rð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array R must be at least 13 if ITYPE ¼ 1, 2 or 3 and at least 13þ P if
ITYPE ¼ 4 or 5.

On entry: if MODE ¼ 1 or 2, R must contain the values as returned by a previous call to
G05PMF, R need not be set otherwise.

On exit: if MODE ¼ 1, R is unchanged. Otherwise, R contains the information on the current
state of smoothing.

Constraint: if MODE ¼ 1 or 2, R must have been initialized by at least one call to G05PMF or
G13AMF with MODE 6¼ 1, and R must not have been changed since that call.

9: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

10: EðENÞ – REAL (KIND=nag_wp) array Input

On entry: if EN > 0 and VAR � 0:0, a vector from which the errors, �t are randomly drawn, with
replacement.

If EN � 0, E is not referenced.

11: EN – INTEGER Input

On entry: if EN > 0, then the length of the vector E.

If both VAR � 0:0 and EN � 0 then �t ¼ 0:0, for t ¼ 1; 2; . . . ; n.

12: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the generated time series, xt , for t ¼ 1; 2; . . . ; n.
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13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1 or 2.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, ITYPE ¼ valueh i.
Constraint: ITYPE ¼ 1, 2, 3, 4 or 5.

IFAIL ¼ 4

On entry, P ¼ valueh i.
Constraint: if ITYPE ¼ 4 or 5, P � 2.

IFAIL ¼ 5

On entry, PARAMð valueh iÞ ¼ valueh i.
Constraint: 0 � PARAMðiÞ � 1.

On entry, PARAMð valueh iÞ ¼ valueh i.
Constraint: if ITYPE ¼ 2, 0 < PARAMðiÞ � 1.

On entry, PARAMð valueh iÞ ¼ valueh i.
Constraint: PARAMðiÞ � 0.

IFAIL ¼ 8

On entry, some of the elements of the array R have been corrupted or have not been initialized.

IFAIL ¼ 9

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 12

Model unsuitable for multiplicative Holt–Winter, try a different set of parameters.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05PMF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example reads 11 observations from a time series relating to the rate of the earth's rotation about
its polar axis and fits an exponential smoothing model using G13AMF.

G05PMF is then called multiple times to obtain simulated forecast confidence intervals.

10.1 Program Text

Program g05pmfe

! G05PMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01amf, g01faf, g05kff, g05pmf, g13amf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: ad, alpha, dv, tmp, var, z
Integer :: en, genid, i, ifail, itype, k, le, &

linit, lparam, lr, lstate, mode, n, &
nf, nsim, p, smode, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: blim(:,:), bsim(:,:), e(:), fse(:), &

fv(:), glim(:,:), gsim(:,:), &
init(:), param(:), r(:), res(:), &
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tsim1(:), tsim2(:), y(:), yhat(:)
Real (Kind=nag_wp) :: q(2)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05PMF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in the initial arguments and check array sizes
Read (nin,*) mode, itype, n, nf, nsim, alpha

Select Case (itype)
Case (1)

lparam = 1
p = 0
linit = 1

Case (2)
lparam = 2
p = 0
linit = 2

Case (3)
lparam = 3
p = 0
linit = 2

Case Default
lparam = 4

! Read in seasonal order
Read (nin,*) p

linit = p + 2
End Select
lr = 13 + p

! Not using the E array for the bootstrap
le = 0
Allocate (param(lparam),init(linit),r(lr),e(le),fv(nf),fse(nf),yhat(n), &

res(n),blim(2,nf),glim(2,nf),tsim1(nf),tsim2(nf),gsim(nsim,nf), &
bsim(nsim,nf),y(n))

! Read in series to be smoothed
Read (nin,*) y(1:n)

! Read in parameters
Read (nin,*) param(1:lparam)

! Read in the MODE dependent arguments (skipping headings)
Select Case (mode)
Case (0)

! User supplied initial values
Read (nin,*) init(1:linit)

Case (1)
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! Continuing from a previously saved R
Read (nin,*) r(1:(p+13))

Case (2)
! Initial values calculated from first K observations

Read (nin,*) k
End Select

! Fit a smoothing model (parameter R in G05PMF and STATE in G13AMF
! are in the same format)

ifail = 0
Call g13amf(mode,itype,p,param,n,y,k,init,nf,fv,fse,yhat,res,dv,ad,r, &

ifail)

! Simulate forecast values from the model, and don’t update R
smode = 2
var = dv*dv

! Simulate NSIM forecasts
Do i = 1, nsim

! Not using E array for Gaussian errors
en = 0

! Simulations assuming Gaussian errors
ifail = 0
Call g05pmf(smode,nf,itype,p,param,init,var,r,state,e,en,tsim1,ifail)

! For bootstrapping error, we are using RES from call to G13AMF as the
! errors, and length of RES is N

en = n

! Bootstrapping errors
ifail = 0
Call g05pmf(smode,nf,itype,p,param,init,0.0E0_nag_wp,r,state,res,en, &

tsim2,ifail)

! Copy and transpose the simulated values
gsim(i,1:nf) = tsim1(1:nf)
bsim(i,1:nf) = tsim2(1:nf)

End Do

! Calculate CI based on the quantiles for each simulated forecast
q(1) = alpha/2.0E0_nag_wp
q(2) = 1.0E0_nag_wp - q(1)
Do i = 1, nf

ifail = 0
Call g01amf(nsim,gsim(1,i),2,q,glim(1,i),ifail)
ifail = 0
Call g01amf(nsim,bsim(1,i),2,q,blim(1,i),ifail)

End Do

! Display the forecast values and associated prediction intervals
Write (nout,*) ’Initial values used:’
Write (nout,99998) init(1:linit)
Write (nout,*)
Write (nout,99999) ’Mean Deviation = ’, dv
Write (nout,99999) ’Absolute Deviation = ’, ad
Write (nout,*)
Write (nout,*) ’ Observed 1-Step’
Write (nout,*) ’ Period Values Forecast Residual’
Write (nout,*)
Write (nout,99997)(i,y(i),yhat(i),res(i),i=1,n)
Write (nout,*)
Write (nout,*) ’ ’ // &

’ Simulated CI Simulated CI’
Write (nout,*) ’Obs. Forecast Estimated CI ’ // &

’ (Gaussian Errors) (Bootstrap Errors)’
z = g01faf(’L’,q(2),ifail)
Do i = 1, nf

tmp = z*fse(i)
Write (nout,99996) n + i, fv(i), fv(i) - tmp, fv(i) + tmp, glim(1,i), &

glim(2,i), blim(1,i), blim(2,i)
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End Do
Write (nout,99995) 100.0E0_nag_wp*(1.0E0_nag_wp-alpha), &

’% CIs were produced’

99999 Format (A,E12.4)
99998 Format (F12.3)
99997 Format (I4,1X,F12.3,1X,F12.3,1X,F12.3)
99996 Format (I3,7(1X,F10.3))
99995 Format (1X,F5.1,A)

End Program g05pmfe

10.2 Program Data

G05PMF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
2 3 11 5 100 0.05 :: MODE,ITYPE,N,NF,NSIM,ALPHA
180 135 213 181 148 204 228 225 198 200 187 :: Y
0.01 1.0 1.0 :: PARAM
11 :: K

10.3 Program Results

G05PMF Example Program Results

Initial values used:
168.018

3.800

Mean Deviation = 0.2547E+02
Absolute Deviation = 0.2123E+02

Observed 1-Step
Period Values Forecast Residual

1 180.000 171.818 8.182
2 135.000 175.782 -40.782
3 213.000 178.848 34.152
4 181.000 183.005 -2.005
5 148.000 186.780 -38.780
6 204.000 189.800 14.200
7 228.000 193.492 34.508
8 225.000 197.732 27.268
9 198.000 202.172 -4.172

10 200.000 206.256 -6.256
11 187.000 210.256 -23.256

Simulated CI Simulated CI
Obs. Forecast Estimated CI (Gaussian Errors) (Bootstrap Errors)
12 213.854 163.928 263.781 161.431 258.001 173.073 248.363
13 217.685 167.748 267.622 172.660 262.100 177.311 252.638
14 221.516 171.556 271.475 169.259 263.107 179.344 256.921
15 225.346 175.347 275.345 180.721 272.776 183.672 260.804
16 229.177 179.115 279.238 184.790 263.591 186.398 264.173
95.0% CIs were produced
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NAG Library Routine Document

G05PVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PVF generates training and validation datasets suitable for use in cross-validation or jack-knifing.

2 Specification

SUBROUTINE G05PVF (K, FOLD, N, M, SORDX, X, LDX, USEY, Y, USEW, W, NT,
STATE, IFAIL)

&

INTEGER K, FOLD, N, M, SORDX, LDX, USEY, USEW, NT, STATE(*),
IFAIL

&

REAL (KIND=nag_wp) X(LDX,*), Y(*), W(*)

3 Description

Let Xo denote a matrix of n observations on m variables and yo and wo each denote a vector of length
n. For example, Xo might represent a matrix of independent variables, yo the dependent variable and wo
the associated weights in a weighted regression.

G05PVF generates a series of training datasets, denoted by the matrix, vector, vector triplet Xt; yt; wtð Þ
of nt observations, and validation datasets, denoted Xv; yv; wvð Þ with nv observations. These training
and validation datasets are generated as follows.

Each of the original n observations is randomly assigned to one of K equally sized groups or folds. For
the kth sample the validation dataset consists of those observations in group k and the training dataset
consists of all those observations not in group k. Therefore at most K samples can be generated.

If n is not divisible by K then the observations are assigned to groups as evenly as possible, therefore
any group will be at most one observation larger or smaller than any other group.

When using K ¼ n the resulting datasets are suitable for leave-one-out cross-validation, or the training
dataset on its own for jack-knifing. When using K 6¼ n the resulting datasets are suitable for K-fold
cross-validation. Datasets suitable for reversed cross-validation can be obtained by switching the
training and validation datasets, i.e., use the kth group as the training dataset and the rest of the data as
the validation dataset.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PVF.

4 References

None.

5 Arguments

1: K – INTEGER Input

On entry: K, the number of folds.

Constraint: 2 � K � N.

2: FOLD – INTEGER Input

On entry: the number of the fold to return as the validation dataset.

G05 – Random Number Generators G05PVF

Mark 26 G05PVF.1



On the first call to G05PVF FOLD should be set to 1 and then incremented by one at each
subsequent call until all K sets of training and validation datasets have been produced. See
Section 9 for more details on how a different calling sequence can be used.

Constraint: 1 � FOLD � K.

3: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

4: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 1.

5: SORDX – INTEGER Input

On entry: determines how variables are stored in X.

Constraint: SORDX ¼ 1 or 2.

6: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least M if SORDX ¼ 1 and at least N if
SORDX ¼ 2.

The way the data is stored in X is defined by SORDX.

If SORDX ¼ 1, Xði; jÞ contains the ith observation for the jth variable, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;M.

If SORDX ¼ 2, Xðj; iÞ contains the ith observation for the jth variable, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;M.

On entry: if FOLD ¼ 1, X must hold Xo, the values of X for the original dataset, otherwise, X
must not be changed since the last call to G05PVF.

On exit: values of X for the training and validation datasets, with Xt held in observations 1 to
NT and Xv in observations NTþ 1 to N.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05PVF
is called.

Constraints:

if SORDX ¼ 2, LDX � M;
otherwise LDX � N.

8: USEY – INTEGER Input

On entry: if USEY ¼ 1, the original dataset includes yo and yo will be processed alongside Xo.

Constraint: USEY ¼ 0 or 1.

9: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least N if USEY ¼ 1.

If USEY ¼ 0, Y is not referenced on entry and will not be modified on exit.

On entry: if FOLD ¼ 1, Y must hold yo, the values of y for the original dataset, otherwise Y
must not be changed since the last call to G05PVF.
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On exit: values of y for the training and validation datasets, with yt held in elements 1 to NT and
yv in elements NTþ 1 to N.

10: USEW – INTEGER Input

On entry: if USEW ¼ 1, the original dataset includes wo and wo will be processed alongside Xo.

Constraint: USEW ¼ 0 or 1.

11: Wð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array W must be at least N if USEW ¼ 1.

If USEW ¼ 0, W is not referenced on entry and will not be modified on exit.

On entry: if FOLD ¼ 1, W must hold wo, the values of w for the original dataset, otherwise W
must not be changed since the last call to G05PVF.

On exit: values of w for the training and validation datasets, with wt held in elements 1 to NT
and wv in elements NTþ 1 to N.

12: NT – INTEGER Output

On exit: nt, the number of observations in the training dataset.

13: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G05PVF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, K ¼ valueh i and N ¼ valueh i.
Constraint: 2 � K � N.
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IFAIL ¼ 21

On entry, FOLD ¼ valueh i and K ¼ valueh i.
Constraint: 1 � FOLD � K.

IFAIL ¼ 31

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 41

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 51

On entry, SORDX ¼ valueh i.
Constraint: SORDX ¼ 1 or 2.

IFAIL ¼ 61

More than 50% of the data did not move when the data was shuffled. valueh i of the valueh i
observations stayed put.

IFAIL ¼ 71

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: if SORDX ¼ 1, LDX � N.

IFAIL ¼ 72

On entry, LDX ¼ valueh i and M ¼ valueh i.
Constraint: if SORDX ¼ 2, LDX � M.

IFAIL ¼ 81

Constraint: USEY ¼ 0 or 1.

IFAIL ¼ 101

Constraint: USEW ¼ 0 or 1.

IFAIL ¼ 131

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

G05PVF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05PVF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G05PVF will be computationality more efficient if each observation in X is contiguous, that is
SORDX ¼ 2.

Because of the way G05PVF stores the data you should usually generate the K training and validation
datasets in order, i.e., set FOLD ¼ 1 on the first call and increment it by one at each subsequent call.
However, there are times when a different calling sequence would be beneficial, for example, when
performing different cross-validation analyses on different threads. This is possible, as long as the
following is borne in mind:

G05PVF must be called with FOLD ¼ 1 first.

Other than the first set, you can obtain the training and validation dataset in any order, but for a
given X you can only obtain each once.

For example, if you have three threads, you would call G05PVF once with FOLD ¼ 1. You would then
copy the X returned onto each thread and generate the remaing K� 1 sets of data by splitting them
between the threads. For example, the first thread runs with FOLD ¼ 2; . . . ; L1, the second with
FOLD ¼ L1 þ 1; . . . ; L2 and the third with FOLD ¼ L2 þ 1; . . . ;K.

10 Example

This example uses G05PVF to facilitate K-fold cross-validation.

A set of simulated data is split into 5 training and validation datasets. G02GBF is used to fit a logistic
regression model to each training dataset and then G02GPF is used to predict the response for the
observations in the validation dataset.

The counts of true and false positives and negatives along with the sensitivity and specificity is then
reported.

10.1 Program Text

Program g05pvfe

! G05PVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02gbf, g02gpf, g05kff, g05pvf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, dev, eps, s, tol
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Integer :: fn, fold, fp, genid, i, idf, ifail, &
ip, iprint, irank, k, ldv, ldx, &
lstate, lwk, m, maxit, max_nv, n, &
nn, np, nt, nv, obs_val, pred_val, &
sordx, subid, tn, tp, uset, usey

Logical :: vfobs
Character (1) :: errfn, link, mean, offset, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), eta(:), pred(:), &

se(:), seeta(:), sepred(:), t(:), &
v(:,:), wk(:), x(:,:), y(:)

Real (Kind=nag_wp) :: off(1), wt(1)
Integer, Allocatable :: isx(:), state(:)
Integer :: seed(lseed)

! .. Intrinsic Procedures ..
Intrinsic :: ceiling, count, int, real

! .. Executable Statements ..
Write (nout,*) ’G05PVF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Set variables required by the regression (G02GBF) ...

! Read in the type of link function, whether a mean is required
! and the problem size

Read (nin,*) link, mean, n, m

! Set storage order for G05PVF (pick the one required by G02GBF and
! G02GPF)

sordx = 1

ldx = n
Allocate (x(ldx,m),y(n),t(n),isx(m))

! This example is not using an offset or weights
offset = ’N’
weight = ’U’

! Read in data
Read (nin,*)(x(i,1:m),y(i),t(i),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in control parameters for the regression
Read (nin,*) iprint, eps, tol, maxit

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

! ... End of setting variables required by the regression

! Set variables required by data sampling routine (G05PVF) ...

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1:lseed)

! Will always have a Y and T variable
usey = 1
uset = 1

! Query the required size of the STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
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! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in the number of folds
Read (nin,*) k

! ... End of setting variables required by data sampling routine

! Set variables required by prediction routine (G02GPF) ...

! Regression is performed using G02GBF so error structure is binomial
errfn = ’B’

! This example does not use the predicted standard errors, so
! it doesn’t matter what VFOBS is set to

vfobs = .False.
! ... End of setting variables required by prediction routine

! This is the maximum size for a validation dataset
max_nv = ceiling(real(n,kind=nag_wp)/real(k,kind=nag_wp))

! Allocate arrays
ldv = n
lwk = (ip*ip+3*ip+22)/2
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),v(ldv,ip+7),wk(lwk))
Allocate (eta(max_nv),seeta(max_nv),pred(max_nv),sepred(max_nv))

! Initialize counts
tp = 0
tn = 0
fp = 0
fn = 0

! Loop over each fold
Do fold = 1, k

! Split the data into training and validation datasets
ifail = -1
Call g05pvf(k,fold,n,m,sordx,x,ldx,usey,y,uset,t,nt,state,ifail)
If (ifail/=0 .And. ifail/=61) Then

Go To 100
End If

! Calculate the size of the validation dataset
nv = n - nt

! Call routine to fit generalized linear model, with Binomial errors
! to training data

ifail = -1
Call g02gbf(link,mean,offset,weight,nt,x,ldx,m,isx,ip,y,t,wt,dev,idf, &

b,irank,se,cov,v,ldv,tol,maxit,iprint,eps,wk,ifail)
If (ifail/=0) Then

If (ifail<6) Then
Go To 100

End If
End If

! Predict the response for the observations in the validation dataset
ifail = 0
Call g02gpf(errfn,link,mean,offset,weight,nv,x(nt+1,1),ldx,m,isx,ip, &

t(nt+1),off,wt,s,a,b,cov,vfobs,eta,seeta,pred,sepred,ifail)

! Count the true/false positives/negatives
Do i = 1, nv

obs_val = int(y(nt+i))

If (pred(i)>=0.5_nag_wp) Then
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pred_val = 1
Else

pred_val = 0
End If

Select Case (obs_val)
Case (0)

! Negative
Select Case (pred_val)
Case (0)

! True negative
tn = tn + 1

Case (1)
! False positive

fp = fp + 1
End Select

Case (1)
! Positive

Select Case (pred_val)
Case (0)

! False negative
fn = fn + 1

Case (1)
! True positive

tp = tp + 1
End Select

End Select
End Do

End Do

! Display results
np = tp + fn
nn = fp + tn

Write (*,99998) ’ Observed’
Write (*,99998) ’ --------------------------’
Write (*,99998) ’Predicted | Negative Positive Total’
Write (*,99998) ’--------------------------------------’
Write (*,99997) ’Negative |’, tn, fn, tn + fn
Write (*,99997) ’Positive |’, fp, tp, fp + tp
Write (*,99997) ’Total |’, nn, np, nn + np
Write (*,*)

If (np/=0) Then
Write (nout,99999) ’True Positive Rate (Sensitivity):’, &

real(tp,kind=nag_wp)/real(np,kind=nag_wp)
Else

Write (nout,99998) &
’True Positive Rate (Sensitivity): No positives in data’

End If
If (nn/=0) Then

Write (nout,99999) ’True Negative Rate (Specificity):’, &
real(tn,kind=nag_wp)/real(nn,kind=nag_wp)

Else
Write (nout,99998) &

’True Negative Rate (Specificity): No negatives in data’
End If

100 Continue
99999 Format (1X,A,F5.2)
99998 Format (1X,A)
99997 Format (1X,A,1X,I5,5X,I5,5X,I5)

End Program g05pvfe
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10.2 Program Data

G05PVF Example Program Data
’G’ ’M’ 40 4 :: LINK, MEAN, N, M
0.0 -0.1 0.0 1.0 0.0 1.0
0.4 -1.1 1.0 1.0 1.0 1.0

-0.5 0.2 1.0 0.0 0.0 1.0
0.6 1.1 1.0 0.0 0.0 1.0

-0.3 -1.0 1.0 1.0 0.0 1.0
2.8 -1.8 0.0 1.0 0.0 1.0
0.4 -0.7 0.0 1.0 1.0 1.0

-0.4 -0.3 1.0 0.0 1.0 1.0
0.5 -2.6 0.0 0.0 1.0 1.0

-1.6 -0.3 1.0 1.0 0.0 1.0
0.4 0.6 1.0 0.0 0.0 1.0

-1.6 0.0 1.0 1.0 1.0 1.0
0.0 0.4 1.0 1.0 1.0 1.0

-0.1 0.7 1.0 1.0 0.0 1.0
-0.2 1.8 1.0 1.0 0.0 1.0
-0.9 0.7 1.0 1.0 0.0 1.0
-1.1 -0.5 1.0 1.0 0.0 1.0
-0.1 -2.2 1.0 1.0 1.0 1.0
-1.8 -0.5 1.0 1.0 1.0 1.0
-0.8 -0.9 0.0 1.0 1.0 1.0
1.9 -0.1 1.0 1.0 1.0 1.0
0.3 1.4 1.0 1.0 0.0 1.0
0.4 -1.2 1.0 0.0 1.0 1.0
2.2 1.8 1.0 0.0 1.0 1.0
1.4 -0.4 0.0 1.0 1.0 1.0
0.4 2.4 1.0 1.0 0.0 1.0

-0.6 1.1 1.0 1.0 0.0 1.0
1.4 -0.6 1.0 1.0 1.0 1.0

-0.1 -0.1 0.0 0.0 0.0 1.0
-0.6 -0.4 0.0 0.0 0.0 1.0
0.6 -0.2 1.0 1.0 1.0 1.0

-1.8 -0.3 1.0 1.0 1.0 1.0
-0.3 1.6 1.0 1.0 0.0 1.0
-0.6 0.8 0.0 1.0 0.0 1.0
0.3 -0.5 0.0 0.0 1.0 1.0
1.6 1.4 1.0 1.0 0.0 1.0

-1.1 0.6 1.0 1.0 0.0 1.0
-0.3 0.6 1.0 1.0 0.0 1.0
-0.6 0.1 1.0 1.0 0.0 1.0
1.0 0.6 1.0 1.0 1.0 1.0 :: End of X, Y, T
1 1 1 1 :: ISX

0 0.0 0.0 0 :: IPRINT, EPS, TOL, MAXIT
6 0 42321 :: GENID, SUBID, SEED
5 :: K

10.3 Program Results

G05PVF Example Program Results

Observed
--------------------------

Predicted | Negative Positive Total
--------------------------------------
Negative | 18 8 26
Positive | 4 10 14
Total | 22 18 40

True Positive Rate (Sensitivity): 0.56
True Negative Rate (Specificity): 0.82
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NAG Library Routine Document

G05PWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PWF generates a dataset suitable for use with repeated random sub-sampling validation.

2 Specification

SUBROUTINE G05PWF (NT, N, M, SORDX, X, LDX, USEY, Y, USEW, W, STATE,
IFAIL)

&

INTEGER NT, N, M, SORDX, LDX, USEY, USEW, STATE(*), IFAIL
REAL (KIND=nag_wp) X(LDX,*), Y(*), W(*)

3 Description

Let Xo denote a matrix of n observations on m variables and yo and wo each denote a vector of length
n. For example, Xo might represent a matrix of independent variables, yo the dependent variable and wo
the associated weights in a weighted regression.

G05PWF generates a series of training datasets, denoted by the matrix, vector, vector triplet Xt; yt; wtð Þ
of nt observations, and validation datasets, denoted Xv; yv; wvð Þ with nv observations. These training
and validation datasets are generated by randomly assigning each observation to either the training
dataset or the validation dataset.

The resulting datasets are suitable for use with repeated random sub-sampling validation.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PWF.

4 References

None.

5 Arguments

1: NT – INTEGER Input

On entry: nt, the number of observations in the training dataset.

Constraint: 1 � NT � N.

2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

3: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 1.
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4: SORDX – INTEGER Input

On entry: determines how variables are stored in X.

Constraint: SORDX ¼ 1 or 2.

5: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least M if SORDX ¼ 1 and at least N if
SORDX ¼ 2.

The way the data is stored in X is defined by SORDX.

If SORDX ¼ 1, Xði; jÞ contains the ith observation for the jth variable, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;M.

If SORDX ¼ 2, Xðj; iÞ contains the ith observation for the jth variable, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;M.

On entry: X must hold Xo, the values of X for the original dataset. This may be the same X as
returned by a previous call to G05PWF.

On exit: values of X for the training and validation datasets, with Xt held in observations 1 to
NT and Xv in observations NTþ 1 to N.

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which
G05PWF is called.

Constraints:

if SORDX ¼ 2, LDX � M;
otherwise LDX � N.

7: USEY – INTEGER Input

On entry: if USEY ¼ 1, the original dataset includes yo and yo will be processed alongside Xo.

Constraint: USEY ¼ 0 or 1.

8: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least N if USEY ¼ 1.

If USEY ¼ 0, Y is not referenced on entry and will not be modified on exit.

On entry: Y must hold yo, the values of y for the original dataset. This may be the same Y as
returned by a previous call to G05PWF.

On exit: values of y for the training and validation datasets, with yt held in elements 1 to NT and
yv in elements NTþ 1 to N.

9: USEW – INTEGER Input

On entry: if USEW ¼ 1, the original dataset includes wo and wo will be processed alongside Xo.

Constraint: USEW ¼ 0 or 1.

10: Wð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array W must be at least N if USEW ¼ 1.

If USEW ¼ 0, W is not referenced on entry or and will not be modified on exit.

On entry: W must hold wo, the values of w for the original dataset. This may be the same W as
returned by a previous call to G05PWF.

On exit: values of w for the training and validation datasets, with wt held in elements 1 to NT
and wv in elements NTþ 1 to N.
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11: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, NT ¼ valueh i and N ¼ valueh i.
Constraint: 1 � NT � N.

IFAIL ¼ 21

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 31

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 41

On entry, SORDX ¼ valueh i.
Constraint: SORDX ¼ 1 or 2.

IFAIL ¼ 61

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: if SORDX ¼ 1, LDX � N.

IFAIL ¼ 62

On entry, LDX ¼ valueh i and M ¼ valueh i.
Constraint: if SORDX ¼ 2, LDX � M.

IFAIL ¼ 71

Constraint: USEY ¼ 0 or 1.
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IFAIL ¼ 91

Constraint: USEW ¼ 0 or 1.

IFAIL ¼ 111

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05PWF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05PWF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G05PWF will be computationality more efficient if each observation in X is contiguous, that is
SORDX ¼ 2.

10 Example

This example uses G05PWF to facilitate repeated random sub-sampling cross-validation.

A set of simulated data is randomly split into a training and validation datasets. G02GBF is used to fit a
logistic regression model to each training dataset and then G02GPF is used to predict the response for
the observations in the validation dataset. This process is repeated 10 times.

The counts of true and false positives and negatives along with the sensitivity and specificity is then
reported.
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10.1 Program Text

Program g05pwfe

! G05PWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02gbf, g02gpf, g05kff, g05pwf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, dev, eps, s, tol
Integer :: fn, fp, genid, i, idf, ifail, ip, &

iprint, irank, ldv, ldx, lstate, &
lwk, m, maxit, n, nn, np, nsamp, nt, &
nv, obs_val, pred_val, samp, sordx, &
subid, tn, tp, uset, usey

Logical :: vfobs
Character (1) :: errfn, link, mean, offset, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), eta(:), pred(:), &

se(:), seeta(:), sepred(:), t(:), &
v(:,:), wk(:), x(:,:), y(:)

Real (Kind=nag_wp) :: off(1), wt(1)
Integer, Allocatable :: isx(:), state(:)
Integer :: seed(lseed)

! .. Intrinsic Procedures ..
Intrinsic :: count, int, real

! .. Executable Statements ..
Write (nout,*) ’G05PWF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Set variables required by the regression (G02GBF) ...

! Read in the type of link function, whether a mean is required
! and the problem size

Read (nin,*) link, mean, n, m

! Set storage order for G05PWF (pick the one required by G02GBF and
! G02GPF)

sordx = 1

ldx = n
Allocate (x(ldx,m),y(n),t(n),isx(m))

! This example is not using an offset or weights
offset = ’N’
weight = ’U’

! Read in data
Read (nin,*)(x(i,1:m),y(i),t(i),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in control parameters for the regression
Read (nin,*) iprint, eps, tol, maxit

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

! ... End of setting variables required by the regression
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! Set variables required by data sampling routine (G05PWF) ...

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1:lseed)

! Will always have a Y and T variable
usey = 1
uset = 1

! Query the required size of the STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in the size of the training set required
Read (nin,*) nt

! Read in the number of sub-samples we will use */
Read (nin,*) nsamp

! ... End of setting variables required by data sampling routine

! Set variables required by prediction routine (G02GPF) ...

! Regression is performed using G02GBF so error structure is binomial
errfn = ’B’

! This example does not use the predicted standard errors, so
! it doesn’t matter what VFOBS is set to

vfobs = .False.
! ... End of setting variables required by prediction routine

! Calculate the size of the validation dataset
nv = n - nt

! Allocate arrays
ldv = n
lwk = (ip*ip+3*ip+22)/2
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),v(ldv,ip+7),wk(lwk))
Allocate (eta(nv),seeta(nv),pred(nv),sepred(nv))

! Initialize counts
tp = 0
tn = 0
fp = 0
fn = 0

! Loop over each sample
Do samp = 1, nsamp

! Split the data into training and validation datasets
ifail = 0
Call g05pwf(nt,n,m,sordx,x,ldx,usey,y,uset,t,state,ifail)

! Call routine to fit generalized linear model, with Binomial errors
! to training data

ifail = -1
Call g02gbf(link,mean,offset,weight,nt,x,ldx,m,isx,ip,y,t,wt,dev,idf, &

b,irank,se,cov,v,ldv,tol,maxit,iprint,eps,wk,ifail)
If (ifail/=0) Then

If (ifail<6) Then
Go To 100

End If
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End If

! Predict the response for the observations in the validation dataset
ifail = 0
Call g02gpf(errfn,link,mean,offset,weight,nv,x(nt+1,1),ldx,m,isx,ip, &

t(nt+1),off,wt,s,a,b,cov,vfobs,eta,seeta,pred,sepred,ifail)

! Count the true/false positives/negatives
Do i = 1, nv

obs_val = int(y(nt+i))

If (pred(i)>=0.5_nag_wp) Then
pred_val = 1

Else
pred_val = 0

End If

Select Case (obs_val)
Case (0)

! Negative
Select Case (pred_val)
Case (0)

! True negative
tn = tn + 1

Case (1)
! False positive

fp = fp + 1
End Select

Case (1)
! Positive

Select Case (pred_val)
Case (0)

! False negative
fn = fn + 1

Case (1)
! True positive

tp = tp + 1
End Select

End Select
End Do

End Do

! Display results
np = tp + fn
nn = fp + tn

Write (*,99998) ’ Observed’
Write (*,99998) ’ --------------------------’
Write (*,99998) ’Predicted | Negative Positive Total’
Write (*,99998) ’--------------------------------------’
Write (*,99997) ’Negative |’, tn, fn, tn + fn
Write (*,99997) ’Positive |’, fp, tp, fp + tp
Write (*,99997) ’Total |’, nn, np, nn + np
Write (*,*)

If (np/=0) Then
Write (nout,99999) ’True Positive Rate (Sensitivity):’, &

real(tp,kind=nag_wp)/real(np,kind=nag_wp)
Else

Write (nout,99998) &
’True Positive Rate (Sensitivity): No positives in data’

End If
If (nn/=0) Then

Write (nout,99999) ’True Negative Rate (Specificity):’, &
real(tn,kind=nag_wp)/real(nn,kind=nag_wp)

Else
Write (nout,99998) &

’True Negative Rate (Specificity): No negatives in data’
End If
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100 Continue
99999 Format (1X,A,F5.2)
99998 Format (1X,A)
99997 Format (1X,A,1X,I5,5X,I5,5X,I5)

End Program g05pwfe

10.2 Program Data

G05PWF Example Program Data
’G’ ’M’ 40 4 :: LINK, MEAN, N, M
0.0 -0.1 0.0 1.0 0.0 1.0
0.4 -1.1 1.0 1.0 1.0 1.0

-0.5 0.2 1.0 0.0 0.0 1.0
0.6 1.1 1.0 0.0 0.0 1.0

-0.3 -1.0 1.0 1.0 0.0 1.0
2.8 -1.8 0.0 1.0 0.0 1.0
0.4 -0.7 0.0 1.0 1.0 1.0

-0.4 -0.3 1.0 0.0 1.0 1.0
0.5 -2.6 0.0 0.0 1.0 1.0

-1.6 -0.3 1.0 1.0 0.0 1.0
0.4 0.6 1.0 0.0 0.0 1.0

-1.6 0.0 1.0 1.0 1.0 1.0
0.0 0.4 1.0 1.0 1.0 1.0

-0.1 0.7 1.0 1.0 0.0 1.0
-0.2 1.8 1.0 1.0 0.0 1.0
-0.9 0.7 1.0 1.0 0.0 1.0
-1.1 -0.5 1.0 1.0 0.0 1.0
-0.1 -2.2 1.0 1.0 1.0 1.0
-1.8 -0.5 1.0 1.0 1.0 1.0
-0.8 -0.9 0.0 1.0 1.0 1.0
1.9 -0.1 1.0 1.0 1.0 1.0
0.3 1.4 1.0 1.0 0.0 1.0
0.4 -1.2 1.0 0.0 1.0 1.0
2.2 1.8 1.0 0.0 1.0 1.0
1.4 -0.4 0.0 1.0 1.0 1.0
0.4 2.4 1.0 1.0 0.0 1.0

-0.6 1.1 1.0 1.0 0.0 1.0
1.4 -0.6 1.0 1.0 1.0 1.0

-0.1 -0.1 0.0 0.0 0.0 1.0
-0.6 -0.4 0.0 0.0 0.0 1.0
0.6 -0.2 1.0 1.0 1.0 1.0

-1.8 -0.3 1.0 1.0 1.0 1.0
-0.3 1.6 1.0 1.0 0.0 1.0
-0.6 0.8 0.0 1.0 0.0 1.0
0.3 -0.5 0.0 0.0 1.0 1.0
1.6 1.4 1.0 1.0 0.0 1.0

-1.1 0.6 1.0 1.0 0.0 1.0
-0.3 0.6 1.0 1.0 0.0 1.0
-0.6 0.1 1.0 1.0 0.0 1.0
1.0 0.6 1.0 1.0 1.0 1.0 :: End of X, Y, T
1 1 1 1 :: ISX

0 0.0 0.0 0 :: IPRINT, EPS, TOL, MAXIT
6 0 42321 :: GENID, SUBID, SEED
32 :: NT
10 :: NSAMP

10.3 Program Results

G05PWF Example Program Results

Observed
--------------------------

Predicted | Negative Positive Total
--------------------------------------
Negative | 38 20 58
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Positive | 8 14 22
Total | 46 34 80

True Positive Rate (Sensitivity): 0.41
True Negative Rate (Specificity): 0.83
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NAG Library Routine Document

G05PXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PXF generates a random orthogonal matrix.

2 Specification

SUBROUTINE G05PXF (SIDE, INIT, M, N, STATE, A, LDA, IFAIL)

INTEGER M, N, STATE(*), LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,N)
CHARACTER(1) SIDE, INIT

3 Description

G05PXF pre- or post-multiplies an m by n matrix A by a random orthogonal matrix U , overwriting A.
The matrix A may optionally be initialized to the identity matrix before multiplying by U, hence U is
returned. U is generated using the method of Stewart (1980). The algorithm can be summarised as
follows.

Let x1; x2; . . . ; xn�1 follow independent multinormal distributions with zero mean and variance I�2 and

dimensions n; n� 1; . . . ; 2; let Hj ¼ diag Ij�1; H
�
j

� �
, where Ij�1 is the identity matrix and H�j is the

Householder transformation that reduces xj to rjje1, e1 being the vector with first element one and the
remaining elements zero and rjj being a scalar, and let D ¼ diag sign r11ð Þ; sign r22ð Þ; . . . ; sign rnnð Þð Þ.
Then the product U ¼ DH1H2 . . .Hn�1 is a random orthogonal matrix distributed according to the Haar
measure over the set of orthogonal matrices of n. See Theorem 3.3 in Stewart (1980).

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PXF.

4 References

Stewart G W (1980) The efficient generation of random orthogonal matrices with an application to
condition estimates SIAM J. Numer. Anal. 17 403–409

5 Arguments

1: SIDE – CHARACTER(1) Input

On entry: indicates whether the matrix A is multiplied on the left or right by the random
orthogonal matrix U .

SIDE ¼ L
The matrix A is multiplied on the left, i.e., premultiplied.

SIDE ¼ R
The matrix A is multiplied on the right, i.e., post-multiplied.

Constraint: SIDE ¼ L or R .
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2: INIT – CHARACTER(1) Input

On entry: indicates whether or not A should be initialized to the identity matrix.

INIT ¼ I
A is initialized to the identity matrix.

INIT ¼ N
A is not initialized and the matrix A must be supplied in A.

Constraint: INIT ¼ I or N .

3: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraints:

if SIDE ¼ L , M > 1;
otherwise M � 1.

4: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraints:

if SIDE ¼ R , N > 1;
otherwise N � 1.

5: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

6: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if INIT ¼ N , A must contain the matrix A.

On exit: the matrix UA when SIDE ¼ L or the matrix AU when SIDE ¼ R .

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which G05PXF
is called.

Constraint: LDA � M.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, SIDE is not valid: SIDE ¼ valueh i.

IFAIL ¼ 2

On entry, INIT is not valid: INIT ¼ valueh i.

IFAIL ¼ 3

On entry, SIDE ¼ valueh i, M ¼ valueh i.
Constraint: if SIDE ¼ L , M > 1; otherwise M � 1.

IFAIL ¼ 4

On entry, SIDE ¼ valueh i, N ¼ valueh i.
Constraint: if SIDE ¼ R , N > 1; otherwise N � 1.

IFAIL ¼ 5

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 7

On entry, LDA ¼ valueh i and M ¼ valueh i.
Constraint: LDA � M.

IFAIL ¼ 8

On entry, SIDE ¼ valueh i, M ¼ valueh i.
Constraint: if SIDE ¼ L , M > 1; otherwise M � 1.

On entry, SIDE ¼ valueh i, N ¼ valueh i.
Constraint: if SIDE ¼ R , N > 1; otherwise N � 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The maximum error in UTU should be a modest multiple of machine precision (see Chapter X02).
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8 Parallelism and Performance

G05PXF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05PXF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

Following initialization of the pseudorandom number generator by a call to G05KFF, a 4 by 4
orthogonal matrix is generated using the INIT ¼ I option and the result printed.

10.1 Program Text

Program g05pxfe

! G05PXF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05pxf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, ifail, lda, lstate, m, n, &

subid
Character (1) :: init, side

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05PXF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
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Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in the problem size
Read (nin,*) n, m

! Read in control parameters
Read (nin,*) side, init

lda = m
Allocate (a(lda,n))

! Read in A if required
If (init==’N’ .Or. init==’n’) Then

Read (nin,*)(a(i,1:n),i=1,m)
End If

! Generate the random orthogonal matrix
ifail = 0
Call g05pxf(side,init,m,n,state,a,lda,ifail)

! Display the results
ifail = 0
Call x04caf(’General’,’ ’,m,n,a,lda,’Random Matrix’,ifail)

End Program g05pxfe

10.2 Program Data

G05PXF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
4 4 :: N,M
’R’ ’I’ :: SIDE,INIT

10.3 Program Results

G05PXF Example Program Results

Random Matrix
1 2 3 4

1 0.1756 0.7401 -0.3067 -0.5722
2 0.6593 -0.5781 -0.2191 -0.4279
3 0.6680 0.3172 0.6077 0.2895
4 -0.2971 -0.1323 0.6990 -0.6369
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NAG Library Routine Document

G05PYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PYF generates a random correlation matrix with given eigenvalues.

2 Specification

SUBROUTINE G05PYF (N, D, EPS, STATE, C, LDC, IFAIL)

INTEGER N, STATE(*), LDC, IFAIL
REAL (KIND=nag_wp) D(N), EPS, C(LDC,N)

3 Description

Given n eigenvalues, �1; �2; . . . ; �n, such thatXn
i¼1
�i ¼ n

and

�i � 0; i ¼ 1; 2; . . . ; n;

G05PYF will generate a random correlation matrix, C, of dimension n, with eigenvalues �1; �2; . . . ; �n.

The method used is based on that described by Lin and Bendel (1985). Let D be the diagonal matrix
with values �1; �2; . . . ; �n and let A be a random orthogonal matrix generated by G05PXF then the
matrix C0 ¼ ADAT is a random covariance matrix with eigenvalues �1; �2; . . . ; �n. The matrix C0 is
transformed into a correlation matrix by means of n� 1 elementary rotation matrices Pi such that
C ¼ Pn�1Pn�2 . . .P1C0P

T
1 . . .PT

n�2P
T
n�1. The restriction on the sum of eigenvalues implies that for any

diagonal element of C0 > 1, there is another diagonal element < 1. The Pi are constructed from such
pairs, chosen at random, to produce a unit diagonal element corresponding to the first element. This is
repeated until all diagonal elements are 1 to within a given tolerance �.

The randomness of C should be interpreted only to the extent that A is a random orthogonal matrix and
C is computed from A using the Pi which are chosen as arbitrarily as possible.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PYF.

4 References

Lin S P and Bendel R B (1985) Algorithm AS 213: Generation of population correlation on matrices
with specified eigenvalues Appl. Statist. 34 193–198

5 Arguments

1: N – INTEGER Input

On entry: n, the dimension of the correlation matrix to be generated.

Constraint: N � 1.
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2: DðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n eigenvalues, �i, for i ¼ 1; 2; . . . ; n.

Constraints:

DðiÞ � 0:0, for i ¼ 1; 2; . . . ; n;Xn
i¼1

DðiÞ ¼ n to within EPS.

3: EPS – REAL (KIND=nag_wp) Input

On entry: the maximum acceptable error in the diagonal elements.

Suggested value: EPS ¼ 0:00001.

Constraint: EPS � N�machine precision (see Chapter X02).

4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: CðLDC;NÞ – REAL (KIND=nag_wp) array Output

On exit: a random correlation matrix, C, of dimension n.

6: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G05PYF
is called.

Constraint: LDC � N.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 1.
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IFAIL ¼ 2

On entry, an eigenvalue is negative.

On entry, the eigenvalues do not sum to N.

IFAIL ¼ 3

On entry, EPS ¼ valueh i.
Constraint: EPS � N�machine precision.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 5

The diagonals of the returned matrix are not unity, try increasing the value of EPS, or rerun the
code using a different seed.

IFAIL ¼ 6

On entry, LDC ¼ valueh i and N ¼ valueh i.
Constraint: LDC � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The maximum error in a diagonal element is given by EPS.

8 Parallelism and Performance

G05PYF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05PYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G05PYF is approximately proportional to n2.
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10 Example

Following initialization of the pseudorandom number generator by a call to G05KFF, a 3 by 3
correlation matrix with eigenvalues of 0:7, 0:9 and 1:4 is generated and printed.

10.1 Program Text

Program g05pyfe

! G05PYF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05pyf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps
Integer :: genid, ifail, ldc, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:,:), d(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05PYF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in the problem size and tolerance
Read (nin,*) n, eps

ldc = n
Allocate (c(ldc,n),d(n))

! Read in the eigenvalues
Read (nin,*) d(1:n)

! Generate the correlation matrix
ifail = 0
Call g05pyf(n,d,eps,state,c,ldc,ifail)

! Display the results
ifail = 0
Call x04caf(’General’,’ ’,n,n,c,ldc,’Correlation Matrix’,ifail)

End Program g05pyfe
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10.2 Program Data

G05PYF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
3 1.0E-5 :: N,EPS
0.7 0.9 1.4 :: D

10.3 Program Results

G05PYF Example Program Results

Correlation Matrix
1 2 3

1 1.0000 -0.2549 -0.1004
2 -0.2549 1.0000 0.2343
3 -0.1004 0.2343 1.0000
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NAG Library Routine Document

G05PZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PZF generates a random two-way table.

2 Specification

SUBROUTINE G05PZF (MODE, NROW, NCOL, TOTR, TOTC, R, LR, STATE, X, LDX,
IFAIL)

&

INTEGER MODE, NROW, NCOL, TOTR(NROW), TOTC(NCOL), LR,
STATE(*), X(LDX,NCOL), LDX, IFAIL

&

REAL (KIND=nag_wp) R(LR)

3 Description

Given m row totals Ri and n column totals Cj (with
Xm
i¼1
Ri ¼

Xn
j¼1

Cj ¼ T , say), G05PZF will generate a

pseudorandom two-way table of integers such that the row and column totals are satisfied.

The method used is based on that described by Patefield (1981) which is most efficient when T is large
relative to the number of table entries m� n (i.e., T > 2mn). Entries are generated one row at a time
and one entry at a time within a row. Each entry is generated using the conditional probability
distribution for that entry given the entries in the previous rows and the previous entries in the same
row.

A reference vector is used to store computed values that can be reused in the generation of new tables
with the same row and column totals. G05PZF can be called to simply set up the reference vector, or to
generate a two-way table using a reference vector set up in a previous call, or it can combine both
functions in a single call.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PZF.

4 References

Patefield W M (1981) An efficient method of generating R� C tables with given row and column totals
Appl. Stats. 30 91–97

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate two-way table using reference vector set up in a prior call to G05PZF.

MODE ¼ 2
Set up reference vector and generate two-way table.

Constraint: MODE ¼ 0, 1 or 2.

G05 – Random Number Generators G05PZF

Mark 26 G05PZF.1



2: NROW – INTEGER Input

On entry: m, the number of rows in the table.

Constraint: NROW � 2.

3: NCOL – INTEGER Input

On entry: n, the number of columns in the table.

Constraint: NCOL � 2.

4: TOTRðNROWÞ – INTEGER array Input

On entry: the m row totals, Ri, for i ¼ 1; 2; . . . ;m.

Constraints:

TOTRðiÞ � 0, for i ¼ 1; 2; . . . ;m;Xm
i¼1

TOTRðiÞ ¼
Xn
j¼1

TOTCðjÞ;P
iTOTRðiÞ > 0, for i ¼ 1; 2; . . . ;m.

5: TOTCðNCOLÞ – INTEGER array Input

On entry: the n column totals, Cj , for j ¼ 1; 2; . . . ; n.

Constraints:

TOTCðjÞ � 0, for j ¼ 1; 2; . . . ; n;Xn
j¼1

TOTCðjÞ ¼
Xm
i¼1

TOTRðiÞ.

6: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector from the previous call to G05PZF.

On exit: the reference vector.

7: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05PZF is
called.

Constraint: LR �
Xm
i¼1

TOTRðiÞ þ 5.

8: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

9: XðLDX;NCOLÞ – INTEGER array Output

On exit: if MODE ¼ 1 or 2, a pseudorandom two-way m by n table, X, with element Xði; jÞ

conta in ing the i; jð Þth entry in the table such that
Xm
i¼1

Xði; jÞ ¼ TOTCðjÞ and

Xn
j¼1

Xði; jÞ ¼ TOTRðiÞ
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10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05PZF
is called.

Constraint: LDX � NROW.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1 or 2.

IFAIL ¼ 2

On entry, NROW ¼ valueh i.
Constraint: NROW � 2.

IFAIL ¼ 3

On entry, NCOL ¼ valueh i.
Constraint: NCOL � 2.

IFAIL ¼ 4

On entry, at least one element of TOTR is negative or TOTR sums to zero.

IFAIL ¼ 5

On entry, TOTC has at least one negative element.

IFAIL ¼ 6

NROW or NCOL is not the same as when R was set up in a previous call.
Previous value of NROW ¼ valueh i and NROW ¼ valueh i.
Previous value of NCOL ¼ valueh i and NCOL ¼ valueh i.

IFAIL ¼ 7

On entry, LR is not large enough, LR ¼ valueh i: minimum length required ¼ valueh i.

IFAIL ¼ 8

On entry, STATE vector has been corrupted or not initialized.
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IFAIL ¼ 10

On entry, LDX ¼ valueh i and NROW ¼ valueh i.
Constraint: LDX � NROW.

IFAIL ¼ 15

On entry, the arrays TOTR and TOTC do not sum to the same total: TOTR array total is valueh i,
TOTC array total is valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

None.

8 Parallelism and Performance

G05PZF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

Following initialization of the pseudorandom number generator by a call to G05KFF, this example
generates and prints a 4 by 3 two-way table, with row totals of 9, 11, 7 and 23 respectively, and column
totals of 16, 17 and 17 respectively.

10.1 Program Text

Program g05pzfe

! G05PZF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05pzf, nag_wp, x04eaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: lseed = 1, nin = 5, nout = 6
! .. Local Scalars ..

Integer :: genid, ifail, ldx, lr, lstate, mode, &
ncol, nrow, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:), totc(:), totr(:), x(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: sum

! .. Executable Statements ..
Write (nout,*) ’G05PZF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in the problem size
Read (nin,*) nrow, ncol

ldx = nrow
Allocate (totr(nrow),totc(ncol),x(ldx,ncol))

! Read in row and column totals
Read (nin,*) totr(1:nrow)
Read (nin,*) totc(1:ncol)

lr = sum(totr(1:nrow)) + 5
Allocate (r(lr))

! Using a single call to G05PZF, so set up reference vector
! and generate values in one go

mode = 2

! Generate the random table
ifail = 0
Call g05pzf(mode,nrow,ncol,totr,totc,r,lr,state,x,ldx,ifail)

! Display the results
ifail = 0
Call x04eaf(’General’,’ ’,nrow,ncol,x,ldx,’Random Table’,ifail)
Write (nout,*)
Write (nout,Fmt=99999) ’Supplied row totals:’, totr(1:nrow)
Write (nout,Fmt=99999) ’Supplied column totals:’, totc(1:ncol)

99999 Format (1X,A,/,(2X,4I10))
End Program g05pzfe
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10.2 Program Data

G05PZF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
4 3 :: NROW,NCOL
9 11 7 23 :: TOTR
16 17 17 :: TOTC

10.3 Program Results

G05PZF Example Program Results

Random Table
1 2 3

1 2 4 3
2 6 1 4
3 2 4 1
4 6 8 9

Supplied row totals:
9 11 7 23

Supplied column totals:
16 17 17
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NAG Library Routine Document

G05RCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05RCF sets up a reference vector and generates an array of pseudorandom numbers from a Student's t
copula with � degrees of freedom and covariance matrix �

��2C .

2 Specification

SUBROUTINE G05RCF (MODE, N, DF, M, C, LDC, R, LR, STATE, X, LDX, IFAIL)

INTEGER MODE, N, DF, M, LDC, LR, STATE(*), LDX, IFAIL
REAL (KIND=nag_wp) C(LDC,M), R(LR), X(LDX,M)

3 Description

The Student's t copula, G, is defined by

G u1; u2; . . . ; um;Cð Þ ¼ Tm�;C t�1�;C11
u1ð Þ; t�1�;C22

u2ð Þ; . . . ; t�1�;Cmm
umð Þ

� �
where m is the number of dimensions, Tm�;C is the multivariate Student's t density function with �

degrees of freedom, mean zero and covariance matrix �
��2C and t�1�;Cii

is the inverse of the univariate
Student's t density function with � degrees of freedom, zero mean and variance �

��2Cii .

G05RYF is used to generate a vector from a multivariate Student's t distribution and G01EBF is used to
convert each element of that vector into a uniformly distributed value between zero and one.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05RCF.

4 References

Nelsen R B (1998) An Introduction to Copulas. Lecture Notes in Statistics 139 Springer

Sklar A (1973) Random variables: joint distribution functions and copulas Kybernetika 9 499–460

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate variates using reference vector set up in a prior call to G05RCF.

MODE ¼ 2
Set up reference vector and generate variates.

Constraint: MODE ¼ 0, 1 or 2.
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2: N – INTEGER Input

On entry: n, the number of random variates required.

Constraint: N � 0.

3: DF – INTEGER Input

On entry: �, the number of degrees of freedom of the distribution.

Constraint: DF � 3.

4: M – INTEGER Input

On entry: m, the number of dimensions of the distribution.

Constraint: M > 0.

5: CðLDC;MÞ – REAL (KIND=nag_wp) array Input

On entry: matrix which, along with DF, defines the covariance of the distribution. Only the upper
triangle need be set.

Constraint: C must be positive semidefinite to machine precision.

6: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G05RCF
is called.

Constraint: LDC � M.

7: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector as set up by G05RCF in a previous call with
MODE ¼ 0 or 2.

On exit: if MODE ¼ 0 or 2, the reference vector that can be used in subsequent calls to G05RCF
with MODE ¼ 1.

8: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05RCF is
called. If MODE ¼ 1, it must be the same as the value of LR specified in the prior call to
G05RCF with MODE ¼ 0 or 2.

Constraint: LR � M� Mþ 1ð Þ þ 2.

9: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

10: XðLDX;MÞ – REAL (KIND=nag_wp) array Output

On exit: the array of values from a multivariate Student's t copula, with Xði; jÞ holding the jth
dimension for the ith variate.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05RCF
is called.

Constraint: LDX � N.
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12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1 or 2.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, DF ¼ valueh i.
Constraint: DF � 3.

IFAIL ¼ 4

On entry, M ¼ valueh i.
Constraint: M > 0.

IFAIL ¼ 5

On entry, the covariance matrix C is not positive semidefinite to machine precision.

IFAIL ¼ 6

On entry, LDC ¼ valueh i and M ¼ valueh i.
Constraint: LDC � M.

IFAIL ¼ 7

M is not the same as when R was set up in a previous call.
Previous value of M ¼ valueh i and M ¼ valueh i.

IFAIL ¼ 8

On entry, LR is not large enough, LR ¼ valueh i: minimum length required ¼ valueh i.

IFAIL ¼ 9

On entry, STATE vector has been corrupted or not initialized.
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IFAIL ¼ 11

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

See Section 7 in G05RYF for an indication of the accuracy of the underlying multivariate Student's
t-distribution.

8 Parallelism and Performance

G05RCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05RCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G05RCF is of order nm3.

It is recommended that the diagonal elements of C should not differ too widely in order of magnitude.
This may be achieved by scaling the variables if necessary. The actual matrix decomposed is
C þ E ¼ LLT, where E is a diagonal matrix with small positive diagonal elements. This ensures that,
even when C is singular, or nearly singular, the Cholesky factor L corresponds to a positive definite
covariance matrix that agrees with C within machine precision.

10 Example

This example prints ten pseudorandom observations from a Student's t copula with ten degrees of
freedom and C matrix

1:69 0:39 �1:86 0:07
0:39 98:01 �7:07 �0:71
�1:86 �7:07 11:56 0:03
0:07 �0:71 0:03 0:01

264
375;

generated by G05RCF. All ten observations are generated by a single call to G05RCF with MODE ¼ 2.
The random number generator is initialized by G05KFF.
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10.1 Program Text

Program g05rcfe

! G05RCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05rcf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: df, genid, i, ifail, ldc, ldx, lr, &

lstate, m, mode, n, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), r(:), x(:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05RCF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and number of dimensions
Read (nin,*) n, m

ldc = m
ldx = n
lr = m*(m+1) + 2
Allocate (c(ldc,m),x(ldx,m),r(lr))

! Read in degrees of freedom
Read (nin,*) df

! Read in upper triangle portion of the covariance matrix
Do i = 1, m

Read (nin,*) c(i,i:m)
End Do

! Using a single call to G05RCF, so set up reference vector
! and generate values in one go

mode = 2

! Generate variates
ifail = 0
Call g05rcf(mode,n,df,m,c,ldc,r,lr,state,x,ldx,ifail)
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! Display the variates
ifail = 0
Call x04caf(’General’,’ ’,n,m,x,ldx,’Variates’,ifail)

End Program g05rcfe

10.2 Program Data

G05RCF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 4 :: N,M
10 :: DF
1.69 0.39 -1.86 0.07

98.01 -7.07 -0.71
11.56 0.03

0.01 :: End of C (upper triangular part)

10.3 Program Results

G05RCF Example Program Results

Variates
1 2 3 4

1 0.6445 0.0527 0.4082 0.8876
2 0.0701 0.1988 0.8471 0.3521
3 0.7988 0.6664 0.2194 0.5541
4 0.8202 0.0492 0.7059 0.9341
5 0.1786 0.5594 0.7810 0.2836
6 0.4920 0.2677 0.3427 0.5169
7 0.4139 0.2978 0.8762 0.7145
8 0.7437 0.9714 0.8931 0.2487
9 0.4971 0.9687 0.8142 0.1965

10 0.6464 0.5304 0.5817 0.4565

G05RCF NAG Library Manual

G05RCF.6 (last) Mark 26



NAG Library Routine Document

G05RDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05RDF sets up a reference vector and generates an array of pseudorandom numbers from a Normal
(Gaussian) copula with covariance matrix C.

2 Specification

SUBROUTINE G05RDF (MODE, N, M, C, LDC, R, LR, STATE, X, LDX, IFAIL)

INTEGER MODE, N, M, LDC, LR, STATE(*), LDX, IFAIL
REAL (KIND=nag_wp) C(LDC,M), R(LR), X(LDX,M)

3 Description

The Gaussian copula, G, is defined by

G u1; u2; . . . ; um;Cð Þ ¼ �C 
�1C11
u1ð Þ; 
�1C22

u2ð Þ; . . . ; 
�1Cmm
umð Þ

� �
where m is the number of dimensions, �C is the multivariate Normal density function with mean zero
and covariance matrix C and 
�1Cii

is the inverse of the univariate Normal density function with mean
zero and variance Cii.

G05RZF is used to generate a vector from a multivariate Normal distribution and G01EAF is used to
convert each element of that vector into a uniformly distributed value between zero and one.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05RDF.

4 References

Nelsen R B (1998) An Introduction to Copulas. Lecture Notes in Statistics 139 Springer

Sklar A (1973) Random variables: joint distribution functions and copulas Kybernetika 9 499–460

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate variates using reference vector set up in a prior call to G05RDF.

MODE ¼ 2
Set up reference vector and generate variates.

Constraint: MODE ¼ 0, 1 or 2.
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2: N – INTEGER Input

On entry: n, the number of random variates required.

Constraint: N � 0.

3: M – INTEGER Input

On entry: m, the number of dimensions of the distribution.

Constraint: M > 0.

4: CðLDC;MÞ – REAL (KIND=nag_wp) array Input

On entry: the covariance matrix of the distribution. Only the upper triangle need be set.

Constraint: C must be positive semidefinite to machine precision.

5: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G05RDF
is called.

Constraint: LDC � M.

6: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector as set up by G05RDF in a previous call with
MODE ¼ 0 or 2.

On exit: if MODE ¼ 0 or 2, the reference vector that can be used in subsequent calls to G05RDF
with MODE ¼ 1.

7: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05RDF is
called. If MODE ¼ 1, it must be the same as the value of LR specified in the prior call to
G05RDF with MODE ¼ 0 or 2.

Constraint: LR � M� Mþ 1ð Þ þ 1.

8: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

9: XðLDX;MÞ – REAL (KIND=nag_wp) array Output

On exit: the array of values from a multivariate Gaussian copula, with Xði; jÞ holding the jth
dimension for the ith variate.

10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05RDF
is called.

Constraint: LDX � N.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1 or 2.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, M ¼ valueh i.
Constraint: M > 0.

IFAIL ¼ 4

On entry, the covariance matrix C is not positive semidefinite to machine precision.

IFAIL ¼ 5

On entry, LDC ¼ valueh i and M ¼ valueh i.
Constraint: LDC � M.

IFAIL ¼ 6

M is not the same as when R was set up in a previous call.
Previous value of M ¼ valueh i and M ¼ valueh i.

IFAIL ¼ 7

On entry, LR is not large enough, LR ¼ valueh i: minimum length required ¼ valueh i.

IFAIL ¼ 8

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 10

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

See Section 7 in G05RZF for an indication of the accuracy of the underlying multivariate Normal
distribution.

8 Parallelism and Performance

G05RDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05RDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G05RDF is of order nm3.

It is recommended that the diagonal elements of C should not differ too widely in order of magnitude.
This may be achieved by scaling the variables if necessary. The actual matrix decomposed is
C þ E ¼ LLT, where E is a diagonal matrix with small positive diagonal elements. This ensures that,
even when C is singular, or nearly singular, the Cholesky factor L corresponds to a positive definite
covariance matrix that agrees with C within machine precision.

10 Example

This example prints ten pseudorandom observations from a Normal copula with covariance matrix

1:69 0:39 �1:86 0:07
0:39 98:01 �7:07 �0:71
�1:86 �7:07 11:56 0:03
0:07 �0:71 0:03 0:01

264
375;

generated by G05RDF. All ten observations are generated by a single call to G05RDF with MODE ¼ 2.
The random number generator is initialized by G05KFF.

10.1 Program Text

Program g05rdfe

! G05RDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05rdf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None
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! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, ifail, ldc, ldx, lr, &

lstate, m, mode, n, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), r(:), x(:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05RDF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and number of dimensions
Read (nin,*) n, m

ldc = m
ldx = n
lr = m*(m+1) + 1
Allocate (c(ldc,m),x(ldx,m),r(lr))

! Read in upper triangle portion of the covariance matrix
Do i = 1, m

Read (nin,*) c(i,i:m)
End Do

! Using a single call to G05RDF, so set up reference vector
! and generate values in one go

mode = 2

! Generate variates
ifail = 0
Call g05rdf(mode,n,m,c,ldc,r,lr,state,x,ldx,ifail)

! Display variates
ifail = 0
Call x04caf(’General’,’ ’,n,m,x,ldx,’Variates’,ifail)

End Program g05rdfe

10.2 Program Data

G05RDF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 4 :: N,M
1.69 0.39 -1.86 0.07

98.01 -7.07 -0.71
11.56 0.03

0.01 :: End of C (upper triangular part)
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10.3 Program Results

G05RDF Example Program Results

Variates
1 2 3 4

1 0.6364 0.0517 0.4137 0.8817
2 0.1065 0.2461 0.7993 0.3806
3 0.7460 0.6313 0.2708 0.5421
4 0.7983 0.0564 0.6868 0.9234
5 0.1046 0.5790 0.8533 0.2208
6 0.4925 0.2784 0.3513 0.5158
7 0.3843 0.2349 0.9472 0.7801
8 0.7871 0.9941 0.9403 0.2044
9 0.4982 0.9015 0.7176 0.2914

10 0.6717 0.5359 0.5961 0.4487
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NAG Library Routine Document

G05REF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05REF generates pseudorandom uniform bivariates with joint distribution of a Clayton/Cook–Johnson
Archimedean copula.

2 Specification

SUBROUTINE G05REF (N, THETA, SORDER, STATE, X, LDX, SDX, IFAIL)

INTEGER N, SORDER, STATE(*), LDX, SDX, IFAIL
REAL (KIND=nag_wp) THETA, X(LDX,SDX)

3 Description

Generates pseudorandom uniform bivariates u1; u2f g 2 0; 1ð �2 whose joint distribution is the Clayton/
Cook–Johnson Archimedean copula C� with parameter �, given by

C� ¼ max u1
�� þ u2�� � 1; 0

� �� ��1=�
; � 2 �1;1ð Þ n 0f g

with the special cases:

C�1 ¼ max u1 þ u2 � 1; 0ð Þ, the Fréchet–Hoeffding lower bound;

C0 ¼ u1u2, the product copula;

C1 ¼ min u1; u2ð Þ, the Fréchet–Hoeffding upper bound.

The generation method uses conditional sampling.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05REF.

4 References

Nelsen R B (2006) An Introduction to Copulas (2nd Edition) Springer Series in Statistics

5 Arguments

1: N – INTEGER Input

On entry: n, the number of bivariates to generate.

Constraint: N � 0.

2: THETA – REAL (KIND=nag_wp) Input

On entry: �, the copula parameter.

Constraint: THETA � �1:0.

3: SORDER – INTEGER Input

On entry: determines the storage order of variates; the i; jð Þth variate is stored in Xði; jÞ if
SORDER ¼ 1, and Xðj; iÞ if SORDER ¼ 2, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2.

Constraint: SORDER ¼ 1 or 2.
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4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðLDX; SDXÞ – REAL (KIND=nag_wp) array Output

On exit: the n bivariate uniforms with joint distribution described by C�, with Xði; jÞ holding the
ith value for the jth dimension if SORDER ¼ 1 and the jth value for the ith dimension if
SORDER ¼ 2.

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05REF
is called.

Constraints:

if SORDER ¼ 1, LDX � N;
if SORDER ¼ 2, LDX � 2.

7: SDX – INTEGER Input

On entry: the second dimension of the array X as declared in the (sub)program from which
G05REF is called.

Constraints:

if SORDER ¼ 1, SDX � 2;
if SORDER ¼ 2, SDX � N.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, corrupt STATE argument.

IFAIL ¼ 2

On entry, invalid THETA: THETA ¼ valueh i.
Constraint: THETA � �1:0.
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IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 4

On entry, invalid SORDER.
Constraint: SORDER ¼ 1 or 2.

IFAIL ¼ 6

On entry, LDX must be at least valueh i: LDX ¼ valueh i.

IFAIL ¼ 7

On entry, SDX must be at least valueh i: SDX ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05REF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

In practice, the need for numerical stability restricts the range of � such that:

if �þ 1ð Þ < �, the routine returns pseudorandom uniform variates with C�1 joint distribution;

if �j j < 1:0� 10�6, the routine returns pseudorandom uniform variates with C0 joint distribution;

if � > ln �s= ln 1:0� 10�2
� �

, the routine returns pseudorandom uniform variates with C1 joint
distribution;

where �s is the safe-range parameter, the value of which is returned by X02AMF; and � is the machine
precision returned by X02AJF.
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10 Example

This example generates thirteen variates for copula C�0:8.

10.1 Program Text

Program g05refe

! G05REF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05ref, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: theta
Integer :: genid, ifail, ldx, lstate, n, sdx, &

sorder, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: x(:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05REF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and order
Read (nin,*) n, sorder

If (sorder==1) Then
! X(N,2)

ldx = n
sdx = 2

Else
! X(2,N)

ldx = 2
sdx = n

End If
Allocate (x(ldx,sdx))

! Read in parameter
Read (nin,*) theta

! Generate variates
ifail = 0
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Call g05ref(n,theta,sorder,state,x,ldx,sdx,ifail)

! Display the variates
If (sorder==1) Then

! X(N,2)
ifail = 0
Call x04caf(’General’,’ ’,n,2,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
Else

! X(2,N)
ifail = 0
Call x04caf(’General’,’ ’,2,n,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
End If

End Program g05refe

10.2 Program Data

G05REF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
13 1 :: N, SORDER
-0.8 :: THETA

10.3 Program Results

G05REF Example Program Results

Uniform variates with copula joint distribution
1 2

1 0.6400 0.2223
2 0.1154 0.8101
3 0.7486 0.1439
4 0.8003 0.1062
5 0.1135 0.9946
6 0.4975 0.7655
7 0.3904 0.4925
8 0.7892 0.1196
9 0.5032 0.4116

10 0.6750 0.2093
11 0.0600 0.9055
12 0.2655 0.7085
13 0.6276 0.2370
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NAG Library Routine Document

G05RFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05RFF generates pseudorandom uniform bivariates with joint distribution of a Frank Archimedean
copula.

2 Specification

SUBROUTINE G05RFF (N, THETA, SORDER, STATE, X, LDX, SDX, IFAIL)

INTEGER N, SORDER, STATE(*), LDX, SDX, IFAIL
REAL (KIND=nag_wp) THETA, X(LDX,SDX)

3 Description

Generates pseudorandom uniform bivariates u1; u2f g 2 0; 1½ �2 whose joint distribution is the Frank
Archimedean copula C� with parameter �, given by

C� ¼ �
1

�
ln 1þ

e��u1 � 1
� �

e��u2 � 1
� �

e�� � 1

� �
; � 2 �1;1ð Þ n 0f g

with the special cases:

C�1 ¼ max u1 þ u2 � 1; 0ð Þ, the Fréchet–Hoeffding lower bound;

C0 ¼ u1u2, the product copula;

C1 ¼ min u1; u2ð Þ, the Fréchet–Hoeffding upper bound.

The generation method uses conditional sampling.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05RFF.

4 References

Nelsen R B (2006) An Introduction to Copulas (2nd Edition) Springer Series in Statistics

5 Arguments

1: N – INTEGER Input

On entry: n, the number of bivariates to generate.

Constraint: N � 0.

2: THETA – REAL (KIND=nag_wp) Input

On entry: �, the copula parameter.

3: SORDER – INTEGER Input

On entry: determines the storage order of variates; the i; jð Þth variate is stored in Xði; jÞ if
SORDER ¼ 1, and Xðj; iÞ if SORDER ¼ 2, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2.

Constraint: SORDER ¼ 1 or 2.
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4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðLDX; SDXÞ – REAL (KIND=nag_wp) array Output

On exit: the n bivariate uniforms with joint distribution described by C�, with Xði; jÞ holding the
ith value for the jth dimension if SORDER ¼ 1 and the jth value for the ith dimension if
SORDER ¼ 2.

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05RFF
is called.

Constraints:

if SORDER ¼ 1, LDX � N;
if SORDER ¼ 2, LDX � 2.

7: SDX – INTEGER Input

On entry: the second dimension of the array X as declared in the (sub)program from which
G05RFF is called.

Constraints:

if SORDER ¼ 1, SDX � 2;
if SORDER ¼ 2, SDX � N.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, corrupt STATE argument.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 0.
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IFAIL ¼ 4

On entry, invalid SORDER.
Constraint: SORDER ¼ 1 or 2.

IFAIL ¼ 6

On entry, LDX must be at least valueh i: LDX ¼ valueh i.

IFAIL ¼ 7

On entry, SDX must be at least valueh i: SDX ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05RFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

In practice, the need for numerical stability restricts the range of � such that:

if � < ln �s, the routine returns pseudorandom uniform variates with C�1 joint distribution;

if �j j < 1:0� 10�6, the routine returns pseudorandom uniform variates with C0 joint distribution;

if � > ln �, the routine returns pseudorandom uniform variates with C1 joint distribution;

where �s is the safe-range parameter, the value of which is returned by X02AMF; and � is the machine
precision returned by X02AJF.

10 Example

This example generates thirteen variates for copula C�12:0.
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10.1 Program Text

Program g05rffe

! G05RFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05rff, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: theta
Integer :: genid, ifail, ldx, lstate, n, sdx, &

sorder, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: x(:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05RFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and order
Read (nin,*) n, sorder

If (sorder==1) Then
! X(N,2)

ldx = n
sdx = 2

Else
! X(2,N)

ldx = 2
sdx = n

End If
Allocate (x(ldx,sdx))

! Read in parameter
Read (nin,*) theta

! Generate variates
ifail = 0
Call g05rff(n,theta,sorder,state,x,ldx,sdx,ifail)

! Display the variates
If (sorder==1) Then

! X(N,2)
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ifail = 0
Call x04caf(’General’,’ ’,n,2,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
Else

! X(2,N)
ifail = 0
Call x04caf(’General’,’ ’,2,n,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
End If

End Program g05rffe

10.2 Program Data

G05RFF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
13 1 :: N,SORDER
-12.0 :: THETA

10.3 Program Results

G05RFF Example Program Results

Uniform variates with copula joint distribution
1 2

1 0.6364 0.1411
2 0.1065 0.8967
3 0.7460 0.1843
4 0.7983 0.1254
5 0.1046 0.9982
6 0.4925 0.6901
7 0.3843 0.6250
8 0.7871 0.1654
9 0.4982 0.5298

10 0.6717 0.2902
11 0.0505 0.9554
12 0.2580 0.8190
13 0.6238 0.3014
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G05RGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05RGF generates pseudorandom uniform bivariates with joint distribution of a Plackett copula.

2 Specification

SUBROUTINE G05RGF (N, THETA, SORDER, STATE, X, LDX, SDX, IFAIL)

INTEGER N, SORDER, STATE(*), LDX, SDX, IFAIL
REAL (KIND=nag_wp) THETA, X(LDX,SDX)

3 Description

Generates pseudorandom uniform bivariates u1; u2f g 2 0; 1½ �2 whose joint distribution is the Plackett
copula C� with parameter �, given by

C� ¼
1þ �� 1ð Þ u1 þ u2ð Þ½ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �� 1ð Þ u1 þ u2ð Þ½ �2 � 4u1u2� �� 1ð Þ

q
2 �� 1ð Þ ; � 2 0;1ð Þ n 1f g

with the special cases:

C0 ¼ max u1 þ u2 � 1; 0ð Þ, the Fréchet–Hoeffding lower bound;

C1 ¼ u1u2, the product copula;

C1 ¼ min u1; u2ð Þ, the Fréchet–Hoeffding upper bound.

The generation method uses conditional sampling.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05RGF.

4 References

Nelsen R B (2006) An Introduction to Copulas (2nd Edition) Springer Series in Statistics

5 Arguments

1: N – INTEGER Input

On entry: n, the number of bivariates to generate.

Constraint: N � 0.

2: THETA – REAL (KIND=nag_wp) Input

On entry: �, the copula parameter.

Constraint: THETA � 0:0.
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3: SORDER – INTEGER Input

On entry: determines the storage order of variates; the i; jð Þth variate is stored in Xði; jÞ if
SORDER ¼ 1, and Xðj; iÞ if SORDER ¼ 2, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2.

Constraint: SORDER ¼ 1 or 2.

4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðLDX; SDXÞ – REAL (KIND=nag_wp) array Output

On exit: the n bivariate uniforms with joint distribution described by C�, with Xði; jÞ holding the
ith value for the jth dimension if SORDER ¼ 1 and the jth value for the ith dimension if
SORDER ¼ 2.

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05RGF
is called.

Constraints:

if SORDER ¼ 1, LDX � N;
if SORDER ¼ 2, LDX � 2.

7: SDX – INTEGER Input

On entry: the second dimension of the array X as declared in the (sub)program from which
G05RGF is called.

Constraints:

if SORDER ¼ 1, SDX � 2;
if SORDER ¼ 2, SDX � N.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, corrupt STATE argument.

G05RGF NAG Library Manual

G05RGF.2 Mark 26



IFAIL ¼ 2

On entry, invalid THETA: THETA ¼ valueh i.
Constraint: THETA � 0:0.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 4

On entry, invalid SORDER.
Constraint: SORDER ¼ 1 or 2.

IFAIL ¼ 6

On entry, LDX must be at least valueh i: LDX ¼ valueh i.

IFAIL ¼ 7

On entry, SDX must be at least valueh i: SDX ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05RGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

In practice, the need for numerical stability restricts the range of � such that:

if � < �s, the routine returns pseudorandom uniform variates with C0 joint distribution;

if �� 1j j < �, the routine returns pseudorandom uniform variates with C1 joint distribution;

if � > ��1=2s , the routine returns pseudorandom uniform variates with C1 joint distribution;

where �s is the safe-range parameter, the value of which is returned by X02AMF; and � is the machine
precision returned by X02AJF.
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10 Example

This example generates thirteen variates for copula C2:0.

10.1 Program Text

Program g05rgfe

! G05RGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05rgf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: theta
Integer :: genid, ifail, ldx, lstate, n, sdx, &

sorder, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: x(:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05RGF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and order
Read (nin,*) n, sorder

If (sorder==1) Then
! X(N,2)

ldx = n
sdx = 2

Else
! X(2,N)

ldx = 2
sdx = n

End If
Allocate (x(ldx,sdx))

! Read in parameter
Read (nin,*) theta

! Generate variates
ifail = 0
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Call g05rgf(n,theta,sorder,state,x,ldx,sdx,ifail)

! Display the variates
If (sorder==1) Then

! X(N,2)
ifail = 0
Call x04caf(’General’,’ ’,n,2,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
Else

! X(2,N)
ifail = 0
Call x04caf(’General’,’ ’,2,n,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
End If

End Program g05rgfe

10.2 Program Data

G05RGF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
13 1 :: N,SORDER
2.0 :: THETA

10.3 Program Results

G05RGF Example Program Results

Uniform variates with copula joint distribution
1 2

1 0.6364 0.0695
2 0.1065 0.4586
3 0.7460 0.3586
4 0.7983 0.3267
5 0.1046 0.9888
6 0.4925 0.8920
7 0.3843 0.4903
8 0.7871 0.4248
9 0.4982 0.5783

10 0.6717 0.4419
11 0.0505 0.5802
12 0.2580 0.6629
13 0.6238 0.3291
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G05RHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05RHF generates pseudorandom uniform variates with joint distribution of a Clayton/Cook–Johnson
Archimedean copula.

2 Specification

SUBROUTINE G05RHF (N, M, THETA, SORDER, STATE, X, LDX, SDX, IFAIL)

INTEGER N, M, SORDER, STATE(*), LDX, SDX, IFAIL
REAL (KIND=nag_wp) THETA, X(LDX,SDX)

3 Description

Generates n pseudorandom uniform m-variates whose joint distribution is the Clayton/Cook–Johnson
Archimedean copula C�, given by

C� ¼ u��1 þ u��2 þ � � � þ u��m �mþ 1
� ��1=�

;
� 2 0;1ð Þ;
uj 2 0; 1ð �; j ¼ 1; . . .m;



with the special case:

C1 ¼ min u1; u2; . . . ; umð Þ, the Fréchet–Hoeffding upper bound.

The generation method uses mixture of powers.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05RHF.

4 References

Marshall A W and Olkin I (1988) Families of multivariate distributions Journal of the American
Statistical Association 83 403

Nelsen R B (2006) An Introduction to Copulas (2nd Edition) Springer Series in Statistics

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom uniform variates to generate.

Constraint: N � 0.

2: M – INTEGER Input

On entry: m, the number of dimensions.

Constraint: M � 2.

3: THETA – REAL (KIND=nag_wp) Input

On entry: �, the copula parameter.

Constraint: THETA � 1:0� 10�6.
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4: SORDER – INTEGER Input

On entry: determines the storage order of variates; the i; jð Þth variate is stored in Xði; jÞ if
SORDER ¼ 1, and Xðj; iÞ if SORDER ¼ 2, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

Constraint: SORDER ¼ 1 or 2.

5: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

6: XðLDX; SDXÞ – REAL (KIND=nag_wp) array Output

On exit: the pseudorandom uniform variates with joint distribution described by C�, with Xði; jÞ
holding the ith value for the jth dimension if SORDER ¼ 1 and the jth value for the ith
dimension of SORDER ¼ 2.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05RHF
is called.

Constraints:

if SORDER ¼ 1, LDX � N;
if SORDER ¼ 2, LDX � M.

8: SDX – INTEGER Input

On entry: the second dimension of the array X as declared in the (sub)program from which
G05RHF is called.

Constraints:

if SORDER ¼ 1, SDX � M;
if SORDER ¼ 2, SDX � N.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, corrupt STATE argument.
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IFAIL ¼ 2

On entry, invalid THETA: THETA ¼ valueh i.
Constraint: THETA � 1:0� 10�6.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 4

On entry, M ¼ valueh i.
Constraint: M � 2.

IFAIL ¼ 5

On entry, invalid SORDER.
Constraint: SORDER ¼ 1 or 2.

IFAIL ¼ 7

On entry, LDX must be at least valueh i: LDX ¼ valueh i.

IFAIL ¼ 8

On entry, SDX must be at least valueh i: SDX ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05RHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

In practice, the need for numerical stability restricts the range of � such that:
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the routine requires � � 1:0� 10�6;

if � > 200:0, the routine returns pseudorandom uniform variates with C1 joint distribution.

10 Example

This example generates thirteen four-dimensional variates for copula C1:3.

10.1 Program Text

Program g05rhfe

! G05RHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05rhf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: theta
Integer :: genid, ifail, ldx, lstate, m, n, &

sdx, sorder, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: x(:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05RHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size, number of dimensions and order
Read (nin,*) n, m, sorder

If (sorder==1) Then
! X(N,M)

ldx = n
sdx = m

Else
! X(M,N)

ldx = m
sdx = n

End If
Allocate (x(ldx,sdx))
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! Read in parameter
Read (nin,*) theta

! Generate variates
ifail = 0
Call g05rhf(n,m,theta,sorder,state,x,ldx,sdx,ifail)

! Display the variates
If (sorder==1) Then

! X(N,M)
ifail = 0
Call x04caf(’General’,’ ’,n,m,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
Else

! X(M,N)
ifail = 0
Call x04caf(’General’,’ ’,m,n,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
End If

End Program g05rhfe

10.2 Program Data

G05RHF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
13 4 1 :: N,M,SORDER
1.3 :: THETA

10.3 Program Results

G05RHF Example Program Results

Uniform variates with copula joint distribution
1 2 3 4

1 0.8576 0.5048 0.9761 0.5895
2 0.3186 0.6372 0.9959 0.5898
3 0.9050 0.6950 0.9353 0.9329
4 0.5278 0.1804 0.4177 0.2330
5 0.1510 0.9777 0.2621 0.3867
6 0.3906 0.7938 0.3073 0.3150
7 0.1279 0.1709 0.1751 0.0568
8 0.7613 0.4314 0.3498 0.2913
9 0.3871 0.4430 0.3610 0.3774

10 0.1242 0.0647 0.0472 0.0780
11 0.6866 0.9500 0.9289 0.9763
12 0.5259 0.8218 0.7134 0.4914
13 0.0955 0.0459 0.1265 0.1947
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G05RJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05RJF generates pseudorandom uniform variates with joint distribution of a Frank Archimedean
copula.

2 Specification

SUBROUTINE G05RJF (N, M, THETA, SORDER, STATE, X, LDX, SDX, IFAIL)

INTEGER N, M, SORDER, STATE(*), LDX, SDX, IFAIL
REAL (KIND=nag_wp) THETA, X(LDX,SDX)

3 Description

Generates n pseudorandom uniform m-variates whose joint distribution is the Frank Archimedean
copula C�, given by

C� ¼ �
1

�
ln 1þ

e��u1 � 1
� �

e��u2 � 1
� �

� � � e��um � 1
� �

e�� � 1ð Þm�1

" #
;

� 2 0;1ð Þ;
uj 2 0; 1ð �; j ¼ 1; . . .m;



with the special case:

C1 ¼ min u1; u2; . . . ; umð Þ, the Fréchet–Hoeffding upper bound.

The generation method uses mixture of powers.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05RJF.

4 References

Marshall A W and Olkin I (1988) Families of multivariate distributions Journal of the American
Statistical Association 83 403

Nelsen R B (2006) An Introduction to Copulas (2nd Edition) Springer Series in Statistics

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom uniform variates to generate.

Constraint: N � 0.

2: M – INTEGER Input

On entry: m, the number of dimensions.

Constraint: M � 2.

3: THETA – REAL (KIND=nag_wp) Input

On entry: �, the copula parameter.

Constraint: THETA � 1:0� 10�6.
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4: SORDER – INTEGER Input

On entry: determines the storage order of variates; the i; jð Þth variate is stored in Xði; jÞ if
SORDER ¼ 1, and Xðj; iÞ if SORDER ¼ 2, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

Constraint: SORDER ¼ 1 or 2.

5: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

6: XðLDX; SDXÞ – REAL (KIND=nag_wp) array Output

On exit: the pseudorandom uniform variates with joint distribution described by C�, with Xði; jÞ
holding the ith value for the jth dimension if SORDER ¼ 1 and the jth value for the ith
dimension of SORDER ¼ 2.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05RJF
is called.

Constraints:

if SORDER ¼ 1, LDX � N;
if SORDER ¼ 2, LDX � M.

8: SDX – INTEGER Input

On entry: the second dimension of the array X as declared in the (sub)program from which
G05RJF is called.

Constraints:

if SORDER ¼ 1, SDX � M;
if SORDER ¼ 2, SDX � N.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, corrupt STATE argument.

G05RJF NAG Library Manual

G05RJF.2 Mark 26



IFAIL ¼ 2

On entry, invalid THETA: THETA ¼ valueh i.
Constraint: THETA � 1:0� 10�6.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 4

On entry, M ¼ valueh i.
Constraint: M � 2.

IFAIL ¼ 5

On entry, invalid SORDER.
Constraint: SORDER ¼ 1 or 2.

IFAIL ¼ 7

On entry, LDX must be at least valueh i: LDX ¼ valueh i.

IFAIL ¼ 8

On entry, SDX must be at least valueh i: SDX ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05RJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

In practice, the need for numerical stability restricts the range of � such that:
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the routine requires � � 1:0� 10�6;

if � > � ln �, the routine returns pseudorandom uniform variates with C1 joint distribution;

where � is the machine precision returned by X02AJF.

10 Example

This example generates thirteen four-dimensional variates for copula C4:0.

10.1 Program Text

Program g05rjfe

! G05RJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05rjf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: theta
Integer :: genid, ifail, ldx, lstate, m, n, &

sdx, sorder, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: x(:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05RJF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size, number of dimensions and order
Read (nin,*) n, m, sorder

If (sorder==1) Then
! X(N,M)

ldx = n
sdx = m

Else
! X(M,N)

ldx = m
sdx = n

End If
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Allocate (x(ldx,sdx))

! Read in parameter
Read (nin,*) theta

! Generate variates
ifail = 0
Call g05rjf(n,m,theta,sorder,state,x,ldx,sdx,ifail)

! Display the variates
If (sorder==1) Then

! X(N,M)
ifail = 0
Call x04caf(’General’,’ ’,n,m,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
Else

! X(M,N)
ifail = 0
Call x04caf(’General’,’ ’,m,n,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
End If

End Program g05rjfe

10.2 Program Data

G05RJF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
13 4 1 :: N,M,SORDER
4.0 :: THETA

10.3 Program Results

G05RJF Example Program Results

Uniform variates with copula joint distribution
1 2 3 4

1 0.5679 0.1977 0.8682 0.2664
2 0.0965 0.3532 0.9773 0.3102
3 0.5526 0.2562 0.6341 0.6267
4 0.8036 0.4747 0.7310 0.5515
5 0.2043 0.9797 0.3628 0.4968
6 0.4777 0.8146 0.3922 0.4005
7 0.4162 0.5002 0.5074 0.2008
8 0.3703 0.0971 0.0527 0.0278
9 0.4354 0.4880 0.4096 0.4259

10 0.2693 0.1169 0.0639 0.1555
11 0.0127 0.3080 0.2352 0.4659
12 0.0730 0.3239 0.2020 0.0568
13 0.2369 0.0817 0.3118 0.4370
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NAG Library Routine Document

G05RKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05RKF generates pseudorandom uniform variates with joint distribution of a Gumbel–Hougaard
Archimedean copula.

2 Specification

SUBROUTINE G05RKF (N, M, THETA, SORDER, STATE, X, LDX, SDX, IFAIL)

INTEGER N, M, SORDER, STATE(*), LDX, SDX, IFAIL
REAL (KIND=nag_wp) THETA, X(LDX,SDX)

3 Description

Generates n pseudorandom uniform m-variates whose joint distribution is the Gumbel–Hougaard
Archimedean copula C�, given by

C� ¼ exp � � lnu1ð Þ� þ � lnu2ð Þ� þ � � � þ � lnumð Þ�
h in o

;
� 2 1;1ð Þ;
uj 2 0; 1ð �; j ¼ 1; 2; . . .m;



with the special cases:

C1 ¼ u1u2 � � �um, the product copula;

C1 ¼ min u1; u2; . . . ; umð Þ, the Fréchet–Hoeffding upper bound.

The generation method uses mixture of powers.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05RKF.

4 References

Marshall A W and Olkin I (1988) Families of multivariate distributions Journal of the American
Statistical Association 83 403

Nelsen R B (2006) An Introduction to Copulas (2nd Edition) Springer Series in Statistics

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom uniform variates to generate.

Constraint: N � 0.

2: M – INTEGER Input

On entry: m, the number of dimensions.

Constraint: M � 2.
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3: THETA – REAL (KIND=nag_wp) Input

On entry: �, the copula parameter.

Constraint: THETA � 1:0.

4: SORDER – INTEGER Input

On entry: determines the storage order of variates; the i; jð Þth variate is stored in Xði; jÞ if
SORDER ¼ 1, and Xðj; iÞ if SORDER ¼ 2, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

Constraint: SORDER ¼ 1 or 2.

5: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

6: XðLDX; SDXÞ – REAL (KIND=nag_wp) array Output

On exit: the pseudorandom uniform variates with joint distribution described by C�, with Xði; jÞ
holding the ith value for the jth dimension if SORDER ¼ 1 and the jth value for the ith
dimension of SORDER ¼ 2.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05RKF
is called.

Constraints:

if SORDER ¼ 1, LDX � N;
if SORDER ¼ 2, LDX � M.

8: SDX – INTEGER Input

On entry: the second dimension of the array X as declared in the (sub)program from which
G05RKF is called.

Constraints:

if SORDER ¼ 1, SDX � M;
if SORDER ¼ 2, SDX � N.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, corrupt STATE argument.

IFAIL ¼ 2

On entry, invalid THETA: THETA ¼ valueh i.
Constraint: THETA � 1:0.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 4

On entry, M ¼ valueh i.
Constraint: M � 2.

IFAIL ¼ 5

On entry, invalid SORDER.
Constraint: SORDER ¼ 1 or 2.

IFAIL ¼ 7

On entry, LDX must be at least valueh i: LDX ¼ valueh i.

IFAIL ¼ 8

On entry, SDX must be at least valueh i: SDX ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05RKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

In practice, the need for numerical stability restricts the range of � such that:

if �� 1ð Þ < 1:0� 10�6, the routine returns pseudorandom uniform variates with C1 joint
distribution;

if � > max 80:0;�0:5 ln �sð Þ, the routine returns pseudorandom uniform variates with C1 joint
distribution;

where �s is the safe-range parameter, the value of which is returned by X02AMF.

10 Example

This example generates thirteen four-dimensional variates for copula C2:4.

10.1 Program Text

Program g05rkfe

! G05RKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05rkf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: theta
Integer :: genid, ifail, ldx, lstate, m, n, &

sdx, sorder, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: x(:,:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05RKF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
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! Read in sample size, number of dimensions and order
Read (nin,*) n, m, sorder

If (sorder==1) Then
! X(N,M)

ldx = n
sdx = m

Else
! X(M,N)

ldx = m
sdx = n

End If
Allocate (x(ldx,sdx))

! Read in parameter
Read (nin,*) theta

! Generate variates
ifail = 0
Call g05rkf(n,m,theta,sorder,state,x,ldx,sdx,ifail)

! Display the variates
If (sorder==1) Then

! X(N,M)
ifail = 0
Call x04caf(’General’,’ ’,n,m,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
Else

! X(M,N)
ifail = 0
Call x04caf(’General’,’ ’,m,n,x,ldx, &

’Uniform variates with copula joint distribution’,ifail)
End If

End Program g05rkfe

10.2 Program Data

G05RKF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
13 4 1 :: N,M,SORDER
2.4 :: THETA

10.3 Program Results

G05RKF Example Program Results

Uniform variates with copula joint distribution
1 2 3 4

1 0.9369 0.8676 0.9713 0.8854
2 0.1139 0.3063 0.8625 0.2743
3 0.4418 0.2211 0.5042 0.4985
4 0.7902 0.6007 0.7493 0.6474
5 0.8362 0.9847 0.8807 0.9079
6 0.1781 0.4610 0.1283 0.1329
7 0.1272 0.1760 0.1805 0.0383
8 0.4473 0.2171 0.1662 0.1300
9 0.8899 0.9005 0.8844 0.8879

10 0.9069 0.8681 0.8450 0.8804
11 0.2222 0.5499 0.4965 0.6488
12 0.3807 0.5967 0.5096 0.3577
13 0.8445 0.7755 0.8661 0.8948
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NAG Library Routine Document

G05RYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05RYF sets up a reference vector and generates an array of pseudorandom numbers from a
multivariate Student's t distribution with � degrees of freedom, mean vector a and covariance matrix
�
��2C .

2 Specification

SUBROUTINE G05RYF (MODE, N, DF, M, XMU, C, LDC, R, LR, STATE, X, LDX,
IFAIL)

&

INTEGER MODE, N, DF, M, LDC, LR, STATE(*), LDX, IFAIL
REAL (KIND=nag_wp) XMU(M), C(LDC,M), R(LR), X(LDX,M)

3 Description

When the covariance matrix is nonsingular (i.e., strictly positive definite), the distribution has
probability density function

f xð Þ ¼
 �þmð Þ

2

� �
	vð Þm=2 �=2ð Þ Cj j

1
2

1þ x� að ÞTC�1 x� að Þ
�

" #� �þmð Þ
2

where m is the number of dimensions, � is the degrees of freedom, a is the vector of means, x is the
vector of positions and �

��2C is the covariance matrix.

The routine returns the value

x ¼ aþ
ffiffiffi
�

s

r
z

where z is generated by G05SKF from a Normal distribution with mean zero and covariance matrix C
and s is generated by G05SDF from a �2-distribution with � degrees of freedom.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05RYF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate variates using reference vector set up in a prior call to G05RYF.
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MODE ¼ 2
Set up reference vector and generate variates.

Constraint: MODE ¼ 0, 1 or 2.

2: N – INTEGER Input

On entry: n, the number of random variates required.

Constraint: N � 0.

3: DF – INTEGER Input

On entry: �, the number of degrees of freedom of the distribution.

Constraint: DF � 3.

4: M – INTEGER Input

On entry: m, the number of dimensions of the distribution.

Constraint: M > 0.

5: XMUðMÞ – REAL (KIND=nag_wp) array Input

On entry: a, the vector of means of the distribution.

6: CðLDC;MÞ – REAL (KIND=nag_wp) array Input

On entry: matrix which, along with DF, defines the covariance of the distribution. Only the upper
triangle need be set.

Constraint: C must be positive semidefinite to machine precision.

7: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G05RYF
is called.

Constraint: LDC � M.

8: RðLRÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MODE ¼ 1, the reference vector as set up by G05RYF in a previous call with
MODE ¼ 0 or 2.

On exit: if MODE ¼ 0 or 2, the reference vector that can be used in subsequent calls to G05RYF
with MODE ¼ 1.

9: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05RYF is
called. If MODE ¼ 1, it must be the same as the value of LR specified in the prior call to
G05RYF with MODE ¼ 0 or 2.

Constraint: LR � M� Mþ 1ð Þ þ 2.

10: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.
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11: XðLDX;MÞ – REAL (KIND=nag_wp) array Output

On exit: the array of pseudorandom multivariate Student's t vectors generated by the routine, with
Xði; jÞ holding the jth dimension for the ith variate.

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05RYF
is called.

Constraint: LDX � N.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1 or 2.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, DF ¼ valueh i.
Constraint: DF � 3.

IFAIL ¼ 4

On entry, M ¼ valueh i.
Constraint: M > 0.

IFAIL ¼ 6

On entry, the covariance matrix C is not positive semidefinite to machine precision.

IFAIL ¼ 7

On entry, LDC ¼ valueh i and M ¼ valueh i.
Constraint: LDC � M.
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IFAIL ¼ 8

M is not the same as when R was set up in a previous call.
Previous value of M ¼ valueh i and M ¼ valueh i.

IFAIL ¼ 9

On entry, LR is not large enough, LR ¼ valueh i: minimum length required ¼ valueh i.

IFAIL ¼ 10

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 12

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05RYF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05RYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G05RYF is of order nm3.

It is recommended that the diagonal elements of C should not differ too widely in order of magnitude.
This may be achieved by scaling the variables if necessary. The actual matrix decomposed is
C þ E ¼ LLT, where E is a diagonal matrix with small positive diagonal elements. This ensures that,
even when C is singular, or nearly singular, the Cholesky factor L corresponds to a positive definite
covariance matrix that agrees with C within machine precision.
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10 Example

This example prints ten pseudorandom observations from a multivariate Student's t-distribution with ten
degrees of freedom, means vector

1:0
2:0
�3:0
0:0

264
375

and C matrix

1:69 0:39 �1:86 0:07
0:39 98:01 �7:07 �0:71
�1:86 �7:07 11:56 0:03
0:07 �0:71 0:03 0:01

264
375;

generated by G05RYF. All ten observations are generated by a single call to G05RYF with MODE ¼ 2.
The random number generator is initialized by G05KFF.

10.1 Program Text

Program g05ryfe

! G05RYF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05ryf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: df, genid, i, ifail, ldc, ldx, lr, &

lstate, m, mode, n, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), r(:), x(:,:), xmu(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05RYF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and number of dimensions
Read (nin,*) n, m
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ldc = m
ldx = n
lr = m*(m+1) + 2
Allocate (x(ldx,m),c(ldc,m),r(lr),xmu(m))

! Read in degrees of freedom
Read (nin,*) df

! Read in vector of means
Read (nin,*) xmu(1:m)

! Read in upper triangle portion of the covariance matrix
Do i = 1, m

Read (nin,*) c(i,i:m)
End Do

! Using a single call to G05RYF, so set up reference vector
! and generate values in one go

mode = 2

! Generate variates
ifail = 0
Call g05ryf(mode,n,df,m,xmu,c,ldc,r,lr,state,x,ldx,ifail)

! Display the variates
ifail = 0
Call x04caf(’General’,’ ’,n,m,x,ldx,’Variates’,ifail)

End Program g05ryfe

10.2 Program Data

G05RYF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 4 :: N,M
10 :: DF
1.0 2.0 -3.0 0.0 :: XMU
1.69 0.39 -1.86 0.07

98.01 -7.07 -0.71
11.56 0.03

0.01 :: End of C (upper triangular part)

10.3 Program Results

G05RYF Example Program Results

Variates
1 2 3 4

1 1.4957 -15.6226 -3.8101 0.1294
2 -1.0827 -6.7473 0.6696 -0.0391
3 2.1369 6.3861 -5.7413 0.0140
4 2.2481 -16.0417 -1.0982 0.1641
5 -0.2550 3.5166 -0.2541 -0.0592
6 0.9731 -4.3553 -4.4181 0.0043
7 0.7098 -3.4281 1.1741 0.0586
8 1.8827 23.2619 1.5140 -0.0704
9 0.9904 22.7479 0.1811 -0.0893

10 1.5026 2.7753 -2.2805 -0.0112
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NAG Library Routine Document

G05RZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05RZF sets up a reference vector and generates an array of pseudorandom numbers from a
multivariate Normal distribution with mean vector a and covariance matrix C.

2 Specification

SUBROUTINE G05RZF (MODE, N, M, XMU, C, LDC, R, LR, STATE, X, LDX, IFAIL)

INTEGER MODE, N, M, LDC, LR, STATE(*), LDX, IFAIL
REAL (KIND=nag_wp) XMU(M), C(LDC,M), R(LR), X(LDX,*)

3 Description

When the covariance matrix is nonsingular (i.e., strictly positive definite), the distribution has
probability density function

f xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C�1j j
2	ð Þm

s
exp �1

2
x� að ÞTC�1 x� að Þ

� �
where m is the number of dimensions, C is the covariance matrix, a is the vector of means and x is the
vector of positions.

Covariance matrices are symmetric and positive semidefinite. Given such a matrix C, there exists a
lower triangular matrix L such that LLT ¼ C. L is not unique, if C is singular.

G05RZF decomposes C to find such an L. It then stores m, a and L in the reference vector r which is
used to generate a vector x of independent standard Normal pseudorandom numbers. It then returns the
vector aþ Lx, which has the required multivariate Normal distribution.

It should be noted that this routine will work with a singular covariance matrix C, provided C is
positive semidefinite, despite the fact that the above formula for the probability density function is not
valid in that case. Wilkinson (1965) should be consulted if further information is required.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05RZF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1 or 3
Generate variates using reference vector set up in a prior call to G05RZF.
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MODE ¼ 2 or 4
Set up reference vector and generate variates.

The variates are stored differently in X for MODE ¼ 1 or 2 compared with MODE ¼ 3 or 4.

Constraint: MODE ¼ 0, 1, 2, 3 or 4.

2: N – INTEGER Input

On entry: n, the number of random variates required.

Constraint: N � 0.

3: M – INTEGER Input

On entry: m, the number of dimensions of the distribution.

Constraint: M > 0.

4: XMUðMÞ – REAL (KIND=nag_wp) array Input

On entry: a, the vector of means of the distribution.

5: CðLDC;MÞ – REAL (KIND=nag_wp) array Input

On entry: the covariance matrix of the distribution. Only the upper triangle need be set.

Constraint: C must be positive semidefinite to machine precision.

6: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G05RZF
is called.

Constraint: LDC � M.

7: RðLRÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MODE ¼ 1 or 3, the reference vector as set up by G05RZF in a previous call with
MODE ¼ 0, 2 or 4.

On exit: if MODE ¼ 0 or 2, the reference vector that can be used in subsequent calls to G05RZF
with MODE ¼ 1 or 3.

8: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05RZF is
called. If MODE ¼ 1 or 3, it must be the same as the value of LR specified in the prior call to
G05RZF with MODE ¼ 0, 2 or 4.

Constraint: LR � M� Mþ 1ð Þ þ 1.

9: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

10: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least M if MODE ¼ 1 or 2 and at least N if
MODE ¼ 3 or 4.

On exit: the array of pseudorandom multivariate Normal vectors generated by the routine.
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Two possible storage orders are available. If MODE ¼ 1 or 2 then Xði; jÞ holds the jth dimension
for the ith variate. If MODE ¼ 3 or 4 this ordering is reversed and Xðj; iÞ holds the jth
dimension for the ith variate.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05RZF
is called.

Constraints:

if MODE ¼ 1 or 2, LDX � N;
if MODE ¼ 3 or 4, LDX � M.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, invalid value for MODE.
Constraint: MODE ¼ 0, 1, 2, 3 or 4.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, M ¼ valueh i.
Constraint: M > 0.

IFAIL ¼ 5

On entry, the covariance matrix C is not positive semidefinite to machine precision.

IFAIL ¼ 6

On entry, LDC ¼ valueh i and M ¼ valueh i.
Constraint: LDC � M.

IFAIL ¼ 7

M is not the same as when R was set up in a previous call.
Previous value of M ¼ valueh i and M ¼ valueh i.
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IFAIL ¼ 8

On entry, LR is not large enough, LR ¼ valueh i: minimum length required ¼ valueh i.

IFAIL ¼ 9

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 11

On entry, LDX ¼ valueh i and M ¼ valueh i.
Constraint: LDX � M.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05RZF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05RZF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G05RZF is of order nm3.

It is recommended that the diagonal elements of C should not differ too widely in order of magnitude.
This may be achieved by scaling the variables if necessary. The actual matrix decomposed is
C þ E ¼ LLT, where E is a diagonal matrix with small positive diagonal elements. This ensures that,
even when C is singular, or nearly singular, the Cholesky factor L corresponds to a positive definite
covariance matrix that agrees with C within machine precision.
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10 Example

This example prints ten pseudorandom observations from a multivariate Normal distribution with means
vector

1:0
2:0
�3:0
0:0

264
375

and covariance matrix

1:69 0:39 �1:86 0:07
0:39 98:01 �7:07 �0:71
�1:86 �7:07 11:56 0:03
0:07 �0:71 0:03 0:01

264
375;

generated by G05RZF. All ten observations are generated by a single call to G05RZF with MODE ¼ 2.
The random number generator is initialized by G05KFF.

10.1 Program Text

Program g05rzfe

! G05RZF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05rzf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, ifail, ldc, ldx, lr, &

lstate, m, mode, n, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:), r(:), x(:,:), xmu(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05RZF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and number of dimensions
Read (nin,*) n, m
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ldc = m
ldx = n
lr = m*(m+1) + 1
Allocate (x(ldx,m),c(ldc,m),r(lr),xmu(m))

! Read in vector of means
Read (nin,*) xmu(1:m)

! Read in upper triangle portion of the covariance matrix
Do i = 1, m

Read (nin,*) c(i,i:m)
End Do

! Using a single call to G05RZF, so set up reference vector
! and generate values in one go

mode = 2

! Generate variates
ifail = 0
Call g05rzf(mode,n,m,xmu,c,ldc,r,lr,state,x,ldx,ifail)

! Display the variates
ifail = 0
Call x04caf(’General’,’ ’,n,m,x,ldx,’Variates’,ifail)

End Program g05rzfe

10.2 Program Data

G05RZF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 4 :: N,M
1.0 2.0 -3.0 0.0 :: XMU
1.69 0.39 -1.86 0.07

98.01 -7.07 -0.71
11.56 0.03

0.01 :: End of C (upper triangular part)

10.3 Program Results

G05RZF Example Program Results

Variates
1 2 3 4

1 1.4534 -14.1206 -3.7410 0.1184
2 -0.6191 -4.8000 -0.1473 -0.0304
3 1.8607 5.3206 -5.0753 0.0106
4 2.0861 -13.6996 -1.3451 0.1428
5 -0.6326 3.9729 0.5721 -0.0770
6 0.9754 -3.8162 -4.2978 0.0040
7 0.6174 -5.1573 2.5037 0.0772
8 2.0352 26.9359 2.2939 -0.0826
9 0.9941 14.7700 -1.0421 -0.0549

10 1.5780 2.8916 -2.1725 -0.0129
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NAG Library Routine Document

G05SAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SAF generates a vector of pseudorandom numbers taken from a uniform distribution between 0 and
1.

2 Specification

SUBROUTINE G05SAF (N, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) X(N)

3 Description

G05SAF generates n values from a uniform distribution over the half closed interval 0; 1ð �.
One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SAF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

3: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from a uniform distribution over the half closed interval
0; 1ð �.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints the first five pseudorandom numbers from a uniform distribution between 0 and 1,
generated by G05SAF after initialization by G05KFF.
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10.1 Program Text

Program g05safe

! G05SAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05saf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Generate the variates
ifail = 0
Call g05saf(n,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05safe

10.2 Program Data

G05SAF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 :: N
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10.3 Program Results

G05SAF Example Program Results

0.6364
0.1065
0.7460
0.7983
0.1046
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NAG Library Routine Document

G05SBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SBF generates a vector of pseudorandom numbers taken from a beta distribution with parameters a
and b.

2 Specification

SUBROUTINE G05SBF (N, A, B, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) A, B, X(N)

3 Description

The beta distribution has PDF (probability density function)

f xð Þ ¼  aþ bð Þ
 að Þ bð Þx

a�1 1� xð Þb�1 if 0 � x � 1; a; b > 0;

f xð Þ ¼ 0 otherwise:

One of four algorithms is used to generate the variates depending on the values of a and b. Let � be the
maximum and � be the minimum of a and b. Then the algorithms are as follows:

(i) if � < 0:5, Johnk's algorithm is used, see for example Dagpunar (1988). This generates the beta

variate as u1=a1 = u
1=a
1 þ u

1=b
2

� �
, where u1 and u2 are uniformly distributed random variates;

(ii) if � > 1, the algorithm BB given by Cheng (1978) is used. This involves the generation of an
observation from a beta distribution of the second kind by the envelope rejection method using a
log-logistic target distribution and then transforming it to a beta variate;

(iii) if � > 1 and � < 1, the switching algorithm given by Atkinson (1979) is used. The two target
distributions used are f1 xð Þ ¼ �x� and f2 xð Þ ¼ � 1� xð Þ��1, along with the approximation to the
switching argument of t ¼ 1� �ð Þ= �þ 1� �ð Þ;

(iv) in all other cases, Cheng's BC algorithm (see Cheng (1978)) is used with modifications suggested
by Dagpunar (1988). This algorithm is similar to BB, used when � > 1, but is tuned for small
values of a and b.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SBF.

4 References

Atkinson A C (1979) A family of switching algorithms for the computer generation of beta random
variates Biometrika 66 141–5

Cheng R C H (1978) Generating beta variates with nonintegral shape parameters Comm. ACM 21 317–
322

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the parameter of the beta distribution.

Constraint: A > 0:0.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the parameter of the beta distribution.

Constraint: B > 0:0.

4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified beta distribution.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, A ¼ valueh i.
Constraint: A > 0:0.
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IFAIL ¼ 3

On entry, B ¼ valueh i.
Constraint: B > 0:0.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

To generate an observation, y, from the beta distribution of the second kind from an observation, x,
generated by G05SBF the transformation, y ¼ x= 1� xð Þ, may be used.

10 Example

This example prints a set of five pseudorandom numbers from a beta distribution with parameters
a ¼ 2:0 and b ¼ 2:0, generated by a single call to G05SBF, after initialization by G05KFF.

10.1 Program Text

Program g05sbfe

! G05SBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05sbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameters
Read (nin,*) a, b

! Generate the variates
ifail = 0
Call g05sbf(n,a,b,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05sbfe

10.2 Program Data

G05SBF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 :: N
2.0 2.0 :: A,B

10.3 Program Results

G05SBF Example Program Results

0.5977
0.6818
0.1797
0.4174
0.4987
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NAG Library Routine Document

G05SCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SCF generates a vector of pseudorandom numbers from a Cauchy distribution with median a and
semi-interquartile range b.

2 Specification

SUBROUTINE G05SCF (N, XMED, SEMIQR, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) XMED, SEMIQR, X(N)

3 Description

The distribution has PDF (probability density function)

f xð Þ ¼ 1

	b 1þ x�a
b

� �2� �:
G05SCF returns the value

aþ b2y1 � 1

y2
;

where y1 and y2 are a pair of consecutive pseudorandom numbers from a uniform distribution over
0; 1ð Þ, such that

2y1 � 1ð Þ2 þ y22 � 1:

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SCF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: XMED – REAL (KIND=nag_wp) Input

On entry: a, the median of the distribution.

3: SEMIQR – REAL (KIND=nag_wp) Input

On entry: b, the semi-interquartile range of the distribution.

Constraint: SEMIQR � 0:0.
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4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified Cauchy distribution.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, SEMIQR ¼ valueh i.
Constraint: SEMIQR � 0:0.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints the first five pseudorandom real numbers from a Cauchy distribution with median
1:0 and semi-interquartile range 2:0, generated by a single call to G05SCF, after initialization by
G05KFF.

10.1 Program Text

Program g05scfe

! G05SCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05scf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: semiqr, xmed
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
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Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameters
Read (nin,*) xmed, semiqr

! Generate the variates
ifail = 0
Call g05scf(n,xmed,semiqr,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05scfe

10.2 Program Data

G05SCF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 :: N
1.0 2.0 :: XMED,SEMIQR

10.3 Program Results

G05SCF Example Program Results

6.1229
2.2328

-2.2118
0.4118
0.9892
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NAG Library Routine Document

G05SDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SDF generates a vector of pseudorandom numbers taken from a �2-distribution with � degrees of
freedom.

2 Specification

SUBROUTINE G05SDF (N, DF, STATE, X, IFAIL)

INTEGER N, DF, STATE(*), IFAIL
REAL (KIND=nag_wp) X(N)

3 Description

The distribution has PDF (probability density function)

f xð Þ ¼ x�=2�1 � e�x=2

2�=2 � �=2� 1ð Þ!
if x > 0;

f xð Þ ¼ 0 otherwise:

This is the same as a gamma distribution with parameters �=2 and 2.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SDF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: DF – INTEGER Input

On entry: �, the number of degrees of freedom of the distribution.

Constraint: DF � 1.

3: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.
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4: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified �2-distribution.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, DF ¼ valueh i.
Constraint: DF � 1.

IFAIL ¼ 3

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G05SDF increases with �.

10 Example

This example prints five pseudorandom numbers from a �2-distribution with five degrees of freedom,
generated by a single call to G05SDF, after initialization by G05KFF.

10.1 Program Text

Program g05sdfe

! G05SDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05sdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: df, genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameter
Read (nin,*) df

! Generate the variates
ifail = 0
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Call g05sdf(n,df,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05sdfe

10.2 Program Data

G05SDF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 :: N
5 :: DF

10.3 Program Results

G05SDF Example Program Results

4.4731
5.9371
1.7636
2.9812
4.3280
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NAG Library Routine Document

G05SEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SEF generates a vector of pseudorandom numbers taken from a Dirichlet distribution.

2 Specification

SUBROUTINE G05SEF (N, M, A, STATE, X, LDX, IFAIL)

INTEGER N, M, STATE(*), LDX, IFAIL
REAL (KIND=nag_wp) A(M), X(LDX,M)

3 Description

The distribution has PDF (probability density function)

f xð Þ ¼ 1
B �ð Þ

Ym
i¼1
x�i�1i and

B �ð Þ ¼

Ym
i¼1

 �ið Þ



Xm
i¼1

�i

 !

where x ¼ x1; x2; . . . ; xmf g is a vector of dimension m, such that xi > 0 for all i and
Xm
i¼1
xi ¼ 1.

G05SEF generates a draw from a Dirichlet distribution by first drawing m independent samples,
yi � gamma �i; 1ð Þ, i.e., independent draws from a gamma distribution with parameters �i > 0 and one,

and then setting xi ¼ yi=
Xm
j¼1
yj.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SEF.

4 References

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: M – INTEGER Input

On entry: m, the number of dimensions of the distribution.

Constraint: M > 0.
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3: AðMÞ – REAL (KIND=nag_wp) array Input

On entry: the parameter vector for the distribution.

Constraint: AðiÞ > 0:0, for i ¼ 1; 2; . . . ;M.

4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðLDX;MÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified Dirichlet distribution, with Xði; jÞ
holding the jth dimension for the ith variate.

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05SEF
is called.

Constraint: LDX � N.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M > 0.

IFAIL ¼ 3

On entry, at least one AðiÞ � 0.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.
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IFAIL ¼ 6

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints a set of five pseudorandom numbers from a Dirichlet distribution with parameters
m ¼ 4 and � ¼ 2:0; 2:0; 2:0; 2:0f g, generated by a single call to G05SEF, after initialization by
G05KFF.

10.1 Program Text

Program g05sefe

! G05SEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05sef, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, ifail, ldx, lstate, m, n, &

subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), x(:,:)
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Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and number of dimensions
Read (nin,*) n, m

ldx = n
Allocate (x(ldx,m),a(m))

! Read in the distribution parameters
Read (nin,*) a(1:m)

! Generate the variates
ifail = 0
Call g05sef(n,m,a,state,x,ldx,ifail)

! Display the variates
ifail = 0
Call x04caf(’General’,’ ’,n,m,x,ldx,’ ’,ifail)

End Program g05sefe

10.2 Program Data

G05SEF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 4 :: N,M
2.0 2.0 2.0 2.0 :: A

10.3 Program Results

G05SEF Example Program Results

1 2 3 4
1 0.3600 0.3138 0.0837 0.2426
2 0.2874 0.5121 0.1497 0.0509
3 0.2286 0.2190 0.3959 0.1566
4 0.1744 0.3961 0.2764 0.1530
5 0.1522 0.2845 0.2074 0.3559
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NAG Library Routine Document

G05SFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SFF generates a vector of pseudorandom numbers from a (negative) exponential distribution with
mean a.

2 Specification

SUBROUTINE G05SFF (N, A, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) A, X(N)

3 Description

The exponential distribution has PDF (probability density function):

f xð Þ ¼ 1
ae
�x=a if x � 0;

f xð Þ ¼ 0 otherwise:

G05SFF returns the values

xi ¼ �a ln yi
where yi are the next n numbers generated by a uniform 0; 1ð � generator.
One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SFF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the mean of the distribution.

Constraint: A > 0:0.

3: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.
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On exit: contains updated information on the state of the generator.

4: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified exponential distribution.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, A ¼ valueh i.
Constraint: A > 0:0.

IFAIL ¼ 3

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

G05SFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints five pseudorandom numbers from an exponential distribution with mean 1:0,
generated by a single call to G05SFF, after initialization by G05KFF.

10.1 Program Text

Program g05sffe

! G05SFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05sff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))
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! Read in the distribution parameter
Read (nin,*) a

! Generate the variates
ifail = 0
Call g05sff(n,a,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05sffe

10.2 Program Data

G05SFF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 :: N
1.0 :: A

10.3 Program Results

G05SFF Example Program Results

0.4520
2.2398
0.2930
0.2253
2.2577
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NAG Library Routine Document

G05SGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SGF generates a vector of pseudorandom numbers from an exponential mix distribution composed
of m exponential distributions each having a mean ai and weight wi.

2 Specification

SUBROUTINE G05SGF (N, NMIX, A, WGT, STATE, X, IFAIL)

INTEGER N, NMIX, STATE(*), IFAIL
REAL (KIND=nag_wp) A(NMIX), WGT(NMIX), X(N)

3 Description

The distribution has PDF (probability density function)

f xð Þ ¼
Xm
i¼1

1
ai
wie

�x=ai if x � 0;

f xð Þ ¼ 0 otherwise;

where
Xm
i¼1
wi ¼ 1 and ai > 0, wi � 0.

G05SGF returns the values xi by selecting, with probability wj, random variates from an exponential
distribution with argument aj.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SGF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: NMIX – INTEGER Input

On entry: m, the number of exponential distributions in the mix.

Constraint: NMIX � 1.

3: AðNMIXÞ – REAL (KIND=nag_wp) array Input

On entry: the m parameters ai for the m exponential distributions in the mix.

Constraint: AðiÞ > 0:0, for i ¼ 1; 2; . . . ;NMIX.
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4: WGTðNMIXÞ – REAL (KIND=nag_wp) array Input

On entry: the m weights wi for the m exponential distributions in the mix.

Constraints:Xm
i¼1

WGTðiÞ ¼ 1:0;

WGTðiÞ � 0:0, for i ¼ 1; 2; . . . ;m.

5: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

6: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified exponential mix distribution.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, NMIX ¼ valueh i.
Constraint: NMIX � 1.

IFAIL ¼ 3

On entry, Að valueh iÞ ¼ valueh i.
Constraint: AðiÞ > 0:0.

IFAIL ¼ 4

On entry, sum of WGT ¼ valueh i.
Constraint: sum of WGT ¼ 1:0.

On entry, WGTð valueh iÞ ¼ valueh i.
Constraint: WGTðiÞ � 0:0.
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IFAIL ¼ 5

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints the first five pseudorandom numbers from an exponential mix distribution
comprising three exponential distributions with parameters a1 ¼ 1:0, a2 ¼ 5:0 and a3 ¼ 2:0, and with
respective weights 0:5, 0:3 and 0:2. The numbers are generated by a single call to G05SGF, after
initialization by G05KFF.

10.1 Program Text

Program g05sgfe

! G05SGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05sgf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, ifail, lstate, n, nmix, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), wgt(:), x(:)
Integer :: seed(lseed)
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Integer, Allocatable :: state(:)
! .. Executable Statements ..

Write (nout,*) ’G05SGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and number of mixtures
Read (nin,*) n, nmix

Allocate (x(n),a(nmix),wgt(nmix))

! Read in the distribution parameters
Read (nin,*) a(1:nmix)
Read (nin,*) wgt(1:nmix)

! Generate the variates
ifail = 0
Call g05sgf(n,nmix,a,wgt,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05sgfe

10.2 Program Data

G05SGF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 3 :: N,NMIX
1.0 5.0 2.0 :: A
0.5 0.3 0.2 :: WGT

10.3 Program Results

G05SGF Example Program Results

0.4520
2.2398
1.4649
0.2253

11.2884
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NAG Library Routine Document

G05SHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SHF generates a vector of pseudorandom numbers taken from an F (or Fisher's variance ratio)
distribution with � and � degrees of freedom.

2 Specification

SUBROUTINE G05SHF (N, DF1, DF2, STATE, X, IFAIL)

INTEGER N, DF1, DF2, STATE(*), IFAIL
REAL (KIND=nag_wp) X(N)

3 Description

The distribution has PDF (probability density function)

f xð Þ ¼
�þ��2

2

� �
!x

1
2��1

1
2�� 1
� �

! 1
2� � 1
� �

! 1þ �
�x

� �1
2 �þ�ð Þ �

�
�

� �1
2� if x > 0;

f xð Þ ¼ 0 otherwise:

G05SHF calculates the values

�yi
�zi

; i ¼ 1; 2; . . . ; n;

where yi and zi are generated by G05SJF from gamma distributions with parameters 1
2�; 2
� �

and 1
2�; 2
� �

respectively (i.e., from �2-distributions with � and � degrees of freedom).

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SHF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: DF1 – INTEGER Input

On entry: �, the number of degrees of freedom of the distribution.

Constraint: DF1 � 1.
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3: DF2 – INTEGER Input

On entry: �, the number of degrees of freedom of the distribution.

Constraint: DF2 � 1.

4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified F -distribution.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, DF1 ¼ valueh i.
Constraint: DF1 � 1.

IFAIL ¼ 3

On entry, DF2 ¼ valueh i.
Constraint: DF2 � 1.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G05SHF increases with � and �.

10 Example

This example prints five pseudorandom numbers from an F -distribution with two and three degrees of
freedom, generated by a single call to G05SHF, after initialization by G05KFF.

10.1 Program Text

Program g05shfe

! G05SHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05shf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: df1, df2, genid, ifail, lstate, n, &

subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)
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! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameters
Read (nin,*) df1, df2

! Generate the variates
ifail = 0
Call g05shf(n,df1,df2,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05shfe

10.2 Program Data

G05SHF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 3 :: N,NMIX
2 3 :: DF1,DF2

10.3 Program Results

G05SHF Example Program Results

1.4401
1.8083
0.3638
0.5464
4.0895

G05SHF NAG Library Manual

G05SHF.4 (last) Mark 26



NAG Library Routine Document

G05SJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SJF generates a vector of pseudorandom numbers taken from a gamma distribution with parameters
a and b.

2 Specification

SUBROUTINE G05SJF (N, A, B, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) A, B, X(N)

3 Description

The gamma distribution has PDF (probability density function)

f xð Þ ¼ 1

ba að Þx
a�1e�x=b if x � 0; a; b > 0

f xð Þ ¼ 0 otherwise:

One of three algorithms is used to generate the variates depending upon the value of a:

(i) if a < 1, a switching algorithm described by Dagpunar (1988) (called G6) is used. The target
distributions are f1 xð Þ ¼ caxa�1=ta and f2 xð Þ ¼ 1� cð Þe� x�tð Þ, where c ¼ t= tþ ae�tð Þ, and the
switching argument, t, is taken as 1� a. This is similar to Ahrens and Dieter's GS algorithm (see
Ahrens and Dieter (1974)) in which t ¼ 1;

(ii) if a ¼ 1, the gamma distribution reduces to the exponential distribution and the method based on
the logarithmic transformation of a uniform random variate is used;

(iii) if a > 1, the algorithm given by Best (1978) is used. This is based on using a Student's
t-distribution with two degrees of freedom as the target distribution in an envelope rejection
method.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SJF.

4 References

Ahrens J H and Dieter U (1974) Computer methods for sampling from gamma, beta, Poisson and
binomial distributions Computing 12 223–46

Best D J (1978) Letter to the Editor Appl. Statist. 27 181

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the parameter of the gamma distribution.

Constraint: A > 0:0.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the parameter of the gamma distribution.

Constraint: B > 0:0.

4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified gamma distribution.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, A ¼ valueh i.
Constraint: A > 0:0.
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IFAIL ¼ 3

On entry, B ¼ valueh i.
Constraint: B > 0:0.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints a set of five pseudorandom numbers from a gamma distribution with parameters
a ¼ 5:0 and b ¼ 1:0, generated by a single call to G05SJF, after initialization by G05KFF.

10.1 Program Text

Program g05sjfe

! G05SJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05sjf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b
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Integer :: genid, ifail, lstate, n, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameters
Read (nin,*) a, b

! Generate the variates
ifail = 0
Call g05sjf(n,a,b,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05sjfe

10.2 Program Data

G05SJF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 3 :: N,NMIX
5.0 1.0 :: A,B

10.3 Program Results

G05SJF Example Program Results

5.0702
6.1337
3.1018
3.9863
4.9648
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NAG Library Routine Document

G05SKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SKF generates a vector of pseudorandom numbers taken from a Normal (Gaussian) distribution
with mean � and variance �2.

2 Specification

SUBROUTINE G05SKF (N, XMU, VAR, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) XMU, VAR, X(N)

3 Description

The distribution has PDF (probability distribution function)

f xð Þ ¼ 1

�
ffiffiffiffiffiffi
2	
p exp � x� �ð Þ2

2�2

 !
:

G05SKF uses the algorithm of Wichura (1988).

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SKF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Wichura (1988) Algorithm AS 241: the percentage points of the Normal distribution Appl. Statist. 37
477–484

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: XMU – REAL (KIND=nag_wp) Input

On entry: �, the mean of the distribution.

3: VAR – REAL (KIND=nag_wp) Input

On entry: �2, the variance of the distribution.

Constraint: VAR � 0:0.
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4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified Normal distribution.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, VAR ¼ valueh i.
Constraint: VAR � 0:0.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints five pseudorandom numbers from a Normal distribution with mean 1:0 and
variance 1:5, generated by a single call to G05SKF, after initialization by G05KFF.

10.1 Program Text

Program g05skfe

! G05SKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05skf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: var, xmu
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
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! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameters
Read (nin,*) xmu, var

! Generate the variates
ifail = 0
Call g05skf(n,xmu,var,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05skfe

10.2 Program Data

G05SKF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 :: N
1.0 1.5 :: XMU,VAR

10.3 Program Results

G05SKF Example Program Results

1.4272
-0.5254
1.8109
2.0232

-0.5380
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NAG Library Routine Document

G05SLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SLF generates a vector of pseudorandom numbers from a logistic distribution with mean a and
spread b.

2 Specification

SUBROUTINE G05SLF (N, A, B, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) A, B, X(N)

3 Description

The distribution has PDF (probability density function)

f xð Þ ¼ e x�að Þ=b

b 1þ e x�að Þ=bð Þ2
:

G05SLF returns the value

aþ b ln y

1� y

� �
;

where y is a pseudorandom number uniformly distributed over 0; 1ð Þ.
One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SLF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the mean of the distribution.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the spread of the distribution, where ‘spread’ is
ffiffi
3
p

	 � standard deviation.

Constraint: B � 0:0.
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4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified logistic distribution.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, B ¼ valueh i.
Constraint: B � 0:0.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SLF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints the first five pseudorandom real numbers from a logistic distribution with mean 1:0
and spread 2:0, generated by a single call to G05SLF, after initialization by G05KFF.

10.1 Program Text

Program g05slfe

! G05SLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05slf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
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! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameters
Read (nin,*) a, b

! Generate the variates
ifail = 0
Call g05slf(n,a,b,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05slfe

10.2 Program Data

G05SLF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 3 :: N,NMIX
1.0 2.0 :: A,B

10.3 Program Results

G05SLF Example Program Results

2.1193
-3.2544
3.1552
3.7510

-3.2944
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NAG Library Routine Document

G05SMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SMF generates a vector of pseudorandom numbers from a log-normal distribution with parameters
� and �2.

2 Specification

SUBROUTINE G05SMF (N, XMU, VAR, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) XMU, VAR, X(N)

3 Description

The distribution has PDF (probability density function)

f xð Þ ¼ 1

x�
ffiffiffiffiffiffi
2	
p exp � lnx��ð Þ2

2�2

� �
if x > 0;

f xð Þ ¼ 0 otherwise;

i.e., lnx is normally distributed with mean � and variance �2. G05SMF evaluates exp yi, where the yi
are generated by G05SKF from a Normal distribution with mean � and variance �2, for i ¼ 1; 2; . . . ; n.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SMF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: XMU – REAL (KIND=nag_wp) Input

On entry: �, the mean of the distribution of lnx.

3: VAR – REAL (KIND=nag_wp) Input

On entry: �2, the variance of the distribution of lnx.

Constraint: VAR � 0:0.
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4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified log-normal distribution.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, XMU is too large to take the exponential of XMU ¼ valueh i.

IFAIL ¼ 3

On entry, VAR ¼ valueh i.
Constraint: VAR � 0:0.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SMF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints five pseudorandom numbers from a log-normal distribution with mean 1:0 and
variance 2:0, generated by a single call to G05SMF, after initialization by G05KFF.

10.1 Program Text

Program g05smfe

! G05SMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05smf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: var, xmu
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SMF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
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! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameters
Read (nin,*) xmu, var

! Generate the variates
ifail = 0
Call g05smf(n,xmu,var,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05smfe

10.2 Program Data

G05SMF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 3 :: N,NMIX
1.0 2.0 :: XMU,VAR

10.3 Program Results

G05SMF Example Program Results

4.4515
0.4670
6.9331
8.8597
0.4603
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NAG Library Routine Document

G05SNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SNF generates a vector of pseudorandom numbers taken from a Student's t-distribution with �
degrees of freedom.

2 Specification

SUBROUTINE G05SNF (N, DF, STATE, X, IFAIL)

INTEGER N, DF, STATE(*), IFAIL
REAL (KIND=nag_wp) X(N)

3 Description

The distribution has PDF (probability density function)

f xð Þ ¼
��1
2

� �
!

1
2� � 1
� �

!
ffiffiffiffiffiffi
	�
p

1þ x2

�

� �1
2 �þ1ð Þ:

G05SNF calculates the values

yi

ffiffiffiffi
�

zi

r
; i ¼ 1; . . . ; n

where the yi are generated by G05SKF from a Normal distribution with mean 0 and variance 1:0, and
the zi are generated by G05SJF from a gamma distribution with parameters 1

2� and 2 (i.e., from a
�2-distribution with � degrees of freedom).

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SNF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: DF – INTEGER Input

On entry: �, the number of degrees of freedom of the distribution.

Constraint: DF � 1.

3: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

G05 – Random Number Generators G05SNF

Mark 26 G05SNF.1



On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

4: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified Student's t-distribution.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, DF ¼ valueh i.
Constraint: DF � 1.

IFAIL ¼ 3

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

G05SNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G05SNF increases with �.

10 Example

This example prints five pseudorandom numbers from a Student's t-distribution with five degrees of
freedom, generated by a single call to G05SNF, after initialization by G05KFF.

10.1 Program Text

Program g05snfe

! G05SNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05snf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: df, genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))
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! Read in the distribution parameters
Read (nin,*) df

! Generate the variates
ifail = 0
Call g05snf(n,df,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05snfe

10.2 Program Data

G05SNF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 3 :: N,NMIX
5 :: DF

10.3 Program Results

G05SNF Example Program Results

0.3849
-0.9461
-2.2814
0.1127
0.5272
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NAG Library Routine Document

G05SPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SPF generates a vector of pseudorandom numbers from a triangular distribution with parameters
xmin , xmed and xmax .

2 Specification

SUBROUTINE G05SPF (N, XMIN, XMED, XMAX, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) XMIN, XMED, XMAX, X(N)

3 Description

The triangular distribution has a PDF (probability density function) that is triangular in profile. The
base of the triangle ranges from x ¼ xmin to x ¼ xmax and the PDF has a maximum value of

2

xmax � xmin
at x ¼ xmed. If xmin ¼ xmed ¼ xmax then x ¼ xmed with probability 1; otherwise the

triangular distribution has PDF:

f xð Þ ¼ x� xmin

xmed � xmin
� 2

xmax � xmin
if xmin � x � xmed;

f xð Þ ¼ xmax � x
xmax � xmed

� 2

xmax � xmin
if xmed < x � xmax ;

f xð Þ ¼ 0 otherwise:

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SPF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: XMIN – REAL (KIND=nag_wp) Input

On entry: the end point xmin of the triangular distribution.
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3: XMED – REAL (KIND=nag_wp) Input

On entry: the median of the distribution xmed (also the location of the vertex of the triangular
distribution at which the PDF reaches a maximum).

Constraint: XMED � XMIN.

4: XMAX – REAL (KIND=nag_wp) Input

On entry: the end point xmax of the triangular distribution.

Constraint: XMAX � XMED.

5: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

6: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified triangular distribution.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, XMED ¼ valueh i and XMIN ¼ valueh i.
Constraint: XMED � XMIN.

IFAIL ¼ 4

On entry, XMAX ¼ valueh i and XMED ¼ valueh i.
Constraint: XMAX � XMED.

IFAIL ¼ 5

On entry, STATE vector has been corrupted or not initialized.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SPF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints five pseudorandom numbers from a triangular distribution with parameters
xmin ¼ �1:0, xmed ¼ 0:5 and xmax ¼ 1:0, generated by a single call to G05SPF, after initialization by
G05KFF.

10.1 Program Text

Program g05spfe

! G05SPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05spf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xmax, xmed, xmin
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SPF Example Program Results’
Write (nout,*)
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! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameters
Read (nin,*) xmin, xmed, xmax

! Generate the variates
ifail = 0
Call g05spf(n,xmin,xmed,xmax,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05spfe

10.2 Program Data

G05SPF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 3 :: N,NMIX
-1.0 0.5 1.0 :: XMIN,XMED,XMAX

10.3 Program Results

G05SPF Example Program Results

0.3817
-0.4348
0.4960
0.5509

-0.4398
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NAG Library Routine Document

G05SQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SQF generates a vector of pseudorandom numbers uniformly distributed over the interval a; b½ �.

2 Specification

SUBROUTINE G05SQF (N, A, B, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) A, B, X(N)

3 Description

If a ¼ 0 and b ¼ 1, G05SQF returns the next n values yi from a uniform 0; 1ð � generator (see G05SAF
for details).

For other values of a and b, G05SQF applies the transformation

xi ¼ aþ b� að Þyi:

The routine ensures that the values xi lie in the closed interval a; b½ �.
One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SQF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: A – REAL (KIND=nag_wp) Input
3: B – REAL (KIND=nag_wp) Input

On entry: the end points a and b of the uniform distribution.

Constraint: A � B.

4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified uniform distribution.
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: B � A.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SQF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

Although yi takes a value from the half closed interval 0; 1ð � and xi ¼ aþ b� að Þyi, xi is documented
as taking values from the closed interval a; b½ �. This is because for some values of a and b, G05SQF
may return a value of a due to numerical rounding.

10 Example

This example prints five pseudorandom numbers from a uniform distribution between �1:0 and 1:0,
generated by a single call to G05SQF, after initialization by G05KFF.

10.1 Program Text

Program g05sqfe

! G05SQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05sqf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SQF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameters
Read (nin,*) a, b

! Generate the variates
ifail = 0
Call g05sqf(n,a,b,state,x,ifail)
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! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05sqfe

10.2 Program Data

G05SQF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 3 :: N,NMIX
-1.0 1.0 :: A,B

10.3 Program Results

G05SQF Example Program Results

0.2727
-0.7870
0.4921
0.5965

-0.7908
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NAG Library Routine Document

G05SRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SRF generates a vector of pseudorandom numbers from a von Mises distribution with concentration
parameter �.

2 Specification

SUBROUTINE G05SRF (N, VK, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) VK, X(N)

3 Description

The von Mises distribution is a symmetric distribution used in the analysis of circular data. The PDF
(probability density function) of this distribution on the circle with mean direction �0 ¼ 0 and
concentration parameter �, can be written as:

f �ð Þ ¼ e� cos �

2	I0 �ð Þ
;

where � is reduced modulo 2	 so that �	 � � < 	 and � � 0. For very small � the distribution is
almost the uniform distribution, whereas for �!1 all the probability is concentrated at one point.

The n variates, �1; �2; . . . ; �n, are generated using an envelope rejection method with a wrapped Cauchy
target distribution as proposed by Best and Fisher (1979) and described by Dagpunar (1988).

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SRF.

4 References

Best D J and Fisher N I (1979) Efficient simulation of the von Mises distribution Appl. Statist. 28 152–
157

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

Mardia K V (1972) Statistics of Directional Data Academic Press

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: VK – REAL (KIND=nag_wp) Input

On entry: �, the concentration parameter of the required von Mises distribution.

Constraint: 0:0 < VK �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X02ALF
p

=2:0.
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3: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

4: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified von Mises distribution.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, VK � 0:0 or VK too large: VK ¼ valueh i.

IFAIL ¼ 3

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SRF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For a given number of random variates the generation time increases slightly with increasing �.

10 Example

This example prints the first five pseudorandom numbers from a von Mises distribution with � ¼ 1:0,
generated by a single call to G05SRF, after initialization by G05KFF.

10.1 Program Text

Program g05srfe

! G05SRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05srf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: vk
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SRF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
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! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameters
Read (nin,*) vk

! Generate the variates
ifail = 0
Call g05srf(n,vk,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05srfe

10.2 Program Data

G05SRF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 3 :: N,NMIX
1.0 :: VK

10.3 Program Results

G05SRF Example Program Results

1.2947
-1.9542
-0.6464
-1.4172
1.2536
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NAG Library Routine Document

G05SSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05SSF generates a vector of pseudorandom numbers from a two parameter Weibull distribution with
shape parameter a and scale parameter b.

2 Specification

SUBROUTINE G05SSF (N, A, B, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) A, B, X(N)

3 Description

The distribution has PDF (probability density function)

f xð Þ ¼ a
b
xa�1e�x

a=b if x > 0;

f xð Þ ¼ 0 otherwise:

G05SSF returns the value �b ln yð Þ1=a, where y is a pseudorandom number from a uniform distribution
over 0; 1ð �.
One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05SSF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: A – REAL (KIND=nag_wp) Input

On entry: a, the shape parameter of the distribution.

Constraint: A > 0:0.

3: B – REAL (KIND=nag_wp) Input

On entry: b, the scale parameter of the distribution.

Constraint: B > 0:0.
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4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n pseudorandom numbers from the specified Weibull distribution.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, A ¼ valueh i.
Constraint: A > 0:0.

IFAIL ¼ 3

On entry, B ¼ valueh i.
Constraint: B > 0:0.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05SSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints the first five pseudorandom numbers from a Weibull distribution with shape
parameter 1:0 and scale parameter 2:0, generated by a single call to G05SSF, after initialization by
G05KFF.

10.1 Program Text

Program g05ssfe

! G05SSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05ssf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05SSF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
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! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

Allocate (x(n))

! Read in the distribution parameters
Read (nin,*) a, b

! Generate the variates
ifail = 0
Call g05ssf(n,a,b,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,F10.4)
End Program g05ssfe

10.2 Program Data

G05SSF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 3 :: N,NMIX
1.0 2.0 :: A,B

10.3 Program Results

G05SSF Example Program Results

0.9039
4.4796
0.5860
0.4506
4.5154
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NAG Library Routine Document

G05TAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05TAF generates a vector of pseudorandom integers from the discrete binomial distribution with
parameters m and p.

2 Specification

SUBROUTINE G05TAF (MODE, N, M, P, R, LR, STATE, X, IFAIL)

INTEGER MODE, N, M, LR, STATE(*), X(N), IFAIL
REAL (KIND=nag_wp) P, R(LR)

3 Description

G05TAF generates n integers xi from a discrete binomial distribution, where the probability of xi ¼ I is

P xi ¼ Ið Þ ¼ m!

I! m� Ið Þ! p
I � 1� pð Þm�I ; I ¼ 0; 1; . . . ;m;

where m � 0 and 0 � p � 1. This represents the probability of achieving I successes in m trials when
the probability of success at a single trial is p.

The variates can be generated with or without using a search table and index. If a search table is used
then it is stored with the index in a reference vector and subsequent calls to G05TAF with the same
parameter values can then use this reference vector to generate further variates.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05TAF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate variates using reference vector set up in a prior call to G05TAF.

MODE ¼ 2
Set up reference vector and generate variates.

MODE ¼ 3
Generate variates without using the reference vector.

Constraint: MODE ¼ 0, 1, 2 or 3.
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2: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

3: M – INTEGER Input

On entry: m, the number of trials of the distribution.

Constraint: M � 0.

4: P – REAL (KIND=nag_wp) Input

On entry: p, the probability of success of the binomial distribution.

Constraint: 0:0 � P � 1:0.

5: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector from the previous call to G05TAF.

If MODE ¼ 3, R is not referenced.

On exit: if MODE 6¼ 3, the reference vector.

6: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05TAF is
called.

Suggested value:

if MODE 6¼ 3, LR ¼ 22þ 20�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� P� 1� Pð Þ

p
;

otherwise LR ¼ 1.

Constraints:

if MODE ¼ 0 or 2,
LR > min M; int M� Pþ 7:15�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� P� 1� Pð Þ

p
þ 1

� �� �
�max 0; int M� P� 7:15�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� P� 1� Pð Þ

p
� 7:15

� �� �
þ 8

;

if MODE ¼ 1, LR must remain unchanged from the previous call to G05TAF.

7: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

8: XðNÞ – INTEGER array Output

On exit: the n pseudorandom numbers from the specified binomial distribution.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1, 2 or 3.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, M ¼ valueh i.
Constraint: M � 0.

IFAIL ¼ 4

On entry, P ¼ valueh i.
Constraint: 0:0 � P � 1:0.

IFAIL ¼ 5

On entry, some of the elements of the array R have been corrupted or have not been initialized.

P or M is not the same as when R was set up in a previous call.
Previous value of P ¼ valueh i and P ¼ valueh i.
Previous value of M ¼ valueh i and M ¼ valueh i.

IFAIL ¼ 6

On entry, LR is too small when MODE ¼ 0 or 2: LR ¼ valueh i, minimum length required
¼ valueh i.

IFAIL ¼ 7

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

G05TAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints 20 pseudorandom integers from a binomial distribution with parameters m ¼ 6000
and p ¼ 0:8, generated by a single call to G05TAF, after initialization by G05KFF.

10.1 Program Text

Program g05tafe

! G05TAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05taf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, maxlr = 5000, nin = 5, &

nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: p
Integer :: genid, ifail, lr, lstate, m, mode, &

n, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: r(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: int, real, sqrt

! .. Executable Statements ..
Write (nout,*) ’G05TAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))
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! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size and mode
Read (nin,*) n

! Read in the distribution parameters
Read (nin,*) p, m

! Use suggested value for LR
lr = int(2.2E1_nag_wp+2.0E1_nag_wp*sqrt(real(m, &

kind=nag_wp)*p*(1.0E0_nag_wp-p)))

! If R is a reasonable size use MODE = 2
! else do not reference R and use MODE = 3

If (lr<maxlr) Then
mode = 2

Else
mode = 3
lr = 0

End If

Allocate (x(n),r(lr))

! Generate the variates
ifail = 0
Call g05taf(mode,n,m,p,r,lr,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,I12)
End Program g05tafe

10.2 Program Data

G05TAF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
20 :: N
0.8 6000 :: P,M

10.3 Program Results

G05TAF Example Program Results

4811
4761
4821
4826
4761
4800
4791
4825
4800
4814
4749
4780
4810
4750
4807
4782
4778
4877
4840
4802
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NAG Library Routine Document

G05TBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05TBF generates a vector of pseudorandom logical values – .TRUE. with probability p and .FALSE.
with probability 1� pð Þ.

2 Specification

SUBROUTINE G05TBF (N, P, STATE, X, IFAIL)

INTEGER N, STATE(*), IFAIL
REAL (KIND=nag_wp) P
LOGICAL X(N)

3 Description

G05TBF generates n logical values xi from the relation

yi < p

where yi is a pseudorandom number from a uniform distribution over 0; 1ð �, generated by G05SAF
using the values of STATE as input to this routine.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05TBF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom logical values to be generated.

Constraint: N � 0.

2: P – REAL (KIND=nag_wp) Input

On entry: must contain the probability of G05TBF returning .TRUE..

Constraint: 0:0 � P � 1:0.

3: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

4: XðNÞ – LOGICAL array Output

On exit: the n logical values.
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5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 2

On entry, P ¼ valueh i.
Constraint: 0:0 � P � 1:0.

IFAIL ¼ 3

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05TBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

None.

10 Example

This example prints the first 20 pseudorandom logical values generated by G05TBF after initialization
by G05KFF, when the probability of a .TRUE. value is 0:5.

10.1 Program Text

Program g05tbfe

! G05TBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05tbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p
Integer :: genid, ifail, lstate, n, subid

! .. Local Arrays ..
Integer :: seed(lseed)
Integer, Allocatable :: state(:)
Logical, Allocatable :: x(:)

! .. Executable Statements ..
Write (nout,*) ’G05TBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

! Read in the distribution parameters
Read (nin,*) p

Allocate (x(n))

! Generate the variates
ifail = 0
Call g05tbf(n,p,state,x,ifail)
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! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,L1)
End Program g05tbfe

10.2 Program Data

G05TBF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
20 :: N
0.5 :: P

10.3 Program Results

G05TBF Example Program Results

F
T
F
F
T
T
T
F
T
F
T
T
F
T
F
T
T
F
F
F
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NAG Library Routine Document

G05TCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05TCF generates a vector of pseudorandom integers from the discrete geometric distribution with
probability p of success at a trial.

2 Specification

SUBROUTINE G05TCF (MODE, N, P, R, LR, STATE, X, IFAIL)

INTEGER MODE, N, LR, STATE(*), X(N), IFAIL
REAL (KIND=nag_wp) P, R(LR)

3 Description

G05TCF generates n integers xi from a discrete geometric distribution, where the probability of xi ¼ I
(a first success after I þ 1 trials) is

P xi ¼ Ið Þ ¼ p� 1� pð ÞI ; I ¼ 0; 1; . . . :

The variates can be generated with or without using a search table and index. If a search table is used
then it is stored with the index in a reference vector and subsequent calls to G05TCF with the same
parameter value can then use this reference vector to generate further variates. If the search table is not
used (as recommended for small values of p) then a direct transformation of uniform variates is used.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05TCF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate variates using reference vector set up in a prior call to G05TCF.

MODE ¼ 2
Set up reference vector and generate variates.

MODE ¼ 3
Generate variates without using the reference vector.

Constraint: MODE ¼ 0, 1, 2 or 3.
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2: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

3: P – REAL (KIND=nag_wp) Input

On entry: the parameter p of the geometric distribution representing the probability of success at
a single trial.

Constraint: machine precision � P � 1:0 (see X02AJF).

4: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector from the previous call to G05TCF.

If MODE ¼ 3, R is not referenced.

On exit: if MODE 6¼ 3, the reference vector.

5: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05TCF is
called.

Suggested value:

if MODE 6¼ 3, LR ¼ 8þ 42=P approximately (see Section 9);
otherwise LR ¼ 1.

Constraints:

if MODE ¼ 0 or 2, LR � 30=Pþ 8;
if MODE ¼ 1, LR should remain unchanged from the previous call to G05TCF.

6: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

7: XðNÞ – INTEGER array Output

On exit: the n pseudorandom numbers from the specified geometric distribution.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1, 2 or 3.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, P ¼ valueh i.
Constraint: machine precision � P � 1:0.

P is so small that LR would have to be larger than the largest representable integer. Use
MODE ¼ 3 instead. P ¼ valueh i

IFAIL ¼ 4

On entry, some of the elements of the array R have been corrupted or have not been initialized.

P is not the same as when R was set up in a previous call.
Previous value of P ¼ valueh i and P ¼ valueh i.

IFAIL ¼ 5

On entry, LR is too small when MODE ¼ 0 or 2: LR ¼ valueh i, minimum length required
¼ valueh i.

IFAIL ¼ 6

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

G05TCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken to set up the reference vector, if used, increases with the length of array R. However, if
the reference vector is used, the time taken to generate numbers decreases as the space allotted to the
index part of R increases. Nevertheless, there is a point, depending on the distribution, where this
improvement becomes very small and the suggested value for the length of array R is designed to
approximate this point.

If P is very small then the storage requirements for the reference vector and the time taken to set up the
reference vector becomes prohibitive. In this case it is recommended that the reference vector is not
used. This is achieved by selecting MODE ¼ 3.

10 Example

This example prints 10 pseudorandom integers from a geometric distribution with parameter p ¼ 0:001,
generated by a single call to G05TCF, after initialization by G05KFF.

10.1 Program Text

Program g05tcfe

! G05TCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05tcf, nag_wp, x02amf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, maxlr = 5000, nin = 5, &

nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: p
Integer :: genid, ifail, lr, lstate, mode, n, &

subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: r(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: int

! .. Executable Statements ..
Write (nout,*) ’G05TCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
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! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

! Read in the distribution parameters
Read (nin,*) p

! Use suggested value for LR
If (p<x02amf()) Then

! P is too close to 0.0 to calculate LR, so
! set to MAXLR, which means we will use MODE = 3

lr = maxlr
Else

lr = int(8.0E0_nag_wp+4.2E1_nag_wp/p)
End If

! If R is a reasonable size use MODE = 2
! else do not reference R and use MODE = 3

If (lr<maxlr) Then
mode = 2

Else
mode = 3
lr = 0

End If

Allocate (x(n),r(lr))

! Generate the variates
ifail = 0
Call g05tcf(mode,n,p,r,lr,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,I12)
End Program g05tcfe

10.2 Program Data

G05TCF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 :: N
0.001 :: P

10.3 Program Results

G05TCF Example Program Results

451
2238
292
225

2256
708
955
239
696
397
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NAG Library Routine Document

G05TDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05TDF generates a vector of pseudorandom integers from a discrete distribution with a given PDF
(probability density function) or CDF (cumulative distribution function) p.

2 Specification

SUBROUTINE G05TDF (MODE, N, P, NP, IP1, ITYPE, R, LR, STATE, X, IFAIL)

INTEGER MODE, N, NP, IP1, ITYPE, LR, STATE(*), X(N), IFAIL
REAL (KIND=nag_wp) P(NP), R(LR)

3 Description

G05TDF generates a sequence of n integers xi, from a discrete distribution defined by information
supplied in P. This may either be the PDF or CDF of the distribution. A reference vector is first set up
to contain the CDF of the distribution in its higher elements, followed by an index.

Setting up the reference vector and subsequent generation of variates can each be performed by separate
calls to G05TDF or may be combined in a single call.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05TDF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate variates using reference vector set up in a prior call to G05TDF.

MODE ¼ 2
Set up reference vector and generate variates.

MODE ¼ 3
Generate variates without using the reference vector.

Constraint: MODE ¼ 0, 1, 2 or 3.

2: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.
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3: PðNPÞ – REAL (KIND=nag_wp) array Input

On entry: the PDF or CDF of the distribution.

Constraints:

0:0 � PðiÞ � 1:0, for i ¼ 1; 2; . . . ;NP;

if ITYPE ¼ 1,
XNP
i¼1

PðiÞ ¼ 1:0;

if ITYPE ¼ 2, PðiÞ < PðjÞ; i < j and PðNPÞ ¼ 1:0.

4: NP – INTEGER Input

On entry: the number of values supplied in P defining the PDF or CDF of the discrete
distribution.

Constraint: NP > 0.

5: IP1 – INTEGER Input

On entry: the value of the variate, a whole number, to which the probability in Pð1Þ corresponds.

6: ITYPE – INTEGER Input

On entry: indicates the type of information contained in P.

ITYPE ¼ 1
P contains a probability distribution function (PDF).

ITYPE ¼ 2
P contains a cumulative distribution function (CDF).

Constraint: ITYPE ¼ 1 or 2.

7: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector from the previous call to G05TDF.

On exit: the reference vector.

8: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05TDF is
called.

Suggested value:

if MODE 6¼ 3, LR ¼ 10þ 1:4� NP approximately (for optimum efficiency in generating
variates);
otherwise LR ¼ 1.

Constraints:

if MODE ¼ 0 or 2, LR � NPþ 8;
if MODE ¼ 1, LR should remain unchanged from the previous call to G05TDF.

9: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

10: XðNÞ – INTEGER array Output

On exit: contains n pseudorandom numbers from the specified discrete distribution.

G05TDF NAG Library Manual

G05TDF.2 Mark 26



11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1 or 2.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, at least one element of the vector P is less than 0:0 or greater than 1:0.

On entry, ITYPE ¼ 1 and the sum of the elements of P do not equal one.

On entry, ITYPE ¼ 2 and the values of P are not all in stricly ascending order.

On entry, PðNPÞ ¼ valueh i.
Constraint: if ITYPE ¼ 2, PðNPÞ ¼ 1:0.

IFAIL ¼ 4

On entry, NP ¼ valueh i.
Constraint: NP > 0.

IFAIL ¼ 6

On entry, ITYPE ¼ valueh i.
Constraint: ITYPE ¼ 1 or 2.

IFAIL ¼ 7

On entry, some of the elements of the array R have been corrupted or have not been initialized.

The value of NP or IP1 is not the same as when R was set up in a previous call.
Previous value of NP ¼ valueh i and NP ¼ valueh i.
Previous value of IP1 ¼ valueh i and IP1 ¼ valueh i.

IFAIL ¼ 8

On entry, LR is too small when MODE ¼ 0 or 2: LR ¼ valueh i, minimum length required
¼ valueh i.
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IFAIL ¼ 9

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05TDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints 20 pseudorandom variates from a discrete distribution whose PDF, p, is defined as
follows:

n p
�5 0:01
�4 0:02
�3 0:04
�2 0:08
�1 0:20
0 0:30
1 0:20
2 0:08
3 0:04
4 0:02
5 0:01

The reference vector is set up and and the variates are generated by a single call to G05TDF, after
initialization by G05KFF.
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10.1 Program Text

Program g05tdfe

! G05TDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05tdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, ifail, ip1, itype, lr, &

lstate, mode, n, np, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: p(:), r(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: ceiling, real

! .. Executable Statements ..
Write (nout,*) ’G05TDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

! Read in the distribution parameters
Read (nin,*) np, ip1, itype

! Use suggested value for LR
lr = 10 + ceiling(1.4E0_nag_wp*real(np,kind=nag_wp))

! Generate and set up reference vector in one go
mode = 2

Allocate (p(np),x(n),r(lr))

! Read in probabilities
Read (nin,*) p(1:np)

! Generate the variates
ifail = 0
Call g05tdf(mode,n,p,np,ip1,itype,r,lr,state,x,ifail)
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! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,I12)
End Program g05tdfe

10.2 Program Data

G05TDF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
20 :: N
11 -5 1 :: NP,IP1,ITYPE
0.01 0.02 0.04 0.08 0.2 0.3
0.2 0.08 0.04 0.02 0.01 :: End of P

10.3 Program Results

G05TDF Example Program Results

0
-2
1
1

-2
0
0
1
0
1

-3
-1
0

-3
0

-1
-1
5
2
0

G05TDF NAG Library Manual

G05TDF.6 (last) Mark 26



NAG Library Routine Document

G05TEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05TEF generates a vector of pseudorandom integers from the discrete hypergeometric distribution of
the number of specified items in a sample of size l, taken from a population of size k with m specified
items in it.

2 Specification

SUBROUTINE G05TEF (MODE, N, NS, NP, M, R, LR, STATE, X, IFAIL)

INTEGER MODE, N, NS, NP, M, LR, STATE(*), X(N), IFAIL
REAL (KIND=nag_wp) R(LR)

3 Description

G05TEF generates n integers xi from a discrete hypergeometric distribution, where the probability of
xi ¼ I is

P i ¼ Ið Þ ¼ l!m! k� lð Þ! k�mð Þ!
I! l� Ið Þ! m� Ið Þ! k�m� lþ Ið Þ!k! if I ¼ max 0;mþ l� kð Þ; . . . ;min l;mð Þ;

P i ¼ Ið Þ ¼ 0 otherwise:

The variates can be generated with or without using a search table and index. If a search table is used
then it is stored with the index in a reference vector and subsequent calls to G05TEF with the same
parameter values can then use this reference vector to generate further variates. The reference array is
generated by a recurrence relation if lm k� lð Þ k�mð Þ < 50k3, otherwise Stirling's approximation is
used.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05TEF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate variates using reference vector set up in a prior call to G05TEF.

MODE ¼ 2
Set up reference vector and generate variates.

MODE ¼ 3
Generate variates without using the reference vector.

Constraint: MODE ¼ 0, 1, 2 or 3.
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2: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

3: NS – INTEGER Input

On entry: l, the sample size of the hypergeometric distribution.

Constraint: 0 � NS � NP.

4: NP – INTEGER Input

On entry: k, the population size of the hypergeometric distribution.

Constraint: NP � 0.

5: M – INTEGER Input

On entry: m, the number of specified items of the hypergeometric distribution.

Constraint: 0 � M � NP.

6: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector from the previous call to G05TEF.

If MODE ¼ 3, R is not referenced.

On exit: if MODE 6¼ 3, the reference vector.

7: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05TEF is
called.

Suggested value:

if MODE 6¼ 3, LR ¼ 28þ 20�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NS�M� NP�Mð Þ � NP� NSð Þð Þ=NP3

q
approxi-

mately;
otherwise LR ¼ 1.

Constraints:

if MODE ¼ 0 or 2, LR must not be too small, but the limit is too complicated to specify;
if MODE ¼ 1, LR must remain unchanged from the previous call to G05TEF.

8: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

9: XðNÞ – INTEGER array Output

On exit: the pseudorandom numbers from the specified hypergeometric distribution.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1, 2 or 3.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, NS ¼ valueh i and NP ¼ valueh i.
Constraint: 0 � NS � NP.

IFAIL ¼ 4

On entry, NP ¼ valueh i.
Constraint: NP � 0.

IFAIL ¼ 5

On entry, M ¼ valueh i and NP ¼ valueh i.
Constraint: 0 � M � NP.

IFAIL ¼ 6

On entry, some of the elements of the array R have been corrupted or have not been initialized.

The value of NS, NP or M is not the same as when R was set up in a previous call with
MODE ¼ 0 or 2.

IFAIL ¼ 7

On entry, LR is too small when MODE ¼ 0 or 2: LR ¼ valueh i, minimum length required
¼ valueh i.

IFAIL ¼ 8

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05TEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

The example program prints 20 pseudorandom integers from a hypergeometric distribution with
l ¼ 500, m ¼ 900 and n ¼ 1000, generated by a single call to G05TEF, after initialization by G05KFF.

10.1 Program Text

Program g05tefe

! G05TEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05tef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, maxlr = 5000, nin = 5, &

nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: anp, tmp
Integer :: genid, ifail, lr, lstate, m, mode, &

n, np, ns, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: r(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: int, real, sqrt

! .. Executable Statements ..
Write (nout,*) ’G05TEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
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Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

! Read in the distribution parameters
Read (nin,*) ns, m, np

! Use suggested value for LR
anp = real(np,kind=nag_wp)
tmp = (real(np-m,kind=nag_wp)/anp)*(real(np-ns,kind=nag_wp)/anp)* &

(real(m*ns,kind=nag_wp)/real(np,kind=nag_wp))
lr = 28 + 20*int(sqrt(tmp))

! If R is a reasonable size use MODE = 2
! else do not reference R and use MODE = 3

If (lr<maxlr) Then
mode = 2

Else
mode = 3
lr = 0

End If

Allocate (x(n),r(lr))

! Generate the variates
ifail = -1
Call g05tef(mode,n,ns,np,m,r,lr,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,I12)
End Program g05tefe

10.2 Program Data

G05TEF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
20 :: N
500 900 1000 :: NS,M,NP
10 5 100
100 2500 10000
9780 50 10000

10.3 Program Results

G05TEF Example Program Results

452
444
453
454
444
450
449
454
450
452
442
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447
451
442
451
447
447
462
456
450
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NAG Library Routine Document

G05TFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05TFF generates a vector of pseudorandom integers from the discrete logarithmic distribution with
parameter a.

2 Specification

SUBROUTINE G05TFF (MODE, N, A, R, LR, STATE, X, IFAIL)

INTEGER MODE, N, LR, STATE(*), X(N), IFAIL
REAL (KIND=nag_wp) A, R(LR)

3 Description

G05TFF generates n integers xi from a discrete logarithmic distribution, where the probability of
xi ¼ I is

P xi ¼ Ið Þ ¼ � aI

I � log 1� að Þ; I ¼ 1; 2; . . . ;

where 0 < a < 1:

The variates can be generated with or without using a search table and index. If a search table is used
then it is stored with the index in a reference vector and subsequent calls to G05TFF with the same
parameter value can then use this reference vector to generate further variates.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05TFF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate variates using reference vector set up in a prior call to G05TFF.

MODE ¼ 2
Set up reference vector and generate variates.

MODE ¼ 3
Generate variates without using the reference vector.

Constraint: MODE ¼ 0, 1, 2 or 3.
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2: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

3: A – REAL (KIND=nag_wp) Input

On entry: a, the parameter of the logarithmic distribution.

Constraint: 0:0 < A < 1:0.

4: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector from the previous call to G05TFF.

If MODE ¼ 3, R is not referenced.

On exit: MODE 6¼ 3, the reference vector.

5: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05TFF is
called.

Suggested value:

if MODE 6¼ 3, LR ¼ 18þ 40
1�A;

otherwise LR ¼ 1.

Constraints:

if MODE ¼ 0 or 2, LR must not be too small, but the lower limit is too complicated to
specify;
if MODE ¼ 1, LR must remain unchanged from the previous call to G05TFF.

6: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

7: XðNÞ – INTEGER array Output

On exit: the n pseudorandom numbers from the specified logarithmic distribution.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1, 2 or 3.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, A ¼ valueh i.
Constraint: 0:0 < A < 1:0.

IFAIL ¼ 4

On entry, some of the elements of the array R have been corrupted or have not been initialized.

The value of A is not the same as when R was set up in a previous call.
Previous value of A ¼ valueh i and A ¼ valueh i.

IFAIL ¼ 5

On entry, LR is too small when MODE ¼ 0 or 2: LR ¼ valueh i, minimum length required
¼ valueh i.

IFAIL ¼ 6

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05TFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints 10 pseudorandom integers from a logarithmic distribution with parameter
a ¼ 0:9999, generated by a single call to G05TFF, after initialization by G05KFF.

10.1 Program Text

Program g05tffe

! G05TFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05tff, nag_wp, x02amf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, maxlr = 5000, nin = 5, &

nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: a
Integer :: genid, ifail, lr, lstate, mode, n, &

subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: r(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: int

! .. Executable Statements ..
Write (nout,*) ’G05TFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

! Read in the distribution parameters
Read (nin,*) a
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! Use suggested value for LR
If (1.0E0_nag_wp-a<x02amf()) Then

! A is too close to 1.0 to calculate LR, so
! set to MAXLR, which means we will use MODE = 3

lr = maxlr
Else

lr = int(1.8E1_nag_wp+4.0E1_nag_wp/(1.0E0_nag_wp-a))
End If

lr = maxlr
! If R is a reasonable size use MODE = 2
! else do not reference R and use MODE = 3

If (lr<maxlr) Then
mode = 2

Else
mode = 3
lr = 0

End If

Allocate (x(n),r(lr))

! Generate the variates
ifail = 0
Call g05tff(mode,n,a,r,lr,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,I12)
End Program g05tffe

10.2 Program Data

G05TFF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 :: N
0.9999 :: A

10.3 Program Results

G05TFF Example Program Results

6
23

2765
30
3
1

299
968
166

4
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NAG Library Routine Document

G05TGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05TGF generates a sequence of n variates, each consisting of k pseudorandom integers, from the
discrete multinomial distribution with k outcomes and m trials, where the outcomes have probabilities
p1; p2; . . . ; pk respectively.

2 Specification

SUBROUTINE G05TGF (MODE, N, M, K, P, R, LR, STATE, X, LDX, IFAIL)

INTEGER MODE, N, M, K, LR, STATE(*), X(LDX,K), LDX, IFAIL
REAL (KIND=nag_wp) P(K), R(LR)

3 Description

G05TGF generates a sequence of n groups of k integers xi;j , for j ¼ 1; 2; . . . ; k and i ¼ 1; 2; . . . ; n, from
a multinomial distribution with m trials and k outcomes, where the probability of xi;j ¼ Ij for each
j ¼ 1; 2; . . . ; k is

P i1 ¼ I1; . . . ; ik ¼ Ikð Þ ¼ m!Yk
j¼1
Ij!

Yk
j¼1
p
Ij
j ¼

m!

I1!I2! � � � Ik!
pI11 p

I2
2 � � � p

Ik
k ;

where Xk
j¼1

pj ¼ 1 and
Xk
j¼1

Ij ¼ m:

A single trial can have several outcomes (k) and the probability of achieving each outcome is known
(pj). After m trials each outcome will have occurred a certain number of times. The k numbers
representing the numbers of occurrences for each outcome after m trials is then a single sample from
the multinomial distribution defined by the parameters k, m and pj , for j ¼ 1; 2; . . . ; k. This routine
returns n such samples.

When k ¼ 2 this distribution is equivalent to the binomial distribution with parameters m and p ¼ p1
(see G05TAF).

The variates can be generated with or without using a search table and index. If a search table is used
then it is stored with the index in a reference vector and subsequent calls to G05TGF with the same
parameter values can then use this reference vector to generate further variates. The reference array is
generated only for the outcome with greatest probability. The number of successes for the outcome with
greatest probability is calculated first as for the binomial distribution (see G05TAF); the number of
successes for other outcomes are calculated in turn for the remaining reduced multinomial distribution;
the number of successes for the final outcome is simply calculated to ensure that the total number of
successes is m.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05TGF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley
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5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate variates using reference vector set up in a prior call to G05TGF.

MODE ¼ 2
Set up reference vector and generate variates.

MODE ¼ 3
Generate variates without using the reference vector.

Constraint: MODE ¼ 0, 1, 2 or 3.

2: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

3: M – INTEGER Input

On entry: m, the number of trials of the multinomial distribution.

Constraint: M � 0.

4: K – INTEGER Input

On entry: k, the number of possible outcomes of the multinomial distribution.

Constraint: K � 2.

5: PðKÞ – REAL (KIND=nag_wp) array Input

On entry: contains the probabilities pj , for j ¼ 1; 2; . . . ; k, of the k possible outcomes of the
multinomial distribution.

Constraint: 0:0 � PðjÞ � 1:0 and
Xk
j¼1

PðjÞ ¼ 1:0.

6: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector from the previous call to G05TGF.

If MODE ¼ 3, R is not referenced.

On exit: if MODE 6¼ 3, the reference vector.

7: LR – INTEGER Input

Note: for convenience pmax will be used here to denote the expression pmax ¼ max
j

PðjÞð Þ.

On entry: the dimension of the array R as declared in the (sub)program from which G05TGF is
called.

Suggested value:

if MODE 6¼ 3, LR ¼ 30þ 20�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� pmax � 1� pmaxð Þ

p
;

otherwise LR ¼ 1.
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Constraints:

if MODE ¼ 0 or 2,
LR > min M; INT M� pmax þ 7:25�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� pmax � 1� pmaxð Þ

p
þ 8:5

� �� �
�max 0; INT M� pmax � 7:25�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� pmax � 1� pmaxð Þ

p� �� �
þ 9

;

if MODE ¼ 1, LR must remain unchanged from the previous call to G05TGF.

8: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

9: XðLDX;KÞ – INTEGER array Output

On exit: the first n rows of Xði; jÞ each contain k pseudorandom numbers representing a
k-dimensional variate from the specified multinomial distribution.

10: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05TGF
is called.

Constraint: LDX � N.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1, 2 or 3.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, M ¼ valueh i.
Constraint: M � 0.
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IFAIL ¼ 4

On entry, K ¼ valueh i.
Constraint: K � 2.

IFAIL ¼ 5

On entry, at least one element of the vector P is less than 0:0 or greater than 1:0.

On entry, the sum of the elements of P do not equal one.

IFAIL ¼ 6

On entry, some of the elements of the array R have been corrupted or have not been initialized.

The value of M or K is not the same as when R was set up in a previous call.
Previous value of M ¼ valueh i and M ¼ valueh i.
Previous value of K ¼ valueh i and K ¼ valueh i.

IFAIL ¼ 7

On entry, LR is too small when MODE ¼ 0 or 2: LR ¼ valueh i, minimum length required
¼ valueh i.

IFAIL ¼ 8

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 10

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

IFAIL ¼ 210

On entry, LDX ¼ valueh i and K ¼ valueh i.
Constraint: LDX � K.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05TGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The reference vector for only one outcome can be set up because the conditional distributions cannot be
known in advance of the generation of variates. The outcome with greatest probability of success is
chosen for the reference vector because it will have the greatest spread of likely values.

10 Example

This example prints 20 pseudorandom k-dimensional variates from a multinomial distribution with
k ¼ 4, m ¼ 6000, p1 ¼ 0:08, p2 ¼ 0:1, p3 ¼ 0:8 and p4 ¼ 0:02, generated by a single call to G05TGF,
after initialization by G05KFF.

10.1 Program Text

Program g05tgfe

! G05TGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05tgf, nag_wp, x04eaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, maxlr = 5000, nin = 5, &

nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: pmax
Integer :: genid, ifail, k, ldx, lr, lstate, m, &

mode, n, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: p(:), r(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:), x(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: int, maxval, real, sqrt

! .. Executable Statements ..
Write (nout,*) ’G05TGF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

! Read in the distribution parameters
Read (nin,*) m, k
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ldx = n
Allocate (x(ldx,k),p(k))

! Read in probabilities
Read (nin,*) p(1:k)

! Use suggested value for LR
pmax = maxval(p(1:k))
lr = int(3.0E1_nag_wp+2.0E1_nag_wp*sqrt(real(m, &

kind=nag_wp)*pmax*(1.0E0_nag_wp-pmax)))

! If R is a reasonable size use MODE = 2
! else do not reference R and use MODE = 3

If (lr<maxlr) Then
mode = 2

Else
mode = 3
lr = 0

End If

Allocate (r(lr))

! Generate the variates
ifail = 0
Call g05tgf(mode,n,m,k,p,r,lr,state,x,ldx,ifail)

! Display the variates
ifail = 0
Call x04eaf(’General’,’ ’,n,k,x,ldx,’ ’,ifail)

End Program g05tgfe

10.2 Program Data

G05TGF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
20 :: N
6000 4 :: M,K
0.08 0.1 0.8 0.02 :: P

10.3 Program Results

G05TGF Example Program Results

1 2 3 4
1 468 603 4811 118
2 490 630 4761 119
3 482 575 4821 122
4 495 591 4826 88
5 512 611 4761 116
6 474 601 4800 125
7 485 595 4791 129
8 468 582 4825 125
9 485 598 4800 117

10 485 573 4814 128
11 501 634 4749 116
12 482 618 4780 120
13 470 584 4810 136
14 479 642 4750 129
15 476 608 4807 109
16 473 631 4782 114
17 509 596 4778 117
18 450 565 4877 108
19 484 556 4840 120
20 466 615 4802 117
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NAG Library Routine Document

G05THF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05THF generates a vector of pseudorandom integers from the discrete negative binomial distribution
with parameter m and probability p of success at a trial.

2 Specification

SUBROUTINE G05THF (MODE, N, M, P, R, LR, STATE, X, IFAIL)

INTEGER MODE, N, M, LR, STATE(*), X(N), IFAIL
REAL (KIND=nag_wp) P, R(LR)

3 Description

G05THF generates n integers xi from a discrete negative binomial distribution, where the probability of
xi ¼ I (I successes before m failures) is

P xi ¼ Ið Þ ¼ mþ I � 1ð Þ!
I! m� 1ð Þ! � p

I � 1� pð Þm; I ¼ 0; 1; . . . :

The variates can be generated with or without using a search table and index. If a search table is used
then it is stored with the index in a reference vector and subsequent calls to G05THF with the same
parameter value can then use this reference vector to generate further variates.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05THF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate variates using reference vector set up in a prior call to G05THF.

MODE ¼ 2
Set up reference vector and generate variates.

MODE ¼ 3
Generate variates without using the reference vector.

Constraint: MODE ¼ 0, 1, 2 or 3.
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2: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

3: M – INTEGER Input

On entry: m, the number of failures of the distribution.

Constraint: M � 0.

4: P – REAL (KIND=nag_wp) Input

On entry: p, the parameter of the negative binomial distribution representing the probability of
success at a single trial.

Constraint: 0:0 � P < 1:0.

5: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector from the previous call to G05THF.

If MODE ¼ 3, R is not referenced.

On exit: if MODE 6¼ 3, the reference vector.

6: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05THF is
called.

Suggested value:

if MODE 6¼ 3,
LR ¼ 28þ 20�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M� P
p

þ 30� P
� �

= 1� Pð Þ approximately;
otherwise LR ¼ 1.

Constraints:

if MODE ¼ 0 or 2,

LR > int M�Pþ7:15�
ffiffiffiffiffiffiffiffi
M�P
p

þ20:15�P
1�P þ 8:5

� �
�max 0; int M�P�7:15�

ffiffiffiffiffiffiffiffi
M�P
p

1�P

� �� �
þ 9

;

if MODE ¼ 1, LR must remain unchanged from the previous call to G05THF.

7: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

8: XðNÞ – INTEGER array Output

On exit: the n pseudorandom numbers from the specified negative binomial distribution.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1, 2 or 3.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, M ¼ valueh i.
Constraint: M � 0.

IFAIL ¼ 4

On entry, P ¼ valueh i.
Constraint: 0:0 � P < 1:0.

IFAIL ¼ 5

On entry, some of the elements of the array R have been corrupted or have not been initialized.

P or M is not the same as when R was set up in a previous call.
Previous value of P ¼ valueh i and P ¼ valueh i.
Previous value of M ¼ valueh i and M ¼ valueh i.

IFAIL ¼ 6

On entry, LR is too small when MODE ¼ 0 or 2: LR ¼ valueh i, minimum length required
¼ valueh i.

IFAIL ¼ 7

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05THF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints 20 pseudorandom integers from a negative binomial distribution with parameters
m ¼ 60 and p ¼ 0:999, generated by a single call to G05THF, after initialization by G05KFF.

10.1 Program Text

Program g05thfe

! G05THF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05thf, nag_wp, x02amf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, maxlr = 5000, nin = 5, &

nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: p
Integer :: genid, ifail, lr, lstate, m, mode, &

n, subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: r(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: int, real, sqrt

! .. Executable Statements ..
Write (nout,*) ’G05THF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
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Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

! Read in the distribution parameters
Read (nin,*) p, m

! Use suggested value for LR
If (1.0E0_nag_wp-p<x02amf()) Then

! P is too close to 1.0 to calculate LR, so
! set to MAXLR, which means we will use MODE = 3

lr = maxlr
Else

lr = int(2.8E1_nag_wp+(2.0E1_nag_wp*sqrt(real(m,kind=nag_wp)* &
p)+3.0E1_nag_wp*p)/(1.0E0_nag_wp-p))

End If

! If R is a reasonable size use MODE = 2
! else do not reference R and use MODE = 3

If (lr<maxlr) Then
mode = 2

Else
mode = 3
lr = 0

End If

Allocate (x(n),r(lr))

! Generate the variates
ifail = 0
Call g05thf(mode,n,m,p,r,lr,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,I12)
End Program g05thfe

10.2 Program Data

G05THF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
20 :: N
0.999 60 :: P,M

10.3 Program Results

G05THF Example Program Results

62339
50505
64863
66289
50434
59461
57365
65965
59572
63104
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47833
54735
62075
48018
61458
55190
54263
80995
70129
60200
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NAG Library Routine Document

G05TJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05TJF generates a vector of pseudorandom integers from the discrete Poisson distribution with mean
�.

2 Specification

SUBROUTINE G05TJF (MODE, N, LAMBDA, R, LR, STATE, X, IFAIL)

INTEGER MODE, N, LR, STATE(*), X(N), IFAIL
REAL (KIND=nag_wp) LAMBDA, R(LR)

3 Description

G05TJF generates n integers xi from a discrete Poisson distribution with mean �, where the probability
of xi ¼ I is

P xi ¼ Ið Þ ¼ �
I � e��
I!

; I ¼ 0; 1; . . . ;

where � � 0.

The variates can be generated with or without using a search table and index. If a search table is used
then it is stored with the index in a reference vector and subsequent calls to G05TJF with the same
parameter values can then use this reference vector to generate further variates. The reference array is
found using a recurrence relation if � is less than 50 and by Stirling's formula otherwise.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05TJF.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine.

MODE ¼ 0
Set up reference vector only.

MODE ¼ 1
Generate variates using reference vector set up in a prior call to G05TJF.

MODE ¼ 2
Set up reference vector and generate variates.

MODE ¼ 3
Generate variates without using the reference vector.

Constraint: MODE ¼ 0, 1, 2 or 3.
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2: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

3: LAMBDA – REAL (KIND=nag_wp) Input

On entry: �, the mean of the Poisson distribution.

Constraint: LAMBDA � 0:0.

4: RðLRÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ 1, the reference vector from the previous call to G05TJF.

If MODE ¼ 3, R is not referenced.

On exit: if MODE 6¼ 3, the reference vector.

5: LR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05TJF is
called.

Suggested value:

if MODE 6¼ 3, LR ¼ 30þ 20�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAMBDA
p

þ LAMBDA;
otherwise LR ¼ 1.

Constraints:

if MODE ¼ 0 or 2,

if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAMBDA
p

> 7:15, LR > 9þ int 8:5þ 14:3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAMBDA
p� �

;

otherwise LR > 9þ int LAMBDAþ 7:15�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAMBDA
p

þ 8:5
� �

.;
if MODE ¼ 1, LR must remain unchanged from the previous call to G05TJF.

6: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

7: XðNÞ – INTEGER array Output

On exit: the n pseudorandom numbers from the specified Poisson distribution.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1, 2 or 3.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

LAMBDA is such that LR would have to be larger than the largest representable integer. Use
MODE ¼ 3 instead. LAMBDA ¼ valueh i.
On entry, LAMBDA ¼ valueh i.
Constraint: LAMBDA � 0:0.

IFAIL ¼ 4

LAMBDA is not the same as when R was set up in a previous call.
Previous value of LAMBDA ¼ valueh i and LAMBDA ¼ valueh i.
On entry, some of the elements of the array R have been corrupted or have not been initialized.

IFAIL ¼ 5

On entry, LR is too small when MODE ¼ 0 or 2: LR ¼ valueh i, minimum length required
¼ valueh i.

IFAIL ¼ 6

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

G05TJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints 10 pseudorandom integers from a Poisson distribution with mean � ¼ 20, generated
by a single call to G05TJF, after initialization by G05KFF.

10.1 Program Text

Program g05tjfe

! G05TJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05tjf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, maxlr = 5000, nin = 5, &

nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: lambda
Integer :: genid, ifail, lr, lstate, mode, n, &

subid
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: r(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: int, sqrt

! .. Executable Statements ..
Write (nout,*) ’G05TJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
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! Read in sample size
Read (nin,*) n

! Read in the distribution parameters
Read (nin,*) lambda

! Use suggested value for LR
lr = int(3.0E1_nag_wp+2.0E1_nag_wp*sqrt(lambda)+lambda)

! If R is a reasonable size use MODE = 2
! else do not reference R and use MODE = 3

If (lr<maxlr) Then
mode = 2

Else
mode = 3
lr = 0

End If

Allocate (x(n),r(lr))

! Generate the variates
ifail = 0
Call g05tjf(mode,n,lambda,r,lr,state,x,ifail)

! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,I12)
End Program g05tjfe

10.2 Program Data

G05TJF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 :: N
20.0 :: LAMBDA

10.3 Program Results

G05TJF Example Program Results

21
15
23
24
14
20
19
23
20
22
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NAG Library Routine Document

G05TKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05TKF generates a vector of pseudorandom integers, each from a discrete Poisson distribution with
differing parameter.

2 Specification

SUBROUTINE G05TKF (M, VLAMDA, STATE, X, IFAIL)

INTEGER M, STATE(*), X(M), IFAIL
REAL (KIND=nag_wp) VLAMDA(M)

3 Description

G05TKF generates m integers xj, each from a discrete Poisson distribution with mean �j, where the
probability of xj ¼ I is

P xj ¼ I
� �

¼
�Ij � e��j

I!
; I ¼ 0; 1; . . . ;

where

�j � 0; j ¼ 1; 2; . . . ;m:

The methods used by this routine have low set up times and are designed for efficient use when the
value of the parameter � changes during the simulation. For large samples from a distribution with fixed
� using G05TJF to set up and use a reference vector may be more efficient.

When � < 7:5 the product of uniforms method is used, see for example Dagpunar (1988). For larger
values of � an envelope rejection method is used with a target distribution:

f xð Þ ¼ 1
3 if xj j � 1;

f xð Þ ¼ 1
3 xj j

�3 otherwise:

This distribution is generated using a ratio of uniforms method. A similar approach has also been
suggested by Ahrens and Dieter (1989). The basic method is combined with quick acceptance and
rejection tests given by Maclaren (1990). For values of � � 87 Stirling's approximation is used in the
computation of the Poisson distribution function, otherwise tables of factorials are used as suggested by
Maclaren (1990).

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05TKF.

4 References

Ahrens J H and Dieter U (1989) A convenient sampling method with bounded computation times for
Poisson distributions Amer. J. Math. Management Sci. 1–13

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

Maclaren N M (1990) A Poisson random number generator Personal Communication
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5 Arguments

1: M – INTEGER Input

On entry: m, the number of Poisson distributions for which pseudorandom variates are required.

Constraint: M � 1.

2: VLAMDAðMÞ – REAL (KIND=nag_wp) array Input

On entry: the means, �j , for j ¼ 1; 2; . . . ;M, of the Poisson distributions.

Constraint: 0:0 � VLAMDAðjÞ � X02BBF=2:0, for j ¼ 1; 2; . . . ;M.

3: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

4: XðMÞ – INTEGER array Output

On exit: the m pseudorandom numbers from the specified Poisson distributions.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 2

On entry, at least one element of VLAMDA is less than zero.

On entry, at least one element of VLAMDA is too large.

IFAIL ¼ 3

On entry, STATE vector has been corrupted or not initialized.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05TKF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example prints ten pseudorandom integers from five Poisson distributions with means �1 ¼ 0:5,
�2 ¼ 5, �3 ¼ 10, �4 ¼ 500 and �5 ¼ 1000. These are generated by ten calls to G05TKF, after
initialization by G05KFF.

10.1 Program Text

Program g05tkfe

! G05TKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05tkf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, ifail, lstate, m, n, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: lambda(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’G05TKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)
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! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

! Read in the distribution parameters
Read (nin,*) m

Allocate (x(n),lambda(m))

! Read in rest of distribution parameters
Read (nin,*) lambda(1:m)

! Generate N sets of the M variates
Do i = 1, n

ifail = 0
Call g05tkf(m,lambda,state,x,ifail)

! Display the variates
Write (nout,99999) i, x(1:m)

End Do

99999 Format (1X,6(1X,I12))
End Program g05tkfe

10.2 Program Data

G05TKF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
10 :: N
5 :: M
0.5 5.0 10.0 500.0 1000.0 :: LAMBDA

10.3 Program Results

G05TKF Example Program Results

1 1 6 12 507 1003
2 0 9 11 520 1028
3 1 3 7 483 1041
4 0 3 11 513 1012
5 1 5 9 496 940
6 0 6 17 548 990
7 1 9 8 512 1035
8 0 4 10 458 1029
9 1 6 13 523 971

10 0 9 16 519 999
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NAG Library Routine Document

G05TLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05TLF generates a vector of pseudorandom integers uniformly distributed over the interval a; b½ �.

2 Specification

SUBROUTINE G05TLF (N, A, B, STATE, X, IFAIL)

INTEGER N, A, B, STATE(*), X(N), IFAIL

3 Description

G05TLF generates the next n values yi from a uniform 0; 1ð � generator (see G05SAF for details) and
applies the transformation

xi ¼ aþ b� aþ 1ð Þyib c;

where zb c is the integer part of the real value z. The routine ensures that the values xi lie in the closed
interval a; b½ �.
One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05TLF.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: N – INTEGER Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: N � 0.

2: A – INTEGER Input
3: B – INTEGER Input

On entry: the end points a and b of the uniform distribution.

Constraint: A � B.

4: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

5: XðNÞ – INTEGER array Output

On exit: the n pseudorandom numbers from the specified uniform distribution.

G05 – Random Number Generators G05TLF
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 3

On entry, A ¼ valueh i and B ¼ valueh i.
Constraint: B � A.

IFAIL ¼ 4

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05TLF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

None.

10 Example

This example prints five pseudorandom integers from a discrete uniform distribution between �5 and 5,
generated by a single call to G05TLF, after initialization by G05KFF.

10.1 Program Text

Program g05tlfe

! G05TLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05tlf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: a, b, genid, ifail, lstate, n, subid

! .. Local Arrays ..
Integer :: seed(lseed)
Integer, Allocatable :: state(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’G05TLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in sample size
Read (nin,*) n

! Read in the distribution parameters
Read (nin,*) a, b

Allocate (x(n))

! Generate the variates
ifail = 0
Call g05tlf(n,a,b,state,x,ifail)
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! Display the variates
Write (nout,99999) x(1:n)

99999 Format (1X,I12)
End Program g05tlfe

10.2 Program Data

G05TLF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
5 :: N
-5 5 :: A,B

10.3 Program Results

G05TLF Example Program Results

2
-4
3
3

-4
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NAG Library Routine Document

G05XAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05XAF initializes the Brownian bridge generator G05XBF. It must be called before any calls to
G05XBF.

2 Specification

SUBROUTINE G05XAF (T0, TEND, TIMES, NTIMES, RCOMM, IFAIL)

INTEGER NTIMES, IFAIL
REAL (KIND=nag_wp) T0, TEND, TIMES(NTIMES), RCOMM(12*(NTIMES+1))

3 Description

3.1 Brownian Bridge Algorithm

Details on the Brownian bridge algorithm and the Brownian bridge process (sometimes also called a
non-free Wiener process) can be found in Section 2.6 in the G05 Chapter Introduction. We briefly recall
some notation and definitions.

Fix two times t0 < T and let tið Þ1�i�N be any set of time points satisfying t0 < t1 < t2 < � � � < tN < T .
Let Xtið Þ1�i�N denote a d-dimensional Wiener sample path at these time points, and let C be any d by d
matrix such that CCT is the desired covariance structure for the Wiener process. Each point Xti of the
sample path is constructed according to the Brownian bridge interpolation algorithm (see Glasserman
(2004) or Section 2.6 in the G05 Chapter Introduction). We always start at some fixed point
Xt0 ¼ x 2 R

d. If we set XT ¼ xþ C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T � t0
p

Z where Z is any d-dimensional standard Normal random
variable, then X will behave like a normal (free) Wiener process. However if we fix the terminal value
XT ¼ w 2 R

d, then X will behave like a non-free Wiener process.

3.2 Implementation

Given the start and end points of the process, the order in which successive interpolation times tj are
chosen is called the bridge construction order. The construction order is given by the array TIMES.
Further information on construction orders is given in Section 2.6.2 in the G05 Chapter Introduction.
For clarity we consider here the common scenario where the Brownian bridge algorithm is used with
quasi-random points. If pseudorandom numbers are used instead, these details can be ignored.

Suppose we require P Wiener sample paths each of dimension d. The main input to the Brownian
bridge algorithm is then an array of quasi-random points Z1; Z2; . . . ; ZP where each point
Zp ¼ Zp

1 ; Z
p
2 ; . . . ; Z

p
D

� �
has dimension D ¼ d N þ 1ð Þ or D ¼ dN respectively, depending on whether

a free or non-free Wiener process is required. When G05XBF is called, the pth sample path for
1 � p � P is constructed as follows: if a non-free Wiener process is required set XT equal to the
terminal value w, otherwise construct XT as

XT ¼ Xt0 þ C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T � t0

p Zp
1

..

.

Zp
d

264
375

where C is the matrix described in Section 3.1. The array TIMES holds the remaining time points
t1; t2; . . . tN in the order in which the bridge is to be constructed. For each j ¼ 1; . . . ; N set
r ¼ TIMESðjÞ, find
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q ¼ max t0;TIMESðiÞ : 1 � i < j;TIMESðiÞ < rf g

and

s ¼ min T;TIMESðiÞ : 1 � i < j;TIMESðiÞ > rf g

and construct the point Xr as

Xr ¼
Xq s� rð Þ þXs r� qð Þ

s� q þ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� rð Þ r� qð Þ

s� qð Þ

s Zp
jd�adþ1
..
.

Zp
jd�adþd

264
375

where a ¼ 0 or a ¼ 1 respectively depending on whether a free or non-free Wiener process is required.
Note that in our discussion j is indexed from 1, and so Xr is interpolated between the nearest (in time)
Wiener points which have already been constructed. The routine G05XEF can be used to initialize the
TIMES array for several predefined bridge construction orders.

4 References

Glasserman P (2004) Monte Carlo Methods in Financial Engineering Springer

5 Arguments

1: T0 – REAL (KIND=nag_wp) Input

On entry: the starting value t0 of the time interval.

2: TEND – REAL (KIND=nag_wp) Input

On entry: the end value T of the time interval.

Constraint: TEND > T0.

3: TIMESðNTIMESÞ – REAL (KIND=nag_wp) array Input

On entry: the points in the time interval t0; Tð Þ at which the Wiener process is to be constructed.
The order in which points are listed in TIMES determines the bridge construction order. The
routine G05XEF can be used to create predefined bridge construction orders from a set of input
times.

Constraints:

T0 < TIMESðiÞ < TEND, for i ¼ 1; 2; . . . ;NTIMES;
TIMESðiÞ 6¼ TIMESðjÞ, for i; j ¼ 1; 2; . . .NTIMES and i 6¼ j.

4: NTIMES – INTEGER Input

On entry: the length of TIMES, denoted by N in Section 3.1.

Constraint: NTIMES � 1.

5: RCOMMð12� NTIMESþ 1ð ÞÞ – REAL (KIND=nag_wp) array Communication Array

On exit: communication array, used to store information between calls to G05XBF. This array
must not be directly modified.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TEND ¼ valueh i and T0 ¼ valueh i.
Constraint: TEND > T0.

IFAIL ¼ 2

On entry, NTIMES ¼ valueh i.
Constraint: NTIMES � 1.

IFAIL ¼ 3

On entry, TIMESð valueh iÞ ¼ valueh i, T0 ¼ valueh i and TEND ¼ valueh i.
Constraint: T0 < TIMESðiÞ < TEND for all i.

IFAIL ¼ 4

On entry, TIMESð valueh iÞ and TIMESð valueh iÞ both equal valueh i.
Constraint: all elements of TIMES must be unique.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05XAF is not threaded in any implementation.
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9 Further Comments

The efficient implementation of a Brownian bridge algorithm requires the use of a workspace array
called the working stack. Since previously computed points will be used to interpolate new points, they
should be kept close to the hardware processing units so that the data can be accessed quickly. Ideally
the whole stack should be held in hardware cache. Different bridge construction orders may require
different amounts of working stack. Indeed, a naive bridge algorithm may require a stack of size N

4 or
even N

2 , which could be very inefficient when N is large. G05XAF performs a detailed analysis of the
bridge construction order specified by TIMES. Heuristics are used to find an execution strategy which
requires a small working stack, while still constructing the bridge in the order required.

10 Example

This example calls G05XAF, G05XBF and G05XEF to generate two sample paths of a three-
dimensional free Wiener process. Pseudorandom variates are used to construct the sample paths.

See Section 10 in G05XBF and G05XEF for additional examples.

10.1 Program Text

Program g05xafe

! G05XAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05xaf, g05xbf, g05xef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: t0, tend
Integer :: a, bgord, d, ifail, ldb, ldc, ldz, &

nmove, npaths, ntimes, rcord
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:,:), c(:,:), intime(:), rcomm(:), &
start(:), term(:), times(:), z(:,:)

Integer, Allocatable :: move(:)
! .. Intrinsic Procedures ..

Intrinsic :: size
! .. Executable Statements ..
! Get information required to set up the bridge

Call get_bridge_init_data(bgord,t0,tend,ntimes,intime,nmove,move)

! Make the bridge construction bgord
Allocate (times(ntimes))
ifail = 0
Call g05xef(bgord,t0,tend,ntimes,intime,nmove,move,times,ifail)

! Initialize the Brownian bridge generator
Allocate (rcomm(12*(ntimes+1)))
ifail = 0
Call g05xaf(t0,tend,times,ntimes,rcomm,ifail)

! Get additional information required by the bridge generator
Call get_bridge_gen_data(npaths,rcord,d,start,a,term,c)

! Generate the Z values
Call get_z(rcord,npaths,d,a,ntimes,z,b)

! Leading dimensions for the various input arrays
ldz = size(z,1)
ldc = size(c,1)
ldb = size(b,1)

G05XAF NAG Library Manual

G05XAF.4 Mark 26



! Call the Brownian bridge generator routine
ifail = 0
Call g05xbf(npaths,rcord,d,start,a,term,z,ldz,c,ldc,b,ldb,rcomm,ifail)

! Display the results
Call display_results(rcord,ntimes,d,b)

Contains
Subroutine get_bridge_init_data(bgord,t0,tend,ntimes,intime,nmove,move)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: t0, tend
Integer, Intent (Out) :: bgord, nmove, ntimes

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: intime(:)
Integer, Allocatable, Intent (Out) :: move(:)

! .. Local Scalars ..
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
! Set the basic parameters for a Wiener process

ntimes = 10
t0 = 0.0_nag_wp
Allocate (intime(ntimes))

! We want to generate the Wiener process at these time points
Do i = 1, ntimes

intime(i) = t0 + real(i,kind=nag_wp)
End Do
tend = t0 + real(ntimes+1,kind=nag_wp)

nmove = 0
Allocate (move(nmove))
bgord = 3

End Subroutine get_bridge_init_data

Subroutine get_bridge_gen_data(npaths,rcord,d,start,a,term,c)

! .. Use Statements ..
Use nag_library, Only: dpotrf

! .. Scalar Arguments ..
Integer, Intent (Out) :: a, d, npaths, rcord

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: c(:,:), start(:), &

term(:)
! .. Local Scalars ..

Integer :: info
! .. Executable Statements ..
! Set the basic parameters for a free Wiener process

npaths = 2
rcord = 1
d = 3
a = 0

Allocate (start(d),term(d),c(d,d))

start(1:d) = 0.0_nag_wp
! As A = 0, TERM need not be initialized

! We want the following covariance matrix
c(:,1) = (/6.0_nag_wp,1.0_nag_wp,-0.2_nag_wp/)
c(:,2) = (/1.0_nag_wp,5.0_nag_wp,0.3_nag_wp/)
c(:,3) = (/-0.2_nag_wp,0.3_nag_wp,4.0_nag_wp/)

! G05XBF works with the Cholesky factorization of the covariance matrix
! C so perform the decomposition

Call dpotrf(’Lower’,d,c,d,info)
If (info/=0) Then

Write (nout,*) &
’Specified covariance matrix is not positive definite: info=’, &
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info
Stop

End If
End Subroutine get_bridge_gen_data

Subroutine get_z(rcord,npaths,d,a,ntimes,z,b)

! .. Use Statements ..
Use nag_library, Only: g05skf

! .. Scalar Arguments ..
Integer, Intent (In) :: a, d, npaths, ntimes, rcord

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: b(:,:), z(:,:)

! .. Local Scalars ..
Integer :: idim, ifail

! .. Local Arrays ..
Integer :: seed(1)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
idim = d*(ntimes+1-a)

! Allocate Z
If (rcord==1) Then

Allocate (z(idim,npaths))
Allocate (b(d*(ntimes+1),npaths))

Else
Allocate (z(npaths,idim))
Allocate (b(npaths,d*(ntimes+1)))

End If

! We now need to generate the input pseudorandom points
! First initialize the base pseudorandom number generator

seed(1) = 1023401
Call initialize_prng(6,0,seed,size(seed),state)

! Generate the pseudorandom points from N(0,1)
ifail = 0
Call g05skf(idim*npaths,0.0_nag_wp,1.0_nag_wp,state,z,ifail)

End Subroutine get_z

Subroutine initialize_prng(genid,subid,seed,lseed,state)

! .. Use Statements ..
Use nag_library, Only: g05kff

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, lseed, subid

! .. Array Arguments ..
Integer, Intent (In) :: seed(lseed)
Integer, Allocatable, Intent (Out) :: state(:)

! .. Local Scalars ..
Integer :: ifail, lstate

! .. Executable Statements ..

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_prng

Subroutine display_results(rcord,ntimes,d,b)

! .. Scalar Arguments ..
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Integer, Intent (In) :: d, ntimes, rcord
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (In) :: b(:,:)
! .. Local Scalars ..

Integer :: i, j, k
! .. Executable Statements ..

Write (nout,*) ’G05XAF Example Program Results’
Write (nout,*)

Do i = 1, npaths
Write (nout,99999) ’Weiner Path ’, i, ’, ’, ntimes + 1, &

’ time steps, ’, d, ’ dimensions’
Write (nout,99997)(j,j=1,d)
k = 1
Do j = 1, ntimes + 1

If (rcord==1) Then
Write (nout,99998) j, b(k:k+d-1,i)

Else
Write (nout,99998) j, b(i,k:k+d-1)

End If
k = k + d

End Do
Write (nout,*)

End Do
99999 Format (1X,A,I0,A,I0,A,I0,A)
99998 Format (1X,I2,1X,20(1X,F10.4))
99997 Format (1X,3X,20(9X,I2))

End Subroutine display_results
End Program g05xafe

10.2 Program Data

None.

10.3 Program Results

G05XAF Example Program Results

Weiner Path 1, 11 time steps, 3 dimensions
1 2 3

1 1.6020 0.5611 1.6975
2 1.2767 0.3972 -1.7199
3 -0.1895 -0.8812 -5.1908
4 -2.8083 -4.4484 -6.7697
5 -5.6251 -6.0375 -3.2551
6 -6.5404 -6.2009 -5.5638
7 -4.6398 -4.9675 -7.4454
8 -5.3501 -4.8563 -9.9002
9 -7.1683 -7.2638 -9.7825

10 -1.9440 -7.0725 -10.7577
11 -4.9941 -3.5442 -10.1561

Weiner Path 2, 11 time steps, 3 dimensions
1 2 3

1 2.6097 6.2430 0.0316
2 3.5442 4.2836 2.5742
3 1.3068 6.1511 4.5362
4 2.7487 8.6021 2.6880
5 3.4584 6.1778 -0.6274
6 0.5965 8.3014 0.5933
7 -3.2701 5.4787 1.0727
8 -4.7527 7.0988 0.9120
9 -4.9375 7.9486 0.7657

10 -7.1302 7.3180 0.2706
11 -0.6289 9.8866 -2.2762

G05 – Random Number Generators G05XAF

Mark 26 G05XAF.7 (last)





NAG Library Routine Document

G05XBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05XBF uses a Brownian bridge algorithm to construct sample paths for a free or non-free Wiener
process. The initialization routine G05XAF must be called prior to the first call to G05XBF.

2 Specification

SUBROUTINE G05XBF (NPATHS, RCORD, D, START, A, TERM, Z, LDZ, C, LDC, B,
LDB, RCOMM, IFAIL)

&

INTEGER NPATHS, RCORD, D, A, LDZ, LDC, LDB, IFAIL
REAL (KIND=nag_wp) START(D), TERM(D), Z(LDZ,*), C(LDC,*), B(LDB,*),

RCOMM(*)
&

3 Description

For details on the Brownian bridge algorithm and the bridge construction order see Section 2.6 in the
G05 Chapter Introduction and Section 3 in G05XAF. Recall that the terms Wiener process (or free
Wiener process) and Brownian motion are often used interchangeably, while a non-free Wiener process
(also known as a Brownian bridge process) refers to a process which is forced to terminate at a given
point.

4 References

Glasserman P (2004) Monte Carlo Methods in Financial Engineering Springer

5 Arguments

Note: the following variable is used in the parameter descriptions: N ¼ NTIMES, the length of the
array TIMES passed to the initialization routine G05XAF.

1: NPATHS – INTEGER Input

On entry: the number of Wiener sample paths to create.

Constraint: NPATHS � 1.

2: RCORD – INTEGER Input

On entry: the order in which Normal random numbers are stored in Z and in which the generated
values are returned in B.

Constraint: RCORD ¼ 1 or 2.

3: D – INTEGER Input

On entry: the dimension of each Wiener sample path.

Constraint: D � 1.

4: STARTðDÞ – REAL (KIND=nag_wp) array Input

On entry: the starting value of the Wiener process.
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5: A – INTEGER Input

On entry: if A ¼ 0, a free Wiener process is created beginning at START and TERM is ignored.

If A ¼ 1, a non-free Wiener process is created beginning at START and ending at TERM.

Constraint: A ¼ 0 or 1.

6: TERMðDÞ – REAL (KIND=nag_wp) array Input

On entry: the terminal value at which the non-free Wiener process should end. If A ¼ 0, TERM
is ignored.

7: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least NPATHS if RCORD ¼ 1 and at least
D� N þ 1� Að Þ if RCORD ¼ 2.

On entry: the Normal random numbers used to construct the sample paths.

If RCORD ¼ 1 and quasi-random numbers are used, the D� N þ 1� Að Þ, where N ¼ nint
RCOMMð2Þ-dimensional quasi-random points should be stored in successive columns of Z.

If RCORD ¼ 2 and quasi-random numbers are used, the D� N þ 1� Að Þ, where N ¼ nint
RCOMMð2Þ-dimensional quasi-random points should be stored in successive rows of Z.

On exit: the Normal random numbers premultiplied by C.

8: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which G05XBF
is called.

Constraints:

if RCORD ¼ 1, LDZ � D� N þ 1� Að Þ;
if RCORD ¼ 2, LDZ � NPATHS.

9: CðLDC; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array C must be at least D.

On entry: the lower triangular Cholesky factorization C such that CCT gives the covariance
matrix of the Wiener process. Elements of C above the diagonal are not referenced.

10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G05XBF
is called.

Constraint: LDC � D.

11: BðLDB; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array B must be at least NPATHS if RCORD ¼ 1 and at least
D� N þ 1ð Þ if RCORD ¼ 2.

On exit: the values of the Wiener sample paths.

Let Xk
p;i denote the kth dimension of the ith point of the pth sample path where 1 � k � D,

1 � i � N þ 1 and 1 � p � NPATHS.

If RCORD ¼ 1, the point Xk
p;i will be stored at B kþ i� 1ð Þ � D; pð Þ.

If RCORD ¼ 2, the point Xk
p;i will be stored at B p; kþ i� 1ð Þ � Dð Þ.

The starting value START is never stored, whereas the terminal value is always stored.
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12: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which G05XBF
is called.

Constraints:

if RCORD ¼ 1, LDB � D� N þ 1ð Þ;
if RCORD ¼ 2, LDB � NPATHS.

13: RCOMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
RCOMM in the previous call to G05XAF or G05XBF.

On entry: communication array as returned by the last call to G05XAF or G05XBF. This array
must not be directly modified.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, RCOMM was not initialized or has been corrupted.

IFAIL ¼ 2

On entry, NPATHS ¼ valueh i.
Constraint: NPATHS � 1.

IFAIL ¼ 3

On entry, RCORD ¼ valueh i was an illegal value.

IFAIL ¼ 4

On entry, D ¼ valueh i.
Constraint: D � 1.

IFAIL ¼ 5

On entry, A ¼ valueh i.
Constraint: A ¼ 0 or 1.
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IFAIL ¼ 6

On entry, LDZ ¼ valueh i and D� NTIMESþ 1� Að Þ ¼ valueh i.
Constraint: LDZ � D� NTIMESþ 1� Að Þ.
On entry, LDZ ¼ valueh i and NPATHS ¼ valueh i.
Constraint: LDZ � NPATHS.

IFAIL ¼ 7

On entry, LDC ¼ valueh i.
Constraint: LDC � valueh i.

IFAIL ¼ 8

On entry, LDB ¼ valueh i and D� NTIMESþ 1ð Þ ¼ valueh i.
Constraint: LDB � D� NTIMESþ 1ð Þ.
On entry, LDB ¼ valueh i and NPATHS ¼ valueh i.
Constraint: LDB � NPATHS.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05XBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05XBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.
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10 Example

This example calls G05XBF, G05XAF and G05XEF to generate two sample paths of a three-
dimensional non-free Wiener process. The process starts at zero and each sample path terminates at the
point 1:0; 0:5; 0:0ð Þ. Quasi-random numbers are used to construct the sample paths.

See Section 10 in G05XAF and G05XEF for additional examples.

10.1 Program Text

Program g05xbfe

! G05XBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05xaf, g05xbf, g05xef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: t0, tend
Integer :: a, bgord, d, ifail, ldb, ldc, ldz, &

nmove, npaths, ntimes, rcord
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:,:), c(:,:), intime(:), rcomm(:), &
start(:), term(:), times(:), z(:,:)

Integer, Allocatable :: move(:)
! .. Intrinsic Procedures ..

Intrinsic :: size
! .. Executable Statements ..
! Get information required to set up the bridge

Call get_bridge_init_data(bgord,t0,tend,ntimes,intime,nmove,move)

! Make the bridge construction bgord
Allocate (times(ntimes))
ifail = 0
Call g05xef(bgord,t0,tend,ntimes,intime,nmove,move,times,ifail)

! Initialize the Brownian bridge generator
Allocate (rcomm(12*(ntimes+1)))
ifail = 0
Call g05xaf(t0,tend,times,ntimes,rcomm,ifail)

! Get additional information required by the bridge generator
Call get_bridge_gen_data(npaths,rcord,d,start,a,term,c)

! Generate the Z values and allocate B
Call get_z(rcord,npaths,d,a,ntimes,z,b)

! Leading dimensions for the various input arrays
ldz = size(z,1)
ldc = size(c,1)
ldb = size(b,1)

! Call the Brownian bridge generator routine
ifail = 0
Call g05xbf(npaths,rcord,d,start,a,term,z,ldz,c,ldc,b,ldb,rcomm,ifail)

! Display the results
Call display_results(rcord,ntimes,d,b)

Contains
Subroutine get_bridge_init_data(bgord,t0,tend,ntimes,intime,nmove,move)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: t0, tend
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Integer, Intent (Out) :: bgord, nmove, ntimes
! .. Array Arguments ..

Real (Kind=nag_wp), Allocatable, Intent (Out) :: intime(:)
Integer, Allocatable, Intent (Out) :: move(:)

! .. Local Scalars ..
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
! Set the basic parameters for a Wiener process

ntimes = 10
t0 = 0.0_nag_wp
Allocate (intime(ntimes))

! We want to generate the Wiener process at these time points
Do i = 1, ntimes

intime(i) = t0 + real(i,kind=nag_wp)
End Do
tend = t0 + real(ntimes+1,kind=nag_wp)

nmove = 0
Allocate (move(nmove))
bgord = 3

End Subroutine get_bridge_init_data

Subroutine get_bridge_gen_data(npaths,rcord,d,start,a,term,c)

! .. Use Statements ..
Use nag_library, Only: dpotrf

! .. Scalar Arguments ..
Integer, Intent (Out) :: a, d, npaths, rcord

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: c(:,:), start(:), &

term(:)
! .. Local Scalars ..

Integer :: info
! .. Executable Statements ..
! Set the basic parameters for a non-free Wiener process

npaths = 2
rcord = 2
d = 3
a = 1

Allocate (start(d),term(d),c(d,d))

start(1:d) = 0.0_nag_wp
term(1:d) = (/1.0_nag_wp,0.5_nag_wp,0.0_nag_wp/)

! We want the following covariance matrix
c(:,1) = (/6.0_nag_wp,1.0_nag_wp,-0.2_nag_wp/)
c(:,2) = (/1.0_nag_wp,5.0_nag_wp,0.3_nag_wp/)
c(:,3) = (/-0.2_nag_wp,0.3_nag_wp,4.0_nag_wp/)

! G05XBF works with the Cholesky factorization of the covariance matrix
! C so perform the decomposition

Call dpotrf(’Lower’,d,c,d,info)
If (info/=0) Then

Write (nout,*) &
’Specified covariance matrix is not positive definite: info=’, &
info

Stop
End If

End Subroutine get_bridge_gen_data

Subroutine get_z(rcord,npaths,d,a,ntimes,z,b)

! .. Use Statements ..
Use nag_library, Only: g05yjf

! .. Scalar Arguments ..
Integer, Intent (In) :: a, d, npaths, ntimes, rcord

! .. Array Arguments ..
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Real (Kind=nag_wp), Allocatable, Intent (Out) :: b(:,:), z(:,:)
! .. Local Scalars ..

Integer :: idim, ifail
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: std(:), tz(:,:), xmean(:)
Integer, Allocatable :: iref(:), state(:)
Integer :: seed(1)

! .. Intrinsic Procedures ..
Intrinsic :: transpose

! .. Executable Statements ..
idim = d*(ntimes+1-a)

! Allocate Z
If (rcord==1) Then

Allocate (z(idim,npaths))
Allocate (b(d*(ntimes+1),npaths))

Else
Allocate (z(npaths,idim))
Allocate (b(npaths,d*(ntimes+1)))

End If

! We now need to generate the input quasi-random points
! First initialize the base pseudorandom number generator

seed(1) = 1023401
Call initialize_prng(6,0,seed,size(seed),state)

! Scrambled quasi-random sequences preserve the good discrepancy
! properties of quasi-random sequences while counteracting the bias
! some applications experience when using quasi-random sequences.
! Initialize the scrambled quasi-random generator.

Call initialize_scrambled_qrng(1,2,idim,state,iref)

! Generate the quasi-random points from N(0,1)
Allocate (xmean(idim),std(idim))
xmean(1:idim) = 0.0_nag_wp
std(1:idim) = 1.0_nag_wp
If (rcord==1) Then

Allocate (tz(npaths,idim))
ifail = 0
Call g05yjf(xmean,std,npaths,tz,iref,ifail)
z(:,:) = transpose(tz)

Else
ifail = 0
Call g05yjf(xmean,std,npaths,z,iref,ifail)

End If
End Subroutine get_z

Subroutine initialize_prng(genid,subid,seed,lseed,state)

! .. Use Statements ..
Use nag_library, Only: g05kff

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, lseed, subid

! .. Array Arguments ..
Integer, Intent (In) :: seed(lseed)
Integer, Allocatable, Intent (Out) :: state(:)

! .. Local Scalars ..
Integer :: ifail, lstate

! .. Executable Statements ..

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
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ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_prng

Subroutine initialize_scrambled_qrng(genid,stype,idim,state,iref)

! .. Use Statements ..
Use nag_library, Only: g05ynf

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, idim, stype

! .. Array Arguments ..
Integer, Allocatable, Intent (Out) :: iref(:)
Integer, Intent (Inout) :: state(*)

! .. Local Scalars ..
Integer :: ifail, iskip, liref, nsdigits

! .. Executable Statements ..
liref = 32*idim + 7
iskip = 0
nsdigits = 32
Allocate (iref(liref))
ifail = 0
Call g05ynf(genid,stype,idim,iref,liref,iskip,nsdigits,state,ifail)

End Subroutine initialize_scrambled_qrng

Subroutine display_results(rcord,ntimes,d,b)

! .. Scalar Arguments ..
Integer, Intent (In) :: d, ntimes, rcord

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: b(:,:)

! .. Local Scalars ..
Integer :: i, j, k

! .. Executable Statements ..
Write (nout,*) ’G05XBF Example Program Results’
Write (nout,*)

Do i = 1, npaths
Write (nout,99999) ’Weiner Path ’, i, ’, ’, ntimes + 1, &

’ time steps, ’, d, ’ dimensions’
Write (nout,99997)(j,j=1,d)
k = 1
Do j = 1, ntimes + 1

If (rcord==1) Then
Write (nout,99998) j, b(k:k+d-1,i)

Else
Write (nout,99998) j, b(i,k:k+d-1)

End If
k = k + d

End Do
Write (nout,*)

End Do
99999 Format (1X,A,I0,A,I0,A,I0,A)
99998 Format (1X,I2,1X,20(1X,F10.4))
99997 Format (1X,3X,20(9X,I2))

End Subroutine display_results
End Program g05xbfe

10.2 Program Data

None.

10.3 Program Results

G05XBF Example Program Results

Weiner Path 1, 11 time steps, 3 dimensions
1 2 3

1 -1.0602 -2.8701 -0.9415
2 -3.0575 -1.9502 0.2596
3 -6.8274 -2.4434 0.4597
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4 -5.2855 -3.4475 0.0795
5 -8.1784 -5.2296 -0.0921
6 -4.6874 -5.0220 1.4862
7 -3.0959 -4.8623 -4.4076
8 -2.9605 -1.8936 -3.9539
9 -5.4685 -2.3856 -3.2031

10 0.1205 -5.0520 -1.0385
11 1.0000 0.5000 0.0000

Weiner Path 2, 11 time steps, 3 dimensions
1 2 3

1 0.6564 3.5142 1.5911
2 -2.3773 3.1618 3.0316
3 0.3020 6.8815 2.0875
4 -0.2169 4.6026 1.1982
5 -2.0684 4.1503 2.4758
6 -5.1075 3.7303 2.7563
7 -3.8497 3.6682 2.4827
8 -1.8292 4.4153 0.1916
9 -2.0649 0.6952 -2.1201

10 0.1962 1.7769 -5.7685
11 1.0000 0.5000 0.0000
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NAG Library Routine Document

G05XCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05XCF initializes the Brownian bridge increments generator G05XDF. It must be called before any
calls to G05XDF.

2 Specification

SUBROUTINE G05XCF (T0, TEND, TIMES, NTIMES, RCOMM, IFAIL)

INTEGER NTIMES, IFAIL
REAL (KIND=nag_wp) T0, TEND, TIMES(NTIMES), RCOMM(12*(NTIMES+1))

3 Description

3.1 Brownian Bridge Algorithm

Details on the Brownian bridge algorithm and the Brownian bridge process (sometimes also called a
non-free Wiener process) can be found in Section 2.6 in the G05 Chapter Introduction. We briefly recall
some notation and definitions.

Fix two times t0 < T and let tið Þ1�i�N be any set of time points satisfying t0 < t1 < t2 < � � � < tN < T .
Let Xtið Þ1�i�N denote a d-dimensional Wiener sample path at these time points, and let C be any d by d
matrix such that CCT is the desired covariance structure for the Wiener process. Each point Xti of the
sample path is constructed according to the Brownian bridge interpolation algorithm (see Glasserman
(2004) or Section 2.6 in the G05 Chapter Introduction). We always start at some fixed point
Xt0 ¼ x 2 R

d. If we set XT ¼ xþ C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T � t0
p

Z where Z is any d-dimensional standard Normal random
variable, then X will behave like a normal (free) Wiener process. However if we fix the terminal value
XT ¼ w 2 R

d, then X will behave like a non-free Wiener process.

The Brownian bridge increments generator uses the Brownian bridge algorithm to construct sample
paths for the (free or non-free) Wiener process X, and then uses this to compute the scaled Wiener
increments

Xt1 �Xt0

t1 � t0
;
Xt2 �Xt1

t2 � t1
; . . . ;

XtN �XtN�1

tN � tN�1
;
XT �XtN

T � tN
:

Such increments can be useful in computing numerical solutions to stochastic differential equations
driven by (free or non-free) Wiener processes.

3.2 Implementation

Conceptually, the output of the Wiener increments generator is the same as if G05XAF and G05XBF
were called first, and the scaled increments then constructed from their output. The implementation
adopts a much more efficient approach whereby the scaled increments are computed directly without
first constructing the Wiener sample path.

Given the start and end points of the process, the order in which successive interpolation times tj are
chosen is called the bridge construction order. The construction order is given by the array TIMES.
Further information on construction orders is given in Section 2.6.2 in the G05 Chapter Introduction.
For clarity we consider here the common scenario where the Brownian bridge algorithm is used with
quasi-random points. If pseudorandom numbers are used instead, these details can be ignored.

Suppose we require the increments of P Wiener sample paths each of dimension d. The main input to
the Brownian bridge increments generator is then an array of quasi-random points Z1; Z2; . . . ; ZP where

G05 – Random Number Generators G05XCF

Mark 26 G05XCF.1



each point Zp ¼ Zp
1 ; Z

p
2 ; . . . ; Z

p
D

� �
has dimension D ¼ d N þ 1ð Þ or D ¼ dN depending on whether a

free or non-free Wiener process is required. When G05XDF is called, the pth sample path for
1 � p � P is constructed as follows: if a non-free Wiener process is required set XT equal to the
terminal value w, otherwise construct XT as

XT ¼ Xt0 þ C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T � t0

p Zp
1

..

.

Zp
d

264
375

where C is the matrix described in Section 3.1. The array TIMES holds the remaining time points
t1; t2; . . . tN in the order in which the bridge is to be constructed. For each j ¼ 1; . . . ; N set
r ¼ TIMESðjÞ, find

q ¼ max t0;TIMESðiÞ : 1 � i < j;TIMESðiÞ < rf g

and

s ¼ min T;TIMESðiÞ : 1 � i < j;TIMESðiÞ > rf g

and construct the point Xr as

Xr ¼
Xq s� rð Þ þXs r� qð Þ

s� q þ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� rð Þ r� qð Þ

s� qð Þ

s Zp
jd�adþ1
..
.

Zp
jd�adþd

264
375

where a ¼ 0 or a ¼ 1 depending on whether a free or non-free Wiener process is required. The routine
G05XEF can be used to initialize the TIMES array for several predefined bridge construction orders.
Lastly, the scaled Wiener increments

Xt1 �Xt0

t1 � t0
;
Xt2 �Xt1

t2 � t1
; . . . ;

XtN �XtN�1

tN � tN�1
;
XT �XtN

T � tN
are computed.

4 References

Glasserman P (2004) Monte Carlo Methods in Financial Engineering Springer

5 Arguments

1: T0 – REAL (KIND=nag_wp) Input

On entry: the starting value t0 of the time interval.

2: TEND – REAL (KIND=nag_wp) Input

On entry: the end value T of the time interval.

Constraint: TEND > T0.

3: TIMESðNTIMESÞ – REAL (KIND=nag_wp) array Input

On entry: the points in the time interval t0; Tð Þ at which the Wiener process is to be constructed.
The order in which points are listed in TIMES determines the bridge construction order. The
routine G05XEF can be used to create predefined bridge construction orders from a set of input
times.

Constraints:

T0 < TIMESðiÞ < TEND, for i ¼ 1; 2; . . . ;NTIMES;
TIMESðiÞ 6¼ TIMESðjÞ, for i; j ¼ 1; 2; . . .NTIMES and i 6¼ j.
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4: NTIMES – INTEGER Input

On entry: the length of TIMES, denoted by N in Section 3.1.

Constraint: NTIMES � 1.

5: RCOMMð12� NTIMESþ 1ð ÞÞ – REAL (KIND=nag_wp) array Communication Array

On exit: communication array, used to store information between calls to G05XDF. This array
must not be directly modified.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TEND ¼ valueh i and T0 ¼ valueh i.
Constraint: TEND > T0.

IFAIL ¼ 2

On entry, NTIMES ¼ valueh i.
Constraint: NTIMES � 1.

IFAIL ¼ 3

On entry, TIMESð valueh iÞ ¼ valueh i, T0 ¼ valueh i and TEND ¼ valueh i.
Constraint: T0 < TIMESðiÞ < TEND for all i.

IFAIL ¼ 4

On entry, TIMESðiÞ ¼ TIMESðjÞ ¼ valueh i, for i ¼ valueh i and j ¼ valueh i.
Constraint: all elements of TIMES must be unique.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05XCF is not threaded in any implementation.

9 Further Comments

The efficient implementation of a Brownian bridge algorithm requires the use of a workspace array
called the working stack. Since previously computed points will be used to interpolate new points, they
should be kept close to the hardware processing units so that the data can be accessed quickly. Ideally
the whole stack should be held in hardware cache. Different bridge construction orders may require
different amounts of working stack. Indeed, a naive bridge algorithm may require a stack of size N

4 or
even N

2 , which could be very inefficient when N is large. G05XCF performs a detailed analysis of the
bridge construction order specified by TIMES. Heuristics are used to find an execution strategy which
requires a small working stack, while still constructing the bridge in the order required.

10 Example

The following example program calls G05XAF and G05XBF to generate two sample paths from a two-
dimensional free Wiener process. It then calls G05XCF and G05XDF with the same input arguments to
obtain the scaled increments of the Wiener sample paths. Lastly, the program prints the Wiener sample
paths from G05XBF, the scaled increments from G05XDF, and the cumulative sum of the unscaled
increments side by side. Note that the cumulative sum of the unscaled increments is identical to the
output of G05XBF.

Please see Section 10 in G05XDF for additional examples.

10.1 Program Text

Program g05xcfe

! G05XCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05xaf, g05xbf, g05xcf, g05xdf, g05xef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: t0, tend
Integer :: a, bgord, d, ifail, ldb, ldc, ldz, &

nmove, npaths, ntimes, rcord
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: bb(:,:), bd(:,:), c(:,:), diff(:), &
intime(:), rcommb(:), rcommd(:), &
start(:), term(:), times(:), &
zb(:,:), zd(:,:)

Integer, Allocatable :: move(:)
! .. Intrinsic Procedures ..

Intrinsic :: size
! .. Executable Statements ..
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! Get information required to set up the bridge
Call get_bridge_init_data(bgord,t0,tend,ntimes,intime,nmove,move)

! Make the bridge construction bgord
Allocate (times(ntimes))
ifail = 0
Call g05xef(bgord,t0,tend,ntimes,intime,nmove,move,times,ifail)

! Initialize the Brownian bridge generator
Allocate (rcommb(12*(ntimes+1)),rcommd(12*(ntimes+1)))
ifail = 0
Call g05xaf(t0,tend,times,ntimes,rcommb,ifail)
ifail = 0
Call g05xcf(t0,tend,times,ntimes,rcommd,ifail)

! Get additional information required by the bridge generator
Call get_bridge_gen_data(npaths,rcord,d,start,a,term,c)
Allocate (diff(d))
diff(:) = term(:) - start(:)

Call allocate_arrays(rcord,npaths,d,a,ntimes,zb,bb,zd,bd)

! Generate the Z values
Call get_z(rcord,npaths,d*(ntimes+1-a),zb)
zd(:,:) = zb(:,:)

! Leading dimensions for the various input arrays
ldz = size(zb,1)
ldc = size(c,1)
ldb = size(bb,1)

! Call the Brownian bridge generator routine
ifail = 0
Call g05xbf(npaths,rcord,d,start,a,term,zb,ldz,c,ldc,bb,ldb,rcommb, &

ifail)
ifail = 0
Call g05xdf(npaths,rcord,d,a,diff,zd,ldz,c,ldc,bd,ldb,rcommd,ifail)

! Display the results
Call display_results(rcord,t0,tend,ntimes,intime,d,start,bb,bd)

Contains
Subroutine get_bridge_init_data(bgord,t0,tend,ntimes,intime,nmove,move)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: t0, tend
Integer, Intent (Out) :: bgord, nmove, ntimes

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: intime(:)
Integer, Allocatable, Intent (Out) :: move(:)

! .. Local Scalars ..
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
! Set the basic parameters for a Wiener process

ntimes = 10
t0 = 0.0_nag_wp
Allocate (intime(ntimes))

! We want to generate the Wiener process at these time points
Do i = 1, ntimes

intime(i) = t0 + real(i,kind=nag_wp)
End Do
tend = t0 + real(ntimes+1,kind=nag_wp)

nmove = 0
Allocate (move(nmove))
bgord = 3

End Subroutine get_bridge_init_data
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Subroutine get_bridge_gen_data(npaths,rcord,d,start,a,term,c)

! .. Use Statements ..
Use nag_library, Only: dpotrf

! .. Scalar Arguments ..
Integer, Intent (Out) :: a, d, npaths, rcord

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: c(:,:), start(:), &

term(:)
! .. Local Scalars ..

Integer :: info
! .. Executable Statements ..
! Set the basic parameters for a free Wiener process

npaths = 2
rcord = 2
d = 2
a = 0

Allocate (start(d),term(d),c(d,d))

start(1:d) = (/0.0_nag_wp,2.0_nag_wp/)
term(1:d) = (/1.0_nag_wp,0.0_nag_wp/)

! We want the following covariance matrix
c(:,1) = (/6.0_nag_wp,-1.0_nag_wp/)
c(:,2) = (/-1.0_nag_wp,5.0_nag_wp/)

! G05XBF works with the Cholesky factorization of the covariance matrix
! C so perform the decomposition

Call dpotrf(’Lower’,d,c,d,info)
If (info/=0) Then

Write (nout,*) &
’Specified covariance matrix is not positive definite: info=’, &
info

Stop
End If

End Subroutine get_bridge_gen_data

Subroutine allocate_arrays(rcord,npaths,d,a,ntimes,zb,bb,zd,bd)

! .. Scalar Arguments ..
Integer, Intent (In) :: a, d, npaths, ntimes, rcord

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: bb(:,:), bd(:,:), &

zb(:,:), zd(:,:)
! .. Local Scalars ..

Integer :: idim
! .. Executable Statements ..

idim = d*(ntimes+1-a)

If (rcord==1) Then
Allocate (zb(idim,npaths),zd(idim,npaths))
Allocate (bb(d*(ntimes+1),npaths),bd(d*(ntimes+1),npaths))

Else
Allocate (zb(npaths,idim),zd(npaths,idim))
Allocate (bb(npaths,d*(ntimes+1)),bd(npaths,d*(ntimes+1)))

End If

End Subroutine allocate_arrays

Subroutine get_z(rcord,npaths,idim,z)

! .. Use Statements ..
Use nag_library, Only: g05skf

! .. Scalar Arguments ..
Integer, Intent (In) :: idim, npaths, rcord

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: z(npaths*idim)

! .. Local Scalars ..
Integer :: ifail

! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: ztmp(:,:), ztmp2(:,:)
Integer :: seed(1)
Integer, Allocatable :: state(:)

! .. Intrinsic Procedures ..
Intrinsic :: reshape, transpose

! .. Executable Statements ..
! We now need to generate the input pseudorandom points
! First initialize the base pseudorandom number generator

seed(1) = 1023401
Call initialize_prng(6,0,seed,size(seed),state)

! Generate the pseudorandom points from N(0,1)
ifail = 0
Call g05skf(idim*npaths,0.0_nag_wp,1.0_nag_wp,state,z,ifail)
If (rcord==1) Then

Allocate (ztmp(npaths,idim),ztmp2(idim,npaths))
ztmp(1:npaths,1:idim) = reshape(z,(/npaths,idim/))
ztmp2(1:idim,1:npaths) = transpose(ztmp)
z(1:npaths*idim) = reshape(ztmp2,(/npaths*idim/))

End If
End Subroutine get_z

Subroutine initialize_prng(genid,subid,seed,lseed,state)

! .. Use Statements ..
Use nag_library, Only: g05kff

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, lseed, subid

! .. Array Arguments ..
Integer, Intent (In) :: seed(lseed)
Integer, Allocatable, Intent (Out) :: state(:)

! .. Local Scalars ..
Integer :: ifail, lstate

! .. Executable Statements ..
! Initial call to initializer to get size of STATE array

lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_prng

Subroutine display_results(rcord,t0,tend,ntimes,intime,d,start,bb,bd)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t0, tend
Integer, Intent (In) :: d, ntimes, rcord

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: bb(:,:), bd(:,:), intime(:), &

start(:)
! .. Local Scalars ..

Integer :: i, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: cum(:), unscaled(:)
! .. Executable Statements ..

Allocate (cum(d),unscaled(d))
Write (nout,*) ’G05XCF Example Program Results’
Write (nout,*)

Do n = 1, npaths
Write (nout,99999) ’Weiner Path ’, n, ’, ’, ntimes + 1, &

’ time steps, ’, d, ’ dimensions’
Write (nout,’(A)’) &

’ Output of G05XBF Output of G05XDF Sum of G05XDF’
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cum(:) = start(:)
If (rcord==1) Then

unscaled(:) = bd(1:d,n)*(intime(1)-t0)
cum(:) = cum(:) + unscaled(:)
Write (nout,99998) 1, bb(1:d,n), bd(1:d,n), cum(1:d)

Else
unscaled(:) = bd(n,1:d)*(intime(1)-t0)
cum(:) = cum(:) + unscaled(:)
Write (nout,99998) 1, bb(n,1:d), bd(n,1:d), cum(1:d)

End If
Do i = 2, ntimes

If (rcord==1) Then
unscaled(:) = bd(1+(i-1)*d:i*d,n)*(intime(i)-intime(i-1))
cum(:) = cum(:) + unscaled(:)
Write (nout,99998) i, bb(1+(i-1)*d:i*d,n), bd(1+(i-1)*d:i*d,n), &

cum(1:d)
Else

unscaled(:) = bd(n,1+(i-1)*d:i*d)*(intime(i)-intime(i-1))
cum(:) = cum(:) + unscaled(:)
Write (nout,99998) i, bb(n,1+(i-1)*d:i*d), bd(n,1+(i-1)*d:i*d), &

cum(1:d)
End If

End Do
i = ntimes + 1
If (rcord==1) Then

unscaled(:) = bd(1+(i-1)*d:i*d,n)*(tend-intime(i-1))
cum(:) = cum(:) + unscaled(:)
Write (nout,99998) i, bb(1+(i-1)*d:i*d,n), bd(1+(i-1)*d:i*d,n), &

cum(1:d)
Else

unscaled(:) = bd(n,1+(i-1)*d:i*d)*(tend-intime(i-1))
cum(:) = cum(:) + unscaled(:)
Write (nout,99998) i, bb(n,1+(i-1)*d:i*d), bd(n,1+(i-1)*d:i*d), &

cum(1:d)
End If

Write (nout,*)
End Do

99999 Format (1X,A,I0,A,I0,A,I0,A)
99998 Format (1X,I2,1X,2(1X,F8.4),2X,2(1X,F8.4),2X,2(1X,F8.4))

End Subroutine display_results
End Program g05xcfe

10.2 Program Data

None.

10.3 Program Results

G05XCF Example Program Results

Weiner Path 1, 11 time steps, 2 dimensions
Output of G05XBF Output of G05XDF Sum of G05XDF

1 -2.2323 1.6656 -2.2323 -0.3344 -2.2323 1.6656
2 -5.2301 1.2812 -2.9978 -0.3844 -5.2301 1.2812
3 -0.9025 -1.2421 4.3276 -2.5234 -0.9025 -1.2421
4 -3.6799 -0.3972 -2.7774 0.8449 -3.6799 -0.3972
5 -6.5789 -2.0358 -2.8990 -1.6386 -6.5789 -2.0358
6 -11.2879 -1.1972 -4.7090 0.8385 -11.2879 -1.1972
7 -8.8959 -1.6751 2.3919 -0.4779 -8.8959 -1.6751
8 -9.7103 -2.0523 -0.8144 -0.3772 -9.7103 -2.0523
9 -8.5720 -3.3306 1.1383 -1.2783 -8.5720 -3.3306

10 -9.8245 -3.2035 -1.2524 0.1271 -9.8245 -3.2035
11 -4.9941 -8.3506 4.8304 -5.1471 -4.9941 -8.3506

Weiner Path 2, 11 time steps, 2 dimensions
Output of G05XBF Output of G05XDF Sum of G05XDF

1 -1.4101 0.0576 -1.4101 -1.9424 -1.4101 0.0576
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2 -3.5738 0.2519 -2.1637 0.1943 -3.5738 0.2519
3 -5.2528 1.7232 -1.6790 1.4713 -5.2528 1.7232
4 -0.8540 1.0897 4.3988 -0.6335 -0.8540 1.0897
5 0.4905 -0.9098 1.3445 -1.9995 0.4905 -0.9098
6 2.3322 1.3415 1.8417 2.2514 2.3322 1.3415
7 3.0105 -4.3312 0.6783 -5.6728 3.0105 -4.3312
8 2.6776 -3.4437 -0.3329 0.8875 2.6776 -3.4437
9 0.6546 -2.7291 -2.0230 0.7146 0.6546 -2.7291

10 -1.3175 -3.8166 -1.9721 -1.0875 -1.3175 -3.8166
11 -3.0214 -3.5439 -1.7039 0.2727 -3.0214 -3.5439
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NAG Library Routine Document

G05XDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05XDF computes scaled increments of sample paths of a free or non-free Wiener process, where the
sample paths are constructed by a Brownian bridge algorithm. The initialization routine G05XCF must
be called prior to the first call to G05XDF.

2 Specification

SUBROUTINE G05XDF (NPATHS, RCORD, D, A, DIFF, Z, LDZ, C, LDC, B, LDB,
RCOMM, IFAIL)

&

INTEGER NPATHS, RCORD, D, A, LDZ, LDC, LDB, IFAIL
REAL (KIND=nag_wp) DIFF(D), Z(LDZ,*), C(LDC,*), B(LDB,*), RCOMM(*)

3 Description

For details on the Brownian bridge algorithm and the bridge construction order see Section 2.6 in the
G05 Chapter Introduction and Section 3 in G05XCF. Recall that the terms Wiener process (or free
Wiener process) and Brownian motion are often used interchangeably, while a non-free Wiener process
(also known as a Brownian bridge process) refers to a process which is forced to terminate at a given
point.

Fix two times t0 < T , let tið Þ1�i�N be any set of time points satisfying t0 < t1 < t2 < � � � < tN < T , and
let Xt0 , Xtið Þ1�i�N , XT denote a d-dimensional Wiener sample path at these time points.

The Brownian bridge increments generator uses the Brownian bridge algorithm to construct sample
paths for the (free or non-free) Wiener process X, and then uses this to compute the scaled Wiener
increments

Xt1 �Xt0

t1 � t0
;
Xt2 �Xt1

t2 � t1
; . . . ;

XtN �XtN�1

tN � tN�1
;
XT �XtN

T � tN
The example program in Section 10 shows how these increments can be used to compute a numerical
solution to a stochastic differential equation (SDE) driven by a (free or non-free) Wiener process.

4 References

Glasserman P (2004) Monte Carlo Methods in Financial Engineering Springer

5 Arguments

Note: the following variable is used in the parameter descriptions: N ¼ NTIMES, the length of the
array TIMES passed to the initialization routine G05XCF.

1: NPATHS – INTEGER Input

On entry: the number of Wiener sample paths.

Constraint: NPATHS � 1.
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2: RCORD – INTEGER Input

On entry: the order in which Normal random numbers are stored in Z and in which the generated
values are returned in B.

Constraint: RCORD ¼ 1 or 2.

3: D – INTEGER Input

On entry: the dimension of each Wiener sample path.

Constraint: D � 1.

4: A – INTEGER Input

On entry: if A ¼ 0, a free Wiener process is created and DIFF is ignored.

If A ¼ 1, a non-free Wiener process is created where DIFF is the difference between the terminal
value and the starting value of the process.

Constraint: A ¼ 0 or 1.

5: DIFFðDÞ – REAL (KIND=nag_wp) array Input

On entry: the difference between the terminal value and starting value of the Wiener process. If
A ¼ 0, DIFF is ignored.

6: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least NPATHS if RCORD ¼ 1 and at least
D� N þ 1� Að Þ if RCORD ¼ 2.

On entry: the Normal random numbers used to construct the sample paths.

If quasi-random numbers are used, the D� N þ 1� Að Þ-dimensional quasi-random points should
be stored in successive rows of Z.

On exit: the Normal random numbers premultiplied by C.

7: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which G05XDF
is called.

Constraints:

if RCORD ¼ 1, LDZ � D� N þ 1� Að Þ;
if RCORD ¼ 2, LDZ � NPATHS.

8: CðLDC; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array C must be at least D.

On entry: the lower triangular Cholesky factorization C such that CCT gives the covariance
matrix of the Wiener process. Elements of C above the diagonal are not referenced.

9: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G05XDF
is called.

Constraint: LDC � D.
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10: BðLDB; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array B must be at least NPATHS if RCORD ¼ 1 and at least
D� N þ 1ð Þ if RCORD ¼ 2.

On exit: the scaled Wiener increments.

Let Xk
p;i denote the kth dimension of the ith point of the pth sample path where 1 � k � D,

1 � i � N þ 1 and 1 � p � NPATHS. The increment
Xk
p;i �Xk

p;i�1

� �
ti � ti�1ð Þ i s s tored at

B p; kþ i� 1ð Þ � Dð Þ.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which G05XDF
is called.

Constraints:

if RCORD ¼ 1, LDB � D� N þ 1ð Þ;
if RCORD ¼ 2, LDB � NPATHS.

12: RCOMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
RCOMM in the previous call to G05XCF or G05XDF.

On entry: communication array as returned by the last call to G05XCF or G05XDF. This array
must not be directly modified.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, RCOMM was not initialized or has been corrupted.

IFAIL ¼ 2

On entry, NPATHS ¼ valueh i.
Constraint: NPATHS � 1.

IFAIL ¼ 3

On entry, RCORD ¼ valueh i was an illegal value.
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IFAIL ¼ 4

On entry, D ¼ valueh i.
Constraint: D � 1.

IFAIL ¼ 5

On entry, A ¼ valueh i.
Constraint: A ¼ 0 or 1.

IFAIL ¼ 6

On entry, LDZ ¼ valueh i and D� NTIMESþ 1� Að Þ ¼ valueh i.
Constraint: LDZ � D� NTIMESþ 1� Að Þ.
On entry, LDZ ¼ valueh i and NPATHS ¼ valueh i.
Constraint: LDZ � NPATHS.

IFAIL ¼ 7

On entry, LDC ¼ valueh i.
Constraint: LDC � valueh i.

IFAIL ¼ 8

On entry, LDB ¼ valueh i and D� NTIMESþ 1ð Þ ¼ valueh i.
Constraint: LDB � D� NTIMESþ 1ð Þ.
On entry, LDB ¼ valueh i and NPATHS ¼ valueh i.
Constraint: LDB � NPATHS.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05XDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05XDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

None.

10 Example

The scaled Wiener increments produced by this routine can be used to compute numerical solutions to
stochastic differential equations (SDEs) driven by (free or non-free) Wiener processes. Consider an
SDE of the form

dYt ¼ f t; Ytð Þdtþ � t; Ytð ÞdXt

on the interval t0; T½ � where Xtð Þt0�t�T is a (free or non-free) Wiener process and f and � are suitable
functions. A numerical solution to this SDE can be obtained by the Euler–Maruyama method. For any
discretization t0 < t1 < t2 < � � � < tNþ1 ¼ T of t0; T½ �, set

Ytiþ1 ¼ Yti þ f ti; Ytið Þ tiþ1 � tið Þ þ � ti; Ytið Þ Xtiþ1 �Xti

� �
for i ¼ 1; . . . ; N so that YtNþ1 is an approximation to YT . The scaled Wiener increments produced by
G05XDF can be used in the Euler–Maruyama scheme outlined above by writing

Ytiþ1 ¼ Yti þ tiþ1 � tið Þ f ti; Ytið Þ þ � ti; Ytið Þ Xtiþ1 �Xti

tiþ1 � ti

� �� �
:

The following example program uses this method to solve the SDE for geometric Brownian motion

dSt ¼ rStdtþ �StdXt

where X is a Wiener process, and compares the results against the analytic solution

ST ¼ S0exp r� �2=2
� �

T þ �XT

� �
:

Quasi-random variates are used to construct the Wiener increments.

10.1 Program Text

Program g05xdfe

! G05XDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05xcf, g05xdf, g05xef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: a = 0, d = 1, nout = 6, rcord = 2
Real (Kind=nag_wp), Parameter :: c(d) = (/1.0_nag_wp/)
Real (Kind=nag_wp), Parameter :: diff(d) = (/0.0_nag_wp/)

! .. Local Scalars ..
Real (Kind=nag_wp) :: r, s0, sigma, t0, tend
Integer :: bgord, i, ifail, ldb, ldz, nmove, &

npaths, ntimesteps, p
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: analytic(:), b(:,:), rcomm(:), &
st(:,:), t(:), times(:), z(:,:)

Integer, Allocatable :: move(:)
! .. Intrinsic Procedures ..

Intrinsic :: exp, real, size, sqrt
! .. Executable Statements ..

ifail = 0

! We wish to solve the stochastic differential equation (SDE)
! dSt = r*St*dt + sigma*St*dXt
! where X is a one dimensional Wiener process.
! This means we have
! A = 0
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! D = 1
! C = 1
! We now set the other parameters of the SDE and the Euler-Maruyama scheme

! Initial value of the process
s0 = 1.0_nag_wp
r = 0.05_nag_wp
sigma = 0.12_nag_wp

! Number of paths to simulate
npaths = 3

! The time interval [t0,T] on which to solve the SDE
t0 = 0.0_nag_wp
tend = 1.0_nag_wp

! The time steps in the discretization of [t0,T]
ntimesteps = 20
Allocate (t(ntimesteps))
Do i = 1, ntimesteps

t(i) = t0 + i*(tend-t0)/real(ntimesteps+1,kind=nag_wp)
End Do

! Make the bridge construction order
nmove = 0
Allocate (times(ntimesteps),move(nmove))
bgord = 3
Call g05xef(bgord,t0,tend,ntimesteps,t,nmove,move,times,ifail)

! Generate the input Z values and allocate memory for b
Call get_z(rcord,npaths,d,a,ntimesteps,z,b)

! Leading dimensions for the various input arrays
ldz = size(z,1)
ldb = size(b,1)

! Initialize the generator
Allocate (rcomm(12*(ntimesteps+1)))
Call g05xcf(t0,tend,times,ntimesteps,rcomm,ifail)

! Get the scaled increments of the Wiener process
Call g05xdf(npaths,rcord,d,a,diff,z,ldz,c,d,b,ldb,rcomm,ifail)

! Do the Euler-Maruyama time stepping
Allocate (st(npaths,ntimesteps+1),analytic(npaths))

! Do first time step
st(:,1) = s0 + (t(1)-t0)*(r*s0+sigma*s0*b(:,1))
Do i = 2, ntimesteps

Do p = 1, npaths
st(p,i) = st(p,i-1) + (t(i)-t(i-1))*(r*st(p,i-1)+sigma*st(p,i-1)*b(p &

,i))
End Do

End Do
! Do last time step

st(:,i) = st(:,i-1) + (tend-t(i-1))*(r*st(:,i-1)+sigma*st(:,i-1)*b(:,i))

! Compute the analytic solution:
! ST = S0*exp( (r-sigma**2/2)T + sigma WT )

analytic(:) = s0*exp((r-0.5_nag_wp*sigma*sigma)*tend+sigma*sqrt(tend-t0) &
*z(:,1))

! Display the results
Call display_results(ntimesteps,npaths,st,analytic)

Contains

Subroutine get_z(rcord,npaths,d,a,ntimes,z,b)

! .. Use Statements ..
Use nag_library, Only: g05yjf

! .. Scalar Arguments ..
Integer, Intent (In) :: a, d, npaths, ntimes, rcord

! .. Array Arguments ..
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Real (Kind=nag_wp), Allocatable, Intent (Out) :: b(:,:), z(:,:)
! .. Local Scalars ..

Integer :: idim, ifail
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: std(:), tz(:,:), xmean(:)
Integer, Allocatable :: iref(:), state(:)
Integer :: seed(1)

! .. Intrinsic Procedures ..
Intrinsic :: transpose

! .. Executable Statements ..
idim = d*(ntimes+1-a)

! Allocate Z
If (rcord==1) Then

Allocate (z(idim,npaths))
Allocate (b(d*(ntimes+1),npaths))

Else
Allocate (z(npaths,idim))
Allocate (b(npaths,d*(ntimes+1)))

End If

! We now need to generate the input quasi-random points
! First initialize the base pseudorandom number generator

seed(1) = 1023401
Call initialize_prng(6,0,seed,size(seed),state)

! Scrambled quasi-random sequences preserve the good discrepancy
! properties of quasi-random sequences while counteracting the bias
! some applications experience when using quasi-random sequences.
! Initialize the scrambled quasi-random generator.

Call initialize_scrambled_qrng(1,2,idim,state,iref)

! Generate the quasi-random points from N(0,1)
Allocate (xmean(idim),std(idim))
xmean(1:idim) = 0.0_nag_wp
std(1:idim) = 1.0_nag_wp
If (rcord==1) Then

Allocate (tz(npaths,idim))
ifail = 0
Call g05yjf(xmean,std,npaths,tz,iref,ifail)
z(:,:) = transpose(tz)

Else
ifail = 0
Call g05yjf(xmean,std,npaths,z,iref,ifail)

End If
End Subroutine get_z

Subroutine initialize_prng(genid,subid,seed,lseed,state)

! .. Use Statements ..
Use nag_library, Only: g05kff

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, lseed, subid

! .. Array Arguments ..
Integer, Intent (In) :: seed(lseed)
Integer, Allocatable, Intent (Out) :: state(:)

! .. Local Scalars ..
Integer :: ifail, lstate

! .. Executable Statements ..

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
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ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_prng

Subroutine initialize_scrambled_qrng(genid,stype,idim,state,iref)

! .. Use Statements ..
Use nag_library, Only: g05ynf

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, idim, stype

! .. Array Arguments ..
Integer, Allocatable, Intent (Out) :: iref(:)
Integer, Intent (Inout) :: state(*)

! .. Local Scalars ..
Integer :: ifail, iskip, liref, nsdigits

! .. Executable Statements ..
liref = 32*idim + 7
iskip = 0
nsdigits = 32
Allocate (iref(liref))
ifail = 0
Call g05ynf(genid,stype,idim,iref,liref,iskip,nsdigits,state,ifail)

End Subroutine initialize_scrambled_qrng

Subroutine display_results(ntimesteps,npaths,st,analytic)

! .. Scalar Arguments ..
Integer, Intent (In) :: npaths, ntimesteps

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: analytic(:), st(:,:)

! .. Local Scalars ..
Integer :: i, p

! .. Executable Statements ..
Write (nout,*) ’G05XDF Example Program Results’
Write (nout,*)

Write (nout,*) ’Euler-Maruyama solution for Geometric Brownian motion’

Write (nout,99999)(’Path’,p,p=1,npaths)
Do i = 1, ntimesteps + 1

Write (nout,99998) i, st(:,i)
End Do
Write (nout,*)

Write (nout,’(A)’) ’Analytic solution at final time step’
Write (nout,99999)(’Path’,p,p=1,npaths)
Write (nout,’(4X,20(1X,F10.4))’) analytic(:)

99999 Format (4X,20(5X,A,I2))
99998 Format (1X,I2,1X,20(1X,F10.4))

End Subroutine display_results
End Program g05xdfe

10.2 Program Data

None.

10.3 Program Results

G05XDF Example Program Results

Euler-Maruyama solution for Geometric Brownian motion
Path 1 Path 2 Path 3

1 0.9668 1.0367 0.9992
2 0.9717 1.0254 1.0077
3 0.9954 1.0333 1.0098
4 0.9486 1.0226 0.9911
5 0.9270 1.0113 1.0630
6 0.8997 1.0127 1.0164
7 0.8955 1.0138 1.0771
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8 0.8953 0.9953 1.0691
9 0.8489 1.0462 1.0484

10 0.8449 1.0592 1.0429
11 0.8158 1.0233 1.0625
12 0.7997 1.0384 1.0729
13 0.8025 1.0138 1.0725
14 0.8187 1.0499 1.0554
15 0.8270 1.0459 1.0529
16 0.7914 1.0294 1.0783
17 0.8076 1.0224 1.0943
18 0.8208 1.0359 1.0773
19 0.8190 1.0326 1.0857
20 0.8217 1.0326 1.1095
21 0.8084 0.9695 1.1389

Analytic solution at final time step
Path 1 Path 2 Path 3
0.8079 0.9685 1.1389
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NAG Library Routine Document

G05XEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05XEF takes a set of input times and permutes them to specify one of several predefined Brownian
bridge construction orders. The permuted times can be passed to G05XAF or G05XCF to initialize the
Brownian bridge generators with the chosen bridge construction order.

2 Specification

SUBROUTINE G05XEF (BGORD, T0, TEND, NTIMES, INTIME, NMOVE, MOVE, TIMES,
IFAIL)

&

INTEGER BGORD, NTIMES, NMOVE, MOVE(NMOVE), IFAIL
REAL (KIND=nag_wp) T0, TEND, INTIME(NTIMES), TIMES(NTIMES)

3 Description

The Brownian bridge algorithm (see Glasserman (2004)) is a popular method for constructing a Wiener
process at a set of discrete times, t0 < t1 < t2 <; . . . ; < tN < T , for N � 1. To ease notation we assume
that T has the index N þ 1 so that T ¼ tNþ1. Inherent in the algorithm is the notion of a bridge
construction order which specifies the order in which the N þ 2 points of the Wiener process, Xt0 ;XT

and Xti , for i ¼ 1; 2; . . . ; N, are generated. The value of Xt0 is always assumed known, and the first
point to be generated is always the final time XT . Thereafter, successive points are generated iteratively
by an interpolation formula, using points which were computed at previous iterations. In many cases the
bridge construction order is not important, since any construction order will yield a correct process.
However, in certain cases, for example when using quasi-random variates to construct the sample paths,
the bridge construction order can be important.

3.1 Supported Bridge Construction Orders

G05XEF accepts as input an array of time points t1; t2; . . . ; tN ; T at which the Wiener process is to be
sampled. These time points are then permuted to construct the bridge. In all of the supported
construction orders the first construction point is T which has index N þ 1. The remaining points are
constructed by iteratively bisecting (sub-intervals of) the time indices interval 0; N þ 1½ �, as Figure 1
illustrates:

Figure 1

The time indices interval is processed in levels Li, for i ¼ 1; 2; . . .. Each level Li contains ni points
Li1; . . . ; L

i
ni

where ni � 2i�1. The number of points at each level depends on the value of N . The points
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Lij for i � 1 and j ¼ 1; 2; . . .ni are computed as follows: define L0
0 ¼ N þ 1 and set

Lij ¼ J þ K � Jð Þ=2 where

J ¼ max Lpk : 1 � k � np; 0 � p < i and Lpk < Lij

n o
and

K ¼ min Lpk : 1 � k � np; 0 � p < i and Lpk > Lij

n o
By convention the maximum of the empty set is taken to be to be zero. Figure 1 illustrates the
algorithm when N þ 1 is a power of two. When N þ 1 is not a power of two, one must decide how to
round the divisions by 2. For example, if one rounds down to the nearest integer, then one could get the
following:

Figure 2

From the series of bisections outlined above, two ways of ordering the time indices Lij are supported. In
both cases, levels are always processed from coarsest to finest (i.e., increasing i). Within a level, the
time indices can either be processed left to right (i.e., increasing j) or right to left (i.e., decreasing j).
For example, when processing left to right, the sequence of time indices could be generated as:

N þ 1 L1
1 L2

1 L2
2 L3

1 L3
2 L3

3 L3
4 � � �

while when processing right to left, the same sequence would be generated as:

N þ 1 L1
1 L2

2 L2
1 L3

4 L3
3 L3

2 L3
1 � � �

G05XEF therefore offers four bridge construction methods; processing either left to right or right to
left, with rounding either up or down. Which method is used is controlled by the BGORD argument.
For example, on the set of times

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 T

the Brownian bridge would be constructed in the following orders:

BGORD ¼ 1 (processing left to right, rounding down)

T t6 t3 t9 t1 t4 t7 t11 t2 t5 t8 t10 t12

BGORD ¼ 2 (processing left to right, rounding up)

T t7 t4 t10 t2 t6 t9 t12 t1 t3 t5 t8 t11

BGORD ¼ 3 (processing right to left, rounding down)

T t6 t9 t3 t11 t7 t4 t1 t12 t10 t8 t5 t2

BGORD ¼ 4 (processing right to left, rounding up)

T t7 t10 t4 t12 t9 t6 t2 t11 t8 t5 t3 t1 :

The four construction methods described above can be further modified through the use of the input
array MOVE. To see the effect of this argument, suppose that an array A holds the output of G05XEF
when NMOVE ¼ 0 (i.e., the bridge construction order as specified by BGORD only). Let

B ¼ tj : j ¼ MOVEðiÞ; i ¼ 1; 2; . . . ;NMOVE
� 
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be the array of all times identified by MOVE, and let C be the array A with all the elements in B
removed, i.e.,

C ¼ A ið Þ : A ið Þ 6¼ B jð Þ; i ¼ 1; 2; . . . ;NTIMES; j ¼ 1; 2; . . . ;NMOVEf g:
Then the output of G05XEF when NMOVE > 0 is given by

B 1ð Þ B 2ð Þ � � � B NMOVEð Þ C 1ð Þ C 2ð Þ � � � C NTIMES� NMOVEð Þ
When the Brownian bridge is used with quasi-random variates, this functionality can be used to allow
specific sections of the bridge to be constructed using the lowest dimensions of the quasi-random
points.

4 References

Glasserman P (2004) Monte Carlo Methods in Financial Engineering Springer

5 Arguments

1: BGORD – INTEGER Input

On entry: the bridge construction order to use.

Constraint: BGORD ¼ 1, 2, 3 or 4.

2: T0 – REAL (KIND=nag_wp) Input

On entry: t0, the start value of the time interval on which the Wiener process is to be constructed.

3: TEND – REAL (KIND=nag_wp) Input

On entry: T , the largest time at which the Wiener process is to be constructed.

4: NTIMES – INTEGER Input

On entry: N , the number of time points in the Wiener process, excluding t0 and T .

Constraint: NTIMES � 1.

5: INTIMEðNTIMESÞ – REAL (KIND=nag_wp) array Input

On entry: the time points, t1; t2; . . . ; tN , at which the Wiener process is to be constructed. Note
that the final time T is not included in this array.

Constraints:

T0 < INTIMEðiÞ and INTIMEðiÞ < INTIMEði þ 1Þ, for i ¼ 1; 2; . . . ;NTIMES� 1;
INTIMEðNTIMESÞ < TEND.

6: NMOVE – INTEGER Input

On entry: the number of elements in the array MOVE.

Constraint: 0 � NMOVE � NTIMES.

7: MOVEðNMOVEÞ – INTEGER array Input

On entry: the indices of the entries in INTIME which should be moved to the front of the TIMES
array, with MOVEðjÞ ¼ i setting the jth element of TIMES to ti. Note that i ranges from 1 to
NTIMES. When NMOVE ¼ 0, MOVE is not referenced.

Constraint: 1 � MOVEðjÞ � NTIMES, for j ¼ 1; 2; . . . ;NMOVE.

The elements of MOVE must be unique.
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8: TIMESðNTIMESÞ – REAL (KIND=nag_wp) array Output

On exit: the output bridge construction order. This should be passed to G05XAF or G05XCF.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, BGORD ¼ valueh i.
Constraint: BGORD ¼ 1, 2, 3 or 4

IFAIL ¼ 2

On entry, NTIMES ¼ valueh i.
Constraint: NTIMES � 1.

IFAIL ¼ 3

On entry, NMOVE ¼ valueh i and NTIMES ¼ valueh i.
Constraint: 0 � NMOVE � NTIMES.

IFAIL ¼ 4

On entry, INTIMEð valueh iÞ ¼ valueh i and INTIMEð valueh iÞ ¼ valueh i.
Constraint: the elements in INTIME must be in increasing order.

On entry, INTIMEð1Þ ¼ valueh i and T0 ¼ valueh i.
Constraint: INTIMEð1Þ > T0.

On entry, NTIMES ¼ valueh i, INTIMEðNTIMESÞ ¼ valueh i and TEND ¼ valueh i.
Constraint: INTIMEðNTIMESÞ < TEND.

IFAIL ¼ 5

On entry, MOVEð valueh iÞ ¼ valueh i.
Constraint: MOVEðiÞ � 1 for all i.

On entry, MOVEð valueh iÞ ¼ valueh i and NTIMES ¼ valueh i.
Constraint: MOVEðiÞ � NTIMES for all i.

IFAIL ¼ 6

On entry, MOVEð valueh iÞ and MOVEð valueh iÞ both equal valueh i.
Constraint: all elements in MOVE must be unique.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05XEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example calls G05XEF, G05XAF and G05XBF to generate two sample paths of a three-
dimensional free Wiener process. The array MOVE is used to ensure that a certain part of the sample
path is always constructed using the lowest dimensions of the input quasi-random points. For further
details on using quasi-random points with the Brownian bridge algorithm, please see Section 2.6 in the
G05 Chapter Introduction.

10.1 Program Text

Program g05xefe

! G05XEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05xaf, g05xbf, g05xef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: t0, tend
Integer :: a, bgord, d, ifail, ldb, ldc, ldz, &

nmove, npaths, ntimes, rcord
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:,:), c(:,:), intime(:), rcomm(:), &
start(:), term(:), times(:), z(:,:)

Integer, Allocatable :: move(:)
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! .. Intrinsic Procedures ..
Intrinsic :: size

! .. Executable Statements ..
! Get information required to set up the bridge

Call get_bridge_init_data(bgord,t0,tend,ntimes,intime,nmove,move)

! Make the bridge construction bgord
Allocate (times(ntimes))
ifail = 0
Call g05xef(bgord,t0,tend,ntimes,intime,nmove,move,times,ifail)

! Initialize the Brownian bridge generator
Allocate (rcomm(12*(ntimes+1)))
ifail = 0
Call g05xaf(t0,tend,times,ntimes,rcomm,ifail)

! Get additional information required by the bridge generator
Call get_bridge_gen_data(npaths,rcord,d,start,a,term,c)

! Generate the Z values
Call get_z(rcord,npaths,d,a,ntimes,z,b)

! Leading dimensions for the various input arrays
ldz = size(z,1)
ldc = size(c,1)
ldb = size(b,1)

! Call the Brownian bridge generator routine
ifail = 0
Call g05xbf(npaths,rcord,d,start,a,term,z,ldz,c,ldc,b,ldb,rcomm,ifail)

! Display the results
Call display_results(rcord,ntimes,d,b)

Contains
Subroutine get_bridge_init_data(bgord,t0,tend,ntimes,intime,nmove,move)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: t0, tend
Integer, Intent (Out) :: bgord, nmove, ntimes

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: intime(:)
Integer, Allocatable, Intent (Out) :: move(:)

! .. Local Scalars ..
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
! Set the basic parameters for a Wiener process

ntimes = 10
t0 = 0.0_nag_wp
Allocate (intime(ntimes))

! We want to generate the Wiener process at these time points
Do i = 1, ntimes

intime(i) = t0 + 1.71_nag_wp*real(i,kind=nag_wp)
End Do
tend = t0 + 1.71_nag_wp*real(ntimes+1,kind=nag_wp)

! We suppose the following 3 times are very important and should be
! constructed first. Note: these are indices into INTIME

nmove = 3
Allocate (move(nmove))
move(1:nmove) = (/3,5,4/)
bgord = 3

End Subroutine get_bridge_init_data

Subroutine get_bridge_gen_data(npaths,rcord,d,start,a,term,c)

! .. Use Statements ..
Use nag_library, Only: dpotrf
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! .. Scalar Arguments ..
Integer, Intent (Out) :: a, d, npaths, rcord

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: c(:,:), start(:), &

term(:)
! .. Local Scalars ..

Integer :: info
! .. Executable Statements ..
! Set the basic parameters for a free Wiener process

npaths = 2
rcord = 2
d = 3
a = 0

Allocate (start(d),term(d),c(d,d))

start(1:d) = 0.0_nag_wp
! As A = 0, TERM need not be initialized

! We want the following covariance matrix
c(:,1) = (/6.0_nag_wp,1.0_nag_wp,-0.2_nag_wp/)
c(:,2) = (/1.0_nag_wp,5.0_nag_wp,0.3_nag_wp/)
c(:,3) = (/-0.2_nag_wp,0.3_nag_wp,4.0_nag_wp/)

! G05XBF works with the Cholesky factorization of the covariance matrix
! C so perform the decomposition

Call dpotrf(’Lower’,d,c,d,info)
If (info/=0) Then

Write (nout,*) &
’Specified covariance matrix is not positive definite: info=’, &
info

Stop
End If

End Subroutine get_bridge_gen_data

Subroutine get_z(rcord,npaths,d,a,ntimes,z,b)

! .. Use Statements ..
Use nag_library, Only: g05yjf

! .. Scalar Arguments ..
Integer, Intent (In) :: a, d, npaths, ntimes, rcord

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: b(:,:), z(:,:)

! .. Local Scalars ..
Integer :: idim, ifail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: std(:), tz(:,:), xmean(:)
Integer, Allocatable :: iref(:), state(:)
Integer :: seed(1)

! .. Intrinsic Procedures ..
Intrinsic :: transpose

! .. Executable Statements ..
idim = d*(ntimes+1-a)

! Allocate Z
If (rcord==1) Then

Allocate (z(idim,npaths))
Allocate (b(d*(ntimes+1),npaths))

Else
Allocate (z(npaths,idim))
Allocate (b(npaths,d*(ntimes+1)))

End If

! We now need to generate the input quasi-random points
! First initialize the base pseudorandom number generator

seed(1) = 1023401
Call initialize_prng(6,0,seed,size(seed),state)

! Scrambled quasi-random sequences preserve the good discrepancy
! properties of quasi-random sequences while counteracting the bias
! some applications experience when using quasi-random sequences.
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! Initialize the scrambled quasi-random generator.
Call initialize_scrambled_qrng(1,2,idim,state,iref)

! Generate the quasi-random points from N(0,1)
Allocate (xmean(idim),std(idim))
xmean(1:idim) = 0.0_nag_wp
std(1:idim) = 1.0_nag_wp
If (rcord==1) Then

Allocate (tz(npaths,idim))
ifail = 0
Call g05yjf(xmean,std,npaths,tz,iref,ifail)
z(:,:) = transpose(tz)

Else
ifail = 0
Call g05yjf(xmean,std,npaths,z,iref,ifail)

End If
End Subroutine get_z

Subroutine initialize_prng(genid,subid,seed,lseed,state)

! .. Use Statements ..
Use nag_library, Only: g05kff

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, lseed, subid

! .. Array Arguments ..
Integer, Intent (In) :: seed(lseed)
Integer, Allocatable, Intent (Out) :: state(:)

! .. Local Scalars ..
Integer :: ifail, lstate

! .. Executable Statements ..

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_prng

Subroutine initialize_scrambled_qrng(genid,stype,idim,state,iref)

! .. Use Statements ..
Use nag_library, Only: g05ynf

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, idim, stype

! .. Array Arguments ..
Integer, Allocatable, Intent (Out) :: iref(:)
Integer, Intent (Inout) :: state(*)

! .. Local Scalars ..
Integer :: ifail, iskip, liref, nsdigits

! .. Executable Statements ..
liref = 32*idim + 7
iskip = 0
nsdigits = 32
Allocate (iref(liref))
ifail = 0
Call g05ynf(genid,stype,idim,iref,liref,iskip,nsdigits,state,ifail)

End Subroutine initialize_scrambled_qrng

Subroutine display_results(rcord,ntimes,d,b)

! .. Scalar Arguments ..
Integer, Intent (In) :: d, ntimes, rcord

! .. Array Arguments ..
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Real (Kind=nag_wp), Intent (In) :: b(:,:)
! .. Local Scalars ..

Integer :: i, j, k
! .. Executable Statements ..

Write (nout,*) ’G05XEF Example Program Results’
Write (nout,*)

Do i = 1, npaths
Write (nout,99999) ’Weiner Path ’, i, ’, ’, ntimes + 1, &

’ time steps, ’, d, ’ dimensions’
Write (nout,99997)(j,j=1,d)
k = 1
Do j = 1, ntimes + 1

If (rcord==1) Then
Write (nout,99998) j, b(k:k+d-1,i)

Else
Write (nout,99998) j, b(i,k:k+d-1)

End If
k = k + d

End Do
Write (nout,*)

End Do
99999 Format (1X,A,I0,A,I0,A,I0,A)
99998 Format (1X,I2,1X,20(1X,F10.4))
99997 Format (1X,3X,20(9X,I2))

End Subroutine display_results
End Program g05xefe

10.2 Program Data

None.

10.3 Program Results

G05XEF Example Program Results

Weiner Path 1, 11 time steps, 3 dimensions
1 2 3

1 -2.1275 -2.4995 -6.0191
2 -6.1589 -1.3257 -3.7378
3 -5.1917 -3.1653 -6.2291
4 -11.5557 -5.9183 -5.9062
5 -9.2492 -5.7497 -4.2989
6 -6.7853 -13.9759 -0.8990
7 -12.7642 -15.6386 -3.6481
8 -12.5245 -11.8142 3.3504
9 -15.1995 -15.5145 0.5355

10 -16.0360 -14.4140 0.0104
11 -22.6719 -14.3308 -0.2418

Weiner Path 2, 11 time steps, 3 dimensions
1 2 3

1 -0.0973 3.7229 0.8640
2 0.8027 8.5041 -0.9103
3 -3.8494 6.1062 0.1231
4 -6.6643 4.9936 -0.1329
5 -6.8095 9.3508 4.7022
6 -7.7178 10.9577 -1.4262
7 -8.0711 12.7207 4.4744
8 -12.8353 8.8296 7.6458
9 -7.9795 12.2399 7.3783

10 -6.4313 10.0770 5.5234
11 -6.6258 10.3026 6.5021
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NAG Library Routine Document

G05YJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05YJF generates a quasi-random sequence from a Normal (Gaussian) distribution. It must be preceded
by a call to one of the initialization routines G05YLF or G05YNF.

2 Specification

SUBROUTINE G05YJF (XMEAN, STD, N, QUAS, IREF, IFAIL)

INTEGER N, IREF(liref), IFAIL
REAL (KIND=nag_wp) XMEAN(idim), STD(idim), QUAS(N,idim)

3 Description

G05YJF generates a quasi-random sequence from a Normal distribution by first generating a uniform
quasi-random sequence which is then transformed into a Normal sequence using the inverse of the
Normal CDF. The type of uniform sequence used depends on the initialization routine called and can
include the low-discrepancy sequences proposed by Sobol, Faure or Niederreiter. If the initialization
routine G05YNF was used then the underlying uniform sequence is first scrambled prior to being
transformed (see Section 3 in G05YNF for details).

4 References

Bratley P and Fox B L (1988) Algorithm 659: implementing Sobol's quasirandom sequence generator
ACM Trans. Math. Software 14(1) 88–100

Fox B L (1986) Algorithm 647: implementation and relative efficiency of quasirandom sequence
generators ACM Trans. Math. Software 12(4) 362–376

Wichura (1988) Algorithm AS 241: the percentage points of the Normal distribution Appl. Statist. 37
477–484

5 Arguments

Note: the following variables are used in the parameter descriptions:

idim ¼ IDIM, the number of dimensions required, see G05YLF or G05YNF;

liref ¼ LIREF, the length of IREF as supplied to the initialization routines G05YLF or
G05YNF..

1: XMEANðidimÞ – REAL (KIND=nag_wp) array Input

On entry: specifies, for each dimension, the mean of the Normal distribution.

2: STDðidimÞ – REAL (KIND=nag_wp) array Input

On entry: specifies, for each dimension, the standard deviation of the Normal distribution.

Constraint: STDðiÞ � 0:0, for i ¼ 1; 2; . . . ; idim.
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3: N – INTEGER Input

On entry: the number of quasi-random numbers required.

Constraint: N � 0 and Nþ previous number of generated values � 231 � 1.

4: QUASðN; idimÞ – REAL (KIND=nag_wp) array Output

On exit: contains the N quasi-random numbers of dimension idim

5: IREFðliref Þ – INTEGER array Communication Array

On entry: contains information on the current state of the sequence.

On exit: contains updated information on the state of the sequence.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, incorrect initialization has been detected.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

A standard deviation is negative.

IFAIL ¼ 4

There have been too many calls to the generator.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05YJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05YJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

The Sobol, Sobol (A659) and Niederreiter quasi-random number generators in G05YJF have been
parallelized, but require quite large problem sizes to see any significant performance gain. The Faure
generator is serial.

9 Further Comments

None.

10 Example

This example calls G05YLF to initialize the generator and then G05YJF to generate a sequence of five
four-dimensional variates.

10.1 Program Text

Program g05yjfe

! G05YJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05yjf, g05ylf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, idim, ifail, iskip, &

ldquas, liref, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: quas(:,:), std(:), xmean(:)
Integer, Allocatable :: iref(:)

! .. Executable Statements ..
Write (nout,*) ’G05YJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the generator to use
Read (nin,*) genid
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! Read in problem size
Read (nin,*) n, idim, iskip

If (genid==4) Then
liref = 407

Else
liref = 32*idim + 7

End If
ldquas = n
Allocate (quas(ldquas,idim),iref(liref),xmean(idim),std(idim))

! Read in the parameters for the distribution
Read (nin,*) xmean(1:idim)
Read (nin,*) std(1:idim)

! Initialize the generator
ifail = 0
Call g05ylf(genid,idim,iref,liref,iskip,ifail)

! Generate N values for the normal distribution
ifail = 0
Call g05yjf(xmean,std,n,quas,iref,ifail)

! Display results
Write (nout,99999)(quas(i,1:idim),i=1,n)

99999 Format (1X,4F10.4)
End Program g05yjfe

10.2 Program Data

G05YJF Example Program Data
1 :: GENID
5 4 1000 :: N,IDIM,ISKIP
1.0 2.0 3.0 4.0 :: XMEAN
1.0 1.0 1.0 1.0 :: XSTD

10.3 Program Results

G05YJF Example Program Results

1.5820 2.2448 0.9154 3.0722
2.8768 1.6057 3.7341 5.4521
0.9240 3.0223 2.3828 3.8154
0.6004 1.9290 1.9355 3.4806
2.0141 3.9061 3.3680 4.8479
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NAG Library Routine Document

G05YKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05YKF generates a quasi-random sequence from a log-normal distribution. It must be preceded by a
call to one of the initialization routines G05YLF or G05YNF.

2 Specification

SUBROUTINE G05YKF (XMEAN, STD, N, QUAS, IREF, IFAIL)

INTEGER N, IREF(liref), IFAIL
REAL (KIND=nag_wp) XMEAN(idim), STD(idim), QUAS(N,idim)

3 Description

G05YKF generates a quasi-random sequence from a log-normal distribution by first generating a
uniform quasi-random sequence which is then transformed into a log-normal sequence using the
exponential of the inverse of the Normal CDF. The type of uniform sequence used depends on the
initialization routine called and can include the low-discrepancy sequences proposed by Sobol, Faure or
Niederreiter. If the initialization routine G05YNF was used then the underlying uniform sequence is
first scrambled prior to being transformed (see Section 3 in G05YNF for details).

4 References

Bratley P and Fox B L (1988) Algorithm 659: implementing Sobol's quasirandom sequence generator
ACM Trans. Math. Software 14(1) 88–100

Fox B L (1986) Algorithm 647: implementation and relative efficiency of quasirandom sequence
generators ACM Trans. Math. Software 12(4) 362–376

Wichura (1988) Algorithm AS 241: the percentage points of the Normal distribution Appl. Statist. 37
477–484

5 Arguments

Note: the following variables are used in the parameter descriptions:

idim ¼ IDIM, the number of dimensions required, see G05YLF or G05YNF;

liref ¼ LIREF, the length of IREF as supplied to the initialization routines G05YLF or
G05YNF..

1: XMEANðidimÞ – REAL (KIND=nag_wp) array Input

On entry: specifies, for each dimension, the mean of the underlying Normal distribution.

Constraint: XMEANðiÞj j � �log X02AMFð Þ � 10:0� STDðiÞj j, for i ¼ 1; 2; . . . ; idim.

2: STDðidimÞ – REAL (KIND=nag_wp) array Input

On entry: specifies, for each dimension, the standard deviation of the underlying Normal
distribution.

Constraint: STDðiÞ � 0:0, for i ¼ 1; 2; . . . ; idim.
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3: N – INTEGER Input

On entry: the number of quasi-random numbers required.

Constraint: N � 0 and Nþ previous number of generated values � 231 � 1.

4: QUASðN; idimÞ – REAL (KIND=nag_wp) array Output

On exit: contains the N quasi-random numbers of dimension idim.

5: IREFðliref Þ – INTEGER array Communication Array

On entry: contains information on the current state of the sequence.

On exit: contains updated information on the state of the sequence.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, incorrect initialization has been detected.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry,at least one element of XMEAN is too large.

IFAIL ¼ 4

There have been too many calls to the generator.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05YKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05YKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

The Sobol, Sobol (A659) and Niederreiter quasi-random number generators in g05ykc have been
parallelized, but require quite large problem sizes to see any significant performance gain. The Faure
generator is serial.

9 Further Comments

None.

10 Example

This example calls G05YLF to initialize the generator and then G05YKF to produce a sequence of five
four-dimensional quasi-random numbers variates.

10.1 Program Text

Program g05ykfe

! G05YKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05ykf, g05ylf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, idim, ifail, iskip, &

ldquas, liref, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: quas(:,:), std(:), xmean(:)
Integer, Allocatable :: iref(:)

! .. Executable Statements ..
Write (nout,*) ’G05YKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the generator to use
Read (nin,*) genid
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! Read in problem size
Read (nin,*) n, idim, iskip

If (genid==4) Then
liref = 407

Else
liref = 32*idim + 7

End If
ldquas = n
Allocate (quas(ldquas,idim),iref(liref),xmean(idim),std(idim))

! Read in the parameters for the distribution
Read (nin,*) xmean(1:idim)
Read (nin,*) std(1:idim)

! Initialize the generator
ifail = 0
Call g05ylf(genid,idim,iref,liref,iskip,ifail)

! Generate N values for the normal distribution
ifail = 0
Call g05ykf(xmean,std,n,quas,iref,ifail)

! Display results
Write (nout,99999)(quas(i,1:idim),i=1,n)

99999 Format (1X,4F10.4)
End Program g05ykfe

10.2 Program Data

G05YKF Example Program Data
1 :: GENID
5 4 1000 :: N,IDIM,ISKIP
1.0 2.0 3.0 4.0 :: XMEAN
1.0 1.0 1.0 1.0 :: XSTD

10.3 Program Results

G05YKF Example Program Results

4.8648 9.4382 2.4979 21.5895
17.7572 4.9813 41.8501 233.2386
2.5195 20.5384 10.8353 45.3933
1.8229 6.8823 6.9276 32.4808
7.4938 49.7034 29.0198 127.4745

G05YKF NAG Library Manual

G05YKF.4 (last) Mark 26



NAG Library Routine Document

G05YLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05YLF initializes a quasi-random generator prior to calling G05YJF, G05YKF or G05YMF.

2 Specification

SUBROUTINE G05YLF (GENID, IDIM, IREF, LIREF, ISKIP, IFAIL)

INTEGER GENID, IDIM, IREF(LIREF), LIREF, ISKIP, IFAIL

3 Description

G05YLF selects a quasi-random number generator through the input value of GENID and initializes the
IREF communication array for use by the routines G05YJF, G05YKF or G05YMF.

One of three types of quasi-random generator may be chosen, allowing the low-discrepancy sequences
proposed by Sobol, Faure or Niederreiter to be generated.

Two sets of Sobol sequences are supplied, the first, is based on the work of Joe and Kuo (2008). The
second, referred to in the documentation as "Sobol (A659)", is based on Algorithm 659 of Bratley and
Fox (1988) with the extension to 1111 dimensions proposed by Joe and Kuo (2003). Both sets of Sobol
sequences should satisfy the so-called Property A, up to 1111 dimensions, but the first set should have
better two-dimensional projections than those produced using Algorithm 659.

4 References

Bratley P and Fox B L (1988) Algorithm 659: implementing Sobol's quasirandom sequence generator
ACM Trans. Math. Software 14(1) 88–100

Fox B L (1986) Algorithm 647: implementation and relative efficiency of quasirandom sequence
generators ACM Trans. Math. Software 12(4) 362–376

Joe S and Kuo F Y (2003) Remark on Algorithm 659: implementing Sobol's quasirandom sequence
generator ACM Trans. Math. Software (TOMS) 29 49–57

Joe S and Kuo F Y (2008) Constructing Sobol sequences with better two-dimensional projections SIAM
J. Sci. Comput. 30 2635–2654

5 Arguments

1: GENID – INTEGER Input

On entry: must identify the quasi-random generator to use.

GENID ¼ 1
Sobol generator.

GENID ¼ 2
Sobol (A659) generator.

GENID ¼ 3
Niederreiter generator.
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GENID ¼ 4
Faure generator.

Constraint: GENID ¼ 1, 2, 3 or 4.

2: IDIM – INTEGER Input

On entry: the number of dimensions required.

Constraints:

if GENID ¼ 1, 1 � IDIM � 10000;
if GENID ¼ 2, 1 � IDIM � 1111;
if GENID ¼ 3, 1 � IDIM � 318;
if GENID ¼ 4, 1 � IDIM � 40.

3: IREFðLIREFÞ – INTEGER array Communication Array

On exit: contains initialization information for use by the generator routines G05YJF, G05YKF
and G05YMF. IREF must not be altered in any way between initialization and calls of the
generator routines.

4: LIREF – INTEGER Input

On entry: the dimension of the array IREF as declared in the (sub)program from which G05YLF
is called.

Constraints:

if GENID ¼ 1, 2 or 3, LIREF � 32� IDIMþ 7;
if GENID ¼ 4, LIREF � 407.

5: ISKIP – INTEGER Input

On entry: the number of terms of the sequence to skip on initialization for the Sobol and
Niederreiter generators. If GENID ¼ 4, ISKIP is ignored.

Constraint: if GENID ¼ 1, 2 or 3, 0 � ISKIP � 230.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, GENID ¼ valueh i.
Constraint: GENID ¼ 1, 2, 3 or 4.
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IFAIL ¼ 2

On entry, IDIM ¼ valueh i.
Constraint: 1 � IDIM � valueh i.

IFAIL ¼ 4

On entry, LIREF is too small: LIREF ¼ valueh i, minimum length is valueh i.

IFAIL ¼ 5

On entry, ISKIP < 0 or ISKIP is too large: ISKIP ¼ valueh i, maximum value is valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05YLF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The primitive polynomials and direction numbers used for the Sobol generator (GENID ¼ 1) were
calculated by Joe and Kuo (2008) using the search critera D 6ð Þ.

10 Example

See Section 10 in G05YMF.
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NAG Library Routine Document

G05YMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05YMF generates a uniformly distributed low-discrepancy sequence as proposed by Sobol, Faure or
Niederreiter. It must be preceded by a call to one of the initialization routines G05YLF or G05YNF.

2 Specification

SUBROUTINE G05YMF (N, RCORD, QUAS, LDQUAS, IREF, IFAIL)

INTEGER N, RCORD, LDQUAS, IREF(liref), IFAIL
REAL (KIND=nag_wp) QUAS(LDQUAS,tdquas)

3 Description

Low discrepancy (quasi-random) sequences are used in numerical integration, simulation and
optimization. Like pseudorandom numbers they are uniformly distributed but they are not statistically
independent, rather they are designed to give more even distribution in multidimensional space
(uniformity). Therefore they are often more efficient than pseudorandom numbers in multidimensional
Monte–Carlo methods.

G05YMF generates a set of points x1; x2; . . . ; xN with high uniformity in the S-dimensional unit cube
IS ¼ 0; 1½ �S .

Let G be a subset of IS and define the counting function SN Gð Þ as the number of points xi 2 G. For
each x ¼ x1; x2; . . . ; xSð Þ 2 IS , let Gx be the rectangular S-dimensional region

Gx ¼ 0; x1½ Þ � 0; x2½ Þ � � � � � 0; xS½ Þ

with volume x1; x2; . . . ; xS . Then one measure of the uniformity of the points x1; x2; . . . ; xN is the
discrepancy:

D�N x1; x2; . . . ; xN
� �

¼ sup
x2IS

SN Gxð Þ �Nx1; x2; . . . ; xSj j:

which has the form

D�N x1; x2; . . . ; xN
� �

� CS logNð ÞS þO logNð ÞS�1
� �

for all N � 2:

The principal aim in the construction of low-discrepancy sequences is to find sequences of points in IS

with a bound of this form where the constant CS is as small as possible.

The type of low-discrepancy sequence generated by G05YMF depends on the initialization routine
called and can include those proposed by Sobol, Faure or Niederreiter. If the initialization routine
G05YNF was used then the sequence will be scrambled (see Section 3 in G05YNF for details).

4 References

Bratley P and Fox B L (1988) Algorithm 659: implementing Sobol's quasirandom sequence generator
ACM Trans. Math. Software 14(1) 88–100

Fox B L (1986) Algorithm 647: implementation and relative efficiency of quasirandom sequence
generators ACM Trans. Math. Software 12(4) 362–376
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5 Arguments

Note: the following variables are used in the parameter descriptions:

idim ¼ IDIM, the number of dimensions required, see G05YLF or G05YNF

liref ¼ LIREF, the length of IREF as supplied to the initialization routine G05YLF or G05YNF

tdquas ¼ N if RCORD ¼ 1; otherwise tdquas ¼ idim.

1: N – INTEGER Input

On entry: the number of quasi-random numbers required.

Constraint: N � 0 and Nþ previous number of generated values � 231 � 1.

2: RCORD – INTEGER Input

On entry: the order in which the generated values are returned.

Constraint: RCORD ¼ 1 or 2.

3: QUASðLDQUAS; tdquasÞ – REAL (KIND=nag_wp) array Output

On exit: contains the N quasi-random numbers of dimension idim.

If RCORD ¼ 1, QUASði; jÞ holds the jth value for the ith dimension.

If RCORD ¼ 2, QUASði; jÞ holds the ith value for the jth dimension.

4: LDQUAS – INTEGER Input

On entry: the first dimension of the array QUAS as declared in the (sub)program from which
G05YMF is called.

Constraints:

if RCORD ¼ 1, LDQUAS � idim;
if RCORD ¼ 2, LDQUAS � N.

5: IREFðliref Þ – INTEGER array Communication Array

On entry: contains information on the current state of the sequence.

On exit: contains updated information on the state of the sequence.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

On entry, value of N would result in too many calls to the generator: N ¼ valueh i, generator has
previously been called valueh i times.

IFAIL ¼ 2

On entry, RCORD ¼ valueh i.
Constraint: RCORD ¼ 1 or 2.

IFAIL ¼ 4

On entry, LDQUAS ¼ valueh i, idim ¼ valueh i.
Constraint: if RCORD ¼ 1, LDQUAS � idim.

On entry, LDQUAS ¼ valueh i and N ¼ valueh i.
Constraint: if RCORD ¼ 2, LDQUAS � N.

IFAIL ¼ 5

On entry, IREF has either not been initialized or has been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05YMF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

The Sobol, Sobol (A659) and Niederreiter quasi-random number generators in G05YMF have been
parallelized, but require quite large problem sizes to see any significant performance gain. Parallelism is
only enabled when RCORD ¼ 2. The Faure generator is serial.
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9 Further Comments

None.

10 Example

This example calls G05YLF and G05YMF to estimate the value of the integralZ 1

0
� � �
Z 1

0

Ys
i¼1

4xi � 2j jdx1; dx2; . . . ; dxs ¼ 1:

In this example the number of dimensions S is set to 8.

10.1 Program Text

! G05YMF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g05ymfe_mod

! G05YMF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: ifun

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function ifun(x,lx)

! Function being integrated, in this example
! ABS(4.0 X - 2)

! .. Function Return Value ..
Real (Kind=nag_wp) :: ifun

! .. Scalar Arguments ..
Integer, Intent (In) :: lx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(lx)

! .. Local Scalars ..
Integer :: d

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
ifun = 1.0E0_nag_wp
Do d = 1, lx

ifun = ifun*abs(4.0E0_nag_wp*x(d)-2.0E0_nag_wp)
End Do

End Function ifun
End Module g05ymfe_mod
Program g05ymfe

! G05YMF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g05ylf, g05ymf, nag_wp, x04caf
Use g05ymfe_mod, Only: ifun, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: sum, vsbl
Integer :: dn, genid, i, idim, ifail, iskip, &

ldquas, liref, n, rcord
Character (80) :: title
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: quas(:,:)
Integer, Allocatable :: iref(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’G05YMF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Fix the RCORD = 1, so QUAS(IDIM,N). As we
! are accessing each dimension in turn for a given variate
! when evaluating the function, this is more efficient

rcord = 1

! Read in the generator to use
Read (nin,*) genid

! Read in the problem size
Read (nin,*) n, idim, iskip

If (genid==4) Then
liref = 407

Else
liref = 32*idim + 7

End If
ldquas = idim
Allocate (quas(ldquas,n),iref(liref))

! Initialize the generator
ifail = 0
Call g05ylf(genid,idim,iref,liref,iskip,ifail)

! Generate N quasi-random variates
ifail = 0
Call g05ymf(n,rcord,quas,ldquas,iref,ifail)

! Evaluate the function, and sum
sum = 0.0E0_nag_wp
Do i = 1, n

sum = sum + ifun(quas(1:idim,i),idim)
End Do

! Convert sum to mean value
vsbl = sum/real(n,kind=nag_wp)
Write (nout,*)
Write (nout,99999) ’Value of integral = ’, vsbl

! Read in number of variates to display
Read (nin,*) dn

! Display the first DN variates
Write (nout,*)
Write (title,99998) ’First ’, dn, ’ variates for all ’, idim, &

’ dimensions’
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,idim,dn,quas,ldquas,title,ifail)

99999 Format (1X,A,F8.4)
99998 Format (A,I0,A,I0,A)

End Program g05ymfe
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10.2 Program Data

G05YMF Example Program Data
1 :: GENID
200 8 1000 :: N,IDIM,ISKIP
5 :: DN

10.3 Program Results

G05YMF Example Program Results

Value of integral = 1.0410

First 5 variates for all 8 dimensions
1 2 3 4 5

1 0.7197 0.9697 0.4697 0.3447 0.8447
2 0.5967 0.3467 0.8467 0.4717 0.9717
3 0.0186 0.7686 0.2686 0.1436 0.6436
4 0.1768 0.9268 0.4268 0.3018 0.8018
5 0.7803 0.5303 0.0303 0.1553 0.6553
6 0.4072 0.1572 0.6572 0.7822 0.2822
7 0.5459 0.2959 0.7959 0.4209 0.9209
8 0.3994 0.1494 0.6494 0.0244 0.5244
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NAG Library Routine Document

G05YNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05YNF initializes a scrambled quasi-random generator prior to calling G05YJF, G05YKF or
G05YMF. It must be preceded by a call to one of the pseudorandom initialization routines G05KFF or
G05KGF.

2 Specification

SUBROUTINE G05YNF (GENID, STYPE, IDIM, IREF, LIREF, ISKIP, NSDIGI,
STATE, IFAIL)

&

INTEGER GENID, STYPE, IDIM, IREF(LIREF), LIREF, ISKIP, NSDIGI,
STATE(*), IFAIL

&

3 Description

G05YNF selects a quasi-random number generator through the input value of GENID, a method of
scrambling through the input value of STYPE and initializes the IREF communication array for use in
the routines G05YJF, G05YKF or G05YMF.

Scrambled quasi-random sequences are an extension of standard quasi-random sequences that attempt to
eliminate the bias inherent in a quasi-random sequence whilst retaining the low-discrepancy properties.
The use of a scrambled sequence allows error estimation of Monte–Carlo results by performing a
number of iterates and computing the variance of the results.

This implementation of scrambled quasi-random sequences is based on TOMS Algorithm 823 and
details can be found in the accompanying paper, Hong and Hickernell (2003). Three methods of
scrambling are supplied; the first a restricted form of Owen's scrambling (Owen (1995)), the second
based on the method of Faure and Tezuka (2000) and the last method combines the first two.

Scrambled versions of the Niederreiter sequence and two sets of Sobol sequences are provided. The first
Sobol sequence is obtained using GENID ¼ 1. The first 10000 direction numbers for this sequence are
based on the work of Joe and Kuo (2008). For dimensions greater than 10000 the direction numbers are
randomly generated using the pseudorandom generator specified in STATE (see JÌckel (2002) for
details). The second Sobol sequence is obtained using GENID ¼ 2 and referred to in the documentation
as ‘Sobol (A659)’. The first 1111 direction numbers for this sequence are based on Algorithm 659 of
Bratley and Fox (1988) with the extension proposed by Joe and Kuo (2003). For dimensions greater
than 1111 the direction numbers are once again randomly generated. The Niederreiter sequence is
obtained by setting GENID ¼ 3.

4 References

Bratley P and Fox B L (1988) Algorithm 659: implementing Sobol's quasirandom sequence generator
ACM Trans. Math. Software 14(1) 88–100

Faure H and Tezuka S (2000) Another random scrambling of digital (t,s)-sequences Monte Carlo and
Quasi-Monte Carlo Methods Springer-Verlag, Berlin, Germany (eds K T Fang, F J Hickernell and H
Niederreiter)

Hong H S and Hickernell F J (2003) Algorithm 823: implementing scrambled digital sequences ACM
Trans. Math. Software 29:2 95–109

JÌckel P (2002) Monte Carlo Methods in Finance Wiley Finance Series, John Wiley and Sons, England
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Joe S and Kuo F Y (2003) Remark on Algorithm 659: implementing Sobol's quasirandom sequence
generator ACM Trans. Math. Software (TOMS) 29 49–57

Joe S and Kuo F Y (2008) Constructing Sobol sequences with better two-dimensional projections SIAM
J. Sci. Comput. 30 2635–2654

Niederreiter H (1988) Low-discrepancy and low dispersion sequences Journal of Number Theory 30
51–70

Owen A B (1995) Randomly permuted (t,m,s)-nets and (t,s)-sequences Monte Carlo and Quasi-Monte
Carlo Methods in Scientific Computing, Lecture Notes in Statistics 106 Springer-Verlag, New York, NY
299–317 (eds H Niederreiter and P J-S Shiue)

5 Arguments

1: GENID – INTEGER Input

On entry: must identify the quasi-random generator to use.

GENID ¼ 1
Sobol generator.

GENID ¼ 2
Sobol (A659) generator.

GENID ¼ 3
Niederreiter generator.

Constraint: GENID ¼ 1, 2 or 3.

2: STYPE – INTEGER Input

On entry: must identify the scrambling method to use.

STYPE ¼ 0
No scrambling. This is equivalent to calling G05YLF.

STYPE ¼ 1
Owen like scrambling.

STYPE ¼ 2
Faure–Tezuka scrambling.

STYPE ¼ 3
Owen and Faure–Tezuka scrambling.

Constraint: STYPE ¼ 0, 1, 2 or 3.

3: IDIM – INTEGER Input

On entry: the number of dimensions required.

Constraints:

if GENID ¼ 1, 1 � IDIM � 50000;
if GENID ¼ 2, 1 � IDIM � 50000;
if GENID ¼ 3, 1 � IDIM � 318.

4: IREFðLIREFÞ – INTEGER array Communication Array

On exit: contains initialization information for use by the generator routines G05YJF, G05YKF
and G05YMF. IREF must not be altered in any way between initialization and calls of the
generator routines.
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5: LIREF – INTEGER Input

On entry: the dimension of the array IREF as declared in the (sub)program from which G05YNF
is called.

Constraint: LIREF � 32� IDIMþ 7.

6: ISKIP – INTEGER Input

On entry: the number of terms of the sequence to skip on initialization for the Sobol and
Niederreiter generators.

Constraint: 0 � ISKIP � 230.

7: NSDIGI – INTEGER Input

On entry: controls the number of digits (bits) to scramble when GENID ¼ 1 or 2, otherwise
NSDIGI is ignored. If NSDIGI < 1 or NSDIGI > 30 then all the digits are scrambled.

8: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, GENID ¼ valueh i.
Constraint: 1 � GENID � valueh i.

IFAIL ¼ 2

On entry, STYPE ¼ valueh i.
Constraint: 0 � STYPE � 3.

IFAIL ¼ 3

On entry, IDIM ¼ valueh i.
Constraint: 1 � IDIM � valueh i.
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IFAIL ¼ 5

On entry, LIREF ¼ valueh i.
Constraint: LIREF � 32� IDIMþ 7.

IFAIL ¼ 6

On entry, ISKIP ¼ valueh i.
Constraint: 0 � ISKIP � 230.

IFAIL ¼ 8

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05YNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The additional computational cost in using a scrambled quasi-random sequence over a non-scrambled
one comes entirely during the initialization. Once G05YNF has been called the computational cost of
generating a scrambled sequence and a non-scrambled one is identical.

10 Example

This example calls G05KFF, G05YMF and G05YNF to estimate the value of the integralZ 1

0
� � �
Z 1

0

Ys
i¼1

4xi � 2j jdx1; dx2; . . . ; dxs ¼ 1;

where s, the number of dimensions, is set to 8.
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10.1 Program Text

! G05YNF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g05ynfe_mod

! G05YNF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: ifun

! .. Parameters ..
Integer, Parameter, Public :: lseed = 1, nin = 5, nout = 6

Contains
Function ifun(x,lx)

! Function being integrated, in this case
! ABS(4.0 X - 2)

! .. Function Return Value ..
Real (Kind=nag_wp) :: ifun

! .. Scalar Arguments ..
Integer, Intent (In) :: lx

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: x(lx)

! .. Local Scalars ..
Integer :: d

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
ifun = 1.0E0_nag_wp
Do d = 1, lx

ifun = ifun*abs(4.0E0_nag_wp*x(d)-2.0E0_nag_wp)
End Do

End Function ifun
End Module g05ynfe_mod
Program g05ynfe

! G05YNF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g05kff, g05ymf, g05ynf, nag_wp, x04caf
Use g05ynfe_mod, Only: ifun, lseed, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: sum, vsbl
Integer :: dn, genid, i, idim, ifail, iskip, &

ldquas, liref, lstate, n, nsdigi, &
pgenid, psubid, rcord, stype

Character (80) :: title
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: quas(:,:)
Integer, Allocatable :: iref(:), state(:)
Integer :: seed(lseed)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’G05YNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) pgenid, psubid, seed(1)
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! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(pgenid,psubid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(pgenid,psubid,seed,lseed,state,lstate,ifail)

! Fix the RCORD = 1, so QUAS(IDIM,N). As we
! are accessing each dimension in turn for a given variate
! when evaluating the function, this is more efficient

rcord = 1

! Read in quasi-random generator and scrambling to use
Read (nin,*) genid, stype, nsdigi

! Read in problem size
Read (nin,*) n, idim, iskip

If (genid==4) Then
liref = 407

Else
liref = 32*idim + 7

End If
ldquas = idim
Allocate (quas(ldquas,n),iref(liref))

! Call the initializer for the quasi-random sequence
ifail = 0
Call g05ynf(genid,stype,idim,iref,liref,iskip,nsdigi,state,ifail)

! Generate N quasi-random variates
ifail = 0
Call g05ymf(n,rcord,quas,ldquas,iref,ifail)

! Evaluate the function, and sum
sum = 0.0E0_nag_wp
Do i = 1, n

sum = sum + ifun(quas(1:idim,i),idim)
End Do

! Convert sum to mean value
vsbl = sum/real(n,kind=nag_wp)
Write (nout,99999)
Write (nout,99999) ’Value of integral = ’, vsbl

! Read in number of variates to display
Read (nin,*) dn

! Display the first DN variates
Write (nout,*)
Write (title,99998) ’First ’, dn, ’ variates for all ’, idim, &

’ dimensions’
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,idim,dn,quas,ldquas,title,ifail)

99999 Format (1X,A,F8.4)
99998 Format (A,I0,A,I0,A)

End Program g05ynfe
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10.2 Program Data

G05YNF Example Program Data
1 1 1762543 :: PGENID,PSUBID,SEED(1)
1 1 0 :: GENID,STYPE,NSDIGI
200 8 1000 :: N,IDIM,ISKIP
5 :: DN

10.3 Program Results

G05YNF Example Program Results

Value of integral = 1.0169

First 5 variates for all 8 dimensions
1 2 3 4 5

1 0.8688 0.6287 0.1244 0.1353 0.6154
2 0.9719 0.3611 0.5349 0.4013 0.6962
3 0.5375 0.4963 0.8645 0.6656 0.0321
4 0.0876 0.8648 0.2621 0.4691 0.9000
5 0.4721 0.0753 0.7523 0.9096 0.2307
6 0.3800 0.0174 0.7212 0.9272 0.3186
7 0.2977 0.7011 0.0538 0.5481 0.1989
8 0.1010 0.2532 0.6231 0.4164 0.7102

G05 – Random Number Generators G05YNF

Mark 26 G05YNF.7 (last)





NAG Library Routine Document

G05ZMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05ZMF performs the setup required in order to simulate stationary Gaussian random fields in one
dimension, for a user-defined variogram, using the circulant embedding method. Specifically, the
eigenvalues of the extended covariance matrix (or embedding matrix) are calculated, and their square
roots output, for use by G05ZPF, which simulates the random field.

2 Specification

SUBROUTINE G05ZMF (NS, XMIN, XMAX, MAXM, VAR, COV1, PAD, ICORR, LAM, XX,
M, APPROX, RHO, ICOUNT, EIG, IUSER, RUSER, IFAIL)

&

INTEGER NS, MAXM, PAD, ICORR, M, APPROX, ICOUNT, IUSER(*),
IFAIL

&

REAL (KIND=nag_wp) XMIN, XMAX, VAR, LAM(MAXM), XX(NS), RHO, EIG(3),
RUSER(*)

&

EXTERNAL COV1

3 Description

A one-dimensional random field Z xð Þ in R is a function which is random at every point x 2 R, so Z xð Þ
is a random variable for each x. The random field has a mean function � xð Þ ¼ E Z xð Þ½ � and a symmetric
positive semidefinite covariance function C x; yð Þ ¼ E Z xð Þ � � xð Þð Þ Z yð Þ � � yð Þð Þ½ �. Z xð Þ is a Gaussian
random field if for any choice of n 2 N and x1; . . . ; xn 2 R, the random vector Z x1ð Þ; . . . ; Z xnð Þ½ �T
follows a multivariate Normal distribution, which would have a mean vector ~�� with entries ~�i ¼ � xið Þ
and a covariance matrix ~C with entries ~Cij ¼ C xi; xj

� �
. A Gaussian random field Z xð Þ is stationary if

� xð Þ is constant for all x 2 R and C x; yð Þ ¼ C xþ a; yþ að Þ for all x; y; a 2 R and hence we can
express the covariance function C x; yð Þ as a function � of one variable: C x; yð Þ ¼ � x� yð Þ. � is known
as a variogram (or more correctly, a semivariogram) and includes the multiplicative factor �2

representing the variance such that � 0ð Þ ¼ �2.
The routines G05ZMF and G05ZPF are used to simulate a one-dimensional stationary Gaussian random
field, with mean function zero and variogram � xð Þ, over an interval xmin ; xmax½ �, using an equally
spaced set of N points on the interval. The problem reduces to sampling a Normal random vector X of
size N , with mean vector zero and a symmetric Toeplitz covariance matrix A. Since A is in general
expensive to factorize, a technique known as the circulant embedding method is used. A is embedded
into a larger, symmetric circulant matrix B of size M � 2 N � 1ð Þ, which can now be factorized as
B ¼ W�W � ¼ R�R, where W is the Fourier matrix (W � is the complex conjugate of W ), � is the

diagonal matrix containing the eigenvalues of B and R ¼ �1
2W � . B is known as the embedding matrix.

The eigenvalues can be calculated by performing a discrete Fourier transform of the first row (or
column) of B and multiplying by M, and so only the first row (or column) of B is needed – the whole
matrix does not need to be formed.

As long as all of the values of � are non-negative (i.e., B is positive semidefinite), B is a covariance
matrix for a random vector Y, two samples of which can now be simulated from the real and imaginary
parts of R� Uþ iVð Þ, where U and V have elements from the standard Normal distribution. Since

R� Uþ iVð Þ ¼W�
1
2 Uþ iVð Þ , this calculation can be done using a discrete Fourier transform of the

vector �
1
2 Uþ iVð Þ . Two samples of the random vector X can now be recovered by taking the first N

elements of each sample of Y – because the original covariance matrix A is embedded in B, X will
have the correct distribution.
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If B is not positive semidefinite, larger embedding matrices B can be tried; however if the size of the
matrix would have to be larger than MAXM, an approximation procedure is used. We write
� ¼ �þ þ ��, where �þ and �� contain the non-negative and negative eigenvalues of B respectively.
Then B is replaced by �Bþ where Bþ ¼W�þW

� and � 2 0; 1ð � is a scaling factor. The error � in
approximating the distribution of the random field is given by

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð Þ2 trace�þ �2 trace��

M

s
:

Three choices for � are available, and are determined by the input argument ICORR:

setting ICORR ¼ 0 sets

� ¼ trace�

trace�þ
;

setting ICORR ¼ 1 sets

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace�

trace�þ

s
;

setting ICORR ¼ 2 sets � ¼ 1.

G05ZMF finds a suitable positive semidefinite embedding matrix B and outputs its size, M, and the
square roots of its eigenvalues in LAM. If approximation is used, information regarding the accuracy of
the approximation is output. Note that only the first row (or column) of B is actually formed and stored.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088–1107

Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of
random fields Technical Report ST 99–10 Lancaster University

Wood A T A and Chan G (1994) Simulation of stationary Gaussian processes in 0; 1½ �d Journal of
Computational and Graphical Statistics 3(4) 409–432

5 Arguments

1: NS – INTEGER Input

On entry: the number of sample points to be generated in realizations of the random field.

Constraint: NS � 1.

2: XMIN – REAL (KIND=nag_wp) Input

On entry: the lower bound for the interval over which the random field is to be simulated.

Constraint: XMIN < XMAX.

3: XMAX – REAL (KIND=nag_wp) Input

On entry: the upper bound for the interval over which the random field is to be simulated.

Constraint: XMIN < XMAX.

4: MAXM – INTEGER Input

On entry: the maximum size of the circulant matrix to use. For example, if the embedding matrix
is to be allowed to double in size three times before the approximation procedure is used, then
choose MAXM ¼ 2kþ2 where k ¼ 1þ log2 NS� 1ð Þd e.
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Suggested value: 2kþ2 where k ¼ 1þ log2 NS� 1ð Þd e.

Constraint: MAXM � 2k, where k is the smallest integer satisfying 2k � 2 NS� 1ð Þ .

5: VAR – REAL (KIND=nag_wp) Input

On entry: the multiplicative factor �2 of the variogram � xð Þ.
Constraint: VAR � 0:0.

6: COV1 – SUBROUTINE, supplied by the user. External Procedure

COV1 must evaluate the variogram � xð Þ, without the multiplicative factor �2, for all x � 0. The
value returned in GAMMA is multiplied internally by VAR.

The specification of COV1 is:

SUBROUTINE COV1 (X, GAMMA, IUSER, RUSER)

INTEGER IUSER(*)
REAL (KIND=nag_wp) X, GAMMA, RUSER(*)

1: X – REAL (KIND=nag_wp) Input

On entry: the value x at which the variogram � xð Þ is to be evaluated.

2: GAMMA – REAL (KIND=nag_wp) Output

On exit: the value of the variogram
� xð Þ
�2

.

3: IUSERð�Þ – INTEGER array User Workspace
4: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

COV1 is called with the arguments IUSER and RUSER as supplied to G05ZMF. You
should use the arrays IUSER and RUSER to supply information to COV1.

COV1 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G05ZMF is called. Arguments denoted as Input must not be changed by
this procedure.

7: PAD – INTEGER Input

On entry: determines whether the embedding matrix is padded with zeros, or padded with values
of the variogram. The choice of padding may affect how big the embedding matrix must be in
order to be positive semidefinite.

PAD ¼ 0
The embedding matrix is padded with zeros.

PAD ¼ 1
The embedding matrix is padded with values of the variogram.

Suggested value: PAD ¼ 1.

Constraint: PAD ¼ 0 or 1.

8: ICORR – INTEGER Input

On entry: determines which approximation to implement if required, as described in Section 3.

Suggested value: ICORR ¼ 0.

Constraint: ICORR ¼ 0, 1 or 2.
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9: LAMðMAXMÞ – REAL (KIND=nag_wp) array Output

On exit: contains the square roots of the eigenvalues of the embedding matrix.

10: XXðNSÞ – REAL (KIND=nag_wp) array Output

On exit: the points at which values of the random field will be output.

11: M – INTEGER Output

On exit: the size of the embedding matrix.

12: APPROX – INTEGER Output

On exit: indicates whether approximation was used.

APPROX ¼ 0
No approximation was used.

APPROX ¼ 1
Approximation was used.

13: RHO – REAL (KIND=nag_wp) Output

On exit: indicates the scaling of the covariance matrix. RHO ¼ 1:0 unless approximation was
used with ICORR ¼ 0 or 1.

14: ICOUNT – INTEGER Output

On exit: indicates the number of negative eigenvalues in the embedding matrix which have had to
be set to zero.

15: EIGð3Þ – REAL (KIND=nag_wp) array Output

On exit: indicates information about the negative eigenvalues in the embedding matrix which
have had to be set to zero. EIGð1Þ contains the smallest eigenvalue, EIGð2Þ contains the sum of
the squares of the negative eigenvalues, and EIGð3Þ contains the sum of the absolute values of
the negative eigenvalues.

16: IUSERð�Þ – INTEGER array User Workspace
17: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by G05ZMF, but are passed directly to COV1 and should be
used to pass information to this routine.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NS ¼ valueh i.
Constraint: NS � 1.

IFAIL ¼ 2

On entry, XMIN ¼ valueh i and XMAX ¼ valueh i.
Constraint: XMIN < XMAX.

IFAIL ¼ 4

On entry, MAXM ¼ valueh i.
Constraint: the minimum calculated value for MAXM is valueh i.
Where the minimum calculated value is given by 2k, where k is the smallest integer satisfying
2k � 2 NS� 1ð Þ.

IFAIL ¼ 5

On entry, VAR ¼ valueh i.
Constraint: VAR � 0:0.

IFAIL ¼ 7

On entry, PAD ¼ valueh i.
Constraint: PAD ¼ 0 or 1.

IFAIL ¼ 8

On entry, ICORR ¼ valueh i.
Constraint: ICORR ¼ 0, 1 or 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If on exit APPROX ¼ 1, see the comments in Section 3 regarding the quality of approximation;
increase the value of MAXM to attempt to avoid approximation.

G05 – Random Number Generators G05ZMF

Mark 26 G05ZMF.5



8 Parallelism and Performance

G05ZMF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05ZMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example calls G05ZMF to calculate the eigenvalues of the embedding matrix for 8 sample points
of a random field characterized by the symmetric stable variogram:

� xð Þ ¼ �2 exp � x0ð Þ�
� �

;

where x0 ¼ x
‘ , and ‘ and � are parameters.

It should be noted that the symmetric stable variogram is one of the pre-defined variograms available in
G05ZNF. It is used here purely for illustrative purposes.

10.1 Program Text

! G05ZMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Module g05zmfe_mod

! G05ZMF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: cov1

Contains
Subroutine cov1(t,gamma,iuser,ruser)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gamma
Real (Kind=nag_wp), Intent (In) :: t

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: dummy, l, nu

! .. Intrinsic Procedures ..
Intrinsic :: abs, exp

! .. Executable Statements ..
! Correlation length in ruser(1)

l = ruser(1)
! Exponent in ruser(2)

nu = ruser(2)
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If (t==0.0_nag_wp) Then
gamma = 1.0_nag_wp

Else
dummy = (abs(t)/l)**nu
gamma = exp(-dummy)

End If

Return

End Subroutine cov1
End Module g05zmfe_mod

Program g05zmfe

! G05ZMF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g05zmf, nag_wp
Use g05zmfe_mod, Only: cov1

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: l, nu, rho, var, xmax, xmin
Integer :: approx, icorr, icount, ifail, m, &

maxm, ns, pad
! .. Local Arrays ..

Real (Kind=nag_wp) :: eig(3), ruser(2)
Real (Kind=nag_wp), Allocatable :: lam(:), xx(:)
Integer :: iuser(0)

! .. Executable Statements ..
Write (nout,*) ’G05ZMF Example Program Results’
Write (nout,*)

! Get problem specifications from data file
Call read_input_data(l,nu,var,xmin,xmax,ns,maxm,icorr,pad)

! Put covariance parameters in communication array
ruser(1) = l
ruser(2) = nu

Allocate (lam(maxm),xx(ns))

! Get square roots of the eigenvalues of the embedding matrix
ifail = 0
Call g05zmf(ns,xmin,xmax,maxm,var,cov1,pad,icorr,lam,xx,m,approx,rho, &

icount,eig,iuser,ruser,ifail)

! Output results
Call display_results(approx,m,rho,eig,icount,lam)

Contains
Subroutine read_input_data(l,nu,var,xmin,xmax,ns,maxm,icorr,pad)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: l, nu, var, xmax, xmin
Integer, Intent (Out) :: icorr, maxm, ns, pad

! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)

! Read in l and nu for cov1 function
Read (nin,*) l, nu

! Read in variance of random field
Read (nin,*) var

G05 – Random Number Generators G05ZMF

Mark 26 G05ZMF.7



! Read in domain endpoints
Read (nin,*) xmin, xmax

! Read in number of sample points
Read (nin,*) ns

! Read in maximum size of embedding matrix
Read (nin,*) maxm

! Read in choice of scaling in case of approximation
Read (nin,*) icorr

! Read in choice of padding
Read (nin,*) pad

Return

End Subroutine read_input_data

Subroutine display_results(approx,m,rho,eig,icount,lam)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rho
Integer, Intent (In) :: approx, icount, m

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: eig(3), lam(m)

! .. Executable Statements ..
! Display size of embedding matrix

Write (nout,*)
Write (nout,99999) ’Size of embedding matrix = ’, m

! Display approximation information if approximation used
Write (nout,*)
If (approx==1) Then

Write (nout,*) ’Approximation required’
Write (nout,*)
Write (nout,99998) ’RHO = ’, rho
Write (nout,99997) ’EIG = ’, eig(1:3)
Write (nout,99999) ’ICOUNT = ’, icount

Else
Write (nout,*) ’Approximation not required’

End If

! Display square roots of the eigenvalues of the embedding matrix
Write (nout,*)
Write (nout,*) ’Square roots of eigenvalues of embedding matrix:’
Write (nout,*)
Write (nout,99996) lam(1:m)

Return

99999 Format (1X,A,I7)
99998 Format (1X,A,F10.5)
99997 Format (1X,A,3(F10.5,1X))
99996 Format (1X,4F10.5)

End Subroutine display_results

End Program g05zmfe
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10.2 Program Data

G05ZMF Example Program Data
0.1 1.2 : l, nu
0.5 : var

-1.0 1.0 : xmin, xmax
8 : ns
2048 : maxm
2 : icorr
1 : pad

10.3 Program Results

G05ZMF Example Program Results

Size of embedding matrix = 16

Approximation not required

Square roots of eigenvalues of embedding matrix:

0.74207 0.73932 0.73150 0.71991
0.70639 0.69304 0.68184 0.67442
0.67182 0.67442 0.68184 0.69304
0.70639 0.71991 0.73150 0.73932
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NAG Library Routine Document

G05ZNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05ZNF performs the setup required in order to simulate stationary Gaussian random fields in one
dimension, for a preset variogram, using the circulant embedding method. Specifically, the eigenvalues
of the extended covariance matrix (or embedding matrix) are calculated, and their square roots output,
for use by G05ZPF, which simulates the random field.

2 Specification

SUBROUTINE G05ZNF (NS, XMIN, XMAX, MAXM, VAR, ICOV1, NP, PARAMS, PAD,
ICORR, LAM, XX, M, APPROX, RHO, ICOUNT, EIG, IFAIL)

&

INTEGER NS, MAXM, ICOV1, NP, PAD, ICORR, M, APPROX, ICOUNT,
IFAIL

&

REAL (KIND=nag_wp) XMIN, XMAX, VAR, PARAMS(NP), LAM(MAXM), XX(NS), RHO,
EIG(3)

&

3 Description

A one-dimensional random field Z xð Þ in R is a function which is random at every point x 2 R, so Z xð Þ
is a random variable for each x. The random field has a mean function � xð Þ ¼ E Z xð Þ½ � and a symmetric
positive semidefinite covariance function C x; yð Þ ¼ E Z xð Þ � � xð Þð Þ Z yð Þ � � yð Þð Þ½ �. Z xð Þ is a Gaussian
random field if for any choice of n 2 N and x1; . . . ; xn 2 R, the random vector Z x1ð Þ; . . . ; Z xnð Þ½ �T
follows a multivariate Normal distribution, which would have a mean vector ~�� with entries ~�i ¼ � xið Þ
and a covariance matrix ~C with entries ~Cij ¼ C xi; xj

� �
. A Gaussian random field Z xð Þ is stationary if

� xð Þ is constant for all x 2 R and C x; yð Þ ¼ C xþ a; yþ að Þ for all x; y; a 2 R and hence we can
express the covariance function C x; yð Þ as a function � of one variable: C x; yð Þ ¼ � x� yð Þ. � is known
as a variogram (or more correctly, a semivariogram) and includes the multiplicative factor �2

representing the variance such that � 0ð Þ ¼ �2.
The routines G05ZNF and G05ZPF are used to simulate a one-dimensional stationary Gaussian random
field, with mean function zero and variogram � xð Þ, over an interval xmin ; xmax½ �, using an equally
spaced set of N points. The problem reduces to sampling a Normal random vector X of size N , with
mean vector zero and a symmetric Toeplitz covariance matrix A. Since A is in general expensive to
factorize, a technique known as the circulant embedding method is used. A is embedded into a larger,
symmetric circulant matrix B of size M � 2 N � 1ð Þ, which can now be factorized as
B ¼ W�W � ¼ R�R, where W is the Fourier matrix (W � is the complex conjugate of W ), � is the

diagonal matrix containing the eigenvalues of B and R ¼ �1
2W � . B is known as the embedding matrix.

The eigenvalues can be calculated by performing a discrete Fourier transform of the first row (or
column) of B and multiplying by M, and so only the first row (or column) of B is needed – the whole
matrix does not need to be formed.

As long as all of the values of � are non-negative (i.e., B is positive semidefinite), B is a covariance
matrix for a random vector Y, two samples of which can now be simulated from the real and imaginary
parts of R� Uþ iVð Þ, where U and V have elements from the standard Normal distribution. Since

R� Uþ iVð Þ ¼W�
1
2 Uþ iVð Þ , this calculation can be done using a discrete Fourier transform of the

vector �
1
2 Uþ iVð Þ . Two samples of the random vector X can now be recovered by taking the first N

elements of each sample of Y – because the original covariance matrix A is embedded in B, X will
have the correct distribution.
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If B is not positive semidefinite, larger embedding matrices B can be tried; however if the size of the
matrix would have to be larger than MAXM, an approximation procedure is used. We write
� ¼ �þ þ ��, where �þ and �� contain the non-negative and negative eigenvalues of B respectively.
Then B is replaced by �Bþ where Bþ ¼W�þW

� and � 2 0; 1ð � is a scaling factor. The error � in
approximating the distribution of the random field is given by

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð Þ2 trace�þ �2 trace��

M

s
:

Three choices for � are available, and are determined by the input argument ICORR:

setting ICORR ¼ 0 sets

� ¼ trace�

trace�þ
;

setting ICORR ¼ 1 sets

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace�

trace�þ

s
;

setting ICORR ¼ 2 sets � ¼ 1.

G05ZNF finds a suitable positive semidefinite embedding matrix B and outputs its size, M, and the
square roots of its eigenvalues in LAM. If approximation is used, information regarding the accuracy of
the approximation is output. Note that only the first row (or column) of B is actually formed and stored.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088–1107

Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of
random fields Technical Report ST 99–10 Lancaster University

Wood A T A and Chan G (1997) Algorithm AS 312: An Algorithm for Simulating Stationary Gaussian
Random Fields Journal of the Royal Statistical Society, Series C (Applied Statistics) (Volume 46) 1
171–181

5 Arguments

1: NS – INTEGER Input

On entry: the number of sample points to be generated in realizations of the random field.

Constraint: NS � 1.

2: XMIN – REAL (KIND=nag_wp) Input

On entry: the lower bound for the interval over which the random field is to be simulated. Note
that if ICOV1 ¼ 14 (for simulating fractional Brownian motion), XMIN is not referenced and the
lower bound for the interval is set to zero.

Constraint: if ICOV1 6¼ 14, XMIN < XMAX.

3: XMAX – REAL (KIND=nag_wp) Input

On entry: the upper bound for the interval over which the random field is to be simulated. Note
that if ICOV1 ¼ 14 (for simulating fractional Brownian motion), the lower bound for the interval
is set to zero and so XMAX is required to be greater than zero.

Constraints:

if ICOV1 6¼ 14, XMIN < XMAX;
if ICOV1 ¼ 14, XMAX > 0:0.
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4: MAXM – INTEGER Input

On entry: the maximum size of the circulant matrix to use. For example, if the embedding matrix
is to be allowed to double in size three times before the approximation procedure is used, then
choose MAXM ¼ 2kþ2 where k ¼ 1þ log2 NS� 1ð Þd e.

Suggested value: 2kþ2 where k ¼ 1þ log2 NS� 1ð Þd e.

Constraint: MAXM � 2k, where k is the smallest integer satisfying 2k � 2 NS� 1ð Þ .

5: VAR – REAL (KIND=nag_wp) Input

On entry: the multiplicative factor �2 of the variogram � xð Þ.
Constraint: VAR � 0:0.

6: ICOV1 – INTEGER Input

On entry: determines which of the preset variograms to use. The choices are given below. Note

that x0 ¼ xj j
‘ , where ‘ is the correlation length and is a parameter for most of the variograms, and

�2 is the variance specified by VAR.

ICOV1 ¼ 1
Symmetric stable variogram

� xð Þ ¼ �2 exp � x0ð Þ�
� �

;

where

‘ ¼ PARAMSð1Þ, ‘ > 0,

� ¼ PARAMSð2Þ, 0 � � � 2.

ICOV1 ¼ 2
Cauchy variogram

� xð Þ ¼ �2 1þ x0ð Þ2
� ���

;

where

‘ ¼ PARAMSð1Þ, ‘ > 0,

� ¼ PARAMSð2Þ, � > 0.

ICOV1 ¼ 3
Differential variogram with compact support

� xð Þ ¼ �2 1þ 8x0 þ 25 x0ð Þ2 þ 32 x0ð Þ3
� �

1� x0ð Þ8; x0 < 1;

0; x0 � 1;

(
where

‘ ¼ PARAMSð1Þ, ‘ > 0.

ICOV1 ¼ 4
Exponential variogram

� xð Þ ¼ �2 exp �x0ð Þ;

where

‘ ¼ PARAMSð1Þ, ‘ > 0.
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ICOV1 ¼ 5
Gaussian variogram

� xð Þ ¼ �2 exp � x0ð Þ2
� �

;

where

‘ ¼ PARAMSð1Þ, ‘ > 0.

ICOV1 ¼ 6
Nugget variogram

� xð Þ ¼ �2; x ¼ 0;
0; x 6¼ 0:



No parameters need be set for this value of ICOV1.

ICOV1 ¼ 7
Spherical variogram

� xð Þ ¼ �2 1� 1:5x0 þ 0:5 x0ð Þ3
� �

; x0 < 1;

0; x0 � 1;

(
where

‘ ¼ PARAMSð1Þ, ‘ > 0.

ICOV1 ¼ 8
Bessel variogram

� xð Þ ¼ �22
� � þ 1ð ÞJ� x0ð Þ

x0ð Þ� ;

where

J� �ð Þ is the Bessel function of the first kind,

‘ ¼ PARAMSð1Þ, ‘ > 0,

� ¼ PARAMSð2Þ, � � �0:5.
ICOV1 ¼ 9

Hole effect variogram

� xð Þ ¼ �2sin x
0ð Þ

x0
;

where

‘ ¼ PARAMSð1Þ, ‘ > 0.

ICOV1 ¼ 10
Whittle-Matérn variogram

� xð Þ ¼ �22
1�� x0ð Þ�K� x

0ð Þ
 �ð Þ ;

where

K� �ð Þ is the modified Bessel function of the second kind,

‘ ¼ PARAMSð1Þ, ‘ > 0,

� ¼ PARAMSð2Þ, � > 0.
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ICOV1 ¼ 11
Continuously parameterised variogram with compact support

� xð Þ ¼ �22
1�� x0ð Þ�K� x

0ð Þ
 �ð Þ 1þ 8x00 þ 25 x00ð Þ2 þ 32 x00ð Þ3

� �
1� x00ð Þ8; x00 < 1;

0; x00 � 1;

(
where

x00 ¼ x0

s ,

K� �ð Þ is the modified Bessel function of the second kind,

‘ ¼ PARAMSð1Þ, ‘ > 0,

s ¼ PARAMSð2Þ, s > 0 (second correlation length),

� ¼ PARAMSð3Þ, � > 0.

ICOV1 ¼ 12
Generalized hyperbolic distribution variogram

� xð Þ ¼ �2
�2 þ x0ð Þ2
� ��

2

��K� ��ð Þ
K� � �2 þ x0ð Þ2

� �1
2

� �
;

where

K� �ð Þ is the modified Bessel function of the second kind,

‘ ¼ PARAMSð1Þ, ‘ > 0,

� ¼ PARAMSð2Þ, no constraint on �

� ¼ PARAMSð3Þ, � > 0,

� ¼ PARAMSð4Þ, � > 0.

ICOV1 ¼ 13
Cosine variogram

� xð Þ ¼ �2 cos x0ð Þ;

where

‘ ¼ PARAMSð1Þ, ‘ > 0.

ICOV1 ¼ 14
Used for simulating fractional Brownian motion BH tð Þ. Fractional Brownian motion itself
is not a stationary Gaussian random field, but its increments ~X ið Þ ¼ BH tið Þ �BH ti�1ð Þ
can be simulated in the same way as a stationary random field. The variogram for the so-
called ‘increment process’ is

C ~X tið Þ; ~X tj
� �� �

¼ ~� xð Þ ¼ �
2H

2

x

�
� 1

			 			2H þ x

�
þ 1

			 			2H � 2
x

�

			 			2H� �
;

where

x ¼ tj � ti,
H ¼ PARAMSð1Þ, 0 < H < 1, H is the Hurst parameter,

� ¼ PARAMSð2Þ, � > 0, normally � ¼ ti � ti�1 is the (fixed) stepsize.

We scale the increments to set � 0ð Þ ¼ 1; let X ið Þ ¼ ~X ið Þ
��H , then

C X tið Þ; X tj
� �� �

¼ � xð Þ ¼ 1

2

x

�
� 1

			 			2H þ x

�
þ 1

			 			2H � 2
x

�

			 			2H� �
:
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The increments X ið Þ can then be simulated using G05ZPF, then multiplied by �H to obtain
the original increments ~X ið Þ for the fractional Brownian motion.

Constraint: ICOV1 ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14.

7: NP – INTEGER Input

On entry: the number of parameters to be set. Different variograms need a different number of
parameters.

ICOV1 ¼ 6
NP must be set to 0.

ICOV1 ¼ 3, 4, 5, 7, 9 or 13
NP must be set to 1.

ICOV1 ¼ 1, 2, 8, 10 or 14
NP must be set to 2.

ICOV1 ¼ 11
NP must be set to 3.

ICOV1 ¼ 12
NP must be set to 4.

8: PARAMSðNPÞ – REAL (KIND=nag_wp) array Input

On entry: the parameters set for the variogram.

Constraint: see ICOV1 for a description of the individual parameter constraints.

9: PAD – INTEGER Input

On entry: determines whether the embedding matrix is padded with zeros, or padded with values
of the variogram. The choice of padding may affect how big the embedding matrix must be in
order to be positive semidefinite.

PAD ¼ 0
The embedding matrix is padded with zeros.

PAD ¼ 1
The embedding matrix is padded with values of the variogram.

Suggested value: PAD ¼ 1.

Constraint: PAD ¼ 0 or 1.

10: ICORR – INTEGER Input

On entry: determines which approximation to implement if required, as described in Section 3.

Suggested value: ICORR ¼ 0.

Constraint: ICORR ¼ 0, 1 or 2.

11: LAMðMAXMÞ – REAL (KIND=nag_wp) array Output

On exit: contains the square roots of the eigenvalues of the embedding matrix.

12: XXðNSÞ – REAL (KIND=nag_wp) array Output

On exit: the points at which values of the random field will be output.

13: M – INTEGER Output

On exit: the size of the embedding matrix.
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14: APPROX – INTEGER Output

On exit: indicates whether approximation was used.

APPROX ¼ 0
No approximation was used.

APPROX ¼ 1
Approximation was used.

15: RHO – REAL (KIND=nag_wp) Output

On exit: indicates the scaling of the covariance matrix. RHO ¼ 1:0 unless approximation was
used with ICORR ¼ 0 or 1.

16: ICOUNT – INTEGER Output

On exit: indicates the number of negative eigenvalues in the embedding matrix which have had to
be set to zero.

17: EIGð3Þ – REAL (KIND=nag_wp) array Output

On exit: indicates information about the negative eigenvalues in the embedding matrix which
have had to be set to zero. EIGð1Þ contains the smallest eigenvalue, EIGð2Þ contains the sum of
the squares of the negative eigenvalues, and EIGð3Þ contains the sum of the absolute values of
the negative eigenvalues.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NS ¼ valueh i.
Constraint: NS � 1.

IFAIL ¼ 2

On entry, ICOV1 6¼ 14, XMIN ¼ valueh i and XMAX ¼ valueh i.
Constraint: XMIN < XMAX.

IFAIL ¼ 3

On entry, ICOV1 ¼ 14 and XMAX ¼ valueh i.
Constraint: XMAX > 0:0.
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IFAIL ¼ 4

On entry, MAXM ¼ valueh i.
Constraint: the minimum calculated value for MAXM is valueh i.
Where the minimum calculated value is given by 2k, where k is the smallest integer satisfying
2k � 2 NS� 1ð Þ.

IFAIL ¼ 5

On entry, VAR ¼ valueh i.
Constraint: VAR � 0:0.

IFAIL ¼ 6

On entry, ICOV1 ¼ valueh i.
Constraint: ICOV1 � 1 and ICOV1 � 14.

IFAIL ¼ 7

On entry, NP ¼ valueh i.
Constraint: for ICOV1 ¼ valueh i, NP ¼ valueh i.

IFAIL ¼ 8

On entry, PARAMSð valueh iÞ ¼ valueh i.
Constraint: dependent on ICOV1.

IFAIL ¼ 9

On entry, PAD ¼ valueh i.
Constraint: PAD ¼ 0 or 1.

IFAIL ¼ 10

On entry, ICORR ¼ valueh i.
Constraint: ICORR ¼ 0, 1 or 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If on exit APPROX ¼ 1, see the comments in Section 3 regarding the quality of approximation;
increase the value of MAXM to attempt to avoid approximation.

8 Parallelism and Performance

G05ZNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05ZNF NAG Library Manual

G05ZNF.8 Mark 26



G05ZNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example calls G05ZNF to calculate the eigenvalues of the embedding matrix for 8 sample points
of a random field characterized by the symmetric stable variogram (ICOV1 ¼ 1).

10.1 Program Text

! G05ZNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Program g05znfe

! G05ZNF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g05znf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6, npmax = 4

! .. Local Scalars ..
Real (Kind=nag_wp) :: rho, var, xmax, xmin
Integer :: approx, icorr, icount, icov1, ifail, &

m, maxm, np, ns, pad
! .. Local Arrays ..

Real (Kind=nag_wp) :: eig(3), params(npmax)
Real (Kind=nag_wp), Allocatable :: lam(:), xx(:)

! .. Executable Statements ..
Write (nout,*) ’G05ZNF Example Program Results’
Write (nout,*)

! Get problem specifications from data file
Call read_input_data(icov1,np,params,var,xmin,xmax,ns,maxm,icorr,pad)

Allocate (lam(maxm),xx(ns))

! Get square roots of the eigenvalues of the embedding matrix
ifail = 0
Call g05znf(ns,xmin,xmax,maxm,var,icov1,np,params,pad,icorr,lam,xx,m, &

approx,rho,icount,eig,ifail)

! Output results
Call display_results(approx,m,rho,eig,icount,lam)

Contains
Subroutine read_input_data(icov1,np,params,var,xmin,xmax,ns,maxm,icorr, &

pad)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: var, xmax, xmin
Integer, Intent (Out) :: icorr, icov1, maxm, np, ns, pad

! .. Array Arguments ..
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Real (Kind=nag_wp), Intent (Out) :: params(npmax)
! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)

! Read in covariance function number
Read (nin,*) icov1

! Read in number of parameters
Read (nin,*) np

! Read in parameters
If (np>0) Then

Read (nin,*) params(1:np)
End If

! Read in variance of random field
Read (nin,*) var

! Read in domain endpoints
Read (nin,*) xmin, xmax

! Read in number of sample points
Read (nin,*) ns

! Read in maximum size of embedding matrix
Read (nin,*) maxm

! Read in choice of scaling in case of approximation
Read (nin,*) icorr

! Read in choice of padding
Read (nin,*) pad

Return

End Subroutine read_input_data

Subroutine display_results(approx,m,rho,eig,icount,lam)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rho
Integer, Intent (In) :: approx, icount, m

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: eig(3), lam(m)

! .. Executable Statements ..
! Display size of embedding matrix

Write (nout,*)
Write (nout,99999) ’Size of embedding matrix = ’, m

! Display approximation information if approximation used
Write (nout,*)
If (approx==1) Then

Write (nout,*) ’Approximation required’
Write (nout,*)
Write (nout,99998) ’RHO = ’, rho
Write (nout,99997) ’EIG = ’, eig(1:3)
Write (nout,99999) ’ICOUNT = ’, icount

Else
Write (nout,*) ’Approximation not required’

End If

! Display square roots of the eigenvalues of the embedding matrix
Write (nout,*)
Write (nout,*) ’Square roots of eigenvalues of embedding matrix:’
Write (nout,*)
Write (nout,99996) lam(1:m)

Return
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99999 Format (1X,A,I7)
99998 Format (1X,A,F10.5)
99997 Format (1X,A,3(F10.5,1X))
99996 Format (1X,4F10.5)

End Subroutine display_results

End Program g05znfe

10.2 Program Data

G05ZNF Example Program Data
1 : icov1 (icov=1, symmetric stable)
2 : np (icov=1, 2 parameters)
0.1 1.2 : params (icov=1, l and nu)
0.5 : var

-1 1 : xmin, xmax
8 : ns
2048 : maxm
2 : icorr
1 : pad

10.3 Program Results

G05ZNF Example Program Results

Size of embedding matrix = 16

Approximation not required

Square roots of eigenvalues of embedding matrix:

0.74207 0.73932 0.73150 0.71991
0.70639 0.69304 0.68184 0.67442
0.67182 0.67442 0.68184 0.69304
0.70639 0.71991 0.73150 0.73932
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NAG Library Routine Document

G05ZPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05ZPF produces realizations of a stationary Gaussian random field in one dimension, using the
circulant embedding method. The square roots of the eigenvalues of the extended covariance matrix (or
embedding matrix) need to be input, and can be calculated using G05ZMF or G05ZNF.

2 Specification

SUBROUTINE G05ZPF (NS, S, M, LAM, RHO, STATE, Z, IFAIL)

INTEGER NS, S, M, STATE(*), IFAIL
REAL (KIND=nag_wp) LAM(M), RHO, Z(NS,S)

3 Description

A one-dimensional random field Z xð Þ in R is a function which is random at every point x 2 R, so Z xð Þ
is a random variable for each x. The random field has a mean function � xð Þ ¼ E Z xð Þ½ � and a symmetric
non-negative definite covariance function C x; yð Þ ¼ E Z xð Þ � � xð Þð Þ Z yð Þ � � yð Þð Þ½ �. Z xð Þ is a Gaussian
random field if for any choice of n 2 N and x1; . . . ; xn 2 R, the random vector Z x1ð Þ; . . . ; Z xnð Þ½ �T
follows a multivariate Normal distribution, which would have a mean vector ~�� with entries ~�i ¼ � xið Þ
and a covariance matrix ~C with entries ~Cij ¼ C xi; xj

� �
. A Gaussian random field Z xð Þ is stationary if

� xð Þ is constant for all x 2 R and C x; yð Þ ¼ C xþ a; yþ að Þ for all x; y; a 2 R and hence we can
express the covariance function C x; yð Þ as a function � of one variable: C x; yð Þ ¼ � x� yð Þ. � is known
as a variogram (or more correctly, a semivariogram) and includes the multiplicative factor �2

representing the variance such that � 0ð Þ ¼ �2.
The routines G05ZMF or G05ZNF, along with G05ZPF, are used to simulate a one-dimensional
stationary Gaussian random field, with mean function zero and variogram � xð Þ, over an interval
xmin ; xmax½ �, using an equally spaced set of N points. The problem reduces to sampling a Normal
random vector X of size N , with mean vector zero and a symmetric Toeplitz covariance matrix A.
Since A is in general expensive to factorize, a technique known as the circulant embedding method is
used. A is embedded into a larger, symmetric circulant matrix B of size M � 2 N � 1ð Þ, which can now
be factorized as B ¼W�W � ¼ R�R, where W is the Fourier matrix (W � is the complex conjugate of

W ), � is the diagonal matrix containing the eigenvalues of B and R ¼ �1
2W � . B is known as the

embedding matrix. The eigenvalues can be calculated by performing a discrete Fourier transform of the
first row (or column) of B and multiplying by M, and so only the first row (or column) of B is needed
– the whole matrix does not need to be formed.

As long as all of the values of � are non-negative (i.e., B is non-negative definite), B is a covariance
matrix for a random vector Y, two samples of which can now be simulated from the real and imaginary
parts of R� Uþ iVð Þ, where U and V have elements from the standard Normal distribution. Since

R� Uþ iVð Þ ¼W�
1
2 Uþ iVð Þ , this calculation can be done using a discrete Fourier transform of the

vector �
1
2 Uþ iVð Þ . Two samples of the random vector X can now be recovered by taking the first N

elements of each sample of Y – because the original covariance matrix A is embedded in B, X will
have the correct distribution.

If B is not non-negative definite, larger embedding matrices B can be tried; however if the size of the
matrix would have to be larger than MAXM, an approximation procedure is used. See the
documentation of G05ZMF or G05ZNF for details of the approximation procedure.

G05ZPF takes the square roots of the eigenvalues of the embedding matrix B, and its size M, as input
and outputs S realizations of the random field in Z.
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One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05ZPF.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088–1107

Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of
random fields Technical Report ST 99–10 Lancaster University

Wood A T A and Chan G (1994) Simulation of stationary Gaussian processes in 0; 1½ �d Journal of
Computational and Graphical Statistics 3(4) 409–432

5 Arguments

1: NS – INTEGER Input

On entry: the number of sample points to be generated in realizations of the random field. This
must be the same value as supplied to G05ZMF or G05ZNF when calculating the eigenvalues of
the embedding matrix.

Constraint: NS � 1.

2: S – INTEGER Input

On entry: S, the number of realizations of the random field to simulate.

Constraint: S � 1.

3: M – INTEGER Input

On entry: M, the size of the embedding matrix, as returned by G05ZMF or G05ZNF.

Constraint: M � max 1; 2 NS� 1ð Þð Þ.

4: LAMðMÞ – REAL (KIND=nag_wp) array Input

On entry: must contain the square roots of the eigenvalues of the embedding matrix, as returned
by G05ZMF or G05ZNF.

Constraint: LAMðiÞ � 0; i ¼ 1; 2; . . . ;M.

5: RHO – REAL (KIND=nag_wp) Input

On entry: indicates the scaling of the covariance matrix, as returned by G05ZMF or G05ZNF.

Constraint: 0:0 < RHO � 1:0.

6: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

7: ZðNS; SÞ – REAL (KIND=nag_wp) array Output

On exit: contains the realizations of the random field. The jth realization, for the NS sample
points, is stored in Zði; jÞ, for i ¼ 1; 2; . . . ;NS. The sample points are as returned in XX by
G05ZMF or G05ZNF.
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8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NS ¼ valueh i.
Constraint: NS � 1.

IFAIL ¼ 2

On entry, S ¼ valueh i.
Constraint: S � 1.

IFAIL ¼ 3

On entry, M ¼ valueh i and NS ¼ valueh i.
Constraint: M � max 1; 2� NS� 1ð Þð Þ.

IFAIL ¼ 4

On entry, at least one element of LAM was negative.
Constraint: all elements of LAM must be non-negative.

IFAIL ¼ 5

On entry, RHO ¼ valueh i.
Constraint: 0:0 � RHO � 1:0.

IFAIL ¼ 6

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05ZPF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05ZPF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Because samples are generated in pairs, calling this routine k times, with S ¼ s, say, will generate a
different sequence of numbers than calling the routine once with S ¼ ks, unless s is even.

10 Example

This example calls G05ZPF to generate 5 realizations of a random field on 8 sample points using
eigenvalues calculated by G05ZNF for a symmetric stable variogram.

10.1 Program Text

! G05ZPF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Program g05zpfe

! G05ZPF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g05znf, g05zpf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lenst = 17, nin = 5, nout = 6, &

npmax = 4
! .. Local Scalars ..

Real (Kind=nag_wp) :: rho, var, xmax, xmin
Integer :: approx, icorr, icount, icov1, ifail, &

m, maxm, np, ns, pad, s
! .. Local Arrays ..

Real (Kind=nag_wp) :: eig(3), params(npmax)
Real (Kind=nag_wp), Allocatable :: lam(:), xx(:), z(:,:)
Integer :: state(lenst)

! .. Executable Statements ..
Write (nout,*) ’G05ZPF Example Program Results’
Write (nout,*)
Flush (nout)

! Get problem specifications from data file
Call read_input_data(icov1,np,params,var,xmin,xmax,ns,maxm,icorr,pad,s)
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Allocate (lam(maxm),xx(ns))

! Get square roots of the eigenvalues of the embedding matrix
ifail = 0
Call g05znf(ns,xmin,xmax,maxm,var,icov1,np,params,pad,icorr,lam,xx,m, &

approx,rho,icount,eig,ifail)

Call display_embedding_results(approx,m,rho,eig,icount)

! Initialize state array
Call initialize_state(state)

Allocate (z(ns,s))

! Compute s random field realizations.
Call g05zpf(ns,s,m,lam,rho,state,z,ifail)

Call display_realizations(ns,s,xx,z)

Contains
Subroutine read_input_data(icov1,np,params,var,xmin,xmax,ns,maxm,icorr, &

pad,s)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: var, xmax, xmin
Integer, Intent (Out) :: icorr, icov1, maxm, np, ns, pad, s

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: params(npmax)

! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)

! Read in covariance function number
Read (nin,*) icov1

! Read in number of parameters
Read (nin,*) np

! Read in parameters
If (np>0) Then

Read (nin,*) params(1:np)
End If

! Read in variance of random field
Read (nin,*) var

! Read in domain endpoints
Read (nin,*) xmin, xmax

! Read in number of sample points
Read (nin,*) ns

! Read in maximum size of embedding matrix
Read (nin,*) maxm

! Read in choice of scaling in case of approximation
Read (nin,*) icorr

! Read in choice of padding
Read (nin,*) pad

! Read in number of realization samples to be generated
Read (nin,*) s

Return

End Subroutine read_input_data
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Subroutine display_embedding_results(approx,m,rho,eig,icount)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rho
Integer, Intent (In) :: approx, icount, m

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: eig(3)

! .. Executable Statements ..
! Display size of embedding matrix

Write (nout,*)
Write (nout,99999) ’Size of embedding matrix = ’, m

! Display approximation information if approximation used
Write (nout,*)
If (approx==1) Then

Write (nout,*) ’Approximation required’
Write (nout,*)
Write (nout,99998) ’RHO = ’, rho
Write (nout,99997) ’EIG = ’, eig(1:3)
Write (nout,99999) ’ICOUNT = ’, icount

Else
Write (nout,*) ’Approximation not required’

End If

Return

99999 Format (1X,A,I7)
99998 Format (1X,A,F10.5)
99997 Format (1X,A,3(F10.5,1X))

End Subroutine display_embedding_results

Subroutine initialize_state(state)

! .. Use Statements ..
Use nag_library, Only: g05kff

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: genid = 1, inseed = 14965, &

lseed = 1, subid = 1
! .. Array Arguments ..

Integer, Intent (Out) :: state(lenst)
! .. Local Scalars ..

Integer :: ifail, lstate
! .. Local Arrays ..

Integer :: seed(lseed)
! .. Executable Statements ..
! Initialize the generator to a repeatable sequence

lstate = lenst
seed(1) = inseed
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_state

Subroutine display_realizations(ns,s,xx,z)

! .. Use Statements ..
Use nag_library, Only: x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: indent = 0, ncols = 80
Character (1), Parameter :: charlab = ’C’, intlab = ’I’, &

matrix = ’G’, unit = ’n’
Character (5), Parameter :: form = ’F10.5’

! .. Scalar Arguments ..
Integer, Intent (In) :: ns, s
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! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: xx(ns), z(ns,s)

! .. Local Scalars ..
Integer :: i, ifail
Character (26) :: title

! .. Local Arrays ..
Character (1) :: clabs(0)
Character (10), Allocatable :: rlabs(:)

! .. Executable Statements ..
Allocate (rlabs(ns))

! Set row labels to grid points (column label is realization number).
Do i = 1, ns

Write (rlabs(i),99999) xx(i)
End Do

! Display random field results
title = ’Random field realizations:’
Write (nout,*)
ifail = 0
Call x04cbf(matrix,unit,ns,s,z,ns,form,title,charlab,rlabs,intlab, &

clabs,ncols,indent,ifail)

99999 Format (F10.5)

End Subroutine display_realizations

End Program g05zpfe

10.2 Program Data

G05ZPF Example Program Data
1 : icov1 (icov=1, symmetric stable)
2 : np (icov=1, 2 parameters)
0.1 1.2 : params (icov=1, l and nu)
0.5 : var

-1 1 : xmin, xmax
8 : ns
2048 : maxm
2 : icorr
1 : pad
5 : s

10.3 Program Results

G05ZPF Example Program Results

Size of embedding matrix = 16

Approximation not required

Random field realizations:
1 2 3 4 5

-0.87500 -0.41663 -0.81847 -0.97692 0.67410 -0.67616
-0.62500 0.01457 1.45384 0.02481 0.52178 1.94664
-0.37500 -0.55557 0.29127 -0.08534 0.42145 -0.13891
-0.12500 -0.55678 0.31985 -0.60936 0.20194 0.90846
0.12500 -0.04230 0.04860 1.45897 0.36077 -0.52877
0.37500 -0.28057 -0.79688 0.23301 0.13351 0.40119
0.62500 0.92981 -0.39561 -0.84545 -0.27487 0.52703
0.87500 0.32217 1.52273 -2.16445 0.17941 1.19373
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NAG Library Routine Document

G05ZQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05ZQF performs the setup required in order to simulate stationary Gaussian random fields in two
dimensions, for a user-defined variogram, using the circulant embedding method. Specifically, the
eigenvalues of the extended covariance matrix (or embedding matrix) are calculated, and their square
roots output, for use by G05ZSF, which simulates the random field.

2 Specification

SUBROUTINE G05ZQF (NS, XMIN, XMAX, YMIN, YMAX, MAXM, VAR, COV2, EVEN,
PAD, ICORR, LAM, XX, YY, M, APPROX, RHO, ICOUNT, EIG,
IUSER, RUSER, IFAIL)

&
&

INTEGER NS(2), MAXM(2), EVEN, PAD, ICORR, M(2), APPROX,
ICOUNT, IUSER(*), IFAIL

&

REAL (KIND=nag_wp) XMIN, XMAX, YMIN, YMAX, VAR, LAM(MAXM(1)*MAXM(2)),
XX(NS(1)), YY(NS(2)), RHO, EIG(3), RUSER(*)

&

EXTERNAL COV2

3 Description

A two-dimensional random field Z xð Þ in R
2 is a function which is random at every point x 2 R

2, so
Z xð Þ is a random variable for each x. The random field has a mean function � xð Þ ¼ E Z xð Þ½ � and a
symmetric positive semidefinite covariance function C x; yð Þ ¼ E Z xð Þ � � xð Þð Þ Z yð Þ � � yð Þð Þ½ �. Z xð Þ is
a Gaussian random field if for any choice of n 2 N and x1; . . . ; xn 2 R

2, the random vector
Z x1ð Þ; . . . ; Z xnð Þ½ �T follows a multivariate Normal distribution, which would have a mean vector ~�� with
entries ~�i ¼ � xið Þ and a covariance matrix ~C with entries ~Cij ¼ C xi; xj

� �
. A Gaussian random field

Z xð Þ is stationary if � xð Þ is constant for all x 2 R
2 and C x; yð Þ ¼ C xþ a; yþ að Þ for all x; y; a 2 R

2

and hence we can express the covariance function C x; yð Þ as a function � of one variable:
C x; yð Þ ¼ � x� yð Þ. � is known as a variogram (or more correctly, a semivariogram) and includes the
multiplicative factor �2 representing the variance such that � 0ð Þ ¼ �2.
The routines G05ZQF and G05ZSF are used to simulate a two-dimensional stationary Gaussian random
field, with mean function zero and variogram � xð Þ, over a domain xmin ; xmax½ � � ymin ; ymax½ �, using an
equally spaced set of N1 �N2 points; N1 points in the x-direction and N2 points in the y-direction. The
problem reduces to sampling a Normal random vector X of size N1 �N2, with mean vector zero and a
symmetric covariance matrix A, which is an N2 by N2 block Toeplitz matrix with Toeplitz blocks of
size N1 by N1. Since A is in general expensive to factorize, a technique known as the circulant
embedding method is used. A is embedded into a larger, symmetric matrix B, which is an M2 by M2

block circulant matrix with circulant blocks of size M1 by M1, where M1 � 2 N1 � 1ð Þ and
M2 � 2 N2 � 1ð Þ. B can now be factorized as B ¼W�W � ¼ R�R, where W is the two-dimensional
Fourier matrix (W � is the complex conjugate of W ), � is the diagonal matrix containing the

eigenvalues of B and R ¼ �1
2W � . B is known as the embedding matrix. The eigenvalues can be

calculated by performing a discrete Fourier transform of the first row (or column) of B and multiplying
by M1 �M2, and so only the first row (or column) of B is needed – the whole matrix does not need to
be formed.

The symmetry of A as a block matrix, and the symmetry of each block of A, depends on whether the

variogram � is even or not. � is even in its first coordinate if � �x1; x2½ �T
� �

¼ � x1; x2½ �T
� �

, even in its

second coordinate if � x1;�x2½ �T
� �

¼ � x1; x2½ �T
� �

, and even if it is even in both coordinates (in two
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dimensions it is impossible for � to be even in one coordinate and uneven in the other). If � is even
then A is a symmetric block matrix and has symmetric blocks; if � is uneven then A is not a symmetric
block matrix and has non-symmetric blocks. In the uneven case, M1 and M2 are set to be odd in order
to guarantee symmetry in B.

As long as all of the values of � are non-negative (i.e., B is positive semidefinite), B is a covariance
matrix for a random vector Y which has M2 blocks of size M1. Two samples of Y can now be
simulated from the real and imaginary parts of R� Uþ iVð Þ, where U and V have elements from the

standard Normal distribution. Since R� Uþ iVð Þ ¼W�
1
2 Uþ iVð Þ , this calculation can be done using a

discrete Fourier transform of the vector �
1
2 Uþ iVð Þ . Two samples of the random vector X can now be

recovered by taking the first N1 elements of the first N2 blocks of each sample of Y – because the
original covariance matrix A is embedded in B, X will have the correct distribution.

If B is not positive semidefinite, larger embedding matrices B can be tried; however if the size of the
matrix would have to be larger than MAXM, an approximation procedure is used. We write
� ¼ �þ þ ��, where �þ and �� contain the non-negative and negative eigenvalues of B respectively.
Then B is replaced by �Bþ where Bþ ¼W�þW

� and � 2 0; 1ð � is a scaling factor. The error � in
approximating the distribution of the random field is given by

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð Þ2 trace�þ �2 trace��

M

s
:

Three choices for � are available, and are determined by the input argument ICORR:

setting ICORR ¼ 0 sets

� ¼ trace�

trace�þ
;

setting ICORR ¼ 1 sets

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace�

trace�þ

s
;

setting ICORR ¼ 2 sets � ¼ 1.

G05ZQF finds a suitable positive semidefinite embedding matrix B and outputs its sizes in the vector M
and the square roots of its eigenvalues in LAM. If approximation is used, information regarding the
accuracy of the approximation is output. Note that only the first row (or column) of B is actually
formed and stored.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088–1107

Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of
random fields Technical Report ST 99–10 Lancaster University

Wood A T A and Chan G (1994) Simulation of stationary Gaussian processes in 0; 1½ �d Journal of
Computational and Graphical Statistics 3(4) 409–432

5 Arguments

1: NSð2Þ – INTEGER array Input

On entry: the number of sample points to use in each direction, with NSð1Þ sample points in the
x-direction, N1 and NSð2Þ sample points in the y-direction, N2. The total number of sample
points on the grid is therefore NSð1Þ � NSð2Þ.
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Constraints:

NSð1Þ � 1;
NSð2Þ � 1.

2: XMIN – REAL (KIND=nag_wp) Input

On entry: the lower bound for the x-coordinate, for the region in which the random field is to be
simulated.

Constraint: XMIN < XMAX.

3: XMAX – REAL (KIND=nag_wp) Input

On entry: the upper bound for the x-coordinate, for the region in which the random field is to be
simulated.

Constraint: XMIN < XMAX.

4: YMIN – REAL (KIND=nag_wp) Input

On entry: the lower bound for the y-coordinate, for the region in which the random field is to be
simulated.

Constraint: YMIN < YMAX.

5: YMAX – REAL (KIND=nag_wp) Input

On entry: the upper bound for the y-coordinate, for the region in which the random field is to be
simulated.

Constraint: YMIN < YMAX.

6: MAXMð2Þ – INTEGER array Input

On entry: determines the maximum size of the circulant matrix to use – a maximum of
MAXMð1Þ elements in the x-direction, and a maximum of MAXMð2Þ elements in the
y-direction. The maximum size of the circulant matrix is thus MAXMð1Þ�MAXMð2Þ.
Constraints:

i f EVEN ¼ 1, MAXMðiÞ � 2k, where k is the smallest integer sat isfying
2k � 2 NSðiÞ � 1ð Þ, for i ¼ 1; 2;
if EVEN ¼ 0, MAXMðiÞ � 3k, where k is the smallest integer sat isfying
3k � 2 NSðiÞ � 1ð Þ, for i ¼ 1; 2.

7: VAR – REAL (KIND=nag_wp) Input

On entry: the multiplicative factor �2 of the variogram � xð Þ.
Constraint: VAR � 0:0.

8: COV2 – SUBROUTINE, supplied by the user. External Procedure

COV2 must evaluate the variogram � xð Þ for all x if EVEN ¼ 0, and for all x with non-negative
entries if EVEN ¼ 1. The value returned in GAMMA is multiplied internally by VAR.

The specification of COV2 is:

SUBROUTINE COV2 (X, Y, GAMMA, IUSER, RUSER)

INTEGER IUSER(*)
REAL (KIND=nag_wp) X, Y, GAMMA, RUSER(*)

1: X – REAL (KIND=nag_wp) Input

On entry: the coordinate x at which the variogram � xð Þ is to be evaluated.
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2: Y – REAL (KIND=nag_wp) Input

On entry: the coordinate y at which the variogram � xð Þ is to be evaluated.

3: GAMMA – REAL (KIND=nag_wp) Output

On exit: the value of the variogram � xð Þ.

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

COV2 is called with the arguments IUSER and RUSER as supplied to G05ZQF. You
should use the arrays IUSER and RUSER to supply information to COV2.

COV2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G05ZQF is called. Arguments denoted as Input must not be changed by this
procedure.

9: EVEN – INTEGER Input

On entry: indicates whether the covariance function supplied is even or uneven.

EVEN ¼ 0
The covariance function is uneven.

EVEN ¼ 1
The covariance function is even.

Constraint: EVEN ¼ 0 or 1.

10: PAD – INTEGER Input

On entry: determines whether the embedding matrix is padded with zeros, or padded with values
of the variogram. The choice of padding may affect how big the embedding matrix must be in
order to be positive semidefinite.

PAD ¼ 0
The embedding matrix is padded with zeros.

PAD ¼ 1
The embedding matrix is padded with values of the variogram.

Suggested value: PAD ¼ 1.

Constraint: PAD ¼ 0 or 1.

11: ICORR – INTEGER Input

On entry: determines which approximation to implement if required, as described in Section 3.

Suggested value: ICORR ¼ 0.

Constraint: ICORR ¼ 0, 1 or 2.

12: LAMðMAXMð1Þ �MAXMð2ÞÞ – REAL (KIND=nag_wp) array Output

On exit: contains the square roots of the eigenvalues of the embedding matrix.

13: XXðNSð1ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the points of the x-coordinates at which values of the random field will be output.

14: YYðNSð2ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the points of the y-coordinates at which values of the random field will be output.
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15: Mð2Þ – INTEGER array Output

On exit: Mð1Þ contains M1, the size of the circulant blocks and Mð2Þ contains M2, the number of
blocks, resulting in a final square matrix of size M1 �M2.

16: APPROX – INTEGER Output

On exit: indicates whether approximation was used.

APPROX ¼ 0
No approximation was used.

APPROX ¼ 1
Approximation was used.

17: RHO – REAL (KIND=nag_wp) Output

On exit: indicates the scaling of the covariance matrix. RHO ¼ 1:0 unless approximation was
used with ICORR ¼ 0 or 1.

18: ICOUNT – INTEGER Output

On exit: indicates the number of negative eigenvalues in the embedding matrix which have had to
be set to zero.

19: EIGð3Þ – REAL (KIND=nag_wp) array Output

On exit: indicates information about the negative eigenvalues in the embedding matrix which
have had to be set to zero. EIGð1Þ contains the smallest eigenvalue, EIGð2Þ contains the sum of
the squares of the negative eigenvalues, and EIGð3Þ contains the sum of the absolute values of
the negative eigenvalues.

20: IUSERð�Þ – INTEGER array User Workspace
21: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by G05ZQF, but are passed directly to COV2 and should be
used to pass information to this routine.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NS ¼ valueh i; valueh i½ �.
Constraint: NSð1Þ � 1, NSð2Þ � 1.
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IFAIL ¼ 2

On entry, XMIN ¼ valueh i and XMAX ¼ valueh i.
Constraint: XMIN < XMAX.

IFAIL ¼ 4

On entry, YMIN ¼ valueh i and YMAX ¼ valueh i.
Constraint: YMIN < YMAX.

IFAIL ¼ 6

On entry, MAXM ¼ valueh i; valueh i½ �.
Constraint: the minima for MAXM are valueh i; valueh i½ �.
Where, if EVEN ¼ 1, the minimum calculated value of MAXMðiÞ is given by 2k, where k is the
smallest integer satisfying 2k � 2 NSðiÞ � 1ð Þ, and if EVEN ¼ 0, the minimum calculated value
of MAXMðiÞ is given by 3k, where k is the smallest integer satisfying 3k � 2 NSðiÞ � 1ð Þ, for
i ¼ 1; 2.

IFAIL ¼ 7

On entry, VAR ¼ valueh i.
Constraint: VAR � 0:0.

IFAIL ¼ 9

On entry, EVEN ¼ valueh i.
Constraint: EVEN ¼ 0 or 1.

IFAIL ¼ 10

On entry, PAD ¼ valueh i.
Constraint: PAD ¼ 0 or 1.

IFAIL ¼ 11

On entry, ICORR ¼ valueh i.
Constraint: ICORR ¼ 0, 1 or 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If on exit APPROX ¼ 1, see the comments in Section 3 regarding the quality of approximation;
increase the values in MAXM to attempt to avoid approximation.
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8 Parallelism and Performance

G05ZQF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05ZQF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example calls G05ZQF to calculate the eigenvalues of the embedding matrix for 25 sample points
on a 5 by 5 grid of a two-dimensional random field characterized by the symmetric stable variogram:

� xð Þ ¼ �2 exp � x0ð Þ�
� �

;

where x0 ¼ x
‘1
þ y

‘2

			 			 , and ‘1, ‘2 and � are parameters.

It should be noted that the symmetric stable variogram is one of the pre-defined variograms available in
G05ZRF. It is used here purely for illustrative purposes.

10.1 Program Text

! G05ZQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Module g05zqfe_mod

! G05ZQF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: cov2

! .. Parameters ..
Integer, Parameter, Public :: even = 1

Contains
Subroutine cov2(t1,t2,gamma,iuser,ruser)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gamma
Real (Kind=nag_wp), Intent (In) :: t1, t2

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: l1, l2, nu, rnorm, tl1, tl2
Integer :: norm

! .. Intrinsic Procedures ..
Intrinsic :: abs, exp, sqrt

! .. Executable Statements ..
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! Covariance parameters stored in ruser array.
norm = iuser(1)
l1 = ruser(1)
l2 = ruser(2)
nu = ruser(3)

tl1 = abs(t1)/l1
tl2 = abs(t2)/l2
If (norm==1) Then

rnorm = tl1 + tl2
Else If (norm==2) Then

rnorm = sqrt(tl1**2+tl2**2)
End If

gamma = exp(-(rnorm**nu))

Return

End Subroutine cov2
End Module g05zqfe_mod

Program g05zqfe

! G05ZQF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g05zqf, nag_wp
Use g05zqfe_mod, Only: cov2, even

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: l1, l2, nu, rho, var, xmax, xmin, &

ymax, ymin
Integer :: approx, icorr, icount, ifail, norm, &

pad
! .. Local Arrays ..

Real (Kind=nag_wp) :: eig(3), ruser(3)
Real (Kind=nag_wp), Allocatable :: lam(:), xx(:), yy(:)
Integer :: iuser(1), m(2), maxm(2), ns(2)

! .. Executable Statements ..
Write (nout,*) ’G05ZQF Example Program Results’
Write (nout,*)

! Get problem specifications from data file
Call read_input_data(norm,l1,l2,nu,var,xmin,xmax,ymin,ymax,ns,maxm, &

icorr,pad)

! Put covariance parameters in communication arrays
iuser(1) = norm
ruser(1) = l1
ruser(2) = l2
ruser(3) = nu

Allocate (lam(maxm(1)*maxm(2)),xx(ns(1)),yy(ns(2)))

! Get square roots of the eigenvalues of the embedding matrix
ifail = 0
Call g05zqf(ns,xmin,xmax,ymin,ymax,maxm,var,cov2,even,pad,icorr,lam,xx, &

yy,m,approx,rho,icount,eig,iuser,ruser,ifail)

! Output results
Call display_results(approx,m,rho,eig,icount,lam)

Contains
Subroutine read_input_data(norm,l1,l2,nu,var,xmin,xmax,ymin,ymax,ns, &

maxm,icorr,pad)

! .. Implicit None Statement ..
Implicit None
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! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: l1, l2, nu, var, xmax, xmin, ymax, &

ymin
Integer, Intent (Out) :: icorr, norm, pad

! .. Array Arguments ..
Integer, Intent (Out) :: maxm(2), ns(2)

! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)

! Read in norm, l1, l2 and nu for cov2 function
Read (nin,*) norm, l1, l2, nu

! Read in variance of random field
Read (nin,*) var

! Read in domain endpoints
Read (nin,*) xmin, xmax
Read (nin,*) ymin, ymax

! Read in number of sample points in each direction
Read (nin,*) ns(1), ns(2)

! Read in maximum size of embedding matrix
Read (nin,*) maxm(1), maxm(2)

! Read in choice of scaling in case of approximation
Read (nin,*) icorr

! Read in choice of padding
Read (nin,*) pad

Return

End Subroutine read_input_data

Subroutine display_results(approx,m,rho,eig,icount,lam)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rho
Integer, Intent (In) :: approx, icount

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: eig(3)
Integer, Intent (In) :: m(2)
Real (Kind=nag_wp), Intent (In) :: lam(m(1),m(2))

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
! Display size of embedding matrix

Write (nout,*)
Write (nout,99999) ’Size of embedding matrix = ’, m(1)*m(2)

! Display approximation information if approximation used
Write (nout,*)
If (approx==1) Then

Write (nout,*) ’Approximation required’
Write (nout,*)
Write (nout,99998) ’RHO = ’, rho
Write (nout,99997) ’EIG = ’, eig(1:3)
Write (nout,99999) ’ICOUNT = ’, icount

Else
Write (nout,*) ’Approximation not required’

End If

! Display square roots of the eigenvalues of the embedding matrix
Write (nout,*)
Write (nout,*) ’Square roots of eigenvalues of embedding matrix:’
Write (nout,*)
Do i = 1, m(1)
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Write (nout,99996) lam(i,1:m(2))
End Do

Return

99999 Format (1X,A,I7)
99998 Format (1X,A,F10.5)
99997 Format (1X,A,3(F10.5,1X))
99996 Format (1X,8F8.4)

End Subroutine display_results

End Program g05zqfe

10.2 Program Data

G05ZQF Example Program Data
2 0.1 0.15 1.2 : norm, l1, l2, nu
0.5 : var

-1 1 : xmin, xmax
-0.5 0.5 : ymin, ymax
5 5 : ns

81 81 : maxm
2 : icorr
1 : pad

10.3 Program Results

G05ZQF Example Program Results

Size of embedding matrix = 64

Approximation not required

Square roots of eigenvalues of embedding matrix:

0.8966 0.8234 0.6810 0.5757 0.5391 0.5757 0.6810 0.8234
0.8940 0.8217 0.6804 0.5756 0.5391 0.5756 0.6804 0.8217
0.8877 0.8175 0.6792 0.5754 0.5391 0.5754 0.6792 0.8175
0.8813 0.8133 0.6780 0.5751 0.5390 0.5751 0.6780 0.8133
0.8787 0.8116 0.6774 0.5750 0.5390 0.5750 0.6774 0.8116
0.8813 0.8133 0.6780 0.5751 0.5390 0.5751 0.6780 0.8133
0.8877 0.8175 0.6792 0.5754 0.5391 0.5754 0.6792 0.8175
0.8940 0.8217 0.6804 0.5756 0.5391 0.5756 0.6804 0.8217
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NAG Library Routine Document

G05ZRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05ZRF performs the setup required in order to simulate stationary Gaussian random fields in two
dimensions, for a preset variogram, using the circulant embedding method. Specifically, the eigenvalues
of the extended covariance matrix (or embedding matrix) are calculated, and their square roots output,
for use by G05ZSF, which simulates the random field.

2 Specification

SUBROUTINE G05ZRF (NS, XMIN, XMAX, YMIN, YMAX, MAXM, VAR, ICOV2, NORM,
NP, PARAMS, PAD, ICORR, LAM, XX, YY, M, APPROX, RHO,
ICOUNT, EIG, IFAIL)

&
&

INTEGER NS(2), MAXM(2), ICOV2, NORM, NP, PAD, ICORR, M(2),
APPROX, ICOUNT, IFAIL

&

REAL (KIND=nag_wp) XMIN, XMAX, YMIN, YMAX, VAR, PARAMS(NP),
LAM(MAXM(1)*MAXM(2)), XX(NS(1)), YY(NS(2)), RHO,
EIG(3)

&
&

3 Description

A two-dimensional random field Z xð Þ in R
2 is a function which is random at every point x 2 R

2, so
Z xð Þ is a random variable for each x. The random field has a mean function � xð Þ ¼ E Z xð Þ½ � and a
symmetric positive semidefinite covariance function C x; yð Þ ¼ E Z xð Þ � � xð Þð Þ Z yð Þ � � yð Þð Þ½ �. Z xð Þ is
a Gaussian random field if for any choice of n 2 N and x1; . . . ; xn 2 R

2, the random vector
Z x1ð Þ; . . . ; Z xnð Þ½ �T follows a multivariate Normal distribution, which would have a mean vector ~�� with
entries ~�i ¼ � xið Þ and a covariance matrix ~C with entries ~Cij ¼ C xi; xj

� �
. A Gaussian random field

Z xð Þ is stationary if � xð Þ is constant for all x 2 R
2 and C x; yð Þ ¼ C xþ a; yþ að Þ for all x; y; a 2 R

2

and hence we can express the covariance function C x; yð Þ as a function � of one variable:
C x; yð Þ ¼ � x� yð Þ. � is known as a variogram (or more correctly, a semivariogram) and includes the
multiplicative factor �2 representing the variance such that � 0ð Þ ¼ �2.
The routines G05ZRF and G05ZSF are used to simulate a two-dimensional stationary Gaussian random
field, with mean function zero and variogram � xð Þ, over a domain xmin ; xmax½ � � ymin ; ymax½ �, using an
equally spaced set of N1 �N2 points; N1 points in the x-direction and N2 points in the y-direction. The
problem reduces to sampling a Gaussian random vector X of size N1 �N2, with mean vector zero and a
symmetric covariance matrix A, which is an N2 by N2 block Toeplitz matrix with Toeplitz blocks of
size N1 by N1. Since A is in general expensive to factorize, a technique known as the circulant
embedding method is used. A is embedded into a larger, symmetric matrix B, which is an M2 by M2

block circulant matrix with circulant blocks of size M1 by M1, where M1 � 2 N1 � 1ð Þ and
M2 � 2 N2 � 1ð Þ. B can now be factorized as B ¼W�W � ¼ R�R, where W is the two-dimensional
Fourier matrix (W � is the complex conjugate of W ), � is the diagonal matrix containing the

eigenvalues of B and R ¼ �1
2W � . B is known as the embedding matrix. The eigenvalues can be

calculated by performing a discrete Fourier transform of the first row (or column) of B and multiplying
by M1 �M2, and so only the first row (or column) of B is needed – the whole matrix does not need to
be formed.

As long as all of the values of � are non-negative (i.e., B is positive semidefinite), B is a covariance
matrix for a random vector Y which has M2 blocks of size M1. Two samples of Y can now be
simulated from the real and imaginary parts of R� Uþ iVð Þ, where U and V have elements from the

standard Normal distribution. Since R� Uþ iVð Þ ¼W�
1
2 Uþ iVð Þ , this calculation can be done using a
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discrete Fourier transform of the vector �
1
2 Uþ iVð Þ . Two samples of the random vector X can now be

recovered by taking the first N1 elements of the first N2 blocks of each sample of Y – because the
original covariance matrix A is embedded in B, X will have the correct distribution.

If B is not positive semidefinite, larger embedding matrices B can be tried; however if the size of the
matrix would have to be larger than MAXM, an approximation procedure is used. We write
� ¼ �þ þ ��, where �þ and �� contain the non-negative and negative eigenvalues of B respectively.
Then B is replaced by �Bþ where Bþ ¼W�þW

� and � 2 0; 1ð � is a scaling factor. The error � in
approximating the distribution of the random field is given by

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð Þ2 trace�þ �2 trace��

M

s
:

Three choices for � are available, and are determined by the input argument ICORR:

setting ICORR ¼ 0 sets

� ¼ trace�

trace�þ
;

setting ICORR ¼ 1 sets

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace�

trace�þ

s
;

setting ICORR ¼ 2 sets � ¼ 1.

G05ZRF finds a suitable positive semidefinite embedding matrix B and outputs its sizes in the vector M
and the square roots of its eigenvalues in LAM. If approximation is used, information regarding the
accuracy of the approximation is output. Note that only the first row (or column) of B is actually
formed and stored.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088–1107

Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of
random fields Technical Report ST 99–10 Lancaster University

Wood A T A and Chan G (1997) Algorithm AS 312: An Algorithm for Simulating Stationary Gaussian
Random Fields Journal of the Royal Statistical Society, Series C (Applied Statistics) (Volume 46) 1
171–181

5 Arguments

1: NSð2Þ – INTEGER array Input

On entry: the number of sample points to use in each direction, with NSð1Þ sample points in the
x-direction, N1 and NSð2Þ sample points in the y-direction, N2. The total number of sample
points on the grid is therefore NSð1Þ � NSð2Þ.
Constraints:

NSð1Þ � 1;
NSð2Þ � 1.

2: XMIN – REAL (KIND=nag_wp) Input

On entry: the lower bound for the x-coordinate, for the region in which the random field is to be
simulated.

Constraint: XMIN < XMAX.
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3: XMAX – REAL (KIND=nag_wp) Input

On entry: the upper bound for the x-coordinate, for the region in which the random field is to be
simulated.

Constraint: XMIN < XMAX.

4: YMIN – REAL (KIND=nag_wp) Input

On entry: the lower bound for the y-coordinate, for the region in which the random field is to be
simulated.

Constraint: YMIN < YMAX.

5: YMAX – REAL (KIND=nag_wp) Input

On entry: the upper bound for the y-coordinate, for the region in which the random field is to be
simulated.

Constraint: YMIN < YMAX.

6: MAXMð2Þ – INTEGER array Input

On entry: determines the maximum size of the circulant matrix to use – a maximum of
MAXMð1Þ elements in the x-direction, and a maximum of MAXMð2Þ elements in the
y-direction. The maximum size of the circulant matrix is thus MAXMð1Þ�MAXMð2Þ.

Constraint: MAXMðiÞ � 2k, where k is the smallest integer satisfying 2k � 2 NSðiÞ � 1ð Þ, for
i ¼ 1; 2.

7: VAR – REAL (KIND=nag_wp) Input

On entry: the multiplicative factor �2 of the variogram � xð Þ.
Constraint: VAR � 0:0.

8: ICOV2 – INTEGER Input

On entry: determines which of the preset variograms to use. The choices are given below. Note

that x0 ¼ x
‘1
; y‘2

��� ��� , where ‘1 and ‘2 are correlation lengths in the x and y directions respectively

and are parameters for most of the variograms, and �2 is the variance specified by VAR.

ICOV2 ¼ 1
Symmetric stable variogram

� xð Þ ¼ �2 exp � x0ð Þ�
� �

;

where

‘1 ¼ PARAMSð1Þ, ‘1 > 0,

‘2 ¼ PARAMSð2Þ, ‘2 > 0,

� ¼ PARAMSð3Þ, 0 < � � 2.

ICOV2 ¼ 2
Cauchy variogram

� xð Þ ¼ �2 1þ x0ð Þ2
� ���

;

where

‘1 ¼ PARAMSð1Þ, ‘1 > 0,

‘2 ¼ PARAMSð2Þ, ‘2 > 0,

� ¼ PARAMSð3Þ, � > 0.
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ICOV2 ¼ 3
Differential variogram with compact support

� xð Þ ¼ �2 1þ 8x0 þ 25 x0ð Þ2 þ 32 x0ð Þ3
� �

1� x0ð Þ8; x0 < 1;

0; x0 � 1;

(
where

‘1 ¼ PARAMSð1Þ, ‘1 > 0,

‘2 ¼ PARAMSð2Þ, ‘2 > 0.

ICOV2 ¼ 4
Exponential variogram

� xð Þ ¼ �2 exp �x0ð Þ;

where

‘1 ¼ PARAMSð1Þ, ‘1 > 0,

‘2 ¼ PARAMSð2Þ, ‘2 > 0.

ICOV2 ¼ 5
Gaussian variogram

� xð Þ ¼ �2 exp � x0ð Þ2
� �

;

where

‘1 ¼ PARAMSð1Þ, ‘1 > 0,

‘2 ¼ PARAMSð2Þ, ‘2 > 0.

ICOV2 ¼ 6
Nugget variogram

� xð Þ ¼ �2; x ¼ 0;
0; x 6¼ 0:



No parameters need be set for this value of ICOV2.

ICOV2 ¼ 7
Spherical variogram

� xð Þ ¼ �2 1� 1:5x0 þ 0:5 x0ð Þ3
� �

; x0 < 1;

0; x0 � 1;

(
where

‘1 ¼ PARAMSð1Þ, ‘1 > 0,

‘2 ¼ PARAMSð2Þ, ‘2 > 0.

ICOV2 ¼ 8
Bessel variogram

� xð Þ ¼ �22
� � þ 1ð ÞJ� x0ð Þ

x0ð Þ� ;

where

J� �ð Þ is the Bessel function of the first kind,

‘1 ¼ PARAMSð1Þ, ‘1 > 0,

‘2 ¼ PARAMSð2Þ, ‘2 > 0,

� ¼ PARAMSð3Þ, � � 0.
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ICOV2 ¼ 9
Hole effect variogram

� xð Þ ¼ �2sin x
0ð Þ

x0
;

where

‘1 ¼ PARAMSð1Þ, ‘1 > 0,

‘2 ¼ PARAMSð2Þ, ‘2 > 0.

ICOV2 ¼ 10
Whittle-Matérn variogram

� xð Þ ¼ �22
1�� x0ð Þ�K� x

0ð Þ
 �ð Þ ;

where

K� �ð Þ is the modified Bessel function of the second kind,

‘1 ¼ PARAMSð1Þ, ‘1 > 0,

‘2 ¼ PARAMSð2Þ, ‘2 > 0,

� ¼ PARAMSð3Þ, � > 0.

ICOV2 ¼ 11
Continuously parameterised variogram with compact support

� xð Þ ¼ �22
1�� x0ð Þ�K� x

0ð Þ
 �ð Þ 1þ 8x00 þ 25 x00ð Þ2 þ 32 x00ð Þ3

� �
1� x00ð Þ8; x00 < 1;

0; x00 � 1;

(
where

x00 ¼ x0

‘1s1
; y0

‘2s2

��� ��� ,
K� �ð Þ is the modified Bessel function of the second kind,

‘1 ¼ PARAMSð1Þ, ‘1 > 0,

‘2 ¼ PARAMSð2Þ, ‘2 > 0,

s1 ¼ PARAMSð3Þ, s1 > 0,

s2 ¼ PARAMSð4Þ, s2 > 0,

� ¼ PARAMSð5Þ, � > 0.

ICOV2 ¼ 12
Generalized hyperbolic distribution variogram

� xð Þ ¼ �2
�2 þ x0ð Þ2
� ��

2

��K� ��ð Þ
K� � �2 þ x0ð Þ2

� �1
2

� �
;

where

K� �ð Þ is the modified Bessel function of the second kind,

‘1 ¼ PARAMSð1Þ, ‘1 > 0,

‘2 ¼ PARAMSð2Þ, ‘2 > 0,

� ¼ PARAMSð3Þ, no constraint on �,

� ¼ PARAMSð4Þ, � > 0,

� ¼ PARAMSð5Þ, � > 0.

Constraint: ICOV2 ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.
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9: NORM – INTEGER Input

On entry: determines which norm to use when calculating the variogram.

NORM ¼ 1
The 1-norm is used, i.e., x; yk k ¼ xj j þ yj j.

NORM ¼ 2
The 2-norm (Euclidean norm) is used, i.e., x; yk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

Suggested value: NORM ¼ 2.

Constraint: NORM ¼ 1 or 2.

10: NP – INTEGER Input

On entry: the number of parameters to be set. Different covariance functions need a different
number of parameters.

ICOV2 ¼ 6
NP must be set to 0.

ICOV2 ¼ 3, 4, 5, 7 or 9
NP must be set to 2.

ICOV2 ¼ 1, 2, 8 or 10
NP must be set to 3.

ICOV2 ¼ 11 or 12
NP must be set to 5.

11: PARAMSðNPÞ – REAL (KIND=nag_wp) array Input

On entry: the parameters for the variogram as detailed in the description of ICOV2.

Constraint: see ICOV2 for a description of the individual parameter constraints.

12: PAD – INTEGER Input

On entry: determines whether the embedding matrix is padded with zeros, or padded with values
of the variogram. The choice of padding may affect how big the embedding matrix must be in
order to be positive semidefinite.

PAD ¼ 0
The embedding matrix is padded with zeros.

PAD ¼ 1
The embedding matrix is padded with values of the variogram.

Suggested value: PAD ¼ 1.

Constraint: PAD ¼ 0 or 1.

13: ICORR – INTEGER Input

On entry: determines which approximation to implement if required, as described in Section 3.

Suggested value: ICORR ¼ 0.

Constraint: ICORR ¼ 0, 1 or 2.

14: LAMðMAXMð1Þ �MAXMð2ÞÞ – REAL (KIND=nag_wp) array Output

On exit: contains the square roots of the eigenvalues of the embedding matrix.

15: XXðNSð1ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the points of the x-coordinates at which values of the random field will be output.
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16: YYðNSð2ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the points of the y-coordinates at which values of the random field will be output.

17: Mð2Þ – INTEGER array Output

On exit: Mð1Þ contains M1, the size of the circulant blocks and Mð2Þ contains M2, the number of
blocks, resulting in a final square matrix of size M1 �M2.

18: APPROX – INTEGER Output

On exit: indicates whether approximation was used.

APPROX ¼ 0
No approximation was used.

APPROX ¼ 1
Approximation was used.

19: RHO – REAL (KIND=nag_wp) Output

On exit: indicates the scaling of the covariance matrix. RHO ¼ 1:0 unless approximation was
used with ICORR ¼ 0 or 1.

20: ICOUNT – INTEGER Output

On exit: indicates the number of negative eigenvalues in the embedding matrix which have had to
be set to zero.

21: EIGð3Þ – REAL (KIND=nag_wp) array Output

On exit: indicates information about the negative eigenvalues in the embedding matrix which
have had to be set to zero. EIGð1Þ contains the smallest eigenvalue, EIGð2Þ contains the sum of
the squares of the negative eigenvalues, and EIGð3Þ contains the sum of the absolute values of
the negative eigenvalues.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NS ¼ valueh i; valueh i½ �.
Constraint: NSð1Þ � 1, NSð2Þ � 1.
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IFAIL ¼ 2

On entry, XMIN ¼ valueh i and XMAX ¼ valueh i.
Constraint: XMIN < XMAX.

IFAIL ¼ 4

On entry, YMIN ¼ valueh i and YMAX ¼ valueh i.
Constraint: YMIN < YMAX.

IFAIL ¼ 6

On entry, MAXM ¼ valueh i; valueh i½ �.
Constraint: the minimum calculated value for MAXM are valueh i; valueh i½ �.
Where the minima of MAXMðiÞ is given by 2k, where k is the smallest integer satisfying
2k � 2 NSðiÞ � 1ð Þ, for i ¼ 1; 2.

IFAIL ¼ 7

On entry, VAR ¼ valueh i.
Constraint: VAR � 0:0.

IFAIL ¼ 8

On entry, ICOV2 ¼ valueh i.
Constraint: ICOV2 � 1 and ICOV2 � 12.

IFAIL ¼ 9

On entry, NORM ¼ valueh i.
Constraint: NORM ¼ 1 or 2.

IFAIL ¼ 10

On entry, NP ¼ valueh i.
Constraint: for ICOV2 ¼ valueh i, NP ¼ valueh i.

IFAIL ¼ 11

On entry, PARAMSð valueh iÞ ¼ valueh i.
Constraint: dependent on ICOV2, see documentation.

IFAIL ¼ 12

On entry, PAD ¼ valueh i.
Constraint: PAD ¼ 0 or 1.

IFAIL ¼ 13

On entry, ICORR ¼ valueh i.
Constraint: ICORR ¼ 0, 1 or 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If on exit APPROX ¼ 1, see the comments in Section 3 regarding the quality of approximation;
increase the values in MAXM to attempt to avoid approximation.

8 Parallelism and Performance

G05ZRF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05ZRF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example calls G05ZRF to calculate the eigenvalues of the embedding matrix for 25 sample points
on a 5 by 5 grid of a two-dimensional random field characterized by the symmetric stable variogram
(ICOV2 ¼ 1).

10.1 Program Text

! G05ZRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Program g05zrfe

! G05ZRF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g05zrf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6, npmax = 4

! .. Local Scalars ..
Real (Kind=nag_wp) :: rho, var, xmax, xmin, ymax, ymin
Integer :: approx, icorr, icount, icov2, ifail, &

norm, np, pad
! .. Local Arrays ..

Real (Kind=nag_wp) :: eig(3), params(npmax)
Real (Kind=nag_wp), Allocatable :: lam(:), xx(:), yy(:)
Integer :: m(2), maxm(2), ns(2)

! .. Executable Statements ..
Write (nout,*) ’G05ZRF Example Program Results’
Write (nout,*)

! Get problem specifications from data file
Call read_input_data(icov2,np,params,norm,var,xmin,xmax,ymin,ymax,ns, &

maxm,icorr,pad)
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Allocate (lam(maxm(1)*maxm(2)),xx(ns(1)),yy(ns(2)))

! Get square roots of the eigenvalues of the embedding matrix
ifail = 0
Call g05zrf(ns,xmin,xmax,ymin,ymax,maxm,var,icov2,norm,np,params,pad, &

icorr,lam,xx,yy,m,approx,rho,icount,eig,ifail)

! Output results
Call display_results(approx,m,rho,eig,icount,lam)

Contains
Subroutine read_input_data(icov2,np,params,norm,var,xmin,xmax,ymin,ymax, &

ns,maxm,icorr,pad)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: var, xmax, xmin, ymax, ymin
Integer, Intent (Out) :: icorr, icov2, norm, np, pad

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: params(npmax)
Integer, Intent (Out) :: maxm(2), ns(2)

! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)

! Read in covariance function number
Read (nin,*) icov2

! Read in number of parameters
Read (nin,*) np

! Read in parameters
If (np>0) Then

Read (nin,*) params(1:np)
End If

! Read in choice of norm to use
Read (nin,*) norm

! Read in variance of random field
Read (nin,*) var

! Read in domain endpoints
Read (nin,*) xmin, xmax
Read (nin,*) ymin, ymax

! Read in number of sample points
Read (nin,*) ns(1:2)

! Read in maximum size of embedding matrix
Read (nin,*) maxm(1:2)

! Read in choice of scaling in case of approximation
Read (nin,*) icorr

! Read in choice of padding
Read (nin,*) pad

Return

End Subroutine read_input_data

Subroutine display_results(approx,m,rho,eig,icount,lam)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rho
Integer, Intent (In) :: approx, icount
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! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: eig(3)
Integer, Intent (In) :: m(2)
Real (Kind=nag_wp), Intent (In) :: lam(m(1),m(2))

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
! Display size of embedding matrix

Write (nout,*)
Write (nout,99999) ’Size of embedding matrix = ’, m(1)*m(2)

! Display approximation information if approximation used
Write (nout,*)
If (approx==1) Then

Write (nout,*) ’Approximation required’
Write (nout,*)
Write (nout,99998) ’RHO = ’, rho
Write (nout,99997) ’EIG = ’, eig(1:3)
Write (nout,99999) ’ICOUNT = ’, icount

Else
Write (nout,*) ’Approximation not required’

End If

! Display square roots of the eigenvalues of the embedding matrix
Write (nout,*)
Write (nout,*) ’Square roots of eigenvalues of embedding matrix:’
Write (nout,*)
Do i = 1, m(1)

Write (nout,99996) lam(i,1:m(2))
End Do

Return

99999 Format (1X,A,I7)
99998 Format (1X,A,F10.5)
99997 Format (1X,A,3(F10.5,1X))
99996 Format (1X,8F8.4)

End Subroutine display_results

End Program g05zrfe

10.2 Program Data

G05ZRF Example Program Data
1 : icov2 (icov2=1, symmetric stable)
3 : np (icov2=1, 3 parameters)
0.1 0.15 1.2 : params (icov2=1, l1, l2 and nu)
2 : norm
0.5 : var

-1.0 1.0 : xmin, xmax
-0.5 0.5 : ymin, ymax
5 5 : ns

64 64 : maxm
2 : icorr
1 : pad

10.3 Program Results

G05ZRF Example Program Results

Size of embedding matrix = 64

Approximation not required

Square roots of eigenvalues of embedding matrix:

0.8966 0.8234 0.6810 0.5757 0.5391 0.5757 0.6810 0.8234
0.8940 0.8217 0.6804 0.5756 0.5391 0.5756 0.6804 0.8217
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0.8877 0.8175 0.6792 0.5754 0.5391 0.5754 0.6792 0.8175
0.8813 0.8133 0.6780 0.5751 0.5390 0.5751 0.6780 0.8133
0.8787 0.8116 0.6774 0.5750 0.5390 0.5750 0.6774 0.8116
0.8813 0.8133 0.6780 0.5751 0.5390 0.5751 0.6780 0.8133
0.8877 0.8175 0.6792 0.5754 0.5391 0.5754 0.6792 0.8175
0.8940 0.8217 0.6804 0.5756 0.5391 0.5756 0.6804 0.8217

The two plots shown below illustrate the random fields that can be generated by G05ZSF using the
eigenvalues calculated by G05ZRF. These are for two realizations of a two-dimensional random field,
based on eigenvalues of the embedding matrix for points on a 100 by 100 grid. The random field is
characterized by the exponential variogram (ICOV2 ¼ 4) with correlation lengths both equal to 0:1.

Example Program 1
First realization of two-dimensional Random Field
exponential variogram, correlation lengths = 0.1
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Example Program 2
Second realization of two-dimensional Random Field

exponential variogram, correlation lengths = 0.1
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NAG Library Routine Document

G05ZSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05ZSF produces realizations of a stationary Gaussian random field in two dimensions, using the
circulant embedding method. The square roots of the eigenvalues of the extended covariance matrix (or
embedding matrix) need to be input, and can be calculated using G05ZQF or G05ZRF.

2 Specification

SUBROUTINE G05ZSF (NS, S, M, LAM, RHO, STATE, Z, IFAIL)

INTEGER NS(2), S, M(2), STATE(*), IFAIL
REAL (KIND=nag_wp) LAM(M(1)*M(2)), RHO, Z(NS(1)*NS(2),S)

3 Description

A two-dimensional random field Z xð Þ in R
2 is a function which is random at every point x 2 R

2, so
Z xð Þ is a random variable for each x. The random field has a mean function � xð Þ ¼ E Z xð Þ½ � and a
symmetric positive semidefinite covariance function C x; yð Þ ¼ E Z xð Þ � � xð Þð Þ Z yð Þ � � yð Þð Þ½ �. Z xð Þ is
a Gaussian random field if for any choice of n 2 N and x1; . . . ; xn 2 R

2, the random vector
Z x1ð Þ; . . . ; Z xnð Þ½ �T follows a multivariate Normal distribution, which would have a mean vector ~�� with
entries ~�i ¼ � xið Þ and a covariance matrix ~C with entries ~Cij ¼ C xi; xj

� �
. A Gaussian random field

Z xð Þ is stationary if � xð Þ is constant for all x 2 R
2 and C x; yð Þ ¼ C xþ a; yþ að Þ for all x; y; a 2 R

2

and hence we can express the covariance function C x; yð Þ as a function � of one variable:
C x; yð Þ ¼ � x� yð Þ. � is known as a variogram (or more correctly, a semivariogram) and includes the
multiplicative factor �2 representing the variance such that � 0ð Þ ¼ �2.
The routines G05ZQF or G05ZRF along with G05ZSF are used to simulate a two-dimensional
stationary Gaussian random field, with mean function zero and variogram � xð Þ, over a domain
xmin ; xmax½ � � ymin ; ymax½ �, using an equally spaced set of N1 �N2 points; N1 points in the x-direction
and N2 points in the y-direction. The problem reduces to sampling a Gaussian random vector X of size
N1 �N2, with mean vector zero and a symmetric covariance matrix A, which is an N2 by N2 block
Toeplitz matrix with Toeplitz blocks of size N1 by N1. Since A is in general expensive to factorize, a
technique known as the circulant embedding method is used. A is embedded into a larger, symmetric
matrix B, which is an M2 by M2 block circulant matrix with circulant bocks of size M1 by M1, where
M1 � 2 N1 � 1ð Þ and M2 � 2 N2 � 1ð Þ. B can now be factorized as B ¼ W�W � ¼ R�R, where W is
the two-dimensional Fourier matrix (W � is the complex conjugate of W ), � is the diagonal matrix

containing the eigenvalues of B and R ¼ �1
2W � . B is known as the embedding matrix. The eigenvalues

can be calculated by performing a discrete Fourier transform of the first row (or column) of B and
multiplying by M1 �M2, and so only the first row (or column) of B is needed – the whole matrix does
not need to be formed.

The symmetry of A as a block matrix, and the symmetry of each block of A, depends on whether the
covariance function � is even or not. � is even if � xð Þ ¼ � �xð Þ for all x 2 R

2, and uneven otherwise (in
higher dimensions, � can be even in some coordinates and uneven in others, but in two dimensions � is
either even in both coordinates or uneven in both coordinates). If � is even then A is a symmetric block
matrix and has symmetric blocks; if � is uneven then A is not a symmetric block matrix and has non-
symmetric blocks. In the uneven case, M1 and M2 are set to be odd in order to guarantee symmetry in
B.

As long as all of the values of � are non-negative (i.e., B is positive semidefinite), B is a covariance
matrix for a random vector Y which has M2 ‘blocks’ of size M1. Two samples of Y can now be
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simulated from the real and imaginary parts of R� Uþ iVð Þ, where U and V have elements from the

standard Normal distribution. Since R� Uþ iVð Þ ¼W�
1
2 Uþ iVð Þ , this calculation can be done using a

discrete Fourier transform of the vector �
1
2 Uþ iVð Þ . Two samples of the random vector X can now be

recovered by taking the first N1 elements of the first N2 blocks of each sample of Y – because the
original covariance matrix A is embedded in B, X will have the correct distribution.

If B is not positive semidefinite, larger embedding matrices B can be tried; however if the size of the
matrix would have to be larger than MAXM, an approximation procedure is used. See the
documentation of G05ZQF or G05ZRF for details of the approximation procedure.

G05ZSF takes the square roots of the eigenvalues of the embedding matrix B, and its size vector M, as
input and outputs S realizations of the random field in Z.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05ZSF.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088–1107

Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of
random fields Technical Report ST 99–10 Lancaster University

Wood A T A and Chan G (1994) Simulation of stationary Gaussian processes in 0; 1½ �d Journal of
Computational and Graphical Statistics 3(4) 409–432

5 Arguments

1: NSð2Þ – INTEGER array Input

On entry: the number of sample points to use in each direction, with NSð1Þ sample points in the
x-direction and NSð2Þ sample points in the y-direction. The total number of sample points on the
grid is therefore NSð1Þ � NSð2Þ. This must be the same value as supplied to G05ZQF or
G05ZRF when calculating the eigenvalues of the embedding matrix.

Constraints:

NSð1Þ � 1;
NSð2Þ � 1.

2: S – INTEGER Input

On entry: S, the number of realizations of the random field to simulate.

Constraint: S � 1.

3: Mð2Þ – INTEGER array Input

On entry: indicates the size, M, of the embedding matrix as returned by G05ZQF or G05ZRF.
The embedding matrix is a block circulant matrix with circulant blocks. Mð1Þ is the size of each
block, and Mð2Þ is the number of blocks.

Constraints:

Mð1Þ � max 1; 2 NSð1Þ � 1ð Þð Þ;
Mð2Þ � max 1; 2 NSð2Þ � 1ð Þð Þ.

4: LAMðMð1Þ �Mð2ÞÞ – REAL (KIND=nag_wp) array Input

On entry: contains the square roots of the eigenvalues of the embedding matrix, as returned by
G05ZQF or G05ZRF.

Constraint: LAMðiÞ � 0, i ¼ 1; 2; . . . ;Mð1Þ �Mð2Þ.
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5: RHO – REAL (KIND=nag_wp) Input

On entry: indicates the scaling of the covariance matrix, as returned by G05ZQF or G05ZRF.

Constraint: 0:0 < RHO � 1:0.

6: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

7: ZðNSð1Þ � NSð2Þ; SÞ – REAL (KIND=nag_wp) array Output

On exit: contains the realizations of the random field. The kth realization (where k ¼ 1; 2; . . . ; S)
of the random field on the two-dimensional grid xi; yj

� �
is stored in Zð j� 1ð Þ � NSð1Þ þ i; kÞ,

for i ¼ 1; 2; . . . ;NSð1Þ and for j ¼ 1; 2; . . . ;NSð2Þ. The points are returned in XX and YY by
G05ZQF or G05ZRF.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NS ¼ valueh i; valueh i½ �.
Constraint: NSð1Þ � 1, NSð2Þ � 1.

IFAIL ¼ 2

On entry, S ¼ valueh i.
Constraint: S � 1.

IFAIL ¼ 3

On entry, M ¼ valueh i; valueh i½ �, and NS ¼ valueh i; valueh i½ �.
Constraints: MðiÞ � max 1; 2 NSðiÞð Þ � 1ð Þ, for i ¼ 1; 2.

IFAIL ¼ 4

On entry, at least one element of LAM was negative.
Constraint: all elements of LAM must be non-negative.
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IFAIL ¼ 5

On entry, RHO ¼ valueh i.
Constraint: 0:0 < RHO � 1:0.

IFAIL ¼ 6

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05ZSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05ZSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Because samples are generated in pairs, calling this routine k times, with S ¼ s, say, will generate a
different sequence of numbers than calling the routine once with S ¼ ks, unless s is even.

10 Example

This example calls G05ZSF to generate 5 realizations of a two-dimensional random field on a 5 by 5
grid. This uses eigenvalues of the embedding covariance matrix for a symmetric stable variogram as
calculated by G05ZRF with ICOV2 ¼ 1.

10.1 Program Text

! G05ZSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Program g05zsfe

! G05ZSF Example Main Program
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! .. Use Statements ..
Use nag_library, Only: g05zrf, g05zsf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lenst = 17, nin = 5, nout = 6, &

npmax = 4
! .. Local Scalars ..

Real (Kind=nag_wp) :: rho, var, xmax, xmin, ymax, ymin
Integer :: approx, icorr, icount, icov2, ifail, &

norm, np, pad, s
! .. Local Arrays ..

Real (Kind=nag_wp) :: eig(3), params(npmax)
Real (Kind=nag_wp), Allocatable :: lam(:), xx(:), yy(:), z(:,:)
Integer :: m(2), maxm(2), ns(2), state(lenst)

! .. Executable Statements ..
Write (nout,*) ’G05ZSF Example Program Results’
Write (nout,*)
Flush (nout)

! Get problem specifications from data file
Call read_input_data(icov2,np,params,norm,var,xmin,xmax,ymin,ymax,ns, &

maxm,icorr,pad,s)

Allocate (lam(maxm(1)*maxm(2)),xx(ns(1)),yy(ns(2)))

! Get square roots of the eigenvalues of the embedding matrix
ifail = 0
Call g05zrf(ns,xmin,xmax,ymin,ymax,maxm,var,icov2,norm,np,params,pad, &

icorr,lam,xx,yy,m,approx,rho,icount,eig,ifail)

Call display_embedding_results(approx,m,rho,eig,icount)

! Initialize state array
Call initialize_state(state)

Allocate (z(ns(1)*ns(2),s))

! Compute s random field realizations
ifail = 0
Call g05zsf(ns,s,m,lam,rho,state,z,ifail)

Call display_realizations(ns,s,xx,yy,z)

Contains
Subroutine read_input_data(icov2,np,params,norm,var,xmin,xmax,ymin,ymax, &

ns,maxm,icorr,pad,s)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: var, xmax, xmin, ymax, ymin
Integer, Intent (Out) :: icorr, icov2, norm, np, pad, s

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: params(npmax)
Integer, Intent (Out) :: maxm(2), ns(2)

! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)

! Read in covariance function number
Read (nin,*) icov2

! Read in number of parameters
Read (nin,*) np

! Read in parameters
If (np>0) Then

Read (nin,*) params(1:np)
End If
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! Read in choice of norm to use
Read (nin,*) norm

! Read in variance of random field
Read (nin,*) var

! Read in domain endpoints
Read (nin,*) xmin, xmax
Read (nin,*) ymin, ymax

! Read in number of sample points
Read (nin,*) ns(1:2)

! Read in maximum size of embedding matrix
Read (nin,*) maxm(1:2)

! Read in choice of scaling in case of approximation
Read (nin,*) icorr

! Read in choice of padding
Read (nin,*) pad

! Read in number of realization samples to be generated
Read (nin,*) s

Return

End Subroutine read_input_data

Subroutine display_embedding_results(approx,m,rho,eig,icount)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rho
Integer, Intent (In) :: approx, icount

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: eig(3)
Integer, Intent (In) :: m(2)

! .. Executable Statements ..
! Display size of embedding matrix

Write (nout,*)
Write (nout,99999) ’Size of embedding matrix = ’, m(1)*m(2)

! Display approximation information if approximation used
Write (nout,*)
If (approx==1) Then

Write (nout,*) ’Approximation required’
Write (nout,*)
Write (nout,99998) ’RHO = ’, rho
Write (nout,99997) ’EIG = ’, eig(1:3)
Write (nout,99999) ’ICOUNT = ’, icount

Else
Write (nout,*) ’Approximation not required’

End If

Return

99999 Format (1X,A,I7)
99998 Format (1X,A,F10.5)
99997 Format (1X,A,3(F10.5,1X))

End Subroutine display_embedding_results

Subroutine initialize_state(state)

! .. Use Statements ..
Use nag_library, Only: g05kff

! .. Implicit None Statement ..
Implicit None
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! .. Parameters ..
Integer, Parameter :: genid = 1, inseed = 14965, &

lseed = 1, subid = 1
! .. Array Arguments ..

Integer, Intent (Out) :: state(lenst)
! .. Local Scalars ..

Integer :: ifail, lstate
! .. Local Arrays ..

Integer :: seed(lseed)
! .. Executable Statements ..
! Initialize the generator to a repeatable sequence

lstate = lenst
seed(1) = inseed
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_state

Subroutine display_realizations(ns,s,xx,yy,z)

! .. Use Statements ..
Use nag_library, Only: x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: indent = 0, ncols = 80
Character (1), Parameter :: charlab = ’C’, intlab = ’I’, &

matrix = ’G’, unit = ’n’
Character (5), Parameter :: form = ’F10.5’

! .. Scalar Arguments ..
Integer, Intent (In) :: s

! .. Array Arguments ..
Integer, Intent (In) :: ns(2)
Real (Kind=nag_wp), Intent (In) :: xx(ns(1)), yy(ns(2)), &

z(ns(1)*ns(2),s)
! .. Local Scalars ..

Integer :: i, ifail, j, nn
Character (61) :: title

! .. Local Arrays ..
Character (1) :: clabs(0)
Character (12), Allocatable :: rlabs(:)

! .. Executable Statements ..
nn = ns(1)*ns(2)
Allocate (rlabs(nn))

! Set row labels to grid points (column label is realization number).
Do j = 1, ns(2)

Do i = 1, ns(1)
If (i==1) Then

Write (rlabs((j-1)*ns(1)+i),99999) xx(i), yy(j)
Else

Write (rlabs((j-1)*ns(1)+i),99998) xx(i)
End If

End Do
End Do

! Display random field results
title = ’Random field realizations (x,y coordinates first):’
Write (nout,*)
ifail = 0
Call x04cbf(matrix,unit,nn,s,z,nn,form,title,charlab,rlabs,intlab, &

clabs,ncols,indent,ifail)

99999 Format (2F6.1)
99998 Format (F6.1,5X,’.’)

End Subroutine display_realizations

End Program g05zsfe
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10.2 Program Data

G05ZSF Example Program Data
1 : icov2 (icov2=1, symmetric stable)
3 : np (icov2=1, 3 parameters)
0.1 0.15 1.2 : params (icov2=1, l1, l2 and nu)
2 : norm
0.5 : var

-1 1 : xmin, xmax
-0.5 0.5 : ymin, ymax
5 5 : ns(1:2)

64 64 : maxm(1:2)
2 : icorr
1 : pad
5 : s

10.3 Program Results

G05ZSF Example Program Results

Size of embedding matrix = 64

Approximation not required

Random field realizations (x,y coordinates first):
1 2 3 4 5

-0.8 -0.4 -0.61951 -0.93149 -0.32975 -0.51201 1.38877
-0.4 . 0.74779 1.33518 -0.51237 0.26595 0.30051
0.0 . -0.30579 0.51819 0.50961 0.10379 0.36815
0.4 . 0.53797 -0.53992 -0.86589 -0.37098 0.21571
0.8 . -0.61221 -1.04262 0.00007 -1.22614 -0.06650

-0.8 -0.2 0.01853 0.64126 -0.42978 -0.79178 -0.55728
-0.4 . -0.77912 0.81079 -0.60613 0.07280 1.61511
0.0 . -0.23198 1.48744 -0.78145 0.10347 0.07053
0.4 . 0.32356 0.58676 0.05846 0.34828 1.40522
0.8 . -1.24085 -0.92512 0.27247 -0.66965 0.67073

-0.8 0.0 -1.18183 -0.99775 0.03888 0.01789 -0.65746
-0.4 . 0.26155 -0.01734 -0.14924 0.28886 0.25940
0.0 . 1.14960 0.48850 -0.59023 0.22795 -0.60773
0.4 . -0.32684 -0.09616 -0.63497 -1.06753 -0.64594
0.8 . 0.10064 1.06148 0.15020 -0.53168 -0.29251

-0.8 0.2 -1.30595 -0.03899 -0.35549 -0.20589 -0.35956
-0.4 . -0.01776 0.84501 0.20406 0.89039 -0.58338
0.0 . 0.41898 0.93435 -1.10725 0.76913 -0.74579
0.4 . -1.37738 1.72404 -0.20558 -1.41877 1.21816
0.8 . 0.77866 0.84922 -0.65055 0.83518 -0.26425

-0.8 0.4 -0.65163 0.50492 -0.52463 -1.12816 1.12817
-0.4 . 0.15437 0.20739 -0.12675 1.27782 -0.26157
0.0 . 0.20324 0.54670 -1.73909 0.61580 0.17551
0.4 . -1.09470 0.83967 0.70226 -0.34259 0.29368
0.8 . 1.08452 1.23097 -0.36003 1.06884 0.23594
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NAG Library Routine Document

G05ZTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05ZTF produces realizations of a fractional Brownian motion, using the circulant embedding method.
The square roots of the eigenvalues of the extended covariance matrix (or embedding matrix) need to be
input, and can be calculated using G05ZNF.

2 Specification

SUBROUTINE G05ZTF (NS, S, M, XMAX, H, LAM, RHO, STATE, Z, XX, IFAIL)

INTEGER NS, S, M, STATE(*), IFAIL
REAL (KIND=nag_wp) XMAX, H, LAM(M), RHO, Z(NS+1,S), XX(NS+1)

3 Description

The routines G05ZNF and G05ZTF are used to simulate a fractional Brownian motion process with
Hurst argument H over an interval 0; xmax½ �, using a set of equally spaced points. Fractional Brownian
motion itself cannot be simulated directly using this method, since it is not a stationary Gaussian
random field; however its increments can be simulated like a stationary Gaussian random field. The
circulant embedding method is described in the documentation for G05ZNF.

G05ZTF takes the square roots of the eigenvalues of the embedding matrix as returned by G05ZNF
when ICOV1 ¼ 14, and its size M, as input and outputs S realizations of the fractional Brownian
motion in Z.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05ZTF.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088–1107

Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of
random fields Technical Report ST 99–10 Lancaster University

Wood A T A and Chan G (1994) Simulation of stationary Gaussian processes in 0; 1½ �d Journal of
Computational and Graphical Statistics 3(4) 409–432

5 Arguments

1: NS – INTEGER Input

On entry: the number of steps (points) to be generated in realizations of the increments of the
fractional Brownian motion. This must be the same value as supplied to G05ZNF when
calculating the eigenvalues of the embedding matrix.

Note: in the context of fractional Brownian motion, NS represents the number of steps from a
zero starting state. Realizations returned in Z include this starting state and so NSþ 1 values are
returned for each realization.

Constraint: NS � 1.
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2: S – INTEGER Input

On entry: S, the number of realizations of the fractional Brownian motion to simulate.

Constraint: S � 1.

3: M – INTEGER Input

On entry: the size, M, of the embedding matrix, as returned by G05ZMF or G05ZNF.

Constraint: M � max 1; 2 NS� 1ð Þð Þ.

4: XMAX – REAL (KIND=nag_wp) Input

On entry: the upper bound for the interval over which the fractional Brownian motion is to be
simulated, as input to G05ZMF or G05ZNF.

Constraint: XMAX > 0:0.

5: H – REAL (KIND=nag_wp) Input

On entry: the Hurst parameter, H, for the fractional Brownian motion. This must be the same
value as supplied to G05ZNF in PARAMSð1Þ, when the eigenvalues of the embedding matrix
were calculated.

Constraint: 0:0 < H < 1:0.

6: LAMðMÞ – REAL (KIND=nag_wp) array Input

On entry: contains the square roots of the eigenvalues of the embedding matrix, as returned by
G05ZMF or G05ZNF.

Constraint: LAMðiÞ � 0, for i ¼ 1; 2; . . . ;M.

7: RHO – REAL (KIND=nag_wp) Input

On entry: indicates the scaling of the covariance matrix, as returned by G05ZMF or G05ZNF.

Constraint: 0:0 < RHO � 1:0.

8: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

9: ZðNSþ 1;SÞ – REAL (KIND=nag_wp) array Output

On exit: contains the realizations of the fractional Brownian motion, Z. The jth realization, for
the ith point XXðiÞ, is stored in Zði; jÞ, for j ¼ 1; 2; . . . ; S and i ¼ 1; 2; . . . ;NSþ 1.

10: XXðNSþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the points at which values of the fractional Brownian motion are output. The first point
is always zero, and the subsequent NS points represent the equispaced steps towards the last
point, XMAX. Note that in G05ZMF and G05ZNF, the returned NS sample points are the mid-
points of the grid returned in XX here.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NS ¼ valueh i.
Constraint: NS � 1.

IFAIL ¼ 2

On entry, S ¼ valueh i.
Constraint: S � 1.

IFAIL ¼ 3

On entry, M ¼ valueh i, and NS ¼ valueh i.
Constraint: M � max 1; 2 NS� 1ð Þð Þ.

IFAIL ¼ 4

On entry, XMAX ¼ valueh i.
Constraint: XMAX > 0:0.

IFAIL ¼ 5

On entry, H ¼ valueh i.
Constraint: 0:0 < H < 1:0.

IFAIL ¼ 6

On entry, at least one element of LAM was negative.
Constraint: all elements of LAM must be non-negative.

IFAIL ¼ 7

On entry, RHO ¼ valueh i.
Constraint: 0:0 < RHO � 1:0.

IFAIL ¼ 8

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05ZTF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05ZTF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example calls G05ZTF to generate 5 realizations of a fractional Brownian motion over 10 steps
from x ¼ 0:0 to x ¼ 2:0 using eigenvalues generated by G05ZNF with ICOV1 ¼ 14.

10.1 Program Text

! G05ZTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Program g05ztfe

! G05ZTF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g05znf, g05ztf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lenst = 17, nin = 5, nout = 6, &

npmax = 4
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, rho, var, xmax, xmin
Integer :: approx, icorr, icount, icov1, ifail, &

m, maxm, np, ns, pad, s
! .. Local Arrays ..

Real (Kind=nag_wp) :: eig(3), params(npmax)
Real (Kind=nag_wp), Allocatable :: lam(:), xx(:), yy(:), z(:,:)
Integer :: state(lenst)

! .. Executable Statements ..
Write (nout,*) ’G05ZTF Example Program Results’
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Write (nout,*)
Flush (nout)

! Set fixed problem specifications for simulating fractional Brownian
! motion.

icov1 = 14
np = 2
xmin = 0.0_nag_wp
var = 1.0_nag_wp

! Get other problem specifications from data file
Call read_input_data(params,xmax,ns,maxm,icorr,pad,s)

Allocate (lam(maxm),xx(ns))

! Get square roots of the eigenvalues of the embedding matrix
ifail = 0
Call g05znf(ns,xmin,xmax,maxm,var,icov1,np,params,pad,icorr,lam,xx,m, &

approx,rho,icount,eig,ifail)

Call display_embedding_results(approx,m,rho,eig,icount)

! Initialize state array
Call initialize_state(state)

Allocate (yy(ns+1),z(ns+1,s))

! Computes fractional Brownian motion realizations.
h = params(1)
ifail = 0
Call g05ztf(ns,s,m,xmax,h,lam,rho,state,z,yy,ifail)

Call display_realizations(ns,s,yy,z)

Contains
Subroutine read_input_data(params,xmax,ns,maxm,icorr,pad,s)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: xmax
Integer, Intent (Out) :: icorr, maxm, ns, pad, s

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: params(npmax)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)

! Read in the Hurst parameter, H
Read (nin,*) params(1)

! Read in domain endpoint
Read (nin,*) xmax

! Read in number of sample points
Read (nin,*) ns

params(2) = xmax/(real(ns,kind=nag_wp))

! Read in maximum size of embedding matrix
Read (nin,*) maxm

! Read in choice of scaling in case of approximation
Read (nin,*) icorr

! Read in choice of padding
Read (nin,*) pad

! Read in number of realization samples to be generated
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Read (nin,*) s

Return

End Subroutine read_input_data

Subroutine display_embedding_results(approx,m,rho,eig,icount)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rho
Integer, Intent (In) :: approx, icount, m

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: eig(3)

! .. Executable Statements ..
! Display size of embedding matrix

Write (nout,*)
Write (nout,99999) ’Size of embedding matrix = ’, m

! Display approximation information if approximation used
Write (nout,*)
If (approx==1) Then

Write (nout,*) ’Approximation required’
Write (nout,*)
Write (nout,99998) ’RHO = ’, rho
Write (nout,99997) ’EIG = ’, eig(1:3)
Write (nout,99999) ’ICOUNT = ’, icount

Else
Write (nout,*) ’Approximation not required’

End If

Return

99999 Format (1X,A,I7)
99998 Format (1X,A,F10.5)
99997 Format (1X,A,3(F10.5,1X))

End Subroutine display_embedding_results

Subroutine initialize_state(state)

! .. Use Statements ..
Use nag_library, Only: g05kff

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: genid = 1, inseed = 14965, &

lseed = 1, subid = 1
! .. Array Arguments ..

Integer, Intent (Out) :: state(lenst)
! .. Local Scalars ..

Integer :: ifail, lstate
! .. Local Arrays ..

Integer :: seed(lseed)
! .. Executable Statements ..
! Initialize the generator to a repeatable sequence

lstate = lenst
seed(1) = inseed
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_state

Subroutine display_realizations(ns,s,yy,z)

! .. Use Statements ..
Use nag_library, Only: x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: indent = 0, ncols = 80
Character (1), Parameter :: charlab = ’C’, intlab = ’I’, &

matrix = ’G’, unit = ’n’
Character (5), Parameter :: form = ’F10.5’

! .. Scalar Arguments ..
Integer, Intent (In) :: ns, s

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: yy(ns+1), z(ns+1,s)

! .. Local Scalars ..
Integer :: i, ifail
Character (61) :: title

! .. Local Arrays ..
Character (1) :: clabs(0)
Character (6), Allocatable :: rlabs(:)

! .. Executable Statements ..
Allocate (rlabs(ns+1))

! Set row labels to mesh points (column label is realization number).
Do i = 1, ns + 1

Write (rlabs(i),99999) yy(i)
End Do

! Display random field results
title = &

’Fractional Brownian motion realizations (x coordinate first):’
Write (nout,*)
ifail = 0
Call x04cbf(matrix,unit,ns+1,s,z,ns+1,form,title,charlab,rlabs,intlab, &

clabs,ncols,indent,ifail)

99999 Format (F6.1)

End Subroutine display_realizations

End Program g05ztfe

10.2 Program Data

G05ZTF Example Program Data
0.35 : h
2 : xmax

10 : ns
2048 : maxm

2 : icorr
1 : pad
5 : s

10.3 Program Results

G05ZTF Example Program Results

Size of embedding matrix = 32

Approximation not required

Fractional Brownian motion realizations (x coordinate first):
1 2 3 4 5

0.0 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 -0.52650 -0.16159 -0.96224 -0.40096 0.65803
0.4 -1.81085 -0.85811 -1.43661 0.03947 0.99671
0.6 -1.65690 -0.74802 -0.61733 -0.34685 0.05141
0.8 -1.72240 -0.14958 0.14996 0.18134 0.26567
1.0 -2.20349 0.46219 0.70982 0.66405 0.40706
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1.2 -2.38542 0.52085 0.36330 0.31831 0.81515
1.4 -3.13939 0.68433 0.79826 -0.35408 1.12296
1.6 -3.54602 0.64413 0.85751 -0.39303 1.14220
1.8 -4.09082 1.67048 0.06038 0.30181 1.30350
2.0 -2.97487 1.72275 -0.67253 -0.07439 1.57169
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NAG Library Chapter Contents

G07 – Univariate Estimation

G07 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

G07AAF 15 nagf_univar_ci_binomial
Computes confidence interval for the parameter of a binomial distribution

G07ABF 15 nagf_univar_ci_poisson
Computes confidence interval for the parameter of a Poisson distribution

G07BBF 15 nagf_univar_estim_normal
Computes maximum likelihood estimates for parameters of the Normal
distribution from grouped and/or censored data

G07BEF 15 nagf_univar_estim_weibull
Computes maximum likelihood estimates for parameters of the Weibull
distribution

G07BFF 23 nagf_univar_estim_genpareto
Estimates parameter values of the generalized Pareto distribution

G07CAF 15 nagf_univar_ttest_2normal
Computes t-test statistic for a difference in means between two Normal
populations, confidence interval

G07DAF 13 nagf_univar_robust_1var_median
Robust estimation, median, median absolute deviation, robust standard
deviation

G07DBF 13 nagf_univar_robust_1var_mestim
Robust estimation, M-estimates for location and scale parameters, standard
weight functions

G07DCF 13 nagf_univar_robust_1var_mestim_wgt
Robust estimation, M-estimates for location and scale parameters, user-
defined weight functions

G07DDF 14 nagf_univar_robust_1var_trimmed
Computes a trimmed and winsorized mean of a single sample with
estimates of their variance

G07EAF 16 nagf_univar_robust_1var_ci
Robust confidence intervals, one-sample

G07EBF 16 nagf_univar_robust_2var_ci
Robust confidence intervals, two-sample

G07GAF 23 nagf_univar_outlier_peirce_1var
Outlier detection using method of Peirce, raw data or single variance
supplied

G07GBF 23 nagf_univar_outlier_peirce_2var
Outlier detection using method of Peirce, two variances supplied
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1 Scope of the Chapter

This chapter deals with the estimation of unknown parameters of a univariate distribution. It includes
both point and interval estimation using maximum likelihood and robust methods.

2 Background to the Problems

Statistical inference is concerned with the making of inferences about a population using the observed
part of the population called a sample. The population can usually be described using a probability
model which will be written in terms of some unknown parameters. For example, the hours of relief
given by a drug may be assumed to follow a Normal distribution with mean � and variance �2; it is
then required to make inferences about the parameters, � and �2, on the basis of an observed sample of
relief times.

There are two main aspects of statistical inference: the estimation of the parameters and the testing of
hypotheses about the parameters. In the example above, the values of the parameter �2 may be
estimated and the hypothesis that � � 3 tested. This chapter is mainly concerned with estimation but the
test of a hypothesis about a parameter is often closely linked to its estimation. Tests of hypotheses
which are not linked closely to estimation are given in the chapter on nonparametric statistics (Chapter
G08).

There are two types of estimation to be considered in this chapter: point estimation and interval
estimation. Point estimation is when a single value is obtained as the best estimate of the parameter.
However, as this estimate will be based on only one of a large number of possible samples, it can be
seen that if a different sample were taken, a different estimate would be obtained. The distribution of
the estimate across all the possible samples is known as the sampling distribution. The sampling
distribution contains information on the performance of the estimator, and enables estimators to be
compared. For example, a good estimator would have a sampling distribution with mean equal to the
true value of the parameter; that is, it should be an unbiased estimator; also the variance of the
sampling distribution should be as small as possible. When considering a parameter estimate it is
important to consider its variability as measured by its variance, or more often the square root of the
variance, the standard error.

The sampling distribution can be used to find interval estimates or confidence intervals for the
parameter. A confidence interval is an interval calculated from the sample so that its distribution, as
given by the sampling distribution, is such that it contains the true value of the parameter with a certain
probability.

Estimates will be functions of the observed sample and these functions are known as estimators. It is
usually more convenient for the estimator to be based on statistics from the sample rather than all the
individuals observations. If these statistics contain all the relevant information then they are known as
sufficient statistics. There are several ways of obtaining the estimators; these include least squares, the
method of moments, and maximum likelihood. Least squares estimation requires no knowledge of the
distributional form of the error apart from its mean and variance matrix, whereas the method of
maximum likelihood is mainly applicable to situations in which the true distribution is known apart
from the values of a finite number of unknown parameters. Note that under the assumption of
Normality, the least squares estimation is equivalent to the maximum likelihood estimation. Least
squares is often used in regression analysis as described in Chapter G02, and maximum likelihood is
described below.

Estimators derived from least squares or maximum likelihood will often be greatly affected by the
presence of extreme or unusual observations. Estimators that are designed to be less affected are known
as robust estimators.

2.1 Maximum Likelihood Estimation

Let Xi be a univariate random variable with probability density function

fXi
xi; �ð Þ;

where � is a vector of length p consisting of the unknown parameters. For example, a Normal
distribution with mean �1 and standard deviation �2 has probability density function
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1ffiffiffiffiffiffi
2	
p

�2
exp �1

2

xi � �1
�2

� �2
 !

:

The likelihood for a sample of n independent observations is

Like ¼
Yn
i¼1
fXi

xi; �ð Þ;

where xi is the observed value of Xi. If each Xi has an identical distribution, this reduces to

Like ¼
Yn
i¼1
fX xi; �ð Þ; ð1Þ

and the log-likelihood is

log Likeð Þ ¼ L ¼
Xn
i¼1

log fX xi; �ð Þð Þ: ð2Þ

The maximum likelihood estimates (�̂) of � are the values of � that maximize (1) and (2). If the range of
X is independent of the parameters, then �̂ can usually be found as the solution toXn

i¼1

@

@�̂j
log fX xi; �̂

� �� �
¼ @L

@�̂j
¼ 0; j ¼ 1; 2; . . . ; p: ð3Þ

Note that
@L

@�j
is known as the efficient score.

Maximum likelihood estimators possess several important properties.

(a) Maximum likelihood estimators are functions of the sufficient statistics.

(b) Maximum likelihood estimators are (under certain conditions) consistent. That is, the estimator
converges in probability to the true value as the sample size increases. Note that for small samples
the maximum likelihood estimator may be biased.

(c) For maximum likelihood estimators found as a solution to (3), subject to certain conditions, it
follows that

E
@L

@�

� �
¼ 0; ð4Þ

and

I �ð Þ ¼ �E @2L

@�2

� �
¼ E @L

@�

� �2
 !

; ð5Þ

and then that �̂ is asymptotically Normal with mean vector �0 and variance-covariance matrix I�1�0
where �0 denotes the true value of �. The matrix I� is known as the information matrix and I�1�0 is
known as the Cramer–Rao lower bound for the variance of an estimator of �.

For example, if we consider a sample, x1; x2; . . . ; xn, of size n drawn from a Normal distribution with
unknown mean � and unknown variance �2 then we have

L ¼ log Like �; �2;x
� �� �

¼ �n
2
log 2	ð Þ � n

2
log �2
� �

�
Xn
i¼1

xi � �ð Þ2=2�2

and thus

@L

@�
¼
Xn
i¼1

xi � �ð Þ=�2
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and

@L

@�2
¼ � n

2�2
þ
Xn
i¼1

xi � �ð Þ2=2�4:

Then equating these two equations to zero and solving gives the maximum likelihood estimates

�̂ ¼ �x

and

�̂2 ¼
Xn
i¼1

xi � �xð Þ2=n:

These maximum likelihood estimates are asymptotically Normal with mean vector a, where

aT ¼ �; �2
� �

;

and covariance matrix C. To obtain C we find the second derivatives of L with respect to � and �2 as
follows:

@2L

@�2
¼ � n

�2

@2L

@ �2ð Þ2
¼ n

2�4
�
Xn
i¼1

xi � �ð Þ2=�6

@2L

@�@�2
¼ @2L

@�2@�
¼ �n �x� �ð Þ

�4
:

Then

C�1 ¼ �E

@2L

@�2
@2L

@�2@�
@2L

@�@�2
@2L

@ �2ð Þ2

0BB@
1CCA ¼ n=�2 0

0 n=2�4

� �

so that

C ¼ �2=n 0
0 2�4=n

� �
:

To obtain an estimate of C the matrix may be evaluated at the maximum likelihood estimates.

It may not always be possible to find maximum likelihood estimates in a convenient closed form, and in
these cases iterative numerical methods, such as the Newton–Raphson procedure or the EM algorithm
(expectation maximization), will be necessary to compute the maximum likelihood estimates. Their
asymptotic variances and covariances may then be found by substituting the estimates into the second
derivatives. Note that it may be difficult to find the expected value of the second derivatives required
for the variance-covariance matrix and in these cases the observed value of the second derivatives is
often used.

The use of maximum likelihood estimation allows the construction of generalized likelihood ratio tests.
If � ¼ 2 l1 � l2ð Þ, where l1 is the maximized log-likelihood function for a model 1 and l2 is the
maximized log-likelihood function for a model 2, then under the hypothesis that model 2 is correct, 2�
is asymptotically distributed as a �2 variable with p� q degrees of freedom. Consider two models in
which model 1 has p parameters and model 2 is a sub-model (nested model) of model 1 with q < p
parameters, that is model 1 has an extra p� q parameters. This result provides a useful method for
performing hypothesis tests on the parameters. Alternatively, tests exist based on the asymptotic
Normality of the estimator and the efficient score; see page 315 of Cox and Hinkley (1974).
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2.2 Confidence Intervals

Suppose we can find a function, t x; �ð Þ, whose distribution depends upon the sample x but not on the
unknown parameter �, and which is a monotonic (say decreasing) function in � for each x, then we can
find t1 such that P t1 � t x; �ð Þð Þ ¼ 1� � no matter what � happens to be. The function t x; �ð Þ is known
as a pivotal quantity. Since the function is monotonic the statement that t1 � t x; �ð Þ may be rewritten as
� � �1 xð Þ see Figure 1. The statistic �1 xð Þ will vary from sample to sample and if we assert that
� � �1 xð Þ for any sample values which arise, we will be right in a proportion 1� � of the cases, in the
long run or on average. We call �1 xð Þ a 1� � upper confidence limit for �.

Figure 1

We have considered only an upper confidence limit. The above idea may be generalized to a two-sided
confidence interval where two quantities, t0 and t1, are found such that for all �,
P t1 � t x; �ð Þ � t0ð Þ ¼ 1� �. This interval may be rewritten as �0 xð Þ � � � �1 xð Þ. Thus if we assert
that � lies in the interval [�0 xð Þ; �1 xð Þ] we will be right on average in 1� � proportion of the times
under repeated sampling.

Hypothesis (significance) tests on the parameters may be used to find these confidence limits. For
example, if we observe a value, k, from a binomial distribution, with known parameter n and unknown
parameter p, then to find the lower confidence limit we find pl such that the probability that the null
hypothesis H0: p ¼ pl (against the one sided alternative that p > pl) will be rejected, is less than or
equal to �=2. Thus for a binomial random variable, B, with parameters n and pl we require that
P B � kð Þ � �=2. The upper confidence limit, pu, can be constructed in a similar way.

For large samples the asymptotic Normality of the maximum likelihood estimates discussed above is
used to construct confidence intervals for the unknown parameters.

2.3 Robust Estimation

For particular cases the probability density function can be written as

fXi
xi; �ð Þ ¼ 1

�2
g
xi � �1
�2

� �
for a suitable function g; then �1 is known as a location parameter and �2, usually written as �, is
known as a scale parameter. This is true of the Normal distribution.

If �1 is a location parameter, as described above, then equation (3) becomesXn
i¼1
 

xi � �̂1
�̂

 !
¼ 0; ð6Þ

where  zð Þ ¼ � d
dz
log g zð Þð Þ .
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For the scale parameter � (or �2) the equation isXn
i¼1
�

xi � �̂1
�̂

 !
¼ n=2; ð7Þ

where � zð Þ ¼ z zð Þ=2.

For the Normal distribution  zð Þ ¼ z and � zð Þ ¼ z2=2. Thus, the maximum likelihood estimates for �1
and �2 are the sample mean and variance with the n divisor respectively. As the latter is biased, (7) can
be replaced by Xn

i¼1
�

xi � �̂1
�̂

 !
¼ n� 1ð Þ�; ð8Þ

where � is a suitable constant, which for the Normal � function is 1
2 .

The influence of an observation on the estimates depends on the form of the  and � functions. For a
discussion of influence, see Hampel et al. (1986) and Huber (1981). The influence of extreme values
can be reduced by bounding the values of the  - and �-functions. One suggestion due to Huber (1981)
is

 zð Þ ¼
�C; z < �C
z; zj j � C
C; z > C:

8<:

-C C z

ψ(z)

Figure 2

Redescending  -functions are often considered; these give zero values to  zð Þ for large positive or
negative values of z. Hampel et al. (1986) suggested

 zð Þ ¼

� �zð Þ
z; 0 � z � h1
h1; h1 � z � h2

h1 h3 � zð Þ= h3 � h2ð Þ; h2 � z � h3
0; z > h3:

8>>><>>>:

z

ψ(z)

-h3 -h2 -h1

h1 h2 h3

Figure 3

Usually a �-function based on Huber's  -function is used: � ¼  2=2. Estimators based on such bounded
 -functions are known as M-estimators, and provide one type of robust estimator.
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Other robust estimators for the location parameter are

(i) the sample median,

(ii) the trimmed mean, i.e., the mean calculated after the extreme values have been removed from the
sample,

(iii) the winsorized mean, i.e., the mean calculated after the extreme values of the sample have been
replaced by other more moderate values from the sample.

For the scale parameter, alternative estimators are

(i) the median absolute deviation scaled to produce an estimator which is unbiased in the case of data
coming from a Normal distribution,

(ii) the winsorized variance, i.e., the variance calculated after the extreme values of the sample have
been replaced by other more moderate values from the sample.

For a general discussion of robust estimation, see Hampel et al. (1986) and Huber (1981).

2.4 Robust Confidence Intervals

In Section 2.2 it was shown how tests of hypotheses can be used to find confidence intervals. That
approach uses a parametric test that requires the assumption that the data used in the computation of the
confidence has a known distribution. As an alternative, a more robust confidence interval can be found
by replacing the parametric test by a nonparametric test. In the case of the confidence interval for the
location parameter, a Wilcoxon test statistic can be used, and for the difference in location, computed
from two samples, a Mann–Whitney test statistic can be used.

3 Recommendations on Choice and Use of Available Routines

Maximum Likelihood Estimation and Confidence Intervals

G07AAF provides a confidence interval for the parameter p of the binomial distribution.

G07ABF provides a confidence interval for the mean parameter of the Poisson distribution.

G07BBF provides maximum likelihood estimates and their standard errors for the parameters of the
Normal distribution from grouped and/or censored data.

G07BEF provides maximum likelihood estimates and their standard errors for the parameters of the
Weibull distribution from data which may be right-censored.

G07BFF provides maximum likelihood estimates and their standard errors for the parameters of the
generalized Pareto distribution.

G07CAF provides a t-test statistic to test for a difference in means between two Normal populations,
together with a confidence interval for the difference between the means.

Robust Estimation

G07DBF provides M-estimates for location and, optionally, scale using four common forms of the
 -function.

G07DCF produces the M-estimates for location and, optionally, scale but for user-supplied  - and
�-functions.

G07DAF provides the sample median, median absolute deviation, and the scaled value of the median
absolute deviation.

G07DDF provides the trimmed mean and winsorized mean together with estimates of their variance
based on a winsorized variance.

Robust Internal Estimation

G07EAF produces a rank based confidence interval for locations.

G07EBF produces a rank based confidence interval for the difference in location between two
populations.
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Outlier Detection

This chapter provides two routines for identifying potential outlying values, G07GAF and G07GBF.
Many of the model fitting routines, for examples those in Chapters G02 and G13 also return vectors of
residuals which can also be used to aid in the identification of outlying values.

4 Functionality Index

2 sample t-test ..................................................................................................................... G07CAF

Confidence intervals for parameters,
binomial distribution ....................................................................................................... G07AAF
Poisson distribution......................................................................................................... G07ABF

Maximum likelihood estimation of parameters,
Normal distribution, grouped and/or censored data......................................................... G07BBF
Weibull distribution......................................................................................................... G07BEF

Outlier detection,
Peirce,

raw data or single variance supplied ......................................................................... G07GAF
two variances supplied............................................................................................... G07GBF

Parameter estimates,
generalized Pareto distribution ........................................................................................ G07BFF

Robust estimation,
confidence intervals,

one sample ................................................................................................................. G07EAF
two samples ............................................................................................................... G07EBF

median, median absolute deviation and robust standard deviation.................................. G07DAF
M-estimates for location and scale parameters,

standard weight functions .......................................................................................... G07DBF
trimmed and winsorized means and estimates of their variance ................................ G07DDF
user-defined weight functions..................................................................................... G07DCF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References

Cox D R and Hinkley D V (1974) Theoretical Statistics Chapman and Hall

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach
Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin

Silvey S D (1975) Statistical Inference Chapman and Hall
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NAG Library Routine Document

G07AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07AAF computes a confidence interval for the argument p (the probability of a success) of a binomial
distribution.

2 Specification

SUBROUTINE G07AAF (N, K, CLEVEL, PL, PU, IFAIL)

INTEGER N, K, IFAIL
REAL (KIND=nag_wp) CLEVEL, PL, PU

3 Description

Given the number of trials, n, and the number of successes, k, this routine computes a 100 1� �ð Þ%
confidence interval for p, the probability argument of a binomial distribution with probability function,

f xð Þ ¼ n
x

� �
px 1� pð Þn�x; x ¼ 0; 1; . . . ; n;

where � is in the interval 0; 1ð Þ.
Let the confidence interval be denoted by [pl; pu].

The point estimate for p is p̂ ¼ k=n.
The lower and upper confidence limits pl and pu are estimated by the solutions to the equations;Xn

x¼k

n
x

� �
pxl 1� plð Þn�x ¼ �=2;

Xk
x¼0

n
x

� �
pxu 1� puð Þn�x ¼ �=2:

Three different methods are used depending on the number of trials, n, and the number of successes, k.

1. If max k; n� kð Þ < 106.

The relationship between the beta and binomial distributions (see page 38 of Hastings and Peacock
(1975)) is used to derive the equivalent equations,

pl ¼ �k;n�kþ1;�=2;

pu ¼ �kþ1;n�k;1��=2;

where �a;b;� is the deviate associated with the lower tail probability, �, of the beta distribution with
arguments a and b. These beta deviates are computed using G01FEF.

2. If max k; n� kð Þ � 106 and min k; n� kð Þ � 1000.

The binomial variate with arguments n and p is approximated by a Poisson variate with mean np,
see page 38 of Hastings and Peacock (1975).

The relationship between the Poisson and �2-distributions (see page 112 of Hastings and Peacock
(1975)) is used to derive the following equations;

G07 – Univariate Estimation G07AAF

Mark 26 G07AAF.1



pl ¼ 1

2n
�2
2k;�=2;

pu ¼ 1

2n
�2
2kþ2;1��=2;

where �2
�;� is the deviate associated with the lower tail probability, �, of the �2-distribution with �

degrees of freedom.

In turn the relationship between the �2-distribution and the gamma distribution (see page 70 of
Hastings and Peacock (1975)) yields the following equivalent equations;

pl ¼ 1

2n
�k;2;�=2;

pu ¼ 1

2n
�kþ1;2;1��=2;

where ��;�;� is the deviate associated with the lower tail probability, �, of the gamma distribution
with shape argument � and scale argument �. These deviates are computed using G01FFF.

3. If max k; n� kð Þ > 106 and min k; n� kð Þ > 1000.

The binomial variate with arguments n and p is approximated by a Normal variate with mean np
and variance np 1� pð Þ, see page 38 of Hastings and Peacock (1975).

The approximate lower and upper confidence limits pl and pu are the solutions to the equations;

k� nplffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npl 1� plð Þ

p ¼ z1��=2;

k� npuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npu 1� puð Þ

p ¼ z�=2;

where z� is the deviate associated with the lower tail probability, �, of the standard Normal
distribution. These equations are solved using a quadratic equation solver (C02AJF).

4 References

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Snedecor G W and Cochran W G (1967) Statistical Methods Iowa State University Press

5 Arguments

1: N – INTEGER Input

On entry: n, the number of trials.

Constraint: N � 1.

2: K – INTEGER Input

On entry: k, the number of successes.

Constraint: 0 � K � N.

3: CLEVEL – REAL (KIND=nag_wp) Input

On entry: the confidence level, 1� �ð Þ, for two-sided interval estimate. For example
CLEVEL ¼ 0:95 will give a 95% confidence interval.

Constraint: 0:0 < CLEVEL < 1:0.
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4: PL – REAL (KIND=nag_wp) Output

On exit: the lower limit, pl, of the confidence interval.

5: PU – REAL (KIND=nag_wp) Output

On exit: the upper limit, pu, of the confidence interval.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or K < 0,
or N < K,
or CLEVEL � 0:0,
or CLEVEL � 1:0.

IFAIL ¼ 2

When using the relationship with the gamma distribution to calculate one of the confidence
limits, the series to calculate the gamma probabilities has failed to converge. Both PL and PU are
set to zero. This is a very unlikely error exit and if it occurs please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

For most cases using the beta deviates the results should have a relative accuracy of
max 0:5E�12; 50:0� �ð Þ where � is the machine precision (see X02AJF). Thus on machines with
sufficiently high precision the results should be accurate to 12 significant figures. Some accuracy may
be lost when �=2 or 1� �=2 is very close to 0:0, which will occur if CLEVEL is very close to 1:0. This
should not affect the usual confidence levels used.

The approximations used when n is large are accurate to at least 3 significant digits but usually to more.

8 Parallelism and Performance

G07AAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

The following example program reads in the number of deaths recorded among male recipients of war
pensions in a six year period following an initial questionnaire in 1956. We consider two classes, non-
smokers and those who reported that they smoked pipes only. The total number of males in each class is
also read in. The data is taken from page 216 of Snedecor and Cochran (1967). An estimate of the
probability of a death in the six year period in each class is computed together with 95% confidence
intervals for these estimates.

10.1 Program Text

Program g07aafe

! G07AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07aaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: clevel, phat, pl, pu
Integer :: ifail, k, n

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’G07AAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Display titles
Write (nout,*) ’ Probability Confidence Interval ’
Write (nout,*)

d_lp: Do
Read (nin,*,Iostat=ifail) n, k, clevel
If (ifail/=0) Then

Exit d_lp
End If

! Calculate probability
phat = real(k,kind=nag_wp)/real(n,kind=nag_wp)
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! Compute probability
ifail = 0
Call g07aaf(n,k,clevel,pl,pu,ifail)

! Display results
Write (nout,99999) phat, ’(’, pl, ’ ,’, pu, ’ )’

End Do d_lp

99999 Format (1X,F10.4,6X,A,F7.4,A,F7.4,A)
End Program g07aafe

10.2 Program Data

G07AAF Example Program Data
1067 117 0.95 : N, K, CLEVEL
402 54 0.95

10.3 Program Results

G07AAF Example Program Results

Probability Confidence Interval

0.1097 ( 0.0915 , 0.1300 )
0.1343 ( 0.1025 , 0.1716 )
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NAG Library Routine Document

G07ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07ABF computes a confidence interval for the mean argument of the Poisson distribution.

2 Specification

SUBROUTINE G07ABF (N, XMEAN, CLEVEL, TL, TU, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) XMEAN, CLEVEL, TL, TU

3 Description

Given a random sample of size n, denoted by x1; x2; . . . ; xn, from a Poisson distribution with
probability function

p xð Þ ¼ e���
x

x!
; x ¼ 0; 1; 2; . . .

the point estimate, �̂, for � is the sample mean, �x.

Given n and �x this routine computes a 100 1� �ð Þ% confidence interval for the argument �, denoted by
[�l; �u], where � is in the interval 0; 1ð Þ.
The lower and upper confidence limits are estimated by the solutions to the equations

e�n�l
X1
x¼T

n�lð Þx
x! ¼ �

2;

e�n�u
XT
x¼0

n�uð Þx
x! ¼ �

2;

where T ¼
Xn
i¼1
xi ¼ n�̂.

The relationship between the Poisson distribution and the �2-distribution (see page 112 of Hastings and
Peacock (1975)) is used to derive the equations

�l ¼
1

2n
�2
2T;�=2;

�u ¼
1

2n
�2
2Tþ2;1��=2;

where �2
�;p is the deviate associated with the lower tail probability p of the �2-distribution with �

degrees of freedom.

In turn the relationship between the �2-distribution and the gamma distribution (see page 70 of Hastings
and Peacock (1975)) yields the following equivalent equations;
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�l ¼
1

2n
�T;2;�=2;

�u ¼
1

2n
�Tþ1;2;1��=2;

where ��;�;� is the deviate associated with the lower tail probability, �, of the gamma distribution with
shape argument � and scale argument �. These deviates are computed using G01FFF.

4 References

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Snedecor G W and Cochran W G (1967) Statistical Methods Iowa State University Press

5 Arguments

1: N – INTEGER Input

On entry: n, the sample size.

Constraint: N � 1.

2: XMEAN – REAL (KIND=nag_wp) Input

On entry: the sample mean, �x.

Constraint: XMEAN � 0:0.

3: CLEVEL – REAL (KIND=nag_wp) Input

On entry: the confidence level, 1� �ð Þ, for two-sided interval estimate. For example
CLEVEL ¼ 0:95 gives a 95% confidence interval.

Constraint: 0:0 < CLEVEL < 1:0.

4: TL – REAL (KIND=nag_wp) Output

On exit: the lower limit, �l, of the confidence interval.

5: TU – REAL (KIND=nag_wp) Output

On exit: the upper limit, �u, of the confidence interval.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or XMEAN < 0:0,
or CLEVEL � 0:0,
or CLEVEL � 1:0.

IFAIL ¼ 2

When using the relationship with the gamma distribution to calculate one of the confidence
limits, the series to calculate the gamma probabilities has failed to converge. Both TL and TU are
set to zero. This is a very unlikely error exit and if it occurs please contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For most cases the results should have a relative accuracy of max 0:5E� 12; 50:0� �ð Þ where � is the
machine precision (see X02AJF). Thus on machines with sufficiently high precision the results should
be accurate to 12 significant digits. Some accuracy may be lost when �=2 or 1� �=2 is very close to
0:0, which will occur if CLEVEL is very close to 1:0. This should not affect the usual confidence
intervals used.

8 Parallelism and Performance

G07ABF is not threaded in any implementation.

9 Further Comments

None.

10 Example

The following example reads in data showing the number of noxious weed seeds and the frequency
with which that number occurred in 98 subsamples of meadow grass. The data is taken from page 224
of Snedecor and Cochran (1967). The sample mean is computed as the point estimate of the Poisson
argument �. G07ABF is then called to compute both a 95% and a 99% confidence interval for the
argument �.
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10.1 Program Text

Program g07abfe

! G07ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07abf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: clevel, sum, tl, tu, xmean
Integer :: ifail, ifreq, n, num

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’G07ABF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in counts and frequencies
sum = 0.0E0_nag_wp
n = 0

d_lp: Do
Read (nin,*,Iostat=ifail) num, ifreq
If (ifail/=0) Then

Exit d_lp
End If

! Calculate sum
sum = sum + real(num,kind=nag_wp)*real(ifreq,kind=nag_wp)
n = n + ifreq

End Do d_lp

! Estimate Poisson parameter
xmean = sum/real(n,kind=nag_wp)
Write (nout,99999) ’The point estimate of the Poisson parameter =’, &

xmean
Write (nout,*)

! Calculate 95% confidence interval
clevel = 0.95E0_nag_wp
ifail = 0
Call g07abf(n,xmean,clevel,tl,tu,ifail)

! Display CI
Write (nout,*) ’95 percent Confidence Interval for the estimate’
Write (nout,99998) ’(’, tl, ’ ,’, tu, ’ )’
Write (nout,*)

! Calculate 99% confidence interval
clevel = 0.99E0_nag_wp
ifail = 0
Call g07abf(n,xmean,clevel,tl,tu,ifail)

! Display CI
Write (nout,*) ’99 percent Confidence Interval for the estimate’
Write (nout,99998) ’(’, tl, ’ ,’, tu, ’ )’

99999 Format (1X,A,F7.4)
99998 Format (6X,A,F7.4,A,F7.4,A)

End Program g07abfe
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10.2 Program Data

G07ABF Example Program Data
0 3
1 17
2 26
3 16
4 18
5 9
6 3
7 5
8 0
9 1
10 0

10.3 Program Results

G07ABF Example Program Results

The point estimate of the Poisson parameter = 3.0204

95 percent Confidence Interval for the estimate
( 2.6861 , 3.3848 )

99 percent Confidence Interval for the estimate
( 2.5874 , 3.5027 )
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NAG Library Routine Document

G07BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07BBF computes maximum likelihood estimates and their standard errors for arguments of the
Normal distribution from grouped and/or censored data.

2 Specification

SUBROUTINE G07BBF (METHOD, N, X, XC, IC, XMU, XSIG, TOL, MAXIT, SEXMU,
SEXSIG, CORR, DEV, NOBS, NIT, WK, IFAIL)

&

INTEGER N, IC(N), MAXIT, NOBS(4), NIT, IFAIL
REAL (KIND=nag_wp) X(N), XC(N), XMU, XSIG, TOL, SEXMU, SEXSIG, CORR,

DEV, WK(2*N)
&

CHARACTER(1) METHOD

3 Description

A sample of size n is taken from a Normal distribution with mean � and variance �2 and consists of
grouped and/or censored data. Each of the n observations is known by a pair of values Li; Uið Þ such
that:

Li � xi � Ui:

The data is represented as particular cases of this form:

exactly specified observations occur when Li ¼ Ui ¼ xi,
right-censored observations, known only by a lower bound, occur when Ui !1,

left-censored observations, known only by a upper bound, occur when Li ! �1,

and interval-censored observations when Li < xi < Ui.

Let the set A identify the exactly specified observations, sets B and C identify the observations
censored on the right and left respectively, and set D identify the observations confined between two
finite limits. Also let there be r exactly specified observations, i.e., the number in A. The probability
density function for the standard Normal distribution is

Z xð Þ ¼ 1ffiffiffiffiffiffi
2	
p exp �1

2x
2

� �
; �1 < x <1

and the cumulative distribution function is

P Xð Þ ¼ 1�Q Xð Þ ¼
Z X

�1
Z xð Þ dx:

The log-likelihood of the sample can be written as:

L �; �ð Þ ¼ �rlog�� 1
2

X
A

xi � �ð Þ=�f g2 þ
X
B

log Q lið Þð Þ þ
X
C

log P uið Þð Þ þ
X
D

log pið Þ

where pi ¼ P uið Þ � P lið Þ and ui ¼ Ui � �ð Þ=�; li ¼ Li � �ð Þ=�.
Let

S xið Þ ¼
Z xið Þ
Q xið Þ

; S1 li; uið Þ ¼ Z lið Þ � Z uið Þ
pi
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and

S2 li; uið Þ ¼ uiZ uið Þ � liZ lið Þ
pi

;

then the first derivatives of the log-likelihood can be written as:

@L �; �ð Þ
@�

¼ L1 �; �ð Þ ¼ ��2
X
A

xi � �ð Þ þ ��1
X
B

S lið Þ � ��1
X
C

S �uið Þ þ ��1
X
D

S1 li; uið Þ

and

@L �; �ð Þ
@�

¼ L2 �; �ð Þ ¼ �r��1 þ ��3
X
A

xi � �ð Þ2 þ ��1
X
B

liS lið Þ � ��1
X
C

uiS �uið Þ

���1
X
D

S2 li; uið Þ

The maximum likelihood estimates, �̂ and �̂, are the solution to the equations:

L1 �̂; �̂ð Þ ¼ 0 ð1Þ

and

L2 �̂; �̂ð Þ ¼ 0 ð2Þ

and if the second derivatives
@2L

@2�
,
@2L

@�@�
and

@2L

@2�
are denoted by L11, L12 and L22 respectively, then

estimates of the standard errors of �̂ and �̂ are given by:

se �̂ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L22

L11L22 � L2
12

s
; se �̂ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L11

L11L22 � L2
12

s
and an estimate of the correlation of �̂ and �̂ is given by:

L12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L12L22
p :

To obtain the maximum likelihood estimates the equations (1) and (2) can be solved using either the
Newton–Raphson method or the Expectation-maximization EMð Þ algorithm of Dempster et al. (1977).

Newton–Raphson Method

This consists of using approximate estimates ~� and ~� to obtain improved estimates ~�þ �~� and ~�þ �~�
by solving

�~�L11 þ �~�L12 þ L1 ¼ 0;

�~�L12 þ �~�L22 þ L2 ¼ 0;

for the corrections �~� and �~�.

EM Algorithm

The expectation step consists of constructing the variable wi as follows:

if i 2 A; wi ¼ xi ð3Þ
if i 2 B; wi ¼ E xi j xi > Lið Þ ¼ �þ �S lið Þ ð4Þ
if i 2 C; wi ¼ E xi j xi < Uið Þ ¼ �� �S �uið Þ ð5Þ
if i 2 D; wi ¼ E xi j Li < xi < Uið Þ ¼ �þ �S1 li; uið Þ ð6Þ

the maximization step consists of substituting (3), (4), (5) and (6) into (1) and (2) giving:
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�̂ ¼
Xn
i¼1
ŵi=n ð7Þ

and

�̂2 ¼
Xn
i¼1

ŵi � �̂ð Þ2= rþ
X
B

T l̂i

� �
þ
X
C

T �ûið Þ þ
X
D

T1 l̂i; ûi

� �( )
ð8Þ

where

T xð Þ ¼ S xð Þ S xð Þ � xf g; T1 l; uð Þ ¼ S2
1 l; uð Þ þ S2 l; uð Þ

and where ŵi, l̂i and ûi are wi, li and ui evaluated at �̂ and �̂. Equations (3) to (8) are the basis of the
EM iterative procedure for finding �̂ and �̂2. The procedure consists of alternately estimating �̂ and �̂2

using (7) and (8) and estimating ŵif g using (3) to (6).

In choosing between the two methods a general rule is that the Newton–Raphson method converges
more quickly but requires good initial estimates whereas the EM algorithm converges slowly but is
robust to the initial values. In the case of the censored Normal distribution, if only a small proportion of
the observations are censored then estimates based on the exact observations should give good enough
initial estimates for the Newton–Raphson method to be used. If there are a high proportion of censored
observations then the EM algorithm should be used and if high accuracy is required the subsequent use
of the Newton–Raphson method to refine the estimates obtained from the EM algorithm should be
considered.

4 References

Dempster A P, Laird N M and Rubin D B (1977) Maximum likelihood from incomplete data via the
EM algorithm (with discussion) J. Roy. Statist. Soc. Ser. B 39 1–38

Swan AV (1969) Algorithm AS 16. Maximum likelihood estimation from grouped and censored normal
data Appl. Statist. 18 110–114

Wolynetz M S (1979) Maximum likelihood estimation from confined and censored normal data Appl.
Statist. 28 185–195

5 Arguments

1: METHOD – CHARACTER(1) Input

On entry: indicates whether the Newton–Raphson or EM algorithm should be used.

If METHOD ¼ N , then the Newton–Raphson algorithm is used.

If METHOD ¼ E , then the EM algorithm is used.

Constraint: METHOD ¼ N or E .

2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the observations xi, Li or Ui, for i ¼ 1; 2; . . . ; n.

If the observation is exactly specified – the exact value, xi.

If the observation is right-censored – the lower value, Li.

If the observation is left-censored – the upper value, Ui.
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If the observation is interval-censored – the lower or upper value, Li or Ui, (see XC).

4: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: if the jth observation, for j ¼ 1; 2; . . . ; n is an interval-censored observation then XCðjÞ
should contain the complementary value to XðjÞ, that is, if XðjÞ < XCðjÞ, then XCðjÞ contains
upper value, Ui, and if XðjÞ > XCðjÞ, then XCðjÞ contains lower value, Li. Otherwise if the jth
observation is exact or right- or left-censored XCðjÞ need not be set.

Note: if XðjÞ ¼ XCðjÞ then the observation is ignored.

5: ICðNÞ – INTEGER array Input

On entry: ICðiÞ contains the censoring codes for the ith observation, for i ¼ 1; 2; . . . ; n.

If ICðiÞ ¼ 0, the observation is exactly specified.

If ICðiÞ ¼ 1, the observation is right-censored.

If ICðiÞ ¼ 2, the observation is left-censored.

If ICðiÞ ¼ 3, the observation is interval-censored.

Constraint: ICðiÞ ¼ 0, 1, 2 or 3, for i ¼ 1; 2; . . . ; n.

6: XMU – REAL (KIND=nag_wp) Input/Output

On entry: if XSIG > 0:0 the initial estimate of the mean, �; otherwise XMU need not be set.

On exit: the maximum likelihood estimate, �̂, of �.

7: XSIG – REAL (KIND=nag_wp) Input/Output

On entry: specifies whether an initial estimate of � and � are to be supplied.

XSIG > 0:0
XSIG is the initial estimate of � and XMU must contain an initial estimate of �.

XSIG � 0:0
Initial estimates of XMU and XSIG are calculated internally from:

(a) the exact observations, if the number of exactly specified observations is � 2; or

(b) the interval-censored observations; if the number of interval-censored observations is
� 1; or

(c) they are set to 0:0 and 1:0 respectively.

On exit: the maximum likelihood estimate, �̂, of �.

8: TOL – REAL (KIND=nag_wp) Input

On entry: the relative precision required for the final estimates of � and �. Convergence is
assumed when the absolute relative changes in the estimates of both � and � are less than TOL.

If TOL ¼ 0:0, then a relative precision of 0:000005 is used.

Constraint: machine precision < TOL � 1:0 or TOL ¼ 0:0.

9: MAXIT – INTEGER Input

On entry: the maximum number of iterations.

If MAXIT � 0, then a value of 25 is used.

10: SEXMU – REAL (KIND=nag_wp) Output

On exit: the estimate of the standard error of �̂.
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11: SEXSIG – REAL (KIND=nag_wp) Output

On exit: the estimate of the standard error of �̂.

12: CORR – REAL (KIND=nag_wp) Output

On exit: the estimate of the correlation between �̂ and �̂.

13: DEV – REAL (KIND=nag_wp) Output

On exit: the maximized log-likelihood, L �̂; �̂ð Þ.

14: NOBSð4Þ – INTEGER array Output

On exit: the number of the different types of each observation;

NOBSð1Þ contains number of right-censored observations.

NOBSð2Þ contains number of left-censored observations.

NOBSð3Þ contains number of interval-censored observations.

NOBSð4Þ contains number of exactly specified observations.

15: NIT – INTEGER Output

On exit: the number of iterations performed.

16: WKð2� NÞ – REAL (KIND=nag_wp) array Workspace

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ N or E ,
or N < 2,
or ICðiÞ 6¼ 0, 1, 2 or 3, for some i,
or TOL < 0:0,
or 0:0 < TOL < machine precision,
or TOL > 1:0.

IFAIL ¼ 2

The chosen method failed to converge in MAXIT iterations. You should either increase TOL or
MAXIT or, if using the EM algorithm try using the Newton–Raphson method with initial values
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those returned by the current call to G07BBF. All returned values will be reasonable
approximations to the correct results if MAXIT is not very small.

IFAIL ¼ 3

The chosen method is diverging. This will be due to poor initial values. You should try different
initial values.

IFAIL ¼ 4

G07BBF was unable to calculate the standard errors. This can be caused by the method starting
to diverge when the maximum number of iterations was reached.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is controlled by the argument TOL.

If high precision is requested with the EM algorithm then there is a possibility that, due to the slow
convergence, before the correct solution has been reached the increments of �̂ and �̂ may be smaller
than TOL and the process will prematurely assume convergence.

8 Parallelism and Performance

G07BBF is not threaded in any implementation.

9 Further Comments

The process is deemed divergent if three successive increments of � or � increase.

10 Example

A sample of 18 observations and their censoring codes are read in and the Newton–Raphson method
used to compute the estimates.

10.1 Program Text

Program g07bbfe

! G07BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07bbf, nag_wp

! .. Implicit None Statement ..
Implicit None
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! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: corr, dev, sexmu, sexsig, tol, xmu, &

xsig
Integer :: i, ifail, maxit, n, nit
Character (1) :: method

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: wk(:), x(:), xc(:)
Integer, Allocatable :: ic(:)
Integer :: nobs(4)

! .. Executable Statements ..
Write (nout,*) ’G07BBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size and control parameters
Read (nin,*) n, method, xmu, xsig, tol, maxit

Allocate (x(n),xc(n),ic(n),wk(2*n))

! Read in data
Read (nin,*)(x(i),xc(i),ic(i),i=1,n)

! Calculate estimates
ifail = 0
Call g07bbf(method,n,x,xc,ic,xmu,xsig,tol,maxit,sexmu,sexsig,corr,dev, &

nobs,nit,wk,ifail)

! Display results
Write (nout,99999) ’ Mean = ’, xmu
Write (nout,99999) ’ Standard deviation = ’, xsig
Write (nout,99999) ’ Standard error of mean = ’, sexmu
Write (nout,99999) ’ Standard error of sigma = ’, sexsig
Write (nout,99999) ’ Correlation coefficient = ’, corr
Write (nout,99998) ’ Number of right censored observations = ’, nobs(1)
Write (nout,99998) ’ Number of left censored observations = ’, nobs(2)
Write (nout,99998) ’ Number of interval censored observations = ’, &

nobs(3)
Write (nout,99998) ’ Number of exactly specified observations = ’, &

nobs(4)
Write (nout,99998) ’ Number of iterations = ’, nit
Write (nout,99999) ’ Log-likelihood = ’, dev

99999 Format (1X,A,F8.4)
99998 Format (1X,A,I2)

End Program g07bbfe

10.2 Program Data

G07BBF Example Program Data
18 ’N’ 4.0 1.0 0.00005 50
4.5 0.0 0 5.4 0.0 0 3.9 0.0 0 5.1 0.0 0 4.6 0.0 0 4.8 0.0 0
2.9 0.0 0 6.3 0.0 0 5.5 0.0 0 4.6 0.0 0 4.1 0.0 0 5.2 0.0 0
3.2 0.0 1 4.0 0.0 1 3.1 0.0 1 5.1 0.0 2 3.8 0.0 2 2.2 2.5 3

10.3 Program Results

G07BBF Example Program Results

Mean = 4.4924
Standard deviation = 1.0196
Standard error of mean = 0.2606
Standard error of sigma = 0.1940
Correlation coefficient = 0.0160
Number of right censored observations = 3
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Number of left censored observations = 2
Number of interval censored observations = 1
Number of exactly specified observations = 12
Number of iterations = 5
Log-likelihood = -22.2817
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NAG Library Routine Document

G07BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07BEF computes maximum likelihood estimates for arguments of the Weibull distribution from data
which may be right-censored.

2 Specification

SUBROUTINE G07BEF (CENS, N, X, IC, BETA, GAMMA, TOL, MAXIT, SEBETA,
SEGAM, CORR, DEV, NIT, WK, IFAIL)

&

INTEGER N, IC(*), MAXIT, NIT, IFAIL
REAL (KIND=nag_wp) X(N), BETA, GAMMA, TOL, SEBETA, SEGAM, CORR, DEV,

WK(N)
&

CHARACTER(1) CENS

3 Description

G07BEF computes maximum likelihood estimates of the arguments of the Weibull distribution from
exact or right-censored data.

For n realizations, yi, from a Weibull distribution a value xi is observed such that

xi � yi:

There are two situations:

(a) exactly specified observations, when xi ¼ yi
(b) right-censored observations, known by a lower bound, when xi < yi.

The probability density function of the Weibull distribution, and hence the contribution of an exactly
specified observation to the likelihood, is given by:

f x;�; �ð Þ ¼ ��x��1 exp ��x�ð Þ; x > 0; for �; � > 0;

while the survival function of the Weibull distribution, and hence the contribution of a right-censored
observation to the likelihood, is given by:

S x;�; �ð Þ ¼ exp ��x�ð Þ; x > 0; for �; � > 0:

If d of the n observations are exactly specified and indicated by i 2 D and the remaining n� dð Þ are
right-censored, then the likelihood function, Like �; �ð Þ is given by

Like �; �ð Þ / ��ð Þd
Y
i2D
x��1i

 !
exp ��

Xn
i¼1
x�i

 !
:

To avoid possible numerical instability a different parameterisation �; � is used, with � ¼ log �ð Þ. The
kernel log-likelihood function, L �; �ð Þ, is then:

L �; �ð Þ ¼ dlog �ð Þ þ d� þ � � 1ð Þ
X
i2D

log xið Þ � e�
Xn
i¼1
x�i :

If the derivatives
@L

@�
,
@L

@�
,
@2L

@�2
,
@2L

@�@�
and

@2L

@�2
are denoted by L1, L2, L11, L12 and L22, respectively,

then the maximum likelihood estimates, �̂ and �̂, are the solution to the equations:
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L1 �̂; �̂
� �

¼ 0 ð1Þ

and

L2 �̂; �̂
� �

¼ 0 ð2Þ

Estimates of the asymptotic standard errors of �̂ and �̂ are given by:

se �̂
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L22

L11L22 � L2
12

s
; se �̂ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L11

L11L22 � L2
12

s
:

An estimate of the correlation coefficient of �̂ and �̂ is given by:

L12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L12L22
p :

Note: if an estimate of the original argument � is required, then

�̂ ¼ exp �̂
� �

and se �̂
� �

¼ �̂ se �̂
� �

:

The equations (1) and (2) are solved by the Newton–Raphson iterative method with adjustments made
to ensure that �̂ > 0:0.

4 References

Gross A J and Clark V A (1975) Survival Distributions: Reliability Applications in the Biomedical
Sciences Wiley

Kalbfleisch J D and Prentice R L (1980) The Statistical Analysis of Failure Time Data Wiley

5 Arguments

1: CENS – CHARACTER(1) Input

On entry: indicates whether the data is censored or non-censored.

CENS ¼ N
Each observation is assumed to be exactly specified. IC is not referenced.

CENS ¼ C
Each observation is censored according to the value contained in ICðiÞ, for i ¼ 1; 2; . . . ; n.

Constraint: CENS ¼ N or C .

2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ contains the ith observation, xi, for i ¼ 1; 2; . . . ; n.

Constraint: XðiÞ > 0:0, for i ¼ 1; 2; . . . ; n.

4: ICð�Þ – INTEGER array Input

Note: the dimension of the array IC must be at least N if CENS ¼ C , and at least 1 otherwise.

On entry: if CENS ¼ C , then ICðiÞ contains the censoring codes for the ith observation, for
i ¼ 1; 2; . . . ; n.
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If ICðiÞ ¼ 0, the ith observation is exactly specified.

If ICðiÞ ¼ 1, the ith observation is right-censored.

If CENS ¼ N , then IC is not referenced.

Constraint: if CENS ¼ C , then ICðiÞ ¼ 0 or 1, for i ¼ 1; 2; . . . ; n.

5: BETA – REAL (KIND=nag_wp) Output

On exit: the maximum likelihood estimate, �̂, of �.

6: GAMMA – REAL (KIND=nag_wp) Input/Output

On entry: indicates whether an initial estimate of � is provided.

If GAMMA > 0:0, it is taken as the initial estimate of � and an initial estimate of � is calculated
from this value of �.

If GAMMA � 0:0, then initial estimates of � and � are calculated, internally, providing the data
contains at least two distinct exact observations. (If there are only two distinct exact
observations, then the largest observation must not be exactly specified.) See Section 9 for
further details.

On exit: contains the maximum likelihood estimate, �̂, of �.

7: TOL – REAL (KIND=nag_wp) Input

On entry: the relative precision required for the final estimates of � and �. Convergence is
assumed when the absolute relative changes in the estimates of both � and � are less than TOL.

If TOL ¼ 0:0, then a relative precision of 0:000005 is used.

Constraint: machine precision � TOL � 1:0 or TOL ¼ 0:0.

8: MAXIT – INTEGER Input

On entry: the maximum number of iterations allowed.

If MAXIT � 0, then a value of 25 is used.

9: SEBETA – REAL (KIND=nag_wp) Output

On exit: an estimate of the standard error of �̂.

10: SEGAM – REAL (KIND=nag_wp) Output

On exit: an estimate of the standard error of �̂.

11: CORR – REAL (KIND=nag_wp) Output

On exit: an estimate of the correlation between �̂ and �̂.

12: DEV – REAL (KIND=nag_wp) Output

On exit: the maximized kernel log-likelihood, L �̂; �̂
� �

.

13: NIT – INTEGER Output

On exit: the number of iterations performed.
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14: WKðNÞ – REAL (KIND=nag_wp) array Workspace

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CENS 6¼ N or C ,
or N < 1,
or TOL < 0:0,
or 0:0 < TOL < machine precision,
or TOL > 1:0.

IFAIL ¼ 2

On entry, the ith observation, XðiÞ � 0:0, for some i ¼ 1; 2; . . . ; n,
or the ith censoring code, ICðiÞ 6¼ 0 or 1, for some i ¼ 1; 2; . . . ; n and CENS ¼ C .

IFAIL ¼ 3

On entry, there are no exactly specified observations, or the routine was requested to calculate
initial values and there are either less than two distinct exactly specified observations or there are
exactly two and the largest observation is one of the exact observations.

IFAIL ¼ 4

The method has failed to converge in MAXIT iterations. You should increase TOL or MAXIT.

IFAIL ¼ 5

Process has diverged. The process is deemed divergent if three successive increments of � or �
increase or if the Hessian matrix of the Newton–Raphson process is singular. Either different
initial estimates should be provided or the data should be checked to see if the Weibull
distribution is appropriate.

IFAIL ¼ 6

A potential overflow has been detected. This is an unlikely exit usually caused by a large input
estimate of �.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Given that the Weibull distribution is a suitable model for the data and that the initial values are
reasonable the convergence to the required accuracy, indicated by TOL, should be achieved.

8 Parallelism and Performance

G07BEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The initial estimate of � is found by calculating a Kaplan–Meier estimate of the survival function,

Ŝ xð Þ, and estimating the gradient of the plot of log �log Ŝ xð Þ
� �� �

against x. This requires the Kaplan–

Meier estimate to have at least two distinct points.

The initial estimate of �̂, given a value of �̂, is calculated as

�̂ ¼ log
dXn

i¼1
x�̂i

0BBB@
1CCCA:

10 Example

In a study, 20 patients receiving an analgesic to relieve headache pain had the following recorded relief
times (in hours):

1:1 1:4 1:3 1:7 1:9 1:8 1:6 2:2 1:7 2:7 4:1 1:8 1:5 1:2 1:4 3:0 1:7 2:3 1:6 2:0

(See Gross and Clark (1975).) This data is read in and a Weibull distribution fitted assuming no
censoring; the parameter estimates and their standard errors are printed.

10.1 Program Text

Program g07befe

! G07BEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07bef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: beta, corr, dev, gamma, sebeta, &
segam, tol

Integer :: ifail, lic, maxit, n, nit
Character (1) :: cens

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: wk(:), x(:)
Integer, Allocatable :: ic(:)

! .. Executable Statements ..
Write (nout,*) ’G07BEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size and control parameters
Read (nin,*) cens, n, tol, maxit

If (cens==’N’ .Or. cens==’n’) Then
lic = 0

Else
lic = n

End If
Allocate (x(n),ic(lic),wk(n))

! Read in data
Read (nin,*) x(1:n)

! Read in censor flag if required
If (lic>0) Then

Read (nin,*) ic(1:n)
End If

! Read in initial estimate of GAMMA
Read (nin,*) gamma

! Calculate estimates
ifail = 0
Call g07bef(cens,n,x,ic,beta,gamma,tol,maxit,sebeta,segam,corr,dev,nit, &

wk,ifail)

! Display results
Write (nout,99999) ’ BETA = ’, beta, ’ Standard error = ’, sebeta
Write (nout,99999) ’ GAMMA = ’, gamma, ’ Standard error = ’, segam

99999 Format (1X,2(A,F10.4))
End Program g07befe

10.2 Program Data

G07BEF Example Program Data
’N’ 20 0.0 0 :: CENS,N,TOL,MAXIT
1.1 1.4 1.3 1.7 1.9
1.8 1.6 2.2 1.7 2.7
4.1 1.8 1.5 1.2 1.4
3.0 1.7 2.3 1.6 2.0 :: End of X
0.0 :: GAMMA (initial estimate are calculated from data)

10.3 Program Results

G07BEF Example Program Results

BETA = -2.1073 Standard error = 0.4627
GAMMA = 2.7870 Standard error = 0.4273
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NAG Library Routine Document

G07BFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07BFF estimates parameter values for the generalized Pareto distribution by using either moments or
maximum likelihood.

2 Specification

SUBROUTINE G07BFF (N, Y, OPTOPT, XI, BETA, ASVC, OBSVC, LL, IFAIL)

INTEGER N, OPTOPT, IFAIL
REAL (KIND=nag_wp) Y(N), XI, BETA, ASVC(4), OBSVC(4), LL

3 Description

Let the distribution function of a set of n observations

yi; i ¼ 1; 2; . . . ; n

be given by the generalized Pareto distribution:

F yð Þ ¼ 1� 1þ �y
�

� ��1=�
; � 6¼ 0

1� e�
y
�; � ¼ 0;

8<:
where

� > 0 and

y � 0, when � � 0;

0 � y � ��� , when � < 0.

Estimates �̂ and �̂ of the parameters � and � are calculated by using one of:

method of moments (MOM);

probability-weighted moments (PWM);

maximum likelihood estimates (MLE) that seek to maximize the log-likelihood:

L ¼ �n ln �̂ � 1þ 1

�̂

� �Xn
i¼1

ln 1þ �̂yi
�̂

 !
:

The variances and covariance of the asymptotic Normal distribution of parameter estimates �̂ and �̂ are
returned if �̂ satisfies:

�̂ < 1
4 for the MOM;

�̂ < 1
2 for the PWM method;

�̂ < �1
2 for the MLE method.

If the MLE option is exercised, the observed variances and covariance of �̂ and �̂ is returned, given by
the negative inverse Hessian of L.
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4 References

Hosking J R M and Wallis J R (1987) Parameter and quantile estimation for the generalized Pareto
distribution Technometrics 29(3)

McNeil A J, Frey R and Embrechts P (2005) Quantitative Risk Management Princeton University Press

5 Arguments

1: N – INTEGER Input

On entry: the number of observations.

Constraint: N > 1.

2: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n observations yi, for i ¼ 1; 2; . . . ; n, assumed to follow a generalized Pareto
distribution.

Constraints:

YðiÞ � 0:0;Xn
i¼1

YðiÞ > 0:0.

3: OPTOPT – INTEGER Input

On entry: determines the method of estimation, set:

OPTOPT ¼ �2
For the method of probability-weighted moments.

OPTOPT ¼ �1
For the method of moments.

OPTOPT ¼ 1
For maximum likelihood with starting values given by the method of moments estimates.

OPTOPT ¼ 2
For maximum likelihood with starting values given by the method of probability-weighted
moments.

Constraint: OPTOPT ¼ �2, �1, 1 or 2.

4: XI – REAL (KIND=nag_wp) Output

On exit: the parameter estimate �̂.

5: BETA – REAL (KIND=nag_wp) Output

On exit: the parameter estimate �̂.

6: ASVCð4Þ – REAL (KIND=nag_wp) array Output

On exit: the variance-covariance of the asymptotic Normal distribution of �̂ and �̂. ASVCð1Þ
contains the variance of �̂; ASVCð4Þ contains the variance of �̂; ASVCð2Þ and ASVCð3Þ contain
the covariance of �̂ and �̂.

7: OBSVCð4Þ – REAL (KIND=nag_wp) array Output

On exit: if maximum likelihood estimates are requested, the observed variance-covariance of �̂
and �̂. OBSVCð1Þ contains the variance of �̂; OBSVCð4Þ contains the variance of �̂; OBSVCð2Þ
and OBSVCð3Þ contain the covariance of �̂ and �̂.
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8: LL – REAL (KIND=nag_wp) Output

On exit: if maximum likelihood estimates are requested, LL contains the log-likelihood value L
at the end of the optimization; otherwise LL is set to �1:0.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 1.

IFAIL ¼ 2

On entry, Yð valueh iÞ ¼ valueh i.
Constraint: YðiÞ � 0:0 for all i.

IFAIL ¼ 3

On entry, OPTOPT ¼ valueh i.
Constraint: OPTOPT ¼ �2, �1, 1 or 2.

IFAIL ¼ 6

The asymptotic distribution is not available for the returned parameter estimates.

IFAIL ¼ 7

The distribution of maximum likelihood estimates cannot be calculated for the returned parameter
estimates because the Hessian matrix could not be inverted.

IFAIL ¼ 8

The asymptotic distribution of parameter estimates is invalid and the distribution of maximum
likelihood estimates cannot be calculated for the returned parameter estimates because the
Hessian matrix could not be inverted.

IFAIL ¼ 9

The optimization of log-likelihood failed to converge; no maximum likelihood estimates are
returned. Try using the other maximum likelihood option by resetting OPTOPT. If this also fails,
moments-based estimates can be returned by an appropriate setting of OPTOPT.

IFAIL ¼ 10

Variance of data in Y is too low for method of moments optimization.
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IFAIL ¼ 11

The sum of Y is zero within machine precision.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G07BFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The search for maximum likelihood parameter estimates is further restricted by requiring

1þ �̂yi
�̂
> 0;

as this avoids the possibility of making the log-likelihood L arbitrarily high.

10 Example

This example calculates parameter estimates for 23 observations assumed to be drawn from a
generalized Pareto distribution.

10.1 Program Text

Program g07bffe

! G07BFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07bff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Real (Kind=nag_wp) :: beta, ll, xi
Integer :: ifail, n, optopt

! .. Local Arrays ..
Real (Kind=nag_wp) :: asvc(4), obsvc(4)
Real (Kind=nag_wp), Allocatable :: y(:)

! .. Executable Statements ..
Write (nout,*) ’G07BFF Example Program Results’
Write (nout,*)

! Skip header
Read (nin,*)

! Read in problem size and control parameters
Read (nin,*) n, optopt

Allocate (y(n))

! Read in data
Read (nin,*) y(1:n)

! Calculate the GPD parameter estimates
ifail = 1
Call g07bff(n,y,optopt,xi,beta,asvc,obsvc,ll,ifail)
If (ifail/=0) Then

If (ifail/=6 .And. ifail/=7 .And. ifail/=8) Then
Write (*,99997) ’** G07BFF returned with IFAIL = ’, ifail
Go To 100

End If
End If

! Display parameter estimates
Write (nout,*) ’Parameter estimates’
Write (nout,Fmt=99998) ’xi ’, xi
Write (nout,Fmt=99998) ’beta ’, beta
Write (nout,*)

! Display parameter distribution
If (optopt>0) Then

If (ifail==7 .Or. ifail==8) Then
Write (nout,Fmt=99999) ’Invalid observed distribution’

Else
Write (nout,*) ’Observed distribution’
Write (nout,Fmt=99998) ’Var(xi) ’, obsvc(1)
Write (nout,Fmt=99998) ’Var(beta) ’, obsvc(4)
Write (nout,Fmt=99998) ’Covar(xi,beta) ’, obsvc(2)
Write (nout,Fmt=99998) ’Final log-likelihood:’, ll

End If
Write (nout,*)

Else
If (ifail==6 .Or. ifail==7) Then

Write (nout,Fmt=99999) ’Invalid asymptotic distribution’
Else

Write (nout,*) ’Asymptotic distribution’
Write (nout,Fmt=99998) ’Var(xi) ’, asvc(1)
Write (nout,Fmt=99998) ’Var(beta) ’, asvc(4)
Write (nout,Fmt=99998) ’Covar(xi,beta) ’, asvc(2)

End If
End If

100 Continue

99999 Format (1X,A)
99998 Format (1X,A,1X,E14.6)
99997 Format (1X,A,I0)

End Program g07bffe
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10.2 Program Data

G07BFF Example Program Data
23 2
1.5800
0.1390
2.3624
2.9435
0.1363
0.9688
0.6585
2.8011
0.9880
1.7887
0.0630
0.3862
1.5130
0.0669
1.3659
0.4256
0.3485
27.8760
5.2503
1.1028
0.5273
1.3189
0.6490

10.3 Program Results

G07BFF Example Program Results

Parameter estimates
xi 0.540439E+00
beta 0.104055E+01

Observed distribution
Var(xi) 0.799320E-01
Var(beta) 0.119872E+00
Covar(xi,beta) -0.455092E-01
Final log-likelihood: -0.363443E+02
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NAG Library Routine Document

G07CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07CAF computes a t-test statistic to test for a difference in means between two Normal populations,
together with a confidence interval for the difference between the means.

2 Specification

SUBROUTINE G07CAF (TAIL, EQUAL, NX, NY, XMEAN, YMEAN, XSTD, YSTD,
CLEVEL, T, DF, PROB, DL, DU, IFAIL)

&

INTEGER NX, NY, IFAIL
REAL (KIND=nag_wp) XMEAN, YMEAN, XSTD, YSTD, CLEVEL, T, DF, PROB, DL,

DU
&

CHARACTER(1) TAIL, EQUAL

3 Description

Consider two independent samples, denoted by X and Y , of size nx and ny drawn from two Normal
populations with means �x and �y, and variances �2x and �2y respectively. Denote the sample means by �x

and �y and the sample variances by s2x and s2y respectively.

G07CAF calculates a test statistic and its significance level to test the null hypothesis H0 : �x ¼ �y,
together with upper and lower confidence limits for �x � �y. The test used depends on whether or not
the two population variances are assumed to be equal.

1. It is assumed that the two variances are equal, that is �2x ¼ �2y.

The test used is the two sample t-test. The test statistic t is defined by;

tobs ¼
�x� �y

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nxð Þ þ 1=ny

� �q
where

s2 ¼
nx � 1ð Þs2x þ ny � 1

� �
s2y

nx þ ny � 2

is the pooled variance of the two samples.

Under the null hypothesis H0 this test statistic has a t-distribution with nx þ ny � 2
� �

degrees of
freedom.

The test of H0 is carried out against one of three possible alternatives;

H1 : �x 6¼ �y; the significance level, p ¼ P t � tobsj jð Þ, i.e., a two tailed probability.

H1 : �x > �y; the significance level, p ¼ P t � tobsð Þ, i.e., an upper tail probability.

H1 : �x < �y; the significance level, p ¼ P t � tobsð Þ, i.e., a lower tail probability.

Upper and lower 100 1� �ð Þ% confidence limits for �x � �y are calculated as:

�x� �yð Þ 
 t1��=2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nxð Þ þ 1=ny

� �q
:
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where t1��=2 is the 100 1� �=2ð Þ percentage point of the t-distribution with (nx þ ny � 2) degrees
of freedom.

2. It is not assumed that the two variances are equal.

If the population variances are not equal the usual two sample t-statistic no longer has a
t-distribution and an approximate test is used.

This problem is often referred to as the Behrens–Fisher problem, see Kendall and Stuart (1969).
The test used here is based on Satterthwaites procedure. To test the null hypothesis the test statistic
t0 is used where

t0obs ¼
�x� �y

se �x� �yð Þ

where se �x� �yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x
nx
þ
s2y
ny

s
.

A t-distribution with f degrees of freedom is used to approximate the distribution of t0 where

f ¼ se �x� �yð Þ4

s2x=nx
� �2
nx � 1ð Þ þ

s2y=ny

� �2
ny � 1
� �

:

The test of H0 is carried out against one of the three alternative hypotheses described above,
replacing t by t0 and tobs by t0obs.

Upper and lower 100 1� �ð Þ% confidence limits for �x � �y are calculated as:

�x� �yð Þ 
 t1��=2 se x� �yð Þ:

where t1��=2 is the 100 1� �=2ð Þ percentage point of the t-distribution with f degrees of freedom.

4 References

Johnson M G and Kotz A (1969) The Encyclopedia of Statistics 2 Griffin

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Snedecor G W and Cochran W G (1967) Statistical Methods Iowa State University Press

5 Arguments

1: TAIL – CHARACTER(1) Input

On entry: indicates which tail probability is to be calculated, and thus which alternative
hypothesis is to be used.

TAIL ¼ T
The two tail probability, i.e., H1 : �x 6¼ �y.

TAIL ¼ U
The upper tail probability, i.e., H1 : �x > �y.

TAIL ¼ L
The lower tail probability, i.e., H1 : �x < �y.

Constraint: TAIL ¼ T , U or L .

2: EQUAL – CHARACTER(1) Input

On entry: indicates whether the population variances are assumed to be equal or not.

EQUAL ¼ E
The population variances are assumed to be equal, that is �2x ¼ �2y.
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EQUAL ¼ U
The population variances are not assumed to be equal.

Constraint: EQUAL ¼ E or U .

3: NX – INTEGER Input

On entry: nx, the size of the X sample.

Constraint: NX � 2.

4: NY – INTEGER Input

On entry: ny, the size of the Y sample.

Constraint: NY � 2.

5: XMEAN – REAL (KIND=nag_wp) Input

On entry: �x, the mean of the X sample.

6: YMEAN – REAL (KIND=nag_wp) Input

On entry: �y, the mean of the Y sample.

7: XSTD – REAL (KIND=nag_wp) Input

On entry: sx, the standard deviation of the X sample.

Constraint: XSTD > 0:0.

8: YSTD – REAL (KIND=nag_wp) Input

On entry: sy, the standard deviation of the Y sample.

Constraint: YSTD > 0:0.

9: CLEVEL – REAL (KIND=nag_wp) Input

On entry: the confidence level, 1� �, for the specified tail. For example CLEVEL ¼ 0:95 will
give a 95% confidence interval.

Constraint: 0:0 < CLEVEL < 1:0.

10: T – REAL (KIND=nag_wp) Output

On exit: contains the test statistic, tobs or t0obs.

11: DF – REAL (KIND=nag_wp) Output

On exit: contains the degrees of freedom for the test statistic.

12: PROB – REAL (KIND=nag_wp) Output

On exit: contains the significance level, that is the tail probability, p, as defined by TAIL.

13: DL – REAL (KIND=nag_wp) Output

On exit: contains the lower confidence limit for �x � �y.

14: DU – REAL (KIND=nag_wp) Output

On exit: contains the upper confidence limit for �x � �y.
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15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TAIL 6¼ T , U or L ,
or EQUAL 6¼ E or U ,
or NX < 2,
or NY < 2,
or XSTD � 0:0,
or YSTD � 0:0,
or CLEVEL � 0:0,
or CLEVEL � 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed probability and the confidence limits should be accurate to approximately five significant
figures.

8 Parallelism and Performance

G07CAF is not threaded in any implementation.

9 Further Comments

The sample means and standard deviations can be computed using G01ATF.
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10 Example

This example reads the two sample sizes and the sample means and standard deviations for two
independent samples. The data is taken from page 116 of Snedecor and Cochran (1967) from a test to
compare two methods of estimating the concentration of a chemical in a vat. A test of the equality of
the means is carried out first assuming that the two population variances are equal and then making no
assumption about the equality of the population variances.

10.1 Program Text

Program g07cafe

! G07CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07caf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: clevel, df, dl, du, prob, t, xmean, &

xstd, ymean, ystd
Integer :: ifail, nx, ny
Character (1) :: equal, tail

! .. Executable Statements ..
Write (nout,*) ’G07CAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the sample sizes, means and standard deviations
Read (nin,*) nx, xmean, xstd
Read (nin,*) ny, ymean, ystd

! Display data
Write (nout,*) ’Sample X’
Write (nout,99996) ’ Sample size = ’, nx
Write (nout,99995) ’ Mean =’, xmean
Write (nout,99995) ’ Standard deviation =’, xstd
Write (nout,*)
Write (nout,*) ’Sample Y’
Write (nout,99996) ’ Sample size = ’, ny
Write (nout,99995) ’ Mean =’, ymean
Write (nout,99995) ’ Standard deviation =’, ystd

d_lp: Do

! Read in the type of statistic and CI required
Read (nin,*,Iostat=ifail) clevel, tail, equal
If (ifail/=0) Then

Exit d_lp
End If

! Calculate statistic
ifail = 0
Call g07caf(tail,equal,nx,ny,xmean,ymean,xstd,ystd,clevel,t,df,prob, &

dl,du,ifail)

! Display results
Write (nout,*)
If (equal==’E’ .Or. equal==’e’) Then

Write (nout,*) ’Assuming population variances are equal.’
Else

Write (nout,*) ’No assumptions about population variances.’
End If
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Write (nout,*)
Write (nout,99999) ’t test statistic = ’, t
Write (nout,99998) ’Degrees of freedom = ’, df
Write (nout,99997) ’Significance level = ’, prob
Write (nout,*)
Write (nout,99999) ’Difference in means’
Write (nout,99999) ’ Value = ’, xmean - ymean
Write (nout,99999) ’ Lower confidence limit = ’, dl
Write (nout,99999) ’ Upper confidence limit = ’, du
Write (nout,99999) ’ Confidence level = ’, clevel

End Do d_lp

99999 Format (1X,A,F10.4)
99998 Format (1X,A,F8.1)
99997 Format (1X,A,F8.4)
99996 Format (1X,A,I5)
99995 Format (1X,A,E11.4)

End Program g07cafe

10.2 Program Data

G07CAF Example Program Data
4 25.0 0.8185 :: NX,XMEAN,XSTD
8 21.0 4.2083 :: NY,YMEAN,YSTD
0.95 ’T’ ’E’ :: CLEVEL,TAIL,EQUAL
0.95 ’T’ ’U’ :: CLEVEL,TAIL,EQUAL

10.3 Program Results

G07CAF Example Program Results

Sample X
Sample size = 4
Mean = 0.2500E+02
Standard deviation = 0.8185E+00

Sample Y
Sample size = 8
Mean = 0.2100E+02
Standard deviation = 0.4208E+01

Assuming population variances are equal.

t test statistic = 1.8403
Degrees of freedom = 10.0
Significance level = 0.0955

Difference in means
Value = 4.0000
Lower confidence limit = -0.8429
Upper confidence limit = 8.8429
Confidence level = 0.9500

No assumptions about population variances.

t test statistic = 2.5922
Degrees of freedom = 8.0
Significance level = 0.0320

Difference in means
Value = 4.0000
Lower confidence limit = 0.4410
Upper confidence limit = 7.5590
Confidence level = 0.9500
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NAG Library Routine Document

G07DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07DAF finds the median, median absolute deviation, and a robust estimate of the standard deviation
for a set of ungrouped data.

2 Specification

SUBROUTINE G07DAF (N, X, Y, XME, XMD, XSD, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), XME, XMD, XSD

3 Description

The data consists of a sample of size n, denoted by x1; x2; . . . ; xn, drawn from a random variable X.

G07DAF first computes the median,

�med ¼ medi xif g;

and from this the median absolute deviation can be computed,

�med ¼ medi xi � �medj jf g:

Finally, a robust estimate of the standard deviation is computed,

�0med ¼ �med=�
�1 0:75ð Þ

where ��1 0:75ð Þ is the value of the inverse standard Normal function at the point 0:75.

G07DAF is based upon subroutine LTMDDV within the ROBETH library, see Marazzi (1987).

4 References

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Subroutines for robust estimation of location and scale in ROBETH Cah. Rech. Doc.
IUMSP, No. 3 ROB 1 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of observations, x1; x2; . . . ; xn.

3: YðNÞ – REAL (KIND=nag_wp) array Output

On exit: the observations sorted into ascending order.
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4: XME – REAL (KIND=nag_wp) Output

On exit: the median, �med.

5: XMD – REAL (KIND=nag_wp) Output

On exit: the median absolute deviation, �med.

6: XSD – REAL (KIND=nag_wp) Output

On exit: the robust estimate of the standard deviation, �0med.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G07DAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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G07DAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Unless otherwise stated in the Users' Note, the routine may be called with the same actual array
supplied for arguments X and Y, in which case the sorted data values will overwrite the original
contents of X. However this is not standard Fortran, and may not work on all systems.

10 Example

The following program reads in a set of data consisting of eleven observations of a variable X. The
median, median absolute deviation and a robust estimate of the standard deviation are calculated and
printed along with the sorted data in output array Y.

10.1 Program Text

Program g07dafe

! G07DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07daf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: xmd, xme, xsd
Integer :: ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’G07DAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n

Allocate (x(n),y(n))

! Read in data
Read (nin,*) x(1:n)

! Calculate robust summaries
ifail = 0
Call g07daf(n,x,y,xme,xmd,xsd,ifail)

! Display results
Write (nout,*) ’Original Data’
Write (nout,99999) x(1:n)
Write (nout,*)
Write (nout,*) ’Sorted Data’
Write (nout,99999) y(1:n)
Write (nout,*)
Write (nout,99998) ’Median = ’, xme
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Write (nout,99998) ’Median absolute deviation = ’, xmd
Write (nout,99998) ’Robust estimate standard deviation = ’, xsd

99999 Format (1X,11F7.3)
99998 Format (1X,A,F6.3)

End Program g07dafe

10.2 Program Data

G07DAF Example Program Data
11 : N, NUMBER OF OBSERVATIONS
13.0 11.0 16.0 5.0 3.0 18.0 9.0 8.0 6.0 27.0 7.0 : X, OBSERVATIONS

10.3 Program Results

G07DAF Example Program Results

Original Data
13.000 11.000 16.000 5.000 3.000 18.000 9.000 8.000 6.000 27.000 7.000

Sorted Data
3.000 5.000 6.000 7.000 8.000 9.000 11.000 13.000 16.000 18.000 27.000

Median = 9.000
Median absolute deviation = 4.000
Robust estimate standard deviation = 5.930
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NAG Library Routine Document

G07DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07DBF computes an M-estimate of location with (optional) simultaneous estimation of the scale using
Huber's algorithm.

2 Specification

SUBROUTINE G07DBF (ISIGMA, N, X, IPSI, C, H1, H2, H3, DCHI, THETA,
SIGMA, MAXIT, TOL, RS, NIT, WRK, IFAIL)

&

INTEGER ISIGMA, N, IPSI, MAXIT, NIT, IFAIL
REAL (KIND=nag_wp) X(N), C, H1, H2, H3, DCHI, THETA, SIGMA, TOL, RS(N),

WRK(N)
&

3 Description

The data consists of a sample of size n, denoted by x1; x2; . . . ; xn, drawn from a random variable X.

The xi are assumed to be independent with an unknown distribution function of the form

F xi � �ð Þ=�ð Þ

where � is a location argument, and � is a scale argument. M-estimators of � and � are given by the
solution to the following system of equations:Xn

i¼1
 xi � �̂
� �

=�̂
� �

¼ 0 ð1Þ

Xn
i¼1
� xi � �̂
� �

=�̂
� �

¼ n� 1ð Þ� ð2Þ

where  and � are given functions, and � is a constant, such that �̂ is an unbiased estimator when xi,
for i ¼ 1; 2; . . . ; n has a Normal distribution. Optionally, the second equation can be omitted and the
first equation is solved for �̂ using an assigned value of � ¼ �c.

The values of  
xi � �̂
�̂

 !
�̂ are known as the Winsorized residuals.

The following functions are available for  and � in G07DBF.

(a) Null Weights

 tð Þ ¼ t � tð Þ ¼ t
2

2

Use of these null functions leads to the mean and standard deviation of the data.

(b) Huber's Function

 tð Þ ¼ max �c;min c; tð Þð Þ � tð Þ ¼ tk k2

2
tk k � d

� tð Þ ¼ d
2

2
tk k > d
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(c) Hampel's Piecewise Linear Function

 h1;h2;h3 tð Þ ¼ � h1;h2;h3 �tð Þ

 h1;h2;h3 tð Þ ¼ t 0 � t � h1 � tð Þ ¼ tj j2

2
tj j � d

 h1;h2;h3 tð Þ ¼ h1 h1 � t � h2

 h1;h2;h3 tð Þ ¼ h1 h3 � tð Þ= h3 � h2ð Þ h2 � t � h3 � tð Þ ¼ d
2

2
tj j > d

 h1;h2;h3 tð Þ ¼ 0 t > h3

(d) Andrew's Sine Wave Function

 tð Þ ¼ sin t �	 � t � 	 � tð Þ ¼ tj j2

2
tj j � d

 tð Þ ¼ 0 otherwise � tð Þ ¼ d
2

2
tj j > d

(e) Tukey's Bi-weight

 tð Þ ¼ t 1� t2
� �2

tj j � 1 � tð Þ ¼ tj j2

2
tj j � d

 tð Þ ¼ t 1� t2
� �2 ¼ 0 otherwise � tð Þ ¼ d

2

2
tj j > d

where c, h1, h2, h3 and d are constants.

Equations (1) and (2) are solved by a simple iterative procedure suggested by Huber:

�̂k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

� n� 1ð Þ
Xn
i¼1
�

xi � �̂k�1
�̂k�1

 ! !
�̂2k�1

vuut
and

�̂k ¼ �̂k�1 þ 1
n

Xn
i¼1
 

xi � �̂k�1
�̂k

 !
�̂k

or

�̂k ¼ �c; if � is fixed:

The initial values for �̂ and �̂ may either be user-supplied or calculated within G07DBF as the sample
median and an estimate of � based on the median absolute deviation respectively.

G07DBF is based upon subroutine LYHALG within the ROBETH library, see Marazzi (1987).

4 References

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach
Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Subroutines for robust estimation of location and scale in ROBETH Cah. Rech. Doc.
IUMSP, No. 3 ROB 1 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

G07DBF NAG Library Manual

G07DBF.2 Mark 26



5 Arguments

1: ISIGMA – INTEGER Input

On entry: the value assigned to ISIGMA determines whether �̂ is to be simultaneously estimated.

ISIGMA ¼ 0
The estimation of �̂ is bypassed and SIGMA is set equal to �c.

ISIGMA ¼ 1
�̂ is estimated simultaneously.

2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of observations, x1; x2; . . . ; xn.

4: IPSI – INTEGER Input

On entry: which  function is to be used.

IPSI ¼ 0
 tð Þ ¼ t.

IPSI ¼ 1
Huber's function.

IPSI ¼ 2
Hampel's piecewise linear function.

IPSI ¼ 3
Andrew's sine wave,

IPSI ¼ 4
Tukey's bi-weight.

5: C – REAL (KIND=nag_wp) Input

On entry: if IPSI ¼ 1, C must specify the argument, c, of Huber's  function. C is not referenced
if IPSI 6¼ 1.

Constraint: if IPSI ¼ 1, C > 0:0.

6: H1 – REAL (KIND=nag_wp) Input
7: H2 – REAL (KIND=nag_wp) Input
8: H3 – REAL (KIND=nag_wp) Input

On entry: if IPSI ¼ 2, H1, H2 and H3 must specify the arguments, h1, h2, and h3, of Hampel's
piecewise linear  function. H1, H2 and H3 are not referenced if IPSI 6¼ 2.

Constraint: 0 � H1 � H2 � H3 and H3 > 0:0 if IPSI ¼ 2.

9: DCHI – REAL (KIND=nag_wp) Input

On entry: d, the argument of the � function. DCHI is not referenced if IPSI ¼ 0.

Constraint: if IPSI 6¼ 0, DCHI > 0:0.
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10: THETA – REAL (KIND=nag_wp) Input/Output

On entry: if SIGMA > 0 then THETA must be set to the required starting value of the estimation
of the location argument �̂. A reasonable initial value for �̂ will often be the sample mean or
median.

On exit: the M-estimate of the location argument, �̂.

11: SIGMA – REAL (KIND=nag_wp) Input/Output

On entry: the role of SIGMA depends on the value assigned to ISIGMA, as follows:

if ISIGMA ¼ 1, SIGMA must be assigned a value which determines the values of the
starting points for the calculations of �̂ and �̂. If SIGMA � 0:0 then G07DBF will
determine the starting points of �̂ and �̂. Otherwise the value assigned to SIGMA will be
taken as the starting point for �̂, and THETA must be assigned a value before entry, see
above;

if ISIGMA ¼ 0, SIGMA must be assigned a value which determines the value of �c, which
is held fixed during the iterations, and the starting value for the calculation of �̂. If
SIGMA � 0, then G07DBF will determine the value of �c as the median absolute
deviation adjusted to reduce bias (see G07DAF) and the starting point for �̂. Otherwise, the
value assigned to SIGMA will be taken as the value of �c and THETA must be assigned a
relevant value before entry, see above.

On exit: contains the M-estimate of the scale argument, �̂, if ISIGMA was assigned the value 1
on entry, otherwise SIGMA will contain the initial fixed value �c.

12: MAXIT – INTEGER Input

On entry: the maximum number of iterations that should be used during the estimation.

Suggested value: MAXIT ¼ 50.

Constraint: MAXIT > 0.

13: TOL – REAL (KIND=nag_wp) Input

On entry: the relative precision for the final estimates. Convergence is assumed when the
increments for THETA, and SIGMA are less than TOL�max 1:0; �k�1ð Þ.
Constraint: TOL > 0:0.

14: RSðNÞ – REAL (KIND=nag_wp) array Output

On exit: the Winsorized residuals.

15: NIT – INTEGER Output

On exit: the number of iterations that were used during the estimation.

16: WRKðNÞ – REAL (KIND=nag_wp) array Output

On exit: if SIGMA � 0:0 on entry, WRK will contain the n observations in ascending order.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1,
or MAXIT � 0,
or TOL � 0:0,
or ISIGMA 6¼ 0 or 1,
or IPSI < 0,
or IPSI > 4.

IFAIL ¼ 2

On entry, C � 0:0 and IPSI ¼ 1,
or H1 < 0:0 and IPSI ¼ 2,
or H1 ¼ H2 ¼ H3 ¼ 0:0 and IPSI ¼ 2,
or H1 > H2 and IPSI ¼ 2,
or H1 > H3 and IPSI ¼ 2,
or H2 > H3 and IPSI ¼ 2,
or DCHI � 0:0 and IPSI 6¼ 0.

IFAIL ¼ 3

On entry, all elements of the input array X are equal.

IFAIL ¼ 4

SIGMA, the current estimate of �, is zero or negative. This error exit is very unlikely, although it
may be caused by too large an initial value of SIGMA.

IFAIL ¼ 5

The number of iterations required exceeds MAXIT.

IFAIL ¼ 6

On completion of the iterations, the Winsorized residuals were all zero. This may occur when
using the ISIGMA ¼ 0 option with a redescending  function, i.e., Hampel's piecewise linear
function, Andrew's sine wave, and Tukey's biweight.

If the given value of � is too small, then the standardized residuals
xi � �̂k
�c

, will be large and all

the residuals may fall into the region for which  tð Þ ¼ 0. This may incorrectly terminate the
iterations thus making THETA and SIGMA invalid.

Re-enter the routine with a larger value of �c or with ISIGMA ¼ 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit the accuracy of the results is related to the value of TOL, see Section 5.

8 Parallelism and Performance

G07DBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G07DBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When you supply the initial values, care has to be taken over the choice of the initial value of �. If too

small a value of � is chosen then initial values of the standardized residuals
xi � �̂k
�

will be large. If the

redescending  functions are used, i.e., Hampel's piecewise linear function, Andrew's sine wave, or
Tukey's bi-weight, then these large values of the standardized residuals are Winsorized as zero. If a
sufficient number of the residuals fall into this category then a false solution may be returned, see page
152 of Hampel et al. (1986).

10 Example

The following program reads in a set of data consisting of eleven observations of a variable X.

For this example, Hampel's Piecewise Linear Function is used (IPSI ¼ 2), values for h1, h2 and h3
along with d for the � function, being read from the data file.

Using the following starting values various estimates of � and � are calculated and printed along with
the number of iterations used:

(a) G07DBF determines the starting values, � is estimated simultaneously.

(b) You must supply the starting values, � is estimated simultaneously.

(c) G07DBF determines the starting values, � is fixed.

(d) You must supply the starting values, � is fixed.
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10.1 Program Text

Program g07dbfe

! G07DBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07dbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, dchi, h1, h2, h3, sigma, sigsav, &

thesav, theta, tol
Integer :: ifail, ipsi, isigma, maxit, n, nit

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rs(:), wrk(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’G07DBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n

Allocate (x(n),rs(n),wrk(n))

! Read in data
Read (nin,*) x(1:n)

! Read in details of algorithm to use
Read (nin,*) ipsi, dchi, maxit
If (ipsi==2) Then

Read (nin,*) h1, h2, h3
End If

! Display titles
Write (nout,*) ’ Input parameters Output parameters’
Write (nout,*) ’ISIGMA SIGMA THETA TOL SIGMA THETA’

d_lp: Do
Read (nin,*,Iostat=ifail) isigma, sigma, theta, tol
If (ifail/=0) Then

Exit d_lp
End If

! Save the input parameters for later display
sigsav = sigma
thesav = theta

! Compute M-estimates
ifail = 0
Call g07dbf(isigma,n,x,ipsi,c,h1,h2,h3,dchi,theta,sigma,maxit,tol,rs, &

nit,wrk,ifail)

! Display results
Write (nout,99999) isigma, sigsav, thesav, tol, sigma, theta

End Do d_lp

99999 Format (1X,I3,3X,2F8.4,F7.4,F9.4,F8.4,I4)
End Program g07dbfe
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10.2 Program Data

G07DBF Example Program Data
11 :: N
13.0 11.0 16.0 5.0 3.0 18.0
9.0 8.0 6.0 27.0 7.0 :: End of X
2 1.5 50 :: IPSI,DCHI,MAXIT

1.5 3.0 4.5 :: H1,H2,H3
1 -1.0 0.0 0.0001 :: ISIGMA,SIGMA,THETA,TOL
1 7.0 2.0 0.0001 :: ISIGMA,SIGMA,THETA,TOL
0 -1.0 0.0 0.0001 :: ISIGMA,SIGMA,THETA,TOL
0 7.0 2.0 0.0001 :: ISIGMA,SIGMA,THETA,TOL

10.3 Program Results

G07DBF Example Program Results

Input parameters Output parameters
ISIGMA SIGMA THETA TOL SIGMA THETA

1 -1.0000 0.0000 0.0001 6.3247 10.5487
1 7.0000 2.0000 0.0001 6.3249 10.5487
0 -1.0000 0.0000 0.0001 5.9304 10.4896
0 7.0000 2.0000 0.0001 7.0000 10.6500
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NAG Library Routine Document

G07DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07DCF computes an M-estimate of location with (optional) simultaneous estimation of scale, where
you provide the weight functions.

2 Specification

SUBROUTINE G07DCF (CHI, PSI, ISIGMA, N, X, BETA, THETA, SIGMA, MAXIT,
TOL, RS, NIT, WRK, IFAIL)

&

INTEGER ISIGMA, N, MAXIT, NIT, IFAIL
REAL (KIND=nag_wp) CHI, PSI, X(N), BETA, THETA, SIGMA, TOL, RS(N),

WRK(N)
&

EXTERNAL CHI, PSI

3 Description

The data consists of a sample of size n, denoted by x1; x2; . . . ; xn, drawn from a random variable X.

The xi are assumed to be independent with an unknown distribution function of the form,

F xi � �ð Þ=�ð Þ

where � is a location argument, and � is a scale argument. M-estimators of � and � are given by the
solution to the following system of equations;Xn

i¼1
 xi � �̂
� �

=�̂
� �

¼ 0

Xn
i¼1
� xi � �̂
� �

=�̂
� �

¼ n� 1ð Þ�

where  and � are user-supplied weight functions, and � is a constant. Optionally the second equation
can be omitted and the first equation is solved for �̂ using an assigned value of � ¼ �c.
The constant � should be chosen so that �̂ is an unbiased estimator when xi, for i ¼ 1; 2; . . . ; n has a
Normal distribution. To achieve this the value of � is calculated as:

� ¼ E �ð Þ ¼
Z 1
�1
� zð Þ 1ffiffiffiffiffiffi

2	
p exp

�z2
2


 �
dz

The values of  
xi � �̂
�̂

 !
�̂ are known as the Winsorized residuals.

The equations are solved by a simple iterative procedure, suggested by Huber:

�̂k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

� n� 1ð Þ
Xn
i¼1
�

xi � �̂k�1
�̂k�1

 ! !
�̂2k�1

vuut
and
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�̂k ¼ �̂k�1 þ 1
n

Xn
i¼1
 

xi � �̂k�1
�̂k

 !
�̂k

or

�̂k ¼ �c
if � is fixed.

The initial values for �̂ and �̂ may be user-supplied or calculated within G07DBF as the sample median
and an estimate of � based on the median absolute deviation respectively.

G07DCF is based upon subroutine LYHALG within the ROBETH library, see Marazzi (1987).

4 References

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach
Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Subroutines for robust estimation of location and scale in ROBETH Cah. Rech. Doc.
IUMSP, No. 3 ROB 1 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Arguments

1: CHI – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CHI must return the value of the weight function � for a given value of its argument. The value
of � must be non-negative.

The specification of CHI is:

FUNCTION CHI (T)
REAL (KIND=nag_wp) CHI

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: the argument for which CHI must be evaluated.

CHI must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G07DCF is called. Arguments denoted as Input must not be changed by this
procedure.

2: PSI – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

PSI must return the value of the weight function  for a given value of its argument.

The specification of PSI is:

FUNCTION PSI (T)
REAL (KIND=nag_wp) PSI

REAL (KIND=nag_wp) T

1: T – REAL (KIND=nag_wp) Input

On entry: the argument for which PSI must be evaluated.

PSI must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G07DCF is called. Arguments denoted as Input must not be changed by this
procedure.
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3: ISIGMA – INTEGER Input

On entry: the value assigned to ISIGMA determines whether �̂ is to be simultaneously estimated.

ISIGMA ¼ 0
The estimation of �̂ is bypassed and SIGMA is set equal to �c.

ISIGMA ¼ 1
�̂ is estimated simultaneously.

4: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

5: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of observations, x1; x2; . . . ; xn.

6: BETA – REAL (KIND=nag_wp) Input

On entry: the value of the constant � of the chosen CHI function.

Constraint: BETA > 0:0.

7: THETA – REAL (KIND=nag_wp) Input/Output

On entry: if SIGMA > 0, then THETA must be set to the required starting value of the estimate
of the location argument �̂. A reasonable initial value for �̂ will often be the sample mean or
median.

On exit: the M-estimate of the location argument �̂.

8: SIGMA – REAL (KIND=nag_wp) Input/Output

On entry: the role of SIGMA depends on the value assigned to ISIGMA as follows.

If ISIGMA ¼ 1, SIGMA must be assigned a value which determines the values of the starting
points for the calculation of �̂ and �̂. If SIGMA � 0:0, then G07DCF will determine the starting
points of �̂ and �̂. Otherwise, the value assigned to SIGMA will be taken as the starting point for
�̂, and THETA must be assigned a relevant value before entry, see above.

If ISIGMA ¼ 0, SIGMA must be assigned a value which determines the values of �c, which is
held fixed during the iterations, and the starting value for the calculation of �̂. If SIGMA � 0,
then G07DCF will determine the value of �c as the median absolute deviation adjusted to reduce
bias (see G07DAF) and the starting point for �. Otherwise, the value assigned to SIGMA will be
taken as the value of �c and THETA must be assigned a relevant value before entry, see above.

On exit: the M-estimate of the scale argument �̂, if ISIGMA was assigned the value 1 on entry,
otherwise SIGMA will contain the initial fixed value �c.

9: MAXIT – INTEGER Input

On entry: the maximum number of iterations that should be used during the estimation.

Suggested value: MAXIT ¼ 50.

Constraint: MAXIT > 0.

10: TOL – REAL (KIND=nag_wp) Input

On entry: the relative precision for the final estimates. Convergence is assumed when the
increments for THETA, and SIGMA are less than TOL�max 1:0; �k�1ð Þ.
Constraint: TOL > 0:0.
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11: RSðNÞ – REAL (KIND=nag_wp) array Output

On exit: the Winsorized residuals.

12: NIT – INTEGER Output

On exit: the number of iterations that were used during the estimation.

13: WRKðNÞ – REAL (KIND=nag_wp) array Output

On exit: if SIGMA � 0:0 on entry, WRK will contain the n observations in ascending order.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1,
or MAXIT � 0,
or TOL � 0:0,
or ISIGMA 6¼ 0 or 1.

IFAIL ¼ 2

On entry, BETA � 0:0.

IFAIL ¼ 3

On entry, all elements of the input array X are equal.

IFAIL ¼ 4

SIGMA, the current estimate of �, is zero or negative. This error exit is very unlikely, although it
may be caused by too large an initial value of SIGMA.

IFAIL ¼ 5

The number of iterations required exceeds MAXIT.

IFAIL ¼ 6

On completion of the iterations, the Winsorized residuals were all zero. This may occur when
using the ISIGMA ¼ 0 option with a redescending  function, i.e.,  ¼ 0 if tj j > � , for some
positive constant � .
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If the given value of � is too small, then the standardized residuals
xi � �̂k
�c

, will be large and all

the residuals may fall into the region for which  tð Þ ¼ 0. This may incorrectly terminate the
iterations thus making THETA and SIGMA invalid.

Re-enter the routine with a larger value of �c or with ISIGMA ¼ 1.

IFAIL ¼ 7

The value returned by the CHI function is negative.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit the accuracy of the results is related to the value of TOL, see Section 5.

8 Parallelism and Performance

G07DCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G07DCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Standard forms of the functions  and � are given in Hampel et al. (1986), Huber (1981) and Marazzi
(1987). G07DBF calculates M-estimates using some standard forms for  and �.

When you supply the initial values, care has to be taken over the choice of the initial value of �. If too

small a value is chosen then initial values of the standardized residuals
xi � �̂k
�

will be large. If the

redescending  functions are used, i.e.,  ¼ 0 if tj j > � , for some positive constant � , then these large
values are Winsorized as zero. If a sufficient number of the residuals fall into this category then a false
solution may be returned, see page 152 of Hampel et al. (1986).

10 Example

The following program reads in a set of data consisting of eleven observations of a variable X.
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The PSI and CHI functions used are Hampel's Piecewise Linear Function and Hubers CHI function
respectively.

Using the following starting values various estimates of � and � are calculated and printed along with
the number of iterations used:

(a) G07DCF determined the starting values, � is estimated simultaneously.

(b) You must supply the starting values, � is estimated simultaneously.

(c) G07DCF determined the starting values, � is fixed.

(d) You must supply the starting values, � is fixed.

10.1 Program Text

! G07DCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g07dcfe_mod

! G07DCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: hampels_psi, hubers_chi

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: dchi = 1.5_nag_wp
Real (Kind=nag_wp), Parameter :: h1 = 1.5_nag_wp
Real (Kind=nag_wp), Parameter :: h2 = 3.0_nag_wp
Real (Kind=nag_wp), Parameter :: h3 = 4.5_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function hampels_psi(t)

! Hampel’s Piecewise Linear Function.

! .. Function Return Value ..
Real (Kind=nag_wp) :: hampels_psi

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Local Scalars ..
Real (Kind=nag_wp) :: abst

! .. Intrinsic Procedures ..
Intrinsic :: abs, min

! .. Executable Statements ..
abst = abs(t)
If (abst<h3) Then

If (abst<=h2) Then
hampels_psi = min(h1,abst)

Else
hampels_psi = h1*(h3-abst)/(h3-h2)

End If
If (t<zero) Then

hampels_psi = -hampels_psi
End If

Else
hampels_psi = zero

End If
Return

End Function hampels_psi
Function hubers_chi(t)

! Huber’s CHI function.

! .. Function Return Value ..
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Real (Kind=nag_wp) :: hubers_chi
! .. Scalar Arguments ..

Real (Kind=nag_wp), Intent (In) :: t
! .. Local Scalars ..

Real (Kind=nag_wp) :: abst, ps
! .. Intrinsic Procedures ..

Intrinsic :: abs, min
! .. Executable Statements ..

abst = abs(t)
ps = min(dchi,abst)
hubers_chi = ps*ps/2.0E0_nag_wp
Return

End Function hubers_chi
End Module g07dcfe_mod
Program g07dcfe

! G07DCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g07dcf, nag_wp
Use g07dcfe_mod, Only: hampels_psi, hubers_chi, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta, sigma, sigsav, thesav, theta, &

tol
Integer :: ifail, isigma, maxit, n, nit

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rs(:), wrk(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’G07DCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size and control parameters
Read (nin,*) n, beta, maxit

Allocate (x(n),wrk(n),rs(n))

! Read in data
Read (nin,*) x(1:n)

! Display titles
Write (nout,*) ’ Input parameters Output parameters’
Write (nout,*) ’ISIGMA SIGMA THETA TOL SIGMA THETA’

d_lp: Do
Read (nin,*,Iostat=ifail) isigma, sigma, theta, tol
If (ifail/=0) Then

Exit d_lp
End If

! Save input parameters
sigsav = sigma
thesav = theta

! Compute M-estimates
ifail = 0
Call g07dcf(hubers_chi,hampels_psi,isigma,n,x,beta,theta,sigma,maxit, &

tol,rs,nit,wrk,ifail)

! Display results
Write (nout,99999) isigma, sigsav, thesav, tol, sigma, theta

End Do d_lp

99999 Format (1X,I3,3X,2F8.4,F7.4,1X,2F8.4)
End Program g07dcfe
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10.2 Program Data

G07DCF Example Program Data
11 0.3892326 50 :: N,BETA,MAXIT
13.0 11.0 16.0 5.0 3.0 18.0
9.0 8.0 6.0 27.0 7.0 :: End of X
1 -1.0 0.0 0.0001 :: ISIGMA,SIGMA,THETA,TOL
1 7.0 2.0 0.0001 :: ISIGMA,SIGMA,THETA,TOL
0 -1.0 0.0 0.0001 :: ISIGMA,SIGMA,THETA,TOL
0 7.0 2.0 0.0001 :: ISIGMA,SIGMA,THETA,TOL

10.3 Program Results

G07DCF Example Program Results

Input parameters Output parameters
ISIGMA SIGMA THETA TOL SIGMA THETA

1 -1.0000 0.0000 0.0001 6.3247 10.5487
1 7.0000 2.0000 0.0001 6.3249 10.5487
0 -1.0000 0.0000 0.0001 5.9304 10.4896
0 7.0000 2.0000 0.0001 7.0000 10.6500
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NAG Library Routine Document

G07DDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07DDF calculates the trimmed and Winsorized means of a sample and estimates of the variances of
the two means.

2 Specification

SUBROUTINE G07DDF (N, X, ALPHA, TMEAN, WMEAN, TVAR, WVAR, K, SX, IFAIL)

INTEGER N, K, IFAIL
REAL (KIND=nag_wp) X(N), ALPHA, TMEAN, WMEAN, TVAR, WVAR, SX(N)

3 Description

G07DDF calculates the �-trimmed mean and �-Winsorized mean for a given �, as described below.

Let xi, for i ¼ 1; 2; . . . ; n represent the n sample observations sorted into ascending order. Let k ¼ �n½ �
where y½ � represents the integer nearest to y; if 2k ¼ n then k is reduced by 1.

Then the trimmed mean is defined as:

�xt ¼
1

n� 2k

Xn�k
i¼kþ1

xi;

and the Winsorized mean is defined as:

�xw ¼
1

n

Xn�k
i¼kþ1

xi þ kxkþ1 þ kxn�k

 !
:

G07DDF then calculates the Winsorized variance about the trimmed and Winsorized means respectively
and divides by n to obtain estimates of the variances of the above two means.

Thus we have;

Estimate of var �xtð Þ ¼
1

n2

Xn�k
i¼kþ1

xi � �xtð Þ2 þ k xkþ1 � �xtð Þ2 þ k xn�k � �xtð Þ2
 !

and

Estimate of var �xwð Þ ¼
1

n2

Xn�k
i¼kþ1

xi � �xwð Þ2 þ k xkþ1 � �xwð Þ2 þ k xn�k � �xwð Þ2
 !

:

4 References

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach
Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sample observations, xi, for i ¼ 1; 2; . . . ; n.

3: ALPHA – REAL (KIND=nag_wp) Input

On entry: �, the proportion of observations to be trimmed at each end of the sorted sample.

Constraint: 0:0 � ALPHA < 0:5.

4: TMEAN – REAL (KIND=nag_wp) Output

On exit: the �-trimmed mean, �xt.

5: WMEAN – REAL (KIND=nag_wp) Output

On exit: the �-Winsorized mean, �xw.

6: TVAR – REAL (KIND=nag_wp) Output

On exit: contains an estimate of the variance of the trimmed mean.

7: WVAR – REAL (KIND=nag_wp) Output

On exit: contains an estimate of the variance of the Winsorized mean.

8: K – INTEGER Output

On exit: contains the number of observations trimmed at each end, k.

9: SXðNÞ – REAL (KIND=nag_wp) array Output

On exit: contains the sample observations sorted into ascending order.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 1.

G07DDF NAG Library Manual

G07DDF.2 Mark 26



IFAIL ¼ 2

On entry, ALPHA < 0:0,
or ALPHA � 0:5.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The results should be accurate to within a small multiple of machine precision.

8 Parallelism and Performance

G07DDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is proportional to n.

10 Example

The following program finds the �-trimmed mean and �-Winsorized mean for a sample of 16
observations where � ¼ 0:15. The estimates of the variances of the above two means are also
calculated.

10.1 Program Text

Program g07ddfe

! G07DDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07ddf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: alpha, propn, tmean, tvar, wmean, &

wvar
Integer :: ifail, k, n

! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: sx(:), x(:)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Write (nout,*) ’G07DDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, alpha

Allocate (x(n),sx(n))

! Read in data
Read (nin,*) x(1:n)

! Trim data
ifail = 0
Call g07ddf(n,x,alpha,tmean,wmean,tvar,wvar,k,sx,ifail)

! Calculate proportion of data cut
propn = real(k,kind=nag_wp)/real(n,kind=nag_wp)
propn = 100.0E0_nag_wp - 200.0E0_nag_wp*propn

! Display results
Write (nout,99999) ’Statistics from middle ’, propn, ’% of data’
Write (nout,*)
Write (nout,99998) ’ Trimmed-mean = ’, tmean
Write (nout,99998) ’ Variance of Trimmed-mean = ’, tvar
Write (nout,*)
Write (nout,99998) ’ Winsorized-mean = ’, wmean
Write (nout,99998) ’Variance of Winsorized-mean = ’, wvar

99999 Format (1X,A,F6.2,A)
99998 Format (1X,A,F11.4)

End Program g07ddfe

10.2 Program Data

G07DDF Example Program Data
16 0.15 :: N,ALPHA
26.0 12.0 9.0 2.0
5.0 6.0 8.0 14.0
7.0 3.0 1.0 11.0

10.0 4.0 17.0 21.0 :: End of X

10.3 Program Results

G07DDF Example Program Results

Statistics from middle 75.00% of data

Trimmed-mean = 8.8333
Variance of Trimmed-mean = 1.5434

Winsorized-mean = 9.1250
Variance of Winsorized-mean = 1.5381
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NAG Library Routine Document

G07EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07EAF computes a rank based (nonparametric) estimate and confidence interval for the location
argument of a single population.

2 Specification

SUBROUTINE G07EAF (METHOD, N, X, CLEVEL, THETA, THETAL, THETAU, ESTCL,
WLOWER, WUPPER, WRK, IWRK, IFAIL)

&

INTEGER N, IWRK(3*N), IFAIL
REAL (KIND=nag_wp) X(N), CLEVEL, THETA, THETAL, THETAU, ESTCL, WLOWER,

WUPPER, WRK(4*N)
&

CHARACTER(1) METHOD

3 Description

Consider a vector of independent observations, x ¼ x1; x2; . . . ; xnð ÞT with unknown common symmetric
density f xi � �ð Þ. G07EAF computes the Hodges–Lehmann location estimator (see Lehmann (1975)) of
the centre of symmetry �, together with an associated confidence interval. The Hodges–Lehmann
estimate is defined as

�̂ ¼ median
xi þ xj

2
; 1 � i � j � n

n o
:

Let m ¼ n nþ 1ð Þð Þ=2 and let ak , for k ¼ 1; 2; . . . ;m denote the m ordered averages xi þ xj
� �

=2 for
1 � i � j � n. Then

if m is odd, �̂ ¼ ak where k ¼ mþ 1ð Þ=2;

if m is even, �̂ ¼ ak þ akþ1ð Þ=2 where k ¼ m=2.
This estimator arises from inverting the one-sample Wilcoxon signed-rank test statistic, W x� �0ð Þ, for
testing the hypothesis that � ¼ �0. Effectively W x� �0ð Þ is a monotonically decreasing step function of
�0 with

mean Wð Þ ¼ � ¼ n nþ 1ð Þ
4

;

var Wð Þ ¼ �2 ¼ n nþ 1ð Þ 2nþ 1ð Þ
24

:

The estimate �̂ is the solution to the equation W x� �̂
� �

¼ �; two methods are available for solving

this equation. These methods avoid the computation of all the ordered averages ak; this is because for
large n both the storage requirements and the computation time would be excessive.

The first is an exact method based on a set partitioning procedure on the set of all ordered averages
xi þ xj
� �

=2 for i � j. This is based on the algorithm proposed by Monahan (1984).

The second is an iterative algorithm, based on the Illinois method which is a modification of the regula
falsi method, see McKean and Ryan (1977). This algorithm has proved suitable for the function
W x� �0ð Þ which is asymptotically linear as a function of �0.

The confidence interval limits are also based on the inversion of the Wilcoxon test statistic.
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Given a desired percentage for the confidence interval, 1� �, expressed as a proportion between 0 and
1, initial estimates for the lower and upper confidence limits of the Wilcoxon statistic are found from

Wl ¼ �� 0:5þ ���1 �=2ð Þ
� �

and

Wu ¼ �þ 0:5þ ���1 1� �=2ð Þ
� �

;

where ��1 is the inverse cumulative Normal distribution function.

Wl and Wu are rounded to the nearest integer values. These estimates are then refined using an exact
method if n � 80, and a Normal approximation otherwise, to find Wl and Wu satisfying

P W �Wlð Þ � �=2
P W �Wl þ 1ð Þ > �=2

and

P W �Wuð Þ � �=2
P W �Wu � 1ð Þ > �=2:

Let Wu ¼ m� k; then �l ¼ akþ1. This is the largest value �l such that W x� �lð Þ ¼Wu.

Let Wl ¼ k; then �u ¼ am�k. This is the smallest value �u such that W x� �uð Þ ¼Wl.

As in the case of �̂, these equations may be solved using either the exact or the iterative methods to find
the values �l and �u.

Then �l; �uð Þ is the confidence interval for �. The confidence interval is thus defined by those values of
�0 such that the null hypothesis, � ¼ �0, is not rejected by the Wilcoxon signed-rank test at the
100� �ð Þ% level.

4 References

Lehmann E L (1975) Nonparametrics: Statistical Methods Based on Ranks Holden–Day

Marazzi A (1987) Subroutines for robust estimation of location and scale in ROBETH Cah. Rech. Doc.
IUMSP, No. 3 ROB 1 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

McKean J W and Ryan T A (1977) Algorithm 516: An algorithm for obtaining confidence intervals and
point estimates based on ranks in the two-sample location problem ACM Trans. Math. Software 10
183–185

Monahan J F (1984) Algorithm 616: Fast computation of the Hodges–Lehman location estimator ACM
Trans. Math. Software 10 265–270

5 Arguments

1: METHOD – CHARACTER(1) Input

On entry: specifies the method to be used.

METHOD ¼ E
The exact algorithm is used.

METHOD ¼ A
The iterative algorithm is used.

Constraint: METHOD ¼ E or A .

2: N – INTEGER Input

On entry: n, the sample size.

Constraint: N � 2.
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3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sample observations, xi, for i ¼ 1; 2; . . . ; n.

4: CLEVEL – REAL (KIND=nag_wp) Input

On entry: the confidence interval desired.

For example, for a 95% confidence interval set CLEVEL ¼ 0:95.

Constraint: 0:0 < CLEVEL < 1:0.

5: THETA – REAL (KIND=nag_wp) Output

On exit: the estimate of the location, �̂.

6: THETAL – REAL (KIND=nag_wp) Output

On exit: the estimate of the lower limit of the confidence interval, �l.

7: THETAU – REAL (KIND=nag_wp) Output

On exit: the estimate of the upper limit of the confidence interval, �u.

8: ESTCL – REAL (KIND=nag_wp) Output

On exit: an estimate of the actual percentage confidence of the interval found, as a proportion
between 0:0; 1:0ð Þ.

9: WLOWER – REAL (KIND=nag_wp) Output

On exit: the upper value of the Wilcoxon test statistic, Wu, corresponding to the lower limit of
the confidence interval.

10: WUPPER – REAL (KIND=nag_wp) Output

On exit: the lower value of the Wilcoxon test statistic, Wl, corresponding to the upper limit of the
confidence interval.

11: WRKð4� NÞ – REAL (KIND=nag_wp) array Workspace
12: IWRKð3� NÞ – INTEGER array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ E or A ,
or N < 2,
or CLEVEL � 0:0,
or CLEVEL � 1:0.

IFAIL ¼ 2

There is not enough information to compute a confidence interval since the whole sample
consists of identical values.

IFAIL ¼ 3

For at least one of the estimates �̂, �l and �u, the underlying iterative algorithm (when
METHOD ¼ A ) failed to converge. This is an unlikely exit but the estimate should still be a
reasonable approximation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

G07EAF should produce results accurate to five significant figures in the width of the confidence
interval; that is the error for any one of the three estimates should be less than
0:00001� THETAU� THETALð Þ.

8 Parallelism and Performance

G07EAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken increases with the sample size n.
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10 Example

The following program calculates a 95% confidence interval for �, a measure of symmetry of the
sample of 50 observations.

10.1 Program Text

Program g07eafe

! G07EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07eaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: clevel, estcl, theta, thetal, &

thetau, wlower, wupper
Integer :: ifail, n
Character (1) :: method

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: wrk(:), x(:)
Integer, Allocatable :: iwrk(:)

! .. Executable Statements ..
Write (nout,*) ’G07EAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size and CI level
Read (nin,*) method, n, clevel

Allocate (x(n),wrk(4*n),iwrk(3*n))

! Read in data
Read (nin,*) x(1:n)

! Calculate statistics
ifail = 0
Call g07eaf(method,n,x,clevel,theta,thetal,thetau,estcl,wlower,wupper, &

wrk,iwrk,ifail)

! Display results
Write (nout,*) ’ Location estimator Confidence Interval ’
Write (nout,*)
Write (nout,99999) theta, ’(’, thetal, ’ ,’, thetau, ’ )’
Write (nout,*)
Write (nout,*) ’ Corresponding Wilcoxon statistics’
Write (nout,*)
Write (nout,99998) ’Lower : ’, wlower
Write (nout,99998) ’Upper : ’, wupper

99999 Format (3X,F10.4,12X,A,F7.4,A,F7.4,A)
99998 Format (1X,A,F8.2)

End Program g07eafe
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10.2 Program Data

G07EAF Example Program Data
’E’ 40 0.95 :: METHOD,N,CLEVEL
-0.23 0.35 -0.77 0.35 0.27 -0.72 0.08 -0.40 -0.76 0.45
0.73 0.74 0.83 -0.87 0.21 0.29 -0.91 -0.04 0.82 -0.38

-0.31 0.24 -0.47 -0.68 -0.77 -0.86 -0.59 0.73 0.39 -0.44
0.63 -0.22 -0.07 -0.43 -0.21 -0.31 0.64 -1.00 -0.86 -0.73
0.95

10.3 Program Results

G07EAF Example Program Results

Location estimator Confidence Interval

-0.1300 (-0.3300 , 0.0350 )

Corresponding Wilcoxon statistics

Lower : 556.00
Upper : 264.00
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NAG Library Routine Document

G07EBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07EBF calculates a rank based (nonparametric) estimate and confidence interval for the difference in
location between two independent populations.

2 Specification

SUBROUTINE G07EBF (METHOD, N, X, M, Y, CLEVEL, THETA, THETAL, THETAU,
ESTCL, ULOWER, UUPPER, WRK, IWRK, IFAIL)

&

INTEGER N, M, IWRK(3*N), IFAIL
REAL (KIND=nag_wp) X(N), Y(M), CLEVEL, THETA, THETAL, THETAU, ESTCL,

ULOWER, UUPPER, WRK(3*(M+N))
&

CHARACTER(1) METHOD

3 Description

Consider two random samples from two populations which have the same continuous distribution
except for a shift in the location. Let the random sample, x ¼ x1; x2; . . . ; xnð ÞT, have distribution F xð Þ
and the random sample, y ¼ y1; y2; . . . ; ymð ÞT, have distribution F x� �ð Þ.

G07EBF finds a point estimate, �̂, of the difference in location � together with an associated confidence
interval. The estimates are based on the ordered differences yj � xi. The estimate �̂ is defined by

�̂ ¼ median yj � xi; i ¼ 1; 2; . . . ; n;j ¼ 1; 2; . . . ;m
� 

:

Let dk , for k ¼ 1; 2; . . . ; nm, denote the nm (ascendingly) ordered differences yj � xi, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m. Then

if nm is odd, �̂ ¼ dk where k ¼ nm� 1ð Þ=2;

if nm is even, �̂ ¼ dk þ dkþ1ð Þ=2 where k ¼ nm=2.
This estimator arises from inverting the two sample Mann–Whitney rank test statistic, U �0ð Þ, for testing
the hypothesis that � ¼ �0. Thus U �0ð Þ is the value of the Mann–Whitney U statistic for the two
independent samples xi þ �0ð Þ; for i ¼ 1; 2; . . . ; nf g and yj; for j ¼ 1; 2; . . . ;m

� 
. Effectively U �0ð Þ is

a monotonically increasing step function of �0 with

mean Uð Þ ¼ � ¼ nm
2
;

var Uð Þ ¼ �2nm nþmþ 1ð Þ
12

:

The estimate �̂ is the solution to the equation U �̂
� �
¼ �; two methods are available for solving this

equation. These methods avoid the computation of all the ordered differences dk; this is because for
large n and m both the storage requirements and the computation time would be high.

The first is an exact method based on a set partitioning procedure on the set of all differences yj � xi,
for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m. This is adapted from the algorithm proposed by Monahan (1984)
for the computation of the Hodges–Lehmann estimator for a single population.
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The second is an iterative algorithm, based on the Illinois method which is a modification of the regula
falsi method, see McKean and Ryan (1977). This algorithm has proved suitable for the function U �0ð Þ
which is asymptotically linear as a function of �0.

The confidence interval limits are also based on the inversion of the Mann–Whitney test statistic.

Given a desired percentage for the confidence interval, 1� �, expressed as a proportion between 0:0
and 1:0 initial estimates of the upper and lower confidence limits for the Mann–Whitney U statistic are
found;

Ul ¼ �� 0:5þ �� ��1 �=2ð Þ
� �

Uu ¼ �þ 0:5þ �� ��1 1� �ð Þ=2ð Þ
� �

where ��1 is the inverse cumulative Normal distribution function.

Ul and Uu are rounded to the nearest integer values. These estimates are refined using an exact method,
without taking ties into account, if nþm � 40 and max n;mð Þ � 30 and a Normal approximation
otherwise, to find Ul and Uu satisfying

P U � Ulð Þ � �=2
P U � Ul þ 1ð Þ > �=2

and

P U � Uuð Þ � �=2
P U � Uu � 1ð Þ > �=2:

The function U �0ð Þ is a monotonically increasing step function. It is the number of times a score in the
second sample, yj, precedes a score in the first sample, xi þ �, where we only count a half if a score in
the second sample actually equals a score in the first.

Let Ul ¼ k; then �l ¼ dkþ1. This is the largest value �l such that U �lð Þ ¼ Ul.
Let Uu ¼ nm� k; then �u ¼ dnm�k. This is the smallest value �u such that U �uð Þ ¼ Uu.

As in the case of �̂, these equations may be solved using either the exact or iterative methods to find the
values �l and �u.

Then �l; �uð Þ is the confidence interval for �. The confidence interval is thus defined by those values of
�0 such that the null hypothesis, � ¼ �0, is not rejected by the Mann–Whitney two sample rank test at
the 100� �ð Þ% level.

4 References

Lehmann E L (1975) Nonparametrics: Statistical Methods Based on Ranks Holden–Day

McKean J W and Ryan T A (1977) Algorithm 516: An algorithm for obtaining confidence intervals and
point estimates based on ranks in the two-sample location problem ACM Trans. Math. Software 10
183–185

Monahan J F (1984) Algorithm 616: Fast computation of the Hodges–Lehman location estimator ACM
Trans. Math. Software 10 265–270

5 Arguments

1: METHOD – CHARACTER(1) Input

On entry: specifies the method to be used.

METHOD ¼ E
The exact algorithm is used.
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METHOD ¼ A
The iterative algorithm is used.

Constraint: METHOD ¼ E or A .

2: N – INTEGER Input

On entry: n, the size of the first sample.

Constraint: N � 1.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the observations of the first sample, xi, for i ¼ 1; 2; . . . ; n.

4: M – INTEGER Input

On entry: m, the size of the second sample.

Constraint: M � 1.

5: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: the observations of the second sample, yj , for j ¼ 1; 2; . . . ;m.

6: CLEVEL – REAL (KIND=nag_wp) Input

On entry: the confidence interval required, 1� �; e.g., for a 95% confidence interval set
CLEVEL ¼ 0:95.

Constraint: 0:0 < CLEVEL < 1:0.

7: THETA – REAL (KIND=nag_wp) Output

On exit: the estimate of the difference in the location of the two populations, �̂.

8: THETAL – REAL (KIND=nag_wp) Output

On exit: the estimate of the lower limit of the confidence interval, �l.

9: THETAU – REAL (KIND=nag_wp) Output

On exit: the estimate of the upper limit of the confidence interval, �u.

10: ESTCL – REAL (KIND=nag_wp) Output

On exit: an estimate of the actual percentage confidence of the interval found, as a proportion
between 0:0; 1:0ð Þ.

11: ULOWER – REAL (KIND=nag_wp) Output

On exit: the value of the Mann–Whitney U statistic corresponding to the lower confidence limit,
Ul.

12: UUPPER – REAL (KIND=nag_wp) Output

On exit: the value of the Mann–Whitney U statistic corresponding to the upper confidence limit,
Uu.
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13: WRKð3� Mþ Nð ÞÞ – REAL (KIND=nag_wp) array Workspace

14: IWRKð3� NÞ – INTEGER array Workspace

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, METHOD 6¼ E or A ,
or N < 1,
or M < 1,
or CLEVEL � 0:0,
or CLEVEL � 1:0.

IFAIL ¼ 2

Each sample consists of identical values. All estimates are set to the common difference between
the samples.

IFAIL ¼ 3

For at least one of the estimates �̂, �l and �u, the underlying iterative algorithm (when
METHOD ¼ A ) failed to converge. This is an unlikely exit but the estimate should still be a
reasonable approximation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

G07EBF should return results accurate to five significant figures in the width of the confidence interval,
t h a t i s t h e e r r o r fo r any one o f t he t h r e e e s t ima t e s shou l d be l e s s t h an
0:00001� THETAU� THETALð Þ.

8 Parallelism and Performance

G07EBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G07EBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken increases with the sample sizes n and m.

10 Example

The following program calculates a 95% confidence interval for the difference in location between the
two populations from which the two samples of sizes 50 and 100 are drawn respectively.

10.1 Program Text

Program g07ebfe

! G07EBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07ebf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: clevel, estcl, theta, thetal, &

thetau, ulower, uupper
Integer :: ifail, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: wrk(:), x(:), y(:)
Integer, Allocatable :: iwrk(:)

! .. Executable Statements ..
Write (nout,*) ’G07EBF Example Program Results’
Write (nout,*)

! Skip Heading in data file
Read (nin,*)

! Read in problem size and confidence level
Read (nin,*) n, m, clevel

Allocate (x(n),y(m),iwrk(3*n),wrk(3*(m+n)))

! Read in first sample
Read (nin,*)
Read (nin,*) x(1:n)
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! Read in second sample
Read (nin,*)
Read (nin,*) y(1:m)

! Calculate statistics
ifail = 0
Call g07ebf(’Approx’,n,x,m,y,clevel,theta,thetal,thetau,estcl,ulower, &

uupper,wrk,iwrk,ifail)

! Display results
Write (nout,*) ’ Location estimator Confidence Interval ’
Write (nout,*)
Write (nout,99999) theta, ’(’, thetal, ’ ,’, thetau, ’ )’
Write (nout,*)
Write (nout,*) ’ Corresponding Mann-Whitney U statistics’
Write (nout,*)
Write (nout,99998) ’Lower : ’, ulower
Write (nout,99998) ’Upper : ’, uupper

99999 Format (3X,F10.4,12X,A,F7.4,A,F7.4,A)
99998 Format (1X,A,F8.2)

End Program g07ebfe

10.2 Program Data

G07EBF Example Program Data
50 100 0.95 :: N,M,CLEVEL
First sample of N observations (X)
-0.582 0.157 -0.523 -0.769 2.338 1.664 -0.981 1.549 1.131 -0.460
-0.484 1.932 0.306 -0.602 -0.979 0.132 0.256 -0.094 1.065 -1.084
-0.969 -0.524 0.239 1.512 -0.782 -0.252 -1.163 1.376 1.674 0.831
1.478 -1.486 -0.808 -0.429 -2.002 0.482 -1.584 -0.105 0.429 0.568
0.944 2.558 -1.801 0.242 0.763 -0.461 -1.497 -1.353 0.301 1.941

Second sample of M observations (Y)
1.995 0.007 0.997 1.089 2.004 0.171 0.294 2.448 0.214 0.773
2.960 0.025 0.638 0.937 -0.568 -0.711 0.931 2.601 1.121 -0.251

-0.050 1.341 2.282 0.745 1.633 0.944 2.370 0.293 0.895 0.938
0.199 0.812 1.253 0.590 1.522 -0.685 1.259 0.571 1.579 0.568
0.381 0.829 0.277 0.656 2.497 1.779 1.922 -0.174 2.132 2.793
0.102 1.569 1.267 0.490 0.077 1.366 0.056 0.605 0.628 1.650
0.104 2.194 2.869 -0.171 -0.598 2.134 0.917 0.630 0.209 1.328
0.368 0.756 2.645 1.161 0.347 0.920 1.256 -0.052 1.474 0.510
1.386 3.550 1.392 -0.358 1.938 1.727 -0.372 0.911 0.499 0.066
1.467 1.898 1.145 0.501 2.230 0.212 0.536 1.690 1.086 0.494

10.3 Program Results

G07EBF Example Program Results

Location estimator Confidence Interval

0.9505 ( 0.5650 , 1.3050 )

Corresponding Mann-Whitney U statistics

Lower : 2007.00
Upper : 2993.00
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NAG Library Routine Document

G07GAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07GAF identifies outlying values using Peirce's criterion.

2 Specification

SUBROUTINE G07GAF (N, P, Y, MEAN, VAR, IOUT, NIOUT, LDIFF, DIFF, LLAMB,
IFAIL)

&

INTEGER N, P, IOUT(N), NIOUT, LDIFF, IFAIL
REAL (KIND=nag_wp) Y(N), MEAN, VAR, DIFF(LDIFF), LLAMB(LDIFF)

3 Description

G07GAF flags outlying values in data using Peirce's criterion. Let

y denote a vector of n observations (for example the residuals) obtained from a model with p
parameters,

m denote the number of potential outlying values,

� and �2 denote the mean and variance of y respectively,

~y denote a vector of length n�m constructed by dropping the m values from y with the largest
value of yi � �j j,

~�2 denote the (unknown) variance of ~y,

� denote the ratio of ~� and � with � ¼ ~�
� .

Peirce's method flags yi as a potential outlier if yi � �j j � x, where x ¼ �2z and z is obtained from the
solution of

Rm ¼ �m�nm
m n�mð Þn�m

nn
ð1Þ

where

R ¼ 2 exp
z2 � 1

2

� �
1� � zð Þð Þ

� �
ð2Þ

and � is the cumulative distribution function for the standard Normal distribution.

As ~�2 is unknown an assumption is made that the relationship between ~�2 and �2, hence �, depends
only on the sum of squares of the rejected observations and the ratio estimated as

�2 ¼ n� p�mz
2

n� p�m

which gives

z2 ¼ 1þ n� p�m
m

1� �2
� �

ð3Þ

A value for the cutoff x is calculated iteratively. An initial value of R ¼ 0:2 is used and a value of � is
estimated using equation (1). Equation (3) is then used to obtain an estimate of z and then equation (2)
is used to get a new estimate for R. This process is then repeated until the relative change in z between
consecutive iterations is �

ffiffi
�
p

, where � is machine precision.
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By construction, the cutoff for testing for mþ 1 potential outliers is less than the cutoff for testing for
m potential outliers. Therefore Peirce's criterion is used in sequence with the existence of a single
potential outlier being investigated first. If one is found, the existence of two potential outliers is
investigated etc.

If one of a duplicate series of observations is flagged as an outlier, then all of them are flagged as
outliers.

4 References

Gould B A (1855) On Peirce's criterion for the rejection of doubtful observations, with tables for
facilitating its application The Astronomical Journal 45

Peirce B (1852) Criterion for the rejection of doubtful observations The Astronomical Journal 45

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 3.

2: P – INTEGER Input

On entry: p, the number of parameters in the model used in obtaining the y. If y is an observed
set of values, as opposed to the residuals from fitting a model with p parameters, then p should
be set to 1, i.e., as if a model just containing the mean had been used.

Constraint: 1 � P � N� 2.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: y, the data being tested.

4: MEAN – REAL (KIND=nag_wp) Input

On entry: if VAR > 0:0, MEAN must contain �, the mean of y, otherwise MEAN is not
referenced and the mean is calculated from the data supplied in Y.

5: VAR – REAL (KIND=nag_wp) Input

On entry: if VAR > 0:0, VAR must contain �2, the variance of y, otherwise the variance is
calculated from the data supplied in Y.

6: IOUTðNÞ – INTEGER array Output

On exit: the indices of the values in Y sorted in descending order of the absolute difference from
the mean, therefore YðIOUTði � 1ÞÞ � �j j � YðIOUTðiÞÞ � �j j, for i ¼ 2; 3; . . . ;N.

7: NIOUT – INTEGER Output

On exit: the number of potential outliers. The indices for these potential outliers are held in the
first NIOUT elements of IOUT. By construction there can be at most N� P� 1 values flagged as
outliers.

8: LDIFF – INTEGER Input

On entry: the maximum number of values to be returned in arrays DIFF and LLAMB.

If LDIFF � 0, arrays DIFF and LLAMB are not referenced.
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9: DIFFðLDIFFÞ – REAL (KIND=nag_wp) array Output

O n e x i t : DIFFðiÞ h o l d s y� �j j � �2z f o r o b s e r v a t i o n YðIOUTðiÞÞ, f o r
i ¼ 1; 2; . . . ;min LDIFF;NIOUTþ 1;N� P� 1ð Þ.

10: LLAMBðLDIFFÞ – REAL (KIND=nag_wp) array Output

O n e x i t : LLAMBðiÞ h o l d s log �2
� �

f o r o b s e r v a t i o n YðIOUTðiÞÞ, f o r
i ¼ 1; 2; . . . ;min LDIFF;NIOUTþ 1;N� P� 1ð Þ.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 3.

IFAIL ¼ 2

On entry, P ¼ valueh i and N ¼ valueh i.
Constraint: 1 � P � N� 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

G07GAF is not threaded in any implementation.

9 Further Comments

One problem with Peirce's algorithm as implemented in G07GAF is the assumed relationship between
�2, the variance using the full dataset, and ~�2, the variance with the potential outliers removed. In some
cases, for example if the data y were the residuals from a linear regression, this assumption may not
hold as the regression line may change significantly when outlying values have been dropped resulting
in a radically different set of residuals. In such cases G07GBF should be used instead.

10 Example

This example reads in a series of data and flags any potential outliers.

The dataset used is from Peirce's original paper and consists of fifteen observations on the vertical
semidiameter of Venus.

10.1 Program Text

Program g07gafe

! G07GAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07gaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: mean, var
Integer :: i, ifail, ldiff, n, niout, p

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: diff(:), llamb(:), y(:)
Integer, Allocatable :: iout(:)

! .. Executable Statements ..
Write (nout,*) ’G07GAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, p, ldiff

Allocate (y(n),iout(n),diff(ldiff),llamb(ldiff))

! Read in data
Read (nin,*) y(1:n)

! Let routine calculate mean and variance
mean = 0.0E0_nag_wp
var = 0.0E0_nag_wp

! Get a list of potential outliers
ifail = 0
Call g07gaf(n,p,y,mean,var,iout,niout,ldiff,diff,llamb,ifail)

! Display results
Write (nout,*) ’Number of potential outliers:’, niout
If (ldiff>0) Then

Write (nout,*) ’ No. Index Value Diff ln(lambda^2)’
Else
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Write (nout,*) ’ No. Index Value’
End If
Do i = 1, niout

If (i>ldiff) Then
Write (nout,99999) i, iout(i), y(iout(i))

Else
Write (nout,99998) i, iout(i), y(iout(i)), diff(i), llamb(i)

End If
End Do

99999 Format (1X,I4,2X,I4,1X,F10.2)
99998 Format (1X,I4,2X,I4,3(1X,F10.2))

End Program g07gafe

10.2 Program Data

G07GAF Example Program Data
15 2 1 :: N,P,LDIFF
-0.30
0.48
0.63

-0.22
0.18

-0.44
-0.24
-0.13
-0.05
0.39
1.01
0.06

-1.40
0.20
0.10 :: Y

10.3 Program Results

G07GAF Example Program Results

Number of potential outliers: 2
No. Index Value Diff ln(lambda^2)
1 13 -1.40 0.31 -0.30
2 11 1.01
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NAG Library Routine Document

G07GBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G07GBF returns a flag indicating whether a single data point is an outlier as defined by Peirce's
criterion.

2 Specification

FUNCTION G07GBF (N, E, VAR1, VAR2, X, LX, UX, IFAIL)
LOGICAL G07GBF

INTEGER N, IFAIL
REAL (KIND=nag_wp) E, VAR1, VAR2, X, LX, UX

3 Description

G07GBF tests a potential outlying value using Peirce's criterion. Let

e denote a vector of n residuals with mean zero and variance �2 obtained from fitting some
model M to a series of data y,

~e denote the largest absolute residual in e, i.e., ~ej j � eij j for all i, and let ~y denote the data series
y with the observation corresponding to ~e having been omitted,

~�2 denote the residual variance on fitting model M to ~y,

� denote the ratio of ~� and � with � ¼ ~�
� .

Peirce's method flags ~e as a potential outlier if ~ej j � x, where x ¼ �2z and z is obtained from the
solution of

R ¼ �1�n n� 1ð Þn�1

nn
ð1Þ

where

R ¼ 2 exp
z2 � 1

2

� �
1� � zð Þð Þ

� �
ð2Þ

and � is the cumulative distribution function for the standard Normal distribution.

Unlike G07GAF, both �2 and ~�2 must be supplied and therefore no assumptions are made about the
nature of the relationship between these two quantities. Only a single potential outlier is tested for at a
time.

This routine uses an algorithm described in E04ABF/E04ABA to refine a lower, l, and upper, u, limit
for x. This refinement stops when ~ej j < l or ~ej j > u.

4 References

Gould B A (1855) On Peirce's criterion for the rejection of doubtful observations, with tables for
facilitating its application The Astronomical Journal 45

Peirce B (1852) Criterion for the rejection of doubtful observations The Astronomical Journal 45
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 3.

2: E – REAL (KIND=nag_wp) Input

On entry: ~e, the value being tested.

3: VAR1 – REAL (KIND=nag_wp) Input

On entry: �2, the residual variance on fitting model M to y.

Constraint: VAR1 > 0:0.

4: VAR2 – REAL (KIND=nag_wp) Input

On entry: ~�2, the residual variance on fitting model M to ~y.

Constraints:

VAR2 > 0:0;
VAR2 < VAR1.

5: X – REAL (KIND=nag_wp) Output

On exit: an estimated value of x, the cutoff that indicates an outlier.

6: LX – REAL (KIND=nag_wp) Output

On exit: l, the lower limit for x.

7: UX – REAL (KIND=nag_wp) Output

On exit: u, the upper limit for x.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 3.
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IFAIL ¼ 3

On entry, VAR1 ¼ valueh i.
Constraint: VAR1 > 0:0.

IFAIL ¼ 4

On entry, VAR1 ¼ valueh i, VAR2 ¼ valueh i.
Constraint: VAR2 < VAR1.

On entry, VAR2 ¼ valueh i.
Constraint: VAR2 > 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G07GBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a series of values and variances and checks whether each is a potential outlier.

The dataset used is from Peirce's original paper and consists of fifteen observations on the vertical
semidiameter of Venus. Each subsequent line in the dataset, after the first, is the result of dropping the
observation with the highest absolute value from the previous data and recalculating the variance.

10.1 Program Text

Program g07gbfe

! G07GBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g07gbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: e, lx, ux, var1, var2, x
Integer :: ifail, n
Logical :: outlier

! .. Executable Statements ..
Write (nout,*) ’G07GBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

d_lp: Do
! Read in the sample size, variances and value to test

Read (nin,*,Iostat=ifail) n, e, var1, var2
If (ifail/=0) Then

Exit d_lp
End If

! Check whether E is a potential outlier
ifail = 0
outlier = g07gbf(n,e,var1,var2,x,lx,ux,ifail)

! Display results
Write (nout,99999) ’Sample size :’, n
Write (nout,99998) ’Largest absolute residual (E) :’, e
Write (nout,99998) ’Variance for whole sample :’, var1
Write (nout,99998) ’Variance excluding E :’, var2
Write (nout,99998) ’Estimate for cutoff (X) :’, x
Write (nout,99998) ’Lower limit for cutoff (LX) :’, lx
Write (nout,99998) ’Upper limit for cutoff (UX) :’, ux
If (outlier) Then

Write (nout,*) ’E is a potential outlier’
Else

Write (nout,*) ’E does not appear to be an outlier’
End If
Write (nout,*)

End Do d_lp

99999 Format (1X,A,1X,I10)
99998 Format (1X,A,1X,F10.3)

End Program g07gbfe

10.2 Program Data

G07GBF Example Program Data
15 -1.40 0.303 0.161 :: N, E, VAR1, VAR2
14 1.01 0.161 0.103 :: N, E, VAR1, VAR2
13 0.63 0.103 0.080 :: N, E, VAR1, VAR2

10.3 Program Results

G07GBF Example Program Results

Sample size : 15
Largest absolute residual (E) : -1.400
Variance for whole sample : 0.303
Variance excluding E : 0.161
Estimate for cutoff (X) : 0.000
Lower limit for cutoff (LX) : 0.000
Upper limit for cutoff (UX) : 0.000
E is a potential outlier

Sample size : 14
Largest absolute residual (E) : 1.010
Variance for whole sample : 0.161
Variance excluding E : 0.103
Estimate for cutoff (X) : 0.105
Lower limit for cutoff (LX) : 0.100
Upper limit for cutoff (UX) : 0.110
E is a potential outlier
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Sample size : 13
Largest absolute residual (E) : 0.630
Variance for whole sample : 0.103
Variance excluding E : 0.080
Estimate for cutoff (X) : 1.059
Lower limit for cutoff (LX) : 1.011
Upper limit for cutoff (UX) : 1.155
E does not appear to be an outlier
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NAG Library Chapter Contents

G08 – Nonparametric Statistics

G08 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

G08AAF 8 nagf_nonpar_test_sign
Sign test on two paired samples

G08ACF 8 nagf_nonpar_test_median
Median test on two samples of unequal size

G08AEF 8 nagf_nonpar_test_friedman
Friedman two-way analysis of variance on k matched samples

G08AFF 8 nagf_nonpar_test_kruskal
Kruskal–Wallis one-way analysis of variance on k samples of unequal size

G08AGF 14 nagf_nonpar_test_wilcoxon
Performs the Wilcoxon one-sample (matched pairs) signed rank test

G08AHF 14 nagf_nonpar_test_mwu
Performs the Mann–Whitney U test on two independent samples

G08AJF 14 nagf_nonpar_prob_mwu_noties
Computes the exact probabilities for the Mann–Whitney U statistic, no ties
in pooled sample

G08AKF 14 nagf_nonpar_prob_mwu_ties
Computes the exact probabilities for the Mann–Whitney U statistic, ties in
pooled sample

G08ALF 15 nagf_nonpar_test_cochranq
Performs the Cochran Q test on cross-classified binary data

G08BAF 8 nagf_nonpar_test_mooddavid
Mood's and David's tests on two samples of unequal size

G08CBF 14 nagf_nonpar_test_ks_1sample
Performs the one-sample Kolmogorov–Smirnov test for standard
distributions

G08CCF 14 nagf_nonpar_test_ks_1sample_user
Performs the one-sample Kolmogorov–Smirnov test for a user-supplied
distribution

G08CDF 14 nagf_nonpar_test_ks_2sample
Performs the two-sample Kolmogorov–Smirnov test

G08CGF 14 nagf_nonpar_test_chisq
Performs the �2 goodness-of-fit test, for standard continuous distributions

G08CHF 23 nagf_nonpar_gofstat_anddar
Calculates the Anderson–Darling goodness-of-fit test statistic

G08CJF 23 nagf_nonpar_gofstat_anddar_unif
Calculates the Anderson–Darling goodness-of-fit test statistic and its
probability for the case of uniformly distributed data

G08CKF 23 nagf_nonpar_gofstat_anddar_normal
Calculates the Anderson–Darling goodness-of-fit test statistic and its
probability for the case of a fully-unspecified Normal distribution

G08CLF 23 nagf_nonpar_gofstat_anddar_exp
Calculates the Anderson–Darling goodness-of-fit test statistic and its
probability for the case of an unspecified exponential distribution

G08DAF 8 nagf_nonpar_concordance_kendall
Kendall's coefficient of concordance

G08EAF 14 nagf_nonpar_randtest_runs
Performs the runs up or runs down test for randomness
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G08EBF 14 nagf_nonpar_randtest_pairs
Performs the pairs (serial) test for randomness

G08ECF 14 nagf_nonpar_randtest_triplets
Performs the triplets test for randomness

G08EDF 14 nagf_nonpar_randtest_gaps
Performs the gaps test for randomness

G08RAF 12 nagf_nonpar_rank_regsn
Regression using ranks, uncensored data

G08RBF 12 nagf_nonpar_rank_regsn_censored
Regression using ranks, right-censored data
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1 Scope of the Chapter

The routines in this chapter perform nonparametric statistical tests which are based on distribution-free
methods of analysis. For convenience, the chapter contents are divided into five types of test: tests of
location, tests of dispersion, tests of distribution, tests of association and correlation, and tests of
randomness. There are also routines to fit linear regression models using the ranks of the observations.

The emphasis in this chapter is on testing; if you wish to compute nonparametric correlations you are
referred to Chapter G02, which contains several routines for that purpose.

There are a large number of nonparametric tests available. A selection of some of the more commonly
used tests are included in this chapter.

2 Background to the Problems

2.1 Parametric and Nonparametric Hypothesis Testing

Classical techniques of statistical inference often make numerous or stringent assumptions about the
nature of the population or populations from which the observations have been drawn. For instance, a
testing procedure might assume that the set of data was obtained from Normally distributed populations.
It might be further assumed that the populations involved have equal variances, or that there is a known
relationship between the variances. In the Normal case, the test statistic derived would usually be a
function of the sample means and variances, since a Normal distribution is completely characterised by
its mean and variance. Alternatively, it might be assumed that the set of data was obtained from other
distributions of known form, such as the gamma or the exponential. Again, a testing procedure would
be devised based upon the parameters characterising such a distribution.

The type of hypothesis testing just described is usually termed parametric inference. Distributional
assumptions are made which imply that the parameters of the chosen distribution, as estimated from the
data, are sufficient to characterise the difference in distribution between the populations.

However, problems arise with parametric methods of inference when these assumptions cannot be
made, either because they are contrary to the known nature of the mechanism generating a population,
or because the data obviously do not satisfy the assumptions. Some parametric procedures become
unreliable under relatively minor departures from the hypothesised distributional form. In the Normal
case for example, tests on variances are extremely sensitive to departures from Normality in the
underlying distribution.

There are also common situations, particularly in the behavioural sciences, where much more basic
assumptions than that of Normality cannot be made. Data values are not always measured on
continuous or even numerical scales. They may be simply categorical in nature, relating to such
quantities as voting intentions or food preferences.

Techniques of inference are therefore required which do not involve making detailed assumptions about
the underlying mechanism generating the observations. The routines in this chapter perform such
distribution-free tests, evaluating from a set of data the value of a test statistic, together with an
estimate of its significance.

For a comparison of some distribution-based and distribution-free tests, the interested reader is referred
to Chapter 31 of Kendall and Stuart (1973). For a briefer and less mathematical account, see Conover
(1980) or Siegel (1956).

2.2 Types of Nonparametric Test

This introduction is concerned with explaining the basic concepts of hypothesis testing, and some
familiarity with the subject is assumed. Chapter 22 of Kendall and Stuart (1973) contains a detailed
account, and the outline given in Conover (1980) or Siegel (1956) should be sufficient to understand
this section.

Nonparametric tests may be grouped into five categories:

1. Tests of location

2. Tests of dispersion
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3. Distribution-free tests of fit

4. Tests of association or correlation

5. Tests of randomness

Tests can also be categorised by the design that they can be applied to:

1. One sample

2. Two related (paired) samples

3. Two independent samples

4. k > 2ð Þ related (matched) samples

5. k > 2ð Þ independent samples

A third classification of a test relates to the type of data to which it may be applied. Variables are
recorded on four scales of measurement: nominal (categorical), ordinal, interval, and ratio.

The nominal scale is used only to categorise data; for each category a name, perhaps numeric, is
assigned so that two different categories will be identified by distinct names. The ordinal scale, as well
as categorising the observations, orders the categories. Each is assigned a distinct identifying symbol, in
such a way that the order of the symbols corresponds to the order of the categories. (The most common
system for ordinal variables is to assign numerical identifiers to the categories, though if they have
previously been assigned alphabetic characters, these may be transformed to a numerical system by any
convenient method which preserves the ordering of the categories.) The interval scale not only
categorises and orders the observations, but also quantifies the comparison between categories; this
necessitates a common unit of measurement and an arbitrary zero-point. Finally, the ratio scale is
similar to the interval scale, except that it has an absolute (as opposed to arbitrary) zero-point.

It is apparent that there are many possible combinations of these three characteristics of a problem, and
many nonparametric tests have been derived to meet the different experimental situations. However, it
is not usually a difficult matter to choose an appropriate test given the nature of the data and the type of
test which one wishes to perform.

2.3 Principles of Nonparametric Tests

In this section, each type of test is considered in turn, and remarks are made on the design principles on
which each is based.

2.3.1 Location tests

These tests are primarily concerned with inferences about differences in the location of the population
distributions. In some cases, however, the tests are only concerned with inferences about the population
distributions unless added assumptions are made which allow the hypotheses to be stated in terms of the
location parameters.

For most of these tests, data must be measured numerically on at least an ordinal scale, in order that a
measure of location may be devised. Ordinal measurement implies that pairs of values may be
compared and numerically ordered. A vector of n values may therefore be ranked from smallest to
largest using the ordering operation. The resultant ranks contain all the information in the original data,
but have the advantage that tests may be derived easily based on them, and no testing bias is introduced
by the use of ordinal values as though they were measured on an interval scale. Note that the
requirement of the measurement scale being ordinal does not imply that all tests of this type involve the
actual ranking of the original data.

For the one-sample or matched pairs case, test statistics may be derived based on the number of
observations (or differences) lying either side of zero (or some other fixed value), as in the sign test, for
example. Under the hypothesis that the median of the single population is zero or the difference in the
medians of the paired populations is zero the number of positive and negative values should be similar.
The Wilcoxon signed rank test goes further than the sign test by taking into account the magnitude of
the single sample values or of the differences.
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For the two-sample case, if median equality is hypothesised, the distribution of the ranks of each
sample in the total pooled sample should be similar. Test statistics, such as the Mann–Whitney U
statistic, which are based on the ranks of each sample and summarise the differences in rank sums for
each sample, may be computed. These statistics are referred to their expected distributions under the
null hypothesis. The above hypothesis can also be tested using the median test. Its test statistic is based
on the number of values in each sample which are greater than or less than the pooled median of the
two samples, rather than the ranks of each sample.

If median equality is hypothesised for several samples, the distribution ranks of the members of each
sample in the total pooled sample should be ‘homogeneous’. Test statistics can be derived which
summarise the differences in rank sums for the various samples, and again referred to their expected
distributions under the null hypothesis.

2.3.2 Dispersion tests

These provide a distribution-free alternative to such tests as the F -(variance-ratio) test for variance
equality, which is very sensitive to non-Normality in the generating distribution.

The dispersions of two or more samples may be compared by pooling the samples and observing the
distribution of ranks in the ranked pooled sample. Equal dispersions should be recognizable by there
being a wide distribution of the extreme ranks between the members of different samples. Statistics are
evaluated which quantify the dispersion of ranks between samples, and their significance may be found
by evaluating their permutation distributions assuming that no dispersion difference exists.

2.3.3 Tests of fit

In the one-sample case, these are tests which investigate whether or not a sample of observations can be
considered to follow a specified distribution. In the two-sample case, a test of fit investigates whether
the two samples can be considered to have arisen from a common probability distribution.

For the one-sample problem, the null hypothesis may specify only the distributional form, for example
Normal �; �2

� �
, or it may incorporate actual parameter values, for example Poisson with mean 10.

Some tests of this type proceed by forming the sample cumulative distribution function of the
observations and computing a statistic whose value measures the departure of the sample cumulative
distribution function from that of the null distribution. In the two-sample case, a statistic is computed
which provides a measure of the difference between the sample cumulative distribution function of each
sample. These tests are known as one- or two-sample Kolmogorov–Smirnov tests.

The significance for these test statistics can be computed directly for moderate sample sizes but for
larger sample sizes asymptotic results are often used.

Another goodness-of-fit test is the �2 test. For this test, the data is first grouped into intervals and then
the difference between the observed number of observations in each interval and the number expected,
if the null hypothesis is true, is computed. A statistic based on these differences has asymptotically a
�2-distribution.

2.3.4 Association and correlation tests

These are distribution-free analogues of tests based on such statistics as Pearson product-moment
correlation coefficients.

Essentially they are based on rankings rather than the observed data values, and involve summing some
function of the rank differences between the samples to obtain an overall measure of the concordance of
ranks. This measure can be standardized by dividing by its theoretical maximum value for the given
sample size and number of samples.

Significance levels may be calculated for quite small sample sizes by using an approximation to a
�2-distribution.
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2.3.5 Tests of randomness

These tests are designed to investigate sequences of observations and attempt to identify any deviations
from randomness. There are clearly many ways in which a sequence may deviate from randomness. The
tests provided here primarily detect some form of dependency between the observations in the
sequence.

The most common application of this type of tests is in the area of random number generation. The
tests are used as empirical tests on a sample of output from a generator to establish local randomness.
Theoretical tests are necessary and useful for testing global randomness. Some of the more common
empirical tests are discussed below.

A runs-up or runs-down test investigates whether runs of different lengths are occurring with greater or
lesser frequency than would be expected under the null hypothesis of randomness. A run up is defined
as a sequence of observations in which each observation is larger than the previous observation. The
run up ends when an observation is smaller than the previous observation. A test statistic, modified to
take into account the dependency between successive run lengths, is computed. The test statistic has an
asymptotic �2-distribution.

The pairs test investigates the condition that, under the null hypothesis of randomness, the non-
overlapping 2-tuples (pairs) of a sequence of observations from the interval 0; 1½ � should be uniformly
distributed over the unit square ( 0; 1½ �2). The triplets test follows the same idea but considers 3-tuples
and checks for uniformity over the unit cube ( 0; 1½ �3). In each test, a test statistic, based on differences
between the observed and expected distribution of the 2- or 3-tuples, is computed which has an
asymptotic �2-distribution.

The gaps test considers the ‘gaps’ between successive occurrences of observations in the sequence lying
in a specified range. Under the null hypothesis of randomness, the gap length should follow a geometric
distribution with a parameter based on the length of the specified range, relative to the overall length of
the interval containing all possible observations. The expected number of ‘gaps’, of a certain length,
under the null hypothesis may thus be computed together with a test statistic based on the differences
between the observed and expected numbers of ‘gaps’ of different length. Again the test statistic has an
asymptotic �2-distribution.

Other empirical tests such as the �2 goodness-of-fit test and the one-sample Kolmogorov–Smirnov test
may be used to investigate a sequence for non-uniformity.

2.4 Regression using ranks

If you wish to fit a regression model but is unsure about what transformation to take for the observed
response to obtain a linear model, then one strategy is to replace response observations by their ranks.
Estimates for regression parameters can be found by maximizing a likelihood function based on the
ranks and the proposed regression model. The present routines give approximate estimates which are
adequate when the signal-to-noise ratio is small, which is often the case with data from the medical and
social sciences. Approximate standard errors of estimated regression coefficients are found. Also �2

statistics can be used to test the null hypothesis of no regression effect.

3 Recommendations on Choice and Use of Available Routines

The routines are grouped into six categories. The fourth character of the routine name is used to denote
this categorisation.

Sub-chapter Type of test
G08A Location
G08B Dispersion
G08C Fit
G08D Correlation and Association
G08E Randomness
G08R Regression using Ranks
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3.1 G08A – Location Tests

3.1.1 One-sample or matched-pairs case

Note that a random sample of matched pairs, (xi; yi), may be reduced to a single sample by considering
the differences, di ¼ xi � yi say, of each pair. The matched pair may be thought of as a single
observation on a bivariate random variable.

G08AAF performs the sign test on two paired samples. Each pair is classified as a þ or � depending on
the sign of the difference between the two data values within the pair. Under the assumptions that the di
are mutually independent and that the observations are measured on at least an ordinal scale, the sign
test tests the hypothesis that for any pair sampled from the population distribution,
Probability þð Þ ¼ Probability �ð Þ. The hypothesis may be stated in terms of the equality of the location
parameters but the test is no longer regarded as unbiased and consistent unless further assumptions are
made. If you wish to test the hypothesis that the location parameters differ by a fixed amount then that
amount must be added or subtracted from one of the samples as required before calling G08AAF.

G08AGF performs the one-sample Wilcoxon signed-rank test. The test may be used to test if the
median of the population from which the random sample was taken is equal to some specified value
(commonly used to test if the median is zero). In this test not only is the sign of the difference between
the data values and the hypothesised median value important but also the magnitude of this difference.
Thus, where the magnitude of the differences (or the data values themselves if the hypothesised median
value is zero) is important this test is preferred to the sign test because it is more powerful. The test
may easily be used to test whether the medians of two related populations are equal by taking the
differences between the paired sample values and then testing the hypothesis that the median of the
differences is zero, using the single sample of differences. The significance of the test statistic may be
computed exactly for a moderate sample size but for a larger sample a Normal approximation is used.
The exact method allows for ties in the differences.

3.1.2 Two independent samples

G08ACF performs the median test and G08AHF performs the Mann–Whitney U test.

For both tests the two samples are assumed to be random samples from their respective populations and
mutually independent. The measurement scale must be at least ordinal.

Note that, although the median test may be generalized to more than two samples, G08ACF only deals
with the two-sample case. For the median test, each observation is classified as being above or below
the pooled median of the two samples. It may be used to test the hypothesis that the two population
medians are equal; under the assumption that if the two population medians are equal then the
probability of an observation exceeding the pooled median is the same for both populations.

The Mann–Whitney U test involves the ranking of the pooled sample. The Mann–Whitney test thus
attaches importance to the position of each observation relative to the others and not just its position
relative to the median of the pooled sample as in the median test. Thus when the magnitude of the
differences between the observations is meaningful the Mann–Whitney U test is preferred as it is more
powerful than the median test. The test tests whether the two population distributions are the same or
not. If it is assumed that any difference between the two population distributions is a difference in the
location then the test is testing whether the population means are the same or not.

In G08AHF, the significance of the U test statistic is computed using a Normal approximation. If the
exact significance is desired then either G08AJF or G08AKF must be used. G08AJF computes the exact
significance of the U test statistic for the case where there are no ties in the pooled sample. It requires
only the value of the statistic and the two sample sizes. G08AKF computes the exact significance of the
U test statistic for the case where there are ties in the pooled sample. It requires the value of the
statistic and the two sample sizes and the ranks of the observations of the two samples as provided by
G08AHF. G08AHF returns an indicator to inform you whether or not ties were found in the pooled
sample.
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3.1.3 More than two related samples

G08AEF performs the Friedman two-way analysis of variance. This test may in some ways be regarded
as an extension of the sign test to the case of k (k > 2) related samples. The data is in the form of a
number of multivariate observations which are assumed to be mutually independent. This test also
assumes that the measurement within each observation across the k variates is at least ordinal so that
the observation for each variate may be ranked according to some criteria.

For data which may be defined as either a zero or one, that is binary response data, G08ALF performs
Cochran's Q-test to examine differences between the treatments within blocks.

3.1.4 More than two independent samples

G08AFF performs the Kruskal–Wallis one-way analysis of variance. The test assumes that each sample
is a random sample from its respective distributions and in addition that there is both independence
within the samples and mutual independence among the various samples. The test requires that the
measurement scale is at least ordinal so that the pooled sample may be ranked.

3.2 G08B – Dispersion Tests

G08BAF performs either Mood's or David's test for dispersion differences, or both, for two independent
samples of possibly unequal size.

For both tests the null hypothesis is that the two samples have equal dispersions, the routine returning a
probability value which may be used to perform the test against a one-sided or two-sided alternative, in
a way described in the routine document.

3.3 G08C – Tests of Fit

G08CBF and G08CCF both perform the one-sample Kolmogorov–Smirnov distribution test. This test is
used to test the null hypothesis that the random sample arises from a specified null distribution against
one of three possible alternatives.

With G08CBF you may choose a null distribution from one of the following: the uniform, Normal,
gamma, beta, binomial, exponential, and Poisson. The parameter values may either be specified by you
or estimated from the data by the routine. With G08CCF you must provide a function which will
compute the value of the cumulative distribution function at any specified point for the null distribution.
The alternative hypotheses available correspond to one- and two-sided tests. The distribution of the test
statistic is computed using an exact method for a moderate sample size. For a larger sample size an
asymptotic result is used.

G08CDF performs the two-sample Kolmogorov–Smirnov test which tests the null hypothesis that the
two samples may be considered to have arisen from the same population distribution against one of
three possible alternative hypotheses, again corresponding to one-sided and two-sided tests. The
distribution of the test statistic is computed using an exact method for moderate sample sizes, but for
larger samples approximations based on asymptotic results are used.

Note that G01EYF and G01EZF are available for computing the distributions of the one-sample and
two-sample Kolmogorov–Smirnov statistics respectively.

G08CGF performs the �2 goodness-of-fit test on a single sample which again tests the null hypothesis
that the sample arises from a specified null distribution. You may choose a null distribution from one of
the following: the Normal, uniform, exponential, �2, and gamma; or may define the distribution by
specifying the probability that an observation lies in a certain interval for a range of intervals covering
the support of the null distribution. The significance of this test is computed using the �2-distribution as
an approximation to the distribution of the test statistic.

Several routines are available to perform Anderson–Darling goodness-of-fit tests:

G08CJF for the case of uniformly distributed data;

G08CKF for a full-unspecified Normal distribution;

G08CLF for an unspecified exponential distribution.
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Note that data from a fully-specified distribution can be transformed to standard uniform by applying its
cumulative distribution function. In all other cases use G08CHF to calculate the Anderson–Darling
statistic, A2, and simulate its probability.

Tests of Normality may also be carried out using routines in Chapter G01.

3.4 G08D – Association and Correlation Tests

G08DAF computes Kendall's coefficient of concordance on k independent ranks of n objects. An
example of its application would be to compare for consistency the results of a group of IQ tests
performed on the same set of people. Allowance is made for tied rankings, and the approximate
significance of the computed coefficient is found.

3.5 G08E – Tests of Randomness

G08EAF performs the runs-up test on a sequence of observations. The runs-down test may be
performed by multiplying each observation by �1 before calling the routine. All runs whose length is
greater than or equal to a certain chosen length will be treated as a single group.

G08EBF performs the pairs (serial) test on a sequence of observations from the interval 0; 1½ �. The
number of equal sub-intervals into which the interval 0; 1½ � is to be divided must be specified.

G08ECF performs the triplets test on a sequence of observations from the interval 0; 1½ �. The number of
equal sub-intervals into which the interval 0; 1½ � is to be divided must be specified.

G08EDF performs the gaps test on a sequence of observations. The total length of the interval
containing all possible values the observations could take must be specified together with the interval
being used to define the ‘gaps’. All ‘gaps’ whose length is greater than or equal to a certain chosen
length will be treated as a single group.

3.6 G08R – Regression Using Ranks

G08RAF fits a multiple linear regression model in which the observations on the response variable are
replaced by their ranks.

G08RBF performs the same function but takes into account observations which may be right-censored.

3.7 Related Routines

Tests of location and distribution may be based on scores which are estimates of the expected values of
the order statistics. G01DHF may be used to compute Normal scores, an approximation to the Normal
scores (Blom, Tukey or van der Waerden scores) or Savage (exponential) scores. For more accurate
Normal scores G01DAF may be used. Other routines in sub-chapter G01D may be used to test for
Normality.

4 Functionality Index

Regression using ranks,
right-censored data .......................................................................................................... G08RBF
uncensored data............................................................................................................... G08RAF

Tests of association and correlation,
Kendall's coefficient of concordance............................................................................... G08DAF

Tests of dispersion,
Mood's and David's tests on two samples of unequal size ............................................. G08BAF

Tests of fit,
A2 and its probability of for a fully-unspecified Normal distribution............................. G08CKF
A2 and its probability of for an unspecified exponential distribution ............................. G08CLF
A2 and its probability of for uniformly distributed data................................................. G08CJF
Anderson–Darling test statistic A2 ................................................................................. G08CHF
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Kolmogorov–Smirnov one-sample distribution test,
for a user-supplied distribution .................................................................................. G08CCF
for standard distributions ........................................................................................... G08CBF

Kolmogorov–Smirnov two-sample distribution test ........................................................ G08CDF
�2 goodness-of-fit test..................................................................................................... G08CGF

Tests of location,
Cochran Q test on cross-classified binary data ............................................................... G08ALF
exact probabilities for Mann–Whitney U statistic,

no ties in pooled sample............................................................................................ G08AJF
ties in pooled sample ................................................................................................. G08AKF

Friedman two-way analysis of variance on k matched samples ..................................... G08AEF
Kruskal–Wallis one-way analysis of variance on k samples of unequal size ................. G08AFF
Mann–Whitney U test on two samples of possibly unequal size ................................... G08AHF
Median test on two samples of unequal size .................................................................. G08ACF
sign test on two paired samples...................................................................................... G08AAF
Wilcoxon one sample signed rank test ........................................................................... G08AGF

Tests of randomness,
Gaps test ......................................................................................................................... G08EDF
pairs (serial) test ............................................................................................................. G08EBF
runs up or runs down test............................................................................................... G08EAF
triplets test ...................................................................................................................... G08ECF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill
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NAG Library Routine Document

G08AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08AAF performs the Sign test on two related samples of size n.

2 Specification

SUBROUTINE G08AAF (X, Y, N, ISGN, N1, P, IFAIL)

INTEGER N, ISGN, N1, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), P

3 Description

The Sign test investigates the median difference between pairs of scores from two matched samples of
size n, denoted by xi; yif g, for i ¼ 1; 2; . . . ; n. The hypothesis under test, H0, often called the null
hypothesis, is that the medians are the same, and this is to be tested against a one- or two-sided
alternative H1 (see below).

G08AAF computes:

(a) the test statistic S, which is the number of pairs for which xi < yi;

(b) the number n1 of non-tied pairs xi 6¼ yið Þ;
(c) the lower tail probability p corresponding to S (adjusted to allow the complement 1� pð Þ to be

used in an upper one tailed or a two tailed test). p is the probability of observing a value � S if
S < 1

2n1 , or of observing a value < S if S > 1
2n1 , given that H0 is true. If S ¼ 1

2n1 , p is set to 0:5.

Suppose that a significance test of a chosen size � is to be performed (i.e., � is the probability of
rejecting H0 when H0 is true; typically � is a small quantity such as 0:05 or 0:01). The returned value
of p can be used to perform a significance test on the median difference, against various alternative
hypotheses H1, as follows

(i) H1: median of x 6¼ median of y. H0 is rejected if 2�min p; 1� pð Þ < �.

(ii) H1: median of x > median of y. H0 is rejected if p < �.

(iii) H1: median of x < median of y. H0 is rejected if 1� p < �.

4 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: XðNÞ – REAL (KIND=nag_wp) array Input
2: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ and YðiÞ must be set to the ith pair of data values, xi; yif g, for i ¼ 1; 2; . . . ; n.

3: N – INTEGER Input

On entry: n, the size of each sample.

Constraint: N � 1.
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4: ISGN – INTEGER Output

On exit: the Sign test statistic, S.

5: N1 – INTEGER Output

On exit: the number of non-tied pairs, n1.

6: P – REAL (KIND=nag_wp) Output

On exit: the lower tail probability, p, corresponding to S.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

IFAIL ¼ 2

N1 ¼ 0, i.e., the samples are identical.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The tail probability, p, is computed using the relationship between the binomial and beta distributions.
For n1 < 120, p should be accurate to at least 4 significant figures, assuming that the machine has a
precision of 7 or more digits. For n1 � 120, p should be computed with an absolute error of less than
0:005. For further details see G01EEF.
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8 Parallelism and Performance

G08AAF is not threaded in any implementation.

9 Further Comments

The time taken by G08AAF is small, and increases with n.

10 Example

This example is taken from page 69 of Siegel (1956). The data relates to ratings of ‘insight into paternal
discipline’ for 17 sets of parents, recorded on a scale from 1 to 5.

10.1 Program Text

Program g08aafe

! G08AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08aaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p
Integer :: ifail, isgn, n, n1

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’G08AAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n

Allocate (x(n),y(n))

! Read in data
Read (nin,*) x(1:n)
Read (nin,*) y(1:n)

! Display title
Write (nout,*) ’Sign test’
Write (nout,*)

! Display input data
Write (nout,*) ’Data values’
Write (nout,*)
Write (nout,99999) x(1:n)
Write (nout,99999) y(1:n)

! Perform the sign test
ifail = 0
Call g08aaf(x,y,n,isgn,n1,p,ifail)

! Display results
Write (nout,*)
Write (nout,99998) ’Test statistic ’, isgn
Write (nout,99998) ’Observations ’, n1
Write (nout,99997) ’Lower tail prob.’, p
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99999 Format (4X,20F3.0)
99998 Format (1X,A,I5)
99997 Format (1X,A,F6.3)

End Program g08aafe

10.2 Program Data

G08AAF Example Program Data
17 :: N

4.0 4.0 5.0 5.0 3.0 2.0 5.0 3.0 1.0
5.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0 :: End of X
2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0
3.0 2.0 2.0 5.0 2.0 5.0 3.0 1.0 :: End of Y

10.3 Program Results

G08AAF Example Program Results

Sign test

Data values

4. 4. 5. 5. 3. 2. 5. 3. 1. 5. 5. 5. 4. 5. 5. 5. 5.
2. 3. 3. 3. 3. 3. 3. 3. 2. 3. 2. 2. 5. 2. 5. 3. 1.

Test statistic 3
Observations 14
Lower tail prob. 0.029
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NAG Library Routine Document

G08ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08ACF performs the Median test on two independent samples of possibly unequal size.

2 Specification

SUBROUTINE G08ACF (X, N, N1, W, I1, I2, P, IFAIL)

INTEGER N, N1, I1, I2, IFAIL
REAL (KIND=nag_wp) X(N), W(N), P

3 Description

The Median test investigates the difference between the medians of two independent samples of sizes
n1 and n2, denoted by:

x1; x2; . . . ; xn1

and

xn1þ1; xn1þ2; . . . ; xn;

where n ¼ n1 þ n2.
The hypothesis under test, H0, often called the null hypothesis, is that the medians are the same, and
this is to be tested against the alternative hypothesis H1 that they are different.

The test proceeds by forming a 2� 2 frequency table, giving the number of scores in each sample
above and below the median of the pooled sample:

Sample 1 Sample 2 Total

Scores < pooled median i1 i2 i1 þ i2
Scores � pooled median n1 � i1 n2 � i2 n� i1 þ i2ð Þ
Total n1 n2 n

Under the null hypothesis, H0, we would expect about half of each group's scores to be above the
pooled median and about half below, that is, we would expect i1, to be about n1=2 and i2 to be about
n2=2.

G08ACF returns:

(a) the frequencies i1 and i2;

(b) the probability, p, of observing a table at least as ‘extreme’ as that actually observed, given that H0

is true. If n < 40, p is computed directly (‘Fisher's exact test’); otherwise a �2
1 approximation is

used (see G01AFF).

H0 is rejected by a test of chosen size � if p < �.

4 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill
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5 Arguments

1: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the first n1 elements of X must be set to the data values in the first sample, and the
next n2 ( ¼ N� n1) elements to the data values in the second sample.

2: N – INTEGER Input

On entry: the total of the two sample sizes, n ( ¼ n1 þ n2).
Constraint: N � 2.

3: N1 – INTEGER Input

On entry: the size of the first sample n1.

Constraint: 1 � N1 < N.

4: WðNÞ – REAL (KIND=nag_wp) array Workspace

5: I1 – INTEGER Output

On exit: the number of scores in the first sample which lie below the pooled median, i1.

6: I2 – INTEGER Output

On exit: the number of scores in the second sample which lie below the pooled median, i2.

7: P – REAL (KIND=nag_wp) Output

On exit: the tail probability p corresponding to the observed dichotomy of the two samples.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, N1 < 1,
or N1 � N.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The probability returned should be accurate enough for practical use.

8 Parallelism and Performance

G08ACF is not threaded in any implementation.

9 Further Comments

The time taken by G08ACF is small, and increases with n.

10 Example

This example is taken from page 112 of Siegel (1956). The data relate to scores of ‘oral socialisation
anxiety’ in 39 societies, which can be separated into groups of size 16 and 23 on the basis of their
attitudes to illness.

10.1 Program Text

Program g08acfe

! G08ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08acf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p
Integer :: i1, i2, ifail, n, n1

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’G08ACF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n, n1
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Allocate (x(n),w(n))

! Read in data
Read (nin,*) x(1:n)

! Display title
Write (nout,*) ’Median test’
Write (nout,*)

! Output data
Write (nout,*) ’Data values’
Write (nout,*)
Write (nout,99999) ’ Group 1 ’, x(1:n1)
Write (nout,*)
Write (nout,99999) ’ Group 2 ’, x((n1+1):n)

! Perform median test
ifail = 0
Call g08acf(x,n,n1,w,i1,i2,p,ifail)

! Display results
Write (nout,*)
Write (nout,99998) i1, ’ scores below median in group 1’
Write (nout,99998) i2, ’ scores below median in group 2’
Write (nout,*)
Write (nout,99997) ’ Significance ’, p

99999 Format (1X,A,8F4.0,/,(14X,8F4.0))
99998 Format (1X,I6,A)
99997 Format (1X,A,F8.5)

End Program g08acfe

10.2 Program Data

G08ACF Example Program Data
39 16 :: N,N1
13.0 6.0 12.0 7.0 12.0 7.0 10.0
7.0 10.0 7.0 10.0 7.0 10.0 8.0
9.0 8.0 17.0 6.0 16.0 8.0 15.0
8.0 15.0 10.0 15.0 10.0 14.0 10.0

14.0 11.0 14.0 11.0 13.0 12.0 13.0
12.0 13.0 12.0 12.0 :: End of X

10.3 Program Results

G08ACF Example Program Results

Median test

Data values

Group 1 13. 6. 12. 7. 12. 7. 10. 7.
10. 7. 10. 7. 10. 8. 9. 8.

Group 2 17. 6. 16. 8. 15. 8. 15. 10.
15. 10. 14. 10. 14. 11. 14. 11.
13. 12. 13. 12. 13. 12. 12.

13 scores below median in group 1
6 scores below median in group 2

Significance 0.00088

G08ACF NAG Library Manual

G08ACF.4 (last) Mark 26



NAG Library Routine Document

G08AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08AEF performs the Friedman two-way analysis of variance by ranks on k related samples of size n.

2 Specification

SUBROUTINE G08AEF (X, LDX, K, N, W1, W2, FR, P, IFAIL)

INTEGER LDX, K, N, IFAIL
REAL (KIND=nag_wp) X(LDX,N), W1(K), W2(K), FR, P

3 Description

The Friedman test investigates the score differences between k matched samples of size n, the scores in
the ith sample being denoted by

xi1; xi2; . . . ; xin:

(Thus the sample scores may be regarded as a two-way table with k rows and n columns.) The
hypothesis under test, H0, often called the null hypothesis, is that the samples come from the same
population, and this is to be tested against the alternative hypothesis H1 that they come from different
populations.

The test is based on the observed distribution of score rankings between the matched observations in
different samples.

The test proceeds as follows

(a) The scores in each column are ranked, rij denoting the rank within column j of the observation in
row i. Average ranks are assigned to tied scores.

(b) The ranks are summed over each row to give rank sums ti ¼
Xn
j¼1

rij, for i ¼ 1; 2; . . . ; k.

(c) The Friedman test statistic F is computed, where

F ¼ 12

nk kþ 1ð Þ
Xk
i¼1

ti � 1
2n kþ 1ð Þ

� 2
:

G08AEF returns the value of F , and also an approximation, p, to the significance of this value. (F
approximately follows a �2

k�1 distribution, so large values of F imply rejection of H0). H0 is rejected
by a test of chosen size � if p < �. The approximation p is acceptable unless k ¼ 4 and n < 5, or k ¼ 3
and n < 10, or k ¼ 2 and n < 20; for k ¼ 3 or 4, tables should be consulted (e.g., Siegel (1956)); for
k ¼ 2 the Sign test (see G08AAF) or Wilcoxon test (see G08AGF) is in any case more appropriate.

4 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill
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5 Arguments

1: XðLDX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to the value, xij , of observation j in sample i, for i ¼ 1; 2; . . . ; k and
j ¼ 1; 2; . . . ; n.

2: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G08AEF
is called.

Constraint: LDX � K.

3: K – INTEGER Input

On entry: k, the number of samples.

Constraint: K � 2.

4: N – INTEGER Input

On entry: n, the size of each sample.

Constraint: N � 1.

5: W1ðKÞ – REAL (KIND=nag_wp) array Workspace
6: W2ðKÞ – REAL (KIND=nag_wp) array Workspace

7: FR – REAL (KIND=nag_wp) Output

On exit: the value of the Friedman test statistic, F .

8: P – REAL (KIND=nag_wp) Output

On exit: the approximate significance, p, of the Friedman test statistic.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

IFAIL ¼ 2

On entry, LDX < K.

G08AEF NAG Library Manual

G08AEF.2 Mark 26



IFAIL ¼ 3

On entry, K � 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For estimates of the accuracy of the significance p, see G01ECF. The �2 approximation is acceptable
unless k ¼ 4 and n < 5, or k ¼ 3 and n < 10, or k ¼ 2 and n < 20.

8 Parallelism and Performance

G08AEF is not threaded in any implementation.

9 Further Comments

The time taken by G08AEF is approximately proportional to the product nk.

If k ¼ 2, the Sign test (see G08AAF) or Wilcoxon test (see G08AGF) is more appropriate.

10 Example

This example is taken from page 169 of Siegel (1956). The data relates to training scores of three
matched samples of 18 rats, trained under three different patterns of reinforcement.

10.1 Program Text

Program g08aefe

! G08AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08aef, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fr, p
Integer :: i, ifail, k, ldx, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w1(:), w2(:), x(:,:)

! .. Executable Statements ..
Write (nout,*) ’G08AEF Example Program Results’
Write (nout,*)
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! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) k, n

ldx = k
Allocate (x(ldx,n),w1(k),w2(k))

! Read in data
Read (nin,*)(x(i,1:n),i=1,k)

! Display title
Write (nout,*) ’Friedman test’
Write (nout,*)
Flush (nout)

! Display input data
ifail = 0
Call x04caf(’General’,’ ’,k,n,x,ldx,’Data values’,ifail)

! Perform ANOVA
ifail = 0
Call g08aef(x,ldx,k,n,w1,w2,fr,p,ifail)

! Display results
Write (nout,*)
Write (nout,99999) ’Test statistic ’, fr
Write (nout,99998) ’Degrees of freedom ’, k - 1
Write (nout,99999) ’Significance ’, p

99999 Format (1X,A,F6.3)
99998 Format (1X,A,I6)

End Program g08aefe

10.2 Program Data

G08AEF Example Program Data
3 18 :: K,N
1.0 2.0 1.0 1.0 3.0 2.0 3.0 1.0 3.0
3.0 2.0 2.0 3.0 2.0 2.5 3.0 3.0 2.0
3.0 3.0 3.0 2.0 1.0 3.0 2.0 3.0 1.0
1.0 3.0 3.0 2.0 3.0 2.5 2.0 2.0 3.0
2.0 1.0 2.0 3.0 2.0 1.0 1.0 2.0 2.0
2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 :: End of X

10.3 Program Results

G08AEF Example Program Results

Friedman test

Data values
1 2 3 4 5 6 7

1 1.0000 2.0000 1.0000 1.0000 3.0000 2.0000 3.0000
2 3.0000 3.0000 3.0000 2.0000 1.0000 3.0000 2.0000
3 2.0000 1.0000 2.0000 3.0000 2.0000 1.0000 1.0000

8 9 10 11 12 13 14
1 1.0000 3.0000 3.0000 2.0000 2.0000 3.0000 2.0000
2 3.0000 1.0000 1.0000 3.0000 3.0000 2.0000 3.0000
3 2.0000 2.0000 2.0000 1.0000 1.0000 1.0000 1.0000

15 16 17 18
1 2.5000 3.0000 3.0000 2.0000
2 2.5000 2.0000 2.0000 3.0000
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3 1.0000 1.0000 1.0000 1.0000

Test statistic 8.583
Degrees of freedom 2
Significance 0.014
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NAG Library Routine Document

G08AFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08AFF performs the Kruskal–Wallis one-way analysis of variance by ranks on k independent samples
of possibly unequal sizes.

2 Specification

SUBROUTINE G08AFF (X, LX, L, K, W, H, P, IFAIL)

INTEGER LX, L(K), K, IFAIL
REAL (KIND=nag_wp) X(LX), W(LX), H, P

3 Description

The Kruskal–Wallis test investigates the differences between scores from k independent samples of
unequal sizes, the ith sample containing li observations. The hypothesis under test, H0, often called the
null hypothesis, is that the samples come from the same population, and this is to be tested against the
alternative hypothesis H1 that they come from different populations.

The test proceeds as follows:

(a) The pooled sample of all the observations is ranked. Average ranks are assigned to tied scores.

(b) The ranks of the observations in each sample are summed, to give the rank sums Ri, for
i ¼ 1; 2; . . . ; k.

(c) The Kruskal–Wallis' test statistic H is computed as:

H ¼ 12

N N þ 1ð Þ
Xk
i¼1

R2
i

li
� 3 N þ 1ð Þ; where N ¼

Xk
i¼1
li;

i.e., N is the total number of observations. If there are tied scores, H is corrected by dividing by:

1�
P

t3 � t
� �
N3 �N

where t is the number of tied scores in a sample and the summation is over all tied samples.

G08AFF returns the value of H, and also an approximation, p, to the probability of a value of at least
H being observed, H0 is true. (H approximately follows a �2

k�1 distribution). H0 is rejected by a test of
chosen size � if p < �: The approximation p is acceptable unless k ¼ 3 and l1, l2 or l3 � 5 in which
case tables should be consulted (e.g., O of Siegel (1956)) or k ¼ 2 (in which case the Median test (see
G08ACF) or the Mann–Whitney U test (see G08AHF) is more appropriate).

4 References

Moore P G, Shirley E A and Edwards D E (1972) Standard Statistical Calculations Pitman

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill
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5 Arguments

1: XðLXÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of X must contain the observations in the K samples. The first l1 elements
must contain the scores in the first sample, the next l2 those in the second sample, and so on.

2: LX – INTEGER Input

On entry: N , the total number of observations.

Constraint: LX ¼
Xk
i¼1

LðiÞ.

3: LðKÞ – INTEGER array Input

On entry: LðiÞ must contain the number of observations li in sample i, for i ¼ 1; 2; . . . ; k.

Constraint: LðiÞ > 0, for i ¼ 1; 2; . . . ; k.

4: K – INTEGER Input

On entry: k, the number of samples.

Constraint: K � 2.

5: WðLXÞ – REAL (KIND=nag_wp) array Workspace

6: H – REAL (KIND=nag_wp) Output

On exit: the value of the Kruskal–Wallis test statistic, H.

7: P – REAL (KIND=nag_wp) Output

On exit: the approximate significance, p, of the Kruskal–Wallis test statistic.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 2.

IFAIL ¼ 2

On entry, LðiÞ � 0 for some i, i ¼ 1; 2; . . . ; k.
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IFAIL ¼ 3

On entry, LX 6¼
Xk
i¼1

LðiÞ.

IFAIL ¼ 4

On entry, all the observations were equal.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For estimates of the accuracy of the significance p, see G01ECF. The �2 approximation is acceptable
unless k ¼ 3 and l1; l2 or l3 � 5.

8 Parallelism and Performance

G08AFF is not threaded in any implementation.

9 Further Comments

The time taken by G08AFF is small, and increases with N and k.

If k ¼ 2, the Median test (see G08ACF) or the Mann–Whitney U test (see G08AHF) is more
appropriate.

10 Example

This example is taken from Moore et al. (1972). There are 5 groups of sizes 5, 8, 6, 8 and 8. The data
represent the weight gain, in pounds, of pigs from five different litters under the same conditions.

10.1 Program Text

Program g08affe

! G08AFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08aff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, p
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Integer :: i, ifail, k, lx, nhi, nlo
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: w(:), x(:)
Integer, Allocatable :: l(:)

! .. Intrinsic Procedures ..
Intrinsic :: sum

! .. Executable Statements ..
Write (nout,*) ’G08AFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) k

Allocate (l(k))

! Read in number of observations in each sample
Read (nin,*) l(1:k)

! Calculate total number of observations
lx = sum(l(1:k))

Allocate (x(lx),w(lx))

! Read in data
Read (nin,*) x(1:lx)

! Display title
Write (nout,*) ’Kruskal-Wallis test’
Write (nout,*)

! Display input data
Write (nout,*) ’Data values’
Write (nout,*)
Write (nout,*) ’ Group Observations’
nlo = 1
Do i = 1, k

nhi = nlo + l(i) - 1
Write (nout,99999) i, x(nlo:nhi)
nlo = nlo + l(i)

End Do

! Perform ANOVA
ifail = 0
Call g08aff(x,lx,l,k,w,h,p,ifail)

! Display results
Write (nout,*)
Write (nout,99998) ’Test statistic ’, h
Write (nout,99997) ’Degrees of freedom ’, k - 1
Write (nout,99998) ’Significance ’, p

99999 Format (1X,I5,5X,10F4.0)
99998 Format (1X,A,F9.3)
99997 Format (1X,A,I9)

End Program g08affe

10.2 Program Data

G08AFF Example Program Data
5 :: K
5 8 6 8 8 :: L

23.0 27.0 26.0 19.0 30.0 29.0
25.0 33.0 36.0 32.0 28.0 30.0
31.0 38.0 31.0 28.0 35.0 33.0
36.0 30.0 27.0 28.0 22.0 33.0
34.0 34.0 32.0 31.0 33.0 31.0
28.0 30.0 24.0 29.0 30.0 :: End of X
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10.3 Program Results

G08AFF Example Program Results

Kruskal-Wallis test

Data values

Group Observations
1 23. 27. 26. 19. 30.
2 29. 25. 33. 36. 32. 28. 30. 31.
3 38. 31. 28. 35. 33. 36.
4 30. 27. 28. 22. 33. 34. 34. 32.
5 31. 33. 31. 28. 30. 24. 29. 30.

Test statistic 10.537
Degrees of freedom 4
Significance 0.032
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NAG Library Routine Document

G08AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08AGF performs the Wilcoxon signed rank test on a single sample of size n.

2 Specification

SUBROUTINE G08AGF (N, X, XME, TAIL, ZER, W, WNOR, P, N1, WRK, IFAIL)

INTEGER N, N1, IFAIL
REAL (KIND=nag_wp) X(N), XME, W, WNOR, P, WRK(3*N)
CHARACTER(1) TAIL, ZER

3 Description

The Wilcoxon one-sample signed rank test may be used to test whether a particular sample came from a
population with a specified median. It is assumed that the population distribution is symmetric. The data
consists of a single sample of n observations denoted by x1; x2; . . . ; xn. This sample may arise from the
difference between pairs of observations from two matched samples of equal size taken from two
populations, in which case the test may be used to test whether the median of the first population is the
same as that of the second population.

The hypothesis under test, H0, often called the null hypothesis, is that the median is equal to some
given value Xmedð Þ, and this is to be tested against an alternative hypothesis H1 which is

H1: population median 6¼ Xmed; or

H1: population median > Xmed; or

H1: population median < Xmed,

using a two tailed, upper tailed or lower tailed probability respectively. You select the alternative
hypothesis by choosing the appropriate tail probability to be computed (see the description of argument
TAIL in Section 5).

The Wilcoxon test differs from the Sign test (see G08AAF) in that the magnitude of the scores is taken
into account, rather than simply the direction of such scores.

The test procedure is as follows

(a) For each xi, for i ¼ 1; 2; . . . ; n, the signed difference di ¼ xi �Xmed is found, where Xmed is a
given test value for the median of the sample.

(b) The absolute differences dij j are ranked with rank ri and any tied values of dij j are assigned the
average of the tied ranks. You may choose whether or not to ignore any cases where di ¼ 0 by
removing them before or after ranking (see the description of the argument ZER in Section 5).

(c) The number of nonzero di is found.

(d) To each rank is affixed the sign of the di to which it corresponds. Let si ¼ sign dið Þri.

(e) The sum of the positive-signed ranks, W ¼
P
si>0

si ¼
Xn
i¼1

max si; 0:0ð Þ, is calculated.

G08AGF returns

(a) the test statistic W ;

(b) the number n1 of nonzero di;
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(c) the approximate Normal test statistic z, where

z ¼
W � n1 n1 þ 1ð Þ

4

� �
� sign W � n1 n1 þ 1ð Þ

4

� �
� 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

Xn
i¼1
s2i

s ;

(d) the tail probability, p, corresponding to W , depending on the choice of the alternative hypothesis,
H1.

If n1 � 80, p is computed exactly; otherwise, an approximation to p is returned based on an
approximate Normal statistic corrected for continuity according to the tail specified.

The value of p can be used to perform a significance test on the median against the alternative
hypothesis. Let � be the size of the significance test (that is, � is the probability of rejecting H0 when
H0 is true). If p < � then the null hypothesis is rejected. Typically � might be 0:05 or 0:01.

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Neumann N (1988) Some procedures for calculating the distributions of elementary nonparametric
teststatistics Statistical Software Newsletter 14(3) 120–126

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: N – INTEGER Input

On entry: n, the size of the sample.

Constraint: N � 1.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sample observations, x1; x2; . . . ; xn.

3: XME – REAL (KIND=nag_wp) Input

On entry: the median test value, Xmed.

4: TAIL – CHARACTER(1) Input

On entry: indicates the choice of tail probability, and hence the alternative hypothesis.

TAIL ¼ T
A two tailed probability is calculated and the alternative hypothesis is H1: population
median 6¼ Xmed.

TAIL ¼ U
An upper tailed probability is calculated and the alternative hypothesis is H1: population
median > Xmed.

TAIL ¼ L
A lower tailed probability is calculated and the alternative hypothesis is H1: population
median < Xmed.

Constraint: TAIL ¼ T , U or L .
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5: ZER – CHARACTER(1) Input

On entry: indicates whether or not to include the cases where di ¼ 0:0 in the ranking of the di's.

ZER ¼ Y
All di ¼ 0:0 are included when ranking.

ZER ¼ N
All di ¼ 0:0, are ignored, that is all cases where di ¼ 0:0 are removed before ranking.

Constraint: ZER ¼ Y or N .

6: W – REAL (KIND=nag_wp) Output

On exit: the Wilcoxon rank sum statistic, W , being the sum of the positive ranks.

7: WNOR – REAL (KIND=nag_wp) Output

On exit: the approximate Normal test statistic, z, as described in Section 3.

8: P – REAL (KIND=nag_wp) Output

On exit: the tail probability, p, as specified by the argument TAIL.

9: N1 – INTEGER Output

On exit: the number of nonzero di's, n1.

10: WRKð3� NÞ – REAL (KIND=nag_wp) array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TAIL 6¼ T , U or L .
or ZER 6¼ Y or N .

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

The whole sample is identical to the given median test value.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The approximation used to calculate p when n1 > 80 will return a value with a relative error of less
than 10% for most cases. The error may increase for cases where there are a large number of ties in the
sample.

8 Parallelism and Performance

G08AGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G08AGF increases with n1, until n1 > 80, from which point on the approximation is
used. The time decreases significantly at this point and increases again modestly with n1 for n1 > 80.

10 Example

This example performs the Wilcoxon signed rank test on two matched samples of size 8, taken from
two populations. The distribution of the differences between pairs of observations from the two
populations is assumed to be symmetric. The test is used to test whether the medians of the two
distributions of the populations are equal or not. The test statistic, the approximate Normal statistic and
the two tailed probability are computed and printed.

10.1 Program Text

Program g08agfe

! G08AGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08agf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, w, wnor, xme
Integer :: ifail, n, n1
Character (1) :: tail, zer
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: wrk(:), x(:), y(:), z(:)

! .. Executable Statements ..
Write (nout,*) ’G08AGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size, median test value and details of
! test to perform

Read (nin,*) n, xme, tail, zer

Allocate (x(n),y(n),z(n),wrk(3*n))

! Read in data
Read (nin,*) x(1:n)
Read (nin,*) y(1:n)

! Display title
Write (nout,*) ’Wilcoxon one sample signed ranks test’
Write (nout,*)

! Display input data
Write (nout,*) ’Data values’
Write (nout,99999) x(1:n)
Write (nout,99999) y(1:n)

! Calculate difference
z(1:n) = x(1:n) - y(1:n)

! Perform test
ifail = 0
Call g08agf(n,z,xme,tail,zer,w,wnor,p,n1,wrk,ifail)

! Display results
Write (nout,*)
Write (nout,99998) ’Test statistic = ’, w
Write (nout,99998) ’Normalized test statistic = ’, wnor
Write (nout,99997) ’Degrees of freedom = ’, n1
Write (nout,99998) ’Two tail probability = ’, p

99999 Format (4X,8F5.1)
99998 Format (1X,A,F8.4)
99997 Format (1X,A,I8)

End Program g08agfe

10.2 Program Data

G08AGF Example Program Data
8 0.0 ’T’ ’N’ :: N,XME,TAIL,ZER

82.0 69.0 73.0 43.0 58.0 56.0 76.0 65.0 :: X
63.0 42.0 74.0 37.0 51.0 43.0 80.0 62.0 :: Y

10.3 Program Results

G08AGF Example Program Results

Wilcoxon one sample signed ranks test

Data values
82.0 69.0 73.0 43.0 58.0 56.0 76.0 65.0
63.0 42.0 74.0 37.0 51.0 43.0 80.0 62.0

Test statistic = 32.0000
Normalized test statistic = 1.8904
Degrees of freedom = 8
Two tail probability = 0.0547
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NAG Library Routine Document

G08AHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08AHF performs the Mann–Whitney U test on two independent samples of possibly unequal size.

2 Specification

SUBROUTINE G08AHF (N1, X, N2, Y, TAIL, U, UNOR, P, TIES, RANKS, WRK,
IFAIL)

&

INTEGER N1, N2, IFAIL
REAL (KIND=nag_wp) X(N1), Y(N2), U, UNOR, P, RANKS(N1+N2), WRK(N1+N2)
LOGICAL TIES
CHARACTER(1) TAIL

3 Description

The Mann–Whitney U test investigates the difference between two populations defined by the
distribution functions F xð Þ and G yð Þ respectively. The data consist of two independent samples of size
n1 and n2, denoted by x1; x2; . . . ; xn1 and y1; y2; . . . ; yn2 , taken from the two populations.

The hypothesis under test, H0, often called the null hypothesis, is that the two distributions are the
same, that is F xð Þ ¼ G xð Þ, and this is to be tested against an alternative hypothesis H1 which is

H1: F xð Þ 6¼ G yð Þ; or
H1: F xð Þ < G yð Þ, i.e., the x's tend to be greater than the y's; or

H1: F xð Þ > G yð Þ, i.e., the x's tend to be less than the y's,

using a two tailed, upper tailed or lower tailed probability respectively. You select the alternative
hypothesis by choosing the appropriate tail probability to be computed (see the description of argument
TAIL in Section 5).

Note that when using this test to test for differences in the distributions one is primarily detecting
differences in the location of the two distributions. That is to say, if we reject the null hypothesis H0 in
favour of the alternative hypothesis H1: F xð Þ > G yð Þ we have evidence to suggest that the location, of
the distribution defined by F xð Þ, is less than the location, of the distribution defined by G yð Þ.
The Mann–Whitney U test differs from the Median test (see G08ACF) in that the ranking of the
individual scores within the pooled sample is taken into account, rather than simply the position of a
score relative to the median of the pooled sample. It is therefore a more powerful test if score
differences are meaningful.

The test procedure involves ranking the pooled sample, average ranks being used for ties. Let r1i be the
rank assigned to xi, i ¼ 1; 2; . . . ; n1 and r2j the rank assigned to yj, j ¼ 1; 2; . . . ; n2. Then the test
statistic U is defined as follows;

U ¼
Xn1
i¼1
r1i �

n1 n1 þ 1ð Þ
2

U is also the number of times a score in the second sample precedes a score in the first sample (where
we only count a half if a score in the second sample actually equals a score in the first sample).

G08AHF returns:
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(a) The test statistic U .

(b) The approximate Normal test statistic,

z ¼
U �mean Uð Þ 
 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Uð Þ

p
where

mean Uð Þ ¼ n1n2
2

and

var Uð Þ ¼ n1n2 n1 þ n2 þ 1ð Þ
12

� n1n2
n1 þ n2ð Þ n1 þ n2 � 1ð Þ � TS

where

TS ¼
X�
j¼1

tj
� �

tj � 1
� �

tj þ 1
� �

12

� is the number of groups of ties in the sample and tj is the number of ties in the jth group.

Note that if no ties are present the variance of U reduces to
n1n2
12

n1 þ n2 þ 1ð Þ .

(c) An indicator as to whether ties were present in the pooled sample or not.

(d) The tail probability, p, corresponding to U (adjusted to allow the complement to be used in an
upper one tailed or a two tailed test), depending on the choice of TAIL, i.e., the choice of
alternative hypothesis, H1. The tail probability returned is an approximation of p is based on an
approximate Normal statistic corrected for continuity according to the tail specified. If n1 and n2
are not very large an exact probability may be desired. For the calculation of the exact probability
see G08AJF (no ties in the pooled sample) or G08AKF (ties in the pooled sample).

The value of p can be used to perform a significance test on the null hypothesis H0 against the
alternative hypothesis H1. Let � be the size of the significance test (that is, � is the probability of
rejecting H0 when H0 is true). If p < � then the null hypothesis is rejected. Typically � might be
0:05 or 0:01.

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Neumann N (1988) Some procedures for calculating the distributions of elementary nonparametric
teststatistics Statistical Software Newsletter 14(3) 120–126

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: N1 – INTEGER Input

On entry: the size of the first sample, n1.

Constraint: N1 � 1.

2: XðN1Þ – REAL (KIND=nag_wp) array Input

On entry: the first vector of observations, x1; x2; . . . ; xn1 .
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3: N2 – INTEGER Input

On entry: the size of the second sample, n2.

Constraint: N2 � 1.

4: YðN2Þ – REAL (KIND=nag_wp) array Input

On entry: the second vector of observations. y1; y2; . . . ; yn2 .

5: TAIL – CHARACTER(1) Input

On entry: indicates the choice of tail probability, and hence the alternative hypothesis.

TAIL ¼ T
A two tailed probability is calculated and the alternative hypothesis is H1 : F xð Þ 6¼ G yð Þ.

TAIL ¼ U
An upper tailed probability is calculated and the alternative hypothesis H1 : F xð Þ < G yð Þ,
i.e., the x's tend to be greater than the y's.

TAIL ¼ L
A lower tailed probability is calculated and the alternative hypothesis H1 : F xð Þ > G yð Þ, i.
e., the x's tend to be less than the y's.

Constraint: TAIL ¼ T , U or L .

6: U – REAL (KIND=nag_wp) Output

On exit: the Mann–Whitney rank sum statistic, U .

7: UNOR – REAL (KIND=nag_wp) Output

On exit: the approximate Normal test statistic, z, as described in Section 3.

8: P – REAL (KIND=nag_wp) Output

On exit: the tail probability, p, as specified by the argument TAIL.

9: TIES – LOGICAL Output

On exit: indicates whether the pooled sample contained ties or not. This will be useful in
checking which routine to use should one wish to calculate an exact tail probability.

TIES ¼ :FALSE:, no ties were present (use G08AJF for an exact probability).

TIES ¼ :TRUE:, ties were present (use G08AKF for an exact probability).

10: RANKSðN1þ N2Þ – REAL (KIND=nag_wp) array Output

On exit: contains the ranks of the pooled sample. The ranks of the first sample are contained in
the first N1 elements and those of the second sample are contained in the next N2 elements.

11: WRKðN1þ N2Þ – REAL (KIND=nag_wp) array Workspace

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 1,
or N2 < 1.

IFAIL ¼ 2

On entry, TAIL 6¼ T , U or L .

IFAIL ¼ 3

The pooled sample values are all the same, that is the variance of U ¼ 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The approximate tail probability, p, returned by G08AHF is a good approximation to the exact
probability for cases where max n1; n2ð Þ � 30 and n1 þ n2ð Þ � 40. The relative error of the
approximation should be less than 10%, for most cases falling in this range.

8 Parallelism and Performance

G08AHF is not threaded in any implementation.

9 Further Comments

The time taken by G08AHF increases with n1 and n2.

10 Example

This example performs the Mann–Whitney test on two independent samples of sizes 16 and 23
respectively. This is used to test the null hypothesis that the distributions of the two populations from
which the samples were taken are the same against the alternative hypothesis that the distributions are
different. The test statistic, the approximate Normal statistic and the approximate two tail probability
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are printed. An exact tail probability is also calculated and printed depending on whether ties were
found in the pooled sample or not.

10.1 Program Text

Program g08ahfe

! G08AHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08ahf, g08ajf, g08akf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, pexact, u, unor
Integer :: ifail, liwrk, lwrk, lwrk1, lwrk2, &

lwrk3, mn, n1, n2, nsum
Logical :: ties
Character (1) :: tail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ranks(:), wrk(:), x(:), y(:)
Integer, Allocatable :: iwrk(:)

! .. Intrinsic Procedures ..
Intrinsic :: int, max, min

! .. Executable Statements ..
Write (nout,*) ’G08AHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n1, n2, tail

! Calculate sizes of various workspaces
nsum = n1 + n2
mn = min(n1,n2)

! Workspace for G08AHF
lwrk1 = nsum

! Workspace for G08AJF
lwrk2 = int(n1*n2/2) + 1

! Workspace for G08AKF
lwrk3 = mn + mn*(mn+1)*nsum - mn*(mn+1)*(2*mn+1)/3 + 1
liwrk = 2*nsum + 2

lwrk = max(lwrk1,lwrk2,lwrk3)
Allocate (x(n1),y(n2),ranks(nsum),wrk(lwrk),iwrk(liwrk))

! Read in data
Read (nin,*) x(1:n1)
Read (nin,*) y(1:n2)

! Display title
Write (nout,*) ’Mann-Whitney U test’
Write (nout,*)

! Display input data
Write (nout,99999) ’Sample size of group 1 = ’, n1
Write (nout,99999) ’Sample size of group 2 = ’, n2
Write (nout,*)
Write (nout,*) ’Data values’
Write (nout,*)
Write (nout,99998) ’ Group 1 ’, x(1:n1)
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Write (nout,*)
Write (nout,99998) ’ Group 2 ’, y(1:n2)

! Perform test
ifail = 0
Call g08ahf(n1,x,n2,y,tail,u,unor,p,ties,ranks,wrk,ifail)

! Calculate exact probabilities
If (.Not. ties) Then

ifail = 0
Call g08ajf(n1,n2,tail,u,pexact,wrk,lwrk,ifail)

Else
ifail = 0
Call g08akf(n1,n2,tail,ranks,u,pexact,wrk,lwrk,iwrk,ifail)

End If

! Display results
Write (nout,*)
Write (nout,99997) ’Test statistic = ’, u
Write (nout,99997) ’Normal Statistic = ’, unor
Write (nout,99997) ’Approx. tail probability = ’, p
Write (nout,*)
If (ties) Then

Write (nout,*) ’There are ties in the pooled sample’
Else

Write (nout,*) ’There are no ties in the pooled sample’
End If
Write (nout,*)
Write (nout,99997) ’Exact tail probability = ’, pexact

99999 Format (1X,A,I5)
99998 Format (1X,A,8F5.1,2(/,14X,8F5.1))
99997 Format (1X,A,F10.4)

End Program g08ahfe

10.2 Program Data

G08AHF Example Program Data
16 23 ’L’ :: N1,N2,TAIL
13.0 6.0 12.0 7.0 12.0 7.0 10.0 7.0
10.0 7.0 16.0 7.0 10.0 8.0 9.0 8.0 :: End of X
17.0 6.0 10.0 8.0 15.0 8.0 15.0 10.0
15.0 10.0 14.0 10.0 14.0 11.0 14.0 11.0
13.0 12.0 13.0 12.0 13.0 12.0 12.0 :: End if Y

10.3 Program Results

G08AHF Example Program Results

Mann-Whitney U test

Sample size of group 1 = 16
Sample size of group 2 = 23

Data values

Group 1 13.0 6.0 12.0 7.0 12.0 7.0 10.0 7.0
10.0 7.0 16.0 7.0 10.0 8.0 9.0 8.0

Group 2 17.0 6.0 10.0 8.0 15.0 8.0 15.0 10.0
15.0 10.0 14.0 10.0 14.0 11.0 14.0 11.0
13.0 12.0 13.0 12.0 13.0 12.0 12.0

Test statistic = 86.0000
Normal Statistic = -2.8039
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Approx. tail probability = 0.0025

There are ties in the pooled sample

Exact tail probability = 0.0020
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NAG Library Routine Document

G08AJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08AJF calculates the exact tail probability for the Mann–Whitney rank sum test statistic for the case
where there are no ties in the two samples pooled together.

2 Specification

SUBROUTINE G08AJF (N1, N2, TAIL, U, P, WRK, LWRK, IFAIL)

INTEGER N1, N2, LWRK, IFAIL
REAL (KIND=nag_wp) U, P, WRK(LWRK)
CHARACTER(1) TAIL

3 Description

G08AJF computes the exact tail probability for the Mann–Whitney U test statistic (calculated by
G08AHF and returned through the argument U) using a method based on an algorithm developed by
Harding (1983), and presented by Neumann (1988), for the case where there are no ties in the pooled
sample.

The Mann–Whitney U test investigates the difference between two populations defined by the
distribution functions F xð Þ and G yð Þ respectively. The data consist of two independent samples of size
n1 and n2, denoted by x1; x2; . . . ; xn1 and y1; y2; . . . ; yn2 , taken from the two populations.

The hypothesis under test, H0, often called the null hypothesis, is that the two distributions are the
same, that is F xð Þ ¼ G xð Þ, and this is to be tested against an alternative hypothesis H1 which is

H1: F xð Þ 6¼ G yð Þ; or
H1: F xð Þ < G yð Þ, i.e., the x's tend to be greater than the y's; or

H1: F xð Þ > G yð Þ, i.e., the x's tend to be less than the y's,

using a two tailed, upper tailed or lower tailed probability respectively. You select the alternative
hypothesis by choosing the appropriate tail probability to be computed (see the description of argument
TAIL in Section 5).

Note that when using this test to test for differences in the distributions one is primarily detecting
differences in the location of the two distributions. That is to say, if we reject the null hypothesis H0 in
favour of the alternative hypothesis H1: F xð Þ > G yð Þ we have evidence to suggest that the location, of
the distribution defined by F xð Þ, is less than the location, of the distribution defined by G yð Þ.
G08AJF returns the exact tail probability, p, corresponding to U , depending on the choice of alternative
hypothesis, H1.

The value of p can be used to perform a significance test on the null hypothesis H0 against the
alternative hypothesis H1. Let � be the size of the significance test (that is, � is the probability of
rejecting H0 when H0 is true). If p < � then the null hypothesis is rejected. Typically � might be 0:05
or 0:01.

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Harding E F (1983) An efficient minimal-storage procedure for calculating the Mann–Whitney U,
generalised U and similar distributions Appl. Statist. 33 1–6
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Neumann N (1988) Some procedures for calculating the distributions of elementary nonparametric
teststatistics Statistical Software Newsletter 14(3) 120–126

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: N1 – INTEGER Input

On entry: the number of non-tied pairs, n1.

Constraint: N1 � 1.

2: N2 – INTEGER Input

On entry: the size of the second sample, n2.

Constraint: N2 � 1.

3: TAIL – CHARACTER(1) Input

On entry: indicates the choice of tail probability, and hence the alternative hypothesis.

TAIL ¼ T
A two tailed probability is calculated and the alternative hypothesis is H1 : F xð Þ 6¼ G yð Þ.

TAIL ¼ U
An upper tailed probability is calculated and the alternative hypothesis H1 : F xð Þ < G yð Þ,
i.e., the x's tend to be greater than the y's.

TAIL ¼ L
A lower tailed probability is calculated and the alternative hypothesis H1 : F xð Þ > G yð Þ, i.
e., the x's tend to be less than the y's.

Constraint: TAIL ¼ T , U or L .

4: U – REAL (KIND=nag_wp) Input

On entry: U , the value of the Mann–Whitney rank sum test statistic. This is the statistic returned
through the argument U by G08AHF.

Constraint: U � 0:0.

5: P – REAL (KIND=nag_wp) Output

On exit: the exact tail probability, p, as specified by the argument TAIL.

6: WRKðLWRKÞ – REAL (KIND=nag_wp) array Workspace
7: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which G08AJF
is called.

Constraint: LWRK � N1� N2ð Þ=2þ 1.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 1,
or N2 < 1.

IFAIL ¼ 2

On entry, TAIL 6¼ T , U or L .

IFAIL ¼ 3

On entry, U < 0:0.

IFAIL ¼ 4

On entry, LWRK < N1� N2ð Þ=2þ 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The exact tail probability, p, is computed to an accuracy of at least 4 significant figures.

8 Parallelism and Performance

G08AJF is not threaded in any implementation.

9 Further Comments

The time taken by G08AJF increases with n1 and n2 and the product n1n2.

10 Example

This example finds the Mann–Whitney test statistic, using G08AHF for two independent samples of
size 16 and 23 respectively. This is used to test the null hypothesis that the distributions of the two
populations from which the samples were taken are the same against the alternative hypothesis that the
distributions are different. The test statistic, the approximate normal statistic and the approximate two
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tail probability are printed. G08AJF is then called to obtain the exact two tailed probability. The exact
probability is also printed.

10.1 Program Text

Program g08ajfe

! G08AJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08ahf, g08ajf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, pexact, u, unor
Integer :: ifail, lwrk, lwrk1, lwrk2, n1, n2, &

nsum
Logical :: ties
Character (1) :: tail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ranks(:), wrk(:), x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: int, max

! .. Executable Statements ..
Write (nout,*) ’G08AJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n1, n2, tail

! Calculate sizes of various workspaces
nsum = n1 + n2

! Workspace for G08AHF
lwrk1 = nsum

! Workspace for G08AJF
lwrk2 = int(n1*n2/2) + 1

lwrk = max(lwrk1,lwrk2)
Allocate (x(n1),y(n2),ranks(nsum),wrk(lwrk))

! Read in data
Read (nin,*) x(1:n1)
Read (nin,*) y(1:n2)

! Display title
Write (nout,*) ’Mann-Whitney U test’
Write (nout,*)

! Display input data
Write (nout,99999) ’Sample size of group 1 = ’, n1
Write (nout,99999) ’Sample size of group 2 = ’, n2
Write (nout,*)
Write (nout,*) ’Data values’
Write (nout,*)
Write (nout,99998) ’ Group 1 ’, x(1:n1)
Write (nout,*)
Write (nout,99998) ’ Group 2 ’, y(1:n2)

! Perform test
ifail = 0
Call g08ahf(n1,x,n2,y,tail,u,unor,p,ties,ranks,wrk,ifail)
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! Calculate exact probabilities
If (.Not. ties) Then

ifail = 0
Call g08ajf(n1,n2,tail,u,pexact,wrk,lwrk,ifail)

End If

! Display results
Write (nout,*)
Write (nout,99997) ’Test statistic = ’, u
Write (nout,99997) ’Normal statistic = ’, unor
Write (nout,99997) ’Tail probability = ’, p
Write (nout,*)
If (.Not. ties) Then

Write (nout,99997) ’Exact tail probability = ’, pexact
Else

Write (nout,*) &
’There are ties in the pooled sample so G08AJF was not called.’

End If

99999 Format (1X,A,I5)
99998 Format (1X,A,8F5.1,2(/,14X,8F5.1))
99997 Format (1X,A,F10.4)

End Program g08ajfe

10.2 Program Data

G08AJF Example Program Data
16 23 ’L’ :: N1,N2,TAIL
13.0 5.8 11.7 6.5 12.3 6.7 9.2 6.9
10.0 7.3 16.0 7.0 10.5 8.5 9.0 7.5 :: End of X
17.0 6.2 10.1 8.0 15.3 8.2 15.0 9.6
14.9 10.4 14.2 9.8 13.8 11.0 14.0 11.1
12.9 11.6 12.8 12.0 13.1 12.4 11.9 :: End of Y

10.3 Program Results

G08AJF Example Program Results

Mann-Whitney U test

Sample size of group 1 = 16
Sample size of group 2 = 23

Data values

Group 1 13.0 5.8 11.7 6.5 12.3 6.7 9.2 6.9
10.0 7.3 16.0 7.0 10.5 8.5 9.0 7.5

Group 2 17.0 6.2 10.1 8.0 15.3 8.2 15.0 9.6
14.9 10.4 14.2 9.8 13.8 11.0 14.0 11.1
12.9 11.6 12.8 12.0 13.1 12.4 11.9

Test statistic = 86.0000
Normal statistic = -2.7838
Tail probability = 0.0027

Exact tail probability = 0.0022
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NAG Library Routine Document

G08AKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08AKF calculates the exact tail probability for the Mann–Whitney rank sum test statistic for the case
where there are ties in the two samples pooled together.

2 Specification

SUBROUTINE G08AKF (N1, N2, TAIL, RANKS, U, P, WRK, LWRK, IWRK, IFAIL)

INTEGER N1, N2, LWRK, IWRK(2*(N1+N2+1)), IFAIL
REAL (KIND=nag_wp) RANKS(N1+N2), U, P, WRK(LWRK)
CHARACTER(1) TAIL

3 Description

G08AKF computes the exact tail probability for the Mann–Whitney U test statistic (calculated by
G08AHF and returned through the argument U) using a method based on an algorithm developed by
Neumann (1988), for the case where there are ties in the pooled sample.

The Mann–Whitney U test investigates the difference between two populations defined by the
distribution functions F xð Þ and G yð Þ respectively. The data consist of two independent samples of size
n1 and n2, denoted by x1; x2; . . . ; xn1 and y1; y2; . . . ; yn2 , taken from the two populations.

The hypothesis under test, H0, often called the null hypothesis, is that the two distributions are the
same, that is F xð Þ ¼ G xð Þ, and this is to be tested against an alternative hypothesis H1 which is

H1: F xð Þ 6¼ G yð Þ; or
H1: F xð Þ < G yð Þ, i.e., the x's tend to be greater than the y's; or

H1: F xð Þ > G yð Þ, i.e., the x's tend to be less than the y's,

using a two tailed, upper tailed or lower tailed probability respectively. You select the alternative
hypothesis by choosing the appropriate tail probability to be computed (see the description of argument
TAIL in Section 5).

Note that when using this test to test for differences in the distributions one is primarily detecting
differences in the location of the two distributions. That is to say, if we reject the null hypothesis H0 in
favour of the alternative hypothesis H1: F xð Þ > G yð Þ we have evidence to suggest that the location, of
the distribution defined by F xð Þ, is less than the location of the distribution defined by G yð Þ.
G08AKF returns the exact tail probability, p, corresponding to U , depending on the choice of alternative
hypothesis, H1.

The value of p can be used to perform a significance test on the null hypothesis H0 against the
alternative hypothesis H1. Let � be the size of the significance test (that is � is the probability of
rejecting H0 when H0 is true). If p < � then the null hypothesis is rejected. Typically � might be 0:05
or 0:01.
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4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Neumann N (1988) Some procedures for calculating the distributions of elementary nonparametric
teststatistics Statistical Software Newsletter 14(3) 120–126

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: N1 – INTEGER Input

On entry: the number of non-tied pairs, n1.

Constraint: N1 � 1.

2: N2 – INTEGER Input

On entry: the size of the second sample, n2.

Constraint: N2 � 1.

3: TAIL – CHARACTER(1) Input

On entry: indicates the choice of tail probability, and hence the alternative hypothesis.

TAIL ¼ T
A two tailed probability is calculated and the alternative hypothesis is H1 : F xð Þ 6¼ G yð Þ.

TAIL ¼ U
An upper tailed probability is calculated and the alternative hypothesis H1 : F xð Þ < G yð Þ,
i.e., the x's tend to be greater than the y's.

TAIL ¼ L
A lower tailed probability is calculated and the alternative hypothesis H1 : F xð Þ > G yð Þ, i.
e., the x's tend to be less than the y's.

Constraint: TAIL ¼ T , U or L .

4: RANKSðN1þ N2Þ – REAL (KIND=nag_wp) array Input

On entry: the ranks of the pooled sample. These ranks are output in the array RANKS by
G08AHF and should not be altered in any way if you are using the same n1, n2 and U as used in
G08AHF.

5: U – REAL (KIND=nag_wp) Input

On entry: U , the value of the Mann–Whitney rank sum test statistic. This is the statistic returned
through the argument U by G08AHF.

Constraint: U � 0:0.

6: P – REAL (KIND=nag_wp) Output

On exit: the tail probability, p, as specified by the argument TAIL.

7: WRKðLWRKÞ – REAL (KIND=nag_wp) array Workspace
8: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which G08AKF
is called.

Constraint: LWRK � n þ n n þ 1ð Þ n þmð Þ � n n þ 1ð Þ 2� n þ 1ð Þ
3

þ 1 , where n ¼ min N1;N2ð Þ
and m ¼ max N1;N2ð Þ.
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9: IWRKð2� N1þ N2þ 1ð ÞÞ – INTEGER array Workspace

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 1,
or N2 < 1.

IFAIL ¼ 2

On entry, TAIL 6¼ T , U or L .

IFAIL ¼ 3

On entry, U < 0:0.

IFAIL ¼ 4

On entry, LWRK is too small.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The exact tail probability, p, is computed to an accuracy of at least 4 significant figures.

G08 – Nonparametric Statistics G08AKF

Mark 26 G08AKF.3



8 Parallelism and Performance

G08AKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G08AKF increases with n1 and n2 and the product n1n2. Note that the amount of
workspace required becomes very large for even moderate sizes of n1 and n2.

10 Example

This example finds the Mann–Whitney test statistic, using G08AHF for two independent samples of
size 16 and 23 respectively. This is used to test the null hypothesis that the distributions of the two
populations from which the samples were taken are the same against the alternative hypothesis that the
distributions are different. The test statistic, the approximate Normal statistic and the approximate two
tail probability are printed. G08AKF is then called to obtain the exact two tailed probability. The exact
probability is also printed.

10.1 Program Text

Program g08akfe

! G08AKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08ahf, g08akf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, pexact, u, unor
Integer :: ifail, liwrk, lwrk, lwrk1, lwrk2, &

mn, n1, n2, nsum
Logical :: ties
Character (1) :: tail

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ranks(:), wrk(:), x(:), y(:)
Integer, Allocatable :: iwrk(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’G08AKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n1, n2, tail

! Calculate sizes of various workspaces
nsum = n1 + n2
mn = min(n1,n2)

! Workspace for G08AHF
lwrk1 = nsum

! Workspace for G08AKF
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lwrk2 = mn + mn*(mn+1)*nsum - mn*(mn+1)*(2*mn+1)/3 + 1
liwrk = 2*nsum + 2

lwrk = max(lwrk1,lwrk2)
Allocate (x(n1),y(n2),ranks(nsum),wrk(lwrk),iwrk(liwrk))

! Read in data
Read (nin,*) x(1:n1)
Read (nin,*) y(1:n2)

! Display title
Write (nout,*) ’Mann-Whitney U test’
Write (nout,*)

! Display input data
Write (nout,99999) ’Sample size of group 1 = ’, n1
Write (nout,99999) ’Sample size of group 2 = ’, n2
Write (nout,*)
Write (nout,*) ’Data values’
Write (nout,*)
Write (nout,99998) ’ Group 1 ’, x(1:n1)
Write (nout,*)
Write (nout,99998) ’ Group 2 ’, y(1:n2)

! Perform test
ifail = 0
Call g08ahf(n1,x,n2,y,tail,u,unor,p,ties,ranks,wrk,ifail)

! Calculate exact probabilities
If (ties) Then

ifail = 0
Call g08akf(n1,n2,tail,ranks,u,pexact,wrk,lwrk,iwrk,ifail)

End If

! Display results
Write (nout,*)
Write (nout,99997) ’Test statistic = ’, u
Write (nout,99997) ’Normal statistic = ’, unor
Write (nout,99997) ’Tail probability = ’, p
Write (nout,*)
If (ties) Then

Write (nout,*)
Write (nout,*) ’Ranks’
Write (nout,*)
Write (nout,99998) ’ Group 1 ’, ranks(1:n1)
Write (nout,*)
Write (nout,99998) ’ Group 2 ’, ranks((n1+1):nsum)
Write (nout,*)
Write (nout,*)
Write (nout,99997) ’Exact tail probability = ’, pexact

Else
Write (nout,*) &

’There are no ties in the pooled sample so G08AKF was not called.’
End If

99999 Format (1X,A,I5)
99998 Format (1X,A,8F5.1,2(/,14X,8F5.1))
99997 Format (1X,A,F10.4)

End Program g08akfe

10.2 Program Data

G08AKF Example Program Data
16 23 ’L’ :: N1,N2,TAIL
13.0 6.0 12.0 7.0 12.0 7.0 10.0 7.0
10.0 7.0 16.0 7.0 10.0 8.0 9.0 8.0 :: End of X
17.0 6.0 10.0 8.0 15.0 8.0 15.0 10.0
15.0 10.0 14.0 10.0 14.0 11.0 14.0 11.0
13.0 12.0 13.0 12.0 13.0 12.0 12.0 :: End of Y
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10.3 Program Results

G08AKF Example Program Results

Mann-Whitney U test

Sample size of group 1 = 16
Sample size of group 2 = 23

Data values

Group 1 13.0 6.0 12.0 7.0 12.0 7.0 10.0 7.0
10.0 7.0 16.0 7.0 10.0 8.0 9.0 8.0

Group 2 17.0 6.0 10.0 8.0 15.0 8.0 15.0 10.0
15.0 10.0 14.0 10.0 14.0 11.0 14.0 11.0
13.0 12.0 13.0 12.0 13.0 12.0 12.0

Test statistic = 86.0000
Normal statistic = -2.8039
Tail probability = 0.0025

Ranks

Group 1 29.5 1.5 24.5 5.0 24.5 5.0 16.0 5.0
16.0 5.0 38.0 5.0 16.0 9.5 12.0 9.5

Group 2 39.0 1.5 16.0 9.5 36.0 9.5 36.0 16.0
36.0 16.0 33.0 16.0 33.0 20.5 33.0 20.5
29.5 24.5 29.5 24.5 29.5 24.5 24.5

Exact tail probability = 0.0020
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NAG Library Routine Document

G08ALF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08ALF performs the Cochran Q-test on cross-classified binary data.

2 Specification

SUBROUTINE G08ALF (N, K, X, LDX, Q, PROB, IFAIL)

INTEGER N, K, LDX, IFAIL
REAL (KIND=nag_wp) X(LDX,K), Q, PROB

3 Description

Cochran's Q-test may be used to test for differences between k treatments applied independently to n
individuals or blocks (k related samples of equal size n), where the observed response can take only
one of two possible values; for example a treatment may result in a ‘success’ or ‘failure’. The data is
recorded as either 1 or 0 to represent this dichotomization.

The use of this ‘randomized block design’ allows the effect of differences between the blocks to be
separated from the differences between the treatments. The test assumes that the blocks were randomly
selected from all possible blocks and that the result may be one of two possible outcomes common to
all treatments within blocks.

The null and alternative hypotheses to be tested may be stated as follows.

H0 : the treatments are equally effective, that is the probability of obtaining a 1 within a block is the
same for each treatment.

H1 : there is a difference between the treatments, that is the probability of obtaining a 1 is not the
same for different treatments within blocks.

The data is often represented in the form of a table with the n rows representing the blocks and the k
columns the treatments. Let Ri represent the row totals, for i ¼ 1; 2; . . . ; n, and Cj represent the column
totals, for j ¼ 1; 2; . . . ; k. Let xij represent the response or result where xij ¼ 0 or 1.

Treatments
Blocks 1 2 k Row Totals

1 x11 x12 � � � x1k R1

2 x21 x22 � � � x2k R2

..

. ..
. ..

.

n xn1 xn2 � � � xnk Rn

Column Totals C1 C2 Ck N ¼ Grand Total

If pij ¼ Pr xij ¼ 1
� �

, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; k, then the hypotheses may be restated as
follows

H0 : pi1 ¼ pi2 ¼ . . . ¼ pik, for each i ¼ 1; 2; . . . ; n.

H1: pij 6¼ pik, for some j and k, and for some i.

G08 – Nonparametric Statistics G08ALF

Mark 26 G08ALF.1



The test statistic is defined as

Q ¼
k k� 1ð Þ

Xk
j¼1

Cj � N
k

� �2
Xn
i¼1
Ri k�Rið Þ

:

When the number of blocks, n, is large relative to the number of treatments, k, Q has an approximate
�2-distribution with k� 1 degrees of freedom. This is used to find the probability, p, of obtaining a
statistic greater than or equal to the computed value of Q. Thus p is the upper tail probability associated
with the computed value of Q, where the �2-distribution is used to approximate the true distribution of
Q.

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: N – INTEGER Input

On entry: n, the number of blocks.

Constraint: N � 2.

2: K – INTEGER Input

On entry: k, the number of treatments.

Constraint: K � 2.

3: XðLDX;KÞ – REAL (KIND=nag_wp) array Input

On entry: the matrix of observed zero-one data. Xði; jÞ must contain the value xij , for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; k.

Constraint: Xði; jÞ ¼ 0:0 or 1:0, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; k.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G08ALF
is called.

Constraint: LDX � N.

5: Q – REAL (KIND=nag_wp) Output

On exit: the value of the Cochran Q-test statistic.

6: PROB – REAL (KIND=nag_wp) Output

On exit: the upper tail probability, p, associated with the Cochran Q-test statistic, that is the
probability of obtaining a value greater than or equal to the observed value (the output value of
Q).

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or K < 2,
or LDX < N.

IFAIL ¼ 2

On entry, Xði; jÞ 6¼ 0:0 or 1:0 for some i and j, i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; k.

IFAIL ¼ 3

The approximation process used to calculate the tail probability has failed to converge. The result
returned in PROB may still be a reasonable approximation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The use of the �2-distribution as an approximation to the true distribution of the Cochran Q-test statistic
improves as k increases and as n increases relative to k. This approximation should be a reasonable one
when the total number of observations left, after omitting those rows containing all 0 or 1, is greater
than about 25 and the number of rows left is larger than 5.

8 Parallelism and Performance

G08ALF is not threaded in any implementation.

9 Further Comments

None.

G08 – Nonparametric Statistics G08ALF

Mark 26 G08ALF.3



10 Example

The following example is taken from page 201 of Conover (1980). The data represents the success of
three basketball enthusiasts in predicting the outcome of 12 collegiate basketball games, selected at
random, using 1 for successful prediction of the outcome and 0 for unsuccessful prediction. This data is
read in and the Cochran Q-test statistic and its corresponding upper tail probability are computed and
printed.

10.1 Program Text

Program g08alfe

! G08ALF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08alf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df, prob, q
Integer :: i, ifail, k, ldx, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’G08ALF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, k

ldx = n
Allocate (x(ldx,k))

! Read in the data
Read (nin,*)(x(i,1:k),i=1,n)

! Display title
Write (nout,*) ’Cochrans Q test’
Write (nout,*)
Flush (nout)

! Display the input data
ifail = 0
Call x04caf(’General’,’ ’,n,k,x,ldx,’Data matrix’,ifail)

! Perform test
ifail = 0
Call g08alf(n,k,x,ldx,q,prob,ifail)

! Display results
df = real(k-1,kind=nag_wp)
Write (nout,*)
Write (nout,99999) ’Cochrans Q test statistic = ’, q
Write (nout,99998) ’Degrees of freedom = ’, df
Write (nout,99999) ’Upper-tail probability = ’, prob

99999 Format (1X,A,F12.4)
99998 Format (1X,A,F6.1)

End Program g08alfe
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10.2 Program Data

G08ALF Example Program Data
12 3
1 1 1
1 1 1
0 1 0
1 1 0
0 0 0
1 1 1
1 1 1
1 1 0
0 0 1
0 1 0
1 1 1
1 1 1

10.3 Program Results

G08ALF Example Program Results

Cochrans Q test

Data matrix
1 2 3

1 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000
3 0.0000 1.0000 0.0000
4 1.0000 1.0000 0.0000
5 0.0000 0.0000 0.0000
6 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000
8 1.0000 1.0000 0.0000
9 0.0000 0.0000 1.0000

10 0.0000 1.0000 0.0000
11 1.0000 1.0000 1.0000
12 1.0000 1.0000 1.0000

Cochrans Q test statistic = 2.8000
Degrees of freedom = 2.0
Upper-tail probability = 0.2466
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NAG Library Routine Document

G08BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08BAF performs Mood's and David's tests for dispersion differences between two independent
samples of possibly unequal size.

2 Specification

SUBROUTINE G08BAF (X, N, N1, R, ITEST, W, V, PW, PV, IFAIL)

INTEGER N, N1, ITEST, IFAIL
REAL (KIND=nag_wp) X(N), R(N), W, V, PW, PV

3 Description

Mood's and David's tests investigate the difference between the dispersions of two independent samples
of sizes n1 and n2, denoted by

x1; x2; . . . ; xn1

and

xn1þ1; xn1þ2; . . . ; xn; n ¼ n1 þ n2:

The hypothesis under test, H0, often called the null hypothesis, is that the dispersion difference is zero,
and this is to be tested against a one- or two-sided alternative hypothesis H1 (see below).

Both tests are based on the rankings of the sample members within the pooled sample formed by
combining both samples. If there is some difference in dispersion, more of the extreme ranks will tend
to be found in one sample than in the other.

Let the rank of xi be denoted by ri, for i ¼ 1; 2; . . . ; n.

(a) Mood's test.

The test statistic W ¼
Xn1
i¼1

ri �
nþ 1

2

� �2

is found.

W is the sum of squared deviations from the average rank in the pooled sample. For large n, W
approaches normality, and so an approximation, pw, to the probability of observing W not greater
than the computed value, may be found.

G08BAF returns W and pw if Mood's test is selected.

(b) David's test.

The disadvantage of Mood's test is that it assumes that the means of the two samples are equal. If
this assumption is unjustified a high value of W could merely reflect the difference in means.
David's test reduces this effect by using the variance of the ranks of the first sample about their
mean rank, rather than the overall mean rank.

The test statistic for David's test is

V ¼ 1

n1 � 1

Xn1
i¼1

ri � �rð Þ2

where
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�r ¼

Xn1
i¼1
ri

n1
:

For large n, V approaches normality, enabling an approximate probability pv to be computed,
similarly to pw.

G08BAF returns V and pv if David's test is selected.

Suppose that a significance test of a chosen size � is to be performed (i.e., � is the probability of
rejecting H0 when H0 is true; typically � is a small quantity such as 0:05 or 0:01).

The returned value p ( ¼ pv or pw) can be used to perform a significance test, against various alternative
hypotheses H1, as follows.

(i) H1: dispersions are unequal. H0 is rejected if 2�min p; 1� pð Þ < �.

(ii) H1: dispersion of sample 1 > dispersion of sample 2. H0 is rejected if 1� p < �.

(iii) H1: dispersion of sample 2 > dispersion of sample 1. H0 is rejected if p < �.

4 References

Cooper B E (1975) Statistics for Experimentalists Pergamon Press

5 Arguments

1: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the first n1 elements of X must be set to the data values in the first sample, and the
next n2 ( ¼ N� n1) elements to the data values in the second sample.

2: N – INTEGER Input

On entry: the total of the two sample sizes, n ( ¼ n1 þ n2).
Constraint: N > 2.

3: N1 – INTEGER Input

On entry: the size of the first sample, n1.

Constraint: 1 < N1 < N.

4: RðNÞ – REAL (KIND=nag_wp) array Output

On exit: the ranks ri, assigned to the data values xi, for i ¼ 1; 2; . . . ; n.

5: ITEST – INTEGER Input

On entry: the test(s) to be carried out.

ITEST ¼ 0
Both Mood's and David's tests.

ITEST ¼ 1
David's test only.

ITEST ¼ 2
Mood's test only.

Constraint: ITEST ¼ 0, 1 or 2.
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6: W – REAL (KIND=nag_wp) Output

On exit: Mood's test statistic, W , if requested.

7: V – REAL (KIND=nag_wp) Output

On exit: David's test statistic, V , if requested.

8: PW – REAL (KIND=nag_wp) Output

On exit: the lower tail probability, pw, corresponding to the value of W , if Mood's test was
requested.

9: PV – REAL (KIND=nag_wp) Output

On exit: the lower tail probability, pv, corresponding to the value of V , if David's test was
requested.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 2.

IFAIL ¼ 2

On entry, N1 � 1,
or N1 � N.

IFAIL ¼ 3

On entry, ITEST < 0,
or ITEST > 2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All computations are believed to be stable. The statistics V and W should be accurate enough for all
practical uses.

8 Parallelism and Performance

G08BAF is not threaded in any implementation.

9 Further Comments

The time taken by G08BAF is small, and increases with n.

10 Example

This example is taken from page 280 of Cooper (1975). The data consists of two samples of six
observations each. Both Mood's and David's test statistics and significances are computed. Note that
Mood's statistic is inflated owing to the difference in location of the two samples, the median ranks
differing by a factor of two.

10.1 Program Text

Program g08bafe

! G08BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08baf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: pv, pw, v, w
Integer :: ifail, itest, n, n1

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’G08BAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size and type of test
Read (nin,*) n, n1, itest

Allocate (x(n),r(n))

! Read in data
Read (nin,*) x(1:n)

! Display title
Write (nout,*) ’Mood’’s test and David’’s test’
Write (nout,*)

! Display input data
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Write (nout,*) ’Data values’
Write (nout,*)
Write (nout,*) ’Group 1 ’
Write (nout,99999) x(1:n1)
Write (nout,*)
Write (nout,*) ’Group 2 ’
Write (nout,99999) x((n1+1):n)

! Perform test
ifail = 0
Call g08baf(x,n,n1,r,itest,w,v,pw,pv,ifail)

! Display results
Write (nout,*)
Write (nout,99998) ’ Mood’’s measure = ’, w, ’ Significance = ’, &

pw
Write (nout,99998) ’ David’’s measure = ’, v, ’ Significance = ’, &

pv

99999 Format (1X,8F4.0)
99998 Format (1X,A,F8.3,A,F8.4)

End Program g08bafe

10.2 Program Data

G08BAF Example Program Data
12 6 0 :: N,N1,ITEST

6.0 9.0 12.0 4.0 10.0 11.0
8.0 1.0 3.0 7.0 2.0 5.0 :: End of X

10.3 Program Results

G08BAF Example Program Results

Mood’s test and David’s test

Data values

Group 1
6. 9. 12. 4. 10. 11.

Group 2
8. 1. 3. 7. 2. 5.

Mood’s measure = 75.500 Significance = 0.5830
David’s measure = 9.467 Significance = 0.1986
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NAG Library Routine Document

G08CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08CBF performs the one sample Kolmogorov–Smirnov test, using one of the distributions provided.

2 Specification

SUBROUTINE G08CBF (N, X, DIST, PAR, ESTIMA, NTYPE, D, Z, P, SX, IFAIL)

INTEGER N, NTYPE, IFAIL
REAL (KIND=nag_wp) X(N), PAR(2), D, Z, P, SX(N)
CHARACTER(*) DIST
CHARACTER(1) ESTIMA

3 Description

The data consist of a single sample of n observations denoted by x1; x2; . . . ; xn. Let Sn x ið Þ
� �

and
F0 x ið Þ
� �

represent the sample cumulative distribution function and the theoretical (null) cumulative
distribution function respectively at the point x ið Þ where x ið Þ is the ith smallest sample observation.

The Kolmogorov–Smirnov test provides a test of the null hypothesis H0: the data are a random sample
of observations from a theoretical distribution specified by you against one of the following alternative
hypotheses:

(i) H1: the data cannot be considered to be a random sample from the specified null distribution.

(ii) H2: the data arise from a distribution which dominates the specified null distribution. In practical
terms, this would be demonstrated if the values of the sample cumulative distribution function
Sn xð Þ tended to exceed the corresponding values of the theoretical cumulative distribution function
F0 xð Þ.

(iii) H3: the data arise from a distribution which is dominated by the specified null distribution. In
practical terms, this would be demonstrated if the values of the theoretical cumulative distribution
function F0 xð Þ tended to exceed the corresponding values of the sample cumulative distribution
function Sn xð Þ.

One of the following test statistics is computed depending on the particular alternative null hypothesis
specified (see the description of the argument NTYPE in Section 5).

For the alternative hypothesis H1.

Dn – the largest absolute deviation between the sample cumulative distribution function and the
theoretical cumulative distribution function. Formally Dn ¼ max Dþn ;D

�
n

� 
.

For the alternative hypothesis H2.

Dþn – the largest positive deviation between the sample cumulative distribution function and the
theoretical cumulative distribution function. Formally Dþn ¼ max Sn x ið Þ

� �
� F0 x ið Þ

� �
; 0

� 
for both

discrete and continuous null distributions.

For the alternative hypothesis H3.

D�n – the largest positive deviation between the theoretical cumulative distribution function and
the sample cumulative distribution function. Formally if the null distribution is discrete then
D�n ¼ max F0 x ið Þ

� �
� Sn x ið Þ

� �
; 0

� 
and if the null distr ibution is continuous then

D�n ¼ max F0 x ið Þ
� �

� Sn x i�1ð Þ
� �

; 0
� 

.
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The standardized statistic Z ¼ D�
ffiffiffi
n
p

is also computed where D may be Dn;D
þ
n or D�n depending on

the choice of the alternative hypothesis. This is the standardized value of D with no correction for
continuity applied and the distribution of Z converges asymptotically to a limiting distribution, first
derived by Kolmogorov (1933), and then tabulated by Smirnov (1948). The asymptotic distributions for
the one-sided statistics were obtained by Smirnov (1933).

The probability, under the null hypothesis, of obtaining a value of the test statistic as extreme as that
observed, is computed. If n � 100 an exact method given by Conover (1980), is used. Note that the
method used is only exact for continuous theoretical distributions and does not include Conover's
modification for discrete distributions. This method computes the one-sided probabilities. The two-sided
probabilities are estimated by doubling the one-sided probability. This is a good estimate for small p,
that is p � 0:10, but it becomes very poor for larger p. If n > 100 then p is computed using the
Kolmogorov–Smirnov limiting distributions, see Feller (1948), Kendall and Stuart (1973), Kolmogorov
(1933), Smirnov (1933) and Smirnov (1948).

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Feller W (1948) On the Kolmogorov–Smirnov limit theorems for empirical distributions Ann. Math.
Statist. 19 179–181

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin

Kolmogorov A N (1933) Sulla determinazione empirica di una legge di distribuzione Giornale dell'
Istituto Italiano degli Attuari 4 83–91

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

Smirnov N (1933) Estimate of deviation between empirical distribution functions in two independent
samples Bull. Moscow Univ. 2(2) 3–16

Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions Ann. Math. Statist.
19 279–281

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations in the sample.

Constraint: N � 3.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sample observations x1; x2; . . . ; xn.

Constraint: the sample observations supplied must be consistent, in the usual manner, with the
null distribution chosen, as specified by the arguments DIST and PAR. For further details see
Section 9.

3: DIST – CHARACTER(*) Input

On entry: the theoretical (null) distribution from which it is suspected the data may arise.

DIST ¼ U
The uniform distribution over a; bð Þ.

DIST ¼ N
The Normal distribution with mean � and variance �2.

DIST ¼ G
The gamma distribution with shape parameter� and scale parameter �, where the mean
¼ ��.
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DIST ¼ BE
The beta distribution with shape parameters � and �, where the mean ¼ �= �þ �ð Þ.

DIST ¼ BI
The binomial distribution with the number of trials, m, and the probability of a success, p.

DIST ¼ E
The exponential distribution with parameter �, where the mean ¼ 1=�.

DIST ¼ P
The Poisson distribution with parameter �, where the mean ¼ �.

DIST ¼ NB
The negative binomial distribution with the number of trials, m, and the probability of
success, p.

DIST ¼ GP
The generalized Pareto distribution with shape parameter � and scale �.

Any number of characters may be supplied as the actual argument, however only the characters,
maximum 2, required to uniquely identify the distribution are referenced.

Constraint: DIST ¼ U , N , G , BE , BI , E , P , NB or GP .

4: PARð2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if ESTIMA ¼ S , PAR must contain the known values of the parameter(s) of the null
distribution as follows.

If a uniform distribution is used, then PARð1Þ and PARð2Þ must contain the boundaries a and b
respectively.

If a Normal distribution is used, then PARð1Þ and PARð2Þ must contain the mean, �, and the
variance, �2, respectively.

If a gamma distribution is used, then PARð1Þ and PARð2Þ must contain the parameters � and �
respectively.

If a beta distribution is used, then PARð1Þ and PARð2Þ must contain the parameters � and �
respectively.

If a binomial distribution is used, then PARð1Þ and PARð2Þ must contain the parameters m and p
respectively.

If an exponential distribution is used, then PARð1Þ must contain the parameter �.

If a Poisson distribution is used, then PARð1Þ must contain the parameter �.

If a negative binomial distribution is used, PARð1Þ and PARð2Þ must contain the parameters m
and p respectively.

If a generalized Pareto distribution is used, PARð1Þ and PARð2Þ must contain the parameters �
and � respectively.

If ESTIMA ¼ E , PAR need not be set except when the null distribution requested is either the
binomial or the negative binomial distribution in which case PARð1Þ must contain the parameter
m.

On exit: if ESTIMA ¼ S , PAR is unchanged; if ESTIMA ¼ E , and DIST ¼ BI or DIST ¼ NB
then PARð2Þ is estimated from the data; otherwise PARð1Þ and PARð2Þ are estimated from the
data.

Constraints:

if DIST ¼ U , PARð1Þ < PARð2Þ;
if DIST ¼ N , PARð2Þ > 0:0;
if DIST ¼ G , PARð1Þ > 0:0 and PARð2Þ > 0:0;
if DIST ¼ BE , PARð1Þ > 0:0 and PARð2Þ > 0:0 and PARð1Þ � 106 and PARð2Þ � 106;
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i f DIST ¼ BI , PARð1Þ � 1:0 a n d 0:0 < PARð2Þ < 1:0 a n d
PARð1Þ � PARð2Þ � 1:0� PARð2Þð Þ � 106 a n d PARð1Þ < 1=eps, w h e r e
eps ¼ machine precision, see X02AJF;
if DIST ¼ E , PARð1Þ > 0:0;
if DIST ¼ P , PARð1Þ > 0:0 and PARð1Þ � 106;
i f DIST ¼ NB , PARð1Þ � 1:0 a n d 0:0 < PARð2Þ < 1:0 a n d
PARð1Þ � 1:0� PARð2Þð Þ= PARð2Þ � PARð2Þð Þ � 106 a n d PARð1Þ < 1=eps, w h e r e
eps ¼ machine precision, see X02AJF;
if DIST ¼ GP , PARð2Þ > 0.

5: ESTIMA – CHARACTER(1) Input

On entry: ESTIMA must specify whether values of the parameters of the null distribution are
known or are to be estimated from the data.

ESTIMA ¼ S
Values of the parameters will be supplied in the array PAR described above.

ESTIMA ¼ E
Parameters are to be estimated from the data except when the null distribution requested is
the binomial distribution or the negative binomial distribution in which case the first
parameter, m, must be supplied in PARð1Þ and only the second parameter, p, is estimated
from the data.

Constraint: ESTIMA ¼ S or E .

6: NTYPE – INTEGER Input

On entry: the test statistic to be calculated, i.e., the choice of alternative hypothesis.

NTYPE ¼ 1
Computes Dn, to test H0 against H1,

NTYPE ¼ 2
Computes Dþn , to test H0 against H2,

NTYPE ¼ 3
Computes D�n , to test H0 against H3.

Constraint: NTYPE ¼ 1, 2 or 3.

7: D – REAL (KIND=nag_wp) Output

On exit: the Kolmogorov–Smirnov test statistic (Dn, Dþn or D�n according to the value of
NTYPE).

8: Z – REAL (KIND=nag_wp) Output

On exit: a standardized value, Z, of the test statistic, D, without any correction for continuity.

9: P – REAL (KIND=nag_wp) Output

On exit: the probability, p, associated with the observed value of D where D may be Dn;D
þ
n or

D�n depending on the value of NTYPE (see Section 3).

10: SXðNÞ – REAL (KIND=nag_wp) array Output

On exit: the sample observations, x1; x2; . . . ; xn, sorted in ascending order.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 3.

IFAIL ¼ 2

On entry, DIST ¼ valueh i was an illegal value.

IFAIL ¼ 3

On entry, NTYPE ¼ valueh i.
Constraint: NTYPE ¼ 1, 2 or 3.

IFAIL ¼ 4

On entry, ESTIMA ¼ valueh i was an illegal value.

IFAIL ¼ 5

On entry, DIST ¼ BI and m ¼ PARð1Þ ¼ valueh i.
Note that m must always be supplied.
Constraint: for the binomial distribution, 1 � PARð1Þ < 1=eps, where eps ¼ machine precision,
see X02AJF.

On entry, DIST ¼ NB and m ¼ PARð1Þ ¼ valueh i.
Note that m must always be supplied.
Constraint : for the negative binomial distr ibution, 1 � PARð1Þ < 1=eps, where
eps ¼ machine precision, see X02AJF.

On entry, ESTIMA ¼ S and PARð1Þ ¼ valueh i; PARð2Þ ¼ valueh i.
Constraint: for the beta distribution, 0 < PARð1Þ and PARð2Þ � 1000000.

On entry, ESTIMA ¼ S and PARð1Þ ¼ valueh i; PARð2Þ ¼ valueh i.
Constraint: for the gamma distribution, PARð1Þ and PARð2Þ > 0.

On entry, ESTIMA ¼ S and PARð1Þ ¼ valueh i; PARð2Þ ¼ valueh i.
C o n s t r a i n t : f o r t h e g e n e r a l i z e d P a r e t o d i s t r i b u t i o n w i t h PARð1Þ < 0,
0 � XðiÞ � �PARð2Þ=PARð1Þ, for i ¼ 1; 2; . . . ;N.

On entry, ESTIMA ¼ S and PARð1Þ ¼ valueh i; PARð2Þ ¼ valueh i.
Constraint: for the uniform distribution, PARð1Þ < PARð2Þ.
On entry, ESTIMA ¼ S and PARð1Þ ¼ valueh i.
Constraint: for the exponential distribution, PARð1Þ > 0.

On entry, ESTIMA ¼ S and PARð1Þ ¼ valueh i.
Constraint: for the Poisson distribution, 0 < PARð1Þ < 1000000.
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On entry, ESTIMA ¼ S and PARð2Þ ¼ valueh i.
Constraint: for the binomial distribution, 0 < PARð2Þ < 1.

On entry, ESTIMA ¼ S and PARð2Þ ¼ valueh i.
Constraint: for the generalized Pareto distribution, PARð2Þ > 0.

On entry, ESTIMA ¼ S and PARð2Þ ¼ valueh i.
Constraint: for the negative binomial distribution, 0 < PARð2Þ < 1.

On entry, ESTIMA ¼ S and PARð2Þ ¼ valueh i.
Constraint: for the Normal distribution, PARð2Þ > 0.

IFAIL ¼ 6

On entry, DIST ¼ U and at least one observation is illegal.
Constraint: PARð1Þ � XðiÞ � PARð2Þ, for i ¼ 1; 2; . . . ;N.

On entry, DIST ¼ G , E , P , NB or GP and at least one observation is negative.
Constraint: XðiÞ � 0, for i ¼ 1; 2; . . . ;N.

On entry, DIST ¼ BE and at least one observation is illegal.
Constraint: 0 � XðiÞ � 1, for i ¼ 1; 2; . . . ;N.

On entry, DIST ¼ BI and all observations are zero or m.
Constraint: at least one 0:0 < XðiÞ < PARð1Þ, for i ¼ 1; 2; . . . ;N.

On entry, DIST ¼ BI and at least one observation is illegal.
Constraint: 0 � XðiÞ � PARð1Þ, for i ¼ 1; 2; . . . ;N.

On entry, DIST ¼ E or P and all observations are zero.
Constraint: at least one XðiÞ > 0, for i ¼ 1; 2; . . . ;N.

On entry, DIST ¼ GP and ESTIMA ¼ E .
The parameter estimates are invalid; the data may not be from the generalized Pareto distribution.

IFAIL ¼ 7

On entry, DIST ¼ U , N , G , BE or GP , ESTIMA ¼ E and the whole sample is constant.
Thus the variance is zero.

IFAIL ¼ 8

On entry, DIST ¼ BI , PARð1Þ ¼ valueh i, PARð2Þ ¼ valueh i.
The variance PARð1Þ � PARð2Þ � 1� PARð2Þð Þ exceeds 1000000.

On entry, DIST ¼ NB , PARð1Þ ¼ valueh i, PARð2Þ ¼ valueh i.
The variance PARð1Þ � 1� PARð2Þð Þ= PARð2Þ � PARð2Þð Þ exceeds 1000000.

IFAIL ¼ 9

On entry, DIST ¼ G and in the computation of the incomplete gamma function by S14BAF the
convergence of the Taylor series or Legendre continued fraction fails within 600 iterations.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The approximation for p, given when n > 100, has a relative error of at most 2.5% for most cases. The
two-sided probability is approximated by doubling the one-sided probability. This is only good for
small p, i.e., p < 0:10 but very poor for large p. The error is always on the conservative side, that is the
tail probability, p, is over estimated.

8 Parallelism and Performance

G08CBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G08CBF increases with n until n > 100 at which point it drops and then increases
slowly with n. The time may also depend on the choice of null distribution and on whether or not the
parameters are to be estimated.

The data supplied in the argument X must be consistent with the chosen null distribution as follows:

when DIST ¼ U , then PARð1Þ � xi � PARð2Þ, for i ¼ 1; 2; . . . ; n;

when DIST ¼ N , then there are no constraints on the xi's;

when DIST ¼ G , then xi � 0:0, for i ¼ 1; 2; . . . ; n;

when DIST ¼ BE , then 0:0 � xi � 1:0, for i ¼ 1; 2; . . . ; n;

when DIST ¼ BI , then 0:0 � xi � PARð1Þ, for i ¼ 1; 2; . . . ; n;

when DIST ¼ E , then xi � 0:0, for i ¼ 1; 2; . . . ; n;

when DIST ¼ P , then xi � 0:0, for i ¼ 1; 2; . . . ; n;

when DIST ¼ NB , then xi � 0:0, for i ¼ 1; 2; . . . ; n;

when DIST ¼ GP and PARð1Þ � 0:0, then xi � 0:0, for i ¼ 1; 2; . . . ; n;

when DIST ¼ GP and PARð1Þ < 0:0, then 0:0 � xi � �PARð2Þ=PARð1Þ, for i ¼ 1; 2; . . . ; n.

10 Example

The following example program reads in a set of data consisting of 30 observations. The Kolmogorov–
Smirnov test is then applied twice, firstly to test whether the sample is taken from a uniform
distribution, U 0; 2ð Þ, and secondly to test whether the sample is taken from a Normal distribution where
the mean and variance are estimated from the data. In both cases we are testing against H1; that is, we
are doing a two tailed test. The values of D, Z and P are printed for each case.
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10.1 Program Text

Program g08cbfe

! G08CBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08cbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, p, z
Integer :: ifail, n, npar, ntype
Character (2) :: dist
Character (1) :: estima

! .. Local Arrays ..
Real (Kind=nag_wp) :: par(2)
Real (Kind=nag_wp), Allocatable :: sx(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’G08CBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size and the statistic to calculate
Read (nin,*) n, ntype

Allocate (x(n),sx(n))

! Read in data
Read (nin,*) x(1:n)

! Read in information on the distribution to test against
Read (nin,*) dist, estima

Select Case (dist)
Case (’P’,’p’,’E’,’e’)

npar = 1
Case Default

npar = 2
End Select

! Read in the distribution parameters if required
! otherwise they are estimated from the data by G08CBF
! and PAR need not be set

If (estima==’S’ .Or. estima==’s’) Then
Read (nin,*) par(1:npar)

Else If (dist==’B’ .Or. dist==’b’ .Or. dist==’NB’ .Or. dist==’nb’) Then
! Read in M for the binomial distribution

Read (nin,*) par(1)
End If

! Perform K-S test
ifail = 0
Call g08cbf(n,x,dist,par,estima,ntype,d,z,p,sx,ifail)

! Display results
Write (nout,*) ’K-S Test’
Write (nout,*) ’Distribution: ’, dist
Write (nout,99999) ’Parameters : ’, par(1:npar)
Write (nout,*)
Write (nout,99999) ’Test statistic D = ’, d
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Write (nout,99999) ’Z statistic = ’, z
Write (nout,99999) ’Tail probability = ’, p

99999 Format (1X,A,2F8.4)
End Program g08cbfe

10.2 Program Data

G08CBF Example Program Data
30 1 :: N,NTYPE
0.01 0.30 0.20 0.90 1.20 0.09 1.30 0.18 0.90 0.48
1.98 0.03 0.50 0.07 0.70 0.60 0.95 1.00 0.31 1.45
1.04 1.25 0.15 0.75 0.85 0.22 1.56 0.81 0.57 0.55 :: End of X

’N’ ’E’ :: DIST,ESTIMA

10.3 Program Results

G08CBF Example Program Results

K-S Test
Distribution: N
Parameters : 0.6967 0.2564

Test statistic D = 0.1108
Z statistic = 0.6068
Tail probability = 0.8925
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NAG Library Routine Document

G08CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08CCF performs the one sample Kolmogorov–Smirnov distribution test, using a user-specified
distribution.

2 Specification

SUBROUTINE G08CCF (N, X, CDF, NTYPE, D, Z, P, SX, IFAIL)

INTEGER N, NTYPE, IFAIL
REAL (KIND=nag_wp) X(N), CDF, D, Z, P, SX(N)
EXTERNAL CDF

3 Description

The data consists of a single sample of n observations, denoted by x1; x2; . . . ; xn. Let Sn x ið Þ
� �

and
F0 x ið Þ
� �

represent the sample cumulative distribution function and the theoretical (null) cumulative
distribution function respectively at the point x ið Þ, where x ið Þ is the ith smallest sample observation.

The Kolmogorov–Smirnov test provides a test of the null hypothesis H0: the data are a random sample
of observations from a theoretical distribution specified by you (in CDF) against one of the following
alternative hypotheses.

(i) H1: the data cannot be considered to be a random sample from the specified null distribution.

(ii) H2: the data arise from a distribution which dominates the specified null distribution. In practical
terms, this would be demonstrated if the values of the sample cumulative distribution function
Sn xð Þ tended to exceed the corresponding values of the theoretical cumulative distribution function
F0 xð Þ.

(iii) H3: the data arise from a distribution which is dominated by the specified null distribution. In
practical terms, this would be demonstrated if the values of the theoretical cumulative distribution
function F0 xð Þ tended to exceed the corresponding values of the sample cumulative distribution
function Sn xð Þ.

One of the following test statistics is computed depending on the particular alternative hypothesis
specified (see the description of the argument NTYPE in Section 5).

For the alternative hypothesis H1:

Dn – the largest absolute deviation between the sample cumulative distribution function and the
theoretical cumulative distribution function. Formally Dn ¼ max Dþn ;D

�
n

� 
.

For the alternative hypothesis H2:

Dþn – the largest positive deviation between the sample cumulative distribution function and the
theoretical cumulative distribution function. Formally Dþn ¼ max Sn x ið Þ

� �
� F0 x ið Þ

� �
; 0

� 
.

For the alternative hypothesis H3:

D�n – the largest positive deviation between the theoretical cumulative distribution function and
the sample cumulative distribution function. Formally D�n ¼ max F0 x ið Þ

� �
� Sn x i�1ð Þ

� �
; 0

� 
. This

is only true for continuous distributions. See Section 9 for comments on discrete distributions.

The standardized statistic, Z ¼ D�
ffiffiffi
n
p

, is also computed, where D may be Dn;D
þ
n or D�n depending

on the choice of the alternative hypothesis. This is the standardized value of D with no continuity
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correction applied and the distribution of Z converges asymptotically to a limiting distribution, first
derived by Kolmogorov (1933), and then tabulated by Smirnov (1948). The asymptotic distributions for
the one-sided statistics were obtained by Smirnov (1933).

The probability, under the null hypothesis, of obtaining a value of the test statistic as extreme as that
observed, is computed. If n � 100, an exact method given by Conover (1980) is used. Note that the
method used is only exact for continuous theoretical distributions and does not include Conover's
modification for discrete distributions. This method computes the one-sided probabilities. The two-sided
probabilities are estimated by doubling the one-sided probability. This is a good estimate for small p,
that is p � 0:10, but it becomes very poor for larger p. If n > 100 then p is computed using the
Kolmogorov–Smirnov limiting distributions; see Feller (1948), Kendall and Stuart (1973), Kolmogorov
(1933), Smirnov (1933) and Smirnov (1948).

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Feller W (1948) On the Kolmogorov–Smirnov limit theorems for empirical distributions Ann. Math.
Statist. 19 179–181

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin

Kolmogorov A N (1933) Sulla determinazione empirica di una legge di distribuzione Giornale dell'
Istituto Italiano degli Attuari 4 83–91

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

Smirnov N (1933) Estimate of deviation between empirical distribution functions in two independent
samples Bull. Moscow Univ. 2(2) 3–16

Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions Ann. Math. Statist.
19 279–281

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations in the sample.

Constraint: N � 1.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sample observations, x1; x2; . . . ; xn.

3: CDF – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CDF must return the value of the theoretical (null) cumulative distribution function for a given
value of its argument.

The specification of CDF is:

FUNCTION CDF (X)
REAL (KIND=nag_wp) CDF

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the argument for which CDF must be evaluated.
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CDF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G08CCF is called. Arguments denoted as Input must not be changed by this
procedure.

Constraint: CDF must always return a value in the range 0:0; 1:0½ � and CDF must always satify
the condition that CDFðx1Þ � CDFðx2Þ for any x1 � x2.

4: NTYPE – INTEGER Input

On entry: the statistic to be calculated, i.e., the choice of alternative hypothesis.

NTYPE ¼ 1
Computes Dn, to test H0 against H1.

NTYPE ¼ 2
Computes Dþn , to test H0 against H2.

NTYPE ¼ 3
Computes D�n , to test H0 against H3.

Constraint: NTYPE ¼ 1, 2 or 3.

5: D – REAL (KIND=nag_wp) Output

On exit: the Kolmogorov–Smirnov test statistic (Dn, Dþn or D�n according to the value of
NTYPE).

6: Z – REAL (KIND=nag_wp) Output

On exit: a standardized value, Z, of the test statistic, D, without the continuity correction applied.

7: P – REAL (KIND=nag_wp) Output

On exit: the probability, p, associated with the observed value of D, where D may Dn, Dþn or D�n
depending on the value of NTYPE (see Section 3).

8: SXðNÞ – REAL (KIND=nag_wp) array Output

On exit: the sample observations, x1; x2; . . . ; xn, sorted in ascending order.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.
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IFAIL ¼ 2

On entry, NTYPE 6¼ 1, 2 or 3.

IFAIL ¼ 3

The supplied theoretical cumulative distribution function returns a value less than 0:0 or greater
than 1:0, thereby violating the definition of the cumulative distribution function.

IFAIL ¼ 4

The supplied theoretical cumulative distribution function is not a nondecreasing function thereby
violating the definition of a cumulative distribution function, that is F0 xð Þ > F0 yð Þ for some
x < y.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For most cases the approximation for p given when n > 100 has a relative error of less than 0:01. The
two-sided probability is approximated by doubling the one-sided probability. This is only good for
small p, that is p < 0:10, but very poor for large p. The error is always on the conservative side.

8 Parallelism and Performance

G08CCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G08CCF increases with n until n > 100 at which point it drops and then increases
slowly.

For a discrete theoretical cumulative distribution function F0 xð Þ, D�n ¼ max F0 x ið Þ
� �

� Sn x ið Þ
� �

; 0
� 

.
Thus if you wish to provide a discrete distribution function the following adjustment needs to be made,

for Dþn , return F xð Þ as x as usual;

for D�n , return F x� dð Þ at x where d is the discrete jump in the distribution. For example d ¼ 1
for the Poisson or binomial distributions.
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10 Example

The following example performs the one sample Kolmogorov–Smirnov test to test whether a sample of
30 observations arise firstly from a uniform distribution U 0; 1ð Þ or secondly from a Normal distribution
with mean 0:75 and standard deviation 0:5. The two-sided test statistic, Dn, the standardized test
statistic, Z, and the upper tail probability, p, are computed and then printed for each test.

10.1 Program Text

! G08CCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g08ccfe_mod

! G08CCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: user_cdf

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: std = 0.5_nag_wp
Real (Kind=nag_wp), Parameter :: xmean = 0.75_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function user_cdf(x)

! Cumulative distribution function for the user supplied distribution.
! In this example, the distribution is the normal distribution, with
! mean = 0.75 and standard deviation = 0.5

! .. Use Statements ..
Use nag_library, Only: s15abf

! .. Function Return Value ..
Real (Kind=nag_wp) :: user_cdf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Local Scalars ..
Real (Kind=nag_wp) :: z
Integer :: ifail

! .. Executable Statements ..
z = (x-xmean)/std
ifail = -1
user_cdf = s15abf(z,ifail)
Return

End Function user_cdf
End Module g08ccfe_mod
Program g08ccfe

! G08CCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g08ccf, nag_wp
Use g08ccfe_mod, Only: nin, nout, user_cdf

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, p, z
Integer :: ifail, n, ntype

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: sx(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’G08CCF Example Program Results’
Write (nout,*)

! Skip heading in data file
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Read (nin,*)

! Read in problem type and required statistic
Read (nin,*) n, ntype

Allocate (x(n),sx(n))

! Read in data
Read (nin,*) x(1:n)

! Perform K-S test for user specified distribution
ifail = 0
Call g08ccf(n,x,user_cdf,ntype,d,z,p,sx,ifail)

! Display results
Write (nout,*) ’Test against normal distribution with mean = 0.75’
Write (nout,*) ’and standard deviation = 0.5.’
Write (nout,*)
Write (nout,99999) ’Test statistic D = ’, d
Write (nout,99999) ’Z statistic = ’, z
Write (nout,99999) ’Tail probability = ’, p

99999 Format (1X,A,F8.4)
End Program g08ccfe

10.2 Program Data

G08CCF Example Program Data
30 1 :: N,NTYPE
0.01 0.30 0.20 0.90 1.20 0.09 1.30 0.18 0.90 0.48
1.98 0.03 0.50 0.07 0.70 0.60 0.95 1.00 0.31 1.45
1.04 1.25 0.15 0.75 0.85 0.22 1.56 0.81 0.57 0.55 :: End of X

10.3 Program Results

G08CCF Example Program Results

Test against normal distribution with mean = 0.75
and standard deviation = 0.5.

Test statistic D = 0.1439
Z statistic = 0.7882
Tail probability = 0.5262
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NAG Library Routine Document

G08CDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08CDF performs the two sample Kolmogorov–Smirnov distribution test.

2 Specification

SUBROUTINE G08CDF (N1, X, N2, Y, NTYPE, D, Z, P, SX, SY, IFAIL)

INTEGER N1, N2, NTYPE, IFAIL
REAL (KIND=nag_wp) X(N1), Y(N2), D, Z, P, SX(N1), SY(N2)

3 Description

The data consists of two independent samples, one of size n1, denoted by x1; x2; . . . ; xn1, and the other
of size n2 denoted by y1; y2; . . . ; yn2. Let F xð Þ and G xð Þ represent their respective, unknown,
distribution functions. Also let S1 xð Þ and S2 xð Þ denote the values of the sample cumulative distribution
functions at the point x for the two samples respectively.

The Kolmogorov–Smirnov test provides a test of the null hypothesis H0: F xð Þ ¼ G xð Þ against one of
the following alternative hypotheses:

(i) H1: F xð Þ 6¼ G xð Þ.
(ii) H2: F xð Þ > G xð Þ. This alternative hypothesis is sometimes stated as, ‘The x's tend to be smaller

than the y's’, i.e., it would be demonstrated in practical terms if the values of S1 xð Þ tended to
exceed the corresponding values of S2 xð Þ.

(iii) H3: F xð Þ < G xð Þ. This alternative hypothesis is sometimes stated as, ‘The x's tend to be larger
than the y's’, i.e., it would be demonstrated in practical terms if the values of S2 xð Þ tended to
exceed the corresponding values of S1 xð Þ.

One of the following test statistics is computed depending on the particular alternative null hypothesis
specified (see the description of the argument NTYPE in Section 5).

For the alternative hypothesis H1.

Dn1;n2 – the largest absolute deviation between the two sample cumulative distribution functions.

For the alternative hypothesis H2.

Dþn1;n2 – the largest positive deviation between the sample cumulative distribution function of the
first sample, S1 xð Þ, and the sample cumulative distribution function of the second sample, S2 xð Þ.
Formally Dþn1;n2 ¼ max S1 xð Þ � S2 xð Þ; 0f g.

For the alternative hypothesis H3.

D�n1;n2 – the largest positive deviation between the sample cumulative distribution function of the
second sample, S2 xð Þ, and the sample cumulative distribution function of the first sample, S1 xð Þ.
Formally D�n1;n2 ¼ max S2 xð Þ � S1 xð Þ; 0f g.

G08CDF also returns the standardized statistic Z ¼
ffiffiffiffiffiffiffiffiffiffi
n1þn2
n1n2

q
�D , where D may be Dn1;n2 , D

þ
n1;n2

or

D�n1;n2 depending on the choice of the alternative hypothesis. The distribution of this statistic converges
asymptotically to a distribution given by Smirnov as n1 and n2 increase; see Feller (1948), Kendall and
Stuart (1973), Kim and Jenrich (1973), Smirnov (1933) or Smirnov (1948).
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The probability, under the null hypothesis, of obtaining a value of the test statistic as extreme as that
observed, is computed. If max n1; n2ð Þ � 2500 and n1n2 � 10000 then an exact method given by Kim
and Jenrich (see Kim and Jenrich (1973)) is used. Otherwise p is computed using the approximations
suggested by Kim and Jenrich (1973). Note that the method used is only exact for continuous
theoretical distributions. This method computes the two-sided probability. The one-sided probabilities
are estimated by halving the two-sided probability. This is a good estimate for small p, that is p � 0:10,
but it becomes very poor for larger p.

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Feller W (1948) On the Kolmogorov–Smirnov limit theorems for empirical distributions Ann. Math.
Statist. 19 179–181

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin

Kim P J and Jenrich R I (1973) Tables of exact sampling distribution of the two sample Kolmogorov–
Smirnov criterion Dmn m < nð Þ Selected Tables in Mathematical Statistics 1 80–129 American
Mathematical Society

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

Smirnov N (1933) Estimate of deviation between empirical distribution functions in two independent
samples Bull. Moscow Univ. 2(2) 3–16

Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions Ann. Math. Statist.
19 279–281

5 Arguments

1: N1 – INTEGER Input

On entry: the number of observations in the first sample, n1.

Constraint: N1 � 1.

2: XðN1Þ – REAL (KIND=nag_wp) array Input

On entry: the observations from the first sample, x1; x2; . . . ; xn1 .

3: N2 – INTEGER Input

On entry: the number of observations in the second sample, n2.

Constraint: N2 � 1.

4: YðN2Þ – REAL (KIND=nag_wp) array Input

On entry: the observations from the second sample, y1; y2; . . . ; yn2 .

5: NTYPE – INTEGER Input

On entry: the statistic to be computed, i.e., the choice of alternative hypothesis.

NTYPE ¼ 1
Computes Dn1n2 , to test against H1.

NTYPE ¼ 2
Computes Dþn1n2 , to test against H2.

NTYPE ¼ 3
Computes D�n1n2 , to test against H3.

Constraint: NTYPE ¼ 1, 2 or 3.
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6: D – REAL (KIND=nag_wp) Output

On exit: the Kolmogorov–Smirnov test statistic (Dn1n2 , D
þ
n1n2

or D�n1n2 according to the value of
NTYPE).

7: Z – REAL (KIND=nag_wp) Output

On exit: a standardized value, Z, of the test statistic, D, without any correction for continuity.

8: P – REAL (KIND=nag_wp) Output

On exit: the tail probability associated with the observed value of D, where D may be
Dn1;n2 ; D

þ
n1;n2

or D�n1;n2 depending on the value of NTYPE (see Section 3).

9: SXðN1Þ – REAL (KIND=nag_wp) array Output

On exit: the observations from the first sample sorted in ascending order.

10: SYðN2Þ – REAL (KIND=nag_wp) array Output

On exit: the observations from the second sample sorted in ascending order.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 1,
or N2 < 1.

IFAIL ¼ 2

On entry, NTYPE 6¼ 1, 2 or 3.

IFAIL ¼ 3

The iterative procedure used in the approximation of the probability for large n1 and n2 did not
converge. For the two-sided test, p ¼ 1 is returned. For the one-sided test, p ¼ 0:5 is returned.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The large sample distributions used as approximations to the exact distribution should have a relative
error of less than 5% for most cases.

8 Parallelism and Performance

G08CDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G08CDF increases with n1 and n2, until n1n2 > 10000 or max n1; n2ð Þ � 2500. At
this point one of the approximations is used and the time decreases significantly. The time then
increases again modestly with n1 and n2.

10 Example

This example computes the two-sided Kolmogorov–Smirnov test statistic for two independent samples
of size 100 and 50 respectively. The first sample is from a uniform distribution U 0; 2ð Þ. The second
sample is from a uniform distribution U 0:25; 2:25ð Þ. The test statistic, Dn1;n2 , the standardized test
statistic, Z, and the tail probability, p, are computed and printed.

10.1 Program Text

Program g08cdfe

! G08CDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08cdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, p, z
Integer :: ifail, n1, n2, ntype

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: sx(:), sy(:), x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’G08CDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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! Read in the problem size and statistic type
Read (nin,*) n1, n2, ntype

Allocate (x(n1),y(n2),sx(n1),sy(n2))

! Read in data
Read (nin,*) x(1:n1)
Read (nin,*) y(1:n2)

! Perform test
ifail = 0
Call g08cdf(n1,x,n2,y,ntype,d,z,p,sx,sy,ifail)

! Display results
Write (nout,99999) ’Test statistic D = ’, d
Write (nout,99999) ’Z statistic = ’, z
Write (nout,99999) ’Tail probability = ’, p

99999 Format (1X,A,F8.4)
End Program g08cdfe

10.2 Program Data

G08CDF Example Program Data
100 50 1 :: NX,NY,NTYPE

1.160 1.785 0.322 1.437 1.695 1.770 1.209 0.479 1.122 0.974
0.290 1.155 0.218 1.595 1.053 1.058 1.282 1.278 1.066 0.725
0.113 1.516 1.329 1.907 0.101 0.387 1.392 0.613 0.692 1.397
1.627 0.417 1.079 0.607 0.899 0.493 0.381 1.660 0.233 0.718
1.376 1.395 1.557 1.610 1.632 0.851 1.824 0.921 0.139 0.618
0.050 0.956 0.669 1.109 1.882 1.462 1.465 0.201 1.036 1.127
0.907 0.876 1.199 1.667 1.141 0.820 0.488 0.732 0.725 0.753
0.760 1.833 0.074 1.101 0.620 1.858 0.681 0.705 0.876 1.096
1.870 1.597 0.990 0.430 0.410 0.399 1.693 0.492 1.318 0.883
1.291 1.051 1.934 1.314 1.496 0.391 1.079 0.881 0.983 1.306 :: End of X
1.695 1.452 0.997 1.771 1.114 1.624 2.005 0.782 1.870 0.954
1.606 2.059 0.774 0.741 1.040 0.521 2.163 0.818 1.781 1.420
0.558 1.437 2.004 1.325 0.398 0.582 2.047 0.332 1.186 0.890
1.825 1.324 1.334 0.261 0.299 1.733 1.172 1.000 1.663 1.093
1.045 2.022 1.174 0.670 1.143 1.189 0.494 1.275 1.122 1.823 :: End of Y

10.3 Program Results

G08CDF Example Program Results

Test statistic D = 0.1800
Z statistic = 0.0312
Tail probability = 0.2222
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NAG Library Routine Document

G08CGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08CGF computes the test statistic for the �2 goodness-of-fit test for data with a chosen number of
class intervals.

2 Specification

SUBROUTINE G08CGF (NCLASS, IFREQ, CB, DIST, PAR, NPEST, PROB, CHISQ, P,
NDF, EVAL, CHISQI, IFAIL)

&

INTEGER NCLASS, IFREQ(NCLASS), NPEST, NDF, IFAIL
REAL (KIND=nag_wp) CB(NCLASS-1), PAR(2), PROB(NCLASS), CHISQ, P,

EVAL(NCLASS), CHISQI(NCLASS)
&

CHARACTER(1) DIST

3 Description

The �2 goodness-of-fit test performed by G08CGF is used to test the null hypothesis that a random
sample arises from a specified distribution against the alternative hypothesis that the sample does not
arise from the specified distribution.

Given a sample of size n, denoted by x1; x2; . . . ; xn, drawn from a random variable X, and that the data
has been grouped into k classes,

x � c1;
ci�1 < x � ci; i ¼ 2; 3; . . . ; k� 1;
x > ck�1;

then the �2 goodness-of-fit test statistic is defined by

X2 ¼
Xk
i¼1

Oi � Eið Þ2

Ei
;

where Oi is the observed frequency of the ith class, and Ei is the expected frequency of the ith class.

The expected frequencies are computed as

Ei ¼ pi � n;

where pi is the probability that X lies in the ith class, that is

p1 ¼ P X � c1ð Þ;
pi ¼ P ci�1 < X � cið Þ; i ¼ 2; 3; . . . ; k� 1;
pk ¼ P X > ck�1ð Þ:

These probabilities are either taken from a common probability distribution or are supplied by you. The
available probability distributions within this routine are:

Normal distribution with mean �, variance �2;

uniform distribution on the interval a; b½ �;

exponential distribution with probability density function pdfð Þ ¼ �e��x;

�2-distribution with f degrees of freedom; and
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gamma distribution with pdf ¼ x
��1e�x=�

 �ð Þ�� .

You must supply the frequencies and classes. Given a set of data and classes the frequencies may be
calculated using G01AEF.

G08CGF returns the �2 test statistic, X2, together with its degrees of freedom and the upper tail
probability from the �2-distribution associated with the test statistic. Note that the use of the
�2-distribution as an approximation to the distribution of the test statistic improves as the expected
values in each class increase.

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: NCLASS – INTEGER Input

On entry: k, the number of classes into which the data is divided.

Constraint: NCLASS � 2.

2: IFREQðNCLASSÞ – INTEGER array Input

On entry: IFREQðiÞ must specify the frequency of the ith class, Oi, for i ¼ 1; 2; . . . ; k.

Constraint: IFREQðiÞ � 0, for i ¼ 1; 2; . . . ; k.

3: CBðNCLASS� 1Þ – REAL (KIND=nag_wp) array Input

On entry: CBðiÞ must specify the upper boundary value for the ith class, for i ¼ 1; 2; . . . ; k� 1.

Constraint: CBð1Þ < CBð2Þ < � � � < CBðNCLASS� 1Þ. For the exponential, gamma and
�2-distributions CBð1Þ � 0:0.

4: DIST – CHARACTER(1) Input

On entry: indicates for which distribution the test is to be carried out.

DIST ¼ N
The Normal distribution is used.

DIST ¼ U
The uniform distribution is used.

DIST ¼ E
The exponential distribution is used.

DIST ¼ C
The �2-distribution is used.

DIST ¼ G
The gamma distribution is used.

DIST ¼ A
You must supply the class probabilities in the array PROB.

Constraint: DIST ¼ N , U , E , C , G or A .
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5: PARð2Þ – REAL (KIND=nag_wp) array Input

On entry: must contain the parameters of the distribution which is being tested. If you supply the
probabilities (i.e., DIST ¼ A ) the array PAR is not referenced.

If a Normal distribution is used then PARð1Þ and PARð2Þ must contain the mean, �, and the
variance, �2, respectively.

If a uniform distribution is used then PARð1Þ and PARð2Þ must contain the boundaries a and b
respectively.

If an exponential distribution is used then PARð1Þ must contain the parameter �. PARð2Þ is not
used.

If a �2-distribution is used then PARð1Þ must contain the number of degrees of freedom. PARð2Þ
is not used.

If a gamma distribution is used PARð1Þ and PARð2Þ must contain the parameters � and �
respectively.

Constraints:

if DIST ¼ N , PARð2Þ > 0:0;
if DIST ¼ U , PARð1Þ < PARð2Þ and PARð1Þ � CBð1Þ and PARð2Þ � CBðNCLASS� 1Þ;
if DIST ¼ E , PARð1Þ > 0:0;
if DIST ¼ C , PARð1Þ > 0:0;
if DIST ¼ G , PARð1Þ > 0:0 and PARð2Þ > 0:0.

6: NPEST – INTEGER Input

On entry: the number of estimated parameters of the distribution.

Constraint: 0 � NPEST < NCLASS� 1.

7: PROBðNCLASSÞ – REAL (KIND=nag_wp) array Input

On entry: if you are supplying the probability distribution (i.e., DIST ¼ A ) then PROBðiÞ must
contain the probability that X lies in the ith class.

If DIST 6¼ A , PROB is not referenced.

Constraint: if DIST ¼ A ,
Xk
i¼1

PROBðiÞ ¼ 1:0, PROBðiÞ > 0:0, for i ¼ 1; 2; . . . ; k.

8: CHISQ – REAL (KIND=nag_wp) Output

On exit: the test statistic, X2, for the �2 goodness-of-fit test.

9: P – REAL (KIND=nag_wp) Output

On exit: the upper tail probability from the �2-distribution associated with the test statistic, X2,
and the number of degrees of freedom.

10: NDF – INTEGER Output

On exit: contains NCLASS� 1� NPESTð Þ, the degrees of freedom associated with the test.

11: EVALðNCLASSÞ – REAL (KIND=nag_wp) array Output

On exit: EVALðiÞ contains the expected frequency for the ith class, Ei, for i ¼ 1; 2; . . . ; k.

12: CHISQIðNCLASSÞ – REAL (KIND=nag_wp) array Output

On exit: CHISQIðiÞ contains the contribution from the ith class to the test statistic, that is,
Oi � Eið Þ2=Ei, for i ¼ 1; 2; . . . ; k.
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13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G08CGF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NCLASS < 2.

IFAIL ¼ 2

On entry, DIST is invalid.

IFAIL ¼ 3

On entry, NPEST < 0,
or NPEST � NCLASS� 1.

IFAIL ¼ 4

On entry, IFREQðiÞ < 0:0 for some i, for i ¼ 1; 2; . . . ; k.

IFAIL ¼ 5

On entry, the elements of CB are not in ascending order. That is, CBðiÞ � CBði � 1Þ for some i,
for i ¼ 2; 3; . . . ; k� 1.

IFAIL ¼ 6

On entry, DIST ¼ E , C or G and CBð1Þ < 0:0. No negative class boundary values are valid for
the exponential, gamma or �2-distributions.

IFAIL ¼ 7

On entry, the values provided in PAR are invalid.

IFAIL ¼ 8

On entry, with DIST ¼ A , PROBðiÞ � 0:0 for some i, for i ¼ 1; 2; . . . ; k,

or
Xk
i¼1

PROBðiÞ 6¼ 1:0.

IFAIL ¼ 9

An expected frequency is equal to zero when the observed frequency was not.
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IFAIL ¼ 10

This is a warning that expected values for certain classes are less than 1:0. This implies that we
cannot be confident that the �2-distribution is a good approximation to the distribution of the test
statistic.

IFAIL ¼ 11

The solution obtained when calculating the probability for a certain class for the gamma or
�2-distribution did not converge in 600 iterations. The solution may be an adequate
approximation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G08CGF is not threaded in any implementation.

9 Further Comments

The time taken by G08CGF is dependent both on the distribution chosen and on the number of classes,
k.

10 Example

This example applies the �2 goodness-of-fit test to test whether there is evidence to suggest that a
sample of 100 randomly generated observations do not arise from a uniform distribution U 0; 1ð Þ. The
class intervals are calculated such that the interval 0; 1ð Þ is divided into five equal classes. The
frequencies for each class are calculated using G01AEF.

10.1 Program Text

Program g08cgfe

! G08CGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01aef, g08cgf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: chisq, p, xmax, xmin
Integer :: iclass, ifail, n, nclass, ndf, npar, &

npest
Character (1) :: dist

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cb(:), chisqi(:), eval(:), prob(:), &

x(:)
Real (Kind=nag_wp) :: par(2)
Integer, Allocatable :: ifreq(:)

! .. Executable Statements ..
Write (nout,*) ’G08CGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n

! Read in class information
Read (nin,*) nclass, iclass

Allocate (x(n),cb(nclass),ifreq(nclass),prob(nclass),eval(nclass), &
chisqi(nclass))

! Read in data
Read (nin,*) x(1:n)

! Read in the class boundaries, if supplied
If (iclass==1) Then

Read (nin,*) cb(1:(nclass-1))
End If

! Read in information on the distribution to test against
Read (nin,*) dist, npest

Select Case (dist)
Case (’A’,’a’)

npar = 0
Case (’E’,’e’,’C’,’c’)

npar = 1
Case Default

npar = 2
End Select

! Read in the distribution parameters or probabilities
If (npar==0) Then

Read (nin,*) prob(1:nclass)
Else

Read (nin,*) par(1:npar)
End If

! Produce frequency table for data
ifail = 0
Call g01aef(n,nclass,x,iclass,cb,ifreq,xmin,xmax,ifail)

! Perform chi-squared test
ifail = -1
Call g08cgf(nclass,ifreq,cb,dist,par,npest,prob,chisq,p,ndf,eval,chisqi, &

ifail)
If (ifail/=0) Then

If (ifail<=9) Then
Go To 100

End If
End If

! Display results
Write (nout,99999) ’Chi-squared test statistic = ’, chisq
Write (nout,99998) ’Degrees of freedom. = ’, ndf
Write (nout,99999) ’Significance level = ’, p
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Write (nout,*)
Write (nout,*) ’The contributions to the test statistic are :-’
Write (nout,99997) chisqi(1:nclass)

100 Continue

99999 Format (1X,A,F10.4)
99998 Format (1X,A,I5)
99997 Format (1X,F10.4)

End Program g08cgfe

10.2 Program Data

G08CGF Example Program Data
100 :: N
5 1 :: NCLASS,ICLASS
0.59 0.23 0.76 0.96 0.20 0.91 0.29 0.22 0.36 0.81
0.91 0.80 0.17 0.82 0.07 0.74 0.15 0.91 0.26 0.98
0.59 0.34 0.28 0.95 0.33 0.42 0.72 0.35 0.86 0.22
0.15 0.39 0.32 0.82 0.13 0.48 0.46 0.74 0.99 0.26
0.04 0.21 0.04 0.24 0.56 0.36 0.48 0.53 1.00 0.58
0.50 0.41 0.03 0.38 0.89 0.40 0.66 0.79 0.34 0.94
0.49 0.12 0.24 0.05 1.00 0.29 0.67 0.29 0.75 0.81
0.45 0.21 0.51 0.68 0.78 0.20 0.23 0.57 0.25 0.48
0.96 0.33 0.48 0.55 0.04 0.48 0.42 0.11 0.38 0.73
0.91 0.45 0.59 0.97 0.27 0.27 0.25 0.99 0.99 0.80 :: End of X
0.2 0.4 0.6 0.8 :: CB
’U’ 0 :: DIST,NPEST
0.0 1.0 :: PAR

10.3 Program Results

G08CGF Example Program Results

Chi-squared test statistic = 14.2000
Degrees of freedom. = 4
Significance level = 0.0067

The contributions to the test statistic are :-
3.2000
6.0500
0.4500
4.0500
0.4500
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NAG Library Routine Document

G08CHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08CHF calculates the Anderson–Darling goodness-of-fit test statistic.

2 Specification

FUNCTION G08CHF (N, ISSORT, Y, IFAIL)
REAL (KIND=nag_wp) G08CHF

INTEGER N, IFAIL
REAL (KIND=nag_wp) Y(N)
LOGICAL ISSORT

3 Description

Denote by A2 the Anderson–Darling test statistic for n observations y1; y2; . . . ; yn of a variable Y
assumed to be standard uniform and sorted in ascending order, then:

A2 ¼ �n� S;

where:

S ¼
Xn
i¼1

2i� 1

n
ln yi þ ln 1� yn�iþ1ð Þ½ �:

When observations of a random variable X are non-uniformly distributed, the probability integral
transformation (PIT):

Y ¼ F Xð Þ;

where F is the cumulative distribution function of the distribution of interest, yields a uniformly
distributed random variable Y . The PIT is true only if all parameters of a distribution are known as
opposed to estimated; otherwise it is an approximation.

4 References

Anderson T W and Darling D A (1952) Asymptotic theory of certain ‘goodness-of-fit’ criteria based on
stochastic processes Annals of Mathematical Statistics 23 193–212

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

2: ISSORT – LOGICAL Input

On entry: set ISSORT ¼ :TRUE: if the observations are sorted in ascending order; otherwise the
function will sort the observations.
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3: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: yi, for i ¼ 1; 2; . . . ; n, the n observations.

On exit: if ISSORT ¼ :FALSE:, the data sorted in ascending order; otherwise the array is
unchanged.

Constraint: if ISSORT ¼ :TRUE:, the values must be sorted in ascending order. Each yi must lie
in the interval 0; 1ð Þ.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 1.

IFAIL ¼ 3

ISSORT ¼ :TRUE: and the data in Y is not sorted in ascending order.

IFAIL ¼ 9

The data in Y must lie in the interval 0; 1ð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

G08CHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example calculates the A2 statistic for data assumed to arise from an exponential distribution with
a sample parameter estimate and simulates its p-value using the NAG basic random number generator.

10.1 Program Text

Program g08chfe

! G08CHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05sff, g08chf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: genid = 1, lseed = 1, mstate = 17, &

nin = 5, nout = 6, subid = -1
! .. Local Scalars ..

Real (Kind=nag_wp) :: a2, aa2, beta, nupper, p, sa2, sbeta
Integer :: i, ifail, j, k, lstate, n, nsim, &

n_pseudo
Logical :: issort

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), xsim(:), y(:)
Integer :: seed(lseed), state(17)

! .. Intrinsic Procedures ..
Intrinsic :: exp, real, sum

! .. Executable Statements ..
Write (nout,*) ’G08CHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read number of observations
Read (nin,*) n

! Memory allocation
Allocate (x(n),y(n))

! Read observations
Read (nin,*)(x(i),i=1,n)

! Maximum likelihood estimate of mean
beta = sum(x(1:n))/real(n,kind=nag_wp)

! PIT, using exponential CDF with mean beta
Do i = 1, n

y(i) = 1.0E0_nag_wp - exp(-x(i)/beta)
End Do

! Let g08chf sort the (approximately) uniform variates
issort = .False.

! Calculate A-squared
ifail = 0
a2 = g08chf(n,issort,y,ifail)
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aa2 = (1.0E0_nag_wp+0.6E0_nag_wp/real(n,kind=nag_wp))*a2

! Number of simulations
nsim = 888

! Generate exponential variates using a repeatable seed
Allocate (xsim(n*nsim))
seed(1) = 206033
lstate = mstate
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
n_pseudo = n*nsim
ifail = 0
Call g05sff(n_pseudo,beta,state,xsim,ifail)

! Simulations loop
nupper = 0.0E0_nag_wp
Do j = 1, nsim

k = (j-1)*n
! Maximum likelihood estimate of mean

sbeta = sum(xsim(k+1:k+n))/real(n,kind=nag_wp)
! PIT

Do i = 1, n
y(i) = 1.0E0_nag_wp - exp(-xsim(k+i)/sbeta)

End Do
! Calculate A-squared

ifail = 0
sa2 = g08chf(n,issort,y,ifail)
If (sa2>aa2) Then

nupper = nupper + 1.0E0_nag_wp
End If

End Do

! Simulated upper tail probability value
p = nupper/real(nsim+1,kind=nag_wp)

! Results
Write (nout,’(1X,A,E11.4)’) &

’H0: data from exponential distribution with mean’, beta
Write (nout,’(1X,A,1X,F8.4)’) ’Test statistic, A-squared: ’, a2
Write (nout,’(1X,A,1X,F8.4)’) ’Upper tail probability: ’, p

End Program g08chfe

10.2 Program Data

G08CHF Example Program Data
26 :: n
0.4782745 1.2858962 1.1163891 2.0410619 2.2648109 0.0833660 1.2527554
0.4031288 0.7808981 0.1977674 3.2539440 1.8113504 1.2279834 3.9178773
1.4494309 0.1358438 1.8061778 6.0441929 0.9671624 3.2035042 0.8067364
0.4179364 3.5351774 0.3975414 0.6120960 0.1332589 :: end of observations

10.3 Program Results

G08CHF Example Program Results

H0: data from exponential distribution with mean 0.1524E+01
Test statistic, A-squared: 0.1616
Upper tail probability: 0.9798
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NAG Library Routine Document

G08CJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08CJF calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of
standard uniformly distributed data.

2 Specification

SUBROUTINE G08CJF (N, ISSORT, Y, A2, P, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) Y(N), A2, P
LOGICAL ISSORT

3 Description

Calculates the Anderson–Darling test statistic A2 (see G08CHF) and its upper tail probability by using
the approximation method of Marsaglia and Marsaglia (2004) for the case of uniformly distributed data.

4 References

Anderson T W and Darling D A (1952) Asymptotic theory of certain ‘goodness-of-fit’ criteria based on
stochastic processes Annals of Mathematical Statistics 23 193–212

Marsaglia G and Marsaglia J (2004) Evaluating the Anderson–Darling distribution J. Statist. Software 9
(2)

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

2: ISSORT – LOGICAL Input

On entry: set ISSORT ¼ :TRUE: if the observations are sorted in ascending order; otherwise the
routine will sort the observations.

3: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: yi, for i ¼ 1; 2; . . . ; n, the n observations.

On exit: if ISSORT ¼ :FALSE:, the data sorted in ascending order; otherwise the array is
unchanged.

Constraint: if ISSORT ¼ :TRUE:, the values must be sorted in ascending order. Each yi must lie
in the interval 0; 1ð Þ.

4: A2 – REAL (KIND=nag_wp) Output

On exit: A2, the Anderson–Darling test statistic.
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5: P – REAL (KIND=nag_wp) Output

On exit: p, the upper tail probability for A2.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 1.

IFAIL ¼ 3

ISSORT ¼ :TRUE: and the data in Y is not sorted in ascending order.

IFAIL ¼ 9

The data in Y must lie in the interval 0; 1ð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Probabilities greater than approximately 0:09 are accurate to five decimal places; lower value
probabilities are accurate to six decimal places.

8 Parallelism and Performance

G08CJF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example calculates the A2 statistic and its p-value for uniform data obtained by transforming
exponential variates.

10.1 Program Text

Program g08cjfe

! G08CJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08cjf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a2, mu, p
Integer :: i, ifail, n
Logical :: issort

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Write (nout,*) ’G08CJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read number of observations and parameter value
Read (nin,*) n, mu

! Memory allocation
Allocate (x(n),y(n))

! Read observations
Read (nin,*)(x(i),i=1,n)

! PIT
Do i = 1, n

y(i) = 1.0E0_nag_wp - exp(-x(i)/mu)
End Do

! Let g08cjf sort the uniform variates
issort = .False.

! Calculate A-squared and probability
ifail = 0
Call g08cjf(n,issort,y,a2,p,ifail)

! Results
Write (nout,’(1X,A,E11.4)’) &

’H0: data from exponential distribution with mean’, mu
Write (nout,’(1X,A,1X,F8.4)’) ’Test statistic, A-squared: ’, a2
Write (nout,’(1X,A,1X,F8.4)’) ’Upper tail probability: ’, p

End Program g08cjfe
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10.2 Program Data

G08CJF Example Program Data
26 1.65 :: n, mu
0.4782745 1.2858962 1.1163891 2.0410619 2.2648109 0.0833660 1.2527554
0.4031288 0.7808981 0.1977674 3.2539440 1.8113504 1.2279834 3.9178773
1.4494309 0.1358438 1.8061778 6.0441929 0.9671624 3.2035042 0.8067364
0.4179364 3.5351774 0.3975414 0.6120960 0.1332589 :: end of observations

10.3 Program Results

G08CJF Example Program Results

H0: data from exponential distribution with mean 0.1650E+01
Test statistic, A-squared: 0.1830
Upper tail probability: 0.9945
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NAG Library Routine Document

G08CKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08CKF calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case
of a fully-unspecified Normal distribution.

2 Specification

SUBROUTINE G08CKF (N, ISSORT, Y, YBAR, YVAR, A2, AA2, P, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) Y(N), YBAR, YVAR, A2, AA2, P
LOGICAL ISSORT

3 Description

Calculates the Anderson–Darling test statistic A2 (see G08CHF) and its upper tail probability for the
small sample correction:

Adjusted A2 ¼ A2 1þ 0:75=nþ 2:25=n2
� �

;

for n observations.

4 References

Anderson T W and Darling D A (1952) Asymptotic theory of certain ‘goodness-of-fit’ criteria based on
stochastic processes Annals of Mathematical Statistics 23 193–212

Stephens M A and D'Agostino R B (1986) Goodness-of-Fit Techniques Marcel Dekker, New York

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

2: ISSORT – LOGICAL Input

On entry: set ISSORT ¼ :TRUE: if the observations are sorted in ascending order; otherwise the
routine will sort the observations.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the n observations.

Constraint: if ISSORT ¼ :TRUE:, the values must be sorted in ascending order.

4: YBAR – REAL (KIND=nag_wp) Output

On exit: the maximum likelihood estimate of mean.

5: YVAR – REAL (KIND=nag_wp) Output

On exit: the maximum likelihood estimate of variance.
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6: A2 – REAL (KIND=nag_wp) Output

On exit: A2, the Anderson–Darling test statistic.

7: AA2 – REAL (KIND=nag_wp) Output

On exit: the adjusted A2.

8: P – REAL (KIND=nag_wp) Output

On exit: p, the upper tail probability for the adjusted A2.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 1.

IFAIL ¼ 3

ISSORT ¼ :TRUE: and the data in Y is not sorted in ascending order.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Probabilities are calculated using piecewise polynomial approximations to values estimated by
simulation.
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8 Parallelism and Performance

G08CKF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example calculates the A2 statistics for data assumed to arise from a fully-unspecified Normal
distribution and the p-value.

10.1 Program Text

Program g08ckfe

! G08CKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08ckf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a2, aa2, p, ybar, yvar
Integer :: i, ifail, n
Logical :: issort

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: y(:)

! .. Executable Statements ..
Write (nout,*) ’G08CKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read number of observations
Read (nin,*) n

! Memory allocation
Allocate (y(n))

! Read observations
Read (nin,*)(y(i),i=1,n)

! Let g08ckf sort the data
issort = .False.

! Calculate A-squared and probability
ifail = 0
Call g08ckf(n,issort,y,ybar,yvar,a2,aa2,p,ifail)

! Results
Write (nout,’(1X,A,E11.4,1X,A,E11.4)’) &

’H0: data from Normal distribution with mean’, ybar, ’and variance’, &
yvar

Write (nout,’(1X,A,1X,F8.4)’) ’Test statistic, A-squared: ’, a2
Write (nout,’(1X,A,1X,F8.4)’) ’Adjusted A-squared: ’, aa2
Write (nout,’(1X,A,1X,F8.4)’) ’Upper tail probability: ’, p

End Program g08ckfe
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10.2 Program Data

G08CKF Example Program Data
26 :: n
0.3131132 0.2520412 1.5788841 1.4416712 -0.8246043 -1.6466685
0.7943184 1.2874915 -0.8347250 0.3352505 0.9434467 2.1099520

-0.2801654 -0.7843009 0.6218187 2.0963809 1.7170403 -0.1350142
0.7982763 -0.2980977 1.2283043 1.5576090 -0.4828757 2.6070754
0.1213996 0.1431621 :: end of observations

10.3 Program Results

G08CKF Example Program Results

H0: data from Normal distribution with mean 0.5639E+00 and variance 0.1139E+01
Test statistic, A-squared: 0.1660
Adjusted A-squared: 0.1713
Upper tail probability: 0.9312
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NAG Library Routine Document

G08CLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08CLF calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of
an unspecified exponential distribution.

2 Specification

SUBROUTINE G08CLF (N, ISSORT, Y, YBAR, A2, AA2, P, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) Y(N), YBAR, A2, AA2, P
LOGICAL ISSORT

3 Description

Calculates the Anderson–Darling test statistic A2 (see G08CHF) and its upper tail probability for the
small sample correction:

Adjusted A2 ¼ A2 1þ 0:6=nð Þ;

for n observations.

4 References

Anderson T W and Darling D A (1952) Asymptotic theory of certain ‘goodness-of-fit’ criteria based on
stochastic processes Annals of Mathematical Statistics 23 193–212

Stephens M A and D'Agostino R B (1986) Goodness-of-Fit Techniques Marcel Dekker, New York

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 1.

2: ISSORT – LOGICAL Input

On entry: set ISSORT ¼ :TRUE: if the observations are sorted in ascending order; otherwise the
routine will sort the observations.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the n observations.

Constraint: if ISSORT ¼ :TRUE:, values must be sorted in ascending order. Each yi must be
greater than zero.

4: YBAR – REAL (KIND=nag_wp) Output

On exit: the maximum likelihood estimate of mean.
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5: A2 – REAL (KIND=nag_wp) Output

On exit: A2, the Anderson–Darling test statistic.

6: AA2 – REAL (KIND=nag_wp) Output

On exit: the adjusted A2.

7: P – REAL (KIND=nag_wp) Output

On exit: p, the upper tail probability for the adjusted A2.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 1.

IFAIL ¼ 3

ISSORT ¼ :TRUE: and the data in Y is not sorted in ascending order.

IFAIL ¼ 9

The data in Y must be greater than zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Probabilities are calculated using piecewise polynomial approximations to values estimated by
simulation.

8 Parallelism and Performance

G08CLF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example calculates the A2 statistics for data assumed to arise from an unspecified exponential
distribution and calculates the p-value.

10.1 Program Text

Program g08clfe

! G08CLF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08clf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a2, aa2, p, ybar
Integer :: i, ifail, n
Logical :: issort

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: y(:)

! .. Executable Statements ..
Write (nout,*) ’G08CLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read number of observations
Read (nin,*) n

! Memory allocation
Allocate (y(n))

! Read observations
Read (nin,*)(y(i),i=1,n)

! Let g08clf sort the data
issort = .False.

! Calculate A-squared and probability
ifail = 0
Call g08clf(n,issort,y,ybar,a2,aa2,p,ifail)

! Results
Write (nout,’(1X,A,E11.4)’) &

’H0: data from exponential distribution with mean’, ybar
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Write (nout,’(1X,A,1X,F8.4)’) ’Test statistic, A-squared: ’, a2
Write (nout,’(1X,A,1X,F8.4)’) ’Adjusted A-squared: ’, aa2
Write (nout,’(1X,A,1X,F8.4)’) ’Upper tail probability: ’, p

End Program g08clfe

10.2 Program Data

G08CLF Example Program Data
26 :: n
0.4782745 1.2858962 1.1163891 2.0410619 2.2648109 0.0833660 1.2527554
0.4031288 0.7808981 0.1977674 3.2539440 1.8113504 1.2279834 3.9178773
1.4494309 0.1358438 1.8061778 6.0441929 0.9671624 3.2035042 0.8067364
0.4179364 3.5351774 0.3975414 0.6120960 0.1332589 :: end of observations

10.3 Program Results

G08CLF Example Program Results

H0: data from exponential distribution with mean 0.1524E+01
Test statistic, A-squared: 0.1616
Adjusted A-squared: 0.1654
Upper tail probability: 0.9831
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NAG Library Routine Document

G08DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08DAF calculates Kendall's coefficient of concordance on k independent rankings of n objects or
individuals.

2 Specification

SUBROUTINE G08DAF (X, LDX, K, N, RNK, W, P, IFAIL)

INTEGER LDX, K, N, IFAIL
REAL (KIND=nag_wp) X(LDX,N), RNK(LDX,N), W, P

3 Description

Kendall's coefficient of concordance measures the degree of agreement between k comparisons of n
objects, the scores in the ith comparison being denoted by

xi1; xi2; . . . ; xin:

The hypothesis under test, H0, often called the null hypothesis, is that there is no agreement between
the comparisons, and this is to be tested against the alternative hypothesis, H1, that there is some
agreement.

The n scores for each comparison are ranked, the rank rij denoting the rank of object j in comparison i,
and all ranks lying between 1 and n. Average ranks are assigned to tied scores.

For each of the n objects, the k ranks are totalled, giving rank sums Rj, for j ¼ 1; 2; . . . ; n. Under H0,
all the Rj would be approximately equal to the average rank sum k nþ 1ð Þ=2. The total squared
deviation of the Rj from this average value is therefore a measure of the departure from H0 exhibited
by the data. If there were complete agreement between the comparisons, the rank sums Rj would have
the values k; 2k; . . . ; nk (or some permutation thereof). The total squared deviation of these values is
k2 n3 � n
� �

=12.

Kendall's coefficient of concordance is the ratio

W ¼

Xn
j¼1

Rj � 1
2k nþ 1ð Þ

� �2
1
12k

2 n3 � nð Þ

and lies between 0 and 1, the value 0 indicating complete disagreement, and 1 indicating complete
agreement.

If there are tied rankings within comparisons, W is corrected by subtracting k
P
T from the

denominator, where T ¼
P

t3 � t
� �

=12, each t being the number of occurrences of each tied rank
within a comparison, and the summation of T being over all comparisons containing ties.

G08DAF returns the value of W , and also an approximation, p, of the significance of the observed W .
(For n > 7; k n� 1ð ÞW approximately follows a �2

n�1 distribution, so large values of W imply rejection
of H0.) H0 is rejected by a test of chosen size � if p < �. If n � 7, tables should be used to establish
the significance of W (e.g., Table R of Siegel (1956)).
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4 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: XðLDX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Xði; jÞ must be set to the value xij of object j in comparison i, for i ¼ 1; 2; . . . ; k and
j ¼ 1; 2; . . . ; n.

2: LDX – INTEGER Input

On entry: the first dimension of the arrays X and RNK as declared in the (sub)program from
which G08DAF is called.

Constraint: LDX � K.

3: K – INTEGER Input

On entry: k, the number of comparisons.

Constraint: K � 2.

4: N – INTEGER Input

On entry: n, the number of objects.

Constraint: N � 2.

5: RNKðLDX;NÞ – REAL (KIND=nag_wp) array Workspace

6: W – REAL (KIND=nag_wp) Output

On exit: the value of Kendall's coefficient of concordance, W .

7: P – REAL (KIND=nag_wp) Output

On exit: the approximate significance, p, of W .

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.
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IFAIL ¼ 2

On entry, LDX < K.

IFAIL ¼ 3

On entry, K � 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All computations are believed to be stable. The statistic W should be accurate enough for all practical
uses.

8 Parallelism and Performance

G08DAF is not threaded in any implementation.

9 Further Comments

The time taken by G08DAF is approximately proportional to the product nk.

10 Example

This example is taken from page 234 of Siegel (1956). The data consists of 10 objects ranked on three
different variables: X , Y and Z . The computed values of Kendall's coefficient is significant at the 1%
level of significance p ¼ 0:008 < 0:01ð Þ, indicating that the null hypothesis of there being no agreement
between the three rankings X , Y , Z may be rejected with reasonably high confidence.

10.1 Program Text

Program g08dafe

! G08DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08daf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, w
Integer :: i, ifail, k, ldx, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rnk(:,:), x(:,:)
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! .. Executable Statements ..
Write (nout,*) ’G08DAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) k, n

ldx = k
Allocate (x(ldx,n),rnk(ldx,n))

! Read in data
Read (nin,*)(x(i,1:n),i=1,k)

! Display title
Write (nout,*) ’Kendall’’s coefficient of concordance’
Write (nout,*)

! Display data
Write (nout,*) ’Data values’
Write (nout,*)
Write (nout,99999)(’Comparison ’,i,’ scores ’,x(i,1:n),i=1,k)

ifail = 0
Call g08daf(x,ldx,k,n,rnk,w,p,ifail)

! Display results
Write (nout,*)
Write (nout,99998) ’Kendall’’s coefficient =’, w
Write (nout,99998) ’ Significance =’, p

99999 Format (1X,A,I1,A,10F5.1)
99998 Format (1X,A,F8.3)

End Program g08dafe

10.2 Program Data

G08DAF Example Program Data
3 10 : K,N

1.0 4.5 2.0 4.5 3.0 7.5 6.0 9.0 7.5 10.0
2.5 1.0 2.5 4.5 4.5 8.0 9.0 6.5 10.0 6.5
2.0 1.0 4.5 4.5 4.5 4.5 8.0 8.0 8.0 10.0 : End of X

10.3 Program Results

G08DAF Example Program Results

Kendall’s coefficient of concordance

Data values

Comparison 1 scores 1.0 4.5 2.0 4.5 3.0 7.5 6.0 9.0 7.5 10.0
Comparison 2 scores 2.5 1.0 2.5 4.5 4.5 8.0 9.0 6.5 10.0 6.5
Comparison 3 scores 2.0 1.0 4.5 4.5 4.5 4.5 8.0 8.0 8.0 10.0

Kendall’s coefficient = 0.828
Significance = 0.008
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NAG Library Routine Document

G08EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08EAF performs a runs up (or a runs down) test on a sequence of observations.

2 Specification

SUBROUTINE G08EAF (CL, N, X, M, MAXR, NRUNS, NCOUNT, EX, COV, LDCOV,
CHI, DF, PROB, WRK, LWRK, IFAIL)

&

INTEGER N, M, MAXR, NRUNS, NCOUNT(MAXR), LDCOV, LWRK, IFAIL
REAL (KIND=nag_wp) X(N), EX(MAXR), COV(LDCOV,MAXR), CHI, DF, PROB,

WRK(LWRK)
&

CHARACTER(1) CL

3 Description

Runs tests may be used to investigate for trends in a sequence of observations. G08EAF computes
statistics for the runs up test. If the runs down test is desired then each observation must be multiplied
by �1 before G08EAF is called with the modified vector of observations. G08EAF may be used in two
different modes:

(i) a single call to G08EAF which computes all test statistics after counting the runs;

(ii) multiple calls to G08EAF with the final test statistics only being computed in the last call.

The second mode is necessary if all the data do not fit into the memory. See argument CL in Section 5
for details on how to invoke each mode.

A run up is a sequence of numbers in increasing order. A run up ends at xk when xk > xkþ1 and the
new run then begins at xkþ1. G08EAF counts the number of runs up of different lengths. Let ci denote
the number of runs of length i, for i ¼ 1; 2; . . . ; r� 1. The number of runs of length r or greater is then
denoted by cr.

An unfinished run at the end of a sequence is not counted unless the sequence is part of an initial or
intermediate call to G08EAF (i.e., unless there is another call to G08EAF to follow) in which case the
unfinished run is used together with the beginning of the next sequence of numbers input to G08EAF in
the next call. The following is a trivial example.

Suppose we called G08EAF twice with the following two sequences:

(0:20 0:40 0:45 0:40 0:15 0:75 0:95 0:23) and

(0:27 0:40 0:25 0:10 0:34 0:39 0:61 0:12).

Then after the second call G08EAF would have counted the runs up of the following lengths:

3, 1, 3, 3, 1, and 4.

When the counting of runs is complete G08EAF computes the expected values and covariances of the
counts, ci. For the details of the method used see Knuth (1981). An approximate �2 statistic with r
degrees of freedom is computed, where

X2 ¼ c� �cð ÞT��1c c� �cð Þ;

where
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c is the vector of counts, ci, for i ¼ 1; 2; . . . ; r,

�c is the vector of expected values,

ei, for i ¼ 1; 2; . . . ; r, where ei is the expected value for ci under the null hypothesis of
randomness, and

�c is the covariance matrix of c under the null hypothesis.

The use of the �2-distribution as an approximation to the exact distribution of the test statistic, X2,
improves as the length of the sequence relative to m increases and hence the expected value, e,
increases.

You may specify the total number of runs to be found. If the specified number of runs is found before
the end of a sequence G08EAF will exit before counting any further runs. The number of runs actually
counted and used to compute the test statistic is returned via NRUNS.

4 References

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Morgan B J T (1984) Elements of Simulation Chapman and Hall

Ripley B D (1987) Stochastic Simulation Wiley

5 Arguments

1: CL – CHARACTER(1) Input

On entry: must specify the type of call to G08EAF.

CL ¼ S
This is the one and only call to G08EAF (single call mode). All data are to be input at
once. All test statistics are computed after the counting of runs is complete.

CL ¼ F
This is the first call to the routine. All initializations are carried out and the counting of
runs begins. The final test statistics are not computed since further calls will be made to
G08EAF.

CL ¼ I
This is an intermediate call during which the counts of runs are updated. The final test
statistics are not computed since further calls will be made to G08EAF.

CL ¼ L
This is the last call to G08EAF. The test statistics are computed after the final counting of
runs is completed.

Constraint: CL ¼ S , F , I or L .

2: N – INTEGER Input

On entry: n, the length of the current sequence of observations.

Constraints:

if CL ¼ S , N � 3;
otherwise N � 1.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of observations.
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4: M – INTEGER Input

On entry: the maximum number of runs to be sought. If M � 0 then no limit is placed on the
number of runs that are found.

M must not be changed between calls to G08EAF.

Constraint: if M � N, CL ¼ S .

5: MAXR – INTEGER Input

On entry: r, the length of the longest run for which tabulation is desired. That is, all runs with
length greater than or equal to r are counted together.

MAXR must not be changed between calls to G08EAF.

Constraint: MAXR � 1 and if CL ¼ S , MAXR < N.

6: NRUNS – INTEGER Input/Output

On entry: if CL ¼ S or F , NRUNS need not be set.

If CL ¼ I or L , NRUNS must contain the value returned by the previous call to G08EAF.

On exit: the number of runs actually found.

7: NCOUNTðMAXRÞ – INTEGER array Input/Output

On entry: if CL ¼ S or F , NCOUNT need not be set.

If CL ¼ I or L , NCOUNT must contain the values returned by the previous call to G08EAF.

On exit: the counts of runs of the different lengths, ci, for i ¼ 1; 2; . . . ; r.

8: EXðMAXRÞ – REAL (KIND=nag_wp) array Output

On exit: if CL ¼ S or L , (i.e., if it is the final exit) then EX contains the expected values of the
counts, ei, for i ¼ 1; 2; . . . ; r.

Otherwise the elements of EX are not set.

9: COVðLDCOV;MAXRÞ – REAL (KIND=nag_wp) array Output

On exit: if CL ¼ S or L (i.e., if it is the final exit) then COV contains the covariance matrix of
the counts, �c.

Otherwise the elements of COV are not set.

10: LDCOV – INTEGER Input

On entry: the first dimension of the array COV as declared in the (sub)program from which
G08EAF is called.

Constraint: LDCOV � MAXR.

11: CHI – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is the final exit) then CHI contains the approximate �2 test
statistic, X2.

Otherwise CHI is not set.

12: DF – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is the final exit) then DF contains the degrees of freedom of
the �2 statistic.

Otherwise DF is not set.
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13: PROB – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L , (i.e., if it is the final exit) then PROB contains the upper tail
probability corresponding to the �2 test statistic, i.e., the significance level.

Otherwise PROB is not set.

14: WRKðLWRKÞ – REAL (KIND=nag_wp) array Workspace
15: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which G08EAF
is called.

Constraint: LWRK � MAXR� MAXRþ5ð Þ
2 þ 1 .

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G08EAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CL ¼ valueh i.
Constraint: CL ¼ S , F , I or L .

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: if CL ¼ S , N � 3, otherwise N � 1.

IFAIL ¼ 3

On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: if CL ¼ S , M � N.

IFAIL ¼ 4

On entry, MAXR ¼ valueh i.
Constraint: MAXR � 1.

On entry, MAXR ¼ valueh i and N ¼ valueh i.
Constraint: if CL ¼ S , MAXR < N.
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IFAIL ¼ 5

On entry, LDCOV ¼ valueh i and MAXR ¼ valueh i.
Constraint: LDCOV � MAXR.

IFAIL ¼ 6

On entry, LWRK ¼ valueh i.
Constraint: LWRK � MAXR � MAXR þ 5ð Þ=2þ 1 ¼ valueh i.

IFAIL ¼ 7

There is a tie in the sequence of observations.

IFAIL ¼ 8

The total length of the runs found is less than MAXR.
MAXR ¼ valueh i whereas the total length of all runs is valueh i.

IFAIL ¼ 9

The covariance matrix stored in COV is not positive definite, thus the approximate �2 test
statistic cannot be computed.
This may be because MAXR is too large relative to the length of the full sequence.

IFAIL ¼ 10

The number of runs requested were not found, only valueh i out of the requested valueh i where
found.
All statistics are returned and may still be of use.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable. The computation of PROB given the values of CHI and DF
will obtain a relative accuracy of five significant figures for most cases.

8 Parallelism and Performance

G08EAF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

G08EAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G08EAF increases with the number of observations n, and also depends to some
extent on whether the call to G08EAF is an only, first, intermediate or last call.

10 Example

The following program performs a runs up test on 500 pseudorandom numbers. G08EAF is called 5
times with 100 observations each time. No limit is placed on the number of runs to be counted. All runs
of length 6 or more are counted together.

10.1 Program Text

Program g08eafe

! G08EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08eaf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: chi, df, prob
Integer :: i, ifail, ldcov, lwrk, m, maxr, n, &

nruns, nsamp, pn
Character (1) :: cl

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cov(:,:), ex(:), wrk(:), x(:)
Integer, Allocatable :: ncount(:)

! .. Executable Statements ..
Write (nout,*) ’G08EAF Example Program Results’
Write (nout,*)

! Skip main heading in data file
Read (nin,*)

! Read in number of samples
Read (nin,*) nsamp, m, maxr

ldcov = maxr
lwrk = maxr*(maxr+5)/2 + 1
Allocate (ncount(maxr),cov(ldcov,maxr),ex(maxr),wrk(lwrk),x(1))

If (nsamp==1) Then
cl = ’S’

Else
cl = ’F’

End If

pn = 0
Do i = 1, nsamp

! Skip run heading in data file
Read (nin,*)

! Read in sample size
Read (nin,*) n

If (n>pn) Then
! Reallocate X if required
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Deallocate (x)
Allocate (x(n))
pn = n

End If

! Read in the sample
Read (nin,*) x(1:n)

! Process the sample
ifail = -1
Call g08eaf(cl,n,x,m,maxr,nruns,ncount,ex,cov,ldcov,chi,df,prob,wrk, &

lwrk,ifail)
If (ifail/=0 .And. ifail/=10) Then

Go To 100
End If

! Adjust CL for intermediate calls
If (i<nsamp-1) Then

cl = ’I’
Else

cl = ’L’
End If

End Do

! Display results
Write (nout,99999) ’Total number of runs found = ’, nruns
If (ifail==10) Then

Write (nout,*) &
’ ** Note : the number of runs requested were not found.’

End If
Write (nout,*)
Write (nout,*) ’ Count’
Write (nout,*) &

’ 1 2 3 4 5 >5’
Write (nout,99998) ncount(1:maxr)
Write (nout,*)
Write (nout,*) ’ Expect’
Write (nout,*) &

’ 1 2 3 4 5 >5’
Write (nout,99997) ex(1:maxr)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,maxr,maxr,cov,ldcov,’Covariance matrix’,ifail)
Write (nout,*)
Write (nout,99996) ’Chisq = ’, chi
Write (nout,99995) ’DF = ’, df
Write (nout,99996) ’Prob = ’, prob

100 Continue

99999 Format (1X,A,I10)
99998 Format (3X,6I9)
99997 Format (3X,6F9.1)
99996 Format (1X,A,F10.4)
99995 Format (1X,A,F7.1)

End Program g08eafe

10.2 Program Data

G08EAF Example Program Data
5 0 6 :: NSAMP,M,MAXR
## Sample 1
100 :: N
0.11389 0.84996 0.84821 0.18431 0.14104 0.03144 0.68013 0.13297 0.27696 0.86743
0.32674 0.87990 0.85580 0.47830 0.75318 0.93643 0.19396 0.31091 0.34956 0.94923
0.18940 0.24715 0.62503 0.50406 0.05686 0.26481 0.68746 0.80387 0.48184 0.25034
0.20141 0.35062 0.58591 0.93407 0.93848 0.98496 0.66180 0.35957 0.71122 0.35875
0.96504 0.60832 0.36569 0.73499 0.25223 0.88296 0.06659 0.78113 0.40016 0.31768
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0.47655 0.15008 0.20608 0.62633 0.62737 0.16400 0.44104 0.56993 0.13178 0.50499
0.44176 0.44385 0.75372 0.82178 0.60227 0.98944 0.33133 0.81067 0.40798 0.71608
0.69306 0.22144 0.47942 0.65697 0.50881 0.25223 0.82373 0.50148 0.65246 0.53275
0.92935 0.13455 0.19901 0.78844 0.14006 0.50600 0.41069 0.49703 0.47858 0.02210
0.91444 0.10784 0.54642 0.63091 0.14419 0.80457 0.51336 0.71451 0.12564 0.88051
## Sample 2
100 :: N
0.84976 0.63094 0.46109 0.80538 0.62387 0.90670 0.09969 0.67992 0.70503 0.09560
0.69991 0.37616 0.42030 0.23665 0.28771 0.24935 0.94950 0.12008 0.66217 0.20900
0.97026 0.98368 0.80206 0.43918 0.73232 0.03533 0.97995 0.06637 0.54726 0.48530
0.68865 0.94302 0.33718 0.61014 0.70127 0.36827 0.51335 0.24476 0.14203 0.02428
0.73691 0.22192 0.40374 0.85757 0.83335 0.73309 0.05563 0.17332 0.72253 0.43291
0.77476 0.35967 0.94242 0.61337 0.43513 0.80573 0.70630 0.83115 0.24622 0.45445
0.53595 0.31476 0.87968 0.75365 0.86291 0.34051 0.62232 0.16762 0.45506 0.15561
0.76615 0.77421 0.06035 0.72290 0.93712 0.83223 0.40044 0.96575 0.73176 0.27827
0.02174 0.75326 0.82876 0.64979 0.98038 0.61054 0.87742 0.95273 0.39091 0.42146
0.89020 0.08617 0.90953 0.00416 0.70915 0.21123 0.95342 0.19269 0.68252 0.27600
## Sample 3
100 :: N
0.40629 0.96486 0.66026 0.07134 0.35492 0.34348 0.87164 0.59746 0.43724 0.26730
0.11840 0.04604 0.49037 0.99669 0.32784 0.34772 0.93599 0.95806 0.80635 0.18897
0.60061 0.83359 0.63026 0.14084 0.05323 0.70247 0.28532 0.09572 0.36153 0.50378
0.42679 0.71801 0.51010 0.72090 0.97537 0.29919 0.30059 0.23610 0.25668 0.07510
0.92481 0.65715 0.69686 0.27840 0.20555 0.64015 0.05725 0.25120 0.32288 0.22320
0.16582 0.71466 0.34030 0.55575 0.51468 0.18013 0.74670 0.21455 0.52649 0.47487
0.85805 0.24616 0.11459 0.38690 0.83475 0.83629 0.83754 0.18998 0.46715 0.24162
0.19488 0.03281 0.39291 0.37834 0.97169 0.65229 0.88913 0.53777 0.05780 0.20468
0.33788 0.10130 0.72771 0.31306 0.74279 0.26546 0.37941 0.04878 0.03061 0.52394
0.74104 0.97192 0.04550 0.81382 0.44430 0.32402 0.06791 0.73602 0.22640 0.67260
## Sample 4
100 :: N
0.46016 0.95901 0.37581 0.45836 0.26220 0.30389 0.46845 0.52940 0.71121 0.89187
0.33346 0.81783 0.07194 0.01163 0.63324 0.69208 0.28685 0.02491 0.97931 0.53225
0.47009 0.12105 0.80291 0.21191 0.74158 0.78269 0.30493 0.06901 0.54152 0.88463
0.60358 0.81066 0.77771 0.74140 0.65465 0.32613 0.42757 0.36584 0.42506 0.39980
0.04686 0.79805 0.53593 0.15562 0.09924 0.68011 0.61072 0.88701 0.56239 0.64343
0.19223 0.07325 0.40971 0.85265 0.27507 0.88884 0.10551 0.62646 0.11055 0.91368
0.58845 0.68942 0.29994 0.30395 0.45696 0.88127 0.38773 0.12028 0.48981 0.28535
0.84174 0.46451 0.17140 0.90827 0.49424 0.29557 0.25788 0.76838 0.19073 0.26051
0.47442 0.03224 0.32034 0.97378 0.43992 0.13338 0.45850 0.02122 0.30482 0.49427
0.89839 0.01770 0.85679 0.90157 0.29537 0.15213 0.21464 0.37237 0.86199 0.60364
## Sample 5
100 :: N
0.66793 0.00711 0.17970 0.98702 0.50449 0.88105 0.08259 0.77263 0.06050 0.73389
0.86517 0.76088 0.40239 0.50178 0.13811 0.63441 0.91949 0.48518 0.96923 0.08820
0.14556 0.28177 0.99598 0.46908 0.83279 0.26252 0.64987 0.20426 0.41060 0.76120
0.78022 0.44662 0.04918 0.36644 0.62337 0.16849 0.63846 0.41247 0.54464 0.05721
0.79852 0.23048 0.76139 0.22493 0.45640 0.07671 0.96152 0.50771 0.02376 0.49537
0.07095 0.86385 0.71385 0.35192 0.68827 0.49737 0.44847 0.26744 0.46983 0.44270
0.78845 0.72560 0.38886 0.45552 0.45917 0.64241 0.44654 0.42665 0.01122 0.76716
0.01727 0.33687 0.02836 0.48409 0.02777 0.63643 0.59711 0.02880 0.63758 0.56746
0.41342 0.40939 0.61578 0.89186 0.70151 0.38707 0.94021 0.17271 0.27477 0.04308
0.91821 0.97517 0.57249 0.14325 0.46058 0.26434 0.85927 0.77526 0.64717 0.08314

10.3 Program Results

G08EAF Example Program Results

Total number of runs found = 251

Count
1 2 3 4 5 >5

77 120 39 12 1 2

Expect
1 2 3 4 5 >5

83.8 104.0 45.6 13.1 2.9 0.6

Covariance matrix
1 2 3 4 5 6
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1 64.2222 -9.8639 -7.4780 -3.5759 -1.1406 -0.3305
2 -9.8639 70.2942 -24.4639 -9.8092 -2.7386 -0.7103
3 -7.4780 -24.4639 29.9473 -5.8284 -1.5474 -0.3852
4 -3.5759 -9.8092 -5.8284 11.0343 -0.5319 -0.1289
5 -1.1406 -2.7386 -1.5474 -0.5319 2.7169 -0.0318
6 -0.3305 -0.7103 -0.3852 -0.1289 -0.0318 0.5809

Chisq = 9.7559
DF = 6.0
Prob = 0.1353
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NAG Library Routine Document

G08EBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08EBF performs a pairs test on a sequence of observations in the interval 0; 1½ �.

2 Specification

SUBROUTINE G08EBF (CL, N, X, MSIZE, LAG, NCOUNT, LDC, EX, CHI, DF, PROB,
WRK, IFAIL)

&

INTEGER N, MSIZE, LAG, NCOUNT(LDC,MSIZE), LDC, IFAIL
REAL (KIND=nag_wp) X(N), EX, CHI, DF, PROB, WRK(2*LAG)
CHARACTER(1) CL

3 Description

G08EBF computes the statistics for performing a pairs test which may be used to investigate deviations
from randomness in a sequence, x ¼ xi : i ¼ 1; 2; . . . ; nf g, of 0; 1½ � observations.
For a given lag, l � 1, an m by m matrix, C, of counts is formed as follows. The element cjk of C is
the number of pairs xi; xiþlð Þ such that

j� 1

m
� xi <

j

m

k� 1

m
� xiþl <

k

m

where i ¼ 1; 3; 5; . . . ; n� 1 if l ¼ 1, and i ¼ 1; 2; . . . ; l; 2lþ 1; 2lþ 2; . . . 3l; 4lþ 1; . . . ; n� l, if l > 1.

Note that all pairs formed are non-overlapping pairs and are thus independent under the assumption of
randomness.

Under the assumption that the sequence is random, the expected number of pairs for each class (i.e.,
each element of the matrix of counts) is the same; that is, the pairs should be uniformly distributed over
the unit square 0; 1½ �2. Thus the expected number of pairs for each class is just the total number of pairs,Xm
j;k¼1

cjk, divided by the number of classes, m2.

The �2 test statistic used to test the hypothesis of randomness is defined as

X2 ¼
Xm
j;k¼1

cjk � e
� �2

e
;

where e ¼
Xm
j;k¼1

cjk=m
2 ¼ expected number of pairs in each class.

The use of the �2-distribution as an approximation to the exact distribution of the test statistic, X2,
improves as the length of the sequence relative to m increases and hence the expected value, e,
increases.

G08EBF may be used in two different modes:

(i) a single call to G08EBF which computes all test statistics after counting the pairs;

(ii) multiple calls to G08EBF with the final test statistics only being computed in the last call.

G08 – Nonparametric Statistics G08EBF

Mark 26 G08EBF.1



The second mode is necessary if all the data do not fit into the memory. See argument CL in Section 5
for details on how to invoke each mode.

4 References

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Morgan B J T (1984) Elements of Simulation Chapman and Hall

Ripley B D (1987) Stochastic Simulation Wiley

5 Arguments

1: CL – CHARACTER(1) Input

On entry: indicates the type of call to G08EBF.

CL ¼ S
This is the one and only call to G08EBF (single call mode). All data are to be input at
once. All test statistics are computed after the counting of pairs is complete.

CL ¼ F
This is the first call to the routine. All initializations are carried out and the counting of
pairs begins. The final test statistics are not computed since further calls will be made to
G08EBF.

CL ¼ I
This is an intermediate call during which the counts of pairs are updated. The final test
statistics are not computed since further calls will be made to G08EBF.

CL ¼ L
This is the last call to G08EBF. The test statistics are computed after the final counting of
runs is complete.

Constraint: CL ¼ S , F , I or L .

2: N – INTEGER Input

On entry: n, the number of observations.

Constraints:

if CL ¼ S , N � 2;
otherwise N � 1.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of observations.

Constraint: 0:0 � XðiÞ � 1:0, for i ¼ 1; 2; . . . ; n.

4: MSIZE – INTEGER Input

On entry: m, the size of the matrix of counts.

MSIZE must not be changed between calls to G08EBF.

Constraint: MSIZE � 2.

5: LAG – INTEGER Input

On entry: l, the lag to be used in choosing pairs.

If LAG ¼ 1, then we consider the pairs XðiÞ;Xði þ 1Þð Þ, for i ¼ 1; 3; . . . ; n� 1, where n is the
number of observations.
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I f LAG > 1, t h e n w e c o n s i d e r t h e p a i r s XðiÞ;Xðiþ lÞð Þ, f o r
i ¼ 1; 2; . . . ; l; 2lþ 1; 2lþ 2; . . . ; 3l; 4lþ 1; . . . ; n� l, where n is the number of observations.
LAG must not be changed between calls to G08EBF.

Constraints:

LAG � 1;
if CL ¼ S , LAG < N.

6: NCOUNTðLDC;MSIZEÞ – INTEGER array Input/Output

On entry: if CL ¼ S or F , NCOUNT need not be set.

If CL ¼ I or L , NCOUNT must contain the values returned by the previous call to G08EBF.

On exit: is an MSIZE by MSIZE matrix containing the counts of the number of pairs in each cell,
cij, for i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ;m.

7: LDC – INTEGER Input

On entry: the first dimension of the array NCOUNT as declared in the (sub)program from which
G08EBF is called.

Constraint: LDC � MSIZE.

8: EX – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then EX contains the expected number of
counts in each cell, e.

Otherwise EX is not set.

9: CHI – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then CHI contains the �2 test statistic, X2, for
testing the null hypothesis of randomness.

Otherwise CHI is not set.

10: DF – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then DF contains the degrees of freedom for
the �2 statistic.

Otherwise DF is not set.

11: PROB – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then PROB contains the upper tail probability
associated with the �2 test statistic, i.e., the significance level.

Otherwise PROB is not set.

12: WRKð2� LAGÞ – REAL (KIND=nag_wp) array Communication Array

WRK is used to store information between successive calls to G08EBF and therefore must not be
changed.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
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arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G08EBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CL ¼ valueh i.
Constraint: CL ¼ S , F , I or L .

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: if CL ¼ S , N � 2, otherwise N � 1.

IFAIL ¼ 3

On entry, MSIZE ¼ valueh i.
Constraint: MSIZE � 2

IFAIL ¼ 4

On entry, LAG ¼ valueh i and N ¼ valueh i.
Constraint: LAG > 0 and if CL ¼ S , LAG < N.

IFAIL ¼ 5

On entry, LDC ¼ valueh i and MSIZE ¼ valueh i.
Constraint: LDC � MSIZE.

IFAIL ¼ 6

On entry, at least one element of X is out of range.
Constraint: 0 � XðiÞ � 1, for i ¼ 1; 2; . . . ;N.

IFAIL ¼ 7

No pairs were found. This will occur if the value of LAG is greater than or equal to the total
number of observations.

IFAIL ¼ 8

MSIZE is too large relative to the number of pairs, therefore the expected value for at least one
cell is less than or equal to 5:0.
This implies that the �2 distribution may not be a very good approximation to the distribution of
test statistic.
MSIZE ¼ valueh i, number of pairs ¼ valueh i and expected value ¼ valueh i.
All statistics are returned and may still be of use.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

G08EBF NAG Library Manual

G08EBF.4 Mark 26



IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable. The computation of PROB given the values of CHI and DF
will obtain a relative accuracy of five significant figures for most cases.

8 Parallelism and Performance

G08EBF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

G08EBF is not threaded in any implementation.

9 Further Comments

If after forming the pairs in an initial or intermediate call to G08EBF there is an observation left over at
the end of the sequence, this observation is used at the beginning of the new sequence provided by the
following call to G08EBF. Clearly an observation left over from an only or final call to G08EBF is
ignored.

The time taken by the routine increases with the number of observations n, and also depends to some
extent on whether the call to G08EBF is an only, first, intermediate or last call.

10 Example

The following program performs the pairs test on 500 pseudorandom numbers. G08EBF is called 5
times with 100 observations on each call. LAG ¼ 1 is used and the pairs are tallied into a 5 by 5 matrix.

10.1 Program Text

Program g08ebfe

! G08EBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08ebf, nag_wp, x04eaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: chi, df, ex, prob
Integer :: i, ifail, lag, ldc, lwrk, msize, n, &

nsamp, pn
Logical :: bapp
Character (1) :: cl

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: wrk(:), x(:)
Integer, Allocatable :: ncount(:,:)

! .. Executable Statements ..
Write (nout,*) ’G08EBF Example Program Results’
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Write (nout,*)
Flush (nout)

! Skip main heading in data file
Read (nin,*)

! Read in number of samples
Read (nin,*) nsamp, msize, lag

ldc = msize
lwrk = 2*lag
Allocate (ncount(ldc,msize),wrk(lwrk),x(1))

If (nsamp==1) Then
cl = ’S’

Else
cl = ’F’

End If

pn = 0
bapp = .False.
Do i = 1, nsamp

! Skip run heading in data file
Read (nin,*)

! Read in sample size
Read (nin,*) n

If (n>pn) Then
! Reallocate X if required

Deallocate (x)
Allocate (x(n))
pn = n

End If

! Read in the sample
Read (nin,*) x(1:n)

! Process the sample
ifail = -1
Call g08ebf(cl,n,x,msize,lag,ncount,ldc,ex,chi,df,prob,wrk,ifail)
If (ifail==8) Then

bapp = .True.
Else If (ifail/=0) Then

Go To 100
End If

! Adjust CL for intermediate calls
If (i<nsamp-1) Then

cl = ’I’
Else

cl = ’L’
End If

End Do

! Display results
ifail = 0
Call x04eaf(’General’,’ ’,msize,msize,ncount,ldc,’Count matrix’,ifail)
Write (nout,*)
Write (nout,99999) ’Expected value = ’, ex
Write (nout,99998) ’CHISQ = ’, chi
Write (nout,99999) ’DF = ’, df
Write (nout,99998) ’Probability = ’, prob
If (bapp) Then

Write (nout,*) &
’ ** Note : EX <= 5.0, the chi square approximation may not be ’, &
’very good.’

End If
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100 Continue

99999 Format (1X,A,F8.2)
99998 Format (1X,A,F10.4)

End Program g08ebfe

10.2 Program Data

G08EBF Example Program Data
5 5 1 :: NSAMP,MSIZE,LAG
## Sample 1
100 :: N
0.11389 0.84996 0.84821 0.18431 0.14104 0.03144 0.68013 0.13297 0.27696 0.86743
0.32674 0.87990 0.85580 0.47830 0.75318 0.93643 0.19396 0.31091 0.34956 0.94923
0.18940 0.24715 0.62503 0.50406 0.05686 0.26481 0.68746 0.80387 0.48184 0.25034
0.20141 0.35062 0.58591 0.93407 0.93848 0.98496 0.66180 0.35957 0.71122 0.35875
0.96504 0.60832 0.36569 0.73499 0.25223 0.88296 0.06659 0.78113 0.40016 0.31768
0.47655 0.15008 0.20608 0.62633 0.62737 0.16400 0.44104 0.56993 0.13178 0.50499
0.44176 0.44385 0.75372 0.82178 0.60227 0.98944 0.33133 0.81067 0.40798 0.71608
0.69306 0.22144 0.47942 0.65697 0.50881 0.25223 0.82373 0.50148 0.65246 0.53275
0.92935 0.13455 0.19901 0.78844 0.14006 0.50600 0.41069 0.49703 0.47858 0.02210
0.91444 0.10784 0.54642 0.63091 0.14419 0.80457 0.51336 0.71451 0.12564 0.88051
## Sample 2
100 :: N
0.84976 0.63094 0.46109 0.80538 0.62387 0.90670 0.09969 0.67992 0.70503 0.09560
0.69991 0.37616 0.42030 0.23665 0.28771 0.24935 0.94950 0.12008 0.66217 0.20900
0.97026 0.98368 0.80206 0.43918 0.73232 0.03533 0.97995 0.06637 0.54726 0.48530
0.68865 0.94302 0.33718 0.61014 0.70127 0.36827 0.51335 0.24476 0.14203 0.02428
0.73691 0.22192 0.40374 0.85757 0.83335 0.73309 0.05563 0.17332 0.72253 0.43291
0.77476 0.35967 0.94242 0.61337 0.43513 0.80573 0.70630 0.83115 0.24622 0.45445
0.53595 0.31476 0.87968 0.75365 0.86291 0.34051 0.62232 0.16762 0.45506 0.15561
0.76615 0.77421 0.06035 0.72290 0.93712 0.83223 0.40044 0.96575 0.73176 0.27827
0.02174 0.75326 0.82876 0.64979 0.98038 0.61054 0.87742 0.95273 0.39091 0.42146
0.89020 0.08617 0.90953 0.00416 0.70915 0.21123 0.95342 0.19269 0.68252 0.27600
## Sample 3
100 :: N
0.40629 0.96486 0.66026 0.07134 0.35492 0.34348 0.87164 0.59746 0.43724 0.26730
0.11840 0.04604 0.49037 0.99669 0.32784 0.34772 0.93599 0.95806 0.80635 0.18897
0.60061 0.83359 0.63026 0.14084 0.05323 0.70247 0.28532 0.09572 0.36153 0.50378
0.42679 0.71801 0.51010 0.72090 0.97537 0.29919 0.30059 0.23610 0.25668 0.07510
0.92481 0.65715 0.69686 0.27840 0.20555 0.64015 0.05725 0.25120 0.32288 0.22320
0.16582 0.71466 0.34030 0.55575 0.51468 0.18013 0.74670 0.21455 0.52649 0.47487
0.85805 0.24616 0.11459 0.38690 0.83475 0.83629 0.83754 0.18998 0.46715 0.24162
0.19488 0.03281 0.39291 0.37834 0.97169 0.65229 0.88913 0.53777 0.05780 0.20468
0.33788 0.10130 0.72771 0.31306 0.74279 0.26546 0.37941 0.04878 0.03061 0.52394
0.74104 0.97192 0.04550 0.81382 0.44430 0.32402 0.06791 0.73602 0.22640 0.67260
## Sample 4
100 :: N
0.46016 0.95901 0.37581 0.45836 0.26220 0.30389 0.46845 0.52940 0.71121 0.89187
0.33346 0.81783 0.07194 0.01163 0.63324 0.69208 0.28685 0.02491 0.97931 0.53225
0.47009 0.12105 0.80291 0.21191 0.74158 0.78269 0.30493 0.06901 0.54152 0.88463
0.60358 0.81066 0.77771 0.74140 0.65465 0.32613 0.42757 0.36584 0.42506 0.39980
0.04686 0.79805 0.53593 0.15562 0.09924 0.68011 0.61072 0.88701 0.56239 0.64343
0.19223 0.07325 0.40971 0.85265 0.27507 0.88884 0.10551 0.62646 0.11055 0.91368
0.58845 0.68942 0.29994 0.30395 0.45696 0.88127 0.38773 0.12028 0.48981 0.28535
0.84174 0.46451 0.17140 0.90827 0.49424 0.29557 0.25788 0.76838 0.19073 0.26051
0.47442 0.03224 0.32034 0.97378 0.43992 0.13338 0.45850 0.02122 0.30482 0.49427
0.89839 0.01770 0.85679 0.90157 0.29537 0.15213 0.21464 0.37237 0.86199 0.60364
## Sample 5
100 :: N
0.66793 0.00711 0.17970 0.98702 0.50449 0.88105 0.08259 0.77263 0.06050 0.73389
0.86517 0.76088 0.40239 0.50178 0.13811 0.63441 0.91949 0.48518 0.96923 0.08820
0.14556 0.28177 0.99598 0.46908 0.83279 0.26252 0.64987 0.20426 0.41060 0.76120
0.78022 0.44662 0.04918 0.36644 0.62337 0.16849 0.63846 0.41247 0.54464 0.05721
0.79852 0.23048 0.76139 0.22493 0.45640 0.07671 0.96152 0.50771 0.02376 0.49537
0.07095 0.86385 0.71385 0.35192 0.68827 0.49737 0.44847 0.26744 0.46983 0.44270
0.78845 0.72560 0.38886 0.45552 0.45917 0.64241 0.44654 0.42665 0.01122 0.76716
0.01727 0.33687 0.02836 0.48409 0.02777 0.63643 0.59711 0.02880 0.63758 0.56746
0.41342 0.40939 0.61578 0.89186 0.70151 0.38707 0.94021 0.17271 0.27477 0.04308
0.91821 0.97517 0.57249 0.14325 0.46058 0.26434 0.85927 0.77526 0.64717 0.08314
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10.3 Program Results

G08EBF Example Program Results

Count matrix
1 2 3 4 5

1 7 10 5 16 8
2 9 10 7 6 8
3 13 15 10 10 12
4 10 21 7 5 13
5 13 5 10 12 8

Expected value = 10.00
CHISQ = 34.8000
DF = 24.00
Probability = 0.0714
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NAG Library Routine Document

G08ECF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08ECF performs the triplets test on a sequence of observations from the interval 0; 1½ �.

2 Specification

SUBROUTINE G08ECF (CL, N, X, MSIZE, NCOUNT, LDC, EX, CHI, DF, PROB,
IFAIL)

&

INTEGER N, MSIZE, NCOUNT(LDC,LDC,MSIZE), LDC, IFAIL
REAL (KIND=nag_wp) X(N), EX, CHI, DF, PROB
CHARACTER(1) CL

3 Description

G08ECF computes the statistics for performing a triplets test which may be used to investigate
deviations from randomness in a sequence, x ¼ xi : i ¼ 1; 2; . . . ; nf g, of 0; 1½ � observations.
An m by m matrix, C, of counts is formed as follows. The element cjkl of C is the number of triplets
xi; xiþ1; xiþ2ð Þ for i ¼ 1; 4; 7; . . . ; n� 2, such that

j� 1

m
� xi <

j

m

k� 1

m
� xiþ1 <

k

m

l� 1

m
� xiþ2 <

l

m
:

Note that all triplets formed are non-overlapping and are thus independent under the assumption of
randomness.

Under the assumption that the sequence is random, the expected number of triplets for each class (i.e.,
each element of the count matrix) is the same; that is, the triplets should be uniformly distributed over
the unit cube 0; 1½ �3. Thus the expected number of triplets for each class is just the total number of

triplets,
Xm
j;k;l¼1

cjkl, divided by the number of classes, m3.

The �2 test statistic used to test the hypothesis of randomness is defined as

X2 ¼
Xm
j;k;l¼1

cjkl � e
� �2

e
;

where e ¼
Xm
j;k;l¼1

cjkl=m
3 ¼ expected number of triplets in each class.

The use of the �2-distribution as an approximation to the exact distribution of the test statistic, X2,
improves as the length of the sequence relative to m increases and hence the expected value, e,
increases.

G08ECF may be used in two different modes:
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(i) a single call to G08ECF which computes all test statistics after counting the triplets;

(ii) multiple calls to G08ECF with the final test statistics only being computed in the last call.

The second mode is necessary if all the data do not fit into the memory. See argument CL in Section 5
for details on how to invoke each mode.

4 References

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Morgan B J T (1984) Elements of Simulation Chapman and Hall

Ripley B D (1987) Stochastic Simulation Wiley

5 Arguments

1: CL – CHARACTER(1) Input

On entry: indicates the type of call to G08ECF.

CL ¼ S
This is the one and only call to G08ECF (single call mode). All data are to be input at
once. All test statistics are computed after counting of the triplets is complete.

CL ¼ F
This is the first call to the routine. All initializations are carried out and the counting of
triplets begins. The final test statistics are not computed since further calls will be made to
G08ECF.

CL ¼ I
This is an intermediate call during which counts of the triplets are updated. The final test
statistics are not computed since further calls will be made to G08ECF.

CL ¼ L
This is the last call to G08ECF. The test statistics are computed after the final counting of
the triplets is complete.

Constraint: CL ¼ S , F , I or L .

2: N – INTEGER Input

On entry: n, the number of observations.

Constraints:

if CL ¼ S , N � 3;
otherwise N � 1.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of observations.

Constraint: 0:0 � XðiÞ � 1:0, for i ¼ 1; 2; . . . ; n.

4: MSIZE – INTEGER Input

On entry: m, the size of the count matrix to be formed.

MSIZE must not be changed between calls to G08ECF.

Constraint: MSIZE � 2.

5: NCOUNTðLDC;LDC;MSIZEÞ – INTEGER array Input/Output

On entry: if CL ¼ S or F , NCOUNT need not be set.
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If CL ¼ I or L , NCOUNT must contain the values returned by the previous call to G08ECF.

On exit: is an MSIZE by MSIZE by MSIZE matrix containing the counts of the number of
triplets, cjkl, for j ¼ 1; 2; . . . ;m, k ¼ 1; 2; . . . ;m and l ¼ 1; 2; . . . ;m.

6: LDC – INTEGER Input

On entry: the first dimension of the array NCOUNT and the second dimension of the array
NCOUNT as declared in the (sub)program from which G08ECF is called.

Constraint: LDC � MSIZE.

7: EX – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then EX contains the expected number of
counts for each element of the count matrix.

Otherwise EX is not set.

8: CHI – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then CHI contains the �2 test statistic, X2, for
testing the null hypothesis of randomness.

Otherwise CHI is not set.

9: DF – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then DF contains the degrees of freedom for
the �2 statistic.

Otherwise DF is not set.

10: PROB – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then PROB contains the upper tail probability
associated with the �2 test statistic, i.e., the significance level.

Otherwise PROB is not set.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G08ECF may return useful information for one or more of the following detected errors or
warnings.
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Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CL ¼ valueh i.
Constraint: CL ¼ S , F , I or L .

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: if CL ¼ S , N � 3, otherwise N � 1.

IFAIL ¼ 3

On entry, MSIZE ¼ valueh i.
Constraint: MSIZE � 2.

IFAIL ¼ 4

On entry, LDC ¼ valueh i and MSIZE ¼ valueh i.
Constraint: LDC � MSIZE.

IFAIL ¼ 5

On entry, at least one element of X is out of range.
Constraint: 0 � XðiÞ � 1, for i ¼ 1; 2; . . . ;N.

IFAIL ¼ 6

No triplets were found because less than 3 observations were provided in total.

IFAIL ¼ 7

MSIZE is too large relative to the number of triplets, therefore the expected value for at least one
cell is less than or equal to 5:0.
This implies that the �2 distribution may not be a very good approximation to the distribution of
the test statistic.
MSIZE ¼ valueh i , number of triplets ¼ valueh i and expected value ¼ valueh i.
All statistics are returned and may still be of use.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable. The computations of PROB given the values of CHI and
DF will obtain a relative accuracy of five significant figures for most cases.
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8 Parallelism and Performance

G08ECF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

G08ECF is not threaded in any implementation.

9 Further Comments

If the call to G08ECF is an initial call or intermediate call with further calls to follow then any unused
observations are saved for use at the beginning of the new sequence provided in the following call.
Clearly any observations left over from an only or final call to G08ECF are ignored.

The time taken by the routine increases with the number of observations n, and also depends to some
extent whether the call to G08ECF is an only, first, intermediate or last call.

10 Example

The following program performs the triplets test on 500 pseudorandom numbers. G08ECF is called 5
times with 100 observations on each call. The triplets are tallied into a 2 by 2 by 2 matrix.

10.1 Program Text

Program g08ecfe

! G08ECF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08ecf, nag_wp, x04eaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: chi, df, ex, prob
Integer :: i, ifail, ldc, msize, n, nsamp, pn
Logical :: bapp
Character (1) :: cl
Character (80) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer, Allocatable :: ncount(:,:,:)

! .. Executable Statements ..
Write (nout,*) ’G08ECF Example Program Results’
Write (nout,*)

! Skip main heading in data file
Read (nin,*)

! Read in number of samples
Read (nin,*) nsamp, msize

ldc = msize
Allocate (ncount(ldc,ldc,msize),x(1))

If (nsamp==1) Then
cl = ’S’

Else
cl = ’F’

End If

pn = 0
bapp = .False.
Do i = 1, nsamp
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! Skip run heading in data file
Read (nin,*)

! Read in sample size
Read (nin,*) n

If (n>pn) Then
! Reallocate X if required

Deallocate (x)
Allocate (x(n))
pn = n

End If

! Read in the sample
Read (nin,*) x(1:n)

! Process the sample
ifail = -1
Call g08ecf(cl,n,x,msize,ncount,ldc,ex,chi,df,prob,ifail)
If (ifail==7) Then

bapp = .True.
Else If (ifail/=0) Then

Go To 100
End If

! Adjust CL for intermediate calls
If (i<nsamp-1) Then

cl = ’I’
Else

cl = ’L’
End If

End Do

! Display results
Write (nout,*) ’Count matrix’
Do i = 1, msize

Write (nout,*)
Write (title,99999) ’I = ’, i
Flush (nout)
ifail = 0
Call x04eaf(’General’,’ ’,msize,msize,ncount(1,1,i),ldc,title,ifail)

End Do
Write (nout,*)
Write (nout,99998) ’Expected value = ’, ex
Write (nout,99997) ’CHISQ = ’, chi
Write (nout,99998) ’DF = ’, df
Write (nout,99997) ’Prob = ’, prob
If (bapp) Then

Write (nout,*) ’ ** Note : expected value <= 5.0’
Write (nout,*) &

’ the chi square approximation may not be very good.’
End If

100 Continue

99999 Format (1X,A,I2)
99998 Format (1X,A,F8.2)
99997 Format (1X,A,F10.4)

End Program g08ecfe

10.2 Program Data

G08ECF Example Program Data
5 2 :: NSAMP,MSIZE
## Sample 1
100 :: N
0.11389 0.84996 0.84821 0.18431 0.14104 0.03144 0.68013 0.13297 0.27696 0.86743
0.32674 0.87990 0.85580 0.47830 0.75318 0.93643 0.19396 0.31091 0.34956 0.94923
0.18940 0.24715 0.62503 0.50406 0.05686 0.26481 0.68746 0.80387 0.48184 0.25034
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0.20141 0.35062 0.58591 0.93407 0.93848 0.98496 0.66180 0.35957 0.71122 0.35875
0.96504 0.60832 0.36569 0.73499 0.25223 0.88296 0.06659 0.78113 0.40016 0.31768
0.47655 0.15008 0.20608 0.62633 0.62737 0.16400 0.44104 0.56993 0.13178 0.50499
0.44176 0.44385 0.75372 0.82178 0.60227 0.98944 0.33133 0.81067 0.40798 0.71608
0.69306 0.22144 0.47942 0.65697 0.50881 0.25223 0.82373 0.50148 0.65246 0.53275
0.92935 0.13455 0.19901 0.78844 0.14006 0.50600 0.41069 0.49703 0.47858 0.02210
0.91444 0.10784 0.54642 0.63091 0.14419 0.80457 0.51336 0.71451 0.12564 0.88051
## Sample 2
100 :: N
0.84976 0.63094 0.46109 0.80538 0.62387 0.90670 0.09969 0.67992 0.70503 0.09560
0.69991 0.37616 0.42030 0.23665 0.28771 0.24935 0.94950 0.12008 0.66217 0.20900
0.97026 0.98368 0.80206 0.43918 0.73232 0.03533 0.97995 0.06637 0.54726 0.48530
0.68865 0.94302 0.33718 0.61014 0.70127 0.36827 0.51335 0.24476 0.14203 0.02428
0.73691 0.22192 0.40374 0.85757 0.83335 0.73309 0.05563 0.17332 0.72253 0.43291
0.77476 0.35967 0.94242 0.61337 0.43513 0.80573 0.70630 0.83115 0.24622 0.45445
0.53595 0.31476 0.87968 0.75365 0.86291 0.34051 0.62232 0.16762 0.45506 0.15561
0.76615 0.77421 0.06035 0.72290 0.93712 0.83223 0.40044 0.96575 0.73176 0.27827
0.02174 0.75326 0.82876 0.64979 0.98038 0.61054 0.87742 0.95273 0.39091 0.42146
0.89020 0.08617 0.90953 0.00416 0.70915 0.21123 0.95342 0.19269 0.68252 0.27600
## Sample 3
100 :: N
0.40629 0.96486 0.66026 0.07134 0.35492 0.34348 0.87164 0.59746 0.43724 0.26730
0.11840 0.04604 0.49037 0.99669 0.32784 0.34772 0.93599 0.95806 0.80635 0.18897
0.60061 0.83359 0.63026 0.14084 0.05323 0.70247 0.28532 0.09572 0.36153 0.50378
0.42679 0.71801 0.51010 0.72090 0.97537 0.29919 0.30059 0.23610 0.25668 0.07510
0.92481 0.65715 0.69686 0.27840 0.20555 0.64015 0.05725 0.25120 0.32288 0.22320
0.16582 0.71466 0.34030 0.55575 0.51468 0.18013 0.74670 0.21455 0.52649 0.47487
0.85805 0.24616 0.11459 0.38690 0.83475 0.83629 0.83754 0.18998 0.46715 0.24162
0.19488 0.03281 0.39291 0.37834 0.97169 0.65229 0.88913 0.53777 0.05780 0.20468
0.33788 0.10130 0.72771 0.31306 0.74279 0.26546 0.37941 0.04878 0.03061 0.52394
0.74104 0.97192 0.04550 0.81382 0.44430 0.32402 0.06791 0.73602 0.22640 0.67260
## Sample 4
100 :: N
0.46016 0.95901 0.37581 0.45836 0.26220 0.30389 0.46845 0.52940 0.71121 0.89187
0.33346 0.81783 0.07194 0.01163 0.63324 0.69208 0.28685 0.02491 0.97931 0.53225
0.47009 0.12105 0.80291 0.21191 0.74158 0.78269 0.30493 0.06901 0.54152 0.88463
0.60358 0.81066 0.77771 0.74140 0.65465 0.32613 0.42757 0.36584 0.42506 0.39980
0.04686 0.79805 0.53593 0.15562 0.09924 0.68011 0.61072 0.88701 0.56239 0.64343
0.19223 0.07325 0.40971 0.85265 0.27507 0.88884 0.10551 0.62646 0.11055 0.91368
0.58845 0.68942 0.29994 0.30395 0.45696 0.88127 0.38773 0.12028 0.48981 0.28535
0.84174 0.46451 0.17140 0.90827 0.49424 0.29557 0.25788 0.76838 0.19073 0.26051
0.47442 0.03224 0.32034 0.97378 0.43992 0.13338 0.45850 0.02122 0.30482 0.49427
0.89839 0.01770 0.85679 0.90157 0.29537 0.15213 0.21464 0.37237 0.86199 0.60364
## Sample 5
100 :: N
0.66793 0.00711 0.17970 0.98702 0.50449 0.88105 0.08259 0.77263 0.06050 0.73389
0.86517 0.76088 0.40239 0.50178 0.13811 0.63441 0.91949 0.48518 0.96923 0.08820
0.14556 0.28177 0.99598 0.46908 0.83279 0.26252 0.64987 0.20426 0.41060 0.76120
0.78022 0.44662 0.04918 0.36644 0.62337 0.16849 0.63846 0.41247 0.54464 0.05721
0.79852 0.23048 0.76139 0.22493 0.45640 0.07671 0.96152 0.50771 0.02376 0.49537
0.07095 0.86385 0.71385 0.35192 0.68827 0.49737 0.44847 0.26744 0.46983 0.44270
0.78845 0.72560 0.38886 0.45552 0.45917 0.64241 0.44654 0.42665 0.01122 0.76716
0.01727 0.33687 0.02836 0.48409 0.02777 0.63643 0.59711 0.02880 0.63758 0.56746
0.41342 0.40939 0.61578 0.89186 0.70151 0.38707 0.94021 0.17271 0.27477 0.04308
0.91821 0.97517 0.57249 0.14325 0.46058 0.26434 0.85927 0.77526 0.64717 0.08314

10.3 Program Results

G08ECF Example Program Results

Count matrix

I = 1
1 2

1 22 25
2 18 17

I = 2
1 2

1 23 24
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2 24 13

Expected value = 20.75
CHISQ = 6.1446
DF = 7.00
Prob = 0.5230
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NAG Library Routine Document

G08EDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08EDF performs a gaps test on a sequence of observations.

2 Specification

SUBROUTINE G08EDF (CL, N, X, M, MAXG, RLO, RUP, TOTLEN, NGAPS, NCOUNT,
EX, CHI, DF, PROB, IFAIL)

&

INTEGER N, M, MAXG, NGAPS, NCOUNT(MAXG), IFAIL
REAL (KIND=nag_wp) X(N), RLO, RUP, TOTLEN, EX(MAXG), CHI, DF, PROB
CHARACTER(1) CL

3 Description

Gaps tests are used to test for cyclical trend in a sequence of observations. G08EDF computes certain
statistics for the gaps test.

G08EDF may be used in two different modes:

(i) a single call to G08EDF which computes all test statistics after counting the gaps;

(ii) multiple calls to G08EDF with the final test statistics only being computed in the last call.

The second mode is necessary if all the data does not fit into the memory. See argument CL in
Section 5 for details on how to invoke each mode.

The term gap is used to describe the distance between two numbers in the sequence that lie in the
interval rl; ruð Þ. That is, a gap ends at xj if rl � xj � ru. The next gap then begins at xjþ1. The interval
rl; ruð Þ should lie within the region of all possible numbers. For example if the test is carried out on a
sequence of 0; 1ð Þ random numbers then the interval rl; ruð Þ must be contained in the whole interval
0; 1ð Þ. Let tlen be the length of the interval which specifies all possible numbers.

G08EDF counts the number of gaps of different lengths. Let ci denote the number of gaps of length i,
for i ¼ 1; 2; . . . ; k� 1. The number of gaps of length k or greater is then denoted by ck. An unfinished
gap at the end of a sequence is not counted unless the sequence is part of an initial or intermediate call
to G08EDF (i.e., unless there is another call to G08EDF to follow) in which case the unfinished gap is
used. The following is a trivial example.

Suppose we called G08EDF twice (i.e., with CL ¼ F and then with CL ¼ L ) with the following two
sequences and with RLO ¼ 0:30 and RUP ¼ 0:60:

(0:20 0:40 0:45 0:40 0:15 0:75 0:95 0:23) and

(0:27 0:40 0:25 0:10 0:34 0:39 0:61 0:12).

Then after the second call G08EDF would have counted the gaps of the following lengths:

2, 1, 1, 6, 3 and 1.

When the counting of gaps is complete G08EDF computes the expected values of the counts. An
approximate �2 statistic with k degrees of freedom is computed where
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X2 ¼

Xk
i¼1

ci � eið Þ2

ei
;

where

ei ¼ ngaps � p� 1� pð Þi�1, if i < k;

ei ¼ ngaps � 1� pð Þi�1, if i ¼ k;
ngaps ¼ the number of gaps found and

p ¼ ru � rlð Þ=tlen.

The use of the �2-distribution as an approximation to the exact distribution of the test statistic improves
as the expected values increase.

You may specify the total number of gaps to be found. If the specified number of gaps is found before
the end of a sequence G08EDF will exit before counting any further gaps.

4 References

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Morgan B J T (1984) Elements of Simulation Chapman and Hall

Ripley B D (1987) Stochastic Simulation Wiley

5 Arguments

1: CL – CHARACTER(1) Input

On entry: indicates the type of call to G08EDF.

CL ¼ S
This is the one and only call to G08EDF (single call mode). All data are to be input at
once. All test statistics are computed after the counting of gaps is complete.

CL ¼ F
This is the first call to the routine. All initializations are carried out before the counting of
gaps begins. The final test statistics are not computed since further calls will be made to
G08EDF.

CL ¼ I
This is an intermediate call during which the counts of gaps are updated. The final test
statistics are not computed since further calls will be made to G08EDF.

CL ¼ L
This is the last call to G08EDF. The test statistics are computed after the final counting of
gaps is complete.

Constraint: CL ¼ S , F , I or L .

2: N – INTEGER Input

On entry: n, the length of the current sequence of observations.

Constraint: N � 1.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of observations.
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4: M – INTEGER Input

On entry: the maximum number of gaps to be sought. If M � 0 then there is no limit placed on
the number of gaps that are found.

M should not be changed between calls to G08EDF.

Constraint: if CL ¼ S , M � N.

5: MAXG – INTEGER Input

On entry: k, the length of the longest gap for which tabulation is desired.

MAXG must not be changed between calls to G08EDF.

Constraints:

MAXG > 1;
if CL ¼ S , MAXG � N.

6: RLO – REAL (KIND=nag_wp) Input

On entry: the lower limit of the interval to be used to define the gaps, rl.

RLO must not be changed between calls to G08EDF.

7: RUP – REAL (KIND=nag_wp) Input

On entry: the upper limit of the interval to be used to define the gaps, ru.

RUP must not be changed between calls to G08EDF.

Constraint: RUP > RLO.

8: TOTLEN – REAL (KIND=nag_wp) Input

On entry: the total length of the interval which contains all possible numbers that may arise in
the sequence.

Constraint: TOTLEN > 0:0 and RUP� RLO < TOTLEN.

9: NGAPS – INTEGER Input/Output

On entry: if CL ¼ S or F , NGAPS need not be set.

If CL ¼ I or L , NGAPS must contain the value returned by the previous call to G08EDF.

On exit: the number of gaps actually found, ngaps.

10: NCOUNTðMAXGÞ – INTEGER array Input/Output

On entry: if CL ¼ S or F , NCOUNT need not be set.

If CL ¼ I or L , NCOUNT must contain the values returned by the previous call to G08EDF.

On exit: the counts of gaps of the different lengths, ci, for i ¼ 1; 2; . . . ; k.

11: EXðMAXGÞ – REAL (KIND=nag_wp) array Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then EX contains the expected values of the
counts.

Otherwise the elements of EX are not set.

12: CHI – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then CHI contains the �2 test statistic, X2, for
testing the null hypothesis of randomness.

Otherwise CHI is not set.
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13: DF – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then DF contains the degrees of freedom for
the �2 statistic.

Otherwise DF is not set.

14: PROB – REAL (KIND=nag_wp) Output

On exit: if CL ¼ S or L (i.e., if it is a final exit) then PROB contains the upper tail probability
associated with the �2 test statistic, i.e., the significance level.

Otherwise PROB is not set.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G08EDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CL ¼ valueh i.
Constraint: CL ¼ S , F , I or L .

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 3

On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: if CL ¼ S , M � N.

IFAIL ¼ 4

On entry, MAXG ¼ valueh i.
Constraint: MAXG > 1.

On entry, MAXG ¼ valueh i and N ¼ valueh i.
Constraint: if CL ¼ S , MAXG � N.

IFAIL ¼ 5

On entry, RLO ¼ valueh i, RUP ¼ valueh i and TOTLEN ¼ valueh i.
Constraint: RUP� RLO < TOTLEN.
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On entry, RLO ¼ valueh i and RUP ¼ valueh i.
Constraint: RUP > RLO.

On entry, TOTLEN ¼ valueh i.
Constraint: TOTLEN > 0:0.

IFAIL ¼ 6

No gaps were found. Try using a longer sequence, or increase the size of the interval
RUP� RLO.

IFAIL ¼ 7

The expected frequency in class i ¼ valueh i is zero. The value of RUP� RLOð Þ=TOTLEN may
be too close to 0:0 or 1:0. or MAXG is too large relative to the number of gaps found.

IFAIL ¼ 8

The number of gaps requested were not found, only valueh i out of the requested valueh i where
found.
All statistics are returned and may still be of use.

IFAIL ¼ 9

The expected frequency of at least one class is less than one.
This implies that the �2 may not be a very good approximation to the distribution of the test
statistics.
All statistics are returned and may still be of use.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable. The computation of PROB given the values of CHI and DF
will obtain a relative accuracy of five significant places for most cases.

8 Parallelism and Performance

G08EDF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

G08EDF is not threaded in any implementation.

9 Further Comments

The time taken by G08EDF increases with the number of observations n, and depends to some extent
whether the call is an only, first, intermediate or last call.
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10 Example

The following program performs the gaps test on 500 pseudorandom numbers. G08EDF is called 5
times with 100 observations on each call. All gaps of length 10 or more are counted together.

10.1 Program Text

Program g08edfe

! G08EDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08edf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: chi, df, prob, rlo, rup, totlen
Integer :: i, ifail, m, maxg, n, ngaps, nsamp, &

pn
Character (1) :: cl

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ex(:), x(:)
Integer, Allocatable :: ncount(:)

! .. Executable Statements ..
Write (nout,*) ’G08EDF Example Program Results’
Write (nout,*)

! Skip main heading in data file
Read (nin,*)

! Read in number of samples and control parameters
Read (nin,*) nsamp, m, maxg
Read (nin,*) rlo, rup, totlen

Allocate (ncount(maxg),ex(maxg),x(1))

If (nsamp==1) Then
cl = ’S’

Else
cl = ’F’

End If

pn = 0
Do i = 1, nsamp

! Skip run heading in data file
Read (nin,*)

! Read in sample size
Read (nin,*) n

If (n>pn) Then
! Reallocate X if required

Deallocate (x)
Allocate (x(n))
pn = n

End If

! Read in the sample
Read (nin,*) x(1:n)

! Process the sample
ifail = -1
Call g08edf(cl,n,x,m,maxg,rlo,rup,totlen,ngaps,ncount,ex,chi,df,prob, &

ifail)
If (ifail/=0 .And. ifail<8) Then
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Go To 100
End If

! Adjust CL for intermediate calls
If (i<nsamp-1) Then

cl = ’I’
Else

cl = ’L’
End If

End Do

! Display results
Write (nout,99999) ’Total number of gaps found = ’, ngaps
If (ifail==8) Then

Write (nout,*) &
’ ** Note : the number of gaps requested were not found.’

End If
Write (nout,*)
Write (nout,*) ’Count’
Write (nout,*) &

’ 0 1 2 3 4 5 6 7 8’, &
’ >9’

Write (nout,99998) ncount(1:maxg)
Write (nout,*)
Write (nout,*) ’Expect’
Write (nout,*) &

’ 0 1 2 3 4 5 6 7 8’, &
’ >9’

Write (nout,99997) ex(1:maxg)
Write (nout,*)
Write (nout,99996) ’Chisq = ’, chi
Write (nout,99995) ’DF = ’, df
Write (nout,99996) ’Prob = ’, prob
If (ifail==9) Then

Write (nout,*) ’ ** Note : expected value <= 5.0’
Write (nout,*) &

’ the chi square approximation may not be very good.’
End If

100 Continue

99999 Format (1X,A,I10)
99998 Format (1X,10I7)
99997 Format (1X,10F7.1)
99996 Format (1X,A,F10.4)
99995 Format (1X,A,F7.1)

End Program g08edfe

10.2 Program Data

G08EDF Example Program Data
5 0 10 :: NSAMP,M,MAXG
0.4 0.6 1.0 :: RLO,RUP,TOTLEN
## Sample 1
100 :: N
0.11389 0.84996 0.84821 0.18431 0.14104 0.03144 0.68013 0.13297 0.27696 0.86743
0.32674 0.87990 0.85580 0.47830 0.75318 0.93643 0.19396 0.31091 0.34956 0.94923
0.18940 0.24715 0.62503 0.50406 0.05686 0.26481 0.68746 0.80387 0.48184 0.25034
0.20141 0.35062 0.58591 0.93407 0.93848 0.98496 0.66180 0.35957 0.71122 0.35875
0.96504 0.60832 0.36569 0.73499 0.25223 0.88296 0.06659 0.78113 0.40016 0.31768
0.47655 0.15008 0.20608 0.62633 0.62737 0.16400 0.44104 0.56993 0.13178 0.50499
0.44176 0.44385 0.75372 0.82178 0.60227 0.98944 0.33133 0.81067 0.40798 0.71608
0.69306 0.22144 0.47942 0.65697 0.50881 0.25223 0.82373 0.50148 0.65246 0.53275
0.92935 0.13455 0.19901 0.78844 0.14006 0.50600 0.41069 0.49703 0.47858 0.02210
0.91444 0.10784 0.54642 0.63091 0.14419 0.80457 0.51336 0.71451 0.12564 0.88051
## Sample 2
100 :: N
0.84976 0.63094 0.46109 0.80538 0.62387 0.90670 0.09969 0.67992 0.70503 0.09560
0.69991 0.37616 0.42030 0.23665 0.28771 0.24935 0.94950 0.12008 0.66217 0.20900
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0.97026 0.98368 0.80206 0.43918 0.73232 0.03533 0.97995 0.06637 0.54726 0.48530
0.68865 0.94302 0.33718 0.61014 0.70127 0.36827 0.51335 0.24476 0.14203 0.02428
0.73691 0.22192 0.40374 0.85757 0.83335 0.73309 0.05563 0.17332 0.72253 0.43291
0.77476 0.35967 0.94242 0.61337 0.43513 0.80573 0.70630 0.83115 0.24622 0.45445
0.53595 0.31476 0.87968 0.75365 0.86291 0.34051 0.62232 0.16762 0.45506 0.15561
0.76615 0.77421 0.06035 0.72290 0.93712 0.83223 0.40044 0.96575 0.73176 0.27827
0.02174 0.75326 0.82876 0.64979 0.98038 0.61054 0.87742 0.95273 0.39091 0.42146
0.89020 0.08617 0.90953 0.00416 0.70915 0.21123 0.95342 0.19269 0.68252 0.27600
## Sample 3
100 :: N
0.40629 0.96486 0.66026 0.07134 0.35492 0.34348 0.87164 0.59746 0.43724 0.26730
0.11840 0.04604 0.49037 0.99669 0.32784 0.34772 0.93599 0.95806 0.80635 0.18897
0.60061 0.83359 0.63026 0.14084 0.05323 0.70247 0.28532 0.09572 0.36153 0.50378
0.42679 0.71801 0.51010 0.72090 0.97537 0.29919 0.30059 0.23610 0.25668 0.07510
0.92481 0.65715 0.69686 0.27840 0.20555 0.64015 0.05725 0.25120 0.32288 0.22320
0.16582 0.71466 0.34030 0.55575 0.51468 0.18013 0.74670 0.21455 0.52649 0.47487
0.85805 0.24616 0.11459 0.38690 0.83475 0.83629 0.83754 0.18998 0.46715 0.24162
0.19488 0.03281 0.39291 0.37834 0.97169 0.65229 0.88913 0.53777 0.05780 0.20468
0.33788 0.10130 0.72771 0.31306 0.74279 0.26546 0.37941 0.04878 0.03061 0.52394
0.74104 0.97192 0.04550 0.81382 0.44430 0.32402 0.06791 0.73602 0.22640 0.67260
## Sample 4
100 :: N
0.46016 0.95901 0.37581 0.45836 0.26220 0.30389 0.46845 0.52940 0.71121 0.89187
0.33346 0.81783 0.07194 0.01163 0.63324 0.69208 0.28685 0.02491 0.97931 0.53225
0.47009 0.12105 0.80291 0.21191 0.74158 0.78269 0.30493 0.06901 0.54152 0.88463
0.60358 0.81066 0.77771 0.74140 0.65465 0.32613 0.42757 0.36584 0.42506 0.39980
0.04686 0.79805 0.53593 0.15562 0.09924 0.68011 0.61072 0.88701 0.56239 0.64343
0.19223 0.07325 0.40971 0.85265 0.27507 0.88884 0.10551 0.62646 0.11055 0.91368
0.58845 0.68942 0.29994 0.30395 0.45696 0.88127 0.38773 0.12028 0.48981 0.28535
0.84174 0.46451 0.17140 0.90827 0.49424 0.29557 0.25788 0.76838 0.19073 0.26051
0.47442 0.03224 0.32034 0.97378 0.43992 0.13338 0.45850 0.02122 0.30482 0.49427
0.89839 0.01770 0.85679 0.90157 0.29537 0.15213 0.21464 0.37237 0.86199 0.60364
## Sample 5
100 :: N
0.66793 0.00711 0.17970 0.98702 0.50449 0.88105 0.08259 0.77263 0.06050 0.73389
0.86517 0.76088 0.40239 0.50178 0.13811 0.63441 0.91949 0.48518 0.96923 0.08820
0.14556 0.28177 0.99598 0.46908 0.83279 0.26252 0.64987 0.20426 0.41060 0.76120
0.78022 0.44662 0.04918 0.36644 0.62337 0.16849 0.63846 0.41247 0.54464 0.05721
0.79852 0.23048 0.76139 0.22493 0.45640 0.07671 0.96152 0.50771 0.02376 0.49537
0.07095 0.86385 0.71385 0.35192 0.68827 0.49737 0.44847 0.26744 0.46983 0.44270
0.78845 0.72560 0.38886 0.45552 0.45917 0.64241 0.44654 0.42665 0.01122 0.76716
0.01727 0.33687 0.02836 0.48409 0.02777 0.63643 0.59711 0.02880 0.63758 0.56746
0.41342 0.40939 0.61578 0.89186 0.70151 0.38707 0.94021 0.17271 0.27477 0.04308
0.91821 0.97517 0.57249 0.14325 0.46058 0.26434 0.85927 0.77526 0.64717 0.08314

10.3 Program Results

G08EDF Example Program Results

Total number of gaps found = 99

Count
0 1 2 3 4 5 6 7 8 >9

22 11 10 13 6 12 4 6 2 13

Expect
0 1 2 3 4 5 6 7 8 >9

19.8 15.8 12.7 10.1 8.1 6.5 5.2 4.2 3.3 13.3

Chisq = 9.9540
DF = 9.0
Prob = 0.3542
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NAG Library Routine Document

G08RAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08RAF calculates the parameter estimates, score statistics and their variance-covariance matrices for
the linear model using a likelihood based on the ranks of the observations.

2 Specification

SUBROUTINE G08RAF (NS, NV, NSUM, Y, IP, X, LDX, IDIST, NMAX, TOL, PRVR,
LDPRVR, IRANK, ZIN, ETA, VAPVEC, PAREST, WORK, LWORK,
IWA, IFAIL)

&
&

INTEGER NS, NV(NS), NSUM, IP, LDX, IDIST, NMAX, LDPRVR,
IRANK(NMAX), LWORK, IWA(NMAX), IFAIL

&

REAL (KIND=nag_wp) Y(NSUM), X(LDX,IP), TOL, PRVR(LDPRVR,IP),
ZIN(NMAX), ETA(NMAX), VAPVEC(NMAX*(NMAX+1)/2),
PAREST(4*IP+1), WORK(LWORK)

&
&

3 Description

Analysis of data can be made by replacing observations by their ranks. The analysis produces inference
for regression arguments arising from the following model.

For random variables Y1; Y2; . . . ; Yn we assume that, after an arbitrary monotone increasing
differentiable transformation, h :ð Þ, the model

h Yið Þ ¼ xTi � þ �i ð1Þ

holds, where xi is a known vector of explanatory variables and � is a vector of p unknown regression
coefficients. The �i are random variables assumed to be independent and identically distributed with a
completely known distribution which can be one of the following: Normal, logistic, extreme value or
double-exponential. In Pettitt (1982) an estimate for � is proposed as �̂ ¼MXTa with estimated
variance-covariance matrix M. The statistics a and M depend on the ranks ri of the observations Yi and
the density chosen for �i.

The matrix X is the n by p matrix of explanatory variables. It is assumed that X is of rank p and that a
column or a linear combination of columns of X is not equal to the column vector of 1 or a multiple of
it. This means that a constant term cannot be included in the model (1). The statistics a and M are
found as follows. Let �i have pdf f �ð Þ and let g ¼ �f 0=f . Let W1;W2; . . . ;Wn be order statistics for a
random sample of size n with the density f :ð Þ. Define Zi ¼ g Wið Þ, then ai ¼ E Zrið Þ. To define M we
need M�1 ¼ XT B�Að ÞX, where B is an n by n diagonal matrix with Bii ¼ E g0 Wrið Þð Þ and A is a
symmetric matrix with Aij ¼ cov Zri ; Zrj

� �
. In the case of the Normal distribution, the Z1 < � � � < Zn

are standard Normal order statistics and E g0 Wið Þð Þ ¼ 1, for i ¼ 1; 2; . . . ; n.

The analysis can also deal with ties in the data. Two observations are adjudged to be tied if
Yi � Yj
		 		 < TOL, where TOL is a user-supplied tolerance level.

Various statistics can be found from the analysis:

(a) The score statistic XTa. This statistic is used to test the hypothesis H0 : � ¼ 0, see (e).

(b) The estimated variance-covariance matrix XT B�Að ÞX of the score statistic in (a).

(c) The estimate �̂ ¼MXTa.

(d) The estimated variance-covariance matrix M ¼ XT B�Að ÞXð Þ�1 of the estimate �̂.
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(e) The �2 statistic Q ¼ �̂TM�1�̂ ¼ aTX XT B�Að ÞXð Þ�1XTa used to test H0 : � ¼ 0. Under H0, Q
has an approximate �2-distribution with p degrees of freedom.

(f) The standard errors M1=2
ii of the estimates given in (c).

(g) Approximate z-statistics, i.e., Zi ¼ �̂i=se �̂i

� �
for testing H0 : �i ¼ 0. For i ¼ 1; 2; . . . ; n, Zi has an

approximate N 0; 1ð Þ distribution.
In many situations, more than one sample of observations will be available. In this case we assume the
model

hk Ykð Þ ¼ XT
k � þ ek; k ¼ 1; 2; . . . ;NS;

where NS is the number of samples. In an obvious manner, Yk and Xk are the vector of observations
and the design matrix for the kth sample respectively. Note that the arbitrary transformation hk can be
assumed different for each sample since observations are ranked within the sample.

The earlier analysis can be extended to give a combined estimate of � as �̂ ¼ Dd, where

D�1 ¼
XNS
k¼1

XT
k Bk �Akð ÞXk

and

d ¼
XNS
k¼1

XT
k ak;

with ak, Bk and Ak defined as a, B and A above but for the kth sample.

The remaining statistics are calculated as for the one sample case.

4 References

Pettitt A N (1982) Inference for the linear model using a likelihood based on ranks J. Roy. Statist. Soc.
Ser. B 44 234–243

5 Arguments

1: NS – INTEGER Input

On entry: the number of samples.

Constraint: NS � 1.

2: NVðNSÞ – INTEGER array Input

On entry: the number of observations in the ith sample, for i ¼ 1; 2; . . . ;NS.

Constraint: NVðiÞ � 1, for i ¼ 1; 2; . . . ;NS.

3: NSUM – INTEGER Input

On entry: the total number of observations.

Constraint: NSUM ¼
XNS
i¼1

NVðiÞ.

4: YðNSUMÞ – REAL (KIND=nag_wp) array Input

On entry: the observations in each sample. Specifically, Yð
Xi�1
k¼1

NVðkÞ þ jÞ must contain the jth

observation in the ith sample.
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5: IP – INTEGER Input

On entry: the number of parameters to be fitted.

Constraint: IP � 1.

6: XðLDX; IPÞ – REAL (KIND=nag_wp) array Input

On entry: the design matrices for each sample. Specifically, Xð
Xi�1
k¼1

NVðkÞ þ j; lÞ must contain the

value of the lth explanatory variable for the jth observation in the ith sample.

Constraint: X must not contain a column with all elements equal.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G08RAF
is called.

Constraint: LDX � NSUM.

8: IDIST – INTEGER Input

On entry: the error distribution to be used in the analysis.

IDIST ¼ 1
Normal.

IDIST ¼ 2
Logistic.

IDIST ¼ 3
Extreme value.

IDIST ¼ 4
Double-exponential.

Constraint: 1 � IDIST � 4.

9: NMAX – INTEGER Input

On entry: the value of the largest sample size.

Constraint: NMAX ¼ max
1�i�NS

NVðiÞð Þ and NMAX > IP.

10: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance for judging whether two observations are tied. Thus, observations Yi and
Yj are adjudged to be tied if Yi � Yj

		 		 < TOL.

Constraint: TOL > 0:0.

11: PRVRðLDPRVR; IPÞ – REAL (KIND=nag_wp) array Output

On exit: the variance-covariance matrices of the score statistics and the parameter estimates, the
former being stored in the upper triangle and the latter in the lower triangle. Thus for
1 � i � j � IP, PRVRði; jÞ contains an estimate of the covariance between the ith and jth score
statistics. For 1 � j � i � IP� 1, PRVRðiþ 1; jÞ contains an estimate of the covariance between
the ith and jth parameter estimates.

12: LDPRVR – INTEGER Input

On entry: the first dimension of the array PRVR as declared in the (sub)program from which
G08RAF is called.

Constraint: LDPRVR � IPþ 1.
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13: IRANKðNMAXÞ – INTEGER array Output

On exit: for the one sample case, IRANK contains the ranks of the observations.

14: ZINðNMAXÞ – REAL (KIND=nag_wp) array Output

On exit: for the one sample case, ZIN contains the expected values of the function g :ð Þ of the
order statistics.

15: ETAðNMAXÞ – REAL (KIND=nag_wp) array Output

On exit: for the one sample case, ETA contains the expected values of the function g0 :ð Þ of the
order statistics.

16: VAPVECðNMAX� NMAXþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: for the one sample case, VAPVEC contains the upper triangle of the variance-covariance
matrix of the function g :ð Þ of the order statistics stored column-wise.

17: PARESTð4� IPþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the statistics calculated by the routine.

The first IP components of PAREST contain the score statistics.

The next IP elements contain the parameter estimates.

PARESTð2� IPþ 1Þ contains the value of the �2 statistic.

The next IP elements of PAREST contain the standard errors of the parameter estimates.

Finally, the remaining IP elements of PAREST contain the z-statistics.

18: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
19: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G08RAF is called.

Constraint: LWORK � NMAX� IPþ 1ð Þ.

20: IWAðNMAXÞ – INTEGER array Workspace

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NS < 1,
or TOL � 0:0,
or NMAX � IP,
or LDPRVR < IPþ 1,
or LDX < NSUM,
or NMAX 6¼ max 1�i�NS NVðiÞð Þ,
or NVðiÞ � 0, for some i, NVðiÞ,

or NSUM 6¼
XNS
i¼1

NVðiÞ,

or IP < 1,
or LWORK < NMAX� IPþ 1ð Þ.

IFAIL ¼ 2

On entry, IDIST < 1,
or IDIST > 4.

IFAIL ¼ 3

On entry, all the observations are adjudged to be tied. You are advised to check the value
supplied for TOL.

IFAIL ¼ 4

The matrix XT B�Að ÞX is either ill-conditioned or not positive definite. This error should only
occur with extreme rankings of the data.

IFAIL ¼ 5

The matrix X has at least one of its columns with all elements equal.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.
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8 Parallelism and Performance

G08RAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G08RAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G08RAF depends on the number of samples, the total number of observations and
the number of arguments fitted.

In extreme cases the parameter estimates for certain models can be infinite, although this is unlikely to
occur in practice. See Pettitt (1982) for further details.

10 Example

A program to fit a regression model to a single sample of 20 observations using two explanatory
variables. The error distribution will be taken to be logistic.

10.1 Program Text

Program g08rafe

! G08RAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08raf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol
Integer :: i, idist, ifail, ip, j, ldprvr, ldx, &

lparest, lvapvec, lwork, nmax, ns, &
nsum

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: eta(:), parest(:), prvr(:,:), &

vapvec(:), work(:), x(:,:), y(:), &
zin(:)

Integer, Allocatable :: irank(:), iwa(:), nv(:)
! .. Intrinsic Procedures ..

Intrinsic :: maxval, sum
! .. Executable Statements ..

Write (nout,*) ’G08RAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read number of samples, number of parameters to be fitted,
! error distribution parameter and tolerance criterion for ties.

Read (nin,*) ns, ip, idist, tol

Allocate (nv(ns))

! Read the number of observations in each sample.
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Read (nin,*) nv(1:ns)

! Calculate NSUM, NMAX and various array lengths
nsum = sum(nv(1:ns))
nmax = maxval(nv(1:ns))
ldx = nsum
ldprvr = ip + 1
lvapvec = nmax*(nmax+1)/2
lparest = 4*ip + 1
lwork = nmax*(ip+1)
Allocate (y(nsum),x(ldx,ip),prvr(ldprvr,ip),irank(nmax),zin(nmax), &

eta(nmax),vapvec(lvapvec),parest(lparest),work(lwork),iwa(nmax))

! Read in observations and design matrices for each sample.
Read (nin,*)(y(i),x(i,1:ip),i=1,nsum)

! Display input information
Write (nout,99999) ’Number of samples =’, ns
Write (nout,99999) ’Number of parameters fitted =’, ip
Write (nout,99999) ’Distribution =’, idist
Write (nout,99998) ’Tolerance for ties =’, tol

ifail = 0
Call g08raf(ns,nv,nsum,y,ip,x,ldx,idist,nmax,tol,prvr,ldprvr,irank,zin, &

eta,vapvec,parest,work,lwork,iwa,ifail)

! Display results
Write (nout,*)
Write (nout,*) ’Score statistic’
Write (nout,99997) parest(1:ip)
Write (nout,*)
Write (nout,*) ’Covariance matrix of score statistic’
Do j = 1, ip

Write (nout,99997) prvr(1:j,j)
End Do
Write (nout,*)
Write (nout,*) ’Parameter estimates’
Write (nout,99997) parest((ip+1):(2*ip))
Write (nout,*)
Write (nout,*) ’Covariance matrix of parameter estimates’
Do i = 1, ip

Write (nout,99997) prvr(i+1,1:i)
End Do
Write (nout,*)
Write (nout,99996) ’Chi-squared statistic =’, parest(2*ip+1), ’ with’, &

ip, ’ d.f.’
Write (nout,*)
Write (nout,*) ’Standard errors of estimates and’
Write (nout,*) ’approximate z-statistics’
Write (nout,99995)(parest(2*ip+1+i),parest(3*ip+1+i),i=1,ip)

99999 Format (1X,A,I2)
99998 Format (1X,A,F8.5)
99997 Format (1X,2F9.3)
99996 Format (1X,A,F9.3,A,I2,A)
99995 Format (1X,F9.3,F14.3)

End Program g08rafe

10.2 Program Data

G08RAF Example Program Data
1 2 2 0.00001
20
1.0 1.0 23.0
1.0 1.0 32.0
3.0 1.0 37.0
4.0 1.0 41.0
2.0 1.0 41.0
4.0 1.0 48.0
1.0 1.0 48.0
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5.0 1.0 55.0
4.0 1.0 55.0
4.0 0.0 56.0
4.0 1.0 57.0
4.0 1.0 57.0
4.0 1.0 57.0
1.0 0.0 58.0
4.0 1.0 59.0
5.0 0.0 59.0
5.0 0.0 60.0
4.0 1.0 61.0
4.0 1.0 62.0
3.0 1.0 62.0

10.3 Program Results

G08RAF Example Program Results

Number of samples = 1
Number of parameters fitted = 2
Distribution = 2
Tolerance for ties = 0.00001

Score statistic
-1.048 64.333

Covariance matrix of score statistic
0.673

-4.159 533.670

Parameter estimates
-0.852 0.114

Covariance matrix of parameter estimates
1.560
0.012 0.002

Chi-squared statistic = 8.221 with 2 d.f.

Standard errors of estimates and
approximate z-statistics

1.249 -0.682
0.044 2.567
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NAG Library Routine Document

G08RBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G08RBF calculates the parameter estimates, score statistics and their variance-covariance matrices for
the linear model using a likelihood based on the ranks of the observations when some of the
observations may be right-censored.

2 Specification

SUBROUTINE G08RBF (NS, NV, NSUM, Y, IP, X, LDX, ICEN, GAMMA, NMAX, TOL,
PRVR, LDPRVR, IRANK, ZIN, ETA, VAPVEC, PAREST, WORK,
LWORK, IWA, IFAIL)

&
&

INTEGER NS, NV(NS), NSUM, IP, LDX, ICEN(NSUM), NMAX, LDPRVR,
IRANK(NMAX), LWORK, IWA(4*NMAX), IFAIL

&

REAL (KIND=nag_wp) Y(NSUM), X(LDX,IP), GAMMA, TOL, PRVR(LDPRVR,IP),
ZIN(NMAX), ETA(NMAX), VAPVEC(NMAX*(NMAX+1)/2),
PAREST(4*IP+1), WORK(LWORK)

&
&

3 Description

Analysis of data can be made by replacing observations by their ranks. The analysis produces inference
for the regression model where the location parameters of the observations, �i, for i ¼ 1; 2; . . . ; n, are
related by � ¼ X�. Here X is an n by p matrix of explanatory variables and � is a vector of p unknown
regression parameters. The observations are replaced by their ranks and an approximation, based on
Taylor's series expansion, made to the rank marginal likelihood. For details of the approximation see
Pettitt (1982).

An observation is said to be right-censored if we can only observe Y �j with Y �j � Yj. We rank censored
and uncensored observations as follows. Suppose we can observe Yj , for j ¼ 1; 2; . . . ; n, directly but Y �j ,
for j ¼ nþ 1; . . . ; q and n � q, are censored on the right. We define the rank rj of Yj, for
j ¼ 1; 2; . . . ; n, in the usual way; rj equals i if and only if Yj is the ith smallest amongst the
Y1; Y2; . . . ; Yn. The right-censored Y �j , for j ¼ nþ 1; nþ 2; . . . ; q, has rank rj if and only if Y �j lies in

the interval Y rjð Þ; Y rjþ1ð Þ
h i

, with Y0 ¼ �1, Y nþ1ð Þ ¼ þ1 and Y 1ð Þ < � � � < Y nð Þ the ordered Yj , for

j ¼ 1; 2; . . . ; n.

The distribution of the Y is assumed to be of the following form. Let FL yð Þ ¼ ey= 1þ eyð Þ, the logistic

distribution function, and consider the distribution function F� yð Þ defined by 1� F� ¼ 1� FL yð Þ½ �1=�.
This distribution function can be thought of as either the distribution function of the minimum, X1;� , of
a random sample of size ��1 from the logistic distribution, or as the F� y� log �ð Þ being the distribution
function of a random variable having the F -distribution with 2 and 2��1 degrees of freedom. This
family of generalized logistic distribution functions F� :ð Þ;0 � � <1

� �
naturally links the symmetric

logistic distribution � ¼ 1ð Þ with the skew extreme value distribution (lim � ! 0) and with the limiting
negative exponential distribution (lim � !1). For this family explicit results are available for right-
censored data. See Pettitt (1983) for details.

Let lR denote the logarithm of the rank marginal likelihood of the observations and define the q � 1
vector a by a ¼ l0R � ¼ 0ð Þ, and let the q by q diagonal matrix B and q by q symmetric matrix A be
given by B�A ¼ �l00R � ¼ 0ð Þ. Then various statistics can be found from the analysis.

(a) The score statistic XTa. This statistic is used to test the hypothesis H0 : � ¼ 0 (see (e)).

(b) The estimated variance-covariance matrix of the score statistic in (a).
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(c) The estimate �̂R ¼MXTa.

(d) The estimated variance-covariance matrix M ¼ XT B�Að ÞXð Þ�1 of the estimate �̂R.

(e) The �2 statistic Q ¼ �̂RM�1 �̂r ¼ aTX XT B�Að ÞXð Þ�1XTa, used to test H0 : � ¼ 0. Under H0,
Q has an approximate �2-distribution with p degrees of freedom.

(f) The standard errors M1=2
ii of the estimates given in (c).

(g) Approximate z-statistics, i.e., Zi ¼ �̂Ri
=se �̂Ri

� �
for testing H0 : �i ¼ 0. For i ¼ 1; 2; . . . ; n, Zi has

an approximate N 0; 1ð Þ distribution.
In many situations, more than one sample of observations will be available. In this case we assume the
model,

hk Ykð Þ ¼ XT
k � þ ek; k ¼ 1; 2; . . . ;NS;

where NS is the number of samples. In an obvious manner, Yk and Xk are the vector of observations
and the design matrix for the kth sample respectively. Note that the arbitrary transformation hk can be
assumed different for each sample since observations are ranked within the sample.

The earlier analysis can be extended to give a combined estimate of � as �̂ ¼ Dd, where

D�1 ¼
XNS
k¼1

XT Bk �Akð ÞXk

and

d ¼
XNS
k¼1

XT
k ak;

with ak, Bk and Ak defined as a, B and A above but for the kth sample.

The remaining statistics are calculated as for the one sample case.

4 References

Kalbfleisch J D and Prentice R L (1980) The Statistical Analysis of Failure Time Data Wiley

Pettitt A N (1982) Inference for the linear model using a likelihood based on ranks J. Roy. Statist. Soc.
Ser. B 44 234–243

Pettitt A N (1983) Approximate methods using ranks for regression with censored data Biometrika 70
121–132

5 Arguments

1: NS – INTEGER Input

On entry: the number of samples.

Constraint: NS � 1.

2: NVðNSÞ – INTEGER array Input

On entry: the number of observations in the ith sample, for i ¼ 1; 2; . . . ;NS.

Constraint: NVðiÞ � 1, for i ¼ 1; 2; . . . ;NS.

3: NSUM – INTEGER Input

On entry: the total number of observations.

Constraint: NSUM ¼
XNS
i¼1

NVðiÞ.
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4: YðNSUMÞ – REAL (KIND=nag_wp) array Input

On entry: the observations in each sample. Specifically, Yð
Xi�1
k¼1

NVðkÞ þ jÞ must contain the jth

observation in the ith sample.

5: IP – INTEGER Input

On entry: the number of parameters to be fitted.

Constraint: IP � 1.

6: XðLDX; IPÞ – REAL (KIND=nag_wp) array Input

On entry: the design matrices for each sample. Specifically, Xð
Xi�1
k¼1

NVðkÞ þ j; lÞ must contain the

value of the lth explanatory variable for the jth observations in the ith sample.

Constraint: X must not contain a column with all elements equal.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G08RBF
is called.

Constraint: LDX � NSUM.

8: ICENðNSUMÞ – INTEGER array Input

On entry: defines the censoring variable for the observations in Y.

ICENðiÞ ¼ 0
If YðiÞ is uncensored.

ICENðiÞ ¼ 1
If YðiÞ is censored.

Constraint: ICENðiÞ ¼ 0 or 1, for i ¼ 1; 2; . . . ;NSUM.

9: GAMMA – REAL (KIND=nag_wp) Input

On entry: the value of the parameter defining the generalized logistic distribution. For
GAMMA � 0:0001, the limiting extreme value distribution is assumed.

Constraint: GAMMA � 0:0.

10: NMAX – INTEGER Input

On entry: the value of the largest sample size.

Constraint: NMAX ¼ max
1�i�NS

NVðiÞð Þ and NMAX > IP.

11: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance for judging whether two observations are tied. Thus, observations Yi and
Yj are adjudged to be tied if Yi � Yj

		 		 < TOL.

Constraint: TOL > 0:0.

12: PRVRðLDPRVR; IPÞ – REAL (KIND=nag_wp) array Output

On exit: the variance-covariance matrices of the score statistics and the parameter estimates, the
former being stored in the upper triangle and the latter in the lower triangle. Thus for
1 � i � j � IP, PRVRði; jÞ contains an estimate of the covariance between the ith and jth score
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statistics. For 1 � j � i � IP� 1, PRVRðiþ 1; jÞ contains an estimate of the covariance between
the ith and jth parameter estimates.

13: LDPRVR – INTEGER Input

On entry: the first dimension of the array PRVR as declared in the (sub)program from which
G08RBF is called.

Constraint: LDPRVR � IPþ 1.

14: IRANKðNMAXÞ – INTEGER array Output

On exit: for the one sample case, IRANK contains the ranks of the observations.

15: ZINðNMAXÞ – REAL (KIND=nag_wp) array Output

On exit: for the one sample case, ZIN contains the expected values of the function g :ð Þ of the
order statistics.

16: ETAðNMAXÞ – REAL (KIND=nag_wp) array Output

On exit: for the one sample case, ETA contains the expected values of the function g0 :ð Þ of the
order statistics.

17: VAPVECðNMAX� NMAXþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: for the one sample case, VAPVEC contains the upper triangle of the variance-covariance
matrix of the function g :ð Þ of the order statistics stored column-wise.

18: PARESTð4� IPþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the statistics calculated by the routine.

The first IP components of PAREST contain the score statistics.

The next IP elements contain the parameter estimates.

PARESTð2� IPþ 1Þ contains the value of the �2 statistic.

The next IP elements of PAREST contain the standard errors of the parameter estimates.

Finally, the remaining IP elements of PAREST contain the z-statistics.

19: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
20: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G08RBF is called.

Constraint: LWORK � NMAX� IPþ 1ð Þ.

21: IWAð4� NMAXÞ – INTEGER array Workspace

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NS < 1,
or TOL � 0:0,
or NMAX � IP,
or LDPRVR < IPþ 1,
or LDX < NSUM,
or NMAX 6¼ max 1�i�NS NVðiÞð Þ,
or NVðiÞ � 0 for some i, i ¼ 1; 2; . . . ;NS,

or NSUM 6¼
XNS
i¼1

NVðiÞ,

or IP < 1,
or GAMMA < 0:0,
or LWORK < NMAX� IPþ 1ð Þ.

IFAIL ¼ 2

On entry, ICENðiÞ 6¼ 0 or 1, for some 1 � i � NSUM.

IFAIL ¼ 3

On entry, all the observations are adjudged to be tied. You are advised to check the value
supplied for TOL.

IFAIL ¼ 4

The matrix XT B�Að ÞX is either ill-conditioned or not positive definite. This error should only
occur with extreme rankings of the data.

IFAIL ¼ 5

On entry, at least one column of the matrix X has all its elements equal.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.
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8 Parallelism and Performance

G08RBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G08RBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G08RBF depends on the number of samples, the total number of observations and
the number of parameters fitted.

In extreme cases the parameter estimates for certain models can be infinite, although this is unlikely to
occur in practice. See Pettitt (1982) for further details.

10 Example

This example fits a regression model to a single sample of 40 observations using just one explanatory
variable.

10.1 Program Text

Program g08rbfe

! G08RBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g08rbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: gamma, tol
Integer :: i, ifail, ip, j, ldprvr, ldx, liwa, &

lparest, lvapvec, lwork, nmax, ns, &
nsum

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: eta(:), parest(:), prvr(:,:), &

vapvec(:), work(:), x(:,:), y(:), &
zin(:)

Integer, Allocatable :: icen(:), irank(:), iwa(:), nv(:)
! .. Intrinsic Procedures ..

Intrinsic :: maxval, sum
! .. Executable Statements ..

Write (nout,*) ’G08RBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read number of samples, number of parameters to be fitted,
! distribution power parameter and tolerance criterion for ties.

Read (nin,*) ns, ip, gamma, tol

Allocate (nv(ns))

! Read the number of observations in each sample
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Read (nin,*) nv(1:ns)

! Calculate NSUM, NMAX and various array lengths
nsum = sum(nv(1:ns))
nmax = maxval(nv(1:ns))
ldx = nsum
ldprvr = ip + 1
lvapvec = nmax*(nmax+1)/2
lparest = 4*ip + 1
lwork = nmax*(ip+1)
liwa = 4*nmax

Allocate (y(nsum),x(ldx,ip),icen(nsum),prvr(ldprvr,ip),irank(nmax), &
zin(nmax),eta(nmax),vapvec(lvapvec),parest(lparest),work(lwork), &
iwa(liwa))

! Read in observations, design matrix and censoring variable
Read (nin,*)(y(i),x(i,1:ip),icen(i),i=1,nsum)

! Display input information
Write (nout,99999) ’Number of samples =’, ns
Write (nout,99999) ’Number of parameters fitted =’, ip
Write (nout,99998) ’Distribution power parameter =’, gamma
Write (nout,99998) ’Tolerance for ties =’, tol

ifail = 0
Call g08rbf(ns,nv,nsum,y,ip,x,ldx,icen,gamma,nmax,tol,prvr,ldprvr,irank, &

zin,eta,vapvec,parest,work,lwork,iwa,ifail)

! Display results
Write (nout,*)
Write (nout,*) ’Score statistic’
Write (nout,99997) parest(1:ip)
Write (nout,*)
Write (nout,*) ’Covariance matrix of score statistic’
Do j = 1, ip

Write (nout,99997) prvr(1:j,j)
End Do
Write (nout,*)
Write (nout,*) ’Parameter estimates’
Write (nout,99997) parest((ip+1):(2*ip))
Write (nout,*)
Write (nout,*) ’Covariance matrix of parameter estimates’
Do i = 1, ip

Write (nout,99997) prvr(i+1,1:i)
End Do
Write (nout,*)
Write (nout,99996) ’Chi-squared statistic =’, parest(2*ip+1), ’ with’, &

ip, ’ d.f.’
Write (nout,*)
Write (nout,*) ’Standard errors of estimates and’
Write (nout,*) ’approximate z-statistics’
Write (nout,99995)(parest(2*ip+1+i),parest(3*ip+1+i),i=1,ip)

99999 Format (1X,A,I2)
99998 Format (1X,A,F10.5)
99997 Format (1X,F9.3)
99996 Format (1X,A,F9.3,A,I2,A)
99995 Format (1X,F9.3,F14.3)

End Program g08rbfe

10.2 Program Data

G08RBF Example Program Data
1 1 0.00001 0.00001
40
143.0 0.0 0 164.0 0.0 0 188.0 0.0 0 188.0 0.0 0 190.0 0.0 0
192.0 0.0 0 206.0 0.0 0 209.0 0.0 0 213.0 0.0 0 216.0 0.0 0
220.0 0.0 0 227.0 0.0 0 230.0 0.0 0 234.0 0.0 0 246.0 0.0 0
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265.0 0.0 0 304.0 0.0 0 216.0 0.0 1 244.0 0.0 1 142.0 1.0 0
156.0 1.0 0 163.0 1.0 0 198.0 1.0 0 205.0 1.0 0 232.0 1.0 0
232.0 1.0 0 233.0 1.0 0 233.0 1.0 0 233.0 1.0 0 233.0 1.0 0
239.0 1.0 0 240.0 1.0 0 261.0 1.0 0 280.0 1.0 0 280.0 1.0 0
296.0 1.0 0 296.0 1.0 0 323.0 1.0 0 204.0 1.0 1 344.0 1.0 1

10.3 Program Results

G08RBF Example Program Results

Number of samples = 1
Number of parameters fitted = 1
Distribution power parameter = 0.00001
Tolerance for ties = 0.00001

Score statistic
4.584

Covariance matrix of score statistic
7.653

Parameter estimates
0.599

Covariance matrix of parameter estimates
0.131

Chi-squared statistic = 2.746 with 1 d.f.

Standard errors of estimates and
approximate z-statistics

0.361 1.657
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NAG Library Chapter Contents

G10 – Smoothing in Statistics

G10 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

G10ABF 16 nagf_smooth_fit_spline
Fit cubic smoothing spline, smoothing parameter given

G10ACF 16 nagf_smooth_fit_spline_parest
Fit cubic smoothing spline, smoothing parameter estimated

G10BAF 16 nagf_smooth_withdraw_kerndens_gauss
Kernel density estimate using Gaussian kernel
Note: this routine is scheduled for withdrawal at Mark 27, see
Advice on Replacement Calls for Withdrawn/Superseded Routines for
further information.

G10BBF 25 nagf_smooth_kerndens_gauss
Kernel density estimate using Gaussian kernel (thread safe)

G10CAF 16 nagf_smooth_data_runningmedian
Compute smoothed data sequence using running median smoothers

G10ZAF 16 nagf_smooth_data_order
Reorder data to give ordered distinct observations
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1 Scope of the Chapter

This chapter is concerned with methods for smoothing data. Included are methods for density
estimation, smoothing time series data, and statistical applications of splines. These methods may also
be viewed as nonparametric modelling.

2 Background to the Problems

2.1 Smoothing Methods

Many of the methods used in statistics involve fitting a model, the form of which is determined by a
small number of parameters, for example, a distribution model like the gamma distribution, a linear
regression model or an autoregression model in time series. In these cases the fitting involves the
estimation of the small number of parameters from the data. In modelling data with these models there
are two important stages in addition to the estimation of the parameters; these are the identification of a
suitable model, for example, the selection of a gamma distribution rather than a Weibull distribution,
and the checking to see if the fitted model adequately fits the data. While these parametric models can
be fairly flexible, they will not adequately fit all datasets, especially if the number of parameters is to be
kept small.

Alternative models based on smoothing can be used. These models will not be written explicitly in
terms of parameters. They are sufficiently flexible for a much wider range of situations than parametric
models. The main requirement for such a model to be suitable is that the underlying models would be
expected to be smooth, so excluding those situations where, for example, a step function would be
expected.

These smoothing methods can be used in a variety of ways, for example:

1. producing smoothed plots to aid understanding;

2. identifying of a suitable parametric model from the shape of the smoothed data;

3. eliminating complex effects that are not of direct interest so that attention can be focused on the
effects of interest.

Several smoothing techniques make use of a smoothing parameter which can be either chosen by you or
estimated from the data. The smoothing parameter balances the two criterion of smoothness of the fitted
model and the closeness of the fit of the model to the data. Generally, the larger the smoothing
parameter is, the smoother the fitted model will be, but for small values of the smoothing parameter the
model will closely follow the data, and for large values the fit will be poorer.

The smoothing parameter can be either chosen using previous experience of a suitable value for such
data, or estimated from the data. The estimation can be either formal, using a criterion such as the
cross-validation, or informal by trying different values and examining the result by means of suitable
graphs.

Smoothing methods can be used in three important areas of of statistics: regression modelling,
distribution modelling and time series modelling.

2.2 Smoothing Splines and Regression Models

For a set of n observations (yi; xi), i ¼ 1; 2; . . . ; n, the spline provides a flexible smooth function for
situations in which a simple polynomial or nonlinear regression model is not suitable.

Cubic smoothing splines arise as the function, f , with continuous first derivative which minimizesXn
i¼1
wi yi � f xið Þð Þ2 þ �

Z 1
�1

f 00 xð Þð Þ2 dx;

where wi is the (optional) weight for the ith observation and � is the smoothing parameter. This
criterion consists of two parts: the first measures the fit of the curve and the second the smoothness of
the curve. The value of the smoothing parameter, �, weights these two aspects: larger values of � give a
smoother fitted curve but, in general, a poorer fit.
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Splines are linear smoothers since the fitted values, ŷ ¼ ŷ1; ŷ2; . . . ; ŷnð ÞT, can be written as a linear
function of the observed values y ¼ y1; y2; . . . ; ynð ÞT, that is,

ŷ ¼ Hy

for a matrix H. The degrees of freedom for the spline is trace Hð Þ giving residual degrees of freedom

trace I �Hð Þ ¼
Xn
i¼1

1� hiið Þ:

The diagonal elements of H, hii, are the leverages.

The parameter � can be estimated in a number of ways.

1. The degrees of freedom for the spline can be specified, i.e., find � such that trace Hð Þ ¼ �0 for
given �0.

2. Minimize the cross-validation (CV), i.e., find � such that the CV is minimized, where

CV ¼ 1

n

Xn
i¼1

ri
1� hii

� �2

:

3. Minimize generalized cross-validation (GCV), i.e., find � such that the GCV is minimized, where

GCV ¼ n

Xn
i¼1
r2i

Xn
i¼1

1� hiið Þ
 !2

0BBBBB@

1CCCCCA:

2.3 Density Estimation

The object of density estimation is to produce from a set of observations a smooth nonparametric
estimate of the unknown density function from which the observations were drawn. That is, given a
sample of n observations, x1, x2; . . . ; xn, from a distribution with unknown density function, f xð Þ, find
an estimate of the density function, f̂ xð Þ. The simplest form of density estimator is the histogram; this
may be defined by

f̂ xð Þ ¼ 1

nh
nj; aþ j� 1ð Þh < x < aþ jh; j ¼ 1; 2; . . . ; ns;

where nj is the number of observations falling in the interval aþ j� 1ð Þh to aþ jh, a is the lower
bound of the histogram and b ¼ nsh is the upper bound. The value h is known as the window width. A
simple development of this estimator would be the running histogram estimator

f̂ xð Þ ¼ 1

2nh
nx; a � x � b;

where nx is the number of observations falling in the interval x� h : xþ h½ �. This estimator can be
written as

f̂ xð Þ ¼ 1

nh

Xn
i¼1
w

x� xi
h

� �
for a function w where

w xð Þ ¼ 1
2 if � 1 < x < 1

¼ 0 otherwise:

The function w can be considered as a kernel function. To produce a smoother density estimate, the
kernel function, K tð Þ, which satisfies the following conditions can be used:Z 1

�1
K tð Þ dt ¼ 1and K tð Þ � 0:0:
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The kernel density estimator is therefore defined as

f̂ xð Þ ¼ 1

nh

Xn
i¼1
K

x� xi
h

� �
:

The choice of K �ð Þ is usually not important, but to ease the computational burden use can be made of
the Gaussian kernel defined as

K tð Þ ¼ 1ffiffiffiffiffiffi
2	
p e�t

2=2:

The smoothness of the estimator, f̂ xð Þ, depends on the window width, h. In general, the larger the value
h is, the smoother the resulting density estimate is. There is, however, the problem of oversmoothing
when the value of h is too large and essential features of the distribution function are removed. For
example, if the distribution was bimodal, a large value of h may result in a unimodal estimate. The
value of h has to be chosen such that the essential shape of the distribution is retained while effects due
only to the observed sample are smoothed out. The choice of h can be aided by looking at plots of the
density estimate for different values of h, or by using cross-validation methods; see Silverman (1990).

Silverman (1990) shows how the Gaussian kernel density estimator can be computed using a fast
Fourier transform (FFT).

2.4 Smoothers for Time Series

If the data consists of a sequence of n observations recorded at equally spaced intervals, usually a time
series, several robust smoothers are available. The fitted curve is intended to be robust to any outlying
observations in the sequence, hence the techniques employed primarily make use of medians rather than
means. These ideas come from the field of exploratory data analysis (EDA); see Tukey (1977) and
Velleman and Hoaglin (1981). The smoothers are based on the use of running medians to summarise
overlapping segments; these provide a simple but flexible curve.

In EDA terminology, the fitted curve and the residuals are called the smooth and the rough respectively,
so that

Data ¼ Smoothþ Rough:

Using the notation of Tukey, one of the smoothers commonly used is 4253H,twice. This consists of a
running median of 4, then 2, then 5, then 3. This is then followed by what is known as hanning.
Hanning is a running weighted mean, the weights being 1=4, 1=2 and 1=4. The result of this smoothing
is then ‘reroughed’. This involves computing residuals from the computed fit, applying the same
smoother to the residuals and adding the result to the smooth of the first pass.

3 Recommendations on Choice and Use of Available Routines

The following routines fit smoothing splines:

G10ABF computes a cubic smoothing spline for a given value of the smoothing parameter. The
results returned include the values of leverages and the coefficients of the cubic spline. Options
allow only parts of the computation to be performed when the routine is used to estimate the
value of the smoothing parameter or as when it is part of an iterative procedure such as that used
in fitting generalized additive models; see Hastie and Tibshirani (1990).

G10ACF estimates the value of the smoothing parameter using one of three criteria and fits the
cubic smoothing spline using that value.

G10ABF and G10ACF require the xi to be strictly increasing. If two or more observations have the
same xi-value then they should be replaced by a single observation with yi equal to the (weighted)
mean of the y values and weight, wi, equal to the sum of the weights. This operation can be performed
by G10ZAF.

The following routine produces an estimate of the density function:

G10BBF computes a density estimate using a Normal kernel.
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The following routine produces a smoothed estimate for a time series:

G10CAF computes a smoothed series using running median smoothers.

The following service routine is also available:

G10ZAF orders and weights the x; yð Þ input data to produce a dataset strictly monotonic in x.

4 Functionality Index

Compute smoothed data sequence,
running median smoothers ............................................................................................... G10CAF

Fit cubic smoothing spline,
smoothing parameter estimated ........................................................................................ G10ACF
smoothing parameter given .............................................................................................. G10ABF

Kernel density estimation,
Gaussian kernel, thread safe ............................................................................................ G10BBF

Reorder data to give ordered distinct observations ............................................................... G10ZAF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

G10BAF 27 G10BBF

7 References

Hastie T J and Tibshirani R J (1990) Generalized Additive Models Chapman and Hall

Silverman B W (1990) Density Estimation Chapman and Hall

Tukey J W (1977) Exploratory Data Analysis Addison–Wesley

Velleman P F and Hoaglin D C (1981) Applications, Basics, and Computing of Exploratory Data
Analysis Duxbury Press, Boston, MA
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NAG Library Routine Document

G10ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G10ABF fits a cubic smoothing spline for a given smoothing parameter.

2 Specification

SUBROUTINE G10ABF (MODE, WEIGHT, N, X, Y, WT, RHO, YHAT, C, LDC, RSS,
DF, RES, H, COMM, IFAIL)

&

INTEGER N, LDC, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), WT(*), RHO, YHAT(N), C(LDC,3), RSS, DF,

RES(N), H(N), COMM(9*N+14)
&

CHARACTER(1) MODE, WEIGHT

3 Description

G10ABF fits a cubic smoothing spline to a set of n observations (xi, yi), for i ¼ 1; 2; . . . ; n. The spline
provides a flexible smooth function for situations in which a simple polynomial or nonlinear regression
model is unsuitable.

Cubic smoothing splines arise as the unique real-valued solution function f , with absolutely continuous
first derivative and squared-integrable second derivative, which minimizes:Xn

i¼1
wi yi � f xið Þð Þ2 þ �

Z 1
�1

f 00 xð Þð Þ2 dx;

where wi is the (optional) weight for the ith observation and � is the smoothing parameter. This
criterion consists of two parts: the first measures the fit of the curve, and the second the smoothness of
the curve. The value of the smoothing parameter � weights these two aspects; larger values of � give a
smoother fitted curve but, in general, a poorer fit. For details of how the cubic spline can be estimated
see Hutchinson and de Hoog (1985) and Reinsch (1967).

The fitted values, ŷ ¼ ŷ1; ŷ2; . . . ; ŷnð ÞT, and weighted residuals, ri, can be written as

ŷ ¼ Hy and ri ¼
ffiffiffiffiffi
wi
p

yi � ŷið Þ

for a matrix H. The residual degrees of freedom for the spline is trace I �Hð Þ and the diagonal
elements of H, hii, are the leverages.

The parameter � can be chosen in a number of ways. The fit can be inspected for a number of different
values of �. Alternatively the degrees of freedom for the spline, which determines the value of �, can be
specified, or the (generalized) cross-validation can be minimized to give �; see G10ACF for further
details.

G10ABF requires the xi to be strictly increasing. If two or more observations have the same xi-value
then they should be replaced by a single observation with yi equal to the (weighted) mean of the y
values and weight, wi, equal to the sum of the weights. This operation can be performed by G10ZAF.

The computation is split into three phases.

(i) Compute matrices needed to fit spline.

(ii) Fit spline for a given value of �.

(iii) Compute spline coefficients.
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When fitting the spline for several different values of �, phase (i) need only be carried out once and
then phase (ii) repeated for different values of �. If the spline is being fitted as part of an iterative
weighted least squares procedure phases (i) and (ii) have to be repeated for each set of weights. In
either case, phase (iii) will often only have to be performed after the final fit has been computed.

The algorithm is based on Hutchinson (1986).

4 References

Hastie T J and Tibshirani R J (1990) Generalized Additive Models Chapman and Hall

Hutchinson M F (1986) Algorithm 642: A fast procedure for calculating minimum cross-validation
cubic smoothing splines ACM Trans. Math. Software 12 150–153

Hutchinson M F and de Hoog F R (1985) Smoothing noisy data with spline functions Numer. Math. 47
99–106

Reinsch C H (1967) Smoothing by spline functions Numer. Math. 10 177–183

5 Arguments

1: MODE – CHARACTER(1) Input

On entry: indicates in which mode the routine is to be used.

MODE ¼ P
Initialization and fitting is performed. This partial fit can be used in an iterative weighted
least squares context where the weights are changing at each call to G10ABF or when the
coefficients are not required.

MODE ¼ Q
Fitting only is performed. Initialization must have been performed previously by a call to
G10ABF with MODE ¼ P . This quick fit may be called repeatedly with different values
of RHO without re-initialization.

MODE ¼ F
Initialization and full fitting is performed and the function coefficients are calculated.

Constraint: MODE ¼ P , Q or F .

2: WEIGHT – CHARACTER(1) Input

On entry: indicates whether user-defined weights are to be used.

WEIGHT ¼ W
User-defined weights should be supplied in WT.

WEIGHT ¼ U
The data is treated as unweighted.

Constraint: WEIGHT ¼ W or U .

3: N – INTEGER Input

On entry: n, the number of distinct observations.

Constraint: N � 3.

4: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the distinct and ordered values xi, for i ¼ 1; 2; . . . ; n.

Constraint: XðiÞ < Xði þ 1Þ, for i ¼ 1; 2; . . . ; n� 1.

5: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the values yi, for i ¼ 1; 2; . . . ; n.
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6: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W .

On entry: if WEIGHT ¼ W , WT must contain the n weights. Otherwise WT is not referenced
and unit weights are assumed.

Constraint: if WEIGHT ¼ W , WTðiÞ > 0:0, for i ¼ 1; 2; . . . ; n.

7: RHO – REAL (KIND=nag_wp) Input

On entry: �, the smoothing parameter.

Constraint: RHO � 0:0.

8: YHATðNÞ – REAL (KIND=nag_wp) array Output

On exit: the fitted values, ŷi, for i ¼ 1; 2; . . . ; n.

9: CðLDC; 3Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if MODE ¼ Q , C must be unaltered from the previous call to G10ABF with
MODE ¼ P . Otherwise C need not be set.

On exit: if MODE ¼ F , C contains the spline coefficients. More precisely, the value of the spline
at t is given by Cði; 3Þ � dþ Cði; 2Þð Þ � dþ Cði; 1Þð Þ � dþ ŷi, where xi � t < xiþ1 and
d ¼ t� xi.
If MODE ¼ P or Q , C contains information that will be used in a subsequent call to G10ABF
with MODE ¼ Q .

10: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G10ABF
is called.

Constraint: LDC � N� 1.

11: RSS – REAL (KIND=nag_wp) Output

On exit: the (weighted) residual sum of squares.

12: DF – REAL (KIND=nag_wp) Output

On exit: the residual degrees of freedom.

13: RESðNÞ – REAL (KIND=nag_wp) array Output

On exit: the (weighted) residuals, ri, for i ¼ 1; 2; . . . ; n.

14: HðNÞ – REAL (KIND=nag_wp) array Output

On exit: the leverages, hii, for i ¼ 1; 2; . . . ; n.

15: COMMð9� Nþ 14Þ – REAL (KIND=nag_wp) array Communication Array

On entry: if MODE ¼ Q , COMM must be unaltered from the previous call to G10ABF with
MODE ¼ P . Otherwise COMM need not be set.

On exit: if MODE ¼ P or Q , COMM contains information that will be used in a subsequent call
to G10ABF with MODE ¼ Q .

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 3,
or LDC < N� 1,
or RHO < 0:0,
or MODE 6¼ Q , P or F ,
or WEIGHT 6¼ W or U .

IFAIL ¼ 2

On entry, WEIGHT ¼ W and at least one element of WT � 0:0.

IFAIL ¼ 3

On entry, XðiÞ � Xðiþ 1Þ, for some i, i ¼ 1; 2; . . . ; n� 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy depends on the value of � and the position of the x values. The values of xi � xi�1 and wi are
scaled and � is transformed to avoid underflow and overflow problems.

8 Parallelism and Performance

G10ABF is not threaded in any implementation.

9 Further Comments

The time taken by G10ABF is of order n.

Regression splines with a small < nð Þ number of knots can be fitted by E02BAF and E02BEF.
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10 Example

The data, given by Hastie and Tibshirani (1990), is the age, xi, and C-peptide concentration (pmol/ml),
yi, from a study of the factors affecting insulin-dependent diabetes mellitus in children. The data is
input, reduced to a strictly ordered set by G10ZAF and a series of splines fit using a range of values for
the smoothing parameter, �.

10.1 Program Text

Program g10abfe

! G10ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g10abf, g10zaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, lcomm, ldc, lwt, n, &

nord, nrho
Character (1) :: mode, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:,:), comm(:), df(:), h(:), &

res(:), rho(:), rss(:), wt(:), &
wwt(:), x(:), xord(:), y(:), &
yhat(:,:), yord(:)

Integer, Allocatable :: iwrk(:)
! .. Executable Statements ..

Write (nout,*) ’ G10ABF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size and control parameters
Read (nin,*) n, weight, nrho

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
lcomm = 9*n + 14
ldc = n - 1
Allocate (x(n),y(n),wt(lwt),xord(n),yord(n),wwt(n),yhat(n,nrho), &

c(ldc,3),res(n),h(n),comm(lcomm),iwrk(n),rho(nrho),rss(nrho),df(nrho))

! Read in the smoothing parameters
Read (nin,*) rho(1:nrho)

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i),y(i),i=1,n)
End If

! Reorder data into increasing X and remove tied observations, weighting
! accordingly

ifail = 0
Call g10zaf(weight,n,x,y,wt,nord,xord,yord,wwt,rss(1),iwrk,ifail)

! Fit cubic spline the first time
! NB: These are weighted as G10ZAF creates weights

ifail = 0
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mode = ’P’
Call g10abf(mode,’W’,nord,xord,yord,wwt,rho(1),yhat(1,1),c,ldc,rss(1), &

df(1),res,h,comm,ifail)

! Fit cubic spline the remaining NRHO - 1 times
mode = ’Q’
Do i = 2, nrho

ifail = 0
Call g10abf(mode,’W’,nord,xord,yord,wwt,rho(i),yhat(1,i),c,ldc,rss(i), &

df(i),res,h,comm,ifail)
End Do

! Display results
Write (nout,99999) ’Smoothing coefficient (rho) = ’, rho(1:nrho)
Write (nout,99998) ’Residual sum of squares = ’, rss(1:nrho)
Write (nout,99998) ’Degrees of freedom = ’, df(1:nrho)
Write (nout,*)
Write (nout,*) ’ X Y Fitted Values’
Do i = 1, nord

Write (nout,99997) xord(i), yord(i), (yhat(i,j),j=1,nrho)
End Do

99999 Format (1X,A,10(2X,F8.2))
99998 Format (1X,A,10(F10.3))
99997 Format (1X,2F8.4,14X,10(2X,F8.4))

End Program g10abfe

10.2 Program Data

G10ABF Example Program Data
43 ’U’ 3 :: N,MODE,WEIGHT,NRHO
1.0 10.0 100.0 :: RHO
5.2 4.8
8.8 4.1

10.5 5.2
10.6 5.5
10.4 5.0
1.8 3.4

12.7 3.4
15.6 4.9
5.8 5.6
1.9 3.7
2.2 3.9
4.8 4.5
7.9 4.8
5.2 4.9
0.9 3.0

11.8 4.6
7.9 4.8

11.5 5.5
10.6 4.5
8.5 5.3

11.1 4.7
12.8 6.6
11.3 5.1
1.0 3.9

14.5 5.7
11.9 5.1
8.1 5.2

13.8 3.7
15.5 4.9
9.8 4.8

11.0 4.4
12.4 5.2
11.1 5.1
5.1 4.6
4.8 3.9
4.2 5.1
6.9 5.1

13.2 6.0
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9.9 4.9
12.5 4.1
13.2 4.6
8.9 4.9

10.8 5.1 :: End of X,Y

10.3 Program Results

G10ABF Example Program Results

Smoothing coefficient (rho) = 1.00 10.00 100.00
Residual sum of squares = 9.118 11.288 11.881
Degrees of freedom = 22.505 27.785 31.191

X Y Fitted Values
0.9000 3.0000 3.3784 3.3674 3.3699
1.0000 3.9000 3.4173 3.4008 3.4063
1.8000 3.4000 3.6144 3.6642 3.6973
1.9000 3.7000 3.6639 3.7016 3.7341
2.2000 3.9000 3.8607 3.8214 3.8449
4.2000 5.1000 4.7441 4.5265 4.5194
4.8000 4.2000 4.4914 4.6471 4.6746
5.1000 4.6000 4.6708 4.7561 4.7470
5.2000 4.8500 4.7704 4.7993 4.7702
5.8000 5.6000 5.3426 5.0458 4.8879
6.9000 5.1000 5.1728 5.1204 4.9753
7.9000 4.8000 4.9467 4.9590 4.9537
8.1000 5.2000 4.9556 4.9262 4.9452
8.5000 5.3000 4.8742 4.8595 4.9276
8.8000 4.1000 4.7305 4.8172 4.9168
8.9000 4.9000 4.7024 4.8095 4.9143
9.8000 4.8000 4.8394 4.8676 4.9170
9.9000 4.9000 4.8746 4.8818 4.9191

10.4000 5.0000 4.9971 4.9445 4.9303
10.5000 5.2000 4.9997 4.9521 4.9321
10.6000 5.0000 4.9921 4.9572 4.9335
10.8000 5.1000 4.9603 4.9613 4.9354
11.0000 4.4000 4.9396 4.9614 4.9363
11.1000 4.9000 4.9494 4.9618 4.9366
11.3000 5.1000 4.9926 4.9623 4.9366
11.5000 5.5000 5.0116 4.9568 4.9355
11.8000 4.6000 4.9372 4.9338 4.9315
11.9000 5.1000 4.9042 4.9251 4.9300
12.4000 5.2000 4.7929 4.8943 4.9240
12.5000 4.1000 4.8042 4.8944 4.9237
12.7000 3.4000 4.9020 4.9051 4.9244
12.8000 6.6000 4.9752 4.9138 4.9252
13.2000 5.3000 5.0173 4.9239 4.9276
13.8000 3.7000 4.6164 4.8930 4.9304
14.5000 5.7000 5.1883 4.9938 4.9518
15.5000 4.9000 4.9854 4.9773 4.9687
15.6000 4.9000 4.9167 4.9682 4.9697
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NAG Library Routine Document

G10ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G10ACF estimates the values of the smoothing parameter and fits a cubic smoothing spline to a set of
data.

2 Specification

SUBROUTINE G10ACF (METHOD, WEIGHT, N, X, Y, WT, YHAT, C, LDC, RSS, DF,
RES, H, CRIT, RHO, U, TOL, MAXCAL, WK, IFAIL)

&

INTEGER N, LDC, MAXCAL, IFAIL
REAL (KIND=nag_wp) X(N), Y(N), WT(*), YHAT(N), C(LDC,3), RSS, DF,

RES(N), H(N), CRIT, RHO, U, TOL, WK(7*(N+2))
&

CHARACTER(1) METHOD, WEIGHT

3 Description

For a set of n observations xi; yið Þ, for i ¼ 1; 2; . . . ; n, the spline provides a flexible smooth function for
situations in which a simple polynomial or nonlinear regression model is not suitable.

Cubic smoothing splines arise as the unique real-valued solution function f , with absolutely continuous
first derivative and squared-integrable second derivative, which minimizesXn

i¼1
wi yi � f xið Þð Þ2 þ �

Z 1
�1

f 00 xð Þð Þ2 dx;

where wi is the (optional) weight for the ith observation and � is the smoothing argument. This criterion
consists of two parts: the first measures the fit of the curve and the second the smoothness of the curve.
The value of the smoothing argument � weights these two aspects; larger values of � give a smoother
fitted curve but, in general, a poorer fit. For details of how the cubic spline can be fitted see Hutchinson
and de Hoog (1985) and Reinsch (1967).

The fitted values, ŷ ¼ ŷ1; ŷ2; . . . ; ŷnð ÞT, and weighted residuals, ri, can be written as:

ŷ ¼ Hy and ri ¼
ffiffiffiffiffi
wi
p

yi � ŷið Þ

for a matrix H. The residual degrees of freedom for the spline is trace I �Hð Þ and the diagonal
elements of H are the leverages.

The parameter � can be estimated in a number of ways.

(i) The degrees of freedom for the spline can be specified, i.e., find � such that trace Hð Þ ¼ �0 for
given �0.

(ii) Minimize the cross-validation (CV), i.e., find � such that the CV is minimized, where

CV ¼ 1Xn
i¼1
wi

Xn
i¼1

ri
1� hii

� �2
:

(iii) Minimize the generalized cross-validation (GCV), i.e., find � such that the GCV is minimized,
where
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GCV ¼ n2Xn
i¼1
wi

Xn
i¼1
r2i

Xn
i¼1

1� hiið Þ
 !2

2666664

3777775:
G10ACF requires the xi to be strictly increasing. If two or more observations have the same xi value
then they should be replaced by a single observation with yi equal to the (weighted) mean of the y
values and weight, wi, equal to the sum of the weights. This operation can be performed by G10ZAF.

The algorithm is based on Hutchinson (1986). C05AZF is used to solve for � given �0 and the method
of E04ABF/E04ABA is used to minimize the GCV or CV.

4 References

Hastie T J and Tibshirani R J (1990) Generalized Additive Models Chapman and Hall

Hutchinson M F (1986) Algorithm 642: A fast procedure for calculating minimum cross-validation
cubic smoothing splines ACM Trans. Math. Software 12 150–153

Hutchinson M F and de Hoog F R (1985) Smoothing noisy data with spline functions Numer. Math. 47
99–106

Reinsch C H (1967) Smoothing by spline functions Numer. Math. 10 177–183

5 Arguments

1: METHOD – CHARACTER(1) Input

On entry: indicates whether the smoothing parameter is to be found by minimization of the CV or
GCV functions, or by finding the smoothing parameter corresponding to a specified degrees of
freedom value.

METHOD ¼ C
Cross-validation is used.

METHOD ¼ D
The degrees of freedom are specified.

METHOD ¼ G
Generalized cross-validation is used.

Constraint: METHOD ¼ C , D or G .

2: WEIGHT – CHARACTER(1) Input

On entry: indicates whether user-defined weights are to be used.

WEIGHT ¼ W
User-defined weights should be supplied in WT.

WEIGHT ¼ U
The data is treated as unweighted.

Constraint: WEIGHT ¼ W or U .

3: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 3.
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4: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the distinct and ordered values xi, for i ¼ 1; 2; . . . ; n.

Constraint: XðiÞ < Xði þ 1Þ, for i ¼ 1; 2; . . . ; n� 1.

5: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the values yi, for i ¼ 1; 2; . . . ; n.

6: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W .

On entry: if WEIGHT ¼ W , WT must contain the n weights. Otherwise WT is not referenced
and unit weights are assumed.

Constraint: if WEIGHT ¼ W , WTðiÞ > 0:0, for i ¼ 1; 2; . . . ; n.

7: YHATðNÞ – REAL (KIND=nag_wp) array Output

On exit: the fitted values, ŷi, for i ¼ 1; 2; . . . ; n.

8: CðLDC; 3Þ – REAL (KIND=nag_wp) array Output

On exit: the spline coefficients. More precisely, the value of the spline approximation at t is given
by Cði; 3Þ � dþ Cði; 2Þð Þ � dþ Cði; 1Þð Þ � dþ ŷi, where xi � t < xiþ1 and d ¼ t� xi.

9: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G10ACF
is called.

Constraint: LDC � N� 1.

10: RSS – REAL (KIND=nag_wp) Output

On exit: the (weighted) residual sum of squares.

11: DF – REAL (KIND=nag_wp) Output

On exit: the residual degrees of freedom. If METHOD ¼ D this will be n� CRIT to the
required accuracy.

12: RESðNÞ – REAL (KIND=nag_wp) array Output

On exit: the (weighted) residuals, ri, for i ¼ 1; 2; . . . ; n.

13: HðNÞ – REAL (KIND=nag_wp) array Output

On exit: the leverages, hii, for i ¼ 1; 2; . . . ; n.

14: CRIT – REAL (KIND=nag_wp) Input/Output

On entry: if METHOD ¼ D , the required degrees of freedom for the spline.

If METHOD ¼ C or G , CRIT need not be set.

Constraint: 2:0 < CRIT � N.

On exit: if METHOD ¼ C , the value of the cross-validation, or if METHOD ¼ G , the value of
the generalized cross-validation function, evaluated at the value of � returned in RHO.

15: RHO – REAL (KIND=nag_wp) Output

On exit: the smoothing parameter, �.

G10 – Smoothing in Statistics G10ACF

Mark 26 G10ACF.3



16: U – REAL (KIND=nag_wp) Input

On entry: the upper bound on the smoothing parameter. If U � TOL, U ¼ 1000:0 will be used
instead. See Section 9 for details on how this argument is used.

17: TOL – REAL (KIND=nag_wp) Input

On entry: the accuracy to which the smoothing parameter RHO is required. TOL should
preferably be not much less than

ffiffi
�
p

, where � is the machine precision. If TOL < �, TOL ¼
ffiffi
�
p

will be used instead.

18: MAXCAL – INTEGER Input

On entry: the maximum number of spline evaluations to be used in finding the value of �. If
MAXCAL < 3, MAXCAL ¼ 100 will be used instead.

19: WKð7� Nþ 2ð ÞÞ – REAL (KIND=nag_wp) array Workspace

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CRIT ¼ valueh i.
Constraint: if METHOD ¼ D , CRIT > 2:0.

On entry, CRIT ¼ valueh i.
Constraint: if METHOD ¼ D , CRIT � N.

On entry, LDC ¼ valueh i and N ¼ valueh i.
Constraint: LDC � N� 1.

On entry, METHOD is not valid: METHOD ¼ valueh i.
On entry, N ¼ valueh i.
Constraint: N � 3.

On entry, WEIGHT is not valid: WEIGHT ¼ valueh i.

IFAIL ¼ 2

On entry, at least one element of WT � 0:0.

IFAIL ¼ 3

On entry, X is not a strictly ordered array.
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IFAIL ¼ 4

For the specified degrees of freedom, RHO > U: U ¼ valueh i.

IFAIL ¼ 5

Accuracy of TOL cannot be achieved: TOL ¼ valueh i.

IFAIL ¼ 6

MAXCAL iterations have been performed.

IFAIL ¼ 7

Optimum value of RHO lies above U: U ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

When minimizing the cross-validation or generalized cross-validation, the error in the estimate of �
should be within 
3 TOL� RHOþ TOLð Þ. When finding � for a fixed number of degrees of freedom
the error in the estimate of � should be within 
2� TOL�max 1;RHOð Þ.
Given the value of �, the accuracy of the fitted spline depends on the value of � and the position of the
x values. The values of xi � xi�1 and wi are scaled and � is transformed to avoid underflow and
overflow problems.

8 Parallelism and Performance

G10ACF is not threaded in any implementation.

9 Further Comments

The time to fit the spline for a given value of � is of order n.

When finding the value of � that gives the required degrees of freedom, the algorithm examines the
interval 0:0 to U. For small degrees of freedom the value of � can be large, as in the theoretical case of
two degrees of freedom when the spline reduces to a straight line and � is infinite. If the CV or GCV is
to be minimized then the algorithm searches for the minimum value in the interval 0:0 to U. If the
function is decreasing in that range then the boundary value of U will be returned. In either case, the
larger the value of U the more likely is the interval to contain the required solution, but the process will
be less efficient.

Regression splines with a small < nð Þ number of knots can be fitted by E02BAF and E02BEF.
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10 Example

This example uses the data given by Hastie and Tibshirani (1990), which consists of the age, xi, and C-
peptide concentration (pmol/ml), yi, from a study of the factors affecting insulin-dependent diabetes
mellitus in children. The data is input, reduced to a strictly ordered set by G10ZAF and a spline with 5
degrees of freedom is fitted by G10ACF. The fitted values and residuals are printed.

10.1 Program Text

Program g10acfe

! G10ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g10acf, g10zaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: crit, df, rho, rss, tol, u
Integer :: i, ifail, ldc, lwk, lwt, maxcal, n, &

nord
Character (1) :: method, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:,:), h(:), res(:), wk(:), wt(:), &

wwt(:), x(:), xord(:), y(:), &
yhat(:), yord(:)

Integer, Allocatable :: iwrk(:)
! .. Executable Statements ..

Write (nout,*) ’G10ACF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) method, weight, n

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldc = n - 1
lwk = 7*(n+2)
Allocate (x(n),y(n),wt(lwt),xord(n),yord(n),wwt(n),yhat(n),c(ldc,3), &

res(n),h(n),wk(lwk),iwrk(n))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i),y(i),i=1,n)
End If

! Read in control parameters
Read (nin,*) u, tol, maxcal, crit

! Sort data, removing ties and weighting accordingly
ifail = 0
Call g10zaf(weight,n,x,y,wt,nord,xord,yord,wwt,rss,iwrk,ifail)

! Fit cubic spline
ifail = 0
Call g10acf(method,’W’,nord,xord,yord,wwt,yhat,c,ldc,rss,df,res,h,crit, &

rho,u,tol,maxcal,wk,ifail)

! Display results

G10ACF NAG Library Manual

G10ACF.6 Mark 26



Write (nout,99999) ’Residual sum of squares = ’, rss
Write (nout,99999) ’Degrees of freedom = ’, df
Write (nout,99999) ’RHO = ’, rho
Write (nout,*)
Write (nout,*) ’ Input data Output results’
Write (nout,*) ’ I X Y YHAT H’
Write (nout,99998)(i,xord(i),yord(i),yhat(i),h(i),i=1,nord)

99999 Format (1X,A,F10.2)
99998 Format (I4,2F8.3,6X,2F8.3)

End Program g10acfe

10.2 Program Data

G10ACF Example Program Data
’D’ ’U’ 43 :: METHOD,WEIGHT,N
5.2 4.8
8.8 4.1 10.5 5.2 10.6 5.5 10.4 5.0
1.8 3.4 12.7 3.4 15.6 4.9 5.8 5.6
1.9 3.7 2.2 3.9 4.8 4.5 7.9 4.8
5.2 4.9 0.9 3.0 11.8 4.6 7.9 4.8

11.5 5.5 10.6 4.5 8.5 5.3 11.1 4.7
12.8 6.6 11.3 5.1 1.0 3.9 14.5 5.7
11.9 5.1 8.1 5.2 13.8 3.7 15.5 4.9
9.8 4.8 11.0 4.4 12.4 5.2 11.1 5.1
5.1 4.6 4.8 3.9 4.2 5.1 6.9 5.1

13.2 6.0 9.9 4.9 12.5 4.1 13.2 4.6
8.9 4.9 10.8 5.1 :: End of X,Y

10000 0.001 40 12.0 :: U,TOL,MAXCAL,CRIT

10.3 Program Results

G10ACF Example Program Results

Residual sum of squares = 10.35
Degrees of freedom = 25.00
RHO = 2.68

Input data Output results
I X Y YHAT H

1 0.900 3.000 3.373 0.534
2 1.000 3.900 3.406 0.427
3 1.800 3.400 3.642 0.313
4 1.900 3.700 3.686 0.313
5 2.200 3.900 3.839 0.448
6 4.200 5.100 4.614 0.564
7 4.800 4.200 4.576 0.442
8 5.100 4.600 4.715 0.189
9 5.200 4.850 4.783 0.407

10 5.800 5.600 5.193 0.455
11 6.900 5.100 5.184 0.592
12 7.900 4.800 4.958 0.530
13 8.100 5.200 4.931 0.234
14 8.500 5.300 4.845 0.245
15 8.800 4.100 4.763 0.271
16 8.900 4.900 4.748 0.292
17 9.800 4.800 4.850 0.301
18 9.900 4.900 4.875 0.276
19 10.400 5.000 4.970 0.173
20 10.500 5.200 4.977 0.154
21 10.600 5.000 4.979 0.285
22 10.800 5.100 4.970 0.136
23 11.000 4.400 4.961 0.137
24 11.100 4.900 4.964 0.284
25 11.300 5.100 4.975 0.162
26 11.500 5.500 4.975 0.186
27 11.800 4.600 4.930 0.213
28 11.900 5.100 4.911 0.220
29 12.400 5.200 4.852 0.206
30 12.500 4.100 4.857 0.196
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31 12.700 3.400 4.900 0.189
32 12.800 6.600 4.932 0.193
33 13.200 5.300 4.955 0.488
34 13.800 3.700 4.797 0.408
35 14.500 5.700 5.076 0.559
36 15.500 4.900 4.979 0.445
37 15.600 4.900 4.946 0.535
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NAG Library Routine Document

G10BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G10BAF performs kernel density estimation using a Gaussian kernel.

2 Specification

SUBROUTINE G10BAF (N, X, WINDOW, SLO, SHI, NS, SMOOTH, T, USEFFT, FFT,
IFAIL)

&

INTEGER N, NS, IFAIL
REAL (KIND=nag_wp) X(N), WINDOW, SLO, SHI, SMOOTH(NS), T(NS), FFT(NS)
LOGICAL USEFFT

3 Description

Given a sample of n observations, x1; x2; . . . ; xn, from a distribution with unknown density function,
f xð Þ, an estimate of the density function, f̂ xð Þ, may be required. The simplest form of density estimator
is the histogram. This may be defined by:

f̂ xð Þ ¼ 1
nhnj; aþ j� 1ð Þh < x < aþ jh; j ¼ 1; 2; . . . ; ns;

where nj is the number of observations falling in the interval aþ j� 1ð Þh to aþ jh, a is the lower
bound to the histogram and b ¼ nsh is the upper bound. The value h is known as the window width. To
produce a smoother density estimate a kernel method can be used. A kernel function, K tð Þ, satisfies the
conditions: Z 1

�1
K tð Þ dt ¼ 1 and K tð Þ � 0:

The kernel density estimator is then defined as

f̂ xð Þ ¼ 1
nh

Xn
i¼1
K

x� xi
h

� �
:

The choice of K is usually not important but to ease the computational burden use can be made of the
Gaussian kernel defined as

K tð Þ ¼ 1ffiffiffiffiffiffi
2	
p e�t

2=2:

The smoothness of the estimator depends on the window width h. The larger the value of h the
smoother the density estimate. The value of h can be chosen by examining plots of the smoothed
density for different values of h or by using cross-validation methods (see Silverman (1990)).

Silverman (1982) and Silverman (1990) show how the Gaussian kernel density estimator can be
computed using a fast Fourier transform (FFT). In order to compute the kernel density estimate over the
range a to b the following steps are required.

(i) Discretize the data to give ns equally spaced points tl with weights �l (see Jones and Lotwick
(1984)).

(ii) Compute the FFT of the weights �l to give Yl.

(iii) Compute �l ¼ e�
1
2h

2s2
l Yl where sl ¼ 2	l= b� að Þ.

G10 – Smoothing in Statistics G10BAF

Mark 26 G10BAF.1



(iv) Find the inverse FFT of �l to give f̂ xð Þ.
To compute the kernel density estimate for further values of h only steps (iii) and (iv) need be repeated.

4 References

Jones M C and Lotwick H W (1984) Remark AS R50. A remark on algorithm AS 176. Kernel density
estimation using the Fast Fourier Transform Appl. Statist. 33 120–122

Silverman B W (1982) Algorithm AS 176. Kernel density estimation using the fast Fourier transform
Appl. Statist. 31 93–99

Silverman B W (1990) Density Estimation Chapman and Hall

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations in the sample.

Constraint: N > 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n observations, xi, for i ¼ 1; 2; . . . ; n.

3: WINDOW – REAL (KIND=nag_wp) Input

On entry: h, the window width.

Constraint: WINDOW > 0:0.

4: SLO – REAL (KIND=nag_wp) Input

On entry: a, the lower limit of the interval on which the estimate is calculated. For most
applications SLO should be at least three window widths below the lowest data point.

Constraint: SLO < SHI.

5: SHI – REAL (KIND=nag_wp) Input

On entry: b, the upper limit of the interval on which the estimate is calculated. For most
applications SHI should be at least three window widths above the highest data point.

6: NS – INTEGER Input

On entry: the number of points at which the estimate is calculated, ns.

Constraint: NS � 2.

7: SMOOTHðNSÞ – REAL (KIND=nag_wp) array Output

On exit: the ns values of the density estimate, f̂ tlð Þ, for l ¼ 1; 2; . . . ; ns.

8: TðNSÞ – REAL (KIND=nag_wp) array Output

On exit: the points at which the estimate is calculated, tl , for l ¼ 1; 2; . . . ; ns.

9: USEFFT – LOGICAL Input

On entry: must be set to .FALSE. if the values of Yl are to be calculated by G10BAF and to .
TRUE. if they have been computed by a previous call to G10BAF and are provided in FFT. If
USEFFT ¼ :TRUE: then the arguments N, SLO, SHI, NS and FFT must remain unchanged from
the previous call to G10BAF with USEFFT ¼ :FALSE:.
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10: FFTðNSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if USEFFT ¼ :TRUE:, FFT must contain the fast Fourier transform of the weights of
the discretized data, �l , for l ¼ 1; 2; . . . ; ns. Otherwise FFT need not be set.

On exit: the fast Fourier transform of the weights of the discretized data, �l , for l ¼ 1; 2; . . . ; ns.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 0,
or NS < 2,
or SHI � SLO,
or WINDOW � 0:0.

IFAIL ¼ 2

On entry, G10BAF has been called with USEFFT ¼ :TRUE: but the routine has not been called
previously with USEFFT ¼ :FALSE:,

or G10BAF has been called with USEFFT ¼ :TRUE: but some of the arguments N, SLO,
SHI, NS have been changed since the previous call to G10BAF with
USEFFT ¼ :FALSE:.

IFAIL ¼ 4

On entry, the interval given by SLO to SHI does not extend beyond three window widths at
either extreme of the dataset. This may distort the density estimate in some cases.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

See Jones and Lotwick (1984) for a discussion of the accuracy of this method.

8 Parallelism and Performance

G10BAF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

G10BAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G10BAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time for computing the weights of the discretized data is of order n, while the time for computing
the FFT is of order nslog nsð Þ, as is the time for computing the inverse of the FFT.

10 Example

Data is read from a file and the density estimated. The first 20 values are then printed. The full
estimated density function is shown in the accompanying plot.

10.1 Program Text

Program g10bafe

! G10BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g10baf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: shi, slo, window
Integer :: i, ifail, n, ns
Logical :: usefft

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fft(:), smooth(:), t(:), x(:)
Integer, Allocatable :: iwrk(:)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’G10BAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in density estimation information
Read (nin,*) window, slo, shi, ns
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! Read in the size of the dataset
Read (nin,*) n

Allocate (smooth(ns),t(ns),fft(ns),x(n),iwrk(ns))

! Read in data
Read (nin,*) x(1:n)

! Perform kernel density estimation
usefft = .False.
ifail = 0
Call g10baf(n,x,window,slo,shi,ns,smooth,t,usefft,fft,ifail)

! Display the results
Write (nout,99998) ’Window Width Used = ’, window
Write (nout,99997) ’Interval = (’, slo, ’,’, shi, ’)’
Write (nout,*)
Write (nout,99999) ’First ’, min(20,ns), ’ output values:’
Write (nout,*)
Write (nout,*) ’ Time Density’
Write (nout,*) ’ Point Estimate’
Write (nout,*) ’ ---------------------------’
Do i = 1, min(20,ns)

Write (nout,99996) t(i), smooth(i)
End Do

99999 Format (A,I0,A)
99998 Format (A,E11.4)
99997 Format (A,E11.4,A,E11.4,A)
99996 Format (1X,E13.4,1X,E13.4)

End Program g10bafe

10.2 Program Data

G10BAF Example Program Data
0.4 -5.0 5.0 100 :: WINDOW,SLO,SHI,NS
100 :: N
0.114 -0.232 -0.570 1.853 -0.994

-0.374 -1.028 0.509 0.881 -0.453
0.588 -0.625 -1.622 -0.567 0.421

-0.475 0.054 0.817 1.015 0.608
-1.353 -0.912 -1.136 1.067 0.121
-0.075 -0.745 1.217 -1.058 -0.894
1.026 -0.967 -1.065 0.513 0.969
0.582 -0.985 0.097 0.416 -0.514
0.898 -0.154 0.617 -0.436 -1.212

-1.571 0.210 -1.101 1.018 -1.702
-2.230 -0.648 -0.350 0.446 -2.667
0.094 -0.380 -2.852 -0.888 -1.481

-0.359 -0.554 1.531 0.052 -1.715
1.255 -0.540 0.362 -0.654 -0.272

-1.810 0.269 -1.918 0.001 1.240
-0.368 -0.647 -2.282 0.498 0.001
-3.059 -1.171 0.566 0.948 0.925
0.825 0.130 0.930 0.523 0.443

-0.649 0.554 -2.823 0.158 -1.180
0.610 0.877 0.791 -0.078 1.412 :: End of X

10.3 Program Results

G10BAF Example Program Results

Window Width Used = 0.4000E+00
Interval = (-0.5000E+01, 0.5000E+01)

First 20 output values:

Time Density
Point Estimate

---------------------------
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-0.4950E+01 0.4108E-11
-0.4850E+01 0.3915E-10
-0.4750E+01 0.3309E-09
-0.4650E+01 0.2480E-08
-0.4550E+01 0.1649E-07
-0.4450E+01 0.9730E-07
-0.4350E+01 0.5097E-06
-0.4250E+01 0.2372E-05
-0.4150E+01 0.9817E-05
-0.4050E+01 0.3615E-04
-0.3950E+01 0.1186E-03
-0.3850E+01 0.3475E-03
-0.3750E+01 0.9100E-03
-0.3650E+01 0.2136E-02
-0.3550E+01 0.4504E-02
-0.3450E+01 0.8556E-02
-0.3350E+01 0.1468E-01
-0.3250E+01 0.2283E-01
-0.3150E+01 0.3225E-01
-0.3050E+01 0.4154E-01
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NAG Library Routine Document

G10BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G10BBF performs kernel density estimation using a Gaussian kernel.

2 Specification

SUBROUTINE G10BBF (N, X, WTYPE, WINDOW, SLO, SHI, NS, SMOOTH, T, FCALL,
RCOMM, IFAIL)

&

INTEGER N, WTYPE, NS, FCALL, IFAIL
REAL (KIND=nag_wp) X(N), WINDOW, SLO, SHI, SMOOTH(NS), T(NS),

RCOMM(NS+20)
&

3 Description

Given a sample of n observations, x1; x2; . . . ; xn, from a distribution with unknown density function,
f xð Þ, an estimate of the density function, f̂ xð Þ, may be required. The simplest form of density estimator
is the histogram. This may be defined by:

f̂ xð Þ ¼ 1
nhnj; aþ j� 1ð Þh < x < aþ jh; j ¼ 1; 2; . . . ; ns;

where nj is the number of observations falling in the interval aþ j� 1ð Þh to aþ jh, a is the lower
bound to the histogram, b ¼ nsh is the upper bound and ns is the total number of intervals. The value h
is known as the window width. To produce a smoother density estimate a kernel method can be used. A
kernel function, K tð Þ, satisfies the conditions:Z 1

�1
K tð Þ dt ¼ 1 and K tð Þ � 0:

The kernel density estimator is then defined as

f̂ xð Þ ¼ 1
nh

Xn
i¼1
K

x� xi
h

� �
:

The choice of K is usually not important but to ease the computational burden use can be made of the
Gaussian kernel defined as

K tð Þ ¼ 1ffiffiffiffiffiffi
2	
p e�t

2=2:

The smoothness of the estimator depends on the window width h. The larger the value of h the
smoother the density estimate. The value of h can be chosen by examining plots of the smoothed
density for different values of h or by using cross-validation methods (see Silverman (1990)).

Silverman (1982) and Silverman (1990) show how the Gaussian kernel density estimator can be
computed using a fast Fourier transform (FFT). In order to compute the kernel density estimate over the
range a to b the following steps are required.

(i) Discretize the data to give ns equally spaced points tl with weights �l (see Jones and Lotwick
(1984)).

(ii) Compute the FFT of the weights �l to give Yl.

(iii) Compute �l ¼ e�
1
2h

2s2
l Yl where sl ¼ 2	l= b� að Þ.
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(iv) Find the inverse FFT of �l to give f̂ xð Þ.
To compute the kernel density estimate for further values of h only steps (iii) and (iv) need be repeated.

4 References

Jones M C and Lotwick H W (1984) Remark AS R50. A remark on algorithm AS 176. Kernel density
estimation using the Fast Fourier Transform Appl. Statist. 33 120–122

Silverman B W (1982) Algorithm AS 176. Kernel density estimation using the fast Fourier transform
Appl. Statist. 31 93–99

Silverman B W (1990) Density Estimation Chapman and Hall

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations in the sample.

If FCALL ¼ 0, N must be unchanged since the last call to G10BBF.

Constraint: N > 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: xi, for i ¼ 1; 2; . . . ; n.

If FCALL ¼ 0, X must be unchanged since the last call to G10BBF.

3: WTYPE – INTEGER Input

On entry: how the window width, h, is to be calculated:

WTYPE ¼ 1
h is supplied in WINDOW.

WTYPE ¼ 2
h is to be calculated from the data, with

h ¼ m� 0:9�min q75 � q25; �ð Þ
n0:2

� �
where q75 � q25 is the inter-quartile range and � the standard deviation of the sample, x,
and m is a multipler supplied in WINDOW. The 25% and 75% quartiles, q25 and q75, are
calculated using G01AMF. This is the "rule-of-thumb" suggested by Silverman (1990).

Suggested value: WTYPE ¼ 2 and WINDOW ¼ 1:0.

Constraint: WTYPE ¼ 1 or 2.

4: WINDOW – REAL (KIND=nag_wp) Input/Output

On entry: if WTYPE ¼ 1, then h, the window width. Otherwise, m, the multiplier used in the
calculation of h.

Suggested value: WINDOW ¼ 1:0 and WTYPE ¼ 2.

On exit: h, the window width actually used.

Constraint: WINDOW > 0:0.

5: SLO – REAL (KIND=nag_wp) Input/Output

On entry: if SLO < SHI then a, the lower limit of the interval on which the estimate is
calculated. Otherwise, a and b, the lower and upper limits of the interval, are calculated as
follows:
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a ¼ min
i

xif g � SLO� h
b ¼ max

i
xif g þ SLO� h

where h is the window width.

For most applications a should be at least three window widths below the lowest data point.

If FCALL ¼ 0, SLO must be unchanged since the last call to G10BBF.

Suggested value: SLO ¼ 3:0 and SHI ¼ 0:0 which would cause a and b to be set 3 window
widths below and above the lowest and highest data points respectively.

On exit: a, the lower limit actually used.

6: SHI – REAL (KIND=nag_wp) Input/Output

On entry: if SLO < SHI then b, the upper limit of the interval on which the estimate is
calculated. Otherwise a value for b is calculated from the data as stated in the description of SLO
and the value supplied in SHI is not used.

For most applications b should be at least three window widths above the highest data point.

If FCALL ¼ 0, SHI must be unchanged since the last call to G10BBF.

On exit: b, the upper limit actually used.

7: NS – INTEGER Input

On entry: ns, the number of points at which the estimate is calculated.

If FCALL ¼ 0, NS must be unchanged since the last call to G10BBF.

Suggested value: NS ¼ 512.

Constraint: NS � 2.

8: SMOOTHðNSÞ – REAL (KIND=nag_wp) array Output

On exit: f̂ tlð Þ, for l ¼ 1; 2; . . . ; ns, the ns values of the density estimate.

9: TðNSÞ – REAL (KIND=nag_wp) array Output

On exit: tl , for l ¼ 1; 2; . . . ; ns, the points at which the estimate is calculated.

10: FCALL – INTEGER Input

On entry: if FCALL ¼ 1 then the values of Yl are to be calculated by this call to G10BBF,
otherwise it is assumed that the values of Yl were calculated by a previous call to this routine and
the relevant information is stored in RCOMM.

Constraint: FCALL ¼ 0 or 1.

11: RCOMMðNSþ 20Þ – REAL (KIND=nag_wp) array Communication Array

On entry: communication array, used to store information between calls to G10BBF.

If FCALL ¼ 0, RCOMM must be unchanged since the last call to G10BBF.

On exit: the last NS elements of RCOMM contain the fast Fourier transform of the weights of the
discretized data, that is RCOMMðl þ 20Þ ¼ Yl , for l ¼ 1; 2; . . . ; ns.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G10BBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 12

On entry, N ¼ valueh i.
On entry at previous call, N ¼ valueh i.
Constraint: if FCALL ¼ 0, N must be unchanged since previous call.

IFAIL ¼ 31

On entry, WTYPE ¼ valueh i.
Constraint: WTYPE ¼ 1 or 2.

IFAIL ¼ 41

On entry, WINDOW ¼ valueh i.
Constraint: WINDOW > 0:0.

IFAIL ¼ 51

On entry, SLO ¼ valueh i.
On exit from previous call, SLO ¼ valueh i.
Constraint: if FCALL ¼ 0, SLO must be unchanged since previous call.

IFAIL ¼ 61

On entry, SLO ¼ valueh i and SHI ¼ valueh i.
On entry, min Xð Þ ¼ valueh i and max Xð Þ ¼ valueh i.
Expected values of at least valueh i and valueh i for SLO and SHI.
All output values have been returned.

IFAIL ¼ 62

On entry, SHI ¼ valueh i.
On exit from previous call, SHI ¼ valueh i.
Constraint: if FCALL ¼ 0, SHI must be unchanged since previous call.

IFAIL ¼ 71

On entry, NS ¼ valueh i.
Constraint: NS � 2.
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IFAIL ¼ 74

On entry, NS ¼ valueh i.
On entry at previous call, NS ¼ valueh i.
Constraint: if FCALL ¼ 0, NS must be unchanged since previous call.

IFAIL ¼ 101

On entry, FCALL ¼ valueh i.
Constraint: FCALL ¼ 0 or 1.

IFAIL ¼ 111

RCOMM has been corrupted between calls.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

See Jones and Lotwick (1984) for a discussion of the accuracy of this method.

8 Parallelism and Performance

G10BBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G10BBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time for computing the weights of the discretized data is of order n, while the time for computing
the FFT is of order nslog nsð Þ, as is the time for computing the inverse of the FFT.

10 Example

Data is read from a file and the density estimated. The first 20 values are then printed.
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10.1 Program Text

Program g10bbfe
! G10BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g10bbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: shi, slo, window
Integer :: fcall, i, ifail, n, ns, wtype

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rcomm(:), smooth(:), t(:), x(:)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’G10BBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in density estimation information
Read (nin,*) wtype, window, slo, shi, ns

! Read in the size of the dataset
Read (nin,*) n

Allocate (smooth(ns),t(ns),rcomm(ns+20),x(n))

! Only calling the routine once
fcall = 1

! Read in data
Read (nin,*) x(1:n)

! Perform kernel density estimation
ifail = 0
Call g10bbf(n,x,wtype,window,slo,shi,ns,smooth,t,fcall,rcomm,ifail)

! Display the results
Write (nout,99998) ’Window Width Used = ’, window
Write (nout,99997) ’Interval = (’, slo, ’,’, shi, ’)’
Write (nout,*)
Write (nout,99999) ’First ’, min(20,ns), ’ output values:’
Write (nout,*)
Write (nout,*) ’ Time Density’
Write (nout,*) ’ Point Estimate’
Write (nout,*) ’ ---------------------------’
Do i = 1, min(20,ns)

Write (nout,99996) t(i), smooth(i)
End Do

99999 Format (A,I0,A)
99998 Format (A,E11.4)
99997 Format (A,E11.4,A,E11.4,A)
99996 Format (1X,E13.4,1X,E13.4)

End Program g10bbfe
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10.2 Program Data

G10BBF Example Program Data
2 1.0 3.0 0.0 512 :: WTYPE,WINDOW,SLO,SHI,NS
100 :: N
0.114 -0.232 -0.570 1.853 -0.994

-0.374 -1.028 0.509 0.881 -0.453
0.588 -0.625 -1.622 -0.567 0.421

-0.475 0.054 0.817 1.015 0.608
-1.353 -0.912 -1.136 1.067 0.121
-0.075 -0.745 1.217 -1.058 -0.894
1.026 -0.967 -1.065 0.513 0.969
0.582 -0.985 0.097 0.416 -0.514
0.898 -0.154 0.617 -0.436 -1.212

-1.571 0.210 -1.101 1.018 -1.702
-2.230 -0.648 -0.350 0.446 -2.667
0.094 -0.380 -2.852 -0.888 -1.481

-0.359 -0.554 1.531 0.052 -1.715
1.255 -0.540 0.362 -0.654 -0.272

-1.810 0.269 -1.918 0.001 1.240
-0.368 -0.647 -2.282 0.498 0.001
-3.059 -1.171 0.566 0.948 0.925
0.825 0.130 0.930 0.523 0.443

-0.649 0.554 -2.823 0.158 -1.180
0.610 0.877 0.791 -0.078 1.412 :: End of X

10.3 Program Results

G10BBF Example Program Results

Window Width Used = 0.3764E+00
Interval = (-0.4188E+01, 0.2982E+01)

First 20 output values:

Time Density
Point Estimate

---------------------------
-0.4181E+01 0.3828E-05
-0.4167E+01 0.4031E-05
-0.4153E+01 0.4423E-05
-0.4139E+01 0.5021E-05
-0.4125E+01 0.5846E-05
-0.4111E+01 0.6928E-05
-0.4097E+01 0.8305E-05
-0.4083E+01 0.1002E-04
-0.4069E+01 0.1215E-04
-0.4055E+01 0.1474E-04
-0.4041E+01 0.1788E-04
-0.4027E+01 0.2168E-04
-0.4013E+01 0.2624E-04
-0.3999E+01 0.3170E-04
-0.3985E+01 0.3821E-04
-0.3971E+01 0.4596E-04
-0.3957E+01 0.5514E-04
-0.3943E+01 0.6599E-04
-0.3929E+01 0.7877E-04
-0.3915E+01 0.9380E-04

This plot shows the estimated density function for the example data for several window widths.
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NAG Library Routine Document

G10CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G10CAF computes a smoothed data sequence using running median smoothers.

2 Specification

SUBROUTINE G10CAF (ITYPE, N, Y, SMOOTH, ROUGH, IFAIL)

INTEGER ITYPE, N, IFAIL
REAL (KIND=nag_wp) Y(N), SMOOTH(N), ROUGH(N)

3 Description

Given a sequence of n observations recorded at equally spaced intervals, G10CAF fits a smooth curve
through the data using one of two smoothers. The two smoothers are based on the use of running
medians and averages to summarise overlapping segments. The fit and the residuals are called the
smooth and the rough respectively. They obey the following:

Data ¼ Smoothþ Rough:

The two smoothers are:

1. 4253H,twice consisting of a running median of 4, then 2, then 5, then 3 followed by hanning.
Hanning is a running weighted average, the weights being 1=4, 1=2 and 1=4. The result of this
smoothing is then reroughed by computing residuals, applying the same smoother to them and
adding the result to the smooth of the first pass.

2. 3RSSH,twice consisting of a running median of 3, two splitting operations named S to improve the
smooth sequence, each of which is followed by a running median of 3, and finally hanning. The
end points are dealt with using the method described by Velleman and Hoaglin (1981). The full
smoother 3RSSH,twice is produced by reroughing as described above.

The compound smoother 4253H,twice is recommended. The smoother 3RSSH,twice is popular when
calculating by hand as it requires simpler computations and is included for comparison purposes.

4 References

Tukey J W (1977) Exploratory Data Analysis Addison–Wesley

Velleman P F and Hoaglin D C (1981) Applications, Basics, and Computing of Exploratory Data
Analysis Duxbury Press, Boston, MA

5 Arguments

1: ITYPE – INTEGER Input

On entry: specifies the method to be used.

If ITYPE ¼ 0, 4253H,twice is used.

If ITYPE ¼ 1, 3RSSH,twice is used.

Constraint: ITYPE ¼ 0 or 1.
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2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N > 6.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sample observations.

4: SMOOTHðNÞ – REAL (KIND=nag_wp) array Output

On exit: contains the smooth.

5: ROUGHðNÞ – REAL (KIND=nag_wp) array Output

On exit: contains the rough.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ITYPE < 0,
or ITYPE > 1.

IFAIL ¼ 2

On entry, N � 6.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

G10CAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Alternative methods of smoothing include the use of splines; see G10ABF and G10ACF.

10 Example

This example reads in a sequence of 49 observations on bituminous coal production (in millions of net
tons per year) in the USA., 1920–1968 and is taken from Tukey (1977). For comparison purposes, both
smoothers are applied to the data and the results are printed.

10.1 Program Text

Program g10cafe

! G10CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g10caf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, itype, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rough0(:), rough1(:), smooth0(:), &

smooth1(:), y(:)
! .. Executable Statements ..

Write (nout,*) ’ G10CAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n

Allocate (y(n),rough0(n),smooth0(n),rough1(n),smooth1(n))

! Read in data
Read (nin,*) y(1:n)

! Smooth sequence using 3RSSH,twice
itype = 1
ifail = 0
Call g10caf(itype,n,y,smooth1,rough1,ifail)

! Smooth sequence using 4253H,twice
itype = 0
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ifail = 0
Call g10caf(itype,n,y,smooth0,rough0,ifail)

! Display results
Write (nout,*) &

’ Using 3RSSH,twice Using 4253H,twice’
Write (nout,*) &

’ Index Data Smooth Rough Smooth Rough’
Write (nout,99999)(i,y(i),smooth1(i),rough1(i),smooth0(i),rough0(i),i=1, &

n)

99999 Format (1X,I4,F11.1,2F13.4,2F13.1)
End Program g10cafe

10.2 Program Data

G10CAF Example Program Data
49 :: N
569.0 416.0 422.0 565.0 484.0 520.0 573.0 518.0 501.0 505.0
468.0 382.0 310.0 334.0 359.0 372.0 439.0 446.0 349.0 395.0
461.0 511.0 583.0 590.0 620.0 578.0 534.0 631.0 600.0 438.0
516.0 534.0 467.0 457.0 392.0 467.0 500.0 493.0 410.0 412.0
416.0 403.0 422.0 459.0 467.0 512.0 534.0 552.0 545.0 :: End of Y

10.3 Program Results

G10CAF Example Program Results

Using 3RSSH,twice Using 4253H,twice
Index Data Smooth Rough Smooth Rough

1 569.0 416.0000 153.0000 491.4 77.6
2 416.0 416.0000 0.0000 491.4 -75.4
3 422.0 431.5000 -9.5000 491.4 -69.4
4 565.0 473.0000 92.0000 498.9 66.1
5 484.0 509.5000 -25.5000 514.9 -30.9
6 520.0 520.6875 -0.6875 524.7 -4.7
7 573.0 521.5625 51.4375 525.0 48.0
8 518.0 518.0000 0.0000 521.2 -3.2
9 501.0 510.0000 -9.0000 512.6 -11.6

10 505.0 496.5000 8.5000 493.2 11.8
11 468.0 455.2500 12.7500 449.7 18.3
12 382.0 387.5000 -5.5000 391.6 -9.6
13 310.0 339.7500 -29.7500 353.4 -43.4
14 334.0 334.9375 -0.9375 343.8 -9.8
15 359.0 353.9375 5.0625 355.2 3.8
16 372.0 376.1250 -4.1250 382.8 -10.8
17 439.0 392.2500 46.7500 405.5 33.5
18 446.0 396.2500 49.7500 411.9 34.1
19 349.0 403.0000 -54.0000 411.6 -62.6
20 395.0 427.2500 -32.2500 420.9 -25.9
21 461.0 461.3750 -0.3750 456.1 4.9
22 511.0 513.3125 -2.3125 513.9 -2.9
23 583.0 567.5625 15.4375 565.2 17.8
24 590.0 590.0000 0.0000 589.5 0.5
25 620.0 593.5000 26.5000 594.7 25.3
26 578.0 595.2500 -17.2500 594.6 -16.6
27 534.0 590.9375 -56.9375 591.8 -57.8
28 631.0 566.8125 64.1875 583.8 47.2
29 600.0 531.5000 68.5000 569.0 31.0
30 438.0 516.0000 -78.0000 546.3 -108.3
31 516.0 516.0000 0.0000 517.3 -1.3
32 534.0 501.8750 32.1250 489.6 44.4
33 467.0 473.6250 -6.6250 471.2 -4.2
34 457.0 457.0000 0.0000 463.5 -6.5
35 392.0 452.0000 -60.0000 464.2 -72.2
36 467.0 440.1250 26.8750 468.5 -1.5
37 500.0 421.3750 78.6250 470.6 29.4
38 493.0 412.0000 81.0000 462.3 30.7
39 410.0 412.0000 -2.0000 438.6 -28.6
40 412.0 412.0000 0.0000 416.1 -4.1
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41 416.0 411.0625 4.9375 408.9 7.1
42 403.0 410.6875 -7.6875 412.2 -9.2
43 422.0 422.0000 0.0000 424.9 -2.9
44 459.0 446.6250 12.3750 448.1 10.9
45 467.0 476.3750 -9.3750 478.8 -11.8
46 512.0 509.0000 3.0000 510.0 2.0
47 534.0 534.0000 0.0000 534.1 -0.1
48 552.0 545.0000 7.0000 547.0 5.0
49 545.0 547.7500 -2.7500 550.9 -5.9
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NAG Library Routine Document

G10ZAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G10ZAF orders and weights data which is entered unsequentially, weighted or unweighted.

2 Specification

SUBROUTINE G10ZAF (WEIGHT, N, X, Y, WT, NORD, XORD, YORD, WTORD, RSS,
IWRK, IFAIL)

&

INTEGER N, NORD, IWRK(N), IFAIL
REAL (KIND=nag_wp) X(N), Y(N), WT(*), XORD(N), YORD(N), WTORD(N), RSS
CHARACTER(1) WEIGHT

3 Description

Given a set of observations xi; yið Þ, for i ¼ 1; 2; . . . ; n, with corresponding weights wi, G10ZAF
rearranges the observations so that the xi are in ascending order.

For any equal xi in the ordered set, say xj ¼ xjþ1 ¼ � � � ¼ xjþk, a single observation xj is returned with
a corresponding y0 and w0, calculated as

w0 ¼
Xk
l¼0
wiþl

and

y0 ¼

Xk
l¼0
wiþlyiþl

w0
:

Observations with zero weight are ignored. If no weights are supplied by you, then unit weights are
assumed; that is wi ¼ 1, for i ¼ 1; 2; . . . ; n.

In addition, the within group sum of squares is computed for the tied observations using West's
algorithm (see West (1979)).

4 References

Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555

5 Arguments

1: WEIGHT – CHARACTER(1) Input

On entry: indicates whether user-defined weights are to be used.

If WEIGHT ¼ W , user-defined weights are to be used and must be supplied in WT.

If WEIGHT ¼ U , the data is treated as unweighted.

Constraint: WEIGHT ¼ W or U .
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2: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the values, xi, for i ¼ 1; 2; . . . ; n.

4: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the values yi, for i ¼ 1; 2; . . . ; n.

5: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W .

On entry: if WEIGHT ¼ W , WT must contain the n weights. Otherwise WT is not referenced
and unit weights are assumed.

Constraints:

if WEIGHT ¼ W , WTðiÞ > 0:0, for i ¼ 1; 2; . . . ; n;
if WEIGHT ¼ W ,

Pn
i¼1WTðiÞ > 0.

6: NORD – INTEGER Output

On exit: the number of distinct observations.

7: XORDðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first NORD elements contain the ordered and distinct xi.

8: YORDðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first NORD elements contain the values y0 corresponding to the values in XORD.

9: WTORDðNÞ – REAL (KIND=nag_wp) array Output

On exit: the first NORD elements contain the values w0 corresponding to the values of XORD
and YORD.

10: RSS – REAL (KIND=nag_wp) Output

On exit: the within group sum of squares for tied observations.

11: IWRKðNÞ – INTEGER array Workspace

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, WEIGHT 6¼ W or U ,
or N < 1.

IFAIL ¼ 2

On entry, WEIGHT ¼ W and at least one element of WT is < 0:0, or all elements of WT are
0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a discussion on the accuracy of the algorithm for computing mean and variance see West (1979).

8 Parallelism and Performance

G10ZAF is not threaded in any implementation.

9 Further Comments

G10ZAF may be used to compute the pure error sum of squares in simple linear regression along with
G02DAF; see Draper and Smith (1985).

10 Example

A set of unweighted observations are input and G10ZAF used to produce a set of strictly increasing
weighted observations.

10.1 Program Text

Program g10zafe

! G10ZAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g10zaf, nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: rss
Integer :: i, ifail, lwt, n, nord
Character (1) :: weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: wt(:), wtord(:), x(:), xord(:), &

y(:), yord(:)
Integer, Allocatable :: iwrk(:)

! .. Executable Statements ..
Write (nout,*) ’G10ZAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) weight, n

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
Allocate (x(n),y(n),iwrk(n),wt(lwt),xord(n),yord(n),wtord(n))

! Read in data
If (lwt>0) Then

Read (nin,*)(x(i),y(i),wt(i),i=1,n)
Else

Read (nin,*)(x(i),y(i),i=1,n)
End If

! Reorder data
ifail = 0
Call g10zaf(weight,n,x,y,wt,nord,xord,yord,wtord,rss,iwrk,ifail)

! Display results
Write (nout,99999) ’Number of distinct observations = ’, nord
Write (nout,99998) ’Residual sum of squares = ’, rss
Write (nout,*)
Write (nout,*) ’ X Y WT’
Write (nout,99997)(xord(i),yord(i),wtord(i),i=1,nord)

99999 Format (1X,A,I6)
99998 Format (1X,A,F13.5)
99997 Format (5X,F13.5,5X,F13.5,5X,F13.5)

End Program g10zafe

10.2 Program Data

G10ZAF Example Program Data
’U’ 10 :: WEIGHT,N
1.0 4.0
3.0 4.0
5.0 1.0
5.0 2.0
3.0 5.0
4.0 3.0
9.0 4.0
6.0 9.0
9.0 7.0
9.0 4.0 :: End of X,Y
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10.3 Program Results

G10ZAF Example Program Results

Number of distinct observations = 6
Residual sum of squares = 7.00000

X Y WT
1.00000 4.00000 1.00000
3.00000 4.50000 2.00000
4.00000 3.00000 1.00000
5.00000 1.50000 2.00000
6.00000 9.00000 1.00000
9.00000 5.00000 3.00000
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NAG Library Chapter Contents

G11 – Contingency Table Analysis

G11 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

G11AAF 16 nagf_contab_chisq
�2 statistics for two-way contingency table

G11BAF 17 nagf_contab_tabulate_stat
Computes multiway table from set of classification factors using selected
statistic

G11BBF 17 nagf_contab_tabulate_percentile
Computes multiway table from set of classification factors using given
percentile/quantile

G11BCF 17 nagf_contab_tabulate_margin
Computes marginal tables for multiway table computed by G11BAF or
G11BBF

G11CAF 19 nagf_contab_condl_logistic
Returns parameter estimates for the conditional analysis of stratified data

G11SAF 12 nagf_contab_binary
Contingency table, latent variable model for binary data

G11SBF 12 nagf_contab_binary_service
Frequency count for G11SAF
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1 Scope of the Chapter

The routines in this chapter are for the analysis of discrete multivariate data. One suite of routines
computes tables while other routines are for the analysis of two-way contingency tables, conditional
logistic models and one-factor analysis of binary data.

Routines in Chapter G02 may be used to fit generalized linear models to discrete data including binary
data and contingency tables.

2 Background to the Problems

2.1 Discrete Data

Discrete variables can be defined as variables which take a limited range of values. Discrete data can be
usefully categorized into three types.

Binary data. The variables can take one of two values: for example, yes or no. The data may be
grouped: for example, the number of yes responses in ten questions.

Categorical data. The variables can take one of two or more values or levels, but the values are
not considered to have any ordering: for example, the values may be red, green, blue or brown.

Ordered categorical data. This is similar to categorical data but an ordering can be placed on the
levels: for example, poor, average or good.

Data containing discrete variables can be analysed by computing summaries and measures of
association and by fitting models.

2.2 Tabulation

The basic summary for multivariate discrete data is the multidimensional table in which each dimension
is specified by a discrete variable. If the cells of the table are the number of observations with the
corresponding values of the discrete variables then it is a contingency table. The discrete variables that
can be used to classify a table are known as factors. For example, the factor sex would have the levels
male and female. These can be coded as 1 and 2 respectively. Given several factors a multi-way table
can be constructed such that each cell of the table represents one level from each factor. For example, a
sample of 120 observations with the two factors sex and habitat, habitat having three levels (inner-city,
suburban and rural), would give the 2� 3 contingency table

Sex Habitat

Inner-city Suburban Rural

Male 32 27 15

Female 21 19 6

If the sample also contains continuous variables such as age, the average for the observations in each
cell could be computed:

Sex Habitat

Inner-city Suburban Rural

Male 25.5 30.3 35.6

Female 23.2 29.1 30.4

or other summary statistics.
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Given a table, the totals or means for rows, columns etc. may be required. Thus the above contingency
table with marginal totals is

Sex Habitat

Inner-city Suburban Rural Total

Male 32 27 15 74

Female 21 19 6 46

Total 53 46 21 120

Note that the marginal totals for columns is itself a 2� 1 table. Also, other summary statistics could be
used to produce the marginal tables such as means or medians. Having computed the marginal tables,
the cells of the original table may be expressed in terms of the margins, for example in the above table
the cells could be expressed as percentages of the column totals.

2.3 Discrete Response Variables and Logistic Regression

A second important categorization in addition to that given in Section 2.1 is whether one of the discrete
variables can be considered as a response variable or whether it is just the association between the
discrete variables that is being considered.

If the response variable is binary, for example, success or failure, then a logistic or probit regression
model can be used. The logistic regression model relates the logarithm of the odds-ratio to a linear
model. So if pi is the probability of success, the model relates log pi= 1� pið Þð Þ to the explanatory
variables. If the responses are independent then these models are special cases of the generalized linear
model with binomial errors. However, there are cases when the binomial model is not suitable. For
example, in a case-control study a number of cases (successes) and number of controls (failures) is
chosen for a number of sets of case-controls. In this situation a conditional logistic analysis is required.

Handling a categorical or ordered categorical response variable is more complex, for a discussion on the
appropriate models see McCullagh and Nelder (1983). These models generally use a Poisson
distribution.

Note that if the response variable is a continuous variable and it is only the explanatory variables that
are discrete then the regression models described in Chapter G02 should be used.

2.4 Contingency Tables

If there is no response variable then to investigate the association between discrete variables a
contingency table can be computed and a suitable test performed on the table. The simplest case is the
two-way table formed when considering two discrete variables. For a dataset of n observations
classified by the two variables with r and c levels respectively, a two-way table of frequencies or counts
with r rows and c columns can be computed.

n11 n12 . . . n1c n1:

n21 n22 . . . n2c n2:

..

. ..
. ..

. ..
. ..

.

nr1 nr2 . . . nrc nr:

n:1 n:2 . . . n:c n

If pij is the probability of an observation in cell ij then the model which assumes no association
between the two variables is the model

pij ¼ pi:p:j
where pi: is the marginal probability for the row variable and p:j is the marginal probability for the
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column variable, the marginal probability being the probability of observing a particular value of the
variable ignoring all other variables. The appropriateness of this model can be assessed by two
commonly used statistics:

the Pearson �2 statistic

Xr
i¼1

Xc
j¼1

nij � fij
� �2

fij
;

and the likelihood ratio test statistic

2
Xr
i¼1

Xc
j¼1

nij � log nij=fij
� �

:

The fij are the fitted values from the model; these values are the expected cell frequencies and are
given by

fij ¼ np̂ij ¼ np̂i:p̂:j ¼ n ni:=nð Þ n:j=n
� �

¼ ni:n:j=n:

Under the hypothesis of no association between the two classification variables, both these statistics
have, approximately, a �2-distribution with c� 1ð Þ r� 1ð Þ degrees of freedom. This distribution is
arrived at under the assumption that the expected cell frequencies, fij, are not too small.

In the case of the 2� 2 table, i.e., c ¼ 2 and r ¼ 2, the �2 approximation can be improved by using
Yates's continuity correction factor. This decreases the absolute value of (nij � fij) by 1=2. For 2� 2
tables with a small values of n the exact probabilities can be computed; this is known as Fisher's exact
test.

An alternative approach, which can easily be generalized to more than two variables, is to use log-linear
models. A log-linear model for two variables can be written as

log pij
� �

¼ log pi:ð Þ þ log p:j
� �

:

A model like this can be fitted as a generalized linear model with Poisson error with the cell counts, nij,
as the response variable.

2.5 Latent Variable Models

Latent variable models play an important role in the analysis of multivariate data. They have arisen in
response to practical needs in many sciences, especially in psychology, educational testing and other
social sciences.

Large-scale statistical enquiries, such as social surveys, generate much more information than can be
easily absorbed without condensation. Elementary statistical methods help to summarise the data by
looking at individual variables or the relationship between a small number of variables. However, with
many variables it may still be difficult to see any pattern of inter-relationships. Our ability to visualize
relationships is limited to two or three dimensions putting us under strong pressure to reduce the
dimensionality of the data and yet preserve as much of the structure as possible. The question is thus
one of how to replace the many variables with which we start by a much smaller number, with as little
loss of information as possible.

One approach to the problem is to set up a model in which the dependence between the observed
variables is accounted for by one or more latent variables. Such a model links the large number of
observable variables with a much smaller number of latent variables.

Factor analysis, as described in Chapter G03, is based on a linear model of this kind when the observed
variables are continuous. Here we consider the case where the observed variables are binary (e.g.,
coded 0=1 or true/false) and where there is one latent variable. In educational testing this is known as
latent trait analysis, but, more generally, as factor analysis of binary data.

A variety of methods and models have been proposed for this problem. The models used here are
derived from the general approach of Bartholomew (1980) and Bartholomew (1984). You are referred to
Bartholomew (1980) for further information on the models and to Bartholomew (1987) for details of the
method and application.
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3 Recommendations on Choice and Use of Available Routines

3.1 Tabulation

The following routines can be used to perform the tabulation of discrete data:

G11BAF computes a multidimensional table from a set of discrete variables or classification
factors. The cells of the table may be counts or a summary statistic (total, mean, variance, largest
or smallest) computed for an associated continuous variable. Alternatively, G11BAF will update
an existing table with further data.

G11BBF computes a multidimensional table from a set of discrete variables or classification
factor where the cells are the percentile or quantile for an associated variable. For example,
G11BBF can be used to produce a table of medians.

G11BCF computes a marginal table from a table computed by G11BAF or G11BBF using a
summary statistic (total, mean, median variance, largest or smallest).

3.2 Analysis of Contingency Tables

G11AAF computes the Pearson and likelihood ratio �2 statistics for a two-way contingency table. For
2� 2 tables Yates's correction factor is used and for small samples, n � 40, Fisher's exact test is used.

In addition, G02GCF can be used to fit a log-linear model to a contingency table.

3.3 Binary data

The following routines can be used to analyse binary data:

G11SAF fits a latent variable model to binary data. The frequency distribution of score patterns is
required as input data. If your data is in the form of individual score patterns, then the service
routine G11SBF may be used to calculate the frequency distribution.

G11CAF estimates the parameters for a conditional logistic model.

In addition, G02GBF fits generalized linear models to binary data.

4 Functionality Index

Conditional logistic model for stratified data....................................................................... G11CAF

Frequency count for G11SAF .............................................................................................. G11SBF

Latent variable model for dichotomous data........................................................................ G11SAF

Multiway tables from set of classification factors,
marginal table from G11BAF or G11BBF...................................................................... G11BCF
using given percentile/quantile ........................................................................................ G11BBF
using selected statistic..................................................................................................... G11BAF

�2 statistics for two-way contingency table ......................................................................... G11AAF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

G11AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G11AAF computes �2 statistics for a two-way contingency table. For a 2� 2 table with a small number
of observations exact probabilities are computed.

2 Specification

SUBROUTINE G11AAF (NROW, NCOL, NOBS, LDNOBS, EXPT, CHIST, PROB, CHI, G,
DF, IFAIL)

&

INTEGER NROW, NCOL, NOBS(LDNOBS,NCOL), LDNOBS, IFAIL
REAL (KIND=nag_wp) EXPT(LDNOBS,NCOL), CHIST(LDNOBS,NCOL), PROB, CHI,

G, DF
&

3 Description

For a set of n observations classified by two variables, with r and c levels respectively, a two-way table
of frequencies with r rows and c columns can be computed.

n11 n12 . . . n1c n1:

n21 n22 . . . n2c n2:

..

. ..
. ..

. ..
. ..

.

nr1 nr2 . . . nrc nr:

n:1 n:2 . . . n:c n

To measure the association between the two classification variables two statistics that can be used are,

the Pearson �2 stat ist ic,
Xr
i¼1

Xc
j¼1

nij � fij
� �2

fij
, and the likelihood rat io test stat ist ic,

2
Xr
i¼1

Xc
j¼1

nij � log nij=fij
� �

, where fij are the fitted values from the model that assumes the effects

due to the classification variables are additive, i.e., there is no association. These values are the
expected cell frequencies and are given by

fij ¼ ni:n:j=n:

Under the hypothesis of no association between the two classification variables, both these statistics
have, approximately, a �2-distribution with c� 1ð Þ r� 1ð Þ degrees of freedom. This distribution is
arrived at under the assumption that the expected cell frequencies, fij, are not too small. For a
discussion of this point see Everitt (1977). He concludes by saying, ‘... in the majority of cases the chi-
square criterion may be used for tables with expectations in excess of 0:5 in the smallest cell’.

In the case of the 2� 2 table, i.e., c ¼ 2 and r ¼ 2, the �2 approximation can be improved by using
Yates' continuity correction factor. This decreases the absolute value of nij � fij

� �
by 1

2 . For 2� 2
tables with a small value of n the exact probabilities from Fisher's test are computed. These are based
on the hypergeometric distribution and are computed using G01BLF. A two tail probability is computed
as min 1; 2pu; 2plð Þ, where pu and pl are the upper and lower one-tail probabilities from the
hypergeometric distribution.
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4 References
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5 Arguments

1: NROW – INTEGER Input

On entry: r, the number of rows in the contingency table.

Constraint: NROW � 2.

2: NCOL – INTEGER Input

On entry: c, the number of columns in the contingency table.

Constraint: NCOL � 2.

3: NOBSðLDNOBS;NCOLÞ – INTEGER array Input

On entry: the contingency table NOBSði; jÞ must contain nij , for i ¼ 1; 2; . . . ; r and
j ¼ 1; 2; . . . ; c.

Constraint: NOBSði; jÞ � 0, for i ¼ 1; 2; . . . ; r and j ¼ 1; 2; . . . ; c.

4: LDNOBS – INTEGER Input

On entry: the first dimension of the arrays NOBS, EXPT and CHIST as declared in the (sub)
program from which G11AAF is called.

Constraint: LDNOBS � NROW.

5: EXPTðLDNOBS;NCOLÞ – REAL (KIND=nag_wp) array Output

On exit: the table of expected values. EXPTði; jÞ contains fij , for i ¼ 1; 2; . . . ; r and
j ¼ 1; 2; . . . ; c.

6: CHISTðLDNOBS;NCOLÞ – REAL (KIND=nag_wp) array Output

On exit: the table of �2 contributions. CHISTði; jÞ contains
nij � fij
� �2

fij
, for i ¼ 1; 2; . . . ; r and

j ¼ 1; 2; . . . ; c.

7: PROB – REAL (KIND=nag_wp) Output

On exit: if c ¼ 2, r ¼ 2 and n � 40 then PROB contains the two tail significance level for
Fisher's exact test, otherwise PROB contains the significance level from the Pearson �2 statistic.

8: CHI – REAL (KIND=nag_wp) Output

On exit: the Pearson �2 statistic.

9: G – REAL (KIND=nag_wp) Output

On exit: the likelihood ratio test statistic.

10: DF – REAL (KIND=nag_wp) Output

On exit: the degrees of freedom for the statistics.

G11AAF NAG Library Manual

G11AAF.2 Mark 26



11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G11AAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NROW < 2,
or NCOL < 2,
or LDNOBS < NROW.

IFAIL ¼ 2

On entry, a value in NOBS < 0, or all values in NOBS are zero.

IFAIL ¼ 3

On entry, a 2� 2 table has a row or column with both values 0.

IFAIL ¼ 4

At least one cell has expected frequency, fij, � 0:5. The �2 approximation may be poor.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For the accuracy of the probabilities for Fisher's exact test see G01BLF.
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8 Parallelism and Performance

G11AAF is not threaded in any implementation.

9 Further Comments

The routine G01AFF allows for the automatic amalgamation of rows and columns. In most
circumstances this is not recommended; see Everitt (1977).

Multidimensional contingency tables can be analysed using log-linear models fitted by G02GBF.

10 Example

The data below, taken from Everitt (1977), is from 141 patients with brain tumours. The row
classification variable is the site of the tumour: frontal lobes, temporal lobes and other cerebral areas.
The column classification variable is the type of tumour: benign, malignant and other cerebral tumours.

23 9 6 38

21 4 3 28

34 24 17 75

78 37 26 141

The data is read in and the statistics computed and printed.

10.1 Program Text

Program g11aafe

! G11AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g11aaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: chi, df, g, prob
Integer :: i, ifail, ldnobs, ncol, nrow

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: chist(:,:), expt(:,:)
Integer, Allocatable :: nobs(:,:)

! .. Executable Statements ..
Write (nout,*) ’ G11AAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nrow, ncol

ldnobs = nrow
Allocate (nobs(ldnobs,ncol),expt(ldnobs,ncol),chist(ldnobs,ncol))

! Read in data
Read (nin,*)(nobs(i,1:ncol),i=1,nrow)

! Perform chi-squared test
ifail = -1
Call g11aaf(nrow,ncol,nobs,ldnobs,expt,chist,prob,chi,g,df,ifail)
If (ifail/=0) Then

If (ifail/=3) Then

G11AAF NAG Library Manual

G11AAF.4 Mark 26



Go To 100
End If

End If

! Display results
Write (nout,99999) ’ Probability =’, prob
Write (nout,99998) ’ Pearson Chi-square statistic = ’, chi
Write (nout,99998) ’ Likelihood ratio test statistic = ’, g
Write (nout,99997) ’ Degrees of freedom = ’, df

100 Continue

99999 Format (A,F7.4)
99998 Format (A,F8.3)
99997 Format (A,F4.0)

End Program g11aafe

10.2 Program Data

G11AAF Example Program Data
3 3 : NROW NCOL
23 9 6
21 4 3
34 24 17 : End of NOBS

10.3 Program Results

G11AAF Example Program Results

Probability = 0.0975
Pearson Chi-square statistic = 7.844
Likelihood ratio test statistic = 8.096
Degrees of freedom = 4.
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NAG Library Routine Document

G11BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G11BAF computes a table from a set of classification factors using a selected statistic.

2 Specification

SUBROUTINE G11BAF (STAT, UPDATE, WEIGHT, N, NFAC, ISF, LFAC, IFAC, LDF,
Y, WT, TABLE, MAXT, NCELLS, NDIM, IDIM, ICOUNT, AUXT,
IWK, IFAIL)

&
&

INTEGER N, NFAC, ISF(NFAC), LFAC(NFAC), IFAC(LDF,NFAC),
LDF, MAXT, NCELLS, NDIM, IDIM(NFAC), ICOUNT(MAXT),
IWK(2*NFAC), IFAIL

&
&

REAL (KIND=nag_wp) Y(N), WT(*), TABLE(MAXT), AUXT(*)
CHARACTER(1) STAT, UPDATE, WEIGHT

3 Description

A dataset may include both classification variables and general variables. The classification variables,
known as factors, take a small number of values known as levels. For example, the factor sex would
have the levels male and female. These can be coded as 1 and 2 respectively. Given several factors, a
multi-way table can be constructed such that each cell of the table represents one level from each factor.
For example, the two factors sex and habitat, habitat having three levels (inner-city, suburban and rural)
define the 2� 3 contingency table

Sex Habitat

Inner-city Suburban Rural

Male

Female

For each cell statistics can be computed. If a third variable in the dataset was age, then for each cell the
average age could be computed:

Sex Habitat

Inner-city Suburban Rural

Male 25.5 30.3 35.6

Female 23.2 29.1 30.4

That is the average age for all observations for males living in rural areas is 35:6. Other statistics can
also be computed: the number of observations, the total, the variance, the largest value and the smallest
value.
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G11BAF computes a table for one of the selected statistics. The factors have to be coded with levels
1; 2; . . . . Weights can be used to eliminate values from the calculations, e.g., if they represent ‘missing
values’. There is also the facility to update an existing table with the addition of new observations.

4 References

John J A and Quenouille M H (1977) Experiments: Design and Analysis Griffin

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555

5 Arguments

1: STAT – CHARACTER(1) Input

On entry: indicates which statistic is to be computed for the table cells.

STAT ¼ N
The number of observations for each cell.

STAT ¼ T
The total for the variable in Y for each cell.

STAT ¼ A
The average (mean) for the variable in Y for each cell.

STAT ¼ V
The variance for the variable in Y for each cell.

STAT ¼ L
The largest value for the variable in Y for each cell.

STAT ¼ S
The smallest value for the variable in Y for each cell.

Constraint: STAT ¼ N , T , A , V , L or S .

2: UPDATE – CHARACTER(1) Input

On entry: indicates if an existing table is to be updated by further observation.

UPDATE ¼ I
The table cells will be initialized to zero before tabulations take place.

UPDATE ¼ U
The table input in TABLE will be updated. The arguments NCELLS, TABLE, ICOUNT
and AUXT must remain unchanged from the previous call to G11BAF.

Constraint: UPDATE ¼ I or U .

3: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
Weights are not used and unit weights are assumed.

WEIGHT ¼ W or V
Weights are used and must be supplied in WT. The only difference between
WEIGHT ¼ W and WEIGHT ¼ V is if the variance is computed.

WEIGHT ¼ W
The divisor for the variance is the sum of the weights minus one and if WEIGHT ¼ V ,
the divisor is the number of observations with nonzero weights minus one. The former is
useful if the weights represent the frequency of the observed values.
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If STAT ¼ T or A , the weighted total or mean is computed respectively.

If STAT ¼ N , L or S , the only effect of weights is to eliminate values with zero weights from
the computations.

Constraint: WEIGHT ¼ U , V or W.

4: N – INTEGER Input

On entry: the number of observations.

Constraint: N � 2.

5: NFAC – INTEGER Input

On entry: the number of classifying factors in IFAC.

Constraint: NFAC � 1.

6: ISFðNFACÞ – INTEGER array Input

On entry: indicates which factors in IFAC are to be used in the tabulation.

If ISFðiÞ > 0 the ith factor in IFAC is included in the tabulation.

Note that if ISFðiÞ � 0, for i ¼ 1; 2; . . . ;NFAC then the statistic for the whole sample is
calculated and returned in a 1� 1 table.

7: LFACðNFACÞ – INTEGER array Input

On entry: the number of levels of the classifying factors in IFAC.

Constraint: if ISFðiÞ > 0, LFACðiÞ � 2, for i ¼ Ai; . . . ;Ai.

8: IFACðLDF;NFACÞ – INTEGER array Input

On entry: the NFAC coded classification factors for the N observations.

Constraint: 1 � IFACði; jÞ � LFACðjÞ, for i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;NFAC.

9: LDF – INTEGER Input

On entry: the first dimension of the array IFAC as declared in the (sub)program from which
G11BAF is called.

Constraint: LDF � N.

10: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the variable to be tabulated. If STAT ¼ N , Y is not referenced.

11: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W or V , and at least 1
otherwise.

On entry: if WEIGHT ¼ W or V , WT must contain the N weights. Otherwise WT is not
referenced.

Constraint: if WEIGHT ¼ W or V , WTðiÞ � 0:0, for i ¼ Ai; . . . ;Ai.

12: TABLEðMAXTÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if UPDATE ¼ U , TABLE must be unchanged from the previous call to G11BAF,
otherwise TABLE need not be set.
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On exit: the computed table. The NCELLS cells of the table are stored so that for any two factors
the index relating to the factor referred to later in LFAC and IFAC changes faster. For further
details see Section 9.

13: MAXT – INTEGER Input

On entry: the maximum size of the table to be computed.

Constraint: MAXT � product of the levels of the factors included in the tabulation.

14: NCELLS – INTEGER Input/Output

On entry: if UPDATE ¼ U , NCELLS must be unchanged from the previous call to G11BAF,
otherwise NCELLS need not be set.

On exit: the number of cells in the table.

15: NDIM – INTEGER Output

On exit: the number of factors defining the table.

16: IDIMðNFACÞ – INTEGER array Output

On exit: the first NDIM elements contain the number of levels for the factors defining the table.

17: ICOUNTðMAXTÞ – INTEGER array Input/Output

On entry: if UPDATE ¼ U , ICOUNT must be unchanged from the previous call to G11BAF,
otherwise ICOUNT need not be set.

On exit: a table containing the number of observations contributing to each cell of the table,
stored identically to TABLE. Note if STAT ¼ N this is the same as is returned in TABLE.

18: AUXTð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array AUXT must be at least NCELLS if STAT ¼ A , 2� NCELLS
if STAT ¼ V , and at least 1 otherwise.

On entry: if UPDATE ¼ U , AUXT must be unchanged from the previous call to G11BAF,
otherwise AUXT need not be set.

On exit: if STAT ¼ A or V , the first NCELLS values hold the table containing the sum of the
weights for the observations contributing to each cell, stored identically to TABLE.

If STAT ¼ V , the second set of NCELLS values hold the table of cell means. Otherwise AUXT
is not referenced.

19: IWKð2� NFACÞ – INTEGER array Workspace

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or NFAC < 1,
or LDF < N,
or UPDATE 6¼ I or U ,
or WEIGHT 6¼ U , W or V ,
or STAT 6¼ N , T , A , V , L or S .

IFAIL ¼ 2

On entry, ISFðiÞ > 0 and LFACðiÞ < 2, for some i,
or IFACði; jÞ < 1, for some i; j,
or IFACði; jÞ > LFACðjÞ for some i; j,
or MAXT is too small,
or WEIGHT ¼ W or V and WTðiÞ < 0:0, for some i.

IFAIL ¼ 3

STAT ¼ V and the divisor for the variance is � 0:0.

IFAIL ¼ 4

UPDATE ¼ U and at least one of NCELLS, TABLE, AUXT or ICOUNT have been changed
since previous call to G11BAF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Only applicable when STAT ¼ V . In this case a one pass algorithm is used as described by West
(1979).

8 Parallelism and Performance

G11BAF is not threaded in any implementation.
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9 Further Comments

The tables created by G11BAF and stored in TABLE, ICOUNT and, depending on STAT, also in AUXT
are stored in the following way. Let there be n factors defining the table with factor k having lk levels,
then the cell defined by the levels i1, i2; . . . ; in of the factors is stored in the mth cell given by

m ¼ 1þ
Xn
k¼1

ik � 1ð Þck½ �;

where cj ¼
Yn
k¼jþ1

lk, for j ¼ 1; 2; . . . ; n� 1 and cn ¼ 1.

10 Example

The data, given by John and Quenouille (1977), is for a 3� 6 factorial experiment in 3 blocks of 18
units. The data is input in the order, blocks, factor with 3 levels, factor with 6 levels, yield. The 3 � 6
table of treatment means for yield over blocks is computed and printed.

10.1 Program Text

Program g11bafe

! G11BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g11baf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, k, lauxt, ldf, lwt, &

maxt, n, ncells, ncol, ndim, nfac, &
nrow

Character (1) :: stat, weight
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: auxt(:), table(:), wt(:), y(:)
Integer, Allocatable :: icount(:), idim(:), ifac(:,:), &

isf(:), iwk(:), lfac(:)
! .. Executable Statements ..

Write (nout,*) ’G11BAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) stat, weight, n, nfac

If (weight==’W’ .Or. weight==’w’ .Or. weight==’V’ .Or. weight==’v’) Then
lwt = n

Else
lwt = 0

End If
ldf = n
Allocate (isf(nfac),lfac(nfac),ifac(ldf,nfac),y(n),wt(lwt),idim(nfac), &

iwk(2*nfac))

! Read in data
If (lwt>0) Then

Read (nin,*)(ifac(i,1:nfac),y(i),wt(i),i=1,n)
Else

Read (nin,*)(ifac(i,1:nfac),y(i),i=1,n)
End If
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Read (nin,*) lfac(1:nfac)
Read (nin,*) isf(1:nfac)

! Calculate MAXT
maxt = 1
Do i = 1, nfac

If (isf(i)>0) Then
maxt = maxt*lfac(i)

End If
End Do

Select Case (stat)
Case (’A’,’a’)

lauxt = maxt
Case (’V’,’v’)

lauxt = 2*maxt
Case Default

lauxt = 0
End Select

Allocate (table(maxt),icount(maxt),auxt(lauxt))

! Compute table
ifail = 0
Call g11baf(stat,’I’,weight,n,nfac,isf,lfac,ifac,ldf,y,wt,table,maxt, &

ncells,ndim,idim,icount,auxt,iwk,ifail)

! Display results
Write (nout,*) ’ TABLE’
Write (nout,*)
ncol = idim(ndim)
nrow = ncells/ncol
k = 1
Do i = 1, nrow

Write (nout,99999)(table(j),’(’,icount(j),’)’,j=k,k+ncol-1)
k = k + ncol

End Do

99999 Format (1X,6(F8.2,A,I2,A))
End Program g11bafe

10.2 Program Data

G11BAF Example Program Data
’A’ ’U’ 54 3
1 1 1 274
1 2 1 361
1 3 1 253
1 1 2 325
1 2 2 317
1 3 2 339
1 1 3 326
1 2 3 402
1 3 3 336
1 1 4 379
1 2 4 345
1 3 4 361
1 1 5 352
1 2 5 334
1 3 5 318
1 1 6 339
1 2 6 393
1 3 6 358
2 1 1 350
2 2 1 340
2 3 1 203
2 1 2 397
2 2 2 356
2 3 2 298
2 1 3 382
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2 2 3 376
2 3 3 355
2 1 4 418
2 2 4 387
2 3 4 379
2 1 5 432
2 2 5 339
2 3 5 293
2 1 6 322
2 2 6 417
2 3 6 342
3 1 1 82
3 2 1 297
3 3 1 133
3 1 2 306
3 2 2 352
3 3 2 361
3 1 3 220
3 2 3 333
3 3 3 270
3 1 4 388
3 2 4 379
3 3 4 274
3 1 5 336
3 2 5 307
3 3 5 266
3 1 6 389
3 2 6 333
3 3 6 353
3 3 6
0 1 1

10.3 Program Results

G11BAF Example Program Results

TABLE

235.33( 3) 342.67( 3) 309.33( 3) 395.00( 3) 373.33( 3) 350.00( 3)
332.67( 3) 341.67( 3) 370.33( 3) 370.33( 3) 326.67( 3) 381.00( 3)
196.33( 3) 332.67( 3) 320.33( 3) 338.00( 3) 292.33( 3) 351.00( 3)
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NAG Library Routine Document

G11BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G11BBF computes a table from a set of classification factors using a given percentile or quantile, for
example the median.

2 Specification

SUBROUTINE G11BBF (TYP, WEIGHT, N, NFAC, ISF, LFAC, IFAC, LDF, PERCNT,
Y, WT, TABLE, MAXT, NCELLS, NDIM, IDIM, ICOUNT, IWK,
WK, IFAIL)

&
&

INTEGER N, NFAC, ISF(NFAC), LFAC(NFAC), IFAC(LDF,NFAC),
LDF, MAXT, NCELLS, NDIM, IDIM(NFAC), ICOUNT(MAXT),
IWK(2*NFAC+N), IFAIL

&
&

REAL (KIND=nag_wp) PERCNT, Y(N), WT(*), TABLE(MAXT), WK(2*N)
CHARACTER(1) TYP, WEIGHT

3 Description

A dataset may include both classification variables and general variables. The classification variables,
known as factors, take a small number of values known as levels. For example, the factor sex would
have the levels male and female. These can be coded as 1 and 2 respectively. Given several factors, a
multi-way table can be constructed such that each cell of the table represents one level from each factor.
For example, the two factors sex and habitat, habitat having three levels (inner-city, suburban and rural)
define the 2� 3 contingency table

Sex Habitat

Inner-city Suburban Rural

Male

Female

For each cell statistics can be computed. If a third variable in the dataset was age then for each cell the
median age could be computed:

Sex Habitat

Inner-city Suburban Rural

Male 24 31 37

Female 21.5 28.5 33

That is, the median age for all observations for males living in rural areas is 37, the median being the
50% quantile. Other quantiles can also be computed: the p percent quantile or percentile, qp, is the
estimate of the value such that p percent of observations are less than qp. This is calculated in two
different ways depending on whether the tabulated variable is continuous or discrete. Let there be m
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values in a cell and let y 1ð Þ, y 2ð Þ; . . . ; y mð Þ be the values for that cell sorted into ascending order. Also,
associated with each value there is a weight, w 1ð Þ, w 2ð Þ; . . . ; w mð Þ, which could represent the observed

frequency for that value, with Wj ¼
Xj
i¼1
w ið Þ and W 0

j ¼
Xj
i¼1
w ið Þ � 1

2w jð Þ . For the p percentile let

pw ¼ p=100ð ÞWm and p0w ¼ p=100ð ÞW 0
m, then the percentiles for the two cases are as given below.

If the variable is discrete, that is, it takes only a limited number of (usually integer) values, then the
percentile is defined as

y jð Þ if Wj�1 < pW < Wj

y jþ1ð Þ þ y jð Þ
2

if pw ¼Wj:

If the data is continuous then the quantiles are estimated by linear interpolation.

y 1ð Þ if p0w � W 0
1

1� fð Þy j�1ð Þ þ fy jð Þ if W 0
j�1 < p0w �W 0

j

y mð Þ if p0w > W 0
m;

where f ¼ p0w �W 0
j�1

� �
= W 0

j �W 0
j�1

� �
.

4 References

John J A and Quenouille M H (1977) Experiments: Design and Analysis Griffin

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

5 Arguments

1: TYP – CHARACTER(1) Input

On entry: indicates if the variable to be tabulated is discrete or continuous.

TYP ¼ D
The percentiles are computed for a discrete variable.

TYP ¼ C
The percentiles are computed for a continuous variable using linear interpolation.

Constraint: TYP ¼ D or C .

2: WEIGHT – CHARACTER(1) Input

On entry: indicates if there are weights associated with the variable to be tabulated.

WEIGHT ¼ U
Weights are not input and unit weights are assumed.

WEIGHT ¼ W
Weights must be supplied in WT.

Constraint: WEIGHT ¼ U or W.

3: N – INTEGER Input

On entry: the number of observations.

Constraint: N � 2.
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4: NFAC – INTEGER Input

On entry: the number of classifying factors in IFAC.

Constraint: NFAC � 1.

5: ISFðNFACÞ – INTEGER array Input

On entry: indicates which factors in IFAC are to be used in the tabulation.

If ISFðiÞ > 0 the ith factor in IFAC is included in the tabulation.

Note that if ISFðiÞ � 0, for i ¼ 1; 2; . . . ;NFAC then the statistic for the whole sample is
calculated and returned in a 1� 1 table.

6: LFACðNFACÞ – INTEGER array Input

On entry: the number of levels of the classifying factors in IFAC.

Constraint: if ISFðiÞ > 0, LFACðiÞ � 2, for i ¼ 1; 2; . . . ;NFAC.

7: IFACðLDF;NFACÞ – INTEGER array Input

On entry: the NFAC coded classification factors for the N observations.

Constraint: 1 � IFACði; jÞ � LFACðjÞ, for i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;NFAC.

8: LDF – INTEGER Input

On entry: the first dimension of the array IFAC as declared in the (sub)program from which
G11BBF is called.

Constraint: LDF � N.

9: PERCNT – REAL (KIND=nag_wp) Input

On entry: p, the percentile to be tabulated.

Constraint: 0:0 < p < 100:0.

10: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the variable to be tabulated.

11: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least N if WEIGHT ¼ W , and at least 1
otherwise.

On entry: if WEIGHT ¼ W , WT must contain the N weights. Otherwise WT is not referenced.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ;N.

12: TABLEðMAXTÞ – REAL (KIND=nag_wp) array Output

On exit: the computed table. The NCELLS cells of the table are stored so that for any two factors
the index relating to the factor occurring later in LFAC and IFAC changes faster. For further
details see Section 9.

13: MAXT – INTEGER Input

On entry: the maximum size of the table to be computed.

Constraint: MAXT � product of the levels of the factors included in the tabulation.

14: NCELLS – INTEGER Output

On exit: the number of cells in the table.
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15: NDIM – INTEGER Output

On exit: the number of factors defining the table.

16: IDIMðNFACÞ – INTEGER array Output

On exit: the first NDIM elements contain the number of levels for the factors defining the table.

17: ICOUNTðMAXTÞ – INTEGER array Output

On exit: a table containing the number of observations contributing to each cell of the table,
stored identically to TABLE.

18: IWKð2� NFACþ NÞ – INTEGER array Workspace
19: WKð2� NÞ – REAL (KIND=nag_wp) array Workspace

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or NFAC < 1,
or LDF < N,
or TYP 6¼ D or C ,
or WEIGHT 6¼ U or W ,
or PERCNT � 0:0,
or PERCNT � 100:0.

IFAIL ¼ 2

On entry, ISFðiÞ > 0 and LFACðiÞ � 1, for some i,
or IFACði; jÞ < 1, for some i; j,
or IFACði; jÞ > LFACðjÞ, for some i; j,
or MAXT is too small,
or WEIGHT ¼ W and WTðiÞ < 0:0, for some i.

IFAIL ¼ 3

At least one cell is empty.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G11BBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The tables created by G11BBF and stored in TABLE and ICOUNT are stored in the following way. Let
there be n factors defining the table with factor k having lk levels, then the cell defined by the levels i1,
i2; . . . ; in of the factors is stored in the mth cell given by:

m ¼ 1þ
Xn
k¼1

ik � 1ð Þck½ �;

where cj ¼
Yn
k¼jþ1

lk, for j ¼ 1; 2; . . . ; n� 1 and cn ¼ 1.

10 Example

The data, given by John and Quenouille (1977), is for a 3� 6 factorial experiment in 3 blocks of 18
units. The data is input in the order, blocks, factor with 3 levels, factor with 6 levels, yield, and the
3� 6 table of treatment medians for yield over blocks is computed and printed.

10.1 Program Text

Program g11bbfe

! G11BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g11bbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: percnt
Integer :: i, ifail, j, k, ldf, liwk, lwk, lwt, &

maxt, n, ncells, ncol, ndim, nfac, &
nrow

Character (1) :: typ, weight

G11 – Contingency Table Analysis G11BBF

Mark 26 G11BBF.5



! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: table(:), wk(:), wt(:), y(:)
Integer, Allocatable :: icount(:), idim(:), ifac(:,:), &

isf(:), iwk(:), lfac(:)
! .. Executable Statements ..

Write (nout,*) ’G11BBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) typ, weight, n, nfac, percnt

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
liwk = 2*nfac + n
lwk = 2*n
ldf = n
Allocate (isf(nfac),lfac(nfac),ifac(ldf,nfac),idim(nfac),iwk(liwk),y(n), &

wt(lwt),wk(lwk))

! Read in data
If (lwt>0) Then

Read (nin,*)(ifac(i,1:nfac),y(i),wt(i),i=1,n)
Else

Read (nin,*)(ifac(i,1:nfac),y(i),i=1,n)
End If
Read (nin,*) lfac(1:nfac)
Read (nin,*) isf(1:nfac)

! Calculate the size of TABLE
maxt = 1
Do i = 1, nfac

If (isf(i)>0) Then
maxt = maxt*lfac(i)

End If
End Do

Allocate (table(maxt),icount(maxt))

! Compute classification table
ifail = 0
Call g11bbf(typ,weight,n,nfac,isf,lfac,ifac,ldf,percnt,y,wt,table,maxt, &

ncells,ndim,idim,icount,iwk,wk,ifail)

! Display results
Write (nout,99999) ’ TABLE for ’, percnt, ’th percentile’
Write (nout,*)
ncol = idim(ndim)
nrow = ncells/ncol
k = 1
Do i = 1, nrow

Write (nout,99998)(table(j),’(’,icount(j),’)’,j=k,k+ncol-1)
k = k + ncol

End Do

99999 Format (A,F4.0,A)
99998 Format (1X,6(F8.2,A,I2,A))

End Program g11bbfe
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10.2 Program Data

G11BBF Example Program Data
’C’ ’U’ 54 3 50.0
1 1 1 274
1 2 1 361
1 3 1 253
1 1 2 325
1 2 2 317
1 3 2 339
1 1 3 326
1 2 3 402
1 3 3 336
1 1 4 379
1 2 4 345
1 3 4 361
1 1 5 352
1 2 5 334
1 3 5 318
1 1 6 339
1 2 6 393
1 3 6 358
2 1 1 350
2 2 1 340
2 3 1 203
2 1 2 397
2 2 2 356
2 3 2 298
2 1 3 382
2 2 3 376
2 3 3 355
2 1 4 418
2 2 4 387
2 3 4 379
2 1 5 432
2 2 5 339
2 3 5 293
2 1 6 322
2 2 6 417
2 3 6 342
3 1 1 82
3 2 1 297
3 3 1 133
3 1 2 306
3 2 2 352
3 3 2 361
3 1 3 220
3 2 3 333
3 3 3 270
3 1 4 388
3 2 4 379
3 3 4 274
3 1 5 336
3 2 5 307
3 3 5 266
3 1 6 389
3 2 6 333
3 3 6 353
3 3 6
0 1 1
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10.3 Program Results

G11BBF Example Program Results

TABLE for 50.th percentile

226.00( 3) 320.25( 3) 299.50( 3) 385.75( 3) 348.00( 3) 334.75( 3)
329.25( 3) 343.25( 3) 365.25( 3) 370.50( 3) 327.25( 3) 378.00( 3)
185.50( 3) 328.75( 3) 319.50( 3) 339.25( 3) 286.25( 3) 350.25( 3)
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NAG Library Routine Document

G11BCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G11BCF computes a marginal table from a table computed by G11BAF or G11BBF using a selected
statistic.

2 Specification

SUBROUTINE G11BCF (STAT, TABLE, NCELLS, NDIM, IDIM, ISDIM, STABLE,
MAXST, MCELLS, MDIM, MLEVEL, AUXT, IWK, WK, IFAIL)

&

INTEGER NCELLS, NDIM, IDIM(NDIM), ISDIM(NDIM), MAXST,
MCELLS, MDIM, MLEVEL(NDIM), IWK(3*NDIM), IFAIL

&

REAL (KIND=nag_wp) TABLE(NCELLS), STABLE(MAXST), AUXT(*), WK(NCELLS)
CHARACTER(1) STAT

3 Description

For a dataset containing classification variables (known as factors) the routines G11BAF and G11BBF
compute a table using selected statistics, for example the mean or the median. The table is indexed by
the levels of the selected factors, for example if there were three factors A, B and C with 3, 2 and 4
levels respectively and the mean was to be tabulated the resulting table would be 3� 2� 4 with each
cell being the mean of all observations with the appropriate combination of levels of the three factors.
In further analysis the table of means averaged over C for A and B may be required; this can be
computed from the full table by taking the mean over the third dimension of the table, C.

In general, given a table computed by G11BAF or G11BBF, G11BCF computes a sub-table defined by a
subset of the factors used to define the table such that each cell of the sub-table is the selected statistic
computed over the remaining factors. The statistics that can be used are the total, the mean, the median,
the variance, the smallest and the largest value.

4 References

John J A and Quenouille M H (1977) Experiments: Design and Analysis Griffin

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555

5 Arguments

1: STAT – CHARACTER(1) Input

On entry: indicates which statistic is to be used to compute the marginal table.

STAT ¼ T
The total.

STAT ¼ A
The average or mean.

STAT ¼ M
The median.
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STAT ¼ V
The variance.

STAT ¼ L
The largest value.

STAT ¼ S
The smallest value.

Constraint: STAT ¼ T , A , M , V , L or S .

2: TABLEðNCELLSÞ – REAL (KIND=nag_wp) array Input

On entry: the table as computed by G11BAF or G11BBF.

3: NCELLS – INTEGER Input

On entry: the number of cells in TABLE as returned by G11BAF or G11BBF.

4: NDIM – INTEGER Input

On entry: the number of dimensions for TABLE as returned by G11BAF or G11BBF.

Constraint: NDIM � 2.

5: IDIMðNDIMÞ – INTEGER array Input

On entry: the number of levels for each dimension of TABLE as returned by G11BAF or
G11BBF.

Constraint: IDIMðiÞ � 2, for i ¼ 1; 2; . . . ;NDIM.

6: ISDIMðNDIMÞ – INTEGER array Input

On entry: indicates which dimensions of TABLE are to be included in the sub-table. If
ISDIMðiÞ > 0 the dimension or factor indicated by IDIMðiÞ is to be included in the sub-table,
otherwise it is excluded.

7: STABLEðMAXSTÞ – REAL (KIND=nag_wp) array Output

On exit: the first MCELLS elements contain the sub-table computed using the statistic indicated
by STAT. The table is stored in a similar way to TABLE with the MCELLS cells stored so that
for any two dimensions the index relating to the dimension given later in IDIM changes faster.
For further details see Section 9.

8: MAXST – INTEGER Input

On entry: the maximum size of sub-table to be computed.

Constraint: MAXST � the product of the levels of the dimensions of TABLE included in the
sub-table, STABLE.

9: MCELLS – INTEGER Output

On exit: the number of cells in the sub-table in STABLE.

10: MDIM – INTEGER Output

On exit: the number of dimensions to the sub-table in STABLE.

11: MLEVELðNDIMÞ – INTEGER array Output

On exit: the first MDIM elements contain the number of levels for the dimensions of the sub-
table in STABLE. The remaining elements are not referenced.
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12: AUXTð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array AUXT must be at least MAXST if STAT ¼ V , and at least 1
otherwise.

On exit: if STAT ¼ V AUXT contains the sub-table of means corresponding to the sub-table of
variances in STABLE. Otherwise AUXT is not referenced.

13: IWKð3� NDIMÞ – INTEGER array Workspace

14: WKðNCELLSÞ – REAL (KIND=nag_wp) array Workspace

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NDIM < 2,
or STAT 6¼ T , A , M , V , L or S .

IFAIL ¼ 2

On entry, IDIMðiÞ � 1, for some i ¼ 1; 2; . . . ;NDIM,
or NCELLS is incompatible with IDIM,
or the requested sub-table is of dimension 0,
or the requested sub-table is the full table,
or MAXST is too small, the minimum value is returned in MDIM.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Only applicable when STAT ¼ V . In this case a one pass algorithm is used as describe in West (1979).

8 Parallelism and Performance

G11BCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The sub-tables created by G11BCF and stored in STABLE and, depending on STAT, also in AUXT are
stored in the following way. Let there be m dimensions defining the table with dimension k having lk
levels, then the cell defined by the levels i1; i2; . . . ; im of the factors is stored in sth cell given by

s ¼ 1þ
Xm
k¼1

ik � 1ð Þck½ �;

where

cj ¼
Ym
k¼jþ1

lk for j ¼ 1; 2; . . . ; n� 1 and cm ¼ 1:

10 Example

The data, given by John and Quenouille (1977), is for 3 blocks of a 3� 6 factorial experiment. The data
can be considered as a 3� 6� 3 table (i.e., blocks � treatment with 6 levels � treatment with 3 levels).
This table is input and the 6� 3 table of treatment means for over blocks is computed and printed.

10.1 Program Text

Program g11bcfe

! G11BCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g11bcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, k, lauxt, maxst, mcells, &

mdim, ncells, ncol, ndim, nrow
Character (1) :: stat

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: auxt(:), stable(:), table(:), wk(:)
Integer, Allocatable :: idim(:), isdim(:), iwk(:), mlevel(:)

! .. Executable Statements ..
Write (nout,*) ’G11BCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) stat, ncells, ndim
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Allocate (table(ncells),idim(ndim),isdim(ndim))

! Read in data
Read (nin,*) table(1:ncells)
Read (nin,*) idim(1:ndim)
Read (nin,*) isdim(1:ndim)

! Calculate MAXST
maxst = 1
Do i = 1, ndim

If (isdim(i)>0) Then
maxst = maxst*idim(i)

End If
End Do

If (stat==’V’ .Or. stat==’v’) Then
lauxt = maxst

Else
lauxt = 0

End If
Allocate (stable(maxst),mlevel(ndim),auxt(lauxt),iwk(3*ndim),wk(ncells))

! Compute marginal table
ifail = 0
Call g11bcf(stat,table,ncells,ndim,idim,isdim,stable,maxst,mcells,mdim, &

mlevel,auxt,iwk,wk,ifail)

! Display results
Write (nout,*) ’ Marginal Table’
Write (nout,*)
ncol = mlevel(mdim)
nrow = mcells/ncol
k = 1
Do i = 1, nrow

Write (nout,99999) stable(k:(k+ncol-1))
k = k + ncol

End Do

99999 Format (10F8.2)
End Program g11bcfe

10.2 Program Data

G11BCF Example Program Data
’A’ 54 3
274 361 253 325 317 339 326 402 336 379 345 361 352 334 318 339 393 358
350 340 203 397 356 298 382 376 355 418 387 379 432 339 293 322 417 342
82 297 133 306 352 361 220 333 270 388 379 274 336 307 266 389 333 353

3 6 3
0 1 1

10.3 Program Results

G11BCF Example Program Results

Marginal Table

235.33 332.67 196.33
342.67 341.67 332.67
309.33 370.33 320.33
395.00 370.33 338.00
373.33 326.67 292.33
350.00 381.00 351.00
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NAG Library Routine Document

G11CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G11CAF returns parameter estimates for the conditional logistic analysis of stratified data, for example,
data from case-control studies and survival analyses.

2 Specification

SUBROUTINE G11CAF (N, M, NS, Z, LDZ, ISZ, IP, IC, ISI, DEV, B, SE, SC,
COV, NCA, NCT, TOL, MAXIT, IPRINT, WK, LWK, IFAIL)

&

INTEGER N, M, NS, LDZ, ISZ(M), IP, IC(N), ISI(N), NCA(NS),
NCT(NS), MAXIT, IPRINT, LWK, IFAIL

&

REAL (KIND=nag_wp) Z(LDZ,M), DEV, B(IP), SE(IP), SC(IP),
COV(IP*(IP+1)/2), TOL, WK(LWK)

&

3 Description

In the analysis of binary data, the logistic model is commonly used. This relates the probability of one
of the outcomes, say y ¼ 1, to p explanatory variates or covariates by

Prob y ¼ 1ð Þ ¼ exp �þ zT�ð Þ
1þ exp �þ zT�ð Þ;

where � is a vector of unknown coefficients for the covariates z and � is a constant term. If the
observations come from different strata or groups, � would vary from strata to strata. If the observed
outcomes are independent then the ys follow a Bernoulli distribution, i.e., a binomial distribution with
sample size one and the model can be fitted as a generalized linear model with binomial errors.

In some situations the number of observations for which y ¼ 1 may not be independent. For example, in
epidemiological research, case-control studies are widely used in which one or more observed cases are
matched with one or more controls. The matching is based on fixed characteristics such as age and sex,
and is designed to eliminate the effect of such characteristics in order to more accurately determine the
effect of other variables. Each case-control group can be considered as a stratum. In this type of study
the binomial model is not appropriate, except if the strata are large, and a conditional logistic model is
used. This considers the probability of the cases having the observed vectors of covariates given the set
of vectors of covariates in the strata. In the situation of one case per stratum, the conditional likelihood
for ns strata can be written as

L ¼
Yns
i¼1

exp zTi �
� �P

l2Siexp zTl �
� �h i; ð1Þ

where Si is the set of observations in the ith stratum, with associated vectors of covariates zl, l 2 Si,
and zi is the vector of covariates of the case in the ith stratum. In the general case of ci cases per strata
then the full conditional likelihood is

L ¼
Yns
i¼1

exp sTi �
� �P

l2Ciexp sTl �
� �h i; ð2Þ

where si is the sum of the vectors of covariates for the cases in the ith stratum and sl, l 2 Ci refer to the
sum of vectors of covariates for all distinct sets of ci observations drawn from the ith stratum. The
conditional likelihood can be maximized by a Newton–Raphson procedure. The covariances of the
parameter estimates can be estimated from the inverse of the matrix of second derivatives of the
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logarithm of the conditional likelihood, while the first derivatives provide the score function, Uj �ð Þ, for
j ¼ 1; 2; . . . ; p, which can be used for testing the significance of arguments.

If the strata are not small, Ci can be large so to improve the speed of computation, the algorithm in
Howard (1972) and described by Krailo and Pike (1984) is used.

A second situation in which the above conditional likelihood arises is in fitting Cox's proportional
hazard model (see G12BAF) in which the strata refer to the risk sets for each failure time and where the
failures are cases. When ties are present in the data G12BAF uses an approximation. For an exact
estimate, the data can be expanded using G12ZAF to create the risk sets/strata and G11CAF used.

4 References

Cox D R (1972) Regression models in life tables (with discussion) J. Roy. Statist. Soc. Ser. B 34 187–
220

Cox D R and Hinkley D V (1974) Theoretical Statistics Chapman and Hall

Howard S (1972) Remark on the paper by Cox, D R (1972): Regression methods J. R. Statist. Soc. B 34
and life tables 187–220

Krailo M D and Pike M C (1984) Algorithm AS 196. Conditional multivariate logistic analysis of
stratified case-control studies Appl. Statist. 33 95–103

Smith P G, Pike M C, Hill P, Breslow N E and Day N E (1981) Algorithm AS 162. Multivariate
conditional logistic analysis of stratum-matched case-control studies Appl. Statist. 30 190–197

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 2.

2: M – INTEGER Input

On entry: the number of covariates in array Z.

Constraint: M � 1.

3: NS – INTEGER Input

On entry: the number of strata, ns.

Constraint: NS � 1.

4: ZðLDZ;MÞ – REAL (KIND=nag_wp) array Input

On entry: the ith row must contain the covariates which are associated with the ith observation.

5: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which G11CAF
is called.

Constraint: LDZ � N.

6: ISZðMÞ – INTEGER array Input

On entry: indicates which subset of covariates are to be included in the model.

If ISZðjÞ � 1, the jth covariate is included in the model.

If ISZðjÞ ¼ 0, the jth covariate is excluded from the model and not referenced.

Constraint: ISZðjÞ � 0 and at least one value must be nonzero.
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7: IP – INTEGER Input

On entry: p, the number of covariates included in the model as indicated by ISZ.

Constraint: IP � 1 and IP ¼ number of nonzero values of ISZ .

8: ICðNÞ – INTEGER array Input

On entry: indicates whether the ith observation is a case or a control.

If ICðiÞ ¼ 0, indicates that the ith observation is a case.

If ICðiÞ ¼ 1, indicates that the ith observation is a control.

Constraint: ICðiÞ ¼ 0 or 1, for i ¼ 1; 2; . . . ;N.

9: ISIðNÞ – INTEGER array Input

On entry: stratum indicators which also allow data points to be excluded from the analysis.

If ISIðiÞ ¼ k, indicates that the ith observation is from the kth stratum, where k ¼ 1; 2; . . . ;NS.

If ISIðiÞ ¼ 0, indicates that the ith observation is to be omitted from the analysis.

Constraint: 0 � ISIðiÞ � NS and more than IP values of ISIðiÞ > 0, for i ¼ 1; 2; . . . ;N.

10: DEV – REAL (KIND=nag_wp) Output

On exit: the deviance, that is, minus twice the maximized log-likelihood.

11: BðIPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: initial estimates of the covariate coefficient arguments �. BðjÞ must contain the initial
estimate of the coefficent of the covariate in Z corresponding to the jth nonzero value of ISZ.

Suggested value: in many cases an initial value of zero for BðjÞ may be used. For another
suggestion see Section 9.

On exit: BðjÞ contains the estimate �̂i of the coefficient of the covariate stored in the ith column
of Z where i is the jth nonzero value in the array ISZ.

12: SEðIPÞ – REAL (KIND=nag_wp) array Output

On exit: SEðjÞ is the asymptotic standard error of the estimate contained in BðjÞ and score
function in SCðjÞ, for j ¼ 1; 2; . . . ; IP.

13: SCðIPÞ – REAL (KIND=nag_wp) array Output

On exit: SCðjÞ is the value of the score function Uj �ð Þ for the estimate contained in BðjÞ.

14: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the variance-covariance matrix of the parameter estimates in B stored in packed form by
column, i.e., the covariance between the parameter estimates given in BðiÞ and BðjÞ, j � i, is
given in COVðj j� 1ð Þ=2þ iÞ.

15: NCAðNSÞ – INTEGER array Output

On exit: NCAðiÞ contains the number of cases in the ith stratum, for i ¼ 1; 2; . . . ;NS.

16: NCTðNSÞ – INTEGER array Output

On exit: NCTðiÞ contains the number of controls in the ith stratum, for i ¼ 1; 2; . . . ;NS.
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17: TOL – REAL (KIND=nag_wp) Input

On entry: indicates the accuracy required for the estimation. Convergence is assumed when the
decrease in deviance is less than TOL� 1:0þ CurrentDevianceð Þ. This corresponds approxi-
mately to an absolute accuracy if the deviance is small and a relative accuracy if the deviance is
large.

Constraint: TOL � 10�machine precision.

18: MAXIT – INTEGER Input

On entry: the maximum number of iterations required for computing the estimates. If MAXIT is
set to 0 then the standard errors, the score functions and the variance-covariance matrix are
computed for the input value of � in B but � is not updated.

Constraint: MAXIT � 0.

19: IPRINT – INTEGER Input

On entry: indicates if the printing of information on the iterations is required.

IPRINT � 0
No printing.

IPRINT � 1
The deviance and the current estimates are printed every IPRINT iterations. When printing
occurs the output is directed to the current advisory message unit (see X04ABF).

Suggested value: IPRINT ¼ 0.

20: WKðLWKÞ – REAL (KIND=nag_wp) array Workspace
21: LWK – INTEGER Input

On entry: the dimension of the array WK as declared in the (sub)program from which G11CAF is
called.

Constraint: LWK � pn0 þ cm þ 1ð Þ pþ 1ð Þ pþ 2ð Þ=2þ cm, where n0 is the number of observa-
tions included in the model, i.e., the number of observations for which ISIðiÞ 6¼ 0 and cm is the
maximum number of observations in any stratum.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or N < 2,
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or NS < 1,
or IP < 1,
or LDZ < N,
or TOL < 10�machine precision,
or MAXIT < 0.

IFAIL ¼ 2

On entry, ISZðiÞ < 0, for some i,
or the value of IP is incompatible with ISZ,
or ICðiÞ 6¼ 1 or 0.
or ISIðiÞ < 0 or ISIðiÞ > NS,
or the number of values of ISZðiÞ > 0 is greater than or equal to n0, the number of

observations excluding any with ISIðiÞ ¼ 0.

IFAIL ¼ 3

The value of LWK is too small.

IFAIL ¼ 4

Overflow has been detected. Try using different starting values.

IFAIL ¼ 5

The matrix of second partial derivatives is singular. Try different starting values or include fewer
covariates.

IFAIL ¼ 6

Convergence has not been achieved in MAXIT iterations. The progress towards convergence can
be examined by using a nonzero value of IPRINT. Any non-convergence may be due to a linear
combination of covariates being monotonic with time.

Full results are returned.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is specified by TOL.

8 Parallelism and Performance

G11CAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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G11CAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The other models described in Section 3 can be fitted using the generalized linear modelling routines
G02GBF and G02GCF.

The case with one case per stratum can be analysed by having a dummy response variable y such that
y ¼ 1 for a case and y ¼ 0 for a control, and fitting a Poisson generalized linear model with a log link
and including a factor with a level for each strata. These models can be fitted by using G02GCF.

G11CAF uses mean centering, which involves subtracting the means from the covariables prior to
computation of any statistics. This helps to minimize the effect of outlying observations and accelerates
convergence. In order to reduce the risk of the sums computed by Howard's algorithm becoming too
large, the scaling factor described in Krailo and Pike (1984) is used.

If the initial estimates are poor then there may be a problem with overflow in calculating exp �Tzið Þ or
there may be non-convergence. Reasonable estimates can often be obtained by fitting an unconditional
model.

10 Example

The data was used for illustrative purposes by Smith et al. (1981) and consists of two strata and two
covariates. The data is input, the model is fitted and the results are printed.

10.1 Program Text

Program g11cafe

! G11CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g11caf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dev, tol
Integer :: cm, i, ifail, ip, iprint, ldz, lwk, &

m, maxit, n, n0, ns
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:), cov(:), sc(:), se(:), wk(:), &
z(:,:)

Integer, Allocatable :: cnt(:), ic(:), isi(:), isz(:), &
nca(:), nct(:)

! .. Intrinsic Procedures ..
Intrinsic :: count, maxval, sum

! .. Executable Statements ..
Write (nout,*) ’G11CAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size and control parameters
Read (nin,*) n, m, ns, maxit, iprint, tol
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ldz = n
Allocate (z(ldz,m),isz(m),ic(n),isi(n),nca(ns),nct(ns),cnt(ns))

! Read in data
Read (nin,*)(isi(i),ic(i),z(i,1:m),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isz(1:m)

! Calculate IP
ip = count(isz(1:m)>0)

! Calculate number of observations in the model and maximum number of
! observations in any stratum

cnt(1:ns) = 0
Do i = 1, n

If (isi(i)>0 .And. isi(i)<=ns) Then
cnt(isi(i)) = cnt(isi(i)) + 1

End If
End Do
cm = maxval(cnt(1:ns))
n0 = sum(cnt(1:ns))

lwk = ip*n0 + (cm+1)*(ip+1)*(ip+2)/2 + cm
Allocate (b(ip),se(ip),sc(ip),cov(ip*(ip+1)/2),wk(lwk))

! Read in initial estimate for B
Read (nin,*) b(1:ip)

! Calculate parameter estimates
ifail = 0
Call g11caf(n,m,ns,z,ldz,isz,ip,ic,isi,dev,b,se,sc,cov,nca,nct,tol, &

maxit,iprint,wk,lwk,ifail)

! Display results
Write (nout,99999) ’ Deviance = ’, dev
Write (nout,*)
Write (nout,*) ’ Strata No. Cases No. Controls’
Write (nout,*)
Write (nout,99998)(i,nca(i),nct(i),i=1,ns)
Write (nout,*)
Write (nout,*) ’ Parameter Estimate’, ’ Standard Error’
Write (nout,*)
Write (nout,99997)(i,b(i),se(i),i=1,ip)

99999 Format (A,E13.4)
99998 Format (3X,I3,10X,I2,10X,I2)
99997 Format (I6,10X,F8.4,10X,F8.4)

End Program g11cafe

10.2 Program Data

G11CAF Example Program Data
7 2 2 10 0 1.0E-5 :: N,M,NS,MAXIT,IPRINT,TOL
1 0 0 1
1 0 1 2
1 1 0 1
1 1 1 3
2 0 0 1
2 1 1 0
2 1 0 2 :: End of ISI,IC,Z
1 1 :: ISZ
0.0 0.0 :: B
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10.3 Program Results

G11CAF Example Program Results

Deviance = 0.5475E+01

Strata No. Cases No. Controls

1 2 2
2 1 2

Parameter Estimate Standard Error

1 -0.5223 1.3901
2 -0.2674 0.8473
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NAG Library Routine Document

G11SAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G11SAF fits a latent variable model (with a single factor) to data consisting of a set of measurements
on individuals in the form of binary-valued sequences (generally referred to as score patterns). Various
measures of goodness-of-fit are calculated along with the factor (theta) scores.

2 Specification

SUBROUTINE G11SAF (IP, N, GPROB, NS, X, LDX, IRL, A, C, IPRINT, CGETOL,
MAXIT, CHISQR, ISHOW, NITER, ALPHA, PIGAM, CM, LDCM,
G, EXPP, LDEXPP, OBS, EXF, Y, XL, IOB, RLOGL, CHI,
IDF, SIGLEV, W, LW, IFAIL)

&
&
&

INTEGER IP, N, NS, LDX, IRL(NS), IPRINT, MAXIT, ISHOW,
NITER, LDCM, LDEXPP, IOB(NS), IDF, LW, IFAIL

&

REAL (KIND=nag_wp) A(IP), C(IP), CGETOL, ALPHA(IP), PIGAM(IP),
CM(LDCM,2*IP), G(2*IP), EXPP(LDEXPP,IP),
OBS(LDEXPP,IP), EXF(NS), Y(NS), XL(NS), RLOGL, CHI,
SIGLEV, W(LW)

&
&
&

LOGICAL GPROB, X(LDX,IP), CHISQR

3 Description

Given a set of p dichotomous variables ~x ¼ x1; x2; . . . ; xp
� �0

, where 0 denotes vector or matrix
transpose, the objective is to investigate whether the association between them can be adequately
explained by a latent variable model of the form (see Bartholomew (1980) and Bartholomew (1987))

G 	i �ð Þf g ¼ �i0 þ �i1�: ð1Þ

The xi are called item responses and take the value 0 or 1. � denotes the latent variable assumed to have
a standard Normal distribution over a population of individuals to be tested on p items. Call
	i �ð Þ ¼ P xi ¼ 1 j �ð Þ the item response function: it represents the probability that an individual with
latent ability � will produce a positive response (1) to item i. �i0 and �i1 are item parameters which can
assume any real values. The set of parameters, �i1, for i ¼ 1; 2; . . . ; p, being coefficients of the
unobserved variable �, can be interpreted as ‘factor loadings’.

G is a function selected by you as either ��1 or logit, mapping the interval 0; 1ð Þ onto the whole real
line. Data from a random sample of n individuals takes the form of the matrices X and R defined
below:

Xs�p ¼

x11 x12 . . . x1p
x21 x22 . . . x2p

..

. ..
. ..

.

xs1 xs2 . . . xsp

26664
37775 ¼

~x1
~x2

..

.

~xs

26664
37775; Rs�1 ¼

r1
r2

..

.

rs

26664
37775

where ~xl ¼ xl1; xl2; . . . ; xlp
� �

denotes the lth score pattern in the sample, rl the frequency with which ~xl

occurs and s the number of different score patterns observed. (Thus
Xs
l¼1
rl ¼ n). It can be shown that the

log-likelihood function is proportional to Xs
l¼1
rllogPl;
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where

Pl ¼ P ~x ¼ ~xlð Þ ¼
Z 1
�1
P ~x ¼ ~xl j �ð Þ
 �ð Þ d� ð2Þ

(
 �ð Þ being the probability density function of a standard Normal random variable).

Pl denotes the unconditional probability of observing score pattern ~xl. The integral in (2) is
approximated using Gauss–Hermite quadrature. If we take G zð Þ ¼ logit z ¼ log z

1�z
� �

in (1) and
reparameterise as follows,

�i ¼ �i1;

	i ¼ logit�1 �i0;

then (1) reduces to the logit model (see Bartholomew (1980))

	i �ð Þ ¼
	i

	i þ 1� 	ið Þ exp ��i�ð Þ:

If we take G zð Þ ¼ ��1 zð Þ (where � is the cumulative distribution function of a standard Normal random
variable) and reparameterise as follows,

�i ¼
�i1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

i1

� �q

�i ¼ ��i0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

i1

� �q
;

then (1) reduces to the probit model (see Bock and Aitkin (1981))

	i �ð Þ ¼ 

�i�� �iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

i

� �q
0B@

1CA:
An E-M algorithm (see Bock and Aitkin (1981)) is used to maximize the log-likelihood function. The
number of quadrature points used is set initially to 10 and once convergence is attained increased to 20.

The theta score of an individual responding in score pattern ~xl is computed as the posterior mean, i.e.,

E � j ~xlð Þ. For the logit model the component score Xl ¼
Xp
j¼1

�jxlj is also calculated. (Note that in

calculating the theta scores and measures of goodness-of-fit G11SAF automatically reverses the coding
on item j if �j < 0; it is assumed in the model that a response at the one level is showing a higher
measure of latent ability than a response at the zero level.)

The frequency distribution of score patterns is required as input data. If your data is in the form of
individual score patterns (uncounted), then G11SBF may be used to calculate the frequency distribution.

4 References

Bartholomew D J (1980) Factor analysis for categorical data (with Discussion) J. Roy. Statist. Soc. Ser.
B 42 293–321

Bartholomew D J (1987) Latent Variable Models and Factor Analysis Griffin

Bock R D and Aitkin M (1981) Marginal maximum likelihood estimation of item parameters:
Application of an E-M algorithm Psychometrika 46 443–459
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5 Arguments

1: IP – INTEGER Input

On entry: p, the number of dichotomous variables.

Constraint: IP � 3.

2: N – INTEGER Input

On entry: n, the number of individuals in the sample.

Constraint: N � 7.

3: GPROB – LOGICAL Input

On entry: must be set equal to .TRUE. if G zð Þ ¼ ��1 zð Þ and .FALSE. if G zð Þ ¼ logit z.

4: NS – INTEGER Input

On entry: NS must be set equal to the number of different score patterns in the sample, s.

Constraint: 2� IP < NS � min 2IP;N
� �

.

5: XðLDX; IPÞ – LOGICAL array Input/Output

On entry: the first s rows of X must contain the s different score patterns. The lth row of X must
contain the lth score pattern with Xðl; jÞ set equal to .TRUE. if xlj ¼ 1 and .FALSE. if xlj ¼ 0.
All rows of X must be distinct.

On exit: given a valid parameter set then the first s rows of X still contain the s different score
patterns. However, the following points should be noted:

(i) If the estimated factor loading for the jth item is negative then that item is re-coded, i.e., 0s
and 1s (or .TRUE. and .FALSE.) in the jth column of X are interchanged.

(ii) The rows of X will be reordered so that the theta scores corresponding to rows of X are in
increasing order of magnitude.

6: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G11SAF
is called.

Constraint: LDX � NS.

7: IRLðNSÞ – INTEGER array Input/Output

On entry: the ith component of IRL must be set equal to the frequency with which the ith row of
X occurs.

Constraints:

IRLðiÞ � 0, for i ¼ 1; 2; . . . ; s;Xs
i¼1

IRLðiÞ ¼ n.

On exit: given a valid parameter set then the first s components of IRL are reordered as are the
rows of X.

8: AðIPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: AðjÞ must be set equal to an initial estimate of �j1. In order to avoid divergence
problems with the E-M algorithm you are strongly advised to set all the AðjÞ to 0:5.

On exit: AðjÞ contains the latest estimate of �j1, for j ¼ 1; 2; . . . ; p. (Because of possible recoding
all elements of A will be positive.)
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9: CðIPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: CðjÞ must be set equal to an initial estimate of �j0. In order to avoid divergence
problems with the E-M algorithm you are strongly advised to set all the CðjÞ to 0:0.

On exit: CðjÞ contains the latest estimate of �j0, for j ¼ 1; 2; . . . ; p.

10: IPRINT – INTEGER Input

On entry: the frequency with which the maximum likelihood search routine is to be monitored.

IPRINT > 0
The search is monitored once every IPRINT iterations, and when the number of quadrature
points is increased, and again at the final solution point.

IPRINT ¼ 0
The search is monitored once at the final point.

IPRINT < 0
The search is not monitored at all.

IPRINT should normally be set to a small positive number.

Suggested value: IPRINT ¼ 1.

11: CGETOL – REAL (KIND=nag_wp) Input

On entry: the accuracy to which the solution is required.

If CGETOL is set to 10�l and on exit IFAIL ¼ 0 or 7, then all elements of the gradient vector
will be smaller than 10�l in absolute value. For most practical purposes the value 10�4 should
suffice. You should be wary of setting CGETOL too small since the convergence criterion may
then have become too strict for the machine to handle.

If CGETOL has been set to a value which is less than the square root of the machine precision,
�, then G11SAF will use the value

ffiffi
�
p

instead.

12: MAXIT – INTEGER Input

On entry: the maximum number of iterations to be made in the maximum likelihood search.
There will be an error exit (see Section 6) if the search routine has not converged in MAXIT
iterations.

Suggested value: MAXIT ¼ 1000.

Constraint: MAXIT � 1.

13: CHISQR – LOGICAL Input

On entry: if CHISQR is set equal to .TRUE., then a likelihood ratio statistic will be calculated
(see CHI).

If CHISQR is set equal to .FALSE., no such statistic will be calculated.

14: ISHOW – INTEGER Input

On entry: indicates which of the following three quantities are to be printed before exit from the
routine (given a valid parameter set):

(a) Table of maximum likelihood estimates and standard errors (as returned in the output arrays
A, C, ALPHA, PIGAM and CM).

(b) Table of observed and expected first and second order margins (as returned in the output
arrays EXPP and OBS).

G11SAF NAG Library Manual

G11SAF.4 Mark 26



(c) Table of observed and expected frequencies of score patterns along with theta scores (as
returned in the output arrays IRL, EXF, Y, XL and IOB) and the likelihood ratio statistic (if
required).

ISHOW ¼ 0
None of the above are printed.

ISHOW ¼ 1
(a) only is printed.

ISHOW ¼ 2
(b) only is printed.

ISHOW ¼ 3
(c) only is printed.

ISHOW ¼ 4
(a) and (b) are printed.

ISHOW ¼ 5
(a) and (c) are printed.

ISHOW ¼ 6
(b) and (c) are printed.

ISHOW ¼ 7
(a), (b) and (c) are printed.

Constraint: 0 � ISHOW � 7.

15: NITER – INTEGER Output

On exit: given a valid parameter set then NITER contains the number of iterations performed by
the maximum likelihood search routine.

16: ALPHAðIPÞ – REAL (KIND=nag_wp) array Output

On exit: given a valid parameter set then ALPHAðjÞ contains the latest estimate of �j. (Because
of possible recoding all elements of ALPHA will be positive.)

17: PIGAMðIPÞ – REAL (KIND=nag_wp) array Output

On exit: given a valid parameter set then PIGAMðjÞ contains the latest estimate of either 	j if
GPROB ¼ :FALSE: (logit model) or �j if GPROB ¼ :TRUE: (probit model).

18: CMðLDCM; 2� IPÞ – REAL (KIND=nag_wp) array Output

On exit: given a valid parameter set then the strict lower triangle of CM contains the correlation
matrix of the parameter estimates held in ALPHA and PIGAM on exit. The diagonal elements of
CM contain the standard errors. Thus:

CMð2� i� 1; 2� i� 1Þ = standard error ALPHAðiÞð Þ
CMð2� i; 2� iÞ = standard error PIGAMðiÞð Þ
CMð2� i; 2� i� 1Þ = correlation PIGAMðiÞ;ALPHAðiÞð Þ,

for i ¼ 1; 2; . . . ; p;

CMð2� i� 1; 2� j� 1Þ = correlation ALPHAðiÞ;ALPHAðjÞð Þ
CMð2� i; 2� jÞ = correlation PIGAMðiÞ; PIGAMðjÞð Þ
CMð2� i� 1; 2� jÞ = correlation ALPHAðiÞ;PIGAMðjÞð Þ
CMð2� i; 2� j� 1Þ = correlation ALPHAðjÞ; PIGAMðiÞð Þ,

for j ¼ 1; 2; . . . ; i� 1.
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If the second derivative matrix cannot be computed then all the elements of CM are returned as
zero.

19: LDCM – INTEGER Input

On entry: the first dimension of the array CM as declared in the (sub)program from which
G11SAF is called.

Constraint: LDCM � 2� IP.

20: Gð2� IPÞ – REAL (KIND=nag_wp) array Output

On exit: given a valid parameter set then G contains the estimated gradient vector corresponding
to the final point held in the arrays ALPHA and PIGAM. Gð2� j � 1Þ contains the derivative of
the log-likelihood with respect to ALPHAðjÞ, for j ¼ 1; 2; . . . ; p. Gð2� jÞ contains the derivative
of the log-likelihood with respect to PIGAMðjÞ, for j ¼ 1; 2; . . . ; p.

21: EXPPðLDEXPP; IPÞ – REAL (KIND=nag_wp) array Output

On exit: given a valid parameter set then EXPPði; jÞ contains the expected percentage of
individuals in the sample who respond positively to items i and j (j � i), corresponding to the
final point held in the arrays ALPHA and PIGAM.

22: LDEXPP – INTEGER Input

On entry: the first dimension of the arrays EXPP and OBS as declared in the (sub)program from
which G11SAF is called.

Constraint: LDEXPP � IP.

23: OBSðLDEXPP; IPÞ – REAL (KIND=nag_wp) array Output

On exit: given a valid parameter set then OBSði; jÞ contains the observed percentage of
individuals in the sample who responded positively to items i and j (j � i).

24: EXFðNSÞ – REAL (KIND=nag_wp) array Output

On exit: given a valid parameter set then EXFðlÞ contains the expected frequency of the lth score
pattern (lth row of X), corresponding to the final point held in the arrays ALPHA and PIGAM.

25: YðNSÞ – REAL (KIND=nag_wp) array Output

On exit: given a valid parameter set then YðlÞ contains the estimated theta score corresponding to
the lth row of X, for the final point held in the arrays ALPHA and PIGAM.

26: XLðNSÞ – REAL (KIND=nag_wp) array Workspace

If GPROB has been set equal to .FALSE. (logit model) then on exit, given a valid parameter set,
XLðlÞ contains the estimated component score corresponding to the lth row of X for the final
point held in the arrays ALPHA and PIGAM.

If GPROB is set equal to .TRUE. (probit model), this array is not used.

27: IOBðNSÞ – INTEGER array Output

On exit: given a valid parameter set then IOBðlÞ contains the number of items in the lth row of X
for which the response was positive (.TRUE.).

28: RLOGL – REAL (KIND=nag_wp) Output

On exit: given a valid parameter set then RLOGL contains the value of the log-likelihood kernel
corresponding to the final point held in the arrays ALPHA and PIGAM, namely

G11SAF NAG Library Manual

G11SAF.6 Mark 26



Xs
l¼1

IRLðlÞ � log EXFðlÞ=nð Þ:

29: CHI – REAL (KIND=nag_wp) Output

On exit: if CHISQR was set equal to .TRUE. on entry, then given a valid parameter set, CHI will
contain the value of the likelihood ratio statistic corresponding to the final parameter estimates
held in the arrays ALPHA and PIGAM, namely

2�
Xs
l¼1

IRLðlÞ � log EXFðlÞ=IRLðlÞð Þ:

The summation is over those elements of IRL which are positive. If EXFðlÞ is less than 5:0, then
adjacent score patterns are pooled (the score patterns in X being first put in order of increasing
theta score).

If CHISQR has been set equal to .FALSE., then CHI is not used.

30: IDF – INTEGER Output

On exit: if CHISQR was set equal to .TRUE. on entry, then given a valid parameter set, IDF will
contain the degrees of freedom associated with the likelihood ratio statistic, CHI.

IDF ¼ s0 � 2� p if s0 < 2p;
IDF ¼ s0 � 2� p� 1 if s0 ¼ 2p,

where s0 denotes the number of terms summed to calculate CHI (s0 ¼ s only if there is no
pooling).

If CHISQR has been set equal to .FALSE., then IDF is not used.

31: SIGLEV – REAL (KIND=nag_wp) Output

On exit: if CHISQR was set equal to .TRUE. on entry, then given a valid parameter set, SIGLEV
will contain the significance level of CHI based on IDF degrees of freedom. If IDF is zero or
negative then SIGLEV is set to zero.

If CHISQR was set equal to .FALSE., then SIGLEV is not used.

32: WðLWÞ – REAL (KIND=nag_wp) array Workspace
33: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which G11SAF is
called.

Constraint: LW � 4� IP� IPþ 16ð Þ.

34: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G11SAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP < 3,
or N < 7,
or NS � 2� IP,
or NS > N,
or NS > 2IP,
or two or more rows of X are identical,
or LDX < NS,

or
XNS
l¼1

IRLðlÞ 6¼ N,

or at least one of IRLðlÞ < 0, for l ¼ 1; 2; . . . ;NS,
or MAXIT < 1,
or ISHOW < 0,
or ISHOW > 7,
or LDCM < IPþ IP,
or LDEXPP < IP,
or LW < 4� IP� IPþ 16ð Þ.

IFAIL ¼ 2

For at least one of the IP items the responses are all at the same level. To proceed, you must
delete this item from the dataset.

IFAIL ¼ 3

There have been MAXIT iterations of the maximum likelihood search routine. If steady increases
in the log-likelihood kernel were monitored up to the point where this exit occurred, then the exit
probably occurred simply because MAXIT was set too small, so the calculations should be
restarted from the final point held in A and C. This type of exit may also indicate that there is no
maximum to the likelihood surface.

IFAIL ¼ 4

One of the elements of A has exceeded 10:0 in absolute value (see Section 9.3). If steady
increases in the log-likelihood kernel were monitored up to the point where this exit occurred
then this exit may indicate that there is no maximum to the likelihood surface. You are advised to
restart the calculations from a different point to see whether the E-M algorithm moves off in the
same direction.

IFAIL ¼ 5

This indicates a failure in F01ABF which is used to invert the second derivative matrix for
calculating the variance-covariance matrix of parameter estimates. It was also found that MAXIT
iterations had been performed (see IFAIL ¼ 3). The elements of CM will then have been set to
zero on exit. You are advised to restart the calculations with a larger value for MAXIT.

IFAIL ¼ 6

This indicates a failure in F01ABF which is used to invert the second derivative matrix for
calculating the variance-covariance matrix of parameter estimates. It was also found that one of
the elements of A had exceeded 10:0 in absolute value (see IFAIL ¼ 4). The elements of CM
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will have then been set to zero on exit. You are advised to restart the calculations from a different
point to see whether the E-M algorithm moves off in the same direction.

IFAIL ¼ 7

If CHISQR was set equal to .TRUE. on entry, so that a likelihood ratio statistic was calculated,
then IFAIL ¼ 7 merely indicates that the value of IDF on exit is � 0, i.e., the �2 statistic is
meaningless. In this case SIGLEV is returned as zero. All other output information should be
correct, i.e., can be treated as if IFAIL ¼ 0 on exit.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On exit from G11SAF if IFAIL ¼ 0 or 7 then the following condition will be satisfied:

max
1�i�2�p

GðiÞj jf g < CGETOL:

If IFAIL ¼ 3 or 5 on exit (i.e., MAXIT iterations have been performed but the above condition does not
hold), then the elements in A, C, ALPHA and PIGAM may still be good approximations to the
maximum likelihood estimates. You are advised to inspect the elements of G to see whether this is
confirmed.

8 Parallelism and Performance

G11SAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G11SAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The number of iterations required in the maximum likelihood search depends upon the number of
observed variables, p, and the distance of the starting point you supplied from the solution. The number
of multiplications and divisions performed in an iteration is proportional to p.
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9.2 Initial Estimates

You are strongly advised to use the recommended starting values for the elements of A and C.
Divergence may result from values you supplied even if they are very close to the solution. Divergence
may also occur when an item has nearly all its responses at one level.

9.3 Heywood Cases

As in normal factor analysis, Heywood cases can often occur, particularly when p is small and n not
very big. To overcome this difficulty the maximum likelihood search routine is terminated when the
absolute value of one of the �j1 exceeds 10:0. You have the option of deciding whether to exit from
G11SAF (by setting IFAIL ¼ 0 on entry) or to permit G11SAF to proceed onwards as if it had exited
normally from the maximum likelihood search routine (setting IFAIL ¼ �1 on entry). The elements in
A, C, ALPHA and PIGAM may still be good approximations to the maximum likelihood estimates. You
are advised to inspect the elements G to see whether this is confirmed.

9.4 Goodness of Fit Statistic

When n is not very large compared to s a goodness-of-fit statistic should not be calculated as many of
the expected frequencies will then be less than 5.

9.5 First and Second Order Margins

The observed and expected percentages of sample members responding to individual and pairs of items
held in the arrays OBS and EXPP on exit can be converted to observed and expected numbers by
multiplying all elements of these two arrays by n=100:0.

10 Example

A program to fit the logit latent variable model to the following data:

Index Score Pattern Observed Frequency
1 0000 154
2 1000 11
3 0001 42
4 0100 49
5 1001 2
6 1100 10
7 0101 27
8 0010 84
9 1101 10

10 1010 25
11 0011 75
12 0110 129
13 1011 30
14 1110 50
15 0111 181
16 1111 121

––––
Total 1000

10.1 Program Text

Program g11safe

! G11SAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g11saf, nag_wp, x04abf
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: cgetol, chi, rlogl, siglev
Integer :: i, idf, ifail, ip, ip2, iprint, &

ishow, ldcm, ldexpp, ldx, lw, maxit, &
n, nadv, niter, ns

Logical :: chisqr, gprob
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), alpha(:), c(:), cm(:,:), &
exf(:), expp(:,:), g(:), obs(:,:), &
pigam(:), w(:), xl(:), y(:)

Integer, Allocatable :: iob(:), irl(:)
Logical, Allocatable :: x(:,:)

! .. Executable Statements ..
Write (nout,*) ’G11SAF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) ip, n, ns

! Read in control parameters
Read (nin,*) gprob, iprint, cgetol, maxit, chisqr, ishow

! Set the advisory channel to NOUT for monitoring information
If (iprint>0 .Or. ishow/=0) Then

nadv = nout
Call x04abf(iset,nadv)

End If

ip2 = 2*ip
ldx = ns
ldcm = ip2
ldexpp = ip
lw = 4*ip*(ip+16)
Allocate (x(ldx,ip),irl(ns),a(ip),c(ip),alpha(ip),pigam(ip), &

cm(ldcm,ip2),g(ip2),expp(ldexpp,ip),obs(ldexpp,ip),exf(ns),y(ns), &
xl(ns),iob(ns),w(lw))

! Read in data
Read (nin,*)(irl(i),x(i,1:ip),i=1,ns)

! Read in initial values
Read (nin,*) a(1:ip)
Read (nin,*) c(1:ip)

! Fit a latent variable model
ifail = 0
Call g11saf(ip,n,gprob,ns,x,ldx,irl,a,c,iprint,cgetol,maxit,chisqr, &

ishow,niter,alpha,pigam,cm,ldcm,g,expp,ldexpp,obs,exf,y,xl,iob,rlogl, &
chi,idf,siglev,w,lw,ifail)

End Program g11safe

10.2 Program Data

G11SAF Example Program Data
4 1000 16 :: IP,N,NS
F -1 1.0E-4 1000 T 7 :: GPROB,IPRINT,CGETOL,MAXIT,CHISQR,ISHOW

154 F F F F
11 T F F F
42 F F F T
49 F T F F
2 T F F T
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10 T T F F
27 F T F T
84 F F T F
10 T T F T
25 T F T F
75 F F T T

129 F T T F
30 T F T T
50 T T T F

181 F T T T
121 T T T T :: End of IRL,X
0.5 0.5 0.5 0.5 :: A (initial values)
0.0 0.0 0.0 0.0 :: C (initial values)

10.3 Program Results

G11SAF Example Program Results

LOG LIKELIHOOD KERNEL ON EXIT = -0.24039E+04

MAXIMUM LIKELIHOOD ESTIMATES OF ITEM PARAMETERS ARE AS FOLLOWS
--------------------------------------------------------------

ITEM J ALPHA(J) S.E. ALPHA(J,0) PI(J) S.E.
------ -------- ---- ---------- ----- ----

1 1.045 0.148 -1.276 0.218 0.017

2 1.409 0.179 0.424 0.604 0.022

3 2.659 0.525 1.615 0.834 0.036

4 1.122 0.140 -0.062 0.485 0.020

EXPECTED (AND OBSERVED) PERCENTAGE OF CASES PRODUCING
POSITIVE RESPONSES FOR INDIVIDUAL AND PAIRS OF ITEMS
-----------------------------------------------------

ITEM
----

ITEM 1 2 3 4
---- - - - -

1 25.9
(25.9)

2 19.1 57.7
(19.1)(57.7)

3 22.5 48.0 69.4
(22.6)(48.1)(69.5)

4 16.4 33.9 40.6 48.8
(16.3)(33.9)(40.7)(48.8)

OBSERVED EXPECTED THETA COMPONENT RAW SCORE
FREQUENCY FREQUENCY SCORE SCORE SCORE PATTERN
--------- --------- ----- --------- ----- -------

154 147.061 -1.273 0.000 0 FFFF
11 13.444 -0.873 1.045 1 TFFF
42 42.420 -0.846 1.122 1 FFFT
49 54.818 -0.747 1.409 1 FTFF
2 5.886 -0.494 2.167 2 TFFT

10 8.410 -0.399 2.455 2 TTFF
27 27.511 -0.374 2.531 2 FTFT
84 92.062 -0.332 2.659 1 FFTF
10 6.237 -0.019 3.577 3 TTFT
25 21.847 0.027 3.705 2 TFTF
75 73.835 0.055 3.781 2 FFTT

G11SAF NAG Library Manual

G11SAF.12 Mark 26



129 123.766 0.162 4.069 2 FTTF
30 26.899 0.466 4.826 3 TFTT
50 50.881 0.591 5.114 3 TTTF

181 179.564 0.626 5.190 3 FTTT
121 125.360 1.144 6.236 4 TTTT

--------- ---------
1000 1000.000

LIKELIHOOD RATIO GOODNESS OF FIT STATISTIC = 9.027
SIGNIFICANCE LEVEL = 0.251

(BASED ON 7 DEGREES OF FREEDOM)

Value of IFAIL parameter on exit from G11SAF = 0
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NAG Library Routine Document

G11SBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G11SBF is a service routine which may be used prior to calling G11SAF to calculate the frequency
distribution of a set of dichotomous score patterns.

2 Specification

SUBROUTINE G11SBF (IP, N, NS, X, LDX, IRL, IFAIL)

INTEGER IP, N, NS, LDX, IRL(N), IFAIL
LOGICAL X(LDX,IP)

3 Description

When each of n individuals responds to each of p dichotomous variables the data assumes the form of
the matrix X defined below

X ¼

x11 x12 . . . x1p
x21 x22 . . . x2p

..

. ..
. ..

.

xn1 xn2 . . . xnp

26664
37775 ¼

x1
x2
..
.

xn

26664
37775;

where the x take the value of 0 or 1 and xl ¼ xl1; xl2; . . . ; xlp
� �

, for l ¼ 1; 2; . . . ; n, denotes the score
pattern of the lth individual. G11SBF calculates the number of different score patterns, s, and the
frequency with which each occurs. This information can then be passed to G11SAF.

4 References

None.

5 Arguments

1: IP – INTEGER Input

On entry: p, the number of dichotomous variables.

Constraint: IP � 3.

2: N – INTEGER Input

On entry: n, the number of individuals in the sample.

Constraint: N � 7.

3: NS – INTEGER Output

On exit: the number of different score patterns, s.

4: XðLDX; IPÞ – LOGICAL array Input/Output

On entry: Xði; jÞ must be set equal to .TRUE. if xij ¼ 1, and .FALSE. if xij ¼ 0, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; p.
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On exit: the first s rows of X contain the s different score patterns.

5: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G11SBF
is called.

Constraint: LDX � N.

6: IRLðNÞ – INTEGER array Output

On exit: the frequency with which the lth row of X occurs, for l ¼ 1; 2; . . . ; s.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP < 3,
or N < 7,
or LDX < N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Exact.

8 Parallelism and Performance

G11SBF is not threaded in any implementation.
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9 Further Comments

The time taken by G11SBF is small and increases with n.

10 Example

This example counts the frequencies of different score patterns in the following list:

Score Patterns
000
010
111
000
001
000
000
110
001
011

10.1 Program Text

Program g11sbfe

! G11SBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g11sbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, ip, ldx, n, ns

! .. Local Arrays ..
Integer, Allocatable :: irl(:)
Logical, Allocatable :: x(:,:)

! .. Executable Statements ..
Write (nout,*) ’G11SBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ip

ldx = n
Allocate (x(ldx,ip),irl(n))

! Read in data
Read (nin,*)(x(i,1:ip),i=1,n)

ifail = 0
Call g11sbf(ip,n,ns,x,ldx,irl,ifail)

! Display results
Write (nout,*) ’Frequency Score pattern’
Write (nout,*)
Do i = 1, ns

Write (nout,99999) irl(i), x(i,1:ip)
End Do

99999 Format (1X,I5,12X,5(L2))
End Program g11sbfe
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10.2 Program Data

G11SBF Example Program Data
10 3
F F F
F T F
T T T
F F F
F F T
F F F
F F F
T T F
F F T
F T T

10.3 Program Results

G11SBF Example Program Results

Frequency Score pattern

4 F F F
1 F T F
1 T T T
2 F F T
1 T T F
1 F T T
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NAG Library Chapter Contents

G12 – Survival Analysis

G12 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

G12AAF 15 nagf_surviv_kaplanmeier
Computes Kaplan–Meier (product-limit) estimates of survival probabilities

G12ABF 23 nagf_surviv_logrank
Computes rank statistics for comparing survival curves

G12BAF 17 nagf_surviv_coxmodel
Fits Cox's proportional hazard model

G12ZAF 19 nagf_surviv_coxmodel_risksets
Creates the risk sets associated with the Cox proportional hazards model for
fixed covariates
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1 Scope of the Chapter

This chapter is concerned with statistical techniques used in the analysis of survival/reliability/failure
time data.

Other chapters contain routines which are also used to analyse this type of data. Chapter G02 contains
generalized linear models, Chapter G07 contains routines to fit distribution models, and Chapter G08
contains rank based methods.

2 Background to the Problems

2.1 Introduction to Terminology

This chapter is concerned with the analysis on the time, t, to a single event. This type of analysis occurs
commonly in two areas. In medical research it is known as survival analysis and is often the time from
the start of treatment to the occurrence of a particular condition or of death. In engineering it is
concerned with reliability and the analysis of failure times, that is how long a component can be used
until it fails. In this chapter the time t will be referred to as the failure time.

Let the probability density function of the failure time be f tð Þ, then the survivor function, S tð Þ, which
is the probability of surviving to at least time t, is given by

S tð Þ ¼
Z 1
t

f �ð Þ d� ¼ 1� F tð Þ

where F tð Þ is the cumulative density function. The hazard function, � tð Þ, is the probability that failure
occurs at time t given that the individual survived up to time t, and is given by

� tð Þ ¼ f tð Þ=S tð Þ:

The cumulative hazard rate is defined as

� tð Þ ¼
Z t

0
� �ð Þ d�;

hence S tð Þ ¼ e�� tð Þ.

It is common in survival analysis for some of the data to be right-censored. That is, the exact failure
time is not known, only that failure occurred after a known time. This may be due to the experiment
being terminated before all the individuals have failed, or an individual being removed from the
experiment for a reason not connected with effects being tested in the experiment. The presence of
censored data leads to complications in the analysis.

2.2 Rank Statistics

There are a number of different rank statistics described in the literature, the most common being the
logrank statistic. All of these statistics are designed to test the null hypothesis

H0 : S1 tð Þ ¼ S2 tð Þ ¼ � � � ¼ Sg tð Þ; t � �
where Sj is the survivor function for group j, g is the number of groups being tested and � is the largest
observed time, against the alternative hypothesis

H1 : at least one of the Sj tð Þ differ, for some t � � .
A rank statistics T is calculated as follows:

Let ti, for i ¼ 1; 2; . . . ; nd, denote the list of distinct failure times across all g groups and wi a series of
nd weights.

Let dij denote the number of failures at time ti in group j and nij denote the number of observations in
the group j that are known to have not failed prior to time ti, i.e., the size of the risk set for group j at
time ti. If a censored observation occurs at time ti then that observation is treated as if the censoring
had occurred slightly after ti and therefore the observation is counted as being part of the risk set at
time ti.
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Finally let

di ¼
Xg
j¼1
dij and ni ¼

Xg
j¼1
nij:

The (weighted) number of observed failures in the jth group, Oj, is therefore given by

Oj ¼
Xnd
i¼1
widij

and the (weighted) number of expected failures in the jth group, Ej, by

Ej ¼
Xnd
i¼1
wi
nijdi
ni

and if x denote the vector of differences x ¼ O1 � E1; O2 � E2; . . . ; Og � Eg

� �
Vjk ¼

Xnd
i¼1
w2
i

di ni � dið Þ ninikIjk � nijnik
� �
n2i ni � 1ð Þ

� �
where Ijk ¼ 1 if j ¼ k and 0 otherwise, then the rank statistic, T , is calculated as

T ¼ xV �xT

where V � denotes a generalized inverse of the matrix V .

Under the null hypothesis, T � �2
� where the degrees of freedom, �, is taken as the rank of the matrix

V .

The different rank statistics are defined by using different weights in the above calculations, for
example

logrank statistic wi ¼ 1

Wilcoxon rank statistic wi ¼ ni
Tarone–Ware rank statistic wi ¼

ffiffiffiffiffi
ni
p

Peto–Peto rank statistic wi ¼ ~S tið Þ where ~S tið Þ ¼
Q
tj�ti

nj�djþ1
njþ1

2.3 Estimating the Survivor Function and Hazard Plotting

The most common estimate of the survivor function for censored data is the Kaplan–Meier or
product-limit estimate,

Ŝ tð Þ ¼
Yi
j¼1

nj � dj
nj

� �
; ti � t < tiþ1

where dj is the number of failures occurring at time tj out of nj surviving to tj. This is a step function
with steps at each failure time but not at censored times.

As S tð Þ ¼ e�� tð Þ the cumulative hazard rate can be estimated by

�̂ tð Þ ¼ �log Ŝ tð Þ
� �

:

A plot of �̂ tð Þ or log �̂ tð Þ
� �

against t or log tð Þ is often useful in identifying a suitable parametric

model for the survivor times. The following relationships can be used in the identification.

(a) Exponential distribution: � tð Þ ¼ �t.
(b) Weibull distribution: log � tð Þð Þ ¼ log�þ �log tð Þ.
(c) Gompertz distribution: log � tð Þð Þ ¼ log�þ �t.
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(d) Extreme value (smallest) distribution: log � tð Þð Þ ¼ � t� �ð Þ.

2.4 Proportional Hazard Models

Often in the analysis of survival data the relationship between the hazard function and the number of
explanatory variables or covariates is modelled. The covariates may be, for example, group or treatment
indicators or measures of the state of the individual at the start of the observational period. There are
two types of covariate time independent covariates such as those described above which do not change
value during the observational period and time dependent covariates. The latter can be classified as
either external covariates, in which case they are not directly involved with the failure mechanism, or as
internal covariates which are time dependent measurements taken on the individual.

The most common function relating the covariates to the hazard function is the proportional hazard
function

� t; zð Þ ¼ �0 tð Þ exp �Tz
� �

where �0 tð Þ is a baseline hazard function, z is a vector of covariates and � is a vector of unknown
parameters. The assumption is that the covariates have a multiplicative effect on the hazard.

The form of �0 tð Þ can be one of the distributions considered above or a nonparametric function. In the
case of the exponential, Weibull and extreme value distributions the proportional hazard model can be
fitted to censored data using the method described by Aitkin and Clayton (1980) which uses a
generalized linear model with Poisson errors. Other possible models are the gamma distribution and the
log-normal distribution.

2.5 Cox's Proportional Hazard Model

Rather than using a specified form for the hazard function, Cox (1972) considered the case when �0 tð Þ
was an unspecified function of time. To fit such a model assuming fixed covariates a marginal
likelihood is used. For each of the times at which a failure occurred, ti, the set of those who were still
in the study is considered this includes any that were censored at ti. This set is known as the risk set for
time ti and denoted by R tið Þ. Given the risk set the probability that out of all possible sets of di subjects
that could have failed the actual observed di cases failed can be written as

exp sTi �
� �P

exp zTl �
� � ð1Þ

where si is the sum of the covariates of the di individuals observed to fail at ti and the summation is
over all distinct sets of ni individuals drawn from R tið Þ. This leads to a complex likelihood. If there are
no ties in failure times the likelihood reduces to

L ¼
Ynd
i¼1

exp zTi �
� �P

l2R tið Þexp zTl �
� �h i ð2Þ

where nd is the number of distinct failure times. For cases where there are ties the following
approximation, due to Peto [2], can be used:

L ¼
Ynd
i¼1

exp sTi �
� �

P
l2R tið Þexp zTl �

� �h idi : ð3Þ

Having fitted the model an estimate of the baseline survivor function (derived from �0 tð Þ and the
residuals) can be computed to examine the suitability of the model, in particular the proportional hazard
assumption.

3 Recommendations on Choice and Use of Available Routines

The following routines are available.

G12AAF computes Kaplan–Meier estimates of the survivor function and their standard deviations.
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G12ABF performs a comparison of survival curves using rank statistics.

G12BAF fits the Cox proportional hazards model for fixed covariates.

G12ZAF creates the risk sets associated with the Cox proportional hazards model for fixed covariates.

Depending on the rank statistic required, it may be necessary to call G12ABF twice, once to calculate
the number of failures (di) and the total number of observations (ni) at time ti, to facilitate in the
computation of the required weights, and once to calculate the required rank statistics.

The following routines from other chapters may also be useful in the analysis of survival data.

G01MBF computes the reciprocal of Mills' Ratio, that is the hazard rate for the Normal distribution.

G02GCF fits a generalized linear model with Poisson errors (see Aitkin and Clayton (1980)).

G02GDF fits a generalized linear model with gamma errors.

G07BBF fits a Normal distribution to censored data.

G07BEF fits a Weibull distribution to censored data.

G08RBF fits a linear model using likelihood based on ranks to censored data (see Kalbfleisch and
Prentice (1980)).

G11CAF fits a conditional logistic model. When applied to the risk sets generated by G12ZAF it fits the
Cox proportional hazards model by exact marginal likelihood in the presence of tied observations.

4 Functionality Index

Cox's proportional hazard model,
create the risk sets .......................................................................................................... G12ZAF
parameter estimates and other statistics .......................................................................... G12BAF

Survival,
Rank statistics ................................................................................................................. G12ABF

Survivor function ................................................................................................................. G12AAF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References

Aitkin M and Clayton D (1980) The fitting of exponential, Weibull and extreme value distributions to
complex censored survival data using GLIM Appl. Statist. 29 156–163

Cox D R (1972) Regression models in life tables (with discussion) J. Roy. Statist. Soc. Ser. B 34 187–
220

Gross A J and Clark V A (1975) Survival Distributions: Reliability Applications in the Biomedical
Sciences Wiley

Kalbfleisch J D and Prentice R L (1980) The Statistical Analysis of Failure Time Data Wiley
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NAG Library Routine Document

G12AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G12AAF computes the Kaplan–Meier, (or product-limit), estimates of survival probabilities for a
sample of failure times.

2 Specification

SUBROUTINE G12AAF (N, T, IC, FREQ, IFREQ, ND, TP, P, PSIG, IWK, IFAIL)

INTEGER N, IC(N), IFREQ(*), ND, IWK(N), IFAIL
REAL (KIND=nag_wp) T(N), TP(N), P(N), PSIG(N)
CHARACTER(1) FREQ

3 Description

A survivor function, S tð Þ, is the probability of surviving to at least time t with S tð Þ ¼ 1� F tð Þ, where
F tð Þ is the cumulative distribution function of the failure times. The Kaplan–Meier or product limit
estimator provides an estimate of S tð Þ, Ŝ tð Þ, from sample of failure times which may be progressively
right-censored.

Let ti, i ¼ 1; 2; . . . ; nd, be the ordered distinct failure times for the sample of observed failure/censored
times, and let the number of observations in the sample that have not failed by time ti be ni. If a failure
and a loss (censored observation) occur at the same time ti, then the failure is treated as if it had
occurred slightly before time ti and the loss as if it had occurred slightly after ti.

The Kaplan–Meier estimate of the survival probabilities is a step function which in the interval ti to
tiþ1 is given by

Ŝ tð Þ ¼
Yi
j¼1

nj � dj
nj

� �
;

where dj is the number of failures occurring at time tj.

G12AAF computes the Kaplan–Meier estimates and the corresponding estimates of the variances,

v̂ar Ŝ tð Þ
� �

, using Greenwood's formula,

v̂ar Ŝ tð Þ
� �

¼ Ŝ tð Þ2
Xi
j¼1

dj

nj nj � dj
� �:

4 References

Gross A J and Clark V A (1975) Survival Distributions: Reliability Applications in the Biomedical
Sciences Wiley

Kalbfleisch J D and Prentice R L (1980) The Statistical Analysis of Failure Time Data Wiley
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5 Arguments

1: N – INTEGER Input

On entry: the number of failure and censored times given in T.

Constraint: N � 2.

2: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: the failure and censored times; these need not be ordered.

3: ICðNÞ – INTEGER array Input

On entry: ICðiÞ contains the censoring code of the ith observation, for i ¼ 1; 2; . . . ;N.

ICðiÞ ¼ 0
The ith observation is a failure time.

ICðiÞ ¼ 1
The ith observation is right-censored.

Constraint: ICðiÞ ¼ 0 or 1, for i ¼ 1; 2; . . . ;N.

4: FREQ – CHARACTER(1) Input

On entry: indicates whether frequencies are provided for each time point.

FREQ ¼ F
Frequencies are provided for each failure and censored time.

FREQ ¼ S
The failure and censored times are considered as single observations, i.e., a frequency of 1
is assumed.

Constraint: FREQ ¼ F or S .

5: IFREQð�Þ – INTEGER array Input

Note: the dimension of the array IFREQ must be at least N if FREQ ¼ F and at least 1 if
FREQ ¼ S .

On entry: if FREQ ¼ F , IFREQðiÞ must contain the frequency of the ith observation.

If IFREQ ¼ S , a frequency of 1 is assumed and IFREQ is not referenced.

Constraint: if FREQ ¼ F , IFREQðiÞ � 0, for i ¼ 1; 2; . . . ;N.

6: ND – INTEGER Output

On exit: the number of distinct failure times, nd.

7: TPðNÞ – REAL (KIND=nag_wp) array Output

On exit: TPðiÞ contains the ith ordered distinct failure time, ti, for i ¼ 1; 2; . . . ; nd.

8: PðNÞ – REAL (KIND=nag_wp) array Output

On exit: PðiÞ contains the Kaplan–Meier estimate of the survival probability, Ŝ tð Þ, for time TPðiÞ,
for i ¼ 1; 2; . . . ; nd.

9: PSIGðNÞ – REAL (KIND=nag_wp) array Output

On exit: PSIGðiÞ contains an estimate of the standard deviation of PðiÞ, for i ¼ 1; 2; . . . ; nd.
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10: IWKðNÞ – INTEGER array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2.

IFAIL ¼ 2

On entry, FREQ 6¼ F or S .

IFAIL ¼ 3

On entry, ICðiÞ 6¼ 0 or 1, for some i ¼ 1; 2; . . . ;N.

IFAIL ¼ 4

On entry, FREQ ¼ F and IFREQðiÞ < 0, for some i ¼ 1; 2; . . . ;N.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G12AAF is not threaded in any implementation.
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9 Further Comments

If there are no censored observations, Ŝ tð Þ reduces to the ordinary binomial estimate of the probability
of survival at time t.

10 Example

The remission times for a set of 21 leukaemia patients at 18 distinct time points are read in and the
Kaplan–Meier estimate computed and printed. For further details see page 242 of Gross and Clark
(1975).

10.1 Program Text

Program g12aafe

! G12AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g12aaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, lifreq, n, nd
Character (1) :: freq

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:), psig(:), t(:), tp(:)
Integer, Allocatable :: ic(:), ifreq(:), iwk(:)

! .. Executable Statements ..
Write (nout,*) ’G12AAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, freq

If (freq==’F’ .Or. freq==’f’) Then
lifreq = n

Else
lifreq = 0

End If
Allocate (p(n),psig(n),t(n),tp(n),ic(n),ifreq(lifreq),iwk(n))

! Read in the data
If (lifreq==0) Then

Read (nin,*)(t(i),ic(i),i=1,n)
Else

Read (nin,*)(t(i),ic(i),ifreq(i),i=1,n)
End If

! Calculate Kaplan-Meier statistic
ifail = 0
Call g12aaf(n,t,ic,freq,ifreq,nd,tp,p,psig,iwk,ifail)

! Display the results
Write (nout,*) ’ Time Survival Standard’
Write (nout,*) ’ probability deviation’
Write (nout,*)
Write (nout,99999)(tp(i),p(i),psig(i),i=1,nd)

99999 Format (1X,F6.1,F10.3,2X,F10.3)
End Program g12aafe
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10.2 Program Data

G12AAF Example Program Data
18 ’F’
6.0 1 1 6.0 0 3 7.0 0 1 9.0 1 1 10.0 0 1 10.0 1 1

11.0 1 1 13.0 0 1 16.0 0 1 17.0 1 1 19.0 1 1 20.0 1 1
22.0 0 1 23.0 0 1 25.0 1 1 32.0 1 2 34.0 1 1 35.0 1 1

10.3 Program Results

G12AAF Example Program Results

Time Survival Standard
probability deviation

6.0 0.857 0.076
7.0 0.807 0.087

10.0 0.753 0.096
13.0 0.690 0.107
16.0 0.627 0.114
22.0 0.538 0.128
23.0 0.448 0.135
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NAG Library Routine Document

G12ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G12ABF calculates the rank statistics, which can include the logrank test, for comparing survival
curves.

2 Specification

SUBROUTINE G12ABF (N, T, IC, GRP, NGRP, FREQ, IFREQ, WEIGHT, WT, TS, DF,
P, OBSD, EXPT, ND, DI, NI, LDN, IFAIL)

&

INTEGER N, IC(N), GRP(N), NGRP, IFREQ(*), DF, ND, DI(LDN),
NI(LDN), LDN, IFAIL

&

REAL (KIND=nag_wp) T(N), WT(*), TS, P, OBSD(NGRP), EXPT(NGRP)
CHARACTER(1) FREQ, WEIGHT

3 Description

A survivor function, S tð Þ, is the probability of surviving to at least time t. Given a series of n failure or
right-censored times from g groups G12ABF calculates a rank statistic for testing the null hypothesis

H0 : S1 tð Þ ¼ S2 tð Þ ¼ � � � ¼ Sg tð Þ; t � �
where � is the largest observed time, against the alternative hypothesis

H1 : at least one of the Si tð Þ differ, for some t � � .
Let ti, for i ¼ 1; 2; . . . ; nd, denote the list of distinct failure times across all g groups and wi a series of
nd weights. Let dij denote the number of failures at time ti in group j and nij denote the number of
observations in the group j that are known to have not failed prior to time ti, i.e., the size of the risk set
for group j at time ti. If a censored observation occurs at time ti then that observation is treated as if
the censoring had occurred slightly after ti and therefore the observation is counted as being part of the
risk set at time ti. Finally let

di ¼
Xg
j¼1
dij and ni ¼

Xg
j¼1
nij:

The (weighted) number of observed failures in the jth group, Oj, is therefore given by

Oj ¼
Xnd
i¼1
widij

and the (weighted) number of expected failures in the jth group, Ej, by

Ej ¼
Xnd
i¼1
wi
nijdi
ni

:

If x denotes the vector of differences x ¼ O1 � E1; O2 � E2; . . . ; Og � Eg

� �
and

Vjk ¼
Xnd
i¼1
w2
i

di ni � dið Þ ninikIjk � nijnik
� �
n2i ni � 1ð Þ

� �
where Ijk ¼ 1 if j ¼ k and 0 otherwise, then the rank statistic, T , is calculated as

T ¼ xV �xT
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where V � denotes a generalized inverse of the matrix V . Under the null hypothesis, T � �2
� where the

degrees of freedom, �, is taken as the rank of the matrix V .

4 References

Gross A J and Clark V A (1975) Survival Distributions: Reliability Applications in the Biomedical
Sciences Wiley

Kalbfleisch J D and Prentice R L (1980) The Statistical Analysis of Failure Time Data Wiley

Rostomily R C, Duong D, McCormick K, Bland M and Berger M S (1994) Multimodality management
of recurrent adult malignant gliomas: results of a phase II multiagent chemotherapy study and analysis
of cytoreductive surgery Neurosurgery 35 378

5 Arguments

1: N – INTEGER Input

On entry: n, the number of failure and censored times.

Constraint: N � 2.

2: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: the observed failure and censored times; these need not be ordered.

Constraint: TðiÞ 6¼ TðjÞ for at least one i 6¼ j, for i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;N.

3: ICðNÞ – INTEGER array Input

On entry: ICðiÞ contains the censoring code of the ith observation, for i ¼ 1; 2; . . . ;N.

ICðiÞ ¼ 0
the ith observation is a failure time.

ICðiÞ ¼ 1
the ith observation is right-censored.

Constraints:

ICðiÞ ¼ 0 or 1, for i ¼ 1; 2; . . . ;N;
ICðiÞ ¼ 0 for at least one i.

4: GRPðNÞ – INTEGER array Input

On entry: GRPðiÞ contains a flag indicating which group the ith observation belongs in, for
i ¼ 1; 2; . . . ;N.

Constraints:

1 � GRPðiÞ � NGRP, for i ¼ 1; 2; . . . ;N;
each group must have at least one observation.

5: NGRP – INTEGER Input

On entry: g, the number of groups.

Constraint: 2 � NGRP � N.

6: FREQ – CHARACTER(1) Input

On entry: indicates whether frequencies are provided for each time point.

FREQ ¼ F
Frequencies are provided for each failure and censored time.
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FREQ ¼ S
The failure and censored times are considered as single observations, i.e., a frequency of 1
is assumed.

Constraint: FREQ ¼ F or S .

7: IFREQð�Þ – INTEGER array Input

Note: the dimension of the array IFREQ must be at least N if FREQ ¼ F .

On entry: if FREQ ¼ F , IFREQðiÞ must contain the frequency (number of observations) to
which each entry in T corresponds.

If FREQ ¼ S , each entry in T is assumed to correspond to a single observation, i.e., a frequency
of 1 is assumed, and IFREQ is not referenced.

Constraint: if FREQ ¼ F , IFREQðiÞ � 0, for i ¼ 1; 2; . . . ;N.

8: WEIGHT – CHARACTER(1) Input

On entry: indicates if weights are to be used.

WEIGHT ¼ U
All weights are assumed to be 1.

WEIGHT ¼ W
The weights, wi are supplied in WT.

Constraint: WEIGHT ¼ U or W.

9: WTð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array WT must be at least LDN if WEIGHT ¼ W .

On entry: if WEIGHT ¼ W , WT must contain the nd weights, wi, where nd is the number of
distinct failure times.

If WEIGHT ¼ U , WT is not referenced and wi ¼ 1 for all i.

Constraint: if WEIGHT ¼ W , WTðiÞ � 0:0, for i ¼ 1; 2; . . . ; nd.

10: TS – REAL (KIND=nag_wp) Output

On exit: T , the test statistic.

11: DF – INTEGER Output

On exit: �, the degrees of freedom.

12: P – REAL (KIND=nag_wp) Output

On exit: P X � Tð Þ, when X � �2
� , i.e., the probability associated with TS.

13: OBSDðNGRPÞ – REAL (KIND=nag_wp) array Output

On exit: Oi, the observed number of failures in each group.

14: EXPTðNGRPÞ – REAL (KIND=nag_wp) array Output

On exit: Ei, the expected number of failures in each group.

15: ND – INTEGER Output

On exit: nd, the number of distinct failure times.
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16: DIðLDNÞ – INTEGER array Output

On exit: the first ND elements of DI contain di, the number of failures, across all groups, at time
ti.

17: NIðLDNÞ – INTEGER array Output

On exit: the first ND elements of NI contain ni, the size of the risk set, across all groups, at time
ti.

18: LDN – INTEGER Input

On entry: the size of arrays DI and NI. As nd � n, if nd is not known a priori then a value of N
can safely be used for LDN.

Constraint: LDN � nd, the number of unique failure times.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ 2

On entry, all the times in T are the same.

IFAIL ¼ 3

On entry, ICð valueh iÞ ¼ valueh i.
Constraint: ICðiÞ ¼ 0 or 1.

IFAIL ¼ 4

On entry, GRPð valueh iÞ ¼ valueh i and NGRP ¼ valueh i.
Constraint: 1 � GRPðiÞ � NGRP.

IFAIL ¼ 5

On entry, NGRP ¼ valueh i and N ¼ valueh i.
Constraint: 2 � NGRP � N.

IFAIL ¼ 6

On entry, FREQ had an illegal value.
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IFAIL ¼ 7

On entry, IFREQð valueh iÞ ¼ valueh i.
Constraint: IFREQðiÞ � 0.

IFAIL ¼ 8

On entry, WEIGHT had an illegal value.

IFAIL ¼ 9

On entry, WTð valueh iÞ ¼ valueh i.
Constraint: WTðiÞ � 0:0.

IFAIL ¼ 11

The degrees of freedom are zero.

IFAIL ¼ 18

On entry, LDN ¼ valueh i.
Constraint: LDN � valueh i.

IFAIL ¼ 31

On entry, all observations are censored.

IFAIL ¼ 41

On entry, group valueh i has no observations.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G12ABF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G12ABF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The use of different weights in the formula given in Section 3 leads to different rank statistics being
calculated. The logrank test has wi ¼ 1, for all i, which is the equivalent of calling G12ABF when
WEIGHT ¼ U . Other rank statistics include Wilcoxon (wi ¼ ni), Tarone–Ware (wi ¼

ffiffiffiffiffi
ni
p

) and Peto–

Peto (wi ¼ ~S tið Þ where ~S tið Þ ¼
Q
tj�ti

nj�djþ1
njþ1 ) amongst others.

Calculation of any test, other than the logrank test, will probably require G12ABF to be called twice,
once to calculate the values of ni and di to facilitate in the computation of the required weights, and
once to calculate the test statistic itself.

10 Example

This example compares the time to death for 51 adults with two different types of recurrent gliomas
(brain tumour), astrocytoma and glioblastoma, using a logrank test. For further details on the data see
Rostomily et al. (1994).

10.1 Program Text

Program g12abfe

! G12ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g12abf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, ts
Integer :: df, i, ifail, ldn, lfreq, lwt, n, &

nd, ngrp
Character (1) :: freq, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: expt(:), obsd(:), t(:), wt(:)
Integer, Allocatable :: di(:), grp(:), ic(:), ifreq(:), &

ni(:)
! .. Executable Statements ..

Write (nout,*) ’G12ABF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, ngrp, freq, weight

If (freq==’F’ .Or. freq==’f’) Then
lfreq = n

Else
lfreq = 0

End If
If (weight==’W’ .Or. weight==’w’) Then

lwt = n
Else

lwt = 0
End If
ldn = n
Allocate (t(n),ic(n),grp(n),ifreq(lfreq),obsd(ngrp),expt(ngrp),di(ldn), &

ni(ldn),wt(lwt))

! Read in data
If (lfreq==0) Then
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Read (nin,*)(t(i),ic(i),grp(i),i=1,n)
Else

Read (nin,*)(t(i),ic(i),grp(i),ifreq(i),i=1,n)
End If

! Calculate the statistic
ifail = 0
Call g12abf(n,t,ic,grp,ngrp,freq,ifreq,weight,wt,ts,df,p,obsd,expt,nd, &

di,ni,ldn,ifail)

! Display results
Write (nout,99999) ’Observed’, ’Expected’
Write (nout,99998)(’Group’,i,obsd(i),expt(i),i=1,ngrp)
Write (nout,*)
Write (nout,99996) ’No. Unique Failure Times = ’, nd
Write (nout,*)
Write (nout,99997) ’Test Statistic = ’, ts
Write (nout,99996) ’Degrees of Freedom = ’, df
Write (nout,99997) ’p-value = ’, p

99999 Format (11X,A,2X,A)
99998 Format (1X,A,1X,I1,1X,F8.2,2X,F8.2)
99997 Format (1X,A,1X,F8.4)
99996 Format (1X,A,1X,I3)

End Program g12abfe

10.2 Program Data

G12ABF Example Program Data
51 2 ’S’ ’U’ :: N, NGRP, FREQ, WEIGHT

6.0 0 1
13.0 0 1
21.0 0 1
30.0 0 1
31.0 1 1
37.0 0 1
38.0 0 1
47.0 1 1
49.0 0 1
50.0 0 1
63.0 0 1
79.0 0 1
80.0 1 1
82.0 1 1
82.0 1 1
86.0 0 1
98.0 0 1

149.0 1 1
202.0 0 1
219.0 0 1
10.0 0 2
10.0 0 2
12.0 0 2
13.0 0 2
14.0 0 2
15.0 0 2
16.0 0 2
17.0 0 2
18.0 0 2
20.0 0 2
24.0 0 2
24.0 0 2
25.0 0 2
28.0 0 2
30.0 0 2
33.0 0 2
34.0 1 2
35.0 0 2
37.0 0 2
40.0 0 2
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40.0 0 2
40.0 1 2
46.0 0 2
48.0 0 2
70.0 1 2
76.0 0 2
81.0 0 2
82.0 0 2
91.0 0 2

112.0 0 2
181.0 0 2 :: T,IC,GRP

10.3 Program Results

G12ABF Example Program Results

Observed Expected
Group 1 14.00 22.48
Group 2 28.00 19.52

No. Unique Failure Times = 36

Test Statistic = 7.4966
Degrees of Freedom = 1
p-value = 0.0062
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NAG Library Routine Document

G12BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G12BAF returns parameter estimates and other statistics that are associated with the Cox proportional
hazards model for fixed covariates.

2 Specification

SUBROUTINE G12BAF (OFFSET, N, M, NS, Z, LDZ, ISZ, IP, T, IC, OMEGA, ISI,
DEV, B, SE, SC, COV, RES, ND, TP, SUR, NDMAX, TOL,
MAXIT, IPRINT, WK, IWK, IFAIL)

&
&

INTEGER N, M, NS, LDZ, ISZ(M), IP, IC(N), ISI(*), ND, NDMAX,
MAXIT, IPRINT, IWK(2*N), IFAIL

&

REAL (KIND=nag_wp) Z(LDZ,M), T(N), OMEGA(*), DEV, B(IP), SE(IP),
SC(IP), COV(IP*(IP+1)/2), RES(N), TP(NDMAX),
SUR(NDMAX,*), TOL, WK(IP*(IP+9)/2+N)

&
&

CHARACTER(1) OFFSET

3 Description

The proportional hazard model relates the time to an event, usually death or failure, to a number of
explanatory variables known as covariates. Some of the observations may be right-censored, that is the
exact time to failure is not known, only that it is greater than a known time.

Let ti, for i ¼ 1; 2; . . . ; n, be the failure time or censored time for the ith observation with the vector of
p covariates zi. It is assumed that censoring and failure mechanisms are independent. The hazard
function, � t; zð Þ, is the probability that an individual with covariates z fails at time t given that the
individual survived up to time t. In the Cox proportional hazards model (see Cox (1972)) � t; zð Þ is of
the form:

� t; zð Þ ¼ �0 tð Þ exp zT� þ !
� �

where �0 is the base-line hazard function, an unspecified function of time, � is a vector of unknown
arguments and ! is a known offset.

Assuming there are ties in the failure times giving nd < n distinct failure times, t 1ð Þ < � � � < t ndð Þ such
that di individuals fail at t ið Þ, it follows that the marginal likelihood for � is well approximated (see
Kalbfleisch and Prentice (1980)) by:

L ¼
Ynd
i¼1

exp sTi � þ !i
� �

P
l2R t ið Þð Þexp zTl � þ !l

� �h idi ð1Þ

where si is the sum of the covariates of individuals observed to fail at t ið Þ and R t ið Þ
� �

is the set of
individuals at risk just prior to t ið Þ, that is, it is all individuals that fail or are censored at time t ið Þ along
with all individuals that survive beyond time t ið Þ. The maximum likelihood estimates (MLEs) of �,

given by �̂, are obtained by maximizing (1) using a Newton–Raphson iteration technique that includes
step halving and utilizes the first and second partial derivatives of (1) which are given by equations (2)
and (3) below:

Uj �ð Þ ¼
@ lnL

@�j
¼
Xnd
i¼1

sji � di�ji �ð Þ
� �

¼ 0 ð2Þ

for j ¼ 1; 2; . . . ; p, where sji is the jth element in the vector si and
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�ji �ð Þ ¼

P
l2R t ið Þð Þzjlexp zTl � þ !l

� �P
l2R t ið Þð Þexp zTl � þ !l

� � :
Similarly,

Ihj �ð Þ ¼ �
@2 lnL

@�h@�j
¼
Xnd
i¼1
di�hji ð3Þ

where

�hji ¼

P
l2R t ið Þð Þzhlzjl exp zTl � þ !l

� �P
l2R t ið Þð Þ exp zTl � þ !l

� � � �hi �ð Þ�ji �ð Þ; h; j ¼ 1; . . . ; p:

Uj �ð Þ is the jth component of a score vector and Ihj �ð Þ is the h; jð Þ element of the observed

information matrix I �ð Þ whose inverse I �ð Þ�1 ¼ Ihj �ð Þ
� ��1

gives the variance-covariance matrix of �.

It should be noted that if a covariate or a linear combination of covariates is monotonically increasing
or decreasing with time then one or more of the �j's will be infinite.

If �0 tð Þ varies across � strata, where the number of individuals in the kth stratum is nk , for

k ¼ 1; 2; . . . ; � with n ¼
X�
k¼1

nk, then rather than maximizing (1) to obtain �̂, the following marginal

likelihood is maximized:

L ¼
Y�
k¼1
Lk; ð4Þ

where Lk is the contribution to likelihood for the nk observations in the kth stratum treated as a single
sample in (1). When strata are included the covariate coefficients are constant across strata but there is a
different base-line hazard function �0.

The base-line survivor function associated with a failure time t ið Þ, is estimated as exp �Ĥ t ið Þ
� �� �

, where

Ĥ t ið Þ
� �

¼
X
t jð Þ�t ið Þ

diP
l2R t jð Þð Þexp zTl �̂ þ !l

� �
0B@

1CA; ð5Þ

where di is the number of failures at time t ið Þ. The residual for the lth observation is computed as:

r tlð Þ ¼ Ĥ tlð Þ exp zTl �̂ þ !l
� �

where Ĥ tlð Þ ¼ Ĥ t ið Þ
� �

; t ið Þ � tl < t iþ1ð Þ. The deviance is defined as �2� (logarithm of marginal
likelihood). There are two ways to test whether individual covariates are significant: the differences
between the deviances of nested models can be compared with the appropriate �2-distribution; or, the
asymptotic normality of the parameter estimates can be used to form z tests by dividing the estimates
by their standard errors or the score function for the model under the null hypothesis can be used to
form z tests.

4 References

Cox D R (1972) Regression models in life tables (with discussion) J. Roy. Statist. Soc. Ser. B 34 187–
220

Gross A J and Clark V A (1975) Survival Distributions: Reliability Applications in the Biomedical
Sciences Wiley

Kalbfleisch J D and Prentice R L (1980) The Statistical Analysis of Failure Time Data Wiley
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5 Arguments

1: OFFSET – CHARACTER(1) Input

On entry: indicates if an offset is to be used.

OFFSET ¼ Y
An offset must be included in OMEGA.

OFFSET ¼ N
No offset is included in the model.

Constraint: OFFSET ¼ Y or N .

2: N – INTEGER Input

On entry: n, the number of data points.

Constraint: N � 2.

3: M – INTEGER Input

On entry: the number of covariates in array Z.

Constraint: M � 1.

4: NS – INTEGER Input

On entry: the number of strata. If NS > 0 then the stratum for each observation must be supplied
in ISI.

Constraint: NS � 0.

5: ZðLDZ;MÞ – REAL (KIND=nag_wp) array Input

On entry: the ith row must contain the covariates which are associated with the ith failure time
given in T.

6: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which G12BAF
is called.

Constraint: LDZ � N.

7: ISZðMÞ – INTEGER array Input

On entry: indicates which subset of covariates is to be included in the model.

ISZðjÞ � 1
The jth covariate is included in the model.

ISZðjÞ ¼ 0
The jth covariate is excluded from the model and not referenced.

Constraint: ISZðjÞ � 0 and at least one and at most n0 � 1 elements of ISZ must be nonzero
where n0 is the number of observations excluding any with zero value of ISI.

8: IP – INTEGER Input

On entry: the number of covariates included in the model as indicated by ISZ.

Constraints:

IP � 1;
IP ¼ number of nonzero values of ISZ.
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9: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of n failure censoring times.

10: ICðNÞ – INTEGER array Input

On entry: the status of the individual at time t given in T.

ICðiÞ ¼ 0
The ith individual has failed at time TðiÞ.

ICðiÞ ¼ 1
The ith individual has been censored at time TðiÞ.

Constraint: ICðiÞ ¼ 0 or 1, for i ¼ 1; 2; . . . ;N.

11: OMEGAð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array OMEGA must be at least N if OFFSET ¼ Y , and at least 1
otherwise.

On entry: if OFFSET ¼ Y , the offset, !i, for i ¼ 1; 2; . . . ;N. Otherwise OMEGA is not
referenced.

12: ISIð�Þ – INTEGER array Input

Note: the dimension of the array ISI must be at least N if NS > 0, and at least 1 otherwise.

On entry: if NS > 0, the stratum indicators which also allow data points to be excluded from the
analysis.

If NS ¼ 0, ISI is not referenced.

ISIðiÞ ¼ k
The ith data point is in the kth stratum, where k ¼ 1; 2; . . . ;NS.

ISIðiÞ ¼ 0
The ith data point is omitted from the analysis.

Constraint: if NS > 0, 0 � ISIðiÞ � NS and more than IP values of ISIðiÞ > 0, for i ¼ 1; 2; . . . ;N.

13: DEV – REAL (KIND=nag_wp) Output

On exit: the deviance, that is �2� (maximized log marginal likelihood).

14: BðIPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: initial estimates of the covariate coefficient arguments �. BðjÞ must contain the initial
estimate of the coefficient of the covariate in Z corresponding to the jth nonzero value of ISZ.

Suggested value: in many cases an initial value of zero for BðjÞ may be used. For other
suggestions see Section 9.

On exit: BðjÞ contains the estimate �̂i, the coefficient of the covariate stored in the ith column of
Z where i is the jth nonzero value in the array ISZ.

15: SEðIPÞ – REAL (KIND=nag_wp) array Output

On exit: SEðjÞ is the asymptotic standard error of the estimate contained in BðjÞ and score
function in SCðjÞ, for j ¼ 1; 2; . . . ; IP.

16: SCðIPÞ – REAL (KIND=nag_wp) array Output

On exit: SCðjÞ is the value of the score function, Uj �ð Þ, for the estimate contained in BðjÞ.
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17: COVðIP� IPþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Output

On exit: the variance-covariance matrix of the parameter estimates in B stored in packed form by
column, i.e., the covariance between the parameter estimates given in BðiÞ and BðjÞ, j � i, is
stored in COVðj j� 1ð Þ=2þ iÞ.

18: RESðNÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals, r tlð Þ, for l ¼ 1; 2; . . . ;N.

19: ND – INTEGER Output

On exit: the number of distinct failure times.

20: TPðNDMAXÞ – REAL (KIND=nag_wp) array Output

On exit: TPðiÞ contains the ith distinct failure time, for i ¼ 1; 2; . . . ;ND.

21: SURðNDMAX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array SUR must be at least max NS; 1ð Þ.
On exit: if NS ¼ 0, SURði; 1Þ contains the estimated survival function for the ith distinct failure
time.

If NS > 0, SURði; kÞ contains the estimated survival function for the ith distinct failure time in
the kth stratum.

22: NDMAX – INTEGER Input

On entry: the dimension of the array TP and the first dimension of the array SUR as declared in
the (sub)program from which G12BAF is called.

Constraint: NDMAX � the number of distinct failure times: This is returned in ND.

23: TOL – REAL (KIND=nag_wp) Input

On entry: indicates the accuracy required for the estimation. Convergence is assumed when the
decrease in deviance is less than TOL� 1:0þ CurrentDevianceð Þ. This corresponds approxi-
mately to an absolute precision if the deviance is small and a relative precision if the deviance is
large.

Constraint: TOL � 10�machine precision.

24: MAXIT – INTEGER Input

On entry: the maximum number of iterations to be used for computing the estimates. If MAXIT
is set to 0 then the standard errors, score functions, variance-covariance matrix and the survival
function are computed for the input value of � in B but � is not updated.

Constraint: MAXIT � 0.

25: IPRINT – INTEGER Input

On entry: indicates if the printing of information on the iterations is required.

IPRINT � 0
No printing.

IPRINT � 1
The deviance and the current estimates are printed every IPRINT iterations. When printing
occurs the output is directed to the current advisory message unit (see X04ABF).
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26: WKðIP� IPþ 9ð Þ=2þ NÞ – REAL (KIND=nag_wp) array Workspace

27: IWKð2� NÞ – INTEGER array Workspace

28: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, OFFSET 6¼ Y or N ,
or M < 1,
or N < 2,
or NS < 0,
or IP < 1,
or LDZ < N,
or TOL < 10�machine precision,
or MAXIT < 0.

IFAIL ¼ 2

On entry, ISZðiÞ < 0 for some i,
or the value of IP is incompatible with ISZ,
or ICðiÞ 6¼ 1 or 0.
or ISIðiÞ < 0 or ISIðiÞ > NS,
or number of values of ISZðiÞ > 0 is greater than or equal to n0, the number of

observations excluding any with ISIðiÞ ¼ 0,
or all observations are censored, i.e., ICðiÞ ¼ 1 for all i,
or NDMAX is too small.

IFAIL ¼ 3

The matrix of second partial derivatives is singular. Try different starting values or include fewer
covariates.

IFAIL ¼ 4

Overflow has been detected. Try using different starting values.

IFAIL ¼ 5

Convergence has not been achieved in MAXIT iterations. The progress toward convergence can
be examined by using a nonzero value of IPRINT. Any non-convergence may be due to a linear
combination of covariates being monotonic with time.

Full results are returned.
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IFAIL ¼ 6

In the current iteration 10 step halvings have been performed without decreasing the deviance
from the previous iteration. Convergence is assumed.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy is specified by TOL.

8 Parallelism and Performance

G12BAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G12BAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G12BAF uses mean centering which involves subtracting the means from the covariables prior to
computation of any statistics. This helps to minimize the effect of outlying observations and accelerates
convergence.

If the initial estimates are poor then there may be a problem with overflow in calculating exp �Tzið Þ or
there may be non-convergence. Reasonable estimates can often be obtained by fitting an exponential
model using G02GCF.

10 Example

The data are the remission times for two groups of leukemia patients (see page 242 of Gross and Clark
(1975)). A dummy variable indicates which group they come from. An initial estimate is computed
using the exponential model and then the Cox proportional hazard model is fitted and parameter
estimates and the survival function are printed.
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10.1 Program Text

Program g12bafe

! G12BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02gcf, g12baf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dev, tol
Integer :: i, idf, ifail, ip, ip1, iprint, &

irank, ldv, ldz, lisi, lomega, m, &
maxit, n, nd, ndmax, ns

Character (1) :: offset
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:), cov(:), omega(:), res(:), &
sc(:), se(:), sur(:,:), t(:), tp(:), &
v(:,:), wk(:), y(:), z(:,:)

Integer, Allocatable :: ic(:), isi(:), isz(:), iwk(:)
! .. Intrinsic Procedures ..

Intrinsic :: count, eoshift, log, max, real
! .. Executable Statements ..

Write (nout,*) ’G12BAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n, m, ns, maxit, iprint, offset

If (offset==’Y’ .Or. offset==’y’) Then
lomega = n

Else
lomega = 0

End If
If (ns>0) Then

lisi = n
Else

lisi = 0
End If
ldz = n
ndmax = n
ldv = n
Allocate (z(ldz,m),isz(m),t(n),ic(n),omega(lomega),isi(lisi),res(n), &

tp(ndmax),sur(ndmax,max(ns,1)),iwk(2*n),y(n))

! Read in the data
If (ns>0) Then

If (lomega==0) Then
Read (nin,*)(t(i),z(i,1:m),ic(i),isi(i),i=1,n)

Else
Read (nin,*)(t(i),z(i,1:m),ic(i),isi(i),omega(i),i=1,n)

End If
Else

If (lomega==0) Then
Read (nin,*)(t(i),z(i,1:m),ic(i),i=1,n)

Else
Read (nin,*)(t(i),z(i,1:m),ic(i),omega(i),i=1,n)

End If
End If

! Read in the variable indication
Read (nin,*) isz(1:m)
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! Calculate number of parameters in the model
ip = count(isz(1:m)>0)

! We are fitting a mean in the exponential model, so arrays used by G02GCF
! need to be based on IP + 1

ip1 = ip + 1
Allocate (b(ip1),se(ip1),sc(ip),cov(ip1*(ip1+1)/2),wk(ip1*(ip1+ &

9)/2+n),v(ldv,ip1+7))

! Specify tolerance to use
tol = 5.0E-5_nag_wp

! Get initial estimates by fitting an exponential model
Do i = 1, n

y(i) = 1.0E0_nag_wp - real(ic(i),kind=nag_wp)
v(i,7) = log(t(i))

End Do

! Fit exponential model
ifail = -1
Call g02gcf(’L’,’M’,’Y’,’U’,n,z,ldz,m,isz,ip1,y,res,0.0E0_nag_wp,dev, &

idf,b,irank,se,cov,v,ldv,tol,maxit,0,0.0E0_nag_wp,wk,ifail)
If (ifail/=0) Then

If (ifail<5) Then
Go To 100

End If
End If

! Check exponential model was of full rank
If (irank/=ip1) Then

Write (nout,*) ’ WARNING: covariates not of full rank’
End If

! Move all parameter estimates down one so as to drop the parameter
! estimate for the mean.

b(1:ip1) = eoshift(b(1:ip1),1)

! Fit Cox proportional hazards model
ifail = -1
Call g12baf(’No-offset’,n,m,ns,z,ldz,isz,ip,t,ic,omega,isi,dev,b,se,sc, &

cov,res,nd,tp,sur,ndmax,tol,maxit,iprint,wk,iwk,ifail)
If (ifail/=0) Then

If (ifail<5) Then
Go To 100

End If
End If

! Display results
Write (nout,*) ’ Parameter Estimate’, ’ Standard Error’
Write (nout,*)
Write (nout,99999)(i,b(i),se(i),i=1,ip)
Write (nout,*)
Write (nout,99998) ’ Deviance = ’, dev
Write (nout,*)
Write (nout,*) ’ Time Survivor Function’
Write (nout,*)
ns = max(ns,1)
Write (nout,99997)(tp(i),sur(i,1:ns),i=1,nd)

100 Continue

99999 Format (I6,10X,F8.4,10X,F8.4)
99998 Format (A,E13.4)
99997 Format (F10.0,5X,F8.4)

End Program g12bafe
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10.2 Program Data

G12BAF Example Program Data
42 1 0 20 0 ’N’ : N,M,NS,MAXIT,IPRINT,OFFSET
1 0 0
1 0 0
2 0 0
2 0 0
3 0 0
4 0 0
4 0 0
5 0 0
5 0 0
8 0 0
8 0 0
8 0 0
8 0 0

11 0 0
11 0 0
12 0 0
12 0 0
15 0 0
17 0 0
22 0 0
23 0 0
6 1 0
6 1 0
6 1 0
7 1 0

10 1 0
13 1 0
16 1 0
22 1 0
23 1 0
6 1 1
9 1 1

10 1 1
11 1 1
17 1 1
19 1 1
20 1 1
25 1 1
32 1 1
32 1 1
34 1 1
35 1 1 : T,Z,IC

1 : ISZ
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10.3 Program Results

G12BAF Example Program Results

Parameter Estimate Standard Error

1 -1.5091 0.4096

Deviance = 0.1728E+03

Time Survivor Function

1. 0.9640
2. 0.9264
3. 0.9065
4. 0.8661
5. 0.8235
6. 0.7566
7. 0.7343
8. 0.6506

10. 0.6241
11. 0.5724
12. 0.5135
13. 0.4784
15. 0.4447
16. 0.4078
17. 0.3727
22. 0.2859
23. 0.1908
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NAG Library Routine Document

G12ZAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G12ZAF creates the risk sets associated with the Cox proportional hazards model for fixed covariates.

2 Specification

SUBROUTINE G12ZAF (N, M, NS, Z, LDZ, ISZ, IP, T, IC, ISI, NUM, IXS, NXS,
X, MXN, ID, ND, TP, IRS, IFAIL)

&

INTEGER N, M, NS, LDZ, ISZ(M), IP, IC(N), ISI(*), NUM,
IXS(MXN), NXS, MXN, ID(MXN), ND, IRS(N), IFAIL

&

REAL (KIND=nag_wp) Z(LDZ,M), T(N), X(MXN,IP), TP(N)

3 Description

The Cox proportional hazards model (see Cox (1972)) relates the time to an event, usually death or
failure, to a number of explanatory variables known as covariates. Some of the observations may be
right-censored, that is, the exact time to failure is not known, only that it is greater than a known time.

Let ti, for i ¼ 1; 2; . . . ; n, be the failure time or censored time for the ith observation with the vector of
p covariates zi. It is assumed that censoring and failure mechanisms are independent. The hazard
function, � t; zð Þ, is the probability that an individual with covariates z fails at time t given that the
individual survived up to time t. In the Cox proportional hazards model, � t; zð Þ is of the form

� t; zð Þ ¼ �0 tð Þ exp zT�
� �

;

where �0 is the base-line hazard function, an unspecified function of time, and � is a vector of unknown
arguments. As �0 is unknown, the arguments � are estimated using the conditional or marginal
likelihood. This involves considering the covariate values of all subjects that are at risk at the time
when a failure occurs. The probability that the subject that failed had their observed set of covariate
values is computed.

The risk set at a failure time consists of those subjects that fail or are censored at that time and those
who survive beyond that time. As risk sets are computed for every distinct failure time, it should be
noted that the combined risk sets may be considerably larger than the original data. If the data can be
considered as coming from different strata such that �0 varies from strata to strata but � remains
constant, then G12ZAF will return a factor that indicates to which risk set/strata each member of the
risk sets belongs rather than just to which risk set.

Given the risk sets the Cox proportional hazards model can then be fitted using a Poisson generalized
linear model (G02GCF with G04EAF to compute dummy variables) using Breslow's approximation for
ties (see Breslow (1974)). This will give the same fit as G12BAF. If the exact treatment of ties in
discrete time is required, as given by Cox (1972), then the model is fitted as a conditional logistic
model using G11CAF.

4 References

Breslow N E (1974) Covariate analysis of censored survival data Biometrics 30 89–99

Cox D R (1972) Regression models in life tables (with discussion) J. Roy. Statist. Soc. Ser. B 34 187–
220

Gross A J and Clark V A (1975) Survival Distributions: Reliability Applications in the Biomedical
Sciences Wiley
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of data points.

Constraint: N � 2.

2: M – INTEGER Input

On entry: the number of covariates in array Z.

Constraint: M � 1.

3: NS – INTEGER Input

On entry: the number of strata. If NS > 0 then the stratum for each observation must be supplied
in ISI.

Constraint: NS � 0.

4: ZðLDZ;MÞ – REAL (KIND=nag_wp) array Input

On entry: the ith row must contain the covariates which are associated with the ith failure time
given in T.

5: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which G12ZAF
is called.

Constraint: LDZ � N.

6: ISZðMÞ – INTEGER array Input

On entry: indicates which subset of covariates are to be included in the model.

ISZðjÞ � 1
The jth covariate is included in the model.

ISZðjÞ ¼ 0
The jth covariate is excluded from the model and not referenced.

Constraint: ISZðjÞ � 0 and at least one value must be nonzero.

7: IP – INTEGER Input

On entry: p, the number of covariates included in the model as indicated by ISZ.

Constraint: IP ¼ the number of nonzero values of ISZ.

8: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of n failure censoring times.

9: ICðNÞ – INTEGER array Input

On entry: the status of the individual at time t given in T.

ICðiÞ ¼ 0
Indicates that the ith individual has failed at time TðiÞ.

ICðiÞ ¼ 1
Indicates that the ith individual has been censored at time TðiÞ.

Constraint: ICðiÞ ¼ 0 or 1, for i ¼ 1; 2; . . . ;N.
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10: ISIð�Þ – INTEGER array Input

Note: the dimension of the array ISI must be at least N if NS > 0, and at least 1 otherwise.

On entry: if NS > 0, the stratum indicators which also allow data points to be excluded from the
analysis.

If NS ¼ 0, ISI is not referenced.

ISIðiÞ ¼ k
Indicates that the ith data point is in the kth stratum, where k ¼ 1; 2; . . . ;NS.

ISIðiÞ ¼ 0
Indicates that the ith data point is omitted from the analysis.

Constraint: if NS > 0, 0 � ISIðiÞ � NS, for i ¼ 1; 2; . . . ;N.

11: NUM – INTEGER Output

On exit: the number of values in the combined risk sets.

12: IXSðMXNÞ – INTEGER array Output

On exit: the factor giving the risk sets/strata for the data in X and ID.

If NS ¼ 0 or 1, IXSðiÞ ¼ l for members of the lth risk set.

If NS > 1, IXSðiÞ ¼ j� 1ð Þ � NDþ l for the observations in the lth risk set for the jth strata.

13: NXS – INTEGER Output

On exit: the number of levels for the risk sets/strata factor given in IXS.

14: XðMXN; IPÞ – REAL (KIND=nag_wp) array Output

On exit: the first NUM rows contain the values of the covariates for the members of the risk sets.

15: MXN – INTEGER Input

On entry: the first dimension of the array X and the dimension of the arrays IXS and ID as
declared in the (sub)program from which G12ZAF is called.

Constraint: MXN must be sufficiently large for the arrays to contain the expanded risk sets. The
size will depend on the pattern of failures times and censored times. The minimum value will be
returned in NUM unless the routine exits with IFAIL ¼ 1 or 2.

16: IDðMXNÞ – INTEGER array Output

On exit: indicates if the member of the risk set given in X failed.

IDðiÞ ¼ 1 if the member of the risk set failed at the time defining the risk set and IDðiÞ ¼ 0
otherwise.

17: ND – INTEGER Output

On exit: the number of distinct failure times, i.e., the number of risk sets.

18: TPðNÞ – REAL (KIND=nag_wp) array Output

On exit: TPðiÞ contains the ith distinct failure time, for i ¼ 1; 2; . . . ;ND.

19: IRSðNÞ – INTEGER array Output

On exit: indicates rows in X and elements in IXS and ID corresponding to the risk sets. The first
risk set corresponding to failure time TPð1Þ is given by rows 1 to IRSð1Þ. The lth risk set is
given by rows IRSðl � 1Þ þ 1 to IRSðlÞ, for l ¼ 1; 2; . . . ;ND.
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20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1,
or N < 2,
or NS < 0,
or LDZ < N.

IFAIL ¼ 2

On entry, ISZðiÞ < 0 for some i,
or the value of IP is incompatible with ISZ,
or ICðiÞ 6¼ 1 or 0.
or NS > 0 and ISIðiÞ < 0,
or NS > 1 and ISIðiÞ > NS.

IFAIL ¼ 3

MXN is too small, the minimum value is returned in NUM.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

G12ZAF is not threaded in any implementation.

9 Further Comments

When there are strata present, i.e., NS > 1, not all the NXS groups may be present.

10 Example

The data are the remission times for two groups of leukemia patients (see page 242 of Gross and Clark
(1975)). A dummy variable indicates which group they come from. The risk sets are computed using
G12ZAF and the Cox's proportional hazard model is fitted using G11CAF.

10.1 Program Text

Program g12zafe

! G12ZAF Example Program Text.

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g11caf, g12zaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dev, tol
Integer :: cm, i, ifail, ip, iprint, ldz, lisi, &

lwk, m, maxit, mxn, n, nd, ns, num, &
nxs

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), sc(:), se(:), t(:), &

tp(:), wk(:), x(:,:), z(:,:)
Integer, Allocatable :: cnt(:), ic(:), id(:), irs(:), &

isi(:), isz(:), ixs(:), nca(:), &
nct(:)

! .. Intrinsic Procedures ..
Intrinsic :: count, maxval

! .. Executable Statements ..
Write (nout,*) ’G12ZAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n, m, ns, maxit, iprint

If (ns>0) Then
lisi = n

Else
lisi = 0

End If

ldz = n
Allocate (z(ldz,m),isz(m),t(n),ic(n),isi(lisi),tp(n),irs(n))

! Read in the data
If (ns>0) Then

Read (nin,*)(t(i),z(i,1:m),ic(i),isi(i),i=1,n)
Else

Read (nin,*)(t(i),z(i,1:m),ic(i),i=1,n)
End If
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! Read in the variable indicator
Read (nin,*) isz(1:m)

! Calculate number of parameters in the model
ip = count(isz(1:m)>0)

! Call the routine once to calculate size of MXN ...

! Dummy allocation
mxn = 0
Allocate (x(mxn,ip),id(mxn),ixs(mxn))

! Call G12ZAF to calculate MXN
ifail = 1
Call g12zaf(n,m,ns,z,ldz,isz,ip,t,ic,isi,num,ixs,nxs,x,mxn,id,nd,tp,irs, &

ifail)
If (ifail/=0 .And. ifail/=3) Then

Go To 100
End If

! Required size for MXN is returned in NUM, so reallocate memory
mxn = num
Deallocate (x,id,ixs)
Allocate (x(mxn,ip),id(mxn),ixs(mxn))

! Create risk set
ifail = 0
Call g12zaf(n,m,ns,z,ldz,isz,ip,t,ic,isi,num,ixs,nxs,x,mxn,id,nd,tp,irs, &

ifail)

Allocate (cnt(nxs),b(ip),se(ip),sc(ip),nca(nxs),nct(nxs),cov(ip*(ip+ &
1)/2))

! Set tolerance
tol = 1.0E-5_nag_wp

! Read in initial parameter estimates
Read (nin,*) b(1:ip)

! Count the number of observations in each stratum
cnt(1:nxs) = 0
Do i = 1, num

cnt(ixs(i)) = cnt(ixs(i)) + 1
End Do
cm = maxval(cnt(1:nxs))

lwk = ip*num + (cm+1)*(ip+1)*(ip+2)/2 + cm
Allocate (wk(lwk))

! Get parameter estimates from conditional logistic analysis
ifail = 0
Call g11caf(num,ip,nxs,x,mxn,isz,ip,id,ixs,dev,b,se,sc,cov,nca,nct,tol, &

maxit,iprint,wk,lwk,ifail)

! Display results
Write (nout,*) ’ Parameter Estimate’, ’ Standard Error’
Write (nout,*)
Write (nout,99999)(i,b(i),se(i),i=1,ip)

100 Continue

99999 Format (I6,10X,F8.4,10X,F8.4)
End Program g12zafe
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10.2 Program Data

G12ZAF Example Program Data
42 1 0 20 0 : N,M,NS,MAXIT,IPRINT
1 0 0
1 0 0
2 0 0
2 0 0
3 0 0
4 0 0
4 0 0
5 0 0
5 0 0
8 0 0
8 0 0
8 0 0
8 0 0

11 0 0
11 0 0
12 0 0
12 0 0
15 0 0
17 0 0
22 0 0
23 0 0
6 1 0
6 1 0
6 1 0
7 1 0

10 1 0
13 1 0
16 1 0
22 1 0
23 1 0
6 1 1
9 1 1

10 1 1
11 1 1
17 1 1
19 1 1
20 1 1
25 1 1
32 1 1
32 1 1
34 1 1
35 1 1 : T,Z,IC
1 : ISZ
0.0 0.0 : B (G11CAF)

10.3 Program Results

G12ZAF Example Program Results

Parameter Estimate Standard Error

1 1.6282 0.4331
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NAG Library Chapter Contents

G13 – Time Series Analysis

G13 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

G13AAF 9 nagf_tsa_uni_diff
Univariate time series, seasonal and non-seasonal differencing

G13ABF 9 nagf_tsa_uni_autocorr
Univariate time series, sample autocorrelation function

G13ACF 9 nagf_tsa_uni_autocorr_part
Univariate time series, partial autocorrelations from autocorrelations

G13ADF 9 nagf_tsa_uni_arima_prelim
Univariate time series, preliminary estimation, seasonal ARIMA model

G13AEF 9 nagf_tsa_uni_arima_estim
Univariate time series, estimation, seasonal ARIMA model
(comprehensive)

G13AFF 9 nagf_tsa_uni_arima_estim_easy
Univariate time series, estimation, seasonal ARIMA model (easy-to-use)

G13AGF 9 nagf_tsa_uni_arima_update
Univariate time series, update state set for forecasting

G13AHF 9 nagf_tsa_uni_arima_forecast_state
Univariate time series, forecasting from state set

G13AJF 10 nagf_tsa_uni_arima_forcecast
Univariate time series, state set and forecasts, from fully specified seasonal
ARIMA model

G13AMF 22 nagf_tsa_uni_smooth_exp
Univariate time series, exponential smoothing

G13ASF 13 nagf_tsa_uni_arima_resid
Univariate time series, diagnostic checking of residuals, following G13AEF
or G13AFF

G13AUF 14 nagf_tsa_uni_means
Computes quantities needed for range-mean or standard deviation-mean
plot

G13AWF 25 nagf_tsa_uni_dickey_fuller_unit
Computes (augmented) Dickey–Fuller unit root test statistic

G13BAF 10 nagf_tsa_multi_filter_arima
Multivariate time series, filtering (pre-whitening) by an ARIMA model

G13BBF 11 nagf_tsa_multi_filter_transf
Multivariate time series, filtering by a transfer function model

G13BCF 10 nagf_tsa_multi_xcorr
Multivariate time series, cross-correlations

G13BDF 11 nagf_tsa_multi_transf_prelim
Multivariate time series, preliminary estimation of transfer function model

G13BEF 11 nagf_tsa_multi_inputmod_estim
Multivariate time series, estimation of multi-input model

G13BGF 11 nagf_tsa_multi_inputmod_update
Multivariate time series, update state set for forecasting from multi-input
model

G13BHF 11 nagf_tsa_multi_inputmod_forecast_state
Multivariate time series, forecasting from state set of multi-input model

G13BJF 11 nagf_tsa_multi_inputmod_forecast
Multivariate time series, state set and forecasts from fully specified multi-
input model
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G13CAF 10 nagf_tsa_uni_spectrum_lag
Univariate time series, smoothed sample spectrum using rectangular,
Bartlett, Tukey or Parzen lag window

G13CBF 10 nagf_tsa_uni_spectrum_daniell
Univariate time series, smoothed sample spectrum using spectral smoothing
by the trapezium frequency (Daniell) window

G13CCF 10 nagf_tsa_multi_spectrum_lag
Multivariate time series, smoothed sample cross spectrum using
rectangular, Bartlett, Tukey or Parzen lag window

G13CDF 10 nagf_tsa_multi_spectrum_daniell
Multivariate time series, smoothed sample cross spectrum using spectral
smoothing by the trapezium frequency (Daniell) window

G13CEF 10 nagf_tsa_multi_spectrum_bivar
Multivariate time series, cross amplitude spectrum, squared coherency,
bounds, univariate and bivariate (cross) spectra

G13CFF 10 nagf_tsa_multi_gain_bivar
Multivariate time series, gain, phase, bounds, univariate and bivariate
(cross) spectra

G13CGF 10 nagf_tsa_multi_noise_bivar
Multivariate time series, noise spectrum, bounds, impulse response function
and its standard error

G13DBF 11 nagf_tsa_multi_autocorr_part
Multivariate time series, multiple squared partial autocorrelations

G13DDF 22 nagf_tsa_multi_varma_estimate
Multivariate time series, estimation of VARMA model

G13DJF 15 nagf_tsa_multi_varma_forecast
Multivariate time series, forecasts and their standard errors

G13DKF 15 nagf_tsa_multi_varma_update
Multivariate time series, updates forecasts and their standard errors

G13DLF 15 nagf_tsa_multi_diff
Multivariate time series, differences and/or transforms

G13DMF 15 nagf_tsa_multi_corrmat_cross
Multivariate time series, sample cross-correlation or cross-covariance
matrices

G13DNF 15 nagf_tsa_multi_corrmat_partlag
Multivariate time series, sample partial lag correlation matrices, �2

statistics and significance levels
G13DPF 16 nagf_tsa_multi_regmat_partial

Multivariate time series, partial autoregression matrices
G13DSF 13 nagf_tsa_multi_varma_diag

Multivariate time series, diagnostic checking of residuals, following
G13DDF

G13DXF 15 nagf_tsa_uni_arma_roots
Calculates the zeros of a vector autoregressive (or moving average)
operator

G13EAF 17 nagf_tsa_multi_kalman_sqrt_var
Combined measurement and time update, one iteration of Kalman filter,
time-varying, square root covariance filter

G13EBF 17 nagf_tsa_multi_kalman_sqrt_invar
Combined measurement and time update, one iteration of Kalman filter,
time-invariant, square root covariance filter

G13EJF 25 nagf_tsa_kalman_unscented_state_revcom
Combined time and measurement update, one iteration of the Unscented
Kalman Filter for a nonlinear state space model, with additive noise
(reverse communication)

G13EKF 25 nagf_tsa_kalman_unscented_state
Combined time and measurement update, one iteration of the Unscented
Kalman Filter for a nonlinear state space model, with additive noise
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G13FAF 20 nagf_tsa_uni_garch_asym1_estim
Univariate time series, parameter estimation for either a symmetric
GARCH process or a GARCH process with asymmetry of the form
�t�1 þ �ð Þ2

G13FBF 20 nagf_tsa_uni_garch_asym1_forecast
Univariate time series, forecast function for either a symmetric GARCH
process or a GARCH process with asymmetry of the form �t�1 þ �ð Þ2

G13FCF 20 nagf_tsa_uni_garch_asym2_estim
Univariate time series, parameter estimation for a GARCH process with
asymmetry of the form �t�1j j þ ��t�1ð Þ2

G13FDF 20 nagf_tsa_uni_garch_asym2_forecast
Univariate time series, forecast function for a GARCH process with
asymmetry of the form �t�1j j þ ��t�1ð Þ2

G13FEF 20 nagf_tsa_uni_garch_GJR_estim
Univariate time series, parameter estimation for an asymmetric Glosten,
Jagannathan and Runkle (GJR) GARCH process

G13FFF 20 nagf_tsa_uni_garch_GJR_forecast
Univariate time series, forecast function for an asymmetric Glosten,
Jagannathan and Runkle (GJR) GARCH process

G13FGF 20 nagf_tsa_uni_garch_exp_estim
Univariate time series, parameter estimation for an exponential GARCH
(EGARCH) process

G13FHF 20 nagf_tsa_uni_garch_exp_forecast
Univariate time series, forecast function for an exponential GARCH
(EGARCH) process

G13MEF 24 nagf_tsa_inhom_iema
Computes the iterated exponential moving average for a univariate
inhomogeneous time series

G13MFF 24 nagf_tsa_inhom_iema_all
Computes the iterated exponential moving average for a univariate
inhomogeneous time series, intermediate results are also returned

G13MGF 24 nagf_tsa_inhom_ma
Computes the exponential moving average for a univariate inhomogeneous
time series

G13NAF 25 nagf_tsa_cp_pelt
Change point detection, using the PELT algorithm

G13NBF 25 nagf_tsa_cp_pelt_user
Change points detection using the PELT algorithm, user supplied cost
function

G13NDF 25 nagf_tsa_cp_binary
Change point detection, using binary segmentation

G13NEF 25 nagf_tsa_cp_binary_user
Change point detection, using binary segmentation, user supplied cost
function
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1 Scope of the Chapter

This chapter provides facilities for investigating and modelling the statistical structure of series of
observations collected at points in time. The models may then be used to forecast the series.

The chapter covers the following models and approaches.

1. Univariate time series analysis, including autocorrelation functions and autoregressive moving
average (ARMA) models.

2. Univariate spectral analysis.

3. Transfer function (multi-input) modelling, in which one time series is dependent on other time
series.

4. Bivariate spectral methods including coherency, gain and input response functions.

5. Vector ARMA models for multivariate time series.

6. Kalman filter models (linear and nonlinear).

7. GARCH models for volatility.

8. Inhomogeneous Time Series.

2 Background to the Problems

2.1 Univariate Analysis

Let the given time series be x1; x2; . . . ; xn, where n is its length. The structure which is intended to be
investigated, and which may be most evident to the eye in a graph of the series, can be broadly
described as:

(a) trends, linear or possibly higher-order polynomial;

(b) seasonal patterns, associated with fixed integer seasonal periods. The presence of such seasonality
and the period will normally be known a priori. The pattern may be fixed, or slowly varying from
one season to another;

(c) cycles or waves of stable amplitude and period p (from peak to peak). The period is not necessarily
integer, the corresponding absolute frequency (cycles/time unit) being f ¼ 1=p and angular
frequency ! ¼ 2	f. The cycle may be of pure sinusoidal form like sin !tð Þ, or the presence of
higher harmonic terms may be indicated, e.g., by asymmetry in the wave form;

(d) quasi-cycles, i.e., waves of fluctuating period and amplitude; and

(e) irregular statistical fluctuations and swings about the overall mean or trend.

Trends, seasonal patterns, and cycles might be regarded as deterministic components following fixed
mathematical equations, and the quasi-cycles and other statistical fluctuations as stochastic and
describable by short-term correlation structure. For a finite dataset it is not always easy to discriminate
between these two types, and a common description using the class of autoregressive integrated
moving-average (ARIMA) models is now widely used. The form of these models is that of difference
equations (or recurrence relations) relating present and past values of the series. You are referred to Box
and Jenkins (1976) for a thorough account of these models and how to use them. We follow their
notation and outline the recommended steps in ARIMA model building for which routines are available.

2.1.1 Transformations

If the variance of the observations in the series is not constant across the range of observations it may
be useful to apply a variance-stabilizing transformation to the series. A common situation is for the
variance to increase with the magnitude of the observations and in this case typical transformations
used are the log or square root transformation. A range-mean plot or standard deviation-mean plot
provides a quick and easy way of detecting non-constant variance and of choosing, if required, a
suitable transformation. These are plots of either the range or standard deviation of successive groups of
observations against their means.
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2.1.2 Differencing operations

These may be used to simplify the structure of a time series.

First-order differencing, i.e., forming the new series

rxt ¼ xt � xt�1
will remove a linear trend. First-order seasonal differencing

rsxt ¼ xt � xt�s
eliminates a fixed seasonal pattern.

These operations reflect the fact that it is often appropriate to model a time series in terms of changes
from one value to another. Differencing is also therefore appropriate when the series has something of
the nature of a random walk, which is by definition the accumulation of independent changes.

Differencing may be applied repeatedly to a series, giving

wt ¼ rdrD
s xt

where d and D are the orders of differencing. The derived series wt will be shorter, of length
N ¼ n� d� s�D, and extend for t ¼ 1þ dþ s�D; . . . ; n.

2.1.3 Sample autocorrelations

Given that a series has (possibly as a result of simplifying by differencing operations) a homogeneous
appearance throughout its length, fluctuating with approximately constant variance about an overall
mean level, it is appropriate to assume that its statistical properties are stationary. For most purposes the
correlations �k between terms xt; xtþk or wt; wtþk separated by lag k give an adequate description of the
statistical structure and are estimated by the sample autocorrelation function (ACF) rk , for k ¼ 1; 2; . . ..

As described by Box and Jenkins (1976), these may be used to indicate which particular ARIMA model
may be appropriate.

2.1.4 Partial autocorrelations

The information in the autocorrelations, �k, may be presented in a different light by deriving from them
the coefficients of the partial autocorrelation function (PACF) 
k;k , for k ¼ 1; 2; . . .. 
k;k which measures
the correlation between xt and xtþk conditional upon the intermediate values xtþ1; xtþ2; . . . ; xtþk�1. The
corresponding sample values 
̂k;k give further assistance in the selection of ARIMA models.

Both autocorrelation function (ACF) and PACF may be rapidly computed, particularly in comparison
with the time taken to estimate ARIMA models.

2.1.5 Finite lag predictor coefficients and error variances

The partial autocorrelation coefficient 
k;k is determined as the final parameter in the minimum variance
predictor of xt in terms of xt�1; xt�2; . . . ; xt�k,

xt ¼ 
k;1xt�1 þ 
k;2xt�2 þ � � � þ 
k;kxt�k þ ek;t
where ek;t is the prediction error, and the first subscript k of 
k;i and ek;t emphasizes the fact that the

parameters will alter as k increases. Moderately good estimates 
̂k;i of 
k;i are obtained from the sample
autocorrelation function (ACF), and after calculating the partial autocorrelation function (PACF) up to
lag L, the successive values v1; v2; . . . ; vL of the prediction error variance estimates, vk ¼ var ek;t

� �
, are

available, together with the final values of the coefficients 
̂k;1; 
̂k;2; . . . ; 
̂k;L. If xt has nonzero mean, �x,
it is adequate to use xt � �x in place of xt in the prediction equation.

Although Box and Jenkins (1976) do not place great emphasis on these prediction coefficients, their use
is advocated for example by Akaike (1971), who recommends selecting an optimal order of the
predictor as the lag for which the final prediction error (FPE) criterion 1þ k=nð Þ 1� k=nð Þ�1vk is a
minimum.
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2.1.6 ARIMA models

The correlation structure in stationary time series may often be represented by a model with a small
number of parameters belonging to the autoregressive moving-average (ARMA) class. If the stationary
series wt has been derived by differencing from the original series xt, then xt is said to follow an
ARIMA model. Taking wt ¼ rdxt, the (non-seasonal) ARIMA p; d; qð Þ model with p autoregressive
parameters 
1; 
2; . . . ; 
p and q moving-average parameters �1; �2; . . . ; �q, represents the structure of wt
by the equation

wt ¼ 
1wt�1 þ � � � þ 
pwt�p þ at � �1at�1 � � � � � �qat�q; ð1Þ

where at is an uncorrelated series (white noise) with mean 0 and constant variance �2a. If wt has a
nonzero mean c, then this is allowed for by replacing wt; wt�1; . . . by wt � c; wt�1 � c; . . . in the model.
Although c is often estimated by the sample mean of wt this is not always optimal.

A series generated by this model will only be stationary provided restrictions are placed on

1; 
2; . . . ; 
p to avoid unstable growth of wt. These are called stationarity constraints. The series at
may also be usefully interpreted as the linear innovations in xt (and in wt), i.e., the error if xt were to
be predicted using the information in all past values xt�1; xt�2; . . . , provided also that �1; �2; . . . ; �q
satisfy invertibility constraints. This allows the series at to be regenerated by rewriting the model
equation as

at ¼ wt � 
1wt�1 � � � � � 
pwt�p þ �1at�1 þ � � � þ �qat�q: ð2Þ

For a series with short-term correlation only, i.e., rk is not significant beyond some low lag q (see Box
and Jenkins (1976) for the statistical test), then the pure moving-average model MA qð Þ is appropriate,
with no autoregressive parameters, i.e., p ¼ 0.

Autoregressive parameters are appropriate when the autocorrelation function (ACF) pattern decays
geometrically, or with a damped sinusoidal pattern which is associated with quasi-periodic behaviour in
the series. If the sample partial autocorrelation function (PACF) 
̂k;k is significant only up to some low
lag p, then a pure autoregressive model AR pð Þ is appropriate, with q ¼ 0. Otherwise moving-average
terms will need to be introduced, as well as autoregressive terms.

The seasonal ARIMA p; d; q; P ;D;Q; sð Þ model allows for correlation at lags which are multiples of the
seasonal period s. Taking wt ¼ rdrD

s xt, the series is represented in a two-stage manner via an
intermediate series et:

wt ¼ �1wt�s þ � � � þ �Pwt�s�P þ et ��1et�s � � � � ��Qet�s�Q ð3Þ
et ¼ 
1et�1 þ � � � þ 
pet�p þ at � �1at�1 � � � � � �qat�q ð4Þ

where �i, �i are the seasonal parameters and P and Q are the corresponding orders. Again, wt may be
replaced by wt � c.

2.1.7 ARIMA model estimation

In theory, the parameters of an ARIMA model are determined by a sufficient number of autocorrelations
�1; �2; . . . . Using the sample values r1; r2; . . . in their place it is usually (but not always) possible to
solve for the corresponding ARIMA parameters.

These are rapidly computed but are not fully efficient estimates, particularly if moving-average
parameters are present. They do provide useful preliminary values for an efficient but relatively slow
iterative method of estimation. This is based on the least squares principle by which parameters are
chosen to minimize the sum of squares of the innovations at, which are regenerated from the data using
(2), or the reverse of (3) and (4) in the case of seasonal models.

Lack of knowledge of terms on the right-hand side of (2), when t ¼ 1; 2; . . . ;max p; qð Þ, is overcome by
introducing q unknown series values w0; w1; . . . ; wq�1 which are estimated as nuisance parameters, and
using correction for transient errors due to the autoregressive terms. If the data w1; w2; . . . ; wN ¼ w is
viewed as a single sample from a multivariate Normal density whose covariance matrix V is a function
of the ARIMA model parameters, then the exact likelihood of the parameters is

�1
2log Vj j � 1

2w
TV �1w:
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The least squares criterion as outlined above is equivalent to using the quadratic form

QF ¼ wTV �1w

as an objective function to be minimized. Neglecting the term �1
2log Vj j yields estimates which differ

very little from the exact likelihood except in small samples, or in seasonal models with a small number
of whole seasons contained in the data. In these cases bias in moving-average parameters may cause
them to stick at the boundary of their constraint region, resulting in failure of the estimation method.

Approximate standard errors of the parameter estimates and the correlations between them are available
after estimation.

The model residuals, ât, are the innovations resulting from the estimation and are usually examined for
the presence of autocorrelation as a check on the adequacy of the model.

2.1.8 ARIMA model forecasting

An ARIMA model is particularly suited to extrapolation of a time series. The model equations are
simply used for t ¼ nþ 1; nþ 2; . . . replacing the unknown future values of at by zero. This produces
future values of wt, and if differencing has been used this process is reversed (the so-called integration
part of ARIMA models) to construct future values of xt.

Forecast error limits are easily deduced.

This process requires knowledge only of the model orders and parameters together with a limited set of
the terms at�i; et�i; wt�i; xt�i which appear on the right-hand side of the models (3) and (4) (and the
differencing equations) when t ¼ n. It does not require knowledge of the whole series.

We call this the state set. It is conveniently constituted after model estimation. Moreover, if new
observations xnþ1; xnþ2; . . . come to hand, then the model equations can easily be used to update the
state set before constructing forecasts from the end of the new observations. This is particularly useful
when forecasts are constructed on a regular basis. The new innovations anþ1; anþ2; . . . may be
compared with the residual standard deviation, �a, of the model used for forecasting, as a check that the
model is continuing to forecast adequately.

2.1.9 Exponential smoothing

Exponential smoothing is a relatively simple method of short term forecasting for a time series. A
variety of different smoothing methods are possible, including; single exponential, Brown's double
exponential, linear Holt (also called double exponential smoothing in some references), additive Holt–
Winters and multiplicative Holt–Winters. The choice of smoothing method used depends on the
characteristics of the time series. If the mean of the series is only slowly changing then single
exponential smoothing may be suitable. If there is a trend in the time series, which itself may be slowly
changing, then linear Holt smoothing may be suitable. If there is a seasonal component to the time
series, e.g., daily or monthly data, then one of the two Holt–Winters methods may be suitable.

For a time series yt , for t ¼ 1; 2; . . . ; n, the five smoothing functions are defined by the following:

Single Exponential Smoothing

mt ¼ �yt þ 1� �ð Þmt�1
ŷtþf ¼ mt

var ŷtþf
� �

¼ var �tð Þ 1þ f � 1ð Þ�2
� �

Brown Double Exponential Smoothing

mt ¼ �yt þ 1� �ð Þmt�1
rt ¼ � mt �mt�1ð Þ þ 1� �ð Þrt�1

ŷtþf ¼ mt þ f � 1ð Þ þ 1=�ð Þrt

var ŷtþf
� �

¼ var �tð Þ 1þ
Xf�1
i¼1

2�þ i� 1ð Þ�2
� �2 !
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Linear Holt Smoothing

mt ¼ �yt þ 1� �ð Þ mt�1 þ 
rt�1ð Þ
rt ¼ � mt �mt�1ð Þ þ 1� �ð Þ
rt�1

ŷtþf ¼ mt þ
Xf
i¼1

irt

var ŷtþf
� �

¼ var �tð Þ 1þ
Xf�1
i¼1

�þ ��
 
i � 1ð Þ

� 1ð Þ

� �2
 !

Additive Holt–Winters Smoothing

mt ¼ � yt � st�p
� �

þ 1� �ð Þ mt�1 þ 
rt�1ð Þ
rt ¼ � mt �mt�1ð Þ þ 1� �ð Þ
rt�1
st ¼ � yt �mtð Þ þ 1� �ð Þst�p

ŷtþf ¼ mt þ
Xf
i¼1

irt

 !
þ st�p

var ŷtþf
� �

¼ var �tð Þ 1þ
Xf�1
i¼1
 2
i

 !

 i ¼

0 if i � f
�þ ��
 
i�1ð Þ


�1ð Þ if i mod p 6¼ 0

�þ ��
 
i�1ð Þ

�1ð Þ þ � 1� �ð Þ otherwise

8>><>>:
Multiplicative Holt–Winters Smoothing

mt ¼ �yt=st�p þ 1� �ð Þ mt�1 þ 
rt�1ð Þ
rt ¼ � mt �mt�1ð Þ þ 1� �ð Þ
rt�1
st ¼ �yt=mt þ 1� �ð Þst�p

ŷtþf ¼ mt þ
Xf
i¼1

irt

 !
� st�p

var ŷtþf
� �

¼ var �tð Þ
X1
i¼0

Xp�1
j¼0

 jþip
stþf
stþf�j

� �2
 !

and  is defined as in the additive Holt–Winters smoothing,

where mt is the mean, rt is the trend and st is the seasonal component at time t with p being the
seasonal order. The f-step ahead forecasts are given by ŷtþf and their variances by var ŷtþf

� �
. The term

var �tð Þ is estimated as the mean deviation.

The parameters, �, � and � control the amount of smoothing. The nearer these parameters are to one,
the greater the emphasis on the current data point. Generally these parameters take values in the range
0:1 to 0:3. The linear Holt and two Holt–Winters smoothers include an additional parameter, 
, which
acts as a trend dampener. For 0:0 < 
 < 1:0 the trend is dampened and for 
 > 1:0 the forecast function
has an exponential trend, 
 ¼ 0:0 removes the trend term from the forecast function and 
 ¼ 1:0 does
not dampen the trend.

For all methods, values for �, �, � and  can be chosen by trying different values and then visually
comparing the results by plotting the fitted values along side the original data. Alternatively, for single
exponential smoothing a suitable value for � can be obtained by fitting an ARIMA 0; 1; 1ð Þ model. For
Brown's double exponential smoothing and linear Holt smoothing with no dampening, (i.e., 
 ¼ 1:0),
suitable values for � and, in the case of linear Holt smoothing, � can be obtained by fitting an
ARIMA 0; 2; 2ð Þ model. Similarly, the linear Holt method, with 
 6¼ 1:0, can be expressed as an
ARIMA 1; 2; 2ð Þ model and the additive Holt–Winters, with no dampening, (
 ¼ 1:0), can be expressed
as a seasonal ARIMA model with order p of the form ARIMA 0; 1; pþ 1ð Þ 0; 1; 0ð Þ. There is no similar
procedure for obtaining parameter values for the multiplicative Holt–Winters method, or the additive
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Holt–Winters method with 
 6¼ 1:0. In these cases parameters could be selected by minimizing a
measure of fit using nonlinear optimization.

2.1.10Change point analysis

Given a time series y1:n ¼ yj : j ¼ 1; 2; . . . ; n
� 

, a change point � is a place or time point such that
segment of the series up to � , y1:� , follows one distribution and the segment after �, y�þ1:n, follows a
different distribution. This idea can be extended to m change points, in which case
� ¼ �i : i ¼ 1; 2; . . . ;mf g becomes a vector of ordered (strictly monotonic increasing) change points
with 1 � �i � n and �m ¼ n. The ith segment therefore consists of y�i�1þ1:�i where, for ease of notation,
we define �0 ¼ 0. A change point problem is therefore twofold: estimating m the number of change
points (and hence the number of segments) and estimating � the location of those change points.

Given a cost function, C y�i�1þ1:�ið Þ one formulation of the change point problem can be expressed as the
solution to:

minimize
m;�

Xm
i¼1

C y�i�1þ1:�ið Þ þ �ð Þ ð5Þ

where � is a penalty term used to control the number of change points. Two methods of solving
equation (5) are available: the PELT algorithm and binary segmentation. The Pruned Exact Linear Time
(PELT) algorithm of Killick et al. (2012) is a tree based method which is guaranteed to return the
optimal solution to (5) as long as there exists a constant K such that

C y uþ1ð Þ:v
� �

þ C y vþ1ð Þ:w
� �

þK � C y uþ1ð Þ:w
� �

ð6Þ

for all u < v < w. Unlike PELT, binary segmentation is an iterative method that only results in an
approximate solution to (5). A description of the binary segmentation algorithm can be found in Section
3 in G13NDF and G13NEF.

2.2 Univariate Spectral Analysis

In describing a time series using spectral analysis the fundamental components are taken to be
sinusoidal waves of the form R cos !tþ 
ð Þ, which for a given angular frequency !, 0 � ! � 	, is
specified by its amplitude R > 0 and phase 
, 0 � 
 < 2	. Thus in a time series of n observations it is
not possible to distinguish more than n=2 independent sinusoidal components. The frequency range
0 � ! � 	 is limited to the shortest wavelength of two sampling units because any wave of higher
frequency is indistinguishable upon sampling (or is aliased with) a wave within this range. Spectral
analysis follows the idea that for a series made up of a finite number of sine waves the amplitude of any
component at frequency ! is given to order 1=n by

R2 ¼ 1

n2

� �Xn
t¼1
xte

i!t

					
					
2

:

2.2.1 The sample spectrum

For a series x1; x2; . . . ; xn this is defined as

f� !ð Þ ¼ 1

2n	

� �Xn
t¼1
xte

i!t

					
					
2

;

the scaling factor now being chosen in order that

2
Z 	

0
f� !ð Þ d! ¼ �2x;

i.e., the spectrum indicates how the sample variance (�2x) of the series is distributed over components in
the frequency range 0 � ! � 	.
It may be demonstrated that f� !ð Þ is equivalently defined in terms of the sample ACF rk of the series
as
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f� !ð Þ ¼ 1

2	

� �
c0 þ 2

Xn�1
k¼1

ck cos k!

 !
;

where ck ¼ �2xrk are the sample autocovariance coefficients.

If the series xt does contain a deterministic sinusoidal component of amplitude R, this will be revealed
in the sample spectrum as a sharp peak of approximate width 	=n and height n=2	ð ÞR2. This is called
the discrete part of the spectrum, the variance R2 associated with this component being in effect
concentrated at a single frequency.

If the series xt has no deterministic components, i.e., is purely stochastic being stationary with
autocorrelation function (ACF) rk, then with increasing sample size the expected value of f� !ð Þ
converges to the theoretical spectrum – the continuous part

f !ð Þ ¼ 1

2	

� �
�0 þ 2

X1
k¼1

�k cos !kð Þ
 !

;

where �k are the theoretical autocovariances.

The sample spectrum does not however converge to this value but at each frequency point fluctuates
about the theoretical spectrum with an exponential distribution, being independent at frequencies
separated by an interval of 2	=n or more. Various devices are therefore employed to smooth the sample
spectrum and reduce its variability. Much of the strength of spectral analysis derives from the fact that
the error limits are multiplicative so that features may still show up as significant in a part of the
spectrum which has a generally low level, whereas they are completely masked by other components in
the original series. The spectrum can help to distinguish deterministic cyclical components from the
stochastic quasi-cycle components which produce a broader peak in the spectrum. (The deterministic
components can be removed by regression and the remaining part represented by an ARIMA model.)

A large discrete component in a spectrum can distort the continuous part over a large frequency range
surrounding the corresponding peak. This may be alleviated at the cost of slightly broadening the peak
by tapering a portion of the data at each end of the series with weights which decay smoothly to zero. It
is usual to correct for the mean of the series and for any linear trend by simple regression, since they
would similarly distort the spectrum.

2.2.2 Spectral smoothing by lag window

The estimate is calculated directly from the sample autocovariances ck as

f !ð Þ ¼ 1

2	

� �
c0 þ 2

XM�1
k¼1

wkck cos k!

 !
;

the smoothing being induced by the lag window weights wk which extend up to a truncation lag M
which is generally much less than n. The smaller the value of M, the greater the degree of smoothing,
the spectrum estimates being independent only at a wider frequency separation indicated by the
bandwidth b which is proportional to 1=M. It is wise, however, to calculate the spectrum at intervals
appreciably less than this. Although greater smoothing narrows the error limits, it can also distort the
spectrum, particularly by flattening peaks and filling in troughs.

2.2.3 Direct spectral smoothing

The unsmoothed sample spectrum is calculated for a fine division of frequencies, then averaged over
intervals centred on each frequency point for which the smoothed spectrum is required. This is usually
at a coarser frequency division. The bandwidth corresponds to the width of the averaging interval.

2.3 Linear Lagged Relationships Between Time Series

We now consider the context in which one time series, called the dependent or output series,
y1; y2; . . . ; yn, is believed to depend on one or more explanatory or input series, e.g., x1; x2; . . . ; xn. This
dependency may follow a simple linear regression, e.g.,
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yt ¼ vxt þ nt
or more generally may involve lagged values of the input

yt ¼ v0xt þ v1xt�1 þ v2xt�2 þ � � � þ nt:

The sequence v0; v1; v2; . . . is called the impulse response function (IRF) of the relationship. The term
nt represents that part of yt which cannot be explained by the input, and it is assumed to follow a
univariate ARIMA model. We call nt the (output) noise component of yt, and it includes any constant
term in the relationship. It is assumed that the input series, xt, and the noise component, nt, are
independent.

The part of yt which is explained by the input is called the input component zt:

zt ¼ v0xt þ v1xt�1 þ v2xt�2 þ � � �

so yt ¼ zt þ nt.
The eventual aim is to model both these components of yt on the basis of observations of y1; y2; . . . ; yn
and x1; x2; . . . ; xn. In applications to forecasting or control both components are important. In general
there may be more than one input series, e.g., x1;t and x2;t, which are assumed to be independent and
corresponding components z1;t and z2;t, so

yt ¼ z1;t þ z2;t þ nt:

2.3.1 Transfer function models

In a similar manner to that in which the structure of a univariate series may be represented by a finite-
parameter ARIMA model, the structure of an input component may be represented by a transfer
function (TF) model with delay time b, p autoregressive-like parameters �1; �2; . . . ; �p and q þ 1 moving-
average-like parameters !0; !1; . . . ; !q:

zt ¼ �1zt�1 þ �2zt�2 þ � � � þ �pzt�p þ !0xt�b � !1xt�b�1 � � � � � !qxt�b�q: ð7Þ

If p > 0 this represents an impulse response function (IRF) which is infinite in extent and decays with
geometric and/or sinusoidal behaviour. The parameters �1; �2; . . . ; �p are constrained to satisfy a stability
condition identical to the stationarity condition of autoregressive models. There is no constraint on
!0; !1; . . . ; !q.

2.3.2 Cross-correlations

An important tool for investigating how an input series xt affects an output series yt is the sample
cross-correlation function (CCF) rxy kð Þ, for k ¼ 0; 1; . . . between the series. If xt and yt are (jointly)
stationary time series this is an estimator of the theoretical quantity

�xy kð Þ ¼ corr xt; ytþkð Þ:

The sequence ryx kð Þ, for k ¼ 0; 1; . . ., is distinct from rxy kð Þ, though it is possible to interpret

ryx kð Þ ¼ rxy �kð Þ:

When the series yt and xt are believed to be related by a transfer function (TF) model, the CCF is
determined by the impulse response function (IRF) v0; v1; v2; . . . and the autocorrelation function (ACF)
of the input xt.

In the particular case when xt is an uncorrelated series or white noise (and is uncorrelated with any
other inputs):

�xy kð Þ / vk
and the sample CCF can provide an estimate of vk:

~vk ¼ sy=sx
� �

rxy kð Þ

where sy and sx are the sample standard deviations of yt and xt, respectively.
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In theory the IRF coefficients vb; . . . ; vbþpþq determine the parameters in the TF model, and using ~vk to
estimate ~vk it is possible to solve for preliminary estimates of �1; �2; . . . ; �p, !0; !1; . . . ; !q.

2.3.3 Prewhitening or filtering by an ARIMA model

In general an input series xt is not white noise, but may be represented by an ARIMA model with
innovations or residuals at which are white noise. If precisely the same operations by which at is
generated from xt are applied to the output yt to produce a series bt, then the transfer function
relationship between yt and xt is preserved between bt and at. It is then possible to estimate

~vk ¼ sb=sað Þrab kð Þ:

The procedure of generating at from xt (and bt from yt) is called prewhitening or filtering by an
ARIMA model. Although at is necessarily white noise, this is not generally true of bt.

2.3.4 Multi-input model estimation

The term multi-input model is used for the situation when one output series yt is related to one or more
input series xj;t, as described in Section 2.3. If for a given input the relationship is a simple linear
regression, it is called a simple input; otherwise it is a transfer function input. The error or noise term
follows an ARIMA model.

Given that the orders of all the transfer function models and the ARIMA model of a multi-input model
have been specified, the various parameters in those models may be (simultaneously) estimated.

The procedure used is closely related to the least squares principle applied to the innovations in the
ARIMA noise model.

The innovations are derived for any proposed set of parameter values by calculating the response of
each input to the transfer functions and then evaluating the noise nt as the difference between this
response (combined for all the inputs) and the output. The innovations are derived from the noise using
the ARIMA model in the same manner as for a univariate series, and as described in Section 2.1.6.

In estimating the parameters, consideration has to be given to the lagged terms in the various model
equations which are associated with times prior to the observation period, and are therefore unknown.
The subroutine descriptions provide the necessary detail as to how this problem is treated.

Also, as described in Section 2.1.7 the sum of squares criterion

S ¼
X

a2t

is related to the quadratic form in the exact log-likelihood of the parameters:

�1
2log Vj j � 1

2w
TV �1w:

Here w is the vector of appropriately differenced noise terms, and

wTV �1w ¼ S=�2a;

where �2a is the innovation variance parameter.

The least squares criterion is therefore identical to minimization of the quadratic form, but is not
identical to exact likelihood. Because V may be expressed as M�2a, where M is a function of the
ARIMA model parameters, substitution of �2a by its maximum likelihood (ML) estimator yields a
concentrated (or profile) likelihood which is a function of

Mj j1=NS:

N is the length of the differenced noise series w, and Mj j ¼ detM.

Use of the above quantity, called the deviance, D, as an objective function is preferable to the use of S
alone, on the grounds that it is equivalent to exact likelihood, and yields estimates with better
properties. However, there is an appreciable computational penalty in calculating D, and in large
samples it differs very little from S, except in the important case of seasonal ARIMA models where the
number of whole seasons within the data length must also be large.
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You are given the option of taking the objective function to be either S or D, or a third possibility, the
marginal likelihood. This is similar to exact likelihood but can counteract bias in the ARIMA model
due to the fitting of a large number of simple inputs.

Approximate standard errors of the parameter estimates and the correlations between them are available
after estimation.

The model residuals ât are the innovations resulting from the estimation, and they are usually examined
for the presence of either autocorrelation or cross-correlation with the inputs. Absence of such
correlation provides some confirmation of the adequacy of the model.

2.3.5 Multi-input model forecasting

A multi-input model may be used to forecast the output series provided future values (possibly
forecasts) of the input series are supplied.

Construction of the forecasts requires knowledge only of the model orders and parameters, together
with a limited set of the most recent variables which appear in the model equations. This is called the
state set. It is conveniently constituted after model estimation. Moreover, if new observations
ynþ1; ynþ2; . . . of the output series and xnþ1; xnþ2; . . . of (all) the independent input series become
available, then the model equations can easily be used to update the state set before constructing
forecasts from the end of the new observations. The new innovations anþ1; anþ2; . . . generated in this
updating may be used to monitor the continuing adequacy of the model.

2.3.6 Transfer function model filtering

In many time series applications it is desired to calculate the response (or output) of a transfer function
(TF) model for a given input series.

Smoothing, detrending, and seasonal adjustment are typical applications. You must specify the orders
and parameters of a TF model for the purpose being considered. This may then be applied to the input
series.

Again, problems may arise due to ignorance of the input series values prior to the observation period.
The transient errors which can arise from this may be substantially reduced by using ‘backforecasts’ of
these unknown observations.

2.4 Multivariate Time Series

Multi-input modelling represents one output time series in terms of one or more input series. Although
there are circumstances in which it may be more appropriate to analyse a set of time series by
modelling each one in turn as the output series with the remainder as inputs, there is a more symmetric
approach in such a context. These models are known as vector autoregressive moving-average
(VARMA) models.

2.4.1 Differencing and transforming a multivariate time series

As in the case of a univariate time series, it may be useful to simplify the series by differencing
operations which may be used to remove linear or seasonal trends, thus ensuring that the resulting
series to be used in the model estimation is stationary. It may also be necessary to apply transformations
to the individual components of the multivariate series in order to stabilize the variance. Commonly
used transformations are the log and square root transformations.

2.4.2 Model identification for a multivariate time series

Multivariate analogues of the autocorrelation and partial autocorrelation functions are available for
analysing a set of k time series, xi;1; xi;2; . . . ; xi;n, for i ¼ 1; 2; . . . ; k, thereby making it possible to
obtain some understanding of a suitable VARMA model for the observed series.

It is assumed that the time series have been differenced if necessary, and that they are jointly stationary.
The lagged correlations between all possible pairs of series, i.e.,

�ijl ¼ corr xi;t; xj;tþl
� �
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are then taken to provide an adequate description of the statistical relationships between the series.
These quantities are estimated by sample auto- and cross-correlations rijl. For each l these may be
viewed as elements of a (lagged) autocorrelation matrix.

Thus consider the vector process xt (with elements xit) and lagged autocovariance matrices l with
elements of �i�j�ijl where �2i ¼ var xi;t

� �
. Correspondingly, l is estimated by the matrix Cl with

elements sisjrijl where s2i is the sample variance of xit.

For a series with short-term cross-correlation only, i.e., rijl is not significant beyond some low lag q,
then the pure vector MA qð Þ model, with no autoregressive parameters, i.e., p ¼ 0, is appropriate.

The correlation matrices provide a description of the joint statistical properties of the series. It is also
possible to calculate matrix quantities which are closely analogous to the partial autocorrelations of
univariate series (see Section 2.1.4). Wei (1990) discusses both the partial autoregression matrices
proposed by Tiao and Box (1981) and partial lag correlation matrices.

In the univariate case the partial autocorrelation function (PACF) between xt and xtþl is the correlation
coefficient between the two after removing the linear dependence on each of the intervening variables
xtþ1; xtþ2; . . . ; xtþl�1. This partial autocorrelation may also be obtained as the last regression coefficient
associated with xt when regressing xtþl on its l lagged variables xtþl�1; xtþl�2; . . . ; xt. Tiao and Box
(1981) extended this method to the multivariate case to define the partial autoregression matrix. Heyse
and Wei (1985) also extended the univariate definition of the PACF to derive the correlation matrix
between the vectors xt and xtþl after removing the linear dependence on each of the intervening vectors
xtþ1; xtþ2; . . . ; xtþl�1, the partial lag correlation matrix.

Note that the partial lag correlation matrix is a correlation coefficient matrix since each of its elements
is a properly normalized correlation coefficient. This is not true of the partial autoregression matrices
(except in the univariate case for which the two types of matrix are the same). The partial lag
correlation matrix at lag 1 also reduces to the regular correlation matrix at lag 1; this is not true of the
partial autoregression matrices (again except in the univariate case).

Both the above share the same cut-off property for autoregressive processes; that is for an
autoregressive process of order p, the terms of the matrix at lags pþ 1 and greater are zero. Thus if the
sample partial cross-correlations are significant only up to some low lag p then a pure vector AR pð Þ
model is appropriate with q ¼ 0. Otherwise moving-average terms will need to be introduced as well as
autoregressive terms.

Under the hypothesis that xt is an autoregressive process of order l� 1, n times the sum of the squared
elements of the partial lag correlation matrix at lag l is asymptotically distributed as a �2 variable with
k2 degrees of freedom where k is the dimension of the multivariate time series. This provides a
diagnostic aid for determining the order of an autoregressive model.

The partial autoregression matrices may be found by solving a multivariate version of the Yule–Walker
equations to find the autoregression matrices, using the final regression matrix coefficient as the partial
autoregression matrix at that particular lag.

The basis of these calculations is a multivariate autoregressive model:

xt ¼ 
l;1xt�1 þ � � � þ 
l;lxt�l þ el;t
where 
l;1; 
l;2; . . . ; 
l;l are matrix coefficients, and el;t is the vector of errors in the prediction. These
coefficients may be rapidly computed using a recursive technique which requires, and simultaneously
furnishes, a backward prediction equation:

xt�l�1 ¼  l;1xt�l þ  l;2xt�lþ1 þ � � � þ  l;lxt�1 þ fl;t
(in the univariate case  l;i ¼ 
l;i).
The forward prediction equation coefficients, 
l;i, are of direct interest, together with the covariance
matrix Dl of the prediction errors el;t. The calculation of these quantities for a particular maximum
equation lag l ¼ L involves calculation of the same quantities for increasing values of l ¼ 1; 2; . . . ; L.

The quantities vl ¼ detDl= det 0 may be viewed as generalized variance ratios, and provide a measure
of the efficiency of prediction (the smaller the better). The reduction from vl�1 to vl which occurs on
extending the order of the predictor to l may be represented as
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vl ¼ vl�1 1� �2l
� �

where �2l is a multiple squared partial autocorrelation coefficient associated with k2 degrees of freedom.

Sample estimates of all the above quantities may be derived by using the series covariance matrices Cl ,
for l ¼ 1; 2; . . . ; L, in place of l. The best lag for prediction purposes may be chosen as that which
yields the minimum final prediction error (FPE) criterion:

FPE lð Þ ¼ vl �
1þ lk2=n
� �
1� lk2=nð Þ:

An alternative method of estimating the sample partial autoregression matrices is by using multivariate
least squares to fit a series of multivariate autoregressive models of increasing order.

2.4.3 VARMA model estimation

The cross-correlation structure of a stationary multivariate time series may often be represented by a
model with a small number of parameters belonging to the VARMA class. If the stationary series wt has
been derived by transforming and/or differencing the original series xt, then wt is said to follow the
VARMA model:

wt ¼ 
1wt�1 þ � � � þ 
pwt�p þ �t � �1�t�1 � � � � � �q�t�q;

where �t is a vector of uncorrelated residual series (white noise) with zero mean and constant
covariance matrix �, 
1; 
2; . . . ; 
p are the p autoregressive (AR) parameter matrices and �1; �2; . . . ; �q
are the q moving-average (MA) parameter matrices. If wt has a nonzero mean �, then this can be
allowed for by replacing wt; wt�1; . . . by wt � �;wt�1 � �; . . . in the model.

A series generated by this model will only be stationary provided restrictions are placed on

1; 
2; . . . ; 
p to avoid unstable growth of wt. These are stationarity constraints. The series �t may also
be usefully interpreted as the linear innovations in wt, i.e., the error if wt were to be predicted using the
information in all past values wt�1; wt�2; . . . , provided also that �1; �2; . . . ; �q satisfy what are known as
invertibility constraints. This allows the series �t to be generated by rewriting the model equation as

�t ¼ wt � 
1wt�1 � � � � � 
pwt�p þ �1�t�1 þ � � � þ �q�t�q:

The method of maximum likelihood (ML) may be used to estimate the parameters of a specified
VARMA model from the observed multivariate time series together with their standard errors and
correlations.

The residuals from the model may be examined for the presence of autocorrelations as a check on the
adequacy of the fitted model.

2.4.4 VARMA model forecasting

Forecasts of the series may be constructed using a multivariate version of the univariate method.
Efficient methods are available for updating the forecasts each time new observations become available.

2.5 Cross-spectral Analysis

The relationship between two time series may be investigated in terms of their sinusoidal components at
different frequencies. At frequency ! a component of yt of the form

Ry !ð Þ cos !t� 
y !ð Þ
� �

has its amplitude Ry !ð Þ and phase lag 
y !ð Þ estimated by

Ry !ð Þei
y !ð Þ ¼ 1
n

Xn
t¼1
yte

i!t

and similarly for xt. In the univariate analysis only the amplitude was important – in the cross analysis
the phase is important.
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2.5.1 The sample cross-spectrum

This is defined by

f�xy !ð Þ ¼
1

2	n

Xn
t¼1
yte

i!t

 ! Xn
t¼1
xte
�i!t

 !
:

It may be demonstrated that this is equivalently defined in terms of the sample cross-correlation
function (CCF), rxy kð Þ, of the series as

f�xy !ð Þ ¼
1

2	

Xn�1ð Þ

� n�1ð Þ
cxy kð Þei!k

where cxy kð Þ ¼ sxsyrxy kð Þ is the cross-covariance function.

2.5.2 The amplitude and phase spectrum

The cross-spectrum is specified by its real part or cospectrum cf� !ð Þ and imaginary part or quadrature
spectrum qf� !ð Þ, but for the purpose of interpretation the cross-amplitude spectrum and phase spectrum
are useful:

A� !ð Þ ¼ f�xy !ð Þ
			 			; 
� !ð Þ ¼ arg f�xy !ð Þ

� �
:

If the series xt and yt contain deterministic sinusoidal components of amplitudes Ry;Rx and phases

y; 
x at frequency !, then A� !ð Þ will have a peak of approximate width 	=n and height n=2	ð ÞRyRx at
that frequency, with corresponding phase 
� !ð Þ ¼ 
y � 
x. This supplies no information that cannot be
obtained from the two series separately. The statistical relationship between the series is better revealed
when the series are purely stochastic and jointly stationary, in which case the expected value of f�xy !ð Þ
converges with increasing sample size to the theoretical cross-spectrum

fxy !ð Þ ¼
1

2	

X1
�1

�xy kð Þei!k

where �xy kð Þ ¼ cov xt; ytþkð Þ. The sample spectrum, as in the univariate case, does not converge to the
theoretical spectrum without some form of smoothing which either implicitly (using a lag window) or
explicitly (using a frequency window) averages the sample spectrum f�xy !ð Þ over wider bands of

frequency to obtain a smoothed estimate f̂xy !ð Þ.

2.5.3 The coherency spectrum

If there is no statistical relationship between the series at a given frequency, then fxy !ð Þ ¼ 0, and the

smoothed estimate f̂xy !ð Þ, will be close to 0. This is assessed by the squared coherency between the
series:

Ŵ !ð Þ ¼
f̂xy !ð Þ
			 			2

f̂xx !ð Þf̂yy !ð Þ

where f̂xx !ð Þ is the corresponding smoothed univariate spectrum estimate for xt, and similarly for yt.
The coherency can be treated as a squared multiple correlation. It is similarly invariant in theory not
only to simple scaling of xt and yt, but also to filtering of the two series, and provides a useful test
statistic for the relationship between autocorrelated series. Note that without smoothing,

f�xy !ð Þ
			 			2 ¼ f�xx !ð Þf�yy !ð Þ;

so the coherency is 1 at all frequencies, just as a correlation is 1 for a sample of size 1. Thus smoothing
is essential for cross-spectrum analysis.
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2.5.4 The gain and noise spectrum

If yt is believed to be related to xt by a linear lagged relationship as in Section 2.3, i.e.,

yt ¼ v0xt þ v1xt�1 þ v2xt�2 þ � � � þ nt;

then the theoretical cross-spectrum is

fxy !ð Þ ¼ V !ð Þfxx !ð Þ

where

V !ð Þ ¼ G !ð Þei
 !ð Þ ¼
X1
k¼0

vke
ik!

is called the frequency response of the relationship.

Thus if xt were a sinusoidal wave at frequency ! (and nt were absent), yt would be similar but
multiplied in amplitude by G !ð Þ and shifted in phase by 
 !ð Þ. Furthermore, the theoretical univariate
spectrum

fyy !ð Þ ¼ G !ð Þ2fxx !ð Þ þ fn !ð Þ

where nt, with spectrum fn !ð Þ, is assumed independent of the input xt.

Cross-spectral analysis thus furnishes estimates of the gain

Ĝ !ð Þ ¼ f̂xy !ð Þ
			 			=f̂xx !ð Þ

and the phase


̂ !ð Þ ¼ arg f̂xy !ð Þ
� �

:

From these representations of the estimated frequency response V̂ !ð Þ, parametric transfer function (TF)
models may be recognized and selected. The noise spectrum may also be estimated as

f̂yjx !ð Þ ¼ f̂yy !ð Þ 1� Ŵ !ð Þ
� �

a formula which reflects the fact that in essence a regression is being performed of the sinusoidal
components of yt on those of xt over each frequency band.

Interpretation of the frequency response may be aided by extracting from V̂ !ð Þ estimates of the impulse
response function (IRF) v̂k. It is assumed that there is no anticipatory response between yt and xt, i.e.,
no coefficients vk with k ¼ �1 or �2 are needed (their presence might indicate feedback between the
series).

2.5.5 Cross-spectrum smoothing by lag window

The estimate of the cross-spectrum is calculated from the sample cross-variances as

f̂xy !ð Þ ¼
1

2	

XMþS
�MþS

wk�Scxy kð Þei!k:

The lag window wk extends up to a truncation lag M as in the univariate case, but its centre is shifted
by an alignment lag S usually chosen to coincide with the peak cross-correlation. This is equivalent to
an alignment of the series for peak cross-correlation at lag 0, and reduces bias in the phase estimation.

The selection of the truncation lag M, which fixes the bandwidth of the estimate, is based on the same
criteria as for univariate series, and the same choice of M and window shape should be used as in
univariate spectrum estimation to obtain valid estimates of the coherency, gain, etc., and test statistics.

2.5.6 Direct smoothing of the cross-spectrum

The computations are exactly as for smoothing of the univariate spectrum except that allowance is made
for an implicit alignment shift S between the series.
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2.6 Kalman Filters

2.6.1 Linear State Space Models

Kalman filtering provides a method for the analysis of multidimensional time series. The underlying
model is:

Xtþ1 ¼ AtXt þBtWt ð8Þ
Yt ¼ CtXt þ Vt ð9Þ

where Xt is the unobserved state vector, Yt is the observed measurement vector, Wt is the state noise,
Vt is the measurement noise, At is the state transition matrix, Bt is the noise coefficient matrix and Ct is
the measurement coefficient matrix at time t. The state noise and the measurement noise are assumed to
be uncorrelated with zero mean and covariance matrices:

E WtW
T
t

� 
¼ Qt and E VtV

T
t

� 
¼ Rt:

If the system matrices At, Bt, Ct and the covariance matrices Qt;Rt are known then Kalman filtering
can be used to compute the minimum variance estimate of the stochastic variable Xt.

The estimate of Xt given observations Y1 to Yt�1 is denoted by X̂tjt�1 with state covariance matrix

E X̂tjt�1X̂
T
tjt�1

n o
¼ Ptjt�1 while the estimate of Xt given observations Y1 to Yt is denoted by X̂tjt with

covariance matrix E X̂tjtX̂
T
tjt

n o
¼ Ptjt.

The update of the estimate, X̂tþ1jt, from time t to time tþ 1, is computed in two stages.

First, the update equations are

X̂tjt ¼ X̂tjt�1 þKtrt; Ptjt ¼ I �KtCtð ÞPtjt�1

where the residual rt ¼ Yt � CtXtjt�1 has an associated covariance matrix Ht ¼ CtPtjt�1CT
t þRt, and

Kt is the Kalman gain matrix with

Kt ¼ Ptjt�1CT
t H

�1
t :

The second stage is the one-step-ahead prediction equations given by

X̂tþ1jt ¼ AtX̂tjt; Ptþ1jt ¼ AtPtjtA
T
t þ BtQtB

T
t :

These two stages can be combined to give the one-step-ahead update-prediction equations

X̂tþ1jt ¼ AtX̂tjt�1 þAtKtrt:

The above equations thus provide a method for recursively calculating the estimates of the state vectors
X̂tjt and X̂tþ1jt and their covariance matrices Ptjt and Ptþ1jt from their previous values. This recursive
procedure can be viewed in a Bayesian framework as being the updating of the prior by the data Yt.

The initial values X̂1j0 and P1j0 are required to start the recursion. For stationary systems, P1j0 can be
computed from the following equation:

P1j0 ¼ A1P1j0A
T
1 þB1Q1B

T
1 ;

which can be solved by iterating on the equation. For X̂1j0 the value E Xf g can be used if it is
available.

2.6.1.1 Computational methods

To improve the stability of the computations the square root algorithm is used. One recursion of the
square root covariance filter algorithm which can be summarised as follows:

R
1=2
t CtSt 0

0 AtSt BtQ
1=2
t

0@ 1AU ¼ H
1=2
t 0 0

Gt Stþ1 0

0@ 1A
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where U is an orthogonal transformation triangularizing the left-hand pre-array to produce the right-

hand post-array, St is the lower triangular Cholesky factor of the state covariance matrix Ptþ1jt, Q
1=2
t

and R1=2
t are the lower triangular Cholesky factor of the covariance matrices Q and R and H1=2 is the

lower triangular Cholesky factor of the covariance matrix of the residuals. The relationship between the
Kalman gain matrix, Kt, and Gt is given by

AtKt ¼ Gt H
1=2
t

� ��1
:

To improve the efficiency of the computations when the matrices At;Bt and Ct do not vary with time
the system can be transformed to give a simpler structure. The transformed state vector is U�X where
U� is the transformation that reduces the matrix pair A;Cð Þ to lower observer Hessenberg form. That is,
the matrix U� is computed such that the compound matrix

CU�T

U�AU�T

� �
is a lower trapezoidal matrix. The transformations need only be computed once at the start of a series,
and the covariance matrices Qt and Rt can still be time-varying.

2.6.1.2 Model fitting and forecasting

If the state space model contains unknown parameters, �, these can be estimated using maximum
likelihood (ML). Assuming that Wt and Vt are normal variates the log-likelihood for observations Yt ,
for t ¼ 1; 2; . . . ; n, is given by

constant� 1

2

Xn
t¼1

ln det Htð Þð Þ � 1

2

Xt
t¼1
rTt H

�1
t rt:

Optimal estimates for the unknown model parameters � can then be obtained by using a suitable
optimizer routine to maximize the likelihood function.

Once the model has been fitted forecasting can be performed by using the one-step-ahead prediction
equations. The one-step-ahead prediction equations can also be used to ‘jump over’ any missing values
in the series.

2.6.1.3 Kalman filter and time series models

Many commonly used time series models can be written as state space models. A univariate
ARMA p; qð Þ model can be cast into the following state space form:

xt ¼ Axt�1 þB�t
wt ¼ Cxt

A ¼


1 1

2 1
: :
: :

r�1 1

r 0 0 : : 0

0BBBBB@

1CCCCCA; B ¼

1
��1
��2
:
:
��r�1

0BBBBB@

1CCCCCA and CT ¼

1
0
0
:
:
0

0BBBBB@

1CCCCCA;

where r ¼ max p; q þ 1ð Þ.
The representation for a k-variate ARMA p; qð Þ series (VARMA) is very similar to that given above,
except now the state vector is of length kr and the 
 and � are now k� k matrices and the 1s in A, B
and C are now the identity matrix of order k. If p < r or q þ 1 < r then the appropriate 
 or � matrices
are set to zero, respectively.

Since the compound matrix

C
A

� �
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is already in lower observer Hessenberg form (i.e., it is lower trapezoidal with zeros in the top right-
hand triangle) the invariant Kalman filter algorithm can be used directly without the need to generate a
transformation matrix U�.

2.6.2 Nonlinear State Space Models

A nonlinear state space model, with additive noise, can, at time t, be described by:

xtþ1 ¼ F xtð Þ þ vt
yt ¼ H xtð Þ þ ut

ð18Þ

where xt represents the unobserved state vector of length mx and yt the observed measurement vector
of length my. The process noise is denoted vt, which is assumed to have mean zero and covariance
structure �x, and the measurement noise by ut, which is assumed to have mean zero and covariance
structure �y. The two nonlinear functions, F and H may be time dependent. Two methods are
commonly used to analyse nonlinear state space models: the Extended Kalman Filter (EKF) and the
Unscented Kalman Filter (UKF).

The EKF solves the nonlinear state space model by first linearising the set of equations given in (18)
using a first order taylor expansion around x̂t (the estimate of the state vector at time t given the full
data: y1; y2; . . . ; yt) in the case of F and around x̂t (the estimate of the state vector at time t given the
partial data: y1; y1; . . . ; yt�1) in the case of H. This leads to the linear state space model:

xtþ1 � F 0ð Þxt þ vt þ F 0 � F x̂tð Þx̂t
yt �H x̂t

� �
þ H 0ð Þx̂t � H 0ð Þxt þ ut

where

F 0 ¼ @F xð Þ
@x

				
x¼x̂t

H 0 ¼ @H xð Þ
@x

				
x¼x̂t

This linear state space model can then be solved using the standard Kalman Filter. See Haykin (2001)
for more details.

Unlike the EKF, the UKF of Julier and Uhlmann (1997) does not attempt to linearise the problem,
rather it uses a minimal set of carefully chosen points, called sigma points, to capture the mean and
covariance of the underlying Gaussian random variables. These points are then propagated through the
nonlinear functions giving an estimate of the transformed mean and covariance. A brief description of
the UKF can be found in Section 3 in G13EKF.

2.7 GARCH Models

2.7.1 ARCH models and their generalizations

Rather than modelling the mean (for example using regression models) or the autocorrelation (by using
ARMA models) there are circumstances in which the variance of a time series needs to be modelled.
This is common in financial data modelling where the variance (or standard deviation) is known as
volatility. The ability to forecast volatility is a vital part in deciding the risk attached to financial
decisions like portfolio selection. The basic model for relating the variance at time t to the variance at
previous times is the autoregressive conditional heteroskedastic (ARCH) model. The standard ARCH
model is defined as

yt j  t�1 � N 0; htð Þ;

ht ¼ �0 þ
Xq
i¼1
�i�

2
t�i;

where  t is the information up to time t and ht is the conditional variance.

In a similar way to that in which autoregressive (AR) models were generalized to ARMA models the
ARCH models have been generalized to a GARCH model; see Engle (1982), Bollerslev (1986) and
Hamilton (1994)
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ht ¼ �0 þ
Xq
i¼1
�i�

2
t�i þ

Xp
i¼1
�ht�i:

This can be combined with a regression model:

yt ¼ b0 þ
Xk
i¼1
bixit þ �t;

where �t j  t�1 � N 0; htð Þ and where xit, for i ¼ 1; 2; . . . ; k, are the exogenous variables.

The above models assume that the change in variance, ht, is symmetric with respect to the shocks, that
is, that a large negative value of �t�1 has the same effect as a large positive value of �t�1. A frequently
observed effect is that a large negative value �t�1 often leads to a greater variance than a large positive
value. The following three asymmetric models represent this effect in different ways using the
parameter � as a measure of the asymmetry.

Type I AGARCH(p; q)

ht ¼ �0 þ
Xq
i¼1
�i �t�i þ �ð Þ2 þ

Xp
i¼1
�iht�i:

Type II AGARCH(p; q)

ht ¼ �0 þ
Xq
i¼1
�i �t�ij j þ ��t�ið Þ2 þ

Xp
i¼1
�iht�i:

GJR-GARCH(p; q), or Glosten, Jagannathan and Runkle GARCH (see Glosten et al. (1993))

ht ¼ �0 þ
Xq
i¼1

�i þ �It�1ð Þ�2t�1 þ
Xp
i¼1
�iht�i;

where It ¼ 1 if �t < 0 and It ¼ 0 if �t � 0.

The first assumes that the effects of the shocks are symmetric about � rather than zero, so that for � < 0
the effect of negative shocks is increased and the effect of positive shocks is decreased. Both the Type
II AGARCH and the GJR GARCH (see Glosten et al. (1993)) models introduce asymmetry by
increasing the value of the coefficient of �2t�1 for negative values of �t�1. In the case of the Type II
AGARCH the effect is multiplicative while for the GJR GARCH the effect is additive.

Coefficient �t�1 < 0 �t�1 > 0

Type II AGARCH �i 1� �ð Þ2 �i 1þ �ð Þ2

GJR GARCH �i þ � �i

(Note that in the case of GJR GARCH, � needs to be positive to inflate variance after negative shocks
while for Type I and Type II AGARCH, � needs to be negative.)

A third type of GARCH model is the exponential GARCH (EGARCH). In this model the variance
relationship is on the log scale and hence asymmetric.

ln htð Þ ¼ �0 þ
Xq
i¼1
�izt�i þ

Xq
i¼1

i zt�ij j � E zt�ij j½ �ð Þ þ

Xp
i¼1
�i ln ht�ið Þ;

where zt ¼
�tffiffiffiffiffi
ht
p and E zt�ij j½ � denotes the expected value of zt�ij j.

Note that the 
i terms represent a symmetric contribution to the variance while the �i terms give an
asymmetric contribution.
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Another common characteristic of financial data is that it is heavier in the tails (leptokurtic) than the
Normal distribution. To model this the Normal distribution is replaced by a scaled Student's
t-distribution (that is a Student's t-distribution standardized to have variance ht). The Student's
t-distribution is such that the smaller the degrees of freedom the higher the kurtosis for degrees of
freedom > 4.

2.7.2 Fitting GARCH models

The models are fitted by maximizing the conditional log-likelihood. For the Normal distribution the
conditional log-likelihood is

1

2

XT
i¼1

log hið Þ þ
�2i
hi

� �
:

For the Student's t-distribution the function is more complex. An approximation to the standard errors
of the parameter estimates is computed from the Fisher information matrix.

2.8 Inhomogeneous Time Series

If we denote a generic univariate time series as a sequence of pairs of values zi; tið Þ, for i ¼ 1; 2; . . .
where the z's represent an observed scalar value and the t's the time that the value was observed, then in
a standard time series analysis, as discussed in other sections of this introduction, it is assumed that the
series being analysed is homogeneous, that is the sampling times are regularly spaced with ti � ti�1 ¼ �
for some value �. In many real world applications this assumption does not hold, that is, the series is
inhomogeneous.

Standard time series analysis techniques cannot be used on an inhomogeneous series without first
preprocessing the series to construct an artificial homogeneous series, by for example, resampling the
series at regular intervals. Zumbach and MÏller (2001) introduced a series of operators that can be used
to extract robust information directly from the inhomogeneous time series. In this context, robust
information means that the results should be essentially independent of minor changes to the sampling
mechanism used when collecting the data, for example, changing a number of time stamps or adding or
removing a few observations.

The basic operator available for inhomogeneous time series is the exponential moving average (EMA).
This operator has a single parameter, � , and is an average operator with an exponentially decaying
kernel given by:

e�t=�

�
:

This gives rise to the following iterative formula:

EMA � ; z½ � tið Þ ¼ �EMA � ; z½ � ti�1ð Þ þ � � �ð Þzi�1 þ 1� �ð Þzi
where

� ¼ e�� and � ¼ ti � ti�1
�

:

The value of � depends on the method of interpolation chosen. Three interpolation methods are
available:

1. Previous point: � ¼ 1.
2. Linear: � ¼ 1� �ð Þ=�.
3. Next point: � ¼ �.

Given the EMA, a number of other operators can be defined, including:

G13 – Time Series Analysis Introduction – G13

Mark 26 G13.21



(i) m-Iterated Exponential Moving Average, defined as

EMA �;m; z½ � ¼ EMA � ;EMA �;m� 1; z½ �½ � where EMA �; 1; z½ � ¼ EMA � ; z½ �:
(ii) Moving Average (MA), defined as

MA �;m1;m2; z½ � tið Þ ¼
1

m2 �m1 þ 1

Xm2

j¼m1

EMA ~�; j; z½ � tið Þ where ~� ¼ 2�

m2 þm1

(iii) Moving Norm (MNorm), defined as

MNorm �;m; p; zð Þ ¼ MA �; 1;m; zj jp½ �1=p

(iv) Moving Variance (MVar), defined as

MVar �;m; p; zð Þ ¼ MA �; 1;m; z�MA �; 1;m; z½ �j jp½ �
(v) Moving Standard Deviation (MSD), defined as

MSD �;m; p; zð Þ ¼ MA �; 1;m; z�MA �; 1;m; z½ �j jp½ �1=p

(vi) Differential (�), defined as

� �; �; �; �; z½ � ¼ � EMA ��; 1; z½ � þ EMA ��; 2; z½ � � 2EMA ���; 4; z½ �ð Þ
(vii)Volatility, defined as

Volatility �; � 0;m; p; z½ � ¼ MNorm �=2;m; p;� � 0; z½ �ð Þ
A discussion of each of these operators, their use and in some cases, alternative definitions, are given in
Zumbach and MÏller (2001).

3 Recommendations on Choice and Use of Available Routines

3.1 Univariate Analysis

The availability of routines for each of these four steps is given below.

3.1.1 ARMA-type Models

ARMA-type modelling usually follows the methodology made popular by Box and Jenkins. It consists
of four steps: identification, model fitting, model checking and forecasting.

(a) Model identification

The routine G13AUF may be used in obtaining either a range-mean or standard deviation-mean
plot for a series of observations, which may be useful in detecting the need for a variance-
stabilizing transformation. G13AUF computes the range or standard deviation and the mean for
successive groups of observations and G01AGF may then be used to produce a scatter plot of
range against mean or of standard deviation against mean.

The routine G13AAF may be used to difference a time series. The N ¼ n� d� s�D values of
the differenced time series which extends for t ¼ 1þ dþ s�D; . . . ; n are stored in the first N
elements of the output array.

The routine G13ABF may be used for direct computation of the autocorrelations. It requires the
time series as input, after optional differencing by G13AAF.

An alternative is to use G13CAF, which uses the fast Fourier transform (FFT) to carry out the
convolution for computing the autocovariances. Circumstances in which this is recommended are

(i) if the main aim is to calculate the smoothed sample spectrum;

(ii) if the series length and maximum lag for the autocorrelations are both very large, in which
case appreciable computing time may be saved.

For more precise recommendations, see Gentleman and Sande (1966). In this case the
autocorrelations rk need to be obtained from the autocovariances ck by rk ¼ ck=c0.
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The routine G13ACF computes the partial autocorrelation function (PACF) and prediction error
variance estimates from an input autocorrelation function (ACF). Note that G13DNF, which is
designed for multivariate time series, may also be used to compute the PACF together with �2

statistics and their significance levels.

Finite lag predictor coefficients are also computed by the routine G13ACF. It may have to be used
twice, firstly with a large value for the maximum lag L in order to locate the optimum final
prediction error (FPE) lag, then again with L reset to this lag.

The routine G13DXF may be used to check that the autoregressive (AR) part of the model is
stationary and that the moving-average (MA) part is invertible.

(b) Model estimation

The routine G13ADF is used to compute preliminary estimates of the ARIMA model parameters,
the sample autocorrelations of the appropriately differenced series being input. The model orders
are required.

The main routine for parameter estimation for ARIMA models is G13AEF, and an easy-to-use
version is G13AFF. Both these routines use the least squares criterion of estimation.

In some circumstances the use of G13BEF or G13DDF, which use maximum likelihood (ML), is
recommended.

The routines require the time series values to be input, together with the ARIMA orders. Any
differencing implied by the model is carried out internally. They also require the maximum number
of iterations to be specified, and return the state set for use in forecasting.

G13AEF should be preferred to G13AFF for:

(i) more information about the differenced series, its backforecasts and the intermediate series;

(ii) greater control over the output at successive iterations;

(iii) more detailed control over the search policy of the nonlinear least squares algorithm;

(iv) more information about the first and second derivatives of the objective function during and
upon completion of the iterations.

G13BEF is primarily designed for estimating relationships between time series. It is, however,
easily used in a univariate mode for ARIMA model estimation. The advantage is that it allows
(optional) use of the exact likelihood estimation criterion, which is not available in G13AEF or
G13AFF. This is particularly recommended for models which have seasonal parameters, because it
reduces the tendency of parameter estimates to become stuck at points on the parameter space
boundary. The model parameters estimated in this routine should be passed over to G13AJF for use
in univariate forecasting.

The routine G13DDF is primarily designed for fitting vector ARMA models to multivariate time
series but may also be used in a univariate mode. It allows the use of either the exact or conditional
likelihood estimation criterion, and allows you to fit non-multiplicative seasonal models which are
not available in G13AEF, G13AFF or G13BEF.

(c) Model checking

G13ASF calculates the correlations in the residuals from a model fitted by either G13AEF or
G13AFF. In addition the standard errors and correlations of the residual autocorrelations are
computed along with a portmanteau test for model adequacy. G13ASF can be used after a
univariate model has been fitted by G13BEF, but care must be taken in selecting the correct inputs
to G13ASF. Note that if G13DDF has been used to fit a non-multiplicative seasonal model to a
univariate series then G13DSF may be used to check the adequacy of the model.

(d) Forecasting using an ARIMA model

Given that the state set produced on estimation of the ARIMA model by either G13AEF or
G13AFF has been retained, G13AHF can be used directly to construct forecasts for xnþ1; xnþ2; . . . ,
together with probability limits. If some further observations xnþ1; xnþ2; . . . have come to hand
since model estimation (and there is no desire to re-estimate the model using the extended series),
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then G13AGF can be used to update the state set using the new observations, prior to forecasting
from the end of the extended series. The original series is not required.

The routine G13AJF is provided for forecasting when the ARIMA model is known but the state set
is unknown. For example, the model may have been estimated by a procedure other than the use of
G13AEF or G13AFF, such as G13BEF. G13AJF constructs the state set and optionally constructs
forecasts with probability limits. It is equivalent to a call to G13AEF with zero iterations requested,
followed by an optional call to G13AHF, but it is much more efficient.

3.1.2 Exponential smoothing

A variety of different smoothing methods are provided by G13AMF, including; single exponential,
Brown's double exponential, linear Holt (also called double exponential smoothing in some references),
additive Holt–Winters and multiplicative Holt–Winters. The choice of smoothing method used depends
on the characteristics of the time series. If the mean of the series is only slowly changing then single
exponential smoothing may be suitable. If there is a trend in the time series, which itself may be slowly
changing, then double exponential smoothing may be suitable. If there is a seasonal component to the
time series, e.g., daily or monthly data, then one of the two Holt–Winters methods may be suitable.

3.1.3 Change point analysis

Four routines are available for change point analysis, two implementing the PELT algorithm (G13NAF
and G13NBF) and two binary segmentation (G13NDF and G13NEF). Of these, G13NAF and G13NDF
have six pre-defined cost functions based on the log-likelihood of the Normal, Gamma, Exponential and
Poisson distributions. In the case of the Normal distribution changes in the mean, standard deviation or
both can be investigated. The remaining two routines, G13NBF and G13NEF take a user-supplied cost
function.

Binary segmentation only returns an approximate solution to the change point problem as defined in
equation (5). It is therefore recommended that the PELT algorithm is used in most cases. However, for
long time series the binary segmentation algorithm may give a marked improvement in terms of speed
especially if the maximum depth for the iterative process (MDEPTH) is set to a low value.

3.2 Univariate Spectral Analysis

Two routines are available, G13CAF carrying out smoothing using a lag window and G13CBF carrying
out direct frequency domain smoothing. Both can take as input the original series, but G13CAF alone
can use the sample autocovariances as alternative input. This has some computational advantage if a
variety of spectral estimates needs to be examined for the same series using different amounts of
smoothing.

However, the real choice in most cases will be which of the four shapes of lag window in G13CAF to
use, or whether to use the trapezium frequency window of G13CBF. The references may be consulted
for advice on this, but the two most recommended lag windows are the Tukey and Parzen. The Tukey
window has a very small risk of supplying negative spectrum estimates; otherwise, for the same
bandwidth, both give very similar results, though the Parzen window requires a higher truncation lag
(more autocorrelation function (ACF) values).

The frequency window smoothing procedure of G13CBF with a trapezium shape parameter p ’ 1
2

generally gives similar results for the same bandwidth as lag window methods with a slight advantage
of somewhat less distortion around sharp peaks, but suffering a rather less smooth appearance in fine
detail.

3.3 Linear Lagged Relationships Between Time Series

The availability of routines for each of four steps: identification, model fitting, model checking and
forecasting, is given below.
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(a) Model identification

Normally use G13BCF for direct computation of cross-correlations, from which cross-covariances
may be obtained by multiplying by sysx, and impulse response estimates (after prewhitening) by
multiplying by sy=sx, where sy; sx are the sample standard deviations of the series.

An alternative is to use G13CCF, which exploits the fast Fourier transform (FFT) to carry out the
convolution for computing cross-covariances. The criteria for this are the same as given in
Section 3.1.1 for calculation of autocorrelations. The impulse response function may also be
computed by spectral methods without prewhitening using G13CGF.

G13BAF may be used to prewhiten or filter a series by an ARIMA model.

G13BBF may be used to filter a time series using a transfer function model.

(b) Estimation of input-output model parameters

The routine G13BDF is used to obtain preliminary estimates of transfer function model parameters.
The model orders and an estimate of the impulse response function (see Section 3.2) are required.

The simultaneous estimation of the transfer function model parameters for the inputs, and ARIMA
model parameters for the output, is carried out by G13BEF.

This routine requires values of the output and input series, and the orders of all the models. Any
differencing implied by the model is carried out internally.

The routine also requires the maximum number of iterations to be specified, and returns the state
set for use in forecasting.

(c) Input-output model checking

The routine G13ASF, primarily designed for univariate time series, can be used to test the residuals
from an input-output model.

(d) Forecasting using an input-output model

Given that the state set produced on estimation of the model by G13BEF has been retained, the
routine G13BHF can be used directly to construct forecasts of the output series. Future values of
the input series (possibly forecasts previously obtained using G13AHF) are required.

If further observations of the output and input series have become available since model estimation
(and there is no desire to re-estimate the model using the extended series) then G13BGF can be
used to update the state set using the new observations prior to forecasting from the end of the
extended series. The original series are not required.

The routine G13BJF is provided for forecasting when the multi-input model is known, but the state
set is unknown. The set of output and input series must be supplied to the routine which then
constructs the state set (for future use with G13BGF and/or G13BHF) and also optionally
constructs forecasts of the output series in a similar manner to G13BHF.

In constructing probability limits for the forecasts, it is possible to allow for the fact that future
input series values may themselves have been calculated as forecasts using ARIMA models. Use of
this option requires that these ARIMA models be supplied to the routine.

(e) Filtering a time series using a transfer function model

The routine for this purpose is G13BBF.

3.4 Multivariate Time Series

The availability of routines for each of four steps: identification, model fitting, model checking and
forecasting, is given below.

(a) Model identification

The routine G13DLF may be used to difference the series. You must supply the differencing
parameters for each component of the multivariate series. The order of differencing for each
individual component does not have to be the same. The routine may also be used to apply a log or
square root transformation to the components of the series.
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The routine G13DMF may be used to calculate the sample cross-correlation or cross-covariance
matrices. It requires a set of time series as input. You may request either the cross-covariances or
cross-correlations.

The routine G13DNF computes the partial lag correlation matrices from the sample cross-
correlation matrices computed by G13DMF, and the routine G13DPF computes the least squares
estimates of the partial autoregression matrices and their standard errors. Both routines compute a
series of �2 statistics that aid the determination of the order of a suitable autoregressive model.
G13DBF may also be used in the identification of the order of an autoregressive model. The
routine computes multiple squared partial autocorrelations and predictive error variance ratios from
the sample cross-correlations or cross-covariances computed by G13DMF.

The routine G13DXF may be used to check that the autoregressive part of the model is stationary
and that the moving-average part is invertible.

(b) Estimation of VARMA model parameters

The routine for this purpose is G13DDF. This routine requires a set of time series to be input,
together with values for p and q. You must also specify the maximum number of likelihood
evaluations to be permitted and which parameters (if any) are to be held at their initial (user-
supplied) values. The fitting criterion is either exact maximum likelihood (ML) or conditional
maximum likelihood.

G13DDF is primarily designed for estimating relationships between time series. It may, however,
easily be used in univariate mode for non-seasonal and non-multiplicative seasonal ARIMA model
estimation. The advantage is that it allows (optional) use of the exact maximum likelihood (ML)
estimation criterion, which is not available in either G13AEF or G13AFF. The conditional
likelihood option is recommended for those models in which the parameter estimates display a
tendency to become stuck at points on the boundary of the parameter space. When one of the series
is known to be influenced by all the others, but the others in turn are mutually independent and do
not influence the output series, then G13BEF (the transfer function (TF) model fitting routine) may
be more appropriate to use.

(c) VARMA model checking

G13DSF calculates the cross-correlation matrices of residuals for a model fitted by G13DDF. In
addition the standard errors and correlations of the residual correlation matrices are computed
along with a portmanteau test for model adequacy.

(d) Forecasting using a VARMA model

The routine G13DJF may be used to construct a chosen number of forecasts using the model
estimated by G13DDF. The standard errors of the forecasts are also computed. A reference vector
is set up by G13DJF so that should any further observations become available the existing forecasts
can be efficiently updated using G13DKF. On a call to G13DKF the reference vector itself is also
updated so that G13DKF may be called again each time new observations are available.

3.5 Cross-spectral Analysis

Two routines are available for the main step in cross-spectral analysis. To compute the cospectrum and
quadrature spectrum estimates using smoothing by a lag window, G13CCF should be used. It takes as
input either the original series or cross-covariances which may be computed in a previous call of the
same routine or possibly using results from G13BCF. As in the univariate case, this gives some
advantage if estimates for the same series are to be computed with different amounts of smoothing.

The choice of window shape will be determined as the same as that which has already been used in
univariate spectrum estimation for the series.

For direct frequency domain smoothing, G13CDF should be used, with similar consideration for the
univariate estimation in choice of degree of smoothing.

The cross-amplitude and squared coherency spectrum estimates are calculated, together with upper and
lower confidence bounds, using G13CEF. For input the cross-spectral estimates from either G13CCF or
G13CDF and corresponding univariate spectra from either G13CAF or G13CBF are required.
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The gain and phase spectrum estimates are calculated together with upper and lower confidence bounds
using G13CFF. The required input is as for G13CEF above.

The noise spectrum estimates and impulse response function estimates are calculated together with
multiplying factors for confidence limits on the former, and the standard error for the latter, using
G13CGF. The required input is again the same as for G13CEF above.

3.6 Kalman Filtering

3.6.1 Linear state space models

Two routines are available for analysing a linear state space model using Kalman filtering: G13EAF for
time varying systems and G13EBF for time invariant systems. The latter will optionally compute the
required transformation to lower observer Hessenberg form. Both these routines return the Cholesky
factor of the residual covariance matrix, Ht, with the Cholesky factor of the state covariance matrix
Stþ1 and the Kalman gain matrix, Kt pre-multiplied by At; in the case of G13EBF these may be for the
transformed system. To compute the updated state vector and the residual vector the required matrix-
vector multiplications can be performed by F06PAF (DGEMV).

3.6.2 Nonlinear state space models

Two routines are available for analysing a nonlinear state space model: G13EJF and G13EKF. The
difference between the two routines is how the nonlinear functions, F and H are supplied, with G13EJF
using reverse communication and G13EKF using direct communication. See Section 3.3.3 in How to
Use the NAG Library and its Documentation for a description of the terms reverse and direct
communication.

As well as having the additional flexibility inherent in reverse communication routines G13EJF also
offers an alternative method of generating the sigma points utilized by the Unscented Kalman Filter
(UKF), potentially allowing for additional information to be propagated through the state space model.
However, due to the increased complexity of the interface it is recommended that G13EKF is used
unless this additional flexibility is definitely required.

3.7 GARCH Models

The main choice in selecting a type of GARCH model is whether the data is symmetric or asymmetric
and if asymmetric what form of asymmetry should be included in the model.

A symmetric ARCH or GARCH model can be fitted by G13FAF and the volatility forecast by G13FBF.
For asymmetric data the choice is between the type of asymmetry as described in Section 2.7.

GARCH Type Fit Forecast

Type I G13FAF G13FBF

Type II G13FCF G13FDF

GJR G13FEF G13FFF

EGARCH G13FGF G13FHF

All routines allow the option of including regressor variables in the model and the choice between
Normal and Student's t-distribution for the errors.

3.8 Inhomogeneous Time Series

The following routines deal with inhomogeneous time series, G13MEF, G13MFF and G13MGF.

Both G13MEF and G13MFF calculate the m-iterated exponential moving average (EMA). In most
cases G13MEF can be used, which returns EMA �;m; z½ � for a given value of m, overwriting the input
data. Sometimes it is advantageous to have access to the intermediate results, for example when
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calculating the differential operator, in which case G13MFF can be used, which can return EMA �; i; z½ �,
for i ¼ 1; 2; . . . ;m. G13MFF can also be used if you do not wish to overwrite the input data.

The last routine, G13MGF should be used if you require the moving average, (MA), moving norm
(MNorm), moving variance (MVar) or moving standard deviation (MSD). Other operators can be
calculated by calling a combination of these three routines and the use of simple mathematics
(additions, subtractions, etc.).

3.9 Time Series Simulation

There are routines available in Chapter G05 for generating a realization of a time series from a specified
model: G05PHF for univariate time series and G05PJF for multivariate time series. There is also a suite
of routines for simulating GARCH models: G05PDF, G05PEF, G05PFF and G05PGF. The routine
G05PMF can be used to simulate data from an exponential smoothing model.

4 Functionality Index

ARMA modelling,
ACF ................................................................................................................................ G13ABF
diagnostic checking ......................................................................................................... G13ASF
Dickey–Fuller unit root test............................................................................................ G13AWF
differencing ..................................................................................................................... G13AAF
estimation (comprehensive) ............................................................................................. G13AEF
estimation (easy-to-use)................................................................................................... G13AFF
forecasting from fully specified model............................................................................ G13AJF
forecasting from state set ................................................................................................ G13AHF
mean/range ...................................................................................................................... G13AUF
PACF .............................................................................................................................. G13ACF
preliminary estimation..................................................................................................... G13ADF
update state set ............................................................................................................... G13AGF

Change point,
detection,

binary segmentation ................................................................................................... G13NDF
binary segmentation,

user supplied cost function ................................................................................... G13NEF
PELT.......................................................................................................................... G13NAF
PELT,

user supplied cost function ................................................................................... G13NBF

Exponential smoothing ......................................................................................................... G13AMF

GARCH,
EGARCH,

fitting ......................................................................................................................... G13FGF
forecasting.................................................................................................................. G13FHF

GJR GARCH,
fitting ......................................................................................................................... G13FEF
forecasting.................................................................................................................. G13FFF

symmetric or type I AGARCH,
fitting ......................................................................................................................... G13FAF
forecasting.................................................................................................................. G13FBF

type II AGARCH,
fitting ......................................................................................................................... G13FCF
forecasting.................................................................................................................. G13FDF

Inhomogenous series,
iterated exponential moving average,

final value only returned ............................................................................................ G13MEF
intermediate values returned ...................................................................................... G13MFF

moving average............................................................................................................... G13MGF
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Kalman,
filter,

time invariant,
square root covariance .......................................................................................... G13EBF

time varying,
square root covariance .......................................................................................... G13EAF

unscented ................................................................................................................... G13EKF
unscented (reverse communication)............................................................................ G13EJF

Spectral analysis
Bivariate,

Bartlett, Tukey, Parzen windows................................................................................ G13CCF
cross amplitude spectrum........................................................................................... G13CEF
direct smoothing......................................................................................................... G13CDF
gain and phase ........................................................................................................... G13CFF
noise spectrum ........................................................................................................... G13CGF

Univariate,
Bartlett, Tukey, Parzen windows................................................................................ G13CAF
direct smoothing......................................................................................................... G13CBF

Transfer function modelling,
cross-correlations............................................................................................................. G13BCF
filtering............................................................................................................................ G13BBF
fitting .............................................................................................................................. G13BEF
forecasting from fully specified model............................................................................ G13BJF
forecasting from state set ................................................................................................ G13BHF
preliminary estimation..................................................................................................... G13BDF
pre-whitening .................................................................................................................. G13BAF
update state set ............................................................................................................... G13BGF

Vector ARMA,
cross-correlations............................................................................................................. G13DMF
diagnostic checks ............................................................................................................ G13DSF
differencing ..................................................................................................................... G13DLF
fitting .............................................................................................................................. G13DDF
forecasting....................................................................................................................... G13DJF
partial autoregression matrices ........................................................................................ G13DPF
partial correlation matrices.............................................................................................. G13DNF
squared partial autocorrelations....................................................................................... G13DBF
update forecast ................................................................................................................ G13DKF
zeros of ARIMA operator ............................................................................................... G13DXF

5 Auxiliary Routines Associated with Library Routine Arguments

G13AFZ nagf_tsa_uni_arima_estim_sample_piv
See the description of the argument PIV in G13AEF.

6 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

G13DCF 24 G13DDF
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NAG Library Routine Document

G13AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13AAF carries out non-seasonal and seasonal differencing on a time series. Information which allows
the original series to be reconstituted from the differenced series is also produced. This information is
required in time series forecasting.

2 Specification

SUBROUTINE G13AAF (X, NX, ND, NDS, NS, XD, NXD, IFAIL)

INTEGER NX, ND, NDS, NS, NXD, IFAIL
REAL (KIND=nag_wp) X(NX), XD(NX)

3 Description

Let rdrD
s xi be the ith value of a time series xi, for i ¼ 1; 2; . . . ; n after non-seasonal differencing of

order d and seasonal differencing of order D (with period or seasonality s). In general,

rdrD
s xi ¼ rd�1rD

s xiþ1 �rd�1rD
s xi d > 0

rdrD
s xi ¼ rdrD�1

s xiþs �rdrD�1
s xi D > 0

Non-seasonal differencing up to the required order d is obtained using

r1xi ¼ xiþ1 � xi for i ¼ 1; 2; . . . ; n� 1ð Þ
r2xi ¼ r1xiþ1 �r1xi for i ¼ 1; 2; . . . ; n� 2ð Þ
..
.

rdxi ¼ rd�1xiþ1 �rd�1xi for i ¼ 1; 2; . . . ; n� dð Þ

Seasonal differencing up to the required order D is then obtained using

rdr1
sxi ¼ rdxiþs �rdxi for i ¼ 1; 2; . . . ; n� d� sð Þ

rdr2
sxi ¼ rdr1

sxiþs �rdr1
sxi for i ¼ 1; 2; . . . ; n� d� 2sð Þ

..

.

rdrD
s xi ¼ rdrD�1

s xiþs �rdrD�1
s xi for i ¼ 1; 2; . . . ; n� d�D� sð Þ

Mathematically, the sequence in which the differencing operations are performed does not affect the
final resulting series of m ¼ n� d�D� s values.

4 References

None.

5 Arguments

1: XðNXÞ – REAL (KIND=nag_wp) array Input

On entry: the undifferenced time series, xi, for i ¼ 1; 2; . . . ; n.
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2: NX – INTEGER Input

On entry: n, the number of values in the undifferenced time series.

Constraint: NX > NDþ NDS� NSð Þ.

3: ND – INTEGER Input

On entry: d, the order of non-seasonal differencing.

Constraint: ND � 0.

4: NDS – INTEGER Input

On entry: D, the order of seasonal differencing.

Constraint: NDS � 0.

5: NS – INTEGER Input

On entry: s, the seasonality.

Constraints:

if NDS > 0, NS > 0;
if NDS ¼ 0, NS � 0.

6: XDðNXÞ – REAL (KIND=nag_wp) array Output

On exit: the differenced values in elements 1 to NXD, and reconstitution data in the remainder of
the array.

7: NXD – INTEGER Output

On exit: the number of differenced values in the array XD.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ND < 0,
or NDS < 0,
or NS < 0,
or NS ¼ 0 when NDS > 0.
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IFAIL ¼ 2

On entry, NX � NDþ NDS� NSð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13AAF is not threaded in any implementation.

9 Further Comments

The time taken by G13AAF is approximately proportional to NDþ NDSð Þ � NX.

10 Example

This example reads in a set of data consisting of 20 observations from a time series. Non-seasonal
differencing of order 2 and seasonal differencing of order 1 (with seasonality of 4) are applied to the
input data, giving an output array holding 14 differenced values and 6 values which can be used to
reconstitute the output array.

10.1 Program Text

Program g13aafe

! G13AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13aaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, nd, nds, ns, nx, nxd

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), xd(:)

! .. Executable Statements ..
Write (nout,*) ’G13AAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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! Read in the problem size
Read (nin,*) nx, nd, nds, ns

Allocate (x(nx),xd(nx))

! Read in data
Read (nin,*) x(1:nx)

! Perform differencing
ifail = 0
Call g13aaf(x,nx,nd,nds,ns,xd,nxd,ifail)

! Display results
Write (nout,99999) ’Non-seasonal differencing of order ’, nd, &

’ and seasonal differencing’
Write (nout,99999) ’of order ’, nds, ’ with seasonality ’, ns, &

’ are applied’
Write (nout,*)
Write (nout,99998) ’The output array holds ’, nx, &

’ values, of which the first ’, nxd, ’ are differenced values’
Write (nout,*)
Write (nout,99997) xd(1:nx)

99999 Format (1X,A,I1,A,I1,A)
99998 Format (1X,A,I2,A,I2,A)
99997 Format (1X,5F9.1)

End Program g13aafe

10.2 Program Data

G13AAF Example Program Data
20 2 1 4
120.0 108.0 98.0 118.0 135.0
131.0 118.0 125.0 121.0 100.0
82.0 82.0 89.0 88.0 86.0
96.0 108.0 110.0 99.0 105.0

10.3 Program Results

G13AAF Example Program Results

Non-seasonal differencing of order 2 and seasonal differencing
of order 1 with seasonality 4 are applied

The output array holds 20 values, of which the first 14 are differenced values

-11.0 -10.0 -8.0 4.0 12.0
-2.0 18.0 9.0 -4.0 -6.0
-5.0 -2.0 -12.0 5.0 2.0

-10.0 -13.0 17.0 6.0 105.0
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NAG Library Routine Document

G13ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13ABF computes the sample autocorrelation function of a time series. It also computes the sample
mean, the sample variance and a statistic which may be used to test the hypothesis that the true
autocorrelation function is zero.

2 Specification

SUBROUTINE G13ABF (X, NX, NK, XM, XV, R, STAT, IFAIL)

INTEGER NX, NK, IFAIL
REAL (KIND=nag_wp) X(NX), XM, XV, R(NK), STAT

3 Description

The data consists of n observations xi, for i ¼ 1; 2; . . . ; n from a time series.

The quantities calculated are

(a) The sample mean

�x ¼

Xn
i¼1
xi

n
:

(b) The sample variance (for n � 2)

s2 ¼

Xn
i¼1

xi � �xð Þ2

n� 1ð Þ :

(c) The sample autocorrelation coefficients of lags k ¼ 1; 2; . . . ; K, where K is a user-specified
maximum lag, and K < n, n > 1.

The coefficient of lag k is defined as

rk ¼

Xn�k
i¼1

xi � �xð Þ xiþk � �xð Þ

Xn
i¼1

xi � �xð Þ2
:

See page 496 of Box and Jenkins (1976) for further details.

(d) A test statistic defined as

STAT ¼ n
XK
k¼1

r2k;

which can be used to test the hypothesis that the true autocorrelation function is identically zero.

If n is large and K is much smaller than n, STAT has a �2
K distribution under the hypothesis of a

zero autocorrelation function. Values of STAT in the upper tail of the distribution provide evidence
against the hypothesis; G01ECF can be used to compute the tail probability.
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Section 8.2.2 of Box and Jenkins (1976) provides further details of the use of STAT.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

5 Arguments

1: XðNXÞ – REAL (KIND=nag_wp) array Input

On entry: the time series, xi, for i ¼ 1; 2; . . . ; n.

2: NX – INTEGER Input

On entry: n, the number of values in the time series.

Constraint: NX > 1.

3: NK – INTEGER Input

On entry: K, the number of lags for which the autocorrelations are required. The lags range from
1 to K and do not include zero.

Constraint: 0 < NK < NX.

4: XM – REAL (KIND=nag_wp) Output

On exit: the sample mean of the input time series.

5: XV – REAL (KIND=nag_wp) Output

On exit: the sample variance of the input time series.

6: RðNKÞ – REAL (KIND=nag_wp) array Output

On exit: the sample autocorrelation coefficient relating to lag k, for k ¼ 1; 2; . . . ;K.

7: STAT – REAL (KIND=nag_wp) Output

On exit: the statistic used to test the hypothesis that the true autocorrelation function of the time
series is identically zero.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NX � NK,
or NX � 1,
or NK � 0.

IFAIL ¼ 2

On entry, all values of X are practically identical, giving zero variance. In this case R and STAT
are undefined on exit.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13ABF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13ABF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If n < 100, or K < 10log nð Þ then the autocorrelations are calculated directly and the time taken by
G13ABF is approximately proportional to nK, otherwise the autocorrelations are calculated by utilizing
fast fourier transforms (FFTs) and the time taken is approximately proportional to nlog nð Þ. If FFTs are
used then G13ABF internally allocates approximately 4n real elements.

If the input series for G13ABF was generated by differencing using G13AAF, ensure that only the
differenced values are input to G13ABF, and not the reconstituting information.
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10 Example

In the example below, a set of 50 values of sunspot counts is used as input. The first 10 autocorrelations
are computed.

10.1 Program Text

Program g13abfe

! G13ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13abf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: stat, xm, xv
Integer :: i, ifail, nk, nx

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’G13ABF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nx, nk

Allocate (x(nx),r(nk))

! Read in data
Read (nin,*) x(1:nx)

! Compute autocorrelation
ifail = 0
Call g13abf(x,nx,nk,xm,xv,r,stat,ifail)

! Display results
Write (nout,99999) ’The first ’, nk, ’ coefficients are required’
Write (nout,99998) ’The input array has sample mean ’, xm
Write (nout,99998) ’The input array has sample variance ’, xv
Write (nout,*) ’The sample autocorrelation coefficients are’
Write (nout,*)
Write (nout,*) ’ Lag Coeff Lag Coeff’
Write (nout,99997)(i,r(i),i=1,nk)
Write (nout,*)
Write (nout,99998) ’The value of STAT is ’, stat

99999 Format (1X,A,I2,A)
99998 Format (1X,A,F12.4)
99997 Format (1X,I6,F10.4,I8,F10.4)

End Program g13abfe

10.2 Program Data

G13ABF Example Program Data
50 10

5.0 11.0 16.0 23.0 36.0
58.0 29.0 20.0 10.0 8.0
3.0 0.0 0.0 2.0 11.0

27.0 47.0 63.0 60.0 39.0
28.0 26.0 22.0 11.0 21.0

G13ABF NAG Library Manual

G13ABF.4 Mark 26



40.0 78.0 122.0 103.0 73.0
47.0 35.0 11.0 5.0 16.0
34.0 70.0 81.0 111.0 101.0
73.0 40.0 20.0 16.0 5.0
11.0 22.0 40.0 60.0 80.9

10.3 Program Results

G13ABF Example Program Results

The first 10 coefficients are required
The input array has sample mean 37.4180
The input array has sample variance 1002.0301
The sample autocorrelation coefficients are

Lag Coeff Lag Coeff
1 0.8004 2 0.4355
3 0.0328 4 -0.2835
5 -0.4505 6 -0.4242
7 -0.2419 8 0.0550
9 0.3783 10 0.5857

The value of STAT is 92.1231

This plot shows the autocorrelations for all possible lag values. Reference lines are given at
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NAG Library Routine Document

G13ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13ACF calculates partial autocorrelation coefficients given a set of autocorrelation coefficients. It also
calculates the predictor error variance ratios for increasing order of finite lag autoregressive predictor,
and the autoregressive parameters associated with the predictor of maximum order.

2 Specification

SUBROUTINE G13ACF (R, NK, NL, P, V, AR, NVL, IFAIL)

INTEGER NK, NL, NVL, IFAIL
REAL (KIND=nag_wp) R(NK), P(NL), V(NL), AR(NL)

3 Description

The data consist of values of autocorrelation coefficients r1; r2; . . . ; rK , relating to lags 1; 2; . . . ; K.
These will generally (but not necessarily) be sample values such as may be obtained from a time series
xt using G13ABF.

The partial autocorrelation coefficient at lag l may be identified with the parameter pl;l in the
autoregression

xt ¼ cl þ pl;1xt�1 þ pl;2xt�2 þ � � � þ pl;lxt�l þ el;t
where el;t is the predictor error.

The first subscript l of pl;l and el;t emphasizes the fact that the parameters will in general alter as further
terms are introduced into the equation (i.e., as l is increased).

The parameters are determined from the autocorrelation coefficients by the Yule–Walker equations

ri ¼ pl;1ri�1 þ pl;2ri�2 þ � � � þ pl;lri�l; i ¼ 1; 2; . . . ; l

taking rj ¼ r jj j when j < 0, and r0 ¼ 1.

The predictor error variance ratio vl ¼ var el;t
� �

= var xtð Þ is defined by

vl ¼ 1� pl;1r1 � pl;2r2 � � � � � pl;lrl:
The above sets of equations are solved by a recursive method (the Durbin–Levinson algorithm). The
recursive cycle applied for l ¼ 1; 2; . . . ; L� 1ð Þ, where L is the number of partial autocorrelation
coefficients required, is initialized by setting p1;1 ¼ r1 and v1 ¼ 1� r21.
Then

plþ1;lþ1 ¼ rlþ1 � pl;1rl � pl;2rl�1 � � � � � pl;lr1
� �

=vl
plþ1;j ¼ pl;j � plþ1;lþ1pl;lþ1�j; j ¼ 1; 2; . . . ; l
vlþ1 ¼ vl 1� plþ1;lþ1

� �
1þ plþ1;lþ1
� �

:

If the condition pl;l
		 		 � 1 occurs, say when l ¼ l0, it indicates that the supplied autocorrelation

coefficients do not form a positive definite sequence (see Hannan (1960)), and the recursion is not
continued. The autoregressive parameters are overwritten at each recursive step, so that upon
completion the only available values are pLj, for j ¼ 1; 2; . . . ; L, or pl0�1;j if the recursion has been
prematurely halted.
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4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

Durbin J (1960) The fitting of time series models Rev. Inst. Internat. Stat. 28 233

Hannan E J (1960) Time Series Analysis Methuen

5 Arguments

1: RðNKÞ – REAL (KIND=nag_wp) array Input

On entry: the autocorrelation coefficient relating to lag k, for k ¼ 1; 2; . . . ;K.

2: NK – INTEGER Input

On entry: K, the number of lags. The lags range from 1 to K and do not include zero.

Constraint: NK > 0.

3: NL – INTEGER Input

On entry: L, the number of partial autocorrelation coefficients required.

Constraint: 0 < NL � NK.

4: PðNLÞ – REAL (KIND=nag_wp) array Output

On exit: PðlÞ contains the partial autocorrelation coefficient at lag l, pl;l , for l ¼ 1; 2; . . . ;NVL.

5: VðNLÞ – REAL (KIND=nag_wp) array Output

On exit: VðlÞ contains the predictor error variance ratio vl , for l ¼ 1; 2; . . . ;NVL.

6: ARðNLÞ – REAL (KIND=nag_wp) array Output

On exit: the autoregressive parameters of maximum order, i.e., pLj if IFAIL ¼ 0, or pl0�1;j if
IFAIL ¼ 3, for j ¼ 1; 2; . . . ;NVL.

7: NVL – INTEGER Output

On exit: the number of valid values in each of P, V and AR. Thus in the case of premature
termination at iteration l0 (see Section 3), NVL is returned as l0 � 1.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NK � 0,
or NL � 0,
or NK < NL.

IFAIL ¼ 2

On entry, the autocorrelation coefficient of lag 1 has an absolute value greater than or equal to
1:0; no recursions could be performed.

IFAIL ¼ 3

Recursion has been prematurely terminated; the supplied autocorrelation coefficients do not form
a positive definite sequence (see Section 3). Argument NVL returns the number of valid values
computed.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13ACF is not threaded in any implementation.

9 Further Comments

The time taken by G13ACF is proportional to NVLð Þ2.

10 Example

This example uses an input series of 10 sample autocorrelation coefficients derived from the original
series of sunspot numbers generated by the G13ABF example program. The results show five values of
each of the three output arrays: partial autocorrelation coefficients, predictor error variance ratios and
autoregressive parameters. All of these were valid.
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10.1 Program Text

Program g13acfe

! G13ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13acf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, nk, nl, nvl

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ar(:), p(:), r(:), v(:)

! .. Executable Statements ..
Write (nout,*) ’G13ACF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nk, nl

Allocate (ar(nl),p(nl),r(nk),v(nl))

! Read in data
Read (nin,*)(r(i),i=1,nk)

! Calculate partial ACF
ifail = -1
Call g13acf(r,nk,nl,p,v,ar,nvl,ifail)
If (ifail/=0) Then

If (ifail==3) Then
Write (nout,99999) ’ Only’, nvl, ’valid sets were generated’
Write (nout,*)

Else
Go To 100

End If
End If

! Display results
Write (nout,*) ’Lag Partial Predictor error Autoregressive’
Write (nout,*) ’ autocorrn variance ratio’ // ’ parameter’
Write (nout,*)
Write (nout,99998)(i,p(i),v(i),ar(i),i=1,nvl)

100 Continue

99999 Format (1X,A,I2,A)
99998 Format (1X,I2,F9.3,F16.3,F14.3)

End Program g13acfe

10.2 Program Data

G13ACF Example Program Data
10 5

0.8004 0.4355 0.0328 -0.2835 -0.4505
-0.4242 -0.2419 -0.0550 0.3783 0.5857
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10.3 Program Results

G13ACF Example Program Results

Lag Partial Predictor error Autoregressive
autocorrn variance ratio parameter

1 0.800 0.359 1.108
2 -0.571 0.242 -0.290
3 -0.239 0.228 -0.193
4 -0.049 0.228 -0.014
5 -0.032 0.228 -0.032

This plot shows the partial autocorrelations for all possible lag values. Reference lines are given at
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NAG Library Routine Document

G13ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13ADF calculates preliminary estimates of the parameters of an autoregressive integrated moving
average (ARIMA) model from the autocorrelation function of the appropriately differenced times series.

2 Specification

SUBROUTINE G13ADF (MR, R, NK, XV, NPAR, WA, NWA, PAR, RV, ISF, IFAIL)

INTEGER MR(7), NK, NPAR, NWA, ISF(4), IFAIL
REAL (KIND=nag_wp) R(NK), XV, WA(NWA), PAR(NPAR), RV

3 Description

Preliminary estimates of the p non-seasonal autoregressive parameters 
1; 
2; . . . ; 
p and the q non-
seasonal moving average parameters �1; �2; . . . ; �q may be obtained from the sample autocorrelations
relating to lags 1 to pþ q, i.e., r1; . . . ; rpþq, of the differenced rdrD

s xt, where xt is assumed to follow a
(possibly) seasonal ARIMA model (see Section 3 in G13AEF for the specification of an ARIMA
model).

Taking r0 ¼ 1 and r�k ¼ rk, the 
i, for i ¼ 1; 2; . . . ; p are the solutions to the equations

rqþi�1
1 þ rqþi�2
2 þ � � � þ rqþi�p
p ¼ rqþi; i ¼ 1; 2; . . . ; p:

The �j, for j ¼ 1; 2; . . . ; q, are obtained from the solutions to the equations

cj ¼ �0�j þ �1�jþ1 þ � � � þ �qþj�q; j ¼ 0; 1; . . . ; q

(Cramer Wold-factorization), by setting

�j ¼ �
�j
�0
;

where cj are the ‘covariances’ modified in a two stage process by the autoregressive parameters.

Stage 1:

dj ¼ rj � 
1rj�1 � � � � � 
prj�p; j ¼ 0; 1; . . . ; q;
dj ¼ 0; j ¼ q þ 1; q þ 2; . . . ; pþ q:

Stage 2:

cj ¼ dj � 
1djþ1 � 
2djþ2 � � � � � 
pdjþp; j ¼ 0; 1; . . . ; q:

The P seasonal autoregressive parameters �1; �2; . . . ; �P and the Q seasonal moving average
parameters �1; �2; . . . ; �Q are estimated in the same way as the non-seasonal parameters, but each rj is
replaced in the calculation by rs�j, where s is the seasonal period.

An estimate of the residual variance is obtained by successively reducing the sample variance, first for
non-seasonal, and then for seasonal, parameter estimates. If moving average parameters are estimated,
the variance is reduced by a multiplying factor of �20 , but otherwise by c0.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day
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5 Arguments

1: MRð7Þ – INTEGER array Input

On entry: the orders vector p; d; q; P ;D;Q; sð Þ of the ARIMA model whose parameters are to be
estimated. p, q, P and Q refer respectively to the number of autoregressive 
ð Þ, moving average
�ð Þ, seasonal autoregressive �ð Þ and seasonal moving average �ð Þ parameters. d, D and s refer
respectively to the order of non-seasonal differencing, the order of seasonal differencing and the
seasonal period.

Constraints:

p; d; q; P ;D;Q; s � 0;
pþ q þ P þQ > 0;
s 6¼ 1;
if s ¼ 0, P þDþQ ¼ 0;
if s > 1, P þDþQ > 0.

2: RðNKÞ – REAL (KIND=nag_wp) array Input

On entry: the autocorrelations (starting at lag 1), which must have been calculated after the time
series has been appropriately differenced.

Constraint: �1:0 � RðiÞ � 1:0, for i ¼ 1; 2; . . . ;NK.

3: NK – INTEGER Input

On entry: the maximum lag of the autocorrelations in array R.

Constraint: NK � max pþ q; s� P þQð Þð Þ.

4: XV – REAL (KIND=nag_wp) Input

On entry: the series sample variance, calculated after appropriate differencing has been applied to
the series.

Constraint: XV > 0:0.

5: NPAR – INTEGER Input

On entry: the exact number of parameters specified in the model by array MR.

Constraint: NPAR ¼ pþ q þ P þQ.

6: WAðNWAÞ – REAL (KIND=nag_wp) array Workspace
7: NWA – INTEGER Input

On entry: the amount of workspace available.

C o n s t r a i n t : i f MR ¼ p; d; q; P ;D;Q; sð Þ a n d p0 ¼ max p; Pð Þ a n d q0 ¼ max q;Qð Þ,
NWA � max p02 þ p0; 4 q0 þ 1ð Þ

� �
.

8: PARðNPARÞ – REAL (KIND=nag_wp) array Output

On exit: the first NPAR elements of PAR contain the preliminary estimates of the ARIMA model
parameters, in standard order.

9: RV – REAL (KIND=nag_wp) Output

On exit: an estimate of the residual variance of the preliminarily estimated model.

10: ISFð4Þ – INTEGER array Output

On exit: contains success/failure indicators, one for each of the four types of parameter
(autoregressive, moving average, seasonal autoregressive, seasonal moving average).
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The indicator has the interpretation:

0 No parameter of this type is in the model.

1 Parameters of this type appear in the model and satisfactory preliminary estimates of this
type were obtained.

�1 Parameters of this type appear in the model but satisfactory preliminary estimates of this
type were not obtainable. The estimates of this type of parameter were set to 0:0 in array
PAR.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, the orders vector MR is invalid. One of the constraints in Section 5 has been violated.

IFAIL ¼ 2

On entry, NK < max pþ q; s� P þQð Þð Þ. There are not enough autocorrelations to enable the
required model to be estimated.

IFAIL ¼ 3

On entry, at least one element of R lies outside the range �1:0; 1:0½ �.

IFAIL ¼ 4

On entry, XV � 0:0.

IFAIL ¼ 5

On entry, NPAR 6¼ pþ q þ P þQ.

IFAIL ¼ 6

On entry, the workspace array WA is too small. See Section 5 for the minimum size formula.

IFAIL ¼ 7

Satisfactory parameter estimates could not be obtained for all parameter types in the model.
Inspect array ISF for indicators of the parameter type(s) which could not be estimated.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The performance of the algorithm is conditioned by the roots of the autoregressive and moving average
operators. If these are not close to unity in modulus, the errors, e, should satisfy e < 100� where � is
machine precision.

8 Parallelism and Performance

G13ADF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13ADF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G13ADF is approximately proportional to p3 þ q2 þ P 3 þQ2
� �

:

10 Example

This example reads the sample autocorrelations to lag 40 and the sample variance of the lagged and
doubly differenced series of airline passenger totals (Box and Jenkins example series G (see Box and
Jenkins (1976))). Preliminary estimates of the parameters of the 0; 1; 1; 0; 1; 1; 12ð Þ model are obtained
by a call to G13ADF.

10.1 Program Text

Program g13adfe

! G13ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13adf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rv, xv
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Integer :: ifail, nk, npar, nwa, pp, qp
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: par(:), r(:), wa(:)
Integer :: isf(4), mr(7)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G13ADF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size and variance
Read (nin,*) nk
Read (nin,*) xv

Allocate (r(nk))

! Read in data
Read (nin,*) r(1:nk)

! Read in the orders
Read (nin,*) mr(1:7)

! Calculate NPAR
npar = mr(1) + mr(3) + mr(4) + mr(6)

pp = max(mr(1),mr(4))
qp = max(mr(3),mr(6))
nwa = max(pp**2+pp,4*(qp+1))
Allocate (par(npar),wa(nwa))

! Calculate preliminary estimates
ifail = -1
Call g13adf(mr,r,nk,xv,npar,wa,nwa,par,rv,isf,ifail)
If (ifail/=0) Then

If (ifail<7) Then
Go To 100

End If
End If

! Display results
Write (nout,99999) ’Parameter estimation success/failure indicator’, &

isf(1:4)
Write (nout,*)
Write (nout,99998) ’ARIMA model parameter values ’, par(1:npar)
Write (nout,*)
Write (nout,99998) ’Residual variance’, rv

100 Continue

99999 Format (1X,A,4I4)
99998 Format (1X,A,5F10.5)

End Program g13adfe

10.2 Program Data

G13ADF Example Program Data
40
0.00213

-0.32804 0.09850 -0.21854 0.05585 0.04679 0.04135
-0.07989 0.00335 0.13973 -0.04022 0.07618 -0.40583
0.18239 -0.05057 0.16094 -0.15900 0.09152 -0.03474
0.05195 -0.14417 0.04264 -0.08170 0.23389 -0.02828

-0.09001 0.03050 -0.02046 0.05522 -0.02048 -0.06651
-0.02940 0.20204 -0.13953 0.10098 -0.20849 0.03338
0.00829 0.07082 -0.04457 -0.01216
0 1 1 0 1 1 12
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10.3 Program Results

G13ADF Example Program Results

Parameter estimation success/failure indicator 0 1 0 1

ARIMA model parameter values 0.37390 0.51237

Residual variance 0.00148

G13ADF NAG Library Manual

G13ADF.6 (last) Mark 26



NAG Library Routine Document

G13AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13AEF fits a seasonal autoregressive integrated moving average (ARIMA) model to an observed time
series, using a nonlinear least squares procedure incorporating backforecasting. Parameter estimates are
obtained, together with appropriate standard errors. The residual series is returned, and information for
use in forecasting the time series is produced for use by the routines G13AGF and G13AHF.

The estimation procedure is iterative, starting with initial parameter values such as may be obtained
using G13ADF. It continues until a specified convergence criterion is satisfied, or until a specified
number of iterations has been carried out. The progress of the procedure can be monitored by means of
a user-supplied routine.

2 Specification

SUBROUTINE G13AEF (MR, PAR, NPAR, C, KFC, X, NX, ICOUNT, EX, EXR, AL,
IEX, S, G, IGH, SD, H, LDH, ST, IST, NST, PIV, KPIV,
NIT, ITC, ZSP, KZSP, ISF, WA, IWA, HC, IFAIL)

&
&

INTEGER MR(7), NPAR, KFC, NX, ICOUNT(6), IEX, IGH, LDH, IST,
NST, KPIV, NIT, ITC, KZSP, ISF(4), IWA, IFAIL

&

REAL (KIND=nag_wp) PAR(NPAR), C, X(NX), EX(IEX), EXR(IEX), AL(IEX), S,
G(IGH), SD(IGH), H(LDH,IGH), ST(IST), ZSP(4),
WA(IWA), HC(LDH,IGH)

&
&

EXTERNAL PIV

3 Description

The time series x1; x2; . . . ; xn supplied to G13AEF is assumed to follow a seasonal autoregressive
integrated moving average (ARIMA) model defined as follows:

rdrD
s xt � c ¼ wt;

where rdrD
s xt is the result of applying non-seasonal differencing of order d and seasonal differencing

of seasonality s and order D to the series xt, as outlined in the description of G13AAF. The differenced
series is then of length N ¼ n� d0, where d0 ¼ dþ D� sð Þ is the generalized order of differencing.
The scalar c is the expected value of the differenced series, and the series w1; w2; . . . ; wN follows a
zero-mean stationary autoregressive moving average (ARMA) model defined by a pair of recurrence
equations. These express wt in terms of an uncorrelated series at, via an intermediate series et. The first
equation describes the seasonal structure:

wt ¼ �1wt�s þ �2wt�2�s þ � � � þ �Pwt�P�s þ et ��1et�s ��2et�2�s � � � � ��Qet�Q�s:

The second equation describes the non-seasonal structure. If the model is purely non-seasonal the first
equation is redundant and et above is equated with wt:

et ¼ 
1et�1 þ 
2et�2 þ � � � þ 
pet�p þ at � �1at�1 � �2at�2 � � � � � �qat�q:

Estimates of the model parameters defined by


1; 
2; . . . ; 
p; �1; �2; . . . ; �q;
�1; �2; . . . ; �P ;�1; �2; . . . ; �Q

and (optionally) c are obtained by minimizing a quadratic form in the vector w ¼ w1; w2; . . . ; wNð Þ0.
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This is QF ¼ w0V �1w, where V is the covariance matrix of w, and is a function of the model
parameters. This matrix is not explicitly evaluated, since QF may be expressed as a ‘sum of squares’
function. When moving average parameters �i or �i are present, so that the generalized moving average
order q0 ¼ q þ s�Q is positive, backforecasts w1�q0 ; w2�q0 ; . . . ; w0 are introduced as nuisance
parameters. The ‘sum of squares’ function may then be written as

S pmð Þ ¼
XN
t¼1�q0

a2t �
X�q0

t¼1�q0�p0
b2t ;

where pm is a combined vector of parameters, consisting of the backforecasts followed by the ARMA
model parameters.

The terms at correspond to the ARMA model residual series at, and p0 ¼ pþ s� P is the generalized
autoregressive order. The terms bt are only present if autoregressive parameters are in the model, and
serve to correct for transient errors introduced at the start of the autoregression.

The equations defining at and bt are precisely:

et ¼ wt � �1wt�s � �2wt�2�s � � � � � �Pwt�P�s þ�1et�s þ�2et�2�s þ � � � þ�Qet�Q�s,
for t ¼ 1� q0; 2� q0; . . . ; n.
at ¼ et � 
1et�1 � 
2et�2 � � � � � 
pet�p þ �1at�1 þ �2at�2 þ � � � þ �qat�q,
for t ¼ 1� q0; 2� q0; . . . ; n.
ft ¼ wt � �1wtþs � �2wtþ2�s � � � � � �PwtþP�s þ�1ft�s þ�2ft�2�s þ � � � þ�Qft�Q�s,
for t ¼ 1� q0 � s� Pð Þ; 2� q0 � s� Pð Þ; . . . ; �q0 þ Pð Þ
bt ¼ ft � 
1ftþ1 � 
2ftþ2 � � � � � 
pftþp þ �1bt�1 þ �2bt�2 þ � � � þ �qbt�q,
for t ¼ 1� q0 � p0ð Þ; 2� q0 � p0ð Þ; . . . ; �q0ð Þ.

For all four of these equations, the following conditions hold:

wi ¼ 0 if i < 1� q0

ei ¼ 0 if i < 1� q0

ai ¼ 0 if i < 1� q0

fi ¼ 0 if i < 1� q0 � s� P
bi ¼ 0 if i < 1� q0 � p0

Minimization of S with respect to pm uses an extension of the algorithm of Marquardt (1963).

The first derivatives of S with respect to the parameters are calculated as

2�
X

at � at;i � 2
X

bt � bt;i ¼ 2�Gi;

where at;i and bt;i are derivatives of at and bt with respect to the ith parameter.

The second derivative of S is approximated by

2�
X

at;i � at;j � 2�
X

bt;i � bt;j ¼ 2�Hij:

Successive parameter iterates are obtained by calculating a vector of corrections dpm by solving the
equations

H þ ��Dð Þ � dpm ¼ �G;

where G is a vector with elements Gi, H is a matrix with elements Hij, � is a scalar used to control the
search and D is the diagonal matrix of H.

The new parameter values are then pmþ dpm.

The scalar � controls the step size, to which it is inversely related.

If a step results in new parameter values which give a reduced value of S, then � is reduced by a factor
�. If a step results in new parameter values which give an increased value of S, or in ARMA model
parameters which in any way contravene the stationarity and invertibility conditions, then the new
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parameters are rejected, � is increased by the factor �, and the revised equations are solved for a new
parameter correction.

This action is repeated until either a reduced value of S is obtained, or � reaches the limit of 109, which
is used to indicate a failure of the search procedure.

This failure may be due to a badly conditioned sum of squares function or to too strict a convergence
criterion. Convergence is deemed to have occurred if the fractional reduction in the residual sum of
squares in successive iterations is less than a value �, while � < 1:0.

The stationarity and invertibility conditions are tested to within a specified tolerance multiple � of
machine accuracy. Upon convergence, or completion of the specified maximum number of iterations
without convergence, statistical properties of the estimates are derived. In the latter case the sequence of
iterates should be checked to ensure that convergence is adequate for practical purposes, otherwise
these properties are not reliable.

The estimated residual variance is

erv ¼ Smin =df ;

where Smin is the final value of S, and the residual number of degrees of freedom is given by

df ¼ N � p� q � P �Q �1 if c is estimatedð Þ:

The covariance matrix of the vector of estimates pm is given by

erv �H�1;

where H is evaluated at the final parameter values.

From this expression are derived the vector of standard deviations, and the correlation matrix for the
whole parameter set. These are asymptotic approximations.

The differenced series wt (now uncorrected for the constant), intermediate series et and residual series
at are all available upon completion of the iterations over the range (extended by backforecasts)

t ¼ 1� q0; 2� q0; . . . ; N:

The values at can only properly be interpreted as residuals for t � 1þ p0 � q0, as the earlier values are
corrupted by transients if p0 > 0.

In consequence of the manner in which differencing is implemented, the residual at is the one step
ahead forecast error for xtþd0.

For convenient application in forecasting, the following quantities constitute the ‘state set’, which
contains the minimum amount of time series information needed to construct forecasts:

(i) the differenced series wt, for N � s� Pð Þ < t � N,

(ii) the d0 values required to reconstitute the original series xt from the differenced series wt,

(iii) the intermediate series et, for N �max p;Q� sð Þð Þ < t � N,

(iv) the residual series at, for N � qð Þ < t � N.

This state set is available upon completion of the iterations. The routine may be used purely for the
construction of this state set, given a previously estimated model and time series xt, by requesting zero
iterations. Backforecasts are estimated, but the model parameter values are unchanged. If later
observations become available and it is desired to update the state set, G13AGF can be used.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

Marquardt D W (1963) An algorithm for least squares estimation of nonlinear parameters J. Soc. Indust.
Appl. Math. 11 431
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5 Arguments

1: MRð7Þ – INTEGER array Input

On entry: the orders vector p; d; q; P ;D;Q; sð Þ of the ARIMA model whose parameters are to be
estimated. p, q, P and Q refer respectively to the number of autoregressive (
), moving average
�ð Þ, seasonal autoregressive (�) and seasonal moving average (�) parameters. d, D and s refer
respectively to the order of non-seasonal differencing, the order of seasonal differencing and the
seasonal period.

Constraints:

p, d, q, P , D, Q, s � 0;
pþ q þ P þQ > 0;
s 6¼ 1;
if s ¼ 0, P þDþQ ¼ 0;
if s > 1, P þDþQ > 0;
dþ s� P þDð Þ � n;
pþ d� q þ s� P þD�Qð Þ � n.

2: PARðNPARÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial estimates of the p values of the 
 parameters, the q values of the �
parameters, the P values of the � parameters and the Q values of the � parameters, in that order.

On exit: the latest values of the estimates of these parameters.

3: NPAR – INTEGER Input

On entry: the total number of 
, �, � and � parameters to be estimated.

Constraint: NPAR ¼ pþ q þ P þQ.

4: C – REAL (KIND=nag_wp) Input/Output

On entry: if KFC ¼ 0, C must contain the expected value, c, of the differenced series.

If KFC ¼ 1, C must contain an initial estimate of c.

On exit: if KFC ¼ 0, C is unchanged.

If KFC ¼ 1, C contains the latest estimate of c.

Therefore, if C and KFC are both zero on entry, there is no constant correction.

5: KFC – INTEGER Input

On entry: must be set to 1 if the constant, c, is to be estimated and 0 if it is to be held fixed at its
initial value.

Constraint: KFC ¼ 0 or 1.

6: XðNXÞ – REAL (KIND=nag_wp) array Input

On entry: the n values of the original undifferenced time series.

7: NX – INTEGER Input

On entry: n, the length of the original undifferenced time series.

8: ICOUNTð6Þ – INTEGER array Output

On exit: size of various output arrays.

ICOUNTð1Þ
Contains q þ Q� sð Þ, the number of backforecasts.
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ICOUNTð2Þ
Contains n� d� D� sð Þ, the number of differenced values.

ICOUNTð3Þ
Contains dþ D� sð Þ, the number of values of reconstitution information.

ICOUNTð4Þ
Contains nþ q þ Q� sð Þ, the number of values held in each of the series EX, EXR and
AL.

ICOUNTð5Þ
Contains n� d� D� sð Þ � p� q � P �Q� KFC, the number of degrees of freedom
associated with S.

ICOUNTð6Þ
Contains ICOUNTð1Þ þ NPAR þ KFC, the number of parameters being estimated.

These values are always computed regardless of the exit value of IFAIL.

9: EXðIEXÞ – REAL (KIND=nag_wp) array Output

On exit: the extended differenced series which is made up of:

ICOUNTð1Þ backforecast values of the differenced series.

ICOUNTð2Þ actual values of the differenced series.

ICOUNTð3Þ values of reconstitution information.

The total number of these values held in EX is ICOUNTð4Þ.
If the routine exits because of a faulty input argument, the contents of EX will be indeterminate.

10: EXRðIEXÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the model residuals which is made up of:

ICOUNTð1Þ residuals corresponding to the backforecasts in the differenced series.

ICOUNTð2Þ residuals corresponding to the actual values in the differenced series.

The remaining ICOUNTð3Þ values contain zeros.

If the routine exits with IFAIL holding a value other than 0 or 9, the contents of EXR will be
indeterminate.

11: ALðIEXÞ – REAL (KIND=nag_wp) array Output

On exit: the intermediate series which is made up of:

ICOUNTð1Þ intermediate series values corresponding to the backforecasts in the differenced
series.

ICOUNTð2Þ intermediate series values corresponding to the actual values in the differenced
series.

The remaining ICOUNTð3Þ values contain zeros.

If the routine exits with IFAIL 6¼ 0, the contents of AL will be indeterminate.

12: IEX – INTEGER Input

On entry: the dimension of the arrays EX, EXR and AL as declared in the (sub)program from
which G13AEF is called.

Constraint: IEX � q þ Q� sð Þ þ n, which is equivalent to the exit value of ICOUNTð4Þ.
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13: S – REAL (KIND=nag_wp) Output

On exit: the residual sum of squares after the latest series of parameter estimates has been
incorporated into the model. If the routine exits with a faulty input argument, S contains zero.

14: GðIGHÞ – REAL (KIND=nag_wp) array Output

On exit: the latest value of the derivatives of S with respect to each of the parameters being
estimated (backforecasts, PAR parameters, and where relevant the constant – in that order). The
contents of G will be indeterminate if the routine exits with a faulty input argument.

15: IGH – INTEGER Input

On entry: the dimension of the arrays G and SD and the second dimension of the arrays H and
HC as declared in the (sub)program from which G13AEF is called.

Constraint: IGH � q þ Q� sð Þ þ NPARþ KFC which is equivalent to the exit value of
ICOUNTð6Þ.

16: SDðIGHÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviations corresponding to each of the parameters being estimated
(backforecasts, PAR parameters, and where relevant the constant, in that order).

If the routine exits with IFAIL containing a value other than 0 or 9, or if the required number of
iterations is zero, the contents of SD will be indeterminate.

17: HðLDH; IGHÞ – REAL (KIND=nag_wp) array Output

On exit: the second derivative of S and correlation coefficients.

(a) the latest values of an approximation to the second derivative of S with respect to each of
the q þQ� sþ NPARþ KFCð Þ parameters being estimated (backforecasts, PAR para-
meters, and where relevant the constant – in that order), and

(b) the correlation coefficients relating to each pair of these parameters.

These are held in a matrix defined by the first q þQ� sþ NPARþ KFCð Þ rows and the first
q þQ� sþ NPAR þ KFCð Þ columns of H. (Note that ICOUNTð6Þ contains the value of this
expression.) The values of (a) are contained in the upper triangle, and the values of (b) in the
strictly lower triangle.

These correlation coefficients are zero during intermediate printout using PIV, and indeterminate
if IFAIL contains on exit a value other than 0 or 9.

All the contents of H are indeterminate if the required number of iterations are zero. The
q þ Q� sð Þ þ NPAR þ KFCþ 1ð Þth row of H is used internally as workspace.

18: LDH – INTEGER Input

On entry: the first dimension of the arrays H and HC as declared in the (sub)program from which
G13AEF is called.

Constraint: LDH � 1þ q þ Q � sð Þ þ NPARþ KFC, which is equivalent to the exit value of
ICOUNTð6Þ.

19: STðISTÞ – REAL (KIND=nag_wp) array Output

On exit: the NST values of the state set array. If the routine exits with IFAIL containing a value
other than 0 or 9, the contents of ST will be indeterminate.
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20: IST – INTEGER Input

On entry: the dimension of the array ST as declared in the (sub)program from which G13AEF is
called.

Constraint: IST � P � sð Þ þ dþ D� sð Þ þ q þmax p;Q� sð Þ.

21: NST – INTEGER Output

On exit: the number of values in the state set array ST.

22: PIV – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

PIV is used to monitor the progress of the optimization.

The specification of PIV is:

SUBROUTINE PIV (MR, PAR, NPAR, C, KFC, ICOUNT, S, G, H, LDH, IGH,
ITC, ZSP)

&

INTEGER MR(7), NPAR, KFC, ICOUNT(6), LDH, IGH, ITC
REAL (KIND=nag_wp) PAR(NPAR), C, S, G(IGH), H(LDH,IGH), ZSP(4)

PIV is called on each iteration by G13AEF when the input value of KPIV is nonzero and is
bypassed when it is 0.

The routine G13AFZ may be used as PIV. It prints the heading

G13AFZ MONITORING OUTPUT - ITERATION n

followed by the parameter values and the residual sum of squares. Output is directed to the
advisory channel defined by X04ABF.

1: MRð7Þ – INTEGER array Input
2: PARðNPARÞ – REAL (KIND=nag_wp) array Input
3: NPAR – INTEGER Input
4: C – REAL (KIND=nag_wp) Input
5: KFC – INTEGER Input
6: ICOUNTð6Þ – INTEGER array Input
7: S – REAL (KIND=nag_wp) Input
8: GðIGHÞ – REAL (KIND=nag_wp) array Input
9: HðLDH; IGHÞ – REAL (KIND=nag_wp) array Input
10: LDH – INTEGER Input
11: IGH – INTEGER Input
12: ITC – INTEGER Input
13: ZSPð4Þ – REAL (KIND=nag_wp) array Input

On entry: all the arguments are defined as for G13AEF itself.

PIV must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G13AEF is called. Arguments denoted as Input must not be changed by this
procedure.

If KPIV ¼ 0 a dummy PIV must be supplied.

23: KPIV – INTEGER Input

On entry: must be nonzero if the progress of the optimization is to be monitored using PIV.
Otherwise KPIV must contain 0.

24: NIT – INTEGER Input

On entry: the maximum number of iterations to be performed.

Constraint: NIT � 0.
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25: ITC – INTEGER Output

On exit: the number of iterations performed.

26: ZSPð4Þ – REAL (KIND=nag_wp) array Input/Output

On entry: when KZSP ¼ 1, the first four elements of ZSP must contain the four values used to
guide the search procedure. These are as follows.

ZSPð1Þ contains �, the value used to constrain the magnitude of the search procedure steps.

ZSPð2Þ contains �, the multiplier which regulates the value �.

ZSPð3Þ contains �, the value of the stationarity and invertibility test tolerance factor.

ZSPð4Þ contains �, the value of the convergence criterion.

If KZSP 6¼ 1 on entry, default values for ZSP are supplied by the routine.

These are 0:001, 10:0, 1000:0 and max 100�machine precision; 0:0000001ð Þ respectively.
On exit: ZSP contains the values, default or otherwise, used by the routine.

Constraint: if KZSP ¼ 1, ZSPð1Þ > 0:0, ZSPð2Þ > 1:0, ZSPð3Þ � 1:0, 0 � ZSPð4Þ < 1:0.

27: KZSP – INTEGER Input

On entry: the value 1 if the routine is to use the input values of ZSP, and any other value if the
default values of ZSP are to be used.

28: ISFð4Þ – INTEGER array Output

On exit: contains success/failure indicators, one for each of the four types of parameter in the
model (autoregressive, moving average, seasonal autoregressive, seasonal moving average), in
that order.

Each indicator has the interpretation:

�2 On entry parameters of this type have initial estimates which do not satisfy the stationarity
or invertibility test conditions.

�1 The search procedure has failed to converge because the latest set of parameter estimates
of this type is invalid.

0 No parameter of this type is in the model.

1 Valid final estimates for parameters of this type have been obtained.

29: WAðIWAÞ – REAL (KIND=nag_wp) array Workspace
30: IWA – INTEGER Input

On entry: the dimension of the array WA as declared in the (sub)program from which G13AEF is
called.

Constraint: IWA � F1 � F2ð Þ þ 9� NPARð Þ;
where F1 ¼ NXþ 1þ pþ P � sð Þ þ q þ Q� sð Þ;
and F2 ¼ 8 if KFC ¼ 1;

F2 ¼ 7 if KFC ¼ 0, Q > 0;

F2 ¼ 6 if KFC ¼ 0, Q ¼ 0, P > 0;

F2 ¼ 5 if KFC ¼ 0, Q ¼ 0, P ¼ 0, q > 0;

F2 ¼ 4 otherwise.
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31: HCðLDH; IGHÞ – REAL (KIND=nag_wp) array Workspace

32: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13AEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPAR 6¼ pþ q þ P þQ,
or the orders vector MR is invalid (check it against the constraints in Section 5),
or KFC 6¼ 0 or 1.

IFAIL ¼ 2

On entry, NX� d�D� s � NPARþ KFC, i.e., the number of terms in the differenced series is
not greater than the number of parameters in the model. The model is over-parameterised.

IFAIL ¼ 3

On entry, one or more of the user-supplied criteria for controlling the iterative process are
invalid,

or NIT < 0,
or if KZSP ¼ 1, ZSPð1Þ � 0:0;
or if KZSP ¼ 1, ZSPð2Þ � 1:0;
or if KZSP ¼ 1, ZSPð3Þ < 1:0;
or if KZSP ¼ 1, ZSPð4Þ < 0:0;
or if KZSP ¼ 1, ZSPð4Þ � 1:0.

IFAIL ¼ 4

On entry, the state set array ST is too small. The output value of NST contains the required value
(see the description of IST in Section 5 for the formula).

IFAIL ¼ 5

On entry, the workspace array WA is too small. Check the value of IWA against the constraints
in Section 5.

IFAIL ¼ 6

On entry, IEX < q þ Q� sð Þ þ NX,
or IGH < q þ Q� sð Þ þ NPAR þ KFC,
or LDH � q þ Q� sð Þ þ NPAR þ KFC.
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IFAIL ¼ 7

This indicates a failure in the search procedure, with ZSPð1Þ � 1:0E09.

Some output arguments may contain meaningful values; see Section 5 for details.

IFAIL ¼ 8

This indicates a failure to invert H.

Some output arguments may contain meaningful values; see Section 5 for details.

IFAIL ¼ 9

Unable to calculate the latest estimates of the backforecasts.

Some output arguments may contain meaningful values; see Section 5 for details.

IFAIL ¼ 10

Satisfactory parameter estimates could not be obtained for all parameter types in the model.
Inspect array ISF for further information on the parameter type(s) in error.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13AEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13AEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G13AEF is approximately proportional to NX� ITC�
q þQ� sþ NPAR þ KFCð Þ2.
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10 Example

The following program reads 30 observations from a time series relating to the rate of the earth's
rotation about its polar axis. Differencing of order 1 is applied, and the number of non-seasonal
parameters is 3, one autoregressive 
ð Þ, and two moving average �ð Þ. No seasonal effects are taken into
account.

The constant is estimated. Up to 25 iterations are allowed.

The initial estimates of 
1, �1, �2 and c are zero.

10.1 Program Text

! G13AEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g13aefe_mod

! G13AEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: piv

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine piv(mr,par,npar,c,kfc,icount,s,g,h,ldh,igh,itc,zsp)

! .. Parameters ..
Integer, Parameter :: param_inds(4) = (/1,3,4,6/)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: c, s
Integer, Intent (In) :: igh, itc, kfc, ldh, npar

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: g(igh), h(ldh,igh), par(npar), &

zsp(4)
Integer, Intent (In) :: icount(6), mr(7)

! .. Local Scalars ..
Integer :: i, param, start_ind

! .. Executable Statements ..
Write (nout,*)

If (itc==0) Then
Write (nout,*) ’Begin monitoring output’
Write (nout,99999) ’Degrees of freedom: ’, icount(5)

End If

Write (nout,99999) ’Iteration: ’, itc

param_loop: Do i = 1, 4
param = mr(param_inds(i))
If (param<=0) Then

Cycle param_loop
End If
Select Case (param_inds(i))
Case (1)

Write (nout,*) ’Autoregressive parameters:’
start_ind = 1

Case (3)
Write (nout,*) ’Moving-average parameters:’

Case (4)
Write (nout,*) ’Seasonal autoregressive parameters:’

Case (6)
Write (nout,*) ’Seasonal moving-average parameters:’
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End Select
Write (nout,99998) par(start_ind:start_ind+param-1)
start_ind = start_ind + param

End Do param_loop

If (kfc==1) Then
Write (nout,*) ’Constant term:’
Write (nout,99998) c

End If

Write (nout,*) ’Residual sum of squares:’
Write (nout,99998) s

Write (nout,*) &
’Parameters (alpha, beta, delta, gamma) controlling the search ’, &
’procedure:’

Write (nout,99998) zsp

Return
99999 Format (1X,A,I3)
99998 Format (1X,E13.4)

End Subroutine piv
End Module g13aefe_mod
Program g13aefe

! G13AEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g13aef, nag_wp, x04caf
Use g13aefe_mod, Only: nin, nout, piv

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, s
Integer :: iex, ifail, igh, ist, itc, iwa, kfc, &

kpiv, kzsp, ldh, ndf, nex, ngh, nit, &
npar, nst, nx

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: al(:), ex(:), exr(:), g(:), h(:,:), &

hc(:,:), par(:), sd(:), st(:), &
wa(:), x(:)

Real (Kind=nag_wp) :: zsp(4)
Integer :: icount(6), isf(4), mr(7)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G13AEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size etc
Read (nin,*) nx, kfc, c

! Read in the orders
Read (nin,*) mr(1:7)

! Calculate NPAR and various array lengths
npar = mr(1) + mr(3) + mr(4) + mr(6)
iex = mr(3) + (mr(6)*mr(7)) + nx
igh = mr(3) + (mr(6)*mr(7)) + npar + kfc
ist = (mr(4)*mr(7)) + mr(2) + (mr(5)*mr(7)) + mr(3) + &

max(mr(1),(mr(6)*mr(7)))
iwa = ((nx+1+mr(1)+(mr(4)*mr(7))+mr(3)+(mr(6)*mr(7)))*8) + (9*npar)

ldh = igh + 1
Allocate (x(nx),par(npar),ex(iex),exr(iex),al(iex),g(igh),sd(igh), &

h(ldh,igh),st(ist),wa(iwa),hc(ldh,igh))

! Read in data
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Read (nin,*) x(1:nx)

! Read in initial values
Read (nin,*) par(1:npar)

! Read in control parameters
Read (nin,*) kpiv, nit, kzsp
If (kzsp==1) Then

Read (nin,*) zsp(1:4)
End If

! Fit ARIMA model
ifail = -1
Call g13aef(mr,par,npar,c,kfc,x,nx,icount,ex,exr,al,iex,s,g,igh,sd,h, &

ldh,st,ist,nst,piv,kpiv,nit,itc,zsp,kzsp,isf,wa,iwa,hc,ifail)
If (ifail/=0) Then

If (ifail<7) Then
Go To 100

End If
End If

! Display results
nex = icount(4)
ndf = icount(5)
ngh = icount(6)
If (ifail==0) Then

Write (nout,99998) ’Convergence was achieved after’, itc, ’ cycles’
Else

Write (nout,99998) ’Iterative process ran for’, itc, ’ cycles’
End If
Write (nout,*)
Write (nout,*) &

’Final values of the PAR parameters and the constant are as follows’
Write (nout,99997) par(1:npar), c
Write (nout,*)
Write (nout,99996) ’Residual sum of squares is’, s, ’ with’, ndf, &

’ degrees of freedom’
Write (nout,*)
Write (nout,*) ’The final values of ZSP were’
Write (nout,99995) zsp(1:4)
Write (nout,*)
Write (nout,99999) ’The number of parameters estimated was’, ngh
Write (nout,*) ’( backward forecasts, PAR and C, in that order )’
Write (nout,*)
Write (nout,*) ’The corresponding G array holds’
Write (nout,99994) g(1:ngh)
If ((ifail==0 .Or. ifail==9) .And. itc>0) Then

Write (nout,*)
Write (nout,*) ’The corresponding SD array holds’
Write (nout,99994) sd(1:ngh)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,ngh,ngh,h,ldh,’Corresponding H matrix’, &

ifail)
Write (nout,*) &

’Holds second derivatives in the upper half (including the main ’, &
’diagonal)’

Write (nout,*) ’and correlation coefficients in the lower triangle’
End If
Write (nout,*)
Write (nout,99993) ’EX, EXR, and AL each hold’, nex, &

’ values made up of’, icount(1), ’ back forecast(s),’
Write (nout,99992) icount(2), ’ differenced values, and’
Write (nout,99992) icount(3), ’ element(s) of reconstituted information’
Write (nout,*)
Write (nout,*) ’ EX’
Write (nout,99991) ex(1:nex)
If (ifail==0 .Or. ifail==9) Then

Write (nout,*)
Write (nout,*) ’ EXR’
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Write (nout,99991) exr(1:nex)
End If
If (ifail==0) Then

Write (nout,*)
Write (nout,*) ’ AL’
Write (nout,99991) al(1:nex)

End If
If (ifail==0 .Or. ifail==9) Then

Write (nout,*)
Write (nout,99998) ’The state set consists of’, nst, ’ values’
Write (nout,99991) st(1:nst)

End If

100 Continue

99999 Format (1X,A,I5)
99998 Format (1X,A,I3,A)
99997 Format (1X,4F10.4)
99996 Format (1X,A,F10.3,A,I4,A)
99995 Format (1X,4E15.4)
99994 Format (1X,10F9.4)
99993 Format (1X,A,I5,A,I5,A)
99992 Format (1X,I5,A)
99991 Format (1X,5F11.4)

End Program g13aefe

10.2 Program Data

G13AEF Example Program Data
30 1 0.0 :: NX,KFC,C
1 1 2 0 0 0 0 :: MR
-217 -177 -166 -136 -110 -95 -64 -37 -14 -25
-51 -62 -73 -88 -113 -120 -83 -33 -19 21
17 44 44 78 88 122 126 114 85 64 :: X

0.0 0.0 0.0 :: PAR (initial values)
0 25 1 :: KPIV,NIT,KZSP
0.001 10.0 1000.0 0.0001 :: ZSP

10.3 Program Results

G13AEF Example Program Results

Convergence was achieved after 16 cycles

Final values of the PAR parameters and the constant are as follows
-0.0547 -0.5568 -0.6636 9.9807

Residual sum of squares is 9397.924 with 25 degrees of freedom

The final values of ZSP were
0.1000E-14 0.1000E+02 0.1000E+04 0.1000E-03

The number of parameters estimated was 6
( backward forecasts, PAR and C, in that order )

The corresponding G array holds
-0.1512 -0.2343 -6.4097 13.5617 -72.6232 -0.1642

The corresponding SD array holds
14.8379 15.1887 0.3507 0.2709 0.1695 7.3893

Corresponding H matrix
1 2 3 4 5

1 1.9416E+00 -6.1794E-01 2.4409E-01 1.7942E+00 -8.3579E-01
2 3.4176E-01 1.9446E+00 -1.6544E-01 -2.5084E-01 1.7952E+00
3 -1.0544E-02 5.5643E-03 9.0416E+03 -9.6825E+03 5.4626E+02
4 -1.2113E-02 5.6011E-03 8.1322E-01 1.7031E+04 -5.6761E+03
5 -2.3216E-03 -1.1495E-03 3.6741E-01 4.7942E-01 1.7028E+04
6 -1.4580E-01 -2.6004E-01 -4.0877E-02 -4.8389E-02 -3.7442E-02
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6
1 2.4106E-01
2 8.5926E-01
3 8.1847E-01
4 6.9417E+00
5 6.3308E+00
6 7.4339E+00
Holds second derivatives in the upper half (including the main diagonal)
and correlation coefficients in the lower triangle

EX, EXR, and AL each hold 32 values made up of 2 back forecast(s),
29 differenced values, and
1 element(s) of reconstituted information

EX
19.5250 5.8753 40.0000 11.0000 30.0000
26.0000 15.0000 31.0000 27.0000 23.0000

-11.0000 -26.0000 -11.0000 -11.0000 -15.0000
-25.0000 -7.0000 37.0000 50.0000 14.0000
40.0000 -4.0000 27.0000 0.0000 34.0000
10.0000 34.0000 4.0000 -12.0000 -29.0000

-21.0000 64.0000

EXR
19.5250 -3.9279 19.5711 -5.6291 10.2221
15.1582 -9.3276 16.4285 15.2115 -5.4211

-27.3444 -18.3061 5.3890 -12.9812 -22.4767
-15.2183 4.4944 33.6867 19.7586 -27.1470
32.2426 -12.2765 1.6941 -1.8465 23.3772

-10.4576 14.3302 -5.7061 -28.6401 -20.4502
-2.7215 0.0000

AL
19.5250 5.8753 30.0193 1.0193 20.0193
16.0193 5.0193 21.0193 17.0193 13.0193

-20.9807 -35.9807 -20.9807 -20.9807 -24.9807
-34.9807 -16.9807 27.0193 40.0193 4.0193
30.0193 -13.9807 17.0193 -9.9807 24.0193
0.0193 24.0193 -5.9807 -21.9807 -38.9807

-30.9807 0.0000

The state set consists of 4 values
64.0000 -30.9807 -20.4502 -2.7215
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NAG Library Routine Document

G13AFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13AFF is an easy-to-use version of G13AEF. It fits a seasonal autoregressive integrated moving
average (ARIMA) model to an observed time series, using a nonlinear least squares procedure
incorporating backforecasting. Parameter estimates are obtained, together with appropriate standard
errors. The residual series is returned, and information for use in forecasting the time series is produced
for use in G13AGF and G13AHF.

The estimation procedure is iterative, starting with initial parameter values such as may be obtained
using G13ADF. It continues until a specified convergence criterion is satisfied or until a specified
number of iterations have been carried out. The progress of the iteration can be monitored by means of
an optional printing facility.

2 Specification

SUBROUTINE G13AFF (MR, PAR, NPAR, C, KFC, X, NX, S, NDF, SD, NPPC, CM,
LDCM, ST, NST, KPIV, NIT, ITC, ISF, RES, IRES, NRES,
IFAIL)

&
&

INTEGER MR(7), NPAR, KFC, NX, NDF, NPPC, LDCM, NST, KPIV,
NIT, ITC, ISF(4), IRES, NRES, IFAIL

&

REAL (KIND=nag_wp) PAR(NPAR), C, X(NX), S, SD(NPPC), CM(LDCM,NPPC),
ST(NX), RES(IRES)

&

3 Description

The time series x1; x2; . . . ; xn supplied to the routine is assumed to follow a seasonal autoregressive
integrated moving average (ARIMA) model defined as follows:

rdrD
s xt � c ¼ wt;

where rdrD
s xt is the result of applying non-seasonal differencing of order d and seasonal differencing

of seasonality s and order D to the series xt, as outlined in the description of G13AAF. The differenced
series is then of length N ¼ n� d0, where d0 ¼ dþ D� sð Þ is the generalized order of differencing.
The scalar c is the expected value of the differenced series, and the series w1; w2; . . . ; wN follows a
zero-mean stationary autoregressive moving average (ARMA) model defined by a pair of recurrence
equations. These express wt in terms of an uncorrelated series at, via an intermediate series et. The first
equation describes the seasonal structure:

wt ¼ �1wt�s þ �2wt�2�s þ � � � þ �Pwt�P�s þ et ��1et�s ��2et�2�s � � � � ��Qet�Q�s:

The second equation describes the non-seasonal structure. If the model is purely non-seasonal the first
equation is redundant and et above is equated with wt:

et ¼ 
1et�1 þ 
2et�2 þ � � � þ 
pet�p þ at � �1at�1 � �2at�2 � � � � � �qat�q:

Estimates of the model parameters defined by


1; 
2; . . . ; 
p; �1; �2; . . . ; �q;
�1; �2; . . . ; �P ;�1; �2; . . . ; �Q

and (optionally) c are obtained by minimizing a quadratic form in the vector w ¼ w1; w2; . . . ; wNð Þ0.
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The minimization process is iterative, iterations being performed until convergence is achieved (see
Section 3 in G13AEF for full details), or until the user-specified maximum number of iterations are
completed.

The final values of the residual sum of squares and the parameter estimates are used to obtain
asymptotic approximations to the standard deviations of the parameters, and the correlation matrix for
the parameters. The ‘state set’ array of information required by forecasting is also returned.

Note: if the maximum number of iterations are performed without convergence, these quantities may
not be reliable. In this case, the sequence of iterates should be checked, using the optional monitoring
routine, to verify that convergence is adequate for practical purposes.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

Marquardt D W (1963) An algorithm for least squares estimation of nonlinear parameters J. Soc. Indust.
Appl. Math. 11 431

5 Arguments

1: MRð7Þ – INTEGER array Input

On entry: the orders vector p; d; q; P ;D;Q; sð Þ of the ARIMA model whose parameters are to be
estimated. p, q, P and Q refer respectively to the number of autoregressive 
ð Þ, moving average
�ð Þ, seasonal autoregressive �ð Þ and seasonal moving average �ð Þ parameters. d, D and s refer
respectively to the order of non-seasonal differencing, the order of seasonal differencing and the
seasonal period.

Constraints:

p, d, q, P , D, Q, s � 0;
pþ q þ P þQ > 0;
s 6¼ 1;
if s ¼ 0, P þDþQ ¼ 0;
if s > 1, P þDþQ > 0;
dþ s� P þDð Þ � n;
pþ d� q þ s� P þD�Qð Þ � n.

2: PARðNPARÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial estimates of the p values of the 
 parameters, the q values of the �
parameters, the P values of the � parameters and the Q values of the � parameters, in that order.

On exit: contains the latest values of the estimates of these parameters.

3: NPAR – INTEGER Input

On entry: the total number of 
, �, � and � parameters to be estimated.

Constraint: NPAR ¼ pþ q þ P þQ.

4: C – REAL (KIND=nag_wp) Input/Output

On entry: if KFC ¼ 0, C must contain the expected value, c, of the differenced series.

If KFC ¼ 1, C must contain an initial estimate of c.

Therefore, if C and KFC are both zero on entry, there is no constant correction.

On exit: if KFC ¼ 0, C is unchanged.

If KFC ¼ 1, C contains the latest estimate of c.
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5: KFC – INTEGER Input

On entry: must be set to 1 if the constant, c, is to be estimated and 0 if it is to be held fixed at its
initial value.

Constraint: KFC ¼ 0 or 1.

6: XðNXÞ – REAL (KIND=nag_wp) array Input

On entry: the n values of the original undifferenced time series.

7: NX – INTEGER Input

On entry: n, the length of the original undifferenced time series.

8: S – REAL (KIND=nag_wp) Output

On exit: the residual sum of squares after the latest series of parameter estimates has been
incorporated into the model. If the routine exits with a faulty input argument, S contains zero.

9: NDF – INTEGER Output

On exit: the number of degrees of freedom associated with S,
NDF ¼ n� d�D� s� p� q � P �Q� KFC.

10: SDðNPPCÞ – REAL (KIND=nag_wp) array Output

On exit: the standard deviations corresponding to the parameters in the model (p autoregressive, q
moving average, P seasonal autoregressive, Q seasonal moving average and c, if estimated, in
that order). If the routine exits with IFAIL containing a value other than 0 or 9, or if the required
number of iterations is zero, the contents of SD will be indeterminate.

11: NPPC – INTEGER Input

On entry : the number of 
, �, �, � and c parameters to be es t imated .
NPPC ¼ pþ q þ P þQþ 1 if the constant is being estimated and NPPC ¼ pþ q þ P þQ if not.

Constraint: NPPC ¼ NPAR þ KFC.

12: CMðLDCM;NPPCÞ – REAL (KIND=nag_wp) array Output

On exit: the correlation coefficients associated with each pair of the NPPC parameters. These are
held in the first NPPC rows and the first NPPC columns of CM. These correlation coefficients are
indeterminate if IFAIL contains on exit a value other than 0 or 9, or if the required number of
iterations is zero.

13: LDCM – INTEGER Input

On entry: the first dimension of the array CM as declared in the (sub)program from which
G13AFF is called.

Constraint: LDCM � NPPC.

14: STðNXÞ – REAL (KIND=nag_wp) array Output

On exit: the value of the state set in its first NST elements. If the routine exits with IFAIL
containing a value other than 0 or 9, the contents of ST will be indeterminate.

15: NST – INTEGER Output

On exit: the size of the state set. NST ¼ P � sþD� sþ dþ q þmax p;Q� sð Þ.
NST should be used subsequently in G13AGF and G13AHF as the dimension of ST.
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16: KPIV – INTEGER Input

On entry: must be nonzero if the progress of the optimization is to be monitored using the built-
in printing facility. Otherwise KPIV must contain zero. If selected, monitoring output will be sent
to the current advisory message unit defined by X04ABF. For each iteration, the heading

G13AFZ MONITORING OUTPUT - ITERATION n

followed by the argument values, and residual sum of squares, are printed.

17: NIT – INTEGER Input

On entry: the maximum number of iterations to be performed.

Constraint: NIT � 0.

18: ITC – INTEGER Output

On exit: the number of iterations performed.

19: ISFð4Þ – INTEGER array Output

On exit: the first four elements of ISF contain success/failure indicators, one for each of the four
types of parameter in the model (autoregressive, moving average, seasonal autoregressive,
seasonal moving average), in that order.

Each indicator has the interpretation:

�2 On entry parameters of this type have initial estimates which do not satisfy the stationarity
or invertibility test conditions.

�1 The search procedure has failed to converge because the latest set of parameter estimates
of this type is invalid.

0 No parameter of this type is in the model.

1 Valid final estimates for parameters of this type have been obtained.

20: RESðIRESÞ – REAL (KIND=nag_wp) array Output

On exit: the first NRES elements of RES contain the model residuals derived from the
differenced series. If the routine exits with IFAIL holding a value other than 0 or 9, these
elements of RES will be indeterminate. The rest of the array RES is used as workspace.

21: IRES – INTEGER Input

On entry: the dimension of the array RES as declared in the (sub)program from which G13AFF
is called.

Constraint: IRES � 15�Q0 þ 11nþ 13� NPPCþ 8� P 0 þ 12þ 2� Q0 þ NPPCð Þ2,
where P 0 ¼ pþ P � sð Þ and Q0 ¼ q þ Q� sð Þ.

22: NRES – INTEGER Output

On exit: the number of model residuals returned in RES.

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13AFF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPAR 6¼ pþ q þ P þQ,
or the orders vector MR is invalid (check the constraints in Section 5),
or KFC 6¼ 0 or 1,
or NPPC 6¼ NPAR þ KFC.

IFAIL ¼ 2

On entry, NX� d�D� s � NPARþ KFC, i.e., the number of terms in the differenced series is
not greater than the number of parameters in the model. The model is over-parameterised.

IFAIL ¼ 3

On entry, NIT < 0.

IFAIL ¼ 4

On entry, the required size of the state set array ST is greater than NX. This occurs only for very
unusual models with long seasonal periods or large numbers of parameters. First check that the
orders vector MR has been set up as intended. If it has, change to G13AEF with ST dimensioned
at least (NST), where NST is the value returned by G13AFF, or computed using the formula in
Section 5 of this document.

IFAIL ¼ 5

On entry, the workspace array RES is too small. Check the value of IRES against the constraints
in Section 5.

IFAIL ¼ 6

On entry, LDCM < NPPC.

IFAIL ¼ 7

The search procedure in the algorithm has failed. This may be due to a badly conditioned sum of
squares function, or the default convergence criterion may be too strict. Use G13AEF with a less
strict convergence criterion.

Some output arguments may contain meaningful values; see Section 5 for details.

IFAIL ¼ 8

The inversion of the Hessian matrix in the calculation of the covariance matrix of the parameter
estimates has failed.

Some output arguments may contain meaningful values; see Section 5 for details.

IFAIL ¼ 9

This indicates a failure when solving the equations giving the latest estimates of the
backforecasts.
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Some output arguments may contain meaningful values; see Section 5 for details.

IFAIL ¼ 10

Satisfactory parameter estimates could not be obtained for all parameter types in the model.
Inspect array ISF for further information on the parameter type(s) in error.

IFAIL ¼ 11

An internal error has arisen in partitioning RES for use by G13AEF. This error should not occur;
report it to NAG via your site representative.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13AFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13AFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G13AFF is approximately proportional to NX� ITC� q þQ� sþ NPPCð Þ2.

10 Example

This example reads 30 observations from a time series relating to the rate of the earth's rotation about
its polar axis. Differencing of order 1 is applied, and the number of non-seasonal parameters is 3, one
autoregressive (
) and two moving average (�). No seasonal effects are taken into account.

The constant is estimated. Up to 50 iterations are allowed.

The initial estimates of 
1, �1, �2 and c are zero.

Some intermediate monitoring output from G13AFZ has been omitted.
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10.1 Program Text

Program g13affe

! G13AFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13aff, nag_wp, x04abf, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, s
Integer :: ifail, ipd, iqd, ires, itc, kfc, &

kpiv, ldcm, nadv, ndf, nit, npar, &
nppc, nres, nst, nx

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cm(:,:), par(:), res(:), sd(:), &

st(:), x(:)
Integer :: isf(4), mr(7)

! .. Executable Statements ..
Write (nout,*) ’G13AFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size etc
Read (nin,*) nx, kfc, c

! Read in the orders
Read (nin,*) mr(1:7)

! Calculate NPAR and various array lengths
npar = mr(1) + mr(3) + mr(4) + mr(6)
nppc = npar + kfc
iqd = mr(6)*mr(7) + mr(3)
ipd = mr(4)*mr(7) + mr(1)
ires = 15*iqd + 11*nx + 13*nppc + 8*ipd + 12 + 2*(iqd+nppc)**2

ldcm = nppc
Allocate (x(nx),par(npar),sd(nppc),cm(ldcm,nppc),st(nx),res(ires))

! Read in data
Read (nin,*) x(1:nx)

! Read in initial values
Read (nin,*) par(1:npar)

! Read in control parameters
Read (nin,*) kpiv, nit

! Set the advisory channel to NOUT for monitoring information
If (kpiv/=0) Then

nadv = nout
Call x04abf(1,nadv)

End If

! Fit ARIMA model
ifail = -1
Call g13aff(mr,par,npar,c,kfc,x,nx,s,ndf,sd,nppc,cm,ldcm,st,nst,kpiv, &

nit,itc,isf,res,ires,nres,ifail)
If (ifail/=0) Then

If (ifail<7) Then
Go To 100

End If
End If
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! Display results
If (ifail==0) Then

Write (nout,99999) ’Convergence was achieved after’, itc, ’ cycles’
Else

Write (nout,99999) ’Iterative process ran for’, itc, ’ cycles’
End If
Write (nout,*)
Write (nout,*) &

’Final values of the PAR parameters and the constant are as follows’
Write (nout,99996) par(1:npar), c
Write (nout,*)
Write (nout,99995) ’Residual sum of squares is’, s, ’ with’, ndf, &

’ degrees of freedom’
If ((ifail==0 .Or. ifail==9) .And. itc>0) Then

Write (nout,*)
Write (nout,*) ’The corresponding SD array holds’
Write (nout,99994) sd(1:nppc)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,nppc,nppc,cm,ldcm, &

’The correlation matrix is as follows’,ifail)
End If
If (ifail==0 .Or. ifail==9) Then

Write (nout,*)
Write (nout,99999) ’The residuals consist of’, nres, ’ values’
Write (nout,99998) res(1:nres)
Write (nout,*)
Write (nout,99997) ’The state set consists of’, nst, ’ values’
Write (nout,99993) st(1:nst)

End If

100 Continue

99999 Format (1X,A,I4,A)
99998 Format (1X,5F10.4)
99997 Format (1X,A,I3,A)
99996 Format (1X,4F10.4)
99995 Format (1X,A,F10.3,A,I4,A)
99994 Format (1X,10F9.4)
99993 Format (1X,6F11.3)

End Program g13affe

10.2 Program Data

G13AFF Example Program Data
30 1 0.0 :: NX,KFC,C

1 1 2 0 0 0 0 :: MR
-217 -177 -166 -136 -110 -95 -64 -37 -14 -25
-51 -62 -73 -88 -113 -120 -83 -33 -19 21
17 44 44 78 88 122 126 114 85 64 :: End of X

0.0 0.0 0.0 :: PAR (initial values)
0 50 :: KPIV,NIT

10.3 Program Results

G13AFF Example Program Results

Convergence was achieved after 25 cycles

Final values of the PAR parameters and the constant are as follows
-0.0543 -0.5548 -0.6734 9.9848

Residual sum of squares is 9397.220 with 25 degrees of freedom

The corresponding SD array holds
0.3457 0.2636 0.1665 7.4170

The correlation matrix is as follows
1 2 3 4
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1 1.0000 0.8072 0.3548 -0.0404
2 0.8072 1.0000 0.4681 -0.0491
3 0.3548 0.4681 1.0000 -0.0376
4 -0.0404 -0.0491 -0.0376 1.0000

The residuals consist of 29 values
19.6275 -5.3093 9.7983 15.2412 -9.1693
16.1107 15.3929 -5.4500 -27.6205 -18.1306
5.7202 -13.0881 -22.7151 -14.9256 4.6930

33.5406 19.7138 -27.3360 32.1231 -11.7681
1.1524 -1.7756 23.6821 -10.6238 13.9619

-5.2727 -28.7868 -20.6573 -2.2555

The state set consists of 4 values
64.000 -30.985 -20.657 -2.256
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NAG Library Routine Document

G13AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13AGF accepts a series of new observations of a time series, the model of which is already fully
specified, and updates the ‘state set’ information for use in constructing further forecasts. The previous
specifications of the time series model should have been obtained by using G13AEF or G13AFF to
estimate the relevant parameters. The supplied state set will originally have been produced by G13AEF
or G13AFF, but may since have been updated by earlier calls to G13AGF.

A set of residuals corresponding to the new observations is returned. These may be of use in checking
that the new observations conform to the previously fitted model.

2 Specification

SUBROUTINE G13AGF (ST, NST, MR, PAR, NPAR, C, ANX, NUV, ANEXR, WA, NWA,
IFAIL)

&

INTEGER NST, MR(7), NPAR, NUV, NWA, IFAIL
REAL (KIND=nag_wp) ST(NST), PAR(NPAR), C, ANX(NUV), ANEXR(NUV),

WA(NWA)
&

3 Description

The time series model is specified as outlined in Section 3 in G13AEF or G13AFF. This also describes
how the state set, which contains the minimum amount of time series information needed to construct
forecasts, is made up of

(i) the differenced series wt (uncorrected for the constant c), for N � P � sð Þ < t � N,

(ii) the d0 values required to reconstitute the original series xt from the differenced series wt,

(iii) the intermediate series et, for N �max p;Q� sð Þð Þ < t � N, and

(iv) the residual series at, for N � qð Þ < t � N.

If the number of original undifferenced observations was n, then d0 ¼ dþ D� sð Þ and N ¼ n� d0.
To update the state set , given a number of new undifferenced observations xt,
t ¼ nþ 1; nþ 2; . . . ; nþ k, the four series above are first reconstituted.

Differencing and residual calculation operations are then applied to the new observations and k new
values of wt; et and at are derived.

The first k values in these three series are then discarded and a new state set is obtained.

The residuals in the at series corresponding to the k new observations are preserved in an output array.
The parameters of the time series model are not changed in this routine.

4 References

None.
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5 Arguments

1: STðNSTÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the state set derived from G13AEF or G13AFF, or as modified using earlier calls of
G13AGF.

On exit: the updated values of the state set.

2: NST – INTEGER Input

On entry: the number of values in the state set array ST.

Constraint: NST ¼ P � sþD� sþ dþ q þmax p;Q� sð Þ. (As returned by G13AEF or
G13AFF).

3: MRð7Þ – INTEGER array Input

On entry: the orders vector p; d; q; P ;D;Q; sð Þ of the ARIMA model, in the usual notation.

Constraints:

p; d; q; P ;D;Q; s � 0;
pþ q þ P þQ > 0;
s 6¼ 1;
if s ¼ 0, P þDþQ ¼ 0;
if s > 1, P þDþQ > 0.

4: PARðNPARÞ – REAL (KIND=nag_wp) array Input

On entry: the estimates of the p values of the 
 parameters, the q values of the � parameters, the
P values of the � parameters and the Q values of the � parameters in the model – in that order,
using the usual notation.

5: NPAR – INTEGER Input

On entry: the number of 
, �, � and � parameters in the model.

Constraint: NPAR ¼ pþ q þ P þQ.

6: C – REAL (KIND=nag_wp) Input

On entry: the constant to be subtracted from the differenced data.

7: ANXðNUVÞ – REAL (KIND=nag_wp) array Input

On entry: the new undifferenced observations which are to be used to update ST.

8: NUV – INTEGER Input

On entry: k, the number of new observations in ANX.

9: ANEXRðNUVÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals corresponding to the new observations in ANX.

10: WAðNWAÞ – REAL (KIND=nag_wp) array Workspace
11: NWA – INTEGER Input

On entry: the dimension of the array WA as declared in the (sub)program from which G13AGF is
called.

Constraint: NWA � 4� NPARþ 3� NSTð Þ.
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12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPAR 6¼ pþ q þ P þQ,
or the orders vector MR is invalid (check the constraints in Section 5).

IFAIL ¼ 2

On entry, NST 6¼ P � sþD� sþ dþ q þmax Q� s; pð Þ.

IFAIL ¼ 3

On entry, NUV � 0.

IFAIL ¼ 4

On entry, NWA < 4� NPAR þ 3� NST.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13AGF is not threaded in any implementation.
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9 Further Comments

The time taken by G13AGF is approximately proportional to NUV� NPAR.

10 Example

The following program is based on data derived from a study of monthly airline passenger totals (in
thousands) to which a logarithmic transformation had been applied. The time series model was based on
seasonal and non-seasonal differencing both of order 1, with seasonal period 12. The number of
parameters estimated was two: a non-seasonal moving average parameter �1 with value 0:327 and a
seasonal moving average parameter �1 with value 0:6270. There was no constant correction. These,
together with the state set array, were obtained using G13AEF.

Twelve new observations are supplied. The routine updates the state set and outputs a set of residuals
corresponding to the new observations.

10.1 Program Text

Program g13agfe

! G13AGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13agf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: c
Integer :: ifail, npar, nst, nuv, nwa

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: anexr(:), anx(:), par(:), st(:), &

wa(:)
Integer :: mr(7)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G13AGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size etc
Read (nin,*) nuv, c

! Read in the orders
Read (nin,*) mr(1:7)

! Calculate NPAR and various array lengths
npar = mr(1) + mr(3) + mr(4) + mr(6)
nst = mr(4)*mr(7) + mr(5)*mr(7) + mr(2) + mr(3) + max(mr(1),mr(6)*mr(7))
nwa = 4*npar + 3*nst

Allocate (st(nst),anx(nuv),anexr(nuv),wa(nwa),par(npar))

! Read in parameter estimates
Read (nin,*) par(1:npar)

! Read in state set from G13AEF, G13AFF or previous call to G13AGF
Read (nin,*) st(1:nst)

! Read in new observations to update state set
Read (nin,*) anx(1:nuv)
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! Update state set
ifail = 0
Call g13agf(st,nst,mr,par,npar,c,anx,nuv,anexr,wa,nwa,ifail)

! Display results
Write (nout,*) ’The updated state set array now holds the values’
Write (nout,99999) st(1:nst)
Write (nout,*)
Write (nout,99998) ’The residuals corresponding to the’, nuv
Write (nout,*) ’values used to update the system are’
Write (nout,99999) anexr(1:nuv)

99999 Format (1X,8F8.4)
99998 Format (1X,A,I3,A)

End Program g13agfe

10.2 Program Data

G13AGF Example Program Data
12 0.0 :: NUV,C
0 1 1 0 1 1 12 :: MR

0.3270 0.6270 :: PAR
0.0118 -0.0669 0.1296 -0.0394 0.0422 0.1809 0.1211 0.0281

-0.2231 -0.1181 -0.1468 0.0835 5.8201 -0.0157 -0.0361 -0.0266
-0.0199 0.0298 0.0290 0.0147 0.0373 -0.0931 0.0223 -0.0172
-0.0353 -0.0413 :: End of ST
5.8861 5.8348 6.0064 5.9814 6.0403 6.1570 6.3063 6.3261
6.1377 6.0088 5.8916 6.0039 :: End of ANX

10.3 Program Results

G13AGF Example Program Results

The updated state set array now holds the values
0.0660 -0.0513 0.1716 -0.0250 0.0589 0.1167 0.1493 0.0198

-0.1884 -0.1289 -0.1172 0.1123 6.0039 0.0444 -0.0070 0.0253
0.0019 0.0354 -0.0460 0.0374 0.0151 -0.0237 0.0032 0.0188
0.0067 0.0126

The residuals corresponding to the 12
values used to update the system are

0.0309 0.0031 0.0263 0.0105 0.0388 -0.0333 0.0265 0.0238
-0.0159 -0.0020 0.0182 0.0126
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NAG Library Routine Document

G13AHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13AHF produces forecasts of a time series, given a time series model which has already been fitted to
the time series using G13AEF or G13AFF. The original observations are not required, since G13AHF
uses as input either the original state set produced by G13AEF or G13AFF or the state set updated by a
series of new observations using G13AGF. Standard errors of the forecasts are also provided.

2 Specification

SUBROUTINE G13AHF (ST, NST, MR, PAR, NPAR, C, RMS, NFV, FVA, FSD, WA,
NWA, IFAIL)

&

INTEGER NST, MR(7), NPAR, NFV, NWA, IFAIL
REAL (KIND=nag_wp) ST(NST), PAR(NPAR), C, RMS, FVA(NFV), FSD(NFV),

WA(NWA)
&

3 Description

The original time series is xt , for t ¼ 1; 2; . . . ; n and parameters have been fitted to the model of this
time series using G13AEF or G13AFF.

Forecasts of xt , for t ¼ nþ 1; . . . ; nþ L, are calculated in five stages, as follows:

(i) set at ¼ 0 for t ¼ N þ 1; N þ 2; . . . ; N þ L, where N ¼ n� d� D� sð Þ is the number of
differenced values in the series;

(ii) calculate the values of et , for t ¼ N þ 1; . . . ; N þ L, and et ¼ 
1 � et�1 þ � � � þ

p � et�p þ at � �1 � at�1 � � � � � �q � at�q;

(iii) calculate the values of wt , for t ¼ N þ 1; . . . ; N þ L, where wt ¼ �1 � wt�s þ � � � þ
�P � wt�s�P þ et ��1 � et�s � � � � ��Q � et�s�Q and wt for t � N are the first s� P values in
the state set, corrected for the constant;

(iv) add the constant term c to give the differenced series rdrD
s xt ¼ wt þ c, for t ¼ N þ 1; . . . ; N þ L;

(v) the differencing operations are reversed to reconstitute xt , for t ¼ nþ 1; . . . ; nþ L.

The standard errors of these forecasts are given by st ¼ V �  2
0 þ  2

1 þ . . .þ  2
t�n�1

� �� �1=2
, for

t ¼ nþ 1; . . . ; nþ L, where  0 ¼ 1, V is the residual variance of at, and  j is the coefficient
expressing the dependence of xt on at�j.

To calculate  j , for j ¼ 1; 2; . . . ; L� 1ð Þ, the following device is used.

A copy of the state set is initialized to zero throughout and the calculations outlined above for the
construction of forecasts are carried out with the settings aNþ1 ¼ 1, and at ¼ 0, for
t ¼ N þ 2; . . . ; N þ L.
The resulting quantities corresponding to the sequence xNþ1; xNþ2; . . . ; xNþL are precisely 1,
 1;  2; . . . ;  L�1.

The supplied time series model is used throughout these calculations, with the exception that the
constant term c is taken to be zero.
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4 References

None.

5 Arguments

1: STðNSTÞ – REAL (KIND=nag_wp) array Input

On entry: the state set derived from G13AEF or G13AFF originally, or as modified using earlier
calls of G13AGF.

2: NST – INTEGER Input

On entry: the number of values in the state set array ST.

Constraint: NST ¼ P � sþD� sþ dþ q þmax p;Q� sð Þ. (As returned by G13AEF or
G13AFF).

3: MRð7Þ – INTEGER array Input

On entry: the orders vector p; d; q; P ;D;Q; sð Þ of the ARIMA model, in the usual notation.

Constraints:

p; d; q; P ;D;Q; s � 0;
pþ q þ P þQ > 0;
s 6¼ 1;
if s ¼ 0, P þDþQ ¼ 0;
if s > 1, P þDþQ > 0.

4: PARðNPARÞ – REAL (KIND=nag_wp) array Input

On entry: the estimates of the p values of the 
 parameters, the q values of the � parameters, the
P values of the � parameters and the Q values of the � parameters which specify the model and
which were output originally by G13AEF or G13AFF.

5: NPAR – INTEGER Input

On entry: the number of 
, �, � and � parameters in the model.

Constraint: NPAR ¼ pþ q þ P þQ.

6: C – REAL (KIND=nag_wp) Input

On entry: c, the value of the model constant. This will have been output by G13AEF or G13AFF.

7: RMS – REAL (KIND=nag_wp) Input

On entry: V , the residual variance associated with the model.

If G13AFF was used to estimate the model, RMS should be set to S=NDF, where S and NDF
were output by G13AFF.

If G13AEF was used to estimate the model, RMS should be set to S=ICOUNTð5Þ, where S and
ICOUNTð5Þ were output by G13AEF.

Constraint: RMS � 0:0.

8: NFV – INTEGER Input

On entry: L, the required number of forecasts.

Constraint: NFV > 0.
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9: FVAðNFVÞ – REAL (KIND=nag_wp) array Output

On exit: NFV forecast values relating to the original undifferenced series.

10: FSDðNFVÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors associated with each of the NFV forecast values in FVA.

11: WAðNWAÞ – REAL (KIND=nag_wp) array Workspace
12: NWA – INTEGER Input

On entry: the dimension of the array WA as declared in the (sub)program from which G13AHF is
called.

Constraint: NWA � 4� NPARþ 3� NSTð Þ.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPAR 6¼ pþ q þ P þQ,
or the orders vector MR is invalid (check the constraints given in Section 5).

IFAIL ¼ 2

On entry, NST 6¼ P � sþD� sþ dþ q þmax Q� s; pð Þ.

IFAIL ¼ 3

On entry, NFV � 0.

IFAIL ¼ 4

On entry, NWA < 4� NPAR þ 3� NST.

IFAIL ¼ 5

On entry, RMS < 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13AHF is not threaded in any implementation.

9 Further Comments

The time taken by G13AHF is approximately proportional to NFV� NPAR.

10 Example

The following program is based on the data derived in the example used to illustrate G13AGF.

These consist of a set of orders indicating that there are two moving average parameters (one non-
seasonal, and one seasonal with periodicity 12).

The model constant is zero.

The state set contains 26 values.

In addition the residual mean-square derived when the model was originally fitted is given.

Twelve forecasts and their associated errors are obtained.

10.1 Program Text

Program g13ahfe

! G13AHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13ahf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, rms
Integer :: ifail, nfv, npar, nst, nwa

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fsd(:), fva(:), par(:), st(:), wa(:)
Integer :: mr(7)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G13AHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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! Read in problem size etc
Read (nin,*) nfv, c

! Read in the orders
Read (nin,*) mr(1:7)

! Calculate NPAR and various array lengths
npar = mr(1) + mr(3) + mr(4) + mr(6)
nst = mr(4)*mr(7) + mr(5)*mr(7) + mr(2) + mr(3) + max(mr(1),mr(6)*mr(7))
nwa = 4*npar + 3*nst

Allocate (fsd(nfv),fva(nfv),par(npar),st(nst),wa(nwa))

! Read in parameter estimates
Read (nin,*) par(1:npar)

! Read in state set from G13AEF, G13AFF or G13AGF
Read (nin,*) st(1:nst)

! Read in residual variance
Read (nin,*) rms

! Produce forecasts
ifail = 0
Call g13ahf(st,nst,mr,par,npar,c,rms,nfv,fva,fsd,wa,nwa,ifail)

Write (nout,99998) ’The required’, nfv, &
’ forecast values are as follows’

Write (nout,99999) fva(1:nfv)
Write (nout,*)
Write (nout,*) &

’The standard deviations corresponding to the forecasts are’
Write (nout,99999) fsd(1:nfv)

99999 Format (1X,8F8.4)
99998 Format (1X,A,I3,A)

End Program g13ahfe

10.2 Program Data

G13AHF Example Program Data
12 0.0 :: NFV,C
0 1 1 0 1 1 12 :: NR

0.3270 0.6262 :: PAR
0.0660 -0.0513 0.1715 -0.0249 0.0588 0.1167 0.1493 0.0199

-0.1884 -0.1289 -0.1172 0.1122 6.0039 0.0443 -0.0070 0.0252
0.0020 0.0353 -0.0460 0.0374 0.0151 -0.0237 0.0031 0.0188
0.0066 0.0125 :: End of ST
0.0014 :: RMS

10.3 Program Results

G13AHF Example Program Results

The required 12 forecast values are as follows
6.0381 5.9912 6.1469 6.1207 6.1574 6.3029 6.4288 6.4392
6.2657 6.1348 6.0059 6.1139

The standard deviations corresponding to the forecasts are
0.0374 0.0451 0.0517 0.0575 0.0627 0.0676 0.0721 0.0764
0.0805 0.0843 0.0880 0.0915

G13 – Time Series Analysis G13AHF

Mark 26 G13AHF.5 (last)





NAG Library Routine Document

G13AJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13AJF applies a fully specified seasonal ARIMA model to an observed time series, generates the state
set for forecasting and (optionally) derives a specified number of forecasts together with their standard
deviations.

2 Specification

SUBROUTINE G13AJF (MR, PAR, NPAR, C, KFC, X, NX, RMS, ST, IST, NST, NFV,
FVA, FSD, IFV, ISF, W, IW, IFAIL)

&

INTEGER MR(7), NPAR, KFC, NX, IST, NST, NFV, IFV, ISF(4),
IW, IFAIL

&

REAL (KIND=nag_wp) PAR(NPAR), C, X(NX), RMS, ST(IST), FVA(IFV),
FSD(IFV), W(IW)

&

3 Description

The time series x1; x2; . . . ; xn supplied to the routine is assumed to follow a seasonal autoregressive
integrated moving average (ARIMA) model with known parameters.

The model is defined by the following relations.

(a) rdrD
s xt � c ¼ wt where rdrD

s xt is the result of applying non-seasonal differencing of order d and
seasonal differencing of seasonality s and order D to the series xt, and c is a constant.

(b) wt ¼ �1wt�s þ �2wt�2�s þ � � � þ �Pwt�P�s þ et ��1et�s ��2et�2�s � � � � ��Qet�Q�s:

This equation describes the seasonal structure with seasonal period s; in the absence of seasonality
it reduces to wt ¼ et.

(c) et ¼ 
1et�1 þ 
2et�2 þ � � � þ 
pet�p þ at � �1at�1 � �2at�2 � � � � � �qat�q:
This equation describes the non-seasonal structure.

Given the series, the constant c, and the model parameters �, �, 
, �, the routine computes the
following.

(a) The state set required for forecasting. This contains the minimum amount of information required
for forecasting and comprises:

(i) the differenced series wt, for N � s� Pð Þ � t � N;

(ii) the dþD� sð Þ values required to reconstitute the original series xt from the differenced
series wt;

(iii) the intermediate series et, for N �max p;Q� sð Þ < t � N;

(iv) the residual series at, for N � qð Þ < t � N, where N ¼ n� dþD� sð Þ.
(b) A set of L forecasts of xt and their estimated standard errors, st, for t ¼ nþ 1; . . . ; nþ L (L may

be zero).

The forecasts and estimated standard errors are generated from the state set, and are identical to
those that would be produced from the same state set by G13AHF.

Use of G13AJF should be confined to situations in which the state set for forecasting is unknown.
Forecasting from the series requires recalculation of the state set and this is relatively expensive.
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4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

5 Arguments

1: MRð7Þ – INTEGER array Input

On entry: the orders vector p; d; q; P ;D;Q; sð Þ of the ARIMA model, in the usual notation.

Constraints:

p; d; q; P ;D;Q; s � 0;
pþ q þ P þQ > 0;
s 6¼ 1;
if s ¼ 0, P þDþQ ¼ 0;
if s > 1, P þDþQ > 0;
dþ s� P þDð Þ � n;
pþ d� q þ s� P þD�Qð Þ � n.

2: PARðNPARÞ – REAL (KIND=nag_wp) array Input

On entry: the p values of the 
 parameters, the q values of the � parameters, the P values of the
� parameters, and the Q values of the � parameters, in that order.

3: NPAR – INTEGER Input

On entry: the exact number of 
, �, � and � parameters.

Constraint: NPAR ¼ pþ q þ P þQ.

4: C – REAL (KIND=nag_wp) Input

On entry: c, the expected value of the differenced series (i.e., c is the constant correction). Where
there is no constant term, C must be set to 0:0.

5: KFC – INTEGER Input

On entry: must be set to 0 if C was not estimated, and 1 if C was estimated. This is irrespective
of whether or not C ¼ 0:0. The only effect is that the residual degrees of freedom are one greater
when KFC ¼ 0. Assuming the supplied time series to be the same as that to which the model was
originally fitted, this ensures an unbiased estimate of the residual mean-square.

Constraint: KFC ¼ 0 or 1.

6: XðNXÞ – REAL (KIND=nag_wp) array Input

On entry: the n values of the original undifferenced time series.

7: NX – INTEGER Input

On entry: n, the length of the original undifferenced time series.

8: RMS – REAL (KIND=nag_wp) Output

On exit: the residual variance (mean square) associated with the model.

9: STðISTÞ – REAL (KIND=nag_wp) array Output

On exit: the NST values of the state set.
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10: IST – INTEGER Input

On entry: the dimension of the array ST as declared in the (sub)program from which G13AJF is
called.

Constraint: IST � P � sð Þ þ dþ D� sð Þ þ q þmax p;Q� sð Þ. The expression on the right-hand
side of the inequality is returned in NST.

11: NST – INTEGER Output

On exit: the number of values in the state set array ST.

12: NFV – INTEGER Input

On entry: the required number of forecasts. If NFV � 0, no forecasts will be computed.

13: FVAðIFVÞ – REAL (KIND=nag_wp) array Output

On exit: if NFV > 0, FVA contains the NFV forecast values relating to the original undifferenced
time series.

14: FSDðIFVÞ – REAL (KIND=nag_wp) array Output

On exit: if NFV > 0, FSD contains the estimated standard errors of the NFV forecast values.

15: IFV – INTEGER Input

On entry: the dimension of the arrays FVA and FSD as declared in the (sub)program from which
G13AJF is called.

Constraint: IFV � max 1;NFVð Þ.

16: ISFð4Þ – INTEGER array Output

On exit: contains validity indicators, one for each of the four possible parameter types in the
model (autoregressive, moving average, seasonal autoregressive, seasonal moving average), in
that order.

Each indicator has the interpretation:

�1 On entry the set of parameter values of this type does not satisfy the stationarity or
invertibility test conditions.

0 No parameter of this type is in the model.

1 Valid parameter values of this type have been supplied.

17: WðIWÞ – REAL (KIND=nag_wp) array Workspace
18: IW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which G13AJF is
called.

Constraint: IW � 6� nþ 5� pþ q þ P þQð Þ þQ02 þ 11�Q0 þ 3� P 0 þ 7,
where Q0 ¼ Q� sþ q and P 0 ¼ P � sþ p.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPAR 6¼ pþ q þ P þQ,
or the orders vector MR is invalid (check the constraints in Section 5),
or KFC 6¼ 0 or 1.

IFAIL ¼ 2

On entry, NX� d�D� s � NPARþ KFC, i.e., the number of terms in the differenced series is
not greater than the number of parameters in the model. The model is over-parameterised.

IFAIL ¼ 3

On entry, the workspace array W is too small.

IFAIL ¼ 4

On entry, the state set array ST is too small. It must be at least as large as the exit value of NST.

IFAIL ¼ 5

Unable to calculate te latest estimates of the backforecasts.

IFAIL ¼ 6

On entry, valid values were not supplied for all parameter types in the model. Inspect array ISF
for further information on the parameter type(s) in error.

IFAIL ¼ 7

On entry, IFV < max 1;NFVð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.
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8 Parallelism and Performance

G13AJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13AJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G13AJF is approximately proportional to n and the square of the number of
backforecasts derived.

10 Example

The data is that used in the example program for G13AFF. Five forecast values and their standard
errors, together with the state set, are computed and printed.

10.1 Program Text

Program g13ajfe

! G13AJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13ajf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, rms
Integer :: i, ifail, ifv, ist, iw, kfc, nfv, &

npar, nst, nx, pp, qp
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: fsd(:), fva(:), par(:), st(:), w(:), &
x(:)

Integer :: isf(4), mr(7)
! .. Intrinsic Procedures ..

Intrinsic :: max
! .. Executable Statements ..

Write (nout,*) ’G13AJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size etc
Read (nin,*) nx, nfv, kfc, c

! Read in the orders
Read (nin,*) mr(1:7)

! Calculate NPAR and various array lengths
npar = mr(1) + mr(3) + mr(4) + mr(6)
ist = mr(4) + mr(7) + mr(2) + mr(5) + mr(3) + max(mr(1),mr(6)*mr(7))
ifv = max(1,nfv)
qp = mr(6)*mr(7) + mr(3)
pp = mr(4)*mr(7) + mr(1)
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iw = 6*nx + 5*npar + qp*(qp+11) + 3*pp + 7
Allocate (par(npar),x(nx),st(ist),fva(ifv),fsd(ifv),w(iw))

! Read in data
Read (nin,*) x(1:nx)

! Read in parameter estimates
Read (nin,*) par(1:npar)

ifail = 0
Call g13ajf(mr,par,npar,c,kfc,x,nx,rms,st,ist,nst,nfv,fva,fsd,ifv,isf,w, &

iw,ifail)

! Display results
Write (nout,99999) ’The residual mean square is ’, rms
Write (nout,*)
Write (nout,99998) ’The state set consists of ’, nst, ’ values’
Write (nout,99997) st(1:nst)
Write (nout,*)
Write (nout,99996) ’The ’, nfv, &

’ forecast values and standard errors are -’
Write (nout,99995)(fva(i),fsd(i),i=1,nfv)

99999 Format (1X,A,F9.2)
99998 Format (1X,A,I1,A)
99997 Format (1X,4F11.4)
99996 Format (1X,A,I2,A)
99995 Format (10X,2F10.2)

End Program g13ajfe

10.2 Program Data

G13AJF Example Program Data
30 5 1 9.9807 :: NX,NFV,KFC,C
1 1 2 0 0 0 0 :: MR
-217 -177 -166 -136 -110 -95 -64 -37 -14 -25
-51 -62 -73 -88 -113 -120 -83 -33 -19 21
17 44 44 78 88 122 126 114 85 64 :: End of X

-0.0547 -0.5568 -0.6636 :: PAR

10.3 Program Results

G13AJF Example Program Results

The residual mean square is 375.91

The state set consists of 4 values
64.0000 -30.9807 -20.4495 -2.7212

The 5 forecast values and standard errors are -
60.59 19.39
69.50 34.99
79.54 54.25
89.51 67.87
99.50 79.20
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NAG Library Routine Document

G13AMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13AMF performs exponential smoothing using either single exponential, double exponential or a
Holt–Winters method.

2 Specification

SUBROUTINE G13AMF (MODE, ITYPE, P, PARAM, N, Y, K, INIT, NF, FV, FSE,
YHAT, RES, DV, AD, R, IFAIL)

&

INTEGER MODE, ITYPE, P, N, K, NF, IFAIL
REAL (KIND=nag_wp) PARAM(*), Y(N), INIT(*), FV(NF), FSE(NF), YHAT(N),

RES(N), DV, AD, R(*)
&

3 Description

Exponential smoothing is a relatively simple method of short term forecasting for a time series.
G13AMF provides five types of exponential smoothing; single exponential, Brown's double exponential,
linear Holt (also called double exponential smoothing in some references), additive Holt–Winters and
multiplicative Holt–Winters. The choice of smoothing method used depends on the characteristics of
the time series. If the mean of the series is only slowly changing then single exponential smoothing
may be suitable. If there is a trend in the time series, which itself may be slowly changing, then double
exponential smoothing may be suitable. If there is a seasonal component to the time series, e.g., daily or
monthly data, then one of the two Holt–Winters methods may be suitable.

For a time series yt , for t ¼ 1; 2; . . . ; n, the five smoothing functions are defined by the following:

Single Exponential Smoothing

mt ¼ �yt þ 1� �ð Þmt�1
ŷtþf ¼ mt

var ŷtþf
� �

¼ var �tð Þ 1þ f � 1ð Þ�2
� �

Brown Double Exponential Smoothing

mt ¼ �yt þ 1� �ð Þmt�1
rt ¼ � mt �mt�1ð Þ þ 1� �ð Þrt�1

ŷtþf ¼ mt þ f � 1ð Þ þ 1=�ð Þrt

var ŷtþf
� �

¼ var �tð Þ 1þ
Xf�1
i¼1

2�þ i� 1ð Þ�2
� �2 !

Linear Holt Smoothing

mt ¼ �yt þ 1� �ð Þ mt�1 þ 
rt�1ð Þ
rt ¼ � mt �mt�1ð Þ þ 1� �ð Þ
rt�1

ŷtþf ¼ mt þ
Xf
i¼1

irt

var ŷtþf
� �

¼ var �tð Þ 1þ
Xf�1
i¼1

�þ ��
 
i�1ð Þ

�1ð Þ

� �2 !
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Additive Holt–Winters Smoothing

mt ¼ � yt � st�p
� �

þ 1� �ð Þ mt�1 þ 
rt�1ð Þ
rt ¼ � mt �mt�1ð Þ þ 1� �ð Þ
rt�1
st ¼ � yt �mtð Þ þ 1� �ð Þst�p

ŷtþf ¼ mt þ
Xf
i¼1

irt

 !
þ st�p

var ŷtþf
� �

¼ var �tð Þ 1þ
Xf�1
i¼1
 2
i

 !

 i ¼
0 if i � f
�þ ��
 
i�1ð Þ


�1ð Þ if i mod p 6¼ 0

�þ ��
 
i�1ð Þ

�1ð Þ þ � 1� �ð Þ otherwise

8><>:
Multiplicative Holt–Winters Smoothing

mt ¼ �yt=st�p þ 1� �ð Þ mt�1 þ 
rt�1ð Þ
rt ¼ � mt �mt�1ð Þ þ 1� �ð Þ
rt�1
st ¼ �yt=mt þ 1� �ð Þst�p

ŷtþf ¼ mt þ
Xf
i¼1

irt

 !
� st�p

var ŷtþf
� �

¼ var �tð Þ
X1
i¼0

Xp�1
j¼0

 jþip
stþf
stþf�j

� �2 !
and  is defined as in the additive Holt–Winters smoothing,

where mt is the mean, rt is the trend and st is the seasonal component at time t with p being the
seasonal order. The f-step ahead forecasts are given by ŷtþf and their variances by var ŷtþf

� �
. The term

var �tð Þ is estimated as the mean deviation.

The parameters, �, � and � control the amount of smoothing. The nearer these parameters are to one,
the greater the emphasis on the current data point. Generally these parameters take values in the range
0:1 to 0:3. The linear Holt and two Holt–Winters smoothers include an additional parameter, 
, which
acts as a trend dampener. For 0:0 < 
 < 1:0 the trend is dampened and for 
 > 1:0 the forecast function
has an exponential trend, 
 ¼ 0:0 removes the trend term from the forecast function and 
 ¼ 1:0 does
not dampen the trend.

For all methods, values for �, �, � and  can be chosen by trying different values and then visually
comparing the results by plotting the fitted values along side the original data. Alternatively, for single
exponential smoothing a suitable value for � can be obtained by fitting an ARIMA 0; 1; 1ð Þ model (see
G13BEF). For Brown's double exponential smoothing and linear Holt smoothing with no dampening, (i.
e., 
 ¼ 1:0), suitable values for � and � can be obtained by fitting an ARIMA 0; 2; 2ð Þ model. Similarly,
the linear Holt method, with 
 6¼ 1:0, can be expressed as an ARIMA 1; 2; 2ð Þ model and the additive
Holt–Winters, with no dampening, (
 ¼ 1:0), can be expressed as a seasonal ARIMA model with order
p of the form ARIMA 0; 1; pþ 1ð Þ 0; 1; 0ð Þ. There is no similar procedure for obtaining parameter values
for the multiplicative Holt–Winters method, or the additive Holt–Winters method with 
 6¼ 1:0. In these
cases parameters could be selected by minimizing a measure of fit using one of the nonlinear
optimization routines in Chapter E04.

In addition to values for �, �, � and  , initial values, m0, r0 and s�j , for j ¼ 0; 1; . . . ; p� 1, are
required to start the smoothing process. You can either supply these or they can be calculated by
G13AMF from the first k observations. For single exponential smoothing the mean of the observations
is used to estimate m0. For Brown double exponential smoothing and linear Holt smoothing, a simple
linear regression is carried out with the series as the dependent variable and the sequence 1; 2; . . . ; k as
the independent variable. The intercept is then used to estimate m0 and the slope to estimate r0. In the
case of the additive Holt–Winters method, the same regression is carried out, but a separate intercept is
used for each of the p seasonal groupings. The slope gives an estimate for r0 and the mean of the p
intercepts is used as the estimate of m0. The seasonal parameters s�j , for j ¼ 0; 1; . . . ; p� 1, are
estimated as the p intercepts – m0. A similar approach is adopted for the multiplicative Holt–Winter's
method.
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One step ahead forecasts, ŷtþ1 are supplied along with the residuals computed as ytþ1 � ŷtþ1ð Þ. In
addition, two measures of fit are provided. The mean absolute deviation,

1

n

Xn
t¼1

yt � ŷtj j

and the square root of the mean deviation ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
t¼1

yt � ŷtð Þ2
s

:

4 References

Chatfield C (1980) The Analysis of Time Series Chapman and Hall

5 Arguments

1: MODE – INTEGER Input

On entry: indicates if G13AMF is continuing from a previous call or, if not, how the initial
values are computed.

MODE ¼ 0
Required values for m0, r0 and s�j , for j ¼ 0; 1; . . . ; p� 1, are supplied in INIT.

MODE ¼ 1
G13AMF continues from a previous call using values that are supplied in R.

MODE ¼ 2
Required values for m0, r0 and s�j , for j ¼ 0; 1; . . . ; p� 1, are estimated using the first k
observations.

Constraint: MODE ¼ 0, 1 or 2.

2: ITYPE – INTEGER Input

On entry: the smoothing function.

ITYPE ¼ 1
Single exponential.

ITYPE ¼ 2
Brown double exponential.

ITYPE ¼ 3
Linear Holt.

ITYPE ¼ 4
Additive Holt–Winters.

ITYPE ¼ 5
Multiplicative Holt–Winters.

Constraint: ITYPE ¼ 1, 2, 3, 4 or 5.

3: P – INTEGER Input

On entry: if ITYPE ¼ 4 or 5, the seasonal order, p, otherwise P is not referenced.

Constraint: if ITYPE ¼ 4 or 5, P > 1.
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4: PARAMð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array PARAM must be at least 1 if ITYPE ¼ 1 or 2, 3 if ITYPE ¼ 3
and at least 4 if ITYPE ¼ 4 or 5.

On entry: the smoothing parameters.

If ITYPE ¼ 1 or 2, PARAMð1Þ ¼ � and any remaining elements of PARAM are not referenced.

If ITYPE ¼ 3, PARAMð1Þ ¼ �, PARAMð2Þ ¼ �, PARAMð3Þ ¼ 
 and any remaining elements
of PARAM are not referenced.

If ITYPE ¼ 4 or 5, PARAMð1Þ ¼ �, PARAMð2Þ ¼ �, PARAMð3Þ ¼ � and PARAMð4Þ ¼ 
.
Constraints:

if ITYPE ¼ 1, 0:0 � � � 1:0;
if ITYPE ¼ 2, 0:0 < � � 1:0;
if ITYPE ¼ 3, 0:0 � � � 1:0 and 0:0 � � � 1:0 and 
 � 0:0;
if ITYPE ¼ 4 or 5, 0:0 � � � 1:0 and 0:0 � � � 1:0 and 0:0 � � � 1:0 and 
 � 0:0.

5: N – INTEGER Input

On entry: the number of observations in the series.

Constraint: N � 0.

6: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the time series.

7: K – INTEGER Input

On entry: if MODE ¼ 2, the number of observations used to initialize the smoothing.

If MODE 6¼ 2, K is not referenced.

Constraints:

if MODE ¼ 2 and ITYPE ¼ 4 or 5, 2� P � K � N;
if MODE ¼ 2 and ITYPE ¼ 1, 2 or 3, 1 � K � N.

8: INITð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array INIT must be at least 1 if ITYPE ¼ 1, 2 if ITYPE ¼ 2 or 3 and
at least 2þ P if ITYPE ¼ 4 or 5.

On entry: if MODE ¼ 0, the initial values for m0, r0 and s�j , for j ¼ 0; 1; . . . ; p� 1, used to
initialize the smoothing.

If ITYPE ¼ 1, INITð1Þ ¼ m0 and the remaining elements of INIT are not referenced.

If ITYPE ¼ 2 or 3, INITð1Þ ¼ m0 and INITð2Þ ¼ r0 and the remaining elements of INIT are not
referenced.

If ITYPE ¼ 4 or 5, INITð1Þ ¼ m0, INITð2Þ ¼ r0 and INITð3Þ to INITðpþ 2Þ hold the values for
s�j , for j ¼ 0; 1; . . . ; p� 1. The remaining elements of INIT are not referenced.

On exit: if MODE 6¼ 1, the values used to initialize the smoothing. These are in the same order as
described above.

9: NF – INTEGER Input

On entry: the number of forecasts required beyond the end of the series. Note, the one step ahead
forecast is always produced.

Constraint: NF � 0.
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10: FVðNFÞ – REAL (KIND=nag_wp) array Output

On exit: ŷtþf , for f ¼ 1; 2; . . . ;NF, the next NF step forecasts. Where t ¼ N, if MODE 6¼ 1, else t
is the total number of smoothed and forecast values already produced.

11: FSEðNFÞ – REAL (KIND=nag_wp) array Output

On exit: the forecast standard errors for the values given in FV.

12: YHATðNÞ – REAL (KIND=nag_wp) array Output

On exit: ŷtþ1, for t ¼ 1; 2; . . . ;N, the one step ahead forecast values, with YHATðiÞ being the one
step ahead forecast of Yði� 1Þ.

13: RESðNÞ – REAL (KIND=nag_wp) array Output

On exit: the residuals, ytþ1 � ŷtþ1ð Þ, for t ¼ 1; 2; . . . ;N.

14: DV – REAL (KIND=nag_wp) Output

On exit: the square root of the mean deviation.

15: AD – REAL (KIND=nag_wp) Output

On exit: the mean absolute deviation.

16: Rð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array R must be at least 13 if ITYPE ¼ 1, 2 or 3 and at least 13þ P if
ITYPE ¼ 4 or 5.

On entry: if MODE ¼ 1, R must contain the values as returned by a previous call to G05PMF or
G13AMF, R need not be set otherwise.

If ITYPE ¼ 1, 2 or 3, only the first 13 elements of R are referenced, otherwise the first 13þ p
elements are referenced.

On exit: the information on the current state of the smoothing.

Constraint: if MODE ¼ 1, R must have been initialized by at least one previous call to G05PMF
or G13AMF with MODE 6¼ 1, and R should not have been changed since the last call to
G05PMF or G13AMF.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE ¼ valueh i.
Constraint: MODE ¼ 0, 1 or 2.

IFAIL ¼ 2

On entry, ITYPE ¼ valueh i.
Constraint: ITYPE ¼ 1, 2, 3, 4 or 5.

IFAIL ¼ 3

On entry, P ¼ valueh i.
Constraint: if ITYPE ¼ 4 or 5, P > 1.

IFAIL ¼ 4

On entry, PARAMð valueh iÞ ¼ valueh i.
Constraint: 0:0 � PARAMð valueh iÞ � 1:0.

On entry, PARAMð valueh iÞ ¼ valueh i.
Constraint: if ITYPE ¼ 2, 0:0 < PARAMð valueh iÞ � 1:0.

On entry, PARAMð valueh iÞ ¼ valueh i.
Constraint: PARAMð valueh iÞ � 0:0.

IFAIL ¼ 5

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ 6

A multiplicative Holt–Winters model cannot be used with the supplied data.

IFAIL ¼ 7

On entry, K ¼ valueh i, 2� P ¼ valueh i.
Constraint: if MODE ¼ 2 and ITYPE ¼ 4 or 5, 2� P � K.

On entry, K ¼ valueh i and N ¼ valueh i.
Constraint: if MODE ¼ 2 and ITYPE ¼ 4 or 5, 1 � K � N.

IFAIL ¼ 9

On entry, NF ¼ valueh i.
Constraint: NF � 0.

IFAIL ¼ 16

On entry, the array R has not been initialized correctly.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13AMF is not threaded in any implementation.

9 Further Comments

Single exponential, Brown's double exponential and linear Holt smoothing methods are stable, whereas
the two Holt–Winters methods can be affected by poor initial values for the seasonal components.

See also the routine document for G05PMF.

10 Example

This example smooths a time series relating to the rate of the earth's rotation about its polar axis.

10.1 Program Text

Program g13amfe

! G13AMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13amf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: ad, dv
Integer :: i, ifail, itype, ival, k, mode, n, &

nf, p
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: fse(:), fv(:), init(:), param(:), &
r(:), res(:), y(:), yhat(:)

! .. Executable Statements ..
Write (nout,*) ’G13AMF Example Program Results’
Write (nout,*)

! Skip headings in data file
Read (nin,*)

! Read in the initial arguments and check array sizes
Read (nin,*) mode, itype, n, nf

Allocate (y(n),fv(nf),fse(nf),yhat(n),res(n))

! Read in data
Read (nin,*) y(1:n)
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! Read in the ITYPE dependent arguments (skipping headings)
Select Case (itype)
Case (1)

! Single exponential smoothing
Allocate (param(1))
Read (nin,*) param(1)
p = 0
ival = 1

Case (2)
! Brown double exponential smoothing

Allocate (param(2))
Read (nin,*) param(1), param(2)
p = 0
ival = 2

Case (3)
! Linear Holt smoothing

Allocate (param(3))
Read (nin,*) param(1), param(2), param(3)
p = 0
ival = 2

Case Default
! Additive or multiplicative Holt-Winter smoothing

Allocate (param(4))
Read (nin,*) param(1), param(2), param(3), param(4), p
ival = p + 2

End Select

Allocate (init(ival),r(p+13))

! Read in the MODE dependent arguments (skipping headings)
Select Case (mode)
Case (0)

! User supplied initial values
Read (nin,*) init(1:ival)

Case (1)
! Continuing from a previously saved R

Read (nin,*) r(1:(p+13))
Case (2)

! Initial values calculated from first K observations
Read (nin,*) k

End Select

! Call the library routine
ifail = 0
Call g13amf(mode,itype,p,param,n,y,k,init,nf,fv,fse,yhat,res,dv,ad,r, &

ifail)

! Display output
Write (nout,*) ’Initial values used:’
Write (nout,99997)(i,init(i),i=1,ival)
Write (nout,*)
Write (nout,99999) ’Mean Deviation = ’, dv
Write (nout,99999) ’Absolute Deviation = ’, ad
Write (nout,*)
Write (nout,*) ’ Observed 1-Step’
Write (nout,*) ’ Period Values Forecast Residual’
Write (nout,*)
Write (nout,99998)(i,y(i),yhat(i),res(i),i=1,n)
Write (nout,*)
Write (nout,*) ’ Forecast Standard’
Write (nout,*) ’ Period Values Errors’
Write (nout,*)
Write (nout,99996)(n+i,fv(i),fse(i),i=1,nf)
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99999 Format (A,E12.4)
99998 Format (I4,1X,F12.3,1X,F12.3,1X,F12.3)
99997 Format (I4,1X,F12.3)
99996 Format (I4,1X,F12.3,1X,F12.3)

End Program g13amfe

10.2 Program Data

G13AMF Example Program Data
2 3 11 5 : MODE,ITYPE,N,NF
180 135 213 181 148 204 228 225 198 200 187 : Y
0.01 1.0 1.0 : PARAM(1:3) (since ITYPE=3)
11 : K (since MODE=2)

10.3 Program Results

G13AMF Example Program Results

Initial values used:
1 168.018
2 3.800

Mean Deviation = 0.2547E+02
Absolute Deviation = 0.2123E+02

Observed 1-Step
Period Values Forecast Residual

1 180.000 171.818 8.182
2 135.000 175.782 -40.782
3 213.000 178.848 34.152
4 181.000 183.005 -2.005
5 148.000 186.780 -38.780
6 204.000 189.800 14.200
7 228.000 193.492 34.508
8 225.000 197.732 27.268
9 198.000 202.172 -4.172

10 200.000 206.256 -6.256
11 187.000 210.256 -23.256

Forecast Standard
Period Values Errors

12 213.854 25.473
13 217.685 25.478
14 221.516 25.490
15 225.346 25.510
16 229.177 25.542
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NAG Library Routine Document

G13ASF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13ASF is a diagnostic checking routine suitable for use after fitting a Box–Jenkins ARMA model to a
univariate time series using G13AEF or G13AFF. The residual autocorrelation function is returned
along with an estimate of its asymptotic standard errors and correlations. Also, G13ASF calculates the
Box–Ljung portmanteau statistic and its significance level for testing model adequacy.

2 Specification

SUBROUTINE G13ASF (N, V, MR, M, PAR, NPAR, ISHOW, R, RCM, LDRCM, CHI,
IDF, SIGLEV, IW, LIW, WORK, LWORK, IFAIL)

&

INTEGER N, MR(7), M, NPAR, ISHOW, LDRCM, IDF, IW(LIW), LIW,
LWORK, IFAIL

&

REAL (KIND=nag_wp) V(N), PAR(NPAR), R(M), RCM(LDRCM,M), CHI, SIGLEV,
WORK(LWORK)

&

3 Description

Consider the univariate multiplicative autoregressive-moving average model


 Bð Þ� Bsð Þ Wt � �ð Þ ¼ � Bð Þ� Bsð Þ�t ð1Þ

where Wt, for t ¼ 1; 2; . . . ; n, denotes a time series and �t, for t ¼ 1; 2; . . . ; n, is a residual series
assumed to be normally distributed with zero mean and variance �2 ( > 0). The �t's are also assumed to
be uncorrelated. Here � is the overall mean term, s is the seasonal period and B is the backward shift
operator such that BrWt ¼Wt�r. The polynomials in (1) are defined as follows:


 Bð Þ ¼ 1� 
1B� 
2B2 � � � � � 
pBp

is the non-seasonal autoregressive (AR) operator;

� Bð Þ ¼ 1� �1B� �2B2 � � � � � �qBq

is the non-seasonal moving average (MA) operator;

� Bsð Þ ¼ 1� �1B
s � �2B

2s � � � � � �PBPs

is the seasonal AR operator; and

� Bsð Þ ¼ 1��1B
s ��2B

2s � � � � ��QB
Qs

is the seasonal MA operator. The model (1) is assumed to be stationary, that is the zeros of 
 Bð Þ and
� Bsð Þ are assumed to lie outside the unit circle. The model (1) is also assumed to be invertible, that is
the zeros of � Bð Þ and � Bsð Þ are assumed to lie outside the unit circle. When both � Bsð Þ and � Bsð Þ are
absent from the model, that is when P ¼ Q ¼ 0, then the model is said to be non-seasonal.

The estimated residual autocorrelation coefficient at lag l, r̂l, is computed as:

r̂l ¼

Xn
t¼lþ1

�̂t�l � ��ð Þ �̂t � ��ð Þ

Xn
t¼1

�̂t � ��ð Þ2
; l ¼ 1; 2; . . .
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where �̂t denotes an estimate of the tth residual, �t, and �� ¼
Xn
t¼1
�̂t=n. A portmanteau statistic, Q mð Þ, is

calculated from the formula (see Box and Ljung (1978)):

Q mð Þ ¼ n nþ 2ð Þ
Xm
l¼1
r̂2l = n� lð Þ

where m denotes the number of residual autocorrelations computed. (Advice on the choice of m is
given in Section 9.2.) Under the hypothesis of model adequacy, Q mð Þ has an asymptotic �2-distribution
on m� p� q � P �Q degrees of freedom. Let r̂T ¼ r̂1; r̂2; . . . ; r̂mð Þ then the variance-covariance
matrix of r̂ is given by:

Var r̂ð Þ ¼ Im �X XTX
� ��1

XT
h i

=n:

The construction of the matrix X is discussed in McLeod (1978). (Note that the mean, �, and the
residual variance, �2, play no part in calculating Var r̂ð Þ and therefore are not required as input to
G13ASF.)

Note: for additive models with fixed parameter values (i.e., fitted by G13DDF) G13DSF should be
used instead of G13ASF.

4 References

Box G E P and Ljung G M (1978) On a measure of lack of fit in time series models Biometrika 65
297–303

McLeod A I (1978) On the distribution of the residual autocorrelations in Box–Jenkins models J. Roy.
Statist. Soc. Ser. B 40 296–302

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations in the residual series.

If G13ASF is used following a call to G13AEF, then N must be the value ICOUNTð2Þ returned
by G13AEF.

If G13ASF is used following a call to G13AFF, then N must be the value NRES returned by
G13AFF.

Constraint: N � 3.

2: VðNÞ – REAL (KIND=nag_wp) array Input

On entry: VðtÞ must contain an estimate of �t , for t ¼ 1; 2; . . . ; n.

If G13ASF is used following a call to G13AEF then the actual argument V must be
EXRðICOUNTð1Þ þ 1Þ as returned by G13AEF.

If G13ASF is used following a call to G13AFF then the actual argument V must be RES as
returned by G13AFF.

Constraint: V must contain at least two distinct elements.

3: MRð7Þ – INTEGER array Input

On entry: the orders vector (p, d, q, P , D, Q, s) as supplied to G13AEF or G13AFF.

Constraints:

p; q; P ;Q; s � 0;
pþ q þ P þQ > 0;
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if s ¼ 0, then P ¼ 0 and Q ¼ 0.

4: M – INTEGER Input

On entry: the value of m, the number of residual autocorrelations to be computed. See
Section 9.2 for advice on the value of M.

Constraint: NPAR < M < N.

5: PARðNPARÞ – REAL (KIND=nag_wp) array Input

On entry: the parameter estimates in the order 
1; 
2; . . . ; 
p, �1; �2; . . . ; �q, �1; �2; . . . ; �P ,
�1; �2; . . . ; �Q only.

Constraint: the elements in PAR must satisfy the stationarity and invertibility conditions.

6: NPAR – INTEGER Input

On entry: the total number of 
, �, � and � parameters, i.e., NPAR ¼ pþ q þ P þQ.
Constraint: NPAR ¼ MRð1Þ þMRð3Þ þMRð4Þ þMRð6Þ.

7: ISHOW – INTEGER Input

On entry: must be nonzero if the residual autocorrelations, their standard errors and the
portmanteau statistics are to be printed and zero otherwise.

These quantities are available also as output variables in R, RCM, CHI, IDF and SIGLEV.

8: RðMÞ – REAL (KIND=nag_wp) array Output

On exit: an estimate of the residual autocorrelation coefficient at lag l, for l ¼ 1; 2; . . . ;m. If
IFAIL ¼ 3 on exit then all elements of R are set to zero.

9: RCMðLDRCM;MÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated standard errors and correlations of the elements in the array R. The
correlation between RðiÞ and RðjÞ is returned as RCMði; jÞ except that if i ¼ j then RCMði; jÞ
contains the standard error of RðiÞ. If on exit, IFAIL � 5, then all off-diagonal elements of RCM
are set to zero and all diagonal elements are set to 1=

ffiffiffi
n
p

.

10: LDRCM – INTEGER Input

On entry: the first dimension of the array RCM as declared in the (sub)program from which
G13ASF is called.

Constraint: LDRCM � M.

11: CHI – REAL (KIND=nag_wp) Output

On exit: the value of the portmanteau statistic, Q mð Þ. If IFAIL ¼ 3 on exit then CHI is returned as
zero.

12: IDF – INTEGER Output

On exit: the number of degrees of freedom of CHI.

13: SIGLEV – REAL (KIND=nag_wp) Output

On exit: the significance level of CHI based on IDF degrees of freedom. If IFAIL ¼ 3 on exit,
SIGLEV is returned as one.
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14: IWðLIWÞ – INTEGER array Workspace
15: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which G13ASF is
called.

Constraint: LIW � max MRð1Þ;MRð3Þ;MRð4Þ;MRð6Þð Þ.

16: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G13ASF is called.

Constraint: LWORK � NPAR � Mþ NPAR þ 1ð Þ þmax MRð1Þ;MRð3Þ;MRð4Þ;MRð6Þð Þ �
max MRð7Þ; 1ð Þ þM.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13ASF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MRð1Þ < 0,
or MRð3Þ < 0,
or MRð4Þ < 0,
or MRð6Þ < 0,
or MRð7Þ < 0,
or MRð7Þ ¼ 0 and either MRð4Þ > 0 or MRð6Þ > 0,
or MRð1Þ ¼ MRð3Þ ¼ MRð4Þ ¼ MRð6Þ ¼ 0,
or M � NPAR,
or M � N,
or N < 3,
or NPAR 6¼ MRð1Þ þMRð3Þ þMRð4Þ þMRð6Þ,
or LDRCM < M,
or LIW is too small,
or LWORK is too small.

IFAIL ¼ 2

On entry, the autoregressive (or moving average) parameters are extremely close to or outside the
stationarity (or invertibility) region. To proceed, you must supply different parameter estimates in
the array PAR.
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IFAIL ¼ 3

On entry, the residuals are practically identical giving zero (or near zero) variance. In this case
CHI is set to zero and SIGLEV to one and all the elements of R are set to zero.

IFAIL ¼ 4

This is an unlikely exit brought about by an excessive number of iterations being needed to
evaluate the zeros of the AR or MA polynomials. All output arguments are undefined.

IFAIL ¼ 5

On entry, one or more of the AR operators has a factor in common with one or more of the MA
operators. To proceed, this common factor must be deleted from the model. In this case, the off-
diagonal elements of RCM are returned as zero and the diagonal elements set to 1=

ffiffiffi
n
p

. All other
output quantities will be correct.

IFAIL ¼ 6

This is an unlikely exit. At least one of the diagonal elements of RCM was found to be either
negative or zero. In this case all off-diagonal elements of RCM are returned as zero and all
diagonal elements of RCM set to 1=

ffiffiffi
n
p

.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13ASF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13ASF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken by G13ASF depends upon the number of residual autocorrelations to be computed, m.
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9.2 Choice of m

The number of residual autocorrelations to be computed, m should be chosen to ensure that when the
ARMA model (1) is written as either an infinite order autoregressive process:

Wt � � ¼
X1
j¼1

	j Wt�j � �
� �

þ �t

or as an infinite order moving average process:

Wt � � ¼
X1
j¼1

 j�t�j þ �t

then the two sequences 	1; 	2; . . .f g and  1;  2; . . .f g are such that 	j and  j are approximately zero for
j > m. An overestimate of m is therefore preferable to an under-estimate of m. In many instances the
choice m ¼ 10 will suffice. In practice, to be on the safe side, you should try setting m ¼ 20.

9.3 Approximate Standard Errors

When IFAIL ¼ 5 or 6 all the standard errors in RCM are set to 1=
ffiffiffi
n
p

. This is the asymptotic standard
error of r̂l when all the autoregressive and moving average parameters are assumed to be known rather
than estimated.

9.4 Alternative Applications

G13ASF may be used for diagnostic checking of suitable univariate ARMA models, as described in
Section 3, fitted by G13BEF or G13DDF. Great care must be taken in obtaining the input values for
G13ASF from the output values from G13BEF or G13DDF.

10 Example

This example fits an ARIMA 1; 1; 2ð Þ model to a series of 30 observations. 10 residual autocorrelations
are computed.

10.1 Program Text

Program g13asfe

! G13ASF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13aff, g13asf, nag_wp, x04abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, chi, s, siglev
Integer :: idf, ifail, ires, ishow, itc, kfc, &

kpiv, ldcm, ldrcm, liw, lwork, m, n, &
nadv, ndf, nit, npar, nppc, nst, nx, &
pp, qp

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cm(:,:), par(:), r(:), rcm(:,:), &

sd(:), st(:), v(:), work(:), x(:)
Integer :: isf(4), mr(7)
Integer, Allocatable :: iw(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G13ASF Example Program Results’
Write (nout,*)
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Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) nx, kfc, c

! Read in the orders
Read (nin,*) mr(1:7)

! Calculate NPAR and various array sizes
npar = mr(1) + mr(3) + mr(4) + mr(6)
nppc = npar + kfc
ldcm = nppc
pp = mr(1) + mr(4)*mr(7)
qp = mr(3) + mr(6)*mr(7)
ires = 15*qp + 11*nx + 13*nppc + 8*pp + 12 + 2*(qp+nppc)**2

Allocate (par(npar),x(nx),sd(nppc),cm(ldcm,nppc),st(nx),v(ires))

! Read in data
Read (nin,*) x(1:nx)

! Read in initial values
Read (nin,*) par(1:npar)

! Read in control parameters
Read (nin,*) kpiv, nit

! Set the advisory channel to NOUT for monitoring information
If (kpiv/=0) Then

nadv = nout
Call x04abf(iset,nadv)

End If

! Fit ARIMA model
ifail = -1
Call g13aff(mr,par,npar,c,kfc,x,nx,s,ndf,sd,nppc,cm,ldcm,st,nst,kpiv, &

nit,itc,isf,v,ires,n,ifail)
If (ifail/=0) Then

If (ifail/=9) Then
Go To 100

End If
End If

! Read in parameters for G13ASF
Read (nin,*) m, ishow

ldrcm = m
liw = max(mr(1),mr(3),mr(4),mr(6))
lwork = npar*(n+npar+1) + liw*max(mr(7),1) + m
Allocate (r(m),rcm(ldrcm,m),iw(liw),work(lwork))

! Set the advisory channel to NOUT for monitoring information
! if it has not been set previously

If (ishow/=0 .And. kpiv==0) Then
nadv = nout
Call x04abf(iset,nadv)

End If

! Perform diagnostic checks
ifail = 0
Call g13asf(n,v,mr,m,par,npar,ishow,r,rcm,ldrcm,chi,idf,siglev,iw,liw, &

work,lwork,ifail)

100 Continue

End Program g13asfe
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10.2 Program Data

G13ASF Example Program Data
30 1 0.0 : NX,KFC,C
1 1 2 0 0 0 0 : MR
-217.0 -177.0 -166.0 -136.0 -110.0 -95.0 -64.0 -37.0
-14.0 -25.0 -51.0 -62.0 -73.0 -88.0 -113.0 -120.0
-83.0 -33.0 -19.0 21.0 17.0 44.0 44.0 78.0
88.0 122.0 126.0 114.0 85.0 64.0 : End of X

0.0 0.0 0.0 : PAR (initial values)
0 50 : KPIV,NIT
10 1 : M,ISHOW

10.3 Program Results

G13ASF Example Program Results

RESIDUAL AUTOCORRELATION FUNCTION
---------------------------------

LAG K 1 2 3 4 5 6 7
R(K) 0.020 -0.040 -0.019 0.068 -0.143 -0.046 -0.205
ST.ERROR 0.007 0.125 0.128 0.150 0.168 0.168 0.178
---------------------------------------------------------
LAG K 8 9 10
R(K) -0.108 -0.001 -0.058
ST.ERROR 0.179 0.181 0.183
---------------------------------------------------------

BOX - LJUNG PORTMANTEAU STATISTIC = 3.465
SIGNIFICANCE LEVEL = 0.839

(BASED ON 7 DEGREES OF FREEDOM)

VALUE OF IFAIL PARAMETER ON EXIT FROM G13ASF = 0
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NAG Library Routine Document

G13AUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13AUF calculates the range (or standard deviation) and the mean for groups of successive time series
values. It is intended for use in the construction of range-mean plots.

2 Specification

SUBROUTINE G13AUF (N, Z, M, NGRPS, RS, Y, MEAN, IFAIL)

INTEGER N, M, NGRPS, IFAIL
REAL (KIND=nag_wp) Z(N), Y(NGRPS), MEAN(NGRPS)
CHARACTER(1) RS

3 Description

Let Z1; Z2; . . . ; Zn denote n successive observations in a time series. The series may be divided into
groups of m successive values and for each group the range or standard deviation (depending on a user-
supplied option) and the mean are calculated. If n is not a multiple of m then groups of equal size m
are found starting from the end of the series of observations provided, and any remaining observations
at the start of the series are ignored. The number of groups used, k, is the integer part of n=m. If you
wish to ensure that no observations are ignored then the number of observations, n, should be chosen so
that n is divisible by m.

The mean, Mi, the range, Ri, and the standard deviation, Si, for the ith group are defined as

Mi ¼ 1
m

Xm
j¼1

Zlþm i�1ð Þþj

Ri ¼ max 1�j�m Zlþm i�1ð Þþj
� 

�min 1�j�m Zlþm i�1ð Þþj
� 

and

Si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m� 1

� �Xm
j¼1

Zlþm i�1ð Þþj �Mi

� �2vuut
where l ¼ n� km, the number of observations ignored.

For seasonal data it is recommended that m should be equal to the seasonal period. For non-seasonal
data the recommended group size is 8.

A plot of range against mean or of standard deviation against mean is useful for finding a
transformation of the series which makes the variance constant. If the plot appears random or the range
(or standard deviation) seems to be constant irrespective of the mean level then this suggests that no
transformation of the time series is called for. On the other hand an approximate linear relationship
between range (or standard deviation) and mean would indicate that a log transformation is appropriate.
Further details may be found in either Jenkins (1979) or McLeod (1982).

You have the choice of whether to use the range or the standard deviation as a measure of variability. If
the group size is small they are both equally good but if the group size is fairly large (e.g., m ¼ 12 for
monthly data) then the range may not be as good an estimate of variability as the standard deviation.
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4 References

Jenkins G M (1979) Practical Experiences with Modelling and Forecasting Time Series GJP
Publications, Lancaster

McLeod G (1982) Box–Jenkins in Practice. 1: Univariate Stochastic and Single Output Transfer
Function/Noise Analysis GJP Publications, Lancaster

5 Arguments

1: N – INTEGER Input

On entry: n, the number of observations in the time series.

Constraint: N � M.

2: ZðNÞ – REAL (KIND=nag_wp) array Input

On entry: ZðtÞ must contain the tth observation Zt , for t ¼ 1; 2; . . . ; n.

3: M – INTEGER Input

On entry: m, the group size.

Constraint: M � 2.

4: NGRPS – INTEGER Input

On entry: k, the number of groups.

Constraint: NGRPS ¼ int N=Mð Þ.

5: RS – CHARACTER(1) Input

On entry: indicates whether ranges or standard deviations are to be calculated.

RS ¼ R
Ranges are calculated.

RS ¼ S
Standard deviations are calculated.

Constraint: RS ¼ R or S .

6: YðNGRPSÞ – REAL (KIND=nag_wp) array Output

On exit: YðiÞ contains the range or standard deviation, as determined by RS, of the ith group of
observations, for i ¼ 1; 2; . . . ; k.

7: MEANðNGRPSÞ – REAL (KIND=nag_wp) array Output

On exit: MEANðiÞ contains the mean of the ith group of observations, for i ¼ 1; 2; . . . ; k.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < M,
or M < 2,
or NGRPS 6¼ integer part of N=M.

IFAIL ¼ 2

On entry, RS is not equal to `R' or `S'.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13AUF is not threaded in any implementation.

9 Further Comments

The time taken by G13AUF is approximately proportional to n.

10 Example

The following program produces the statistics for a range-mean plot for a series of 100 observations
divided into groups of 8.

10.1 Program Text

Program g13aufe

! G13AUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13auf, nag_wp

! .. Implicit None Statement ..
Implicit None
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! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, m, n, ngrps

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: mean(:), y(:), z(:)

! .. Executable Statements ..
Write (nout,*) ’G13AUF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

ngrps = n/m

Allocate (z(n),y(ngrps),mean(ngrps))

! Read in data
Read (nin,*) z(1:n)

! Calculate summary statistics
ifail = 0
Call g13auf(n,z,m,ngrps,’RANGE’,y,mean,ifail)

! Display title
Write (*,*) ’ Mean Range’
Write (*,*) ’ -------------------’
Do i = 1, ngrps

Write (nout,99999) mean(i), y(i)
End Do

99999 Format (2(1X,F10.3))
End Program g13aufe

10.2 Program Data

G13AUF Example Program Data
100 8 : N,M
101.0 82.0 66.0 35.0 31.0

6.0 20.0 90.0 154.0 125.0
85.0 68.0 38.0 23.0 10.0
24.0 83.0 133.0 131.0 118.0
90.0 67.0 60.0 47.0 41.0
21.0 16.0 6.0 4.0 7.0
14.0 34.0 45.0 43.0 49.0
42.0 28.0 10.0 5.0 2.0
0.0 1.0 3.0 12.0 14.0

35.0 47.0 41.0 30.0 24.0
16.0 7.0 4.0 2.0 8.0
13.0 36.0 50.0 62.0 67.0
72.0 48.0 29.0 8.0 13.0
57.0 122.0 139.0 103.0 86.0
63.0 37.0 26.0 11.0 15.0
40.0 62.0 98.0 124.0 96.0
65.0 64.0 54.0 39.0 21.0
7.0 4.0 23.0 53.0 94.0

96.0 77.0 59.0 44.0 47.0
30.0 16.0 7.0 37.0 74.0 : End of X

10.3 Program Results

G13AUF Example Program Results

Mean Range
-------------------
72.375 148.000
70.000 123.000
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43.500 84.000
29.750 45.000
7.625 28.000

26.750 40.000
30.250 65.000
61.000 131.000
47.625 92.000
75.250 85.000
46.875 92.000
39.250 67.000
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NAG Library Routine Document

G13AWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13AWF returns the (augmented) Dickey–Fuller unit root test.

2 Specification

FUNCTION G13AWF (TYPE, P, N, Y, IFAIL)
REAL (KIND=nag_wp) G13AWF

INTEGER TYPE, P, N, IFAIL
REAL (KIND=nag_wp) Y(N)

3 Description

If the root of the characteristic equation for a time series is one then that series is said to have a unit
root. Such series are nonstationary. G13AWF returns one of three types of (augmented) Dickey–Fuller
test statistic: � , �� or �� , used to test for a unit root, a unit root with drift or a unit root with drift and a
deterministic time trend, respectively.

To test whether a time series, yt, for t ¼ 1; 2; . . . ; n, has a unit root, the regression model

ryt ¼ �1yt�1 þ
Xp�1
i¼1
�iryt�i þ �t

is fitted and the test statistic � constructed as

� ¼ �̂1
�11

where r is the difference operator, with ryt ¼ yt � yt�1, and where �̂1 and �11 are the least squares
estimate and associated standard error for �1 respectively.

To test for a unit root with drift the regression model

ryt ¼ �1yt�1 þ
Xp�1
i¼1
�iryt�i þ �þ �t

is fit and the test statistic �� constructed as

�� ¼
�̂1
�11

To test for a unit root with drift and deterministic time trend the regression model

ryt ¼ �1yt�1 þ
Xp�1
i¼1
�iryt�i þ �þ �2tþ �t

is fit and the test statistic �� constructed as

�� ¼
�̂1
�11

The distributions of the three test statistics; � , �� and �� , are nonstandard. An associated probability can
be obtained from G01EWF.
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4 References

Dickey A D (1976) Estimation and hypothesis testing in nonstationary time series PhD Thesis Iowa
State University, Ames, Iowa

Dickey A D and Fuller W A (1979) Distribution of the estimators for autoregressive time series with a
unit root J. Am. Stat. Assoc. 74 366 427–431

5 Arguments

1: TYPE – INTEGER Input

On entry: the type of unit test for which the probability is required.

TYPE ¼ 1
A unit root test will be performed and � returned.

TYPE ¼ 2
A unit root test with drift will be performed and �� returned.

TYPE ¼ 3
A unit root test with drift and deterministic time trend will be performed and �� returned.

Constraint: TYPE ¼ 1, 2 or 3.

2: P – INTEGER Input

On entry: p, the degree of the autoregressive (AR) component of the Dickey–Fuller test statistic.
When p > 1 the test is usually referred to as the augmented Dickey–Fuller test.

Constraint: P > 0.

3: N – INTEGER Input

On entry: n, the length of the time series.

Constraints:

if TYPE ¼ 1, N > 2P;
if TYPE ¼ 2, N > 2Pþ 1;
if TYPE ¼ 3, N > 2Pþ 2.

4: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: y, the time series.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, TYPE ¼ valueh i.
Constraint: TYPE ¼ 1, 2 or 3.

IFAIL ¼ 21

On entry, P ¼ valueh i.
Constraint: P > 0.

IFAIL ¼ 31

On entry, N ¼ valueh i.
Constraint: N > valueh i.

IFAIL ¼ 41

On entry, the design matrix used in the estimation of �1 is not of full rank, this is usually due to
all elements of the series being virtually identical. The returned statistic is therefore not unique
and likely to be meaningless.

IFAIL ¼ 42

�11 ¼ 0, therefore depending on the sign of �̂1, a large positive or negative value has been
returned.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

None.

8 Parallelism and Performance

G13AWF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

In this example a Dickey–Fuller unit root test is applied to a time series related to the rate of the earth's
rotation about its polar axis.

10.1 Program Text

Program g13awfe
! G13AWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g01ewf, g13awf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: pvalue, ts
Integer :: ifail, method, n, nsamp, p, type

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: y(:)
Integer :: state(1)

! .. Executable Statements ..

! .. Executable Statements ..
Write (nout,*) ’G13AWF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size, test type, order of the AR process
Read (nin,*) n, type, p

! Allocate memory
Allocate (y(n))

! Read in the time series
Read (nin,*) y(1:n)

! Calculate the Dickey-Fuller test statistic
ifail = 0
ts = g13awf(type,p,n,y,ifail)

! Get the associated p-value using the look-up method
method = 1
ifail = -1
pvalue = g01ewf(method,type,n,ts,nsamp,state,ifail)

If (ifail==0 .Or. ifail==201) Then
! Display the results

Write (nout,’(A,F6.3)’) ’Dickey-Fuller test statistic = ’, ts
Write (nout,’(A,F6.3)’) ’associated p-value = ’, pvalue

End If

End Program g13awfe

10.2 Program Data

G13AWF Example Program Data
30 1 1 :: N,TYPE,P
-217 -177 -166 -136 -110 -95 -64 -37 -14 -25
-51 -62 -73 -88 -113 -120 -83 -33 -19 21
17 44 44 78 88 122 126 114 85 64 :: End of Y
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10.3 Program Results

G13AWF Example Program Results

Dickey-Fuller test statistic = -2.540
associated p-value = 0.013
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NAG Library Routine Document

G13BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13BAF filters a time series by an ARIMA model.

2 Specification

SUBROUTINE G13BAF (Y, NY, MR, NMR, PAR, NPAR, CY, WA, NWA, B, NB, IFAIL)

INTEGER NY, MR(NMR), NMR, NPAR, NWA, NB, IFAIL
REAL (KIND=nag_wp) Y(NY), PAR(NPAR), CY, WA(NWA), B(NB)

3 Description

From a given series y1; y2; . . . ; yn, a new series b1; b2; . . . ; bn is calculated using a supplied (filtering)
ARIMA model. This model will be one which has previously been fitted to a series xt with residuals at.
The equations defining bt in terms of yt are very similar to those by which at is obtained from xt. The
only dissimilarity is that no constant correction is applied after differencing. This is because the series
yt is generally distinct from the series xt with which the model is associated, though yt may be related
to xt. Whilst it is appropriate to apply the ARIMA model to yt so as to preserve the same relationship
between bt and at as exists between yt and xt, the constant term in the ARIMA model is inappropriate
for yt. The consequence is that bt will not necessarily have zero mean.

The equations are precisely:

wt ¼ rdrD
s yt; ð1Þ

the appropriate differencing of yt; both the seasonal and non-seasonal inverted autoregressive operations
are then applied,

ut ¼ wt � �1wt�s � � � � � �Pwt�s�P ð2Þ
vt ¼ ut � 
1ut�1 � � � � � 
put�p ð3Þ

followed by the inverted moving average operations

zt ¼ vt þ�1zt�s þ � � � þ�Qzt�s�Q ð4Þ
bt ¼ zt þ �1bt�1 þ � � � þ �qbt�q: ð5Þ

Because the filtered series value bt depends on present and past values yt; yt�1; . . . , there is a problem
arising from ignorance of y0; y�1; . . . which particularly affects calculation of the early values
b1; b2; . . . , causing ‘transient errors’. The routine allows two possibilities.

(i) The equations (1), (2) and (3) are applied from successively later time points so that all terms on
their right-hand sides are known, with vt being defined for t ¼ 1þ dþ s�Dþ s� Pð Þ; . . . ; n.
Equations (4) and (5) are then applied over the same range, taking any values on the right-hand
side associated with previous time points to be zero.

This procedure may still however result in unacceptably large transient errors in early values of bt.

(ii) The unknown values y0; y�1; . . . are estimated by backforecasting. This requires that an ARIMA
model distinct from that which has been supplied for filtering, should have been previously fitted to
yt.

For efficiency, you are asked to supply both this ARIMA model for yt and a limited number of
backforecasts which are prefixed to the known values of yt. Within the routine further backforecasts of
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yt, and the series wt, ut, vt in (1), (2) and (3) are then easily calculated, and a set of linear equations
solved for backforecasts of zt; bt for use in (4) and (5) in the case that q þQ > 0.

Even if the best model for yt is not available, a very approximate guess such as

yt ¼ cþ et
or

ryt ¼ et
can help to reduce the transients substantially.

The backforecasts which need to be prefixed to yt are of length Q0y ¼ qy þ sy �Qy, where qy and Qy are
the non-seasonal and seasonal moving average orders and sy the seasonal period for the ARIMA model
of yt. Thus you need not carry out the backforecasting exercise if Q0y ¼ 0. Otherwise, the series
y1; y2; . . . ; yn should be reversed to obtain yn; yn�1; . . . ; y1 and G13AJF should be used to forecast Q0y
values, ŷ0; . . . ; ŷ1�Q0y . The ARIMA model used is that fitted to yt (as a forward series) except that, if
dy þDy is odd, the constant should be changed in sign (to allow, for example, for the fact that a
forward upward trend is a reversed downward trend). The ARIMA model for yt supplied to the filtering
routine must however have the appropriate constant for the forward series.

The series ŷ1�Q0y ; . . . ; ŷ0; y1; . . . ; yn is then supplied to the routine, and a corresponding set of values
returned for bt.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

5 Arguments

1: YðNYÞ – REAL (KIND=nag_wp) array Input

On entry: the Q0y backforecasts, starting with backforecast at time 1�Q0y to backforecast at time
0, followed by the time series starting at time 1, where Q0y ¼ MRð10Þ þMRð13Þ �MRð14Þ. If
there are no backforecasts, either because the ARIMA model for the time series is not known, or
because it is known but has no moving average terms, then the time series starts at the beginning
of Y.

2: NY – INTEGER Input

On entry: the total number of backforecasts and time series data points in array Y.

Constraint: NY � max 1þQ0y;NPAR
� �

.

3: MRðNMRÞ – INTEGER array Input

On entry: the orders vector for the filtering model, followed by the orders vector for the ARIMA
model for the time series if the latter is known. The orders appear in the standard sequence
p; d; q; P ;D;Q; sð Þ as given in the G13 Chapter Introduction. If the ARIMA model for the time
series is supplied, then the routine will assume that the first Q0y values of the array Y are
backforecasts.

Constraints:

the filtering model is restricted in the following ways:

MRð1Þ þMRð3Þ þMRð4Þ þMRð6Þ > 0, i.e., filtering by a model which contains only
differencing terms is not permitted;
MRðkÞ � 0, for k ¼ 1; 2; . . . ; 7;
if MRð7Þ ¼ 0, MRð4Þ þMRð5Þ þMRð6Þ ¼ 0;
if MRð7Þ 6¼ 0, MRð4Þ þMRð5Þ þMRð6Þ 6¼ 0;
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MRð7Þ 6¼ 1.

the ARIMA model for the time series is restricted in the following ways:

MRðkÞ � 0, for k ¼ 8; 9; . . . ; 14;
if MRð14Þ ¼ 0, MRð11Þ þMRð12Þ þMRð13Þ ¼ 0;
if MRð14Þ 6¼ 0, MRð11Þ þMRð12Þ þMRð13Þ 6¼ 0;
MRð14Þ 6¼ 1.

4: NMR – INTEGER Input

On entry: the number of values specified in the array MR. It takes the value 7 if no ARIMA
model for the time series is supplied but otherwise it takes the value 14. Thus NMR acts as an
indicator as to whether backforecasting can be carried out.

Constraint: NMR ¼ 7 or 14.

5: PARðNPARÞ – REAL (KIND=nag_wp) array Input

On entry: the parameters of the filtering model, followed by the parameters of the ARIMA model
for the time series, if supplied. Within each model the parameters are in the standard order of
non-seasonal AR and MA followed by seasonal AR and MA.

6: NPAR – INTEGER Input

On entry: the total number of parameters held in array PAR.

Constraints:

if NMR ¼ 7, NPAR ¼ MRð1Þ þMRð3Þ þMRð4Þ þMRð6Þ;
if NMR ¼ 14, NPAR ¼ MRð1Þ þMRð3Þ þMRð4Þ þMRð6Þ þ
MRð8Þ þMRð10Þ þMRð11Þ þMRð13Þ.

Note: the first constraint (i.e., MRð1Þ þMRð3Þ þMRð4Þ þMRð6Þ > 0) on the orders of the
filtering model, in argument MR, ensures that NPAR > 0.

7: CY – REAL (KIND=nag_wp) Input

On entry: if the ARIMA model is known (i.e., NMR ¼ 14), CY must specify the constant term of
the ARIMA model for the time series. If this model is not known (i.e., NMR ¼ 7), then CY is not
used.

8: WAðNWAÞ – REAL (KIND=nag_wp) array Workspace
9: NWA – INTEGER Input

On entry: the dimension of the array WA as declared in the (sub)program from which G13BAF is
called. Workspace is only required if the ARIMA model for the time series is known.

Constraints:

let K ¼ MRð3Þ þMRð6Þ �MRð7Þ þMRð8Þ þMRð9Þ þ MRð11Þ þMRð12Þð Þ �MRð14Þ,
then

if NMR ¼ 14, NWA � K � K þ 2ð Þ;
if NMR ¼ 7, NWA � 1.

10: BðNBÞ – REAL (KIND=nag_wp) array Output

On exit: the filtered output series. If the ARIMA model for the time series was known, and hence
Q0y backforecasts were supplied in Y, then B contains Q0y ‘filtered’ backforecasts followed by the
filtered series. Otherwise, the filtered series begins at the start of B just as the original series
began at the start of Y. In either case, if the value of the series at time t is held in YðtÞ, then the
filtered value at time t is held in BðtÞ.
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11: NB – INTEGER Input

On entry: the dimension of the array B as declared in the (sub)program from which G13BAF is
called. In addition to holding the returned filtered series, B is also used as an intermediate work
array if the ARIMA model for the time series was known.

Constraints:

if NMR ¼ 14, NB � NYþmax K3; K1 þK2ð Þ;
if NMR ¼ 7, NB � NY.

Where

K1 ¼ MRð1Þ þMRð4Þ �MRð7Þ;
K2 ¼ MRð2Þ þMRð5Þ �MRð7Þ;
K3 ¼ MRð3Þ þMRð6Þ �MRð7Þ.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NMR 6¼ 7 and NMR 6¼ 14.

IFAIL ¼ 2

On entry, the orders vector MR does not satisfy the constraints given in Section 5.

IFAIL ¼ 3

On entry, NPAR is inconsistent with the contents of MR (see Section 5).

IFAIL ¼ 4

On entry, NY is too small to successfully carry out the requested filtering, (see Section 5).

IFAIL ¼ 5

On entry, the work array WA is too small.

IFAIL ¼ 6

On entry, the array B is too small.

IFAIL ¼ 7

The orders vector for the filtering model is invalid.
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IFAIL ¼ 8

The orders vector for the ARIMA model is invalid. (Only occurs if NMR ¼ 14.)

IFAIL ¼ 9

The initial values of the filtered series are indeterminate for the given models.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy and stability are high except when the MA parameters are close to the invertibility boundary.

8 Parallelism and Performance

G13BAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13BAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If an ARIMA model is supplied, a local workspace array of fixed length is allocated internally by
G13BAF. The total size of this array amounts to K integer elements, where K is the expression defined
in the description of the argument WA.

The time taken by G13BAF is approximately proportional to

NY� MRð1Þ þMRð3Þ þMRð4Þ þMRð6Þð Þ;

with an appreciable fixed increase if an ARIMA model is supplied for the time series.

10 Example

This example reads a time series of length 296. It reads the univariate ARIMA 4; 0; 2; 0; 0; 0; 0ð Þ model
and the ARIMA filtering 3; 0; 0; 0; 0; 0; 0ð Þ model for the series. Two initial backforecasts are required
and these are calculated by a call to G13AJF . The backforecasts are inserted at the start of the series
and G13BAF is called to perform the calculations.
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10.1 Program Text

Program g13bafe

! G13BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13ajf, g13baf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: cx, cy, rms
Integer :: i, idd, ifail, ifv, ii, ij, ipar, &

iqxd, ist, iw, nb, nmr, npar, nparx, &
nst, nwa, nx, ny, pp, qp, sy

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), fsd(:), fva(:), par(:), &

parx(:), st(:), w(:), wa(:), x(:), &
y(:)

Integer :: isf(4), mrx(7)
Integer, Allocatable :: mr(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min, mod

! .. Executable Statements ..
Write (nout,*) ’G13BAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nx

! Read univariate ARIMA for series
Read (nin,*) mrx(1:7)
Read (nin,*) cx

! Calculate number of backforecasts required
iqxd = mrx(3) + mrx(6)*mrx(7)
If (iqxd/=0) Then

nmr = 14
Else

nmr = 7
End If

! Back forecasts will be stored in first IQXD elements
! of Y, the series will be stored in last NX elements of
! Y, so calculate start point for the series

sy = iqxd + 1

! Calculate length of series with back forecasts
ny = nx + iqxd

Allocate (y(ny),mr(nmr))

! Read in the series into the end of Y
Read (nin,*) y(sy:ny)

! Get back forecasts if required
If (iqxd/=0) Then

! Calculate number of parameters in ARIMA model
nparx = mrx(1) + mrx(3) + mrx(4) + mrx(6)

ist = mrx(4) + mrx(7) + mrx(2) + mrx(5) + mrx(3) + &
max(mrx(1),mrx(6)*mrx(7))

ifv = max(1,iqxd)
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qp = mrx(6)*mrx(7) + mrx(3)
pp = mrx(4)*mrx(7) + mrx(1)
iw = 6*nx + 5*nparx + qp*(qp+11) + 3*pp + 7
Allocate (parx(nparx),x(nx),st(ist),fva(ifv),fsd(ifv),w(iw))

! Read in initial values
Read (nin,*) parx(1:nparx)

! Reverse series
x(nx:1:-1) = y(sy:ny)

! Possible sign reversal for ARIMA constant
idd = mrx(2) + mrx(5)
If (mod(idd,2)/=0) Then

cx = -cx
End If

! Calculate back forecasts
ifail = 0
Call g13ajf(mrx,parx,nparx,cx,1,x,nx,rms,st,ist,nst,iqxd,fva,fsd,ifv, &

isf,w,iw,ifail)

! Move back forecasts into Y, in reverse order
y(1:iqxd) = fva(iqxd:1:-1)

! Reverse sign for ARIMA constant back again
If (mod(idd,2)/=0) Then

cx = -cx
End If

End If

! Read model by which to filter series
Read (nin,*) mr(1:7)

! Calculate NPAR
ipar = mr(1) + mr(3) + mr(4) + mr(6)
npar = ipar + nparx

Allocate (par(npar))

! Read in initial parameter values
Read (nin,*) par(1:ipar)

If (iqxd/=0) Then
! Move ARIMA series into MR

mr(8:14) = mrx(1:7)

! Move parameters of ARIMA for Y into PAR
par((ipar+1):(ipar+nparx)) = parx(1:nparx)

End If

! Move constant
cy = cx

! Set parameters for call to filter routine G13BAF
If (nmr==14) Then

nwa = mr(3) + mr(6)*mr(7) + mr(8) + mr(9) + (mr(11)+mr(12))*mr(14)
nwa = nwa*(nwa+2)
nb = ny + max(mr(3)+mr(6)*mr(7),mr(1)+mr(2)+(mr(4)+mr(5))*mr(7))

Else
nwa = 1
nb = ny

End If
Allocate (wa(nwa),b(nb))

! Filter series by call to G13BAF
ifail = 0
Call g13baf(y,ny,mr,nmr,par,npar,cy,wa,nwa,b,nb,ifail)

! Display results
If (iqxd/=0) Then
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Write (nout,*) ’ Original Filtered’
Write (nout,*) ’Backforecasts y-series series’
ij = -iqxd
Do i = 1, iqxd

Write (nout,99999) ij, y(i), b(i)
ij = ij + 1

End Do
Write (nout,*)

End If
Write (nout,*) &

’ Filtered Filtered Filtered Filtered’
Write (nout,*) &

’ series series series series’
Do i = iqxd + 1, ny, 4

Write (nout,99998)(ii-iqxd,b(ii),ii=i,min(ny,i+3))
End Do

99999 Format (1X,I8,F17.4,F15.4)
99998 Format (1X,I5,F9.4,I7,F9.4,I7,F9.4,I7,F9.4)

End Program g13bafe

10.2 Program Data

G13BAF Example Program Data
296 :: NX
4 0 2 0 0 0 0 :: MRX
0.000 :: CX
53.8 53.6 53.5 53.5 53.4 53.1 52.7 52.4 52.2 52.0 52.0
52.4 53.0 54.0 54.9 56.0 56.8 56.8 56.4 55.7 55.0 54.3
53.2 52.3 51.6 51.2 50.8 50.5 50.0 49.2 48.4 47.9 47.6
47.5 47.5 47.6 48.1 49.0 50.0 51.1 51.8 51.9 51.7 51.2
50.0 48.3 47.0 45.8 45.6 46.0 46.9 47.8 48.2 48.3 47.9
47.2 47.2 48.1 49.4 50.6 51.5 51.6 51.2 50.5 50.1 49.8
49.6 49.4 49.3 49.2 49.3 49.7 50.3 51.3 52.8 54.4 56.0
56.9 57.5 57.3 56.6 56.0 55.4 55.4 56.4 57.2 58.0 58.4
58.4 58.1 57.7 57.0 56.0 54.7 53.2 52.1 51.6 51.0 50.5
50.4 51.0 51.8 52.4 53.0 53.4 53.6 53.7 53.8 53.8 53.8
53.3 53.0 52.9 53.4 54.6 56.4 58.0 59.4 60.2 60.0 59.4
58.4 57.6 56.9 56.4 56.0 55.7 55.3 55.0 54.4 53.7 52.8
51.6 50.6 49.4 48.8 48.5 48.7 49.2 49.8 50.4 50.7 50.9
50.7 50.5 50.4 50.2 50.4 51.2 52.3 53.2 53.9 54.1 54.0
53.6 53.2 53.0 52.8 52.3 51.9 51.6 51.6 51.4 51.2 50.7
50.0 49.4 49.3 49.7 50.6 51.8 53.0 54.0 55.3 55.9 55.9
54.6 53.5 52.4 52.1 52.3 53.0 53.8 54.6 55.4 55.9 55.9
55.2 54.4 53.7 53.6 53.6 53.2 52.5 52.0 51.4 51.0 50.9
52.4 53.5 55.6 58.0 59.5 60.0 60.4 60.5 60.2 59.7 59.0
57.6 56.4 55.2 54.5 54.1 54.1 54.4 55.5 56.2 57.0 57.3
57.4 57.0 56.4 55.9 55.5 55.3 55.2 55.4 56.0 56.5 57.1
57.3 56.8 55.6 55.0 54.1 54.3 55.3 56.4 57.2 57.8 58.3
58.6 58.8 58.8 58.6 58.0 57.4 57.0 56.4 56.3 56.4 56.4
56.0 55.2 54.0 53.0 52.0 51.6 51.6 51.1 50.4 50.0 50.0
52.0 54.0 55.1 54.5 52.8 51.4 50.8 51.2 52.0 52.8 53.8
54.5 54.9 54.9 54.8 54.4 53.7 53.3 52.8 52.6 52.6 53.0
54.3 56.0 57.0 58.0 58.6 58.5 58.3 57.8 57.3 57.0 :: End of Y
2.420 -2.380 1.160 -0.230 0.310 -0.470 :: PARX
3 0 0 0 0 0 0 :: MR
1.970 -1.370 0.340 :: PAR

10.3 Program Results

G13BAF Example Program Results

Original Filtered
Backforecasts y-series series

-2 49.9807 3.4222
-1 52.6714 3.0809

Filtered Filtered Filtered Filtered
series series series series

1 2.9813 2 2.7803 3 3.7057 4 3.2450
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5 3.0760 6 3.0070 7 3.0610 8 3.1720
9 3.1170 10 3.0360 11 3.2580 12 3.4520

13 3.3320 14 3.6980 15 3.3140 16 3.8070
17 3.3330 18 2.9580 19 3.2800 20 3.0960
21 3.2270 22 3.0830 23 2.6410 24 3.1870
25 2.9910 26 3.1110 27 2.8460 28 3.0240
29 2.7030 30 2.6130 31 2.8060 32 2.9560
33 2.8170 34 2.8950 35 2.8510 36 2.9160
37 3.2530 38 3.3050 39 3.1830 40 3.3760
41 2.9730 42 2.8610 43 3.0490 44 2.8420
45 2.3190 46 2.3660 47 2.9410 48 2.3810
49 3.3420 50 2.9340 51 3.1800 52 2.9230
53 2.6470 54 2.8860 55 2.5310 56 2.6200
57 3.4170 58 3.4940 59 3.2590 60 3.1310
61 3.1420 62 2.6710 63 2.8990 64 2.8180
65 3.2150 66 2.8800 67 2.9610 68 2.8800
69 3.0020 70 2.8930 71 3.1210 72 3.2210
73 3.2040 74 3.5360 75 3.7520 76 3.5630
77 3.7260 78 3.1560 79 3.6310 80 2.9380
81 3.1480 82 3.4490 83 3.1400 84 3.7380
85 4.1200 86 3.1540 87 3.7480 88 3.3280
89 3.3640 90 3.3400 91 3.3950 92 3.0720
93 3.0050 94 2.8520 95 2.7810 96 3.1950
97 3.2490 98 2.6370 99 3.0080 100 3.2410

101 3.5570 102 3.2080 103 3.0880 104 3.3980
105 3.1660 106 3.1960 107 3.2460 108 3.2870
109 3.1590 110 3.2620 111 2.7280 112 3.4130
113 3.2190 114 3.6750 115 3.8550 116 4.0100
117 3.5380 118 3.8440 119 3.4660 120 3.0640
121 3.4780 122 3.1140 123 3.5300 124 3.2400
125 3.3630 126 3.2610 127 3.3020 128 3.1150
129 3.3280 130 2.8730 131 3.0800 132 2.8390
133 2.6570 134 3.0260 135 2.4580 136 3.2600
137 2.8380 138 3.2150 139 3.1140 140 3.1050
141 3.1400 142 2.9100 143 3.1370 144 2.7500
145 3.1160 146 3.0680 147 2.8590 148 3.3840
149 3.5500 150 3.4160 151 3.1770 152 3.3390
153 3.0190 154 3.1780 155 3.0110 156 3.1940
157 3.2680 158 3.0500 159 2.8060 160 3.1850
161 3.0560 162 3.2690 163 2.7940 164 3.0900
165 2.7100 166 2.7890 167 2.9510 168 3.2440
169 3.2570 170 3.4360 171 3.4450 172 3.3780
173 3.3520 174 3.9180 175 2.9190 176 3.1780
177 2.2580 178 3.5150 179 2.8010 180 3.6030
181 3.2610 182 3.5300 183 3.3270 184 3.4420
185 3.5240 186 3.2720 187 3.1110 188 2.8240
189 3.2330 190 3.1500 191 3.5710 192 3.0810
193 2.7820 194 2.9040 195 3.2350 196 2.7970
197 3.1320 198 3.1680 199 4.5210 200 2.6650
201 4.6870 202 3.9470 203 3.2220 204 3.3410
205 3.9950 206 3.4820 207 3.3630 208 3.4550
209 3.2950 210 2.6910 211 3.4600 212 2.9440
213 3.4400 214 3.1830 215 3.4200 216 3.4100
217 4.0550 218 2.9990 219 3.8250 220 3.1340
221 3.5010 222 3.0430 223 3.2660 224 3.3660
225 3.2650 226 3.3720 227 3.2880 228 3.5470
229 3.6840 230 3.3100 231 3.6790 232 3.1780
233 2.9360 234 2.7910 235 3.8020 236 2.6100
237 4.1690 238 3.7460 239 3.4560 240 3.3910
241 3.5820 242 3.6220 243 3.4870 244 3.5770
245 3.4240 246 3.3960 247 3.1220 248 3.4300
249 3.4580 250 3.0280 251 3.7660 252 3.3770
253 3.2470 254 3.0180 255 2.9720 256 2.8000
257 3.2040 258 2.8020 259 3.4100 260 3.1680
261 2.4600 262 2.8810 263 3.1750 264 3.1740
265 4.8640 266 3.0600 267 2.9600 268 2.2530
269 2.5620 270 3.3150 271 3.3480 272 3.5900
273 3.2560 274 3.2320 275 3.6160 276 3.1700
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277 3.2890 278 3.1200 279 3.3300 280 2.9910
281 2.9420 282 3.4070 283 2.8720 284 3.3470
285 3.1920 286 3.4880 287 4.0680 288 3.7550
289 3.0510 290 3.9680 291 3.3900 292 3.1380
293 3.6170 294 3.1700 295 3.4150 296 3.4830
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NAG Library Routine Document

G13BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13BBF filters a time series by a transfer function model.

2 Specification

SUBROUTINE G13BBF (Y, NY, MR, NMR, PAR, NPAR, CY, WA, IWA, B, NB, IFAIL)

INTEGER NY, MR(NMR), NMR, NPAR, IWA, NB, IFAIL
REAL (KIND=nag_wp) Y(NY), PAR(NPAR), CY, WA(IWA), B(NB)

3 Description

From a given series y1; y2; . . . ; yn a new series b1; b2; . . . ; bn is calculated using a supplied (filtering)
transfer function model according to the equation

bt ¼ �1bt�1 þ �2bt�2 þ � � � þ �pbt�p þ !0yt�b � !1yt�b�1 � � � � � !qyt�b�q: ð1Þ

As in the use of G13BAF, large transient errors may arise in the early values of bt due to ignorance of
yt for t < 0, and two possibilities are allowed.

(i) The equation (1) is applied from t ¼ 1þ bþ q; . . . ; n so all terms in yt on the right-hand side of (1)
are known, the unknown set of values bt for t ¼ bþ q; . . . ; bþ q þ 1� p being taken as zero.

(ii) The unknown values of yt for t � 0 are estimated by backforecasting exactly as for G13BAF.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

5 Arguments

1: YðNYÞ – REAL (KIND=nag_wp) array Input

On entry: the Q0y backforecasts starting with backforecast at time 1�Q0y to backforecast at time
0 followed by the time series starting at time 1, where Q0y ¼ MRð6Þ þMRð9Þ �MRð10Þ. If there
are no backforecasts either because the ARIMA model for the time series is not known or
because it is known but has no moving average terms, then the time series starts at the beginning
of Y.

2: NY – INTEGER Input

On entry: the total number of backforecasts and time series data points in array Y.

Constraint: NY � max 1þQ0y;NPAR
� �

.

3: MRðNMRÞ – INTEGER array Input

On entry: the orders vector for the filtering transfer function model followed by the orders vector
for the ARIMA model for the time series if the latter is known. The transfer function model
orders appear in the standard form b; q; pð Þ as given in the G13 Chapter Introduction. Note that if

G13 – Time Series Analysis G13BBF

Mark 26 G13BBF.1



the ARIMA model for the time series is supplied then the routine will assume that the first Q0y
values of the array Y are backforecasts.

Constraints:

the filtering model is restricted in the following way:

MRð1Þ; MRð2Þ; MRð3Þ � 0.

the ARIMA model for the time series is restricted in the following ways:

MRðkÞ � 0, for k ¼ 4; 5; . . . ; 10;
if MRð10Þ ¼ 0, MRð7Þ þMRð8Þ þMRð9Þ ¼ 0;
if MRð10Þ 6¼ 0, MRð7Þ þMRð8Þ þMRð9Þ 6¼ 0;
MRð10Þ 6¼ 1.

4: NMR – INTEGER Input

On entry: the number of values supplied in the array MR. It takes the value 3 if no ARIMA
model for the time series is supplied but otherwise it takes the value 10. Thus NMR acts as an
indicator as to whether backforecasting can be carried out.

Constraint: NMR ¼ 3 or 10.

5: PARðNPARÞ – REAL (KIND=nag_wp) array Input

On entry: the parameters of the filtering transfer function model followed by the parameters of
the ARIMA model for the time series. In the transfer function model the parameters are in the
standard order of MA-like followed by AR-like operator parameters. In the ARIMA model the
parameters are in the standard order of non-seasonal AR and MA followed by seasonal AR and
MA.

6: NPAR – INTEGER Input

On entry: the total number of parameters held in array PAR.

Constraints:

if NMR ¼ 3, NPAR ¼ MRð2Þ þMRð3Þ þ 1;
if NMR ¼ 10, NPAR ¼ MRð2Þ þMRð3Þ þ 1þMRð4Þ þMRð6Þ þMRð7Þ þMRð9Þ.

7: CY – REAL (KIND=nag_wp) Input

On entry: if the ARIMA model is known (i.e., NMR ¼ 10), CY must specify the constant term of
the ARIMA model for the time series. If this model is not known (i.e., NMR ¼ 3) then CY is not
used.

8: WAðIWAÞ – REAL (KIND=nag_wp) array Workspace
9: IWA – INTEGER Input

On entry: the dimension of the array WA as declared in the (sub)program from which G13BBF is
called.

Constraints:

let K ¼ MRð3Þ þMRð4Þ þMRð5Þ þ MRð7Þ þMRð8Þð Þ �MRð10Þ,
then

if NMR ¼ 3, IWA � MRð1Þ þ NPAR;
if NMR ¼ 10, IWA � MRð1Þ þ NPAR þK � K þ 2ð Þ.

10: BðNBÞ – REAL (KIND=nag_wp) array Output

On exit: the filtered output series. If the ARIMA model for the time series was known, and hence
Q0y backforecasts were supplied in Y, then B contains Q0y ‘filtered’ backforecasts followed by the
filtered series. Otherwise, the filtered series begins at the start of B just as the original series
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began at the start of Y. In either case, if the value of the series at time t is held in YðtÞ, then the
filtered value at time t is held in BðtÞ.

11: NB – INTEGER Input

On entry: the dimension of the array B as declared in the (sub)program from which G13BBF is
called.

In addition to holding the returned filtered series, B is also used as an intermediate work array if
the ARIMA model for the time series is known.

Constraints:

if NMR ¼ 3, NB � NY;
if NMR ¼ 10, NB � NYþmax MRð1Þ þMRð2Þ;MRð3Þð Þ.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NMR 6¼ 3 and NMR 6¼ 10,
or MRðiÞ < 0, for i ¼ 1; 2; . . . ;NMR,
or NMR ¼ 10 and MRð10Þ ¼ 1,
or NMR ¼ 10 and MRð10Þ ¼ 0 and MRð7Þ þMRð8Þ þMRð9Þ 6¼ 0,
or NMR ¼ 10 and MRð10Þ 6¼ 0, and MRð7Þ þMRð8Þ þMRð9Þ ¼ 0,
or NPAR is inconsistent with the contents of MR,
or WA is too small,
or B is too small.

IFAIL ¼ 2

A supplied model has parameter values which have failed the validity test.

IFAIL ¼ 3

The supplied time series is too short to carry out the requested filtering successfully.

IFAIL ¼ 4

This only occurs when an ARIMA model for the time series has been supplied. The matrix which
is used to solve for the starting values for MA filtering is singular.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy and stability are high except when the AR-like parameters are close to the invertibility
boundary. All calculations are performed in basic precision except for one inner product type
calculation which on machines of low precision is performed in additional precision.

8 Parallelism and Performance

G13BBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13BBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If an ARIMA model is supplied, a local workspace array of fixed length is allocated internally by
G13BBF. The total size of this array amounts to K integer elements, where K is the expression defined
in the description of the argument WA.

The time taken by G13BBF is roughly proportional to the product of the length of the series and
number of parameters in the filtering model with appreciable increase if an ARIMA model is supplied
for the time series.

10 Example

This example reads a time series of length 296. It reads one univariate ARIMA 1; 1; 0; 0; 1; 1; 12ð Þ
model for the series and the 0; 13; 12ð Þ filtering transfer function model. 12 initial backforecasts are
required and these are calculated by a call to G13AJF . The backforecasts are inserted at the start of the
series and G13BBF is called to perform the filtering.

10.1 Program Text

Program g13bbfe

! G13BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13ajf, g13bbf, nag_wp

G13BBF NAG Library Manual

G13BBF.4 Mark 26



! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: cx, cy, rms
Integer :: i, idd, ifail, ifv, ii, ij, ipar, &

iqxd, ist, iw, iwa, nb, nmr, npar, &
nparx, nst, nx, ny, pp, qp, sy

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), fsd(:), fva(:), par(:), &

parx(:), st(:), w(:), wa(:), x(:), &
y(:)

Integer :: isf(4), mrx(7)
Integer, Allocatable :: mr(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min, mod

! .. Executable Statements ..
Write (nout,*) ’G13BBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) nx

! Read univariate ARIMA for series
Read (nin,*) mrx(1:7)
Read (nin,*) cx

! Calculate number of backforecasts required
iqxd = mrx(3) + mrx(6)*mrx(7)
If (iqxd/=0) Then

nmr = 10
Else

nmr = 3
End If

! Back forecasts will be stored in first IQXD elements
! of Y, the series will be stored in last NX elements of
! Y, so calculate start point for the series

sy = iqxd + 1

! Calculate length of series with back forecasts
ny = nx + iqxd

Allocate (y(ny),mr(nmr))

! Read in series
Read (nin,*) y(sy:ny)

! Get back forecasts if required
If (iqxd/=0) Then

! Calculate number of parameters in ARIMA model
nparx = mrx(1) + mrx(3) + mrx(4) + mrx(6)

ist = mrx(4) + mrx(7) + mrx(2) + mrx(5) + mrx(3) + &
max(mrx(1),mrx(6)*mrx(7))

ifv = max(1,iqxd)
qp = mrx(6)*mrx(7) + mrx(3)
pp = mrx(4)*mrx(7) + mrx(1)
iw = 6*nx + 5*nparx + qp*(qp+11) + 3*pp + 7
Allocate (parx(nparx),x(nx),st(ist),fva(ifv),fsd(ifv),w(iw))

! Read in initial values
Read (nin,*) parx(1:nparx)

! Reverse series
x(nx:1:-1) = y(sy:ny)
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! Possible sign reversal for ARIMA constant
idd = mrx(2) + mrx(5)
If (mod(idd,2)/=0) Then

cx = -cx
End If

! Calculate back forecasts
ifail = 0
Call g13ajf(mrx,parx,nparx,cx,0,x,nx,rms,st,ist,nst,iqxd,fva,fsd,ifv, &

isf,w,iw,ifail)

! Move back forecasts into Y, in reverse order
y(1:iqxd) = fva(iqxd:1:-1)

! Reverse sign for ARIMA constant back again
If (mod(idd,2)/=0) Then

cx = -cx
End If

End If

! Read model by which to filter series
Read (nin,*) mr(1:3)

! Calculate NPAR
ipar = mr(2) + mr(3) + 1
npar = ipar + nparx

Allocate (par(npar))

! Read in initial parameter values
Read (nin,*) par(1:ipar)

If (iqxd/=0) Then
! Move ARIMA for series into MR

mr(4:10) = mrx(1:7)

! Move parameters of ARIMA for Y into PAR
par((ipar+1):(ipar+nparx)) = parx(1:nparx)

End If

! Move constant
cy = cx

! Set parameters for call to filter routine G13BBF
If (nmr==10) Then

iwa = mr(3) + mr(4) + mr(5) + (mr(7)+mr(8))*mr(10)
iwa = npar + iwa*(iwa+2)
nb = ny + max(mr(1)+mr(2),mr(3))

Else
iwa = mr(1) + npar
nb = ny

End If

Allocate (wa(iwa),b(nb))

! Filter series by call to G13BBF
ifail = 0
Call g13bbf(y,ny,mr,nmr,par,npar,cy,wa,iwa,b,nb,ifail)

! Display results
If (iqxd/=0) Then

Write (nout,*) ’ Original Filtered’
Write (nout,*) ’ Backforecasts y-series series’
ij = -iqxd
Do i = 1, iqxd

Write (nout,99999) ij, y(i), b(i)
ij = ij + 1

End Do
Write (nout,*)

End If
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Write (nout,*) &
’ Filtered Filtered Filtered Filtered’

Write (nout,*) &
’ series series series series’

Do i = iqxd + 1, ny, 4
Write (nout,99998)(ii-iqxd,b(ii),ii=i,min(ny,i+3))

End Do

99999 Format (1X,I8,F17.1,F16.1)
99998 Format (1X,I5,F10.1,I6,F10.1,I6,F10.1,I6,F10.1)

End Program g13bbfe

10.2 Program Data

G13BBF Example Program Data
158 :: NX
1 1 0 0 1 1 12 :: MRX
0.000 :: CX

5312.0 5402.0 4960.0 4717.0 4383.0 3828.0 3665.0 3718.0
3744.0 3994.0 4150.0 4064.0 4324.0 4256.0 3986.0 3670.0
3292.0 2952.0 2765.0 2813.0 2850.0 3085.0 3256.0 3213.0
3514.0 3386.0 3205.0 3124.0 2804.0 2536.0 2445.0 2649.0
2761.0 3183.0 3456.0 3529.0 4067.0 4079.0 4082.0 4029.0
3887.0 3684.0 3707.0 3923.0 4068.0 4557.0 4975.0 5197.0
6054.0 6471.0 6277.0 5529.0 5059.0 4539.0 4236.0 4305.0
4299.0 4478.0 4561.0 4470.0 4712.0 4512.0 4129.0 3942.0
3572.0 3149.0 3026.0 3141.0 3145.0 3322.0 3384.0 3373.0
3630.0 3555.0 3413.0 3127.0 2966.0 2685.0 2642.0 2789.0
2867.0 3032.0 3125.0 3176.0 3359.0 3265.0 3053.0 2915.0
2690.0 2518.0 2523.0 2737.0 3074.0 3671.0 4355.0 4648.0
5232.0 5349.0 5228.0 5172.0 4932.0 4637.0 4642.0 4930.0
5033.0 5223.0 5482.0 5560.0 5960.0 5929.0 5697.0 5583.0
5316.0 5039.0 4972.0 5169.0 5138.0 5316.0 5409.0 5375.0
5803.0 5736.0 5643.0 5416.0 5059.0 4810.0 4937.0 5166.0
5187.0 5348.0 5483.0 5626.0 6077.0 6033.0 5996.0 5860.0
5499.0 5210.0 5421.0 5609.0 5586.0 3663.0 5829.0 6005.0
6693.0 6792.0 6966.0 7227.0 7089.0 6823.0 7286.0 7621.0
7758.0 8000.0 8393.0 8592.0 9186.0 9175.0 :: End of Y
0.620 0.820 :: PARX
0 13 12 :: MR
1.0131 0.0806 -0.0150 -0.0150 -0.0150 -0.0150

-0.0150 -0.0150 -0.0150 -0.0150 -0.0150 -0.0150
0.9981 -0.0956 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.8200 :: End of PAR

10.3 Program Results

G13BBF Example Program Results

Original Filtered
Backforecasts y-series series

-12 5159.0 4549.2
-11 5165.9 4550.9
-10 4947.5 4552.8
-9 4729.8 4554.9
-8 4424.5 4557.4
-7 4072.5 4560.7
-6 3995.5 4565.0
-5 4142.7 4571.1
-4 4219.7 4580.0
-3 4452.1 4593.5
-2 4758.0 4614.3
-1 4834.6 4647.1

Filtered Filtered Filtered Filtered
series series series series

1 4699.2 2 4782.2 3 4552.8 4 4550.4
5 4525.7 6 4324.8 7 4256.9 8 4169.7
9 4127.9 10 4154.6 11 4011.3 12 3878.7
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13 3705.1 14 3619.1 15 3603.1 16 3496.1
17 3422.6 18 3463.5 19 3349.8 20 3262.1
21 3225.9 22 3218.1 23 3103.6 24 3023.5
25 2905.9 26 2758.5 27 2828.2 28 2958.4
29 2926.2 30 3019.8 31 3010.7 32 3082.8
33 3111.7 34 3286.3 35 3279.3 36 3324.4
37 3461.7 38 3468.3 39 3709.0 40 3839.6
41 4004.4 42 4146.3 43 4265.3 44 4344.6
45 4419.8 46 4647.2 47 4802.6 48 4999.5
49 5446.0 50 5861.0 51 5855.9 52 5310.7
53 5202.5 54 5046.6 55 4857.1 56 4812.3
57 4740.7 58 4631.1 59 4447.5 60 4317.7
61 4079.8 62 3833.7 63 3667.7 64 3774.8
65 3709.9 66 3648.5 67 3645.3 68 3619.8
69 3549.4 70 3439.2 71 3250.3 72 3209.2
73 3005.2 74 2912.4 75 2994.1 76 2947.9
77 3103.7 78 3168.1 79 3226.0 80 3224.1
81 3233.0 82 3119.2 83 2992.5 84 3014.8
85 2763.7 86 2671.3 87 2664.9 88 2778.2
89 2823.8 90 2989.0 91 3072.2 92 3132.1
93 3394.6 94 3717.4 95 4180.5 96 4405.9
97 4605.2 98 4733.0 99 4830.9 100 5030.8

101 5079.0 102 5125.0 103 5236.7 104 5392.7
105 5396.7 106 5300.7 107 5312.1 108 5336.6
109 5347.9 110 5331.2 111 5322.0 112 5444.8
113 5468.7 114 5532.9 115 5555.9 116 5603.4
117 5483.2 118 5406.8 119 5250.5 120 5171.9
121 5217.4 122 5162.3 123 5296.1 124 5268.2
125 5204.9 126 5290.7 127 5500.0 128 5552.3
129 5503.3 130 5419.2 131 5335.6 132 5447.6
133 5495.1 134 5475.1 135 5643.8 136 5713.1
137 5655.1 138 5691.9 139 5958.4 140 5959.0
141 5884.8 142 3714.7 143 5877.8 144 5814.1
145 6095.6 146 6210.7 147 6560.5 148 7013.9
149 7174.8 150 7230.8 151 7726.7 152 7880.0
153 7997.4 154 8428.5 155 8264.1 156 8443.1
157 8615.4 158 8644.6
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NAG Library Routine Document

G13BCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13BCF calculates cross-correlations between two time series.

2 Specification

SUBROUTINE G13BCF (X, Y, NXY, NL, S, R0, R, STAT, IFAIL)

INTEGER NXY, NL, IFAIL
REAL (KIND=nag_wp) X(NXY), Y(NXY), S, R0, R(NL), STAT

3 Description

Given two series x1; x2; . . . ; xn and y1; y2; . . . ; yn the routine calculates the cross-correlations between
xt and lagged values of yt:

rxy lð Þ ¼

Xn�l
t¼1

xt � �xð Þ ytþl � �yð Þ

nsxsy
; l ¼ 0; 1; . . . ; L

where

�x ¼

Xn
t¼1
xt

n

s2x ¼

Xn
t¼1

xt � �xð Þ2

n

and similarly for y.

The ratio of standard deviations sy=sx is also returned, and a portmanteau statistic is calculated:

STAT ¼ n
XL
l¼1
rxy lð Þ2:

Provided n is large, L much less than n, and both xt; yt are samples of series whose true autocorrelation
functions are zero, then, under the null hypothesis that the true cross-correlations between the series are
zero, STAT has a �2-distribution with L degrees of freedom. Values of STAT in the upper tail of this
distribution provide evidence against the null hypothesis.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

5 Arguments

1: XðNXYÞ – REAL (KIND=nag_wp) array Input

On entry: the n values of the x series.
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2: YðNXYÞ – REAL (KIND=nag_wp) array Input

On entry: the n values of the y series.

3: NXY – INTEGER Input

On entry: n, the length of the time series.

Constraint: NXY � 2.

4: NL – INTEGER Input

On entry: L, the maximum lag for calculating cross-correlations.

Constraint: 1 � NL < NXY.

5: S – REAL (KIND=nag_wp) Output

On exit: the ratio of the standard deviation of the y series to the standard deviation of the x
series, sy=sx.

6: R0 – REAL (KIND=nag_wp) Output

On exit: the cross-correlation between the x and y series at lag zero.

7: RðNLÞ – REAL (KIND=nag_wp) array Output

On exit: RðlÞ contains the cross-correlations between the x and y series at lags L, rxy lð Þ, for
l ¼ 1; 2; . . . ; L.

8: STAT – REAL (KIND=nag_wp) Output

On exit: the statistic for testing for absence of cross-correlation.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NXY � 1,
or NL < 1,
or NL � NXY.

IFAIL ¼ 2

One or both of the x and y series have zero variance and hence cross-correlations cannot be
calculated.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All computations are believed to be stable.

8 Parallelism and Performance

G13BCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13BCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If n < 100, or L < 10log nð Þ then the autocorrelations are calculated directly and the time taken by
G13BCF is approximately proportional to nL, otherwise the autocorrelations are calculated by utilizing
fast Fourier transforms (FFTs) and the time taken is approximately proportional to nlog nð Þ. If FFTs are
used then G13BCF internally allocates approximately 6n real elements.

10 Example

This example reads two time series of length 20. It calculates and prints the cross-correlations up to lag
15 for the first series leading the second series and then for the second series leading the first series.

10.1 Program Text

Program g13bcfe

! G13BCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13bcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r0xy, r0yx, statxy, statyx, sxy, syx
Integer :: i, ifail, nl, nxy
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rxy(:), ryx(:), x(:), y(:)

! .. Executable Statements ..
Write (nout,*) ’G13BCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read series length and number of lags
Read (nin,*) nxy, nl

Allocate (x(nxy),y(nxy),rxy(nl),ryx(nl))

! Read series
Read (nin,*) x(1:nxy)
Read (nin,*) y(1:nxy)

! Call routine to calculate cross correlations between X and Y
ifail = 0
Call g13bcf(x,y,nxy,nl,sxy,r0xy,rxy,statxy,ifail)

! Call routine to calculate cross correlations between Y and X
ifail = 0
Call g13bcf(y,x,nxy,nl,syx,r0yx,ryx,statyx,ifail)

! Display results
Write (nout,*) ’ Between Between’
Write (nout,*) ’ X and Y Y and X’
Write (nout,*)
Write (nout,99999) ’Standard deviation ratio’, sxy, syx
Write (nout,*)
Write (nout,*) ’Cross correlation at lag’
Write (nout,99999) ’ 0’, r0xy, r0yx
Write (nout,99998)(i,rxy(i),ryx(i),i=1,nl)
Write (nout,*)
Write (nout,99997) ’Test statistic ’, statxy, statyx

99999 Format (1X,A,F10.4,F15.4)
99998 Format (21X,I4,F10.4,F15.4)
99997 Format (1X,A,F10.4,F15.4)

End Program g13bcfe

10.2 Program Data

G13BCF Example Program Data
20 15

0.02 0.05 0.08 0.03 -0.05 0.11 -0.01 -0.08 -0.08 -0.11
-0.18 -0.19 -0.09 0.03 0.10 0.15 -0.14 0.07 0.09 0.16
3.18 3.21 3.26 3.25 3.08 3.01 3.06 3.17 3.12 3.04
3.26 3.45 3.33 3.70 3.31 3.81 3.33 2.96 3.28 3.10

10.3 Program Results

G13BCF Example Program Results

Between Between
X and Y Y and X

Standard deviation ratio 2.0053 0.4987

Cross correlation at lag
0 0.0568 0.0568
1 0.0438 -0.0151
2 -0.3762 0.3955
3 -0.4864 0.3417
4 -0.6294 0.5486
5 -0.3871 0.2291
6 -0.1690 0.3190
7 -0.0678 0.1980
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8 0.0962 0.0438
9 0.0788 -0.1428

10 0.2910 -0.1376
11 0.0950 -0.0387
12 0.0547 -0.0380
13 0.1855 -0.1551
14 0.0243 -0.1536
15 0.0034 -0.0696

Test statistic 22.1269 17.2917
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NAG Library Routine Document

G13BDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13BDF calculates preliminary estimates of the parameters of a transfer function model.

2 Specification

SUBROUTINE G13BDF (R0, R, NL, NNA, S, NWDS, WA, IWA, WDS, ISF, IFAIL)

INTEGER NL, NNA(3), NWDS, IWA, ISF(2), IFAIL
REAL (KIND=nag_wp) R0, R(NL), S, WA(IWA), WDS(NWDS)

3 Description

G13BDF calculates estimates of parameters �1; �2; . . . ; �p, !0; !1; . . . ; !q in the transfer function model

yt ¼ �1yt�1 þ �2yt�2 þ � � � þ �pyt�p þ !0xt�b � !1xt�b�1 � � � � � !qxt�b�q
given cross-correlations between the series xt and lagged values of yt:

rxy lð Þ; l ¼ 0; 1; . . . ; L

and the ratio of standard deviations sy=sx, as supplied by G13BCF.

It is assumed that the series xt used to calculate the cross-correlations is a sample from a time series
with true autocorrelations of zero. Otherwise the cross-correlations between the series bt and at, as
defined in the description of G13BAF, should be used in place of those between yt and xt.

The estimates are obtained by solving for �1; �2; . . . ; �p the equations

rxy bþ q þ jð Þ ¼ �1rxy bþ q þ j� 1ð Þ þ � � � þ �prxy bþ q þ j� pð Þ; j ¼ 1; 2; . . . ; p

then calculating

!i ¼ 
 sy=sx
� �

rxy bþ ið Þ � �1rxy bþ i� 1ð Þ � � � � � �prxy bþ i� pð Þ
� �

; i ¼ 0; 1; . . . ; q

where the ‘þ’ is used for !0 and ‘�’ for !i, i > 0.

Any value of rxy lð Þ arising in these equations for l < b is taken as zero. The parameters �1; �2; . . . ; �p are
checked as to whether they satisfy the stability criterion.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

5 Arguments

1: R0 – REAL (KIND=nag_wp) Input

On entry: the cross-correlation between the two series at lag 0, rxy 0ð Þ.
Constraint: �1:0 � R0 � 1:0.

G13 – Time Series Analysis G13BDF

Mark 26 G13BDF.1



2: RðNLÞ – REAL (KIND=nag_wp) array Input

On entry: the cross-correlations between the two series at lags 1 to L, rxy lð Þ, for l ¼ 1; 2; . . . ; L.

Constraint: �1:0 � RðiÞ � 1:0, for i ¼ 1; 2; . . . ;NL.

3: NL – INTEGER Input

On entry: L, the number of lagged cross-correlations in the array R.

Constraint: NL � max NNAð1Þ þ NNAð2Þ þ NNAð3Þ; 1ð Þ.

4: NNAð3Þ – INTEGER array Input

On entry: the transfer function model orders in the standard form b; q; p (i.e., delay time, number
of moving-average MA-like followed by number of autoregressive AR-like parameters).

Constraint: NNAðiÞ � 0, for i ¼ 1; 2; 3.

5: S – REAL (KIND=nag_wp) Input

On entry: the ratio of the standard deviation of the y series to that of the x series, sy=sx.

Constraint: S > 0:0.

6: NWDS – INTEGER Input

On entry: the exact number of parameters in the transfer function model.

Constraint: NWDS ¼ NNAð2Þ þ NNAð3Þ þ 1.

7: WAðIWAÞ – REAL (KIND=nag_wp) array Workspace
8: IWA – INTEGER Input

On entry: the dimension of the array WA as declared in the (sub)program from which G13BDF is
called.

Constraint: IWA � NNAð3Þ � NNAð3Þ þ 1ð Þ.

9: WDSðNWDSÞ – REAL (KIND=nag_wp) array Output

On exit: the preliminary estimates of the parameters of the transfer function model in the order of
q þ 1 MA-like parameters followed by the p AR-like parameters. If the estimation of either type
of parameter fails then these arguments are set to 0:0.

10: ISFð2Þ – INTEGER array Output

On exit: indicators of the success of the estimation of MA-like and AR-like parameters
respectively. A value 0 indicates that there are no parameters of that type to be estimated. A value
of 1 or �1 indicates that there are parameters of that type in the model and the estimation of that
type has been successful or unsuccessful respectively. Note that there is always at least one MA-
like parameter in the model.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NNAðiÞ < 0, for i ¼ 1; 2; 3,
or NL < max NNAð1Þ þ NNAð2Þ þ NNAð3Þ; 1ð Þ,
or R0 < �1:0 or R0 > 1:0,
or RðiÞ < �1:0 or RðiÞ > 1:0, for some i ¼ 1; 2; . . . ;NL,
or S � 0:0,
or NWDS 6¼ NNAð2Þ þ NNAð3Þ þ 1,
or IWA < NNAð3Þ � NNAð3Þ þ 1ð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Equations used in the computations may become unstable, in which case results are reset to zero with
array ISF values set accordingly.

8 Parallelism and Performance

G13BDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13BDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If NNAð3Þ > 0,a local workspace array of fixed length is allocated internally by G13BDF. The total size
of this array amounts to NNAð3Þ integer elements and NNAð3Þ � NNAð3Þ þ 1ð Þ real elements.

The time taken by G13BDF is roughly proportional to NWDS3.
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10 Example

This example reads the cross-correlations between two series at lags 0 to 6. It then reads a 3; 2; 1ð Þ
transfer function model and calculates and prints the preliminary estimates of the parameters of the
model.

10.1 Program Text

Program g13bdfe

! G13BDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13bdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r0, s
Integer :: ifail, iwa, nl, nwds

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:), wa(:), wds(:)
Integer :: isf(2), nna(3)

! .. Executable Statements ..
Write (nout,*) ’G13BDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size and cross-correlation at lag 0
Read (nin,*) nl, r0

Allocate (r(nl))

! Read in rest of cross-correlations
Read (nin,*) r(1:nl)

! Read in transfer function model orders
Read (nin,*) nna(1:3)

! Read in standard deviation ratio
Read (nin,*) s

nwds = nna(2) + nna(3) + 1
iwa = nna(3)*(nna(3)+1)
Allocate (wa(iwa),wds(nwds))

! Calculate parameter estimates
ifail = 0
Call g13bdf(r0,r,nl,nna,s,nwds,wa,iwa,wds,isf,ifail)

! Display results
Write (nout,99999) ’Success/failure indicator’, isf(1), isf(2)
Write (nout,*)
Write (nout,99999) ’Transfer function model B, Q, P =’, nna(1:3)
Write (nout,*)
Write (nout,*) ’Parameter initial estimates’
Write (nout,99998) wds(1:nwds)

99999 Format (1X,A,3I4)
99998 Format (1X,4F10.4)

End Program g13bdfe

G13BDF NAG Library Manual

G13BDF.4 Mark 26



10.2 Program Data

G13BDF Example Program Data
6 -0.0155 :: NL,R0

0.0339 -0.0374 -0.2895 -0.3430 -0.4518 -0.2787 :: R
3 2 1 :: NNA

1.9256 :: S

10.3 Program Results

G13BDF Example Program Results

Success/failure indicator 1 1

Transfer function model B, Q, P = 3 2 1

Parameter initial estimates
-0.5575 0.3166 0.4626 0.6169
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NAG Library Routine Document

G13BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13BEF fits a multi-input model relating one output series to the input series with a choice of three
different estimation criteria: nonlinear least squares, exact likelihood and marginal likelihood. When no
input series are present, G13BEF fits a univariate ARIMA model.

2 Specification

SUBROUTINE G13BEF (MR, NSER, MT, PARA, NPARA, KFC, NXXY, XXY, LDXXY,
KEF, NIT, KZSP, ZSP, ITC, SD, CM, LDCM, S, D, NDF,
KZEF, RES, STTF, ISTTF, NSTTF, WA, IWA, MWA, IMWA,
KPRIV, IFAIL)

&
&
&

INTEGER MR(7), NSER, MT(4,NSER), NPARA, KFC, NXXY, LDXXY,
KEF, NIT, KZSP, ITC, LDCM, NDF, KZEF, ISTTF, NSTTF,
IWA, MWA(IMWA), IMWA, KPRIV, IFAIL

&
&

REAL (KIND=nag_wp) PARA(NPARA), XXY(LDXXY,NSER), ZSP(4), SD(NPARA),
CM(LDCM,NPARA), S, D, RES(NXXY), STTF(ISTTF),
WA(IWA)

&
&

3 Description

3.1 The Multi-input Model

The output series yt , for t ¼ 1; 2; . . . ; n, is assumed to be the sum of (unobserved) components zi;t
which are due respectively to the inputs xi;t, for i ¼ 1; 2; . . . ;m.

Thus yt ¼ z1;t þ � � � þ zm;t þ nt where nt is the error, or output noise component.

A typical component zt may be either

(a) a simple regression component, zt ¼ !xt (here xt is called a simple input), or

(b) a transfer function model component which allows for the effect of lagged values of the variable,
related to xt by

zt ¼ �1zt�1 þ �2zt�2 þ � � � þ �pzt�p þ !0xt�b � !1xt�b�1 � � � � � !qxt�b�q:
The noise nt is assumed to follow a (possibly seasonal) ARIMA model, i.e., may be represented in
terms of an uncorrelated series, at, by the hierarchy of equations

(i) rdrD
s nt ¼ cþ wt

(ii) wt ¼ �1wt�s þ �2wt�2�s þ � � � þ �Pwt�P�s þ et ��1et�s ��2et�2�s � � � � ��Qet�Q�s

(iii) et ¼ 
1et�1 þ 
2et�2 þ � � � þ 
pet�p þ at � �1at�1 � �2at�2 � � � � � �qat�q
as outlined in Section 3 in G13AEF.

Note: the orders p; q appearing in each of the transfer function models and the ARIMA model are not
necessarily the same; rdrD

s nt is the result of applying non-seasonal differencing of order d and
seasonal differencing of seasonality s and order D to the series nt: the differenced series is then of
length N ¼ n� d� s�D; the constant term parameter c may optionally be held fixed at its initial
value (usually, but not necessarily zero) rather than being estimated.

For the purpose of defining an estimation criterion it is assumed that the series at is a sequence of
independent Normal variates having mean 0 and variance �2a. An allowance has to be made for the
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effects of unobserved data prior to the observation period. For the noise component an allowance is
always made using a form of backforecasting.

For each transfer function input, you have to decide what values are to be assumed for the pre-period
terms z0; z�1; . . . ; z1�p and x0; x�1; . . . ; x1�b�q which are in theory necessary to re-create the component
series z1; z2; . . . ; zn, during the estimation procedure.

The first choice is to assume that all these values are zero. In this case, in order to avoid undesirable
transient distortion of the early values z1; z2; . . . , you are advised first to correct the input series xt by
subtracting from all the terms a suitable constant to make the early values x1; x2; . . . , close to zero. The
series mean �x is one possibility, but for a series with strong trend the constant might be simply x1.

The second choice is to treat the unknown pre-period terms as nuisance parameters and estimate them
along with the other parameters. This choice should be used with caution. For example, if p ¼ 1 and
b ¼ q ¼ 0, it is equivalent to fitting to the data a decaying geometric curve of the form A�t , for
t ¼ 1; 2; . . ., along with the other inputs, this being the form of the transient. If the output yt contains a
strong trend of this form, which is not otherwise represented in the model, it will have a tendency to
influence the estimate of � away from the value appropriate to the transfer function model.

In most applications the first choice should be adequate, with the option possibly being used as a
refinement at the end of the modelling process. The number of nuisance parameters is then
max p; bþ qð Þ, with a corresponding loss of degrees of freedom in the residuals. If you align the input xt
with the output by using in its place the shifted series xt�b, then setting b ¼ 0 in the transfer function
model, there is some improvement in efficiency. On some occasions when the model contains two or
more inputs, each with estimation of pre-period nuisance parameters, these parameters may be co-linear
and lead to failure of the routine. The option must then be ‘switched off’ for one or more inputs.

3.2 The Estimation Criterion

This is a measure of how well a proposed set of parameters in the transfer function and noise ARIMA
models matches the data. The estimation routine searches for parameter values which minimize this
criterion. For a proposed set of parameter values it is derived by calculating

(i) the components z1;t; z2;t; . . . ; zm;t as the responses to the input series x1;t; x2;t . . . ; xm;t using the
equations (a) or (b) above,

(ii) the discrepancy between the output and the sum of these components, as the noise

nt ¼ yt � z1;t þ z2;t þ � � � þ zm;t
� �

;

(iii) the residual series at from nt by reversing the recursive equations (i), (ii) and (iii) above.

This last step again requires treatment of the effect of unknown pre-period values of nt and other terms
in the equations regenerating at. This is identical to the treatment given in Section 3 in G13AEF, and
leads to a criterion which is a sum of squares function S, of the residuals at. It may be shown that the
finite algorithm presented there is equivalent to taking the infinite set of past values n0; n�1; n�2; . . ., as
(linear) nuisance parameters. There is no loss of degrees of freedom however, because the sum of
squares function S may be expressed as including the corresponding set of past residuals; see page 273
of Box and Jenkins (1976), who prove that

S ¼
Xn
�1

a2t :

The function D ¼ S is the first of the three possible criteria, and is quite adequate for moderate to long
series with no seasonal parameters. The second is the exact likelihood criterion which considers the past
set n0; n�1; n�2 not as simple nuisance parameters, but as unobserved random variables with known
distribution. Calculation of the likelihood of the observed set n1; n2; . . . ; nn requires theoretical
integration over the range of the past set. Fortunately this yields a criterion of the form D ¼M � S
(whose minimization is equivalent to maximizing the exact likelihood of the data), where S is exactly
as before, and the multiplier M is a function calculated from the ARIMA model parameters. The value
of M is always � 1, and M tends to 1 for any fixed parameter set as the sample size n tends to 1.
There is a moderate computational overhead in using this option, but its use avoids appreciable bias in
the ARIMA model parameters and yields a better conditioned estimation problem.
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The third criterion of marginal likelihood treats the coefficients of the simple inputs in a manner
analogous to that given to the past set n0; n�1; n�2; . . . . These coefficients, together with the constant
term c used to represent the mean of wt, are in effect treated as random variables with highly dispersed
distributions. This leads to the criterion D ¼M � S again, but with a different value of M which now
depends on the simple input series values xt. In the presence of a moderate to large number of simple
inputs, the marginal likelihood criterion can counteract bias in the ARIMA model parameters which is
caused by estimation of the simple inputs. This is particularly important in relatively short series.

G13BEF can be used with no input series present, to estimate a univariate ARIMA model for the output
alone. The marginal likelihood criterion is then distinct from exact likelihood only if a constant term is
being estimated in the model, because this is treated as an implicit simple input.

3.3 The Estimation Procedure

This is the minimization of the estimation criterion or objective function D (for deviance). The routine
uses an extension of the algorithm of Marquardt (1963). The step size in the minimization is inversely
related to a parameter �, which is increased or decreased by a factor � at successive iterations,
depending on the progress of the minimization. Convergence is deemed to have occurred if the
fractional reduction of D in successive iterations is less than a value �, while � < 1.

Certain model parameters (in fact all excluding the !s) are subject to stability constraints which are
checked throughout to within a specified tolerance multiple � of machine accuracy. Using the least
squares criterion, the minimization may halt prematurely when some parameters ‘stick’ at a constraint
boundary. This can happen particularly with short seasonal series (with a small number of whole
seasons). It will not happen using the exact likelihood criterion, although convergence to a point on the
boundary may sometimes be rather slow, because the criterion function may be very flat in such a
region. There is also a smaller risk of a premature halt at a constraint boundary when marginal
likelihood is used.

A positive, or zero number of iterations can be specified. In either case, the value D of the objective
function at iteration zero is presented at the initial parameter values, except for estimation of any pre-
period terms for the input series, backforecasts for the noise series, and the coefficients of any simple
inputs, and the constant term (unless this is held fixed).

At any later iteration, the value of D is computed after re-estimation of the backforecasts to their
optimal values, corresponding to the model parameters presented at that iteration. This is not true for
any pre-period terms for the input series which, although they are updated from the previous iteration,
may not be precisely optimal for the parameter values presented, unless convergence of those
parameters has occurred. However, in the case of marginal likelihood being specified, the coefficients of
the simple inputs and the constant term are also re-estimated together with the backforecasts at each
iteration, to values which are optimal for the other parameter values presented.

3.4 Further Results

The residual variance is taken as erv ¼ S

df
, where df ¼ N � (total number of parameters estimated), is

the residual degrees of freedom. The pre-period nuisance parameters for the input series are included in
the reduction of df , as is the constant if it is estimated.

The covariance matrix of the vector of model parameter estimates is given by

erv �H�1

where H is the linearized least squares matrix taken from the final iteration of the algorithm of
Marquardt. From this expression are derived the vector of standard deviations, and the correlation
matrix of parameter estimates. These are approximations which are only valid asymptotically, and must
be treated with great caution when the parameter estimates are close to their constraint boundaries.

The residual series at is available upon completion of the iterations over the range
t ¼ 1þ dþ s�D; . . . ; n corresponding to the differenced noise series wt.
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Because of the algorithm used for backforecasting, these are only true residuals for
t � 1þ q þ s�Q� p� s� P � d� s�D, provided this is positive. Estimation of pre-period terms
for the inputs will also tend to reduce the magnitude of the early residuals, sometimes severely.

The model component series z1;t; . . . ; zm;t and nt may optionally be returned in place of the supplied
series values, in order to assess the effects of the various inputs on the output.

3.5 Forecasting Information

For the purpose of constructing forecasts of the output series at future time points t ¼ nþ 1; nþ 2; . . .
using G13BHF, it is not necessary to use the whole set of observations yt and x1;t ; x2;t ; . . . ; xm;t , for
t ¼ 1; 2; . . . ;m. It is sufficient to retain a limited set of quantities constituting the ‘state set’ as follows:
for each series which appears with lagged subscripts in equations (a), (b), (i), (ii) and (iii) above,
include the values at times nþ 1� k for k ¼ 1 up to the maximum lag associated with that series in the
equations. Note that (i) implicitly includes past values of nt and intermediate differences of nt such as
rd�1rD

s .

If later observations of the series become available, it is possible to update the state set (without re-
estimating the model) using G13BGF. If time series data is supplied with a previously estimated model,
it is possible to construct the state set (and forecasts) using G13BJF.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

Marquardt D W (1963) An algorithm for least squares estimation of nonlinear parameters J. Soc. Indust.
Appl. Math. 11 431

5 Arguments

1: MRð7Þ – INTEGER array Input

On entry: the orders vector p; d; q; P ;D;Q; sð Þ of the ARIMA model for the output noise
component.

p, q, P and Q refer respectively to the number of autoregressive 
ð Þ, moving average �ð Þ,
seasonal autoregressive �ð Þ and seasonal moving average �ð Þ parameters.

d, D and s refer respectively to the order of non-seasonal differencing, the order of seasonal
differencing and the seasonal period.

Constraints:

p, d, q, P , D, Q, s � 0;
pþ q þ P þQ > 0;
s 6¼ 1;
if s ¼ 0, P þDþQ ¼ 0;
if s > 1, P þDþQ > 0;
dþ s� P þDð Þ � n;
pþ d� q þ s� P þD�Qð Þ � n.

2: NSER – INTEGER Input

On entry: the total number of input and output series. There may be any number of input series
(including none), but always one output series.

Constraints:

NSER � 1;
if there are no parameters in the model (that is, p ¼ q ¼ P ¼ Q ¼ 0 and KFC ¼ 0),
NSER > 1.
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3: MTð4;NSERÞ – INTEGER array Input

On entry: the transfer function model orders b, p and q of each of the input series. The order
arguments for input series i are held in column i. Row 1 holds the value bi, row 2 holds the value
qi and row 3 holds the value pi. For a simple input, bi ¼ qi ¼ pi ¼ 0.

Row 4 holds the value ri, where ri ¼ 1 for a simple input, ri ¼ 2 for a transfer function input for
which no allowance is to be made for pre-observation period effects, and ri ¼ 3 for a transfer
function input for which pre-observation period effects will be treated by estimation of
appropriate nuisance parameters.

When ri ¼ 1, any nonzero contents of rows 1, 2, and 3 of column i are ignored.

Constraint: MTð4; iÞ ¼ 1; 2 or 3, for i ¼ 1; 2; . . . ;NSER � 1.

4: PARAðNPARAÞ – REAL (KIND=nag_wp) array Input/Output

On entry: initial values of the multi-input model parameters. These are in order, firstly the
ARIMA model parameters: p values of 
 parameters, q values of � parameters, P values of �
parameters and Q values of � parameters. These are followed by initial values of the transfer
function model parameters !0; !1; . . . ; !q1 , �1; �2; . . . ; �p1 for the first of any input series and
similarly for each subsequent input series. The final component of PARA is the initial value of
the constant c, whether it is fixed or is to be estimated.

On exit: the latest values of the estimates of these parameters.

5: NPARA – INTEGER Input

On entry: the exact number of 
; �; �;�, !; � and c parameters.

Constraint: NPARA ¼ pþ q þ P þQþ NSERþ
P

pi þ qið Þ, the summation being over all the
pi 6¼ qi supplied in MT. c must be included, whether fixed or estimated.

6: KFC – INTEGER Input

On entry: must be set to 0 if the constant c is to remain fixed at its initial value, and 1 if it is to
be estimated.

Constraint: KFC ¼ 0 or 1.

7: NXXY – INTEGER Input

On entry: the (common) length of the original, undifferenced input and output time series.

8: XXYðLDXXY;NSERÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the columns of XXY must contain the NXXY original, undifferenced values of each of
the input series and the output series xt in that order.

On exit: if KZEF ¼ 0, XXY remains unchanged on exit.

If KZEF 6¼ 0, the columns of XXY hold the corresponding values of the input component series
zt in place of xt and the output noise component nt in place of yt, in that order.

9: LDXXY – INTEGER Input

On entry: the first dimension of the array XXY as declared in the (sub)program from which
G13BEF is called.

Constraint: LDXXY � NXXY.

10: KEF – INTEGER Input

On entry: indicates the likelihood option.

KEF ¼ 1
Gives least squares.
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KEF ¼ 2
Gives exact likelihood.

KEF ¼ 3
Gives marginal likelihood.

Constraint: KEF ¼ 1, 2 or 3.

11: NIT – INTEGER Input

On entry: the maximum required number of iterations.

NIT ¼ 0
No change is made to any of the model parameters in array PARA except that the constant
c (if KFC ¼ 1) and any ! relating to simple input series are estimated. (Apart from these,
estimates are always derived for the nuisance parameters relating to any backforecasts and
any pre-observation period effects for transfer function inputs.)

Constraint: NIT � 0.

12: KZSP – INTEGER Input

On entry: must be set to 1 if the routine is to use the input values of ZSP in the minimization
procedure, and to any other value if the default values of ZSP are to be used.

13: ZSPð4Þ – REAL (KIND=nag_wp) array Input/Output

On entry: if KZSP ¼ 1, then ZSP must contain the four values used to control the strategy of the
search procedure.

ZSPð1Þ
Contains �, the value used to constrain the magnitude of the search procedure steps.

ZSPð2Þ
Contains �, the multiplier which regulates the value of �.

ZSPð3Þ
Contains �, the value of the stationarity and invertibility test tolerance factor.

ZSPð4Þ
Contains �, the value of the convergence criterion.

If KZSP 6¼ 1 before entry, default values of ZSP are supplied by the routine. These are 0:01,
10:0, 1000:0 and max 100�machine precision; 0:0000001ð Þ, respectively.
On exit: contains the values, default or otherwise, used by the routine.

Constraint: if KZSP ¼ 1, ZSPð1Þ > 0:0, ZSPð2Þ > 1:0, ZSPð3Þ � 1:0, 0 � ZSPð4Þ < 1:0.

14: ITC – INTEGER Output

On exit: the number of iterations carried out.

ITC ¼ �1
Indicates that the only estimates obtained up to this point have been for the nuisance
parameters relating to backforecasts, unless the marginal likelihood option is used, in
which case estimates have also been obtained for simple input coefficients ! and for the
constant c (if KFC ¼ 1). This value of ITC usually indicates a failure in a consequent step
of estimating transfer function input pre-observation period nuisance parameters.

ITC ¼ 0
Indicates that estimates have been obtained up to this point for the constant c (if
KFC ¼ 1), for simple input coefficients ! and for the nuisance parameters relating to the
backforecasts and to transfer function input pre-observation period effects.
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15: SDðNPARAÞ – REAL (KIND=nag_wp) array Output

On exit: the NPARA values of the standard deviations corresponding to each of the parameters in
PARA. When the constant is fixed its standard deviation is returned as zero. When the values of
PARA are valid, the values of SD are usually also valid. However, if an exit value of IFAIL ¼ 3,
8 or 10, then the contents of SD will be indeterminate.

16: CMðLDCM;NPARAÞ – REAL (KIND=nag_wp) array Output

On exit: the first NPARA rows and columns of CM contain the correlation coefficients relating to
each pair of parameters in PARA. All coefficients relating to the constant will be zero if the
constant is fixed. The contents of CM will be indeterminate under the same conditions as SD.

17: LDCM – INTEGER Input

On entry: the first dimension of the array CM as declared in the (sub)program from which
G13BEF is called.

Constraint: LDCM � NPARA.

18: S – REAL (KIND=nag_wp) Output

On exit: the residual sum of squares, S, at the latest set of valid parameter estimates.

19: D – REAL (KIND=nag_wp) Output

On exit: the objective function, D, at the latest set of valid parameter estimates.

20: NDF – INTEGER Output

On exit: the number of degrees of freedom associated with S.

21: KZEF – INTEGER Input

On entry: must not be set to 0, if the values of the input component series zt and the values of
the output noise component nt are to overwrite the contents of XXY on exit, and must be set to 0
if XXY is to remain unchanged.

22: RESðNXXYÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the residuals relating to the differenced values of the output series. The
remainder of the first NXXY terms in the array will be zero.

23: STTFðISTTFÞ – REAL (KIND=nag_wp) array Output

On exit: the NSTTF values of the state set array.

24: ISTTF – INTEGER Input

On entry: the dimension of the array STTF as declared in the (sub)program from which G13BEF
is called.

Constraint: ISTTF � P � sð Þ þ dþ D� sð Þ þ q þmax p;Q� sð Þ þ ncg, where
ncg ¼

P
bi þ qi þ pið Þ over all input series for which ri > 1.

25: NSTTF – INTEGER Output

On exit: the number of values in the state set array STTF.

26: WAðIWAÞ – REAL (KIND=nag_wp) array Workspace
27: IWA – INTEGER Input

On entry: the dimension of the array WA as declared in the (sub)program from which G13BEF is
called.
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It is not practical to outline a method for deriving the exact minimum permissible value of IWA,
but the following gives a reasonably good conservative approximation. (It should be noted that if
IWA is too small (but not grossly so) then the exact minimum is returned in MWAðiÞ and is also
printed if KPRIV 6¼ 0.)

Let q0 ¼ q þ Q� sð Þ and d0 ¼ dþ D� sð Þ where the orders of the output noise model are p, d, q,
P , D, Q, s.

Let there be l input series, where l ¼ NSER� 1.

Let

mxi ¼ max bi þ qi; pið Þ; if ri ¼ 3; for i ¼ 1; 2 . . . ; l
mxi ¼ 0; if ri 6¼ 3; for i ¼ 1; 2 . . . ; l

where the transfer function model orders for input i are given by bi, qi, pi, ri.

Let qx ¼ max q0;mx1;mx2; . . .;mxlð Þ.

Let ncd ¼ NPARAþ KFCþ qxþ
Xl
i¼1
mxi and nce ¼ NXXYþ d0 þ 6� qx.

Finally, let ncf ¼ NSER, and then increment ncf by 1 every time any of the following conditions
is satisfied. (The last six conditions should be applied separately to each input series, so that, for
example, if we have two input series and if p1 > 0 and p2 > 0 then ncf is incremented by 2.)

The conditions are:

p > 0
q > 0
P > 0
Q > 0
qx > 0

KFC > 0

p > 0
q > 0
P > 0
Q > 0

9>=>;and q > 0 and KEF > 1:

p > 0
q > 0
P > 0
Q > 0

9>=>;and KFC > 0 and KEF ¼ 3:

mxi > 0
pi > 0
p > 0
q > 0
P > 0
Q > 0

9>>>>>=>>>>>;
and ri ¼ 1 and KEF

Then IWA � 2� ncdð Þ2 þ nceð Þ � ncf þ 4ð Þ.

28: MWAðIMWAÞ – INTEGER array Workspace
29: IMWA – INTEGER Input

On entry: the dimension of the array MWA as declared in the (sub)program from which G13BEF
is called.

Constraint: IMWA � 16� NSERð Þ þ 7� ncdð Þ þ 3� NPARAð Þ þ 3� KFCð Þ þ 27, where the
derivation of ncd is shown under IWA.

If IMWA is too small then the exact minimum needed is returned in IMWA and if KPRIV 6¼ 0 it
is also printed.

30: KPRIV – INTEGER Input

On entry: must not be set to 0, if it is required to monitor the course of the optimization or to
print out the requisite minimum values of IWA or IMWA in the event of an error of the type
IFAIL ¼ 6 or 7. The course of the optimization is monitored by printing out at each iteration the
iteration count (ITC), the residual sum of squares (S), the objective function (D) and a
description and value for each of the parameters in the PARA array. The descriptions are PHI for

, THETA for �, SPHI for �, STHETA for �, OMEGA/SI for ! in a simple input, OMEGA for !
in a transfer function input, DELTA for � and CONSTANT for c. In addition SERIES 1, SERIES
2, etc. indicate the input series relevant to the OMEGA and DELTA parameters.

KPRIV must be set to 0 if the print-out of the above information is not required.

31: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13BEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, KFC < 0,
or KFC > 1,
or LDXXY < NXXY,
or LDCM < NPARA,
or KEF < 1,
or KEF > 3,
or NIT < 0,
or NSER < 1,
or NSER ¼ 1 and there are no parameters in the model (p ¼ q ¼ P ¼ Q ¼ 0 and

KFC ¼ 0).

IFAIL ¼ 2

On entry, there is inconsistency between NPARA and KFC on the one hand and the orders in
arrays MR and MT on the other, or one of the ri, stored in MTð4; iÞ 6¼ 1, 2 or 3.

IFAIL ¼ 3

On entry or during execution, one or more sets of � parameters do not satisfy the stationarity or
invertibility test conditions.

IFAIL ¼ 4

On entry, when KZSP ¼ 1, ZSPð1Þ � 0:0,
or ZSPð2Þ � 1:0,
or ZSPð3Þ < 1:0,
or ZSPð4Þ < 0:0,
or ZSPð4Þ � 1:0.

IFAIL ¼ 5

On entry, IWA is too small by a considerable margin. No information is supplied about the
requisite minimum size.

IFAIL ¼ 6

On entry, IWA is too small, but the requisite minimum size is returned in MWAð1Þ, which is
printed if KPRIV 6¼ 0.
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IFAIL ¼ 7

On entry, IMWA is too small, but the requisite minimum size is returned in MWAð1Þ, which is
printed if KPRIV 6¼ 0.

IFAIL ¼ 8

Unable to calculate the latest parameter estimates.

IFAIL ¼ 9

This indicates a failure in the inversion of the second derivative matrix. This is needed in the
calculation of the correlation matrix and the standard deviations of the parameter estimates.

IFAIL ¼ 10

On entry or during execution, one or more sets of the ARIMA (
, �, � or �) parameters do not
satisfy the stationarity or invertibility test conditions.

IFAIL ¼ 11

On entry, ISTTF is too small. The state set information will not be produced and if KZEF 6¼ 0
array XXY will remain unchanged. All other arguments will be produced correctly.

IFAIL ¼ 12

The routine has failed to converge after NIT iterations. If steady decreases in the objective
function, D, were monitored up to the point where this exit occurred, then the exit probably
occurred because NIT was set too small, so the calculations should be restarted from the final
point held in PARA.

IFAIL ¼ 13

On entry, ISTTF is too small (see IFAIL ¼ 11) and NIT iterations were carried out without the
convergence conditions being satisfied (see IFAIL ¼ 12).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computation used is believed to be stable.

8 Parallelism and Performance

G13BEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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G13BEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G13BEF is approximately proportional to NXXY� ITC� NPARA2.

10 Example

After the full 11 iterations, the following are computed and printed out: the final values of the PARA
parameters and their standard errors, the correlation matrix, the residuals for the 36 differenced values,
the values of zt and nt, the values of the state set and the number of degrees of freedom.

10.1 Program Text

Program g13befe

! G13BEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13bef, nag_wp, x04abf, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, s
Integer :: dp, i, ifail, imwa, inc, isttf, itc, &

iwa, kef, kfc, kpriv, kzef, kzsp, &
ldcm, ldxxy, mx, nadv, ncd, nce, &
ncf, ncg, ndf, ndv, nis, nit, npara, &
nser, nsttf, nxxy, qp, qx, smx

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cm(:,:), para(:), res(:), sd(:), &

sttf(:), wa(:), xxy(:,:)
Real (Kind=nag_wp) :: zsp(4)
Integer :: mr(7)
Integer, Allocatable :: mt(:,:), mwa(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, sum

! .. Executable Statements ..
Write (nout,*) ’G13BEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) kzef, kfc, nxxy, nser, kef, nit, kzsp, kpriv
If (kzsp/=0) Then

Read (nin,*) zsp
End If

! Number of input series
nis = nser - 1

! Set the advisory channel to NOUT for monitoring information
If (kpriv/=0) Then

nadv = nout
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Call x04abf(iset,nadv)
End If

Allocate (mt(4,nser))

! Read in orders
Read (nin,*) mr(1:7)

! Read in transfer function
Do i = 1, nis

Read (nin,*) mt(1:4,i)
End Do

! Calculate NPARA and various other quantities required
! for calculate array sizes

npara = 0
ncg = 0
qx = 0
smx = 0
ncf = nser
inc = 1
Do i = 1, nis

npara = npara + mt(2,i) + mt(3,i)
If (mt(4,i)>1) Then

ncg = ncg + sum(mt(1:3,i))
If (mt(4,i)==3) Then

mx = max(mt(1,i)+mt(2,i),mt(3,i))
qx = max(qx,mx)
smx = smx + mx

End If
Else If (mt(4,i)==1 .And. kef==3) Then

If (mt(3,i)>0) Then
ncf = ncf + 1

End If
inc = inc + 1

End If
End Do
npara = npara + mr(1) + mr(3) + mr(4) + mr(6) + nser

! Calculate size of arrays
isttf = mr(4)*mr(7) + mr(2) + mr(5)*mr(7) + mr(3) + &

max(mr(1),mr(6)*mr(7)) + ncg
ldxxy = nxxy
ldcm = npara
qp = mr(3) + mr(6)*mr(7)
dp = mr(2) + mr(5)*mr(7)
If (mr(3)>0 .And. kef>1) Then

inc = inc + 1
End If
If (kfc>0 .And. kef==3) Then

inc = inc + 1
End If
qx = qp
ncd = npara + kfc + smx
If (mr(1)>0) Then

ncf = ncf + inc
End If
If (mr(3)>0) Then

ncf = ncf + inc
End If
If (mr(4)>0) Then

ncf = ncf + inc
End If
If (mr(6)>0) Then

ncf = ncf + inc
End If
If (qx>0) Then

ncf = ncf + 1
End If
If (kfc>0) Then

ncf = ncf + 1
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End If
ncd = ncd + qx
nce = nxxy + dp + 6*qx
iwa = 2*ncd**2 + nce*(ncf+4)
iwa = 2*iwa
imwa = 16*nser + 7*ncd + 3*npara + 3*kfc + 27

Allocate (xxy(ldxxy,nser),para(npara),sd(npara),cm(ldcm,npara), &
res(nxxy),sttf(isttf),wa(iwa),mwa(imwa))

! Read in rest of data
Read (nin,*) para(1:npara)
Read (nin,*)(xxy(i,1:nser),i=1,nxxy)

ifail = -1
Call g13bef(mr,nser,mt,para,npara,kfc,nxxy,xxy,ldxxy,kef,nit,kzsp,zsp, &

itc,sd,cm,ldcm,s,d,ndf,kzef,res,sttf,isttf,nsttf,wa,iwa,mwa,imwa, &
kpriv,ifail)

If (ifail/=0) Then
If (ifail/=8 .And. ifail/=9) Then

Go To 100
End If

End If

! Display results
Write (nout,99999) ’The number of iterations carried out is’, itc
Write (nout,*)
If (ifail/=8 .And. ifail/=9) Then

Write (nout,*) &
’Final values of the parameters and their standard deviations’

Write (nout,*)
Write (nout,*) ’ I PARA(I) SD’
Write (nout,*)
Write (nout,99998)(i,para(i),sd(i),i=1,npara)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,npara,npara,cm,ldcm, &

’The correlation matrix is’,ifail)
End If
Write (nout,*)
Write (nout,*) ’The residuals and the z and n values are’
Write (nout,*)
Write (nout,*) ’ I RES(I) z(t) n(t)’
Write (nout,*)
ndv = nxxy - mr(2) - mr(5)*mr(7)
Do i = 1, nxxy

If (i<=ndv) Then
Write (nout,99997) i, res(i), xxy(i,1:nser)

Else
Write (nout,99996) i, xxy(i,1:nser)

End If
End Do
If (mr(2)/=0 .Or. mr(5)/=0) Then

Write (nout,*)
Write (nout,*) &

’** Note that the residuals relate to differenced values **’
End If
Write (nout,*)
Write (nout,99995) ’The state set consists of’, nsttf, ’ values’
Write (nout,*)
Write (nout,99994) sttf(1:nsttf)
Write (nout,*)
Write (nout,99999) ’The number of degrees of freedom is’, ndf

100 Continue

99999 Format (1X,A,I4)
99998 Format (1X,I4,2F20.6)
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99997 Format (1X,I4,3F15.3)
99996 Format (1X,I4,F30.3,F15.3)
99995 Format (1X,A,I4,A)
99994 Format (1X,6F10.4)

End Program g13befe

10.2 Program Data

G13BEF Example Program Data
1 1 40 2 3 20 0 0 :: KZEF,KFC,NXXY,NSER,KEFF,NIT,KZSP,KPRIV
1 0 0 0 0 1 4 :: MR
1 0 1 3 :: Transfer fun. for series 1, MT(:,1)
0.0 0.0 2.0 0.5 0.0 :: PARA
8.075 105.0
7.819 119.0
7.366 119.0
8.113 109.0
7.380 117.0
7.134 135.0
7.222 126.0
7.768 112.0
7.386 116.0
6.965 122.0
6.478 115.0
8.105 115.0
8.060 122.0
7.684 138.0
7.580 135.0
7.093 125.0
6.129 115.0
6.026 108.0
6.679 100.0
7.414 96.0
7.112 107.0
7.762 115.0
7.645 123.0
8.639 122.0
7.667 128.0
8.080 136.0
6.678 140.0
6.739 122.0
5.569 102.0
5.049 103.0
5.642 89.0
6.808 77.0
6.636 89.0
8.241 94.0
7.968 104.0
8.044 108.0
7.791 119.0
7.024 126.0
6.102 119.0
6.053 103.0 :: End of XXY

10.3 Program Results

G13BEF Example Program Results

The number of iterations carried out is 11

Final values of the parameters and their standard deviations

I PARA(I) SD

1 0.380924 0.166379
2 -0.257786 0.178178
3 8.956084 0.948061
4 0.659641 0.060239
5 -75.435521 33.505341
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The correlation matrix is
1 2 3 4 5

1 1.0000 -0.1839 -0.1775 -0.0340 0.1394
2 -0.1839 1.0000 0.0518 0.2547 -0.2860
3 -0.1775 0.0518 1.0000 -0.3070 -0.2926
4 -0.0340 0.2547 -0.3070 1.0000 -0.8185
5 0.1394 -0.2860 -0.2926 -0.8185 1.0000

The residuals and the z and n values are

I RES(I) z(t) n(t)

1 0.397 180.567 -75.567
2 3.086 191.430 -72.430
3 -2.818 196.302 -77.302
4 -9.941 195.460 -86.460
5 -5.061 201.594 -84.594
6 14.053 199.076 -64.076
7 2.624 195.211 -69.211
8 -5.823 193.450 -81.450
9 -2.147 197.179 -81.179

10 -0.216 196.217 -74.217
11 -2.517 191.812 -76.812
12 7.916 184.544 -69.544
13 1.423 194.322 -72.322
14 11.936 200.369 -62.369
15 5.117 200.990 -65.990
16 -5.672 200.468 -75.468
17 -5.681 195.763 -80.763
18 -1.637 184.025 -76.025
19 -1.019 175.360 -75.360
20 -2.623 175.492 -79.492
21 3.283 182.162 -75.162
22 6.896 183.857 -68.857
23 5.395 190.797 -67.797
24 0.875 194.327 -72.327
25 -4.153 205.558 -77.558
26 6.206 204.261 -68.261
27 4.208 207.104 -67.104
28 -2.387 196.423 -74.423
29 -11.803 189.924 -87.924
30 6.435 175.158 -72.158
31 1.342 160.761 -71.761
32 -4.924 156.575 -79.575
33 4.799 164.256 -75.256
34 -0.074 167.783 -73.783
35 -6.023 184.483 -80.483
36 -6.427 193.055 -85.055
37 -2.527 199.390 -80.390
38 2.039 201.302 -75.302
39 0.243 195.695 -76.695
40 -3.166 183.738 -80.738

The state set consists of 6 values

6.0530 183.7384 -5.7855 -0.1645 0.1800 -3.0977

The number of degrees of freedom is 34
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NAG Library Routine Document

G13BGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13BGF accepts a series of new observations of an output time series and any associated input time
series, for which a multi-input model is already fully specified, and updates the ‘state set’ information
for use in constructing further forecasts.

The previous specification of the multi-input model will normally have been obtained by using G13BEF
to estimate the relevant transfer function and ARIMA parameters. The supplied state set will originally
have been produced by G13BEF (or possibly G13BJF), but may since have been updated by G13BGF.

2 Specification

SUBROUTINE G13BGF (STTF, NSTTF, MR, NSER, MT, PARA, NPARA, NNV, XXYN,
LDXXYN, KZEF, RES, WA, IWA, IFAIL)

&

INTEGER NSTTF, MR(7), NSER, MT(4,NSER), NPARA, NNV, LDXXYN,
KZEF, IWA, IFAIL

&

REAL (KIND=nag_wp) STTF(NSTTF), PARA(NPARA), XXYN(LDXXYN,NSER),
RES(NNV), WA(IWA)

&

3 Description

The multi-input model is specified in Section 3 in G13BEF. The form of these equations required to
update the state set is as follows:

zt ¼ �1zt�1 þ �2zt�2 þ � � � þ �pzt�p þ !0xt�b � !1xt�b�1 � � � � � !qxt�b�q
the transfer models which generate input component values zi;t from one or more inputs xi;t,

nt ¼ yt � z1;t � z2;t � � � � � zm;t
which generates the output noise component from the output yt and the input components, and

wt ¼ rdrD
s nt � c

et ¼ wt � �1wt�s � �2wt�2�s � � � � � �Pwt�P�s þ�1et�s þ�2et�2�s þ � � � þ�Qet�Q�s
at ¼ et � 
1et�1 � 
2et�2 � � � � � 
pet�p þ �1at�1 þ �2at�2 þ � � � þ �qat�q

the ARIMA model for the output noise which generates the residuals at.

The state set (as also given in Section 3 in G13BEF) is the collection of terms

znþ1�k; xnþ1�k; nnþ1�k; wnþ1�k; enþ1�k and anþ1�k

for k ¼ 1 up to the maximum lag associated with each of these series respectively, in the above model
equations. n is the latest time point of the series from which the state set has been generated.

The routine accepts further values of the series yt , x1;t ; x2;t ; . . . ; xm;t , for t ¼ nþ 1; . . . ; nþ l, and
applies the above model equations over this time range, to generate new values of the various model
components, noise series and residuals. The state set is reconstructed, corresponding to the latest time
point nþ l, the earlier values being discarded.

The set of residuals corresponding to the new observations may be of use in checking that the new
observations conform to the previously fitted model. The components of the new observations of the
output series which are due to the various inputs, and the noise component, are also optionally returned.

The parameters of the model are not changed in this routine.
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4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

5 Arguments

1: STTFðNSTTFÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the NSTTF values in the state set before updating as returned by G13BEF or G13BJF,
or a previous call to G13BGF.

On exit: the state set values after updating.

2: NSTTF – INTEGER Input

On entry: the exact number of values in the state set array STTF as returned by G13BEF or
G13BJF.

3: MRð7Þ – INTEGER array Input

On entry: the orders vector p; d; q; P ;D;Q; sð Þ of the ARIMA model for the output noise
component.

p, q, P and Q refer respectively to the number of autoregressive 
ð Þ, moving average �ð Þ,
seasonal autoregressive �ð Þ and seasonal moving average �ð Þ parameters.

d, D and s refer respectively to the order of non-seasonal differencing, the order of seasonal
differencing, and the seasonal period.

Constraints:

p, d, q, P , D, Q, s � 0;
pþ q þ P þQ > 0;
s 6¼ 1;
if s ¼ 0, P þDþQ ¼ 0;
if s > 1, P þDþQ > 0.

4: NSER – INTEGER Input

On entry: the total number of input and output series. There may be any number of input series
(including none), but only one output series.

5: MTð4;NSERÞ – INTEGER array Input

On entry: the transfer function model orders b, p and q of each of the input series. The data for
input series i are held in column i. Row 1 holds the value bi, row 2 holds the value qi and row 3
holds the value pi. For a simple input, bi ¼ qi ¼ pi ¼ 0.

Row 4 holds the value ri, where ri ¼ 1 for a simple input and ri ¼ 2 or 3 for a transfer function
input. When ri ¼ 1 any nonzero contents of rows 1, 2 and 3 of column i are ignored. The choice
of ri ¼ 2 or ri ¼ 3 is an option for use in model estimation and does not affect the operation of
G13BGF.

Constraint: MTð4; iÞ ¼ 1, 2 or 3, for i ¼ 1; 2; . . . ;NSER � 1.

6: PARAðNPARAÞ – REAL (KIND=nag_wp) array Input

On entry: estimates of the multi-input model parameters as returned by G13BEF. These are in
order, firstly the ARIMA model parameters: p values of 
 parameters, q values of � parameters,
P values of � parameters and Q values of � parameters. These are followed by the transfer
function model parameter values !0; !1; . . . ; !q1 , �1; �2; . . . ; �p1 for the first of any input series and
similarly for each subsequent input series. The final component of PARA is the value of the
constant c.
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7: NPARA – INTEGER Input

On entry: the exact number of 
, �, �, �, !, � and c parameters. (c must be included whether its
value was previously estimated or was set fixed.)

8: NNV – INTEGER Input

On entry: the number of new observation sets being used to update the state set, each observation
set consisting of a value of the output series and the associated values of each of the input series
at a particular time point.

9: XXYNðLDXXYN;NSERÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the NNV new observation sets being used to update the state set. Column i contains
the values of input series i, for i ¼ 1; 2; . . . ;NSER� 1. Column NSER contains the values of the
output series. Consecutive rows correspond to increasing time sequence.

On exit: if KZEF ¼ 0, XXYN remains unchanged.

If KZEF 6¼ 0, the columns of XXYN hold the corresponding values of the input component series
zt and the output noise component nt in that order.

10: LDXXYN – INTEGER Input

On entry: the first dimension of the array XXYN as declared in the (sub)program from which
G13BGF is called.

Constraint: LDXXYN � NNV.

11: KZEF – INTEGER Input

On entry: must not be set to 0, if the values of the input component series zt and the values of
the output noise component nt are to overwrite the contents of XXYN on exit, and must be set to
0 if XXYN is to remain unchanged on exit.

12: RESðNNVÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the residual series at corresponding to the new observations of the output
series.

13: WAðIWAÞ – REAL (KIND=nag_wp) array Workspace
14: IWA – INTEGER Input

On entry: the dimension of the array WA as declared in the (sub)program from which G13BGF is
called.

Constraint: IWA � NNVþ 2� NSTTFþmax NNV;NSTTFð Þ þmax NNV; nccð Þ,
where ncc ¼ 4� pþ q þ P þQð Þ.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NSTTF is not consistent with the orders in arrays MR and MT.

IFAIL ¼ 2

On entry, NPARA is not consistent with the orders in arrays MR and MT.

IFAIL ¼ 3

On entry, LDXXYN is too small.

IFAIL ¼ 4

On entry, IWA is too small.

IFAIL ¼ 5

On entry, one of the ri, stored in MTð4; iÞ, for i ¼ 1; 2; . . . ;NSER� 1 does not equal 1, 2 or 3.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13BGF is not threaded in any implementation.

9 Further Comments

The time taken by G13BGF is approximately proportional to NNV� NPARA.

10 Example

This example uses the data described in G13BEF in which 40 observations of an output time series and
a single input series were processed. In this example a model which included seasonal differencing of
order 1 was used. The 10 values of the state set and the 5 final values of PARA then obtained are used
as input to this program, together with the values of 4 new observations and the transfer function orders
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of the input series. The model used is 
1 ¼ 0:5158, �1 ¼ 0:9994, !0 ¼ 8:6343, �1 ¼ 0:6726,
c ¼ �0:3172.
The following are computed and printed out: the updated state set, the residuals at and the values of the
components zt and the output noise component nt corresponding to the new observations.

10.1 Program Text

Program g13bgfe

! G13BGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13bgf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, iwa, kzef, ldxxyn, ncc, &

nis, nnv, npara, nser, nsttf
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: para(:), res(:), sttf(:), wa(:), &
xxyn(:,:)

Integer :: mr(7)
Integer, Allocatable :: mt(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G13BGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nsttf, nser, nnv, kzef

! Number of input series
nis = nser - 1

! Read in orders
Read (nin,*) mr(1:7)

ldxxyn = nnv
Allocate (mt(4,nser))

! Read in transfer function
Do i = 1, nis

Read (nin,*) mt(1:4,i)
End Do

! Calculate NPARA
npara = 0
Do i = 1, nis

npara = npara + mt(2,i) + mt(3,i)
End Do
npara = npara + mr(1) + mr(3) + mr(4) + mr(6) + nser

ldxxyn = nnv
ncc = 4*(mr(1)+mr(3)+mr(4)+mr(6))
iwa = nnv + 2*nsttf + max(nnv,nsttf) + max(nnv,ncc)
Allocate (sttf(nsttf),xxyn(ldxxyn,nser),res(nnv),para(npara),wa(iwa))

! Read in state set
Read (nin,*) sttf(1:nsttf)

! Read in parameters
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Read (nin,*) para(1:npara)

! Read in new observations
Read (nin,*)(xxyn(i,1:nser),i=1,nnv)

ifail = 0
Call g13bgf(sttf,nsttf,mr,nser,mt,para,npara,nnv,xxyn,ldxxyn,kzef,res, &

wa,iwa,ifail)

! Display results
Write (nout,*) ’The updated state set’
Write (nout,99999) sttf(1:nsttf)
Write (nout,*)
Write (nout,*) ’The residuals (after differencing)’
Write (nout,99998)(i,res(i),i=1,nnv)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,nnv,nser,xxyn,ldxxyn, &

’The values of z(t) and n(t)’,ifail)
Write (nout,99997) ’The first ’, nis, &

’ columns hold the z(t) and the last column the n(t)’

99999 Format (1X,6F10.4)
99998 Format (1X,I4,F10.4)
99997 Format (1X,A,I0,A)

End Program g13bgfe

10.2 Program Data

G13BGF Example Program Data
10 2 4 1 :: NSTTF,NSER,NNV,KZEF
1 0 0 0 1 1 4 :: MR
1 0 1 3 :: Transfer fun. for series 1, MT(:,1)
6.0530 184.4749 -80.0885 -75.1704

-76.9481 -81.4749 0.7776 -2.6190
-2.3054 -1.1963 :: STTF
0.5158 0.9994 8.6343 0.6726

-0.3172 :: PARA
5.9410 96.0000
5.3860 95.0000
5.8110 80.0000
6.7160 88.0000 :: End of XXYN

10.3 Program Results

G13BGF Example Program Results

The updated state set
6.7160 158.3155 -80.3412 -74.9035 -80.7814 -70.3155
0.8416 -2.0333 -5.8201 10.2810

The residuals (after differencing)
1 1.4586
2 -2.4674
3 -4.7714
4 13.2830

The values of z(t) and n(t)
1 2

1 176.3412 -80.3412
2 169.9035 -74.9035
3 160.7814 -80.7814
4 158.3155 -70.3155
The first 1 columns hold the z(t) and the last column the n(t)
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NAG Library Routine Document

G13BHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13BHF produces forecasts of a time series (the output series) which depends on one or more other
(input) series via a multi-input model which will usually have been fitted using G13BEF. The future
values of the input series must be supplied. The original observations are not required. G13BHF uses as
input either the original state set obtained from G13BEF, or the state set updated by a series of new
observations from G13BGF. Standard errors of the forecasts are produced. If future values of some of
the input series have been obtained as forecasts using ARIMA models for those series, this may be
allowed for in the calculation of the standard errors.

2 Specification

SUBROUTINE G13BHF (STTF, NSTTF, MR, NSER, MT, PARA, NPARA, NFV, XXYN,
LDXXYN, MRX, PARX, LDPARX, RMSXY, KZEF, FVA, FSD, WA,
IWA, IFAIL)

&
&

INTEGER NSTTF, MR(7), NSER, MT(4,NSER), NPARA, NFV, LDXXYN,
MRX(7,NSER), LDPARX, KZEF, IWA, IFAIL

&

REAL (KIND=nag_wp) STTF(NSTTF), PARA(NPARA), XXYN(LDXXYN,NSER),
PARX(LDPARX,NSER), RMSXY(NSER), FVA(NFV), FSD(NFV),
WA(IWA)

&
&

3 Description

The forecasts of the output series yt are calculated, for t ¼ nþ 1; . . . ; nþ L, where n is the latest time
point of the observations used to produce the state set and L is the maximum lead time of the forecasts.

First the new input series values xt are used to form the input components zt , for t ¼ nþ 1; . . . ; nþ L,
using the transfer function models:

(a) zt ¼ �1zt�1 þ �2zt�2 þ � � � þ �pzt�p þ !0xt�b � !1xt�b�1 � � � � � !qxt�b�q.
The output noise component nt is then forecast by setting at ¼ 0, for t ¼ nþ 1; . . . ; nþ L, and using
the ARIMA model equations:

(b) et ¼ 
1et�1 þ 
2et�2 þ � � � þ 
pet�p þ at � �1at�1 � �2at�2 � � � � � �1at�q
(c) wt ¼ �1wt�s þ �2wt�2�s þ � � � þ �Pwt�P�s þ et ��1et�s ��2et�2�s � � � � ��Qet�Q�s

(d)nt ¼ rdrD
s

� ��1
wt þ cð Þ.

This last step of ‘integration’ reverses the process of differencing. Finally the output forecasts are
calculated as

yt ¼ z1;t þ z2;t þ � � � þ zm;t þ nt:

The forecast error variance of ytþl (i.e., at lead time l) is S2
l , which is the sum of parts which arise from

the various input series, and the output noise component. That part due to the output noise is

sn2l ¼ Vn �  2
0 þ  2

1 þ � � � þ  2
l�1

� �
;

where Vn is the estimated residual variance of the output noise ARIMA model, and  0;  1; . . . are the
‘psi-weights’ of this model as defined in Box and Jenkins (1976). They are calculated by applying the
equations (b), (c) and (d) above, for t ¼ 0; 1; . . . ; L, but with artificial values for the various series and
with the constant c set to 0. Thus all values of at, et, wt and nt are taken as zero, for t < 0; at is taken
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to be 1, for t ¼ 0 and 0, for t > 0. The resulting values of nt , for t ¼ 0; 1; . . . ; L, are precisely
 0;  1; . . . ;  L as required.

Further contributions to S2
l come only from those input series, for which future values are forecasts

which have been obtained by applying input series ARIMA models. For such a series the contribution is

sz2l ¼ Vx � �20 þ �21 þ � � � þ �2l�1
� �

;

where Vx is the estimated residual variance of the input series ARIMA model. The coefficients
�0; �1; . . . are calculated by applying the transfer function model equation (a) above, for t ¼ 0; 1; . . . ; L,
but again with artificial values of the series. Thus all values of zt and xt, for t < 0, are taken to be zero,
and x0; x1; . . . are taken to be the psi-weight sequence  0;  1; . . . for the input series ARIMA model.
The resulting values of zt , for t ¼ 0; 1; . . . ; L, are precisely �0; �1; . . . ; �L as required.

In adding such contributions sz2l to sn2l to make up the total forecast error variance S2
l , it is assumed

that the various input series with which these contributions are associated are statistically independent
of each other.

When using the routine in practice an ARIMA model is required for all the input series. In the case of
those inputs for which no such ARIMA model is available (or its effects are to be excluded), the
corresponding orders and parameters and the estimated residual variance should be set to zero.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

5 Arguments

1: STTFðNSTTFÞ – REAL (KIND=nag_wp) array Input

On entry: the NSTTF values in the state set as returned by G13BEF or G13BGF.

2: NSTTF – INTEGER Input

On entry: the exact number of values in the state set array STTF as returned by G13BEF or
G13BGF.

3: MRð7Þ – INTEGER array Input

On entry: the orders vector p; d; q; P ;D;Q; sð Þ of the ARIMA model for the output noise
component.

p, q, P and Q give respectively the number of autoregressive 
ð Þ, moving average �ð Þ, seasonal
autoregressive �ð Þ and seasonal moving average �ð Þ parameters.

d, D and s refer respectively to the order of non-seasonal differencing, the order of seasonal
differencing, and the seasonal period.

Constraints:

p, d, q, P , D, Q, s � 0;
pþ q þ P þQ > 0;
s 6¼ 1;
if s ¼ 0, P þDþQ ¼ 0;
if s > 1, P þDþQ > 0.

4: NSER – INTEGER Input

On entry: the total number of input and output series. There may be any number of input series
(including none), but only one output series.
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5: MTð4;NSERÞ – INTEGER array Input

On entry: the transfer function orders b, p and q of each of the input series. The data for input
series i are held in column i. Row 1 holds the value bi, row 2 holds the value qi and row 3 holds
the value pi. For a simple input, bi ¼ qi ¼ pi ¼ 0.

Row 4 holds the value ri, where ri ¼ 1 for a simple input, ri ¼ 2 or 3 for a transfer function
input. When ri ¼ 1, any nonzero contents of rows 1, 2 and 3 of column i are ignored. The choice
of ri ¼ 2 or ri ¼ 3 is an option for use in model estimation and does not affect the operation of
G13BHF.

Constraint: MTð4; iÞ ¼ 1, 2 or 3, for i ¼ 1; 2; . . . ;NSER � 1.

6: PARAðNPARAÞ – REAL (KIND=nag_wp) array Input

On entry: estimates of the multi-input model parameters as returned by G13BEF. These are in
order, firstly the ARIMA model parameters: p values of 
 parameters, q values of � parameters,
P values of � parameters and Q values of � parameters. These are followed by the transfer
function model parameter values !0; !1; . . . ; !q1 , �1; �2; . . . ; �p1 for the first of any input series and
similar sets of values for any subsequent input series. The final component of PARA is the
constant c.

7: NPARA – INTEGER Input

On entry: the exact number of 
, �, �, �, !, � and c parameters. (c must be included, whether its
value was previously estimated or was set fixed).

8: NFV – INTEGER Input

On entry: the number of forecast values required.

9: XXYNðLDXXYN;NSERÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the supplied NFV values for each of the input series required to produce the NFV
output series forecasts. Column i contains the values for input series i. Column NSER need not
be supplied.

On exit: if KZEF ¼ 0, then column NSER of XXYN contains the output series forecast values (as
does FVA), but XXYN is otherwise unchanged.

If KZEF 6¼ 0, then the columns of XXYN hold the corresponding values of the forecast
components zt for each of the input series and the values of the output noise component nt in
that order.

10: LDXXYN – INTEGER Input

On entry: the first dimension of the array XXYN as declared in the (sub)program from which
G13BHF is called.

Constraint: LDXXYN � NFV.

11: MRXð7;NSERÞ – INTEGER array Input/Output

On entry: the orders array for each of the input series ARIMA models. Thus, column i contains
values of p, d, q, P , D, Q, s for input series i. In the case of those inputs for which no ARIMA
model is available, the corresponding orders should be set to 0. (The model for any input series
only affects the standard errors of the forecast values.)

On exit: unchanged, apart from column NSER which is used for workspace.

12: PARXðLDPARX;NSERÞ – REAL (KIND=nag_wp) array Input

On entry: values of the parameters (
, �, � and �) for each of the input series ARIMA models.
Thus column i contains MRXð1; iÞ values of 
 parameters, MRXð3; iÞ values of � parameters,
MRXð4; iÞ values of � parameters and MRXð6; iÞ values of � parameters – in that order.
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Values in the columns relating to those input series for which no ARIMA model is available are
ignored. (The model for any input series only affects the standard errors of the forecast values.)

13: LDPARX – INTEGER Input

On entry: the first dimension of the array PARX as declared in the (sub)program from which
G13BHF is called.

Constraint: LDPARX � ncd, where ncd is the maximum number of parameters in any of the
input series ARIMA models. If there are no input series, LDPARX � 1.

14: RMSXYðNSERÞ – REAL (KIND=nag_wp) array Input

On entry: the estimated residual variances for each input series ARIMA model followed by that
for the output noise ARIMA model. In the case of those inputs for which no ARIMA model is
available, or when its effects are to be excluded in the calculation of forecast standard errors, the
corresponding entry of RMSXY should be set to 0.

15: KZEF – INTEGER Input

On entry: must not be set to 0, if the values of the input component series zt and the values of
the output noise component nt are to overwrite the contents of XXYN on exit, and must be set to
0 if XXYN is to remain unchanged on exit, apart from the appearance of the forecast values in
column NSER.

16: FVAðNFVÞ – REAL (KIND=nag_wp) array Output

On exit: the required forecast values for the output series.

17: FSDðNFVÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors for each of the forecast values.

18: WAðIWAÞ – REAL (KIND=nag_wp) array Workspace
19: IWA – INTEGER Input

On entry: the dimension of the array WA as declared in the (sub)program from which G13BHF is
called.

A good, slightly conservative approximation to the required size of IWA is given by

IWA � 4� NSTTFþ NFVþ ncfð Þ

where ncf is the largest number of ARIMA parameters in any one of the input or output series.

An exact value for the required size of IWA can be calculated as follows:

Let ncg ¼ max pið Þ,
nch ¼ max bi þ qið Þ,
nci ¼ max bi þ qi þ pið Þ,

over each of the transfer function input series for which ri > 1, where bi, qi, pi are the orders
held in rows 1 to 3 of array MT.

Let ncj ¼ 1þ nci,

nck ¼ NFVþmax ncg; nchð Þ,
ncl ¼ max NSTTF;ncf ; ncj;nckð Þ,
ncm ¼ max NSTTFþ 4� ncf ;nclð Þ,

then IWA � ncm þ 3� ncl þ NFV.
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20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NSTTF is not consistent with the orders in arrays MR and MT.

IFAIL ¼ 2

On entry, NPARA is not consistent with the orders in arrays MR and MT.

IFAIL ¼ 3

On entry, LDXXYN is too small.

IFAIL ¼ 4

On entry, IWA is too small.

IFAIL ¼ 5

On entry, LDPARX is too small.

IFAIL ¼ 6

On entry, one of the ri, stored in MTð4; iÞ, for i ¼ 1; 2; . . . ;NSER � 1, does not equal 1, 2 or 3.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.
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8 Parallelism and Performance

G13BHF is not threaded in any implementation.

9 Further Comments

The time taken by G13BHF is approximately proportional to NFV � NPARA.

10 Example

This example follows up that described in G13BGF and makes use of its data. These consist of output
series orders and parameter values, input series transfer function orders and the updated state set.

Four new values of the input series are supplied, as are the orders and parameter values for the single
input series ARIMA model (which has 2 values of 
, 2 values of �, 1 value of �, single seasonal
differencing and a seasonal period of 4), and the estimated residual variances for the input series
ARIMA model and the output noise ARIMA model.

Four forecast values and their standard errors are computed and printed; also the values of the
components zt and the output noise component nt corresponding to the forecasts.

10.1 Program Text

Program g13bhfe

! G13BHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13bhf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, iwa, kzef, ldparx, ldxxyn, &

ncf, ncg, nch, nci, ncj, nck, ncl, &
ncm, nfv, nis, npara, nparax, nser, &
nsttf

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fsd(:), fva(:), para(:), parx(:,:), &

rmsxy(:), sttf(:), wa(:), xxyn(:,:)
Integer :: mr(7)
Integer, Allocatable :: mrx(:,:), mt(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G13BHF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) nsttf, nser, nfv, kzef

! Number of input series
nis = nser - 1

! Read in the orders
Read (nin,*)(mr(i),i=1,7)

Allocate (mt(4,nser))

! Read in transfer function
Do i = 1, nis
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Read (nin,*) mt(1:4,i)
End Do

! Calculate NPARA
npara = 0
Do i = 1, nis

npara = npara + mt(2,i) + mt(3,i)
End Do
npara = npara + mr(1) + mr(3) + mr(4) + mr(6) + nser

ldxxyn = nfv
ldparx = npara
Allocate (para(npara),sttf(nsttf),xxyn(ldxxyn,nser),mrx(7,nser), &

parx(ldparx,nser),rmsxy(nser),fva(nfv),fsd(nfv))

! Read in rest of data
Read (nin,*) sttf(1:nsttf)
Read (nin,*) para(1:npara)
Read (nin,*)(xxyn(i,1:nis),i=1,nfv)
ncf = mr(1) + mr(3) + mr(4) + mr(6)
Do i = 1, nis

Read (nin,*) mrx(1:7,i)
nparax = mrx(1,i) + mrx(3,i) + mrx(4,i) + mrx(6,i)
ncf = max(ncf,nparax)
Read (nin,*) parx(1:nparax,i)

End Do
Read (nin,*) rmsxy(1:nser)

! Calculate size of workspace array
ncg = 0
nch = 0
nci = 0
Do i = 1, nis

If (mt(4,i)>1) Then
ncg = max(ncg,mrx(1,i))
nch = max(nch,mt(1,i)+mrx(3,i))
nci = max(nci,mt(1,i)+mrx(3,i)+mrx(1,i))

End If
ncf = max(ncf,mrx(1,i)+mrx(3,i)+mrx(4,i)+mrx(6,i))

End Do
ncj = nci + 1
nck = nfv + max(ncg,nch)
ncl = max(nsttf,ncf,ncj,nck)
ncm = max(nsttf+4*ncf,ncl)
iwa = ncm + 3*ncl + nfv
Allocate (wa(iwa))

! Produce forecasts
ifail = 0
Call g13bhf(sttf,nsttf,mr,nser,mt,para,npara,nfv,xxyn,ldxxyn,mrx,parx, &

ldparx,rmsxy,kzef,fva,fsd,wa,iwa,ifail)

! Display results
Write (nout,*) ’The forecast values and their standard errors’
Write (nout,*)
Write (nout,*) ’ I FVA FSD’
Write (nout,*)
Write (nout,99999)(i,fva(i),fsd(i),i=1,nfv)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,nfv,nser,xxyn,ldxxyn, &

’The values of z(t) and n(t)’,ifail)
Write (nout,99998) ’The first ’, nis, &

’ columns hold the z(t) and the last column the n(t)’

99999 Format (1X,I4,2F10.4)
99998 Format (1X,A,I0,A)

End Program g13bhfe
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10.2 Program Data

G13BHF Example Program Data
10 2 4 1 :: NSTTF,NSER,NFV,KZEF
1 0 0 0 1 1 4 :: MR

1 0 1 3 :: Transfer fun. for series 1, MT(:,1)
6.7160 158.3022 -80.3352 -74.8937

-80.7694 -70.3022 0.8476 -2.0234
-5.8080 10.2943 :: STTF
0.5158 0.9994 8.6343 0.6726

-0.3172 :: PARA
6.923
6.939
6.705
6.914 :: Input series, XXYN(:,1:(NSER-1))

2 0 2 0 1 1 4 :: Order for input series 1, MRX(:,1)
1.6743 -0.9505 1.4605 -0.4862 0.8993 :: Params for input series 1, PARX(:,1)
0.1720 22.9256 :: RMSXY

10.3 Program Results

G13BHF Example Program Results

The forecast values and their standard errors

I FVA FSD

1 88.2723 4.7881
2 99.9425 6.4690
3 100.6499 7.3175
4 95.0958 7.5534

The values of z(t) and n(t)
1 2

1 164.4620 -76.1897
2 170.3924 -70.4499
3 174.5193 -73.8694
4 175.2747 -80.1789
The first 1 columns hold the z(t) and the last column the n(t)
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NAG Library Routine Document

G13BJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13BJF produces forecasts of a time series (the output series) which depends on one or more other
(input) series via a previously estimated multi-input model for which the state set information is not
available. The future values of the input series must be supplied. In contrast with G13BHF the original
past values of the input and output series are required. Standard errors of the forecasts are produced. If
future values of some of the input series have been obtained as forecasts using ARIMA models for
those series, this may be allowed for in the calculation of the standard errors.

2 Specification

SUBROUTINE G13BJF (MR, NSER, MT, PARA, NPARA, KFC, NEV, NFV, XXY, LDXXY,
KZEF, RMSXY, MRX, PARX, LDPARX, FVA, FSD, STTF,
ISTTF, NSTTF, WA, IWA, MWA, IMWA, IFAIL)

&
&

INTEGER MR(7), NSER, MT(4,NSER), NPARA, KFC, NEV, NFV,
LDXXY, KZEF, MRX(7,NSER), LDPARX, ISTTF, NSTTF, IWA,
MWA(IMWA), IMWA, IFAIL

&
&

REAL (KIND=nag_wp) PARA(NPARA), XXY(LDXXY,NSER), RMSXY(NSER),
PARX(LDPARX,NSER), FVA(NFV), FSD(NFV), STTF(ISTTF),
WA(IWA)

&
&

3 Description

G13BJF has two stages. The first stage is essentially the same as a call to the model estimation routine
G13BEF, with zero iterations. In particular, all the parameters remain unchanged in the supplied input
series transfer function models and output noise series ARIMA model. The internal nuisance parameters
associated with the pre-observation period effects of the input series are estimated where requested, and
so are any backforecasts of the output noise series. The output components zt and nt, and residuals at
are calculated exactly as in Section 3 in G13BEF, and the state set for forecasting is constituted.

The second stage is essentially the same as a call to the forecasting routine G13BHF. The same
information is required, and the same information is returned.

Use of G13BJF should be confined to situations in which the state set for forecasting is unknown.
Forecasting from the original data is relatively expensive because it requires recalculation of the state
set. G13BJF returns the state set for use in producing further forecasts using G13BHF, or for updating
the state set using G13BGF.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

5 Arguments

1: MRð7Þ – INTEGER array Input

On entry: the orders vector p; d; q; P ;D;Q; sð Þ of the ARIMA model for the output noise
component.

p, q, P and Q refer respectively to the number of autoregressive 
ð Þ, moving average �ð Þ,
seasonal autoregressive �ð Þ and seasonal moving average �ð Þ parameters.
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d, D and s refer respectively to the order of non-seasonal differencing, the order of seasonal
differencing and the seasonal period.

Constraints:

p, d, q, P , D, Q, s � 0;
pþ q þ P þQ > 0;
s 6¼ 1;
if s ¼ 0, P þDþQ ¼ 0;
if s > 1, P þDþQ > 0;
dþ s� P þDð Þ � n;
pþ d� q þ s� P þD�Qð Þ � n.

2: NSER – INTEGER Input

On entry: the number of input and output series. There may be any number of input series
(including none), but only one output series.

3: MTð4;NSERÞ – INTEGER array Input

On entry: the transfer function model orders b, p and q of each of the input series. The data for
input series i is held in column i. Row 1 holds the value bi, row 2 holds the value qi and row 3
holds the value pi.

For a simple input, bi ¼ qi ¼ pi ¼ 0.

Row 4 holds the value ri, where ri ¼ 1 for a simple input, and ri ¼ 2 or 3 for a transfer function
input.

The choice ri ¼ 3 leads to estimation of the pre-period input effects as nuisance parameters, and
ri ¼ 2 suppresses this estimation. This choice may affect the returned forecasts and the state set.

When ri ¼ 1, any nonzero contents of rows 1, 2 and 3 of column i are ignored.

Constraint: MTð4; iÞ ¼ 1, 2 or 3, for i ¼ 1; 2; . . . ;NSER � 1.

4: PARAðNPARAÞ – REAL (KIND=nag_wp) array Input/Output

On entry: estimates of the multi-input model parameters. These are in order, firstly the ARIMA
model parameters: p values of 
 parameters, q values of � parameters, P values of � parameters,
Q values of � parameters.

These are followed by the transfer function model parameter values !0; !1; . . . ; !q1 , �1; . . . ; �p1 for
the first of any input series and similarly for each subsequent input series. The final component of
PARA is the value of the constant c.

On exit: the parameter values may be updated using an additional iteration in the estimation
process.

5: NPARA – INTEGER Input

On entry : the exact number of 
, �, �, �, !, �, c parameters , so tha t
NPARA ¼ pþ q þ P þQþ NSERþ

P
pþ qð Þ, the summation being over all the input series.

(c must be included whether its value was previously estimated or was set fixed.)

6: KFC – INTEGER Input

On entry: must be set to 1 if the constant was estimated when the model was fitted, and 0 if it
was held at a fixed value. This only affects the degrees of freedom used in calculating the
estimated residual variance.

Constraint: KFC ¼ 0 or 1.
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7: NEV – INTEGER Input

On entry: the number of original (undifferenced) values in each of the input and output time
series.

8: NFV – INTEGER Input

On entry: the number of forecast values of the output series required.

Constraint: NFV > 0.

9: XXYðLDXXY;NSERÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the columns of XXY must contain in the first NEV places, the past values of each of
the input and output series, in that order. In the next NFV places, the columns relating to the
input series (i.e., columns 1 to NSER� 1) contain the future values of the input series which are
necessary for construction of the forecasts of the output series y.

On exit: if KZEF ¼ 0 then XXY is unchanged except that the relevant NFV values in the column
relating to the output series (column NSER) contain the forecast values (FVA), but if KZEF 6¼ 0
then the columns of XXY contain the corresponding values of the input component series zt and
the values of the output noise component nt, in that order.

10: LDXXY – INTEGER Input

On entry: the first dimension of the array XXY as declared in the (sub)program from which
G13BJF is called.

Constraint: LDXXY � NEVþ NFVð Þ.

11: KZEF – INTEGER Input

On entry: must be set to 0 if the relevant NFV values of the forecasts (FVA) are to be held in the
output series column (NSER) of XXY (which is otherwise unchanged) on exit, and must not be
set to 0 if the values of the input component series zt and the values of the output noise
component nt are to overwrite the contents of XXY on exit.

12: RMSXYðNSERÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the first NSER � 1ð Þ elements of RMSXY must contain the estimated residual variance
of the input series ARIMA models. In the case of those inputs for which no ARIMA model is
available or its effects are to be excluded in the calculation of forecast standard errors, the
corresponding entry of RMSXY should be set to 0.

On exit: RMSXYðNSERÞ contains the estimated residual variance of the output noise ARIMA
model which is calculated from the supplied series. Otherwise RMSXY is unchanged.

13: MRXð7;NSERÞ – INTEGER array Input/Output

On entry: the orders array for each of the input series ARIMA models. Thus, column i contains
values of p, d, q, P , D, Q, s for input series i. In the case of those inputs for which no ARIMA
model is available, the corresponding orders should be set to 0.

On exit: unchanged, except for column NSER which is used as workspace.

14: PARXðLDPARX;NSERÞ – REAL (KIND=nag_wp) array Input

On entry: values of the parameters (
, �, �, and �) for each of the input series ARIMA models.

Thus column i contains MRXð1; iÞ values of 
, MRXð3; iÞ values of �, MRXð4; iÞ values of �
and MRXð6; iÞ values of �, in that order.

Values in the columns relating to those input series for which no ARIMA model is available are
ignored.
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15: LDPARX – INTEGER Input

On entry: the first dimension of the array PARX as declared in the (sub)program from which
G13BJF is called.

Constraint: LDPARX � nce, where nce is the maximum number of parameters in any of the
input series ARIMA models. If there are no input series, then LDPARX � 1.

16: FVAðNFVÞ – REAL (KIND=nag_wp) array Output

On exit: the required forecast values for the output series. (Note that these are also output in
column NSER of XXY if KZEF ¼ 0.)

17: FSDðNFVÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors for each of the forecast values.

18: STTFðISTTFÞ – REAL (KIND=nag_wp) array Output

On exit: the NSTTF values of the state set based on the first NEV sets of (past) values of the
input and output series.

19: ISTTF – INTEGER Input

On entry: the dimension of the array STTF as declared in the (sub)program from which G13BJF
is called.

Constraint: ISTTF � P � sð Þ þ dþ D� sð Þ þ q þmax p;Q� sð Þ þ ncf , where
ncf ¼

P
bi þ qi þ pið Þ and the summation is over all input series for which ri > 1.

20: NSTTF – INTEGER Output

On exit: the number of values in the state set array STTF.

21: WAðIWAÞ – REAL (KIND=nag_wp) array Workspace
22: IWA – INTEGER Input

On entry: the dimension of the array WA as declared in the (sub)program from which G13BJF is
called.

It is not practical to outline a method for deriving the exact minimum permissible value of IWA,
but the following gives a reasonably good approximation which tends to be on the conservative
side.

Note: there are three error indicators associated with IWA. These are IFAIL ¼ 4, 5 or 6. The
first of these probably indicates an abnormal entry value of NFV, while the second indicates that
IWA is much too small and needs to be increased by a substantial amount. The last of these
indicates that IWA is too small but returns the necessary minimum value in MWAð1Þ.
Let q0 ¼ q þ Q� sð Þ and d0 ¼ dþ D� sð Þ, where the output noise ARIMA model orders are p,
d, q, P , D, Q, s.

Let there be l input series, where l ¼ NSER� 1.

Let mxi ¼ max bi þ qi; pið Þ,
if ri ¼ 3, for

i ¼ 1; 2; . . . ; l, if
l > 0
mxi ¼ 0, if ri 6¼ 3, for i ¼ 1; 2; . . . ; l, if l > 0

where the transfer function model orders of input series i are given by bi, qi, pi, ri.

Let qx ¼ max q0;mx1;mx2; . . .;mxlð Þ

Let ncg ¼ NPARAþ qxþ
Xl
i¼1
mxi and nch ¼ N þ dþ 6� qx.
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Finally, let nci ¼ NSER, and then increment nci by 1 every time any of the following conditions
are satisfied. (The last two conditions should be applied separately to each input series, so that
for example if we have two input series and p1 > 0 and p2 > 0, then nci is incremented by 2 in
respect of these.)

The conditions are:

p > 0

q > 0

P > 0

Q > 0

qx > 0

mxi > 0, separately, for i ¼ 1; 2; . . . ; l, if l > 0

pi > 0, separately, for i ¼ 1; 2; . . . ; l, if l > 0,

then IWA > 2� ncgð Þ2 þ nch � nci þ 4ð Þ.

23: MWAðIMWAÞ – INTEGER array Workspace
24: IMWA – INTEGER Input

On entry: the dimension of the array MWA as declared in the (sub)program from which G13BJF
is called.

Constraint: IMWA � 16� NSERð Þ þ 7� ncgð Þ þ 3� NPARAð Þ þ 27.

The derivation of ncg is described under IWA.

When IMWA is too small, as indicated by IFAIL ¼ 7, the requisite minimum value of IMWA is
returned in MWAð1Þ.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, KFC < 0,
or KFC > 1,
or LDXXY < NEVþ NFVð Þ,
or NFV � 0.
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IFAIL ¼ 2

On entry, LDPARX is too small or NPARA is inconsistent with the orders specified in arrays MR
and MT; or one of the ri, stored in MTð4; iÞ, does not equal 1, 2 or 3.

IFAIL ¼ 3

On entry or during execution, one or more sets of � parameters do not satisfy the stationarity or
invertibility test conditions.

IFAIL ¼ 4

On entry, IWA is too small for the final forecasting calculations. This is a highly unlikely error,
and would probably indicate that NFV was abnormally large.

IFAIL ¼ 5

On entry, IWA is too small by a very considerable margin. No information is supplied about the
requisite minimum size.

IFAIL ¼ 6

On entry, IWA is too small, but the requisite minimum size is returned in MWAð1Þ.

IFAIL ¼ 7

On entry, IMWA is too small, but the requisite minimum size is returned in MWAð1Þ.

IFAIL ¼ 8

Unable to calculate the latest parameter estimates.

IFAIL ¼ 9

This indicates a failure in the inversion of the second derivative matrix associated with parameter
estimation.

IFAIL ¼ 10

On entry or during execution, one or more sets of the ARIMA (
, �, � or �) parameters do not
satisfy the stationarity or invertibility test conditions.

IFAIL ¼ 11

On entry, ISTTF is too small.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13BJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13BJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G13BJF is approximately proportional to the product of the length of each series and
the square of the number of parameters in the multi-input model.

10 Example

The data in this example relates to 40 observations of an output time series and 5 input time series. The
output series has one autoregressive 
ð Þ parameter and one seasonal moving average �ð Þ parameter,
with initial values 
 ¼ 0:495, � ¼ 0:238 and c ¼ �82:858. The seasonal period is 4. This example
differs from the example in G13BEF in that four of the input series are simple series and the fifth is
defined by a transfer function with orders b5 ¼ 1, q5 ¼ 0, p5 ¼ 1, r5 ¼ 3, which allows for pre-
observation period effects. The initial values for the transfer model are:

!1 ¼ �0:367; !2 ¼ �3:876; !3 ¼ 4:516; !4 ¼ 2:474 !5 ¼ 8:629; �1 ¼ 0:688:

A further 8 values of the input series are supplied, and it is assumed that the values for the fifth series
have themselves been forecast from an ARIMA model with orders 2 0 2 0 1 1 4 ; in which

1 ¼ 1:6743, 
2 ¼ �0:9505, �1 ¼ 1:4605, �2 ¼ �0:4862 and �1 ¼ 0:8993, and for which the residual
mean square is 0:1720.

The following are computed and printed out: the state set after initial processing of the original 40 sets
of values, the estimated residual variance for the output noise series, the 8 forecast values and their
standard errors, and the values of the components zt and the output noise component nt.

10.1 Program Text

Program g13bjfe

! G13BJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13bjf, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: dp, i, ifail, imwa, isttf, iwa, kfc, &

kzef, ldparx, ldxxy, mx, n, ncf, &
ncg, nch, nci, nev, nfv, nis, npara, &
nparx, nser, nsttf, qp, qx, smx

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fsd(:), fva(:), para(:), parx(:,:), &

rmsxy(:), sttf(:), wa(:), xxy(:,:)
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Integer :: mr(7)
Integer, Allocatable :: mrx(:,:), mt(:,:), mwa(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, sum

! .. Executable Statements ..
Write (nout,*) ’G13BJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) kfc, nev, nfv, nser, kzef

! Number of input series
nis = nser - 1

Allocate (mt(4,nser))

! Read in the orders for the output noise
Read (nin,*) mr(1:7)

! Read in transfer function
Do i = 1, nis

Read (nin,*) mt(1:4,i)
End Do

! Calculate NPARA
npara = 0
Do i = 1, nis

npara = npara + mt(2,i) + mt(3,i)
End Do
npara = npara + mr(1) + mr(3) + mr(4) + mr(6) + nser

! Calculate array sizes
n = nev + nfv
ldxxy = n
ncf = 0
Do i = 1, nis

If (mt(4,i)>1) Then
ncf = sum(mt(1:3,i))

End If
End Do
isttf = mr(4)*mr(7) + mr(2) + mr(5)*mr(7) + mr(3) + &

max(mr(1),mr(6)*mr(7)) + ncf
qp = mr(3) + mr(6)*mr(7)
dp = mr(2) + mr(5)*mr(7)
smx = 0
qx = qp
nci = nser
Do i = 1, nis

If (mt(4,i)==3) Then
mx = max(mt(1,i)+mt(2,i),mt(3,i))
nci = nci + 1

Else
mx = 0

End If
If (mt(3,i)>0) Then

nci = nci + 1
End If
smx = smx + mx
qx = max(qx,mx)

End Do
ncg = npara + qx + smx
nch = dp + 6*qx + nev
If (qx>0) Then

nci = nci + 1
End If
If (mr(1)>0) Then

nci = nci + 1
End If
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If (mr(3)>0) Then
nci = nci + 1

End If
If (mr(4)>0) Then

nci = nci + 1
End If
If (mr(6)>0) Then

nci = nci + 1
End If
iwa = 2*(ncg**2) + nch*(nci+4)
imwa = 16*nser + 7*ncg + 3*npara + 27
Allocate (para(npara),xxy(ldxxy,nser),rmsxy(nser),mrx(7,nser),fva(nfv), &

fsd(nfv),sttf(isttf),wa(iwa),mwa(imwa))

! Read in multi-input model parameters
Read (nin,*) para(1:npara)

! Read in the observed values for the input and output series
Read (nin,*)(xxy(i,1:nser),i=1,nev)

! Read in the future values for the input series
Read (nin,*)(xxy(nev+i,1:nis),i=1,nfv)

If (nis>=1) Then
! Read in residual variance of input series

Read (nin,*) rmsxy(1:nis)

! Read in orders for input series ARIMA where available
! (i.e. where residual variance is not zero)

ldparx = 0
Do i = 1, nis

If (rmsxy(i)/=0.0E0_nag_wp) Then
Read (nin,*) mrx(1:7,i)
nparx = mrx(1,i) + mrx(3,i) + mrx(4,i) + mrx(6,i)
ldparx = max(ldparx,nparx)

Else
mrx(1:7,i) = 0

End If
End Do

Else
! No input series

ldparx = 1
End If

Allocate (parx(ldparx,nser))

! Read in parameters for each input series ARIMA
If (nis>0) Then

Do i = 1, nis
If (rmsxy(i)/=0.0E0_nag_wp) Then

nparx = mrx(1,i) + mrx(3,i) + mrx(4,i) + mrx(6,i)
If (nparx>0) Then

Read (nin,*) parx(1:nparx,i)
End If

End If
End Do

End If

ifail = 0
Call g13bjf(mr,nser,mt,para,npara,kfc,nev,nfv,xxy,ldxxy,kzef,rmsxy,mrx, &

parx,ldparx,fva,fsd,sttf,isttf,nsttf,wa,iwa,mwa,imwa,ifail)

! Display results
Write (nout,99999) ’After processing’, nev, ’ sets of observations’
Write (nout,99998) nsttf, ’ values of the state set are derived’
Write (nout,*)
Write (nout,99997) sttf(1:nsttf)
Write (nout,*)
Write (nout,*) ’The residual mean square for the output’
Write (nout,99996) ’series is also derived and its value is’, &

rmsxy(nser)
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Write (nout,*)
Write (nout,*) ’The forecast values and their standard errors are’
Write (nout,*)
Write (nout,*) ’ I FVA FSD’
Write (nout,*)
Write (nout,99995)(i,fva(i),fsd(i),i=1,nfv)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,nser,xxy,ldxxy, &

’The values of z(t) and n(t) are’,ifail)
Write (nout,99994) ’The first ’, nis, &

’ columns hold the z(t) and the last column the n(t)’

99999 Format (1X,A,I3,A)
99998 Format (1X,I3,A)
99997 Format (1X,6F10.4)
99996 Format (1X,A,F10.4)
99995 Format (1X,I4,F10.3,F10.4)
99994 Format (1X,A,I0,A)

End Program g13bjfe

10.2 Program Data

G13BJF Example Program Data
1 40 8 6 1 :: KFC,NEV,NFV,NSER,KZEF
1 0 0 0 0 1 4 :: MR

0 0 0 1 :: Transfer fun. series 1 MT(:,1)
0 0 0 1 :: Transfer fun. series 2 MT(:,2)
0 0 0 1 :: Transfer fun. series 3 MT(:,3)
0 0 0 1 :: Transfer fun. series 4 MT(:,4)
1 0 1 3 :: Transfer fun. series 5 MT(:,5)
0.4950 0.2380 -0.3670 -3.8760 4.5160
2.4740 8.6290 0.6880 -82.8580 :: End of PARA

1.0 1.0 0.0 0.0 8.075 105.0
1.0 0.0 1.0 0.0 7.819 119.0
1.0 0.0 0.0 1.0 7.366 119.0
1.0 -1.0 -1.0 -1.0 8.113 109.0
2.0 1.0 0.0 0.0 7.380 117.0
2.0 0.0 1.0 0.0 7.134 135.0
2.0 0.0 0.0 1.0 7.222 126.0
2.0 -1.0 -1.0 -1.0 7.768 112.0
3.0 1.0 0.0 0.0 7.386 116.0
3.0 0.0 1.0 0.0 6.965 122.0
3.0 0.0 0.0 1.0 6.478 115.0
3.0 -1.0 -1.0 -1.0 8.105 115.0
4.0 1.0 0.0 0.0 8.060 122.0
4.0 0.0 1.0 0.0 7.684 138.0
4.0 0.0 0.0 1.0 7.580 135.0
4.0 -1.0 -1.0 -1.0 7.093 125.0
5.0 1.0 0.0 0.0 6.129 115.0
5.0 0.0 1.0 0.0 6.026 108.0
5.0 0.0 0.0 1.0 6.679 100.0
5.0 -1.0 -1.0 -1.0 7.414 96.0
6.0 1.0 0.0 0.0 7.112 107.0
6.0 0.0 1.0 0.0 7.762 115.0
6.0 0.0 0.0 1.0 7.645 123.0
6.0 -1.0 -1.0 -1.0 8.639 122.0
7.0 1.0 0.0 0.0 7.667 128.0
7.0 0.0 1.0 0.0 8.080 136.0
7.0 0.0 0.0 1.0 6.678 140.0
7.0 -1.0 -1.0 -1.0 6.739 122.0
8.0 1.0 0.0 0.0 5.569 102.0
8.0 0.0 1.0 0.0 5.049 103.0
8.0 0.0 0.0 1.0 5.642 89.0
8.0 -1.0 -1.0 -1.0 6.808 77.0
9.0 1.0 0.0 0.0 6.636 89.0
9.0 0.0 1.0 0.0 8.241 94.0
9.0 0.0 0.0 1.0 7.968 104.0
9.0 -1.0 -1.0 -1.0 8.044 108.0
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10.0 1.0 0.0 0.0 7.791 119.0
10.0 0.0 1.0 0.0 7.024 126.0
10.0 0.0 0.0 1.0 6.102 119.0
10.0 -1.0 -1.0 -1.0 6.053 103.0 :: XXY (observed values)
11.0 1.0 0.0 0.0 5.941
11.0 0.0 1.0 0.0 5.386
11.0 0.0 0.0 1.0 5.811
11.0 -1.0 -1.0 -1.0 6.716
12.0 1.0 0.0 0.0 6.923
12.0 0.0 1.0 0.0 6.939
12.0 0.0 0.0 1.0 6.705
12.0 -1.0 -1.0 -1.0 6.914 :: End of XXY (future values)
0.0 0.0 0.0 0.0 0.1720 :: End of RMSXY
2 0 2 0 1 1 4 :: Orders for series 5, MRX(:,5)

1.6743 -0.9505 1.4605 -0.4862 0.8993 :: Params for series 5, PARX(:,5)

10.3 Program Results

G13BJF Example Program Results

After processing 40 sets of observations
6 values of the state set are derived

6.0530 193.8741 2.0790 -2.8580 -3.5906 -2.5203

The residual mean square for the output
series is also derived and its value is 20.7599

The forecast values and their standard errors are

I FVA FSD

1 93.398 4.5563
2 96.958 6.2172
3 86.046 7.0933
4 77.589 7.3489
5 82.139 7.3941
6 96.276 7.5823
7 98.345 8.1445
8 93.577 8.8536

The values of z(t) and n(t) are
1 2 3 4 5 6

1 -0.3391 -3.8886 0.0000 0.0000 188.6028 -79.3751
2 -0.3391 -0.0000 4.5139 0.0000 199.4379 -84.6127
3 -0.3391 -0.0000 0.0000 2.4789 204.6834 -87.8232
4 -0.3391 3.8886 -4.5139 -2.4789 204.3834 -91.9402
5 -0.6782 -3.8886 0.0000 0.0000 210.6229 -89.0560
6 -0.6782 -0.0000 4.5139 0.0000 208.5905 -77.4262
7 -0.6782 -0.0000 0.0000 2.4789 205.0696 -80.8703
8 -0.6782 3.8886 -4.5139 -2.4789 203.4065 -87.6242
9 -1.0173 -3.8886 0.0000 0.0000 206.9738 -86.0678

10 -1.0173 -0.0000 4.5139 0.0000 206.1317 -87.6283
11 -1.0173 -0.0000 0.0000 2.4789 201.9196 -88.3812
12 -1.0173 3.8886 -4.5139 -2.4789 194.8194 -75.6979
13 -1.3564 -3.8886 0.0000 0.0000 203.9738 -76.7287
14 -1.3564 -0.0000 4.5139 0.0000 209.8837 -75.0412
15 -1.3564 -0.0000 0.0000 2.4789 210.7052 -76.8277
16 -1.3564 3.8886 -4.5139 -2.4789 210.3730 -80.9125
17 -1.6955 -3.8886 0.0000 0.0000 205.9421 -85.3580
18 -1.6955 -0.0000 4.5139 0.0000 194.5753 -89.3937
19 -1.6955 -0.0000 0.0000 2.4789 185.8662 -86.6496
20 -1.6955 3.8886 -4.5139 -2.4789 185.5090 -84.7094
21 -2.0346 -3.8886 0.0000 0.0000 191.6056 -78.6824
22 -2.0346 -0.0000 4.5139 0.0000 193.1941 -80.6734
23 -2.0346 -0.0000 0.0000 2.4789 199.8958 -77.3402
24 -2.0346 3.8886 -4.5139 -2.4789 203.4970 -76.3583
25 -2.3737 -3.8886 0.0000 0.0000 214.5519 -80.2896
26 -2.3737 -0.0000 4.5139 0.0000 213.7702 -79.9104
27 -2.3737 -0.0000 0.0000 2.4789 216.7963 -76.9015
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28 -2.3737 3.8886 -4.5139 -2.4789 206.7803 -79.3024
29 -2.7128 -3.8886 0.0000 0.0000 200.4157 -91.8142
30 -2.7128 -0.0000 4.5139 0.0000 185.9409 -84.7420
31 -2.7128 -0.0000 0.0000 2.4789 171.4951 -82.2613
32 -2.7128 3.8886 -4.5139 -2.4789 166.6735 -83.8565
33 -3.0519 -3.8886 0.0000 0.0000 173.4176 -77.4771
34 -3.0519 -0.0000 4.5139 0.0000 176.5733 -84.0353
35 -3.0519 -0.0000 0.0000 2.4789 192.5940 -88.0211
36 -3.0519 3.8886 -4.5139 -2.4789 201.2606 -87.1045
37 -3.3910 -3.8886 0.0000 0.0000 207.8790 -81.5993
38 -3.3910 -0.0000 4.5139 0.0000 210.2493 -85.3721
39 -3.3910 -0.0000 0.0000 2.4789 205.2616 -85.3495
40 -3.3910 3.8886 -4.5139 -2.4789 193.8741 -84.3790
41 -3.7301 -3.8886 0.0000 0.0000 185.6167 -84.6003
42 -3.7301 0.0000 4.5139 0.0000 178.9692 -82.7953
43 -3.7301 0.0000 0.0000 2.4789 169.6066 -82.3091
44 -3.7301 3.8886 -4.5139 -2.4789 166.8325 -82.4095
45 -4.0692 -3.8886 0.0000 0.0000 172.7331 -82.6360
46 -4.0692 0.0000 4.5139 0.0000 178.5789 -82.7481
47 -4.0692 0.0000 0.0000 2.4789 182.7389 -82.8036
48 -4.0692 3.8886 -4.5139 -2.4789 183.5818 -82.8311
The first 5 columns hold the z(t) and the last column the n(t)
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NAG Library Routine Document

G13CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13CAF calculates the smoothed sample spectrum of a univariate time series using one of four lag
windows – rectangular, Bartlett, Tukey or Parzen window.

2 Specification

SUBROUTINE G13CAF (NX, MTX, PX, IW, MW, IC, NC, C, KC, L, LG, NXG, XG,
NG, STATS, IFAIL)

&

INTEGER NX, MTX, IW, MW, IC, NC, KC, L, LG, NXG, NG, IFAIL
REAL (KIND=nag_wp) PX, C(NC), XG(NXG), STATS(4)

3 Description

The smoothed sample spectrum is defined as

f̂ !ð Þ ¼ 1

2	
C0 þ 2

XM�1
k¼1

wkCk cos !kð Þ
 !

;

where M is the window width, and is calculated for frequency values

!i ¼
2	i

L
; i ¼ 0; 1; . . . ; L=2½ �;

where ½� denotes the integer part.

The autocovariances Ck may be supplied by you, or constructed from a time series x1; x2; . . . ; xn, as

Ck ¼ 1
n

Xn�k
t¼1
xtxtþk;

the fast Fourier transform (FFT) being used to carry out the convolution in this formula.

The time series may be mean or trend corrected (by classical least squares), and tapered before
calculation of the covariances, the tapering factors being those of the split cosine bell:

1
2 1� cos 	 t� 1

2

� �
=T

� �� �
; 1 � t � T

1
2 1� cos 	 n� tþ 1

2

� �
=T

� �� �
; nþ 1� T � t � n

1; otherwise;

where T ¼ np

2

h i
and p is the tapering proportion.

The smoothing window is defined by

wk ¼W
k

M

� �
; k �M � 1;

which for the various windows is defined over 0 � � < 1 by

rectangular:

W �ð Þ ¼ 1
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Bartlett:

W �ð Þ ¼ 1� �

Tukey:

W �ð Þ ¼ 1
2 1þ cos 	�ð Þð Þ

Parzen:

W �ð Þ ¼ 1� 6�2 þ 6�3; 0 � � � 1
2

W �ð Þ ¼ 2 1� �ð Þ3; 1
2 < � < 1:

The sampling distribution of f̂ !ð Þ is approximately that of a scaled �2
d variate, whose degrees of

freedom d is provided by the routine, together with multiplying limits mu, ml from which approximate

95% confidence intervals for the true spectrum f !ð Þ may be constructed as ml� f̂ !ð Þ;mu� f̂ !ð Þ
h i

.

Alternatively, log f̂ !ð Þ may be returned, with additive limits.

The bandwidth b of the corresponding smoothing window in the frequency domain is also provided.
Spectrum estimates separated by (angular) frequencies much greater than b may be assumed to be
independent.

4 References

Bloomfield P (1976) Fourier Analysis of Time Series: An Introduction Wiley

Jenkins G M and Watts D G (1968) Spectral Analysis and its Applications Holden–Day

5 Arguments

1: NX – INTEGER Input

On entry: n, the length of the time series.

Constraint: NX � 1.

2: MTX – INTEGER Input

On entry: if covariances are to be calculated by the routine (IC ¼ 0), MTX must specify whether
the data are to be initially mean or trend corrected.

MTX ¼ 0
For no correction.

MTX ¼ 1
For mean correction.

MTX ¼ 2
For trend correction.

Constraint: if IC ¼ 0, 0 � MTX � 2

If covariances are supplied (IC 6¼ 0), MTX is not used.

3: PX – REAL (KIND=nag_wp) Input

On entry: if covariances are to be calculated by the routine (IC ¼ 0), PX must specify the
proportion of the data (totalled over both ends) to be initially tapered by the split cosine bell
taper.
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If covariances are supplied IC 6¼ 0ð Þ, PX must specify the proportion of data tapered before the
supplied covariances were calculated and after any mean or trend correction. PX is required for
the calculation of output statistics. A value of 0:0 implies no tapering.

Constraint: 0:0 � PX � 1:0.

4: IW – INTEGER Input

On entry: the choice of lag window.

IW ¼ 1
Rectangular.

IW ¼ 2
Bartlett.

IW ¼ 3
Tukey.

IW ¼ 4
Parzen.

Constraint: 1 � IW � 4.

5: MW – INTEGER Input

On entry: M, the ‘cut-off’ point of the lag window. Windowed covariances at lag M or greater
are zero.

Constraint: 1 � MW � NX.

6: IC – INTEGER Input

On entry: indicates whether covariances are to be calculated in the routine or supplied in the call
to the routine.

IC ¼ 0
Covariances are to be calculated.

IC 6¼ 0
Covariances are to be supplied.

7: NC – INTEGER Input

On entry: the number of covariances to be calculated in the routine or supplied in the call to the
routine.

Constraint: MW � NC � NX.

8: CðNCÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IC 6¼ 0, C must contain the NC covariances for lags from 0 to NC� 1ð Þ, otherwise C
need not be set.

On exit: if IC ¼ 0, C will contain the NC calculated covariances.

If IC 6¼ 0, the contents of C will be unchanged.

9: KC – INTEGER Input

On entry: if IC ¼ 0, KC must specify the order of the fast Fourier transform (FFT) used to
calculate the covariances.

If IC 6¼ 0, that is covariances are supplied, KC is not used.

Constraint: KC � NXþ NC.

G13 – Time Series Analysis G13CAF

Mark 26 G13CAF.3



10: L – INTEGER Input

On entry: L, the frequency division of the spectral estimates as 2	
L . Therefore it is also the order

of the FFT used to construct the sample spectrum from the covariances.

Constraint: L � 2�MW � 1.

11: LG – INTEGER Input

On entry: indicates whether unlogged or logged spectral estimates and confidence limits are
required.

LG ¼ 0
Unlogged.

LG 6¼ 0
Logged.

12: NXG – INTEGER Input

On entry: the dimension of the array XG as declared in the (sub)program from which G13CAF is
called.

Constraints:

if IC ¼ 0, NXG � max KC;Lð Þ;
if IC 6¼ 0, NXG � L.

13: XGðNXGÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if the covariances are to be calculated, then XG must contain the NX data points. If
covariances are supplied, XG may contain any values.

On exit: contains the NG spectral estimates, f̂ !ið Þ, for i ¼ 0; 1; . . . ; L=2½ � in XGð1Þ to XGðNGÞ
respectively (logged if LG ¼ 1). The elements XGðiÞ, for i ¼ NGþ 1; . . . ;NXG contain 0:0.

14: NG – INTEGER Output

On exit: the number of spectral estimates, L=2½ � þ 1, in XG.

15: STATSð4Þ – REAL (KIND=nag_wp) array Output

On exit: four associated statistics. These are the degrees of freedom in STATSð1Þ, the lower and
upper 95% confidence limit factors in STATSð2Þ and STATSð3Þ respectively (logged if LG ¼ 1),
and the bandwidth in STATSð4Þ.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IC ¼ 0 and MTX < 0: MTX ¼ valueh i.
On entry, IC ¼ 0 and MTX > 2: MTX ¼ valueh i.
On entry, IW ¼ valueh i.
Constraint: IW ¼ 1, 2, 3 or 4.

On entry, MW ¼ valueh i.
Constraint: MW � 1.

On entry, MW ¼ valueh i and NX ¼ valueh i.
Constraint: MW � NX.

On entry, NC ¼ valueh i and MW ¼ valueh i.
Constraint: NC � MW.

On entry, NC ¼ valueh i and NX ¼ valueh i.
Constraint: NC � NX.

On entry, NX ¼ valueh i.
Constraint: NX � 1.

On entry, NXG ¼ valueh i, KC ¼ valueh i and L ¼ valueh i.
Constraint: if IC ¼ 0, NXG � max KC;Lð Þ.
On entry, NXG ¼ valueh i and L ¼ valueh i.
Constraint: if IC 6¼ 0, NXG � L.

On entry, PX ¼ valueh i.
Constraint: PX � 0:0.

On entry, PX ¼ valueh i.
Constraint: PX � 1:0.

IFAIL ¼ 2

On entry, KC ¼ valueh i, NX ¼ valueh i and NC ¼ valueh i.
Constraint: if IC ¼ 0, KC � NXþ NCð Þ.

IFAIL ¼ 3

On entry, L ¼ valueh i and MW ¼ valueh i.
Constraint: L � 2�MW� 1.

IFAIL ¼ 4

One or more spectral estimates are negative.
Unlogged spectral estimates are returned in XG, and the degrees of freedom, unloged confidence
limit factors and bandwidth in STATS.

IFAIL ¼ 5

The calculation of confidence limit factors has failed.
Spectral estimates (logged if requested) are returned in XG, and degrees of freedom and
bandwidth in STATS.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The FFT is a numerically stable process, and any errors introduced during the computation will
normally be insignificant compared with uncertainty in the data.

8 Parallelism and Performance

G13CAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13CAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G13CAF carries out two FFTs of length KC to calculate the covariances and one FFT of length L to
calculate the sample spectrum. The time taken by the routine for an FFT of length n is approximately
proportional to nlog nð Þ (but see Section 9 in C06PAF for further details).

10 Example

This example reads a time series of length 256. It selects the mean correction option, a tapering
proportion of 0:1, the Parzen smoothing window and a cut-off point for the window at lag 100. It
chooses to have 100 auto-covariances calculated and unlogged spectral estimates at a frequency division
of 2	=200. It then calls G13CAF to calculate the univariate spectrum and statistics and prints the
autocovariances and the spectrum together with its 95% confidence multiplying limits.

10.1 Program Text

Program g13cafe

! G13CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13caf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: px
Integer :: i, ic, ifail, iw, kc, l, lg, lxg, &

mtx, mw, nc, ng, nx, nxg
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:), xg(:)
Real (Kind=nag_wp) :: stats(4)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G13CAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nx, nc

! Read in smoothing parameters
Read (nin,*) mtx, ic, px, iw, mw, l, lg
If (ic==0) Then

Read (nin,*) kc
End If

If (ic==0) Then
nxg = max(kc,l)

Else
nxg = l

End If
lxg = max(nxg,nx)
Allocate (xg(lxg),c(nc))

! Read in the data
Read (nin,*) xg(1:nx)

! Calculate smoothed spectrum
ifail = -1
Call g13caf(nx,mtx,px,iw,mw,ic,nc,c,kc,l,lg,nxg,xg,ng,stats,ifail)
If (ifail/=0) Then

If (ifail<4) Then
Go To 100

End If
End If

! Display results
Write (nout,*) ’Covariances’
Write (nout,99999) c(1:nc)
Write (nout,*)
Write (nout,99998) ’Degrees of freedom =’, stats(1), &

’ Bandwidth =’, stats(4)
Write (nout,*)
Write (nout,99997) ’95 percent confidence limits - Lower =’, &

stats(2), ’ Upper =’, stats(3)
Write (nout,*)
Write (nout,*) &

’ Spectrum Spectrum Spectrum Spectrum’
Write (nout,*) &

’ estimate estimate estimate estimate’
Write (nout,99996)(i,xg(i),i=1,ng)

100 Continue

99999 Format (1X,6F11.4)
99998 Format (1X,A,F4.1,A,F7.4)
99997 Format (1X,A,F7.4,A,F7.4)
99996 Format (1X,I4,F10.4,I5,F10.4,I5,F10.4,I5,F10.4)

End Program g13cafe
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10.2 Program Data

G13CAF Example Program Data
256 100 :: NX,NC

1 0 0.1 4 100 200 0 :: MTX,IC,PX,IW,MW,L,LG
360 :: KC

5.0 11.0 16.0 23.0 36.0 58.0 29.0 20.0 10.0
8.0 3.0 0.0 0.0 2.0 11.0 27.0 47.0 63.0

60.0 39.0 28.0 26.0 22.0 11.0 21.0 40.0 78.0
122.0 103.0 73.0 47.0 35.0 11.0 5.0 16.0 34.0
70.0 81.0 111.0 101.0 73.0 40.0 20.0 16.0 5.0
11.0 22.0 40.0 60.0 80.9 83.4 47.7 47.8 30.7
12.2 9.6 10.2 32.4 47.6 54.0 62.9 85.9 61.2
45.1 36.4 20.9 11.4 37.8 69.8 106.1 100.8 81.6
66.5 34.8 30.6 7.0 19.8 92.5 154.4 125.9 84.8
68.1 38.5 22.8 10.2 24.1 82.9 132.0 130.9 118.1
89.9 66.6 60.0 46.9 41.0 21.3 16.0 6.4 4.1
6.8 14.5 34.0 45.0 43.1 47.5 42.2 28.1 10.1
8.1 2.5 0.0 1.4 5.0 12.2 13.9 35.4 45.8

41.1 30.1 23.9 15.6 6.6 4.0 1.8 8.5 16.6
36.3 49.6 64.2 67.0 70.9 47.8 27.5 8.5 13.2
56.9 121.5 138.3 103.2 85.7 64.6 36.7 24.2 10.7
15.0 40.1 61.5 98.5 124.7 96.3 66.6 64.5 54.1
39.0 20.6 6.7 4.3 22.7 54.8 93.8 95.8 77.2
59.1 44.0 47.0 30.5 16.3 7.3 37.6 74.0 139.0

111.2 101.6 66.2 44.7 17.0 11.3 12.4 3.4 6.0
32.3 54.3 59.7 63.7 63.5 52.2 25.4 13.1 6.8
6.3 7.1 35.6 73.0 85.1 78.0 64.0 41.8 26.2

26.7 12.1 9.5 2.7 5.0 24.4 42.0 63.5 53.8
62.0 48.5 43.9 18.6 5.7 3.6 1.4 9.6 47.4
57.1 103.9 80.6 63.6 37.6 26.1 14.2 5.8 16.7
44.3 63.9 69.0 77.8 64.9 35.7 21.2 11.1 5.7
8.7 36.1 79.7 114.4 109.6 88.8 67.8 47.5 30.6

16.3 9.6 33.2 92.6 151.6 136.3 134.7 83.9 69.4
31.5 13.9 4.4 38.0 :: End of XG

10.3 Program Results

G13CAF Example Program Results

Covariances
1152.9733 937.3289 494.9243 14.8648 -342.8548 -514.6479
-469.2733 -236.6896 109.0608 441.3498 637.4571 641.9954
454.0505 154.5960 -136.8016 -343.3911 -421.8441 -374.4095

-241.1943 -55.6140 129.4067 267.4248 311.8293 230.2807
56.4402 -146.4689 -320.9948 -406.4077 -375.6384 -273.5936

-132.6214 11.0791 126.4843 171.3391 122.6284 -11.5482
-169.2623 -285.2358 -331.4567 -302.2945 -215.4832 -107.8732

-3.4126 73.2521 98.0831 71.8949 17.0985 -27.5632
-76.7900 -110.5354 -126.1383 -121.1043 -103.9362 -67.4619
-10.8678 58.5009 116.4587 140.0961 129.5928 66.3211
-35.5487 -135.3894 -203.7149 -216.2161 -152.7723 -30.4361
99.3397 188.9594 204.9047 148.4056 34.4975 -103.7840

-208.5982 -252.4128 -223.7600 -120.8640 23.3565 156.0956
227.7642 228.5123 172.3820 87.4911 -21.2170 -117.5282

-176.3634 -165.1218 -75.1308 67.1634 195.7290 279.3039
290.8258 225.3811 104.0784 -44.4731 -162.7355 -207.7480

-165.2444 -48.5473 118.8872 265.0045

Degrees of freedom = 9.0 Bandwidth = 0.1165

95 percent confidence limits - Lower = 0.4731 Upper = 3.3329

Spectrum Spectrum Spectrum Spectrum
estimate estimate estimate estimate

1 210.4696 2 428.2020 3 810.1419 4 922.5900
5 706.1605 6 393.4052 7 207.6481 8 179.0657
9 170.1320 10 133.0442 11 103.6752 12 103.0644

13 141.5173 14 194.3041 15 266.5730 16 437.0181
17 985.3130 18 2023.1574 19 2681.8980 20 2363.7439
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21 1669.9001 22 1012.1320 23 561.4822 24 467.2741
25 441.9977 26 300.1985 27 172.0184 28 114.7823
29 79.1533 30 49.4882 31 27.0902 32 16.8081
33 27.5111 34 59.4429 35 97.0145 36 119.3664
37 116.6737 38 87.3142 39 54.9570 40 42.9781
41 46.6097 42 53.6206 43 50.6050 44 36.7780
45 25.6285 46 24.8555 47 30.2626 48 31.5642
49 27.3351 50 22.4443 51 18.5418 52 15.2425
53 12.0207 54 12.6846 55 18.3975 56 19.3058
57 12.6103 58 7.9511 59 7.1333 60 5.4996
61 3.4182 62 3.2359 63 5.3836 64 8.5225
65 10.0610 66 7.9483 67 4.2261 68 3.2631
69 5.5751 70 7.8491 71 9.3694 72 11.0791
73 10.1386 74 6.3158 75 3.6375 76 2.6561
77 1.8026 78 1.0103 79 1.0693 80 2.3950
81 4.0822 82 4.6221 83 4.0672 84 3.8460
85 4.8489 86 6.3964 87 6.4762 88 4.9457
89 4.4444 90 5.2131 91 5.0389 92 4.6141
93 5.8722 94 7.9268 95 7.9486 96 5.7854
97 4.5495 98 5.2696 99 6.3893 100 6.5216

101 6.2129
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NAG Library Routine Document

G13CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13CBF calculates the smoothed sample spectrum of a univariate time series using spectral smoothing
by the trapezium frequency (Daniell) window.

2 Specification

SUBROUTINE G13CBF (NX, MTX, PX, MW, PW, L, KC, LG, XG, NG, STATS, IFAIL)

INTEGER NX, MTX, MW, L, KC, LG, NG, IFAIL
REAL (KIND=nag_wp) PX, PW, XG(KC), STATS(4)

3 Description

The supplied time series may be mean or trend corrected (by least squares), and tapered, the tapering
factors being those of the split cosine bell:

1
2 1� cos 	 t� 1

2

� �
=T

� �� �
; 1 � t � T

1
2 1� cos 	 n� tþ 1

2

� �
=T

� �� �
; nþ 1� T � t � n

1; otherwise;

where T ¼ np

2

h i
and p is the tapering proportion.

The unsmoothed sample spectrum

f� !ð Þ ¼ 1

2	

Xn
t¼1
xt exp i!tð Þ

					
					
2

is then calculated for frequency values

!k ¼
2	k

K
; k ¼ 0; 1; . . . ; K=2½ �;

where [ ] denotes the integer part.

The smoothed spectrum is returned as a subset of these frequencies for which k is a multiple of a
chosen value r, i.e.,

!rl ¼ �l ¼
2	l

L
; l ¼ 0; 1; . . . ; L=2½ �;

where K ¼ r� L. You will normally fix L first, then choose r so that K is sufficiently large to provide
an adequate representation for the unsmoothed spectrum, i.e., K � 2� n. It is possible to take L ¼ K,
i.e., r ¼ 1.

The smoothing is defined by a trapezium window whose shape is supplied by the function

W �ð Þ ¼ 1; �j j � p
W �ð Þ ¼ 1� �j j

1�p ; p < �j j � 1

the proportion p being supplied by you.
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The width of the window is fixed as 2	=M by you supplying M. A set of averaging weights are
constructed:

Wk ¼ g�W
!kM

	

� �
; 0 � !k �

	

M
;

where g is a normalizing constant, and the smoothed spectrum obtained is

f̂ �lð Þ ¼
X
!kj j<

	

M

Wkf
� �l þ !kð Þ:

If no smoothing is required M should be set to n, in which case the values returned are f̂ �lð Þ ¼ f� �lð Þ.
Otherwise, in order that the smoothing approximates well to an integration, it is essential that K �M,
and preferable, but not essential, that K be a multiple of M. A choice of L > M would normally be
required to supply an adequate description of the smoothed spectrum. Typical choices of L ’ n and
K ’ 4n should be adequate for usual smoothing situations when M < n=5.

The sampling distribution of f̂ !ð Þ is approximately that of a scaled �2
d variate, whose degrees of

freedom d is provided by the routine, together with multiplying limits mu, ml from which approximate

95% confidence intervals for the true spectrum f !ð Þ may be constructed as ml� f̂ !ð Þmu� f̂ !ð Þ
h i

.

Alternatively, log f̂ !ð Þ may be returned, with additive limits.

The bandwidth b of the corresponding smoothing window in the frequency domain is also provided.
Spectrum estimates separated by (angular) frequencies much greater than b may be assumed to be
independent.

4 References

Bloomfield P (1976) Fourier Analysis of Time Series: An Introduction Wiley

Jenkins G M and Watts D G (1968) Spectral Analysis and its Applications Holden–Day

5 Arguments

1: NX – INTEGER Input

On entry: n, the length of the time series.

Constraint: NX � 1.

2: MTX – INTEGER Input

On entry: whether the data are to be initially mean or trend corrected.

MTX ¼ 0
For no correction.

MTX ¼ 1
For mean correction.

MTX ¼ 2
For trend correction.

Constraint: 0 � MTX � 2.

3: PX – REAL (KIND=nag_wp) Input

On entry: the proportion of the data (totalled over both ends) to be initially tapered by the split
cosine bell taper. (A value of 0:0 implies no tapering.)

Constraint: 0:0 � PX � 1:0.
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4: MW – INTEGER Input

On entry: the value of M which determines the frequency width of the smoothing window as
2	=M. A value of n implies no smoothing is to be carried out.

Constraint: 1 � MW � NX.

5: PW – REAL (KIND=nag_wp) Input

On entry: p, the shape parameter of the trapezium frequency window.

A value of 0:0 gives a triangular window, and a value of 1:0 a rectangular window.

If MW ¼ NX (i.e., no smoothing is carried out), PW is not used.

Constraint: 0:0 � PW � 1:0.

6: L – INTEGER Input

On entry: L, the frequency division of smoothed spectral estimates as 2	=L.

Constraints:

L � 1;
L must be a factor of KC.

7: KC – INTEGER Input

On entry: K, the order of the fast Fourier transform (FFT) used to calculate the spectral
estimates.

Constraints:

KC � 2� NX;
KC must be a multiple of L.

8: LG – INTEGER Input

On entry: indicates whether unlogged or logged spectral estimates and confidence limits are
required.

LG ¼ 0
For unlogged.

LG 6¼ 0
For logged.

9: XGðKCÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the n data points.

On exit: contains the NG spectral estimates f̂ !ið Þ, for i ¼ 0; 1; . . . ; L=2½ �, in XGð1Þ to XGðNGÞ
(logged if LG 6¼ 0). The elements XGðiÞ, for i ¼ NGþ 1; . . . ;KC, contain 0:0.

10: NG – INTEGER Output

On exit: the number of spectral estimates, L=2½ � þ 1, in XG.

11: STATSð4Þ – REAL (KIND=nag_wp) array Output

On exit: four associated statistics. These are the degrees of freedom in STATSð1Þ, the lower and
upper 95% confidence limit factors in STATSð2Þ and STATSð3Þ respectively (logged if LG 6¼ 0),
and the bandwidth in STATSð4Þ.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13CBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, L ¼ valueh i.
Constraint: L � 1.

On entry, MTX ¼ valueh i.
Constraint: MTX � 2.

On entry, MTX ¼ valueh i.
Constraint: MTX � 0.

On entry, MW ¼ valueh i.
Constraint: MW � 1.

On entry, MW ¼ valueh i and NX ¼ valueh i.
Constraint: MW � NX.

On entry, NX ¼ valueh i.
Constraint: NX � 1.

On entry, PX ¼ valueh i, MW ¼ valueh i and NX ¼ valueh i.
Constraint: if PW < 0:0, MW ¼ NX.

On entry, PX ¼ valueh i, MW ¼ valueh i and NX ¼ valueh i.
Constraint: if PW > 1:0, MW ¼ NX.

On entry, PX ¼ valueh i.
Constraint: PX � 0:0.

On entry, PX ¼ valueh i.
Constraint: PX � 1:0.

IFAIL ¼ 2

On entry, KC ¼ valueh i and L ¼ valueh i.
Constraint: KC must be a multiple of L.

On entry, KC ¼ valueh i and NX ¼ valueh i.
Constraint: KC � 2� NX.

IFAIL ¼ 4

One or more spectral estimates are negative.
Unlogged spectral estimates are returned in XG, and the degrees of freedom, unloged confidence
limit factors and bandwidth in STATS.
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IFAIL ¼ 5

The calculation of confidence limit factors has failed.
Spectral estimates (logged if requested) are returned in XG, and degrees of freedom and
bandwidth in STATS.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The FFT is a numerically stable process, and any errors introduced during the computation will
normally be insignificant compared with uncertainty in the data.

8 Parallelism and Performance

G13CBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13CBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G13CBF carries out a FFT of length KC to calculate the sample spectrum. The time taken by the
routine for this is approximately proportional to KC� log KCð Þ (but see Section 9 in C06PAF for
further details).

10 Example

This example reads a time series of length 131. It then calls G13CBF to calculate the univariate
spectrum and prints the logged spectrum together with 95% confidence limits.

10.1 Program Text

Program g13cbfe

! G13CBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13cbf, nag_wp

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: pw, px
Integer :: i, ifail, kc, l, lg, lxg, mtx, mw, &

ng, nx
! .. Local Arrays ..

Real (Kind=nag_wp) :: stats(4)
Real (Kind=nag_wp), Allocatable :: xg(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G13CBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nx

! Read in smoothing parameters
Read (nin,*) mtx, px, mw, l, kc, lg
If (mw/=nx) Then

Read (nin,*) pw
End If

lxg = max(kc,nx)
Allocate (xg(lxg))

! Read in series
Read (nin,*) xg(1:nx)

! Calculate smooth spectrum
ifail = -1
Call g13cbf(nx,mtx,px,mw,pw,l,kc,lg,xg,ng,stats,ifail)
If (ifail/=0) Then

If (ifail<4) Then
Go To 100

End If
End If

! Display results
If (mw==nx) Then

Write (nout,*) ’No smoothing’
Else

Write (nout,99999) ’Frequency width of smoothing window = 1/’, mw
End If
Write (nout,99998) ’Degrees of freedom =’, stats(1), &

’ Bandwidth =’, stats(4)
Write (nout,*)
Write (nout,99997) ’95 percent confidence limits - Lower = ’, &

stats(2), ’ Upper = ’, stats(3)
Write (nout,*)
Write (nout,*) &

’ Spectrum Spectrum Spectrum Spectrum’
Write (nout,*) &

’ estimate estimate estimate estimate’
Write (nout,99996)(i,xg(i),i=1,ng)
Write (nout,*)

100 Continue

99999 Format (1X,A,I0)
99998 Format (1X,A,F4.1,A,F7.4)
99997 Format (1X,A,F7.4,A,F7.4)
99996 Format (1X,I4,F10.4,I5,F10.4,I5,F10.4,I5,F10.4)

End Program g13cbfe

G13CBF NAG Library Manual

G13CBF.6 Mark 26



10.2 Program Data

G13CBF Example Program Data
131 :: NX

1 0.2 30 100 400 1 :: MTX,PX,MW,L,KC,LG
0.5 :: PW
11.500 9.890 8.728 8.400 8.230 8.365 8.383 8.243
8.080 8.244 8.490 8.867 9.469 9.786 10.100 10.714

11.320 11.900 12.390 12.095 11.800 12.400 11.833 12.200
12.242 11.687 10.883 10.138 8.952 8.443 8.231 8.067
7.871 7.962 8.217 8.689 8.989 9.450 9.883 10.150

10.787 11.000 11.133 11.100 11.800 12.250 11.350 11.575
11.800 11.100 10.300 9.725 9.025 8.048 7.294 7.070
6.933 7.208 7.617 7.867 8.309 8.640 9.179 9.570

10.063 10.803 11.547 11.550 11.800 12.200 12.400 12.367
12.350 12.400 12.270 12.300 11.800 10.794 9.675 8.900
8.208 8.087 7.763 7.917 8.030 8.212 8.669 9.175
9.683 10.290 10.400 10.850 11.700 11.900 12.500 12.500

12.800 12.950 13.050 12.800 12.800 12.800 12.600 11.917
10.805 9.240 8.777 8.683 8.649 8.547 8.625 8.750
9.110 9.392 9.787 10.340 10.500 11.233 12.033 12.200

12.300 12.600 12.800 12.650 12.733 12.700 12.259 11.817
10.767 9.825 9.150 :: End of XG

10.3 Program Results

G13CBF Example Program Results

Frequency width of smoothing window = 1/30
Degrees of freedom = 7.0 Bandwidth = 0.1767

95 percent confidence limits - Lower = -0.8275 Upper = 1.4213

Spectrum Spectrum Spectrum Spectrum
estimate estimate estimate estimate

1 -0.1776 2 -0.4561 3 -0.1784 4 1.9042
5 2.1094 6 1.7061 7 -0.7659 8 -1.4734
9 -1.5939 10 -2.1157 11 -2.9151 12 -2.7055

13 -2.8200 14 -3.4077 15 -3.8813 16 -3.6607
17 -4.0601 18 -4.4756 19 -4.2700 20 -4.3092
21 -4.5711 22 -4.8111 23 -4.5658 24 -4.7285
25 -5.4386 26 -5.5081 27 -5.2325 28 -5.0262
29 -4.4539 30 -4.4764 31 -4.9152 32 -5.8492
33 -5.5872 34 -4.9804 35 -4.8904 36 -5.2666
37 -5.7643 38 -5.8620 39 -5.5011 40 -5.7129
41 -6.3894 42 -6.4027 43 -6.1352 44 -6.5766
45 -7.3676 46 -7.1405 47 -6.1674 48 -5.8600
49 -6.1036 50 -6.2673 51 -6.4321
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NAG Library Routine Document

G13CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13CCF calculates the smoothed sample cross spectrum of a bivariate time series using one of four lag
windows: rectangular, Bartlett, Tukey or Parzen.

2 Specification

SUBROUTINE G13CCF (NXY, MTXY, PXY, IW, MW, ISH, IC, NC, CXY, CYX, KC, L,
NXYG, XG, YG, NG, IFAIL)

&

INTEGER NXY, MTXY, IW, MW, ISH, IC, NC, KC, L, NXYG, NG,
IFAIL

&

REAL (KIND=nag_wp) PXY, CXY(NC), CYX(NC), XG(NXYG), YG(NXYG)

3 Description

The smoothed sample cross spectrum is a complex valued function of frequency !,
fxy !ð Þ ¼ cf !ð Þ þ iqf !ð Þ, defined by its real part or co-spectrum

cf !ð Þ ¼ 1

2	

XM�1
k¼�Mþ1

wkCxy kþ Sð Þ cos !kð Þ

and imaginary part or quadrature spectrum

qf !ð Þ ¼ 1

2	

XM�1
k¼�Mþ1

wkCxy kþ Sð Þ sin !kð Þ

where wk ¼ w�k , for k ¼ 0; 1; . . . ;M � 1, is the smoothing lag window as defined in the description of
G13CAF. The alignment shift S is recommended to be chosen as the lag k at which the cross-
covariances cxy kð Þ peak, so as to minimize bias.

The results are calculated for frequency values

!j ¼
2	j

L
; j ¼ 0; 1; . . . ; L=2½ �;

where ½� denotes the integer part.

The cross-covariances cxy kð Þ may be supplied by you, or constructed from supplied series
x1; x2; . . . ; xn; y1; y2; . . . ; yn as

cxy kð Þ ¼

Xn�k
t¼1
xtytþk

n
; k � 0

cxy kð Þ ¼

Xn
t¼1�k

xtytþk

n
¼ cyx �kð Þ; k < 0

this convolution being carried out using the finite Fourier transform.

The supplied series may be mean and trend corrected and tapered before calculation of the cross-
covariances, in exactly the manner described in G13CAF for univariate spectrum estimation. The results
are corrected for any bias due to tapering.
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The bandwidth associated with the estimates is not returned. It will normally already have been
calculated in previous calls of G13CAF for estimating the univariate spectra of yt and xt.

4 References

Bloomfield P (1976) Fourier Analysis of Time Series: An Introduction Wiley

Jenkins G M and Watts D G (1968) Spectral Analysis and its Applications Holden–Day

5 Arguments

1: NXY – INTEGER Input

On entry: n, the length of the time series x and y.

Constraint: NXY � 1.

2: MTXY – INTEGER Input

On entry: if cross-covariances are to be calculated by the routine (IC ¼ 0), MTXY must specify
whether the data is to be initially mean or trend corrected.

MTXY ¼ 0
For no correction.

MTXY ¼ 1
For mean correction.

MTXY ¼ 2
For trend correction.

If cross-covariances are supplied IC 6¼ 0ð Þ, MTXY is not used.

Constraint: if IC ¼ 0, MTXY ¼ 0, 1 or 2.

3: PXY – REAL (KIND=nag_wp) Input

On entry: if cross-covariances are to be calculated by the routine (IC ¼ 0), PXY must specify the
proportion of the data (totalled over both ends) to be initially tapered by the split cosine bell
taper. A value of 0:0 implies no tapering.

If cross-covariances are supplied IC 6¼ 0ð Þ, PXY is not used.

Constraint: if IC ¼ 0, 0:0 � PXY � 1:0.

4: IW – INTEGER Input

On entry: the choice of lag window.

IW ¼ 1
Rectangular.

IW ¼ 2
Bartlett.

IW ¼ 3
Tukey.

IW ¼ 4
Parzen.

Constraint: 1 � IW � 4.
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5: MW – INTEGER Input

On entry: M, the ‘cut-off’ point of the lag window, relative to any alignment shift that has been
applied. Windowed cross-covariances at lags �MWþ ISHð Þ or less, and at lags MWþ ISHð Þ or
greater are zero.

Constraints:

MW � 1;
MWþ ISHj j � NXY.

6: ISH – INTEGER Input

On entry: S, the alignment shift between the x and y series. If x leads y, the shift is positive.

Constraint: �MW < ISH < MW.

7: IC – INTEGER Input

On entry: indicates whether cross-covariances are to be calculated in the routine or supplied in
the call to the routine.

IC ¼ 0
Cross-covariances are to be calculated.

IC 6¼ 0
Cross-covariances are to be supplied.

8: NC – INTEGER Input

On entry: the number of cross-covariances to be calculated in the routine or supplied in the call
to the routine.

Constraint: MWþ ISHj j � NC � NXY.

9: CXYðNCÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IC 6¼ 0, CXY must contain the NC cross-covariances between values in the y series
and earlier values in time in the x series, for lags from 0 to NC� 1ð Þ.
If IC ¼ 0, CXY need not be set.

On exit: if IC ¼ 0, CXY will contain the NC calculated cross-covariances.

If IC 6¼ 0, the contents of CXY will be unchanged.

10: CYXðNCÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if IC 6¼ 0, CYX must contain the NC cross-covariances between values in the y series
and later values in time in the x series, for lags from 0 to NC� 1ð Þ.
If IC ¼ 0, CYX need not be set.

On exit: if IC ¼ 0, CYX will contain the NC calculated cross-covariances.

If IC 6¼ 0, the contents of CYX will be unchanged.

11: KC – INTEGER Input

On entry: if IC ¼ 0, KC must specify the order of the fast Fourier transform (FFT) used to
calculate the cross-covariances.

If IC 6¼ 0, that is if covariances are supplied, KC is not used.

Constraint: KC � NXYþ NC.
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12: L – INTEGER Input

On entry: L, the frequency division of the spectral estimates as
2	

L
. Therefore it is also the order

of the FFT used to construct the sample spectrum from the cross-covariances.

Constraint: L � 2�MW � 1.

13: NXYG – INTEGER Input

On entry: the dimension of the arrays XG and YG as declared in the (sub)program from which
G13CCF is called.

Constraints:

if IC ¼ 0, NXYG � max KC;Lð Þ;
otherwise NXYG � L.

14: XGðNXYGÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if the cross-covariances are to be calculated, then XG must contain the NXY data
points of the x series. If covariances are supplied, XG need not be set.

On exit: contains the real parts of the NG complex spectral estimates in elements XGð1Þ to
XGðNGÞ, and XGðNGþ 1Þ to XGðNXYGÞ contain 0:0. The y series leads the x series.

15: YGðNXYGÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if cross-covariances are to be calculated, YG must contain the NXY data points of the
y series. If covariances are supplied, YG need not be set.

On exit: contains the imaginary parts of the NG complex spectral estimates in elements YGð1Þ to
YGðNGÞ, and YGðNGþ 1Þ to YGðNXYGÞ contain 0:0. The y series leads the x series.

16: NG – INTEGER Output

On exit: the number, L=2½ � þ 1, of complex spectral estimates, whose separate parts are held in
XG and YG.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IC ¼ valueh i, NXYG ¼ valueh i and L ¼ valueh i.
Constraint: if IC 6¼ 0, NXYG � L.
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On entry, ISH ¼ valueh i and MW ¼ valueh i.
Constraint: ISHj j � MW.

On entry, IW ¼ valueh i.
Constraint: IW ¼ 1, 2, 3 or 4.

On entry, MTXY ¼ valueh i.
Constraint: if IC ¼ 0 then MTXY 6¼ 0, 1 or 2.

On entry, MW ¼ valueh i, ISH ¼ valueh i and NXY ¼ valueh i.
Constraint: MWþ ISHj j � NXY.

On entry, MW ¼ valueh i.
Constraint: MW � 1.

On entry, NC ¼ valueh i, MW ¼ valueh i and ISH ¼ valueh i.
Constraint: NC � MWþ ISHj j.
On entry, NC ¼ valueh i and NXY ¼ valueh i.
Constraint: NC � NXY.

On entry, NXY ¼ valueh i.
Constraint: NXY � 1.

On entry, NXYG ¼ valueh i, KC ¼ valueh i and L ¼ valueh i.
Constraint: if IC ¼ 0, NXYG � max KC;Lð Þ.
On entry, PXY ¼ valueh i.
Constraint: if IC ¼ 0, PXY � 0:0.

On entry, PXY ¼ valueh i.
Constraint: if IC ¼ 0, PXY � 1:0.

IFAIL ¼ 2

On entry, KC ¼ valueh i, NXY ¼ valueh i and NC ¼ valueh i.
Constraint: if IC ¼ 0, KC � NXYþ NC.

IFAIL ¼ 3

On entry, L ¼ valueh i and MW ¼ valueh i.
Constraint: L � 2�MW� 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The FFT is a numerically stable process, and any errors introduced during the computation will
normally be insignificant compared with uncertainty in the data.
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8 Parallelism and Performance

G13CCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13CCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G13CCF carries out two FFTs of length KC to calculate the sample cross-covariances and one FFT of
length L to calculate the sample spectrum. The timing of G13CCF is therefore dependent on the choice
of these values. The time taken for an FFT of length n is approximately proportional to nlog nð Þ (but
see Section 9 in C06PAF for further details).

10 Example

This example reads two time series of length 296. It then selects mean correction, a 10% tapering
proportion, the Parzen smoothing window and a cut-off point of 35 for the lag window. The alignment
shift is set to 3 and 50 cross-covariances are chosen to be calculated. The program then calls G13CCF
to calculate the cross spectrum and then prints the cross-covariances and cross spectrum.

10.1 Program Text

Program g13ccfe

! G13CCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13ccf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: pxy
Integer :: i, ic, ifail, ii, ish, iw, kc, l, &

lxg, lyg, mtxy, mw, nc, ng, nxy, &
nxyg

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cxy(:), cyx(:), xg(:), yg(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Write (nout,*) ’G13CCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nxy, nc, ic

! Read in control parameters
Read (nin,*) mtxy, pxy
Read (nin,*) iw, mw
Read (nin,*) ish, kc, l

If (ic==0) Then
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nxyg = max(kc,l)
Else

nxyg = l
End If
lxg = max(nxyg,nxy)
lyg = max(nxyg,nxy)
Allocate (xg(lxg),yg(lyg),cxy(nc),cyx(nc))

If (ic==0) Then
Read (nin,*)(xg(i),i=1,nxy)
Read (nin,*)(yg(i),i=1,nxy)

Else
Read (nin,*)(cxy(i),i=1,nc)
Read (nin,*)(cyx(i),i=1,nc)

End If

ifail = 0
Call g13ccf(nxy,mtxy,pxy,iw,mw,ish,ic,nc,cxy,cyx,kc,l,nxyg,xg,yg,ng, &

ifail)

! Display results
Write (nout,*) ’ Returned cross covariances’
Write (nout,*)
Write (nout,*) &

’Lag XY YX Lag XY YX Lag XY YX’
Do i = 1, nc, 3

Write (nout,99999)(ii-1,cxy(ii),cyx(ii),ii=i,min(i+2,nc))
End Do
Write (nout,*)
Write (nout,*) ’ Returned sample spectrum’
Write (nout,*)
Write (nout,*) &

’ Real Imaginary Real Imaginary Real Imaginary’
Write (nout,*) &

’Lag part part Lag part part Lag part part’
Do i = 1, ng, 3

Write (nout,99999)(ii-1,xg(ii),yg(ii),ii=i,min(i+2,ng))
End Do

99999 Format (1X,I3,2F9.4,I4,2F9.4,I4,2F9.4)
End Program g13ccfe

10.2 Program Data

G13CCF Example Program Data
296 50 0 :: NXY,NC,IC

1 0.1 :: MTXY,PXY
4 35 :: IW,MW
3 350 80 :: ISH,KC,L
-0.109 0.000 0.178 0.339 0.373 0.441 0.461 0.348
0.127 -0.180 -0.588 -1.055 -1.421 -1.520 -1.302 -0.814

-0.475 -0.193 0.088 0.435 0.771 0.866 0.875 0.891
0.987 1.263 1.775 1.976 1.934 1.866 1.832 1.767
1.608 1.265 0.790 0.360 0.115 0.088 0.331 0.645
0.960 1.409 2.670 2.834 2.812 2.483 1.929 1.485
1.214 1.239 1.608 1.905 2.023 1.815 0.535 0.122
0.009 0.164 0.671 1.019 1.146 1.155 1.112 1.121
1.223 1.257 1.157 0.913 0.620 0.255 -0.280 -1.080

-1.551 -1.799 -1.825 -1.456 -0.944 -0.570 -0.431 -0.577
-0.960 -1.616 -1.875 -1.891 -1.746 -1.474 -1.201 -0.927
-0.524 0.040 0.788 0.943 0.930 1.006 1.137 1.198
1.054 0.595 -0.080 -0.314 -0.288 -0.153 -0.109 -0.187

-0.255 -0.299 -0.007 0.254 0.330 0.102 -0.423 -1.139
-2.275 -2.594 -2.716 -2.510 -1.790 -1.346 -1.081 -0.910
-0.876 -0.885 -0.800 -0.544 -0.416 -0.271 0.000 0.403
0.841 1.285 1.607 1.746 1.683 1.485 0.993 0.648
0.577 0.577 0.632 0.747 0.999 0.993 0.968 0.790
0.399 -0.161 -0.553 -0.603 -0.424 -0.194 -0.049 0.060
0.161 0.301 0.517 0.566 0.560 0.573 0.592 0.671
0.933 1.337 1.460 1.353 0.772 0.218 -0.237 -0.714
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-1.099 -1.269 -1.175 -0.676 0.033 0.556 0.643 0.484
0.109 -0.310 -0.697 -1.047 -1.218 -1.183 -0.873 -0.336
0.063 0.084 0.000 0.001 0.209 0.556 0.782 0.858
0.918 0.862 0.416 -0.336 -0.959 -1.813 -2.378 -2.499

-2.473 -2.330 -2.053 -1.739 -1.261 -0.569 -0.137 -0.024
-0.050 -0.135 -0.276 -0.534 -0.871 -1.243 -1.439 -1.422
-1.175 -0.813 -0.634 -0.582 -0.625 -0.713 -0.848 -1.039
-1.346 -1.628 -1.619 -1.149 -0.488 -0.160 -0.007 -0.092
-0.620 -1.086 -1.525 -1.858 -2.029 -2.024 -1.961 -1.952
-1.794 -1.302 -1.030 -0.918 -0.798 -0.867 -1.047 -1.123
-0.876 -0.395 0.185 0.662 0.709 0.605 0.501 0.603
0.943 1.223 1.249 0.824 0.102 0.025 0.382 0.922
1.032 0.866 0.527 0.093 -0.458 -0.748 -0.947 -1.029

-0.928 -0.645 -0.424 -0.276 -0.158 -0.033 0.102 0.251
0.280 0.000 -0.493 -0.759 -0.824 -0.740 -0.528 -0.204
0.034 0.204 0.253 0.195 0.131 0.017 -0.182 -0.262 :: End of XG

53.8 53.6 53.5 53.5 53.4 53.1 52.7 52.4 52.2 52.0 52.0
52.4 53.0 54.0 54.9 56.0 56.8 56.8 56.4 55.7 55.0 54.3
53.2 52.3 51.6 51.2 50.8 50.5 50.0 49.2 48.4 47.9 47.6
47.5 47.5 47.6 48.1 49.0 50.0 51.1 51.8 51.9 51.7 51.2
50.0 48.3 47.0 45.8 45.6 46.0 46.9 47.8 48.2 48.3 47.9
47.2 47.2 48.1 49.4 50.6 51.5 51.6 51.2 50.5 50.1 49.8
49.6 49.4 49.3 49.2 49.3 49.7 50.3 51.3 52.8 54.4 56.0
56.9 57.5 57.3 56.6 56.0 55.4 55.4 56.4 57.2 58.0 58.4
58.4 58.1 57.7 57.0 56.0 54.7 53.2 52.1 51.6 51.0 50.5
50.4 51.0 51.8 52.4 53.0 53.4 53.6 53.7 53.8 53.8 53.8
53.3 53.0 52.9 53.4 54.6 56.4 58.0 59.4 60.2 60.0 59.4
58.4 57.6 56.9 56.4 56.0 55.7 55.3 55.0 54.4 53.7 52.8
51.6 50.6 49.4 48.8 48.5 48.7 49.2 49.8 50.4 50.7 50.9
50.7 50.5 50.4 50.2 50.4 51.2 52.3 53.2 53.9 54.1 54.0
53.6 53.2 53.0 52.8 52.3 51.9 51.6 51.6 51.4 51.2 50.7
50.0 49.4 49.3 49.7 50.6 51.8 53.0 54.0 55.3 55.9 55.9
54.6 53.5 52.4 52.1 52.3 53.0 53.8 54.6 55.4 55.9 55.9
55.2 54.4 53.7 53.6 53.6 53.2 52.5 52.0 51.4 51.0 50.9
52.4 53.5 55.6 58.0 59.5 60.0 60.4 60.5 60.2 59.7 59.0
57.6 56.4 55.2 54.5 54.1 54.1 54.4 55.5 56.2 57.0 57.3
57.4 57.0 56.4 55.9 55.5 55.3 55.2 55.4 56.0 56.5 57.1
57.3 56.8 55.6 55.0 54.1 54.3 55.3 56.4 57.2 57.8 58.3
58.6 58.8 58.8 58.6 58.0 57.4 57.0 56.4 56.3 56.4 56.4
56.0 55.2 54.0 53.0 52.0 51.6 51.6 51.1 50.4 50.0 50.0
52.0 54.0 55.1 54.5 52.8 51.4 50.8 51.2 52.0 52.8 53.8
54.5 54.9 54.9 54.8 54.4 53.7 53.3 52.8 52.6 52.6 53.0
54.3 56.0 57.0 58.0 58.6 58.5 58.3 57.8 57.3 57.0 :: End of YG

10.3 Program Results

G13CCF Example Program Results

Returned cross covariances

Lag XY YX Lag XY YX Lag XY YX
0 -1.6700 -1.6700 1 -2.0581 -1.3606 2 -2.4859 -1.1383
3 -2.8793 -0.9926 4 -3.1473 -0.9009 5 -3.2239 -0.8382
6 -3.0929 -0.7804 7 -2.7974 -0.7074 8 -2.4145 -0.6147
9 -2.0237 -0.5080 10 -1.6802 -0.4032 11 -1.4065 -0.3159

12 -1.2049 -0.2554 13 -1.0655 -0.2250 14 -0.9726 -0.2238
15 -0.9117 -0.2454 16 -0.8658 -0.2784 17 -0.8180 -0.3081
18 -0.7563 -0.3257 19 -0.6750 -0.3315 20 -0.5754 -0.3321
21 -0.4701 -0.3308 22 -0.3738 -0.3312 23 -0.3023 -0.3332
24 -0.2665 -0.3384 25 -0.2645 -0.3506 26 -0.2847 -0.3727
27 -0.3103 -0.3992 28 -0.3263 -0.4152 29 -0.3271 -0.4044
30 -0.3119 -0.3621 31 -0.2837 -0.2919 32 -0.2568 -0.2054
33 -0.2427 -0.1185 34 -0.2490 -0.0414 35 -0.2774 0.0227
36 -0.3218 0.0697 37 -0.3705 0.1039 38 -0.4083 0.1356
39 -0.4197 0.1805 40 -0.3920 0.2460 41 -0.3241 0.3319
42 -0.2273 0.4325 43 -0.1216 0.5331 44 -0.0245 0.6199
45 0.0528 0.6875 46 0.1074 0.7329 47 0.1448 0.7550
48 0.1713 0.7544 49 0.1943 0.7349

Returned sample spectrum
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Real Imaginary Real Imaginary Real Imaginary
Lag part part Lag part part Lag part part

0 -6.5500 0.0000 1 -5.4267 -1.9842 2 -3.1323 -2.7307
3 -1.2649 -2.3998 4 -0.2102 -1.7520 5 0.3411 -1.1903
6 0.6063 -0.7420 7 0.6178 -0.3586 8 0.4391 -0.1008
9 0.2422 0.0061 10 0.1233 0.0409 11 0.0574 0.0529

12 0.0174 0.0452 13 -0.0008 0.0289 14 -0.0058 0.0161
15 -0.0051 0.0084 16 -0.0027 0.0040 17 -0.0010 0.0015
18 -0.0006 0.0006 19 -0.0005 0.0003 20 -0.0003 0.0003
21 -0.0003 0.0004 22 -0.0003 0.0003 23 -0.0003 0.0002
24 -0.0004 0.0001 25 -0.0004 -0.0000 26 -0.0003 -0.0001
27 -0.0002 -0.0001 28 -0.0001 0.0001 29 -0.0002 0.0003
30 -0.0003 0.0002 31 -0.0002 0.0001 32 -0.0001 0.0000
33 -0.0000 -0.0000 34 0.0001 -0.0001 35 0.0001 -0.0002
36 0.0001 -0.0001 37 0.0001 -0.0001 38 0.0001 -0.0001
39 0.0001 -0.0001 40 0.0001 0.0000
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NAG Library Routine Document

G13CDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13CDF calculates the smoothed sample cross spectrum of a bivariate time series using spectral
smoothing by the trapezium frequency (Daniell) window.

2 Specification

SUBROUTINE G13CDF (NXY, MTXY, PXY, MW, ISH, PW, L, KC, XG, YG, NG,
IFAIL)

&

INTEGER NXY, MTXY, MW, ISH, L, KC, NG, IFAIL
REAL (KIND=nag_wp) PXY, PW, XG(KC), YG(KC)

3 Description

The supplied time series may be mean and trend corrected and tapered as in the description of G13CBF
before calculation of the unsmoothed sample cross-spectrum

f�xy !ð Þ ¼
1

2	n

Xn
t¼1
yt exp i!tð Þ

( )
�

Xn
t¼1
xt exp �i!tð Þ

( )

for frequency values !j ¼ 2	j
K , 0 � !j � 	.

A correction is made for bias due to any tapering.

As in the description of G13CBF for univariate frequency window smoothing, the smoothed spectrum is
returned as a subset of these frequencies,

�l ¼
2	l

L
; l ¼ 0; 1; . . . ; L=2½ �

where [ ] denotes the integer part.

Its real part or co-spectrum cf �lð Þ, and imaginary part or quadrature spectrum qf �lð Þ are defined by

fxy �lð Þ ¼ cf �lð Þ þ iqf �lð Þ ¼
X
!kj j<	

M

~wkf
�
xy �l þ !kð Þ

where the weights ~wk are similar to the weights wk defined for G13CBF, but allow for an implicit
alignment shift S between the series:

~wk ¼ wk exp �2	iSk=Lð Þ:

It is recommended that S is chosen as the lag k at which the cross-covariances cxy kð Þ peak, so as to
minimize bias.

If no smoothing is required, the integer M, which determines the frequency window width
2	

M
, should

be set to n.

The bandwidth of the estimates will normally have been calculated in a previous call of G13CBF for
estimating the univariate spectra of yt and xt.
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4 References

Bloomfield P (1976) Fourier Analysis of Time Series: An Introduction Wiley

Jenkins G M and Watts D G (1968) Spectral Analysis and its Applications Holden–Day

5 Arguments

1: NXY – INTEGER Input

On entry: n, the length of the time series x and y.

Constraint: NXY � 1.

2: MTXY – INTEGER Input

On entry: whether the data is to be initially mean or trend corrected.

MTXY ¼ 0
For no correction.

MTXY ¼ 1
For mean correction.

MTXY ¼ 2
For trend correction.

Constraint: 0 � MTXY � 2.

3: PXY – REAL (KIND=nag_wp) Input

On entry: the proportion of the data (totalled over both ends) to be initially tapered by the split
cosine bell taper.

A value of 0:0 implies no tapering.

Constraint: 0:0 � PXY � 1:0.

4: MW – INTEGER Input

On entry: M, the frequency width of the smoothing window as
2	

M
.

A value of n implies that no smoothing is to be carried out.

Constraint: 1 � MW � NXY.

5: ISH – INTEGER Input

On entry: S, the alignment shift between the x and y series. If x leads y, the shift is positive.

Constraint: �L < ISH < L.

6: PW – REAL (KIND=nag_wp) Input

On entry: p, the shape parameter of the trapezium frequency window.

A value of 0:0 gives a triangular window, and a value of 1:0 a rectangular window.

If MW ¼ NXY (i.e., no smoothing is carried out) then PW is not used.

Constraint: if MW 6¼ NXY, 0:0 � PW � 1:0.

7: L – INTEGER Input

On entry: L, the frequency division of smoothed cross spectral estimates as
2	

L
.
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Constraints:

L � 1;
L must be a factor of KC.

8: KC – INTEGER Input

On entry: the dimension of the arrays XG and YG as declared in the (sub)program from which
G13CDF is called. The order of the fast Fourier transform ( FFT) used to calculate the spectral
estimates.

Constraints:

KC � 2� NXY;
KC must be a multiple of L.

9: XGðKCÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the NXY data points of the x series.

On exit: the real parts of the NG cross spectral estimates in elements XGð1Þ to XGðNGÞ, and
XGðNGþ 1Þ to XGðKCÞ contain 0:0. The y series leads the x series.

10: YGðKCÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the NXY data points of the y series.

On exit: the imaginary parts of the NG cross spectral estimates in elements YGð1Þ to YGðNGÞ,
and YGðNGþ 1Þ to YGðKCÞ contain 0:0. The y series leads the x series.

11: NG – INTEGER Output

On exit: the number of spectral estimates, L=2½ � þ 1, whose separate parts are held in XG and
YG.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ISH ¼ valueh i and L ¼ valueh i.
Constraint: ISHj j < L.

On entry, L ¼ valueh i.
Constraint: L � 1.

On entry, MTXY ¼ valueh i.
Constraint: MTXY � 2.
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On entry, MTXY ¼ valueh i.
Constraint: MTXY � 0.

On entry, MW ¼ valueh i.
Constraint: MW � 1.

On entry, MW ¼ valueh i and NXY ¼ valueh i.
Constraint: MW � NXY.

On entry, NXY ¼ valueh i.
Constraint: NXY � 1.

On entry, PXY ¼ valueh i, MW ¼ valueh i and NXY ¼ valueh i.
Constraint: if PW < 0:0, MW ¼ NXY.

On entry, PXY ¼ valueh i, MW ¼ valueh i and NXY ¼ valueh i.
Constraint: if PW > 1:0, MW ¼ NXY.

On entry, PXY ¼ valueh i.
Constraint: PXY � 0:0.

On entry, PXY ¼ valueh i.
Constraint: PXY � 1:0.

IFAIL ¼ 2

On entry, KC ¼ valueh i and L ¼ valueh i.
Constraint: KC must be a multiple of L.

On entry, KC ¼ valueh i and NXY ¼ valueh i.
Constraint: KC � 2� NXY.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The FFT is a numerically stable process, and any errors introduced during the computation will
normally be insignificant compared with uncertainty in the data.

8 Parallelism and Performance

G13CDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13CDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

G13CDF carries out an FFT of length KC to calculate the sample cross spectrum. The time taken by the
routine for this is approximately proportional to KC� log KCð Þ (but see routine document C06PAF for
further details).

10 Example

This example reads two time series of length 296. It selects mean correction and a 10% tapering
proportion. It selects a 2	=16 frequency width of smoothing window, a window shape parameter of 0:5
and an alignment shift of 3. It then calls G13CDF to calculate the smoothed sample cross spectrum and
prints the results.

10.1 Program Text

Program g13cdfe

! G13CDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13cdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: pw, pxy
Integer :: ifail, ish, j, kc, l, m, mtxy, mw, &

ng, nxy
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: xg(:), yg(:)
! .. Intrinsic Procedures ..

Intrinsic :: ceiling, log, real
! .. Executable Statements ..

Write (nout,*) ’G13CDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) nxy, l

! Read in control parameters
Read (nin,*) mtxy, pxy, pw, mw, ish

! Get a value for KC
m = ceiling(log(2.0E0_nag_wp*real(nxy,kind=nag_wp)/real(l, &

kind=nag_wp))/log(2.0E0_nag_wp))
kc = (2**m)*l
Allocate (xg(kc),yg(kc))

! Read in data
Read (nin,*) xg(1:nxy)
Read (nin,*) yg(1:nxy)

ifail = 0
Call g13cdf(nxy,mtxy,pxy,mw,ish,pw,l,kc,xg,yg,ng,ifail)

! Display results
Write (nout,*) ’ Returned sample spectrum’
Write (nout,*)
Write (nout,*) &

’ Real Imaginary Real Imaginary Real Imaginary’
Write (nout,*) &
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’ part part part part part part’
Write (nout,99999)(j,xg(j),yg(j),j=1,ng)

99999 Format (1X,I3,F8.4,F9.4,I5,F8.4,F9.4,I5,F8.4,F9.4)
End Program g13cdfe

10.2 Program Data

G13CDF Example Program Data
296 80 :: NXY,L
1 0.1 0.5 16 3 :: MTXY,PXY,PW,MW,ISH
-0.109 0.000 0.178 0.339 0.373 0.441 0.461 0.348
0.127 -0.180 -0.588 -1.055 -1.421 -1.520 -1.302 -0.814

-0.475 -0.193 0.088 0.435 0.771 0.866 0.875 0.891
0.987 1.263 1.775 1.976 1.934 1.866 1.832 1.767
1.608 1.265 0.790 0.360 0.115 0.088 0.331 0.645
0.960 1.409 2.670 2.834 2.812 2.483 1.929 1.485
1.214 1.239 1.608 1.905 2.023 1.815 0.535 0.122
0.009 0.164 0.671 1.019 1.146 1.155 1.112 1.121
1.223 1.257 1.157 0.913 0.620 0.255 -0.280 -1.080

-1.551 -1.799 -1.825 -1.456 -0.944 -0.570 -0.431 -0.577
-0.960 -1.616 -1.875 -1.891 -1.746 -1.474 -1.201 -0.927
-0.524 0.040 0.788 0.943 0.930 1.006 1.137 1.198
1.054 0.595 -0.080 -0.314 -0.288 -0.153 -0.109 -0.187

-0.255 -0.299 -0.007 0.254 0.330 0.102 -0.423 -1.139
-2.275 -2.594 -2.716 -2.510 -1.790 -1.346 -1.081 -0.910
-0.876 -0.885 -0.800 -0.544 -0.416 -0.271 0.000 0.403
0.841 1.285 1.607 1.746 1.683 1.485 0.993 0.648
0.577 0.577 0.632 0.747 0.999 0.993 0.968 0.790
0.399 -0.161 -0.553 -0.603 -0.424 -0.194 -0.049 0.060
0.161 0.301 0.517 0.566 0.560 0.573 0.592 0.671
0.933 1.337 1.460 1.353 0.772 0.218 -0.237 -0.714

-1.099 -1.269 -1.175 -0.676 0.033 0.556 0.643 0.484
0.109 -0.310 -0.697 -1.047 -1.218 -1.183 -0.873 -0.336
0.063 0.084 0.000 0.001 0.209 0.556 0.782 0.858
0.918 0.862 0.416 -0.336 -0.959 -1.813 -2.378 -2.499

-2.473 -2.330 -2.053 -1.739 -1.261 -0.569 -0.137 -0.024
-0.050 -0.135 -0.276 -0.534 -0.871 -1.243 -1.439 -1.422
-1.175 -0.813 -0.634 -0.582 -0.625 -0.713 -0.848 -1.039
-1.346 -1.628 -1.619 -1.149 -0.488 -0.160 -0.007 -0.092
-0.620 -1.086 -1.525 -1.858 -2.029 -2.024 -1.961 -1.952
-1.794 -1.302 -1.030 -0.918 -0.798 -0.867 -1.047 -1.123
-0.876 -0.395 0.185 0.662 0.709 0.605 0.501 0.603
0.943 1.223 1.249 0.824 0.102 0.025 0.382 0.922
1.032 0.866 0.527 0.093 -0.458 -0.748 -0.947 -1.029

-0.928 -0.645 -0.424 -0.276 -0.158 -0.033 0.102 0.251
0.280 0.000 -0.493 -0.759 -0.824 -0.740 -0.528 -0.204
0.034 0.204 0.253 0.195 0.131 0.017 -0.182 -0.262 :: End of XG

53.8 53.6 53.5 53.5 53.4 53.1 52.7 52.4 52.2 52.0 52.0 52.4
53.0 54.0 54.9 56.0 56.8 56.8 56.4 55.7 55.0 54.3 53.2 52.3
51.6 51.2 50.8 50.5 50.0 49.2 48.4 47.9 47.6 47.5 47.5 47.6
48.1 49.0 50.0 51.1 51.8 51.9 51.7 51.2 50.0 48.3 47.0 45.8
45.6 46.0 46.9 47.8 48.2 48.3 47.9 47.2 47.2 48.1 49.4 50.6
51.5 51.6 51.2 50.5 50.1 49.8 49.6 49.4 49.3 49.2 49.3 49.7
50.3 51.3 52.8 54.4 56.0 56.9 57.5 57.3 56.6 56.0 55.4 55.4
56.4 57.2 58.0 58.4 58.4 58.1 57.7 57.0 56.0 54.7 53.2 52.1
51.6 51.0 50.5 50.4 51.0 51.8 52.4 53.0 53.4 53.6 53.7 53.8
53.8 53.8 53.3 53.0 52.9 53.4 54.6 56.4 58.0 59.4 60.2 60.0
59.4 58.4 57.6 56.9 56.4 56.0 55.7 55.3 55.0 54.4 53.7 52.8
51.6 50.6 49.4 48.8 48.5 48.7 49.2 49.8 50.4 50.7 50.9 50.7
50.5 50.4 50.2 50.4 51.2 52.3 53.2 53.9 54.1 54.0 53.6 53.2
53.0 52.8 52.3 51.9 51.6 51.6 51.4 51.2 50.7 50.0 49.4 49.3
49.7 50.6 51.8 53.0 54.0 55.3 55.9 55.9 54.6 53.5 52.4 52.1
52.3 53.0 53.8 54.6 55.4 55.9 55.9 55.2 54.4 53.7 53.6 53.6
53.2 52.5 52.0 51.4 51.0 50.9 52.4 53.5 55.6 58.0 59.5 60.0
60.4 60.5 60.2 59.7 59.0 57.6 56.4 55.2 54.5 54.1 54.1 54.4
55.5 56.2 57.0 57.3 57.4 57.0 56.4 55.9 55.5 55.3 55.2 55.4
56.0 56.5 57.1 57.3 56.8 55.6 55.0 54.1 54.3 55.3 56.4 57.2
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57.8 58.3 58.6 58.8 58.8 58.6 58.0 57.4 57.0 56.4 56.3 56.4
56.4 56.0 55.2 54.0 53.0 52.0 51.6 51.6 51.1 50.4 50.0 50.0
52.0 54.0 55.1 54.5 52.8 51.4 50.8 51.2 52.0 52.8 53.8 54.5
54.9 54.9 54.8 54.4 53.7 53.3 52.8 52.6 52.6 53.0 54.3 56.0
57.0 58.0 58.6 58.5 58.3 57.8 57.3 57.0 :: End of YG

10.3 Program Results

G13CDF Example Program Results

Returned sample spectrum

Real Imaginary Real Imaginary Real Imaginary
part part part part part part

1 -6.1563 0.0000 2 -5.5905 -2.0119 3 -3.2711 -2.7963
4 -1.1803 -2.3264 5 -0.2061 -1.8132 6 0.3434 -1.1357
7 0.6200 -0.7351 8 0.5967 -0.3449 9 0.4523 -0.0984

10 0.2391 0.0177 11 0.1129 0.0402 12 0.0564 0.0523
13 0.0134 0.0443 14 -0.0032 0.0299 15 -0.0057 0.0148
16 -0.0057 0.0069 17 -0.0033 0.0038 18 -0.0011 0.0012
19 -0.0004 0.0001 20 -0.0004 0.0002 21 -0.0003 0.0001
22 -0.0001 0.0002 23 -0.0002 0.0003 24 -0.0002 0.0002
25 -0.0002 0.0000 26 -0.0004 0.0000 27 -0.0002 -0.0002
28 -0.0001 -0.0000 29 -0.0001 0.0002 30 -0.0001 0.0002
31 -0.0002 0.0003 32 -0.0002 0.0001 33 -0.0001 0.0000
34 -0.0000 -0.0000 35 0.0000 -0.0001 36 0.0001 -0.0001
37 0.0001 -0.0001 38 0.0001 -0.0001 39 0.0000 -0.0001
40 0.0000 -0.0001 41 0.0001 0.0000
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NAG Library Routine Document

G13CEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

For a bivariate time series, G13CEF calculates the cross amplitude spectrum and squared coherency,
together with lower and upper bounds from the univariate and bivariate (cross) spectra.

2 Specification

SUBROUTINE G13CEF (XG, YG, XYRG, XYIG, NG, STATS, CA, CALW, CAUP, T, SC,
SCLW, SCUP, IFAIL)

&

INTEGER NG, IFAIL
REAL (KIND=nag_wp) XG(NG), YG(NG), XYRG(NG), XYIG(NG), STATS(4),

CA(NG), CALW(NG), CAUP(NG), T, SC(NG), SCLW(NG),
SCUP(NG)

&
&

3 Description

Estimates of the cross amplitude spectrum A !ð Þ and squared coherency W !ð Þ are calculated for each
frequency ! as

A !ð Þ ¼ fxy !ð Þ
		 		 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cf !ð Þ2 þ qf !ð Þ2
q

and

W !ð Þ ¼
fxy !ð Þ
		 		2

fxx !ð Þfyy !ð Þ
;

where

cf !ð Þ and qf !ð Þ are the co-spectrum and quadrature spectrum estimates between the series, i.e.,
the real and imaginary parts of the cross spectrum fxy !ð Þ as obtained using G13CCF or G13CDF;

fxx !ð Þ and fyy !ð Þ are the univariate spectrum estimates for the two series as obtained using
G13CAF or G13CBF.

The same type and amount of smoothing should be used for these estimates, and this is specified by the
degrees of freedom and bandwidth values which are passed from the calls of G13CAF or G13CBF.

Upper and lower 95% confidence limits for the cross amplitude are given approximately by

A !ð Þ 1
 1:96=
ffiffiffi
d
p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W !ð Þ�1 þ 1
q� �

;

except that a negative lower limit is reset to 0:0, in which case the approximation is rather poor. You
are therefore particularly recommended to compare the coherency estimate W !ð Þ with the critical value
T derived from the upper 5% point of the F -distribution on 2; d� 2ð Þ degrees of freedom:

T ¼ 2F

d� 2þ 2F
;

where d is the degrees of freedom associated with the univariate spectrum estimates. The value of T is
returned by the routine.

The hypothesis that the series are unrelated at frequency !, i.e., that both the true cross amplitude and
coherency are zero, may be rejected at the 5% level if W !ð Þ > T . Tests at two frequencies separated by
more than the bandwidth may be taken to be independent.
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The confidence limits on A !ð Þ are strictly appropriate only at frequencies for which the coherency is
significant. The same applies to the confidence limits on W !ð Þ which are however calculated at all
frequencies using the approximation that arctanh

ffiffiffiffiffiffiffiffiffiffiffi
W lð Þ

p� �
is Normal with variance 1=d.

4 References

Bloomfield P (1976) Fourier Analysis of Time Series: An Introduction Wiley

Jenkins G M and Watts D G (1968) Spectral Analysis and its Applications Holden–Day

5 Arguments

1: XGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the NG univariate spectral estimates, fxx !ð Þ, for the x series.

2: YGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the NG univariate spectral estimates, fyy !ð Þ, for the y series.

3: XYRGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the real parts, cf !ð Þ, of the NG bivariate spectral estimates for the x and y series. The
x series leads the y series.

4: XYIGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the imaginary parts, qf !ð Þ, of the NG bivariate spectral estimates for the x and y
series. The x series leads the y series.

Note: the two univariate and the bivariate spectra must each have been calculated using the
same method of smoothing. For rectangular, Bartlett, Tukey or Parzen smoothing windows, the
same cut-off point of lag window and the same frequency division of the spectral estimates must
be used. For the trapezium frequency smoothing window, the frequency width and the shape of
the window and the frequency division of the spectral estimates must be the same. The spectral
estimates and statistics must also be unlogged.

5: NG – INTEGER Input

On entry: the number of spectral estimates in each of the arrays XG, YG, XYRG and XYIG. It is
also the number of cross amplitude spectral and squared coherency estimates.

Constraint: NG � 1.

6: STATSð4Þ – REAL (KIND=nag_wp) array Input

On entry: the four associated statistics for the univariate spectral estimates for the x and y series.
STATSð1Þ contains the degrees of freedom, STATSð2Þ and STATSð3Þ contain the lower and
upper bound multiplying factors respectively and STATSð4Þ contains the bandwidth.

Constraints:

STATSð1Þ � 3:0;
0:0 < STATSð2Þ � 1:0;
STATSð3Þ � 1:0.

7: CAðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG cross amplitude spectral estimates Â !ð Þ at each frequency of !.

8: CALWðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG lower bounds for the NG cross amplitude spectral estimates.
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9: CAUPðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG upper bounds for the NG cross amplitude spectral estimates.

10: T – REAL (KIND=nag_wp) Output

On exit: the critical value for the significance of the squared coherency, T .

11: SCðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG squared coherency estimates, Ŵ !ð Þ at each frequency !.

12: SCLWðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG lower bounds for the NG squared coherency estimates.

13: SCUPðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG upper bounds for the NG squared coherency estimates.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NG < 1,
or STATSð1Þ < 3:0,
or STATSð2Þ � 0:0,
or STATSð2Þ > 1:0,
or STATSð3Þ < 1:0.

IFAIL ¼ 2

A bivariate spectral estimate is zero. For this frequency the cross amplitude spectrum and
squared coherency and their bounds are set to zero.

IFAIL ¼ 3

A univariate spectral estimate is negative. For this frequency the cross amplitude spectrum and
squared coherency and their bounds are set to zero.

IFAIL ¼ 4

A univariate spectral estimate is zero. For this frequency the cross amplitude spectrum and
squared coherency and their bounds are set to zero.
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IFAIL ¼ 5

A calculated value of the squared coherency exceeds 1:0. For this frequency the squared
coherency is reset to 1:0 and this value for the squared coherency is used in the formulae for the
calculation of bounds for both the cross amplitude spectrum and squared coherency. This has the
consequence that both squared coherency bounds are 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If more than one failure of the types 2, 3, 4 and 5 occurs then the failure type which occurred at lowest
frequency is returned in IFAIL. However the actions indicated above are also carried out for failures at
higher frequencies.

7 Accuracy

All computations are very stable and yield good accuracy.

8 Parallelism and Performance

G13CEF is not threaded in any implementation.

9 Further Comments

The time taken by G13CEF is approximately proportional to NG.

10 Example

This example reads the set of univariate spectrum statistics, the two univariate spectra and the cross
spectrum at a frequency division of 2	

20 for a pair of time series. It calls G13CEF to calculate the cross
amplitude spectrum and squared coherency and their bounds and prints the results.

10.1 Program Text

Program g13cefe

! G13CEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13cef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: t
Integer :: i, ifail, j, ng
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! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ca(:), calw(:), caup(:), sc(:), &

sclw(:), scup(:), xg(:), xyig(:), &
xyrg(:), yg(:)

Real (Kind=nag_wp) :: stats(4)
! .. Executable Statements ..

Write (nout,*) ’G13CEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) ng

! Read in statistics
Read (nin,*) stats(1:4)

Allocate (xg(ng),yg(ng),xyrg(ng),xyig(ng),ca(ng),calw(ng),caup(ng), &
sc(ng),sclw(ng),scup(ng))

! Read in data
Read (nin,*)(xg(i),yg(i),xyrg(i),xyig(i),i=1,ng)

! Calculate cross-amplitude spectrum
ifail = -1
Call g13cef(xg,yg,xyrg,xyig,ng,stats,ca,calw,caup,t,sc,sclw,scup,ifail)
If (ifail/=0) Then

If (ifail<2) Then
Go To 100

End If
End If

! Display results
Write (nout,*) ’ Cross amplitude spectrum’
Write (nout,*)
Write (nout,*) ’ Lower Upper’
Write (nout,*) ’ Value bound bound’
Write (nout,99999)(j-1,ca(j),calw(j),caup(j),j=1,ng)
Write (nout,*)
Write (nout,99998) ’Squared coherency test statistic =’, t
Write (nout,*)
Write (nout,*) ’ Squared coherency’
Write (nout,*)
Write (nout,*) ’ Lower Upper’
Write (nout,*) ’ Value bound bound’
Write (nout,99999)(j-1,sc(j),sclw(j),scup(j),j=1,ng)

100 Continue

99999 Format (1X,I5,3F10.4)
99998 Format (1X,A,F12.4)

End Program g13cefe

10.2 Program Data

G13CEF Example Program Data
9

30.00000 .63858 1.78670 .33288
2.03490 21.97712 -6.54995 0.00000
.51554 3.29761 .34107 -1.19030
.07640 .28782 .12335 .04087
.01068 .02480 -.00514 .00842
.00093 .00285 -.00033 .00032
.00100 .00203 -.00039 -.00001
.00076 .00125 -.00026 .00018
.00037 .00107 .00011 -.00016
.00021 .00191 .00007 0.00000
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10.3 Program Results

G13CEF Example Program Results

Cross amplitude spectrum

Lower Upper
Value bound bound

0 6.5499 3.9277 10.9228
1 1.2382 0.7364 2.0820
2 0.1299 0.0755 0.2236
3 0.0099 0.0049 0.0197
4 0.0005 0.0001 0.0017
5 0.0004 0.0001 0.0015
6 0.0003 0.0001 0.0010
7 0.0002 0.0001 0.0007
8 0.0001 0.0000 0.0018

Squared coherency test statistic = 0.1926

Squared coherency

Lower Upper
Value bound bound

0 0.9593 0.9185 0.9799
1 0.9018 0.8093 0.9507
2 0.7679 0.5811 0.8790
3 0.3674 0.1102 0.6177
4 0.0797 0.0000 0.3253
5 0.0750 0.0000 0.3182
6 0.1053 0.0000 0.3610
7 0.0952 0.0000 0.3475
8 0.0122 0.0000 0.1912
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G13CFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

For a bivariate time series, G13CFF calculates the gain and phase together with lower and upper bounds
from the univariate and bivariate spectra.

2 Specification

SUBROUTINE G13CFF (XG, YG, XYRG, XYIG, NG, STATS, GN, GNLW, GNUP, PH,
PHLW, PHUP, IFAIL)

&

INTEGER NG, IFAIL
REAL (KIND=nag_wp) XG(NG), YG(NG), XYRG(NG), XYIG(NG), STATS(4),

GN(NG), GNLW(NG), GNUP(NG), PH(NG), PHLW(NG),
PHUP(NG)

&
&

3 Description

Estimates of the gain G !ð Þ and phase 
 !ð Þ of the dependency of series y on series x at frequency ! are
given by

Ĝ !ð Þ ¼ A !ð Þ
fxx !ð Þ


̂ !ð Þ ¼ arccos
cf !ð Þ
A !ð Þ

� �
; if qf !ð Þ � 0


̂ !ð Þ ¼ 2	� arccos
cf !ð Þ
A !ð Þ

� �
; if qf !ð Þ < 0:

The quantities used in these definitions are obtained as in Section 3 in G13CEF.

Confidence limits are returned for both gain and phase, but should again be taken as very approximate
when the coherency W !ð Þ, as calculated by G13CEF, is not significant. These are based on the

assumption that both Ĝ !ð Þ=G !ð Þ
� �

� 1 and 
̂ !ð Þ are Normal with variance

1

d

1

W !ð Þ � 1

� �
:

Although the estimate of 
 !ð Þ is always given in the range 0; 2	½ Þ, no attempt is made to restrict its
confidence limits to this range.

4 References

Bloomfield P (1976) Fourier Analysis of Time Series: An Introduction Wiley

Jenkins G M and Watts D G (1968) Spectral Analysis and its Applications Holden–Day

5 Arguments

1: XGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the NG univariate spectral estimates, fxx !ð Þ, for the x series.
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2: YGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the NG univariate spectral estimates, fyy !ð Þ, for the y series.

3: XYRGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the real parts, cf !ð Þ, of the NG bivariate spectral estimates for the x and y series. The
x series leads the y series.

4: XYIGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the imaginary parts, qf !ð Þ, of the NG bivariate spectral estimates for the x and y
series. The x series leads the y series.

Note: the two univariate and the bivariate spectra must each have been calculated using the
same method of smoothing. For rectangular, Bartlett, Tukey or Parzen smoothing windows, the
same cut-off point of lag window and the same frequency division of the spectral estimates must
be used. For the trapezium frequency smoothing window, the frequency width and the shape of
the window and the frequency division of the spectral estimates must be the same. The spectral
estimates and statistics must also be unlogged.

5: NG – INTEGER Input

On entry: the number of spectral estimates in each of the arrays XG, YG, XYRG and XYIG. It is
also the number of gain and phase estimates.

Constraint: NG � 1.

6: STATSð4Þ – REAL (KIND=nag_wp) array Input

On entry: the four associated statistics for the univariate spectral estimates for the x and y series.
STATSð1Þ contains the degrees of freedom, STATSð2Þ and STATSð3Þ contain the lower and
upper bound multiplying factors respectively and STATSð4Þ holds the bandwidth.

Constraint: STATSð1Þ � 3:0.

7: GNðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG gain estimates, Ĝ !ð Þ, at each frequency !.

8: GNLWðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG lower bounds for the NG gain estimates.

9: GNUPðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG upper bounds for the NG gain estimates.

10: PHðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG phase estimates, 
̂ !ð Þ, at each frequency !.

11: PHLWðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG lower bounds for the NG phase estimates.

12: PHUPðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG upper bounds for the NG phase estimates.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NG < 1,
or STATSð1Þ < 3:0.

IFAIL ¼ 2

A bivariate spectral estimate is zero. For this frequency the gain and the phase and their bounds
are set to zero.

IFAIL ¼ 3

A univariate spectral estimate is negative. For this frequency the gain and the phase and their
bounds are set to zero.

IFAIL ¼ 4

A univariate spectral estimate is zero. For this frequency the gain and the phase and their bounds
are set to zero.

IFAIL ¼ 5

A calculated value of the squared coherency exceeds 1:0. For this frequency the squared
coherency is reset to 1:0 in the formulae for the gain and phase bounds.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If more than one failure of types 2, 3, 4 and 5 occurs then the failure type which occurred at lowest
frequency is returned in IFAIL. However the actions indicated above are also carried out for failures at
higher frequencies.
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7 Accuracy

All computations are very stable and yield good accuracy.

8 Parallelism and Performance

G13CFF is not threaded in any implementation.

9 Further Comments

The time taken by G13CFF is approximately proportional to NG.

10 Example

This example reads the set of univariate spectrum statistics, the two univariate spectra and the cross

spectrum at a frequency division of
2	

20
for a pair of time series. It calls G13CFF to calculate the gain

and the phase and their bounds and prints the results.

10.1 Program Text

Program g13cffe

! G13CFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13cff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, ng

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: gn(:), gnlw(:), gnup(:), ph(:), &

phlw(:), phup(:), xg(:), xyig(:), &
xyrg(:), yg(:)

Real (Kind=nag_wp) :: stats(4)
! .. Executable Statements ..

Write (nout,*) ’G13CFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) ng

Allocate (xg(ng),yg(ng),xyrg(ng),xyig(ng),gn(ng),gnlw(ng),gnup(ng), &
ph(ng),phlw(ng),phup(ng))

! Read in statistics
Read (nin,*) stats(1:4)

! Read in data
Read (nin,*)(xg(i),yg(i),xyrg(i),xyig(i),i=1,ng)

! Calculate gain and phase
ifail = -1
Call g13cff(xg,yg,xyrg,xyig,ng,stats,gn,gnlw,gnup,ph,phlw,phup,ifail)
If (ifail/=0) Then

If (ifail<2) Then
Go To 100

End If

G13CFF NAG Library Manual

G13CFF.4 Mark 26



End If

! Display results
Write (nout,*) ’ The gain’
Write (nout,*)
Write (nout,*) ’ Lower Upper’
Write (nout,*) ’ Value bound bound’
Write (nout,99999)(j-1,gn(j),gnlw(j),gnup(j),j=1,ng)
Write (nout,*)
Write (nout,*) ’ The phase’
Write (nout,*)
Write (nout,*) ’ Lower Upper’
Write (nout,*) ’ Value bound bound’
Write (nout,99999)(j-1,ph(j),phlw(j),phup(j),j=1,ng)

100 Continue

99999 Format (1X,I5,3F10.4)
End Program g13cffe

10.2 Program Data

G13CFF Example Program Data
9

30.00000 .63858 1.78670 .33288
2.03490 21.97712 -6.54995 0.00000
.51554 3.29761 .34107 -1.19030
.07640 .28782 .12335 .04087
.01068 .02480 -.00514 .00842
.00093 .00285 -.00033 .00032
.00100 .00203 -.00039 -.00001
.00076 .00125 -.00026 .00018
.00037 .00107 .00011 -.00016
.00021 .00191 .00007 0.00000

10.3 Program Results

G13CFF Example Program Results

The gain

Lower Upper
Value bound bound

0 3.2188 2.9722 3.4859
1 2.4018 2.1138 2.7290
2 1.7008 1.3748 2.1042
3 0.9237 0.5558 1.5350
4 0.4943 0.1327 1.8415
5 0.3901 0.1002 1.5196
6 0.4161 0.1346 1.2863
7 0.5248 0.1591 1.7306
8 0.3333 0.0103 10.8301

The phase

Lower Upper
Value bound bound

0 3.1416 3.0619 3.2213
1 4.9915 4.8637 5.1192
2 0.3199 0.1071 0.5328
3 2.1189 1.6109 2.6268
4 2.3716 1.0563 3.6868
5 3.1672 1.8075 4.5270
6 2.5360 1.4074 3.6647
7 5.3147 4.1214 6.5079
8 0.0000 -3.4809 3.4809
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NAG Library Routine Document

G13CGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

For a bivariate time series, G13CGF calculates the noise spectrum together with multiplying factors for
the bounds and the impulse response function and its standard error, from the univariate and bivariate
spectra.

2 Specification

SUBROUTINE G13CGF (XG, YG, XYRG, XYIG, NG, STATS, L, N, ER, ERLW, ERUP,
RF, RFSE, IFAIL)

&

INTEGER NG, L, N, IFAIL
REAL (KIND=nag_wp) XG(NG), YG(NG), XYRG(NG), XYIG(NG), STATS(4),

ER(NG), ERLW, ERUP, RF(L), RFSE
&

3 Description

An estimate of the noise spectrum in the dependence of series y on series x at frequency ! is given by

fyjx !ð Þ ¼ fyy !ð Þ 1�W !ð Þð Þ;

where W !ð Þ is the squared coherency described in G13CEF and fyy !ð Þ is the univariate spectrum
estimate for series y. Confidence limits on the true spectrum are obtained using multipliers as described
for G13CAF, but based on d� 2ð Þ degrees of freedom.

If the dependence of yt on xt can be assumed to be represented in the time domain by the one sided
relationship

yt ¼ v0xt þ v1xt�1 þ � � � þ nt;

where the noise nt is independent of xt, then it is the spectrum of this noise which is estimated by
fyjx !ð Þ.

Estimates of the impulse response function v0; v1; v2; . . . may also be obtained as

vk ¼
1

	

Z 	

0
Re

exp ik!ð Þfxy !ð Þ
fxx !ð Þ

� �
;

where Re indicates the real part of the expression. For this purpose it is essential that the univariate
spectrum for x, fxx !ð Þ, and the cross spectrum, fxy !ð Þ, be supplied to this routine for a frequency range

!l ¼
2	l

L

� �
; 0 � l � L=2½ �;

where ½� denotes the integer part, the integral being approximated by a finite Fourier transform.

An approximate standard error is calculated for the estimates vk. Significant values of vk in the
locations described as anticipatory responses in the argument array RF indicate that feedback exists
from yt to xt. This will bias the estimates of vk in any causal dependence of yt on xt; xt�1; . . . .

4 References

Bloomfield P (1976) Fourier Analysis of Time Series: An Introduction Wiley

Jenkins G M and Watts D G (1968) Spectral Analysis and its Applications Holden–Day
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5 Arguments

1: XGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the NG univariate spectral estimates, fxx !ð Þ, for the x series.

2: YGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the NG univariate spectral estimates, fyy !ð Þ, for the y series.

3: XYRGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the real parts, cf !ð Þ, of the NG bivariate spectral estimates for the x and y series. The
x series leads the y series.

4: XYIGðNGÞ – REAL (KIND=nag_wp) array Input

On entry: the imaginary parts, qf !ð Þ, of the NG bivariate spectral estimates for the x and y
series. The x series leads the y series.

Note: the two univariate and the bivariate spectra must each have been calculated using the
same method of smoothing. For rectangular, Bartlett, Tukey or Parzen smoothing windows, the
same cut-off point of lag window and the same frequency division of the spectral estimates must
be used. For the trapezium frequency smoothing window, the frequency width and the shape of
the window and the frequency division of the spectral estimates must be the same. The spectral
estimates and statistics must also be unlogged.

5: NG – INTEGER Input

On entry: the number of spectral estimates in each of the arrays XG, YG, XYRG, XYIG. It is
also the number of noise spectral estimates.

Constraint: NG � 1.

6: STATSð4Þ – REAL (KIND=nag_wp) array Input

On entry: the four associated statistics for the univariate spectral estimates for the x and y series.
STATSð1Þ contains the degree of freedom, STATSð2Þ and STATSð3Þ contain the lower and
upper bound multiplying factors respectively and STATSð4Þ contains the bandwidth.

Constraints:

STATSð1Þ � 3:0;
0:0 < STATSð2Þ � 1:0;
STATSð3Þ � 1:0.

7: L – INTEGER Input

On entry: L, the frequency division of the spectral estimates as 2	
L . It is also the order of the FFT

used to calculate the impulse response function. L must relate to the parameter NG by the
relationship.

Constraint: NG ¼ L=2½ � þ 1.

8: N – INTEGER Input

On entry: the number of points in each of the time series x and y. N should have the same value
as NXY in the call of G13CCF or G13CDF which calculated the smoothed sample cross
spectrum. N is used in calculating the impulse response function standard error (RFSE).

Constraint: N � 1.

9: ERðNGÞ – REAL (KIND=nag_wp) array Output

On exit: the NG estimates of the noise spectrum, f̂yjx !ð Þ at each frequency.
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10: ERLW – REAL (KIND=nag_wp) Output

On exit: the noise spectrum lower limit multiplying factor.

11: ERUP – REAL (KIND=nag_wp) Output

On exit: the noise spectrum upper limit multiplying factor.

12: RFðLÞ – REAL (KIND=nag_wp) array Output

On exit: the impulse response function. Causal responses are stored in ascending frequency in
RFð1Þ to RFðNGÞ and anticipatory responses are stored in descending frequency in RFðNGþ 1Þ
to RFðLÞ.

13: RFSE – REAL (KIND=nag_wp) Output

On exit: the impulse response function standard error.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13CGF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 1.

On entry, NG ¼ valueh i.
Constraint: NG � 1.

On entry, STATSð1Þ ¼ valueh i.
Constraint: STATSð1Þ � 3:0.

On entry, STATSð2Þ ¼ valueh i.
Constraint: STATSð2Þ > 0:0.

On entry, STATSð2Þ ¼ valueh i.
Constraint: STATSð2Þ � 1:0.

On entry, STATSð3Þ ¼ valueh i.
Constraint: STATSð3Þ � 1:0.

G13 – Time Series Analysis G13CGF

Mark 26 G13CGF.3



IFAIL ¼ 2

A bivariate spectral estimate is zero.
For this frequency the noise spectrum is set to zero, and the contribution to the impulse response
function and its standard error is set to zero.

IFAIL ¼ 3

A univariate spectral estimate is negative.
For this frequency the noise spectrum is set to zero, and the contributions to the impulse response
function and its standard error are set to zero.

IFAIL ¼ 4

A univariate spectral estimate is zero.
For this frequency the noise spectrum is set to zero and the contributions to the impulse response
function and its standard error are set to zero.

IFAIL ¼ 5

A calculated value of the squared coherency exceeds 1:0.
For this frequency the squared coherency is reset to 1.0 with the consequence that the noise
spectrum is zero and the contribution to the impulse response function at this frequency is zero.

IFAIL ¼ 6

On entry, NG ¼ valueh i and L ¼ valueh i.
Constraint: NG ¼ L=2þ 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If more than one failure of types 2, 3, 4 and 5 occurs then the failure type which occurred at lowest
frequency is returned in IFAIL. However the actions indicated above are also carried out for failures at
higher frequencies.

7 Accuracy

The computation of the noise is stable and yields good accuracy. The FFT is a numerically stable
process, and any errors introduced during the computation will normally be insignificant compared with
uncertainty in the data.

8 Parallelism and Performance

G13CGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13CGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by G13CGF is approximately proportional to NG.

10 Example

This example reads the set of univariate spectrum statistics, the two univariate spectra and the cross

spectrum at a frequency division of
2	

20
for a pair of time series. It calls G13CGF to calculate the noise

spectrum and its confidence limits multiplying factors, the impulse response function and its standard
error. It then prints the results.

10.1 Program Text

Program g13cgfe

! G13CGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13cgf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: erlw, erup, rfse
Integer :: i, ifail, j, l, n, ng

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: er(:), rf(:), xg(:), xyig(:), &

xyrg(:), yg(:)
Real (Kind=nag_wp) :: stats(4)

! .. Executable Statements ..
Write (nout,*) ’G13CGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) ng, l, n

Allocate (xg(ng),yg(ng),xyrg(ng),xyig(ng),er(ng),rf(l))

! Read in the statistics
Read (nin,*)(stats(i),i=1,4)

! Read in data
Read (nin,*)(xg(i),yg(i),xyrg(i),xyig(i),i=1,ng)

! Calculate noise spectrum
ifail = -1
Call g13cgf(xg,yg,xyrg,xyig,ng,stats,l,n,er,erlw,erup,rf,rfse,ifail)
If (ifail/=0) Then

If (ifail<2) Then
Go To 100

End If
End If

! Display results
Write (nout,*) ’ Noise spectrum’
Write (nout,99999)(j-1,er(j),j=1,ng)
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Write (nout,*)
Write (nout,*) ’Noise spectrum bounds multiplying factors’
Write (nout,99998) ’Lower =’, erlw, ’ Upper =’, erup
Write (nout,*)
Write (nout,*) ’Impulse response function’
Write (nout,*)
Write (nout,99999)(j-1,rf(j),j=1,l)
Write (nout,*)
Write (nout,99998) ’Impulse response function standard error =’, rfse

100 Continue

99999 Format (1X,I5,F16.4)
99998 Format (1X,A,F10.4,A,F10.4)

End Program g13cgfe

10.2 Program Data

G13CGF Example Program Data
9 16 296

30.00000 .63858 1.78670 .33288
2.03490 21.97712 -6.54995 0.00000
.51554 3.29761 .34107 -1.19030
.07640 .28782 .12335 .04087
.01068 .02480 -.00514 .00842
.00093 .00285 -.00033 .00032
.00100 .00203 -.00039 -.00001
.00076 .00125 -.00026 .00018
.00037 .00107 .00011 -.00016
.00021 .00191 .00007 0.00000

10.3 Program Results

G13CGF Example Program Results

Noise spectrum
0 0.8941
1 0.3238
2 0.0668
3 0.0157
4 0.0026
5 0.0019
6 0.0011
7 0.0010
8 0.0019

Noise spectrum bounds multiplying factors
Lower = 0.6298 Upper = 1.8291

Impulse response function

0 -0.0547
1 0.0586
2 -0.0322
3 -0.6956
4 -0.7181
5 -0.8019
6 -0.4303
7 -0.2392
8 -0.0766
9 0.0657

10 -0.1652
11 -0.0439
12 -0.0494
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13 -0.0384
14 0.0838
15 -0.0814

Impulse response function standard error = 0.0863
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NAG Library Routine Document

G13DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13DBF calculates the multivariate partial autocorrelation function of a multivariate time series.

2 Specification

SUBROUTINE G13DBF (C0, C, LDC0, NS, NL, NK, P, V0, V, D, DB, W, WB, NVP,
WA, IWA, IFAIL)

&

INTEGER LDC0, NS, NL, NK, NVP, IWA, IFAIL
REAL (KIND=nag_wp) C0(LDC0,NS), C(LDC0,LDC0,NL), P(NK), V0, V(NK),

D(LDC0,LDC0,NK), DB(LDC0,NS), W(LDC0,LDC0,NK),
WB(LDC0,LDC0,NK), WA(IWA)

&
&

3 Description

The input is a set of lagged autocovariance matrices C0; C1; C2; . . . ; Cm. These will generally be sample
values such as are obtained from a multivariate time series using G13DMF.

The main calculation is the recursive determination of the coefficients in the finite lag (forward)
prediction equation

xt ¼ �l;1xt�1 þ � � � þ �l;lxt�l þ el;t
and the associated backward prediction equation

xt�l�1 ¼ �l;1xt�l þ � � � þ �l;lxt�1 þ fl;t
together with the covariance matrices Dl of el;t and Gl of fl;t.

The recursive cycle, by which the order of the prediction equation is extended from l to lþ 1, is to
calculate

Mlþ1 ¼ CT
lþ1 � �l;1CT

l � � � � � �l;lCT
1 ð1Þ

then �lþ1;lþ1 ¼Mlþ1D
�1
l , �lþ1;lþ1 ¼MT

lþ1G
�1
l

from which

�lþ1;j ¼ �l;j � �lþ1;lþ1�l;lþ1�j; j ¼ 1; 2; . . . ; l ð2Þ

and

�lþ1;j ¼ �l;j � �lþ1;lþ1�l;lþ1�j; j ¼ 1; 2; . . . ; l: ð3Þ

Finally, Dlþ1 ¼ Dl �Mlþ1�
T
lþ1;lþ1 and Glþ1 ¼ Gl �MT

lþ1�
T
lþ1;lþ1.

(Here T denotes the transpose of a matrix.)

The cycle is initialized by taking (for l ¼ 0)

D0 ¼ G0 ¼ C0:

In the step from l ¼ 0 to 1, the above equations contain redundant terms and simplify. Thus (1)
becomes M1 ¼ CT

1 and neither (2) or (3) are needed.
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Quantities useful in assessing the effectiveness of the prediction equation are generalized variance ratios

vl ¼ detDl= detC0; l ¼ 1; 2; . . .

and multiple squared partial autocorrelations

p2l ¼ 1� vl=vl�1:

4 References

Akaike H (1971) Autoregressive model fitting for control Ann. Inst. Statist. Math. 23 163–180

Whittle P (1963) On the fitting of multivariate autoregressions and the approximate canonical
factorization of a spectral density matrix Biometrika 50 129–134

5 Arguments

1: C0ðLDC0;NSÞ – REAL (KIND=nag_wp) array Input

On entry: contains the zero lag cross-covariances between the NS series as returned by G13DMF.
(C0 is assumed to be symmetric, upper triangle only is used.)

2: CðLDC0;LDC0;NLÞ – REAL (KIND=nag_wp) array Input

On entry: contains the cross-covariances at lags 1 to NL. Cði; j; kÞ must contain the cross-
covariance, cijk, of series i and series j at lag k. Series j leads series i.

3: LDC0 – INTEGER Input

On entry: the first dimension of the arrays C0, C, D, DB, W and WB and the second dimension
of the arrays C, D, W and WB as declared in the (sub)program from which G13DBF is called.

Constraint: LDC0 � max NS; 1ð Þ.

4: NS – INTEGER Input

On entry: k, the number of time series whose cross-covariances are supplied in C and C0.

Constraint: NS � 1.

5: NL – INTEGER Input

On entry: m, the maximum lag for which cross-covariances are supplied in C.

Constraint: NL � 1.

6: NK – INTEGER Input

On entry: the number of lags to which partial auto-correlations are to be calculated.

Constraint: 1 � NK � NL.

7: PðNKÞ – REAL (KIND=nag_wp) array Output

On exit: the multiple squared partial autocorrelations from lags 1 to NVP; that is, PðlÞ contains
p2l , for l ¼ 1; 2; . . . ;NVP. For lags NVPþ 1 to NK the elements of P are set to zero.

8: V0 – REAL (KIND=nag_wp) Output

On exit: the lag zero prediction error variance (equal to the determinant of C0).

9: VðNKÞ – REAL (KIND=nag_wp) array Output

On exit: the prediction error variance ratios from lags 1 to NVP; that is, VðlÞ contains vl , for
l ¼ 1; 2; . . . ;NVP. For lags NVPþ 1 to NK the elements of V are set to zero.
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10: DðLDC0;LDC0;NKÞ – REAL (KIND=nag_wp) array Output

On exit: the prediction error variance matrices at lags 1 to NVP.

Element i; j; kð Þ of D contains the prediction error covariance of series i and series j at lag k, for
k ¼ 1; 2; . . . ;NVP. Series j leads series i; that is, the i; jð Þth element of Dk. For lags NVPþ 1 to
NK the elements of D are set to zero.

11: DBðLDC0;NSÞ – REAL (KIND=nag_wp) array Output

On exit: the backward prediction error variance matrix at lag NVP.

DBði; jÞ contains the backward prediction error covariance of series i and series j; that is, the
i; jð Þth element of the Gk, where k ¼ NVP.

12: WðLDC0;LDC0;NKÞ – REAL (KIND=nag_wp) array Output

On exit: the prediction coefficient matrices at lags 1 to NVP.

Wði; j; lÞ contains the jth prediction coefficient of series i at lag l; that is, the i; jð Þth element of
�kl , where k ¼ NVP, for l ¼ 1; 2; . . . ;NVP. For lags NVPþ 1 to NK the elements of W are set to
zero.

13: WBðLDC0;LDC0;NKÞ – REAL (KIND=nag_wp) array Output

On exit: the backward prediction coefficient matrices at lags 1 to NVP.

WBði; j; lÞ contains the jth backward prediction coefficient of series i at lag l; that is, the i; jð Þth
element of �kl , where k ¼ NVP, for l ¼ 1; 2; . . . ;NVP. For lags NVPþ 1 to NK the elements of
WB are set to zero.

14: NVP – INTEGER Output

On exit: the maximum lag, L, for which calculation of P, V, D, DB, W and WB was successful. If
the routine completes successfully NVP will equal NK.

15: WAðIWAÞ – REAL (KIND=nag_wp) array Workspace
16: IWA – INTEGER Input

On entry: the dimension of the array WA as declared in the (sub)program from which G13DBF is
called.

Constraint: IWA � 2� NSþ 1ð Þ � NS.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, LDC0 < 1,
or NS < 1,
or NS > LDC0,
or NL < 1,
or NK < 1,
or NK > NL,
or IWA < 2� NSþ 1ð Þ � NS.

IFAIL ¼ 2

C0 is not positive definite.

V0, V, P, D, DB, W, WB and NVP are set to zero.

IFAIL ¼ 3

At lag k ¼ NVPþ 1 � NK, Dk was found not to be positive definite. Up to lag NVP, V0, V, P,
D, W and WB contain the values calculated so far and from lag NVP þ 1 to lag NK the matrices
contain zero. DB contains the backward prediction coefficients for lag NVP.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The conditioning of the problem depends on the prediction error variance ratios. Very small values of
these may indicate loss of accuracy in the computations.

8 Parallelism and Performance

G13DBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13DBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The time taken by G13DBF is roughly proportional to NK2 � NS3.

If sample autocorrelation matrices are used as input, then the output will be relevant to the original
series scaled by their standard deviations. If these autocorrelation matrices are produced by G13DMF,
you must replace the diagonal elements of C0 (otherwise used to hold the series variances) by 1.

10 Example

This example reads the autocovariance matrices for four series from lag 0 to 5. It calls G13DBF to
calculate the multivariate partial autocorrelation function and other related matrices of statistics up to
lag 3. It prints the results.

10.1 Program Text

Program g13dbfe

! G13DBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13dbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: v0
Integer :: i, ifail, iwa, k, ldc0, nk, nl, ns, &

nvp
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: c(:,:,:), c0(:,:), d(:,:,:), &
db(:,:), p(:), v(:), w(:,:,:), &
wa(:), wb(:,:,:)

! .. Executable Statements ..
Write (nout,*) ’G13DBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read series length, and numbers of lags
Read (nin,*) ns, nl, nk

ldc0 = ns
iwa = (2*ns+1)*ns
Allocate (c0(ldc0,ns),c(ldc0,ldc0,nl),p(nk),v(nk),d(ldc0,ldc0,nk), &

w(ldc0,ldc0,nk),wb(ldc0,ldc0,nk),wa(iwa),db(ldc0,ns))

! Read autocovariances
Read (nin,*)(c0(i,1:ns),i=1,ns)
Read (nin,*)((c(i,1:ns,k),i=1,ns),k=1,nl)

! Calculate multivariate partial autocorrelation function
ifail = -1
Call g13dbf(c0,c,ldc0,ns,nl,nk,p,v0,v,d,db,w,wb,nvp,wa,iwa,ifail)
If (ifail/=0) Then

If (ifail/=3) Then
Go To 100

End If
End If

! Display results
Write (nout,99999) ’Number of valid parameters =’, nvp
Write (nout,*)
Write (nout,*) ’Multivariate partial autocorrelations’
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Write (nout,99998) p(1:nk)
Write (nout,*)
Write (nout,*) ’Zero lag predictor error variance determinant’
Write (nout,*) ’followed by error variance ratios’
Write (nout,99998) v0, v(1:nk)
Write (nout,*)
Write (nout,*) ’Prediction error variances’
Do k = 1, nk

Write (nout,*)
Write (nout,99997) ’Lag =’, k
Do i = 1, ns

Write (nout,99998) d(i,1:ns,k)
End Do

End Do
Write (nout,*)
Write (nout,*) ’Last backward prediction error variances’
Write (nout,*)
Write (nout,99997) ’Lag =’, nvp
Do i = 1, ns

Write (nout,99998) db(i,1:ns)
End Do
Write (nout,*)
Write (nout,*) ’Prediction coefficients’
Do k = 1, nk

Write (nout,*)
Write (nout,99997) ’Lag =’, k
Do i = 1, ns

Write (nout,99998) w(i,1:ns,k)
End Do

End Do
Write (nout,*)
Write (nout,*) ’Backward prediction coefficients’
Do k = 1, nk

Write (nout,*)
Write (nout,99997) ’Lag =’, k
Do i = 1, ns

Write (nout,99998) wb(i,1:ns,k)
End Do

End Do

100 Continue

99999 Format (1X,A,I10)
99998 Format (1X,5F12.5)
99997 Format (1X,A,I5)

End Program g13dbfe

10.2 Program Data

G13DBF Example Program Data
4 5 3 :: NS,NL,NK

.10900E-01 -.77917E-02 .13004E-02 .12654E-02
-.77917E-02 .57040E-01 .24180E-02 .14409E-01
.13004E-02 .24180E-02 .43960E-01 -.21421E-01
.12654E-02 .14409E-01 -.21421E-01 .72289E-01 :: End of C0
.45889E-02 .46510E-03 -.13275E-03 .77531E-02

-.24419E-02 -.11667E-01 -.21956E-01 -.45803E-02
.11080E-02 -.80479E-02 .13621E-01 -.85868E-02

-.50614E-03 .14045E-01 -.10087E-02 .12269E-01
.18652E-02 -.64389E-02 .88307E-02 -.24808E-02

-.11865E-01 .72367E-02 -.19802E-01 .59069E-02
-.80307E-02 .14306E-01 .14546E-01 .13510E-01
-.21791E-02 -.29528E-01 -.15887E-01 .88308E-03
-.80550E-04 -.37759E-02 .75463E-02 -.42276E-02
.41447E-02 -.37987E-02 .19332E-02 -.17564E-01

-.10582E-01 .67733E-02 .69832E-02 .61747E-02
.41352E-02 -.16013E-01 .17043E-01 -.13412E-01
.76079E-03 -.10134E-02 .11870E-01 -.41651E-02
.36014E-02 -.36375E-02 -.25571E-01 .50218E-02

-.13924E-01 .11718E-01 -.59088E-02 .59297E-02
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.10739E-01 -.14571E-01 .13816E-01 -.12588E-01
-.64365E-03 -.44556E-02 .51334E-02 .71587E-03
.63617E-02 .15217E-03 .27270E-02 -.22261E-02

-.85855E-02 .14468E-02 -.28698E-02 .44384E-02
.68339E-02 -.21790E-02 .13759E-01 .28217E-03 :: End of C

10.3 Program Results

G13DBF Example Program Results

Number of valid parameters = 3

Multivariate partial autocorrelations
0.64498 0.92669 0.84300

Zero lag predictor error variance determinant
followed by error variance ratios

0.00000 0.35502 0.02603 0.00409

Prediction error variances

Lag = 1
0.00811 -0.00511 0.00159 -0.00029

-0.00511 0.04089 0.00757 0.01843
0.00159 0.00757 0.03834 -0.01894

-0.00029 0.01843 -0.01894 0.06760

Lag = 2
0.00354 -0.00087 -0.00075 -0.00105

-0.00087 0.01946 0.00535 0.00566
-0.00075 0.00535 0.01900 -0.01071
-0.00105 0.00566 -0.01071 0.04058

Lag = 3
0.00301 -0.00087 -0.00054 0.00065

-0.00087 0.01824 0.00872 0.00247
-0.00054 0.00872 0.00935 -0.00216
0.00065 0.00247 -0.00216 0.02254

Last backward prediction error variances

Lag = 3
0.00331 -0.00392 -0.00106 0.00592

-0.00392 0.01890 0.00348 -0.00330
-0.00106 0.00348 0.01003 -0.01054
0.00592 -0.00330 -0.01054 0.03336

Prediction coefficients

Lag = 1
0.81861 0.23399 -0.17097 0.09256
0.06738 -0.48720 -0.14064 0.04295
0.15036 0.11924 -0.36725 -0.42092

-0.70971 0.02998 0.59779 0.34610

Lag = 2
-0.34049 -0.13370 0.40610 -0.02183
-1.27574 -0.13591 -0.65779 -0.11267
-0.45439 0.19379 0.63420 0.33920
-0.43237 -0.54848 -0.62897 0.16670

Lag = 3
0.16437 0.13858 0.01290 0.03463
0.39291 0.07407 -0.08802 -0.15361

-1.29240 -0.24489 0.30235 0.39442
0.89768 -0.39040 0.25151 -0.28304

Backward prediction coefficients

Lag = 1
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0.41541 0.06149 0.15319 0.05079
0.12370 -0.26471 -0.22721 0.48503

-0.86933 -0.47373 0.37924 0.13814
1.30779 -0.09178 -1.45398 -0.21967

Lag = 2
-0.06740 -0.12255 -0.13673 -0.09730
-1.24801 0.03090 0.51706 -0.28925
0.98045 -0.20194 0.16307 -0.10869

-1.68389 -0.74589 0.52900 0.41580

Lag = 3
0.03794 0.10491 -0.21635 0.08015
0.75392 0.22603 -0.25661 -0.47450

-0.00338 0.05636 -0.08818 0.12723
0.55022 -0.41232 0.71649 -0.14565
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NAG Library Routine Document

G13DDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13DDF fits a vector autoregressive moving average (VARMA) model to an observed vector of time
series using the method of Maximum Likelihood (ML). Standard errors of parameter estimates are
computed along with their appropriate correlation matrix. The routine also calculates estimates of the
residual series.

2 Specification

SUBROUTINE G13DDF (K, N, IP, IQ, MEAN, PAR, NPAR, QQ, KMAX, W, PARHLD,
EXACT, IPRINT, CGETOL, MAXCAL, ISHOW, NITER, RLOGL,
V, G, CM, LDCM, IFAIL)

&
&

INTEGER K, N, IP, IQ, NPAR, KMAX, IPRINT, MAXCAL, ISHOW,
NITER, LDCM, IFAIL

&

REAL (KIND=nag_wp) PAR(NPAR), QQ(KMAX,K), W(KMAX,N), CGETOL, RLOGL,
V(KMAX,N), G(NPAR), CM(LDCM,NPAR)

&

LOGICAL MEAN, PARHLD(NPAR), EXACT

3 Description

Let Wt ¼ w1t ; w2t ; . . . ; wktð ÞT, for t ¼ 1; 2; . . . ; n, denote a vector of k time series which is assumed to
follow a multivariate ARMA model of the form

Wt � � ¼ 
1 Wt�1 � �ð Þ þ 
2 Wt�2 � �ð Þ þ � � � þ 
p Wt�p � �
� �

þ�t � �1�t�1 � �2�t�2 � � � � � �q�t�q
ð1Þ

where �t ¼ �1t ; �2t ; . . . ; �ktð ÞT, for t ¼ 1; 2; . . . ; n, is a vector of k residual series assumed to be Normally
distributed with zero mean and positive definite covariance matrix �. The components of �t are
assumed to be uncorrelated at non-simultaneous lags. The 
i and �j are k by k matrices of parameters.

if g, for i ¼ 1; 2; . . . ; p, are called the autoregressive (AR) parameter matrices, and �if g, for
i ¼ 1; 2; . . . ; q, the moving average (MA) parameter matrices. The parameters in the model are thus the
p (k by k) 
-matrices, the q (k by k) �-matrices, the mean vector, �, and the residual error covariance
matrix �. Let

A 
ð Þ ¼


1 I 0 : : : 0

2 0 I 0 : : 0
: :
: :
: :

p�1 0 : : : 0 I

p 0 : : : 0 0

266666664

377777775
pk�pk

and B �ð Þ ¼

�1 I 0 : : : 0
�2 0 I 0 : : 0
: :
: :
: :
�q�1 0 : : : : I
�q 0 : : : : 0

266666664

377777775
qk�qk

where I denotes the k by k identity matrix.

The ARMA model (1) is said to be stationary if the eigenvalues of A 
ð Þ lie inside the unit circle.
Similarly, the ARMA model (1) is said to be invertible if the eigenvalues of B �ð Þ lie inside the unit
circle.

The method of computing the exact likelihood function (using a Kalman filter algorithm) is discussed in
Shea (1987). A quasi-Newton algorithm (see Gill and Murray (1972)) is then used to search for the
maximum of the log-likelihood function. Stationarity and invertibility are enforced on the model using
the reparameterisation discussed in Ansley and Kohn (1986). Conditional on the maximum likelihood
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estimates being equal to their true values the estimates of the residual series are uncorrelated with zero
mean and constant variance �.

You have the option of setting an argument (EXACT to .FALSE.) so that G13DDF calculates
c o n d i t i o n a l m a x i m u m l i k e l i h o o d e s t i m a t e s ( c o n d i t i o n a l o n
W0 ¼ W�1 ¼ � � � ¼ W1�p ¼ �0 ¼ ��1 ¼ � � � ¼
�1�q ¼ 0). This may be useful if the exact maximum likelihood estimates are close to the boundary of
the invertibility region.

You also have the option (see Section 5) of requesting G13DDF to constrain elements of the 
 and �
matrices and � vector to have pre-specified values.

4 References

Ansley C F and Kohn R (1986) A note on reparameterising a vector autoregressive moving average
model to enforce stationarity J. Statist. Comput. Simulation 24 99–106

Gill P E and Murray W (1972) Quasi-Newton methods for unconstrained optimization J. Inst. Math.
Appl. 9 91–108

Shea B L (1987) Estimation of multivariate time series J. Time Ser. Anal. 8 95–110

5 Arguments

1: K – INTEGER Input

On entry: k, the number of observed time series.

Constraint: K � 1.

2: N – INTEGER Input

On entry: n, the number of observations in each time series.

3: IP – INTEGER Input

On entry: p, the number of AR parameter matrices.

Constraint: IP � 0.

4: IQ – INTEGER Input

On entry: q, the number of MA parameter matrices.

Constraint: IQ � 0.

IP ¼ IQ ¼ 0 is not permitted.

5: MEAN – LOGICAL Input

On entry: MEAN ¼ :TRUE:, if components of � have been estimated and MEAN ¼ :FALSE:, if
all elements of � are to be taken as zero.

Constraint: MEAN ¼ :TRUE: or :FALSE:.

6: PARðNPARÞ – REAL (KIND=nag_wp) array Input/Output

On entry: initial parameter estimates read in row by row in the order 
1; 
2; . . . ; 
p,
�1; �2; . . . ; �q; �.

Thus,
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if IP > 0, PARð l � 1ð Þ � k� kþ i � 1ð Þ � kþ jÞ must be set equal to an initial estimate
of the i; jð Þth element of 
l , for l ¼ 1; 2; . . . ; p, i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k;

if IQ > 0, PARðp� k� kþ l� 1ð Þ � k� kþ i� 1ð Þ � kþ jÞ must be set equal to an
initial estimate of the i; jð Þth element of �l, l ¼ 1; 2; . . . ; q and i; j ¼ 1; 2; . . . ; k;

if MEAN ¼ :TRUE:, PARð pþ qð Þ � k� kþ iÞ should be set equal to an initial estimate of
the ith component of � (� ið Þ). (If you set PARð pþ qð Þ � k� kþ iÞ to 0:0 then G13DDF
will calculate the mean of the ith series and use this as an initial estimate of � ið Þ.)

The first p� k� k elements of PAR must satisfy the stationarity condition and the next q � k� k
elements of PAR must satisfy the invertibility condition.

If in doubt set all elements of PAR to 0:0.

On exit: if IFAIL ¼ 0 or IFAIL � 4 then all the elements of PAR will be overwritten by the latest
estimates of the corresponding ARMA parameters.

7: NPAR – INTEGER Input

On entry: the dimension of the arrays PAR, PARHLD and G and the second dimension of the
array CM as declared in the (sub)program from which G13DDF is called.NPAR is the number of
initial parameter estimates.

Constraints:

if MEAN ¼ :FALSE:, NPAR must be set equal to pþ qð Þ � k� k;
if MEAN ¼ :TRUE:, NPAR must be set equal to pþ qð Þ � k� kþ k.

The total number of observations n� kð Þ must exceed the total number of parameters in the
model (NPAR þ k kþ 1ð Þ=2).

8: QQðKMAX;KÞ – REAL (KIND=nag_wp) array Input/Output

On entry: QQði; jÞ must be set equal to an initial estimate of the i; jð Þth element of �. The lower
triangle only is needed. QQ must be positive definite. It is strongly recommended that on entry
the elements of QQ are of the same order of magnitude as at the solution point. If you set
QQði; jÞ ¼ 0:0, for i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; i, then G13DDF will calculate the covariance
matrix between the k time series and use this as an initial estimate of �.

On exit: if IFAIL ¼ 0 or IFAIL � 4 then QQði; jÞ will contain the latest estimate of the i; jð Þth
element of �. The lower triangle only is returned.

9: KMAX – INTEGER Input

On entry: the first dimension of the arrays QQ, W and V as declared in the (sub)program from
which G13DDF is called.

Constraint: KMAX � K.

10: WðKMAX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Wði; tÞ must be set equal to the ith component of Wt , for i ¼ 1; 2; . . . ; k and
t ¼ 1; 2; . . . ; n.

11: PARHLDðNPARÞ – LOGICAL array Input

On entry: PARHLDðiÞ must be set to .TRUE. if PARðiÞ is to be held constant at its input value
and .FALSE. if PARðiÞ is a free parameter, for i ¼ 1; 2; . . . ;NPAR.

If in doubt try setting all elements of PARHLD to .FALSE..

12: EXACT – LOGICAL Input

On entry: must be set equal to .TRUE. if you wish G13DDF to compute exact maximum
likelihood estimates. EXACT must be set equal to .FALSE. if only conditional likelihood
estimates are required.
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13: IPRINT – INTEGER Input

On entry: the frequency with which the automatic monitoring routine is to be called.

IPRINT > 0
The ML search procedure is monitored once every IPRINT iterations and just before exit
from the search routine.

IPRINT ¼ 0
The search routine is monitored once at the final point.

IPRINT < 0
The search routine is not monitored at all.

14: CGETOL – REAL (KIND=nag_wp) Input

On entry: the accuracy to which the solution in PAR and QQ is required.

If CGETOL is set to 10�l and on exit IFAIL ¼ 0 or IFAIL � 6, then all the elements in PAR and
QQ should be accurate to approximately l decimal places. For most practical purposes the value
10�4 should suffice. You should be wary of setting CGETOL too small since the convergence
criteria may then have become too strict for the machine to handle.

If CGETOL has been set to a value which is less than the machine precision, �, then G13DDF
will use the value 10:0�

ffiffi
�
p

instead.

15: MAXCAL – INTEGER Input

On entry: the maximum number of likelihood evaluations to be permitted by the search
procedure.

Suggested value: MAXCAL ¼ 40� NPAR� NPAR þ 5ð Þ.
Constraint: MAXCAL � 1.

16: ISHOW – INTEGER Input

On entry: specifies which of the following two quantities are to be printed.

(i) table of maximum likelihood estimates and their standard errors (as returned in the output
arrays PAR, QQ and CM);

(ii) table of residual series (as returned in the output array V).

ISHOW ¼ 0
None of the above are printed.

ISHOW ¼ 1
(i) only is printed.

ISHOW ¼ 2
(i) and (ii) are printed.

Constraint: 0 � ISHOW � 2.

17: NITER – INTEGER Output

On exit: if IFAIL ¼ 0 or IFAIL � 4 then NITER contains the number of iterations performed by
the search routine.

18: RLOGL – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0 or IFAIL � 4 then RLOGL contains the value of the log-likelihood
function corresponding to the final point held in PAR and QQ.
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19: VðKMAX;NÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0 or IFAIL � 4 then Vði; tÞ will contain an estimate of the ith component of
�t , for i ¼ 1; 2; . . . ; k and t ¼ 1; 2; . . . ; n, corresponding to the final point held in PAR and QQ.

20: GðNPARÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0 or IFAIL � 4 then GðiÞ will contain the estimated first derivative of the
log-likelihood function with respect to the ith element in the array PAR. If the gradient cannot be
computed then all the elements of G are returned as zero.

21: CMðLDCM;NPARÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0 or IFAIL � 4 then CMði; jÞ will contain an estimate of the correlation
coefficient between the ith and jth elements in the PAR array for 1 � i � NPAR, 1 � j � NPAR.
If i ¼ j, then CMði; jÞ will contain the estimated standard error of PARðiÞ. If the lth component
of PAR has been held constant, i.e., PARHLDðlÞ was set to .TRUE., then the lth row and column
of CM will be set to zero. If the second derivative matrix cannot be computed then all the
elements of CM are returned as zero.

22: LDCM – INTEGER Input

On entry: the first dimension of the array CM as declared in the (sub)program from which
G13DDF is called.

Constraint: LDCM � NPAR.

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13DDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, IP ¼ valueh i.
Constraint: IP � 0.

On entry, IP ¼ 0 and IQ ¼ 0.

On entry, IQ ¼ valueh i.
Constraint: IQ � 0.

On entry, ISHOW ¼ valueh i.
Constraint: 0 � ISHOW � 2.

On entry, K ¼ valueh i.
Constraint: K � 1.
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On entry, KMAX ¼ valueh i and K ¼ valueh i.
Constraint: KMAX � K.

On entry, LDCM ¼ valueh i and NPAR ¼ valueh i.
Constraint: LDCM � NPAR.

On entry, MAXCAL ¼ valueh i.
Constraint: MAXCAL � 1.

On entry, N ¼ valueh i, K ¼ valueh i and NPAR ¼ valueh i.
Constraint: N� K > NPAR þ K � K þ 1ð Þ=2.
On entry, NPAR ¼ valueh i.
Constraint: NPAR ¼ valueh i.
On entry, NPAR ¼ valueh i.
Constraint: NPAR � 0.

IFAIL ¼ 2

The initial AR parameter estimates are outside the stationarity region.
To proceed, you must try a different starting point.

The initial estimate of � is not positive definite. To proceed, you must try a different starting
point.

The initial MA parameter estimates are outside the invertibility region. To proceed, you must try
a different starting point.

The starting point is too close to the boundary of the admissibility region.

IFAIL ¼ 3

The routine cannot compute a sufficiently accurate estimate of the gradient vector at the user-
supplied starting point. This usually occurs if either the initial parameter estimates are very close
to the ML parameter estimates, or you have supplied a very poor estimate of �, or the starting
point is very close to the boundary of the stationarity or invertibility region. To proceed, you
must try a different starting point.

IFAIL ¼ 4

There have been MAXCAL log-likelihood evaluations made in the routine.

If steady increases in the log-likelihood function were monitored up to the point where this exit
occurred, then the exit probably simply occurred because MAXCAL was set too small, so the
calculations should be restarted from the final point held in PAR and QQ. This type of exit may
also indicate that there is no maximum to the likelihood surface. Output quantities were
computed at the final point held in PAR and QQ, except that if G or CM could not be computed,
in which case they are set to zero.

IFAIL ¼ 5

The conditions for a solution have not all been met, but a point at which the log-likelihood took a
larger value could not be found.

Provided that the estimated first derivatives are sufficiently small, and that the estimated
condition number of the second derivative (Hessian) matrix, as printed when IPRINT � 0, is not
too large, this error exit may simply mean that, although it has not been possible to satisfy the
specified requirements, the algorithm has in fact found the solution as far as the accuracy of the
machine permits.

Such a condition can arise, for instance, if CGETOL has been set so small that rounding error in
evaluating the likelihood function makes attainment of the convergence conditions impossible.

If the estimated condition number at the final point is large, it could be that the final point is a
solution but that the smallest eigenvalue of the Hessian matrix is so close to zero at the solution
that it is not possible to recognize it as a solution. Output quantities were computed at the final
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point held in PAR and QQ, except that if G or CM could not be computed, in which case they are
set to zero.

IFAIL ¼ 6

The ML solution is so close to the boundary of either the stationarity region or the invertibility
region that G13DDF cannot evaluate the Hessian matrix. The elements of CM are set to zero, as
are the elements of G. All other output quantities are correct.

IFAIL ¼ 7

An estimate of the second derivative matrix and the gradient vector at the solution point was
computed. Either the Hessian matrix was found to be too ill-conditioned to be evaluated
accurately or the gradient vector could not be computed to an acceptable degree of accuracy. The
elements of CM are set to zero, as are the elements of G. All other output quantities are correct.

IFAIL ¼ 8

The second-derivative matrix at the solution point is not positive definite. The elements of CM
are set to zero. All other output quantities are correct.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On exit from G13DDF, if IFAIL ¼ 0 or IFAIL � 6 and CGETOL has been set to 10�l, then all the
parameters should be accurate to approximately l decimal places. If CGETOL was set equal to a value
less than the machine precision, �, then all the parameters should be accurate to approximately
10:0�

ffiffi
�
p

.

If IFAIL ¼ 4 on exit (i.e., MAXCAL likelihood evaluations have been made but the convergence
conditions of the search routine have not been satisfied), then the elements in PAR and QQ may still be
good approximations to the ML estimates. Inspection of the elements of G may help you determine
whether this is likely.

8 Parallelism and Performance

G13DDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13DDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

9.1 Memory Usage

Let r ¼ max IP; IQð Þ and s ¼ NPAR þ K � K þ 1ð Þ=2. Local workspace arrays of fixed lengths are
allocated internally by G13DDF. The total size of these arrays amounts to sþ K� rþ 52 integer

elements and 2� s2 þ s� s� 1ð Þ=2þ 15� sþ K2 � 2� IPþ IQþ rþ 3ð Þ2
� �

þ K � 2� r2 þ 2�
�

rþ 3� Nþ 4Þ þ 10 real elements.

9.2 Timing

The number of iterations required depends upon the number of parameters in the model and the distance
of the user-supplied starting point from the solution.

9.3 Constraining for Stationarity and Invertibility

If the solution lies on the boundary of the admissibility region (stationarity and invertibility region) then
G13DDF may get into difficulty and exit with IFAIL ¼ 5. If this exit occurs you are advised to either
try a different starting point or a different setting for EXACT. If this still continues to occur then you
are urged to try fitting a more parsimonious model.

9.4 Over-parameterisation

You are advised to try and avoid fitting models with an excessive number of parameters since over-
parameterisation can cause the maximization problem to become ill-conditioned.

9.5 Standardizing the Residual Series

The standardized estimates of the residual series �t (denoted by êt) can easily be calculated by forming
the Cholesky decomposition of �, e.g., GGT and setting êt ¼ G�1�̂t. F07FDF (DPOTRF) may be used
to calculate the array G. The components of êt which are now uncorrelated at all lags can sometimes be
more easily interpreted.

9.6 Assessing the Fit of the Model

If your time series model provides a good fit to the data then the residual series should be
approximately white noise, i.e., exhibit no serial cross-correlation. An examination of the residual cross-
correlation matrices should confirm whether this is likely to be so. You are advised to call G13DSF to
provide information for diagnostic checking. G13DSF returns the residual cross-correlation matrices
along with their asymptotic standard errors. G13DSF also computes a portmanteau statistic and its
asymptotic significance level for testing model adequacy. If IFAIL ¼ 0 or 5 � IFAIL � 8 on exit from
G13DDF then the quantities output K, N, V, KMAX, IP, IQ, PAR, PARHLD, and QQ will be suitable
for input to G13DSF.

10 Example

This example shows how to fit a bivariate AR(1) model to two series each of length 48. � will be
estimated and 
1 2; 1ð Þ will be constrained to be zero.

10.1 Program Text

Program g13ddfe

! G13DDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13ddf, nag_wp, x04abf

! .. Implicit None Statement ..
Implicit None
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! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: cgetol, rlogl
Integer :: i, ifail, ip, iprint, iq, ishow, k, &

kmax, ldcm, maxcal, n, nadv, niter, &
npar

Logical :: exact, mean
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: cm(:,:), g(:), par(:), qq(:,:), &
v(:,:), w(:,:)

Logical, Allocatable :: parhld(:)
! .. Executable Statements ..

Write (nout,*) ’G13DDF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) k, ip, iq, n, mean

! Calculate NPAR
npar = (ip+iq)*k*k
If (mean) Then

npar = npar + k
End If

ldcm = npar
kmax = k
Allocate (par(npar),qq(kmax,k),w(kmax,n),v(kmax,n),g(npar), &

cm(ldcm,npar),parhld(npar))

! Read in series
Read (nin,*)(w(i,1:n),i=1,k)

! Read in control parameters
Read (nin,*) iprint, cgetol, maxcal, ishow

! Read in exact likelihood flag
Read (nin,*) exact

! Read in initial parameter estimates and free parameter flags
Read (nin,*) par(1:npar)
Read (nin,*) parhld(1:npar)

! Read in initial values for covariance matrix QQ
Read (nin,*)(qq(i,1:i),i=1,k)

! Set the advisory channel to NOUT for monitoring information
If (iprint>=0 .Or. ishow/=0) Then

nadv = nout
Call x04abf(iset,nadv)

End If

! Fit a VARMA model
ifail = 0
Call g13ddf(k,n,ip,iq,mean,par,npar,qq,kmax,w,parhld,exact,iprint, &

cgetol,maxcal,ishow,niter,rlogl,v,g,cm,ldcm,ifail)

End Program g13ddfe
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10.2 Program Data

G13DDF Example Program Data
2 1 0 48 T :: K,IP,IQ,N,MEAN
-1.490 -1.620 5.200 6.230 6.210 5.860
4.090 3.180 2.620 1.490 1.170 0.850

-0.350 0.240 2.440 2.580 2.040 0.400
2.260 3.340 5.090 5.000 4.780 4.110
3.450 1.650 1.290 4.090 6.320 7.500
3.890 1.580 5.210 5.250 4.930 7.380
5.870 5.810 9.680 9.070 7.290 7.840
7.550 7.320 7.970 7.760 7.000 8.350
7.340 6.350 6.960 8.540 6.620 4.970
4.550 4.810 4.750 4.760 10.880 10.010

11.620 10.360 6.400 6.240 7.930 4.040
3.730 5.600 5.350 6.810 8.270 7.680
6.650 6.080 10.250 9.140 17.750 13.300
9.630 6.800 4.080 5.060 4.940 6.650
7.940 10.760 11.890 5.850 9.010 7.500

10.020 10.380 8.150 8.370 10.730 12.140 :: End of W
-1 0.0001 3000 2 :: IPRINT,CGETOL,MAXCAL,ISHOW
T :: EXACT

0.0 0.0 0.0 0.0 0.0 0.0 :: PAR
F F T F F F :: PARHLD

0.0
0.0 0.0 :: End of QQ

10.3 Program Results

G13DDF Example Program Results

VALUE OF LOG LIKELIHOOD FUNCTION ON EXIT = -0.20280E+03

MAXIMUM LIKELIHOOD ESTIMATES OF AR PARAMETER MATRICES
-----------------------------------------------------

PHI(1) ROW-WISE : 0.802 0.065
( 0.091)( 0.102)

0.000 0.575
( 0.000)( 0.121)

MAXIMUM LIKELIHOOD ESTIMATE OF PROCESS MEAN
-------------------------------------------

4.271 7.825
( 1.219)( 0.776)

MAXIMUM LIKELIHOOD ESTIMATE OF SIGMA MATRIX
-------------------------------------------

2.964

0.637 5.380

RESIDUAL SERIES NUMBER 1
-------------------------

T 1 2 3 4 5 6 7 8
V(T) -3.33 -1.24 5.75 1.27 0.32 0.11 -1.27 -0.73

T 9 10 11 12 13 14 15 16
V(T) -0.58 -1.26 -0.67 -1.13 -2.02 -0.57 1.24 -0.13

T 17 18 19 20 21 22 23 24
V(T) -0.77 -2.09 1.34 0.95 1.71 0.23 -0.01 -0.60

T 25 26 27 28 29 30 31 32
V(T) -0.68 -1.89 -0.77 2.05 2.11 0.94 -3.32 -2.50
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T 33 34 35 36 37 38 39 40
V(T) 3.16 0.47 0.05 2.77 -0.82 0.25 3.99 0.20

T 41 42 43 44 45 46 47 48
V(T) -0.70 1.07 0.44 0.28 1.09 0.50 -0.10 1.70

RESIDUAL SERIES NUMBER 2
-------------------------

T 1 2 3 4 5 6 7 8
V(T) -0.19 -1.20 -0.02 1.21 -1.62 -2.16 -1.63 -1.13

T 9 10 11 12 13 14 15 16
V(T) -1.34 -1.30 4.82 0.43 2.54 0.35 -2.88 -0.77

T 17 18 19 20 21 22 23 24
V(T) 1.02 -3.85 -1.92 0.13 -1.20 0.41 1.03 -0.40

T 25 26 27 28 29 30 31 32
V(T) -1.09 -1.07 3.43 -0.08 9.17 -0.23 -1.34 -2.06

T 33 34 35 36 37 38 39 40
V(T) -3.16 -0.61 -1.30 0.48 0.79 2.87 2.38 -4.31

T 41 42 43 44 45 46 47 48
V(T) 2.32 -1.01 2.38 1.29 -1.14 0.36 2.59 2.64
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NAG Library Routine Document

G13DJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13DJF computes forecasts of a multivariate time series. It is assumed that a vector ARMA model has
already been fitted to the appropriately differenced/transformed time series using G13DDF. The
standard deviations of the forecast errors are also returned. A reference vector is set up so that, should
future series values become available, the forecasts and their standard errors may be updated by calling
G13DKF.

2 Specification

SUBROUTINE G13DJF (K, N, Z, KMAX, TR, ID, DELTA, IP, IQ, MEAN, PAR,
LPAR, QQ, V, LMAX, PREDZ, SEFZ, REF, LREF, WORK,
LWORK, IWORK, LIWORK, IFAIL)

&
&

INTEGER K, N, KMAX, ID(K), IP, IQ, LPAR, LMAX, LREF, LWORK,
IWORK(LIWORK), LIWORK, IFAIL

&

REAL (KIND=nag_wp) Z(KMAX,N), DELTA(KMAX,*), PAR(LPAR), QQ(KMAX,K),
V(KMAX,*), PREDZ(KMAX,LMAX), SEFZ(KMAX,LMAX),
REF(LREF), WORK(LWORK)

&
&

CHARACTER(1) TR(K), MEAN

3 Description

Let the vector Zt ¼ z1t ; z2t ; . . . ; zktð ÞT, for t ¼ 1; 2; . . . ; n, denote a k-dimensional time series for which
forecasts of Znþ1; Znþ2; . . . ; Znþlmax are required. Let Wt ¼ w1t; w2t; . . . ; wktð ÞT be defined as follows:

wit ¼ �i Bð Þz�it; i ¼ 1; 2; . . . ; k;

where �i Bð Þ is the differencing operator applied to the ith series and where z�it is equal to either zit,ffiffiffiffiffi
zit
p

or loge zitð Þ depending on whether or not a transformation was required to stabilize the variance
before fitting the model.

If the order of differencing required for the ith series is di, then the differencing operator for the ith
series is defined by �i Bð Þ ¼ 1� �i1B� �i2B2 � � � � � �idiBdi where B is the backward shift operator;
that is, BZt ¼ Zt�1. The differencing parameters �ij , for i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; di, must be
supplied by you. If the ith series does not require differencing, then di ¼ 0.

Wt is assumed to follow a multivariate ARMA model of the form:

Wt � � ¼ 
1 Wt�1 � �ð Þ þ 
2 Wt�2 � �ð Þ þ � � � þ 
p Wt�p � �
� �

þ �t � �1�t�1 � � � � � �q�t�q; ð1Þ

where �t ¼ �1t ; �2t ; . . . ; �ktð ÞT, for t ¼ 1; 2; . . . ; n, is a vector of k residual series assumed to be Normally
distributed with zero mean and positive definite covariance matrix �. The components of �t are
assumed to be uncorrelated at non-simultaneous lags. The 
i and �j are k by k matrices of parameters.
The matrices 
i, for i ¼ 1; 2; . . . ; p, are the autoregressive (AR) parameter matrices, and the matrices �i,
for i ¼ 1; 2; . . . ; q, the moving average (MA) parameter matrices. The parameters in the model are thus
the p (k by k) 
-matrices, the q (k by k) �-matrices, the mean vector � and the residual error covariance
matrix �. The ARMA model (1) must be both stationary and invertible; see G13DXF for a method of
checking these conditions.

The ARMA model (1) may be rewritten as


 Bð Þ � Bð ÞZ�t � �
� �

¼ � Bð Þ�t;
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where 
 Bð Þ and � Bð Þ are the autoregressive and moving average polynomials and � Bð Þ denotes the k

by k diagonal matrix whose ith diagonal elements is �i Bð Þ and Z�t ¼ z�1t; z
�
2t . . . z

�
kt

� �T
.

This may be rewritten as


 Bð Þ� Bð ÞZ�t ¼ 
 Bð Þ�þ � Bð Þ�t
or

Z�t ¼ � þ  Bð Þ�t ¼ � þ �t þ  1�t�1 þ  2�t�2 þ � � �

where  Bð Þ ¼ ��1 Bð Þ
�1 Bð Þ� Bð Þ and � ¼ ��1 Bð Þ� is a vector of length k.

Forecasts are computed using a multivariate version of the procedure described in Box and Jenkins
(1976). If Ẑ�n lð Þ denotes the forecast of Z�nþl, then Ẑ�n lð Þ is taken to be that linear function of

Z�n; Z
�
n�1; . . . which minimizes the elements of E en lð Þe0n lð Þ

� 
where en lð Þ ¼ Z�nþl � Ẑ�n lð Þ is the forecast

error. Ẑ�n lð Þ is referred to as the linear minimum mean square error forecast of Z�nþl.

The linear predictor which minimizes the mean square error may be expressed as

Ẑ�n lð Þ ¼ � þ  l�n þ  lþ1�n�1 þ  lþ2�n�2 þ � � � :

The forecast error at t for lead l is then

en lð Þ ¼ Z�nþl � Ẑ�n lð Þ ¼ �nþl þ  1�nþl�1 þ  2�nþl�2 þ � � � þ  l�1�nþ1:

Let d ¼ max dið Þ, for i ¼ 1; 2; . . . ; k. Unless q ¼ 0 the routine requires estimates of �t , for
t ¼ d þ 1; . . . ; n, which are obtainable from G13DDF. The terms �t are assumed to be zero, for
t ¼ nþ 1; . . . ; nþ lmax . You may use G13DKF to update these lmax forecasts should further
observations, Znþ1; Znþ2; . . . , become available. Note that when lmax or more further observations
are available then G13DJF must be used to produce new forecasts for Znþlmaxþ1; Znþlmaxþ2; . . . , should
they be required.

When a transformation has been used the forecasts and their standard errors are suitably modified to
give results in terms of the original series, Zt; see Granger and Newbold (1976).

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

Granger C W J and Newbold P (1976) Forecasting transformed series J. Roy. Statist. Soc. Ser. B 38
189–203

Wei W W S (1990) Time Series Analysis: Univariate and Multivariate Methods Addison–Wesley

5 Arguments

The quantities K, N, KMAX, IP, IQ, PAR, NPAR, QQ and V from G13DDF are suitable for input to
G13DJF.

1: K – INTEGER Input

On entry: k, the dimension of the multivariate time series.

Constraint: K � 1.

2: N – INTEGER Input

On entry: n, the number of observations in the series, Zt, prior to differencing.

Constraint: N � 3.

The total number of observations must exceed the total number of parameters in the model; that
is
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if MEAN ¼ Z , N� K > IPþ IQð Þ � K � K þ K� K þ 1ð Þ=2;
if MEAN ¼ M , N� K > IPþ IQð Þ � K � K þ K þ K� Kþ 1ð Þ=2,

(see the arguments IP, IQ and MEAN).

3: ZðKMAX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Zði; tÞ must contain, zit , the ith component of Zt , for i ¼ 1; 2; . . . ; k and t ¼ 1; 2; . . . ; n.

Constraints:

if TRðiÞ ¼ L , Zði; tÞ > 0:0;
if TRðiÞ ¼ S , Zði; tÞ � 0:0, for i ¼ 1; 2; . . . ; k and t ¼ 1; 2; . . . ; n.

4: KMAX – INTEGER Input

On entry: the first dimension of the arrays Z, DELTA, QQ, V, PREDZ and SEFZ as declared in
the (sub)program from which G13DJF is called.

Constraint: KMAX � K.

5: TRðKÞ – CHARACTER(1) array Input

On entry: TRðiÞ indicates whether the ith time series is to be transformed, for i ¼ 1; 2; . . . ; k.

TRðiÞ ¼ N
No transformation is used.

TRðiÞ ¼ L
A log transformation is used.

TRðiÞ ¼ S
A square root transformation is used.

Constraint: TRðiÞ ¼ N , L or S , for i ¼ 1; 2; . . . ; k.

6: IDðKÞ – INTEGER array Input

On entry: IDðiÞ must specify, di, the order of differencing required for the ith series.

Constraint: 0 � IDðiÞ < N�max IP; IQð Þ, for i ¼ 1; 2; . . . ; k.

7: DELTAðKMAX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array DELTA must be at least max 1; dð Þ, where
d ¼ max IDðiÞð Þ.
On entry: if IDðiÞ > 0, then DELTAði; jÞ must be set equal to �ij , for j ¼ 1; 2; . . . ; di and
i ¼ 1; 2; . . . ; k.

If d ¼ 0, DELTA is not referenced.

8: IP – INTEGER Input

On entry: p, the number of AR parameter matrices.

Constraint: IP � 0.

9: IQ – INTEGER Input

On entry: q, the number of MA parameter matrices.

Constraint: IQ � 0.
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10: MEAN – CHARACTER(1) Input

On entry: MEAN ¼ M , if components of � have been estimated and MEAN ¼ Z , if all
elements of � are to be taken as zero.

Constraint: MEAN ¼ M or Z .

11: PARðLPARÞ – REAL (KIND=nag_wp) array Input

On entry: must contain the parameter estimates read in row by row in the order 
1; 
2; . . . ; 
p,
�1; �2; . . . ; �q, �.

Thus,

if IP > 0, PARð l � 1ð Þ � k� kþ i � 1ð Þ � kþ jÞ must be set equal to an estimate of the
i; jð Þth element of 
l , for l ¼ 1; 2; . . . ; p, i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k;

if IQ > 0, PARðp� k� kþ l � 1ð Þ � k� kþ i � 1ð Þ � kþ jÞ must be set equal to an
estimate of the i; jð Þth element of �l , for l ¼ 1; 2; . . . ; q, i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k;

if MEAN ¼ M , PARð pþ qð Þ � k� kþ iÞ must be set equal to an estimate of the ith
component of �, for i ¼ 1; 2; . . . ; k.

Constraint: the first IP� K � K elements of PAR must satisfy the stationarity condition and the
next IQ� K � K elements of PAR must satisfy the invertibility condition.

12: LPAR – INTEGER Input

On entry: the dimension of the array PAR as declared in the (sub)program from which G13DJF is
called.

Constraints:

if MEAN ¼ Z , LPAR � max 1; IPþ IQð Þ � K � Kð Þ;
if MEAN ¼ M , LPAR � IPþ IQð Þ � K � K þ K.

13: QQðKMAX;KÞ – REAL (KIND=nag_wp) array Input/Output

On entry: QQði; jÞ must contain an estimate of the i; jð Þth element of �. The lower triangle only
is needed.

Constraint: QQ must be positive definite.

On exit: if IFAIL 6¼ 1, then the upper triangle is set equal to the lower triangle.

14: VðKMAX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array V must be at least max 1;N� dð Þ, where
d ¼ max IDðiÞð Þ.
On entry: Vði; tÞ must contain an estimate of the ith component of �tþd , for i ¼ 1; 2; . . . ; k and
t ¼ 1; 2; . . . ; n� d.

If q ¼ 0, V is not used.

15: LMAX – INTEGER Input

On entry: the number, lmax , of forecasts required.

Constraint: LMAX � 1.

16: PREDZðKMAX;LMAXÞ – REAL (KIND=nag_wp) array Output

On exit: PREDZði; lÞ contains the forecast of zi;nþl , for i ¼ 1; 2; . . . ; k and l ¼ 1; 2; . . . ; lmax .
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17: SEFZðKMAX;LMAXÞ – REAL (KIND=nag_wp) array Output

On exit: SEFZði; lÞ contains an estimate of the standard error of the forecast of zi;nþl , for
i ¼ 1; 2; . . . ; k and l ¼ 1; 2; . . . ; lmax .

18: REFðLREFÞ – REAL (KIND=nag_wp) array Output

On exit: the reference vector which may be used to update forecasts using G13DKF. The first
LMAX� 1ð Þ � K � K elements contain the  weight matrices,  1;  2; . . . ;  lmax�1. The next
K � LMAX elements contain the forecasts of the transformed series Ẑ�nþ1; Ẑ

�
nþ2; . . . ; Ẑ

�
nþlmax

and
the next K � LMAX contain the variances of the forecasts of the transformed variables. The last
K elements are used to store the transformations for the series.

19: LREF – INTEGER Input

On entry: the dimension of the array REF as declared in the (sub)program from which G13DJF is
called.

Constraint: LREF � LMAX� 1ð Þ � K � K þ 2� K � LMAXþ K.

20: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
21: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G13DJF is called.

C o n s t r a i n t : i f r ¼ max IP; IQð Þ a n d d ¼ max IDðiÞð Þ, f o r i ¼ 1; 2; . . . ; k,
LWORK � max Kr Krþ 2ð Þ; IPþ d þ 2ð ÞK2 þ Nþ LMAXð ÞK

� 
.

22: IWORKðLIWORKÞ – INTEGER array Workspace
23: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
G13DJF is called.

Constraint: LIWORK � K �max IP; IQð Þ.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 1,
or N < 3,
or KMAX < K,
or IDðiÞ < 0 for some i ¼ 1; 2; . . . ; k,
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or IDðiÞ � N�max IP; IQð Þ for some i ¼ 1; 2; . . . ; k,
or IP < 0,
or IQ < 0,
or MEAN 6¼ M or Z ,
or LPAR < IPþ IQð Þ � K � K þ K, and MEAN ¼ M ,
or LPAR < IPþ IQð Þ � K � K and MEAN ¼ Z ,
or N� K � IPþ IQð Þ � K � K þ K þ KðKþ 1Þ=2, and MEAN ¼ M ,
or N� K � IPþ IQð Þ � K � K þ KðKþ 1Þ=2 and MEAN ¼ Z ,
or LMAX < 1,
or LREF < LMAX� 1ð Þ � K� K þ 2� K � LMAXþ K,
or LWORK is too small,
or LIWORK is too small.

IFAIL ¼ 2

On entry, at least one of the first k elements of TR is not equal to `N', `L' or `S'.

IFAIL ¼ 3

On entry, one or more of the transformations requested cannot be computed; that is, you may be
trying to log or square-root a series, some of whose values are negative.

IFAIL ¼ 4

On entry, either QQ is not positive definite or the autoregressive parameter matrices are
extremely close to or outside the stationarity region, or the moving average parameter matrices
are extremely close to or outside the invertibility region. To proceed, you must supply different
parameter estimates in the arrays PAR and QQ.

IFAIL ¼ 5

This is an unlikely exit brought about by an excessive number of iterations being needed to
evaluate the eigenvalues of the matrices required to check for stationarity and invertibility; see
G13DXF. All output arguments are undefined.

IFAIL ¼ 6

This is an unlikely exit which could occur if QQ is nearly non positive definite. In this case the
standard deviations of the forecast errors may be non-positive. To proceed, you must supply
different parameter estimates in the array QQ.

IFAIL ¼ 7

This is an unlikely exit. For one of the series, overflow will occur if the forecasts are computed.
You should check whether the transformations requested in the array TR are sensible. All output
arguments are undefined.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The matrix computations are believed to be stable.

8 Parallelism and Performance

G13DJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13DJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The same differencing operator does not have to be applied to all the series. For example, suppose we
have k ¼ 2, and wish to apply the second order differencing operator r2 to the first series and the first-
order differencing operator r to the second series:

w1t ¼ r2z1t ¼ 1�Bð Þ2z1t ¼ 1� 2BþB2
� �

Z1t; and
w2t ¼ rz2t ¼ 1�Bð Þz2t:

Then d1 ¼ 2; d2 ¼ 1, d ¼ max d1; d2ð Þ ¼ 2, and

DELTA ¼ �11 �12
�21

� �
¼ 2 �1

1

� �
:

Note: although differencing may already have been applied prior to the model fitting stage, the
differencing parameters supplied in DELTA are part of the model definition and are still required by this
routine to produce the forecasts.

G13DJF should not be used when the moving average parameters lie close to the boundary of the
invertibility region. The routine does test for both invertibility and stationarity but if in doubt, you may
use G13DXF, before calling this routine, to check that the VARMA model being used is invertible.

On a successful exit, the quantities K, LMAX, KMAX, REF and LREF will be suitable for input to
G13DKF.

10 Example

This example computes forecasts of the next five values in two series each of length 48. No
transformation is to be used and no differencing is to be applied to either of the series. G13DDF is first
called to fit an AR(1) model to the series. The mean vector � is to be estimated and 
1 2; 1ð Þ constrained
to be zero.

10.1 Program Text

! G13DJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g13djfe_mod

! G13DJF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
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Private
Public :: fprint

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, nin = 5, nout = 6

Contains
Subroutine fprint(k,nm,lmax,predz,sefz,ldsefz,nout)

! .. Scalar Arguments ..
Integer, Intent (In) :: k, ldsefz, lmax, nm, nout

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: predz(ldsefz,lmax), &

sefz(ldsefz,lmax)
! .. Local Scalars ..

Integer :: i, i2, j, l, l2, loop
! .. Intrinsic Procedures ..

Intrinsic :: min, mod
! .. Executable Statements ..

Write (nout,*) ’ FORECAST SUMMARY TABLE’
Write (nout,*) ’ ----------------------’
Write (nout,*)
Write (nout,99999) ’ Forecast origin is set at t = ’, nm
Write (nout,*)
loop = lmax/5
If (mod(lmax,5)/=0) Then

loop = loop + 1
End If

Do j = 1, loop
i2 = (j-1)*5
l2 = min(i2+5,lmax)
Write (nout,99998) ’Lead Time ’, (i,i=i2+1,l2)
Write (nout,*)
i = 1
Write (nout,99997) ’Series ’, i, ’ : Forecast ’, &

(predz(1,l),l=i2+1,l2)
Write (nout,99996) ’ : Standard Error ’, (sefz(1,l),l=i2+1,l2)
Do i = 2, k

Write (nout,99997) ’Series ’, i, ’ : Forecast ’, &
(predz(i,l),l=i2+1,l2)

Write (nout,99996) ’ : Standard Error ’, (sefz(i,l),l=i2+1,l2)
End Do
Write (nout,*)

End Do
Return

99999 Format (1X,A,I4)
99998 Format (1X,A,12X,5I10)
99997 Format (1X,A,I2,A,5F10.2)
99996 Format (10X,A,4(F7.2,3X),F7.2)

End Subroutine fprint
End Module g13djfe_mod
Program g13djfe

! G13DJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g13ddf, g13djf, g13dlf, nag_wp, x04abf
Use g13djfe_mod, Only: fprint, iset, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: cgetol, rlogl
Integer :: d, i, ifail, ip, iprint, iq, ishow, &

k, kmax, ldcm, liwork, lmax, lpar, &
lref, lwork, maxcal, n, nadv, nd, &
niter, r, tddelta

Logical :: exact, meanl
Character (1) :: mean

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cm(:,:), delta(:,:), g(:), par(:), &

predz(:,:), qq(:,:), ref(:), &
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sefz(:,:), v(:,:), w(:,:), work(:), &
workl(:), z(:,:)

Integer, Allocatable :: id(:), iwork(:)
Logical, Allocatable :: parhld(:)
Character (1), Allocatable :: tr(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, maxval

! .. Executable Statements ..
Write (nout,*) ’G13DJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) k, n

Allocate (tr(k),id(k))

! Read in differencing
Read (nin,*) id(1:k)

d = maxval(id(1:k))
tddelta = max(d,1)
nd = n - d
kmax = k
Allocate (delta(kmax,tddelta),w(kmax,nd),workl(k*n),z(kmax,n))

! Read in series and the transformation flag
Read (nin,*)(z(i,1:n),i=1,k)
Read (nin,*) tr(1:k)

! If required, read in delta
If (d>0) Then

Read (nin,*)(delta(i,1:id(i)),i=1,k)
End If

! Difference and / or transform series
ifail = 0
Call g13dlf(k,n,z,kmax,tr,id,delta,w,nd,workl,ifail)

! Read in information on the VARMA
Read (nin,*) ip, iq, mean, lmax

! Calculate number of parameters for the VARMA
lpar = (ip+iq)*k*k
meanl = .False.
If (mean==’M’ .Or. mean==’m’) Then

lpar = lpar + k
meanl = .True.

End If

! Read in control parameters
Read (nin,*) iprint, cgetol, maxcal, ishow

! Read in exact likelihood flag
Read (nin,*) exact

ldcm = lpar
kmax = k
Allocate (par(lpar),qq(kmax,k),v(kmax,nd),g(lpar),cm(ldcm,lpar), &

parhld(lpar))

! Read in initial parameter estimates and free parameter flags
Read (nin,*) par(1:lpar)
Read (nin,*) parhld(1:lpar)

! Read in initial values for covariance matrix Q
Read (nin,*)(qq(i,1:i),i=1,k)

! Set the advisory channel to NOUT for monitoring information
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If (iprint>=0 .Or. ishow/=0) Then
nadv = nout
Call x04abf(iset,nadv)

End If

! Fit a VARMA model
ifail = -1
Call g13ddf(k,nd,ip,iq,meanl,par,lpar,qq,kmax,w,parhld,exact,iprint, &

cgetol,maxcal,ishow,niter,rlogl,v,g,cm,ldcm,ifail)
If (ifail/=0) Then

If (ifail<4) Then
Go To 100

End If
End If

lref = (lmax-1)*k*k + 2*k*lmax + k
r = max(ip,iq)
lwork = max(k*r*(k*r+2),(ip+d+2)*k**2+(n+lmax)*k)
liwork = k*max(ip,iq)
Allocate (predz(kmax,lmax),sefz(kmax,lmax),ref(lref),work(lwork), &

iwork(liwork))

! Perform forecast
ifail = 0
Call g13djf(k,n,z,kmax,tr,id,delta,ip,iq,mean,par,lpar,qq,v,lmax,predz, &

sefz,ref,lref,work,lwork,iwork,liwork,ifail)

! Display results
Call fprint(k,n,lmax,predz,sefz,kmax,nout)

100 Continue

End Program g13djfe

10.2 Program Data

G13DJF Example Program Data
2 48 :: K,N
0 0 :: ID
-1.490 -1.620 5.200 6.230 6.210 5.860 4.090
3.180 2.620 1.490 1.170 0.850 -0.350 0.240
2.440 2.580 2.040 0.400 2.260 3.340 5.090
5.000 4.780 4.110 3.450 1.650 1.290 4.090
6.320 7.500 3.890 1.580 5.210 5.250 4.930
7.380 5.870 5.810 9.680 9.070 7.290 7.840
7.550 7.320 7.970 7.760 7.000 8.350 7.340
6.350 6.960 8.540 6.620 4.970 4.550 4.810
4.750 4.760 10.880 10.010 11.620 10.360 6.400
6.240 7.930 4.040 3.730 5.600 5.350 6.810
8.270 7.680 6.650 6.080 10.250 9.140 17.750

13.300 9.630 6.800 4.080 5.060 4.940 6.650
7.940 10.760 11.890 5.850 9.010 7.500 10.020

10.380 8.150 8.370 10.730 12.140 :: End of Z
’N’ ’N’ :: TR

1 0 ’M’ 5 :: IP,IQ,MEAN,LMAX
-1 0.0001 3000 0 :: IPRINT,CGETOL,MAXCAL,ISHOW
T :: EXACT
0.0 0.0 0.0 0.0 0.0 0.0 :: PAR
F F T F F F :: PARHLD

0.0
0.0 0.0 :: QQ

10.3 Program Results

G13DJF Example Program Results

FORECAST SUMMARY TABLE
----------------------

Forecast origin is set at t = 48
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Lead Time 1 2 3 4 5

Series 1 : Forecast 7.82 7.28 6.77 6.33 5.95
: Standard Error 1.72 2.23 2.51 2.68 2.79

Series 2 : Forecast 10.31 9.25 8.65 8.30 8.10
: Standard Error 2.32 2.68 2.78 2.82 2.83
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NAG Library Routine Document

G13DKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13DKF accepts a sequence of new observations in a multivariate time series and updates both the
forecasts and the standard deviations of the forecast errors. A call to G13DJF must be made prior to
calling this routine in order to calculate the elements of a reference vector together with a set of
forecasts and their standard errors. On a successful exit from G13DKF the reference vector is updated
so that should future series values become available these forecasts may be updated by recalling
G13DKF.

2 Specification

SUBROUTINE G13DKF (K, LMAX, M, MLAST, Z, KMAX, REF, LREF, V, PREDZ,
SEFZ, WORK, IFAIL)

&

INTEGER K, LMAX, M, MLAST, KMAX, LREF, IFAIL
REAL (KIND=nag_wp) Z(KMAX,M), REF(LREF), V(KMAX,M), PREDZ(KMAX,LMAX),

SEFZ(KMAX,LMAX), WORK(K*M)
&

3 Description

Let Zt ¼ z1t ; z2t ; . . . ; zktð ÞT, for t ¼ 1; 2; . . . ; n, denote a k-dimensional time series for which forecasts
of Ẑnþ1; Ẑnþ2; . . . ; Ẑnþlmax have been computed using G13DJF. Given m further observations
Znþ1; Znþ2; . . . ; Znþm, w h e r e m < lmax , G 1 3 D K F u p d a t e s t h e f o r e c a s t s o f
Znþmþ1; Znþmþ2; . . . ; Znþlmax and their corresponding standard errors.

G13DKF uses a multivariate version of the procedure described in Box and Jenkins (1976). The
forecasts are updated using the  weights, computed in G13DJF. If Z�t denotes the transformed value of
Zt and Ẑ�t lð Þ denotes the forecast of Z�tþl from time t with a lead of l (that is the forecast of Z�tþl given
observations Z�t ; Z

�
t�1; . . . ), then

Ẑ�tþ1 lð Þ ¼ � þ  l�tþ1 þ  lþ1�t þ  lþ2�t�1 þ � � �

and

Ẑ�t lþ 1ð Þ ¼ � þ  lþ1�t þ  lþ2�t�1 þ � � �

where � is a constant vector of length k involving the differencing parameters and the mean vector �.
By subtraction we obtain

Ẑ�tþ1 lð Þ ¼ Ẑ�t lþ 1ð Þ þ  l�tþ1:

Estimates of the residuals corresponding to the new observations are also computed as
�nþl ¼ Z�nþl � Ẑ�n lð Þ, for l ¼ 1; 2; . . . ;m. These may be of use in checking that the new observations
conform to the previously fitted model.

On a successful exit, the reference array is updated so that G13DKF may be called again should future
series values become available, see Section 9.

When a transformation has been used the forecasts and their standard errors are suitably modified to
give results in terms of the original series Zt; see Granger and Newbold (1976).
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5 Arguments

The quantities K, LMAX, KMAX, REF and LREF from G13DJF are suitable for input to G13DKF.

1: K – INTEGER Input

On entry: k, the dimension of the multivariate time series.

Constraint: K � 1.

2: LMAX – INTEGER Input

On entry: the number, lmax , of forecasts requested in the call to G13DJF.

Constraint: LMAX � 2.

3: M – INTEGER Input

On entry: m, the number of new observations available since the last call to either G13DJF or
G13DKF. The number of new observations since the last call to G13DJF is then MþMLAST.

Constraint: 0 < M < LMAX�MLAST.

4: MLAST – INTEGER Input/Output

On entry: on the first call to G13DKF, since calling G13DJF, MLAST must be set to 0 to indicate
that no new observations have yet been used to update the forecasts; on subsequent calls MLAST
must contain the value of MLAST as output on the previous call to G13DKF.

On exit: is incremented by m to indicate that MLASTþM observations have now been used to
update the forecasts since the last call to G13DJF.

MLAST must not be changed between calls to G13DKF, unless a call to G13DJF has been made
between the calls in which case MLAST should be reset to 0.

Constraint: 0 � MLAST < LMAX�M.

5: ZðKMAX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Zði; jÞ must contain the value of zi;nþMLASTþj , for i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ;m,
and where n is the number of observations in the time series in the last call made to G13DJF.

Constraint: if the transformation defined in TR in G13DJF for the ith series is the log
transformation, then Zði; jÞ > 0:0, and if it is the square-root transformation, then Zði; jÞ � 0:0,
for j ¼ 1; 2; . . . ;m and i ¼ 1; 2; . . . ; k.

6: KMAX – INTEGER Input

On entry: the first dimension of the arrays Z, PREDZ, SEFZ and V as declared in the (sub)
program from which G13DKF is called.

Constraint: KMAX � K.

7: REFðLREFÞ – REAL (KIND=nag_wp) array Input/Output

On entry: must contain the first LMAX� 1ð Þ � K � K þ 2� K � LMAXþ K elements of the
reference vector as returned on a successful exit from G13DJF (or a previous call to G13DKF).

G13DKF NAG Library Manual

G13DKF.2 Mark 26



On exit: the elements of REF are updated. The first LMAX� 1ð Þ � K � K elements store the  
weights  1;  2; . . . ;  lmax�1. The next K� LMAX elements contain the forecasts of the
transformed series and the next K � LMAX elements contain the variances of the forecasts of
the transformed variables; see G13DJF. The last K elements are not updated.

8: LREF – INTEGER Input

On entry: the dimension of the array REF as declared in the (sub)program from which G13DKF
is called.

Constraint: LREF � LMAX� 1ð Þ � K � K þ 2� K � LMAXþ K.

9: VðKMAX;MÞ – REAL (KIND=nag_wp) array Output

On exit: Vði; jÞ contains an estimate of the ith component of �nþMLASTþj , for i ¼ 1; 2; . . . ; k and
j ¼ 1; 2; . . . ;m.

10: PREDZðKMAX;LMAXÞ – REAL (KIND=nag_wp) array Input/Output

On entry: nonupdated values are kept intact.

On exit: PREDZði; jÞ contains the updated forecast of zi;nþj , for i ¼ 1; 2; . . . ; k and
j ¼ MLASTþMþ 1; . . . ; lmax .

The columns of PREDZ corresponding to the new observations since the last call to either
G13DJF or G13DKF are set equal to the corresponding columns of Z.

11: SEFZðKMAX;LMAXÞ – REAL (KIND=nag_wp) array Input/Output

On entry: nonupdated values are kept intact.

On exit: SEFZði; jÞ contains an estimate of the standard error of the corresponding element of
PREDZ, for i ¼ 1; 2; . . . ; k and j ¼ MLASTþMþ 1; . . . ; lmax .

The columns of SEFZ corresponding to the new observations since the last call to either G13DJF
or G13DKF are set equal to zero.

12: WORKðK �MÞ – REAL (KIND=nag_wp) array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 1,
or LMAX < 2,
or M � 0,
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or MLASTþM � LMAX,
or MLAST < 0,
or KMAX < K,
or LREF < LMAX� 1ð Þ � K� K þ 2� K � LMAXþ K.

IFAIL ¼ 2

On entry, some of the elements of the reference vector, REF, have been corrupted since the most
recent call to G13DJF (or G13DKF).

IFAIL ¼ 3

On entry, one or more of the elements of Z is invalid, for the transformation being used; that is
you may be trying to log or square root a series, some of whose values are negative.

IFAIL ¼ 4

This is an unlikely exit. For one of the series, overflow will occur if the forecasts are updated.
You should check whether the elements of REF have been corrupted.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The matrix computations are believed to be stable.

8 Parallelism and Performance

G13DKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If a further m� observations, ZnþMLASTþ1; ZnþMLASTþ2; . . . ; ZnþMLASTþm� , become available, then
forecasts of ZnþMLASTþm�þ1; ZnþMLASTþm�þ2; . . . ; Znþlmax may be updated by recalling G13DKF with
M ¼ m�. Note that M and the contents of the array Z are the only quantities which need updating;
MLAST is updated on exit from the previous call. On a successful exit, V contains estimates of
�nþMLASTþ1; �nþMLASTþ2; . . . ; �nþMLASTþm� ; columns MLASTþ 1;MLASTþ 2; . . . ;MLASTþm� of
PREDZ contain the new observed values ZnþMLASTþ1; ZnþMLASTþ2; . . . ; ZnþMLASTþm� and columns
MLASTþ 1;MLASTþ 2; . . . ;MLASTþm� of SEFZ are set to zero.
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10 Example

This example shows how to update the forecasts of two series each of length 48. No transformation has
been used and no differencing applied to either of the series. G13DDF is first called to fit an AR(1)
model to the series. � is to be estimated and 
1 2; 1ð Þ constrained to be zero. A call to G13DJF is then
made in order to compute forecasts of the next five series values. After one new observation becomes
available the four forecasts are updated. A further observation becomes available and the three forecasts
are updated.

10.1 Program Text

! G13DKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g13dkfe_mod

! G13DKF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fprint

! .. Parameters ..
Integer, Parameter, Public :: iset = 1, nin = 5, nout = 6

Contains
Subroutine fprint(k,nm,lmax,predz,sefz,ldsefz,nout)

! .. Scalar Arguments ..
Integer, Intent (In) :: k, ldsefz, lmax, nm, nout

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: predz(ldsefz,lmax), &

sefz(ldsefz,lmax)
! .. Local Scalars ..

Integer :: i, i2, j, l, l2, loop
! .. Intrinsic Procedures ..

Intrinsic :: min, mod
! .. Executable Statements ..

Write (nout,*)
Write (nout,*) ’ FORECAST SUMMARY TABLE’
Write (nout,*) ’ ----------------------’
Write (nout,*)
Write (nout,99999) ’ Forecast origin is set at t = ’, nm
Write (nout,*)
loop = lmax/5
If (mod(lmax,5)/=0) Then

loop = loop + 1
End If
Do j = 1, loop

i2 = (j-1)*5
l2 = min(i2+5,lmax)
Write (nout,99998) ’Lead Time ’, (i,i=i2+1,l2)
Write (nout,*)
i = 1
Write (nout,99997) ’Series ’, i, ’ : Forecast ’, &

(predz(1,l),l=i2+1,l2)
Write (nout,99996) ’ : Standard Error ’, (sefz(1,l),l=i2+1,l2)
Do i = 2, k

Write (nout,99997) ’Series ’, i, ’ : Forecast ’, &
(predz(i,l),l=i2+1,l2)

Write (nout,99996) ’ : Standard Error ’, (sefz(i,l),l=i2+1,l2)
End Do
Write (nout,*)

End Do

Return
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99999 Format (1X,A,I4)
99998 Format (1X,A,12X,5I10)
99997 Format (1X,A,I2,A,5F10.2)
99996 Format (10X,A,4(F7.2,3X),F7.2)

End Subroutine fprint
End Module g13dkfe_mod
Program g13dkfe

! G13DKF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g13ddf, g13djf, g13dkf, g13dlf, nag_wp, x04abf
Use g13dkfe_mod, Only: fprint, iset, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: cgetol, rlogl
Integer :: d, i, ifail, ip, iprint, iq, ishow, &

k, kmax, ldcm, liwork, lmax, lpar, &
lref, lwork, m, maxcal, mlast, n, &
nadv, nd, niter, r, tddelta, tdv

Logical :: exact, meanl
Character (1) :: mean

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: cm(:,:), delta(:,:), g(:), par(:), &

predz(:,:), qq(:,:), ref(:), &
sefz(:,:), v(:,:), w(:,:), work(:), &
workl(:), z(:,:)

Integer, Allocatable :: id(:), iwork(:)
Logical, Allocatable :: parhld(:)
Character (1), Allocatable :: tr(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, maxval

! .. Executable Statements ..
Write (nout,*) ’G13DKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) k, n

Allocate (id(k))

! Read in differencing
Read (nin,*) id(1:k)

d = maxval(id(1:k))
tddelta = max(d,1)
nd = n - d
kmax = k
Allocate (z(kmax,n),tr(k),delta(kmax,tddelta),w(kmax,nd),workl(k*n))

! Read in series and the transformation flag
Read (nin,*)(z(i,1:n),i=1,k)
Read (nin,*) tr(1:k)

! If required, read in delta
If (d>0) Then

Read (nin,*)(delta(i,1:id(i)),i=1,k)
End If

! Difference and / or transform series
ifail = 0
Call g13dlf(k,n,z,kmax,tr,id,delta,w,nd,workl,ifail)

! Read in information on the VARMA
Read (nin,*) ip, iq, mean, lmax
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! Calculate number of parameters for the VARMA
lpar = (ip+iq)*k*k
If (mean==’M’ .Or. mean==’m’) Then

lpar = lpar + k
meanl = .True.

Else
meanl = .False.

End If

! Read in control parameters
Read (nin,*) iprint, cgetol, maxcal, ishow

! Read in exact likelihood flag
Read (nin,*) exact

ldcm = lpar
tdv = nd
Allocate (par(lpar),parhld(lpar),qq(kmax,k),v(kmax,tdv),g(lpar), &

cm(ldcm,lpar))

! Read in initial parameter estimates and free parameter flags
Read (nin,*) par(1:lpar)
Read (nin,*) parhld(1:lpar)

! Read in initial values for covariance matrix Q
Read (nin,*)(qq(i,1:i),i=1,k)

! Set the advisory channel to NOUT for monitoring information
If (iprint>=0 .Or. ishow/=0) Then

nadv = nout
Call x04abf(iset,nadv)

End If

! Fit a VARMA model
ifail = -1
Call g13ddf(k,nd,ip,iq,meanl,par,lpar,qq,kmax,w,parhld,exact,iprint, &

cgetol,maxcal,ishow,niter,rlogl,v,g,cm,ldcm,ifail)
If (ifail/=0) Then

If (ifail<4) Then
Go To 100

End If
End If

lref = (lmax-1)*k*k + 2*k*lmax + k
r = max(ip,iq)
lwork = max(k*r*(k*r+2),(ip+d+2)*k**2+(n+lmax)*k)
liwork = k*max(ip,iq)
Allocate (predz(kmax,lmax),sefz(kmax,lmax),ref(lref),work(lwork), &

iwork(liwork))

! Forecast from VARMA
ifail = 0
Call g13djf(k,n,z,kmax,tr,id,delta,ip,iq,mean,par,lpar,qq,v,lmax,predz, &

sefz,ref,lref,work,lwork,iwork,liwork,ifail)

! Display results
Call fprint(k,n,lmax,predz,sefz,kmax,nout)

! Update forecasts
mlast = 0

d_lp: Do
Read (nin,*,Iostat=ifail) m
If (ifail/=0) Then

Exit d_lp
End If
Read (nin,*,Iostat=ifail)(z(1:k,i),i=1,m)
If (ifail/=0) Then

Exit d_lp
End If

! Reallocate V if required
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If (tdv<m) Then
Deallocate (v)
Allocate (v(kmax,m))

End If

! Reallocate WORK if required
If (lwork<k*m) Then

Deallocate (work)
Allocate (work(lwork))

End If

! Update forecast
ifail = 0
Call g13dkf(k,lmax,m,mlast,z,kmax,ref,lref,v,predz,sefz,work,ifail)

Call fprint(k,n+mlast,lmax,predz,sefz,kmax,nout)
End Do d_lp

100 Continue

End Program g13dkfe

10.2 Program Data

G13DKF Example Program Data
2 48 :: K,N
0 0 :: ID
-1.490 -1.620 5.200 6.230 6.210 5.860
4.090 3.180 2.620 1.490 1.170 0.850

-0.350 0.240 2.440 2.580 2.040 0.400
2.260 3.340 5.090 5.000 4.780 4.110
3.450 1.650 1.290 4.090 6.320 7.500
3.890 1.580 5.210 5.250 4.930 7.380
5.870 5.810 9.680 9.070 7.290 7.840
7.550 7.320 7.970 7.760 7.000 8.350
7.340 6.350 6.960 8.540 6.620 4.970
4.550 4.810 4.750 4.760 10.880 10.010

11.620 10.360 6.400 6.240 7.930 4.040
3.730 5.600 5.350 6.810 8.270 7.680
6.650 6.080 10.250 9.140 17.750 13.300
9.630 6.800 4.080 5.060 4.940 6.650
7.940 10.760 11.890 5.850 9.010 7.500

10.020 10.380 8.150 8.370 10.730 12.140 :: End of Z
’N’ ’N’ :: TR

1 0 ’M’ 5 :: IP,IQ,MEAN,LMAX
-1 0.0001 3000 0 :: IPRINT,CGETOL,MAXCAL,ISHOW
T :: EXACT
0.0 0.0 0.0 0.0 0.0 0.0 :: PAR
F F T F F F :: PARHLD

0.0
0.0 0.0 :: End of QQ
1 :: M (update 1)
8.1 10.2 :: Z (update 1)
1 :: M (update 2)
8.5 10.0 :: Z (update 2)

10.3 Program Results

G13DKF Example Program Results

FORECAST SUMMARY TABLE
----------------------

Forecast origin is set at t = 48

Lead Time 1 2 3 4 5

Series 1 : Forecast 7.82 7.28 6.77 6.33 5.95
: Standard Error 1.72 2.23 2.51 2.68 2.79
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Series 2 : Forecast 10.31 9.25 8.65 8.30 8.10
: Standard Error 2.32 2.68 2.78 2.82 2.83

FORECAST SUMMARY TABLE
----------------------

Forecast origin is set at t = 49

Lead Time 1 2 3 4 5

Series 1 : Forecast 8.10 7.49 6.94 6.46 6.06
: Standard Error 0.00 1.72 2.23 2.51 2.68

Series 2 : Forecast 10.20 9.19 8.61 8.28 8.08
: Standard Error 0.00 2.32 2.68 2.78 2.82

FORECAST SUMMARY TABLE
----------------------

Forecast origin is set at t = 50

Lead Time 1 2 3 4 5

Series 1 : Forecast 8.10 8.50 7.80 7.18 6.65
: Standard Error 0.00 0.00 1.72 2.23 2.51

Series 2 : Forecast 10.20 10.00 9.08 8.54 8.24
: Standard Error 0.00 0.00 2.32 2.68 2.78
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NAG Library Routine Document

G13DLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13DLF differences and/or transforms a multivariate time series. It is intended to be used prior to
G13DDF to fit a vector autoregressive moving average (VARMA) model to the differenced/transformed
series.

2 Specification

SUBROUTINE G13DLF (K, N, Z, KMAX, TR, ID, DELTA, W, ND, WORK, IFAIL)

INTEGER K, N, KMAX, ID(K), ND, IFAIL
REAL (KIND=nag_wp) Z(KMAX,N), DELTA(KMAX,*), W(KMAX,*), WORK(K*N)
CHARACTER(1) TR(K)

3 Description

For certain time series it may first be necessary to difference the original data to obtain a stationary
series before calculating autocorrelations, etc. This routine also allows you to apply either a square root
or a log transformation to the original time series to stabilize the variance if required.

If the order of differencing required for the ith series is di, then the differencing operator is defined by
�i Bð Þ ¼ 1� �i1B� �i2B2 � � � � � �idiBdi , where B is the backward shift operator; that is, BZt ¼ Zt�1.
Let d denote the maximum of the orders of differencing, di, over the k series. The routine computes
values of the differenced/transformed series Wt ¼ w1t ; w2t ; . . . ; wktð ÞT, for t ¼ d þ 1; . . . ; n, as follows:

wit ¼ �i Bð Þz�it; i ¼ 1; 2; . . . ; k

where z�it are the transformed values of the original k-dimensional time series Zt ¼ z1t; z2t; . . . ; zktð ÞT.
The differencing parameters �ij, for i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; di, must be supplied by you. If the
ith series does not require differencing, then di ¼ 0.

4 References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

Wei W W S (1990) Time Series Analysis: Univariate and Multivariate Methods Addison–Wesley

5 Arguments

1: K – INTEGER Input

On entry: k, the dimension of the multivariate time series.

Constraint: K � 1.

2: N – INTEGER Input

On entry: n, the number of observations in the series, prior to differencing.

Constraint: N � 1.
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3: ZðKMAX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Zði; tÞ must contain, zit , the ith component of Zt , for i ¼ 1; 2; . . . ; k and t ¼ 1; 2; . . . ; n.

Constraints:

if TRðiÞ ¼ L , Zði; tÞ > 0:0;
if TRðiÞ ¼ S , Zði; tÞ � 0:0, for i ¼ 1; 2; . . . ; k and t ¼ 1; 2; . . . ; n.

4: KMAX – INTEGER Input

On entry: the first dimension of the arrays Z, DELTA and W as declared in the (sub)program
from which G13DLF is called.

Constraint: KMAX � K.

5: TRðKÞ – CHARACTER(1) array Input

On entry: TRðiÞ indicates whether the ith time series is to be transformed, for i ¼ 1; 2; . . . ; k.

TRðiÞ ¼ N
No transformation is used.

TRðiÞ ¼ L
A log transformation is used.

TRðiÞ ¼ S
A square root transformation is used.

Constraint: TRðiÞ ¼ N , L or S , for i ¼ 1; 2; . . . ; k.

6: IDðKÞ – INTEGER array Input

On entry: the order of differencing for each series, d1; d2; . . . ; dk.

Constraint: 0 � IDðiÞ < N, for i ¼ 1; 2; . . . ;K.

7: DELTAðKMAX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array DELTA must be at least max 1; dð Þ, where
d ¼ max IDðiÞð Þ.
On entry: if IDðiÞ > 0, then DELTAði; jÞ must be set equal to �ij , for j ¼ 1; 2; . . . ; di and
i ¼ 1; 2; . . . ; k.

If d ¼ 0, then DELTA is not referenced.

8: WðKMAX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array W must be at least N� d, where d ¼ max IDðiÞð Þ.
On exit: Wði; tÞ contains the value of wi;tþd , for i ¼ 1; 2; . . . ; k and t ¼ 1; 2; . . . ; n� d.

9: ND – INTEGER Output

On exit: the number of differenced values, n� d, in the series, where d ¼ max IDðiÞð Þ.

10: WORKðK � NÞ – REAL (KIND=nag_wp) array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 1,
or N < 1,
or KMAX < K.

IFAIL ¼ 2

On entry, IDðiÞ < 0, for some i ¼ 1; 2; . . . ; k,
or IDðiÞ � N, for some i ¼ 1; 2; . . . ; k.

IFAIL ¼ 3

On entry, at least one of the first k elements of TR is not equal to `N', `L' or `S'.

IFAIL ¼ 4

On entry, one or more of the elements of Z is invalid, for the transformation requested; that is,
you may be trying to log or square root a series, some of whose values are negative.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13DLF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The same differencing operator does not have to be applied to all the series. For example, suppose we
have k ¼ 2, and wish to apply the second-order differencing operator r2 to the first series and the first-
order differencing operator r to the second series:

w1t ¼ r2z1t ¼ 1�Bð Þ2z1t ¼ 1� 2BþB2
� �

z1t; and

w2t ¼ rz2t ¼ 1�Bð Þz2t:

Then d1 ¼ 2; d2 ¼ 1, d ¼ max d1; d2ð Þ ¼ 2, and

DELTA ¼ �11 �12
�21

� �
¼ 2 �1

1

� �
:

10 Example

A program to difference (non-seasonally) each of two time series of length 48. No transformation is to
be applied to either of the series.

10.1 Program Text

Program g13dlfe

! G13DLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13dlf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: d, i, ifail, k, kmax, n, nd, tddelta

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: delta(:,:), w(:,:), work(:), z(:,:)
Integer, Allocatable :: id(:)
Character (1), Allocatable :: tr(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, maxval

! .. Executable Statements ..
Write (nout,*) ’G13DLF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) k, n

Allocate (id(k))

! Read in differencing
Read (nin,*) id(1:k)

d = maxval(id(1:k))
tddelta = max(d,1)
nd = n - d
kmax = k
Allocate (z(kmax,n),tr(k),delta(kmax,tddelta),w(kmax,nd),work(k*n))

! Read in series and the transformation flag
Read (nin,*)(z(i,1:n),i=1,k)
Read (nin,*) tr(1:k)
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! If required, read in delta
If (d>0) Then

Read (nin,*)(delta(i,1:id(i)),i=1,k)
End If

! Difference and / or transform series
ifail = 0
Call g13dlf(k,n,z,kmax,tr,id,delta,w,nd,work,ifail)

! Display results
Write (nout,*) ’ Transformed/Differenced series’
Write (nout,*) ’ ------------------------------’
Do i = 1, k

Write (nout,*)
Write (nout,99999) ’ Series ’, i
Write (nout,*) ’ -----------’
Write (nout,*)
Write (nout,99998) ’ Number of differenced values = ’, nd
Write (nout,*)
Write (nout,99997) w(i,1:nd)

End Do

99999 Format (1X,A,I2)
99998 Format (1X,A,I6)
99997 Format (1X,8F9.3)

End Program g13dlfe

10.2 Program Data

G13DLF Example Program Data
2 48 1 :: K,N
1 1 :: ID

-1.490 -1.620 5.200 6.230 6.210 5.860 4.090 3.180
2.620 1.490 1.170 0.850 -0.350 0.240 2.440 2.580
2.040 0.400 2.260 3.340 5.090 5.000 4.780 4.110
3.450 1.650 1.290 4.090 6.320 7.500 3.890 1.580
5.210 5.250 4.930 7.380 5.870 5.810 9.680 9.070
7.290 7.840 7.550 7.320 7.970 7.760 7.000 8.350
7.340 6.350 6.960 8.540 6.620 4.970 4.550 4.810
4.750 4.760 10.880 10.010 11.620 10.360 6.400 6.240
7.930 4.040 3.730 5.600 5.350 6.810 8.270 7.680
6.650 6.080 10.250 9.140 17.750 13.300 9.630 6.800
4.080 5.060 4.940 6.650 7.940 10.760 11.890 5.850
9.010 7.500 10.020 10.380 8.150 8.370 10.730 12.140 :: End of Z
’N’ ’N’ :: TR
1.0
1.0 :: End of DELTA

10.3 Program Results

G13DLF Example Program Results

Transformed/Differenced series
------------------------------

Series 1
-----------

Number of differenced values = 47

-0.130 6.820 1.030 -0.020 -0.350 -1.770 -0.910 -0.560
-1.130 -0.320 -0.320 -1.200 0.590 2.200 0.140 -0.540
-1.640 1.860 1.080 1.750 -0.090 -0.220 -0.670 -0.660
-1.800 -0.360 2.800 2.230 1.180 -3.610 -2.310 3.630
0.040 -0.320 2.450 -1.510 -0.060 3.870 -0.610 -1.780
0.550 -0.290 -0.230 0.650 -0.210 -0.760 1.350

Series 2
-----------
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Number of differenced values = 47

-0.990 0.610 1.580 -1.920 -1.650 -0.420 0.260 -0.060
0.010 6.120 -0.870 1.610 -1.260 -3.960 -0.160 1.690

-3.890 -0.310 1.870 -0.250 1.460 1.460 -0.590 -1.030
-0.570 4.170 -1.110 8.610 -4.450 -3.670 -2.830 -2.720
0.980 -0.120 1.710 1.290 2.820 1.130 -6.040 3.160

-1.510 2.520 0.360 -2.230 0.220 2.360 1.410
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NAG Library Routine Document

G13DMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13DMF calculates the sample cross-correlation (or cross-covariance) matrices of a multivariate time
series.

2 Specification

SUBROUTINE G13DMF (MATRIX, K, N, M, W, KMAX, WMEAN, R0, R, IFAIL)

INTEGER K, N, M, KMAX, IFAIL
REAL (KIND=nag_wp) W(KMAX,N), WMEAN(K), R0(KMAX,K), R(KMAX,KMAX,M)
CHARACTER(1) MATRIX

3 Description

Let Wt ¼ w1t; w2t; . . . ; wktð ÞT, for t ¼ 1; 2; . . . ; n, denote n observations of a vector of k time series.
The sample cross-covariance matrix at lag l is defined to be the k by k matrix Ĉ lð Þ, whose (i; j)th
element is given by

Ĉij lð Þ ¼ 1
n

Xn
t¼lþ1

wi t�lð Þ � �wi
� �

wjt � �wj
� �

; l ¼ 0; 1; 2; . . . ;m; i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k;

where �wi and �wj denote the sample means for the ith and jth series respectively. The sample cross-
correlation matrix at lag l is defined to be the k by k matrix R̂ lð Þ, whose i; jð Þth element is given by

R̂ij lð Þ ¼
Ĉij lð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ĉii 0ð ÞĈjj 0ð Þ
q ; l ¼ 0; 1; 2; . . . ;m; i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k:

The number of lags, m, is usually taken to be at most n=4.

If Wt follows a vector moving average model of order q, then it can be shown that the theoretical cross-
correlation matrices R lð Þð Þ are zero beyond lag q. In order to help spot a possible cut-off point, the
elements of R̂ lð Þ are usually compared to their approximate standard error of 1/

ffiffiffi
n
p

. For further details
see, for example, Wei (1990).

The routine uses a single pass through the data to compute the means and the cross-covariance matrix at
lag zero. The cross-covariance matrices at further lags are then computed on a second pass through the
data.

4 References

Wei W W S (1990) Time Series Analysis: Univariate and Multivariate Methods Addison–Wesley

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555
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5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: indicates whether the cross-covariance or cross-correlation matrices are to be
computed.

MATRIX ¼ V
The cross-covariance matrices are computed.

MATRIX ¼ R
The cross-correlation matrices are computed.

Constraint: MATRIX ¼ V or R .

2: K – INTEGER Input

On entry: k, the dimension of the multivariate time series.

Constraint: K � 1.

3: N – INTEGER Input

On entry: n, the number of observations in the series.

Constraint: N � 2.

4: M – INTEGER Input

On entry: m, the number of cross-correlation (or cross-covariance) matrices to be computed. If in
doubt set M ¼ 10. However it should be noted that M is usually taken to be at most N=4.

Constraint: 1 � M < N.

5: WðKMAX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Wði; tÞ must contain the observation wit , for i ¼ 1; 2; . . . ; k and t ¼ 1; 2; . . . ; n.

6: KMAX – INTEGER Input

On entry: the first dimension of the arrays W, R0 and R and the second dimension of the array R
as declared in the (sub)program from which G13DMF is called.

Constraint: KMAX � K.

7: WMEANðKÞ – REAL (KIND=nag_wp) array Output

On exit: the means, �wi, for i ¼ 1; 2; . . . ; k.

8: R0ðKMAX;KÞ – REAL (KIND=nag_wp) array Output

On exit: if i 6¼ j, then R0ði; jÞ contains an estimate of the i; jð Þth element of the cross-correlation
(or cross-covariance) matrix at lag zero, R̂ij 0ð Þ; if i ¼ j, then if MATRIX ¼ V , R0ði; iÞ contains
the variance of the ith series, Ĉii 0ð Þ, and if MATRIX ¼ R , R0ði; iÞ contains the standard

deviation of the ith series,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉii 0ð Þ

q
.

If IFAIL ¼ 2 and MATRIX ¼ R , then on exit all the elements in R0 whose computation
involves the zero variance are set to zero.

9: RðKMAX;KMAX;MÞ – REAL (KIND=nag_wp) array Output

On exit: Rði; j; lÞ contains an estimate of the (i; j)th element of the cross-correlation (or cross-
covariance) at lag l, R̂ij lð Þ, for l ¼ 1; 2; . . . ;m, i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k.

If IFAIL ¼ 2 and MATRIX ¼ R , then on exit all the elements in R whose computation involves
the zero variance are set to zero.

G13DMF NAG Library Manual

G13DMF.2 Mark 26



10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MATRIX 6¼ V or R ,
or K < 1,
or N < 2,
or M < 1,
or M � N,
or KMAX < K.

IFAIL ¼ 2

On entry, at least one of the k series is such that all its elements are practically equal giving zero
(or near zero) variance. In this case if MATRIX ¼ R all the correlations in R0 and R involving
this variance are set to zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a discussion of the accuracy of the one-pass algorithm used to compute the sample cross-
covariances at lag zero see West (1979). For the other lags a two-pass algorithm is used to compute the
cross-covariances; the accuracy of this algorithm is also discussed in West (1979). The accuracy of the
cross-correlations will depend on the accuracy of the computed cross-covariances.
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8 Parallelism and Performance

G13DMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is roughly proportional to mnk2.

10 Example

This program computes the sample cross-correlation matrices of two time series of length 48, up to lag
10. It also prints the cross-correlation matrices together with plots of symbols indicating which elements
of the correlation matrices are significant. Three * represent significance at the 0:5% level, two *
represent significance at the 1% level and a single * represents significance at the 5% level. The * are
plotted above or below the line depending on whether the elements are significant in the positive or
negative direction.

10.1 Program Text

! G13DMF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g13dmfe_mod

! G13DMF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: cprint

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine cprint(k,n,ldr,m,wmean,r0,r,nout)

! .. Use Statements ..
Use nag_library, Only: x04cbf

! .. Scalar Arguments ..
Integer, Intent (In) :: k, ldr, m, n, nout

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: r(ldr,ldr,m), r0(ldr,k), wmean(k)

! .. Local Scalars ..
Real (Kind=nag_wp) :: c1, c2, c3, c5, c6, c7, inv_sqrt_n, &

sum
Integer :: i, i2, ifail, j, l, ll

! .. Local Arrays ..
Character (1) :: clabs(1), rlabs(1)
Character (79) :: rec(7)

! .. Intrinsic Procedures ..
Intrinsic :: real, sqrt

! .. Executable Statements ..
! Print the correlation matrices and indicator symbols.

inv_sqrt_n = 1.0E0_nag_wp/sqrt(real(n,kind=nag_wp))
Write (nout,*)
Write (nout,*) ’ THE MEANS’
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Write (nout,*) ’ ---------’
Write (nout,99999) wmean(1:k)
Write (nout,*)
Write (nout,*) ’ CROSS-CORRELATION MATRICES’
Write (nout,*) ’ --------------------------’
Write (nout,99998) ’ Lag = ’, 0
Flush (nout)
ifail = 0
Call x04cbf(’G’,’N’,k,k,r0,ldr,’F9.3’,’ ’,’N’,rlabs,’N’,clabs,80,5, &

ifail)
Do l = 1, m

Write (nout,99998) ’ Lag = ’, l
Flush (nout)
ifail = 0
Call x04cbf(’G’,’N’,k,k,r(1,1,l),ldr,’F9.3’,’ ’,’N’,rlabs,’N’,clabs, &

80,5,ifail)
End Do

! Print indicator symbols to indicate significant elements.
Write (nout,99997) ’ Standard error = 1 / SQRT(N) =’, inv_sqrt_n
Write (nout,*)
Write (nout,*) ’ TABLES OF INDICATOR SYMBOLS’
Write (nout,*) ’ ---------------------------’
Write (nout,99998) ’ For Lags 1 to ’, m

! Set up annotation for the plots.
Write (rec(1),99996) ’ 0.005 :’
Write (rec(2),99996) ’ + 0.01 :’
Write (rec(3),99996) ’ 0.05 :’
Write (rec(4)(1:23),99996) ’ Sig. Level :’
Write (rec(4)(24:),99996) ’- - - - - - - - - - Lags’
Write (rec(5),99996) ’ 0.05 :’
Write (rec(6),99996) ’ - 0.01 :’
Write (rec(7),99996) ’ 0.005 :’

! Set up the critical values
c1 = 3.29E0_nag_wp*inv_sqrt_n
c2 = 2.58E0_nag_wp*inv_sqrt_n
c3 = 1.96E0_nag_wp*inv_sqrt_n
c5 = -c3
c6 = -c2
c7 = -c1

Do i = 1, k
Do j = 1, k

Write (nout,*)
If (i==j) Then

Write (nout,99995) ’ Auto-correlation function for’, ’ series ’, &
i

Else
Write (nout,99994) ’ Cross-correlation function for’, &

’ series ’, i, ’ and series’, j
End If
Do l = 1, m

ll = 23 + 2*l
sum = r(i,j,l)

! Clear the last plot with blanks
Do i2 = 1, 7

If (i2/=4) Then
rec(i2)(ll:ll) = ’ ’

End If
End Do

! Check for significance
If (sum>c1) Then

rec(1)(ll:ll) = ’*’
End If
If (sum>c2) Then

rec(2)(ll:ll) = ’*’
End If
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If (sum>c3) Then
rec(3)(ll:ll) = ’*’

End If
If (sum<c5) Then

rec(5)(ll:ll) = ’*’
End If
If (sum<c6) Then

rec(6)(ll:ll) = ’*’
End If
If (sum<c7) Then

rec(7)(ll:ll) = ’*’
End If

End Do

! Print
Write (nout,99996)(rec(i2),i2=1,7)

End Do
End Do
Return

99999 Format (/,1X,2(2X,F9.3))
99998 Format (/,1X,A,I2)
99997 Format (/,1X,A,F6.3,A)
99996 Format (1X,A)
99995 Format (/,/,1X,A,A,I2,/)
99994 Format (/,/,1X,A,A,I2,A,I2,/)

End Subroutine cprint
End Module g13dmfe_mod
Program g13dmfe

! G13DMF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g13dmf, nag_wp
Use g13dmfe_mod, Only: cprint, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ifail, k, kmax, m, n
Character (1) :: matrix

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: r(:,:,:), r0(:,:), w(:,:), wmean(:)

! .. Executable Statements ..
Write (nout,*) ’G13DMF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) k, n, m, matrix

kmax = k
Allocate (w(kmax,n),r0(kmax,k),wmean(k),r(kmax,kmax,m))

! Read in series
Do i = 1, k

Read (nin,*) w(i,1:n)
End Do

! Calculate sample cross-correlation matrices
ifail = 0
Call g13dmf(matrix,k,n,m,w,kmax,wmean,r0,r,ifail)

! Display results
Call cprint(k,n,kmax,m,wmean,r0,r,nout)

End Program g13dmfe
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10.2 Program Data

G13DMF Example Program Data
2 48 10 ’R’ :: K,N,M,MATRIX
-1.490 -1.620 5.200 6.230 6.210 5.860 4.090 3.180
2.620 1.490 1.170 0.850 -0.350 0.240 2.440 2.580
2.040 0.400 2.260 3.340 5.090 5.000 4.780 4.110
3.450 1.650 1.290 4.090 6.320 7.500 3.890 1.580
5.210 5.250 4.930 7.380 5.870 5.810 9.680 9.070
7.290 7.840 7.550 7.320 7.970 7.760 7.000 8.350
7.340 6.350 6.960 8.540 6.620 4.970 4.550 4.810
4.750 4.760 10.880 10.010 11.620 10.360 6.400 6.240
7.930 4.040 3.730 5.600 5.350 6.810 8.270 7.680
6.650 6.080 10.250 9.140 17.750 13.300 9.630 6.800
4.080 5.060 4.940 6.650 7.940 10.760 11.890 5.850
9.010 7.500 10.020 10.380 8.150 8.370 10.730 12.140 :: End of W

10.3 Program Results

G13DMF Example Program Results

THE MEANS
---------

4.370 7.868

CROSS-CORRELATION MATRICES
--------------------------

Lag = 0
2.818 0.249
0.249 2.815

Lag = 1
0.736 0.174
0.211 0.555

Lag = 2
0.456 0.076
0.069 0.260

Lag = 3
0.379 0.014
0.026 -0.038

Lag = 4
0.322 0.110
0.093 -0.236

Lag = 5
0.341 0.269
0.087 -0.250

Lag = 6
0.363 0.344
0.132 -0.227

Lag = 7
0.280 0.425
0.207 -0.128

Lag = 8
0.248 0.522
0.197 -0.085

Lag = 9
0.240 0.266
0.254 0.075
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Lag = 10
0.162 -0.020
0.267 0.005

Standard error = 1 / SQRT(N) = 0.144

TABLES OF INDICATOR SYMBOLS
---------------------------

For Lags 1 to 10

Auto-correlation function for series 1

0.005 : *
+ 0.01 : * * *

0.05 : * * * * * *
Sig. Level : - - - - - - - - - - Lags

0.05 :
- 0.01 :

0.005 :

Cross-correlation function for series 1 and series 2

0.005 : *
+ 0.01 : * *

0.05 : * * *
Sig. Level : - - - - - - - - - - Lags

0.05 :
- 0.01 :

0.005 :

Cross-correlation function for series 2 and series 1

0.005 :
+ 0.01 :

0.05 :
Sig. Level : - - - - - - - - - - Lags

0.05 :
- 0.01 :

0.005 :

Auto-correlation function for series 2

0.005 : *
+ 0.01 : *

0.05 : *
Sig. Level : - - - - - - - - - - Lags

0.05 :
- 0.01 :

0.005 :
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NAG Library Routine Document

G13DNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13DNF calculates the sample partial lag correlation matrices of a multivariate time series. A set of
�2-statistics and their significance levels are also returned. A call to G13DMF is usually made prior to
calling this routine in order to calculate the sample cross-correlation matrices.

2 Specification

SUBROUTINE G13DNF (K, N, M, KMAX, R0, R, MAXLAG, PARLAG, X, PVALUE,
WORK, LWORK, IFAIL)

&

INTEGER K, N, M, KMAX, MAXLAG, LWORK, IFAIL
REAL (KIND=nag_wp) R0(KMAX,K), R(KMAX,KMAX,M), PARLAG(KMAX,KMAX,M),

X(M), PVALUE(M), WORK(LWORK)
&

3 Description

Let Wt ¼ w1t ; w2t ; . . . ; wktð ÞT, for t ¼ 1; 2; . . . ; n, denote n observations of a vector of k time series.
The partial lag correlation matrix at lag l, P lð Þ, is defined to be the correlation matrix between Wt and
Wtþl, after removing the linear dependence on each of the intervening vectors Wtþ1;Wtþ2; . . . ;Wtþl�1.
It is the correlation matrix between the residual vectors resulting from the regression of Wtþl on the
carriers Wtþl�1; . . . ;Wtþ1 and the regression of Wt on the same set of carriers; see Heyse and Wei
(1985).

P lð Þ has the following properties.

(i) If Wt follows a vector autoregressive model of order p, then P lð Þ ¼ 0 for l > p;

(ii) When k ¼ 1, P lð Þ reduces to the univariate partial autocorrelation at lag l;

(iii) Each element of P lð Þ is a properly normalized correlation coefficient;

(iv) When l ¼ 1, P lð Þ is equal to the cross-correlation matrix at lag 1 (a natural property which also
holds for the univariate partial autocorrelation function).

Sample estimates of the partial lag correlation matrices may be obtained using the recursive algorithm
described in Wei (1990). They are calculated up to lag m, which is usually taken to be at most n=4.
Only the sample cross-correlation matrices (R̂ lð Þ, for l ¼ 0; 1; . . . ;m) and the standard deviations of the
series are required as input to G13DNF. These may be computed by G13DMF. Under the hypothesis
that Wt follows an autoregressive model of order s� 1, the elements of the sample partial lag matrix
P̂ sð Þ, denoted by P̂ij sð Þ, are asymptotically Normally distributed with mean zero and variance 1=n. In
addition the statistic

X sð Þ ¼ n
Xk
i¼1

Xk
j¼1

P̂ij sð Þ2

has an asymptotic �2-distribution with k2 degrees of freedom. These quantities, X lð Þ, are useful as a
diagnostic aid for determining whether the series follows an autoregressive model and, if so, of what
order.
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4 References

Heyse J F and Wei W W S (1985) The partial lag autocorrelation function Technical Report No. 32
Department of Statistics, Temple University, Philadelphia

Wei W W S (1990) Time Series Analysis: Univariate and Multivariate Methods Addison–Wesley

5 Arguments

1: K – INTEGER Input

On entry: k, the dimension of the multivariate time series.

Constraint: K � 1.

2: N – INTEGER Input

On entry: n, the number of observations in each series.

Constraint: N � 2.

3: M – INTEGER Input

On entry: m, the number of partial lag correlation matrices to be computed. Note this also
specifies the number of sample cross-correlation matrices that must be contained in the array R.

Constraint: 1 � M < N.

4: KMAX – INTEGER Input

On entry: the first dimension of the arrays R0, R and PARLAG and the second dimension of the
arrays R and PARLAG as declared in the (sub)program from which G13DNF is called.

Constraint: KMAX � K.

5: R0ðKMAX;KÞ – REAL (KIND=nag_wp) array Input

On entry: if i 6¼ j, then R0ði; jÞ must contain the i; jð Þth element of the sample cross-correlation
matrix at lag zero, R̂ij 0ð Þ. If i ¼ j, then R0ði; iÞ must contain the standard deviation of the ith
series.

6: RðKMAX;KMAX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Rði; j; lÞ must contain the i; jð Þth element of the sample cross-correlation at lag l,
R̂ij lð Þ, for l ¼ 1; 2; . . . ;m, i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k, where series j leads series i (see
Section 9).

7: MAXLAG – INTEGER Output

On exit: the maximum lag up to which partial lag correlation matrices (along with �2-statistics
and their significance levels) have been successfully computed. On a successful exit MAXLAG
will equal M. If IFAIL ¼ 2 on exit, then MAXLAG will be less than M.

8: PARLAGðKMAX;KMAX;MÞ – REAL (KIND=nag_wp) array Output

On exit: PARLAGði; j; lÞ contains the i; jð Þth element of the sample partial lag correlation matrix
at lag l, P̂ij lð Þ, for l ¼ 1; 2; . . . ;MAXLAG, i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k.

9: XðMÞ – REAL (KIND=nag_wp) array Output

On exit: XðlÞ contains the �2-statistic at lag l, for l ¼ 1; 2; . . . ;MAXLAG.
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10: PVALUEðMÞ – REAL (KIND=nag_wp) array Output

On exit: PVALUEðlÞ contains the significance level of the corresponding �2-statistic in X, for
l ¼ 1; 2; . . . ;MAXLAG.

11: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G13DNF is called.

Constraint: LWORK � 5Mþ 6ð ÞK2 þ K.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 1,
or N < 2,
or M < 1,
or M � N,
or KMAX < K,
or LWORK < 5Mþ 6ð ÞK2 þ K.

IFAIL ¼ 2

The recursive equations used to compute the sample partial lag correlation matrices have broken
down at lag MAXLAGþ 1. All output quantities in the arrays PARLAG, X and PVALUE up to
and including lag MAXLAG will be correct.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy will depend upon the accuracy of the sample cross-correlations.

8 Parallelism and Performance

G13DNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13DNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is roughly proportional to m2k3.

If you have calculated the sample cross-correlation matrices in the arrays R0 and R, without calling
G13DMF, then care must be taken to ensure they are supplied as described in Section 5. In particular,
for l � 1, R̂ij lð Þ must contain the sample cross-correlation coefficient between wi t�lð Þ and wjt.

The routine G13DBF computes squared partial autocorrelations for a specified number of lags. It may
also be used to estimate a sequence of partial autoregression matrices at lags 1; 2; . . . by making
repeated calls to the routine with the argument NK set to 1; 2; . . . . The i; jð Þth element of the sample
partial autoregression matrix at lag l is given by W i; j; lð Þ when NK is set equal to l on entry to
G13DBF. Note that this is the ‘Yule–Walker’ estimate. Unlike the partial lag correlation matrices
computed by G13DNF, when Wt follows an autoregressive model of order s� 1, the elements of the
sample partial autoregressive matrix at lag s do not have variance 1=n, making it very difficult to spot a
possible cut-off point. The differences between these matrices are discussed further by Wei (1990).

Note that G13DBF takes the sample cross-covariance matrices as input whereas this routine requires the
sample cross-correlation matrices to be input.

10 Example

This example computes the sample partial lag correlation matrices of two time series of length 48, up to
lag 10. The matrices, their �2-statistics and significance levels and a plot of symbols indicating which
elements of the sample partial lag correlation matrices are significant are printed. Three * represent
significance at the 0:5% level, two * represent significance at the 1% level and a single * represents
significance at the 5% level. The * are plotted above or below the central line depending on whether the
elements are significant in a positive or negative direction.

10.1 Program Text

! G13DNF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g13dnfe_mod

! G13DNF Example Program Module:
! Parameters and User-defined Routines
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! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: zprint

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine zprint(k,n,m,ldpar,parlag,x,pvalue,nout)

! .. Use Statements ..
Use nag_library, Only: x04cbf

! .. Scalar Arguments ..
Integer, Intent (In) :: k, ldpar, m, n, nout

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: parlag(ldpar,ldpar,m), pvalue(m), &

x(m)
! .. Local Scalars ..

Real (Kind=nag_wp) :: c1, c2, c3, c5, c6, c7, inv_sqrt_n, &
sum

Integer :: i, i2, ifail, j, l, ll
! .. Local Arrays ..

Character (1) :: clabs(1), rlabs(1)
Character (79) :: rec(7)

! .. Intrinsic Procedures ..
Intrinsic :: real, sqrt

! .. Executable Statements ..
! Print the partial lag correlation matrices.

inv_sqrt_n = 1.0E0_nag_wp/sqrt(real(n,kind=nag_wp))
Write (nout,*)
Write (nout,*) ’ PARTIAL LAG CORRELATION MATRICES’
Write (nout,*) ’ --------------------------------’
Do l = 1, m

Write (nout,99999) ’ Lag = ’, l
Flush (nout)
ifail = 0
Call x04cbf(’G’,’N’,k,k,parlag(1,1,l),ldpar,’F9.3’,’ ’,’N’,rlabs, &

’N’,clabs,80,5,ifail)
End Do
Write (nout,99998) ’ Standard error = 1 / SQRT(N) =’, inv_sqrt_n

! Print indicator symbols to indicate significant elements.
Write (nout,*)
Write (nout,*) ’ TABLES OF INDICATOR SYMBOLS’
Write (nout,*) ’ ---------------------------’
Write (nout,99999) ’ For Lags 1 to ’, m

! Set up annotation for the plots.
Write (rec(1),99997) ’ 0.005 :’
Write (rec(2),99997) ’ + 0.01 :’
Write (rec(3),99997) ’ 0.05 :’
Write (rec(4)(1:23),99997) ’ Sig. Level :’
Write (rec(4)(24:),99997) ’- - - - - - - - - - Lags’
Write (rec(5),99997) ’ 0.05 :’
Write (rec(6),99997) ’ - 0.01 :’
Write (rec(7),99997) ’ 0.005 :’

! Set up the critical values
c1 = 3.29E0_nag_wp*inv_sqrt_n
c2 = 2.58E0_nag_wp*inv_sqrt_n
c3 = 1.96E0_nag_wp*inv_sqrt_n
c5 = -c3
c6 = -c2
c7 = -c1

Do i = 1, k
Do j = 1, k

Write (nout,*)
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If (i==j) Then
Write (nout,99996) ’ Auto-correlation function for’, ’ series ’, &

i
Else

Write (nout,99995) ’ Cross-correlation function for’, &
’ series ’, i, ’ and series’, j

End If
Do l = 1, m

ll = 23 + 2*l
sum = parlag(i,j,l)

! Clear the last plot with blanks
Do i2 = 1, 7

If (i2/=4) Then
rec(i2)(ll:ll) = ’ ’

End If
End Do

! Check for significance
If (sum>c1) Then

rec(1)(ll:ll) = ’*’
End If
If (sum>c2) Then

rec(2)(ll:ll) = ’*’
End If
If (sum>c3) Then

rec(3)(ll:ll) = ’*’
End If
If (sum<c5) Then

rec(5)(ll:ll) = ’*’
End If
If (sum<c6) Then

rec(6)(ll:ll) = ’*’
End If
If (sum<c7) Then

rec(7)(ll:ll) = ’*’
End If

End Do

! Print
Write (nout,99997)(rec(i2),i2=1,7)

End Do
End Do

! Print the chi-square statistics and p-values.
Write (nout,*)
Write (nout,*)
Write (nout,*) ’ Lag Chi-square statistic P-value’
Write (nout,*) ’ --- -------------------- -------’
Write (nout,*)
Write (nout,99994)(l,x(l),pvalue(l),l=1,m)

Return

99999 Format (/,1X,A,I2)
99998 Format (/,1X,A,F6.3,A)
99997 Format (1X,A)
99996 Format (/,/,1X,A,A,I2,/)
99995 Format (/,/,1X,A,A,I2,A,I2,/)
99994 Format (1X,I4,10X,F8.3,11X,F8.4)

End Subroutine zprint
End Module g13dnfe_mod
Program g13dnfe

! G13DNF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g13dmf, g13dnf, nag_wp
Use g13dnfe_mod, Only: nin, nout, zprint

! .. Implicit None Statement ..
Implicit None
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! .. Local Scalars ..
Integer :: i, ifail, k, kmax, lwork, m, maxlag, &

n
Character (1) :: matrix

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: parlag(:,:,:), pvalue(:), r(:,:,:), &

r0(:,:), w(:,:), wmean(:), work(:), &
x(:)

! .. Executable Statements ..
Write (nout,*) ’G13DNF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) k, n, m, matrix

kmax = k
lwork = (5*m+6)*k**2 + k
Allocate (w(kmax,n),wmean(k),r0(kmax,k),r(kmax,kmax,m), &

parlag(kmax,kmax,m),x(m),pvalue(m),work(lwork))

! Read in series
Read (nin,*)(w(i,1:n),i=1,k)

! Calculate cross correlations
ifail = 0
Call g13dmf(matrix,k,n,m,w,kmax,wmean,r0,r,ifail)

! Calculate sample partial lag correlation matrices
ifail = 0
Call g13dnf(k,n,m,kmax,r0,r,maxlag,parlag,x,pvalue,work,lwork,ifail)

! Display results
Call zprint(k,n,m,kmax,parlag,x,pvalue,nout)

End Program g13dnfe

10.2 Program Data

G13DNF Example Program Data
2 48 10 ’R’ :: K,N,M,MATRIX
-1.490 -1.620 5.200 6.230 6.210 5.860 4.090 3.180
2.620 1.490 1.170 0.850 -0.350 0.240 2.440 2.580
2.040 0.400 2.260 3.340 5.090 5.000 4.780 4.110
3.450 1.650 1.290 4.090 6.320 7.500 3.890 1.580
5.210 5.250 4.930 7.380 5.870 5.810 9.680 9.070
7.290 7.840 7.550 7.320 7.970 7.760 7.000 8.350
7.340 6.350 6.960 8.540 6.620 4.970 4.550 4.810
4.750 4.760 10.880 10.010 11.620 10.360 6.400 6.240
7.930 4.040 3.730 5.600 5.350 6.810 8.270 7.680
6.650 6.080 10.250 9.140 17.750 13.300 9.630 6.800
4.080 5.060 4.940 6.650 7.940 10.760 11.890 5.850
9.010 7.500 10.020 10.380 8.150 8.370 10.730 12.145 :: End of W

10.3 Program Results

G13DNF Example Program Results

PARTIAL LAG CORRELATION MATRICES
--------------------------------

Lag = 1
0.736 0.174
0.211 0.555

Lag = 2
-0.187 -0.083
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-0.180 -0.072

Lag = 3
0.278 -0.007
0.084 -0.213

Lag = 4
-0.084 0.227
0.128 -0.176

Lag = 5
0.236 0.238

-0.047 -0.046

Lag = 6
-0.016 0.087
0.100 -0.081

Lag = 7
-0.036 0.261
0.126 0.012

Lag = 8
0.077 0.381
0.027 -0.149

Lag = 9
-0.065 -0.387
0.189 0.057

Lag = 10
-0.026 -0.286
0.028 -0.173

Standard error = 1 / SQRT(N) = 0.144

TABLES OF INDICATOR SYMBOLS
---------------------------

For Lags 1 to 10

Auto-correlation function for series 1

0.005 : *
+ 0.01 : *

0.05 : *
Sig. Level : - - - - - - - - - - Lags

0.05 :
- 0.01 :

0.005 :

Cross-correlation function for series 1 and series 2

0.005 :
+ 0.01 : *

0.05 : *
Sig. Level : - - - - - - - - - - Lags

0.05 : * *
- 0.01 : *

0.005 :

Cross-correlation function for series 2 and series 1

0.005 :
+ 0.01 :
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0.05 :
Sig. Level : - - - - - - - - - - Lags

0.05 :
- 0.01 :

0.005 :

Auto-correlation function for series 2

0.005 : *
+ 0.01 : *

0.05 : *
Sig. Level : - - - - - - - - - - Lags

0.05 :
- 0.01 :

0.005 :

Lag Chi-square statistic P-value
--- -------------------- -------

1 44.362 0.0000
2 3.824 0.4304
3 6.219 0.1834
4 5.094 0.2778
5 5.609 0.2303
6 1.170 0.8830
7 4.098 0.3929
8 8.371 0.0789
9 9.244 0.0553

10 5.435 0.2455
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NAG Library Routine Document

G13DPF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13DPF calculates the sample partial autoregression matrices of a multivariate time series. A set of
likelihood ratio statistics and their significance levels are also returned. These quantities are useful for
determining whether the series follows an autoregressive model and, if so, of what order.

2 Specification

SUBROUTINE G13DPF (K, N, Z, KMAX, M, MAXLAG, PARLAG, SE, QQ, X, PVALUE,
LOGLHD, WORK, LWORK, IWORK, IFAIL)

&

INTEGER K, N, KMAX, M, MAXLAG, LWORK, IWORK(K*M), IFAIL
REAL (KIND=nag_wp) Z(KMAX,N), PARLAG(KMAX,KMAX,M), SE(KMAX,KMAX,M),

QQ(KMAX,KMAX,M), X(M), PVALUE(M), LOGLHD(M),
WORK(LWORK)

&
&

3 Description

Let Wt ¼ w1t ; w2t ; . . . ; wktð ÞT, for t ¼ 1; 2; . . . ; n, denote a vector of k time series. The partial
autoregression matrix at lag l, Pl, is defined to be the last matrix coefficient when a vector
autoregressive model of order l is fitted to the series. Pl has the property that if Wt follows a vector
autoregressive model of order p then Pl ¼ 0 for l > p.

Sample estimates of the partial autoregression matrices may be obtained by fitting autoregressive
models of successively higher orders by multivariate least squares; see Tiao and Box (1981) and Wei
(1990). These models are fitted using a QR algorithm based on the routines G02DCF and G02DFF.
They are calculated up to lag m, which is usually taken to be at most n=4.

The routine also returns the asymptotic standard errors of the elements of P̂l and an estimate of the
residual variance-covariance matrix �̂l, for l ¼ 1; 2; . . . ;m. If Sl denotes the residual sum of squares
and cross-products matrix after fitting an AR lð Þ model to the series then under the null hypothesis
H0 : Pl ¼ 0 the test statistic

Xl ¼ � n�m� 1ð Þ � 1
2� lk

� �
log

Slj j
Sl�1j j

� �
is asymptotically distributed as �2 with k2 degrees of freedom. Xl provides a useful diagnostic aid in
determining the order of an autoregressive model. (Note that �̂l ¼ Sl= n� lð Þ.) The routine also returns
an estimate of the maximum of the log-likelihood function for each AR model that has been fitted.

4 References

Tiao G C and Box G E P (1981) Modelling multiple time series with applications J. Am. Stat. Assoc. 76
802–816

Wei W W S (1990) Time Series Analysis: Univariate and Multivariate Methods Addison–Wesley
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5 Arguments

1: K – INTEGER Input

On entry: k, the number of time series.

Constraint: K � 1.

2: N – INTEGER Input

On entry: n, the number of observations in the time series.

Constraint: N � 4.

3: ZðKMAX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Zði; tÞ must contain the observation wit , for i ¼ 1; 2; . . . ; k and t ¼ 1; 2; . . . ; n.

4: KMAX – INTEGER Input

On entry: the first dimension of the arrays Z, PARLAG, SE and QQ and the second dimension of
the arrays PARLAG, SE and QQ as declared in the (sub)program from which G13DPF is called.

Constraint: KMAX � K.

5: M – INTEGER Input

On entry: m, the number of partial autoregression matrices to be computed. If in doubt set
M ¼ 10.

Constraint: M � 1 and N�M� K �Mþ 1ð Þ � K.

6: MAXLAG – INTEGER Output

On exit: the maximum lag up to which partial autoregression matrices (along with their
likelihood ratio statistics and their significance levels) have been successfully computed. On a
successful exit MAXLAG will equal M. If IFAIL ¼ 2 on exit then MAXLAG will be less than
M.

7: PARLAGðKMAX;KMAX;MÞ – REAL (KIND=nag_wp) array Output

On exit: PARLAGði; j; lÞ contains an estimate of the i; jð Þth element of the partial autoregression
matrix at lag l, P̂l ijð Þ, for l ¼ 1; 2; . . . ;MAXLAG, i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k.

8: SEðKMAX;KMAX;MÞ – REAL (KIND=nag_wp) array Output

On exit: SEði; j; lÞ contains an estimate of the standard error of the corresponding element in the
array PARLAG.

9: QQðKMAX;KMAX;MÞ – REAL (KIND=nag_wp) array Output

On exit: QQði; j; lÞ contains an estimate of the i; jð Þth element of the corresponding variance-
covariance matrix �̂l , for l ¼ 1; 2; . . . ;MAXLAG, i ¼ 1; 2; . . . ; k and j ¼ 1; 2; . . . ; k.

10: XðMÞ – REAL (KIND=nag_wp) array Output

On exit: XðlÞ contains Xl , the likelihood ratio statistic at lag l, for l ¼ 1; 2; . . . ;MAXLAG.

11: PVALUEðMÞ – REAL (KIND=nag_wp) array Output

On exit: PVALUEðlÞ contains the significance level of the statistic in the corresponding element
of X.
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12: LOGLHDðMÞ – REAL (KIND=nag_wp) array Output

On exit: LOGLHDðlÞ contains an estimate of the maximum of the log-likelihood function when
an AR lð Þ model has been fitted to the series, for l ¼ 1; 2; . . . ;MAXLAG.

13: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
14: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G13DPF is called.

Constraint: LWORK � kþ 1ð Þkþ l 4þ kð Þ þ 2l2, where l ¼ mkþ 1.

15: IWORKðK �MÞ – INTEGER array Workspace

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 1,
or N < 4,
or KMAX < K,
or M < 1,
or N�M� K�Mþ 1ð Þ < K,
or LWORK is too small.

IFAIL ¼ 2

The recursive equations used to compute the sample partial autoregression matrices have broken
down at lag MAXLAGþ 1. This exit could occur if the regression model is overparameterised.
For your settings of k and n the value returned by MAXLAG is the largest permissible value of
m for which the model is not overparameterised. All output quantities in the arrays PARLAG,
SE, QQ, X, PVALUE and LOGLHD up to and including lag MAXLAG will be correct.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13DPF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13DPF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is roughly proportional to nmk.

For each order of autoregressive model that has been estimated, G13DPF returns the maximum of the
log-likelihood function. An alternative means of choosing the order of a vector AR process is to choose
the order for which Akaike's information criterion is smallest. That is, choose the value of l for which
�2� LOGLHDðlÞ þ 2lk2 is smallest. You should be warned that this does not always lead to the same
choice of l as indicated by the sample partial autoregression matrices and the likelihood ratio statistics.

10 Example

This example computes the sample partial autoregression matrices of two time series of length 48 up to
lag 10.

10.1 Program Text

! G13DPF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g13dpfe_mod

! G13DPF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: zprint

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine zprint(k,m,ldpar,maxlag,parlag,se,qq,x,pvalue,nout,ifail)

! .. Scalar Arguments ..
Integer, Intent (In) :: ifail, k, ldpar, m, maxlag, nout

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: parlag(ldpar,ldpar,m), pvalue(m), &
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qq(ldpar,ldpar,m), &
se(ldpar,ldpar,m), x(m)

! .. Local Scalars ..
Real (Kind=nag_wp) :: sum
Integer :: i, i2, j, l

! .. Local Arrays ..
Character (6) :: st(6)

! .. Executable Statements ..
! Display titles

If (k>1) Then
Write (nout,99999)

Else If (k==1) Then
Write (nout,99998)

End If

Do l = 1, maxlag
Do j = 1, k

sum = parlag(1,j,l)
st(j) = ’.’
If (sum>1.96E0_nag_wp*se(1,j,l)) Then

st(j) = ’+’
End If
If (sum<-1.96E0_nag_wp*se(1,j,l)) Then

st(j) = ’-’
End If

End Do
If (k==1) Then

Write (nout,99997) l, (parlag(1,j,l),j=1,k), (st(i2),i2=1,k), &
qq(1,1,l), x(l), pvalue(l)

Write (nout,99996)(se(1,j,l),j=1,k)
Else If (k==2) Then

Write (nout,99995) l, (parlag(1,j,l),j=1,k), (st(i2),i2=1,k), &
qq(1,1,l), x(l), pvalue(l)

Write (nout,99994)(se(1,j,l),j=1,k)
Else If (k==3) Then

Write (nout,99993) l, (parlag(1,j,l),j=1,k), (st(i2),i2=1,k), &
qq(1,1,l), x(l), pvalue(l)

Write (nout,99992)(se(1,j,l),j=1,k)
Else If (k==4) Then

Write (nout,99991) l
Write (nout,99986)(parlag(1,j,l),j=1,k), (st(i2),i2=1,k), &

qq(1,1,l), x(l), pvalue(l)
Write (nout,99990)(se(1,j,l),j=1,k)

End If

Do i = 2, k

Do j = 1, k
sum = parlag(i,j,l)
st(j) = ’.’
If (sum>1.96E0_nag_wp*se(i,j,l)) Then

st(j) = ’+’
End If
If (sum<-1.96E0_nag_wp*se(i,j,l)) Then

st(j) = ’-’
End If

End Do
If (k==2) Then

Write (nout,99989)(parlag(i,j,l),j=1,k), (st(i2),i2=1,k), &
qq(i,i,l)

Write (nout,99994)(se(i,j,l),j=1,k)
Else If (k==3) Then

Write (nout,99988)(parlag(i,j,l),j=1,k), (st(i2),i2=1,k), &
qq(i,i,l)

Write (nout,99992)(se(i,j,l),j=1,k)
Else If (k==4) Then

Write (nout,99987)(parlag(i,j,l),j=1,k), (st(i2),i2=1,k), &
qq(i,i,l)

Write (nout,99990)(se(i,j,l),j=1,k)
End If
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End Do
End Do

If (ifail==2) Then
Write (nout,99985) ’Recursive equations broke down at ’, maxlag + 1

End If

Return

99999 Format (’ Partial Autoregression Matrices’,4X,’Indicator’,2X, &
’Residual’,3X,’Chi-Square’,2X,’Pvalue’,/,37X,’Symbols’,3X, &
’Variances’,3X,’Statistic’,/,’ -------------------------------’,4X, &
’---------’,2X,’---------’,2X,’-----------’,1X,’------’)

99998 Format (’ Partial Autoregression Function’,4X,’Indicator’,2X, &
’Residual’,3X,’Chi-Square’,2X,’Pvalue’,/,37X,’Symbols’,3X, &
’Variances’,3X,’Statistic’,/,’ -------------------------------’,4X, &
’---------’,2X,’---------’,2X,’-----------’,1X,’------’)

99997 Format (/,’ Lag’,I3,1X,’:’,F7.3,22X,A1,F14.3,3X,F10.3,F9.3)
99996 Format (9X,’(’,F6.3,’)’)
99995 Format (/,’ Lag’,I3,1X,’:’,2F8.3,14X,2A1,F13.3,3X,F10.3,F9.3)
99994 Format (10X,’(’,F6.3,’)(’,F6.3,’)’)
99993 Format (/,’ Lag’,I3,1X,’:’,3F8.3,6X,3A1,F12.3,3X,F10.3,F9.3)
99992 Format (10X,’(’,F6.3,’)(’,F6.3,’)(’,F6.3,’)’)
99991 Format (/,’ Lag’,I3)
99990 Format (2X,’(’,F6.3,’)(’,F6.3,’)(’,F6.3,’)(’,F6.3,’)’)
99989 Format (9X,2F8.3,14X,2A1,F13.3)
99988 Format (9X,3F8.3,6X,3A1,F12.3)
99987 Format (1X,4F8.3,5X,4A1,F12.3)
99986 Format (1X,4F8.3,5X,4A1,F12.3,3X,F10.3,F9.3)
99985 Format (1X,A,I0)

End Subroutine zprint
End Module g13dpfe_mod
Program g13dpfe

! G13DPF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g13dpf, nag_wp
Use g13dpfe_mod, Only: nin, nout, zprint

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ifail, k, kmax, l, lwork, m, &

maxlag, mk, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: loglhd(:), parlag(:,:,:), pvalue(:), &
qq(:,:,:), se(:,:,:), work(:), x(:), &
z(:,:)

Integer, Allocatable :: iwork(:)
! .. Executable Statements ..

Write (nout,*) ’G13DPF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) k, n, m

kmax = k
mk = m*k
l = mk + 1
lwork = (k+1)*k + l*(4+k)*2*l**2
Allocate (z(kmax,n),parlag(kmax,kmax,m),se(kmax,kmax,m),x(m),pvalue(m), &

loglhd(m),work(lwork),qq(kmax,kmax,m),iwork(mk))

! Read in series
Do i = 1, k

Read (nin,*) z(i,1:n)
End Do
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! Calculate sample partial autoregression matrices
ifail = -1
Call g13dpf(k,n,z,kmax,m,maxlag,parlag,se,qq,x,pvalue,loglhd,work,lwork, &

iwork,ifail)
If (ifail/=0) Then

If (ifail/=2) Then
Go To 100

End If
End If

! Display results
Call zprint(k,m,kmax,maxlag,parlag,se,qq,x,pvalue,nout,ifail)

100 Continue

End Program g13dpfe

10.2 Program Data

G13DPF Example Program Data
2 48 10 :: K,N,M
-1.490 -1.620 5.200 6.230 6.210 5.860 4.090 3.180
2.620 1.490 1.170 0.850 -0.350 0.240 2.440 2.580
2.040 0.400 2.260 3.340 5.090 5.000 4.780 4.110
3.450 1.650 1.290 4.090 6.320 7.500 3.890 1.580
5.210 5.250 4.930 7.380 5.870 5.810 9.680 9.070
7.290 7.840 7.550 7.320 7.970 7.760 7.000 8.350
7.340 6.350 6.960 8.540 6.620 4.970 4.550 4.810
4.750 4.760 10.880 10.010 11.620 10.360 6.400 6.240
7.930 4.040 3.730 5.600 5.350 6.810 8.270 7.680
6.650 6.080 10.250 9.140 17.750 13.300 9.630 6.800
4.080 5.060 4.940 6.650 7.940 10.760 11.890 5.850
9.010 7.500 10.020 10.380 8.150 8.370 10.730 12.140 :: End of Z

10.3 Program Results

G13DPF Example Program Results

Partial Autoregression Matrices Indicator Residual Chi-Square Pvalue
Symbols Variances Statistic

------------------------------- --------- --------- ----------- ------

Lag 1 : 0.757 0.062 +. 2.731 49.884 0.000
( 0.092)( 0.092)

0.061 0.570 .+ 5.440
( 0.129)( 0.130)

Lag 2 : -0.161 -0.135 .. 2.530 3.347 0.502
( 0.145)( 0.109)
-0.093 -0.065 .. 5.486

( 0.213)( 0.160)

Lag 3 : 0.237 0.044 .. 1.755 13.962 0.007
( 0.128)( 0.095)

0.047 -0.248 .. 5.291
( 0.222)( 0.165)

Lag 4 : -0.098 0.152 .. 1.661 7.071 0.132
( 0.134)( 0.099)

0.402 -0.194 .. 4.786
( 0.228)( 0.168)

Lag 5 : 0.257 -0.026 .. 1.504 5.184 0.269
( 0.141)( 0.106)

0.400 -0.021 .. 4.447
( 0.242)( 0.183)

Lag 6 : -0.075 0.112 .. 1.480 2.083 0.721
( 0.156)( 0.111)

0.196 -0.106 .. 4.425
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( 0.269)( 0.192)

Lag 7 : -0.054 0.097 .. 1.478 5.074 0.280
( 0.166)( 0.121)

0.574 -0.080 +. 3.838
( 0.267)( 0.195)

Lag 8 : 0.147 0.041 .. 1.415 10.991 0.027
( 0.188)( 0.128)

0.916 -0.242 +. 2.415
( 0.246)( 0.167)

Lag 9 : -0.039 0.099 .. 1.322 3.936 0.415
( 0.251)( 0.140)
-0.500 0.173 .. 2.196

( 0.324)( 0.181)

Lag 10 : 0.189 0.131 .. 1.206 3.175 0.529
( 0.275)( 0.157)
-0.183 -0.040 .. 2.201

( 0.371)( 0.212)
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NAG Library Routine Document

G13DSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13DSF is a diagnostic checking routine suitable for use after fitting a vector ARMA model to a
multivariate time series using G13DDF. The residual cross-correlation matrices are returned along with
an estimate of their asymptotic standard errors and correlations. Also, G13DSF calculates the modified
Li–McLeod portmanteau statistic and its significance level for testing model adequacy.

2 Specification

SUBROUTINE G13DSF (K, N, V, KMAX, IP, IQ, M, PAR, PARHLD, QQ, ISHOW, R0,
R, RCM, LDRCM, CHI, IDF, SIGLEV, IW, LIW, WORK,
LWORK, IFAIL)

&
&

INTEGER K, N, KMAX, IP, IQ, M, ISHOW, LDRCM, IDF, IW(LIW),
LIW, LWORK, IFAIL

&

REAL (KIND=nag_wp) V(KMAX,N), PAR((IP+IQ)*K*K), QQ(KMAX,K),
R0(KMAX,K), R(KMAX,KMAX,M), RCM(LDRCM,M*K*K), CHI,
SIGLEV, WORK(LWORK)

&
&

LOGICAL PARHLD((IP+IQ)*K*K)

3 Description

Let Wt ¼ w1t ; w2t ; . . . ; wktð ÞT, for t ¼ 1; 2; . . . ; n, denote a vector of k time series which is assumed to
follow a multivariate ARMA model of the form

Wt � � ¼ 
1 Wt�1 � �ð Þ þ 
2 Wt�2 � �ð Þ þ � � � þ 
p Wt�p � �
� �

þ�t � �1�t�1 � �2�t�2 � � � � � �q�t�q;
ð1Þ

where �t ¼ �1t ; �2t ; . . . ; �ktð ÞT, for t ¼ 1; 2; . . . ; n, is a vector of k residual series assumed to be Normally
distributed with zero mean and positive definite covariance matrix �. The components of �t are
assumed to be uncorrelated at non-simultaneous lags. The 
i and �j are k by k matrices of parameters.

if g, for i ¼ 1; 2; . . . ; p, are called the autoregressive (AR) parameter matrices, and �if g, for
i ¼ 1; 2; . . . ; q, the moving average (MA) parameter matrices. The parameters in the model are thus the
p (k by k) 
-matrices, the q (k by k) �-matrices, the mean vector � and the residual error covariance
matrix �. Let

A 
ð Þ ¼


1 I 0 : : : 0

2 0 I 0 : : 0
: :
: :
: :

p�1 0 : : : 0 I

p 0 : : : 0 0

266666664

377777775
pk�pk

and B �ð Þ ¼

�1 I 0 : : : 0
�2 0 I 0 : : 0
: :
: :
: :
�q�1 0 : : : I
�q 0 : : : : 0

266666664

377777775
qk�qk

where I denotes the k by k identity matrix.

The ARMA model (1) is said to be stationary if the eigenvalues of A 
ð Þ lie inside the unit circle, and
invertible if the eigenvalues of B �ð Þ lie inside the unit circle. The ARMA model is assumed to be both
stationary and invertible. Note that some of the elements of the 
- and/or �-matrices may have been
fixed at pre-specified values (for example by calling G13DDF).

The estimated residual cross-correlation matrix at lag l is defined to the k by k matrix R̂l whose i; jð Þth
element is computed as
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r̂ij lð Þ ¼

Xn
t¼lþ1

�̂it�l � ��ið Þ �̂jt � ��j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

�̂it � ��ið Þ2
Xn
t¼1

�̂jt � ��j
� �2s ; l ¼ 0; 1; . . . ; i and j ¼ 1; 2; . . . ; k;

where �̂it denotes an estimate of the tth residual for the ith series �it and ��i ¼
Xn
t¼1
�̂it=n. (Note that R̂l is

an estimate of E �t�l�
T
t

� �
, where E is the expected value.)

A modified portmanteau statistic, Q�mð Þ, is calculated from the formula (see Li and McLeod (1981))

Q�mð Þ ¼
k2m mþ 1ð Þ

2n
þ n

Xm
l¼1
r̂ lð ÞT R̂�10 � R̂�10

� �
r̂ lð Þ;

where � denotes Kronecker product, R̂0 is the estimated residual cross-correlation matrix at lag zero
and r̂ lð Þ ¼ vec R̂T

l

� �
, where vec of a k by k matrix is a vector with the i; jð Þth element in position

i� 1ð Þkþ j. m denotes the number of residual cross-correlation matrices computed. (Advice on the
choice of m is given in Section 9.2.) Let lC denote the total number of ‘free’ parameters in the ARMA
model excluding the mean, �, and the residual error covariance matrix �. Then, under the hypothesis of
model adequacy, Q�mð Þ, has an asymptotic �2-distribution on mk2 � lC degrees of freedom.

Let r̂ ¼ vec RT
1

� �
; vec RT

2

� �
; . . . ; vec RT

m

� �� �
then the covariance matrix of r̂ is given by

Var r̂ð Þ ¼ Y �X XTGGTX
� ��1

XT
h i

=n;

where Y ¼ Im � ���ð Þ and G ¼ Im GGTð Þ. � is the dispersion matrix � in correlation form and G a
nonsingular k by k matrix such that GGT ¼ ��1 and G�GT ¼ Ik. The construction of the matrix X is
discussed in Li and McLeod (1981). (Note that the mean, �, plays no part in calculating Var r̂ð Þ and
therefore is not required as input to G13DSF.)

4 References

Li W K and McLeod A I (1981) Distribution of the residual autocorrelations in multivariate ARMA
time series models J. Roy. Statist. Soc. Ser. B 43 231–239

5 Arguments

The output quantities K, N, V, KMAX, IP, IQ, PAR, PARHLD and QQ from G13DDF are suitable for
input to G13DSF.

1: K – INTEGER Input

On entry: k, the number of residual time series.

Constraint: K � 1.

2: N – INTEGER Input

On entry: n, the number of observations in each residual series.

3: VðKMAX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Vði; tÞ must contain an estimate of the ith component of �t , for i ¼ 1; 2; . . . ; k and
t ¼ 1; 2; . . . ; n.
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Constraints:

no two rows of V may be identical;
in each row there must be at least two distinct elements.

4: KMAX – INTEGER Input

On entry: the first dimension of the arrays V, QQ and R0 and

Constraint: KMAX � K.

5: IP – INTEGER Input

On entry: p, the number of AR parameter matrices.

Constraint: IP � 0.

6: IQ – INTEGER Input

On entry: q, the number of MA parameter matrices.

Constraint: IQ � 0.

Note: IP ¼ IQ ¼ 0 is not permitted.

7: M – INTEGER Input

On entry: the value of m, the number of residual cross-correlation matrices to be computed. See
Section 9.2 for advice on the choice of M.

Constraint: IPþ IQ < M < N.

8: PARð IPþ IQð Þ � K � KÞ – REAL (KIND=nag_wp) array Input

On entry: the parameter estimates read in row by row in the order 
1; 
2; . . . ; 
p, �1; �2; . . . ; �q.

Thus,

if IP > 0, PARð l � 1ð Þ � k� kþ i � 1ð Þ � kþ jÞ must be set equal to an estimate of the
i; jð Þth element of 
l , for l ¼ 1; 2; . . . ; p and i ¼ 1; 2; . . . ; k;

if IQ � 0, PARðp� k� kþ l � 1ð Þ � k� kþ i � 1ð Þ � kþ jÞ must be set equal to an
estimate of the i; jð Þth element of �l , for l ¼ 1; 2; . . . ; q and i ¼ 1; 2; . . . ; k.

The first p� k� k elements of PAR must satisfy the stationarity condition and the next q � k� k
elements of PAR must satisfy the invertibility condition.

9: PARHLDð IPþ IQð Þ � K � KÞ – LOGICAL array Input

On entry: PARHLDðiÞ must be set to .TRUE. if PARðiÞ has been held constant at a pre-specified
value and .FALSE. if PARðiÞ is a free parameter, for i ¼ 1; 2; . . . ; pþ qð Þ � k� k.

10: QQðKMAX;KÞ – REAL (KIND=nag_wp) array Input/Output

On entry: QQði; jÞ is an efficient estimate of the i; jð Þth element of �. The lower triangle only is
needed.

Constraint: QQ must be positive definite.

On exit: if IFAIL 6¼ 1, then the upper triangle is set equal to the lower triangle.

11: ISHOW – INTEGER Input

On entry: must be nonzero if the residual cross-correlation matrices r̂ij lð Þ
� 

and their standard
errors se r̂ij lð Þ

� �� 
, the modified portmanteau statistic with its significance and a summary table

are to be printed. The summary table indicates which elements of the residual correlation
matrices are significant at the 5% level in either a positive or negative direction; i.e., if
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r̂ij lð Þ > 1:96� se r̂ij lð Þ
� �

then a ‘þ’ is printed, if r̂ij lð Þ < �1:96� se r̂ij lð Þ
� �

then a ‘�’ is printed,
otherwise a fullstop (.) is printed. The summary table is only printed if k � 6 on entry.

The residual cross-correlation matrices, their standard errors and the modified portmanteau
statistic with its significance are available also as output variables in R, RCM, CHI, IDF and
SIGLEV.

12: R0ðKMAX;KÞ – REAL (KIND=nag_wp) array Output

On exit: if i 6¼ j, then R0ði; jÞ contains an estimate of the i; jð Þth element of the residual cross-
correlation matrix at lag zero, R̂0. When i ¼ j, R0ði; jÞ contains the standard deviation of the ith
residual series. If IFAIL ¼ 3 on exit then the first K rows and columns of R0 are set to zero.

13: RðKMAX;KMAX;MÞ – REAL (KIND=nag_wp) array Output

On exit: Rðl; i; jÞ is an estimate of the i; jð Þth element of the residual cross-correlation matrix at
lag l, for i ¼ 1; 2; . . . ; k, j ¼ 1; 2; . . . ; k and l ¼ 1; 2; . . . ;m. If IFAIL ¼ 3 on exit then all
elements of R are set to zero.

14: RCMðLDRCM;M� K � KÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated standard errors and correlations of the elements in the array R. The
co r r e l a t i on be tween Rðl; i; jÞ and Rðl2; i2; j2Þ i s r e tu rned as RCMðs; tÞ where
s ¼ l� 1ð Þ � k� kþ j� 1ð Þ � kþ i and t ¼ l2 � 1ð Þ � k� kþ j2 � 1ð Þ � kþ i2 except that if
s ¼ t, then RCMðs; tÞ contains the standard error of Rðl; i; jÞ. If on exit, IFAIL � 5, then all off-
diagonal elements of RCM are set to zero and all diagonal elements are set to 1=

ffiffiffi
n
p

.

15: LDRCM – INTEGER Input

On entry: the first dimension of the array RCM as declared in the (sub)program from which
G13DSF is called.

Constraint: LDRCM � M� K � K.

16: CHI – REAL (KIND=nag_wp) Output

On exit: the value of the modified portmanteau statistic, Q�mð Þ. If IFAIL ¼ 3 on exit then CHI is

returned as zero.

17: IDF – INTEGER Output

On exit: the number of degrees of freedom of CHI.

18: SIGLEV – REAL (KIND=nag_wp) Output

On exit: the significance level of CHI based on IDF degrees of freedom. If IFAIL ¼ 3 on exit,
SIGLEV is returned as one.

19: IWðLIWÞ – INTEGER array Workspace
20: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which G13DSF is
called.

Constraint: LIW � K �max IP; IQð Þ.
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21: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
22: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G13DSF is called.

Constraint: if LWORK � k nþ KMAXþ 2ð Þ þmk2 NPAR þmk2 þ 1
� �

þ
3k2 þ NPAR þ 1ð ÞNPAR, NPAR ¼ pþ qð Þk2.

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13DSF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 1,
or KMAX < K,
or IP < 0,
or IQ < 0,
or IP ¼ IQ ¼ 0,
or M � IPþ IQ,
or M � N,
or LDRCM < M� K � K,
or LIW is too small,
or LWORK is too small.

IFAIL ¼ 2

On entry, either QQ is not positive definite or the autoregressive parameter matrices are
extremely close to or outside the stationarity region, or the moving average parameter matrices
are extremely close to or outside the invertibility region. To proceed, you must supply different
parameter estimates in the arrays PAR and QQ.

IFAIL ¼ 3

On entry, at least one of the k residual series is such that all its elements are practically identical
giving zero (or near zero) variance or at least two of the residual series are identical. In this case
CHI is set to zero, SIGLEV to one and all the elements of R0 and R set to zero.
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IFAIL ¼ 4

This is an unlikely exit brought about by an excessive number of iterations being needed to
evaluate the zeros of the determinantal polynomials det A 
ð Þð Þ and det B �ð Þð Þ. All output
arguments are undefined.

IFAIL ¼ 5

On entry, either the eigenvalues and eigenvectors of � (the matrix QQ in correlation form) could
not be computed or the determinantal polynomials det A 
ð Þð Þ and det B �ð Þð Þ have a factor in
common. To proceed, you must either supply different parameter estimates in the array QQ or
delete this common factor from the model. In this case, the off-diagonal elements of RCM are
returned as zero and the diagonal elements set to 1=

ffiffiffi
n
p

. All other output quantities will be
correct.

IFAIL ¼ 6

This is an unlikely exit. At least one of the diagonal elements of RCM was found to be either
negative or zero. In this case all off-diagonal elements of RCM are returned as zero and all
diagonal elements of RCM set to 1=

ffiffiffi
n
p

.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13DSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13DSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken by G13DSF depends upon the number of residual cross-correlation matrices to be
computed, m, and the number of time series, k.

G13DSF NAG Library Manual

G13DSF.6 Mark 26



9.2 Choice of m

The number of residual cross-correlation matrices to be computed, m, should be chosen to ensure that
when the ARMA model (1) is written as either an infinite order autoregressive process, i.e.,

Wt � � ¼
X1
j¼1

	j Wt�j � �
� �

þ �t

or as an infinite order moving average process, i.e.,

Wt � � ¼
X1
j¼1

 j�t�j þ �t

then the two sequences of k by k matrices 	1; 	2; . . .f g and  1;  2; . . .f g are such that 	j and  j are
approximately zero for j > m. An overestimate of m is therefore preferable to an under-estimate of m.
In many instances the choice m ¼ 10 will suffice. In practice, to be on the safe side, you should try
setting m ¼ 20.

9.3 Checking a ‘White Noise’ Model

If you have fitted the ‘white noise’ model

Wt � � ¼ �t

then G13DSF should be entered with p ¼ 1, q ¼ 0, and the first k2 elements of PAR and PARHLD set
to zero and .TRUE. respectively.

9.4 Approximate Standard Errors

When IFAIL ¼ 5 or 6 all the standard errors in RCM are set to 1=
ffiffiffi
n
p

. This is the asymptotic standard
error of r̂ij lð Þ when all the autoregressive and moving average parameters are assumed to be known
rather than estimated.

9.5 Alternative Tests

R̂0 is useful in testing for instantaneous causality. If you wish to carry out a likelihood ratio test then

the covariance matrix at lag zero Ĉ0

� �
can be used. It can be recovered from R̂0 by setting

Ĉ0 i; jð Þ ¼ R̂0 i; jð Þ � R̂0 i; ið Þ � R̂0 j; jð Þ; for i 6¼ j

¼ R̂0 i; jð Þ � R̂0 i; jð Þ; for i ¼ j

10 Example

This example fits a bivariate AR(1) model to two series each of length 48. � has been estimated but

1 2; 1ð Þ has been constrained to be zero. Ten residual cross-correlation matrices are to be computed.

10.1 Program Text

Program g13dsfe

! G13DSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13ddf, g13dsf, nag_wp, x04abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

! .. Local Scalars ..
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Real (Kind=nag_wp) :: cgetol, chi, rlogl, siglev
Integer :: dishow, i, idf, ifail, ip, iprint, &

iq, ishow, k, k2, kmax, ldcm, ldrcm, &
liw, lpar, lwork, m, maxcal, mk2, n, &
nadv, niter, npar

Logical :: exact, mean
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: cm(:,:), g(:), par(:), qq(:,:), &
r(:,:,:), r0(:,:), rcm(:,:), v(:,:), &
w(:,:), work(:)

Integer, Allocatable :: iw(:)
Logical, Allocatable :: parhld(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’G13DSF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) k, ip, iq, n, mean, m

! Calculate number of parameters for the VARMA
k2 = k*k
lpar = (ip+iq)*k2
npar = lpar
If (mean) Then

lpar = lpar + k
End If

kmax = k
ldcm = lpar
mk2 = m*k2
ldrcm = mk2
liw = k*max(ip,iq)
lwork = k*(n+kmax+2) + mk2*(npar+mk2+1) + 3*k2
Allocate (par(lpar),parhld(lpar),qq(kmax,k),w(kmax,n),v(kmax,n),g(lpar), &

cm(ldcm,lpar),r0(kmax,k),rcm(ldrcm,mk2),iw(liw),work(lwork), &
r(kmax,kmax,mk2))

! Read in series
Read (nin,*)(w(i,1:n),i=1,k)

! Read in control parameters
Read (nin,*) iprint, cgetol, maxcal, dishow

! Read in exact likelihood flag
Read (nin,*) exact

! Read in initial parameter estimates and free parameter flags
Read (nin,*) par(1:lpar)
Read (nin,*) parhld(1:lpar)

! Read in initial values for covariance matrix Q
Read (nin,*)(qq(i,1:i),i=1,k)

! Read in the ISHOW flag for G13DSF
Read (nin,*) ishow

! Set the advisory channel to NOUT for monitoring information
If (iprint>=0 .Or. dishow/=0 .Or. ishow/=0) Then

nadv = nout
Call x04abf(iset,nadv)

End If

! Fit VARMA model
ifail = -1
Call g13ddf(k,n,ip,iq,mean,par,lpar,qq,kmax,w,parhld,exact,iprint, &
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cgetol,maxcal,dishow,niter,rlogl,v,g,cm,ldcm,ifail)
If (ifail/=0) Then

If (ifail<4) Then
Go To 100

End If
End If

! Titles
Write (nout,*)
Write (nout,*) ’Output from G13DSF’
Write (nout,*)
Flush (nout)

! Calculate and display diagnostics
ifail = 0
Call g13dsf(k,n,v,kmax,ip,iq,m,par,parhld,qq,ishow,r0,r,rcm,ldrcm,chi, &

idf,siglev,iw,liw,work,lwork,ifail)

100 Continue

End Program g13dsfe

10.2 Program Data

G13DSF Example Program Data
2 1 0 48 T 10 :: K,IP,IQ,N,MEAN,M
-1.490 -1.620 5.200 6.230 6.210 5.860
4.090 3.180 2.620 1.490 1.170 0.850

-0.350 0.240 2.440 2.580 2.040 0.400
2.260 3.340 5.090 5.000 4.780 4.110
3.450 1.650 1.290 4.090 6.320 7.500
3.890 1.580 5.210 5.250 4.930 7.380
5.870 5.810 9.680 9.070 7.290 7.840
7.550 7.320 7.970 7.760 7.000 8.350
7.340 6.350 6.960 8.540 6.620 4.970
4.550 4.810 4.750 4.760 10.880 10.010

11.620 10.360 6.400 6.240 7.930 4.040
3.730 5.600 5.350 6.810 8.270 7.680
6.650 6.080 10.250 9.140 17.750 13.300
9.630 6.800 4.080 5.060 4.940 6.650
7.940 10.760 11.890 5.850 9.010 7.500

10.020 10.380 8.150 8.370 10.730 12.140 :: End of W
-1 0.0001 3000 2 :: IPRINT,CGETOL,MAXCAL,DISHOW
T :: EXACT
0.0 0.0 0.0 0.0 0.0 0.0 :: PAR
F F T F F F :: PARHLD

0.0
0.0 0.0 :: QQ
1 :: ISHOW

10.3 Program Results

G13DSF Example Program Results

VALUE OF LOG LIKELIHOOD FUNCTION ON EXIT = -0.20280E+03

MAXIMUM LIKELIHOOD ESTIMATES OF AR PARAMETER MATRICES
-----------------------------------------------------

PHI(1) ROW-WISE : 0.802 0.065
( 0.091)( 0.102)

0.000 0.575
( 0.000)( 0.121)

MAXIMUM LIKELIHOOD ESTIMATE OF PROCESS MEAN
-------------------------------------------

4.271 7.825
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( 1.219)( 0.776)

MAXIMUM LIKELIHOOD ESTIMATE OF SIGMA MATRIX
-------------------------------------------

2.964

0.637 5.380

RESIDUAL SERIES NUMBER 1
-------------------------

T 1 2 3 4 5 6 7 8
V(T) -3.33 -1.24 5.75 1.27 0.32 0.11 -1.27 -0.73

T 9 10 11 12 13 14 15 16
V(T) -0.58 -1.26 -0.67 -1.13 -2.02 -0.57 1.24 -0.13

T 17 18 19 20 21 22 23 24
V(T) -0.77 -2.09 1.34 0.95 1.71 0.23 -0.01 -0.60

T 25 26 27 28 29 30 31 32
V(T) -0.68 -1.89 -0.77 2.05 2.11 0.94 -3.32 -2.50

T 33 34 35 36 37 38 39 40
V(T) 3.16 0.47 0.05 2.77 -0.82 0.25 3.99 0.20

T 41 42 43 44 45 46 47 48
V(T) -0.70 1.07 0.44 0.28 1.09 0.50 -0.10 1.70

RESIDUAL SERIES NUMBER 2
-------------------------

T 1 2 3 4 5 6 7 8
V(T) -0.19 -1.20 -0.02 1.21 -1.62 -2.16 -1.63 -1.13

T 9 10 11 12 13 14 15 16
V(T) -1.34 -1.30 4.82 0.43 2.54 0.35 -2.88 -0.77

T 17 18 19 20 21 22 23 24
V(T) 1.02 -3.85 -1.92 0.13 -1.20 0.41 1.03 -0.40

T 25 26 27 28 29 30 31 32
V(T) -1.09 -1.07 3.43 -0.08 9.17 -0.23 -1.34 -2.06

T 33 34 35 36 37 38 39 40
V(T) -3.16 -0.61 -1.30 0.48 0.79 2.87 2.38 -4.31

T 41 42 43 44 45 46 47 48
V(T) 2.32 -1.01 2.38 1.29 -1.14 0.36 2.59 2.64

Output from G13DSF

RESIDUAL CROSS-CORRELATION MATRICES
-----------------------------------

LAG 1 : 0.130 0.112
( 0.119)( 0.143)

0.094 0.043
( 0.069)( 0.102)

LAG 2 : -0.312 0.021
( 0.128)( 0.144)
-0.162 0.098

( 0.125)( 0.132)

LAG 3 : 0.004 -0.176
( 0.134)( 0.144)
-0.168 -0.091

( 0.139)( 0.140)
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LAG 4 : -0.090 -0.120
( 0.137)( 0.144)

0.099 -0.232
( 0.142)( 0.143)

LAG 5 : 0.041 0.093
( 0.140)( 0.144)
-0.009 -0.089

( 0.144)( 0.144)

LAG 6 : 0.234 -0.008
( 0.141)( 0.144)

0.069 -0.103
( 0.144)( 0.144)

LAG 7 : -0.076 0.007
( 0.142)( 0.144)

0.168 0.000
( 0.144)( 0.144)

LAG 8 : -0.074 0.559
( 0.143)( 0.144)

0.008 -0.101
( 0.144)( 0.144)

LAG 9 : 0.091 0.193
( 0.144)( 0.144)

0.055 0.170
( 0.144)( 0.144)

LAG 10 : -0.060 0.061
( 0.144)( 0.144)

0.191 0.089
( 0.144)( 0.144)

SUMMARY TABLE
-------------

LAGS 1 - 10

***************************
* * *
* .-........ * .......+.. *
* * *
***************************
* * *
* .......... * .......... *
* * *
***************************

LI-MCLEOD PORTMANTEAU STATISTIC = 49.234
SIGNIFICANCE LEVEL = 0.086

(BASED ON 37 DEGREES OF FREEDOM)
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NAG Library Routine Document

G13DXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13DXF calculates the zeros of a vector autoregressive (or moving average) operator. This routine is
likely to be used in conjunction with G05PJF, G13ASF, G13DDF or G13DSF.

2 Specification

SUBROUTINE G13DXF (K, IP, PAR, RR, RI, RMOD, WORK, IWORK, IFAIL)

INTEGER K, IP, IWORK(K*IP), IFAIL
REAL (KIND=nag_wp) PAR(IP*K*K), RR(K*IP), RI(K*IP), RMOD(K*IP),

WORK(K*K*IP*IP)
&

3 Description

Consider the vector autoregressive moving average (VARMA) model

Wt � � ¼ 
1 Wt�1 � �ð Þ þ 
2 Wt�2 � �ð Þ þ � � � þ 
p Wt�p � �
� �

þ �t � �1�t�1 � �2�t�2 � � � � � �q�t�q;
ð1Þ

where Wt denotes a vector of k time series and �t is a vector of k residual series having zero mean and
a constant variance-covariance matrix. The components of �t are also assumed to be uncorrelated at
non-simultaneous lags. 
1; 
2; . . . ; 
p denotes a sequence of k by k matrices of autoregressive (AR)
parameters and �1; �2; . . . ; �q denotes a sequence of k by k matrices of moving average (MA)
parameters. � is a vector of length k containing the series means. Let

A 
ð Þ ¼


1 I 0 : : : 0

2 0 I 0 : : 0
: :
: :
: :


p�1 0 : : : 0 I

p 0 : : : 0 0

266666664

377777775
pk�pk

where I denotes the k by k identity matrix.

The model (1) is said to be stationary if the eigenvalues of A 
ð Þ lie inside the unit circle. Similarly let

B �ð Þ ¼

�1 I 0 : : : 0
�2 0 I 0 : : 0
: :
: :
: :

�q�1 0 : : : 0 I
�q 0 : : : 0 0

266666664

377777775
qk�qk

:

Then the model is said to be invertible if the eigenvalues of B �ð Þ lie inside the unit circle.

G13DXF returns the pk eigenvalues of A 
ð Þ (or the qk eigenvalues of B �ð Þ) along with their moduli, in
descending order of magnitude. Thus to check for stationarity or invertibility you should check whether
the modulus of the largest eigenvalue is less than one.
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4 References

Wei W W S (1990) Time Series Analysis: Univariate and Multivariate Methods Addison–Wesley

5 Arguments

1: K – INTEGER Input

On entry: k, the dimension of the multivariate time series.

Constraint: K � 1.

2: IP – INTEGER Input

On entry: the number of AR (or MA) parameter matrices, p (or q).

Constraint: IP � 1.

3: PARðIP� K � KÞ – REAL (KIND=nag_wp) array Input

On entry: the AR (or MA) parameter matrices read in row by row in the order 
1; 
2; . . . ; 
p (or
�1; �2; . . . ; �q). That is, PARð l � 1ð Þ � k� kþ i� 1ð Þ � kþ jÞ must be set equal to the i; jð Þth
element of 
l, for l ¼ 1; 2; . . . ; p (or the i; jð Þth element of �l , for l ¼ 1; 2; . . . ; q).

4: RRðK� IPÞ – REAL (KIND=nag_wp) array Output

On exit: the real parts of the eigenvalues.

5: RIðK � IPÞ – REAL (KIND=nag_wp) array Output

On exit: the imaginary parts of the eigenvalues.

6: RMODðK � IPÞ – REAL (KIND=nag_wp) array Output

On exit: the moduli of the eigenvalues.

7: WORKðK � K� IP� IPÞ – REAL (KIND=nag_wp) array Workspace
8: IWORKðK � IPÞ – INTEGER array Workspace

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 1,
or IP < 1.
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IFAIL ¼ 2

An excessive number of iterations are needed to evaluate the eigenvalues of A 
ð Þ (or B �ð Þ). This
is an unlikely exit. All output arguments are undefined.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the results depends on the original matrix and the multiplicity of the roots.

8 Parallelism and Performance

G13DXF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13DXF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to kp3 (or kq3).

10 Example

This example finds the eigenvalues of A 
ð Þ where k ¼ 2 and p ¼ 1 and 
1 ¼ 0:802 0:065
0:000 0:575

� �
.

10.1 Program Text

Program g13dxfe

! G13DXF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13dxf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Integer :: i, ifail, ip, k, kip, npar
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: par(:), ri(:), rmod(:), rr(:), &
work(:)

Integer, Allocatable :: iwork(:)
! .. Executable Statements ..

Write (nout,*) ’G13DXF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) k, ip

kip = k*ip
npar = k*kip
Allocate (par(npar),rr(kip),ri(kip),rmod(kip),work(ip*npar),iwork(kip))

! Read the AR (or MA) parameters
Read (nin,*) par(1:npar)

! Calculate zeros
ifail = 0
Call g13dxf(k,ip,par,rr,ri,rmod,work,iwork,ifail)

! Display results
Write (nout,*) ’ Eigenvalues Moduli’
Write (nout,*) ’ ----------- ------’
Do i = 1, k*ip

If (ri(i)>=0.0E0_nag_wp) Then
Write (nout,99999) rr(i), ri(i), rmod(i)

Else
Write (nout,99998) rr(i), -ri(i), rmod(i)

End If
End Do

99999 Format (’ ’,F10.3,’ + ’,F6.3,’ i ’,F8.3)
99998 Format (’ ’,F10.3,’ - ’,F6.3,’ i ’,F8.3)

End Program g13dxfe

10.2 Program Data

G13DXF Example Program Data
2 1 :: K,IP
0.802 0.065 0.000 0.575 :: PAR

10.3 Program Results

G13DXF Example Program Results

Eigenvalues Moduli
----------- ------

0.802 + 0.000 i 0.802
0.575 + 0.000 i 0.575
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NAG Library Routine Document

G13EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13EAF performs a combined measurement and time update of one iteration of the time-varying
Kalman filter using a square root covariance filter.

2 Specification

SUBROUTINE G13EAF (N, M, L, A, LDS, B, STQ, Q, LDQ, C, LDM, R, S, K, H,
TOL, IWK, WK, IFAIL)

&

INTEGER N, M, L, LDS, LDQ, LDM, IWK(M), IFAIL
REAL (KIND=nag_wp) A(LDS,N), B(LDS,L), Q(LDQ,*), C(LDM,N), R(LDM,M),

S(LDS,N), K(LDS,M), H(LDM,M), TOL,
WK((N+M)*(N+M+L))

&
&

LOGICAL STQ

3 Description

The Kalman filter arises from the state space model given by:

Xiþ1 ¼ AiXi þBiWi; Var Wið Þ ¼ Qi

Yi ¼ CiXi þ Vi; Var Við Þ ¼ Ri

where Xi is the state vector of length n at time i, Yi is the observation vector of length m at time i, and
Wi of length l and Vi of length m are the independent state noise and measurement noise respectively.

The estimate of Xi given observations Y1 to Yi�1 is denoted by X̂iji�1 with state covariance matrix

Var X̂iji�1
� �

¼ Piji�1 ¼ SiST
i , while the estimate of Xi given observations Y1 to Yi is denoted by X̂iji

with covariance matrix Var X̂iji
� �

¼ Piji. The update of the estimate, X̂iji�1, from time i to time iþ 1ð Þ,
is computed in two stages. First, the measurement-update is given by

X̂iji ¼ X̂iji�1 þKi Yi � CiX̂iji�1
� �

ð1Þ

and

Piji ¼ I �KiCi½ �Piji�1 ð2Þ

where Ki ¼ Piji�1CT
i CiPiji�1C

T
i þRi

� ��1
is the Kalman gain matrix. The second stage is the time-

update for X which is given by

X̂iþ1ji ¼ AiX̂iji þDiUi ð3Þ

and

Piþ1ji ¼ AiPijiA
T
i þBiQiB

T
i ð4Þ

where DiUi represents any deterministic control used.

The square root covariance filter algorithm provides a stable method for computing the Kalman gain
matrix and the state covariance matrix. The algorithm can be summarised as
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R
1=2
i CiSi 0

0 AiSi BiQ
1=2
i

0@ 1AU ¼ H
1=2
i 0 0

Gi Siþ1 0

0@ 1A ð5Þ

where U is an orthogonal transformation triangularizing the left-hand pre-array to produce the right-
hand post-array. The relationship between the Kalman gain matrix, Ki, and Gi is given by

AiKi ¼ Gi H
1=2
i

� ��1
:

G13EAF requires the input of the lower triangular Cholesky factors of the noise covariance matrices

R
1=2
i and, optionally, Q1=2

i and the lower triangular Cholesky factor of the current state covariance
matrix, Si, and returns the product of the matrices Ai and Ki, AiKi, the Cholesky factor of the updated

state covariance matrix Siþ1 and the matrix H
1=2
i used in the computation of the likelihood for the

model.

4 References

Vanbegin M, van Dooren P and Verhaegen M H G (1989) Algorithm 675: FORTRAN subroutines for
computing the square root covariance filter and square root information filter in dense or Hessenberg
forms ACM Trans. Math. Software 15 243–256

Verhaegen M H G and van Dooren P (1986) Numerical aspects of different Kalman filter
implementations IEEE Trans. Auto. Contr. AC-31 907–917

5 Arguments

1: N – INTEGER Input

On entry: n, the size of the state vector.

Constraint: N � 1.

2: M – INTEGER Input

On entry: m, the size of the observation vector.

Constraint: M � 1.

3: L – INTEGER Input

On entry: l, the dimension of the state noise.

Constraint: L � 1.

4: AðLDS;NÞ – REAL (KIND=nag_wp) array Input

On entry: the state transition matrix, Ai.

5: LDS – INTEGER Input

On entry: the first dimension of the arrays A, B, S and K as declared in the (sub)program from
which G13EAF is called.

Constraint: LDS � N.

6: BðLDS;LÞ – REAL (KIND=nag_wp) array Input

On entry: the noise coefficient matrix Bi.
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7: STQ – LOGICAL Input

On entry: if STQ ¼ :TRUE:, the state noise covariance matrix Qi is assumed to be the identity

matrix. Otherwise the lower triangular Cholesky factor, Q1=2
i , must be provided in Q.

8: QðLDQ; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array Q must be at least L if STQ ¼ :FALSE: and at least 1 if
STQ ¼ :TRUE:.
On entry: if STQ ¼ :FALSE:, Q must contain the lower triangular Cholesky factor of the state

noise covariance matrix, Q1=2
i . Otherwise Q is not referenced.

9: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which G13EAF
is called.

Constraints:

if STQ ¼ :FALSE:, LDQ � L;
otherwise LDQ � 1.

10: CðLDM;NÞ – REAL (KIND=nag_wp) array Input

On entry: the measurement coefficient matrix, Ci.

11: LDM – INTEGER Input

On entry: the first dimension of the arrays C, R and H as declared in the (sub)program from
which G13EAF is called.

Constraint: LDM � M.

12: RðLDM;MÞ – REAL (KIND=nag_wp) array Input

On entry: the lower triangular Cholesky factor of the measurement noise covariance matrix R1=2
i .

13: SðLDS;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the lower triangular Cholesky factor of the state covariance matrix, Si.

On exit: the lower triangular Cholesky factor of the state covariance matrix, Siþ1.

14: KðLDS;MÞ – REAL (KIND=nag_wp) array Output

On exit: the Kalman gain matrix, Ki, premultiplied by the state transition matrix, Ai, AiKi.

15: HðLDM;MÞ – REAL (KIND=nag_wp) array Output

On exit: the lower triangular matrix H1=2
i .

16: TOL – REAL (KIND=nag_wp) Input

On en t r y : t h e t o l e r a n c e u s e d t o t e s t f o r t h e s i n g u l a r i t y o f H
1=2
i . I f

0:0 � TOL < m2 �machine precision, then m2 �machine precision is used instead. The
inverse of the condition number of H1=2 is estimated by a call to F07TGF (DTRCON). If this
estimate is less than TOL then H1=2 is assumed to be singular.

Suggested value: TOL ¼ 0:0.

Constraint: TOL � 0:0.
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17: IWKðMÞ – INTEGER array Workspace
18: WKð NþMð Þ � NþMþ Lð ÞÞ – REAL (KIND=nag_wp) array Workspace

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or M < 1,
or L < 1,
or LDS < N,
or LDM < M,
or STQ ¼ :TRUE: and LDQ < 1,
or STQ ¼ :FALSE: and LDQ < L,
or TOL < 0:0.

IFAIL ¼ 2

The matrix H1=2
i is singular.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The use of the square root algorithm improves the stability of the computations as compared with the
direct coding of the Kalman filter. The accuracy will depend on the model.
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8 Parallelism and Performance

G13EAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13EAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For models with time-invariant A;B and C, G13EBF can be used.

The estimate of the state vector X̂iþ1ji can be computed from X̂iji�1 by

X̂iþ1ji ¼ AiX̂iji�1 þAKiri

where

ri ¼ Yi � CiX̂iji�1

are the independent one step prediction residuals. The required matrix-vector multiplications can be
performed by F06PAF (DGEMV).

If Wi and Vi are independent multivariate Normal variates then the log-likelihood for observations
i ¼ 1; 2; . . . ; t is given by

l �ð Þ ¼ �� 1
2

Xt
i¼1
ln det Hið Þð Þ � 1

2

Xt
i¼1

Yi � CiXiji�1
� �T

H�1i Yi � CiXiji�1
� �

where � is a constant.

The Cholesky factors of the covariance matrices can be computed using F07FDF (DPOTRF).

Note that the model

Xiþ1 ¼ AiXi þWi; Var Wið Þ ¼ Qi

Yi ¼ CiXi þ Vi; Var Við Þ ¼ Ri

can be specified either with B set to the identity matrix and STQ ¼ :FALSE: and the matrix Q1=2 input
in Q or with STQ ¼ :TRUE: and B set to Q1=2.

The algorithm requires 7
6n

3 þ n2 5
2mþ l
� �

þ n 1
2l
2 þm2

� �
operations and is backward stable (see

Verhaegen and van Dooren (1986)).

10 Example

This example first inputs the number of updates to be computed and the problem sizes. The initial state
vector and state covariance matrix are input followed by the model matrices Ai;Bi; Ci; Ri and
optionally Qi. The Cholesky factors of the covariance matrices can be computed if required. The model
matrices can be input at each update or only once at the first step. At each update the observed values
are input and the residuals are computed and printed and the estimate of the state vector, X̂iji�1, and the
deviance are updated. The deviance is �2� log-likelihood ignoring the constant. After the final update
the state covariance matrix is computed from S and printed along with final estimate of the state vector
and the value of the deviance.

The data is for a two-dimensional time series to which a VARMA 1; 1ð Þ has been fitted. For the
specification of a VARMA model as a state space model see the G13 Chapter Introduction. The initial
value of P , P0, is the solution to
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P0 ¼ A1P0A
T
1 þB1Q1B

T
1 :

For convenience, the mean of each series is input before the first update and subtracted from the
observations before the measurement update is computed.

10.1 Program Text

Program g13eafe

! G13EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: daxpy, ddot, dgemv, dpotrf, dtrmv, dtrsv, g13eaf, &

nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: inc1 = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dev, tol
Integer :: i, ifail, info, istep, l, ldm, ldq, &

lds, lwk, m, n, ncall, tdq
Logical :: full, is_const, read_matrix, stq

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ax(:), b(:,:), c(:,:), &

h(:,:), k(:,:), p(:,:), q(:,:), &
r(:,:), s(:,:), wk(:), x(:), y(:), &
ymean(:)

Integer, Allocatable :: iwk(:)
! .. Intrinsic Procedures ..

Intrinsic :: log
! .. Executable Statements ..

Write (nout,*) ’G13EAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, l, stq, is_const

lds = n
If (.Not. stq) Then

ldq = l
tdq = l

Else
ldq = 1
tdq = 1

End If
ldm = m
lwk = (n+m)*(n+m+l)
Allocate (a(lds,n),b(lds,l),q(ldq,tdq),c(ldm,n),r(ldm,m),s(lds,n), &

k(lds,m),h(ldm,m),iwk(m),wk(lwk),x(n),ymean(m),y(m),ax(n),p(lds,n))

! Read in the state covariance matrix, S
Read (nin,*)(s(i,1:n),i=1,n)

! Read in flag indicating whether S is the full matrix, or its
! Cholesky decomposition

Read (nin,*) full

! If required (full), perform the Cholesky decomposition on S
If (full) Then

! The NAG name equivalent of dpotrf is f07fdf
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Call dpotrf(’L’,n,s,lds,info)
If (info>0) Then

Write (nout,*) ’ S not positive definite’
Go To 100

End If
End If

! Read in initial state vector
Read (nin,*) x(1:n)

! Read in mean of the series
Read (nin,*) ymean(1:m)

! Read in control parameter
Read (nin,*) ncall, tol

! Display titles
Write (nout,*) ’ Residuals’
Write (nout,*)

! Initialize variables
dev = zero
read_matrix = .True.

! Loop through data
Do istep = 1, ncall

! Read in the various matrices. If the series is constant
! then this only happens at the first call

If (read_matrix) Then

! Read in transition matrix, A
Read (nin,*)(a(i,1:n),i=1,n)

! Read in noise coefficient matrix, B
Read (nin,*)(b(i,1:l),i=1,n)

! Read in measurement coefficient matrix, C
Read (nin,*)(c(i,1:n),i=1,m)

! Read in measurement noise covariance matrix, R
Read (nin,*)(r(i,1:m),i=1,m)

! Read in flag indicating whether R is the full matrix, or its
! Cholesky decomposition

Read (nin,*) full
! If required (full), perform the Cholesky decomposition on R

If (full) Then
! The NAG name equivalent of dpotrf is f07fdf

Call dpotrf(’L’,m,r,ldm,info)
If (info>0) Then

Write (nout,*) ’ R not positive definite’
Go To 100

End If
End If

! Read in state noise matrix Q, if not assume to be identity matrix
If (.Not. stq) Then

Read (nin,*)(q(i,1:l),i=1,l)
! Read in flag indicating whether Q is the full matrix, or its
! Cholesky decomposition

Read (nin,*) full
! Perform Cholesky factorization on Q, if full matrix is supplied

If (full) Then
! The NAG name equivalent of dpotrf is f07fdf

Call dpotrf(’L’,l,q,ldq,info)
If (info>0) Then

Write (nout,*) ’ Q not positive definite’
Go To 100

End If
End If

End If

! If series is constant set flag to false
read_matrix = .Not. is_const
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End If

! Read in observed values
Read (nin,*) y(1:m)

! Call G13EAF
ifail = 0
Call g13eaf(n,m,l,a,lds,b,stq,q,ldq,c,ldm,r,s,k,h,tol,iwk,wk,ifail)

! Subtract the mean y:= y-ymean
! The NAG name equivalent of daxpy is f06ecf

Call daxpy(m,-one,ymean,inc1,y,inc1)

! Perform time and measurement update x <= Ax + K(y-Cx)
! The NAG name equivalent of dgemv is f06paf

Call dgemv(’N’,m,n,-one,c,ldm,x,inc1,one,y,1)
Call dgemv(’N’,n,n,one,a,lds,x,inc1,zero,ax,1)
Call dgemv(’N’,n,m,one,k,lds,y,inc1,one,ax,1)
x(1:n) = ax(1:n)

! Display the residuals
Write (nout,99999) y(1:m)

! Update log-likelihood.
! The NAG name equivalent of dtrsv is f06pjf

Call dtrsv(’L’,’N’,’N’,m,h,ldm,y,1)
! The NAG name equivalent of ddot is f06eaf

dev = dev + ddot(m,y,1,y,1)
Do i = 1, m

dev = dev + 2.0_nag_wp*log(h(i,i))
End Do

End Do

! Compute P from S
! The NAG name equivalent of dtrmv is f06pff

Do i = 1, n
p(1:i,i) = s(i,1:i)
Call dtrmv(’L’,’N’,’N’,i,s,lds,p(1,i),inc1)
p(i,1:i-1) = p(1:i-1,i)

End Do

! Display final results
Write (nout,*)
Write (nout,*) ’ Final X(I+1:I) ’
Write (nout,*)
Write (nout,99999) x(1:n)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’Lower’,’Non-Diag’,n,n,p,lds,’Final Value of P’,ifail)
Write (nout,*)
Write (nout,99998) ’ Deviance = ’, dev

100 Continue

99999 Format (6F12.4)
99998 Format (A,E13.4)

End Program g13eafe

10.2 Program Data

G13EAF Example Program Data
4 2 2 F T :: N,M,L,STQ,IS_CONST
8.2068 2.0599 1.4807 0.3627
2.0599 7.9645 0.9703 0.2136
1.4807 0.9703 0.9253 0.2236
0.3627 0.2136 0.2236 0.0542 :: End of S
T :: FULL flag for S
0.000 0.000 0.000 0.000 :: X
4.404 7.991 :: YMEAN
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48 0.0 :: NCALL,TOL
0.607 -0.033 1.000 0.000
0.000 0.543 0.000 1.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 :: End of A
1.000 0.000
0.000 1.000
0.543 0.125
0.134 0.026 :: End of B
1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 :: End of C
0.000 0.000
0.000 0.000 :: End of R
F :: FULL flag for R
2.598 0.560
0.560 5.330 :: End of Q
T :: FULL flag for Q

-1.490 7.340
-1.620 6.350
5.200 6.960
6.230 8.540
6.210 6.620
5.860 4.970
4.090 4.550
3.180 4.810
2.620 4.750
1.490 4.760
1.170 10.880
0.850 10.010

-0.350 11.620
0.240 10.360
2.440 6.400
2.580 6.240
2.040 7.930
0.400 4.040
2.260 3.730
3.340 5.600
5.090 5.350
5.000 6.810
4.780 8.270
4.110 7.680
3.450 6.650
1.650 6.080
1.290 10.250
4.090 9.140
6.320 17.750
7.500 13.300
3.890 9.630
1.580 6.800
5.210 4.080
5.250 5.060
4.930 4.940
7.380 6.650
5.870 7.940
5.810 10.760
9.680 11.890
9.070 5.850
7.290 9.010
7.840 7.500
7.550 10.020
7.320 10.380
7.970 8.150
7.760 8.370
7.000 10.730
8.350 12.140 : End of Y
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10.3 Program Results

G13EAF Example Program Results

Residuals

-5.8940 -0.6510
-1.4710 -1.0407
5.1658 0.0447

-1.3280 0.4580
1.3652 -1.5066

-0.2337 -2.4192
-0.8685 -1.7065
-0.4624 -1.1519
-0.7510 -1.4218
-1.3526 -1.3335
-0.6707 4.8593
-1.7389 0.4138
-1.6376 2.7549
-0.6137 0.5463
0.9067 -2.8093

-0.8255 -0.9355
-0.7494 1.0247
-2.2922 -3.8441
1.8812 -1.7085

-0.7112 -0.2849
1.6747 -1.2400

-0.6619 0.0609
0.3271 1.0074

-0.8165 -0.5325
-0.2759 -1.0489
-1.9383 -1.1186
-0.3131 3.5855
1.3726 -0.1289
1.4153 8.9545
0.3672 -0.4126

-2.3659 -1.2823
-1.0130 -1.7306
3.2472 -3.0836

-1.1501 -1.1623
0.6855 -1.2751
2.3432 0.2570

-1.6892 0.3565
1.3871 3.0138
3.3840 2.1312

-0.5118 -4.7670
0.8569 2.3741
0.9558 -1.2209
0.6778 2.1993
0.4304 1.1393
1.4987 -1.2255
0.5361 0.1237
0.2649 2.4582
2.0095 2.5623

Final X(I+1:I)

3.6698 2.5888 0.0000 0.0000

Final Value of P
1 2 3 4

1 2.5980
2 0.5600 5.3300
3 1.4807 0.9703 0.9253
4 0.3627 0.2136 0.2236 0.0542

Deviance = 0.2229E+03
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NAG Library Routine Document

G13EBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13EBF performs a combined measurement and time update of one iteration of the time-invariant
Kalman filter using a square root covariance filter.

2 Specification

SUBROUTINE G13EBF (TRANSF, N, M, L, A, LDS, B, STQ, Q, LDQ, C, LDM, R, S,
K, H, U, TOL, IWK, WK, IFAIL)

&

INTEGER N, M, L, LDS, LDQ, LDM, IWK(M), IFAIL
REAL (KIND=nag_wp) A(LDS,N), B(LDS,L), Q(LDQ,*), C(LDM,N), R(LDM,M),

S(LDS,N), K(LDS,M), H(LDM,M), U(LDS,*), TOL,
WK((N+M)*(N+M+L))

&
&

LOGICAL STQ
CHARACTER(1) TRANSF

3 Description

The Kalman filter arises from the state space model given by

Xiþ1 ¼ AXi þBWi; Var Wið Þ ¼ Qi

Yi ¼ CXi þ Vi; Var Við Þ ¼ Ri

where Xi is the state vector of length n at time i, Yi is the observation vector of length m at time i and
Wi of length l and Vi of length m are the independent state noise and measurement noise respectively.
The matrices A;B and C are time invariant.

The estimate of Xi given observations Y1 to Yi�1 is denoted by X̂iji�1 with state covariance matrix

Var X̂iji�1
� �

¼ Piji�1 ¼ SiST
i while the estimate of Xi given observations Y1 to Yi is denoted by X̂iji

with covariance matrix Var X̂iji
� �

¼ Piji. The update of the estimate, X̂iji�1, from time i to time iþ 1ð Þ
is computed in two stages. First, the measurement-update is given by

X̂iji ¼ X̂iji�1 þKi Yi � CX̂iji�1
� �

ð1Þ

where Ki ¼ PijiCT CPijiC
T þRi

� ��1
is the Kalman gain matrix. The second stage is the time-update for

X, which is given by

X̂iþ1ji ¼ AX̂iji þDiUi ð2Þ

where DiUi represents any deterministic control used.

The square root covariance filter algorithm provides a stable method for computing the Kalman gain
matrix and the state covariance matrix. The algorithm can be summarised as

R
1=2
i 0 CSi

0 BQ
1=2
i ASi

0@ 1AU ¼ H
1=2
i 0 0

Gi Siþ1 0

0@ 1A
where U is an orthogonal transformation triangularizing the left-hand pre-array to produce the right-
hand post-array. The triangularization is carried out via Householder transformations exploiting the zero
pattern of the pre-array. The relationship between the Kalman gain matrix Ki and Gi is given by
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AKi ¼ Gi H
1=2
i

� ��1
:

In order to exploit the invariant parts of the model to simplify the computation of U the results for the
transformed state space U�X are computed where U� is the transformation that reduces the matrix pair
A;Cð Þ to lower observer Hessenberg form. That is, the matrix U� is computed such that the compound
matrix

CU�T

U�AU�T

� �
is a lower trapezoidal matrix. Further the matrix B is transformed to U�B. These transformations need
only be computed once at the start of a series, and G13EBF will, optionally, compute them. G13EBF
returns transformed matrices U�AU�T , U�B, CU�T and U�AKi, the Cholesky factor of the updated

transformed state covariance matrix S�iþ1 (where U
�Piþ1jiU

�T ¼ S�iþ1S�Tiþ1) and the matrix H1=2
i , valid for

both transformed and original models, which is used in the computation of the likelihood for the model.
Note that the covariance matrices Qi and Ri can be time-varying.

4 References

Vanbegin M, van Dooren P and Verhaegen M H G (1989) Algorithm 675: FORTRAN subroutines for
computing the square root covariance filter and square root information filter in dense or Hessenberg
forms ACM Trans. Math. Software 15 243–256

Verhaegen M H G and van Dooren P (1986) Numerical aspects of different Kalman filter
implementations IEEE Trans. Auto. Contr. AC-31 907–917

5 Arguments

1: TRANSF – CHARACTER(1) Input

On entry: indicates whether to transform the input matrix pair A;Cð Þ to lower observer
Hessenberg form. The transformation will only be required on the first call to G13EBF.

TRANSF ¼ T
The matrices in arrays A and C are transformed to lower observer Hessenberg form and
the matrices in B and S are transformed as described in Section 3.

TRANSF ¼ H
The matrices in arrays A, C and B should be as returned from a previous call to G13EBF
with TRANSF ¼ T .

Constraint: TRANSF ¼ T or H .

2: N – INTEGER Input

On entry: n, the size of the state vector.

Constraint: N � 1.

3: M – INTEGER Input

On entry: m, the size of the observation vector.

Constraint: M � 1.

4: L – INTEGER Input

On entry: l, the dimension of the state noise.

Constraint: L � 1.

G13EBF NAG Library Manual

G13EBF.2 Mark 26



5: AðLDS;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if TRANSF ¼ T , the state transition matrix, A.

If TRANSF ¼ H , the transformed matrix as returned by a previous call to G13EBF with
TRANSF ¼ T .

On exit: if TRANSF ¼ T , the transformed matrix, U�AU�T , otherwise A is unchanged.

6: LDS – INTEGER Input

On entry: the first dimension of the arrays A, B, S, K and U as declared in the (sub)program from
which G13EBF is called.

Constraint: LDS � N.

7: BðLDS;LÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if TRANSF ¼ T , the noise coefficient matrix B.

If TRANSF ¼ H , the transformed matrix as returned by a previous call to G13EBF with
TRANSF ¼ T .

On exit: if TRANSF ¼ T , the transformed matrix, U�B, otherwise B is unchanged.

8: STQ – LOGICAL Input

On entry: if STQ ¼ :TRUE:, the state noise covariance matrix Qi is assumed to be the identity

matrix. Otherwise the lower triangular Cholesky factor, Q1=2
i , must be provided in Q.

9: QðLDQ; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array Q must be at least L if STQ ¼ :FALSE: and at least 1 if
STQ ¼ :TRUE:.
On entry: if STQ ¼ :FALSE:, Q must contain the lower triangular Cholesky factor of the state

noise covariance matrix, Q1=2
i . Otherwise Q is not referenced.

10: LDQ – INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which G13EBF
is called.

Constraints:

if STQ ¼ :FALSE:, LDQ � L;
otherwise LDQ � 1.

11: CðLDM;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if TRANSF ¼ T , the measurement coefficient matrix, C.

If TRANSF ¼ H , the transformed matrix as returned by a previous call to G13EBF with
TRANSF ¼ T .

On exit: if TRANSF ¼ T , the transformed matrix, CU�T , otherwise C is unchanged.

12: LDM – INTEGER Input

On entry: the first dimension of the arrays C, R and H as declared in the (sub)program from
which G13EBF is called.

Constraint: LDM � M.

13: RðLDM;MÞ – REAL (KIND=nag_wp) array Input

On entry: the lower triangular Cholesky factor of the measurement noise covariance matrix R1=2
i .
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14: SðLDS;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if TRANSF ¼ T the lower triangular Cholesky factor of the state covariance matrix,
Si.

If TRANSF ¼ H the lower triangular Cholesky factor of the covariance matrix of the
transformed state vector S�i as returned from a previous call to G13EBF with TRANSF ¼ T .

On exit: the lower triangular Cholesky factor of the transformed state covariance matrix, S�iþ1.

15: KðLDS;MÞ – REAL (KIND=nag_wp) array Output

On exit: the Kalman gain matrix for the transformed state vector premultiplied by the state
transformed transition matrix, U�AKi.

16: HðLDM;MÞ – REAL (KIND=nag_wp) array Output

On exit: the lower triangular matrix H1=2
i .

17: UðLDS; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least N if TRANSF ¼ T , and at least 1
otherwise.

On exit: if TRANSF ¼ T the n by n transformation matrix U�, otherwise U is not referenced.

18: TOL – REAL (KIND=nag_wp) Input

On en t r y : t h e t o l e r a n c e u s e d t o t e s t f o r t h e s i n g u l a r i t y o f H
1=2
i . I f

0:0 � TOL < m2 �machine precision, then m2 �machine precision is used instead. The
inverse of the condition number of H1=2 is estimated by a call to F07TGF (DTRCON). If this
estimate is less than TOL then H1=2 is assumed to be singular.

Suggested value: TOL ¼ 0:0.

Constraint: TOL � 0:0.

19: IWKðMÞ – INTEGER array Workspace
20: WKð NþMð Þ � NþMþ Lð ÞÞ – REAL (KIND=nag_wp) array Workspace

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TRANSF 6¼ T or H ,
or N < 1,
or M < 1,
or L < 1,
or LDS < N,
or LDM < M,
or STQ ¼ :TRUE: and LDQ < 1,
or STQ ¼ :FALSE: and LDQ < L,
or TOL < 0:0.

IFAIL ¼ 2

The matrix H1=2
i is singular.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The use of the square root algorithm improves the stability of the computations as compared with the
direct coding of the Kalman filter. The accuracy will depend on the model.

8 Parallelism and Performance

G13EBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13EBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For models with time-varying A;B and C, G13EAF can be used.
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The initial estimate of the transformed state vector can be computed from the estimate of the original
state vector X̂1j0, say, by premultiplying it by U� as returned by G13EBF with TRANSF ¼ T ; that is,

X̂�1j0 ¼ U�X̂1j0. The estimate of the transformed state vector X̂�iþ1ji can be computed from the previous

value X̂�iji�1 by

X̂�iþ1ji ¼ U�AU�T
� �

X̂�iji�1 þ U�AKið Þri

where

ri ¼ Yi � CU�T
� �

X̂�iji�1

are the independent one-step prediction residuals for both the transformed and original model. The
estimate of the original state vector can be computed from the transformed state vector as U�T X̂�1þ1ji.

The required matrix-vector multiplications can be performed by F06PAF (DGEMV).

If Wi and Vi are independent multivariate Normal variates then the log-likelihood for observations
i ¼ 1; 2; . . . ; t is given by

l �ð Þ ¼ �� 1
2

Xt
i¼1
ln det Hið Þð Þ � 1

2

Xt
i¼1

Yi � CiXiji�1
� �T

H�1i Yi � CiXiji�1
� �

where � is a constant.

The Cholesky factors of the covariance matrices can be computed using F07FDF (DPOTRF).

Note that the model

Xiþ1 ¼ AXi þWi; Var Wið Þ ¼ Qi

Yi ¼ CXi þ Vi; Var Við Þ ¼ Ri

can be specified either with B set to the identity matrix and STQ ¼ :FALSE: and the matrix Q1=2 input
in Q or with STQ ¼ :TRUE: and B set to Q1=2.

The algorithm requires 1
6n

3 þ n2 3
2mþ l
� �

þ 2nm2 þ 2
3p

3 operations and is backward stable (see
Verhaegen and van Dooren (1986)). The transformation to lower observer Hessenberg form requires
O nþmð Þn2
� �

operations.

10 Example

This example first inputs the number of updates to be computed and the problem sizes. The initial state
vector and the Cholesky factor of the state covariance matrix are input followed by the model matrices
A;B;C;R1=2 and optionally Q1=2 (the Cholesky factors of the covariance matrices being input). At the
first update the matrices are transformed using the TRANSF ¼ T option and the initial value of the
state vector is transformed. At each update the observed values are input and the residuals are computed
and printed and the estimate of the transformed state vector, Û�Xiji�1, and the deviance are updated.
The deviance is �2� log-likelihood ignoring the constant. After the final update the estimate of the
state vector is computed from the transformed state vector and the state covariance matrix is computed
from S and these are printed along with the value of the deviance.

The data is for a two-dimensional time series to which a VARMA 1; 1ð Þ has been fitted. For the
specification of a VARMA model as a state space model see the G13 Chapter Introduction. The means
of the two series are included as additional states that do not change over time. The initial value of P ,
P0, is the solution to

P0 ¼ AP0A
T þBQBT:
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10.1 Program Text

Program g13ebfe

! G13EBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: ddot, dgemv, dpotrf, dsyrk, dtrsv, g13ebf, &

nag_wp, x04caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: inc1 = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dev, tol
Integer :: i, ifail, info, istep, l, ldm, ldq, &

lds, lwk, m, n, ncall, tdq
Logical :: full, stq

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ax(:), b(:,:), c(:,:), &

h(:,:), k(:,:), p(:,:), q(:,:), &
r(:,:), s(:,:), u(:,:), us(:,:), &
wk(:), x(:), y(:)

Integer, Allocatable :: iwk(:)
! .. Intrinsic Procedures ..

Intrinsic :: log
! .. Executable Statements ..

Write (nout,*) ’G13EBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem size
Read (nin,*) n, m, l, stq

lds = n
If (.Not. stq) Then

ldq = l
tdq = l

Else
ldq = 1
tdq = 1

End If
ldm = m
lwk = (n+m)*(n+m+l)
Allocate (a(lds,n),b(lds,l),q(ldq,tdq),c(ldm,n),r(ldm,m),s(lds,n), &

k(lds,m),h(ldm,m),u(lds,n),iwk(m),wk(lwk),ax(n),y(m),x(n),p(lds,n), &
us(lds,n))

! Read in the state covariance matrix, S
Read (nin,*)(s(i,1:n),i=1,n)

! Read in flag indicating whether S is the full matrix, or its
! Cholesky decomposition.

Read (nin,*) full
! If required, perform Cholesky decomposition on S

If (full) Then
! The NAG name equivalent of dpotrf is f07fdf

Call dpotrf(’L’,n,s,lds,info)
If (info>0) Then

Write (nout,*) ’ S not positive definite’
Go To 100

End If
End If

! Read in initial state vector
Read (nin,*) ax(1:n)
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! Read in transition matrix, A
Read (nin,*)(a(i,1:n),i=1,n)

! Read in noise coefficient matrix, B
Read (nin,*)(b(i,1:l),i=1,n)

! Read in measurement coefficient matrix, C
Read (nin,*)(c(i,1:n),i=1,m)

! Read in measurement noise covariance matrix, R
Read (nin,*)(r(i,1:m),i=1,m)

! Read in flag indicating whether R is the full matrix, or its Cholesky
! decomposition

Read (nin,*) full
! If required, perform Cholesky decomposition on R

If (full) Then
! The NAG name equivalent of dpotrf is f07fdf

Call dpotrf(’L’,m,r,ldm,info)
If (info>0) Then

Write (nout,*) ’ R not positive definite’
Go To 100

End If
End If

! Read in state noise matrix Q, if not assume to be identity matrix
If (.Not. stq) Then

Read (nin,*)(q(i,1:l),i=1,l)
! Read in flag indicating whether Q is the full matrix, or
! its Cholesky decomposition

Read (nin,*) full
! Perform Cholesky factorization on Q, if full matrix is supplied

If (full) Then
! The NAG name equivalent of dpotrf is f07fdf

Call dpotrf(’L’,l,q,ldq,info)
If (info>0) Then

Write (nout,*) ’ Q not positive definite’
Go To 100

End If
End If

End If

! Read in control parameters
Read (nin,*) ncall, tol

! Display titles
Write (nout,*) ’ Residuals’
Write (nout,*)

! Loop through data
dev = 0.0E0_nag_wp
Do istep = 1, ncall

! Read in observed values
Read (nin,*) y(1:m)

If (istep==1) Then
! Make first call to G13EBF

ifail = 0
Call g13ebf(’T’,n,m,l,a,lds,b,stq,q,ldq,c,ldm,r,s,k,h,u,tol,iwk,wk, &

ifail)

! The NAG name equivalent of dgemv is f06paf
Call dgemv(’N’,n,n,one,u,lds,ax,inc1,zero,x,inc1)

Else
! Make remaining calls to G13EBF

ifail = 0
Call g13ebf(’H’,n,m,l,a,lds,b,stq,q,ldq,c,ldm,r,s,k,h,u,tol,iwk,wk, &

ifail)
End If

! Perform time and measurement update x <= Ax + K(y-Cx)
! The NAG name equivalent of dgemv is f06paf
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Call dgemv(’N’,m,n,-one,c,ldm,x,inc1,one,y,inc1)
Call dgemv(’N’,n,n,one,a,lds,x,inc1,zero,ax,inc1)
Call dgemv(’N’,n,m,one,k,lds,y,inc1,one,ax,inc1)
x(1:n) = ax(1:n)

! Display the residuals
Write (nout,99999) y(1:m)

! Update log-likelihood
! The NAG name equivalent of dtrsv is f06pjf

Call dtrsv(’L’,’N’,’N’,m,h,ldm,y,inc1)
! The NAG name equivalent of ddot is f06eaf

dev = dev + ddot(m,y,1,y,1)
Do i = 1, m

dev = dev + 2.0_nag_wp*log(h(i,i))
End Do

End Do

! Calculate back-transformed x <- U^T x
! The NAG name equivalent of dgemv is f06paf

Call dgemv(’T’,n,n,one,u,lds,ax,inc1,zero,x,inc1)

! Compute back-transformed P from S
Do i = 1, n

Call dgemv(’T’,n-i+1,n,one,u(i,1),lds,s(i,i),inc1,zero,us(1,i),inc1)
End Do

! The NAG name equivalent of dsyrk is f06ypf
Call dsyrk(’L’,’N’,n,n,one,us,lds,zero,p,lds)

! Display final results
Write (nout,*)
Write (nout,*) ’ Final X(I+1:I) ’
Write (nout,99999) x(1:n)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’Lower’,’N’,n,n,p,lds,’Final Value of P’,ifail)
Write (nout,99998) ’ Deviance = ’, dev

100 Continue

99999 Format (6F12.4)
99998 Format (A,E13.4)

End Program g13ebfe

10.2 Program Data

G13EBF Example Program Data
6 2 2 F :: N,M,L,STQ
2.8648 0.0000 0.0000 0.0000 0.0000 0.0000
0.7191 2.7290 0.0000 0.0000 0.0000 0.0000
0.5169 0.2194 0.7810 0.0000 0.0000 0.0000
0.1266 0.0449 0.1899 0.0098 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 :: End of S
F :: FULL flag for S
0.000 0.000 0.000 0.000 4.404 7.991 :: AX
0.607 -0.033 1.000 0.000 0.000 0.000
0.000 0.543 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000 :: End of A
1.000 0.000
0.000 1.000
0.543 0.125
0.134 0.026
0.000 0.000
0.000 0.000 :: End of B
1.000 0.000 0.000 0.000 1.000 0.000
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0.000 1.000 0.000 0.000 0.000 1.000 :: End of C
0.000 0.000
0.000 0.000 :: End of R
F :: FULL flag for R
1.612 0.000
0.347 2.282 :: End of Q
F :: FULL flag for Q
48 0.0 :: NCALL,TOL

-1.490 7.340
-1.620 6.350
5.200 6.960
6.230 8.540
6.210 6.620
5.860 4.970
4.090 4.550
3.180 4.810
2.620 4.750
1.490 4.760
1.170 10.880
0.850 10.010

-0.350 11.620
0.240 10.360
2.440 6.400
2.580 6.240
2.040 7.930
0.400 4.040
2.260 3.730
3.340 5.600
5.090 5.350
5.000 6.810
4.780 8.270
4.110 7.680
3.450 6.650
1.650 6.080
1.290 10.250
4.090 9.140
6.320 17.750
7.500 13.300
3.890 9.630
1.580 6.800
5.210 4.080
5.250 5.060
4.930 4.940
7.380 6.650
5.870 7.940
5.810 10.760
9.680 11.890
9.070 5.850
7.290 9.010
7.840 7.500
7.550 10.020
7.320 10.380
7.970 8.150
7.760 8.370
7.000 10.730
8.350 12.140 :: End of Y

10.3 Program Results

G13EBF Example Program Results

Residuals

-5.8940 -0.6510
-1.4710 -1.0407
5.1658 0.0447

-1.3281 0.4580
1.3653 -1.5066

-0.2337 -2.4192
-0.8685 -1.7065
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-0.4624 -1.1519
-0.7510 -1.4218
-1.3526 -1.3335
-0.6707 4.8593
-1.7389 0.4138
-1.6376 2.7549
-0.6137 0.5463
0.9067 -2.8093

-0.8255 -0.9355
-0.7494 1.0247
-2.2922 -3.8441
1.8812 -1.7085

-0.7112 -0.2849
1.6747 -1.2400

-0.6619 0.0609
0.3271 1.0074

-0.8165 -0.5325
-0.2759 -1.0489
-1.9383 -1.1186
-0.3131 3.5855
1.3726 -0.1289
1.4153 8.9545
0.3672 -0.4126

-2.3659 -1.2823
-1.0130 -1.7306
3.2472 -3.0836

-1.1501 -1.1623
0.6855 -1.2751
2.3432 0.2570

-1.6892 0.3565
1.3871 3.0138
3.3840 2.1312

-0.5118 -4.7670
0.8569 2.3741
0.9558 -1.2209
0.6778 2.1993
0.4304 1.1393
1.4987 -1.2255
0.5361 0.1237
0.2649 2.4582
2.0095 2.5623

Final X(I+1:I)
3.6698 2.5888 0.0000 0.0000 4.4040 7.9910

Final Value of P
1 2 3 4 5

1 2.5985E+00
2 5.5936E-01 5.3279E+00
3 1.4809E+00 9.6973E-01 9.2536E-01
4 3.6275E-01 2.1348E-01 2.2366E-01 5.4159E-02
5 -4.0547E-16 -8.7283E-17 -2.3108E-16 -5.6603E-17 9.6581E-32
6 4.4742E-17 9.6312E-18 2.5499E-17 6.2458E-18 -9.3231E-33

6
1
2
3
4
5
6 1.3378E-32
Deviance = 0.2229E+03
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NAG Library Routine Document

G13EJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13EJF applies the Unscented Kalman Filter to a nonlinear state space model, with additive noise.

G13EJF uses reverse communication for evaluating the nonlinear functionals of the state space model.

2 Specification

SUBROUTINE G13EJF (IREVCM, MX, MY, Y, LX, LDLX, LY, LDLY, X, ST, LDST,
N, XT, LDXT, FXT, LDFXT, ROPT, LROPT, ICOMM, LICOMM,
RCOMM, LRCOMM, IFAIL)

&
&

INTEGER IREVCM, MX, MY, LDLX, LDLY, LDST, N, LDXT, LDFXT,
LROPT, ICOMM(LICOMM), LICOMM, LRCOMM, IFAIL

&

REAL (KIND=nag_wp) Y(MY), LX(LDLX,*), LY(LDLY,*), X(MX), ST(LDST,*),
XT(LDXT,*), FXT(LDFXT,*), ROPT(LROPT),
RCOMM(LRCOMM)

&
&

3 Description

G13EJF applies the Unscented Kalman Filter (UKF), as described in Julier and Uhlmann (1997b) to a
nonlinear state space model, with additive noise, which, at time t, can be described by:

xtþ1 ¼ F xtð Þ þ vt
yt ¼ H xtð Þ þ ut

where xt represents the unobserved state vector of length mx and yt the observed measurement vector
of length my. The process noise is denoted vt, which is assumed to have mean zero and covariance
structure �x, and the measurement noise by ut, which is assumed to have mean zero and covariance
structure �y.

3.1 Unscented Kalman Filter Algorithm

Given x̂0, an initial estimate of the state and P0 and initial estimate of the state covariance matrix, the
UKF can be described as follows:

(a) Generate a set of sigma points (see section Section 3.2):

X t ¼ x̂t�1 x̂t�1 þ �
ffiffiffiffiffiffiffiffiffi
Pt�1

p
x̂t�1 � �

ffiffiffiffiffiffiffiffiffi
Pt�1

ph i
ð1Þ

(b) Evaluate the known model function F :

F t ¼ F X tð Þ ð2Þ

The function F is assumed to accept the mx � n matrix, X t and return an mx � n matrix, F t. The
columns of both X t and F t correspond to different possible states. The notation F t;i is used to
denote the ith column of F t, hence the result of applying F to the ith possible state.

(c) Time Update:

x̂t ¼
Xn
i¼1
Wm

i F t;i ð3Þ

Pt ¼
Xn
i¼1
Wc

i F t;i � x̂t
� �

F t;i � x̂t
� �T þ�x ð4Þ
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(d) Redraw another set of sigma points (see section Section 3.2):

Yt ¼ x̂t x̂t þ �
ffiffiffiffiffi
Pt

p
x̂t � �

ffiffiffiffiffi
Pt

ph i
ð5Þ

(e) Evaluate the known model function H:

Ht ¼ H Ytð Þ ð6Þ

The function H is assumed to accept the mx � n matrix, Yt and return an my � n matrix, Ht. The
columns of both Yt and Ht correspond to different possible states. As above Ht;i is used to denote
the ith column of Ht.

(f) Measurement Update:

ŷt ¼
Xn
i¼1
Wm

i Ht;i ð7Þ

Pyyt ¼
Xn
i¼1
Wc

i Ht;i � ŷt
� �

Ht;i � ŷt
� �T þ�y ð8Þ

Pxyt ¼
Xn
i¼1
Wc

i F t;i � x̂t
� �

Ht;i � ŷt
� �T ð9Þ

Kt ¼ PxytP�1yyt
ð10Þ

x̂t ¼ x̂t þKt yt � ŷtð Þ ð11Þ
Pt ¼ Pt �KtPyytKT

t ð12Þ
Here Kt is the Kalman gain matrix, x̂t is the estimated state vector at time t and Pt the corresponding
covariance matrix. Rather than implementing the standard UKF as stated above G13EJF uses the
square-root form described in the Haykin (2001).

3.2 Sigma Points

A nonlinear state space model involves propagating a vector of random variables through a nonlinear
system and we are interested in what happens to the mean and covariance matrix of those variables.
Rather than trying to directly propagate the mean and covariance matrix, the UKF uses a set of
carefully chosen sample points, referred to as sigma points, and propagates these through the system of
interest. An estimate of the propagated mean and covariance matrix is then obtained via the weighted
sample mean and covariance matrix.

For a vector of m random variables, x, with mean � and covariance matrix �, the sigma points are
usually constructed as:

X t ¼ � �þ �
ffiffiffiffi
�
p

�� �
ffiffiffiffi
�
ph i

When calculating the weighted sample mean and covariance matrix two sets of weights are required,
one used when calculating the weighted sample mean, denoted Wm and one used when calculated the
weighted sample covariance matrix, denoted Wc. The weights and multiplier, �, are constructed as
follows:

� ¼ �2 Lþ �ð Þ � L
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ �
p

Wm
i ¼

�
Lþ� i ¼ 1

1
2 Lþ�ð Þ i ¼ 2; 3; . . . ; 2Lþ 1

(

Wc
i ¼

�
Lþ�þ 1� �2 þ � i ¼ 1

1
2 Lþ�ð Þ i ¼ 2; 3; . . . ; 2Lþ 1

(
where, usually L ¼ m and �; � and � are constants. The total number of sigma points, n, is given by
2Lþ 1. The constant � is usually set to somewhere in the range 10�4 � � � 1 and for a Gaussian
distribution, the optimal values of � and � are 3� L and 2 respectively.
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Rather than redrawing another set of sigma points in (d) of the UKF an alternative method can be used
where the sigma points used in (a) are augmented to take into account the process noise. This involves
replacing equation (5) with:

Yt ¼ X t X t;1 þ �
ffiffiffiffiffiffiffi
�x

p
X t;1 � �

ffiffiffiffiffiffiffi
�x

ph i
ð13Þ

Augmenting the sigma points in this manner requires setting L to 2L (and hence n to 2n� 1) and
recalculating the weights. These new values are then used for the rest of the algorithm. The advantage
of augmenting the sigma points is that it keeps any odd-moments information captured by the original
propagated sigma points, at the cost of using a larger number of points.

4 References

Haykin S (2001) Kalman Filtering and Neural Networks John Wiley and Sons

Julier S J (2002) The scaled unscented transformation Proceedings of the 2002 American Control
Conference (Volume 6) 4555–4559

Julier S J and Uhlmann J K (1997a) A consistent, debiased method for converting between polar and
Cartesian coordinate systems Proceedings of AeroSense97, International Society for Optics and
Phonotonics 110–121

Julier S J and Uhlmann J K (1997b) A new extension of the Kalman Filter to nonlinear systems
International Symposium for Aerospace/Defense, Sensing, Simulation and Controls (Volume 3) 26

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than FXT must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: must be set to 0 or 3.

If IREVCM ¼ 0, it is assumed that t ¼ 0, otherwise it is assumed that t 6¼ 0 and that G13EJF has
been called at least once before at an earlier time step.

On intermediate exit: IREVCM ¼ 1 or 2. The value of IREVCM specifies what intermediate
values are returned by this routine and what values the calling program must assign to arguments
of G13EJF before re-entering the routine. Details of the output and required input are given in
the individual argument descriptions.

On intermediate re-entry: IREVCM must remain unchanged.

On final exit: IREVCM ¼ 3

Constraint: IREVCM ¼ 0, 1, 2 or 3.

2: MX – INTEGER Input

On entry: mx, the number of state variables.

Constraint: MX � 1.

3: MY – INTEGER Input

On entry: my, the number of observed variables.

Constraint: MY � 1.

4: YðMYÞ – REAL (KIND=nag_wp) array Input

On entry: yt, the observed data at the current time point.
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5: LXðLDLX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array LX must be at least MX.

On entry: Lx, such that LxLT
x ¼ �x, i.e., the lower triangular part of a Cholesky decomposition

of the process noise covariance structure. Only the lower triangular part of LX is referenced.

If LDLX ¼ 0, there is no process noise (vt ¼ 0 for all t) and LX is not referenced.

If �x is time dependent, then the value supplied should be for time t.

6: LDLX – INTEGER Input

On entry: the first dimension of the array LX as declared in the (sub)program from which
G13EJF is called.

Constraint: LDLX ¼ 0 or LDLX � MX.

7: LYðLDLY; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array LY must be at least MY.

On entry: Ly, such that LyLT
y ¼ �y, i.e., the lower triangular part of a Cholesky decomposition of

the observation noise covariance structure. Only the lower triangular part of LY is referenced.

If �y is time dependent, then the value supplied should be for time t.

8: LDLY – INTEGER Input

On entry: the first dimension of the array LY as declared in the (sub)program from which
G13EJF is called.

Constraint: LDLY � MY.

9: XðMXÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: x̂t�1 the state vector for the previous time point.

On intermediate exit: when

IREVCM ¼ 1
X is unchanged.

IREVCM ¼ 2
x̂t.

On intermediate re-entry: X must remain unchanged.

On final exit: x̂t the updated state vector.

10: STðLDST; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array ST must be at least MX.

On initial entry: St, such that St�1ST
t�1 ¼ Pt�1, i.e., the lower triangular part of a Cholesky

decomposition of the state covariance matrix at the previous time point. Only the lower triangular
part of ST is referenced.

On intermediate exit: when

IREVCM ¼ 1
ST is unchanged.

IREVCM ¼ 2
St, the lower triangular part of a Cholesky factorization of Pt.

On intermediate re-entry: ST must remain unchanged.

On final exit: St, the lower triangular part of a Cholesky factorization of the updated state
covariance matrix.
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11: LDST – INTEGER Input

On entry: the first dimension of the array ST as declared in the (sub)program from which G13EJF
is called.

Constraint: LDST � MX.

12: N – INTEGER Input/Output

On initial entry: the value used in the sizing of the FXT and XT arrays. The value of N supplied
must be at least as big as the maximum number of sigma points that the algorithm will use.
G13EJF allows sigma points to be calculated in two ways during the measurement update; they
can be redrawn or augmented. Which is used is controlled by ROPT.

If redrawn sigma points are used, then the maximum number of sigma points will be 2mx þ 1,
otherwise the maximum number of sigma points will be 4mx þ 1.

On intermediate exit: the number of sigma points actually being used.

On intermediate re-entry: N must remain unchanged.

On final exit: reset to its value on initial entry.

Constraints: if IREVCM ¼ 0 or 3,

if redrawn sigma points are used, N � 2�MXþ 1;
otherwise N � 4�MXþ 1.

13: XTðLDXT; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array XT must be at least max MY;Nð Þ.
On initial entry: need not be set.

On intermediate exit: Xt when IREVCM ¼ 1, otherwise Yt.

For the jth sigma point, the value for the ith parameter is held in XTði; jÞ, for i ¼ 1; 2; . . . ;MX
and j ¼ 1; 2; . . . ;N.

On intermediate re-entry: XT must remain unchanged.

On final exit: the contents of XT are undefined.

14: LDXT – INTEGER Input

On entry: the first dimension of the array XT as declared in the (sub)program from which
G13EJF is called.

Constraint: LDXT � MX.

15: FXTðLDFXT; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array FXT must be at least Nþmax MX;MYð Þ.
On initial entry: need not be set.

On intermediate exit: the contents of FXT are undefined.

On intermediate re-entry: F Xtð Þ when IREVCM ¼ 1, otherwise H Ytð Þ for the values of Xt and
Yt held in XT.

For the jth sigma point the value for the ith parameter should be held in FXTði; jÞ, for
j ¼ 1; 2; . . . ;N. W h e n IREVCM ¼ 1, i ¼ 1; 2; . . . ;MX a n d w h e n IREVCM ¼ 2,
i ¼ 1; 2; . . . ;MY.

On final exit: the contents of FXT are undefined.
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16: LDFXT – INTEGER Input

On entry: the first dimension of the array FXT as declared in the (sub)program from which
G13EJF is called.

Constraint: LDFXT � max MX;MYð Þ.

17: ROPTðLROPTÞ – REAL (KIND=nag_wp) array Input

On entry: optional arguments. The default value will be used for ROPTðiÞ if LROPT < i. Setting
LROPT ¼ 0 will use the default values for all optional arguments and ROPT need not be set.

ROPTð1Þ
If set to 1 then the second set of sigma points are redrawn, as given by equation (5). If set
to 2 then the second set of sigma points are generated via augmentation, as given by
equation (13).

Default is for the sigma points to be redrawn (i.e., ROPTð1Þ ¼ 1)

ROPTð2Þ
�x, value of � used when constructing the first set of sigma points, X t.

Defaults to 3�MX.

ROPTð3Þ
�x, value of � used when constructing the first set of sigma points, X t.

Defaults to 1.

ROPTð4Þ
�x, value of � used when constructing the first set of sigma points, X t.

Defaults to 2.

ROPTð5Þ
Value of � used when constructing the second set of sigma points, Yt.

Defaults to 3� 2�MX when LDLX 6¼ 0 and the second set of sigma points are augmented and
�x otherwise.

ROPTð6Þ
Value of � used when constructing the second set of sigma points, Yt.

Defaults to �x.

ROPTð7Þ
Value of � used when constructing the second set of sigma points, Yt.

Defaults to �x.

Constraints:

ROPTð1Þ ¼ 1 or 2;
ROPTð2Þ > �MX;
ROPTð5Þ > �2�MX when LDLY 6¼ 0 and the second set of sigma points are augmented,
otherwise ROPTð5Þ > �MX;
ROPTðiÞ > 0, for i ¼ 3; 6.

18: LROPT – INTEGER Input

On entry: length of the options array ROPT.

Constraint: 0 � LROPT � 7.

19: ICOMMðLICOMMÞ – INTEGER array Communication Array

On initial entry: ICOMM need not be set.

On intermediate exit: ICOMM is used for storage between calls to G13EJF.
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On intermediate re-entry: ICOMM must remain unchanged.

On final exit: ICOMM is not defined.

20: LICOMM – INTEGER Input

On entry: the length of the array ICOMM. If LICOMM is too small and LICOMM � 2 then
IFAIL ¼ 201 is returned and the minimum value for LICOMM and LRCOMM are given by
ICOMMð1Þ and ICOMMð2Þ respectively.
Constraint: LICOMM � 30.

21: RCOMMðLRCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On initial entry: RCOMM need not be set.

On intermediate exit: RCOMM is used for storage between calls to G13EJF.

On intermediate re-entry: RCOMM must remain unchanged.

On final exit: RCOMM is not defined.

22: LRCOMM – INTEGER Input

On entry: the length of the array RCOMM. If LRCOMM is too small and LICOMM � 2 then
IFAIL ¼ 202 is returned and the minimum value for LICOMM and LRCOMM are given by
ICOMMð1Þ and ICOMMð2Þ respectively.
Suggested value: LRCOMM ¼ 30þMYþMX�MYþ 1þ nbð Þ �max MX;MYð Þ, where nb is
the optimal block size. In most cases a block size of 128 will be sufficient.

Constraint: LRCOMM � 30þMYþMX�MYþ 2�max MX;MYð Þ.

23: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0, 1, 2 or 3.

IFAIL ¼ 21

On entry, MX ¼ valueh i.
Constraint: MX � 1.
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IFAIL ¼ 22

MX has changed between calls.
On intermediate entry, MX ¼ valueh i.
On initial entry, MX ¼ valueh i.

IFAIL ¼ 31

On entry, MY ¼ valueh i.
Constraint: MY � 1.

IFAIL ¼ 32

MY has changed between calls.
On intermediate entry, MY ¼ valueh i.
On initial entry, MY ¼ valueh i.

IFAIL ¼ 61

On entry, LDLX ¼ valueh i and MX ¼ valueh i.
Constraint: LDLX ¼ 0 or LDLX � MX.

IFAIL ¼ 81

On entry, LDLY ¼ valueh i and MY ¼ valueh i.
Constraint: LDLY � MY.

IFAIL ¼ 111

On entry, LDST ¼ valueh i and MX ¼ valueh i.
Constraint: LDST � MX.

IFAIL ¼ 121

On entry, augmented sigma points requested, N ¼ valueh i and MX ¼ valueh i.
Constraint: N � valueh i.

IFAIL ¼ 122

On entry, redrawn sigma points requested, N ¼ valueh i and MX ¼ valueh i.
Constraint: N � valueh i.

IFAIL ¼ 123

N has changed between calls.
On intermediate entry, N ¼ valueh i.
On intermediate exit, N ¼ valueh i.

IFAIL ¼ 141

On entry, LDXT ¼ valueh i and MX ¼ valueh i.
Constraint: LDXT � MX.

IFAIL ¼ 161

On entry, LDFXT ¼ valueh i and MX ¼ valueh i.
Constraint: if IREVCM ¼ 1, LDFXT � MX.

IFAIL ¼ 162

On entry, LDFXT ¼ valueh i and MY ¼ valueh i.
Constraint: if IREVCM ¼ 2, LDFXT � MY.
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IFAIL ¼ 171

On entry, ROPTð1Þ ¼ valueh i.
Constraint: ROPTð1Þ ¼ 1 or 2.

IFAIL ¼ 172

On entry, ROPTð valueh iÞ ¼ valueh i.
Constraint: � > valueh i.

IFAIL ¼ 173

On entry, ROPTð valueh iÞ ¼ valueh i.
Constraint: � > 0.

IFAIL ¼ 181

On entry, LROPT ¼ valueh i.
Constraint: 0 � LROPT � 7.

IFAIL ¼ 191

ICOMM has been corrupted between calls.

IFAIL ¼ 201

On entry, LICOMM ¼ valueh i.
Constraint: LICOMM � 2.
ICOMM is too small to return the required array sizes.

IFAIL ¼ 202

On entry, LICOMM ¼ valueh i and LRCOMM ¼ valueh i.
Constraint: LICOMM � 30 and LRCOMM � 30þMYþMX�MYþ 2�max MX;MYð Þ.
The minimum required values for LICOMM and LRCOMM are returned in ICOMMð1Þ and
ICOMMð2Þ respectively.

IFAIL ¼ 211

RCOMM has been corrupted between calls.

IFAIL ¼ 301

A weight was negative and it was not possible to downdate the Cholesky factorization.

IFAIL ¼ 302

Unable to calculate the Kalman gain matrix.

IFAIL ¼ 303

Unable to calculate the Cholesky factorization of the updated state covariance matrix.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13EJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

As well as implementing the Unscented Kalman Filter, G13EJF can also be used to apply the Unscented
Transform (see Julier (2002)) to the function F , by setting LDLX ¼ 0 and terminating the calling
sequence when IREVCM ¼ 2 rather than IREVCM ¼ 3. In this situation, on initial entry, X and ST
would hold the mean and Cholesky factorization of the covariance matrix of the untransformed sample
and on exit (when IREVCM ¼ 2) they would hold the mean and Cholesky factorization of the
covariance matrix of the transformed sample.

10 Example

This example implements the following nonlinear state space model, with the state vector x and state
update function F given by:

mx ¼ 3

xtþ1 ¼ �tþ1 �tþ1 �tþ1
� �T

¼ F xtð Þ þ vt

¼ xt þ
cos �t � sin �t 0
sin �t cos �t 0
0 0 1

0@ 1A 0:5r 0:5r
0 0
r=d �r=d

0@ 1A 
Rt

Lt

� �
þ vt

where r and d are known constants and 
Rt and 
Lt are time-dependent knowns. The measurement
vector y and measurement function H is given by:

my ¼ 2
yt ¼ �t; �tð ÞT

¼ H xtð Þ þ ut
¼ �� �t cosA� �t sinA

�t �A

� �
þ ut

where A and � are known constants. The initial values, x0 and P0, are given by

x0 ¼
0
0
0

0@ 1A; P0 ¼
0:1 0 0
0 0:1 0
0 0 0:1

0@ 1A
and the Cholesky factorizations of the error covariance matrices, Lx and Lx by
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Lx ¼
0:1 0 0
0 0:1 0
0 0 0:1

0@ 1A ; Ly ¼ 0:01 0
0 0:01

� �
:

10.1 Program Text

! G13EJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g13ejfe_mod

! G13EJF Example Program Module:
! User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f, h, read_problem_data

! .. Parameters ..
Integer, Parameter, Public :: mx = 3, my = 2, nin = 5, nout = 6

! .. Derived Type Definitions ..
Type, Public :: g13ej_problem_data

Real (Kind=nag_wp) :: delta, a, r, d
Real (Kind=nag_wp) :: phi_rt, phi_lt

End Type g13ej_problem_data
Contains

Subroutine f(n,xt,fxt,dat)

! .. Scalar Arguments ..
Type (g13ej_problem_data), Intent (In) :: dat
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fxt(:,:)
Real (Kind=nag_wp), Intent (In) :: xt(:,:)

! .. Local Scalars ..
Real (Kind=nag_wp) :: t1, t3
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
Continue

t1 = 0.5_nag_wp*dat%r*(dat%phi_rt+dat%phi_lt)
t3 = (dat%r/dat%d)*(dat%phi_rt-dat%phi_lt)

Do i = 1, n
fxt(1,i) = xt(1,i) + cos(xt(3,i))*t1
fxt(2,i) = xt(2,i) + sin(xt(3,i))*t1
fxt(3,i) = xt(3,i) + t3

End Do

Return
End Subroutine f
Subroutine h(n,yt,hyt,dat)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Type (g13ej_problem_data), Intent (In) :: dat
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hyt(:,:)
Real (Kind=nag_wp), Intent (In) :: yt(:,:)

! .. Local Scalars ..
Real (Kind=nag_wp) :: tmp
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Integer :: i
! .. Intrinsic Procedures ..

Intrinsic :: cos, sin
! .. Executable Statements ..

Continue

Do i = 1, n
hyt(1,i) = dat%delta - yt(1,i)*cos(dat%a) - yt(2,i)*sin(dat%a)
hyt(2,i) = yt(3,i) - dat%a

! Make sure that the theta is in the same range as the observed
! data, which in this case is [0, 2*pi)

If (hyt(2,i)<0.0_nag_wp) Then
hyt(2,i) = hyt(2,i) + 2*x01aaf(tmp)

End If
End Do

Return
End Subroutine h
Subroutine read_problem_data(t,dat,read_ok)

! Read in any data specific to the F and H subroutines

! .. Scalar Arguments ..
Type (g13ej_problem_data), Intent (Inout) :: dat
Integer, Intent (In) :: t
Logical, Intent (Out) :: read_ok

! .. Local Scalars ..
Integer :: tt

! .. Executable Statements ..
Continue

If (t==0) Then
! Read in the data that is constant across all time points

Read (nin,*) dat%r, dat%d, dat%delta, dat%a
read_ok = .True.

Else
! Read in data for time point t

Read (nin,*) tt, dat%phi_rt, dat%phi_lt
If (tt/=t) Then

! Sanity check
Write (nout,99999) ’Expected to read in data for time point ’, t
Write (nout,99999) ’Data that was read in was for time point ’, tt

99999 Format (A,E22.15)
read_ok = .False.

Else
read_ok = .True.

End If
End If

End Subroutine read_problem_data
End Module g13ejfe_mod

Program g13ejfe

! .. Use Statements ..
Use nag_library, Only: g13ejf, nag_wp
Use g13ejfe_mod, Only: f, g13ej_problem_data, h, mx, my, nin, nout, &

read_problem_data
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Type (g13ej_problem_data) :: dat
Integer :: i, ifail, irevcm, ldfxt, ldlx, ldly, &

ldst, ldxt, licomm, lrcomm, lropt, &
n, ntime, t

Logical :: read_ok
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: fxt(:,:), lx(:,:), ly(:,:), &
rcomm(:), ropt(:), st(:,:), x(:), &
xt(:,:), y(:)

Integer, Allocatable :: icomm(:)
! .. Intrinsic Procedures ..
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Intrinsic :: abs, max, repeat
! .. Executable Statements ..

Write (nout,*) ’G13EJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Using default optional arguments
lropt = 0
Allocate (ropt(lropt))

! Allocate arrays
n = 2*mx + 1
If (lropt>=1) Then

If (abs(ropt(1)-2.0_nag_wp)<=0.0_nag_wp) Then
n = n + 2*mx

End If
End If
ldlx = mx
ldly = my
ldst = mx
ldxt = mx
ldfxt = max(mx,my)
licomm = 30
lrcomm = 30 + my + mx*my + 2*max(mx,my)
Allocate (lx(ldlx,mx),ly(ldly,my),x(mx),st(ldst,mx),xt(ldxt,max(my, &

n)),fxt(ldfxt,n+max(mx,my)),icomm(licomm),rcomm(lrcomm),y(my))

! Read in the Cholesky factorization of the covariance matrix for the
! process noise

Do i = 1, mx
Read (nin,*) lx(i,1:i)

End Do

! Read in the Cholesky factorization of the covariance matrix for the
! observation noise

Do i = 1, my
Read (nin,*) ly(i,1:i)

End Do

! Read in the initial state vector
Read (nin,*) x(1:mx)

! Read in the Cholesky factorization of the initial state covariance
! matrix

Do i = 1, mx
Read (nin,*) st(i,1:i)

End Do

! Read in the number of time points to run the system for
Read (nin,*) ntime

! Read in any problem specific data that is constant
Call read_problem_data(0,dat,read_ok)
If (.Not. read_ok) Then

Go To 100
End If

! Title for first set of output
Write (nout,*) ’ Time ’, repeat(’ ’,(11*mx-16)/2), ’Estimate of State’
Write (nout,*) repeat(’-’,7+11*mx)

! Loop over each time point
irevcm = 0
Do t = 1, ntime

! Read in any problem specific data that is time dependent
Call read_problem_data(t,dat,read_ok)
If (.Not. read_ok) Then

Go To 100
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End If

! Read in the observed data for time t
Read (nin,*) y(1:my)

! Call Unscented Kalman Filter routine
ukf_lp: Do

ifail = 0
Call g13ejf(irevcm,mx,my,y,lx,ldlx,ly,ldly,x,st,ldst,n,xt,ldxt,fxt, &

ldfxt,ropt,lropt,icomm,licomm,rcomm,lrcomm,ifail)
Select Case (irevcm)
Case (1)

! Evaluate F(X)
Call f(n,xt,fxt,dat)

Case (2)
! Evaluate H(X)

Call h(n,xt,fxt,dat)

Case Default
! IREVCM = 3, finished

Exit ukf_lp
End Select

End Do ukf_lp

! Display the some of the current state estimate
Write (nout,99999) t, x(1:mx)

End Do

Write (nout,*)
Write (nout,*) ’Estimate of Cholesky Factorization of the State’
Write (nout,*) ’Covariance Matrix at the Last Time Point’
Do i = 1, mx

Write (nout,99998) st(i,1:i)
End Do

100 Continue

99999 Format (1X,I3,4X,10(1X,F10.3))
99998 Format (10(1X,E10.3))

End Program g13ejfe

10.2 Program Data

G13EJF Example Program Data
0.1
0.0 0.1
0.0 0.0 0.1 :: End of LX
0.01
0.0 0.01 :: End of LY
0.0 0.0 0.0 :: Initial value for X
0.1
0.0 0.1
0.0 0.0 0.1 :: End of initial value for ST
15 :: Number of time points
3.0 4.0 5.814 0.464 :: r, d, Delta, A
1 0.4 0.1

5.262 5.923
2 0.4 0.1

4.347 5.783
3 0.4 0.1

3.818 6.181
4 0.4 0.1

2.706 0.085
5 0.4 0.1

1.878 0.442
6 0.4 0.1

0.684 0.836
7 0.4 0.1

0.752 1.300
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8 0.4 0.1
0.464 1.700

9 0.4 0.1
0.597 1.781

10 0.4 0.1
0.842 2.040

11 0.4 0.1
1.412 2.286

12 0.4 0.1
1.527 2.820

13 0.4 0.1
2.399 3.147

14 0.4 0.1
2.661 3.569

15 0.4 0.1
3.327 3.659 :: t, phi_rt, phi_lt, Y = (delta_t, alpha_a)

10.3 Program Results

G13EJF Example Program Results

Time Estimate of State
----------------------------------------

1 0.664 -0.092 0.104
2 1.598 0.081 0.314
3 2.128 0.213 0.378
4 3.134 0.674 0.660
5 3.809 1.181 0.906
6 4.730 2.000 1.298
7 4.429 2.474 1.762
8 4.357 3.246 2.162
9 3.907 3.852 2.246

10 3.360 4.398 2.504
11 2.552 4.741 2.750
12 2.191 5.193 3.281
13 1.309 5.018 3.610
14 1.071 4.894 4.031
15 0.618 4.322 4.124

Estimate of Cholesky Factorization of the State
Covariance Matrix at the Last Time Point
0.192E+00

-0.382E+00 0.222E-01
0.158E-05 0.223E-06 0.995E-02
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The example described above can be thought of as relating to the movement of a hypothetical robot.
The unknown state, x, is the position of the robot (with respect to a reference frame) and facing, with
�; �ð Þ giving the x and y coordinates and � the angle (with respect to the x-axis) that the robot is facing.
The robot has two drive wheels, of radius r on an axle of length d. During time period t the right wheel
is believed to rotate at a velocity of 
Rt and the left at a velocity of 
Lt. In this example, these
velocities are fixed with 
Rt ¼ 0:4 and 
Lt ¼ 0:1. The state update function, F , calculates where the
robot should be at each time point, given its previous position. However, in reality, there is some
random fluctuation in the velocity of the wheels, for example, due to slippage. Therefore the actual
position of the robot and the position given by equation F will differ.

In the area that the robot is moving there is a single wall. The position of the wall is known and defined
by its distance, �, from the origin and its angle, A, from the x-axis. The robot has a sensor that is able
to measure y, with � being the distance to the wall and � the angle to the wall. The measurement
function H gives the expected distance and angle to the wall if the robot's position is given by xt.
Therefore the state space model allows the robot to incorporate the sensor information to update the
estimate of its position.
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NAG Library Routine Document

G13EKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13EKF applies the Unscented Kalman Filter (UKF) to a nonlinear state space model, with additive
noise.

G13EKF uses direct communication for evaluating the nonlinear functionals of the state space model.

2 Specification

SUBROUTINE G13EKF (MX, MY, Y, LX, LY, F, H, X, ST, IUSER, RUSER, IFAIL)

INTEGER MX, MY, IUSER(*), IFAIL
REAL (KIND=nag_wp) Y(MY), LX(MX,MX), LY(MY,MY), X(MX), ST(MX,MX),

RUSER(*)
&

EXTERNAL F, H

3 Description

G13EKF applies the Unscented Kalman Filter (UKF), as described in Julier and Uhlmann (1997b) to a
nonlinear state space model, with additive noise, which, at time t, can be described by:

xtþ1 ¼ F xtð Þ þ vt
yt ¼ H xtð Þ þ ut

where xt represents the unobserved state vector of length mx and yt the observed measurement vector
of length my. The process noise is denoted vt, which is assumed to have mean zero and covariance
structure �x, and the measurement noise by ut, which is assumed to have mean zero and covariance
structure �y.

3.1 Unscented Kalman Filter Algorithm

Given x̂0, an initial estimate of the state and P0 and initial estimate of the state covariance matrix, the
UKF can be described as follows:

(a) Generate a set of sigma points (see Section 3.2):

X t ¼ x̂t�1 x̂t�1 þ �
ffiffiffiffiffiffiffiffiffi
Pt�1

p
x̂t�1 � �

ffiffiffiffiffiffiffiffiffi
Pt�1

ph i
ð1Þ

(b) Evaluate the known model function F :

F t ¼ F X tð Þ ð2Þ

The function F is assumed to accept the mx � n matrix, X t and return an mx � n matrix, F t. The
columns of both X t and F t correspond to different possible states. The notation F t;i is used to
denote the ith column of F t, hence the result of applying F to the ith possible state.

(c) Time Update:

x̂t ¼
Xn
i¼1
Wm

i F t;i ð3Þ

Pt ¼
Xn
i¼1
Wc

i F t;i � x̂t
� �

F t;i � x̂t
� �T þ�x ð4Þ
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(d) Redraw another set of sigma points (see Section 3.2):

Yt ¼ x̂t x̂t þ �
ffiffiffiffiffi
Pt

p
x̂t � �

ffiffiffiffiffi
Pt

ph i
ð5Þ

(e) Evaluate the known model function H:

Ht ¼ H Ytð Þ ð6Þ

The function H is assumed to accept the mx � n matrix, Yt and return an my � n matrix, Ht. The
columns of both Yt and Ht correspond to different possible states. As above Ht;i is used to denote
the ith column of Ht.

(f) Measurement Update:

ŷt ¼
Xn
i¼1
Wm

i Ht;i ð7Þ

Pyyt ¼
Xn
i¼1
Wc

i Ht;i � ŷt
� �

Ht;i � ŷt
� �T þ�y ð8Þ

Pxyt ¼
Xn
i¼1
Wc

i F t;i � x̂t
� �

Ht;i � ŷt
� �T ð9Þ

Kt ¼ PxytP�1yyt
ð10Þ

x̂t ¼ x̂t þKt yt � ŷtð Þ ð11Þ
Pt ¼ Pt �KtPyytKT

t ð12Þ
Here Kt is the Kalman gain matrix, x̂t is the estimated state vector at time t and Pt the corresponding
covariance matrix. Rather than implementing the standard UKF as stated above G13EKF uses the
square-root form described in the Haykin (2001).

3.2 Sigma Points

A nonlinear state space model involves propagating a vector of random variables through a nonlinear
system and we are interested in what happens to the mean and covariance matrix of those variables.
Rather than trying to directly propagate the mean and covariance matrix, the UKF uses a set of
carefully chosen sample points, referred to as sigma points, and propagates these through the system of
interest. An estimate of the propagated mean and covariance matrix is then obtained via the weighted
sample mean and covariance matrix.

For a vector of m random variables, x, with mean � and covariance matrix �, the sigma points are
usually constructed as:

X t ¼ � �þ �
ffiffiffiffi
�
p

�� �
ffiffiffiffi
�
ph i

When calculating the weighted sample mean and covariance matrix two sets of weights are required,
one used when calculating the weighted sample mean, denoted Wm and one used when calculated the
weighted sample covariance matrix, denoted Wc. The weights and multiplier, �, are constructed as
follows:

� ¼ �2 Lþ �ð Þ � L
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ �
p

Wm
i ¼

�
Lþ� i ¼ 1

1
2 Lþ�ð Þ i ¼ 2; 3; . . . ; 2Lþ 1



Wc

i ¼
�

Lþ�þ 1� �2 þ � i ¼ 1
1

2 Lþ�ð Þ i ¼ 2; 3; . . . ; 2Lþ 1



where, usually L ¼ m and �; � and � are constants. The total number of sigma points, n, is given by
2Lþ 1. The constant � is usually set to somewhere in the range 10�4 � � � 1 and for a Gaussian
distribution, the optimal values of � and � are 3� L and 2 respectively.

G13EKF NAG Library Manual

G13EKF.2 Mark 26



The constants, �, � and � are given by � ¼ 3�mx, � ¼ 1:0 and � ¼ 2. If more control is required over
the construction of the sigma points then the reverse communication routine, G13EJF, can be used
instead.

4 References

Haykin S (2001) Kalman Filtering and Neural Networks John Wiley and Sons

Julier S J (2002) The scaled unscented transformation Proceedings of the 2002 American Control
Conference (Volume 6) 4555–4559

Julier S J and Uhlmann J K (1997a) A consistent, debiased method for converting between polar and
Cartesian coordinate systems Proceedings of AeroSense97, International Society for Optics and
Phonotonics 110–121

Julier S J and Uhlmann J K (1997b) A new extension of the Kalman Filter to nonlinear systems
International Symposium for Aerospace/Defense, Sensing, Simulation and Controls (Volume 3) 26

5 Arguments

1: MX – INTEGER Input

On entry: mx, the number of state variables.

Constraint: MX � 1.

2: MY – INTEGER Input

On entry: my, the number of observed variables.

Constraint: MY � 1.

3: YðMYÞ – REAL (KIND=nag_wp) array Input

On entry: yt, the observed data at the current time point.

4: LXðMX;MXÞ – REAL (KIND=nag_wp) array Input

On entry: Lx, such that LxLT
x ¼ �x, i.e., the lower triangular part of a Cholesky decomposition

of the process noise covariance structure. Only the lower triangular part of LX is referenced.

If �x is time dependent, then the value supplied should be for time t.

5: LYðMY;MYÞ – REAL (KIND=nag_wp) array Input

On entry: Ly, such that LyLT
y ¼ �y, i.e., the lower triangular part of a Cholesky decomposition of

the observation noise covariance structure. Only the lower triangular part of LY is referenced.

If �y is time dependent, then the value supplied should be for time t.

6: F – SUBROUTINE, supplied by the user. External Procedure

The state function, F as described in (b).

The specification of F is:

SUBROUTINE F (MX, N, XT, FXT, IUSER, RUSER, INFO)

INTEGER MX, N, IUSER(*), INFO
REAL (KIND=nag_wp) XT(MX,N), FXT(MX,N), RUSER(*)

1: MX – INTEGER Input

On entry: mx, the number of state variables.
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2: N – INTEGER Input

On entry: n, the number of sigma points.

3: XTðMX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Xt, the sigma points generated in (a). For the jth sigma point, the value for
the ith parameter is held in XTði; jÞ, for i ¼ 1; 2; . . . ;mx and j ¼ 1; 2; . . . ; n.

4: FXTðMX;NÞ – REAL (KIND=nag_wp) array Output

On exit: F Xtð Þ.
For the jth sigma point the value for the ith parameter should be held in FXTði; jÞ, for
i ¼ 1; 2; . . . ;mx and j ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to G13EKF. You should
use the arrays IUSER and RUSER to supply information to F.

7: INFO – INTEGER Input/Output

On entry: INFO ¼ 0.

On exit: set INFO to a nonzero value if you wish G13EKF to terminate with
IFAIL ¼ 61.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G13EKF is called. Arguments denoted as Input must not be changed by this
procedure.

7: H – SUBROUTINE, supplied by the user. External Procedure

The measurement function, H as described in (e).

The specification of H is:

SUBROUTINE H (MX, MY, N, YT, HYT, IUSER, RUSER, INFO)

INTEGER MX, MY, N, IUSER(*), INFO
REAL (KIND=nag_wp) YT(MX,N), HYT(MY,N), RUSER(*)

1: MX – INTEGER Input

On entry: mx, the number of state variables.

2: MY – INTEGER Input

On entry: my, the number of observed variables.

3: N – INTEGER Input

On entry: n, the number of sigma points.

4: YTðMX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Yt, the sigma points generated in (d). For the jth sigma point, the value for
the ith parameter is held in YTði; jÞ, for i ¼ 1; 2; . . . ;mx and j ¼ 1; 2; . . . ; n, where mx

is the number of state variables and n is the number of sigma points.

5: HYTðMY;NÞ – REAL (KIND=nag_wp) array Output

On exit: H Ytð Þ.
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For the jth sigma point the value for the ith parameter should be held in HYTði; jÞ, for
i ¼ 1; 2; . . . ;my and j ¼ 1; 2; . . . ; n.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

H is called with the arguments IUSER and RUSER as supplied to G13EKF. You should
use the arrays IUSER and RUSER to supply information to H.

8: INFO – INTEGER Input/Output

On entry: INFO ¼ 0.

On exit: set INFO to a nonzero value if you wish G13EKF to terminate with
IFAIL ¼ 71.

H must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which G13EKF is called. Arguments denoted as Input must not be changed by this
procedure.

8: XðMXÞ – REAL (KIND=nag_wp) array Input/Output

On entry: x̂t�1 the state vector for the previous time point.

On exit: x̂t the updated state vector.

9: STðMX;MXÞ – REAL (KIND=nag_wp) array Input/Output

On entry: St, such that St�1S
T
t�1 ¼ Pt�1, i.e., the lower triangular part of a Cholesky

decomposition of the state covariance matrix at the previous time point. Only the lower
triangular part of ST is referenced.

On exit: St, the lower triangular part of a Cholesky factorization of the updated state covariance
matrix.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by G13EKF, but are passed directly to F and H and should be
used to pass information to these routines.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, MX ¼ valueh i.
Constraint: MX � 1.

IFAIL ¼ 21

On entry, MY ¼ valueh i.
Constraint: MY � 1.

IFAIL ¼ 61

User requested termination in F.

IFAIL ¼ 71

User requested termination in H.

IFAIL ¼ 301

A weight was negative and it was not possible to downdate the Cholesky factorization.

IFAIL ¼ 302

Unable to calculate the Kalman gain matrix.

IFAIL ¼ 303

Unable to calculate the Cholesky factorization of the updated state covariance matrix.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13EKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example implements the following nonlinear state space model, with the state vector x and state
update function F given by:

mx ¼ 3

xtþ1 ¼ �tþ1 �tþ1 �tþ1
� �T

¼ F xtð Þ þ vt

¼ xt þ
cos �t � sin �t 0
sin �t cos �t 0
0 0 1

0@ 1A 0:5r 0:5r
0 0
r=d �r=d

0@ 1A 
Rt

Lt

� �
þ vt

where r and d are known constants and 
Rt and 
Lt are time-dependent knowns. The measurement
vector y and measurement function H is given by:

my ¼ 2
yt ¼ �t; �tð ÞT

¼ H xtð Þ þ ut
¼ �� �t cosA� �t sinA

�t �A

� �
þ ut

where A and � are known constants. The initial values, x0 and P0, are given by

x0 ¼
0
0
0

0@ 1A; P0 ¼
0:1 0 0
0 0:1 0
0 0 0:1

0@ 1A
and the Cholesky factorizations of the error covariance matrices, Lx and Lx by

Lx ¼
0:1 0 0
0 0:1 0
0 0 0:1

0@ 1A ; Ly ¼ 0:01 0
0 0:01

� �

10.1 Program Text

! G13EKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g13ekfe_mod

! G13EKF Example Program Module:
! User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f, h, read_problem_data

! .. Parameters ..
Integer, Parameter, Public :: mx = 3, my = 2, nin = 5, nout = 6

Contains
Subroutine f(mx,n,xt,fxt,iuser,ruser,info)
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! .. Scalar Arguments ..
Integer, Intent (Inout) :: info
Integer, Intent (In) :: mx, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fxt(mx,n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xt(mx,n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, phi_lt, phi_rt, r, t1, t3
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
Continue

r = ruser(3)
d = ruser(4)
phi_rt = ruser(5)
phi_lt = ruser(6)

t1 = 0.5_nag_wp*r*(phi_rt+phi_lt)
t3 = (r/d)*(phi_rt-phi_lt)

Do i = 1, n
fxt(1,i) = xt(1,i) + cos(xt(3,i))*t1
fxt(2,i) = xt(2,i) + sin(xt(3,i))*t1
fxt(3,i) = xt(3,i) + t3

End Do

! Set info nonzero to terminate execution for any reason.
info = 0

Return
End Subroutine f
Subroutine h(mx,my,n,yt,hyt,iuser,ruser,info)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Integer, Intent (Inout) :: info
Integer, Intent (In) :: mx, my, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hyt(my,n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: yt(mx,n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, delta, tmp
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
Continue

delta = ruser(1)
a = ruser(2)

Do i = 1, n
hyt(1,i) = delta - yt(1,i)*cos(a) - yt(2,i)*sin(a)
hyt(2,i) = yt(3,i) - a

! Make sure that the theta is in the same range as the observed
! data, which in this case is [0, 2*pi)

If (hyt(2,i)<0.0_nag_wp) Then
hyt(2,i) = hyt(2,i) + 2*x01aaf(tmp)

End If
End Do

! Set info nonzero to terminate execution for any reason.
info = 0

G13EKF NAG Library Manual

G13EKF.8 Mark 26



Return
End Subroutine h
Subroutine read_problem_data(t,iuser,ruser,read_ok)

! Read in any data specific to the F and H subroutines

! .. Scalar Arguments ..
Integer, Intent (In) :: t
Logical, Intent (Out) :: read_ok

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Inout) :: ruser(:)
Integer, Allocatable, Intent (Inout) :: iuser(:)

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, d, delta, phi_lt, phi_rt, r
Integer :: tt

! .. Executable Statements ..
Continue

If (t==0) Then
! Allocate the arrays to hold the data

Allocate (ruser(6),iuser(0))

! Read in the data that is constant across all time points
Read (nin,*) r, d, delta, a

! Store the data in RUSER
ruser(1) = delta
ruser(2) = a
ruser(3) = r
ruser(4) = d

read_ok = .True.
Else

! Read in data for time point t
Read (nin,*) tt, phi_rt, phi_lt
If (tt/=t) Then

! Sanity check
Write (nout,99999) ’Expected to read in data for time point ’, t
Write (nout,99999) ’Data that was read in was for time point ’, tt

99999 Format (A,E22.15)
read_ok = .False.

Else
read_ok = .True.

End If

! Store the data in RUSER
ruser(5) = phi_rt
ruser(6) = phi_lt

End If
End Subroutine read_problem_data

End Module g13ekfe_mod

Program g13ekfe

! .. Use Statements ..
Use nag_library, Only: g13ekf, nag_wp
Use g13ekfe_mod, Only: f, h, mx, my, nin, nout, read_problem_data

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ifail, ntime, t
Logical :: read_ok

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: lx(:,:), ly(:,:), ruser(:), st(:,:), &

x(:), y(:)
Integer, Allocatable :: iuser(:)

! .. Intrinsic Procedures ..
Intrinsic :: repeat

! .. Executable Statements ..
Write (nout,*) ’G13EKF Example Program Results’
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Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Allocate arrays
Allocate (lx(mx,mx),ly(my,my),x(mx),st(mx,mx),y(my))

! Read in the Cholesky factorization of the covariance matrix for the
! process noise

Do i = 1, mx
Read (nin,*) lx(i,1:i)

End Do

! Read in the Cholesky factorization of the covariance matrix for the
! observation noise

Do i = 1, my
Read (nin,*) ly(i,1:i)

End Do

! Read in the initial state vector
Read (nin,*) x(1:mx)

! Read in the Cholesky factorization of the initial state covariance
! matrix

Do i = 1, mx
Read (nin,*) st(i,1:i)

End Do

! Read in the number of time points to run the system for
Read (nin,*) ntime

! Read in any problem specific data that is constant
Call read_problem_data(0,iuser,ruser,read_ok)
If (.Not. read_ok) Then

Go To 100
End If

! Title for first set of output
Write (nout,*) ’ Time ’, repeat(’ ’,(11*mx-16)/2), ’Estimate of State’
Write (nout,*) repeat(’-’,7+11*mx)

! Loop over each time point
Do t = 1, ntime

! Read in any problem specific data that is time dependent
Call read_problem_data(t,iuser,ruser,read_ok)
If (.Not. read_ok) Then

Go To 100
End If

! Read in the observed data for time t
Read (nin,*) y(1:my)

! Call Unscented Kalman Filter routine
ifail = 0
Call g13ekf(mx,my,y,lx,ly,f,h,x,st,iuser,ruser,ifail)

! Display the some of the current state estimate
Write (nout,99999) t, x(1:mx)

End Do

Write (nout,*)
Write (nout,*) ’Estimate of Cholesky Factorization of the State’
Write (nout,*) ’Covariance Matrix at the Last Time Point’
Do i = 1, mx

Write (nout,99998) st(i,1:i)
End Do
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100 Continue

99999 Format (1X,I3,4X,10(1X,F10.3))
99998 Format (10(1X,E10.3))

End Program g13ekfe

10.2 Program Data

G13EKF Example Program Data
0.1
0.0 0.1
0.0 0.0 0.1 :: End of LX
0.01
0.0 0.01 :: End of LY
0.0 0.0 0.0 :: Initial value for X
0.1
0.0 0.1
0.0 0.0 0.1 :: End of initial value for ST
15 :: Number of time points
3.0 4.0 5.814 0.464 :: r, d, Delta, A
1 0.4 0.1

5.262 5.923
2 0.4 0.1

4.347 5.783
3 0.4 0.1

3.818 6.181
4 0.4 0.1

2.706 0.085
5 0.4 0.1

1.878 0.442
6 0.4 0.1

0.684 0.836
7 0.4 0.1

0.752 1.300
8 0.4 0.1

0.464 1.700
9 0.4 0.1

0.597 1.781
10 0.4 0.1

0.842 2.040
11 0.4 0.1

1.412 2.286
12 0.4 0.1

1.527 2.820
13 0.4 0.1

2.399 3.147
14 0.4 0.1

2.661 3.569
15 0.4 0.1

3.327 3.659 :: t, phi_rt, phi_lt, Y = (delta_t, alpha_a)

10.3 Program Results

G13EKF Example Program Results

Time Estimate of State
----------------------------------------

1 0.664 -0.092 0.104
2 1.598 0.081 0.314
3 2.128 0.213 0.378
4 3.134 0.674 0.660
5 3.809 1.181 0.906
6 4.730 2.000 1.298
7 4.429 2.474 1.762
8 4.357 3.246 2.162
9 3.907 3.852 2.246

10 3.360 4.398 2.504
11 2.552 4.741 2.750
12 2.191 5.193 3.281
13 1.309 5.018 3.610
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14 1.071 4.894 4.031
15 0.618 4.322 4.124

Estimate of Cholesky Factorization of the State
Covariance Matrix at the Last Time Point
0.192E+00

-0.382E+00 0.222E-01
0.158E-05 0.223E-06 0.995E-02

The example described above can be thought of relating to the movement of a hypothetical robot. The
unknown state, x, is the position of the robot (with respect to a reference frame) and facing, with �; �ð Þ
giving the x and y coordinates and � the angle (with respect to the x-axis) that the robot is facing. The
robot has two drive wheels, of radius r on an axle of length d. During time period t the right wheel is
believed to rotate at a velocity of 
Rt and the left at a velocity of 
Lt. In this example, these velocities
are fixed with 
Rt ¼ 0:4 and 
Lt ¼ 0:1. The state update function, F , calculates where the robot should
be at each time point, given its previous position. However, in reality, there is some random fluctuation
in the velocity of the wheels, for example, due to slippage. Therefore the actual position of the robot
and the position given by equation F will differ.

In the area that the robot is moving there is a single wall. The position of the wall is known and defined
by its distance, �, from the origin and its angle, A, from the x-axis. The robot has a sensor that is able
to measure y, with � being the distance to the wall and � the angle to the wall. The measurement
function H gives the expected distance and angle to the wall if the robot's position is given by xt.
Therefore the state space model allows the robot to incorporate the sensor information to update the
estimate of its position.
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NAG Library Routine Document

G13FAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13FAF estimates the parameters of either a standard univariate regression GARCH process, or a
univariate regression-type I AGARCH p; qð Þ process (see Engle and Ng (1993)).

2 Specification

SUBROUTINE G13FAF (DIST, YT, X, LDX, NUM, IP, IQ, NREG, MN, ISYM, NPAR,
THETA, SE, SC, COVR, LDCOVR, HP, ET, HT, LGF, COPTS,
MAXIT, TOL, WORK, LWORK, IFAIL)

&
&

INTEGER LDX, NUM, IP, IQ, NREG, MN, ISYM, NPAR, LDCOVR,
MAXIT, LWORK, IFAIL

&

REAL (KIND=nag_wp) YT(NUM), X(LDX,*), THETA(NPAR), SE(NPAR), SC(NPAR),
COVR(LDCOVR,NPAR), HP, ET(NUM), HT(NUM), LGF, TOL,
WORK(LWORK)

&
&

LOGICAL COPTS(2)
CHARACTER(1) DIST

3 Description

A univariate regression-type I AGARCH p; qð Þ process, with q coefficients �i, for i ¼ 1; 2; . . . ; q, p
coefficients �i, for i ¼ 1; 2; . . . ; p, and k linear regression coefficients bi, for i ¼ 1; 2; . . . ; k, can be
represented by:

yt ¼ bo þ xTt bþ �t ð1Þ

ht ¼ �0 þ
Xq
i¼1
�i �t�i þ �ð Þ2 þ

Xp
i¼1
�iht�i; t ¼ 1; 2; . . . ; T ð2Þ

where �t j  t�1 ¼ N 0; htð Þ or �t j  t�1 ¼ St df ; htð Þ. Here St is a standardized Student's t-distribution
with df degrees of freedom and variance ht, T is the number of terms in the sequence, yt denotes the
endogenous variables, xt the exogenous variables, bo the regression mean, b the regression coefficients,
�t the residuals, ht the conditional variance, df the number of degrees of freedom of the Student's
t-distribution, and  t the set of all information up to time t.

G13FAF provides an estimate for �̂, the parameter vector � ¼ bo; b
T; !Tð Þ where bT ¼ b1; . . . ; bkð Þ,

!T ¼ �0; �1; . . . ; �q; �1; . . . ; �p; �
� �

when DIST ¼ N and !T ¼ �0; �1; . . . ; �q; �1; . . . ; �p; �; df
� �

when
DIST ¼ T .

ISYM, MN and NREG can be used to simplify the GARCH p; qð Þ expression in (1) as follows:

No Regression and No Mean

yt ¼ �t,
ISYM ¼ 0,

MN ¼ 0,

NREG ¼ 0 and

� is a pþ q þ 1ð Þ vector when DIST ¼ N and a pþ q þ 2ð Þ vector when DIST ¼ T .
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No Regression

yt ¼ bo þ �t,
ISYM ¼ 0,

MN ¼ 1,

NREG ¼ 0 and

� is a pþ q þ 2ð Þ vector when DIST ¼ N and a pþ q þ 3ð Þ vector when DIST ¼ T .

Note: if the yt ¼ �þ �t, where � is known (not to be estimated by G13FAF) then (1) can be written as
y�t ¼ �t, where y�t ¼ yt � �. This corresponds to the case No Regression and No Mean, with yt
replaced by yt � �.
No Mean

yt ¼ xTt bþ �t,
ISYM ¼ 0,

MN ¼ 0,

NREG ¼ k and

� is a pþ q þ kþ 1ð Þ vector when DIST ¼ N and a pþ q þ kþ 2ð Þ vector when DIST ¼ T .

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Hamilton J (1994) Time Series Analysis Princeton University Press

5 Arguments

1: DIST – CHARACTER(1) Input

On entry: the type of distribution to use for et.

DIST ¼ N
A Normal distribution is used.

DIST ¼ T
A Student's t-distribution is used.

Constraint: DIST ¼ N or T .

2: YTðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of observations, yt , for t ¼ 1; 2; . . . ; T.

3: XðLDX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least NREG.

On entry: row t of X must contain the time dependent exogenous vector xt, where
xTt ¼ x1t ; . . . ; x

k
t

� �
, for t ¼ 1; 2; . . . ; T.
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4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G13FAF
is called.

Constraint: LDX � NUM.

5: NUM – INTEGER Input

On entry: T , the number of terms in the sequence.

Constraints:

NUM � max IP; IQð Þ;
NUM � NREGþMN.

6: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.

Constraint: IP � 0 (see also NPAR).

7: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraint: IQ � 1 (see also NPAR).

8: NREG – INTEGER Input

On entry: k, the number of regression coefficients.

Constraint: NREG � 0 (see also NPAR).

9: MN – INTEGER Input

On entry: if MN ¼ 1, the mean term b0 will be included in the model.

Constraint: MN ¼ 0 or 1.

10: ISYM – INTEGER Input

On entry: if ISYM ¼ 1, the asymmetry term � will be included in the model.

Constraint: ISYM ¼ 0 or 1.

11: NPAR – INTEGER Input

On e n t r y : t h e n umb e r o f p a r am e t e r s t o b e i n c l u d e d i n t h e mo d e l .
NPAR ¼ 1þ IQþ IPþ ISYMþMNþ NREG w h e n DIST ¼ N , a n d
NPAR ¼ 2þ IQþ IPþ ISYMþMNþ NREG when DIST ¼ T .

Constraint: NPAR < 20.

12: THETAðNPARÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial parameter estimates for the vector �.

The first element must contain the coefficient �o and the next IQ elements must contain the
coefficients �i, for i ¼ 1; 2; . . . ; q.

The next IP elements must contain the coefficients �j , for j ¼ 1; 2; . . . ; p.

If ISYM ¼ 1, the next element must contain the asymmetry parameter �.

If DIST ¼ T , the next element must contain df , the number of degrees of freedom of the
Student's t-distribution.

If MN ¼ 1, the next element must contain the mean term bo.
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If COPTSð2Þ ¼ :FALSE:, the remaining NREG elements are taken as initial estimates of the
linear regression coefficients bi, for i ¼ 1; 2; . . . ; k.

On exit: the estimated values �̂ for the vector �.

The first element contains the coefficient �o, the next IQ elements contain the coefficients �i, for
i ¼ 1; 2; . . . ; q.

The next IP elements are the coefficients �j , for j ¼ 1; 2; . . . ; p.

If ISYM ¼ 1, the next element contains the estimate for the asymmetry parameter �.

If DIST ¼ T , the next element contains an estimate for df , the number of degrees of freedom of
the Student's t-distribution.

If MN ¼ 1, the next element contains an estimate for the mean term bo.

The final NREG elements are the estimated linear regression coefficients bi, for i ¼ 1; 2; . . . ; k.

13: SEðNPARÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors for �̂.

The first element contains the standard error for �o. The next IQ elements contain the standard
errors for �i, for i ¼ 1; 2; . . . ; q. The next IP elements are the standard errors for �j, for
j ¼ 1; 2; . . . ; p.

If ISYM ¼ 1, the next element contains the standard error for �.

If DIST ¼ T , the next element contains the standard error for df , the number of degrees of
freedom of the Student's t-distribution.

If MN ¼ 1, the next element contains the standard error for bo.

The final NREG elements are the standard errors for bj, for j ¼ 1; 2; . . . ; k.

14: SCðNPARÞ – REAL (KIND=nag_wp) array Output

On exit: the scores for �̂.

The first element contains the score for �o.

The next IQ elements contain the score for �i, for i ¼ 1; 2; . . . ; q.

The next IP elements are the scores for �j, for j ¼ 1; 2; . . . ; p.

If ISYM ¼ 1, the next element contains the score for �.

If DIST ¼ T , the next element contains the score for df , the number of degrees of freedom of
the Student's t-distribution.

If MN ¼ 1, the next element contains the score for bo.

The final NREG elements are the scores for bj, for j ¼ 1; 2; . . . ; k.

15: COVRðLDCOVR;NPARÞ – REAL (KIND=nag_wp) array Output

On exit: the covariance matrix of the parameter estimates �̂, that is the inverse of the Fisher
Information Matrix.

16: LDCOVR – INTEGER Input

On entry: the first dimension of the array COVR as declared in the (sub)program from which
G13FAF is called.

Constraint: LDCOVR � NPAR.
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17: HP – REAL (KIND=nag_wp) Input/Output

On entry: if COPTSð2Þ ¼ :FALSE:, HP is the value to be used for the pre-observed conditional
variance; otherwise HP is not referenced.

On exit: if COPTSð2Þ ¼ :TRUE:, HP is the estimated value of the pre-observed conditional
variance.

18: ETðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated residuals, �t , for t ¼ 1; 2; . . . ; T.

19: HTðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated conditional variances, ht , for t ¼ 1; 2; . . . ; T.

20: LGF – REAL (KIND=nag_wp) Output

On exit: the value of the log-likelihood function at �̂.

21: COPTSð2Þ – LOGICAL array Input

On entry: the options to be used by G13FAF.

COPTSð1Þ ¼ :TRUE:
Stationary conditions are enforced, otherwise they are not.

COPTSð2Þ ¼ :TRUE:
The routine provides initial parameter estimates of the regression terms, otherwise these
are to be provided by you.

22: MAXIT – INTEGER Input

On entry: the maximum number of iterations to be used by the optimization routine when
estimating the GARCH p; qð Þ parameters. If MAXIT is set to 0, the standard errors, score vector
and variance-covariance are calculated for the input value of � in THETA when DIST ¼ N ;
however the value of � is not updated.

Constraint: MAXIT � 0.

23: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance to be used by the optimization routine when estimating the GARCH p; qð Þ
parameters.

24: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
25: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G13FAF is called.

Constraint: LWORK � NREGþ 3ð Þ � NUMþ NPAR þ 403.

26: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13FAF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NREG < 0,
or MN > 1,
or MN < 0,
or ISYM > 1,
or ISYM < 0,
or IQ < 1,
or IP < 0,
or NPAR � 20,
or NPAR has an invalid value,
or LDCOVR < NPAR,
or LDX < NUM,
or DIST 6¼ N ,
or DIST 6¼ T ,
or MAXIT < 0,
or NUM < max IP; IQð Þ,
or NUM < NREGþMN.

IFAIL ¼ 2

On entry, LWORK < NREGþ 3ð Þ � NUMþ NPAR þ 403.

IFAIL ¼ 3

The matrix X is not full rank.

IFAIL ¼ 4

The information matrix is not positive definite.

IFAIL ¼ 5

The maximum number of iterations has been reached.

IFAIL ¼ 6

The log-likelihood cannot be optimized any further.

IFAIL ¼ 7

No feasible model parameters could be found.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13FAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13FAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example fits a GARCH 1; 1ð Þ model with Student's t-distributed residuals to some simulated data.

The process parameter estimates, �̂, are obtained using G13FAF, and a four step ahead volatility
estimate is computed using G13FBF.

The data was simulated using G05PDF.

10.1 Program Text

Program g13fafe

! G13FAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13faf, g13fbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: gamma, hp, lgf, tol
Integer :: i, ifail, ip, iq, isym, l, ldcovr, &

ldx, lwork, maxit, mn, npar, nreg, &
nt, num, pgamma

Logical :: tdist
Character (1) :: dist

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: covr(:,:), et(:), fht(:), ht(:), &

sc(:), se(:), theta(:), work(:), &
x(:,:), yt(:)

Logical :: copts(2)
! .. Executable Statements ..

Write (nout,*) ’G13FAF Example Program Results’
Write (nout,*)
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! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) num, mn, nreg

ldx = num
Allocate (yt(num),x(ldx,nreg))

! Read in the series
Read (nin,*) yt(1:num)

! Read in the exogenous variables
If (nreg>0) Then

Read (nin,*,Iostat=ifail)(x(i,1:nreg),i=1,num)
End If

! Read in details of the model to fit
Read (nin,*) dist, ip, iq, isym

! Read in control parameters
Read (nin,*) copts(1:2), maxit, tol

! Calculate NPAR
npar = 1 + iq + ip + isym + mn + nreg
If (dist==’T’ .Or. dist==’t’) Then

npar = npar + 1
tdist = .True.

Else
tdist = .False.

End If

ldcovr = npar
lwork = (nreg+3)*num + npar + 403
Allocate (theta(npar),se(npar),sc(npar),covr(ldcovr,npar),et(num), &

ht(num),work(lwork))

! Read in initial values
! alpha_0

Read (nin,*) theta(1)
l = 2

! alpha_i
If (iq>0) Then

Read (nin,*) theta(l:(l+iq-1))
l = l + iq

End If
! beta_i

If (ip>0) Then
Read (nin,*) theta(l:(l+ip-1))
l = l + ip

End If
! gamma

If (isym==1) Then
Read (nin,*) theta(l)
pgamma = l
l = l + 1

End If
! degrees of freedom

If (tdist) Then
Read (nin,*) theta(l)
l = l + 1

End If
! mean

If (mn==1) Then
Read (nin,*) theta(l)
l = l + 1

End If
! Regression parameters and pre-observed conditional variance

If (.Not. copts(2)) Then
Read (nin,*) theta(l:(l+nreg-1))
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Read (nin,*) hp
End If

! Fit the GARCH model
ifail = -1
Call g13faf(dist,yt,x,ldx,num,ip,iq,nreg,mn,isym,npar,theta,se,sc,covr, &

ldcovr,hp,et,ht,lgf,copts,maxit,tol,work,lwork,ifail)
If (ifail/=0) Then

If (ifail/=5 .And. ifail/=6) Then
Go To 100

End If
End If

! Read in forecast horizon
Read (nin,*) nt

Allocate (fht(nt))

! Extract the estimate of the asymmetry parameter from theta
If (isym==1) Then

gamma = theta(pgamma)
Else

gamma = 0.0E0_nag_wp
End If

! Calculate the volatility forecast
ifail = 0
Call g13fbf(num,nt,ip,iq,theta,gamma,fht,ht,et,ifail)

! Output the results
Write (nout,*) ’ Parameter Standard’
Write (nout,*) ’ estimates errors’

! Output the coefficient alpha_0
Write (nout,99999) ’Alpha’, 0, theta(1), se(1)
l = 2

! Output the coefficients alpha_i
If (iq>0) Then

Write (nout,99999)(’Alpha’,i-1,theta(i),se(i),i=l,l+iq-1)
l = l + iq

End If
Write (nout,*)

! Output the coefficients beta_j
If (ip>0) Then

Write (nout,99999)(’ Beta’,i-l+1,theta(i),se(i),i=l,l+ip-1)
l = l + ip
Write (nout,*)

End If
! Output the estimated asymmetry parameter, gamma

If (isym==1) Then
Write (nout,99998) ’ Gamma’, theta(l), se(l)
Write (nout,*)
l = l + 1

End If
! Output the estimated degrees of freedom, df

If (dist==’T’) Then
Write (nout,99998) ’ DF’, theta(l), se(l)
Write (nout,*)
l = l + 1

End If
! Output the estimated mean term, b_0

If (mn==1) Then
Write (nout,99999) ’ B’, 0, theta(l), se(l)
l = l + 1

End If
! Output the estimated linear regression coefficients, b_i

If (nreg>0) Then
Write (nout,99999)(’ B’,i-l+1,theta(i),se(i),i=l,l+nreg-1)

End If
Write (nout,*)

! Display the volatility forecast
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Write (nout,99997) ’Volatility forecast = ’, fht(nt)
Write (nout,*)

100 Continue

99999 Format (1X,A,I0,1X,2F16.2)
99998 Format (1X,A,1X,2F16.2)
99997 Format (1X,A,F12.2)

End Program g13fafe

10.2 Program Data

G13FAF Example Program Data
100 1 2 :: NUM,MN,NREG
9.04 9.49 9.12 9.23 9.35
9.09 9.75 9.23 8.76 9.17
9.20 9.64 8.74 9.23 9.42
9.70 9.55 10.00 9.18 9.77
9.80 9.56 9.28 9.68 9.51
9.51 8.97 9.30 9.52 9.41
9.53 9.75 9.72 9.38 9.28
9.42 9.74 9.75 9.60 9.90
9.06 9.92 9.21 9.57 9.42
8.65 8.85 9.61 10.77 10.19

10.47 10.10 10.21 9.96 9.66
9.79 10.30 9.68 10.08 10.38
9.69 9.02 9.89 10.46 10.47
9.99 9.76 9.78 9.62 10.43

10.42 9.95 9.95 9.70 10.24
9.78 9.98 8.73 10.23 9.10

10.27 9.85 10.44 10.30 10.08
10.20 10.14 9.89 9.90 11.33
9.71 9.40 9.97 10.92 9.76

10.16 10.43 9.60 10.29 10.03 :: End of Y
0.12 2.40 0.12 2.40
0.13 2.40 0.14 2.40
0.14 2.40 0.15 2.40
0.16 2.40 0.16 2.40
0.17 2.40 0.18 2.41
0.19 2.41 0.19 2.41
0.20 2.41 0.21 2.41
0.21 2.41 0.22 2.41
0.23 2.41 0.23 2.41
0.24 2.41 0.25 2.42
0.25 2.42 0.26 2.42
0.26 2.42 0.27 2.42
0.28 2.42 0.28 2.42
0.29 2.42 0.30 2.42
0.30 2.42 0.31 2.43
0.32 2.43 0.32 2.43
0.33 2.43 0.33 2.43
0.34 2.43 0.35 2.43
0.35 2.43 0.36 2.43
0.37 2.43 0.37 2.44
0.38 2.44 0.38 2.44
0.39 2.44 0.39 2.44
0.40 2.44 0.41 2.44
0.41 2.44 0.42 2.44
0.42 2.44 0.43 2.45
0.43 2.45 0.44 2.45
0.45 2.45 0.45 2.45
0.46 2.45 0.46 2.45
0.47 2.45 0.47 2.45
0.48 2.45 0.48 2.46
0.49 2.46 0.49 2.46
0.50 2.46 0.50 2.46
0.51 2.46 0.51 2.46
0.52 2.46 0.52 2.46
0.53 2.46 0.53 2.47
0.54 2.47 0.54 2.47
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0.54 2.47 0.55 2.47
0.55 2.47 0.56 2.47
0.56 2.47 0.57 2.47
0.57 2.47 0.57 2.48
0.58 2.48 0.58 2.48
0.59 2.48 0.59 2.48
0.59 2.48 0.60 2.48
0.60 2.48 0.61 2.48
0.61 2.48 0.61 2.49
0.62 2.49 0.62 2.49
0.62 2.49 0.63 2.49
0.63 2.49 0.63 2.49
0.64 2.49 0.64 2.49
0.64 2.49 0.64 2.50 :: End of X
’T’ 1 1 1 :: DIST,IP,IQ,ISYM
T T 200 0.00001 :: COPTS,MAXIT,TOL
0.05 :: ALPHA_0
0.10 :: ALPHA_I
0.15 :: BETA_I

-0.10 :: GAMMA
2.60 :: DF
1.50 :: MEAN
4 :: NT

10.3 Program Results

G13FAF Example Program Results

Parameter Standard
estimates errors

Alpha0 0.00 0.06
Alpha1 0.11 0.13

Beta1 0.66 0.23

Gamma -0.62 0.62

DF 6.25 4.70

B0 3.85 24.11
B1 1.48 1.82
B2 2.15 10.16

Volatility forecast = 0.09
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NAG Library Routine Document

G13FBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13FBF forecasts the conditional variances ht, for t ¼ T þ 1; . . . ; T þ �, from a type I AGARCH p; qð Þ
sequence, where � is the forecast horizon and T is the current time (see Engle and Ng (1993)).

2 Specification

SUBROUTINE G13FBF (NUM, NT, IP, IQ, THETA, GAMMA, FHT, HT, ET, IFAIL)

INTEGER NUM, NT, IP, IQ, IFAIL
REAL (KIND=nag_wp) THETA(IQ+IP+1), GAMMA, FHT(NT), HT(NUM), ET(NUM)

3 Description

Assume the GARCH p; qð Þ process can be represented by:

ht ¼ �0 þ
Xq
i¼1
�i �t�i þ �ð Þ2 þ

Xp
i¼1
�iht�i; t ¼ 1; 2; . . . ; T

where �t j  t�1 ¼ N 0; htð Þ or �t j  t�1 ¼ St df ; htð Þ, has been modelled by G13FAF and the estimated
conditional variances and residuals are contained in the arrays HT and ET respectively.

G13FBF will then use the last max p; qð Þ elements of the arrays HT and ET to estimate the conditional
variance forecasts, ht j  T , where t ¼ T þ 1; . . . ; T þ � and � is the forecast horizon.

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Hamilton J (1994) Time Series Analysis Princeton University Press

5 Arguments

1: NUM – INTEGER Input

On entry: the number of terms in the arrays HT and ET from the modelled sequence.

Constraint: max IP; IQð Þ � NUM.

2: NT – INTEGER Input

On entry: �, the forecast horizon.

Constraint: NT > 0.

3: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.
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Constraints:

max IP; IQð Þ � 20;
IP � 0.

4: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraints:

max IP; IQð Þ � 20;
IQ � 1.

5: THETAðIQþ IPþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the first element must contain the coefficient �o and the next IQ elements must contain
the coefficients �i, for i ¼ 1; 2; . . . ; q. The remaining IP elements must contain the coefficients �j ,
for j ¼ 1; 2; . . . ; p.

6: GAMMA – REAL (KIND=nag_wp) Input

On entry: the asymmetry parameter � for the GARCH p; qð Þ sequence.

7: FHTðNTÞ – REAL (KIND=nag_wp) array Output

On exit: the forecast values of the conditional variance, ht, for t ¼ T þ 1; . . . ; T þ �.

8: HTðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of past conditional variances for the GARCH p; qð Þ process, ht , for
t ¼ 1; 2; . . . ; T .

9: ETðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of past residuals for the GARCH p; qð Þ process, �t , for t ¼ 1; 2; . . . ; T.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NUM < max IP; IQð Þ,
or IQ < 1,
or IP < 0,
or max IP; IQð Þ > 20,
or NT � 0.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13FBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in G13FAF.
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NAG Library Routine Document

G13FCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13FCF estimates the parameters of a univariate regression-type II AGARCH p; qð Þ process.

2 Specification

SUBROUTINE G13FCF (DIST, YT, X, LDX, NUM, IP, IQ, NREG, MN, NPAR, THETA,
SE, SC, COVR, LDCOVR, HP, ET, HT, LGF, COPTS, MAXIT,
TOL, WORK, LWORK, IFAIL)

&
&

INTEGER LDX, NUM, IP, IQ, NREG, MN, NPAR, LDCOVR, MAXIT,
LWORK, IFAIL

&

REAL (KIND=nag_wp) YT(NUM), X(LDX,*), THETA(NPAR), SE(NPAR), SC(NPAR),
COVR(LDCOVR,NPAR), HP, ET(NUM), HT(NUM), LGF, TOL,
WORK(LWORK)

&
&

LOGICAL COPTS(2)
CHARACTER(1) DIST

3 Description

A univariate regression-type II AGARCH p; qð Þ process, with q coefficients �i, for i ¼ 1; 2; . . . ; q, p
coefficients, �i, for i ¼ 1; 2; . . . ; p, and k linear regression coefficients bi, for i ¼ 1; 2; . . . ; k, can be
represented by:

yt ¼ bo þ xTt bþ �t ð1Þ

ht ¼ �0 þ
Xq
i¼1
�i �t�ij j þ ��t�ið Þ2 þ

Xp
i¼1
�iht�i; t ¼ 1; 2; . . . ; T : ð2Þ

where �t j  t�1 ¼ N 0; htð Þ or �t j  t�1 ¼ St df ; htð Þ. Here St is a standardized Student's t-distribution
with df degrees of freedom and variance ht, T is the number of terms in the sequence, yt denotes the
endogenous variables, xt the exogenous variables, bo the regression mean, b the regression coefficients,
�t the residuals, ht the conditional variance, and  t the set of all information up to time t.

G13FCF provides an estimate for the parameter vector � ¼ bo; b
T; !Tð Þ where bT ¼ b1; . . . ; bkð Þ,

!T ¼ �0; �1; . . . ; �q; �1; . . . ; �p; �
� �

when DIST ¼ N and !T ¼ �0; �1; . . . ; �q; �1; . . . ; �p; �; df
� �

when
DIST ¼ T .

MN and NREG can be used to simplify the GARCH p; qð Þ expression in (1) as follows:

No Regression and No Mean

yt ¼ �t,
MN ¼ 0,

NREG ¼ 0 and

� is a pþ q þ 2ð Þ vector when DIST ¼ N and a pþ q þ 3ð Þ vector when DIST ¼ T .

No Regression

yt ¼ bo þ �t,
MN ¼ 1,

NREG ¼ 0 and
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� is a pþ q þ 3ð Þ vector when DIST ¼ N and a pþ q þ 4ð Þ � 1 vector when DIST ¼ T .

Note: if the yt ¼ �þ �t, where � is known (not to be estimated by G13FCF) then (1) can be written as
y�t ¼ �t, where y�t ¼ yt � �. This corresponds to the case No Regression and No Mean, with yt
replaced by yt � �.
No Mean

yt ¼ xTt bþ �t,
MN ¼ 0,

NREG ¼ k and

� is a pþ q þ kþ 2ð Þ vector when DIST ¼ N and a pþ q þ kþ 3ð Þ vector when DIST ¼ T .

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Hamilton J (1994) Time Series Analysis Princeton University Press

5 Arguments

1: DIST – CHARACTER(1) Input

On entry: the type of distribution to use for et.

DIST ¼ N
A Normal distribution is used.

DIST ¼ T
A Student's t-distribution is used.

Constraint: DIST ¼ N or T .

2: YTðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of observations, yt , for t ¼ 1; 2; . . . ; T.

3: XðLDX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least NREG.

On entry: row t of X must contain the time dependent exogenous vector xt, where
xTt ¼ x1t ; . . . ; x

k
t

� �
, for t ¼ 1; 2; . . . ; T.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G13FCF
is called.

Constraint: LDX � NUM.

5: NUM – INTEGER Input

On entry: T , the number of terms in the sequence.

G13FCF NAG Library Manual

G13FCF.2 Mark 26



Constraints:

NUM � max IP; IQð Þ;
NUM � NREGþMN.

6: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.

Constraint: IP � 0 (see also NPAR).

7: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraint: IQ � 1 (see also NPAR).

8: NREG – INTEGER Input

On entry: k, the number of regression coefficients.

Constraint: NREG � 0 (see also NPAR).

9: MN – INTEGER Input

On entry: if MN ¼ 1, the mean term b0 will be included in the model.

Constraint: MN ¼ 0 or 1.

10: NPAR – INTEGER Input

On e n t r y : t h e n umb e r o f p a r am e t e r s t o b e i n c l u d e d i n t h e mo d e l .
NPAR ¼ 2þ IQþ IPþMNþ NREG w h e n DIST ¼ N a n d
NPAR ¼ 3þ IQþ IPþMNþ NREG when DIST ¼ T .

Constraint: NPAR < 20.

11: THETAðNPARÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial parameter estimates for the vector �.

The first element must contain the coefficient �o and the next IQ elements must contain the
coefficients �i, for i ¼ 1; 2; . . . ; q.

The next IP elements must contain the coefficients �j , for j ¼ 1; 2; . . . ; p.

The next element must contain the asymmetry parameter �.

If DIST ¼ T , the next element must contain df , the number of degrees of freedom of the
Student's t-distribution.

If MN ¼ 1, the next element contains the mean term bo.

If COPTSð2Þ ¼ :FALSE:, the remaining NREG elements are taken as initial estimates of the
linear regression coefficients bi, for i ¼ 1; 2; . . . ; k.

On exit: the estimated values �̂ for the vector �.

The first element contains the coefficient �o, the next IQ elements contain the coefficients �i, for
i ¼ 1; 2; . . . ; q.

The next IP elements are the coefficients �j , for j ¼ 1; 2; . . . ; p.

The next element contains the estimate for the asymmetry parameter �.

If DIST ¼ T , the next element contains an estimate for df , the number of degrees of freedom of
the Student's t-distribution.

If MN ¼ 1, the next element contains an estimate for the mean term bo.
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The final NREG elements are the estimated linear regression coefficients bi, for i ¼ 1; 2; . . . ; k.

12: SEðNPARÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors for �̂.

The first element contains the standard error for �o and the next IQ elements contain the standard
errors for �i, for i ¼ 1; 2; . . . ; q.

The next IP elements are the standard errors for �j, for j ¼ 1; 2; . . . ; p.

The next element contains the standard error for �.

If DIST ¼ T , the next element contains the standard error for df , the number of degrees of
freedom of the Student's t-distribution.

If MN ¼ 1, the next element contains the standard error for bo.

The final NREG elements are the standard errors for bj, for j ¼ 1; 2; . . . ; k.

13: SCðNPARÞ – REAL (KIND=nag_wp) array Output

On exit: the scores for �̂.

The first element contains the score for �o and the next IQ elements contain the score for �i, for
i ¼ 1; 2; . . . ; q.

The next IP elements are the scores for �j, for j ¼ 1; 2; . . . ; p.

The next element contains the score for �.

If DIST ¼ T , the next element contains the score for df , the number of degrees of freedom of
the Student's t-distribution.

If MN ¼ 1, the next element contains the score for bo.

The final NREG elements are the scores for bj, for j ¼ 1; 2; . . . ; k.

14: COVRðLDCOVR;NPARÞ – REAL (KIND=nag_wp) array Output

On exit: the covariance matrix of the parameter estimates �̂, that is the inverse of the Fisher
Information Matrix.

15: LDCOVR – INTEGER Input

On entry: the first dimension of the array COVR as declared in the (sub)program from which
G13FCF is called.

Constraint: LDCOVR � NPAR.

16: HP – REAL (KIND=nag_wp) Input/Output

On entry: if COPTSð2Þ ¼ :FALSE:, HP is the value to be used for the pre-observed conditional
variance; otherwise HP is not referenced.

On exit: if COPTSð2Þ ¼ :TRUE:, HP is the estimated value of the pre-observed conditional
variance.

17: ETðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated residuals, �t , for t ¼ 1; 2; . . . ; T.

18: HTðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated conditional variances, ht , for t ¼ 1; 2; . . . ; T.
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19: LGF – REAL (KIND=nag_wp) Output

On exit: the value of the log-likelihood function at �̂.

20: COPTSð2Þ – LOGICAL array Input

On entry: the options to be used by G13FCF.

COPTSð1Þ ¼ :TRUE:
Stationary conditions are enforced, otherwise they are not.

COPTSð2Þ ¼ :TRUE:
The routine provides initial parameter estimates of the regression terms, otherwise these
are to be provided by you.

21: MAXIT – INTEGER Input

On entry: the maximum number of iterations to be used by the optimization routine when
estimating the GARCH p; qð Þ parameters. If MAXIT is set to 0, the standard errors, score vector
and variance-covariance are calculated for the input value of � in THETA when DIST ¼ N ;
however the value of � is not updated.

Constraint: MAXIT � 0.

22: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance to be used by the optimization routine when estimating the GARCH p; qð Þ
parameters.

23: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
24: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G13FCF is called.

Constraint: LWORK � NREGþ 3ð Þ � NUMþ NPAR þ 403.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13FCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NREG < 0,
or MN > 1,
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or MN < 0,
or IQ < 1,
or IP < 0,
or NPAR � 20,
or LDCOVR < NPAR,
or LDX < NUM,
or DIST 6¼ N , and DIST 6¼ T ,
or MAXIT < 0,
or NUM < NREGþMN,
or NPAR has an invalid value NUM < max IP; IQð Þ.

IFAIL ¼ 2

On entry, LWORK < NREGþ 3ð Þ � NUMþ 3.

IFAIL ¼ 3

The matrix X is not full rank.

IFAIL ¼ 4

The information matrix is not positive definite.

IFAIL ¼ 5

The maximum number of iterations has been reached.

IFAIL ¼ 6

The log-likelihood cannot be optimized any further.

IFAIL ¼ 7

No feasible model parameters could be found.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13FCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13FCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example fits a GARCH 1; 1ð Þ model with Student's t-distributed residuals to some simulated data.

The process parameter estimates, �̂, are obtained using G13FCF, and a four step ahead volatility
estimate is computed using G13FDF.

The data was simulated using G05PEF.

10.1 Program Text

Program g13fcfe

! G13FCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13fcf, g13fdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: gamma, hp, lgf, tol
Integer :: i, ifail, ip, iq, l, ldcovr, ldx, &

lwork, maxit, mn, npar, nreg, nt, &
num, pgamma

Logical :: tdist
Character (1) :: dist

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: covr(:,:), et(:), fht(:), ht(:), &

sc(:), se(:), theta(:), work(:), &
x(:,:), yt(:)

Logical :: copts(2)
! .. Executable Statements ..

Write (nout,*) ’G13FCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) num, mn, nreg

ldx = num
Allocate (yt(num),x(ldx,nreg))

! Read in the series
Read (nin,*) yt(1:num)

! Read in the exogenous variables
If (nreg>0) Then

Read (nin,*)(x(i,1:nreg),i=1,num)
End If

! Read in details of the model to fit
Read (nin,*) dist, ip, iq
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! Read in control parameters
Read (nin,*) copts(1:2), maxit, tol

! Calculate NPAR
npar = 2 + iq + ip + mn + nreg
If (dist==’T’ .Or. dist==’t’) Then

npar = npar + 1
tdist = .True.

Else
tdist = .False.

End If

ldcovr = npar
lwork = (nreg+3)*num + npar + 403
Allocate (theta(npar),se(npar),sc(npar),covr(ldcovr,npar),et(num), &

ht(num),work(lwork))

! Read in initial values
! alpha_0

Read (nin,*) theta(1)
l = 2

! alpha_i
If (iq>0) Then

Read (nin,*) theta(l:(l+iq-1))
l = l + iq

End If
! beta_i

If (ip>0) Then
Read (nin,*) theta(l:(l+ip-1))
l = l + ip

End If
! gamma

Read (nin,*) theta(l)
pgamma = l
l = l + 1

! degrees of freedom
If (tdist) Then

Read (nin,*) theta(l)
l = l + 1

End If
! mean

If (mn==1) Then
Read (nin,*) theta(l)
l = l + 1

End If
! Regression parameters and pre-observed conditional variance

If (.Not. copts(2)) Then
Read (nin,*) theta(l:(l+nreg-1))
Read (nin,*) hp

End If

! Fit the GARCH model
ifail = -1
Call g13fcf(dist,yt,x,ldx,num,ip,iq,nreg,mn,npar,theta,se,sc,covr, &

ldcovr,hp,et,ht,lgf,copts,maxit,tol,work,lwork,ifail)
If (ifail/=0) Then

If (ifail/=5 .And. ifail/=6) Then
Go To 100

End If
End If

! Read in forecast horizon
Read (nin,*) nt

Allocate (fht(nt))

! Extract the estimate of the asymmetry parameter from theta
gamma = theta(pgamma)

! Calculate the volatility forecast
ifail = 0
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Call g13fdf(num,nt,ip,iq,theta,gamma,fht,ht,et,ifail)

! Output the results
Write (nout,*) ’ Parameter Standard’
Write (nout,*) ’ estimates errors’

! Output the coefficient alpha_0
Write (nout,99999) ’Alpha’, 0, theta(1), se(1)
l = 2

! Output the coefficients alpha_i
If (iq>0) Then

Write (nout,99999)(’Alpha’,i-1,theta(i),se(i),i=l,l+iq-1)
l = l + iq

End If
Write (nout,*)

! Output the coefficients beta_j
If (ip>0) Then

Write (nout,99999)(’ Beta’,i-l+1,theta(i),se(i),i=l,l+ip-1)
l = l + ip
Write (nout,*)

End If
! Output the estimated asymmetry parameter, gamma

Write (nout,99998) ’ Gamma’, theta(l), se(l)
Write (nout,*)
l = l + 1

! Output the estimated degrees of freedom, df
If (dist==’T’) Then

Write (nout,99998) ’ DF’, theta(l), se(l)
Write (nout,*)
l = l + 1

End If
! Output the estimated mean term, b_0

If (mn==1) Then
Write (nout,99999) ’ B’, 0, theta(l), se(l)
l = l + 1

End If
! Output the estimated linear regression coefficients, b_i

If (nreg>0) Then
Write (nout,99999)(’ B’,i-l+1,theta(i),se(i),i=l,l+nreg-1)

End If
Write (nout,*)

! Display the volatility forecast
Write (nout,*)
Write (nout,99997) ’Volatility forecast = ’, fht(nt)
Write (nout,*)

100 Continue

99999 Format (1X,A,I0,1X,2F16.2)
99998 Format (1X,A,1X,2F16.2)
99997 Format (1X,A,F12.2)

End Program g13fcfe

10.2 Program Data

G13FCF Example Program Data
100 1 2 :: NUM,MN,NREG
8.87 9.82 9.02 9.24 9.46
8.93 10.20 9.19 8.27 9.08
9.11 9.95 8.11 9.13 9.49

10.08 9.74 10.72 8.94 10.10
10.19 9.68 9.09 9.88 9.55
9.52 8.45 9.14 9.52 9.27
9.50 9.93 9.86 9.16 9.00
9.28 9.83 9.86 9.55 10.12
8.47 10.10 8.70 9.44 9.10
7.54 8.08 9.47 12.32 10.75

11.66 10.59 10.93 10.21 9.39
9.74 10.91 9.46 10.32 11.00
9.47 8.14 9.88 11.15 11.21
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10.06 9.50 9.56 9.23 10.88
10.93 9.89 9.89 9.37 10.44
9.52 9.92 7.44 10.36 7.73

10.53 9.38 11.14 10.73 10.02
10.36 10.18 9.52 9.59 12.73
9.38 8.69 9.78 11.85 9.23

10.13 10.77 8.68 10.39 9.74 :: End of Y
0.12 2.40 0.12 2.40
0.13 2.40 0.14 2.40
0.14 2.40 0.15 2.40
0.16 2.40 0.16 2.40
0.17 2.40 0.18 2.41
0.19 2.41 0.19 2.41
0.20 2.41 0.21 2.41
0.21 2.41 0.22 2.41
0.23 2.41 0.23 2.41
0.24 2.41 0.25 2.42
0.25 2.42 0.26 2.42
0.26 2.42 0.27 2.42
0.28 2.42 0.28 2.42
0.29 2.42 0.30 2.42
0.30 2.42 0.31 2.43
0.32 2.43 0.32 2.43
0.33 2.43 0.33 2.43
0.34 2.43 0.35 2.43
0.35 2.43 0.36 2.43
0.37 2.43 0.37 2.44
0.38 2.44 0.38 2.44
0.39 2.44 0.39 2.44
0.40 2.44 0.41 2.44
0.41 2.44 0.42 2.44
0.42 2.44 0.43 2.45
0.43 2.45 0.44 2.45
0.45 2.45 0.45 2.45
0.46 2.45 0.46 2.45
0.47 2.45 0.47 2.45
0.48 2.45 0.48 2.46
0.49 2.46 0.49 2.46
0.50 2.46 0.50 2.46
0.51 2.46 0.51 2.46
0.52 2.46 0.52 2.46
0.53 2.46 0.53 2.47
0.54 2.47 0.54 2.47
0.54 2.47 0.55 2.47
0.55 2.47 0.56 2.47
0.56 2.47 0.57 2.47
0.57 2.47 0.57 2.48
0.58 2.48 0.58 2.48
0.59 2.48 0.59 2.48
0.59 2.48 0.60 2.48
0.60 2.48 0.61 2.48
0.61 2.48 0.61 2.49
0.62 2.49 0.62 2.49
0.62 2.49 0.63 2.49
0.63 2.49 0.63 2.49
0.64 2.49 0.64 2.49
0.64 2.49 0.64 2.50 :: End of X
’T’ 1 1 :: DIST,IP,IQ
T T 200 0.00001 :: COPTS,MAXIT,TOL
0.05 :: ALPHA_0
0.05 :: ALPHA_I
0.40 :: BETA_I

-0.20 :: GAMMA
2.60 :: DF
1.50 :: MEAN
4 :: NT
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10.3 Program Results

G13FCF Example Program Results

Parameter Standard
estimates errors

Alpha0 6.82 1.68
Alpha1 0.00 1.00

Beta1 0.00 3.17

Gamma -0.36 1.01

DF 2.10 0.33

B0 -25.14 4.80
B1 -0.95 0.90
B2 14.41 2.08

Volatility forecast = 6.82
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NAG Library Routine Document

G13FDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13FDF forecasts the conditional variances, ht; t ¼ T þ 1; . . . ; T þ � from a type II AGARCH p; qð Þ
sequence, where � is the forecast horizon and T is the current time (see Engle and Ng (1993)).

2 Specification

SUBROUTINE G13FDF (NUM, NT, IP, IQ, THETA, GAMMA, FHT, HT, ET, IFAIL)

INTEGER NUM, NT, IP, IQ, IFAIL
REAL (KIND=nag_wp) THETA(IQ+IP+1), GAMMA, FHT(NT), HT(NUM), ET(NUM)

3 Description

Assume the GARCH p; qð Þ process can be represented by:

ht ¼ �0 þ
Xq
i¼1
�i �t�ij j þ ��t�ið Þ2 þ

Xp
i¼1
�iht�i; t ¼ 1; 2; . . . ; T :

where �t j  t�1 ¼ N 0; htð Þ or �t j  t�1 ¼ St df ; htð Þ, has been modelled by G13FCF and the estimated
conditional variances and residuals are contained in the arrays HT and ET respectively.

G13FDF will then use the last max p; qð Þ elements of the arrays HT and ET to estimate the conditional
variance forecasts, ht j  T , where t ¼ T þ 1; . . . ; T þ � and � is the forecast horizon.

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Hamilton J (1994) Time Series Analysis Princeton University Press

5 Arguments

1: NUM – INTEGER Input

On entry: the number of terms in the arrays HT and ET from the modelled sequence.

Constraint: max IP; IQð Þ � NUM.

2: NT – INTEGER Input

On entry: �, the forecast horizon.

Constraint: NT > 0.

3: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.
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Constraints:

max IP; IQð Þ � 20;
IP � 0.

4: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraints:

max IP; IQð Þ � 20;
IQ � 1.

5: THETAðIQþ IPþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the first element must contain the coefficient �o and the next IQ elements must contain
the coefficients �i, for i ¼ 1; 2; . . . ; q. The remaining IP elements must contain the coefficients �j ,
for j ¼ 1; 2; . . . ; p.

6: GAMMA – REAL (KIND=nag_wp) Input

On entry: the asymmetry parameter � for the GARCH p; qð Þ sequence.

7: FHTðNTÞ – REAL (KIND=nag_wp) array Output

On exit: the forecast values of the conditional variance, ht, for t ¼ T þ 1; . . . ; T þ �.

8: HTðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of past conditional variances for the GARCH p; qð Þ process, ht , for
t ¼ 1; 2; . . . ; T .

9: ETðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of past residuals for the GARCH p; qð Þ process, �t , for t ¼ 1; 2; . . . ; T.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NUM < max IP; IQð Þ,
or IQ < 1,
or IP < 0,
or max IP; IQð Þ > 20,
or NT � 0.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13FDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in G13FCF.
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NAG Library Routine Document

G13FEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13FEF estimates the parameters of a univariate regression-GJR GARCH p; qð Þ process (see Glosten et
al. (1993)).

2 Specification

SUBROUTINE G13FEF (DIST, YT, X, LDX, NUM, IP, IQ, NREG, MN, NPAR, THETA,
SE, SC, COVR, LDCOVR, HP, ET, HT, LGF, COPTS, MAXIT,
TOL, WORK, LWORK, IFAIL)

&
&

INTEGER LDX, NUM, IP, IQ, NREG, MN, NPAR, LDCOVR, MAXIT,
LWORK, IFAIL

&

REAL (KIND=nag_wp) YT(NUM), X(LDX,*), THETA(NPAR), SE(NPAR), SC(NPAR),
COVR(LDCOVR,NPAR), HP, ET(NUM), HT(NUM), LGF, TOL,
WORK(LWORK)

&
&

LOGICAL COPTS(2)
CHARACTER(1) DIST

3 Description

A univariate regression-GJR GARCH p; qð Þ process, with q coefficients �i, for i ¼ 1; 2; . . . ; q, p
coefficients �i, for i ¼ 1; 2; . . . ; p, and k linear regression coefficients bi, for i ¼ 1; 2; . . . ; k, can be
represented by:

yt ¼ bo þ xTt bþ �t ð1Þ

ht ¼ �0 þ
Xq
i¼1

�i þ �It�ið Þ�2t�i þ
Xp
i¼1
�iht�i; t ¼ 1; 2; . . . ; T ð2Þ

where It ¼ 1, if �t < 0, It ¼ 0, if �t � 0, and �t j  t�1 ¼ N 0; htð Þ or �t j  t�1 ¼ St df ; htð Þ. Here St is a
standardized Student's t-distribution with df degrees of freedom and variance ht, T is the number of
terms in the sequence, yt denotes the endogenous variables, xt the exogenous variables, bo the
regression mean, b the regression coefficients, �t the residuals, ht is the conditional variance, and  t the
set of all information up to time t.

G13FEF provides an estimate for �̂, the parameter vector � ¼ bo; b
T; !Tð Þ where bT ¼ b1; . . . ; bkð Þ,

!T ¼ �0; �1; . . . ; �q; �1; . . . ; �p; �
� �

when DIST ¼ N and !T ¼ �0; �1; . . . ; �q; �1; . . . ; �p; �; df
� �

when
DIST ¼ T .

MN, NREG can be used to simplify the GARCH p; qð Þ expression in (1) as follows:

No Regression and No Mean

yt ¼ �t,
MN ¼ 0,

NREG ¼ 0 and

� is a pþ q þ 2ð Þ vector when DIST ¼ N , and a pþ q þ 3ð Þ vector when DIST ¼ T .

No Regression

yt ¼ bo þ �t,
MN ¼ 1,
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NREG ¼ 0 and

� is a pþ q þ 3ð Þ vector when DIST ¼ N , and a pþ q þ 4ð Þ vector when DIST ¼ T .

Note: if the yt ¼ �þ �t, where � is known (not to be estimated by G13FEF) then (1) can be written as
y�t ¼ �t, where y�t ¼ yt � �. This corresponds to the case No Regression and No Mean, with yt
replaced by yt � �.
No Mean

yt ¼ xTt bþ �t,
MN ¼ 0,

NREG ¼ k and

� is a pþ q þ kþ 2ð Þ vector when DIST ¼ N , and a pþ q þ kþ 3ð Þ vector when DIST ¼ T .

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Glosten L, Jagannathan R and Runkle D (1993) Relationship between the expected value and the
volatility of nominal excess return on stocks Journal of Finance 48 1779–1801

Hamilton J (1994) Time Series Analysis Princeton University Press

5 Arguments

1: DIST – CHARACTER(1) Input

On entry: the type of distribution to use for et.

DIST ¼ N
A Normal distribution is used.

DIST ¼ T
A Student's t-distribution is used.

Constraint: DIST ¼ N or T .

2: YTðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of observations, yt , for t ¼ 1; 2; . . . ; T.

3: XðLDX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least NREG.

On entry: row t of X must contain the time dependent exogenous vector xt, where
xTt ¼ x1t ; . . . ; x

k
t

� �
, for t ¼ 1; 2; . . . ; T.

4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G13FEF
is called.

Constraint: LDX � NUM.
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5: NUM – INTEGER Input

On entry: T , the number of terms in the sequence.

Constraints:

NUM � max IP; IQð Þ;
NUM � NREGþMN.

6: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.

Constraint: IP � 0 (see also NPAR).

7: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraint: IQ � 1 (see also NPAR).

8: NREG – INTEGER Input

On entry: k, the number of regression coefficients.

Constraint: NREG � 0 (see also NPAR).

9: MN – INTEGER Input

On entry: if MN ¼ 1, the mean term b0 will be included in the model.

Constraint: MN ¼ 0 or 1.

10: NPAR – INTEGER Input

On e n t r y : t h e n umb e r o f p a r am e t e r s t o b e i n c l u d e d i n t h e mo d e l .
NPAR ¼ 2þ IQþ IPþMNþ NREG w h e n DIST ¼ N a n d
NPAR ¼ 3þ IQþ IPþMNþ NREG when DIST ¼ T .

Constraint: NPAR < 20.

11: THETAðNPARÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial parameter estimates for the vector �.

The first element must contain the coefficient �o and the next IQ elements contain the
coefficients �i, for i ¼ 1; 2; . . . ; q.

The next IP elements must contain the coefficients �j , for j ¼ 1; 2; . . . ; p.

The next element must contain the asymmetry parameter �.

If DIST ¼ T , the next element contains df , the number of degrees of freedom of the Student's
t-distribution.

If MN ¼ 1, the next element must contain the mean term bo.

If COPTSð2Þ ¼ :FALSE:, the remaining NREG elements are taken as initial estimates of the
linear regression coefficients bi, for i ¼ 1; 2; . . . ; k.

On exit: the estimated values �̂ for the vector �.

The first element contains the coefficient �o, the next IQ elements contain the coefficients �i, for
i ¼ 1; 2; . . . ; q.

The next IP elements are the moving average coefficients �j , for j ¼ 1; 2; . . . ; p.

The next element contains the estimate for the asymmetry parameter �.
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If DIST ¼ T , the next element contains an estimate for df , the number of degrees of freedom of
the Student's t-distribution.

If MN ¼ 1, the next element contains an estimate for the mean term bo.

The final NREG elements are the estimated linear regression coefficients bi, for i ¼ 1; 2; . . . ; k.

12: SEðNPARÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors for �̂.

The first element contains the standard error for �o and the next IQ elements contain the standard
errors for �i, for i ¼ 1; 2; . . . ; q.

The next IP elements are the standard errors for �j, for j ¼ 1; 2; . . . ; p.

The next element contains the standard error for �.

If DIST ¼ T , the next element contains the standard error for df , the number of degrees of
freedom of the Student's t-distribution.

If MN ¼ 1, the next element contains the standard error for bo.

The final NREG elements are the standard errors for bj, for j ¼ 1; 2; . . . ; k.

13: SCðNPARÞ – REAL (KIND=nag_wp) array Output

On exit: the scores for �̂.

The first element contains the score for �o, the next IQ elements contain the scores for �i, for
i ¼ 1; 2; . . . ; q.

The next IP elements are the score for �j, for j ¼ 1; 2; . . . ; p.

The next element contains the score for �.

If DIST ¼ T , the next element contains the score for df , the number of degrees of freedom of
the Student's t-distribution.

If MN ¼ 1, the next element contains the score for bo.

The final NREG elements are the scores for bj, for j ¼ 1; 2; . . . ; k.

14: COVRðLDCOVR;NPARÞ – REAL (KIND=nag_wp) array Output

On exit: the covariance matrix of the parameter estimates �̂, that is the inverse of the Fisher
Information Matrix.

15: LDCOVR – INTEGER Input

On entry: the first dimension of the array COVR as declared in the (sub)program from which
G13FEF is called.

Constraint: LDCOVR � NPAR.

16: HP – REAL (KIND=nag_wp) Input/Output

On entry: if COPTSð2Þ ¼ :FALSE:, HP is the value to be used for the pre-observed conditional
variance; otherwise HP is not referenced.

On exit: if COPTSð2Þ ¼ :TRUE:, HP is the estimated value of the pre-observed conditional
variance.

17: ETðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated residuals, �t , for t ¼ 1; 2; . . . ; T.
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18: HTðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated conditional variances, ht , for t ¼ 1; 2; . . . ; T.

19: LGF – REAL (KIND=nag_wp) Output

On exit: the value of the log-likelihood function at �̂.

20: COPTSð2Þ – LOGICAL array Input

On entry: the options to be used by G13FEF.

COPTSð1Þ ¼ :TRUE:
Stationary conditions are enforced, otherwise they are not.

COPTSð2Þ ¼ :TRUE:
The routine provides initial parameter estimates of the regression terms, otherwise these
are to be provided by you.

21: MAXIT – INTEGER Input

On entry: the maximum number of iterations to be used by the optimization routine when
estimating the GARCH p; qð Þ parameters. If MAXIT is set to 0, the standard errors, score vector
and variance-covariance are calculated for the input value of � in THETA when DIST ¼ N ;
however the value of � is not updated.

Constraint: MAXIT � 0.

22: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance to be used by the optimization routine when estimating the GARCH p; qð Þ
parameters.

23: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
24: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G13FEF is called.

Constraint: LWORK � NREGþ 3ð Þ � NUMþ NPAR þ 403.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13FEF may return useful information for one or more of the following detected errors or
warnings.
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Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NREG < 0,
or MN > 1,
or MN < 0,
or IQ < 1,
or IP < 0,
or NPAR � 20,
or NPAR has an invalid value,
or LDCOVR < NPAR,
or LDX < NUM,
or DIST 6¼ N ,
or DIST 6¼ T ,
or MAXIT < 0,
or NUM < max IP; IQð Þ,
or NUM < NREGþMN.

IFAIL ¼ 2

On entry, LWORK < NREGþ 3ð Þ � NUMþ NPAR þ 403.

IFAIL ¼ 3

The matrix X is not full rank.

IFAIL ¼ 4

The information matrix is not positive definite.

IFAIL ¼ 5

The maximum number of iterations has been reached.

IFAIL ¼ 6

The log-likelihood cannot be optimized any further.

IFAIL ¼ 7

No feasible model parameters could be found.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

G13FEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13FEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example fits a GARCH 1; 1ð Þ model with Student's t-distributed residuals to some simulated data.

The process parameter estimates, �̂, are obtained using G13FEF, and a four step ahead volatility
estimate is computed using G13FFF.

The data was simulated using G05PFF.

10.1 Program Text

Program g13fefe

! G13FEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13fef, g13fff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: gamma, hp, lgf, tol
Integer :: i, ifail, ip, iq, l, ldcovr, ldx, &

lwork, maxit, mn, npar, nreg, nt, &
num, pgamma

Logical :: tdist
Character (1) :: dist

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: covr(:,:), et(:), fht(:), ht(:), &

sc(:), se(:), theta(:), work(:), &
x(:,:), yt(:)

Logical :: copts(2)
! .. Executable Statements ..

Write (nout,*) ’G13FEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) num, mn, nreg

ldx = num
Allocate (yt(num),x(ldx,nreg))

! Read in the series
Read (nin,*) yt(1:num)
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! Read in the exogenous variables
If (nreg>0) Then

Read (nin,*)(x(i,1:nreg),i=1,num)
End If

! Read in details of the model to fit
Read (nin,*) dist, ip, iq

! Read in control parameters
Read (nin,*) copts(1:2), maxit, tol

! Calculate NPAR
npar = 2 + iq + ip + mn + nreg
If (dist==’T’ .Or. dist==’t’) Then

npar = npar + 1
tdist = .True.

Else
tdist = .False.

End If

ldcovr = npar
lwork = (nreg+3)*num + npar + 403
Allocate (theta(npar),se(npar),sc(npar),covr(ldcovr,npar),et(num), &

ht(num),work(lwork))

! Read in initial values
! alpha_0

Read (nin,*) theta(1)
l = 2

! alpha_i
If (iq>0) Then

Read (nin,*) theta(l:(l+iq-1))
l = l + iq

End If
! beta_i

If (ip>0) Then
Read (nin,*) theta(l:(l+ip-1))
l = l + ip

End If
! gamma

Read (nin,*) theta(l)
pgamma = l
l = l + 1

! degrees of freedom
If (tdist) Then

Read (nin,*) theta(l)
l = l + 1

End If
! mean

If (mn==1) Then
Read (nin,*) theta(l)
l = l + 1

End If
! Regression parameters and pre-observed conditional variance

If (.Not. copts(2)) Then
Read (nin,*) theta(l:(l+nreg-1))
Read (nin,*) hp

End If

! Fit the GARCH model
ifail = -1
Call g13fef(dist,yt,x,ldx,num,ip,iq,nreg,mn,npar,theta,se,sc,covr, &

ldcovr,hp,et,ht,lgf,copts,maxit,tol,work,lwork,ifail)
If (ifail/=0) Then

If (ifail/=5 .And. ifail/=6) Then
Go To 100

End If
End If

! Read in forecast horizon
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Read (nin,*) nt

Allocate (fht(nt))

! Extract the estimate of the asymmetry parameter from theta
gamma = theta(pgamma)

! Calculate the volatility forecast
ifail = 0
Call g13fff(num,nt,ip,iq,theta,gamma,fht,ht,et,ifail)

! Output the results
Write (nout,*) ’ Parameter Standard’
Write (nout,*) ’ estimates errors ’

! Output the coefficient alpha_0
Write (nout,99999) ’Alpha’, 0, theta(1), se(1)
l = 2

! Output the coefficients alpha_i
If (iq>0) Then

Write (nout,99999)(’Alpha’,i-1,theta(i),se(i),i=l,l+iq-1)
l = l + iq

End If
Write (nout,*)

! Output the coefficients beta_j
If (ip>0) Then

Write (nout,99999)(’ Beta’,i-l+1,theta(i),se(i),i=l,l+ip-1)
l = l + ip
Write (nout,*)

End If
! Output the estimated asymmetry parameter, gamma

Write (nout,99998) ’ Gamma’, theta(l), se(l)
Write (nout,*)
l = l + 1

! Output the estimated degrees of freedom, df
If (dist==’T’) Then

Write (nout,99998) ’ DF’, theta(l), se(l)
Write (nout,*)
l = l + 1

End If
! Output the estimated mean term, b_0

If (mn==1) Then
Write (nout,99999) ’ B’, 0, theta(l), se(l)
l = l + 1

End If
! Output the estimated linear regression coefficients, b_i

If (nreg>0) Then
Write (nout,99999)(’ B’,i-l+1,theta(i),se(i),i=l,l+nreg-1)

End If
Write (nout,*)

! Display the volatility forecast
Write (nout,*)
Write (nout,99997) ’Volatility forecast = ’, fht(nt)
Write (nout,*)

100 Continue

99999 Format (1X,A,I0,1X,2F16.2)
99998 Format (1X,A,1X,2F16.2)
99997 Format (1X,A,F12.2)

End Program g13fefe

10.2 Program Data

G13FEF Example Program Data
100 1 2 :: NUM,MN,NREG
7.23 6.75 7.21 7.08 6.60
6.59 7.00 7.06 6.82 6.99
7.05 6.12 7.47 6.99 7.26
6.42 7.12 6.77 7.32 6.03
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6.78 7.04 6.27 7.30 7.71
6.62 8.13 7.69 7.62 6.64
8.16 6.95 7.15 7.61 7.42
7.56 8.25 7.43 7.84 7.24
7.63 8.45 8.17 7.40 7.62
8.89 8.14 8.90 7.79 7.19
7.55 7.41 7.93 7.43 8.87
7.27 8.09 7.15 8.21 8.19
7.84 7.99 8.90 8.24 7.97
8.30 8.23 7.98 7.73 8.50
7.71 7.70 8.61 7.68 8.66
8.85 8.09 7.45 6.15 6.28
7.59 6.78 9.32 9.16 8.77
8.27 7.24 7.73 9.01 9.09
7.55 8.64 7.97 8.20 7.72
8.47 8.06 5.55 8.75 10.15 :: End of Y
2.40 0.12 2.40 0.12
2.40 0.13 2.40 0.14
2.40 0.14 2.40 0.15
2.40 0.16 2.40 0.16
2.40 0.17 2.41 0.18
2.41 0.19 2.41 0.19
2.41 0.20 2.41 0.21
2.41 0.21 2.41 0.22
2.41 0.23 2.41 0.23
2.41 0.24 2.42 0.25
2.42 0.25 2.42 0.26
2.42 0.26 2.42 0.27
2.42 0.28 2.42 0.28
2.42 0.29 2.42 0.30
2.42 0.30 2.43 0.31
2.43 0.32 2.43 0.32
2.43 0.33 2.43 0.33
2.43 0.34 2.43 0.35
2.43 0.35 2.43 0.36
2.43 0.37 2.44 0.37
2.44 0.38 2.44 0.38
2.44 0.39 2.44 0.39
2.44 0.40 2.44 0.41
2.44 0.41 2.44 0.42
2.44 0.42 2.45 0.43
2.45 0.43 2.45 0.44
2.45 0.45 2.45 0.45
2.45 0.46 2.45 0.46
2.45 0.47 2.45 0.47
2.45 0.48 2.46 0.48
2.46 0.49 2.46 0.49
2.46 0.50 2.46 0.50
2.46 0.51 2.46 0.51
2.46 0.52 2.46 0.52
2.46 0.53 2.47 0.53
2.47 0.54 2.47 0.54
2.47 0.54 2.47 0.55
2.47 0.55 2.47 0.56
2.47 0.56 2.47 0.57
2.47 0.57 2.48 0.57
2.48 0.58 2.48 0.58
2.48 0.59 2.48 0.59
2.48 0.59 2.48 0.60
2.48 0.60 2.48 0.61
2.48 0.61 2.49 0.61
2.49 0.62 2.49 0.62
2.49 0.62 2.49 0.63
2.49 0.63 2.49 0.63
2.49 0.64 2.49 0.64
2.49 0.64 2.50 0.64 :: End of X
’T’ 1 1 :: DIST,IP,IQ
T T 200 0.00001 :: COPTS,MAXIT,TOL
0.025 :: ALPHA_0
0.050 :: ALPHA_I
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0.400 :: BETA_I
0.045 :: GAMMA
3.250 :: DF
1.500 :: MEAN
4 :: NT

10.3 Program Results

G13FEF Example Program Results

Parameter Standard
estimates errors

Alpha0 0.08 0.12
Alpha1 0.00 0.85

Beta1 0.67 0.19

Gamma 0.35 0.63

DF 5.03 5.13

B0 50.22 3.33
B1 -18.48 1.43
B2 6.45 0.54

Volatility forecast = 0.61
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NAG Library Routine Document

G13FFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13FFF forecasts the conditional variances, ht, for t ¼ T þ 1; . . . ; T þ � from a GJR GARCH p; qð Þ
sequence, where � is the forecast horizon and T is the current time (see Glosten et al. (1993)).

2 Specification

SUBROUTINE G13FFF (NUM, NT, IP, IQ, THETA, GAMMA, FHT, HT, ET, IFAIL)

INTEGER NUM, NT, IP, IQ, IFAIL
REAL (KIND=nag_wp) THETA(IQ+IP+1), GAMMA, FHT(NT), HT(NUM), ET(NUM)

3 Description

Assume the GARCH p; qð Þ process can be represented by:

ht ¼ �0 þ
Xq
i¼1

�i þ �It�ið Þ�2t�i þ
Xp
i¼1
�iht�i; t ¼ 1; 2; . . . ; T :

where �t j  t�1 ¼ N 0; htð Þ or �t j  t�1 ¼ St df ; htð Þ, and It ¼ 1, if �t < 0, or It ¼ 0, if �t � 0, has been
modelled by G13FEF, and the estimated conditional variances and residuals are contained in the arrays
HT and ET respectively.

G13FFF will then use the last max p; qð Þ elements of the arrays HT and ET to estimate the conditional
variance forecasts, ht j  T , where t ¼ T þ 1; . . . ; T þ � and � is the forecast horizon.

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Glosten L, Jagannathan R and Runkle D (1993) Relationship between the expected value and the
volatility of nominal excess return on stocks Journal of Finance 48 1779–1801

Hamilton J (1994) Time Series Analysis Princeton University Press

5 Arguments

1: NUM – INTEGER Input

On entry: the number of terms in the arrays HT and ET from the modelled sequence.

Constraint: max IP; IQð Þ � NUM.

2: NT – INTEGER Input

On entry: �, the forecast horizon.

Constraint: NT > 0.
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3: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.

Constraints:

max IP; IQð Þ � 20;
IP � 0.

4: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraints:

max IP; IQð Þ � 20;
IQ � 1.

5: THETAðIQþ IPþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the first element must contain the coefficient �o and the next IQ elements must contain
the coefficients �i, for i ¼ 1; 2; . . . ; q. The remaining IP elements must contain the coefficients �j ,
for j ¼ 1; 2; . . . ; p.

6: GAMMA – REAL (KIND=nag_wp) Input

On entry: the asymmetry parameter � for the GARCH p; qð Þ sequence.

7: FHTðNTÞ – REAL (KIND=nag_wp) array Output

On exit: the forecast values of the conditional variance, ht, for t ¼ T þ 1; . . . ; T þ �.

8: HTðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of past conditional variances for the GARCH p; qð Þ process, ht , for
t ¼ 1; 2; . . . ; T .

9: ETðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of past residuals for the GARCH p; qð Þ process, �t , for t ¼ 1; 2; . . . ; T.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NUM < max IP; IQð Þ,
or IQ < 1,
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or IP < 0,
or max IP; IQð Þ > 20,
or NT � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable

8 Parallelism and Performance

G13FFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in G13FEF.
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NAG Library Routine Document

G13FGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13FGF estimates the parameters of a univariate regression-exponential GARCH p; qð Þ process (see
Engle and Ng (1993)).

2 Specification

SUBROUTINE G13FGF (DIST, YT, X, LDX, NUM, IP, IQ, NREG, MN, NPAR, THETA,
SE, SC, COVR, LDCOVR, HP, ET, HT, LGF, COPTS, MAXIT,
TOL, WORK, LWORK, IFAIL)

&
&

INTEGER LDX, NUM, IP, IQ, NREG, MN, NPAR, LDCOVR, MAXIT,
LWORK, IFAIL

&

REAL (KIND=nag_wp) YT(NUM), X(LDX,*), THETA(NPAR), SE(NPAR), SC(NPAR),
COVR(LDCOVR,NPAR), HP, ET(NUM), HT(NUM), LGF, TOL,
WORK(LWORK)

&
&

LOGICAL COPTS
CHARACTER(1) DIST

3 Description

A univariate regression-exponential GARCH p; qð Þ process, with q coefficients �i, for i ¼ 1; 2; . . . ; q, q
coefficients 
i, for i ¼ 1; 2; . . . ; q, p coefficients, �i, for i ¼ 1; 2; . . . ; p, and k linear regression
coefficients bi, for i ¼ 1; 2; . . . ; k, can be represented by:

yt ¼ bo þ xTt bþ �t

ln htð Þ ¼ �0 þ
Xq
i¼1
�izt�i þ

Xq
i¼1

i zt�ij j � E zt�ij j½ �ð Þ þ

Xp
i¼1
�iln ht�ið Þ; t ¼ 1; 2; . . . ; T

ð1Þ

where zt ¼
�tffiffiffiffiffi
ht
p , E zt�ij j½ � denotes the expected value of zt�ij j and �t j  t�1 ¼ N 0; htð Þ or

�t j  t�1 ¼ St df ; htð Þ. Here St is a standardized Student's t-distribution with df degrees of freedom
and variance ht, T is the number of terms in the sequence, yt denotes the endogenous variables, xt the
exogenous variables, bo the regression mean, b the regression coefficients, �t the residuals, ht the
conditional variance, df the number of degrees of freedom of the Student's t-distribution, and  t the set
of all information up to time t.

G13FGF provides an estimate �̂, for the vector � ¼ bo; b
T; !Tð Þ where bT ¼ b1; . . . ; bkð Þ,

!T ¼ �0; �1; . . . ; �q; 
1; . . . ; 
q; �1; . . . ; �p; �
� �

w h e n DIST ¼ N , a n d
!T ¼ �0; �1; . . . ; �q; 
1; . . . ; 
q; �1; . . . ; �p; �; df

� �
when DIST ¼ T .

MN, NREG can be used to simplify the GARCH p; qð Þ expression in (1) as follows:

No Regression and No Mean

yt ¼ �t,
MN ¼ 0,

NREG ¼ 0 and

� is a 2� q þ pþ 1ð Þ vector when DIST ¼ N , and a 2� q þ pþ 2ð Þ vector, when DIST ¼ T .
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No Regression

yt ¼ bo þ �t,
MN ¼ 1,

NREG ¼ 0 and

� is a 2� q þ pþ 2ð Þ vector when DIST ¼ N and a 2� q þ pþ 3ð Þ vector, when DIST ¼ T .

Note: if the yt ¼ �þ �t, where � is known (not to be estimated by G13FGF) then (1) can be written as
y�t ¼ �t, where y�t ¼ yt � �. This corresponds to the case No Regression and No Mean, with yt
replaced by yt � �.
No Mean

yt ¼ xTt bþ �t,
MN ¼ 0,

NREG ¼ k and

� is a 2� q þ pþ 1þ kð Þ vector when DIST ¼ N and a 2� q þ pþ 2þ kð Þ vector, when
DIST ¼ T .

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Glosten L, Jagannathan R and Runkle D (1993) Relationship between the expected value and the
volatility of nominal excess return on stocks Journal of Finance 48 1779–1801

Hamilton J (1994) Time Series Analysis Princeton University Press

5 Arguments

1: DIST – CHARACTER(1) Input

On entry: the type of distribution to use for et.

DIST ¼ N
A Normal distribution is used.

DIST ¼ T
A Student's t-distribution is used.

Constraint: DIST ¼ N or T .

2: YTðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of observations, yt , for t ¼ 1; 2; . . . ; T.

3: XðLDX; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array X must be at least NREG.

On entry: row t of X must contain the time dependent exogenous vector xt, where
xTt ¼ x1t ; . . . ; x

k
t

� �
, for t ¼ 1; 2; . . . ; T.
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4: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G13FGF
is called.

Constraint: LDX � NUM.

5: NUM – INTEGER Input

On entry: T , the number of terms in the sequence.

Constraints:

NUM � max IP; IQð Þ;
NUM � NREGþMN.

6: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.

Constraint: IP � 0 (see also NPAR).

7: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraint: IQ � 1 (see also NPAR).

8: NREG – INTEGER Input

On entry: k, the number of regression coefficients.

Constraint: NREG � 0 (see also NPAR).

9: MN – INTEGER Input

On entry: if MN ¼ 1, the mean term b0 will be included in the model.

Constraint: MN ¼ 0 or 1.

10: NPAR – INTEGER Input

On e n t r y : t h e n umb e r o f p a r am e t e r s t o b e i n c l u d e d i n t h e mo d e l .
NPAR ¼ 1þ 2� IQþ IPþMNþ NREG w h e n DIST ¼ N a n d
NPAR ¼ 2þ 2� IQþ IPþMNþ NREG when DIST ¼ T .

Constraint: NPAR < 20.

11: THETAðNPARÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial parameter estimates for the vector �.

The first element must contain the coefficient �o and the next IQ elements must contain the
autoregressive coefficients �i, for i ¼ 1; 2; . . . ; q.

The next IQ elements contain the coefficients 
i, for i ¼ 1; 2; . . . ; q.

The next IP elements must contain the moving average coefficients �i, for i ¼ 1; 2; . . . ; p.

If DIST ¼ T , the next element must contain an estimate for df , the number of degrees of
freedom of the Student's t-distribution.

If MN ¼ 1, the next element must contain the mean term bo.

If COPTS ¼ :FALSE:, the remaining NREG elements are taken as initial estimates of the linear
regression coefficients bi, for i ¼ 1; 2; . . . ; k.

On exit: the estimated values �̂ for the vector �.
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The first element contains the coefficient �o and the next IQ elements contain the coefficients �i,
for i ¼ 1; 2; . . . ; q.

The next IQ elements contain the coefficients 
i, for i ¼ 1; 2; . . . ; q.

The next IP elements are the moving average coefficients �i, for i ¼ 1; 2; . . . ; p.

If DIST ¼ T , the next element contains an estimate for df then the number of degrees of
freedom of the Student's t-distribution.

If MN ¼ 1, the next element contains an estimate for the mean term bo.

The final NREG elements are the estimated linear regression coefficients bi, for i ¼ 1; 2; . . . ; k.

12: SEðNPARÞ – REAL (KIND=nag_wp) array Output

On exit: the standard errors for �̂.

The first element contains the standard error for �o and the next IQ elements contain the standard
errors for �i, for i ¼ 1; 2; . . . ; q. The next IQ elements contain the standard errors for 
i, for
i ¼ 1; 2; . . . ; q. The next IP elements are the standard errors for �j, for j ¼ 1; 2; . . . ; p.

If DIST ¼ T , the next element contains the standard error for df , the number of degrees of
freedom of the Student's t-distribution.

If MN ¼ 1, the next element contains the standard error for bo.

The final NREG elements are the standard errors for bj, for j ¼ 1; 2; . . . ; k.

13: SCðNPARÞ – REAL (KIND=nag_wp) array Output

On exit: the scores for �̂.

The first element contains the scores for �o, the next IQ elements contain the scores for �i, for
i ¼ 1; 2; . . . ; q, the next IQ elements contain the scores for 
i, for i ¼ 1; 2; . . . ; q, the next IP
elements are the scores for �j, for j ¼ 1; 2; . . . ; p.

If DIST ¼ T , the next element contains the scores for df , the number of degrees of freedom of
the Student's t-distribution.

If MN ¼ 1, the next element contains the score for bo.

The final NREG elements are the scores for bj, for j ¼ 1; 2; . . . ; k.

14: COVRðLDCOVR;NPARÞ – REAL (KIND=nag_wp) array Output

On exit: the covariance matrix of the parameter estimates �̂, that is the inverse of the Fisher
Information Matrix.

15: LDCOVR – INTEGER Input

On entry: the first dimension of the array COVR as declared in the (sub)program from which
G13FGF is called.

Constraint: LDCOVR � NPAR.

16: HP – REAL (KIND=nag_wp) Input/Output

On entry: if COPTS ¼ :FALSE: then HP is the value to be used for the pre-observed conditional
variance, otherwise HP is not referenced.

On exit: if COPTS ¼ :TRUE: then HP is the estimated value of the pre-observed conditional
variance.

17: ETðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated residuals, �t , for t ¼ 1; 2; . . . ; T.
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18: HTðNUMÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated conditional variances, ht , for t ¼ 1; 2; . . . ; T.

19: LGF – REAL (KIND=nag_wp) Output

On exit: the value of the log-likelihood function at �̂.

20: COPTS – LOGICAL Input

On entry: if COPTS ¼ :TRUE:, the routine provides initial parameter estimates of the regression
terms, otherwise these are provided by you.

21: MAXIT – INTEGER Input

On entry: the maximum number of iterations to be used by the optimization routine when
estimating the GARCH p; qð Þ parameters.

Constraint: MAXIT > 0.

22: TOL – REAL (KIND=nag_wp) Input

On entry: the tolerance to be used by the optimization routine when estimating the GARCH p; qð Þ
parameters.

23: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
24: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
G13FGF is called.

Constraint: LWORK � NREGþ 3ð Þ � NUMþ 3.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G13FGF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NREG < 0,
or MN > 1,
or MN < 0,
or IQ < 1,
or IP < 0,
or NPAR � 20,
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or NPAR has an invalid value,
or LDCOVR < NPAR,
or LDX < NUM,
or DIST 6¼ N ,
or DIST 6¼ T ,
or MAXIT � 0,
or NUM < max IP; IQð Þ,
or NUM < NREGþMN.

IFAIL ¼ 2

On entry, LWORK < NREGþ 3ð Þ � NUMþ 3.

IFAIL ¼ 3

The matrix X is not full rank.

IFAIL ¼ 4

The information matrix is not positive definite.

IFAIL ¼ 5

The maximum number of iterations has been reached.

IFAIL ¼ 6

The log-likelihood cannot be optimized any further.

IFAIL ¼ 7

No feasible model parameters could be found.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13FGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13FGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

G13FGF NAG Library Manual

G13FGF.6 Mark 26



Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example fits a GARCH 1; 2ð Þ model with Student's t-distributed residuals to some simulated data.

The process parameter estimates, �̂, are obtained using G13FGF, and a four step ahead volatility
estimate is computed using G13FHF.

The data was simulated using G05PGF.

10.1 Program Text

Program g13fgfe

! G13FGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13fgf, g13fhf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: hp, lgf, tol
Integer :: i, ifail, ip, iq, l, ldcovr, ldx, &

lwork, maxit, mn, npar, nreg, nt, &
num

Logical :: copts, tdist
Character (1) :: dist

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: covr(:,:), et(:), fht(:), ht(:), &

sc(:), se(:), theta(:), work(:), &
x(:,:), yt(:)

! .. Executable Statements ..
Write (nout,*) ’G13FGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) num, mn, nreg

ldx = num
Allocate (yt(num),x(ldx,nreg))

! Read in the series
Read (nin,*) yt(1:num)

! Read in the exogenous variables
If (nreg>0) Then

Read (nin,*)(x(i,1:nreg),i=1,num)
End If

! Read in details of the model to fit
Read (nin,*) dist, ip, iq

! Read in control parameters
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Read (nin,*) copts, maxit, tol

! Calculate NPAR
npar = 1 + 2*iq + ip + mn + nreg
If (dist==’T’ .Or. dist==’t’) Then

npar = npar + 1
tdist = .True.

Else
tdist = .False.

End If

ldcovr = npar
lwork = (nreg+3)*num + npar + 403
Allocate (theta(npar),se(npar),sc(npar),covr(ldcovr,npar),et(num), &

ht(num),work(lwork))

! Read in initial values
! alpha_0

Read (nin,*) theta(1)
l = 2

! alpha_i and psi_i
If (iq>0) Then

Read (nin,*) theta(l:(l+iq-1))
l = l + iq
Read (nin,*) theta(l:(l+iq-1))
l = l + iq

End If
! beta_i

If (ip>0) Then
Read (nin,*) theta(l:(l+ip-1))
l = l + ip

End If
! degrees of freedom

If (tdist) Then
Read (nin,*) theta(l)
l = l + 1

End If
! mean

If (mn==1) Then
Read (nin,*) theta(l)
l = l + 1

End If
! Regression parameters and pre-observed conditional variance

If (.Not. copts) Then
Read (nin,*) theta(l:(l+nreg-1))
Read (nin,*) hp

End If

! Fit the GARCH model
ifail = -1
Call g13fgf(dist,yt,x,ldx,num,ip,iq,nreg,mn,npar,theta,se,sc,covr, &

ldcovr,hp,et,ht,lgf,copts,maxit,tol,work,lwork,ifail)
If (ifail/=0) Then

If (ifail/=5 .And. ifail/=6) Then
Go To 100

End If
End If

! Read in forecast horizon
Read (nin,*) nt

Allocate (fht(nt))

! Calculate the volatility forecast
ifail = 0
Call g13fhf(num,nt,ip,iq,theta,fht,ht,et,ifail)

! Output the results
Write (nout,*) ’ Parameter Standard’
Write (nout,*) ’ estimates errors’

! Output the coefficient alpha_0
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Write (nout,99999) ’Alpha’, 0, theta(1), se(1)
l = 2

! Output the coefficients alpha_i and psi_i
If (iq>0) Then

Write (nout,99999)(’Alpha’,i-1,theta(i),se(i),i=l,l+iq-1)
l = l + iq
Write (nout,99999)(’ Psi’,i-l+1,theta(i),se(i),i=l,l+iq-1)
l = l + iq

End If
Write (nout,*)

! Output the coefficients beta_j
If (ip>0) Then

Write (nout,99999)(’ Beta’,i-l+1,theta(i),se(i),i=l,l+ip-1)
l = l + ip
Write (nout,*)

End If
! Output the estimated degrees of freedom, df

If (dist==’T’) Then
Write (nout,99998) ’ DF’, theta(l), se(l)
l = l + 1
Write (nout,*)

End If
! Output the estimated mean term, b_0

If (mn==1) Then
Write (nout,99999) ’ B’, 0, theta(l), se(l)
l = l + 1

End If
! Output the estimated linear regression coefficients, b_i

If (nreg>0) Then
Write (nout,99999)(’ B’,i-l+1,theta(i),se(i),i=l,l+nreg-1)

End If

! Display the volatility forecast
Write (nout,*)
Write (nout,99997) ’Volatility forecast = ’, fht(nt)
Write (nout,*)

100 Continue
99999 Format (1X,A,I0,1X,2F16.2)
99998 Format (1X,A,1X,2F16.2)
99997 Format (1X,A,F12.2)

End Program g13fgfe

10.2 Program Data

G13FGF Example Program Data
100 1 2 :: NUM,MN,NREG
7.53 6.64 7.39 7.15 6.42
6.32 6.98 7.09 6.63 6.93
7.01 5.30 7.86 6.73 7.39
5.61 7.02 6.04 7.46 4.33
6.02 6.37 3.93 7.24 8.58
5.70 9.13 7.99 7.79 6.13
8.78 6.52 6.79 7.77 7.31
7.58 8.78 7.39 8.00 7.07
7.65 9.15 8.32 7.32 7.58
9.78 8.17 9.26 7.79 7.03
7.45 7.09 8.06 7.06 9.91
7.01 8.32 6.41 8.59 8.55
7.77 8.04 9.54 8.28 7.97
8.42 8.30 7.98 7.60 8.77
7.54 7.40 9.26 7.30 9.33
9.54 8.08 6.93 4.27 2.65
5.03 0.91 12.63 10.87 9.26
8.30 6.85 7.48 9.67 9.54
7.33 8.84 7.75 8.12 7.29
8.58 7.80 3.07 9.33 16.91 :: End of Y
2.40 0.12 2.40 0.12
2.40 0.13 2.40 0.14
2.40 0.14 2.40 0.15
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2.40 0.16 2.40 0.16
2.40 0.17 2.41 0.18
2.41 0.19 2.41 0.19
2.41 0.20 2.41 0.21
2.41 0.21 2.41 0.22
2.41 0.23 2.41 0.23
2.41 0.24 2.42 0.25
2.42 0.25 2.42 0.26
2.42 0.26 2.42 0.27
2.42 0.28 2.42 0.28
2.42 0.29 2.42 0.30
2.42 0.30 2.43 0.31
2.43 0.32 2.43 0.32
2.43 0.33 2.43 0.33
2.43 0.34 2.43 0.35
2.43 0.35 2.43 0.36
2.43 0.37 2.44 0.37
2.44 0.38 2.44 0.38
2.44 0.39 2.44 0.39
2.44 0.40 2.44 0.41
2.44 0.41 2.44 0.42
2.44 0.42 2.45 0.43
2.45 0.43 2.45 0.44
2.45 0.45 2.45 0.45
2.45 0.46 2.45 0.46
2.45 0.47 2.45 0.47
2.45 0.48 2.46 0.48
2.46 0.49 2.46 0.49
2.46 0.50 2.46 0.50
2.46 0.51 2.46 0.51
2.46 0.52 2.46 0.52
2.46 0.53 2.47 0.53
2.47 0.54 2.47 0.54
2.47 0.54 2.47 0.55
2.47 0.55 2.47 0.56
2.47 0.56 2.47 0.57
2.47 0.57 2.48 0.57
2.48 0.58 2.48 0.58
2.48 0.59 2.48 0.59
2.48 0.59 2.48 0.60
2.48 0.60 2.48 0.61
2.48 0.61 2.49 0.61
2.49 0.62 2.49 0.62
2.49 0.62 2.49 0.63
2.49 0.63 2.49 0.63
2.49 0.64 2.49 0.64
2.49 0.64 2.50 0.64 :: End of X
’T’ 1 2 :: DIST,IP,IQ
T 200 0.0001 :: COPTS,MAXIT,TOL
0.05 :: ALPHA_0

-0.15 -0.05 :: ALPHA_I
0.05 0.15 :: PSI_I
0.35 :: BETA_I
3.25 :: DF
1.50 :: MEAN
4 :: NT

10.3 Program Results

G13FGF Example Program Results

Parameter Standard
estimates errors

Alpha0 0.20 0.16
Alpha1 -0.65 0.28
Alpha2 -0.40 0.21

Psi1 -0.18 0.34
Psi2 0.54 0.31

Beta1 0.43 0.19
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DF 4.31 1.02

B0 29.63 0.98
B1 -9.91 0.43
B2 5.57 0.83

Volatility forecast = 1.44
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NAG Library Routine Document

G13FHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13FHF forecasts the conditional variances, ht; t ¼ T þ 1; . . . ; T þ � from an exponential
GARCH p; qð Þ sequence, where � is the forecast horizon and T is the current time (see Engle and
Ng (1993)).

2 Specification

SUBROUTINE G13FHF (NUM, NT, IP, IQ, THETA, FHT, HT, ET, IFAIL)

INTEGER NUM, NT, IP, IQ, IFAIL
REAL (KIND=nag_wp) THETA(2*IQ+IP+1), FHT(NT), HT(NUM), ET(NUM)

3 Description

Assume the GARCH p; qð Þ process represented by:

ln htð Þ ¼ �0 þ
Xq
i¼1
�izt�i þ

Xq
j¼1


i zt�j
		 		� E zt�ij j½ �
� �

þ
Xp
j¼1

�iln ht�j
� �

; t ¼ 1; 2; . . . ; T :

where �t j  t�1 ¼ N 0; htð Þ or �t j  t�1 ¼ St df ; htð Þ, and zt ¼
�tffiffiffiffiffi
ht
p , E zt�ij j½ � denotes the expected value

of zt�ij j, has been modelled by G13FGF, and the estimated conditional variances and residuals are
contained in the arrays HT and ET respectively.

G13FHF will then use the last max p; qð Þ elements of the arrays HT and ET to estimate the conditional
variance forecasts, ht j  T , where t ¼ T þ 1; . . . ; T þ � and � is the forecast horizon.

4 References

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics
31 307–327

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48
1749–1777

Glosten L, Jagannathan R and Runkle D (1993) Relationship between the expected value and the
volatility of nominal excess return on stocks Journal of Finance 48 1779–1801

Hamilton J (1994) Time Series Analysis Princeton University Press

5 Arguments

1: NUM – INTEGER Input

On entry: the number of terms in the arrays HT and ET from the modelled sequence.

Constraint: max IP; IQð Þ � NUM.
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2: NT – INTEGER Input

On entry: �, the forecast horizon.

Constraint: NT > 0.

3: IP – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; p.

Constraints:

max IP; IQð Þ � 20;
IP � 0.

4: IQ – INTEGER Input

On entry: the number of coefficients, �i, for i ¼ 1; 2; . . . ; q.

Constraints:

max IP; IQð Þ � 20;
IQ � 1.

5: THETAð2� IQþ IPþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the initial parameter estimates for the vector �. The first element must contain the
coefficient �o and the next IQ elements must contain the autoregressive coefficients �i, for
i ¼ 1; 2; . . . ; q. The next IQ elements must contain the coefficients 
i, for i ¼ 1; 2; . . . ; q. The next
IP elements must contain the moving average coefficients �j , for j ¼ 1; 2; . . . ; p.

6: FHTðNTÞ – REAL (KIND=nag_wp) array Output

On exit: the forecast values of the conditional variance, ht, for t ¼ T þ 1; . . . ; T þ �.

7: HTðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of past conditional variances for the GARCH p; qð Þ process, ht , for
t ¼ 1; 2; . . . ; T .

8: ETðNUMÞ – REAL (KIND=nag_wp) array Input

On entry: the sequence of past residuals for the GARCH p; qð Þ process, �t , for t ¼ 1; 2; . . . ; T.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NUM < max IP; IQð Þ,
or IQ < 1,
or IP < 0,
or max IP; IQð Þ > 20,
or NT � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13FHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in G13FGF.
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NAG Library Routine Document

G13MEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13MEF calculates the iterated exponential moving average for an inhomogeneous time series.

2 Specification

SUBROUTINE G13MEF (NB, IEMA, T, TAU, M, SINIT, INTER, PN, RCOMM, LRCOMM,
IFAIL)

&

INTEGER NB, M, INTER(2), PN, LRCOMM, IFAIL
REAL (KIND=nag_wp) IEMA(NB), T(NB), TAU, SINIT(M+2), RCOMM(LRCOMM)

3 Description

G13MEF calculates the iterated exponential moving average for an inhomogeneous time series. The
time series is represented by two vectors of length n; a vector of times, t; and a vector of values, z.
Each element of the time series is therefore composed of the pair of scalar values ti; zið Þ, for
i ¼ 1; 2; . . . ; n. Time can be measured in any arbitrary units, as long as all elements of t use the same
units.

The exponential moving average (EMA), with parameter �, is an average operator, with the
exponentially decaying kernel given by

e�ti=�

�
:

The exponential form of this kernel gives rise to the following iterative formula for the EMA operator
(see Zumbach and MÏller (2001)):

EMA � ; z½ � tið Þ ¼ �EMA � ; z½ � ti�1ð Þ þ � � �ð Þzi�1 þ 1� �ð Þzi
where

� ¼ e�� and � ¼ ti � ti�1
�

:

The value of � depends on the method of interpolation chosen. G13MEF gives the option of three
interpolation methods:

1. Previous point: � ¼ 1;
2. Linear: � ¼ 1� �ð Þ=�;
3. Next point: � ¼ �.

The m-iterated exponential moving average, EMA �;m; z½ � tið Þ, m > 1, is defined using the recursive
formula:

EMA �;m; z½ � ¼ EMA � ;EMA �;m� 1; z½ �½ �

with

EMA �; 1; z½ � ¼ EMA � ; z½ �:
For large datasets or where all the data is not available at the same time, z and t can be split into
arbitrary sized blocks and G13MEF called multiple times.
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4 References

Dacorogna M M, Gencay R, MÏller U, Olsen R B and Pictet O V (2001) An Introduction to High-
frequency Finance Academic Press

Zumbach G O and MÏller U A (2001) Operators on inhomogeneous time series International Journal of
Theoretical and Applied Finance 4(1) 147–178

5 Arguments

1: NB – INTEGER Input

On entry: b, the number of observations in the current block of data. The size of the block of data
supplied in IEMA and T can vary; therefore NB can change between calls to G13MEF.

Constraint: NB � 0.

2: IEMAðNBÞ – REAL (KIND=nag_wp) array Input/Output

On entry: zi, the current block of observations, for i ¼ kþ 1; . . . ; kþ b, where k is the number of
observations processed so far, i.e., the value supplied in PN on entry.

On exit: the iterated EMA, with IEMAðiÞ ¼ EMA �;m; z½ � tið Þ.

3: TðNBÞ – REAL (KIND=nag_wp) array Input

On entry: ti, the times for the current block of observations, for i ¼ kþ 1; . . . ; kþ b, where k is
the number of observations processed so far, i.e., the value supplied in PN on entry.

If ti � ti�1, IFAIL ¼ 31 will be returned, but G13MEF will continue as if t was strictly
increasing by using the absolute value.

4: TAU – REAL (KIND=nag_wp) Input

On entry: � , the argument controlling the rate of decay, which must be sufficiently large that e��,
� ¼ ti � ti�1ð Þ=� can be calculated without overflowing, for all i.

Constraint: TAU > 0:0.

5: M – INTEGER Input

On entry: m, the number of times the EMA operator is to be iterated.

Constraint: M � 1.

6: SINITðMþ 2Þ – REAL (KIND=nag_wp) array Input

On entry: if PN ¼ 0, the values used to start the iterative process, with

SINITð1Þ ¼ t0,
SINITð2Þ ¼ z0,
SINITðj þ 2Þ ¼ EMA �; j; z½ � t0ð Þ, for j ¼ 1; 2; . . . ;M.

If PN 6¼ 0, SINIT is not referenced.

7: INTERð2Þ – INTEGER array Input

On entry: the type of interpolation used with INTERð1Þ indicating the interpolation method to
use when calculating EMA �; 1; z½ � and INTERð2Þ the interpolation method to use when
calculating EMA �; j; z½ �, j > 1.

Three types of interpolation are possible:

INTERðiÞ ¼ 1
Previous point, with � ¼ 1.
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INTERðiÞ ¼ 2
Linear, with � ¼ 1� �ð Þ=�.

INTERðiÞ ¼ 3
Next point, � ¼ �.

Zumbach and MÏller (2001) recommend that linear interpolation is used in second and
subsequent iterations, i.e., INTERð2Þ ¼ 2, irrespective of the interpolation method used at the
first iteration, i.e., the value of INTERð1Þ.
Constraint: INTERðiÞ ¼ 1, 2 or 3, for i ¼ 1; 2.

8: PN – INTEGER Input/Output

On entry: k, the number of observations processed so far. On the first call to G13MEF, or when
starting to summarise a new dataset, PN must be set to 0. On subsequent calls it must be the
same value as returned by the last call to G13MEF.

On exit: kþ b, the updated number of observations processed so far.

Constraint: PN � 0.

9: RCOMMðLRCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: communication array, used to store information between calls to G13MEF. If
LRCOMM ¼ 0, RCOMM is not referenced, PN must be set to 0 and all the data must be
supplied in one go.

10: LRCOMM – INTEGER Input

On entry: the dimension of the array RCOMM as declared in the (sub)program from which
G13MEF is called.

Constraint: LRCOMM ¼ 0 or LRCOMM � Mþ 20.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, NB ¼ valueh i.
Constraint: NB � 0.

IFAIL ¼ 31

On entry, i ¼ valueh i, Tði� 1Þ ¼ valueh i and TðiÞ ¼ valueh i.
Constraint: T should be strictly increasing.
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IFAIL ¼ 32

On entry, i ¼ valueh i, Tði� 1Þ ¼ valueh i and TðiÞ ¼ valueh i.
Constraint: TðiÞ 6¼ Tði� 1Þ if linear interpolation is being used.

IFAIL ¼ 41

On entry, TAU ¼ valueh i.
Constraint: TAU > 0:0.

IFAIL ¼ 42

On entry, TAU ¼ valueh i.
On entry at previous call, TAU ¼ valueh i.
Constraint: if PN > 0 then TAU must be unchanged since previous call.

IFAIL ¼ 51

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 52

On entry, M ¼ valueh i.
On entry at previous call, M ¼ valueh i.
Constraint: if PN > 0 then M must be unchanged since previous call.

IFAIL ¼ 71

On entry, INTERð1Þ ¼ valueh i.
Constraint: INTERð1Þ ¼ 1, 2 or 3.

IFAIL ¼ 72

On entry, INTERð2Þ ¼ valueh i.
Constraint: INTERð2Þ ¼ 1, 2 or 3.

IFAIL ¼ 73

On entry, INTERð1Þ ¼ valueh i and INTERð2Þ ¼ valueh i.
On entry at previous call, INTERð1Þ ¼ valueh i, INTERð2Þ ¼ valueh i.
Constraint: if PN 6¼ 0, INTER must be unchanged since the previous call.

IFAIL ¼ 81

On entry, PN ¼ valueh i.
Constraint: PN � 0.

IFAIL ¼ 82

On entry, PN ¼ valueh i.
On exit from previous call, PN ¼ valueh i.
Constraint: if PN > 0 then PN must be unchanged since previous call.

IFAIL ¼ 91

RCOMM has been corrupted between calls.

IFAIL ¼ 101

On entry, PN ¼ 0, LRCOMM ¼ valueh i and M ¼ valueh i.
Constraint: if PN ¼ 0, LRCOMM ¼ 0 or LRCOMM � Mþ 20.
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IFAIL ¼ 102

On entry, PN 6¼ 0, LRCOMM ¼ valueh i and M ¼ valueh i.
Constraint: if PN 6¼ 0, LRCOMM � Mþ 20.

IFAIL ¼ 301

Truncation occurred to avoid overflow, check for extreme values in T, IEMA or for TAU. Results
are returned using the truncated values.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13MEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13MEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Approximately 4m real elements are internally allocated by G13MEF.

The more data you supply to G13MEF in one call, i.e., the larger NB is, the more efficient the routine
will be, particularly if the routine is being run using more than one thread.

Checks are made during the calculation of � to avoid overflow. If a potential overflow is detected the
offending value is replaced with a large positive or negative value, as appropriate, and the calculations
performed based on the replacement values. In such cases IFAIL ¼ 301 is returned. This should not
occur in standard usage and will only occur if extreme values of IEMA, T or TAU are supplied.

10 Example

The example reads in a simulated time series, t; zð Þ and calculates the iterated exponential moving
average.
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10.1 Program Text

Program g13mefe
! G13MEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13mef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: tau
Integer :: i, ierr, ifail, lrcomm, m, nb, pn

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: iema(:), rcomm(:), sinit(:), t(:)
Integer :: inter(2)

! .. Intrinsic Procedures ..
Intrinsic :: repeat

! .. Executable Statements ..
Write (nout,*) ’G13MEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the number of iterations required
Read (nin,*) m

! Read in the interpolation method to use and the decay parameter
Read (nin,*) inter(1:2), tau

! Read in the initial values
Allocate (sinit(m+2))
Read (nin,*) sinit(1:m+2)

! Print some titles
Write (nout,99996) ’Iterated’
Write (nout,99997) ’Time’, ’EMA’
Write (nout,99998) repeat(’-’,32)

lrcomm = 20 + m
Allocate (rcomm(lrcomm))

! Loop over each block of data
pn = 0
Do

! Read in the number of observations in this block
Read (nin,*,Iostat=ierr) nb
If (ierr/=0) Then

Exit
End If

! Allocate IEMA and T to the required size
Allocate (iema(nb),t(nb))

! Read in the data for this block
Do i = 1, nb

Read (nin,*) t(i), iema(i)
End Do

! Update the iterated EMA for this block of data
! G13MEF overwrites the input data with the iterated EMA

ifail = 0
Call g13mef(nb,iema,t,tau,m,sinit,inter,pn,rcomm,lrcomm,ifail)

! Display the results for this block of data
Write (nout,99999)(pn-nb+i,t(i),iema(i),i=1,nb)
Write (nout,*)
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Deallocate (t,iema)
End Do

99999 Format (1X,I3,4X,F10.1,4X,F10.3)
99998 Format (1X,A)
99997 Format (14X,A,10X,A)
99996 Format (25X,A)

End Program g13mefe

10.2 Program Data

G13MEF Example Program Data
2 :: M
3 2 2.0 :: INTER(1:2),TAU
5.0 0.5 0.5 0.5 :: SINIT

5 :: NB
7.5 0.6
8.2 0.6

18.1 0.8
22.8 0.1
25.8 0.2 :: End of T and IEMA for first block

10 :: NB
26.8 0.2
31.1 0.5
38.4 0.7
45.9 0.1
48.2 0.4
48.9 0.7
57.9 0.8
58.5 0.3
63.9 0.2
65.2 0.5 :: End of T and IEMA for second block

15 :: NB
66.6 0.2
67.4 0.3
69.3 0.8
69.9 0.6
73.0 0.1
75.6 0.7
77.0 0.9
84.7 0.6
86.8 0.3
88.0 0.1
88.5 0.1
91.0 0.4
93.0 1.0
93.7 1.0
94.0 0.1 :: End of T and IEMA for third block

10.3 Program Results

G13MEF Example Program Results

Iterated
Time EMA

--------------------------------
1 7.5 0.531
2 8.2 0.544
3 18.1 0.754
4 22.8 0.406
5 25.8 0.232

6 26.8 0.217
7 31.1 0.357
8 38.4 0.630
9 45.9 0.263
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10 48.2 0.241
11 48.9 0.279
12 57.9 0.713
13 58.5 0.717
14 63.9 0.385
15 65.2 0.346

16 66.6 0.330
17 67.4 0.315
18 69.3 0.409
19 69.9 0.459
20 73.0 0.377
21 75.6 0.411
22 77.0 0.536
23 84.7 0.632
24 86.8 0.538
25 88.0 0.444
26 88.5 0.401
27 91.0 0.331
28 93.0 0.495
29 93.7 0.585
30 94.0 0.612

This example plot shows the exponential moving average for the same data using three different values
of � and illustrates the effect on the EMA of altering this argument.
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NAG Library Routine Document

G13MFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13MFF calculates the iterated exponential moving average for an inhomogeneous time series,
returning the intermediate results.

2 Specification

SUBROUTINE G13MFF (SORDER, NB, Z, IEMA, LDIEMA, T, TAU, M1, M2, SINIT,
INTER, FTYPE, P, X, PN, RCOMM, LRCOMM, IFAIL)

&

INTEGER SORDER, NB, LDIEMA, M1, M2, INTER(2), FTYPE, PN,
LRCOMM, IFAIL

&

REAL (KIND=nag_wp) Z(NB), IEMA(LDIEMA,*), T(NB), TAU, SINIT(M2+2), P,
X(*), RCOMM(LRCOMM)

&

3 Description

G13MFF calculates the iterated exponential moving average for an inhomogeneous time series. The
time series is represented by two vectors of length n: a vector of times, t; and a vector of values, z.
Each element of the time series is therefore composed of the pair of scalar values ti; zið Þ, for
i ¼ 1; 2; . . . ; n. Time can be measured in any arbitrary units, as long as all elements of t use the same
units.

The exponential moving average (EMA), with parameter �, is an average operator, with the
exponentially decaying kernel given by

e�ti=�

�
:

The exponential form of this kernel gives rise to the following iterative formula (Zumbach and MÏller
(2001)) for the EMA operator:

EMA � ; y½ � tið Þ ¼ �EMA � ; y½ � ti�1ð Þ þ � � �ð Þyi�1 þ 1� �ð Þyi
where

� ¼ e�� and � ¼ ti � ti�1
�

:

The value of � depends on the method of interpolation chosen and the relationship between y and the
input series z depends on the transformation function chosen. G13MFF gives the option of three
interpolation methods:

1. Previous point: � ¼ 1;
2. Linear: � ¼ 1� �ð Þ=�;
3. Next point: � ¼ �.

and three transformation functions:

1. Identity: yi ¼ zi p½ �;
2. Absolute value: yi ¼ zij jp;
3. Absolute difference: yi ¼ zi � xij jp;
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where the notation p½ � is used to denote the integer nearest to p. In the case of the absolute difference x
is a user-supplied vector of length n and therefore each element of the time series is composed of the
triplet of scalar values, ti; zi; xið Þ.
The m-iterated exponential moving average, EMA �;m; y½ � tið Þ, is defined using the recursive formula:

EMA �;m; y½ � tið Þ ¼ EMA � ;EMA �;m� 1; y½ � tið Þ½ � tið Þ

with

EMA �; 1; y½ � tið Þ ¼ EMA � ; y½ � tið Þ:
For large datasets or where all the data is not available at the same time, z; t and, where required, x can
be split into arbitrary sized blocks and G13MFF called multiple times.

4 References

Dacorogna M M, Gencay R, MÏller U, Olsen R B and Pictet O V (2001) An Introduction to High-
frequency Finance Academic Press

Zumbach G O and MÏller U A (2001) Operators on inhomogeneous time series International Journal of
Theoretical and Applied Finance 4(1) 147–178

5 Arguments

1: SORDER – INTEGER Input

On entry: determines the storage order of output returned in IEMA.

Constraint: SORDER ¼ 1 or 2.

2: NB – INTEGER Input

On entry: b, the number of observations in the current block of data. At each call the size of the
block of data supplied in Z, T and X can vary; therefore NB can change between calls to
G13MFF.

Constraint: NB � 0.

3: ZðNBÞ – REAL (KIND=nag_wp) array Input

On entry: zi, the current block of observations, for i ¼ kþ 1; . . . ; kþ b, where k is the number of
observations processed so far, i.e., the value supplied in PN on entry.

Constraint: if FTYPE ¼ 1 or 2 and P < 0:0, ZðiÞ 6¼ 0, for i ¼ 1; 2; . . . ;NB.

4: IEMAðLDIEMA; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array IEMA must be at least M2�M1þ 1 if SORDER ¼ 1,
otherwise at least NB.

On exit: the iterated exponential moving average.

If SORDER ¼ 1, IEMAði; jÞ ¼ EMA �; jþM1� 1; y½ � tiþkð Þ.
If SORDER ¼ 2, IEMAðj; iÞ ¼ EMA �; jþM1� 1; y½ � tiþkð Þ.
For i ¼ 1; 2; . . . ;NB, j ¼ 1; 2; . . . ;M2�M1 þ 1 and k is the number of observations processed
so far, i.e., the value supplied in PN on entry.

5: LDIEMA – INTEGER Input

On entry: the first dimension of the array IEMA as declared in the (sub)program from which
G13MFF is called.
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Constraints:

if SORDER ¼ 1, LDIEMA � NB;
otherwise LDIEMA � M2�M1þ 1.

6: TðNBÞ – REAL (KIND=nag_wp) array Input

On entry: ti, the times for the current block of observations, for i ¼ kþ 1; . . . ; kþ b, where k is
the number of observations processed so far, i.e., the value supplied in PN on entry.

If ti � ti�1, IFAIL ¼ 61 will be returned, but G13MFF will continue as if t was strictly
increasing by using the absolute value.

7: TAU – REAL (KIND=nag_wp) Input

On entry: � , the parameter controlling the rate of decay. � must be sufficiently large that e��,
� ¼ ti � ti�1ð Þ=� can be calculated without overflowing, for all i.

Constraint: TAU > 0:0.

8: M1 – INTEGER Input

On entry: the minimum number of times the EMA operator is to be iterated.

Constraint: M1 � 1.

9: M2 – INTEGER Input

On entry: the maximum number of times the EMA operator is to be iterated. Therefore G13MFF
returns EMA �;m; y½ �, for m ¼ M1;M1þ 1; . . . ;M2.

Constraint: M2 � M1.

10: SINITðM2þ 2Þ – REAL (KIND=nag_wp) array Input

On entry: if PN ¼ 0, the values used to start the iterative process, with

SINITð1Þ ¼ t0,
SINITð2Þ ¼ y0,
SINITðjþ 2Þ ¼ EMA �; j; y½ � t0ð Þ, j ¼ 1; 2; . . . ;M2.

If PN 6¼ 0 then SINIT is not referenced.

Constraint: if FTYPE 6¼ 1, SINITðjÞ � 0, for j ¼ 2; 3; . . . ;M2þ 2.

11: INTERð2Þ – INTEGER array Input

On entry: the type of interpolation used with INTERð1Þ indicating the interpolation method to
use when calculating EMA �; 1; z½ � and INTERð2Þ the interpolation method to use when
calculating EMA �; j; z½ �, j > 1.

Three types of interpolation are possible:

INTERðiÞ ¼ 1
Previous point, with � ¼ 1.

INTERðiÞ ¼ 2
Linear, with � ¼ 1� �ð Þ=�.

INTERðiÞ ¼ 3
Next point, � ¼ �.

Zumbach and MÏller (2001) recommend that linear interpolation is used in second and
subsequent iterations, i.e., INTERð2Þ ¼ 2, irrespective of the interpolation method used at the
first iteration, i.e., the value of INTERð1Þ.
Constraint: INTERðiÞ ¼ 1, 2 or 3, for i ¼ 1; 2.
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12: FTYPE – INTEGER Input

On entry: the function type used to define the relationship between y and z when calculating
EMA �; 1; y½ �. Three functions are provided:

FTYPE ¼ 1
The identity function, with yi ¼ zi p½ �.

FTYPE ¼ 2
The absolute value, with yi ¼ zij jp.

FTYPE ¼ 3
The absolute difference, with yi ¼ zi � xij jp, where the vector x is supplied in X.

Constraint: FTYPE ¼ 1, 2 or 3.

13: P – REAL (KIND=nag_wp) Input/Output

On entry: p, the power used in the transformation function.

On exit: if FTYPE ¼ 1, then p½ �, the actual power used in the transformation function is returned,
otherwise P is unchanged.

Constraint: P 6¼ 0.

14: Xð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array X must be at least NB if FTYPE ¼ 3.

On entry: if FTYPE ¼ 3, xi, the vector used to shift the current block of observations, for
i ¼ kþ 1; . . . ; kþ b, where k is the number of observations processed so far, i.e., the value
supplied in PN on entry.

If FTYPE 6¼ 3 then X is not referenced.

Constraint: if FTYPE ¼ 3 and P < 0, XðiÞ 6¼ ZðiÞ, for i ¼ 1; 2; . . . ;NB.

15: PN – INTEGER Input/Output

On entry: k, the number of observations processed so far. On the first call to G13MFF, or when
starting to summarise a new dataset, PN must be set to 0. On subsequent calls it must be the
same value as returned by the last call to G13MFF.

On exit: kþ b, the updated number of observations processed so far.

Constraint: PN � 0.

16: RCOMMðLRCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: communication array, used to store information between calls to G13MFF. If
LRCOMM ¼ 0, RCOMM is not referenced, PN must be set to 0 and all the data must be
supplied in one go.

17: LRCOMM – INTEGER Input

On entry: the dimension of the array RCOMM as declared in the (sub)program from which
G13MFF is called.

Constraint: LRCOMM ¼ 0 or LRCOMM � M2þ 20.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, SORDER ¼ valueh i.
Constraint: SORDER ¼ 1 or 2.

IFAIL ¼ 21

On entry, NB ¼ valueh i.
Constraint: NB � 0.

IFAIL ¼ 51

On entry, SORDER ¼ 1, LDIEMA ¼ valueh i and NB ¼ valueh i.
Constraint: LDIEMA � NB.

On entry, SORDER ¼ 2, LDIEMA ¼ valueh i and M2�M1þ 1 ¼ valueh i.
Constraint: LDIEMA � M2�M1þ 1.

IFAIL ¼ 61

On entry, i ¼ valueh i, Tði� 1Þ ¼ valueh i and TðiÞ ¼ valueh i.
Constraint: T should be strictly increasing.

IFAIL ¼ 62

On entry, i ¼ valueh i, Tði� 1Þ ¼ valueh i and TðiÞ ¼ valueh i.
Constraint: TðiÞ 6¼ Tði� 1Þ if linear interpolation is being used.

IFAIL ¼ 71

On entry, TAU ¼ valueh i.
Constraint: TAU > 0:0.

IFAIL ¼ 72

On entry, TAU ¼ valueh i.
On entry at previous call, TAU ¼ valueh i.
Constraint: if PN > 0 then TAU must be unchanged since previous call.

IFAIL ¼ 81

On entry, M1 ¼ valueh i.
Constraint: M1 � 1.

IFAIL ¼ 82

On entry, M1 ¼ valueh i.
On entry at previous call, M1 ¼ valueh i.
Constraint: if PN > 0 then M1 must be unchanged since previous call.
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IFAIL ¼ 91

On entry, M1 ¼ valueh i and M2 ¼ valueh i.
Constraint: M2 � M1.

IFAIL ¼ 92

On entry, M2 ¼ valueh i.
On entry at previous call, M2 ¼ valueh i.
Constraint: if PN > 0 then M2 must be unchanged since previous call.

IFAIL ¼ 101

On entry, FTYPE 6¼ 1, j ¼ valueh i and SINITðjÞ ¼ valueh i.
Constraint: if FTYPE 6¼ 1, SINITðjÞ � 0:0, for j ¼ 2; 3; . . . ;M2þ 2.

IFAIL ¼ 111

On entry, INTERð1Þ ¼ valueh i.
Constraint: INTERð1Þ ¼ 1, 2 or 3.

IFAIL ¼ 112

On entry, INTERð2Þ ¼ valueh i.
Constraint: INTERð2Þ ¼ 1, 2 or 3.

IFAIL ¼ 113

On entry, INTERð1Þ ¼ valueh i and INTERð2Þ ¼ valueh i.
On entry at previous call, INTERð1Þ ¼ valueh i, INTERð2Þ ¼ valueh i.
Constraint: if PN 6¼ 0, INTER must be unchanged since the last call.

IFAIL ¼ 121

On entry, FTYPE ¼ valueh i.
Constraint: FTYPE ¼ 1, 2 or 3.

IFAIL ¼ 122

On entry, FTYPE ¼ valueh i, On entry at previous call, FTYPE ¼ valueh i.
Constraint: if PN 6¼ 0, FTYPE must be unchanged since the previous call.

IFAIL ¼ 131

On entry, P ¼ valueh i.
Constraint: absolute value of P must be representable as an integer.

IFAIL ¼ 132

On entry, P ¼ valueh i.
Constraint: if FTYPE 6¼ 1, P 6¼ 0:0. If FTYPE ¼ 1, the nearest integer to P must not be 0.

IFAIL ¼ 133

On entry, i ¼ valueh i, ZðiÞ ¼ valueh i and P ¼ valueh i.
Constraint: if FTYPE ¼ 1 or 2 and ZðiÞ ¼ 0 for any i then P > 0:0.

IFAIL ¼ 134

On entry, i ¼ valueh i, ZðiÞ ¼ valueh i, XðiÞ ¼ valueh i and P ¼ valueh i.
Constraint: if FTYPE ¼ 3 and ZðiÞ ¼ XðiÞ for any i then P > 0:0.
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IFAIL ¼ 135

On entry, P ¼ valueh i.
On exit from previous call, P ¼ valueh i.
Constraint: if PN > 0 then P must be unchanged since previous call.

IFAIL ¼ 151

On entry, PN ¼ valueh i.
Constraint: PN � 0.

IFAIL ¼ 152

On entry, PN ¼ valueh i.
On exit from previous call, PN ¼ valueh i.
Constraint: if PN > 0 then PN must be unchanged since previous call.

IFAIL ¼ 161

RCOMM has been corrupted between calls.

IFAIL ¼ 171

On entry, PN ¼ 0, LRCOMM ¼ valueh i and M2 ¼ valueh i.
Constraint: if PN ¼ 0, LRCOMM ¼ 0 or LRCOMM � M2þ 20.

IFAIL ¼ 172

On entry, PN 6¼ 0, LRCOMM ¼ valueh i and M2 ¼ valueh i.
Constraint: if PN 6¼ 0 then LRCOMM � M2þ 20.

IFAIL ¼ 301

Truncation occurred to avoid overflow, check for extreme values in T, Z, X or for TAU. Results
are returned using the truncated values.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13MFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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G13MFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Approximately 4�M2 real elements are internally allocated by G13MFF.

The more data you supply to G13MFF in one call, i.e., the larger NB is, the more efficient the routine
will be, particularly if the routine is being run using more than one thread.

Checks are made during the calculation of � and yi to avoid overflow. If a potential overflow is detected
the offending value is replaced with a large positive or negative value, as appropriate, and the
calculations performed based on the replacement values. In such cases IFAIL ¼ 301 is returned. This
should not occur in standard usage and will only occur if extreme values of Z, T, X or TAU are
supplied.

10 Example

This example reads in three blocks of simulated data from an inhomogeneous time series, then
calculates and prints the iterated EMA for m between 2 and 6.

10.1 Program Text

Program g13mffe
! G13MFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13mff, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, tau
Integer :: ftype, i, ierr, ifail, ldiema, &

lrcomm, m1, m2, miema, nb, pn, &
sdiema, sorder

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: iema(:,:), rcomm(:), sinit(:), t(:), &

x(:), z(:)
Integer :: inter(2)

! .. Intrinsic Procedures ..
Intrinsic :: repeat

! .. Executable Statements ..
Write (nout,*) ’G13MFF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the required order for the output matrix
Read (nin,*) sorder

! Read in the problem size
Read (nin,*) m1, m2

! Read in the transformation function, its parameter, the interpolation
! method to use and the decay parameter tau

Read (nin,*) ftype, p, inter(1:2), tau
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! Read in the initial values
Allocate (sinit(m2+2))
Read (nin,*) sinit(1:m2+2)

miema = m2 - m1 + 1

! Print some titles
Write (nout,99997) repeat(’ ’,5*miema), ’Iteration’
Write (nout,99996) ’Time’, (i,i=m1,m2)
Write (nout,99998) repeat(’-’,22+10*miema)

lrcomm = m2 + 20
Allocate (rcomm(lrcomm))

! Loop over each block of data
pn = 0
Do

! Read in the number of observations in this block
Read (nin,*,Iostat=ierr) nb
If (ierr/=0) Then

Exit
End If

! Allocate Z and T to the required size
Allocate (z(nb),t(nb))

! Read in the data for this block
If (ftype/=3) Then

Allocate (x(0))
Do i = 1, nb

Read (nin,*) t(i), z(i)
End Do

Else
Allocate (x(nb))
Do i = 1, nb

Read (nin,*) t(i), z(i), x(i)
End Do

End If

If (sorder==1) Then
ldiema = nb
sdiema = miema

Else
ldiema = miema
sdiema = nb

End If
Allocate (iema(ldiema,sdiema))

! Update the iterated EMA for this block of data
ifail = 0
Call g13mff(sorder,nb,z,iema,ldiema,t,tau,m1,m2,sinit,inter,ftype,p,x, &

pn,rcomm,lrcomm,ifail)

! Display the results for this block of data
If (sorder==1) Then

! IEMA(NB,M2-M1+1)
Do i = 1, nb

Write (nout,99999) pn - nb + i, t(i), iema(i,1:miema)
End Do

Else
! IEMA(NB,M2-M1+1)

Do i = 1, nb
Write (nout,99999) pn - nb + i, t(i), iema(1:miema,i)

End Do
End If
Write (nout,*)

Deallocate (z,t,x,iema)
End Do
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99999 Format (1X,I3,4X,F10.1,4X,20(2X,F8.3))
99998 Format (1X,A)
99997 Format (20X,A,A)
99996 Format (14X,A,10X,20(I2,8X))

End Program g13mffe

10.2 Program Data

G13MFF Example Program Data
2 :: SORDER
2 6 :: M1,M2
1 1.0 3 2 2.0 :: FTYPE,P,INTER(1:2),TAU
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 :: SINIT

5 :: NB
7.5 0.6
8.2 0.6

18.1 0.8
22.8 0.1
25.8 0.2 :: End of T and Z for first block

10 :: NB
26.8 0.2
31.1 0.5
38.4 0.7
45.9 0.1
48.2 0.4
48.9 0.7
57.9 0.8
58.5 0.3
63.9 0.2
65.2 0.5 :: End of T and Z for second block

15 :: NB
66.6 0.2
67.4 0.3
69.3 0.8
69.9 0.6
73.0 0.1
75.6 0.7
77.0 0.9
84.7 0.6
86.8 0.3
88.0 0.1
88.5 0.1
91.0 0.4
93.0 1.0
93.7 1.0
94.0 0.1 :: End of T and Z for third block

10.3 Program Results

G13MFF Example Program Results

Iteration
Time 2 3 4 5 6

------------------------------------------------------------------------
1 7.5 0.433 0.320 0.237 0.175 0.130
2 8.2 0.479 0.361 0.268 0.198 0.147
3 18.1 0.756 0.700 0.631 0.558 0.485
4 22.8 0.406 0.535 0.592 0.600 0.577
5 25.8 0.232 0.351 0.459 0.530 0.561

6 26.8 0.217 0.301 0.406 0.491 0.540
7 31.1 0.357 0.309 0.318 0.364 0.422
8 38.4 0.630 0.556 0.490 0.445 0.425
9 45.9 0.263 0.357 0.407 0.428 0.432

10 48.2 0.241 0.284 0.343 0.388 0.413
11 48.9 0.279 0.277 0.325 0.372 0.403
12 57.9 0.713 0.617 0.543 0.496 0.469
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13 58.5 0.717 0.643 0.566 0.511 0.478
14 63.9 0.385 0.495 0.541 0.546 0.531
15 65.2 0.346 0.432 0.502 0.533 0.535

16 66.6 0.330 0.384 0.453 0.504 0.526
17 67.4 0.315 0.364 0.427 0.483 0.515
18 69.3 0.409 0.367 0.389 0.435 0.478
19 69.9 0.459 0.385 0.386 0.423 0.465
20 73.0 0.377 0.403 0.394 0.398 0.419
21 75.6 0.411 0.399 0.399 0.397 0.403
22 77.0 0.536 0.440 0.410 0.401 0.401
23 84.7 0.632 0.606 0.563 0.524 0.493
24 86.8 0.538 0.587 0.583 0.557 0.526
25 88.0 0.444 0.542 0.574 0.567 0.542
26 88.5 0.401 0.515 0.564 0.567 0.548
27 91.0 0.331 0.404 0.481 0.529 0.545
28 93.0 0.495 0.418 0.438 0.483 0.518
29 93.7 0.585 0.455 0.438 0.469 0.506
30 94.0 0.612 0.475 0.441 0.465 0.500
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NAG Library Routine Document

G13MGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13MGF provides a moving average, moving norm, moving variance and moving standard deviation
operator for an inhomogeneous time series.

2 Specification

SUBROUTINE G13MGF (NB, MA, T, TAU, M1, M2, SINIT, INTER, FTYPE, P, PN,
WMA, RCOMM, LRCOMM, IFAIL)

&

INTEGER NB, M1, M2, INTER(2), FTYPE, PN, LRCOMM, IFAIL
REAL (KIND=nag_wp) MA(NB), T(NB), TAU, SINIT(*), P, WMA(NB),

RCOMM(LRCOMM)
&

3 Description

G13MGF provides a number of operators for an inhomogeneous time series. The time series is
represented by two vectors of length n; a vector of times, t; and a vector of values, z. Each element of
the time series is therefore composed of the pair of scalar values ti; zið Þ, for i ¼ 1; 2; . . . ; n. Time t can
be measured in any arbitrary units, as long as all elements of t use the same units.

The main operator available, the moving average (MA), with parameter � is defined as

MA �;m1;m2; y½ � tið Þ ¼
1

m2 �m1 þ 1

Xm2

j¼m1

EMA ~�; j; y½ � tið Þ ð1Þ

where ~� ¼ 2�
m2þm1

, m1 and m2 are user-supplied integers controlling the amount of lag and smoothing
respectively, with m2 � m1 and EMA �½ � is the iterated exponential moving average operator.

The iterated exponential moving average, EMA ~�;m; y½ � tið Þ, is defined using the recursive formula:

EMA ~�;m; y½ � tið Þ ¼ EMA ~� ;EMA ~�;m� 1; y½ � tið Þ½ � tið Þ

with

EMA ~�; 1; y½ � tið Þ ¼ EMA ~� ; y½ � tið Þ

and

EMA ~� ; y½ � tið Þ ¼ �EMA ~� ; y½ � ti�1ð Þ þ � � �ð Þyi�1 þ 1� �ð Þyi
where

� ¼ e�� and � ¼ ti � ti�1
~�

:

The value of � depends on the method of interpolation chosen and the relationship between y and the
input series z depends on the transformation function chosen. G13MGF gives the option of three
interpolation methods:

1. Previous point: � ¼ 1.
2. Linear: � ¼ 1� �ð Þ=�.
3. Next point: � ¼ �.

and three transformation functions:
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1. Identity: yi ¼ zi p½ �.
2. Absolute value: yi ¼ zij jp.
3. Absolute difference: yi ¼ zi �MA �;m1;m2; z½ � tið Þj jp.

where the notation p½ � is used to denote the integer nearest to p. In addition, if either the absolute value
or absolute difference transformation are used then the resulting moving average can be scaled by p�1.

The various parameter options allow a number of different operators to be applied by G13MGF, a few
of which are:

(i) Moving Average (MA), as defined in (1) (obtained by setting FTYPE ¼ 1 and P ¼ 1).

(ii) Moving Norm (MNorm), defined as

MNorm �;m; p; zð Þ ¼ MA �; 1;m; zj jp½ �1=p

(obtained by setting FTYPE ¼ 4, M1 ¼ 1 and M2 ¼ m).

(iii) Moving Variance (MVar), defined as

MVar �;m; p; zð Þ ¼ MA �; 1;m; z�MA �; 1;m; z½ �j jp½ �

(obtained by setting FTYPE ¼ 3, M1 ¼ 1 and M2 ¼ m).

(iv) Moving Standard Deviation (MSD), defined as

MSD �;m; p; zð Þ ¼ MA �; 1;m; z�MA �; 1;m; z½ �j jp½ �1=p

(obtained by setting FTYPE ¼ 5, M1 ¼ 1 and M2 ¼ m).

For large datasets or where all the data is not available at the same time, z and t can be split into
arbitrary sized blocks and G13MGF called multiple times.

4 References

Dacorogna M M, Gencay R, MÏller U, Olsen R B and Pictet O V (2001) An Introduction to High-
frequency Finance Academic Press

Zumbach G O and MÏller U A (2001) Operators on inhomogeneous time series International Journal of
Theoretical and Applied Finance 4(1) 147–178

5 Arguments

1: NB – INTEGER Input

On entry: b, the number of observations in the current block of data. At each call the size of the
block of data supplied in MA and T can vary; therefore NB can change between calls to
G13MGF.

Constraint: NB � 0.

2: MAðNBÞ – REAL (KIND=nag_wp) array Input/Output

On entry: zi, the current block of observations, for i ¼ kþ 1; . . . ; kþ b, where k is the number of
observations processed so far, i.e., the value supplied in PN on entry.

On exit: the moving average:

if FTYPE ¼ 4 or 5

MAðiÞ ¼ MA �;m1;m2; y½ � tið Þf g1=p,
otherwise

MAðiÞ ¼ MA �;m1;m2; y½ � tið Þ.
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3: TðNBÞ – REAL (KIND=nag_wp) array Input

On entry: ti, the times for the current block of observations, for i ¼ kþ 1; . . . ; kþ b, where k is
the number of observations processed so far, i.e., the value supplied in PN on entry.

If ti � ti�1, IFAIL ¼ 31 will be returned, but G13MGF will continue as if t was strictly
increasing by using the absolute value. The lagged difference, ti � ti�1 must be sufficiently small
that e��, � ¼ ti � ti�1ð Þ=~� can be calculated without overflowing, for all i.

4: TAU – REAL (KIND=nag_wp) Input

On entry: � , the parameter controlling the rate of decay. � must be sufficiently large that e��,
� ¼ ti � ti�1ð Þ=~� can be calculated without overflowing, for all i, where ~� ¼ 2�

m2þm1
.

Constraint: TAU > 0:0.

5: M1 – INTEGER Input

On entry: m1, the iteration of the EMA operator at which the sum is started.

Constraint: M1 � 1.

6: M2 – INTEGER Input

On entry: m2, the iteration of the EMA operator at which the sum is ended.

Constraint: M2 � M1.

7: SINITð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array SINIT must be at least 2 �M2þ 3 if FTYPE ¼ 3 or 5, and at
least M2þ 2 otherwise.

On entry: if PN ¼ 0, the values used to start the iterative process, with

SINITð1Þ ¼ t0,
SINITð2Þ ¼ y0,
SINITðj þ 2Þ ¼ EMA �; j; y½ � t0ð Þ, for i ¼ 1; 2; . . . ;M2.

In addition, if FTYPE ¼ 3 or 5 then

SINITðM2þ 3Þ ¼ z0,
SINITðM2þ j þ 2Þ ¼ EMA �; j; z½ � t0ð Þ, for j ¼ 1; 2; . . . ;M2.

i.e., initial values based on the original data z as opposed to the transformed data y.

If PN 6¼ 0, SINIT is not referenced.

Constraint: if FTYPE 6¼ 1, SINITðjÞ � 0, for j ¼ 2; 3; . . . ;M2þ 2.

8: INTERð2Þ – INTEGER array Input

On entry: the type of interpolation used with INTERð1Þ indicating the interpolation method to
use when calculating EMA �; 1; z½ � and INTERð2Þ the interpolation method to use when
calculating EMA �; j; z½ �, j > 1.

Three types of interpolation are possible:

INTERðiÞ ¼ 1
Previous point, with � ¼ 1.

INTERðiÞ ¼ 2
Linear, with � ¼ 1� �ð Þ=�.

INTERðiÞ ¼ 3
Next point, � ¼ �.
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Zumbach and MÏller (2001) recommend that linear interpolation is used in second and
subsequent iterations, i.e., INTERð2Þ ¼ 2, irrespective of the interpolation method used at the
first iteration, i.e., the value of INTERð1Þ.
Constraint: INTERðiÞ ¼ 1, 2 or 3, for i ¼ 1; 2.

9: FTYPE – INTEGER Input

On entry: the function type used to define the relationship between y and z when calculating
EMA �; 1; y½ �. Three functions are provided:

FTYPE ¼ 1
The identity function, with yi ¼ zi p½ �.

FTYPE ¼ 2 or 4
The absolute value, with yi ¼ zij jp.

FTYPE ¼ 3 or 5
The absolute difference, with yi ¼ zi �MA �;m; y½ � tið Þj jp.

If FTYPE ¼ 4 or 5 then the resulting vector of averages is scaled by p�1 as described in MA.

Constraint: FTYPE ¼ 1, 2, 3, 4 or 5.

10: P – REAL (KIND=nag_wp) Input/Output

On entry: p, the power used in the transformation function.

On exit: if FTYPE ¼ 1, then p½ �, the actual power used in the transformation function is returned,
otherwise P is unchanged.

Constraint: P 6¼ 0.

11: PN – INTEGER Input/Output

On entry: k, the number of observations processed so far. On the first call to G13MGF, or when
starting to summarise a new dataset, PN must be set to 0. On subsequent calls it must be the
same value as returned by the last call to G13MGF.

On exit: kþ b, the updated number of observations processed so far.

Constraint: PN � 0.

12: WMAðNBÞ – REAL (KIND=nag_wp) array Output

On exit: either the moving average or exponential moving average, depending on the value of
FTYPE.

if FTYPE ¼ 3 or 5
WMAðiÞ ¼ MA � ; y½ � tið Þ

otherwise
WMAðiÞ ¼ EMA ~� ; y½ � tið Þ.

13: RCOMMðLRCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On entry: communication array, used to store information between calls to G13MGF. If
LRCOMM ¼ 0, RCOMM is not referenced, PN must be set to 0 and all the data must be
supplied in one go.

14: LRCOMM – INTEGER Input

On entry: the dimension of the array RCOMM as declared in the (sub)program from which
G13MGF is called.

Constraint: LRCOMM ¼ 0 or LRCOMM � 2�M2 þ 20.
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15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, NB ¼ valueh i.
Constraint: NB � 0.

IFAIL ¼ 31

On entry, i ¼ valueh i, Tði� 1Þ ¼ valueh i and TðiÞ ¼ valueh i.
Constraint: T should be strictly increasing.

IFAIL ¼ 32

On entry, i ¼ valueh i, Tði� 1Þ ¼ valueh i and TðiÞ ¼ valueh i.
Constraint: TðiÞ 6¼ Tði� 1Þ if linear interpolation is being used.

IFAIL ¼ 41

On entry, TAU ¼ valueh i.
Constraint: TAU > 0:0.

IFAIL ¼ 42

On entry, TAU ¼ valueh i.
On entry at previous call, TAU ¼ valueh i.
Constraint: if PN > 0 then TAU must be unchanged since previous call.

IFAIL ¼ 51

On entry, M1 ¼ valueh i.
Constraint: M1 � 1.

IFAIL ¼ 52

On entry, M1 ¼ valueh i.
On entry at previous call, M1 ¼ valueh i.
Constraint: if PN > 0 then M1 must be unchanged since previous call.

IFAIL ¼ 61

On entry, M1 ¼ valueh i and M2 ¼ valueh i.
Constraint: M2 � M1.
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IFAIL ¼ 62

On entry, M2 ¼ valueh i.
On entry at previous call, M2 ¼ valueh i.
Constraint: if PN > 0 then M2 must be unchanged since previous call.

IFAIL ¼ 71

On entry, FTYPE 6¼ 1, j ¼ valueh i and SINITðjÞ ¼ valueh i.
Constraint: if FTYPE 6¼ 1, SINITðjÞ � 0:0, for j ¼ 2; 3; . . . ;M2þ 2.

IFAIL ¼ 81

On entry, INTERð1Þ ¼ valueh i.
Constraint: INTERð1Þ ¼ 1, 2 or 3.

IFAIL ¼ 82

On entry, INTERð2Þ ¼ valueh i.
Constraint: INTERð2Þ ¼ 1, 2 or 3.

IFAIL ¼ 83

On entry, INTERð1Þ ¼ valueh i and INTERð2Þ ¼ valueh i.
On entry at previous call, INTERð1Þ ¼ valueh i, INTERð2Þ ¼ valueh i.
Constraint: if PN 6¼ 0, INTER must be unchanged since the last call.

IFAIL ¼ 91

On entry, FTYPE ¼ valueh i.
Constraint: FTYPE ¼ 1, 2, 3, 4 or 5.

IFAIL ¼ 92

On entry, FTYPE ¼ valueh i, On entry at previous call, FTYPE ¼ valueh i.
Constraint: if PN 6¼ 0, FTYPE must be unchanged since the previous call.

IFAIL ¼ 101

On entry, P ¼ valueh i.
Constraint: absolute value of P must be representable as an integer.

IFAIL ¼ 102

On entry, P ¼ valueh i.
Constraint: if FTYPE 6¼ 1, P 6¼ 0:0. If FTYPE ¼ 1, the nearest integer to P must not be 0.

IFAIL ¼ 103

On entry, i ¼ valueh i, MAðiÞ ¼ valueh i and P ¼ valueh i.
Constraint: if FTYPE ¼ 1, 2 or 4 and MAðiÞ ¼ 0 for any i then P > 0:0.

IFAIL ¼ 104

On entry, i ¼ valueh i, MAðiÞ ¼ valueh i, WMAðiÞ ¼ valueh i and P ¼ valueh i.
Constraint: if P < 0:0, MAðiÞ �WMAðiÞ 6¼ 0:0, for any i.

IFAIL ¼ 105

On entry, P ¼ valueh i.
On exit from previous call, P ¼ valueh i.
Constraint: if PN > 0 then P must be unchanged since previous call.
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IFAIL ¼ 111

On entry, PN ¼ valueh i.
Constraint: PN � 0.

IFAIL ¼ 112

On entry, PN ¼ valueh i.
On exit from previous call, PN ¼ valueh i.
Constraint: if PN > 0 then PN must be unchanged since previous call.

IFAIL ¼ 131

RCOMM has been corrupted between calls.

IFAIL ¼ 141

On entry, PN ¼ 0, LRCOMM ¼ valueh i and M2 ¼ valueh i.
Constraint: if PN ¼ 0, LRCOMM ¼ 0 or LRCOMM � 2M2þ 20.

IFAIL ¼ 142

On entry, PN 6¼ 0, LRCOMM ¼ valueh i and M2 ¼ valueh i.
Constraint: if PN 6¼ 0, LRCOMM � 2M2þ 20.

IFAIL ¼ 301

Truncation occurred to avoid overflow, check for extreme values in T, MA or for TAU. Results
are returned using the truncated values.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13MGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G13MGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

Approximately 4m2 real elements are internally allocated by G13MGF. If FTYPE ¼ 3 or 5 then a
further NB real elements are also allocated.

The more data you supply to G13MGF in one call, i.e., the larger NB is, the more efficient the routine
will be, particularly if the routine is being run using more than one thread.

Checks are made during the calculation of � and yi to avoid overflow. If a potential overflow is detected
the offending value is replaced with a large positive or negative value, as appropriate, and the
calculations performed based on the replacement values. In such cases IFAIL ¼ 301 is returned. This
should not occur in standard usage and will only occur if extreme values of MA, T or TAU are
supplied.

10 Example

The example reads in a simulated time series, t; zð Þ and calculates the moving average. The data is
supplied in three blocks of differing sizes.

10.1 Program Text

Program g13mgfe
! G13MGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13mgf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: p, tau
Integer :: ftype, i, ierr, ifail, lrcomm, &

lsinit, m1, m2, nb, pn
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: ma(:), rcomm(:), sinit(:), t(:), &
wma(:)

Integer :: inter(2)
! .. Intrinsic Procedures ..

Intrinsic :: repeat
! .. Executable Statements ..

Write (nout,*) ’G13MGF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the number of iterations required
Read (nin,*) m1, m2

! Read in the transformation function, its parameter, the interpolation
! method to use and the decay parameter tau

Read (nin,*) ftype, p, inter(1:2), tau

! Read in the initial values
If (ftype==3 .Or. ftype==5) Then

lsinit = 2*m2 + 3
Else

lsinit = m2 + 2
End If
Allocate (sinit(lsinit))
Read (nin,*) sinit(1:lsinit)

! Print some titles
Write (nout,99997) ’Time’, ’MA’
Write (nout,99998) repeat(’-’,32)
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lrcomm = 20 + 2*m2
Allocate (rcomm(lrcomm))

! Loop over each block of data
pn = 0
Do

! Read in the number of observations in this block
Read (nin,*,Iostat=ierr) nb
If (ierr/=0) Then

Exit
End If

! Allocate MA, T and WMA to the required size
Allocate (ma(nb),t(nb),wma(nb))

! Read in the data for this block
Do i = 1, nb

Read (nin,*) t(i), ma(i)
End Do

! Update the moving average operator for this block of data
! G13MGF overwrites the input data

ifail = 0
Call g13mgf(nb,ma,t,tau,m1,m2,sinit,inter,ftype,p,pn,wma,rcomm,lrcomm, &

ifail)

! Display the results for this block of data
Write (nout,99999)(pn-nb+i,t(i),ma(i),i=1,nb)
Write (nout,*)

Deallocate (t,ma,wma)
End Do

99999 Format (1X,I3,4X,F10.1,4X,F10.3)
99998 Format (1X,A)
99997 Format (14X,A,10X,A)

End Program g13mgfe

10.2 Program Data

G13MGF Example Program Data
1 2 :: M1,M2
1 1.0 3 2 2.0 :: FTYPE,P,INTER(1:2),TAU
0.0 0.0 0.0 0.0 :: SINIT

5 :: NB
7.5 0.6
8.2 0.6

18.1 0.8
22.8 0.1
25.8 0.2 :: End of T and Z for first block

10 :: NB
26.8 0.2
31.1 0.5
38.4 0.7
45.9 0.1
48.2 0.4
48.9 0.7
57.9 0.8
58.5 0.3
63.9 0.2
65.2 0.5 :: End of T and Z for second block

15 :: NB
66.6 0.2
67.4 0.3
69.3 0.8
69.9 0.6
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73.0 0.1
75.6 0.7
77.0 0.9
84.7 0.6
86.8 0.3
88.0 0.1
88.5 0.1
91.0 0.4
93.0 1.0
93.7 1.0
94.0 0.1 :: End of T and Z for third block

10.3 Program Results

G13MGF Example Program Results

Time MA
--------------------------------

1 7.5 0.545
2 8.2 0.567
3 18.1 0.786
4 22.8 0.214
5 25.8 0.187

6 26.8 0.192
7 31.1 0.444
8 38.4 0.680
9 45.9 0.155

10 48.2 0.298
11 48.9 0.406
12 57.9 0.777
13 58.5 0.677
14 63.9 0.258
15 65.2 0.351

16 66.6 0.291
17 67.4 0.289
18 69.3 0.572
19 69.9 0.593
20 73.0 0.244
21 75.6 0.532
22 77.0 0.715
23 84.7 0.618
24 86.8 0.426
25 88.0 0.284
26 88.5 0.240
27 91.0 0.332
28 93.0 0.723
29 93.7 0.814
30 94.0 0.744
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NAG Library Routine Document

G13NAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13NAF detects change points in a univariate time series, that is, the time points at which some feature
of the data, for example the mean, changes. Change points are detected using the PELT (Pruned Exact
Linear Time) algorithm using one of a provided set of cost functions.

2 Specification

SUBROUTINE G13NAF (CTYPE, N, Y, BETA, MINSS, IPARAM, PARAM, NTAU, TAU,
SPARAM, IFAIL)

&

INTEGER CTYPE, N, MINSS, IPARAM, NTAU, TAU(N), IFAIL
REAL (KIND=nag_wp) Y(N), BETA, PARAM(1), SPARAM(2*N+2)

3 Description

Let y1:n ¼ yj : j ¼ 1; 2; . . . ; n
� 

denote a series of data and � ¼ �i : i ¼ 1; 2; . . . ;mf g denote a set of m
ordered (strictly monotonic increasing) indices known as change points with 1 � �i � n and �m ¼ n.
For ease of notation we also define �0 ¼ 0. The m change points, � , split the data into m segments, with
the ith segment being of length ni and containing y�i�1þ1:�i .

Given a cost function, C y�i�1þ1:�ið Þ G13NAF solves

minimize
m;�

Xm
i¼1

C y�i�1þ1:�ið Þ þ �ð Þ ð1Þ

where � is a penalty term used to control the number of change points. This minimization is performed
using the PELT algorithm of Killick et al. (2012). The PELT algorithm is guaranteed to return the
optimal solution to (1) if there exists a constant K such that

C y uþ1ð Þ:v
� �

þ C y vþ1ð Þ:w
� �

þK � C y uþ1ð Þ:w
� �

ð2Þ

for all u < v < w.

G13NAF supplies four families of cost function. Each cost function assumes that the series, y, comes
from some distribution, D �ð Þ. The parameter space, � ¼ �; 
f g is subdivided into � containing those
parameters allowed to differ in each segment and 
 those parameters treated as constant across all
segments. All four cost functions can then be described in terms of the likelihood function, L and are
given by:

C y �i�1þ1ð Þ:�i
� �

¼ �2logL �̂i; 
jy �i�1þ1ð Þ:�i

� �
where �̂i is the maximum likelihood estimate of � within the ith segment. In all four cases setting
K ¼ 0 satisfies equation (2). Four distributions are available: Normal, Gamma, Exponential and
Poisson. Letting

Si ¼
X�i
j¼�i�1

yj

the log-likelihoods and cost functions for the four distributions, and the available subdivisions of the
parameter space are:
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Normal distribution: � ¼ �; �2
� 

�2logL ¼
Xm
i¼1

X�i
j¼�i�1

log 2	ð Þ þ log �2i
� �

þ
yj � �i
� �2

�2i

Mean changes: � ¼ �f g

C y�i�1þ1:�ið Þ ¼
X�i
j¼�i�1

yj � n�1i Si
� �2

�2

Variance changes: � ¼ �2
� 

C y�i�1þ1:�ið Þ ¼ ni log
X�i
j¼�i�1

yj � �
� �2 !

� logni

 !
Both mean and variance change: � ¼ �; �2

� 
C y�i�1þ1:�ið Þ ¼ ni log

X�i
j¼�i�1

yj � n�1i Si
� �2 !

� logni

 !
Gamma distribution: � ¼ a; bf g

�2logL ¼ 2�
Xm
i¼1

X�i
j¼�i�1

log aið Þ þ ailog bi þ 1� aið Þlog yj þ
yj
bi

Scale changes: � ¼ bf g
C y�i�1þ1:�ið Þ ¼ 2ani logSi � log anið Þð Þ

Exponential Distribution: � ¼ �f g

�2logL ¼ 2�
Xm
i¼1

X�i
j¼�i�1

log�i þ
yj
�i

Mean changes: � ¼ �f g
C y�i�1þ1:�ið Þ ¼ 2ni logSi � lognið Þ

Poisson distribution: � ¼ �f g

�2logL ¼ 2�
Xm
i¼1

X�i
j¼�i�1

�i � floor yj þ 0:5log�i þ log floor yj þ 0:5þ 1
� �

Mean changes: � ¼ �f g
C y�i�1þ1:�ið Þ ¼ 2Si logni � logSið Þ

when calculating Si for the Poisson distribution, the sum is calculated for floor yi þ 0:5
rather than yi.
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4 References
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5 Arguments

1: CTYPE – INTEGER Input

On entry: a flag indicating the assumed distribution of the data and the type of change point
being looked for.

CTYPE ¼ 1
Data from a Normal distribution, looking for changes in the mean, �.

CTYPE ¼ 2
Data from a Normal distribution, looking for changes in the standard deviation �.

CTYPE ¼ 3
Data from a Normal distribution, looking for changes in the mean, � and standard
deviation �.

CTYPE ¼ 4
Data from a Gamma distribution, looking for changes in the scale parameter b.

CTYPE ¼ 5
Data from an exponential distribution, looking for changes in �.

CTYPE ¼ 6
Data from a Poisson distribution, looking for changes in �.

Constraint: CTYPE ¼ 1, 2, 3, 4, 5 or 6.

2: N – INTEGER Input

On entry: n, the length of the time series.

Constraint: N � 2.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: y, the time series.

if CTYPE ¼ 6, that is the data is assumed to come from a Poisson distribution, floor yþ 0:5 is
used in all calculations.

Constraints:

if CTYPE ¼ 4, 5 or 6, YðiÞ � 0, for i ¼ 1; 2; . . . ;N;
if CTYPE ¼ 6, each value of Y must be representable as an integer;
if CTYPE 6¼ 6, each value of Y must be small enough such that YðiÞ2, for i ¼ 1; 2; . . . ;N,
can be calculated without incurring overflow.

4: BETA – REAL (KIND=nag_wp) Input

On entry: �, the penalty term.

There are a number of standard ways of setting �, including:

SIC or BIC
� ¼ p� log nð Þ

AIC
� ¼ 2p
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Hannan-Quinn
� ¼ 2p� log log nð Þð Þ

where p is the number of parameters being treated as estimated in each segment. This is usually
set to 2 when CTYPE ¼ 3 and 1 otherwise.

If no penalty is required then set � ¼ 0. Generally, the smaller the value of � the larger the
number of suggested change points.

5: MINSS – INTEGER Input

On entry: the minimum distance between two change points, that is �i � �i�1 � MINSS.

Constraint: MINSS � 2.

6: IPARAM – INTEGER Input

On entry: if IPARAM ¼ 1 distributional parameters have been supplied in PARAM.

Constraints:

if CTYPE ¼ 4, IPARAM ¼ 1;
otherwise IPARAM ¼ 0 or 1.

7: PARAMð1Þ – REAL (KIND=nag_wp) array Input

On entry: 
, values for the parameters that will be treated as fixed. If IPARAM ¼ 0 then PARAM
is not referenced.

If CTYPE ¼ 1

if IPARAM ¼ 0, �, the standard deviation of the Normal distribution, is estimated from
the full input data. Otherwise � ¼ PARAMð1Þ.

If CTYPE ¼ 2

If IPARAM ¼ 0, �, the mean of the Normal distribution, is estimated from the full input
data. Otherwise � ¼ PARAMð1Þ.

If CTYPE ¼ 4, PARAMð1Þ must hold the shape, a, for the Gamma distribution, otherwise
PARAM is not referenced.

Constraint: if CTYPE ¼ 1 or 4, PARAMð1Þ > 0:0.

8: NTAU – INTEGER Output

On exit: m, the number of change points detected.

9: TAUðNÞ – INTEGER array Output

On exit: the first m elements of TAU hold the location of the change points. The ith segment is
defined by y �i�1þ1ð Þ to y�i , where �0 ¼ 0 and �i ¼ TAUðiÞ; 1 � i � m.

The remainder of TAU is used as workspace.

10: SPARAMð2� Nþ 2Þ – REAL (KIND=nag_wp) array Output

On exit: the estimated values of the distribution parameters in each segment

CTYPE ¼ 1, 2 or 3
SPARAMð2i� 1Þ ¼ �i and SPARAMð2iÞ ¼ �i for i ¼ 1; 2; . . . ;m, where �i and �i is the
mean and standard deviation, respectively, of the values of y in the ith segment.

It should be noted that �i ¼ �j when CTYPE ¼ 1 and �i ¼ �j when CTYPE ¼ 2, for all i and j.
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CTYPE ¼ 4
SPARAMð2i� 1Þ ¼ ai and SPARAMð2iÞ ¼ bi for i ¼ 1; 2; . . . ;m, where ai and bi are the
shape and scale parameters, respectively, for the values of y in the ith segment. It should
be noted that ai ¼ PARAMð1Þ for all i.

CTYPE ¼ 5 or 6
SPARAMðiÞ ¼ �i for i ¼ 1; 2; . . . ;m, where �i is the mean of the values of y in the ith
segment.

The remainder of SPARAM is used as workspace.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, CTYPE ¼ valueh i.
Constraint: CTYPE ¼ 1, 2, 3, 4, 5 or 6.

IFAIL ¼ 21

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ 31

On entry, CTYPE ¼ valueh i and Yð valueh iÞ ¼ valueh i.
Constraint: if CTYPE ¼ 4, 5 or 6 then YðiÞ � 0:0, for i ¼ 1; 2; . . . ;N.

IFAIL ¼ 32

On entry, Yð valueh iÞ ¼ valueh i, is too large.

IFAIL ¼ 51

On entry, MINSS ¼ valueh i.
Constraint: MINSS � 2.

IFAIL ¼ 61

On entry, IPARAM ¼ valueh i.
Constraint: if CTYPE 6¼ 4 then IPARAM ¼ 0 or 1.

IFAIL ¼ 62

On entry, IPARAM ¼ valueh i.
Constraint: if CTYPE ¼ 4 then IPARAM ¼ 1.
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IFAIL ¼ 71

On entry, CTYPE ¼ valueh i and PARAMð1Þ ¼ valueh i.
Constraint: if CTYPE ¼ 1 or 4 and IPARAM ¼ 1, then PARAMð1Þ > 0:0.

IFAIL ¼ 200

To avoid overflow some truncation occurred when calculating the cost function, C. All output is
returned as normal.

IFAIL ¼ 201

To avoid overflow some truncation occurred when calculating the parameter estimates returned in
SPARAM. All output is returned as normal.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For efficiency reasons, when calculating the cost functions, C and the parameter estimates returned in
SPARAM, this routine makes use of the mathematical identities:Xv

j¼u
yj

2 ¼
Xv
j¼1

yj
2 �

Xu�1
j¼1

yj
2

and Xn
j¼1

yj � �y
� �2 ¼ Xn

j¼1
y2j

 !
� n�y2

where �y ¼ n�1
Xn
j¼1

yj.

The input data, y, is scaled in order to try and mitigate some of the known instabilities associated with
using these formulations. The results returned by G13NAF should be sufficient for the majority of
datasets. If a more stable method of calculating C is deemed necessary, G13NBF can be used and the
method chosen implemented in the user-supplied cost function.

8 Parallelism and Performance

G13NAF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example identifies changes in the mean, under the assumption that the data is normally distributed,
for a simulated dataset with 100 observations. A BIC penalty is used, that is � ¼ logn � 4:6, the
minimum segment size is set to 2 and the variance is fixed at 1 across the whole input series.

10.1 Program Text

Program g13nafe
! G13NAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13naf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta
Integer :: ctype, i, ifail, iparam, minss, n, &

ntau
! .. Local Arrays ..

Real (Kind=nag_wp) :: param(1)
Real (Kind=nag_wp), Allocatable :: sparam(:), y(:)
Integer, Allocatable :: tau(:)

! .. Intrinsic Procedures ..
Intrinsic :: repeat

! .. Executable Statements ..
Continue
Write (nout,*) ’G13NAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n

! Allocate memory to hold the input series
Allocate (y(n))

! Read in the input series
Read (nin,*) y(1:n)

! Read in the type of change point, penalty and minimum segment size
Read (nin,*) ctype, iparam, beta, minss

! Read in the distribution parameter (if required)
If (iparam==1) Then

Read (nin,*) param(1)
End If

! Allocate output arrays
Allocate (tau(n),sparam(2*n+2))

! Call routine to detect change points
ifail = -1
Call g13naf(ctype,n,y,beta,minss,iparam,param,ntau,tau,sparam,ifail)

If (ifail==0 .Or. ifail==200 .Or. ifail==201) Then
! Display the results

If (ctype==5 .Or. ctype==6) Then
! Exponential or Poisson distribution

Write (nout,99999) ’ -- Change Points -- Distribution’
Write (nout,99999) ’ Number Position Parameter’
Write (nout,99999) repeat(’=’,38)
Do i = 1, ntau
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Write (nout,99998) i, tau(i), sparam(i)
End Do

Else
! Normal or Gamma distribution

Write (nout,99999) &
’ -- Change Points -- --- Distribution ---’

Write (nout,99999) ’ Number Position Parameters’
Write (nout,99999) repeat(’=’,50)
Do i = 1, ntau

Write (nout,99997) i, tau(i), sparam(2*i-1), sparam(2*i)
End Do

End If
If (ifail==200 .Or. ifail==201) Then

Write (nout,99999) &
’Some truncation occurred internally to avoid overflow’

End If
End If

99999 Format (1X,A)
99998 Format (1X,I4,7X,I6,4X,F12.2)
99997 Format (1X,I4,7X,I6,2(4X,F12.2))

End Program g13nafe

10.2 Program Data

G13NAF Example Program Data
100 :: N
0.00 0.78 -0.02 0.17 0.04 -1.23 0.24 1.70 0.77 0.06
0.67 0.94 1.99 2.64 2.26 3.72 3.14 2.28 3.78 0.83
2.80 1.66 1.93 2.71 2.97 3.04 2.29 3.71 1.69 2.76
1.96 3.17 1.04 1.50 1.12 1.11 1.00 1.84 1.78 2.39
1.85 0.62 2.16 0.78 1.70 0.63 1.79 1.21 2.20 -1.34
0.04 -0.14 2.78 1.83 0.98 0.19 0.57 -1.41 2.05 1.17
0.44 2.32 0.67 0.73 1.17 -0.34 2.95 1.08 2.16 2.27

-0.14 -0.24 0.27 1.71 -0.04 -1.03 -0.12 -0.67 1.15 -1.10
-1.37 0.59 0.44 0.63 -0.06 -0.62 0.39 -2.63 -1.63 -0.42
-0.73 0.85 0.26 0.48 -0.26 -1.77 -1.53 -1.39 1.68 0.43 :: End of Y
1 1 4.6 2 :: CTYPE,IPARAM,BETA,MINSS
1.0 :: PARAM(1)

10.3 Program Results

G13NAF Example Program Results

-- Change Points -- --- Distribution ---
Number Position Parameters

==================================================
1 12 0.34 1.00
2 32 2.57 1.00
3 49 1.45 1.00
4 52 -0.48 1.00
5 70 1.20 1.00
6 100 -0.23 1.00

This example plot shows the original data series, the estimated change points and the estimated mean in
each of the identified segments.

G13NAF NAG Library Manual

G13NAF.8 Mark 26



-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80  90  100

V
al

ue

Time

Example Program
Simulated time series and the corresponding changes in mean

G13 – Time Series Analysis G13NAF

Mark 26 G13NAF.9 (last)





NAG Library Routine Document

G13NBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13NBF detects change points in a univariate time series, that is, the time points at which some feature
of the data, for example the mean, changes. Change points are detected using the PELT (Pruned Exact
Linear Time) algorithm and a user-supplied cost function.

2 Specification

SUBROUTINE G13NBF (N, BETA, MINSS, K, COSTFN, NTAU, TAU, Y, IUSER,
RUSER, IFAIL)

&

INTEGER N, MINSS, NTAU, TAU(N), IUSER(*), IFAIL
REAL (KIND=nag_wp) BETA, K, Y(*), RUSER(*)
EXTERNAL COSTFN

3 Description

Let y1:n ¼ yj : j ¼ 1; 2; . . . ; n
� 

denote a series of data and � ¼ �i : i ¼ 1; 2; . . . ;mf g denote a set of m
ordered (strictly monotonic increasing) indices known as change points with 1 � �i � n and �m ¼ n.
For ease of notation we also define �0 ¼ 0. The m change points, � , split the data into m segments, with
the ith segment being of length ni and containing y�i�1þ1:�i .

Given a user-supplied cost function, C y�i�1þ1:�ið Þ G13NBF solves

minimize
m;�

Xm
i¼1

C y�i�1þ1:�ið Þ þ �ð Þ ð1Þ

where � is a penalty term used to control the number of change points. This minimization is performed
using the PELT algorithm of Killick et al. (2012). The PELT algorithm is guaranteed to return the
optimal solution to (1) if there exists a constant K such that

C y uþ1ð Þ:v
� �

þ C y vþ1ð Þ:w
� �

þK � C y uþ1ð Þ:w
� �

ð2Þ

for all u < v < w

4 References

Chen J and Gupta A K (2010) Parametric Statistical Change Point Analysis With Applications to
Genetics Medicine and Finance Second Edition BirkhÌuser

Killick R, Fearnhead P and Eckely I A (2012) Optimal detection of changepoints with a linear
computational cost Journal of the American Statistical Association 107:500 1590–1598

5 Arguments

1: N – INTEGER Input

On entry: n, the length of the time series.

Constraint: N � 2.

2: BETA – REAL (KIND=nag_wp) Input

On entry: �, the penalty term.
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There are a number of standard ways of setting �, including:

SIC or BIC
� ¼ p� log nð Þ

AIC
� ¼ 2p

Hannan-Quinn
� ¼ 2p� log log nð Þð Þ

where p is the number of parameters being treated as estimated in each segment. The value of p
will depend on the cost function being used.

If no penalty is required then set � ¼ 0. Generally, the smaller the value of � the larger the
number of suggested change points.

3: MINSS – INTEGER Input

On entry: the minimum distance between two change points, that is �i � �i�1 � MINSS.

Constraint: MINSS � 2.

4: K – REAL (KIND=nag_wp) Input

On entry: K, the constant value that satisfies equation (2). If K exists, it is unlikely to be unique
in such cases, it is recommened that the largest value of K, that satisfies equation (2), is chosen.
No check is made that K is the correct value for the supplied cost function.

5: COSTFN – SUBROUTINE, supplied by the user. External Procedure

The cost function, C. COSTFN must calculate a vector of costs for a number of segments.

The specification of COSTFN is:

SUBROUTINE COSTFN (TS, NR, R, C, Y, IUSER, RUSER, INFO)

INTEGER TS, NR, R(NR), IUSER(*), INFO
REAL (KIND=nag_wp) C(NR), Y(*), RUSER(*)

1: TS – INTEGER Input

On entry: a reference time point.

2: NR – INTEGER Input

On entry: number of segments being considered.

3: RðNRÞ – INTEGER array Input

On entry: time points which, along with TS, define the segments being considered,
0 � RðiÞ � n for i ¼ 1; 2; . . .NR.

4: CðNRÞ – REAL (KIND=nag_wp) array Output

On exit: the cost function, C, with

CðiÞ ¼ C yri:tð Þ if t > ri;
C yt:rið Þ otherwise:



where t ¼ TS and ri ¼ RðiÞ.
It should be noted that if t > ri for any value of i then it will be true for all values of i.
Therefore the inequality need only be tested once per call to COSTFN.
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5: Yð�Þ – REAL (KIND=nag_wp) array User Data

COSTFN is called with Y as supplied to G13NBF. You are free to use the array Y to
supply information to COSTFN.

Y is supplied in addition to IUSER and RUSER for ease of coding as in most cases
COSTFN will require (functions of) the time series, y.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

COSTFN is called with the arguments IUSER and RUSER as supplied to G13NBF. You
should use the arrays IUSER and RUSER to supply information to COSTFN.

8: INFO – INTEGER Input/Output

On entry: INFO ¼ 0.

On exit: set INFO to a nonzero value if you wish G13NBF to terminate with
IFAIL ¼ 51.

COSTFN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which G13NBF is called. Arguments denoted as Input must not be changed
by this procedure.

6: NTAU – INTEGER Output

On exit: m, the number of change points detected.

7: TAUðNÞ – INTEGER array Output

On exit: the first m elements of TAU hold the location of the change points. The ith segment is
defined by y �i�1þ1ð Þ to y�i , where �0 ¼ 0 and �i ¼ TAUðiÞ; 1 � i � m.

The remainder of TAU is used as workspace.

8: Yð�Þ – REAL (KIND=nag_wp) array User Data

Y is not used by G13NBF, but is passed directly to COSTFN and may be used to pass
information to this routine. Y will usually be used to pass (functions of) the time series, y of
interest.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by G13NBF, but are passed directly to COSTFN and should be
used to pass information to this routine.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ 31

On entry, MINSS ¼ valueh i.
Constraint: MINSS � 2.

IFAIL ¼ 51

User requested termination.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13NBF is not threaded in any implementation.

9 Further Comments

G13NAF performs the same calculations for a cost function selected from a provided set of cost
functions. If the required cost function belongs to this provided set then G13NAF can be used without
the need to provide a cost function routine.

10 Example

This example identifies changes in the scale parameter, under the assumption that the data has a gamma
distribution, for a simulated dataset with 100 observations. A penalty, � of 3:6 is used and the minimum
segment size is set to 3. The shape parameter is fixed at 2:1 across the whole input series.

The cost function used is

C y�i�1þ1:�ið Þ ¼ 2ani logSi � log anið Þð Þ

where a is a shape parameter that is fixed for all segments and ni ¼ �i � �i�1 þ 1.
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10.1 Program Text

! G13NBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g13nbfe_mod

! G13NBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: costfn, get_data

Contains
Subroutine costfn(ts,nr,r,c,y,iuser,ruser,info)

! Cost function, C. This cost function is based on the likelihood of
! the gamma distribution

! .. Scalar Arguments ..
Integer, Intent (Inout) :: info
Integer, Intent (In) :: nr, ts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(nr)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*), y(0:*)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: r(nr)

! .. Local Scalars ..
Real (Kind=nag_wp) :: dn, shape, si
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: log, real

! .. Executable Statements ..
Continue

! RUSER(1) holds the shape parameter (a) for the gamma distribution
shape = ruser(1)

! Test which way around TS and R are (only needs to be done once)
If (ts<r(1)) Then

Do i = 1, nr
si = y(r(i)) - y(ts)
dn = real(r(i)-ts,kind=nag_wp)
c(i) = 2.0_nag_wp*dn*shape*(log(si)-log(dn*shape))

End Do

Else
Do i = 1, nr

si = y(ts) - y(r(i))
dn = real(ts-r(i),kind=nag_wp)
c(i) = 2.0_nag_wp*dn*shape*(log(si)-log(dn*shape))

End Do
End If

! Set info nonzero to terminate execution for any reason
info = 0

End Subroutine costfn

Subroutine get_data(nin,n,k,y,iuser,ruser)
! Read in data that is specific to the cost function

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: k
Integer, Intent (In) :: n, nin

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: ruser(:), y(:)
Integer, Allocatable, Intent (Out) :: iuser(:)

! .. Local Scalars ..
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Real (Kind=nag_wp) :: shape
Integer :: i

! .. Executable Statements ..
Continue

! Read in the series of interest
! NB: we are starting Y allocation at 0 as we manipulate
! the data in Y in a moment

Allocate (y(0:n))
Read (nin,*) y(1:n)

! Read in the shape parameter for the Gamma distribution
Read (nin,*) shape

! Store the shape parameter in RUSER. IUSER is not used
Allocate (ruser(1),iuser(0))
ruser(1) = shape

! The cost function is a function of the sum of Y, so for
! efficiency we will calculate the cumulative sum
! It should be noted that this may introduce some rounding issues
! with very extreme data

y(0) = 0.0_nag_wp
Do i = 1, n

y(i) = y(i-1) + y(i)
End Do

! The value of K is defined by the cost function being used
! in this example a value of 0.0 is the required value

k = 0.0_nag_wp

Return
End Subroutine get_data

End Module g13nbfe_mod

Program g13nbfe

! .. Use Statements ..
Use nag_library, Only: g13nbf, nag_wp
Use g13nbfe_mod, Only: costfn, get_data

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta, k
Integer :: i, ifail, minss, n, ntau

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ruser(:), y(:)
Integer, Allocatable :: iuser(:), tau(:)

! .. Intrinsic Procedures ..
Intrinsic :: repeat

! .. Executable Statements ..
Continue
Write (nout,*) ’G13NBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size, penalty and minimum segment size
Read (nin,*) n, beta, minss

! Read in the rest of the data, that (may be) dependent on the cost
! function

Call get_data(nin,n,k,y,iuser,ruser)

! Allocate output arrays
Allocate (tau(n))

! Call routine to detect change points
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ifail = 0
Call g13nbf(n,beta,minss,k,costfn,ntau,tau,y,iuser,ruser,ifail)

! Display the results
Write (nout,99999) ’ -- Change Points --’
Write (nout,99999) ’ Number Position’
Write (nout,99999) repeat(’=’,21)
Do i = 1, ntau

Write (nout,99998) i, tau(i)
End Do

99999 Format (1X,A)
99998 Format (1X,I4,7X,I6)

End Program g13nbfe

10.2 Program Data

G13NBF Example Program Data
100 3.4 3 :: N,BETA,MINSS
0.00 0.78 0.02 0.17 0.04 1.23 0.24 1.70 0.77 0.06
0.67 0.94 1.99 2.64 2.26 3.72 3.14 2.28 3.78 0.83
2.80 1.66 1.93 2.71 2.97 3.04 2.29 3.71 1.69 2.76
1.96 3.17 1.04 1.50 1.12 1.11 1.00 1.84 1.78 2.39
1.85 0.62 2.16 0.78 1.70 0.63 1.79 1.21 2.20 1.34
0.04 0.14 2.78 1.83 0.98 0.19 0.57 1.41 2.05 1.17
0.44 2.32 0.67 0.73 1.17 0.34 2.95 1.08 2.16 2.27
0.14 0.24 0.27 1.71 0.04 1.03 0.12 0.67 1.15 1.10
1.37 0.59 0.44 0.63 0.06 0.62 0.39 2.63 1.63 0.42
0.73 0.85 0.26 0.48 0.26 1.77 1.53 1.39 1.68 0.43 :: End of Y

2.1 :: shape parameter used in COSTFN

10.3 Program Results

G13NBF Example Program Results

-- Change Points --
Number Position

=====================
1 5
2 12
3 32
4 70
5 73
6 100

This example plot shows the original data series and the estimated change points.
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NAG Library Routine Document

G13NDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13NDF detects change points in a univariate time series, that is, the time points at which some feature
of the data, for example the mean, changes. Change points are detected using binary segmentation using
one of a provided set of cost functions.

2 Specification

SUBROUTINE G13NDF (CTYPE, N, Y, BETA, MINSS, IPARAM, PARAM, MDEPTH,
NTAU, TAU, SPARAM, IFAIL)

&

INTEGER CTYPE, N, MINSS, IPARAM, MDEPTH, NTAU, TAU(*), IFAIL
REAL (KIND=nag_wp) Y(N), BETA, PARAM(1), SPARAM(2*N)

3 Description

Let y1:n ¼ yj : j ¼ 1; 2; . . . ; n
� 

denote a series of data and � ¼ �i : i ¼ 1; 2; . . . ;mf g denote a set of m
ordered (strictly monotonic increasing) indices known as change points, with 1 � �i � n and �m ¼ n.
For ease of notation we also define �0 ¼ 0. The m change points, � , split the data into m segments, with
the ith segment being of length ni and containing y�i�1þ1:�i .

Given a cost function, C y�i�1þ1:�ið Þ, G13NDF gives an approximate solution to

minimize
m;�

Xm
i¼1

C y�i�1þ1:�ið Þ þ �ð Þ

where � is a penalty term used to control the number of change points. The solution is obtained in an
iterative manner as follows:

1. Set u ¼ 1, w ¼ n and k ¼ 0

2. Set k ¼ kþ 1. If k > K, where K is a user-supplied control parameter, then terminate the process
for this segment.

3. Find v that minimizes

C yu:vð Þ þ C yvþ1:wð Þ
4. Test

C yu:vð Þ þ C yvþ1:wð Þ þ � < C yu:wð Þ ð1Þ
5. If inequality (1) is false then the process is terminated for this segment.

6. If inequality (1) is true, then v is added to the set of change points, and the segment is split into
two subsegments, yu:v and yvþ1:w. The whole process is repeated from step 2 independently on each
subsegment, with the relevant changes to the definition of u and w (i.e., w is set to v when
processing the left hand subsegment and u is set to vþ 1 when processing the right hand
subsegment.

The change points are ordered to give � .

G13NDF supplies four families of cost function. Each cost function assumes that the series, y, comes
from some distribution, D �ð Þ. The parameter space, � ¼ �; 
f g is subdivided into � containing those
parameters allowed to differ in each segment and 
 those parameters treated as constant across all
segments. All four cost functions can then be described in terms of the likelihood function, L and are
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given by:

C y �i�1þ1ð Þ:�i
� �

¼ �2logL �̂i; 
jy �i�1þ1ð Þ:�i

� �
where the �̂i is the maximum likelihood estimate of � within the ith segment. Four distributions are
available; Normal, Gamma, Exponential and Poisson distributions. Letting

Si ¼
X�i
j¼�i�1

yj

the log-likelihoods and cost functions for the four distributions, and the available subdivisions of the
parameter space are:

Normal distribution: � ¼ �; �2
� 

�2logL ¼
Xm
i¼1

X�i
j¼�i�1

log 2	ð Þ þ log �2i
� �

þ
yj � �i
� �2

�2i

Mean changes: � ¼ �f g

C y�i�1þ1:�ið Þ ¼
X�i
j¼�i�1

yj � n�1i Si
� �2

�2

Variance changes: � ¼ �2
� 

C y�i�1þ1:�ið Þ ¼ ni log
X�i
j¼�i�1

yj � �
� �2 !

� logni

 !
Both mean and variance change: � ¼ �; �2

� 
C y�i�1þ1:�ið Þ ¼ ni log

X�i
j¼�i�1

yj � n�1i Si
� �2 !

� logni

 !
Gamma distribution: � ¼ a; bf g

�2logL ¼ 2�
Xm
i¼1

X�i
j¼�i�1

log aið Þ þ ailog bi þ 1� aið Þlog yj þ
yj
bi

Scale changes: � ¼ bf g
C y�i�1þ1:�ið Þ ¼ 2ani logSi � log anið Þð Þ

Exponential Distribution: � ¼ �f g

�2logL ¼ 2�
Xm
i¼1

X�i
j¼�i�1

log�i þ
yj
�i

Mean changes: � ¼ �f g
C y�i�1þ1:�ið Þ ¼ 2ni logSi � lognið Þ

Poisson distribution: � ¼ �f g

�2logL ¼ 2�
Xm
i¼1

X�i
j¼�i�1

�i � floor yj þ 0:5log�i þ log floor yj þ 0:5þ 1
� �
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Mean changes: � ¼ �f g
C y�i�1þ1:�ið Þ ¼ 2Si logni � logSið Þ

when calculating Si for the Poisson distribution, the sum is calculated for floor yi þ 0:5
rather than yi.

4 References

Chen J and Gupta A K (2010) Parametric Statistical Change Point Analysis With Applications to
Genetics Medicine and Finance Second Edition BirkhÌuser

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555

5 Arguments

1: CTYPE – INTEGER Input

On entry: a flag indicating the assumed distribution of the data and the type of change point
being looked for.

CTYPE ¼ 1
Data from a Normal distribution, looking for changes in the mean, �.

CTYPE ¼ 2
Data from a Normal distribution, looking for changes in the standard deviation �.

CTYPE ¼ 3
Data from a Normal distribution, looking for changes in the mean, � and standard
deviation �.

CTYPE ¼ 4
Data from a Gamma distribution, looking for changes in the scale parameter b.

CTYPE ¼ 5
Data from an exponential distribution, looking for changes in �.

CTYPE ¼ 6
Data from a Poisson distribution, looking for changes in �.

Constraint: CTYPE ¼ 1, 2, 3, 4, 5 or 6.

2: N – INTEGER Input

On entry: n, the length of the time series.

Constraint: N � 2.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: y, the time series.

if CTYPE ¼ 6, that is the data is assumed to come from a Poisson distribution, floor yþ 0:5 is
used in all calculations.

Constraints:

if CTYPE ¼ 4, 5 or 6, YðiÞ � 0, for i ¼ 1; 2; . . . ;N;
if CTYPE ¼ 6, each value of Y must be representable as an integer;
if CTYPE 6¼ 6, each value of Y must be small enough such that YðiÞ2, for i ¼ 1; 2; . . . ;N,
can be calculated without incurring overflow.

4: BETA – REAL (KIND=nag_wp) Input

On entry: �, the penalty term.
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There are a number of standard ways of setting �, including:

SIC or BIC
� ¼ p� log nð Þ

AIC
� ¼ 2p

Hannan-Quinn
� ¼ 2p� log log nð Þð Þ

where p is the number of parameters being treated as estimated in each segment. This is usually
set to 2 when CTYPE ¼ 3 and 1 otherwise.

If no penalty is required then set � ¼ 0. Generally, the smaller the value of � the larger the
number of suggested change points.

5: MINSS – INTEGER Input

On entry: the minimum distance between two change points, that is �i � �i�1 � MINSS.

Constraint: MINSS � 2.

6: IPARAM – INTEGER Input

On entry: if IPARAM ¼ 1 distributional parameters have been supplied in PARAM.

Constraints:

if CTYPE ¼ 4, IPARAM ¼ 1;
otherwise IPARAM ¼ 0 or 1.

7: PARAMð1Þ – REAL (KIND=nag_wp) array Input

On entry: 
, values for the parameters that will be treated as fixed. If IPARAM ¼ 0 then PARAM
is not referenced.

If CTYPE ¼ 1

if IPARAM ¼ 0, �, the standard deviation of the Normal distribution, is estimated from
the full input data. Otherwise � ¼ PARAMð1Þ.

If CTYPE ¼ 2

If IPARAM ¼ 0, �, the mean of the Normal distribution, is estimated from the full input
data. Otherwise � ¼ PARAMð1Þ.

If CTYPE ¼ 4, PARAMð1Þ must hold the shape, a, for the Gamma distribution, otherwise
PARAM is not referenced.

Constraint: if CTYPE ¼ 1 or 4, PARAMð1Þ > 0:0.

8: MDEPTH – INTEGER Input

On entry: K, the maximum depth for the iterative process, which in turn puts an upper limit on
the number of change points with m � 2K .

If K � 0 then no limit is put on the depth of the iterative process and no upper limit is put on the
number of change points, other than that inherent in the length of the series and the value of
MINSS.

9: NTAU – INTEGER Output

On exit: m, the number of change points detected.
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10: TAUð�Þ – INTEGER array Output

Note: the dimension of the array TAU must be at least min ceiling N
MINSS; 2

MDEPTH
� �

if
MDEPTH > 0, and at least ceiling N

MINSS otherwise.

On exit: the first m elements of TAU hold the location of the change points. The ith segment is
defined by y �i�1þ1ð Þ to y�i , where �0 ¼ 0 and �i ¼ TAUðiÞ; 1 � i � m.

The remainder of TAU is used as workspace.

11: SPARAMð2� NÞ – REAL (KIND=nag_wp) array Output

On exit: the estimated values of the distribution parameters in each segment

CTYPE ¼ 1, 2 or 3
SPARAMð2i� 1Þ ¼ �i and SPARAMð2iÞ ¼ �i for i ¼ 1; 2; . . . ;m, where �i and �i is the
mean and standard deviation, respectively, of the values of y in the ith segment.

It should be noted that �i ¼ �j when CTYPE ¼ 1 and �i ¼ �j when CTYPE ¼ 2, for all i and j.

CTYPE ¼ 4
SPARAMð2i� 1Þ ¼ ai and SPARAMð2iÞ ¼ bi for i ¼ 1; 2; . . . ;m, where ai and bi are the
shape and scale parameters, respectively, for the values of y in the ith segment. It should
be noted that ai ¼ PARAMð1Þ for all i.

CTYPE ¼ 5 or 6
SPARAMðiÞ ¼ �i for i ¼ 1; 2; . . . ;m, where �i is the mean of the values of y in the ith
segment.

The remainder of SPARAM is used as workspace.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, CTYPE ¼ valueh i.
Constraint: CTYPE ¼ 1, 2, 3, 4, 5 or 6.

IFAIL ¼ 21

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ 31

On entry, CTYPE ¼ valueh i and Yð valueh iÞ ¼ valueh i.
Constraint: if CTYPE ¼ 4, 5 or 6 then YðiÞ � 0:0, for i ¼ 1; 2; . . . ;N.
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IFAIL ¼ 32

On entry, Yð valueh iÞ ¼ valueh i, is too large.

IFAIL ¼ 51

On entry, MINSS ¼ valueh i.
Constraint: MINSS � 2.

IFAIL ¼ 61

On entry, IPARAM ¼ valueh i.
Constraint: if CTYPE 6¼ 4 then IPARAM ¼ 0 or 1.

IFAIL ¼ 62

On entry, IPARAM ¼ valueh i.
Constraint: if CTYPE ¼ 4 then IPARAM ¼ 1.

IFAIL ¼ 71

On entry, CTYPE ¼ valueh i and PARAMð1Þ ¼ valueh i.
Constraint: if CTYPE ¼ 1 or 4 and IPARAM ¼ 1, then PARAMð1Þ > 0:0.

IFAIL ¼ 200

To avoid overflow some truncation occurred when calculating the cost function, C. All output is
returned as normal.

IFAIL ¼ 201

To avoid overflow some truncation occurred when calculating the parameter estimates returned in
SPARAM. All output is returned as normal.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The calculation of means and sums of squares about the mean during the evaluation of the cost
functions are based on the one pass algorithm of West (1979) and are believed to be stable.

8 Parallelism and Performance

G13NDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

None.

10 Example

This example identifies changes in the mean, under the assumption that the data is normally distributed,
for a simulated dataset with 100 observations. A BIC penalty is used, that is � ¼ logn � 4:6, the
minimum segment size is set to 2 and the variance is fixed at 1 across the whole input series.

10.1 Program Text

Program g13ndfe
! G13NDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g13ndf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta
Integer :: ctype, i, ifail, iparam, mdepth, &

minss, n, ntau
! .. Local Arrays ..

Real (Kind=nag_wp) :: param(1)
Real (Kind=nag_wp), Allocatable :: sparam(:), y(:)
Integer, Allocatable :: tau(:)

! .. Intrinsic Procedures ..
Intrinsic :: repeat

! .. Executable Statements ..
Continue
Write (nout,*) ’G13NDF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n

! Allocate memory to hold the input series
Allocate (y(n))

! Read in the input series
Read (nin,*) y(1:n)

! Read in the type of change point, penalty, minimum segment size
! and maximum depth

Read (nin,*) ctype, iparam, beta, minss, mdepth

! Read in the distribution parameter (if required)
If (iparam==1) Then

Read (nin,*) param(1)
End If

! Allocate output arrays
Allocate (tau(n),sparam(2*n+2))

! Call routine to detect change points
ifail = -1
Call g13ndf(ctype,n,y,beta,minss,iparam,param,mdepth,ntau,tau,sparam, &

ifail)

If (ifail==0 .Or. ifail==200 .Or. ifail==201) Then
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! Display the results
If (ctype==5 .Or. ctype==6) Then

! Exponential or Poisson distribution
Write (nout,99999) ’ -- Change Points -- Distribution’
Write (nout,99999) ’ Number Position Parameter’
Write (nout,99999) repeat(’=’,38)
Do i = 1, ntau

Write (nout,99998) i, tau(i), sparam(i)
End Do

Else
! Normal or Gamma distribution

Write (nout,99999) &
’ -- Change Points -- --- Distribution ---’

Write (nout,99999) ’ Number Position Parameters’
Write (nout,99999) repeat(’=’,50)
Do i = 1, ntau

Write (nout,99997) i, tau(i), sparam(2*i-1), sparam(2*i)
End Do

End If
If (ifail==200 .Or. ifail==201) Then

Write (nout,99999) &
’Some truncation occurred internally to avoid overflow’

End If
End If

99999 Format (1X,A)
99998 Format (1X,I4,7X,I6,4X,F12.2)
99997 Format (1X,I4,7X,I6,2(4X,F12.2))

End Program g13ndfe

10.2 Program Data

G13NDF Example Program Data
100 :: N
0.00 0.78 -0.02 0.17 0.04 -1.23 0.24 1.70 0.77 0.06
0.67 0.94 1.99 2.64 2.26 3.72 3.14 2.28 3.78 0.83
2.80 1.66 1.93 2.71 2.97 3.04 2.29 3.71 1.69 2.76
1.96 3.17 1.04 1.50 1.12 1.11 1.00 1.84 1.78 2.39
1.85 0.62 2.16 0.78 1.70 0.63 1.79 1.21 2.20 -1.34
0.04 -0.14 2.78 1.83 0.98 0.19 0.57 -1.41 2.05 1.17
0.44 2.32 0.67 0.73 1.17 -0.34 2.95 1.08 2.16 2.27

-0.14 -0.24 0.27 1.71 -0.04 -1.03 -0.12 -0.67 1.15 -1.10
-1.37 0.59 0.44 0.63 -0.06 -0.62 0.39 -2.63 -1.63 -0.42
-0.73 0.85 0.26 0.48 -0.26 -1.77 -1.53 -1.39 1.68 0.43 :: End of Y
1 1 4.6 2 0 :: CTYPE,IPARAM,BETA,MINSS,MDEPTH
1.0 :: PARAM(1)

10.3 Program Results

G13NDF Example Program Results

-- Change Points -- --- Distribution ---
Number Position Parameters

==================================================
1 12 0.34 1.00
2 32 2.57 1.00
3 70 1.18 1.00
4 100 -0.23 1.00

This example plot shows the original data series, the estimated change points and the estimated mean in
each of the identified segments.
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NAG Library Routine Document

G13NEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13NEF detects change points in a univariate time series, that is, the time points at which some feature
of the data, for example the mean, changes. Change points are detected using binary segmentation for a
user-supplied cost function.

2 Specification

SUBROUTINE G13NEF (N, BETA, MINSS, MDEPTH, CHGPFN, NTAU, TAU, Y, IUSER,
RUSER, IFAIL)

&

INTEGER N, MINSS, MDEPTH, NTAU, TAU(*), IUSER(*), IFAIL
REAL (KIND=nag_wp) BETA, Y(*), RUSER(*)
EXTERNAL CHGPFN

3 Description

Let y1:n ¼ yj : j ¼ 1; 2; . . . ; n
� 

denote a series of data and � ¼ �i : i ¼ 1; 2; . . . ;mf g denote a set of m
ordered (strictly monotonic increasing) indices known as change points with 1 � �i � n and �m ¼ n.
For ease of notation we also define �0 ¼ 0. The m change points, � , split the data into m segments, with
the ith segment being of length ni and containing y�i�1þ1:�i .

Given a cost function, C y�i�1þ1:�ið Þ, G13NEF gives an approximate solution to

minimize
m;�

Xm
i¼1

C y�i�1þ1:�ið Þ þ �ð Þ

where � is a penalty term used to control the number of change points. The solution is obtained in an
iterative manner as follows:

1. Set u ¼ 1, w ¼ n and k ¼ 0

2. Set k ¼ kþ 1. If k > K, where K is a user-supplied control parameter, then terminate the process
for this segment.

3. Find v that minimizes

C yu:vð Þ þ C yvþ1:wð Þ
4. Test

C yu:vð Þ þ C yvþ1:wð Þ þ � < C yu:wð Þ ð1Þ
5. If inequality (1) is false then the process is terminated for this segment.

6. If inequality (1) is true, then v is added to the set of change points, and the segment is split into
two subsegments, yu:v and yvþ1:w. The whole process is repeated from step 2 independently on each
subsegment, with the relevant changes to the definition of u and w (i.e., w is set to v when
processing the left hand subsegment and u is set to vþ 1 when processing the right hand
subsegment.

The change points are ordered to give � .
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4 References

Chen J and Gupta A K (2010) Parametric Statistical Change Point Analysis With Applications to
Genetics Medicine and Finance Second Edition BirkhÌuser

5 Arguments

1: N – INTEGER Input

On entry: n, the length of the time series.

Constraint: N � 2.

2: BETA – REAL (KIND=nag_wp) Input

On entry: �, the penalty term.

There are a number of standard ways of setting �, including:

SIC or BIC
� ¼ p� log nð Þ.

AIC
� ¼ 2p.

Hannan-Quinn
� ¼ 2p� log log nð Þð Þ.

where p is the number of parameters being treated as estimated in each segment. The value of p
will depend on the cost function being used.

If no penalty is required then set � ¼ 0. Generally, the smaller the value of � the larger the
number of suggested change points.

3: MINSS – INTEGER Input

On entry: the minimum distance between two change points, that is �i � �i�1 � MINSS.

Constraint: MINSS � 2.

4: MDEPTH – INTEGER Input

On entry: K, the maximum depth for the iterative process, which in turn puts an upper limit on
the number of change points with m � 2K .

If K � 0 then no limit is put on the depth of the iterative process and no upper limit is put on the
number of change points, other than that inherent in the length of the series and the value of
MINSS.

5: CHGPFN – SUBROUTINE, supplied by the user. External Procedure

CHGPFN must calculate a proposed change point, and the associated costs, within a specified
segment.

The specification of CHGPFN is:

SUBROUTINE CHGPFN (SIDE, U, W, MINSS, V, COST, Y, IUSER, RUSER,
INFO)

&

INTEGER SIDE, U, W, MINSS, V, IUSER(*), INFO
REAL (KIND=nag_wp) COST(3), Y(*), RUSER(*)
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1: SIDE – INTEGER Input

On entry: flag indicating what CHGPFN must calculate and at which point of the
Binary Segmentation it has been called.

SIDE ¼ �1
only C yu:wð Þ need be calculated and returned in COSTð1Þ, neither V nor the other
elements of COST need be set. In this case, u ¼ 1 and w ¼ n.

SIDE ¼ 0
all elements of COST and V must be set. In this case, u ¼ 1 and w ¼ n.

SIDE ¼ 1
the segment, yu:w, is a left hand side subsegment from a previous iteration of the
Binary Segmentation algorithm. All elements of COST and V must be set.

SIDE ¼ 2
the segment, yu:w, is a right hand side subsegment from a previous iteration of the
Binary Segmentation algorithm. All elements of COST and V must be set.

The distinction between SIDE ¼ 1 and 2 may allow for CHGPFN to be implemented in
a more efficient manner. See section Section 10 for one such example.

The first call to CHGPFN will always have SIDE ¼ �1 and the second call will always
have SIDE ¼ 0. All subsequent calls will be made with SIDE ¼ 1 or 2.

2: U – INTEGER Input

On entry: u, the start of the segment of interest.

3: W – INTEGER Input

On entry: w, the end of the segment of interest.

4: MINSS – INTEGER Input

On entry: the minimum distance between two change points, as passed to G13NEF.

5: V – INTEGER Output

On exit: if SIDE ¼ �1 then V need not be set.

if SIDE 6¼ �1 then v, the proposed change point. That is, the value which minimizes

minimize
v

C yu:vð Þ þ C yvþ1:wð Þ

for v ¼ uþMINSS� 1 to w�MINSS.

6: COSTð3Þ – REAL (KIND=nag_wp) array Output

On exit: costs associated with the proposed change point, v.

If SIDE ¼ �1 then COSTð1Þ ¼ C yu:wð Þ and the remaining two elements of COST need
not be set.

If SIDE 6¼ �1 then

COSTð1Þ ¼ C yu:vð Þ þ C yvþ1:wð Þ.
COSTð2Þ ¼ C yu:vð Þ.
COSTð3Þ ¼ C yvþ1:wð Þ.

7: Yð�Þ – REAL (KIND=nag_wp) array User Data

CHGPFN is called with Y as supplied to G13NEF. You are free to use the array Y to
supply information to CHGPFN.
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Y is supplied in addition to IUSER and RUSER for ease of coding as in most cases
CHGPFN will require (functions of) the time series, y.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CHGPFN is called with the arguments IUSER and RUSER as supplied to G13NEF. You
should use the arrays IUSER and RUSER to supply information to CHGPFN.

10: INFO – INTEGER Input/Output

On entry: INFO ¼ 0.

On exit: in most circumstances INFO should remain unchanged.

If INFO is set to a strictly positive value then G13NEF terminates with IFAIL ¼ 51.

If INFO is set to a strictly negative value the current segment is skipped (i.e., no change
points are considered in this segment) and G13NEF continues as normal. If INFO was
set to a strictly negative value at any point and no other errors occur then G13NEF will
terminate with IFAIL ¼ 52.

CHGPFN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which G13NEF is called. Arguments denoted as Input must not be changed
by this procedure.

6: NTAU – INTEGER Output

On exit: m, the number of change points detected.

7: TAUð�Þ – INTEGER array Output

Note: the dimension of the array TAU must be at least min ceiling N
MINSS; 2

MDEPTH
� �

if
MDEPTH > 0, and at least ceiling N

MINSS otherwise.

On exit: the first m elements of TAU hold the location of the change points. The ith segment is
defined by y �i�1þ1ð Þ to y�i , where �0 ¼ 0 and �i ¼ TAUðiÞ; 1 � i � m.

The remainder of TAU is used as workspace.

8: Yð�Þ – REAL (KIND=nag_wp) array User Data

Y is not used by G13NEF, but is passed directly to CHGPFN and may be used to pass
information to this routine. Y will usually be used to pass (functions of) the time series, y of
interest.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by G13NEF, but are passed directly to CHGPFN and should be
used to pass information to this routine.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ 31

On entry, MINSS ¼ valueh i.
Constraint: MINSS � 2.

IFAIL ¼ 51

User requested termination by setting INFO ¼ valueh i.

IFAIL ¼ 52

User requested a segment to be skipped by setting INFO ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13NEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G13NDF performs the same calculations for a cost function selected from a provided set of cost
functions. If the required cost function belongs to this provided set then G13NDF can be used without
the need to provide a cost function routine.
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10 Example

This example identifies changes in the scale parameter, under the assumption that the data has a gamma
distribution, for a simulated dataset with 100 observations. A penalty, � of 3:6 is used and the minimum
segment size is set to 3. The shape parameter is fixed at 2:1 across the whole input series.

The cost function used is

C y�i�1þ1:�ið Þ ¼ 2ani logSi � log anið Þð Þ

where a is a shape parameter that is fixed for all segments and ni ¼ �i � �i�1 þ 1.

10.1 Program Text

! G13NEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module g13nefe_mod

! G13NEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: chgpfn, get_data

Contains
Subroutine chgpfn(side,u,w,minss,v,cost,y,iuser,ruser,info)

! Routine to calculate a proposed change point and associated cost
! The cost is based on the likelihood of the gamma distribution

! .. Use Statements ..
Use nag_library, Only: x07caf, x07cbf

! .. Scalar Arguments ..
Integer, Intent (Inout) :: info
Integer, Intent (In) :: minss, side, u, w
Integer, Intent (Out) :: v

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: cost(3)
Real (Kind=nag_wp), Intent (Inout) :: ruser(0:*), y(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: dn, shape, this_cost, tmp, ys
Integer :: floc, i, li, lloc

! .. Local Arrays ..
Integer :: cexmode(3), texmode(3)

! .. Intrinsic Procedures ..
Intrinsic :: log

! .. Executable Statements ..
Continue

! The gamma cost function used below can result in log(0) being taken
! (if there is a segment of zeros in Y), this leads to a cost of -Inf
! (which is correct), but we need to make sure that the compiler
! doesn’t stop at the creation of the -Inf

! Save the current IEEE exception mode
Call x07caf(cexmode)

! Set the IEEE exception mode to not trap division by zero
texmode(:) = cexmode(:)
texmode(2) = 0
Call x07cbf(texmode)

! Extract shape from RUSER
shape = ruser(0)

! Calculate the first and last positions for potential change
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! points, conditional on the fact that each sub-segment must be
! at least MINSS wide

floc = u + minss - 1
lloc = w - minss

! In order to calculate the cost of having a change point at I, we
! need to calculate C(Y(FLOC:I)) and C(Y(I+1:LLOC)), where C(.) is
! the cost function (based on the gamma distribution in this example).
! Rather than calculate these values at each call to CHGPFN we store
! the values for later use

! If SIDE = 1 (i.e. we are working with a left hand sub-segment),
! we already have C(Y(FLOC:I)) for this value of FLOC, so only need
! to calculate C(Y(I+1:LLOC)), similarly when SIDE = 2 we only need
! to calculate C(Y(FLOC:I))
! When SIDE = -1, we need the cost of the full segment, which we do
! in a forwards manner (calculating C(Y(FLOC:I)) in the process), so
! when SIDE = 0 we only need to calculate C(Y(I:1:LLOC))

! Get the intermediate costs
ys = 0.0_nag_wp
dn = 0.0_nag_wp
If (side==0 .Or. side==1) Then

! RUSER(2*I) = C(Y(I+1:W))
Do i = w, floc + 1, -1

dn = dn + 1.0_nag_wp
tmp = dn*shape
ys = ys + y(i)
ruser(2*i-2) = 2.0_nag_wp*tmp*(log(ys)-log(tmp))

End Do

Else
! RUSER(2*I-1) = C(Y(U:I))

If (side==-1) Then
li = w

Else
li = lloc

End If
Do i = u, li

dn = dn + 1.0_nag_wp
tmp = dn*shape
ys = ys + y(i)
ruser(2*i-1) = 2.0_nag_wp*tmp*(log(ys)-log(tmp))

End Do
End If

If (side>=0) Then
! Need to find a potential change point

v = 0
cost(1) = 0.0_nag_wp

! Loop over all possible change point locations
Do i = floc, lloc

this_cost = ruser(2*i-1) + ruser(2*i)

If (this_cost<cost(1) .Or. v==0) Then
! Update the proposed change point location

v = i
cost(1) = this_cost
cost(2) = ruser(2*i-1)
cost(3) = ruser(2*i)

End If
End Do

Else
! Need to calculate the cost for the full segment

cost(1) = ruser(2*w-1)
! No need to populate the rest of COST or V

End If

! Reset the IEEE exception mode back to what it was
Call x07cbf(cexmode)
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! Set info nonzero to terminate execution for any reason
info = 0

End Subroutine chgpfn

Subroutine get_data(nin,n,y,iuser,ruser)
! Read in data that is specific to the cost function

! .. Scalar Arguments ..
Integer, Intent (In) :: n, nin

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: ruser(:), y(:)
Integer, Allocatable, Intent (Out) :: iuser(:)

! .. Local Scalars ..
Real (Kind=nag_wp) :: shape

! .. Executable Statements ..
Continue

! Read in the series of interest
Allocate (y(1:n))
Read (nin,*) y(1:n)

! Read in the shape parameter for the Gamma distribution
Read (nin,*) shape

! We are going to use RUSER for two purposes, firstly to store the shape
! parameter, and we also need an additional 2*N elements of workspace
! we reference from 0 to make the coding easier later

! IUSER is not going to be used
Allocate (iuser(0),ruser(0:2*n))

! Store the shape parameter in the 0th element of RUSER
ruser(0) = shape

! We will be populating the other elements of RUSER in the first
! call to CHGPFN

Return
End Subroutine get_data

End Module g13nefe_mod

Program g13nefe

! .. Use Statements ..
Use nag_library, Only: g13nef, nag_wp
Use g13nefe_mod, Only: chgpfn, get_data

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta
Integer :: i, ifail, mdepth, minss, n, ntau

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ruser(:), y(:)
Integer, Allocatable :: iuser(:), tau(:)

! .. Intrinsic Procedures ..
Intrinsic :: repeat

! .. Executable Statements ..
Continue
Write (nout,*) ’G13NEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size, penalty, minimum segment size and
! maximum depth

Read (nin,*) n, beta, minss, mdepth

G13NEF NAG Library Manual

G13NEF.8 Mark 26



! Read in the rest of the data, that (may be) dependent on the cost
! function

Call get_data(nin,n,y,iuser,ruser)

! Allocate output arrays
Allocate (tau(n))

! Call routine to detect change points
ifail = 0
Call g13nef(n,beta,minss,mdepth,chgpfn,ntau,tau,y,iuser,ruser,ifail)

! Display the results
Write (nout,99999) ’ -- Change Points --’
Write (nout,99999) ’ Number Position’
Write (nout,99999) repeat(’=’,21)
Do i = 1, ntau

Write (nout,99998) i, tau(i)
End Do

99999 Format (1X,A)
99998 Format (1X,I4,7X,I6)

End Program g13nefe

10.2 Program Data

G13NEF Example Program Data
100 3.4 3 0 :: N,BETA,MINSS,MDEPTH
0.00 0.78 0.02 0.17 0.04 1.23 0.24 1.70 0.77 0.06
0.67 0.94 1.99 2.64 2.26 3.72 3.14 2.28 3.78 0.83
2.80 1.66 1.93 2.71 2.97 3.04 2.29 3.71 1.69 2.76
1.96 3.17 1.04 1.50 1.12 1.11 1.00 1.84 1.78 2.39
1.85 0.62 2.16 0.78 1.70 0.63 1.79 1.21 2.20 1.34
0.04 0.14 2.78 1.83 0.98 0.19 0.57 1.41 2.05 1.17
0.44 2.32 0.67 0.73 1.17 0.34 2.95 1.08 2.16 2.27
0.14 0.24 0.27 1.71 0.04 1.03 0.12 0.67 1.15 1.10
1.37 0.59 0.44 0.63 0.06 0.62 0.39 2.63 1.63 0.42
0.73 0.85 0.26 0.48 0.26 1.77 1.53 1.39 1.68 0.43 :: End of Y

2.1 :: shape parameter used in COSTFN

10.3 Program Results

G13NEF Example Program Results

-- Change Points --
Number Position

=====================
1 5
2 12
3 32
4 70
5 73
6 100

This example plot shows the original data series and the estimated change points.
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NAG Library Chapter Contents

H – Operations Research

H Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

H02BBF 14 nagf_mip_ilp_dense
Integer LP problem (dense)

H02BFF 16 nagf_mip_ilp_mpsx
Interpret MPSX data file defining IP or LP problem, optimize and print
solution

H02BUF 16 nagf_mip_ilp_mpsx_convert
Convert MPSX data file defining IP or LP problem to format required by
H02BBF or E04MFF/E04MFA

H02BVF 16 nagf_mip_ilp_print
Print IP or LP solutions with user-specified names for rows and columns

H02BZF 15 nagf_mip_ilp_info
Integer programming solution, supplies further information on solution
obtained by H02BBF

H02CBF 19 nagf_mip_iqp_dense
Integer QP problem (dense)

H02CCF 19 nagf_mip_iqp_dense_optfile
Read optional parameter values for H02CBF from external file

H02CDF 19 nagf_mip_iqp_dense_optstr
Supply optional parameter values to H02CBF

H02CEF 19 nagf_mip_iqp_sparse
Integer LP or QP problem (sparse), using E04NKF/E04NKA

H02CFF 19 nagf_mip_iqp_sparse_optfile
Read optional parameter values for H02CEF from external file

H02CGF 19 nagf_mip_iqp_sparse_optstr
Supply optional parameter values to H02CEF

H02DAF 25 nagf_mip_sqp
Mixed integer nonlinear programming

H02ZKF 25 nagf_mip_optset
Option setting routine for H02DAF

H02ZLF 25 nagf_mip_optget
Option getting routine for H02DAF

H03ABF 4 nagf_mip_transportation
Transportation problem, modified ‘stepping stone’ method

H03ADF 18 nagf_mip_shortestpath
Shortest path problem, Dijkstra's algorithm

H03BBF 25 nagf_mip_tsp_simann
Travelling Salesman Problem, simulated annealing

H05AAF 24 nagf_best_subset_given_size_revcomm
Best n subsets of size p (reverse communication)

H05ABF 24 nagf_best_subset_given_size
Best n subsets of size p (direct communication)
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NAG Library Chapter Introduction

H – Operations Research
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1 Scope of the Chapter

This chapter provides routines to solve certain integer programming, transportation and shortest path
problems. Additionally ‘best subset’ routines are included.

2 Background to the Problems

General linear programming (LP) problems (see Dantzig (1963)) are of the form:

find x ¼ x1; x2; . . . ; xnð ÞT to maximize F xð Þ ¼
Xn
j¼1

cjxj

subject to linear constraints which may have the forms:Xn
j¼1

aijxj ¼ bi; i ¼ 1; 2; . . . ;m1 ðequalityÞ

Xn
j¼1

aijxj � bi; i ¼ m1 þ 1; . . . ;m2 ðinequalityÞ

Xn
j¼1

aijxj � bi; i ¼ m2 þ 1; . . . ;m ðinequalityÞ

xj � lj; j ¼ 1; 2; . . . ; n ðsimple boundÞ
xj � uj; j ¼ 1; 2; . . . ; n ðsimple boundÞ

This chapter deals with integer programming (IP) problems in which some or all the elements of the
solution vector x are further constrained to be integers. For general LP problems where x takes only
real (i.e., noninteger) values, refer to Chapter E04.

IP problems may or may not have a solution, which may or may not be unique.

Consider for example the following problem:

minimize 3x1 þ 2x2
subject to 4x1 þ 2x2 � 5

2x2 � 5
x1 � x2 � 2

and x1 � 0; x2 � 0:

The hatched area in Figure 1 is the feasible region, the region where all the constraints are satisfied,
and the points within it which have integer coordinates are circled. The lines of hatching are in fact
contours of decreasing values of the objective function 3x1 þ 2x2, and it is clear from Figure 1 that the
optimum IP solution is at the point 1; 1ð Þ. For this problem the solution is unique.

However, there are other possible situations.

(a) There may be more than one solution; e.g., if the objective function in the above problem were
changed to x1 þ x2, both 1; 1ð Þ and 2; 0ð Þ would be IP solutions.

(b) The feasible region may contain no points with integer coordinates, e.g., if an additional constraint

3x1 � 2

were added to the above problem.

(c) There may be no feasible region, e.g., if an additional constraint

x1 þ x2 � 1

were added to the above problem.

(d) The objective function may have no finite minimum within the feasible region; this means that the
feasible region is unbounded in the direction of decreasing values of the objective function, e.g., if
the constraints
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4x1 þ 2x2 � 5; x1 � 0; x2 � 0;

were deleted from the above problem.

1 2 3 4

1

2

3

4 x 1 +  2 x 2 =  5

2 x 2 =  5

x 1 - x 2 =  2

⊗ ⊗ ⊗ ⊗
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x 1

x 2

d e c r e a s i n g  v a l u e s  o f  3 x 1
 + 2 x 2

Figure 1

Algorithms for IP problems are usually based on algorithms for general LP problems, together with
some procedure for constructing additional constraints which exclude noninteger solutions (see Beale
(1977)).

The Branch and Bound (B&B) method is a well-known and widely used technique for solving IP
problems (see Beale (1977) or Mitra (1973)). It involves subdividing the optimum solution to the
original LP problem into two mutually exclusive sub-problems by branching an integer variable that
currently has a fractional optimal value. Each sub-problem can now be solved as an LP problem, using
the objective function of the original problem. The process of branching continues until a solution for
one of the sub-problems is feasible with respect to the integer problem. In order to prove the optimality
of this solution, the rest of the sub-problems in the B&B tree must also be solved. Naturally, if a better
integer feasible solution is found for any sub-problem, it should replace the one at hand.

A common method for specifying IP and LP problems in general is the use of the MPSX file format
(see IBM (1971)). A full description of this file format is provided in the routine document for
H02BUF.

The efficiency in computations is enhanced by discarding inferior sub-problems. These are problems in
the B&B search tree whose LP solutions are lower than (in the case of maximization) the best integer
solution at hand.

The B&B method may also be applied to convex quadratic programming (QP) problems and nonlinear
programming (NLP) problems using sequential convex QP approximations.

Routines have been introduced into this chapter to formally apply the technique to dense general QP
problems and to sparse LP, QP or NLP problems. Section 2.6 in the E04 Chapter Introduction describes
the virtues of having a well-scaled problem. The imposition that a variable be integer makes this more
difficult and some practical common sense might be required to make the problem tractable. If a
variable is expected to have a large value at the minimum, say 100000 for instance, then in practical
terms it might be better to forget the integer constraint and simply round off the final answer. To do
otherwise forces a high level of computation accuracy on the underlying optimiser that might be
impossible to achieve.

A special type of linear programming problem is the transportation problem in which there are p� q
variables ykl which represent quantities of goods to be transported from each of p sources to each of q
destinations.
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The problem is to minimize Xp
k¼1

Xq
l¼1
cklykl

where ckl is the unit cost of transporting from source k to destination l. The constraints are:Xq
l¼1
ykl ¼ Ak availabilitiesð Þ

Xp
k¼1

ykl ¼ Bl requirementsð Þ

ykl � 0:

Note that the availabilities must equal the requirements:Xp
k¼1

Ak ¼
Xq
l¼1
Bl ¼

Xp
k¼1

Xq
l¼1
ykl

and if all the Ak and Bl are integers, then so are the optimal ykl.

The shortest path problem is that of finding a path of minimum length between two distinct vertices ns
and ne through a network. Suppose the vertices in the network are labelled by the integers 1; 2; . . . ; n.
Let i; jð Þ denote an ordered pair of vertices in the network (where i is the origin vertex and j the
destination vertex of the arc), xij the amount of flow in arc i; jð Þ and dij the length of the arc i; jð Þ. The
LP formulation of the problem is thus given as

minimize
XX

dijxijsubject to Ax ¼ b; 0 � x � 1; ð1Þ

where

aij ¼
þ1 if arc j is directed away from vertex i;
�1 if arc j is directed towards vertex i;
0 otherwise

8<:
and

bi ¼
þ1 for i ¼ ns;
�1 for i ¼ ne;
0 otherwise:

8<:
The above formulation only yields a meaningful solution if xij ¼ 0 or 1; that is, arc i; jð Þ forms part of
the shortest route only if xij ¼ 1. In fact since the optimal LP solution will (in theory) always yield
xij ¼ 0 or 1, (1) can also be solved as an IP problem. Note that the problem may also be solved directly
(and more efficiently) using a variant of Dijkstra's algorithm (see Ahuja et al. (1993)).

The travelling salesman problem is that of finding a minimum distance route round a given set of
cities. In the classical travelling salesman problem the salesperson must visit each city only once before
returning to his or her city of origin. It can be formulated as an IP problem in a number of ways. One
such formulation is described in Williams (1993). Such IP problems could be solved directly by a
mixed integer nonlinear programming solver; however, there are currently no routines in the Library
that directly solve such IP problems. However, an acceptable solution to symmetric distance problems
may be sought using the probabilistic optimization method known as simulated annealing for which a
routine is available. Asymmetric problems can be tackled by the introduction of shadow cities with zero
distance between an original city and its shadow. Incomplete problems, where bidirectional travel
between each pair of cities is not possible, can be tackled by attributing very large distances to
unavailable journeys. For example, a salesperson might not mind backtracking through a previously
visited city if this produced the shortest route. This problem is known as the practical travelling
salesman problem.

The best n subsets problem assumes a scoring mechanism and a set of m features. The problem is one
of choosing the best n subsets of size p. It is addressed by two routines in this chapter. The first of these
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uses reverse communication; the second direct communication (see Section 3.3.3 in How to Use the
NAG Library and its Documentation for a description of the difference between these two conventions).

3 Recommendations on Choice and Use of Available Routines

H02BBF solves dense integer programming problems using a branch and bound method.

H02BFF solves dense integer or linear programming problems defined by a MPSX data file.

H02BUF converts an MPSX data file defining an integer or a linear programming problem to the form
required by E04MFF/E04MFA or H02BBF.

H02BVF prints the solution to an integer or a linear programming problem using specified names for
rows and columns.

H02BZF supplies further information on the optimum solution obtained by H02BBF.

H02CBF solves dense integer general quadratic programming problems.

H02CCF reads optional parameter values for H02CBF from external file.

H02CDF supplies optional parameter values to H02CBF.

H02CEF solves sparse integer linear programming or quadratic programming problems.

H02CFF reads optional parameter values for H02CEF from external file.

H02CGF supplies optional parameter values to H02CEF.

H03ABF solves transportation problems. It uses integer arithmetic throughout and so produces exact
results. On a few machines, however, there is a risk of integer overflow without warning, so the integer
values in the data should be kept as small as possible by dividing out any common factors from the
coefficients of the constraint or objective functions.

H03ADF solves shortest path problems using Dijkstra's algorithm.

H03BBF is a (symmetric) classical travelling salesman problem.

H02BBF, H02BFF and H03ABF treat all matrices as dense and hence are not intended for large sparse
problems. For solving large sparse LP problems, use E04NQF or E04UGF/E04UGA.

3.1 Transportation Problem

H03ABF solves transportation problems. It uses integer arithmetic throughout and so produces exact
results. On a few machines, however, there is a risk of integer overflow without warning, so the integer
values in the data should be kept as small as possible by dividing out any common factors from the
coefficients of the constraint or objective functions.

3.2 Feature Selection – Best Subset Problem

H05AAF selects the best n subsets of size p using a reverse communication branch and bound
algorithm.

H05ABF selects the best n subsets of size p using a direct communication branch and bound algorithm.

4 Functionality Index

Convert data to arrays for use with H02BBF or E04MFF/E04MFA ................................... H02BUF

Feature selection,
best subset,

Given size,
direct communication ............................................................................................ H05ABF
reverse communication.......................................................................................... H05AAF

Integer programming problem (dense):
print solution with specified names................................................................................. H02BVF
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solve LP problem using branch and bound method........................................................ H02BBF
solve nonlinear problem SQP ......................................................................................... H02DAF
solve QP problem using branch and bound method ....................................................... H02CBF
supply further information on the solution obtained from H02BBF ............................... H02BZF

Integer programming problem (sparse):
solve LP or QP problem using branch and bound method............................................. H02CEF

MPSX data input, defining IP or LP problem,
interpret data, optimize and print solution ...................................................................... H02BFF

Read optional parameter values from external file for H02CBF.......................................... H02CCF

Read optional parameter values from external file for H02CEF.......................................... H02CFF

Service routines,
optional parameter getting routine for use with H02DAF .............................................. H02ZLF
optional parameter setting routine for use with H02DAF............................................... H02ZKF

Shortest path, through directed or undirected network ........................................................ H03ADF

Supply optional parameter values to H02CBF..................................................................... H02CDF

Supply optional parameter values to H02CEF ..................................................................... H02CGF

Transportation problem ........................................................................................................ H03ABF

Travelling Salesman Problem, simulated annealing ............................................................. H03BBF

5 Auxiliary Routines Associated with Library Routine Arguments

H02CBU nagf_mip_iqp_dense_dummy_monit
See the description of the argument MONIT in H02CBF.

H02CEY nagf_mip_iqp_sparse_dummy_monit
See the description of the argument MONIT in H02CEF.

H02DDM nagf_mip_sqp_dummy_confun
See the description of the argument CONFUN in H02DAF.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

H02BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H02BBF solves ‘zero-one’, ‘general’, ‘mixed’ or ‘all’ integer programming problems using a branch
and bound method. The routine may also be used to find either the first integer solution or the optimum
integer solution. It is not intended for large sparse problems.

2 Specification

SUBROUTINE H02BBF (ITMAX, MSGLVL, N, M, A, LDA, BL, BU, INTVAR, CVEC,
MAXNOD, INTFST, MAXDPT, TOLIV, TOLFES, BIGBND, X,
OBJMIP, IWORK, LIWORK, RWORK, LRWORK, IFAIL)

&
&

INTEGER ITMAX, MSGLVL, N, M, LDA, INTVAR(N), MAXNOD, INTFST,
MAXDPT, IWORK(LIWORK), LIWORK, LRWORK, IFAIL

&

REAL (KIND=nag_wp) A(LDA,*), BL(N+M), BU(N+M), CVEC(N), TOLIV, TOLFES,
BIGBND, X(N), OBJMIP, RWORK(LRWORK)

&

3 Description

H02BBF is capable of solving certain types of integer programming (IP) problems using a branch and
bound (B&B) method, see Taha (1987). In order to describe these types of integer programs and to
briefly state the B&B method, we define the following linear programming (LP) problem:

Minimize

F xð Þ ¼ c1x1 þ c2x2 þ � � � þ cnxn
subject to

Xn
j¼1

aijxj
¼
�
�

8<:
9=;bi; i ¼ 1; 2; . . . ;m

lj � xj � uj; j ¼ 1; 2; . . . ; n ð1Þ
If, in (1), it is required that (some or) all the variables take integer values, then the integer program is
of type (mixed or) all general IP problem. If additionally, the integer variables are restricted to take only
0–1 values (i.e., lj ¼ 0 and uj ¼ 1) then the integer program is of type (mixed or all) zero-one IP
problem.

The B&B method applies directly to these integer programs. The general idea of B&B (for a full
description see Dakin (1965) or Mitra (1973)) is to solve the problem without the integral restrictions as
an LP problem (first node). If in the optimal solution an integer variable xk takes a noninteger value x�k,
two LP sub-problems are created by branching, imposing xk � x�k

� �
and xk � x�k

� �
þ 1 respectively,

where x�k
� �

denotes the integer part of x�k. This method of branching continues until the first integer
solution (bound) is obtained. The hanging nodes are then solved and investigated in order to prove the
optimality of the solution. At each node, an LP problem is solved using E04MFF/E04MFA.
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5 Arguments

1: ITMAX – INTEGER Input/Output

On entry: an upper bound on the number of iterations for each LP problem.

On exit: unchanged if on entry ITMAX > 0, else ITMAX ¼ max 50; 5� NþMð Þð Þ.

2: MSGLVL – INTEGER Input

On entry: the amount of printout produced by H02BBF, as indicated below (see Section 5.1 for a
description of the printed output). All output is written to the current advisory message unit (as
defined by X04ABF).

Value Definition

0 No output.

1 The final IP solution only.

5 One line of output for each node investigated and the final IP solution.

10 The original LP solution (first node), one line of output for each node investigated and
the final IP solution.

3: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

4: M – INTEGER Input

On entry: m, the number of general linear constraints.

Constraint: M � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if M > 0 and at least 1 if M ¼ 0.

On entry: the ith row of A must contain the coefficients of the ith general constraint, for
i ¼ 1; 2; . . . ;m.

If M ¼ 0 then the array A is not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which H02BBF
is called.

Constraint: LDA � max 1;Mð Þ.

7: BLðNþMÞ – REAL (KIND=nag_wp) array Input
8: BUðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds and BU the upper bounds, for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
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and the next m elements the bounds for the general linear constraints (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �BIGBND and to specify a nonexistent
upper bound (i.e., uj ¼ þ1), set BUðjÞ � BIGBND. To specify the jth constraint as an equality,
set BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < BIGBND.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;NþM;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < BIGBND.

9: INTVARðNÞ – INTEGER array Input

On entry: indicates which are the integer variables in the problem. For example, if xj is an
integer variable then INTVARðjÞ must be set to 1, and 0 otherwise.

Constraints:

INTVARðjÞ ¼ 0 or 1, for j ¼ 1; 2; . . . ;N;
INTVARðjÞ ¼ 1 for at least one value of j.

10: CVECðNÞ – REAL (KIND=nag_wp) array Input

On entry: the coefficients cj of the objective function F xð Þ ¼ c1x1 þ c2x2 þ . . .þ cnxn. The
routine attempts to find a minimum of F xð Þ. If a maximum of F xð Þ is desired, CVECðjÞ should
be set to �cj , for j ¼ 1; 2; . . . ; n, so that the routine will find a minimum of �F xð Þ.

11: MAXNOD – INTEGER Input

On entry: the maximum number of nodes that are to be searched in order to find a solution
(optimum integer solution). If MAXNOD � 0 and INTFST � 0, then the B&B tree search is
continued until all the nodes have been investigated.

12: INTFST – INTEGER Input

On entry: specifies whether to terminate the B&B tree search after the first integer solution (if
any) is obtained. If INTFST > 0 then the B&B tree search is terminated at node k say, which
contains the first integer solution. For MAXNOD > 0 this applies only if k � MAXNOD.

13: MAXDPT – INTEGER Input

On entry: the maximum depth of the B&B tree used for branch and bound.

Suggested value: MAXDPT ¼ 3� N=2.

Constraint: MAXDPT � 2.

14: TOLIV – REAL (KIND=nag_wp) Input/Output

On entry: the integer feasibility tolerance; i.e., an integer variable is considered to take an integer
value if its violation does not exceed TOLIV. For example, if the integer variable xj is near unity
then xj is considered to be integer only if 1� TOLIVð Þ � xj � 1þ TOLIVð Þ.

On exit: unchanged if on entry TOLIV > 0:0, else TOLIV ¼ 10�5.

15: TOLFES – REAL (KIND=nag_wp) Input/Output

On entry: the maximum acceptable absolute violation in each constraint at a ‘feasible’ point
(feasibility tolerance); i.e., a constraint is considered satisfied if its violation does not exceed
TOLFES.

On exit: unchanged if on entry TOLFES > 0:0, else TOLFES ¼
ffiffi
�
p

(where � is the machine
precision).
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16: BIGBND – REAL (KIND=nag_wp) Input/Output

On entry: the ‘infinite’ bound size in the definition of the problem constraints. More precisely,
any upper bound greater than or equal to BIGBND will be regarded as þ1 and any lower bound
less than or equal to �BIGBND will be regarded as �1.

On exit: unchanged if on entry BIGBND > 0:0, else BIGBND ¼ 1020.

17: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the original LP solution.

On exit: with IFAIL ¼ 0, X contains a solution which will be an estimate of either the optimum
integer solution or the first integer solution, depending on the value of INTFST. If IFAIL ¼ 9,
then X contains a solution which will be an estimate of the best integer solution that was
obtained by searching MAXNOD nodes.

18: OBJMIP – REAL (KIND=nag_wp) Output

On exit: with IFAIL ¼ 0 or 9, OBJMIP contains the value of the objective function for the IP
solution.

19: IWORKðLIWORKÞ – INTEGER array Communication Array
20: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
H02BBF is called.

Constraint: LIWORK � 25þ NþMð Þ �MAXDPTþ 5� NþMþ 4.

21: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array
22: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
H02BBF is called.

Constraint: LRWORK � MAXDPT� Nþ 1ð Þ þ 2�min N;Mþ 1ð Þ2 þ 14� Nþ 12�M.

If MSGLVL > 0, the amounts of workspace provided and required (with MAXDPT ¼ 3� N=2)
are printed. As an alternative to computing MAXDPT, LIWORK and LRWORK from the
formulas given above, you may prefer to obtain appropriate values from the output of a
preliminary run with the values of MAXDPT, LIWORK and LRWORK set to 1. If however only
LIWORK and LRWORK are set to 1, then the appropriate values of these arguments for the
given value of MAXDPT will be computed and printed unless MAXDPT < 2. In both cases
H02BBF will then terminate with IFAIL ¼ 6.

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

5.1 Description of Printed Output

The level of printed output from H02BBF is controlled by you (see the description of MSGLVL in
Section 5).
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When MSGLVL > 0, the summary printout at the end of execution of H02BBF includes a listing of the
status of every variable and constraint. Note that default names are assigned to all variables and
constraints. The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if
temporarily fixed at its current value). If Value lies outside the upper or lower
bounds by more than the Feasibility Tolerance, State will be ++ or --
respectively.

Value is the value of the variable at the final iterate.

Lower Bound is the lower bound specified for the variable. (None indicates that
BLðjÞ � �BIGBND.) Note that if INTVARðjÞ ¼ 1, then the printed value of
Lower Bound for the jth variable may not be the same as that originally supplied
in BLðjÞ.

Upper Bound is the upper bound specified for the variable. (None indicates that
BUðjÞ � BIGBND.) Note that if INTVARðjÞ ¼ 1, then the printed value of
Upper Bound for the jth variable may not be the same as that originally supplied
in BUðjÞ.

Lagr Mult is the value of the Lagrange-multiplier for the associated bound constraint. This
will be zero if State is FR or TF. If x is optimal, the multiplier should be non-
negative if State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its bounds BLðjÞ
and BUðjÞ.

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ
respectively, and with the following change in the heading.

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ;m, of the constraint.

When MSGLVL > 1, the summary printout at the end of every node during the execution of H02BBF
is a listing of the outcome of forcing an integer variable with a noninteger value to take a value within
its specified lower and upper bounds.

Node No is the current node number of the B&B tree being investigated.

Parent Node is the parent node number of the current node.

Obj Value is the final objective function value. If a node does not have a feasible solution
then No Feas Soln is printed instead of the objective function value. If a node
whose optimum solution exceeds the best integer solution so far is encountered (i.
e., it does not pay to explore the sub-problem any further), then its objective
function value is printed together with a CO (Cut Off).

Varbl Chosen is the index of the integer variable chosen for branching.

Value Before is the noninteger value of the integer variable chosen.

Lower Bound is the lower bound value that the integer variable is allowed to take.

Upper Bound is the upper bound value that the integer variable is allowed to take.

Value After is the value of the integer variable after the current optimization.

Depth is the depth of the B&B tree at the current node.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: H02BBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

No feasible integer point was found, i.e., it was not possible to satisfy all the integer variables to
within the integer feasibility tolerance (determined by TOLIV). Increase TOLIV and rerun
H02BBF.

IFAIL ¼ 2

The original LP solution appears to be unbounded. This value of IFAIL implies that a step as
large as BIGBND would have to be taken in order to continue the algorithm (see Section 9).

IFAIL ¼ 3

No feasible point was found for the original LP problem, i.e., it was not possible to satisfy all the
constraints to within the feasibility tolerance (determined by TOLFES). If the data for the
constraints are accurate only to the absolute precision �, you should ensure that the value of the
feasibility tolerance is greater than �. For example, if all elements of A are of order unity and are
accurate only to three decimal places, the feasibility tolerance should be at least 10�3 (see
Section 9).

IFAIL ¼ 4

The maximum number of iterations (determined by ITMAX) was reached before normal
termination occurred for the original LP problem (see Section 9).

IFAIL ¼ 5

Not used by this routine.

IFAIL ¼ 6

An input argument is invalid.

IFAIL ¼ 7

The IP solution reported is not the optimum IP solution. In other words, the B&B tree search for
at least one of the branches had to be terminated since an LP sub-problem in the branch did not
have a solution (see Section 9).

IFAIL ¼ 8

The maximum depth of the B&B tree used for branch and bound (determined by MAXDPT) is
too small. Increase MAXDPT (along with LIWORK and/or LRWORK if appropriate) and rerun
H02BBF.

IFAIL ¼ 9

The IP solution reported is the best IP solution for the number of nodes (determined by
MAXNOD) investigated in the B&B tree.

IFAIL ¼ 10

No feasible integer point was found for the number of nodes (determined by MAXNOD)
investigated in the B&B tree.
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IFAIL ¼ 11

Although the workspace sizes are sufficient to meet the documented restriction, they are not
sufficiently large to accommodate an internal partition of the workspace that meets the
requirements of the problem. Increase the workspace sizes.

The maximum depth of the B&B tree used for branch and bound (determined by MAXDPT) is
too small. Increase MAXDPT (along with LIWORK and/or LRWORK if appropriate) and rerun
H02BBF.

Overflow

It may be possible to avoid the difficulty by increasing the magnitude of the feasibility tolerance
(TOLFES) and rerunning the program. If the message recurs even after this change, see
Section 9.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

H02BBF implements a numerically stable active set strategy and returns solutions that are as accurate
as the condition of the problem warrants on the machine.

8 Parallelism and Performance

H02BBF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

H02BBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The original LP problem may not have an optimum solution, i.e., H02BBF terminates with IFAIL ¼ 2,
3 or 4 or overflow may occur. In this case, you are recommended to relax the integer restrictions of the
problem and try to find the optimum LP solution by using E04MFF/E04MFA instead.

In the B&B method, it is possible for an LP sub-problem to terminate without finding a solution. This
may occur due to the number of iterations exceeding the maximum allowed. Therefore the B&B tree
search for that particular branch cannot be continued. Thus the returned solution may not be optimal.
(IFAIL ¼ 7). For the second and unlikely case, a solution could not be found despite a second attempt
at an LP solution.
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10 Example

This example solves the integer programming problem:

maximize

F xð Þ ¼ 3x1 þ 4x2

subject to the bounds

x1 � 0
x2 � 0

and to the general constraints

2x1 þ 5x2 � 15
2x1 � 2x2 � 5
3x1 þ 2x2 � 5

where x1 and x2 are integer variables.

The initial point, which is feasible, is

x0 ¼ 1; 1ð ÞT;

and F x0ð Þ ¼ 7.

The optimal solution is

x� ¼ 2; 2ð ÞT;

and F x�ð Þ ¼ 14.

Note that maximizing F xð Þ is equivalent to minimizing �F xð Þ.

10.1 Program Text

Program h02bbfe

! H02BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: h02bbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: bigbnd, objmip, tolfes, toliv
Integer :: i, ifail, intfst, itmax, j, lda, &

liwork, lrwork, m, maxdpt, maxnod, &
msglvl, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), cvec(:), &

rwork(:), x(:)
Integer, Allocatable :: intvar(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’H02BBF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, m
lda = m
Allocate (a(lda,n),bl(m+n),bu(m+n),cvec(n),x(n),intvar(n))
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Read (nin,*) itmax, msglvl
Read (nin,*) maxnod
Read (nin,*) intfst, maxdpt
Read (nin,*) tolfes, toliv
Read (nin,*)(cvec(i),i=1,n)
Read (nin,*)((a(i,j),j=1,n),i=1,m)
Read (nin,*) bigbnd
Read (nin,*)(bl(i),i=1,n+m)
Read (nin,*)(bu(i),i=1,n+m)
Read (nin,*)(intvar(i),i=1,n)
Read (nin,*)(x(i),i=1,n)

liwork = (25+n+m)*maxdpt + 5*n + m + 4
lrwork = maxdpt*(n+1) + 2*min(n,m+1)**2 + 14*n + 12*m
Allocate (iwork(liwork),rwork(lrwork))

! Solve the IP problem

ifail = 0
Call h02bbf(itmax,msglvl,n,m,a,lda,bl,bu,intvar,cvec,maxnod,intfst, &

maxdpt,toliv,tolfes,bigbnd,x,objmip,iwork,liwork,rwork,lrwork,ifail)

End Program h02bbfe

10.2 Program Data

H02BBF Example Program Data
2 3 :Values of N and M
0 10 :Values of ITMAX and MSGLVL
0 :Value of MAXNOD
0 4 :Values of INTFST and MAXDPT
0.0 0.0 :Values of TOLFES and TOLIV

-3.0 -4.0 :End of CVEC
2.0 5.0
2.0 -2.0
3.0 2.0 :End of matrix A
1.0E+20 :Value of BIGBND
0.0 0.0 -1.0E+20 -1.0E+20 5.0 :End of BL
1.0E+20 1.0E+20 15.0 5.0 1.0E+20 :End of BU
1 1 :End of INTVAR
1.0 1.0 :End of X

10.3 Program Results

H02BBF Example Program Results

*** IP solver

Parameters
----------

Linear constraints...... 3 First integer solution.. OFF
Variables............... 2 Max depth of the tree... 4

Feasibility tolerance... 1.05E-08 Print level............. 10
Infinite bound size..... 1.00E+20 EPS (machine precision). 1.11E-16

Integer feasibility tol. 1.00E-05 Iteration limit......... 50
Max number of nodes..... NONE

** Workspace provided with MAXDPT = 4: LRWORK = 84 LIWORK = 137
** Workspace required with MAXDPT = 4: LRWORK = 84 LIWORK = 137

*** Optimum LP solution *** -17.50000

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

H – Operations Research H02BBF

Mark 26 H02BBF.9



V 1 FR 3.92857 0.00000 None 0.000 3.929
V 2 FR 1.42857 0.00000 None 0.000 1.429

L Con State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 UL 15.0000 None 15.0000 -1.000 0.000
L 2 UL 5.00000 None 5.00000 -0.5000 -8.8818E-16
L 3 FR 14.6429 5.00000 None 0.000 9.643

*** Start of tree search ***

Node Parent Obj Varbl Value Lower Upper Value Depth
No Node Value Chosen Before Bound Bound After
2 1 No Feas Soln 1 3.93 4.00 None 4.00 1
3 1 -16.2 1 3.93 0.00 3.00 3.00 1
4 3 -15.5 2 1.80 2.00 None 2.00 2
5 3 -13.0 2 1.80 0.00 1.00 1.00 2

*** Integer solution ***

Node Parent Obj Varbl Value Lower Upper Value Depth
No Node Value Chosen Before Bound Bound After
6 4 No Feas Soln 1 2.50 3.00 3.00 3.00 3
7 4 -14.8 1 2.50 0.00 2.00 2.00 3
8 7 -12.0 CO 2 2.20 3.00 None 3.00 4
9 7 -14.0 2 2.20 2.00 2.00 2.00 4

*** Integer solution ***

*** End of tree search ***

Total of 9 nodes investigated.

Exit IP solver - Optimum IP solution found.

Final IP objective value = -14.00000

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 UL 2.00000 0.00000 2.00000 -3.000 0.000
V 2 EQ 2.00000 2.00000 2.00000 -4.000 0.000

L Con State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 FR 14.0000 None 15.0000 0.000 1.000
L 2 FR 0.00000 None 5.00000 0.000 5.000
L 3 FR 10.0000 5.00000 None 0.000 5.000
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NAG Library Routine Document

H02BFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H02BFF solves linear or integer programming problems specified in MPSX input format. It is not
intended for large sparse problems.

2 Specification

SUBROUTINE H02BFF (INFILE, MAXN, MAXM, OPTIM, XBLDEF, XBUDEF, MAXDPT,
MSGLVL, N, M, X, CRNAME, IWORK, LIWORK, RWORK,
LRWORK, IFAIL)

&
&

INTEGER INFILE, MAXN, MAXM, MAXDPT, MSGLVL, N, M,
IWORK(LIWORK), LIWORK, LRWORK, IFAIL

&

REAL (KIND=nag_wp) XBLDEF, XBUDEF, X(MAXN), RWORK(LRWORK)
CHARACTER(3) OPTIM
CHARACTER(8) CRNAME(MAXN+MAXM)

3 Description

H02BFF solves linear programming (LP) or integer programming (IP) problems specified in MPSX (see
IBM (1971)) input format. It calls either E04MFF/E04MFA (to solve an LP problem) or H02BBF and
H02BZF (to solve an IP problem); these routines are designed to solve problems of the form

minimize
x2Rn

cTx subject to l � x
Ax

� �
� u

where c is an n-element vector and A is an m by n matrix (i.e., there are n variables and m general
linear constraints). H02BBF is used if at least one of the variables is restricted to take an integer value
at the optimum solution. The document for H02BUF should be consulted for a detailed description of
the MPSX format.

In the MPSX data file the first free row, that is a row defined with the row type N, is taken as the
objective row. Similarly, if there are more than one RHS, RANGES or BOUNDS sets, then the first set
is used for the optimization. H02BFF also prints the solution to the problem using the row and column
names specified in the MPSX data file (by calling H02BVF).

4 References

IBM (1971) MPSX – Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

5 Arguments

1: INFILE – INTEGER Input

On entry: the unit number associated with the MPSX data file.

Constraint: 0 � INFILE � 99.

2: MAXN – INTEGER Input

On entry: an upper limit for the number of variables in the problem.

Constraint: MAXN � 1.
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3: MAXM – INTEGER Input

On entry: an upper limit for the number of constraints (including the objective) in the problem.

Constraint: MAXM � 1.

4: OPTIM – CHARACTER(3) Input

On entry: specifies the direction of the optimization. OPTIM must be set to `MIN' for
minimization and to `MAX' for maximization.

Constraint: OPTIM ¼ MIN or MAX.

5: XBLDEF – REAL (KIND=nag_wp) Input

On entry: the default lower bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file. For a standard LP or IP problem
XBLDEF would normally be set to zero.

6: XBUDEF – REAL (KIND=nag_wp) Input

On entry: the default upper bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file. For a standard LP or IP problem
XBUDEF would normally be set to ‘infinity’ (i.e., XBUDEF � 1020).

Constraint: XBUDEF � XBLDEF.

7: MAXDPT – INTEGER Input

On entry: for an IP problem, MAXDPT must specify the maximum depth of the branch and
bound tree.

Constraint: MAXDPT � 2.

For an LP problem, MAXDPT is not referenced

8: MSGLVL – INTEGER Input

On entry: the amount of printout produced by E04MFF/E04MFA or H02BBF, as indicated below.
For a description of the printed output see Section 9.2 in E04MFF/E04MFA or Section 5.1 in
H02BBF (as appropriate). All output is written to the current advisory message unit (as defined
by X04ABF).

For an LP problem (E04MFF/E04MFA):

Value Definition

0 No output.

1 The final solution only.

5 One line of output for each iteration (no printout of the final solution).

10 The final solution and one line of output for each iteration.

For an IP problem (H02BBF):

Value Definition

0 No output.

1 The final IP solution only.

5 One line of output for each node investigated and the final IP solution.

10 The original LP solution (first node) with dummy names for the rows and columns, one
line of output for each node investigated and the final IP solution with MPSX names for
the rows and columns.
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9: N – INTEGER Output

On exit: n, the actual number of variables in the problem.

10: M – INTEGER Output

On exit: m, the actual number of general linear constraints in the problem.

11: XðMAXNÞ – REAL (KIND=nag_wp) array Output

On exit: the solution to the problem, stored in Xð1Þ;Xð2Þ; . . . ;XðNÞ. XðiÞ is the value of the
variable whose MPSX name is stored in CRNAMEðiÞ, for i ¼ 1; 2; . . . ;N.

12: CRNAMEðMAXNþMAXMÞ – CHARACTER(8) array Output

On exit: the first N elements contain the MPSX names for the variables in the problem.

13: IWORKðLIWORKÞ – INTEGER array Output

On exit: the first (NþM) elements contain ISTATE (the status of the constraints in the working
set at the solution). Further details can be found in Section 5 in E04MFF/E04MFA or H02BZF
(as appropriate).

14: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
H02BFF is called.

Constraints:

for an LP problem, LIWORK � 4�MAXNþMAXMþ 3;
f o r a n I P p r o b l e m ,
LIWORK � 25þMAXNþMAXMð Þ �MAXDPTþ 7�MAXNþ 2�
MAXMþ 4.

15: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Output

On exit: the first (NþM) elements contain BL (the lower bounds), the next (NþM) elements
contain BU (the upper bounds) and the next (NþM) elements contain CLAMDA (the Lagrange-
multipliers). Further details can be found in Section 5 in E04MFF/E04MFA or H02BZF (as
appropriate). Note that for an IP problem the contents of BL and BU may not be the same as
those originally specified in the MPSX data file and/or via the arguments XBLDEF and
XBUDEF.

16: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
H02BFF is called.

Constraints:

for an LP problem, LRWORK � 2�MIN MAXN;MAXMþ 1ð Þ2 þMAXM�MAXNþ
12�MAXNþ 9�MAXM;
for an IP problem,
LRWORK � MAXDPT� MAXNþ 1ð Þ þ 2�MIN MAXN;MAXMþ 1ð Þ2 þMAXM�
MAXNþ 19�MAXNþ 15�MAXM.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ i and IFAIL < 0

Either MAXM and/or MAXN are too small or the MPSX data file is nonstandard and/or corrupt.
This corresponds to IFAIL ¼ �i in Section 6 in H02BUF.

IFAIL ¼ 1

X is a weak local minimum. This means that the solution is not unique.

IFAIL ¼ 2

The solution appears to be unbounded. This value of IFAIL implies that a step as large as
XBUDEF would have to be taken in order to continue the algorithm. See Section 9.

IFAIL ¼ 3

No feasible point was found, i.e., it was not possible to satisfy all the constraints to within the
feasibility tolerance (defined internally as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

). See Section 9.

IFAIL ¼ 4

The maximum number of iterations (defined internally as max 50; 5 nþmð Þð Þ) was reached before
normal termination occurred. See Section 9.

IFAIL ¼ 5

An input argument is invalid. Refer to the printed output to determine which argument must be
redefined.

IFAIL ¼ 6 (E04MFF/E04MFA or H02BBF)

A serious error has occurred in an internal call to one of the specified routines. Check all
subroutine calls and array dimensions.

For an IP problem only:

IFAIL ¼ 7

The solution returned may not be optimal. See Section 9.

IFAIL ¼ 8

MAXDPT is too small. Try increasing its value (along with that of LIWORK and/or LRWORK if
appropriate) and rerun H02BFF.

IFAIL ¼ 9

No feasible integer point was found, i.e., it was not possible to satisfy all the integer variables to
within the integer feasibility tolerance (defined internally as 10�5). See Section 9.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

H02BFF implements a numerically stable active set strategy and returns solutions that are as accurate as
the condition of the problem allows on the machine.

8 Parallelism and Performance

H02BFF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

H02BFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For an LP problem only:

If IFAIL ¼ 2 on exit, you can obtain more information by making separate calls to H02BUF,
E04MFF/E04MFA and H02BVF (in that order). Note that this will (by default) cause the final LP
solution to be printed twice on the current advisory message unit (see X04ABF), once with
dummy names for the rows and columns and once with user-supplied names. To suppress the
printout of the final LP solution with dummy names for the rows and columns, include the
statement

CALL E04MHF/E04MHA(’ Print Level = 5 ’)

prior to calling E04MFF/E04MFA.

If IFAIL ¼ 3 on exit, you are recommended to reset the value of the feasibility tolerance and
rerun H02BFF. (Further advice is given under the description of IFAIL ¼ 3 in Section 6 in
E04MFF/E04MFA.) For example, to reset the value of the feasibility tolerance to 0:01, include
the statement

CALL E04MHF/E04MHA(’ Feasibility Tolerance = 0.01 ’)

prior to calling H02BFF.

If IFAIL ¼ 4 on exit, you are recommended to increase the maximum number of iterations
allowed before termination and rerun H02BFF. For example, to increase the maximum number of
iterations to 500, include the statement

CALL E04MHF/E04MHA(’ Iteration Limit = 500 ’)
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prior to calling H02BFF.

Note that H02BUF uses an ‘infinite’ bound size of 1020 in the definition of l and u. In other
words, any element of u greater than or equal to 1020 will be regarded as þ1 (and similarly any
element of l less than or equal to �1020 will be regarded as �1). If this value is deemed to be
inappropriate, you are recommended to reset the value of the ‘infinite’ bound size and make any
necessary changes to BL and/or BU prior to calling E04MFF/E04MFA. For example, to reset the
value of the ‘infinite’ bound size to 10000, include the statement

CALL E04MHF/E04MHA(’ Infinite Bound Size = 1.0E+4 ’)

prior to calling E04MFF/E04MFA.

For an IP problem only:

If IFAIL ¼ 2, 3, 4, 7 or 9 on exit, you can obtain more information by making separate calls to
H02BBF, H02BUF, H02BVF and H02BZF (in that order).

Note that H02BUF uses an ‘infinite’ bound size of 1020 in the definition of l and u. In other
words, any element of u greater than or equal to 1020 will be regarded as þ1 (and similarly any
element of l less than or equal to �1020 will be regarded as �1). If this value is deemed to be
inappropriate, you are recommended to reset the value of the argument BIGBND (as described in
H02BBF) and make any necessary changes to BL and/or BU prior to calling H02BBF.

10 Example

This example solves the same problem as the example for H02BUF, except that it treats it as an IP
problem.

One of the applications of integer programming is to the so-called diet problem. Given the nutritional
content of a selection of foods, the cost of each food, the amount available of each food and the
consumer's minimum daily nutritional requirements, the problem is to find the cheapest combination.
This gives rise to the following problem:

minimize

cTx

subject to

Ax � b;
0 � x � u;

where

c ¼ 3 24 13 9 20 19
� �T

; x ¼ x1; x2; x3; x4; x5; x6ð ÞT;

x1; x2 and x6 are real,

x3; x4 and x5 are integer,

A ¼
110 205 160 160 420 260

4 32 13 8 4 14
2 12 54 285 22 80

0@ 1A; b ¼
2000

55
800

0@ 1A and

u ¼ 4 3 2 8 2 2
� �T

.

The rows of A correspond to energy, protein and calcium and the columns of A correspond to oatmeal,
chicken, eggs, milk, pie and bacon respectively.

The MPSX data representation of this problem is given in Section 10.2.
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10.1 Program Text

Program h02bffe

! H02BFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: h02bff, nag_wp, x04acf, x04baf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: xbl_default = 0.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: xbu_default = 1.0E+20_nag_wp
Integer, Parameter :: maxm = 50, maxn = 50, msglvl = 1, &

nindat = 7, nout = 6
Integer, Parameter :: maxdpt = 3*maxn/2
Integer, Parameter :: liwork = (25+maxn+maxm)*maxdpt + 2* &

maxm + 7*maxn + 4
Integer, Parameter :: lrwork = maxdpt*(maxn+1) + 2*maxn**2 &

+ maxm*maxn + 19*maxn + 15*maxm
Character (*), Parameter :: fname = ’h02bffe.opt’
Character (3), Parameter :: optim = ’MIN’

! .. Local Scalars ..
Integer :: ifail, infile, m, mode, n
Character (80) :: rec

! .. Local Arrays ..
Real (Kind=nag_wp) :: rwork(lrwork), x(maxn)
Integer :: iwork(liwork)
Character (8) :: crname(maxn+maxm)

! .. Executable Statements ..
Write (rec,99999) ’H02BFF Example Program Results’
Call x04baf(nout,rec)

! Open the data file for reading

mode = 0

ifail = 0
Call x04acf(nindat,fname,mode,ifail)

! Solve the problem

infile = nindat

ifail = 0
Call h02bff(infile,maxn,maxm,optim,xbl_default,xbu_default,maxdpt, &

msglvl,n,m,x,crname,iwork,liwork,rwork,lrwork,ifail)

99999 Format (1X,A)
End Program h02bffe

10.2 Program Data

NAME DIET
ROWS
G ENERGY
G PROTEIN
G CALCIUM
N COST

COLUMNS
OATMEAL ENERGY 110.0
OATMEAL PROTEIN 4.0
OATMEAL CALCIUM 2.0
OATMEAL COST 3.0
CHICKEN ENERGY 205.0
CHICKEN PROTEIN 32.0
CHICKEN CALCIUM 12.0
CHICKEN COST 24.0
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INTEGER ’MARKER’ ’INTORG’
EGGS ENERGY 160.0
EGGS PROTEIN 13.0
EGGS CALCIUM 54.0
EGGS COST 13.0
MILK ENERGY 160.0
MILK PROTEIN 8.0
MILK CALCIUM 285.0
MILK COST 9.0
PIE ENERGY 420.0
PIE PROTEIN 4.0
PIE CALCIUM 22.0
PIE COST 20.0
INTEGER ’MARKER’ ’INTEND’
BACON ENERGY 260.0
BACON PROTEIN 14.0
BACON CALCIUM 80.0
BACON COST 19.0

RHS
DEMANDS ENERGY 2000.0
DEMANDS PROTEIN 55.0
DEMANDS CALCIUM 800.0

BOUNDS
UI SERVINGS OATMEAL 4.0
UI SERVINGS CHICKEN 3.0
UP SERVINGS EGGS 2.0
UP SERVINGS MILK 8.0
UP SERVINGS PIE 2.0
UI SERVINGS BACON 2.0

ENDATA

10.3 Program Results

H02BFF Example Program Results

*** IP solver

Parameters
----------

Linear constraints...... 3 First integer solution.. OFF
Variables............... 6 Max depth of the tree... 75

Feasibility tolerance... 1.05E-08 Print level............. 1
Infinite bound size..... 1.00E+20 EPS (machine precision). 1.11E-16

Integer feasibility tol. 1.00E-05 Iteration limit......... 50
Max number of nodes..... NONE

** Workspace provided with MAXDPT = 75: LRWORK = 10075 LIWORK = 9679
** Workspace required with MAXDPT = 75: LRWORK = 677 LIWORK = 2587

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

OATMEAL EQ 4.00000 4.00000 4.00000 3.000 0.000
CHICKEN LL 0.00000 0.00000 3.00000 24.00 0.000
EGGS LL 0.00000 0.00000 2.00000 13.00 0.000
MILK LL 5.00000 5.00000 8.00000 9.000 0.000
PIE EQ 2.00000 2.00000 2.00000 20.00 0.000
BACON LL 0.00000 0.00000 2.00000 19.00 0.000
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L Con State Value Lower Bound Upper Bound Lagr Mult Residual

ENERGY FR 2080.00 2000.00 None 0.000 80.00
PROTEIN FR 64.0000 55.0000 None 0.000 9.000
CALCIUM FR 1477.00 800.000 None 0.000 677.0
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NAG Library Routine Document

H02BUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H02BUF reads data for a linear or integer programming problem from an external file which is in
standard or compatible MPSX input format.

2 Specification

SUBROUTINE H02BUF (INFILE, MAXN, MAXM, OPTIM, XBLDEF, XBUDEF, NMOBJ,
NMRHS, NMRNG, NMBND, MPSLST, N, M, A, BL, BU, CVEC,
X, INTVAR, CRNAME, NMPROB, IWORK, IFAIL)

&
&

INTEGER INFILE, MAXN, MAXM, N, M, INTVAR(MAXN),
IWORK(MAXN+MAXM), IFAIL

&

REAL (KIND=nag_wp) XBLDEF, XBUDEF, A(MAXM,MAXN), BL(MAXN+MAXM),
BU(MAXN+MAXM), CVEC(MAXN), X(MAXN)

&

LOGICAL MPSLST
CHARACTER(3) OPTIM
CHARACTER(8) NMOBJ, NMRHS, NMRNG, NMBND, CRNAME(MAXN+MAXM),

NMPROB
&

3 Description

H02BUF reads linear programming (LP) or integer programming (IP) problem data from an external file
which is prepared in standard or compatible MPSX (see IBM (1971)) input format and then initializes n
(the number of variables), m (the number of general linear constraints), the vectors c, l and u and the m
by n matrix A for use with E04MFF/E04MFA or H02BBF, which are designed to solve problems of the
form

minimize
x2Rn

cTx subject to l � x
Ax

� �
� u:

H02BUF may be followed by calls to either E04MFF/E04MFA (to solve an LP problem) or H02BBF
and H02BZF (to solve an IP problem), possibly followed by a call to H02BVF (to print the solution
using MPSX names).

Note that H02BUF uses an ‘infinite’ bound size of 1020 in the definition of l and u. In other words, any
element of u greater than or equal to 1020 will be regarded as þ1 (and similarly any element of l less
than or equal to �1020 will be regarded as �1). If this value is deemed to be ‘inappropriate’, you are
recommended to reset the value of either the optional parameter Infinite Bound Size (if an LP problem
is being solved) or the argument BIGBND (if an IP problem is being solved) and make any necessary
changes to BL and/or BU prior to calling E04MFF/E04MFA or H02BBF (as appropriate).

The documents for E04MFF/E04MFA, H02BVF and/or H02BBF and H02BZF should be consulted for
further details.

MPSX input format

The input file of data may only contain two types of lines.

1. Indicator lines (specifying the type of data which is to follow).

2. Data lines (specifying the actual data).

The input file must not contain any blank lines. Any characters beyond column 80 are ignored.
Indicator lines must not contain leading blank characters (in other words they must begin in column 1).
The following displays the order in which the indicator lines must appear in the file:
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NAME user-given name

ROWS data line(s)

COLUMNS data line(s)

RHS data line(s)

RANGES (optional) data line(s)

BOUNDS (optional) data line(s)

ENDATA

The ‘user-given name’ specifies a name for the problem and must occupy columns 15–22. The name
can either be blank or up to a maximum of 8 characters.

A data line follows the same fixed format made up of fields defined below. The contents of the fields
may have different significance depending upon the section of data in which they appear.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2�3 5�12 15�22 25�36 40�47 50�61
Contents Code Name Name Value Name Value

The names and codes consist of ‘alphanumeric’ characters (i.e., a–z, A–Z, 0–9, þ, �, asterisk (*),
blank ( ), colon (:), dollar sign ($) or fullstop (.) only) and the names must not contain leading blank
characters. Values are read using Fortran format E12.0. This allows values to be entered in several
equivalent forms. For example, 1:2345678, 1:2345678E þ 0, 123:45678E�2 and 12345678E�07 all
represent the same number. It is safest to include an explicit decimal point.

Note that in order to ensure numeric values are interpreted as intended, they should be right-justified in
the 12-character field, with no trailing blanks. This is because in some situations trailing blanks may be
interpreted as zeros and this can dramatically affect the interpretation of the value. This is relevant if
the value contains an exponent, or if it contains neither an exponent nor an explicit decimal point. For
example, the fields

%%%%1.23E-2%
%%%%%%%123%%

may be interpreted as 1:23E�20 and 12300 respectively (where % is used to denote a blank). The actual
behaviour is system-dependent.

Comment lines are allowed in the data file. These must have an asterisk (*) in column 1 and any
characters in columns 2–80. In any data line, a dollar sign ($) as the first character in Field 3 or 5
indicates that the information from that point through column 80 consists of comments.

Columns outside the six fields must be blank, except for columns 72–80, whose contents are ignored by
the routine. These columns may be used to enter a sequence number. A non-blank character outside the
predefined six fields and columns 72–80 is considered to be a major error (IFAIL ¼ 11; see Section 6),
unless it is part of a comment.

ROWS data line(s)

These lines specify row (constraint) names and their inequality types (i.e., ¼, � or �).
Field 1: defines the constraint type. It may be in column 2 or column 3.

N free row, that is no constraint. It may be used to define the objective row.

G greater than or equal to (i.e., �).

L less than or equal to (i.e., �).

E exactly equal to (i.e., ¼).
Field 2: defines the row name.
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Row type N stands for ‘Not binding’, also known as ‘Free’. It can be used to define the objective row.
The objective row is a free row that specifies the vector c in the objective function. It is taken to be the
first free row, unless some other free row name is specified by the argument NMOBJ (see Section 5).
Note that the objective function must be included in the MPSX data file. Thus the maximum number of
constraints (MAXM; see Section 5) in the problem must be mþ 1.

COLUMNS data line(s)

These lines specify the names to be assigned to the variables (columns) in the constraint matrix A, and
define, in terms of column vectors, the actual values of the corresponding matrix elements.

Field 1: blank (ignored)

Field 2: gives the name of the column associated with the elements specified in the following fields.

Field 3: contains the name of a row.

Field 4: used in conjunction with Field 3 contains the value of the matrix element.

Field 5: is optional (may be used like Field 3).

Field 6: is optional (may be used like Field 4).

Note that only nonzero elements of A need to be specified in the COLUMNS section, as any
unspecified elements are assumed to be zero.

RHS data line(s)

This section specifies the right-hand side values of the constraint matrix A. The lines specify the name
of the RHS (right-hand side) vector given to the problem, the numerical values of the elements of the
vector are also defined by the data lines and may appear in any order. The data lines have exactly the
same format as the COLUMNS data lines, except that the column name is replaced by the RHS name.
Note that any unspecified elements are assumed to be zero.

RANGES data line(s) (optional)

Ranges are used for constraints of the form l � Ax � u, where l and u are finite. The range of the
constraint is r ¼ u� l. Either l or u must be specified in the RHS section and r must be defined in this
section.

The data lines have exactly the same format as the COLUMNS data lines, except that the column name
is replaced by the RANGES name.

BOUNDS data line(s) (optional)

These lines specify limits on the values of the variables (l and u in l � x � u). If the variable is not
specified in the bound set then it is automatically assumed to lie between default lower and upper
bounds (usually 0 and þ1). Like an RHS column which is given a name, the set of variables in one
bound set is also given a name.

Field 1: specifies the type of bound or defines the variable type.

LO lower bound

UP upper bound

FX fixed variable

FR free variable (�1 to þ1)

MI lower bound is �1
PL upper bound is þ1. This is the default variable type.

Field 2: identifies a name for the bound set.

Field 3: identifies the column name of the variable belonging to this set.

Field 4: identifies the value of the bound; this has a numerical value only in association with LO, UP, FX
in Field 1, otherwise it is blank.

Field 5: is blank and ignored.
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Field 6: is blank and ignored.

Note that if RANGES and BOUNDS sections are both present, the RANGES section must appear first.

Integer Problems

In IP problems there are two common integer variable types.

1. 0–1 integer variables which represent ‘on’ or ‘off’ situations and

2. General integer variables which are forced to take an integer value, in a specified range, at the
optimal integer solution.

Integer variables can be defined in the following compatible and standard MPSX forms.

In the compatible MPSX format, the type of integer variables is defined in Field 1 of the BOUNDS
section, that is:

Field 1: specifies the type of the integer variable.

BV 0�1 integer variable (bound value is 1:0).

UI general integer variable (bound value is in Field 4).

In the standard MPSX format, the integer variables are treated the same as the ‘ordinary’ bounded
variables, in the BOUNDS section. Integer markers are, however, introduced in the COLUMNS section
to specify the integer variables. The indicator lines for these markers are:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2�3 5�12 15�22 25�36 40�47 50�61
Contents INTEGER ‘MARKER’ ‘INTORG’

to mark the beginning of the integer variables and

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2�3 5�12 15�22 25�36 40�47 50�61
Contents INTEGER ‘MARKER’ ‘INTEND’

to mark the end. That is, any variables between these markers are treated as integer variables. Note that
if the (INTEND) indicator line is not specified in the file then all the variables between the (INTORG)
indicator line and the end of the COLUMNS section are assumed to be integer variables. The routine
accepts both standard and/or compatible MPSX format as a means of specifying integer variables. This
is illustrated in Section 10.2 in H02BFF.

4 References

IBM (1971) MPSX – Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

5 Arguments

1: INFILE – INTEGER Input

On entry: the unit number associated with the MPSX data file.

Constraint: 0 � INFILE � 99.

2: MAXN – INTEGER Input

On entry: an upper limit for the number of variables in the problem.

Constraint: MAXN � 1.
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3: MAXM – INTEGER Input

On entry: an upper limit for the number of constraints (including the objective) in the problem.

Constraint: MAXM � 1.

4: OPTIM – CHARACTER(3) Input

On entry: specifies the direction of the optimization. OPTIM must be set to `MIN' for
minimization and to `MAX' for maximization.

Constraint: OPTIM ¼ MIN or MAX.

5: XBLDEF – REAL (KIND=nag_wp) Input

On entry: the default lower bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file. For a standard LP or IP problem
XBLDEF would normally be set to zero.

6: XBUDEF – REAL (KIND=nag_wp) Input

On entry: the default upper bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file. For a standard LP or IP problem
XBUDEF would normally be set to ‘infinity’ (i.e., XBUDEF � 1020).

Constraint: XBUDEF � XBLDEF.

7: NMOBJ – CHARACTER(8) Input/Output

On entry: either the name of the objective function to be used for the optimization, or blank (in
which case the first objective (free) row in the file is used).

On exit: the name of the objective row as defined in the MPSX data file.

8: NMRHS – CHARACTER(8) Input/Output

On entry: either the name of the RHS set to be used for the optimization, or blank (in which case
the first RHS set is used).

On exit: the name of the RHS set read in the MPSX data file.

9: NMRNG – CHARACTER(8) Input/Output

On entry: either the name of the RANGE set to be used for the optimization, or blank (in which
case the first RANGE set (if any) is used).

On exit: the name of the RANGE set read in the MPSX data file. This is blank if the MPSX data
file does not have a RANGE set.

10: NMBND – CHARACTER(8) Input/Output

On entry: either the name of the BOUNDS set to be used for the optimization, or blank (in which
case the first BOUNDS set (if any) is used).

On exit: the name of the BOUNDS set read in the MPSX data file. This is blank if the MPSX
data file does not have a BOUNDS set.

11: MPSLST – LOGICAL Input

On entry: if MPSLST ¼ :TRUE:, then a listing of the input data is sent to the current advisory
message unit (as defined by X04ABF). This can be useful for debugging the MPSX data file.

12: N – INTEGER Output

On exit: n, the actual number of variables in the problem.
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13: M – INTEGER Output

On exit: m, the actual number of general linear constraints in the problem.

14: AðMAXM;MAXNÞ – REAL (KIND=nag_wp) array Output

On exit: A, the matrix of general linear constraints.

15: BLðMAXNþMAXMÞ – REAL (KIND=nag_wp) array Output

On exit: l, the lower bounds for all the variables and constraints in the following order. The first
N elements of BL contain the bounds on the variables and the next M elements contain the
bounds for the general linear constraints (if any). Note that an ‘infinite’ lower bound is indicated
by BLðjÞ ¼ �1:0Eþ 20 and an equality constraint by BLðjÞ ¼ BUðjÞ.

16: BUðMAXNþMAXMÞ – REAL (KIND=nag_wp) array Output

On exit: u, the upper bounds for all the variables and constraints in the following order. The first
N elements of BU contain the bounds on the variables and the next M elements contain the
bounds for the general linear constraints (if any). Note that an ‘infinite’ upper bound is indicated
by BUðjÞ ¼ 1:0Eþ 20 and an equality constraint by BUðjÞ ¼ BLðjÞ.

17: CVECðMAXNÞ – REAL (KIND=nag_wp) array Output

On exit: c, the coefficients of the objective function. The signs of these coefficients are
determined by the problem (either LP or IP) and the direction of the optimization (see OPTIM
above).

18: XðMAXNÞ – REAL (KIND=nag_wp) array Output

On exit: an initial estimate of the solution to the problem. More precisely, XðjÞ ¼ 1:0 if j is odd
and 0:0 otherwise, for j ¼ 1; 2; . . . ;N.

19: INTVARðMAXNÞ – INTEGER array Output

On exit: indicates which are the integer variables in the problem. More precisely,
INTVARðkÞ ¼ 1 if xk is an integer variable, and 0 otherwise, for k ¼ 1; 2; . . . ;N.

20: CRNAMEðMAXNþMAXMÞ – CHARACTER(8) array Output

On exit: the MPSX names of all the variables and constraints in the problem in the following
order. The first N elements contain the MPSX names for the variables and the next M elements
contain the MPSX names for the general linear constraints (if any).

21: NMPROB – CHARACTER(8) Output

On exit: the name of the problem as defined in the MPSX data file.

22: IWORKðMAXNþMAXMÞ – INTEGER array Workspace

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 3 to IFAIL ¼ 15 (apart from IFAIL ¼ 14) are caused by having either a corrupt or a
nonstandard MPSX data file. Refer to Section 3 for a detailed description of the MPSX format which
can be read by H02BUF. If MPSLST ¼ :TRUE:, the last line of printed output refers to the line in the
MPSX data file which contains the reported error.

IFAIL ¼ 1

There are too many rows present in the data file. Increase MAXM by at least (M�MAXM) and
rerun H02BUF.

IFAIL ¼ 2

There are too many columns present in the data file. Increase MAXN by at least (N�MAXN)
and rerun H02BUF.

IFAIL ¼ 3

The objective function row was not found. There must be at least one row in the ROWS section
with row type N for the objective row.

IFAIL ¼ 4

There are no rows specified in the ROWS section.

IFAIL ¼ 5

An illegal constraint type was detected in the ROWS section. The constraint type must be one of
N, L, G or E.

IFAIL ¼ 6

An illegal row name was detected in the ROWS section. Names must be made up of
alphanumeric characters with no leading blanks.

IFAIL ¼ 7

An illegal column name was detected in the COLUMNS section. Names must be made up of
alphanumeric characters with no leading blanks.

IFAIL ¼ 8

An illegal bound type was detected in the BOUNDS section. The bound type must be one of LO,
UP, FX, FR, MI, PL, BV or UI.

IFAIL ¼ 9

An unknown column name was detected in the BOUNDS section. All the column names must be
specified in the COLUMNS section.

IFAIL ¼ 10

The last line in the file does not contain the ENDATA line indicator.

IFAIL ¼ 11

An illegal data line was detected in the file. This line is neither a comment line nor a valid data
line.
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IFAIL ¼ 12

An unknown row name was detected in COLUMNS or RHS or RANGES section. All the row
names must be specified in the ROWS section.

IFAIL ¼ 13

There were no columns specified in the COLUMNS section.

IFAIL ¼ 14

An input argument is invalid.

IFAIL ¼ 15

Incorrect integer marker. In standard MPSX data format, integer variables should be defined
between INTORG and INTEND markers.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

H02BUF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example solves the same problem as the example for H02BFF, except that it treats it as an LP
problem.

One of the applications of linear programming is to the so-called diet problem. Given the nutritional
content of a selection of foods, the cost of each food, the amount available of each food and the
consumer's minimum daily nutritonal requirements, the problem is to find the cheapest combination.
This gives rise to the following problem:

minimize

cTx

subject to
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Ax � b;
0 � x � u;

where

c ¼ 3 24 13 9 20 19
� �T

; x ¼ x1; x2; x3; x4; x5; x6ð ÞT is real;

A ¼
110 205 160 160 420 260

4 32 13 8 4 14
2 12 54 285 22 80

0@ 1A; b ¼
2000

55
800

0@ 1A
and

u ¼ 4 3 2 8 2 2
� �T

:

The rows of A correspond to energy, protein and calcium and the columns of A correspond to oatmeal,
chicken, eggs, milk, pie and bacon respectively.

The MPSX representation of the problem is given in Section 10.2.

10.1 Program Text

Program h02bufe

! H02BUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04mff, e04mhf, h02buf, h02bvf, nag_wp, x04acf, &

x04baf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: xbl_default = 0.0E0_nag_wp
Real (Kind=nag_wp), Parameter :: xbu_default = 1.0E+20_nag_wp
Integer, Parameter :: maxm = 50, maxn = 50, nindat = 7, &

nout = 6
Integer, Parameter :: lda = maxm
Integer, Parameter :: liwork = 2*maxn + 3
Integer, Parameter :: lwork = 2*(maxm+1)**2 + 7*maxn + 5* &

maxm
Character (*), Parameter :: fname = ’h02bufe.opt’
Character (8), Parameter :: kblank = ’ ’
Character (3), Parameter :: optim = ’MIN’

! .. Local Scalars ..
Real (Kind=nag_wp) :: objval
Integer :: ifail, infile, iter, m, mode, n
Logical :: mpslst
Character (8) :: nmbnd, nmobj, nmprob, nmrhs, nmrng
Character (80) :: rec

! .. Local Arrays ..
Real (Kind=nag_wp) :: a(maxm,maxn), ax(maxm), &

bl(maxn+maxm), bu(maxn+maxm), &
clamda(maxn+maxm), cvec(maxn), &
work(lwork), x(maxn)

Integer :: intvar(maxn), istate(maxn+maxm), &
iwork(liwork)

Character (8) :: crname(maxn+maxm)
! .. Executable Statements ..

Write (rec,99999) ’H02BUF Example Program Results’
Call x04baf(nout,rec)

! Open the data file for reading

mode = 0
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ifail = 0
Call x04acf(nindat,fname,mode,ifail)

! Initialize parameters

infile = nindat
nmprob = kblank
nmobj = kblank
nmrhs = kblank
nmrng = kblank
nmbnd = kblank
mpslst = .False.

! Convert the MPSX data file for use by E04MFF

ifail = 0
Call h02buf(infile,maxn,maxm,optim,xbl_default,xbu_default,nmobj,nmrhs, &

nmrng,nmbnd,mpslst,n,m,a,bl,bu,cvec,x,intvar,crname,nmprob,istate, &
ifail)

! Solve the problem

Call e04mhf(’Print Level = 5’)

ifail = -1
Call e04mff(n,m,a,lda,bl,bu,cvec,istate,x,iter,objval,ax,clamda,iwork, &

liwork,work,lwork,ifail)

Select Case (ifail)
Case (0,1,3)

! Print solution (using MPSX names)

ifail = 0
Call h02bvf(n,m,a,lda,bl,bu,x,clamda,istate,crname,ifail)

End Select

99999 Format (1X,A)
End Program h02bufe

10.2 Program Data

NAME DIET
ROWS
G ENERGY
G PROTEIN
G CALCIUM
N COST

COLUMNS
OATMEAL ENERGY 110.0
OATMEAL PROTEIN 4.0
OATMEAL CALCIUM 2.0
OATMEAL COST 3.0
CHICKEN ENERGY 205.0
CHICKEN PROTEIN 32.0
CHICKEN CALCIUM 12.0
CHICKEN COST 24.0
EGGS ENERGY 160.0
EGGS PROTEIN 13.0
EGGS CALCIUM 54.0
EGGS COST 13.0
MILK ENERGY 160.0
MILK PROTEIN 8.0
MILK CALCIUM 285.0
MILK COST 9.0
PIE ENERGY 420.0
PIE PROTEIN 4.0
PIE CALCIUM 22.0
PIE COST 20.0
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BACON ENERGY 260.0
BACON PROTEIN 14.0
BACON CALCIUM 80.0
BACON COST 19.0

RHS
DEMANDS ENERGY 2000.0
DEMANDS PROTEIN 55.0
DEMANDS CALCIUM 800.0

BOUNDS
UI SERVINGS OATMEAL 4.0
UI SERVINGS CHICKEN 3.0
UP SERVINGS EGGS 2.0
UP SERVINGS MILK 8.0
UP SERVINGS PIE 2.0
UI SERVINGS BACON 2.0

ENDATA

10.3 Program Results

H02BUF Example Program Results

Calls to E04MHF
---------------

Print Level = 5

*** E04MFF

Parameters
----------

Problem type........... LP

Linear constraints..... 3 Feasibility tolerance.. 1.05E-08
Variables.............. 6 Optimality tolerance... 1.05E-08

Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16

Check frequency........ 50 Expand frequency....... 5
Minimum sum of infeas.. NO Crash tolerance........ 1.00E-02

Print level............ 5 Iteration limit........ 50
Monitoring file........ -1

Workspace provided is IWORK( 103), WORK( 5802).
To solve problem we need IWORK( 15), WORK( 89).

Itn Step Ninf Sinf/Objective Norm Gz
0 0.0E+00 3 1.799000E+03 0.0E+00
1 1.5E-02 1 2.550000E+02 0.0E+00
2 1.4E-03 0 1.271429E+02 0.0E+00
3 8.7E-02 0 1.129048E+02 0.0E+00
4 2.1E-01 0 1.062857E+02 0.0E+00
5 1.9E+00 0 9.733333E+01 0.0E+00
6 2.9E+00 0 9.250000E+01 0.0E+00

Exit E04MFF - Optimal LP solution.

Final LP objective value = 92.50000

Exit from LP problem after 6 iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

OATMEAL UL 4.00000 0.00000 4.00000 -3.187 0.000
CHICKEN LL 0.00000 0.00000 3.00000 12.47 0.000
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EGGS LL 0.00000 0.00000 2.00000 4.000 0.000
MILK FR 4.50000 0.00000 8.00000 0.000 3.500
PIE UL 2.00000 0.00000 2.00000 -3.625 0.000
BACON LL 0.00000 0.00000 2.00000 4.375 0.000

L Con State Value Lower Bound Upper Bound Lagr Mult Residual

ENERGY LL 2000.00 2000.00 None 5.6250E-02 0.000
PROTEIN FR 60.0000 55.0000 None 0.000 5.000
CALCIUM FR 1334.50 800.000 None 0.000 534.5
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NAG Library Routine Document

H02BVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H02BVF prints the solution to a linear or integer programming problem computed by E04MFF/
E04MFA or H02BBF and H02BZF, with user-supplied names for the rows and columns.

2 Specification

SUBROUTINE H02BVF (N, M, A, LDA, BL, BU, X, CLAMDA, ISTATE, CRNAME,
IFAIL)

&

INTEGER N, M, LDA, ISTATE(N+M), IFAIL
REAL (KIND=nag_wp) A(LDA,*), BL(N+M), BU(N+M), X(N), CLAMDA(N+M)
CHARACTER(8) CRNAME(N+M)

3 Description

H02BVF prints the solution to a linear or integer programming problem with user-supplied names for
the rows and columns. All output is written to the current advisory message unit (as defined by
X04ABF). The routine must be preceded in the same program by calls to H02BUF and either E04MFF/
E04MFA (if an LP problem has been solved) or H02BBF and H02BZF (if an IP problem has been
solved). The documents for E04MFF/E04MFA, H02BUF and/or H02BBF and H02BZF should be
consulted for further details.

4 References

IBM (1971) MPSX – Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

5 Arguments

1: N – INTEGER Input

On entry: the number of variables, as returned by H02BUF.

Constraint: N > 0.

2: M – INTEGER Input

On entry: the number of general linear constraints, as returned by H02BUF.

Constraint: M � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if M > 0 and at least 1 if M ¼ 0.

On entry: the matrix of general linear constraints, as returned by H02BUF.

4: LDA – INTEGER Input

On entry: this must be the same argument MAXM as supplied to H02BUF.

Constraint: LDA � max 1;Mð Þ.
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5: BLðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: the lower bounds for all the constraints, as returned by E04MFF/E04MFA or H02BZF.

6: BUðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: the upper bounds for all the constraints, as returned by E04MFF/E04MFA or H02BZF.

7: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the solution to the problem, as returned by E04MFF/E04MFA or H02BBF.

8: CLAMDAðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: the Lagrange-multipliers (reduced costs) for each constraint with respect to the
working set, as returned by E04MFF/E04MFA or H02BZF.

9: ISTATEðNþMÞ – INTEGER array Input

On entry: the status of every constraint in the working set at the solution, as returned by
E04MFF/E04MFA or H02BZF.

10: CRNAMEðNþMÞ – CHARACTER(8) array Input

On entry: the user-defined names for all the variables and constraints, as returned by H02BUF.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 0,
or M < 0,
or LDA < max 1;Mð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

H02BVF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

H02BVF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in H02BUF.
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NAG Library Routine Document

H02BZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H02BZF extracts more information associated with the solution of an integer programming problem
computed by H02BBF.

2 Specification

SUBROUTINE H02BZF (N, M, BL, BU, CLAMDA, ISTATE, IWORK, LIWORK, RWORK,
LRWORK, IFAIL)

&

INTEGER N, M, ISTATE(N+M), IWORK(LIWORK), LIWORK, LRWORK,
IFAIL

&

REAL (KIND=nag_wp) BL(N+M), BU(N+M), CLAMDA(N+M), RWORK(LRWORK)

3 Description

H02BZF extracts the following information associated with the solution of an integer programming
problem computed by H02BBF. The upper and lower bounds used for the solution, the Lagrange-
multipliers (costs), and the status of the variables at the solution.

In the branch and bound method employed by H02BBF, the arrays BL and BU are used to impose
restrictions on the values of the integer variables in each sub-problem. That is, if the variable xj is
restricted to take value vj in a particular sub-problem, then BLðjÞ ¼ BUðjÞ ¼ vj is set in the sub-
problem. Thus, on exit from this routine, some of the elements of BL and BU which correspond to
integer variables may contain these imposed values, rather than those originally supplied to H02BBF.

4 References

None.

5 Arguments

1: N – INTEGER Input

On entry: this must be the same argument N as supplied to H02BBF.

Constraint: N > 0.

2: M – INTEGER Input

On entry: this must be the same argument M as supplied to H02BBF.

Constraint: M � 0.

3: BLðNþMÞ – REAL (KIND=nag_wp) array Output

On exit: if H02BBF exits with IFAIL ¼ 0, 7 or 9, the values in the array BL contain the lower
bounds imposed on the integer solution for all the constraints. The first N elements contain the
lower bounds on the variables, and the next M elements contain the lower bounds for the general
linear constraints (if any).
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4: BUðNþMÞ – REAL (KIND=nag_wp) array Output

On exit: if H02BBF exits with IFAIL ¼ 0, 7 or 9, the values in the array BU contain the upper
bounds imposed on the integer solution for all the constraints. The first N elements contain the
upper bounds on the variables, and the next M elements contain the upper bounds for the general
linear constraints (if any).

5: CLAMDAðNþMÞ – REAL (KIND=nag_wp) array Output

On exit: if H02BBF exits with IFAIL ¼ 0, 7 or 9, the values in the array CLAMDA contain the
values of the Lagrange-multipliers for each constraint with respect to the current working set.
The first N elements contain the multipliers (reduced costs) for the bound constraints on the
variables, and the next M elements contain the multipliers (shadow costs) for the general linear
constraints (if any).

6: ISTATEðNþMÞ – INTEGER array Output

On exit: if H02BBF exits with IFAIL ¼ 0, 7 or 9, the values in the array ISTATE indicate the
status of the constraints in the working set at an integer solution. Otherwise, ISTATE indicates
the composition of the working set at the final iterate. The significance of each possible value of
ISTATEðjÞ is as follows.

ISTATEðjÞ Meaning
�2 The constraint violates its lower bound by more than TOLFES (the feasibility

tolerance, see H02BBF).
�1 The constraint violates its upper bound by more than TOLFES.
0 The constraint is satisfied to within TOLFES, but is not in the working set.
1 This inequality constraint is included in the working set at its lower bound.
2 This inequality constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of ISTATE

can occur only when BLðjÞ ¼ BUðjÞ.
4 This corresponds to an integer solution being declared with xj being temporarily

fixed at its current value. This value of ISTATE can occur only when IFAIL ¼ 0, 7
or 9 on exit from H02BBF.

7: IWORKðLIWORKÞ – INTEGER array Communication Array

On entry: this must be the same argument IWORK as supplied to H02BBF. It is used to pass
information from H02BBF to H02BZF and therefore the contents of this array must not be
changed before calling H02BZF.

8: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
H02BZF is called.

9: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

On entry: this must be the same argument RWORK as supplied to H02BBF. It is used to pass
information from H02BBF to H02BZF and therefore the contents of this array must not be
changed before calling H02BZF.

10: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
H02BZF is called.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N � 0,
or M < 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

H02BZF is not threaded in any implementation.

9 Further Comments

None.

10 Example

One of the applications of integer programming is to the so-called diet problem. Given the nutritional
content of a selection of foods, the cost of each food, the amount available of each food and the
consumer's minimum daily nutritional requirements, the problem is to find the cheapest combination.
This gives rise to the following problem:

minimize

cTx

subject to
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Ax � b; 0 � x � u;

where

c ¼ 3 24 13 9 20 19
� �T

; x ¼ x1; x2; x3; x4; x5; x6ð ÞT

is integer,

A ¼
110 205 160 160 420 260

4 32 13 8 4 14
2 12 54 285 22 80

0@ 1A; b ¼
2000

55
800

0@ 1A
and

u ¼ 4 3 2 8 2 2
� �T

The rows of A correspond to energy, protein and calcium and the columns of A correspond to oatmeal,
chicken, eggs, milk, pie and bacon respectively.

The following program solves the above problem to obtain the optimal integer solution and then
examines the effect of increasing the energy required to 2200 units.

10.1 Program Text

! H02BZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module h02bzfe_mod

! H02BZF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: outsol

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine outsol(n,m,a,lda,bl,bu,x,istate,clamda,bigbnd,names,nout)

! .. Use Statements ..
Use nag_library, Only: ddot

! .. Parameters ..
Character (2), Parameter :: lstate(-2:4) = (/’ ’,’ ’,’FR’,’LL’ &

,’UL’,’EQ’,’TF’/)
! .. Scalar Arguments ..

Real (Kind=nag_wp), Intent (In) :: bigbnd
Integer, Intent (In) :: lda, m, n, nout

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: a(lda,*), bl(n+m), bu(n+m), &

clamda(n+m), x(n)
Integer, Intent (In) :: istate(n+m)
Character (8), Intent (In) :: names(n+m)

! .. Local Scalars ..
Real (Kind=nag_wp) :: b1, b2, res, res2, v, wlam
Integer :: is, j, k
Character (80) :: rec

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,99999)

Do j = 1, n + m
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b1 = bl(j)
b2 = bu(j)
wlam = clamda(j)
is = istate(j)

If (j<=n) Then

! The variables x.

k = j
v = x(j)

Else

! The linear constraints A*x.

If (j==n+1) Then
Write (nout,99998)

End If

k = j - n
! The NAG name equivalent of ddot is f06eaf

v = ddot(n,a(k,1),lda,x,1)
End If

! Print a line for the j-th variable or constraint.

res = v - b1
res2 = b2 - v

If (abs(res)>abs(res2)) Then
res = res2

End If

Write (rec,99997) names(j), lstate(is), v, b1, b2, wlam, res

If (b1<=-bigbnd) Then
rec(29:42) = ’ None ’

End If

If (b2>=bigbnd) Then
rec(43:56) = ’ None ’

End If

Write (nout,’(A)’) rec
End Do

Return

99999 Format (/,/,1X,’Varbl’,3X,’State’,5X,’Value’,5X,’Lower Bound’,3X, &
’Upper Bound’,4X,’Lagr Mult’,3X,’Residual’,/)

99998 Format (/,/,1X,’L Con’,3X,’State’,5X,’Value’,5X,’Lower Bound’,3X, &
’Upper Bound’,4X,’Lagr Mult’,3X,’Residual’,/)

99997 Format (1X,A8,2X,A2,1X,1P,3G14.4,1P,G12.4,1P,G12.4)
End Subroutine outsol

End Module h02bzfe_mod
Program h02bzfe

! H02BZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: h02bbf, h02bzf, nag_wp
Use h02bzfe_mod, Only: nin, nout, outsol

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: bigbnd, inival, objmip, tolfes, &

toliv
Integer :: i, ifail, intfst, itmax, j, lda, &

liwork, lrwork, m, maxdpt, maxnod, &
msglvl, n

! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), clamda(:), &
cvec(:), rwork(:), x(:)

Integer, Allocatable :: intvar(:), istate(:), iwork(:)
Character (8), Allocatable :: names(:)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’H02BZF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, m
lda = m
Allocate (a(lda,n),bl(n+m),bu(n+m),clamda(n+m),cvec(n),x(n),intvar(n), &

istate(n+m),names(n+m))

Read (nin,*) itmax, msglvl
Read (nin,*) maxnod
Read (nin,*) intfst, maxdpt
Read (nin,*) tolfes, toliv
Read (nin,*) cvec(1:n)
Read (nin,*)(names(j),a(1:m,j),j=1,n)
Read (nin,*) bigbnd
Read (nin,*) bl(1:n)
Read (nin,*)(names(n+i),bl(n+i),i=1,m)
Read (nin,*) bu(1:n+m)
Read (nin,*) intvar(1:n)
Read (nin,*) x(1:n)

liwork = (25+n+m)*maxdpt + 5*n + m + 4
lrwork = maxdpt*(n+1) + 2*min(n,m+1)**2 + 14*n + 12*m
Allocate (iwork(liwork),rwork(lrwork))

! Solve the IP problem using H02BBF

ifail = -1
Call h02bbf(itmax,msglvl,n,m,a,lda,bl,bu,intvar,cvec,maxnod,intfst, &

maxdpt,toliv,tolfes,bigbnd,x,objmip,iwork,liwork,rwork,lrwork,ifail)

Select Case (ifail)
Case (0,7,9)

Write (nout,99999) ’IP objective value = ’, objmip

! Get information about the solution

ifail = 0
Call h02bzf(n,m,bl,bu,clamda,istate,iwork,liwork,rwork,lrwork,ifail)

! Print the solution

Call outsol(n,m,a,lda,bl,bu,x,istate,clamda,bigbnd,names,nout)

! Increase the energy requirements and solve the modified IP
! problem using the current IP solution as the starting point

inival = bl(n+1)
Read (nin,*) bl(n+1)
Write (nout,99998) ’Increase the energy requirements from’, inival, &

’to’, bl(n+1)

ifail = -1
Call h02bbf(itmax,msglvl,n,m,a,lda,bl,bu,intvar,cvec,maxnod,intfst, &

maxdpt,toliv,tolfes,bigbnd,x,objmip,iwork,liwork,rwork,lrwork,ifail)

Select Case (ifail)
Case (0,7,9)

Write (nout,99999) ’IP objective value = ’, objmip

! Get information about the solution
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ifail = 0
Call h02bzf(n,m,bl,bu,clamda,istate,iwork,liwork,rwork,lrwork,ifail)

! Print the solution

Call outsol(n,m,a,lda,bl,bu,x,istate,clamda,bigbnd,names,nout)

End Select

End Select

99999 Format (/,/,1X,A,1P,G16.4)
99998 Format (/,/,1X,A,1X,1P,G11.4,2X,A,1X,1P,G11.4)

End Program h02bzfe

10.2 Program Data

H02BZF Example Program Data
6 3 :Values of N and M
0 0 :Values of ITMAX and MSGLVL
0 :Value of MAXNOD
0 9 :Values of INTFST and MAXDPT
0.0 0.0 :Values of TOLFES and TOLIV
3.0 24.0 13.0 9.0 20.0 19.0 :End of CVEC
’Oatmeal’ 110.0 4.0 2.0
’Chicken’ 205.0 32.0 12.0
’Eggs’ 160.0 13.0 54.0
’Milk’ 160.0 8.0 285.0
’Pie’ 420.0 4.0 22.0
’Bacon’ 260.0 14.0 80.0 :End of matrix A
1.0E+20 :Value of BIGBND
0.0 0.0 0.0 0.0 0.0 0.0
’Energy’ 2000.0 ’Protein’ 55.0 ’Calcium’ 800.0 :End of BL
4.0 3.0 2.0 8.0 2.0 2.0 1.0E+20 1.0E+20 1.0E+20 :End of BU
1 1 1 1 1 1 :End of INTVAR
0.0 0.0 0.0 0.0 0.0 0.0 :End of X
2200.0 :Change ’Energy’ in RHS

10.3 Program Results

H02BZF Example Program Results

IP objective value = 97.00

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

Oatmeal EQ 4.000 4.000 4.000 3.000 0.000
Chicken LL 0.000 0.000 3.000 24.00 0.000
Eggs LL 0.000 0.000 2.000 13.00 0.000
Milk LL 5.000 5.000 8.000 9.000 0.000
Pie EQ 2.000 2.000 2.000 20.00 0.000
Bacon LL 0.000 0.000 2.000 19.00 0.000

L Con State Value Lower Bound Upper Bound Lagr Mult Residual

Energy FR 2080. 2000. None 0.000 80.00
Protein FR 64.00 55.00 None 0.000 9.000
Calcium FR 1477. 800.0 None 0.000 677.0

Increase the energy requirements from 2000. to 2200.

IP objective value = 106.0

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
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Oatmeal EQ 4.000 4.000 4.000 3.000 0.000
Chicken LL 0.000 0.000 3.000 24.00 0.000
Eggs LL 0.000 0.000 2.000 13.00 0.000
Milk LL 6.000 6.000 8.000 9.000 0.000
Pie EQ 2.000 2.000 2.000 20.00 0.000
Bacon LL 0.000 0.000 2.000 19.00 0.000

L Con State Value Lower Bound Upper Bound Lagr Mult Residual

Energy FR 2240. 2200. None 0.000 40.00
Protein FR 72.00 55.00 None 0.000 17.00
Calcium FR 1762. 800.0 None 0.000 962.0
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NAG Library Routine Document

H02CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

H02CBF solves general quadratic programming problems with integer constraints on the variables. It is
not intended for large sparse problems.

2 Specification

SUBROUTINE H02CBF (N, NCLIN, A, LDA, BL, BU, CVEC, H, LDH, QPHESS,
INTVAR, LINTVR, MDEPTH, ISTATE, XS, OBJ, AX, CLAMDA,
STRTGY, IWRK, LIWRK, WRK, LWRK, MONIT, IFAIL)

&
&

INTEGER N, NCLIN, LDA, LDH, INTVAR(LINTVR), LINTVR, MDEPTH,
ISTATE(N+NCLIN), STRTGY, IWRK(LIWRK), LIWRK, LWRK,
IFAIL

&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN), BU(N+NCLIN), CVEC(*),
H(LDH,*), XS(N), OBJ, AX(max(1,NCLIN)),
CLAMDA(N+NCLIN), WRK(LWRK)

&
&

EXTERNAL QPHESS, MONIT

3 Description

H02CBF uses a ‘Branch and Bound’ algorithm in conjunction with E04NFF to try and determine
integer solutions to a general quadratic programming problem. The problem is assumed to be stated in
the following general form:

minimize
x2Rn

f xð Þ subject to l � x
Ax

� �
� u;

where A is an mL by n matrix and f xð Þ may be specified in a variety of ways depending upon the
particular problem to be solved. The available forms for f xð Þ are listed in Table 1, in which the prefixes
FP, LP and QP stand for ‘feasible point’, ‘linear programming’ and ‘quadratic programming’
respectively and c is an n-element vector.

Problem type f xð Þ Matrix H

FP Not applicable Not applicable
LP cTx Not applicable
QP1 1

2x
THx symmetric

QP2 cTxþ 1
2x

THx symmetric
QP3 1

2x
THTHx m by n upper trapezoidal

QP4 cTxþ 1
2x

THTHx m by n upper trapezoidal

Only when the problem is linear or the matrix H is positive definite can the technique be guaranteed to
work; but often useful results can be obtained for a wider class of problems.
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The default problem type is QP2 and other objective functions are selected by using the optional
parameter Problem Type. For problems of type FP, the objective function is omitted and H02CBF
attempts to find a feasible point for the set of constraints.

Branch and bound consists firstly of obtaining a solution without any of the variables
x ¼ x1; x2; . . . ; xnð ÞT constrained to be integer. Suppose x1 ought to be integer, but at the optimal
value just computed x1 ¼ 2:4. A constraint x1 � 2 is added to the system and the second problem
solved. A constraint x1 � 3 gives rise to a third sub-problem. In a similar manner a whole series of sub-
problems may be generated, corresponding to integer constraints on the variables. The sub-problems are
all solved using E04NFF.

In practice the routine tries to compute an integer solution as quickly as possible using a depth-first
approach, since this helps determine a realistic cut-off value. If we have a cut-off value, say the value
of the function at this first integer solution, and any sub-problem, W say, has a solution value greater
than this cut-off value, then subsequent sub-problems of W must have solutions greater than the value
of the solution at W and therefore need not be computed. Thus a knowledge of a good cut-off value can
result in fewer sub-problems being solved and thus speed up the operation of the routine. (See the
description of MONIT in Section 5 for details of how you can supply your own cut-off value.)

4 References

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users' guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E and Murray W (1978) Numerically stable methods for quadratic programming Math.
Programming 14 349–372

Gill P E, Murray W, Saunders M A and Wright M H (1984) Procedures for optimization problems with
a mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for
linearly constrained optimization Math. Programming 45 437–474

Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Pardalos P M and Schnitger G (1988) Checking local optimality in constrained quadratic programming
is NP-hard Operations Research Letters 7 33–35

5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: NCLIN – INTEGER Input

On entry: mL, the number of general linear constraints.

Constraint: NCLIN � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0 and at least 1 if
NCLIN ¼ 0.

On entry: the ith row of A must contain the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ;mL.

If NCLIN ¼ 0, the array A is not referenced.

H02CBF NAG Library Manual

H02CBF.2 Mark 26



4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which H02CBF
is called.

Constraint: LDA � max 1;NCLINð Þ.

5: BLðNþ NCLINÞ – REAL (KIND=nag_wp) array Input
6: BUðNþ NCLINÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds and BU the upper bounds, for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
and the next mL elements the bounds for the general linear constraints (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a nonexistent
upper bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this
may be changed by the Infinite Bound Size. To specify the jth constraint as an equality, set
BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLIN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

7: CVECð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array CVEC must be at least N if the problem is of type LP, QP2 (the
default) or QP4, and at least 1 otherwise.

On entry: the coefficients of the explicit linear term of the objective function when the problem is
of type LP, QP2 (the default) and QP4.

If the problem is of type FP, QP1, or QP3, CVEC is not referenced.

8: HðLDH; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array H must be at least N if it is to be used to store H
explicitly, and at least 1 otherwise.

On entry: may be used to store the quadratic term H of the QP objective function if desired. In
some cases, you need not use H to store H explicitly (see the specification of QPHESS). The
elements of H are referenced only by QPHESS. The number of rows of H is denoted by m,
whose default value is n. (The Hessian Rows may be used to specify a value of m < n.)

If the default version of QPHESS is used and the problem is of type QP1 or QP2 (the default),
the first m rows and columns of H must contain the leading m by m rows and columns of the
symmetric Hessian matrix H. Only the diagonal and upper triangular elements of the leading m
rows and columns of H are referenced. The remaining elements need not be assigned.

If the default version of QPHESS is used and the problem is of type QP3 or QP4, the first m
rows of H must contain an m by n upper trapezoidal factor of the symmetric Hessian matrix
HTH. The factor need not be of full rank, i.e., some of the diagonal elements may be zero.
However, as a general rule, the larger the dimension of the leading nonsingular sub-matrix of H,
the fewer iterations will be required. Elements outside the upper trapezoidal part of the first m
rows of H need not be assigned.

In other situations, it may be desirable to compute Hx or HTHx without accessing H – for
example, if H or HTH is sparse or has special structure. The arguments H and LDH may then
refer to any convenient array.

If the problem is of type FP or LP, H is not referenced.

9: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which H02CBF
is called.
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Constraints:

if the problem is of type QP1, QP2 (the default), QP3 or QP4, LDH � N or at least the
value of the optional parameter Hessian Rows (default value ¼ n);
if the problem is of type FP or LP, LDH � 1.

10: QPHESS – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

In general, you need not provide a version of QPHESS, because a ‘default’ subroutine with name
E04NFU is included in the Library. However, the algorithm of H02CBF requires only the product
of H or HTH and a vector x; and in some cases you may obtain increased efficiency by
providing a version of QPHESS that avoids the need to define the elements of the matrices H or
HTH explicitly. QPHESS is not referenced if the problem is of type FP or LP, in which case
QPHESS may be the routine E04NFU.

The specification of QPHESS is:

SUBROUTINE QPHESS (N, JTHCOL, H, LDH, X, HX)

INTEGER N, JTHCOL, LDH
REAL (KIND=nag_wp) H(LDH,*), X(N), HX(N)

1: N – INTEGER Input

On entry: this is the same argument N as supplied to H02CBF.

2: JTHCOL – INTEGER Input

On entry: specifies whether or not the vector x is a column of the identity matrix.

JTHCOL ¼ j > 0
The vector x is the jth column of the identity matrix, and hence Hx or HTHx is
the jth column of H or HTH, respectively, which may in some cases require very
little computation and QPHESS may be coded to take advantage of this. However
special code is not necessary because x is always stored explicitly in the array X.

JTHCOL ¼ 0
x has no special form.

3: HðLDH; �Þ – REAL (KIND=nag_wp) array Input

On entry: this is the same argument H as supplied to H02CBF.

4: LDH – INTEGER Input

On entry: this is the same argument LDH as supplied to H02CBF.

5: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector x.

6: HXðNÞ – REAL (KIND=nag_wp) array Output

On exit: the product Hx if the problem is of type QP1 or QP2 (the default), or the
product HTHx if the problem is of type QP3 or QP4.

QPHESS must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which H02CBF is called. Arguments denoted as Input must not be changed by this
procedure.

11: INTVARðLINTVRÞ – INTEGER array Input

On entry: INTVARðiÞ must contain the index of the solution vector x which is required to be
integer. For example, if x1 and x3 are constrained to take integer values then INTVARð1Þ might
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be set to 1 and INTVARð2Þ to 3. The order in which the indices are specified is important, since
this determines the order in which the sub-problems are generated. As a rule-of-thumb, the
important variables should always be specified first. Thus, in the above example, if x3 relates to a
more important quantity than x1, then it might be advantageous to set INTVARð1Þ ¼ 3 and
INTVARð2Þ ¼ 1. If k is the smallest integer such that INTVARðkÞ is less than or equal to zero
then H02CBF assumes that k� 1 variables are constrained to be integer; components
INTVARðkþ 1Þ, . . ., INTVARðLINTVRÞ are not referenced.

12: LINTVR – INTEGER Input

On entry: the dimension of the array INTVAR as declared in the (sub)program from which
H02CBF is called. Often LINTVR is the number of variables that are constrained to be integer.

Constraint: LINTVR > 0.

13: MDEPTH – INTEGER Input

On entry: the maximum depth (i.e., number of extra constraints) that H02CBF may insert before
admitting failure.

Suggested value: MDEPTH ¼ 3� N=2.

Constraint: MDEPTH � 1.

14: ISTATEðNþ NCLINÞ – INTEGER array Input/Output

On entry: need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, ISTATE specifies the desired status of
the constraints at the start of the feasibility phase. More precisely, the first n elements of ISTATE
refer to the upper and lower bounds on the variables, and the next mL elements refer to the
general linear constraints (if any). Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ Meaning
0 The corresponding constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This value must

not be specified unless BLðjÞ ¼ BUðjÞ.

The values �2, �1 and 4 are also acceptable but will be reset to zero by the routine. If H02CBF
has been called previously with the same values of N and NCLIN, ISTATE already contains
satisfactory information. (See also the description of the optional parameter Warm Start.) The
routine also adjusts (if necessary) the values supplied in XS to be consistent with ISTATE.

Constraint: �2 � ISTATEðjÞ � 4, for j ¼ 1; 2; . . . ;Nþ NCLIN.

On exit: the status of the constraints in the working set at the point returned in XS. The
significance of each possible value of ISTATEðjÞ is as follows:

ISTATEðjÞ Meaning
�2 The constraint violates its lower bound by more than the feasibility tolerance.
�1 The constraint violates its upper bound by more than the feasibility tolerance.
0 The constraint is satisfied to within the feasibility tolerance, but is not in the

working set.
1 This inequality constraint is included in the working set at its lower bound.
2 This inequality constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of ISTATE

can occur only when BLðjÞ ¼ BUðjÞ.
4 This corresponds to optimality being declared with XSðjÞ being temporarily fixed

at its current value. This value of ISTATE can occur only when IFAIL ¼ 1 on exit.
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15: XSðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the solution.

On exit: the point at which H02CBF terminated. If IFAIL ¼ 0, 1 or 3, XS contains an estimate of
the solution.

16: OBJ – REAL (KIND=nag_wp) Output

On exit: the value of the objective function at x if x is feasible, or the sum of infeasibilities at x
otherwise. If the problem is of type FP and x is feasible, OBJ is set to zero.

17: AXðmax 1;NCLINð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the final values of the linear constraints Ax.

If NCLIN ¼ 0, AX is not referenced.

18: CLAMDAðNþ NCLINÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the Lagrange-multipliers for each constraint with respect to the current
working set. The first n elements contain the multipliers for the bound constraints on the
variables, and the next mL elements contain the multipliers for the general linear constraints (if
any). If ISTATEðjÞ ¼ 0 (i.e., constraint j is not in the working set), CLAMDAðjÞ is zero. If x is
optimal, CLAMDAðjÞ should be non-negative if ISTATEðjÞ ¼ 1, non-positive if ISTATEðjÞ ¼ 2
and zero if ISTATEðjÞ ¼ 4.

19: STRTGY – INTEGER Input

On entry: determines a branching strategy to be used throughout the computation, as follows:

STRTGY Meaning
0 Always left branch first, i.e., impose an upper bound constraint on the variable first.
1 Always right branch first, i.e., impose a lower bound constraint on the variable first.
2 Branch towards the nearest integer, i.e., if xk ¼ 2:4 then impose an upper bound

constraint xk � 2, whereas if xk ¼ 2:6 then impose the lower bound constraint
xk � 3:0.

3 A random choice is made between a left-hand and a right-hand branch.

Constraint: STRTGY ¼ 0, 1, 2 or 3.

20: IWRKðLIWRKÞ – INTEGER array Workspace
21: LIWRK – INTEGER Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which H02CBF
is called.

Constraint: LIWRK � 2� Nþ 3þ 2�MDEPTH.

22: WRKðLWRKÞ – REAL (KIND=nag_wp) array Workspace
23: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which H02CBF
is called.

Constraints:

if the problem type is QP2 (the default) or QP4,

if NCLIN > 0, LWRK � 2� N2 þ 9� Nþ 5� NCLINþ 4�MDEPTH;
if NCLIN ¼ 0, LWRK � N2 þ 9� Nþ 4�MDEPTH.;
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if the problem type is QP1 or QP3,

if NCLIN > 0, LWRK � 2� N2 þ 8� Nþ 5� NCLINþ 4�MDEPTH;
if NCLIN ¼ 0, LWRK � N2 þ 8� Nþ 4�MDEPTH.;

if the problem type is LP,

if NCLIN ¼ 0, LWRK � 9� Nþ 1þ 4�MDEPTH;
if NCLIN � N, LWRK � 2� N2 þ 9� Nþ 5� NCLINþ 4�MDEPTH;
otherwise LWRK � 2� NCLINþ 1ð Þ2 þ 9� Nþ 5� NCLINþ 4�MDEPTH.;

if the problem type is FP,

if NCLIN ¼ 0, LWRK � 8� Nþ 1þ 4�MDEPTH;
if NCLIN � N, LWRK � 2� N2 þ 8� Nþ 5� NCLINþ 4�MDEPTH;
otherwise LWRK � 2� NCLINþ 1ð Þ2 þ 8� Nþ 5� NCLINþ 4�MDEPTH..

24: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT may be used to print out intermediate output and to affect the course of the computation.
Specifically, it allows you to specify a realistic value for the cut-off value (see Section 3) and to
terminate the algorithm. If you do not require any intermediate output, have no estimate of the
cut-off value and require an exhaustive tree search then MONIT may be the dummy routine
H02CBU.

The specification of MONIT is:

SUBROUTINE MONIT (INTFND, NODES, DEPTH, OBJ, X, BSTVAL, BSTSOL,
BL, BU, N, HALT, COUNT)

&

INTEGER INTFND, NODES, DEPTH, N, COUNT
REAL (KIND=nag_wp) OBJ, X(N), BSTVAL, BSTSOL(N), BL(N), BU(N)
LOGICAL HALT

1: INTFND – INTEGER Input

On entry: specifies the number of integer solutions obtained so far.

2: NODES – INTEGER Input

On entry: specifies the number of nodes (sub-problems) solved so far.

3: DEPTH – INTEGER Input

On entry: specifies the depth in the tree of sub-problems the algorithm has now reached.

4: OBJ – REAL (KIND=nag_wp) Input

On entry: specifies the value of the objective function of the end of the latest sub-
problem.

5: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: specifies the values of the independent variables at the end of the latest sub-
problem.

6: BSTVAL – REAL (KIND=nag_wp) Input/Output

On entry: normally specifies the value of the best integer solution found so far.

On exit: may be set a cut-off value if you are an experienced user as follows. Before an
integer solution has been found BSTVAL will be set by H02CBF to the largest machine
representable number (see X02ALF). If you know that the solution being sought is a
much smaller number, then BSTVAL may be set to this number as a cut-off value (see
Section 3). Beware of setting BSTVAL too small, since then no integer solutions will be
discovered. Also make sure that BSTVAL is set using a statement of the form
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IF (INTFND.EQ.0) BSTVAL ¼ cut-off value

on entry to MONIT. This statement will not prevent the normal operation of the
algorithm when subsequent integer solutions are found. It would be a grievous mistake
to unconditionally set BSTVAL and if you have any doubts whatsoever about the
correct use of this argument then you are strongly recommended to leave it unchanged.

7: BSTSOLðNÞ – REAL (KIND=nag_wp) array Input

On entry: specifies the solution vector which gives rise to the best integer solution value
so far discovered.

8: BLðNÞ – REAL (KIND=nag_wp) array Input

On entry: BLðiÞ specifies the current lower bounds on the variable xi.

9: BUðNÞ – REAL (KIND=nag_wp) array Input

On entry: BUðiÞ specifies the current upper bounds on the variable xi.

10: N – INTEGER Input

On entry: specifies the number of variables.

11: HALT – LOGICAL Input/Output

On entry: will have the value .FALSE..

On exit: if HALT is set to .TRUE., E04NFF/E04NFA will be brought to a halt with
IFAIL ¼ �1. This facility may be useful if you are content with any integer solution, or
with any integer solution that fits certain criteria. Under these circumstances setting
HALT ¼ :TRUE: can save considerable unnecessary computation.

12: COUNT – INTEGER Input/Output

On entry: unchanged from previous call.

On exit: may be used by you to save the last value of INTFND. If a subsequent call of
MONIT has a value of INTFND which is greater than COUNT, then you know that a
new integer solution has been found at this node.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which H02CBF is called. Arguments denoted as Input must not be changed by this
procedure.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
Algorithm terminated at your request (HALT ¼ :TRUE:).

IFAIL ¼ 1

Input argument error immediately detected.

IFAIL ¼ 2

No integer solution found. (Check that BSTVAL has not been set too small.)

IFAIL ¼ 3

MDEPTH is too small. Increase the value of MDEPTH and re-enter H02CBF.

IFAIL ¼ 4

The basic problem (without integer constraints) is unbounded.

IFAIL ¼ 5

The basic problem is infeasible.

IFAIL ¼ 6

The basic problem requires too many iterations.

IFAIL ¼ 7

The basic problem has a reduced Hessian which exceeds its assigned dimension.

IFAIL ¼ 8

The basic problem has an invalid argument setting.

IFAIL ¼ 9

The basic problem, as defined, is not standard.

IFAIL ¼ 10

LIWRK is too small.

IFAIL ¼ 11

LWRK is too small.

IFAIL ¼ 12

An internal error has occurred within the routine. Please contact NAG with details of the call to
H02CBF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

H02CBF implements a numerically stable active set strategy and returns solutions that are as accurate
as the condition of the problem warrants on the machine.

8 Parallelism and Performance

H02CBF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

H02CBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

H02CBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This section contains some comments on scaling and a description of the printed output.

9.1 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the
problem less sensitive to perturbations in the data, thus improving the condition of the problem. In the
absence of better information it is usually sensible to make the Euclidean lengths of each constraint of
comparable magnitude. See Chapter E04 and Gill et al. (1981) for further information and advice.

9.2 Description of the Printed Output

This section describes the (default) intermediate printout and final printout produced by H02CBF. The
intermediate printout is a subset of the monitoring information produced by the routine at every
iteration (see Section 13). You can control the level of printed output (see the description of the Print
Level in Section 12.1). Note that the intermediate printout and final printout are produced only if
Print Level � 10 (the default).

The following line of summary output ( < 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration, Step will be the step to the nearest constraint. When
the problem is of type LP, the step can be greater than one during the optimality
phase.
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Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function. The output line for the final
iteration of the feasibility phase (i.e., the first iteration for which Ninf is zero)
will give the value of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be
nonincreasing. During the feasibility phase, the number of constraint infeasi-
bilities will not increase until either a feasible point is found, or the optimality of
the multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Norm Gz is ZT
RgFR

�� ��, the Euclidean norm of the reduced gradient with respect to ZR (see
Sections 11.2 and 11.4). During the optimality phase, this norm will be
approximately zero after a unit step.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

A key is sometimes printed before State to give some additional information about the state of a
variable.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if
temporarily fixed at its current value). If Value lies outside the upper or lower
bounds by more than the Feasibility Tolerance (default value ¼

ffiffi
�
p

, where � is
the machine precision; see Section 12.1), State will be ++ or -- respectively.

A Alternative optimum possible. The variable is active at one of its bounds,
but its Lagrange-multiplier is essentially zero. This means that if the
variable were allowed to start moving away from its bound, there would be
no change to the objective function. The values of the other free variables
might change, giving a genuine alternative solution. However, if there are
any degenerate variables (labelled D), the actual change might prove to be
zero, since one of them could encounter a bound immediately. In either
case the values of the Lagrange-multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than the Feasibility Tolerance.

Value is the value of the variable at the final iterate.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ
respectively, and with the following change in the heading.
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L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ;m, of the constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This example minimizes the quadratic function f xð Þ ¼ cTxþ 1
2x

THx , where

c ¼ �0:02;�0:2;�0:2;�0:2;�0:2; 0:04; 0:04ð ÞT

H ¼

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 �2 �2
0 0 0 0 0 �2 �2

0BBBBBBB@

1CCCCCCCA
subject to the bounds

�0:01 � x1 � 0:01
�0:1 � x2 � 0:15
�0:01 � x3 � 0:03
�0:04 � x4 � 0:02
�0:1 � x5 � 0:05
�0:01 � x6
�0:01 � x7

to the general constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ �0:13
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � �0:0049
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 � �0:0064
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � �0:0037
0:02x1 þ 0:03x2 þ 0:01x5 � �0:0012

�0:0992 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
�0:003 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 0:002

and the variable x4 is constrained to be integer.

The initial point, which is infeasible, is

x0 ¼ �0:01;�0:03; 0:0;�0:01;�0:1; 0:02; 0:01ð ÞT:

The optimal solution (to five figures) is

x� ¼ �0:01;�0:073328;�0:00025809; 0:0;�0:063354; 0:014109; 0:0028312ð ÞT:
The document for H02CCF includes an example program to solve the same problem using some of the
optional parameters described in Section 12.

10.1 Program Text

Program h02cbfe

! H02CBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04nfu, h02cbf, h02cbu, h02cdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: lintvr = 1, mdepth = 30, nin = 5, &
nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj
Integer :: i, ifail, j, lda, ldh, liwrk, lwrk, &

n, nclin, strtgy
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), ax(:), bl(:), bu(:), &
clamda(:), cvec(:), h(:,:), wrk(:), &
xs(:)

Integer, Allocatable :: intvar(:), istate(:), iwrk(:)
! .. Executable Statements ..

Write (nout,*) ’H02CBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, nclin
lda = nclin
ldh = n
liwrk = 2*n + 3 + 2*mdepth

! LWRK for default problem-type QP2

If (nclin==0) Then
lwrk = n**2 + 9*n + 4*mdepth

Else
lwrk = 2*n**2 + 9*n + 5*nclin + 4*mdepth

End If

Allocate (a(lda,n),ax(nclin),bl(n+nclin),bu(n+nclin),clamda(n+nclin), &
cvec(n),h(ldh,n),xs(n),intvar(lintvr),istate(n+nclin),iwrk(liwrk), &
wrk(lwrk))

Read (nin,*)(cvec(i),i=1,n)
Read (nin,*)((a(i,j),j=1,n),i=1,nclin)
Read (nin,*)(bl(i),i=1,n+nclin)
Read (nin,*)(bu(i),i=1,n+nclin)
Read (nin,*)(xs(i),i=1,n)
Read (nin,*)((h(i,j),j=1,n),i=1,n)

strtgy = 2
intvar(1) = 4

Call h02cdf(’Nolist’)

Call h02cdf(’Print Level = 0’)

! Solve the problem

ifail = 0
Call h02cbf(n,nclin,a,lda,bl,bu,cvec,h,ldh,e04nfu,intvar,lintvr,mdepth, &

istate,xs,obj,ax,clamda,strtgy,iwrk,liwrk,wrk,lwrk,h02cbu,ifail)

! Print out the best integer solution found

Write (nout,99999) obj, (i,xs(i),i=1,n)

99999 Format (’ Optimal Integer Value is = ’,E20.8,/,’ Components are ’, &
7(/,’ X(’,I3,’) = ’,F15.8))

End Program h02cbfe

10.2 Program Data

H02CBF Example Program Data
7 7 :Values of N and NCLIN

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of CVEC
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.00
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0.02 0.04 0.01 0.02 0.02 0.00 0.00
0.02 0.03 0.00 0.00 0.01 0.00 0.00
0.70 0.75 0.80 0.75 0.80 0.97 0.00
0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of matrix A

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01
-0.13 -1.0D+25 -1.0D+25 -1.0D+25 -1.0D+25 -9.92D-02 -3.0D-03 :End of BL
0.01 0.15 0.03 0.02 0.05 1.0D+25 1.0D+25

-0.13 -4.9D-03 -6.4D-03 -3.7D-03 -1.2D-03 1.0D+25 2.0D-03 :End of BU
-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of XS
2.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 2.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 2.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00 :End of matrix H

10.3 Program Results

H02CBF Example Program Results
Optimal Integer Value is = 0.37469662E-01
Components are
X( 1) = -0.01000000
X( 2) = -0.07332830
X( 3) = -0.00025809
X( 4) = 0.00000000
X( 5) = -0.06335433
X( 6) = 0.01410944
X( 7) = 0.00283128

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to H02CCF and/or H02CDF.
Section 13 describes the quantities which can be requested to monitor the course of the computation.

11 Algorithmic Details

H02CBF implements a basic branch and bound algorithm (see Section 3) using E04NFF as its basic
sub-problem solver. See below for details of its algorithm.

11.1 Overview

H02CBF is based on an inertia-controlling method that maintains a Cholesky factorization of the
reduced Hessian (see below). The method is based on that of Gill and Murray (1978), and is described
in detail by Gill et al. (1991). Here we briefly summarise the main features of the method. Where
possible, explicit reference is made to the names of variables that are arguments of H02CBF or appear
in the printed output. H02CBF has two phases:

(i) finding an initial feasible point by minimizing the sum of infeasibilities (the feasibility phase), and

(ii) minimizing the quadratic objective function within the feasible region (the optimality phase).

The computations in both phases are performed by the same subroutines. The two-phase nature of the
algorithm is reflected by changing the function being minimized from the sum of infeasibilities to the
quadratic objective function. The feasibility phase does not perform the standard simplex method (i.e.,
it does not necessarily find a vertex), except in the LP case when mL � n. Once any iterate is feasible,
all subsequent iterates remain feasible.

H02CBF has been designed to be efficient when used to solve a sequence of related problems – for
example, within a sequential quadratic programming method for nonlinearly constrained optimization
(e.g., E04WDF). In particular, you may specify an initial working set (the indices of the constraints
believed to be satisfied exactly at the solution); see the discussion of the Warm Start in Section 12.1.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall
always consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate �x
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is defined by

�x ¼ xþ �p ð1Þ

where the step length � is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the Feasibility Tolerance; see
Section 12.1). The working set is the current prediction of the constraints that hold with equality at the
solution of a linearly constrained QP problem. The search direction is constructed so that the constraints
in the working set remain unaltered for any value of the step length. For a bound constraint in the
working set, this property is achieved by setting the corresponding element of the search direction to
zero. Thus, the associated variable is fixed, and specification of the working set induces a partition of x
into fixed and free variables. During a given iteration, the fixed variables are effectively removed from
the problem; since the relevant elements of the search direction are zero, the columns of A
corresponding to fixed variables may be ignored.

Let mW denote the number of general constraints in the working set and let nFX denote the number of
variables fixed at one of their bounds (mW and nFX are the quantities Lin and Bnd in the monitoring file
output from H02CBF; see Section 13). Similarly, let nFR (nFR ¼ n� nFX) denote the number of free
variables. At every iteration, the variables are reordered so that the last nFX variables are fixed, with
all other relevant vectors and matrices ordered accordingly.

11.2 Definition of the Search Direction

Let AFR denote the mW by nFR sub-matrix of general constraints in the working set corresponding to
the free variables, and let pFR denote the search direction with respect to the free variables only. The
general constraints in the working set will be unaltered by any move along p if

AFRpFR ¼ 0: ð2Þ

In order to compute pFR, the TQ factorization of AFR is used:

AFRQFR ¼ 0 Tð Þ; ð3Þ

where T is a nonsingular mW by mW upper triangular matrix (i.e., tij ¼ 0 if i > j), and the nonsingular
nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. (1984)). If the
columns of QFR are partitioned so that

QFR ¼ Z Yð Þ;

where Y is nFR by mW, then the nZ nZ ¼ nFR �mWð Þ columns of Z form a basis for the null space of
AFR. Let nR be an integer such that 0 � nR � nZ , and let ZR denote a matrix whose nR columns are a
subset of the columns of Z. (The integer nR is the quantity Zr in the monitoring output from H02CBF.
In many cases, ZR will include all the columns of Z.) The direction pFR will satisfy (2) if

pFR ¼ ZRpR; ð4Þ

where pR is any nR-vector.

Let Q denote the n by n matrix

Q ¼ QFR
IFX

� �
;

where IFX is the identity matrix of order nFX. Let HQ and gQ denote the n by n transformed Hessian
and transformed gradient

HQ ¼ QTHQ and gQ ¼ QT cþHxð Þ

and let the matrix of first nR rows and columns of HQ be denoted by HR and the vector of the first nR
elements of gQ be denoted by gR. The quantities HR and gR are known as the reduced Hessian and
reduced gradient of f xð Þ, respectively. Roughly speaking, gR and HR describe the first and second
derivatives of an unconstrained problem for the calculation of pR.
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At each iteration, a triangular factorization of HR is available. If HR is positive definite, HR ¼ RTR,
where R is the upper triangular Cholesky factor of HR. If HR is not positive definite, HR ¼ RTDR,
where D ¼ diag 1; 1; . . . ; 1; �ð Þ, with � � 0.

The computation is arranged so that the reduced-gradient vector is a multiple of eR, a vector of all zeros
except in the last (i.e., nRth) position. This allows the vector pR in (4) to be computed from a single
back-substitution

RpR ¼ �eR ð5Þ

where � is a scalar that depends on whether or not the reduced Hessian is positive definite at x. In the
positive definite case, xþ p is the minimizer of the objective function subject to the constraints (bounds
and general) in the working set treated as equalities. If HR is not positive definite, pR satisfies the
conditions

pTRHRpR < 0 and gTRpR � 0;

which allow the objective function to be reduced by any positive step of the form xþ �p.

11.3 The Main Iteration

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined by Z. During
the feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
at non-vertices in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective when the constraints in the working set are
treated as equalities. At a constrained stationary point, Lagrange-multipliers �C and �B for the general
and bound constraints are defined from the equations

AT
FR�C ¼ gFR and �B ¼ gFX �AT

FX�C: ð6Þ

Given a positive constant � of the order of the machine precision, a Lagrange-multiplier �j
corresponding to an inequality constraint in the working set is said to be optimal if �j � � when the
associated constraint is at its upper bound, or if �j � �� when the associated constraint is at its lower
bound. If a multiplier is nonoptimal, the objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint (with index Jdel; see
Section 13) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, there
is no feasible point, and you can force H02CBF to continue until the minimum value of the sum of
infeasibilities has been found; see the discussion of the Minimum Sum of Infeasibilities in
Section 12.1. At such a point, the Lagrange-multiplier �j corresponding to an inequality constraint in
the working set will be such that � 1þ �ð Þ � �j � � when the associated constraint is at its upper
bound, and �� � �j � 1þ �ð Þ when the associated constraint is at its lower bound. Lagrange-
multipliers for equality constraints will satisfy �j

		 		 � 1þ �.

If the reduced gradient is not zero, Lagrange-multipliers need not be computed and the nonzero
elements of the search direction p are given by ZRpR (see (4) and (5)). The choice of step length is
influenced by the need to maintain feasibility with respect to the satisfied constraints. If HR is positive
definite and xþ p is feasible, � will be taken as unity. In this case, the reduced gradient at �x will be
zero, and Lagrange-multipliers are computed. Otherwise, � is set to �M, the step to the ‘nearest’
constraint (with index Jadd; see Section 13), which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to AFR: if the status of a general constraint
changes, a row of AFR is altered; if a bound constraint enters or leaves the working set, a column of
AFR changes. Explicit representations are recurred of the matrices T , QFR and R; and of vectors QTg,
and QTc. The triangular factor R associated with the reduced Hessian is only updated during the
optimality phase.

One of the most important features of H02CBF is its control of the conditioning of the working set,
whose nearness to linear dependence is estimated by the ratio of the largest to smallest diagonal
elements of the TQ factor T (the printed value Cond T; see Section 13). In constructing the initial
working set, constraints are excluded that would result in a large value of Cond T.
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H02CBF includes a rigorous procedure that prevents the possibility of cycling at a point where the
active constraints are nearly linearly dependent (see Gill et al. (1989)). The main feature of the anti-
cycling procedure is that the feasibility tolerance is increased slightly at the start of every iteration. This
not only allows a positive step to be taken at every iteration, but also provides, whenever possible, a
choice of constraints to be added to the working set. Let �M denote the maximum step at which
xþ �Mp does not violate any constraint by more than its feasibility tolerance. All constraints at a
distance � (� � �M) along p from the current point are then viewed as acceptable candidates for
inclusion in the working set. The constraint whose normal makes the largest angle with the search
direction is added to the working set.

11.4 Choosing the Initial Working Set

At the start of the optimality phase, a positive definite HR can be defined if enough constraints are
included in the initial working set. (The matrix with no rows and columns is positive definite by
definition, corresponding to the case when AFR contains nFR constraints.) The idea is to include as
many general constraints as necessary to ensure that the reduced Hessian is positive definite.

Let HZ denote the matrix of the first nZ rows and columns of the matrix HQ ¼ QTHQ at the beginning
of the optimality phase. A partial Cholesky factorization is used to find an upper triangular matrix R
that is the factor of the largest positive definite leading sub-matrix of HZ . The use of interchanges
during the factorization of HZ tends to maximize the dimension of R. (The condition of R may be
controlled using the Rank Tolerance. Let ZR denote the columns of Z corresponding to R, and let Z
be partitioned as Z ¼ ZR ZA

� �
. A working set for which ZR defines the null space can be obtained

by including the rows of ZT
A as ‘artificial constraints’. Minimization of the objective function then

proceeds within the subspace defined by ZR, as described in Section 11.2.

The artificially augmented working set is given by

�AFR ¼ ZT
A

AFR

� �
; ð7Þ

so that pFR will satisfy AFRpFR ¼ 0 and ZT
ApFR ¼ 0. By definition of the TQ factorization, �AFR

automatically satisfies the following:

�AFRQFR ¼ ZT
A

AFR

� �
QFR ¼ ZT

A
AFR

� �
ZR ZA Y
� �

¼ 0 �T
� �

;

where

�T ¼ I 0
0 T

� �
;

and hence the TQ factorization of (7) is available trivially from T and QFR without additional expense.

The matrix ZA is not kept fixed, since its role is purely to define an appropriate null space; the TQ
factorization can therefore be updated in the normal fashion as the iterations proceed. No work is
required to ‘delete’ the artificial constraints associated with ZA when ZT

RgFR ¼ 0, since this simply
involves repartitioning QFR. The ‘artificial’ multiplier vector associated with the rows of ZT

A is equal to
ZT
AgFR, and the multipliers corresponding to the rows of the ‘true’ working set are the multipliers that

would be obtained if the artificial constraints were not present. If an artificial constraint is ‘deleted’
from the working set, an A appears alongside the entry in the Jdel column of the monitoring file output
(see Section 13).

The number of columns in ZA and ZR, the Euclidean norm of ZT
RgFR, and the condition estimator of R

appear in the monitoring file output as Art, Zr, Norm Gz and Cond Rz respectively (see Section 13).

Under some circumstances, a different type of artificial constraint is used when solving a linear
program. Although the algorithm of H02CBF does not usually perform simplex steps (in the traditional
sense), there is one exception: a linear program with fewer general constraints than variables (i.e.,
mL � n). (Use of the simplex method in this situation leads to savings in storage.) At the starting point,
the ‘natural’ working set (the set of constraints exactly or nearly satisfied at the starting point) is
augmented with a suitable number of ‘temporary’ bounds, each of which has the effect of temporarily

H – Operations Research H02CBF

Mark 26 H02CBF.17



fixing a variable at its current value. In subsequent iterations, a temporary bound is treated as a standard
constraint until it is deleted from the working set, in which case it is never added again. If a temporary
bound is ‘deleted’ from the working set, an F (for ‘Fixed’) appears alongside the entry in the Jdel
column of the monitoring file output (see Section 13).

12 Optional Parameters

Several optional parameters in H02CBF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal arguments of H02CBF these optional parameters have
associated default values that are appropriate for most problems. Therefore, you need only specify those
optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Check Frequency

Cold Start

Crash Tolerance

Defaults

Expand Frequency

Feasibility Phase Iteration Limit

Feasibility Tolerance

Hessian Rows

Infinite Bound Size

Infinite Step Size

Iteration Limit

Iters

Itns

List

Maximum Degrees of Freedom

Minimum Sum of Infeasibilities

Monitoring File

Nolist

Optimality Phase Iteration Limit

Optimality Tolerance

Print Level

Problem Type

Rank Tolerance

Warm Start

Optional parameters may be specified by calling one, or both, of the routines H02CCF and H02CDF
prior to a call to H02CBF.

H02CCF reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL H02CCF(IOPTNS, INFORM)
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can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. H02CCF
should be consulted for a full description of this method of supplying optional parameters.

H02CDF can be called to supply options directly, one call being necessary for each optional parameter.
For example,

CALL H02CDF (’Print Level = 5’)

H02CDF should be consulted for a full description of this method of supplying optional parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by H02CBF (unless they define invalid values) and so remain in effect
for subsequent calls unless altered by you.

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Check Frequency i Default ¼ 50

Every ith iteration, a numerical test is made to see if the current solution x satisfies the constraints in
the working set. If the largest residual of the constraints in the working set is judged to be too large, the
current working set is refactorized and the variables are recomputed to satisfy the constraints more
accurately. If i � 0, the default value is used.

Cold Start Default
Warm Start

This option specifies how the initial working set is chosen. With a Cold Start, H02CBF chooses the
initial working set based on the values of the variables and constraints at the initial point. Broadly
speaking, the initial working set will include equality constraints and bounds or inequality constraints
that violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance).

With a Warm Start, you must provide a valid definition of every element of the array ISTATE (see
Section 5 for the definition of this array). H02CBF will override your specification of ISTATE if
necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any
elements of ISTATE which are set to �2, �1 or 4 will be reset to zero, as will any elements which are
set to 3 when the corresponding elements of BL and BU are not equal. A warm start will be
advantageous if a good estimate of the initial working set is available – for example, when H02CBF is
called repeatedly to solve related problems.

Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
H02CBF selects an initial working set. If 0 � r � 1, the initial working set will include (if possible)
bounds or general inequality constraints that lie within r of their bounds. In particular, a constraint of

the form aTj x � l will be included in the initial working set if aTj x� l
			 			 � r 1þ lj jð Þ. If r < 0 or r > 1,

the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.
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Expand Frequency i Default ¼ 5

This option is part of an anti-cycling procedure designed to guarantee progress even on highly
degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the constraints by a
small amount. Suppose that the value of the optional parameter Feasibility Tolerance is �. Over a
period of i iterations, the feasibility tolerance actually used by H02CBF (i.e., the working feasibility
tolerance) increases from 0:5� to � (in steps of 0:5�=i).

At certain stages the following ‘resetting procedure’ is used to remove constraint infeasibilities. First,
all variables whose upper or lower bounds are in the working set are moved exactly onto their bounds.
A count is kept of the number of nontrivial adjustments made. If the count is positive, iterative
refinement is used to give variables that satisfy the working set to (essentially) machine precision.
Finally, the working feasibility tolerance is reinitialized to 0:5�.

If a problem requires more than i iterations, the resetting procedure is invoked and a new cycle of i
iterations is started with i incremented by 10. (The decision to resume the feasibility phase or optimality
phase is based on comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when H02CBF reaches an apparently optimal, infeasible or
unbounded solution, unless this situation has already occurred twice. If any nontrivial adjustments are
made, iterations are continued.

If i � 0, the default value is used. If i � 9999999, no anti-cycling procedure is invoked.

Feasibility Phase Iteration Limit i1 Default ¼ max 50; 5 nþmLð Þð Þ
Optimality Phase Iteration Limit i2 Default ¼ max 50; 5 nþmLð Þð Þ
The scalars i1 and i2 specify the maximum number of iterations allowed in the feasibility and optimality
phases. Optimality Phase Iteration Limit is equivalent to Iteration Limit. Setting i1 ¼ 0 and
Print Level > 0 means that the workspace needed will be computed and printed, but no iterations will
be performed. If i1 < 0 or i2 < 0, the default value is used.

Feasibility Tolerance r Default ¼
ffiffi
�
p

If r � �, r defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point.
For example, if the variables and the coefficients in the general constraints are of order unity, and the
latter are correct to about 6 decimal digits, it would be appropriate to specify r as 10�6. If 0 � r < �,
the default value is used.

H02CBF attempts to find a feasible solution before optimizing the objective function. If the sum of
infeasibilities cannot be reduced to zero, the Minimum Sum of Infeasibilities can be used to find the
minimum value of the sum. Let Sinf be the corresponding sum of infeasibilities. If Sinf is quite small,
it may be appropriate to raise r by a factor of 10 or 100. Otherwise, some error in the data should be
suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the tolerance r.

Hessian Rows i Default ¼ n
Note that this option does not apply to problems of type FP or LP.

This specifies m, the number of rows of the Hessian matrix H. The default value of m is n, the number
of variables of the problem.

If the problem is of type QP, m will usually be n, the number of variables. However, a value of m less
than n is appropriate for QP3 or QP4 if H is an upper trapezoidal matrix with m rows. Similarly, m
may be used to define the dimension of a leading block of nonzeros in the Hessian matrices of QP1 or
QP2, in which case the last n�m rows and columns of H are assumed to be zero. In the QP case, m
should not be greater than n; if it is, the last m� n rows of H are ignored.

If i < 0 or i > n, the default value is used.
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Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r � 0, the default value is used.

Infinite Step Size r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is not positive
definite.) If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

Iteration Limit i Default ¼ max 50; 5 nþmLð Þð Þ
Iters
Itns

See optional parameter Feasibility Phase Iteration Limit.

List Default
Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist
may be used to suppress the printing and optional parameter List may be used to restore printing.

Maximum Degrees of Freedom i Default ¼ n
Note that this option does not apply to problems of type FP or LP.

This places a limit on the storage allocated for the triangular factor R of the reduced Hessian HR.
Ideally, i should be set slightly larger than the value of nR expected at the solution. It need not be larger
than mN þ 1, where mN is the number of variables that appear nonlinearly in the quadratic objective
function. For many problems it can be much smaller than mN.

For quadratic problems, a minimizer may lie on any number of constraints, so that nR may vary
between 1 and n. The default value of i is therefore the number of variables n. If Hessian Rows m is
specified, the default value of i is the same number, m.

Minimum Sum of Infeasibilities Default ¼ NO

If no feasible point exists for the constraints, this option is used to control whether or not H02CBF will
calculate a point that minimizes the constraint violations. If Minimum Sum of Infeasibilities ¼ NO,
H02CBF will terminate as soon as it is evident that no feasible point exists for the constraints. The final
point will generally not be the point at which the sum of infeasibilities is minimized. If
Minimum Sum of Infeasibilities ¼ YES, H02CBF will continue until the sum of infeasibilities is
minimized.

Monitoring File i Default ¼ �1
If i � 0 and Print Level � 5, monitoring information produced by H02CBF at every iteration is sent to
a file with logical unit number i. If i < 0 and/or Print Level < 5, no monitoring information is
produced.

Optimality Tolerance r Default ¼ �0:8

If r � �, r defines the tolerance used to determine if the bounds and general constraints have the right
‘sign’ for the solution to be judged to be optimal.

If 0 � r < �, the default value is used.
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Print Level i Default ¼ 10

The value of i controls the amount of printout produced by H02CBF, as indicated below. A detailed
description of the printed output is given in Section 9.2 (summary output at each iteration and the final
solution) and Section 13 (monitoring information at each iteration). If i < 0, the default value is used.

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output
0 No output.
1 The final solution only.
5 One line of summary output ( < 80 characters; see Section 9.2) for each iteration (no printout

of the final solution).
� 10 The final solution and one line of summary output for each iteration.

The following printout is sent to the logical unit number defined by the Monitoring File:

i Output
< 5 No output.
� 5 One long line of output ( > 80 characters; see Section 13) for each iteration (no printout of the

final solution).
� 20 At each iteration, the Lagrange-multipliers, the variables x, the constraint values Ax and the

constraint status.
� 30 At each iteration, the diagonal elements of the upper triangular matrix T associated with the

TQ factorization (3) (see Section 11.2) of the working set, and the diagonal elements of the
upper triangular matrix R.

If Print Level � 5 and the unit number defined by Monitoring File is the same as that defined by
X04ABF, then the summary output is suppressed.

Problem Type a Default ¼ QP2

This option specifies the type of objective function to be minimized during the optimality phase. The
following are the five optional keywords and the dimensions of the arrays that must be specified in
order to define the objective function:

LP H not referenced, CVECðNÞ required;
QP1 HðLDH; �Þ symmetric, CVEC not referenced;
QP2 HðLDH; �Þ symmetric, CVECðNÞ required;
QP3 HðLDH; �Þ upper trapezoidal, CVEC not referenced;
QP4 HðLDH; �Þ upper trapezoidal, CVECðNÞ required.

For problems of type FP, the objective function is omitted and neither H nor CVEC are referenced.

The following keywords are also acceptable. The minimum abbreviation of each keyword is underlined.

a Option
Quadratic QP2
Linear LP
Feasible FP

In addition, the keyword QP is equivalent to the default option QP2.

If H ¼ 0, i.e., the objective function is purely linear, the efficiency of H02CBF may be increased by
specifying a as LP.

Rank Tolerance r Default ¼ 100�

Note that this option does not apply to problems of type FP or LP.
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This parameter enables you to control the condition number of the triangular factor R (see Section 11).
If �i denotes the function �i ¼ max R11j j; R22j j; . . . ; Riij jf g, the dimension of R is defined to be smallest
index i such that Riþ1;iþ1

		 		 � ffiffiffi
r
p

�iþ1j j. If r � 0, the default value is used.

13 Description of Monitoring Information

This section describes the long line of output ( > 80 characters) which forms part of the monitoring
information produced by H02CBF. (See also the description of the optional parameters Monitoring File
and Print Level in Section 12.1.) You can control the level of printed output.

To aid interpretation of the printed results, the following convention is used for numbering the
constraints: indices 1 through n refer to the bounds on the variables, and indices nþ 1 through nþmL

refer to the general constraints. When the status of a constraint changes, the index of the constraint is
printed, along with the designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed
variable) or A (artificial constraint).

When Print Level � 5 and Monitoring File � 0, the following line of output is produced at every
iteration on the unit number specified by Monitoring File. In all cases, the values of the quantities
printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no
constraint was added.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration, Step will be the step to the nearest constraint. When
the problem is of type LP, the step can be greater than one during the optimality
phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function. The output line for the final
iteration of the feasibility phase (i.e., the first iteration for which Ninf is zero)
will give the value of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be
nonincreasing. During the feasibility phase, the number of constraint infeasi-
bilities will not increase until either a feasible point is found, or the optimality of
the multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Art is the number of artificial constraints in the working set, i.e., the number of
columns of ZA (see Section 11.4).

Zr is the number of columns of ZR (see Section 11.2). Zr is the dimension of the
subspace in which the objective function is currently being minimized. The value
of Zr is the number of variables minus the number of constraints in the working
set; i.e., Zr ¼ n� Bndþ Linþ Artð Þ.
The value of nZ , the number of columns of Z (see Section 11.2) can be
calculated as nZ ¼ n� Bndþ Linð Þ. A zero value of nZ implies that x lies at a
vertex of the feasible region.

H – Operations Research H02CBF

Mark 26 H02CBF.23



Norm Gz is ZT
RgFR

�� ��, the Euclidean norm of the reduced gradient with respect to ZR (see
Sections 11.2 and 11.4). During the optimality phase, this norm will be
approximately zero after a unit step.

NOpt is the number of nonoptimal Lagrange-multipliers at the current point. NOpt is
not printed if the current x is infeasible or no multipliers have been calculated. At
a minimizer, NOpt will be zero.

Min Lm is the value of the Lagrange-multiplier associated with the deleted constraint. If
Min Lm is negative, a lower bound constraint has been deleted, if Min Lm is
positive, an upper bound constraint has been deleted. If no multipliers are
calculated during a given iteration, Min Lm will be zero.

Cond T is a lower bound on the condition number of the working set.

Cond Rz is a lower bound on the condition number of the triangular factor R (the
Cholesky factor of the current reduced Hessian; see Section 11.2). If the problem
is specified to be of type LP, Cond Rz is not printed.

Rzz is the last diagonal element � of the matrix D associated with the RTDR
factorization of the reduced Hessian HR (see Section 11.2). Rzz is only printed if
HR is not positive definite (in which case � 6¼ 1). If the printed value of Rzz is
small in absolute value, then HR is approximately singular. A negative value of
Rzz implies that the objective function has negative curvature on the current
working set.
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NAG Library Routine Document

H02CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply optional parameters to H02CBF from an external file.

2 Specification

SUBROUTINE H02CCF (IOPTNS, INFORM)

INTEGER IOPTNS, INFORM

3 Description

H02CCF may be used to supply values for optional parameters to H02CBF. H02CCF reads an external
file and each line of the file defines a single optional parameter. It is only necessary to supply values for
those arguments whose values are to be different from their default values.

Each optional parameter is defined by a single character string of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equal signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 16 contiguous
characters in Fortran 77's I, F, E or D formats, terminated by a space if this is not the last item on
the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print level = 10

End

Normally each line of the file is printed as it is read, on the current advisory message unit (see
X04ABF), but printing may be suppressed using the keyword Nolist. To suppress printing of Begin,
Nolist must be the first option supplied as in the file:

Begin
Nolist
Print level = 10

End

Printing will automatically be turned on again after a call to H02CBF and may be turned on again at
any time by you by using the keyword List.

Optional parameter settings are preserved following a call to H02CBF, and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values prior to a subsequent
call to H02CBF.
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A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in H02CBF.

4 References

None.

5 Arguments

1: IOPTNS – INTEGER Input

On entry: the unit number of the options file to be read.

Constraint: 0 � IOPTNS � 99.

2: INFORM – INTEGER Output

On exit: contains zero if the options file has been successfully read and a value > 0 otherwise, as
indicated below.

INFORM ¼ 1
IOPTNS is not in the range 0; 99½ �.

INFORM ¼ 2
Begin was found, but end-of-file was found before End was found.

INFORM ¼ 3
end-of-file was found before Begin was found.

6 Error Indicators and Warnings

If a line is not recognized as a valid option, then a warning message is output on the current advisory
message unit (see X04ABF).

7 Accuracy

Not applicable.

8 Parallelism and Performance

H02CCF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

H02CCF is not threaded in any implementation.

9 Further Comments

H02CDF may also be used to supply optional parameters to H02CBF. Note that if E04NFF/E04NFA is
used in the same program as H02CBF, then in general H02CCF will also affect the options used by
E04NFF/E04NFA.

10 Example

This example solves the same problem as the example for H02CBF, but in addition illustrates the use of
H02CCF and H02CDF to set optional parameters for H02CBF.

In this example the options file read by H02CCF is appended to the data file for the program (see
Section 10.2). It would usually be more convenient in practice to keep the data file and the options file
separate.
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10.1 Program Text

Program h02ccfe

! H02CCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: e04nfu, h02cbf, h02cbu, h02ccf, h02cdf, nag_wp, &

x04abf, x04acf, x04baf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: iset = 1, lintvr = 1, mdepth = 30, &
nin = 5, ninopt = 7, nout = 6

Character (*), Parameter :: fname = ’h02ccfe.opt’
! .. Local Scalars ..

Real (Kind=nag_wp) :: obj
Integer :: i, ifail, inform, j, lda, ldh, &

liwork, lwork, mode, n, nclin, &
outchn, strtgy

Character (80) :: rec
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), ax(:), bl(:), bu(:), &
clamda(:), cvec(:), h(:,:), work(:), &
x(:)

Integer, Allocatable :: intvar(:), istate(:), iwork(:)
! .. Executable Statements ..

Write (rec,99996) ’H02CCF Example Program Results’
Call x04baf(nout,rec)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, nclin
lda = nclin
ldh = n

liwork = 2*n + 3 + 2*mdepth

! LWRK for default problem-type QP2

If (nclin==0) Then
lwork = n**2 + 9*n + 4*mdepth

Else
lwork = 2*n**2 + 9*n + 5*nclin + 4*mdepth

End If

Allocate (a(lda,n),ax(nclin),bl(n+nclin),bu(n+nclin),clamda(n+nclin), &
cvec(n),h(ldh,n),x(n+nclin),intvar(lintvr),istate(n+nclin), &
iwork(liwork),work(lwork))

Read (nin,*)(cvec(i),i=1,n)
Read (nin,*)((a(i,j),j=1,n),i=1,nclin)
Read (nin,*)(bl(i),i=1,n+nclin)
Read (nin,*)(bu(i),i=1,n+nclin)
Read (nin,*)(x(i),i=1,n)
Read (nin,*)((h(i,j),j=1,n),i=1,n)

! Set four options using H02CDF

Call h02cdf(’ Print Level = 1 ’)

Call h02cdf(’ Check Frequency = 10 ’)

Call h02cdf(’ Crash Tolerance = 0.05 ’)

Call h02cdf(’ Infinite Bound Size = 1.0D+25 ’)

! Set the unit number for advisory messages to OUTCHN
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outchn = nout

Call x04abf(iset,outchn)

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Read the options file for the remaining options

Call h02ccf(ninopt,inform)

If (inform/=0) Then
Write (rec,99997) ’H02CCF terminated with INFORM = ’, inform
Call x04baf(nout,rec)
Go To 100

End If

strtgy = 2
intvar(1) = 4

Call h02cdf(’Nolist’)

Call h02cdf(’Print Level = 0’)

! Solve the problem

ifail = 0
Call h02cbf(n,nclin,a,lda,bl,bu,cvec,h,ldh,e04nfu,intvar,lintvr,mdepth, &

istate,x,obj,ax,clamda,strtgy,iwork,liwork,work,lwork,h02cbu,ifail)

! Print out the best integer solution found

Write (rec,’()’)
Call x04baf(nout,rec)
Write (rec,’()’)
Call x04baf(nout,rec)
Write (rec,99999) obj
Call x04baf(nout,rec)
Call x04baf(nout,’ Components are ’)

Do i = 1, n
Write (rec,99998) i, x(i)
Call x04baf(nout,rec)

End Do

100 Continue

99999 Format (1X,’Optimal Integer Value is = ’,E20.8)
99998 Format (1X,’X(’,I3,’) = ’,F15.8)
99997 Format (A,I5)
99996 Format (1X,A)

End Program h02ccfe

10.2 Program Data

Begin Example options file for H02CCF
Feasibility Phase Iteration Limit = 5 * (Default = 70)
Optimality Phase Iteration Limit = 10 * (Default = 70)

End

H02CCF Example Program Data
7 7 :Values of N and NCLIN

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of CVEC
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.00
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0.02 0.04 0.01 0.02 0.02 0.00 0.00
0.02 0.03 0.00 0.00 0.01 0.00 0.00
0.70 0.75 0.80 0.75 0.80 0.97 0.00
0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of matrix A

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01
-0.13 -1.0D+25 -1.0D+25 -1.0D+25 -1.0D+25 -9.92D-02 -3.0D-03 :End of BL
0.01 0.15 0.03 0.02 0.05 1.0D+25 1.0D+25

-0.13 -4.9D-03 -6.4D-03 -3.7D-03 -1.2D-03 1.0D+25 2.0D-03 :End of BU
-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of X
2.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 2.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 2.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00 :End of matrix H

10.3 Program Results

H02CCF Example Program Results

Calls to H02CDF
---------------

Print Level = 1
Check Frequency = 10
Crash Tolerance = 0.05
Infinite Bound Size = 1.0D+25

OPTIONS file
------------

Begin Example options file for H02CCF
Feasibility Phase Iteration Limit = 5 * (Default = 70)
Optimality Phase Iteration Limit = 10 * (Default = 70)

End

Optimal Integer Value is = 0.37469662E-01
Components are
X( 1) = -0.01000000
X( 2) = -0.07332830
X( 3) = -0.00025809
X( 4) = 0.00000000
X( 5) = -0.06335433
X( 6) = 0.01410944
X( 7) = 0.00283128
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NAG Library Routine Document

H02CDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply individual optional parameters to H02CBF.

2 Specification

SUBROUTINE H02CDF (STR)

CHARACTER(*) STR

3 Description

H02CDF may be used to supply values for optional parameters to H02CBF. It is only necessary to call
H02CDF for those arguments whose values are to be different from their default values. One call to
H02CDF sets one argument value.

Each optional parameter is defined by a single character string of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equal signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 16 contiguous
characters in Fortran 77's I, F, E or D formats, terminated by a space if this is not the last item on
the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

Normally, each user-specified option is printed as it is defined, on the current advisory message unit
(see X04ABF), but this printing may be suppressed using the keyword Nolist. Thus the statement

CALL H02CDF (’Nolist’)

suppresses printing of this and subsequent options. Printing will automatically be turned on again after
a call to H02CBF, and may be turned on again at any time by you, by using the keyword List.

Optional parameter settings are preserved following a call to H02CBF, and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values by the statement,

CALL H02CDF (’Defaults’)

prior to a subsequent call to H02CBF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in H02CBF.

4 References

None.
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5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 above and in Section 12 in
H02CBF).

6 Error Indicators and Warnings

If a line is not recognized as a valid option, then a warning message is output on the current advisory
message unit (see X04ABF).

7 Accuracy

Not applicable.

8 Parallelism and Performance

H02CDF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

H02CDF is not threaded in any implementation.

9 Further Comments

H02CCF may also be used to supply optional parameters to H02CBF. Note that if E04NFF/E04NFA is
used in the same program as H02CBF, then in general H02CCF will also affect the options used by
E04NFF/E04NFA.

10 Example

See Section 10 in H02CCF.
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NAG Library Routine Document

H02CEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, to Section 12 for a detailed
description of the specification of the optional parameters and to Section 13 for a detailed description
of the monitoring information produced by the routine.

1 Purpose

H02CEF obtains integer solutions to sparse linear programming and quadratic programming problems.

2 Specification

SUBROUTINE H02CEF (N, M, NNZ, IOBJ, NCOLH, QPHX, A, HA, KA, BL, BU,
START, NAMES, NNAME, CRNAME, NS, XS, INTVAR, LINTVR,
MDEPTH, ISTATE, MINIZ, MINZ, OBJ, CLAMDA, STRTGY, IZ,
LENIZ, Z, LENZ, MONIT, IFAIL)

&
&
&

INTEGER N, M, NNZ, IOBJ, NCOLH, HA(NNZ), KA(N+1), NNAME, NS,
INTVAR(LINTVR), LINTVR, MDEPTH, ISTATE(N+M), MINIZ,
MINZ, STRTGY, IZ(LENIZ), LENIZ, LENZ, IFAIL

&
&

REAL (KIND=nag_wp) A(NNZ), BL(N+M), BU(N+M), XS(N+M), OBJ,
CLAMDA(N+M), Z(LENZ)

&

CHARACTER(1) START
CHARACTER(8) NAMES(5), CRNAME(NNAME)
EXTERNAL QPHX, MONIT

3 Description

H02CEF is designed to obtain integer solutions to a class of quadratic programming problems addressed
by E04NKF/E04NKA. Specifically it solves the following problem:

minimize
x2Rn

f xð Þ subject to l � x
Ax


 �
� u; ð1Þ

where x ¼ x1; x2; . . . ; xnð ÞT is a set of variables (some of which may be required to be integer), A is an
m by n matrix and the objective function f xð Þ may be specified in a variety of ways depending upon
the particular problem to be solved. The optional parameter Maximize may be used to specify an
alternative problem in which f xð Þ is maximized. The possible forms for f xð Þ are listed in Table 1, in
which the prefixes LP and QP stand for ‘linear programming’ and ‘quadratic programming’
respectively, c is an n-element vector and H is the n by n second-derivative matrix r2f xð Þ (the
Hessian matrix).

Problem type Objective function f xð Þ Hessian matrix H
LP cTx Not applicable
QP cTxþ 1

2x
THx Symmetric positive semidefinite

Table 1

For LP and QP problems, the unique global minimum value of f xð Þ is found. For QP problems, you
must also provide a subroutine that computes Hx for any given vector x. (H need not be stored
explicitly.)

(It is not expected that the feasibility problem of E04NKF/E04NKA would be relevant here.)
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The routine employs a ‘Branch and Bound’ technique to enforce the integer constraints. In this
technique the problem is first solved without the integer constraints. If a variable is found to be non-
integral when it is required to have an integer value then two additional problems are constructed. One
bounds the variable above by the nearest integer value below the optimal value previously obtained.
The second problem is formed by bounding the variable below by the nearest integer value above the
optimal value. This process is continued until an integer solution is found. At this point you may elect
to stop, or may continue to search for better integer solutions by examining any other sub-problems that
remain to be explained.

In practice the routine tries to compute an integer solution as quickly as possible using a depth-first
approach, since this helps determine a realistic cut-off value. If we have a cut-off value, say the value
of the function at this first integer solution, and any sub-problem, W say, has a solution value greater
than this cut-off value, then subsequent sub-problems of W must have solutions greater than the value
of the solution at W and therefore need not be computed. Thus a knowledge of a good cut-off value can
result in fewer sub-problems being solved and thus speed up the operation of the routine. (See the
description of MONIT in Section 5 for details of how you can supply your own cut-off value.)

Each sub-problem is solved using E04NKA. You are referred to the routine document for E04NKF/
E04NKA for details of the algorithm used.

4 References

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users' guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E and Murray W (1978) Numerically stable methods for quadratic programming Math.
Programming 14 349–372

Gill P E, Murray W, Saunders M A and Wright M H (1986) Some theoretical properties of an
augmented Lagrangian merit function Report SOL 86–6R Department of Operations Research, Stanford
University

Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for
linearly constrained optimization Math. Programming 45 437–474

Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer–Verlag

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for
Fortran usage ACM Trans. Math. Software 5 308–325

Murtagh B A and Saunders M A (1983) MINOS 5.0 user's guide Report SOL 83-20 Department of
Operations Research, Stanford University

5 Arguments

1: N – INTEGER Input

On entry: n, the number of variables (excluding slacks). This is the number of columns in the
linear constraint matrix A.

Constraint: N � 1.

2: M – INTEGER Input

On entry: m, the number of general linear constraints (or slacks). This is the number of rows in
A, including the free row (if any; see IOBJ).

Constraint: M � 1.

H02CEF NAG Library Manual

H02CEF.2 Mark 26



3: NNZ – INTEGER Input

On entry: the number of nonzero elements in A.

Constraint: 1 � NNZ � N�M.

4: IOBJ – INTEGER Input

On entry: if IOBJ > 0, row IOBJ of A is a free row containing the nonzero elements of the
vector c appearing in the linear objective term cTx.

If IOBJ ¼ 0, there is no free row, i.e., the problem is either an FP problem (in which case IOBJ
must be set to zero), or a QP problem with c ¼ 0.

Constraint: 0 � IOBJ � M.

5: NCOLH – INTEGER Input

On entry: nH , the number of leading nonzero columns of the Hessian matrix H. For FP and LP
problems, NCOLH must be set to zero.

Constraint: 0 � NCOLH � N.

6: QPHX – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

For QP problems, you must supply a version of QPHX to compute the matrix product Hx. If H
has rows and columns consisting entirely of zeros, it is most efficient to order the variables
x ¼ y zð ÞT so that

Hx ¼ H1 0
0 0

� �
y
z

� �
¼ H1y

0

� �
;

where the nonlinear variables y appear first as shown. For LP problems, QPHX will never be
called by H02CEF.

The specification of QPHX is:

SUBROUTINE QPHX (NSTATE, NCOLH, X, HX)

INTEGER NSTATE, NCOLH
REAL (KIND=nag_wp) X(NCOLH), HX(NCOLH)

1: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1, then H02CEF is calling QPHX for the first time on a sub-
problem. This argument setting allows you to save computation time if certain data
must be read or calculated only once.

If NSTATE � 2, then H02CEF is calling QPHX for the last time. This argument setting
allows you to perform some additional computation on the final sub-problem solution.
In general, the last call to QPHX is made with NSTATE ¼ 2þ IFAIL (see Section 6).

Otherwise, NSTATE ¼ 0.

2: NCOLH – INTEGER Input

On entry: this is the same argument NCOLH as supplied to H02CEF.

3: XðNCOLHÞ – REAL (KIND=nag_wp) array Input

On entry: the first NCOLH elements of the vector x.

4: HXðNCOLHÞ – REAL (KIND=nag_wp) array Output

On exit: the product Hx.
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QPHX must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which H02CEF is called. Arguments denoted as Input must not be changed by this
procedure.

7: AðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements of A, ordered by increasing column index. Note that multiple
elements with the same row and column indices are not allowed.

On exit: used as internal workspace prior to being restored and hence is unchanged.

8: HAðNNZÞ – INTEGER array Input

On entry: HAðiÞ must contain the row index of the nonzero element stored in AðiÞ, for
i ¼ 1; 2; . . . ;NNZ. Note that the row indices for a column may be supplied in any order.

Constraint: 1 � HAðiÞ � M, for i ¼ 1; 2; . . . ;NNZ.

9: KAðNþ 1Þ – INTEGER array Input

On entry: KAðjÞ must contain the index in A of the start of the jth column, for j ¼ 1; 2; . . . ;N.
To specify the jth column as empty, set KAðjÞ ¼ KAðjþ 1Þ. Note that the first and last elements
of KA must be such that KAð1Þ ¼ 1 and KAðNþ 1Þ ¼ NNZþ 1.

Constraints:

KAð1Þ ¼ 1;
KAðjÞ � 1, for j ¼ 2; 3; . . . ;N;
KAðNþ 1Þ ¼ NNZþ 1;
0 � KAðj þ 1Þ � KAðjÞ � M, for j ¼ 1; 2; . . . ;N.

10: BLðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: l, the lower bounds for all the variables and general constraints, in the following order.
The first N elements of BL must contain the bounds on the variables x, and the next M elements
the bounds for the general linear constraints Ax (or slacks s) and the free row (if any). To specify
a nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, where bigbnd is the value of
the optional parameter Infinite Bound Size (default value ¼ 1020). To specify the jth constraint
as an equality, set BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd. Note that the lower bound
corresponding to the free row must be set to �1 and stored in BLðNþ IOBJÞ.
Constraint: if IOBJ > 0, BLðNþ IOBJÞ � �bigbnd
(See also the description for BU.)

11: BUðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: u, the upper bounds for all the variables and general constraints, in the following order.
The first N elements of BL must contain the bounds on the variables x, and the next M elements
the bounds for the general linear constraints Ax (or slacks s) and the free row (if any). To specify
a nonexistent upper bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd. Note that the upper bound
corresponding to the free row must be set to þ1 and stored in BUðNþ IOBJÞ.
On exit: used as internal workspace prior to being restored and hence is unchanged.

Constraints:

if IOBJ > 0, BUðNþ IOBJÞ � bigbnd;
BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;NþM;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.
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12: START – CHARACTER(1) Input

On entry: indicates how a starting basis is to be obtained.

START ¼ C
An internal crash procedure will be used to choose an initial basis matrix B.

START ¼ W
A basis is already defined in ISTATE (probably from a previous call).

Constraint: START ¼ C or W.

13: NAMESð5Þ – CHARACTER(8) array Input

On entry: a set of names associated with the so-called MPSX form of the problem.

NAMESð1Þ
Must contain the name for the problem (or be blank).

NAMESð2Þ
Must contain the name for the free row (or be blank).

NAMESð3Þ
Must contain the name for the constraint right-hand side (or be blank).

NAMESð4Þ
Must contain the name for the ranges (or be blank).

NAMESð5Þ
Must contain the name for the bounds (or be blank).

(These names are used in the monitoring file output; see Section 13.)

14: NNAME – INTEGER Input

On entry: the number of column (i.e., variable) and row names supplied in the array NAMES.

NNAME ¼ 1
There are no names. Default names will be used in the printed output.

NNAME ¼ NþM
All names must be supplied.

Constraint: NNAME ¼ 1 or NþM.

15: CRNAMEðNNAMEÞ – CHARACTER(8) array Input

On entry: the optional column and row names.

If NNAME ¼ 1, CRNAME is not referenced and the printed output will use default names for
the columns and rows.

If NNAME ¼ NþM, the first N elements must contain the names for the columns and the next
M elements must contain the names for the rows. Note that the name for the free row (if any)
must be stored in CRNAMEðNþ IOBJÞ.

16: NS – INTEGER Input/Output

On entry: nS , the number of superbasics. For QP problems, NS need not be specified if
START ¼ C , but must retain its value from a previous call when START ¼ W . For FP and LP
problems, NS need not be initialized.

On exit: the final number of superbasics. This will be zero for FP and LP problems.

17: XSðNþMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the variables and slacks x; sð Þ. (See the description for ISTATE.)

On exit: XSðiÞ contains the final value of xi, for i ¼ 1; 2; . . . ; n.
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18: INTVARðLINTVRÞ – INTEGER array Input

On entry: specifies which components of the solution vector x are constrained to be integer.
Specifically, if k elements of x are required to take integer values then INTVARðiÞ ¼ li, for
i ¼ 1; 2; . . . ; k, where li is the integer index such that xli is integer. If k < LINTVR then
INTVARðkþ 1Þ must be set to �1 to signal the end of the integer variable indices.

The order in which the indices of those components of x required to be integer is presented
determines the order in which the sub-problems are treated and solved. As such it can be a
powerful tool to assist the routine in achieving a solution efficiently. The general advice is to
enter the important integer variables in the model early in INTVAR; secondary or less important
variables should be entered near the end of the list. However some experimentation might be
required to find the optimal order.

19: LINTVR – INTEGER Input

On entry: k, the number of components of x required to be integer. If k ¼ 0, then LINTVR must
be set to 1 and INTVARð1Þ set to �1.

20: MDEPTH – INTEGER Input

On entry: specifies the maximum depth the tree of sub-problems may be developed.

Suggested value: MDEPTH ¼ 2� Nþ 20.

Constraint: MDEPTH > 0.

21: ISTATEðNþMÞ – INTEGER array Input/Output

On entry: if START ¼ C , the first N elements of ISTATE and XS must specify the initial states
and values, respectively, of the variables x. (The slacks s need not be initialized.) An internal
crash procedure is then used to select an initial basis matrix B. The initial basis matrix will be
triangular (neglecting certain small elements in each column). It is chosen from various rows and
columns of columns of A� Ið Þ. Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ State of XSðjÞ during crash procedure

0 or 1 Eligible for the basis
2 Ignored
3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored

If nothing special is known about the problem, or there is no wish to provide special information,
you may set ISTATEðjÞ ¼ 0 and XSðjÞ ¼ 0:0, for j ¼ 1; 2; . . . ;N. All variables will then be
eligible for the initial basis. Less trivially, to say that the jth variable will probably be equal to
one of its bounds, set ISTATEðjÞ ¼ 4 and XSðjÞ ¼ BLðjÞ or ISTATEðjÞ ¼ 5 and XSðjÞ ¼ BUðjÞ
as appropriate.

Following the crash procedure, variables for which ISTATEðjÞ ¼ 2 are made superbasic. Other
variables not selected for the basis are then made nonbasic at the value XSðjÞ if
BLðjÞ � XSðjÞ � BUðjÞ, or at the value BLðjÞ or BUðjÞ closest to XSðjÞ.
If START ¼ W , ISTATE and XS must specify the initial states and values, respectively, of the
variables and slacks x; sð Þ. If H02CEF has been called previously with the same values of N and
M, ISTATE already contains satisfactory information.

Constraints:

if START ¼ C , 0 � ISTATEðjÞ � 5, for j ¼ 1; 2; . . . ;N;
if START ¼ W , 0 � ISTATEðjÞ � 3, for j ¼ 1; 2; . . . ;NþM.

On exit: the final states of the variables and slacks x; sð Þ from the solution of the last sub-
problem tackled. The significance of each possible value of ISTATEðjÞ is as follows:
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ISTATEðjÞ State of variable j Normal value of XSðjÞ
0 Nonbasic BLðjÞ
1 Nonbasic BUðjÞ
2 Superbasic Between BLðjÞ and BUðjÞ
3 Basic Between BLðjÞ and BUðjÞ

If Ninf ¼ 0 (see Section 9.1), basic and superbasic variables may be outside their bounds by as
mu c h a s t h e v a l u e o f t h e o p t i o n a l p a r ame t e r Fea s i b i l i t y To l e r an c e
(default value ¼ max 10�6;

ffiffi
�
p� �

, where � is the machine precision). Note that unless the
optional parameter Scale Option ¼ 0 (default value ¼ 2) is specified, the Feasibility Tolerance
applies to the variables of the scaled problem. In this case, the variables of the original problem
may be as much as 0:1 outside their bounds, but this is unlikely unless the problem is very badly
scaled.

Very occasionally some nonbasic variables may be outside their bounds by as much as the
Feasibility Tolerance, and there may be some nonbasic variables for which XSðjÞ lies strictly
between its bounds.

If Ninf > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by Sinf (see Section 9.1) if Scale Option ¼ 0).

22: MINIZ – INTEGER Output

On exit: the minimum value of LENIZ required to start solving the problem. If IFAIL ¼ 14,
H02CEF may be called again with LENIZ suitably larger than MINIZ. (The bigger the better,
since it is not certain how much workspace the basis factors need.)

23: MINZ – INTEGER Output

On exit: the minimum value of LENZ required to start solving the problem. If IFAIL ¼ 15,
H02CEF may be called again with LENZ suitably larger than MINZ. (The bigger the better, since
it is not certain how much workspace the basis factors need.)

24: OBJ – REAL (KIND=nag_wp) Output

On exit: the value of the objective function.

If Ninf ¼ 0, OBJ includes the quadratic objective term 1
2x

THx (if any).

If Ninf > 0, OBJ is just the linear objective term cTx (if any). For FP problems, OBJ is set to
zero.

25: CLAMDAðNþMÞ – REAL (KIND=nag_wp) array Output

On exit: a set of Lagrange-multipliers for the bounds on the variables and the general constraints.
More precisely, the first N elements contain the multipliers (reduced costs) for the bounds on the
variables, and the next M elements contain the multipliers (shadow prices) for the general linear
constraints.

26: STRTGY – INTEGER Input

On entry: defines the branching strategy adopted by the routine.

STRTGY ¼ 0
Each sub-problem first explored imposes a tighter upper bound on the component of x.

STRTGY ¼ 1
Each sub-problem first explored imposes a tighter lower bound on the component of x.

STRTGY ¼ 2
Each branch explored imposes a tighter upper bound on the component of x if its
fractional part is less than 0:5, otherwise it imposes a tighter lower bound.
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STRTGY ¼ 3
Random choice is made between first exploring a tighter lower bound or a tighter upper
bound sub-problem.

Constraint: STRTGY ¼ 0, 1, 2 or 3.

27: IZðLENIZÞ – INTEGER array Workspace
28: LENIZ – INTEGER Input

On entry: the dimension of the array IZ as declared in the (sub)program from which H02CEF is
called.

Constraint: LENIZ � 1.

29: ZðLENZÞ – REAL (KIND=nag_wp) array Workspace
30: LENZ – INTEGER Input

On entry: the dimension of the array Z as declared in the (sub)program from which H02CEF is
called.

Constraint: LENZ � 1.

The amounts of workspace provided (i.e., LENIZ and LENZ) and required (i.e., MINIZ and
MINZ) are (by default) output on the current advisory message unit (as defined by X04ABF).
Since the minimum values of LENIZ and LENZ required to start solving the problem are
returned in MINIZ and MINZ, respectively, you may prefer to obtain appropriate values from the
output of a preliminary run with LENIZ and LENZ set to 1. (H02CEF will then terminate with
IFAIL ¼ 14.)

31: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

To provide feed-back on the progress of the branch and bound process. Additionally MONIT
provides, via its argument HALT, the ability to terminate the process. (You might choose to do
this when an integer solution is found, rather than search for a better solution.) If you do not
require any intermediate output then MONIT may be the dummy routine H02CEY.

The specification of MONIT is:

SUBROUTINE MONIT (INTFND, NODES, DEPTH, OBJ, X, BSTVAL, BSTSOL,
BL, BU, N, HALT, COUNT)

&

INTEGER INTFND, NODES, DEPTH, N, COUNT
REAL (KIND=nag_wp) OBJ, X(N), BSTVAL, BSTSOL(N), BL(N), BU(N)
LOGICAL HALT

1: INTFND – INTEGER Input

On entry: contains the number of integer solutions obtained so far.

2: NODES – INTEGER Input

On entry: contains the number of nodes (sub-problems) solved so far.

3: DEPTH – INTEGER Input

On entry: contains the depth reached in the tree of problems.

4: OBJ – REAL (KIND=nag_wp) Input

On entry: contains the solution value to the sub-problem at this node.

5: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: contains the solution vector to the sub-problem at this node.
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6: BSTVAL – REAL (KIND=nag_wp) Input/Output

On entry: contains the value of the objective function corresponding to the best integer
solution obtained so far. If no integer solution has been found BSTVAL contains the
largest machine representable number (see X02ALF).

On exit: may be set to a cut-off value, if you are a sophisticated user, as follows. Before
an integer solution has been found BSTVAL will be set by H02CEF to the largest
machine representable number (see X02ALF). If you know that the solution being
sought is a much smaller number, then BSTVAL may be set to this number as a cut-off
value (see Section 3). Beware of setting BSTVAL too small, since then no integer
solutions will be discovered. Also make sure that BSTVAL is set using a statement of
the form

IF (INTFND.EQ.0) BSTVAL ¼ cut-off value

on entry to MONIT. This statement will not prevent the normal operation of the
algorithm when subsequent integer solutions are found. It would be a grievous mistake
to unconditionally set BSTVAL and if you have any doubts whatsoever about the
correct use of this argument then you are strongly recommended to leave it unchanged.

7: BSTSOLðNÞ – REAL (KIND=nag_wp) array Input

On entry: contains the value of the best integer solution obtained so far.

8: BLðNÞ – REAL (KIND=nag_wp) array Input

On entry: contains the current lower bounds on the variables at this point.

9: BUðNÞ – REAL (KIND=nag_wp) array Input

On entry: contains the current upper bounds on the variables at this point.

10: N – INTEGER Input

On entry: contains the number of variables in the minimization problem.

11: HALT – LOGICAL Input/Output

On entry: will have the value .FALSE..

On exit: if HALT is set to .TRUE., E04NKF/E04NKA will be brought to a halt with
IFAIL exit �1. This facility may be useful if you are content with any integer solution,
or with any integer solution that fits certain criteria. Under these circumstances setting
HALT ¼ :TRUE: can save considerable unnecessary computation.

12: COUNT – INTEGER User Data

COUNT may be used to save the last value of INTFND. If a subsequent call of MONIT
has a value of INTFND which is greater than COUNT, then you know that a new
integer solution has been found at this node.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which H02CEF is called. Arguments denoted as Input must not be changed by this
procedure.

32: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1
Halted at your request.

IFAIL ¼ 0

Successful exit.

IFAIL ¼ 1

Input argument error immediately detected.

IFAIL ¼ 2

No integer solution found.

IFAIL ¼ 3

MDEPTH is too small.

IFAIL ¼ 4

The problem is unbounded (or badly scaled). The objective function is not bounded below in the
feasible region.

IFAIL ¼ 5

The problem is infeasible. The general constraints cannot all be satisfied simultaneously to within
the value of the optional parameter Feasibility Tolerance (default value ¼ max 10�6;

ffiffi
�
p� �

, where
� is the machine precision).

IFAIL ¼ 6

Too many iterations. The value of the optional parameter Iteration Limit
(default value ¼ max 50; 5 nþmð Þð Þ) is too small.

IFAIL ¼ 7

The reduced Hessian matrix ZTHZ (see Section 11.2) exceeds its assigned dimension. The value
of the optional parameter Superbasics Limit (default value ¼ min nH þ 1; nð Þ) is too small.

IFAIL ¼ 8

The Hessian matrix H appears to be indefinite. Check that QPHX has been coded correctly and
that all relevant elements of Hx have been assigned their correct values.

IFAIL ¼ 9

An input argument is invalid for an internal call to E04NKF/E04NKA.
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IFAIL ¼ 10

Numerical error in trying to satisfy the general constraints. The basis is very ill-conditioned.

IFAIL ¼ 11

Not enough integer workspace for the basis factors. Increase LENIZ and rerun H02CEF.

IFAIL ¼ 12

Not enough real workspace for the basis factors. Increase LENZ and rerun H02CEF.

IFAIL ¼ 13

The basis is singular after 15 attempts to factorize it (adding slacks where necessary). Either the
problem is badly scaled or the value of the optional parameter LU Factor Tolerance
(default value ¼ 100:0) is too large.

IFAIL ¼ 14

Not enough integer workspace to start solving the problem. Increase LENIZ to at least MINIZ
and rerun H02CEF.

IFAIL ¼ 15

Not enough real workspace to start solving the problem. Increase LENZ to at least MINZ and
rerun H02CEF.

IFAIL ¼ 16

An internal error has occurred. Contact NAG with details of your program.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

H02CEF implements a numerically stable active-set strategy and returns solutions that are as accurate
as the condition of the problem warrants on the machine.

8 Parallelism and Performance

H02CEF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

H02CEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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H02CEF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This section contains a description of the printed output.

9.1 Description of the Printed Output

This section describes the (default) intermediate printout and final printout produced by H02CEF. The
intermediate printout is a subset of the monitoring information produced by the routine at every
iteration (see Section 13). You can control the level of printed output (see the description of the
optional parameter Print Level in Section 12.1). Note that the intermediate printout and final printout
are produced only if Print Level � 10 (the default).

The following line of summary output ( < 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration, Step will be the step to the nearest constraint. When
the problem is of type LP, the step can be greater than one during the optimality
phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function. The output line for the final
iteration of the feasibility phase (i.e., the first iteration for which Ninf is zero)
will give the value of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be
nonincreasing. During the feasibility phase, the number of constraint infeasi-
bilities will not increase until either a feasible point is found, or the optimality of
the multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Norm rg is dSk k, the Euclidean norm of the reduced gradient (see Section 11.3). During
the optimality phase, this norm will be approximately zero after a unit step. For
FP and LP problems, Norm rg is not printed.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Variable gives the name of the variable. If NNAME ¼ 1, a default name is assigned to the
jth variable, for j ¼ 1; 2; . . . ; n. If NNAME ¼ NþM, the name supplied in
CRNAMEðjÞ is assigned to the jth variable.

State gives the state of the variable (LL if nonbasic on its lower bound, UL if nonbasic
on its upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between
its bounds, BS if basic and SBS if superbasic).
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A key is sometimes printed before State to give some additional information
about the state of a variable. Note that unless the optional parameter
Scale Option ¼ 0 (default value ¼ 2) is specified, the tests for assigning a key
are applied to the variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change to the
objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one
of them could encounter a bound immediately. In either case the values of
the Lagrange-multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional parameter Feasibility
Tolerance (default value ¼ max 10�6;

ffiffi
�
p� �

, where � is the machine
precision).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value
of the reduced gradient for the variable exceeds the value of the optional
parameter Optimality Tolerance (default value ¼ max 10�6;

ffiffi
�
p� �

), the
solution would not be declared optimal because the reduced gradient for
the variable would not be considered negligible.

Value is the value of the variable at the final iterate.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange-multiplier for the associated bound. This will be zero if State is
FR. If x is optimal, the multiplier should be non-negative if State is LL, non-
positive if State is UL, and zero if State is BS or SBS.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for linear constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, CRNAMEðjÞ replaced by CRNAMEðnþ jÞ, BLðjÞ
and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ respectively, and with the following change in the
heading.

Constrnt gives the name of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This example minimizes the quadratic function f xð Þ ¼ cTxþ 1
2x

THx , where

c ¼ �200:0;�2000:0;�2000:0;�2000:0;�2000:0; 400:0; 400:0ð ÞT
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H ¼

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 2
0 0 0 0 0 2 2

0BBBBBBB@

1CCCCCCCA
subject to the bounds

0 � x1 � 200
0 � x2 � 2500

400 � x3 � 800
100 � x4 � 700

0 � x5 � 1500
0 � x6
0 � x7

to the linear constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ 2000
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � 60
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 � 100
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � 40
0:02x1 þ 0:03x2 þ 0:01x5 � 30

1500 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
250 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 300

and the variables x2, x3, x4, x5, x6, x7, are constrained to be integer.

The initial point, which is infeasible, is

x0 ¼ 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0ð ÞT:

The optimal solution (to five figures) is

x� ¼ 0:0; 355:0; 645:0; 164:0; 410:0; 275:0; 151:0ð ÞT:

One bound constraint and one linear constraint are active at the solution. Note that the Hessian matrix
H is positive semidefinite.

10.1 Program Text

! H02CEF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module h02cefe_mod

! H02CEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: monit, qphx

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: cutoff = -1847510.0_nag_wp
Integer, Parameter, Public :: lintvr = 10, mdepth = 2000, nin = 5, &

nout = 6
Contains

Subroutine qphx(nstate,ncolh,x,hx)

! Routine to compute H*x. (In this version of QPHX, the Hessian
! matrix H is not referenced explicitly.)
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! .. Scalar Arguments ..
Integer, Intent (In) :: ncolh, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hx(ncolh)
Real (Kind=nag_wp), Intent (In) :: x(ncolh)

! .. Executable Statements ..
If (nstate==1) Then

! This is the first call.
! Take any special action here if desired.

Continue
Else If (nstate>=2) Then

! This is the last call.
Continue

End If
hx(1:ncolh) = 2._nag_wp*x(1:ncolh)
hx(3) = hx(3) + 2._nag_wp*x(4)
hx(4) = hx(4) + 2._nag_wp*x(3)
hx(6) = hx(6) + 2._nag_wp*x(7)
hx(7) = hx(7) + 2._nag_wp*x(6)
Return

End Subroutine qphx
Subroutine monit(intfnd,nodes,depth,obj,x,bstval,bstsol,bl,bu,n,halt, &

count)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: bstval
Real (Kind=nag_wp), Intent (In) :: obj
Integer, Intent (Inout) :: count
Integer, Intent (In) :: depth, intfnd, n, nodes
Logical, Intent (Inout) :: halt

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: bl(n), bstsol(n), bu(n), x(n)

! .. Executable Statements ..
If (intfnd==0) Then

bstval = cutoff
Else If (intfnd>count) Then

Write (nout,*) ’New integer solution found’
Write (nout,99999) ’ Nodes solved so far: ’, nodes
Write (nout,99999) ’ Reached depth: ’, depth
Write (nout,99998) ’ Solution value at current node: ’, obj
Write (nout,*) ’ Solution vector at current node:’
Write (nout,99997) x(1:n)
Write (nout,99998) ’ Current best function value: ’, bstval
Write (nout,*) ’ Current best solution:’
Write (nout,99997) bstsol(1:n)
Write (nout,*) ’ Current lower bounds:’
Write (nout,99997) bl(1:n)
Write (nout,*) ’ Current upper bounds:’
Write (nout,99997) bu(1:n)

End If
count = intfnd

! Set halt .True. to terminate execution for any reason.
halt = .False.
Return

99999 Format (1X,A,I20)
99998 Format (1X,A,E13.5)
99997 Format (1X,2X,E13.5)

End Subroutine monit
End Module h02cefe_mod
Program h02cefe

! H02CEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: h02cef, h02cgf, nag_wp
Use h02cefe_mod, Only: lintvr, mdepth, monit, nin, nout, qphx

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj
Integer :: i, icol, ifail, iobj, jcol, leniz, &
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lenz, m, miniz, minz, n, ncolh, &
nname, nnz, ns, strtgy

Character (1) :: start
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), bl(:), bu(:), clamda(:), &
xs(:), z(:)

Integer, Allocatable :: ha(:), intvar(:), istate(:), iz(:), &
ka(:)

Character (8), Allocatable :: crname(:)
Character (8) :: names(5)

! .. Executable Statements ..
Write (nout,*) ’H02CEF Example Program Results’

! Skip heading in data file.
Read (nin,*)

Read (nin,*) n, m
Read (nin,*) nnz, iobj, ncolh, start, nname
Allocate (a(nnz),bl(n+m),bu(n+m),clamda(n+m),xs(n+m),ha(nnz), &

intvar(lintvr),istate(n+m),ka(n+1),crname(nname))

Read (nin,*) names(1:5)
Read (nin,*) crname(1:nname)

! Read the matrix A from data file. Set up KA.

jcol = 1
ka(jcol) = 1

Do i = 1, nnz

! Element ( HA( I ), ICOL ) is stored in A( I ).

Read (nin,*) a(i), ha(i), icol

If (icol==jcol+1) Then

! Index in A of the start of the ICOL-th column equals I.

ka(icol) = i
jcol = icol

Else If (icol>jcol+1) Then

! Index in A of the start of the ICOL-th column equals I,
! but columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
! corresponding elements of KA to I.

ka((jcol+1):(icol-1)) = i
ka(icol) = i
jcol = icol

End If

End Do

ka(n+1) = nnz + 1

Read (nin,*) bl(1:n+m)
Read (nin,*) bu(1:n+m)
Read (nin,*) istate(1:n)
Read (nin,*) xs(1:n)

strtgy = 3
intvar(1:7) = (/2,3,4,5,6,7,-1/)

Call h02cgf(’NoList’)

Call h02cgf(’Print Level = 0’)

! Solve the QP problem.
! First call is a workspace query
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leniz = 1
lenz = 1
Allocate (iz(leniz),z(lenz))

ifail = 1
Call h02cef(n,m,nnz,iobj,ncolh,qphx,a,ha,ka,bl,bu,start,names,nname, &

crname,ns,xs,intvar,lintvr,mdepth,istate,miniz,minz,obj,clamda,strtgy, &
iz,leniz,z,lenz,monit,ifail)

If (ifail/=14) Then
Write (nout,99998) ifail

Else
Deallocate (iz,z)

leniz = miniz
lenz = minz
Allocate (iz(leniz),z(lenz))

ifail = 0
Call h02cef(n,m,nnz,iobj,ncolh,qphx,a,ha,ka,bl,bu,start,names,nname, &

crname,ns,xs,intvar,lintvr,mdepth,istate,miniz,minz,obj,clamda, &
strtgy,iz,leniz,z,lenz,monit,ifail)

! Print out the best integer solution found

Write (nout,99999) obj, (i,xs(i),i=1,n)
End If

99999 Format (’ Optimal Integer Value is = ’,E20.8,/,’ Components are ’,/, &
(’ X(’,I3,’) = ’,F10.2))

99998 Format (1X,’** Workspace query in H02CEF exited with IFAIL = ’,I0)
End Program h02cefe

10.2 Program Data

H02CEF Example Program Data
7 8 :Values of N and M

48 8 7 ’C’ 15 :Values of NNZ, IOBJ, NCOLH, START and NNAME
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ :End of NAMES
’...X1...’ ’...X2...’ ’...X3...’ ’...X4...’ ’...X5...’
’...X6...’ ’...X7...’ ’..ROW1..’ ’..ROW2..’ ’..ROW3..’
’..ROW4..’ ’..ROW5..’ ’..ROW6..’ ’..ROW7..’ ’..COST..’ :End of CRNAME

0.02 7 1
0.02 5 1
0.03 3 1
1.00 1 1
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
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0.04 2 4
-2000.00 8 4

0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7 :End of matrix A
0.0 0.0 4.0E+02 1.0E+02 0.0 0.0 0.0 2.0E+03

-1.0E+25 -1.0E+25 -1.0E+25 -1.0E+25 1.5E+03 2.5E+02 -1.0E+25 :End of BL
2.0E+02 2.5E+03 8.0E+02 7.0E+02 1.5E+03 1.0E+25 1.0E+25 2.0E+03
6.0E+01 1.0E+02 4.0E+01 3.0E+01 1.0E+25 3.0E+02 1.0E+25 :End of BU
0 0 0 0 0 0 0 :End of ISTATE
0.0 0.0 0.0 0.0 0.0 0.0 0.0 :End of XS

10.3 Program Results

H02CEF Example Program Results
New integer solution found

Nodes solved so far: 272
Reached depth: 18
Solution value at current node: -0.18475E+07
Solution vector at current node:

0.00000E+00
0.35500E+03
0.64500E+03
0.16400E+03
0.41000E+03
0.27500E+03
0.15100E+03

Current best function value: -0.18475E+07
Current best solution:

0.00000E+00
0.35500E+03
0.64500E+03
0.16400E+03
0.41000E+03
0.27500E+03
0.15100E+03

Current lower bounds:
0.00000E+00
0.35500E+03
0.40000E+03
0.16400E+03
0.00000E+00
0.00000E+00
0.00000E+00

Current upper bounds:
0.20000E+03
0.35500E+03
0.64500E+03
0.16400E+03
0.15000E+04
0.10000E+26
0.10000E+26

Optimal Integer Value is = -0.18475180E+07
Components are
X( 1) = 0.00
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X( 2) = 355.00
X( 3) = 645.00
X( 4) = 164.00
X( 5) = 410.00
X( 6) = 275.00
X( 7) = 151.00

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Sections 12 and 13.
Section 12 describes the optional parameters which may be set by calls to H02CFF and/or H02CGF.
Section 13 describes the quantities which can be requested to monitor the course of the computation.

11 Algorithmic Details

This section contains a detailed description of the method used by H02CEF.

11.1 Overview

H02CEF employs a Branch and Bound technique (see Section 3) based on an inertia-controlling method
to solve the sub-problems that maintains a Cholesky factorization of the reduced Hessian (see below).
The method is similar to that of Gill and Murray (1978), and is described in detail by Gill et al. (1991).
Here we briefly summarise the main features of the method. Where possible, explicit reference is made
to the names of variables that are arguments of the routine or appear in the printed output.

The method used has two distinct phases: finding an initial feasible point by minimizing the sum of
infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the feasible
region (the optimality phase). The computations in both phases are performed by the same subroutines.
The two-phase nature of the algorithm is reflected by changing the function being minimized from the
sum of infeasibilities (the printed quantity Sinf; see Section 13) to the quadratic objective function (the
printed quantity Objective; see Section 13).

In general, an iterative process is required to solve a quadratic program. Given an iterate x; sð Þ in both
the original variables x and the slack variables s, a new iterate �x; �sð Þ is defined by

�x
�s

� �
¼ x

s

� �
þ �p; ð2Þ

where the step length � is a non-negative scalar (the printed quantity Step; see Section 13), and p is
called the search direction. (For simplicity, we shall consider a typical iteration and avoid reference to
the index of the iteration.) Once an iterate is feasible (i.e., satisfies the constraints), all subsequent
iterates remain feasible.

11.2 Definition of the Working Set and Search Direction

At each iterate x; sð Þ, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the value of the optional parameter Feasibility
Tolerance; see Section 12.1). The working set is the current prediction of the constraints that hold with
equality at a solution of the LP or QP problem. Let mW denote the number of constraints in the
working set (including bounds), and let W denote the associated mW by nþmð Þ working set matrix
consisting of the mW gradients of the working set constraints.

The search direction is defined so that constraints in the working set remain unaltered for any value of
the step length. It follows that p must satisfy the identity

Wp ¼ 0: ð3Þ

This characterisation allows p to be computed using any n by nZ full-rank matrix Z that spans the null
space of W . (Thus, nZ ¼ n�mW and WZ ¼ 0.) The null space matrix Z is defined from a sparse LU
factorization of part of W (see (6) and (7) below). The direction p will satisfy (3) if

p ¼ ZpZ; ð4Þ

where pZ is any nZ-vector.
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The working set contains the constraints Ax� s ¼ 0 and a subset of the upper and lower bounds on the
variables x; sð Þ. Since the gradient of a bound constraint xj � lj or xj � uj is a vector of all zeros
except for 
1 in position j, it follows that the working set matrix contains the rows of A� Ið Þ and the
unit rows associated with the upper and lower bounds in the working set.

The working set matrix W can be represented in terms of a certain column partition of the matrix
A� Ið Þ. As in Section 3 we partition the constraints Ax� s ¼ 0 so that

BxB þ SxS þNxN ¼ 0; ð5Þ

where B is a square nonsingular basis and xB, xS and xN are the basic, superbasic and nonbasic
variables respectively. The nonbasic variables are equal to their upper or lower bounds at x; sð Þ, and the
superbasic variables are independent variables that are chosen to improve the value of the current
objective function. The number of superbasic variables is nS (the printed quantity Ns; see Section 13).
Given values of xN and xS , the basic variables xB are adjusted so that x; sð Þ satisfies (5).

If P is a permutation matrix such that A� Ið ÞP ¼ B S Nð Þ, then the working set matrix W satisfies

WP ¼ B S N
0 0 IN

� �
; ð6Þ

where IN is the identity matrix with the same number of columns as N .

The null space matrix Z is defined from a sparse LU factorization of part of W . In particular, Z is
maintained in ‘reduced gradient’ form, using the LUSOL package (see Gill et al. (1986)) to maintain
sparse LU factors of the basis matrix B that alters as the working set W changes. Given the
permutation P , the null space basis is given by

Z ¼ P
�B�1S

I
0

0@ 1A: ð7Þ

This matrix is used only as an operator, i.e., it is never computed explicitly. Products of the form Zv
and ZTg are obtained by solving with B or BT. This choice of Z implies that nZ , the number of
‘degrees of freedom’ at x; sð Þ, is the same as nS , the number of superbasic variables.

Let gZ and HZ denote the reduced gradient and reduced Hessian of the objective function:

gZ ¼ ZTg and HZ ¼ ZTHZ; ð8Þ

where g is the objective gradient at x; sð Þ. Roughly speaking, gZ and HZ describe the first and second
derivatives of an nS-dimensional unconstrained problem for the calculation of pZ . (The condition
estimator of HZ is the quantity Cond Hz in the monitoring file output; see Section 13.)

At each iteration, an upper triangular factor R is available such that HZ ¼ RTR. Normally, R is
computed from RTR ¼ ZTHZ at the start of the optimality phase and then updated as the QP working
set changes. For efficiency, the dimension of R should not be excessive (say, nS � 1000). This is
guaranteed if the number of nonlinear variables is ‘moderate’.

If the QP problem contains linear variables, H is positive semidefinite and R may be singular with at
least one zero diagonal element. However, an inertia-controlling strategy is used to ensure that only the
last diagonal element of R can be zero. (See Gill et al. (1991) for a discussion of a similar strategy for
indefinite quadratic programming.)

If the initial R is singular, enough variables are fixed at their current value to give a nonsingular R. This
is equivalent to including temporary bound constraints in the working set. Thereafter, R can become
singular only when a constraint is deleted from the working set (in which case no further constraints are
deleted until R becomes nonsingular).

11.3 The Main Iteration

If the reduced gradient is zero, x; sð Þ is a constrained stationary point on the working set. During the
feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
elsewhere in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective function when the constraints in the working
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set are treated as equalities. At a constrained stationary point, Lagrange-multipliers � are defined from
the equations

WT� ¼ g xð Þ: ð9Þ

A Lagrange-multiplier �j corresponding to an inequality constraint in the working set is said to be
optimal if �j � � when the associated constraint is at its upper bound, or if �j � �� when the
associated constraint is at its lower bound, where � depends on the value of the optional parameter
Optimality Tolerance (see Section 12.1). If a multiplier is nonoptimal, the objective function (either
the true objective or the sum of infeasibilities) can be reduced by continuing the minimization with the
corresponding constraint excluded from the working set. (This step is sometimes referred to as
‘deleting’ a constraint from the working set.) If optimal multipliers occur during the feasibility phase
but the sum of infeasibilities is nonzero, there is no feasible point and the routine terminates
immediately with IFAIL ¼ 3 (see Section 6).

The special form (6) of the working set allows the multiplier vector �, the solution of (9), to be written
in terms of the vector

d ¼ g
0

� �
� A �I
� �T

	 ¼ g�AT	
	

� �
; ð10Þ

where 	 satisfies the equations BT	 ¼ gB, and gB denotes the basic elements of g. The elements of 	
are the Lagrange-multipliers �j associated with the equality constraints Ax� s ¼ 0. The vector dN of
nonbasic elements of d consists of the Lagrange-multipliers �j associated with the upper and lower
bound constraints in the working set. The vector dS of superbasic elements of d is the reduced gradient
gZ in (8). The vector dB of basic elements of d is zero, by construction. (The Euclidean norm of dS and
the final values of dS , g and 	 are the quantities Norm rg, Reduced Gradnt, Obj Gradient and Dual
Activity in the monitoring file output; see Section 13.)

If the reduced gradient is not zero, Lagrange-multipliers need not be computed and the search direction
is given by p ¼ ZpZ (see (7) and (11)). The step length is chosen to maintain feasibility with respect to
the satisfied constraints.

There are two possible choices for pZ, depending on whether or not HZ is singular. If HZ is nonsingular,
R is nonsingular and pZ in (4) is computed from the equations

RTRpZ ¼ �gZ; ð11Þ

where gZ is the reduced gradient at x. In this case, x; sð Þ þ p is the minimizer of the objective function
subject to the working set constraints being treated as equalities. If x; sð Þ þ p is feasible, � is defined to
be unity. In this case, the reduced gradient at �x; �sð Þ will be zero, and Lagrange-multipliers are computed
at the next iteration. Otherwise, � is set to �M, the step to the ‘nearest’ constraint along p. This
constraint is added to the working set at the next iteration.

If HZ is singular, then R must also be singular, and an inertia-controlling strategy is used to ensure that
only the last diagonal element of R is zero. (See Gill et al. (1991) for a discussion of a similar strategy
for indefinite quadratic programming.) In this case, pZ satisfies

pTZHZpZ ¼ 0 and gTZpZ � 0; ð12Þ

which allows the objective function to be reduced by any step of the form x; sð Þ þ �p, where � > 0.
The vector p ¼ ZpZ is a direction of unbounded descent for the QP problem in the sense that the QP
objective is linear and decreases without bound along p. If no finite step of the form x; sð Þ þ �p (where
� > 0) reaches a constraint not in the working set, the QP problem is unbounded and the routine
terminates immediately with IFAIL ¼ 2 (see Section 6). Otherwise, � is defined as the maximum
feasible step along p and a constraint active at x; sð Þ þ �p is added to the working set for the next
iteration.

11.4 Miscellaneous

If the basis matrix is not chosen carefully, the condition of the null space matrix Z in (7) could be
arbitrarily high. To guard against this, the routine implements a ‘basis repair’ feature in which the
LUSOL package (see Gill et al. (1986)) is used to compute the rectangular factorization
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B S
� �T ¼ LU; ð13Þ

returning just the permutation P that makes PLPT unit lower triangular. The pivot tolerance is set to
require PLPTj jij � 2, and the permutation is used to define P in (6). It can be shown that Zk k is likely
to be little more than unity. Hence, Z should be well-conditioned regardless of the condition of W . This
feature is applied at the beginning of the optimality phase if a potential B� S ordering is known.

The EXPAND procedure (see Gill et al. (1989)) is used to reduce the possibility of cycling at a point
where the active constraints are nearly linearly dependent. Although there is no absolute guarantee that
cycling will not occur, the probability of cycling is extremely small (see Gill et al. (1986)). The main
feature of EXPAND is that the feasibility tolerance is increased at the start of every iteration. This
allows a positive step to be taken at every iteration, perhaps at the expense of violating the bounds on
x; sð Þ by a small amount.

Suppose that the value of the optional parameter Feasibility Tolerance is �. Over a period of K
iterations (where K is the value of the optional parameter Expand Frequency; see Section 12.1), the
feasibility tolerance actually used by H02CEF (i.e., the working feasibility tolerance) increases from
0:5� to � (in steps of 0:5�=K).

At certain stages the following ‘resetting procedure’ is used to remove small constraint infeasibilities.
First, all nonbasic variables are moved exactly onto their bounds. A count is kept of the number of
nontrivial adjustments made. If the count is nonzero, the basic variables are recomputed. Finally, the
working feasibility tolerance is reinitialized to 0:5�.

If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle of
iterations is started. (The decision to resume the feasibility phase or optimality phase is based on
comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when H02CEF reaches an apparently optimal, infeasible or
unbounded solution, unless this situation has already occurred twice. If any nontrivial adjustments are
made, iterations are continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration, but also provides
a potential choice of constraints to be added to the working set. All constraints at a distance � (where
� � �M) along p from the current point are then viewed as acceptable candidates for inclusion in the
working set. The constraint whose normal makes the largest angle with the search direction is added to
the working set. This strategy helps keep the basis matrix B well-conditioned.

12 Optional Parameters

Several optional parameters in H02CEF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal arguments of H02CEF these optional parameters have
associated default values that are appropriate for most problems. Therefore, you need only specify those
optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Check Frequency

Crash Option

Crash Tolerance

Defaults

Expand Frequency

Factorization Frequency

Feasibility Tolerance

Infinite Bound Size
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Infinite Step Size

Iteration Limit

Iters

Itns

List

LU Factor Tolerance

LU Singularity Tolerance

LU Update Tolerance

Maximize

Minimize

Monitoring File

Nolist

Optimality Tolerance

Partial Price

Pivot Tolerance

Print Level

Rank Tolerance

Scale Option

Scale Tolerance

Superbasics Limit

Optional parameters may be specified by calling one, or both, of the routines H02CFF and H02CGF
prior to a call to H02CEF.

H02CFF reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5
End

The call

CALL H02CFF(IOPTNS,INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. H02CFF
should be consulted for a full description of this method of supplying optional parameters.

H02CGF can be called to supply options directly, one call being necessary for each optional parameter.
For example,

CALL H02CGF (’Print Level = 5’)

H02CGF should be consulted for a full description of this method of supplying optional parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by H02CEF (unless they define invalid values) and so remain in effect
for subsequent calls unless altered by you.

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;
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the default value is used whenever the condition ij j � 100000000 is satisfied and where the
symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Check Frequency i Default ¼ 60

Every ith iteration after the most recent basis factorization, a numerical test is made to see if the current
solution x; sð Þ satisfies the linear constraints Ax� s ¼ 0. If the largest element of the residual vector
r ¼ Ax� s is judged to be too large, the current basis is refactorized and the basic variables
recomputed to satisfy the constraints more accurately. If i < 0, the default value is used. If i ¼ 0, the
value i ¼ 99999999 is used and effectively no checks are made.

Crash Option i Default ¼ 2

Note that this option does not apply when START ¼ W (see Section 5).

If START ¼ C , an internal crash procedure is used to select an initial basis from various rows and
columns of the constraint matrix A� Ið Þ. The value of i determines which rows and columns are
initially eligible for the basis, and how many times the crash procedure is called. If i ¼ 0, the all-slack
basis B ¼ �I is chosen. If i ¼ 1, the crash procedure is called once (looking for a triangular basis in all
rows and columns of the linear constraint matrix A). If i ¼ 2, the crash procedure is called twice
(looking at any equality constraints first followed by any inequality constraints). If i < 0 or i > 2, the
default value is used.

If i ¼ 1 or 2, certain slacks on inequality rows are selected for the basis first. (If i ¼ 2, numerical
values are used to exclude slacks that are close to a bound.) The crash procedure then makes several
passes through the columns of A, searching for a basis matrix that is essentially triangular. A column is
assigned to ‘pivot’ on a particular row if the column contains a suitably large element in a row that has
not yet been assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For
remaining unassigned rows, slack variables are inserted to complete the basis.

Crash Tolerance r Default ¼ 0:1

This value allows the crash procedure to ignore certain ‘small’ nonzero elements in the constraint
matrix A while searching for a triangular basis. For each column of A, if amax is the largest element in
the column, other nonzeros in that column are ignored if they are less than (or equal to) amax � r.
When r > 0, the basis obtained by the crash procedure may not be strictly triangular, but it is likely to
be nonsingular and almost triangular. The intention is to obtain a starting basis with more column
variables and fewer (arbitrary) slacks. A feasible solution may be reached earlier for some problems. If
r < 0 or r � 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Expand Frequency i Default ¼ 10000

This option is part of an anti-cycling procedure (see Section 11.4) designed to allow progress even on
highly degenerate problems.

For LP problems, the strategy is to force a positive step at every iteration, at the expense of violating
the constraints by a small amount. Suppose that the value of the optional parameter Feasibility
Tolerance is �. Over a period of i iterations, the feasibility tolerance actually used by H02CEF (i.e., the
working feasibility tolerance) increases from 0:5� to � (in steps of 0:5�=i).

For QP problems, the same procedure is used for iterations in which there is only one superbasic
variable. (Cycling can only occur when the current solution is at a vertex of the feasible region.) Thus,
zero steps are allowed if there is more than one superbasic variable, but otherwise positive steps are
enforced.

Increasing the value of i helps reduce the number of slightly infeasible nonbasic basic variables (most
of which are eliminated during the resetting procedure). However, it also diminishes the freedom to
choose a large pivot element (see the description of the optional parameter Pivot Tolerance).
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If i < 0, the default value is used. If i ¼ 0, the value i ¼ 99999999 is used and effectively no anti-
cycling procedure is invoked.

Factorization Frequency i Default ¼ 100

If i > 0, at most i basis changes will occur between factorizations of the basis matrix. For LP problems,
the basis factors are usually updated at every iteration. For QP problems, fewer basis updates will occur
as the solution is approached. The number of iterations between basis factorizations will therefore
increase. During these iterations a test is made regularly according to the value of optional parameter
Check Frequency to ensure that the linear constraints Ax� s ¼ 0 are satisfied. If necessary, the basis
will be refactorized before the limit of i updates is reached. If i � 0, the default value is used.

Feasibility Tolerance r Default ¼ max 10�6;
ffiffi
�
p� �

If r � �, r defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point
(including slack variables). For example, if the variables and the coefficients in the linear constraints are
of order unity, and the latter are correct to about five decimal digits, it would be appropriate to specify r
as 10�5. If r < �, the default value is used.

H02CEF attempts to find a feasible solution before optimizing the objective function. If the sum of
infeasibilities cannot be reduced to zero, the problem is assumed to be infeasible. Let Sinf be the
corresponding sum of infeasibilities. If Sinf is quite small, it may be appropriate to raise r by a factor
of 10 or 100. Otherwise, some error in the data should be suspected. Note that the routine does not
attempt to find the minimum value of Sinf.

If the constraints and variables have been scaled (see the description of the optional parameter Scale
Option), then feasibility is defined in terms of the scaled problem (since it is more likely to be
meaningful).

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r � 0, the default value is used.

Infinite Step Size r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is not positive
definite.) If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

Iteration Limit i Default ¼ max 50; 5 nþmð Þð Þ
Iters
Itns

The value of i specifies the maximum number of iterations allowed before termination. Setting i ¼ 0
and Print Level > 0 means that the workspace needed to start solving the problem will be computed
and printed, but no iterations will be performed. If i < 0, the default value is used.

List Default
Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist
may be used to suppress the printing and optional parameter List may be used to restore printing.

LU Factor Tolerance r1 Default ¼ 100:0
LU Update Tolerance r2 Default ¼ 10:0

The values of r1 and r2 affect the stability and sparsity of the basis factorization B ¼ LU , during
refactorization and updates respectively. The lower triangular matrix L is a product of matrices of the
form
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1
� 1

� �
where the multipliers � will satisfy �j j � ri. The default values of r1 and r2 usually strike a good
compromise between stability and sparsity. For large and relatively dense problems, setting r1 and r2 to
25 (say) may give a marked improvement in sparsity without impairing stability to a serious degree.
Note that for band matrices it may be necessary to set r1 in the range 1 � r1 < 2 in order to achieve
stability. If r1 < 1 or r2 < 1, the default value is used.

LU Singularity Tolerance r Default ¼ �0:67

If r > 0, r defines the singularity tolerance used to guard against ill-conditioned basis matrices.
Whenever the basis is refactorized, the diagonal elements of U are tested as follows. If ujj

		 		 � r or
ujj
		 		 < r�max

i
uij
		 		, the jth column of the basis is replaced by the corresponding slack variable. If

r � 0, the default value is used.

Minimize Default
Maximize

This option specifies the required direction of the optimization. It applies to both linear and nonlinear
terms (if any) in the objective function. Note that if two problems are the same except that one
minimizes f xð Þ and the other maximizes �f xð Þ, their solutions will be the same but the signs of the
dual variables 	i and the reduced gradients dj (see Section 11.3) will be reversed.

Monitoring File i Default ¼ �1
If i � 0 and Print Level > 0, monitoring information produced by H02CEF is sent to a file with logical
unit number i. If i < 0 and/or Print Level ¼ 0, the default value is used and hence no monitoring
information is produced.

Optimality Tolerance r Default ¼ max 10�6;
ffiffi
�
p� �

If r � �, r is used to judge the size of the reduced gradients dj ¼ gj � 	Taj. By definition, the reduced
gradients for basic variables are always zero. Optimality is declared if the reduced gradients for any
nonbasic variables at their lower or upper bounds satisfy �r�max 1; 	k kð Þ � dj � r�max 1; 	k kð Þ,
and if dj

		 		 � r�max 1; 	k kð Þ for any superbasic variables. If r < �, the default value is used.

Partial Price i Default ¼ 10

Note that this option does not apply to QP problems.

This option is recommended for large FP or LP problems that have significantly more variables than
constraints (i.e., n� m). It reduces the work required for each pricing operation (i.e., when a nonbasic
variable is selected to enter the basis). If i ¼ 1, all columns of the constraint matrix A� Ið Þ are
searched. If i > 1, A and �I are partitioned to give i roughly equal segments Aj ; Kj , for j ¼ 1; 2; . . . ; p
(modulo p). If the previous pricing search was successful on Aj�1; Kj�1, the next search begins on the
segments Aj;Kj. If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to enter the basis. If nothing is
found, the search continues on the next segments Ajþ1; Kjþ1, and so on. If i � 0, the default value is
used.

Pivot Tolerance r Default ¼ �0:67

If r > 0, r is used to prevent columns entering the basis if they would cause the basis to become almost
singular. If r � 0, the default value is used.

Print Level i Default ¼ 10

The value of i controls the amount of printout produced by H02CEF, as indicated below. A detailed
description of the printed output is given in Section 9.1 (summary output at each iteration and the final
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solution) and Section 13 (monitoring information at each iteration). Note that the summary output will
not exceed 80 characters per line and that the monitoring information will not exceed 120 characters per
line. If i < 0, the default value is used. The following printout is sent to the current advisory message
unit (as defined by X04ABF):

i Output

0 No output.
1 The final solution only.
5 One line of summary output for each iteration (no printout of the final solution).

� 10 The final solution and one line of summary output for each iteration.

The following printout is sent to the logical unit number defined by the Monitoring File:

i Output

0 No output.
1 The final solution only.
5 One long line of output for each iteration (no printout of the final solution).

� 10 The final solution and one long line of output for each iteration.
� 20 The final solution, one long line of output for each iteration, matrix statistics (initial status of

rows and columns, number of elements, density, biggest and smallest elements, etc.), details of
the scale factors resulting from the scaling procedure (if Scale Option ¼ 1 or 2), basis
factorization statistics and details of the initial basis resulting from the crash procedure (if
START ¼ C ; see Section 5).

If Print Level > 0 and the unit number defined by Monitoring File is the same as that defined by
X04ABF, then the summary output is suppressed.

Rank Tolerance r Default ¼ 100�

Scale Option i Default ¼ 2

This option enables you to scale the variables and constraints using an iterative procedure due to Fourer
(see Hock and Schittkowski (1981)), which attempts to compute row scales ri and column scales cj
such that the scaled matrix coefficients �aij ¼ aij � cj=ri

� �
are as close as possible to unity. This may

improve the overall efficiency of the routine on some problems. (The lower and upper bounds on the
variables and slacks for the scaled problem are redefined as �lj ¼ lj=cj and �uj ¼ uj=cj respectively,
where cj 	 rj�n if j > n.)

If i ¼ 0, no scaling is performed. If i ¼ 1, all rows and columns of the constraint matrix A are scaled. If
i ¼ 2, an additional scaling is performed that may be helpful when the solution x is large; it takes into
account columns of A� Ið Þ that are fixed or have positive lower bounds or negative upper bounds. If
i < 0 or i > 2, the default value is used.

Scale Tolerance r Default ¼ 0:9

Note that this option does not apply when Scale Option ¼ 0.

If 0 < r < 1, r is used to control the number of scaling passes to be made through the constraint matrix
A. At least 3 (and at most 10) passes will be made. More precisely, let ap denote the largest column

ratio (i.e.,
biggest element

smallest element
in some sense) after the pth scaling pass through A. The scaling procedure

is terminated if ap � ap�1 � r for some p � 3. Thus, increasing the value of r from 0:9 to 0:99 (say)
will probably increase the number of passes through A. If r � 0 or r � 1, the default value is used.

Superbasics Limit i Default ¼ min nH þ 1; nð Þ
Note that this option does not apply to FP or LP problems.

The value of i specifies ‘how nonlinear’ you expect the QP problem to be. If i � 0, the default value is
used.
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13 Description of Monitoring Information

This section describes the intermediate printout and final printout which constitutes the monitoring
information produced by H02CEF. (See also the description of the optional parameters Monitoring File
and Print Level in Section 12.1.) You can control the level of printed output.

When Print Level ¼ 5 or � 10 and Monitoring File � 0, the following line of intermediate printout
( < 120 characters) is produced at every iteration on the unit number specified by Monitoring File.
Unless stated otherwise, the values of the quantities printed are those in effect on completion of the
given iteration.

Itn is the iteration count.

pp is the partial price indicator. The variable selected by the last pricing operation
came from the ppth partition of A and �I. Note that pp is reset to zero whenever
the basis is refactorized.

dj is the value of the reduced gradient (or reduced cost) for the variable selected by
the pricing operation at the start of the current iteration.

+S is the variable selected by the pricing operation to be added to the superbasic set.

-S is the variable chosen to leave the superbasic set.

-B is the variable removed from the basis (if any) to become nonbasic.

-B is the variable chosen to leave the set of basics (if any) in a special basic $
superbasic swap. The entry under -S has become basic if this entry is nonzero,
and nonbasic otherwise. The swap is done to ensure that there are no superbasic
slacks.

Step is the value of the step length � taken along the computed search direction p. The
variables x have been changed to xþ �p. If a variable is made superbasic during
the current iteration (i.e., +S is positive), Step will be the step to the nearest
bound. During the optimality phase, the step can be greater than unity only if the
reduced Hessian is not positive definite.

Pivot is the rth element of a vector y satisfying By ¼ aq whenever aq (the qth column
of the constraint matrix A� Ið Þ) replaces the rth column of the basis matrix B.
Wherever possible, Step is chosen so as to avoid extremely small values of
Pivot (since they may cause the basis to be nearly singular). In extreme cases, it
may be necessary to increase the value of the optional parameter Pivot Tolerance
(default value ¼ �0:67, where � is the machine precision) to exclude very small
elements of y from consideration during the computation of Step.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function. The output line for the final
iteration of the feasibility phase (i.e., the first iteration for which Ninf is zero)
will give the value of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be
nonincreasing. During the feasibility phase, the number of constraint infeasi-
bilities will not increase until either a feasible point is found, or the optimality of
the multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

L is the number of nonzeros in the basis factor L. Immediately after a basis
factorization B ¼ LU , this is lenL, the number of subdiagonal elements in the
columns of a lower triangular matrix. Further nonzeros are added to L when
various columns of B are later replaced. (Thus, L increases monotonically.)
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U is the number of nonzeros in the basis factor U. Immediately after a basis
factorization, this is lenU, the number of diagonal and superdiagonal elements in
the rows of an upper triangular matrix. As columns of B are replaced, the matrix
U is maintained explicitly (in sparse form). The value of U may fluctuate up or
down; in general, it will tend to increase.

Ncp is the number of compressions required to recover workspace in the data structure
for U. This includes the number of compressions needed during the previous
basis factorization. Normally, Ncp should increase very slowly. If it does not,
increase LENZ by at least Lþ U and rerun H02CEF (possibly using
START ¼ W ; see Section 5).

Norm rg is dSk k, the Euclidean norm of the reduced gradient (see Section 11.3). During
the optimality phase, this norm will be approximately zero after a unit step. For
FP and LP problems, Norm rg is not printed.

Ns is the current number of superbasic variables. For FP and LP problems, Ns is not
printed.

Cond Hz is a lower bound on the condition number of the reduced Hessian (see
Section 11.2). The larger this number, the more difficult the problem. For FP and
LP problems, Cond Hz is not printed.

When Print Level � 20 and Monitoring File � 0, the following lines of intermediate printout ( < 120
characters) are produced on the unit number specified by Monitoring File whenever the matrix B or

BS ¼ B S
� �T

is factorized. Gaussian elimination is used to compute an LU factorization of B or BS,
where PLPT is a lower triangular matrix and PUQ is an upper triangular matrix for some permutation
matrices P and Q. The factorization is stabilized in the manner described under the LU Factor
Tolerance (default value ¼ 100:0; see Section 12.1).

Factorize is the factorization count.

Demand is a code giving the reason for the present factorization as follows:

Code Meaning

0 First LU factorization.

1 Number of updates reached the value of the optional parameter
Factorization Frequency (default value ¼ 100).

2 Excessive nonzeros in updated factors.

7 Not enough storage to update factors.

10 Row residuals too large (see the description for the optional parameter
Check Frequency).

11 Ill-conditioning has caused inconsistent results.

Iteration is the iteration count.

Nonlinear is the number of nonlinear variables in B (not printed if BS is factorized).

Linear is the number of linear variables in B (not printed if BS is factorized).

Slacks is the number of slack variables in B (not printed if BS is factorized).

Elems is the number of nonzeros in B (not printed if BS is factorized).

Density is the percentage nonzero density of B (not printed if BS is factorized). More
precisely, Density ¼ 100� Elems= Nonlinearþ Linearþ Slacksð Þ2.

Compressns is the number of times the data structure holding the partially factorized matrix
needed to be compressed, in order to recover unused workspace. Ideally, it should
be zero. If it is more than 3 or 4, increase LENIZ and LENZ and rerun H02CEF
(possibly using START ¼ W ; see Section 5).
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Merit is the average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be c� 1ð Þ r� 1ð Þ, where c and r are the
number of nonzeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of m such quantities. It
gives an indication of how much work was required to preserve sparsity during
the factorization.

lenL is the number of nonzeros in L.

lenU is the number of nonzeros in U .

Increase is the percentage increase in the number of nonzeros in L and U relative to the
n u m b e r o f n o n z e r o s i n B. M o r e p r e c i s e l y ,
Increase ¼ 100� lenLþ lenU� Elemsð Þ=Elems.

m is the number of rows in the problem. Note that m ¼ Utþ Ltþ bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0:3.

Lmax is the maximum subdiagonal element in the columns of L (not printed if BS is
factorized). This will not exceed the value of the LU Factor Tolerance.

Bmax is the maximum nonzero element in B (not printed if BS is factorized).

BSmax is the maximum nonzero element in BS (not printed if B is factorized).

Umax is the maximum nonzero element in U , excluding elements of B that remain in U
unchanged. (For example, if a slack variable is in the basis, the corresponding
row of B will become a row of U without modification. Elements in such rows
will not contribute to Umax. If the basis is strictly triangular, none of the elements
of B will contribute, and Umax will be zero.)

Ideally, Umax should not be significantly larger than Bmax. If it is several orders
of magnitude larger, it may be advisable to reset the LU Factor Tolerance to a
value near 1:0.

Umax is not printed if BS is factorized.

Umin is the magnitude of the smallest diagonal element of PUQ (not printed if BS is
factorized).

Growth is the value of the ratio Umax=Bmax, which should not be too large.

Providing Lmax is not large (say < 10:0), the ratio max Bmax; Umaxð Þ=Umin is an
estimate of the condition number of B. If this number is extremely large, the
basis is nearly singular and some numerical difficulties could occur in subsequent
computations. (However, an effort is made to avoid near singularity by using
slacks to replace columns of B that would have made Umin extremely small, and
the modified basis is refactorized.)

Growth is not printed if BS is factorized.

Lt is the number of triangular columns of B at the beginning of L.

bp is the size of the ‘bump’ or block to be factorized nontrivially after the triangular
rows and columns have been removed.

d2 is the number of columns remaining when the density of the basis matrix being
factorized reached 0:6.

When Print Level � 20 and Monitoring File � 0, the following lines of intermediate printout ( < 80
characters) are produced on the unit number specified by Monitoring File whenever START ¼ C (see
Section 5). They refer to the number of columns selected by the crash procedure during each of several
passes through A, whilst searching for a triangular basis matrix.
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Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis.

Preferred is the number of ‘preferred’ columns in the basis (i.e., ISTATEðjÞ ¼ 3 for some
j � n).

Unit is the number of unit columns in the basis.

Double is the number of double columns in the basis.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis.

When Print Level � 20 and Monitoring File � 0, the following lines of intermediate printout ( < 80
characters) are produced on the unit number specified by Monitoring File. They refer to the elements
of the NAMES array (see Section 5).

Name gives the name for the problem (blank if none).

Objective gives the name of the free row for the problem (blank if none).

RHS gives the name of the constraint right-hand side for the problem (blank if none).

Ranges gives the name of the ranges for the problem (blank if none).

Bounds gives the name of the bounds for the problem (blank if none).

When Print Level ¼ 1 or � 10 and Monitoring File � 0, the following lines of final printout ( < 120
characters) are produced on the unit number specified by Monitoring File.

Let aj denote the jth column of A, for j ¼ 1; 2; . . . ; n. The following describes the printout for each
column (or variable). A full stop (.) is printed for any numerical value that is zero.

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj.

State gives the state of the variable (LL if nonbasic on its lower bound, UL if nonbasic
on its upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between
its bounds, BS if basic and SBS if superbasic).

A key is sometimes printed before State to give some additional information
about the state of xj. Note that unless the optional parameter Scale Option ¼ 0
(default value ¼ 2) is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but
its reduced gradient is essentially zero. This means that if
the variable were allowed to start moving away from its
bound, there would be no change to the objective function.
The values of the other free variables might change, giving
a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might
prove to be zero, since one of them could encounter a
bound immediately. In either case the values of the
Lagrange-multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is
equal to (or very close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is
currently violating one of its bounds by more than the value
of the optional parameter Feasibility Tolerance
(default value ¼ max 10�6;

ffiffi
�
p� �

, where � is the machine
precision).
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N Not precisely optimal. The variable is nonbasic or
superbasic. If the value of the reduced gradient for the
variable exceeds the value of the optional parameter
Optimality Tolerance (default value ¼ max 10�6;

ffiffi
�
p� �

),
the solution would not be declared optimal because the
reduced gradient for the variable would not be considered
negligible.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Reduced Gradnt is the value of dj at the final iterate (see Section 11.3). For FP problems, dj is set
to zero.

m + j is the value of mþ j.
Let vi denote the ith row of A, for i ¼ 1; 2; . . . ;m. The following describes the printout for each row
(or constraint). A full stop (.) is printed for any numerical value that is zero.

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of �i.

State gives the state of the variable (LL if active on its lower bound, UL if active on its
upper bound, EQ if active and fixed, BS if inactive when si is basic and SBS if
inactive when si is superbasic).

A key is sometimes printed before State to give some additional information
about the state of si. Note that unless the optional parameter Scale Option ¼ 0
(default value ¼ 2) is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change to the
objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one
of them could encounter a bound immediately. In either case the values of
the Lagrange-multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional parameter Feasibility
Tolerance (default value ¼ max 10�6;

ffiffi
�
p� �

, where � is the machine
precision).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value
of the reduced gradient for the variable exceeds the value of the optional
parameter Optimality Tolerance (default value ¼ max 10�6;

ffiffi
�
p� �

), the
solution would not be declared optimal because the reduced gradient for
the variable would not be considered negligible.

Activity is the value of vi at the final iterate.

Slack Activity is the value by which vi differs from its nearest bound. (For the free row (if any),
it is set to Activity.)
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Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

i gives the index i of vi.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.
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NAG Library Routine Document

H02CFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply optional parameters to H02CEF from an external file.

2 Specification

SUBROUTINE H02CFF (IOPTNS, INFORM)

INTEGER IOPTNS, INFORM

3 Description

H02CFF may be used to supply values for optional parameters to H02CEF. H02CFF reads an external
file and each line of the file defines a single optional parameter. It is only necessary to supply values for
those arguments whose values are to be different from their default values.

Each optional parameter is defined by a single character string of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equal signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 16 contiguous
characters in Fortran 77's I, F, E or D formats, terminated by a space if this is not the last item on
the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

The file containing the options must start with Begin and must finish with End. An example of a valid
options file is:

Begin * Example options file
Print Level = 1
End

Normally each line of the file is printed as it is read, on the current advisory message unit (see
X04ABF), but printing may be suppressed using the keyword Nolist. To suppress printing of Begin,
Nolist must be the first option supplied as in the file:

Begin
Nolist
Print Level = 1
End

Printing will automatically be turned on again after a call to H02CEF and may be turned on again at
any time using the keyword List.

Optional parameter settings are preserved following a call to H02CEF, and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values prior to a subsequent
call to H02CEF.
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A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in H02CEF.

4 References

None.

5 Arguments

1: IOPTNS – INTEGER Input

On entry: the unit number of the options file to be read.

Constraint: 0 � IOPTNS � 99.

2: INFORM – INTEGER Output

On exit: contains zero if the options file has been successfully read and a value > 0 otherwise, as
indicated below.

INFORM ¼ 1
IOPTNS is not in the range 0; 99½ �.

INFORM ¼ 2
Begin was found, but end-of-file was found before End was found.

INFORM ¼ 3
end-of-file was found before Begin was found.

6 Error Indicators and Warnings

If a line is not recognized as a valid option, then a warning message is output on the current advisory
message unit (see X04ABF).

7 Accuracy

Not applicable.

8 Parallelism and Performance

H02CFF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

H02CFF is not threaded in any implementation.

9 Further Comments

H02CGF may also be used to supply optional parameters to H02CEF. Note that if E04NKF/E04NKA is
used in the same program as H02CEF, then in general H02CFF will also affect the options used by
E04NKF/E04NKA.

10 Example

This example solves the same problem as the example for H02CEF, but in addition illustrates the use of
H02CFF and H02CGF to set optional parameters for H02CEF.

In this example the options file read by H02CFF is appended to the data file for the program (see
Section 10.2). It would usually be more convenient in practice to keep the data file and the options file
separate.

H02CFF NAG Library Manual

H02CFF.2 Mark 26



10.1 Program Text

! H02CFF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module h02cffe_mod

! H02CFF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: monit, qphx

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: cutoff = -1840000.0_nag_wp
Integer, Parameter, Public :: iset = 1, lintvr = 10, &

mdepth = 2000, nin = 5, ninopt = 7, &
nout = 6

Contains
Subroutine qphx(nstate,ncolh,x,hx)

! Routine to compute H*x. (In this version of QPHX, the Hessian
! matrix H is not referenced explicitly.)

! .. Scalar Arguments ..
Integer, Intent (In) :: ncolh, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hx(ncolh)
Real (Kind=nag_wp), Intent (In) :: x(ncolh)

! .. Executable Statements ..
hx(1) = 2.0_nag_wp*x(1)
hx(2) = 2.0_nag_wp*x(2)
hx(3) = 2.0_nag_wp*(x(3)+x(4))
hx(4) = hx(3)
hx(5) = 2.0_nag_wp*x(5)
hx(6) = 2.0_nag_wp*(x(6)+x(7))
hx(7) = hx(6)

Return

End Subroutine qphx
Subroutine monit(intfnd,nodes,depth,obj,x,bstval,bstsol,bl,bu,n,halt, &

count)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: bstval
Real (Kind=nag_wp), Intent (In) :: obj
Integer, Intent (Inout) :: count
Integer, Intent (In) :: depth, intfnd, n, nodes
Logical, Intent (Inout) :: halt

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: bl(n), bstsol(n), bu(n), x(n)

! .. Executable Statements ..
If (intfnd==0) Then

bstval = cutoff
End If

Return

End Subroutine monit
End Module h02cffe_mod
Program h02cffe

! H02CFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: h02cef, h02cff, h02cgf, nag_wp, x04abf, x04acf, &
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x04baf
Use h02cffe_mod, Only: iset, lintvr, mdepth, monit, nin, ninopt, nout, &

qphx
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Character (*), Parameter :: fname = ’h02cffe.opt’
! .. Local Scalars ..

Real (Kind=nag_wp) :: obj
Integer :: i, icol, ifail, inform, iobj, jcol, &

leniz, lenz, m, miniz, minz, mode, &
n, ncolh, nname, nnz, ns, outchn, &
strtgy

Character (200) :: rec
Character (1) :: start

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), bl(:), bu(:), clamda(:), &

xs(:), z(:)
Integer, Allocatable :: ha(:), intvar(:), istate(:), iz(:), &

ka(:)
Character (8), Allocatable :: crname(:)
Character (8) :: names(5)

! .. Executable Statements ..
Write (rec,99996) ’H02CFF Example Program Results’
Call x04baf(nout,rec)

! Skip heading in data file.
Read (nin,*)

Read (nin,*) n, m
Read (nin,*) nnz, iobj, ncolh, start, nname
Allocate (a(nnz),bl(n+m),bu(n+m),clamda(n+m),xs(n+m),ha(nnz), &

intvar(lintvr),istate(n+m),ka(n+1),crname(nname))

Read (nin,*) names(1:5)
Read (nin,*) crname(1:nname)

! Read the matrix A from data file. Set up KA.

jcol = 1
ka(jcol) = 1

Do i = 1, nnz

! Element ( HA( I ), ICOL ) is stored in A( I ).

Read (nin,*) a(i), ha(i), icol

If (icol==jcol+1) Then

! Index in A of the start of the ICOL-th column equals I.

ka(icol) = i
jcol = icol

Else If (icol>jcol+1) Then

! Index in A of the start of the ICOL-th column equals I,
! but columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
! corresponding elements of KA to I.

ka((jcol+1):(icol-1)) = i
ka(icol) = i
jcol = icol

End If

End Do

ka(n+1) = nnz + 1

Read (nin,*) bl(1:n+m)
Read (nin,*) bu(1:n+m)
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Read (nin,*) istate(1:n)
Read (nin,*) xs(1:n)

! Set three options using H02CGF.

Call h02cgf(’ Check Frequency = 10 ’)

Call h02cgf(’ Feasibility Tolerance = 0.00001 ’)

Call h02cgf(’ Infinite Bound Size = 1.0D+25 ’)

! Set the unit number for advisory messages to OUTCHN.

outchn = nout

Call x04abf(iset,outchn)

! Open the options file for reading

mode = 0

ifail = 0
Call x04acf(ninopt,fname,mode,ifail)

! Read the options file for the remaining options.

Call h02cff(ninopt,inform)

If (inform/=0) Then
Write (rec,99997) ’H02CFF terminated with INFORM = ’, inform
Call x04baf(nout,rec)
Go To 100

End If

strtgy = 3
intvar(1:7) = (/2,3,4,5,6,7,-1/)

Call h02cgf(’NoList’)

Call h02cgf(’Print Level = 0’)

! Solve the QP problem.
! First call is a workspace query

leniz = 1
lenz = 1
Allocate (iz(leniz),z(lenz))

ifail = 1
Call h02cef(n,m,nnz,iobj,ncolh,qphx,a,ha,ka,bl,bu,start,names,nname, &

crname,ns,xs,intvar,lintvr,mdepth,istate,miniz,minz,obj,clamda,strtgy, &
iz,leniz,z,lenz,monit,ifail)

If (ifail/=14) Then
Write (rec,99995) ifail
Call x04baf(nout,rec)

Else
Deallocate (iz,z)

leniz = miniz
lenz = minz
Allocate (iz(leniz),z(lenz))

ifail = 0
Call h02cef(n,m,nnz,iobj,ncolh,qphx,a,ha,ka,bl,bu,start,names,nname, &

crname,ns,xs,intvar,lintvr,mdepth,istate,miniz,minz,obj,clamda, &
strtgy,iz,leniz,z,lenz,monit,ifail)

! Print out the best integer solution found

Write (rec,99999) obj
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Call x04baf(nout,rec)
Call x04baf(nout,’ Components are’)

Do i = 1, n
Write (rec,99998) i, xs(i)
Call x04baf(nout,rec)

End Do

End If

100 Continue

99999 Format (1X,’Optimal Integer Value is = ’,E20.8)
99998 Format (1X,’X(’,I3,’) = ’,F10.2)
99997 Format (A,I5)
99996 Format (1X,A)
99995 Format (1X,’** Workspace query in H02CEF exited with IFAIL = ’,I0)

End Program h02cffe

10.2 Program Data

Begin
Iteration Limit = 125 * (Default = 75)
Print Level = 1 * (Default = 10)

End

H02CFF Example Program Data
7 8 :Values of N and M

48 8 7 ’C’ 15 :Values of NNZ, IOBJ, NCOLH, START and NNAME
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ :End of NAMES
’...X1...’ ’...X2...’ ’...X3...’ ’...X4...’ ’...X5...’
’...X6...’ ’...X7...’ ’..ROW1..’ ’..ROW2..’ ’..ROW3..’
’..ROW4..’ ’..ROW5..’ ’..ROW6..’ ’..ROW7..’ ’..COST..’ :End of CRNAME

0.02 7 1
0.02 5 1
0.03 3 1
1.00 1 1
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
0.04 2 4

-2000.00 8 4
0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
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1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7 :End of matrix A
0.0 0.0 4.0E+02 1.0E+02 0.0 0.0 0.0 2.0E+03

-1.0E+25 -1.0E+25 -1.0E+25 -1.0E+25 1.5E+03 2.5E+02 -1.0E+25 :End of BL
2.0E+02 2.5E+03 8.0E+02 7.0E+02 1.5E+03 1.0E+25 1.0E+25 2.0E+03
6.0E+01 1.0E+02 4.0E+01 3.0E+01 1.0E+25 3.0E+02 1.0E+25 :End of BU
0 0 0 0 0 0 0 0 :End of ISTATE
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 :End of XS

10.3 Program Results

H02CFF Example Program Results

Calls to H02CGF
---------------

Check Frequency = 10
Feasibility Tolerance = 0.00001
Infinite Bound Size = 1.0D+25

OPTIONS file
------------

Begin
Iteration Limit = 125 * (Default = 75)
Print Level = 1 * (Default = 10)

End
Optimal Integer Value is = -0.18475180E+07
Components are
X( 1) = 0.00
X( 2) = 355.00
X( 3) = 645.00
X( 4) = 164.00
X( 5) = 410.00
X( 6) = 275.00
X( 7) = 151.00
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NAG Library Routine Document

H02CGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

To supply individual optional parameters to H02CEF.

2 Specification

SUBROUTINE H02CGF (STR)

CHARACTER(*) STR

3 Description

H02CGF may be used to supply values for optional parameters to H02CEF. It is only necessary to call
H02CGF for those arguments whose values are to be different from their default values. One call to
H02CGF sets one argument value.

Each optional parameter is defined by a single character string of up to 72 characters, consisting of one
or more items. The items associated with a given option must be separated by spaces, or equal signs
¼½ �. Alphabetic characters may be upper or lower case. The string

Print level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or
more of the following items:

– a mandatory keyword;

– a phrase that qualifies the keyword;

– a number that specifies an integer or real value. Such numbers may be up to 16 contiguous
characters in Fortran 77's I, F, E or D formats, terminated by a space if this is not the last item on
the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent
characters in the string are regarded as part of the comment.

Normally, each user-specified option is printed as it is defined, on the current advisory message unit
(see X04ABF), but this printing may be suppressed using the keyword Nolist. Thus the statement

CALL H02CGF (’Nolist’)

suppresses printing of this and subsequent options. Printing will automatically be turned on again after
a call to H02CEF, and may be turned on again at any time using the keyword List.

Optional parameter settings are preserved following a call to H02CEF, and so the keyword Defaults is
provided to allow you to reset all the optional parameters to their default values by the statement

CALL H02CGF (’Defaults’)

prior to a subsequent call to H02CEF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in
Section 12 in H02CEF.

4 References

None.
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5 Arguments

1: STR – CHARACTER(*) Input

On entry: a single valid option string (as described in Section 3 above and in Section 12 in
H02CEF).

6 Error Indicators and Warnings

If a line is not recognized as a valid option, then a warning message is output on the current advisory
message unit (see X04ABF).

7 Accuracy

Not applicable.

8 Parallelism and Performance

H02CGF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

H02CGF is not threaded in any implementation.

9 Further Comments

H02CFF may also be used to supply optional parameters to H02CEF. Note that if E04NKF/E04NKA is
used in the same program as H02CEF, then in general H02CFF will also affect the options used by
E04NKF/E04NKA.

10 Example

See Section 10 in H02CEF.
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NAG Library Routine Document

H02DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H02DAF solves general nonlinear programming problems with integer constraints on some of the
variables.

2 Specification

SUBROUTINE H02DAF (N, NCLIN, NCNLN, A, LDA, D, AX, BL, BU, VARCON, X,
CONFUN, C, CJAC, OBJFUN, OBJGRD, MAXIT, ACC, OBJMIP,
IOPTS, OPTS, IUSER, RUSER, IFAIL)

&
&

INTEGER N, NCLIN, NCNLN, LDA, VARCON(N+NCLIN+NCNLN), MAXIT,
IOPTS(*), IUSER(*), IFAIL

&

REAL (KIND=nag_wp) A(LDA,*), D(NCLIN), AX(NCLIN), BL(N), BU(N), X(N),
C(NCNLN), CJAC(NCNLN,N), OBJGRD(N), ACC, OBJMIP,
OPTS(*), RUSER(*)

&
&

EXTERNAL CONFUN, OBJFUN

Before calling H02DAF, H02ZKF must be called with OPTSTR set to ‘Initialize = h02daf’.
Optional parameters may also be specified by calling H02ZKF before the call to H02DAF.

3 Description

H02DAF solves mixed integer nonlinear programming problems using a modified sequential quadratic
programming method. The problem is assumed to be stated in the following general form:

minimize
x2 Rnc ;Znif g

f xð Þ

subject to cj xð Þ ¼ 0; j ¼ 1; 2; . . . ;me

cj xð Þ � 0; j ¼ me þ 1;me þ 2; . . . ;m
l � xi � u; i ¼ 1; 2; . . . ; n

with nc continuous variables and ni binary and integer variables in a total of n variables; me equality
constraints in a total of m constraint functions.

Partial derivatives of f xð Þ and c xð Þ are not required for the ni integer variables. Gradients with respect
to integer variables are approximated by difference formulae.

No assumptions are made regarding f xð Þ except that it is twice continuously differentiable with respect
to continuous elements of x. It is not assumed that integer variables are relaxable. In other words,
problem functions are evaluated only at integer points.

The method seeks to minimize the exact penalty function:

P� xð Þ ¼ f xð Þ þ � g xð Þk k1
where � is adapted by the algorithm and g xð Þ is given by:

g xð Þ ¼ cj xð Þ; j ¼ 1; 2; . . . ;me

¼ min cj xð Þ; 0
� �

; j ¼ me þ 1;me þ 2; . . . ;m:

Successive quadratic approximations are applied under the assumption that integer variables have a
smooth influence on the model functions, that is function values do not change drastically when
incrementing or decrementing an integer value. In practice this requires integer variables to be ordinal
not categorical. The algorithm is stabilised by a trust region method including Yuan's second order
corrections, see Yuan and Sun (2006). The Hessian of the Lagrangian function is approximated by
BFGS (see Section 11.4 in E04UCF/E04UCA) updates subject to the continuous and integer variables.
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The mixed-integer quadratic programming subproblems of the SQP-trust region method are solved by a
branch and cut method with continuous subproblem solutions obtained by the primal-dual method of
Goldfarb and Idnani, see Powell (1983). Different strategies are available for selecting a branching
variable:

Maximal fractional branching. Select an integer variable from the relaxed subproblem solution
with largest distance from next integer value

Minimal fractional branching. Select an integer variable from the relaxed subproblem solution
with smallest distance from next integer value

and a node from where branching, that is the generation of two new subproblems, begins:

Best of two. The optimal objective function values of the two child nodes are compared and the
node with a lower value is chosen

Best of all. Select an integer variable from the relaxed subproblem solution with the smallest
distance from the next integer value

Depth first. Select a child node whenever possible.

This implementation is based on the algorithm MISQP as described in Exler et al. (2013).

Linear constraints may optionally be supplied by a matrix A and vector d rather than the constraint
functions c xð Þ such that

Ax ¼ d or Ax � d:
Partial derivatives with respect to x of these constraint functions are not requested by H02DAF.

4 References

Exler O, Lehmann T and Schittkowski K (2013) A comparative study of SQP-type algorithms for
nonlinear and nonconvex mixed-integer optimization Mathematical Programming Computation 4 383–
412

Mann A (1986) GAMS/MINOS: Three examples Department of Operations Research Technical Report
Stanford University

Powell M J D (1983) On the quadratic programming algorithm of Goldfarb and Idnani Report DAMTP
1983/Na 19 University of Cambridge, Cambridge

Yuan Y-x and Sun W (2006) Optimization Theory and Methods Springer–Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the total number of variables, nc þ ni.
Constraint: N > 0.

2: NCLIN – INTEGER Input

On entry: nl, the number of general linear constraints defined by A and d.

Constraint: NCLIN � 0.

3: NCNLN – INTEGER Input

On entry: nN , the number of constraints supplied by c xð Þ.
Constraint: NCNLN � 0.
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4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0.

On entry: the ith row of A must contain the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ; nl. Any equality constraints must be specified first.

If NCLIN ¼ 0, the array A is not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
H02DAF is called.

Constraint: LDA � max 1;NCLINð Þ.

6: DðNCLINÞ – REAL (KIND=nag_wp) array Input

On entry: di, the constant for the ith linear constraint.

If NCLIN ¼ 0, the array D is not referenced.

7: AXðNCLINÞ – REAL (KIND=nag_wp) array Output

On exit: the final values of the linear constraints Ax.

If NCLIN ¼ 0, AX is not referenced.

8: BLðNÞ – REAL (KIND=nag_wp) array Input
9: BUðNÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds, li, and BU the upper bounds, ui, for the variables;
bounds on integer variables are rounded, bounds on binary variables need not be supplied.

Constraint: BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;N.

10: VARCONðNþ NCLINþ NCNLNÞ – INTEGER array Input

On entry: VARCON indicates the nature of each variable and constraint in the problem. The first
n elements of the array must describe the nature of the variables, the next nL elements the nature
of the general linear constraints (if any) and the next nN elements the general constraints (if any).

VARCONðjÞ ¼ 0
A continuous variable.

VARCONðjÞ ¼ 1
A binary variable.

VARCONðjÞ ¼ 2
An integer variable.

VARCONðjÞ ¼ 3
An equality constraint.

VARCONðjÞ ¼ 4
An inequality constraint.

Constraints:

VARCONðjÞ ¼ 0, 1 or 2, for j ¼ 1; 2; . . . ;N;
VARCONðjÞ ¼ 3 or 4, for j ¼ Nþ 1; . . . ;Nþ NCLINþ NCNLN;
At least one variable must be either binary or integer;
Any equality constraints must precede any inequality constraints.
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11: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the solution, which need not be feasible. Values corresponding to
integer variables are rounded; if an initial value less than half is supplied for a binary variable the
value zero is used, otherwise the value one is used.

On exit: the final estimate of the solution.

12: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate the constraint functions supplied by c xð Þ and their Jacobian at x. If all
constraints are supplied by A and d (i.e., NCNLN ¼ 0), CONFUN will never be called by
H02DAF and CONFUN may be the dummy routine H02DDM. (H02DDM is included in the
NAG Library.) If NCNLN > 0, the first call to CONFUN will occur after the first call to
OBJFUN.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCNLN, N, VARCON, X, C, CJAC, NSTATE,
IUSER, RUSER)

&

INTEGER MODE, NCNLN, N, VARCON(*), NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), C(NCNLN), CJAC(NCNLN,N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0
Elements of C containing continuous variables.

MODE ¼ 1
Elements of CJAC containing continuous variables.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem, and in this case H02DAF will terminate with IFAIL set to MODE.

2: NCNLN – INTEGER Input

On entry: the dimension of the array C and the first dimension of the array CJAC as
declared in the (sub)program from which H02DAF is called. The number of constraints
supplied by c xð Þ, nN .

3: N – INTEGER Input

On entry: the second dimension of the array CJAC as declared in the (sub)program
from which H02DAF is called. n, the total number of variables, nc þ ni.

4: VARCONð�Þ – INTEGER array Input

On entry: the array VARCON as supplied to H02DAF.

5: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of variables at which the objective function and/or all continuous
elements of its gradient are to be evaluated.

6: CðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: must contain NCNLN constraint values, with the value of the jth constraint
cj xð Þ in CðjÞ.
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7: CJACðNCNLN;NÞ – REAL (KIND=nag_wp) array Input/Output

Note: the derivative of the ith constraint with respect to the jth variable,
@ci
@xj

, is stored

in CJACði; jÞ.
On entry: continuous elements of CJAC are set to the value of NaN.

On exit: the ith row of CJAC must contain elements of
@ci
@xj

for each continuous variable

xj.

8: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1, H02DAF is calling CONFUN for the first time. This
argument setting allows you to save computation time if certain data must be read or
calculated only once.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which H02DAF is called. Arguments denoted as Input must not be changed
by this procedure.

13: CðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: if NCNLN > 0, CðjÞ contains the value of the jth constraint function cj xð Þ at the final
iterate, for j ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0, the array C is not referenced.

14: CJACðNCNLN;NÞ – REAL (KIND=nag_wp) array Output

Note: the derivative of the ith constraint with respect to the jth variable,
@ci
@xj

, is stored in

CJACði; jÞ.
On exit: if NCNLN > 0, CJAC contains the Jacobian matrix of the constraint functions at the
final iterate, i.e., CJACði; jÞ contains the partial derivative of the ith constraint function with
respect to the jth variable, for i ¼ 1; 2; . . . ;NCNLN and j ¼ 1; 2; . . . ;N. (See the discussion of
argument CJAC under CONFUN.)

If NCNLN ¼ 0, the array CJAC is not referenced.

15: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the objective function f xð Þ and its gradient for a specified n-element
vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, N, VARCON, X, OBJMIP, OBJGRD, NSTATE,
IUSER, RUSER)

&

INTEGER MODE, N, VARCON(*), NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), OBJMIP, OBJGRD(N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0
The objective function value, OBJMIP.
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MODE ¼ 1
The continuous elements of OBJGRD.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem, and in this case H02DAF will terminate with IFAIL set to MODE.

2: N – INTEGER Input

On entry: n, the total number of variables, nc þ ni.

3: VARCONð�Þ – INTEGER array Input

On entry: the array VARCON as supplied to H02DAF.

4: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of variables at which the objective function and/or all continuous
elements of its gradient are to be evaluated.

5: OBJMIP – REAL (KIND=nag_wp) Output

On exit: must be set to the objective function value, f , if MODE ¼ 0; otherwise
OBJMIP is not referenced.

6: OBJGRDðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: continuous elements of OBJGRD are set to the value of NaN.

On exit: must contain the gradient vector of the objective function if MODE ¼ 1, with
OBJGRDðjÞ containing the partial derivative of f with respect to continuous variable
xj; otherwise OBJGRD is not referenced.

7: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1, H02DAF is calling OBJFUN for the first time. This
argument setting allows you to save computation time if certain data must be read or
calculated only once.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to H02DAF. You
should use the arrays IUSER and RUSER to supply information to OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which H02DAF is called. Arguments denoted as Input must not be changed by
this procedure.

16: OBJGRDðNÞ – REAL (KIND=nag_wp) array Output

On exit: the objective function gradient at the solution.

17: MAXIT – INTEGER Input

On entry: the maximum number of iterations within which to find a solution. If MAXIT is less
than or equal to zero, the suggested value below is used.

Suggested value: MAXIT ¼ 500.

18: ACC – REAL (KIND=nag_wp) Input

On entry: the requested accuracy for determining feasible points during iterations and for halting
the method when the predicted improvement in objective function is less than ACC. If ACC is
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less than or equal to � (� being the machine precision as given by X02AJF), the below suggested
value is used.

Suggested value: ACC ¼ 0:0001.

19: OBJMIP – REAL (KIND=nag_wp) Output

On exit: with IFAIL ¼ 0, OBJMIP contains the value of the objective function for the MINLP
solution.

20: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to H02ZKF.

21: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to H02ZKF.

On entry: the real option array as returned by H02ZKF.

22: IUSERð�Þ – INTEGER array User Workspace
23: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by H02DAF, but are passed directly to CONFUN and OBJFUN
and should be used to pass information to these routines.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

On entry, NCLIN ¼ valueh i.
Constraint: NCLIN � 0.
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IFAIL ¼ 3

On entry, NCNLN ¼ valueh i.
Constraint: NCNLN � 0.

IFAIL ¼ 4

On entry, LDA ¼ valueh i and NCLIN ¼ valueh i.
Constraint: LDA � NCLIN.

IFAIL ¼ 5

On entry, BLð valueh iÞ > BUð valueh iÞ.
Constraint: BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;N.

IFAIL ¼ 6

On entry, VARCONð valueh iÞ ¼ valueh i.
Constraint: VARCONðiÞ ¼ 0, 1 or 2, for i ¼ 1; 2; . . . ;N.

IFAIL ¼ 7

On entry, VARCONð valueh iÞ ¼ valueh i.
Constraint: VARCONðiÞ ¼ 3 or 4, for i ¼ Nþ 1; . . . ;Nþ NCLINþ NCNLN.

IFAIL ¼ 8

The supplied OBJFUN returned a NaN value.

IFAIL ¼ 9

The supplied CONFUN returned a NaN value.

IFAIL ¼ 10

On entry, the optional parameter arrays IOPTS and OPTS have either not been initialized or been
corrupted.

IFAIL ¼ 11

On entry, there are no binary or integer variables.

IFAIL ¼ 12

On entry, linear equality constraints do not precede linear inequality constraints.

IFAIL ¼ 13

On entry, nonlinear equality constraints do not precede nonlinear inequality constraints.

IFAIL ¼ 81

One or more objective gradients appear to be incorrect.

IFAIL ¼ 91

One or more constraint gradients appear to be incorrect.

IFAIL ¼ 1001

On entry, MAXIT ¼ valueh i. Exceeded the maximum number of iterations.
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IFAIL ¼ 1002

More than the maximum number of feasible steps without improvement in the objective function.
If the maximum number of feasible steps is small, say less than 5, try increasing it. Optional
parameter Feasible Steps ¼ valueh i.

IFAIL ¼ 1003

Penalty parameter tends to infinity in an underlying mixed-integer quadratic program; the
problem may be infeasible. If � is relatively low value, try a higher one, for example 1020.
Optional parameter Penalty ¼ valueh i.

IFAIL ¼ 1004

Termination at an infeasible iterate; if the problem is feasible, try a different starting value.

IFAIL ¼ 1005

Termination with zero integer trust region for integer variables; try a different starting value.
Optional parameter Integer Trust Radius ¼ valueh i.

IFAIL ¼ 1008

The optimization failed due to numerical difficulties. Set optional parameter Print Level ¼ 3 for
more information.

IFAIL < 0

The optimization halted because you set MODE negative in OBJFUN or MODE negative in
CONFUN, to valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

H02DAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

None.

10 Example

Select a portfolio of at most p assets from n available with expected return �, is fully invested and that
minimizes

xT�x
subject to rTx ¼ �Xn

i¼1
xi ¼ 1

xi � yiXn
i¼1
yi � p

xi � 0
yi ¼ 0 or 1

where

x is a vector of proportions of selected assets

y is an indicator variable that describes if an asset is in or out

r is a vector of mean returns

� is the covariance matrix of returns.

This example is taken from Mann (1986) with

r ¼ 8 9 12 7
� �

� ¼
4 3 �1 0
3 6 1 0
�1 1 10 0
0 0 0 0

0B@
1CA

p ¼ 3
� ¼ 10:

Linear constraints are supplied through both A and d, and CONFUN.

10.1 Program Text

! H02DAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module h02dafe_mod

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, objfun

Contains
Subroutine objfun(mode,n,varcon,x,objmip,objgrd,nstate,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objmip
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: objgrd(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
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Integer, Intent (In) :: varcon(*)
! .. Executable Statements ..

Continue

If (mode==0) Then
! Objective value

objmip = x(1)*(4.0_nag_wp*x(1)+3.0_nag_wp*x(2)-x(3)) + &
x(2)*(3.0_nag_wp*x(1)+6.0_nag_wp*x(2)+x(3)) + &
x(3)*(x(2)-x(1)+10.0_nag_wp*x(3))

Else
! Objective gradients for continuous variables

objgrd(1) = 8.0_nag_wp*x(1) + 6.0_nag_wp*x(2) - 2.0_nag_wp*x(3)
objgrd(2) = 6.0_nag_wp*x(1) + 12.0_nag_wp*x(2) + 2.0_nag_wp*x(3)
objgrd(3) = 2.0_nag_wp*(x(2)-x(1)) + 20.0_nag_wp*x(3)
objgrd(4) = 0.0_nag_wp

End If
Return

End Subroutine objfun

Subroutine confun(mode,ncnln,n,varcon,x,c,cjac,nstate,iuser,ruser)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: eight = 8.0_nag_wp
Real (Kind=nag_wp), Parameter :: nine = 9.0_nag_wp
Real (Kind=nag_wp), Parameter :: seven = 7.0_nag_wp
Real (Kind=nag_wp), Parameter :: twelve = 12.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp

! .. Scalar Arguments ..
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, ncnln, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjac(ncnln,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: varcon(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: rho
Integer :: p

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Continue

If (mode==0) Then
! Constraints

p = iuser(1)
rho = ruser(1)

! Mean return rho:
c(1) = eight*x(1) + nine*x(2) + twelve*x(3) + seven*x(4) - rho

! Maximum of p assets in portfolio:
c(2) = real(p,kind=nag_wp) - x(5) - x(6) - x(7) - x(8)

Else
! Jacobian

cjac(1,1:4) = (/eight,nine,twelve,seven/)
! c(2) does not include continuous variables which requires
! that their derivatives are zero

cjac(2,1:4) = zero
End If

Return
End Subroutine confun

End Module h02dafe_mod

Program h02dafe

! .. Use Statements ..
Use nag_library, Only: h02daf, h02zkf, h02zlf, nag_wp, x04caf
Use h02dafe_mod, Only: confun, objfun

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: bigish = 1.0E3_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: acc, accqp, objmip
Integer :: ifail, ivalue, lda, liopts, lopts, &

maxit, n, nclin, ncnln, optype
Character (40) :: cvalue

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ax(:), bl(:), bu(:), c(:), &

cjac(:,:), d(:), objgrd(:), x(:)
Real (Kind=nag_wp) :: opts(100), ruser(1)
Integer :: iopts(200), iuser(1)
Integer, Allocatable :: varcon(:)

! .. Intrinsic Procedures ..
Intrinsic :: size

! .. Executable Statements ..
Write (nout,*) ’H02DAF Example Program Results’
Write (nout,*)

n = 8
nclin = 5
ncnln = 2

lda = nclin
Allocate (a(lda,n),d(nclin),ax(nclin),bl(n),bu(n),varcon(n+nclin+ncnln), &

x(n),c(ncnln),cjac(ncnln,n),objgrd(n))

! Set variable types: continuous then binary
varcon(1:4) = 0
varcon(5:8) = 1

! Set continuous variable bounds
bl(1:4) = zero
bu(1:4) = bigish

! Bounds for binary variables need not be provided
bl(5:8) = zero
bu(5:8) = one

! Set linear constraint, equality first
varcon(n+1) = 3
varcon(n+2:n+nclin) = 4

! Set Ax=d then Ax>=d
a(1:nclin,1:n) = zero
a(1,1:4) = one
a(2,(/1,5/)) = (/-one,one/)
a(3,(/2,6/)) = (/-one,one/)
a(4,(/3,7/)) = (/-one,one/)
a(5,(/4,8/)) = (/-one,one/)
d(1) = one
d(2:5) = zero

! Set constraints supplied by CONFUN, equality first
varcon(n+nclin+1) = 3
varcon(n+nclin+2) = 4

liopts = size(iopts)
lopts = size(opts)

! Initialize communication arrays
ifail = 0
Call h02zkf(’Initialize = H02DAF’,iopts,liopts,opts,lopts,ifail)

! Optimization parameters
maxit = 500
acc = 1.0E-6_nag_wp
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! Initial estimate (binary variables need not be given)
x(1:4) = one
x(5:8) = zero

! Portfolio parameters p and rho
iuser(1) = 3
ruser(1) = 10.0_nag_wp

ifail = 0
Call h02daf(n,nclin,ncnln,a,lda,d,ax,bl,bu,varcon,x,confun,c,cjac, &

objfun,objgrd,maxit,acc,objmip,iopts,opts,iuser,ruser,ifail)

! Results
If (ifail==0) Then

Call x04caf(’G’,’N’,n,1,x,n,’Final estimate:’,ifail)

! Query the accuracy of the mixed integer QP solver
ifail = -1
Call h02zlf(’QP Accuracy’,ivalue,accqp,cvalue,optype,iopts,opts,ifail)
If (ifail==0) Then

Write (nout,’(/1x,a,1x,g12.4)’) &
’Requested accuracy of QP subproblems’, accqp

End If
Write (nout,’(1x,a,1x,g12.4)’) ’Optimised value:’, objmip

Else
Write (nout,’(/1x,a,i4/)’) ’h02daf returns ifail = ’, ifail

End If
End Program h02dafe

10.2 Program Data

None.

10.3 Program Results

H02DAF Example Program Results

Final estimate:
1

1 0.3750
2 0.0000
3 0.5250
4 0.1000
5 1.0000
6 0.0000
7 1.0000
8 1.0000

Requested accuracy of QP subproblems 0.1000E-09
Optimised value: 2.925

11 Optional Parameters

This section can be skipped if you wish to use the default values for all optional parameters, otherwise,
the following is a list of the optional parameters available and a full description of each optional
parameter is provided in Section 11.1.

Branch Bound Steps

Branching Rule

Check Gradients

Continuous Trust Radius

Descent

Descent Factor
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Feasible Steps

Improved Bounds

Integer Trust Radius

Maximum Restarts

Minor Print Level

Modify Hessian

Node Selection

Non Monotone

Objective Scale Bound

Penalty

Penalty Factor

Print Level

QP Accuracy

Scale Continuous Variables

Scale Objective Function

Warm Starts

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively.

All options accept the value DEFAULT in order to return single options to their default states.

Keywords and character values are case insensitive, however they must be separated by at least one
space.

H02ZKF can be called to supply options, one call being necessary for each optional parameter. For
example,

Call H02ZKF(’Check Gradients = Yes’, iopts, liopts, opts, lopts, ifail)

H02ZKF should be consulted for a full description of the method of supplying optional parameters.

For H02DAF the maximum length of the argument CVALUE used by H02ZLF is 12.

Branch Bound Steps i Default ¼ 500

Maximum number of branch-and-bound steps for solving the mixed integer quadratic problems.

Constraint: Branch Bound Steps > 1.

Branching Rule a Default ¼ Maximum

Branching rule for branch and bound search.

Branching Rule ¼ Maximum
Maximum fractional branching.

Branching Rule ¼ Minimum
Minimum fractional branching.

H02DAF NAG Library Manual

H02DAF.14 Mark 26



Check Gradients a Default ¼ No

Perform an internal check of supplied objective and constraint gradients. It is advisable to set
Check Gradients ¼ Yes during code development to avoid difficulties associated with incorrect user-
supplied gradients.

Continuous Trust Radius r Default ¼ 10:0

Initial continuous trust region radius, �c
0; the initial trial step d 2 Rnc for the SQP approximation must

satisfy dk k1 � �
c
0.

Constraint: Continuous Trust Radius > 0:0.

Descent r Default ¼ 0:05

Initial descent parameter, �, larger values of � allow penalty optional parameter � to increase faster
which can lead to faster convergence.

Constraint: 0:0 < Descent < 1:0.

Descent Factor r Default ¼ 0:1

Factor for decreasing the internal descent parameter, �, between iterations.

Constraint: 0:0 < Descent Factor < 1:0.

Feasible Steps i Default ¼ 10

Maximum number of feasible steps without improvements, where feasibility is measured by
g xð Þk k1 �

ffiffiffiffiffiffiffiffiffiffi
ACC
p

.

Constraint: Feasible Steps > 1.

Improved Bounds a Default ¼ No

Calculate improved bounds in case of ‘Best of all’ node selection strategy.

Integer Trust Radius r Default ¼ 10:0

Initial integer trust region radius, �i
0; the initial trial step e 2 Rni for the SQP approximation must

satisfy ek k1 � �i
0.

Constraint: Integer Trust Radius � 1:0.

Maximum Restarts i Default ¼ 2

Maximum number of restarts that allow the mixed integer SQP algorithm to return to a better solution.
Setting a value higher than the default might lead to better results at the expense of function
evaluations.

Constraint: 0 <Maximum Restarts � 15.

Minor Print Level i Default ¼ 0

Print level of the subproblem solver. Active only if Print Level 6¼ 0.

Constraint: 0 <Minor Print Level < 4.

Modify Hessian a Default ¼ Yes

Modify the Hessian approximation in an attempt to get more accurate search directions. Calculation
time is increased when the number of integer variables is large.
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Node Selection a Default ¼ Depth First

Node selection strategy for branch and bound.

Node Selection ¼ Best of all
Large tree search; this method is the slowest as it solves all subproblem QPs independently.

Node Selection ¼ Best of two
Uses warm starts and less memory.

Node Selection ¼ Depth first
Uses more warm starts. If warm starts are applied, they can speed up the solution of mixed
integer subproblems significantly when solving almost identical QPs.

Non Monotone i Default ¼ 10

Maximum number of successive iterations considered for the non-monotone trust region algorithm,
allowing the penalty function to increase.

Constraint: 0 < Non Monotone < 100.

Objective Scale Bound r Default ¼ 1:0

When Scale Objective Function > 0 internally scale absolute function values greater than 1:0 or
Objective Scale Bound.

Constraint: Objective Scale Bound > 0:0.

Penalty r Default ¼ 1000:0

Initial penalty optional parameter, �.

Constraint: Penalty � 0:0.

Penalty Factor r Default ¼ 10:0

Factor for increasing penalty optional parameter � when the trust regions cannot be enlarged at a trial
step.

Constraint: Penalty Factor > 1:0.

Print Level i Default ¼ 0

Specifies the desired output level of printing.

Print Level ¼ 0
No output.

Print Level ¼ 1
Final convergence analysis.

Print Level ¼ 2
One line of intermediate results per iteration.

Print Level ¼ 3
Detailed information printed per iteration.

QP Accuracy r Default ¼ 1:0E�10
Termination tolerance of the relaxed quadratic program subproblems.

Constraint: QP Accuracy > 0:0.

Scale Continuous Variables a Default ¼ Yes

Internally scale continuous variables values.
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Scale Objective Function i Default ¼ 1

Internally scale objective function values.

Scale Objective Function ¼ 0
No scaling.

Scale Objective Function ¼ 1
Scale absolute values greater than Objective Scale Bound.

Warm Starts i Default ¼ 100

Maximum number of warm starts within the mixed integer QP solver, see Node Selection.

Constraint: Warm Starts � 0.
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NAG Library Routine Document

H02ZKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H02ZKF either initializes or resets the optional parameter arrays or sets a single optional parameter for
supported problem solving routines in Chapter H.

Currently, only H02DAF is supported.

2 Specification

SUBROUTINE H02ZKF (OPTSTR, IOPTS, LIOPTS, OPTS, LOPTS, IFAIL)

INTEGER IOPTS(LIOPTS), LIOPTS, LOPTS, IFAIL
REAL (KIND=nag_wp) OPTS(LOPTS)
CHARACTER(*) OPTSTR

3 Description

H02ZKF has three purposes: to initialize optional parameter arrays; to reset all optional parameters to
their default values; or to set a single optional parameter to a user-supplied value.

Optional parameters and their values are, in general, presented as a character string, OPTSTR, of the
form ‘option ¼ optval’; alphabetic characters can be supplied in either upper or lower case. Both
option and optval may consist of one or more tokens separated by white space. The tokens that
comprise optval will normally be either an integer, real or character value as defined in the description
of the specific optional argument. In addition all optional parameters can take an optval DEFAULT
which resets the optional parameter to its default value.

It is imperative that optional parameter arrays are initialized before any options are set, before the
relevant problem solving routine is called and before any options are queried using H02ZLF. To
initialize the optional parameter arrays IOPTS and OPTS for a specific problem solving routine, the
option Initialize is used with optval identifying the problem solving routine to be called, via its short
name. For example, to initialize optional parameter arrays to be passed to H02DAF, H02ZKF is called
as follows:

call H02ZKF(’Initialize = h02daf’, IOPTS, LIOPTS, OPTS, LOPTS, IFAIL)

Information relating to available option names and their corresponding valid values is given in
Section 11 in H02DAF.

4 References

None.
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5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option to be set.

Initialize ¼ routine name
Initialize the optional parameter arrays IOPTS and OPTS for use with routine
routine name, where routine name is the short name associated with the routine of
interest.

Defaults
Resets all options to their default values.

option ¼ optval
See Section 11 in H02DAF for details of valid values for option and optval. The equals
sign (¼) delimiter must be used to separate the option from its optval value.

OPTSTR is case insensitive. Each token in the option and optval component must be separated
by at least one space.

2: IOPTSðLIOPTSÞ – INTEGER array Communication Array

3: LIOPTS – INTEGER Input

On entry: the length of the array IOPTS.

Constraint: unless otherwise stated in the documentation for a specific, supported, problem
solving routine, LIOPTS � 200.

4: OPTSðLOPTSÞ – REAL (KIND=nag_wp) array Communication Array

5: LOPTS – INTEGER Input

On entry: the length of the array OPTS.

Constraint: unless otherwise stated in the documentation for a specific, supported, problem
solving routine, LOPTS � 100.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, the optional parameter in OPTSTR was not recognized: OPTSTR ¼ valueh i.
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IFAIL ¼ 12

On entry, the expected delimiter ‘¼’ was not found in OPTSTR: OPTSTR ¼ valueh i.

IFAIL ¼ 13

On entry, could not convert the specified optval to an integer: OPTSTR ¼ valueh i.
On entry, could not convert the specified optval to a real: OPTSTR ¼ valueh i.

IFAIL ¼ 14

On entry, attempting to initialize the optional parameter arrays but specified routine name was
not valid: name ¼ valueh i.

IFAIL ¼ 15

On entry, the optval supplied for the integer optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 16

On entry, the optval supplied for the real optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 17

On entry, the optval supplied for the character optional parameter is not valid.
OPTSTR ¼ valueh i.

IFAIL ¼ 21

On entry, either the option arrays have not been initialized or they have been corrupted.

IFAIL ¼ 31

On entry, LIOPTS ¼ valueh i.
Constraint: LIOPTS � valueh i.

IFAIL ¼ 51

On entry, LOPTS ¼ valueh i.
Constraint: LOPTS � valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

H02ZKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

See the example programs associated with the problem solving routine you wish to use for a
demonstration of how to use H02ZKF to initialize option arrays and set options.
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NAG Library Routine Document

H02ZLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H02ZLF is used to query the value of optional parameters available to supported problem solving
routines in Chapter H.

Currently, only H02DAF is supported.

2 Specification

SUBROUTINE H02ZLF (OPTSTR, IVALUE, RVALUE, CVALUE, OPTYPE, IOPTS, OPTS,
IFAIL)

&

INTEGER IVALUE, OPTYPE, IOPTS(*), IFAIL
REAL (KIND=nag_wp) RVALUE, OPTS(*)
CHARACTER(*) OPTSTR, CVALUE

3 Description

H02ZLF is used to query the current values of options. It is necessary to initialize optional parameter
arrays using H02ZKF before any options are queried.

H02ZLF will normally return either an integer, real or character value dependent upon the type
associated with the optional parameter being queried. Some real and integer options also return
additional information in CVALUE. Whether the option queried is of integer, real or character type, and
whether additional information is returned in CVALUE, is indicated by the returned value of OPTYPE.

Information on optional parameter names and whether these options are real, integer or character can be
found in Section 11 in H02DAF.

4 References

None.

5 Arguments

1: OPTSTR – CHARACTER(*) Input

On entry: a string identifying the option whose current value is required. See Section 11 in
H02DAF for information on valid options. In addition, the following is a valid option:

Identify
H02ZLF returns in CVALUE the routine name supplied to H02ZKF when the optional
parameter arrays IOPTS and OPTS were initialized.

2: IVALUE – INTEGER Output

On exit: if the optional parameter supplied in OPTSTR is an integer valued argument, IVALUE
will hold its current value.

3: RVALUE – REAL (KIND=nag_wp) Output

On exit: if the optional parameter supplied in OPTSTR is a real valued argument, RVALUE will
hold its current value.
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4: CVALUE – CHARACTER(*) Output

Note: the string returned in CVALUE will never exceed 40 characters in length.

On exit: if the optional parameter supplied in OPTSTR is a character valued argument, CVALUE
will hold its current value. CVALUE will also contain additional information for some integer
and real valued arguments, as indicated by OPTYPE.

5: OPTYPE – INTEGER Output

On exit: indicates whether the optional parameter supplied in OPTSTR is an integer, real or
character valued argument and hence which of IVALUE, RVALUE or CVALUE holds the current
value.

OPTYPE ¼ 1
OPTSTR is an integer valued optional parameter, its current value has been returned in
IVALUE.

OPTYPE ¼ 2
OPTSTR is a real valued optional parameter, its current value has been returned in
RVALUE.

OPTYPE ¼ 3
OPTSTR is a character valued optional parameter, its current value has been returned in
CVALUE.

OPTYPE ¼ 4
OPTSTR is an integer valued optional parameter, its current value has been returned in
IVALUE. Additional information has been returned in CVALUE.

OPTYPE ¼ 5
OPTSTR is a real valued optional parameter, its current value has been returned in
RVALUE. Additional information has been returned in CVALUE.

6: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to H02ZKF.

7: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to H02ZKF.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, the option in OPTSTR has not been recognized.

IFAIL ¼ 41

On entry, OPTSTR indicates a character optional parameter, but CVALUE is too short to hold the
stored value. The returned value will be truncated.

IFAIL ¼ 61

The arrays IOPTS and OPTS have either not been initialized, have become corrupted, or are not
compatible with this option setting routine.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

H02ZLF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See the example programs associated with the problem solving routine you wish to use for a
demonstration of how to use H02ZLF to query options.
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NAG Library Routine Document

H03ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H03ABF solves the classical Transportation (‘Hitchcock’) problem.

2 Specification

SUBROUTINE H03ABF (KOST, LDKOST, MA, MB, M, K15, MAXIT, K7, K9, NUMIT,
K6, K8, K11, K12, Z, IFAIL)

&

INTEGER KOST(LDKOST,MB), LDKOST, MA, MB, M, K15(M), MAXIT,
K7(M), K9(M), NUMIT, K6(M), K8(M), K11(M), K12(M),
IFAIL

&
&

REAL (KIND=nag_wp) Z

3 Description

H03ABF solves the Transportation problem by minimizing

z ¼
Xma

i

Xmb

j

cijxij:

subject to the constraints Xmb

j

xij ¼ Ai ðAvailabilitiesÞ

Xma

i

P
i

xij ¼ Bj ðRequirementsÞ

where the xij can be interpreted as quantities of goods sent from source i to destination j, for

i ¼ 1; 2; . . . ;ma and j ¼ 1; 2; . . . ;mb, at a cost of cij per unit, and it is assumed that
Xma

i

Ai ¼
Xmb

j

P
jBj

and xij � 0.

H03ABF uses the ‘stepping stone’ method, modified to accept degenerate cases.

4 References

Hadley G (1962) Linear Programming Addison–Wesley

5 Arguments

1: KOSTðLDKOST;MBÞ – INTEGER array Input

On entry: the coefficients cij , for i ¼ 1; 2; . . . ;ma and j ¼ 1; 2; . . . ;mb.

2: LDKOST – INTEGER Input

On entry: the first dimension of the array KOST as declared in the (sub)program from which
H03ABF is called.

Constraint: LDKOST � MA.
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3: MA – INTEGER Input

On entry: the number of sources, ma.

Constraint: MA � 1.

4: MB – INTEGER Input

On entry: the number of destinations, mb.

Constraint: MB � 1.

5: M – INTEGER Input

On entry: the value of ma þmb.

6: K15ðMÞ – INTEGER array Input/Output

On entry: K15ðiÞ must be set to the availabilities Ai, for i ¼ 1; 2; . . . ;ma; and K15ðma þ jÞ must
be set to the requirements Bj , for j ¼ 1; 2; . . . ;mb.

On exit: the contents of K15 are undefined.

7: MAXIT – INTEGER Input

On entry: the maximum number of iterations allowed.

Constraint: MAXIT � 1.

8: K7ðMÞ – INTEGER array Workspace
9: K9ðMÞ – INTEGER array Workspace

10: NUMIT – INTEGER Output

On exit: the number of iterations performed.

11: K6ðMÞ – INTEGER array Output

On exit: K6ðkÞ, for k ¼ 1; 2; . . . ;ma þmb � 1, contains the source indices of the optimal solution
(see K11).

12: K8ðMÞ – INTEGER array Output

On exit: K8ðkÞ, for k ¼ 1; 2; . . . ;ma þmb � 1, contains the destination indices of the optimal
solution (see K11).

13: K11ðMÞ – INTEGER array Output

On exit: K11ðkÞ, for k ¼ 1; 2; . . . ;ma þmb � 1, contains the optimal quantities xij which, sent
from source i ¼ K6ðkÞ to destination j ¼ K8ðkÞ, minimize z.

14: K12ðMÞ – INTEGER array Output

On exit: K12ðkÞ, for k ¼ 1; 2; . . . ;ma þmb � 1, contains the unit cost cij associated with the
route from source i ¼ K6ðkÞ to destination j ¼ K8ðkÞ.

15: Z – REAL (KIND=nag_wp) Output

On exit: the value of the minimized total cost.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, the sum of the availabilities does not equal the sum of the requirements.

IFAIL ¼ 2

During computation MAXIT has been exceeded.

IFAIL ¼ 3

On entry, MAXIT < 1.

IFAIL ¼ 4

On entry, MA < 1,
or MB < 1,
or M 6¼ MAþMB,
or MA > LDKOST.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All operations are performed in integer arithmetic so that there are no rounding errors.

8 Parallelism and Performance

H03ABF is not threaded in any implementation.

9 Further Comments

An accurate estimate of the run time for a particular problem is difficult to achieve.
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10 Example

A company has three warehouses and three stores. The warehouses have a surplus of 12 units of a given
commodity divided among them as follows:

Warehouse Surplus
1 1
2 5
3 6

The stores altogether need 12 units of commodity, with the following requirements:

Store Requirement
1 4
2 4
3 4

Costs of shipping one unit of the commodity from warehouse i to store j are displayed in the following
matrix:

Store
1 2 3

1 8 8 11

Warehouse 2 5 8 14

3 4 3 10

It is required to find the units of commodity to be moved from the warehouses to the stores, such that
the transportation costs are minimized. The maximum number of iterations allowed is 200.

10.1 Program Text

Program h03abfe

! H03ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: h03abf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: z
Integer :: i, ifail, j, ldkost, m, ma, maxit, &

mb, numit
! .. Local Arrays ..

Integer, Allocatable :: k11(:), k12(:), k15(:), k6(:), &
k7(:), k8(:), k9(:), kost(:,:)

! .. Executable Statements ..
Write (nout,*) ’H03ABF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) ma, mb
m = ma + mb
ldkost = ma
Allocate (kost(ldkost,mb),k15(m),k7(m),k9(m),k6(m),k8(m),k11(m),k12(m))

Read (nin,*)(k15(i),i=1,m)
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Do i = 1, ma
Read (nin,*)(kost(i,j),j=1,mb)

End Do

maxit = 200

ifail = 0
Call h03abf(kost,ldkost,ma,mb,m,k15,maxit,k7,k9,numit,k6,k8,k11,k12,z, &

ifail)

Write (nout,*)
Write (nout,99999) ’Total cost = ’, z
Write (nout,*)
Write (nout,*) ’Goods from to’
Write (nout,*)
Write (nout,99998)(k11(i),k6(i),k8(i),i=1,m-1)

99999 Format (1X,A,F5.1)
99998 Format (1X,I3,I6,I5)

End Program h03abfe

10.2 Program Data

H03ABF Example Program Data
3 3
1 5 6 4 4 4
8 8 11
5 8 14
4 3 10

10.3 Program Results

H03ABF Example Program Results

Total cost = 77.0

Goods from to

4 3 2
2 3 3
1 2 3
1 1 3
4 2 1
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NAG Library Routine Document

H03ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H03ADF finds the shortest path through a directed or undirected acyclic network using Dijkstra's
algorithm.

2 Specification

SUBROUTINE H03ADF (N, NS, NE, DIRECT, NNZ, D, IROW, ICOL, SPLEN, PATH,
IWORK, WORK, IFAIL)

&

INTEGER N, NS, NE, NNZ, IROW(NNZ), ICOL(NNZ), PATH(N),
IWORK(3*N+1), IFAIL

&

REAL (KIND=nag_wp) D(NNZ), SPLEN, WORK(2*N)
LOGICAL DIRECT

3 Description

H03ADF attempts to find the shortest path through a directed or undirected acyclic network, which
consists of a set of points called vertices and a set of curves called arcs that connect certain pairs of
distinct vertices. An acyclic network is one in which there are no paths connecting a vertex to itself. An
arc whose origin vertex is i and whose destination vertex is j can be written as i! j. In an undirected
network the arcs i! j and j! i are equivalent (i.e., i$ j), whereas in a directed network they are
different. Note that the shortest path may not be unique and in some cases may not even exist (e.g., if
the network is disconnected).

The network is assumed to consist of n vertices which are labelled by the integers 1; 2; . . . ; n. The
lengths of the arcs between the vertices are defined by the n by n distance matrix D, in which the
element dij gives the length of the arc i! j; dij ¼ 0 if there is no arc connecting vertices i and j (as is
the case for an acyclic network when i ¼ j). Thus the matrix D is usually sparse. For example, if
n ¼ 4 and the network is directed, then

D ¼
0 d12 d13 d14
d21 0 d23 d24
d31 d32 0 d34
d41 d42 d43 0

0B@
1CA:

If the network is undirected, D is symmetric since dij ¼ dji (i.e., the length of the arc i! j 	 the
length of the arc j! i).

The method used by H03ADF is described in detail in Section 9.

4 References

Dijkstra E W (1959) A note on two problems in connection with graphs Numer. Math. 1 269–271

5 Arguments

1: N – INTEGER Input

On entry: n, the number of vertices.

Constraint: N � 2.
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2: NS – INTEGER Input
3: NE – INTEGER Input

On entry: ns and ne, the labels of the first and last vertices, respectively, between which the
shortest path is sought.

Constraints:

1 � NS � N;
1 � NE � N;
NS 6¼ NE.

4: DIRECT – LOGICAL Input

On entry: indicates whether the network is directed or undirected.

DIRECT ¼ :TRUE:
The network is directed.

DIRECT ¼ :FALSE:
The network is undirected.

5: NNZ – INTEGER Input

On entry: the number of nonzero elements in the distance matrix D.

Constraints:

if DIRECT ¼ :TRUE:, 1 � NNZ � N� N� 1ð Þ;
if DIRECT ¼ :FALSE:, 1 � NNZ � N� N� 1ð Þ=2.

6: DðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements of the distance matrix D, ordered by increasing row index and
increasing column index within each row. More precisely, DðkÞ must contain the value of the
nonzero element with indices (IROWðkÞ; ICOLðkÞ); this is the length of the arc from the vertex
with label IROWðkÞ to the vertex with label ICOLðkÞ. Elements with the same row and column
indices are not allowed. If DIRECT ¼ :FALSE:, then only those nonzero elements in the strict
upper triangle of D need be supplied since dij ¼ dji. (F11ZAF may be used to sort the elements
of an arbitrarily ordered matrix into the required form. This is illustrated in Section 10.)

Constraint: DðkÞ > 0:0, for k ¼ 1; 2; . . . ;NNZ.

7: IROWðNNZÞ – INTEGER array Input
8: ICOLðNNZÞ – INTEGER array Input

On entry: IROWðkÞ and ICOLðkÞ must contain the row and column indices, respectively, for the
nonzero element stored in DðkÞ.
Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZAF):

IROWðk� 1Þ < IROWðkÞ;
IROWðk � 1Þ ¼ IROWðkÞ and ICOLðk � 1Þ < ICOLðkÞ, for k ¼ 2; 3; . . . ;NNZ.

I n a d d i t i o n , i f DIRECT ¼ :TRUE:, 1 � IROWðkÞ � N, 1 � ICOLðkÞ � N a n d
IROWðkÞ 6¼ ICOLðkÞ;

if DIRECT ¼ :FALSE:, 1 � IROWðkÞ < ICOLðkÞ � N.

9: SPLEN – REAL (KIND=nag_wp) Output

On exit: the length of the shortest path between the specified vertices ns and ne.

H03ADF NAG Library Manual

H03ADF.2 Mark 26



10: PATHðNÞ – INTEGER array Output

On exit: contains details of the shortest path between the specified vertices ns and ne. More
precisely, NS ¼ PATHð1Þ ! PATHð2Þ ! . . .! PATHðpÞ ¼ NE for some p � n. The remaining
n� pð Þ elements are set to zero.

11: IWORKð3� Nþ 1Þ – INTEGER array Workspace

12: WORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or NS < 1,
or NS > N,
or NE < 1,
or NE > N,
or NS ¼ NE.

IFAIL ¼ 2

On entry, NNZ > N� N� 1ð Þ when DIRECT ¼ :TRUE:,
or NNZ > N� N� 1ð Þ=2 when DIRECT ¼ :FALSE:,
or NNZ < 1.

IFAIL ¼ 3

On e n t r y , IROWðkÞ < 1 o r IROWðkÞ > N o r ICOLðkÞ < 1 o r ICOLðkÞ > N o r
IROWðkÞ ¼ ICOLðkÞ for some k when DIRECT ¼ :TRUE:.

IFAIL ¼ 4

On entry, IROWðkÞ < 1 or IROWðkÞ � ICOLðkÞ or ICOLðkÞ > N for some k when
DIRECT ¼ :FALSE:.

IFAIL ¼ 5

DðkÞ � 0:0 for some k.

IFAIL ¼ 6

On entry, IROWðk� 1Þ > IROWðkÞ or IROWðk� 1Þ ¼ IROWðkÞ and ICOLðk� 1Þ > ICOLðkÞ
for some k.
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IFAIL ¼ 7

On entry, IROWðk� 1Þ ¼ IROWðkÞ and ICOLðk� 1Þ ¼ ICOLðkÞ for some k.

IFAIL ¼ 8

No connected network exists between vertices NS and NE.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The results are exact, except for the obvious rounding errors in summing the distances in the length of
the shortest path.

8 Parallelism and Performance

H03ADF is not threaded in any implementation.

9 Further Comments

H03ADF is based upon Dijkstra's algorithm (see Dijkstra (1959)), which attempts to find a path
ns ! ne between two specified vertices ns and ne of shortest length d ns; neð Þ.
The algorithm proceeds by assigning labels to each vertex, which may be temporary or permanent. A
temporary label can be changed, whereas a permanent one cannot. For example, if vertex p has a
permanent label q; rð Þ, then r is the distance d ns; rð Þ and q is the previous vertex on a shortest length
ns ! p path. If the label is temporary, then it has the same meaning but it refers only to the shortest
ns ! p path found so far. A shorter one may be found later, in which case the label may become
permanent.

The algorithm consists of the following steps.

1. Assign the permanent label �; 0ð Þ to vertex ns and temporary labels �;1ð Þ to every other vertex.
Set k ¼ ns and go to 2.

2. Consider each vertex y adjacent to vertex k with a temporary label in turn. Let the label at k be
p; qð Þ and at y r; sð Þ. If q þ dky < s, then a new temporary label k; q þ dky

� �
is assigned to vertex y;

otherwise no change is made in the label of y. When all vertices y with temporary labels adjacent
to k have been considered, go to 3.

3. From the set of temporary labels, select the one with the smallest second component and declare
that label to be permanent. The vertex it is attached to becomes the new vertex k. If k ¼ ne go to 4.
Otherwise go to 2 unless no new vertex can be found (e.g., when the set of temporary labels is
‘empty’ but k 6¼ ne, in which case no connected network exists between vertices ns and ne).

4. To find the shortest path, let y; zð Þ denote the label of vertex ne. The column label (z) gives
d ns; neð Þ while the row label (y) then links back to the previous vertex on a shortest length
ns ! ne path. Go to vertex y. Suppose that the (permanent) label of vertex y is w; xð Þ, then the
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next previous vertex is w on a shortest length ns ! y path. This process continues until vertex ns
is reached. Hence the shortest path is

ns ! . . .! w! y! ne;

which has length d ns; neð Þ.

10 Example

This example finds the shortest path between vertices 1 and 11 for the undirected network

1

2

3

4

5

6

7

8

9

10

11

5

5

6

4

4

3

1

9

8

7

6

1

2

2

1

1

1
4

4

2

10.1 Program Text

Program h03adfe

! H03ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11zaf, h03adf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: dup = ’F’, zero = ’R’

! .. Local Scalars ..
Real (Kind=nag_wp) :: splen
Integer :: ifail, j, lenc, n, ne, nnz, ns
Logical :: direct

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), work(:)
Integer, Allocatable :: icol(:), irow(:), iwork(:), path(:)

! .. Executable Statements ..
Write (nout,*) ’H03ADF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, ns, ne, nnz, direct
Allocate (d(nnz),work(2*n),icol(nnz),irow(nnz),iwork(3*n+1),path(n))

Read (nin,*)(d(j),irow(j),icol(j),j=1,nnz)

! Reorder the elements of D into the form required by H03ADF.

ifail = 0
Call f11zaf(n,nnz,d,irow,icol,dup,zero,iwork,iwork(n+2),ifail)

! Find the shortest path between vertices NS and NE.

ifail = 0
Call h03adf(n,ns,ne,direct,nnz,d,irow,icol,splen,path,iwork,work,ifail)

! Print details of shortest path.

lenc = n
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loop: Do j = 0, n - 1

If (path(j+1)==0) Then
lenc = j
Exit loop

End If

End Do loop

Write (nout,99999) ’Shortest path = ’, (path(j),j=1,lenc)
Write (nout,99998) ’Length of shortest path = ’, splen

99999 Format (/,1X,A,10(I2,:,’ to ’))
99998 Format (/,1X,A,G16.6)

End Program h03adfe

10.2 Program Data

H03ADF Example Program Data
11 1 11 20 F :Values of N, NS, NE, NNZ and DIRECT
6.0 6 8
1.0 8 9
2.0 9 11
4.0 2 5
1.0 3 4
6.0 1 3
4.0 3 6
1.0 4 6
2.0 2 3
3.0 4 7
5.0 1 2
7.0 6 10
1.0 5 6
4.0 8 11
9.0 5 9
1.0 6 7
8.0 7 9
4.0 10 11
2.0 9 10
5.0 1 4 :End of D, IROW, ICOL

10.3 Program Results

H03ADF Example Program Results

Shortest path = 1 to 4 to 6 to 8 to 9 to 11

Length of shortest path = 15.0000
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NAG Library Routine Document

H03BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H03BBF calculates an approximate solution to a symmetric travelling salesman problem using
simulated annealing via a configuration free interface.

2 Specification

SUBROUTINE H03BBF (NC, DM, BOUND, TARGC, PATH, COST, TMODE, ALG_STATS,
STATE, IFAIL)

&

INTEGER NC, PATH(NC), TMODE, STATE(*), IFAIL
REAL (KIND=nag_wp) DM(NC,NC), BOUND, TARGC, COST, ALG_STATS(6)

3 Description

H03BBF provides a probabilistic strategy for the calculation of a near optimal path through a
symmetric and fully connected distance matrix; that is, a matrix for which element i; jð Þ is the pairwise
distance (also called the cost, or weight) between nodes (cities) i and j. This problem is better known as
the Travelling Salesman Problem (TSP), and symmetric means that the distance to travel between two
cities is independent of which is the destination city.

In the classical TSP, which this routine addresses, a salesman wishes to visit a given set of cities once
only by starting and finishing in a home city and travelling the minimum total distance possible. It is
one of the most intensively studied problems in computational mathematics and, as a result, has
developed some fairly sophisticated techniques for getting near-optimal solutions for large numbers of
cities. H03BBF adopts a very simple approach to try to find a reasonable solution, for moderately large
problems. The routine uses simulated annealing: a stochastic mechanical process in which the heating
and controlled cooling of a material is used to optimally refine its molecular structure.

The material in the TSP is the distance matrix and a given state is represented by the order in which
each city is visited—the path. This system can move from one state to a neighbouring state by selecting
two cities on the current path at random and switching their places; the order of the cities in the path
between the switched cities is then reversed. The cost of a state is the total cost of traversing its path;
the resulting difference in cost between the current state and this new proposed state is called the delta;
a negative delta indicates the proposal creates a more optimal path and a positive delta a less optimal
path. The random selection of cities to switch uses random number generators (RNGs) from Chapter
G05; it is thus necessary to initialize a state array for the RNG of choice (by a call to G05KFF or
G05KGF) prior to calling H03BBF.

The simulation itself is executed in two stages. In the first stage, a series of sample searches through the
distance matrix is conducted where each proposed new state is accepted, regardless of the change in
cost (delta) incurred by applying the switches, and statistics on the set of deltas are recorded. These
metrics are updated after each such sample search; the number of these searches and the number of
switches applied in each search is dependent on the number of cities. The final collated set of metrics
for the deltas obtained by the first stage are used as control parameters for the second stage. If no single
improvement in cost is found during the first stage, the algorithm is terminated.

In the second stage, as before, neighbouring states are proposed. If the resulting delta is negative or
causes no change the proposal is accepted and the path updated; otherwise moves are accepted based on
a probabilistic criterion, a modified version of the Metropolis–Hastings algorithm.

The acceptance of some positive deltas (increased cost) reduces the probability of a solution getting
trapped at a non-optimal solution where any single switch causes an increase in cost. Initially the
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acceptance criteria allow for relatively large positive deltas, but as the number of proposed changes
increases, the criteria become more stringent, allowing fewer positive deltas of smaller size to be
accepted; this process is, within the realm of the simulated annealing algorithm, referred to as ‘cooling’.
Further exploration of the system is initially encouraged by accepting non-optimal routes, but is
increasingly discouraged as the process continues.

The second stage will terminate when:

– a solution is obtained that is deemed acceptable (as defined by supplied values);

– the algorithm will accept no further positive deltas and a set of proposed changes have resulted
in no improvements (has cooled);

– a number of consecutive sets of proposed changes has resulted in no improvement.

4 References

Applegate D L, Bixby R E, ChvÄtal V and Cook W J (2006) The Traveling Salesman Problem: A
Computational Study Princeton University Press

Cook W J (2012) In Pursuit of the Traveling Salesman Princeton University Press

Johnson D S and McGeoch L A The traveling salesman problem: A case study in local optimization
Local search in combinatorial optimization (1997) 215–310

Press W H, Teukolsky S A, Vetterling W T and Flannery B P (2007) Numerical Recipes The Art of
Scientific Computing (3rd Edition)

Rego C, Gamboa D, Glover F and Osterman C (2011) Traveling salesman problem heuristics: leading
methods, implementations and latest advances European Journal of Operational Research 211 (3)
427–441

Reinelt G (1994) The Travelling Salesman. Computational Solutions for TSP Applications, Volume 840
of Lecture Notes in Computer Science Springer–Verlag, Berlin Heidelberg New York

5 Arguments

1: NC – INTEGER Input

On entry: the number of cities. In the trivial cases NC ¼ 1, 2 or 3, the routine returns the optimal
solution immediately with TMODE ¼ 0 (provided the relevant distance matrix entries are not
negative).

Constraint: NC � 1.

2: DMðNC;NCÞ – REAL (KIND=nag_wp) array Input

On entry: the distance matrix; each DMði; jÞ is the effective cost or weight between nodes i and
j. Only the strictly upper half of the matrix is referenced.

Constraint: DMði; jÞ � 0:0, for j ¼ 2; 3; . . . ;NC and i ¼ 1; 2; . . . ; j � 1.

3: BOUND – REAL (KIND=nag_wp) Input

On entry: a lower bound on the solution. If the optimum is unknown set BOUND to zero or a
negative value; the routine will then calculate the minimum spanning tree for DM and use this as
a lower bound (returned in ALG STATSð6Þ). If an optimal value for the cost is known then this
should be used for the lower bound. A detailed discussion of relaxations for lower bounds,
including the minimal spanning tree, can be found in Reinelt (1994).

4: TARGC – REAL (KIND=nag_wp) Input

On entry: a measure of how close an approximation needs to be to the lower bound. The routine
terminates when a cost is found less than or equal to BOUNDþ TARGC. This argument is
useful when an optimal value for the cost is known and supplied in BOUND. It may be sufficient
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to obtain a path that is close enough (in terms of cost) to the optimal path; this allows the
algorithm to terminate at that point and avoid further computation in attempting to find a better
path.

If TARGC < 0, TARGC ¼ 0 is assumed.

5: PATHðNCÞ – INTEGER array Output

On exit: the best path discovered by the simulation. That is, PATH contains the city indices in
path order. If IFAIL 6¼ 0 on exit, PATH contains the indices 1 to NC.

6: COST – REAL (KIND=nag_wp) Output

On exit: the cost or weight of PATH. If IFAIL 6¼ 0 on exit, COST contains the largest model real
number (see X02BLF).

7: TMODE – INTEGER Output

On exit: the termination mode of the routine (if IFAIL 6¼ 0 on exit, TMODE is set to �1):
TMODE ¼ 0

Optimal solution found, COST ¼ BOUND.

TMODE ¼ 1
System temperature cooled. The algorithm returns a PATH and associated COST that does
not attain, nor lie within TARGC of, the BOUND. This could be a sufficiently good
approximation to the optimal PATH, particularly when BOUNDþ TARGC lies below the
optimal COST.

TMODE ¼ 2
Halted by COST falling within the desired TARGC range of the BOUND.

TMODE ¼ 3
System stalled following lack of improvement.

TMODE ¼ 4
Initial search failed to find a single improvement (the solution could be optimal).

8: ALG STATSð6Þ – REAL (KIND=nag_wp) array Output

On exit: an array of metrics collected during the initial search. These could be used as a basis for
future optimization. If IFAIL 6¼ 0 on exit, the elements of ALG_STATS are set to zero; the first
five elements are also set to zero in the trival cases NC ¼ 1, 2 or 3.

ALG STATSð1Þ
Mean delta.

ALG STATSð2Þ
Standard deviation of deltas.

ALG STATSð3Þ
Cost at end of initial search phase.

ALG STATSð4Þ
Best cost encountered during search phase.

ALG STATSð5Þ
Initial system temperature. At the end of stage 1 of the algorithm, this is a function of the
mean and variance of the deltas, and of the distance from best cost to the lower bound. It
is a measure of the initial acceptance criteria for stage 2. The larger this value, the more
iterations it will take to geometrically reduce it during stage 2 until the system is cooled
(below a threshold value).
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ALG STATSð6Þ
The lower bound used, which will be that computed internally when BOUND � 0 on
input. Subsequent calls with different random states can set BOUND to the value returned
in ALG STATSð6Þ to avoid recomputation of the minimal spanning tree.

9: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: a valid RNG state initialized by G05KFF or G05KGF. Since the algorithm used is
stochastic, a random number generator is employed; if the generator is initialized to a non-
repeatable sequence (G05KGF) then different solution paths will be taken on successive runs,
returning possibly different final approximate solutions.

On exit: contains updated information on the state of the generator.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NC ¼ valueh i.
Constraint: NC � 1.

IFAIL ¼ 2

On entry, the strictly upper triangle of DM had a negative element.

IFAIL ¼ 9

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The routine will not perform well when the average change in cost caused by switching two cities is
small relative to the cost; this can happen when many of the values in the distance matrix are relatively
close to each other.

The quality of results from this routine can vary quite markedly when different initial random states are
used. It is therefore advisable to compute a number of approximations using different initial random
states. The best cost and path can then be taken from the set of approximations obtained. If no change
in results is obtained after 10 such trials then it is unlikely that any further improvement can be made
by this routine.

8 Parallelism and Performance

Running many instances of the routine in parallel with independent random number generator states can
yield a set of possible solutions from which a best approximate solution may be chosen.

9 Further Comments

Memory is internally allocated for 3� NC� 2 integers and NC� 1 real values.

In the case of two cities that are not connected, a suitably large number should be used as the distance
(cost) between them so as to deter solution paths which directly connect the two cities. Solutions which
contain an artificial link (i.e., a connection with a large distance between them to indicate no actual
link) may be patched, using the shortest path algorithm H03ADF.

If a city is to be visited more than once (or more than twice for the home city) then the distance matrix
should contain multiple entries for that city (on rows and columns i1; i2; . . .) with zero entries for
distances to itself and identical distances to other cities.

10 Example

An approximation to the best path through 21 cities in the United Kingdom and Ireland, beginning and
ending in Oxford, is sought. A lower bound is calculated internally.

10.1 Program Text

Program h03bbfe

! H03BBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05kff, h03bbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 4, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: bound, cost, targc
Integer :: genid, i, i2, ib, ifail, j, l, &

lstate, nb, nc, subid, tmode
! .. Local Arrays ..

Real (Kind=nag_wp) :: alg_stats(6)
Real (Kind=nag_wp), Allocatable :: dm(:,:)
Integer, Allocatable :: path(:), state(:)
Integer :: seed(lseed)
Character (20), Allocatable :: cities(:)
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! .. Intrinsic Procedures ..
Intrinsic :: len_trim, max, min, repeat, trim

! .. Executable Statements ..

Write (nout,*) ’H03BBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Number of cities
Read (nin,*) nc

! Allocate distance matrix and path
Allocate (path(nc),dm(nc,nc))

! Read distance matrix 10 columns at a time
nb = (nc+8)/10
Do ib = 1, nb

Read (nin,*)
Read (nin,*)
i2 = min(10*ib,nc-1)
Do i = 1, i2

Read (nin,*)(dm(i,j),j=max(i+1,10*ib-8),i2+1)
End Do

End Do

Allocate (cities(nc))
Do i = 1, nc

Read (nin,*) cities(i)
End Do

! Calculate a lower bound internally and try to find lowest cost path.
bound = -1.0_nag_wp
targc = -1.0_nag_wp

! Initialize the random number state array.
! Use the query mechanism to find the required lstate.

genid = 2
subid = 53
seed(:) = (/304950,889934,209094,23423990/)
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
Deallocate (state)
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Find low cost return path through all cities
ifail = 0
Call h03bbf(nc,dm,bound,targc,path,cost,tmode,alg_stats,state,ifail)

Write (nout,99999) ’Initial search end cost’, alg_stats(3)
Write (nout,99999) ’Search best cost ’, alg_stats(4)
Write (nout,99999) ’Initial temperature ’, alg_stats(5)
Write (nout,99999) ’Lower bound ’, alg_stats(6)
Write (nout,99998) ’Termination mode ’, tmode
Write (nout,*)
Write (nout,99999) ’Final cost ’, cost

Write (nout,*)
Write (nout,*) ’Final Path:’
Write (nout,99997) trim(cities(path(1))), trim(cities(path(2)))
l = len_trim(cities(path(1)))
Write (nout,99997)(repeat(’ ’,l),trim(cities(path(i+1))),i=2,nc-1)
Write (nout,99997) repeat(’ ’,l), trim(cities(path(1)))

99999 Format (1X,A,’:’,F12.2)
99998 Format (1X,A,’:’,I12)
99997 Format (1X,A,’ --> ’,A)

End Program h03bbfe
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10.2 Program Data

H03BBF Example Program Data

21 : number of cities

2 3 4 5 6 7 8 9 10 11
23961 7112 21331 9050 22548 20667 13227 11617 14292 9455 : 1

25998 4724 27936 2014 3997 20826 30488 21891 28327 : 2
23108 2871 24325 22444 15004 8664 16359 6503 : 3

25203 3444 3379 18093 27755 19158 25593 : 4
26434 24553 15169 10773 16033 8612 : 5

2668 19496 29159 20562 26997 : 6
17550 27212 18615 25051 : 7

19516 1895 17354 : 8
20649 3135 : 9

18537 :10

12 13 14 15 16 17 18 19 20 21
19634 6394 29483 14068 28136 11052 7228 13771 4752 24111 : 1
5403 25281 9312 31882 4751 18651 24909 25448 20113 25289 : 2

21411 1263 31260 7889 29913 12829 12517 8941 7038 26178 : 3
3598 22547 10592 29149 8868 15918 21956 22715 17380 23484 : 4

23519 3372 33368 5988 32022 13917 14626 6916 9147 25852 : 5
4074 23951 7766 30553 6075 17322 23580 24119 18784 23960 : 6
2127 22005 9586 28606 8239 15375 21634 22172 16837 22013 : 7

16200 14308 26049 15136 24703 2447 14727 8446 9140 11714 : 8
25990 7981 35839 15655 34493 17409 17103 15937 11618 30467 : 9
17383 15491 7232 16033 25886 3630 15910 9343 10323 9866 :10
23819 5810 33668 13484 32321 15237 14931 13766 9446 28296 :11

21026 10985 27628 9638 14397 20655 21193 15858 20188 :12
30598 8276 29252 12168 11856 9064 6377 25227 :13

37538 9425 24307 30565 31103 25769 30945 :14
35803 14744 19628 6869 14149 26227 :15

22962 29220 29758 24423 29599 :16
12712 8242 7126 13457 :17

15366 6300 25639 :18
9465 18936 :19

20048 :20, dm

Oxford : 1
Dundee : 2
Cardiff : 3
Edinburgh : 4
Swansea : 5
Perth : 6
Stirling : 7
Bangor : 8
Plymouth : 9
Holyhead :10
Exeter :11
Glasgow :12
Newport :13
Inverness :14
St.Davids :15
Aberdeen :16
St.Asaph :17
Cambridge :18
Aberystwyth :19
Birmingham :20
Dublin :21, cities

10.3 Program Results

H03BBF Example Program Results

Initial search end cost: 432459.00
Search best cost : 237068.00
Initial temperature : 598481.00
Lower bound : 106350.00
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Termination mode : 3

Final cost : 131580.00

Final Path:
Oxford --> Cambridge

--> Birmingham
--> Glasgow
--> Stirling
--> Edinburgh
--> Perth
--> Dundee
--> Aberdeen
--> Inverness
--> Holyhead
--> Dublin
--> Bangor
--> St.Asaph
--> Aberystwyth
--> St.Davids
--> Swansea
--> Cardiff
--> Newport
--> Exeter
--> Plymouth
--> Oxford
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NAG Library Routine Document

H05AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

Given a set of m features and a scoring mechanism for any subset of those features, H05AAF selects
the best n subsets of size p using a reverse communication branch and bound algorithm.

2 Specification

SUBROUTINE H05AAF (IREVCM, MINCR, M, IP, NBEST, DROP, LZ, Z, LA, A,
BSCORE, BZ, MINCNT, GAMMA, ACC, ICOMM, LICOMM, RCOMM,
LRCOMM, IFAIL)

&
&

INTEGER IREVCM, MINCR, M, IP, NBEST, DROP, LZ, Z(M-IP), LA,
A(max(NBEST,M)), BZ(M-IP,NBEST), MINCNT,
ICOMM(LICOMM), LICOMM, LRCOMM, IFAIL

&
&

REAL (KIND=nag_wp) BSCORE(max(NBEST,M)), GAMMA, ACC(2), RCOMM(LRCOMM)

3 Description

Given � ¼ xi : i 2 Z; 1 � i � mf g, a set of m unique features and a scoring mechanism f Sð Þ defined
for all S � � then H05AAF is designed to find So1 � �; So1j j ¼ p, an optimal subset of size p. Here
So1j j denotes the cardinality of So1, the number of elements in the set.

The definition of the optimal subset depends on the properties of the scoring mechanism, if

f Sið Þ � f Sj
� �

; for all Sj � � and Si � Sj ð1Þ

then the optimal subset is defined as one of the solutions to

maximize
S��

f Sð Þ subject to Sj j ¼ p

else if

f Sið Þ � f Sj
� �

; for all Sj � � and Si � Sj ð2Þ

then the optimal subset is defined as one of the solutions to

minimize
S��

f Sð Þ subject to Sj j ¼ p:

If neither of these properties hold then H05AAF cannot be used.

As well as returning the optimal subset, So1, H05AAF can return the best n solutions of size p. If Soi
denotes the ith best subset, for i ¼ 1; 2; . . . ; n� 1, then the iþ 1ð Þth best subset is defined as the
solution to either

maximize
S��� Soj:j2Z;1�j�if g

f Sð Þ subject to Sj j ¼ p

or

minimize
S��� Soj:j2Z;1�j�if g

f Sð Þ subject to Sj j ¼ p

depending on the properties of f .

The solutions are found using a branch and bound method, where each node of the tree is a subset of �.
Assuming that (1) holds then a particular node, defined by subset Si, can be trimmed from the tree if
f Sið Þ < f̂ Sonð Þ where f̂ Sonð Þ is the nth highest score we have observed so far for a subset of size p, i.
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e., our current best guess of the score for the nth best subset. In addition, because of (1) we can also
drop all nodes defined by any subset Sj where Sj � Si, thus avoiding the need to enumerate the whole
tree. Similar short cuts can be taken if (2) holds. A full description of this branch and bound algorithm
can be found in Ridout (1988).

Rather than calculate the score at a given node of the tree H05AAF utilizes the fast branch and bound
algorithm of Somol et al. (2004), and attempts to estimate the score where possible. For each feature,
xi, two values are stored, a count ci and �̂i, an estimate of the contribution of that feature. An initial
value of zero is used for both ci and �̂i. At any stage of the algorithm where both f Sð Þ and
f S � xif gð Þ have been calculated (as opposed to estimated), the estimated contribution of the feature xi
is updated to

ci�̂i þ f Sð Þ � f S � xj
� � �� �

ci þ 1

and ci is incremented by 1, therefore at each stage �̂i is the mean contribution of xi observed so far and
ci is the number of observations used to calculate that mean.

As long as ci � k, for the user-supplied constant k, then rather than calculating f S � xif gð Þ this routine
estimates it using f̂ S � xif gð Þ ¼ f Sð Þ � ��̂i or f̂ Sð Þ � ��̂i if f Sð Þ has been estimated, where � is a
user-supplied scaling factor. An estimated score is never used to trim a node or returned as the optimal
score.

Setting k ¼ 0 in this routine will cause the algorithm to always calculate the scores, returning to the
branch and bound algorithm of Ridout (1988). In most cases it is preferable to use the fast branch and
bound algorithm, by setting k > 0, unless the score function is iterative in nature, i.e., f Sð Þ must have
been calculated before f S � xif gð Þ can be calculated.

4 References

Narendra P M and Fukunaga K (1977) A branch and bound algorithm for feature subset selection IEEE
Transactions on Computers 9 917–922

Ridout M S (1988) Algorithm AS 233: An improved branch and bound algorithm for feature subset
selection Journal of the Royal Statistics Society, Series C (Applied Statistics) (Volume 37) 1 139–147

Somol P, Pudil P and Kittler J (2004) Fast branch and bound algorithms for optimal feature selection
IEEE Transactions on Pattern Analysis and Machine Intelligence (Volume 26) 7 900–912

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than BSCORE must remain unchanged.

1: IREVCM – INTEGER Input/Output

On initial entry: must be set to 0.

On intermediate exit: IREVCM ¼ 1 and before re-entry the scores associated with LA subsets
must be calculated and returned in BSCORE.

The LA subsets are constructed as follows:

DROP ¼ 1
The jth subset is constructed by dropping the features specified in the first LZ elements of
Z and the single feature given in AðjÞ from the full set of features, �. The subset will
therefore contain M� LZ� 1 features.

DROP ¼ 0
The jth subset is constructed by adding the features specified in the first LZ elements of Z
and the single feature specified in AðjÞ to the empty set, ;. The subset will therefore
contain LZþ 1 features.
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In both cases the individual features are referenced by the integers 1 to M with 1 indicating the
first feature, 2 the second, etc., for some arbitrary ordering of the features. The same ordering
must be used in all calls to H05AAF.

If LA ¼ 0, the score for a single subset should be returned. This subset is constructed by adding
or removing only those features specified in the first LZ elements of Z.

If LZ ¼ 0, this subset will either be � or ;.
The score associated with the jth subset must be returned in BSCOREðjÞ.
On intermediate re-entry: IREVCM must remain unchanged.

On final exit: IREVCM ¼ 0, and the algorithm has terminated.

Constraint: IREVCM ¼ 0 or 1.

2: MINCR – INTEGER Input

On entry: flag indicating whether the scoring function f is increasing or decreasing.

MINCR ¼ 1
f Sið Þ � f Sj

� �
, i.e., the subsets with the largest score will be selected.

MINCR ¼ 0
f Sið Þ � f Sj

� �
, i.e., the subsets with the smallest score will be selected.

For all Sj � � and Si � Sj.
Constraint: MINCR ¼ 0 or 1.

3: M – INTEGER Input

On entry: m, the number of features in the full feature set.

Constraint: M � 2.

4: IP – INTEGER Input

On entry: p, the number of features in the subset of interest.

Constraint: 1 � IP � M.

5: NBEST – INTEGER Input

On entry: n, the maximum number of best subsets required. The actual number of subsets
returned is given by LA on final exit. If on final exit LA 6¼ NBEST then IFAIL ¼ 53 is returned.

Constraint: NBEST � 1.

6: DROP – INTEGER Input/Output

On initial entry: DROP need not be set.

On intermediate exit: flag indicating whether the intermediate subsets should be constructed by
dropping features from the full set (DROP ¼ 1) or adding features to the empty set (DROP ¼ 0).
See IREVCM for details.

On intermediate re-entry: DROP must remain unchanged.

On final exit: DROP is undefined.

7: LZ – INTEGER Input/Output

On initial entry: LZ need not be set.

On intermediate exit: the number of features stored in Z.

On intermediate re-entry: LZ must remain unchanged.
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On final exit: LZ is undefined.

8: ZðM� IPÞ – INTEGER array Input/Output

On initial entry: Z need not be set.

On intermediate exit: ZðiÞ, for i ¼ 1; 2; . . . ;LZ, contains the list of features which, along with
those specified in A, define the subsets whose score is required. See IREVCM for additional
details.

On intermediate re-entry: Z must remain unchanged.

On final exit: Z is undefined.

9: LA – INTEGER Input/Output

On initial entry: LA need not be set.

On intermediate exit: if LA > 0, the number of subsets for which a score must be returned.

If LA ¼ 0, the score for a single subset should be returned. See IREVCM for additional details.

On intermediate re-entry: LA must remain unchanged.

On final exit: the number of best subsets returned.

10: Aðmax NBEST;Mð ÞÞ – INTEGER array Input/Output

On initial entry: A need not be set.

On intermediate exit: AðjÞ, for j ¼ 1; 2; . . . ;LA, contains the list of features which, along with
those specified in Z, define the subsets whose score is required. See IREVCM for additional
details.

On intermediate re-entry: A must remain unchanged.

On final exit: A is undefined.

11: BSCOREðmax NBEST;Mð ÞÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: BSCORE need not be set.

On intermediate exit: BSCORE is undefined.

On intermediate re-entry: BSCOREðjÞ must hold the score for the jth subset as described in
IREVCM.

On final exit: holds the score for the LA best subsets returned in BZ.

12: BZðM� IP;NBESTÞ – INTEGER array Input/Output

On initial entry: BZ need not be set.

On intermediate exit: BZ is used for storage between calls to H05AAF.

On intermediate re-entry: BZ must remain unchanged.

On final exit: the jth best subset is constructed by dropping the features specified in BZði; jÞ, for
i ¼ 1; 2; . . . ;M� IP and j ¼ 1; 2; . . . ;LA, from the set of all features, �. The score for the jth
best subset is given in BSCOREðjÞ.

13: MINCNT – INTEGER Input

On entry: k, the minimum number of times the effect of each feature, xi, must have been
observed before f S � xif gð Þ is estimated from f Sð Þ as opposed to being calculated directly.

If k ¼ 0 then f S � xif gð Þ is never estimated. If MINCNT < 0 then k is set to 1.
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14: GAMMA – REAL (KIND=nag_wp) Input

On entry: �, the scaling factor used when estimating scores. If GAMMA < 0 then � ¼ 1 is used.

15: ACCð2Þ – REAL (KIND=nag_wp) array Input

On entry: a measure of the accuracy of the scoring function, f .

Letting ai ¼ �1 f Sið Þj j þ �2, then when confirming whether the scoring function is strictly
increasing or decreasing (as described in MINCR), or when assessing whether a node defined by
subset Si can be trimmed, then any values in the range f Sið Þ 
 ai are treated as being
numerically equivalent.

If 0 � ACCð1Þ � 1 then �1 ¼ ACCð1Þ, otherwise �1 ¼ 0.

If ACCð2Þ � 0 then �2 ¼ ACCð2Þ, otherwise �2 ¼ 0.

In most situations setting both �1 and �2 to zero should be sufficient. Using a nonzero value,
when one is not required, can significantly increase the number of subsets that need to be
evaluated.

16: ICOMMðLICOMMÞ – INTEGER array Communication Array

On initial entry: ICOMM need not be set.

On intermediate exit: ICOMM is used for storage between calls to H05AAF.

On intermediate re-entry: ICOMM must remain unchanged.

On final exit: ICOMM is not defined. The first two elements, ICOMMð1Þ and ICOMMð2Þ contain
the minimum required value for LICOMM and LRCOMM respectively.

17: LICOMM – INTEGER Input

On entry: the length of the array ICOMM. If LICOMM is too small and LICOMM � 2 then
IFAIL ¼ 172 is returned and the minimum value for LICOMM and LRCOMM are given by
ICOMMð1Þ and ICOMMð2Þ respectively.
Constraints:

if MINCNT ¼ 0
, LICOMM � 2�max NBEST;Mð Þ þM Mþ 2ð Þ þ Mþ 1ð Þ �max M� IP; 1ð Þ þ 27;
o t h e r w i s e
LICOMM � 2�max NBEST;Mð Þ þM Mþ 3ð Þ þ 2Mþ 1ð Þ �max M� IP; 1ð Þ þ 25.

18: RCOMMðLRCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On initial entry: RCOMM need not be set.

On intermediate exit: RCOMM is used for storage between calls to H05AAF.

On intermediate re-entry: RCOMM must remain unchanged.

On final exit: RCOMM is not defined.

19: LRCOMM – INTEGER Input

On entry: the length of the array RCOMM. If LRCOMM is too small and LICOMM � 2 then
IFAIL ¼ 172 is returned and the minimum value for LICOMM and LRCOMM are given by
ICOMMð1Þ and ICOMMð2Þ respectively.
Constraints:

if MINCNT ¼ 0, LRCOMM � 9þ NBESTþM�max M� IP; 1ð Þ;
otherwise LRCOMM � 8þMþ NBESTþM�max M� IP; 1ð Þ.
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20: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, IREVCM ¼ valueh i.
Constraint: IREVCM ¼ 0 or 1.

IFAIL ¼ 21

On entry, MINCR ¼ valueh i.
Constraint: MINCR ¼ 0 or 1.

IFAIL ¼ 22

MINCR has changed between calls.
On intermediate entry, MINCR ¼ valueh i.
On initial entry, MINCR ¼ valueh i.

IFAIL ¼ 31

On entry, M ¼ valueh i.
Constraint: M � 2.

IFAIL ¼ 32

M has changed between calls.
On intermediate entry, M ¼ valueh i.
On initial entry, M ¼ valueh i.

IFAIL ¼ 41

On entry, IP ¼ valueh i and M ¼ valueh i.
Constraint: 1 � IP � M.

IFAIL ¼ 42

IP has changed between calls.
On intermediate entry, IP ¼ valueh i.
On initial entry, IP ¼ valueh i.

IFAIL ¼ 51

On entry, NBEST ¼ valueh i.
Constraint: NBEST � 1.
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IFAIL ¼ 52

NBEST has changed between calls.
On intermediate entry, NBEST ¼ valueh i.
On initial entry, NBEST ¼ valueh i.

IFAIL ¼ 53

On entry, NBEST ¼ valueh i.
But only valueh i best subsets could be calculated.

IFAIL ¼ 61

DROP has changed between calls.
On intermediate entry, DROP ¼ valueh i.
On initial entry, DROP ¼ valueh i.

IFAIL ¼ 71

LZ has changed between calls.
On entry, LZ ¼ valueh i.
On previous exit, LZ ¼ valueh i.

IFAIL ¼ 91

LA has changed between calls.
On entry, LA ¼ valueh i.
On previous exit, LA ¼ valueh i.

IFAIL ¼ 111

BSCOREð valueh iÞ ¼ valueh i, which is inconsistent with the score for the parent node. Score for
the parent node is valueh i.

IFAIL ¼ 131

MINCNT has changed between calls.
On intermediate entry, MINCNT ¼ valueh i.
On initial entry, MINCNT ¼ valueh i.

IFAIL ¼ 141

GAMMA has changed between calls.
On intermediate entry, GAMMA ¼ valueh i.
On initial entry, GAMMA ¼ valueh i.

IFAIL ¼ 151

ACCð1Þ has changed between calls.
On intermediate entry, ACCð1Þ ¼ valueh i.
On initial entry, ACCð1Þ ¼ valueh i.

IFAIL ¼ 152

ACCð2Þ has changed between calls.
On intermediate entry, ACCð2Þ ¼ valueh i.
On initial entry, ACCð2Þ ¼ valueh i.

IFAIL ¼ 161

ICOMM has been corrupted between calls.
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IFAIL ¼ 171

On entry, LICOMM ¼ valueh i, LRCOMM ¼ valueh i.
Constraint: LICOMM � valueh i, LRCOMM � valueh i.
ICOMM is too small to return the required array sizes.

IFAIL ¼ 172

On entry, LICOMM ¼ valueh i, LRCOMM ¼ valueh i.
Constraint: LICOMM � valueh i, LRCOMM � valueh i.
The minimum required values for LICOMM and LRCOMM are returned in ICOMMð1Þ and
ICOMMð2Þ respectively.

IFAIL ¼ 181

RCOMM has been corrupted between calls.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The subsets returned by H05AAF are guaranteed to be optimal up to the accuracy of your calculated
scores.

8 Parallelism and Performance

H05AAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The maximum number of unique subsets of size p from a set of m features is N ¼ m!
m�pð Þ!p! . The

efficiency of the branch and bound algorithm implemented in H05AAF comes from evaluating subsets
at internal nodes of the tree, that is subsets with more than p features, and where possible trimming
branches of the tree based on the scores at these internal nodes as described in Narendra and Fukunaga
(1977). Because of this it is possible, in some circumstances, for more than N subsets to be evaluated.
This will tend to happen when most of the features have a similar effect on the subset score.

If multiple optimal subsets exist with the same score, and NBEST is too small to return them all, then
the choice of which of these optimal subsets is returned is arbitrary.
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10 Example

This example finds the three linear regression models, with five variables, that have the smallest
residual sums of squares when fitted to a supplied dataset. The data used in this example was simulated.

10.1 Program Text

! H05AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.
Module h05aafe_mod

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: calc_subset_score, free_subset_score

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

! .. Derived Type Definitions ..
Type, Public :: calc_subset_data

Integer :: n, ldq, ldx
Real (Kind=nag_wp) :: tol
Real (Kind=nag_wp), Allocatable :: x(:,:), y(:), b(:), cov(:), h(:), &

p(:), q(:,:), res(:), se(:), wk(:), &
wt(:)

Integer, Allocatable :: isx(:)
Character (1) :: mean, weight

End Type calc_subset_data
Contains

Subroutine calc_subset_score(m,drop,lz,z,la,a,bscore,cs)
! Calculate the score associated with a particular set of feature
! subsets.

! M,DROP,LZ,Z,LA,A and BSCORE are all as described in the documentation
! of H05AAF.

! CS - Variable of type CALC_SUBSET_DATA that holds any additional data
! required by this routine

! This particular example finds the set, of a given size, of explanatory
! variables that best fit a response variable when a linear regression
! model is used. Therefore the feature set is the set of all the
! explanatory variables and the best set of features is defined as set
! of explanatory variables that gives the smallest residual sums of
! squares.
! See the documentation for G02DAF for details on linear regression
! models.

! .. Use Statements ..
Use nag_library, Only: g02daf

! .. Scalar Arguments ..
Type (calc_subset_data), Intent (Inout) :: cs
Integer, Intent (In) :: drop, la, lz, m

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: bscore(:)
Integer, Intent (In) :: a(:), z(:)

! .. Local Scalars ..
Real (Kind=nag_wp) :: rss
Integer :: i, idf, ifail, inv_drop, ip, irank
Logical :: svd
Character (200) :: line

! .. Intrinsic Procedures ..
Intrinsic :: abs, allocated, count, max

! .. Executable Statements ..
Continue
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! Allocate various arrays and read in the data if this is the first time
! this routine has been called

If (.Not. allocated(cs%x)) Then
! Read in the number of observations for the data used in the linear
! regression skipping any headings or blank lines

Do
Read (nin,*,Iostat=ifail) line
If (ifail/=0) Then

Exit
End If
Read (line,*,Iostat=ifail) cs%n
If (ifail==0) Then

Exit
End If

End Do

! Read in the control parameters for the linear regression
Read (nin,*) cs%tol

! Read in the data
cs%ldx = cs%n
Allocate (cs%x(cs%ldx,m),cs%y(cs%n))
Read (nin,*)(cs%x(i,1:m),cs%y(i),i=1,cs%n)

! No intercept term and no weights
cs%mean = ’Z’
cs%weight = ’U’

! Allocate memory required by the regression routine
cs%ldq = cs%n
Allocate (cs%b(m),cs%cov((m*m+m)/2),cs%h(cs%n),cs%p(m*(m+ &

2)),cs%q(cs%ldq,m+1),cs%res(cs%n),cs%se(m),cs%wk(m*m+5*(m- &
1)),cs%wt(1),cs%isx(m))

End If

! Set up the initial feature set.
! If DROP = 0, this is the Null set (i.e. no features).
! If DROP = 1 then this is the full set (i.e. all features)

cs%isx(1:m) = drop

! Add (if DROP = 0) or remove (if DROP = 1) the all the features
! specified in Z

inv_drop = abs(drop-1)
Do i = 1, lz

cs%isx(z(i)) = inv_drop
End Do

Do i = 1, max(la,1)
If (la>0) Then

If (i>1) Then
! Reset the feature altered at the last iteration

cs%isx(a(i-1)) = drop
End If

! Add or drop the I’th feature in A
cs%isx(a(i)) = inv_drop

End If

ip = count(cs%isx(1:m)==1)

! Fit the regression model
ifail = 0
Call g02daf(cs%mean,cs%weight,cs%n,cs%x,cs%ldx,m,cs%isx,ip,cs%y, &

cs%wt,rss,idf,cs%b,cs%se,cs%cov,cs%res,cs%h,cs%q,cs%ldq,svd,irank, &
cs%p,cs%tol,cs%wk,ifail)

! Return the score (the residual sums of squares)
bscore(i) = rss

End Do
End Subroutine calc_subset_score
Subroutine free_subset_score(cs)
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! .. Scalar Arguments ..
Type (calc_subset_data), Intent (Inout) :: cs

! .. Intrinsic Procedures ..
Intrinsic :: allocated

! .. Executable Statements ..
If (allocated(cs%x)) Then

Deallocate (cs%x)
End If
If (allocated(cs%y)) Then

Deallocate (cs%y)
End If
If (allocated(cs%b)) Then

Deallocate (cs%b)
End If
If (allocated(cs%cov)) Then

Deallocate (cs%cov)
End If
If (allocated(cs%h)) Then

Deallocate (cs%h)
End If
If (allocated(cs%p)) Then

Deallocate (cs%p)
End If
If (allocated(cs%q)) Then

Deallocate (cs%q)
End If
If (allocated(cs%res)) Then

Deallocate (cs%res)
End If
If (allocated(cs%se)) Then

Deallocate (cs%se)
End If
If (allocated(cs%wk)) Then

Deallocate (cs%wk)
End If
If (allocated(cs%wt)) Then

Deallocate (cs%wt)
End If
If (allocated(cs%isx)) Then

Deallocate (cs%isx)
End If

End Subroutine free_subset_score
End Module h05aafe_mod

Program h05aafe

! .. Use Statements ..
Use nag_library, Only: h05aaf, nag_wp
Use h05aafe_mod, Only: calc_subset_data, calc_subset_score, &

free_subset_score, nin, nout
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Type (calc_subset_data) :: cs
Real (Kind=nag_wp) :: gamma
Integer :: cnt, drop, i, ifail, ip, irevcm, j, &

la, licomm, lrcomm, lz, m, mincnt, &
mincr, mip, nbest

! .. Local Arrays ..
Real (Kind=nag_wp) :: acc(2)
Real (Kind=nag_wp), Allocatable :: bscore(:), rcomm(:)
Integer, Allocatable :: a(:), bz(:,:), ibz(:), icomm(:), &

z(:)
Logical, Allocatable :: mask(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, pack

! .. Executable Statements ..
Write (nout,*) ’H05AAF Example Program Results’
Write (nout,*)
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! Skip headings in data file
Read (nin,*)
Read (nin,*)

! Read in the problem size
Read (nin,*) m, ip, nbest

! Read in the control parameters for the subset selection
Read (nin,*) mincr, mincnt, gamma, acc(1:2)

! Allocate memory required by the subset selection routine
mip = m - ip
Allocate (z(mip),a(max(nbest,m)),bz(mip,nbest),bscore(max(nbest,m)))

! Allocate dummy communication arrays, as we will query the required size
licomm = 2
lrcomm = 0
Allocate (icomm(licomm),rcomm(lrcomm))

! Query the required length for the communication arrays
irevcm = 0
ifail = 1
Call h05aaf(irevcm,mincr,m,ip,nbest,drop,lz,z,la,a,bscore,bz,mincnt, &

gamma,acc,icomm,licomm,rcomm,lrcomm,ifail)

! Extract the required sizes from the communication array
licomm = icomm(1)
lrcomm = icomm(2)

! Reallocate communication arrays to the correct size
Deallocate (icomm,rcomm)
Allocate (icomm(licomm),rcomm(lrcomm))

! Initialize reverse communication control flag
irevcm = 0

! Call the reverse communication best subset routine in a loop.
! The loop should terminate when IRECVM = 0 on exit

cnt = 0
rev_lp: Do

ifail = -1
Call h05aaf(irevcm,mincr,m,ip,nbest,drop,lz,z,la,a,bscore,bz,mincnt, &

gamma,acc,icomm,licomm,rcomm,lrcomm,ifail)
If (irevcm==0) Then

If (ifail==0 .Or. ifail==53) Then
! No error, or a warning was issued

Exit rev_lp
Else

! An error occurred
Go To 100

End If
End If

! Calculate and return the score for the required models and keep track
! of the number of subsets evaluated

cnt = cnt + max(1,la)
Call calc_subset_score(m,drop,lz,z,la,a,bscore,cs)

End Do rev_lp

Call free_subset_score(cs)

! Titles
Write (nout,99999) ’ Score Feature Subset’
Write (nout,99999) ’ ----- --------------’

! Display the best subsets and corresponding scores. H05AAF returns a list
! of features excluded from the best subsets, so this is inverted to give
! the set of features included in each subset

Allocate (ibz(m),mask(m))
ibz(1:m) = (/(i,i=1,m)/)
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Do i = 1, la
mask(1:m) = .True.
Do j = 1, mip

mask(bz(j,i)) = .False.
End Do
Write (nout,99998) bscore(i), pack(ibz,mask)

End Do

Write (nout,*)
If (ifail==53) Then

Write (nout,99997) nbest, &
’ subsets of the requested size do not exist, only ’, la, &
’ are displayed.’

End If
Write (nout,99996) cnt, ’ subsets evaluated in total’

100 Continue

99999 Format (1X,A)
99998 Format (1X,E12.5,100(1X,I5))
99997 Format (1X,I0,A,I0,A)
99996 Format (1X,I0,A)

End Program h05aafe

10.2 Program Data

H05AAF Example Program Data
Data required by H05AAF
14 5 3 :: M,IP,NBEST
0 -1 -1.0 -1.0 -1.0 :: MINCR, MINCNT, GAMMA, ACC(1:2)

Data required by the scoring function
40 :: N
1e-6 :: TOL
-1.59 0.19 0.40 0.43 -0.40 0.79 0.06
0.33 1.60 0.58 -1.12 1.23 1.07 -0.07 -2.44

-0.25 0.61 -0.36 1.16 0.61 -2.05 -0.02
-0.04 0.80 -0.73 -0.63 -0.75 -0.73 1.43 -2.97
-2.28 0.46 -0.65 0.33 0.16 -0.21 -1.61
-0.54 0.48 0.37 -0.95 -2.14 0.48 2.02 7.42
-0.52 1.05 0.64 0.02 -1.12 0.23 0.06
-1.26 1.40 -0.98 2.47 0.49 -0.02 -0.05 3.00
-0.84 1.86 0.10 0.73 -1.41 0.98 0.20
-0.89 1.84 2.56 0.60 -0.12 0.71 0.23 8.83
1.12 -0.51 -0.58 0.09 -1.14 2.11 -0.11

-0.34 -1.04 -0.43 -0.01 -0.38 1.80 0.05 0.03
0.06 0.85 -2.09 0.22 -1.35 -0.36 1.20
0.41 0.80 -0.28 0.18 0.27 0.92 0.63 2.57

-0.48 -1.02 0.08 -0.06 0.13 -1.18 2.30
0.03 0.45 0.62 -1.97 0.97 0.93 -0.18 8.31
0.08 -0.31 0.43 -0.38 0.01 1.30 0.66
0.65 -0.59 0.76 0.04 0.17 -0.76 -0.90 4.55
0.66 1.14 0.40 2.37 1.10 0.17 -0.38
1.15 -1.00 -0.13 -0.69 -0.62 -0.18 0.00 -23.10

-1.08 -0.21 -1.13 -0.79 -0.76 -1.58 0.38
-0.03 1.26 -0.51 -0.75 0.86 0.29 0.68 3.38
-0.74 -1.59 -0.58 -1.09 1.18 -1.70 -1.02
0.36 1.05 1.30 -0.98 -1.36 -1.28 -1.32 -0.13
0.40 -1.58 -1.30 -0.10 -1.34 0.65 -0.56
0.39 -0.73 -0.32 2.19 -0.49 0.69 0.18 5.47
0.75 -3.09 -0.61 -1.89 0.15 0.77 -0.49

-0.63 1.20 -0.04 1.02 0.31 0.81 -0.45 13.97
-0.65 1.57 -1.50 -1.45 0.21 0.06 0.24
2.24 -1.34 0.30 1.39 -0.38 -0.71 0.48 20.94
1.36 1.40 -1.40 -0.90 0.36 -0.21 -0.97
0.36 -0.26 0.08 0.06 -1.49 0.43 -1.61 -12.87

-1.01 1.50 -0.61 -0.25 -1.01 -0.43 1.90
-1.33 -0.96 -0.02 0.51 -1.38 -0.78 1.82 28.26
1.34 1.02 3.50 0.10 0.50 0.04 0.61
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-0.57 -2.69 -0.64 -0.34 -0.21 -1.97 -0.19 6.89
0.29 0.67 -0.38 -0.63 -0.24 1.21 -0.09
0.90 -2.20 1.72 0.29 0.66 0.19 -0.57 5.37
0.67 -0.56 -0.41 1.22 -0.30 0.77 0.82
0.36 1.18 1.87 -1.48 0.52 1.35 0.13 -1.50

-0.40 -1.10 -0.83 0.71 1.99 -0.24 1.30
-0.34 -0.70 0.28 0.16 0.27 0.37 -1.79 -23.00
-0.78 0.60 -0.45 -0.26 -0.23 0.89 0.87
1.01 1.20 0.28 0.79 2.76 0.35 1.31 14.09

-1.29 0.62 -0.59 1.52 0.62 0.21 1.31
1.09 -0.36 -0.34 -0.03 -0.59 -1.70 -0.03 -11.05
0.40 -1.45 -0.98 2.10 -1.09 -0.53 -0.38

-1.36 0.13 0.70 -1.51 0.08 -0.62 -0.64 -32.04
0.43 -0.86 0.70 -1.07 -0.76 0.72 -0.14

-1.58 0.00 0.58 -0.21 1.30 2.02 1.52 23.36
-0.48 0.01 1.30 0.58 -0.54 1.09 0.91
2.90 1.32 -1.20 -0.59 -0.51 0.20 -1.74 -5.58

-1.32 -1.41 -0.58 -1.29 1.61 -0.35 -0.72
-1.92 -1.09 0.56 -0.87 -0.71 1.25 0.10 2.48
1.43 0.69 1.34 -0.32 2.84 -1.43 -0.47

-0.01 0.83 -0.72 -0.78 0.50 -1.22 0.54 -5.30
0.82 0.46 0.15 -0.57 0.93 1.33 -0.23

-1.07 0.76 0.25 -1.96 0.39 0.24 -0.26 -7.77
-0.91 0.23 -0.19 1.58 -0.27 0.33 -0.60
-1.39 -0.30 -0.81 -0.95 0.88 -0.09 -0.35 -34.25
0.65 -1.14 1.18 -1.06 -0.68 -0.22 0.21
0.94 1.08 0.81 -0.33 0.42 -0.90 0.49 26.78

-0.36 -0.50 -0.02 -0.04 0.77 0.62 -1.35
-0.64 1.20 1.22 0.18 -1.39 -0.81 -0.99 -11.85
-1.82 1.06 0.28 0.14 0.62 -0.80 -1.08
-2.15 1.37 1.57 -1.48 -0.79 0.28 -0.20 -8.62
1.54 0.50 0.13 -0.68 0.26 -1.13 0.62

-0.43 0.39 1.14 0.15 1.03 0.46 0.40 12.35
-1.61 -0.61 0.93 -0.37 0.44 -1.45 0.58
-1.77 0.72 -2.05 -0.03 -1.24 -1.40 -0.06 -1.54
-0.48 0.67 0.04 0.27 -0.84 -0.06 -3.67
0.09 1.66 -0.30 1.67 1.08 0.00 0.43 -16.59

-1.65 -1.16 -1.17 1.12 0.11 -0.15 0.48
-1.72 1.08 -0.94 0.49 -0.56 0.95 1.09 -8.69
-0.85 -0.02 1.18 -1.16 0.49 1.56 -0.60
0.32 0.72 -1.20 2.52 1.78 0.16 -0.01 7.82

-0.60 -0.73 -1.23 1.50 0.40 -0.20 -0.65
0.68 1.09 0.40 -1.50 -2.10 0.21 -0.18 -18.56

-0.66 -0.01 -0.01 0.85 -2.04 1.17 -0.56
1.72 -0.18 1.14 -0.96 -0.92 -0.28 1.58 17.21 :: X,Y

10.3 Program Results

H05AAF Example Program Results

Score Feature Subset
----- --------------

0.10475E+04 4 7 8 10 14
0.10599E+04 4 5 7 8 14
0.10702E+04 4 5 7 10 14

45 subsets evaluated in total
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NAG Library Routine Document

H05ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

Given a set of m features and a scoring mechanism for any subset of those features, H05ABF selects
the best n subsets of size p using a direct communication branch and bound algorithm.

2 Specification

SUBROUTINE H05ABF (MINCR, M, IP, NBEST, LA, BSCORE, BZ, F, MINCNT,
GAMMA, ACC, IUSER, RUSER, IFAIL)

&

INTEGER MINCR, M, IP, NBEST, LA, BZ(M-IP,NBEST), MINCNT,
IUSER(*), IFAIL

&

REAL (KIND=nag_wp) BSCORE(NBEST), GAMMA, ACC(2), RUSER(*)
EXTERNAL F

3 Description

Given � ¼ xi : i 2 Z; 1 � i � mf g, a set of m unique features and a scoring mechanism f Sð Þ defined
for all S � � then H05ABF is designed to find So1 � �; So1j j ¼ p, an optimal subset of size p. Here
So1j j denotes the cardinality of So1, the number of elements in the set.

The definition of the optimal subset depends on the properties of the scoring mechanism, if

f Sið Þ � f Sj
� �

; for all Sj � � and Si � Sj ð1Þ

then the optimal subset is defined as one of the solutions to

maximize
S��

f Sð Þ subject to Sj j ¼ p

else if

f Sið Þ � f Sj
� �

; for all Sj � � and Si � Sj ð2Þ

then the optimal subset is defined as one of the solutions to

minimize
S��

f Sð Þ subject to Sj j ¼ p:

If neither of these properties hold then H05ABF cannot be used.

As well as returning the optimal subset, So1, H05ABF can return the best n solutions of size p. If Soi
denotes the ith best subset, for i ¼ 1; 2; . . . ; n� 1, then the iþ 1ð Þth best subset is defined as the
solution to either

maximize
S��� Soj:j2Z;1�j�if g

f Sð Þ subject to Sj j ¼ p

or

minimize
S��� Soj:j2Z;1�j�if g

f Sð Þ subject to Sj j ¼ p

depending on the properties of f .

The solutions are found using a branch and bound method, where each node of the tree is a subset of �.
Assuming that (1) holds then a particular node, defined by subset Si, can be trimmed from the tree if
f Sið Þ < f̂ Sonð Þ where f̂ Sonð Þ is the nth highest score we have observed so far for a subset of size p, i.
e., our current best guess of the score for the nth best subset. In addition, because of (1) we can also
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drop all nodes defined by any subset Sj where Sj � Si, thus avoiding the need to enumerate the whole
tree. Similar short cuts can be taken if (2) holds. A full description of this branch and bound algorithm
can be found in Ridout (1988).

Rather than calculate the score at a given node of the tree H05ABF utilizes the fast branch and bound
algorithm of Somol et al. (2004), and attempts to estimate the score where possible. For each feature,
xi, two values are stored, a count ci and �̂i, an estimate of the contribution of that feature. An initial
value of zero is used for both ci and �̂i. At any stage of the algorithm where both f Sð Þ and
f S � xif gð Þ have been calculated (as opposed to estimated), the estimated contribution of the feature xi
is updated to

ci�̂i þ f Sð Þ � f S � xj
� � �� �

ci þ 1

and ci is incremented by 1, therefore at each stage �̂i is the mean contribution of xi observed so far and
ci is the number of observations used to calculate that mean.

As long as ci � k, for the user-supplied constant k, then rather than calculating f S � xif gð Þ this routine
estimates it using f̂ S � xif gð Þ ¼ f Sð Þ � ��̂i or f̂ Sð Þ � ��̂i if f Sð Þ has been estimated, where � is a
user-supplied scaling factor. An estimated score is never used to trim a node or returned as the optimal
score.

Setting k ¼ 0 in this routine will cause the algorithm to always calculate the scores, returning to the
branch and bound algorithm of Ridout (1988). In most cases it is preferable to use the fast branch and
bound algorithm, by setting k > 0, unless the score function is iterative in nature, i.e., f Sð Þ must have
been calculated before f S � xif gð Þ can be calculated.

H05ABF is a direct communication version of H05AAF.

4 References

Narendra P M and Fukunaga K (1977) A branch and bound algorithm for feature subset selection IEEE
Transactions on Computers 9 917–922

Ridout M S (1988) Algorithm AS 233: An improved branch and bound algorithm for feature subset
selection Journal of the Royal Statistics Society, Series C (Applied Statistics) (Volume 37) 1 139–147

Somol P, Pudil P and Kittler J (2004) Fast branch and bound algorithms for optimal feature selection
IEEE Transactions on Pattern Analysis and Machine Intelligence (Volume 26) 7 900–912

5 Arguments

1: MINCR – INTEGER Input

On entry: flag indicating whether the scoring function f is increasing or decreasing.

MINCR ¼ 1
f Sið Þ � f Sj

� �
, i.e., the subsets with the largest score will be selected.

MINCR ¼ 0
f Sið Þ � f Sj

� �
, i.e., the subsets with the smallest score will be selected.

For all Sj � � and Si � Sj.
Constraint: MINCR ¼ 0 or 1.

2: M – INTEGER Input

On entry: m, the number of features in the full feature set.

Constraint: M � 2.
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3: IP – INTEGER Input

On entry: p, the number of features in the subset of interest.

Constraint: 1 � IP � M.

4: NBEST – INTEGER Input

On entry: n, the maximum number of best subsets required. The actual number of subsets
returned is given by LA on final exit. If on final exit LA 6¼ NBEST then IFAIL ¼ 42 is returned.

Constraint: NBEST � 1.

5: LA – INTEGER Output

On exit: the number of best subsets returned.

6: BSCOREðNBESTÞ – REAL (KIND=nag_wp) array Output

On exit: holds the score for the LA best subsets returned in BZ.

7: BZðM� IP;NBESTÞ – INTEGER array Output

On exit: the jth best subset is constructed by dropping the features specified in BZði; jÞ, for
i ¼ 1; 2; . . . ;M� IP and j ¼ 1; 2; . . . ;LA, from the set of all features, �. The score for the jth
best subset is given in BSCOREðjÞ.

8: F – SUBROUTINE, supplied by the user. External Procedure

F must evaluate the scoring function f .

The specification of F is:

SUBROUTINE F (M, DROP, LZ, Z, LA, A, SCORE, IUSER, RUSER, INFO)

INTEGER M, DROP, LZ, Z(LZ), LA, A(LA), IUSER(*), INFO
REAL (KIND=nag_wp) SCORE(max(LA,1)), RUSER(*)

1: M – INTEGER Input

On entry: m ¼ �j j, the number of features in the full feature set.

2: DROP – INTEGER Input

On entry: flag indicating whether the intermediate subsets should be constructed by
dropping features from the full set (DROP ¼ 1) or adding features to the empty set
(DROP ¼ 0). See SCORE for additional details.

3: LZ – INTEGER Input

On entry: the number of features stored in Z.

4: ZðLZÞ – INTEGER array Input

On entry: ZðiÞ, for i ¼ 1; 2; . . . ;LZ, contains the list of features which, along with those
specified in A, define the subsets whose score is required. See SCORE for additional
details.

5: LA – INTEGER Input

On entry: if LA > 0, the number of subsets for which a score must be returned.

If LA ¼ 0, the score for a single subset should be returned. See SCORE for additional
details.
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6: AðLAÞ – INTEGER array Input

On entry: AðjÞ, for j ¼ 1; 2; . . . ;LA, contains the list of features which, along with
those specified in Z, define the subsets whose score is required. See SCORE for
additional details.

7: SCOREðmax LA; 1ð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the value f Sj

� �
, for j ¼ 1; 2; . . . ;LA, the score associated with the jth subset.

Sj is constructed as follows:

DROP ¼ 1
Sj is constructed by dropping the features specified in the first LZ elements of Z
and the single feature given in AðjÞ from the full set of features, �. The subset
will therefore contain M� LZ� 1 features.

DROP ¼ 0
Sj is constructed by adding the features specified in the first LZ elements of Z
and the single feature specified in AðjÞ to the empty set, ;. The subset will
therefore contain LZþ 1 features.

In both cases the individual features are referenced by the integers 1 to M with 1
indicating the first feature, 2 the second, etc., for some arbitrary ordering of the
features, chosen by you prior to calling H05ABF. For example, 1 might refer to the first
variable in a particular set of data, 2 the second, etc..

If LA ¼ 0, the score for a single subset should be returned. This subset is constructed
by adding or removing only those features specified in the first LZ elements of Z. If
LZ ¼ 0, this subset will either be � or ;.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to H05ABF. You should
use the arrays IUSER and RUSER to supply information to F.

10: INFO – INTEGER Input/Output

On entry: INFO ¼ 0.

On exit: set INFO to a nonzero value if you wish H05ABF to terminate with
IFAIL ¼ 82.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which H05ABF is called. Arguments denoted as Input must not be changed by this
procedure.

9: MINCNT – INTEGER Input

On entry: k, the minimum number of times the effect of each feature, xi, must have been
observed before f S � xif gð Þ is estimated from f Sð Þ as opposed to being calculated directly.

If k ¼ 0 then f S � xif gð Þ is never estimated. If MINCNT < 0 then k is set to 1.

10: GAMMA – REAL (KIND=nag_wp) Input

On entry: �, the scaling factor used when estimating scores. If GAMMA < 0 then � ¼ 1 is used.

11: ACCð2Þ – REAL (KIND=nag_wp) array Input

On entry: a measure of the accuracy of the scoring function, f .

Letting ai ¼ �1 f Sið Þj j þ �2, then when confirming whether the scoring function is strictly
increasing or decreasing (as described in MINCR), or when assessing whether a node defined by
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subset Si can be trimmed, then any values in the range f Sið Þ 
 ai are treated as being
numerically equivalent.

If 0 � ACCð1Þ � 1 then �1 ¼ ACCð1Þ, otherwise �1 ¼ 0.

If ACCð2Þ � 0 then �2 ¼ ACCð2Þ, otherwise �2 ¼ 0.

In most situations setting both �1 and �2 to zero should be sufficient. Using a nonzero value,
when one is not required, can significantly increase the number of subsets that need to be
evaluated.

12: IUSERð�Þ – INTEGER array User Workspace
13: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by H05ABF, but are passed directly to F and should be used to
pass information to this routine.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, MINCR ¼ valueh i.
Constraint: MINCR ¼ 0 or 1.

IFAIL ¼ 21

On entry, M ¼ valueh i.
Constraint: M � 2.

IFAIL ¼ 31

On entry, IP ¼ valueh i and M ¼ valueh i.
Constraint: 1 � IP � M.

IFAIL ¼ 41

On entry, NBEST ¼ valueh i.
Constraint: NBEST � 1.

IFAIL ¼ 42

On entry, NBEST ¼ valueh i.
But only valueh i best subsets could be calculated.
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IFAIL ¼ 81

On exit from F, SCOREð valueh iÞ ¼ valueh i, which is inconsistent with the score for the parent
node. Score for the parent node is valueh i.

IFAIL ¼ 82

A nonzero value for INFO has been returned: INFO ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The subsets returned by H05ABF are guaranteed to be optimal up to the accuracy of the calculated
scores.

8 Parallelism and Performance

H05ABF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The maximum number of unique subsets of size p from a set of m features is N ¼ m!
m�pð Þ!p! . The

efficiency of the branch and bound algorithm implemented in H05ABF comes from evaluating subsets
at internal nodes of the tree, that is subsets with more than p features, and where possible trimming
branches of the tree based on the scores at these internal nodes as described in Narendra and Fukunaga
(1977). Because of this it is possible, in some circumstances, for more than N subsets to be evaluated.
This will tend to happen when most of the features have a similar effect on the subset score.

If multiple optimal subsets exist with the same score, and NBEST is too small to return them all, then
the choice of which of these optimal subsets is returned is arbitrary.

10 Example

This example finds the three linear regression models, with five variables, that have the smallest
residual sums of squares when fitted to a supplied dataset. The data used in this example was simulated.
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10.1 Program Text

! H05ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.
Module h05abfe_mod

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f, prepare_user_arrays

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine f(m,drop,lz,z,la,a,score,iuser,ruser,info)

! Score calculating function required by H05ABF

! M,DROP,LZ,Z,LA,A,SCORE IUSER and RUSER are all as described in the
! documentation of H05ABF.

! This particular example finds the set, of a given size, of explanatory
! variables that best fit a response variable when a linear regression
! model is used. Therefore the feature set is the set of all the
! explanatory variables and the best set of features is defined as set
! of explanatory variables that gives the smallest residual sums of
! squares.
! See the documentation for G02DAF for details on linear regression
! models.

! .. Use Statements ..
Use nag_library, Only: g02daf

! .. Scalar Arguments ..
Integer, Intent (In) :: drop, la, lz, m
Integer, Intent (Inout) :: info

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (Out) :: score(max(la,1))
Integer, Intent (In) :: a(la), z(lz)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: rss, tol
Integer :: ex, ey, i, idf, ifail, inv_drop, ip, &

irank, ldq, ldx, n, sx, sy
Logical :: svd
Character (1) :: mean, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), h(:), p(:), q(:,:), &

res(:), se(:), wk(:), wt(:)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, count, max

! .. Executable Statements ..
Continue
info = 0

n = iuser(1)
ldq = n
ldx = n

! No intercept term and no weights
mean = ’Z’
weight = ’U’

! Allocate various arrays required by G02DAF
Allocate (b(m),cov((m*m+m)/2),h(n),p(m*(m+2)),q(ldq,m+1),res(n),se(m), &

wk(m*m+5*(m-1)),wt(1),isx(m))

! Set up the initial feature set. If DROP = 0, this is the Null set
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! (i.e. no features). If DROP = 1 then this is the full set (i.e. all
! features)

isx(1:m) = drop

! Add (if DROP = 0) or remove (if DROP = 1) the all the features
! specified in Z

inv_drop = abs(drop-1)
Do i = 1, lz

isx(z(i)) = inv_drop
End Do

! Get the start and end of X and Y in RUSER
sx = iuser(4)
ex = sx + m*n - 1
sy = iuser(3)
ey = sy + n - 1

! Extract some parameters from RUSER
tol = ruser(iuser(2))

Do i = 1, max(la,1)
If (la>0) Then

If (i>1) Then
! Reset the feature altered at the last iteration

isx(a(i-1)) = drop
End If

! Add or drop the I’th feature in A
isx(a(i)) = inv_drop

End If

ip = count(isx(1:m)==1)

! Fit the regression model
ifail = 0
Call g02daf(mean,weight,n,ruser(sx:ex),ldx,m,isx,ip,ruser(sy:ey),wt, &

rss,idf,b,se,cov,res,h,q,ldq,svd,irank,p,tol,wk,ifail)

! Return the score (the residual sums of squares)
score(i) = rss

End Do

! Keep track of the number of subsets evaluated
iuser(5) = iuser(5) + max(1,la)

End Subroutine f

Subroutine prepare_user_arrays(m,iuser,ruser)
! Populate the user arrays

! M is the maximum number of features (as per H05ABF)

! In this example RUSER holds the data required for the linear
! regression (the matrix of explanatory variables, X, the vector of
! response values, Y, and the tolerance, TOL) and IUSER holds number
! of observations and the location of the various elements in RUSER

! .. Scalar Arguments ..
Integer, Intent (In) :: m

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: ruser(:)
Integer, Allocatable, Intent (Out) :: iuser(:)

! .. Local Scalars ..
Integer :: i, ierr, j, liuser, lruser, n, p1, &

p2
Character (200) :: line

! .. Executable Statements ..
Continue

! Read in the number of observations for the data used in the linear
! regression skipping any headings or blank lines

Do
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Read (nin,*,Iostat=ierr) line
If (ierr/=0) Then

Exit
End If
Read (line,*,Iostat=ierr) n
If (ierr==0) Then

Exit
End If

End Do

! Allocate space for the user arrays
liuser = 5
lruser = n + n*m + 1
Allocate (ruser(lruser),iuser(liuser))

! Number of observations
iuser(1) = n

! Location of TOL in RUSER
iuser(2) = 1

! Start of Y in RUSER
iuser(3) = 2

! Start of X in RUSER
iuser(4) = iuser(3) + n

! Keep track of the number of subsets evaluated
iuser(5) = 0

! Read in the tolerance for the regression
Read (nin,*) ruser(iuser(2))

! Read in the data
p1 = iuser(3)
p2 = iuser(4)
Do i = 0, n - 1

Read (nin,*)(ruser(p2+i+j*n),j=0,m-1), ruser(p1+i)
End Do

End Subroutine prepare_user_arrays
End Module h05abfe_mod

Program h05abfe

! .. Use Statements ..
Use nag_library, Only: h05abf, nag_wp
Use h05abfe_mod, Only: f, nin, nout, prepare_user_arrays

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: gamma
Integer :: i, ifail, ip, j, la, m, mincnt, &

mincr, mip, nbest
! .. Local Arrays ..

Real (Kind=nag_wp) :: acc(2)
Real (Kind=nag_wp), Allocatable :: bscore(:), ruser(:)
Integer, Allocatable :: a(:), bz(:,:), ibz(:), iuser(:), &

z(:)
Logical, Allocatable :: mask(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, pack

! .. Executable Statements ..
Write (nout,*) ’H05ABF Example Program Results’
Write (nout,*)

! Skip headings in data file
Read (nin,*)
Read (nin,*)

! Read in the problem size
Read (nin,*) m, ip, nbest

! Read in the control parameters for the subset selection
Read (nin,*) mincr, mincnt, gamma, acc(1:2)
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! Allocate memory required by the subset selection routine
mip = m - ip
Allocate (z(mip),a(max(nbest,m)),bz(mip,nbest),bscore(max(nbest,m)))

! Prepare the user workspace arrays IUSER and RUSER
Call prepare_user_arrays(m,iuser,ruser)

! Call the forward communication best subset routine
ifail = -1
Call h05abf(mincr,m,ip,nbest,la,bscore,bz,f,mincnt,gamma,acc,iuser, &

ruser,ifail)
If (ifail/=0 .And. ifail/=42) Then

! An error occurred
Go To 100

End If

! Titles
Write (nout,99999) ’ Score Feature Subset’
Write (nout,99999) ’ ----- --------------’

! Display the best subsets and corresponding scores. H05AAF returns a list
! of features excluded from the best subsets, so this is inverted to give
! the set of features included in each subset

Allocate (ibz(m),mask(m))
ibz(1:m) = (/(i,i=1,m)/)
Do i = 1, la

mask(1:m) = .True.
Do j = 1, mip

mask(bz(j,i)) = .False.
End Do
Write (nout,99998) bscore(i), pack(ibz,mask)

End Do

Write (nout,*)
If (ifail==42) Then

Write (nout,99997) nbest, &
’ subsets of the requested size do not exist, only ’, la, &
’ are displayed.’

End If
Write (nout,99996) iuser(5), ’ subsets evaluated in total’

100 Continue

99999 Format (1X,A)
99998 Format (1X,E12.5,100(1X,I5))
99997 Format (1X,I0,A,I0,A)
99996 Format (1X,I0,A)

End Program h05abfe

10.2 Program Data

H05ABF Example Program Data
Data required by H05ABFE
14 5 3 :: M,IP,NBEST
0 -1 -1.0 -1.0 -1.0 :: MINCR, MINCNT, GAMMA, ACC(1:2)

Data required by the scoring function
40 :: N
1e-6 :: TOL
-1.59 0.19 0.40 0.43 -0.40 0.79 0.06
0.33 1.60 0.58 -1.12 1.23 1.07 -0.07 -2.44

-0.25 0.61 -0.36 1.16 0.61 -2.05 -0.02
-0.04 0.80 -0.73 -0.63 -0.75 -0.73 1.43 -2.97
-2.28 0.46 -0.65 0.33 0.16 -0.21 -1.61
-0.54 0.48 0.37 -0.95 -2.14 0.48 2.02 7.42
-0.52 1.05 0.64 0.02 -1.12 0.23 0.06
-1.26 1.40 -0.98 2.47 0.49 -0.02 -0.05 3.00
-0.84 1.86 0.10 0.73 -1.41 0.98 0.20
-0.89 1.84 2.56 0.60 -0.12 0.71 0.23 8.83
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1.12 -0.51 -0.58 0.09 -1.14 2.11 -0.11
-0.34 -1.04 -0.43 -0.01 -0.38 1.80 0.05 0.03
0.06 0.85 -2.09 0.22 -1.35 -0.36 1.20
0.41 0.80 -0.28 0.18 0.27 0.92 0.63 2.57

-0.48 -1.02 0.08 -0.06 0.13 -1.18 2.30
0.03 0.45 0.62 -1.97 0.97 0.93 -0.18 8.31
0.08 -0.31 0.43 -0.38 0.01 1.30 0.66
0.65 -0.59 0.76 0.04 0.17 -0.76 -0.90 4.55
0.66 1.14 0.40 2.37 1.10 0.17 -0.38
1.15 -1.00 -0.13 -0.69 -0.62 -0.18 0.00 -23.10

-1.08 -0.21 -1.13 -0.79 -0.76 -1.58 0.38
-0.03 1.26 -0.51 -0.75 0.86 0.29 0.68 3.38
-0.74 -1.59 -0.58 -1.09 1.18 -1.70 -1.02
0.36 1.05 1.30 -0.98 -1.36 -1.28 -1.32 -0.13
0.40 -1.58 -1.30 -0.10 -1.34 0.65 -0.56
0.39 -0.73 -0.32 2.19 -0.49 0.69 0.18 5.47
0.75 -3.09 -0.61 -1.89 0.15 0.77 -0.49

-0.63 1.20 -0.04 1.02 0.31 0.81 -0.45 13.97
-0.65 1.57 -1.50 -1.45 0.21 0.06 0.24
2.24 -1.34 0.30 1.39 -0.38 -0.71 0.48 20.94
1.36 1.40 -1.40 -0.90 0.36 -0.21 -0.97
0.36 -0.26 0.08 0.06 -1.49 0.43 -1.61 -12.87

-1.01 1.50 -0.61 -0.25 -1.01 -0.43 1.90
-1.33 -0.96 -0.02 0.51 -1.38 -0.78 1.82 28.26
1.34 1.02 3.50 0.10 0.50 0.04 0.61

-0.57 -2.69 -0.64 -0.34 -0.21 -1.97 -0.19 6.89
0.29 0.67 -0.38 -0.63 -0.24 1.21 -0.09
0.90 -2.20 1.72 0.29 0.66 0.19 -0.57 5.37
0.67 -0.56 -0.41 1.22 -0.30 0.77 0.82
0.36 1.18 1.87 -1.48 0.52 1.35 0.13 -1.50

-0.40 -1.10 -0.83 0.71 1.99 -0.24 1.30
-0.34 -0.70 0.28 0.16 0.27 0.37 -1.79 -23.00
-0.78 0.60 -0.45 -0.26 -0.23 0.89 0.87
1.01 1.20 0.28 0.79 2.76 0.35 1.31 14.09

-1.29 0.62 -0.59 1.52 0.62 0.21 1.31
1.09 -0.36 -0.34 -0.03 -0.59 -1.70 -0.03 -11.05
0.40 -1.45 -0.98 2.10 -1.09 -0.53 -0.38

-1.36 0.13 0.70 -1.51 0.08 -0.62 -0.64 -32.04
0.43 -0.86 0.70 -1.07 -0.76 0.72 -0.14

-1.58 0.00 0.58 -0.21 1.30 2.02 1.52 23.36
-0.48 0.01 1.30 0.58 -0.54 1.09 0.91
2.90 1.32 -1.20 -0.59 -0.51 0.20 -1.74 -5.58

-1.32 -1.41 -0.58 -1.29 1.61 -0.35 -0.72
-1.92 -1.09 0.56 -0.87 -0.71 1.25 0.10 2.48
1.43 0.69 1.34 -0.32 2.84 -1.43 -0.47

-0.01 0.83 -0.72 -0.78 0.50 -1.22 0.54 -5.30
0.82 0.46 0.15 -0.57 0.93 1.33 -0.23

-1.07 0.76 0.25 -1.96 0.39 0.24 -0.26 -7.77
-0.91 0.23 -0.19 1.58 -0.27 0.33 -0.60
-1.39 -0.30 -0.81 -0.95 0.88 -0.09 -0.35 -34.25
0.65 -1.14 1.18 -1.06 -0.68 -0.22 0.21
0.94 1.08 0.81 -0.33 0.42 -0.90 0.49 26.78

-0.36 -0.50 -0.02 -0.04 0.77 0.62 -1.35
-0.64 1.20 1.22 0.18 -1.39 -0.81 -0.99 -11.85
-1.82 1.06 0.28 0.14 0.62 -0.80 -1.08
-2.15 1.37 1.57 -1.48 -0.79 0.28 -0.20 -8.62
1.54 0.50 0.13 -0.68 0.26 -1.13 0.62

-0.43 0.39 1.14 0.15 1.03 0.46 0.40 12.35
-1.61 -0.61 0.93 -0.37 0.44 -1.45 0.58
-1.77 0.72 -2.05 -0.03 -1.24 -1.40 -0.06 -1.54
-0.48 0.67 0.04 0.27 -0.84 -0.06 -3.67
0.09 1.66 -0.30 1.67 1.08 0.00 0.43 -16.59

-1.65 -1.16 -1.17 1.12 0.11 -0.15 0.48
-1.72 1.08 -0.94 0.49 -0.56 0.95 1.09 -8.69
-0.85 -0.02 1.18 -1.16 0.49 1.56 -0.60
0.32 0.72 -1.20 2.52 1.78 0.16 -0.01 7.82

-0.60 -0.73 -1.23 1.50 0.40 -0.20 -0.65
0.68 1.09 0.40 -1.50 -2.10 0.21 -0.18 -18.56

-0.66 -0.01 -0.01 0.85 -2.04 1.17 -0.56
1.72 -0.18 1.14 -0.96 -0.92 -0.28 1.58 17.21 :: X,Y
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10.3 Program Results

H05ABF Example Program Results

Score Feature Subset
----- --------------

0.10475E+04 4 7 8 10 14
0.10599E+04 4 5 7 8 14
0.10702E+04 4 5 7 10 14

45 subsets evaluated in total

H05ABF NAG Library Manual

H05ABF.12 (last) Mark 26



NAG Library Chapter Contents

M01 – Sorting and Searching

M01 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

M01CAF 12 nagf_sort_realvec_sort
Sort a vector, real numbers

M01CBF 12 nagf_sort_intvec_sort
Sort a vector, integer numbers

M01CCF 12 nagf_sort_charvec_sort
Sort a vector, character data

M01DAF 12 nagf_sort_realvec_rank
Rank a vector, real numbers

M01DBF 12 nagf_sort_intvec_rank
Rank a vector, integer numbers

M01DCF 12 nagf_sort_charvec_rank
Rank a vector, character data

M01DEF 12 nagf_sort_realmat_rank_rows
Rank rows of a matrix, real numbers

M01DFF 12 nagf_sort_intmat_rank_rows
Rank rows of a matrix, integer numbers

M01DJF 12 nagf_sort_realmat_rank_columns
Rank columns of a matrix, real numbers

M01DKF 12 nagf_sort_intmat_rank_columns
Rank columns of a matrix, integer numbers

M01DZF 12 nagf_sort_arbitrary_rank
Rank arbitrary data

M01EAF 12 nagf_sort_realvec_rank_rearrange
Rearrange a vector according to given ranks, real numbers

M01EBF 12 nagf_sort_intvec_rank_rearrange
Rearrange a vector according to given ranks, integer numbers

M01ECF 12 nagf_sort_charvec_rank_rearrange
Rearrange a vector according to given ranks, character data

M01EDF 19 nagf_sort_cmplxvec_rank_rearrange
Rearrange a vector according to given ranks, complex numbers

M01NAF 22 nagf_sort_realvec_search
Binary search in set of real numbers

M01NBF 22 nagf_sort_intvec_search
Binary search in set of integer numbers

M01NCF 22 nagf_sort_charvec_search
Binary search in set of character data

M01ZAF 12 nagf_sort_permute_invert
Invert a permutation

M01ZBF 12 nagf_sort_permute_check
Check validity of a permutation

M01ZCF 12 nagf_sort_permute_decompose
Decompose a permutation into cycles
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NAG Library Chapter Introduction

M01 – Sorting and Searching
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1 Scope of the Chapter

This chapter is concerned with sorting and searching numeric or character data. It handles only the
simplest types of data structure and it is concerned only with internal sorting and searching – that is,
sorting and searching a set of data which can all be stored within the program.

If you have large files of data or complicated data structures to be sorted or searched you should use a
comprehensive sorting or searching program or package.

2 Background to the Problems

2.1 Sorting

The usefulness of sorting is obvious (perhaps a little too obvious, since sorting can be expensive and is
sometimes done when not strictly necessary). Sorting may traditionally be associated with data
processing and non-numerical programming, but it has many uses within the realm of numerical
analysis. For example, within the NAG Library, sorting is used to arrange eigenvalues in ascending
order of absolute value, in the manipulation of sparse matrices, and in the ranking of observations for
nonparametric statistics.

The general problem may be defined as follows. We are given N items of data

R1; R2; . . . ; RN:

Each item Ri contains a key Ki which can be ordered relative to any other key according to some
specified criterion (for example, ascending numeric value). The problem is to determine a permutation

p 1ð Þ; p 2ð Þ; . . . ; p Nð Þ

which puts the keys in order:

Kp 1ð Þ � Kp 2ð Þ � . . . � Kp Nð Þ:

Sometimes we may wish actually to rearrange the items so that their keys are in order; for other
purposes we may simply require a table of indices so that the items can be referred to in sorted order;
or yet again we may require a table of ranks, that is, the positions of each item in the sorted order.

For example, given the single-character items, to be sorted into alphabetic order

E B A D C

the indices of the items in sorted order are

3 2 5 4 1

and the ranks of the items are

5 2 1 4 3.

Indices may be converted to ranks, and vice versa, by simply computing the inverse permutation.

The items may consist solely of the key (each item may simply be a number). On the other hand, the
items may contain additional information (for example, each item may be an eigenvalue of a matrix and
its associated eigenvector, the eigenvalue being the key). In the latter case there may be many distinct
items with equal keys, and it may be important to preserve the original order among them (if this is
achieved, the sorting is called ‘stable’).

There are a number of ingenious algorithms for sorting. For a fascinating discussion of them, and of the
whole subject, see Knuth (1973).

2.2 Searching

Searching is a process of retrieving data stored in a computer's memory.

The general problem may be defined as follows:
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We are given n items of data that have been sorted and a sought-after item x. Each item contains
a key. The problem is to find which item has x as its key.

We may be interested in different information gained from the search. We may wish to know if
item x was or was not found or the position of the item that was found.

There are a number of different search algorithms. For more on the subject, see Knuth (1973) and Wirth
(2004).

3 Recommendations on Choice and Use of Available Routines

The following categories of routines are provided:

– routines which rearrange the data into sorted order (M01C);

– routines which determine the ranks of the data, leaving the data unchanged (M01D);

– routines which rearrange the data according to pre-determined ranks (M01E);

– routines which search the data (M01N);

– service routines (M01Z).

In the first two and the fourth categories routines are provided for real and integer numeric data, and for
character data. In the third category there are routines for rearranging real, complex , integer and
character data. Utilities for the manipulation of sparse matrices can be found in Chapter F11.

If the task is simply to rearrange a one-dimensional array of data into sorted order, then an M01C
routine should be used, since this requires no extra workspace and is faster than any other method.
There are no M01C routines for more complicated data structures, because the cost of rearranging the
data is likely to outstrip the cost of comparisons. Instead, a combination of M01D and M01E routines,
or some other approach, must be used as described below.

For many applications it is in fact preferable to separate the task of determining the sorted order
(ranking) from the task of rearranging data into a pre-determined order; the latter task may not need to
be performed at all. Frequently it may be sufficient to refer to the data in sorted order via an index
vector, without rearranging it. Frequently also one set of data (e.g., a column of a matrix) is used for
determining a set of ranks, which are then applied to other data (e.g., the remaining columns of the
matrix).

To determine the ranks of a set of data, use an M01D routine. Routines are provided for ranking one-
dimensional arrays, and for ranking rows or columns of two-dimensional arrays. For ranking an
arbitrary data structure, use M01DZF, which is, however, much less efficient than the other M01D
routines.

To create an index vector so that data can be referred to in sorted order, first call an M01D routine to
determine the ranks, and then call M01ZAF to convert the vector of ranks into an index vector.

To rearrange data according to pre-determined ranks: use an M01E routine if the data is stored in a one-
dimensional array; or if the data is stored in a more complicated structure

either use an index vector to generate a new copy of the data in the desired order

or rearrange the data without using extra storage by first calling M01ZCF and then using the
simple code-framework given in the document for M01ZCF (assuming that the elements of data
all occupy equal storage).

To search for an item in a one-dimensional sorted array of data, use an M01N routine. These routines
return the index of the first item with the key equal to the sought-after item or if it is not found, the
index of the last item containing the biggest value less than the sought-after item.

Examples of these operations can be found in the routine documents of the relevant routines.
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4 Functionality Index

Ranking,
arbitrary data................................................................................................................... M01DZF
columns of a matrix,

integer numbers.......................................................................................................... M01DKF
real numbers .............................................................................................................. M01DJF

rows of a matrix,
integer numbers.......................................................................................................... M01DFF
real numbers .............................................................................................................. M01DEF

vector,
character data ............................................................................................................. M01DCF
integer numbers.......................................................................................................... M01DBF
real numbers .............................................................................................................. M01DAF

Rearranging (according to pre-determined ranks):
vector,

character data ............................................................................................................. M01ECF
complex numbers ....................................................................................................... M01EDF
integer numbers.......................................................................................................... M01EBF
real numbers .............................................................................................................. M01EAF

Searching (i.e., exact match or the nearest lower value):
binary search,

vector,
integer numbers..................................................................................................... M01NBF
null terminated strings .......................................................................................... M01NCF
real numbers ......................................................................................................... M01NAF

Service routines,
check validity of a permutation ...................................................................................... M01ZBF
decompose a permutation into cycles ............................................................................. M01ZCF
invert a permutation (ranks to indices or vice versa) ..................................................... M01ZAF

Sorting (i.e., rearranging into sorted order):
quick sort,

vector,
character data ........................................................................................................ M01CCF
integer numbers..................................................................................................... M01CBF
real numbers ......................................................................................................... M01CAF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison–Wesley

Wirth N (2004) Algorithms and Data Structures 35–36 Prentice Hall
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NAG Library Routine Document

M01CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01CAF rearranges a vector of real numbers into ascending or descending order.

2 Specification

SUBROUTINE M01CAF (RV, M1, M2, ORDER, IFAIL)

INTEGER M1, M2, IFAIL
REAL (KIND=nag_wp) RV(M2)
CHARACTER(1) ORDER

3 Description

M01CAF is based on Singleton's implementation of the ‘median-of-three’ Quicksort algorithm (see
Singleton (1969)), but with two additional modifications. First, small subfiles are sorted by an insertion
sort on a separate final pass (see Sedgewick (1978)). Second, if a subfile is partitioned into two very
unbalanced subfiles, the larger of them is flagged for special treatment: before it is partitioned, its end
points are swapped with two random points within it; this makes the worst case behaviour extremely
unlikely.

4 References

Sedgewick R (1978) Implementing Quicksort programs Comm. ACM 21 847–857

Singleton R C (1969) An efficient algorithm for sorting with minimal storage: Algorithm 347 Comm.
ACM 12 185–187

5 Arguments

1: RVðM2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: elements M1 to M2 of RV must contain real values to be sorted.

On exit: these values are rearranged into sorted order.

2: M1 – INTEGER Input

On entry: the index of the first element of RV to be sorted.

Constraint: M1 > 0.

3: M2 – INTEGER Input

On entry: the index of the last element of RV to be sorted.

Constraint: M2 � M1.

4: ORDER – CHARACTER(1) Input

On entry: if ORDER ¼ A , the values will be sorted into ascending (i.e., nondecreasing) order.

If ORDER ¼ D , into descending order.

Constraint: ORDER ¼ A or D .

M01 – Sorting and Searching M01CAF
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5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ 2

On entry, ORDER is not `A' or `D'.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01CAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The average time taken by M01CAF is approximately proportional to n� log nð Þ, where
n ¼ M2�M1þ 1. The worst case time is proportional to n2 but this is extremely unlikely to occur.

10 Example

This example reads a list of real numbers and sorts them into ascending order.

10.1 Program Text

Program m01cafe

! M01CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01caf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, m1, m2

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rv(:)

! .. Executable Statements ..
Write (nout,*) ’M01CAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (rv(m2))

m1 = 1

Read (nin,*)(rv(i),i=m1,m2)

ifail = 0
Call m01caf(rv,m1,m2,’Ascending’,ifail)

Write (nout,*)
Write (nout,*) ’Sorted numbers’
Write (nout,*)
Write (nout,99999)(rv(i),i=m1,m2)

99999 Format (1X,10F7.1)
End Program m01cafe

10.2 Program Data

M01CAF Example Program Data
16
1.3 5.9 4.1 2.3 0.5 5.8 1.3 6.5
2.3 0.5 6.5 9.9 2.1 1.1 1.2 8.6

10.3 Program Results

M01CAF Example Program Results

Sorted numbers

0.5 0.5 1.1 1.2 1.3 1.3 2.1 2.3 2.3 4.1
5.8 5.9 6.5 6.5 8.6 9.9
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NAG Library Routine Document

M01CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01CBF rearranges a vector of integer numbers into ascending or descending order.

2 Specification

SUBROUTINE M01CBF (IV, M1, M2, ORDER, IFAIL)

INTEGER IV(M2), M1, M2, IFAIL
CHARACTER(1) ORDER

3 Description

M01CBF is based on Singleton's implementation of the ‘median-of-three’ Quicksort algorithm (see
Singleton (1969)), but with two additional modifications. First, small subfiles are sorted by an insertion
sort on a separate final pass (see Sedgewick (1978)) Second, if a subfile is partitioned into two very
unbalanced subfiles, the larger of them is flagged for special treatment: before it is partitioned, its end
points are swapped with two random points within it; this makes the worst case behaviour extremely
unlikely.

4 References

Sedgewick R (1978) Implementing Quicksort programs Comm. ACM 21 847–857

Singleton R C (1969) An efficient algorithm for sorting with minimal storage: Algorithm 347 Comm.
ACM 12 185–187

5 Arguments

1: IVðM2Þ – INTEGER array Input/Output

On entry: elements M1 to M2 of IV must contain integer values to be sorted.

On exit: these values are rearranged into sorted order.

2: M1 – INTEGER Input

On entry: the index of the first element of IV to be sorted.

Constraint: M1 > 0.

3: M2 – INTEGER Input

On entry: the index of the last element of IV to be sorted.

Constraint: M2 � M1.

4: ORDER – CHARACTER(1) Input

On entry: if ORDER ¼ A , the values will be sorted into ascending (i.e., nondecreasing) order.

If ORDER ¼ D , into descending order.

Constraint: ORDER ¼ A or D .
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5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ 2

On entry, ORDER is not `A' or `D'.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01CBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The average time taken by the routine is approximately proportional to n� log nð Þ, where
n ¼ M2�M1þ 1. The worst case time is proportional to n2 but this is extremely unlikely to occur.

10 Example

This example reads a list of integers and sorts them into descending order.

10.1 Program Text

Program m01cbfe

! M01CBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, m1, m2

! .. Local Arrays ..
Integer, Allocatable :: iv(:)

! .. Executable Statements ..
Write (nout,*) ’M01CBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (iv(m2))

m1 = 1

Read (nin,*)(iv(i),i=m1,m2)

ifail = 0
Call m01cbf(iv,m1,m2,’Descending’,ifail)

Write (nout,*)
Write (nout,*) ’Sorted numbers’
Write (nout,*)
Write (nout,99999)(iv(i),i=m1,m2)

99999 Format (1X,10I7)
End Program m01cbfe

10.2 Program Data

M01CBF Example Program Data
16
23 45 45 67 69 90 999 1
78 112 24 69 96 99 45 78

10.3 Program Results

M01CBF Example Program Results

Sorted numbers

999 112 99 96 90 78 78 69 69 67
45 45 45 24 23 1
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NAG Library Routine Document

M01CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01CCF rearranges a vector of character data so that a specified substring is in ASCII or reverse
ASCII order.

2 Specification

SUBROUTINE M01CCF (CH, M1, M2, L1, L2, ORDER, IFAIL)

INTEGER M1, M2, L1, L2, IFAIL
CHARACTER(*) CH(M2)
CHARACTER(1) ORDER

3 Description

M01CCF is based on Singleton's implementation of the ‘median-of-three’ Quicksort algorithm (see
Singleton (1969)), but with two additional modifications. First, small subfiles are sorted by an insertion
sort on a separate final pass (see Sedgewick (1978)) Second, if a subfile is partitioned into two very
unbalanced subfiles, the larger of them is flagged for special treatment: before it is partitioned, its end
points are swapped with two random points within it; this makes the worst case behaviour extremely
unlikely.

Only the substring (L1:L2) of each element of the array CH is used to determine the sorted order, but
the entire elements are rearranged into sorted order.

4 References

Sedgewick R (1978) Implementing Quicksort programs Comm. ACM 21 847–857

Singleton R C (1969) An efficient algorithm for sorting with minimal storage: Algorithm 347 Comm.
ACM 12 185–187

5 Arguments

1: CHðM2Þ – CHARACTER(*) array Input/Output

On entry: elements M1 to M2 of CH must contain character data to be sorted.

Constraint: the length of each element of CH must not exceed 255.

On exit: these values are rearranged into sorted order.

2: M1 – INTEGER Input

On entry: the index of the first element of CH to be sorted.

Constraint: M1 > 0.

3: M2 – INTEGER Input

On entry: the index of the last element of CH to be sorted.

Constraint: M2 � M1.
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4: L1 – INTEGER Input
5: L2 – INTEGER Input

On entry: only the substring (L1:L2) of each element of CH is to be used in determining the
sorted order.

Constraint: 0 < L1 � L2 � LEN CHð1Þð Þ.

6: ORDER – CHARACTER(1) Input

On entry: if ORDER ¼ A , the values will be sorted into ASCII order.

If ORDER ¼ R , into reverse ASCII order.

Constraint: ORDER ¼ A or R .

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2,
or L2 < 1,
or L1 < 1,
or L1 > L2,
or L2 > LEN CHð1Þð Þ.

IFAIL ¼ 2

On entry, ORDER is not `A' or `R'.

IFAIL ¼ 3

On entry, the length of each element of CH exceeds 255.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01CCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The average time taken by the routine is approximately proportional to n� log nð Þ, where
n ¼ M2�M1þ 1. The worst case time is proportional to n2, but this is extremely unlikely to occur.

The routine relies on the Fortran intrinsic functions LLT and LGT to order characters according to the
ASCII collating sequence.

10 Example

This example reads a file of 12-character records, and sorts them into reverse ASCII order on characters
7 to 12.

10.1 Program Text

Program m01ccfe

! M01CCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, l1, l2, m1, m2

! .. Local Arrays ..
Character (12), Allocatable :: ch(:)

! .. Executable Statements ..
Write (nout,*) ’M01CCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (ch(m2))

m1 = 1

Do i = m1, m2
Read (nin,’(A)’) ch(i)

End Do
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l1 = 7
l2 = 12

ifail = 0
Call m01ccf(ch,m1,m2,l1,l2,’Reverse ASCII’,ifail)

Write (nout,*)
Write (nout,99999) ’Records sorted on columns ’, l1, ’ to ’, l2
Write (nout,*)
Write (nout,99998)(ch(i),i=m1,m2)

99999 Format (1X,A,I2,A,I2)
99998 Format (1X,A)

End Program m01ccfe

10.2 Program Data

M01CCF Example Program Data
11
A02AAF 289
A02ABF 523
A02ACF 531
C02ADF 169
C02AEF 599
C05AUF 1351
C05AVF 240
C05AWF 136
C05AXF 211
C05AYF 183
C05AZF 2181

10.3 Program Results

M01CCF Example Program Results

Records sorted on columns 7 to 12

C05AZF 2181
C05AUF 1351
C02AEF 599
A02ACF 531
A02ABF 523
A02AAF 289
C05AVF 240
C05AXF 211
C05AYF 183
C02ADF 169
C05AWF 136
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NAG Library Routine Document

M01DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01DAF ranks a vector of real numbers in ascending or descending order.

2 Specification

SUBROUTINE M01DAF (RV, M1, M2, ORDER, IRANK, IFAIL)

INTEGER M1, M2, IRANK(M2), IFAIL
REAL (KIND=nag_wp) RV(M2)
CHARACTER(1) ORDER

3 Description

M01DAF uses a variant of list-merging, as described on pages 165–166 in Knuth (1973). The routine
takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal elements preserve their ordering
in the input data.

4 References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison–Wesley

5 Arguments

1: RVðM2Þ – REAL (KIND=nag_wp) array Input

On entry: elements M1 to M2 of RV must contain real values to be ranked.

2: M1 – INTEGER Input

On entry: the index of the first element of RV to be ranked.

Constraint: M1 > 0.

3: M2 – INTEGER Input

On entry: the index of the last element of RV to be ranked.

Constraint: M2 � M1.

4: ORDER – CHARACTER(1) Input

On entry: if ORDER ¼ A , the values will be ranked in ascending (i.e., nondecreasing) order.

If ORDER ¼ D , into descending order.

Constraint: ORDER ¼ A or D .

5: IRANKðM2Þ – INTEGER array Output

On exit: elements M1 to M2 of IRANK contain the ranks of the corresponding elements of RV.
Note that the ranks are in the range M1 to M2: thus, if RVðiÞ is the first element in the rank
order, IRANKðiÞ is set to M1.
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ 2

On entry, ORDER is not `A' or `D'.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01DAF is not threaded in any implementation.

9 Further Comments

The average time taken by the routine is approximately proportional to n� log nð Þ, where
n ¼ M2�M1þ 1.

M01DAF NAG Library Manual

M01DAF.2 Mark 26



10 Example

This example reads a list of real numbers and ranks them in ascending order.

10.1 Program Text

Program m01dafe

! M01DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01daf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, m1, m2

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rv(:)
Integer, Allocatable :: irank(:)

! .. Executable Statements ..
Write (nout,*) ’M01DAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (rv(m2),irank(m2))

m1 = 1

Read (nin,*)(rv(i),i=m1,m2)

ifail = 0
Call m01daf(rv,m1,m2,’Ascending’,irank,ifail)

Write (nout,*)
Write (nout,*) ’ Data Ranks’
Write (nout,*)

Do i = m1, m2
Write (nout,99999) rv(i), irank(i)

End Do

99999 Format (1X,F7.1,I7)
End Program m01dafe

10.2 Program Data

M01DAF Example Program Data
12
5.3 4.6 7.8 1.7 5.3 9.9 3.2 4.3 7.8 4.5 1.2 7.6

10.3 Program Results

M01DAF Example Program Results

Data Ranks

5.3 7
4.6 6
7.8 10
1.7 2
5.3 8
9.9 12
3.2 3
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4.3 4
7.8 11
4.5 5
1.2 1
7.6 9
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NAG Library Routine Document

M01DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01DBF ranks a vector of integer numbers in ascending or descending order.

2 Specification

SUBROUTINE M01DBF (IV, M1, M2, ORDER, IRANK, IFAIL)

INTEGER IV(M2), M1, M2, IRANK(M2), IFAIL
CHARACTER(1) ORDER

3 Description

M01DBF uses a variant of list-merging, as described on pages 165–166 in Knuth (1973). The routine
takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal elements preserve their ordering
in the input data.

4 References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison–Wesley

5 Arguments

1: IVðM2Þ – INTEGER array Input

On entry: elements M1 to M2 of IV must contain integer values to be ranked.

2: M1 – INTEGER Input

On entry: the index of the first element of IV to be ranked.

Constraint: M1 > 0.

3: M2 – INTEGER Input

On entry: M2 must specify the index of the last element of IV to be ranked.

Constraint: M2 � M1.

4: ORDER – CHARACTER(1) Input

On entry: if ORDER ¼ A , the values will be ranked in ascending (i.e., nondecreasing) order.

If ORDER ¼ D , into descending order.

Constraint: ORDER ¼ A or D .

5: IRANKðM2Þ – INTEGER array Output

On exit: elements M1 to M2 of IRANK contain the ranks of the corresponding elements of IV.
Note that the ranks are in the range M1 to M2: thus, if IVðiÞ is the first element in the rank order,
IRANKðiÞ is set to M1.
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ 2

On entry, ORDER is not `A' or `D'.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01DBF is not threaded in any implementation.

9 Further Comments

The average time taken by the routine is approximately proportional to n� log nð Þ, where
n ¼ M2�M1þ 1.
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10 Example

This example reads a list of integers and ranks them in descending order.

10.1 Program Text

Program m01dbfe

! M01DBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, m1, m2

! .. Local Arrays ..
Integer, Allocatable :: irank(:), iv(:)

! .. Executable Statements ..
Write (nout,*) ’M01DBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (irank(m2),iv(m2))

m1 = 1

Read (nin,*)(iv(i),i=m1,m2)

ifail = 0
Call m01dbf(iv,m1,m2,’Descending’,irank,ifail)

Write (nout,*)
Write (nout,*) ’ Data Ranks’
Write (nout,*)

Do i = m1, m2
Write (nout,99999) iv(i), irank(i)

End Do

99999 Format (1X,2I7)
End Program m01dbfe

10.2 Program Data

M01DBF Example Program Data
12
34 44 89 64 69 69 23 1 999 65 22 76

10.3 Program Results

M01DBF Example Program Results

Data Ranks

34 9
44 8
89 2
64 7
69 4
69 5
23 10
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1 12
999 1
65 6
22 11
76 3
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NAG Library Routine Document

M01DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01DCF ranks a vector of character data in ASCII or reverse ASCII order of a specified substring.

2 Specification

SUBROUTINE M01DCF (CH, M1, M2, L1, L2, ORDER, IRANK, IFAIL)

INTEGER M1, M2, L1, L2, IRANK(M2), IFAIL
CHARACTER(*) CH(M2)
CHARACTER(1) ORDER

3 Description

M01DCF uses a variant of list-merging, as described on pages 165–166 in Knuth (1973). The routine
takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal elements preserve their ordering
in the input data.

Only the substring (L1:L2) of each element of the array CH is used to determine the rank order.

4 References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison–Wesley

5 Arguments

1: CHðM2Þ – CHARACTER(*) array Input

On entry: elements M1 to M2 of CH must contain character data to be ranked.

Constraint: the length of each element of CH must not exceed 255.

2: M1 – INTEGER Input

On entry: the index of the first element of CH to be ranked.

Constraint: M1 > 0.

3: M2 – INTEGER Input

On entry: the index of the last element of CH to be ranked.

Constraint: M2 � M1.

4: L1 – INTEGER Input
5: L2 – INTEGER Input

On entry: only the substring (L1:L2) of each element of CH is to be used in determining the rank
order.

Constraint: 0 < L1 � L2 � LEN CHð1Þð Þ.
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6: ORDER – CHARACTER(1) Input

On entry: if ORDER ¼ A , the values will be ranked in ASCII order.

If ORDER ¼ R , in reverse ASCII order.

Constraint: ORDER ¼ A or R .

7: IRANKðM2Þ – INTEGER array Output

On exit: elements M1 to M2 of IRANK contain the ranks of the corresponding elements of CH.
Note that the ranks are in the range M1 to M2: thus, if CHðiÞ is the first element in the rank
order, IRANKðiÞ is set to M1.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2,
or L2 < 1,
or L1 < 1,
or L1 > L2,
or L2 > LEN CHð1Þð Þ.

IFAIL ¼ 2

On entry, ORDER is not `A' or `R'.

IFAIL ¼ 3

On entry, the length of each element of CH exceeds 255.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01DCF is not threaded in any implementation.

9 Further Comments

The average time taken by the routine is approximately proportional to n� log nð Þ, where
n ¼ M2�M1þ 1.

The routine relies on the Fortran intrinsic functions LLT and LGT to order characters according to the
ASCII collating sequence.

10 Example

This example reads a file of 12-character records, and ranks them in reverse ASCII order on characters
7 to 12.

10.1 Program Text

Program m01dcfe

! M01DCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01dcf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, l1, l2, m1, m2

! .. Local Arrays ..
Integer, Allocatable :: irank(:)
Character (12), Allocatable :: ch(:)

! .. Executable Statements ..
Write (nout,*) ’M01DCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (ch(m2),irank(m2))

m1 = 1

Do i = m1, m2
Read (nin,’(A)’) ch(i)

End Do

l1 = 7
l2 = 12

ifail = 0
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Call m01dcf(ch,m1,m2,l1,l2,’Reverse ASCII’,irank,ifail)

Write (nout,*)
Write (nout,99999) ’Records ranked on columns ’, l1, ’ to ’, l2
Write (nout,*)
Write (nout,*) ’Data Ranks’
Write (nout,*)
Write (nout,99998)(ch(i),irank(i),i=m1,m2)

99999 Format (1X,A,I2,A,I2)
99998 Format (1X,A,I7)

End Program m01dcfe

10.2 Program Data

M01DCF Example Program Data
11
A02AAF 289
A02ABF 523
A02ACF 531
C02ADF 169
C02AEF 599
C05AUF 1351
C05AVF 240
C05AWF 136
C05AXF 211
C05AYF 183
C05AZF 2181

10.3 Program Results

M01DCF Example Program Results

Records ranked on columns 7 to 12

Data Ranks

A02AAF 289 6
A02ABF 523 5
A02ACF 531 4
C02ADF 169 10
C02AEF 599 3
C05AUF 1351 2
C05AVF 240 7
C05AWF 136 11
C05AXF 211 8
C05AYF 183 9
C05AZF 2181 1
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NAG Library Routine Document

M01DEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01DEF ranks the rows of a matrix of real numbers in ascending or descending order.

2 Specification

SUBROUTINE M01DEF (RM, LDM, M1, M2, N1, N2, ORDER, IRANK, IFAIL)

INTEGER LDM, M1, M2, N1, N2, IRANK(M2), IFAIL
REAL (KIND=nag_wp) RM(LDM,N2)
CHARACTER(1) ORDER

3 Description

M01DEF ranks rows M1 to M2 of a matrix, using the data in columns N1 to N2 of those rows. The
ordering is determined by first ranking the data in column N1, then ranking any tied rows according to
the data in column N1þ 1, and so on up to column N2.

M01DEF uses a variant of list-merging, as described on pages 165–166 in Knuth (1973). The routine
takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal rows preserve their ordering in
the input data.

4 References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison–Wesley

5 Arguments

1: RMðLDM;N2Þ – REAL (KIND=nag_wp) array Input

On entry: columns N1 to N2 of rows M1 to M2 of RM must contain real data to be ranked.

2: LDM – INTEGER Input

On entry: the first dimension of the array RM as declared in the (sub)program from which
M01DEF is called.

Constraint: LDM � M2.

3: M1 – INTEGER Input

On entry: the index of the first row of RM to be ranked.

Constraint: M1 > 0.

4: M2 – INTEGER Input

On entry: the index of the last row of RM to be ranked.

Constraint: M2 � M1.
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5: N1 – INTEGER Input

On entry: the index of the first column of RM to be used.

Constraint: N1 > 0.

6: N2 – INTEGER Input

On entry: the index of the last column of RM to be used.

Constraint: N2 � N1.

7: ORDER – CHARACTER(1) Input

On entry: if ORDER ¼ A , the rows will be ranked in ascending (i.e., nondecreasing) order.

If ORDER ¼ D , into descending order.

Constraint: ORDER ¼ A or D .

8: IRANKðM2Þ – INTEGER array Output

On exit: elements M1 to M2 of IRANK contain the ranks of the corresponding rows of RM. Note
that the ranks are in the range M1 to M2: thus, if the ith row of RM is the first in the rank order,
IRANKðiÞ is set to M1.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or N2 < 1,
or M1 < 1,
or M1 > M2,
or N1 < 1,
or N1 > N2,
or LDM < M2.

IFAIL ¼ 2

On entry, ORDER is not `A' or `D'.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01DEF is not threaded in any implementation.

9 Further Comments

The average time taken by the routine is approximately proportional to n� log nð Þ, where
n ¼ M2�M1þ 1.

10 Example

This example reads a matrix of real numbers and ranks the rows in ascending order.

10.1 Program Text

Program m01defe

! M01DEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01def, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, ldm, m1, m2, n1, n2

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rm(:,:)
Integer, Allocatable :: irank(:)

! .. Executable Statements ..
Write (nout,*) ’M01DEF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2, n2
ldm = m2
Allocate (rm(ldm,n2),irank(m2))

m1 = 1
n1 = 1

Do i = m1, m2
Read (nin,*)(rm(i,j),j=n1,n2)

End Do

ifail = 0
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Call m01def(rm,ldm,m1,m2,n1,n2,’Ascending’,irank,ifail)

Write (nout,*)
Write (nout,*) ’Data Ranks’
Write (nout,*)

Do i = m1, m2
Write (nout,99999)(rm(i,j),j=n1,n2), irank(i)

End Do

99999 Format (1X,3F7.1,I11)
End Program m01defe

10.2 Program Data

M01DEF Example Program Data
12 3
6.0 5.0 4.0
5.0 2.0 1.0
2.0 4.0 9.0
4.0 9.0 6.0
4.0 9.0 5.0
4.0 1.0 2.0
3.0 4.0 1.0
2.0 4.0 6.0
1.0 6.0 4.0
9.0 3.0 2.0
6.0 2.0 5.0
4.0 9.0 6.0

10.3 Program Results

M01DEF Example Program Results

Data Ranks

6.0 5.0 4.0 11
5.0 2.0 1.0 9
2.0 4.0 9.0 3
4.0 9.0 6.0 7
4.0 9.0 5.0 6
4.0 1.0 2.0 5
3.0 4.0 1.0 4
2.0 4.0 6.0 2
1.0 6.0 4.0 1
9.0 3.0 2.0 12
6.0 2.0 5.0 10
4.0 9.0 6.0 8
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NAG Library Routine Document

M01DFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01DFF ranks the rows of a matrix of integer numbers in ascending or descending order.

2 Specification

SUBROUTINE M01DFF (IM, LDM, M1, M2, N1, N2, ORDER, IRANK, IFAIL)

INTEGER IM(LDM,N2), LDM, M1, M2, N1, N2, IRANK(M2), IFAIL
CHARACTER(1) ORDER

3 Description

M01DFF ranks rows M1 to M2 of a matrix, using the data in columns N1 to N2 of those rows. The
ordering is determined by first ranking the data in column N1, then ranking any tied rows according to
the data in column N1þ 1, and so on up to column N2.

M01DFF uses a variant of list-merging, as described on pages 165–166 in Knuth (1973). The routine
takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal rows preserve their ordering in
the input data.

4 References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison–Wesley

5 Arguments

1: IMðLDM;N2Þ – INTEGER array Input

On entry: columns N1 to N2 of rows M1 to M2 of IM must contain integer data to be ranked.

2: LDM – INTEGER Input

On entry: the first dimension of the array IM as declared in the (sub)program from which
M01DFF is called.

Constraint: LDM � M2.

3: M1 – INTEGER Input

On entry: the index of the first row of IM to be ranked.

Constraint: M1 > 0.

4: M2 – INTEGER Input

On entry: the index of the last row of IM to be ranked.

Constraint: M2 � M1.
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5: N1 – INTEGER Input

On entry: the index of the first column of IM to be used.

Constraint: N1 > 0.

6: N2 – INTEGER Input

On entry: the index of the last column of IM to be used.

Constraint: N2 � N1.

7: ORDER – CHARACTER(1) Input

On entry: if ORDER ¼ A , the rows will be ranked in ascending (i.e., nondecreasing) order.

If ORDER ¼ D , into descending order.

Constraint: ORDER ¼ A or D .

8: IRANKðM2Þ – INTEGER array Output

On exit: elements M1 to M2 of IRANK contain the ranks of the corresponding rows of IM. Note
that the ranks are in the range M1 to M2: thus, if the ith row of IM is the first in the rank order,
IRANKðiÞ is set to M1.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or N2 < 1,
or M1 < 1,
or M1 > M2,
or N1 < 1,
or N1 > N2,
or LDM < M2.

IFAIL ¼ 2

On entry, ORDER is not `A' or `D'.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01DFF is not threaded in any implementation.

9 Further Comments

The average time taken by the routine is approximately proportional to n� log nð Þ, where
n ¼ M2�M1þ 1.

10 Example

This example reads a matrix of integers and ranks the rows in descending order.

10.1 Program Text

Program m01dffe

! M01DFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01dff

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, ldm, m1, m2, n1, n2

! .. Local Arrays ..
Integer, Allocatable :: im(:,:), irank(:)

! .. Executable Statements ..
Write (nout,*) ’M01DFF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2, n2
ldm = m2
Allocate (im(ldm,n2),irank(m2))

m1 = 1
n1 = 1

Do i = m1, m2
Read (nin,*)(im(i,j),j=n1,n2)

End Do

ifail = 0
Call m01dff(im,ldm,m1,m2,n1,n2,’Descending’,irank,ifail)
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Write (nout,*)
Write (nout,*) ’Data Ranks’
Write (nout,*)

Do i = m1, m2
Write (nout,99999)(im(i,j),j=n1,n2), irank(i)

End Do

99999 Format (1X,3I7,I11)
End Program m01dffe

10.2 Program Data

M01DFF Example Program Data
12 3
6 5 4
5 2 1
2 4 9
4 9 6
4 9 5
4 1 2
3 4 1
2 4 6
1 6 4
9 3 2
6 2 5
4 9 6

10.3 Program Results

M01DFF Example Program Results

Data Ranks

6 5 4 2
5 2 1 4
2 4 9 10
4 9 6 5
4 9 5 7
4 1 2 8
3 4 1 9
2 4 6 11
1 6 4 12
9 3 2 1
6 2 5 3
4 9 6 6
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NAG Library Routine Document

M01DJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01DJF ranks the columns of a matrix of real numbers in ascending or descending order.

2 Specification

SUBROUTINE M01DJF (RM, LDM, M1, M2, N1, N2, ORDER, IRANK, IFAIL)

INTEGER LDM, M1, M2, N1, N2, IRANK(N2), IFAIL
REAL (KIND=nag_wp) RM(LDM,N2)
CHARACTER(1) ORDER

3 Description

M01DJF ranks columns N1 to N2 of a matrix, using the data in rows M1 to M2 of those columns. The
ordering is determined by first ranking the data in row M1, then ranking any tied columns according to
the data in row M1 þ 1, and so on up to row M2.

M01DJF uses a variant of list-merging, as described on pages 165–166 in Knuth (1973). The routine
takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal columns preserve their ordering
in the input data.

4 References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison–Wesley

5 Arguments

1: RMðLDM;N2Þ – REAL (KIND=nag_wp) array Input

On entry: rows M1 to M2 of columns N1 to N2 of RM must contain real data to be ranked.

2: LDM – INTEGER Input

On entry: the first dimension of the array RM as declared in the (sub)program from which
M01DJF is called.

Constraint: LDM � M2.

3: M1 – INTEGER Input

On entry: the index of the first row of RM to be used.

Constraint: M1 > 0.

4: M2 – INTEGER Input

On entry: the index of the last row of RM to be used.

Constraint: M2 � M1.
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5: N1 – INTEGER Input

On entry: the index of the first column of RM to be ranked.

Constraint: N1 > 0.

6: N2 – INTEGER Input

On entry: the index of the last column of RM to be ranked.

Constraint: N2 � N1.

7: ORDER – CHARACTER(1) Input

On entry: if ORDER ¼ A , the columns will be ranked in ascending (i.e., nondecreasing) order.

If ORDER ¼ D , into descending order.

Constraint: ORDER ¼ A or D .

8: IRANKðN2Þ – INTEGER array Output

On exit: elements N1 to N2 of IRANK contain the ranks of the corresponding columns of RM.
Note that the ranks are in the range N1 to N2: thus, if the ith column of RM is the first in the
rank order, IRANKðiÞ is set to N1.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or N2 < 1,
or M1 < 1,
or M1 > M2,
or N1 < 1,
or N1 > N2,
or LDM < M2.

IFAIL ¼ 2

On entry, ORDER is not `A' or `D'.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01DJF is not threaded in any implementation.

9 Further Comments

The average time taken by the routine is approximately proportional to n� log nð Þ, where
n ¼ N2� N1þ 1.

10 Example

This example reads a matrix of real numbers and ranks the columns in ascending order.

10.1 Program Text

Program m01djfe

! M01DJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01djf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, ldm, m1, m2, n1, n2

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rm(:,:)
Integer, Allocatable :: irank(:)

! .. Executable Statements ..
Write (nout,*) ’M01DJF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2, n2
ldm = m2
Allocate (rm(ldm,n2),irank(n2))

m1 = 1
n1 = 1

Do i = m1, m2
Read (nin,*)(rm(i,j),j=n1,n2)

End Do

ifail = 0
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Call m01djf(rm,ldm,m1,m2,n1,n2,’Ascending’,irank,ifail)

Write (nout,*)
Write (nout,*) ’Data’
Write (nout,*)

Do i = m1, m2
Write (nout,99999)(rm(i,j),j=n1,n2)

End Do

Write (nout,*)
Write (nout,*) ’Ranks’
Write (nout,*)
Write (nout,99998)(irank(i),i=n1,n2)

99999 Format (1X,12F6.1)
99998 Format (1X,12I6)

End Program m01djfe

10.2 Program Data

M01DJF Example Program Data
3 12
5.0 4.0 3.0 2.0 2.0 1.0 9.0 4.0 4.0 2.0 2.0 1.0
3.0 8.0 2.0 5.0 5.0 6.0 9.0 8.0 9.0 5.0 4.0 1.0
9.0 1.0 6.0 1.0 2.0 4.0 8.0 1.0 2.0 2.0 6.0 2.0

10.3 Program Results

M01DJF Example Program Results

Data

5.0 4.0 3.0 2.0 2.0 1.0 9.0 4.0 4.0 2.0 2.0 1.0
3.0 8.0 2.0 5.0 5.0 6.0 9.0 8.0 9.0 5.0 4.0 1.0
9.0 1.0 6.0 1.0 2.0 4.0 8.0 1.0 2.0 2.0 6.0 2.0

Ranks

11 8 7 4 5 2 12 9 10 6 3 1
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NAG Library Routine Document

M01DKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01DKF ranks the columns of a matrix of integer numbers in ascending or descending order.

2 Specification

SUBROUTINE M01DKF (IM, LDM, M1, M2, N1, N2, ORDER, IRANK, IFAIL)

INTEGER IM(LDM,N2), LDM, M1, M2, N1, N2, IRANK(N2), IFAIL
CHARACTER(1) ORDER

3 Description

M01DKF ranks columns N1 to N2 of a matrix, using the data in rows M1 to M2 of those columns. The
ordering is determined by first ranking the data in row M1, then ranking any tied columns according to
the data in row M1 þ 1, and so on up to row M2.

M01DKF uses a variant of list-merging, as described on pages 165–166 in Knuth (1973). The routine
takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10. The ranking is stable: equal columns preserve their ordering
in the input data.

4 References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison–Wesley

5 Arguments

1: IMðLDM;N2Þ – INTEGER array Input

On entry: rows M1 to M2 of columns N1 to N2 of IM must contain integer data to be ranked.

2: LDM – INTEGER Input

On entry: the first dimension of the array IM as declared in the (sub)program from which
M01DKF is called.

Constraint: LDM � M2.

3: M1 – INTEGER Input

On entry: the index of the first row of IM to be used.

Constraint: M1 > 0.

4: M2 – INTEGER Input

On entry: the index of the last row of IM to be used.

Constraint: M2 � M1.
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5: N1 – INTEGER Input

On entry: the index of the first column of IM to be ranked.

Constraint: N1 > 0.

6: N2 – INTEGER Input

On entry: the index of the last column of IM to be ranked.

Constraint: N2 � N1.

7: ORDER – CHARACTER(1) Input

On entry: if ORDER ¼ A , the columns will be ranked in ascending (i.e., nondecreasing) order.

If ORDER ¼ D , into descending order.

Constraint: ORDER ¼ A or D .

8: IRANKðN2Þ – INTEGER array Output

On exit: elements N1 to N2 of IRANK contain the ranks of the corresponding columns of IM.
Note that the ranks are in the range N1 to N2: thus, if the ith column of IM is the first in the rank
order, IRANKðiÞ is set to N1.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or N2 < 1,
or M1 < 1,
or M1 > M2,
or N1 < 1,
or N1 > N2,
or LDM < M2.

IFAIL ¼ 2

On entry, ORDER is not `A' or `D'.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01DKF is not threaded in any implementation.

9 Further Comments

The average time taken by the routine is approximately proportional to n� log nð Þ, where
n ¼ N2� N1þ 1.

10 Example

This example reads a matrix of integers and ranks the columns in descending order.

10.1 Program Text

Program m01dkfe

! M01DKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01dkf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, ldm, m1, m2, n1, n2

! .. Local Arrays ..
Integer, Allocatable :: im(:,:), irank(:)

! .. Executable Statements ..
Write (nout,*) ’M01DKF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2, n2
ldm = m2
Allocate (im(ldm,n2),irank(n2))

m1 = 1
n1 = 1

Do i = m1, m2
Read (nin,*)(im(i,j),j=n1,n2)

End Do

ifail = 0
Call m01dkf(im,ldm,m1,m2,n1,n2,’Descending’,irank,ifail)
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Write (nout,*)
Write (nout,*) ’Data’
Write (nout,*)

Do i = m1, m2
Write (nout,99999)(im(i,j),j=n1,n2)

End Do

Write (nout,*)
Write (nout,*) ’Ranks’
Write (nout,*)
Write (nout,99999)(irank(i),i=n1,n2)

99999 Format (1X,12I6)
End Program m01dkfe

10.2 Program Data

M01DKF Example Program Data
3 12
5 4 3 2 2 1 9 4 4 2 2 1
3 8 2 5 5 6 9 8 9 5 4 1
9 1 6 1 2 4 8 1 2 2 6 2

10.3 Program Results

M01DKF Example Program Results

Data

5 4 3 2 2 1 9 4 4 2 2 1
3 8 2 5 5 6 9 8 9 5 4 1
9 1 6 1 2 4 8 1 2 2 6 2

Ranks

2 4 6 9 7 11 1 5 3 8 10 12
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NAG Library Routine Document

M01DZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01DZF ranks arbitrary data according to a user-supplied comparison routine.

2 Specification

SUBROUTINE M01DZF (COMPAR, M1, M2, IRANK, IFAIL)

INTEGER M1, M2, IRANK(M2), IFAIL
LOGICAL COMPAR
EXTERNAL COMPAR

3 Description

M01DZF is a general purpose routine for ranking arbitrary data. M01DZF does not access the data
directly; instead it calls COMPAR to determine the relative ordering of any two data items. The data
items are identified simply by an integer in the range M1 to M2.

M01DZF uses a variant of list-merging, as described on pages 165–166 in Knuth (1973). The routine
takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to
generate ordered lists of length at least 10.

4 References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison–Wesley

5 Arguments

1: COMPAR – LOGICAL FUNCTION, supplied by the user. External Procedure

COMPAR must specify the relative ordering of any two data items; it must return .TRUE. if item
I must come strictly after item J in the rank ordering.

The specification of COMPAR is:

FUNCTION COMPAR (I, J)
LOGICAL COMPAR

INTEGER I, J

1: I – INTEGER Input
2: J – INTEGER Input

On entry: I and J identify the data items to be compared.

COMPAR must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which M01DZF is called. Arguments denoted as Input must not be changed
by this procedure.
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2: M1 – INTEGER Input
3: M2 – INTEGER Input

On entry: M1 and M2 must specify the range of data items to be ranked, and the range of ranks
to be assigned. Specifically, M01DZF ranks the data items identified by integers in the range M1
to M2, and assigns ranks in the range M1 to M2 which are stored in elements M1 to M2 of
IRANK.

Constraint: 0 < M1 � M2.

4: IRANKðM2Þ – INTEGER array Output

On exit: elements M1 to M2 of IRANK contain the ranks of the data items M1 to M2. Note that
the ranks are in the range M1 to M2: thus, if item i is first in the rank ordering, IRANKðiÞ
contains M1.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

M01DZF is not threaded in any implementation.

9 Further Comments

The average time taken by the routine is approximately proportional to n� log nð Þ, where
n ¼ M2�M1þ 1; it will usually be dominated by the time taken in COMPAR.

10 Example

This example reads records, each of which contains an integer key and a real number. The program
ranks the records first of all in ascending order of the integer key; records with equal keys are ranked in
descending order of the real number if the key is negative, in ascending order of the real number if the
key is positive, and in their original order if the key is zero. After calling M01DZF, the program calls
M01ZAF to convert the ranks to indices, and prints the records in rank order. Note the use of global
variables to communicate the data between the main program and COMPAR.

10.1 Program Text

! M01DZF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module m01dzfe_mod

! M01DZF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: compar

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable, Public, Save :: rv(:)
Integer, Allocatable, Public, Save :: iv(:)

Contains
Function compar(i,j)

! .. Function Return Value ..
Logical :: compar

! .. Scalar Arguments ..
Integer, Intent (In) :: i, j

! .. Executable Statements ..
If (iv(i)/=iv(j)) Then

compar = iv(i) > iv(j)
Else

If (iv(i)<0) Then
compar = rv(i) < rv(j)

Else If (iv(i)>0) Then
compar = rv(i) > rv(j)

Else
compar = i < j

End If

End If

Return

End Function compar
End Module m01dzfe_mod
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Program m01dzfe

! M01DZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: m01dzf, m01zaf
Use m01dzfe_mod, Only: compar, iv, nin, nout, rv

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ifail, m1, m2

! .. Local Arrays ..
Integer, Allocatable :: irank(:)

! .. Executable Statements ..
Write (nout,*) ’M01DZF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (iv(m2),rv(m2),irank(m2))

m1 = 1

Read (nin,*)(iv(i),rv(i),i=m1,m2)

ifail = 0
Call m01dzf(compar,m1,m2,irank,ifail)

ifail = 0
Call m01zaf(irank,m1,m2,ifail)

Write (nout,*)
Write (nout,*) ’ Data in sorted order’
Write (nout,*)

Write (nout,99999)(iv(irank(i)),rv(irank(i)),i=m1,m2)

Deallocate (iv,rv)

99999 Format (1X,I7,F7.1)
End Program m01dzfe

10.2 Program Data

M01DZF Example Program Data
12
2 3.0
1 4.0

-1 6.0
0 5.0
2 2.0

-2 7.0
0 4.0
1 3.0
1 5.0

-1 2.0
1 0.0
2 1.0

10.3 Program Results

M01DZF Example Program Results

Data in sorted order

-2 7.0
-1 6.0
-1 2.0
0 4.0
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0 5.0
1 0.0
1 3.0
1 4.0
1 5.0
2 1.0
2 2.0
2 3.0
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NAG Library Routine Document

M01EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01EAF rearranges a vector of real numbers into the order specified by a vector of ranks.

2 Specification

SUBROUTINE M01EAF (RV, M1, M2, IRANK, IFAIL)

INTEGER M1, M2, IRANK(M2), IFAIL
REAL (KIND=nag_wp) RV(M2)

3 Description

M01EAF is designed to be used typically in conjunction with the M01D ranking routines. After one of
the M01D routines has been called to determine a vector of ranks, M01EAF can be called to rearrange a
vector of real numbers into the rank order. If the vector of ranks has been generated in some other way,
then M01ZBF should be called to check its validity before M01EAF is called.

4 References

None.

5 Arguments

1: RVðM2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: elements M1 to M2 of RV must contain real values to be rearranged.

On exit: these values are rearranged into rank order. For example, if IRANKðiÞ ¼ M1, then the
initial value of RVðiÞ is moved to RVðM1Þ.

2: M1 – INTEGER Input
3: M2 – INTEGER Input

On entry: M1 and M2 must specify the range of the ranks supplied in IRANK and the elements
of RV to be rearranged.

Constraint: 0 < M1 � M2.

4: IRANKðM2Þ – INTEGER array Input/Output

On entry: elements M1 to M2 of IRANK must contain a permutation of the integers M1 to M2,
which are interpreted as a vector of ranks.

On exit: used as internal workspace prior to being restored and hence is unchanged.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ 2

Elements M1 to M2 of IRANK contain a value outside the range M1 to M2.

IFAIL ¼ 3

Elements M1 to M2 of IRANK contain a repeated value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL ¼ 2 or 3, elements M1 to M2 of IRANK do not contain a permutation of the integers M1 to
M2. On exit, the contents of RV may be corrupted. To check the validity of IRANK without the risk of
corrupting RV, use M01ZBF.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01EAF is not threaded in any implementation.

9 Further Comments

The average time taken by the routine is approximately proportional to n, where n ¼ M2 �M1þ 1.
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10 Example

This example reads a matrix of real numbers and rearranges its rows so that the elements of the kth
column are in ascending order. To do this, the program first calls M01DAF to rank the elements of the
kth column, and then calls M01EAF to rearrange each column into the order specified by the ranks. The
value of k is read from the datafile.

10.1 Program Text

Program m01eafe

! M01EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01daf, m01eaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, k, m1, m2, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rm(:,:)
Integer, Allocatable :: irank(:)

! .. Executable Statements ..
Write (nout,*) ’M01EAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2, n, k

If (k<1 .Or. k>n) Then
Go To 100

End If

Allocate (rm(m2,n),irank(m2))

m1 = 1

Do i = m1, m2
Read (nin,*)(rm(i,j),j=1,n)

End Do

ifail = 0
Call m01daf(rm(1,k),m1,m2,’Ascending’,irank,ifail)

Do j = 1, n

ifail = 0
Call m01eaf(rm(m1,j),m1,m2,irank,ifail)

End Do

Write (nout,*)
Write (nout,99999) ’Matrix sorted on column’, k
Write (nout,*)

Do i = m1, m2
Write (nout,99998)(rm(i,j),j=1,n)

End Do

100 Continue

99999 Format (1X,A,I3)
99998 Format (1X,3F7.1)

End Program m01eafe
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10.2 Program Data

M01EAF Example Program Data
12 3 1
6.0 5.0 4.0
5.0 2.0 1.0
2.0 4.0 9.0
4.0 9.0 6.0
4.0 9.0 5.0
4.0 1.0 2.0
3.0 4.0 1.0
2.0 4.0 6.0
1.0 6.0 4.0
9.0 3.0 2.0
6.0 2.0 5.0
4.0 9.0 6.0

10.3 Program Results

M01EAF Example Program Results

Matrix sorted on column 1

1.0 6.0 4.0
2.0 4.0 9.0
2.0 4.0 6.0
3.0 4.0 1.0
4.0 9.0 6.0
4.0 9.0 5.0
4.0 1.0 2.0
4.0 9.0 6.0
5.0 2.0 1.0
6.0 5.0 4.0
6.0 2.0 5.0
9.0 3.0 2.0
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NAG Library Routine Document

M01EBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01EBF rearranges a vector of integer numbers into the order specified by a vector of ranks.

2 Specification

SUBROUTINE M01EBF (IV, M1, M2, IRANK, IFAIL)

INTEGER IV(M2), M1, M2, IRANK(M2), IFAIL

3 Description

M01EBF is designed to be used typically in conjunction with the M01D ranking routines. After one of
the M01D routines has been called to determine a vector of ranks, M01EBF can be called to rearrange a
vector of integer numbers into the rank order. If the vector of ranks has been generated in some other
way, then M01ZBF should be called to check its validity before M01EBF is called.

4 References

None.

5 Arguments

1: IVðM2Þ – INTEGER array Input/Output

On entry: elements M1 to M2 of IV must contain integer values to be rearranged.

On exit: these values are rearranged into rank order. For example, if IRANKðiÞ ¼ M1, then the
initial value of IVðiÞ is moved to IVðM1Þ.

2: M1 – INTEGER Input
3: M2 – INTEGER Input

On entry: M1 and M2 specify the range of the ranks supplied in IRANK and the elements of IV
to be rearranged.

Constraint: 0 < M1 � M2.

4: IRANKðM2Þ – INTEGER array Input/Output

On entry: elements M1 to M2 of IRANK must contain a permutation of the integers M1 to M2,
which are interpreted as a vector of ranks.

On exit: used as internal workspace prior to being restored and hence is unchanged.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ 2

Elements M1 to M2 of IRANK contain a value outside the range M1 to M2.

IFAIL ¼ 3

Elements M1 to M2 of IRANK contain a repeated value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL ¼ 2 or 3, elements M1 to M2 of IRANK do not contain a permutation of the integers M1 to
M2. On exit, the contents of IV may be corrupted. To check the validity of IRANK without the risk of
corrupting IV, use M01ZBF.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01EBF is not threaded in any implementation.

9 Further Comments

The average time taken by the routine is approximately proportional to n, where n ¼ M2 �M1þ 1.
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10 Example

This example reads a matrix of integers and rearranges its rows so that the elements of the kth column
are in ascending order. To do this, the program first calls M01DBF to rank the elements of the kth
column, and then calls M01EBF to rearrange each column into the order specified by the ranks. The
value of k is read from the datafile.

10.1 Program Text

Program m01ebfe

! M01EBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01dbf, m01ebf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, k, m1, m2, n

! .. Local Arrays ..
Integer, Allocatable :: im(:,:), irank(:)

! .. Executable Statements ..
Write (nout,*) ’M01EBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2, n, k

If (k<1 .Or. k>n) Then
Go To 100

End If

Allocate (im(m2,n),irank(m2))

m1 = 1

Do i = m1, m2
Read (nin,*)(im(i,j),j=1,n)

End Do

ifail = 0
Call m01dbf(im(m1,k),m1,m2,’Ascending’,irank,ifail)

Do j = 1, n

ifail = 0
Call m01ebf(im(m1,j),m1,m2,irank,ifail)

End Do

Write (nout,*)
Write (nout,99999) ’Matrix sorted on column’, k
Write (nout,*)

Do i = m1, m2
Write (nout,99998)(im(i,j),j=1,n)

End Do

100 Continue

99999 Format (1X,A,I3)
99998 Format (1X,3I7)

End Program m01ebfe
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10.2 Program Data

M01EBF Example Program Data
12 3 1
6 5 4
5 2 1
2 4 9
4 9 6
4 9 5
4 1 2
3 4 1
2 4 6
1 6 4
9 3 2
6 2 5
4 9 6

10.3 Program Results

M01EBF Example Program Results

Matrix sorted on column 1

1 6 4
2 4 9
2 4 6
3 4 1
4 9 6
4 9 5
4 1 2
4 9 6
5 2 1
6 5 4
6 2 5
9 3 2
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NAG Library Routine Document

M01ECF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01ECF rearranges a vector of character data into the order specified by a vector of ranks.

2 Specification

SUBROUTINE M01ECF (CH, M1, M2, IRANK, IFAIL)

INTEGER M1, M2, IRANK(M2), IFAIL
CHARACTER(*) CH(M2)

3 Description

M01ECF is designed to be used typically in conjunction with the M01D ranking routines. After one of
the M01D routines has been called to determine a vector of ranks, M01ECF can be called to rearrange a
vector of character data into the rank order. If the vector of ranks has been generated in some other
way, then M01ZBF should be called to check its validity before M01ECF is called.

4 References

None.

5 Arguments

1: CHðM2Þ – CHARACTER(*) array Input/Output

On entry: elements M1 to M2 of CH must contain character data to be rearranged.

Constraint: the length of each element of CH must not exceed 255.

On exit: these values are rearranged into rank order. For example, if IRANKðiÞ ¼ M1, then the
initial value of CHðiÞ is moved to CHðM1Þ.

2: M1 – INTEGER Input
3: M2 – INTEGER Input

On entry: the range of the ranks supplied in IRANK and the elements of CH to be rearranged.

Constraint: 0 < M1 � M2.

4: IRANKðM2Þ – INTEGER array Input/Output

On entry: elements M1 to M2 of IRANK must contain a permutation of the integers M1 to M2,
which are interpreted as a vector of ranks.

On exit: used as internal workspace prior to being restored and hence is unchanged.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ 2

On entry, the length of each element of CH exceeds 255.

IFAIL ¼ 3

Elements M1 to M2 of IRANK contain a value outside the range M1 to M2.

IFAIL ¼ 4

Elements M1 to M2 of IRANK contain a repeated value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL ¼ 3 or 4, elements M1 to M2 of IRANK do not contain a permutation of the integers M1 to
M2. On exit, the contents of CH may be corrupted. To check the validity of IRANK without the risk of
corrupting CH, use M01ZBF.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01ECF is not threaded in any implementation.
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9 Further Comments

The average time taken by the routine is approximately proportional to n, where n ¼ M2 �M1þ 1.

10 Example

This example reads a file of 12-character records, each of which contains in characters 1 to 6 a name of
a NAG routine, and in characters 7 to 12 an integer frequency. The program first calls M01DBF to rank
the integers in descending order, and then calls M01ECF to rearrange the names into the order specified
by the ranks.

10.1 Program Text

Program m01ecfe

! M01ECF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01dbf, m01ecf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, m1, m2

! .. Local Arrays ..
Integer, Allocatable :: ifreq(:), irank(:)
Character (6), Allocatable :: ch(:)

! .. Executable Statements ..
Write (nout,*) ’M01ECF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (ifreq(m2),irank(m2),ch(m2))

m1 = 1

Do i = m1, m2
Read (nin,99999,End=100) ch(i), ifreq(i)

End Do

ifail = 0
Call m01dbf(ifreq,m1,m2,’Descending’,irank,ifail)

ifail = 0
Call m01ecf(ch,m1,m2,irank,ifail)

Write (nout,*)
Write (nout,*) ’Names in order of frequency’
Write (nout,*)
Write (nout,99998)(ch(i),i=m1,m2)

100 Continue

99999 Format (A6,I6)
99998 Format (1X,A)

End Program m01ecfe

M01 – Sorting and Searching M01ECF

Mark 26 M01ECF.3



10.2 Program Data

M01ECF Example Program Data
11
A02AAF 289
A02ABF 523
A02ACF 531
C02ADF 169
C02AEF 599
C05AUF 1351
C05AVF 240
C05AWF 136
C05AXF 211
C05AYF 183
C05AZF 2181

10.3 Program Results

M01ECF Example Program Results

Names in order of frequency

C05AZF
C05AUF
C02AEF
A02ACF
A02ABF
A02AAF
C05AVF
C05AXF
C05AYF
C02ADF
C05AWF
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NAG Library Routine Document

M01EDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01EDF rearranges a vector of complex numbers into the order specified by a vector of ranks.

2 Specification

SUBROUTINE M01EDF (CV, M1, M2, IRANK, IFAIL)

INTEGER M1, M2, IRANK(M2), IFAIL
COMPLEX (KIND=nag_wp) CV(M2)

3 Description

M01EDF is designed to be used typically in conjunction with the M01D ranking routines. After one of
the M01D routines has been called to determine a vector of ranks, M01EDF can be called to rearrange a
vector of complex numbers into the rank order. If the vector of ranks has been generated in some other
way, then M01ZBF should be called to check its validity before M01EDF is called.

4 References

None.

5 Arguments

1: CVðM2Þ – COMPLEX (KIND=nag_wp) array Input/Output

On entry: elements M1 to M2 of CV must contain complex values to be rearranged.

On exit: these values are rearranged into rank order. For example, if IRANKðiÞ ¼ M1, then the
initial value of CVðiÞ is moved to CVðM1Þ.

2: M1 – INTEGER Input
3: M2 – INTEGER Input

On entry: M1 and M2 must specify the range of the ranks supplied in IRANK and the elements
of CV to be rearranged.

Constraint: 0 < M1 � M2.

4: IRANKðM2Þ – INTEGER array Input/Output

On entry: elements M1 to M2 of IRANK must contain a permutation of the integers M1 to M2,
which are interpreted as a vector of ranks.

On exit: used as internal workspace prior to being restored and hence is unchanged.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ 2

Elements M1 to M2 of IRANK contain a value outside the range M1 to M2.

IFAIL ¼ 3

Elements M1 to M2 of IRANK contain a repeated value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL ¼ 2 or 3, elements M1 to M2 of IRANK do not contain a permutation of the integers M1 to
M2. On exit, the contents of CV may be corrupted. To check the validity of IRANK without the risk of
corrupting CV, use M01ZBF.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01EDF is not threaded in any implementation.

9 Further Comments

The average time taken by the routine is approximately proportional to n, where n ¼ M2 �M1þ 1.
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10 Example

This example reads a matrix of complex numbers and rearranges its rows so that the elements in the kth
column are in ascending order of modulus. To do this, the program first calls M01DAF to rank the
moduli of the elements in the kth column, and then calls M01EDF to rearrange each column into the
order specified by the ranks. The value of k is read from the datafile.

10.1 Program Text

Program m01edfe

! M01EDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01daf, m01edf, nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, k, m1, m2, n
Character (30) :: string

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: cm(:,:)
Real (Kind=nag_wp), Allocatable :: cmod(:)
Integer, Allocatable :: irank(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’M01EDF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2, n, k

If (k<1 .Or. k>n) Then
Go To 100

End If

Allocate (cm(m2,n),cmod(m2),irank(m2))

m1 = 1

Do i = m1, m2
Read (nin,*)(cm(i,j),j=1,n)

End Do

! Calculate the moduli of the elements in the K-th column.

Do i = m1, m2
cmod(i) = abs(cm(i,k))

End Do

! Rearrange the rows so that the elements in the K-th column
! are in ascending order of modulus.

ifail = 0
Call m01daf(cmod,m1,m2,’Ascending’,irank,ifail)

! Rearrange each column into the order specified by IRANK.

Do j = 1, n

ifail = 0
Call m01edf(cm(m1,j),m1,m2,irank,ifail)
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End Do

! Print the results.

Write (nout,*)
Write (string,99999) ’Matrix sorted on column’, k
Flush (nout)

ifail = 0
Call x04daf(’General’,’ ’,m2-m1+1,n,cm(m1,1),m2,string,ifail)

100 Continue

99999 Format (1X,A,I3)
End Program m01edfe

10.2 Program Data

M01EDF Example Program Data
12 3 2
(6.0, 1.0) (5.0,-2.0) (4.0, 4.0)
(5.0,-3.0) (2.0,-2.0) (1.0, 1.0)
(2.0, 2.0) (4.0, 1.0) (9.0,-3.0)
(4.0, 2.0) (9.0, 6.0) (6.0, 4.0)
(4.0, 0.0) (9.0, 3.0) (5.0, 1.0)
(4.0,-8.0) (1.0, 5.0) (2.0, 1.0)
(3.0,-3.0) (4.0,-5.0) (1.0, 0.0)
(2.0, 4.0) (4.0,-2.0) (6.0,-1.0)
(1.0, 1.0) (6.0, 1.0) (4.0, 0.0)
(9.0, 1.0) (3.0, 3.0) (2.0,-4.0)
(6.0,-1.0) (2.0, 3.0) (5.0,-3.0)
(4.0,-5.0) (9.0, 9.0) (6.0, 7.0)

10.3 Program Results

M01EDF Example Program Results

Matrix sorted on column 2
1 2 3

1 5.0000 2.0000 1.0000
-3.0000 -2.0000 1.0000

2 6.0000 2.0000 5.0000
-1.0000 3.0000 -3.0000

3 2.0000 4.0000 9.0000
2.0000 1.0000 -3.0000

4 9.0000 3.0000 2.0000
1.0000 3.0000 -4.0000

5 2.0000 4.0000 6.0000
4.0000 -2.0000 -1.0000

6 4.0000 1.0000 2.0000
-8.0000 5.0000 1.0000

7 6.0000 5.0000 4.0000
1.0000 -2.0000 4.0000

8 1.0000 6.0000 4.0000
1.0000 1.0000 0.0000

9 3.0000 4.0000 1.0000
-3.0000 -5.0000 0.0000

10 4.0000 9.0000 5.0000
0.0000 3.0000 1.0000
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11 4.0000 9.0000 6.0000
2.0000 6.0000 4.0000

12 4.0000 9.0000 6.0000
-5.0000 9.0000 7.0000
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NAG Library Routine Document

M01NAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01NAF searches an ordered vector of real numbers and returns the index of the first value equal to
the sought-after item.

2 Specification

FUNCTION M01NAF (VALID, RV, M1, M2, ITEM, IFAIL)
INTEGER M01NAF

INTEGER M1, M2, IFAIL
REAL (KIND=nag_wp) RV(M2), ITEM
LOGICAL VALID

3 Description

M01NAF is based on Professor Niklaus Wirth's implementation of the Binary Search algorithm (see
Wirth (2004)), but with two modifications. First, if the sought-after item is less than the value of the
first element of the array to be searched, 0 is returned. Second, if a value equal to the sought-after item
is not found, the index of the immediate lower value is returned.

4 References

Wirth N (2004) Algorithms and Data Structures 35–36 Prentice Hall

5 Arguments

1: VALID – LOGICAL Input

On entry: if VALID is set to .TRUE. argument checking will be performed. If VALID is set to .
FALSE. M01NAF will be called without argument checking (which includes checking that array
RV is sorted in ascending order) and the routine will return with IFAIL ¼ 0. See Section 9 for
further details.

2: RVðM2Þ – REAL (KIND=nag_wp) array Input

On entry: elements M1 to M2 contain real values to be searched.

Constraint: elements M1 to M2 of RV must be sorted in ascending order.

3: M1 – INTEGER Input

On entry: the index of the first element of RV to be searched.

Constraint: M1 � 1.

4: M2 – INTEGER Input

On entry: the index of the last element of RV to be searched.

Constraint: M2 � M1.
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5: ITEM – REAL (KIND=nag_wp) Input

On entry: the sought-after item.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

(Note: these errors will only be returned if VALID ¼ :TRUE:.)

IFAIL ¼ 2

On entry, RV must be sorted in ascending order: RV element valueh i > element valueh i.

IFAIL ¼ 3

On entry, M1 ¼ valueh i.
Constraint: M1 � 1.

IFAIL ¼ 4

On entry, M1 ¼ valueh i, M2 ¼ valueh i.
Constraint: M1 � M2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.
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8 Parallelism and Performance

M01NAF is not threaded in any implementation.

9 Further Comments

The argument VALID should be used with caution. Set it to .FALSE. only if you are confident that the
other arguments are correct, in particular that array RV is in fact arranged in ascending order. If you
wish to search the same array RV many times, you are recommended to set VALID to .TRUE. on first
call of M01NAF and to .FALSE. on subsequent calls, in order to minimize the amount of time spent
checking RV, which may be significant if RV is large.

The time taken by M01NAF is O log nð Þð Þ, where n ¼ M2�M1þ 1, when VALID ¼ :FALSE:.

10 Example

This example reads a list of double precision numbers and sought-after items and performs the search
for these items.

10.1 Program Text

Program m01nafe

! M01NAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01naf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: item
Integer :: i, ifail, index, ioerr, m1, m2
Logical :: first

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rv(:)

! .. Executable Statements ..
Write (nout,*) ’M01NAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (rv(m2))

m1 = 1

Read (nin,*)(rv(i),i=m1,m2)

first = .True.

data: Do
Read (nin,*,Iostat=ioerr) item

If (ioerr<0) Then
Exit data

End If

ifail = 0
index = m01naf(first,rv,m1,m2,item,ifail)

If (first) Then
Write (nout,*)
Write (nout,*) ’Reference Vector is:’
Write (nout,99999)(rv(i),i=m1,m2)
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first = .False.
End If

Write (nout,*)
Write (nout,99998) item, index

End Do data

99999 Format (1X,8F7.1)
99998 Format (1X,’Search for item ’,F7.1,’ returned index: ’,I4)

End Program m01nafe

10.2 Program Data

M01NAF Example Program Data
16 : M2
0.5 0.6 1.1 1.2 1.3 1.3 2.1 2.3
2.3 4.1 5.8 5.9 6.5 6.5 8.6 9.9 : RV
2.1 : Item 1
0.4 : Item 2
7.1 : Item 3
10.0 : Item 4

10.3 Program Results

M01NAF Example Program Results

Reference Vector is:
0.5 0.6 1.1 1.2 1.3 1.3 2.1 2.3
2.3 4.1 5.8 5.9 6.5 6.5 8.6 9.9

Search for item 2.1 returned index: 7

Search for item 0.4 returned index: 0

Search for item 7.1 returned index: 14

Search for item 10.0 returned index: 16
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NAG Library Routine Document

M01NBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01NBF searches an ordered vector of integer numbers and returns the index of the first value equal to
the sought-after item.

2 Specification

FUNCTION M01NBF (VALID, IV, M1, M2, ITEM, IFAIL)
INTEGER M01NBF

INTEGER IV(M2), M1, M2, ITEM, IFAIL
LOGICAL VALID

3 Description

M01NBF is based on Professor Niklaus Wirth's implementation of the Binary Search algorithm (see
Wirth (2004)), but with two modifications. First, if the sought-after item is less than the value of the
first element of the array to be searched, 0 is returned. Second, if a value equal to the sought-after item
is not found, the index of the immediate lower value is returned.

4 References

Wirth N (2004) Algorithms and Data Structures 35–36 Prentice Hall

5 Arguments

1: VALID – LOGICAL Input

On entry: if VALID is set to .TRUE. argument checking will be performed. If VALID is set to .
FALSE. M01NBF will be called without argument checking (which includes checking that array
IV is sorted in ascending order) and the routine will return with IFAIL ¼ 0. See Section 9 for
further details.

2: IVðM2Þ – INTEGER array Input

On entry: elements M1 to M2 contain integer values to be searched.

Constraint: elements M1 to M2 of IV must be sorted in ascending order.

3: M1 – INTEGER Input

On entry: the index of the first element of IV to be searched.

Constraint: M1 � 1.

4: M2 – INTEGER Input

On entry: the index of the last element of IV to be searched.

Constraint: M2 � M1.

5: ITEM – INTEGER Input

On entry: the sought-after item.
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6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

(Note: these errors will only be returned if VALID ¼ :TRUE:.)

IFAIL ¼ 2

On entry, IV must be sorted in ascending order: IV element valueh i > element valueh i.

IFAIL ¼ 3

On entry, M1 ¼ valueh i.
Constraint: M1 � 1.

IFAIL ¼ 4

On entry, M1 ¼ valueh i, M2 ¼ valueh i.
Constraint: M1 � M2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01NBF is not threaded in any implementation.
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9 Further Comments

The argument VALID should be used with caution. Set it to .FALSE. only if you are confident that the
other arguments are correct, in particular that array IV is in fact arranged in ascending order. If you
wish to search the same array IV many times, you are recommended to set VALID to .TRUE. on first
call of M01NBF and to .FALSE. on subsequent calls, in order to minimize the amount of time spent
checking IV, which may be significant if IV is large.

The time taken by M01NBF is O log nð Þð Þ, where n ¼ M2�M1þ 1, when VALID ¼ :FALSE:.

10 Example

This example reads a list of integer numbers and sought-after items and performs the search for these
items.

10.1 Program Text

Program m01nbfe

! M01NBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01nbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, index, ioerr, item, m1, m2
Logical :: first

! .. Local Arrays ..
Integer, Allocatable :: iv(:)

! .. Executable Statements ..
Write (nout,*) ’M01NBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (iv(m2))

m1 = 1

Read (nin,*)(iv(i),i=m1,m2)

first = .True.

data: Do
Read (nin,*,Iostat=ioerr) item

If (ioerr<0) Then
Exit data

End If

ifail = 0
index = m01nbf(first,iv,m1,m2,item,ifail)

If (first) Then
Write (nout,*)
Write (nout,*) ’Reference Vector is:’
Write (nout,99999)(iv(i),i=m1,m2)
first = .False.

End If

Write (nout,*)
Write (nout,99998) item, index
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End Do data

99999 Format (1X,8I5)
99998 Format (1X,’Search for item ’,I5,’ returned index: ’,I4)

End Program m01nbfe

10.2 Program Data

M01NBF Example Program Data
16 : M2
5 6 11 12 13 13 21 23
23 41 58 59 65 65 86 99 : IV
21 : Item 1
4 : Item 2
71 : Item 3
100 : Item 4

10.3 Program Results

M01NBF Example Program Results

Reference Vector is:
5 6 11 12 13 13 21 23

23 41 58 59 65 65 86 99

Search for item 21 returned index: 7

Search for item 4 returned index: 0

Search for item 71 returned index: 14

Search for item 100 returned index: 16
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NAG Library Routine Document

M01NCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01NCF examines an ordered vector of null terminated strings and returns the index of the first value
equal to the sought-after item. Character items are compared according to the ASCII collating sequence.

2 Specification

FUNCTION M01NCF (VALID, CH, M1, M2, ITEM, IFAIL)
INTEGER M01NCF

INTEGER M1, M2, IFAIL
LOGICAL VALID
CHARACTER(*) CH(M2), ITEM

3 Description

M01NCF is based on Professor Niklaus Wirth's implementation of the Binary Search algorithm (see
Wirth (2004)), but with two modifications. First, if the sought-after item is less than the value of the
first element of the array to be searched, 0 is returned. Second, if a value equal to the sought-after item
is not found, the index of the immediate lower value is returned.

4 References

Wirth N (2004) Algorithms and Data Structures 35–36 Prentice Hall

5 Arguments

1: VALID – LOGICAL Input

On entry: if VALID is set to .TRUE. argument checking will be performed. If VALID is set to .
FALSE. M01NCF will be called without argument checking, which includes checking that array
CH is sorted in ascending order and the routine will return with IFAIL ¼ 0. See Section 9 for
further details.

2: CHðM2Þ – CHARACTER(*) array Input

On entry: elements M1 to M2 contain character data to be searched.

Constraint: elements M1 to M2 of CH must be sorted in ascending order. The length of each
element of CH must not exceed 255. Trailing space characters are ignored.

3: M1 – INTEGER Input

On entry: the index of the first element of CH to be searched.

Constraint: M1 � 1.

4: M2 – INTEGER Input

On entry: the index of the last element of CH to be searched.

Constraint: M2 � M1.
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5: ITEM – CHARACTER(*) Input

On entry: the sought-after item. Trailing space characters are ignored.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

(Note: these errors will only be returned if VALID ¼ :TRUE:.)

IFAIL ¼ 2

On entry, CH must be sorted in ascending order: CH element valueh i > element valueh i.

IFAIL ¼ 3

On entry, M1 ¼ valueh i.
Constraint: M1 � 1.

IFAIL ¼ 4

On entry, M1 ¼ valueh i, M2 ¼ valueh i.
Constraint: M2 � M1.

IFAIL ¼ 5

On entry, the length of each element of CH must be at most 255: maximum string length
¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

M01NCF is not threaded in any implementation.

9 Further Comments

The argument VALID should be used with caution. Set it to .FALSE. only if you are confident that the
other arguments are correct, in particular that array CH is in fact arranged in ascending order. If you
wish to search the same array CH many times, you are recommended to set VALID to .TRUE. on first
call of M01NCF and to .FALSE. on subsequent calls, in order to minimize the amount of time spent
checking CH, which may be significant if CH is large.

The time taken by M01NCF is O log nð Þð Þ, where n ¼ M2�M1þ 1, when VALID ¼ :FALSE:.

10 Example

This example reads a list of character data and sought-after items and performs the search for these
items.

10.1 Program Text

Program m01ncfe

! M01NCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01ncf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, index, ioerr, m1, m2
Logical :: first
Character (6) :: item

! .. Local Arrays ..
Character (6), Allocatable :: ch(:)

! .. Executable Statements ..
Write (nout,*) ’M01NCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (ch(m2))

m1 = 1

Read (nin,*)(ch(i),i=m1,m2)

first = .True.

data: Do
Read (nin,’(A)’,Iostat=ioerr) item

If (ioerr<0) Then
Exit data

End If

ifail = 0
index = m01ncf(first,ch,m1,m2,item,ifail)
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If (first) Then
Write (nout,*)
Write (nout,*) ’Reference Vector is:’
Write (nout,99999)(ch(i),i=m1,m2)
first = .False.

End If

Write (nout,*)
Write (nout,99998) item, index

End Do data

99999 Format (10(1X,A))
99998 Format (1X,’Search for item ’,A,’ returned index: ’,I4)

End Program m01ncfe

10.2 Program Data

M01NCF Example Program Data
10 : M2
A02AAF A02ABF A02ACF C02ADF C02AEF
C05AUF C05AVF C05AWF C05AXF C05AYF : CH
C02ADF : Item 1
A01AAF : Item 2
C04AYF : Item 3
D01NBF : Item 4

10.3 Program Results

M01NCF Example Program Results

Reference Vector is:
A02AAF A02ABF A02ACF C02ADF C02AEF C05AUF C05AVF C05AWF C05AXF C05AYF

Search for item C02ADF returned index: 4

Search for item A01AAF returned index: 0

Search for item C04AYF returned index: 5

Search for item D01NBF returned index: 10
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NAG Library Routine Document

M01ZAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01ZAF inverts a permutation, and hence converts a rank vector to an index vector, or vice versa.

2 Specification

SUBROUTINE M01ZAF (IPERM, M1, M2, IFAIL)

INTEGER IPERM(M2), M1, M2, IFAIL

3 Description

There are two common ways of describing a permutation using an integer vector IPERM. The first uses
ranks: IPERMðiÞ holds the position to which the ith data element should be moved in order to sort the
data; in other words its rank in the sorted order. The second uses indices: IPERMðiÞ holds the current
position of the data element which would occur in ith position in sorted order. For example, given the
values

3:5 5:9 2:9 0:5

to be sorted in ascending order, the ranks would be

3 4 2 1

and the indices would be

4 3 1 2

The M01D routines generate ranks, and the M01E routines require ranks to be supplied to specify the
reordering. However if it is desired simply to refer to the data in sorted order without actually
reordering them, indices are more convenient than ranks (see the example in Section 10).

M01ZAF can be used to convert ranks to indices, or indices to ranks, as the two permutations are
inverses of each another.

4 References

None.

5 Arguments

1: IPERMðM2Þ – INTEGER array Input/Output

On entry: elements M1 to M2 of IPERM must contain a permutation of the integers M1 to M2.

On exit: these elements contain the inverse permutation of the integers M1 to M2.

2: M1 – INTEGER Input
3: M2 – INTEGER Input

On entry: M1 and M2 must specify the range of elements used in the array IPERM and the range
of values in the permutation, as specified under IPERM.

Constraint: 0 < M1 � M2.
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4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ 2

Elements M1 to M2 of IPERM contain a value outside the range M1 to M2.

IFAIL ¼ 3

Elements M1 to M2 of IPERM contain a repeated value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL ¼ 2 or 3, elements M1 to M2 of IPERM do not contain a permutation of the integers M1 to
M2; on exit these elements are usually corrupted. To check the validity of a permutation without the
risk of corrupting it, use M01ZBF.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01ZAF is not threaded in any implementation.

M01ZAF NAG Library Manual

M01ZAF.2 Mark 26



9 Further Comments

None.

10 Example

This example reads a matrix of real numbers and prints its rows in ascending order as ranked by
M01DEF. The program first calls M01DEF to rank the rows, and then calls M01ZAF to convert the
rank vector to an index vector, which is used to refer to the rows in sorted order.

10.1 Program Text

Program m01zafe

! M01ZAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01def, m01zaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, ldm, m1, m2, n1, n2

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rm(:,:)
Integer, Allocatable :: iperm(:)

! .. Executable Statements ..
Write (nout,*) ’M01ZAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2, n2
ldm = m2
Allocate (rm(ldm,n2),iperm(m2))

m1 = 1
n1 = 1

Do i = m1, m2
Read (nin,*)(rm(i,j),j=n1,n2)

End Do

ifail = 0
Call m01def(rm,ldm,m1,m2,n1,n2,’Ascending’,iperm,ifail)

ifail = 0
Call m01zaf(iperm,m1,m2,ifail)

Write (nout,*)
Write (nout,*) ’Matrix sorted by rows’
Write (nout,*)

Do i = m1, m2
Write (nout,99999)(rm(iperm(i),j),j=n1,n2)

End Do

99999 Format (1X,3F7.1)
End Program m01zafe
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10.2 Program Data

M01ZAF Example Program Data
12 3
6.0 5.0 4.0
5.0 2.0 1.0
2.0 4.0 9.0
4.0 9.0 6.0
4.0 9.0 5.0
4.0 1.0 2.0
3.0 4.0 1.0
2.0 4.0 6.0
1.0 6.0 4.0
9.0 3.0 2.0
6.0 2.0 5.0
4.0 9.0 6.0

10.3 Program Results

M01ZAF Example Program Results

Matrix sorted by rows

1.0 6.0 4.0
2.0 4.0 6.0
2.0 4.0 9.0
3.0 4.0 1.0
4.0 1.0 2.0
4.0 9.0 5.0
4.0 9.0 6.0
4.0 9.0 6.0
5.0 2.0 1.0
6.0 2.0 5.0
6.0 5.0 4.0
9.0 3.0 2.0
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NAG Library Routine Document

M01ZBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01ZBF checks the validity of a permutation.

2 Specification

SUBROUTINE M01ZBF (IPERM, M1, M2, IFAIL)

INTEGER IPERM(M2), M1, M2, IFAIL

3 Description

M01ZBF can be used to check the validity of user-supplied ranks or indices, without the ranks or
indices being corrupted.

4 References

None.

5 Arguments

1: IPERMðM2Þ – INTEGER array Input/Output

On entry: elements M1 to M2 of IPERM must be set to values which are supposed to be a
permutation of the integers M1 to M2. If they are a valid permutation, the routine exits with
IFAIL ¼ 0.

On exit: used as internal workpsace prior to being restored and hence is unchanged.

2: M1 – INTEGER Input
3: M2 – INTEGER Input

On entry: the range of elements used in the array IPERM and the range of values in the
permutation, as specified under IPERM.

Constraint: 0 < M1 � M2.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ 2

Elements M1 to M2 of IPERM contain a value outside the range M1 to M2.

IFAIL ¼ 3

Elements M1 to M2 of IPERM contain a repeated value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

If IFAIL ¼ 2 or 3, elements M1 to M2 of IPERM do not contain a permutation of the integers M1 to
M2.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01ZBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in a vector of real numbers, and a vector of ranks; it calls M01ZBF to check the
validity of the ranks before calling M01EAF to rearrange the real numbers into the specified order.
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10.1 Program Text

Program m01zbfe

! M01ZBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01eaf, m01zbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, m1, m2

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rv(:)
Integer, Allocatable :: iperm(:)

! .. Executable Statements ..
Write (nout,*) ’M01ZBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2
Allocate (rv(m2),iperm(m2))

m1 = 1

Read (nin,*)(rv(i),i=m1,m2)
Read (nin,*)(iperm(i),i=m1,m2)

ifail = 0
Call m01zbf(iperm,m1,m2,ifail)

ifail = 0
Call m01eaf(rv,m1,m2,iperm,ifail)

Write (nout,*)
Write (nout,*) ’Numbers in rank order’
Write (nout,*)
Write (nout,99999)(rv(i),i=m1,m2)

99999 Format (1X,10F7.1)
End Program m01zbfe

10.2 Program Data

M01ZBF Example Program Data
12
5.3 4.6 7.8 1.7 5.3 9.9 3.2 4.3 7.8 4.5 1.2 7.6

7 6 10 2 8 12 3 4 11 5 1 9

10.3 Program Results

M01ZBF Example Program Results

Numbers in rank order

1.2 1.7 3.2 4.3 4.5 4.6 5.3 5.3 7.6 7.8
7.8 9.9
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NAG Library Routine Document

M01ZCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

M01ZCF decomposes a permutation into cycles, as an aid to reordering ranked data.

2 Specification

SUBROUTINE M01ZCF (IPERM, M1, M2, ICYCL, IFAIL)

INTEGER IPERM(M2), M1, M2, ICYCL(M2), IFAIL

3 Description

M01ZCF is provided as an aid to reordering arbitrary data structures without using additional storage.
However, you should consider carefully whether it is necessary to rearrange yourr data, or whether it
would be simpler and more efficient to refer to the data in sorted order using an index vector, or to
create a copy of the data in sorted order.

To rearrange data into a different order without using additional storage, the simplest method is to
decompose the permutation which specifies the new order into cycles and then to do a cyclic
permutation of the data items in each cycle. (This is the method used by the M01E reordering routines.)
Given a vector IRANK which specifies the ranks of the data (as generated by the M01D routines),
M01ZCF generates a new vector ICYCL, in which the permutation is represented in its component
cycles, with the first element of each cycle negated. For example, the permutation

5 7 4 2 1 6 3

is composed of the cycles

1 5
� �

2 7 3 4
� �

6
� �

and the vector ICYCL generated by M01ZCF contains

�1 5 �2 7 3 4 �6

In order to rearrange the data according to the specified ranks:

item 6 must be left in place;

items 1 and 5 must be interchanged;

items 4, 2, 7 and 3 must be moved right one place round the cycle.

The complete rearrangement can be achieved by the following code:

DO 10 K = M1, M2
I = ICYCL(K)
IF (I.LT.0) THEN
J = -I
ELSE
[swap items I and J]
ENDIF
10 CONTINUE

4 References

None.
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5 Arguments

1: IPERMðM2Þ – INTEGER array Input/Output

On entry: elements M1 to M2 of IPERM must contain a permutation of the integers M1 to M2.

On exit: is used as internal workpsace prior to being restored and hence is unchanged.

2: M1 – INTEGER Input
3: M2 – INTEGER Input

On entry: M1 and M2 must specify the range of elements used in the array IPERM and the range
of values in the permutation, as specified under IPERM.

Constraint: 0 < M1 � M2.

4: ICYCLðM2Þ – INTEGER array Output

On exit: elements M1 to M2 of ICYCL contain a representation of the permutation as a list of
cycles, with the first integer in each cycle negated. (See Section 3.)

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL ¼ 2

Elements M1 to M2 of IPERM contain a value outside the range M1 to M2.

IFAIL ¼ 3

Elements M1 to M2 of IPERM contain a repeated value.

If IFAIL ¼ 2 or 3, elements M1 to M2 of IPERM do not contain a permutation of the integers M1 to
M2.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

M01ZCF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads a matrix of real numbers and rearranges its columns so that the elements of the lth
row are in ascending order. To do this, the program first calls M01DJF to rank the elements of the lth
row, and then calls M01ZCF to decompose the rank vector into cycles. It then rearranges the columns
using the framework of code suggested in Section 3. The value of l is read from the data file.

10.1 Program Text

Program m01zcfe

! M01ZCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: m01djf, m01zcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: t
Integer :: i, ifail, ii, j, k, l, ldm, m1, m2, &

n1, n2
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: rm(:,:)
Integer, Allocatable :: icycl(:), iperm(:)

! .. Executable Statements ..
Write (nout,*) ’M01ZCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) m2, n2, l

If (l<1 .Or. l>m2) Then
Go To 100

End If

ldm = m2
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Allocate (rm(ldm,n2),icycl(n2),iperm(n2))

m1 = 1
n1 = 1

Do i = m1, m2
Read (nin,*)(rm(i,j),j=n1,n2)

End Do

ifail = 0
Call m01djf(rm,ldm,l,l,n1,n2,’Ascending’,iperm,ifail)

ifail = 0
Call m01zcf(iperm,n1,n2,icycl,ifail)

Do k = n1, n2
i = icycl(k)

If (i<0) Then
j = -i

Else

! Swap columns I and J

Do ii = m1, m2
t = rm(ii,j)
rm(ii,j) = rm(ii,i)
rm(ii,i) = t

End Do

End If

End Do

Write (nout,*)
Write (nout,99999) ’Matrix sorted on row’, l
Write (nout,*)

Do i = m1, m2
Write (nout,99998)(rm(i,j),j=n1,n2)

End Do

100 Continue

99999 Format (1X,A,I3)
99998 Format (1X,12F6.1)

End Program m01zcfe

10.2 Program Data

M01ZCF Example Program Data
3 12 3
5.0 4.0 3.0 2.0 2.0 1.0 9.0 4.0 4.0 2.0 2.0 1.0
3.0 8.0 2.0 5.0 5.0 6.0 9.0 8.0 9.0 5.0 4.0 1.0
9.0 1.0 6.0 1.0 2.0 4.0 8.0 1.0 2.0 2.0 6.0 2.0

10.3 Program Results

M01ZCF Example Program Results

Matrix sorted on row 3

4.0 2.0 4.0 2.0 4.0 2.0 1.0 1.0 3.0 2.0 9.0 5.0
8.0 5.0 8.0 5.0 9.0 5.0 1.0 6.0 2.0 4.0 9.0 3.0
1.0 1.0 1.0 2.0 2.0 2.0 2.0 4.0 6.0 6.0 8.0 9.0
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NAG Library Chapter Contents

S – Approximations of Special Functions

S Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

S01BAF 14 nagf_specfun_log_shifted
ln 1þ xð Þ

S01EAF 14 nagf_specfun_exp_complex
Complex exponential, ez

S07AAF 1 nagf_specfun_tan
tanx

S09AAF 1 nagf_specfun_arcsin
arcsinx

S09ABF 3 nagf_specfun_arccos
arccos x

S10AAF 3 nagf_specfun_tanh
tanhx

S10ABF 4 nagf_specfun_sinh
sinhx

S10ACF 4 nagf_specfun_cosh
coshx

S11AAF 4 nagf_specfun_arctanh
arctanhx

S11ABF 4 nagf_specfun_arcsinh
arcsinhx

S11ACF 4 nagf_specfun_arccosh
arccoshx

S13AAF 1 nagf_specfun_integral_exp
Exponential integral E1 xð Þ

S13ACF 2 nagf_specfun_integral_cos
Cosine integral Ci xð Þ

S13ADF 5 nagf_specfun_integral_sin
Sine integral Si xð Þ

S14AAF 1 nagf_specfun_gamma
Gamma function

S14ABF 8 nagf_specfun_gamma_log_real
Log gamma function, real argument

S14ACF 14 nagf_specfun_polygamma
 xð Þ � lnx

S14ADF 14 nagf_specfun_polygamma_deriv
Scaled derivatives of  xð Þ

S14AEF 20 nagf_specfun_psi_deriv_real
Polygamma function  nð Þ xð Þ for real x

S14AFF 20 nagf_specfun_psi_deriv_complex
Polygamma function  nð Þ zð Þ for complex z

S14AGF 21 nagf_specfun_gamma_log_complex
Logarithm of the gamma function ln zð Þ, complex argument

S14AHF 23 nagf_specfun_gamma_log_scaled_real
Scaled log gamma function

S14BAF 14 nagf_specfun_gamma_incomplete
Incomplete gamma functions P a; xð Þ and Q a; xð Þ

S14CBF 24 nagf_specfun_beta_log_real
Logarithm of the beta function lnB a; bð Þ
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S14CCF 24 nagf_specfun_beta_incomplete
Incomplete beta function Ix a; bð Þ and its complement 1� Ix

S15ABF 3 nagf_specfun_cdf_normal
Cumulative Normal distribution function P xð Þ

S15ACF 4 nagf_specfun_compcdf_normal
Complement of cumulative Normal distribution function Q xð Þ

S15ADF 4 nagf_specfun_erfc_real
Complement of error function erfc xð Þ

S15AEF 4 nagf_specfun_erf_real
Error function erf xð Þ

S15AFF 7 nagf_specfun_dawson
Dawson's integral

S15AGF 22 nagf_specfun_erfcx_real
Scaled complement of error function, erfcx xð Þ

S15DDF 14 nagf_specfun_erfc_complex
Scaled complex complement of error function, exp �z2

� �
erfc �izð Þ

S17ACF 1 nagf_specfun_bessel_y0_real
Bessel function Y0 xð Þ

S17ADF 1 nagf_specfun_bessel_y1_real
Bessel function Y1 xð Þ

S17AEF 5 nagf_specfun_bessel_j0_real
Bessel function J0 xð Þ

S17AFF 5 nagf_specfun_bessel_j1_real
Bessel function J1 xð Þ

S17AGF 8 nagf_specfun_airy_ai_real
Airy function Ai xð Þ

S17AHF 8 nagf_specfun_airy_bi_real
Airy function Bi xð Þ

S17AJF 8 nagf_specfun_airy_ai_deriv
Airy function Ai0 xð Þ

S17AKF 8 nagf_specfun_airy_bi_deriv
Airy function Bi0 xð Þ

S17ALF 20 nagf_specfun_bessel_zeros
Zeros of Bessel functions J� xð Þ, J 0� xð Þ, Y� xð Þ or Y 0� xð Þ

S17AQF 24 nagf_specfun_bessel_y0_real_vector
Bessel function vectorized Y0 xð Þ

S17ARF 24 nagf_specfun_bessel_y1_real_vector
Bessel function vectorized Y1 xð Þ

S17ASF 24 nagf_specfun_bessel_j0_real_vector
Bessel function vectorized J0 xð Þ

S17ATF 24 nagf_specfun_bessel_j1_real_vector
Bessel function vectorized J1 xð Þ

S17AUF 24 nagf_specfun_airy_ai_real_vector
Airy function vectorized Ai xð Þ

S17AVF 24 nagf_specfun_airy_bi_real_vector
Airy function vectorized Bi xð Þ

S17AWF 24 nagf_specfun_airy_ai_deriv_vector
Derivatives of the Airy function, vectorized Ai0 xð Þ

S17AXF 24 nagf_specfun_airy_bi_deriv_vector
Derivatives of the Airy function, vectorized Bi0 xð Þ

S17DCF 13 nagf_specfun_bessel_y_complex
Bessel functions Y�þa zð Þ, real a � 0, complex z, � ¼ 0; 1; 2; . . .

S17DEF 13 nagf_specfun_bessel_j_complex
Bessel functions J�þa zð Þ, real a � 0, complex z, � ¼ 0; 1; 2; . . .

S17DGF 13 nagf_specfun_airy_ai_complex
Airy functions Ai zð Þ and Ai0 zð Þ, complex z

S17DHF 13 nagf_specfun_airy_bi_complex
Airy functions Bi zð Þ and Bi0 zð Þ, complex z
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S17DLF 13 nagf_specfun_hankel_complex

Hankel functions H jð Þ
�þa zð Þ, j ¼ 1; 2, real a � 0, complex z, � ¼ 0; 1; 2; . . .

S18ACF 1 nagf_specfun_bessel_k0_real
Modified Bessel function K0 xð Þ

S18ADF 1 nagf_specfun_bessel_k1_real
Modified Bessel function K1 xð Þ

S18AEF 5 nagf_specfun_bessel_i0_real
Modified Bessel function I0 xð Þ

S18AFF 5 nagf_specfun_bessel_i1_real
Modified Bessel function I1 xð Þ

S18AQF 24 nagf_specfun_bessel_k0_real_vector
Modified Bessel function vectorized K0 xð Þ

S18ARF 24 nagf_specfun_bessel_k1_real_vector
Modified Bessel function vectorized K1 xð Þ

S18ASF 24 nagf_specfun_bessel_i0_real_vector
Modified Bessel function vectorized I0 xð Þ

S18ATF 24 nagf_specfun_bessel_i1_real_vector
Modified Bessel function vectorized I1 xð Þ

S18CCF 10 nagf_specfun_bessel_k0_scaled
Scaled modified Bessel function exK0 xð Þ

S18CDF 10 nagf_specfun_bessel_k1_scaled
Scaled modified Bessel function exK1 xð Þ

S18CEF 10 nagf_specfun_bessel_i0_scaled
Scaled modified Bessel function e� xj jI0 xð Þ

S18CFF 10 nagf_specfun_bessel_i1_scaled
Scaled modified Bessel function e� xj jI1 xð Þ

S18CQF 24 nagf_specfun_bessel_k0_scaled_vector
Scaled modified Bessel function vectorized exK0 xð Þ

S18CRF 24 nagf_specfun_bessel_k1_scaled_vector
Scaled modified Bessel function vectorized exK1 xð Þ

S18CSF 24 nagf_specfun_bessel_i0_scaled_vector
Scaled modified Bessel function vectorized e� xj jI0 xð Þ

S18CTF 24 nagf_specfun_bessel_i1_scaled_vector
Scaled modified Bessel function vectorized e� xj jI1 xð Þ

S18DCF 13 nagf_specfun_bessel_k_complex
Modified Bessel functions K�þa zð Þ, real a � 0, complex z, � ¼ 0; 1; 2; . . .

S18DEF 13 nagf_specfun_bessel_i_complex
Modified Bessel functions I�þa zð Þ, real a � 0, complex z, � ¼ 0; 1; 2; . . .

S18GKF 21 nagf_specfun_bessel_j_seq_complex
Bessel function of the 1st kind J�
n zð Þ

S19AAF 11 nagf_specfun_kelvin_ber
Kelvin function ber x

S19ABF 11 nagf_specfun_kelvin_bei
Kelvin function beix

S19ACF 11 nagf_specfun_kelvin_ker
Kelvin function ker x

S19ADF 11 nagf_specfun_kelvin_kei
Kelvin function keix

S19ANF 24 nagf_specfun_kelvin_ber_vector
Kelvin function vectorized ber x

S19APF 24 nagf_specfun_kelvin_bei_vector
Kelvin function vectorized beix

S19AQF 24 nagf_specfun_kelvin_ker_vector
Kelvin function vectorized ker x

S19ARF 24 nagf_specfun_kelvin_kei_vector
Kelvin function vectorized keix

S20ACF 5 nagf_specfun_fresnel_s
Fresnel integral S xð Þ
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S20ADF 5 nagf_specfun_fresnel_c
Fresnel integral C xð Þ

S20AQF 24 nagf_specfun_fresnel_s_vector
Fresnel integral vectorized S xð Þ

S20ARF 24 nagf_specfun_fresnel_c_vector
Fresnel integral vectorized C xð Þ

S21BAF 8 nagf_specfun_ellipint_symm_1_degen
Degenerate symmetrised elliptic integral of 1st kind RC x; yð Þ

S21BBF 8 nagf_specfun_ellipint_symm_1
Symmetrised elliptic integral of 1st kind RF x; y; zð Þ

S21BCF 8 nagf_specfun_ellipint_symm_2
Symmetrised elliptic integral of 2nd kind RD x; y; zð Þ

S21BDF 8 nagf_specfun_ellipint_symm_3
Symmetrised elliptic integral of 3rd kind RJ x; y; z; rð Þ

S21BEF 22 nagf_specfun_ellipint_legendre_1
Elliptic integral of 1st kind, Legendre form, F 
 j mð Þ

S21BFF 22 nagf_specfun_ellipint_legendre_2
Elliptic integral of 2nd kind, Legendre form, E 
 j mð Þ

S21BGF 22 nagf_specfun_ellipint_legendre_3
Elliptic integral of 3rd kind, Legendre form, � n;
 j mð Þ

S21BHF 22 nagf_specfun_ellipint_complete_1
Complete elliptic integral of 1st kind, Legendre form, K mð Þ

S21BJF 22 nagf_specfun_ellipint_complete_2
Complete elliptic integral of 2nd kind, Legendre form, E mð Þ

S21CAF 15 nagf_specfun_jacellip_real
Jacobian elliptic functions sn, cn and dn of real argument

S21CBF 20 nagf_specfun_jacellip_complex
Jacobian elliptic functions sn, cn and dn of complex argument

S21CCF 20 nagf_specfun_jactheta_real
Jacobian theta functions �k x; qð Þ of real argument

S21DAF 20 nagf_specfun_ellipint_general_2
General elliptic integral of 2nd kind F z; k0; a; bð Þ of complex argument

S22AAF 20 nagf_specfun_legendre_p
Legendre functions of 1st kind Pm

n xð Þ or Pm
n xð Þ

S22BAF 24 nagf_specfun_1f1_real
Real confluent hypergeometric function 1F1 a; b;xð Þ

S22BBF 24 nagf_specfun_1f1_real_scaled
Real confluent hypergeometric function 1F1 a; b;xð Þ in scaled form

S22BEF 25 nagf_specfun_2f1_real
Real Gauss hypergeometric function 2F1 a; b; c; xð Þ

S22BFF 25 nagf_specfun_2f1_real_scaled
Real Gauss hypergeometric function 2F1 a; b; c; xð Þ in scaled form.

S30AAF 22 nagf_specfun_opt_bsm_price
Black–Scholes–Merton option pricing formula

S30ABF 22 nagf_specfun_opt_bsm_greeks
Black–Scholes–Merton option pricing formula with Greeks

S30BAF 22 nagf_specfun_opt_lookback_fls_price
Floating-strike lookback option pricing formula in the Black-Scholes-
Merton model

S30BBF 22 nagf_specfun_opt_lookback_fls_greeks
Floating-strike lookback option pricing formula with Greeks in the Black-
Scholes-Merton model

S30CAF 22 nagf_specfun_opt_binary_con_price
Binary option, cash-or-nothing pricing formula

S30CBF 22 nagf_specfun_opt_binary_con_greeks
Binary option, cash-or-nothing pricing formula with Greeks

S30CCF 22 nagf_specfun_opt_binary_aon_price
Binary option, asset-or-nothing pricing formula
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S30CDF 22 nagf_specfun_opt_binary_aon_greeks
Binary option, asset-or-nothing pricing formula with Greeks

S30FAF 22 nagf_specfun_opt_barrier_std_price
Standard barrier option pricing formula

S30JAF 22 nagf_specfun_opt_jumpdiff_merton_price
Jump-diffusion, Merton's model, option pricing formula

S30JBF 22 nagf_specfun_opt_jumpdiff_merton_greeks
Jump-diffusion, Merton's model, option pricing formula with Greeks

S30NAF 22 nagf_specfun_opt_heston_price
Heston's model option pricing formula

S30NBF 23 nagf_specfun_opt_heston_greeks
Heston's model option pricing formula with Greeks

S30NCF 25 nagf_specfun_opt_heston_term
Heston's model option pricing with term structure

S30QCF 22 nagf_specfun_opt_amer_bs_price
American option, Bjerksund and Stensland pricing formula

S30SAF 22 nagf_specfun_opt_asian_geom_price
Asian option, geometric continuous average rate pricing formula

S30SBF 22 nagf_specfun_opt_asian_geom_greeks
Asian option, geometric continuous average rate pricing formula with
Greeks
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1 Scope of the Chapter

This chapter is concerned with the provision of some commonly occurring physical and mathematical
functions.

2 Background to the Problems

The majority of the routines in this chapter approximate real-valued functions of a single real argument,
and the techniques involved are described in Section 2.1. In addition the chapter contains routines for
elliptic integrals (see Section 2.2), Bessel and Airy functions of a complex argument (see Section 2.3),
complementary error function of a complex argument, hypergeometric functions and various option
pricing routines for use in financial applications.

2.1 Functions of a Single Real Argument

Most of the routines provided for functions of a single real argument have been based on truncated
Chebyshev expansions. This method of approximation was adopted as a compromise between the
conflicting requirements of efficiency and ease of implementation on many different machine ranges.
For details of the reasons behind this choice and the production and testing procedures followed in
constructing this chapter see Schonfelder (1976).

Basically, if the function to be approximated is f xð Þ, then for x 2 a; b½ � an approximation of the form

f xð Þ ¼ g xð Þ
X
r¼0

CrTr tð Þ

is used (
P

denotes, according to the usual convention, a summation in which the first term is halved),
where g xð Þ is some suitable auxiliary function which extracts any singularities, asymptotes and, if
possible, zeros of the function in the range in question and t ¼ t xð Þ is a mapping of the general range
a; b½ � to the specific range [�1;þ1] required by the Chebyshev polynomials, Tr tð Þ. For a detailed
description of the properties of the Chebyshev polynomials see Clenshaw (1962) and Fox and Parker
(1968).

The essential property of these polynomials for the purposes of function approximation is that Tn tð Þ
oscillates between 
1 and it takes its extreme values nþ 1 times in the interval [�1;þ1]. Therefore,
provided the coefficients Cr decrease in magnitude sufficiently rapidly the error made by truncating the
Chebyshev expansion after n terms is approximately given by

E tð Þ ’ CnTn tð Þ:

That is, the error oscillates between 
Cn and takes its extreme value nþ 1 times in the interval in
question. Now this is just the condition that the approximation be a minimax representation, one which
minimizes the maximum error. By suitable choice of the interval, [a; b], the auxiliary function, g xð Þ, and
the mapping of the independent variable, t xð Þ, it is almost always possible to obtain a Chebyshev
expansion with rapid convergence and hence truncations that provide near minimax polynomial
approximations to the required function. The difference between the true minimax polynomial and the
truncated Chebyshev expansion is seldom sufficiently great enough to be of significance.

The evaluation of the Chebyshev expansions follows one of two methods. The first and most efficient,
and hence the most commonly used, works with the equivalent simple polynomial. The second method,
which is used on the few occasions when the first method proves to be unstable, is based directly on the
truncated Chebyshev series, and uses backward recursion to evaluate the sum. For the first method, a
suitably truncated Chebyshev expansion (truncation is chosen so that the error is less than the machine
precision) is converted to the equivalent simple polynomial. That is, we evaluate the set of coefficients
br such that

y tð Þ ¼
Xn�1
r¼0

brt
r ¼

Xn�1
r¼0

CrTr tð Þ:

The polynomial can then be evaluated by the efficient Horner's method of nested multiplications,

y tð Þ ¼ b0 þ t b1 þ t b2 þ . . . t bn�2 þ tbn�1ð Þð Þð Þ . . .ð Þ:
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This method of evaluation results in efficient routines but for some expansions there is considerable loss
of accuracy due to cancellation effects. In these cases the second method is used. It is well known that
if

bn�1 ¼ Cn�1
bn�2 ¼ 2tbn�1 þ Cn�2
bj ¼ 2tbjþ1 � bjþ2 þ Cj; j ¼ n� 3; n� 4; . . . ; 0

then X
r¼0

CrTr tð Þ ¼ 1
2 b0 � b2ð Þ

and this is always stable. This method is most efficiently implemented by using three variables
cyclically and explicitly constructing the recursion.

That is,

� ¼ Cn�1
� ¼ 2t�þ Cn�2
� ¼ 2t� � �þ Cn�3
� ¼ 2t� � � þ Cn�4
� ¼ 2t�� � þ Cn�5

..

.

say � ¼ 2t� � � þ C2
� ¼ 2t�� � þ C1

y tð Þ ¼ t� � �þ 1
2C0

The auxiliary functions used are normally functions compounded of simple polynomial (usually linear)
factors extracting zeros, and the primary compiler-provided functions, sin, cos, ln, exp, sqrt, which
extract singularities and/or asymptotes or in some cases basic oscillatory behaviour, leaving a smooth
well-behaved function to be approximated by the Chebyshev expansion which can therefore be rapidly
convergent.

The mappings of [a; b] to [�1;þ1] used range from simple linear mappings to the case when b is
infinite, and considerable improvement in convergence can be obtained by use of a bilinear form of
mapping. Another common form of mapping is used when the function is even; that is, it involves only
even powers in its expansion. In this case an approximation over the whole interval [�a; a] can be
provided using a mapping t ¼ 2 x=að Þ2 � 1. This embodies the evenness property but the expansion in t
involves all powers and hence removes the necessity of working with an expansion with half its
coefficients zero.

For many of the routines an analysis of the error in principle is given, namely, if E and r are the
absolute errors in function and argument and � and � are the corresponding relative errors, then

E ’ f 0 xð Þj jr

E ’ xf 0 xð Þj j�

� ’ xf 0 xð Þ
f xð Þ

				 				�:
If we ignore errors that arise in the argument of the function by propagation of data errors, etc., and
consider only those errors that result from the fact that a real number is being represented in the
computer in floating-point form with finite precision, then � is bounded and this bound is independent
of the magnitude of x. For example, on an 11-digit machine

�j j � 10�11:

(This of course implies that the absolute error r ¼ x� is also bounded but the bound is now dependent
on x.) However, because of this the last two relations above are probably of more interest. If possible
the relative error propagation is discussed; that is, the behaviour of the error amplification factor
xf 0 xð Þ=f xð Þj j is described, but in some cases, such as near zeros of the function which cannot be
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extracted explicitly, absolute error in the result is the quantity of significance and here the factor
xf 0 xð Þj j is described. In general, testing of the functions has shown that their error behaviour follows
fairly well these theoretical error behaviours. In regions where the error amplification factors are less
than or of the order of one, the errors are slightly larger than the above predictions. The errors are here
limited largely by the finite precision of arithmetic in the machine, but � is normally no more than a few
times greater than the bound on �. In regions where the amplification factors are large, of order ten or
greater, the theoretical analysis gives a good measure of the accuracy obtainable.

It should be noted that the definitions and notations used for the functions in this chapter are all taken
from Abramowitz and Stegun (1972). You are strongly recommended to consult this book for details
before using the routines in this chapter.

2.2 Approximations to Elliptic Integrals

Four functions provided here are symmetrised variants of the classical (Legendre) elliptic integrals.
These alternative definitions have been suggested by Carlson (1965), Carlson (1977b) and Carlson
(1977a) and he also developed the basic algorithms used in this chapter.

The symmetrised elliptic integral of the first kind is represented by

RF x; y; zð Þ ¼ 1

2

Z 1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ xð Þ tþ yð Þ tþ zð Þ

p ;

where x; y; z � 0 and at most one may be equal to zero.

The normalization factor, 1
2 , is chosen so as to make

RF x; x; xð Þ ¼ 1=
ffiffiffi
x
p

:

If any two of the variables are equal, RF degenerates into the second function

RC x; yð Þ ¼ RF x; y; yð Þ ¼ 1

2

Z 1
0

dt

tþ yð Þ:
ffiffiffiffiffiffiffiffiffiffiffi
tþ x
p ;

where the argument restrictions are now x � 0 and y 6¼ 0.

This function is related to the logarithm or inverse hyperbolic functions if 0 < y < x, and to the inverse
circular functions if 0 � x � y.
The symmetrised elliptic integral of the second kind is defined by

RD x; y; zð Þ ¼ 3

2

Z 1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ xð Þ tþ yð Þ tþ zð Þ3

q
with z > 0, x � 0 and y � 0, but only one of x or y may be zero.

The function is a degenerate special case of the symmetrised elliptic integral of the third kind

RJ x; y; z; �ð Þ ¼ 3

2

Z 1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ xð Þ tþ yð Þ tþ zð Þ

p
tþ �ð Þ

with � 6¼ 0 and x; y; z � 0 with at most one equality holding. Thus RD x; y; zð Þ ¼ RJ x; y; z; zð Þ. The
normalization of both these functions is chosen so that

RD x; x; xð Þ ¼ RJ x; x; x; xð Þ ¼ 1= x
ffiffiffi
x
p� �

:

The algorithms used for all these functions are based on duplication theorems. These allow a recursion
system to be established which constructs a new set of arguments from the old using a combination of
arithmetic and geometric means. The value of the function at the original arguments can then be simply
related to the value at the new arguments. These recursive reductions are used until the arguments differ
from the mean by an amount small enough for a Taylor series about the mean to give sufficient
accuracy when retaining terms of order less than six. Each step of the recurrences reduces the difference
from the mean by a factor of four, and as the truncation error is of order six, the truncation error goes
like 4096ð Þ�n, where n is the number of iterations.
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The above forms can be related to the more traditional canonical forms (see Section 17.2 of
Abramowitz and Stegun (1972)), as follows.

If we write q ¼ cos2 
; r ¼ 1�m sin2 
; s ¼ 1� n sin2 
, where 0 � 
 � 1
2	 , we have

the classical elliptic integral of the first kind:

F 
 j mð Þ ¼
Z 


0
1�m sin2 �
� ��1

2d� ¼ sin
RF q; r; 1ð Þ;

the classical elliptic integral of the second kind:

E 
 j mð Þ ¼
Z 


0
1�m sin2 �
� �1

2d�

¼ sin
RF q; r; 1ð Þ � 1
3m sin3
RD q; r; 1ð Þ

the classical elliptic integral of the third kind:

� n;
 j mð Þ ¼
Z 


0
1� n sin2 �
� ��1

1�m sin2 �
� ��1

2d�

¼ sin
RF q; r; 1ð Þ þ 1
3n sin

3
RJ q; r; 1; sð Þ:

Also the classical complete elliptic integral of the first kind:

K mð Þ ¼
Z 	

2

0
1�m sin2 �
� ��1

2 d� ¼ RF 0; 1�m; 1ð Þ;

the classical complete elliptic integral of the second kind:

E mð Þ ¼
Z 	

2

0
1�m sin2�
� �1

2 d� ¼ RF 0; 1�m; 1ð Þ � 1
3mRD 0; 1�m; 1ð Þ:

For convenience, Chapter S contains routines to evaluate classical and symmetrised elliptic integrals.

2.3 Bessel and Airy Functions of a Complex Argument

The routines for Bessel and Airy functions of a real argument are based on Chebyshev expansions, as
described in Section 2.1. The routines provided for functions of a complex argument, however, use
different methods. These routines relate all functions to the modified Bessel functions I� zð Þ and K� zð Þ
computed in the right-half complex plane, including their analytic continuations. I� and K� are
computed by different methods according to the values of z and �. The methods include power series,
asymptotic expansions and Wronskian evaluations. The relations between functions are based on well
known formulae (see Abramowitz and Stegun (1972)).

2.4 Option Pricing Routines

The option pricing routines evaluate the closed form solutions or approximations to the equations that
define mathematical models for the prices of selected financial option contracts. These solutions can be
viewed as special functions determined by the underlying equations. The terminology associated with
these routines arises from their setting in financial markets and is briefly outlined below. See Joshi
(2003) for a comprehensive introduction to this subject. An option is a contract which gives the holder
the right, but not the obligation, to buy (if it is a call) or sell (if it is a put) a particular asset, S. A
European option can be exercised only at the specified expiry time, T , while an American option can be
exercised at any time up to T . For Asian options the average underlying price over a pre-set time period
determines the payoff.

The asset is bought (if a call) or sold (if a put) at a pre-specified strike price X. Thus, an option
contract has a payoff to the holder of max ST �Xð Þ; 0f g for a call or max X � STð Þ; 0f g, for a put,
which depends on whether the asset price at the time of exercise is above (call) or below (put) the
strike, X. If at any moment in time a contract is currently showing a theoretical profit then it is deemed
‘in-the-money’; otherwise it is deemed ‘out-of-the-money’.
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The option contract itself therefore has a value and, in many cases, can be traded in markets.
Mathematical models (e.g., Black–Scholes, Merton, Vasicek, Hull–White, Heston, CEV, SABR, . . .)
give theoretical prices for particular option contracts using a number of assumptions about the
behaviour of financial markets. Typically the price St of the underlying asset at time t is modelled as
the solution of a stochastic differential equation (SDE). Depending on the complexity of this equation,
the model may admit closed form formulae for the prices of various options. The options described in
this chapter introduction are detailed below. We let E denote expectation with respect to the risk neutral
measure and we define IA to be 1 on the set A and 0 otherwise.

– The price of a standard European call option is E e�rT max ST �X; 0f g
� �

and the price of a standard
European put option is E e�rT max X � ST ; 0f g

� �
.

– For continuously averaged geometric Asian options define

G Tð Þ ¼ exp
Z T

0
log Stð Þdt

� �
:

Then the price of an Asian call option is E e�rT max G Tð Þ �X; 0f g
� �

and the price of an Asian put
option is E e�rT max X �G Tð Þ; 0f g

� �
.

– For a binary asset-or-nothing option the price of a call is E e�rTST I ST>Xf g
� �

and the price of a put is
E e�rTST I ST<Xf g
� �

.

– For a binary cash-or-nothing option the price of a call is E e�rTXI ST>Xf g
� �

and the price of a put is
E e�rTXI ST<Xf g
� �

.

– For a floating-strike lookback option the price of a call is E e�rT ST �min 0�t�TStð Þ
� �

and the price
of a put is E e�rT max 0�t�TSt � STð Þ

� �
.

– For an up-and-in barrier option with barrier level H and cash rebate K, set A ¼ max 0�t�TSt > Hf g.
Then the price of a call is

E e�rT max ST �X; 0f gIA þ e�rTK 1�IAð Þ
� �

and the price of a put is

E e�rT max X � ST ; 0f gIA þ e�rTK 1� IAð Þ
� �

– For a down-and-in barrier option with barrier level H and cash rebate K, set
A ¼ min 0�t�TSt < Hf g. Then the price of a call is

E e�rT max ST �X; 0f gIA þ e�rTK 1� IAð Þ
� �

and the price of a put is

E e�rT max X � ST ; 0f gIA þ e�rTK 1� IAð Þ
� �

– For an up-and-out barrier option with barrier level H and cash rebate K, set
A ¼ max 0�t�TSt > Hf g. Then the price of a call is

E e�rT max ST �X; 0f g 1� IAð Þ þ e�rTKIA

� �
and the price of a put is

E e�rT max X � ST ; 0f g 1� IAð Þ þ e�rTKIA

� �
– For a down-and-out barrier option with barrier level H and cash rebate K, set
A ¼ min 0�t�TSt < Hf g. Then the price of a call is

E e�rT max ST �X; 0f g 1� IAð Þ þ e�rTKIA

� �
and the price of a put is

E e�rT max X � ST ; 0f g 1� IAð Þ þ e�rTKIA

� �
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– The price of an American call option is esssup0���TE e�r� max S� �X; 0f gð Þ and the price of an
American put option is esssup0���TE e�r� max X � S� ; 0f gð Þ. Here esssup0���T denotes the essential
supremum over all stopping times � for the process S which take values in 0; T½ �. If S is a Markov
process, then the essential supremum may be replaced with the normal supremum. Note that if the
asset S pays no dividends then the price of an American call option is the same as a European call
option.

2.4.1 The Black–Scholes Model

The best known model of asset behaviour is the Black–Scholes model. Under the risk-neutral measure,
the asset is governed by the SDE

dSt
St
¼ r� qð Þdtþ �dWt

where r is the continuously compounded risk-free interest rate, q is the continuously compounded
dividend yield, � is the volatility of log-asset returns (i.e., log Stþdt=Stð Þ) and W ¼ Wtð Þt�0 is a
standard Brownian motion. Under this model, the price of any option P must solve the Black–Scholes
PDE

@P

@t
þ @P
@S

r� qð ÞS þ 1

2

@2P

@S2
�2S2 � rP ¼ 0

at all times before the option is exercised. This PDE admits a closed form solution for a number of
different options.

2.4.2 The Black–Scholes Model with Term Structure

The simplest extension of the Black–Scholes model is to allow r, q and � to be deterministic functions
of time so that

dSt
St
¼ rt � qtð Þdtþ �tdWt:

In this case one can still obtain closed form solutions for some options, e.g., European calls and puts.

2.4.3 The Heston Model

Heston (1993) proposed a stochastic volatility model with the following form

dSt
St

¼ r� qð Þdtþ ffiffiffiffi
vt
p

dW
1ð Þ
t

dvt ¼ � � � vtð Þdtþ � ffiffiffiffi
vt
p

dW
2ð Þ
t

where W 1ð Þ and W 2ð Þ are two Brownian motions with quadratic covariation given by
d W 1ð Þ;W 2ð Þ� �

t
¼ �dt. In this model r and q are the continuously compounded risk free interest rate

and dividend rate respectively, v ¼ vtð Þt�0 is the stochastic volatility process, � is the long term mean of
volatility, � is the rate of mean reversion, and � is the volatility of volatility. The prices of European
call and put options in the Heston model are available in closed form up to the evaluation of an integral
transform (see Lewis (2000)).

2.4.4 The Heston Model with Term Structure

The Heston model can be extended by allowing the coefficients to become deterministic functions of
time:

dSt
St

¼ rt � qtð Þdtþ ffiffiffiffi
vt
p

dW
1ð Þ
t

dvt ¼ �t �t � vtð Þdtþ �t
ffiffiffiffi
vt
p

dW
2ð Þ
t

where W 1ð Þ and W 2ð Þ are two Brownian motions with quadratic covariation given by
d W 1ð Þ;W 2ð Þ� �

t
¼ �tdt. When the coefficients are restricted to being piecewise constant functions of

S – Approximations of Special Functions Introduction – S

Mark 26 S.7



time, the prices of European call and put options can be calculated as described in Elices (2008) and
Mikhailov and NÎgel (2003).

2.5 Hypergeometric Functions

The confluent hypergeometric function M a; b; xð Þ (or 1F1 a; b;xð Þ) requires a number of techniques to
approximate it over the whole parameter a; bð Þ space and for all argument xð Þ values. For x well within
the unit circle xj j � � < 1 (where � ¼ 0:8 say), and for relatively small parameter values, the function
can be well approximated by Taylor expansions, continued fractions or through the solution of the
related ordinary differential equation by an explicit, adaptive integrator. For values of xj j > �, one of
several transformations can be performed (depending on the value of x) to reformulate the problem in
terms of a new argument x0 such that x0j j � �. If one or more of the parameters is relatively large (e.g.,
aj j > 30) then recurrence relations can be used in combination to reformulate the problem in terms of
parameter values of small size (e.g., aj j < 1).

Approximations to the hypergeometric functions can therefore require all of the above techniques in
sequence: a transformation to get an argument well inside the unit circle, a combination of recurrence
relations to reduce the parameter sizes, and the approximation of the resulting hypergeometric function
by one of a set of approximation techniques. Similar complications arise in the computation of the
Gaussian Hypergeometric Function 2F1.

All the techniques described above are based on those described in Pearson (2009).

3 Recommendations on Choice and Use of Available Routines

3.1 Vectorized Routine Variants

Many routines in Chapter S which compute functions of a single real argument have variants which
operate on vectors of arguments. For example, S18AEF computes the value of the I0 Bessel function
for a single argument, and S18ASF computes the same function for multiple arguments. In general it
should be more efficient to use vectorized routines where possible, though to some extent this will
depend on the environment from which you call the routines. See Section 4 for a complete list of
vectorized routines.

3.2 Elliptic Integrals

IMPORTANT ADVICE: users who encounter elliptic integrals in the course of their work are strongly
recommended to look at transforming their analysis directly to one of the Carlson forms, rather than to
the traditional canonical Legendre forms. In general, the extra symmetry of the Carlson forms is likely
to simplify the analysis, and these symmetric forms are much more stable to calculate. Note, however,
that this transformation may eventually lead to the following combination of Carlson forms:

RF 0; 1�m; 1ð Þ � 1

3
mRD 0; 1�m; 1ð Þ

with possibly m! 1, which makes RF and RD undefined, although the combination itself remains
defined and ! 1. The routine S21BJF returning the Legendre form E mð Þ through this combination
makes provision for such a case, and allows m ¼ 1.

The routine S21BAF for RC is largely included as an auxiliary to the other routines for elliptic
integrals. This integral essentially calculates elementary functions, e.g.,

lnx ¼ x� 1ð ÞRC
1þx
2

� �2
; x

� �
; x > 0;

arcsinx ¼ xRC 1� x2; 1
� �

; xj j � 1;

arcsinhx ¼ xRC 1þ x2; 1
� �

; etc:

In general this method of calculating these elementary functions is not recommended as there are
usually much more efficient specific routines available in the Library. However, S21BAF may be used,
for example, to compute lnx= x� 1ð Þ when x is close to 1, without the loss of significant figures that
occurs when lnx and x� 1 are computed separately.
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3.3 Bessel and Airy Functions

For computing the Bessel functions J� xð Þ, Y� xð Þ, I� xð Þ and K� xð Þ where x is real and � ¼ 0 or 1,
special routines are provided, which are much faster than the more general routines that allow a
complex argument and arbitrary real � � 0. Similarly, special routines are provided for computing the
Airy functions and their derivatives Ai xð Þ, Bi xð Þ, Ai0 xð Þ, Bi0 xð Þ for a real argument which are much
faster than the routines for complex arguments.

3.4 Option Pricing Functions

For the Black–Scholes model, functions are provided to compute prices and derivatives (Greeks) of all
the European options listed in Section 2.4. Prices for American call and put options can be obtained by
calling S30QCF which uses the Bjerksund and Stensland (2002) approximation to the theoretical value.
For the Black–Scholes model with term structure, prices for European call and put options can be
obtained by calling D03NDF. The prices of European call and put options in the standard Heston model
can be obtained by calling S30NAF, while S30NCF returns the same prices in the Heston model with
term structure.

3.5 Hypergeometric Functions

Two routines are provided for the confluent hypergeometric function 1F1. Both return values for

1F1 a; b; xð Þ where parameters a and b, and argument x, are all real, but one variant works in a scaled
form designed to avoid unnecessary loss of precision. The unscaled routine S22BAF is easier to use and
should be chosen in the first instance, changing to the scaled routine S22BBF only if problems are
encountered. Similar considerations apply to the Gaussian hypergeometric function routines S22BEF
and S22BFF.

4 Functionality Index

Airy function,
Ai, real argument,

scalar.......................................................................................................................... S17AGF
vectorized................................................................................................................... S17AUF

Ai or Ai0, complex argument, optionally scaled ............................................................. S17DGF
Ai0, real argument,

scalar.......................................................................................................................... S17AJF
vectorized................................................................................................................... S17AWF

Bi, real argument,
scalar.......................................................................................................................... S17AHF
vectorized................................................................................................................... S17AVF

Bi or Bi0, complex argument, optionally scaled.............................................................. S17DHF
Bi0, real argument,

scalar.......................................................................................................................... S17AKF
vectorized................................................................................................................... S17AXF

Arccos,
inverse circular cosine .................................................................................................... S09ABF

Arccosh,
inverse hyperbolic cosine................................................................................................ S11ACF

Arcsin,
inverse circular sine ........................................................................................................ S09AAF

Arcsinh,
inverse hyperbolic sine ................................................................................................... S11ABF

Arctanh,
inverse hyperbolic tangent .............................................................................................. S11AAF
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Bessel function,
I0, real argument,

scalar.......................................................................................................................... S18AEF
vectorized................................................................................................................... S18ASF

I1, real argument,
scalar.......................................................................................................................... S18AFF
vectorized................................................................................................................... S18ATF

I� , complex argument, optionally scaled......................................................................... S18DEF
J0, real argument,

scalar.......................................................................................................................... S17AEF
vectorized................................................................................................................... S17ASF

J1, real argument,
scalar.......................................................................................................................... S17AFF
vectorized................................................................................................................... S17ATF

J�
n zð Þ, complex argument............................................................................................. S18GKF
J� , complex argument, optionally scaled ........................................................................ S17DEF
K0, real argument,

scalar.......................................................................................................................... S18ACF
vectorized................................................................................................................... S18AQF

K1, real argument,
scalar.......................................................................................................................... S18ADF
vectorized................................................................................................................... S18ARF

K� , complex argument, optionally scaled ....................................................................... S18DCF
Y0, real argument,

scalar.......................................................................................................................... S17ACF
vectorized................................................................................................................... S17AQF

Y1, real argument,
scalar.......................................................................................................................... S17ADF
vectorized................................................................................................................... S17ARF

Y� , complex argument, optionally scaled ........................................................................ S17DCF

beta function,
incomplete....................................................................................................................... S14CCF

Complement of the Cumulative Normal distribution ........................................................... S15ACF

Complement of the Error function,
complex argument, scaled ............................................................................................... S15DDF
real argument .................................................................................................................. S15ADF
real argument, scaled ...................................................................................................... S15AGF

Cosine,
hyperbolic ....................................................................................................................... S10ACF

Cosine Integral..................................................................................................................... S13ACF

Cumulative Normal distribution function ............................................................................. S15ABF

Dawson's Integral................................................................................................................. S15AFF

Digamma function, scaled.................................................................................................... S14ADF

Elliptic functions, Jacobian, sn, cn, dn,
complex argument ........................................................................................................... S21CBF
real argument .................................................................................................................. S21CAF

Elliptic integral,
general,

of 2nd kind, F z; k0; a; bð Þ ........................................................................................... S21DAF
Legendre form,

complete of 1st kind, K mð Þ ...................................................................................... S21BHF
complete of 2nd kind, E mð Þ ..................................................................................... S21BJF
of 1st kind, F 
jmð Þ ................................................................................................... S21BEF
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of 2nd kind, E 
 j mð Þ ............................................................................................... S21BFF
of 3rd kind, � n;
 j mð Þ ............................................................................................ S21BGF

symmetrised,
degenerate of 1st kind, RC ........................................................................................ S21BAF
of 1st kind, RF .......................................................................................................... S21BBF
of 2nd kind, RD......................................................................................................... S21BCF
of 3rd kind, RJ .......................................................................................................... S21BDF

Erf,
real argument .................................................................................................................. S15AEF

Erfc,
complex argument, scaled ............................................................................................... S15DDF
real argument .................................................................................................................. S15ADF

erfcx,
real argument .................................................................................................................. S15AGF

Exponential,
complex........................................................................................................................... S01EAF

Exponential Integral ............................................................................................................. S13AAF

Fresnel integral,
C,

scalar.......................................................................................................................... S20ADF
vectorized................................................................................................................... S20ARF

S,
scalar.......................................................................................................................... S20ACF
vectorized................................................................................................................... S20AQF

Gamma function................................................................................................................... S14AAF

Gamma function,
incomplete....................................................................................................................... S14BAF

Generalized factorial function .............................................................................................. S14AAF

Hankel function H 1ð Þ
� or H 2ð Þ

� ,
complex argument, optionally scaled .............................................................................. S17DLF

Hypergeometric functions,

1F1 a; b; xð Þ, confluent, real argument .............................................................................. S22BAF

1F1 a; b; xð Þ, confluent, real argument, scaled form.......................................................... S22BBF

2F1 a; b; c;xð Þ, Gauss, real argument ................................................................................ S22BEF

2F1 a; b; c;xð Þ, Gauss, real argument, scaled form ........................................................... S22BFF

Jacobian theta functions �k x; qð Þ,
real argument .................................................................................................................. S21CCF

Kelvin function,
beix,

scalar.......................................................................................................................... S19ABF
vectorized................................................................................................................... S19APF

ber x,
scalar.......................................................................................................................... S19AAF
vectorized................................................................................................................... S19ANF

keix,
scalar.......................................................................................................................... S19ADF
vectorized................................................................................................................... S19ARF

ker x,
scalar.......................................................................................................................... S19ACF
vectorized................................................................................................................... S19AQF

Legendre functions of 1st kind Pm
n xð Þ, Pm

n xð Þ .................................................................... S22AAF
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Logarithm of 1þ x .............................................................................................................. S01BAF

Logarithm of beta function,
real .................................................................................................................................. S14CBF

Logarithm of gamma function,
complex........................................................................................................................... S14AGF
real .................................................................................................................................. S14ABF
real, scaled ...................................................................................................................... S14AHF

Option Pricing,
American option, Bjerksund and Stensland option price ................................................ S30QCF
Asian option, geometric continuous average rate price................................................... S30SAF
Asian option, geometric continuous average rate price with Greeks .............................. S30SBF
binary asset-or-nothing option price................................................................................ S30CCF
binary asset-or-nothing option price with Greeks ........................................................... S30CDF
binary cash-or-nothing option price ................................................................................ S30CAF
binary cash-or-nothing option price with Greeks ............................................................ S30CBF
Black–Scholes–Merton option price ............................................................................... S30AAF
Black–Scholes–Merton option price with Greeks........................................................... S30ABF
European option, option prices, using Merton jump-diffusion model ............................. S30JAF
European option, option price with Greeks, using Merton jump-diffusion model .......... S30JBF
floating-strike lookback option price ............................................................................... S30BAF
floating-strike lookback option price with Greeks........................................................... S30BBF
Heston's model option price............................................................................................ S30NAF
Heston's model option price with Greeks ....................................................................... S30NBF
Heston's model with term structure................................................................................. S30NCF
standard barrier option price ........................................................................................... S30FAF

Polygamma function,
 nð Þ xð Þ, real x ................................................................................................................. S14AEF

 nð Þ zð Þ, complex z .......................................................................................................... S14AFF

psi function .......................................................................................................................... S14ACF

psi function derivatives, scaled ............................................................................................ S14ADF

Scaled modified Bessel function(s),
e� xj jI0 xð Þ, real argument,

scalar.......................................................................................................................... S18CEF
vectorized................................................................................................................... S18CSF

e� xj jI1 xð Þ, real argument,
scalar.......................................................................................................................... S18CFF
vectorized................................................................................................................... S18CTF

exK0 xð Þ, real argument,
scalar.......................................................................................................................... S18CCF
vectorized................................................................................................................... S18CQF

exK1 xð Þ, real argument,
scalar.......................................................................................................................... S18CDF
vectorized................................................................................................................... S18CRF

Sine,
hyperbolic ....................................................................................................................... S10ABF

Sine Integral......................................................................................................................... S13ADF

Tangent,
circular ............................................................................................................................ S07AAF
hyperbolic ....................................................................................................................... S10AAF

Trigamma function, scaled ................................................................................................... S14ADF

Zeros of Bessel functions J� xð Þ, J 0� xð Þ, Y� xð Þ, Y 0� xð Þ,
scalar............................................................................................................................... S17ALF
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5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

S01BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S01BAF returns a value of the shifted logarithmic function, ln 1þ xð Þ, via the function name.

2 Specification

FUNCTION S01BAF (X, IFAIL)
REAL (KIND=nag_wp) S01BAF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S01BAF computes values of ln 1þ xð Þ, retaining full relative precision even when xj j is small. The
routine is based on the Chebyshev expansion

ln
1þ p2 þ 2p�x

1þ p2 � 2p�x
¼ 4
X1
k¼0

p2kþ1

2kþ 1
T2kþ1 �xð Þ:

Setting �x ¼
x 1þ p2
� �

2p xþ 2ð Þ , and choosing p ¼ q � 1

q þ 1
, q ¼

ffiffiffi
24
p

the expansion is valid in the domain

x 2 1ffiffiffi
2
p � 1;

ffiffiffi
2
p
� 1

� �
.

Outside this domain, ln 1þ xð Þ is computed by the standard logarithmic function.

4 References

Lyusternik L A, Chervonenkis O A and Yanpolskii A R (1965) Handbook for Computing Elementary
Functions p. 57 Pergamon Press

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > �1:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X � �1:0.
The result is returned as zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The returned result should be accurate almost to machine precision, with a limit of about 20 significant
figures due to the precision of internal constants. Note however that if x lies very close to �1:0 and is
not exact (for example if x is the result of some previous computation and has been rounded), then
precision will be lost in the computation of 1þ x, and hence ln 1þ xð Þ, in S01BAF.

8 Parallelism and Performance

S01BAF is not threaded in any implementation.

9 Further Comments

Empirical tests show that the time taken for a call of S01BAF usually lies between about 1:25 and 2:5
times the time for a call to the standard logarithm function.

10 Example

The example program reads values of the argument x from a file, evaluates the function at each value of
x and prints the results.

10.1 Program Text

Program s01bafe

! S01BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s01baf

! .. Implicit None Statement ..
Implicit None
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! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S01BAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s01baf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.4)
End Program s01bafe

10.2 Program Data

S01BAF Example Program Data
2.50E+0
1.25E-1

-9.06E-1
1.29E-3

-7.83E-6
1.00E-9

10.3 Program Results

S01BAF Example Program Results

X Y
2.5000E+00 1.2528E+00
1.2500E-01 1.1778E-01

-9.0600E-01 -2.3645E+00
1.2900E-03 1.2892E-03

-7.8300E-06 -7.8300E-06
1.0000E-09 1.0000E-09
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NAG Library Routine Document

S01EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S01EAF evaluates the exponential function ez, for complex z.

2 Specification

FUNCTION S01EAF (Z, IFAIL)
COMPLEX (KIND=nag_wp) S01EAF

INTEGER IFAIL
COMPLEX (KIND=nag_wp) Z

3 Description

S01EAF evaluates the exponential function ez, taking care to avoid machine overflow, and giving a
warning if the result cannot be computed to more than half precision. The function is evaluated as
ez ¼ ex cos yþ i sin yð Þ, where x and y are the real and imaginary parts respectively of z.

Since cos y and sin y are less than or equal to 1 in magnitude, it is possible that ex may overflow
although ex cos y or ex sin y does not. In this case the alternative formula sign cos yð Þexþln cos yj j is used for
the real part of the result, and sign sin yð Þexþln sin yj j for the imaginary part. If either part of the result still
overflows, a warning is returned through argument IFAIL.

If Im zð Þ is too large, precision may be lost in the evaluation of sin y and cos y. Again, a warning is
returned through IFAIL.

4 References

None.

5 Arguments

1: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The real part of the result overflows, and is set to the largest safe number with the correct sign.
The imaginary part of the result is meaningful.

IFAIL ¼ 2

The imaginary part of the result overflows, and is set to the largest safe number with the correct
sign. The real part of the result is meaningful.

IFAIL ¼ 3

Both real and imaginary parts of the result overflow, and are set to the largest safe number with
the correct signs.

IFAIL ¼ 4

The computed result is accurate to less than half precision, due to the size of Im zð Þ.

IFAIL ¼ 5

The computed result has no precision, due to the size of Im zð Þ, and is set to zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Accuracy is limited in general only by the accuracy of the standard functions in the computation of
sin y, cos y and ex, where x ¼ Re zð Þ, y ¼ Im zð Þ. As y gets larger, precision will probably be lost due to
argument reduction in the evaluation of the sine and cosine functions, until the warning error IFAIL ¼ 4

occurs when y gets larger than
ffiffiffiffiffiffiffi
1=�

p
, where � is the machine precision. Note that on some machines,

the intrinsic functions SIN and COS will not operate on arguments larger than about
ffiffiffiffiffiffiffi
1=�

p
, and so

IFAIL can never return as 4.

In the comparatively rare event that the result is computed by the formulae sign cos yð Þexþln cos yj j and
sign sin yð Þexþln sin yj j, a further small loss of accuracy may be expected due to rounding errors in the
logarithmic function.

8 Parallelism and Performance

S01EAF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example reads values of the argument z from a file, evaluates the function at each value of z and
prints the results.

10.1 Program Text

Program s01eafe

! S01EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s01eaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: w, z
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S01EAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

Write (nout,*) ’ Z exp(Z)’

data: Do

Read (nin,*,Iostat=ioerr) z

If (ioerr<0) Then
Exit data

End If

ifail = -1
w = s01eaf(z,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) z, w
End Do data

99999 Format (1X,’(’,F12.4,’,’,F12.4,’) (’,F12.4,’,’,F12.4,’)’)
End Program s01eafe

10.2 Program Data

S01EAF Example Program Data
( 1.0, 0.0)
(-0.5, 2.0)
( 0.0,-2.0)
(-2.5,-1.5)
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10.3 Program Results

S01EAF Example Program Results

Z exp(Z)
( 1.0000, 0.0000) ( 2.7183, 0.0000)
( -0.5000, 2.0000) ( -0.2524, 0.5515)
( 0.0000, -2.0000) ( -0.4161, -0.9093)
( -2.5000, -1.5000) ( 0.0058, -0.0819)
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NAG Library Routine Document

S07AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S07AAF returns the value of the circular tangent, tan x, via the function name.

2 Specification

FUNCTION S07AAF (X, IFAIL)
REAL (KIND=nag_wp) S07AAF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S07AAF calculates an approximate value for the circular tangent of its argument, tanx. It is based on
the Chebyshev expansion

tan � ¼ �y tð Þ ¼ �
X
r¼0

crTr tð Þ

where �	
4
< � <

	

4
and �1 < t < þ1; t ¼ 2

4�

	

� �2

� 1 .

The reduction to the standard range is accomplished by taking

x ¼ N	=2þ �

where N is an integer and �	4 < � < 	
4 ,

i.e., � ¼ x� 2x

	

� �
	
2 where N ¼ 2x

	

� �
¼ the nearest integer to

2x

	
.

From the properties of tanx it follows that

tanx ¼ tan �; Neven
�1= tan �; Nodd


 �

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The routine has been called with an argument that is larger in magnitude than F ; the default
result returned is zero. The value of F is given in the Users' Note for your implementation.

IFAIL ¼ 2

The routine has been called with an argument that is too close (as determined using the relative
tolerance F ) to an odd multiple of 	=2, at which the function is infinite; the routine returns a
value with the correct sign but a more or less arbitrary but large magnitude (see Section 7). The
value of F is given in the Users' Note for your implementation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If � and � are the relative errors in the argument and result respectively, then in principle

� � 2x

sin 2x
�:

That is a relative error in the argument, x, is amplified by at least a factor 2x= sin 2x in the result.

Similarly if E is the absolute error in the result this is given by

E � x

cos2x
�:

The equalities should hold if � is greater than the machine precision (� is a result of data errors etc.)
but if � is simply the round-off error in the machine it is possible that internal calculation rounding will
lose an extra figure.

The graphs below show the behaviour of these amplification factors.
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In the principal range it is possible to preserve relative accuracy even near the zero of tanx at x ¼ 0 but
at the other zeros only absolute accuracy is possible. Near the infinities of tan x both the relative and
absolute errors become infinite and the routine must fail (error 2).

If N is odd and �j j � xF2 the routine could not return better than two figures and in all probability
would produce a result that was in error in its most significant figure. Therefore the routine fails and it
returns the value

� sign �
1

xF2j j

� �
’ � sign � tan

	

2
� xF2j j

� �
which is the value of the tangent at the nearest argument for which a valid call could be made.

Accuracy is also unavoidably lost if the routine is called with a large argument. If xj j > F1 the routine
fails (error 1) and returns zero. (See the Users' Note for your implementation for specific values of F1

and F2.)

8 Parallelism and Performance

S07AAF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s07aafe

! S07AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s07aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S07AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s07aaf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s07aafe

10.2 Program Data

S07AAF Example Program Data
-2.0
-0.5
1.0
3.0
1.5708

S07AAF NAG Library Manual

S07AAF.4 Mark 26



10.3 Program Results

S07AAF Example Program Results

X Y

-2.000E+00 2.185E+00
-5.000E-01 -5.463E-01
1.000E+00 1.557E+00
3.000E+00 -1.425E-01
1.571E+00 -2.722E+05
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NAG Library Routine Document

S09AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S09AAF returns the value of the inverse circular sine, arcsin x, via the function name. The value is in
the principal range �	=2; 	=2ð Þ.

2 Specification

FUNCTION S09AAF (X, IFAIL)
REAL (KIND=nag_wp) S09AAF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S09AAF calculates an approximate value for the inverse circular sine, arcsinx. It is based on the
Chebyshev expansion

arcsinx ¼ x� y xð Þ ¼ x
X
r¼0

arTr tð Þ

where � 1ffiffiffi
2
p � x � 1ffiffiffi

2
p and t ¼ 4x2 � 1.

For x2 � 1

2
; arcsinx ¼ x� y xð Þ .

For 1
2 < x2 � 1; arcsinx ¼ signx

	

2
� arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
pn o

.

For x2 > 1; arcsinx is undefined and the routine fails.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: Xj j � 1:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The routine has been called with an argument greater than 1:0 in absolute value; arcsinx is
undefined and the routine returns zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If � and � are the relative errors in the argument and result, respectively, then in principle

�j j ’ x

arcsinx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p � �

				 				:
That is, a relative error in the argument x is amplified by at least a factor

x

arcsinx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p in the result.

The equality should hold if � is greater than the machine precision (� is a result of data errors etc.) but
if � is produced simply by round-off error in the machine it is possible that rounding in internal
calculations may lose an extra figure in the result.

This factor stays close to one except near xj j ¼ 1 where its behaviour is shown in the following graph.
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For xj j close to unity, 1� xj j � �, the above analysis is no longer applicable owing to the fact that both
argument and result are subject to finite bounds, ( xj j � 1 and arcsinxj j � 1

2	). In this region � �
ffiffiffi
�
p

;
that is the result will have approximately half as many correct significant figures as the argument.

For xj j ¼ 1 the result will be correct to full machine precision.

8 Parallelism and Performance

S09AAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s09aafe

! S09AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s09aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
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Write (nout,*) ’S09AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s09aaf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s09aafe

10.2 Program Data

S09AAF Example Program Data
-0.5
0.1
0.9

10.3 Program Results

S09AAF Example Program Results

X Y

-5.000E-01 -5.236E-01
1.000E-01 1.002E-01
9.000E-01 1.120E+00
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NAG Library Routine Document

S09ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S09ABF returns the value of the inverse circular cosine, arccosx, via the function name; the result is in
the principal range 0; 	ð Þ.

2 Specification

FUNCTION S09ABF (X, IFAIL)
REAL (KIND=nag_wp) S09ABF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S09ABF calculates an approximate value for the inverse circular cosine, arccosx. It is based on the
Chebyshev expansion

arcsinx ¼ x� y tð Þ ¼ x
X
r¼0

arTr tð Þ

where
�1ffiffiffi
2
p � x � 1ffiffiffi

2
p ; and t ¼ 4x2 � 1 .

For x2 � 1

2
; arccosx ¼ 	

2
� arcsinx .

For �1 � x < �1ffiffiffi
2
p ; arccos x ¼ 	� arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

.

For
1ffiffiffi
2
p < x � 1; arccos x ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

.

For xj j > 1; arccos x is undefined and the routine fails.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: Xj j � 1:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

S09ABF has been called with Xj j > 1:0, for which arccos is undefined. A zero result is returned.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If � and � are the relative errors in the argument and the result, respectively, then in principle

�j j ’ x

arccos x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p � �

				 				:
The equality should hold if � is greater than the machine precision (� is due to data errors etc.), but if �
is due simply to round-off in the machine it is possible that rounding etc. in internal calculations may
lose one extra figure.

The behaviour of the amplification factor
x

arccosx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p is shown in the graph below.

In the region of x ¼ 0 this factor tends to zero and the accuracy will be limited by the machine
precision. For xj j close to one, 1� xj j � �, the above analysis is not applicable owing to the fact that
both the argument and the result are bounded xj j � 1, 0 � arccos x � 	.

In the region of x � �1 we have � �
ffiffiffi
�
p

, that is the result will have approximately half as many correct
significant figures as the argument.

In the region x � þ1, we have that the absolute error in the result, E, is given by E �
ffiffiffi
�
p

, that is the
result will have approximately half as many decimal places correct as there are correct figures in the
argument.
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8 Parallelism and Performance

S09ABF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s09abfe

! S09ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s09abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S09ABF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
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Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s09abf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s09abfe

10.2 Program Data

S09ABF Example Program Data
-0.5
0.1
0.9

10.3 Program Results

S09ABF Example Program Results

X Y

-5.000E-01 2.094E+00
1.000E-01 1.471E+00
9.000E-01 4.510E-01
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NAG Library Routine Document

S10AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S10AAF returns a value for the hyperbolic tangent, tanhx, via the function name.

2 Specification

FUNCTION S10AAF (X, IFAIL)
REAL (KIND=nag_wp) S10AAF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S10AAF calculates an approximate value for the hyperbolic tangent of its argument, tanh x.

For xj j � 1 it is based on the Chebyshev expansion

tanhx ¼ x� y tð Þ ¼ x
X
r¼0

arTr tð Þ

where �1 � x � 1; � 1 � t � 1; and t ¼ 2x2 � 1.

For 1 < xj j < E1 (see the Users' Note for your implementation for value of E1)

tanhx ¼ e
2x � 1

e2x þ 1
:

For xj j � E1, tanhx ¼ signx to within the representation accuracy of the machine and so this
approximation is used.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

None.

7 Accuracy

If � and � are the relative errors in the argument and the result respectively, then in principle,

�j j ’ 2x

sinh 2x
�

				 				:
That is, a relative error in the argument, x, is amplified by a factor approximately

2x

sinh 2x
, in the result.

The equality should hold if � is greater than the machine precision (� due to data errors etc.) but if � is
due simply to the round-off in the machine representation it is possible that an extra figure may be lost
in internal calculation round-off.

The behaviour of the amplification factor is shown in the following graph:
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ε/δ

x

Figure 1

It should be noted that this factor is always less than or equal to 1:0 and away from x ¼ 0 the accuracy
will eventually be limited entirely by the precision of machine representation.

8 Parallelism and Performance

S10AAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.
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10.1 Program Text

Program s10aafe

! S10AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s10aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S10AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
y = s10aaf(x,ifail)

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s10aafe

10.2 Program Data

S10AAF Example Program Data
-20.0
-5.0
0.5
5.0

10.3 Program Results

S10AAF Example Program Results

X Y

-2.000E+01 -1.000E+00
-5.000E+00 -9.999E-01
5.000E-01 4.621E-01
5.000E+00 9.999E-01
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NAG Library Routine Document

S10ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S10ABF returns the value of the hyperbolic sine, sinh x, via the function name.

2 Specification

FUNCTION S10ABF (X, IFAIL)
REAL (KIND=nag_wp) S10ABF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S10ABF calculates an approximate value for the hyperbolic sine of its argument, sinh x.

For xj j � 1 it uses the Chebyshev expansion

sinh x ¼ x� y tð Þ ¼ x
X
r¼0

arTr tð Þ

where t ¼ 2x2 � 1.

For 1 < xj j � E1; sinhx ¼ 1
2 e

x � e�xð Þ

where E1 is a machine-dependent constant, details of which are given in the Users' Note for your
implementation.

For xj j > E1, the routine fails owing to the danger of setting overflow in calculating ex. The result
returned for such calls is sinh sign xE1ð Þ, i.e., it returns the result for the nearest valid argument.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The routine has been called with an argument too large in absolute magnitude. There is a danger
of setting overflow. The result is the value of sinh x at the closest argument for which a valid call
could be made. (See Section 3 and the Users' Note for your implementation.)

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If � and � are the relative errors in the argument and result, respectively, then in principle

�j j ’ x cothx� �j j:
That is the relative error in the argument, x, is amplified by a factor, approximately x cothx. The
equality should hold if � is greater than the machine precision (� is a result of data errors etc.) but, if �
is simply a result of round-off in the machine representation of x, then it is possible that an extra figure
may be lost in internal calculation round-off.

The behaviour of the error amplification factor can be seen in the following graph:
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1 0
1
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ε/δ
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Figure 1
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It should be noted that for xj j � 2

� � x� ¼ �

where � is the absolute error in the argument.

8 Parallelism and Performance

S10ABF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s10abfe

! S10ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s10abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S10ABF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s10abf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s10abfe
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10.2 Program Data

S10ABF Example Program Data
-10.0
-0.5
0.0
0.5

25.0

10.3 Program Results

S10ABF Example Program Results

X Y

-1.000E+01 -1.101E+04
-5.000E-01 -5.211E-01
0.000E+00 0.000E+00
5.000E-01 5.211E-01
2.500E+01 3.600E+10

S10ABF NAG Library Manual

S10ABF.4 (last) Mark 26



NAG Library Routine Document

S10ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S10ACF returns the value of the hyperbolic cosine, cosh x, via the function name.

2 Specification

FUNCTION S10ACF (X, IFAIL)
REAL (KIND=nag_wp) S10ACF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S10ACF calculates an approximate value for the hyperbolic cosine, cosh x.

For xj j � E1; coshx ¼ 1
2 e

x þ e�xð Þ .

For xj j > E1, the routine fails owing to danger of setting overflow in calculating ex. The result returned
for such calls is coshE1, i.e., it returns the result for the nearest valid argument. The value of machine-
dependent constant E1 may be given in the Users' Note for your implementation.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The routine has been called with an argument too large in absolute magnitude. There is a danger
of overflow. The result returned is the value of cosh x at the nearest valid argument.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If � and � are the relative errors in the argument and result, respectively, then in principle

� ’ x tanhx� �:

That is, the relative error in the argument, x, is amplified by a factor, at least x tanhx. The equality
should hold if � is greater than the machine precision (� is due to data errors etc.) but if � is simply a
result of round-off in the machine representation of x then it is possible that an extra figure may be lost
in internal calculation round-off.

The behaviour of the error amplification factor is shown by the following graph:

 0

 2

 4

 6

 8

 10

-10 -5  0  5  10

ε/
δ

x

Figure 1
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It should be noted that near x ¼ 0 where this amplification factor tends to zero the accuracy will be
limited eventually by the machine precision. Also for xj j � 2

� � x� ¼ �

where � is the absolute error in the argument x.

8 Parallelism and Performance

S10ACF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s10acfe

! S10ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s10acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S10ACF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s10acf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s10acfe
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10.2 Program Data

S10ACF Example Program Data
-10.0
-0.5
0.0
0.5

25.0

10.3 Program Results

S10ACF Example Program Results

X Y

-1.000E+01 1.101E+04
-5.000E-01 1.128E+00
0.000E+00 1.000E+00
5.000E-01 1.128E+00
2.500E+01 3.600E+10
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NAG Library Routine Document

S11AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S11AAF returns the value of the inverse hyperbolic tangent, arctanh x, via the function name.

2 Specification

FUNCTION S11AAF (X, IFAIL)
REAL (KIND=nag_wp) S11AAF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S11AAF calculates an approximate value for the inverse hyperbolic tangent of its argument, arctanh x.

For x2 � 1
2 it is based on the Chebyshev expansion

arctanhx ¼ x� y tð Þ ¼ x
X
r¼0

arTr tð Þ

where � 1ffiffiffi
2
p � x � 1ffiffiffi

2
p , � 1 � t � 1, and t ¼ 4x2 � 1.

For 1
2 < x2 < 1 , it uses

arctanhx ¼ 1

2
ln

1þ x
1� x

� �
:

For xj j � 1, the routine fails as arctanhx is undefined.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: Xj j < 1:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The routine has been called with an argument greater than or equal to 1:0 in magnitude, for
which arctanh is not defined. On softfailure, the result is returned as zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If � and � are the relative errors in the argument and result, respectively, then in principle

�j j ’ x

1� x2ð Þ arctanhx� �
				 				:

That is, the relative error in the argument, x, is amplified by at least a factor
x

1� x2ð Þ arctanhx in the

result. The equality should hold if � is greater than the machine precision (� due to data errors etc.) but
if � is simply due to round-off in the machine representation then it is possible that an extra figure may
be lost in internal calculation round-off.

The behaviour of the amplification factor is shown in the following graph:
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The factor is not significantly greater than one except for arguments close to xj j ¼ 1. However in the
region where xj j is close to one, 1� xj j � �, the above analysis is inapplicable since x is bounded by
definition, xj j < 1. In this region where arctanh is tending to infinity we have

� � 1= ln �

which implies an obvious, unavoidable serious loss of accuracy near xj j � 1, e.g., if x and 1 agree to 6
significant figures, the result for arctanh x would be correct to at most about one figure.

8 Parallelism and Performance

S11AAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s11aafe

! S11AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s11aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
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Write (nout,*) ’S11AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s11aaf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s11aafe

10.2 Program Data

S11AAF Example Program Data
-0.5
0.0
0.5

-0.9999

10.3 Program Results

S11AAF Example Program Results

X Y

-5.000E-01 -5.493E-01
0.000E+00 0.000E+00
5.000E-01 5.493E-01

-9.999E-01 -4.952E+00
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NAG Library Routine Document

S11ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S11ABF returns the value of the inverse hyperbolic sine, arcsinh x, via the function name.

2 Specification

FUNCTION S11ABF (X, IFAIL)
REAL (KIND=nag_wp) S11ABF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S11ABF calculates an approximate value for the inverse hyperbolic sine of its argument, arcsinh x.

For xj j � 1 it is based on the Chebyshev expansion

arcsinhx ¼ x� y tð Þ ¼ x
X
r¼0

crTr tð Þ; where t ¼ 2x2 � 1:

For xj j > 1 it uses the fact that

arcsinhx ¼ signx� ln xj j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p� �
:

This form is used directly for 1 < xj j < 10k, where k ¼ n=2þ 1, and the machine uses approximately n
decimal place arithmetic.

For xj j � 10k,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p

is equal to xj j to within the accuracy of the machine and hence we can guard
against premature overflow and, without loss of accuracy, calculate

arcsinhx ¼ signx� ln 2þ ln xj jð Þ:

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

None.

7 Accuracy

If � and � are the relative errors in the argument and the result, respectively, then in principle

�j j ’ xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

arcsinhx
�

				 				:
That is, the relative error in the argument, x, is amplified by a factor at least

xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

arcsinhx
, in the

result.

The equality should hold if � is greater than the machine precision (� due to data errors etc.) but if � is
simply due to round-off in the machine representation it is possible that an extra figure may be lost in
internal calculation round-off.

The behaviour of the amplification factor is shown in the following graph:
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It should be noted that this factor is always less than or equal to one. For large x we have the absolute
error in the result, E, in principle, given by

E � �:

This means that eventually accuracy is limited by machine precision.

8 Parallelism and Performance

S11ABF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s11abfe

! S11ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s11abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S11ABF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
y = s11abf(x,ifail)

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s11abfe

10.2 Program Data

S11ABF Example Program Data
-2.0
-0.5
1.0
6.0

10.3 Program Results

S11ABF Example Program Results

X Y

-2.000E+00 -1.444E+00
-5.000E-01 -4.812E-01
1.000E+00 8.814E-01
6.000E+00 2.492E+00
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NAG Library Routine Document

S11ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S11ACF returns the value of the inverse hyperbolic cosine, arccosh x, via the function name. The result
is in the principal positive branch.

2 Specification

FUNCTION S11ACF (X, IFAIL)
REAL (KIND=nag_wp) S11ACF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S11ACF calculates an approximate value for the inverse hyperbolic cosine, arccosh x. It is based on the
relation

arccoshx ¼ ln xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p� �

:

This form is used directly for 1 < x < 10k, where k ¼ n=2þ 1, and the machine uses approximately n
decimal place arithmetic.

For x � 10k,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

is equal to
ffiffiffi
x
p

to within the accuracy of the machine and hence we can guard
against premature overflow and, without loss of accuracy, calculate

arccoshx ¼ ln 2þ lnx:

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X � 1:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The routine has been called with an argument less than 1:0, for which arccoshx is not defined.
The result returned is zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If � and � are the relative errors in the argument and result respectively, then in principle

�j j ’ xffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

arccoshx
� �

				 				:
That is the relative error in the argument is amplified by a factor at least

xffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

arccoshx
in the result.

The equality should apply if � is greater than the machine precision (� due to data errors etc.) but if � is
simply a result of round-off in the machine representation it is possible that an extra figure may be lost
in internal calculation and round-off. The behaviour of the amplification factor is shown in the
following graph:
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It should be noted that for x > 2 the factor is always less than 1:0. For large x we have the absolute
error E in the result, in principle, given by

E � �:

This means that eventually accuracy is limited by machine precision. More significantly for x close to
1, x� 1 � �, the above analysis becomes inapplicable due to the fact that both function and argument
are bounded, x � 1, arccoshx � 0. In this region we have

E �
ffiffiffi
�
p
:

That is, there will be approximately half as many decimal places correct in the result as there were
correct figures in the argument.

8 Parallelism and Performance

S11ACF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s11acfe

! S11ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s11acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
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! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S11ACF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s11acf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s11acfe

10.2 Program Data

S11ACF Example Program Data
1.00
2.0
5.0

10.0

10.3 Program Results

S11ACF Example Program Results

X Y

1.000E+00 0.000E+00
2.000E+00 1.317E+00
5.000E+00 2.292E+00
1.000E+01 2.993E+00
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NAG Library Routine Document

S13AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Warning. The specification of the argument X changed at Mark 21: X < 0:0 is no longer regarded as an
input error.

1 Purpose

S13AAF returns the value of the exponential integral E1 xð Þ, via the function name.

2 Specification

FUNCTION S13AAF (X, IFAIL)
REAL (KIND=nag_wp) S13AAF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S13AAF calculates an approximate value for

E1 xð Þ ¼ �Ei �xð Þ ¼
Z 1
x

e�u

u
du:

using Chebyshev expansions, where x is real. For x < 0, the real part of the principal value of the
integral is taken. The value E1 0ð Þ is infinite, and so, when x ¼ 0, S13AAF exits with an error and
returns the largest representable machine number.

For 0 < x � 4,

E1 xð Þ ¼ y tð Þ � lnx ¼
X
r

arTr tð Þ � lnx;

where t ¼ 1
2x� 1 .

For x > 4,

E1 xð Þ ¼
e�x

x
y tð Þ ¼ e

�x

x

X
r

arTr tð Þ;

where t ¼ �1:0þ 14:5
xþ3:25ð Þ ¼ 11:25�x

3:25þx .

In both cases, �1 � t � þ1.
For x < 0, the approximation is based on expansions proposed by Cody and Thatcher Jr. (1969).
Precautions are taken to maintain good relative accuracy in the vicinity of x0 � �0:372507 . . . , which
corresponds to a simple zero of Ei(�x).
S13AAF guards against producing underflows and overflows by using the argument xhi; see the Users'
Note for your implementation for the value of xhi. To guard against overflow, if x < �xhi the routine
terminates and returns the negative of the largest representable machine number. To guard against
underflow, if x > xhi the result is set directly to zero.
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4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Cody W J and Thatcher Jr. H C (1969) Rational Chebyshev approximations for the exponential integral
Ei xð Þ Math. Comp. 23 289–303

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: �xhi � X < 0:0 or X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X ¼ 0:0 and the function is infinite. The result returned is the largest representable
machine number.

IFAIL ¼ 2

The evaluation has been abandoned due to the likelihood of overflow. The argument X < �xhi,
and the result is returned as the negative of the largest representable machine number.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

S13AAF NAG Library Manual

S13AAF.2 Mark 26



7 Accuracy

Unless stated otherwise, it is assumed that x > 0.

If � and � are the relative errors in argument and result respectively, then in principle,

�j j ’ e�x

E1 xð Þ
� �

				 				
so the relative error in the argument is amplified in the result by at least a factor e�x=E1 xð Þ. The
equality should hold if � is greater than the machine precision (� due to data errors etc.) but if � is
simply a result of round-off in the machine representation, it is possible that an extra figure may be lost
in internal calculation and round-off.

The behaviour of this amplification factor is shown in the following graph:

10-1

100

101

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

|ε/
δ|

x

It should be noted that, for absolutely small x, the amplification factor tends to zero and eventually the
error in the result will be limited by machine precision.

For absolutely large x,

� � x� ¼ �;

the absolute error in the argument.

For x < 0, empirical tests have shown that the maximum relative error is a loss of approximately 1
decimal place.

8 Parallelism and Performance

S13AAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

The following program reads values of the argument x from a file, evaluates the function at each value
of x and prints the results.
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10.1 Program Text

Program s13aafe

! S13AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s13aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S13AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s13aaf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s13aafe

10.2 Program Data

S13AAF Example Program Data
2.0

-1.0

10.3 Program Results

S13AAF Example Program Results

X Y

2.000E+00 4.890E-02
-1.000E+00 -1.895E+00
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NAG Library Routine Document

S13ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S13ACF returns the value of the cosine integral

Ci xð Þ ¼ � þ lnxþ
Z x

0

cos u� 1

u
du; x > 0

via the routine name where � denotes Euler's constant.

2 Specification

FUNCTION S13ACF (X, IFAIL)
REAL (KIND=nag_wp) S13ACF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S13ACF calculates an approximate value for Ci xð Þ.
For 0 < x � 16 it is based on the Chebyshev expansion

Ci xð Þ ¼ lnxþ
X0
r¼0

arTr tð Þ; t ¼ 2
x

16

� �2
� 1:

For 16 < x < xhi where the value of xhi is given in the Users' Note for your implementation,

Ci xð Þ ¼ f xð Þ sinx
x

� g xð Þ cos x
x2

where f xð Þ ¼
P
r¼0
frTr tð Þ and g xð Þ ¼

P
r¼0
grTr tð Þ, t ¼ 2

16

x

� �2

� 1 .

For x � xhi, Ci xð Þ ¼ 0 to within the accuracy possible (see Section 7).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The routine has been called with an argument less than or equal to zero for which the function is
not defined. The result returned is zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If E and � are the absolute and relative errors in the result and � is the relative error in the argument
then in principle these are related by

Ej j ’ � cosxj jand �j j ’ � cos x

Ci xð Þ

				 				:
That is accuracy will be limited by machine precision near the origin and near the zeros of cosx, but
near the zeros of Ci xð Þ only absolute accuracy can be maintained.

The behaviour of this amplification is shown in Figure 1.
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Figure 1

For large values of x, Ci xð Þ � sinx

x
therefore � � �x cotx and since � is limited by the finite precision

of the machine it becomes impossible to return results which have any relative accuracy. That is, when
x � 1=� we have that Ci xð Þj j � 1=x � E and hence is not significantly different from zero.

Hence xhi is chosen such that for values of x � xhi, Ci xð Þ in principle would have values less than the
machine precision and so is essentially zero.

8 Parallelism and Performance

S13ACF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s13acfe

! S13ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s13acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S13ACF Example Program Results’
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! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s13acf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s13acfe

10.2 Program Data

S13ACF Example Program Data
0.2
0.4
0.6
0.8
1.0

10.3 Program Results

S13ACF Example Program Results

X Y

2.000E-01 -1.042E+00
4.000E-01 -3.788E-01
6.000E-01 -2.227E-02
8.000E-01 1.983E-01
1.000E+00 3.374E-01
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NAG Library Routine Document

S13ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S13ADF returns the value of the sine integral

Si xð Þ ¼
Z x

0

sinu

u
du;

via the function name.

2 Specification

FUNCTION S13ADF (X, IFAIL)
REAL (KIND=nag_wp) S13ADF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S13ADF calculates an approximate value for Si xð Þ.
For xj j � 16:0 it is based on the Chebyshev expansion

Si xð Þ ¼ x
X0
r¼0

arTr tð Þ; t ¼ 2
x

16

� �2
� 1:

For 16 < xj j < xhi, where xhi is an implementation-dependent number,

Si xð Þ ¼ sign xð Þ 	

2
� f xð Þ cos x

x
� g xð Þ sinx

x2


 �

where f xð Þ ¼
P
r¼0
frTr tð Þ and g xð Þ ¼

P
r¼0
grTr tð Þ, t ¼ 2

16

x

� �2

� 1 .

For xj j � xhi, Si xð Þ ¼ 1
2	 signx to within machine precision.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

There are no failure exits from S13ADF. The argument IFAIL has been included for consistency with
other routines in this chapter.

7 Accuracy

If � and � are the relative errors in the argument and result, respectively, then in principle

�j j ’ � sinx

Si xð Þ

				 				:
The equality may hold if � is greater than the machine precision (� due to data errors etc.) but if � is
simply due to round-off in the machine representation, then since the factor relating � to � is always less
than one, the accuracy will be limited by machine precision.

8 Parallelism and Performance

S13ADF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s13adfe

! S13ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s13adf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S13ADF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)
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data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s13adf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s13adfe

10.2 Program Data

S13ADF Example Program Data
0.0
0.2
0.4
0.6
0.8
1.0

10.3 Program Results

S13ADF Example Program Results

X Y

0.000E+00 0.000E+00
2.000E-01 1.996E-01
4.000E-01 3.965E-01
6.000E-01 5.881E-01
8.000E-01 7.721E-01
1.000E+00 9.461E-01
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NAG Library Routine Document

S14AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S14AAF returns the value of the gamma function  xð Þ, via the function name.

2 Specification

FUNCTION S14AAF (X, IFAIL)
REAL (KIND=nag_wp) S14AAF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S14AAF evaluates an approximation to the gamma function  xð Þ. The routine is based on the
Chebyshev expansion:

 1þ uð Þ ¼
X0
r¼0

arTr tð Þ; where 0 � u < 1; t ¼ 2u� 1;

and uses the property  1þ xð Þ ¼ x xð Þ. If x ¼ N þ 1þ u where N is integral and 0 � u < 1 then it
follows that:

for N > 0,  xð Þ ¼ x� 1ð Þ x� 2ð Þ � � � x�Nð Þ 1þ uð Þ,
for N ¼ 0,  xð Þ ¼  1þ uð Þ,

for N < 0,  xð Þ ¼  1þ uð Þ
x xþ 1ð Þ xþ 2ð Þ � � � x�N � 1ð Þ .

There are four possible failures for this routine:

(i) if x is too large, there is a danger of overflow since  xð Þ could become too large to be represented
in the machine;

(ii) if x is too large and negative, there is a danger of underflow;

(iii) if x is equal to a negative integer,  xð Þ would overflow since it has poles at such points;

(iv) if x is too near zero, there is again the danger of overflow on some machines. For small x,
 xð Þ ’ 1=x, and on some machines there exists a range of nonzero but small values of x for which
1=x is larger than the greatest representable value.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X must not be zero or a negative integer.
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2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The argument is too large. On softfailure the routine returns the approximate value of  xð Þ at the
nearest valid argument.

IFAIL ¼ 2

The argument is too large and negative. On softfailure the routine returns zero.

IFAIL ¼ 3

The argument is too close to zero. On softfailure the routine returns the approximate value of
 xð Þ at the nearest valid argument.

IFAIL ¼ 4

The argument is a negative integer, at which value  xð Þ is infinite. On softfailure the routine
returns a large positive value.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � and � be the relative errors in the argument and the result respectively. If � is somewhat larger
than the machine precision (i.e., is due to data errors etc.), then � and � are approximately related by:

� ’ x� xð Þj j�
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(provided � is also greater than the representation error). Here � xð Þ is the digamma function
 0 xð Þ
 xð Þ .

Figure 1 shows the behaviour of the error amplification factor x� xð Þj j.
If � is of the same order as machine precision, then rounding errors could make � slightly larger than
the above relation predicts.

There is clearly a severe, but unavoidable, loss of accuracy for arguments close to the poles of  xð Þ at
negative integers. However relative accuracy is preserved near the pole at x ¼ 0 right up to the point of
failure arising from the danger of overflow.

Also accuracy will necessarily be lost as x becomes large since in this region

� ’ �x lnx:

However since  xð Þ increases rapidly with x, the routine must fail due to the danger of overflow before
this loss of accuracy is too great. (For example, for x ¼ 20, the amplification factor ’ 60.)

- 2 - 1 0 1 2 3 4 5

1 0 0

1 0 1

ε/δ

x

Figure 1

8 Parallelism and Performance

S14AAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.
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10.1 Program Text

Program s14aafe

! S14AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s14aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S14AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s14aaf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s14aafe

10.2 Program Data

S14AAF Example Program Data
1.0
1.25
1.5
1.75
2.0
5.0
10.0
-1.5

10.3 Program Results

S14AAF Example Program Results

X Y

1.000E+00 1.000E+00
1.250E+00 9.064E-01
1.500E+00 8.862E-01
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1.750E+00 9.191E-01
2.000E+00 1.000E+00
5.000E+00 2.400E+01
1.000E+01 3.629E+05

-1.500E+00 2.363E+00
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NAG Library Routine Document

S14ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S14ABF returns the value of the logarithm of the gamma function, ln xð Þ, via the function name.

2 Specification

FUNCTION S14ABF (X, IFAIL)
REAL (KIND=nag_wp) S14ABF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S14ABF calculates an approximate value for ln xð Þ. It is based on rational Chebyshev expansions.

Denote by Ri
n;m xð Þ ¼ Pi

n xð Þ=Qi
m xð Þ a ratio of polynomials of degree n in the numerator and m in the

denominator. Then:

for 0 < x � 1=2,

ln xð Þ � � ln xð Þ þ xR1
n;m xþ 1ð Þ;

for 1=2 < x � 3=2,

ln xð Þ � x� 1ð ÞR1
n;m xð Þ;

for 3=2 < x � 4,

ln xð Þ � x� 2ð ÞR2
n;m xð Þ;

for 4 < x � 12,

ln xð Þ � R3
n;m xð Þ;

and for 12 < x,

ln xð Þ � x� 1

2

� �
ln xð Þ � xþ ln

ffiffiffiffiffiffi
2	
p� �

þ 1

x
R4
n;m 1=x2
� �

: ð1Þ

For each expansion, the specific values of n and m are selected to be minimal such that the maximum
relative error in the expansion is of the order 10�d, where d is the maximum number of decimal digits
that can be accurately represented for the particular implementation (see X02BEF).

Let � denote machine precision and let xhuge denote the largest positive model number (see X02ALF).
For x < 0:0 the value ln xð Þ is not defined; S14ABF returns zero and exits with IFAIL ¼ 1. It also
exits with IFAIL ¼ 1 when x ¼ 0:0, and in this case the value xhuge is returned. For x in the interval
0:0; �ð �, the function ln xð Þ ¼ � ln xð Þ to machine accuracy.

Now denote by xbig the largest allowable argument for ln xð Þ on the machine. For xbig
� �1=4

< x � xbig
the R4

n;m 1=x2
� �

term in Equation (1) is negligible. For x > xbig there is a danger of setting overflow,
and so S14ABF exits with IFAIL ¼ 2 and returns xhuge. The value of xbig is given in the Users' Note for
your implementation.
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4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Cody W J and Hillstrom K E (1967) Chebyshev approximations for the natural logarithm of the gamma
function Math.Comp. 21 198–203

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X � 0:0. If X < 0:0 the function is undefined; on softfailure, the function value
returned is zero. If X ¼ 0:0 and softfailure is selected, the function value returned is the largest
machine number (see X02ALF).

IFAIL ¼ 2

On entry, X > xbig (see Section 3). On softfailure, the function value returned is the largest
machine number (see X02ALF).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Let � and � be the relative errors in the argument and result respectively, and E be the absolute error in
the result.

If � is somewhat larger than machine precision, then

E ’ x� � xð Þj j� and � ’ x� � xð Þ
ln xð Þ

				 				�
where � xð Þ is the digamma function

 0 xð Þ
 xð Þ . Figure 1 and Figure 2 show the behaviour of these error

amplification factors.

0 . 5 0 . 7 5 1 1 . 2 5 1 . 5 1 . 7 5 2 2 . 2 5
1 0 -1

1 0 0

E/δ

x

Figure 1

1 0 -1 1 0 0 1 0 1 1 0 2

1 0 0

1 0 1

ε/δ

x

Figure 2

These show that relative error can be controlled, since except near x ¼ 1 or 2 relative error is
attenuated by the function or at least is not greatly amplified.

For large x, � ’ 1þ 1

lnx

� �
� and for small x, � ’ 1

lnx
� .

The function ln xð Þ has zeros at x ¼ 1 and 2 and hence relative accuracy is not maintainable near
those points. However absolute accuracy can still be provided near those zeros as is shown above.

If however, � is of the order of machine precision, then rounding errors in the routine's internal
arithmetic may result in errors which are slightly larger than those predicted by the equalities. It should
be noted that even in areas where strong attenuation of errors is predicted the relative precision is
bounded by the effective machine precision.
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8 Parallelism and Performance

S14ABF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s14abfe

! S14ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s14abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S14ABF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s14abf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s14abfe
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10.2 Program Data

S14ABF Example Program Data
1.0
1.25
1.5
1.75
2.0
5.0
10.0
20.0
1000.0

10.3 Program Results

S14ABF Example Program Results

X Y

1.000E+00 0.000E+00
1.250E+00 -9.827E-02
1.500E+00 -1.208E-01
1.750E+00 -8.440E-02
2.000E+00 0.000E+00
5.000E+00 3.178E+00
1.000E+01 1.280E+01
2.000E+01 3.934E+01
1.000E+03 5.905E+03

 0

 2

 4

 6

 8

 0  1  2  3  4  5  6  7  8

ln
Γ(

x)

x

Example Program
Returned Values for the Logarithm of the Gamma Function, lnΓ(x)
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NAG Library Routine Document

S14ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S14ACF returns a value of the function  xð Þ � lnx, where  is the psi function

 xð Þ ¼ d

dx
ln xð Þ ¼ 

0 xð Þ
 xð Þ .

2 Specification

FUNCTION S14ACF (X, IFAIL)
REAL (KIND=nag_wp) S14ACF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S14ACF returns a value of the function  xð Þ � lnx. The psi function is computed without the
logarithmic term so that when x is large, sums or differences of psi functions may be computed without
unnecessary loss of precision, by analytically combining the logarithmic terms. For example, the
difference d ¼  xþ 1

2

� �
�  xð Þ has an asymptot ic behaviour for large x given by

d � ln xþ 1
2

� �
� lnxþO

1

x2

� �
� ln 1þ 1

2x

� �
� 1

2x
.

Computing d directly would amount to subtracting two large numbers which are close to ln xþ 1
2

� �
and

lnx to produce a small number close to 1
2x , resulting in a loss of significant digits. However, using this

routine to compute f xð Þ ¼  xð Þ � lnx, we can compute d ¼ f xþ 1
2

� �
� f xð Þ þ ln 1þ 1

2x

� �
, and the

dominant logarithmic term may be computed accurately from its power series when x is large. Thus we
avoid the unnecessary loss of precision.

The routine is derived from the routine PSIFN in Amos (1983).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1983) Algorithm 610: A portable FORTRAN subroutine for derivatives of the psi function
ACM Trans. Math. Software 9 494–502

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X � 0:0. S14ACF returns the value zero.

IFAIL ¼ 2

No result is computed because underflow is likely. The value of X is too large. S14ACF returns
the value zero.

IFAIL ¼ 3

No result is computed because overflow is likely. The value of X is too small. S14ACF returns
the value zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All constants in S14ACF are given to approximately 18 digits of precision. Calling the number of digits
of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct
digits in the results obtained is limited by p ¼ min t; 18ð Þ.
With the above proviso, results returned by this routine should be accurate almost to full precision,
except at points close to the zero of  xð Þ, x ’ 1:461632, where only absolute rather than relative
accuracy can be obtained.

8 Parallelism and Performance

S14ACF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

The example program reads values of the argument x from a file, evaluates the function at each value of
x and prints the results.

10.1 Program Text

Program s14acfe

! S14ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s14acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: f, x
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S14ACF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X psi(X)-log(X)’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
f = s14acf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, f
End Do data

99999 Format (1X,F12.4,F15.4)
End Program s14acfe

10.2 Program Data

S14ACF Example Program Data
0.1
0.5
3.6
8.0

S – Approximations of Special Functions S14ACF

Mark 26 S14ACF.3



10.3 Program Results

S14ACF Example Program Results

X psi(X)-log(X)

0.1000 -8.1212
0.5000 -1.2704
3.6000 -0.1453
8.0000 -0.0638

-7

-6

-5

-4

-3

-2

-1

 0
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ψ
(x

)−
ln

 x

x

Example Program
Returns a Value of the Function ψ(x)−ln x
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NAG Library Routine Document

S14ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S14ADF returns a sequence of values of scaled derivatives of the psi function  xð Þ (also known as the
digamma function).

2 Specification

SUBROUTINE S14ADF (X, N, M, ANS, IFAIL)

INTEGER N, M, IFAIL
REAL (KIND=nag_wp) X, ANS(M)

3 Description

S14ADF computes m values of the function

w k; xð Þ ¼ �1ð Þkþ1 kð Þ xð Þ
k!

;

for x > 0, k ¼ n, nþ 1; . . . ; nþm� 1, where  is the psi function

 xð Þ ¼ d

dx
ln xð Þ ¼ 

0 xð Þ
 xð Þ ;

and  kð Þ denotes the kth derivative of  .

The routine is derived from the routine PSIFN in Amos (1983). The basic method of evaluation of
w k; xð Þ is the asymptotic series

w k; xð Þ � � k; xð Þ þ 1

2xkþ1
þ 1

xk

X1
j¼1

B2j
2jþ k� 1ð Þ!
2jð Þ!k!x2j

for large x greater than a machine-dependent value xmin , followed by backward recurrence using

w k; xð Þ ¼ w k; xþ 1ð Þ þ x�k�1

for smaller values of x, where � k; xð Þ ¼ � lnx when k ¼ 0, � k; xð Þ ¼ 1

kxk
when k > 0, and B2j,

j ¼ 1; 2; . . ., are the Bernoulli numbers.

When k is large, the above procedure may be inefficient, and the expansion

w k; xð Þ ¼
X1
j¼1

1

xþ jð Þkþ1
;

which converges rapidly for large k, is used instead.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1983) Algorithm 610: A portable FORTRAN subroutine for derivatives of the psi function
ACM Trans. Math. Software 9 494–502
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5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: N – INTEGER Input

On entry: the index of the first member n of the sequence of functions.

Constraint: N � 0.

3: M – INTEGER Input

On entry: the number of members m required in the sequence w k; xð Þ, for k ¼ n; . . . ; nþm� 1.

Constraint: M � 1.

4: ANSðMÞ – REAL (KIND=nag_wp) array Output

On exit: the first m elements of ANS contain the required values w k; xð Þ, for
k ¼ n; . . . ; nþm� 1.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X � 0:0.

IFAIL ¼ 2

On entry, N < 0.

IFAIL ¼ 3

On entry, M < 1.

IFAIL ¼ 4

No results are returned because underflow is likely. Either X or NþM� 1 is too large. If
possible, reduce the value of M and call S14ADF again.
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IFAIL ¼ 5

No results are returned because overflow is likely. Either X is too small, or NþM� 1 is too
large. If possible, reduce the value of M and call S14ADF again.

IFAIL ¼ 6

No results are returned because there is not enough internal workspace to continue computation.
NþM� 1 may be too large. If possible, reduce the value of M and call S14ADF again.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All constants in S14ADF are given to approximately 18 digits of precision. Calling the number of digits
of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct
digits in the results obtained is limited by p ¼ min t; 18ð Þ. Empirical tests of S14ADF, taking values of x
in the range 0:0 < x < 50:0, and n in the range 1 � n � 50, have shown that the maximum relative
error is a loss of approximately two decimal places of precision. Tests with n ¼ 0, i.e., testing the
function � xð Þ, have shown somewhat better accuracy, except at points close to the zero of  xð Þ,
x ’ 1:461632, where only absolute accuracy can be obtained.

8 Parallelism and Performance

S14ADF is not threaded in any implementation.

9 Further Comments

The time taken for a call of S14ADF is approximately proportional to m, plus a constant. In general, it
is much cheaper to call S14ADF with m greater than 1 to evaluate the function w k; xð Þ, for
k ¼ n; . . . ; nþm� 1, rather than to make m separate calls of S14ADF.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s14adfe

! S14ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s14adf

S – Approximations of Special Functions S14ADF

Mark 26 S14ADF.3



! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: m = 4, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x
Integer :: i, ifail, ioerr, n

! .. Local Arrays ..
Real (Kind=nag_wp) :: ans(m)

! .. Executable Statements ..
Write (nout,*) ’S14ADF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X ANS(1) ANS(2) ’, &

’ANS(3) ANS(4)’
Write (nout,*)

n = 0

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
Call s14adf(x,n,m,ans,ifail)

Write (nout,99999) x, (ans(i),i=1,m)
End Do data

99999 Format (1X,1P,5(E12.4,2X))
End Program s14adfe

10.2 Program Data

S14ADF Example Program Data
0.1
0.5
3.6
8.0

10.3 Program Results

S14ADF Example Program Results

X ANS(1) ANS(2) ANS(3) ANS(4)

1.0000E-01 1.0424E+01 1.0143E+02 1.0009E+03 1.0001E+04
5.0000E-01 1.9635E+00 4.9348E+00 8.4144E+00 1.6235E+01
3.6000E+00 -1.1357E+00 3.1988E-01 5.0750E-02 1.0653E-02
8.0000E+00 -2.0156E+00 1.3314E-01 8.8498E-03 7.8321E-04
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NAG Library Routine Document

S14AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S14AEF returns the value of the kth derivative of the psi function  xð Þ for real x and k ¼ 0; 1; . . . ; 6,
via the function name.

2 Specification

FUNCTION S14AEF (X, K, IFAIL)
REAL (KIND=nag_wp) S14AEF

INTEGER K, IFAIL
REAL (KIND=nag_wp) X

3 Description

S14AEF evaluates an approximation to the kth derivative of the psi function  xð Þ given by

 kð Þ xð Þ ¼ dk

dxk
 xð Þ ¼ dk

dxk
d

dx
loge  xð Þ

� �
;

where x is real with x 6¼ 0;�1;�2; . . . and k ¼ 0; 1; . . . ; 6. For negative noninteger values of x, the
recurrence relationship

 kð Þ xþ 1ð Þ ¼  kð Þ xð Þ þ dk

dxk
1

x

� �

is used. The value of
�1ð Þkþ1 kð Þ xð Þ

k!
is obtained by a call to S14ADF, which is based on the routine

PSIFN in Amos (1983).

Note that  kð Þ xð Þ is also known as the polygamma function. Specifically,  0ð Þ xð Þ is often referred to as
the digamma function and  1ð Þ xð Þ as the trigamma function in the literature. Further details can be
found in Abramowitz and Stegun (1972).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1983) Algorithm 610: A portable FORTRAN subroutine for derivatives of the psi function
ACM Trans. Math. Software 9 494–502

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X must not be ‘too close’ (see Section 6) to a non-positive integer.
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2: K – INTEGER Input

On entry: the function  kð Þ xð Þ to be evaluated.

Constraint: 0 � K � 6.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 0,
or K > 6,
or X is ‘too close’ to a non-positive integer. That is, abs X� nint Xð Þð Þ <

machine precision� nint abs Xð Þð Þ.

IFAIL ¼ 2

The evaluation has been abandoned due to the likelihood of underflow. The result is returned as
zero.

IFAIL ¼ 3

The evaluation has been abandoned due to the likelihood of overflow. The result is returned as
zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

All constants in S14ADF are given to approximately 18 digits of precision. If t denotes the number of
digits of precision in the floating-point arithmetic being used, then clearly the maximum number in the
results obtained is limited by p ¼ min t; 18ð Þ. Empirical tests by Amos (1983) have shown that the
maximum relative error is a loss of approximately two decimal places of precision. Further tests with
the function � 0ð Þ xð Þ have shown somewhat improved accuracy, except at points near the positive zero
of  0ð Þ xð Þ at x ¼ 1:46 . . . , where only absolute accuracy can be obtained.

8 Parallelism and Performance

S14AEF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example evaluates  2ð Þ xð Þ at x ¼ 2:5, and prints the results.

10.1 Program Text

Program s14aefe

! S14AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s14aef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr, k

! .. Executable Statements ..
Write (nout,*) ’S14AEF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X K (d^K/dx^K)psi(X)’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x, k

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s14aef(x,k,ifail)

If (ifail<0) Then
Exit data

End If
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Write (nout,99999) x, k, y
End Do data

99999 Format (1X,F5.1,I5,5X,1P,E12.4)
End Program s14aefe

10.2 Program Data

S14AEF Example Program Data
2.5 2 : Values of X and K

10.3 Program Results

S14AEF Example Program Results

X K (d^K/dx^K)psi(X)

2.5 2 -2.3620E-01
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NAG Library Routine Document

S14AFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S14AFF returns the value of the kth derivative of the psi function  zð Þ for complex z and
k ¼ 0; 1; . . . ; 4, via the function name.

2 Specification

FUNCTION S14AFF (Z, K, IFAIL)
COMPLEX (KIND=nag_wp) S14AFF

INTEGER K, IFAIL
COMPLEX (KIND=nag_wp) Z

3 Description

S14AFF evaluates an approximation to the kth derivative of the psi function  zð Þ given by

 kð Þ zð Þ ¼ dk

dzk
 zð Þ ¼ dk

dzk
d

dz
loge  zð Þ

� �
;

where z ¼ xþ iy is complex provided y 6¼ 0 and k ¼ 0; 1; . . . ; 4. If y ¼ 0, z is real and thus  kð Þ zð Þ is
singular when z ¼ 0;�1;�2; . . . .

Note that  kð Þ zð Þ is also known as the polygamma function. Specifically,  0ð Þ zð Þ is often referred to as
the digamma function and  1ð Þ zð Þ as the trigamma function in the literature. Further details can be
found in Abramowitz and Stegun (1972).

S14AFF is based on a modification of the method proposed by KÎlbig (1972).

To obtain the value of  kð Þ zð Þ when z is real, S14AEF can be used.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

KÎlbig K S (1972) Programs for computing the logarithm of the gamma function, and the digamma
function, for complex arguments Comp. Phys. Comm. 4 221–226

5 Arguments

1: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the function.

Constraint: Z must not be ‘too close’ (see Section 6) to a non-positive integer when Z ¼ 0:0.

2: K – INTEGER Input

On entry: the function  kð Þ zð Þ to be evaluated.

Constraint: 0 � K � 4.
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3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 0,
or K > 4,
or Re Zð Þ is ‘too close’ to a non-positive integer when Im Zð Þ ¼ 0:0. That is,

abs Re Zð Þ � nint Re Zð Þð Þð Þ < machine precision� nint abs Re Zð Þð Þð Þ.

IFAIL ¼ 2

The evaluation has been abandoned due to the likelihood of overflow. The result is returned as
zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Empirical tests have shown that the maximum relative error is a loss of approximately two decimal
places of precision.

8 Parallelism and Performance

S14AFF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example evaluates the psi (trigamma) function  1ð Þ zð Þ at z ¼ �1:5þ 2:5i, and prints the results.

10.1 Program Text

Program s14affe

! S14AFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s14aff

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: y, z
Integer :: ifail, ioerr, k

! .. Executable Statements ..
Write (nout,*) ’S14AFF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ Z K (d^K/dz^K)psi(Z)’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) z, k

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s14aff(z,k,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) z, k, y
End Do data

99999 Format (1X,’(’,F5.1,’,’,F5.1,’ )’,I6,’ (’,1P,E12.4,’,’,E12.4,’ )’)
End Program s14affe

10.2 Program Data

S14AFF Example Program Data
(-1.5, 2.5) 1 : Values of Z and K

10.3 Program Results

S14AFF Example Program Results

Z K (d^K/dz^K)psi(Z)

( -1.5, 2.5 ) 1 ( -1.9737E-01, -2.4271E-01 )

S – Approximations of Special Functions S14AFF

Mark 26 S14AFF.3 (last)





NAG Library Routine Document

S14AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S14AGF returns the value of the logarithm of the gamma function ln zð Þ for complex z, via the
function name.

2 Specification

FUNCTION S14AGF (Z, IFAIL)
COMPLEX (KIND=nag_wp) S14AGF

INTEGER IFAIL
COMPLEX (KIND=nag_wp) Z

3 Description

S14AGF evaluates an approximation to the logarithm of the gamma function ln zð Þ defined for
Re zð Þ > 0 by

ln zð Þ ¼ ln
Z 1
0
e�ttz�1dt

where z ¼ xþ iy is complex. It is extended to the rest of the complex plane by analytic continuation
unless y ¼ 0, in which case z is real and each of the points z ¼ 0;�1;�2; . . . is a singularity and a
branch point.

S14AGF is based on the method proposed by KÎlbig (1972) in which the value of ln zð Þ is computed
in the different regions of the z plane by means of the formulae

ln zð Þ ¼ z� 1
2

� �
ln z� zþ 1

2 ln 2	þ z
XK
k¼1

B2k

2k 2k� 1ð Þz
�2k þ RK zð Þ if x � x0 � 0;

¼ ln zþ nð Þ � ln
Yn�1
�¼0

zþ �ð Þ if x0 > x � 0;

¼ ln	� ln 1� zð Þ � ln sin	zð Þ if x < 0;

where n ¼ x0½ � � x½ �, B2kf g are Bernoulli numbers (see Abramowitz and Stegun (1972)) and x½ � is the
largest integer � x. Note that care is taken to ensure that the imaginary part is computed correctly, and
not merely modulo 2	.

The routine uses the values K ¼ 10 and x0 ¼ 7. The remainder term RK zð Þ is discussed in Section 7.

To obtain the value of ln zð Þ when z is real and positive, S14ABF can be used.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

KÎlbig K S (1972) Programs for computing the logarithm of the gamma function, and the digamma
function, for complex arguments Comp. Phys. Comm. 4 221–226
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5 Arguments

1: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the function.

Constraint: Z must not be ‘too close’ (see Section 6) to a non-positive integer when Z ¼ 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, Re Zð Þ is ‘too close’ to a non-positive integer when Im Zð Þ ¼ 0:0. That is,
abs Re Zð Þ � nint Re Zð Þð Þð Þ < machine precision� nint abs Re Zð Þð Þð Þ.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The remainder term RK zð Þ satisfies the following error bound:

RK zð Þj j � B2Kj j
2K � 1ð Þj jz

1�2K

� B2Kj j
2K � 1ð Þj jx

1�2K if x � 0:

Thus R10 7ð Þj j < 2:5� 10�15 and hence in theory the routine is capable of achieving an accuracy of
approximately 15 significant digits.
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8 Parallelism and Performance

S14AGF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example evaluates the logarithm of the gamma function ln zð Þ at z ¼ �1:5þ 2:5i, and prints the
results.

10.1 Program Text

Program s14agfe

! S14AGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s14agf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: y, z
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S14AGF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ Z ln(Gamma(Z))’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) z

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s14agf(z,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) z, y
End Do data

99999 Format (1X,’(’,F5.1,’,’,F5.1,’ ) (’,1P,E12.4,’,’,E12.4,’ )’)
End Program s14agfe

10.2 Program Data

S14AGF Example Program Data
(-1.5, 2.5) : Value of Z

S – Approximations of Special Functions S14AGF

Mark 26 S14AGF.3



10.3 Program Results

S14AGF Example Program Results

Z ln(Gamma(Z))

( -1.5, 2.5 ) ( -5.0140E+00, -4.0718E+00 )
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NAG Library Routine Document

S14AHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S14AHF returns the value of lnG xð Þ, the scaled logarithm of the gamma function  xð Þ, via the
function name.

2 Specification

FUNCTION S14AHF (X, IFAIL)
REAL (KIND=nag_wp) S14AHF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S14AHF calculates an approximate value for lnG xð Þ, where G xð Þ ¼  xþ 1ð Þ= x
e

� �x
. This is a variant of

the ln xð Þ function (see also S14ABF), which avoids rounding problems for very large arguments by
computing ln xð Þ with the Stirling approximation factored out.

For 0 < x < 15, lnG xð Þ ¼ ln xþ 1ð Þ � x lnxþ x;

and for 15 � x, lnG xð Þ ¼ 1
2 lnxþ ln

ffiffiffiffiffiffi
2	
p� �

þ 1
xR 1=x2
� �

, where R is a suitable Remez approximation.

For x � 0:0, the value lnG xð Þ is undefined; S14AHF returns zero and exits with IFAIL ¼ 1.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X � 0:0. On softfailure, the function value returned is zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

S14AHF has been designed to produce full relative accuracy for all input arguments. Empirical results
obtained by comparing with multiprecision software confirm this.

8 Parallelism and Performance

S14AHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s14ahfe

! S14AHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s14ahf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S14AHF Example Program Results’
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! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s14ahf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s14ahfe

10.2 Program Data

S14AHF Example Program Data
1.0
1.25
1.5
1.75
2.0
5.0
10.0
20.0
1000.0

10.3 Program Results

S14AHF Example Program Results

X Y

1.000E+00 1.000E+00
1.250E+00 1.096E+00
1.500E+00 1.176E+00
1.750E+00 1.246E+00
2.000E+00 1.307E+00
5.000E+00 1.740E+00
1.000E+01 2.079E+00
2.000E+01 2.421E+00
1.000E+03 4.373E+00
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NAG Library Routine Document

S14BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S14BAF computes values for the incomplete gamma functions P a; xð Þ and Q a; xð Þ.

2 Specification

SUBROUTINE S14BAF (A, X, TOL, P, Q, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) A, X, TOL, P, Q

3 Description

S14BAF evaluates the incomplete gamma functions in the normalized form

P a; xð Þ ¼ 1

 að Þ

Z x

0
ta�1e�t dt;

Q a; xð Þ ¼ 1

 að Þ

Z 1
x

ta�1e�t dt;

with x � 0 and a > 0, to a user-specified accuracy. With this normalization, P a; xð Þ þQ a; xð Þ ¼ 1.

Several methods are used to evaluate the functions depending on the arguments a and x, the methods
including Taylor expansion for P a; xð Þ, Legendre's continued fraction for Q a; xð Þ, and power series for
Q a; xð Þ. When both a and x are large, and a ’ x, the uniform asymptotic expansion of Temme (1987)
is employed for greater efficiency – specifically, this expansion is used when a � 20 and
0:7a � x � 1:4a.

Once either P or Q is computed, the other is obtained by subtraction from 1. In order to avoid loss of
relative precision in this subtraction, the smaller of P and Q is computed first.

This routine is derived from the subroutine GAM in Gautschi (1979b).

4 References

Gautschi W (1979a) A computational procedure for incomplete gamma functions ACM Trans. Math.
Software 5 466–481

Gautschi W (1979b) Algorithm 542: Incomplete gamma functions ACM Trans. Math. Software 5 482–
489

Temme N M (1987) On the computation of the incomplete gamma functions for large values of the
parameters Algorithms for Approximation (eds J C Mason and M G Cox) Oxford University Press

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: the argument a of the functions.

Constraint: A > 0:0.
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2: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the functions.

Constraint: X � 0:0.

3: TOL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy required by you in the results. If S14BAF is entered with TOL
greater than 1:0 or less than machine precision, then the value of machine precision is used
instead.

4: P – REAL (KIND=nag_wp) Output
5: Q – REAL (KIND=nag_wp) Output

On exit: the values of the functions P a; xð Þ and Q a; xð Þ respectively.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, A � 0:0.

IFAIL ¼ 2

On entry, X < 0:0.

IFAIL ¼ 3

Convergence of the Taylor series or Legendre continued fraction fails within 600 iterations. This
error is extremely unlikely to occur; if it does, contact NAG.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

There are rare occasions when the relative accuracy attained is somewhat less than that specified by
argument TOL. However, the error should never exceed more than one or two decimal places. Note also
that there is a limit of 18 decimal places on the achievable accuracy, because constants in the routine
are given to this precision.

8 Parallelism and Performance

S14BAF is not threaded in any implementation.

9 Further Comments

The time taken for a call of S14BAF depends on the precision requested through TOL, and also varies
slightly with the input arguments a and x.

10 Example

This example reads values of the argument a and x from a file, evaluates the function and prints the
results.

10.1 Program Text

Program s14bafe

! S14BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s14baf, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, p, q, tol, x
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S14BAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ A X P Q’

tol = x02ajf()

data: Do
Read (nin,*,Iostat=ioerr) a, x

If (ioerr<0) Then
Exit data

End If

ifail = 0
Call s14baf(a,x,tol,p,q,ifail)
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Write (nout,99999) a, x, p, q
End Do data

99999 Format (1X,4F12.4)
End Program s14bafe

10.2 Program Data

S14BAF Example Program Data
2.0 3.0
7.0 1.0
0.5 99.0

20.0 21.0
21.0 20.0

10.3 Program Results

S14BAF Example Program Results

A X P Q
2.0000 3.0000 0.8009 0.1991
7.0000 1.0000 0.0001 0.9999
0.5000 99.0000 1.0000 0.0000

20.0000 21.0000 0.6157 0.3843
21.0000 20.0000 0.4409 0.5591
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NAG Library Routine Document

S14CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S14CBF returns the value of the logarithm of the beta function, lnB a; bð Þ, via the routine name.

2 Specification

FUNCTION S14CBF (A, B, IFAIL)
REAL (KIND=nag_wp) S14CBF

INTEGER IFAIL
REAL (KIND=nag_wp) A, B

3 Description

S14CBF calculates values for lnB a; bð Þ where B is the beta function given by

B a; bð Þ ¼
Z 1

0
ta�1 1� tð Þb�1dt

or equivalently

B a; bð Þ ¼  að Þ bð Þ
 aþ bð Þ

and  xð Þ is the gamma function. Note that the beta function is symmetric, so that B a; bð Þ ¼ B b; að Þ.
In order to efficiently obtain accurate results several methods are used depending on the parameters a
and b.

Let a0 ¼ min a; bð Þ and b0 ¼ max a; bð Þ. Then:
for a0 � 8,

lnB ¼ 0:5 ln 2	ð Þ � 0:5 ln b0ð Þ þ� a0ð Þ þ� b0ð Þ �� a0 þ b0ð Þ � u� v;

where

� a0ð Þ ¼ ln a0ð Þ � a0 � 0:5ð Þ ln a0 þ a0 � 0:5 ln 2	ð Þ,

u ¼ � a0 � 0:5ð Þ ln a0
a0þb0

h i
and

v ¼ b0 ln 1þ a0
b0

� �
.

for a0 < 1,

for b0 � 8,

lnB ¼ ln a0ð Þ þ ln
 b0ð Þ

 a0 þ b0ð Þ;

for b0 < 8,

lnB ¼ ln a0ð Þ þ ln b0ð Þ � ln a0 þ b0ð Þ;

for 2 < a0 < 8, a0 is reduced to the interval 1; 2½ � by B a; bð Þ ¼ a0�1
a0þb0�1B a0 � 1; b0ð Þ ;
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for 1 � a0 � 2,

for b0 � 8,

lnB ¼ ln a0ð Þ þ ln
 b0ð Þ

 a0 þ b0ð Þ;

for 2 < b0 < 8, b0 is reduced to the interval 1; 2½ �;
for b0 � 2,

lnB ¼ ln a0ð Þ þ ln b0ð Þ � ln a0 þ b0ð Þ:
S14CBF is derived from BETALN in DiDonato and Morris (1992).

4 References

DiDonato A R and Morris A H (1992) Algorithm 708: Significant digit computation of the incomplete
beta function ratios ACM Trans. Math. Software 18 360–373

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: the argument a of the function.

Constraint: A > 0:0.

2: B – REAL (KIND=nag_wp) Input

On entry: the argument b of the function.

Constraint: B > 0:0.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, A ¼ valueh i.
Constraint: A > 0:0.

On entry, B ¼ valueh i.
Constraint: B > 0:0.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

S14CBF should produce full relative accuracy for all input arguments.

8 Parallelism and Performance

S14CBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the arguments a and b from a file, evaluates the function and prints the
results.

10.1 Program Text

Program s14cbfe

! S14CBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s14cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, lb
Integer :: i, ifail

! .. Executable Statements ..
Write (nout,*) ’S14CBF Example Program Results’
Write (nout,*)
Write (nout,*) ’ A B ln(beta(A,B))’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

Do
Read (nin,*,Iostat=i) a, b
If (i/=0) Then

Exit
End If
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ifail = -1
lb = s14cbf(a,b,ifail)

If (ifail==0) Then
Write (nout,99999) a, b, lb

End If
End Do

99999 Format (2F5.2,1P,E17.4)
End Program s14cbfe

10.2 Program Data

S14CBF Example Program Data
0.2 1.0
0.4 1.0
0.6 1.0
0.8 1.0
1.0 0.2
1.0 0.4
1.0 1.0
2.0 2.0
3.0 3.0
4.0 4.0
5.0 5.0
6.0 2.0
6.0 3.0
6.0 4.0
6.0 5.0
6.0 6.0
7.0 7.0 : A, B

10.3 Program Results

S14CBF Example Program Results

A B ln(beta(A,B))

0.20 1.00 1.6094E+00
0.40 1.00 9.1629E-01
0.60 1.00 5.1083E-01
0.80 1.00 2.2314E-01
1.00 0.20 1.6094E+00
1.00 0.40 9.1629E-01
1.00 1.00 0.0000E+00
2.00 2.00 -1.7918E+00
3.00 3.00 -3.4012E+00
4.00 4.00 -4.9416E+00
5.00 5.00 -6.4457E+00
6.00 2.00 -3.7377E+00
6.00 3.00 -5.1240E+00
6.00 4.00 -6.2226E+00
6.00 5.00 -7.1389E+00
6.00 6.00 -7.9273E+00
7.00 7.00 -9.3937E+00
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NAG Library Routine Document

S14CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S14CCF computes values for the incomplete beta function Ix a; bð Þ and its complement 1� Ix a; bð Þ.

2 Specification

SUBROUTINE S14CCF (A, B, X, W, W1, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) A, B, X, W, W1

3 Description

S14CCF evaluates the incomplete beta function and its complement in the normalized form

Ix a; bð Þ ¼ 1
B a;bð Þ

Z x

0
ta�1 1� tð Þb�1dt

1�Ix a; bð Þ ¼ Iy b; að Þ; where y ¼ 1� x;

with

0 � x � 1,

a � 0 and b � 0,

and the beta function B a; bð Þ is defined as B a; bð Þ ¼
Z 1

0
ta�1 1� tð Þb�1dt ¼  að Þ bð Þ

 aþbð Þ where  yð Þ is

the gamma function.

Several methods are used to evaluate the functions depending on the arguments a, b and x. The methods
include Wise's asymptotic expansion (see Wise (1950)) when a > b, continued fraction derived by
DiDonato and Morris (1992) when a, b > 1, and power series when b � 1 or b� x � 0:7. When both a
and b are large, specifically a, b � 15, the DiDonato and Morris (1992) asymptotic expansion is
employed for greater efficiency.

Once either Ix a; bð Þ or Iy b; að Þ is computed, the other is obtained by subtraction from 1. In order to
avoid loss of relative precision in this subtraction, the smaller of Ix a; bð Þ and Iy b; að Þ is computed first.

S14CCF is derived from BRATIO in DiDonato and Morris (1992).

4 References

DiDonato A R and Morris A H (1992) Algorithm 708: Significant digit computation of the incomplete
beta function ratios ACM Trans. Math. Software 18 360–373

Wise M E (1950) The incomplete beta function as a contour integral and a quickly converging series for
its inverse Biometrika 37 208–218
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5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: the argument a of the function.

Constraint: A � 0:0.

2: B – REAL (KIND=nag_wp) Input

On entry: the argument b of the function.

Constraints:

B � 0:0;
either B 6¼ 0:0 or A 6¼ 0:0.

3: X – REAL (KIND=nag_wp) Input

On entry: x, upper limit of integration.

Constraints:

0:0 � X � 1:0;
either X 6¼ 0:0 or A 6¼ 0:0;
either 1� X 6¼ 0:0 or B 6¼ 0:0.

4: W – REAL (KIND=nag_wp) Output

On exit: the value of the incomplete beta function Ix a; bð Þ evaluated from zero to x.

5: W1 – REAL (KIND=nag_wp) Output

On exit: the value of the complement of the incomplete beta function 1� Ix a; bð Þ, i.e., the
incomplete beta function evaluated from x to one.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, A ¼ valueh i.
Constraint: A � 0:0.

On entry, B ¼ valueh i.
Constraint: B � 0:0.
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IFAIL ¼ 2

On entry, A and B were zero.
Constraint: A or B must be nonzero.

IFAIL ¼ 3

On entry, X ¼ valueh i.
Constraint: 0:0 � X � 1:0.

IFAIL ¼ 4

On entry, X and A were zero.
Constraint: X or A must be nonzero.

IFAIL ¼ 5

On entry, 1:0� X and B were zero.
Constraint: 1:0� X or B must be nonzero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

S14CCF is designed to maintain relative accuracy for all arguments. For very tiny results (of the order
of machine precision or less) some relative accuracy may be lost – loss of three or four decimal places
has been observed in experiments. For other arguments full relative accuracy may be expected.

8 Parallelism and Performance

S14CCF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the arguments a and b from a file, evaluates the function and its
complement for 10 different values of x and prints the results.
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10.1 Program Text

Program s14ccfe

! S14CCF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s14ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, w, w1, x
Integer :: i, ifail

! .. Executable Statements ..
Write (nout,*) ’S14CCF Example Program Results’
Write (nout,*)
Write (nout,*) &

’ A B X Ix(A,B) 1-Ix(A,B)’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

Do
Read (nin,*,Iostat=i) a, b, x
If (i/=0) Then

Exit
End If

ifail = -1
Call s14ccf(a,b,x,w,w1,ifail)

If (ifail==0) Then
Write (nout,99999) a, b, x, w, w1

End If
End Do

99999 Format (3F6.2,1P,E17.4,7X,E17.4)
End Program s14ccfe

10.2 Program Data

S14CCF Example Program Data
5.3 10.1 0.01
5.3 10.1 0.02
5.3 10.1 0.03
5.3 10.1 0.04
5.3 10.1 0.05
5.3 10.1 0.06
5.3 10.1 0.07
5.3 10.1 0.08
5.3 10.1 0.09
5.3 10.1 0.10 : A,B,X

10.3 Program Results

S14CCF Example Program Results

A B X Ix(A,B) 1-Ix(A,B)

5.30 10.10 0.01 6.4755E-08 1.0000E+00
5.30 10.10 0.02 2.3613E-06 1.0000E+00
5.30 10.10 0.03 1.8734E-05 9.9998E-01
5.30 10.10 0.04 7.9575E-05 9.9992E-01
5.30 10.10 0.05 2.3997E-04 9.9976E-01

S14CCF NAG Library Manual

S14CCF.4 Mark 26



5.30 10.10 0.06 5.8255E-04 9.9942E-01
5.30 10.10 0.07 1.2174E-03 9.9878E-01
5.30 10.10 0.08 2.2797E-03 9.9772E-01
5.30 10.10 0.09 3.9249E-03 9.9608E-01
5.30 10.10 0.10 6.3236E-03 9.9368E-01
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NAG Library Routine Document

S15ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S15ABF returns the value of the cumulative Normal distribution function, P xð Þ, via the function name.

2 Specification

FUNCTION S15ABF (X, IFAIL)
REAL (KIND=nag_wp) S15ABF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S15ABF evaluates an approximate value for the cumulative Normal distribution function

P xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z x

�1
e�u

2=2 du:

The routine is based on the fact that

P xð Þ ¼ 1
2 erfc

�xffiffiffi
2
p
� �

and it calls S15ADF to obtain a value of erfc for the appropriate argument.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

There are no failure exits from this routine. The argument IFAIL is included for consistency with other
routines in this chapter.

7 Accuracy

Because of its close relationship with erfc, the accuracy of this routine is very similar to that in
S15ADF. If � and � are the relative errors in result and argument, respectively, they are in principle
related by

�j j ’ xe�
1
2x

2ffiffiffiffiffiffi
2	
p

P xð Þ
�

						
						

so that the relative error in the argument, x, is amplified by a factor,
xe�

1
2x

2ffiffiffiffiffiffi
2	
p

P xð Þ
, in the result.

For x small and for x positive this factor is always less than one and accuracy is mainly limited by
machine precision.

For large negative x the factor behaves like � x2 and hence to a certain extent relative accuracy is
unavoidably lost.

However the absolute error in the result, E, is given by

Ej j ’ xe�
1
2x

2ffiffiffiffiffiffi
2	
p �

						
						

so absolute accuracy can be guaranteed for all x.

8 Parallelism and Performance

S15ABF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s15abfe

! S15ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s15abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr
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! .. Executable Statements ..
Write (nout,*) ’S15ABF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
y = s15abf(x,ifail)

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s15abfe

10.2 Program Data

S15ABF Example Program Data
-20.0
-1.0
0.0
1.0
2.0

20.0

10.3 Program Results

S15ABF Example Program Results

X Y

-2.000E+01 2.754E-89
-1.000E+00 1.587E-01
0.000E+00 5.000E-01
1.000E+00 8.413E-01
2.000E+00 9.772E-01
2.000E+01 1.000E+00
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NAG Library Routine Document

S15ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S15ACF returns the value of the complement of the cumulative Normal distribution function, Q xð Þ, via
the function name.

2 Specification

FUNCTION S15ACF (X, IFAIL)
REAL (KIND=nag_wp) S15ACF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S15ACF evaluates an approximate value for the complement of the cumulative Normal distribution
function

Q xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z 1
x

e�u
2=2 du:

The routine is based on the fact that

Q xð Þ ¼ 1
2 erfc

xffiffiffi
2
p
� �

and it calls S15ADF to obtain the necessary value of erfc, the complementary error function.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

There are no failure exits from this routine. The argument IFAIL is included for consistency with other
routines in this chapter.

7 Accuracy

Because of its close relationship with erfc the accuracy of this routine is very similar to that in
S15ADF. If � and � are the relative errors in result and argument, respectively, then in principle they are
related by

�j j ’ xe�x
2=2ffiffiffiffiffiffi

2	
p

Q xð Þ
�

					
					:

For x negative or small positive this factor is always less than one and accuracy is mainly limited by
machine precision. For large positive x we find � � x2� and hence to a certain extent relative accuracy
is unavoidably lost. However the absolute error in the result, E, is given by

Ej j ’ xe�x
2=2ffiffiffiffiffiffi

2	
p �

					
					

and since this factor is always less than one absolute accuracy can be guaranteed for all x.

8 Parallelism and Performance

S15ACF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s15acfe

! S15ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s15acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S15ACF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)
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data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
y = s15acf(x,ifail)

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s15acfe

10.2 Program Data

S15ACF Example Program Data
-20.0
-1.0
0.0
1.0
2.0

20.0

10.3 Program Results

S15ACF Example Program Results

X Y

-2.000E+01 1.000E+00
-1.000E+00 8.413E-01
0.000E+00 5.000E-01
1.000E+00 1.587E-01
2.000E+00 2.275E-02
2.000E+01 2.754E-89
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NAG Library Routine Document

S15ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S15ADF returns the value of the complementary error function, erfc xð Þ, via the function name.

2 Specification

FUNCTION S15ADF (X, IFAIL)
REAL (KIND=nag_wp) S15ADF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S15ADF calculates an approximate value for the complement of the error function

erfc xð Þ ¼ 2ffiffiffi
	
p
Z 1
x

e�t
2
dt ¼ 1� erf xð Þ:

Let x̂ be the root of the equation erfc xð Þ � erf xð Þ ¼ 0 (then x̂ � 0:46875). For xj j � x̂ the value of
erfc xð Þ is based on the following rational Chebyshev expansion for erf xð Þ:

erf xð Þ � xR‘;m x2
� �

;

where R‘;m denotes a rational function of degree ‘ in the numerator and m in the denominator.

For xj j > x̂ the value of erfc xð Þ is based on a rational Chebyshev expansion for erfc xð Þ: for x̂ < xj j � 4
the value is based on the expansion

erfc xð Þ � ex2R‘;m xð Þ;

and for xj j > 4 it is based on the expansion

erfc xð Þ � e
x2

x

1ffiffiffi
	
p þ 1

x2
R‘;m 1=x2

� �� �
:

For each expansion, the specific values of ‘ and m are selected to be minimal such that the maximum
relative error in the expansion is of the order 10�d, where d is the maximum number of decimal digits
that can be accurately represented for the particular implementation (see X02BEF).

For xj j � xhi there is a danger of setting underflow in erfc xð Þ (the value of xhi is given in the Users'
Note for your implementation). For x � xhi, S15ADF returns erfc xð Þ ¼ 0; for x � �xhi it returns
erfc xð Þ ¼ 2.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Cody W J (1969) Rational Chebyshev approximations for the error function Math.Comp. 23 631–637
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5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

There are no failure exits from S15ADF. The argument IFAIL has been included for consistency with
other routines in this chapter.

7 Accuracy

If � and � are relative errors in the argument and result, respectively, then in principle

�j j ’ 2xe�x
2ffiffiffi

	
p

erfc xð Þ�
					

					:
That is, the relative error in the argument, x, is amplified by a factor

2xe�x
2ffiffiffi

	
p

erfc xð Þ in the result.

The behaviour of this factor is shown in Figure 1.

- 1 - 0 . 5 0 0 . 5 1 1 . 5 2 2 . 5
1 0 -1

1 0 0

1 0 1

ε/δ

x

  

Figure 1
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It should be noted that near x ¼ 0 this factor behaves as 2xffiffi
	
p and hence the accuracy is largely

determined by the machine precision. Also for large negative x, where the factor is � xe
�x2ffiffiffi
	
p , accuracy

is mainly limited by machine precision. However, for large positive x, the factor becomes � 2x2 and
to an extent relative accuracy is necessarily lost. The absolute accuracy E is given by

E ’ 2xe�x
2ffiffiffi

	
p �

so absolute accuracy is guaranteed for all x.

8 Parallelism and Performance

S15ADF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s15adfe

! S15ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s15adf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S15ADF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
y = s15adf(x,ifail)
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Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s15adfe

10.2 Program Data

S15ADF Example Program Data
-10.0
-1.0
0.0
1.0

10.0

10.3 Program Results

S15ADF Example Program Results

X Y

-1.000E+01 2.000E+00
-1.000E+00 1.843E+00
0.000E+00 1.000E+00
1.000E+00 1.573E-01
1.000E+01 2.088E-45
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NAG Library Routine Document

S15AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S15AEF returns the value of the error function erf xð Þ, via the function name.

2 Specification

FUNCTION S15AEF (X, IFAIL)
REAL (KIND=nag_wp) S15AEF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S15AEF calculates an approximate value for the error function

erf xð Þ ¼ 2ffiffiffi
	
p
Z x

0
e�t

2
dt ¼ 1� erfc xð Þ:

Let x̂ be the root of the equation erfc xð Þ � erf xð Þ ¼ 0 (then x̂ � 0:46875). For xj j � x̂ the value of
erf xð Þ is based on the following rational Chebyshev expansion for erf xð Þ:

erf xð Þ � xR‘;m x2
� �

;

where R‘;m denotes a rational function of degree ‘ in the numerator and m in the denominator.

For xj j > x̂ the value of erf xð Þ is based on a rational Chebyshev expansion for erfc xð Þ: for x̂ < xj j � 4
the value is based on the expansion

erfc xð Þ � ex2R‘;m xð Þ;

and for xj j > 4 it is based on the expansion

erfc xð Þ � e
x2

x

1ffiffiffi
	
p þ 1

x2
R‘;m 1=x2

� �� �
:

For each expansion, the specific values of ‘ and m are selected to be minimal such that the maximum
relative error in the expansion is of the order 10�d, where d is the maximum number of decimal digits
that can be accurately represented for the particular implementation (see X02BEF).

For xj j � xhi there is a danger of setting underflow in erfc xð Þ (the value of xhi is given in the Users'
Note for your implementation). For x � xhi, S15AEF returns erf xð Þ ¼ 1; for x � �xhi it returns
erf xð Þ ¼ �1.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Cody W J (1969) Rational Chebyshev approximations for the error function Math.Comp. 23 631–637
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5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

There are no failure exits from S15AEF. The argument IFAIL has been included for consistency with
other routines in this chapter.

7 Accuracy

See Section 7 in S15ADF.

8 Parallelism and Performance

S15AEF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s15aefe

! S15AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s15aef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S15AEF Example Program Results’

! Skip heading in data file
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Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
y = s15aef(x,ifail)

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s15aefe

10.2 Program Data

S15AEF Example Program Data
-6.0
-4.5
-1.0
1.0
4.5
6.0

10.3 Program Results

S15AEF Example Program Results

X Y

-6.000E+00 -1.000E+00
-4.500E+00 -1.000E+00
-1.000E+00 -8.427E-01
1.000E+00 8.427E-01
4.500E+00 1.000E+00
6.000E+00 1.000E+00
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NAG Library Routine Document

S15AFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S15AFF returns a value for Dawson's Integral, F xð Þ, via the function name.

2 Specification

FUNCTION S15AFF (X, IFAIL)
REAL (KIND=nag_wp) S15AFF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S15AFF evaluates an approximation for Dawson's Integral

F xð Þ ¼ e�x2
Z x

0
et

2
dt:

The routine is based on two Chebyshev expansions:

For 0 < xj j � 4,

F xð Þ ¼ x
X0
r¼0

arTr tð Þ; where t ¼ 2
x

4

� �2
� 1:

For xj j > 4,

F xð Þ ¼ 1

x

X0
r¼0

brTr tð Þ; where t ¼ 2
4

x

� �2

� 1:

For xj j near zero, F xð Þ ’ x, and for xj j large, F xð Þ ’ 1

2x
. These approximations are used for those

values of x for which the result is correct to machine precision.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

There are no failure exits from this routine.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is considerably greater than the machine precision (i.e., if � is due to data errors etc.), then � and �
are approximately related by:

� ’ x 1� 2xF xð Þð Þ
F xð Þ

				 				�:
The following graph shows the behaviour of the error amplification factor

x 1� 2xF xð Þð Þ
F xð Þ

				 				 :

0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4
10 -1

1 0 0

ε/δ

x

Figure 1

However if � is of the same order as machine precision, then rounding errors could make � somewhat
larger than the above relation indicates. In fact � will be largely independent of x or �, but will be of the
order of a few times the machine precision.

8 Parallelism and Performance

S15AFF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s15affe

! S15AFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s15aff

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S15AFF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
y = s15aff(x,ifail)

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s15affe

10.2 Program Data

S15AFF Example Program Data
-2.0
-0.5
1.0
1.5
2.0
5.0

10.0

10.3 Program Results

S15AFF Example Program Results

X Y

-2.000E+00 -3.013E-01
-5.000E-01 -4.244E-01
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1.000E+00 5.381E-01
1.500E+00 4.282E-01
2.000E+00 3.013E-01
5.000E+00 1.021E-01
1.000E+01 5.025E-02
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NAG Library Routine Document

S15AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S15AGF returns the value of the scaled complementary error function erfcx xð Þ, via the function name.

2 Specification

FUNCTION S15AGF (X, IFAIL)
REAL (KIND=nag_wp) S15AGF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S15AGF calculates an approximate value for the scaled complementary error function

erfcx xð Þ ¼ ex2 erfc xð Þ ¼ 2ffiffiffi
	
p ex

2

Z 1
x

e�t
2
dt ¼ ex2 1� erf xð Þð Þ:

Let x̂ be the root of the equation erfc xð Þ � erf xð Þ ¼ 0 (then x̂ � 0:46875). For xj j � x̂ the value of
erfcx xð Þ is based on the following rational Chebyshev expansion for erf xð Þ:

erf xð Þ � xR‘;m x2
� �

;

where R‘;m denotes a rational function of degree ‘ in the numerator and m in the denominator.

For xj j > x̂ the value of erfcx xð Þ is based on a rational Chebyshev expansion for erfc xð Þ: for
x̂ < xj j � 4 the value is based on the expansion

erfc xð Þ � ex2R‘;m xð Þ;

and for xj j > 4 it is based on the expansion

erfc xð Þ � e
x2

x

1ffiffiffi
	
p þ 1

x2
R‘;m 1=x2

� �� �
:

For each expansion, the specific values of ‘ and m are selected to be minimal such that the maximum
relative error in the expansion is of the order 10�d, where d is the maximum number of decimal digits
that can be accurately represented for the particular implementation (see X02BEF).

Asymptotically, erfcx xð Þ � 1=
ffiffiffi
	
p

xj jð Þ. There is a danger of setting underflow in erfcx xð Þ whenever
x � xhi ¼ min xhuge; 1=

ffiffiffi
	
p

xtiny
� �� �

, where xhuge is the largest positive model number (see X02ALF) and
xtiny is the smallest positive model number (see X02AKF). In this case S15AGF exits with IFAIL ¼ 1

and returns erfcx xð Þ ¼ 0. For x in the range 1= 2
ffiffi
�
p
ð Þ � x < xhi, where � is the machine precision, the

asymptotic value 1=
ffiffiffi
	
p

xj jð Þ is returned for erfcx xð Þ and S15AGF exits with IFAIL ¼ 2.

There is a danger of setting overflow in ex
2
whenever x < xneg ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log xhuge=2
� �q

. In this case

S15AGF exits with IFAIL ¼ 3 and returns erfcx xð Þ ¼ xhuge.

The values of xhi, 1= 2
ffiffi
�
p
ð Þ and xneg are given in the Users' Note for your implementation.
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4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Cody W J (1969) Rational Chebyshev approximations for the error function Math.Comp. 23 631–637

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: S15AGF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X ¼ valueh i and the constant xhi ¼ valueh i.
Constraint: X < xhi.

IFAIL ¼ 2

On entry, Xj j was in the interval valueh i; valueh i½ Þ where erfcx Xð Þ is approximately 1=
ffiffiffi
	
p � Xj jð Þ:

X ¼ valueh i.

IFAIL ¼ 3

On entry, X ¼ valueh i and the constant xneg ¼ valueh i.
Constraint: X � xneg.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The relative error in computing erfcx xð Þ may be estimated by evaluating

E ¼
erfcx xð Þ � ex2

X1
n¼1

In erfc xð Þ

erfcx xð Þ ;

where In denotes repeated integration. Empirical results suggest that on the interval x̂; 2ð Þ the loss in
base b significant digits for maximum relative error is around 3:3, while for root-mean-square relative
error on that interval it is 1:2 (see X02BHF for the definition of the model parameter b). On the interval
2; 20ð Þ the values are around 3:5 for maximum and 0:45 for root-mean-square relative errors; note that
on these two intervals erfc xð Þ is the primary computation. See also Section 7 in S15ADF.

8 Parallelism and Performance

S15AGF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s15agfe

! S15AGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s15agf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S15AGF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X erfcx(X)’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
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Exit data
End If

ifail = -1
y = s15agf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2(1X,E13.5))
End Program s15agfe

10.2 Program Data

S15AGF Example Program Data
-6.0
-4.5
-1.0
1.0
4.5
6.0

10.3 Program Results

S15AGF Example Program Results

X erfcx(X)

-6.00000E+00 8.62246E+15
-4.50000E+00 1.24593E+09
-1.00000E+00 5.00898E+00
1.00000E+00 4.27584E-01
4.50000E+00 1.22485E-01
6.00000E+00 9.27766E-02
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NAG Library Routine Document

S15DDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S15DDF computes values of the function w zð Þ ¼ e�z2 erfc �izð Þ, for complex z.

2 Specification

FUNCTION S15DDF (Z, IFAIL)
COMPLEX (KIND=nag_wp) S15DDF

INTEGER IFAIL
COMPLEX (KIND=nag_wp) Z

3 Description

S15DDF computes values of the function w zð Þ ¼ e�z2 erfc �izð Þ, where erfc z is the complementary
error function

erfc z ¼ 2ffiffiffi
	
p
Z 1
z

e�t
2
dt;

for complex z. The method used is that in Gautschi (1970) for z in the first quadrant of the complex
plane, and is extended for z in other quadrants via the relations w �zð Þ ¼ 2e�z

2 � w zð Þ and
w zð Þ ¼ w �zð Þ. Following advice in Gautschi (1970) and van der Laan and Temme (1984), the code
in Gautschi (1969) has been adapted to work in various precisions up to 18 decimal places. The real
part of w zð Þ is sometimes known as the Voigt function.

4 References

Gautschi W (1969) Algorithm 363: Complex error function Comm. ACM 12 635

Gautschi W (1970) Efficient computation of the complex error function SIAM J. Numer. Anal. 7 187–
198

van der Laan C G and Temme N M (1984) Calculation of special functions: the gamma function, the
exponential integrals and error-like functions CWI Tract 10 Centre for Mathematics and Computer
Science, Amsterdam

5 Arguments

1: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The real part of the result overflows, and is set to the largest safe number with the correct sign.
The imaginary part of the result is meaningful.

IFAIL ¼ 2

The imaginary part of the result overflows, and is set to the largest safe number with the correct
sign. The real part of the result is meaningful.

IFAIL ¼ 3

Both real and imaginary parts of the result overflow, and are set to the largest safe number with
the correct signs.

IFAIL ¼ 4

The result returned is accurate to less than half precision, due to the size of an intermediate
result.

IFAIL ¼ 5

The result returned has no precision, due to the size of an intermediate result, and is set to zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the returned result depends on the argument z. If z lies in the first or second quadrant
of the complex plane (i.e., Im zð Þ is greater than or equal to zero), the result should be accurate almost
to machine precision, except that there is a limit of about 18 decimal places on the achievable accuracy
because constants in the routine are given to this precision. With such arguments, IFAIL can only return
as IFAIL ¼ 0.

If however Im zð Þ is less than zero, accuracy may be lost in two ways; firstly, in the evaluation of e�z
2
,

if Im �z2
� �

is large, in which case a warning will be issued through IFAIL ¼ 4 or 5; and secondly, near
the zeros of the required function, where precision is lost due to cancellation, in which case no warning
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is given – the result has absolute accuracy rather than relative accuracy. Note also that in this half-
plane, one or both parts of the result may overflow – this is signalled through IFAIL ¼ 1, 2 or 3.

8 Parallelism and Performance

S15DDF is not threaded in any implementation.

9 Further Comments

The time taken for a call of S15DDF depends on the argument z, the time increasing as zj j ! 0:0.

S15DDF may be used to compute values of erfc z and erf z for complex z by the relations
erfc z ¼ e�z2w izð Þ, erf z ¼ 1� erfc z. (For real arguments, S15ADF and S15AEF should be used.)

10 Example

This example reads values of the argument z from a file, evaluates the function at each value of z and
prints the results.

10.1 Program Text

Program s15ddfe

! S15DDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s15ddf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: w, z
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S15DDF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ Z W’

data: Do
Read (nin,*,Iostat=ioerr) z

If (ioerr<0) Then
Exit data

End If

ifail = -1
w = s15ddf(z,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) z, w
End Do data

99999 Format (1X,’(’,F12.4,’,’,F12.4,’) (’,F12.4,’,’,F12.4,’)’)
End Program s15ddfe
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10.2 Program Data

S15DDF Example Program Data
( 1.00E0, 0.00E0) - Values for Z.
(-3.01E0, 0.75E0)
( 2.75E0, -1.52E0)
(-1.33E0, -0.54E0)

10.3 Program Results

S15DDF Example Program Results

Z W
( 1.0000, 0.0000) ( 0.3679, 0.6072)
( -3.0100, 0.7500) ( 0.0522, -0.1838)
( 2.7500, -1.5200) ( -0.1015, 0.1654)
( -1.3300, -0.5400) ( -0.1839, -0.7891)
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NAG Library Routine Document

S17ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17ACF returns the value of the Bessel function Y0 xð Þ, via the function name.

2 Specification

FUNCTION S17ACF (X, IFAIL)
REAL (KIND=nag_wp) S17ACF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S17ACF evaluates an approximation to the Bessel function of the second kind Y0 xð Þ.
Note: Y0 xð Þ is undefined for x � 0 and the routine will fail for such arguments.

The routine is based on four Chebyshev expansions:

For 0 < x � 8,

Y0 xð Þ ¼
2

	
lnx
X0
r¼0

arTr tð Þ þ
X0
r¼0

brTr tð Þ; with t ¼ 2
x

8

� �2
� 1:

For x > 8,

Y0 xð Þ ¼
ffiffiffiffiffiffi
2

	x

r
P0 xð Þ sin x� 	

4

� �
þQ0 xð Þ cos x� 	

4

� �n o
where P0 xð Þ ¼

P
r¼0
crTr tð Þ,

and Q0 xð Þ ¼
8

x

P
r¼0
drTr tð Þ;with t ¼ 2

8

x

� �2

� 1:

For x near zero, Y0 xð Þ ’ 2
	 ln x

2

� �
þ �

� �
, where � denotes Euler's constant. This approximation is used

when x is sufficiently small for the result to be correct to machine precision.

For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 7),
hence the routine fails. Such arguments contain insufficient information to determine the phase of

oscillation of Y0 xð Þ; only the amplitude,
ffiffiffiffi
2
	n

q
, can be determined and this is returned on softfailure. The

range for which this occurs is roughly related to machine precision; the routine will fail if
x �> 1=machine precision (see the Users' Note for your implementation for details).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO
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5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

X is too large. On softfailure the routine returns the amplitude of the Y0 oscillation,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 	xð Þ

p
.

IFAIL ¼ 2

X � 0:0, Y0 is undefined. On softfailure the routine returns zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � be the relative error in the argument and E be the absolute error in the result. (Since Y0 xð Þ
oscillates about zero, absolute error and not relative error is significant, except for very small x.)

If � is somewhat larger than the machine representation error (e.g., if � is due to data errors etc.), then
E and � are approximately related by

E ’ xY1 xð Þj j�

S17ACF NAG Library Manual
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(provided E is also within machine bounds). Figure 1 displays the behaviour of the amplification factor
xY1 xð Þj j.
However, if � is of the same order as the machine representation errors, then rounding errors could
make E slightly larger than the above relation predicts.

For very small x, the errors are essentially independent of � and the routine should provide relative
accuracy bounded by the machine precision.

For very large x, the above relation ceases to apply. In this region, Y0 xð Þ ’
ffiffiffiffiffiffi
2

	x

r
sin x� 	

4

� �
. The

amplitude

ffiffiffiffiffiffi
2

	x

r
can be calculated with reasonable accuracy for all x, but sin x� 	

4

� �
cannot. If x� 	

4
is

written as 2N	þ � where N is an integer and 0 � � < 2	, then sin x� 	
4

� �
is determined by � only. If

x �> ��1, � cannot be determined with any accuracy at all. Thus if x is greater than, or of the order of
the inverse of machine precision, it is impossible to calculate the phase of Y0 xð Þ and the routine must
fail.
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Figure 1

8 Parallelism and Performance

S17ACF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.
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10.1 Program Text

Program s17acfe

! S17ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S17ACF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s17acf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s17acfe

10.2 Program Data

S17ACF Example Program Data
0.5
1.0
3.0
6.0
8.0
10.0
1000.0

10.3 Program Results

S17ACF Example Program Results

X Y

5.000E-01 -4.445E-01
1.000E+00 8.826E-02
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3.000E+00 3.769E-01
6.000E+00 -2.882E-01
8.000E+00 2.235E-01
1.000E+01 5.567E-02
1.000E+03 4.716E-03
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Example Program
Returned Values for the Bessel Function Y0(x)
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NAG Library Routine Document

S17ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17ADF returns the value of the Bessel function Y1 xð Þ, via the function name.

2 Specification

FUNCTION S17ADF (X, IFAIL)
REAL (KIND=nag_wp) S17ADF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S17ADF evaluates an approximation to the Bessel function of the second kind Y1 xð Þ.
Note: Y1 xð Þ is undefined for x � 0 and the routine will fail for such arguments.

The routine is based on four Chebyshev expansions:

For 0 < x � 8,

Y1 xð Þ ¼
2

	
ln x

x

8

X
r¼0

arTr tð Þ �
2

	x
þ x

8

X
r¼0

brTr tð Þ; with t ¼ 2
x

8

� �2
� 1:

For x > 8,

Y1 xð Þ ¼
ffiffiffiffiffiffi
2

	x

r
P1 xð Þ sin x� 3

	

4

� �
þQ1 xð Þ cos x� 3

	

4

� �n o
where P1 xð Þ ¼

P
r¼0
crTr tð Þ,

and Q1 xð Þ ¼
8

x

P
r¼0
drTr tð Þ , with t ¼ 2

8

x

� �2

� 1 .

For x near zero, Y1 xð Þ ’ �
2

	x
. This approximation is used when x is sufficiently small for the result to

be correct to machine precision. For extremely small x, there is a danger of overflow in calculating

� 2

	x
and for such arguments the routine will fail.

For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 7),
hence the routine fails. Such arguments contain insufficient information to determine the phase of

oscillation of Y1 xð Þ; only the amplitude,
ffiffiffiffi
2
	x

q
, can be determined and this is returned on softfailure. The

range for which this occurs is roughly related to machine precision; the routine will fail if
x �> 1=machine precision (see the Users' Note for your implementation for details).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO

S – Approximations of Special Functions S17ADF

Mark 26 S17ADF.1



5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

X is too large. On softfailure the routine returns the amplitude of the Y1 oscillation,

ffiffiffiffiffiffi
2

	x

r
.

IFAIL ¼ 2

X � 0:0, Y1 is undefined. On softfailure the routine returns zero.

IFAIL ¼ 3

X is too close to zero, there is a danger of overflow. On softfailure, the routine returns the value
of Y1 xð Þ at the smallest valid argument.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � be the relative error in the argument and E be the absolute error in the result. (Since Y1 xð Þ
oscillates about zero, absolute error and not relative error is significant, except for very small x.)
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If � is somewhat larger than the machine precision (e.g., if � is due to data errors etc.), then E and �
are approximately related by:

E ’ xY0 xð Þ � Y1 xð Þj j�

(provided E is also within machine bounds). Figure 1 displays the behaviour of the amplification factor
xY0 xð Þ � Y1 xð Þj j.
However, if � is of the same order as machine precision, then rounding errors could make E slightly
larger than the above relation predicts.

For very small x, absolute error becomes large, but the relative error in the result is of the same order
as �.

For very large x, the above relation ceases to apply. In this region, Y1 xð Þ ’
ffiffiffiffiffiffi
2

	x

r
sin x� 3	

4

� �
. The

amplitude

ffiffiffiffiffiffi
2

	x

r
can be calculated with reasonable accuracy for all x, but sin x� 3	

4

� �
cannot. If

x� 3	

4
is written as 2N	þ � where N is an integer and 0 � � < 2	, then sin x� 3	

4

� �
is determined

by � only. If x > ��1, � cannot be determined with any accuracy at all. Thus if x is greater than, or of
the order of, the inverse of the machine precision, it is impossible to calculate the phase of Y1 xð Þ and
the routine must fail.
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Figure 1

8 Parallelism and Performance

S17ADF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

S – Approximations of Special Functions S17ADF

Mark 26 S17ADF.3



10.1 Program Text

Program s17adfe

! S17ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17adf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S17ADF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s17adf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s17adfe

10.2 Program Data

S17ADF Example Program Data
0.5
1.0
3.0
6.0
8.0
10.0
1000.0

10.3 Program Results

S17ADF Example Program Results

X Y

5.000E-01 -1.471E+00
1.000E+00 -7.812E-01
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3.000E+00 3.247E-01
6.000E+00 -1.750E-01
8.000E+00 -1.581E-01
1.000E+01 2.490E-01
1.000E+03 -2.478E-02
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Example Program
Returned Values for the Bessel Function Y1(x)
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NAG Library Routine Document

S17AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17AEF returns the value of the Bessel function J0 xð Þ, via the function name.

2 Specification

FUNCTION S17AEF (X, IFAIL)
REAL (KIND=nag_wp) S17AEF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S17AEF evaluates an approximation to the Bessel function of the first kind J0 xð Þ.
Note: J0 �xð Þ ¼ J0 xð Þ, so the approximation need only consider x � 0.

The routine is based on three Chebyshev expansions:

For 0 < x � 8,

J0 xð Þ ¼
X
r¼0

arTr tð Þ; with t ¼ 2
x

8

� �2
� 1:

For x > 8,

J0 xð Þ ¼
ffiffiffiffiffiffi
2

	x

r
P0 xð Þ cos x� 	

4

� �
�Q0 xð Þ sin x� 	

4

� �n o
;

where P0 xð Þ ¼
P
r¼0
brTr tð Þ,

and Q0 xð Þ ¼
8

x

P
r¼0
crTr tð Þ ,

with t ¼ 2 8
x

� �2 � 1 .

For x near zero, J0 xð Þ ’ 1. This approximation is used when x is sufficiently small for the result to be
correct to machine precision.

For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 7),
hence the routine fails. Such arguments contain insufficient information to determine the phase of

oscillation of J0 xð Þ; only the amplitude,
ffiffiffiffiffiffi
2
	 xj j

q
, can be determined and this is returned on softfailure.

The range for which this occurs is roughly related to machine precision; the routine will fail if
xj j �> 1=machine precision (see the Users' Note for your implementation for details).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO
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5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

X is too large. On softfailure the routine returns the amplitude of the J0 oscillation,

ffiffiffiffiffiffiffiffi
2

	 xj j

r
.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � be the relative error in the argument and E be the absolute error in the result. (Since J0 xð Þ
oscillates about zero, absolute error and not relative error is significant.)

If � is somewhat larger than the machine precision (e.g., if � is due to data errors etc.), then E and �
are approximately related by:

E ’ xJ1 xð Þj j�

(provided E is also within machine bounds). Figure 1 displays the behaviour of the amplification factor
xJ1 xð Þj j.
However, if � is of the same order as machine precision, then rounding errors could make E slightly
larger than the above relation predicts.
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For very large x, the above relation ceases to apply. In this region, J0 xð Þ ’
ffiffiffiffiffiffiffiffi
2

	 xj j

r
cos x� 	

4

� �
. The

amplitude

ffiffiffiffiffiffiffiffi
2

	 xj j

r
can be calculated with reasonable accuracy for all x, but cos x� 	

4

� �
cannot. If x� 	

4

is written as 2N	þ � where N is an integer and 0 � � < 2	, then cos x� 	
4

� �
is determined by � only.

If x �> ��1, � cannot be determined with any accuracy at all. Thus if x is greater than, or of the order of,
the inverse of the machine precision, it is impossible to calculate the phase of J0 xð Þ and the routine
must fail.
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8 Parallelism and Performance

S17AEF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s17aefe

! S17AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17aef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S17AEF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s17aef(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s17aefe

10.2 Program Data

S17AEF Example Program Data
0.0
0.5
1.0
3.0
6.0
8.0
10.0
-1.0
1000.0

10.3 Program Results

S17AEF Example Program Results

X Y

0.000E+00 1.000E+00
5.000E-01 9.385E-01
1.000E+00 7.652E-01
3.000E+00 -2.601E-01
6.000E+00 1.506E-01
8.000E+00 1.717E-01
1.000E+01 -2.459E-01

-1.000E+00 7.652E-01
1.000E+03 2.479E-02
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NAG Library Routine Document

S17AFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17AFF returns the value of the Bessel function J1 xð Þ, via the function name.

2 Specification

FUNCTION S17AFF (X, IFAIL)
REAL (KIND=nag_wp) S17AFF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S17AFF evaluates an approximation to the Bessel function of the first kind J1 xð Þ.
Note: J1 �xð Þ ¼ �J1 xð Þ, so the approximation need only consider x � 0.

The routine is based on three Chebyshev expansions:

For 0 < x � 8,

J1 xð Þ ¼
x

8

X
r¼0

arTr tð Þ; with t ¼ 2
x

8

� �2
� 1:

For x > 8,

J1 xð Þ ¼
ffiffiffiffiffiffi
2

	x

r
P1 xð Þ cos x� 3	

4

� �
�Q1 xð Þ sin x� 3	

4

� �
 �
where P1 xð Þ ¼

P
r¼0
brTr tð Þ,

and Q1 xð Þ ¼
8

x

P
r¼0
crTr tð Þ ,

with t ¼ 2
8

x

� �2

� 1 .

For x near zero, J1 xð Þ ’
x

2
. This approximation is used when x is sufficiently small for the result to be

correct to machine precision.

For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 7),
hence the routine fails. Such arguments contain insufficient information to determine the phase of

oscillation of J1 xð Þ; only the amplitude,
ffiffiffiffiffiffi
2
	 xj j

q
, can be determined and this is returned on softfailure.

The range for which this occurs is roughly related to machine precision; the routine will fail if
xj j �> 1=machine precision (see the Users' Note for your implementation for details).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO
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5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

X is too large. On softfailure the routine returns the amplitude of the J1 oscillation,

ffiffiffiffiffiffiffiffi
2

	 xj j

r
.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � be the relative error in the argument and E be the absolute error in the result. (Since J1 xð Þ
oscillates about zero, absolute error and not relative error is significant.)

If � is somewhat larger than machine precision (e.g., if � is due to data errors etc.), then E and � are
approximately related by:

E ’ xJ0 xð Þ � J1 xð Þj j�

(provided E is also within machine bounds). Figure 1 displays the behaviour of the amplification factor
xJ0 xð Þ � J1 xð Þj j.
However, if � is of the same order as machine precision, then rounding errors could make E slightly
larger than the above relation predicts.
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For very large x, the above relation ceases to apply. In this region, J1 xð Þ ’
ffiffiffiffiffiffiffiffi
2

	 xj j

r
cos x� 3	

4

� �
. The

amplitude

ffiffiffiffiffiffiffiffi
2

	 xj j

r
can be calculated with reasonable accuracy for all x, but cos x� 3	

4

� �
cannot. If

x� 3	

4
is written as 2N	þ � where N is an integer and 0 � � < 2	, then cos x� 3	

4

� �
is determined

by � only. If x �> ��1, � cannot be determined with any accuracy at all. Thus if x is greater than, or of
the order of, the reciprocal of machine precision, it is impossible to calculate the phase of J1 xð Þ and
the routine must fail.

0 2 4 6 8 1 0 1 2 1 4 1 6
0

0 . 5

1

1 . 5

2

2 . 5

3

E/δ

x

Figure 1

8 Parallelism and Performance

S17AFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s17affe

! S17AFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17aff

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
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Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S17AFF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s17aff(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s17affe

10.2 Program Data

S17AFF Example Program Data
0.0
0.5
1.0
3.0
6.0
8.0
10.0
-1.0
1000.0

10.3 Program Results

S17AFF Example Program Results

X Y

0.000E+00 0.000E+00
5.000E-01 2.423E-01
1.000E+00 4.401E-01
3.000E+00 3.391E-01
6.000E+00 -2.767E-01
8.000E+00 2.346E-01
1.000E+01 4.347E-02

-1.000E+00 -4.401E-01
1.000E+03 4.728E-03
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NAG Library Routine Document

S17AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17AGF returns a value for the Airy function, Ai xð Þ, via the function name.

2 Specification

FUNCTION S17AGF (X, IFAIL)
REAL (KIND=nag_wp) S17AGF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S17AGF evaluates an approximation to the Airy function, Ai xð Þ. It is based on a number of Chebyshev
expansions:

For x < �5,

Ai xð Þ ¼ a tð Þ sin z� b tð Þ cos z
�xð Þ1=4

where z ¼ 	
4
þ 2

3

ffiffiffiffiffiffiffiffiffi
�x3
p

, and a tð Þ and b tð Þ are expansions in the variable t ¼ �2 5

x

� �3

� 1 .

For �5 � x � 0,

Ai xð Þ ¼ f tð Þ � xg tð Þ;

where f and g are expansions in t ¼ �2 x

5

� �3
� 1:

For 0 < x < 4:5,

Ai xð Þ ¼ e�3x=2y tð Þ;

where y is an expansion in t ¼ 4x=9� 1.

For 4:5 � x < 9,

Ai xð Þ ¼ e�5x=2u tð Þ;

where u is an expansion in t ¼ 4x=9� 3.

For x � 9,

Ai xð Þ ¼ e
�zv tð Þ
x1=4

;

where z ¼ 2

3

ffiffiffiffiffi
x3
p

and v is an expansion in t ¼ 2
18

z

� �
� 1 .

For xj j < machine precision, the result is set directly to Ai 0ð Þ. This both saves time and guards against
underflow in intermediate calculations.
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For large negative arguments, it becomes impossible to calculate the phase of the oscillatory function

with any precision and so the routine must fail. This occurs if x < � 3

2�

� �2=3

, where � is the machine

precision.

For large positive arguments, where Ai decays in an essentially exponential manner, there is a danger of
underflow so the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

X is too large and positive. On softfailure, the routine returns zero. See also the Users' Note for
your implementation.

IFAIL ¼ 2

X is too large and negative. On softfailure, the routine returns zero. See also the Users' Note for
your implementation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For negative arguments the function is oscillatory and hence absolute error is the appropriate measure.
In the positive region the function is essentially exponential-like and here relative error is appropriate.
The absolute error, E, and the relative error, �, are related in principle to the relative error in the
argument, �, by

E ’ xAi0 xð Þj j�; � ’ xAi0 xð Þ
Ai xð Þ

				 				�:
In practice, approximate equality is the best that can be expected. When �, � or E is of the order of the
machine precision, the errors in the result will be somewhat larger.

For small x, errors are strongly damped by the function and hence will be bounded by the machine
precision.

For moderate negative x, the error behaviour is oscillatory but the amplitude of the error grows like

amplitude
E

�

� �
� xj j5=4ffiffiffi

	
p :

However the phase error will be growing roughly like
2

3

ffiffiffiffiffiffiffiffi
xj j3

q
and hence all accuracy will be lost for

large negative arguments due to the impossibility of calculating sin and cos to any accuracy if
2

3

ffiffiffiffiffiffiffiffi
xj j3

q
>

1

�
.

For large positive arguments, the relative error amplification is considerable:

�

�
�

ffiffiffiffiffi
x3
p

:

This means a loss of roughly two decimal places accuracy for arguments in the region of 20. However
very large arguments are not possible due to the danger of setting underflow and so the errors are
limited in practice.

8 Parallelism and Performance

S17AGF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s17agfe

! S17AGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: nag_wp, s17agf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S17AGF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s17agf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s17agfe

10.2 Program Data

S17AGF Example Program Data
-10.0
-1.0
0.0
1.0
5.0
10.0
20.0

10.3 Program Results

S17AGF Example Program Results

X Y

-1.000E+01 4.024E-02
-1.000E+00 5.356E-01
0.000E+00 3.550E-01
1.000E+00 1.353E-01
5.000E+00 1.083E-04
1.000E+01 1.105E-10
2.000E+01 1.692E-27
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NAG Library Routine Document

S17AHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17AHF returns a value of the Airy function, Bi xð Þ, via the function name.

2 Specification

FUNCTION S17AHF (X, IFAIL)
REAL (KIND=nag_wp) S17AHF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S17AHF evaluates an approximation to the Airy function Bi xð Þ. It is based on a number of Chebyshev
expansions.

For x < �5,

Bi xð Þ ¼ a tð Þ cos zþ b tð Þ sin z
�xð Þ1=4

;

where z ¼ 	
4
þ 2

3

ffiffiffiffiffiffiffiffiffi
�x3
p

and a tð Þ and b tð Þ are expansions in the variable t ¼ �2 5

x

� �3

� 1 .

For �5 � x � 0,

Bi xð Þ ¼
ffiffiffi
3
p

f tð Þ þ xg tð Þð Þ;

where f and g are expansions in t ¼ �2 x

5

� �3
� 1 .

For 0 < x < 4:5,

Bi xð Þ ¼ e11x=8y tð Þ;

where y is an expansion in t ¼ 4x=9� 1.

For 4:5 � x < 9,

Bi xð Þ ¼ e5x=2v tð Þ;

where v is an expansion in t ¼ 4x=9� 3.

For x � 9,

Bi xð Þ ¼ e
zu tð Þ
x1=4

;

where z ¼ 2

3

ffiffiffiffiffi
x3
p

and u is an expansion in t ¼ 2
18

z

� �
� 1 .

For xj j < machine precision, the result is set directly to Bi 0ð Þ. This both saves time and avoids possible
intermediate underflows.
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For large negative arguments, it becomes impossible to calculate the phase of the oscillating function

with any accuracy so the routine must fail. This occurs if x < � 3

2�

� �2=3

, where � is the machine

precision.

For large positive arguments, there is a danger of causing overflow since Bi grows in an essentially
exponential manner, so the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

X is too large and positive. On softfailure, the routine returns zero. (see the Users' Note for your
implementation for details)

IFAIL ¼ 2

X is too large and negative. On softfailure, the routine returns zero. See also the Users' Note for
your implementation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For negative arguments the function is oscillatory and hence absolute error is the appropriate measure.
In the positive region the function is essentially exponential-like and here relative error is appropriate.
The absolute error, E, and the relative error, �, are related in principle to the relative error in the
argument, �, by

E ’ xBi0 xð Þj j�; � ’ xBi0 xð Þ
Bi xð Þ

				 				�:
In practice, approximate equality is the best that can be expected. When �, � or E is of the order of the
machine precision, the errors in the result will be somewhat larger.

For small x, errors are strongly damped and hence will be bounded essentially by the machine
precision.

For moderate to large negative x, the error behaviour is clearly oscillatory but the amplitude of the error

grows like amplitude
E

�

� �
� xj j5=4ffiffiffi

	
p .

However the phase error will be growing roughly as
2

3

ffiffiffiffiffiffiffiffi
xj j3

q
and hence all accuracy will be lost for

large negative arguments. This is due to the impossibility of calculating sin and cos to any accuracy if
2

3

ffiffiffiffiffiffiffiffi
xj j3

q
>

1

�
.

For large positive arguments, the relative error amplification is considerable:

�

�
�

ffiffiffiffiffi
x3
p

:

This means a loss of roughly two decimal places accuracy for arguments in the region of 20. However
very large arguments are not possible due to the danger of causing overflow and errors are therefore
limited in practice.

8 Parallelism and Performance

S17AHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s17ahfe

! S17AHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: nag_wp, s17ahf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S17AHF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s17ahf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s17ahfe

10.2 Program Data

S17AHF Example Program Data
-10.0
-1.0
0.0
1.0
5.0
10.0
20.0

10.3 Program Results

S17AHF Example Program Results

X Y

-1.000E+01 -3.147E-01
-1.000E+00 1.040E-01
0.000E+00 6.149E-01
1.000E+00 1.207E+00
5.000E+00 6.578E+02
1.000E+01 4.556E+08
2.000E+01 2.104E+25

S17AHF NAG Library Manual

S17AHF.4 Mark 26



 0

 5

 10

 15

-10 -8 -6 -4 -2  0  2  4

B
i(

x)

x

Example Program
Returns a Value of the Airy Function Bi(x)

S – Approximations of Special Functions S17AHF

Mark 26 S17AHF.5 (last)





NAG Library Routine Document

S17AJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17AJF returns a value of the derivative of the Airy function Ai xð Þ, via the function name.

2 Specification

FUNCTION S17AJF (X, IFAIL)
REAL (KIND=nag_wp) S17AJF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S17AJF evaluates an approximation to the derivative of the Airy function Ai xð Þ. It is based on a
number of Chebyshev expansions.

For x < �5,

Ai0 xð Þ ¼
ffiffiffiffiffiffiffi
�x4
p

a tð Þ cos zþ b tð Þ
�

sin z

� �
;

where z ¼ 	
4
þ � , � ¼ 2

3

ffiffiffiffiffiffiffiffiffi
�x3
p

and a tð Þ and b tð Þ are expansions in variable t ¼ �2 5

x

� �3

� 1 .

For �5 � x � 0,

Ai0 xð Þ ¼ x2f tð Þ � g tð Þ;

where f and g are expansions in t ¼ �2 x

5

� �3
� 1 .

For 0 < x < 4:5,

Ai0 xð Þ ¼ e�11x=8y tð Þ;

where y tð Þ is an expansion in t ¼ 4
x

9

� �
� 1 .

For 4:5 � x < 9,

Ai0 xð Þ ¼ e�5x=2v tð Þ;

where v tð Þ is an expansion in t ¼ 4
x

9

� �
� 3 .

For x � 9,

Ai0 xð Þ ¼
ffiffiffi
x4
p

e�zu tð Þ;

where z ¼ 2

3

ffiffiffiffiffi
x3
p

and u tð Þ is an expansion in t ¼ 2
18

z

� �
� 1 .

For xj j < the square of the machine precision, the result is set directly to Ai0 0ð Þ. This both saves time
and avoids possible intermediate underflows.
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For large negative arguments, it becomes impossible to calculate a result for the oscillating function

with any accuracy and so the routine must fail. This occurs for x < �
ffiffiffi
	
p

�

� �4=7

, where � is the machine

precision.

For large positive arguments, where Ai0 decays in an essentially exponential manner, there is a danger
of underflow so the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

X is too large and positive. On softfailure, the routine returns zero. (see the Users' Note for your
implementation for details)

IFAIL ¼ 2

X is too large and negative. On softfailure, the routine returns zero. See also the Users' Note for
your implementation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For negative arguments the function is oscillatory and hence absolute error is the appropriate measure.
In the positive region the function is essentially exponential in character and here relative error is
needed. The absolute error, E, and the relative error, �, are related in principle to the relative error in
the argument, �, by

E ’ x2 Ai xð Þ
		 		� � ’ x2 Ai xð Þ

Ai0 xð Þ

				 				�:
In practice, approximate equality is the best that can be expected. When �, � or E is of the order of the
machine precision, the errors in the result will be somewhat larger.

For small x, positive or negative, errors are strongly attenuated by the function and hence will be
roughly bounded by the machine precision.

For moderate to large negative x, the error, like the function, is oscillatory; however the amplitude of
the error grows like

xj j7=4ffiffiffi
	
p :

Therefore it becomes impossible to calculate the function with any accuracy if xj j7=4 >
ffiffiffi
	
p

�
.

For large positive x, the relative error amplification is considerable:

�

�
’

ffiffiffiffiffi
x3
p

:

However, very large arguments are not possible due to the danger of underflow. Thus in practice error
amplification is limited.

8 Parallelism and Performance

S17AJF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s17ajfe

! S17AJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17ajf

! .. Implicit None Statement ..
Implicit None
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! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S17AJF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s17ajf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s17ajfe

10.2 Program Data

S17AJF Example Program Data
-10.0
-1.0
0.0
1.0
5.0
10.0
20.0

10.3 Program Results

S17AJF Example Program Results

X Y

-1.000E+01 9.963E-01
-1.000E+00 -1.016E-02
0.000E+00 -2.588E-01
1.000E+00 -1.591E-01
5.000E+00 -2.474E-04
1.000E+01 -3.521E-10
2.000E+01 -7.586E-27
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NAG Library Routine Document

S17AKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17AKF returns a value for the derivative of the Airy function Bi xð Þ, via the function name.

2 Specification

FUNCTION S17AKF (X, IFAIL)
REAL (KIND=nag_wp) S17AKF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S17AKF calculates an approximate value for the derivative of the Airy function Bi xð Þ. It is based on a
number of Chebyshev expansions.

For x < �5,

Bi0 xð Þ ¼
ffiffiffiffiffiffiffi
�x4
p

�a tð Þ sin zþ b tð Þ
�

cos z

� �
;

where z ¼ 	
4
þ � , � ¼ 2

3

ffiffiffiffiffiffiffiffiffi
�x3
p

and a tð Þ and b tð Þ are expansions in the variable t ¼ �2 5

x

� �3

� 1 .

For �5 � x � 0,

Bi0 xð Þ ¼
ffiffiffi
3
p

x2f tð Þ þ g tð Þ
� �

;

where f and g are expansions in t ¼ �2 x

5

� �3
� 1 .

For 0 < x < 4:5,

Bi0 xð Þ ¼ e3x=2y tð Þ;

where y tð Þ is an expansion in t ¼ 4x=9� 1.

For 4:5 � x < 9,

Bi0 xð Þ ¼ e21x=8u tð Þ;

where u tð Þ is an expansion in t ¼ 4x=9� 3.

For x � 9,

Bi0 xð Þ ¼
ffiffiffi
x4
p

ezv tð Þ;

where z ¼ 2

3

ffiffiffiffiffi
x3
p

and v tð Þ is an expansion in t ¼ 2
18

z

� �
� 1 .

For xj j < the square of the machine precision, the result is set directly to Bi0 0ð Þ. This saves time and
avoids possible underflows in calculation.
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For large negative arguments, it becomes impossible to calculate a result for the oscillating function

with any accuracy so the routine must fail. This occurs for x < �
ffiffiffi
	
p

�

� �4=7

, where � is the machine

precision.

For large positive arguments, where Bi0 grows in an essentially exponential manner, there is a danger of
overflow so the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

X is too large and positive. On softfailure, the routine returns zero. (see the Users' Note for your
implementation for details)

IFAIL ¼ 2

X is too large and negative. On softfailure the routine returns zero. (see the Users' Note for your
implementation for details)

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For negative arguments the function is oscillatory and hence absolute error is appropriate. In the
positive region the function has essentially exponential behaviour and hence relative error is needed.
The absolute error, E, and the relative error �, are related in principle to the relative error in the
argument �, by

E ’ x2 Bi xð Þ
		 		� � ’ x2 Bi xð Þ

Bi0 xð Þ

				 				�:
In practice, approximate equality is the best that can be expected. When �, � or E is of the order of the
machine precision, the errors in the result will be somewhat larger.

For small x, positive or negative, errors are strongly attenuated by the function and hence will
effectively be bounded by the machine precision.

For moderate to large negative x, the error is, like the function, oscillatory. However, the amplitude of

the absolute error grows like
xj j7=4ffiffiffi
	
p . Therefore it becomes impossible to calculate the function with any

accuracy if xj j7=4 >
ffiffiffi
	
p

�
.

For large positive x, the relative error amplification is considerable:
�

�
�

ffiffiffiffiffi
x3
p

. However, very large

arguments are not possible due to the danger of overflow. Thus in practice the actual amplification that
occurs is limited.

8 Parallelism and Performance

S17AKF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s17akfe

! S17AKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17akf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr
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! .. Executable Statements ..
Write (nout,*) ’S17AKF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s17akf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s17akfe

10.2 Program Data

S17AKF Example Program Data
-10.0
-1.0
0.0
1.0
5.0
10.0
20.0

10.3 Program Results

S17AKF Example Program Results

X Y

-1.000E+01 1.194E-01
-1.000E+00 5.924E-01
0.000E+00 4.483E-01
1.000E+00 9.324E-01
5.000E+00 1.436E+03
1.000E+01 1.429E+09
2.000E+01 9.382E+25
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NAG Library Routine Document

S17ALF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17ALF determines the leading N zeros of one of the Bessel functions J� xð Þ, Y� xð Þ, J 0� xð Þ or Y 0� xð Þ for
real x and non-negative �.

2 Specification

SUBROUTINE S17ALF (A, N, MODE, REL, X, IFAIL)

INTEGER N, MODE, IFAIL
REAL (KIND=nag_wp) A, REL, X(N)

3 Description

S17ALF attempts to find the leading N zeros of one of the Bessel functions J� xð Þ, Y� xð Þ, J 0� xð Þ or
Y 0� xð Þ, where x is real. When � is real, these functions each have an infinite number of real zeros, all of
which are simple with the possible exception of x ¼ 0. If � � 0, the nth positive zero is denoted by
j�;n; j

0
�;n; y�;n and y0�;n, respectively, for n ¼ 1; 2; . . . ; N, except that x ¼ 0 is counted as the first zero of

J 0� xð Þ when � ¼ 0. Since J 00 xð Þ ¼ �J1 xð Þ, it therefore follows that j00;1 ¼ 0 and j00;n ¼ �j1;n�1 for
n ¼ 2; 3; . . . ; N � 1. Further details can be found in Section 9.5 of Abramowitz and Stegun (1972).

S17ALF is based on Algol 60 procedures given by Temme (1979). Initial approximations to the zeros
are computed from asymptotic expansions. These are then improved by higher-order Newton iteration
making use of the differential equation for the Bessel functions.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Temme N M (1976) On the numerical evaluation of the ordinary Bessel function of the second kind J.
Comput. Phys. 21 343–350

Temme N M (1979) An algorithm with Algol 60 program for the computation of the zeros of ordinary
Bessel functions and those of their derivatives J. Comput. Phys. 32 270–279

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: the order � of the function.

Constraint: 0:0 � A � 100000:0.

2: N – INTEGER Input

On entry: the number N of zeros required.

Constraint: N � 1.
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3: MODE – INTEGER Input

On entry: specifies the form of the function whose zeros are required.

MODE ¼ 1
The zeros of J� xð Þ are required.

MODE ¼ 2
The zeros of Y� xð Þ are required;

MODE ¼ 3
The zeros of J 0� xð Þ are required;

MODE ¼ 4
The zeros of Y 0� xð Þ are required.

Constraint: 1 � MODE � 4.

4: REL – REAL (KIND=nag_wp) Input

On entry: the relative accuracy to which the zeros are required.

Suggested value: the square root of the machine precision.

Constraint: REL > 0:0.

5: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: the N required zeros of the function specified by MODE.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, A < 0:0,
or A > 100000:0,
or N � 0,
or MODE < 1,
or MODE > 4,
or REL � 0:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

S17ALF NAG Library Manual

S17ALF.2 Mark 26



IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If the value of REL is set to 10�d, then the required zeros should have approximately d correct
significant digits.

8 Parallelism and Performance

S17ALF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example determines the leading five positive zeros of the Bessel function J0 xð Þ.

10.1 Program Text

Program s17alfe

! S17ALF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17alf, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, rel
Integer :: i, ifail, mode, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
Write (nout,*) ’S17ALF Example Program Results’

! Skip heading in data file
Read (nin,*)

rel = sqrt(x02ajf())
Read (nin,*) a, n, mode
Allocate (x(n))

ifail = 0
Call s17alf(a,n,mode,rel,x,ifail)

Write (nout,*)
Write (nout,*) ’ A N MODE REL’
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Write (nout,*) ’ (machine-dependent)’
Write (nout,*)
Write (nout,99999) a, n, mode, rel
Write (nout,*)

Select Case (mode)
Case (1)

Write (nout,*) ’Leading N positive zeros of J’
Case (2)

Write (nout,*) ’Leading N positive zeros of Y’
Case (3)

If (a==0.0E0_nag_wp) Then
Write (nout,*) ’Leading N non-negative zeros of J’’’

Else
Write (nout,*) ’Leading N positive zeros of J’’’

End If

Case (4)
Write (nout,*) ’Leading N positive zeros of Y’’’

End Select

Write (nout,*)
Write (nout,*) ’X =’
Write (nout,99998)(x(i),i=1,n)
Write (nout,*)

99999 Format (1X,F4.1,I4,I7,4X,1P,E9.1)
99998 Format (1P,(E12.4))

End Program s17alfe

10.2 Program Data

S17ALF Example Program Data
0.0 5 1 : Values of A, N and MODE

10.3 Program Results

S17ALF Example Program Results

A N MODE REL
(machine-dependent)

0.0 5 1 1.1E-08

Leading N positive zeros of J

X =
2.4048E+00
5.5201E+00
8.6537E+00
1.1792E+01
1.4931E+01
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NAG Library Routine Document

S17AQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17AQF returns an array of values of the Bessel function Y0 xð Þ.

2 Specification

SUBROUTINE S17AQF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S17AQF evaluates an approximation to the Bessel function of the second kind Y0 xið Þ for an array of
arguments xi, for i ¼ 1; 2; . . . ; n.

Note: Y0 xð Þ is undefined for x � 0 and the routine will fail for such arguments.

The routine is based on four Chebyshev expansions:

For 0 < x � 8,

Y0 xð Þ ¼
2

	
lnx
X
r¼0

arTr tð Þ þ
X
r¼0

brTr tð Þ; with t ¼ 2
x

8

� �2
� 1:

For x > 8,

Y0 xð Þ ¼
ffiffiffiffiffiffi
2

	x

r
P0 xð Þ sin x� 	

4

� �
þQ0 xð Þ cos x� 	

4

� �n o
where P0 xð Þ ¼

P
r¼0
crTr tð Þ,

and Q0 xð Þ ¼
8

x

P
r¼0
drTr tð Þ;with t ¼ 2

8

x

� �2

� 1:

For x near zero, Y0 xð Þ ’ 2
	 ln x

2

� �
þ �

� �
, where � denotes Euler's constant. This approximation is used

when x is sufficiently small for the result to be correct to machine precision.

For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 7),
hence the routine fails. Such arguments contain insufficient information to determine the phase of

oscillation of Y0 xð Þ; only the amplitude,
ffiffiffiffi
2
	n

q
, can be determined and this is returned on softfailure. The

range for which this occurs is roughly related to machine precision; the routine will fail if
x �> 1=machine precision (see the Users' Note for your implementation for details).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

Constraint: XðiÞ > 0:0, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: Y0 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, xi is too large. FðiÞ contains the amplitude of the Y0 oscillation,

ffiffiffiffiffiffiffi
2

	xi

r
.

IVALIDðiÞ ¼ 2

On entry, xi � 0:0, Y0 is undefined. FðiÞ contains 0:0.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � be the relative error in the argument and E be the absolute error in the result. (Since Y0 xð Þ
oscillates about zero, absolute error and not relative error is significant, except for very small x.)

If � is somewhat larger than the machine representation error (e.g., if � is due to data errors etc.), then
E and � are approximately related by

E ’ xY1 xð Þj j�

(provided E is also within machine bounds). Figure 1 displays the behaviour of the amplification factor
xY1 xð Þj j.
However, if � is of the same order as the machine representation errors, then rounding errors could
make E slightly larger than the above relation predicts.

For very small x, the errors are essentially independent of � and the routine should provide relative
accuracy bounded by the machine precision.

For very large x, the above relation ceases to apply. In this region, Y0 xð Þ ’
ffiffiffiffiffiffi
2

	x

r
sin x� 	

4

� �
. The

amplitude

ffiffiffiffiffiffi
2

	x

r
can be calculated with reasonable accuracy for all x, but sin x� 	

4

� �
cannot. If x� 	

4
is

written as 2N	þ � where N is an integer and 0 � � < 2	, then sin x� 	
4

� �
is determined by � only. If

x �> ��1, � cannot be determined with any accuracy at all. Thus if x is greater than, or of the order of
the inverse of machine precision, it is impossible to calculate the phase of Y0 xð Þ and the routine must
fail.
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8 Parallelism and Performance

S17AQF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s17aqfe

! S17AQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17aqf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S17AQF Example Program Results’

! Skip heading in data file
Read (nin,*)
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Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s17aqf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s17aqfe

10.2 Program Data

S17AQF Example Program Data

7

0.5 1.0 3.0 6.0 8.0 10.0 1000.0

10.3 Program Results

S17AQF Example Program Results

X F IVALID

5.000E-01 -4.445E-01 0
1.000E+00 8.826E-02 0
3.000E+00 3.769E-01 0
6.000E+00 -2.882E-01 0
8.000E+00 2.235E-01 0
1.000E+01 5.567E-02 0
1.000E+03 4.716E-03 0
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NAG Library Routine Document

S17ARF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17ARF returns an array of values of the Bessel function Y1 xð Þ.

2 Specification

SUBROUTINE S17ARF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S17ARF evaluates an approximation to the Bessel function of the second kind Y1 xið Þ for an array of
arguments xi, for i ¼ 1; 2; . . . ; n.

Note: Y1 xð Þ is undefined for x � 0 and the routine will fail for such arguments.

The routine is based on four Chebyshev expansions:

For 0 < x � 8,

Y1 xð Þ ¼
2

	
ln x

x

8

X
r¼0

arTr tð Þ �
2

	x
þ x

8

X
r¼0

brTr tð Þ; with t ¼ 2
x

8

� �2
� 1:

For x > 8,

Y1 xð Þ ¼
ffiffiffiffiffiffi
2

	x

r
P1 xð Þ sin x� 3

	

4

� �
þQ1 xð Þ cos x� 3

	

4

� �n o
where P1 xð Þ ¼

P
r¼0
crTr tð Þ,

and Q1 xð Þ ¼
8

x

P
r¼0
drTr tð Þ , with t ¼ 2

8

x

� �2

� 1 .

For x near zero, Y1 xð Þ ’ �
2

	x
. This approximation is used when x is sufficiently small for the result to

be correct to machine precision. For extremely small x, there is a danger of overflow in calculating

� 2

	x
and for such arguments the routine will fail.

For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 7),
hence the routine fails. Such arguments contain insufficient information to determine the phase of

oscillation of Y1 xð Þ; only the amplitude,
ffiffiffiffi
2
	x

q
, can be determined and this is returned on softfailure. The

range for which this occurs is roughly related to machine precision; the routine will fail if
x �> 1=machine precision (see the Users' Note for your implementation for details).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

Constraint: XðiÞ > 0:0, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: Y1 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, xi is too large. FðiÞ contains the amplitude of the Y1 oscillation,

ffiffiffiffiffiffiffi
2

	xi

r
.

IVALIDðiÞ ¼ 2

On entry, xi � 0:0, Y1 is undefined. FðiÞ contains 0:0.

IVALIDðiÞ ¼ 3
xi is too close to zero, there is a danger of overflow. On softfailure, FðiÞ contains the value
of Y1 xð Þ at the smallest valid argument.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.
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IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � be the relative error in the argument and E be the absolute error in the result. (Since Y1 xð Þ
oscillates about zero, absolute error and not relative error is significant, except for very small x.)

If � is somewhat larger than the machine precision (e.g., if � is due to data errors etc.), then E and �
are approximately related by:

E ’ xY0 xð Þ � Y1 xð Þj j�

(provided E is also within machine bounds). Figure 1 displays the behaviour of the amplification factor
xY0 xð Þ � Y1 xð Þj j.
However, if � is of the same order as machine precision, then rounding errors could make E slightly
larger than the above relation predicts.

For very small x, absolute error becomes large, but the relative error in the result is of the same order
as �.

For very large x, the above relation ceases to apply. In this region, Y1 xð Þ ’
ffiffiffiffiffiffi
2

	x

r
sin x� 3	

4

� �
. The

amplitude

ffiffiffiffiffiffi
2

	x

r
can be calculated with reasonable accuracy for all x, but sin x� 3	

4

� �
cannot. If

x� 3	

4
is written as 2N	þ � where N is an integer and 0 � � < 2	, then sin x� 3	

4

� �
is determined

by � only. If x > ��1, � cannot be determined with any accuracy at all. Thus if x is greater than, or of
the order of, the inverse of the machine precision, it is impossible to calculate the phase of Y1 xð Þ and
the routine must fail.
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8 Parallelism and Performance

S17ARF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s17arfe

! S17ARF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17arf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S17ARF Example Program Results’

! Skip heading in data file
Read (nin,*)
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Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s17arf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s17arfe

10.2 Program Data

S17ARF Example Program Data

7

0.5 1.0 3.0 6.0 8.0 10.0 1000.0

10.3 Program Results

S17ARF Example Program Results

X F IVALID

5.000E-01 -1.471E+00 0
1.000E+00 -7.812E-01 0
3.000E+00 3.247E-01 0
6.000E+00 -1.750E-01 0
8.000E+00 -1.581E-01 0
1.000E+01 2.490E-01 0
1.000E+03 -2.478E-02 0

S – Approximations of Special Functions S17ARF
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NAG Library Routine Document

S17ASF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17ASF returns an array of values of the Bessel function J0 xð Þ.

2 Specification

SUBROUTINE S17ASF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S17ASF evaluates an approximation to the Bessel function of the first kind J0 xið Þ for an array of
arguments xi, for i ¼ 1; 2; . . . ; n.

Note: J0 �xð Þ ¼ J0 xð Þ, so the approximation need only consider x � 0.

The routine is based on three Chebyshev expansions:

For 0 < x � 8,

J0 xð Þ ¼
X
r¼0

arTr tð Þ; with t ¼ 2
x

8

� �2
� 1:

For x > 8,

J0 xð Þ ¼
ffiffiffiffiffiffi
2

	x

r
P0 xð Þ cos x� 	

4

� �
�Q0 xð Þ sin x� 	

4

� �n o
;

where P0 xð Þ ¼
P
r¼0
brTr tð Þ,

and Q0 xð Þ ¼
8

x

P
r¼0
crTr tð Þ ,

with t ¼ 2 8
x

� �2 � 1 .

For x near zero, J0 xð Þ ’ 1. This approximation is used when x is sufficiently small for the result to be
correct to machine precision.

For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 7),
hence the routine fails. Such arguments contain insufficient information to determine the phase of

oscillation of J0 xð Þ; only the amplitude,
ffiffiffiffiffiffi
2
	 xj j

q
, can be determined and this is returned on softfailure.

The range for which this occurs is roughly related to machine precision; the routine will fail if
xj j �> 1=machine precision (see the Users' Note for your implementation for details).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: J0 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, xi is too large. FðiÞ contains the amplitude of the J0 oscillation,

ffiffiffiffiffiffiffiffiffiffi
2

	 xij j

r
.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � be the relative error in the argument and E be the absolute error in the result. (Since J0 xð Þ
oscillates about zero, absolute error and not relative error is significant.)

If � is somewhat larger than the machine precision (e.g., if � is due to data errors etc.), then E and �
are approximately related by:

E ’ xJ1 xð Þj j�

(provided E is also within machine bounds). Figure 1 displays the behaviour of the amplification factor
xJ1 xð Þj j.
However, if � is of the same order as machine precision, then rounding errors could make E slightly
larger than the above relation predicts.

For very large x, the above relation ceases to apply. In this region, J0 xð Þ ’
ffiffiffiffiffiffiffiffi
2

	 xj j

r
cos x� 	

4

� �
. The

amplitude

ffiffiffiffiffiffiffiffi
2

	 xj j

r
can be calculated with reasonable accuracy for all x, but cos x� 	

4

� �
cannot. If x� 	

4

is written as 2N	þ � where N is an integer and 0 � � < 2	, then cos x� 	
4

� �
is determined by � only.

If x �> ��1, � cannot be determined with any accuracy at all. Thus if x is greater than, or of the order of,
the inverse of the machine precision, it is impossible to calculate the phase of J0 xð Þ and the routine
must fail.
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8 Parallelism and Performance

S17ASF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s17asfe

! S17ASF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17asf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S17ASF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s17asf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s17asfe

10.2 Program Data

S17ASF Example Program Data

9

0.0 0.5 1.0 3.0 6.0 8.0 10.0 -1.0 1000.0
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10.3 Program Results

S17ASF Example Program Results

X F IVALID

0.000E+00 1.000E+00 0
5.000E-01 9.385E-01 0
1.000E+00 7.652E-01 0
3.000E+00 -2.601E-01 0
6.000E+00 1.506E-01 0
8.000E+00 1.717E-01 0
1.000E+01 -2.459E-01 0

-1.000E+00 7.652E-01 0
1.000E+03 2.479E-02 0

S – Approximations of Special Functions S17ASF
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NAG Library Routine Document

S17ATF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17ATF returns an array of values of the Bessel function J1 xð Þ.

2 Specification

SUBROUTINE S17ATF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S17ATF evaluates an approximation to the Bessel function of the first kind J1 xið Þ for an array of
arguments xi, for i ¼ 1; 2; . . . ; n.

Note: J1 �xð Þ ¼ �J1 xð Þ, so the approximation need only consider x � 0.

The routine is based on three Chebyshev expansions:

For 0 < x � 8,

J1 xð Þ ¼
x

8

X
r¼0

arTr tð Þ; with t ¼ 2
x

8

� �2
� 1:

For x > 8,

J1 xð Þ ¼
ffiffiffiffiffiffi
2

	x

r
P1 xð Þ cos x� 3	

4

� �
�Q1 xð Þ sin x� 3	

4

� �
 �
where P1 xð Þ ¼

P
r¼0
brTr tð Þ,

and Q1 xð Þ ¼
8

x

P
r¼0
crTr tð Þ ,

with t ¼ 2
8

x

� �2

� 1 .

For x near zero, J1 xð Þ ’
x

2
. This approximation is used when x is sufficiently small for the result to be

correct to machine precision.

For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 7),
hence the routine fails. Such arguments contain insufficient information to determine the phase of

oscillation of J1 xð Þ; only the amplitude,
ffiffiffiffiffiffi
2
	 xj j

q
, can be determined and this is returned on softfailure.

The range for which this occurs is roughly related to machine precision; the routine will fail if
xj j �> 1=machine precision (see the Users' Note for your implementation for details).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: J1 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, xi is too large. FðiÞ contains the amplitude of the J1 oscillation,

ffiffiffiffiffiffiffiffiffiffi
2

	 xij j

r
.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � be the relative error in the argument and E be the absolute error in the result. (Since J1 xð Þ
oscillates about zero, absolute error and not relative error is significant.)

If � is somewhat larger than machine precision (e.g., if � is due to data errors etc.), then E and � are
approximately related by:

E ’ xJ0 xð Þ � J1 xð Þj j�

(provided E is also within machine bounds). Figure 1 displays the behaviour of the amplification factor
xJ0 xð Þ � J1 xð Þj j.
However, if � is of the same order as machine precision, then rounding errors could make E slightly
larger than the above relation predicts.

For very large x, the above relation ceases to apply. In this region, J1 xð Þ ’
ffiffiffiffiffiffiffiffi
2

	 xj j

r
cos x� 3	

4

� �
. The

amplitude

ffiffiffiffiffiffiffiffi
2

	 xj j

r
can be calculated with reasonable accuracy for all x, but cos x� 3	

4

� �
cannot. If

x� 3	

4
is written as 2N	þ � where N is an integer and 0 � � < 2	, then cos x� 3	

4

� �
is determined

by � only. If x �> ��1, � cannot be determined with any accuracy at all. Thus if x is greater than, or of
the order of, the reciprocal of machine precision, it is impossible to calculate the phase of J1 xð Þ and
the routine must fail.
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8 Parallelism and Performance

S17ATF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s17atfe

! S17ATF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17atf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S17ATF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s17atf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s17atfe

10.2 Program Data

S17ATF Example Program Data

9

0.0 0.5 1.0 3.0 6.0 8.0 10.0 -1.0 1000.0
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10.3 Program Results

S17ATF Example Program Results

X F IVALID

0.000E+00 0.000E+00 0
5.000E-01 2.423E-01 0
1.000E+00 4.401E-01 0
3.000E+00 3.391E-01 0
6.000E+00 -2.767E-01 0
8.000E+00 2.346E-01 0
1.000E+01 4.347E-02 0

-1.000E+00 -4.401E-01 0
1.000E+03 4.728E-03 0

S – Approximations of Special Functions S17ATF
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NAG Library Routine Document

S17AUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17AUF returns an array of values for the Airy function, Ai xð Þ.

2 Specification

SUBROUTINE S17AUF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S17AUF evaluates an approximation to the Airy function, Ai xið Þ for an array of arguments xi, for
i ¼ 1; 2; . . . ; n. It is based on a number of Chebyshev expansions:

For x < �5,

Ai xð Þ ¼ a tð Þ sin z� b tð Þ cos z
�xð Þ1=4

where z ¼ 	
4
þ 2

3

ffiffiffiffiffiffiffiffiffi
�x3
p

, and a tð Þ and b tð Þ are expansions in the variable t ¼ �2 5

x

� �3

� 1 .

For �5 � x � 0,

Ai xð Þ ¼ f tð Þ � xg tð Þ;

where f and g are expansions in t ¼ �2 x

5

� �3
� 1:

For 0 < x < 4:5,

Ai xð Þ ¼ e�3x=2y tð Þ;

where y is an expansion in t ¼ 4x=9� 1.

For 4:5 � x < 9,

Ai xð Þ ¼ e�5x=2u tð Þ;

where u is an expansion in t ¼ 4x=9� 3.

For x � 9,

Ai xð Þ ¼ e
�zv tð Þ
x1=4

;

where z ¼ 2

3

ffiffiffiffiffi
x3
p

and v is an expansion in t ¼ 2
18

z

� �
� 1 .

For xj j < machine precision, the result is set directly to Ai 0ð Þ. This both saves time and guards against
underflow in intermediate calculations.
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For large negative arguments, it becomes impossible to calculate the phase of the oscillatory function

with any precision and so the routine must fail. This occurs if x < � 3

2�

� �2=3

, where � is the machine

precision.

For large positive arguments, where Ai decays in an essentially exponential manner, there is a danger of
underflow so the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: Ai xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
xi is too large and positive. FðiÞ contains zero. The threshold value is the same as for
IFAIL ¼ 1 in S17AGF, as defined in the Users' Note for your implementation.

IVALIDðiÞ ¼ 2
xi is too large and negative. FðiÞ contains zero. The threshold value is the same as for
IFAIL ¼ 2 in S17AGF, as defined in the Users' Note for your implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For negative arguments the function is oscillatory and hence absolute error is the appropriate measure.
In the positive region the function is essentially exponential-like and here relative error is appropriate.
The absolute error, E, and the relative error, �, are related in principle to the relative error in the
argument, �, by

E ’ xAi0 xð Þj j�; � ’ xAi0 xð Þ
Ai xð Þ

				 				�:
In practice, approximate equality is the best that can be expected. When �, � or E is of the order of the
machine precision, the errors in the result will be somewhat larger.

For small x, errors are strongly damped by the function and hence will be bounded by the machine
precision.

For moderate negative x, the error behaviour is oscillatory but the amplitude of the error grows like

amplitude
E

�

� �
� xj j5=4ffiffiffi

	
p :

However the phase error will be growing roughly like
2

3

ffiffiffiffiffiffiffiffi
xj j3

q
and hence all accuracy will be lost for

large negative arguments due to the impossibility of calculating sin and cos to any accuracy if
2

3

ffiffiffiffiffiffiffiffi
xj j3

q
>

1

�
.

For large positive arguments, the relative error amplification is considerable:

�

�
�

ffiffiffiffiffi
x3
p

:
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This means a loss of roughly two decimal places accuracy for arguments in the region of 20. However
very large arguments are not possible due to the danger of setting underflow and so the errors are
limited in practice.

8 Parallelism and Performance

S17AUF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s17aufe

! S17AUF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17auf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S17AUF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s17auf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s17aufe
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10.2 Program Data

S17AUF Example Program Data

7

-10.0 -1.0 0.0 1.0 5.0 10.0 20.0

10.3 Program Results

S17AUF Example Program Results

X F IVALID

-1.000E+01 4.024E-02 0
-1.000E+00 5.356E-01 0
0.000E+00 3.550E-01 0
1.000E+00 1.353E-01 0
5.000E+00 1.083E-04 0
1.000E+01 1.105E-10 0
2.000E+01 1.692E-27 0
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NAG Library Routine Document

S17AVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17AVF returns an array of values of the Airy function, Bi xð Þ.

2 Specification

SUBROUTINE S17AVF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S17AVF evaluates an approximation to the Airy function Bi xið Þ for an array of arguments xi, for
i ¼ 1; 2; . . . ; n. It is based on a number of Chebyshev expansions.

For x < �5,

Bi xð Þ ¼ a tð Þ cos zþ b tð Þ sin z
�xð Þ1=4

;

where z ¼ 	
4
þ 2

3

ffiffiffiffiffiffiffiffiffi
�x3
p

and a tð Þ and b tð Þ are expansions in the variable t ¼ �2 5

x

� �3

� 1 .

For �5 � x � 0,

Bi xð Þ ¼
ffiffiffi
3
p

f tð Þ þ xg tð Þð Þ;

where f and g are expansions in t ¼ �2 x

5

� �3
� 1 .

For 0 < x < 4:5,

Bi xð Þ ¼ e11x=8y tð Þ;

where y is an expansion in t ¼ 4x=9� 1.

For 4:5 � x < 9,

Bi xð Þ ¼ e5x=2v tð Þ;

where v is an expansion in t ¼ 4x=9� 3.

For x � 9,

Bi xð Þ ¼ e
zu tð Þ
x1=4

;

where z ¼ 2

3

ffiffiffiffiffi
x3
p

and u is an expansion in t ¼ 2
18

z

� �
� 1 .

For xj j < machine precision, the result is set directly to Bi 0ð Þ. This both saves time and avoids possible
intermediate underflows.
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For large negative arguments, it becomes impossible to calculate the phase of the oscillating function

with any accuracy so the routine must fail. This occurs if x < � 3

2�

� �2=3

, where � is the machine

precision.

For large positive arguments, there is a danger of causing overflow since Bi grows in an essentially
exponential manner, so the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: Bi xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
xi is too large and positive. FðiÞ contains zero. The threshold value is the same as for
IFAIL ¼ 1 in S17AHF, as defined in the Users' Note for your implementation.

IVALIDðiÞ ¼ 2
xi is too large and negative. FðiÞ contains zero. The threshold value is the same as for
IFAIL ¼ 2 in S17AHF, as defined in the Users' Note for your implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For negative arguments the function is oscillatory and hence absolute error is the appropriate measure.
In the positive region the function is essentially exponential-like and here relative error is appropriate.
The absolute error, E, and the relative error, �, are related in principle to the relative error in the
argument, �, by

E ’ xBi0 xð Þj j�; � ’ xBi0 xð Þ
Bi xð Þ

				 				�:
In practice, approximate equality is the best that can be expected. When �, � or E is of the order of the
machine precision, the errors in the result will be somewhat larger.

For small x, errors are strongly damped and hence will be bounded essentially by the machine
precision.

For moderate to large negative x, the error behaviour is clearly oscillatory but the amplitude of the error

grows like amplitude
E

�

� �
� xj j5=4ffiffiffi

	
p .

However the phase error will be growing roughly as
2

3

ffiffiffiffiffiffiffiffi
xj j3

q
and hence all accuracy will be lost for

large negative arguments. This is due to the impossibility of calculating sin and cos to any accuracy if
2

3

ffiffiffiffiffiffiffiffi
xj j3

q
>

1

�
.

For large positive arguments, the relative error amplification is considerable:

�

�
�

ffiffiffiffiffi
x3
p

:
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This means a loss of roughly two decimal places accuracy for arguments in the region of 20. However
very large arguments are not possible due to the danger of causing overflow and errors are therefore
limited in practice.

8 Parallelism and Performance

S17AVF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s17avfe

! S17AVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17avf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S17AVF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s17avf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s17avfe
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10.2 Program Data

S17AVF Example Program Data

7

-10.0 -1.0 0.0 1.0 5.0 10.0 20.0

10.3 Program Results

S17AVF Example Program Results

X F IVALID

-1.000E+01 -3.147E-01 0
-1.000E+00 1.040E-01 0
0.000E+00 6.149E-01 0
1.000E+00 1.207E+00 0
5.000E+00 6.578E+02 0
1.000E+01 4.556E+08 0
2.000E+01 2.104E+25 0
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NAG Library Routine Document

S17AWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17AWF returns an array of values of the derivative of the Airy function Ai xð Þ.

2 Specification

SUBROUTINE S17AWF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S17AWF evaluates an approximation to the derivative of the Airy function Ai xið Þ for an array of
arguments xi, for i ¼ 1; 2; . . . ; n. It is based on a number of Chebyshev expansions.

For x < �5,

Ai0 xð Þ ¼
ffiffiffiffiffiffiffi
�x4
p

a tð Þ cos zþ b tð Þ
�

sin z

� �
;

where z ¼ 	
4
þ � , � ¼ 2

3

ffiffiffiffiffiffiffiffiffi
�x3
p

and a tð Þ and b tð Þ are expansions in variable t ¼ �2 5

x

� �3

� 1 .

For �5 � x � 0,

Ai0 xð Þ ¼ x2f tð Þ � g tð Þ;

where f and g are expansions in t ¼ �2 x

5

� �3
� 1 .

For 0 < x < 4:5,

Ai0 xð Þ ¼ e�11x=8y tð Þ;

where y tð Þ is an expansion in t ¼ 4
x

9

� �
� 1 .

For 4:5 � x < 9,

Ai0 xð Þ ¼ e�5x=2v tð Þ;

where v tð Þ is an expansion in t ¼ 4
x

9

� �
� 3 .

For x � 9,

Ai0 xð Þ ¼
ffiffiffi
x4
p

e�zu tð Þ;

where z ¼ 2

3

ffiffiffiffiffi
x3
p

and u tð Þ is an expansion in t ¼ 2
18

z

� �
� 1 .

For xj j < the square of the machine precision, the result is set directly to Ai0 0ð Þ. This both saves time
and avoids possible intermediate underflows.
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For large negative arguments, it becomes impossible to calculate a result for the oscillating function

with any accuracy and so the routine must fail. This occurs for x < �
ffiffiffi
	
p

�

� �4=7

, where � is the machine

precision.

For large positive arguments, where Ai0 decays in an essentially exponential manner, there is a danger
of underflow so the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: Ai0 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
xi is too large and positive. FðiÞ contains zero. The threshold value is the same as for
IFAIL ¼ 1 in S17AJF, as defined in the Users' Note for your implementation.

IVALIDðiÞ ¼ 2
xi is too large and negative. FðiÞ contains zero. The threshold value is the same as for
IFAIL ¼ 2 in S17AJF, as defined in the Users' Note for your implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For negative arguments the function is oscillatory and hence absolute error is the appropriate measure.
In the positive region the function is essentially exponential in character and here relative error is
needed. The absolute error, E, and the relative error, �, are related in principle to the relative error in
the argument, �, by

E ’ x2 Ai xð Þ
		 		� � ’ x2 Ai xð Þ

Ai0 xð Þ

				 				�:
In practice, approximate equality is the best that can be expected. When �, � or E is of the order of the
machine precision, the errors in the result will be somewhat larger.

For small x, positive or negative, errors are strongly attenuated by the function and hence will be
roughly bounded by the machine precision.

For moderate to large negative x, the error, like the function, is oscillatory; however the amplitude of
the error grows like

xj j7=4ffiffiffi
	
p :

Therefore it becomes impossible to calculate the function with any accuracy if xj j7=4 >
ffiffiffi
	
p

�
.

For large positive x, the relative error amplification is considerable:

�

�
’

ffiffiffiffiffi
x3
p

:

However, very large arguments are not possible due to the danger of underflow. Thus in practice error
amplification is limited.
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8 Parallelism and Performance

S17AWF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s17awfe

! S17AWF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17awf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S17AWF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s17awf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s17awfe

10.2 Program Data

S17AWF Example Program Data

7

-10.0 -1.0 0.0 1.0 5.0 10.0 20.0
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10.3 Program Results

S17AWF Example Program Results

X F IVALID

-1.000E+01 9.963E-01 0
-1.000E+00 -1.016E-02 0
0.000E+00 -2.588E-01 0
1.000E+00 -1.591E-01 0
5.000E+00 -2.474E-04 0
1.000E+01 -3.521E-10 0
2.000E+01 -7.586E-27 0
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NAG Library Routine Document

S17AXF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17AXF returns an array of values for the derivative of the Airy function Bi xð Þ.

2 Specification

SUBROUTINE S17AXF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S17AXF calculates an approximate value for the derivative of the Airy function Bi xið Þ for an array of
arguments xi, for i ¼ 1; 2; . . . ; n. It is based on a number of Chebyshev expansions.

For x < �5,

Bi0 xð Þ ¼
ffiffiffiffiffiffiffi
�x4
p

�a tð Þ sin zþ b tð Þ
�

cos z

� �
;

where z ¼ 	
4
þ � , � ¼ 2

3

ffiffiffiffiffiffiffiffiffi
�x3
p

and a tð Þ and b tð Þ are expansions in the variable t ¼ �2 5

x

� �3

� 1 .

For �5 � x � 0,

Bi0 xð Þ ¼
ffiffiffi
3
p

x2f tð Þ þ g tð Þ
� �

;

where f and g are expansions in t ¼ �2 x

5

� �3
� 1 .

For 0 < x < 4:5,

Bi0 xð Þ ¼ e3x=2y tð Þ;

where y tð Þ is an expansion in t ¼ 4x=9� 1.

For 4:5 � x < 9,

Bi0 xð Þ ¼ e21x=8u tð Þ;

where u tð Þ is an expansion in t ¼ 4x=9� 3.

For x � 9,

Bi0 xð Þ ¼
ffiffiffi
x4
p

ezv tð Þ;

where z ¼ 2

3

ffiffiffiffiffi
x3
p

and v tð Þ is an expansion in t ¼ 2
18

z

� �
� 1 .

For xj j < the square of the machine precision, the result is set directly to Bi0 0ð Þ. This saves time and
avoids possible underflows in calculation.
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For large negative arguments, it becomes impossible to calculate a result for the oscillating function

with any accuracy so the routine must fail. This occurs for x < �
ffiffiffi
	
p

�

� �4=7

, where � is the machine

precision.

For large positive arguments, where Bi0 grows in an essentially exponential manner, there is a danger of
overflow so the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: Bi0 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
xi is too large and positive. FðiÞ contains zero. The threshold value is the same as for
IFAIL ¼ 1 in S17AKF, as defined in the Users' Note for your implementation.

IVALIDðiÞ ¼ 2
xi is too large and negative. FðiÞ contains zero. The threshold value is the same as for
IFAIL ¼ 2 in S17AKF, as defined in the Users' Note for your implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For negative arguments the function is oscillatory and hence absolute error is appropriate. In the
positive region the function has essentially exponential behaviour and hence relative error is needed.
The absolute error, E, and the relative error �, are related in principle to the relative error in the
argument �, by

E ’ x2 Bi xð Þ
		 		� � ’ x2 Bi xð Þ

Bi0 xð Þ

				 				�:
In practice, approximate equality is the best that can be expected. When �, � or E is of the order of the
machine precision, the errors in the result will be somewhat larger.

For small x, positive or negative, errors are strongly attenuated by the function and hence will
effectively be bounded by the machine precision.

For moderate to large negative x, the error is, like the function, oscillatory. However, the amplitude of

the absolute error grows like
xj j7=4ffiffiffi
	
p . Therefore it becomes impossible to calculate the function with any

accuracy if xj j7=4 >
ffiffiffi
	
p

�
.

For large positive x, the relative error amplification is considerable:
�

�
�

ffiffiffiffiffi
x3
p

. However, very large

arguments are not possible due to the danger of overflow. Thus in practice the actual amplification that
occurs is limited.

8 Parallelism and Performance

S17AXF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s17axfe

! S17AXF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17axf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S17AXF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s17axf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s17axfe

10.2 Program Data

S17AXF Example Program Data

7

-10.0 -1.0 0.0 1.0 5.0 10.0 20.0

S17AXF NAG Library Manual

S17AXF.4 Mark 26



10.3 Program Results

S17AXF Example Program Results

X F IVALID

-1.000E+01 1.194E-01 0
-1.000E+00 5.924E-01 0
0.000E+00 4.483E-01 0
1.000E+00 9.324E-01 0
5.000E+00 1.436E+03 0
1.000E+01 1.429E+09 0
2.000E+01 9.382E+25 0
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NAG Library Routine Document

S17DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17DCF returns a sequence of values for the Bessel functions Y�þn zð Þ for complex z, non-negative �
and n ¼ 0; 1; . . . ; N � 1, with an option for exponential scaling.

2 Specification

SUBROUTINE S17DCF (FNU, Z, N, SCAL, CY, NZ, CWRK, IFAIL)

INTEGER N, NZ, IFAIL
REAL (KIND=nag_wp) FNU
COMPLEX (KIND=nag_wp) Z, CY(N), CWRK(N)
CHARACTER(1) SCAL

3 Description

S17DCF evaluates a sequence of values for the Bessel function Y� zð Þ, where z is complex,
�	 < argz � 	, and � is the real, non-negative order. The N-member sequence is generated for orders
�, � þ 1; . . . ; � þN � 1. Optionally, the sequence is scaled by the factor e� Im zð Þj j.

Note: although the routine may not be called with � less than zero, for negative orders the formula
Y�� zð Þ ¼ Y� zð Þ cos 	�ð Þ þ J� zð Þ sin 	�ð Þ may be used (for the Bessel function J� zð Þ, see S17DEF).

The routine is derived from the routine CBESY in Amos (1986). It is based on the relation

Y� zð Þ ¼
H 1ð Þ
� zð Þ �H 2ð Þ

� zð Þ
2i

, where H 1ð Þ
� zð Þ and H 2ð Þ

� zð Þ are the Hankel functions of the first and second

kinds respectively (see S17DLF).

When N is greater than 1, extra values of Y� zð Þ are computed using recurrence relations.

For very large zj j or � þN � 1ð Þ, argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller zj j or � þN � 1ð Þ, the computation is performed but
results are accurate to less than half of machine precision. If zj j is very small, near the machine
underflow threshold, or � þN � 1ð Þ is too large, there is a risk of overflow and so no computation is
performed. In all the above cases, a warning is given by the routine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and
non-negative order ACM Trans. Math. Software 12 265–273

5 Arguments

1: FNU – REAL (KIND=nag_wp) Input

On entry: �, the order of the first member of the sequence of functions.

Constraint: FNU � 0:0.

S – Approximations of Special Functions S17DCF

Mark 26 S17DCF.1



2: Z – COMPLEX (KIND=nag_wp) Input

On entry: z, the argument of the functions.

Constraint: Z 6¼ 0:0; 0:0ð Þ.

3: N – INTEGER Input

On entry: N , the number of members required in the sequence Y� zð Þ; Y�þ1 zð Þ; . . . ; Y�þN�1 zð Þ.
Constraint: N � 1.

4: SCAL – CHARACTER(1) Input

On entry: the scaling option.

SCAL ¼ U
The results are returned unscaled.

SCAL ¼ S
The results are returned scaled by the factor e� Im zð Þj j.

Constraint: SCAL ¼ U or S .

5: CYðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the N required function values: CYðiÞ contains Y�þi�1 zð Þ, for i ¼ 1; 2; . . . ; N.

6: NZ – INTEGER Output

On exit: the number of components of CY that are set to zero due to underflow. The positions of
such components in the array CY are arbitrary.

7: CWRKðNÞ – COMPLEX (KIND=nag_wp) array Workspace

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, FNU < 0:0,
or Z ¼ 0:0; 0:0ð Þ,
or N > 1,
or SCAL 6¼ U or S .
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IFAIL ¼ 2

No computation has been performed due to the likelihood of overflow, because abs Zð Þ is less
than a machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL ¼ 3

No computation has been performed due to the likelihood of overflow, because FNUþ N� 1 is
too large – how large depends on Z as well as the overflow threshold of the machine.

IFAIL ¼ 4

The computation has been performed, but the errors due to argument reduction in elementary
functions make it likely that the results returned by S17DCF are accurate to less than half of
machine precision. This error exit may occur if either abs Zð Þ or FNUþ N� 1 is greater than a
machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL ¼ 5

No computation has been performed because the errors due to argument reduction in elementary
functions mean that all precision in results returned by S17DCF would be lost. This error exit
may occur if either abs Zð Þ or FNUþ N� 1 is greater than a machine-dependent threshold value
(given in the Users' Note for your implementation).

IFAIL ¼ 6

No results are returned because the algorithm termination condition has not been met. This may
occur because the arguments supplied to S17DCF would have caused overflow or underflow.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All constants in S17DCF are given to approximately 18 digits of precision. Calling the number of digits
of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct
digits in the results obtained is limited by p ¼ min t; 18ð Þ. Because of errors in argument reduction when
computing elementary functions inside S17DCF, the actual number of correct digits is limited, in
general, by p� s, where s � max 1; ; ; log10 zj jj j; log10 �j jð Þ represents the number of digits lost due to the
argument reduction. Thus the larger the values of zj j and �, the less the precision in the result. If
S17DCF is called with N > 1, then computation of function values via recurrence may lead to some
further small loss of accuracy.

If function values which should nominally be identical are computed by calls to S17DCF with different
base values of � and different N, the computed values may not agree exactly. Empirical tests with
modest values of � and z have shown that the discrepancy is limited to the least significant 3 – 4 digits
of precision.
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8 Parallelism and Performance

S17DCF is not threaded in any implementation.

9 Further Comments

The time taken for a call of S17DCF is approximately proportional to the value of N, plus a constant. In
general it is much cheaper to call S17DCF with N greater than 1, rather than to make N separate calls
to S17DCF.

Paradoxically, for some values of z and �, it is cheaper to call S17DCF with a larger value of N than is
required, and then discard the extra function values returned. However, it is not possible to state the
precise circumstances in which this is likely to occur. It is due to the fact that the base value used to
start recurrence may be calculated in different regions for different N, and the costs in each region may
differ greatly.

Note that if the function required is Y0 xð Þ or Y1 xð Þ, i.e., � ¼ 0:0 or 1:0, where x is real and positive, and
only a single unscaled function value is required, then it may be much cheaper to call S17ACF or
S17ADF respectively.

10 Example

This example prints a caption and then proceeds to read sets of data from the input data stream. The
first datum is a value for the order FNU, the second is a complex value for the argument, Z, and the
third is a character value to set the argument SCAL. The program calls the routine with N ¼ 2 to
evaluate the function for orders FNU and FNUþ 1, and it prints the results. The process is repeated
until the end of the input data stream is encountered.

10.1 Program Text

Program s17dcfe

! S17DCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17dcf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 2, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: z
Real (Kind=nag_wp) :: fnu
Integer :: ifail, ioerr, nz
Character (1) :: scal

! .. Local Arrays ..
Complex (Kind=nag_wp) :: cwrk(n), cy(n)

! .. Executable Statements ..
Write (nout,*) ’S17DCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,99999) ’Calling with N =’, n
Write (nout,*)
Write (nout,*) &

’ FNU Z SCAL CY(1) CY(2)’, &
’ NZ’

Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) fnu, z, scal
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If (ioerr<0) Then
Exit data

End If

ifail = 0
Call s17dcf(fnu,z,n,scal,cy,nz,cwrk,ifail)

Write (nout,99998) fnu, z, scal, cy(1), cy(2), nz
End Do data

99999 Format (1X,A,I2)
99998 Format (1X,F7.4,’ (’,F7.3,’,’,F7.3,’) ’,A,2(’ (’,F7.3,’,’,F7.3,’)’), &

I4)
End Program s17dcfe

10.2 Program Data

S17DCF Example Program Data
0.00 ( 0.3, 0.4) ’U’
2.30 ( 2.0, 0.0) ’U’
2.12 (-1.0, 0.0) ’U’
1.58 (-2.3, 5.6) ’U’
1.58 (-2.3, 5.6) ’S’

10.3 Program Results

S17DCF Example Program Results

Calling with N = 2

FNU Z SCAL CY(1) CY(2) NZ

0.0000 ( 0.300, 0.400) U ( -0.498, 0.670) ( -1.015, 0.949) 0
2.3000 ( 2.000, 0.000) U ( -0.740, 0.000) ( -1.412, 0.000) 0
2.1200 ( -1.000, 0.000) U ( -1.728, 0.860) ( 6.533, -2.615) 0
1.5800 ( -2.300, 5.600) U ( 36.476, -1.552) ( -2.679, 25.911) 0
1.5800 ( -2.300, 5.600) S ( 0.135, -0.006) ( -0.010, 0.096) 0
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NAG Library Routine Document

S17DEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17DEF returns a sequence of values for the Bessel functions J�þn zð Þ for complex z, non-negative �
and n ¼ 0; 1; . . . ; N � 1, with an option for exponential scaling.

2 Specification

SUBROUTINE S17DEF (FNU, Z, N, SCAL, CY, NZ, IFAIL)

INTEGER N, NZ, IFAIL
REAL (KIND=nag_wp) FNU
COMPLEX (KIND=nag_wp) Z, CY(N)
CHARACTER(1) SCAL

3 Description

S17DEF evaluates a sequence of values for the Bessel function J� zð Þ, where z is complex,
�	 < argz � 	, and � is the real, non-negative order. The N-member sequence is generated for orders
�, � þ 1; . . . ; � þN � 1. Optionally, the sequence is scaled by the factor e� Im zð Þj j.

Note: although the routine may not be called with � less than zero, for negative orders the formula
J�� zð Þ ¼ J� zð Þ cos 	�ð Þ � Y� zð Þ sin 	�ð Þ may be used (for the Bessel function Y� zð Þ, see S17DCF).

The routine is derived from the routine CBESJ in Amos (1986). It is based on the relations
J� zð Þ ¼ e�	i=2I� �izð Þ, Im zð Þ � 0:0, and J� zð Þ ¼ e��	i=2I� izð Þ, Im zð Þ < 0:0.

The Bessel function I� zð Þ is computed using a variety of techniques depending on the region under
consideration.

When N is greater than 1, extra values of J� zð Þ are computed using recurrence relations.

For very large zj j or � þN � 1ð Þ, argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller zj j or � þN � 1ð Þ, the computation is performed but
results are accurate to less than half of machine precision. If Im zð Þ is large, there is a risk of overflow
and so no computation is performed. In all the above cases, a warning is given by the routine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and
non-negative order ACM Trans. Math. Software 12 265–273

5 Arguments

1: FNU – REAL (KIND=nag_wp) Input

On entry: �, the order of the first member of the sequence of functions.

Constraint: FNU � 0:0.

2: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the functions.
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3: N – INTEGER Input

On entry: N , the number of members required in the sequence J� zð Þ; J�þ1 zð Þ; . . . ; J�þN�1 zð Þ.
Constraint: N � 1.

4: SCAL – CHARACTER(1) Input

On entry: the scaling option.

SCAL ¼ U
The results are returned unscaled.

SCAL ¼ S
The results are returned scaled by the factor e� Im zð Þj j.

Constraint: SCAL ¼ U or S .

5: CYðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the N required function values: CYðiÞ contains J�þi�1 zð Þ, for i ¼ 1; 2; . . . ; N.

6: NZ – INTEGER Output

On exit: the number of components of CY that are set to zero due to underflow. If NZ > 0, then
elements CYðN� NZþ 1Þ, CYðN� NZþ 2Þ; . . . ;CYðNÞ are set to zero.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, FNU < 0:0,
or N < 1,
or SCAL 6¼ U or S .

IFAIL ¼ 2

No computation has been performed due to the likelihood of overflow, because ImZ is larger
than a machine-dependent threshold value (given in the Users' Note for your implementation).
This error exit can only occur when SCAL ¼ U .

IFAIL ¼ 3

The computation has been performed, but the errors due to argument reduction in elementary
functions make it likely that the results returned by S17DEF are accurate to less than half of
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machine precision. This error exit may occur if either abs Zð Þ or FNUþ N� 1 is greater than a
machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL ¼ 4

No computation has been performed because the errors due to argument reduction in elementary
functions mean that all precision in results returned by S17DEF would be lost. This error exit
may occur when either abs Zð Þ or FNUþ N� 1 is greater than a machine-dependent threshold
value (given in the Users' Note for your implementation).

IFAIL ¼ 5

No results are returned because the algorithm termination condition has not been met. This may
occur because the arguments supplied to S17DEF would have caused overflow or underflow.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All constants in S17DEF are given to approximately 18 digits of precision. Calling the number of digits
of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct
digits in the results obtained is limited by p ¼ min t; 18ð Þ. Because of errors in argument reduction when
computing elementary functions inside S17DEF, the actual number of correct digits is limited, in
general, by p� s, where s � max 1; log10 zj jj j; log10 �j jð Þ represents the number of digits lost due to the
argument reduction. Thus the larger the values of zj j and �, the less the precision in the result. If
S17DEF is called with N > 1, then computation of function values via recurrence may lead to some
further small loss of accuracy.

If function values which should nominally be identical are computed by calls to S17DEF with different
base values of � and different N, the computed values may not agree exactly. Empirical tests with
modest values of � and z have shown that the discrepancy is limited to the least significant 3 – 4 digits
of precision.

8 Parallelism and Performance

S17DEF is not threaded in any implementation.

9 Further Comments

The time taken for a call of S17DEF is approximately proportional to the value of N, plus a constant. In
general it is much cheaper to call S17DEF with N greater than 1, rather than to make N separate calls
to S17DEF.

Paradoxically, for some values of z and �, it is cheaper to call S17DEF with a larger value of N than is
required, and then discard the extra function values returned. However, it is not possible to state the
precise circumstances in which this is likely to occur. It is due to the fact that the base value used to
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start recurrence may be calculated in different regions for different N, and the costs in each region may
differ greatly.

Note that if the function required is J0 xð Þ or J1 xð Þ, i.e., � ¼ 0:0 or 1:0, where x is real and positive, and
only a single unscaled function value is required, then it may be much cheaper to call S17AEF or
S17AFF respectively.

10 Example

This example prints a caption and then proceeds to read sets of data from the input data stream. The
first datum is a value for the order FNU, the second is a complex value for the argument, Z, and the
third is a character value to set the argument SCAL. The program calls the routine with N ¼ 2 to
evaluate the function for orders FNU and FNUþ 1, and it prints the results. The process is repeated
until the end of the input data stream is encountered.

10.1 Program Text

Program s17defe

! S17DEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17def

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 2, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: z
Real (Kind=nag_wp) :: fnu
Integer :: ifail, ioerr, nz
Character (1) :: scal

! .. Local Arrays ..
Complex (Kind=nag_wp) :: cy(n)

! .. Executable Statements ..
Write (nout,*) ’S17DEF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,99999) ’Calling with N =’, n
Write (nout,*)
Write (nout,*) &

’ FNU Z SCAL CY(1) CY(2)’, &
’ NZ’

Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) fnu, z, scal

If (ioerr<0) Then
Exit data

End If

ifail = 0
Call s17def(fnu,z,n,scal,cy,nz,ifail)

Write (nout,99998) fnu, z, scal, cy(1), cy(2), nz
End Do data

99999 Format (1X,A,I2)
99998 Format (1X,F7.4,’ (’,F7.3,’,’,F7.3,’) ’,A,2(’ (’,F7.3,’,’,F7.3,’)’), &

I4)
End Program s17defe
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10.2 Program Data

S17DEF Example Program Data
0.00 ( 0.3, 0.4) ’U’
2.30 ( 2.0, 0.0) ’U’
2.12 (-1.0, 0.0) ’U’
1.58 (-2.3, 5.6) ’U’
1.58 (-2.3, 5.6) ’S’

10.3 Program Results

S17DEF Example Program Results

Calling with N = 2

FNU Z SCAL CY(1) CY(2) NZ

0.0000 ( 0.300, 0.400) U ( 1.017, -0.061) ( 0.157, 0.197) 0
2.3000 ( 2.000, 0.000) U ( 0.272, -0.000) ( 0.089, -0.000) 0
2.1200 ( -1.000, 0.000) U ( 0.088, 0.035) ( -0.014, -0.006) 0
1.5800 ( -2.300, 5.600) U ( -1.551,-36.476) ( 25.910, 2.677) 0
1.5800 ( -2.300, 5.600) S ( -0.006, -0.135) ( 0.096, 0.010) 0
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NAG Library Routine Document

S17DGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17DGF returns the value of the Airy function Ai zð Þ or its derivative Ai0 zð Þ for complex z, with an
option for exponential scaling.

2 Specification

SUBROUTINE S17DGF (DERIV, Z, SCAL, AI, NZ, IFAIL)

INTEGER NZ, IFAIL
COMPLEX (KIND=nag_wp) Z, AI
CHARACTER(1) DERIV, SCAL

3 Description

S17DGF returns a value for the Airy function Ai zð Þ or its derivative Ai0 zð Þ, where z is complex,
�	 < argz � 	. Optionally, the value is scaled by the factor e2z

ffiffi
z
p
=3.

The routine is derived from the routine CAIRY in Amos (1986). It is based on the relations

Ai zð Þ ¼
ffiffiffi
z
p
K1=3 wð Þ
	
ffiffiffi
3
p , and Ai0 zð Þ ¼

�zK2=3 wð Þ
	
ffiffiffi
3
p , where K� is the modified Bessel function and

w ¼ 2z
ffiffiffi
z
p
=3.

For very large zj j, argument reduction will cause total loss of accuracy, and so no computation is
performed. For slightly smaller zj j, the computation is performed but results are accurate to less than
half of machine precision. If Re wð Þ is too large, and the unscaled function is required, there is a risk of
overflow and so no computation is performed. In all the above cases, a warning is given by the routine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and
non-negative order ACM Trans. Math. Software 12 265–273

5 Arguments

1: DERIV – CHARACTER(1) Input

On entry: specifies whether the function or its derivative is required.

DERIV ¼ F
Ai zð Þ is returned.

DERIV ¼ D
Ai0 zð Þ is returned.

Constraint: DERIV ¼ F or D .

2: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the function.
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3: SCAL – CHARACTER(1) Input

On entry: the scaling option.

SCAL ¼ U
The result is returned unscaled.

SCAL ¼ S
The result is returned scaled by the factor e2z

ffiffi
z
p
=3.

Constraint: SCAL ¼ U or S .

4: AI – COMPLEX (KIND=nag_wp) Output

On exit: the required function or derivative value.

5: NZ – INTEGER Output

On exit: indicates whether or not AI is set to zero due to underflow. This can only occur when
SCAL ¼ U .

NZ ¼ 0
AI is not set to zero.

NZ ¼ 1
AI is set to zero.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, DERIV 6¼ F or D .
or SCAL 6¼ U or S .

IFAIL ¼ 2

No computation has been performed due to the likelihood of overflow, because Re wð Þ is too
large, where w ¼ 2Z

ffiffiffi
Z
p

=3 – how large depends on Z and the overflow threshold of the machine.
This error exit can only occur when SCAL ¼ U .

IFAIL ¼ 3

The computation has been performed, but the errors due to argument reduction in elementary
functions make it likely that the result returned by S17DGF is accurate to less than half of
machine precision. This error exit may occur if abs Zð Þ is greater than a machine-dependent
threshold value (given in the Users' Note for your implementation).
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IFAIL ¼ 4

No computation has been performed because the errors due to argument reduction in elementary
functions mean that all precision in the result returned by S17DGF would be lost. This error exit
may occur if abs Zð Þ is greater than a machine-dependent threshold value (given in the Users'
Note for your implementation).

IFAIL ¼ 5

No result is returned because the algorithm termination condition has not been met. This may
occur because the arguments supplied to S17DGF would have caused overflow or underflow.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All constants in S17DGF are given to approximately 18 digits of precision. Calling the number of digits
of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct
digits in the results obtained is limited by p ¼ min t; 18ð Þ. Because of errors in argument reduction when
computing elementary functions inside S17DGF, the actual number of correct digits is limited, in
general, by p� s, where s � max 1; log10 zj jj jð Þ represents the number of digits lost due to the argument
reduction. Thus the larger the value of zj j, the less the precision in the result.

Empirical tests with modest values of z, checking relations between Airy functions Ai zð Þ, Ai0 zð Þ, Bi zð Þ
and Bi0 zð Þ, have shown errors limited to the least significant 3 – 4 digits of precision.

8 Parallelism and Performance

S17DGF is not threaded in any implementation.

9 Further Comments

Note that if the function is required to operate on a real argument only, then it may be much cheaper to
call S17AGF or S17AJF.

10 Example

This example prints a caption and then proceeds to read sets of data from the input data stream. The
first datum is a value for the argument DERIV, the second is a complex value for the argument, Z, and
the third is a character value to set the argument SCAL. The program calls the routine and prints the
results. The process is repeated until the end of the input data stream is encountered.
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10.1 Program Text

Program s17dgfe

! S17DGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17dgf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: ai, z
Integer :: ifail, ioerr, nz
Character (1) :: deriv, scal

! .. Executable Statements ..
Write (nout,*) ’S17DGF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’DERIV Z SCAL AI NZ’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) deriv, z, scal

If (ioerr<0) Then
Exit data

End If

ifail = 0
Call s17dgf(deriv,z,scal,ai,nz,ifail)

Write (nout,99999) deriv, z, scal, ai, nz
End Do data

99999 Format (3X,A,’ (’,F8.4,’,’,F8.4,’) ’,A,’ (’,F8.4,’,’,F8.4,’)’,I4)
End Program s17dgfe

10.2 Program Data

S17DGF Example Program Data
’F’ ( 0.3, 0.4) ’U’
’F’ ( 0.2, 0.0) ’U’
’F’ ( 1.1, -6.6) ’U’
’F’ ( 1.1, -6.6) ’S’
’D’ (-1.0, 0.0) ’U’

10.3 Program Results

S17DGF Example Program Results

DERIV Z SCAL AI NZ

F ( 0.3000, 0.4000) U ( 0.2716, -0.1002) 0
F ( 0.2000, 0.0000) U ( 0.3037, 0.0000) 0
F ( 1.1000, -6.6000) U (-43.6632,-47.9030) 0
F ( 1.1000, -6.6000) S ( 0.1655, 0.0597) 0
D ( -1.0000, 0.0000) U ( -0.0102, 0.0000) 0

S17DGF NAG Library Manual

S17DGF.4 (last) Mark 26



NAG Library Routine Document

S17DHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17DHF returns the value of the Airy function Bi zð Þ or its derivative Bi0 zð Þ for complex z, with an
option for exponential scaling.

2 Specification

SUBROUTINE S17DHF (DERIV, Z, SCAL, BI, IFAIL)

INTEGER IFAIL
COMPLEX (KIND=nag_wp) Z, BI
CHARACTER(1) DERIV, SCAL

3 Description

S17DHF returns a value for the Airy function Bi zð Þ or its derivative Bi0 zð Þ, where z is complex,
�	 < argz � 	. Optionally, the value is scaled by the factor e Re 2z

ffiffi
z
p
=3ð Þj j.

The routine is derived from the routine CBIRY in Amos (1986). It is based on the relations

Bi zð Þ ¼
ffiffiffi
z
pffiffiffi
3
p I�1=3 wð Þ þ I1=3 wð Þ
� �

, and Bi0 zð Þ ¼ zffiffiffi
3
p I�2=3 wð Þ þ I2=3 wð Þ
� �

, where I� is the modified

Bessel function and w ¼ 2z
ffiffiffi
z
p
=3.

For very large zj j, argument reduction will cause total loss of accuracy, and so no computation is
performed. For slightly smaller zj j, the computation is performed but results are accurate to less than
half of machine precision. If Re zð Þ is too large, and the unscaled function is required, there is a risk of
overflow and so no computation is performed. In all the above cases, a warning is given by the routine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and
non-negative order ACM Trans. Math. Software 12 265–273

5 Arguments

1: DERIV – CHARACTER(1) Input

On entry: specifies whether the function or its derivative is required.

DERIV ¼ F
Bi zð Þ is returned.

DERIV ¼ D
Bi0 zð Þ is returned.

Constraint: DERIV ¼ F or D .

2: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the function.
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3: SCAL – CHARACTER(1) Input

On entry: the scaling option.

SCAL ¼ U
The result is returned unscaled.

SCAL ¼ S
The result is returned scaled by the factor e Re 2z

ffiffi
z
p
=3ð Þj j.

Constraint: SCAL ¼ U or S .

4: BI – COMPLEX (KIND=nag_wp) Output

On exit: the required function or derivative value.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, DERIV 6¼ F or D .
or SCAL 6¼ U or S .

IFAIL ¼ 2

No computation has been performed due to the likelihood of overflow, because real(Z) is too
large – how large depends on the overflow threshold of the machine. This error exit can only
occur when SCAL ¼ U .

IFAIL ¼ 3

The computation has been performed, but the errors due to argument reduction in elementary
functions make it likely that the result returned by S17DHF is accurate to less than half of
machine precision. This error exit may occur if abs Zð Þ is greater than a machine-dependent
threshold value (given in the Users' Note for your implementation).

IFAIL ¼ 4

No computation has been performed because the errors due to argument reduction in elementary
functions mean that all precision in the result returned by S17DHF would be lost. This error exit
may occur if abs Zð Þ is greater than a machine-dependent threshold value (given in the Users'
Note for your implementation).

S17DHF NAG Library Manual

S17DHF.2 Mark 26



IFAIL ¼ 5

No result is returned because the algorithm termination condition has not been met. This may
occur because the arguments supplied to S17DHF would have caused overflow or underflow.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All constants in S17DHF are given to approximately 18 digits of precision. Calling the number of digits
of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct
digits in the results obtained is limited by p ¼ min t; 18ð Þ. Because of errors in argument reduction when
computing elementary functions inside S17DHF, the actual number of correct digits is limited, in
general, by p� s, where s � max 1; log10 zj jj jð Þ represents the number of digits lost due to the argument
reduction. Thus the larger the value of zj j, the less the precision in the result.

Empirical tests with modest values of z, checking relations between Airy functions Ai zð Þ, Ai0 zð Þ, Bi zð Þ
and Bi0 zð Þ, have shown errors limited to the least significant 3 – 4 digits of precision.

8 Parallelism and Performance

S17DHF is not threaded in any implementation.

9 Further Comments

Note that if the function is required to operate on a real argument only, then it may be much cheaper to
call S17AHF or S17AKF.

10 Example

This example prints a caption and then proceeds to read sets of data from the input data stream. The
first datum is a value for the argument DERIV, the second is a complex value for the argument, Z, and
the third is a character value to set the argument SCAL. The program calls the routine and prints the
results. The process is repeated until the end of the input data stream is encountered.

10.1 Program Text

Program s17dhfe

! S17DHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17dhf

! .. Implicit None Statement ..
Implicit None
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! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: bi, z
Integer :: ifail, ioerr
Character (1) :: deriv, scal

! .. Executable Statements ..
Write (nout,*) ’S17DHF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’DERIV Z SCAL BI’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) deriv, z, scal

If (ioerr<0) Then
Exit data

End If

ifail = 0
Call s17dhf(deriv,z,scal,bi,ifail)

Write (nout,99999) deriv, z, scal, bi
End Do data

99999 Format (3X,A,’ (’,F8.4,’,’,F8.4,’) ’,A,’ (’,F8.4,’,’,F8.4,’)’)
End Program s17dhfe

10.2 Program Data

S17DHF Example Program Data
’F’ ( 0.3, 0.4) ’U’
’F’ ( 0.2, 0.0) ’U’
’F’ ( 1.1, -6.6) ’U’
’F’ ( 1.1, -6.6) ’S’
’D’ (-1.0, 0.0) ’U’

10.3 Program Results

S17DHF Example Program Results

DERIV Z SCAL BI

F ( 0.3000, 0.4000) U ( 0.7355, 0.1825)
F ( 0.2000, 0.0000) U ( 0.7055, 0.0000)
F ( 1.1000, -6.6000) U (-47.9039, 43.6634)
F ( 1.1000, -6.6000) S ( -0.1300, 0.1185)
D ( -1.0000, 0.0000) U ( 0.5924, 0.0000)
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NAG Library Routine Document

S17DLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S17DLF returns a sequence of values for the Hankel functions H 1ð Þ
�þn zð Þ or H

2ð Þ
�þn zð Þ for complex z,

non-negative � and n ¼ 0; 1; . . . ; N � 1, with an option for exponential scaling.

2 Specification

SUBROUTINE S17DLF (M, FNU, Z, N, SCAL, CY, NZ, IFAIL)

INTEGER M, N, NZ, IFAIL
REAL (KIND=nag_wp) FNU
COMPLEX (KIND=nag_wp) Z, CY(N)
CHARACTER(1) SCAL

3 Description

S17DLF evaluates a sequence of values for the Hankel function H 1ð Þ
� zð Þ or H 2ð Þ

� zð Þ, where z is complex,
�	 < argz � 	, and � is the real, non-negative order. The N-member sequence is generated for orders
�, � þ 1; . . . ; � þN � 1. Optionally, the sequence is scaled by the factor e�iz if the function is H 1ð Þ

� zð Þ
or by the factor eiz if the function is H 2ð Þ

� zð Þ.
Note: although the routine may not be called with � less than zero, for negative orders the formulae
H 1ð Þ
�� zð Þ ¼ e�	iH 1ð Þ

� zð Þ, and H 2ð Þ
�� zð Þ ¼ e��	iH 2ð Þ

� zð Þ may be used.

The routine is derived from the routine CBESH in Amos (1986). It is based on the relation

H mð Þ
� zð Þ ¼ 1

p
e�p�K� ze

�pð Þ;

where p ¼ i	
2

if m ¼ 1 and p ¼ �i	
2

if m ¼ 2, and the Bessel function K� zð Þ is computed in the right

half-plane only. Continuation of K� zð Þ to the left half-plane is computed in terms of the Bessel function
I� zð Þ. These functions are evaluated using a variety of different techniques, depending on the region
under consideration.

When N is greater than 1, extra values of H mð Þ
� zð Þ are computed using recurrence relations.

For very large zj j or � þN � 1ð Þ, argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller zj j or � þN � 1ð Þ, the computation is performed but
results are accurate to less than half of machine precision. If zj j is very small, near the machine
underflow threshold, or � þN � 1ð Þ is too large, there is a risk of overflow and so no computation is
performed. In all the above cases, a warning is given by the routine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and
non-negative order ACM Trans. Math. Software 12 265–273
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5 Arguments

1: M – INTEGER Input

On entry: the kind of functions required.

M ¼ 1
The functions are H 1ð Þ

� zð Þ.
M ¼ 2

The functions are H 2ð Þ
� zð Þ.

Constraint: M ¼ 1 or 2.

2: FNU – REAL (KIND=nag_wp) Input

On entry: �, the order of the first member of the sequence of functions.

Constraint: FNU � 0:0.

3: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the functions.

Constraint: Z 6¼ 0:0; 0:0ð Þ.

4: N – INTEGER Input

On entry: N , the number of members required in the sequence H Mð Þ
� zð Þ; H Mð Þ

�þ1 zð Þ; . . . ; H
Mð Þ
�þN�1 zð Þ.

Constraint: N � 1.

5: SCAL – CHARACTER(1) Input

On entry: the scaling option.

SCAL ¼ U
The results are returned unscaled.

SCAL ¼ S
The results are returned scaled by the factor e�iz when M ¼ 1, or by the factor eiz when
M ¼ 2.

Constraint: SCAL ¼ U or S .

6: CYðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the N required function values: CYðiÞ contains H Mð Þ
�þi�1 zð Þ, for i ¼ 1; 2; . . . ; N.

7: NZ – INTEGER Output

On exit: the number of components of CY that are set to zero due to underflow. If NZ > 0, then
if Im zð Þ > 0:0 and M ¼ 1, or Im zð Þ < 0:0 and M ¼ 2, elements CYð1Þ;CYð2Þ; . . . ;CYðNZÞ are
set to zero. In the complementary half-planes, NZ simply states the number of underflows, and
not which elements they are.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M 6¼ 1 and M 6¼ 2,
or FNU < 0:0,
or Z ¼ 0:0; 0:0ð Þ,
or N < 1,
or SCAL 6¼ U or S .

IFAIL ¼ 2

No computation has been performed due to the likelihood of overflow, because abs Zð Þ is less
than a machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL ¼ 3

No computation has been performed due to the likelihood of overflow, because FNUþ N� 1 is
too large – how large depends on Z and the overflow threshold of the machine.

IFAIL ¼ 4

The computation has been performed, but the errors due to argument reduction in elementary
functions make it likely that the results returned by S17DLF are accurate to less than half of
machine precision. This error exit may occur if either abs Zð Þ or FNUþ N� 1 is greater than a
machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL ¼ 5

No computation has been performed because the errors due to argument reduction in elementary
functions mean that all precision in results returned by S17DLF would be lost. This error exit
may occur when either of abs Zð Þ or FNUþ N� 1 is greater than a machine-dependent threshold
value (given in the Users' Note for your implementation).

IFAIL ¼ 6

No results are returned because the algorithm termination condition has not been met. This may
occur because the arguments supplied to S17DLF would have caused overflow or underflow.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

All constants in S17DLF are given to approximately 18 digits of precision. Calling the number of digits
of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct
digits in the results obtained is limited by p ¼ min t; 18ð Þ. Because of errors in argument reduction when
computing elementary functions inside S17DLF, the actual number of correct digits is limited, in
general, by p� s, where s � max 1; log10 zj jj j; log10 �j jð Þ represents the number of digits lost due to the
argument reduction. Thus the larger the values of zj j and �, the less the precision in the result. If
S17DLF is called with N > 1, then computation of function values via recurrence may lead to some
further small loss of accuracy.

If function values which should nominally be identical are computed by calls to S17DLF with different
base values of � and different N, the computed values may not agree exactly. Empirical tests with
modest values of � and z have shown that the discrepancy is limited to the least significant 3 – 4 digits
of precision.

8 Parallelism and Performance

S17DLF is not threaded in any implementation.

9 Further Comments

The time taken for a call of S17DLF is approximately proportional to the value of N, plus a constant. In
general it is much cheaper to call S17DLF with N greater than 1, rather than to make N separate calls
to S17DLF.

Paradoxically, for some values of z and �, it is cheaper to call S17DLF with a larger value of N than is
required, and then discard the extra function values returned. However, it is not possible to state the
precise circumstances in which this is likely to occur. It is due to the fact that the base value used to
start recurrence may be calculated in different regions for different N, and the costs in each region may
differ greatly.

10 Example

This example prints a caption and then proceeds to read sets of data from the input data stream. The
first datum is a value for the kind of function, M, the second is a value for the order FNU, the third is a
complex value for the argument, Z, and the fourth is a character value to set the argument SCAL. The
program calls the routine with N ¼ 2 to evaluate the function for orders FNU and FNUþ 1, and it
prints the results. The process is repeated until the end of the input data stream is encountered.

10.1 Program Text

Program s17dlfe

! S17DLF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s17dlf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 2, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: z
Real (Kind=nag_wp) :: fnu
Integer :: ifail, ioerr, m, nz
Character (1) :: scal

! .. Local Arrays ..
Complex (Kind=nag_wp) :: cy(n)

! .. Executable Statements ..
Write (nout,*) ’S17DLF Example Program Results’
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! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,99999) ’Calling with N =’, n
Write (nout,*)
Write (nout,*) ’M FNU Z SCAL CY(1) ’ // &

’ CY(2) NZ’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) m, fnu, z, scal

If (ioerr<0) Then
Exit data

End If

ifail = 0
Call s17dlf(m,fnu,z,n,scal,cy,nz,ifail)

Write (nout,99998) m, fnu, z, scal, cy(1), cy(2), nz
End Do data

99999 Format (1X,A,I2)
99998 Format (1X,I1,1X,F7.4,’ (’,F7.3,’,’,F7.3,’) ’,A, &

2(’ (’,F7.3,’,’,F7.3,’)’),I4)
End Program s17dlfe

10.2 Program Data

S17DLF Example Program Data
1 0.00 ( 0.3, 0.4) ’U’
1 2.30 ( 2.0, 0.0) ’U’
1 2.12 (-1.0, 0.0) ’U’
2 6.00 ( 3.1, -1.6) ’U’
2 6.00 ( 3.1, -1.6) ’S’

10.3 Program Results

S17DLF Example Program Results

Calling with N = 2

M FNU Z SCAL CY(1) CY(2) NZ

1 0.0000 ( 0.300, 0.400) U ( 0.347, -0.559) ( -0.791, -0.818) 0
1 2.3000 ( 2.000, 0.000) U ( 0.272, -0.740) ( 0.089, -1.412) 0
1 2.1200 ( -1.000, 0.000) U ( -0.772, -1.693) ( 2.601, 6.527) 0
2 6.0000 ( 3.100, -1.600) U ( -1.371, -1.280) ( -1.491, -5.993) 0
2 6.0000 ( 3.100, -1.600) S ( 7.050, 6.052) ( 8.614, 29.352) 0
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NAG Library Routine Document

S18ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18ACF returns the value of the modified Bessel function K0 xð Þ, via the function name.

2 Specification

FUNCTION S18ACF (X, IFAIL)
REAL (KIND=nag_wp) S18ACF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S18ACF evaluates an approximation to the modified Bessel function of the second kind K0 xð Þ.
Note: K0 xð Þ is undefined for x � 0 and the routine will fail for such arguments.

The routine is based on five Chebyshev expansions:

For 0 < x � 1,

K0 xð Þ ¼ � lnx
X
r¼0

arTr tð Þ þ
X
r¼0

brTr tð Þ; where t ¼ 2x2 � 1:

For 1 < x � 2,

K0 xð Þ ¼ e�x
X
r¼0

crTr tð Þ; where t ¼ 2x� 3:

For 2 < x � 4,

K0 xð Þ ¼ e�x
X
r¼0

drTr tð Þ; where t ¼ x� 3:

For x > 4,

K0 xð Þ ¼
e�xffiffiffi
x
p
X
r¼0

erTr tð Þ;where t ¼
9� x
1þ x:

For x near zero, K0 xð Þ ’ �� � ln
x

2

� �
, where � denotes Euler's constant. This approximation is used

when x is sufficiently small for the result to be correct to machine precision.

For large x, where there is a danger of underflow due to the smallness of K0, the result is set exactly to
zero.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications
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5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

X � 0:0, K0 is undefined. On softfailure the routine returns zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e., if � is due to data errors etc.), then � and � are
approximately related by:

� ’ xK1 xð Þ
K0 xð Þ

				 				�:
Figure 1 shows the behaviour of the error amplification factor

xK1 xð Þ
K0 xð Þ

				 				:
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However, if � is of the same order as machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x, the amplification factor is approximately
1

lnx

				 				 , which implies strong attenuation of the

error, but in general � can never be less than the machine precision.

For large x, � ’ x� and we have strong amplification of the relative error. Eventually K0, which is

asymptotically given by
e�xffiffiffi
x
p , becomes so small that it cannot be calculated without underflow and

hence the routine will return zero. Note that for large x the errors will be dominated by those of the
standard function exp.

0 2 4 6 8 1 0 1 2 1 4

1 0 0

1 0 1

ε/δ

x

Figure 1

8 Parallelism and Performance

S18ACF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s18acfe

! S18ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18acf

! .. Implicit None Statement ..
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Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S18ACF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s18acf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s18acfe

10.2 Program Data

S18ACF Example Program Data
0.4
0.6
1.4
1.6
2.5
3.5
6.0
8.0
10.0
1000.0

10.3 Program Results

S18ACF Example Program Results

X Y

4.000E-01 1.115E+00
6.000E-01 7.775E-01
1.400E+00 2.437E-01
1.600E+00 1.880E-01
2.500E+00 6.235E-02
3.500E+00 1.960E-02
6.000E+00 1.244E-03
8.000E+00 1.465E-04
1.000E+01 1.778E-05
1.000E+03 0.000E+00
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S18ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18ADF returns the value of the modified Bessel function K1 xð Þ, via the function name.

2 Specification

FUNCTION S18ADF (X, IFAIL)
REAL (KIND=nag_wp) S18ADF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S18ADF evaluates an approximation to the modified Bessel function of the second kind K1 xð Þ.
Note: K1 xð Þ is undefined for x � 0 and the routine will fail for such arguments.

The routine is based on five Chebyshev expansions:

For 0 < x � 1,

K1 xð Þ ¼
1

x
þ x lnx

X
r¼0

arTr tð Þ � x
X
r¼0

brTr tð Þ; where t ¼ 2x2 � 1:

For 1 < x � 2,

K1 xð Þ ¼ e�x
X
r¼0

crTr tð Þ; where t ¼ 2x� 3:

For 2 < x � 4,

K1 xð Þ ¼ e�x
X
r¼0

drTr tð Þ; where t ¼ x� 3:

For x > 4,

K1 xð Þ ¼
e�xffiffiffi
x
p
X
r¼0

erTr tð Þ; where t ¼ 9� x
1þ x:

For x near zero, K1 xð Þ ’
1

x
. This approximation is used when x is sufficiently small for the result to be

correct to machine precision. For very small x on some machines, it is impossible to calculate
1

x
without overflow and the routine must fail.

For large x, where there is a danger of underflow due to the smallness of K1, the result is set exactly to
zero.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications
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5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

X � 0:0, K1 is undefined. On softfailure the routine returns zero.

IFAIL ¼ 2

X is too small, there is a danger of overflow. On softfailure the routine returns approximately the
largest representable value. (see the Users' Note for your implementation for details)

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e., if � is due to data errors etc.), then � and � are
approximately related by:

� ’ xK0 xð Þ �K1 xð Þ
K1 xð Þ

				 				�:
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Figure 1 shows the behaviour of the error amplification factor

xK0 xð Þ �K1 xð Þ
K1 xð Þ

				 				:
However if � is of the same order as the machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x, � ’ � and there is no amplification of errors.

For large x, � ’ x� and we have strong amplification of the relative error. Eventually K1, which is

asymptotically given by
e�xffiffiffi
x
p , becomes so small that it cannot be calculated without underflow and

hence the routine will return zero. Note that for large x the errors will be dominated by those of the
standard function exp.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
1 0 -1

1 0 0

1 0 1

ε/δ

x

Figure 1

8 Parallelism and Performance

S18ADF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s18adfe

! S18ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: nag_wp, s18adf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S18ADF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s18adf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s18adfe

10.2 Program Data

S18ADF Example Program Data
0.4
0.6
1.4
1.6
2.5
3.5
6.0
8.0
10.0
1000.0

10.3 Program Results

S18ADF Example Program Results

X Y

4.000E-01 2.184E+00
6.000E-01 1.303E+00
1.400E+00 3.208E-01
1.600E+00 2.406E-01
2.500E+00 7.389E-02
3.500E+00 2.224E-02
6.000E+00 1.344E-03
8.000E+00 1.554E-04
1.000E+01 1.865E-05
1.000E+03 0.000E+00
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NAG Library Routine Document

S18AEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18AEF returns the value of the modified Bessel function I0 xð Þ, via the function name.

2 Specification

FUNCTION S18AEF (X, IFAIL)
REAL (KIND=nag_wp) S18AEF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S18AEF evaluates an approximation to the modified Bessel function of the first kind I0 xð Þ.
Note: I0 �xð Þ ¼ I0 xð Þ, so the approximation need only consider x � 0.

The routine is based on three Chebyshev expansions:

For 0 < x � 4,

I0 xð Þ ¼ ex
X
r¼0

arTr tð Þ; where t ¼ 2
x

4

� �
� 1:

For 4 < x � 12,

I0 xð Þ ¼ ex
X
r¼0

brTr tð Þ; where t ¼ x� 8

4
:

For x > 12,

I0 xð Þ ¼
exffiffiffi
x
p
X
r¼0

crTr tð Þ; where t ¼ 2
12

x

� �
� 1:

For small x, I0 xð Þ ’ 1. This approximation is used when x is sufficiently small for the result to be
correct to machine precision.

For large x, the routine must fail because of the danger of overflow in calculating ex.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Xj j is too large. On softfailure the routine returns the approximate value of I0 xð Þ at the nearest
valid argument. (see the Users' Note for your implementation for details)

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e., if � is due to data errors etc.), then � and � are
approximately related by:

� ’ xI1 xð Þ
I0 xð Þ

				 				�:
Figure 1 shows the behaviour of the error amplification factor

xI1 xð Þ
I0 xð Þ

				 				:
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However if � is of the same order as machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x the amplification factor is approximately
x2

2
, which implies strong attenuation of the error,

but in general � can never be less than the machine precision.

For large x, � ’ x� and we have strong amplification of errors. However the routine must fail for quite
moderate values of x, because I0 xð Þ would overflow; hence in practice the loss of accuracy for large x
is not excessive. Note that for large x the errors will be dominated by those of the standard function
exp.

8 Parallelism and Performance

S18AEF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s18aefe

! S18AEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18aef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S18AEF Example Program Results’
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! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s18aef(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s18aefe

10.2 Program Data

S18AEF Example Program Data
0.0
0.5
1.0
3.0
6.0
8.0
10.0
15.0
20.0
-1.0

10.3 Program Results

S18AEF Example Program Results

X Y

0.000E+00 1.000E+00
5.000E-01 1.063E+00
1.000E+00 1.266E+00
3.000E+00 4.881E+00
6.000E+00 6.723E+01
8.000E+00 4.276E+02
1.000E+01 2.816E+03
1.500E+01 3.396E+05
2.000E+01 4.356E+07

-1.000E+00 1.266E+00
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S18AFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18AFF returns a value for the modified Bessel function I1 xð Þ, via the function name.

2 Specification

FUNCTION S18AFF (X, IFAIL)
REAL (KIND=nag_wp) S18AFF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S18AFF evaluates an approximation to the modified Bessel function of the first kind I1 xð Þ.
Note: I1 �xð Þ ¼ �I1 xð Þ, so the approximation need only consider x � 0.

The routine is based on three Chebyshev expansions:

For 0 < x � 4,

I1 xð Þ ¼ x
X
r¼0

arTr tð Þ; where t ¼ 2
x

4

� �2
� 1;

For 4 < x � 12,

I1 xð Þ ¼ ex
X
r¼0

brTr tð Þ; where t ¼ x� 8

4
;

For x > 12,

I1 xð Þ ¼
exffiffiffi
x
p
X
r¼0

crTr tð Þ; where t ¼ 2
12

x

� �
� 1:

For small x, I1 xð Þ ’ x. This approximation is used when x is sufficiently small for the result to be
correct to machine precision.

For large x, the routine must fail because I1 xð Þ cannot be represented without overflow.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

X is too large. On softfailure the routine returns the approximate value of I1 xð Þ at the nearest
valid argument. See also the Users' Note for your implementation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e., if � is due to data errors etc.), then � and � are
approximately related by:

� ’ xI0 xð Þ � I1 xð Þ
I1 xð Þ

				 				�:
Figure 1 shows the behaviour of the error amplification factor

xI0 xð Þ � I1 xð Þ
I1 xð Þ

				 				:
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However, if � is of the same order as machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x, � ’ � and there is no amplification of errors.

For large x, � ’ x� and we have strong amplification of errors. However the routine must fail for quite
moderate values of x because I1 xð Þ would overflow; hence in practice the loss of accuracy for large x is
not excessive. Note that for large x, the errors will be dominated by those of the standard function exp.

8 Parallelism and Performance

S18AFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s18affe

! S18AFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18aff

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S18AFF Example Program Results’

! Skip heading in data file
Read (nin,*)
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Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s18aff(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s18affe

10.2 Program Data

S18AFF Example Program Data
0.0
0.5
1.0
3.0
6.0
8.0
10.0
15.0
20.0
-1.0

10.3 Program Results

S18AFF Example Program Results

X Y

0.000E+00 0.000E+00
5.000E-01 2.579E-01
1.000E+00 5.652E-01
3.000E+00 3.953E+00
6.000E+00 6.134E+01
8.000E+00 3.999E+02
1.000E+01 2.671E+03
1.500E+01 3.281E+05
2.000E+01 4.245E+07

-1.000E+00 -5.652E-01
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NAG Library Routine Document

S18AQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18AQF returns an array of values of the modified Bessel function K0 xð Þ.

2 Specification

SUBROUTINE S18AQF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S18AQF evaluates an approximation to the modified Bessel function of the second kind K0 xið Þ for an
array of arguments xi, for i ¼ 1; 2; . . . ; n.

Note: K0 xð Þ is undefined for x � 0 and the routine will fail for such arguments.

The routine is based on five Chebyshev expansions:

For 0 < x � 1,

K0 xð Þ ¼ � lnx
X
r¼0

arTr tð Þ þ
X
r¼0

brTr tð Þ; where t ¼ 2x2 � 1:

For 1 < x � 2,

K0 xð Þ ¼ e�x
X
r¼0

crTr tð Þ; where t ¼ 2x� 3:

For 2 < x � 4,

K0 xð Þ ¼ e�x
X
r¼0

drTr tð Þ; where t ¼ x� 3:

For x > 4,

K0 xð Þ ¼
e�xffiffiffi
x
p
X
r¼0

erTr tð Þ;where t ¼
9� x
1þ x:

For x near zero, K0 xð Þ ’ �� � ln
x

2

� �
, where � denotes Euler's constant. This approximation is used

when x is sufficiently small for the result to be correct to machine precision.

For large x, where there is a danger of underflow due to the smallness of K0, the result is set exactly to
zero.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

Constraint: XðiÞ > 0:0, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: K0 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
xi � 0:0, K0 xið Þ is undefined. FðiÞ contains 0:0.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

S18AQF NAG Library Manual

S18AQF.2 Mark 26



IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e., if � is due to data errors etc.), then � and � are
approximately related by:

� ’ xK1 xð Þ
K0 xð Þ

				 				�:
Figure 1 shows the behaviour of the error amplification factor

xK1 xð Þ
K0 xð Þ

				 				:
However, if � is of the same order as machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x, the amplification factor is approximately
1

lnx

				 				 , which implies strong attenuation of the

error, but in general � can never be less than the machine precision.

For large x, � ’ x� and we have strong amplification of the relative error. Eventually K0, which is

asymptotically given by
e�xffiffiffi
x
p , becomes so small that it cannot be calculated without underflow and

hence the routine will return zero. Note that for large x the errors will be dominated by those of the
standard function exp.

0 2 4 6 8 1 0 1 2 1 4

1 0 0

1 0 1

ε/δ

x

Figure 1
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8 Parallelism and Performance

S18AQF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s18aqfe

! S18AQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18aqf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S18AQF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s18aqf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s18aqfe

10.2 Program Data

S18AQF Example Program Data

10

0.4 0.6 1.4 1.6 2.5 3.5 6.0 8.0 10.0 1000.0
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10.3 Program Results

S18AQF Example Program Results

X F IVALID

4.000E-01 1.115E+00 0
6.000E-01 7.775E-01 0
1.400E+00 2.437E-01 0
1.600E+00 1.880E-01 0
2.500E+00 6.235E-02 0
3.500E+00 1.960E-02 0
6.000E+00 1.244E-03 0
8.000E+00 1.465E-04 0
1.000E+01 1.778E-05 0
1.000E+03 0.000E+00 0
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NAG Library Routine Document

S18ARF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18ARF returns an array of values of the modified Bessel function K1 xð Þ.

2 Specification

SUBROUTINE S18ARF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S18ARF evaluates an approximation to the modified Bessel function of the second kind K1 xið Þ for an
array of arguments xi, for i ¼ 1; 2; . . . ; n.

Note: K1 xð Þ is undefined for x � 0 and the routine will fail for such arguments.

The routine is based on five Chebyshev expansions:

For 0 < x � 1,

K1 xð Þ ¼
1

x
þ x lnx

X
r¼0

arTr tð Þ � x
X
r¼0

brTr tð Þ; where t ¼ 2x2 � 1:

For 1 < x � 2,

K1 xð Þ ¼ e�x
X
r¼0

crTr tð Þ; where t ¼ 2x� 3:

For 2 < x � 4,

K1 xð Þ ¼ e�x
X
r¼0

drTr tð Þ; where t ¼ x� 3:

For x > 4,

K1 xð Þ ¼
e�xffiffiffi
x
p
X
r¼0

erTr tð Þ; where t ¼ 9� x
1þ x:

For x near zero, K1 xð Þ ’
1

x
. This approximation is used when x is sufficiently small for the result to be

correct to machine precision. For very small x it is impossible to calculate
1

x
without overflow and the

routine must fail.

For large x, where there is a danger of underflow due to the smallness of K1, the result is set exactly to
zero.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

Constraint: XðiÞ > 0:0, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: K1 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
xi � 0:0, K1 xið Þ is undefined. FðiÞ contains 0:0.

IVALIDðiÞ ¼ 2
xi is too small, there is a danger of overflow. FðiÞ contains zero. The threshold value is the
same as for IFAIL ¼ 2 in S18ADF, as defined in the Users' Note for your implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e., if � is due to data errors etc.), then � and � are
approximately related by:

� ’ xK0 xð Þ �K1 xð Þ
K1 xð Þ

				 				�:
Figure 1 shows the behaviour of the error amplification factor

xK0 xð Þ �K1 xð Þ
K1 xð Þ

				 				:
However if � is of the same order as the machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x, � ’ � and there is no amplification of errors.

For large x, � ’ x� and we have strong amplification of the relative error. Eventually K1, which is

asymptotically given by
e�xffiffiffi
x
p , becomes so small that it cannot be calculated without underflow and

hence the routine will return zero. Note that for large x the errors will be dominated by those of the
standard function exp.
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8 Parallelism and Performance

S18ARF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s18arfe

! S18ARF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18arf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S18ARF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
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Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s18arf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s18arfe

10.2 Program Data

S18ARF Example Program Data

10

0.4 0.6 1.4 1.6 2.5 3.5 6.0 8.0 10.0 1000.0

10.3 Program Results

S18ARF Example Program Results

X F IVALID

4.000E-01 2.184E+00 0
6.000E-01 1.303E+00 0
1.400E+00 3.208E-01 0
1.600E+00 2.406E-01 0
2.500E+00 7.389E-02 0
3.500E+00 2.224E-02 0
6.000E+00 1.344E-03 0
8.000E+00 1.554E-04 0
1.000E+01 1.865E-05 0
1.000E+03 0.000E+00 0
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NAG Library Routine Document

S18ASF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18ASF returns an array of values of the modified Bessel function I0 xð Þ.

2 Specification

SUBROUTINE S18ASF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S18ASF evaluates an approximation to the modified Bessel function of the first kind I0 xið Þ for an array
of arguments xi, for i ¼ 1; 2; . . . ; n.

Note: I0 �xð Þ ¼ I0 xð Þ, so the approximation need only consider x � 0.

The routine is based on three Chebyshev expansions:

For 0 < x � 4,

I0 xð Þ ¼ ex
X
r¼0

arTr tð Þ; where t ¼ 2
x

4

� �
� 1:

For 4 < x � 12,

I0 xð Þ ¼ ex
X
r¼0

brTr tð Þ; where t ¼ x� 8

4
:

For x > 12,

I0 xð Þ ¼
exffiffiffi
x
p
X
r¼0

crTr tð Þ; where t ¼ 2
12

x

� �
� 1:

For small x, I0 xð Þ ’ 1. This approximation is used when x is sufficiently small for the result to be
correct to machine precision.

For large x, the routine must fail because of the danger of overflow in calculating ex.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.
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2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: I0 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
xi is too large. FðiÞ contains the approximate value of I0 xið Þ at the nearest valid argument.
The threshold value is the same as for IFAIL ¼ 1 in S18AEF, as defined in the Users' Note
for your implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e., if � is due to data errors etc.), then � and � are
approximately related by:

� ’ xI1 xð Þ
I0 xð Þ

				 				�:
Figure 1 shows the behaviour of the error amplification factor

xI1 xð Þ
I0 xð Þ

				 				:
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1 0 -1

1 0 0

ε/δ

x

Figure 1

However if � is of the same order as machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x the amplification factor is approximately
x2

2
, which implies strong attenuation of the error,

but in general � can never be less than the machine precision.

For large x, � ’ x� and we have strong amplification of errors. However, for quite moderate values of x
(x > x̂, the threshold value), the routine must fail because I0 xð Þ would overflow; hence in practice the
loss of accuracy for x close to x̂ is not excessive and the errors will be dominated by those of the
standard function exp.

8 Parallelism and Performance

S18ASF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s18asfe

! S18ASF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18asf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S18ASF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s18asf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s18asfe

10.2 Program Data

S18ASF Example Program Data

10

0.0 0.5 1.0 3.0 6.0 8.0 10.0 15.0 20.0 -1.0
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10.3 Program Results

S18ASF Example Program Results

X F IVALID

0.000E+00 1.000E+00 0
5.000E-01 1.063E+00 0
1.000E+00 1.266E+00 0
3.000E+00 4.881E+00 0
6.000E+00 6.723E+01 0
8.000E+00 4.276E+02 0
1.000E+01 2.816E+03 0
1.500E+01 3.396E+05 0
2.000E+01 4.356E+07 0

-1.000E+00 1.266E+00 0
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NAG Library Routine Document

S18ATF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18ATF returns an array of values for the modified Bessel function I1 xð Þ.

2 Specification

SUBROUTINE S18ATF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S18ATF evaluates an approximation to the modified Bessel function of the first kind I1 xið Þ for an array
of arguments xi, for i ¼ 1; 2; . . . ; n.

Note: I1 �xð Þ ¼ �I1 xð Þ, so the approximation need only consider x � 0.

The routine is based on three Chebyshev expansions:

For 0 < x � 4,

I1 xð Þ ¼ x
X
r¼0

arTr tð Þ; where t ¼ 2
x

4

� �2
� 1;

For 4 < x � 12,

I1 xð Þ ¼ ex
X
r¼0

brTr tð Þ; where t ¼ x� 8

4
;

For x > 12,

I1 xð Þ ¼
exffiffiffi
x
p
X
r¼0

crTr tð Þ; where t ¼ 2
12

x

� �
� 1:

For small x, I1 xð Þ ’ x. This approximation is used when x is sufficiently small for the result to be
correct to machine precision.

For large x, the routine must fail because I1 xð Þ cannot be represented without overflow.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.
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2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: I1 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
xi is too large. FðiÞ contains the approximate value of I1 xið Þ at the nearest valid argument.
The threshold value is the same as for IFAIL ¼ 1 in S18AFF, as defined in the Users' Note
for your implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e., if � is due to data errors etc.), then � and � are
approximately related by:

� ’ xI0 xð Þ � I1 xð Þ
I1 xð Þ

				 				�:
Figure 1 shows the behaviour of the error amplification factor

xI0 xð Þ � I1 xð Þ
I1 xð Þ

				 				:

0 1 2 3 4 5 6 7
1 0 0

1 0 1

ε/δ

x

Figure 1

However, if � is of the same order as machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x, � ’ � and there is no amplification of errors.

For large x, � ’ x� and we have strong amplification of errors. However, for quite moderate values of x
(x > x̂, the threshold value), the routine must fail because I1 xð Þ would overflow; hence in practice the
loss of accuracy for x close to x̂ is not excessive and the errors will be dominated by those of the
standard function exp.

8 Parallelism and Performance

S18ATF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s18atfe

! S18ATF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18atf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S18ATF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s18atf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s18atfe

10.2 Program Data

S18ATF Example Program Data

10

0.0 0.5 1.0 3.0 6.0 8.0 10.0 15.0 20.0 -1.0

10.3 Program Results

S18ATF Example Program Results

X F IVALID

0.000E+00 0.000E+00 0
5.000E-01 2.579E-01 0
1.000E+00 5.652E-01 0
3.000E+00 3.953E+00 0
6.000E+00 6.134E+01 0
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8.000E+00 3.999E+02 0
1.000E+01 2.671E+03 0
1.500E+01 3.281E+05 0
2.000E+01 4.245E+07 0

-1.000E+00 -5.652E-01 0
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NAG Library Routine Document

S18CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18CCF returns a value of the scaled modified Bessel function exK0 xð Þ via the function name.

2 Specification

FUNCTION S18CCF (X, IFAIL)
REAL (KIND=nag_wp) S18CCF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S18CCF evaluates an approximation to exK0 xð Þ, where K0 is a modified Bessel function of the second
kind. The scaling factor ex removes most of the variation in K0 xð Þ.
The routine uses the same Chebyshev expansions as S18ACF, which returns the unscaled value of
K0 xð Þ.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X � 0:0, K0 is undefined.

On softfailure, S18CCF returns zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the
accuracy of the argument is essentially limited by the machine precision, the accuracy of the function
value will be similarly limited by at most a small multiple of the machine precision.

8 Parallelism and Performance

S18CCF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s18ccfe

! S18CCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S18CCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s18ccf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s18ccfe

10.2 Program Data

S18CCF Example Program Data
0.4
0.6
1.4
2.5
10.0
1000.0

10.3 Program Results

S18CCF Example Program Results

X Y

4.000E-01 1.663E+00
6.000E-01 1.417E+00
1.400E+00 9.881E-01
2.500E+00 7.595E-01
1.000E+01 3.916E-01
1.000E+03 3.963E-02
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NAG Library Routine Document

S18CDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18CDF returns a value of the scaled modified Bessel function exK1 xð Þ via the function name.

2 Specification

FUNCTION S18CDF (X, IFAIL)
REAL (KIND=nag_wp) S18CDF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S18CDF evaluates an approximation to exK1 xð Þ, where K1 is a modified Bessel function of the second
kind. The scaling factor ex removes most of the variation in K1 xð Þ.
The routine uses the same Chebyshev expansions as S18ADF, which returns the unscaled value of
K1 xð Þ.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X � 0:0: K1 is undefined. On softfailure S18CDF returns zero.

IFAIL ¼ 2

On entry, X is too close to zero, as determined by the value of the safe-range parameter
X02AMF: there is a danger of causing overflow. On softfailure, S18CDF returns the reciprocal of
the safe-range parameter.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the
accuracy of the argument is essentially limited by the machine precision, the accuracy of the function
value will be similarly limited by at most a small multiple of the machine precision.

8 Parallelism and Performance

S18CDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s18cdfe

! S18CDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18cdf
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S18CDF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s18cdf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s18cdfe

10.2 Program Data

S18CDF Example Program Data
0.4
0.6
1.4
2.5
10.0
1000.0

10.3 Program Results

S18CDF Example Program Results

X Y

4.000E-01 3.259E+00
6.000E-01 2.374E+00
1.400E+00 1.301E+00
2.500E+00 9.002E-01
1.000E+01 4.108E-01
1.000E+03 3.965E-02
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S18CEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18CEF returns a value of the scaled modified Bessel function e� xj jI0 xð Þ via the function name.

2 Specification

FUNCTION S18CEF (X, IFAIL)
REAL (KIND=nag_wp) S18CEF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S18CEF evaluates an approximation to e� xj jI0 xð Þ, where I0 is a modified Bessel function of the first
kind. The scaling factor e� xj j removes most of the variation in I0 xð Þ.
The routine uses the same Chebyshev expansions as S18AEF, which returns the unscaled value of
I0 xð Þ.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

There are no actual failure exits from this routine. IFAIL is always set to zero. This argument is
included for compatibility with other routines in this chapter.
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7 Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the
accuracy of the argument is essentially limited by the machine precision, the accuracy of the function
value will be similarly limited by at most a small multiple of the machine precision.

8 Parallelism and Performance

S18CEF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s18cefe

! S18CEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18cef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S18CEF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
y = s18cef(x,ifail)

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s18cefe
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10.2 Program Data

S18CEF Example Program Data
0.0
0.5
1.0
3.0
6.0
10.0
1000.0
-1.0

10.3 Program Results

S18CEF Example Program Results

X Y

0.000E+00 1.000E+00
5.000E-01 6.450E-01
1.000E+00 4.658E-01
3.000E+00 2.430E-01
6.000E+00 1.667E-01
1.000E+01 1.278E-01
1.000E+03 1.262E-02

-1.000E+00 4.658E-01
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S18CFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18CFF returns a value of the scaled modified Bessel function e� xj jI1 xð Þ via the routine name.

2 Specification

FUNCTION S18CFF (X, IFAIL)
REAL (KIND=nag_wp) S18CFF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S18CFF evaluates an approximation to e� xj jI1 xð Þ, where I1 is a modified Bessel function of the first
kind. The scaling factor e� xj j removes most of the variation in I1 xð Þ.
The routine uses the same Chebyshev expansions as S18AFF, which returns the unscaled value of I1 xð Þ.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

There are no actual failure exits from this routine. IFAIL is always set to zero. This argument is
included for compatibility with other routines in this chapter.
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7 Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the
accuracy of the argument is essentially limited by the machine precision, the accuracy of the function
value will be similarly limited by at most a small multiple of the machine precision.

8 Parallelism and Performance

S18CFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s18cffe

! S18CFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18cff

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S18CFF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
y = s18cff(x,ifail)

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s18cffe
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10.2 Program Data

S18CFF Example Program Data
0.0
0.5
1.0
3.0
6.0
10.0
1000.0
-1.0

10.3 Program Results

S18CFF Example Program Results

X Y

0.000E+00 0.000E+00
5.000E-01 1.564E-01
1.000E+00 2.079E-01
3.000E+00 1.968E-01
6.000E+00 1.521E-01
1.000E+01 1.213E-01
1.000E+03 1.261E-02

-1.000E+00 -2.079E-01
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S18CQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18CQF returns an array of values of the scaled modified Bessel function exK0 xð Þ.

2 Specification

SUBROUTINE S18CQF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S18CQF evaluates an approximation to exiK0 xið Þ, where K0 is a modified Bessel function of the second
kind for an array of arguments xi, for i ¼ 1; 2; . . . ; n. The scaling factor ex removes most of the
variation in K0 xð Þ.
The routine uses the same Chebyshev expansions as S18AQF, which returns an array of the unscaled
values of K0 xð Þ.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

Constraint: XðiÞ > 0:0, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: exiK0 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, xi � 0:0, K0 xið Þ is undefined. FðiÞ contains 0:0.
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5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the
accuracy of the argument is essentially limited by the machine precision, the accuracy of the function
value will be similarly limited by at most a small multiple of the machine precision.

8 Parallelism and Performance

S18CQF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s18cqfe

! S18CQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18cqf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S18CQF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s18cqf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s18cqfe

10.2 Program Data

S18CQF Example Program Data

6

0.4 0.6 1.4 2.5 10.0 1000.0
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10.3 Program Results

S18CQF Example Program Results

X F IVALID

4.000E-01 1.663E+00 0
6.000E-01 1.417E+00 0
1.400E+00 9.881E-01 0
2.500E+00 7.595E-01 0
1.000E+01 3.916E-01 0
1.000E+03 3.963E-02 0
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NAG Library Routine Document

S18CRF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18CRF returns an array of values of the scaled modified Bessel function exK1 xð Þ.

2 Specification

SUBROUTINE S18CRF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S18CRF evaluates an approximation to exiK1 xið Þ, where K1 is a modified Bessel function of the second
kind for an array of arguments xi, for i ¼ 1; 2; . . . ; n. The scaling factor ex removes most of the
variation in K1 xð Þ.
The routine uses the same Chebyshev expansions as S18ARF, which returns an array of the unscaled
values of K1 xð Þ.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

Constraint: XðiÞ > 0:0, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: exiK1 xið Þ, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1

On entry, xi � 0:0, K1 xið Þ is undefined. FðiÞ contains 0:0.
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IVALIDðiÞ ¼ 2
xi is too close to zero, as determined by the value of the safe-range parameter X02AMF:
there is a danger of causing overflow. FðiÞ contains the reciprocal of the safe-range
parameter.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the
accuracy of the argument is essentially limited by the machine precision, the accuracy of the function
value will be similarly limited by at most a small multiple of the machine precision.

8 Parallelism and Performance

S18CRF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s18crfe

! S18CRF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18crf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S18CRF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s18crf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s18crfe

10.2 Program Data

S18CRF Example Program Data

6

0.4 0.6 1.4 2.5 10.0 1000.0
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10.3 Program Results

S18CRF Example Program Results

X F IVALID

4.000E-01 3.259E+00 0
6.000E-01 2.374E+00 0
1.400E+00 1.301E+00 0
2.500E+00 9.002E-01 0
1.000E+01 4.108E-01 0
1.000E+03 3.965E-02 0
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NAG Library Routine Document

S18CSF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18CSF returns an array of values of the scaled modified Bessel function e� xj jI0 xð Þ.

2 Specification

SUBROUTINE S18CSF (N, X, F, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S18CSF evaluates an approximation to e� xij jI0 xið Þ, where I0 is a modified Bessel function of the first
kind for an array of arguments xi, for i ¼ 1; 2; . . . ; n. The scaling factor e� xj j removes most of the
variation in I0 xð Þ.
The routine uses the same Chebyshev expansions as S18ASF, which returns an array of the unscaled
values of I0 xð Þ.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: e� xij jI0 xið Þ, the function values.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the
accuracy of the argument is essentially limited by the machine precision, the accuracy of the function
value will be similarly limited by at most a small multiple of the machine precision.

8 Parallelism and Performance

S18CSF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s18csfe

! S18CSF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18csf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Integer :: i, ifail, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: f(:), x(:)
! .. Executable Statements ..

Write (nout,*) ’S18CSF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n))

Read (nin,*) x(1:n)

ifail = 0
Call s18csf(n,x,f,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s18csfe

10.2 Program Data

S18CSF Example Program Data

8

0.0 0.5 1.0 3.0 6.0 10.0 1000.0 -1.0

10.3 Program Results

S18CSF Example Program Results

X F

0.000E+00 1.000E+00
5.000E-01 6.450E-01
1.000E+00 4.658E-01
3.000E+00 2.430E-01
6.000E+00 1.667E-01
1.000E+01 1.278E-01
1.000E+03 1.262E-02

-1.000E+00 4.658E-01
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NAG Library Routine Document

S18CTF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18CTF returns an array of values of the scaled modified Bessel function e� xj jI1 xð Þ.

2 Specification

SUBROUTINE S18CTF (N, X, F, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S18CTF evaluates an approximation to e� xij jI1 xið Þ, where I1 is a modified Bessel function of the first
kind for an array of arguments xi, for i ¼ 1; 2; . . . ; n. The scaling factor e� xj j removes most of the
variation in I1 xð Þ.
The routine uses the same Chebyshev expansions as S18ATF, which returns an array of the unscaled
values of I1 xð Þ.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: e� xij jI1 xið Þ, the function values.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the
accuracy of the argument is essentially limited by the machine precision, the accuracy of the function
value will be similarly limited by at most a small multiple of the machine precision.

8 Parallelism and Performance

S18CTF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s18ctfe

! S18CTF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18ctf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Integer :: i, ifail, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: f(:), x(:)
! .. Executable Statements ..

Write (nout,*) ’S18CTF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n))

Read (nin,*) x(1:n)

ifail = 0
Call s18ctf(n,x,f,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s18ctfe

10.2 Program Data

S18CTF Example Program Data

8

0.0 0.5 1.0 3.0 6.0 10.0 1000.0 -1.0

10.3 Program Results

S18CTF Example Program Results

X F

0.000E+00 0.000E+00
5.000E-01 1.564E-01
1.000E+00 2.079E-01
3.000E+00 1.968E-01
6.000E+00 1.521E-01
1.000E+01 1.213E-01
1.000E+03 1.261E-02

-1.000E+00 -2.079E-01
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NAG Library Routine Document

S18DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18DCF returns a sequence of values for the modified Bessel functions K�þn zð Þ for complex z, non-
negative � and n ¼ 0; 1; . . . ; N � 1, with an option for exponential scaling.

2 Specification

SUBROUTINE S18DCF (FNU, Z, N, SCAL, CY, NZ, IFAIL)

INTEGER N, NZ, IFAIL
REAL (KIND=nag_wp) FNU
COMPLEX (KIND=nag_wp) Z, CY(N)
CHARACTER(1) SCAL

3 Description

S18DCF evaluates a sequence of values for the modified Bessel function K� zð Þ, where z is complex,
�	 < argz � 	, and � is the real, non-negative order. The N-member sequence is generated for orders
�, � þ 1; . . . ; � þN � 1. Optionally, the sequence is scaled by the factor ez.

The routine is derived from the routine CBESK in Amos (1986).

Note: although the routine may not be called with � less than zero, for negative orders the formula
K�� zð Þ ¼ K� zð Þ may be used.

When N is greater than 1, extra values of K� zð Þ are computed using recurrence relations.

For very large zj j or � þN � 1ð Þ, argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller zj j or � þN � 1ð Þ, the computation is performed but
results are accurate to less than half of machine precision. If zj j is very small, near the machine
underflow threshold, or � þN � 1ð Þ is too large, there is a risk of overflow and so no computation is
performed. In all the above cases, a warning is given by the routine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and
non-negative order ACM Trans. Math. Software 12 265–273

5 Arguments

1: FNU – REAL (KIND=nag_wp) Input

On entry: �, the order of the first member of the sequence of functions.

Constraint: FNU � 0:0.

2: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the functions.

Constraint: Z 6¼ 0:0; 0:0ð Þ.
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3: N – INTEGER Input

On entry: N , the number of members required in the sequence K� zð Þ; K�þ1 zð Þ; . . . ; K�þN�1 zð Þ.
Constraint: N � 1.

4: SCAL – CHARACTER(1) Input

On entry: the scaling option.

SCAL ¼ U
The results are returned unscaled.

SCAL ¼ S
The results are returned scaled by the factor ez.

Constraint: SCAL ¼ U or S .

5: CYðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the N required function values: CYðiÞ contains K�þi�1 zð Þ, for i ¼ 1; 2; . . . ; N.

6: NZ – INTEGER Output

On exit: the number of components of CY that are set to zero due to underflow. If NZ > 0 and
Re zð Þ � 0:0, elements CYð1Þ;CYð2Þ; . . . ;CYðNZÞ are set to zero. If Re zð Þ < 0:0, NZ simply
states the number of underflows, and not which elements they are.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, FNU > 0:0,
or Z ¼ 0:0; 0:0ð Þ,
or N < 1,
or SCAL 6¼ U or S .

IFAIL ¼ 2

No computation has been performed due to the likelihood of overflow, because abs Zð Þ is less
than a machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL ¼ 3

No computation has been performed due to the likelihood of overflow, because FNUþ N� 1 is
too large – how large depends on Z and the overflow threshold of the machine.
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IFAIL ¼ 4

The computation has been performed, but the errors due to argument reduction in elementary
functions make it likely that the results returned by S18DCF are accurate to less than half of
machine precision. This error exit may occur if either abs Zð Þ or FNUþ N� 1 is greater than a
machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL ¼ 5

No computation has been performed because the errors due to argument reduction in elementary
functions mean that all precision in results returned by S18DCF would be lost. This error exit
may occur when either abs Zð Þ or FNUþ N� 1 is greater than a machine-dependent threshold
value (given in the Users' Note for your implementation).

IFAIL ¼ 6

No results are returned because the algorithm termination condition has not been met. This may
occur because the arguments supplied to S18DCF would have caused overflow or underflow.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All constants in S18DCF are given to approximately 18 digits of precision. Calling the number of digits
of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct
digits in the results obtained is limited by p ¼ min t; 18ð Þ. Because of errors in argument reduction when
computing elementary functions inside S18DCF, the actual number of correct digits is limited, in
general, by p� s, where s � max 1; log10 zj jj j; log10 �j jð Þ represents the number of digits lost due to the
argument reduction. Thus the larger the values of zj j and �, the less the precision in the result. If
S18DCF is called with N > 1, then computation of function values via recurrence may lead to some
further small loss of accuracy.

If function values which should nominally be identical are computed by calls to S18DCF with different
base values of � and different N, the computed values may not agree exactly. Empirical tests with
modest values of � and z have shown that the discrepancy is limited to the least significant 3 – 4 digits
of precision.

8 Parallelism and Performance

S18DCF is not threaded in any implementation.

9 Further Comments

The time taken for a call of S18DCF is approximately proportional to the value of N, plus a constant. In
general it is much cheaper to call S18DCF with N greater than 1, rather than to make N separate calls
to S18DCF.
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Paradoxically, for some values of z and �, it is cheaper to call S18DCF with a larger value of N than is
required, and then discard the extra function values returned. However, it is not possible to state the
precise circumstances in which this is likely to occur. It is due to the fact that the base value used to
start recurrence may be calculated in different regions for different N, and the costs in each region may
differ greatly.

Note that if the function required is K0 xð Þ or K1 xð Þ, i.e., � ¼ 0:0 or 1:0, where x is real and positive,
and only a single function value is required, then it may be much cheaper to call S18ACF, S18ADF,
S18CCF or S18CDF, depending on whether a scaled result is required or not.

10 Example

The example program prints a caption and then proceeds to read sets of data from the input data stream.
The first datum is a value for the order FNU, the second is a complex value for the argument, Z, and
the third is a character value to set the argument SCAL. The program calls the routine with N ¼ 2 to
evaluate the function for orders FNU and FNUþ 1, and it prints the results. The process is repeated
until the end of the input data stream is encountered.

10.1 Program Text

Program s18dcfe

! S18DCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18dcf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 2, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: z
Real (Kind=nag_wp) :: fnu
Integer :: ifail, ioerr, nz
Character (1) :: scal

! .. Local Arrays ..
Complex (Kind=nag_wp) :: cy(n)

! .. Executable Statements ..
Write (nout,*) ’S18DCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,99999) ’Calling with N =’, n
Write (nout,*)
Write (nout,*) &

’ FNU Z SCAL CY(1) CY(2)’, &
’ NZ’

Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) fnu, z, scal

If (ioerr<0) Then
Exit data

End If

ifail = 0
Call s18dcf(fnu,z,n,scal,cy,nz,ifail)

Write (nout,99998) fnu, z, scal, cy(1), cy(2), nz
End Do data
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99999 Format (1X,A,I2)
99998 Format (1X,F7.4,’ (’,F7.3,’,’,F7.3,’) ’,A,2(’ (’,F7.3,’,’,F7.3,’)’), &

I4)
End Program s18dcfe

10.2 Program Data

S18DCF Example Program Data
0.00 ( 0.3, 0.4) ’U’
2.30 ( 2.0, 0.0) ’U’
2.12 (-1.0, 0.0) ’U’
5.10 ( 3.0, 2.0) ’U’
5.10 ( 3.0, 2.0) ’S’

10.3 Program Results

S18DCF Example Program Results

Calling with N = 2

FNU Z SCAL CY(1) CY(2) NZ

0.0000 ( 0.300, 0.400) U ( 0.831, -0.803) ( 0.831, -1.735) 0
2.3000 ( 2.000, 0.000) U ( 0.325, 0.000) ( 0.909, 0.000) 0
2.1200 ( -1.000, 0.000) U ( 1.763, -1.047) ( -8.087, 3.147) 0
5.1000 ( 3.000, 2.000) U ( -0.426, 0.243) ( -0.810, 1.255) 0
5.1000 ( 3.000, 2.000) S ( -0.880, -9.803) (-16.150,-25.293) 0
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NAG Library Routine Document

S18DEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18DEF returns a sequence of values for the modified Bessel functions I�þn zð Þ for complex z,
non-negative � and n ¼ 0; 1; . . . ; N � 1, with an option for exponential scaling.

2 Specification

SUBROUTINE S18DEF (FNU, Z, N, SCAL, CY, NZ, IFAIL)

INTEGER N, NZ, IFAIL
REAL (KIND=nag_wp) FNU
COMPLEX (KIND=nag_wp) Z, CY(N)
CHARACTER(1) SCAL

3 Description

S18DEF evaluates a sequence of values for the modified Bessel function I� zð Þ, where z is complex,
�	 < argz � 	, and � is the real, non-negative order. The N-member sequence is generated for orders
�; � þ 1; . . . ; � þN � 1. Optionally, the sequence is scaled by the factor e� Re zð Þj j.

The routine is derived from the routine CBESI in Amos (1986).

Note: although the routine may not be called with � less than zero, for negative orders the formula

I�� zð Þ ¼ I� zð Þ þ
2

	
sin 	�ð ÞK� zð Þ may be used (for the Bessel function K� zð Þ, see S18DCF).

When N is greater than 1, extra values of I� zð Þ are computed using recurrence relations.

For very large zj j or � þN � 1ð Þ, argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller zj j or � þN � 1ð Þ, the computation is performed but
results are accurate to less than half of machine precision. If Re zð Þ is too large and the unscaled
function is required, there is a risk of overflow and so no computation is performed. In all the above
cases, a warning is given by the routine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and
non-negative order ACM Trans. Math. Software 12 265–273

5 Arguments

1: FNU – REAL (KIND=nag_wp) Input

On entry: �, the order of the first member of the sequence of functions.

Constraint: FNU � 0:0.

2: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the functions.
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3: N – INTEGER Input

On entry: N , the number of members required in the sequence I� zð Þ; I�þ1 zð Þ; . . . ; I�þN�1 zð Þ.
Constraint: N � 1.

4: SCAL – CHARACTER(1) Input

On entry: the scaling option.

SCAL ¼ U
The results are returned unscaled.

SCAL ¼ S
The results are returned scaled by the factor e� Re zð Þj j.

Constraint: SCAL ¼ U or S .

5: CYðNÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the N required function values: CYðiÞ contains I�þi�1 zð Þ, for i ¼ 1; 2; . . . ; N.

6: NZ – INTEGER Output

On exit: the number of components of CY that are set to zero due to underflow.

If NZ > 0, then elements CYðN� NZþ 1Þ;CYðN� NZþ 2Þ; . . . ;CYðNÞ are set to zero.

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, FNU < 0:0,
or N < 1,
or SCAL 6¼ U or S .

IFAIL ¼ 2

No computation has been performed due to the likelihood of overflow, because real(Z) is greater
than a machine-dependent threshold value (given in the Users' Note for your implementation).
This error exit can only occur when SCAL ¼ U .

IFAIL ¼ 3

The computation has been performed, but the errors due to argument reduction in elementary
functions make it likely that the results returned by S18DEF are accurate to less than half of
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machine precision. This error exit may occur when either abs Zð Þ or FNUþ N� 1 is greater than
a machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL ¼ 4

No computation has been performed because the errors due to argument reduction in elementary
functions mean that all precision in results returned by S18DEF would be lost. This error exit
may occur when either abs Zð Þ or FNUþ N� 1 is greater than a machine-dependent threshold
value (given in the Users' Note for your implementation).

IFAIL ¼ 5

No results are returned because the algorithm termination condition has not been met. This may
occur because the arguments supplied to S18DEF would have caused overflow or underflow.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

All constants in S18DEF are given to approximately 18 digits of precision. Calling the number of digits
of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct
digits in the results obtained is limited by p ¼ min t; 18ð Þ. Because of errors in argument reduction when
computing elementary functions inside S18DEF, the actual number of correct digits is limited, in
general, by p� s, where s � max 1; log10 zj jj j; log10 �j jð Þ represents the number of digits lost due to the
argument reduction. Thus the larger the values of zj j and �, the less the precision in the result. If
S18DEF is called with N > 1, then computation of function values via recurrence may lead to some
further small loss of accuracy.

If function values which should nominally be identical are computed by calls to S18DEF with different
base values of � and different N, the computed values may not agree exactly. Empirical tests with
modest values of � and z have shown that the discrepancy is limited to the least significant 3 – 4 digits
of precision.

8 Parallelism and Performance

S18DEF is not threaded in any implementation.

9 Further Comments

The time taken for a call of S18DEF is approximately proportional to the value of N, plus a constant. In
general it is much cheaper to call S18DEF with N greater than 1, rather than to make N separate calls
to S18DEF.

Paradoxically, for some values of z and �, it is cheaper to call S18DEF with a larger value of N than is
required, and then discard the extra function values returned. However, it is not possible to state the
precise circumstances in which this is likely to occur. It is due to the fact that the base value used to
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start recurrence may be calculated in different regions for different N, and the costs in each region may
differ greatly.

Note that if the function required is I0 xð Þ or I1 xð Þ, i.e., � ¼ 0:0 or 1:0, where x is real and positive, and
only a single function value is required, then it may be much cheaper to call S18AEF, S18AFF, S18CEF
or S18CFF, depending on whether a scaled result is required or not.

10 Example

This example prints a caption and then proceeds to read sets of data from the input data stream. The
first datum is a value for the order FNU, the second is a complex value for the argument, Z, and the
third is a character value to set the argument SCAL. The program calls the routine with N ¼ 2 to
evaluate the function for orders FNU and FNUþ 1, and it prints the results. The process is repeated
until the end of the input data stream is encountered.

10.1 Program Text

Program s18defe

! S18DEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18def

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 2, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: z
Real (Kind=nag_wp) :: fnu
Integer :: ifail, ioerr, nz
Character (1) :: scal

! .. Local Arrays ..
Complex (Kind=nag_wp) :: cy(n)

! .. Executable Statements ..
Write (nout,*) ’S18DEF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,99999) ’Calling with N =’, n
Write (nout,*)
Write (nout,*) &

’ FNU Z SCAL CY(1) CY(2)’, &
’ NZ’

Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) fnu, z, scal

If (ioerr<0) Then
Exit data

End If

ifail = 0
Call s18def(fnu,z,n,scal,cy,nz,ifail)

Write (nout,99998) fnu, z, scal, cy(1), cy(2), nz
End Do data

99999 Format (1X,A,I2)
99998 Format (1X,F7.4,’ (’,F7.3,’,’,F7.3,’) ’,A,2(’ (’,F7.3,’,’,F7.3,’)’), &

I4)
End Program s18defe
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10.2 Program Data

S18DEF Example Program Data
0.00 ( 0.3, -0.4) ’U’
2.30 ( 2.0, 0.0) ’U’
2.12 (-1.0, 0.0) ’U’
5.50 (-6.1, 9.8) ’U’
5.50 (-6.1, 9.8) ’S’

10.3 Program Results

S18DEF Example Program Results

Calling with N = 2

FNU Z SCAL CY(1) CY(2) NZ

0.0000 ( 0.300, -0.400) U ( 0.982, -0.059) ( 0.143, -0.203) 0
2.3000 ( 2.000, 0.000) U ( 0.500, 0.000) ( 0.142, 0.000) 0
2.1200 ( -1.000, 0.000) U ( 0.103, 0.041) ( -0.016, -0.006) 0
5.5000 ( -6.100, 9.800) U ( 22.534, 13.710) (-19.635, -1.660) 0
5.5000 ( -6.100, 9.800) S ( 0.051, 0.031) ( -0.044, -0.004) 0
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NAG Library Routine Document

S18GKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S18GKF returns a sequence of values for the Bessel functions J�þn�1 zð Þ or J��nþ1 zð Þ for complex z,
non-negative � < 1 and n ¼ 1; 2; . . . ; Nj j þ 1.

2 Specification

SUBROUTINE S18GKF (Z, A, NL, B, IFAIL)

INTEGER NL, IFAIL
REAL (KIND=nag_wp) A
COMPLEX (KIND=nag_wp) Z, B(abs(NL)+1)

3 Description

S18GKF evaluates a sequence of values for the Bessel function of the first kind J� zð Þ, where z is
complex and nonzero and � is the order with 0 � � < 1. The Nj j þ 1ð Þ-member sequence is generated
for orders �; �þ 1; . . . ; �þ Nj j when N � 0. Note that þ is replaced by � when N < 0. For positive
orders the routine may also be called with z ¼ 0, since Jq 0ð Þ ¼ 0 when q > 0. For negative orders the
formula

J�q zð Þ ¼ cos 	qð ÞJq zð Þ � sin 	qð ÞYq zð Þ

is used to generate the required sequence. The appropriate values of Jq zð Þ and Yq zð Þ are obtained by
calls to S17DCF and S17DEF.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the function.

Constraint: Z 6¼ 0:0; 0:0ð Þ when NL < 0.

2: A – REAL (KIND=nag_wp) Input

On entry: the order � of the first member in the required sequence of function values.

Constraint: 0:0 � A < 1:0.

3: NL – INTEGER Input

On entry: the value of N .

Constraint: abs NLð Þ � 101.
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4: Bðabs NLð Þ þ 1Þ – COMPLEX (KIND=nag_wp) array Output

On exit: with IFAIL ¼ 0 or 3, the required sequence of function values: BðnÞ contains J�þn�1 zð Þ
if NL � 0 and J��nþ1 zð Þ otherwise, for n ¼ 1; 2; . . . ; abs NLð Þ þ 1.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, Z ¼ 0:0; 0:0ð Þ when NL < 0,
or A < 0:0,
or A � 1:0,
or abs NLð Þ > 101.

IFAIL ¼ 2

The computation has been abandoned due to the likelihood of overflow.

IFAIL ¼ 3

The computation has been completed but some precision has been lost.

IFAIL ¼ 4

The computation has been abandoned due to total loss of precision.

IFAIL ¼ 5

The computation has been abandoned due to failure to satisfy the termination condition.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

All constants in S17DCF and S17DEF are specified to approximately 18 digits of precision. If t denotes
the number of digits of precision in the floating-point arithmetic being used, then clearly the maximum
number of correct digits in the results obtained is limited by p ¼ min t; 18ð Þ. Because of errors in
argument reduction when computing elementary functions inside S17DCF and S17DEF, the actual
number of correct digits is limited, in general, by p� s, where s � max 1; log10 zj jj j; log10 �j jj jð Þ
represents the number of digits lost due to the argument reduction. Thus the larger the values of zj j and
�j j, the less the precision in the result.

8 Parallelism and Performance

S18GKF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example evaluates J0 zð Þ; J1 zð Þ; J2 zð Þ and J3 zð Þ at z ¼ 0:6� 0:8i, and prints the results.

10.1 Program Text

Program s18gkfe

! S18GKF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s18gkf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: z
Real (Kind=nag_wp) :: a, alpha
Integer :: i, ifail, nl

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: b(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, real, sign

! .. Executable Statements ..
Write (nout,*) ’S18GKF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) z, a, nl
Allocate (b(abs(nl)+1))

ifail = 0
Call s18gkf(z,a,nl,b,ifail)

Write (nout,*)
Write (nout,*) ’ Z A NL’
Write (nout,*)
Write (nout,99999) z, a, nl

Write (nout,*)
Write (nout,*) ’ Requested values of J_alpha(Z)’
Write (nout,*)
Write (nout,*) ’ alpha J_alpha(Z)’
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alpha = a

Do i = 1, abs(nl) + 1
Write (nout,99998) alpha, b(i)
alpha = alpha + sign(1.0E0_nag_wp,real(nl,kind=nag_wp))

End Do

99999 Format (1X,’( ’,F4.1,’, ’,F4.1,’ )’,2X,F4.1,I6)
99998 Format (1X,1P,E12.4,3X,’(’,E12.4,’,’,E12.4,’ )’)

End Program s18gkfe

10.2 Program Data

S18GKF Example Program Data
( 0.6,-0.8) 0.0 3 : Values of Z, A and NL

10.3 Program Results

S18GKF Example Program Results

Z A NL

( 0.6, -0.8 ) 0.0 3

Requested values of J_alpha(Z)

alpha J_alpha(Z)
0.0000E+00 ( 1.0565E+00, 2.4811E-01 )
1.0000E+00 ( 3.5825E-01, -3.7539E-01 )
2.0000E+00 ( -2.5974E-02, -1.2538E-01 )
3.0000E+00 ( -1.9369E-02, -8.6380E-03 )
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NAG Library Routine Document

S19AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S19AAF returns a value for the Kelvin function ber x via the function name.

2 Specification

FUNCTION S19AAF (X, IFAIL)
REAL (KIND=nag_wp) S19AAF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S19AAF evaluates an approximation to the Kelvin function ber x.

Note: ber �xð Þ ¼ ber x, so the approximation need only consider x � 0:0.

The routine is based on several Chebyshev expansions:

For 0 � x � 5,

ber x ¼
X
r¼0

arTr tð Þ; with t ¼ 2
x

5

� �4
� 1:

For x > 5,

ber x ¼ ex=
ffiffi
2
pffiffiffiffiffiffiffiffi

2	x
p 1þ 1

x
a tð Þ

� �
cos�þ 1

x
b tð Þ sin�

� �

þe
�x=

ffiffi
2
pffiffiffiffiffiffiffiffi

2	x
p 1þ 1

x
c tð Þ

� �
sin� þ 1

x
d tð Þ cos �

� �
;

where � ¼ xffiffiffi
2
p � 	

8
, � ¼ xffiffiffi

2
p þ 	

8
,

and a tð Þ, b tð Þ, c tð Þ, and d tð Þ are expansions in the variable t ¼ 10

x
� 1 .

When x is sufficiently close to zero, the result is set directly to ber 0 ¼ 1:0.

For large x, there is a danger of the result being totally inaccurate, as the error amplification factor
grows in an essentially exponential manner; therefore the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.
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2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, abs Xð Þ is too large for an accurate result to be returned. On softfailure, the routine
returns zero. See also the Users' Note for your implementation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Since the function is oscillatory, the absolute error rather than the relative error is important. Let E be
the absolute error in the result and � be the relative error in the argument. If � is somewhat larger than
the machine precision, then we have:

E ’ xffiffiffi
2
p ber1 xþ bei1 xð Þ
				 				�

(provided E is within machine bounds).

For small x the error amplification is insignificant and thus the absolute error is effectively bounded by
the machine precision.

For medium and large x, the error behaviour is oscillatory and its amplitude grows like

ffiffiffiffiffiffi
x

2	

r
ex=

ffiffi
2
p

.

Therefore it is not possible to calculate the function with any accuracy when
ffiffiffi
x
p

ex=
ffiffi
2
p
>

ffiffiffiffiffiffi
2	
p

�
. Note

that this value of x is much smaller than the minimum value of x for which the function overflows.
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8 Parallelism and Performance

S19AAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s19aafe

! S19AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s19aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S19AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s19aaf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s19aafe
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10.2 Program Data

S19AAF Example Program Data
0.1
1.0
2.5
5.0
10.0
15.0
-1.0

10.3 Program Results

S19AAF Example Program Results

X Y

1.000E-01 1.000E+00
1.000E+00 9.844E-01
2.500E+00 4.000E-01
5.000E+00 -6.230E+00
1.000E+01 1.388E+02
1.500E+01 -2.967E+03

-1.000E+00 9.844E-01
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NAG Library Routine Document

S19ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S19ABF returns a value for the Kelvin function beix via the function name.

2 Specification

FUNCTION S19ABF (X, IFAIL)
REAL (KIND=nag_wp) S19ABF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S19ABF evaluates an approximation to the Kelvin function bei x.

Note: bei �xð Þ ¼ beix, so the approximation need only consider x � 0:0.

The routine is based on several Chebyshev expansions:

For 0 � x � 5,

beix ¼ x
2

4

X0
r¼0

arTr tð Þ; with t ¼ 2
x

5

� �4
� 1;

For x > 5,

beix ¼ ex=
ffiffi
2
pffiffiffiffiffiffiffiffi

2	x
p 1þ 1

x
a tð Þ

� �
sin�� 1

x
b tð Þ cos�

� �

þe
x=
ffiffi
2
pffiffiffiffiffiffiffiffi

2	x
p 1þ 1

x
c tð Þ

� �
cos� � 1

x
d tð Þ sin�

� �
where � ¼ xffiffiffi

2
p � 	

8
, � ¼ xffiffiffi

2
p þ 	

8
,

and a tð Þ, b tð Þ, c tð Þ, and d tð Þ are expansions in the variable t ¼ 10

x
� 1 .

When x is sufficiently close to zero, the result is computed as beix ¼ x
2

4
. If this result would

underflow, the result returned is beix ¼ 0:0.

For large x, there is a danger of the result being totally inaccurate, as the error amplification factor
grows in an essentially exponential manner; therefore the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications
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5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, abs Xð Þ is too large for an accurate result to be returned. On softfailure, the routine
returns zero. See also the Users' Note for your implementation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Since the function is oscillatory, the absolute error rather than the relative error is important. Let E be
the absolute error in the function, and � be the relative error in the argument. If � is somewhat larger
than the machine precision, then we have:

E ’ xffiffiffi
2
p �ber1 xþ bei1 xð Þ
				 				�

(provided E is within machine bounds).

For small x the error amplification is insignificant and thus the absolute error is effectively bounded by
the machine precision.
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For medium and large x, the error behaviour is oscillatory and its amplitude grows like

ffiffiffiffiffiffi
x

2	

r
ex=

ffiffi
2
p

.

Therefore it is impossible to calculate the functions with any accuracy when
ffiffiffi
x
p

ex=
ffiffi
2
p
>

ffiffiffiffiffiffi
2	
p

�
. Note that

this value of x is much smaller than the minimum value of x for which the function overflows.

8 Parallelism and Performance

S19ABF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s19abfe

! S19ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s19abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S19ABF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s19abf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s19abfe
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10.2 Program Data

S19ABF Example Program Data
0.1
1.0
2.5
5.0
10.0
15.0
-1.0

10.3 Program Results

S19ABF Example Program Results

X Y

1.000E-01 2.500E-03
1.000E+00 2.496E-01
2.500E+00 1.457E+00
5.000E+00 1.160E-01
1.000E+01 5.637E+01
1.500E+01 -2.953E+03

-1.000E+00 2.496E-01
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NAG Library Routine Document

S19ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S19ACF returns a value for the Kelvin function ker x, via the function name.

2 Specification

FUNCTION S19ACF (X, IFAIL)
REAL (KIND=nag_wp) S19ACF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S19ACF evaluates an approximation to the Kelvin function ker x.

Note: for x < 0 the function is undefined and at x ¼ 0 it is infinite so we need only consider x > 0.

The routine is based on several Chebyshev expansions:

For 0 < x � 1,

ker x ¼ �f tð Þlog xð Þ þ 	

16
x2g tð Þ þ y tð Þ

where f tð Þ, g tð Þ and y tð Þ are expansions in the variable t ¼ 2x4 � 1.

For 1 < x � 3,

ker x ¼ exp �11
16
x

� �
q tð Þ

where q tð Þ is an expansion in the variable t ¼ x� 2.

For x > 3,

ker x ¼
ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

1þ 1

x
c tð Þ

� �
cos � � 1

x
d tð Þ sin�

� �
where � ¼ xffiffiffi

2
p þ 	

8
, and c tð Þ and d tð Þ are expansions in the variable t ¼ 6

x
� 1 .

When x is sufficiently close to zero, the result is computed as

ker x ¼ �� � log
x

2

� �
þ 	� 3

8
x2

� �
x2

16

and when x is even closer to zero, simply as ker x ¼ �� � log
x

2

� �
.

For large x, ker x is asymptotically given by

ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

and this becomes so small that it cannot be

computed without underflow and the routine fails.
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4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X > 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X is too large: the result underflows. On softfailure, the routine returns zero. See also
the Users' Note for your implementation.

IFAIL ¼ 2

On entry, X � 0:0: the function is undefined. On softfailure the routine returns zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Let E be the absolute error in the result, � be the relative error in the result and � be the relative error in
the argument. If � is somewhat larger than the machine precision, then we have:

E ’ xffiffiffi
2
p ker1 xþ kei1 xð Þ
				 				�;

� ’ xffiffiffi
2
p ker1 xþ kei1 x

ker x

				 				�:
For very small x, the relative error amplification factor is approximately given by

1

log xð Þj j , which

implies a strong attenuation of relative error. However, � in general cannot be less than the machine
precision.

For small x, errors are damped by the function and hence are limited by the machine precision.

For medium and large x, the error behaviour, like the function itself, is oscillatory, and hence only the
absolute accuracy for the function can be maintained. For this range of x, the amplitude of the absolute

error decays like

ffiffiffiffiffiffi
	x

2

r
e�x=

ffiffi
2
p

which implies a strong attenuation of error. Eventually, ker x, which

asymptotically behaves like

ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

, becomes so small that it cannot be calculated without causing

underflow, and the routine returns zero. Note that for large x the errors are dominated by those of the
standard function exp.

8 Parallelism and Performance

S19ACF is not threaded in any implementation.

9 Further Comments

Underflow may occur for a few values of x close to the zeros of ker x, below the limit which causes a
failure with IFAIL ¼ 1.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s19acfe

! S19ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s19acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S19ACF Example Program Results’

! Skip heading in data file
Read (nin,*)
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Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = -1
y = s19acf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s19acfe

10.2 Program Data

S19ACF Example Program Data
0.1
1.0
2.5
5.0
10.0
15.0

10.3 Program Results

S19ACF Example Program Results

X Y

1.000E-01 2.420E+00
1.000E+00 2.867E-01
2.500E+00 -6.969E-02
5.000E+00 -1.151E-02
1.000E+01 1.295E-04
1.500E+01 -1.514E-08
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NAG Library Routine Document

S19ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S19ADF returns a value for the Kelvin function kei x via the function name.

2 Specification

FUNCTION S19ADF (X, IFAIL)
REAL (KIND=nag_wp) S19ADF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S19ADF evaluates an approximation to the Kelvin function kei x.

Note: for x < 0 the function is undefined, so we need only consider x � 0.

The routine is based on several Chebyshev expansions:

For 0 � x � 1,

keix ¼ �	
4
f tð Þ þ x

2

4
�g tð Þlog xð Þ þ v tð Þ½ �

where f tð Þ, g tð Þ and v tð Þ are expansions in the variable t ¼ 2x4 � 1;

For 1 < x � 3,

keix ¼ exp �9
8
x

� �
u tð Þ

where u tð Þ is an expansion in the variable t ¼ x� 2;

For x > 3,

keix ¼
ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

1þ 1

x

� �
c tð Þ sin� þ 1

x
d tð Þ cos�

� �
where � ¼ xffiffiffi

2
p þ 	

8
, and c tð Þ and d tð Þ are expansions in the variable t ¼ 6

x
� 1 .

For x < 0, the function is undefined, and hence the routine fails and returns zero.

When x is sufficiently close to zero, the result is computed as

keix ¼ �	
4
þ 1� � � log

x

2

� �� �x2
4

and when x is even closer to zero simply as

keix ¼ �	
4
:

For large x, keix is asymptotically given by

ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

and this becomes so small that it cannot be

computed without underflow and the routine fails.
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4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: X � 0:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X is too large: the result underflows. On softfailure, the routine returns zero. See also
the Users' Note for your implementation.

IFAIL ¼ 2

On entry, X < 0:0: the function is undefined. On softfailure the routine returns zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Let E be the absolute error in the result, and � be the relative error in the argument. If � is somewhat
larger than the machine representation error, then we have:

E ’ xffiffiffi
2
p �ker1 xþ kei1 xð Þ
				 				�:

For small x, errors are attenuated by the function and hence are limited by the machine precision.

For medium and large x, the error behaviour, like the function itself, is oscillatory and hence only
absolute accuracy of the function can be maintained. For this range of x, the amplitude of the absolute

error decays like

ffiffiffiffiffiffi
	x

2

r
e�x=

ffiffi
2
p

, which implies a strong attenuation of error. Eventually, kei x, which is

asymptotically given by

ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

,becomes so small that it cannot be calculated without causing

underflow and therefore the routine returns zero. Note that for large x, the errors are dominated by
those of the standard function exp.

8 Parallelism and Performance

S19ADF is not threaded in any implementation.

9 Further Comments

Underflow may occur for a few values of x close to the zeros of keix, below the limit which causes a
failure with IFAIL ¼ 1.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s19adfe

! S19ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s19adf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S19ADF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
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Exit data
End If

ifail = -1
y = s19adf(x,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s19adfe

10.2 Program Data

S19ADF Example Program Data
0.0
0.1
1.0
2.5
5.0
10.0
15.0

10.3 Program Results

S19ADF Example Program Results

X Y

0.000E+00 -7.854E-01
1.000E-01 -7.769E-01
1.000E+00 -4.950E-01
2.500E+00 -1.107E-01
5.000E+00 1.119E-02
1.000E+01 -3.075E-04
1.500E+01 7.963E-06
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NAG Library Routine Document

S19ANF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S19ANF returns an array of values for the Kelvin function ber x.

2 Specification

SUBROUTINE S19ANF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S19ANF evaluates an approximation to the Kelvin function ber xi for an array of arguments xi, for
i ¼ 1; 2; . . . ; n.

Note: ber �xð Þ ¼ ber x, so the approximation need only consider x � 0:0.

The routine is based on several Chebyshev expansions:

For 0 � x � 5,

ber x ¼
X
r¼0

arTr tð Þ; with t ¼ 2
x

5

� �4
� 1:

For x > 5,

ber x ¼ ex=
ffiffi
2
pffiffiffiffiffiffiffiffi

2	x
p 1þ 1

x
a tð Þ

� �
cos�þ 1

x
b tð Þ sin�

� �

þe
�x=

ffiffi
2
pffiffiffiffiffiffiffiffi

2	x
p 1þ 1

x
c tð Þ

� �
sin� þ 1

x
d tð Þ cos �

� �
;

where � ¼ xffiffiffi
2
p � 	

8
, � ¼ xffiffiffi

2
p þ 	

8
,

and a tð Þ, b tð Þ, c tð Þ, and d tð Þ are expansions in the variable t ¼ 10

x
� 1 .

When x is sufficiently close to zero, the result is set directly to ber 0 ¼ 1:0.

For large x, there is a danger of the result being totally inaccurate, as the error amplification factor
grows in an essentially exponential manner; therefore the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: ber xi, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
abs xið Þ is too large for an accurate result to be returned. FðiÞ contains zero. The threshold
value is the same as for IFAIL ¼ 1 in S19AAF, as defined in the Users' Note for your
implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Since the function is oscillatory, the absolute error rather than the relative error is important. Let E be
the absolute error in the result and � be the relative error in the argument. If � is somewhat larger than
the machine precision, then we have:

E ’ xffiffiffi
2
p ber1 xþ bei1 xð Þ
				 				�

(provided E is within machine bounds).

For small x the error amplification is insignificant and thus the absolute error is effectively bounded by
the machine precision.

For medium and large x, the error behaviour is oscillatory and its amplitude grows like

ffiffiffiffiffiffi
x

2	

r
ex=

ffiffi
2
p

.

Therefore it is not possible to calculate the function with any accuracy when
ffiffiffi
x
p

ex=
ffiffi
2
p
>

ffiffiffiffiffiffi
2	
p

�
. Note

that this value of x is much smaller than the minimum value of x for which the function overflows.

8 Parallelism and Performance

S19ANF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s19anfe

! S19ANF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s19anf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)
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! .. Executable Statements ..
Write (nout,*) ’S19ANF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s19anf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s19anfe

10.2 Program Data

S19ANF Example Program Data

7

0.1 1.0 2.5 5.0 10.0 15.0 -1.0

10.3 Program Results

S19ANF Example Program Results

X F IVALID

1.000E-01 1.000E+00 0
1.000E+00 9.844E-01 0
2.500E+00 4.000E-01 0
5.000E+00 -6.230E+00 0
1.000E+01 1.388E+02 0
1.500E+01 -2.967E+03 0

-1.000E+00 9.844E-01 0

S19ANF NAG Library Manual

S19ANF.4 (last) Mark 26



NAG Library Routine Document

S19APF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S19APF returns an array of values for the Kelvin function bei x.

2 Specification

SUBROUTINE S19APF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S19APF evaluates an approximation to the Kelvin function bei xi for an array of arguments xi, for
i ¼ 1; 2; . . . ; n.

Note: bei �xð Þ ¼ beix, so the approximation need only consider x � 0:0.

The routine is based on several Chebyshev expansions:

For 0 � x � 5,

beix ¼ x
2

4

X
r¼0

arTr tð Þ; with t ¼ 2
x

5

� �4
� 1;

For x > 5,

beix ¼ ex=
ffiffi
2
pffiffiffiffiffiffiffiffi

2	x
p 1þ 1

x
a tð Þ

� �
sin�� 1

x
b tð Þ cos�

� �

þe
x=
ffiffi
2
pffiffiffiffiffiffiffiffi

2	x
p 1þ 1

x
c tð Þ

� �
cos� � 1

x
d tð Þ sin�

� �
where � ¼ xffiffiffi

2
p � 	

8
, � ¼ xffiffiffi

2
p þ 	

8
,

and a tð Þ, b tð Þ, c tð Þ, and d tð Þ are expansions in the variable t ¼ 10

x
� 1 .

When x is sufficiently close to zero, the result is computed as beix ¼ x
2

4
. If this result would

underflow, the result returned is beix ¼ 0:0.

For large x, there is a danger of the result being totally inaccurate, as the error amplification factor
grows in an essentially exponential manner; therefore the routine must fail.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications
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5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: beixi, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
abs xið Þ is too large for an accurate result to be returned. FðiÞ contains zero. The threshold
value is the same as for IFAIL ¼ 1 in S19ABF, as defined in the Users' Note for your
implementation.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Since the function is oscillatory, the absolute error rather than the relative error is important. Let E be
the absolute error in the function, and � be the relative error in the argument. If � is somewhat larger
than the machine precision, then we have:

E ’ xffiffiffi
2
p �ber1 xþ bei1 xð Þ
				 				�

(provided E is within machine bounds).

For small x the error amplification is insignificant and thus the absolute error is effectively bounded by
the machine precision.

For medium and large x, the error behaviour is oscillatory and its amplitude grows like

ffiffiffiffiffiffi
x

2	

r
ex=

ffiffi
2
p

.

Therefore it is impossible to calculate the functions with any accuracy when
ffiffiffi
x
p

ex=
ffiffi
2
p
>

ffiffiffiffiffiffi
2	
p

�
. Note that

this value of x is much smaller than the minimum value of x for which the function overflows.

8 Parallelism and Performance

S19APF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s19apfe

! S19APF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s19apf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)
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! .. Executable Statements ..
Write (nout,*) ’S19APF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s19apf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s19apfe

10.2 Program Data

S19APF Example Program Data

7

0.1 1.0 2.5 5.0 10.0 15.0 -1.0

10.3 Program Results

S19APF Example Program Results

X F IVALID

1.000E-01 2.500E-03 0
1.000E+00 2.496E-01 0
2.500E+00 1.457E+00 0
5.000E+00 1.160E-01 0
1.000E+01 5.637E+01 0
1.500E+01 -2.953E+03 0

-1.000E+00 2.496E-01 0
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NAG Library Routine Document

S19AQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S19AQF returns an array of values for the Kelvin function ker x.

2 Specification

SUBROUTINE S19AQF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S19AQF evaluates an approximation to the Kelvin function ker xi for an array of arguments xi, for
i ¼ 1; 2; . . . ; n.

Note: for x < 0 the function is undefined and at x ¼ 0 it is infinite so we need only consider x > 0.

The routine is based on several Chebyshev expansions:

For 0 < x � 1,

ker x ¼ �f tð Þlog xð Þ þ 	

16
x2g tð Þ þ y tð Þ

where f tð Þ, g tð Þ and y tð Þ are expansions in the variable t ¼ 2x4 � 1.

For 1 < x � 3,

ker x ¼ exp �11
16
x

� �
q tð Þ

where q tð Þ is an expansion in the variable t ¼ x� 2.

For x > 3,

ker x ¼
ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

1þ 1

x
c tð Þ

� �
cos � � 1

x
d tð Þ sin�

� �
where � ¼ xffiffiffi

2
p þ 	

8
, and c tð Þ and d tð Þ are expansions in the variable t ¼ 6

x
� 1 .

When x is sufficiently close to zero, the result is computed as

ker x ¼ �� � log
x

2

� �
þ 	� 3

8
x2

� �
x2

16

and when x is even closer to zero, simply as ker x ¼ �� � log
x

2

� �
.

For large x, ker x is asymptotically given by

ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

and this becomes so small that it cannot be

computed without underflow and the routine fails.
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4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

Constraint: XðiÞ > 0:0, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: ker xi, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
xi is too large, the result underflows. FðiÞ contains zero. The threshold value is the same as
for IFAIL ¼ 1 in S19ACF, as defined in the Users' Note for your implementation.

IVALIDðiÞ ¼ 2
xi � 0:0, the function is undefined. FðiÞ contains 0:0.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.
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IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let E be the absolute error in the result, � be the relative error in the result and � be the relative error in
the argument. If � is somewhat larger than the machine precision, then we have:

E ’ xffiffiffi
2
p ker1 xþ kei1 xð Þ
				 				�;

� ’ xffiffiffi
2
p ker1 xþ kei1 x

ker x

				 				�:
For very small x, the relative error amplification factor is approximately given by

1

log xð Þj j , which

implies a strong attenuation of relative error. However, � in general cannot be less than the machine
precision.

For small x, errors are damped by the function and hence are limited by the machine precision.

For medium and large x, the error behaviour, like the function itself, is oscillatory, and hence only the
absolute accuracy for the function can be maintained. For this range of x, the amplitude of the absolute

error decays like

ffiffiffiffiffiffi
	x

2

r
e�x=

ffiffi
2
p

which implies a strong attenuation of error. Eventually, ker x, which

asymptotically behaves like

ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

, becomes so small that it cannot be calculated without causing

underflow, and the routine returns zero. Note that for large x the errors are dominated by those of the
standard function exp.

8 Parallelism and Performance

S19AQF is not threaded in any implementation.

9 Further Comments

Underflow may occur for a few values of x close to the zeros of ker x, below the limit which causes a
failure with IFAIL ¼ 1.
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10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s19aqfe

! S19AQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s19aqf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S19AQF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s19aqf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s19aqfe

10.2 Program Data

S19AQF Example Program Data

6

0.1 1.0 2.5 5.0 10.0 15.0
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10.3 Program Results

S19AQF Example Program Results

X F IVALID

1.000E-01 2.420E+00 0
1.000E+00 2.867E-01 0
2.500E+00 -6.969E-02 0
5.000E+00 -1.151E-02 0
1.000E+01 1.295E-04 0
1.500E+01 -1.514E-08 0
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NAG Library Routine Document

S19ARF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S19ARF returns an array of values for the Kelvin function kei x.

2 Specification

SUBROUTINE S19ARF (N, X, F, IVALID, IFAIL)

INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S19ARF evaluates an approximation to the Kelvin function kei xi for an array of arguments xi, for
i ¼ 1; 2; . . . ; n.

Note: for x < 0 the function is undefined, so we need only consider x � 0.

The routine is based on several Chebyshev expansions:

For 0 � x � 1,

keix ¼ �	
4
f tð Þ þ x

2

4
�g tð Þlog xð Þ þ v tð Þ½ �

where f tð Þ, g tð Þ and v tð Þ are expansions in the variable t ¼ 2x4 � 1;

For 1 < x � 3,

keix ¼ exp �9
8
x

� �
u tð Þ

where u tð Þ is an expansion in the variable t ¼ x� 2;

For x > 3,

keix ¼
ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

1þ 1

x

� �
c tð Þ sin� þ 1

x
d tð Þ cos�

� �
where � ¼ xffiffiffi

2
p þ 	

8
, and c tð Þ and d tð Þ are expansions in the variable t ¼ 6

x
� 1 .

For x < 0, the function is undefined, and hence the routine fails and returns zero.

When x is sufficiently close to zero, the result is computed as

keix ¼ �	
4
þ 1� � � log

x

2

� �� �x2
4

and when x is even closer to zero simply as

keix ¼ �	
4
:

For large x, keix is asymptotically given by

ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

and this becomes so small that it cannot be

computed without underflow and the routine fails.
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4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

Constraint: XðiÞ � 0:0, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: keixi, the function values.

4: IVALIDðNÞ – INTEGER array Output

On exit: IVALIDðiÞ contains the error code for xi, for i ¼ 1; 2; . . . ;N.

IVALIDðiÞ ¼ 0
No error.

IVALIDðiÞ ¼ 1
xi is too large, the result underflows. FðiÞ contains zero. The threshold value is the same as
for IFAIL ¼ 1 in S19ADF, as defined in the Users' Note for your implementation.

IVALIDðiÞ ¼ 2
xi < 0:0, the function is undefined. FðiÞ contains 0:0.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one value of X was invalid.
Check IVALID for more information.

S19ARF NAG Library Manual

S19ARF.2 Mark 26



IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let E be the absolute error in the result, and � be the relative error in the argument. If � is somewhat
larger than the machine representation error, then we have:

E ’ xffiffiffi
2
p �ker1 xþ kei1 xð Þ
				 				�:

For small x, errors are attenuated by the function and hence are limited by the machine precision.

For medium and large x, the error behaviour, like the function itself, is oscillatory and hence only
absolute accuracy of the function can be maintained. For this range of x, the amplitude of the absolute

error decays like

ffiffiffiffiffiffi
	x

2

r
e�x=

ffiffi
2
p

, which implies a strong attenuation of error. Eventually, kei x, which is

asymptotically given by

ffiffiffiffiffiffi
	

2x

r
e�x=

ffiffi
2
p

, becomes so small that it cannot be calculated without causing

underflow and therefore the routine returns zero. Note that for large x, the errors are dominated by
those of the standard function exp.

8 Parallelism and Performance

S19ARF is not threaded in any implementation.

9 Further Comments

Underflow may occur for a few values of x close to the zeros of keix, below the limit which causes a
failure with IFAIL ¼ 1.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.
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10.1 Program Text

Program s19arfe

! S19ARF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s19arf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)
Integer, Allocatable :: ivalid(:)

! .. Executable Statements ..
Write (nout,*) ’S19ARF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F IVALID’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n),ivalid(n))

Read (nin,*) x(1:n)

ifail = 0
Call s19arf(n,x,f,ivalid,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i), ivalid(i)

End Do

99999 Format (1X,1P,2E12.3,I5)
End Program s19arfe

10.2 Program Data

S19ARF Example Program Data

7

0.0 0.1 1.0 2.5 5.0 10.0 15.0

10.3 Program Results

S19ARF Example Program Results

X F IVALID

0.000E+00 -7.854E-01 0
1.000E-01 -7.769E-01 0
1.000E+00 -4.950E-01 0
2.500E+00 -1.107E-01 0
5.000E+00 1.119E-02 0
1.000E+01 -3.075E-04 0
1.500E+01 7.963E-06 0
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NAG Library Routine Document

S20ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S20ACF returns a value for the Fresnel integral S xð Þ, via the function name.

2 Specification

FUNCTION S20ACF (X, IFAIL)
REAL (KIND=nag_wp) S20ACF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S20ACF evaluates an approximation to the Fresnel integral

S xð Þ ¼
Z x

0
sin

	

2
t2

� �
dt:

Note: S xð Þ ¼ �S �xð Þ, so the approximation need only consider x � 0:0.

The routine is based on three Chebyshev expansions:

For 0 < x � 3,

S xð Þ ¼ x3
X
r¼0

arTr tð Þ; with t ¼ 2
x

3

� �4
� 1:

For x > 3,

S xð Þ ¼ 1

2
� f xð Þ

x
cos

	

2
x2

� �
� g xð Þ

x3
sin

	

2
x2

� �
;

where f xð Þ ¼
P
r¼0
brTr tð Þ,

and g xð Þ ¼
P
r¼0
crTr tð Þ,

with t ¼ 2
3

x

� �4

� 1 .

For small x, S xð Þ ’ 	
6
x3 . This approximation is used when x is sufficiently small for the result to be

correct to machine precision. For very small x, this approximation would underflow; the result is then
set exactly to zero.

For large x, f xð Þ ’ 1

	
and g xð Þ ’ 1

	2
. Therefore for moderately large x, when

1

	2x3
is negligible

compared with 1
2 , the second term in the approximation for x > 3 may be dropped. For very large x,

when
1

	x
becomes negligible, S xð Þ ’ 1

2 . However there will be considerable difficulties in calculating

cos
	

2
x2

� �
accurately before this final limiting value can be used. Since cos

	

2
x2

� �
is periodic, its value

is essentially determined by the fractional part of x2. If x2 ¼ N þ � where N is an integer and

0 � � < 1, then cos
	

2
x2

� �
depends on � and on N modulo 4. By exploiting this fact, it is possible to

S – Approximations of Special Functions S20ACF

Mark 26 S20ACF.1



retain significance in the calculation of cos
	

2
x2

� �
either all the way to the very large x limit, or at least

until the integer part of
x

2
is equal to the maximum integer allowed on the machine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

There are no failure exits from S20ACF. The argument IFAIL has been included for consistency with
other routines in this chapter.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e., if � is due to data errors etc.), then � and � are
approximately related by:

� ’
x sin

	

2
x2

� �
S xð Þ

						
						�:

Figure 1 shows the behaviour of the error amplification factor
x sin

	

2
x2

� �
S xð Þ

						
						 .

However if � is of the same order as the machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x, � ’ 3� and hence there is only moderate amplification of relative error. Of course for very
small x where the correct result would underflow and exact zero is returned, relative error-control is
lost.

For moderately large values of x,

�j j ’ 2x sin
	

2
x2

� �			 			 �j j
and the result will be subject to increasingly large amplification of errors. However the above relation
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breaks down for large values of x (i.e., when
1

x2
is of the order of the machine precision); in this region

the relative error in the result is essentially bounded by
2

	x
.

Hence the effects of error amplification are limited and at worst the relative error loss should not exceed
half the possible number of significant figures.

0 0 . 5 1 1 . 5 2 2 . 5 3
0

1

2

3

4

5

6

7

8

ε/δ

x

Figure 1

8 Parallelism and Performance

S20ACF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s20acfe

! S20ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s20acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr
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! .. Executable Statements ..
Write (nout,*) ’S20ACF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
y = s20acf(x,ifail)

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s20acfe

10.2 Program Data

S20ACF Example Program Data
0.0
0.5
1.0
2.0
4.0
5.0
6.0
8.0
10.0
-1.0
1000.0

10.3 Program Results

S20ACF Example Program Results

X Y

0.000E+00 0.000E+00
5.000E-01 6.473E-02
1.000E+00 4.383E-01
2.000E+00 3.434E-01
4.000E+00 4.205E-01
5.000E+00 4.992E-01
6.000E+00 4.470E-01
8.000E+00 4.602E-01
1.000E+01 4.682E-01

-1.000E+00 -4.383E-01
1.000E+03 4.997E-01
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NAG Library Routine Document

S20ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S20ADF returns a value for the Fresnel integral C xð Þ, via the function name.

2 Specification

FUNCTION S20ADF (X, IFAIL)
REAL (KIND=nag_wp) S20ADF

INTEGER IFAIL
REAL (KIND=nag_wp) X

3 Description

S20ADF evaluates an approximation to the Fresnel integral

C xð Þ ¼
Z x

0
cos

	

2
t2

� �
dt:

Note: C xð Þ ¼ �C �xð Þ, so the approximation need only consider x � 0:0.

The routine is based on three Chebyshev expansions:

For 0 < x � 3,

C xð Þ ¼ x
X
r¼0

arTr tð Þ; with t ¼ 2
x

3

� �4
� 1:

For x > 3,

C xð Þ ¼ 1
2þ

f xð Þ
x

sin
	

2
x2

� �
� g xð Þ

x3
cos

	

2
x2

� �
;

where f xð Þ ¼
P
r¼0
brTr tð Þ,

and g xð Þ ¼
P
r¼0
crTr tð Þ,

with t ¼ 2
3

x

� �4

� 1 .

For small x, C xð Þ ’ x. This approximation is used when x is sufficiently small for the result to be
correct to machine precision.

For large x, f xð Þ ’ 1

	
and g xð Þ ’ 1

	2
. Therefore for moderately large x, when

1

	2x3
is negligible

compared with
1

2
, the second term in the approximation for x > 3 may be dropped. For very large x,

when
1

	x
becomes negligible, C xð Þ ’ 1

2
. However there will be considerable difficulties in calculating

sin
	

2
x2

� �
accurately before this final limiting value can be used. Since sin

	

2
x2

� �
is periodic, its value is

essentially determined by the fractional part of x2. If x2 ¼ N þ �, where N is an integer and 0 � � < 1,

then sin
	

2
x2

� �
depends on � and on N modulo 4. By exploiting this fact, it is possible to retain some
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significance in the calculation of sin
	

2
x2

� �
either all the way to the very large x limit, or at least until

the integer part of
x

2
is equal to the maximum integer allowed on the machine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

There are no failure exits from S20ADF. The argument IFAIL has been included for consistency with
other routines in this chapter.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e if � is due to data errors etc.), then � and � are
approximately related by:

� ’
x cos

	

2
x2

� �
C xð Þ

						
						�:

Figure 1 shows the behaviour of the error amplification factor
x cos

	

2
x2

� �
C xð Þ

						
						 .

However, if � is of the same order as the machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x, � ’ � and there is no amplification of relative error.

For moderately large values of x,

�j j ’ 2x cos
	

2
x2

� �			 			 �j j
and the result will be subject to increasingly large amplification of errors. However the above relation
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breaks down for large values of x (i.e., when
1

x2
is of the order of the machine precision); in this region

the relative error in the result is essentially bounded by
2

	x
.

Hence the effects of error amplification are limited and at worst the relative error loss should not exceed
half the possible number of significant figures.
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8 Parallelism and Performance

S20ADF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and
prints the results.

10.1 Program Text

Program s20adfe

! S20ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s20adf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x, y
Integer :: ifail, ioerr
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! .. Executable Statements ..
Write (nout,*) ’S20ADF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X Y’
Write (nout,*)

data: Do
Read (nin,*,Iostat=ioerr) x

If (ioerr<0) Then
Exit data

End If

ifail = 0
y = s20adf(x,ifail)

Write (nout,99999) x, y
End Do data

99999 Format (1X,1P,2E12.3)
End Program s20adfe

10.2 Program Data

S20ADF Example Program Data
0.0
0.5
1.0
2.0
4.0
5.0
6.0
8.0
10.0
-1.0
1000.0

10.3 Program Results

S20ADF Example Program Results

X Y

0.000E+00 0.000E+00
5.000E-01 4.923E-01
1.000E+00 7.799E-01
2.000E+00 4.883E-01
4.000E+00 4.984E-01
5.000E+00 5.636E-01
6.000E+00 4.995E-01
8.000E+00 4.998E-01
1.000E+01 4.999E-01

-1.000E+00 -7.799E-01
1.000E+03 5.000E-01
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NAG Library Routine Document

S20AQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S20AQF returns an array of values for the Fresnel integral S xð Þ.

2 Specification

SUBROUTINE S20AQF (N, X, F, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S20AQF evaluates an approximation to the Fresnel integral

S xið Þ ¼
Z xi

0
sin

	

2
t2

� �
dt

for an array of arguments xi, for i ¼ 1; 2; . . . ; n.

Note: S xð Þ ¼ �S �xð Þ, so the approximation need only consider x � 0:0.

The routine is based on three Chebyshev expansions:

For 0 < x � 3,

S xð Þ ¼ x3
X
r¼0

arTr tð Þ; with t ¼ 2
x

3

� �4
� 1:

For x > 3,

S xð Þ ¼ 1

2
� f xð Þ

x
cos

	

2
x2

� �
� g xð Þ

x3
sin

	

2
x2

� �
;

where f xð Þ ¼
P
r¼0
brTr tð Þ,

and g xð Þ ¼
P
r¼0
crTr tð Þ,

with t ¼ 2
3

x

� �4

� 1 .

For small x, S xð Þ ’ 	
6
x3 . This approximation is used when x is sufficiently small for the result to be

correct to machine precision. For very small x, this approximation would underflow; the result is then
set exactly to zero.

For large x, f xð Þ ’ 1

	
and g xð Þ ’ 1

	2
. Therefore for moderately large x, when

1

	2x3
is negligible

compared with 1
2 , the second term in the approximation for x > 3 may be dropped. For very large x,

when
1

	x
becomes negligible, S xð Þ ’ 1

2 . However there will be considerable difficulties in calculating

cos
	

2
x2

� �
accurately before this final limiting value can be used. Since cos

	

2
x2

� �
is periodic, its value

is essentially determined by the fractional part of x2. If x2 ¼ N þ � where N is an integer and

0 � � < 1, then cos
	

2
x2

� �
depends on � and on N modulo 4. By exploiting this fact, it is possible to
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retain significance in the calculation of cos
	

2
x2

� �
either all the way to the very large x limit, or at least

until the integer part of
x

2
is equal to the maximum integer allowed on the machine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: S xið Þ, the function values.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e., if � is due to data errors etc.), then � and � are
approximately related by:

� ’
x sin

	

2
x2

� �
S xð Þ

						
						�:

Figure 1 shows the behaviour of the error amplification factor
x sin

	

2
x2

� �
S xð Þ

						
						 .

However if � is of the same order as the machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x, � ’ 3� and hence there is only moderate amplification of relative error. Of course for very
small x where the correct result would underflow and exact zero is returned, relative error-control is
lost.

For moderately large values of x,

� ’ 2x sin
	

2
x2

� �			 			�
and the result will be subject to increasingly large amplification of errors. However the above relation

breaks down for large values of x (i.e., when
1

x2
is of the order of the machine precision); in this region

the relative error in the result is essentially bounded by
2

	x
.

Hence the effects of error amplification are limited and at worst the relative error loss should not exceed
half the possible number of significant figures.
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8 Parallelism and Performance

S20AQF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s20aqfe

! S20AQF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s20aqf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’S20AQF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
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Write (nout,*) ’ X F’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n))

Read (nin,*) x(1:n)

ifail = 0
Call s20aqf(n,x,f,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i)

End Do

99999 Format (1X,1P,2E12.3)
End Program s20aqfe

10.2 Program Data

S20AQF Example Program Data

11

0.0 0.5 1.0 2.0 4.0 5.0 6.0 8.0 10.0 -1.0 1000.0

10.3 Program Results

S20AQF Example Program Results

X F

0.000E+00 0.000E+00
5.000E-01 6.473E-02
1.000E+00 4.383E-01
2.000E+00 3.434E-01
4.000E+00 4.205E-01
5.000E+00 4.992E-01
6.000E+00 4.470E-01
8.000E+00 4.602E-01
1.000E+01 4.682E-01

-1.000E+00 -4.383E-01
1.000E+03 4.997E-01
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NAG Library Routine Document

S20ARF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S20ARF returns an array of values for the Fresnel integral C xð Þ.

2 Specification

SUBROUTINE S20ARF (N, X, F, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), F(N)

3 Description

S20ARF evaluates an approximation to the Fresnel integral

C xið Þ ¼
Z xi

0
cos

	

2
t2

� �
dt

for an array of arguments xi, for i ¼ 1; 2; . . . ; n.

Note: C xð Þ ¼ �C �xð Þ, so the approximation need only consider x � 0:0.

The routine is based on three Chebyshev expansions:

For 0 < x � 3,

C xð Þ ¼ x
X
r¼0

arTr tð Þ; with t ¼ 2
x

3

� �4
� 1:

For x > 3,

C xð Þ ¼ 1
2þ

f xð Þ
x

sin
	

2
x2

� �
� g xð Þ

x3
cos

	

2
x2

� �
;

where f xð Þ ¼
P
r¼0
brTr tð Þ,

and g xð Þ ¼
P
r¼0
crTr tð Þ,

with t ¼ 2
3

x

� �4

� 1 .

For small x, C xð Þ ’ x. This approximation is used when x is sufficiently small for the result to be
correct to machine precision.

For large x, f xð Þ ’ 1

	
and g xð Þ ’ 1

	2
. Therefore for moderately large x, when

1

	2x3
is negligible

compared with
1

2
, the second term in the approximation for x > 3 may be dropped. For very large x,

when
1

	x
becomes negligible, C xð Þ ’ 1

2
. However there will be considerable difficulties in calculating

sin
	

2
x2

� �
accurately before this final limiting value can be used. Since sin

	

2
x2

� �
is periodic, its value is

essentially determined by the fractional part of x2. If x2 ¼ N þ �, where N is an integer and 0 � � < 1,

then sin
	

2
x2

� �
depends on � and on N modulo 4. By exploiting this fact, it is possible to retain some
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significance in the calculation of sin
	

2
x2

� �
either all the way to the very large x limit, or at least until

the integer part of
x

2
is equal to the maximum integer allowed on the machine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

5 Arguments

1: N – INTEGER Input

On entry: n, the number of points.

Constraint: N � 0.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the argument xi of the function, for i ¼ 1; 2; . . . ;N.

3: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: C xið Þ, the function values.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Let � and � be the relative errors in the argument and result respectively.

If � is somewhat larger than the machine precision (i.e if � is due to data errors etc.), then � and � are
approximately related by:

� ’
x cos

	

2
x2

� �
C xð Þ

						
						�:

Figure 1 shows the behaviour of the error amplification factor
x cos

	

2
x2

� �
C xð Þ

						
						 .

However, if � is of the same order as the machine precision, then rounding errors could make � slightly
larger than the above relation predicts.

For small x, � ’ � and there is no amplification of relative error.

For moderately large values of x,

� ’ 2x cos
	

2
x2

� �			 			�
and the result will be subject to increasingly large amplification of errors. However the above relation

breaks down for large values of x (i.e., when
1

x2
is of the order of the machine precision); in this region

the relative error in the result is essentially bounded by
2

	x
.

Hence the effects of error amplification are limited and at worst the relative error loss should not exceed
half the possible number of significant figures.
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Figure 1
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8 Parallelism and Performance

S20ARF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of xi and prints the
results.

10.1 Program Text

Program s20arfe

! S20ARF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s20arf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ifail, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: f(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’S20ARF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ X F’
Write (nout,*)

Read (nin,*) n

Allocate (x(n),f(n))

Read (nin,*) x(1:n)

ifail = 0
Call s20arf(n,x,f,ifail)

Do i = 1, n
Write (nout,99999) x(i), f(i)

End Do

99999 Format (1X,1P,2E12.3)
End Program s20arfe

10.2 Program Data

S20ARF Example Program Data

11

0.0 0.5 1.0 2.0 4.0 5.0 6.0 8.0 10.0 -1.0 1000.0
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10.3 Program Results

S20ARF Example Program Results

X F

0.000E+00 0.000E+00
5.000E-01 4.923E-01
1.000E+00 7.799E-01
2.000E+00 4.883E-01
4.000E+00 4.984E-01
5.000E+00 5.636E-01
6.000E+00 4.995E-01
8.000E+00 4.998E-01
1.000E+01 4.999E-01

-1.000E+00 -7.799E-01
1.000E+03 5.000E-01
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NAG Library Routine Document

S21BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21BAF returns a value of an elementary integral, which occurs as a degenerate case of an elliptic
integral of the first kind, via the function name.

2 Specification

FUNCTION S21BAF (X, Y, IFAIL)
REAL (KIND=nag_wp) S21BAF

INTEGER IFAIL
REAL (KIND=nag_wp) X, Y

3 Description

S21BAF calculates an approximate value for the integral

RC x; yð Þ ¼ 1

2

Z 1
0

dt

tþ yð Þ:
ffiffiffiffiffiffiffiffiffiffiffi
tþ x
p

where x � 0 and y 6¼ 0.

This function, which is related to the logarithm or inverse hyperbolic functions for y < x and to inverse
circular functions if x < y, arises as a degenerate form of the elliptic integral of the first kind. If y < 0,
the result computed is the Cauchy principal value of the integral.

The basic algorithm, which is due to Carlson (1979) and Carlson (1988), is to reduce the arguments
recursively towards their mean by the system:

x0 ¼ x y0 ¼ y
�n ¼ xn þ 2ynð Þ=3; Sn ¼ yn � xnð Þ=3�n

�n ¼ yn þ 2
ffiffiffiffiffiffiffiffiffiffi
xnyn
p

xnþ1 ¼ xn þ �nð Þ=4; ynþ1 ¼ yn þ �nð Þ=4:
The quantity Snj j for n ¼ 0; 1; 2; 3; . . . decreases with increasing n, eventually Snj j � 1=4n. For small
enough Sn the required function value can be approximated by the first few terms of the Taylor series
about the mean. That is

RC x; yð Þ ¼ 1þ 3S2
n

10
þ S

3
n

7
þ 3S4

n

8
þ 9S5

n

22

� �
=
ffiffiffiffiffiffi
�n
p

:

The truncation error involved in using this approximation is bounded by 16 Snj j6= 1� 2 Snj jð Þ and the
recursive process is stopped when Sn is small enough for this truncation error to be negligible
compared to the machine precision.

Within the domain of definition, the function value is itself representable for all representable values of
its arguments. However, for values of the arguments near the extremes the above algorithm must be
modified so as to avoid causing underflows or overflows in intermediate steps. In extreme regions
arguments are prescaled away from the extremes and compensating scaling of the result is done before
returning to the calling program.
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4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1–16

Carlson B C (1988) A table of elliptic integrals of the third kind Math. Comput. 51 267–280

5 Arguments

1: X – REAL (KIND=nag_wp) Input
2: Y – REAL (KIND=nag_wp) Input

On entry: the arguments x and y of the function, respectively.

Constraint: X � 0:0 and Y 6¼ 0:0.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, X < 0:0; the function is undefined.

IFAIL ¼ 2

On entry, Y ¼ 0:0; the function is undefined.

On softfailure the routine returns zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

In principle the routine is capable of producing full machine precision. However round-off errors in
internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the
algorithm does not involve any significant amplification of round-off error. It is reasonable to assume
that the result is accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

S21BAF is not threaded in any implementation.

9 Further Comments

You should consult the S Chapter Introduction which shows the relationship of this function to the
classical definitions of the elliptic integrals.

10 Example

This example simply generates a small set of nonextreme arguments which are used with the routine to
produce the table of low accuracy results.

10.1 Program Text

Program s21bafe

! S21BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21baf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rc, x, y
Integer :: ifail, ix

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S21BAF Example Program Results’

Write (nout,*)
Write (nout,*) ’ X Y S21BAF’
Write (nout,*)

data: Do ix = 1, 3
x = real(ix,kind=nag_wp)*0.5E0_nag_wp
y = 1.0E0_nag_wp

ifail = -1
rc = s21baf(x,y,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y, rc
End Do data

99999 Format (1X,2F7.2,F12.4)
End Program s21bafe
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10.2 Program Data

None.

10.3 Program Results

S21BAF Example Program Results

X Y S21BAF

0.50 1.00 1.1107
1.00 1.00 1.0000
1.50 1.00 0.9312
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NAG Library Routine Document

S21BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21BBF returns a value of the symmetrised elliptic integral of the first kind, via the function name.

2 Specification

FUNCTION S21BBF (X, Y, Z, IFAIL)
REAL (KIND=nag_wp) S21BBF

INTEGER IFAIL
REAL (KIND=nag_wp) X, Y, Z

3 Description

S21BBF calculates an approximation to the integral

RF x; y; zð Þ ¼ 1
2

Z 1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ xð Þ tþ yð Þ tþ zð Þ

p
where x, y, z � 0 and at most one is zero.

The basic algorithm, which is due to Carlson (1979) and Carlson (1988), is to reduce the arguments
recursively towards their mean by the rule:

x0 ¼ min x; y; zð Þ, z0 ¼ max x; y; zð Þ,
y0 ¼ remaining third intermediate value argument.

(This ordering, which is possible because of the symmetry of the function, is done for technical reasons
related to the avoidance of overflow and underflow.)

�n ¼ xn þ yn þ znð Þ=3
Xn ¼ 1� xnð Þ=�n
Yn ¼ 1� ynð Þ=�n
Zn ¼ 1� znð Þ=�n
�n ¼ ffiffiffiffiffiffiffiffiffiffi

xnyn
p þ ffiffiffiffiffiffiffiffiffi

ynzn
p þ ffiffiffiffiffiffiffiffiffiffi

znxn
p

xnþ1 ¼ xn þ �nð Þ=4
ynþ1 ¼ yn þ �nð Þ=4
znþ1 ¼ zn þ �nð Þ=4

�n ¼ max Xnj j; Ynj j; Znj jð Þ and the function may be approximated adequately by a fifth order power
series:

RF x; y; zð Þ ¼ 1ffiffiffiffiffiffi
�n
p 1� E2

10
þ E

2
2

24
� 3E2E3

44
þ E3

14

� �
where E2 ¼ XnYn þ YnZn þ ZnXn, E3 ¼ XnYnZn.

The truncation error involved in using this approximation is bounded by �6n=4 1� �nð Þ and the recursive
process is stopped when this truncation error is negligible compared with the machine precision.

Within the domain of definition, the function value is itself representable for all representable values of
its arguments. However, for values of the arguments near the extremes the above algorithm must be
modified so as to avoid causing underflows or overflows in intermediate steps. In extreme regions
arguments are prescaled away from the extremes and compensating scaling of the result is done before
returning to the calling program.
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4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1–16

Carlson B C (1988) A table of elliptic integrals of the third kind Math. Comput. 51 267–280

5 Arguments

1: X – REAL (KIND=nag_wp) Input
2: Y – REAL (KIND=nag_wp) Input
3: Z – REAL (KIND=nag_wp) Input

On entry: the arguments x, y and z of the function.

Constraint: X, Y, Z � 0:0 and only one of X, Y and Z may be zero.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, one or more of X, Y and Z is negative; the function is undefined.

IFAIL ¼ 2

On entry, two or more of X, Y and Z are zero; the function is undefined. On softfailure, the
routine returns zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

In principle S21BBF is capable of producing full machine precision. However round-off errors in
internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the
algorithm does not involve any significant amplification of round-off error. It is reasonable to assume
that the result is accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

S21BBF is not threaded in any implementation.

9 Further Comments

You should consult the S Chapter Introduction which shows the relationship of this function to the
classical definitions of the elliptic integrals.

If two arguments are equal, the function reduces to the elementary integral RC , computed by S21BAF.

10 Example

This example simply generates a small set of nonextreme arguments which are used with the routine to
produce the table of low accuracy results.

10.1 Program Text

Program s21bbfe

! S21BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21bbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rf, x, y, z
Integer :: ifail, ix

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S21BBF Example Program Results’

Write (nout,*)
Write (nout,*) ’ X Y Z S21BBF’
Write (nout,*)

data: Do ix = 1, 3
x = real(ix,kind=nag_wp)*0.5E0_nag_wp
y = real(ix+1,kind=nag_wp)*0.5E0_nag_wp
z = real(ix+2,kind=nag_wp)*0.5E0_nag_wp

ifail = -1
rf = s21bbf(x,y,z,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y, z, rf
End Do data

99999 Format (1X,3F7.2,F12.4)
End Program s21bbfe
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10.2 Program Data

None.

10.3 Program Results

S21BBF Example Program Results

X Y Z S21BBF

0.50 1.00 1.50 1.0281
1.00 1.50 2.00 0.8260
1.50 2.00 2.50 0.7116
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NAG Library Routine Document

S21BCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21BCF returns a value of the symmetrised elliptic integral of the second kind, via the function name.

2 Specification

FUNCTION S21BCF (X, Y, Z, IFAIL)
REAL (KIND=nag_wp) S21BCF

INTEGER IFAIL
REAL (KIND=nag_wp) X, Y, Z

3 Description

S21BCF calculates an approximate value for the integral

RD x; y; zð Þ ¼ 3
2

Z 1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ xð Þ tþ yð Þ tþ zð Þ3

q
where x, y � 0, at most one of x and y is zero, and z > 0.

The basic algorithm, which is due to Carlson (1979) and Carlson (1988), is to reduce the arguments
recursively towards their mean by the rule:

x0 ¼ x; y0 ¼ y; z0 ¼ z
�n ¼ xn þ yn þ 3znð Þ=5
Xn ¼ 1� xnð Þ=�n
Yn ¼ 1� ynð Þ=�n
Zn ¼ 1� znð Þ=�n
�n ¼ ffiffiffiffiffiffiffiffiffiffi

xnyn
p þ ffiffiffiffiffiffiffiffiffi

ynzn
p þ ffiffiffiffiffiffiffiffiffiffi

znxn
p

xnþ1 ¼ xn þ �nð Þ=4
ynþ1 ¼ yn þ �nð Þ=4
znþ1 ¼ zn þ �nð Þ=4

For n sufficiently large,

�n ¼ max Xnj j; Ynj j; Znj jð Þ � 1
4

� �n
and the function may be approximated adequately by a fifth order power series

RD x; y; zð Þ ¼ 3
Xn�1
m¼0

4�m

zmþ�nð Þ ffiffiffiffizmp

þ 4�nffiffiffiffiffiffi
�3n

p 1þ 3

7
S 2ð Þ
n þ

1

3
S 3ð Þ
n þ

3

22
S 2ð Þ
n

� �2 þ 3

11
S 4ð Þ
n þ

3

13
S 2ð Þ
n S 3ð Þ

n þ
3

13
S 5ð Þ
n

� �
where S mð Þ

n ¼ Xm
n þ Y m

n þ 3Zm
n

� �
=2m: The truncation error in this expansion is bounded by

3�6nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �nð Þ3

q and the recursive process is terminated when this quantity is negligible compared with

the machine precision.
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The routine may fail either because it has been called with arguments outside the domain of definition,
or with arguments so extreme that there is an unavoidable danger of setting underflow or overflow.

Note: RD x; x; xð Þ ¼ x�3=2, so there exists a region of extreme arguments for which the function value
is not representable.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1–16

Carlson B C (1988) A table of elliptic integrals of the third kind Math. Comput. 51 267–280

5 Arguments

1: X – REAL (KIND=nag_wp) Input
2: Y – REAL (KIND=nag_wp) Input
3: Z – REAL (KIND=nag_wp) Input

On entry: the arguments x, y and z of the function.

Constraint: X, Y � 0:0, Z > 0:0 and only one of X and Y may be zero.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, either X or Y is negative, or both X and Y are zero; the function is undefined.

IFAIL ¼ 2

On entry, Z � 0:0; the function is undefined.

IFAIL ¼ 3

On entry, either Z is too close to zero or both X and Y are too close to zero: there is a danger of
setting overflow. See also the Users' Note for your implementation.

IFAIL ¼ 4

On entry, at least one of X, Y and Z is too large: there is a danger of setting underflow. On
softfailure the routine returns zero. See also the Users' Note for your implementation.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In principle the routine is capable of producing full machine precision. However round-off errors in
internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the
algorithm does not involve any significant amplification of round-off error. It is reasonable to assume
that the result is accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

S21BCF is not threaded in any implementation.

9 Further Comments

You should consult the S Chapter Introduction which shows the relationship of this function to the
classical definitions of the elliptic integrals.

10 Example

This example simply generates a small set of nonextreme arguments which are used with the routine to
produce the table of low accuracy results.

10.1 Program Text

Program s21bcfe

! S21BCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21bcf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: rd, x, y, z
Integer :: ifail, ix, iy

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S21BCF Example Program Results’

Write (nout,*)
Write (nout,*) ’ X Y Z S21BCF’
Write (nout,*)

S – Approximations of Special Functions S21BCF

Mark 26 S21BCF.3



data: Do ix = 1, 3
x = real(ix,kind=nag_wp)*0.5E0_nag_wp

Do iy = ix, 3
y = real(iy,kind=nag_wp)*0.5E0_nag_wp
z = 1.0E0_nag_wp

ifail = -1
rd = s21bcf(x,y,z,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y, z, rd
End Do

End Do data

99999 Format (1X,3F7.2,F12.4)
End Program s21bcfe

10.2 Program Data

None.

10.3 Program Results

S21BCF Example Program Results

X Y Z S21BCF

0.50 0.50 1.00 1.4787
0.50 1.00 1.00 1.2108
0.50 1.50 1.00 1.0611
1.00 1.00 1.00 1.0000
1.00 1.50 1.00 0.8805
1.50 1.50 1.00 0.7775
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NAG Library Routine Document

S21BDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21BDF returns a value of the symmetrised elliptic integral of the third kind, via the function name.

2 Specification

FUNCTION S21BDF (X, Y, Z, R, IFAIL)
REAL (KIND=nag_wp) S21BDF

INTEGER IFAIL
REAL (KIND=nag_wp) X, Y, Z, R

3 Description

S21BDF calculates an approximation to the integral

RJ x; y; z; �ð Þ ¼ 3
2

Z 1
0

dt

tþ �ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ xð Þ tþ yð Þ tþ zð Þ

p
where x, y, z � 0, � 6¼ 0 and at most one of x, y and z is zero.

If � < 0, the result computed is the Cauchy principal value of the integral.

The basic algorithm, which is due to Carlson (1979) and Carlson (1988), is to reduce the arguments
recursively towards their mean by the rule:

x0 ¼ x; y0 ¼ y; z0 ¼ z; �0 ¼ �
�n ¼ xn þ yn þ zn þ 2�nð Þ=5
Xn ¼ 1� xn=�n
Yn ¼ 1� yn=�n
Zn ¼ 1� zn=�n
Pn ¼ 1� �n=�n
�n ¼ ffiffiffiffiffiffiffiffiffiffi

xnyn
p þ ffiffiffiffiffiffiffiffiffi

ynzn
p þ ffiffiffiffiffiffiffiffiffiffi

znxn
p

xnþ1 ¼ xn þ �nð Þ=4
ynþ1 ¼ yn þ �nð Þ=4
znþ1 ¼ zn þ �nð Þ=4
�nþ1 ¼ �n þ �nð Þ=4
�n ¼ �n

ffiffiffiffiffi
xn
p

;þ ffiffiffiffiffi
yn
p

;þ ffiffiffiffiffi
zn
p� �

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnynzn
p� �2

�n ¼ �n �n þ �nð Þ2

For n sufficiently large,

�n ¼ max Xnj j; Ynj j; Znj j; Pnj jð Þ � 1

4n

and the function may be approximated by a fifth order power series
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RJ x; y; z; �ð Þ ¼ 3
Xn�1
m¼0

4�mRC �m; �mð Þ

þ 4�nffiffiffiffiffiffi
�3n

p 1þ 3

7
S 2ð Þ
n þ

1

3
S 3ð Þ
n þ

3

22
S 2ð Þ
n

� �2 þ 3

11
S 4ð Þ
n þ

3

13
S 2ð Þ
n S 3ð Þ

n þ
3

13
S 5ð Þ
n

� �
where S mð Þ

n ¼ Xm
n þ Y m

n þ Zm
n þ 2Pm

n

� �
=2m.

The truncation error in this expansion is bounded by 3�6n=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �nð Þ3

q
and the recursion process is

terminated when this quantity is negligible compared with the machine precision. The routine may fail
either because it has been called with arguments outside the domain of definition or with arguments so
extreme that there is an unavoidable danger of setting underflow or overflow.

Note: RJ x; x; x; xð Þ ¼ x�
3
2 , so there exists a region of extreme arguments for which the function value

is not representable.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1–16

Carlson B C (1988) A table of elliptic integrals of the third kind Math. Comput. 51 267–280

5 Arguments

1: X – REAL (KIND=nag_wp) Input
2: Y – REAL (KIND=nag_wp) Input
3: Z – REAL (KIND=nag_wp) Input
4: R – REAL (KIND=nag_wp) Input

On entry: the arguments x, y, z and � of the function.

Constraint: X, Y, Z � 0:0, R 6¼ 0:0 and at most one of X, Y and Z may be zero.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, at least one of X, Y and Z is negative, or at least two of them are zero; the function is
undefined.

IFAIL ¼ 2

R ¼ 0:0; the function is undefined.

IFAIL ¼ 3

On entry, either R is too close to zero, or any two of X, Y and Z are too close to zero; there is a
danger of setting overflow. See also the Users' Note for your implementation.

IFAIL ¼ 4

On entry, at least one of X, Y, Z and R is too large; there is a danger of setting underflow. See
also the Users' Note for your implementation.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In principle the routine is capable of producing full machine precision. However round-off errors in
internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the
algorithm does not involve any significant amplification of round-off error. It is reasonable to assume
that the result is accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

S21BDF is not threaded in any implementation.

9 Further Comments

You should consult the S Chapter Introduction which shows the relationship of this function to the
classical definitions of the elliptic integrals.

If the argument R is equal to any of the other arguments, the function reduces to the integral RD,
computed by S21BCF.
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10 Example

This example simply generates a small set of nonextreme arguments which are used with the routine to
produce the table of low accuracy results.

10.1 Program Text

Program s21bdfe

! S21BDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21bdf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: r, rj, x, y, z
Integer :: ifail, ix, iy, iz

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S21BDF Example Program Results’

Write (nout,*)
Write (nout,*) ’ X Y Z R S21BDF’
Write (nout,*)

data: Do ix = 1, 3
x = real(ix,kind=nag_wp)*0.5E0_nag_wp

Do iy = ix, 3
y = real(iy,kind=nag_wp)*0.5E0_nag_wp

Do iz = iy, 3
z = real(iz,kind=nag_wp)*0.5E0_nag_wp
r = 2.0E0_nag_wp

ifail = -1
rj = s21bdf(x,y,z,r,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) x, y, z, r, rj
End Do

End Do

End Do data

99999 Format (1X,4F7.2,F12.4)
End Program s21bdfe

10.2 Program Data

None.
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10.3 Program Results

S21BDF Example Program Results

X Y Z R S21BDF

0.50 0.50 0.50 2.00 1.1184
0.50 0.50 1.00 2.00 0.9221
0.50 0.50 1.50 2.00 0.8115
0.50 1.00 1.00 2.00 0.7671
0.50 1.00 1.50 2.00 0.6784
0.50 1.50 1.50 2.00 0.6017
1.00 1.00 1.00 2.00 0.6438
1.00 1.00 1.50 2.00 0.5722
1.00 1.50 1.50 2.00 0.5101
1.50 1.50 1.50 2.00 0.4561
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NAG Library Routine Document

S21BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21BEF returns a value of the classical (Legendre) form of the incomplete elliptic integral of the first
kind, via the function name.

2 Specification

FUNCTION S21BEF (PHI, DM, IFAIL)
REAL (KIND=nag_wp) S21BEF

INTEGER IFAIL
REAL (KIND=nag_wp) PHI, DM

3 Description

S21BEF calculates an approximation to the integral

F 
 j mð Þ ¼
Z 


0
1�m sin2 �
� ��1

2d�;

where 0 � 
 � 	
2 , m sin2 
 � 1 and m and sin
 may not both equal one.

The integral is computed using the symmetrised elliptic integrals of Carlson (Carlson (1979) and
Carlson (1988)). The relevant identity is

F 
 j mð Þ ¼ RF q; r; 1ð Þ sin
;

where q ¼ cos2 
, r ¼ 1�m sin2 
 and RF is the Carlson symmetrised incomplete elliptic integral of
the first kind (see S21BBF).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1–16

Carlson B C (1988) A table of elliptic integrals of the third kind Math. Comput. 51 267–280

5 Arguments

1: PHI – REAL (KIND=nag_wp) Input
2: DM – REAL (KIND=nag_wp) Input

On entry: the arguments 
 and m of the function.

Constraints:

0:0 � PHI � 	
2;

DM� sin2 PHIð Þ � 1:0;
Only one of sin PHIð Þ and DM may be 1:0.

Note that DM� sin2 PHIð Þ ¼ 1:0 is allowable, as long as DM 6¼ 1:0.
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3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, PHI ¼ valueh i.
Constraint: 0 � PHI � 	

2 .
On softfailure, the routine returns zero.

IFAIL ¼ 2

On entry, PHI ¼ valueh i and DM ¼ valueh i; the integral is undefined.
Constraint: DM� sin2 PHIð Þ � 1:0.
On softfailure, the routine returns zero.

IFAIL ¼ 3

On entry, sin PHIð Þ ¼ 1 and DM ¼ 1:0; the integral is infinite.
On softfailure, the routine returns the largest machine number (see X02ALF).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In principle S21BEF is capable of producing full machine precision. However round-off errors in
internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the
algorithm does not involve any significant amplification of round-off error. It is reasonable to assume
that the result is accurate to within a small multiple of the machine precision.
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8 Parallelism and Performance

S21BEF is not threaded in any implementation.

9 Further Comments

You should consult the S Chapter Introduction, which shows the relationship between this routine and
the Carlson definitions of the elliptic integrals. In particular, the relationship between the argument-
constraints for both forms becomes clear.

For more information on the algorithm used to compute RF , see the routine document for S21BBF.

If you wish to input a value of PHI outside the range allowed by this routine you should refer to
Section 17.4 of Abramowitz and Stegun (1972) for useful identities. For example,
F �
jmð Þ ¼ �F 
jmð Þ and F s	
 
jmð Þ ¼ 2sK mð Þ 
 F 
jmð Þ where s is an integer and K mð Þ is
the complete elliptic integral given by S21BHF.

A parameter m > 1 can be replaced by one less than unity using F 
jmð Þ ¼ 1ffiffiffi
m
p F �j 1m

� �
,

sin � ¼ ffiffiffiffiffi
m
p

sin
.

10 Example

This example simply generates a small set of nonextreme arguments that are used with the routine to
produce the table of results.

10.1 Program Text

Program s21befe

! S21BEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21bef, x01aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dm, f, phi, pi
Integer :: ifail, ix

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S21BEF Example Program Results’

Write (nout,*)
Write (nout,*) ’ PHI DM S21BEF’
Write (nout,*)

pi = x01aaf(pi)

data: Do ix = 1, 3
phi = real(ix,kind=nag_wp)*pi/6.0E0_nag_wp
dm = real(ix,kind=nag_wp)*0.25E0_nag_wp

ifail = -1
f = s21bef(phi,dm,ifail)

If (ifail<0) Then
Exit data

End If
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Write (nout,99999) phi, dm, f
End Do data

99999 Format (1X,2F7.2,F12.4)
End Program s21befe

10.2 Program Data

None.

10.3 Program Results

S21BEF Example Program Results

PHI DM S21BEF

0.52 0.25 0.5294
1.05 0.50 1.1424
1.57 0.75 2.1565

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0

 2

 4

 6

 8

 10

Example Program
Classical (Legendre) Form of the Incomplete Elliptic Integral of the First Kind

f

m
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NAG Library Routine Document

S21BFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21BFF returns a value of the classical (Legendre) form of the incomplete elliptic integral of the
second kind, via the function name.

2 Specification

FUNCTION S21BFF (PHI, DM, IFAIL)
REAL (KIND=nag_wp) S21BFF

INTEGER IFAIL
REAL (KIND=nag_wp) PHI, DM

3 Description

S21BFF calculates an approximation to the integral

E 
 j mð Þ ¼
Z 


0
1�m sin2 �
� �1

2d�;

where 0 � 
 � 	
2 and m sin2 
 � 1.

The integral is computed using the symmetrised elliptic integrals of Carlson (Carlson (1979) and
Carlson (1988)). The relevant identity is

E 
 j mð Þ ¼ sin
RF q; r; 1ð Þ � 1

3
m sin3 
RD q; r; 1ð Þ;

where q ¼ cos2 
, r ¼ 1�m sin2 
, RF is the Carlson symmetrised incomplete elliptic integral of the
first kind (see S21BBF) and RD is the Carlson symmetrised incomplete elliptic integral of the second
kind (see S21BCF).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1–16

Carlson B C (1988) A table of elliptic integrals of the third kind Math. Comput. 51 267–280

5 Arguments

1: PHI – REAL (KIND=nag_wp) Input
2: DM – REAL (KIND=nag_wp) Input

On entry: the arguments 
 and m of the function.

Constraints:

0:0 � PHI � 	
2;

DM� sin2 PHIð Þ � 1:0.
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3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, PHI ¼ valueh i.
Constraint: 0 � PHI � 	

2 .

IFAIL ¼ 2

On entry, PHI ¼ valueh i and DM ¼ valueh i; the integral is undefined.
Constraint: DM� sin2 PHIð Þ � 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In principle S21BFF is capable of producing full machine precision. However round-off errors in
internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the
algorithm does not involve any significant amplification of round-off error. It is reasonable to assume
that the result is accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

S21BFF is not threaded in any implementation.
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9 Further Comments

You should consult the S Chapter Introduction, which shows the relationship between this routine and
the Carlson definitions of the elliptic integrals. In particular, the relationship between the argument-
constraints for both forms becomes clear.

For more information on the algorithms used to compute RF and RD, see the routine documents for
S21BBF and S21BCF, respectively.

If you wish to input a value of PHI outside the range allowed by this routine you should refer to
Section 17.4 of Abramowitz and Stegun (1972) for useful identities. For example,
E �
jmð Þ ¼ �E 
jmð Þ. A parameter m > 1 can be replaced by one less than unity using
E 
jmð Þ ¼ ffiffiffiffiffi

m
p

E 

ffiffiffiffiffi
m
p j 1m

� �
� m� 1ð Þ
 .

10 Example

This example simply generates a small set of nonextreme arguments that are used with the routine to
produce the table of results.

10.1 Program Text

Program s21bffe

! S21BFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21bff, x01aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dm, f, phi, pi
Integer :: ifail, ix

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S21BFF Example Program Results’

Write (nout,*)
Write (nout,*) ’ PHI DM S21BFF’
Write (nout,*)

pi = x01aaf(pi)

data: Do ix = 1, 3
phi = real(ix,kind=nag_wp)*pi/6.0E0_nag_wp
dm = real(ix,kind=nag_wp)*0.25E0_nag_wp

ifail = -1
f = s21bff(phi,dm,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) phi, dm, f
End Do data

99999 Format (1X,2F7.2,F12.4)
End Program s21bffe

10.2 Program Data

None.
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10.3 Program Results

S21BFF Example Program Results

PHI DM S21BFF

0.52 0.25 0.5179
1.05 0.50 0.9650
1.57 0.75 1.2111

 1
 1.1

 1.2
 1.3

 1.4
 1.5

 1.6

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Example Program
Classical (Legendre) Form of the Incomplete Elliptic Integral of the Second Kind
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NAG Library Routine Document

S21BGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21BGF returns a value of the classical (Legendre) form of the incomplete elliptic integral of the third
kind, via the function name.

2 Specification

FUNCTION S21BGF (DN, PHI, DM, IFAIL)
REAL (KIND=nag_wp) S21BGF

INTEGER IFAIL
REAL (KIND=nag_wp) DN, PHI, DM

3 Description

S21BGF calculates an approximation to the integral

� n;
 j mð Þ ¼
Z 


0
1� n sin2 �
� ��1

1�m sin2 �
� ��1

2d�;

where 0 � 
 � 	
2 , m sin2 
 � 1, m and sin
 may not both equal one, and n sin2 
 6¼ 1.

The integral is computed using the symmetrised elliptic integrals of Carlson (Carlson (1979) and
Carlson (1988)). The relevant identity is

� n;
 j mð Þ ¼ sin
RF q; r; 1ð Þ þ 1

3
n sin3 
RJ q; r; 1; sð Þ;

where q ¼ cos2 
, r ¼ 1�m sin2 
, s ¼ 1� n sin2 
, RF is the Carlson symmetrised incomplete elliptic
integral of the first kind (see S21BBF) and RJ is the Carlson symmetrised incomplete elliptic integral
of the third kind (see S21BDF).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1–16

Carlson B C (1988) A table of elliptic integrals of the third kind Math. Comput. 51 267–280

5 Arguments

1: DN – REAL (KIND=nag_wp) Input
2: PHI – REAL (KIND=nag_wp) Input
3: DM – REAL (KIND=nag_wp) Input

On entry: the arguments n, 
 and m of the function.

Constraints:

0:0 � PHI � 	
2;

DM� sin2 PHIð Þ � 1:0;
Only one of sin PHIð Þ and DM may be 1:0;
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DN� sin2 PHIð Þ 6¼ 1:0.

Note that DM� sin2 PHIð Þ ¼ 1:0 is allowable, as long as DM 6¼ 1:0.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, PHI ¼ valueh i.
Constraint: 0 � PHI � 	=2ð Þ.

IFAIL ¼ 2

On entry, PHI ¼ valueh i and DM ¼ valueh i; the integral is undefined.
Constraint: DM� sin2 PHIð Þ � 1:0.

IFAIL ¼ 3

On entry, sin PHIð Þ ¼ 1 and DM ¼ 1:0; the integral is infinite.

IFAIL ¼ 4

On entry, PHI ¼ valueh i and DN ¼ valueh i; the integral is infinite.
Constraint: DN� sin2 PHIð Þ 6¼ 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

In principle S21BGF is capable of producing full machine precision. However round-off errors in
internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the
algorithm does not involve any significant amplification of round-off error. It is reasonable to assume
that the result is accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

S21BGF is not threaded in any implementation.

9 Further Comments

You should consult the S Chapter Introduction, which shows the relationship between this routine and
the Carlson definitions of the elliptic integrals. In particular, the relationship between the argument-
constraints for both forms becomes clear.

For more information on the algorithms used to compute RF and RJ , see the routine documents for
S21BBF and S21BDF, respectively.

If you wish to input a value of PHI outside the range allowed by this routine you should refer to
Section 17.4 of Abramowitz and Stegun (1972) for useful identities.

10 Example

This example simply generates a small set of nonextreme arguments that are used with the routine to
produce the table of results.

10.1 Program Text

Program s21bgfe

! S21BGF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21bgf, x01aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dm, dn, f, phi, pi
Integer :: ifail, ix

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S21BGF Example Program Results’

Write (nout,*)
Write (nout,*) ’ DN PHI DM S21BGF’
Write (nout,*)

pi = x01aaf(pi)

data: Do ix = 1, 3
phi = real(ix,kind=nag_wp)*pi/6.0E0_nag_wp
dm = real(ix,kind=nag_wp)*0.25E0_nag_wp
dn = ((-1.0E0_nag_wp)**(ix+1))*real(ix,kind=nag_wp)*0.1E0_nag_wp

ifail = -1
f = s21bgf(dn,phi,dm,ifail)

If (ifail<0) Then
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Exit data
End If

Write (nout,99999) dn, phi, dm, f
End Do data

99999 Format (1X,3F7.2,F12.4)
End Program s21bgfe

10.2 Program Data

None.

10.3 Program Results

S21BGF Example Program Results

DN PHI DM S21BGF

0.10 0.52 0.25 0.5341
-0.20 1.05 0.50 1.0778
0.30 1.57 0.75 2.6568
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NAG Library Routine Document

S21BHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21BHF returns a value of the classical (Legendre) form of the complete elliptic integral of the first
kind, via the function name.

2 Specification

FUNCTION S21BHF (DM, IFAIL)
REAL (KIND=nag_wp) S21BHF

INTEGER IFAIL
REAL (KIND=nag_wp) DM

3 Description

S21BHF calculates an approximation to the integral

K mð Þ ¼
Z 	

2

0
1�m sin2 �
� ��1

2d�;

where m < 1.

The integral is computed using the symmetrised elliptic integrals of Carlson (Carlson (1979) and
Carlson (1988)). The relevant identity is

K mð Þ ¼ RF 0; 1�m; 1ð Þ;

where RF is the Carlson symmetrised incomplete elliptic integral of the first kind (see S21BBF).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1–16

Carlson B C (1988) A table of elliptic integrals of the third kind Math. Comput. 51 267–280

5 Arguments

1: DM – REAL (KIND=nag_wp) Input

On entry: the argument m of the function.

Constraint: DM < 1:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
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recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, DM ¼ valueh i; the integral is undefined.
Constraint: DM < 1:0.
On softfailure, the routine returns zero.

IFAIL ¼ 2

On entry, DM ¼ 1:0; the integral is infinite.
On softfailure, the routine returns the largest machine number (see X02ALF).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In principle S21BHF is capable of producing full machine precision. However round-off errors in
internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the
algorithm does not involve any significant amplification of round-off error. It is reasonable to assume
that the result is accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

S21BHF is not threaded in any implementation.

9 Further Comments

You should consult the S Chapter Introduction, which shows the relationship between this routine and
the Carlson definitions of the elliptic integrals. In particular, the relationship between the argument-
constraints for both forms becomes clear.

For more information on the algorithm used to compute RF , see the routine document for S21BBF.
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10 Example

This example simply generates a small set of nonextreme arguments that are used with the routine to
produce the table of results.

10.1 Program Text

Program s21bhfe

! S21BHF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21bhf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dm, f
Integer :: ifail, ix

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S21BHF Example Program Results’

Write (nout,*)
Write (nout,*) ’ DM S21BHF’
Write (nout,*)

data: Do ix = 1, 3
dm = real(ix,kind=nag_wp)*0.25E0_nag_wp

ifail = -1
f = s21bhf(dm,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) dm, f
End Do data

99999 Format (1X,F7.2,F12.4)
End Program s21bhfe

10.2 Program Data

None.

10.3 Program Results

S21BHF Example Program Results

DM S21BHF

0.25 1.6858
0.50 1.8541
0.75 2.1565
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NAG Library Routine Document

S21BJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21BJF returns a value of the classical (Legendre) form of the complete elliptic integral of the second
kind, via the function name.

2 Specification

FUNCTION S21BJF (DM, IFAIL)
REAL (KIND=nag_wp) S21BJF

INTEGER IFAIL
REAL (KIND=nag_wp) DM

3 Description

S21BJF calculates an approximation to the integral

E mð Þ ¼
Z 	

2

0
1�m sin2 �
� �1

2d�;

where m � 1.

The integral is computed using the symmetrised elliptic integrals of Carlson (Carlson (1979) and
Carlson (1988)). The relevant identity is

E mð Þ ¼ RF 0; 1�m; 1ð Þ � 1

3
mRD 0; 1�m; 1ð Þ;

where RF is the Carlson symmetrised incomplete elliptic integral of the first kind (see S21BBF) and
RD is the Carlson symmetrised incomplete elliptic integral of the second kind (see S21BCF).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1–16

Carlson B C (1988) A table of elliptic integrals of the third kind Math. Comput. 51 267–280

5 Arguments

1: DM – REAL (KIND=nag_wp) Input

On entry: the argument m of the function.

Constraint: DM � 1:0.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, DM ¼ valueh i; the integral is undefined.
Constraint: DM � 1:0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In principle S21BJF is capable of producing full machine precision. However round-off errors in
internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the
algorithm does not involve any significant amplification of round-off error. It is reasonable to assume
that the result is accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

S21BJF is not threaded in any implementation.

9 Further Comments

You should consult the S Chapter Introduction, which shows the relationship between this routine and
the Carlson definitions of the elliptic integrals. In particular, the relationship between the argument-
constraints for both forms becomes clear.

For more information on the algorithms used to compute RF and RD, see the routine documents for
S21BBF and S21BCF, respectively.

10 Example

This example simply generates a small set of nonextreme arguments that are used with the routine to
produce the table of results.
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10.1 Program Text

Program s21bjfe

! S21BJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21bjf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dm, f
Integer :: ifail, ix

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S21BJF Example Program Results’

Write (nout,*)
Write (nout,*) ’ DM S21BJF’
Write (nout,*)

data: Do ix = 1, 3
dm = real(ix,kind=nag_wp)*0.25E0_nag_wp

ifail = -1
f = s21bjf(dm,ifail)

If (ifail<0) Then
Exit data

End If

Write (nout,99999) dm, f
End Do data

99999 Format (1X,F7.2,F12.4)
End Program s21bjfe

10.2 Program Data

None.

10.3 Program Results

S21BJF Example Program Results

DM S21BJF

0.25 1.4675
0.50 1.3506
0.75 1.2111
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NAG Library Routine Document

S21CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21CAF evaluates the Jacobian elliptic functions sn, cn and dn.

2 Specification

SUBROUTINE S21CAF (U, M, SN, CN, DN, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) U, M, SN, CN, DN

3 Description

S21CAF evaluates the Jacobian elliptic functions of argument u and argument m,

sn u j mð Þ ¼ sin
;
cn u j mð Þ ¼ cos
;

dn u j mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2 


p
;

where 
, called the amplitude of u, is defined by the integral

u ¼
Z 


0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2 �
p :

The elliptic functions are sometimes written simply as sn u, cnu and dnu, avoiding explicit reference to
the argument m.

Another nine elliptic functions may be computed via the formulae

cd u ¼ cnu= dnu
sd u ¼ snu= dnu
ndu ¼ 1= dnu
dc u ¼ dnu= cnu
nc u ¼ 1= cnu
sc u ¼ snu= cnu
nsu ¼ 1= snu
dsu ¼ dnu= snu
cs u ¼ cnu= snu

(see Abramowitz and Stegun (1972)).

S21CAF is based on a procedure given by Bulirsch (1960), and uses the process of the arithmetic-
geometric mean (16.9 in Abramowitz and Stegun (1972)). Constraints are placed on the values of u and
m in order to avoid the possibility of machine overflow.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Bulirsch R (1960) Numerical calculation of elliptic integrals and elliptic functions Numer. Math. 7 76–
90
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5 Arguments

1: U – REAL (KIND=nag_wp) Input
2: M – REAL (KIND=nag_wp) Input

On entry: the argument u and the argument m of the functions, respectively.

Constraints:

abs Uð Þ �
ffiffiffi
�
p

, where � ¼ 1=X02AMF;
if abs Uð Þ < 1=

ffiffiffi
�
p

, abs Mð Þ �
ffiffiffi
�
p

.

3: SN – REAL (KIND=nag_wp) Output
4: CN – REAL (KIND=nag_wp) Output
5: DN – REAL (KIND=nag_wp) Output

On exit: the values of the functions sn u, cnu and dnu, respectively.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, abs Uð Þ >
ffiffiffi
�
p

, where � ¼ 1=X02AMFðÞ.

IFAIL ¼ 2

On entry, abs Mð Þ >
ffiffiffi
�
p

and abs Uð Þ < 1=
ffiffiffi
�
p

.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

In principle the routine is capable of achieving full relative precision in the computed values. However,
the accuracy obtainable in practice depends on the accuracy of the standard elementary functions such
as SIN and COS.

8 Parallelism and Performance

S21CAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument u and argument m from a file, evaluates the function and
prints the results.

10.1 Program Text

Program s21cafe

! S21CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: cn, dn, m, sn, u
Integer :: ifail, ioerr

! .. Executable Statements ..
Write (nout,*) ’S21CAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) &

’ U M SN CN DN’

data: Do
Read (nin,*,Iostat=ioerr) u, m

If (ioerr<0) Then
Exit data

End If

ifail = 0
Call s21caf(u,m,sn,cn,dn,ifail)

Write (nout,99999) u, m, sn, cn, dn
End Do data

99999 Format (3X,5E13.4)
End Program s21cafe
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10.2 Program Data

S21CAF Example Program Data
0.2 0.3
5.0 -1.0

-0.5 -0.1
10.0 11.0

10.3 Program Results

S21CAF Example Program Results

U M SN CN DN
0.2000E+00 0.3000E+00 0.1983E+00 0.9801E+00 0.9941E+00
0.5000E+01 -0.1000E+01 -0.2440E+00 0.9698E+00 0.1029E+01

-0.5000E+00 -0.1000E+00 -0.4812E+00 0.8766E+00 0.1012E+01
0.1000E+02 0.1100E+02 0.2512E+00 0.9679E+00 0.5528E+00
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NAG Library Routine Document

S21CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21CBF evaluates the Jacobian elliptic functions sn z, cn z and dn z for a complex argument z.

2 Specification

SUBROUTINE S21CBF (Z, AK2, SN, CN, DN, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) AK2
COMPLEX (KIND=nag_wp) Z, SN, CN, DN

3 Description

S21CBF evaluates the Jacobian elliptic functions sn z j kð Þ, cn z j kð Þ and dn z j kð Þ given by

sn z j kð Þ ¼ sin

cn z j kð Þ ¼ cos


dn z j kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 


p
;

where z is a complex argument, k is a real argument (the modulus) with k2 � 1 and 
 (the amplitude of
z) is defined by the integral

z ¼
Z 


0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 �
p :

The above definitions can be extended for values of k2 > 1 (see Salzer (1962)) by means of the
formulae

sn z j kð Þ ¼ k1 sn kz j k1ð Þ
cn z j kð Þ ¼ dn kz j k1ð Þ
dn z j kð Þ ¼ cn kz j k1ð Þ;

where k1 ¼ 1=k.

Special values include

sn z j 0ð Þ ¼ sin z
cn z j 0ð Þ ¼ cos z
dn z j 0ð Þ ¼ 1
sn z j 1ð Þ ¼ tanh z
cn z j 1ð Þ ¼ sech z
dn z j 1ð Þ ¼ sech z:

These functions are often simply written as sn z, cn z and dn z, thereby avoiding explicit reference to the
argument k. They can also be expressed in terms of Jacobian theta functions (see S21CCF).
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Another nine elliptic functions may be computed via the formulae

cd z ¼ cn z= dn z
sd z ¼ sn z= dn z
nd z ¼ 1= dn z
dc z ¼ dn z= cn z
nc z ¼ 1= cn z
sc z ¼ sn z= cn z
ns z ¼ 1= sn z
ds z ¼ dn z= sn z
cs z ¼ cn z= sn z

(see Abramowitz and Stegun (1972)).

The values of sn z, cn z and dn z are obtained by calls to S21CAF. Further details can be found in
Section 9.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Salzer H E (1962) Quick calculation of Jacobian elliptic functions Comm. ACM 5 399

5 Arguments

1: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the functions.

Constraints:

abs Zð Þ �¼
ffiffiffi
�
p

;
abs Zð Þ �

ffiffiffi
�
p

, where � ¼ 1=X02AMF.

2: AK2 – REAL (KIND=nag_wp) Input

On entry: the value of k2.

Constraint: 0:0 � AK2 � 1:0.

3: SN – COMPLEX (KIND=nag_wp) Output
4: CN – COMPLEX (KIND=nag_wp) Output
5: DN – COMPLEX (KIND=nag_wp) Output

On exit: the values of the functions sn z, cn z and dn z, respectively.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, AK2 < 0:0,
or AK2 > 1:0,
or abs Re Zð Þð Þ >

ffiffiffi
�
p

,
or abs Im Zð Þð Þ >

ffiffiffi
�
p

, where � ¼ 1=X02AMF.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In principle the routine is capable of achieving full relative precision in the computed values. However,
the accuracy obtainable in practice depends on the accuracy of the standard elementary functions such
as SIN and COS.

8 Parallelism and Performance

S21CBF is not threaded in any implementation.

9 Further Comments

The values of sn z, cn z and dn z are computed via the formulae

sn z ¼ sn u; kð Þ dn v; k0ð Þ
1� dn2 u; kð Þsn2 v; k0ð Þ

þ i
cn u; kð Þ dn u; kð Þ sn v; k0ð Þ cn v; k0ð Þ

1� dn2 u; kð Þsn2 v; k0ð Þ

cn z ¼ cn u; kð Þ cn v; k0ð Þ
1� dn2 u; kð Þsn2 v; k0ð Þ

� i
sn u; kð Þ dn u; kð Þ sn v; k0ð Þ dn v; k0ð Þ

1� dn2 u; kð Þsn2 v; k0ð Þ

dn z ¼ dn u; kð Þ cn v; k0ð Þ dn v; k0ð Þ
1� dn2 u; kð Þsn2 v; k0ð Þ

� i
k2 sn u; kð Þ cn u; kð Þ sn v; k0ð Þ
1� dn2 u; kð Þsn2 v; k0ð Þ

;

where z ¼ uþ iv and k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

(the complementary modulus).

10 Example

This example evaluates sn z, cn z and dn z at z ¼ �2:0þ 3:0i when k ¼ 0:5, and prints the results.
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10.1 Program Text

Program s21cbfe

! S21CBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: cn, dn, sn, z
Real (Kind=nag_wp) :: ak2
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’S21CBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)

Read (nin,*) z, ak2

ifail = 0
Call s21cbf(z,ak2,sn,cn,dn,ifail)

Write (nout,*) ’ Z AK2’
Write (nout,99999) z, ak2
Write (nout,*)
Write (nout,*) ’ SN CN’, &

’ DN’
Write (nout,99998) sn, cn, dn

99999 Format (1X,’(’,F8.4,’,’,F8.4,’)’,5X,F10.2)
99998 Format (3(’ (’,F8.4,’,’,F8.4,’)’,3X))

End Program s21cbfe

10.2 Program Data

S21CBF Example Program Data
(-2.0, 3.0) 0.25 : Values of Z and AK2

10.3 Program Results

S21CBF Example Program Results

Z AK2
( -2.0000, 3.0000) 0.25

SN CN DN
( -1.5865, 0.2456) ( 0.3125, 1.2468) ( -0.6395, -0.1523)

S21CBF NAG Library Manual

S21CBF.4 (last) Mark 26



NAG Library Routine Document

S21CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21CCF returns the value of one of the Jacobian theta functions �0 x; qð Þ, �1 x; qð Þ, �2 x; qð Þ, �3 x; qð Þ or
�4 x; qð Þ for a real argument x and non-negative q < 1, via the function name.

2 Specification

FUNCTION S21CCF (K, X, Q, IFAIL)
REAL (KIND=nag_wp) S21CCF

INTEGER K, IFAIL
REAL (KIND=nag_wp) X, Q

3 Description

S21CCF evaluates an approximation to the Jacobian theta functions �0 x; qð Þ, �1 x; qð Þ, �2 x; qð Þ, �3 x; qð Þ
and �4 x; qð Þ given by

�0 x; qð Þ ¼ 1þ 2
X1
n¼1
�1ð Þnqn2 cos 2n	xð Þ;

�1 x; qð Þ ¼ 2
X1
n¼0
�1ð Þnq nþ12

� �2
sin 2nþ 1ð Þ	xf g;

�2 x; qð Þ ¼ 2
X1
n¼0

q nþ12
� �2

cos 2nþ 1ð Þ	xf g;

�3 x; qð Þ ¼ 1þ 2
X1
n¼1

qn
2
cos 2n	xð Þ;

�4 x; qð Þ ¼ �0 x; qð Þ;

where x and q (the nome) are real with 0 � q < 1.

These functions are important in practice because every one of the Jacobian elliptic functions (see
S21CBF) can be expressed as the ratio of two Jacobian theta functions (see Whittaker and Watson
(1990)). There is also a bewildering variety of notations used in the literature to define them. Some
authors (e.g., Section 16.27 of Abramowitz and Stegun (1972)) define the argument in the trigonometric
terms to be x instead of 	x. This can often lead to confusion, so great care must therefore be exercised
when consulting the literature. Further details (including various relations and identities) can be found
in the references.

S21CCF is based on a truncated series approach. If t differs from x or �x by an integer when
0 � t � 1

2 , it follows from the periodicity and symmetry properties of the functions that
�1 x; qð Þ ¼ 
�1 t; qð Þ and �3 x; qð Þ ¼ 
�3 t; qð Þ. In a region for which the approximation is sufficiently
accurate, �1 is set equal to the first term (n ¼ 0) of the transformed series

�1 t; qð Þ ¼ 2

ffiffiffi
�

	

r
e��t

2
X1
n¼0
�1ð Þne�� nþ12

� �2
sinh 2nþ 1ð Þ�tf g

and �3 is set equal to the first two terms (i.e., n � 1) of
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�3 t; qð Þ ¼
ffiffiffi
�

	

r
e��t

2
1þ 2

X1
n¼1

e��n
2
cosh 2n�tð Þ

( )
;

where � ¼ 	2= loge qj j. Otherwise, the trigonometric series for �1 t; qð Þ and �3 t; qð Þ are used. For all
values of x, �0 and �2 are computed from the relations �0 x; qð Þ ¼ �3 1

2� xj j; q
� �

and
�2 x; qð Þ ¼ �1 1

2� xj j; q
� �

.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Byrd P F and Friedman M D (1971) Handbook of Elliptic Integrals for Engineers and Scientists pp.
315–320 (2nd Edition) Springer–Verlag

Magnus W, Oberhettinger F and Soni R P (1966) Formulas and Theorems for the Special Functions of
Mathematical Physics 371–377 Springer–Verlag

TÖlke F (1966) Praktische Funktionenlehre (Bd. II) 1–38 Springer–Verlag

Whittaker E T and Watson G N (1990) A Course in Modern Analysis (4th Edition) Cambridge
University Press

5 Arguments

1: K – INTEGER Input

On entry: denotes the function �k x; qð Þ to be evaluated. Note that K ¼ 4 is equivalent to K ¼ 0.

Constraint: 0 � K � 4.

2: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

3: Q – REAL (KIND=nag_wp) Input

On entry: the argument q of the function.

Constraint: 0:0 � Q < 1:0.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, K < 0,
or K > 4,
or Q < 0:0,
or Q � 1:0,

IFAIL ¼ 2

The evaluation has been abandoned because the function value is infinite. The result is returned
as the largest machine representable number (see X02ALF).

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In principle the routine is capable of achieving full relative precision in the computed values. However,
the accuracy obtainable in practice depends on the accuracy of the standard elementary functions such
as sin and cos.

8 Parallelism and Performance

S21CCF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example evaluates �2 x; qð Þ at x ¼ 0:7 when q ¼ 0:4, and prints the results.

10.1 Program Text

Program s21ccfe

! S21CCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: nag_wp, s21ccf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: q, x, y
Integer :: ifail, k

! .. Executable Statements ..
Write (nout,*) ’S21CCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ K X Q Y’
Write (nout,*)

Read (nin,*) k, x, q

ifail = -1
y = s21ccf(k,x,q,ifail)

If (ifail>=0) Then
Write (nout,99999) k, x, q, y

End If

99999 Format (1X,I2,2X,F4.1,2X,F4.1,2X,1P,E12.4)
End Program s21ccfe

10.2 Program Data

S21CCF Example Program Data
2 0.7 0.4 : Values of K, X and Q

10.3 Program Results

S21CCF Example Program Results

K X Q Y

2 0.7 0.4 -6.9289E-01
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NAG Library Routine Document

S21DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S21DAF returns the value of the general elliptic integral of the second kind F z; k0; a; bð Þ for a complex
argument z, via the function name.

2 Specification

FUNCTION S21DAF (Z, AKP, A, B, IFAIL)
COMPLEX (KIND=nag_wp) S21DAF

INTEGER IFAIL
REAL (KIND=nag_wp) AKP, A, B
COMPLEX (KIND=nag_wp) Z

3 Description

S21DAF evaluates an approximation to the general elliptic integral of the second kind F z; k0; a; bð Þ
given by

F z; k0; a; bð Þ ¼
Z z

0

aþ b�2

1þ �2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ð Þ 1þ k02�2

� �q d�;

where a and b are real arguments, z is a complex argument whose real part is non-negative and k0 is a
real argument (the complementary modulus). The evaluation of F is based on the Gauss transformation.
Further details, in particular for the conformal mapping provided by F, can be found in Bulirsch (1960).

Special values include

F z; k0; 1; 1ð Þ ¼
Z z

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ð Þ 1þ k02�2ð Þ

p ;

or F1 z; k
0ð Þ (the elliptic integral of the first kind) and

F z; k0; 1; k02
� �

¼
Z z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k02�2

p
1þ �2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p d�;

or F2 z; k
0ð Þ (the elliptic integral of the second kind). Note that the values of F1 z; k

0ð Þ and F2 z; k
0ð Þ are

equal to tan�1 zð Þ in the trivial case k0 ¼ 1.

S21DAF is derived from an Algol 60 procedure given by Bulirsch (1960). Constraints are placed on the
values of z and k0 in order to avoid the possibility of machine overflow.

4 References

Bulirsch R (1960) Numerical calculation of elliptic integrals and elliptic functions Numer. Math. 7 76–
90

5 Arguments

1: Z – COMPLEX (KIND=nag_wp) Input

On entry: the argument z of the function.
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Constraints:

0:0 � Z � �;
abs Zð Þ � �, where �6 ¼ 1=X02AMF.

2: AKP – REAL (KIND=nag_wp) Input

On entry: the argument k0 of the function.

Constraint: abs AKPð Þ � �.

3: A – REAL (KIND=nag_wp) Input

On entry: the argument a of the function.

4: B – REAL (KIND=nag_wp) Input

On entry: the argument b of the function.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, Re Zð Þ < 0:0,
or Re Zð Þ > �,
or Im Zð Þj j > �,
or AKPj j > �, where �6 ¼ 1=X02AMF.

IFAIL ¼ 2

The iterative procedure used to evaluate the integral has failed to converge. The result is returned
as zero.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In principle the routine is capable of achieving full relative precision in the computed values. However,
the accuracy obtainable in practice depends on the accuracy of the standard elementary functions such
as atan2 and log.

8 Parallelism and Performance

S21DAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example evaluates the elliptic integral of the first kind F1 z; k
0ð Þ given by

F1 z; k
0ð Þ ¼

Z z

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ð Þ 1þ k02�2

� �q ;

where z ¼ 1:2þ 3:7i and k0 ¼ 0:5, and prints the results.

10.1 Program Text

Program s21dafe

! S21DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s21daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: y, z
Real (Kind=nag_wp) :: a, akp, b
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’S21DAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Write (nout,*)
Write (nout,*) ’ Z AKP A’, ’ B Y’
Write (nout,*)

Read (nin,*) z, akp, a, b

ifail = -1
y = s21daf(z,akp,a,b,ifail)

If (ifail>=0) Then
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Write (nout,99999) z, akp, a, b, y
End If

99999 Format (1X,’(’,F4.1,’,’,F4.1,’ )’,3F7.1,3X,’(’,1P,E12.4,’,’,E12.4,’ )’)
End Program s21dafe

10.2 Program Data

S21DAF Example Program Data
(1.2, 3.7) 0.5 1.0 1.0 : Values of Z, AKP, A and B

10.3 Program Results

S21DAF Example Program Results

Z AKP A B Y

( 1.2, 3.7 ) 0.5 1.0 1.0 ( 1.9713E+00, 5.0538E-01 )

S21DAF NAG Library Manual

S21DAF.4 (last) Mark 26



NAG Library Routine Document

S22AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S22AAF returns a sequence of values for either the unnormalized or normalized Legendre functions of
the first kind Pm

n xð Þ or Pm
n xð Þ for real x of a given order m and degree n ¼ 0; 1; . . . ; N .

2 Specification

SUBROUTINE S22AAF (MODE, X, M, NL, P, IFAIL)

INTEGER MODE, M, NL, IFAIL
REAL (KIND=nag_wp) X, P(0:NL)

3 Description

S22AAF evaluates a sequence of values for either the unnormalized or normalized Legendre (m ¼ 0) or
associated Legendre (m 6¼ 0) functions of the first kind Pm

n xð Þ or Pm
n xð Þ, where x is real with

�1 � x � 1, of order m and degree n ¼ 0; 1; . . . ; N defined by

Pm
n xð Þ ¼ 1� x2

� �m=2 dm
dxm

Pn xð Þ if m � 0;

Pm
n xð Þ ¼ nþmð Þ!

n�mð Þ!P
�m
n xð Þ if m < 0 and

Pm
n xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ

2

n�mð Þ!
nþmð Þ!

s
Pm
n xð Þ

respectively; Pn xð Þ is the (unassociated) Legendre polynomial of degree n given by

Pn xð Þ 	 P 0
n xð Þ ¼

1

2nn!

dn

dxn
x2 � 1
� �n

(the Rodrigues formula). Note that some authors (e.g., Abramowitz and Stegun (1972)) include an
additional factor of �1ð Þm (the Condon–Shortley Phase) in the definitions of Pm

n xð Þ and Pm
n xð Þ. They

use the notation Pmn xð Þ 	 �1ð ÞmPm
n xð Þ in order to distinguish between the two cases.

S22AAF is based on a standard recurrence relation described in Section 8.5.3 of Abramowitz and
Stegun (1972). Constraints are placed on the values of m and n in order to avoid the possibility of
machine overflow. It also sets the appropriate elements of the array P (see Section 5) to zero whenever
the required function is not defined for certain values of m and n (e.g., m ¼ �5 and n ¼ 3).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications
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5 Arguments

1: MODE – INTEGER Input

On entry: indicates whether the sequence of function values is to be returned unnormalized or
normalized.

MODE ¼ 1
The sequence of function values is returned unnormalized.

MODE ¼ 2
The sequence of function values is returned normalized.

Constraint: MODE ¼ 1 or 2.

2: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: abs Xð Þ � 1:0.

3: M – INTEGER Input

On entry: the order m of the function.

Constraint: abs Mð Þ � 27.

4: NL – INTEGER Input

On entry: the degree N of the last function required in the sequence.

Constraints:

NL � 0;
if M ¼ 0, NL � 100;
if M 6¼ 0, NL � 55� abs Mð Þ.

5: Pð0 : NLÞ – REAL (KIND=nag_wp) array Output

On exit: the required sequence of function values as follows:

if MODE ¼ 1, PðnÞ contains Pm
n xð Þ, for n ¼ 0; 1; . . . ; N;

if MODE ¼ 2, PðnÞ contains Pm
n xð Þ, for n ¼ 0; 1; . . . ; N.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, abs Xð Þ > 1:0,
or MODE 6¼ 1 or 2,
or NL < 0,
or NL > 100 when M ¼ 0,
or abs Mð Þ > 27,
or NLþ abs Mð Þ > 55 when M 6¼ 0.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed function values should be accurate to within a small multiple of the machine precision
except when underflow (or overflow) occurs, in which case the true function values are within a small
multiple of the underflow (or overflow) threshold of the machine.

8 Parallelism and Performance

S22AAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads the values of the arguments x, m and N from a file, calculates the sequence of
unnormalized associated Legendre function values Pm

n xð Þ; Pm
nþ1 xð Þ; . . . ; Pm

nþN xð Þ, and prints the results.

10.1 Program Text

Program s22aafe

! S22AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s22aaf
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nlmax = 100, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: x
Integer :: ifail, m, mode, n, nl

! .. Local Arrays ..
Real (Kind=nag_wp) :: p(0:nlmax)

! .. Executable Statements ..
Write (nout,*) ’S22AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) mode, x, m, nl

Write (nout,*)

ifail = 0
Call s22aaf(mode,x,m,nl,p,ifail)

Write (nout,*) ’MODE X M NL’
Write (nout,*)
Write (nout,99999) mode, x, m, nl
Write (nout,*)

Select Case (mode)
Case (1)

If (m==0) Then
Write (nout,*) ’Unnormalized Legendre function values’

Else
Write (nout,*) ’Unnormalized associated Legendre function values’

End If

Case (2)

If (m==0) Then
Write (nout,*) ’Normalized Legendre function values’

Else
Write (nout,*) ’Normalized associated Legendre function values’

End If

End Select

Write (nout,*) ’ n P(n)’

Do n = 0, nl
Write (nout,99998) n, p(n)

End Do

99999 Format (1X,I3,4X,F5.1,2I6)
99998 Format (1X,I2,1X,1P,E12.4)

End Program s22aafe

10.2 Program Data

S22AAF Example Program Data
1 0.5 2 3 : Values of MODE, X, M and NL

10.3 Program Results

S22AAF Example Program Results

MODE X M NL

1 0.5 2 3

Unnormalized associated Legendre function values
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n P(n)
0 0.0000E+00
1 0.0000E+00
2 2.2500E+00
3 5.6250E+00
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NAG Library Routine Document

S22BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S22BAF returns a value for the confluent hypergeometric function 1F1 a; b;xð Þ with real parameters a
and b, and real argument x. This function is sometimes also known as Kummer's function M a; b; xð Þ.

2 Specification

SUBROUTINE S22BAF (A, B, X, M, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) A, B, X, M

3 Description

S22BAF returns a value for the confluent hypergeometric function 1F1 a; b;xð Þ with real parameters a
and b, and real argument x. This function is unbounded or not uniquely defined for b equal to zero or a
negative integer.

The associated routine S22BBF performs the same operations, but returns M in the scaled form
M ¼ mf � 2ms to allow calculations to be performed when M is not representable as a single working
precision number. It also accepts the parameters a and b as summations of an integer and a decimal
fraction, giving higher accuracy when a or b are close to an integer. In such cases, S22BBF should be
used when high accuracy is required.

The confluent hypergeometric function is defined by the confluent series

1F1 a; b; xð Þ ¼M a; b; xð Þ ¼
X1
s¼0

að Þsxs
bð Þss!

¼ 1þ a
b
xþ a aþ 1ð Þ

b bþ 1ð Þ2!x
2 þ � � �

where að Þs ¼ 1 að Þ aþ 1ð Þ aþ 2ð Þ . . . aþ s� 1ð Þ is the rising factorial of a. M a; b; xð Þ is a solution to
the second order ODE (Kummer's Equation):

x
d2M

dx2
þ b� xð ÞdM

dx
� aM ¼ 0: ð1Þ

Given the parameters and argument a; b; xð Þ, this routine determines a set of safe values
�i; �i; �ið Þ j i � 2f g and selects an appropriate algorithm to accurately evaluate the functions

Mi �i; �i; �ið Þ. The result is then used to construct the solution to the original problem M a; b; xð Þ
using, where necessary, recurrence relations and/or continuation.

Additionally, an artificial bound, arbnd is placed on the magnitudes of a, b and x to minimize the
occurrence of overflow in internal calculations. arbnd ¼ 0:0001� Imax , where Imax ¼ X02BBF. It
should, however, not be assumed that this routine will produce an accurate result for all values of a, b
and x satisfying this criterion.

Please consult the NIST Digital Library of Mathematical Functions or the companion (2010) for a
detailed discussion of the confluent hypergeoemtric function including special cases, transformations,
relations and asymptotic approximations.
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4 References

NIST Handbook of Mathematical Functions (2010) (eds F W J Olver, D W Lozier, R F Boisvert, C W
Clark) Cambridge University Press

Pearson J (2009) Computation of hypergeometric functions MSc Dissertation, Mathematical Institute,
University of Oxford

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: the parameter a of the function.

Constraint: Aj j � arbnd.

2: B – REAL (KIND=nag_wp) Input

On entry: the parameter b of the function.

Constraint: Bj j � arbnd.

3: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: Xj j � arbnd.

4: M – REAL (KIND=nag_wp) Output

On exit: the solution M a; b; xð Þ.
Note: if overflow occurs upon completion, as indicated by IFAIL ¼ 2, M a; b; xð Þj j may be
assumed to be too large to be representable. M will be returned as 
Rmax , where Rmax is the
largest representable real number (see X02ALF). The sign of M should match the sign of
M a; b; xð Þ. If overflow occurs during a subcalculation, as indicated by IFAIL ¼ 5, the sign may
be incorrect, and the true value of M a; b; xð Þ may or may not be greater than Rmax . In either case
it is advisable to subsequently use S22BBF.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Underflow occurred during the evaluation of M a; b; xð Þ.
The returned value may be inaccurate.
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IFAIL ¼ 2

On completion, overflow occurred in the evaluation of M a; b; xð Þ.

IFAIL ¼ 3

All approximations have completed, and the final residual estimate indicates some precision may
have been lost.
Relative residual ¼ valueh i.

IFAIL ¼ 4

All approximations have completed, and the final residual estimate indicates no accuracy can be
guaranteed.
Relative residual ¼ valueh i.

IFAIL ¼ 5

Overflow occurred in a subcalculation of M a; b; xð Þ.
The answer may be completely incorrect.

IFAIL ¼ 11

On entry, A ¼ valueh i.
Constraint: Aj j � arbnd ¼ valueh i.

IFAIL ¼ 31

On entry, B ¼ valueh i.
Constraint: Bj j � arbnd ¼ valueh i.

IFAIL ¼ 32

On entry, B ¼ valueh i.
M a; b; xð Þ is undefined when b is zero or a negative integer.

IFAIL ¼ 51

On entry, X ¼ valueh i.
Constraint: Xj j � arbnd ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In general, if IFAIL ¼ 0, the value of M may be assumed accurate, with the possible loss of one or two
decimal places. Assuming the result does not under or overflow, an error estimate res is made internally
using equation (1). If the magnitude of res is sufficiently large, a nonzero IFAIL will be returned.
Specifically,
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IFAIL ¼ 0 res � 1000�
IFAIL ¼ 3 1000� < res � 0:1
IFAIL ¼ 4 res > 0:1

where � is the machine precision as returned by X02AJF.

A further estimate of the residual can be constructed using equation (1), and the differential identity,

dM a;b;xð Þ
dx ¼ a

bM aþ 1; bþ 1; xð Þ;

d2M a;b;xð Þ
dx2

¼ a aþ1ð Þ
b bþ1ð ÞM aþ 2; bþ 2; xð Þ:

This estimate is however dependent upon the error involved in approximating M aþ 1; bþ 1; xð Þ and
M aþ 2; bþ 2; xð Þ.
Furthermore, the accuracy of the solution, and the error estimate, can be dependent upon the accuracy
of the decimal fraction of the input parameters a and b. For example, if b ¼ bi þ br ¼ 100þ 1:0E�6,
then on a machine with 16 decimal digits of precision, the internal calculation of br will only be
accurate to 8 decimal places. This can subsequently pollute the final solution by several decimal places
without affecting the residual estimate as greatly. Should you require higher accuracy in such regions,
then you should use S22BBF, which requires you to supply the correct decimal fraction.

8 Parallelism and Performance

S22BAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

S22BAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints the results returned by S22BAF called using parameters a ¼ 13:6 and b ¼ 14:2 with
11 differing values of argument x.

10.1 Program Text

Program s22bafe

! S22BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s22baf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, m, x
Integer :: ifail, kx

! .. Intrinsic Procedures ..
Intrinsic :: real
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! .. Executable Statements ..
Write (nout,*) ’S22BAF Example Program Results’

a = 13.6E0_nag_wp
b = 14.2E0_nag_wp

Write (nout,99999) ’a ’, ’b ’
Write (nout,99998)
Write (nout,99997) a, b
Write (nout,99998)
Write (nout,99994) ’x ’, ’M(a,b,x) ’, ’IFAIL ’
Write (nout,99995)

Do kx = -5, 5
x = real(kx,kind=nag_wp) + 0.5E0_nag_wp
ifail = -1
Call s22baf(a,b,x,m,ifail)
Write (nout,99996) x, m, ifail

End Do

99999 Format (/,2(1X,A14))
99998 Format (2(’+--------------’),’+’)
99997 Format (2(1X,F13.2,1X))
99996 Format (1X,F10.2,’ ’,1X,E13.5,1X,I9)
99995 Format (3(’+--------------’),’+’)
99994 Format (/,3(1X,A14))

End Program s22bafe

10.2 Program Data

None.

10.3 Program Results

S22BAF Example Program Results

a b
+--------------+--------------+

13.60 14.20
+--------------+--------------+

x M(a,b,x) IFAIL
+--------------+--------------+--------------+

-4.50 0.13879E-01 0
-3.50 0.35674E-01 0
-2.50 0.92072E-01 0
-1.50 0.23849E+00 0
-0.50 0.61969E+00 0
0.50 0.16148E+01 0
1.50 0.42184E+01 0
2.50 0.11045E+02 0
3.50 0.28978E+02 0
4.50 0.76166E+02 0
5.50 0.20053E+03 0
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NAG Library Routine Document

S22BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S22BBF returns a value for the confluent hypergeometric function 1F1 a; b; xð Þ, with real parameters a
and b and real argument x. The solution is returned in the scaled form 1F1 a; b;xð Þ ¼ mf � 2ms . This
function is sometimes also known as Kummer's function M a; b; xð Þ.

2 Specification

SUBROUTINE S22BBF (ANI, ADR, BNI, BDR, X, FRM, SCM, IFAIL)

INTEGER SCM, IFAIL
REAL (KIND=nag_wp) ANI, ADR, BNI, BDR, X, FRM

3 Description

S22BBF returns a value for the confluent hypergeometric function 1F1 a; b; xð Þ, with real parameters a
and b and real argument x, in the scaled form 1F1 a; b;xð Þ ¼ mf � 2ms , where mf is the real scaled
component and ms is the integer power of two scaling. This function is unbounded or not uniquely
defined for b equal to zero or a negative integer.

The confluent hypergeometric function is defined by the confluent series,

1F1 a; b; xð Þ ¼M a; b; xð Þ ¼
X1
s¼0

að Þsxs
bð Þss!

¼ 1þ a
b
xþ a aþ 1ð Þ

b bþ 1ð Þ2!x
2 þ � � �

where að Þs ¼ 1 að Þ aþ 1ð Þ aþ 2ð Þ . . . aþ s� 1ð Þ is the rising factorial of a. M a; b; xð Þ is a solution to
the second order ODE (Kummer's Equation):

x
d2M

dx2
þ b� xð ÞdM

dx
� aM ¼ 0: ð1Þ

Given the parameters and argument a; b; xð Þ, this routine determines a set of safe values
�i; �i; �ið Þ j i � 2f g and selects an appropriate algorithm to accurately evaluate the functions

Mi �i; �i; �ið Þ. The result is then used to construct the solution to the original problem M a; b; xð Þ
using, where necessary, recurrence relations and/or continuation.

For improved precision in the final result, this routine accepts a and b split into an integral and a
decimal fractional component. Specifically a ¼ ai þ ar, where arj j � 0:5 and ai ¼ a� ar is integral. b is
similarly deconstructed.

Additionally, an artificial bound, arbnd is placed on the magnitudes of ai, bi and x to minimize the
occurrence of overflow in internal calculations. arbnd ¼ 0:0001� Imax , where Imax ¼ X02BBF. It
should, however, not be assumed that this routine will produce an accurate result for all values of ai, bi
and x satisfying this criterion.

Please consult the NIST Digital Library of Mathematical Functions or the companion (2010) for a
detailed discussion of the confluent hypergeometric function including special cases, transformations,
relations and asymptotic approximations.
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4 References

NIST Handbook of Mathematical Functions (2010) (eds F W J Olver, D W Lozier, R F Boisvert, C W
Clark) Cambridge University Press

Pearson J (2009) Computation of hypergeometric functions MSc Dissertation, Mathematical Institute,
University of Oxford

5 Arguments

1: ANI – REAL (KIND=nag_wp) Input

On entry: ai, the nearest integer to a, satisfying ai ¼ a� ar.
Constraints:

ANI ¼ ANIb c;
ANIj j � arbnd.

2: ADR – REAL (KIND=nag_wp) Input

On entry: ar, the signed decimal remainder satisfying ar ¼ a� ai and arj j � 0:5.

Constraint: ADRj j � 0:5.

Note: if ADRj j < 100:0�, ar ¼ 0:0 will be used, where � is the machine precision as returned by
X02AJF.

3: BNI – REAL (KIND=nag_wp) Input

On entry: bi, the nearest integer to b, satisfying bi ¼ b� br.
Constraints:

BNI ¼ BNIb c;
BNIj j � arbnd;
if BDR ¼ 0:0, BNI > 0.

4: BDR – REAL (KIND=nag_wp) Input

On entry: br, the signed decimal remainder satisfying br ¼ b� bi and brj j � 0:5.

Constraint: BDRj j � 0:5.

Note: if BDR� ADRj j < 100:0�, ar ¼ br will be used, where � is the machine precision as
returned by X02AJF.

5: X – REAL (KIND=nag_wp) Input

On entry: the argument x of the function.

Constraint: Xj j � arbnd.

6: FRM – REAL (KIND=nag_wp) Output

On exit: mf , the scaled real component of the solution satisfying mf ¼M a; b; xð Þ � 2�ms .

Note: if overflow occurs upon completion, as indicated by IFAIL ¼ 2, the value of mf returned
may still be correct. If overflow occurs in a subcalculation, as indicated by IFAIL ¼ 5, this
should not be assumed.

7: SCM – INTEGER Output

On exit: ms, the scaling power of two, satisfying ms ¼ log2
M a;b;xð Þ
mf

� �
.

Note: if overflow occurs upon completion, as indicated by IFAIL ¼ 2, then ms � Imax , where
Imax is the largest representable integer (see X02BBF). If overflow occurs during a
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subcalculation, as indicated by IFAIL ¼ 5, ms may or may not be greater than Imax . In either
case, SCM ¼ X02BBF will have been returned.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Underflow occurred during the evaluation of M a; b; xð Þ.
The returned value may be inaccurate.

IFAIL ¼ 2

On completion, overflow occurred in the evaluation of M a; b; xð Þ.

IFAIL ¼ 3

All approximations have completed, and the final residual estimate indicates some precision may
have been lost.
Relative residual ¼ valueh i.

IFAIL ¼ 4

All approximations have completed, and the final residual estimate indicates no accuracy can be
guaranteed.
Relative residual ¼ valueh i.

IFAIL ¼ 5

Overflow occurred in a subcalculation of M a; b; xð Þ.
The answer may be completely incorrect.

IFAIL ¼ 11

On entry, ANI ¼ valueh i.
Constraint: ANIj j � arbnd ¼ valueh i.

IFAIL ¼ 13

ANI is non-integral.
On entry, ANI ¼ valueh i.
Constraint: ANI ¼ ANIb c.
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IFAIL ¼ 21

On entry, ADR ¼ valueh i.
Constraint: ADRj j � 0:5.

IFAIL ¼ 31

On entry, BNI ¼ valueh i.
Constraint: BNIj j � arbnd ¼ valueh i.

IFAIL ¼ 32

On entry, b ¼ BNIþ BDR ¼ valueh i.
M a; b; xð Þ is undefined when b is zero or a negative integer.

IFAIL ¼ 33

BNI is non-integral.
On entry, BNI ¼ valueh i.
Constraint: BNI ¼ BNIb c.

IFAIL ¼ 41

On entry, BDR ¼ valueh i.
Constraint: BDRj j � 0:5.

IFAIL ¼ 51

On entry, X ¼ valueh i.
Constraint: Xj j � arbnd ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In general, if IFAIL ¼ 0, the value of M may be assumed accurate, with the possible loss of one or two
decimal places. Assuming the result does not under or overflow, an error estimate res is made internally
using equation (1). If the magnitude of res is sufficiently large a nonzero IFAIL will be returned.
Specifically,

IFAIL ¼ 0 res � 1000�
IFAIL ¼ 3 1000� < res � 0:1
IFAIL ¼ 4 res > 0:1
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A further estimate of the residual can be constructed using equation (1), and the differential identity,

dM a; b; xð Þ
dx

¼ a

b
M aþ 1; bþ 1; xð Þ;

d2M a; b; xð Þ
dx2

¼ a aþ 1ð Þ
b bþ 1ð ÞM aþ 2; bþ 2; xð Þ:

This estimate is however dependent upon the error involved in approximating M aþ 1; bþ 1; xð Þ and
M aþ 2; bþ 2; xð Þ.

8 Parallelism and Performance

S22BBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

S22BBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The values of mf and ms are implementation dependent. In most cases, if 1F1 a; b;xð Þ ¼ 0, mf ¼ 0 and
ms ¼ 0 will be returned, and if 1F1 a; b;xð Þ ¼ 0 is finite, the fractional component will be bound by
0:5 � mf

		 		 < 1, with ms chosen accordingly.

The values returned in FRM (mf ) and SCM (ms) may be used to explicitly evaluate M a; b; xð Þ, and
may also be used to evaluate products and ratios of multiple values of M as follows,

M a; b; xð Þ ¼ mf � 2ms

M a1; b1; x1ð Þ �M a2; b2; x2ð Þ ¼ mf1 �mf2

� �
� 2 ms1þms2ð Þ

M a1; b1; x1ð Þ
M a2; b2; x2ð Þ ¼ mf1

mf2
� 2 ms1�ms2ð Þ

lnM a; b; xð Þj j ¼ ln mf

		 		þms � ln 2ð Þ

:

10 Example

This example evaluates the confluent hypergeometric function at two points in scaled form using
S22BBF, and subsequently calculates their product and ratio without having to explicitly construct M.

10.1 Program Text

Program s22bbfe

! S22BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s22bbf, x02bhf, x02blf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: ai, ar, bi, br, delta, frm, scale, x
Integer :: ifail, k, scm
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! .. Local Arrays ..
Real (Kind=nag_wp) :: frmv(2)
Integer :: scmv(2)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S22BBF Example Program Results’

ai = -10.0_nag_wp
bi = 30.0_nag_wp
delta = 1.0E-4_nag_wp
ar = delta
br = -delta
x = 25.0_nag_wp

Write (nout,99999) ’a’, ’b’, ’x’, ’frm’, ’scm’, ’M(a,b,x)’

Do k = 1, 2
If (k==2) Then

ar = -ar
br = -br

End If

ifail = -1
Call s22bbf(ai,ar,bi,br,x,frm,scm,ifail)
If (ifail==2 .Or. ifail>3) Then

! Either the result has overflowed, no accuracy may be assumed,
! or an input error has been detected.

Write (nout,99996) ai + ar, bi + br, x, ’FAILED’
Go To 100

Else If (scm<x02blf()) Then
scale = frm*real(x02bhf(),kind=nag_wp)**scm
Write (nout,99998) ai + ar, bi + br, x, frm, scm, scale

Else
Write (nout,99997) ai + ar, bi + br, x, frm, scm, &

’Not representable’
End If
frmv(k) = frm
scmv(k) = scm

End Do

! Calculate the product M1*M2
frm = frmv(1)*frmv(2)
scm = scmv(1) + scmv(2)
Write (nout,*)
If (scm<x02blf()) Then

scale = frm*real(x02bhf(),kind=nag_wp)**scm
Write (nout,99995) ’Solution product’, frm, scm, scale

Else
Write (nout,99994) ’Solution product’, frm, scm, ’Not representable’

End If

! Calculate the ratio M1/M2
If (frmv(2)/=0.0_nag_wp) Then

frm = frmv(1)/frmv(2)
scm = scmv(1) - scmv(2)
Write (nout,*)
If (scm<x02blf()) Then

scale = frm*real(x02bhf(),kind=nag_wp)**scm
Write (nout,99995) ’Solution ratio ’, frm, scm, scale

Else
Write (nout,99994) ’Solution ratio ’, frm, scm, ’Not representable’

End If
End If

100 Continue

99999 Format (/,1X,3(A10,1X),A12,1X,A6,1X,A12)
99998 Format (1X,3(F10.4,1X),Es12.4,1X,I6,1X,Es12.4)
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99997 Format (1X,3(F10.4,1X),Es12.4,1X,I6,1X,A17)
99996 Format (1X,3(F10.4,1X),20X,A17)
99995 Format (1X,A16,17X,Es12.4,1X,I6,1X,Es12.4)
99994 Format (1X,A16,17X,Es12.4,1X,I6,1X,A17)

End Program s22bbfe

10.2 Program Data

None.

10.3 Program Results

S22BBF Example Program Results

a b x frm scm M(a,b,x)
-9.9999 29.9999 25.0000 -7.7329E-01 -15 -2.3599E-05

-10.0001 30.0001 25.0000 -7.7318E-01 -15 -2.3596E-05

Solution product 5.9789E-01 -30 5.5683E-10

Solution ratio 1.0001E+00 0 1.0001E+00
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NAG Library Routine Document

S22BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S22BEF returns a value for the Gauss hypergeometric function 2F1 a; b; c; xð Þ for real parameters a; b
and c, and real argument x.

2 Specification

FUNCTION S22BEF (A, B, C, X, IFAIL)
REAL (KIND=nag_wp) S22BEF

INTEGER IFAIL
REAL (KIND=nag_wp) A, B, C, X

3 Description

S22BEF returns a value for the Gauss hypergeometric function 2F1 a; b; c; xð Þ for real parameters a, b
and c, and for real argument x.

The associated routine S22BFF performs the same operations, but returns 2F1 a; b; c;xð Þ in the scaled
form 2F1 a; b; c; xð Þ ¼ ffr � 2fsc to allow calculations to be performed when 2F1 a; b; c; xð Þ is not
representable as a single working precision number. It also accepts the parameters a, b and c as
summations of an integer and a decimal fraction, giving higher accuracy when any are close to an
integer.

The Gauss hypergeometric function is a solution to the hypergeometric differential equation,

x 1� xð Þd
2f

dx2
þ c� aþ bþ 1ð Þxð Þdf

dx
� abf ¼ 0: ð1Þ

For xj j < 1, it may be defined by the Gauss series,

2F1 a; b; c; xð Þ ¼
X1
s¼0

að Þs bð Þs
cð Þss!

xs ¼ 1þ ab
c
xþ a aþ 1ð Þb bþ 1ð Þ

c cþ 1ð Þ2! x2 þ � � � ; ð2Þ

where að Þs ¼ 1 að Þ aþ 1ð Þ aþ 2ð Þ . . . aþ s� 1ð Þ is the rising factorial of a. 2F1 a; b; c; xð Þ is undefined
for c ¼ 0 or c a negative integer.

For xj j < 1, the series is absolutely convergent and 2F1 a; b; c; xð Þ is finite.

For x < 1, linear transformations of the form,

2F1 a; b; c;xð Þ ¼ C1 a1; b1; c1; x1ð Þ2F1 a1; b1; c1; x1ð Þ þ C2 a2; b2; c2; x2ð Þ2F1 a2; b2; c2; x2ð Þ ð3Þ

exist, where x1, x2 2 0; 1ð �. C1 and C2 are real valued functions of the parameters and argument,
typically involving products of gamma functions. When these are degenerate, finite limiting cases exist.
Hence for x < 0, 2F1 a; b; c;xð Þ is defined by analytic continuation, and for x < 1, 2F1 a; b; c; xð Þ is real
and finite.

For x ¼ 1, the following apply:

If c > aþ b, 2F1 a; b; c; 1ð Þ ¼  cð Þ c� a� bð Þ
 c� að Þ c� bð Þ , and hence is finite. Solutions also exist for the

degenerate cases where c� a or c� b are negative integers or zero.

If c � aþ b, 2F1 a; b; c; 1ð Þ is infinite, and the sign of 2F1 a; b; c; 1ð Þ is determinable as x
approaches 1 from below.
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In the complex plane, the principal branch of 2F1 a; b; c; zð Þ is taken along the real axis from x ¼ 1:0
increasing. 2F1 a; b; c; zð Þ is multivalued along this branch, and for real parameters a; b and c is typically
not real valued. As such, this routine will not compute a solution when x > 1.

The solution strategy used by this routine is primarily dependent upon the value of the argument x.
Once trivial cases and the case x ¼ 1:0 are eliminated, this proceeds as follows.

For 0 < x � 0:5, sets of safe parameters �i;j; �i;j; �i;j;�j 1 � j � 2j j; 1 � i � 4
� 

are determined, such
that the values of 2F1 aj; bj; cj; xj

� �
required for an appropriate transformation of the type (3) may be

calculated either directly or using recurrence relations from the solutions of 2F1 �i;j; �i;j; �i;j;�j
� �

. If c is
positive, then only transformations with C2 ¼ 0:0 will be used, implying only 2F1 a1; b1; c1; x1ð Þ will be
required, with the transformed argument x1 ¼ x. If c is negative, in some cases a transformation with
C2 6¼ 0:0 will be used, with the argument x2 ¼ 1:0� x. The routine then cycles through these sets until
acceptable solutions are generated. If no computation produces an accurate answer, the least inaccurate
answer is selected to complete the computation. See Section 7.

For 0:5 < x < 1:0, an identical approach is first used with the argument x. Should this fail, a linear
transformation resulting in both transformed arguments satisfying xj ¼ 1:0� x is employed, and the
above strategy for 0 < x � 0:5 is utilized on both components. Further transformations in these sub-
computations are however limited to single terms with no argument transformation.

For x < 0, a linear transformation mapping the argument x to the interval 0; 0:5ð � is first employed. The
strategy for 0 < x � 0:5 is then used on each component, including possible further two term
transforms. To avoid some degenerate cases, a transform mapping the argument x to 0:5; 1½ Þ may also
be used.

In addition to the above restrictions on c and x, an artificial bound, arbnd, is placed on the magnitudes
of a; b; c and x to minimize the occurrence of overflow in internal calculations, particularly those
involving real to integer conversions. arbnd ¼ 0:0001� Imax , where Imax is the largest machine integer
(see X02BBF). It should however not be assumed that this routine will produce accurate answers for all
values of a; b; c and x satisfying this criterion.

This routine also tests for non-finite values of the parameters and argument on entry, and assigns non-
finite values upon completion if appropriate. See Section 9 and Chapter X07.

Please consult the NIST Digital Library of Mathematical Functions or the companion (2010) for a
detailed discussion of the Gauss hypergeometric function including special cases, transformations,
relations and asymptotic approximations.

4 References

NIST Handbook of Mathematical Functions (2010) (eds F W J Olver, D W Lozier, R F Boisvert, C W
Clark) Cambridge University Press

Pearson J (2009) Computation of hypergeometric functions MSc Dissertation, Mathematical Institute,
University of Oxford

5 Arguments

1: A – REAL (KIND=nag_wp) Input

On entry: the parameter a.

Constraint: Aj j � arbnd.

2: B – REAL (KIND=nag_wp) Input

On entry: the parameter b.

Constraint: Bj j � arbnd.

3: C – REAL (KIND=nag_wp) Input

On entry: the parameter c.
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Constraints:

Cj j � arbnd;
C 6¼ 0;�1;�2; . . ..

4: X – REAL (KIND=nag_wp) Input

On entry: the argument x.

Constraint: �arbnd < X � 1.

5: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Underflow occurred during the evaluation of 2F1 a; b; c;xð Þ. The returned value may be
inaccurate.

IFAIL ¼ 2

All approximations have completed, and the final residual estimate indicates some precision may
have been lost.
Relative residual ¼ valueh i.

IFAIL ¼ 3

All approximations have completed, and the final residual estimate indicates no accuracy can be
guaranteed.
Relative residual ¼ valueh i.

IFAIL ¼ 4

On entry, X ¼ valueh i, c ¼ valueh i, aþ b ¼ valueh i.
2F1 a; b; c; 1ð Þ is infinite in the case c � aþ b.

IFAIL ¼ 5

On completion, overflow occurred in the evaluation of 2F1 a; b; c; xð Þ.

IFAIL ¼ 6

Overflow occurred in a subcalculation of 2F1 a; b; c; xð Þ. The result may or may not be infinite.

IFAIL ¼ 9

An internal calculation has resulted in an undefined result.
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IFAIL ¼ 11

On entry, A does not satisfy Aj j � arbnd ¼ valueh i.

IFAIL ¼ 21

On entry, B does not satisfy Bj j � arbnd ¼ valueh i.

IFAIL ¼ 31

On entry, C does not satisfy Cj j � arbnd ¼ valueh i.

IFAIL ¼ 32

On entry, C ¼ valueh i.
2F1 a; b; c;xð Þ is undefined when c is zero or a negative integer.

IFAIL ¼ 41

On entry, X does not satisfy Xj j � arbnd ¼ valueh i.

IFAIL ¼ 42

On entry, X ¼ valueh i.
In general, 2F1 a; b; c; xð Þ is not real valued when x > 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In general, if IFAIL ¼ 0, the value of 2F1 a; b; c; xð Þ may be assumed accurate, with the possible loss of
one or two decimal places. Assuming the result does not under or overflow, an error estimate res is
made internally using equation (1). If the magnitude of res is sufficiently large, a nonzero IFAIL will be
returned. Specifically,

IFAIL ¼ 0 or 1 res � 1000�
IFAIL ¼ 2 1000� < res � 0:1
IFAIL ¼ 3 res > 0:1

where � is the machine precision as returned by X02AJF.

A further estimate of the residual can be constructed using equation (1), and the differential identity,

d 2F1 a; b; c; xð Þ
� �

dx
¼ ab

c 2F1 aþ 1; bþ 1; cþ 1; xð Þ
d2 2F1 a; b; c; xð Þ
� �

dx2
¼ a aþ 1ð Þb bþ 1ð Þ

c cþ 1ð Þ 2F1 aþ 2; bþ 2; cþ 2; xð Þ
ð4Þ

This estimate is however dependent upon the error involved in approximating 2F1 aþ 1; bþ 1; cþ 1;xð Þ
and 2F1 aþ 2; bþ 2; cþ 2; xð Þ.
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Furthermore, the accuracy of the solution, and the error estimate, can be dependent upon the accuracy
of the decimal fraction of the input parameters a and b. For example, if c ¼ ci þ cr ¼ 100þ 1:0E�6,
then on a machine with 16 decimal digits of precision, the internal calculation of cr will only be
accurate to 8 decimal places. This can subsequently pollute the final solution by several decimal places
without affecting the residual estimate as greatly. Should you require higher accuracy in such regions,
then you should use S22BFF, which requires you to supply the correct decimal fraction.

8 Parallelism and Performance

S22BEF is not threaded in any implementation.

9 Further Comments

S22BEF returns non-finite values when appropriate. See Chapter X07 for more information on the
definitions of non-finite values.

Should a non-finite value be returned, this will be indicated in the value of IFAIL, as detailed in the
following cases.

If IFAIL ¼ 0, or IFAIL ¼ 1, 2 or 3, a finite value will have been returned with an approximate accuracy
as detailed in Section 7.

If IFAIL ¼ 4 then 2F1 a; b; c;xð Þ is infinite, and a signed infinity will have been returned. The sign of the
infinity should be correct when taking the limit as x approaches 1 from below.

If IFAIL ¼ 5 then upon completion, 2F1 a; b; c;xð Þ
		 		 > Rmax , where Rmax is the largest machine number

given by X02ALF, and hence is too large to be representable. The result will be returned as a signed
infinity. The sign should be correct.

If IFAIL ¼ 6 then overflow occurred during a subcalculation of 2F1 a; b; c; xð Þ. A signed infinity will
have been returned, however there is no guarantee that this is representative of either the magnitude or
the sign of 2F1 a; b; c; xð Þ.
For all other error exits, S22BEF will return a signalling NaN (see X07BBF).

If IFAIL ¼ 9 then an internal computation produced an undefined result. This may occur when two
terms overflow with opposite signs, and the result is dependent upon their summation for example.

If IFAIL ¼ 32 then c is too close to a negative integer or zero on entry, and 2F1 a; b; c;xð Þ is considered
undefined. Note, this will also be the case when c is a negative integer, and a (possibly trivial) linear
transformation of the form (3) would result in either:

(i) all cj not being negative integers,

(ii) for any cj which remain as negative integers, one of the corresponding parameters aj or bj is a
negative integer of magnitude less than cj.

In the first case, the transformation coefficients Cj aj; bj; cj; xj
� �

are typically either infinite or undefined,
preventing a solution being constructed. In the second case, the series (2) will terminate before the
degenerate term, resulting in a polynomial of fixed degree, and hence potentially a finite solution.

If IFAIL ¼ 11, 21, 31 or 41 then no computation will have been performed. The actual solution may
however be finite.

IFAIL ¼ 42 indicates x > 1. Hence the requested solution is on the boundary of the principal branch of

2F1 a; b; c;xð Þ, and hence is multivalued, typically with a nonzero imaginary component. It is however
strictly finite.

10 Example

This example evaluates 2F1 a; b; c;xð Þ at a fixed set of parameters a; b and c, and for several values for
the argument x.
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10.1 Program Text

Program s22befe

! S22BEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s22bef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, c, f, x
Integer :: ifail, kx

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S22BEF Example Program Results’

a = 1.2E0_nag_wp
b = -2.6E0_nag_wp
c = 3.5E0_nag_wp

Write (nout,*)
Write (nout,99999)
Write (nout,99998)
Write (nout,99997) a, b, c
Write (nout,*)
Write (nout,99996)
Write (nout,99995)

Do kx = 1, 21
x = -4.0E0_nag_wp + real(kx-1,kind=nag_wp)*0.25E0_nag_wp
ifail = 1
f = s22bef(a,b,c,x,ifail)
Select Case (ifail)
Case (0,1,2,3)

Write (nout,99994) x, f
Case (4,5,6)

If (f>=0.0E0_nag_wp) Then
Write (nout,99993) x, ’+Infinity’

Else
Write (nout,99993) x, ’-Infinity’

End If
Case (9)

Write (nout,99993) x, ’NaN’
Case Default

Write (nout,*) ’Illegal parameter: ifail = ’, ifail
Go To 100

End Select
End Do

100 Continue

99999 Format (12X,’a’,14X,’b’,14X,’c’)
99998 Format (3(’+--------------’),’+’)
99997 Format (3(4X,F10.2,1X))
99996 Format (12X,’x’,4X,’2F1(a,b;c;x)’)
99995 Format (2(’+--------------’),’+’)
99994 Format (4X,F10.2,5X,F10.4)
99993 Format (4X,F10.2,3X,A13)

End Program s22befe

10.2 Program Data

None.

S22BEF NAG Library Manual

S22BEF.6 Mark 26



10.3 Program Results

S22BEF Example Program Results

a b c
+--------------+--------------+--------------+

1.20 -2.60 3.50

x 2F1(a,b;c;x)
+--------------+--------------+

-4.00 12.3289
-3.75 11.0602
-3.50 9.8783
-3.25 8.7806
-3.00 7.7649
-2.75 6.8286
-2.50 5.9692
-2.25 5.1841
-2.00 4.4707
-1.75 3.8263
-1.50 3.2480
-1.25 2.7330
-1.00 2.2784
-0.75 1.8811
-0.50 1.5378
-0.25 1.2453
0.00 1.0000
0.25 0.7983
0.50 0.6362
0.75 0.5094
1.00 0.3659
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NAG Library Routine Document

S22BFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S22BFF returns a value for the Gauss hypergeometric function 2F1 a; b; c; xð Þ for real parameters a; b
and c, and real argument x. The result is returned in the scaled form 2F1 a; b; c;xð Þ ¼ ffr � 2fsc .

2 Specification

SUBROUTINE S22BFF (ANI, ADR, BNI, BDR, CNI, CDR, X, FRF, SCF, IFAIL)

INTEGER SCF, IFAIL
REAL (KIND=nag_wp) ANI, ADR, BNI, BDR, CNI, CDR, X, FRF

3 Description

S22BFF returns a value for the Gauss hypergeometric function 2F1 a; b; c;xð Þ for real parameters a, b
and c, and for real argument x.

The Gauss hypergeometric function is a solution to the hypergeometric differential equation,

x 1� xð Þd
2f

dx2
þ c� aþ bþ 1ð Þxð Þdf

dx
� abf ¼ 0: ð1Þ

For xj j < 1, it may be defined by the Gauss series,

2F1 a; b; c; xð Þ ¼
X1
s¼0

að Þs bð Þs
cð Þss!

xs ¼ 1þ ab
c
xþ a aþ 1ð Þb bþ 1ð Þ

c cþ 1ð Þ2! x2 þ � � � ; ð2Þ

where að Þs ¼ 1 að Þ aþ 1ð Þ aþ 2ð Þ . . . aþ s� 1ð Þ is the rising factorial of a. 2F1 a; b; c; xð Þ is undefined
for c ¼ 0 or c a negative integer.

For xj j < 1, the series is absolutely convergent and 2F1 a; b; c; xð Þ is finite.

For x < 1, linear transformations of the form,

2F1 a; b; c;xð Þ ¼ C1 a1; b1; c1; x1ð Þ2F1 a1; b1; c1; x1ð Þ þ C2 a2; b2; c2; x2ð Þ2F1 a2; b2; c2; x2ð Þ ð3Þ

exist, where x1, x2 2 0; 1ð �. C1 and C2 are real valued functions of the parameters and argument,
typically involving products of gamma functions. When these are degenerate, finite limiting cases exist.
Hence for x < 0, 2F1 a; b; c;xð Þ is defined by analytic continuation, and for x < 1, 2F1 a; b; c; xð Þ is real
and finite.

For x ¼ 1, the following apply:

If c > aþ b, 2F1 a; b; c; 1ð Þ ¼  cð Þ c� a� bð Þ
 c� að Þ c� bð Þ , and hence is finite. Solutions also exist for the

degenerate cases where c� a or c� b are negative integers or zero.

If c � aþ b, 2F1 a; b; c; 1ð Þ is infinite, and the sign of 2F1 a; b; c; 1ð Þ is determinable as x
approaches 1 from below.

In the complex plane, the principal branch of 2F1 a; b; c; zð Þ is taken along the real axis from x ¼ 1:0
increasing. 2F1 a; b; c; zð Þ is multivalued along this branch, and for real parameters a; b and c is typically
not real valued. As such, this routine will not compute a solution when x > 1.

The solution strategy used by this routine is primarily dependent upon the value of the argument x.
Once trivial cases and the case x ¼ 1:0 are eliminated, this proceeds as follows.
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For 0 < x � 0:5, sets of safe parameters �i;j; �i;j; �i;j; �j 1 � j � 2j j; 1 � i � 4
� 

are determined, such
that the values of 2F1 aj; bj; cj; xj

� �
required for an appropriate transformation of the type (3) may be

calculated either directly or using recurrence relations from the solutions of 2F1 �i;j; �i;j; �i;j;�j
� �

. If c is
positive, then only transformations with C2 ¼ 0:0 will be used, implying only 2F1 a1; b1; c1; x1ð Þ will be
required, with the transformed argument x1 ¼ x. If c is negative, in some cases a transformation with
C2 6¼ 0:0 will be used, with the argument x2 ¼ 1:0� x. The routine then cycles through these sets until
acceptable solutions are generated. If no computation produces an accurate answer, the least inaccurate
answer is selected to complete the computation. See Section 7.

For 0:5 < x < 1:0, an identical approach is first used with the argument x. Should this fail, a linear
transformation resulting in both transformed arguments satisfying xj ¼ 1:0� x is employed, and the
above strategy for 0 < x � 0:5 is utilized on both components. Further transformations in these sub-
computations are however limited to single terms with no argument transformation.

For x < 0, a linear transformation mapping the argument x to the interval 0; 0:5ð � is first employed. The
strategy for 0 < x � 0:5 is then used on each component, including possible further two term
transforms. To avoid some degenerate cases, a transform mapping the argument x to 0:5; 1½ Þ may also
be used.

For improved precision in the final result, this routine accepts a; b and c split into an integral and a
decimal fractional component. Specifically, a ¼ ai þ ar, where arj j � 0:5 and ai ¼ a� ar is integral.
The other parameters b and c are similarly deconstructed.

In addition to the above restrictions on c and x, an artificial bound, arbnd, is placed on the magnitudes
of a; b; c and x to minimize the occurrence of overflow in internal calculations, particularly those
involving real to integer conversions. arbnd ¼ 0:0001� Imax , where Imax is the largest machine integer
(see X02BBF). It should however not be assumed that this routine will produce accurate answers for all
values of a; b; c and x satisfying this criterion.

This routine also tests for non-finite values of the parameters and argument on entry, and assigns non-
finite values upon completion if appropriate. See Section 9 and Chapter X07.

Please consult the NIST Digital Library of Mathematical Functions or the companion (2010) for a
detailed discussion of the Gauss hypergeometric function including special cases, transformations,
relations and asymptotic approximations.

4 References

NIST Handbook of Mathematical Functions (2010) (eds F W J Olver, D W Lozier, R F Boisvert, C W
Clark) Cambridge University Press

Pearson J (2009) Computation of hypergeometric functions MSc Dissertation, Mathematical Institute,
University of Oxford

5 Arguments

1: ANI – REAL (KIND=nag_wp) Input

On entry: ai, the nearest integer to a, satisfying ai ¼ a� ar.
Constraints:

ANI ¼ ANIb c;
ANIj j � arbnd.

2: ADR – REAL (KIND=nag_wp) Input

On entry: ar, the signed decimal remainder satisfying ar ¼ a� ai and arj j � 0:5.

Constraint: ADRj j � 0:5.

3: BNI – REAL (KIND=nag_wp) Input

On entry: bi, the nearest integer to b, satisfying bi ¼ b� br.
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Constraints:

BNI ¼ BNIb c;
BNIj j � arbnd.

4: BDR – REAL (KIND=nag_wp) Input

On entry: br, the signed decimal remainder satisfying br ¼ b� bi and brj j � 0:5.

Constraint: BDRj j � 0:5.

5: CNI – REAL (KIND=nag_wp) Input

On entry: ci, the nearest integer to c, satisfying ci ¼ c� cr.
Constraints:

CNI ¼ CNIb c;
CNIj j � arbnd;
if CDRj j < 16:0�, CNI � 1:0.

6: CDR – REAL (KIND=nag_wp) Input

On entry: cr, the signed decimal remainder satisfying cr ¼ c� ci and crj j � 0:5.

Constraint: CDRj j � 0:5.

7: X – REAL (KIND=nag_wp) Input

On entry: the argument x.

Constraint: �arbnd < X � 1.

8: FRF – REAL (KIND=nag_wp) Output

On exit: ffr, the scaled real component of the solution satisfying ffr ¼ 2F1 a; b; c;xð Þ � 2�fsc , i.e.,

2F1 a; b; c;xð Þ ¼ ffr � 2fsc . See Section 9 for the behaviour of ffr when a finite or non-finite
answer is returned.

9: SCF – INTEGER Output

On exit: fsc, the scaling power of two, satisfying fsc ¼ log2
2F1 a; b; c; xð Þ

ffr

� �
, i.e.,

2F1 a; b; c;xð Þ ¼ ffr � 2fsc . See Section 9 for the behaviour of fsc when a non-finite answer is
returned.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Underflow occurred during the evaluation of 2F1 a; b; c;xð Þ. The returned value may be
inaccurate.

IFAIL ¼ 2

All approximations have completed, and the final residual estimate indicates some precision may
have been lost.
Relative residual ¼ valueh i.

IFAIL ¼ 3

All approximations have completed, and the final residual estimate indicates no accuracy can be
guaranteed.
Relative residual ¼ valueh i.

IFAIL ¼ 4

On entry, X ¼ valueh i, c ¼ valueh i, aþ b ¼ valueh i.
2F1 a; b; c; 1ð Þ is infinite in the case c � aþ b.

IFAIL ¼ 5

On completion, overflow occurred in the evaluation of 2F1 a; b; c; xð Þ.

IFAIL ¼ 6

Overflow occurred in a subcalculation of 2F1 a; b; c; xð Þ. The answer may be completely incorrect.

IFAIL ¼ 9

An internal calculation has resulted in an undefined result.

IFAIL ¼ 11

On entry, ANI does not satisfy ANIj j � arbnd ¼ valueh i.

IFAIL ¼ 13

ANI is non-integral.
On entry, ANI ¼ valueh i.
Constraint: ANI ¼ ANIb c.

IFAIL ¼ 21

On entry, ADR does not satisfy ADRj j � 0:5.

IFAIL ¼ 31

On entry, BNI does not satisfy BNIj j � arbnd ¼ valueh i.

IFAIL ¼ 33

BNI is non-integral.
On entry, BNI ¼ valueh i.
Constraint: BNI ¼ BNIb c.
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IFAIL ¼ 41

On entry, BDR does not satisfy BDRj j � 0:5.

IFAIL ¼ 51

On entry, CNI does not satisfy CNIj j � arbnd ¼ valueh i.

IFAIL ¼ 52

On entry, c ¼ CNIþ CDR ¼ valueh i.
2F1 a; b; c;xð Þ is undefined when c is zero or a negative integer.

IFAIL ¼ 53

CNI is non-integral.
On entry, CNI ¼ valueh i.
Constraint: CNI ¼ CNIb c.

IFAIL ¼ 61

On entry, CDR does not satisfy CDRj j � 0:5.

IFAIL ¼ 71

On entry, X does not satisfy Xj j � arbnd ¼ valueh i.

IFAIL ¼ 72

On entry, X ¼ valueh i.
In general, 2F1 a; b; c; xð Þ is not real valued when x > 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

In general, if IFAIL ¼ 0, the value of 2F1 a; b; c; xð Þ may be assumed accurate, with the possible loss of
one or two decimal places. Assuming the result does not overflow, an error estimate res is made
internally using equation (1). If the magnitude of this residual res is sufficiently large, a nonzero IFAIL
will be returned. Specifically,

IFAIL ¼ 0 or 1 res � 1000�
IFAIL ¼ 2 1000� < res � 0:1
IFAIL ¼ 3 res > 0:1

where � is the machine precision as returned by X02AJF. Note that underflow may also have occurred
if IFAIL ¼ 2 or 3.
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A further estimate of the residual can be constructed using equation (1), and the differential identity,

d 2F1 a; b; c; xð Þ
� �

dx
¼ ab

c 2F1 aþ 1; bþ 1; cþ 1; xð Þ
d2 2F1 a; b; c; xð Þ
� �

dx2
¼ a aþ 1ð Þb bþ 1ð Þ

c cþ 1ð Þ 2F1 aþ 2; bþ 2; cþ 2; xð Þ
ð4Þ

This estimate is however dependent upon the error involved in approximating 2F1 aþ 1; bþ 1; cþ 1;xð Þ
and 2F1 aþ 2; bþ 2; cþ 2; xð Þ.

8 Parallelism and Performance

S22BFF is not threaded in any implementation.

9 Further Comments

S22BFF returns non-finite values when appropriate. See Chapter X07 for more information on the
definitions of non-finite values.

Should a non-finite value be returned, this will be indicated in the value of IFAIL, as detailed in the
following cases.

If IFAIL ¼ 0 or IFAIL ¼ 1, 2 or 3, a finite value will have been returned with approximate accuracy as
detailed in Section 7.

The values of ffr and fsc are implementation dependent. In most cases, if 2F1 a; b; c; xð Þ ¼ 0, ffr ¼ 0
and fsc ¼ 0 will be returned, and if 2F1 a; b; c;xð Þ is finite, the fractional component will be bound by
0:5 � ffr

		 		 < 1, with fsc chosen accordingly.

The values returned in FRF (ffr) and SCF (fsc) may be used to explicitly evaluate 2F1 a; b; c; xð Þ, and
may also be used to evaluate products and ratios of multiple values of 2F1 as follows,

2F1 a; b; c;xð Þ ¼ ffr � 2fsc

2F1 a1; b1; c1; x1ð Þ � 2F1 a2; b2; c2;x2ð Þ ¼ ffr1 � ffr2ð Þ � 2 fsc1þfsc2ð Þ

2F1 a1; b1; c1;x1ð Þ
2F1 a2; b2; c2;x2ð Þ ¼

ffr1
ffr2
� 2 fsc1�fsc2ð Þ

ln 2F1 a; b; c; xð Þ
		 		 ¼ ln ffrj j þ fsc � ln 2ð Þ:

If IFAIL ¼ 4 then 2F1 a; b; c;xð Þ is infinite. A signed infinity will have been returned for FRF, and
SCF ¼ 0. The sign of FRF should be correct when taking the limit as x approaches 1 from below.

If IFAIL ¼ 5 then upon completion, 2F1 a; b; c; xð Þ
		 		 > 2Imax , where Imax is given by X02BBF, and hence

is too large to be representable even in the scaled form. The scaled real component returned in FRF
may still be correct, whilst SCF ¼ Imax will have been returned.

If IFAIL ¼ 6 then overflow occurred during a subcalculation of 2F1 a; b; c;xð Þ. The same result as for
IFAIL ¼ 5 will have been returned, however there is no guarantee that this is representative of either
the magnitude of the scaling power fsc, or the scaled component ffr of 2F1 a; b; c;xð Þ.
For all other error exits, SCF ¼ 0 will be returned and FRF will be returned as a signalling NaN (see
X07BBF).

If IFAIL ¼ 9 an internal computation produced an undefined result. This may occur when two terms
overflow with opposite signs, and the result is dependent upon their summation for example.

If IFAIL ¼ 52 then c is too close to a negative integer or zero on entry, and 2F1 a; b; c; xð Þ is undefined.
Note, this will also be the case when c is a negative integer, and a (possibly trivial) linear
transformation of the form (3) would result in either:

(i) all cj not being negative integers,

(ii) for any cj which remain as negative integers, one of the corresponding parameters aj or bj is a
negative integer of magnitude less than cj.
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In the first case, the transformation coefficients Cj aj; bj; cj; xj
� �

are typically either infinite or undefined,
preventing a solution being constructed. In the second case, the series (2) will terminate before the
degenerate term, resulting in a polynomial of fixed degree, and hence potentially a finite solution.

If IFAIL ¼ 11, 31, 51 or 71 then no computation will have been performed due to the risk of integer
overflow. The actual solution may however be finite.

IFAIL ¼ 72 indicates x > 1, and hence the requested solution is on the boundary of the principal
branch of 2F1 a; b; c; xð Þ. Hence it is multivalued, typically with a nonzero imaginary component. It is
however strictly finite.

10 Example

This example evaluates the Gauss hypergeometric function at two points in scaled form using S22BFF,
and subsequently calculates their product and ratio implicitly.

10.1 Program Text

Program s22bffe

! S22BFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s22bff, x02bhf, x02blf, x07caf, x07cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: adr, ani, bdr, bni, cdr, cni, delta, &

frf, scale, x
Integer :: ifail, k, scf
Logical :: finite_solutions

! .. Local Arrays ..
Real (Kind=nag_wp) :: frfv(2)
Integer :: exmode(3), scfv(2)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’S22BFF Example Program Results’

! Get current exception mode
Call x07caf(exmode)

! Disable exceptions
Call x07cbf((/0,0,0/))

finite_solutions = .True.

ani = -10.0_nag_wp
bni = 2.0_nag_wp
cni = -5.0E0_nag_wp
delta = 1.0E-4_nag_wp
adr = delta
bdr = -delta
cdr = delta
x = 0.45_nag_wp

Write (nout,99999) ’a’, ’b’, ’c’, ’x’, ’frf’, ’scf’, ’ 2F1(a,b;c;x)’

Do k = 1, 2

ifail = 1
Call s22bff(ani,adr,bni,bdr,cni,cdr,x,frf,scf,ifail)
Select Case (ifail)
Case (0,1,2,3)

! A finite result has been returned.
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If (scf<x02blf()) Then
scale = frf*2.0E0_nag_wp**scf
Write (nout,99998) ani + adr, bni + bdr, cni + cdr, x, frf, scf, &

scale
Else

Write (nout,99997) ani + adr, bni + bdr, cni + cdr, x, frf, scf, &
’Not representable’

End If
Case (4)

! The result is analytically infinite.
finite_solutions = .False.
If (frf>=0.0E0_nag_wp) Then

Write (nout,99993) ani + adr, bni + bdr, cni + cdr, x, ’Inf’, scf, &
’Inf’

Else
Write (nout,99993) ani + adr, bni + bdr, cni + cdr, x, ’-Inf’, &

scf, ’-Inf’
End If

Case (5,6)
! The final result has overflowed.

finite_solutions = .False.
If (frf>=0.0E0_nag_wp) Then

Write (nout,99992) ani + adr, bni + bdr, cni + cdr, x, frf, &
’IMAX’, ’>2**IMAX’

Else
Write (nout,99992) ani + adr, bni + bdr, cni + cdr, x, frf, &

’IMAX’, ’<-2**IMAX’
End If

Case (9)
! An internal calculation resulted in a non-finite, non-infinite
! result.

finite_solutions = .False.
Write (nout,99993) ani + adr, bni + bdr, cni + cdr, x, ’NaN’, scf, &

’NaN’
Case Default

! An input error has been detected.
Write (nout,99996) ani + adr, bni + bdr, cni + cdr, x, ’FAILED’
Go To 100

End Select

frfv(k) = frf
scfv(k) = scf

adr = -adr
bdr = -bdr
cdr = -cdr

End Do

If (finite_solutions) Then
! Calculate the product M1*M2

frf = frfv(1)*frfv(2)
scf = scfv(1) + scfv(2)
Write (nout,*)
If (scf<x02blf()) Then

scale = frf*real(x02bhf(),kind=nag_wp)**scf
Write (nout,99995) ’Solution product’, frf, scf, scale

Else
Write (nout,99994) ’Solution product’, frf, scf, ’Not representable’

End If

! Calculate the ratio M1/M2
If (frfv(2)/=0.0_nag_wp) Then

frf = frfv(1)/frfv(2)
scf = scfv(1) - scfv(2)
Write (nout,*)
If (scf<x02blf()) Then

scale = frf*real(x02bhf(),kind=nag_wp)**scf
Write (nout,99995) ’Solution ratio ’, frf, scf, scale

Else
Write (nout,99994) ’Solution ratio ’, frf, scf, &
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’Not representable’
End If

End If
End If

100 Continue
! Restore exception mode.

Call x07cbf(exmode)

99999 Format (/,1X,4(A10,1X),A13,1X,A6,1X,A13)
99998 Format (1X,4(F10.4,1X),Es13.5,1X,I6,1X,Es13.5)
99997 Format (1X,4(F10.4,1X),Es13.5,1X,I6,1X,A17)
99996 Format (1X,4(F10.4,1X),20X,A17)
99995 Format (1X,A16,17X,Es13.5,1X,I6,1X,Es13.5)
99994 Format (1X,A16,17X,Es13.5,1X,I6,1X,A17)
99993 Format (1X,4(F10.4,1X),A13,1X,I6,1X,A13)
99992 Format (1X,4(F10.4,1X),Es13.5,1X,A6,1X,A13)

End Program s22bffe

10.2 Program Data

None.

10.3 Program Results

S22BFF Example Program Results

a b c x frf scf 2F1(a,b;c;x)
-9.9999 1.9999 -4.9999 0.4500 -5.44477E-01 16 -3.56828E+04

-10.0001 2.0001 -5.0001 0.4500 5.44547E-01 16 3.56875E+04

Solution product -2.96494E-01 32 -1.27343E+09

Solution ratio -9.99871E-01 0 -9.99871E-01
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NAG Library Routine Document

S30AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30AAF computes the European option price given by the Black–Scholes–Merton formula.

2 Specification

SUBROUTINE S30AAF (CALPUT, M, N, X, S, T, SIGMA, R, Q, P, LDP, IFAIL)

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMA, R, Q, P(LDP,N)
CHARACTER(1) CALPUT

3 Description

S30AAF computes the price of a European call (or put) option for constant volatility, �, and risk-free
interest rate, r, with a possible dividend yield, q, using the Black–Scholes–Merton formula (see Black
and Scholes (1973) and Merton (1973)). For a given strike price, X, the price of a European call with
underlying price, S, and time to expiry, T , is

Pcall ¼ Se�qT� d1ð Þ �Xe�rT� d2ð Þ

and the corresponding European put price is

Pput ¼ Xe�rT� �d2ð Þ � Se�qT� �d1ð Þ

and where � denotes the cumulative Normal distribution function,

� xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z x

�1
exp �y2=2
� �

dy

and

d1 ¼
ln S=Xð Þþ r�qþ�2=2ð ÞT

�
ffiffiffi
T
p ;

d2 ¼ d1 � �
ffiffiffiffi
T
p

:

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Black F and Scholes M (1973) The pricing of options and corporate liabilities Journal of Political
Economy 81 637–654

Merton R C (1973) Theory of rational option pricing Bell Journal of Economics and Management
Science 4 141–183
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5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

8: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

9: Q – REAL (KIND=nag_wp) Input

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0.
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10: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

11: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which S30AAF
is called.

Constraint: LDP � M.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.
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IFAIL ¼ 7

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 8

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 9

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.

IFAIL ¼ 11

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum
relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An
accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30AAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.
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10 Example

This example computes the prices for six European call options using two expiry times and three strike
prices as input. The times to expiry are taken as 0:7 and 0:8 years respectively. The stock price is 55,
with strike prices, 58, 60 and 62. The risk-free interest rate is 10% per year and the volatility is 30% per
year.

10.1 Program Text

Program s30aafe

! S30AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: q, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:,:), t(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’S30AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, sigma, r, q
Read (nin,*) m, n

ldp = m
Allocate (p(ldp,n),t(n),x(m))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30aaf(calput,m,n,x,s,t,sigma,r,q,p,ldp,ifail)

Write (nout,*)
Write (nout,*) ’Black-Scholes-Merton formula’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)

Write (nout,*) ’European Put :’
End Select

Write (nout,99998) ’ Spot = ’, s
Write (nout,99998) ’ Volatility = ’, sigma
Write (nout,99998) ’ Rate = ’, r
Write (nout,99998) ’ Dividend = ’, q

Write (nout,*)
Write (nout,*) ’ Strike Expiry Option Price’

Do i = 1, m

Do j = 1, n
Write (nout,99999) x(i), t(j), p(i,j)

End Do
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End Do

99999 Format (1X,2(F9.4,1X),6X,F9.4)
99998 Format (A,1X,F8.4)

End Program s30aafe

10.2 Program Data

S30AAF Example Program Data
’C’ : Call = ’C’, Put = ’P’
55.0 0.3 0.1 0.0 : S, SIGMA, R, Q
3 2 : M, N

58.0
60.0
62.0 : X(I), I = 1,2,...M
0.7
0.8 : T(I), I = 1,2,...N

10.3 Program Results

S30AAF Example Program Results

Black-Scholes-Merton formula
European Call :
Spot = 55.0000
Volatility = 0.3000
Rate = 0.1000
Dividend = 0.0000

Strike Expiry Option Price
58.0000 0.7000 5.9198
58.0000 0.8000 6.5506
60.0000 0.7000 5.0809
60.0000 0.8000 5.6992
62.0000 0.7000 4.3389
62.0000 0.8000 4.9379
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NAG Library Routine Document

S30ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30ABF computes the European option price given by the Black–Scholes–Merton formula together
with its sensitivities (Greeks).

2 Specification

SUBROUTINE S30ABF (CALPUT, M, N, X, S, T, SIGMA, R, Q, P, LDP, DELTA,
GAMMA, VEGA, THETA, RHO, CRHO, VANNA, CHARM, SPEED,
COLOUR, ZOMMA, VOMMA, IFAIL)

&
&

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMA, R, Q, P(LDP,N), DELTA(LDP,N),

GAMMA(LDP,N), VEGA(LDP,N), THETA(LDP,N),
RHO(LDP,N), CRHO(LDP,N), VANNA(LDP,N),
CHARM(LDP,N), SPEED(LDP,N), COLOUR(LDP,N),
ZOMMA(LDP,N), VOMMA(LDP,N)

&
&
&
&

CHARACTER(1) CALPUT

3 Description

S30ABF computes the price of a European call (or put) option together with the Greeks or sensitivities,
which are the partial derivatives of the option price with respect to certain of the other input parameters,
by the Black–Scholes–Merton formula (see Black and Scholes (1973) and Merton (1973)). The annual
volatility, �, risk-free interest rate, r, and dividend yield, q, must be supplied as input. For a given strike
price, X, the price of a European call with underlying price, S, and time to expiry, T , is

Pcall ¼ Se�qT� d1ð Þ �Xe�rT� d2ð Þ

and the corresponding European put price is

Pput ¼ Xe�rT� �d2ð Þ � Se�qT� �d1ð Þ

and where � denotes the cumulative Normal distribution function,

� xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z x

�1
exp �y2=2
� �

dy

and

d1 ¼
ln S=Xð Þþ r�qþ�2=2ð ÞT

�
ffiffiffi
T
p ;

d2 ¼ d1 � �
ffiffiffiffi
T
p

:

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Black F and Scholes M (1973) The pricing of options and corporate liabilities Journal of Political
Economy 81 637–654

Merton R C (1973) Theory of rational option pricing Bell Journal of Economics and Management
Science 4 141–183
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5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

8: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

9: Q – REAL (KIND=nag_wp) Input

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0.

S30ABF NAG Library Manual

S30ABF.2 Mark 26



10: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

11: LDP – INTEGER Input

On entry: the first dimension of the arrays P, DELTA, GAMMA, VEGA, THETA, RHO, CRHO,
VANNA, CHARM, SPEED, COLOUR, ZOMMA and VOMMA as declared in the (sub)program
from which S30ABF is called.

Constraint: LDP � M.

12: DELTAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array DELTA contains the sensitivity, @P@S , of the option
price to change in the price of the underlying asset.

13: GAMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array GAMMA contains the sensitivity, @
2P
@S2 , of DELTA to

change in the price of the underlying asset.

14: VEGAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VEGAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the volatility of the underlying asset, i.e., @Pij
@� , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

15: THETAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: THETAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in time, i.e., �@Pij@T , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N, where b ¼ r� q.

16: RHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: RHOði; jÞ, contains the first-order Greek measuring the sensitivity of the option price Pij
to change in the annual risk-free interest rate, i.e., �@Pij@r , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

17: CRHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: CRHOði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the annual cost of carry rate, i.e., �@Pij@b , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N,
where b ¼ r� q.

18: VANNAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VANNAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the asset price, i.e., �@�ij

@T ¼ �
@2Pij
@S@� , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

19: CHARMðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: CHARMði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the time, i.e., �@�ij

@T ¼ �
@2Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.
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20: SPEEDðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: SPEEDði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the price of the underlying asset, i.e., �@ij@S ¼ �
@3Pij
@S3 , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

21: COLOURðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: COLOURði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the time, i.e., �@ij@T ¼ �
@3Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

22: ZOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: ZOMMAði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the volatility of the underlying asset, i.e., �@ij@� ¼ �
@3Pij
@S2@�

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

23: VOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VOMMAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the underlying asset, i.e., �@�ij

@� ¼ �
@2Pij
@�2

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.
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IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 7

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 8

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 9

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.

IFAIL ¼ 11

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum
relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An
accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30ABF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of a European put with a time to expiry of 0:7 years, a stock price of
55 and a strike price of 60. The risk-free interest rate is 10% per year and the volatility is 30% per year.

10.1 Program Text

Program s30abfe

! S30ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: q, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: charm(:,:), colour(:,:), crho(:,:), &

delta(:,:), gamma(:,:), p(:,:), &
rho(:,:), speed(:,:), t(:), &
theta(:,:), vanna(:,:), vega(:,:), &
vomma(:,:), x(:), zomma(:,:)

! .. Executable Statements ..
Write (nout,*) ’S30ABF Example Program Results’

! Skip heading in data file.
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, sigma, r, q
Read (nin,*) m, n

ldp = m
Allocate (charm(ldp,n),colour(ldp,n),crho(ldp,n),delta(ldp,n), &

gamma(ldp,n),p(ldp,n),rho(ldp,n),speed(ldp,n),t(n),theta(ldp,n), &
vanna(ldp,n),vega(ldp,n),vomma(ldp,n),x(m),zomma(ldp,n))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30abf(calput,m,n,x,s,t,sigma,r,q,p,ldp,delta,gamma,vega,theta,rho, &

crho,vanna,charm,speed,colour,zomma,vomma,ifail)

Write (nout,*)

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)

Write (nout,*) ’European Put :’
End Select
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Write (nout,99997) ’ Spot = ’, s
Write (nout,99997) ’ Volatility = ’, sigma
Write (nout,99997) ’ Rate = ’, r
Write (nout,99997) ’ Dividend = ’, q

Write (nout,*)

Do j = 1, n
Write (nout,*)
Write (nout,99999) t(j)
Write (nout,*) ’ Strike Price Delta Gamma Vega ’ // &

’Theta Rho CRho’

Do i = 1, m
Write (nout,99998) x(i), p(i,j), delta(i,j), gamma(i,j), vega(i,j), &

theta(i,j), rho(i,j), crho(i,j)
End Do

Write (nout,*) ’ Strike Price Vanna Charm Speed ’ // &
’Colour Zomma Vomma’

Do i = 1, m
Write (nout,99998) x(i), p(i,j), vanna(i,j), charm(i,j), speed(i,j), &

colour(i,j), zomma(i,j), vomma(i,j)
End Do

End Do

99999 Format (1X,’Time to Expiry : ’,1X,F8.4)
99998 Format (1X,8(F8.4,1X))
99997 Format (A,1X,F8.4)

End Program s30abfe

10.2 Program Data

S30ABF Example Program Data
’P’ : Call = ’C’, Put = ’P’
55.0 0.3 0.1 0.0 : S, SIGMA, R, Q
1 1 : M, N

60.0 : X(I), I = 1,2,...M
0.7 : T(I), I = 1,2,...N

10.3 Program Results

S30ABF Example Program Results

European Put :
Spot = 55.0000
Volatility = 0.3000
Rate = 0.1000
Dividend = 0.0000

Time to Expiry : 0.7000
Strike Price Delta Gamma Vega Theta Rho CRho

60.0000 6.0245 -0.4770 0.0289 18.3273 -0.7014 -22.5811 -18.3639
Strike Price Vanna Charm Speed Colour Zomma Vomma

60.0000 6.0245 0.2566 -0.2137 -0.0006 0.0215 -0.0972 -0.6816
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NAG Library Routine Document

S30BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30BAF computes the price of a floating-strike lookback option.

2 Specification

SUBROUTINE S30BAF (CALPUT, M, N, SM, S, T, SIGMA, R, Q, P, LDP, IFAIL)

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) SM(M), S, T(N), SIGMA, R, Q, P(LDP,N)
CHARACTER(1) CALPUT

3 Description

S30BAF computes the price of a floating-strike lookback call or put option. A call option of this type
confers the right to buy the underlying asset at the lowest price, Smin , observed during the lifetime of
the contract. A put option gives the holder the right to sell the underlying asset at the maximum price,
Smax , observed during the lifetime of the contract. Thus, at expiry, the payoff for a call option is
S � Smin , and for a put, Smax � S.
For a given minimum value the price of a floating-strike lookback call with underlying asset price, S,
and time to expiry, T , is

Pcall ¼ Se�qT� a1ð Þ � Smin e
�rT� a2ð Þ þ Se�rT

�2

2b

S

Smin

� ��2b=�2
� �a1 þ

2b

�

ffiffiffiffi
T
p� �

�ebT� �a1ð Þ
" #

;

where b ¼ r� q 6¼ 0. The volatility, �, risk-free interest rate, r, and annualised dividend yield, q, are
constants. When r ¼ q, the option price is given by

Pcall ¼ Se�qT� a1ð Þ � Smin e
�rT� a2ð Þ þ Se�rT�

ffiffiffiffi
T
p


 a1ð Þ þ a1 � a1ð Þ � 1ð Þ½ �:
The corresponding put price is (for b 6¼ 0),

Pput ¼ Smax e
�rT� �a2ð Þ � Se�qT� �a1ð Þ þ Se�rT �

2

2b
� S

Smax

� ��2b=�2
� a1 �

2b

�

ffiffiffiffi
T
p� �

þ ebT� a1ð Þ
" #

:

When r ¼ q,

Pput ¼ Smax e
�rT� �a2ð Þ � Se�qT� �a1ð Þ þ Se�rT�

ffiffiffiffi
T
p


 a1ð Þ þ a1� a1ð Þ½ �:
In the above, � denotes the cumulative Normal distribution function,

� xð Þ ¼
Z x

�1

 yð Þdy

where 
 denotes the standard Normal probability density function


 yð Þ ¼ 1ffiffiffiffiffiffi
2	
p exp �y2=2

� �
and
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a1 ¼
ln S=Smð Þþ bþ�2=2ð ÞT

�
ffiffiffi
T
p

a2 ¼ a1 � �
ffiffiffiffi
T
p

where Sm is taken to be the minimum price attained by the underlying asset, Smin , for a call and the
maximum price, Smax , for a put.

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each minimum or maximum observed price
in a set Smin ið Þ or Smax ið Þ, i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Goldman B M, Sosin H B and Gatto M A (1979) Path dependent options: buy at the low, sell at the
high Journal of Finance 34 1111–1127

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of minimum or maximum prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: SMðMÞ – REAL (KIND=nag_wp) array Input

On entry: SMðiÞ must contain Smin ið Þ, the ith minimum observed price of the underlying asset
when CALPUT ¼ C , or Smax ið Þ, the maximum observed price when CALPUT ¼ P , for
i ¼ 1; 2; . . . ;M.

Constraints:

SMðiÞ � z and SMðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M;
if CALPUT ¼ C , SMðiÞ � S, for i ¼ 1; 2; . . . ;M;
if CALPUT ¼ P , SMðiÞ � S, for i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.
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6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

8: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

9: Q – REAL (KIND=nag_wp) Input

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0.

10: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the minimum or maximum observed
price Smin ið Þ or Smax ið Þ at expiry Tj for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

11: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which S30BAF
is called.

Constraint: LDP � M.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.
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IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, SMð valueh iÞ ¼ valueh i.
Constraint: valueh i � SMðiÞ � valueh i for all i.
On entry with a call option, SMð valueh iÞ ¼ valueh i.
Constraint: for call options, SMðiÞ � valueh i for all i.
On entry with a put option, SMð valueh iÞ ¼ valueh i.
Constraint: for put options, SMðiÞ � valueh i for all i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i for all i.

IFAIL ¼ 7

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 8

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 9

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.

IFAIL ¼ 11

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum
relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An
accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30BAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of a floating-strike lookback call with a time to expiry of 6 months
and a stock price of 120. The minimum price observed so far is 100. The risk-free interest rate is 10%
per year and the volatility is 30% per year with an annual dividend return of 6%.

10.1 Program Text

Program s30bafe

! S30BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30baf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: q, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:,:), sm(:), t(:)

! .. Executable Statements ..
Write (nout,*) ’S30BAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, sigma, r, q
Read (nin,*) m, n

ldp = m
Allocate (p(ldp,n),sm(m),t(n))
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Read (nin,*)(sm(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30baf(calput,m,n,sm,s,t,sigma,r,q,p,ldp,ifail)

Write (nout,*)
Write (nout,*) ’Floating-strike Lookback’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)

Write (nout,*) ’European Put :’
End Select

Write (nout,99998) ’ Spot = ’, s
Write (nout,99998) ’ Volatility = ’, sigma
Write (nout,99998) ’ Rate = ’, r
Write (nout,99998) ’ Dividend = ’, q

Write (nout,*)
Write (nout,*) ’ Strike Expiry Option Price’

Do i = 1, m

Do j = 1, n
Write (nout,99999) sm(i), t(j), p(i,j)

End Do

End Do

99999 Format (1X,2(F9.4,1X),6X,F9.4)
99998 Format (A,1X,F8.4)

End Program s30bafe

10.2 Program Data

S30BAF Example Program Data
’C’ : Call = ’C’, Put = ’P’
120.0 0.3 0.1 0.06 : S, SIGMA, R, Q
1 1 : M, N
100.0 : SM(I), I = 1,2,...M
0.5 : T(I), I = 1,2,...N

10.3 Program Results

S30BAF Example Program Results

Floating-strike Lookback
European Call :
Spot = 120.0000
Volatility = 0.3000
Rate = 0.1000
Dividend = 0.0600

Strike Expiry Option Price
100.0000 0.5000 25.3534
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NAG Library Routine Document

S30BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30BBF computes the price of a floating-strike lookback option together with its sensitivities (Greeks).

2 Specification

SUBROUTINE S30BBF (CALPUT, M, N, SM, S, T, SIGMA, R, Q, P, LDP, DELTA,
GAMMA, VEGA, THETA, RHO, CRHO, VANNA, CHARM, SPEED,
COLOUR, ZOMMA, VOMMA, IFAIL)

&
&

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) SM(M), S, T(N), SIGMA, R, Q, P(LDP,N), DELTA(LDP,N),

GAMMA(LDP,N), VEGA(LDP,N), THETA(LDP,N),
RHO(LDP,N), CRHO(LDP,N), VANNA(LDP,N),
CHARM(LDP,N), SPEED(LDP,N), COLOUR(LDP,N),
ZOMMA(LDP,N), VOMMA(LDP,N)

&
&
&
&

CHARACTER(1) CALPUT

3 Description

S30BBF computes the price of a floating-strike lookback call or put option, together with the Greeks or
sensitivities, which are the partial derivatives of the option price with respect to certain of the other
input parameters. A call option of this type confers the right to buy the underlying asset at the lowest
price, Smin , observed during the lifetime of the contract. A put option gives the holder the right to sell
the underlying asset at the maximum price, Smax , observed during the lifetime of the contract. Thus, at
expiry, the payoff for a call option is S � Smin , and for a put, Smax � S.
For a given minimum value the price of a floating-strike lookback call with underlying asset price, S,
and time to expiry, T , is

Pcall ¼ Se�qT� a1ð Þ � Smin e
�rT� a2ð Þ þ Se�rT

�2

2b

S

Smin

� ��2b=�2
� �a1 þ

2b

�

ffiffiffiffi
T
p� �

�ebT� �a1ð Þ
" #

;

where b ¼ r� q 6¼ 0. The volatility, �, risk-free interest rate, r, and annualised dividend yield, q, are
constants.

The corresponding put price is

Pput ¼ Smax e
�rT� �a2ð Þ � Se�qT� �a1ð Þ þ Se�rT �

2

2b
� S

Smax

� ��2b=�2
� a1 �

2b

�

ffiffiffiffi
T
p� �

þ ebT� a1ð Þ
" #

:

In the above, � denotes the cumulative Normal distribution function,

� xð Þ ¼
Z x

�1

 yð Þdy

where 
 denotes the standard Normal probability density function


 yð Þ ¼ 1ffiffiffiffiffiffi
2	
p exp �y2=2

� �
and
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a1 ¼
ln S=Smð Þþ bþ�2=2ð ÞT

�
ffiffiffi
T
p

a2 ¼ a1 � �
ffiffiffiffi
T
p

where Sm is taken to be the minimum price attained by the underlying asset, Smin , for a call and the
maximum price, Smax , for a put.

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each minimum or maximum observed price
in a set Smin ið Þ or Smax ið Þ, i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Goldman B M, Sosin H B and Gatto M A (1979) Path dependent options: buy at the low, sell at the
high Journal of Finance 34 1111–1127

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of minimum or maximum prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: SMðMÞ – REAL (KIND=nag_wp) array Input

On entry: SMðiÞ must contain Smin ið Þ, the ith minimum observed price of the underlying asset
when CALPUT ¼ C , or Smax ið Þ, the maximum observed price when CALPUT ¼ P , for
i ¼ 1; 2; . . . ;M.

Constraints:

SMðiÞ � z and SMðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M;
if CALPUT ¼ C , SMðiÞ � S, for i ¼ 1; 2; . . . ;M;
if CALPUT ¼ P , SMðiÞ � S, for i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.
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6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

8: R – REAL (KIND=nag_wp) Input

On entry: the annual risk-free interest rate, r, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0 and abs R � Qð Þ > 10� eps�max abs Rð Þ; 1ð Þ, where eps ¼ X02AJFðÞ, the
machine precision.

9: Q – REAL (KIND=nag_wp) Input

On entry: the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0 and abs R� Qð Þ > 10� eps�max abs Rð Þ; 1ð Þ, where eps ¼ X02AJFðÞ, the
machine precision.

10: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the minimum or maximum observed
price Smin ið Þ or Smax ið Þ at expiry Tj for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

11: LDP – INTEGER Input

On entry: the first dimension of the arrays P, DELTA, GAMMA, VEGA, THETA, RHO, CRHO,
VANNA, CHARM, SPEED, COLOUR, ZOMMA and VOMMA as declared in the (sub)program
from which S30BBF is called.

Constraint: LDP � M.

12: DELTAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array DELTA contains the sensitivity, @P@S , of the option
price to change in the price of the underlying asset.

13: GAMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array GAMMA contains the sensitivity, @
2P
@S2 , of DELTA to

change in the price of the underlying asset.

14: VEGAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VEGAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the volatility of the underlying asset, i.e., @Pij
@� , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

15: THETAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: THETAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in time, i.e., �@Pij@T , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N, where b ¼ r� q.
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16: RHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: RHOði; jÞ, contains the first-order Greek measuring the sensitivity of the option price Pij
to change in the annual risk-free interest rate, i.e., �@Pij@r , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

17: CRHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: CRHOði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the annual cost of carry rate, i.e., �@Pij@b , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N,
where b ¼ r� q.

18: VANNAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VANNAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the asset price, i.e., �@�ij

@T ¼ �
@2Pij
@S@� , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

19: CHARMðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: CHARMði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the time, i.e., �@�ij

@T ¼ �
@2Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

20: SPEEDðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: SPEEDði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the price of the underlying asset, i.e., �@ij@S ¼ �
@3Pij
@S3 , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

21: COLOURðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: COLOURði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the time, i.e., �@ij@T ¼ �
@3Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

22: ZOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: ZOMMAði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the volatility of the underlying asset, i.e., �@ij@� ¼ �
@3Pij
@S2@�

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

23: VOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VOMMAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the underlying asset, i.e., �@�ij

@� ¼ �
@2Pij
@�2

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

S30BBF NAG Library Manual

S30BBF.4 Mark 26



6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, SMð valueh iÞ ¼ valueh i.
Constraint: valueh i � SMðiÞ � valueh i for all i.
On entry with a call option, SMð valueh iÞ ¼ valueh i.
Constraint: for call options, SMðiÞ � valueh i for all i.
On entry with a put option, SMð valueh iÞ ¼ valueh i.
Constraint: for put options, SMðiÞ � valueh i for all i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i for all i.

IFAIL ¼ 7

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 8

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 9

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.

IFAIL ¼ 11

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ 12

On entry, R ¼ valueh i and Q ¼ valueh i.
Constraint: R � Qj j > 10� eps�max Rj j; 1ð Þ, where eps is the machine precision.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum
relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An
accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30BBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of a floating-strike lookback put with a time to expiry of 6 months and
a stock price of 87. The maximum price observed so far is 100. The risk-free interest rate is 6% per
year and the volatility is 30% per year with an annual dividend return of 4%.

10.1 Program Text

Program s30bbfe

! S30BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30bbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: q, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: charm(:,:), colour(:,:), crho(:,:), &
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delta(:,:), gamma(:,:), p(:,:), &
rho(:,:), sm(:), speed(:,:), t(:), &
theta(:,:), vanna(:,:), vega(:,:), &
vomma(:,:), zomma(:,:)

! .. Executable Statements ..
Write (nout,*) ’S30BBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, sigma, r, q
Read (nin,*) m, n

ldp = m
Allocate (charm(ldp,n),colour(ldp,n),crho(ldp,n),delta(ldp,n), &

gamma(ldp,n),p(ldp,n),rho(ldp,n),sm(m),speed(ldp,n),t(n),theta(ldp,n), &
vanna(ldp,n),vega(ldp,n),vomma(ldp,n),zomma(ldp,n))

Read (nin,*)(sm(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30bbf(calput,m,n,sm,s,t,sigma,r,q,p,ldp,delta,gamma,vega,theta, &

rho,crho,vanna,charm,speed,colour,zomma,vomma,ifail)

Write (nout,*)
Write (nout,*) ’Floating-Strike Lookback’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)

Write (nout,*) ’European Put :’
End Select

Write (nout,99997) ’ Spot = ’, s
Write (nout,99997) ’ Volatility = ’, sigma
Write (nout,99997) ’ Rate = ’, r
Write (nout,99997) ’ Dividend = ’, q

Write (nout,*)

Do j = 1, n
Write (nout,*)
Write (nout,99999) t(j)
Write (nout,*) ’S-Max/Min Price Delta Gamma’ // &

’ Vega Theta Rho CRho’

Do i = 1, m
Write (nout,99998) sm(i), p(i,j), delta(i,j), gamma(i,j), vega(i,j), &

theta(i,j), rho(i,j), crho(i,j)
End Do

Write (nout,*) ’S-Max/Min Price Vanna Charm’ // &
’ Speed Colour Zomma Vomma’

Do i = 1, m
Write (nout,99998) sm(i), p(i,j), vanna(i,j), charm(i,j), &

speed(i,j), colour(i,j), zomma(i,j), vomma(i,j)
End Do

End Do

99999 Format (1X,’Time to Expiry : ’,1X,F8.4)
99998 Format (8(1X,F9.4))
99997 Format (A,1X,F8.4)

End Program s30bbfe
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10.2 Program Data

S30BBF Example Program Data
’P’ : Call = ’C’, Put = ’P’
87.0 0.3 0.06 0.04 : S, SIGMA, R, Q
1 1 : M, N
100.0 : SM(I), I = 1,2,...M
0.5 : T(I), I = 1,2,...N

10.3 Program Results

S30BBF Example Program Results

Floating-Strike Lookback
European Put :
Spot = 87.0000
Volatility = 0.3000
Rate = 0.0600
Dividend = 0.0400

Time to Expiry : 0.5000
S-Max/Min Price Delta Gamma Vega Theta Rho CRho
100.0000 18.3530 -0.3560 0.0391 45.5353 -11.6139 -32.8139 -23.6374

S-Max/Min Price Vanna Charm Speed Colour Zomma Vomma
100.0000 18.3530 1.9141 -0.6199 0.0007 0.0221 -0.0648 76.1292
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NAG Library Routine Document

S30CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30CAF computes the price of a binary or digital cash-or-nothing option.

2 Specification

SUBROUTINE S30CAF (CALPUT, M, N, X, S, K, T, SIGMA, R, Q, P, LDP, IFAIL)

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, K, T(N), SIGMA, R, Q, P(LDP,N)
CHARACTER(1) CALPUT

3 Description

S30CAF computes the price of a binary or digital cash-or-nothing option which pays a fixed amount,
K, at expiration if the option is in-the-money (see Section 2.4 in the S Chapter Introduction). For a
strike price, X, underlying asset price, S, and time to expiry, T , the payoff is therefore K, if S > X for
a call or S < X for a put. Nothing is paid out when this condition is not met.

The price of a call with volatility, �, risk-free interest rate, r, and annualised dividend yield, q, is

Pcall ¼ Ke�rT� d2ð Þ

and for a put,

Pput ¼ Ke�rT� �d2ð Þ

where � is the cumulative Normal distribution function,

� xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z x

�1
�y2=2
� �

dy;

and

d2 ¼
ln S=Xð Þ þ r� q � �2=2

� �
T

�
ffiffiffiffi
T
p :

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Reiner E and Rubinstein M (1991) Unscrambling the binary code Risk 4

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.
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CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: K – REAL (KIND=nag_wp) Input

On entry: the amount, K, to be paid at expiration if the option is in-the-money, i.e., if S > XðiÞ
when CALPUT ¼ C , or if S < XðiÞ when CALPUT ¼ P , for i ¼ 1; 2; . . . ;m.

Constraint: K � 0:0.

7: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

8: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

9: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

10: Q – REAL (KIND=nag_wp) Input

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0.

11: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.
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12: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which S30CAF
is called.

Constraint: LDP � M.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, K ¼ valueh i.
Constraint: K � 0:0.

IFAIL ¼ 7

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.
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IFAIL ¼ 8

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 9

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 10

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.

IFAIL ¼ 12

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum
relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An
accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30CAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of a cash-or-nothing put with a time to expiry of 0:75 years, a stock
price of 100 and a strike price of 80. The risk-free interest rate is 6% per year and the volatility is 35%
per year. If the option is in-the-money at expiration, i.e., if S > X, the payoff is 10.
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10.1 Program Text

Program s30cafe

! S30CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: k, q, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:,:), t(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’S30CAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, k, sigma, r, q
Read (nin,*) m, n

ldp = m
Allocate (p(ldp,n),t(n),x(m))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30caf(calput,m,n,x,s,k,t,sigma,r,q,p,ldp,ifail)

Write (nout,*)
Write (nout,*) ’Binary (Digital): Cash-or-Nothing’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)

Write (nout,*) ’European Put :’
End Select

Write (nout,99998) ’ Spot = ’, s
Write (nout,99998) ’ Payout = ’, k
Write (nout,99998) ’ Volatility = ’, sigma
Write (nout,99998) ’ Rate = ’, r
Write (nout,99998) ’ Dividend = ’, q

Write (nout,*)
Write (nout,*) ’ Strike Expiry Option Price’

Do i = 1, m

Do j = 1, n
Write (nout,99999) x(i), t(j), p(i,j)

End Do

End Do

99999 Format (1X,2(F9.4,1X),6X,F9.4)
99998 Format (A,1X,F8.4)

End Program s30cafe
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10.2 Program Data

S30CAF Example Program Data
’P’ : Call = ’C’, Put = ’P’
100.0 10.0 0.35 0.06 0.0 : S, K, SIGMA, R, Q
1 1 : M, N
80.0 : X(I), I = 1,2,...M
0.75 : T(I), I = 1,2,...N

10.3 Program Results

S30CAF Example Program Results

Binary (Digital): Cash-or-Nothing
European Put :
Spot = 100.0000
Payout = 10.0000
Volatility = 0.3500
Rate = 0.0600
Dividend = 0.0000

Strike Expiry Option Price
80.0000 0.7500 2.2155
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NAG Library Routine Document

S30CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30CBF computes the price of a binary or digital cash-or-nothing option together with its sensitivities
(Greeks).

2 Specification

SUBROUTINE S30CBF (CALPUT, M, N, X, S, K, T, SIGMA, R, Q, P, LDP, DELTA,
GAMMA, VEGA, THETA, RHO, CRHO, VANNA, CHARM, SPEED,
COLOUR, ZOMMA, VOMMA, IFAIL)

&
&

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, K, T(N), SIGMA, R, Q, P(LDP,N),

DELTA(LDP,N), GAMMA(LDP,N), VEGA(LDP,N),
THETA(LDP,N), RHO(LDP,N), CRHO(LDP,N),
VANNA(LDP,N), CHARM(LDP,N), SPEED(LDP,N),
COLOUR(LDP,N), ZOMMA(LDP,N), VOMMA(LDP,N)

&
&
&
&

CHARACTER(1) CALPUT

3 Description

S30CBF computes the price of a binary or digital cash-or-nothing option, together with the Greeks or
sensitivities, which are the partial derivatives of the option price with respect to certain of the other
input parameters. This option pays a fixed amount, K, at expiration if the option is in-the-money (see
Section 2.4 in the S Chapter Introduction). For a strike price, X, underlying asset price, S, and time to
expiry, T , the payoff is therefore K, if S > X for a call or S < X for a put. Nothing is paid out when
this condition is not met.

The price of a call with volatility, �, risk-free interest rate, r, and annualised dividend yield, q, is

Pcall ¼ Ke�rT� d2ð Þ

and for a put,

Pput ¼ Ke�rT� �d2ð Þ

where � is the cumulative Normal distribution function,

� xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z x

�1
exp �y2=2
� �

dy;

and

d2 ¼
ln S=Xð Þ þ r� q � �2=2

� �
T

�
ffiffiffiffi
T
p :

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Reiner E and Rubinstein M (1991) Unscrambling the binary code Risk 4
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5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: K – REAL (KIND=nag_wp) Input

On entry: the amount, K, to be paid at expiration if the option is in-the-money, i.e., if S > XðiÞ
when CALPUT ¼ C , or if S < XðiÞ when CALPUT ¼ P , for i ¼ 1; 2; . . . ;m.

Constraint: K � 0:0.

7: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

8: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

9: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.
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10: Q – REAL (KIND=nag_wp) Input

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0.

11: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

12: LDP – INTEGER Input

On entry: the first dimension of the arrays P, DELTA, GAMMA, VEGA, THETA, RHO, CRHO,
VANNA, CHARM, SPEED, COLOUR, ZOMMA and VOMMA as declared in the (sub)program
from which S30CBF is called.

Constraint: LDP � M.

13: DELTAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array DELTA contains the sensitivity, @P@S , of the option
price to change in the price of the underlying asset.

14: GAMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array GAMMA contains the sensitivity, @
2P
@S2 , of DELTA to

change in the price of the underlying asset.

15: VEGAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VEGAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the volatility of the underlying asset, i.e., @Pij
@� , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

16: THETAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: THETAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in time, i.e., �@Pij@T , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N, where b ¼ r� q.

17: RHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: RHOði; jÞ, contains the first-order Greek measuring the sensitivity of the option price Pij
to change in the annual risk-free interest rate, i.e., �@Pij@r , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

18: CRHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: CRHOði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the annual cost of carry rate, i.e., �@Pij@b , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N,
where b ¼ r� q.

19: VANNAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VANNAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the asset price, i.e., �@�ij

@T ¼ �
@2Pij
@S@� , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

20: CHARMðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: CHARMði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the time, i.e., �@�ij

@T ¼ �
@2Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.
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21: SPEEDðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: SPEEDði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the price of the underlying asset, i.e., �@ij@S ¼ �
@3Pij
@S3 , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

22: COLOURðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: COLOURði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the time, i.e., �@ij@T ¼ �
@3Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

23: ZOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: ZOMMAði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the volatility of the underlying asset, i.e., �@ij@� ¼ �
@3Pij
@S2@�

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

24: VOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VOMMAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the underlying asset, i.e., �@�ij

@� ¼ �
@2Pij
@�2

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.
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IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, K ¼ valueh i.
Constraint: K � 0:0.

IFAIL ¼ 7

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 8

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 9

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 10

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.

IFAIL ¼ 12

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum
relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An
accuracy close to machine precision can generally be expected.
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8 Parallelism and Performance

S30CBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of a cash-or-nothing call with a time to expiry of 0:75 years, a stock
price of 110 and a strike price of 87. The risk-free interest rate is 5% per year, there is an annual
dividend return of 4% and the volatility is 35% per year. If the option is in-the-money at expiration, i.e.,
if S > X, the payoff is 5.

10.1 Program Text

Program s30cbfe

! S30CBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: k, q, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: charm(:,:), colour(:,:), crho(:,:), &

delta(:,:), gamma(:,:), p(:,:), &
rho(:,:), speed(:,:), t(:), &
theta(:,:), vanna(:,:), vega(:,:), &
vomma(:,:), x(:), zomma(:,:)

! .. Executable Statements ..
Write (nout,*) ’S30CBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, k, sigma, r, q
Read (nin,*) m, n

ldp = m
Allocate (charm(ldp,n),colour(ldp,n),crho(ldp,n),delta(ldp,n), &

gamma(ldp,n),p(ldp,n),rho(ldp,n),speed(ldp,n),t(n),theta(ldp,n), &
vanna(ldp,n),vega(ldp,n),vomma(ldp,n),x(m),zomma(ldp,n))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30cbf(calput,m,n,x,s,k,t,sigma,r,q,p,ldp,delta,gamma,vega,theta, &

rho,crho,vanna,charm,speed,colour,zomma,vomma,ifail)
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Write (nout,*)
Write (nout,*) ’Binary (Digital): Cash-or-Nothing’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)

Write (nout,*) ’European Put :’
End Select

Write (nout,99997) ’ Spot = ’, s
Write (nout,99997) ’ Payout = ’, k
Write (nout,99997) ’ Volatility = ’, sigma
Write (nout,99997) ’ Rate = ’, r
Write (nout,99997) ’ Dividend = ’, q

Write (nout,*)

Do j = 1, n
Write (nout,*)
Write (nout,99999) t(j)
Write (nout,*) ’ Strike Price Delta Gamma Vega Theta’ &

// ’ Rho CRho’

Do i = 1, m
Write (nout,99998) x(i), p(i,j), delta(i,j), gamma(i,j), vega(i,j), &

theta(i,j), rho(i,j), crho(i,j)
End Do

Write (nout,*) &
’ Strike Price Vanna Charm Speed Colour Zomma’ // &
’ Vomma’

Do i = 1, m
Write (nout,99998) x(i), p(i,j), vanna(i,j), charm(i,j), speed(i,j), &

colour(i,j), zomma(i,j), vomma(i,j)
End Do

End Do

99999 Format (1X,’Time to Expiry : ’,1X,F8.4)
99998 Format (1X,8(F8.4,1X))
99997 Format (A,1X,F8.4)

End Program s30cbfe

10.2 Program Data

S30CBF Example Program Data
’C’ : Call = ’C’, Put = ’P’
110.0 5.0 0.35 0.05 0.04 : S, K, SIGMA, R, Q
1 1 : M, N
87.0 : X(I), I = 1,2,...M
0.75 : T(I), I = 1,2,...N

S – Approximations of Special Functions S30CBF

Mark 26 S30CBF.7



10.3 Program Results

S30CBF Example Program Results

Binary (Digital): Cash-or-Nothing
European Call :
Spot = 110.0000
Payout = 5.0000
Volatility = 0.3500
Rate = 0.0500
Dividend = 0.0400

Time to Expiry : 0.7500
Strike Price Delta Gamma Vega Theta Rho CRho

87.0000 3.5696 0.0467 -0.0013 -4.2307 1.1142 1.1788 3.8560
Strike Price Vanna Charm Speed Colour Zomma Vomma

87.0000 3.5696 -0.0514 0.0153 0.0000 -0.0019 0.0079 12.8874
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NAG Library Routine Document

S30CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30CCF computes the price of a binary or digital asset-or-nothing option.

2 Specification

SUBROUTINE S30CCF (CALPUT, M, N, X, S, T, SIGMA, R, Q, P, LDP, IFAIL)

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMA, R, Q, P(LDP,N)
CHARACTER(1) CALPUT

3 Description

S30CCF computes the price of a binary or digital asset-or-nothing option which pays the underlying
asset itself, S, at expiration if the option is in-the-money (see Section 2.4 in the S Chapter
Introduction). For a strike price, X, underlying asset price, S, and time to expiry, T , the payoff is
therefore S, if S > X for a call or S < X for a put. Nothing is paid out when this condition is not met.

The price of a call with volatility, �, risk-free interest rate, r, and annualised dividend yield, q, is

Pcall ¼ Se�qT� d1ð Þ

and for a put,

Pput ¼ Se�qT� �d1ð Þ

where � is the cumulative Normal distribution function,

� xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z x

�1
exp �y2=2
� �

dy;

and

d1 ¼
ln S=Xð Þ þ r� q þ �2=2

� �
T

�
ffiffiffiffi
T
p :

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Reiner E and Rubinstein M (1991) Unscrambling the binary code Risk 4

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.
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CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

8: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

9: Q – REAL (KIND=nag_wp) Input

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0.

10: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

11: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which S30CCF
is called.

Constraint: LDP � M.
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12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 7

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 8

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 9

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.
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IFAIL ¼ 11

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum
relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An
accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30CCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of an asset-or-nothing put with a time to expiry of 0:5 years, a stock
price of 70 and a strike price of 65. The risk-free interest rate is 7% per year, there is an annual
dividend return of 5% and the volatility is 27% per year.

10.1 Program Text

Program s30ccfe

! S30CCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30ccf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Real (Kind=nag_wp) :: q, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:,:), t(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’S30CCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, sigma, r, q
Read (nin,*) m, n

ldp = m
Allocate (p(ldp,n),t(n),x(m))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30ccf(calput,m,n,x,s,t,sigma,r,q,p,ldp,ifail)

Write (nout,*)
Write (nout,*) ’Binary (Digital): Asset-or-Nothing’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)

Write (nout,*) ’European Put :’
End Select

Write (nout,99998) ’ Spot = ’, s
Write (nout,99998) ’ Volatility = ’, sigma
Write (nout,99998) ’ Rate = ’, r
Write (nout,99998) ’ Dividend = ’, q

Write (nout,*)
Write (nout,*) ’ Strike Expiry Option Price’

Do i = 1, m

Do j = 1, n
Write (nout,99999) x(i), t(j), p(i,j)

End Do

End Do

99999 Format (1X,2(F9.4,1X),6X,F9.4)
99998 Format (A,1X,F8.4)

End Program s30ccfe

10.2 Program Data

S30CCF Example Program Data
’P’ : Call = ’C’, Put = ’P’
70.0 0.27 0.07 0.05 : S, SIGMA, R, Q
1 1 : M, N
65.0 : X(I), I = 1,2,...M
0.5 : T(I), I = 1,2,...N
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10.3 Program Results

S30CCF Example Program Results

Binary (Digital): Asset-or-Nothing
European Put :
Spot = 70.0000
Volatility = 0.2700
Rate = 0.0700
Dividend = 0.0500

Strike Expiry Option Price
65.0000 0.5000 20.2069
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NAG Library Routine Document

S30CDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30CDF computes the price of a binary or digital asset-or-nothing option together with its sensitivities
(Greeks).

2 Specification

SUBROUTINE S30CDF (CALPUT, M, N, X, S, T, SIGMA, R, Q, P, LDP, DELTA,
GAMMA, VEGA, THETA, RHO, CRHO, VANNA, CHARM, SPEED,
COLOUR, ZOMMA, VOMMA, IFAIL)

&
&

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMA, R, Q, P(LDP,N), DELTA(LDP,N),

GAMMA(LDP,N), VEGA(LDP,N), THETA(LDP,N),
RHO(LDP,N), CRHO(LDP,N), VANNA(LDP,N),
CHARM(LDP,N), SPEED(LDP,N), COLOUR(LDP,N),
ZOMMA(LDP,N), VOMMA(LDP,N)

&
&
&
&

CHARACTER(1) CALPUT

3 Description

S30CDF computes the price of a binary or digital asset-or-nothing option, together with the Greeks or
sensitivities, which are the partial derivatives of the option price with respect to certain of the other
input parameters. This option pays the underlying asset itself, S, at expiration if the option is in-the-
money (see Section 2.4 in the S Chapter Introduction). For a strike price, X, underlying asset price, S,
and time to expiry, T , the payoff is therefore S, if S > X for a call or S < X for a put. Nothing is paid
out when this condition is not met.

The price of a call with volatility, �, risk-free interest rate, r, and annualised dividend yield, q, is

Pcall ¼ Se�qT� d1ð Þ

and for a put,

Pput ¼ Se�qT� �d1ð Þ

where � is the cumulative Normal distribution function,

� xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z x

�1
exp �y2=2
� �

dy;

and

d1 ¼
ln S=Xð Þ þ r� q þ �2=2

� �
T

�
ffiffiffiffi
T
p :

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Reiner E and Rubinstein M (1991) Unscrambling the binary code Risk 4

S – Approximations of Special Functions S30CDF

Mark 26 S30CDF.1



5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

8: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

9: Q – REAL (KIND=nag_wp) Input

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0.
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10: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

11: LDP – INTEGER Input

On entry: the first dimension of the arrays P, DELTA, GAMMA, VEGA, THETA, RHO, CRHO,
VANNA, CHARM, SPEED, COLOUR, ZOMMA and VOMMA as declared in the (sub)program
from which S30CDF is called.

Constraint: LDP � M.

12: DELTAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array DELTA contains the sensitivity, @P@S , of the option
price to change in the price of the underlying asset.

13: GAMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array GAMMA contains the sensitivity, @
2P
@S2 , of DELTA to

change in the price of the underlying asset.

14: VEGAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VEGAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the volatility of the underlying asset, i.e., @Pij
@� , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

15: THETAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: THETAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in time, i.e., �@Pij@T , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N, where b ¼ r� q.

16: RHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: RHOði; jÞ, contains the first-order Greek measuring the sensitivity of the option price Pij
to change in the annual risk-free interest rate, i.e., �@Pij@r , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

17: CRHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: CRHOði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the annual cost of carry rate, i.e., �@Pij@b , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N,
where b ¼ r� q.

18: VANNAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VANNAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the asset price, i.e., �@�ij

@T ¼ �
@2Pij
@S@� , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

19: CHARMðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: CHARMði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the time, i.e., �@�ij

@T ¼ �
@2Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.
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20: SPEEDðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: SPEEDði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the price of the underlying asset, i.e., �@ij@S ¼ �
@3Pij
@S3 , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

21: COLOURðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: COLOURði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the time, i.e., �@ij@T ¼ �
@3Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

22: ZOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: ZOMMAði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the volatility of the underlying asset, i.e., �@ij@� ¼ �
@3Pij
@S2@�

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

23: VOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VOMMAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the underlying asset, i.e., �@�ij

@� ¼ �
@2Pij
@�2

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.
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IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 7

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 8

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 9

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.

IFAIL ¼ 11

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum
relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An
accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30CDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of an asset-or-nothing put with a time to expiry of 292 days, a stock
price of 70 and a strike price of 65. The risk-free interest rate is 5% per year, there is an annual
dividend return of 3% and the volatility is 15% per year.

10.1 Program Text

Program s30cdfe

! S30CDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30cdf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: q, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: charm(:,:), colour(:,:), crho(:,:), &

delta(:,:), gamma(:,:), p(:,:), &
rho(:,:), rhoq(:,:), speed(:,:), &
t(:), theta(:,:), vanna(:,:), &
vega(:,:), vomma(:,:), x(:), &
zomma(:,:)

! .. Executable Statements ..
Write (nout,*) ’S30CDF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, sigma, r, q
Read (nin,*) m, n

ldp = m
Allocate (charm(ldp,n),colour(ldp,n),crho(ldp,n),delta(ldp,n), &

gamma(ldp,n),p(ldp,n),rho(ldp,n),rhoq(ldp,n),speed(ldp,n),t(n), &
theta(ldp,n),vanna(ldp,n),vega(ldp,n),vomma(ldp,n),x(m),zomma(ldp,n))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30cdf(calput,m,n,x,s,t,sigma,r,q,p,ldp,delta,gamma,vega,theta,rho, &

rhoq,vanna,charm,speed,colour,zomma,vomma,ifail)

Write (nout,*)
Write (nout,*) ’Binary (Digital): Asset-or-Nothing’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
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Case (’P’,’p’)
Write (nout,*) ’European Put :’

End Select

Write (nout,99997) ’ Spot = ’, s
Write (nout,99997) ’ Volatility = ’, sigma
Write (nout,99997) ’ Rate = ’, r
Write (nout,99997) ’ Dividend = ’, q

Write (nout,*)

Do j = 1, n
Write (nout,*)
Write (nout,99999) t(j)
Write (nout,*) ’ Strike Price Delta Gamma Vega’ // &

’ Theta Rho CRho’

Do i = 1, m
Write (nout,99998) x(i), p(i,j), delta(i,j), gamma(i,j), vega(i,j), &

theta(i,j), rho(i,j), rhoq(i,j)
End Do

Write (nout,*) ’ Strike Price Vanna Charm Speed’ // &
’ Colour Zomma Vomma’

Do i = 1, m
Write (nout,99998) x(i), p(i,j), vanna(i,j), charm(i,j), speed(i,j), &

colour(i,j), zomma(i,j), vomma(i,j)
End Do

End Do

99999 Format (1X,’Time to Expiry : ’,1X,F8.4)
99998 Format (8(1X,F9.4))
99997 Format (A,1X,F8.4)

End Program s30cdfe

10.2 Program Data

S30CDF Example Program Data
’P’ : Call = ’C’, Put = ’P’
70.0 0.15 0.05 0.03 : S, SIGMA, R, Q
1 1 : M, N
65.0 : X(I), I = 1,2,...M
0.8 : T(I), I = 1,2,...N

10.3 Program Results

S30CDF Example Program Results

Binary (Digital): Asset-or-Nothing
European Put :
Spot = 70.0000
Volatility = 0.1500
Rate = 0.0500
Dividend = 0.0300

Time to Expiry : 0.8000
Strike Price Delta Gamma Vega Theta Rho CRho

65.0000 15.7211 -1.9852 0.1422 83.6424 -4.2761 -123.7497 -111.1728
Strike Price Vanna Charm Speed Colour Zomma Vomma

65.0000 15.7211 9.3479 -1.1351 0.0118 0.2316 -2.6319 -989.9610
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NAG Library Routine Document

S30FAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30FAF computes the price of a standard barrier option.

2 Specification

SUBROUTINE S30FAF (CALPUT, TYPE, M, N, X, S, H, K, T, SIGMA, R, Q, P,
LDP, IFAIL)

&

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, H, K, T(N), SIGMA, R, Q, P(LDP,N)
CHARACTER(1) CALPUT
CHARACTER(2) TYPE

3 Description

S30FAF computes the price of a standard barrier option, where the exercise, for a given strike price, X,
depends on the underlying asset price, S, reaching or crossing a specified barrier level, H. Barrier
options of type In only become active (are knocked in) if the underlying asset price attains the pre-
determined barrier level during the lifetime of the contract. Those of type Out start active and are
knocked out if the underlying asset price attains the barrier level during the lifetime of the contract. A
cash rebate, K, may be paid if the option is inactive at expiration. The option may also be described as
Up (the underlying price starts below the barrier level) or Down (the underlying price starts above the
barrier level). This gives the following options which can be specified as put or call contracts.

Down-and-In: the option starts inactive with the underlying asset price above the barrier level. It is
knocked in if the underlying price moves down to hit the barrier level before expiration.

Down-and-Out: the option starts active with the underlying asset price above the barrier level. It is
knocked out if the underlying price moves down to hit the barrier level before expiration.

Up-and-In: the option starts inactive with the underlying asset price below the barrier level. It is
knocked in if the underlying price moves up to hit the barrier level before expiration.

Up-and-Out: the option starts active with the underlying asset price below the barrier level. It is
knocked out if the underlying price moves up to hit the barrier level before expiration.

The payoff is max S �X; 0ð Þ for a call or max X � S; 0ð Þ for a put, if the option is active at expiration,
otherwise it may pay a pre-specified cash rebate, K. Following Haug (2007), the prices of the various
standard barrier options can be written as shown below. The volatility, �, risk-free interest rate, r, and
annualised dividend yield, q, are constants. The integer parameters, j and k, take the values 
1,
depending on the type of barrier.

A ¼ jSe�qT� jx1ð Þ � jXe�rT� j x1 � �
ffiffiffiffi
T
p� �� �

B ¼ jSe�qT� jx2ð Þ � jXe�rT� j x2 � �
ffiffiffiffi
T
p� �� �

C ¼ jSe�qT H
S

� �2 �þ1ð Þ
� ky1ð Þ � jXe�rT H

S

� �2�
� k y1 � �

ffiffiffiffi
T
p� �� �

D ¼ jSe�qT H
S

� �2 �þ1ð Þ
� ky2ð Þ � jXe�rT H

S

� �2�
� k y2 � �

ffiffiffiffi
T
p� �� �

E ¼ Ke�rT � k x2 � �
ffiffiffiffi
T
p� �� �

� H
S

� �2�
� k y2 � �

ffiffiffiffi
T
p� �� �n o

F ¼ K H
S

� ��þ�
� kzð Þ þ H

S

� ����
� k z� �

ffiffiffiffi
T
p� �� �n o

with
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x1 ¼ ln S=Xð Þ
�
ffiffiffi
T
p þ 1þ �ð Þ�

ffiffiffiffi
T
p

x2 ¼ ln S=Hð Þ
�
ffiffiffi
T
p þ 1þ �ð Þ�

ffiffiffiffi
T
p

y1 ¼
ln H2= SXð Þð Þ

�
ffiffiffi
T
p þ 1þ �ð Þ�

ffiffiffiffi
T
p

y2 ¼ ln H=Sð Þ
�
ffiffiffi
T
p þ 1þ �ð Þ�

ffiffiffiffi
T
p

z ¼ ln H=Sð Þ
�
ffiffiffi
T
p þ ��

ffiffiffiffi
T
p

� ¼ r�q��2=2
�2

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2r

�2

q
and where � denotes the cumulative Normal distribution function,

� xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z x

�1
exp �y2=2
� �

dy:

Down-and-In (S > H):

When X � H, with j ¼ k ¼ 1,

Pcall ¼ C þ E

and with j ¼ �1, k ¼ 1

Pput ¼ B� C þDþ E

When X < H, with j ¼ k ¼ 1

Pcall ¼ A�BþDþ E

and with j ¼ �1, k ¼ 1

Pput ¼ Aþ E:
Down-and-Out (S > H):

When X � H, with j ¼ k ¼ 1,

Pcall ¼ A� C þ F

and with j ¼ �1, k ¼ 1

Pput ¼ A�Bþ C �Dþ F

When X < H, with j ¼ k ¼ 1,

Pcall ¼ B�Dþ F

and with j ¼ �1, k ¼ 1

Pput ¼ F:
Up-and-In (S < H):

When X � H, with j ¼ 1, k ¼ �1,
Pcall ¼ Aþ E

and with j ¼ k ¼ �1,
Pput ¼ A�BþDþ E
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When X < H, with j ¼ 1, k ¼ �1,
Pcall ¼ B� C þDþ E

and with j ¼ k ¼ �1,
Pput ¼ C þ E:

Up-and-Out (S < H):

When X � H, with j ¼ 1, k ¼ �1,
Pcall ¼ F

and with j ¼ k ¼ �1,
Pput ¼ B�Dþ F

When X < H, with j ¼ 1, k ¼ �1,
Pcall ¼ A�Bþ C �Dþ F

and with j ¼ k ¼ �1,
Pput ¼ A� C þ F:

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Haug E G (2007) The Complete Guide to Option Pricing Formulas (2nd Edition) McGraw-Hill

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: TYPE – CHARACTER(2) Input

On entry: indicates the barrier type as In or Out and its relation to the price of the underlying
asset as Up or Down.

TYPE ¼ DI
Down-and-In.

TYPE ¼ DO
Down-and-Out.

TYPE ¼ UI
Up-and-In.

TYPE ¼ UO
Up-and-Out.

Constraint: TYPE ¼ DI , DO , UI or UO .
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3: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

4: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

5: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

6: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

7: H – REAL (KIND=nag_wp) Input

On entry: the barrier price.

Constraint: H � z and H � 1=z, where z ¼ X02AMFðÞ, the safe range parameter.

8: K – REAL (KIND=nag_wp) Input

On entry: the value of a possible cash rebate to be paid if the option has not been knocked in (or
out) before expiration.

Constraint: K � 0:0.

9: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

10: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

11: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

12: Q – REAL (KIND=nag_wp) Input

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0.

13: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.
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14: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which S30FAF
is called.

Constraint: LDP � M.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, TYPE ¼ valueh i was an illegal value.

IFAIL ¼ 3

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 4

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 5

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 6

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 7

On entry, H ¼ valueh i.
Constraint: H � valueh i and H � valueh i.

IFAIL ¼ 8

On entry, K ¼ valueh i.
Constraint: K � 0:0.
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IFAIL ¼ 9

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 10

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 11

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 12

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.

IFAIL ¼ 14

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ 15

On entry, S and H are inconsistent with TYPE: S ¼ valueh i and H ¼ valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum
relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An
accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30FAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

None.

10 Example

This example computes the price of a Down-and-In put with a time to expiry of 6 months, a stock price
of 100 and a strike price of 100. The barrier value is 95 and there is a cash rebate of 3, payable on
expiry if the option has not been knocked in. The risk-free interest rate is 8% per year, there is an
annual dividend return of 4% and the volatility is 30% per year.

10.1 Program Text

Program s30fafe

! S30FAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30faf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, k, q, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput
Character (2) :: type

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:,:), t(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’S30FAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput, type
Read (nin,*) s, h, k, sigma, r, q
Read (nin,*) m, n

ldp = m
Allocate (p(ldp,n),t(n),x(m))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30faf(calput,type,m,n,x,s,h,k,t,sigma,r,q,p,ldp,ifail)

Write (nout,*)
Write (nout,*) ’Standard Barrier Option’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’Call :’
Case (’P’,’p’)

Write (nout,*) ’Put :’
End Select

Select Case (type)
Case (’DI’,’di’,’Di’,’dI’)

Write (nout,*) ’Down-and-In’
Case (’DO’,’do’,’Do’,’dO’)

Write (nout,*) ’Down-and-Out’
Case (’UI’,’ui’,’Ui’,’uI’)

Write (nout,*) ’Up-and-In’
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Case (’UO’,’uo’,’Uo’,’uO’)
Write (nout,*) ’Up-and-Out’

End Select

Write (nout,99998) ’ Spot = ’, s
Write (nout,99998) ’ Barrier = ’, h
Write (nout,99998) ’ Rebate = ’, k
Write (nout,99998) ’ Volatility = ’, sigma
Write (nout,99998) ’ Rate = ’, r
Write (nout,99998) ’ Dividend = ’, q

Write (nout,*)
Write (nout,*) ’ Strike Expiry Option Price’

Do i = 1, m

Do j = 1, n
Write (nout,99999) x(i), t(j), p(i,j)

End Do

End Do

99999 Format (1X,2(F9.4,1X),6X,F9.4)
99998 Format (A,1X,F8.4)

End Program s30fafe

10.2 Program Data

S30FAF Example Program Data
’P’ ’DI’ : Call = ’C’, Put = ’P’, Type
100.0 95.0 3.0 0.3 0.08 0.04 : S, H, K, SIGMA, R, Q
1 1 : M, N
100.0 : X(I), I = 1,2,...M
0.5 : T(I), I = 1,2,...N

10.3 Program Results

S30FAF Example Program Results

Standard Barrier Option
Put :
Down-and-In
Spot = 100.0000
Barrier = 95.0000
Rebate = 3.0000
Volatility = 0.3000
Rate = 0.0800
Dividend = 0.0400

Strike Expiry Option Price
100.0000 0.5000 7.7988
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NAG Library Routine Document

S30JAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30JAF computes the European option price using the Merton jump-diffusion model.

2 Specification

SUBROUTINE S30JAF (CALPUT, M, N, X, S, T, SIGMA, R, LAMBDA, JVOL, P,
LDP, IFAIL)

&

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMA, R, LAMBDA, JVOL, P(LDP,N)
CHARACTER(1) CALPUT

3 Description

S30JAF uses Merton's jump-diffusion model (Merton (1976)) to compute the price of a European
option. This assumes that the asset price is described by a Brownian motion with drift, as in the Black–
Scholes–Merton case, together with a compound Poisson process to model the jumps. The
corresponding stochastic differential equation is,

dS

S
¼ �� �kð Þdtþ �̂dWt þ dqt:

Here � is the instantaneous expected return on the asset price, S; �̂2 is the instantaneous variance of the
return when the Poisson event does not occur; dWt is a standard Brownian motion; qt is the
independent Poisson process and k ¼ E Y � 1½ � where Y � 1 is the random variable change in the stock
price if the Poisson event occurs and E is the expectation operator over the random variable Y .

This leads to the following price for a European option (see Haug (2007))

Pcall ¼
X1
j¼0

e��T �Tð Þj

j!
Cj S;X; T ; r; �0j

� �
;

where T is the time to expiry; X is the strike price; r is the annual risk-free interest rate;

Cj S;X; T ; r; �0j

� �
is the Black–Scholes–Merton option pricing formula for a European call (see

S30AAF).

�0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ �2 j

T

� �q
;

z2 ¼ �2 � ��2;
�2 ¼ ��2

� ;

where � is the total volatility including jumps; � is the expected number of jumps given as an average
per year; � is the proportion of the total volatility due to jumps.

The value of a put is obtained by substituting the Black–Scholes–Merton put price for

Cj S;X; T ; r; �0j

� �
.

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.
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4 References

Haug E G (2007) The Complete Guide to Option Pricing Formulas (2nd Edition) McGraw-Hill

Merton R C (1976) Option pricing when underlying stock returns are discontinuous Journal of
Financial Economics 3 125–144

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the annual total volatility, including jumps.

Constraint: SIGMA > 0:0.

8: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.
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9: LAMBDA – REAL (KIND=nag_wp) Input

On entry: �, the number of expected jumps per year.

Constraint: LAMBDA > 0:0.

10: JVOL – REAL (KIND=nag_wp) Input

On entry: the proportion of the total volatility associated with jumps.

Constraint: 0:0 � JVOL < 1:0.

11: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

12: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which S30JAF
is called.

Constraint: LDP � M.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.
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IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 7

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 8

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 9

On entry, LAMBDA ¼ valueh i.
Constraint: LAMBDA > 0:0.

IFAIL ¼ 10

On entry, JVOL ¼ valueh i.
Constraint: JVOL � 0:0 and JVOL < 1:0.

IFAIL ¼ 12

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �, occurring in Cj. This is evaluated using a rational Chebyshev expansion, chosen so that the
maximum relative error in the expansion is of the order of the machine precision (see S15ABF and
S15ADF). An accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30JAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.
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S30JAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of a European call with jumps. The time to expiry is 3 months, the
stock price is 45 and the strike price is 55. The number of jumps per year is 3 and the percentage of the
total volatility due to jumps is 40%. The risk-free interest rate is 10% per year and the total volatility is
25% per year.

10.1 Program Text

Program s30jafe

! S30JAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30jaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: jvol, lambda, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:,:), t(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’S30JAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) lambda
Read (nin,*) s, sigma, r, jvol
Read (nin,*) m, n

ldp = m
Allocate (p(ldp,n),t(n),x(m))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30jaf(calput,m,n,x,s,t,sigma,r,lambda,jvol,p,ldp,ifail)

Write (nout,*)
Write (nout,*) ’Merton Jump-Diffusion Model’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)
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Write (nout,*) ’European Put :’
End Select

Write (nout,99998) ’ Spot = ’, s
Write (nout,99998) ’ Volatility = ’, sigma
Write (nout,99998) ’ Rate = ’, r
Write (nout,99998) ’ Jumps = ’, lambda
Write (nout,99998) ’ Jump vol = ’, jvol

Write (nout,*)
Write (nout,*) ’ Strike Expiry Option Price’

Do i = 1, m

Do j = 1, n
Write (nout,99999) x(i), t(j), p(i,j)

End Do

End Do

99999 Format (1X,2(F9.4,1X),6X,F9.4)
99998 Format (A,1X,F8.4)

End Program s30jafe

10.2 Program Data

S30JAF Example Program Data
’C’ : Call = ’C’, Put = ’P’
3.0 : LAMBDA (jumps)
45.0 0.25 0.1 0.4 : S, SIGMA, R, JVOL
1 1 : M, N
55.0 : X(I), I = 1,2,...M
0.25 : T(I), I = 1,2,...N

10.3 Program Results

S30JAF Example Program Results

Merton Jump-Diffusion Model
European Call :
Spot = 45.0000
Volatility = 0.2500
Rate = 0.1000
Jumps = 3.0000
Jump vol = 0.4000

Strike Expiry Option Price
55.0000 0.2500 0.2417
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NAG Library Routine Document

S30JBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30JBF computes the European option price together with its sensitivities (Greeks) using the Merton
jump-diffusion model.

2 Specification

SUBROUTINE S30JBF (CALPUT, M, N, X, S, T, SIGMA, R, LAMBDA, JVOL, P,
LDP, DELTA, GAMMA, VEGA, THETA, RHO, VANNA, CHARM,
SPEED, COLOUR, ZOMMA, VOMMA, IFAIL)

&
&

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMA, R, LAMBDA, JVOL, P(LDP,N),

DELTA(LDP,N), GAMMA(LDP,N), VEGA(LDP,N),
THETA(LDP,N), RHO(LDP,N), VANNA(LDP,N),
CHARM(LDP,N), SPEED(LDP,N), COLOUR(LDP,N),
ZOMMA(LDP,N), VOMMA(LDP,N)

&
&
&
&

CHARACTER(1) CALPUT

3 Description

S30JBF uses Merton's jump-diffusion model (Merton (1976)) to compute the price of a European
option, together with the Greeks or sensitivities, which are the partial derivatives of the option price
with respect to certain of the other input parameters. Merton's model assumes that the asset price is
described by a Brownian motion with drift, as in the Black–Scholes–Merton case, together with a
compound Poisson process to model the jumps. The corresponding stochastic differential equation is,

dS

S
¼ �� �kð Þdtþ �̂dWt þ dqt:

Here � is the instantaneous expected return on the asset price, S; �̂2 is the instantaneous variance of the
return when the Poisson event does not occur; dWt is a standard Brownian motion; qt is the
independent Poisson process and k ¼ E Y � 1½ � where Y � 1 is the random variable change in the stock
price if the Poisson event occurs and E is the expectation operator over the random variable Y .

This leads to the following price for a European option (see Haug (2007))

Pcall ¼
X1
j¼0

e��T �Tð Þj

j!
Cj S;X; T ; r; �0j

� �
;

where T is the time to expiry; X is the strike price; r is the annual risk-free interest rate;

Cj S;X; T ; r; �0j

� �
is the Black–Scholes–Merton option pricing formula for a European call (see

S30AAF).

�0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ �2 j

T

� �q
;

z2 ¼ �2 � ��2;

�2 ¼ ��2

� ;

where � is the total volatility including jumps; � is the expected number of jumps given as an average
per year; � is the proportion of the total volatility due to jumps.
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The value of a put is obtained by substituting the Black–Scholes–Merton put price for

Cj S;X; T ; r; �0j

� �
.

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Haug E G (2007) The Complete Guide to Option Pricing Formulas (2nd Edition) McGraw-Hill

Merton R C (1976) Option pricing when underlying stock returns are discontinuous Journal of
Financial Economics 3 125–144

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the annual total volatility, including jumps.

Constraint: SIGMA > 0:0.
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8: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

9: LAMBDA – REAL (KIND=nag_wp) Input

On entry: �, the number of expected jumps per year.

Constraint: LAMBDA > 0:0.

10: JVOL – REAL (KIND=nag_wp) Input

On entry: the proportion of the total volatility associated with jumps.

Constraint: 0:0 � JVOL < 1:0.

11: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

12: LDP – INTEGER Input

On entry: the first dimension of the arrays P, DELTA, GAMMA, VEGA, THETA, RHO,
VANNA, CHARM, SPEED, COLOUR, ZOMMA and VOMMA as declared in the (sub)program
from which S30JBF is called.

Constraint: LDP � M.

13: DELTAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array DELTA contains the sensitivity, @P@S , of the option
price to change in the price of the underlying asset.

14: GAMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array GAMMA contains the sensitivity, @
2P
@S2 , of DELTA to

change in the price of the underlying asset.

15: VEGAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VEGAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the volatility of the underlying asset, i.e., @Pij
@� , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

16: THETAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: THETAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in time, i.e., �@Pij@T , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N, where b ¼ r� q.

17: RHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: RHOði; jÞ, contains the first-order Greek measuring the sensitivity of the option price Pij
to change in the annual risk-free interest rate, i.e., �@Pij@r , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

18: VANNAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VANNAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the asset price, i.e., �@�ij

@T ¼ �
@2Pij
@S@� , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.
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19: CHARMðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: CHARMði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the time, i.e., �@�ij

@T ¼ �
@2Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

20: SPEEDðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: SPEEDði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the price of the underlying asset, i.e., �@ij@S ¼ �
@3Pij
@S3 , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

21: COLOURðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: COLOURði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the time, i.e., �@ij@T ¼ �
@3Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

22: ZOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: ZOMMAði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the volatility of the underlying asset, i.e., �@ij@� ¼ �
@3Pij
@S2@�

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

23: VOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VOMMAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the underlying asset, i.e., �@�ij

@� ¼ �
@2Pij
@�2

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.
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IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 7

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 8

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 9

On entry, LAMBDA ¼ valueh i.
Constraint: LAMBDA > 0:0.

IFAIL ¼ 10

On entry, JVOL ¼ valueh i.
Constraint: JVOL � 0:0 and JVOL < 1:0.

IFAIL ¼ 12

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �, occurring in Cj. This is evaluated using a rational Chebyshev expansion, chosen so that the
maximum relative error in the expansion is of the order of the machine precision (see S15ABF and
S15ADF). An accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30JBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of two European calls with jumps. The time to expiry is 6 months, the
stock price is 100 and strike prices are 80 and 90 respectively. The number of jumps per year is 5 and
the percentage of the total volatility due to jumps is 25%. The risk-free interest rate is 8% per year
while the total volatility is 25% per year.

10.1 Program Text

Program s30jbfe

! S30JBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30jbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: jvol, lambda, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: charm(:,:), colour(:,:), crho(:,:), &

delta(:,:), gamma(:,:), p(:,:), &
rho(:,:), speed(:,:), t(:), &
theta(:,:), vanna(:,:), vega(:,:), &
vomma(:,:), x(:), zomma(:,:)

! .. Executable Statements ..
Write (nout,*) ’S30JBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) lambda
Read (nin,*) s, sigma, r, jvol
Read (nin,*) m, n

ldp = m
Allocate (charm(ldp,n),colour(ldp,n),crho(ldp,n),delta(ldp,n), &

gamma(ldp,n),p(ldp,n),rho(ldp,n),speed(ldp,n),t(n),theta(ldp,n), &
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vanna(ldp,n),vega(ldp,n),vomma(ldp,n),x(m),zomma(ldp,n))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0

Call s30jbf(calput,m,n,x,s,t,sigma,r,lambda,jvol,p,ldp,delta,gamma,vega, &
theta,rho,vanna,charm,speed,colour,zomma,vomma,ifail)

Write (nout,*)
Write (nout,*) ’Merton Jump-Diffusion Model’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)

Write (nout,*) ’European Put :’
End Select

Write (nout,99996) ’ Spot = ’, s
Write (nout,99996) ’ Volatility = ’, sigma
Write (nout,99996) ’ Rate = ’, r
Write (nout,99996) ’ Jumps = ’, lambda
Write (nout,99996) ’ Jump vol = ’, jvol

Write (nout,*)

Do j = 1, n
Write (nout,*)
Write (nout,99999) t(j)
Write (nout,*) ’ Strike Price Delta Gamma Vega Theta’ &

// ’ Rho’

Do i = 1, m
Write (nout,99998) x(i), p(i,j), delta(i,j), gamma(i,j), vega(i,j), &

theta(i,j), rho(i,j)
End Do

Write (nout,*) &
’ Strike Price Vanna Charm Speed Colour Zomma’ // &
’ Vomma’

Do i = 1, m
Write (nout,99997) x(i), p(i,j), vanna(i,j), charm(i,j), speed(i,j), &

colour(i,j), zomma(i,j), vomma(i,j)
End Do

End Do

99999 Format (1X,’Time to Expiry : ’,1X,F8.4)
99998 Format (1X,7(F8.4,1X))
99997 Format (1X,8(F8.4,1X))
99996 Format (A,1X,F8.4)

End Program s30jbfe

10.2 Program Data

S30JBF Example Program Data
’C’ : Call = ’C’, Put = ’P’
5.0 : LAMBDA (jumps)
100.0 0.25 0.08 0.25 : S, SIGMA, R, JVOL
2 1 : M, N
80.0
90.0 : X(I), I = 1,2,...M
0.5 : T(I), I = 1,2,...N
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10.3 Program Results

S30JBF Example Program Results

Merton Jump-Diffusion Model
European Call :
Spot = 100.0000
Volatility = 0.2500
Rate = 0.0800
Jumps = 5.0000
Jump vol = 0.2500

Time to Expiry : 0.5000
Strike Price Delta Gamma Vega Theta Rho

80.0000 23.6090 0.9431 0.0064 8.1206 -7.6718 35.3480
90.0000 15.4193 0.8203 0.0149 18.5256 -9.9695 33.3037
Strike Price Vanna Charm Speed Colour Zomma Vomma

80.0000 23.6090 -0.6334 0.1080 -0.0006 -0.0035 0.0315 70.6824
90.0000 15.4193 -0.7726 0.0770 -0.0009 0.0109 -0.0186 49.7161
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NAG Library Routine Document

S30NAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30NAF computes the European option price given by Heston's stochastic volatility model.

2 Specification

SUBROUTINE S30NAF (CALPUT, M, N, X, S, T, SIGMAV, KAPPA, CORR, VAR0,
ETA, GRISK, R, Q, P, LDP, IFAIL)

&

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMAV, KAPPA, CORR, VAR0, ETA,

GRISK, R, Q, P(LDP,N)
&

CHARACTER(1) CALPUT

3 Description

S30NAF computes the price of a European option using Heston's stochastic volatility model. The return
on the asset price, S, is

dS

S
¼ r� qð Þdtþ ffiffiffiffi

vt
p

dW
1ð Þ
t

and the instantaneous variance, vt, is defined by a mean-reverting square root stochastic process,

dvt ¼ � � � vtð Þdtþ �v
ffiffiffiffi
vt
p

dW
2ð Þ
t ;

where r is the risk free annual interest rate; q is the annual dividend rate; vt is the variance of the asset
price; �v is the volatility of the volatility,

ffiffiffiffi
vt
p

; � is the mean reversion rate; � is the long term variance.

dW
ið Þ
t , for i ¼ 1; 2, denotes two correlated standard Brownian motions with

Cov dW
1ð Þ
t ; dW

2ð Þ
t

h i
¼ �dt:

The option price is computed by evaluating the integral transform given by Lewis (2000) using the
form of the characteristic function discussed by Albrecher et al. (2007), see also Kilin (2006).

Pcall ¼ Se�qT �Xe�rT
1

	
Re

Z 1þi=2
0þi=2

e�ik
�XĤ k; v; Tð Þ
k2 � ik dk

" #
; ð1Þ

where �X ¼ ln S=Xð Þ þ r� qð ÞT and

Ĥ k; v; Tð Þ ¼ exp
2��

�2v
tgendgroup� ln

1� he��t

1� h

� �
� þ vtg

1� e��t

1� he��t

� �
Þ;

��
g ¼ 1

2
b� �ð Þ; h ¼ b� �

bþ �; t ¼ �2vT=2;

� ¼ b2 þ 4
k2 � ik
�2v

� �1
2

;

b ¼ 2

�2v
1� � þ ikð Þ��v þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � � 1� �ð Þ�2v

q� �
with t ¼ �2vT=2. Here � is the risk aversion parameter of the representative agent with 0 � � � 1 and
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� 1� �ð Þ�2v � �2. The value � ¼ 1 corresponds to � ¼ 0, where � is the market price of risk in Heston
(1993) (see Lewis (2000) and Rouah and Vainberg (2007)).

The price of a put option is obtained by put-call parity.

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Albrecher H, Mayer P, Schoutens W and Tistaert J (2007) The little Heston trap Wilmott Magazine
January 2007 83–92

Heston S (1993) A closed-form solution for options with stochastic volatility with applications to bond
and currency options Review of Financial Studies 6 327–343

Kilin F (2006) Accelerating the calibration of stochastic volatility models MPRA Paper No. 2975 http://
mpra.ub.uni-muenchen.de/2975/

Lewis A L (2000) Option valuation under stochastic volatility Finance Press, USA

Rouah F D and Vainberg G (2007) Option Pricing Models and Volatility using Excel-VBA John Wiley
and Sons, Inc

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.
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6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMAV – REAL (KIND=nag_wp) Input

On entry: the volatility, �v, of the volatility process,
ffiffiffiffi
vt
p

. Note that a rate of 20% should be
entered as 0:2.

Constraint: SIGMAV > 0:0.

8: KAPPA – REAL (KIND=nag_wp) Input

On entry: �, the long term mean reversion rate of the volatility.

Constraint: KAPPA > 0:0.

9: CORR – REAL (KIND=nag_wp) Input

On entry: the correlation between the two standard Brownian motions for the asset price and the
volatility.

Constraint: �1:0 � CORR � 1:0.

10: VAR0 – REAL (KIND=nag_wp) Input

On entry: the initial value of the variance, vt, of the asset price.

Constraint: VAR0 � 0:0.

11: ETA – REAL (KIND=nag_wp) Input

On entry: �, the long term mean of the variance of the asset price.

Constraint: ETA > 0:0.

12: GRISK – REAL (KIND=nag_wp) Input

On entry: the risk aversion parameter, �, of the representative agent.

C o n s t r a i n t : 0:0 � GRISK � 1:0 a n d
GRISK� 1:0� GRISKð Þ � SIGMAV� SIGMAV � KAPPA� KAPPA.

13: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

14: Q – REAL (KIND=nag_wp) Input

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0.

15: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.
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16: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which S30NAF
is called.

Constraint: LDP � M.

17: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 7

On entry, SIGMAV ¼ valueh i.
Constraint: SIGMAV > 0:0.
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IFAIL ¼ 8

On entry, KAPPA ¼ valueh i.
Constraint: KAPPA > 0:0.

IFAIL ¼ 9

On entry, CORR ¼ valueh i.
Constraint: CORRj j � 1:0.

IFAIL ¼ 10

On entry, VAR0 ¼ valueh i.
Constraint: VAR0 � 0:0.

IFAIL ¼ 11

On entry, ETA ¼ valueh i.
Constraint: ETA > 0:0.

IFAIL ¼ 12

On entry, GRISK ¼ valueh i, SIGMAV ¼ valueh i and KAPPA ¼ valueh i.
Constraint: 0:0 � GRISK � 1:0 and GRISK � 1:0� GRISKð Þ � SIGMAV2 � KAPPA2.

IFAIL ¼ 13

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 14

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.

IFAIL ¼ 16

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ 17

Quadrature has not converged to the specified accuracy. However, the result should be a
reasonable approximation.

IFAIL ¼ 18

Solution cannot be computed accurately. Check values of input arguments.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The accuracy of the output is determined by the accuracy of the numerical quadrature used to evaluate
the integral in (1). An adaptive method is used which evaluates the integral to within a tolerance of
max 10�8; 10�10 � Ij j

� �
, where Ij j is the absolute value of the integral.

8 Parallelism and Performance

S30NAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of a European call using Heston's stochastic volatility model. The time
to expiry is 6 months, the stock price is 100 and the strike price is 100. The risk-free interest rate is 5%
per year, the volatility of the variance, �v, is 22:5% per year, the mean reversion parameter, �, is 2:0,
the long term mean of the variance, �, is 0:01 and the correlation between the volatility process and the
stock price process, �, is 0:0. The risk aversion parameter, �, is 1:0 and the initial value of the variance,
VAR0, is 0:01.

10.1 Program Text

Program s30nafe

! S30NAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30naf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: corr, eta, grisk, kappa, q, r, s, &

sigmav, var0
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:,:), t(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’S30NAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, r, q
Read (nin,*) kappa, eta, var0, sigmav, corr, grisk
Read (nin,*) m, n

ldp = m
Allocate (p(ldp,n),t(n),x(m))

Read (nin,*)(x(i),i=1,m)
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Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30naf(calput,m,n,x,s,t,sigmav,kappa,corr,var0,eta,grisk,r,q,p,ldp, &

ifail)

Write (nout,*)
Write (nout,*) ’Heston’’s Stochastic volatility Model’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)

Write (nout,*) ’European Put :’
End Select

Write (nout,99998) ’ Spot = ’, s
Write (nout,99998) ’ Volatility of vol = ’, sigmav
Write (nout,99998) ’ Mean reversion = ’, kappa
Write (nout,99998) ’ Correlation = ’, corr
Write (nout,99998) ’ Variance = ’, var0
Write (nout,99998) ’ Mean of variance = ’, eta
Write (nout,99998) ’ Risk aversion = ’, grisk
Write (nout,99998) ’ Rate = ’, r
Write (nout,99998) ’ Dividend = ’, q

Write (nout,*)
Write (nout,*) ’ Strike Expiry Option Price’

Do i = 1, m

Do j = 1, n
Write (nout,99999) x(i), t(j), p(i,j)

End Do

End Do

99999 Format (1X,2(F9.4,1X),6X,F9.4)
99998 Format (A,1X,F8.4)

End Program s30nafe

10.2 Program Data

S30NAF Example Program Data
’C’ : Call = ’C’, Put = ’P’
100.0 0.05 0.0 : S, R, Q
2.0 0.01 0.01 0.225 0.0 1.0 : KAPPA, ETA, VAR0, SIGMAV, CORR, GRISK
1 1 : M, N
100.0 : X(I), I = 1,2,...N
0.5 : T(I), I = 1,2,...M

10.3 Program Results

S30NAF Example Program Results

Heston’s Stochastic volatility Model
European Call :
Spot = 100.0000
Volatility of vol = 0.2250
Mean reversion = 2.0000
Correlation = 0.0000
Variance = 0.0100
Mean of variance = 0.0100
Risk aversion = 1.0000
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Rate = 0.0500
Dividend = 0.0000

Strike Expiry Option Price
100.0000 0.5000 4.0851
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NAG Library Routine Document

S30NBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30NBF computes the European option price given by Heston's stochastic volatility model together
with its sensitivities (Greeks).

2 Specification

SUBROUTINE S30NBF (CALPUT, M, N, X, S, T, SIGMAV, KAPPA, CORR, VAR0,
ETA, GRISK, R, Q, P, LDP, DELTA, GAMMA, VEGA, THETA,
RHO, VANNA, CHARM, SPEED, ZOMMA, VOMMA, IFAIL)

&
&

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMAV, KAPPA, CORR, VAR0, ETA,

GRISK, R, Q, P(LDP,N), DELTA(LDP,N), GAMMA(LDP,N),
VEGA(LDP,N), THETA(LDP,N), RHO(LDP,N),
VANNA(LDP,N), CHARM(LDP,N), SPEED(LDP,N),
ZOMMA(LDP,N), VOMMA(LDP,N)

&
&
&
&

CHARACTER(1) CALPUT

3 Description

S30NBF computes the price and sensitivities of a European option using Heston's stochastic volatility
model. The return on the asset price, S, is

dS

S
¼ r� qð Þdtþ ffiffiffiffi

vt
p

dW
1ð Þ
t

and the instantaneous variance, vt, is defined by a mean-reverting square root stochastic process,

dvt ¼ � � � vtð Þdtþ �v
ffiffiffiffi
vt
p

dW
2ð Þ
t ;

where r is the risk free annual interest rate; q is the annual dividend rate; vt is the variance of the asset
price; �v is the volatility of the volatility,

ffiffiffiffi
vt
p

; � is the mean reversion rate; � is the long term variance.

dW
ið Þ
t , for i ¼ 1; 2, denotes two correlated standard Brownian motions with

Cov dW
1ð Þ
t ; dW

2ð Þ
t

h i
¼ �dt:

The option price is computed by evaluating the integral transform given by Lewis (2000) using the
form of the characteristic function discussed by Albrecher et al. (2007), see also Kilin (2006).

Pcall ¼ Se�qT �Xe�rT
1

	
Re

Z 1þi=2
0þi=2

e�ik
�XĤ k; v; Tð Þ
k2 � ik dk

" #
; ð1Þ

where �X ¼ ln S=Xð Þ þ r� qð ÞT and

Ĥ k; v; Tð Þ ¼ exp
2��

�2v
tgendgroup� ln

1� he��t

1� h

� �
� þ vtg

1� e��t

1� he��t

� �
Þ;

��
g ¼ 1

2
b� �ð Þ; h ¼ b� �

bþ �; t ¼ �2vT=2;

� ¼ b2 þ 4
k2 � ik
�2v

� �1
2

;
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b ¼ 2

�2v
1� � þ ikð Þ��v þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � � 1� �ð Þ�2v

q� �
with t ¼ �2vT=2. Here � is the risk aversion parameter of the representative agent with 0 � � � 1 and
� 1� �ð Þ�2v � �2. The value � ¼ 1 corresponds to � ¼ 0, where � is the market price of risk in Heston
(1993) (see Lewis (2000) and Rouah and Vainberg (2007)).

The price of a put option is obtained by put-call parity.

Pput ¼ Pcall þXe�rT � Se�qT :
Writing the expression for the price of a call option as

Pcall ¼ Se�qT �Xe�rT
1

	
Re

Z 1þi=2
0þi=2

I k; r; S; T ; vð Þdk
" #

then the sensitivities or Greeks can be obtained in the following manner,

Delta

@Pcall

@S
¼ e�qT þXe

�rT

S

1

	
Re

Z 1þi=2
0þi=2

ikð ÞI k; r; S; T ; vð Þdk
" #

;

Vega

@P

@v
¼ �Xe�rT 1

	
Re

Z 0þi=2

0�i=2
f2I k; r; j; S; T ; vð Þdk

" #
; where f2 ¼ g

1� e��t
1� he��t

� �
;

Rho

@Pcall

@r
¼ TXe�rT 1

	
Re

Z 1þi=2
0þi=2

1þ ikð ÞI k; r; S; T ; vð Þdk
" #

:

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Albrecher H, Mayer P, Schoutens W and Tistaert J (2007) The little Heston trap Wilmott Magazine
January 2007 83–92

Heston S (1993) A closed-form solution for options with stochastic volatility with applications to bond
and currency options Review of Financial Studies 6 327–343

Kilin F (2006) Accelerating the calibration of stochastic volatility models MPRA Paper No. 2975 http://
mpra.ub.uni-muenchen.de/2975/

Lewis A L (2000) Option valuation under stochastic volatility Finance Press, USA

Rouah F D and Vainberg G (2007) Option Pricing Models and Volatility using Excel-VBA John Wiley
and Sons, Inc

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.
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CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMAV – REAL (KIND=nag_wp) Input

On entry: the volatility, �v, of the volatility process,
ffiffiffiffi
vt
p

. Note that a rate of 20% should be
entered as 0:2.

Constraint: SIGMAV > 0:0.

8: KAPPA – REAL (KIND=nag_wp) Input

On entry: �, the long term mean reversion rate of the volatility.

Constraint: KAPPA > 0:0.

9: CORR – REAL (KIND=nag_wp) Input

On entry: the correlation between the two standard Brownian motions for the asset price and the
volatility.

Constraint: �1:0 � CORR � 1:0.

10: VAR0 – REAL (KIND=nag_wp) Input

On entry: the initial value of the variance, vt, of the asset price.

Constraint: VAR0 � 0:0.

11: ETA – REAL (KIND=nag_wp) Input

On entry: �, the long term mean of the variance of the asset price.

Constraint: ETA > 0:0.
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12: GRISK – REAL (KIND=nag_wp) Input

On entry: the risk aversion parameter, �, of the representative agent.

C o n s t r a i n t : 0:0 � GRISK � 1:0 a n d
GRISK� 1� GRISKð Þ � SIGMAV� SIGMAV � KAPPA� KAPPA.

13: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

14: Q – REAL (KIND=nag_wp) Input

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0.

15: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

16: LDP – INTEGER Input

On entry: the first dimension of the arrays P, DELTA, GAMMA, VEGA, THETA, RHO,
VANNA, CHARM, SPEED, ZOMMA and VOMMA as declared in the (sub)program from which
S30NBF is called.

Constraint: LDP � M.

17: DELTAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array DELTA contains the sensitivity, @P@S , of the option
price to change in the price of the underlying asset.

18: GAMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array GAMMA contains the sensitivity, @
2P
@S2 , of DELTA to

change in the price of the underlying asset.

19: VEGAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VEGAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the volatility of the underlying asset, i.e., @Pij
@� , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

20: THETAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: THETAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in time, i.e., �@Pij@T , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N, where b ¼ r� q.

21: RHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: RHOði; jÞ, contains the first-order Greek measuring the sensitivity of the option price Pij
to change in the annual risk-free interest rate, i.e., �@Pij@r , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.
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22: VANNAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VANNAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the asset price, i.e., �@�ij

@T ¼ �
@2Pij
@S@� , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

23: CHARMðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: CHARMði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the time, i.e., �@�ij

@T ¼ �
@2Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

24: SPEEDðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: SPEEDði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the price of the underlying asset, i.e., �@ij@S ¼ �
@3Pij
@S3 , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

25: ZOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: ZOMMAði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the volatility of the underlying asset, i.e., �@ij@� ¼ �
@3Pij
@S2@�

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

26: VOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VOMMAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the underlying asset, i.e., �@�ij

@� ¼ �
@2Pij
@�2

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

27: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.
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IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 7

On entry, SIGMAV ¼ valueh i.
Constraint: SIGMAV > 0:0.

IFAIL ¼ 8

On entry, KAPPA ¼ valueh i.
Constraint: KAPPA > 0:0.

IFAIL ¼ 9

On entry, CORR ¼ valueh i.
Constraint: CORRj j � 1:0.

IFAIL ¼ 10

On entry, VAR0 ¼ valueh i.
Constraint: VAR0 � 0:0.

IFAIL ¼ 11

On entry, ETA ¼ valueh i.
Constraint: ETA > 0:0.

IFAIL ¼ 12

On entry, GRISK ¼ valueh i, SIGMAV ¼ valueh i and KAPPA ¼ valueh i.
Constraint: 0:0 � GRISK � 1:0 and GRISK � 1:0� GRISKð Þ � SIGMAV2 � KAPPA2.

IFAIL ¼ 13

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 14

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.

IFAIL ¼ 16

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.
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IFAIL ¼ 17

Quadrature has not converged to the required accuracy. However, the result should be a
reasonable approximation.

IFAIL ¼ 18

Solution cannot be computed accurately. Check values of input arguments.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is determined by the accuracy of the numerical quadrature used to evaluate
the integral in (1). An adaptive method is used which evaluates the integral to within a tolerance of
max 10�8; 10�10 � Ij j

� �
, where Ij j is the absolute value of the integral.

8 Parallelism and Performance

S30NBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price and sensitivities of a European call using Heston's stochastic volatility
model. The time to expiry is 1 year, the stock price is 100 and the strike price is 100. The risk-free
interest rate is 2:5% per year, the volatility of the variance, �v, is 57:51% per year, the mean reversion
parameter, �, is 1:5768, the long term mean of the variance, �, is 0:0398 and the correlation between the
volatility process and the stock price process, �, is �0:5711. The risk aversion parameter, �, is 1:0 and
the initial value of the variance, VAR0, is 0:0175.

S – Approximations of Special Functions S30NBF

Mark 26 S30NBF.7



10.1 Program Text

Program s30nbfe

! S30NBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30nbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: corr, eta, grisk, kappa, q, r, s, &

sigmav, var0
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: charm(:,:), delta(:,:), gamma(:,:), &

p(:,:), rho(:,:), speed(:,:), t(:), &
theta(:,:), vanna(:,:), vega(:,:), &
vomma(:,:), x(:), zomma(:,:)

! .. Executable Statements ..
Write (nout,*) ’S30NBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, r, q
Read (nin,*) kappa, eta, var0, sigmav, corr, grisk
Read (nin,*) m, n

ldp = m
Allocate (charm(ldp,n),delta(ldp,n),gamma(ldp,n),p(ldp,n),rho(ldp,n), &

speed(ldp,n),t(n),theta(ldp,n),vanna(ldp,n),vega(ldp,n),vomma(ldp,n), &
x(m),zomma(ldp,n))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30nbf(calput,m,n,x,s,t,sigmav,kappa,corr,var0,eta,grisk,r,q,p,ldp, &

delta,gamma,vega,theta,rho,vanna,charm,speed,zomma,vomma,ifail)

Write (nout,*)
Write (nout,*) ’Heston’’s Stochastic volatility Model’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)

Write (nout,*) ’European Put :’
End Select

Write (nout,99997) ’ Spot = ’, s
Write (nout,99997) ’ Volatility of vol = ’, sigmav
Write (nout,99997) ’ Mean reversion = ’, kappa
Write (nout,99997) ’ Correlation = ’, corr
Write (nout,99997) ’ Variance = ’, var0
Write (nout,99997) ’ Mean of variance = ’, eta
Write (nout,99997) ’ Risk aversion = ’, grisk
Write (nout,99997) ’ Rate = ’, r
Write (nout,99997) ’ Dividend = ’, q

Write (nout,*)

Do j = 1, n
Write (nout,*)
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Write (nout,99999) t(j)
Write (nout,*) &

’ Strike Price Delta Gamma Vega ’ // &
’Theta Rho’

Do i = 1, m
Write (nout,99998) x(i), p(i,j), delta(i,j), gamma(i,j), vega(i,j), &

theta(i,j), rho(i,j)
End Do

Write (nout,*) &
’ Strike Price Vanna Charm Speed ’ // &
’Zomma Vomma’

Do i = 1, m
Write (nout,99998) x(i), p(i,j), vanna(i,j), charm(i,j), speed(i,j), &

zomma(i,j), vomma(i,j)
End Do

End Do

99999 Format (1X,’Time to Expiry : ’,1X,F8.4)
99998 Format (1X,7(F10.4,1X))
99997 Format (A,1X,F10.4)

End Program s30nbfe

10.2 Program Data

S30NBF Example Program Data
’C’ : Call = ’C’, Put = ’P’
100.0 0.025 0.0 : S, R, Q
1.5768 0.0398 0.0175 0.5751 -0.5711 1.0 : KAPPA, ETA, VAR0, SIGMAV, CORR, GRISK
1 1 : M, N
100.0 : X(I), I = 1,2,...N
1.0 : T(I), I = 1,2,...M

10.3 Program Results

S30NBF Example Program Results

Heston’s Stochastic volatility Model
European Call :
Spot = 100.0000
Volatility of vol = 0.5751
Mean reversion = 1.5768
Correlation = -0.5711
Variance = 0.0175
Mean of variance = 0.0398
Risk aversion = 1.0000
Rate = 0.0250
Dividend = 0.0000

Time to Expiry : 1.0000
Strike Price Delta Gamma Vega Theta Rho
100.0000 7.2743 0.6945 0.0251 52.5461 -4.9969 62.1735
Strike Price Vanna Charm Speed Zomma Vomma
100.0000 7.2743 -0.5643 -0.0321 -0.0023 -0.1976 -321.0780
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NAG Library Routine Document

S30NCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30NCF computes the European option price given by Heston's stochastic volatility model with term
structure.

2 Specification

SUBROUTINE S30NCF (CALPUT, M, NUMTS, X, FWD, DISC, TS, T, ALPHA, LAMBDA,
CORR, SIGMAT, VAR0, P, IFAIL)

&

INTEGER M, NUMTS, IFAIL
REAL (KIND=nag_wp) X(M), FWD, DISC, TS(NUMTS), T, ALPHA(NUMTS),

LAMBDA(NUMTS), CORR(NUMTS), SIGMAT(NUMTS), VAR0,
P(M)

&
&

CHARACTER(1) CALPUT

3 Description

S30NCF computes the price of a European option for Heston's stochastic volatility model with time-
dependent parameters which are piecewise constant. Starting from the stochastic volatility model given
by the Stochastic Differential Equation (SDE) system defined by Heston (1993), a scaling of the
variance process is introduced, together with a normalization, setting the long run variance, �, equal to
1. This leads to

dSt
St
¼ �tdtþ �t

ffiffiffiffi
�t
p

dW 1ð Þ
t ; ð1Þ

d�t ¼ �t 1� �tð Þdtþ �t
ffiffiffiffi
�t
p

dW 2ð Þ
t ; ð2Þ

Cov dW 1ð Þ
t ; dW 2ð Þ

t

h i
¼ �tdt; ð3Þ

where �t ¼ rt � qt is the drift term representing the contribution of interest rates, rt, and dividends, qt,
while �t is the scaling parameter, �t is the scaled variance, �t is the mean reversion rate and �t is the

volatility of the scaled volatility,
ffiffiffiffi
�t
p

. Then, W ið Þ
t , for i ¼ 1; 2, are two standard Brownian motions with

correlation parameter �t. Without loss of generality, the drift term, �t, is eliminated by modelling the
forward price, Ft, directly, instead of the spot price, St, with

Ft ¼ S0exp
Z t

0
�sds

� �
: ð4Þ

If required, the spot can be expressed as, S0 ¼ DFt, where D is the discount factor.

The option price is computed by dividing the time to expiry, T , into ns subintervals
t0; t1½ �; . . . ; ti�1; ti½ �; . . . ; tns�1; T½ � and applying the method of characteristic functions to each
subinterval, with appropriate initial conditions. Thus, a pair of ordinary differential equations (one of
which is a Riccati equation) is solved on each subinterval as outlined in Elices (2008) and Mikhailov
and NÎgel (2003). Reversing time by taking � ¼ T � t, the characteristic function solution for the first
time subinterval, starting at � ¼ 0, is given by Heston (1993), while the solution on each following
subinterval uses the solution of the preceding subinterval as initial condition to compute the value of
the characteristic function.
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In the case of a ‘flat’ term structure, i.e., the parameters are constant over the time of the option, T , the
form of the SDE system given by Heston (1993) can be recovered by setting � ¼ �t, � ¼ �2t , �v ¼ �t�t
and V0 ¼ �2t V0.
Conversely, given the Heston form of the SDE pair, to get the term structure form set �t ¼ �, �t ¼

ffiffiffi
�
p

,

�t ¼ �vffiffi
�
p and V0 ¼ V0

� .

4 References

Bain A (2011) Private communication

Elices A (2008) Models with time-dependent parameters using transform methods: application to
Heston's model arXiv:0708.2020v2

Heston S (1993) A closed-form solution for options with stochastic volatility with applications to bond
and currency options Review of Financial Studies 6 327–343

Mikhailov S and NÎgel U (2003) Heston's Stochastic Volatility Model Implementation, Calibration and
Some Extensions Wilmott Magazine July/August 74–79

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: m, the number of strike prices to be used.

Constraint: M � 1.

3: NUMTS – INTEGER Input

On entry: ns, the number of subintervals into which the time to expiry, T , is divided.

Constraint: NUMTS � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ contains the ith strike price, for i ¼ 1; 2; . . . ;m.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: FWD – REAL (KIND=nag_wp) Input

On entry: the forward price of the asset.

Constraint: FWD � z and FWD � 1=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: DISC – REAL (KIND=nag_wp) Input

On entry: the discount factor, where the current price of the underlying asset, S0, is given as
S0 ¼ DISC� FWD.

Constraint: DISC � z and DISC � 1=z, where z ¼ X02AMFðÞ, the safe range parameter.
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7: TSðNUMTSÞ – REAL (KIND=nag_wp) array Input

On entry: TSðiÞ must contain the length of the time intervals for which the corresponding
element of ALPHA, LAMBDA, CORR and SIGMAT apply. These should be ordered as they
occur in time i.e., �ti ¼ ti � ti�1.
Constraint: TSðiÞ � z and TSðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;NUMTS.

8: T – REAL (KIND=nag_wp) Input

On entry: T contains the time to expiry. If T >
P
�ti then the parameters associated with the

last time interval are extended to the expiry time. If T <
P
�ti then the parameters specified are

used up until the expiry time. The rest are ignored.

Constraint: T � z, where z ¼ X02AMFðÞ, the safe range parameter.

9: ALPHAðNUMTSÞ – REAL (KIND=nag_wp) array Input

On entry: ALPHAðiÞ must contain the value of �t, the value of the volatility of the scaled
volatility,

ffiffiffi
�
p

, over time subinterval �ti.

Constraint: ALPHAðiÞ � z and ALPHAðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range para-
meter, for i ¼ 1; 2; . . . ;NUMTS.

10: LAMBDAðNUMTSÞ – REAL (KIND=nag_wp) array Input

On entry: LAMBDAðiÞ must contain the value, �t, of the mean reversion parameter over the time
subinterval �ti.

Constraint: LAMBDAðiÞ � z and LAMBDAðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range
parameter, for i ¼ 1; 2; . . . ;NUMTS.

11: CORRðNUMTSÞ – REAL (KIND=nag_wp) array Input

On entry: CORRðiÞ must contain the value, �t, of the correlation parameter over the time
subinterval �ti.

Constraint: �1:0 � CORRðiÞ � 1:0, for i ¼ 1; 2; . . . ;NUMTS.

12: SIGMATðNUMTSÞ – REAL (KIND=nag_wp) array Input

On entry: SIGMATðiÞ must contain the value, �t, of the variance scale factor over the time
subinterval �ti.

Constraint: SIGMATðiÞ � z and SIGMATðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range
parameter, for i ¼ 1; 2; . . . ;NUMTS.

13: VAR0 – REAL (KIND=nag_wp) Input

On entry: �0, the initial scaled variance.

Constraint: VAR0 � 0:0.

14: PðMÞ – REAL (KIND=nag_wp) array Output

On exit: PðiÞ contains the computed option price at the expiry time, T , corresponding to strike
XðiÞ for the specified term structure, for i ¼ 1; 2; . . . ;M.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
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the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, NUMTS ¼ valueh i.
Constraint: NUMTS � 1.

IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: valueh i � XðiÞ � valueh i.

IFAIL ¼ 5

On entry, FWD ¼ valueh i.
Constraint: valueh i � FWD � valueh i.

IFAIL ¼ 6

On entry, DISC ¼ valueh i.
Constraint: valueh i � DISC � valueh i.

IFAIL ¼ 7

On entry, TSð valueh iÞ ¼ valueh i.
Constraint: valueh i � TSðiÞ � valueh i.

IFAIL ¼ 8

On entry, T ¼ valueh i.
Constraint: T � valueh i.

IFAIL ¼ 9

On entry, ALPHAð valueh iÞ ¼ valueh i.
Constraint: valueh i � ALPHAðiÞ � valueh i.

IFAIL ¼ 10

On entry, LAMBDAð valueh iÞ ¼ valueh i.
Constraint: valueh i � LAMBDAðiÞ � valueh i.
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IFAIL ¼ 11

On entry, CORRð valueh iÞ ¼ valueh i.
Constraint: CORRðiÞj j � 1:0.

IFAIL ¼ 12

On entry, SIGMATð valueh iÞ ¼ valueh i.
Constraint: valueh i � SIGMATðiÞ � valueh i.

IFAIL ¼ 13

On entry, VAR0 ¼ valueh i.
Constraint: VAR0 > 0:0.

IFAIL ¼ 14

Quadrature has not converged to the specified accuracy. However, the result should be a
reasonable approximation.

IFAIL ¼ 15

Solution cannot be computed accurately. Check values of input arguments.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The solution is obtained by integrating the pair of ordinary differential equations over each subinterval
in time. The accuracy is controlled by a relative tolerance over each time subinterval, which is set to
10�8. Over a number of subintervals in time the error may accumulate and so the overall error in the
computation may be greater than this. A threshold of 10�10 is used and solutions smaller than this are
not accurately evaluated.

8 Parallelism and Performance

S30NCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.
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10 Example

This example computes the price of a European call using Heston's stochastic volatility model with a
term structure of interest rates.

10.1 Program Text

Program s30ncfe

! S30NCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: s30ncf
Use nag_precisions, Only: wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=wp) :: disc, fwd, t, var0
Integer :: i, ifail, m, numts
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=wp), Allocatable :: alpha(:), corr(:), lambda(:), p(:), &

sigmat(:), ts(:), x(:)
! .. Executable Statements ..

Write (nout,*) ’S30NCF Example Program Results’

! Skip heading in data file

Read (nin,*)

Read (nin,*) calput
Read (nin,*) m, numts

Allocate (p(m),ts(numts),x(m),alpha(numts),corr(numts),lambda(numts), &
sigmat(numts))

Read (nin,*) fwd, disc, var0
Read (nin,*) x(1:m)
Read (nin,*) ts(1:numts)
Read (nin,*) t
Read (nin,*) alpha(1:numts)
Read (nin,*) corr(1:numts)
Read (nin,*) lambda(1:numts)
Read (nin,*) sigmat(1:numts)

ifail = 0
Call s30ncf(calput,m,numts,x,fwd,disc,ts,t,alpha,lambda,corr,sigmat, &

var0,p,ifail)

If (ifail/=0) Then
Go To 100

End If

Write (nout,*)
Write (nout,*) &

’Heston’’s Stochastic volatility Model with Term Structure’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’European Call :’
Case (’P’,’p’)

Write (nout,*) ’European Put :’
End Select

Write (nout,99998) ’ Forward = ’, fwd
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Write (nout,99998) ’ Discount Factor = ’, disc
Write (nout,99998) ’ Variance = ’, var0

Write (nout,*) ’ ts alpha lambda corr sigmat’
Do i = 1, numts

Write (nout,99997) ts(i), alpha(i), lambda(i), corr(i), sigmat(i)
End Do

Write (nout,*)
Write (nout,*) ’ Strike Expiry Option Price’

Do i = 1, m
Write (nout,99999) x(i), t, p(i)

End Do

100 Continue

99999 Format (1X,2(F9.4,1X),3X,F9.4)
99998 Format (A,1X,F8.4)
99997 Format (1X,5(F9.4,1X))

End Program s30ncfe

10.2 Program Data

S30NCF Example Program Data
’C’ : Call = ’C’, Put = ’P’
1 2 : M, NUMTS
100.0 1.0 1.0 : FWD, DISC, VAR0
100.0 : X(I), I = 1,2,...M
0.35 0.65 : TS(I), I = 1,2,...NUMTS
1.0 : T
2.25 1.5 : ALPHA(I), I = 1,2,...NUMTS
-0.05 0.1 : CORR(I), I = 1,2,...NUMTS
2.0 1.5 : LAMBDA(I), I = 1,2,...NUMTS
0.04 0.13 : SIGMAT(I), I = 1,2,...NUMTS

10.3 Program Results

S30NCF Example Program Results

Heston’s Stochastic volatility Model with Term Structure
European Call :
Forward = 100.0000
Discount Factor = 1.0000
Variance = 1.0000

ts alpha lambda corr sigmat
0.3500 2.2500 2.0000 -0.0500 0.0400
0.6500 1.5000 1.5000 0.1000 0.1300

Strike Expiry Option Price
100.0000 1.0000 4.0074
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NAG Library Routine Document

S30QCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30QCF computes the Bjerksund and Stensland (2002) approximation to the price of an American
option.

2 Specification

SUBROUTINE S30QCF (CALPUT, M, N, X, S, T, SIGMA, R, Q, P, LDP, IFAIL)

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMA, R, Q, P(LDP,N)
CHARACTER(1) CALPUT

3 Description

S30QCF computes the price of an American option using the closed form approximation of Bjerksund
and Stensland (2002). The time to maturity, T , is divided into two periods, each with a flat early
exercise boundary, by choosing a time t 2 0; T½ �, such that t ¼ 1

2

ffiffiffi
5
p
� 1

� �
T . The two boundary values

are defined as ~x ¼ ~X tð Þ, ~X ¼ ~X Tð Þ with
~X �ð Þ ¼ B0 þ B1 �B0ð Þ 1� exp h �ð Þf gð Þ;

where

h �ð Þ ¼ � b� þ 2�
ffiffiffi
�
p� � X2

B1 �B0ð ÞB0

� �
;

B1 	
�

� � 1
X; B0 	 max X;

r

r� b

� �
X

n o
;

� ¼ 1

2
� b

�2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

�2
� 1

2

� �2

þ 2
r

�2

s
:

with b ¼ r� q, the cost of carry, where r is the risk-free interest rate and q is the annual dividend rate.
Here X is the strike price and � is the annual volatility.

The price of an American call option is approximated as

Pcall ¼ � ~X
� �

S� � � ~X
� �


 S; tj�; ~X; ~X
� �

þ

 S; tj1; ~X; ~X
� �

� 
 S; tj1; ~x; ~X
� �

�
X
 S; tj0; ~X; ~X
� �

þX
 S; tj0; ~x; ~X
� �

þ
� ~xð Þ
 S; tj�; ~x; ~X

� �
� � ~xð Þ� S; T j�; ~x; ~X; ~x; t

� �
þ

� S; T j1; ~x; ~X; ~x; t
� �

� � S; T j1; X; ~X; ~x; t
� �

�
X� S; T j0; ~x; ~X; ~x; t
� �

þX� S; T j0; X; ~X; ~x; t
� �

;

where �, 
 and � are as defined in Bjerksund and Stensland (2002).

The price of a put option is obtained by the put-call transformation,

Pput X;S; T ; �; r; qð Þ ¼ Pcall S;X; T ; �; q; rð Þ:

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.
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4 References

Bjerksund P and Stensland G (2002) Closed form valuation of American options Discussion Paper
2002/09 NHH Bergen Norway http://www.nhh.no/

Genz A (2004) Numerical computation of rectangular bivariate and trivariate Normal and t probabilities
Statistics and Computing 14 151–160

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1
z , where z ¼ X02AMFðÞ, the safe range parameter and S� < 1

z where
� is as defined in Section 3.

6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

8: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.
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9: Q – REAL (KIND=nag_wp) Input

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q � 0:0.

10: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

11: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which S30QCF
is called.

Constraint: LDP � M.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

S – Approximations of Special Functions S30QCF

Mark 26 S30QCF.3



IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 7

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 8

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 9

On entry, Q ¼ valueh i.
Constraint: Q � 0:0.

IFAIL ¼ 11

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ 14

On entry, S ¼ valueh i and � ¼ valueh i.
Constraint: S� < valueh i.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output will be bounded by the accuracy of the cumulative bivariate Normal
distribution function. The algorithm of Genz (2004) is used, as described in the document for G01HAF,
giving a maximum absolute error of less than 5� 10�16. The univariate cumulative Normal distribution
function also forms part of the evaluation (see S15ABF and S15ADF).

8 Parallelism and Performance

S30QCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

None.

10 Example

This example computes the price of an American call with a time to expiry of 3 months, a stock price
of 110 and a strike price of 100. The risk-free interest rate is 8% per year, there is an annual dividend
return of 12% and the volatility is 20% per year.

10.1 Program Text

Program s30qcfe

! S30QCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30qcf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: q, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:,:), t(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’S30QCF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, sigma, r, q
Read (nin,*) m, n

ldp = m
Allocate (p(ldp,n),t(n),x(m))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30qcf(calput,m,n,x,s,t,sigma,r,q,p,ldp,ifail)

Write (nout,*)

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’American Call :’
Case (’P’,’p’)

Write (nout,*) ’American Put :’
End Select

Write (nout,99998) ’ Spot = ’, s
Write (nout,99998) ’ Volatility = ’, sigma
Write (nout,99998) ’ Rate = ’, r
Write (nout,99998) ’ Dividend = ’, q

Write (nout,*)
Write (nout,*) ’ Strike Expiry Option Price’

Do i = 1, m
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Do j = 1, n
Write (nout,99999) x(i), t(j), p(i,j)

End Do

End Do

99999 Format (1X,2(F9.4,1X),6X,F9.4)
99998 Format (A,1X,F8.4)

End Program s30qcfe

10.2 Program Data

S30QCF Example Program Data
’C’ : Call = ’C’, Put = ’P’
110.0 0.2 0.08 0.12 : S, SIGMA, R, Q
1 1 : M, N
100.0 : X(I), I = 1,2,...M
0.25 : T(I), I = 1,2,...N

10.3 Program Results

S30QCF Example Program Results

American Call :
Spot = 110.0000
Volatility = 0.2000
Rate = 0.0800
Dividend = 0.1200

Strike Expiry Option Price
100.0000 0.2500 10.3340
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NAG Library Routine Document

S30SAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30SAF computes the Asian geometric continuous average-rate option price.

2 Specification

SUBROUTINE S30SAF (CALPUT, M, N, X, S, T, SIGMA, R, B, P, LDP, IFAIL)

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMA, R, B, P(LDP,N)
CHARACTER(1) CALPUT

3 Description

S30SAF computes the price of an Asian geometric continuous average-rate option for constant
volatility, �, risk-free rate, r, and cost of carry, b (see Kemna and Vorst (1990)). For a given strike
price, X, the price of a call option with underlying price, S, and time to expiry, T , is

Pcall ¼ Se
�b�rð ÞT� �d1

� �
�Xe�rT� �d2

� �
;

and the corresponding put option price is

Pput ¼ Xe�rT� ��d2
� �

� Se �b�rð ÞT� ��d1
� �

;

where

�d1 ¼
ln S=Xð Þ þ �bþ ��2=2

� �
T

��
ffiffiffiffi
T
p

and

�d2 ¼ �d1 � ��
ffiffiffiffi
T
p

;

with

�� ¼ �ffiffiffi
3
p ; �b ¼ 1

2
r� �

2

6

� �
:

� is the cumulative Normal distribution function,

� xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z x

�1
exp �y2=2
� �

dy:

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.

4 References

Kemna A and Vorst A (1990) A pricing method for options based on average asset values Journal of
Banking and Finance 14 113–129
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5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

8: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

9: B – REAL (KIND=nag_wp) Input

On entry: b, the annual cost of carry rate. Note that a rate of 8% should be entered as 0:08.

10: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.
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11: LDP – INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which S30SAF
is called.

Constraint: LDP � M.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 7

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

S – Approximations of Special Functions S30SAF

Mark 26 S30SAF.3



IFAIL ¼ 8

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 11

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum
relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An
accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30SAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of an Asian geometric continuous average-rate put with a time to
expiry of 3 months, a stock price of 80 and a strike price of 85. The risk-free interest rate is 5% per
year, the cost of carry is 8% and the volatility is 20% per year.

10.1 Program Text

Program s30safe

! S30SAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30saf
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! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: b, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: p(:,:), t(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’S30SAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, sigma, r, b
Read (nin,*) m, n

ldp = m
Allocate (p(ldp,n),t(n),x(m))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30saf(calput,m,n,x,s,t,sigma,r,b,p,ldp,ifail)

Write (nout,*)
Write (nout,*) ’Asian Option: Geometric Continuous Average-Rate’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’Asian Call :’
Case (’P’,’p’)

Write (nout,*) ’Asian Put :’
End Select

Write (nout,99998) ’ Spot = ’, s
Write (nout,99998) ’ Volatility = ’, sigma
Write (nout,99998) ’ Rate = ’, r
Write (nout,99998) ’ Cost of carry = ’, b

Write (nout,*)
Write (nout,*) ’ Strike Expiry Option Price’

Do i = 1, m

Do j = 1, n
Write (nout,99999) x(i), t(j), p(i,j)

End Do

End Do

99999 Format (1X,2(F9.4,1X),6X,F9.4)
99998 Format (A,1X,F8.4)

End Program s30safe

10.2 Program Data

S30SAF Example Program Data
’P’ : Call = ’C’, Put = ’P’
80.0 0.2 0.05 0.08 : S, SIGMA, R, B
1 1 : M, N
85.0 : X(I), I = 1,2,...M
0.25 : T(I), I = 1,2,...N
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10.3 Program Results

S30SAF Example Program Results

Asian Option: Geometric Continuous Average-Rate
Asian Put :
Spot = 80.0000
Volatility = 0.2000
Rate = 0.0500
Cost of carry = 0.0800

Strike Expiry Option Price
85.0000 0.2500 4.6922
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NAG Library Routine Document

S30SBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

S30SBF computes the Asian geometric continuous average-rate option price together with its
sensitivities (Greeks).

2 Specification

SUBROUTINE S30SBF (CALPUT, M, N, X, S, T, SIGMA, R, B, P, LDP, DELTA,
GAMMA, VEGA, THETA, RHO, CRHO, VANNA, CHARM, SPEED,
COLOUR, ZOMMA, VOMMA, IFAIL)

&
&

INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMA, R, B, P(LDP,N), DELTA(LDP,N),

GAMMA(LDP,N), VEGA(LDP,N), THETA(LDP,N),
RHO(LDP,N), CRHO(LDP,N), VANNA(LDP,N),
CHARM(LDP,N), SPEED(LDP,N), COLOUR(LDP,N),
ZOMMA(LDP,N), VOMMA(LDP,N)

&
&
&
&

CHARACTER(1) CALPUT

3 Description

S30SBF computes the price of an Asian geometric continuous average-rate option, together with the
Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the
other input parameters. The annual volatility, �, risk-free rate, r, and cost of carry, b, are constants (see
Kemna and Vorst (1990)). For a given strike price, X, the price of a call option with underlying price,
S, and time to expiry, T , is

Pcall ¼ Se
�b�rð ÞT� �d1

� �
�Xe�rT� �d2

� �
;

and the corresponding put option price is

Pput ¼ Xe�rT� ��d2
� �

� Se �b�rð ÞT� ��d1
� �

;

where

�d1 ¼
ln S=Xð Þ þ �bþ ��2=2

� �
T

��
ffiffiffiffi
T
p

and

�d2 ¼ �d1 � ��
ffiffiffiffi
T
p

;

with

�� ¼ �ffiffiffi
3
p ; �b ¼ 1

2
b� �

2

6

� �
:

� is the cumulative Normal distribution function,

� xð Þ ¼ 1ffiffiffiffiffiffi
2	
p

Z x

�1
exp �y2=2
� �

dy:

The option price Pij ¼ P X ¼ Xi; T ¼ Tj
� �

is computed for each strike price in a set Xi,
i ¼ 1; 2; . . . ;m, and for each expiry time in a set Tj, j ¼ 1; 2; . . . ; n.
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4 References

Kemna A and Vorst A (1990) A pricing method for options based on average asset values Journal of
Banking and Finance 14 113–129

5 Arguments

1: CALPUT – CHARACTER(1) Input

On entry: determines whether the option is a call or a put.

CALPUT ¼ C
A call; the holder has a right to buy.

CALPUT ¼ P
A put; the holder has a right to sell.

Constraint: CALPUT ¼ C or P .

2: M – INTEGER Input

On entry: the number of strike prices to be used.

Constraint: M � 1.

3: N – INTEGER Input

On entry: the number of times to expiry to be used.

Constraint: N � 1.

4: XðMÞ – REAL (KIND=nag_wp) array Input

On entry: XðiÞ must contain Xi, the ith strike price, for i ¼ 1; 2; . . . ;M.

Constraint: XðiÞ � z and XðiÞ � 1=z, where z ¼ X02AMFðÞ, the safe range parameter, for
i ¼ 1; 2; . . . ;M.

5: S – REAL (KIND=nag_wp) Input

On entry: S, the price of the underlying asset.

Constraint: S � z and S � 1:0=z, where z ¼ X02AMFðÞ, the safe range parameter.

6: TðNÞ – REAL (KIND=nag_wp) array Input

On entry: TðiÞ must contain Ti, the ith time, in years, to expiry, for i ¼ 1; 2; . . . ;N.

Constraint: TðiÞ � z, where z ¼ X02AMFðÞ, the safe range parameter, for i ¼ 1; 2; . . . ;N.

7: SIGMA – REAL (KIND=nag_wp) Input

On entry: �, the volatility of the underlying asset. Note that a rate of 15% should be entered as
0.15.

Constraint: SIGMA > 0:0.

8: R – REAL (KIND=nag_wp) Input

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5%
should be entered as 0.05.

Constraint: R � 0:0.

9: B – REAL (KIND=nag_wp) Input

On entry: b, the annual cost of carry rate. Note that a rate of 8% should be entered as 0:08.
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10: PðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: Pði; jÞ contains Pij, the option price evaluated for the strike price Xi at expiry Tj for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

11: LDP – INTEGER Input

On entry: the first dimension of the arrays P, DELTA, GAMMA, VEGA, THETA, RHO, CRHO,
VANNA, CHARM, SPEED, COLOUR, ZOMMA and VOMMA as declared in the (sub)program
from which S30SBF is called.

Constraint: LDP � M.

12: DELTAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array DELTA contains the sensitivity, @P@S , of the option
price to change in the price of the underlying asset.

13: GAMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: the leading M� N part of the array GAMMA contains the sensitivity, @
2P
@S2 , of DELTA to

change in the price of the underlying asset.

14: VEGAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VEGAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the volatility of the underlying asset, i.e., @Pij
@� , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

15: THETAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: THETAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in time, i.e., �@Pij@T , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N, where b ¼ r� q.

16: RHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: RHOði; jÞ, contains the first-order Greek measuring the sensitivity of the option price Pij
to change in the annual risk-free interest rate, i.e., �@Pij@r , for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

17: CRHOðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: DELTAði; jÞ, contains the first-order Greek measuring the sensitivity of the option price

Pij to change in the price of the underlying asset, i.e., �@Pij@S , for i ¼ 1; 2; . . . ;M and
j ¼ 1; 2; . . . ;N.

18: VANNAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VANNAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the asset price, i.e., �@�ij

@T ¼ �
@2Pij
@S@� , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

19: CHARMðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: CHARMði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the time, i.e., �@�ij

@T ¼ �
@2Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.
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20: SPEEDðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: SPEEDði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the price of the underlying asset, i.e., �@ij@S ¼ �
@3Pij
@S3 , for

i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

21: COLOURðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: COLOURði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the time, i.e., �@ij@T ¼ �
@3Pij
@S@T , for i ¼ 1; 2; . . . ;M and

j ¼ 1; 2; . . . ;N.

22: ZOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: ZOMMAði; jÞ, contains the third-order Greek measuring the sensitivity of the second-

order Greek ij to change in the volatility of the underlying asset, i.e., �@ij@� ¼ �
@3Pij
@S2@�

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

23: VOMMAðLDP;NÞ – REAL (KIND=nag_wp) array Output

On exit: VOMMAði; jÞ, contains the second-order Greek measuring the sensitivity of the first-

order Greek �ij to change in the volatility of the underlying asset, i.e., �@�ij

@� ¼ �
@2Pij
@�2

, for
i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;N.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, CALPUT ¼ valueh i was an illegal value.

IFAIL ¼ 2

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 3

On entry, N ¼ valueh i.
Constraint: N � 1.
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IFAIL ¼ 4

On entry, Xð valueh iÞ ¼ valueh i.
Constraint: XðiÞ � valueh i and XðiÞ � valueh i.

IFAIL ¼ 5

On entry, S ¼ valueh i.
Constraint: S � valueh i and S � valueh i.

IFAIL ¼ 6

On entry, Tð valueh iÞ ¼ valueh i.
Constraint: TðiÞ � valueh i.

IFAIL ¼ 7

On entry, SIGMA ¼ valueh i.
Constraint: SIGMA > 0:0.

IFAIL ¼ 8

On entry, R ¼ valueh i.
Constraint: R � 0:0.

IFAIL ¼ 11

On entry, LDP ¼ valueh i and M ¼ valueh i.
Constraint: LDP � M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution
function, �. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum
relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An
accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30SBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

None.

10 Example

This example computes the price of an Asian geometric continuous average-rate call with a time to
expiry of 3 months, a stock price of 80 and a strike price of 97. The risk-free interest rate is 5% per
year, the cost of carry is 8% and the volatility is 20% per year.

10.1 Program Text

Program s30sbfe

! S30SBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, s30sbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: b, r, s, sigma
Integer :: i, ifail, j, ldp, m, n
Character (1) :: calput

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: charm(:,:), colour(:,:), crho(:,:), &

delta(:,:), gamma(:,:), p(:,:), &
rho(:,:), speed(:,:), t(:), &
theta(:,:), vanna(:,:), vega(:,:), &
vomma(:,:), x(:), zomma(:,:)

! .. Executable Statements ..
Write (nout,*) ’S30SBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) calput
Read (nin,*) s, sigma, r, b
Read (nin,*) m, n

ldp = m
Allocate (charm(ldp,n),colour(ldp,n),crho(ldp,n),delta(ldp,n), &

gamma(ldp,n),p(ldp,n),rho(ldp,n),speed(ldp,n),t(n),theta(ldp,n), &
vanna(ldp,n),vega(ldp,n),vomma(ldp,n),x(m),zomma(ldp,n))

Read (nin,*)(x(i),i=1,m)
Read (nin,*)(t(i),i=1,n)

ifail = 0
Call s30sbf(calput,m,n,x,s,t,sigma,r,b,p,ldp,delta,gamma,vega,theta,rho, &

crho,vanna,charm,speed,colour,zomma,vomma,ifail)

Write (nout,*)
Write (nout,*) ’Asian Option: Geometric Continuous Average-Rate’

Select Case (calput)
Case (’C’,’c’)

Write (nout,*) ’Asian Call :’
Case (’P’,’p’)

Write (nout,*) ’Asian Put :’
End Select

Write (nout,99997) ’ Spot = ’, s
Write (nout,99997) ’ Volatility = ’, sigma
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Write (nout,99997) ’ Rate = ’, r
Write (nout,99997) ’ Cost of carry = ’, b

Write (nout,*)

Do j = 1, n
Write (nout,*)
Write (nout,99999) t(j)
Write (nout,*) &

’ Strike Price Delta Gamma Vega Theta Rho’ // &
’ CRho’

Do i = 1, m
Write (nout,99998) x(i), p(i,j), delta(i,j), gamma(i,j), vega(i,j), &

theta(i,j), rho(i,j), crho(i,j)
End Do

Write (nout,*) &
’ Strike Price Vanna Charm Speed Colour Zomma’ // &
’ Vomma’

Do i = 1, m
Write (nout,99998) x(i), p(i,j), vanna(i,j), charm(i,j), speed(i,j), &

colour(i,j), zomma(i,j), vomma(i,j)
End Do

End Do

99999 Format (1X,’Time to Expiry : ’,1X,F8.4)
99998 Format (1X,8(F8.4,1X))
99997 Format (A,1X,F8.4)

End Program s30sbfe

10.2 Program Data

S30SBF Example Program Data
’C’ : Call = ’C’, Put = ’P’
80.0 0.2 0.05 0.08 : S, SIGMA, R, B
1 1 : M, N
97.0 : X(I), I = 1,2,...M
0.25 : T(I), I = 1,2,...N

10.3 Program Results

S30SBF Example Program Results

Asian Option: Geometric Continuous Average-Rate
Asian Call :
Spot = 80.0000
Volatility = 0.2000
Rate = 0.0500
Cost of carry = 0.0800

Time to Expiry : 0.2500
Strike Price Delta Gamma Vega Theta Rho CRho

97.0000 0.0010 0.0008 0.0006 0.0638 -0.0281 0.0079 0.0081
Strike Price Vanna Charm Speed Colour Zomma Vomma

97.0000 0.0010 0.0443 -0.0196 0.0004 -0.0122 0.0272 3.1893
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NAG Library Chapter Contents

X01 – Mathematical Constants

X01 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

X01AAF 5 nagf_math_pi
Provides the mathematical constant 	

X01ABF 5 nagf_math_euler
Provides the mathematical constant � (Euler's constant)

X01 – Mathematical Constants Contents – X01
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NAG Library Chapter Introduction

X01 – Mathematical Constants

Contents

1 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background to the Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Recommendations on Choice and Use of Available Routines. . . . . . . . . . . . . . 2

4 Routines Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . . . . . . . . . 2
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1 Scope of the Chapter

This chapter is concerned with the provision of mathematical constants required by other routines
within the Library.

2 Background to the Problems

Some Library routines require mathematical constants. These routines call Chapter X01 and thus lessen
the number of changes that have to be made between different implementations of the Library.

3 Recommendations on Choice and Use of Available Routines

Although these routines are primarily intended for use by other routines they may be accessed directly
by you.

Euler's constant, �................................................................................................................ X01ABF

	 .......................................................................................................................................... X01AAF

The argument X of these routines is a dummy argument.

4 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

X01AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X01AAF returns the numerical value of 	.

2 Specification

FUNCTION X01AAF (X)
REAL (KIND=nag_wp) X01AAF

REAL (KIND=nag_wp) X

3 Description

None.

4 References

None.

5 Arguments

1: X – REAL (KIND=nag_wp) Dummy

6 Error Indicators and Warnings

None.

7 Accuracy

The result should be correct to machine precision (see Chapter X02).

8 Parallelism and Performance

X01AAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Routine Document

X01ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X01ABF returns the numerical value of � (Euler's constant).

2 Specification

FUNCTION X01ABF (X)
REAL (KIND=nag_wp) X01ABF

REAL (KIND=nag_wp) X

3 Description

None.

4 References

None.

5 Arguments

1: X – REAL (KIND=nag_wp) Dummy

6 Error Indicators and Warnings

None.

7 Accuracy

The result should be correct to machine precision (see Chapter X02).

8 Parallelism and Performance

X01ABF is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.
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NAG Library Chapter Contents

X02 – Machine Constants

X02 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

X02AHF 9 nagf_machine_sinarg_max
The largest permissible argument for sin and cos

X02AJF 12 nagf_machine_precision
The machine precision

X02AKF 12 nagf_machine_real_smallest
The smallest positive model number

X02ALF 12 nagf_machine_real_largest
The largest positive model number

X02AMF 12 nagf_machine_real_safe
The safe range parameter

X02ANF 15 nagf_machine_complex_safe
The safe range parameter for complex floating-point arithmetic

X02BBF 5 nagf_machine_integer_max
The largest representable integer

X02BEF 5 nagf_machine_decimal_digits
The maximum number of decimal digits that can be represented

X02BHF 12 nagf_machine_model_base
The floating-point model parameter, b

X02BJF 12 nagf_machine_model_digits
The floating-point model parameter, p

X02BKF 12 nagf_machine_model_minexp
The floating-point model parameter emin

X02BLF 12 nagf_machine_model_maxexp
The floating-point model parameter emax

X02 – Machine Constants Contents – X02
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NAG Library Chapter Introduction

X02 – Machine Constants

Contents
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1 Scope of the Chapter

This chapter is concerned with parameters which characterise certain aspects of the computing
environment in which the NAG Library is implemented. They relate primarily to floating-point
arithmetic, but also to integer arithmetic, the elementary functions and exception handling. The values
of the parameters vary from one implementation of the Library to another, but within the context of a
single implementation they are constants.

The parameters are intended for use primarily by other routines in the Library, but users of the Library
may sometimes need to refer to them directly.

2 Background to the Problems

2.1 Floating-point Arithmetic

2.1.1 A model of floating-point arithmetic

In order to characterise the important properties of floating-point arithmetic by means of a small
number of parameters, NAG uses a simplified model of floating-point arithmetic. The parameters of the
model can be chosen to provide a sufficiently close description of the behaviour of actual
implementations of floating-point arithmetic, but not, in general, an exact description; actual
implementations vary too much in the details of how numbers are represented or arithmetic operations
are performed.

The model is based on that developed by Brown (1981), but differs in some respects. The essential
features are summarised here.

The model is characterised by four integer parameters. The four integer parameters are:

b: the base

p: the precision (i.e., the number of significant base-b digits)

emin : the minimum exponent

emax : the maximum exponent

These parameters define a set of numerical values of the form:

f � be

where the exponent e must lie in the range [emin ; emax ], and the fraction f (also called the mantissa or
significand) lies in the range 1=b; 1½ Þ, and may be written

f ¼ 0:f1f2 � � � fp
Thus f is a p-digit fraction to the base b; the fi are the base-b digits of the fraction: they are integers in
the range 0 to b� 1, and the leading digit f1 must not be zero.

The set of values so defined (together with zero) are called model numbers. For example, if b ¼ 10,
p ¼ 5, emin ¼ �99 and emax ¼ þ99, then a typical model number is 0:12345� 1067.

The model numbers must obey certain rules for the computed results of the following basic arithmetic
operations: addition, subtraction, multiplication, negation, absolute value, and comparisons: the
computed result must be the nearest model number to the exact result (assuming that overflow or
underflow does not occur); if the exact result is midway between two model numbers, then it may be
rounded either way.

For division and square root, this latter rule is relaxed: the computed result may also be one of the next
adjacent model numbers on either side of the permitted values just stated.

On many machines, the full set of representable floating-point numbers conforms to the rules of the
model with appropriate values of b, p, emin and emax . For machines supporting IEEE binary double
precision arithmetic:
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b ¼ 2
p ¼ 53
emin ¼ �1021
emax ¼ 1024:

(Note: the model used here differs from that described in Brown (1981) in the following respect:
square-root is treated, like division, as a weakly supported operator.)

2.1.2 Derived parameters of floating-point arithmetic

Most numerical algorithms require access, not to the basic parameters of the model, but to certain
derived values, of which the most important are:

the machine precision �: ¼ 1
2

� �
� b1�p

the smallest positive model number: ¼ bemin�1

the largest positive model number: ¼ 1� b�pð Þ � bemax

It is important to note that the machine precision defined here differs from that defined by ISO Fortran
95 (1997).

Two additional derived values are used in the NAG Library. Their definitions depend not only on the
properties of the basic arithmetic operations just considered, but also on properties of some of the
elementary functions. We define the safe range parameter to be the smallest positive model number z
such that for any x in the range z; 1=z½ � the following can be computed without undue loss of accuracy,
overflow, underflow or other error:

�x
1=x

�1=xffiffiffi
x
p

log xð Þ
exp log xð Þð Þ

y log xð Þ=log yð Þð Þ for any y

In a similar fashion we define the safe range parameter for complex arithmetic as the smallest positive
model number z such that for any x in the range [z; 1=z] the following can be computed without any
undue loss of accuracy, overflow, underflow or other error:

�w
1=w

�1=wffiffiffiffi
w
p

log wð Þ
exp log wð Þð Þ

y log wð Þ=log yð Þð Þ for any y

wj j
where w is any of x, ix, xþ ix, 1=x, i=x, 1=xþ i=x, and i is the square root of �1.
This parameter was introduced to take account of the quality of complex arithmetic on the machine. On
machines with well implemented complex arithmetic, its value will differ from that of the real safe
range parameter by a small multiplying factor less than 10. For poorly implemented complex arithmetic
this factor may be larger by many orders of magnitude.
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2.2 Other Aspects of the Computing Environment

No attempt has been made to characterise comprehensively any other aspects of the computing
environment. The other functions in this chapter provide specific information that is occasionally
required by routines in the Library.

3 Recommendations on Choice and Use of Available Routines

Derived parameters of model of floating-point arithmetic,
largest positive model number ........................................................................................ X02ALF
machine precision ........................................................................................................... X02AJF
safe range........................................................................................................................ X02AMF
safe range of complex floating-point arithmetic.............................................................. X02ANF
smallest positive model number...................................................................................... X02AKF

Largest permissible argument for SIN and COS.................................................................. X02AHF

Largest representable integer................................................................................................ X02BBF

Maximum number of decimal digits that can be represented .............................................. X02BEF

Parameters of model of floating-point arithmetic,
b ...................................................................................................................................... X02BHF
emax ................................................................................................................................. X02BLF
emin ................................................................................................................................. X02BKF
p...................................................................................................................................... X02BJF

4 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

X02DAF 24 No longer required
X02DJF 24 No longer required

5 References

Brown W S (1981) A simple but realistic model of floating-point computation ACM Trans. Math.
Software 7 445–480

ISO Fortran 95 (1997) ISO Fortran 95 programming language (ISO/IEC 1539–1:1997)
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NAG Library Routine Document

X02AHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02AHF returns the largest positive argument for which the Fortran intrinsic functions SIN and COS
return a result with some meaningful accuracy.

2 Specification

FUNCTION X02AHF (X)
REAL (KIND=nag_wp) X02AHF

REAL (KIND=nag_wp) X

3 Description

The trigonometric functions sin and cos supplied in some compiler run-time libraries do not return
accurate results when their argument is large. Often the related accuracy of a result gets progressively
worse as the argument gets larger. X02AHF gives a value beyond which the compiler run-time library
returns results with no relative accuracy at all. Note that some run-time libraries do return accurate
results for all arguments to sin and cos.

4 References

None.

5 Arguments

1: X – REAL (KIND=nag_wp) Dummy

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02AHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X02AJF.
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NAG Library Routine Document

X02AJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02AJF returns �, the value machine precision.

2 Specification

FUNCTION X02AJF ()
REAL (KIND=nag_wp) X02AJF

3 Description

X02AJF returns machine precision, computed as � ¼ 1
2� b1�p , where b is the arithmetic base (see

X02BHF) and p is the number of significant base-b digits (see X02BJF).

It is important to note that the definition of � here differs from that in ISO Fortran 95 (1997).

4 References

ISO Fortran 95 (1997) ISO Fortran 95 programming language (ISO/IEC 1539–1:1997)

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02AJF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example prints the values of all the functions in Chapter X02. The results will vary from one
implementation of the Library to another.
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10.1 Program Text

Program x02ajfe

! X02AJF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02ahf, x02ajf, x02akf, x02alf, x02amf, &

x02anf, x02bbf, x02bef, x02bhf, x02bjf, x02bkf, &
x02blf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: largest_arg, largest_pos, machpr, &

safe_complex, safe_real, &
smallest_pos

Integer :: largest_pos_int, model_b, &
model_emax, model_emin, model_p, &
prec

! .. Executable Statements ..
Write (nout,*) ’X02AJF Example Program Results’
Write (nout,*)
Write (nout,*) ’(results are machine-dependent)’
Write (nout,*)
Write (nout,*) ’The basic parameters of the model’
Write (nout,*)
model_b = x02bhf()
Write (nout,99999) ’ X02BHF = ’, model_b, ’ (the model parameter B)’
model_p = x02bjf()
Write (nout,99999) ’ X02BJF = ’, model_p, ’ (the model parameter P)’
model_emin = x02bkf()
Write (nout,99999) ’ X02BKF = ’, model_emin, &

’ (the model parameter EMIN)’
model_emax = x02blf()
Write (nout,99999) ’ X02BLF = ’, model_emax, &

’ (the model parameter EMAX)’
Write (nout,*)
Write (nout,*) ’Derived parameters of floating-point arithmetic’
Write (nout,*)
machpr = x02ajf()
Write (nout,99998) ’ X02AJF = ’, machpr, ’ (the machine precision)’
smallest_pos = x02akf()
Write (nout,99998) ’ X02AKF = ’, smallest_pos, &

’ (the smallest positive model number)’
largest_pos = x02alf()
Write (nout,99998) ’ X02ALF = ’, largest_pos, &

’ (the largest positive model number)’
safe_real = x02amf()
Write (nout,99998) ’ X02AMF = ’, safe_real, &

’ (the real safe range parameter)’
safe_complex = x02anf()
Write (nout,99998) ’ X02ANF = ’, safe_complex, &

’ (the complex safe range parameter)’
Write (nout,*)
Write (nout,*) &

’Parameters of other aspects of the computing environment’
Write (nout,*)
largest_arg = x02ahf(0.0E0_nag_wp)
Write (nout,99996) ’ X02AHF = ’, largest_arg, &

’ (largest argument for SIN and COS)’
largest_pos_int = x02bbf(0.0E0_nag_wp)
Write (nout,99997) ’ X02BBF = ’, largest_pos_int, &

’ (largest positive integer)’
prec = x02bef(0.0E0_nag_wp)
Write (nout,99997) ’ X02BEF = ’, prec, ’ (precision in decimal digits)’
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99999 Format (1X,A,I7,1X,A)
99998 Format (1X,A,1P,E26.18e3,1X,A)
99997 Format (1X,A,I20,1X,A)
99996 Format (1X,A,1P,E20.8e3,1X,A)

End Program x02ajfe

10.2 Program Data

None.

10.3 Program Results

X02AJF Example Program Results

(results are machine-dependent)

The basic parameters of the model

X02BHF = 2 (the model parameter B)
X02BJF = 53 (the model parameter P)
X02BKF = -1021 (the model parameter EMIN)
X02BLF = 1024 (the model parameter EMAX)

Derived parameters of floating-point arithmetic

X02AJF = 1.110223024625156540E-016 (the machine precision)
X02AKF = 2.225073858507201383E-308 (the smallest positive model number)
X02ALF = 1.797693134862315708E+308 (the largest positive model number)
X02AMF = 2.225073858507201877E-308 (the real safe range parameter)
X02ANF = 2.225073858507201877E-308 (the complex safe range parameter)

Parameters of other aspects of the computing environment

X02AHF = 1.42724769E+045 (largest argument for SIN and COS)
X02BBF = 2147483647 (largest positive integer)
X02BEF = 15 (precision in decimal digits)
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NAG Library Routine Document

X02AKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02AKF returns the smallest positive floating-point number.

2 Specification

FUNCTION X02AKF ()
REAL (KIND=nag_wp) X02AKF

3 Description

X02AKF returns the smallest positive number in the model of floating-point arithmetic described in the
X02 Chapter Introduction. The returned value is equal to bemin�1, where b is the arithmetic base (see
X02BHF) and emin is the minimum exponent (see X02BKF) in the model.

4 References

None.

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02AKF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X02AJF.
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NAG Library Routine Document

X02ALF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02ALF returns the largest positive floating-point number.

2 Specification

FUNCTION X02ALF ()
REAL (KIND=nag_wp) X02ALF

3 Description

X02ALF returns the largest positive number in the model of floating-point arithmetic described in the
X02 Chapter Introduction. The returned value is equal to 1� b�pð Þ � bemax , where b is the arithmetic
base (see X02BHF) and emax is the maximum exponent (see X02BLF) in the model.

4 References

None.

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02ALF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X02AJF.
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NAG Library Routine Document

X02AMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02AMF returns the safe range of floating-point arithmetic.

2 Specification

FUNCTION X02AMF ()
REAL (KIND=nag_wp) X02AMF

3 Description

X02AMF is defined to be the smallest positive model number z such that for any x in the range [z; 1=z]
the following can be computed without undue loss of accuracy, overflow, underflow or other error:

�x
1=x

�1=xffiffiffi
x
p

log xð Þ
exp log xð Þð Þ

y log xð Þ=log yð Þð Þ for any y

4 References

None.

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02AMF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

See Section 10 in X02AJF.
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NAG Library Routine Document

X02ANF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02ANF returns the safe range of complex floating-point arithmetic.

2 Specification

FUNCTION X02ANF ()
REAL (KIND=nag_wp) X02ANF

3 Description

X02ANF is defined to be the smallest positive model number z such that for any x in the range [z; 1=z]
the following can be computed without undue loss of accuracy, overflow, underflow or other error:

�w
1=w

�1=wffiffiffiffi
w
p

log wð Þ
exp log wð Þð Þ

y log wð Þ=log yð Þð Þ for any y

wj j
where w is any of x, ix, xþ ix, 1=x, i=x, 1=xþ i=x, and i is the square root of �1.

4 References

None.

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02ANF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

See Section 10 in X02AJF.
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NAG Library Routine Document

X02BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02BBF returns the largest representable positive integer value.

2 Specification

FUNCTION X02BBF (X)
INTEGER X02BBF

REAL (KIND=nag_wp) X

3 Description

None.

4 References

None.

5 Arguments

1: X – REAL (KIND=nag_wp) Dummy

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02BBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X02AJF.
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NAG Library Routine Document

X02BEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02BEF returns the maximum number of decimal digits which can be accurately represented over the
whole range of floating-point numbers.

2 Specification

FUNCTION X02BEF (X)
INTEGER X02BEF

REAL (KIND=nag_wp) X

3 Description

None.

4 References

None.

5 Arguments

1: X – REAL (KIND=nag_wp) Dummy

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02BEF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X02AJF.
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NAG Library Routine Document

X02BHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02BHF returns the base argument b of the model of floating-point arithmetic as described in the X02
Chapter Introduction.

2 Specification

FUNCTION X02BHF ()
INTEGER X02BHF

3 Description

None.

4 References

None.

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02BHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X02AJF.
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NAG Library Routine Document

X02BJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02BJF returns the precision argument p (i.e., the number of significant base-b digits) of the model of
floating-point arithmetic described in the X02 Chapter Introduction.

2 Specification

FUNCTION X02BJF ()
INTEGER X02BJF

3 Description

None.

4 References

None.

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02BJF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X02AJF.
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NAG Library Routine Document

X02BKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02BKF returns the minimum exponent argument emin of the model of floating-point arithmetic
described in the X02 Chapter Introduction.

2 Specification

FUNCTION X02BKF ()
INTEGER X02BKF

3 Description

None.

4 References

None.

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02BKF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X02AJF.
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NAG Library Routine Document

X02BLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X02BLF returns the maximum exponent argument emax of the model of floating-point arithmetic
described in the X02 Chapter Introduction.

2 Specification

FUNCTION X02BLF ()
INTEGER X02BLF

3 Description

None.

4 References

None.

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

None.

8 Parallelism and Performance

X02BLF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X02AJF.
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NAG Library Chapter Contents

X03 – Inner Products

X03 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

X03AAF 5 nagf_dot_real_prec
Real inner product added to initial value, basic/additional precision

X03ABF 5 nagf_dot_complex_prec
Complex inner product added to initial value, basic/additional precision

X03 – Inner Products Contents – X03
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NAG Library Chapter Introduction

X03 – Inner Products

Contents

1 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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3 Recommendations on Choice and Use of Available Routines. . . . . . . . . . . . . . 2

4 Routines Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . . . . . . . . . 2
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1 Scope of the Chapter

This chapter is concerned with the calculation of innerproducts required by other routines within the
Library.

2 Background to the Problems

Some Library routines require to calculate the innerproduct

cþ
X
i

xiyi;

preferably in additional precision, but, if this is unavailable or prohibitively expensive, then in basic
precision. These routines call Chapter X03 so that machine dependencies of this type can be isolated to
this chapter.

3 Recommendations on Choice and Use of Available Routines

Although these routines are primarily intended for use by other Library routines they may be accessed
directly by you:

X03AAF calculates the innerproduct for real values c, xi and yi,

X03ABF calculates the innerproduct for complex values c, xi and yi,

4 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

X03AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X03AAF calculates the value of a scalar product using basic precision or additional precision and adds
it to a basic precision or additional precision initial value.

2 Specification

SUBROUTINE X03AAF (A, ISIZEA, B, ISIZEB, N, ISTEPA, ISTEPB, C1, C2, D1,
D2, SW, IFAIL)

&

INTEGER ISIZEA, ISIZEB, N, ISTEPA, ISTEPB, IFAIL
REAL (KIND=nag_wp) A(ISIZEA), B(ISIZEB), C1, C2, D1, D2
LOGICAL SW

3 Description

X03AAF calculates the scalar product of two real vectors and adds it to an initial value c to give a
correctly rounded result d:

d ¼ cþ
Xn
i¼1
aibi:

If n < 1, d ¼ c.
The vector elements ai and bi are stored in selected elements of the one-dimensional array arguments A
and B, which in the subroutine from which X03AAF is called may be identified with parts of possibly
multidimensional arrays according to the standard Fortran rules. For example, the vectors may be parts
of a row or column of a matrix. See Section 5 for details, and Section 10 for an example.

Both the initial value c and the result d are defined by a pair of real variables, so that they may take
either basic precision or additional precision values.

(a) If SW ¼ :TRUE:, the products are accumulated in additional precision, and on exit the result is
available either in basic precision, correctly rounded, or in additional precision.

(b) If SW ¼ :FALSE:, the products are accumulated in basic precision, and the result is returned in
basic precision.

This routine is designed primarily for use as an auxiliary routine by other routines in the NAG Library,
especially those in the chapters on Linear Algebra.

4 References

None.

5 Arguments

1: AðISIZEAÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of the first vector.

The ith vector element is stored in the array element Að i� 1ð Þ � ISTEPAþ 1Þ. In your
subroutine from which X03AAF is called, A can be part of a multidimensional array and the
actual argument must be the array element containing the first vector element.
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2: ISIZEA – INTEGER Input

On entry: the dimension of the array A as declared in the (sub)program from which X03AAF is
called.

The upper bound for ISIZEA is found by multiplying together the dimensions of A as declared in
your subroutine from which X03AAF is called, subtracting the starting position and adding 1.

Constraint: ISIZEA � N� 1ð Þ � ISTEPAþ 1.

3: BðISIZEBÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of the second vector.

The ith vector element is stored in the array element Bð i� 1ð Þ � ISTEPBþ 1Þ. In your
subroutine from which X03AAF is called, B can be part of a multidimensional array and the
actual argument must be the array element containing the first vector element.

4: ISIZEB – INTEGER Input

On entry: the dimension of the array B as declared in the (sub)program from which X03AAF is
called.

The upper bound for ISIZEB is found by multiplying together the dimensions of B as declared in
your subroutine from which X03AAF is called, subtracting the starting position and adding 1.

Constraint: ISIZEB � N� 1ð Þ � ISTEPBþ 1.

5: N – INTEGER Input

On entry: n, the number of elements in the scalar product.

6: ISTEPA – INTEGER Input

On entry: the step length between elements of the first vector in array A.

Constraint: ISTEPA > 0.

7: ISTEPB – INTEGER Input

On entry: the step length between elements of the second vector in array B.

Constraint: ISTEPB > 0.

8: C1 – REAL (KIND=nag_wp) Input
9: C2 – REAL (KIND=nag_wp) Input

On entry: C1 and C2 must specify the initial value c: c ¼ C1þ C2. Normally, if c is in additional
precision, C1 specifies the most significant part and C2 the least significant part; if c is in basic
precision, then C1 specifies c and C2 must have the value 0:0. Both C1 and C2 must be defined
on entry.

10: D1 – REAL (KIND=nag_wp) Output
11: D2 – REAL (KIND=nag_wp) Output

On exit: the result d.

If the calculation is in additional precision (SW ¼ :TRUE:),
D1 ¼ d rounded to basic precision;

D2 ¼ d� D1,

thus D1 holds the correctly rounded basic precision result and the sum D1þ D2 gives the result
in additional precision. D2 may have the opposite sign to D1.

If the calculation is in basic precision (SW ¼ :FALSE:),
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D1 ¼ d;
D2 ¼ 0:0.

12: SW – LOGICAL Input

On entry: the precision to be used in the calculation.

SW ¼ :TRUE:
additional precision.

SW ¼ :FALSE:
basic precision.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ISTEPA � 0,
or ISTEPB � 0.

IFAIL ¼ 2

On entry, ISIZEA > N� 1ð Þ � ISTEPAþ 1,
or ISIZEB > N� 1ð Þ � ISTEPBþ 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

X03 – Inner Products X03AAF

Mark 26 X03AAF.3



7 Accuracy

If the calculation is an additional precision, the rounded basic precision result D1 is correct to full
implementation accuracy, provided that exceptionally severe cancellation does not occur in the
summation. If the calculation is in basic precision, such accuracy cannot be guaranteed.

8 Parallelism and Performance

X03AAF is not threaded in any implementation.

9 Further Comments

The time taken by X03AAF is approximately proportional to n and also depends on whether basic
precision or additional precision is used.

On exit the variables D1 and D2 may be used directly to supply a basic precision or additional
precision initial value for a subsequent call of X03AAF.

10 Example

This example calculates the scalar product of the second column of the matrix A and the vector B, and
add it to an initial value 1:0 where

A ¼
�2 �3 7
2 �5 3
�9 1 0

0@ 1A; B ¼
8
�4
�2

0@ 1A:
10.1 Program Text

Program x03aafe

! X03AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x03aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 3, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: c1, c2, d1, d2
Integer :: i, ifail, isizea, isizeb, istepa, &

istepb, j
Logical :: sw

! .. Local Arrays ..
Real (Kind=nag_wp) :: a(n,n), b(n)

! .. Executable Statements ..
Write (nout,*) ’X03AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*)((a(i,j),j=1,n),i=1,n), (b(i),i=1,n)
c1 = 1.0E0_nag_wp
c2 = 0.0E0_nag_wp
isizea = n
isizeb = n
istepa = 1
istepb = 1
sw = .True.

ifail = 0
Call x03aaf(a(1,2),isizea,b,isizeb,n,istepa,istepb,c1,c2,d1,d2,sw,ifail)
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Write (nout,*)
Write (nout,99999) ’D1 = ’, d1, ’ D2 = ’, d2

99999 Format (1X,A,F4.1,A,F4.1)
End Program x03aafe

10.2 Program Data

X03AAF Example Program Data
-2 -3 7
2 -5 3

-9 1 0
8 -4 -2

10.3 Program Results

X03AAF Example Program Results

D1 = -5.0 D2 = 0.0
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NAG Library Routine Document

X03ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X03ABF calculates the value of a complex scalar product using basic precision or additional precision
and adds it to a complex initial value.

2 Specification

SUBROUTINE X03ABF (A, ISIZEA, B, ISIZEB, N, ISTEPA, ISTEPB, CX, DX, SW,
IFAIL)

&

INTEGER ISIZEA, ISIZEB, N, ISTEPA, ISTEPB, IFAIL
COMPLEX (KIND=nag_wp) A(ISIZEA), B(ISIZEB), CX, DX
LOGICAL SW

3 Description

X03ABF calculates the scalar product of two complex vectors and adds it to an initial value c to give a
correctly rounded result d:

d ¼ cþ
Xn
i¼1
aibi:

If n < 1, d ¼ c.
The vector elements ai and bi are stored in selected elements of the one-dimensional array arguments A
and B, which in the subroutine from which X03ABF is called may be identified with parts of possibly
multidimensional arrays according to the standard Fortran rules. For example, the vectors may be parts
of a row or column of a matrix. See Section 5 for details, and Section 10 for an example.

The products are accumulated in basic precision or additional precision depending on the argument
SW.

This routine has been designed primarily for use as an auxiliary routine by other routines in the NAG
Library, especially those in the chapters on Linear Algebra.

4 References

None.

5 Arguments

1: AðISIZEAÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the elements of the first vector.

The ith vector element is stored in the array element Að i� 1ð Þ � ISTEPAþ 1Þ. In your
subroutine from which X03ABF is called, A can be part of a multidimensional array and the
actual argument must be the array element containing the first vector element.

2: ISIZEA – INTEGER Input

On entry: the dimension of the array A as declared in the (sub)program from which X03ABF is
called.
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The upper bound for ISIZEA is found by multiplying together the dimensions of A as declared in
your subroutine from which X03ABF is called, subtracting the starting position and adding 1.

Constraint: ISIZEA � N� 1ð Þ � ISTEPAþ 1.

3: BðISIZEBÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the elements of the second vector.

The ith vector element is stored in the array element Bð i� 1ð Þ � ISTEPBþ 1Þ. In your
subroutine from which X03ABF is called, B can be part of a multidimensional array and the
actual argument must be the array element containing the first vector element.

4: ISIZEB – INTEGER Input

On entry: the dimension of the array B as declared in the (sub)program from which X03ABF is
called.

The upper bound for ISIZEB is found by multiplying together the dimensions of B as declared in
your subroutine from which X03ABF is called, subtracting the starting position and adding 1.

Constraint: ISIZEB � N� 1ð Þ � ISTEPBþ 1.

5: N – INTEGER Input

On entry: n, the number of elements in the scalar product.

6: ISTEPA – INTEGER Input

On entry: the step length between elements of the first vector in array A.

Constraint: ISTEPA > 0.

7: ISTEPB – INTEGER Input

On entry: the step length between elements of the second vector in array B.

Constraint: ISTEPB > 0.

8: CX – COMPLEX (KIND=nag_wp) Input

On entry: the initial value c.

9: DX – COMPLEX (KIND=nag_wp) Output

On exit: the result d.

10: SW – LOGICAL Input

On entry: the precision to be used in the calculation.

SW ¼ :TRUE:
additional precision.

SW ¼ :FALSE:
basic precision.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

X03ABF NAG Library Manual

X03ABF.2 Mark 26



On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ISTEPA � 0,
or ISTEPB � 0.

IFAIL ¼ 2

On entry, ISIZEA < N� 1ð Þ � ISTEPAþ 1,
or ISIZEB < N� 1ð Þ � ISTEPBþ 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If the calculation is in additional precision, the result is correct to full implementation accuracy
provided that exceptionally severe cancellation does not occur in the summation. If the calculation is in
basic precision, such accuracy cannot be guaranteed.

8 Parallelism and Performance

X03ABF is not threaded in any implementation.

9 Further Comments

The time taken by X03ABF is approximately proportional to n and also depends on whether basic
precision or additional precision is used.

10 Example

This example calculates the scalar product of the second column of the matrix A and the vector B, and
add it to an initial value of 1þ i, where

A ¼
�1 �i 1
2þ 3i i 2i
0 �1� i 1� 2i

0@ 1A; B ¼
i

1� i
�i

0@ 1A:
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10.1 Program Text

Program x03abfe

! X03ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x03abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 3, nin = 5, nout = 6

! .. Local Scalars ..
Complex (Kind=nag_wp) :: cx, dx
Integer :: i, ifail, isizea, isizeb, istepa, &

istepb, j
Logical :: sw

! .. Local Arrays ..
Complex (Kind=nag_wp) :: a(n,n), b(n)

! .. Executable Statements ..
Write (nout,*) ’X03ABF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*)((a(i,j),j=1,n),i=1,n), (b(i),i=1,n)
cx = (1.0E0_nag_wp,1.0E0_nag_wp)
isizea = n
isizeb = n
istepa = 1
istepb = 1
sw = .True.

ifail = 0
Call x03abf(a(1,2),isizea,b,isizeb,n,istepa,istepb,cx,dx,sw,ifail)

Write (nout,*)
Write (nout,99999) ’Result = ’, dx

99999 Format (1X,A,’(’,F3.0,’,’,F3.0,’)’)
End Program x03abfe

10.2 Program Data

X03ABF Example Program Data
(-1.0, 0.0) ( 0.0, -1.0) (1.0, 0.0)
( 2.0, 3.0) ( 0.0, 1.0) (0.0, 2.0)
( 0.0, 0.0) (-1.0, -1.0) (1.0, -2.0)
( 0.0, 1.0) ( 1.0, -1.0) (0.0, -1.0)

10.3 Program Results

X03ABF Example Program Results

Result = ( 2., 3.)
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NAG Library Chapter Contents

X04 – Input/Output Utilities

X04 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

X04AAF 7 nagf_file_set_unit_error
Return or set unit number for error messages

X04ABF 7 nagf_file_set_unit_advisory
Return or set unit number for advisory messages

X04ACF 19 nagf_file_open
Open unit number for reading, writing or appending, and associate unit with
named file

X04ADF 19 nagf_file_close
Close file associated with given unit number

X04BAF 12 nagf_file_line_write
Write formatted record to external file

X04BBF 12 nagf_file_line_read
Read formatted record from external file

X04CAF 14 nagf_file_print_matrix_real_gen
Print real general matrix (easy-to-use)

X04CBF 14 nagf_file_print_matrix_real_gen_comp
Print real general matrix (comprehensive)

X04CCF 14 nagf_file_print_matrix_real_packed
Print real packed triangular matrix (easy-to-use)

X04CDF 14 nagf_file_print_matrix_real_packed_comp
Print real packed triangular matrix (comprehensive)

X04CEF 14 nagf_file_print_matrix_real_band
Print real packed banded matrix (easy-to-use)

X04CFF 14 nagf_file_print_matrix_real_band_comp
Print real packed banded matrix (comprehensive)

X04DAF 14 nagf_file_print_matrix_complex_gen
Print complex general matrix (easy-to-use)

X04DBF 14 nagf_file_print_matrix_complex_gen_comp
Print complex general matrix (comprehensive)

X04DCF 14 nagf_file_print_matrix_complex_packed
Print complex packed triangular matrix (easy-to-use)

X04DDF 14 nagf_file_print_matrix_complex_packed_comp
Print complex packed triangular matrix (comprehensive)

X04DEF 14 nagf_file_print_matrix_complex_band
Print complex packed banded matrix (easy-to-use)

X04DFF 14 nagf_file_print_matrix_complex_band_comp
Print complex packed banded matrix (comprehensive)

X04EAF 14 nagf_file_print_matrix_integer
Print integer matrix (easy-to-use)

X04EBF 14 nagf_file_print_matrix_integer_comp
Print integer matrix (comprehensive)
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1 Scope of the Chapter

This chapter contains utility routines concerned with input and output to or from an external file.

2 Background to the Problems

2.1 Output from NAG Library Routines

Output from NAG Library routines to an external file falls into two categories.

(a) Error messages
which are always associated with an error exit from a routine, that is, with a nonzero value of
IFAIL as specified in Section 6 of the routine document.

(b) Advisory messages
which include output of final results, output of intermediate results to monitor the course of a
computation, and various warning or informative messages.

Each category of output is written to its own Fortran output unit – the error message unit or the
advisory message unit. In practice these may be the same unit number. Default unit numbers are
provided for each implementation of the Library (see the Users' Note for your implementation); they
may be changed by users. Output of error messages may be controlled by the setting of IFAIL (see
Section 3.4.2 in How to Use the NAG Library and its Documentation). Output of advisory messages
may usually be controlled by the setting of some other argument (e.g., MSGLVL) (or in some routines
also by IFAIL). An alternative mechanism for completely suppressing output is to set the relevant unit
number < 0.

At present only formatted records are output from the Library. All formatted output to an external file
from within the Library is performed by X04BAF. Similarly, all formatted input from an external file is
performed by X04BBF.

When the library is being called from another language, such as C or Visual Basic, the routines
X04ACF and X04ADF may be especially useful: X04ACF connects a file to a FORTRAN unit;
X04ADF disconnects a file from a FORTRAN unit.

2.2 Matrix Printing Routines

Routines are provided to allow formatted output of

(a) general matrices stored in a two-dimensional array (real, complex and integer data types);

(b) triangular matrices stored in a packed one-dimensional array (real and complex data types);

(c) band matrices stored in a packed two-dimensional array (real and complex data types).

Routines in (b) and (c) allow printing of matrices stored in formats used in particular by Chapters F06
and F07 of the Library.

By appropriate choice of arguments you can specify titles, labels, maximum output record length, and
the format of individual matrix elements. All output is directed to the advisory messages unit, which
may be altered by a call to X04ABF.

3 Recommendations on Choice and Use of Available Routines

Apart from the obvious utility of the matrix printing routines, users of the Library may need to call
routines in Chapter X04 for the following purposes.

If the default error message unit (given in the Users' Note for your implementation) is not satisfactory,
it may be changed to a new value NERR by the statement

CALL X04AAF(1,NERR)

Similarly the advisory message unit may be changed to a new value NADV by the statement

CALL X04ABF(1,NADV)
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Note that both X04AAF and X04ABF use a Fortran SAVE statement to retain the value of the unit
number and so neither routine is safe to use in a multithreaded environment.

4 Functionality Index

Accessing external formatted file,
reading a record .............................................................................................................. X04BBF
writing a record .............................................................................................................. X04BAF

Accessing unit number,
of advisory message unit ................................................................................................ X04ABF
of error message unit ...................................................................................................... X04AAF

Connecting an external file .................................................................................................. X04ACF

Disconnecting an external file.............................................................................................. X04ADF

Printing matrices,
comprehensive routines,

general complex matrix.............................................................................................. X04DBF
general integer matrix ................................................................................................ X04EBF
general real matrix ..................................................................................................... X04CBF
packed complex band matrix ..................................................................................... X04DFF
packed complex triangular matrix .............................................................................. X04DDF
packed real band matrix............................................................................................. X04CFF
packed real triangular matrix ..................................................................................... X04CDF

easy-to-use routines,
general complex matrix.............................................................................................. X04DAF
general integer matrix ................................................................................................ X04EAF
general real matrix ..................................................................................................... X04CAF
packed complex band matrix ..................................................................................... X04DEF
packed complex triangular matrix .............................................................................. X04DCF
packed real band matrix............................................................................................. X04CEF
packed real triangular matrix ..................................................................................... X04CCF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

X04AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04AAF returns the value of the current error message unit number, or sets the current error message
unit number to a new value.

2 Specification

SUBROUTINE X04AAF (IFLAG, NERR)

INTEGER IFLAG, NERR

3 Description

X04AAF enables those library routines which output error messages, to determine the number of the
output unit to which the error messages are to be sent; in this case X04AAF is called with IFLAG ¼ 0.
X04AAF may also be called with IFLAG ¼ 1 to set the unit number to a specified value. Otherwise a
default value (stated in the Users' Note for your implementation) is returned.

Records written to this output unit by other library routines are at most 80 characters long (including a
line-printer carriage control character).

Note that if the unit number is set < 0, no messages will be output.

4 References

None.

5 Arguments

1: IFLAG – INTEGER Input

On entry: the action to be taken (see NERR).

Constraint: IFLAG ¼ 0 or 1.

2: NERR – INTEGER Input/Output

On entry: if IFLAG ¼ 0, NERR need not be set.

If IFLAG ¼ 1, NERR must specify the new error message unit number.

On exit: if IFLAG ¼ 0, NERR is set to the current error message unit number.

If IFLAG ¼ 1, NERR is unchanged.

Note that Fortran unit numbers must be positive or zero. If NERR is set < 0, output of error
messages is totally suppressed. It is important to note that if you supply an illegal value for
NERR (such as a unit number associated with a file opened for reading instead of writing) then
X04AAF cannot detect that fact, but any output sent to the unit by later calls of NAG routines
may have undesirable consequences, such as program crashes.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

X04AAF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

X04AAF is not threaded in any implementation.

9 Further Comments

The time taken by X04AAF is negligible.

10 Example

In this example X04AAF is called by your main program to make the error message from the routine
DUMMY appear on the same unit as the rest of the output (unit 6). Normally a NAG Library routine
with an IFAIL argument (see Section 3.4.2 in How to Use the NAG Library and its Documentation)
would take the place of DUMMY.

10.1 Program Text

! X04AAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module x04aafe_mod

! X04AAF Example Program Module:
! Parameters and User-defined Routines

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: dummy

! .. Parameters ..
Integer, Parameter, Public :: nout = 6

Contains
Subroutine dummy

! .. Use Statements ..
Use nag_library, Only: x04aaf

! .. Local Scalars ..
Integer :: nerr

! .. Executable Statements ..
Call x04aaf(0,nerr)

Write (nerr,*)
Write (nerr,*) ’This is a dummy error message’

Return

End Subroutine dummy
End Module x04aafe_mod
Program x04aafe

! X04AAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: x04aaf
Use x04aafe_mod, Only: dummy, nout

! .. Implicit None Statement ..
Implicit None
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! .. Local Scalars ..
Integer :: outchn

! .. Executable Statements ..
Write (nout,*) ’X04AAF Example Program Results’

outchn = nout

Call x04aaf(1,outchn)

Call dummy

End Program x04aafe

10.2 Program Data

None.

10.3 Program Results

X04AAF Example Program Results

This is a dummy error message
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NAG Library Routine Document

X04ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04ABF returns the value of the current advisory message unit number, or sets the current advisory
message unit number to a new value.

2 Specification

SUBROUTINE X04ABF (IFLAG, NADV)

INTEGER IFLAG, NADV

3 Description

X04ABF enables those library routines which output advisory messages to determine the number of the
output unit to which the advisory messages are to be sent; in this case X04ABF is called with
IFLAG ¼ 0. X04ABF may also be called with IFLAG ¼ 1 to set the unit number to a specified value.
Otherwise a default value (stated in the Users' Note for your implementation) is returned.

Records written to this output unit by other library routines are at most 120 characters long (including a
line-printer carriage control character), unless those library routines allow you to specify longer records.

Note that if the unit number is set < 0, no messages will be output.

4 References

None.

5 Arguments

1: IFLAG – INTEGER Input

On entry: the action to be taken (see NADV).

Constraint: IFLAG ¼ 0 or 1.

2: NADV – INTEGER Input/Output

On entry: if IFLAG ¼ 0, NADV need not be set.

If IFLAG ¼ 1, NADV must specify the new advisory message unit number.

On exit: if IFLAG ¼ 0, NADV is set to the current advisory message unit number.

If IFLAG ¼ 1, NADV is unchanged.

Note that Fortran unit numbers must be positive or zero. If NADV is set < 0, output of advisory
messages is totally suppressed. It is important to note that if you supply an illegal value for
NADV (such as a unit number associated with a file opened for reading instead of writing) then
X04ABF cannot detect that fact, but any output sent to the unit by later calls of NAG routines
may have undesirable consequences, such as program crashes.

6 Error Indicators and Warnings

None.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

X04ABF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

X04ABF is not threaded in any implementation.

9 Further Comments

The time taken by X04ABF is negligible.

10 Example

In this example X04ABF is called by your main program to make the advisory message from the
routine DUMMY appear on the same unit as the rest of the output (unit 6). Normally a NAG Library
routine with an IFAIL argument (see Section 3.4.2 in How to Use the NAG Library and its
Documentation) would take the place of DUMMY.

10.1 Program Text

! X04ABF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module x04abfe_mod

! X04ABF Example Program Module:
! Parameters and User-defined Routines

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: dummy

! .. Parameters ..
Integer, Parameter :: iget = 0
Integer, Parameter, Public :: iset = 1, nout = 6

Contains
Subroutine dummy

! .. Use Statements ..
Use nag_library, Only: x04abf

! .. Local Scalars ..
Integer :: nadv

! .. Executable Statements ..
Call x04abf(iget,nadv)

Write (nadv,*)
Write (nadv,*) ’This is a dummy advisory message’

Return

End Subroutine dummy
End Module x04abfe_mod
Program x04abfe

! X04ABF Example Main Program

! .. Use Statements ..
Use nag_library, Only: x04abf
Use x04abfe_mod, Only: dummy, iset, nout

! .. Implicit None Statement ..
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Implicit None
! .. Local Scalars ..

Integer :: outchn
! .. Executable Statements ..

Write (nout,*) ’X04ABF Example Program Results’

outchn = nout

Call x04abf(iset,outchn)

Call dummy

End Program x04abfe

10.2 Program Data

None.

10.3 Program Results

X04ABF Example Program Results

This is a dummy advisory message
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NAG Library Routine Document

X04ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04ACF opens a Fortran unit number for reading, writing or appending, and associates the unit with a
named file.

2 Specification

SUBROUTINE X04ACF (IOUNIT, FILE, MODE, IFAIL)

INTEGER IOUNIT, MODE, IFAIL
CHARACTER(*) FILE

3 Description

X04ACF is especially useful if the calling language is not Fortran. It opens a Fortran unit number for
reading, writing or appending, and associates the unit with a filename specified by the argument FILE.

4 References

None.

5 Arguments

1: IOUNIT – INTEGER Input

On entry: the Fortran unit number which identifies the file to be read from, written to or
appended to. Note that this may be system dependent. Values in the range 7 to 1000 should
however be safe on most systems.

2: FILE – CHARACTER(*) Input

On entry: the name of the file to be opened.

Constraint: must contain a valid filename for the computer system being used.

3: MODE – INTEGER Input

On entry: specifies whether the file is to be opened for reading, writing or appending.

MODE ¼ 0
The file is to be opened for reading.

MODE ¼ 1
The file is to be opened for writing.

MODE ¼ 2
The file is to be opened for appending.

Constraint: 0 � MODE � 2.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MODE is invalid.

IFAIL ¼ 2

Failure to open the file for reading.

IFAIL ¼ 3

Failure to open the file for writing.

IFAIL ¼ 4

Failure to open the file for appending.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04ACF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example illustrates how to open a file for writing.

10.1 Program Text

Program x04acfe

! X04ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: x04acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iounit = 4, nout = 6
Character (*), Parameter :: file = ’x04acfe_success.res’

! .. Local Scalars ..
Integer :: ifail, mode

! .. Executable Statements ..
Write (nout,*) ’X04ACF Example Program Results’

! Test successful open for write

mode = 1

ifail = 0
Call x04acf(iounit,file,mode,ifail)

Write (nout,99999)
Write (iounit,99999)

99999 Format (’ OK file successfully opened for writing’)
End Program x04acfe

10.2 Program Data

None.

10.3 Program Results

X04ACF Example Program Results
OK file successfully opened for writing

X04 – Input/Output Utilities X04ACF

Mark 26 X04ACF.3 (last)





NAG Library Routine Document

X04ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04ADF closes a file associated with a given Fortran unit number.

2 Specification

SUBROUTINE X04ADF (IOUNIT, IFAIL)

INTEGER IOUNIT, IFAIL

3 Description

X04ADF is especially useful if the calling language is not Fortran. It closes a file associated with a
given Fortran unit number.

4 References

None.

5 Arguments

1: IOUNIT – INTEGER Input

On entry: the Fortran unit number which identifies the file to be closed.

2: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Failure to close the file.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04ADF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example program simply illustrates how to close a file once it has been opened for writing
followed by how to close a file once it has been opened for reading.

10.1 Program Text

Program x04adfe

! X04ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: x04acf, x04adf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iounit = 4, nout = 6
Character (*), Parameter :: fname = ’x04adfe_success.res’

! .. Local Scalars ..
Integer :: ifail

! .. Executable Statements ..
Write (nout,*) ’X04ADF Example Program Results’

! Test successful open and close for write

ifail = 0
Call x04acf(iounit,fname,1,ifail)

Write (nout,99999)
Write (iounit,99999)

ifail = 0
Call x04adf(iounit,ifail)
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Write (nout,99998)

! Test successful open and close for read

ifail = 0
Call x04acf(iounit,fname,0,ifail)

Write (nout,99997)

ifail = 0
Call x04adf(iounit,ifail)

Write (nout,99998)

99999 Format (’ OK file successfully opened for writing’)
99998 Format (’ OK file successfully closed’)
99997 Format (’ OK file successfully opened for reading’)

End Program x04adfe

10.2 Program Data

None.

10.3 Program Results

X04ADF Example Program Results
OK file successfully opened for writing
OK file successfully closed
OK file successfully opened for reading
OK file successfully closed
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NAG Library Routine Document

X04BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04BAF writes a single formatted record to an external file.

2 Specification

SUBROUTINE X04BAF (NOUT, REC)

INTEGER NOUT
CHARACTER(*) REC

3 Description

X04BAF is used by NAG Library routines to write formatted records to an external file. All formatted
output to an external file from NAG Library routines is performed by calls to X04BAF.

4 References

None.

5 Arguments

1: NOUT – INTEGER Input

On entry: the Fortran unit number which identifies the file to be written to. If NOUT < 0 (not a
valid Fortran unit number), then no output occurs. Within the NAG Library NOUT is always
determined by a call to X04AAF or X04ABF.

2: REC – CHARACTER(*) Input

On entry: a character-string. This is written to the external file as a single record. Trailing blanks
are not output, except that if REC is entirely blank, a single blank character is output. If the
record is printed, the first character is treated as a carriage-control character.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04BAF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

This example program simply illustrates how a formatted record is output from the NAG Library, by
first writing it to the character-string REC, used as an internal file, and then passing the character-string
to X04BAF.

10.1 Program Text

Program x04bafe

! X04BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: x04baf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Character (40) :: rec

! .. Executable Statements ..
Write (nout,*) ’X04BAF Example Program Results’

Write (nout,*)
Write (rec,99999) ’This record was output by X04BAF’
Flush (nout)

Call x04baf(nout,rec)

99999 Format (1X,A)
End Program x04bafe

10.2 Program Data

None.

10.3 Program Results

X04BAF Example Program Results

This record was output by X04BAF
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NAG Library Routine Document

X04BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04BBF reads a single formatted record from an external file.

2 Specification

SUBROUTINE X04BBF (NIN, RECIN, IFAIL)

INTEGER NIN, IFAIL
CHARACTER(*) RECIN

3 Description

X04BBF is used by NAG Library routines to read formatted records from an external file. All formatted
input from an external file by NAG Library routines is performed by calls to X04BBF.

4 References

None.

5 Arguments

1: NIN – INTEGER Input

On entry: the Fortran unit number which identifies the file to be read from. If NIN < 0 (not a
valid Fortran unit number), then no input occurs.

2: RECIN – CHARACTER(*) Output

On exit: the first LEN(RECIN) characters of the record read from unit NIN, padded with trailing
blanks if the record was shorter than LEN(RECIN).

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

An end-of-file was detected by the READ statement.

System-dependent errors may also occur if the unit specified by NIN is not connected to an
external file, or if a read error occurs.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04BBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example program simply illustrates how a formatted record is read from the NAG Library, by first
reading it into the character-string RECIN, used as an internal file, by X04BBF and then reading the
internal file.

10.1 Program Text

Program x04bbfe

! X04BBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04bbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
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Real (Kind=nag_wp) :: x
Integer :: i, ifail
Character (40) :: recin

! .. Executable Statements ..
Write (nout,*) ’X04BBF Example Program Results’

! Skip heading in data file
Call x04bbf(nin,recin,ifail)

Write (nout,*)

! Read in values of I and X, then write them.

Call x04bbf(nin,recin,ifail)

Read (recin,99999) i, x

Write (nout,99998) i, x

99999 Format (I3,F7.3)
99998 Format (1X,I5,F11.3)

End Program x04bbfe

10.2 Program Data

X04BBF Example Program Data
20 2.996

10.3 Program Results

X04BBF Example Program Results

20 2.996
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NAG Library Routine Document

X04CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04CAF is an easy-to-use routine to print a real matrix stored in a two-dimensional array.

2 Specification

SUBROUTINE X04CAF (MATRIX, DIAG, M, N, A, LDA, TITLE, IFAIL)

INTEGER M, N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*)
CHARACTER(*) TITLE
CHARACTER(1) MATRIX, DIAG

3 Description

X04CAF prints a real matrix. It is an easy-to-use driver for X04CBF. The routine uses default values
for the format in which numbers are printed, for labelling the rows and columns, and for output record
length.

X04CAF will choose a format code such that numbers will be printed with an F8:4, an F11:4 or a
1PE13:4 format. The F8:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 1:0. The F11:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 9999:9999. Otherwise the 1PE13:4 code is chosen.

The matrix is printed with integer row and column labels, and with a maximum record length of 80.

The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: indicates the part of the matrix to be printed.

MATRIX ¼ G
The whole of the rectangular matrix.

MATRIX ¼ L
The lower triangle of the matrix, or the lower trapezium if the matrix has more rows than
columns.

MATRIX ¼ U
The upper triangle of the matrix, or the upper trapezium if the matrix has more columns
than rows.

Constraint: MATRIX ¼ G , L or U .
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2: DIAG – CHARACTER(1) Input

On entry: unless MATRIX ¼ G , DIAG must specify whether the diagonal elements of the
matrix are to be printed.

DIAG ¼ B
The diagonal elements of the matrix are not referenced and not printed.

DIAG ¼ U
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are printed as such.

DIAG ¼ N
The diagonal elements of the matrix are referenced and printed.

If MATRIX ¼ G , then DIAG need not be set.

Constraint: if MATRIX 6¼ G , DIAG ¼ B , U or N .

3: M – INTEGER Input
4: N – INTEGER Input

On entry: the number of rows and columns of the matrix, respectively, to be printed.

If either M or N is less than 1, X04CAF will exit immediately after printing TITLE; no row or
column labels are printed.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix to be printed. Only the elements that will be referred to, as specified by
arguments MATRIX and DIAG, need be set.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which X04CAF
is called.

Constraint: LDA � max 1;Mð Þ.

7: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than 80 characters, the contents of TITLE will be wrapped onto more
than one line, with the break after 80 characters.

Any trailing blank characters in TITLE are ignored.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MATRIX 6¼ G , L or U .

IFAIL ¼ 2

On entry, MATRIX ¼ L or U , but DIAG 6¼ N , U or B .

IFAIL ¼ 3

On entry, LDA < M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04CAF is not threaded in any implementation.

9 Further Comments

A call to X04CAF is equivalent to a call to X04CBF with the following argument values:

NCOLS = 80
INDENT = 0
LABROW = ’I’
LABCOL = ’I’
FORM = ’ ’

10 Example

This example program calls X04CAF twice, first to print a 3 by 5 rectangular matrix, and then to print a
5 by 5 lower triangular matrix.
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10.1 Program Text

Program x04cafe

! X04CAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nmax = 5, nout = 6
Integer, Parameter :: lda = nmax

! .. Local Scalars ..
Integer :: i, ifail, j

! .. Local Arrays ..
Real (Kind=nag_wp) :: a(lda,nmax)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’X04CAF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate an array of data

Do j = 1, nmax

Do i = 1, lda
a(i,j) = real(10*i+j,kind=nag_wp)

End Do

End Do

! Print 3 by nmax rectangular matrix

ifail = 0
Call x04caf(’General’,’ ’,3,nmax,a,lda,’Example 1:’,ifail)

Write (nout,*)
Flush (nout)

! Print nmax by nmax lower triangular matrix

ifail = 0
Call x04caf(’Lower’,’Non-unit’,nmax,nmax,a,lda,’Example 2:’,ifail)

End Program x04cafe

10.2 Program Data

None.

10.3 Program Results

X04CAF Example Program Results

Example 1:
1 2 3 4 5

1 11.0000 12.0000 13.0000 14.0000 15.0000
2 21.0000 22.0000 23.0000 24.0000 25.0000
3 31.0000 32.0000 33.0000 34.0000 35.0000

Example 2:
1 2 3 4 5
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1 11.0000
2 21.0000 22.0000
3 31.0000 32.0000 33.0000
4 41.0000 42.0000 43.0000 44.0000
5 51.0000 52.0000 53.0000 54.0000 55.0000
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NAG Library Routine Document

X04CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04CBF prints a real matrix stored in a two-dimensional array.

2 Specification

SUBROUTINE X04CBF (MATRIX, DIAG, M, N, A, LDA, FORM, TITLE, LABROW,
RLABS, LABCOL, CLABS, NCOLS, INDENT, IFAIL)

&

INTEGER M, N, LDA, NCOLS, INDENT, IFAIL
REAL (KIND=nag_wp) A(LDA,*)
CHARACTER(*) FORM, TITLE, RLABS(*), CLABS(*)
CHARACTER(1) MATRIX, DIAG, LABROW, LABCOL

3 Description

X04CBF prints a real matrix, or part of it, using a format specifier supplied by you. The matrix is
output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: indicates the part of the matrix to be printed.

MATRIX ¼ G
The whole of the rectangular matrix.

MATRIX ¼ L
The lower triangle of the matrix, or the lower trapezium if the matrix has more rows than
columns.

MATRIX ¼ U
The upper triangle of the matrix, or the upper trapezium if the matrix has more columns
than rows.

Constraint: MATRIX ¼ G , L or U .

2: DIAG – CHARACTER(1) Input

On entry: unless MATRIX ¼ G , DIAG must specify whether the diagonal elements of the
matrix are to be printed.

DIAG ¼ B
The diagonal elements of the matrix are not referenced and not printed.

DIAG ¼ U
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are printed as such.
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DIAG ¼ N
The diagonal elements of the matrix are referenced and printed.

If MATRIX ¼ G , then DIAG need not be set.

Constraint: if MATRIX 6¼ G , DIAG ¼ B , U or N .

3: M – INTEGER Input
4: N – INTEGER Input

On entry: the number of rows and columns of the matrix, respectively, to be printed.

If either M or N is less than 1, X04CBF will exit immediately after printing TITLE; no row or
column labels are printed.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix to be printed. Only the elements that will be referred to, as specified by
arguments MATRIX and DIAG, need be set.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which X04CBF
is called.

Constraint: LDA � max 1;Mð Þ.

7: FORM – CHARACTER(*) Input

On entry: describes the Fortran format code for printing the elements of the matrix A. The format
code may be any allowed on the system, whether it is standard Fortran or not. It may or may not
be enclosed in brackets.

In addition, there are the following special codes which force X04CBF to choose its own format
code:

FORM ¼
X04CBF will choose a format code such that numbers will be printed with an F8.4, an
F11.4 or a 1PE13.4 format. The F8.4 code is chosen if the sizes of all the matrix elements
to be printed lie between 0:001 and 1:0. The F11.4 code is chosen if the sizes of all the
matrix elements to be printed lie between 0:001 and 9999:9999. Otherwise the 1PE13.4
code is chosen.

FORM ¼ �
X04CBF will choose a format code such that numbers will be printed to as many
significant digits as are necessary to distinguish between neighbouring machine numbers.
Thus any two numbers that are stored with different internal representations should look
different on output. Whether they do in fact look different will depend on the run-time
library of the Fortran compiler in use.

By preceding the desired format code by the string ‘MATLAB’, X04CBF will print the matrix
such that it can be input into MATLAB, and TITLE will be used as the name of the matrix.

Examples of valid values for FORM are F11:4 , 1PE13:5 , G14:5 , MATLABF11:4 ,
MATLAB� .
Constraint: the character length of the format specifier in FORM must be � 80.

8: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix, or name of the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.
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If TITLE contains more than NCOLS characters, the contents of TITLE will be wrapped onto
more than one line, with the break after NCOLS characters.

Any trailing blank characters in TITLE are ignored.

If printing in MATLAB mode, TITLE will be used as the name of the matrix.

9: LABROW – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the rows of the matrix, except in
MATLAB mode where LABROW is ignored.

LABROW ¼ N
Prints no row labels.

LABROW ¼ I
Prints integer row labels.

LABROW ¼ C
Prints character labels, which must be supplied in array RLABS.

Constraint: LABROW ¼ N , I or C .

10: RLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array RLABS must be at least M if LABROW ¼ C , and at least 1
otherwise.

On entry: if LABROW ¼ C , RLABS must contain labels for the rows of the matrix, except in
MATLAB mode where RLABS is ignored.

Labels are right-justified when output, in a field which is as wide as necessary to hold the longest
row label. Note that this field width is subtracted from the number of usable columns, NCOLS.

11: LABCOL – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the columns of the matrix, except in
MATLAB mode where LABCOL is ignored.

LABCOL ¼ N
Prints no column labels.

LABCOL ¼ I
Prints integer column labels.

LABCOL ¼ C
Prints character labels, which must be supplied in array CLABS.

Constraint: LABCOL ¼ N , I or C .

12: CLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array CLABS must be at least N if LABCOL ¼ C , and at least 1
otherwise.

On entry: if LABCOL ¼ C , CLABS must contain labels for the columns of the matrix, except in
MATLAB mode where CLABS is ignored.

Labels are right-justified when output. Any label that is too long for the column width, which is
determined by FORM, is truncated.

13: NCOLS – INTEGER Input

On entry: the maximum output record length. If the number of columns of the matrix is too large
to be accommodated in NCOLS characters, the matrix will be printed in parts, containing the
largest possible number of matrix columns, and each part separated by a blank line.

X04 – Input/Output Utilities X04CBF

Mark 26 X04CBF.3



NCOLS must be large enough to hold at least one column of the matrix using the format specifier
in FORM. If a value less than 0 or greater than 132 is supplied for NCOLS, then the value 80 is
used instead.

14: INDENT – INTEGER Input

On entry: the number of columns by which the matrix (and any title and labels) should be
indented. The effective value of NCOLS is reduced by INDENT columns. If a value less than 0
or greater than NCOLS is supplied for INDENT, the value 0 is used instead.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MATRIX 6¼ G , L or U .

IFAIL ¼ 2

On entry, MATRIX ¼ L or U , but DIAG 6¼ N , U or B .

IFAIL ¼ 3

On entry, LDA < M.

IFAIL ¼ 4

On entry, the format specifier in FORM is more than 80 characters long.

IFAIL ¼ 5

The format specifier in FORM cannot be used to output a number. The specifier probably has too
wide a field width or contains an illegal edit descriptor.

IFAIL ¼ 6

On entry, either LABROW or LABCOL 6¼ N , I or C .

IFAIL ¼ 7

The quantity NCOLS� INDENT� labwid (where labwid is the width needed for the row labels),
is not large enough to hold at least one column of the matrix.
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IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04CBF is not threaded in any implementation.

9 Further Comments

X04CBF may be used to print a vector, either as a row or as a column. The following code fragment
illustrates possible calls.

REAL (KIND=nag_wp) A(4)
CHARACTER*1 RLABS(1), CLABS(1)

! Print vector A as a column vector.
LDA = 4
IFAIL = 0
CALL X04CBF(’G’,’X’,1,4,A,LDA,’ ’,’ ’,’I’,RLABS, &

’N’,CLABS,80,0,IFAIL)
! Print vector A as a row vector.

LDA = 1
IFAIL = 0

CALL X04CBF(’G’,’X’,4,1,A,LDA,’ ’,’ ’,’N’,RLABS, &
’I’,CLABS,80,0,IFAIL)

10 Example

This example calls X04CBF twice, to print matrices of different orders and bandwidths; various options
for labelling and formatting are illustrated.

10.1 Program Text

Program x04cbfe

! X04CBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04cbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nmax = 5, nout = 6
Integer, Parameter :: lda = nmax
Character (7), Parameter :: clabs(nmax) = (/’Un ’,’Deux ’, &
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’Trois ’,’Quatre ’,’Cinq ’/)
Character (7), Parameter :: rlabs(nmax) = (/’Uno ’,’Due ’, &

’Tre ’,’Quattro’,’Cinque ’/)
! .. Local Scalars ..

Integer :: i, ifail, indent, j, ncols
! .. Local Arrays ..

Real (Kind=nag_wp) :: a(lda,nmax)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Write (nout,*) ’X04CBF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate an array of data

Do j = 1, nmax

Do i = 1, lda
a(i,j) = real(10*i+j,kind=nag_wp)

End Do

End Do

ncols = 80
indent = 0

! Print 3 by nmax rectangular matrix with default format and integer
! row and column labels

ifail = 0
Call x04cbf(’General’,’ ’,3,nmax,a,lda,’ ’,’Example 1:’,’Integer’,rlabs, &

’Integer’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print nmax by nmax upper triangular matrix with user-supplied format
! and row and column labels

ifail = 0
Call x04cbf(’Upper’,’Non-unit’,nmax,nmax,a,lda,’F8.2’,’Example 2:’, &

’Character’,rlabs,’Character’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print 3 by nmax lower triangular matrix in MATLAB format
! Row and column labelling is ignored

ifail = 0
Call x04cbf(’Lower’,’Non-unit’,3,nmax,a,lda,’MATLABF8.2’,’A’,’ ’,rlabs, &

’ ’,clabs,ncols,indent,ifail)

End Program x04cbfe

10.2 Program Data

None.

10.3 Program Results

X04CBF Example Program Results

Example 1:
1 2 3 4 5

1 11.0000 12.0000 13.0000 14.0000 15.0000
2 21.0000 22.0000 23.0000 24.0000 25.0000
3 31.0000 32.0000 33.0000 34.0000 35.0000
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Example 2:
Un Deux Trois Quatre Cinq

Uno 11.00 12.00 13.00 14.00 15.00
Due 22.00 23.00 24.00 25.00
Tre 33.00 34.00 35.00

Quattro 44.00 45.00
Cinque 55.00

A = [
11.00 0.00 0.00 0.00 0.00;
21.00 22.00 0.00 0.00 0.00;
31.00 32.00 33.00 0.00 0.00;
];
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NAG Library Routine Document

X04CCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04CCF is an easy-to-use routine to print a real triangular matrix stored in a packed one-dimensional
array.

2 Specification

SUBROUTINE X04CCF (UPLO, DIAG, N, A, TITLE, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) A(*)
CHARACTER(*) TITLE
CHARACTER(1) UPLO, DIAG

3 Description

X04CCF prints a real triangular matrix stored in packed form. It is an easy-to-use driver for X04CDF.
The routine uses default values for the format in which numbers are printed, for labelling the rows and
columns, and for output record length. The matrix must be packed by column.

X04CCF will choose a format code such that numbers will be printed with an F8:4, an F11:4 or a
1PE13:4 format . The F8:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 1:0. The F11:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 9999:9999. Otherwise the 1PE13:4 code is chosen.

The matrix is printed with integer row and column labels, and with a maximum record length of 80.

The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates the type of the matrix to be printed

UPLO ¼ L
The matrix is lower triangular. In this case, the packed array A holds the matrix elements
in the following order: 1; 1ð Þ; 2; 1ð Þ; . . . ; N; 1ð Þ; 2; 2ð Þ; 3; 2ð Þ; . . . ; N; 2ð Þ, etc.

UPLO ¼ U
The matrix is upper triangular. In this case, the packed array A holds the matrix elements
in the following order: 1; 1ð Þ; 1; 2ð Þ; 2; 2ð Þ; 1; 3ð Þ; 2; 3ð Þ; 3; 3ð Þ; 1; 4ð Þ, etc.

Constraint: UPLO ¼ L or U .

2: DIAG – CHARACTER(1) Input

On entry: indicates whether the diagonal elements of the matrix are to be printed.

DIAG ¼ B
The diagonal elements of the matrix are not referenced and not printed.
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DIAG ¼ U
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are printed as such.

DIAG ¼ N
The diagonal elements of the matrix are referenced and printed.

Constraint: DIAG ¼ B , U or N .

3: N – INTEGER Input

On entry: the order of the matrix to be printed.

If N is less than 1, X04CCF will exit immediately after printing TITLE; no row or column labels
are printed.

4: Að�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array A must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the matrix to be printed. Note that A must have space for the diagonal elements of the
matrix, even if these are not stored.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
Aðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
Aðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

5: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than 80 characters, the contents of TITLE will be wrapped onto more
than one line, with the break after 80 characters.

Any trailing blank characters in TITLE are ignored.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, UPLO 6¼ L or U .

IFAIL ¼ 2

On entry, DIAG 6¼ N , U or B .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04CCF is not threaded in any implementation.

9 Further Comments

A call to X04CCF is equivalent to a call to X04CDF with the following argument values:

NCOLS = 80
INDENT = 0
LABROW = ’I’
LABCOL = ’I’
FORM = ’ ’

10 Example

The example program calls X04CCF twice, first to print a 4 by 4 lower triangular matrix, and then to
print a 5 by 5 upper triangular matrix.

10.1 Program Text

Program x04ccfe

! X04CCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
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Use nag_library, Only: dtrttp, nag_wp, x04ccf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: n = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, info, j, lda
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ap(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’X04CCF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate a full-format symmetric array of data

lda = n
Allocate (a(lda,n))

Do j = 1, n

Do i = 1, j
a(i,j) = real(10*i+j,kind=nag_wp)
a(j,i) = a(i,j)

End Do

End Do

! Print order (n-1) lower triangular matrix

! Convert a to packed storage.

Allocate (ap(n*(n+1)/2))

! The lower triangle.

uplo = ’L’

! The NAG name equivalent of dtrttp is f01vaf
Call dtrttp(uplo,n-1,a,lda,ap,info)

If (info/=0) Then
Write (nout,99999) ’Failure in DTRTTP. INFO =’, info
Go To 100

End If

ifail = 0
Call x04ccf(’Lower’,’Unit’,n-1,ap,’Example 1:’,ifail)

Write (nout,*)
Flush (nout)

! Print order n upper triangular matrix

! Convert the upper triangle of a to packed storage.

uplo = ’U’

! The NAG name equivalent of dtrttp is f01vaf
Call dtrttp(uplo,n,a,lda,ap,info)

If (info/=0) Then
Write (nout,99999) ’Failure in DTRTTP. INFO =’, info
Go To 100

End If

ifail = 0
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Call x04ccf(’Upper’,’Non-unit’,n,ap,’Example 2:’,ifail)

100 Continue

99999 Format (1X,A,I4)
End Program x04ccfe

10.2 Program Data

None.

10.3 Program Results

X04CCF Example Program Results

Example 1:
1 2 3 4

1 1.0000
2 12.0000 1.0000
3 13.0000 23.0000 1.0000
4 14.0000 24.0000 34.0000 1.0000

Example 2:
1 2 3 4 5

1 11.0000 12.0000 13.0000 14.0000 15.0000
2 22.0000 23.0000 24.0000 25.0000
3 33.0000 34.0000 35.0000
4 44.0000 45.0000
5 55.0000
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NAG Library Routine Document

X04CDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04CDF prints a real triangular matrix stored in a packed one-dimensional array.

2 Specification

SUBROUTINE X04CDF (UPLO, DIAG, N, A, FORM, TITLE, LABROW, RLABS, LABCOL,
CLABS, NCOLS, INDENT, IFAIL)

&

INTEGER N, NCOLS, INDENT, IFAIL
REAL (KIND=nag_wp) A(*)
CHARACTER(*) FORM, TITLE, RLABS(*), CLABS(*)
CHARACTER(1) UPLO, DIAG, LABROW, LABCOL

3 Description

X04CDF prints a real triangular matrix stored in packed form, using a format specifier supplied by you.
The matrix must be packed by column. The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates the type of the matrix to be printed

UPLO ¼ L
The matrix is lower triangular. In this case, the packed array A holds the matrix elements
in the following order: 1; 1ð Þ; 2; 1ð Þ; . . . ; N; 1ð Þ; 2; 2ð Þ; 3; 2ð Þ; . . . ; N; 2ð Þ, etc.

UPLO ¼ U
The matrix is upper triangular. In this case, the packed array A holds the matrix elements
in the following order: 1; 1ð Þ; 1; 2ð Þ; 2; 2ð Þ; 1; 3ð Þ; 2; 3ð Þ; 3; 3ð Þ; 1; 4ð Þ, etc.

Constraint: UPLO ¼ L or U .

2: DIAG – CHARACTER(1) Input

On entry: indicates whether the diagonal elements of the matrix are to be printed.

DIAG ¼ B
The diagonal elements of the matrix are not referenced and not printed.

DIAG ¼ U
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are printed as such.

DIAG ¼ N
The diagonal elements of the matrix are referenced and printed.

Constraint: DIAG ¼ B , U or N .
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3: N – INTEGER Input

On entry: the order of the matrix to be printed.

If N is less than 1, X04CDF will exit immediately after printing TITLE; no row or column labels
are printed.

4: Að�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array A must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the matrix to be printed. Note that A must have space for the diagonal elements of the
matrix, even if these are not stored.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
Aðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
Aðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

5: FORM – CHARACTER(*) Input

On entry: describes the Fortran format code for printing the elements of the matrix A. The format
code may be any allowed on the system, whether it is standard Fortran or not. It may or may not
be enclosed in brackets.

In addition, there are the following special codes which force X04CDF to choose its own format
code:

FORM ¼
X04CDF will choose a format code such that numbers will be printed with an F8.4, an
F11.4 or a 1PE13.4 format. The F8.4 code is chosen if the sizes of all the matrix elements
to be printed lie between 0:001 and 1:0. The F11.4 code is chosen if the sizes of all the
matrix elements to be printed lie between 0:001 and 9999:9999. Otherwise the 1PE13.4
code is chosen.

FORM ¼ �
X04CDF will choose a format code such that numbers will be printed to as many
significant digits as are necessary to distinguish between neighbouring machine numbers.
Thus any two numbers that are stored with different internal representations should look
different on output. Whether they do in fact look different will depend on the run-time
library of the Fortran compiler in use.

By preceding the desired format code by the string ‘MATLAB’, X04CDF will print the matrix
such that it can be input into MATLAB, and TITLE will be used as the name of the matrix.

Examples of valid values for FORM are F11:4 , 1PE13:5 , G14:5 , MATLABF11:4 ,
MATLAB� .
Constraint: the character length of the format specifier in FORM must be � 80.

6: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix, or name of the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than NCOLS characters, the contents of TITLE will be wrapped onto
more than one line, with the break after NCOLS characters.

Any trailing blank characters in TITLE are ignored.

If printing in MATLAB mode, TITLE will be used as the name of the matrix.
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7: LABROW – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the rows of the matrix, except in
MATLAB mode where LABROW is ignored.

LABROW ¼ N
Prints no row labels.

LABROW ¼ I
Prints integer row labels.

LABROW ¼ C
Prints character labels, which must be supplied in array RLABS.

Constraint: LABROW ¼ N , I or C .

8: RLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array RLABS must be at least N if LABROW ¼ C , and at least 1
otherwise.

On entry: if LABROW ¼ C , RLABS must contain labels for the rows of the matrix, except in
MATLAB mode where RLABS is ignored.

Labels are right-justified when output, in a field which is as wide as necessary to hold the longest
row label. Note that this field width is subtracted from the number of usable columns, NCOLS.

9: LABCOL – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the columns of the matrix, except in
MATLAB mode where LABCOL is ignored.

LABCOL ¼ N
Prints no column labels.

LABCOL ¼ I
Prints integer column labels.

LABCOL ¼ C
Prints character labels, which must be supplied in array CLABS.

Constraint: LABCOL ¼ N , I or C .

10: CLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array CLABS must be at least N if LABCOL ¼ C , and at least 1
otherwise.

On entry: if LABCOL ¼ C , CLABS must contain labels for the columns of the matrix, except in
MATLAB mode where CLABS is ignored.

Labels are right-justified when output. Any label that is too long for the column width, which is
determined by FORM, is truncated.

11: NCOLS – INTEGER Input

On entry: the maximum output record length. If the number of columns of the matrix is too large
to be accommodated in NCOLS characters, the matrix will be printed in parts, containing the
largest possible number of matrix columns, and each part separated by a blank line.

NCOLS must be large enough to hold at least one column of the matrix using the format specifier
in FORM. If a value less than 0 or greater than 132 is supplied for NCOLS, then the value 80 is
used instead.

X04 – Input/Output Utilities X04CDF

Mark 26 X04CDF.3



12: INDENT – INTEGER Input

On entry: the number of columns by which the matrix (and any title and labels) should be
indented. The effective value of NCOLS is reduced by INDENT columns. If a value less than 0
or greater than NCOLS is supplied for INDENT, the value 0 is used instead.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, UPLO 6¼ L or U .

IFAIL ¼ 2

On entry, DIAG 6¼ N , U or B .

IFAIL ¼ 3

On entry, the format specifier in FORM is more than 80 characters long.

IFAIL ¼ 4

The format specifier in FORM cannot be used to output a number. The specifier probably has too
wide a field width or contains an illegal edit descriptor.

IFAIL ¼ 5

On entry, either LABROW or LABCOL 6¼ N , I or C .

IFAIL ¼ 6

The quantity NCOLS� INDENT� labwid (where labwid is the width needed for the row labels)
is not large enough to hold at least one column of the matrix.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04CDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example calls X04CDF three times, first to print 4 by 4 lower triangular matrix, and then twice to
print a 5 by 5 upper triangular matrix; various options for labelling and formatting are illustrated.

10.1 Program Text

Program x04cdfe

! X04CDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: dtrttp, nag_wp, x04cdf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 5, nout = 6
Character (7), Parameter :: clabs(n) = (/’Un ’,’Deux ’, &

’Trois ’,’Quatre ’,’Cinq ’/)
Character (7), Parameter :: rlabs(n) = (/’Uno ’,’Due ’, &

’Tre ’,’Quattro’,’Cinque ’/)
! .. Local Scalars ..

Integer :: i, ifail, indent, info, j, lda, &
ncols

Character (1) :: uplo
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), ap(:)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Write (nout,*) ’X04CDF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate a full-format symmetric array of data

lda = n
Allocate (a(lda,n))

Do j = 1, n

Do i = 1, j
a(i,j) = real(10*i+j,kind=nag_wp)
a(j,i) = a(i,j)

End Do
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End Do

ncols = 80
indent = 0

! Print order (n-1) lower triangular matrix with default format and
! integer row and column labels

! Convert a to packed storage.

Allocate (ap(n*(n+1)/2))

! The lower triangle.

uplo = ’L’

! The NAG name equivalent of dtrttp is f01vaf
Call dtrttp(uplo,n-1,a,lda,ap,info)

If (info/=0) Then
Write (nout,99999) ’Failure in DTRTTP. INFO =’, info
Go To 100

End If

ifail = 0
Call x04cdf(’Lower’,’Non-unit’,n-1,ap,’ ’,’Example 1:’,’Integer’,rlabs, &

’Integer’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print order n upper triangular matrix with user-supplied format
! and row and column labels

! Convert the upper triangle of a to packed storage.

uplo = ’U’

! The NAG name equivalent of dtrttp is f01vaf
Call dtrttp(uplo,n,a,lda,ap,info)

If (info/=0) Then
Write (nout,99999) ’Failure in DTRTTP. INFO =’, info
Go To 100

End If

ifail = 0
Call x04cdf(’Upper’,’Unit’,n,ap,’F8.2’,’Example 2:’,’Character’,rlabs, &

’Character’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print order n upper triangular matrix in MATLAB format
! Row and column labelling is ignored

ifail = 0
Call x04cdf(’Upper’,’Non-unit’,n,ap,’MATLABF8.2’,’A’,’ ’,rlabs,’ ’, &

clabs,ncols,indent,ifail)

100 Continue

99999 Format (1X,A,I4)
End Program x04cdfe

10.2 Program Data

None.
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10.3 Program Results

X04CDF Example Program Results

Example 1:
1 2 3 4

1 11.0000
2 12.0000 22.0000
3 13.0000 23.0000 33.0000
4 14.0000 24.0000 34.0000 44.0000

Example 2:
Un Deux Trois Quatre Cinq

Uno 1.00 12.00 13.00 14.00 15.00
Due 1.00 23.00 24.00 25.00
Tre 1.00 34.00 35.00

Quattro 1.00 45.00
Cinque 1.00

A = [
11.00 12.00 13.00 14.00 15.00;
0.00 22.00 23.00 24.00 25.00;
0.00 0.00 33.00 34.00 35.00;
0.00 0.00 0.00 44.00 45.00;
0.00 0.00 0.00 0.00 55.00;

];
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NAG Library Routine Document

X04CEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04CEF is an easy-to-use routine to print a real band matrix stored in a packed two-dimensional array.

2 Specification

SUBROUTINE X04CEF (M, N, KL, KU, A, LDA, TITLE, IFAIL)

INTEGER M, N, KL, KU, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*)
CHARACTER(*) TITLE

3 Description

X04CEF prints a real band matrix stored in a packed two-dimensional array. It is an easy-to-use driver
for X04CFF. The routine uses default values for the format in which numbers are printed, for labelling
the rows and columns, and for output record length.

X04CEF will choose a format code such that numbers will be printed with an F8:4, an F11:4 or a
1PE13:4 format . The F8:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 1:0. The F11:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 9999:9999. Otherwise the 1PE13:4 code is chosen.

The matrix is printed with integer row and column labels, and with a maximum record length of 80.

The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number of rows and columns of the band matrix, respectively, to be printed.

If either M or N is less than 1, X04CEF will exit immediately after printing TITLE; no row or
column labels are printed.

3: KL – INTEGER Input

On entry: the number of subdiagonals of the band matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: the number of superdiagonals of the band matrix A.

Constraint: KU � 0.
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5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;min Mþ KU;Nð Þð Þ.
On entry: the band matrix to be printed.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

Aðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which X04CEF
is called.

Constraint: LDA � KLþ KUþ 1.

7: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than 80 characters, the contents of TITLE will be wrapped onto more
than one line, with the break after 80 characters.

Any trailing blank characters in TITLE are ignored.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, KL < 0.

IFAIL ¼ 2

On entry, KU < 0.

IFAIL ¼ 3

On entry, LDA < KLþ KUþ 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04CEF is not threaded in any implementation.

9 Further Comments

A call to X04CEF is equivalent to a call to X04CFF with the following argument values:

NCOLS = 80
INDENT = 0
LABROW = ’I’
LABCOL = ’I’
FORM = ’ ’

10 Example

The example program calls X04CEF to print a 5 by 5 band matrix with one subdiagonal and one
superdiagonal.

10.1 Program Text

Program x04cefe

! X04CEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01zcf, nag_wp, x04cef

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Integer :: i, ifail, j, kl, ku, lda, ldab, m, n
Character (1) :: job

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ab(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min, real

! .. Executable Statements ..
Write (nout,*) ’X04CEF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate a square array of data.

m = 5
n = m
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kl = 1
ku = 1

lda = m
Allocate (a(lda,n))

Do j = 1, n

Do i = max(1,j-ku), min(m,j+kl)
a(i,j) = real(10*i+j,kind=nag_wp)

End Do

End Do

! Convert to packed storage.

ldab = kl + ku + 1
Allocate (ab(ldab,n))

job = ’P’

ifail = 0
Call f01zcf(job,m,n,kl,ku,a,lda,ab,ldab,ifail)

! Print m by n band matrix with kl subdiagonals and ku superdiagonals.

ifail = 0
Call x04cef(m,n,kl,ku,ab,ldab,’Band Matrix:’,ifail)

End Program x04cefe

10.2 Program Data

None.

10.3 Program Results

X04CEF Example Program Results

Band Matrix:
1 2 3 4 5

1 11.0000 12.0000
2 21.0000 22.0000 23.0000
3 32.0000 33.0000 34.0000
4 43.0000 44.0000 45.0000
5 54.0000 55.0000
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NAG Library Routine Document

X04CFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04CFF prints a real band matrix stored in a packed two-dimensional array.

2 Specification

SUBROUTINE X04CFF (M, N, KL, KU, A, LDA, FORM, TITLE, LABROW, RLABS,
LABCOL, CLABS, NCOLS, INDENT, IFAIL)

&

INTEGER M, N, KL, KU, LDA, NCOLS, INDENT, IFAIL
REAL (KIND=nag_wp) A(LDA,*)
CHARACTER(*) FORM, TITLE, RLABS(*), CLABS(*)
CHARACTER(1) LABROW, LABCOL

3 Description

X04CFF prints a real band matrix stored in a packed two-dimensional array, using a format specifier
supplied by you. The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number of rows and columns of the band matrix, respectively, to be printed.

If either M or N is less than 1, X04CFF will exit immediately after printing TITLE; no row or
column labels are printed.

3: KL – INTEGER Input

On entry: the number of subdiagonals of the band matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: the number of superdiagonals of the band matrix A.

Constraint: KU � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;min Mþ KU;Nð Þð Þ.
On entry: the band matrix to be printed.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

Aðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:
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6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which X04CFF
is called.

Constraint: LDA � KLþ KUþ 1.

7: FORM – CHARACTER(*) Input

On entry: describes the Fortran format code for printing the elements of the matrix A. The format
code may be any allowed on the system, whether it is standard Fortran or not. It may or may not
be enclosed in brackets.

In addition, there are the following special codes which force X04CFF to choose its own format
code:

FORM ¼
X04CFF will choose a format code such that numbers will be printed with an F8.4, an
F11.4 or a 1PE13.4 format. The F8.4 code is chosen if the sizes of all the matrix elements
to be printed lie between 0:001 and 1:0. The F11.4 code is chosen if the sizes of all the
matrix elements to be printed lie between 0:001 and 9999:9999. Otherwise the 1PE13.4
code is chosen.

FORM ¼ �
X04CFF will choose a format code such that numbers will be printed to as many
significant digits as are necessary to distinguish between neighbouring machine numbers.
Thus any two numbers that are stored with different internal representations should look
different on output. Whether they do in fact look different will depend on the run-time
library of the Fortran compiler in use.

By preceding the desired format code by the string ‘MATLAB’, X04CFF will print the matrix
such that it can be input into MATLAB, and TITLE will be used as the name of the matrix.

Examples of valid values for FORM are F11:4 , 1PE13:5 , G14:5 , MATLABF11:4 ,
MATLAB� .
Constraint: the character length of the format specifier in FORM must be � 80.

8: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix, or name of the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than NCOLS characters, the contents of TITLE will be wrapped onto
more than one line, with the break after NCOLS characters.

Any trailing blank characters in TITLE are ignored.

If printing in MATLAB mode, TITLE will be used as the name of the matrix.

9: LABROW – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the rows of the matrix, except in
MATLAB mode where LABROW is ignored.

LABROW ¼ N
Prints no row labels.

LABROW ¼ I
Prints integer row labels.

LABROW ¼ C
Prints character labels, which must be supplied in array RLABS.

Constraint: LABROW ¼ N , I or C .
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10: RLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array RLABS must be at least M if LABROW ¼ C , and at least 1
otherwise.

On entry: if LABROW ¼ C , RLABS must contain labels for the rows of the matrix, except in
MATLAB mode where RLABS is ignored.

Labels are right-justified when output, in a field which is as wide as necessary to hold the longest
row label. Note that this field width is subtracted from the number of usable columns, NCOLS.

11: LABCOL – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the columns of the matrix, except in
MATLAB mode where LABCOL is ignored.

LABCOL ¼ N
Prints no column labels.

LABCOL ¼ I
Prints integer column labels.

LABCOL ¼ C
Prints character labels, which must be supplied in array CLABS.

Constraint: LABCOL ¼ N , I or C .

12: CLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array CLABS must be at least N if LABCOL ¼ C , and at least 1
otherwise.

On entry: if LABCOL ¼ C , CLABS must contain labels for the columns of the matrix, except in
MATLAB mode where CLABS is ignored.

Labels are right-justified when output. Any label that is too long for the column width, which is
determined by FORM, is truncated.

13: NCOLS – INTEGER Input

On entry: the maximum output record length. If the number of columns of the matrix is too large
to be accommodated in NCOLS characters, the matrix will be printed in parts, containing the
largest possible number of matrix columns, and each part separated by a blank line.

NCOLS must be large enough to hold at least one column of the matrix using the format specifier
in FORM. If a value less than 0 or greater than 132 is supplied for NCOLS, then the value 80 is
used instead.

14: INDENT – INTEGER Input

On entry: the number of columns by which the matrix (and any title and labels) should be
indented. The effective value of NCOLS is reduced by INDENT columns. If a value less than 0
or greater than NCOLS is supplied for INDENT, the value 0 is used instead.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, KL < 0.

IFAIL ¼ 2

On entry, KU < 0.

IFAIL ¼ 3

On entry, LDA < KLþ KUþ 1.

IFAIL ¼ 4

On entry, the format specifier in FORM is more than 80 characters long.

IFAIL ¼ 5

The format specifier in FORM cannot be used to output a number. The specifier probably has too
wide a field width or contains an illegal edit descriptor.

IFAIL ¼ 6

On entry, either LABROW or LABCOL 6¼ N , I or C .

IFAIL ¼ 7

The quantity NCOLS� INDENT� labwid (where labwid is the width needed for the row labels)
is not large enough to hold at least one column of the matrix.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04CFF is not threaded in any implementation.
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9 Further Comments

None.

10 Example

This example calls X04CFF three times, to print 5 by 5 matrices of different bandwidths; various
options for labelling and formatting are illustrated.

10.1 Program Text

Program x04cffe

! X04CFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01zcf, nag_wp, x04cff

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 5, nout = 6
Character (7), Parameter :: clabs(n) = (/’Un ’,’Deux ’, &

’Trois ’,’Quatre ’,’Cinq ’/)
Character (7), Parameter :: rlabs(n) = (/’Uno ’,’Due ’, &

’Tre ’,’Quattro’,’Cinque ’/)
! .. Local Scalars ..

Integer :: i, ifail, indent, j, kl, ku, ku_a, &
lda, ldab, m, ncols

Character (1) :: job
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), ab(:,:)
! .. Intrinsic Procedures ..

Intrinsic :: max, min, real
! .. Executable Statements ..

Write (nout,*) ’X04CFF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate a square array of data.

m = n
kl = 1
ku_a = 2

lda = m
Allocate (a(lda,n))

Do j = 1, n

Do i = max(1,j-ku_a), min(m,j+kl)
a(i,j) = real(10*i+j,kind=nag_wp)

End Do

End Do

! Convert a to packed storage, ignoring the second superdiagonal.

ldab = kl + ku_a + 1
Allocate (ab(ldab,n))

ku = 1

job = ’P’

ifail = 0
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Call f01zcf(job,m,n,kl,ku,a,lda,ab,ldab,ifail)

ncols = 80
indent = 0

! Print m by n band matrix with kl subdiagonals, 1 superdiagonal,
! default format and integer row and column labels

ifail = 0
Call x04cff(m,n,kl,ku,ab,ldab,’ ’,’Example 1:’,’Integer’,rlabs, &

’Integer’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert the whole matrix a to packed storage.

ku = ku_a

job = ’P’

ifail = 0
Call f01zcf(job,m,n,kl,ku,a,lda,ab,ldab,ifail)

! Print m by n band matrix with kl subdiagonals, ku superdiagonals,
! user-supplied format and row and column labels

ifail = 0
Call x04cff(m,n,kl,ku,ab,ldab,’F8.2’,’Example 2:’,’Character’,rlabs, &

’Character’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print m by n band matrix with kl subdiagonals, ku superdiagonals,
! in MATLAB format
! Row and column labelling is ignored

ifail = 0
Call x04cff(m,n,kl,ku,ab,ldab,’MATLABF8.2’,’A’,’ ’,rlabs,’ ’,clabs, &

ncols,indent,ifail)

End Program x04cffe

10.2 Program Data

None.

10.3 Program Results

X04CFF Example Program Results

Example 1:
1 2 3 4 5

1 11.0000 12.0000
2 21.0000 22.0000 23.0000
3 32.0000 33.0000 34.0000
4 43.0000 44.0000 45.0000
5 54.0000 55.0000

Example 2:
Un Deux Trois Quatre Cinq

Uno 11.00 12.00 13.00
Due 21.00 22.00 23.00 24.00
Tre 32.00 33.00 34.00 35.00

Quattro 43.00 44.00 45.00
Cinque 54.00 55.00

A = [
11.00 12.00 13.00 0.00 0.00;

X04CFF NAG Library Manual

X04CFF.6 Mark 26



21.00 22.00 23.00 24.00 0.00;
0.00 32.00 33.00 34.00 35.00;
0.00 0.00 43.00 44.00 45.00;
0.00 0.00 0.00 54.00 55.00;

];
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NAG Library Routine Document

X04DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04DAF is an easy-to-use routine to print a complex matrix stored in a two-dimensional array.

2 Specification

SUBROUTINE X04DAF (MATRIX, DIAG, M, N, A, LDA, TITLE, IFAIL)

INTEGER M, N, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(*) TITLE
CHARACTER(1) MATRIX, DIAG

3 Description

X04DAF prints a complex matrix. It is an easy-to-use driver for X04DBF. The routine uses default
values for the format in which numbers are printed, for labelling the rows and columns, and for output
record length.

X04DAF will choose a format code such that numbers will be printed with an F8:4, an F11:4 or a
1PE13:4 format. The F8:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 1:0. The F11:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 9999:9999. Otherwise the 1PE13:4 code is chosen. The chosen code is used to print
each complex element of the matrix with the real part above the imaginary part.

The matrix is printed with integer row and column labels, and with a maximum record length of 80.

The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: indicates the part of the matrix to be printed.

MATRIX ¼ G
The whole of the rectangular matrix.

MATRIX ¼ L
The lower triangle of the matrix, or the lower trapezium if the matrix has more rows than
columns.

MATRIX ¼ U
The upper triangle of the matrix, or the upper trapezium if the matrix has more columns
than rows.

Constraint: MATRIX ¼ G , L or U .
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2: DIAG – CHARACTER(1) Input

On entry: unless MATRIX ¼ G , DIAG must specify whether the diagonal elements of the
matrix are to be printed.

DIAG ¼ B
The diagonal elements of the matrix are not referenced and not printed.

DIAG ¼ U
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are printed as such.

DIAG ¼ N
The diagonal elements of the matrix are referenced and printed.

If MATRIX ¼ G , then DIAG need not be set.

Constraint: if MATRIX 6¼ G , DIAG ¼ B , U or N .

3: M – INTEGER Input
4: N – INTEGER Input

On entry: the number of rows and columns of the matrix, respectively, to be printed.

If either M or N is less than 1, X04DAF will exit immediately after printing TITLE; no row or
column labels are printed.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix to be printed. Only the elements that will be referred to, as specified by
arguments MATRIX and DIAG, need be set.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
X04DAF is called.

Constraint: LDA � max 1;Mð Þ.

7: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than 80 characters, the contents of TITLE will be wrapped onto more
than one line, with the break after 80 characters.

Any trailing blank characters in TITLE are ignored.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MATRIX 6¼ G , L or U .

IFAIL ¼ 2

On entry, MATRIX ¼ L or U , but DIAG 6¼ N , U or B .

IFAIL ¼ 3

On entry, LDA < M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04DAF is not threaded in any implementation.

9 Further Comments

A call to X04DAF is equivalent to a call to X04DBF with the following argument values:

NCOLS = 80
INDENT = 0
LABROW = ’I’
LABCOL = ’I’
FORM = ’ ’
USEFRM = ’A’

10 Example

This example program calls X04DAF twice, first to print a 4 by 3 rectangular matrix, and then to print a
4 by 4 lower triangular matrix.
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10.1 Program Text

Program x04dafe

! X04DAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nmax = 4, nout = 6
Integer, Parameter :: lda = nmax

! .. Local Scalars ..
Real (Kind=nag_wp) :: aa
Integer :: i, ifail, j

! .. Local Arrays ..
Complex (Kind=nag_wp) :: a(lda,nmax)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, real

! .. Executable Statements ..
Write (nout,*) ’X04DAF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate an array of data

Do j = 1, nmax

Do i = 1, lda
aa = real(10*i+j,kind=nag_wp)
a(i,j) = cmplx(aa,-aa,kind=nag_wp)

End Do

End Do

! Print nmax by (nmax-1) rectangular matrix

ifail = 0
Call x04daf(’General’,’ ’,nmax,nmax-1,a,lda,’Example 1:’,ifail)

Write (nout,*)
Flush (nout)

! Print nmax by nmax lower triangular matrix

ifail = 0
Call x04daf(’Lower’,’Non-unit’,nmax,nmax,a,lda,’Example 2:’,ifail)

End Program x04dafe

10.2 Program Data

None.

10.3 Program Results

X04DAF Example Program Results

Example 1:
1 2 3

1 11.0000 12.0000 13.0000
-11.0000 -12.0000 -13.0000

2 21.0000 22.0000 23.0000
-21.0000 -22.0000 -23.0000
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3 31.0000 32.0000 33.0000
-31.0000 -32.0000 -33.0000

4 41.0000 42.0000 43.0000
-41.0000 -42.0000 -43.0000

Example 2:
1 2 3 4

1 11.0000
-11.0000

2 21.0000 22.0000
-21.0000 -22.0000

3 31.0000 32.0000 33.0000
-31.0000 -32.0000 -33.0000

4 41.0000 42.0000 43.0000 44.0000
-41.0000 -42.0000 -43.0000 -44.0000
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NAG Library Routine Document

X04DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04DBF prints a complex matrix stored in a two-dimensional array.

2 Specification

SUBROUTINE X04DBF (MATRIX, DIAG, M, N, A, LDA, USEFRM, FORM, TITLE,
LABROW, RLABS, LABCOL, CLABS, NCOLS, INDENT, IFAIL)

&

INTEGER M, N, LDA, NCOLS, INDENT, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(*) FORM, TITLE, RLABS(*), CLABS(*)
CHARACTER(1) MATRIX, DIAG, USEFRM, LABROW, LABCOL

3 Description

X04DBF prints a complex matrix, or part of it, using a format specifier supplied by you. The matrix is
output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: indicates the part of the matrix to be printed.

MATRIX ¼ G
The whole of the rectangular matrix.

MATRIX ¼ L
The lower triangle of the matrix, or the lower trapezium if the matrix has more rows than
columns.

MATRIX ¼ U
The upper triangle of the matrix, or the upper trapezium if the matrix has more columns
than rows.

Constraint: MATRIX ¼ G , L or U .

2: DIAG – CHARACTER(1) Input

On entry: unless MATRIX ¼ G , DIAG must specify whether the diagonal elements of the
matrix are to be printed.

DIAG ¼ B
The diagonal elements of the matrix are not referenced and not printed.

DIAG ¼ U
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are printed as such.

X04 – Input/Output Utilities X04DBF

Mark 26 X04DBF.1



DIAG ¼ N
The diagonal elements of the matrix are referenced and printed.

If MATRIX ¼ G , then DIAG need not be set.

Constraint: if MATRIX 6¼ G , DIAG ¼ B , U or N .

3: M – INTEGER Input
4: N – INTEGER Input

On entry: the number of rows and columns of the matrix, respectively, to be printed.

If either M or N is less than 1, X04DBF will exit immediately after printing TITLE; no row or
column labels are printed.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix to be printed. Only the elements that will be referred to, as specified by
arguments MATRIX and DIAG, need be set.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which X04DBF
is called.

Constraint: LDA � max 1;Mð Þ.

7: USEFRM – CHARACTER(1) Input

On entry: indicates how the value of FORM is to be used to print matrix elements, except in
MATLAB mode where USEFRM is ignored.

USEFRM ¼ A
The format code in FORM is assumed to contain a single real edit-descriptor which is to
be used to print the real and imaginary parts of each complex number one above the other.
Each row of the matrix is separated by a blank line, and any row labels are attached only
to the real parts. This option means that about twice as many columns can be fitted into
NCOLS characters than if any other USEFRM option is used. A typical value of FORM
for this USEFRM option might be E13:4 , � or .

USEFRM ¼ B
The format code in FORM is assumed to contain a single edit-descriptor such as E13:4 ,
� or which is used to print the real and imaginary parts of each complex number
separated by a comma, and surrounded by brackets. Thus a matrix element printed with
this USEFRM option might look like this: 12:345;�11:323ð Þ.

USEFRM ¼ D
The format code in FORM is used unaltered to print a complex number. This USEFRM
option allows you flexibility to specify exactly how the number is printed. With this option
for USEFRM and a suitable value for FORM it is possible, for example, to print a
complex number in the form 0:123þ 3:214ið Þ or 0:123E�02; 0:234E�01ð Þ. See Section 10
for an example illustrating this option.

Constraint: USEFRM ¼ A , B or D .

8: FORM – CHARACTER(*) Input

On entry: describes the Fortran format code that is used in conjunction with USEFRM for
printing the elements of the matrix A. The format code may be any allowed on the system,
whether it is standard Fortran or not. It may or may not be enclosed in brackets.
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In addition, there are the following special codes which force X04DBF to choose its own format
code:

FORM ¼
X04DBF will choose a format code such that numbers will be printed with an F8.4, an
F11.4 or a 1PE13.4 format. The F8.4 code is chosen if the sizes of the real and imaginary
parts of all the matrix elements to be printed lie between 0:001 and 1:0. The F11.4 code is
chosen if the sizes of all the numbers to be printed lie between 0:001 and 9999:9999.
Otherwise the 1PE13.4 code is chosen.

FORM ¼ �
X04DBF will choose a format code such that numbers will be printed to as many
significant digits as are necessary to distinguish between neighbouring machine numbers.
Thus any two numbers that are stored with different internal representations should look
different on output. Whether they do in fact look different will depend on the run-time
library of the Fortran compiler in use.

By preceding the desired format code by the string ‘MATLAB’, X04DBF will print the matrix
such that it can be input into MATLAB, and TITLE will be used as the name of the matrix.

More complicated values of FORM, to print a complex number in a desired form, may be used.
See the description of argument USEFRM for more details.

Examples of valid values for FORM are ðF11:4Þ , 1P; 2E13:5 , MATLABF11:4 , MATLAB� .
Constraint: the character length of the format specifier in FORM must be � 80.

9: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix, or name of the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than NCOLS characters, the contents of TITLE will be wrapped onto
more than one line, with the break after NCOLS characters.

Any trailing blank characters in TITLE are ignored.

If printing in MATLAB mode, TITLE will be used as the name of the matrix.

10: LABROW – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the rows of the matrix, except in
MATLAB mode where LABROW is ignored.

LABROW ¼ N
Prints no row labels.

LABROW ¼ I
Prints integer row labels.

LABROW ¼ C
Prints character labels, which must be supplied in array RLABS.

Constraint: LABROW ¼ N , I or C .

11: RLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array RLABS must be at least M if LABROW ¼ C , and at least 1
otherwise.

On entry: if LABROW ¼ C , RLABS must contain labels for the rows of the matrix, except in
MATLAB mode where RLABS is ignored.

Labels are right-justified when output, in a field which is as wide as necessary to hold the longest
row label. Note that this field width is subtracted from the number of usable columns, NCOLS.
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12: LABCOL – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the columns of the matrix, except in
MATLAB mode where LABCOL is ignored.

LABCOL ¼ N
Prints no column labels.

LABCOL ¼ I
Prints integer column labels.

LABCOL ¼ C
Prints character labels, which must be supplied in array CLABS.

Constraint: LABCOL ¼ N , I or C .

13: CLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array CLABS must be at least N if LABCOL ¼ C , and at least 1
otherwise.

On entry: if LABCOL ¼ C , CLABS must contain labels for the columns of the matrix, except in
MATLAB mode where CLABS is ignored.

Labels are right-justified when output. Any label that is too long for the column width, which is
determined by FORM, is truncated.

14: NCOLS – INTEGER Input

On entry: the maximum output record length. If the number of columns of the matrix is too large
to be accommodated in NCOLS characters, the matrix will be printed in parts, containing the
largest possible number of matrix columns, and each part separated by a blank line.

NCOLS must be large enough to hold at least one column of the matrix using the format specifier
in FORM. If a value less than 0 or greater than 132 is supplied for NCOLS, then the value 80 is
used instead.

15: INDENT – INTEGER Input

On entry: the number of columns by which the matrix (and any title and labels) should be
indented. The effective value of NCOLS is reduced by INDENT columns. If a value less than 0
or greater than NCOLS is supplied for INDENT, the value 0 is used instead.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MATRIX 6¼ G , L or U .

IFAIL ¼ 2

On entry, MATRIX ¼ L or U , but DIAG 6¼ N , U or B .

IFAIL ¼ 3

On entry, LDA < M.

IFAIL ¼ 4

On entry, USEFRM 6¼ A , B or D .

IFAIL ¼ 5

On entry, the format specifier in FORM is more than 80 characters long.

IFAIL ¼ 6

The format specifier in FORM cannot be used to output a number. The specifier probably has too
wide a field width or contains an illegal edit descriptor.

IFAIL ¼ 7

On entry, either LABROW or LABCOL 6¼ N , I or C .

IFAIL ¼ 8

The quantity NCOLS� INDENT� labwid (where labwid is the width needed for the row labels)
is not large enough to hold at least one column of the matrix.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04DBF is not threaded in any implementation.
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9 Further Comments

X04DBF may be used to print a vector, either as a row or as a column. The following code fragment
illustrates possible calls.

ccoommpplleexx**1166 A(4)
CHARACTER*1 RLABS(1), CLABS(1)

! Print vector A as a column vector.
LDA = 4
IFAIL = 0
CALL X04DBF(’G’,’X’,1,4,A,LDA,’B’,’ ’,’ ’,’I’,RLABS, &

’N’,CLABS,80,0,IFAIL)
! Print vector A as a row vector.

LDA = 1
IFAIL = 0
CALL X04DBF(’G’,’X’,4,1,A,LDA,’B’,’ ’,’ ’,’N’,RLABS, &

’I’,CLABS,80,0,IFAIL)

10 Example

The example program calls X04DBF three times, first to print a 3 by 4 rectangular matrix, next to print
a 4 by 4 upper triangular matrix, and then to print a 3 by 4 lower triangular matrix; various options for
labelling and formatting are illustrated.

10.1 Program Text

Program x04dbfe

! X04DBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nmax = 4, nout = 6
Integer, Parameter :: lda = nmax
Character (7), Parameter :: clabs(nmax) = (/’Un ’,’Deux ’, &

’Trois ’,’Quatre ’/)
Character (7), Parameter :: rlabs(nmax) = (/’Uno ’,’Due ’, &

’Tre ’,’Quattro’/)
! .. Local Scalars ..

Real (Kind=nag_wp) :: aa
Integer :: i, ifail, indent, j, ncols

! .. Local Arrays ..
Complex (Kind=nag_wp) :: a(lda,nmax)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, real

! .. Executable Statements ..
Write (nout,*) ’X04DBF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate an array of data

Do j = 1, nmax

Do i = 1, lda
aa = real(10*i+j,kind=nag_wp)
a(i,j) = cmplx(aa,-aa,kind=nag_wp)

End Do

End Do

ncols = 80
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indent = 0

! Print (nmax-1) by nmax rectangular matrix with default format and
! integer row and column labels, and bracketed complex elements

ifail = 0
Call x04dbf(’General’,’ ’,nmax-1,nmax,a,lda,’Bracketed’,’ ’, &

’Example 1:’,’Integer’,rlabs,’Integer’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print nmax by nmax upper triangular matrix with user-supplied format
! and row and column labels, and complex elements with real part
! above imaginary part

ifail = 0
Call x04dbf(’Upper’,’Non-unit’,nmax,nmax,a,lda,’Above’,’F8.2’, &

’Example 2:’,’Character’,rlabs,’Character’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print (nmax-1) by nmax lower triangular matrix in MATLAB format
! Row and column labelling and USEFRM are ignored

ifail = 0
Call x04dbf(’Lower’,’Unit’,nmax-1,nmax,a,lda,’ ’,’MATLABF8.2’,’A’,’ ’, &

rlabs,’ ’,clabs,ncols,indent,ifail)

End Program x04dbfe

10.2 Program Data

None.

10.3 Program Results

X04DBF Example Program Results

Example 1:
1 2

1 ( 11.0000, -11.0000) ( 12.0000, -12.0000)
2 ( 21.0000, -21.0000) ( 22.0000, -22.0000)
3 ( 31.0000, -31.0000) ( 32.0000, -32.0000)

3 4
1 ( 13.0000, -13.0000) ( 14.0000, -14.0000)
2 ( 23.0000, -23.0000) ( 24.0000, -24.0000)
3 ( 33.0000, -33.0000) ( 34.0000, -34.0000)

Example 2:
Un Deux Trois Quatre

Uno 11.00 12.00 13.00 14.00
-11.00 -12.00 -13.00 -14.00

Due 22.00 23.00 24.00
-22.00 -23.00 -24.00

Tre 33.00 34.00
-33.00 -34.00

Quattro 44.00
-44.00

A = [
( 1.00 +0.00i) ( 0.00 +0.00i) ( 0.00 +0.00i) ...
( 0.00 +0.00i);
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( 21.00 -21.00i) ( 1.00 +0.00i) ( 0.00 +0.00i) ...
( 0.00 +0.00i);
( 31.00 -31.00i) ( 32.00 -32.00i) ( 1.00 +0.00i) ...
( 0.00 +0.00i);

];
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NAG Library Routine Document

X04DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04DCF is an easy-to-use routine to print a complex triangular matrix stored in a packed one-
dimensional array.

2 Specification

SUBROUTINE X04DCF (UPLO, DIAG, N, A, TITLE, IFAIL)

INTEGER N, IFAIL
COMPLEX (KIND=nag_wp) A(*)
CHARACTER(*) TITLE
CHARACTER(1) UPLO, DIAG

3 Description

X04DCF prints a complex triangular matrix stored in packed form. It is an easy-to-use driver for
X04DDF. The routine uses default values for the format in which numbers are printed, for labelling the
rows and columns, and for output record length. The matrix must be packed by column.

X04DCF will choose a format code such that numbers will be printed with an F8:4, an F11:4 or a
1PE13:4 format . The F8:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 1:0. The F11:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 9999:9999. Otherwise the 1PE13:4 code is chosen. The chosen code is used to print
each complex element of the matrix with the real part above the imaginary part.

The matrix is printed with integer row and column labels, and with a maximum record length of 80.

The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates the type of the matrix to be printed

UPLO ¼ L
The matrix is lower triangular. In this case, the packed array A holds the matrix elements
in the following order: 1; 1ð Þ; 2; 1ð Þ; . . . ; N; 1ð Þ; 2; 2ð Þ; 3; 2ð Þ; . . . ; N; 2ð Þ, etc.

UPLO ¼ U
The matrix is upper triangular. In this case, the packed array A holds the matrix elements
in the following order: 1; 1ð Þ; 1; 2ð Þ; 2; 2ð Þ; 1; 3ð Þ; 2; 3ð Þ; 3; 3ð Þ; 1; 4ð Þ, etc.

Constraint: UPLO ¼ L or U .
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2: DIAG – CHARACTER(1) Input

On entry: indicates whether the diagonal elements of the matrix are to be printed.

DIAG ¼ B
The diagonal elements of the matrix are not referenced and not printed.

DIAG ¼ U
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are printed as such.

DIAG ¼ N
The diagonal elements of the matrix are referenced and printed.

Constraint: DIAG ¼ B , U or N .

3: N – INTEGER Input

On entry: the order of the matrix to be printed.

If N is less than 1, X04DCF will exit immediately after printing TITLE; no row or column labels
are printed.

4: Að�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array A must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the matrix to be printed. Note that A must have space for the diagonal elements of the
matrix, even if these are not stored.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
Aðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
Aðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

5: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than 80 characters, the contents of TITLE will be wrapped onto more
than one line, with the break after 80 characters.

Any trailing blank characters in TITLE are ignored.

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, UPLO 6¼ L or U .

IFAIL ¼ 2

On entry, DIAG 6¼ N , U or B .

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04DCF is not threaded in any implementation.

9 Further Comments

A call to X04DCF is equivalent to a call to X04DDF with the following argument values:

NCOLS = 80
INDENT = 0
LABROW = ’I’
LABCOL = ’I’
FORM = ’ ’
USEFRM = ’A’

10 Example

The example program calls X04DCF twice, first to print a 3 by 3 lower triangular matrix, and then to
print a 4 by 4 upper triangular matrix.
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10.1 Program Text

Program x04dcfe

! X04DCF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dcf, ztrttp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 4, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: aa
Integer :: i, ifail, info, j, lda
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ap(:)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, real

! .. Executable Statements ..
Write (nout,*) ’X04DCF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate a full-format symmetric array of data

lda = n
Allocate (a(lda,n))

Do j = 1, n

Do i = 1, j
aa = real(10*i+j,kind=nag_wp)
a(i,j) = cmplx(aa,-aa,kind=nag_wp)
a(j,i) = a(i,j)

End Do

End Do

! Print order (n-1) lower triangular matrix

! Convert a to packed storage.

Allocate (ap(n*(n+1)/2))

! The lower triangle.

uplo = ’L’

! The NAG name equivalent of ztrttp is f01vbf
Call ztrttp(uplo,n-1,a,lda,ap,info)

If (info/=0) Then
Write (nout,99999) ’Failure in ZTRTTP. INFO =’, info
Go To 100

End If

ifail = 0
Call x04dcf(’Lower’,’Unit’,n-1,ap,’Example 1:’,ifail)

Write (nout,*)
Flush (nout)

! Print order n upper triangular matrix

! Convert the upper triangle of a to packed storage.
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uplo = ’U’

! The NAG name equivalent of ztrttp is f01vbf
Call ztrttp(uplo,n,a,lda,ap,info)

If (info/=0) Then
Write (nout,99999) ’Failure in ZTRTTP. INFO =’, info
Go To 100

End If

ifail = 0
Call x04dcf(’Upper’,’Non-unit’,n,ap,’Example 2:’,ifail)

100 Continue

99999 Format (1X,A,I4)
End Program x04dcfe

10.2 Program Data

None.

10.3 Program Results

X04DCF Example Program Results

Example 1:
1 2 3

1 1.0000
0.0000

2 12.0000 1.0000
-12.0000 0.0000

3 13.0000 23.0000 1.0000
-13.0000 -23.0000 0.0000

Example 2:
1 2 3 4

1 11.0000 12.0000 13.0000 14.0000
-11.0000 -12.0000 -13.0000 -14.0000

2 22.0000 23.0000 24.0000
-22.0000 -23.0000 -24.0000

3 33.0000 34.0000
-33.0000 -34.0000

4 44.0000
-44.0000
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NAG Library Routine Document

X04DDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04DDF prints a complex triangular matrix stored in a packed one-dimensional array.

2 Specification

SUBROUTINE X04DDF (UPLO, DIAG, N, A, USEFRM, FORM, TITLE, LABROW, RLABS,
LABCOL, CLABS, NCOLS, INDENT, IFAIL)

&

INTEGER N, NCOLS, INDENT, IFAIL
COMPLEX (KIND=nag_wp) A(*)
CHARACTER(*) FORM, TITLE, RLABS(*), CLABS(*)
CHARACTER(1) UPLO, DIAG, USEFRM, LABROW, LABCOL

3 Description

X04DDF prints a complex triangular matrix stored in packed form, using a format specifier supplied by
you. The matrix must be packed by column. The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: UPLO – CHARACTER(1) Input

On entry: indicates the type of the matrix to be printed

UPLO ¼ L
The matrix is lower triangular. In this case, the packed array A holds the matrix elements
in the following order: 1; 1ð Þ; 2; 1ð Þ; . . . ; N; 1ð Þ; 2; 2ð Þ; 3; 2ð Þ; . . . ; N; 2ð Þ, etc.

UPLO ¼ U
The matrix is upper triangular. In this case, the packed array A holds the matrix elements
in the following order: 1; 1ð Þ; 1; 2ð Þ; 2; 2ð Þ; 1; 3ð Þ; 2; 3ð Þ; 3; 3ð Þ; 1; 4ð Þ, etc.

Constraint: UPLO ¼ L or U .

2: DIAG – CHARACTER(1) Input

On entry: indicates whether the diagonal elements of the matrix are to be printed.

DIAG ¼ B
The diagonal elements of the matrix are not referenced and not printed.

DIAG ¼ U
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are printed as such.

DIAG ¼ N
The diagonal elements of the matrix are referenced and printed.

Constraint: DIAG ¼ B , U or N .
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3: N – INTEGER Input

On entry: the number of rows and columns of the matrix to be printed.

If N is less than 1, X04DDF will exit immediately after printing TITLE; no row or column labels
are printed.

4: Að�Þ – COMPLEX (KIND=nag_wp) array Input

Note: the dimension of the array A must be at least max 1;N� Nþ 1ð Þ=2ð Þ.
On entry: the matrix to be printed. Note that A must have space for the diagonal elements of the
matrix, even if these are not stored.

More precisely,

if UPLO ¼ U , the upper triangle of A must be stored with element Aij in
Aðiþ j j� 1ð Þ=2Þ for i � j;
if UPLO ¼ L , the lower triangle of A must be stored with element Aij in
Aðiþ 2n� jð Þ j� 1ð Þ=2Þ for i � j.

If DIAG ¼ U , the diagonal elements of A are assumed to be 1, and are not referenced; the same
storage scheme is used whether DIAG ¼ N or ‘U’.

5: USEFRM – CHARACTER(1) Input

On entry: indicates how the value of FORM is to be used to print matrix elements, except in
MATLAB mode where USEFRM is ignored.

USEFRM ¼ A
The format code in FORM is assumed to contain a single real edit-descriptor which is to
be used to print the real and imaginary parts of each complex number one above the other.
Each row of the matrix is separated by a blank line, and any row labels are attached only
to the real parts. This option means that about twice as many columns can be fitted into
NCOLS characters than if any other USEFRM option is used. A typical value of FORM
for this USEFRM option might be E13:4 , � or .

USEFRM ¼ B
The format code in FORM is assumed to contain a single edit-descriptor such as E13:4 ,
� or which is used to print the real and imaginary parts of each complex number
separated by a comma, and surrounded by brackets. Thus a matrix element printed with
this USEFRM option might look like this: 12:345;�11:323ð Þ.

USEFRM ¼ D
The format code in FORM is used unaltered to print a complex number. This USEFRM
option allows you flexibility to specify exactly how the number is printed. With this option
for USEFRM and a suitable value for FORM it is possible, for example, to print a
complex number in the form 0:123þ 3:214ið Þ or 0:123E�02; 0:234E�01ð Þ. See Section 10
for an example illustrating this option.

Constraint: USEFRM ¼ A , B or D .

6: FORM – CHARACTER(*) Input

On entry: describes the Fortran format code that is used in conjunction with USEFRM for
printing the elements of the matrix A. The format code may be any allowed on the system,
whether it is standard Fortran or not. It may or may not be enclosed in brackets.

In addition, there are the following special codes which force X04DDF to choose its own format
code:

FORM ¼
X04DDF will choose a format code such that numbers will be printed with an F8.4, an
F11.4 or a 1PE13.4 format. The F8.4 code is chosen if the sizes of the real and imaginary
parts of all the matrix elements to be printed lie between 0:001 and 1:0. The F11.4 code is
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chosen if the sizes of all the numbers to be printed lie between 0:001 and 9999:9999.
Otherwise the 1PE13.4 code is chosen.

FORM ¼ �
X04DDF will choose a format code such that numbers will be printed to as many
significant digits as are necessary to distinguish between neighbouring machine numbers.
Thus any two numbers that are stored with different internal representations should look
different on output. Whether they do in fact look different will depend on the run-time
library of the Fortran compiler in use.

By preceding the desired format code by the string ‘MATLAB’, X04DDF will print the matrix
such that it can be input into MATLAB, and TITLE will be used as the name of the matrix.

More complicated values of FORM, to print a complex number in a desired form, may be used.
See the description of argument USEFRM for more details.

Examples of valid values for FORM are ðF11:4Þ , 1P; 2E13:5 , MATLABF11:4 , MATLAB� .
Constraint: the character length of the format specifier in FORM must be � 80.

7: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix, or name of the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than NCOLS characters, the contents of TITLE will be wrapped onto
more than one line, with the break after NCOLS characters.

Any trailing blank characters in TITLE are ignored.

If printing in MATLAB mode, TITLE will be used as the name of the matrix.

8: LABROW – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the rows of the matrix, except in
MATLAB mode where LABROW is ignored.

LABROW ¼ N
Prints no row labels.

LABROW ¼ I
Prints integer row labels.

LABROW ¼ C
Prints character labels, which must be supplied in array RLABS.

Constraint: LABROW ¼ N , I or C .

9: RLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array RLABS must be at least N if LABROW ¼ C , and at least 1
otherwise.

On entry: if LABROW ¼ C , RLABS must contain labels for the rows of the matrix, except in
MATLAB mode where RLABS is ignored.

Labels are right-justified when output, in a field which is as wide as necessary to hold the longest
row label. Note that this field width is subtracted from the number of usable columns, NCOLS.

10: LABCOL – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the columns of the matrix, except in
MATLAB mode where LABCOL is ignored.

LABCOL ¼ N
Prints no column labels.
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LABCOL ¼ I
Prints integer column labels.

LABCOL ¼ C
Prints character labels, which must be supplied in array CLABS.

Constraint: LABCOL ¼ N , I or C .

11: CLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array CLABS must be at least N if LABCOL ¼ C , and at least 1
otherwise.

On entry: if LABCOL ¼ C , CLABS must contain labels for the columns of the matrix, except in
MATLAB mode where CLABS is ignored.

Labels are right-justified when output. Any label that is too long for the column width, which is
determined by FORM, is truncated.

12: NCOLS – INTEGER Input

On entry: the maximum output record length. If the number of columns of the matrix is too large
to be accommodated in NCOLS characters, the matrix will be printed in parts, containing the
largest possible number of matrix columns, and each part separated by a blank line.

NCOLS must be large enough to hold at least one column of the matrix using the format specifier
in FORM. If a value less than 0 or greater than 132 is supplied for NCOLS, then the value 80 is
used instead.

13: INDENT – INTEGER Input

On entry: the number of columns by which the matrix (and any title and labels) should be
indented. The effective value of NCOLS is reduced by INDENT columns. If a value less than 0
or greater than NCOLS is supplied for INDENT, the value 0 is used instead.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, UPLO 6¼ L or U .

IFAIL ¼ 2

On entry, DIAG 6¼ N , U or B .
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IFAIL ¼ 3

On entry, USEFRM 6¼ A , B or D .

IFAIL ¼ 4

On entry, the format specifier in FORM is more than 80 characters long.

IFAIL ¼ 5

The format specifier in FORM cannot be used to output a number. The specifier probably has too
wide a field width or contains an illegal edit descriptor.

IFAIL ¼ 6

On entry, either LABROW or LABCOL 6¼ N , I or C .

IFAIL ¼ 7

The quantity NCOLS� INDENT� labwid (where labwid is the width needed for the row labels)
is not large enough to hold at least one column of the matrix.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04DDF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example program calls X04DDF three times, first to print a 4 by 4 lower triangular matrix, and
then twice to print a 4 by 4 upper triangular matrix, various options for labelling and formatting are
illustrated.
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10.1 Program Text

Program x04ddfe

! X04DDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04ddf, ztrttp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 4, nout = 6
Character (7), Parameter :: clabs(n) = (/’Un ’,’Deux ’, &

’Trois ’,’Quatre ’/)
Character (7), Parameter :: rlabs(n) = (/’Uno ’,’Due ’, &

’Tre ’,’Quattro’/)
! .. Local Scalars ..

Real (Kind=nag_wp) :: aa
Integer :: i, ifail, indent, info, j, lda, &

ncols
Character (19) :: form
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ap(:)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, real

! .. Executable Statements ..
Write (nout,*) ’X04DDF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate a full-format symmetric array of data

lda = n
Allocate (a(lda,n))

Do j = 1, n

Do i = 1, j
aa = real(10*i+j,kind=nag_wp)
a(i,j) = cmplx(aa,-aa,kind=nag_wp)
a(j,i) = a(i,j)

End Do

End Do

ncols = 80
indent = 0

! Print order n lower triangular matrix with default format and
! integer row and column labels, and bracketed complex elements

! Convert a to packed storage.

Allocate (ap(n*(n+1)/2))

! The lower triangle.

uplo = ’L’

! The NAG name equivalent of ztrttp is f01vbf
Call ztrttp(uplo,n,a,lda,ap,info)

If (info/=0) Then
Write (nout,99999) ’Failure in ZTRTTP. INFO =’, info
Go To 100

End If
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form = ’ ’

ifail = 0
Call x04ddf(’Lower’,’Non-unit’,n,ap,’Bracketed’,form,’Example 1:’, &

’Integer’,rlabs,’Integer’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print order n upper triangular matrix with user-supplied format
! and row and column labels, using the supplied format directly

! Convert the upper triangle of a to packed storage.

uplo = ’U’

! The NAG name equivalent of ztrttp is f01vbf
Call ztrttp(uplo,n,a,lda,ap,info)

If (info/=0) Then
Write (nout,99999) ’Failure in ZTRTTP. INFO =’, info
Go To 100

End If

form = ’SS,F7.1,SP,F6.1,’’i’’’

ifail = 0
Call x04ddf(’Upper’,’Unit’,n,ap,’Direct’,form,’Example 2:’,’Character’, &

rlabs,’Character’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print order n upper triangular matrix in MATLAB format
! Row and column labelling and USEFRM are ignored

form = ’MATLABF8.2’

ifail = 0
Call x04ddf(’Upper’,’Non-unit’,n,ap,’ ’,form,’A’,’ ’,rlabs,’ ’,clabs, &

ncols,indent,ifail)

100 Continue

99999 Format (1X,A,I4)
End Program x04ddfe

10.2 Program Data

None.

10.3 Program Results

X04DDF Example Program Results

Example 1:
1 2

1 ( 11.0000, -11.0000)
2 ( 12.0000, -12.0000) ( 22.0000, -22.0000)
3 ( 13.0000, -13.0000) ( 23.0000, -23.0000)
4 ( 14.0000, -14.0000) ( 24.0000, -24.0000)

3 4
1
2
3 ( 33.0000, -33.0000)
4 ( 34.0000, -34.0000) ( 44.0000, -44.0000)

Example 2:
Un Deux Trois Quatre
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Uno 1.0 +0.0i 12.0 -12.0i 13.0 -13.0i 14.0 -14.0i
Due 1.0 +0.0i 23.0 -23.0i 24.0 -24.0i
Tre 1.0 +0.0i 34.0 -34.0i

Quattro 1.0 +0.0i

A = [
( 11.00 -11.00i) ( 12.00 -12.00i) ( 13.00 -13.00i) ...
( 14.00 -14.00i);
( 0.00 +0.00i) ( 22.00 -22.00i) ( 23.00 -23.00i) ...
( 24.00 -24.00i);
( 0.00 +0.00i) ( 0.00 +0.00i) ( 33.00 -33.00i) ...
( 34.00 -34.00i);
( 0.00 +0.00i) ( 0.00 +0.00i) ( 0.00 +0.00i) ...
( 44.00 -44.00i);

];
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NAG Library Routine Document

X04DEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04DEF is an easy-to-use routine to print a complex band matrix stored in a packed two-dimensional
array.

2 Specification

SUBROUTINE X04DEF (M, N, KL, KU, A, LDA, TITLE, IFAIL)

INTEGER M, N, KL, KU, LDA, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(*) TITLE

3 Description

X04DEF prints a complex band matrix stored in a packed two-dimensional array. It is an easy-to-use
driver for X04DFF. The routine uses default values for the format in which numbers are printed, for
labelling the rows and columns, and for output record length.

X04DEF will choose a format code such that numbers will be printed with an F8:4, an F11:4 or a
1PE13:4 format. The F8:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 1:0. The F11:4 code is chosen if the sizes of all the matrix elements to be printed lie
between 0:001 and 9999:9999. Otherwise the 1PE13:4 code is chosen. The chosen code is used to print
each complex element of the matrix with the real part above the imaginary part.

The matrix is printed with integer row and column labels, and with a maximum record length of 80.

The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number of rows and columns of the band matrix, respectively, to be printed.

If either M or N is less than 1, X04DEF will exit immediately after printing TITLE; no row or
column labels are printed.

3: KL – INTEGER Input

On entry: the number of subdiagonals of the band matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: the number of superdiagonals of the band matrix A.

Constraint: KU � 0.
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5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;min Mþ KU;Nð Þð Þ.
On entry: the band matrix to be printed.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

Aðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which X04DEF
is called.

Constraint: LDA � KLþ KUþ 1.

7: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than 80 characters, the contents of TITLE will be wrapped onto more
than one line, with the break after 80 characters.

Any trailing blank characters in TITLE are ignored.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, KL < 0.

IFAIL ¼ 2

On entry, KU < 0.

IFAIL ¼ 3

On entry, LDA < KLþ KUþ 1.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
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IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04DEF is not threaded in any implementation.

9 Further Comments

A call to X04DEF is equivalent to a call to X04DFF with the following argument values:

NCOLS = 80
INDENT = 0
LABROW = ’I’
LABCOL = ’I’
FORM = ’ ’
USEFRM = ’A’

10 Example

This example program calls X04DEF to print a 5 by 5 band matrix with one subdiagonal and one
superdiagonal.

10.1 Program Text

Program x04defe

! X04DEF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01zdf, nag_wp, x04def

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: aa
Integer :: i, ifail, j, kl, ku, lda, ldab, m, n
Character (1) :: job

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ab(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, max, min, real

! .. Executable Statements ..
Write (nout,*) ’X04DEF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate a square array of data.
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m = 5
n = m
kl = 1
ku = 1

lda = m
Allocate (a(lda,n))

Do j = 1, n

Do i = max(1,j-ku), min(m,j+kl)
aa = real(10*i+j,kind=nag_wp)
a(i,j) = cmplx(aa,-aa,kind=nag_wp)

End Do

End Do

! Convert to packed storage.

ldab = kl + ku + 1
Allocate (ab(ldab,n))

job = ’P’

ifail = 0
Call f01zdf(job,m,n,kl,ku,a,lda,ab,ldab,ifail)

! Print m by n band matrix with kl subdiagonals and ku superdiagonals.

ifail = 0
Call x04def(m,n,kl,ku,ab,ldab,’Band Matrix:’,ifail)

End Program x04defe

10.2 Program Data

None.

10.3 Program Results

X04DEF Example Program Results

Band Matrix:
1 2 3 4 5

1 11.0000 12.0000
-11.0000 -12.0000

2 21.0000 22.0000 23.0000
-21.0000 -22.0000 -23.0000

3 32.0000 33.0000 34.0000
-32.0000 -33.0000 -34.0000

4 43.0000 44.0000 45.0000
-43.0000 -44.0000 -45.0000

5 54.0000 55.0000
-54.0000 -55.0000
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NAG Library Routine Document

X04DFF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04DFF prints a complex band matrix stored in a packed two-dimensional array.

2 Specification

SUBROUTINE X04DFF (M, N, KL, KU, A, LDA, USEFRM, FORM, TITLE, LABROW,
RLABS, LABCOL, CLABS, NCOLS, INDENT, IFAIL)

&

INTEGER M, N, KL, KU, LDA, NCOLS, INDENT, IFAIL
COMPLEX (KIND=nag_wp) A(LDA,*)
CHARACTER(*) FORM, TITLE, RLABS(*), CLABS(*)
CHARACTER(1) USEFRM, LABROW, LABCOL

3 Description

X04DFF prints a complex band matrix stored in a packed two-dimensional array, using a format
specifier supplied by you. The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number of rows and columns of the band matrix, respectively, to be printed.

If either M or N is less than 1, X04DFF will exit immediately after printing TITLE; no row or
column labels are printed.

3: KL – INTEGER Input

On entry: the number of subdiagonals of the band matrix A.

Constraint: KL � 0.

4: KU – INTEGER Input

On entry: the number of superdiagonals of the band matrix A.

Constraint: KU � 0.

5: AðLDA; �Þ – COMPLEX (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max 1;min Mþ KU;Nð Þð Þ.
On entry: the band matrix to be printed.

The matrix is stored in rows 1 to kl þ ku þ 1, more precisely, the element Aij must be stored in

Aðku þ 1þ i� j; jÞ for max 1; j� kuð Þ � i � min m; jþ klð Þ:
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6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which X04DFF
is called.

Constraint: LDA � KLþ KUþ 1.

7: USEFRM – CHARACTER(1) Input

On entry: indicates how the value of FORM is to be used to print matrix elements, except in
MATLAB mode where USEFRM is ignored.

USEFRM ¼ A
The format code in FORM is assumed to contain a single real edit-descriptor which is to
be used to print the real and imaginary parts of each complex number one above the other.
Each row of the matrix is separated by a blank line, and any row labels are attached only
to the real parts. This option means that about twice as many columns can be fitted into
NCOLS characters than if any other USEFRM option is used. A typical value of FORM
for this USEFRM option might be E13:4 , � or .

USEFRM ¼ B
The format code in FORM is assumed to contain a single edit-descriptor such as E13:4 ,
� or which is used to print the real and imaginary parts of each complex number
separated by a comma, and surrounded by brackets. Thus a matrix element printed with
this USEFRM option might look like this: 12:345;�11:323ð Þ.

USEFRM ¼ D
The format code in FORM is used unaltered to print a complex number. This USEFRM
option allows you flexibility to specify exactly how the number is printed. With this option
for USEFRM and a suitable value for FORM it is possible, for example, to print a
complex number in the form 0:123þ 3:214ið Þ or 0:123E�02; 0:234E�01ð Þ. See Section 10
for an example illustrating this option.

Constraint: USEFRM ¼ A , B or D .

8: FORM – CHARACTER(*) Input

On entry: describes the Fortran format code that is used in conjunction with USEFRM for
printing the elements of the matrix A. The format code may be any allowed on the system,
whether it is standard Fortran or not. It may or may not be enclosed in brackets.

In addition, there are the following special codes which force X04DFF to choose its own format
code:

FORM ¼
X04DFF will choose a format code such that numbers will be printed with an F8.4, an
F11.4 or a 1PE13.4 format. The F8.4 code is chosen if the sizes of the real and imaginary
parts of all the matrix elements to be printed lie between 0:001 and 1:0. The F11.4 code is
chosen if the sizes of all the numbers to be printed lie between 0:001 and 9999:9999.
Otherwise the 1PE13.4 code is chosen.

FORM ¼ �
X04DFF will choose a format code such that numbers will be printed to as many
significant digits as are necessary to distinguish between neighbouring machine numbers.
Thus any two numbers that are stored with different internal representations should look
different on output. Whether they do in fact look different will depend on the run-time
library of the Fortran compiler in use.

By preceding the desired format code by the string ‘MATLAB’, X04DFF will print the matrix
such that it can be input into MATLAB, and TITLE will be used as the name of the matrix.

More complicated values of FORM, to print a complex number in a desired form, may be used.
See the description of argument USEFRM for more details.
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Examples of valid values for FORM are ðF11:4Þ , 1P; 2E13:5 , MATLABF11:4 , MATLAB� .
Constraint: the character length of the format specifier in FORM must be � 80.

9: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix, or name of the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than NCOLS characters, the contents of TITLE will be wrapped onto
more than one line, with the break after NCOLS characters.

Any trailing blank characters in TITLE are ignored.

If printing in MATLAB mode, TITLE will be used as the name of the matrix.

10: LABROW – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the rows of the matrix, except in
MATLAB mode where LABROW is ignored.

LABROW ¼ N
Prints no row labels.

LABROW ¼ I
Prints integer row labels.

LABROW ¼ C
Prints character labels, which must be supplied in array RLABS.

Constraint: LABROW ¼ N , I or C .

11: RLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array RLABS must be at least M if LABROW ¼ C , and at least 1
otherwise.

On entry: if LABROW ¼ C , RLABS must contain labels for the rows of the matrix, except in
MATLAB mode where RLABS is ignored.

Labels are right-justified when output, in a field which is as wide as necessary to hold the longest
row label. Note that this field width is subtracted from the number of usable columns, NCOLS.

12: LABCOL – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the columns of the matrix, except in
MATLAB mode where LABCOL is ignored.

LABCOL ¼ N
Prints no column labels.

LABCOL ¼ I
Prints integer column labels.

LABCOL ¼ C
Prints character labels, which must be supplied in array CLABS.

Constraint: LABCOL ¼ N , I or C .

13: CLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array CLABS must be at least N if LABCOL ¼ C , and at least 1
otherwise.

On entry: if LABCOL ¼ C , CLABS must contain labels for the columns of the matrix, except in
MATLAB mode where CLABS is ignored.
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Labels are right-justified when output. Any label that is too long for the column width, which is
determined by FORM, is truncated.

14: NCOLS – INTEGER Input

On entry: the maximum output record length. If the number of columns of the matrix is too large
to be accommodated in NCOLS characters, the matrix will be printed in parts, containing the
largest possible number of matrix columns, and each part separated by a blank line.

NCOLS must be large enough to hold at least one column of the matrix using the format specifier
in FORM. If a value less than 0 or greater than 132 is supplied for NCOLS, then the value 80 is
used instead.

15: INDENT – INTEGER Input

On entry: the number of columns by which the matrix (and any title and labels) should be
indented. The effective value of NCOLS is reduced by INDENT columns. If a value less than 0
or greater than NCOLS is supplied for INDENT, the value 0 is used instead.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, KL < 0.

IFAIL ¼ 2

On entry, KU < 0.

IFAIL ¼ 3

On entry, LDA < KLþ KUþ 1.

IFAIL ¼ 4

On entry, USEFRM 6¼ A , B or D .

IFAIL ¼ 5

On entry, the format specifier in FORM is more than 80 characters long.

IFAIL ¼ 6

The format specifier in FORM cannot be used to output a number. The specifier probably has too
wide a field width or contains an illegal edit descriptor.
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IFAIL ¼ 7

On entry, either LABROW or LABCOL 6¼ N , I or C .

IFAIL ¼ 8

The quantity NCOLS� INDENT� labwid (where labwid is the width needed for the row labels)
is not large enough to hold at least one column of the matrix.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04DFF is not threaded in any implementation.

9 Further Comments

None.

10 Example

The example program calls X04DFF three times, to print band matrices of different orders and
bandwidths; various options for labelling and formatting are illustrated.

10.1 Program Text

Program x04dffe

! X04DFF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f01zdf, nag_wp, x04dff

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 5, nout = 6
Character (7), Parameter :: clabs(n) = (/’Un ’,’Deux ’, &

’Trois ’,’Quatre ’,’Cinq ’/)
Character (7), Parameter :: rlabs(n) = (/’Uno ’,’Due ’, &

’Tre ’,’Quattro’,’Cinque ’/)
! .. Local Scalars ..

Real (Kind=nag_wp) :: aa
Integer :: i, ifail, indent, j, kl, ku, ku_a, &
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lda, ldab, m, ncols
Character (19) :: form
Character (1) :: job

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), ab(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, max, min, real

! .. Executable Statements ..
Write (nout,*) ’X04DFF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate a square array of data.

m = n
kl = 1
ku_a = 2

lda = m
Allocate (a(lda,n))

Do j = 1, n

Do i = max(1,j-ku_a), min(m,j+kl)
aa = real(10*i+j,kind=nag_wp)
a(i,j) = cmplx(aa,-aa,kind=nag_wp)

End Do

End Do

! Convert a to packed storage, ignoring the second superdiagonal.

ldab = kl + ku_a + 1
Allocate (ab(ldab,n))

ku = 1

job = ’P’

ifail = 0
Call f01zdf(job,m,n,kl,ku,a,lda,ab,ldab,ifail)

ncols = 80
indent = 0

! Print m by n band matrix with kl subdiagonals, 1 superdiagonal,
! default format, bracketed complex numbers, and integer row and
! column labels

form = ’ ’

ifail = 0
Call x04dff(m,n,kl,1,ab,ldab,’Bracketed’,form,’Example 1:’,’Integer’, &

rlabs,’Integer’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Convert the whole matrix a to packed storage.

ku = ku_a

job = ’P’

ifail = 0
Call f01zdf(job,m,n,kl,ku,a,lda,ab,ldab,ifail)

! Print (m-1) by (n-1) band matrix with kl subdiagonals,
! ku superdiagonals, user-supplied format and row and column labels.
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form = ’SS,F7.1,SP,F6.1,’’i’’’

ifail = 0
Call x04dff(m-1,n-1,kl,ku,ab,ldab,’Direct’,form,’Example 2:’, &

’Character’,rlabs,’Character’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print (m-1) by (n-1) band matrix with kl subdiagonals,
! ku superdiagonals, in MATLAB format.
! Row and column labelling and USEFRM are ignored.

form = ’MATLABF7.1’

ifail = 0
Call x04dff(m-1,n-1,kl,ku,ab,ldab,’ ’,form,’A’,’ ’,rlabs,’ ’,clabs, &

ncols,indent,ifail)

End Program x04dffe

10.2 Program Data

None.

10.3 Program Results

X04DFF Example Program Results

Example 1:
1 2

1 ( 11.0000, -11.0000) ( 12.0000, -12.0000)
2 ( 21.0000, -21.0000) ( 22.0000, -22.0000)
3 ( 32.0000, -32.0000)
4
5

3 4
1
2 ( 23.0000, -23.0000)
3 ( 33.0000, -33.0000) ( 34.0000, -34.0000)
4 ( 43.0000, -43.0000) ( 44.0000, -44.0000)
5 ( 54.0000, -54.0000)

5
1
2
3
4 ( 45.0000, -45.0000)
5 ( 55.0000, -55.0000)

Example 2:
Un Deux Trois Quatre

Uno 11.0 -11.0i 12.0 -12.0i 13.0 -13.0i
Due 21.0 -21.0i 22.0 -22.0i 23.0 -23.0i 24.0 -24.0i
Tre 32.0 -32.0i 33.0 -33.0i 34.0 -34.0i

Quattro 43.0 -43.0i 44.0 -44.0i

A = [
( 11.0 -11.0i) ( 12.0 -12.0i) ( 13.0 -13.0i) ( 0.0 +0.0i);
( 21.0 -21.0i) ( 22.0 -22.0i) ( 23.0 -23.0i) ( 24.0 -24.0i);
( 0.0 +0.0i) ( 32.0 -32.0i) ( 33.0 -33.0i) ( 34.0 -34.0i);
( 0.0 +0.0i) ( 0.0 +0.0i) ( 43.0 -43.0i) ( 44.0 -44.0i);

];
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NAG Library Routine Document

X04EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04EAF is an easy-to-use routine to print an integer matrix stored in a two-dimensional array.

2 Specification

SUBROUTINE X04EAF (MATRIX, DIAG, M, N, A, LDA, TITLE, IFAIL)

INTEGER M, N, A(LDA,*), LDA, IFAIL
CHARACTER(*) TITLE
CHARACTER(1) MATRIX, DIAG

3 Description

X04EAF prints an integer matrix. It is an easy-to-use driver for X04EBF. The routine uses default
values for the format in which numbers are printed, for labelling the rows and columns, and for output
record length.

X04EAF will choose a format code such that numbers will be printed with the smallest I edit descriptor
that is large enough to hold all the numbers to be printed.

The matrix is printed with integer row and column labels, and with a maximum record length of 80.

The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: indicates the part of the matrix to be printed.

MATRIX ¼ G
The whole of the rectangular matrix.

MATRIX ¼ L
The lower triangle of the matrix, or the lower trapezium if the matrix has more rows than
columns.

MATRIX ¼ U
The upper triangle of the matrix, or the upper trapezium if the matrix has more columns
than rows.

Constraint: MATRIX ¼ G , L or U .

2: DIAG – CHARACTER(1) Input

On entry: unless MATRIX ¼ G , DIAG must specify whether the diagonal elements of the
matrix are to be printed.

DIAG ¼ B
The diagonal elements of the matrix are not referenced and not printed.
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DIAG ¼ U
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are printed as such.

DIAG ¼ N
The diagonal elements of the matrix are referenced and printed.

If MATRIX ¼ G , then DIAG need not be set.

Constraint: if MATRIX 6¼ G , DIAG ¼ B , U or N .

3: M – INTEGER Input
4: N – INTEGER Input

On entry: the number of rows and columns of the matrix, respectively, to be printed.

If either M or N is less than 1, X04EAF will exit immediately after printing TITLE; no row or
column labels are printed.

5: AðLDA; �Þ – INTEGER array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix to be printed. Only the elements that will be referred to, as specified by
arguments MATRIX and DIAG, need be set.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which X04EAF
is called.

Constraint: LDA � max 1;Mð Þ.

7: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than 80 characters, the contents of TITLE will be wrapped onto more
than one line, with the break after 80 characters.

Any trailing blank characters in TITLE are ignored.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MATRIX 6¼ G , L or U .

IFAIL ¼ 2

On entry, MATRIX ¼ L or U , but DIAG 6¼ N , U or B .

IFAIL ¼ 3

On entry, LDA < M.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X04EAF is not threaded in any implementation.

9 Further Comments

A call to X04EAF is equivalent to a call to X04EBF with the following argument values:

NCOLS = 80
INDENT = 0
LABROW = ’I’
LABCOL = ’I’
FORM = ’ ’

10 Example

This example calls X04EAF twice, first to print a 3 by 5 rectangular matrix, and then to print a 5 by 5
triangular matrix.
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10.1 Program Text

Program x04eafe

! X04EAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: x04eaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nmax = 5, nout = 6
Integer, Parameter :: lda = nmax

! .. Local Scalars ..
Integer :: i, ifail, j

! .. Local Arrays ..
Integer :: a(lda,nmax)

! .. Executable Statements ..
Write (nout,*) ’X04EAF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate an array of data

Do j = 1, nmax

Do i = 1, lda
a(i,j) = 10*i + j

End Do

End Do

! Print 3 by nmax rectangular matrix

ifail = 0
Call x04eaf(’General’,’ ’,3,nmax,a,lda,’Example 1:’,ifail)

Write (nout,*)
Flush (nout)

! Print nmax by nmax lower triangular matrix

ifail = 0
Call x04eaf(’Lower’,’Non-unit’,nmax,nmax,a,lda,’Example 2:’,ifail)

End Program x04eafe

10.2 Program Data

None.

10.3 Program Results

X04EAF Example Program Results

Example 1:
1 2 3 4 5

1 11 12 13 14 15
2 21 22 23 24 25
3 31 32 33 34 35

Example 2:
1 2 3 4 5
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1 11
2 21 22
3 31 32 33
4 41 42 43 44
5 51 52 53 54 55
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NAG Library Routine Document

X04EBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X04EBF prints an integer matrix stored in a two-dimensional array.

2 Specification

SUBROUTINE X04EBF (MATRIX, DIAG, M, N, A, LDA, FORM, TITLE, LABROW,
RLABS, LABCOL, CLABS, NCOLS, INDENT, IFAIL)

&

INTEGER M, N, A(LDA,*), LDA, NCOLS, INDENT, IFAIL
CHARACTER(*) FORM, TITLE, RLABS(*), CLABS(*)
CHARACTER(1) MATRIX, DIAG, LABROW, LABCOL

3 Description

X04EBF prints an integer matrix, or part of it, using a format specifier supplied by you. The matrix is
output to the unit defined by X04ABF.

4 References

None.

5 Arguments

1: MATRIX – CHARACTER(1) Input

On entry: indicates the part of the matrix to be printed.

MATRIX ¼ G
The whole of the rectangular matrix.

MATRIX ¼ L
The lower triangle of the matrix, or the lower trapezium if the matrix has more rows than
columns.

MATRIX ¼ U
The upper triangle of the matrix, or the upper trapezium if the matrix has more columns
than rows.

Constraint: MATRIX ¼ G , L or U .

2: DIAG – CHARACTER(1) Input

On entry: unless MATRIX ¼ G , DIAG must specify whether the diagonal elements of the
matrix are to be printed.

DIAG ¼ B
The diagonal elements of the matrix are not referenced and not printed.

DIAG ¼ U
The diagonal elements of the matrix are not referenced, but are assumed all to be unity,
and are printed as such.

DIAG ¼ N
The diagonal elements of the matrix are referenced and printed.
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If MATRIX ¼ G , then DIAG need not be set.

Constraint: if MATRIX 6¼ G , DIAG ¼ B , U or N .

3: M – INTEGER Input
4: N – INTEGER Input

On entry: the number of rows and columns of the matrix, respectively, to be printed.

If either M or N is less than 1, X04EBF will exit immediately after printing TITLE; no row or
column labels are printed.

5: AðLDA; �Þ – INTEGER array Input

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the matrix to be printed. Only the elements that will be referred to, as specified by
arguments MATRIX and DIAG, need be set.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which X04EBF
is called.

Constraint: LDA � max 1;Mð Þ.

7: FORM – CHARACTER(*) Input

On entry: a valid Fortran format code. This may be any format code allowed on the system,
whether it is standard Fortran or not. FORM is used to print elements of the matrix A. It may or
may not be enclosed in brackets. Examples of valid values for FORM are I6 , I4; 2X .

In addition, there is a special code which forces X04EBF to choose its own format code:

FORM ¼
X04EBF will choose a format code such that numbers will be printed using the smallest
edit descriptor that is large enough to hold all the numbers to be printed.

FORM ¼ MATLAB followed by any of the above, e.g., FORM ¼ MATLABI6 ,
FORM ¼ MATLAB �

X04EBF will print the matrix such that it can be input into MATLAB. Elements of the
matrix will be printed with format specified by the format code following ‘MATLAB’.
TITLE will be used as the name of the matrix.

Constraint: the character length of the format specifier in FORM must be � 80.

8: TITLE – CHARACTER(*) Input

On entry: a title to be printed above the matrix, or name of the matrix.

If TITLE ¼ , no title (and no blank line) will be printed.

If TITLE contains more than NCOLS characters, the contents of TITLE will be wrapped onto
more than one line, with the break after NCOLS characters.

Any trailing blank characters in TITLE are ignored.

If printing in MATLAB mode, TITLE will be used as the name of the matrix.

9: LABROW – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the rows of the matrix, except in
MATLAB mode where LABROW is ignored.

LABROW ¼ N
Prints no row labels.
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LABROW ¼ I
Prints integer row labels.

LABROW ¼ C
Prints character labels, which must be supplied in array RLABS.

Constraint: LABROW ¼ N , I or C .

10: RLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array RLABS must be at least M if LABROW ¼ C , and at least 1
otherwise.

On entry: if LABROW ¼ C , RLABS must contain labels for the rows of the matrix, except in
MATLAB mode where RLABS is ignored.

Labels are right-justified when output, in a field which is as wide as necessary to hold the longest
row label. Note that this field width is subtracted from the number of usable columns, NCOLS.

11: LABCOL – CHARACTER(1) Input

On entry: indicates the type of labelling to be applied to the columns of the matrix, except in
MATLAB mode where LABCOL is ignored.

LABCOL ¼ N
Prints no column labels.

LABCOL ¼ I
Prints integer column labels.

LABCOL ¼ C
Prints character labels, which must be supplied in array CLABS.

Constraint: LABCOL ¼ N , I or C .

12: CLABSð�Þ – CHARACTER(*) array Input

Note: the dimension of the array CLABS must be at least N if LABCOL ¼ C , and at least 1
otherwise.

On entry: if LABCOL ¼ C , CLABS must contain labels for the columns of the matrix, except in
MATLAB mode where CLABS is ignored.

Labels are right-justified when output. Any label that is too long for the column width, which is
determined by FORM, is truncated.

13: NCOLS – INTEGER Input

On entry: the maximum output record length. If the number of columns of the matrix is too large
to be accommodated in NCOLS characters, the matrix will be printed in parts, containing the
largest possible number of matrix columns, and each part separated by a blank line.

NCOLS must be large enough to hold at least one column of the matrix using the format specifier
in FORM. If a value less than 0 or greater than 132 is supplied for NCOLS, then the value 80 is
used instead.

14: INDENT – INTEGER Input

On entry: the number of columns by which the matrix (and any title and labels) should be
indented. The effective value of NCOLS is reduced by INDENT columns. If a value less than 0
or greater than NCOLS is supplied for INDENT, the value 0 is used instead.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, MATRIX 6¼ G , L or U .

IFAIL ¼ 2

On entry, MATRIX ¼ L or U , but DIAG 6¼ N , U or B .

IFAIL ¼ 3

On entry, M > LDA.

IFAIL ¼ 4

On entry, the format specifier in FORM is more than 80 characters long.

IFAIL ¼ 5

The format specifier in FORM cannot be used to output a number. The specifier probably has too
wide a field width or contains an illegal edit descriptor.

IFAIL ¼ 6

On entry, either LABROW or LABCOL 6¼ N , I or C .

IFAIL ¼ 7

The quantity NCOLS� INDENT� labwid (where labwid is the width needed for the row labels)
is not large enough to hold at least one column of the matrix.

IFAIL ¼ �99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

Not applicable.

8 Parallelism and Performance

X04EBF is not threaded in any implementation.

9 Further Comments

X04EBF may be used to print a vector, either as a row or as a column. The following code fragment
illustrates possible calls.

INTEGER A(4)
CHARACTER*1 RLABS(1), CLABS(1)

! Print vector A as a column vector.
LDA = 4
IFAIL = 0
CALL X04EBF(’G’,’X’,1,4,A,LDA,’ ’,’ ’,’I’,RLABS, &

’N’,CLABS,80,0,IFAIL)
! Print vector A as a row vector.

LDA = 1
IFAIL = 0

CALL X04EBF(’G’,’X’,4,1,A,LDA,’ ’,’ ’,’N’,RLABS, &
’I’,CLABS,80,0,IFAIL)

10 Example

This example calls X04EBF twice, first to print a 3 by 5 rectangular matrix, and next to print a 5 by 5
upper triangular matrix; various options for labelling and formatting are illustrated.

10.1 Program Text

Program x04ebfe

! X04EBF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: x04ebf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nmax = 5, nout = 6
Integer, Parameter :: lda = nmax
Character (7), Parameter :: clabs(nmax) = (/’Un ’,’Deux ’, &

’Trois ’,’Quatre ’,’Cinq ’/)
Character (7), Parameter :: rlabs(nmax) = (/’Uno ’,’Due ’, &

’Tre ’,’Quattro’,’Cinque ’/)
! .. Local Scalars ..

Integer :: i, ifail, indent, j, ncols
! .. Local Arrays ..

Integer :: a(lda,nmax)
! .. Executable Statements ..

Write (nout,*) ’X04EBF Example Program Results’

Write (nout,*)
Flush (nout)

! Generate an array of data

Do j = 1, nmax

Do i = 1, lda
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a(i,j) = 10*i + j
End Do

End Do

ncols = 80
indent = 0

! Print 3 by nmax rectangular matrix with default format and integer
! row and column labels

ifail = 0
Call x04ebf(’General’,’ ’,3,nmax,a,lda,’ ’,’Example 1:’,’Integer’,rlabs, &

’Integer’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print nmax by nmax upper triangular matrix with user-supplied format
! and row and column labels

ifail = 0
Call x04ebf(’Upper’,’Non-unit’,nmax,nmax,a,lda,’I8’,’Example 2:’, &

’Character’,rlabs,’Character’,clabs,ncols,indent,ifail)

Write (nout,*)
Flush (nout)

! Print 4 by nmax lower triangular matrix in MATLAB format
! Row and column labelling is ignored

ifail = 0
Call x04ebf(’Lower’,’Non-unit’,4,nmax,a,lda,’MATLABI8’,’A’,’ ’,rlabs, &

’ ’,clabs,ncols,indent,ifail)

End Program x04ebfe

10.2 Program Data

None.

10.3 Program Results

X04EBF Example Program Results

Example 1:
1 2 3 4 5

1 11 12 13 14 15
2 21 22 23 24 25
3 31 32 33 34 35

Example 2:
Un Deux Trois Quatre Cinq

Uno 11 12 13 14 15
Due 22 23 24 25
Tre 33 34 35

Quattro 44 45
Cinque 55

A = [
11 0 0 0 0;
21 22 0 0 0;
31 32 33 0 0;
41 42 43 44 0;

];
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NAG Library Chapter Contents

X05 – Date and Time Utilities

X05 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

X05AAF 14 nagf_time_date_array
Return date and time as an array of integers

X05ABF 14 nagf_time_date_array_string
Convert array of integers representing date and time to character string

X05ACF 14 nagf_time_date_string_compare
Compare two character strings representing date and time

X05BAF 14 nagf_time_cpu
Return the CPU time
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NAG Library Chapter Introduction

X05 – Date and Time Utilities

Contents
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1 Scope of the Chapter

This chapter provides routines to obtain the current real time, and the amount of processor time used.

2 Background to the Problems

2.1 Real Time

Routines are provided to obtain the current time in two different formats, and to compare two such
times.

2.2 Processor Time

A routine is provided to return the current amount of processor time used. This allows the timing of a
particular routine or section of code.

3 Recommendations on Choice and Use of Available Routines

X05AAF returns the current date/time in integer format.

X05ABF converts from integer to character string date/time.

X05ACF compares two date/time character strings.

X05BAF returns the amount of processor time used.

4 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

X05AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X05AAF returns the current date and time.

2 Specification

SUBROUTINE X05AAF (ITIME)

INTEGER ITIME(7)

3 Description

X05AAF returns the current date and time as a set of seven integers.

4 References

None.

5 Arguments

1: ITIMEð7Þ – INTEGER array Output

On exit: the current date and time, as follows:

ITIMEð1Þ
Contains the current year.

ITIMEð2Þ
Contains the current month, in the range 1–12.

ITIMEð3Þ
Contains the current day, in the range 1–31.

ITIMEð4Þ
Contains the current hour, in the range 0–23.

ITIMEð5Þ
Contains the current minute, in the range 0–59.

ITIMEð6Þ
Contains the current second, in the range 0–59.

ITIMEð7Þ
Contains the current millisecond, in the range 0–999.

6 Error Indicators and Warnings

None.

7 Accuracy

The accuracy of this routine depends on the accuracy of the host machine. In particular, on some
machines it may not be possible to return a value for the current millisecond. In this case, the value
returned will be zero.
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8 Parallelism and Performance

X05AAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example prints out the vector ITIME after a call to X05AAF.

10.1 Program Text

Program x05aafe

! X05AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: x04acf, x04adf, x04baf, x05aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iounit = 53, nout = 6
Character (*), Parameter :: fname = ’x05aafe_output.txt’

! .. Local Scalars ..
Integer :: ifail
Character (80) :: rec

! .. Local Arrays ..
Integer :: itime(7)

! .. Executable Statements ..
Write (nout,*) ’X05AAF Example Program Results’

! Associate fname with iounit and open the unit for writing:
ifail = 0
Call x04acf(iounit,fname,1,ifail)

! Get the time array:
Call x05aaf(itime)

! Stamp the output file:
Call x04baf(iounit, &

’File created by NAG x05aaf example program, time stamp:’)
Write (rec,99999) itime
Call x04baf(iounit,rec)

! Close the output file:
ifail = 0
Call x04adf(iounit,ifail)

Write (nout,*) ’File created and stamped successfully.’

99999 Format (I4.4,2I2.2,’-’,3(I2.2,’:’),I3.3)
End Program x05aafe

10.2 Program Data

None.

10.3 Program Results

X05AAF Example Program Results
File created and stamped successfully.
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NAG Library Routine Document

X05ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X05ABF converts from a seven-integer format time and date, as returned by X05AAF, into a character
string, returned via the function name.

2 Specification

FUNCTION X05ABF (ITIME)
CHARACTER(30) X05ABF

INTEGER ITIME(7)

3 Description

X05ABF returns a character string of length 30 which contains the date and time as supplied in
argument ITIME. On exit, the character string has the following format:

’DAY XXTH MTH YEAR HR:MN:SC.MIL’

where

DAY is one of ‘Sun’, ‘Mon’, ‘Tue’, ‘Wed’, ‘Thu’, ‘Fri’, ‘Sat’,

XX is an integer denoting the day of the month,

TH is one of ‘st’, ‘nd’, ‘rd’, ‘th’,

MTH is one of ‘Jan’, ‘Feb’, ‘Mar’, ‘Apr’, ‘May’, ‘Jun’, ‘Jul’, ‘Aug’, ‘Sep’, ‘Oct’, ‘Nov’, ‘Dec’,

YEAR is the year as a four digit integer,

HR is the hour,

MN is the minute,

SC is the second,

MIL is the millisecond.

If on entry the date in ITIME is invalid, the string returned is ’** Illegal date/time **’

4 References

None.

5 Arguments

1: ITIMEð7Þ – INTEGER array Input

On entry: a date and time in the format returned by X05AAF.

ITIMEð1Þ
Must contain the year as a positive integer.

ITIMEð2Þ
Must contain the month, in the range 1–12.
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ITIMEð3Þ
Must contain the day, in the range 1 to p, where p ¼ 28, 29, 30 or 31, depending on the
month and year.

ITIMEð4Þ
Must contain the hour, in the range 0–23.

ITIMEð5Þ
Must contain the minute, in the range 0–59.

ITIMEð6Þ
Must contain the second, in the range 0–59.

ITIMEð7Þ
Must contain the millisecond, in the range 0–999.

6 Error Indicators and Warnings

None.

7 Accuracy

The day name included as part of the character string returned by this routine is calculated assuming
that the date is part of the Gregorian calendar. This calendar has been in operation in Europe since 15
October 1582, and in Great Britain since 14 September 1752. Entry to this routine with a date earlier
than these will therefore not return a day name that is historically accurate.

8 Parallelism and Performance

X05ABF is not threaded in any implementation.

9 Further Comments

Two dates stored in character string format, as returned by this routine, may be compared by X05ACF.

10 Example

This example initializes a time in ITIME, and converts it to character format by a call to X05ABF.

10.1 Program Text

Program x05abfe

! X05ABF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: x05abf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Character (30) :: ctime

! .. Local Arrays ..
Integer :: itime(7)

! .. Executable Statements ..
Write (nout,*) ’X05ABF Example Program Results’

! Skip heading in data file
Read (nin,*)
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Read (nin,*) itime

ctime = x05abf(itime)

Write (nout,99999) ctime

99999 Format (1X,A)
End Program x05abfe

10.2 Program Data

X05ABF Example Program Data
1789 7 14 13 11 48 320

10.3 Program Results

X05ABF Example Program Results
Tue 14th Jul 1789 13:11:48.320
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NAG Library Routine Document

X05ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X05ACF compares two date/time character strings, each stored in the format returned by X05ABF.

2 Specification

FUNCTION X05ACF (CTIME1, CTIME2)
INTEGER X05ACF

CHARACTER(*) CTIME1, CTIME2

3 Description

X05ACF compares two date/time character strings, and returns an integer that specifies which one is the
earliest. The result is an integer returned through the routine name, with meaning as follows:

if X05ACF ¼ �1, the first date/time string is earlier than the second;

if X05ACF ¼ 0, the two date/time strings are equivalent;

if X05ACF ¼ 1, the first date/time string is later than the second.

4 References

None.

5 Arguments

1: CTIME1 – CHARACTER(*) Input
2: CTIME2 – CHARACTER(*) Input

On entry: the date/time strings to be compared. These are expected be in the format returned by
X05ABF, although X05ACF will still attempt to interpret the strings if they vary slightly from
this format. See Section 9 for further details.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X05ACF is not threaded in any implementation.

9 Further Comments

For flexibility, X05ACF will accept various formats for the two date/time strings CTIME1 and
CTIME2.
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The strings do not have to be the same length. It is permissible, for example, to enter with one or both
of the strings truncated to a smaller length, in which case missing fields are treated as zero.

Each character string may be of any length, but everything after character 80 is ignored.

Each string may or may not include an alphabetic day name, such as ‘Wednesday’, at its start. These
day names are ignored, and no check is made that the day name corresponds correctly to the rest of the
date.

The month name may contain any number of characters provided it uniquely identifies the month,
however all characters that are supplied are significant.

Fields in the character string must be separated by one or more spaces.

The case of all alphabetic characters is not significant.

Any field in a date time string that is indecipherable according to the above rules will be converted to a
zero value internally. Thus two strings that are completely indecipherable will compare equal.

According to these rules, all the following date/time strings are equivalent:

‘Thursday 10th July 1958 12:43:17.320’

‘THU 10th JULY 1958 12:43:17.320’

‘10th Jul 1958 12:43:17.320’

10 Example

This example initializes two date/time strings, and compares them by a call to X05ACF.

10.1 Program Text

Program x05acfe

! X05ACF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: x05acf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: k
Character (50) :: ctime1, ctime2

! .. Executable Statements ..
Write (nout,*) ’X05ACF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) ctime1, ctime2

k = x05acf(ctime1,ctime2)

Write (nout,99999) ctime1

Select Case (k)
Case (:-1)

Write (nout,99999) ’is earlier than’
Case (0)

Write (nout,99999) ’is equivalent to’
Case (1:)

Write (nout,99999) ’is later than’
End Select
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Write (nout,99999) ctime2

99999 Format (1X,A)
End Program x05acfe

10.2 Program Data

X05ACF Example Program Data
’Thu 27th April 1989 13:15:21.320’
’Wed 26th April 1989 11:23:14.130’

10.3 Program Results

X05ACF Example Program Results
Thu 27th April 1989 13:15:21.320
is later than
Wed 26th April 1989 11:23:14.130
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NAG Library Routine Document

X05BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X05BAF returns the amount of processor time used since an unspecified previous time, via the routine
name.

2 Specification

FUNCTION X05BAF ()
REAL (KIND=nag_wp) X05BAF

3 Description

X05BAF returns the number of seconds of processor time used since some previous time. The previous
time is system dependent, but may be, for example, the time the current job or the current program
started running.

If the system clock of the host machine is inaccessible for any reason, X05BAF returns the value zero.

4 References

None.

5 Arguments

None.

6 Error Indicators and Warnings

None.

7 Accuracy

The accuracy of the value returned depends on the accuracy of the system clock on the host machine.

8 Parallelism and Performance

X05BAF is not threaded in any implementation.

9 Further Comments

Since the value returned by X05BAF is the amount of processor time since some unspecified earlier
time, no significance should be placed on the value other than as a marker to be compared with some
later figure returned by X05BAF. The amount of processor time that has elapsed between two calls of
X05BAF can be simply calculated as the earlier value subtracted from the later value.
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10 Example

This example makes an initial call to X05BAF. In a loop it performs some computations and makes
another call to X05BAF; the difference between the value from this call and the initial is used to track
the time taken by those computations. The loop is exited if an allotted time limit is exceeded.

10.1 Program Text

Program x05bafe

! X05BAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x05baf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: timeout_s = 100._nag_wp
Integer, Parameter :: nout = 6
Integer, Parameter :: nterms = 10**7

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, start
Integer :: n

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’X05BAF Example Program Results’

start = x05baf()

! Do a non-trivial amount of intermediate work.

h = 0._nag_wp
n = 1

loop: Do
h = h + 1.0_nag_wp/real(nterms-n+1,kind=nag_wp)

If (x05baf()-start>timeout_s) Then
Write (nout,*) ’Computation timed out.’
Exit loop

End If

If (n==nterms) Then
Exit loop

End If

n = n + 1
End Do loop

Write (nout,99999) ’Computed ’, n, &
’ terms of the harmonic series within the allotted time limit.’

99999 Format (1X,A,I8,A)
Write (nout,99998) ’Value of partial sum is’, h, ’.’

99998 Format (1X,A,E13.5,A)
End Program x05bafe

10.2 Program Data

None.
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10.3 Program Results

X05BAF Example Program Results
Computed 10000000 terms of the harmonic series within the allotted time limit.
Value of partial sum is 0.16695E+02.
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NAG Library Chapter Contents

X07 – IEEE Arithmetic

X07 Chapter Introduction – a description of the Chapter and an overview of the algorithms available

Routine
Name

Mark of
Introduction Purpose

X07AAF 24 nagf_is_finite
Determines whether its argument has a finite value

X07ABF 24 nagf_is_nan
Determines whether its argument is a NaN (Not A Number)

X07BAF 24 nagf_create_infinity
Creates a signed infinite value.

X07BBF 24 nagf_create_nan
Creates a NaN (Not A Number)

X07CAF 24 nagf_get_ieee_exception_mode
Gets current behaviour of floating-point exceptions

X07CBF 24 nagf_set_ieee_exception_mode
Sets behaviour of floating-point exceptions
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NAG Library Chapter Introduction

X07 – IEEE Arithmetic

Contents

1 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background to the Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Recommendations on Choice and Use of Available Routines. . . . . . . . . . . . . . 2

4 Functionality Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

5 Auxiliary Routines Associated with Library Routine Arguments . . . . . . . . . 2

6 Routines Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . . . . . . . . . 2
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1 Scope of the Chapter

This chapter provides routines to handle various aspects of IEEE floating-point arithmetic behaviour.

2 Background to the Problems

Modern systems allow you to control what happens to your program when an exceptional event such as
overflow or division by zero occurs. Often, the default behaviour is for program execution to continue,
while setting an appropriate flag. Sometimes the default behaviour is to halt execution and print a
warning or error message.

The routines in Chapter X07 allow creation and detection of NaNs (Not a Number) and infinities, as
well as alteration of the behaviour of a program when an exception occurs.

3 Recommendations on Choice and Use of Available Routines

Routines are provided to detect and create IEEE NaN (Not a Number) and infinity values, and to get
and set the halting mode of various floating-point exceptions.

4 Functionality Index

Create a floating-point infinity ............................................................................................. X07BAF

Create a floating-point NaN (Not a Number) ...................................................................... X07BBF

Determine whether a floating-point number is finite............................................................ X07AAF

Determine whether a floating-point number is NaN (Not a Number).................................. X07ABF

Get current behaviour of floating-point exceptions .............................................................. X07CAF

Set behaviour of floating-point exceptions........................................................................... X07CBF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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NAG Library Routine Document

X07AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X07AAF determines whether a floating-point number is finite.

2 Specification

FUNCTION X07AAF (X)
LOGICAL X07AAF

REAL (KIND=nag_wp) X

3 Description

X07AAF returns .TRUE. if and only if X is finite, and returns .FALSE. otherwise.

4 References

IEEE (2008) Standard for Floating-Point Arithmetic IEEE Standard 754-2008 IEEE, New York.

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the number whose status is to be determined.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X07AAF is not threaded in any implementation.

9 Further Comments

This routine will return .FALSE. if the argument X is either infinite or a NaN (Not A Number).

10 Example

This program creates various infinities, NaNs and normal numbers and distinguishes between them.
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10.1 Program Text

Program x07aafe

! X07AAF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x02alf, x07aaf, x07abf, x07baf, x07bbf, &

x07caf, x07cbf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nout = 6
! .. Local Scalars ..

Real (Kind=nag_wp) :: huge, neginf, qnan, x, y, zero
! .. Local Arrays ..

Integer :: exmode(3), newexmode(3)
! .. Executable Statements ..

Write (nout,*) ’X07AAF Example Program Results’
Write (nout,*)

! Turn exception halting mode off for the three common exceptions
! overflow, division-by-zero, and invalid operation

Write (nout,*) ’Turn exception halting off ...’
exmode = (/0,0,0/)
Call x07cbf(exmode)

! Check that exception halting mode for the three common exceptions
! was really turned off

Call x07caf(newexmode)
Write (nout,99999) ’Exception halting mode is now: ’, newexmode

! Look at some ordinary numbers
x = 1.0_nag_wp
Call diagnose(’one’,x)
x = -2.0_nag_wp
Call diagnose(’-two’,x)
zero = 0.0_nag_wp
Call diagnose(’zero’,zero)

! Generate an infinity and a NaN and look at their properties
Call x07baf(-1,neginf)
Call diagnose(’-Infinity’,neginf)
Call x07bbf(1,qnan)
Call diagnose(’Quiet NaN’,qnan)

! Do some operations which purposely raise exceptions
huge = x02alf()
Write (nout,*)
Write (nout,*) ’Try to cause overflow - no trap should occur:’
x = huge
y = x*x
If (y>huge) Then

Write (nout,99998) ’y = huge() * huge() > huge() ’
Else

Write (nout,99998) ’y = huge() * huge() = ’, y
End If

Write (nout,*)
Write (nout,*) ’Try to cause NaN - no trap should occur:’
y = zero/zero
If (x07abf(y)) Then

Write (nout,99998) ’y = 0.0 / 0.0 = NaN’
Else

Write (nout,99998) ’y = 0.0 / 0.0 = ’, y
End If

Write (nout,*)
Write (nout,*) ’Try to cause division by zero - no trap should occur:’
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x = 1.0_nag_wp
y = x/zero
If (y>huge) Then

Write (nout,99998) ’y = 1.0 / 0.0 > huge()’
Else

Write (nout,99998) ’y = 1.0 / 0.0 = ’, y
End If

99999 Format (1X,A,3I3)
99998 Format (1X,A,1P,E12.4)

Contains

Subroutine diagnose(c,x)

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Character (*), Intent (In) :: c

! .. Executable Statements ..
Write (nout,*)
If (c==’-Infinity’) Then

Write (nout,99999) c
Else

Write (nout,99998) c, x
End If

If (x07aaf(x)) Then
Write (nout,*) ’"’ // c // ’" is finite’

Else
Write (nout,*) ’"’ // c // ’" is not finite’

End If
If (x07abf(x)) Then

Write (nout,*) ’"’ // c // ’" is NaN’
Else

Write (nout,*) ’"’ // c // ’" is not NaN’
End If

If (x<0.0_nag_wp) Then
Write (nout,*) ’"’ // c // ’" compares less than zero.’

Else
Write (nout,*) ’"’ // c // ’" does not compare less than zero.’

End If
If (x==0.0_nag_wp) Then

Write (nout,*) ’"’ // c // ’" compares equal to zero.’
Else

Write (nout,*) ’"’ // c // ’" does not compare equal to zero.’
End If
If (x>0.0_nag_wp) Then

Write (nout,*) ’"’ // c // ’" compares greater than zero.’
Else

Write (nout,*) ’"’ // c // ’" does not compare greater than zero.’
End If

Return

99999 Format (1X,’Diagnosis of value "’,A,’"’)
99998 Format (1X,’Diagnosis of value "’,A,’" which prints as ’,1P,E12.4)

End Subroutine diagnose

End Program x07aafe

10.2 Program Data

None.
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10.3 Program Results

X07AAF Example Program Results

Turn exception halting off ...
Exception halting mode is now: 0 0 0

Diagnosis of value "one" which prints as 1.0000E+00
"one" is finite
"one" is not NaN
"one" does not compare less than zero.
"one" does not compare equal to zero.
"one" compares greater than zero.

Diagnosis of value "-two" which prints as -2.0000E+00
"-two" is finite
"-two" is not NaN
"-two" compares less than zero.
"-two" does not compare equal to zero.
"-two" does not compare greater than zero.

Diagnosis of value "zero" which prints as 0.0000E+00
"zero" is finite
"zero" is not NaN
"zero" does not compare less than zero.
"zero" compares equal to zero.
"zero" does not compare greater than zero.

Diagnosis of value "-Infinity"
"-Infinity" is not finite
"-Infinity" is not NaN
"-Infinity" compares less than zero.
"-Infinity" does not compare equal to zero.
"-Infinity" does not compare greater than zero.

Diagnosis of value "Quiet NaN" which prints as NaN
"Quiet NaN" is not finite
"Quiet NaN" is NaN
"Quiet NaN" does not compare less than zero.
"Quiet NaN" does not compare equal to zero.
"Quiet NaN" does not compare greater than zero.

Try to cause overflow - no trap should occur:
y = huge() * huge() > huge()

Try to cause NaN - no trap should occur:
y = 0.0 / 0.0 = NaN

Try to cause division by zero - no trap should occur:
y = 1.0 / 0.0 > huge()
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NAG Library Routine Document

X07ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X07ABF determines whether a floating-point number is a NaN (Not A Number).

2 Specification

FUNCTION X07ABF (X)
LOGICAL X07ABF

REAL (KIND=nag_wp) X

3 Description

X07ABF returns .TRUE. if and only if X is a NaN, and returns .FALSE. otherwise.

4 References

IEEE (2008) Standard for Floating-Point Arithmetic IEEE Standard 754-2008 IEEE, New York.

5 Arguments

1: X – REAL (KIND=nag_wp) Input

On entry: the number whose status is to be determined.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X07ABF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X07AAF.
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NAG Library Routine Document

X07BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X07BAF creates a signed infinite value.

2 Specification

SUBROUTINE X07BAF (ISIGN, X)

INTEGER ISIGN
REAL (KIND=nag_wp) X

3 Description

X07BAF sets X to be positive or negative infinity.

4 References

IEEE (2008) Standard for Floating-Point Arithmetic IEEE Standard 754-2008 IEEE, New York.

5 Arguments

1: ISIGN – INTEGER Input

On entry: determines the sign of the infinity to be created.

If ISIGN is greater than or equal to 0, a positive infinity is returned, otherwise a negative infinity
is returned.

2: X – REAL (KIND=nag_wp) Output

On exit: the required infinite value.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X07BAF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

See Section 10 in X07AAF.
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NAG Library Routine Document

X07BBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X07BBF creates a NaN (Not A Number).

2 Specification

SUBROUTINE X07BBF (QUIET, X)

INTEGER QUIET
REAL (KIND=nag_wp) X

3 Description

X07BBF sets X to be a quiet or a signalling NaN (Not A Number).

4 References

IEEE (2008) Standard for Floating-Point Arithmetic IEEE Standard 754-2008 IEEE, New York.

5 Arguments

1: QUIET – INTEGER Input

On entry: determines whether a quiet or a signalling NaN is to be created. If QUIET ¼ 1, the
returned NaN is quiet, otherwise it is signalling. See reference IEEE (2008) for the distinction
between the two kinds.

2: X – REAL (KIND=nag_wp) Output

On exit: the required NaN value.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X07BBF is not threaded in any implementation.

9 Further Comments

None.
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10 Example

See Section 10 in X07AAF.
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NAG Library Routine Document

X07CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X07CAF gets the current IEEE exception halting mode.

2 Specification

SUBROUTINE X07CAF (EXCEPTIONMODE)

INTEGER EXCEPTIONMODE(3)

3 Description

X07CAF gets the current IEEE exception halting mode for the three common exceptions: overflow,
divide-by-zero and invalid operation.

4 References

IEEE (2008) Standard for Floating-Point Arithmetic IEEE Standard 754-2008 IEEE, New York.

5 Arguments

1: EXCEPTIONMODEð3Þ – INTEGER array Output

On exit: each of the three elements of EXCEPTIONMODE is set to 1 if the corresponding
condition will raise an exception, and is set to 0 otherwise. EXCEPTIONMODEð1Þ concerns
floating-point overflow, EXCEPTIONMODEð2Þ concerns floating-point division by zero, and
EXCEPTIONMODEð3Þ concerns floating-point invalid operation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X07CAF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X07AAF.
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NAG Library Routine Document

X07CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

X07CBF sets the current IEEE exception halting mode.

2 Specification

SUBROUTINE X07CBF (EXCEPTIONMODE)

INTEGER EXCEPTIONMODE(3)

3 Description

X07CBF sets the current IEEE exception halting mode for the three common exceptions: overflow,
divide-by-zero and invalid operation.

4 References

IEEE (2008) Standard for Floating-Point Arithmetic IEEE Standard 754-2008 IEEE, New York.

5 Arguments

1: EXCEPTIONMODEð3Þ – INTEGER array Input

On entry: each of the three elements of EXCEPTIONMODE must contain any nonzero value if
the corresponding condition should raise an exception, and contain 0 otherwise.
EXCEPTIONMODEð1Þ concerns floating-point overflow, EXCEPTIONMODEð2Þ concerns
floating-point division by zero, and EXCEPTIONMODEð3Þ concerns floating-point invalid
operation.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

X07CBF is not threaded in any implementation.

9 Further Comments

None.

10 Example

See Section 10 in X07AAF.
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	ITRACE
	IND
	IFAIL
	IUSER
	RUSER
	CWSAV
	LWSAV
	IWSAV
	RWSAV
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9 (D02NNF)
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PEF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Berzins (1990)
	Berzins et al. (1989)
	Keller (1970)
	Pennington and Berzins (1994)

	5 Arguments
	NPDE
	TS
	TOUT
	PDEDEF
	NPDE
	T
	X
	U
	UT
	UX
	RES
	IRES

	BNDARY
	NPDE
	T
	IBND
	NOBC
	U
	UT
	RES
	IRES

	U
	NPTS
	X
	NLEFT
	ACC
	RSAVE
	LRSAVE
	ISAVE
	LISAVE
	ITASK
	ITRACE
	IND
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9 (D02NNF)
	IFAIL=10
	IFAIL=11
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PFF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Berzins et al. (1989)
	Hirsch (1990)
	LeVeque (1990)
	Pennington and Berzins (1994)
	Roe (1981)

	5 Arguments
	NPDE
	TS
	TOUT
	PDEDEF
	NPDE
	T
	X
	U
	UX
	P
	C
	D
	S
	IRES

	NUMFLX
	NPDE
	T
	X
	ULEFT
	URIGHT
	FLUX
	IRES

	BNDARY
	NPDE
	NPTS
	T
	X
	U
	IBND
	G
	IRES

	U
	NPTS
	X
	ACC
	TSMAX
	RSAVE
	LRSAVE
	ISAVE
	LISAVE
	ITASK
	ITRACE
	IND
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9 (D02NNF)
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PHF/D03PHA
	1 Purpose
	2 Specification
	2.1 
	2.2 

	3 Description
	4 References
	Berzins (1990)
	Berzins et al. (1989)
	Berzins and Furzeland (1992)
	Skeel and Berzins (1990)

	5 Arguments
	NPDE
	M
	TS
	TOUT
	PDEDEF
	NPDE
	T
	X
	U
	UX
	NCODE
	V
	VDOT
	P
	Q
	R
	IRES
	IUSER
	RUSER

	BNDARY
	NPDE
	T
	U
	UX
	NCODE
	V
	VDOT
	IBND
	BETA
	GAMMA
	IRES
	IUSER
	RUSER

	U
	NPTS
	X
	NCODE
	ODEDEF
	NPDE
	T
	NCODE
	V
	VDOT
	NXI
	XI
	UCP
	UCPX
	RCP
	UCPT
	UCPTX
	F
	IRES
	IUSER
	RUSER

	NXI
	XI
	NEQN
	RTOL
	ATOL
	ITOL
	NORM
	LAOPT
	ALGOPT
	RSAVE
	LRSAVE
	ISAVE
	LISAVE
	ITASK
	ITRACE
	IND
	IFAIL
	IUSER
	RUSER
	CWSAV
	LWSAV
	IWSAV
	RWSAV
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9 (D02NNF)
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=15
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PJF/D03PJA
	1 Purpose
	2 Specification
	2.1 
	2.2 

	3 Description
	4 References
	Berzins (1990)
	Berzins and Dew (1991)
	Berzins et al. (1988)
	Berzins and Furzeland (1992)
	Zaturska et al. (1988)

	5 Arguments
	NPDE
	M
	TS
	TOUT
	PDEDEF
	NPDE
	T
	X
	NPTL
	U
	UX
	NCODE
	V
	VDOT
	P
	Q
	R
	IRES
	IUSER
	RUSER

	BNDARY
	NPDE
	T
	U
	UX
	NCODE
	V
	VDOT
	IBND
	BETA
	GAMMA
	IRES
	IUSER
	RUSER

	U
	NBKPTS
	XBKPTS
	NPOLY
	NPTS
	X
	NCODE
	ODEDEF
	NPDE
	T
	NCODE
	V
	VDOT
	NXI
	XI
	UCP
	UCPX
	RCP
	UCPT
	UCPTX
	F
	IRES
	IUSER
	RUSER

	NXI
	XI
	NEQN
	UVINIT
	NPDE
	NPTS
	X
	U
	NCODE
	V
	IUSER
	RUSER

	RTOL
	ATOL
	ITOL
	NORM
	LAOPT
	ALGOPT
	RSAVE
	LRSAVE
	ISAVE
	LISAVE
	ITASK
	ITRACE
	IND
	IFAIL
	IUSER
	RUSER
	CWSAV
	LWSAV
	IWSAV
	RWSAV
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9 (D02NNF)
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=15
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PKF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Berzins (1990)
	Berzins et al. (1989)
	Berzins and Furzeland (1992)
	Keller (1970)
	Pennington and Berzins (1994)

	5 Arguments
	NPDE
	TS
	TOUT
	PDEDEF
	NPDE
	T
	X
	U
	UT
	UX
	NCODE
	V
	VDOT
	RES
	IRES

	BNDARY
	NPDE
	T
	IBND
	NOBC
	U
	UT
	NCODE
	V
	VDOT
	RES
	IRES

	U
	NPTS
	X
	NLEFT
	NCODE
	ODEDEF
	NPDE
	T
	NCODE
	V
	VDOT
	NXI
	XI
	UCP
	UCPX
	UCPT
	R
	IRES

	NXI
	XI
	NEQN
	RTOL
	ATOL
	ITOL
	NORM
	LAOPT
	ALGOPT
	RSAVE
	LRSAVE
	ISAVE
	LISAVE
	ITASK
	ITRACE
	IND
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9 (D02NNF)
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=15
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PLF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Berzins et al. (1989)
	Hirsch (1990)
	LeVeque (1990)
	Pennington and Berzins (1994)
	Roe (1981)
	Sod (1978)

	5 Arguments
	NPDE
	TS
	TOUT
	PDEDEF
	NPDE
	T
	X
	U
	UX
	NCODE
	V
	VDOT
	P
	C
	D
	S
	IRES

	NUMFLX
	NPDE
	T
	X
	NCODE
	V
	ULEFT
	URIGHT
	FLUX
	IRES

	BNDARY
	NPDE
	NPTS
	T
	X
	U
	NCODE
	V
	VDOT
	IBND
	G
	IRES

	U
	NPTS
	X
	NCODE
	ODEDEF
	NPDE
	T
	NCODE
	V
	VDOT
	NXI
	XI
	UCP
	UCPX
	UCPT
	R
	IRES

	NXI
	XI
	NEQN
	RTOL
	ATOL
	ITOL
	NORM
	LAOPT
	ALGOPT
	RSAVE
	LRSAVE
	ISAVE
	LISAVE
	ITASK
	ITRACE
	IND
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9 (D02NNF)
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=15
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PPF/D03PPA
	1 Purpose
	2 Specification
	2.1 
	2.2 

	3 Description
	4 References
	Berzins (1990)
	Berzins et al. (1989)
	Berzins and Furzeland (1992)
	Furzeland (1984)
	Skeel and Berzins (1990)

	5 Arguments
	NPDE
	M
	TS
	TOUT
	PDEDEF
	NPDE
	T
	X
	U
	UX
	NCODE
	V
	VDOT
	P
	Q
	R
	IRES
	IUSER
	RUSER

	BNDARY
	NPDE
	T
	U
	UX
	NCODE
	V
	VDOT
	IBND
	BETA
	GAMMA
	IRES
	IUSER
	RUSER

	UVINIT
	NPDE
	NPTS
	NXI
	X
	XI
	U
	NCODE
	V
	IUSER
	RUSER

	U
	NPTS
	X
	NCODE
	ODEDEF
	NPDE
	T
	NCODE
	V
	VDOT
	NXI
	XI
	UCP
	UCPX
	RCP
	UCPT
	UCPTX
	F
	IRES
	IUSER
	RUSER

	NXI
	XI
	NEQN
	RTOL
	ATOL
	ITOL
	NORM
	LAOPT
	ALGOPT
	REMESH
	NXFIX
	XFIX
	NRMESH
	DXMESH
	TRMESH
	IPMINF
	XRATIO
	CON
	MONITF
	T
	NPTS
	NPDE
	X
	U
	R
	FMON
	IUSER
	RUSER

	RSAVE
	LRSAVE
	ISAVE
	LISAVE
	ITASK
	ITRACE
	IND
	IFAIL
	IUSER
	RUSER
	CWSAV
	LWSAV
	IWSAV
	RWSAV
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9 (D02NNF)
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=15
	IFAIL=16
	IFAIL=17
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PRF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Berzins (1990)
	Berzins et al. (1989)
	Berzins and Furzeland (1992)
	Furzeland (1984)
	Keller (1970)
	Pennington and Berzins (1994)

	5 Arguments
	NPDE
	TS
	TOUT
	PDEDEF
	NPDE
	T
	X
	U
	UDOT
	UX
	NCODE
	V
	VDOT
	RES
	IRES

	BNDARY
	NPDE
	T
	IBND
	NOBC
	U
	UDOT
	NCODE
	V
	VDOT
	RES
	IRES

	UVINIT
	NPDE
	NPTS
	NXI
	X
	XI
	U
	NCODE
	V

	U
	NPTS
	X
	NLEFT
	NCODE
	ODEDEF
	NPDE
	T
	NCODE
	V
	VDOT
	NXI
	XI
	UCP
	UCPX
	UCPT
	R
	IRES

	NXI
	XI
	NEQN
	RTOL
	ATOL
	ITOL
	NORM
	LAOPT
	ALGOPT
	REMESH
	NXFIX
	XFIX
	NRMESH
	DXMESH
	TRMESH
	IPMINF
	XRATIO
	CON
	MONITF
	T
	NPTS
	NPDE
	X
	U
	FMON

	RSAVE
	LRSAVE
	ISAVE
	LISAVE
	ITASK
	ITRACE
	IND
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9 (D02NNF)
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=15
	IFAIL=16
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PSF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Berzins et al. (1989)
	Furzeland (1984)
	Hirsch (1990)
	LeVeque (1990)
	Pennington and Berzins (1994)
	Roe (1981)

	5 Arguments
	NPDE
	TS
	TOUT
	PDEDEF
	NPDE
	T
	X
	U
	UX
	NCODE
	V
	VDOT
	P
	C
	D
	S
	IRES

	NUMFLX
	NPDE
	T
	X
	NCODE
	V
	ULEFT
	URIGHT
	FLUX
	IRES

	BNDARY
	NPDE
	NPTS
	T
	X
	U
	NCODE
	V
	VDOT
	IBND
	G
	IRES

	UVINIT
	NPDE
	NPTS
	NXI
	X
	XI
	U
	NCODE
	V

	U
	NPTS
	X
	NCODE
	ODEDEF
	NPDE
	T
	NCODE
	V
	VDOT
	NXI
	XI
	UCP
	UCPX
	UCPT
	R
	IRES

	NXI
	XI
	NEQN
	RTOL
	ATOL
	ITOL
	NORM
	LAOPT
	ALGOPT
	REMESH
	NXFIX
	XFIX
	NRMESH
	DXMESH
	TRMESH
	IPMINF
	XRATIO
	CON
	MONITF
	T
	NPTS
	NPDE
	X
	U
	FMON

	RSAVE
	LRSAVE
	ISAVE
	LISAVE
	ITASK
	ITRACE
	IND
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9 (D02NNF)
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=15
	IFAIL=16
	IFAIL=17
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PUF
	1 Purpose
	2 Specification
	3 Description
	4 References
	LeVeque (1990)
	Quirk (1994)
	Roe (1981)

	5 Arguments
	ULEFT
	URIGHT
	GAMMA
	FLUX
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	D03PVF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Hemker and Spekreijse (1986)
	Pennington and Berzins (1994)
	Quirk (1994)

	5 Arguments
	ULEFT
	URIGHT
	GAMMA
	PATH
	FLUX
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	D03PWF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Toro (1992)
	Toro (1996)
	Toro et al. (1994)

	5 Arguments
	ULEFT
	URIGHT
	GAMMA
	FLUX
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PXF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Toro (1989)
	Toro (1996)

	5 Arguments
	ULEFT
	URIGHT
	GAMMA
	TOL
	NITER
	FLUX
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03PYF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	NPDE
	U
	NBKPTS
	XBKPTS
	NPOLY
	NPTS
	XP
	INTPTS
	ITYPE
	UP
	RSAVE
	LRSAVE
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	D03PZF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	NPDE
	M
	U
	NPTS
	X
	XP
	INTPTS
	ITYPE
	UP
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	D03RAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Adjerid and Flaherty (1988)
	Blom et al. (1996)
	Blom and Verwer (1993)
	Brown et al. (1994)
	Trompert (1993)
	Trompert and Verwer (1993)

	5 Arguments
	NPDE
	TS
	TOUT
	DT
	XMIN
	XMAX
	YMIN
	YMAX
	NX
	NY
	TOLS
	TOLT
	PDEDEF
	NPTS
	NPDE
	T
	X
	Y
	U
	UT
	UX
	UY
	UXX
	UXY
	UYY
	RES

	BNDARY
	NPTS
	NPDE
	T
	X
	Y
	U
	UT
	UX
	UY
	NBPTS
	LBND
	RES

	PDEIV
	NPTS
	NPDE
	T
	X
	Y
	U

	MONITR
	NPDE
	T
	DT
	DTNEW
	TLAST
	NLEV
	NGPTS
	XPTS
	YPTS
	LSOL
	SOL
	IERR

	OPTI
	OPTR
	RWK
	LENRWK
	IWK
	LENIWK
	LWK
	LENLWK
	ITRACE
	IND
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Algorithm Outline
	9.2 Refinement Strategy
	9.3 Time Integration

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03RBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Blom et al. (1996)
	Blom and Verwer (1993)
	Trompert (1993)
	Trompert and Verwer (1993)

	5 Arguments
	NPDE
	TS
	TOUT
	DT
	TOLS
	TOLT
	INIDOM
	MAXPTS
	XMIN
	XMAX
	YMIN
	YMAX
	NX
	NY
	NPTS
	NROWS
	NBNDS
	NBPTS
	LROW
	IROW
	ICOL
	LLBND
	ILBND
	LBND
	IERR

	PDEDEF
	NPTS
	NPDE
	T
	X
	Y
	U
	UT
	UX
	UY
	UXX
	UXY
	UYY
	RES

	BNDARY
	NPTS
	NPDE
	T
	X
	Y
	U
	UT
	UX
	UY
	NBNDS
	NBPTS
	LLBND
	ILBND
	LBND
	RES

	PDEIV
	NPTS
	NPDE
	T
	X
	Y
	U

	MONITR
	NPDE
	T
	DT
	DTNEW
	TLAST
	NLEV
	XMIN
	YMIN
	DXB
	DYB
	LGRID
	ISTRUC
	LSOL
	SOL
	IERR

	OPTI
	OPTR
	RWK
	LENRWK
	IWK
	LENIWK
	LWK
	LENLWK
	ITRACE
	IND
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Algorithm Outline
	9.2 Refinement Strategy
	9.3 Time Integration

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03RYF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	NX
	NY
	NPTS
	NROWS
	NBNDS
	NBPTS
	LROW
	IROW
	ICOL
	LLBND
	ILBND
	LBND
	IWK
	LENIWK
	PGRID
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	D03RZF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	LEVEL
	NLEV
	XMIN
	YMIN
	DXB
	DYB
	LGRID
	ISTRUC
	NPTS
	X
	Y
	LENXY
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	D03UAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Ames (1977)
	Jacobs (1972)
	Stone (1968)

	5 Arguments
	N1
	N2
	LDA
	A
	B
	C
	D
	E
	APARAM
	IT
	R
	WRKSP1
	WRKSP2
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	D03UBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Ames (1977)
	Jacobs (1972)
	Stone (1968)
	Weinstein et al. (1969)

	5 Arguments
	N1
	N2
	N3
	LDA
	SDA
	A
	B
	C
	D
	E
	F
	G
	APARAM
	IT
	R
	WRKSP1
	WRKSP2
	WRKSP3
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results
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	D04AAF
	1 Purpose
	2 Specification
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	4 References
	Lyness and Moler (1966)
	Lyness and Moler (1969)

	5 Arguments
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	INCZ
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	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06KDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	N
	ALPHA
	X
	INCX
	Y
	INCY
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	6 Error Indicators and Warnings
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	9 Further Comments
	10 Example

	F06PAF (DGEMV)
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	INCY

	6 Error Indicators and Warnings
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	TRANS
	M
	N
	KL
	KU
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	INCY
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	INCY

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06PEF (DSPMV)
	1 Purpose
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	UPLO
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	INCX
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	INCY

	6 Error Indicators and Warnings
	7 Accuracy
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	9 Further Comments
	10 Example

	F06PFF (DTRMV)
	1 Purpose
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	UPLO
	TRANS
	DIAG
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	LDA
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	INCX

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06PGF (DTBMV)
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	UPLO
	TRANS
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	INCX

	6 Error Indicators and Warnings
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	9 Further Comments
	10 Example
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	UPLO
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	AP
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	INCX
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	9 Further Comments
	10 Example
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	UPLO
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	LDA
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	INCX
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	7 Accuracy
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	9 Further Comments
	10 Example

	F06PKF (DTBSV)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
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	DIAG
	N
	K
	A
	LDA
	X
	INCX

	6 Error Indicators and Warnings
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	9 Further Comments
	10 Example
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	UPLO
	TRANS
	DIAG
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	INCX

	6 Error Indicators and Warnings
	7 Accuracy
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	9 Further Comments
	10 Example
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	1 Purpose
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	INCX
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	INCY
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	6 Error Indicators and Warnings
	7 Accuracy
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	9 Further Comments
	10 Example
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	UPLO
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	10 Example
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	UPLO
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	6 Error Indicators and Warnings
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	9 Further Comments
	10 Example

	F06PSF (DSPR2)
	1 Purpose
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	UPLO
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	ALPHA
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	INCY
	AP

	6 Error Indicators and Warnings
	7 Accuracy
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	MATRIX
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	LDA
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	LDB

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
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	1 Purpose
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	MATRIX
	M
	N
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	A
	LDA

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06QJF
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	SIDE
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	LDB

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
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	1 Purpose
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	SIDE
	TRANS
	N
	PERM
	K
	B
	LDB

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06QMF
	1 Purpose
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	3 Description
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	5 Arguments
	UPLO
	PIVOT
	DIRECT
	N
	K1
	K2
	C
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	A
	LDA

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
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	1 Purpose
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	5 Arguments
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	ALPHA
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	INCX
	Y
	INCY
	A
	LDA
	C
	S

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06QQF
	1 Purpose
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	3 Description
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	5 Arguments
	N
	ALPHA
	X
	INCX
	A
	LDA
	C
	S

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
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	SIDE
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	K1
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	C
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	LDA

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
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	SIDE
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	LDA

	6 Error Indicators and Warnings
	7 Accuracy
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	9 Further Comments
	10 Example
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	SIDE
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	LDA

	6 Error Indicators and Warnings
	7 Accuracy
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	9 Further Comments
	10 Example
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	SIDE
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	LDA

	6 Error Indicators and Warnings
	7 Accuracy
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	9 Further Comments
	10 Example
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	1 Purpose
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	SIDE
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	K1
	K2
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	LDA

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06QXF
	1 Purpose
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	3 Description
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	5 Arguments
	SIDE
	PIVOT
	DIRECT
	M
	N
	K1
	K2
	C
	S
	A
	LDA

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06RAF
	1 Purpose
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	3 Description
	4 References
	5 Arguments
	NORM
	M
	N
	A
	LDA
	WORK

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06RBF
	1 Purpose
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	3 Description
	4 References
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	NORM
	N
	KL
	KU
	AB
	LDAB
	WORK

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
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	1 Purpose
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	3 Description
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	NORM
	UPLO
	N
	A
	LDA
	WORK

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06RDF
	1 Purpose
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	3 Description
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	5 Arguments
	NORM
	UPLO
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	WORK

	6 Error Indicators and Warnings
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	9 Further Comments
	10 Example
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	NORM
	UPLO
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	AB
	LDAB
	WORK

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06RJF
	1 Purpose
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	3 Description
	4 References
	5 Arguments
	NORM
	UPLO
	DIAG
	M
	N
	A
	LDA
	WORK

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06RKF
	1 Purpose
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	3 Description
	4 References
	5 Arguments
	NORM
	UPLO
	DIAG
	N
	AP
	WORK

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06RLF
	1 Purpose
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	3 Description
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	NORM
	UPLO
	DIAG
	N
	K
	AB
	LDAB
	WORK

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06RMF
	1 Purpose
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	3 Description
	4 References
	5 Arguments
	NORM
	N
	A
	LDA
	WORK

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06RNF
	1 Purpose
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	3 Description
	4 References
	5 Arguments
	NORM
	N
	DL
	D
	DU

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06RPF
	1 Purpose
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	3 Description
	4 References
	5 Arguments
	NORM
	N
	D
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	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SAF (ZGEMV)
	1 Purpose
	2 Specification
	3 Description
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	5 Arguments
	TRANS
	M
	N
	ALPHA
	A
	LDA
	X
	INCX
	BETA
	Y
	INCY

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SBF (ZGBMV)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	TRANS
	M
	N
	KL
	KU
	ALPHA
	A
	LDA
	X
	INCX
	BETA
	Y
	INCY

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SCF (ZHEMV)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
	N
	ALPHA
	A
	LDA
	X
	INCX
	BETA
	Y
	INCY

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SDF (ZHBMV)
	1 Purpose
	2 Specification
	3 Description
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	5 Arguments
	UPLO
	N
	K
	ALPHA
	A
	LDA
	X
	INCX
	BETA
	Y
	INCY

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SEF (ZHPMV)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
	N
	ALPHA
	AP
	X
	INCX
	BETA
	Y
	INCY

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SFF (ZTRMV)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
	TRANS
	DIAG
	N
	A
	LDA
	X
	INCX

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SGF (ZTBMV)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
	TRANS
	DIAG
	N
	K
	A
	LDA
	X
	INCX

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SHF (ZTPMV)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
	TRANS
	DIAG
	N
	AP
	X
	INCX

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SJF (ZTRSV)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
	TRANS
	DIAG
	N
	A
	LDA
	X
	INCX

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SKF (ZTBSV)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
	TRANS
	DIAG
	N
	K
	A
	LDA
	X
	INCX

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SLF (ZTPSV)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
	TRANS
	DIAG
	N
	AP
	X
	INCX

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SMF (ZGERU)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	M
	N
	ALPHA
	X
	INCX
	Y
	INCY
	A
	LDA

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SNF (ZGERC)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	M
	N
	ALPHA
	X
	INCX
	Y
	INCY
	A
	LDA

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SPF (ZHER)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
	N
	ALPHA
	X
	INCX
	A
	LDA

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SQF (ZHPR)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
	N
	ALPHA
	X
	INCX
	AP

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	F06SRF (ZHER2)
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	UPLO
	N
	ALPHA
	X
	INCX
	Y
	INCY
	A
	LDA

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
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	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01ATF
	1 Purpose
	2 Specification
	3 Description
	4 References
	West (1979)

	5 Arguments
	NB
	X
	IWT
	WT
	PN
	XMEAN
	XSD
	XSKEW
	XKURT
	XMIN
	XMAX
	RCOMM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=11
	IFAIL=31
	IFAIL=41
	IFAIL=51
	IFAIL=52
	IFAIL=53
	IFAIL=71
	IFAIL=72
	IFAIL=121
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01AUF
	1 Purpose
	2 Specification
	3 Description
	4 References
	West (1979)

	5 Arguments
	B
	MRCOMM
	PN
	XMEAN
	XSD
	XSKEW
	XKURT
	XMIN
	XMAX
	RCOMM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=11
	IFAIL=21
	IFAIL=31
	IFAIL=51
	IFAIL=52
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01BJF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Knsel (1986)

	5 Arguments
	N
	P
	K
	PLEK
	PGTK
	PEQK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01BKF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Knsel (1986)

	5 Arguments
	RLAMDA
	K
	PLEK
	PGTK
	PEQK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01BLF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Knsel (1986)

	5 Arguments
	N
	L
	M
	K
	PLEK
	PGTK
	PEQK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01DAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Kendall and Stuart (1969)

	5 Arguments
	N
	PP
	ETOL
	ERREST
	WORK
	IW
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01DBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Royston (1982)

	5 Arguments
	N
	PP
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01DCF
	1 Purpose
	2 Specification
	3 Description
	4 References
	David and Johnson (1954)
	Davis and Stephens (1978)

	5 Arguments
	N
	EXP1
	EXP2
	SUMSSQ
	VEC
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01DDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Royston (1982)
	Royston (1986)
	Royston (1992)
	Royston (1995)

	5 Arguments
	X
	N
	CALWTS
	A
	W
	PW
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01DHF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Blom (1958)
	Conover (1980)
	Lehmann (1975)
	Savage (1956)
	Tukey (1962)

	5 Arguments
	SCORES
	TIES
	N
	X
	R
	IWRK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01EAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Hastings and Peacock (1975)

	5 Arguments
	TAIL
	X
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01EBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Hastings and Peacock (1975)
	Hill (1970)

	5 Arguments
	TAIL
	T
	DF
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01ECF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Hastings and Peacock (1975)

	5 Arguments
	TAIL
	X
	DF
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01EDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Hastings and Peacock (1975)

	5 Arguments
	TAIL
	F
	DF1
	DF2
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01EEF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Hastings and Peacock (1975)

	5 Arguments
	X
	A
	B
	TOL
	P
	Q
	PDF
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01EFF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Hastings and Peacock (1975)

	5 Arguments
	TAIL
	G
	A
	B
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01EMF
	1 Purpose
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	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Lund and Lund (1983)
	Montgomery (1984)
	Winer (1970)

	5 Arguments
	Q
	V
	IR
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01EPF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Durbin and Watson (1950)
	Durbin and Watson (1951)
	Durbin and Watson (1971)
	Farebrother (1980)
	Imhof (1961)
	Newbold (1988)
	Pan (1964)

	5 Arguments
	N
	IP
	D
	PDL
	PDU
	WORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01ERF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Hill (1977)
	Mardia (1972)

	5 Arguments
	T
	VK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01ETF
	1 Purpose
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	3 Description
	4 References
	Kolbig and Schorr (1984)

	5 Arguments
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	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01EUF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Schorr (1974)

	5 Arguments
	X
	RCOMM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01EWF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Dickey (1976)
	Dickey and Fuller (1979)

	5 Arguments
	METHOD
	TYPE
	N
	TS
	NSAMP
	STATE
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=11
	IFAIL=21
	IFAIL=31
	IFAIL=51
	IFAIL=61
	IFAIL=201
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	G01EYF
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	3 Description
	4 References
	Conover (1980)
	Feller (1948)
	Kendall and Stuart (1973)
	Siegel (1956)
	Smirnov (1948)

	5 Arguments
	N
	D
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01EZF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Conover (1980)
	Feller (1948)
	Kendall and Stuart (1973)
	Kim and Jenrich (1973)
	Siegel (1956)
	Smirnov (1948)

	5 Arguments
	N1
	N2
	D
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01FAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Hastings and Peacock (1975)
	Wichura (1988)

	5 Arguments
	TAIL
	P
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01FBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Hastings and Peacock (1975)
	Hill (1970)

	5 Arguments
	TAIL
	P
	DF
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01FCF
	1 Purpose
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	3 Description
	4 References
	Best and Roberts (1975)
	Hastings and Peacock (1975)
	Kendall and Stuart (1969)

	5 Arguments
	P
	DF
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01FDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Hastings and Peacock (1975)

	5 Arguments
	P
	DF1
	DF2
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01FEF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Cran et al. (1977)
	Hastings and Peacock (1975)

	5 Arguments
	P
	A
	B
	TOL
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01FFF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Best and Roberts (1975)

	5 Arguments
	P
	A
	B
	TOL
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01FMF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Lund and Lund (1983)
	Montgomery (1984)
	Winer (1970)

	5 Arguments
	P
	V
	IR
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01FTF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Kolbig and Schorr (1984)

	5 Arguments
	X
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01GBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Amos (1964)

	5 Arguments
	T
	DF
	DELTA
	TOL
	MAXIT
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01GCF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	X
	DF
	RLAMDA
	TOL
	MAXIT
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01GDF
	1 Purpose
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	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	F
	DF1
	DF2
	RLAMDA
	TOL
	MAXIT
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01GEF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Lenth (1987)

	5 Arguments
	X
	A
	B
	RLAMDA
	TOL
	MAXIT
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01HAF
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	Abramowitz and Stegun (1972)
	Genz (2004)
	Kendall and Stuart (1969)

	5 Arguments
	X
	Y
	RHO
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01HBF
	1 Purpose
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	3 Description
	4 References
	Kendall and Stuart (1969)

	5 Arguments
	TAIL
	N
	A
	B
	XMU
	SIG
	LDSIG
	TOL
	WK
	LWK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01HCF
	1 Purpose
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	3 Description
	4 References
	Dunnet and Sobel (1954)
	Genz (2004)

	5 Arguments
	TAIL
	A
	B
	DF
	RHO
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01HDF
	1 Purpose
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	4 References
	Dunnet and Sobel (1954)
	Genz and Bretz (2002)

	5 Arguments
	N
	TAIL
	A
	B
	NU
	DELTA
	ISCOV
	RC
	LDRC
	EPSABS
	EPSREL
	NUMSUB
	NSAMPL
	FMAX
	ERREST
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=4
	IFAIL=5
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01JCF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Farebrother (1984)

	5 Arguments
	A
	MULT
	RLAMDA
	N
	C
	P
	PDF
	TOL
	MAXIT
	WRK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01JDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Farebrother (1980)
	Imhof (1961)
	Pan (1964)

	5 Arguments
	METHOD
	N
	RLAM
	D
	C
	PROB
	WORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01KAF
	1 Purpose
	2 Specification
	3 Description
	4 References
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	XSTD
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	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999
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	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results
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	X
	A
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	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01KKF
	1 Purpose
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	4 References
	Loader (2000)

	5 Arguments
	ILOG
	LX
	X
	LA
	A
	LB
	B
	PDF
	IVALID
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01KQF
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	5 Arguments
	ILOG
	LX
	X
	LXMU
	XMU
	LXSTD
	XSTD
	PDF
	IVALID
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01LBF
	1 Purpose
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	4 References
	5 Arguments
	ILOG
	K
	N
	X
	LDX
	XMU
	IULD
	SIG
	LDSIG
	PDF
	RANK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=11
	IFAIL=21
	IFAIL=31
	IFAIL=51
	IFAIL=71
	IFAIL=81
	IFAIL=82
	IFAIL=83
	IFAIL=91
	IFAIL=92
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01MBF
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	Gross and Clark (1975)
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	10 Example
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	10.3 Program Results


	G01MTF
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	Kolbig and Schorr (1984)

	5 Arguments
	X
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	7 Accuracy
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	9 Further Comments
	10 Example
	10.1 Program Text
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	10.3 Program Results


	G01MUF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Schorr (1974)

	5 Arguments
	X
	RCOMM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G01NAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Magnus (1978)
	Magnus (1979)
	Magnus (1986)
	Magnus and Pesaran (1993a)
	Magnus and Pesaran (1993b)
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	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
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	MODE
	N
	XMEAN
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	IQ
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	AVAR
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	IFAIL=2
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	IFAIL=5
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	IFAIL=3
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	EN
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	IFAIL=1
	IFAIL=2
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	IFAIL=4
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	IFAIL=11
	IFAIL=21
	IFAIL=31
	IFAIL=41
	IFAIL=51
	IFAIL=61
	IFAIL=71
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	SORDX
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	USEY
	Y
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	IFAIL
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	IFAIL=11
	IFAIL=21
	IFAIL=31
	IFAIL=41
	IFAIL=61
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	IFAIL
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	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
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	MODE
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	STATE
	X
	LDX
	IFAIL
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	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
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	LDX
	IFAIL
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	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
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	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=7
	IFAIL=8
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G05RKF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Marshall and Olkin (1988)
	Nelsen (2006)

	5 Arguments
	N
	M
	THETA
	SORDER
	STATE
	X
	LDX
	SDX
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=7
	IFAIL=8
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	G05RYF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Knuth (1981)
	Wilkinson (1965)

	5 Arguments
	MODE
	N
	DF
	M
	XMU
	C
	LDC
	R
	LR
	STATE
	X
	LDX
	IFAIL
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	IFAIL=3
	IFAIL=4
	IFAIL=-99
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	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S18GKF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	Z
	A
	NL
	B
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S19AAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	X
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S19ABF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	X
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S19ACF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	X
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S19ADF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	X
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S19ANF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	N
	X
	F
	IVALID
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S19APF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	N
	X
	F
	IVALID
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S19AQF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	N
	X
	F
	IVALID
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S19ARF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	N
	X
	F
	IVALID
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S20ACF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	X
	IFAIL

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S20ADF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	X
	IFAIL

	6 Error Indicators and Warnings
	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S20AQF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	N
	X
	F
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S20ARF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	N
	X
	F
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21BAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Carlson (1979)
	Carlson (1988)

	5 Arguments
	X
	Y
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21BBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Carlson (1979)
	Carlson (1988)

	5 Arguments
	X
	Y
	Z
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21BCF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Carlson (1979)
	Carlson (1988)

	5 Arguments
	X
	Y
	Z
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21BDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Carlson (1979)
	Carlson (1988)

	5 Arguments
	X
	Y
	Z
	R
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21BEF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Carlson (1979)
	Carlson (1988)

	5 Arguments
	PHI
	DM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21BFF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Carlson (1979)
	Carlson (1988)

	5 Arguments
	PHI
	DM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21BGF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Carlson (1979)
	Carlson (1988)

	5 Arguments
	DN
	PHI
	DM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21BHF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Carlson (1979)
	Carlson (1988)

	5 Arguments
	DM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21BJF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Carlson (1979)
	Carlson (1988)

	5 Arguments
	DM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21CAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Bulirsch (1960)

	5 Arguments
	U
	M
	SN
	CN
	DN
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21CBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Salzer (1962)

	5 Arguments
	Z
	AK2
	SN
	CN
	DN
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21CCF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Byrd and Friedman (1971)
	Magnus et al. (1966)
	Tolke (1966)
	Whittaker and Watson (1990)

	5 Arguments
	K
	X
	Q
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S21DAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Bulirsch (1960)

	5 Arguments
	Z
	AKP
	A
	B
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S22AAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)

	5 Arguments
	MODE
	X
	M
	NL
	P
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S22BAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	 (2010)
	Pearson (2009)

	5 Arguments
	A
	B
	X
	M
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=11
	IFAIL=31
	IFAIL=32
	IFAIL=51
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S22BBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	 (2010)
	Pearson (2009)

	5 Arguments
	ANI
	ADR
	BNI
	BDR
	X
	FRM
	SCM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=11
	IFAIL=13
	IFAIL=21
	IFAIL=31
	IFAIL=32
	IFAIL=33
	IFAIL=41
	IFAIL=51
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S22BEF
	1 Purpose
	2 Specification
	3 Description
	4 References
	 (2010)
	Pearson (2009)

	5 Arguments
	A
	B
	C
	X
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=9
	IFAIL=11
	IFAIL=21
	IFAIL=31
	IFAIL=32
	IFAIL=41
	IFAIL=42
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S22BFF
	1 Purpose
	2 Specification
	3 Description
	4 References
	 (2010)
	Pearson (2009)

	5 Arguments
	ANI
	ADR
	BNI
	BDR
	CNI
	CDR
	X
	FRF
	SCF
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=9
	IFAIL=11
	IFAIL=13
	IFAIL=21
	IFAIL=31
	IFAIL=33
	IFAIL=41
	IFAIL=51
	IFAIL=52
	IFAIL=53
	IFAIL=61
	IFAIL=71
	IFAIL=72
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30AAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Black and Scholes (1973)
	Merton (1973)

	5 Arguments
	CALPUT
	M
	N
	X
	S
	T
	SIGMA
	R
	Q
	P
	LDP
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=11
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30ABF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Black and Scholes (1973)
	Merton (1973)

	5 Arguments
	CALPUT
	M
	N
	X
	S
	T
	SIGMA
	R
	Q
	P
	LDP
	DELTA
	GAMMA
	VEGA
	THETA
	RHO
	CRHO
	VANNA
	CHARM
	SPEED
	COLOUR
	ZOMMA
	VOMMA
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=11
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30BAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Goldman et al. (1979)

	5 Arguments
	CALPUT
	M
	N
	SM
	S
	T
	SIGMA
	R
	Q
	P
	LDP
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=11
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30BBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Goldman et al. (1979)

	5 Arguments
	CALPUT
	M
	N
	SM
	S
	T
	SIGMA
	R
	Q
	P
	LDP
	DELTA
	GAMMA
	VEGA
	THETA
	RHO
	CRHO
	VANNA
	CHARM
	SPEED
	COLOUR
	ZOMMA
	VOMMA
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=11
	IFAIL=12
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30CAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Reiner and Rubinstein (1991)

	5 Arguments
	CALPUT
	M
	N
	X
	S
	K
	T
	SIGMA
	R
	Q
	P
	LDP
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=12
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30CBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Reiner and Rubinstein (1991)

	5 Arguments
	CALPUT
	M
	N
	X
	S
	K
	T
	SIGMA
	R
	Q
	P
	LDP
	DELTA
	GAMMA
	VEGA
	THETA
	RHO
	CRHO
	VANNA
	CHARM
	SPEED
	COLOUR
	ZOMMA
	VOMMA
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=12
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30CCF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Reiner and Rubinstein (1991)

	5 Arguments
	CALPUT
	M
	N
	X
	S
	T
	SIGMA
	R
	Q
	P
	LDP
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=11
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30CDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Reiner and Rubinstein (1991)

	5 Arguments
	CALPUT
	M
	N
	X
	S
	T
	SIGMA
	R
	Q
	P
	LDP
	DELTA
	GAMMA
	VEGA
	THETA
	RHO
	CRHO
	VANNA
	CHARM
	SPEED
	COLOUR
	ZOMMA
	VOMMA
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=11
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30FAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Haug (2007)

	5 Arguments
	CALPUT
	TYPE
	M
	N
	X
	S
	H
	K
	T
	SIGMA
	R
	Q
	P
	LDP
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=14
	IFAIL=15
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30JAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Haug (2007)
	Merton (1976)

	5 Arguments
	CALPUT
	M
	N
	X
	S
	T
	SIGMA
	R
	LAMBDA
	JVOL
	P
	LDP
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=12
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30JBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Haug (2007)
	Merton (1976)

	5 Arguments
	CALPUT
	M
	N
	X
	S
	T
	SIGMA
	R
	LAMBDA
	JVOL
	P
	LDP
	DELTA
	GAMMA
	VEGA
	THETA
	RHO
	VANNA
	CHARM
	SPEED
	COLOUR
	ZOMMA
	VOMMA
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=12
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30NAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Albrecher et al. (2007)
	Heston (1993)
	Kilin (2006)
	Lewis (2000)
	Rouah and Vainberg (2007)

	5 Arguments
	CALPUT
	M
	N
	X
	S
	T
	SIGMAV
	KAPPA
	CORR
	VAR0
	ETA
	GRISK
	R
	Q
	P
	LDP
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=16
	IFAIL=17
	IFAIL=18
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	S30NBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Albrecher et al. (2007)
	Heston (1993)
	Kilin (2006)
	Lewis (2000)
	Rouah and Vainberg (2007)

	5 Arguments
	CALPUT
	M
	N
	X
	S
	T
	SIGMAV
	KAPPA
	CORR
	VAR0
	ETA
	GRISK
	R
	Q
	P
	LDP
	DELTA
	GAMMA
	VEGA
	THETA
	RHO
	VANNA
	CHARM
	SPEED
	ZOMMA
	VOMMA
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
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